text
stringlengths
213
32.3k
from copy import deepcopy import math import numpy as np from scipy import fftpack # XXX explore cuda optimization at some point. from ..io.pick import _pick_data_channels, pick_info from ..utils import verbose, warn, fill_doc, _validate_type from ..parallel import parallel_func, check_n_jobs from .tfr import AverageTFR, _get_data def _check_input_st(x_in, n_fft): """Aux function.""" # flatten to 2 D and memorize original shape n_times = x_in.shape[-1] def _is_power_of_two(n): return not (n > 0 and ((n & (n - 1)))) if n_fft is None or (not _is_power_of_two(n_fft) and n_times > n_fft): # Compute next power of 2 n_fft = 2 ** int(math.ceil(math.log(n_times, 2))) elif n_fft < n_times: raise ValueError("n_fft cannot be smaller than signal size. " "Got %s < %s." % (n_fft, n_times)) if n_times < n_fft: warn('The input signal is shorter ({}) than "n_fft" ({}). ' 'Applying zero padding.'.format(x_in.shape[-1], n_fft)) zero_pad = n_fft - n_times pad_array = np.zeros(x_in.shape[:-1] + (zero_pad,), x_in.dtype) x_in = np.concatenate((x_in, pad_array), axis=-1) else: zero_pad = 0 return x_in, n_fft, zero_pad def _precompute_st_windows(n_samp, start_f, stop_f, sfreq, width): """Precompute stockwell Gaussian windows (in the freq domain).""" tw = fftpack.fftfreq(n_samp, 1. / sfreq) / n_samp tw = np.r_[tw[:1], tw[1:][::-1]] k = width # 1 for classical stowckwell transform f_range = np.arange(start_f, stop_f, 1) windows = np.empty((len(f_range), len(tw)), dtype=np.complex128) for i_f, f in enumerate(f_range): if f == 0.: window = np.ones(len(tw)) else: window = ((f / (np.sqrt(2. * np.pi) * k)) * np.exp(-0.5 * (1. / k ** 2.) * (f ** 2.) * tw ** 2.)) window /= window.sum() # normalisation windows[i_f] = fftpack.fft(window) return windows def _st(x, start_f, windows): """Compute ST based on Ali Moukadem MATLAB code (used in tests).""" n_samp = x.shape[-1] ST = np.empty(x.shape[:-1] + (len(windows), n_samp), dtype=np.complex128) # do the work Fx = fftpack.fft(x) XF = np.concatenate([Fx, Fx], axis=-1) for i_f, window in enumerate(windows): f = start_f + i_f ST[..., i_f, :] = fftpack.ifft(XF[..., f:f + n_samp] * window) return ST def _st_power_itc(x, start_f, compute_itc, zero_pad, decim, W): """Aux function.""" n_samp = x.shape[-1] n_out = (n_samp - zero_pad) n_out = n_out // decim + bool(n_out % decim) psd = np.empty((len(W), n_out)) itc = np.empty_like(psd) if compute_itc else None X = fftpack.fft(x) XX = np.concatenate([X, X], axis=-1) for i_f, window in enumerate(W): f = start_f + i_f ST = fftpack.ifft(XX[:, f:f + n_samp] * window) if zero_pad > 0: TFR = ST[:, :-zero_pad:decim] else: TFR = ST[:, ::decim] TFR_abs = np.abs(TFR) TFR_abs[TFR_abs == 0] = 1. if compute_itc: TFR /= TFR_abs itc[i_f] = np.abs(np.mean(TFR, axis=0)) TFR_abs *= TFR_abs psd[i_f] = np.mean(TFR_abs, axis=0) return psd, itc @fill_doc def tfr_array_stockwell(data, sfreq, fmin=None, fmax=None, n_fft=None, width=1.0, decim=1, return_itc=False, n_jobs=1): """Compute power and intertrial coherence using Stockwell (S) transform. Same computation as `~mne.time_frequency.tfr_stockwell`, but operates on :class:`NumPy arrays <numpy.ndarray>` instead of `~mne.Epochs` objects. See :footcite:`Stockwell2007,MoukademEtAl2014,WheatEtAl2010,JonesEtAl2006` for more information. Parameters ---------- data : ndarray, shape (n_epochs, n_channels, n_times) The signal to transform. sfreq : float The sampling frequency. fmin : None, float The minimum frequency to include. If None defaults to the minimum fft frequency greater than zero. fmax : None, float The maximum frequency to include. If None defaults to the maximum fft. n_fft : int | None The length of the windows used for FFT. If None, it defaults to the next power of 2 larger than the signal length. width : float The width of the Gaussian window. If < 1, increased temporal resolution, if > 1, increased frequency resolution. Defaults to 1. (classical S-Transform). decim : int The decimation factor on the time axis. To reduce memory usage. return_itc : bool Return intertrial coherence (ITC) as well as averaged power. %(n_jobs)s Returns ------- st_power : ndarray The multitaper power of the Stockwell transformed data. The last two dimensions are frequency and time. itc : ndarray The intertrial coherence. Only returned if return_itc is True. freqs : ndarray The frequencies. See Also -------- mne.time_frequency.tfr_stockwell mne.time_frequency.tfr_multitaper mne.time_frequency.tfr_array_multitaper mne.time_frequency.tfr_morlet mne.time_frequency.tfr_array_morlet References ---------- .. footbibliography:: """ _validate_type(data, np.ndarray, 'data') if data.ndim != 3: raise ValueError( 'data must be 3D with shape (n_epochs, n_channels, n_times), ' f'got {data.shape}') n_epochs, n_channels = data.shape[:2] n_out = data.shape[2] // decim + bool(data.shape[-1] % decim) data, n_fft_, zero_pad = _check_input_st(data, n_fft) freqs = fftpack.fftfreq(n_fft_, 1. / sfreq) if fmin is None: fmin = freqs[freqs > 0][0] if fmax is None: fmax = freqs.max() start_f = np.abs(freqs - fmin).argmin() stop_f = np.abs(freqs - fmax).argmin() freqs = freqs[start_f:stop_f] W = _precompute_st_windows(data.shape[-1], start_f, stop_f, sfreq, width) n_freq = stop_f - start_f psd = np.empty((n_channels, n_freq, n_out)) itc = np.empty((n_channels, n_freq, n_out)) if return_itc else None parallel, my_st, _ = parallel_func(_st_power_itc, n_jobs) tfrs = parallel(my_st(data[:, c, :], start_f, return_itc, zero_pad, decim, W) for c in range(n_channels)) for c, (this_psd, this_itc) in enumerate(iter(tfrs)): psd[c] = this_psd if this_itc is not None: itc[c] = this_itc return psd, itc, freqs @verbose def tfr_stockwell(inst, fmin=None, fmax=None, n_fft=None, width=1.0, decim=1, return_itc=False, n_jobs=1, verbose=None): """Compute Time-Frequency Representation (TFR) using Stockwell Transform. Same computation as `~mne.time_frequency.tfr_array_stockwell`, but operates on `~mne.Epochs` objects instead of :class:`NumPy arrays <numpy.ndarray>`. See :footcite:`Stockwell2007,MoukademEtAl2014,WheatEtAl2010,JonesEtAl2006` for more information. Parameters ---------- inst : Epochs | Evoked The epochs or evoked object. fmin : None, float The minimum frequency to include. If None defaults to the minimum fft frequency greater than zero. fmax : None, float The maximum frequency to include. If None defaults to the maximum fft. n_fft : int | None The length of the windows used for FFT. If None, it defaults to the next power of 2 larger than the signal length. width : float The width of the Gaussian window. If < 1, increased temporal resolution, if > 1, increased frequency resolution. Defaults to 1. (classical S-Transform). decim : int The decimation factor on the time axis. To reduce memory usage. return_itc : bool Return intertrial coherence (ITC) as well as averaged power. n_jobs : int The number of jobs to run in parallel (over channels). %(verbose)s Returns ------- power : AverageTFR The averaged power. itc : AverageTFR The intertrial coherence. Only returned if return_itc is True. See Also -------- mne.time_frequency.tfr_array_stockwell mne.time_frequency.tfr_multitaper mne.time_frequency.tfr_array_multitaper mne.time_frequency.tfr_morlet mne.time_frequency.tfr_array_morlet Notes ----- .. versionadded:: 0.9.0 References ---------- .. footbibliography:: """ # verbose dec is used b/c subfunctions are verbose data = _get_data(inst, return_itc) picks = _pick_data_channels(inst.info) info = pick_info(inst.info, picks) data = data[:, picks, :] n_jobs = check_n_jobs(n_jobs) power, itc, freqs = tfr_array_stockwell(data, sfreq=info['sfreq'], fmin=fmin, fmax=fmax, n_fft=n_fft, width=width, decim=decim, return_itc=return_itc, n_jobs=n_jobs) times = inst.times[::decim].copy() nave = len(data) out = AverageTFR(info, power, times, freqs, nave, method='stockwell-power') if return_itc: out = (out, AverageTFR(deepcopy(info), itc, times.copy(), freqs.copy(), nave, method='stockwell-itc')) return out
from typing import Optional, Any, Sequence, Tuple, Type, Callable, List from typing import Union from tensornetwork.backends import abstract_backend from tensornetwork.backends.tensorflow import decompositions from tensornetwork.backends.tensorflow import tensordot2 import functools as fct import operator as op # This might seem bad, but pytype treats tf.Tensor as Any anyway, so # we don't actually lose anything by doing this. import numpy as np Tensor = Any # pylint: disable=abstract-method class TensorFlowBackend(abstract_backend.AbstractBackend): """See base_backend.BaseBackend for documentation.""" def __init__(self) -> None: # pylint: disable=global-variable-undefined global tf super().__init__() try: # pylint: disable=import-outside-toplevel import tensorflow except ImportError as err: raise ImportError("Tensorflow not installed, please switch to a " "different backend or install Tensorflow.") from err tf = tensorflow self.name = "tensorflow" def tensordot(self, a: Tensor, b: Tensor, axes: Union[int, Sequence[Sequence[int]]]) -> Tensor: return tensordot2.tensordot(tf, a, b, axes) def reshape(self, tensor: Tensor, shape: Tensor) -> Tensor: return tf.reshape(tensor, shape) def transpose(self, tensor, perm=None) -> Tensor: return tf.transpose(tensor, perm) def slice(self, tensor: Tensor, start_indices: Tuple[int, ...], slice_sizes: Tuple[int, ...]) -> Tensor: if len(start_indices) != len(slice_sizes): raise ValueError("Lengths of start_indices and slice_sizes must be" "identical.") return tf.slice(tensor, start_indices, slice_sizes) def svd( self, tensor: Tensor, pivot_axis: int = -1, max_singular_values: Optional[int] = None, max_truncation_error: Optional[float] = None, relative: Optional[bool] = False ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: return decompositions.svd( tf, tensor, pivot_axis, max_singular_values, max_truncation_error, relative=relative) def qr(self, tensor: Tensor, pivot_axis: int = -1, non_negative_diagonal: bool = False) -> Tuple[Tensor, Tensor]: return decompositions.qr(tf, tensor, pivot_axis, non_negative_diagonal) def rq(self, tensor: Tensor, pivot_axis: int = -1, non_negative_diagonal: bool = False) -> Tuple[Tensor, Tensor]: return decompositions.rq(tf, tensor, pivot_axis, non_negative_diagonal) def shape_concat(self, values: Tensor, axis: int) -> Tensor: return tf.concat(values, axis) def shape_tensor(self, tensor: Tensor) -> Tensor: return tf.shape(tensor) def shape_tuple(self, tensor: Tensor) -> Tuple[Optional[int], ...]: return tuple(tensor.shape.as_list()) def sparse_shape(self, tensor: Tensor) -> Tuple[Optional[int], ...]: return self.shape_tuple(tensor) def shape_prod(self, values: Tensor) -> Tensor: return tf.reduce_prod(values) def sqrt(self, tensor: Tensor) -> Tensor: return tf.sqrt(tensor) def convert_to_tensor(self, tensor: Tensor) -> Tensor: result = tf.convert_to_tensor(tensor) return result def outer_product(self, tensor1: Tensor, tensor2: Tensor) -> Tensor: return tensordot2.tensordot(tf, tensor1, tensor2, 0) #pylint: disable=unused-argument def einsum(self, expression: str, *tensors: Tensor, optimize: bool = True) -> Tensor: return tf.einsum(expression, *tensors) def norm(self, tensor: Tensor) -> Tensor: return tf.linalg.norm(tensor) def eye(self, N: int, dtype: Optional[Type[np.number]] = None, M: Optional[int] = None) -> Tensor: dtype = dtype if dtype is not None else tf.float64 return tf.eye(num_rows=N, num_columns=M, dtype=dtype) def ones(self, shape: Tuple[int, ...], dtype: Optional[Type[np.number]] = None) -> Tensor: dtype = dtype if dtype is not None else tf.float64 return tf.ones(shape=shape, dtype=dtype) def zeros(self, shape: Tuple[int, ...], dtype: Optional[Type[np.number]] = None) -> Tensor: dtype = dtype if dtype is not None else tf.float64 return tf.zeros(shape, dtype=dtype) def randn(self, shape: Tuple[int, ...], dtype: Optional[Type[np.number]] = None, seed: Optional[int] = None) -> Tensor: if seed: tf.random.set_seed(seed) dtype = dtype if dtype is not None else tf.float64 if (dtype is tf.complex128) or (dtype is tf.complex64): return tf.complex( tf.random.normal(shape=shape, dtype=dtype.real_dtype), tf.random.normal(shape=shape, dtype=dtype.real_dtype)) return tf.random.normal(shape=shape, dtype=dtype) def random_uniform(self, shape: Tuple[int, ...], boundaries: Optional[Tuple[float, float]] = (0.0, 1.0), dtype: Optional[Type[np.number]] = None, seed: Optional[int] = None) -> Tensor: if seed: tf.random.set_seed(seed) dtype = dtype if dtype is not None else tf.float64 if (dtype is tf.complex128) or (dtype is tf.complex64): #pylint: disable=unexpected-keyword-arg return tf.complex( tf.random.uniform( shape=shape, minval=boundaries[0], maxval=boundaries[1], dtype=dtype.real_dtype), tf.random.uniform( shape=shape, minval=boundaries[0], maxval=boundaries[1], dtype=dtype.real_dtype)) tf.random.set_seed(10) #pylint: disable=unexpected-keyword-arg a = tf.random.uniform( shape=shape, minval=boundaries[0], maxval=boundaries[1], dtype=dtype) return a def conj(self, tensor: Tensor) -> Tensor: return tf.math.conj(tensor) def eigh(self, matrix: Tensor) -> Tuple[Tensor, Tensor]: return tf.linalg.eigh(matrix) def addition(self, tensor1: Tensor, tensor2: Tensor) -> Tensor: return tensor1 + tensor2 def subtraction(self, tensor1: Tensor, tensor2: Tensor) -> Tensor: return tensor1 - tensor2 def multiply(self, tensor1: Tensor, tensor2: Tensor) -> Tensor: return tensor1 * tensor2 def divide(self, tensor1: Tensor, tensor2: Tensor) -> Tensor: return tensor1 / tensor2 def index_update(self, tensor: Tensor, mask: Tensor, assignee: Tensor) -> Tensor: #returns a copy (unfortunately) return tf.where(mask, assignee, tensor) def inv(self, matrix: Tensor) -> Tensor: if len(matrix.shape) > 2: raise ValueError("input to tensorflow backend method `inv` has shape {}. " "Only matrices are supported.".format(tf.shape(matrix))) return tf.linalg.inv(matrix) def broadcast_right_multiplication(self, tensor1: Tensor, tensor2: Tensor) -> Tensor: if len(tensor2.shape) != 1: raise ValueError("only order-1 tensors are allowed for `tensor2`, " "found `tensor2.shape = {}`".format(tf.shape(tensor2))) return tensor1 * tensor2 def broadcast_left_multiplication(self, tensor1: Tensor, tensor2: Tensor) -> Tensor: if len(tensor1.shape) != 1: raise ValueError("only order-1 tensors are allowed for `tensor1`," " found `tensor1.shape = {}`".format(tf.shape(tensor1))) t1_broadcast_shape = self.shape_concat( [self.shape_tensor(tensor1), [1] * (len(tensor2.shape) - 1)], axis=-1) return tensor2 * self.reshape(tensor1, t1_broadcast_shape) def sin(self, tensor: Tensor) -> Tensor: return tf.math.sin(tensor) def cos(self, tensor: Tensor) -> Tensor: return tf.math.cos(tensor) def exp(self, tensor: Tensor) -> Tensor: return tf.math.exp(tensor) def log(self, tensor: Tensor) -> Tensor: return tf.math.log(tensor) def expm(self, matrix: Tensor) -> Tensor: if len(matrix.shape) != 2: raise ValueError("input to tensorflow backend method `expm` has shape {}." " Only matrices are supported.".format(matrix.shape)) if matrix.shape[0] != matrix.shape[1]: raise ValueError("input to tensorflow backend method `expm` only supports" "N*N matrix, {x}*{y} matrix is given".format( x=matrix.shape[0], y=matrix.shape[1])) return tf.linalg.expm(matrix) def jit(self, fun: Callable, *args: List, **kwargs: dict) -> Callable: # tf.function is slow and bad. return fun def sum(self, tensor: Tensor, axis: Optional[Sequence[int]] = None, keepdims: bool = False) -> Tensor: return tf.math.reduce_sum(tensor, axis=axis, keepdims=keepdims) def matmul(self, tensor1: Tensor, tensor2: Tensor) -> Tensor: if (tensor1.ndim <= 1) or (tensor2.ndim <= 1): raise ValueError("inputs to `matmul` have to be a tensors of order > 1,") return tf.matmul(tensor1, tensor2) def diagonal(self, tensor: Tensor, offset: int = 0, axis1: int = -2, axis2: int = -1) -> Tensor: """Return specified diagonals. If tensor is 2-D, returns the diagonal of tensor with the given offset, i.e., the collection of elements of the form a[i, i+offset]. If a has more than two dimensions, then the axes specified by axis1 and axis2 are used to determine the 2-D sub-array whose diagonal is returned. The shape of the resulting array can be determined by removing axis1 and axis2 and appending an index to the right equal to the size of the resulting diagonals. This function only extracts diagonals. If you wish to create diagonal matrices from vectors, use diagflat. Args: tensor: A tensor. offset: Offset of the diagonal from the main diagonal. axis1, axis2: Axis to be used as the first/second axis of the 2D sub-arrays from which the diagonals should be taken. Defaults to second-last and last axis (note this differs from the NumPy defaults). These arguments are not supported in the TensorFlow backend and an error will be raised if they are specified. Returns: array_of_diagonals: A dim = min(1, tensor.ndim - 2) tensor storing the batched diagonals. """ if axis1 != -2 or axis2 != -1: errstr = (f"axis1={axis1}, axis2={axis2} must be -2, -1 (the defaults)" f"with TensorFlow backend.") raise NotImplementedError(errstr) #pylint: disable=unexpected-keyword-arg return tf.linalg.diag_part(tensor, k=offset) def diagflat(self, tensor: Tensor, k: int = 0) -> Tensor: """ Flattens tensor and creates a new matrix of zeros with its elements on the k'th diagonal. Args: tensor: A tensor. k : The diagonal upon which to place its elements. Returns: tensor: A new tensor with all zeros save the specified diagonal. """ #pylint: disable=unexpected-keyword-arg return tf.linalg.diag(tensor, k=k) def trace(self, tensor: Tensor, offset: int = 0, axis1: int = -2, axis2: int = -1) -> Tensor: """Return summed entries along diagonals. If tensor is 2-D, the sum is over the diagonal of tensor with the given offset, i.e., the collection of elements of the form a[i, i+offset]. If a has more than two dimensions, then the axes specified by axis1 and axis2 are used to determine the 2-D sub-array whose diagonal is summed. Args: tensor: A tensor. offset: Offset of the diagonal from the main diagonal. This argument is not supported in the TensorFlow backend and an error will be raised if they are specified. axis1, axis2: Axis to be used as the first/second axis of the 2D sub-arrays from which the diagonals should be taken. Defaults to first/second axis. These arguments are not supported in the TensorFlow backend and an error will be raised if they are specified. Returns: array_of_diagonals: The batched summed diagonals. """ if offset != 0: errstr = (f"offset = {offset} must be 0 (the default)" f"with TensorFlow backend.") raise NotImplementedError(errstr) if axis1 == axis2: raise ValueError(f"axis1 = {axis1} cannot equal axis2 = {axis2}") N = len(tensor.shape) if N > 25: raise ValueError(f"Currently only tensors with ndim <= 25 can be traced" f"in the TensorFlow backend (yours was {N})") if axis1 < 0: axis1 = N+axis1 if axis2 < 0: axis2 = N+axis2 inds = list(map(chr, range(98, 98+N))) indsout = [i for n, i in enumerate(inds) if n not in (axis1, axis2)] inds[axis1] = 'a' inds[axis2] = 'a' return tf.einsum(''.join(inds) + '->' +''.join(indsout), tensor) def abs(self, tensor: Tensor) -> Tensor: """ Returns the elementwise absolute value of tensor. Args: tensor: An input tensor. Returns: tensor: Its elementwise absolute value. """ return tf.math.abs(tensor) def sign(self, tensor: Tensor) -> Tensor: """ Returns an elementwise tensor with entries y[i] = 1, 0, -1 where tensor[i] > 0, == 0, and < 0 respectively. For complex input the behaviour of this function may depend on the backend. The TensorFlow version returns y[i] = x[i] / abs(x[i]). Args: tensor: The input tensor. """ return tf.math.sign(tensor) def item(self, tensor): numel = 0 if len(tensor.shape) > 0: numel = fct.reduce(op.mul, tensor.shape) if numel != 1: raise ValueError(f"expected tensor with one element, " f"got {tensor.shape}") if numel == 1: return tensor[0] return tensor def power(self, a: Tensor, b: Union[Tensor, float]) -> Tensor: """ Returns the exponentiation of tensor a raised to b. If b is a tensor, then the exponentiation is element-wise between the two tensors, with a as the base and b as the power. Note that a and b must be broadcastable to the same shape if b is a tensor. If b is a scalar, then the exponentiation is each value in a raised to the power of b. Args: a: The tensor containing the bases. b: The tensor containing the powers; or a single scalar as the power. Returns: The tensor that is each element of a raised to the power of b. Note that the shape of the returned tensor is that produced by the broadcast of a and b. """ return tf.math.pow(a, b)
from homeassistant.components.abode import ATTR_DEVICE_ID from homeassistant.components.sensor import DOMAIN as SENSOR_DOMAIN from homeassistant.const import ( ATTR_DEVICE_CLASS, ATTR_FRIENDLY_NAME, ATTR_UNIT_OF_MEASUREMENT, DEVICE_CLASS_HUMIDITY, PERCENTAGE, TEMP_CELSIUS, ) from .common import setup_platform async def test_entity_registry(hass): """Tests that the devices are registered in the entity registry.""" await setup_platform(hass, SENSOR_DOMAIN) entity_registry = await hass.helpers.entity_registry.async_get_registry() entry = entity_registry.async_get("sensor.environment_sensor_humidity") assert entry.unique_id == "13545b21f4bdcd33d9abd461f8443e65-humidity" async def test_attributes(hass): """Test the sensor attributes are correct.""" await setup_platform(hass, SENSOR_DOMAIN) state = hass.states.get("sensor.environment_sensor_humidity") assert state.state == "32.0" assert state.attributes.get(ATTR_DEVICE_ID) == "RF:02148e70" assert not state.attributes.get("battery_low") assert not state.attributes.get("no_response") assert state.attributes.get("device_type") == "LM" assert state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) == PERCENTAGE assert state.attributes.get(ATTR_FRIENDLY_NAME) == "Environment Sensor Humidity" assert state.attributes.get(ATTR_DEVICE_CLASS) == DEVICE_CLASS_HUMIDITY state = hass.states.get("sensor.environment_sensor_lux") assert state.state == "1.0" assert state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) == "lux" state = hass.states.get("sensor.environment_sensor_temperature") # Abodepy device JSON reports 19.5, but Home Assistant shows 19.4 assert state.state == "19.4" assert state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) == TEMP_CELSIUS
import warnings from sklearn.cluster import KMeans, MiniBatchKMeans, AgglomerativeClustering, Birch, FeatureAgglomeration, SpectralClustering import six import numpy as np from .._shared.helpers import * from .format_data import format_data as formatter # dictionary of models models = { 'KMeans': KMeans, 'MiniBatchKMeans': MiniBatchKMeans, 'AgglomerativeClustering': AgglomerativeClustering, 'FeatureAgglomeration': FeatureAgglomeration, 'Birch': Birch, 'SpectralClustering': SpectralClustering, } try: from hdbscan import HDBSCAN _has_hdbscan = True models.update({'HDBSCAN': HDBSCAN}) except ImportError: _has_hdbscan = False @memoize def cluster(x, cluster='KMeans', n_clusters=3, ndims=None, format_data=True): """ Performs clustering analysis and returns a list of cluster labels Parameters ---------- x : A Numpy array, Pandas Dataframe or list of arrays/dfs The data to be clustered. You can pass a single array/df or a list. If a list is passed, the arrays will be stacked and the clustering will be performed across all lists (i.e. not within each list). cluster : str or dict Model to use to discover clusters. Support algorithms are: KMeans, MiniBatchKMeans, AgglomerativeClustering, Birch, FeatureAgglomeration, SpectralClustering and HDBSCAN (default: KMeans). Can be passed as a string, but for finer control of the model parameters, pass as a dictionary, e.g. reduce={'model' : 'KMeans', 'params' : {'max_iter' : 100}}. See scikit-learn specific model docs for details on parameters supported for each model. n_clusters : int Number of clusters to discover. Not required for HDBSCAN. format_data : bool Whether or not to first call the format_data function (default: True). ndims : None Deprecated argument. Please use new analyze function to perform combinations of transformations Returns ---------- cluster_labels : list An list of cluster labels """ if cluster == None: return x elif (isinstance(cluster, six.string_types) and cluster=='HDBSCAN') or \ (isinstance(cluster, dict) and cluster['model']=='HDBSCAN'): if not _has_hdbscan: raise ImportError('HDBSCAN is not installed. Please install hdbscan>=0.8.11') if ndims != None: warnings.warn('The ndims argument is now deprecated. Ignoring dimensionality reduction step.') if format_data: x = formatter(x, ppca=True) # if reduce is a string, find the corresponding model if isinstance(cluster, six.string_types): model = models[cluster] if cluster != 'HDBSCAN': model_params = { 'n_clusters' : n_clusters } else: model_params = {} # if its a dict, use custom params elif type(cluster) is dict: if isinstance(cluster['model'], six.string_types): model = models[cluster['model']] model_params = cluster['params'] # initialize model model = model(**model_params) # fit the model model.fit(np.vstack(x)) # return the labels return list(model.labels_)
import pytest import plumbum from plumbum import local from plumbum._testtools import ( skip_on_windows ) try: from plumbum.cmd import printenv except ImportError: pass @skip_on_windows class TestEnv: def test_change_env(self): with local.env(silly=12): assert 12 == local.env['silly'] actual = set(x.split('=')[0] for x in printenv().splitlines() if '=' in x) localenv = set(x[0] for x in local.env) print(actual, localenv) assert localenv == actual assert len(local.env) == len(actual) def test_dictlike(self): keys = set(x.split('=')[0] for x in printenv().splitlines() if '=' in x) values = set(x.split('=', 1)[1].strip() for x in printenv().splitlines() if '=' in x) assert keys == set(local.env.keys()) assert len(values) == len(set(local.env.values())) def test_custom_env(self): with local.env(): items = {'one':'OnE', 'tww':'TWOO'} local.env.update(items) assert 'tww' in local.env local.env.clear() assert 'tww' not in local.env def test_item(self): with local.env(): local.env['simple_plum'] = 'thing' assert 'simple_plum' in local.env del local.env['simple_plum'] assert 'simple_plum' not in local.env local.env['simple_plum'] = 'thing' assert 'simple_plum' in local.env assert 'thing' == local.env.pop('simple_plum') assert 'simple_plum' not in local.env local.env['simple_plum'] = 'thing' assert 'simple_plum' not in local.env @skip_on_windows def test_home(self): assert local.env.home == local.env['HOME'] old_home = local.env.home with local.env(): local.env.home = 'Nobody' assert local.env.home == local.env['HOME'] assert local.env.home == 'Nobody' assert local.env.home == old_home @skip_on_windows def test_user(self): assert local.env.user
from homeassistant.components.nightscout.const import ( ATTR_DATE, ATTR_DELTA, ATTR_DEVICE, ATTR_DIRECTION, ) from homeassistant.const import ATTR_ICON, STATE_UNAVAILABLE from tests.components.nightscout import ( GLUCOSE_READINGS, init_integration, init_integration_empty_response, init_integration_unavailable, ) async def test_sensor_state(hass): """Test sensor state data.""" await init_integration(hass) test_glucose_sensor = hass.states.get("sensor.blood_sugar") assert test_glucose_sensor.state == str( GLUCOSE_READINGS[0].sgv # pylint: disable=maybe-no-member ) async def test_sensor_error(hass): """Test sensor state data.""" await init_integration_unavailable(hass) test_glucose_sensor = hass.states.get("sensor.blood_sugar") assert test_glucose_sensor.state == STATE_UNAVAILABLE async def test_sensor_empty_response(hass): """Test sensor state data.""" await init_integration_empty_response(hass) test_glucose_sensor = hass.states.get("sensor.blood_sugar") assert test_glucose_sensor.state == STATE_UNAVAILABLE async def test_sensor_attributes(hass): """Test sensor attributes.""" await init_integration(hass) test_glucose_sensor = hass.states.get("sensor.blood_sugar") reading = GLUCOSE_READINGS[0] assert reading is not None attr = test_glucose_sensor.attributes assert attr[ATTR_DATE] == reading.date # pylint: disable=maybe-no-member assert attr[ATTR_DELTA] == reading.delta # pylint: disable=maybe-no-member assert attr[ATTR_DEVICE] == reading.device # pylint: disable=maybe-no-member assert attr[ATTR_DIRECTION] == reading.direction # pylint: disable=maybe-no-member assert attr[ATTR_ICON] == "mdi:arrow-bottom-right"
from openwebif.api import CreateDevice import voluptuous as vol from homeassistant.components.media_player import MediaPlayerEntity from homeassistant.components.media_player.const import ( MEDIA_TYPE_TVSHOW, SUPPORT_NEXT_TRACK, SUPPORT_PAUSE, SUPPORT_PREVIOUS_TRACK, SUPPORT_SELECT_SOURCE, SUPPORT_STOP, SUPPORT_TURN_OFF, SUPPORT_TURN_ON, SUPPORT_VOLUME_MUTE, SUPPORT_VOLUME_SET, SUPPORT_VOLUME_STEP, ) from homeassistant.const import ( CONF_HOST, CONF_NAME, CONF_PASSWORD, CONF_PORT, CONF_SSL, CONF_USERNAME, STATE_OFF, STATE_ON, STATE_PLAYING, ) import homeassistant.helpers.config_validation as cv from homeassistant.helpers.config_validation import PLATFORM_SCHEMA ATTR_MEDIA_CURRENTLY_RECORDING = "media_currently_recording" ATTR_MEDIA_DESCRIPTION = "media_description" ATTR_MEDIA_END_TIME = "media_end_time" ATTR_MEDIA_START_TIME = "media_start_time" CONF_USE_CHANNEL_ICON = "use_channel_icon" CONF_DEEP_STANDBY = "deep_standby" CONF_MAC_ADDRESS = "mac_address" CONF_SOURCE_BOUQUET = "source_bouquet" DEFAULT_NAME = "Enigma2 Media Player" DEFAULT_PORT = 80 DEFAULT_SSL = False DEFAULT_USE_CHANNEL_ICON = False DEFAULT_USERNAME = "root" DEFAULT_PASSWORD = "dreambox" DEFAULT_DEEP_STANDBY = False DEFAULT_MAC_ADDRESS = "" DEFAULT_SOURCE_BOUQUET = "" SUPPORTED_ENIGMA2 = ( SUPPORT_VOLUME_SET | SUPPORT_VOLUME_MUTE | SUPPORT_TURN_OFF | SUPPORT_NEXT_TRACK | SUPPORT_STOP | SUPPORT_PREVIOUS_TRACK | SUPPORT_VOLUME_STEP | SUPPORT_TURN_ON | SUPPORT_PAUSE | SUPPORT_SELECT_SOURCE ) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_HOST): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Optional(CONF_USERNAME, default=DEFAULT_USERNAME): cv.string, vol.Optional(CONF_PASSWORD, default=DEFAULT_PASSWORD): cv.string, vol.Optional(CONF_SSL, default=DEFAULT_SSL): cv.boolean, vol.Optional( CONF_USE_CHANNEL_ICON, default=DEFAULT_USE_CHANNEL_ICON ): cv.boolean, vol.Optional(CONF_DEEP_STANDBY, default=DEFAULT_DEEP_STANDBY): cv.boolean, vol.Optional(CONF_MAC_ADDRESS, default=DEFAULT_MAC_ADDRESS): cv.string, vol.Optional(CONF_SOURCE_BOUQUET, default=DEFAULT_SOURCE_BOUQUET): cv.string, } ) def setup_platform(hass, config, add_devices, discovery_info=None): """Set up of an enigma2 media player.""" if discovery_info: # Discovery gives us the streaming service port (8001) # which is not useful as OpenWebif never runs on that port. # So use the default port instead. config[CONF_PORT] = DEFAULT_PORT config[CONF_NAME] = discovery_info["hostname"] config[CONF_HOST] = discovery_info["host"] config[CONF_USERNAME] = DEFAULT_USERNAME config[CONF_PASSWORD] = DEFAULT_PASSWORD config[CONF_SSL] = DEFAULT_SSL config[CONF_USE_CHANNEL_ICON] = DEFAULT_USE_CHANNEL_ICON config[CONF_MAC_ADDRESS] = DEFAULT_MAC_ADDRESS config[CONF_DEEP_STANDBY] = DEFAULT_DEEP_STANDBY config[CONF_SOURCE_BOUQUET] = DEFAULT_SOURCE_BOUQUET device = CreateDevice( host=config[CONF_HOST], port=config.get(CONF_PORT), username=config.get(CONF_USERNAME), password=config.get(CONF_PASSWORD), is_https=config[CONF_SSL], prefer_picon=config.get(CONF_USE_CHANNEL_ICON), mac_address=config.get(CONF_MAC_ADDRESS), turn_off_to_deep=config.get(CONF_DEEP_STANDBY), source_bouquet=config.get(CONF_SOURCE_BOUQUET), ) add_devices([Enigma2Device(config[CONF_NAME], device)], True) class Enigma2Device(MediaPlayerEntity): """Representation of an Enigma2 box.""" def __init__(self, name, device): """Initialize the Enigma2 device.""" self._name = name self.e2_box = device @property def name(self): """Return the name of the device.""" return self._name @property def state(self): """Return the state of the device.""" if self.e2_box.is_recording_playback: return STATE_PLAYING return STATE_OFF if self.e2_box.in_standby else STATE_ON @property def supported_features(self): """Flag of media commands that are supported.""" return SUPPORTED_ENIGMA2 def turn_off(self): """Turn off media player.""" self.e2_box.turn_off() def turn_on(self): """Turn the media player on.""" self.e2_box.turn_on() @property def media_title(self): """Title of current playing media.""" return self.e2_box.current_service_channel_name @property def media_series_title(self): """Return the title of current episode of TV show.""" return self.e2_box.current_programme_name @property def media_channel(self): """Channel of current playing media.""" return self.e2_box.current_service_channel_name @property def media_content_id(self): """Service Ref of current playing media.""" return self.e2_box.current_service_ref @property def media_content_type(self): """Type of video currently playing.""" return MEDIA_TYPE_TVSHOW @property def is_volume_muted(self): """Boolean if volume is currently muted.""" return self.e2_box.muted @property def media_image_url(self): """Picon url for the channel.""" return self.e2_box.picon_url def set_volume_level(self, volume): """Set volume level, range 0..1.""" self.e2_box.set_volume(int(volume * 100)) def volume_up(self): """Volume up the media player.""" self.e2_box.set_volume(int(self.e2_box.volume * 100) + 5) def volume_down(self): """Volume down media player.""" self.e2_box.set_volume(int(self.e2_box.volume * 100) - 5) @property def volume_level(self): """Volume level of the media player (0..1).""" return self.e2_box.volume def media_stop(self): """Send stop command.""" self.e2_box.set_stop() def media_play(self): """Play media.""" self.e2_box.toggle_play_pause() def media_pause(self): """Pause the media player.""" self.e2_box.toggle_play_pause() def media_next_track(self): """Send next track command.""" self.e2_box.set_channel_up() def media_previous_track(self): """Send next track command.""" self.e2_box.set_channel_down() def mute_volume(self, mute): """Mute or unmute.""" self.e2_box.mute_volume() @property def source(self): """Return the current input source.""" return self.e2_box.current_service_channel_name @property def source_list(self): """List of available input sources.""" return self.e2_box.source_list def select_source(self, source): """Select input source.""" self.e2_box.select_source(self.e2_box.sources[source]) def update(self): """Update state of the media_player.""" self.e2_box.update() @property def device_state_attributes(self): """Return device specific state attributes. isRecording: Is the box currently recording. currservice_fulldescription: Full program description. currservice_begin: is in the format '21:00'. currservice_end: is in the format '21:00'. """ if self.e2_box.in_standby: return {} return { ATTR_MEDIA_CURRENTLY_RECORDING: self.e2_box.status_info["isRecording"], ATTR_MEDIA_DESCRIPTION: self.e2_box.status_info[ "currservice_fulldescription" ], ATTR_MEDIA_START_TIME: self.e2_box.status_info["currservice_begin"], ATTR_MEDIA_END_TIME: self.e2_box.status_info["currservice_end"], }
import logging import sys import os.path from gensim.corpora import sources, dmlcorpus PREFIX = 'dmlcz' AT_HOME = False if AT_HOME: SOURCE_LIST = [ sources.DmlCzSource('dmlcz', '/Users/kofola/workspace/dml/data/dmlcz/'), sources.DmlSource('numdam', '/Users/kofola/workspace/dml/data/numdam/'), sources.ArxmlivSource('arxmliv', '/Users/kofola/workspace/dml/data/arxmliv/'), ] RESULT_DIR = '/Users/kofola/workspace/dml/data/results' else: SOURCE_LIST = [ sources.DmlCzSource('dmlcz', '/data/dmlcz/data/share'), sources.DmlSource('numdam', '/data/dmlcz/data/numdam'), sources.ArxmlivSource('arxmliv', '/data/dmlcz/data/arxmliv'), ] RESULT_DIR = '/data/dmlcz/xrehurek/results' def buildDmlCorpus(config): dml = dmlcorpus.DmlCorpus() dml.processConfig(config, shuffle=True) dml.buildDictionary() dml.dictionary.filterExtremes(noBelow=5, noAbove=0.3) # ignore too (in)frequent words dml.save(config.resultFile('.pkl')) dml.saveAsText() # save id mappings and documents as text data (matrix market format) return dml if __name__ == '__main__': logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s') logging.root.setLevel(level=logging.INFO) logging.info("running %s", ' '.join(sys.argv)) program = os.path.basename(sys.argv[0]) # check and process input arguments if len(sys.argv) < 2: print(globals()['__doc__'] % locals()) sys.exit(1) language = sys.argv[1] # construct the config, which holds information about sources, data file filenames etc. config = dmlcorpus.DmlConfig('%s_%s' % (PREFIX, language), resultDir=RESULT_DIR, acceptLangs=[language]) for source in SOURCE_LIST: config.addSource(source) buildDmlCorpus(config) logging.info("finished running %s", program)
import logging from pyvlx import PyVLX, PyVLXException import voluptuous as vol from homeassistant.const import CONF_HOST, CONF_PASSWORD, EVENT_HOMEASSISTANT_STOP from homeassistant.helpers import discovery import homeassistant.helpers.config_validation as cv DOMAIN = "velux" DATA_VELUX = "data_velux" SUPPORTED_DOMAINS = ["cover", "scene"] _LOGGER = logging.getLogger(__name__) CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( {vol.Required(CONF_HOST): cv.string, vol.Required(CONF_PASSWORD): cv.string} ) }, extra=vol.ALLOW_EXTRA, ) async def async_setup(hass, config): """Set up the velux component.""" try: hass.data[DATA_VELUX] = VeluxModule(hass, config[DOMAIN]) hass.data[DATA_VELUX].setup() await hass.data[DATA_VELUX].async_start() except PyVLXException as ex: _LOGGER.exception("Can't connect to velux interface: %s", ex) return False for component in SUPPORTED_DOMAINS: hass.async_create_task( discovery.async_load_platform(hass, component, DOMAIN, {}, config) ) return True class VeluxModule: """Abstraction for velux component.""" def __init__(self, hass, domain_config): """Initialize for velux component.""" self.pyvlx = None self._hass = hass self._domain_config = domain_config def setup(self): """Velux component setup.""" async def on_hass_stop(event): """Close connection when hass stops.""" _LOGGER.debug("Velux interface terminated") await self.pyvlx.disconnect() self._hass.bus.async_listen_once(EVENT_HOMEASSISTANT_STOP, on_hass_stop) host = self._domain_config.get(CONF_HOST) password = self._domain_config.get(CONF_PASSWORD) self.pyvlx = PyVLX(host=host, password=password) async def async_start(self): """Start velux component.""" _LOGGER.debug("Velux interface started") await self.pyvlx.load_scenes() await self.pyvlx.load_nodes()
def convert_to_bytes(resp): resp = convert_body_to_bytes(resp) return resp def convert_to_unicode(resp): resp = convert_body_to_unicode(resp) return resp def convert_body_to_bytes(resp): """ If the request body is a string, encode it to bytes (for python3 support) By default yaml serializes to utf-8 encoded bytestrings. When this cassette is loaded by python3, it's automatically decoded into unicode strings. This makes sure that it stays a bytestring, since that's what all the internal httplib machinery is expecting. For more info on py3 yaml: http://pyyaml.org/wiki/PyYAMLDocumentation#Python3support """ try: if resp["body"]["string"] is not None and not isinstance(resp["body"]["string"], bytes): resp["body"]["string"] = resp["body"]["string"].encode("utf-8") except (KeyError, TypeError, UnicodeEncodeError): # The thing we were converting either wasn't a dictionary or didn't # have the keys we were expecting. Some of the tests just serialize # and deserialize a string. # Also, sometimes the thing actually is binary, so if you can't encode # it, just give up. pass return resp def _convert_string_to_unicode(string): """ If the string is bytes, decode it to a string (for python3 support) """ result = string try: if string is not None and not isinstance(string, str): result = string.decode("utf-8") except (TypeError, UnicodeDecodeError, AttributeError): # Sometimes the string actually is binary or StringIO object, # so if you can't decode it, just give up. pass return result def convert_body_to_unicode(resp): """ If the request or responses body is bytes, decode it to a string (for python3 support) """ if type(resp) is not dict: # Some of the tests just serialize and deserialize a string. return _convert_string_to_unicode(resp) else: body = resp.get("body") if body is not None: try: body["string"] = _convert_string_to_unicode(body["string"]) except (KeyError, TypeError, AttributeError): # The thing we were converting either wasn't a dictionary or # didn't have the keys we were expecting. # For example request object has no 'string' key. resp["body"] = _convert_string_to_unicode(body) return resp
from functools import partial import logging import requests from synology.surveillance_station import SurveillanceStation import voluptuous as vol from homeassistant.components.camera import PLATFORM_SCHEMA, Camera from homeassistant.const import ( CONF_NAME, CONF_PASSWORD, CONF_TIMEOUT, CONF_URL, CONF_USERNAME, CONF_VERIFY_SSL, CONF_WHITELIST, ) from homeassistant.helpers.aiohttp_client import ( async_aiohttp_proxy_web, async_get_clientsession, ) import homeassistant.helpers.config_validation as cv _LOGGER = logging.getLogger(__name__) DEFAULT_NAME = "Synology Camera" DEFAULT_TIMEOUT = 5 PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Required(CONF_URL): cv.string, vol.Optional(CONF_TIMEOUT, default=DEFAULT_TIMEOUT): cv.positive_int, vol.Optional(CONF_WHITELIST, default=[]): cv.ensure_list, vol.Optional(CONF_VERIFY_SSL, default=True): cv.boolean, } ) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up a Synology IP Camera.""" _LOGGER.warning( "The Synology integration is deprecated." " Please use the Synology DSM integration" " (https://www.home-assistant.io/integrations/synology_dsm/) instead." " This integration will be removed in version 0.118.0." ) verify_ssl = config.get(CONF_VERIFY_SSL) timeout = config.get(CONF_TIMEOUT) try: surveillance = await hass.async_add_executor_job( partial( SurveillanceStation, config.get(CONF_URL), config.get(CONF_USERNAME), config.get(CONF_PASSWORD), verify_ssl=verify_ssl, timeout=timeout, ) ) except (requests.exceptions.RequestException, ValueError): _LOGGER.exception("Error when initializing SurveillanceStation") return False cameras = surveillance.get_all_cameras() # add cameras devices = [] for camera in cameras: if not config[CONF_WHITELIST] or camera.name in config[CONF_WHITELIST]: device = SynologyCamera(surveillance, camera.camera_id, verify_ssl) devices.append(device) async_add_entities(devices) class SynologyCamera(Camera): """An implementation of a Synology NAS based IP camera.""" def __init__(self, surveillance, camera_id, verify_ssl): """Initialize a Synology Surveillance Station camera.""" super().__init__() self._surveillance = surveillance self._camera_id = camera_id self._verify_ssl = verify_ssl self._camera = self._surveillance.get_camera(camera_id) self._motion_setting = self._surveillance.get_motion_setting(camera_id) self.is_streaming = self._camera.is_enabled def camera_image(self): """Return bytes of camera image.""" return self._surveillance.get_camera_image(self._camera_id) async def handle_async_mjpeg_stream(self, request): """Return a MJPEG stream image response directly from the camera.""" streaming_url = self._camera.video_stream_url websession = async_get_clientsession(self.hass, self._verify_ssl) stream_coro = websession.get(streaming_url) return await async_aiohttp_proxy_web(self.hass, request, stream_coro) @property def name(self): """Return the name of this device.""" return self._camera.name @property def is_recording(self): """Return true if the device is recording.""" return self._camera.is_recording @property def should_poll(self): """Update the recording state periodically.""" return True def update(self): """Update the status of the camera.""" self._surveillance.update() self._camera = self._surveillance.get_camera(self._camera.camera_id) self._motion_setting = self._surveillance.get_motion_setting( self._camera.camera_id ) self.is_streaming = self._camera.is_enabled @property def motion_detection_enabled(self): """Return the camera motion detection status.""" return self._motion_setting.is_enabled def enable_motion_detection(self): """Enable motion detection in the camera.""" self._surveillance.enable_motion_detection(self._camera_id) def disable_motion_detection(self): """Disable motion detection in camera.""" self._surveillance.disable_motion_detection(self._camera_id)
from homeassistant.components.binary_sensor import BinarySensorEntity from homeassistant.core import callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from . import WiffiEntity from .const import CREATE_ENTITY_SIGNAL async def async_setup_entry(hass, config_entry, async_add_entities): """Set up platform for a new integration. Called by the HA framework after async_forward_entry_setup has been called during initialization of a new integration (= wiffi). """ @callback def _create_entity(device, metric): """Create platform specific entities.""" entities = [] if metric.is_bool: entities.append(BoolEntity(device, metric, config_entry.options)) async_add_entities(entities) async_dispatcher_connect(hass, CREATE_ENTITY_SIGNAL, _create_entity) class BoolEntity(WiffiEntity, BinarySensorEntity): """Entity for wiffi metrics which have a boolean value.""" def __init__(self, device, metric, options): """Initialize the entity.""" super().__init__(device, metric, options) self._value = metric.value self.reset_expiration_date() @property def is_on(self): """Return the state of the entity.""" return self._value @callback def _update_value_callback(self, device, metric): """Update the value of the entity. Called if a new message has been received from the wiffi device. """ self.reset_expiration_date() self._value = metric.value self.async_write_ha_state()
from pytile.errors import TileError from homeassistant import data_entry_flow from homeassistant.components.tile import DOMAIN from homeassistant.config_entries import SOURCE_IMPORT, SOURCE_USER from homeassistant.const import CONF_PASSWORD, CONF_USERNAME from tests.async_mock import patch from tests.common import MockConfigEntry async def test_duplicate_error(hass): """Test that errors are shown when duplicates are added.""" conf = { CONF_USERNAME: "[email protected]", CONF_PASSWORD: "123abc", } MockConfigEntry(domain=DOMAIN, unique_id="[email protected]", data=conf).add_to_hass( hass ) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data=conf ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "already_configured" async def test_invalid_credentials(hass): """Test that invalid credentials key throws an error.""" conf = { CONF_USERNAME: "[email protected]", CONF_PASSWORD: "123abc", } with patch( "homeassistant.components.tile.config_flow.async_login", side_effect=TileError, ): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data=conf ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["errors"] == {"base": "invalid_auth"} async def test_step_import(hass): """Test that the import step works.""" conf = { CONF_USERNAME: "[email protected]", CONF_PASSWORD: "123abc", } with patch( "homeassistant.components.tile.async_setup_entry", return_value=True ), patch("homeassistant.components.tile.config_flow.async_login"): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data=conf ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["title"] == "[email protected]" assert result["data"] == { CONF_USERNAME: "[email protected]", CONF_PASSWORD: "123abc", } async def test_step_user(hass): """Test that the user step works.""" conf = { CONF_USERNAME: "[email protected]", CONF_PASSWORD: "123abc", } with patch( "homeassistant.components.tile.async_setup_entry", return_value=True ), patch("homeassistant.components.tile.config_flow.async_login"): result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data=conf ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["title"] == "[email protected]" assert result["data"] == { CONF_USERNAME: "[email protected]", CONF_PASSWORD: "123abc", }
import asyncio from pyvolumio import CannotConnectError, Volumio from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_HOST, CONF_PORT from homeassistant.core import HomeAssistant from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers.aiohttp_client import async_get_clientsession from .const import DATA_INFO, DATA_VOLUMIO, DOMAIN PLATFORMS = ["media_player"] async def async_setup(hass: HomeAssistant, config: dict): """Set up the Volumio component.""" return True async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry): """Set up Volumio from a config entry.""" volumio = Volumio( entry.data[CONF_HOST], entry.data[CONF_PORT], async_get_clientsession(hass) ) try: info = await volumio.get_system_version() except CannotConnectError as error: raise ConfigEntryNotReady from error hass.data.setdefault(DOMAIN, {})[entry.entry_id] = { DATA_VOLUMIO: volumio, DATA_INFO: info, } for component in PLATFORMS: hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, component) ) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry): """Unload a config entry.""" unload_ok = all( await asyncio.gather( *[ hass.config_entries.async_forward_entry_unload(entry, component) for component in PLATFORMS ] ) ) if unload_ok: hass.data[DOMAIN].pop(entry.entry_id) return unload_ok
from uuid import uuid4 from pysmartthings import CAPABILITIES, AppEntity, Capability from homeassistant.components.smartthings import smartapp from homeassistant.components.smartthings.const import ( CONF_REFRESH_TOKEN, DATA_MANAGER, DOMAIN, ) from tests.async_mock import AsyncMock, Mock, patch from tests.common import MockConfigEntry async def test_update_app(hass, app): """Test update_app does not save if app is current.""" await smartapp.update_app(hass, app) assert app.save.call_count == 0 async def test_update_app_updated_needed(hass, app): """Test update_app updates when an app is needed.""" mock_app = Mock(AppEntity) mock_app.app_name = "Test" await smartapp.update_app(hass, mock_app) assert mock_app.save.call_count == 1 assert mock_app.app_name == "Test" assert mock_app.display_name == app.display_name assert mock_app.description == app.description assert mock_app.webhook_target_url == app.webhook_target_url assert mock_app.app_type == app.app_type assert mock_app.single_instance == app.single_instance assert mock_app.classifications == app.classifications async def test_smartapp_update_saves_token( hass, smartthings_mock, location, device_factory ): """Test update saves token.""" # Arrange entry = MockConfigEntry( domain=DOMAIN, data={"installed_app_id": str(uuid4()), "app_id": str(uuid4())} ) entry.add_to_hass(hass) app = Mock() app.app_id = entry.data["app_id"] request = Mock() request.installed_app_id = entry.data["installed_app_id"] request.auth_token = str(uuid4()) request.refresh_token = str(uuid4()) request.location_id = location.location_id # Act await smartapp.smartapp_update(hass, request, None, app) # Assert assert entry.data[CONF_REFRESH_TOKEN] == request.refresh_token async def test_smartapp_uninstall(hass, config_entry): """Test the config entry is unloaded when the app is uninstalled.""" config_entry.add_to_hass(hass) app = Mock() app.app_id = config_entry.data["app_id"] request = Mock() request.installed_app_id = config_entry.data["installed_app_id"] with patch.object(hass.config_entries, "async_remove") as remove: await smartapp.smartapp_uninstall(hass, request, None, app) assert remove.call_count == 1 async def test_smartapp_webhook(hass): """Test the smartapp webhook calls the manager.""" manager = Mock() manager.handle_request = AsyncMock(return_value={}) hass.data[DOMAIN][DATA_MANAGER] = manager request = Mock() request.headers = [] request.json = AsyncMock(return_value={}) result = await smartapp.smartapp_webhook(hass, "", request) assert result.body == b"{}" async def test_smartapp_sync_subscriptions( hass, smartthings_mock, device_factory, subscription_factory ): """Test synchronization adds and removes and ignores unused.""" smartthings_mock.subscriptions.return_value = [ subscription_factory(Capability.thermostat), subscription_factory(Capability.switch), subscription_factory(Capability.switch_level), ] devices = [ device_factory("", [Capability.battery, "ping"]), device_factory("", [Capability.switch, Capability.switch_level]), device_factory("", [Capability.switch, Capability.execute]), ] await smartapp.smartapp_sync_subscriptions( hass, str(uuid4()), str(uuid4()), str(uuid4()), devices ) assert smartthings_mock.subscriptions.call_count == 1 assert smartthings_mock.delete_subscription.call_count == 1 assert smartthings_mock.create_subscription.call_count == 1 async def test_smartapp_sync_subscriptions_up_to_date( hass, smartthings_mock, device_factory, subscription_factory ): """Test synchronization does nothing when current.""" smartthings_mock.subscriptions.return_value = [ subscription_factory(Capability.battery), subscription_factory(Capability.switch), subscription_factory(Capability.switch_level), ] devices = [ device_factory("", [Capability.battery, "ping"]), device_factory("", [Capability.switch, Capability.switch_level]), device_factory("", [Capability.switch]), ] await smartapp.smartapp_sync_subscriptions( hass, str(uuid4()), str(uuid4()), str(uuid4()), devices ) assert smartthings_mock.subscriptions.call_count == 1 assert smartthings_mock.delete_subscription.call_count == 0 assert smartthings_mock.create_subscription.call_count == 0 async def test_smartapp_sync_subscriptions_limit_warning( hass, smartthings_mock, device_factory, subscription_factory, caplog ): """Test synchronization over the limit logs a warning.""" smartthings_mock.subscriptions.return_value = [] devices = [ device_factory("", CAPABILITIES), ] await smartapp.smartapp_sync_subscriptions( hass, str(uuid4()), str(uuid4()), str(uuid4()), devices ) assert ( "Some device attributes may not receive push updates and there may be " "subscription creation failures" in caplog.text ) async def test_smartapp_sync_subscriptions_handles_exceptions( hass, smartthings_mock, device_factory, subscription_factory ): """Test synchronization does nothing when current.""" smartthings_mock.delete_subscription.side_effect = Exception smartthings_mock.create_subscription.side_effect = Exception smartthings_mock.subscriptions.return_value = [ subscription_factory(Capability.battery), subscription_factory(Capability.switch), subscription_factory(Capability.switch_level), ] devices = [ device_factory("", [Capability.thermostat, "ping"]), device_factory("", [Capability.switch, Capability.switch_level]), device_factory("", [Capability.switch]), ] await smartapp.smartapp_sync_subscriptions( hass, str(uuid4()), str(uuid4()), str(uuid4()), devices ) assert smartthings_mock.subscriptions.call_count == 1 assert smartthings_mock.delete_subscription.call_count == 1 assert smartthings_mock.create_subscription.call_count == 1
from importlib import import_module from django.core.exceptions import ImproperlyConfigured def load_model_class(model_path): """ Load by import a class by a string path like: 'module.models.MyModel'. This mechanism allows extension and customization of the Entry model class. """ dot = model_path.rindex('.') module_name = model_path[:dot] class_name = model_path[dot + 1:] try: _class = getattr(import_module(module_name), class_name) return _class except (ImportError, AttributeError): raise ImproperlyConfigured('%s cannot be imported' % model_path)
import chainer from chainercv.links import Conv2DBNActiv from chainercv.links.model.yolo.yolo_v2 import _leaky_relu from chainercv.links.model.yolo.yolo_v2 import _maxpool from chainercv.links.model.yolo import YOLOv2Base class DarknetExtractor(chainer.ChainList): """A Darknet based feature extractor for YOLOv2Tiny. This is a feature extractor for :class:`~chainercv.links.model.yolo.YOLOv2Tiny` """ insize = 416 grid = 13 def __init__(self): super(DarknetExtractor, self).__init__() # Darknet for k in range(7): self.append(Conv2DBNActiv(16 << k, 3, pad=1, activ=_leaky_relu)) # additional link self.append(Conv2DBNActiv(1024, 3, pad=1, activ=_leaky_relu)) def forward(self, x): """Compute a feature map from a batch of images. Args: x (ndarray): An array holding a batch of images. The images should be resized to :math:`416\\times 416`. Returns: Variable: """ h = x for i, link in enumerate(self): h = link(h) if i < 5: h = _maxpool(h, 2) elif i == 5: h = _maxpool(h, 2, stride=1) return h class YOLOv2Tiny(YOLOv2Base): """YOLOv2 tiny. This is a model of YOLOv2 tiny a.k.a. Tiny YOLO. This model uses :class:`~chainercv.links.model.yolo.DarknetExtractor` as its feature extractor. Args: n_fg_class (int): The number of classes excluding the background. pretrained_model (string): The weight file to be loaded. This can take :obj:`'voc0712'`, `filepath` or :obj:`None`. The default value is :obj:`None`. * :obj:`'voc0712'`: Load weights trained on trainval split of \ PASCAL VOC 2007 and 2012. \ The weight file is downloaded and cached automatically. \ :obj:`n_fg_class` must be :obj:`20` or :obj:`None`. \ These weights were converted from the darknet model \ provided by `the original implementation \ <https://pjreddie.com/darknet/yolov2/>`_. \ The conversion code is \ `chainercv/examples/yolo/darknet2npz.py`. * `filepath`: A path of npz file. In this case, :obj:`n_fg_class` \ must be specified properly. * :obj:`None`: Do not load weights. """ _extractor = DarknetExtractor _models = { 'voc0712': { 'param': {'n_fg_class': 20}, 'url': 'https://chainercv-models.preferred.jp/' 'yolo_v2_tiny_voc0712_converted_2018_10_19.npz', 'cv2': True }, } _anchors = ( (1.19, 1.08), (4.41, 3.42), (11.38, 6.63), (5.11, 9.42), (10.52, 16.62))
import coverage from tests.coveragetest import CoverageTest from tests.goldtest import compare, gold_path class AnnotationGoldTest1(CoverageTest): """Test the annotate feature with gold files.""" def make_multi(self): """Make a few source files we need for the tests.""" self.make_file("multi.py", """\ import a.a import b.b a.a.a(1) b.b.b(2) """) self.make_file("a/__init__.py") self.make_file("a/a.py", """\ def a(x): if x == 1: print("x is 1") else: print("x is not 1") """) self.make_file("b/__init__.py") self.make_file("b/b.py", """\ def b(x): msg = "x is %s" % x print(msg) """) def test_multi(self): self.make_multi() cov = coverage.Coverage() self.start_import_stop(cov, "multi") cov.annotate() compare(gold_path("annotate/multi"), ".", "*,cover") def test_annotate_dir(self): self.make_multi() cov = coverage.Coverage(source=["."]) self.start_import_stop(cov, "multi") cov.annotate(directory="out_anno_dir") compare(gold_path("annotate/anno_dir"), "out_anno_dir", "*,cover") def test_encoding(self): self.make_file("utf8.py", """\ # -*- coding: utf-8 -*- # This comment has an accent: é print("spam eggs") """) cov = coverage.Coverage() self.start_import_stop(cov, "utf8") cov.annotate() compare(gold_path("annotate/encodings"), ".", "*,cover") def test_white(self): self.make_file("white.py", """\ # A test case sent to me by Steve White def f(self): if self==1: pass elif self.m('fred'): pass elif (g==1) and (b==2): pass elif self.m('fred')==True: pass elif ((g==1) and (b==2))==True: pass else: pass def g(x): if x == 1: a = 1 else: a = 2 g(1) def h(x): if 0: #pragma: no cover pass if x == 1: a = 1 else: a = 2 h(2) """) cov = coverage.Coverage() self.start_import_stop(cov, "white") cov.annotate() compare(gold_path("annotate/annotate"), ".", "*,cover")
from test import CollectorTestCase from test import get_collector_config from servertechpdu import ServerTechPDUCollector class TestServerTechPDUCollector(CollectorTestCase): def setUp(self, allowed_names=None): if not allowed_names: allowed_names = [] config = get_collector_config('ServerTechPDUCollector', { 'allowed_names': allowed_names, 'interval': 1 }) self.collector = ServerTechPDUCollector(config, None) def test_import(self): self.assertTrue(ServerTechPDUCollector)
import os from datetime import datetime from dateutil.tz import gettz, tzlocal from nikola.plugin_categories import Command class CommandStatus(Command): """Display site status.""" name = "status" doc_purpose = "display site status" doc_description = "Show information about the posts and site deployment." doc_usage = '[-d|--list-drafts] [-m|--list-modified] [-p|--list-private] [-P|--list-published] [-s|--list-scheduled]' logger = None cmd_options = [ { 'name': 'list_drafts', 'short': 'd', 'long': 'list-drafts', 'type': bool, 'default': False, 'help': 'List all drafts', }, { 'name': 'list_modified', 'short': 'm', 'long': 'list-modified', 'type': bool, 'default': False, 'help': 'List all modified files since last deployment', }, { 'name': 'list_private', 'short': 'p', 'long': 'list-private', 'type': bool, 'default': False, 'help': 'List all private posts', }, { 'name': 'list_published', 'short': 'P', 'long': 'list-published', 'type': bool, 'default': False, 'help': 'List all published posts', }, { 'name': 'list_scheduled', 'short': 's', 'long': 'list-scheduled', 'type': bool, 'default': False, 'help': 'List all scheduled posts', }, ] def _execute(self, options, args): """Display site status.""" self.site.scan_posts() last_deploy = self.site.state.get('last_deploy') if last_deploy is not None: last_deploy = datetime.strptime(last_deploy, "%Y-%m-%dT%H:%M:%S.%f") last_deploy_offset = datetime.utcnow() - last_deploy else: print("It does not seem like you've ever deployed the site (or cache missing).") if last_deploy: fmod_since_deployment = [] for root, dirs, files in os.walk(self.site.config["OUTPUT_FOLDER"], followlinks=True): if not dirs and not files: continue for fname in files: fpath = os.path.join(root, fname) fmodtime = datetime.fromtimestamp(os.stat(fpath).st_mtime) if fmodtime.replace(tzinfo=tzlocal()) > last_deploy.replace(tzinfo=gettz("UTC")).astimezone(tz=tzlocal()): fmod_since_deployment.append(fpath) if len(fmod_since_deployment) > 0: print("{0} output files modified since last deployment {1} ago.".format(str(len(fmod_since_deployment)), self.human_time(last_deploy_offset))) if options['list_modified']: for fpath in fmod_since_deployment: print("Modified: '{0}'".format(fpath)) else: print("Last deployment {0} ago.".format(self.human_time(last_deploy_offset))) now = datetime.utcnow().replace(tzinfo=gettz("UTC")) posts_count = len(self.site.all_posts) # find all published posts posts_published = [post for post in self.site.all_posts if post.use_in_feeds] posts_published = sorted(posts_published, key=lambda post: post.source_path) # find all private posts posts_private = [post for post in self.site.all_posts if post.is_private] posts_private = sorted(posts_private, key=lambda post: post.source_path) # find all drafts posts_drafts = [post for post in self.site.all_posts if post.is_draft] posts_drafts = sorted(posts_drafts, key=lambda post: post.source_path) # find all scheduled posts with offset from now until publishing time posts_scheduled = [ (post.date - now, post) for post in self.site.all_posts if post.publish_later and not (post.is_draft or post.is_private) ] posts_scheduled = sorted(posts_scheduled, key=lambda offset_post: (offset_post[0], offset_post[1].source_path)) if len(posts_scheduled) > 0: if options['list_scheduled']: for offset, post in posts_scheduled: print("Scheduled: '{1}' ({2}; source: {3}) in {0}".format(self.human_time(offset), post.meta('title'), post.permalink(), post.source_path)) else: offset, post = posts_scheduled[0] print("{0} to next scheduled post ('{1}'; {2}; source: {3}).".format(self.human_time(offset), post.meta('title'), post.permalink(), post.source_path)) if options['list_drafts']: for post in posts_drafts: print("Draft: '{0}' ({1}; source: {2})".format(post.meta('title'), post.permalink(), post.source_path)) if options['list_private']: for post in posts_private: print("Private: '{0}' ({1}; source: {2})".format(post.meta('title'), post.permalink(), post.source_path)) if options['list_published']: for post in posts_published: print("Published: '{0}' ({1}; source: {2})".format(post.meta('title'), post.permalink(), post.source_path)) print("{0} posts in total, {1} scheduled, {2} drafts, {3} private and {4} published.".format(posts_count, len(posts_scheduled), len(posts_drafts), len(posts_private), len(posts_published))) def human_time(self, dt): """Translate time into a human-friendly representation.""" days = dt.days hours = dt.seconds / 60 // 60 minutes = dt.seconds / 60 - (hours * 60) if days > 0: return "{0:.0f} days and {1:.0f} hours".format(days, hours) elif hours > 0: return "{0:.0f} hours and {1:.0f} minutes".format(hours, minutes) elif minutes: return "{0:.0f} minutes".format(minutes) return False
import pytest from homeassistant.components import sensor import homeassistant.components.geo_rss_events.sensor as geo_rss_events from homeassistant.const import ( ATTR_FRIENDLY_NAME, ATTR_ICON, ATTR_UNIT_OF_MEASUREMENT, EVENT_HOMEASSISTANT_START, ) from homeassistant.setup import async_setup_component import homeassistant.util.dt as dt_util from tests.async_mock import MagicMock, patch from tests.common import assert_setup_component, async_fire_time_changed URL = "http://geo.rss.local/geo_rss_events.xml" VALID_CONFIG_WITH_CATEGORIES = { sensor.DOMAIN: [ { "platform": "geo_rss_events", geo_rss_events.CONF_URL: URL, geo_rss_events.CONF_CATEGORIES: ["Category 1"], } ] } VALID_CONFIG = { sensor.DOMAIN: [{"platform": "geo_rss_events", geo_rss_events.CONF_URL: URL}] } """Test the GeoRss service updater.""" @pytest.fixture def mock_feed(): """Pytest fixture for homeassistant.components.geo_rss_events.sensor.GenericFeed.""" with patch( "homeassistant.components.geo_rss_events.sensor.GenericFeed" ) as mock_feed: yield mock_feed def _generate_mock_feed_entry( external_id, title, distance_to_home, coordinates, category ): """Construct a mock feed entry for testing purposes.""" feed_entry = MagicMock() feed_entry.external_id = external_id feed_entry.title = title feed_entry.distance_to_home = distance_to_home feed_entry.coordinates = coordinates feed_entry.category = category return feed_entry async def test_setup(hass, mock_feed): """Test the general setup of the platform.""" # Set up some mock feed entries for this test. mock_entry_1 = _generate_mock_feed_entry( "1234", "Title 1", 15.5, (-31.0, 150.0), "Category 1" ) mock_entry_2 = _generate_mock_feed_entry( "2345", "Title 2", 20.5, (-31.1, 150.1), "Category 1" ) mock_feed.return_value.update.return_value = "OK", [mock_entry_1, mock_entry_2] utcnow = dt_util.utcnow() # Patching 'utcnow' to gain more control over the timed update. with patch("homeassistant.util.dt.utcnow", return_value=utcnow): with assert_setup_component(1, sensor.DOMAIN): assert await async_setup_component(hass, sensor.DOMAIN, VALID_CONFIG) # Artificially trigger update. hass.bus.fire(EVENT_HOMEASSISTANT_START) # Collect events. await hass.async_block_till_done() all_states = hass.states.async_all() assert len(all_states) == 1 state = hass.states.get("sensor.event_service_any") assert state is not None assert state.name == "Event Service Any" assert int(state.state) == 2 assert state.attributes == { ATTR_FRIENDLY_NAME: "Event Service Any", ATTR_UNIT_OF_MEASUREMENT: "Events", ATTR_ICON: "mdi:alert", "Title 1": "16km", "Title 2": "20km", } # Simulate an update - empty data, but successful update, # so no changes to entities. mock_feed.return_value.update.return_value = "OK_NO_DATA", None async_fire_time_changed(hass, utcnow + geo_rss_events.SCAN_INTERVAL) await hass.async_block_till_done() all_states = hass.states.async_all() assert len(all_states) == 1 state = hass.states.get("sensor.event_service_any") assert int(state.state) == 2 # Simulate an update - empty data, removes all entities mock_feed.return_value.update.return_value = "ERROR", None async_fire_time_changed(hass, utcnow + 2 * geo_rss_events.SCAN_INTERVAL) await hass.async_block_till_done() all_states = hass.states.async_all() assert len(all_states) == 1 state = hass.states.get("sensor.event_service_any") assert int(state.state) == 0 assert state.attributes == { ATTR_FRIENDLY_NAME: "Event Service Any", ATTR_UNIT_OF_MEASUREMENT: "Events", ATTR_ICON: "mdi:alert", } async def test_setup_with_categories(hass, mock_feed): """Test the general setup of the platform.""" # Set up some mock feed entries for this test. mock_entry_1 = _generate_mock_feed_entry( "1234", "Title 1", 15.5, (-31.0, 150.0), "Category 1" ) mock_entry_2 = _generate_mock_feed_entry( "2345", "Title 2", 20.5, (-31.1, 150.1), "Category 1" ) mock_feed.return_value.update.return_value = "OK", [mock_entry_1, mock_entry_2] with assert_setup_component(1, sensor.DOMAIN): assert await async_setup_component( hass, sensor.DOMAIN, VALID_CONFIG_WITH_CATEGORIES ) # Artificially trigger update. hass.bus.fire(EVENT_HOMEASSISTANT_START) # Collect events. await hass.async_block_till_done() all_states = hass.states.async_all() assert len(all_states) == 1 state = hass.states.get("sensor.event_service_category_1") assert state is not None assert state.name == "Event Service Category 1" assert int(state.state) == 2 assert state.attributes == { ATTR_FRIENDLY_NAME: "Event Service Category 1", ATTR_UNIT_OF_MEASUREMENT: "Events", ATTR_ICON: "mdi:alert", "Title 1": "16km", "Title 2": "20km", }
from nikola.plugin_categories import Command class CommandNewPage(Command): """Create a new page.""" name = "new_page" doc_usage = "[options] [path]" doc_purpose = "create a new page in the site" cmd_options = [ { 'name': 'title', 'short': 't', 'long': 'title', 'type': str, 'default': '', 'help': 'Title for the page.' }, { 'name': 'author', 'short': 'a', 'long': 'author', 'type': str, 'default': '', 'help': 'Author of the post.' }, { 'name': 'onefile', 'short': '1', 'type': bool, 'default': False, 'help': 'Create the page with embedded metadata (single file format)' }, { 'name': 'twofile', 'short': '2', 'type': bool, 'default': False, 'help': 'Create the page with separate metadata (two file format)' }, { 'name': 'edit', 'short': 'e', 'type': bool, 'default': False, 'help': 'Open the page (and meta file, if any) in $EDITOR after creation.' }, { 'name': 'content_format', 'short': 'f', 'long': 'format', 'type': str, 'default': '', 'help': 'Markup format for the page (use --available-formats for list)', }, { 'name': 'available-formats', 'short': 'F', 'long': 'available-formats', 'type': bool, 'default': False, 'help': 'List all available input formats' }, { 'name': 'import', 'short': 'i', 'long': 'import', 'type': str, 'default': '', 'help': 'Import an existing file instead of creating a placeholder' }, ] def _execute(self, options, args): """Create a new page.""" # Defaults for some values that don’t apply to pages and the is_page option (duh!) options['tags'] = '' options['schedule'] = False options['is_page'] = True options['date-path'] = False # Even though stuff was split into `new_page`, it’s easier to do it # there not to duplicate the code. p = self.site.plugin_manager.getPluginByName('new_post', 'Command').plugin_object return p.execute(options, args)
import io import os import sys import unittest import cherrypy from cherrypy.test import helper localDir = os.path.join(os.getcwd(), os.path.dirname(__file__)) def StringIOFromNative(x): return io.StringIO(str(x)) def setup_server(): @cherrypy.config(foo='this', bar='that') class Root: def __init__(self): cherrypy.config.namespaces['db'] = self.db_namespace def db_namespace(self, k, v): if k == 'scheme': self.db = v @cherrypy.expose(alias=('global_', 'xyz')) def index(self, key): return cherrypy.request.config.get(key, 'None') @cherrypy.expose def repr(self, key): return repr(cherrypy.request.config.get(key, None)) @cherrypy.expose def dbscheme(self): return self.db @cherrypy.expose @cherrypy.config(**{'request.body.attempt_charsets': ['utf-16']}) def plain(self, x): return x favicon_ico = cherrypy.tools.staticfile.handler( filename=os.path.join(localDir, '../favicon.ico')) @cherrypy.config(foo='this2', baz='that2') class Foo: @cherrypy.expose def index(self, key): return cherrypy.request.config.get(key, 'None') nex = index @cherrypy.expose @cherrypy.config(**{'response.headers.X-silly': 'sillyval'}) def silly(self): return 'Hello world' # Test the expose and config decorators @cherrypy.config(foo='this3', **{'bax': 'this4'}) @cherrypy.expose def bar(self, key): return repr(cherrypy.request.config.get(key, None)) class Another: @cherrypy.expose def index(self, key): return str(cherrypy.request.config.get(key, 'None')) def raw_namespace(key, value): if key == 'input.map': handler = cherrypy.request.handler def wrapper(): params = cherrypy.request.params for name, coercer in value.copy().items(): try: params[name] = coercer(params[name]) except KeyError: pass return handler() cherrypy.request.handler = wrapper elif key == 'output': handler = cherrypy.request.handler def wrapper(): # 'value' is a type (like int or str). return value(handler()) cherrypy.request.handler = wrapper @cherrypy.config(**{'raw.output': repr}) class Raw: @cherrypy.expose @cherrypy.config(**{'raw.input.map': {'num': int}}) def incr(self, num): return num + 1 ioconf = StringIOFromNative(""" [/] neg: -1234 filename: os.path.join(sys.prefix, "hello.py") thing1: cherrypy.lib.httputil.response_codes[404] thing2: __import__('cherrypy.tutorial', globals(), locals(), ['']).thing2 complex: 3+2j mul: 6*3 ones: "11" twos: "22" stradd: %%(ones)s + %%(twos)s + "33" [/favicon.ico] tools.staticfile.filename = %r """ % os.path.join(localDir, 'static/dirback.jpg')) root = Root() root.foo = Foo() root.raw = Raw() app = cherrypy.tree.mount(root, config=ioconf) app.request_class.namespaces['raw'] = raw_namespace cherrypy.tree.mount(Another(), '/another') cherrypy.config.update({'luxuryyacht': 'throatwobblermangrove', 'db.scheme': r'sqlite///memory', }) # Client-side code # class ConfigTests(helper.CPWebCase): setup_server = staticmethod(setup_server) def testConfig(self): tests = [ ('/', 'nex', 'None'), ('/', 'foo', 'this'), ('/', 'bar', 'that'), ('/xyz', 'foo', 'this'), ('/foo/', 'foo', 'this2'), ('/foo/', 'bar', 'that'), ('/foo/', 'bax', 'None'), ('/foo/bar', 'baz', "'that2'"), ('/foo/nex', 'baz', 'that2'), # If 'foo' == 'this', then the mount point '/another' leaks into # '/'. ('/another/', 'foo', 'None'), ] for path, key, expected in tests: self.getPage(path + '?key=' + key) self.assertBody(expected) expectedconf = { # From CP defaults 'tools.log_headers.on': False, 'tools.log_tracebacks.on': True, 'request.show_tracebacks': True, 'log.screen': False, 'environment': 'test_suite', 'engine.autoreload.on': False, # From global config 'luxuryyacht': 'throatwobblermangrove', # From Root._cp_config 'bar': 'that', # From Foo._cp_config 'baz': 'that2', # From Foo.bar._cp_config 'foo': 'this3', 'bax': 'this4', } for key, expected in expectedconf.items(): self.getPage('/foo/bar?key=' + key) self.assertBody(repr(expected)) def testUnrepr(self): self.getPage('/repr?key=neg') self.assertBody('-1234') self.getPage('/repr?key=filename') self.assertBody(repr(os.path.join(sys.prefix, 'hello.py'))) self.getPage('/repr?key=thing1') self.assertBody(repr(cherrypy.lib.httputil.response_codes[404])) if not getattr(cherrypy.server, 'using_apache', False): # The object ID's won't match up when using Apache, since the # server and client are running in different processes. self.getPage('/repr?key=thing2') from cherrypy.tutorial import thing2 self.assertBody(repr(thing2)) self.getPage('/repr?key=complex') self.assertBody('(3+2j)') self.getPage('/repr?key=mul') self.assertBody('18') self.getPage('/repr?key=stradd') self.assertBody(repr('112233')) def testRespNamespaces(self): self.getPage('/foo/silly') self.assertHeader('X-silly', 'sillyval') self.assertBody('Hello world') def testCustomNamespaces(self): self.getPage('/raw/incr?num=12') self.assertBody('13') self.getPage('/dbscheme') self.assertBody(r'sqlite///memory') def testHandlerToolConfigOverride(self): # Assert that config overrides tool constructor args. Above, we set # the favicon in the page handler to be '../favicon.ico', # but then overrode it in config to be './static/dirback.jpg'. self.getPage('/favicon.ico') self.assertBody(open(os.path.join(localDir, 'static/dirback.jpg'), 'rb').read()) def test_request_body_namespace(self): self.getPage('/plain', method='POST', headers=[ ('Content-Type', 'application/x-www-form-urlencoded'), ('Content-Length', '13')], body=b'\xff\xfex\x00=\xff\xfea\x00b\x00c\x00') self.assertBody('abc') class VariableSubstitutionTests(unittest.TestCase): setup_server = staticmethod(setup_server) def test_config(self): from textwrap import dedent # variable substitution with [DEFAULT] conf = dedent(""" [DEFAULT] dir = "/some/dir" my.dir = %(dir)s + "/sub" [my] my.dir = %(dir)s + "/my/dir" my.dir2 = %(my.dir)s + '/dir2' """) fp = StringIOFromNative(conf) cherrypy.config.update(fp) self.assertEqual(cherrypy.config['my']['my.dir'], '/some/dir/my/dir') self.assertEqual(cherrypy.config['my'] ['my.dir2'], '/some/dir/my/dir/dir2') class CallablesInConfigTest(unittest.TestCase): setup_server = staticmethod(setup_server) def test_call_with_literal_dict(self): from textwrap import dedent conf = dedent(""" [my] value = dict(**{'foo': 'bar'}) """) fp = StringIOFromNative(conf) cherrypy.config.update(fp) self.assertEqual(cherrypy.config['my']['value'], {'foo': 'bar'}) def test_call_with_kwargs(self): from textwrap import dedent conf = dedent(""" [my] value = dict(foo="buzz", **cherrypy._test_dict) """) test_dict = { 'foo': 'bar', 'bar': 'foo', 'fizz': 'buzz' } cherrypy._test_dict = test_dict fp = StringIOFromNative(conf) cherrypy.config.update(fp) test_dict['foo'] = 'buzz' self.assertEqual(cherrypy.config['my']['value']['foo'], 'buzz') self.assertEqual(cherrypy.config['my']['value'], test_dict) del cherrypy._test_dict
import time from datetime import datetime as dt import pytest from mock import patch, MagicMock from pandas.util.testing import assert_frame_equal from pymongo.errors import OperationFailure from arctic.arctic import Arctic, VERSION_STORE from arctic.exceptions import LibraryNotFoundException, QuotaExceededException from ..util import get_large_ts def test_connect_to_Arctic_string(mongo_host): arctic = Arctic(mongo_host=mongo_host) assert arctic.list_libraries() == [] assert arctic.mongo_host == mongo_host def test_connect_to_Arctic_connection(mongo_server, mongo_host): arctic = Arctic(mongo_server.api) assert arctic.list_libraries() == [] assert arctic.mongo_host == mongo_host def test_reset_Arctic(mongo_host, library_name): arctic = Arctic(mongo_host=mongo_host) arctic.list_libraries() arctic.initialize_library(library_name, VERSION_STORE) c = arctic._conn assert arctic[library_name]._arctic_lib._curr_conn is c arctic.reset() assert c is not arctic._conn assert len(c.nodes) == 0 assert arctic[library_name]._arctic_lib._curr_conn is arctic._conn def test_re_authenticate_on_arctic_reset(mongo_host, library_name): from collections import namedtuple Cred = namedtuple('Cred', 'user, password') with patch('arctic.arctic.authenticate') as auth_mock, \ patch('arctic.arctic.get_auth') as get_auth_mock: auth_mock.return_value = True get_auth_mock.return_value = Cred(user='a_username', password='a_passwd') arctic = Arctic(mongo_host=mongo_host) arctic.initialize_library(library_name, VERSION_STORE) vstore = arctic[library_name] vstore.list_symbols() auth_mock.reset_mock() arctic.reset() assert auth_mock.call_count > 0 auth_mock.reset_mock() vstore.list_symbols() assert auth_mock.call_count == 0 def test_simple(library): sym = 'symbol' data = get_large_ts(100) library.write(sym, data) orig = dt.now() time.sleep(1) # Move the timestamp on 1ms data2 = get_large_ts(100) library.write(sym, data2, prune_previous_version=False) # Get the timeseries, it should be the same read2 = library.read(sym).data assert_frame_equal(read2, data2) # Ensure we can get the previous version read = library.read(sym, as_of=orig).data assert_frame_equal(read, data) def test_indexes(arctic): c = arctic._conn arctic.initialize_library("library", VERSION_STORE, segment='month') chunk = c.arctic.library.index_information() index_version = chunk['_id_']['v'] # Mongo 3.2 has index v1, 3.4 and 3.5 have v2 (3.4 can run in compabitility mode with v1) assert chunk == {u'_id_': {u'key': [(u'_id', 1)], u'ns': u'arctic.library', u'v': index_version}, u'symbol_1_parent_1_segment_1': {u'background': True, u'key': [(u'symbol', 1), (u'parent', 1), (u'segment', 1)], u'ns': u'arctic.library', u'unique': True, u'v': index_version}, u'symbol_1_sha_1': {u'background': True, u'key': [(u'symbol', 1), (u'sha', 1)], u'ns': u'arctic.library', u'unique': True, u'v': index_version}, u'symbol_hashed': {u'background': True, u'key': [(u'symbol', u'hashed')], u'ns': u'arctic.library', u'v': index_version}, u'symbol_1_sha_1_segment_1': {u'background': True, u'key': [(u'symbol', 1), (u'sha', 1), (u'segment', 1)], u'ns': u'arctic.library', u'unique': True, u'v': index_version}} snapshots = c.arctic.library.snapshots.index_information() assert snapshots == {u'_id_': {u'key': [(u'_id', 1)], u'ns': u'arctic.library.snapshots', u'v': index_version}, u'name_1': {u'background': True, u'key': [(u'name', 1)], u'ns': u'arctic.library.snapshots', u'unique': True, u'v': index_version}} versions = c.arctic.library.versions.index_information() assert versions == {u'_id_': {u'key': [(u'_id', 1)], u'ns': u'arctic.library.versions', u'v': index_version}, u'symbol_1__id_-1': {u'background': True, u'key': [(u'symbol', 1), (u'_id', -1)], u'ns': u'arctic.library.versions', u'v': index_version}, u'symbol_1_version_-1': {u'background': True, u'key': [(u'symbol', 1), (u'version', -1)], u'ns': u'arctic.library.versions', u'unique': True, u'v': index_version}} version_nums = c.arctic.library.version_nums.index_information() assert version_nums == {u'_id_': {u'key': [(u'_id', 1)], u'ns': u'arctic.library.version_nums', u'v': index_version}, u'symbol_1': {u'background': True, u'key': [(u'symbol', 1)], u'ns': u'arctic.library.version_nums', u'unique': True, u'v': index_version}} def test_delete_library(arctic, library, library_name): mongo = arctic._conn # create a library2 library too - ensure that this isn't deleted arctic.initialize_library('user.library2', VERSION_STORE, segment='month') library.write('asdf', get_large_ts(1)) assert 'TEST' in mongo.arctic_test.list_collection_names() assert 'TEST.versions' in mongo.arctic_test.list_collection_names() assert 'library2' in mongo.arctic_user.list_collection_names() assert 'library2.versions' in mongo.arctic_user.list_collection_names() arctic.delete_library(library_name) assert 'TEST' not in mongo.arctic_user.list_collection_names() assert 'TEST.versions' not in mongo.arctic_user.list_collection_names() with pytest.raises(LibraryNotFoundException): arctic[library_name] with pytest.raises(LibraryNotFoundException): arctic['arctic_{}'.format(library_name)] assert 'library2' in mongo.arctic_user.list_collection_names() assert 'library2.versions' in mongo.arctic_user.list_collection_names() def test_quota(arctic, library, library_name): thing = list(range(100)) library._arctic_lib.set_quota(10) assert arctic.get_quota(library_name) == 10 assert library._arctic_lib.get_quota() == 10 library.write('thing', thing) with pytest.raises(QuotaExceededException): library.write('ts', thing) library.write('ts', thing) library.write('ts', thing) library.write('ts', thing) with pytest.raises(QuotaExceededException): arctic.check_quota(library_name) def test_check_quota(arctic, library, library_name): with patch('arctic.arctic.logger.info') as info: arctic.check_quota(library_name) assert info.call_count == 1 def test_default_mongo_retry_timout(): now = time.time() with pytest.raises(LibraryNotFoundException): Arctic('unresolved-host', serverSelectionTimeoutMS=0)['some.lib'] assert time.time() - now < 1. def test_lib_rename(arctic): arctic.initialize_library('test') l = arctic['test'] l.write('test_data', 'abc') arctic.rename_library('test', 'new_name') l = arctic['new_name'] assert(l.read('test_data').data == 'abc') with pytest.raises(LibraryNotFoundException) as e: l = arctic['test'] assert('Library test' in str(e.value)) assert('test' not in arctic.list_libraries()) def test_lib_rename_namespace(arctic): arctic.initialize_library('namespace.test') l = arctic['namespace.test'] l.write('test_data', 'abc') with pytest.raises(ValueError) as e: arctic.rename_library('namespace.test', 'new_namespace.test') assert('Collection can only be renamed in the same database' in str(e.value)) arctic.rename_library('namespace.test', 'namespace.newlib') l = arctic['namespace.newlib'] assert(l.read('test_data').data == 'abc') with pytest.raises(LibraryNotFoundException) as e: l = arctic['namespace.test'] assert('Library namespace.test' in str(e.value)) assert('namespace.test' not in arctic.list_libraries()) def test_lib_type(arctic): arctic.initialize_library('test') assert(arctic.get_library_type('test') == VERSION_STORE) def test_library_exists(arctic): arctic.initialize_library('test') assert arctic.library_exists('test') assert not arctic.library_exists('nonexistentlib') def test_library_exists_no_auth(arctic): arctic.initialize_library('test') with patch('arctic.arctic.ArcticLibraryBinding') as AB: AB.return_value = MagicMock( get_library_type=MagicMock(side_effect=OperationFailure("not authorized on arctic to execute command"))) assert arctic.library_exists('test') assert AB.return_value.get_library_type.called assert not arctic.library_exists('nonexistentlib') def test_list_libraries_cached(arctic): # default in arctic is to cache list_libraries. libs = ['test1', 'test2'] for lib in libs: arctic.initialize_library(lib) # Cached data should have been appended to cache. assert sorted(libs) == sorted(arctic.list_libraries()) == sorted(arctic._list_libraries()) # Should default to uncached list_libraries if cache is empty. with patch('arctic.arctic.Arctic._list_libraries', return_value=libs) as uncached_list_libraries: # Empty cache manually. arctic._conn.meta_db.cache.remove({}) assert arctic._list_libraries_cached() == libs uncached_list_libraries.assert_called() # Reload cache and check that it has data arctic.reload_cache() assert sorted(arctic._cache.get('list_libraries')) == sorted(libs) # Should fetch it from cache the second time. with patch('arctic.arctic.Arctic._list_libraries', return_value=libs) as uncached_list_libraries: assert sorted(arctic._list_libraries_cached()) == sorted(libs) uncached_list_libraries.assert_not_called() def test_initialize_library_adds_to_cache(arctic): libs = ['test1', 'test2'] for lib in libs: arctic.initialize_library(lib) arctic.reload_cache() assert arctic._list_libraries_cached() == arctic._list_libraries() # Add another lib arctic.initialize_library('test3') assert sorted(arctic._cache.get('list_libraries')) == ['test1', 'test2', 'test3'] def test_cache_does_not_return_stale_data(arctic): libs = ['test1', 'test2'] for lib in libs: arctic.initialize_library(lib) arctic.reload_cache() assert arctic._list_libraries_cached() == arctic._list_libraries() time.sleep(0.2) # Should call uncached list_libraries if the data is stale according to caller. with patch('arctic.arctic.Arctic._list_libraries', return_value=libs) as uncached_list_libraries: assert arctic._list_libraries_cached(newer_than_secs=0.1) == libs uncached_list_libraries.assert_called() def test_renaming_returns_new_name_in_cache(arctic): libs = ['test1', 'test2'] for lib in libs: arctic.initialize_library(lib) assert sorted(arctic._list_libraries_cached()) == sorted(arctic._list_libraries()) arctic.rename_library('test1', 'test3') assert sorted(arctic._list_libraries_cached()) == sorted(['test2', 'test3']) def test_deleting_library_removes_it_from_cache(arctic): libs = ['test1', 'test2'] for lib in libs: arctic.initialize_library(lib) arctic.delete_library('test1') assert arctic._list_libraries_cached() == arctic._list_libraries() == arctic.list_libraries() == ['test2'] def test_disable_cache_by_settings(arctic): lib = 'test1' arctic.initialize_library(lib) # Should be enabled by default assert arctic._list_libraries_cached() == arctic._list_libraries() arctic._cache.set_caching_state(enabled=False) # Should not return cached results now. with patch('arctic.arctic.Arctic._list_libraries', return_value=[lib]) as uncached_list_libraries: with patch('arctic.arctic.Arctic._list_libraries_cached', return_value=[lib]) as cached_list_libraries: arctic.list_libraries() uncached_list_libraries.assert_called() cached_list_libraries.assert_not_called() arctic._cache.set_caching_state(enabled=True) # Should used cached data again. with patch('arctic.arctic.Arctic._list_libraries', return_value=[lib]) as uncached_list_libraries_e: with patch('arctic.arctic.Arctic._list_libraries_cached', return_value=[lib]) as cached_list_libraries_e: arctic.list_libraries() uncached_list_libraries_e.assert_not_called() cached_list_libraries_e.assert_called()
import numpy as np import pandas as pd from hypertools.tools import format_data from hypertools.plot.plot import plot def test_np_array(): data = np.random.rand(100,10) assert isinstance(format_data(data), list) assert isinstance(format_data(data)[0], np.ndarray) def test_df(): data = pd.DataFrame(np.random.rand(100,10)) assert isinstance(format_data(data), list) assert isinstance(format_data(data)[0], np.ndarray) def test_text(): data = ['here is some test text', 'and a little more', 'and more'] assert isinstance(format_data(data), list) assert isinstance(format_data(data)[0], np.ndarray) def test_str(): res = format_data('here is some test text') assert isinstance(res, list) assert isinstance(res[0], np.ndarray) def test_mixed_list(): mat = np.random.rand(3,20) df = pd.DataFrame(np.random.rand(3,20)) text = ['here is some test text', 'and a little more', 'and more'] string = 'a string' res = format_data([mat, df, text, string]) assert isinstance(res, list) assert all(map(lambda x: isinstance(x, np.ndarray), res)) def test_geo(): geo = plot(np.random.rand(100,10), show=False) assert isinstance(format_data(geo), list) assert isinstance(format_data(geo)[0], np.ndarray) def test_missing_data(): data = np.random.rand(100,10) data[0][0]=np.nan geo = plot(data, show=False) assert isinstance(format_data(geo), list) assert isinstance(format_data(geo)[0], np.ndarray) def test_force_align(): mat = np.random.rand(4,3) df = pd.DataFrame(np.random.rand(4,3)) text = ['here is some test text', 'and a little more', 'and more', 'just a bit more'] res = format_data([mat, df, text]) assert isinstance(res, list) assert all(map(lambda x: isinstance(x, np.ndarray), res)) assert all(map(lambda x: x.shape[1]==100, res))
from qutebrowser.api import cmdutils, apitypes @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) @cmdutils.argument('count', value=cmdutils.Value.count) def move_to_next_line(tab: apitypes.Tab, count: int = 1) -> None: """Move the cursor or selection to the next line. Args: count: How many lines to move. """ tab.caret.move_to_next_line(count) @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) @cmdutils.argument('count', value=cmdutils.Value.count) def move_to_prev_line(tab: apitypes.Tab, count: int = 1) -> None: """Move the cursor or selection to the prev line. Args: count: How many lines to move. """ tab.caret.move_to_prev_line(count) @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) @cmdutils.argument('count', value=cmdutils.Value.count) def move_to_next_char(tab: apitypes.Tab, count: int = 1) -> None: """Move the cursor or selection to the next char. Args: count: How many lines to move. """ tab.caret.move_to_next_char(count) @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) @cmdutils.argument('count', value=cmdutils.Value.count) def move_to_prev_char(tab: apitypes.Tab, count: int = 1) -> None: """Move the cursor or selection to the previous char. Args: count: How many chars to move. """ tab.caret.move_to_prev_char(count) @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) @cmdutils.argument('count', value=cmdutils.Value.count) def move_to_end_of_word(tab: apitypes.Tab, count: int = 1) -> None: """Move the cursor or selection to the end of the word. Args: count: How many words to move. """ tab.caret.move_to_end_of_word(count) @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) @cmdutils.argument('count', value=cmdutils.Value.count) def move_to_next_word(tab: apitypes.Tab, count: int = 1) -> None: """Move the cursor or selection to the next word. Args: count: How many words to move. """ tab.caret.move_to_next_word(count) @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) @cmdutils.argument('count', value=cmdutils.Value.count) def move_to_prev_word(tab: apitypes.Tab, count: int = 1) -> None: """Move the cursor or selection to the previous word. Args: count: How many words to move. """ tab.caret.move_to_prev_word(count) @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) def move_to_start_of_line(tab: apitypes.Tab) -> None: """Move the cursor or selection to the start of the line.""" tab.caret.move_to_start_of_line() @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) def move_to_end_of_line(tab: apitypes.Tab) -> None: """Move the cursor or selection to the end of line.""" tab.caret.move_to_end_of_line() @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) @cmdutils.argument('count', value=cmdutils.Value.count) def move_to_start_of_next_block(tab: apitypes.Tab, count: int = 1) -> None: """Move the cursor or selection to the start of next block. Args: count: How many blocks to move. """ tab.caret.move_to_start_of_next_block(count) @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) @cmdutils.argument('count', value=cmdutils.Value.count) def move_to_start_of_prev_block(tab: apitypes.Tab, count: int = 1) -> None: """Move the cursor or selection to the start of previous block. Args: count: How many blocks to move. """ tab.caret.move_to_start_of_prev_block(count) @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) @cmdutils.argument('count', value=cmdutils.Value.count) def move_to_end_of_next_block(tab: apitypes.Tab, count: int = 1) -> None: """Move the cursor or selection to the end of next block. Args: count: How many blocks to move. """ tab.caret.move_to_end_of_next_block(count) @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) @cmdutils.argument('count', value=cmdutils.Value.count) def move_to_end_of_prev_block(tab: apitypes.Tab, count: int = 1) -> None: """Move the cursor or selection to the end of previous block. Args: count: How many blocks to move. """ tab.caret.move_to_end_of_prev_block(count) @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) def move_to_start_of_document(tab: apitypes.Tab) -> None: """Move the cursor or selection to the start of the document.""" tab.caret.move_to_start_of_document() @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) def move_to_end_of_document(tab: apitypes.Tab) -> None: """Move the cursor or selection to the end of the document.""" tab.caret.move_to_end_of_document() @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) def toggle_selection(tab: apitypes.Tab, line: bool = False) -> None: """Toggle caret selection mode. Args: line: Enables line-selection. """ tab.caret.toggle_selection(line) @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) def drop_selection(tab: apitypes.Tab) -> None: """Drop selection and keep selection mode enabled.""" tab.caret.drop_selection() @cmdutils.register() @cmdutils.argument('tab_obj', value=cmdutils.Value.cur_tab) def follow_selected(tab_obj: apitypes.Tab, *, tab: bool = False) -> None: """Follow the selected text. Args: tab: Load the selected link in a new tab. """ try: tab_obj.caret.follow_selected(tab=tab) except apitypes.WebTabError as e: raise cmdutils.CommandError(str(e)) @cmdutils.register(modes=[cmdutils.KeyMode.caret]) @cmdutils.argument('tab', value=cmdutils.Value.cur_tab) def reverse_selection(tab: apitypes.Tab) -> None: """Swap the stationary and moving end of the current selection.""" tab.caret.reverse_selection()
import logging import pytest class LogFailHandler(logging.Handler): """A logging handler which makes tests fail on unexpected messages.""" def __init__(self, level=logging.NOTSET, min_level=logging.WARNING): self._min_level = min_level super().__init__(level) def emit(self, record): logger = logging.getLogger(record.name) root_logger = logging.getLogger() if logger.name == 'messagemock': return if (logger.level == record.levelno or root_logger.level == record.levelno): # caplog.at_level(...) was used with the level of this message, # i.e. it was expected. return if record.levelno < self._min_level: return pytest.fail("Got logging message on logger {} with level {}: " "{}!".format(record.name, record.levelname, record.getMessage())) @pytest.fixture(scope='session', autouse=True) def fail_on_logging(): handler = LogFailHandler() logging.getLogger().addHandler(handler) yield logging.getLogger().removeHandler(handler) handler.close()
import unittest import lightgbm as lgb import pandas as pd from common import gpu_test class TestLightgbm(unittest.TestCase): # Based on the "simple_example" from their documentation: # https://github.com/Microsoft/LightGBM/blob/master/examples/python-guide/simple_example.py def test_cpu(self): lgb_train, lgb_eval = self.load_datasets() params = { 'task': 'train', 'boosting_type': 'gbdt', 'objective': 'regression', 'metric': {'l2', 'auc'}, 'num_leaves': 31, 'learning_rate': 0.05, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'verbose': 0 } # Run only one round for faster test gbm = lgb.train(params, lgb_train, num_boost_round=1, valid_sets=lgb_eval, early_stopping_rounds=1) self.assertEqual(1, gbm.best_iteration) @gpu_test def test_gpu(self): lgb_train, lgb_eval = self.load_datasets() params = { 'boosting_type': 'gbdt', 'objective': 'regression', 'metric': 'auc', 'num_leaves': 31, 'learning_rate': 0.05, 'feature_fraction': 0.9, 'bagging_fraction': 0.8, 'bagging_freq': 5, 'verbose': 1, 'device': 'gpu' } # Run only one round for faster test gbm = lgb.train(params, lgb_train, num_boost_round=1, valid_sets=lgb_eval, early_stopping_rounds=1) self.assertEqual(1, gbm.best_iteration) def load_datasets(self): df_train = pd.read_csv('/input/tests/data/lgb_train.csv', header=None, sep='\t') df_test = pd.read_csv('/input/tests/data/lgb_test.csv', header=None, sep='\t') y_train = df_train[0] y_test = df_test[0] X_train = df_train.drop(0, axis=1) X_test = df_test.drop(0, axis=1) lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) return (lgb_train, lgb_eval)
import io import os import pytest from nikola import __main__ from .helper import cd from .test_demo_build import prepare_demo_site from .test_empty_build import ( # NOQA test_avoid_double_slash_in_rss, test_index_in_sitemap, ) def test_check_links_fail(build, output_dir, target_dir): os.unlink(os.path.join(output_dir, "archive.html")) with cd(target_dir): result = __main__.main(["check", "-l"]) assert result != 0 def test_check_files_fail(build, output_dir, target_dir): manually_added_file = os.path.join(output_dir, "foobar") with io.open(manually_added_file, "w+", encoding="utf8") as outf: outf.write("foo") with cd(target_dir): result = __main__.main(["check", "-f"]) assert result != 0 @pytest.fixture(scope="module") def build(target_dir): """Fill the site with demo content and build it.""" prepare_demo_site(target_dir) with cd(target_dir): __main__.main(["build"])
from test import CollectorTestCase from test import get_collector_config from test import unittest from entropy import EntropyStatCollector ########################################################################## class TestEntropyStatCollector(CollectorTestCase): def setUp(self): config = get_collector_config('EntropyStatCollector', { }) self.collector = EntropyStatCollector(config, None) def test_import(self): self.assertTrue(EntropyStatCollector) ########################################################################## if __name__ == "__main__": unittest.main()
from datetime import timedelta from homeassistant.components.canary.const import DOMAIN, MANUFACTURER from homeassistant.components.canary.sensor import ( ATTR_AIR_QUALITY, STATE_AIR_QUALITY_ABNORMAL, STATE_AIR_QUALITY_NORMAL, STATE_AIR_QUALITY_VERY_ABNORMAL, ) from homeassistant.const import ( ATTR_UNIT_OF_MEASUREMENT, DEVICE_CLASS_BATTERY, DEVICE_CLASS_HUMIDITY, DEVICE_CLASS_SIGNAL_STRENGTH, DEVICE_CLASS_TEMPERATURE, PERCENTAGE, SIGNAL_STRENGTH_DECIBELS_MILLIWATT, TEMP_CELSIUS, ) from homeassistant.setup import async_setup_component from homeassistant.util.dt import utcnow from . import mock_device, mock_location, mock_reading from tests.async_mock import patch from tests.common import async_fire_time_changed, mock_device_registry, mock_registry async def test_sensors_pro(hass, canary) -> None: """Test the creation and values of the sensors for Canary Pro.""" await async_setup_component(hass, "persistent_notification", {}) registry = mock_registry(hass) device_registry = mock_device_registry(hass) online_device_at_home = mock_device(20, "Dining Room", True, "Canary Pro") instance = canary.return_value instance.get_locations.return_value = [ mock_location(100, "Home", True, devices=[online_device_at_home]), ] instance.get_latest_readings.return_value = [ mock_reading("temperature", "21.12"), mock_reading("humidity", "50.46"), mock_reading("air_quality", "0.59"), ] config = {DOMAIN: {"username": "test-username", "password": "test-password"}} with patch("homeassistant.components.canary.PLATFORMS", ["sensor"]): assert await async_setup_component(hass, DOMAIN, config) await hass.async_block_till_done() sensors = { "home_dining_room_temperature": ( "20_temperature", "21.12", TEMP_CELSIUS, DEVICE_CLASS_TEMPERATURE, None, ), "home_dining_room_humidity": ( "20_humidity", "50.46", PERCENTAGE, DEVICE_CLASS_HUMIDITY, None, ), "home_dining_room_air_quality": ( "20_air_quality", "0.59", None, None, "mdi:weather-windy", ), } for (sensor_id, data) in sensors.items(): entity_entry = registry.async_get(f"sensor.{sensor_id}") assert entity_entry assert entity_entry.device_class == data[3] assert entity_entry.unique_id == data[0] assert entity_entry.original_icon == data[4] state = hass.states.get(f"sensor.{sensor_id}") assert state assert state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) == data[2] assert state.state == data[1] device = device_registry.async_get_device({(DOMAIN, "20")}, set()) assert device assert device.manufacturer == MANUFACTURER assert device.name == "Dining Room" assert device.model == "Canary Pro" async def test_sensors_attributes_pro(hass, canary) -> None: """Test the creation and values of the sensors attributes for Canary Pro.""" await async_setup_component(hass, "persistent_notification", {}) online_device_at_home = mock_device(20, "Dining Room", True, "Canary Pro") instance = canary.return_value instance.get_locations.return_value = [ mock_location(100, "Home", True, devices=[online_device_at_home]), ] instance.get_latest_readings.return_value = [ mock_reading("temperature", "21.12"), mock_reading("humidity", "50.46"), mock_reading("air_quality", "0.59"), ] config = {DOMAIN: {"username": "test-username", "password": "test-password"}} with patch("homeassistant.components.canary.PLATFORMS", ["sensor"]): assert await async_setup_component(hass, DOMAIN, config) await hass.async_block_till_done() entity_id = "sensor.home_dining_room_air_quality" state = hass.states.get(entity_id) assert state assert state.attributes[ATTR_AIR_QUALITY] == STATE_AIR_QUALITY_ABNORMAL instance.get_latest_readings.return_value = [ mock_reading("temperature", "21.12"), mock_reading("humidity", "50.46"), mock_reading("air_quality", "0.4"), ] future = utcnow() + timedelta(seconds=30) async_fire_time_changed(hass, future) await hass.helpers.entity_component.async_update_entity(entity_id) await hass.async_block_till_done() state = hass.states.get(entity_id) assert state assert state.attributes[ATTR_AIR_QUALITY] == STATE_AIR_QUALITY_VERY_ABNORMAL instance.get_latest_readings.return_value = [ mock_reading("temperature", "21.12"), mock_reading("humidity", "50.46"), mock_reading("air_quality", "1.0"), ] future += timedelta(seconds=30) async_fire_time_changed(hass, future) await hass.helpers.entity_component.async_update_entity(entity_id) await hass.async_block_till_done() state = hass.states.get(entity_id) assert state assert state.attributes[ATTR_AIR_QUALITY] == STATE_AIR_QUALITY_NORMAL async def test_sensors_flex(hass, canary) -> None: """Test the creation and values of the sensors for Canary Flex.""" await async_setup_component(hass, "persistent_notification", {}) registry = mock_registry(hass) device_registry = mock_device_registry(hass) online_device_at_home = mock_device(20, "Dining Room", True, "Canary Flex") instance = canary.return_value instance.get_locations.return_value = [ mock_location(100, "Home", True, devices=[online_device_at_home]), ] instance.get_latest_readings.return_value = [ mock_reading("battery", "70.4567"), mock_reading("wifi", "-57"), ] config = {DOMAIN: {"username": "test-username", "password": "test-password"}} with patch("homeassistant.components.canary.PLATFORMS", ["sensor"]): assert await async_setup_component(hass, DOMAIN, config) await hass.async_block_till_done() sensors = { "home_dining_room_battery": ( "20_battery", "70.46", PERCENTAGE, DEVICE_CLASS_BATTERY, None, ), "home_dining_room_wifi": ( "20_wifi", "-57.0", SIGNAL_STRENGTH_DECIBELS_MILLIWATT, DEVICE_CLASS_SIGNAL_STRENGTH, None, ), } for (sensor_id, data) in sensors.items(): entity_entry = registry.async_get(f"sensor.{sensor_id}") assert entity_entry assert entity_entry.device_class == data[3] assert entity_entry.unique_id == data[0] assert entity_entry.original_icon == data[4] state = hass.states.get(f"sensor.{sensor_id}") assert state assert state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) == data[2] assert state.state == data[1] device = device_registry.async_get_device({(DOMAIN, "20")}, set()) assert device assert device.manufacturer == MANUFACTURER assert device.name == "Dining Room" assert device.model == "Canary Flex"
try: import json except ImportError: import simplejson as json import urllib2 import diamond.collector class PhpFpmCollector(diamond.collector.Collector): def get_default_config_help(self): config_help = super(PhpFpmCollector, self).get_default_config_help() config_help.update({ 'uri': 'Path part of the URL, with or without the leading /', 'host': 'Host part of the URL', 'port': 'Port part of the URL', }) return config_help def get_default_config(self): """ Returns the default collector settings """ config = super(PhpFpmCollector, self).get_default_config() config.update({ 'host': 'localhost', 'port': 80, 'uri': 'fpm-status', 'byte_unit': ['byte'], 'path': 'phpfpm', }) return config def collect(self): # # if there is a / in front remove it if self.config['uri'][0] == '/': self.config['uri'] = self.config['uri'][1:] try: response = urllib2.urlopen("http://%s:%s/%s?json" % ( self.config['host'], int(self.config['port']), self.config['uri'])) except Exception as e: self.log.error('Couldnt connect to php-fpm status page: %s', e) return {} try: j = json.loads(response.read()) except Exception as e: self.log.error('Couldnt parse json: %s', e) return {} valid_metrics = [ 'accepted_conn', 'listen_queue', 'max_listen_queue', 'listen_queue_len', 'idle_processes', 'active_processes', 'total_processes', 'max_active_processes', 'max_children_reached', 'slow_requests' ] for k, v in j.items(): # # php-fpm has spaces in the keys so lets replace all spaces with _ k = k.replace(" ", "_") if k in valid_metrics: self.publish(k, v)
import asyncio import logging from typing import Any, Dict, Iterable, Optional from homeassistant.components.cover import ( ATTR_CURRENT_POSITION, ATTR_CURRENT_TILT_POSITION, ATTR_POSITION, ATTR_TILT_POSITION, ) from homeassistant.const import ( ATTR_ENTITY_ID, SERVICE_CLOSE_COVER, SERVICE_CLOSE_COVER_TILT, SERVICE_OPEN_COVER, SERVICE_OPEN_COVER_TILT, SERVICE_SET_COVER_POSITION, SERVICE_SET_COVER_TILT_POSITION, STATE_CLOSED, STATE_CLOSING, STATE_OPEN, STATE_OPENING, ) from homeassistant.core import Context, State from homeassistant.helpers.typing import HomeAssistantType from . import DOMAIN _LOGGER = logging.getLogger(__name__) VALID_STATES = {STATE_CLOSED, STATE_CLOSING, STATE_OPEN, STATE_OPENING} async def _async_reproduce_state( hass: HomeAssistantType, state: State, *, context: Optional[Context] = None, reproduce_options: Optional[Dict[str, Any]] = None, ) -> None: """Reproduce a single state.""" cur_state = hass.states.get(state.entity_id) if cur_state is None: _LOGGER.warning("Unable to find entity %s", state.entity_id) return if state.state not in VALID_STATES: _LOGGER.warning( "Invalid state specified for %s: %s", state.entity_id, state.state ) return # Return if we are already at the right state. if ( cur_state.state == state.state and cur_state.attributes.get(ATTR_CURRENT_POSITION) == state.attributes.get(ATTR_CURRENT_POSITION) and cur_state.attributes.get(ATTR_CURRENT_TILT_POSITION) == state.attributes.get(ATTR_CURRENT_TILT_POSITION) ): return service_data = {ATTR_ENTITY_ID: state.entity_id} service_data_tilting = {ATTR_ENTITY_ID: state.entity_id} if not ( cur_state.state == state.state and cur_state.attributes.get(ATTR_CURRENT_POSITION) == state.attributes.get(ATTR_CURRENT_POSITION) ): # Open/Close if state.state in [STATE_CLOSED, STATE_CLOSING]: service = SERVICE_CLOSE_COVER elif state.state in [STATE_OPEN, STATE_OPENING]: if ( ATTR_CURRENT_POSITION in cur_state.attributes and ATTR_CURRENT_POSITION in state.attributes ): service = SERVICE_SET_COVER_POSITION service_data[ATTR_POSITION] = state.attributes[ATTR_CURRENT_POSITION] else: service = SERVICE_OPEN_COVER await hass.services.async_call( DOMAIN, service, service_data, context=context, blocking=True ) if ( ATTR_CURRENT_TILT_POSITION in state.attributes and ATTR_CURRENT_TILT_POSITION in cur_state.attributes and cur_state.attributes.get(ATTR_CURRENT_TILT_POSITION) != state.attributes.get(ATTR_CURRENT_TILT_POSITION) ): # Tilt position if state.attributes.get(ATTR_CURRENT_TILT_POSITION) == 100: service_tilting = SERVICE_OPEN_COVER_TILT elif state.attributes.get(ATTR_CURRENT_TILT_POSITION) == 0: service_tilting = SERVICE_CLOSE_COVER_TILT else: service_tilting = SERVICE_SET_COVER_TILT_POSITION service_data_tilting[ATTR_TILT_POSITION] = state.attributes[ ATTR_CURRENT_TILT_POSITION ] await hass.services.async_call( DOMAIN, service_tilting, service_data_tilting, context=context, blocking=True, ) async def async_reproduce_states( hass: HomeAssistantType, states: Iterable[State], *, context: Optional[Context] = None, reproduce_options: Optional[Dict[str, Any]] = None, ) -> None: """Reproduce Cover states.""" # Reproduce states in parallel. await asyncio.gather( *( _async_reproduce_state( hass, state, context=context, reproduce_options=reproduce_options ) for state in states ) )
from unittest import mock import pytest from meld.misc import all_same, calc_syncpoint, merge_intervals @pytest.mark.parametrize("intervals, expected", [ # Dominated by a single range ([(1, 5), (5, 9), (10, 11), (0, 20)], [(0, 20)]), # No overlap ([(1, 5), (6, 9), (10, 11)], [(1, 5), (6, 9), (10, 11)]), # Two overlap points between ranges ([(1, 5), (5, 9), (10, 12), (11, 20)], [(1, 9), (10, 20)]), # Two overlap points between ranges, out of order ([(5, 9), (1, 5), (11, 20), (10, 12)], [(1, 9), (10, 20)]), # Two equal ranges ([(1, 5), (7, 8), (1, 5)], [(1, 5), (7, 8)]), # Three ranges overlap ([(1, 5), (4, 10), (9, 15)], [(1, 15)]) ]) def test_merge_intervals(intervals, expected): merged = merge_intervals(intervals) assert merged == expected @pytest.mark.parametrize("value, page_size, lower, upper, expected", [ # Boring top (0, 100, 0, 1000, 0.0), # Above the top! (0, 100, 100, 1000, 0.0), # Normal top scaling (25, 100, 0, 1000, 0.25), (50, 100, 0, 1000, 0.5), # Scaling with a lower offset (25, 100, 25, 1000, 0.0), (50, 100, 25, 1000, 0.25), # Somewhere in the middle (500, 100, 0, 1000, 0.5), # Normal bottom scaling (850, 100, 0, 1000, 0.5), (875, 100, 0, 1000, 0.75), # Boring bottom (900, 100, 0, 1000, 1.0), # Below the bottom! (1100, 100, 0, 1000, 1.0), ]) def test_calc_syncpoint(value, page_size, lower, upper, expected): import gi gi.require_version("Gtk", "3.0") from gi.repository import Gtk adjustment = Gtk.Adjustment() adjustment.configure(value, lower, upper, 1, 1, page_size) syncpoint = calc_syncpoint(adjustment) assert syncpoint == expected @pytest.mark.parametrize("lst, expected", [ (None, True), ([], True), ([0], True), ([1], True), ([0, 0], True), ([0, 1], False), ([1, 0], False), ([1, 1], True), ([0, 0, 0], True), ([0, 0, 1], False), ([0, 1, 0], False), ([0, 1, 1], False), ([1, 0, 0], False), ([1, 0, 1], False), ([1, 1, 0], False), ([1, 1, 1], True) ]) def test_all_same(lst, expected): assert all_same(lst) == expected @pytest.mark.parametrize("os_name, paths, expected", [ ('posix', ['/tmp/foo1', '/tmp/foo2'], ['foo1', 'foo2']), ('posix', ['/tmp/foo1', '/tmp/foo2', '/tmp/foo3'], ['foo1', 'foo2', 'foo3']), ('posix', ['/tmp/bar/foo1', '/tmp/woo/foo2'], ['foo1', 'foo2']), ('posix', ['/tmp/bar/foo1', '/tmp/woo/foo1'], ['[bar] foo1', '[woo] foo1']), ('posix', ['/tmp/bar/foo1', '/tmp/woo/foo1', '/tmp/ree/foo1'], ['[bar] foo1', '[woo] foo1', '[ree] foo1']), ('posix', ['/tmp/bar/deep/deep', '/tmp/bar/shallow'], ['deep', 'shallow']), ('posix', ['/tmp/bar/deep/deep/foo1', '/tmp/bar/shallow/foo1'], ['[deep] foo1', '[shallow] foo1']), # This case doesn't actually make much sense, so it's not that bad # that our output is... somewhat unclear. ('posix', ['/tmp/bar/subdir/subsub', '/tmp/bar/'], ['subsub', 'bar']), ('nt', ['C:\\Users\\hmm\\bar', 'C:\\Users\\hmm\\foo'], ['bar', 'foo']), ('nt', ['C:\\Users\\bar\\hmm', 'C:\\Users\\foo\\hmm'], ['[bar] hmm', '[foo] hmm']), # Check that paths with no commonality are handled ('posix', ['nothing in', 'common'], ['nothing in', 'common']), ('posix', ['<unnamed>', '/tmp/real/path'], ['<unnamed>', '/tmp/real/path']), ]) def test_shorten_names(os_name, paths, expected): from meld.misc import shorten_names with mock.patch('os.name', os_name): assert shorten_names(*paths) == expected
from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging from compare_gan import utils from compare_gan.architectures import arch_ops from compare_gan.architectures import resnet_biggan_deep import tensorflow as tf class ResNet5BigGanDeepTest(tf.test.TestCase): def testNumberOfParameters(self): with tf.Graph().as_default(): batch_size = 2 z = tf.zeros((batch_size, 128)) y = tf.one_hot(tf.ones((batch_size,), dtype=tf.int32), 1000) generator = resnet_biggan_deep.Generator( image_shape=(128, 128, 3), batch_norm_fn=arch_ops.conditional_batch_norm) fake_images = generator(z, y=y, is_training=True, reuse=False) self.assertEqual(fake_images.shape.as_list(), [batch_size, 128, 128, 3]) discriminator = resnet_biggan_deep.Discriminator() predictions = discriminator(fake_images, y, is_training=True) self.assertLen(predictions, 3) t_vars = tf.trainable_variables() g_vars = [var for var in t_vars if "generator" in var.name] d_vars = [var for var in t_vars if "discriminator" in var.name] g_param_overview = utils.get_parameter_overview(g_vars, limit=None) d_param_overview = utils.get_parameter_overview(d_vars, limit=None) g_param_overview = g_param_overview.split("\n") logging.info("Generator variables:") for i in range(0, len(g_param_overview), 80): logging.info("\n%s", "\n".join(g_param_overview[i:i + 80])) logging.info("Discriminator variables:\n%s", d_param_overview) g_num_weights = sum([v.get_shape().num_elements() for v in g_vars]) self.assertEqual(g_num_weights, 50244484) d_num_weights = sum([v.get_shape().num_elements() for v in d_vars]) self.assertEqual(d_num_weights, 34590210) if __name__ == "__main__": tf.test.main()
import argparse import numpy as np import chainer from chainer.links import Convolution2D from chainer import serializers from chainercv.experimental.links import YOLOv2Tiny from chainercv.links import Conv2DBNActiv from chainercv.links import YOLOv2 from chainercv.links import YOLOv3 def load_param(file, param): if isinstance(param, chainer.Variable): param = param.array param[:] = np.fromfile(file, dtype=np.float32, count=param.size) \ .reshape(param.shape) def load_link(file, link): if isinstance(link, Convolution2D): load_param(file, link.b) load_param(file, link.W) elif isinstance(link, Conv2DBNActiv): load_param(file, link.bn.beta) load_param(file, link.bn.gamma) load_param(file, link.bn.avg_mean) load_param(file, link.bn.avg_var) load_param(file, link.conv.W) elif isinstance(link, chainer.ChainList): for l in link: load_link(file, l) def reorder_loc(conv, n_fg_class): # xy -> yx for data in (conv.W.array, conv.b.array): data = data.reshape( (-1, 4 + 1 + n_fg_class) + data.shape[1:]) data[:, [1, 0, 3, 2]] = data[:, :4].copy() def load_yolo_v2(file, model): load_link(file, model.extractor) load_link(file, model.subnet) reorder_loc(model.subnet, model.n_fg_class) def load_yolo_v3(file, model): for i, link in enumerate(model.extractor): load_link(file, link) if i in {33, 39, 45}: subnet = model.subnet[(i - 33) // 6] load_link(file, subnet) for subnet in model.subnet: reorder_loc(subnet[-1], model.n_fg_class) def main(): parser = argparse.ArgumentParser() parser.add_argument( '--model', choices=('yolo_v2', 'yolo_v2_tiny', 'yolo_v3'), default='yolo_v2') parser.add_argument('--n-fg-class', type=int, default=80) parser.add_argument('darknetmodel') parser.add_argument('output') args = parser.parse_args() if args.model == 'yolo_v2': model = YOLOv2(n_fg_class=args.n_fg_class) elif args.model == 'yolo_v2_tiny': model = YOLOv2Tiny(n_fg_class=args.n_fg_class) elif args.model == 'yolo_v3': model = YOLOv3(n_fg_class=args.n_fg_class) with chainer.using_config('train', False): model(np.empty((1, 3, model.insize, model.insize), dtype=np.float32)) with open(args.darknetmodel, mode='rb') as f: major = np.fromfile(f, dtype=np.int32, count=1) minor = np.fromfile(f, dtype=np.int32, count=1) np.fromfile(f, dtype=np.int32, count=1) # revision if major * 10 + minor >= 2 and major < 1000 and minor < 1000: np.fromfile(f, dtype=np.int64, count=1) # seen else: np.fromfile(f, dtype=np.int32, count=1) # seen if args.model == 'yolo_v2': load_yolo_v2(f, model) elif args.model == 'yolo_v2_tiny': load_yolo_v2(f, model) elif args.model == 'yolo_v3': load_yolo_v3(f, model) serializers.save_npz(args.output, model) if __name__ == '__main__': main()
import os from qutebrowser.browser.webkit.network import networkreply from qutebrowser.utils import jinja def get_file_list(basedir, all_files, filterfunc): """Get a list of files filtered by a filter function and sorted by name. Args: basedir: The parent directory of all files. all_files: The list of files to filter and sort. filterfunc: The filter function. Return: A list of dicts. Each dict contains the name and absname keys. """ items = [] for filename in all_files: absname = os.path.join(basedir, filename) if filterfunc(absname): items.append({'name': filename, 'absname': absname}) return sorted(items, key=lambda v: v['name'].lower()) def is_root(directory): """Check if the directory is the root directory. Args: directory: The directory to check. Return: Whether the directory is a root directory or not. """ # If you're curious as why this works: # dirname('/') = '/' # dirname('/home') = '/' # dirname('/home/') = '/home' # dirname('/home/foo') = '/home' # basically, for files (no trailing slash) it removes the file part, and # for directories, it removes the trailing slash, so the only way for this # to be equal is if the directory is the root directory. return os.path.dirname(directory) == directory def parent_dir(directory): """Return the parent directory for the given directory. Args: directory: The path to the directory. Return: The path to the parent directory. """ return os.path.normpath(os.path.join(directory, os.pardir)) def dirbrowser_html(path): """Get the directory browser web page. Args: path: The directory path. Return: The HTML of the web page. """ title = "Browse directory: {}".format(path) if is_root(path): parent = None else: parent = parent_dir(path) try: all_files = os.listdir(path) except OSError as e: html = jinja.render('error.html', title="Error while reading directory", url='file:///{}'.format(path), error=str(e)) return html.encode('UTF-8', errors='xmlcharrefreplace') files = get_file_list(path, all_files, os.path.isfile) directories = get_file_list(path, all_files, os.path.isdir) html = jinja.render('dirbrowser.html', title=title, url=path, parent=parent, files=files, directories=directories) return html.encode('UTF-8', errors='xmlcharrefreplace') def handler(request, _operation, _current_url): """Handler for a file:// URL. Args: request: QNetworkRequest to answer to. _operation: The HTTP operation being done. _current_url: The page we're on currently. Return: A QNetworkReply for directories, None for files. """ path = request.url().toLocalFile() try: if os.path.isdir(path): data = dirbrowser_html(path) return networkreply.FixedDataNetworkReply( request, data, 'text/html') return None except UnicodeEncodeError: return None
import unittest from perfkitbenchmarker import disk_iops_to_capacity class DiskIOPSToCapacityTest(unittest.TestCase): def testSetCPUCountAWS(self): AWSconfig = disk_iops_to_capacity.DiskIOPSToCapacity(300, 'AWS') self.assertEquals(AWSconfig.GetCPUCount(), 2) def testSetCPUCountGCP(self): GCPconfig = disk_iops_to_capacity.DiskIOPSToCapacity(300, 'GCP') self.assertEquals(GCPconfig.GetCPUCount(), 1) def testSetNumberDisksAWS(self): AWSconfig1 = disk_iops_to_capacity.DiskIOPSToCapacity(300, 'AWS') self.assertEqual(AWSconfig1.GetNumberDisks(), 1) AWSconfig2 = disk_iops_to_capacity.DiskIOPSToCapacity(25000, 'AWS') self.assertEqual(AWSconfig2.GetNumberDisks(), 3) AWSconfig3 = disk_iops_to_capacity.DiskIOPSToCapacity(20000, 'AWS') self.assertEqual(AWSconfig3.GetNumberDisks(), 2) def testSetNumberDisksGCP(self): GCPconfig1 = disk_iops_to_capacity.DiskIOPSToCapacity(50, 'GCP') self.assertEqual(GCPconfig1.GetNumberDisks(), 1) def testSetStorageSizeAWS(self): AWSconfig1 = disk_iops_to_capacity.DiskIOPSToCapacity(50, 'AWS') self.assertEqual(AWSconfig1.GetSize(), 2) AWSconfig2 = disk_iops_to_capacity.DiskIOPSToCapacity(100, 'AWS') self.assertEqual(AWSconfig2.GetSize(), 2) AWSconfig3 = disk_iops_to_capacity.DiskIOPSToCapacity(300, 'AWS') self.assertEqual(AWSconfig3.GetSize(), 300 * 3) AWSconfig4 = disk_iops_to_capacity.DiskIOPSToCapacity(9999, 'AWS') self.assertEqual(AWSconfig4.GetSize(), 9999 * 3) AWSconfig4 = disk_iops_to_capacity.DiskIOPSToCapacity(10000, 'AWS') self.assertEqual(AWSconfig4.GetSize(), 3580) def testSetStorageSizeGCP(self): GCPconfig1 = disk_iops_to_capacity.DiskIOPSToCapacity(1, 'GCP') self.assertEqual(GCPconfig1.GetSize(), 1) GCPconfig1 = disk_iops_to_capacity.DiskIOPSToCapacity(300, 'GCP') self.assertEqual(GCPconfig1.GetSize(), 10) GCPconfig2 = disk_iops_to_capacity.DiskIOPSToCapacity(30000, 'GCP') self.assertEqual(GCPconfig2.GetSize(), 1000) def testValidateProvider(self): self.assertRaises(disk_iops_to_capacity.InvalidProviderError, disk_iops_to_capacity.DiskIOPSToCapacity, 300, 'NONPROVIDER') def testValidateIOPS(self): self.assertRaises(disk_iops_to_capacity.InvalidIOPSError, disk_iops_to_capacity.DiskIOPSToCapacity, 0, 'AWS') self.assertRaises(disk_iops_to_capacity.InvalidIOPSError, disk_iops_to_capacity.DiskIOPSToCapacity, 50000, 'GCP') self.assertRaises(disk_iops_to_capacity.InvalidIOPSError, disk_iops_to_capacity.DiskIOPSToCapacity, 90000, 'AWS') def testValidateStorageType(self): self.assertRaises(disk_iops_to_capacity.InvalidStorageTypeError, disk_iops_to_capacity.DiskIOPSToCapacity, 100, 'AWS', 'ebs-piops') self.assertRaises(disk_iops_to_capacity.InvalidStorageTypeError, disk_iops_to_capacity.DiskIOPSToCapacity, 100, 'GCP', 'pd-hhd') if __name__ == '__main__': unittest.main()
import numpy as np from tensornetwork.network_components import Node, contract_between from tensornetwork.network_operations import split_node_full_svd from tensornetwork.linalg.node_linalg import conj from tensornetwork.backends import backend_factory from functools import partial from tensornetwork.backends.decorators import jit import warnings from tensornetwork.ncon_interface import ncon from tensornetwork.backend_contextmanager import get_default_backend from tensornetwork.backends.abstract_backend import AbstractBackend from typing import Any, List, Optional, Text, Type, Union, Dict, Sequence Tensor = Any class BaseMPS: """The base class for MPS. All MPS should be derived from BaseMPS `BaseMPS` is an infinite matrix product state with a finite unitcell. Important attributes: * `BaseMPS.tensors`: A list of mps tensors. * `BaseMPS.center_position`: The location of the orthogonality site * `BaseMPS.connector_matrix`: A rank-2 `Tensor` stored in a `Node`. `BaseMPS.connector_matrix` Connects unit cells back to themselves. To stack different unit cells, the `BaseMPS.connector_matrix` is absorbed into the rightmost (by convention) mps tensor prior to stacking. To obtain a sequence of `Tensor` objects `[tensor_1,...,tensor_N]` which can be arbitrarily stacked, i.e. `stacked_tensors=[tensor_1,...,tensor_N, tensor_1, ..., tensor_N,...]` use the `BaseMPS.get_tensor` function. This function automatically absorbs `BaseMPS.connector_matrix` into the correct `Tensoor` object to ensure that `Tensors`s (i.e. the mps tensors) can be consistently stacked without gauge jumps. The orthogonality center can be be shifted using the `BaseMPS.position` method, which uses uses QR and RQ methods to shift `center_position`. """ def __init__(self, tensors: List[Tensor], center_position: Optional[int] = None, connector_matrix: Optional[Tensor] = None, backend: Optional[Union[Text, AbstractBackend]] = None) -> None: """Initialize a BaseMPS. Args: tensors: A list of `Tensor` objects. center_position: The initial position of the center site. connector_matrix: A `Tensor` of rank 2 connecting different unitcells. A value `None` is equivalent to an identity `connector_matrix`. backend: The name of the backend that should be used to perform contractions. Available backends are currently 'numpy', 'tensorflow', 'pytorch', 'jax' """ if (center_position is not None) and (center_position < 0 or center_position >= len(tensors)): raise ValueError("`center_position = {}` is different from `None` and " "not between 0 <= center_position < {}".format( center_position, len(tensors))) if backend is None: backend = get_default_backend() if isinstance(backend, AbstractBackend): self.backend = backend else: self.backend = backend_factory.get_backend(backend) # the dtype is deduced from the tensor object. self.tensors = [self.backend.convert_to_tensor(t) for t in tensors] if not all( [self.tensors[0].dtype == tensor.dtype for tensor in self.tensors]): raise TypeError('not all dtypes in BaseMPS.tensors are the same') self.connector_matrix = connector_matrix self.center_position = center_position ######################################################################## ########## define functions for jitted operations ########## ######################################################################## @partial(jit, backend=self.backend, static_argnums=(1,)) def svd(tensor, max_singular_values=None): return self.backend.svd(tensor=tensor, pivot_axis=2, max_singular_values=max_singular_values) self.svd = svd @partial(jit, backend=self.backend) def qr(tensor): return self.backend.qr(tensor, 2) self.qr = qr @partial(jit, backend=self.backend) def rq(tensor): return self.backend.rq(tensor, 1) self.rq = rq self.norm = self.backend.jit(self.backend.norm) ######################################################################## ######################################################################## ######################################################################## def left_transfer_operator(self, A, l, Abar): return ncon([A, l, Abar], [[1, 2, -1], [1, 3], [3, 2, -2]], backend=self.backend.name) def right_transfer_operator(self, B, r, Bbar): return ncon([B, r, Bbar], [[-1, 2, 1], [1, 3], [-2, 2, 3]], backend=self.backend.name) def __len__(self) -> int: return len(self.tensors) def position(self, site: int, normalize: Optional[bool] = True) -> np.number: """Shift `center_position` to `site`. Args: site: The site to which FiniteMPS.center_position should be shifted normalize: If `True`, normalize matrices when shifting. Returns: `Tensor`: The norm of the tensor at `FiniteMPS.center_position` Raises: ValueError: If `center_position` is `None`. """ if self.center_position is None: raise ValueError( "BaseMPS.center_position is `None`, cannot shift `center_position`." "Reset `center_position` manually or use `canonicalize`") #`site` has to be between 0 and len(mps) - 1 if site >= len(self.tensors) or site < 0: raise ValueError('site = {} not between values' ' 0 < site < N = {}'.format(site, len(self))) #nothing to do if site == self.center_position: Z = self.norm(self.tensors[self.center_position]) if normalize: self.tensors[self.center_position] /= Z return Z #shift center_position to the right using QR decomposition if site > self.center_position: n = self.center_position for n in range(self.center_position, site): Q, R = self.qr(self.tensors[n]) self.tensors[n] = Q self.tensors[n + 1] = ncon([R, self.tensors[n + 1]], [[-1, 1], [1, -2, -3]], backend=self.backend.name) Z = self.norm(self.tensors[n + 1]) # for an mps with > O(10) sites one needs to normalize to avoid # over or underflow errors; this takes care of the normalization if normalize: self.tensors[n + 1] /= Z self.center_position = site #shift center_position to the left using RQ decomposition else: for n in reversed(range(site + 1, self.center_position + 1)): R, Q = self.rq(self.tensors[n]) # for an mps with > O(10) sites one needs to normalize to avoid # over or underflow errors; this takes care of the normalization self.tensors[n] = Q #Q is a right-isometric tensor of rank 3 self.tensors[n - 1] = ncon([self.tensors[n - 1], R], [[-1, -2, 1], [1, -3]], backend=self.backend.name) Z = self.norm(self.tensors[n - 1]) if normalize: self.tensors[n - 1] /= Z self.center_position = site #return the norm of the last R tensor (useful for checks) return Z @property def dtype(self) -> Type[np.number]: if not all( [self.tensors[0].dtype == tensor.dtype for tensor in self.tensors]): raise TypeError('not all dtype in BaseMPS.tensors are the same') return self.tensors[0].dtype def save(self, path: str): raise NotImplementedError() @property def bond_dimensions(self) -> List: """A list of bond dimensions of `BaseMPS`""" return [self.tensors[0].shape[0]] + [t.shape[2] for t in self.tensors] @property def physical_dimensions(self) -> List: """A list of physical Hilbert-space dimensions of `BaseMPS`""" return [t.shape[1] for t in self.tensors] def right_envs(self, sites: Sequence[int]) -> Dict: raise NotImplementedError() def left_envs(self, sites: Sequence[int]) -> Dict: raise NotImplementedError() def apply_transfer_operator(self, site: int, direction: Union[Text, int], matrix: Tensor) -> Tensor: """Compute the action of the MPS transfer-operator at site `site`. Args: site: A site of the MPS direction: * if `1, 'l'` or `'left'`: compute the left-action of the MPS transfer-operator at `site` on the input `matrix`. * if `-1, 'r'` or `'right'`: compute the right-action of the MPS transfer-operator at `site` on the input `matrix` matrix: A rank-2 tensor or matrix. Returns: `Tensor`: The result of applying the MPS transfer-operator to `matrix` """ if direction in (1, 'l', 'left'): return self.left_transfer_operator(self.tensors[site], matrix, self.backend.conj(self.tensors[site])) if direction in (-1, 'r', 'right'): return self.right_transfer_operator(self.tensors[site], matrix, self.backend.conj(self.tensors[site])) raise ValueError(f'unknown value {direction} for direction') def measure_local_operator(self, ops: List[Tensor], sites: Sequence[int]) -> List: """Measure the expectation value of local operators `ops` site `sites`. Args: ops: A list Tensors of rank 2; the local operators to be measured. sites: Sites where `ops` act. Returns: List: measurements :math:`\\langle` `ops[n]`:math:`\\rangle` for n in `sites` Raises: ValueError if `len(ops) != len(sites)` """ if not len(ops) == len(sites): raise ValueError('measure_1site_ops: len(ops) has to be len(sites)!') right_envs = self.right_envs(sites) left_envs = self.left_envs(sites) res = [] for n, site in enumerate(sites): O = Node(ops[n], backend=self.backend) R = Node(right_envs[site], backend=self.backend) L = Node(left_envs[site], backend=self.backend) A = Node(self.tensors[site], backend=self.backend) conj_A = conj(A) O[1] ^ A[1] O[0] ^ conj_A[1] R[0] ^ A[2] R[1] ^ conj_A[2] L[0] ^ A[0] L[1] ^ conj_A[0] result = L @ A @ O @ conj_A @ R res.append(self.backend.item(result.tensor)) return res def measure_two_body_correlator(self, op1: Tensor, op2: Tensor, site1: int, sites2: Sequence[int]) -> List: """ Compute the correlator :math:`\\langle` `op1[site1], op2[s]`:math:`\\rangle` between `site1` and all sites `s` in `sites2`. If `s == site1`, `op2[s]` will be applied first. Args: op1: Tensor of rank 2; the local operator at `site1`. op2: Tensor of rank 2; the local operator at `sites2`. site1: The site where `op1` acts sites2: Sites where operator `op2` acts. Returns: List: Correlator :math:`\\langle` `op1[site1], op2[s]`:math:`\\rangle` for `s` :math:`\\in` `sites2`. Raises: ValueError if `site1` is out of range """ N = len(self) if site1 < 0: raise ValueError( "Site site1 out of range: {} not between 0 <= site < N = {}.".format( site1, N)) sites2 = np.array(sites2) #enable logical indexing # we break the computation into two parts: # first we get all correlators <op2(site2) op1(site1)> with site2 < site1 # then all correlators <op1(site1) op2(site2)> with site2 >= site1 # get all sites smaller than site1 left_sites = np.sort(sites2[sites2 < site1]) # get all sites larger than site1 right_sites = np.sort(sites2[sites2 > site1]) # compute all neccessary right reduced # density matrices in one go. This is # more efficient than calling right_envs # for each site individually rs = self.right_envs( np.append(site1, np.mod(right_sites, N)).astype(np.int64)) ls = self.left_envs( np.append(np.mod(left_sites, N), site1).astype(np.int64)) c = [] if len(left_sites) > 0: A = Node(self.tensors[site1], backend=self.backend) O1 = Node(op1, backend=self.backend) conj_A = conj(A) R = Node(rs[site1], backend=self.backend) R[0] ^ A[2] R[1] ^ conj_A[2] A[1] ^ O1[1] conj_A[1] ^ O1[0] R = ((R @ A) @ O1) @ conj_A n1 = np.min(left_sites) # -- A-------- # | | # compute op1(site1) | # | | # -- A*------- # and evolve it to the left by contracting tensors at site2 < site1 # if site2 is in `sites2`, calculate the observable # # ---A--........-- A-------- # | | | | # | op2(site2) op1(site1)| # | | | | # ---A--........-- A*------- for n in range(site1 - 1, n1 - 1, -1): if n in left_sites: A = Node(self.tensors[n % N], backend=self.backend) conj_A = conj(A) O2 = Node(op2, backend=self.backend) L = Node(ls[n % N], backend=self.backend) L[0] ^ A[0] L[1] ^ conj_A[0] O2[0] ^ conj_A[1] O2[1] ^ A[1] R[0] ^ A[2] R[1] ^ conj_A[2] res = (((L @ A) @ O2) @ conj_A) @ R c.append(res.tensor) if n > n1: R = Node( self.apply_transfer_operator(n % N, 'right', R.tensor), backend=self.backend) c = list(reversed(c)) # compute <op2(site1)op1(site1)> if site1 in sites2: O1 = Node(op1, backend=self.backend) O2 = Node(op2, backend=self.backend) L = Node(ls[site1], backend=self.backend) R = Node(rs[site1], backend=self.backend) A = Node(self.tensors[site1], backend=self.backend) conj_A = conj(A) O1[1] ^ O2[0] L[0] ^ A[0] L[1] ^ conj_A[0] R[0] ^ A[2] R[1] ^ conj_A[2] A[1] ^ O2[1] conj_A[1] ^ O1[0] O = O1 @ O2 res = (((L @ A) @ O) @ conj_A) @ R c.append(res.tensor) # compute <op1(site1) op2(site2)> for site1 < site2 if len(right_sites) > 0: A = Node(self.tensors[site1], backend=self.backend) conj_A = conj(A) L = Node(ls[site1], backend=self.backend) O1 = Node(op1, backend=self.backend) L[0] ^ A[0] L[1] ^ conj_A[0] A[1] ^ O1[1] conj_A[1] ^ O1[0] L = L @ A @ O1 @ conj_A n2 = np.max(right_sites) # -- A-- # | | # compute | op1(site1) # | | # -- A*-- # and evolve it to the right by contracting tensors at site2 > site1 # if site2 is in `sites2`, calculate the observable # # ---A--........-- A-------- # | | | | # | op1(site1) op2(site2)| # | | | | # ---A--........-- A*------- for n in range(site1 + 1, n2 + 1): if n in right_sites: R = Node(rs[n % N], backend=self.backend) A = Node(self.tensors[n % N], backend=self.backend) conj_A = conj(A) O2 = Node(op2, backend=self.backend) A[0] ^ L[0] conj_A[0] ^ L[1] O2[0] ^ conj_A[1] O2[1] ^ A[1] R[0] ^ A[2] R[1] ^ conj_A[2] res = L @ A @ O2 @ conj_A @ R c.append(res.tensor) if n < n2: L = Node( self.apply_transfer_operator(n % N, 'left', L.tensor), backend=self.backend) return [self.backend.item(o) for o in c] def apply_two_site_gate(self, gate: Tensor, site1: int, site2: int, max_singular_values: Optional[int] = None, max_truncation_err: Optional[float] = None) -> Tensor: """Apply a two-site gate to an MPS. This routine will in general destroy any canonical form of the state. If a canonical form is needed, the user can restore it using `FiniteMPS.position`. Args: gate: A two-body gate. site1: The first site where the gate acts. site2: The second site where the gate acts. max_singular_values: The maximum number of singular values to keep. max_truncation_err: The maximum allowed truncation error. Returns: `Tensor`: A scalar tensor containing the truncated weight of the truncation. """ if len(gate.shape) != 4: raise ValueError('rank of gate is {} but has to be 4'.format( len(gate.shape))) if site1 < 0 or site1 >= len(self) - 1: raise ValueError( 'site1 = {} is not between 0 <= site < N - 1 = {}'.format( site1, len(self))) if site2 < 1 or site2 >= len(self): raise ValueError('site2 = {} is not between 1 <= site < N = {}'.format( site2, len(self))) if site2 <= site1: raise ValueError('site2 = {} has to be larger than site2 = {}'.format( site2, site1)) if site2 != site1 + 1: raise ValueError("Found site2 ={}, site1={}. Only nearest " "neighbor gates are currently" "supported".format(site2, site1)) if (max_singular_values or max_truncation_err) and self.center_position not in (site1, site2): raise ValueError( 'center_position = {}, but gate is applied at sites {}, {}. ' 'Truncation should only be done if the gate ' 'is applied at the center position of the MPS'.format( self.center_position, site1, site2)) gate_node = Node(gate, backend=self.backend) node1 = Node(self.tensors[site1], backend=self.backend) node2 = Node(self.tensors[site2], backend=self.backend) node1[2] ^ node2[0] gate_node[2] ^ node1[1] gate_node[3] ^ node2[1] left_edges = [node1[0], gate_node[0]] right_edges = [gate_node[1], node2[2]] result = node1 @ node2 @ gate_node U, S, V, tw = split_node_full_svd( result, left_edges=left_edges, right_edges=right_edges, max_singular_values=max_singular_values, max_truncation_err=max_truncation_err, left_name=node1.name, right_name=node2.name) V.reorder_edges([S[1]] + right_edges) left_edges = left_edges + [S[1]] res = contract_between(U, S, name=U.name).reorder_edges(left_edges) self.tensors[site1] = res.tensor self.tensors[site2] = V.tensor return tw def apply_one_site_gate(self, gate: Tensor, site: int) -> None: """Apply a one-site gate to an MPS. This routine will in general destroy any canonical form of the state. If a canonical form is needed, the user can restore it using `FiniteMPS.position` Args: gate: a one-body gate site: the site where the gate should be applied """ if len(gate.shape) != 2: raise ValueError('rank of gate is {} but has to be 2'.format( len(gate.shape))) if site < 0 or site >= len(self): raise ValueError('site = {} is not between 0 <= site < N={}'.format( site, len(self))) self.tensors[site] = ncon([gate, self.tensors[site]], [[-2, 1], [-1, 1, -3]], backend=self.backend.name) def check_orthonormality(self, which: Text, site: int) -> Tensor: """Check orthonormality of tensor at site `site`. Args: which: * if `'l'` or `'left'`: check left orthogonality * if `'r`' or `'right'`: check right orthogonality site: The site of the tensor. Returns: scalar `Tensor`: The L2 norm of the deviation from identity. Raises: ValueError: If which is different from 'l','left', 'r' or 'right'. """ if which not in ('l', 'left', 'r', 'right'): raise ValueError( "Wrong value `which`={}. " "`which` as to be 'l','left', 'r' or 'right.".format(which)) n1 = Node( self.get_tensor(site), backend=self.backend) #we need to absorb the connector_matrix n2 = conj(n1) if which in ('l', 'left'): n1[0] ^ n2[0] n1[1] ^ n2[1] else: n1[2] ^ n2[2] n1[1] ^ n2[1] result = (n1 @ n2).tensor tmp = result - self.backend.eye( N=self.backend.sparse_shape(result)[0], M=self.backend.sparse_shape(result)[1], dtype=self.dtype) return self.backend.sqrt( ncon([tmp, self.backend.conj(tmp)], [[1, 2], [1, 2]], backend=self.backend)) # pylint: disable=inconsistent-return-statements def check_canonical(self) -> Any: """Check whether the MPS is in a canonical form. If `center_position` is `None`, no check is performed. Returns: The L2 norm of the vector of local deviations. """ if self.center_position is None: warnings.warn( "BaseMPS.center_position is `None`. Skipping `check_canonical`") return deviations = [] for site in range(len(self.tensors)): if site < self.center_position: deviation = self.check_orthonormality('l', site) elif site > self.center_position: deviation = self.check_orthonormality('r', site) else: continue deviations.append(deviation**2) return self.backend.sqrt(sum(deviations[1:], deviations[0])) def get_tensor(self, site: int) -> Tensor: """Returns the `Tensor` object at `site`. If `site==len(self) - 1` `BaseMPS.connector_matrix` is absorbed fromt the right-hand side into the returned `Tensor` object. Args: site: The site for which to return the `Node`. Returns: `Tensor`: The tensor at `site`. """ if site >= len(self): raise IndexError( 'index `site` = {} is out of range for len(mps)= {}'.format( site, len(self))) if site < 0: raise ValueError( 'index `site` has to be larger than 0 (found `site`={}).'.format( site)) if (site == len(self) - 1) and (self.connector_matrix is not None): return ncon([self.tensors[site], self.connector_matrix], [[-1, -2, 1], [1, -3]], backend=self.backend.name) return self.tensors[site] def canonicalize(self, *args, **kwargs) -> np.number: raise NotImplementedError()
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf slim = tf.contrib.slim def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None): """Builds the 35x35 resnet block.""" with tf.variable_scope(scope, 'Block35', [net], reuse=reuse): with tf.variable_scope('Branch_0'): tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1') with tf.variable_scope('Branch_1'): tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1') tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3') with tf.variable_scope('Branch_2'): tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1') tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope='Conv2d_0b_3x3') tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope='Conv2d_0c_3x3') mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_1, tower_conv2_2]) up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None, activation_fn=None, scope='Conv2d_1x1') net += scale * up if activation_fn: net = activation_fn(net) return net def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None): """Builds the 17x17 resnet block.""" with tf.variable_scope(scope, 'Block17', [net], reuse=reuse): with tf.variable_scope('Branch_0'): tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1') with tf.variable_scope('Branch_1'): tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1') tower_conv1_1 = slim.conv2d(tower_conv1_0, 160, [1, 7], scope='Conv2d_0b_1x7') tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [7, 1], scope='Conv2d_0c_7x1') mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_2]) up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None, activation_fn=None, scope='Conv2d_1x1') net += scale * up if activation_fn: net = activation_fn(net) return net def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None): """Builds the 8x8 resnet block.""" with tf.variable_scope(scope, 'Block8', [net], reuse=reuse): with tf.variable_scope('Branch_0'): tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1') with tf.variable_scope('Branch_1'): tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1') tower_conv1_1 = slim.conv2d(tower_conv1_0, 224, [1, 3], scope='Conv2d_0b_1x3') tower_conv1_2 = slim.conv2d(tower_conv1_1, 256, [3, 1], scope='Conv2d_0c_3x1') mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_2]) up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None, activation_fn=None, scope='Conv2d_1x1') net += scale * up if activation_fn: net = activation_fn(net) return net def inception_resnet_v2(inputs, num_classes=1001, is_training=True, dropout_keep_prob=0.8, reuse=None, scope='InceptionResnetV2'): """Creates the Inception Resnet V2 model. Args: inputs: a 4-D tensor of size [batch_size, height, width, 3]. num_classes: number of predicted classes. is_training: whether is training or not. dropout_keep_prob: float, the fraction to keep before final layer. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. Returns: logits: the logits outputs of the model. end_points: the set of end_points from the inception model. """ end_points = {} with tf.variable_scope(scope, 'InceptionResnetV2', [inputs], reuse=reuse): with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d], stride=1, padding='SAME'): # 149 x 149 x 32 net = slim.conv2d(inputs, 32, 3, stride=2, padding='VALID', scope='Conv2d_1a_3x3') end_points['Conv2d_1a_3x3'] = net # 147 x 147 x 32 net = slim.conv2d(net, 32, 3, padding='VALID', scope='Conv2d_2a_3x3') end_points['Conv2d_2a_3x3'] = net # 147 x 147 x 64 net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3') end_points['Conv2d_2b_3x3'] = net # 73 x 73 x 64 net = slim.max_pool2d(net, 3, stride=2, padding='VALID', scope='MaxPool_3a_3x3') end_points['MaxPool_3a_3x3'] = net # 73 x 73 x 80 net = slim.conv2d(net, 80, 1, padding='VALID', scope='Conv2d_3b_1x1') end_points['Conv2d_3b_1x1'] = net # 71 x 71 x 192 net = slim.conv2d(net, 192, 3, padding='VALID', scope='Conv2d_4a_3x3') end_points['Conv2d_4a_3x3'] = net # 35 x 35 x 192 net = slim.max_pool2d(net, 3, stride=2, padding='VALID', scope='MaxPool_5a_3x3') end_points['MaxPool_5a_3x3'] = net # 35 x 35 x 320 with tf.variable_scope('Mixed_5b'): with tf.variable_scope('Branch_0'): tower_conv = slim.conv2d(net, 96, 1, scope='Conv2d_1x1') with tf.variable_scope('Branch_1'): tower_conv1_0 = slim.conv2d(net, 48, 1, scope='Conv2d_0a_1x1') tower_conv1_1 = slim.conv2d(tower_conv1_0, 64, 5, scope='Conv2d_0b_5x5') with tf.variable_scope('Branch_2'): tower_conv2_0 = slim.conv2d(net, 64, 1, scope='Conv2d_0a_1x1') tower_conv2_1 = slim.conv2d(tower_conv2_0, 96, 3, scope='Conv2d_0b_3x3') tower_conv2_2 = slim.conv2d(tower_conv2_1, 96, 3, scope='Conv2d_0c_3x3') with tf.variable_scope('Branch_3'): tower_pool = slim.avg_pool2d(net, 3, stride=1, padding='SAME', scope='AvgPool_0a_3x3') tower_pool_1 = slim.conv2d(tower_pool, 64, 1, scope='Conv2d_0b_1x1') net = tf.concat(axis=3, values=[tower_conv, tower_conv1_1, tower_conv2_2, tower_pool_1]) end_points['Mixed_5b'] = net net = slim.repeat(net, 10, block35, scale=0.17) # 17 x 17 x 1088 with tf.variable_scope('Mixed_6a'): with tf.variable_scope('Branch_0'): tower_conv = slim.conv2d(net, 384, 3, stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): tower_conv1_0 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1') tower_conv1_1 = slim.conv2d(tower_conv1_0, 256, 3, scope='Conv2d_0b_3x3') tower_conv1_2 = slim.conv2d(tower_conv1_1, 384, 3, stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID', scope='MaxPool_1a_3x3') net = tf.concat(axis=3, values=[tower_conv, tower_conv1_2, tower_pool]) end_points['Mixed_6a'] = net net = slim.repeat(net, 20, block17, scale=0.10) # Auxiliary tower with tf.variable_scope('AuxLogits'): aux = slim.avg_pool2d(net, 5, stride=3, padding='VALID', scope='Conv2d_1a_3x3') aux = slim.conv2d(aux, 128, 1, scope='Conv2d_1b_1x1') aux = slim.conv2d(aux, 768, aux.get_shape()[1:3], padding='VALID', scope='Conv2d_2a_5x5') aux = slim.flatten(aux) aux = slim.fully_connected(aux, num_classes, activation_fn=None, scope='Logits') end_points['AuxLogits'] = aux with tf.variable_scope('Mixed_7a'): with tf.variable_scope('Branch_0'): tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1') tower_conv_1 = slim.conv2d(tower_conv, 384, 3, stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_1'): tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1') tower_conv1_1 = slim.conv2d(tower_conv1, 288, 3, stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_2'): tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1') tower_conv2_1 = slim.conv2d(tower_conv2, 288, 3, scope='Conv2d_0b_3x3') tower_conv2_2 = slim.conv2d(tower_conv2_1, 320, 3, stride=2, padding='VALID', scope='Conv2d_1a_3x3') with tf.variable_scope('Branch_3'): tower_pool = slim.max_pool2d(net, 3, stride=2, padding='VALID', scope='MaxPool_1a_3x3') net = tf.concat(axis=3, values=[tower_conv_1, tower_conv1_1, tower_conv2_2, tower_pool]) end_points['Mixed_7a'] = net net = slim.repeat(net, 9, block8, scale=0.20) net = block8(net, activation_fn=None) net = slim.conv2d(net, 1536, 1, scope='Conv2d_7b_1x1') end_points['Conv2d_7b_1x1'] = net with tf.variable_scope('Logits'): end_points['PrePool'] = net net = slim.avg_pool2d(net, net.get_shape()[1:3], padding='VALID', scope='AvgPool_1a_8x8') net = slim.flatten(net) net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='Dropout') end_points['PreLogitsFlatten'] = net logits = slim.fully_connected(net, num_classes, activation_fn=None, scope='Logits') end_points['Logits'] = logits end_points['Predictions'] = tf.nn.softmax(logits, name='Predictions') return logits, end_points inception_resnet_v2.default_image_size = 299 def inception_resnet_v2_arg_scope(weight_decay=0.00004, batch_norm_decay=0.9997, batch_norm_epsilon=0.001): """Yields the scope with the default parameters for inception_resnet_v2. Args: weight_decay: the weight decay for weights variables. batch_norm_decay: decay for the moving average of batch_norm momentums. batch_norm_epsilon: small float added to variance to avoid dividing by zero. Returns: a arg_scope with the parameters needed for inception_resnet_v2. """ # Set weight_decay for weights in conv2d and fully_connected layers. with slim.arg_scope([slim.conv2d, slim.fully_connected], weights_regularizer=slim.l2_regularizer(weight_decay), biases_regularizer=slim.l2_regularizer(weight_decay)): batch_norm_params = { 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon, } # Set activation_fn and parameters for batch_norm. with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu, normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_params) as scope: return scope
import logging from pyControl4.account import C4Account from pyControl4.director import C4Director from pyControl4.error_handling import BadToken from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_HOST, CONF_PASSWORD, CONF_TOKEN, CONF_USERNAME from homeassistant.core import HomeAssistant from homeassistant.helpers import aiohttp_client from .const import ( CONF_ACCOUNT, CONF_CONTROLLER_UNIQUE_ID, CONF_DIRECTOR, CONF_DIRECTOR_TOKEN_EXPIRATION, DOMAIN, ) _LOGGER = logging.getLogger(__name__) async def director_update_data( hass: HomeAssistant, entry: ConfigEntry, var: str ) -> dict: """Retrieve data from the Control4 director for update_coordinator.""" # possibly implement usage of director_token_expiration to start # token refresh without waiting for error to occur try: director = hass.data[DOMAIN][entry.entry_id][CONF_DIRECTOR] data = await director.getAllItemVariableValue(var) except BadToken: _LOGGER.info("Updating Control4 director token") await refresh_tokens(hass, entry) director = hass.data[DOMAIN][entry.entry_id][CONF_DIRECTOR] data = await director.getAllItemVariableValue(var) return {key["id"]: key for key in data} async def refresh_tokens(hass: HomeAssistant, entry: ConfigEntry): """Store updated authentication and director tokens in hass.data.""" config = entry.data account_session = aiohttp_client.async_get_clientsession(hass) account = C4Account(config[CONF_USERNAME], config[CONF_PASSWORD], account_session) await account.getAccountBearerToken() controller_unique_id = config[CONF_CONTROLLER_UNIQUE_ID] director_token_dict = await account.getDirectorBearerToken(controller_unique_id) director_session = aiohttp_client.async_get_clientsession(hass, verify_ssl=False) director = C4Director( config[CONF_HOST], director_token_dict[CONF_TOKEN], director_session ) director_token_expiry = director_token_dict["token_expiration"] _LOGGER.debug("Saving new tokens in hass data") entry_data = hass.data[DOMAIN][entry.entry_id] entry_data[CONF_ACCOUNT] = account entry_data[CONF_DIRECTOR] = director entry_data[CONF_DIRECTOR_TOKEN_EXPIRATION] = director_token_expiry
from django.db import migrations def create_index(apps, schema_editor): if schema_editor.connection.vendor != "postgresql": return schema_editor.execute("DROP INDEX memory_source_fulltext") schema_editor.execute( "CREATE INDEX memory_source_trgm ON memory_memory USING GIN (source gin_trgm_ops)" ) def drop_index(apps, schema_editor): if schema_editor.connection.vendor != "postgresql": return schema_editor.execute("DROP INDEX memory_source_trgm") schema_editor.execute( "CREATE INDEX memory_source_fulltext ON memory_memory " "USING GIN (to_tsvector('english', source))" ) class Migration(migrations.Migration): dependencies = [ ("memory", "0006_memory_update"), ("trans", "0064_fulltext_index"), ] operations = [ migrations.RunPython(create_index, drop_index, elidable=False, atomic=False) ]
import enum from typing import Optional, Type from .. import data_manager from .base import IdentifierData, BaseDriver, ConfigCategory from .json import JsonDriver from .postgres import PostgresDriver __all__ = [ "get_driver", "ConfigCategory", "IdentifierData", "BaseDriver", "JsonDriver", "PostgresDriver", "BackendType", ] class BackendType(enum.Enum): """Represents storage backend type.""" #: JSON storage backend. JSON = "JSON" #: Postgres storage backend. POSTGRES = "Postgres" # Dead drivers below retained for error handling. MONGOV1 = "MongoDB" MONGO = "MongoDBV2" _DRIVER_CLASSES = {BackendType.JSON: JsonDriver, BackendType.POSTGRES: PostgresDriver} def _get_driver_class_include_old(storage_type: Optional[BackendType] = None) -> Type[BaseDriver]: """ ONLY for use in CLI for moving data away from a no longer supported backend """ if storage_type and storage_type == BackendType.MONGO: from ._mongo import MongoDriver return MongoDriver else: return get_driver_class(storage_type) def get_driver_class(storage_type: Optional[BackendType] = None) -> Type[BaseDriver]: """Get the driver class for the given storage type. Parameters ---------- storage_type : Optional[BackendType] The backend you want a driver class for. Omit to try to obtain the backend from data manager. Returns ------- Type[BaseDriver] A subclass of `BaseDriver`. Raises ------ ValueError If there is no driver for the given storage type. """ if storage_type is None: storage_type = BackendType(data_manager.storage_type()) try: return _DRIVER_CLASSES[storage_type] except KeyError: raise ValueError(f"No driver found for storage type {storage_type}") from None def get_driver( cog_name: str, identifier: str, storage_type: Optional[BackendType] = None, *, allow_old: bool = False, **kwargs, ): """Get a driver instance. Parameters ---------- cog_name : str The cog's name. identifier : str The cog's discriminator. storage_type : Optional[BackendType] The backend you want a driver for. Omit to try to obtain the backend from data manager. **kwargs Driver-specific keyword arguments. Returns ------- BaseDriver A driver instance. Raises ------ RuntimeError If the storage type is MongoV1, Mongo, or invalid. """ if storage_type is None: try: storage_type = BackendType(data_manager.storage_type()) except RuntimeError: storage_type = BackendType.JSON try: if not allow_old: driver_cls: Type[BaseDriver] = get_driver_class(storage_type) else: driver_cls: Type[BaseDriver] = _get_driver_class_include_old(storage_type) except ValueError: if storage_type in (BackendType.MONGOV1, BackendType.MONGO): raise RuntimeError( "Please convert to JSON first to continue using the bot." "Mongo support was removed in 3.2." ) from None else: raise RuntimeError(f"Invalid driver type: '{storage_type}'") from None return driver_cls(cog_name, identifier, **kwargs)
from six.moves import cPickle as pickle from socket import gethostbyname, gethostname import os def determine_master(port=4000): """Determine address of master so that workers can connect to it. If the environment variable SPARK_LOCAL_IP is set, that address will be used. :param port: port on which the application runs :return: Master address Example usage: SPARK_LOCAL_IP=127.0.0.1 spark-submit --master \ local[8] examples/mllib_mlp.py """ if os.environ.get('SPARK_LOCAL_IP'): return os.environ['SPARK_LOCAL_IP'] + ":" + str(port) else: return gethostbyname(gethostname()) + ":" + str(port) def _receive_all(socket, num_bytes): """Reads `num_bytes` bytes from the specified socket. :param socket: open socket instance :param num_bytes: number of bytes to read :return: received data """ buffer = '' buffer_size = 0 bytes_left = num_bytes while buffer_size < num_bytes: data = socket.recv(bytes_left) delta = len(data) buffer_size += delta bytes_left -= delta buffer += data return buffer def receive(socket, num_bytes=20): """Receive data frame from open socket. :param socket: open socket instance :param num_bytes: number of bytes to read :return: received data """ length = int(_receive_all(socket, num_bytes).decode()) serialized_data = _receive_all(socket, length) return pickle.loads(serialized_data) def send(socket, data, num_bytes=20): """Send data to specified socket. :param socket: open socket instance :param data: data to send :param num_bytes: number of bytes to read :return: received data """ pickled_data = pickle.dumps(data, -1) length = str(len(pickled_data)).zfill(num_bytes) socket.sendall(length.encode()) socket.sendall(pickled_data)
import os import pytest import kombu from .common import ( BasicFunctionality, BaseExchangeTypes, BaseTimeToLive, BasePriority, BaseFailover ) def get_connection(hostname, port, vhost): return kombu.Connection(f'pyamqp://{hostname}:{port}') def get_failover_connection(hostname, port, vhost): return kombu.Connection( f'pyamqp://localhost:12345;pyamqp://{hostname}:{port}' ) @pytest.fixture() def invalid_connection(): return kombu.Connection('pyamqp://localhost:12345') @pytest.fixture() def connection(request): return get_connection( hostname=os.environ.get('RABBITMQ_HOST', 'localhost'), port=os.environ.get('RABBITMQ_5672_TCP', '5672'), vhost=getattr( request.config, "slaveinput", {} ).get("slaveid", None), ) @pytest.fixture() def failover_connection(request): return get_failover_connection( hostname=os.environ.get('RABBITMQ_HOST', 'localhost'), port=os.environ.get('RABBITMQ_5672_TCP', '5672'), vhost=getattr( request.config, "slaveinput", {} ).get("slaveid", None), ) @pytest.mark.env('py-amqp') @pytest.mark.flaky(reruns=5, reruns_delay=2) class test_PyAMQPBasicFunctionality(BasicFunctionality): pass @pytest.mark.env('py-amqp') @pytest.mark.flaky(reruns=5, reruns_delay=2) class test_PyAMQPBaseExchangeTypes(BaseExchangeTypes): pass @pytest.mark.env('py-amqp') @pytest.mark.flaky(reruns=5, reruns_delay=2) class test_PyAMQPTimeToLive(BaseTimeToLive): pass @pytest.mark.env('py-amqp') @pytest.mark.flaky(reruns=5, reruns_delay=2) class test_PyAMQPPriority(BasePriority): pass @pytest.mark.env('py-amqp') @pytest.mark.flaky(reruns=5, reruns_delay=2) class test_PyAMQPFailover(BaseFailover): pass
revision = "f2383bf08fbc" down_revision = "c87cb989af04" import sqlalchemy as sa from alembic import op def upgrade(): op.create_index( "ix_certificates_id_desc", "certificates", [sa.text("id DESC")], unique=True, postgresql_using="btree", ) def downgrade(): op.drop_index("ix_certificates_id_desc", table_name="certificates")
from typing import Optional from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from .const import ( ATTR_DEFAULT_ENABLED, ATTR_DEVICE_CLASS, ATTR_ICON, ATTR_MEASUREMENT, ATTR_NAME, ATTR_SECTION, ATTR_UNIT_OF_MEASUREMENT, DOMAIN, SENSOR_ENTITIES, ) from .coordinator import ToonDataUpdateCoordinator from .models import ( ToonBoilerDeviceEntity, ToonDisplayDeviceEntity, ToonElectricityMeterDeviceEntity, ToonEntity, ToonGasMeterDeviceEntity, ToonSolarDeviceEntity, ToonWaterMeterDeviceEntity, ) async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities ) -> None: """Set up Toon sensors based on a config entry.""" coordinator = hass.data[DOMAIN][entry.entry_id] sensors = [ ToonElectricityMeterDeviceSensor(coordinator, key=key) for key in ( "power_average_daily", "power_average", "power_daily_cost", "power_daily_value", "power_meter_reading_low", "power_meter_reading", "power_value", "solar_meter_reading_low_produced", "solar_meter_reading_produced", ) ] sensors.extend( [ToonDisplayDeviceSensor(coordinator, key="current_display_temperature")] ) sensors.extend( [ ToonGasMeterDeviceSensor(coordinator, key=key) for key in ( "gas_average_daily", "gas_average", "gas_daily_cost", "gas_daily_usage", "gas_meter_reading", "gas_value", ) ] ) sensors.extend( [ ToonWaterMeterDeviceSensor(coordinator, key=key) for key in ( "water_average_daily", "water_average", "water_daily_cost", "water_daily_usage", "water_meter_reading", "water_value", ) ] ) if coordinator.data.agreement.is_toon_solar: sensors.extend( [ ToonSolarDeviceSensor(coordinator, key=key) for key in [ "solar_value", "solar_maximum", "solar_produced", "solar_average_produced", "power_usage_day_produced_solar", "power_usage_day_from_grid_usage", "power_usage_day_to_grid_usage", "power_usage_current_covered_by_solar", ] ] ) if coordinator.data.thermostat.have_opentherm_boiler: sensors.extend( [ ToonBoilerDeviceSensor( coordinator, key="thermostat_info_current_modulation_level" ) ] ) async_add_entities(sensors, True) class ToonSensor(ToonEntity): """Defines a Toon sensor.""" def __init__(self, coordinator: ToonDataUpdateCoordinator, *, key: str) -> None: """Initialize the Toon sensor.""" self.key = key super().__init__( coordinator, enabled_default=SENSOR_ENTITIES[key][ATTR_DEFAULT_ENABLED], icon=SENSOR_ENTITIES[key][ATTR_ICON], name=SENSOR_ENTITIES[key][ATTR_NAME], ) @property def unique_id(self) -> str: """Return the unique ID for this sensor.""" agreement_id = self.coordinator.data.agreement.agreement_id # This unique ID is a bit ugly and contains unneeded information. # It is here for legacy / backward compatible reasons. return f"{DOMAIN}_{agreement_id}_sensor_{self.key}" @property def state(self) -> Optional[str]: """Return the state of the sensor.""" section = getattr( self.coordinator.data, SENSOR_ENTITIES[self.key][ATTR_SECTION] ) return getattr(section, SENSOR_ENTITIES[self.key][ATTR_MEASUREMENT]) @property def unit_of_measurement(self) -> Optional[str]: """Return the unit this state is expressed in.""" return SENSOR_ENTITIES[self.key][ATTR_UNIT_OF_MEASUREMENT] @property def device_class(self) -> Optional[str]: """Return the device class.""" return SENSOR_ENTITIES[self.key][ATTR_DEVICE_CLASS] class ToonElectricityMeterDeviceSensor(ToonSensor, ToonElectricityMeterDeviceEntity): """Defines a Electricity Meter sensor.""" class ToonGasMeterDeviceSensor(ToonSensor, ToonGasMeterDeviceEntity): """Defines a Gas Meter sensor.""" class ToonWaterMeterDeviceSensor(ToonSensor, ToonWaterMeterDeviceEntity): """Defines a Water Meter sensor.""" class ToonSolarDeviceSensor(ToonSensor, ToonSolarDeviceEntity): """Defines a Solar sensor.""" class ToonBoilerDeviceSensor(ToonSensor, ToonBoilerDeviceEntity): """Defines a Boiler sensor.""" class ToonDisplayDeviceSensor(ToonSensor, ToonDisplayDeviceEntity): """Defines a Display sensor."""
import functools import os import sys from collections import defaultdict import blinker import natsort from nikola.plugin_categories import SignalHandler from nikola import utils, hierarchy_utils class TaxonomiesClassifier(SignalHandler): """Classify posts and pages by taxonomies.""" name = "classify_taxonomies" def _do_classification(self, site): # Needed to avoid strange errors during tests if site is not self.site: return # Get list of enabled taxonomy plugins and initialize data structures taxonomies = site.taxonomy_plugins.values() site.posts_per_classification = {} for taxonomy in taxonomies: site.posts_per_classification[taxonomy.classification_name] = { lang: defaultdict(set) for lang in site.config['TRANSLATIONS'].keys() } # Classify posts for post in site.timeline: # Do classify pages, but don’t classify posts that are hidden # (draft/private/future) if post.is_post and not post.use_in_feeds: continue for taxonomy in taxonomies: if taxonomy.apply_to_posts if post.is_post else taxonomy.apply_to_pages: classifications = {} for lang in site.config['TRANSLATIONS'].keys(): # Extract classifications for this language classifications[lang] = taxonomy.classify(post, lang) if not taxonomy.more_than_one_classifications_per_post and len(classifications[lang]) > 1: raise ValueError("Too many {0} classifications for post {1}".format(taxonomy.classification_name, post.source_path)) # Add post to sets for classification in classifications[lang]: while True: site.posts_per_classification[taxonomy.classification_name][lang][classification].add(post) if not taxonomy.include_posts_from_subhierarchies or not taxonomy.has_hierarchy: break classification_path = taxonomy.extract_hierarchy(classification) if len(classification_path) <= 1: if len(classification_path) == 0 or not taxonomy.include_posts_into_hierarchy_root: break classification = taxonomy.recombine_classification_from_hierarchy(classification_path[:-1]) # Sort everything. site.page_count_per_classification = {} site.hierarchy_per_classification = {} site.flat_hierarchy_per_classification = {} site.hierarchy_lookup_per_classification = {} for taxonomy in taxonomies: site.page_count_per_classification[taxonomy.classification_name] = {} # Sort post lists for lang, posts_per_classification in site.posts_per_classification[taxonomy.classification_name].items(): # Ensure implicit classifications are inserted for classification in taxonomy.get_implicit_classifications(lang): if classification not in posts_per_classification: posts_per_classification[classification] = [] site.page_count_per_classification[taxonomy.classification_name][lang] = {} # Convert sets to lists and sort them for classification in list(posts_per_classification.keys()): posts = list(posts_per_classification[classification]) posts = self.site.sort_posts_chronologically(posts, lang) taxonomy.sort_posts(posts, classification, lang) posts_per_classification[classification] = posts # Create hierarchy information if taxonomy.has_hierarchy: site.hierarchy_per_classification[taxonomy.classification_name] = {} site.flat_hierarchy_per_classification[taxonomy.classification_name] = {} site.hierarchy_lookup_per_classification[taxonomy.classification_name] = {} for lang, posts_per_classification in site.posts_per_classification[taxonomy.classification_name].items(): # Compose hierarchy hierarchy = {} for classification in posts_per_classification.keys(): hier = taxonomy.extract_hierarchy(classification) node = hierarchy for he in hier: if he not in node: node[he] = {} node = node[he] hierarchy_lookup = {} def create_hierarchy(hierarchy, parent=None, level=0): """Create hierarchy.""" result = {} for name, children in hierarchy.items(): node = hierarchy_utils.TreeNode(name, parent) node.children = create_hierarchy(children, node, level + 1) node.classification_path = [pn.name for pn in node.get_path()] node.classification_name = taxonomy.recombine_classification_from_hierarchy(node.classification_path) hierarchy_lookup[node.classification_name] = node result[node.name] = node classifications = natsort.natsorted(result.keys(), alg=natsort.ns.F | natsort.ns.IC) taxonomy.sort_classifications(classifications, lang, level=level) return [result[classification] for classification in classifications] root_list = create_hierarchy(hierarchy) if '' in posts_per_classification: node = hierarchy_utils.TreeNode('', parent=None) node.children = root_list node.classification_path = [] node.classification_name = '' hierarchy_lookup[node.name] = node root_list = [node] flat_hierarchy = hierarchy_utils.flatten_tree_structure(root_list) # Store result site.hierarchy_per_classification[taxonomy.classification_name][lang] = root_list site.flat_hierarchy_per_classification[taxonomy.classification_name][lang] = flat_hierarchy site.hierarchy_lookup_per_classification[taxonomy.classification_name][lang] = hierarchy_lookup taxonomy.postprocess_posts_per_classification(site.posts_per_classification[taxonomy.classification_name], site.flat_hierarchy_per_classification[taxonomy.classification_name], site.hierarchy_lookup_per_classification[taxonomy.classification_name]) else: taxonomy.postprocess_posts_per_classification(site.posts_per_classification[taxonomy.classification_name]) # Check for valid paths and for collisions taxonomy_outputs = {lang: dict() for lang in site.config['TRANSLATIONS'].keys()} quit = False for taxonomy in taxonomies: # Check for collisions (per language) for lang in site.config['TRANSLATIONS'].keys(): if not taxonomy.is_enabled(lang): continue for classification, posts in site.posts_per_classification[taxonomy.classification_name][lang].items(): # Do we actually generate this classification page? filtered_posts = [x for x in posts if self.site.config["SHOW_UNTRANSLATED_POSTS"] or x.is_translation_available(lang)] generate_list = taxonomy.should_generate_classification_page(classification, filtered_posts, lang) if not generate_list: continue # Obtain path as tuple path = site.path_handlers[taxonomy.classification_name](classification, lang) # Check that path is OK for path_element in path: if len(path_element) == 0: utils.LOGGER.error("{0} {1} yields invalid path '{2}'!".format(taxonomy.classification_name.title(), classification, '/'.join(path))) quit = True # Combine path path = os.path.join(*[os.path.normpath(p) for p in path if p != '.']) # Determine collisions if path in taxonomy_outputs[lang]: other_classification_name, other_classification, other_posts = taxonomy_outputs[lang][path] if other_classification_name == taxonomy.classification_name and other_classification == classification: taxonomy_outputs[lang][path][2].extend(filtered_posts) else: utils.LOGGER.error('You have classifications that are too similar: {0} "{1}" and {2} "{3}" both result in output path {4} for language {5}.'.format( taxonomy.classification_name, classification, other_classification_name, other_classification, path, lang)) utils.LOGGER.error('{0} "{1}" is used in: {2}'.format( taxonomy.classification_name.title(), classification, ', '.join(sorted([p.source_path for p in filtered_posts])))) utils.LOGGER.error('{0} "{1}" is used in: {2}'.format( other_classification_name.title(), other_classification, ', '.join(sorted([p.source_path for p in other_posts])))) quit = True else: taxonomy_outputs[lang][path] = (taxonomy.classification_name, classification, list(posts)) if quit: sys.exit(1) blinker.signal('taxonomies_classified').send(site) def _get_filtered_list(self, taxonomy, classification, lang): """Return the filtered list of posts for this classification and language.""" post_list = self.site.posts_per_classification[taxonomy.classification_name][lang].get(classification, []) if self.site.config["SHOW_UNTRANSLATED_POSTS"]: return post_list else: return [x for x in post_list if x.is_translation_available(lang)] @staticmethod def _compute_number_of_pages(filtered_posts, posts_count): """Given a list of posts and the maximal number of posts per page, computes the number of pages needed.""" return min(1, (len(filtered_posts) + posts_count - 1) // posts_count) def _postprocess_path(self, path, lang, append_index='auto', dest_type='page', page_info=None, alternative_path=False): """Postprocess a generated path. Takes the path `path` for language `lang`, and postprocesses it. It appends `site.config['INDEX_FILE']` depending on `append_index` (which can have the values `'always'`, `'never'` and `'auto'`) and `site.config['PRETTY_URLS']`. It also modifies/adds the extension of the last path element resp. `site.config['INDEX_FILE']` depending on `dest_type`, which can be `'feed'`, `'rss'` or `'page'`. If `dest_type` is `'page'`, `page_info` can be `None` or a tuple of two integers: the page number and the number of pages. This will be used to append the correct page number by calling `utils.adjust_name_for_index_path_list` and `utils.get_displayed_page_number`. If `alternative_path` is set to `True`, `utils.adjust_name_for_index_path_list` is called with `force_addition=True`, resulting in an alternative path for the first page of an index or Atom feed by including the page number into the path. """ # Forcing extension for Atom feeds and RSS feeds force_extension = None if dest_type == 'feed': force_extension = self.site.config['ATOM_EXTENSION'] elif dest_type == 'rss': force_extension = self.site.config['RSS_EXTENSION'] # Determine how to extend path path = [_f for _f in path if _f] if force_extension is not None: if len(path) == 0 and dest_type == 'rss': path = [self.site.config['RSS_FILENAME_BASE'](lang)] elif len(path) == 0 and dest_type == 'feed': path = [self.site.config['ATOM_FILENAME_BASE'](lang)] elif len(path) == 0 or append_index == 'always': path = path + [os.path.splitext(self.site.config['INDEX_FILE'])[0]] elif len(path) > 0 and append_index == 'never': path[-1] = os.path.splitext(path[-1])[0] path[-1] += force_extension elif (self.site.config['PRETTY_URLS'] and append_index != 'never') or len(path) == 0 or append_index == 'always': path = path + [self.site.config['INDEX_FILE']] elif append_index != 'never': path[-1] += '.html' # Create path result = [_f for _f in [self.site.config['TRANSLATIONS'][lang]] + path if _f] if page_info is not None and dest_type in ('page', 'feed'): result = utils.adjust_name_for_index_path_list(result, page_info[0], utils.get_displayed_page_number(page_info[0], page_info[1], self.site), lang, self.site, force_addition=alternative_path, extension=force_extension) return result @staticmethod def _parse_path_result(result): """Interpret the return values of taxonomy.get_path() and taxonomy.get_overview_path() as if all three return values were given.""" if not isinstance(result[0], (list, tuple)): # The result must be a list or tuple of strings. Wrap into a tuple result = (result, ) path = result[0] append_index = result[1] if len(result) > 1 else 'auto' page_info = result[2] if len(result) > 2 else None return path, append_index, page_info def _taxonomy_index_path(self, name, lang, taxonomy): """Return path to the classification overview.""" result = taxonomy.get_overview_path(lang) path, append_index, _ = self._parse_path_result(result) return self._postprocess_path(path, lang, append_index=append_index, dest_type='list') def _taxonomy_path(self, name, lang, taxonomy, dest_type='page', page=None, alternative_path=False): """Return path to a classification.""" if taxonomy.has_hierarchy: result = taxonomy.get_path(taxonomy.extract_hierarchy(name), lang, dest_type=dest_type) else: result = taxonomy.get_path(name, lang, dest_type=dest_type) path, append_index, page_ = self._parse_path_result(result) if page is not None: page = int(page) else: page = page_ page_info = None if taxonomy.show_list_as_index and page is not None: number_of_pages = self.site.page_count_per_classification[taxonomy.classification_name][lang].get(name) if number_of_pages is None: number_of_pages = self._compute_number_of_pages(self._get_filtered_list(taxonomy, name, lang), self.site.config['INDEX_DISPLAY_POST_COUNT']) self.site.page_count_per_classification[taxonomy.classification_name][lang][name] = number_of_pages page_info = (page, number_of_pages) return self._postprocess_path(path, lang, append_index=append_index, dest_type=dest_type, page_info=page_info) def _taxonomy_atom_path(self, name, lang, taxonomy, page=None, alternative_path=False): """Return path to a classification Atom feed.""" return self._taxonomy_path(name, lang, taxonomy, dest_type='feed', page=page, alternative_path=alternative_path) def _taxonomy_rss_path(self, name, lang, taxonomy): """Return path to a classification RSS feed.""" return self._taxonomy_path(name, lang, taxonomy, dest_type='rss') def _register_path_handlers(self, taxonomy): functions = ( ('{0}_index', self._taxonomy_index_path), ('{0}', self._taxonomy_path), ('{0}_atom', self._taxonomy_atom_path), ('{0}_rss', self._taxonomy_rss_path), ) for name, function in functions: name = name.format(taxonomy.classification_name) p = functools.partial(function, taxonomy=taxonomy) doc = taxonomy.path_handler_docstrings[name] if doc is not False: p.__doc__ = doc self.site.register_path_handler(name, p) def set_site(self, site): """Set site, which is a Nikola instance.""" super().set_site(site) # Add hook for after post scanning blinker.signal("scanned").connect(self._do_classification) # Register path handlers for taxonomy in site.taxonomy_plugins.values(): self._register_path_handlers(taxonomy)
import numpy as np from tensornetwork.block_sparse.index import (Index, fuse_index_pair, fuse_indices) from tensornetwork.block_sparse.charge import (U1Charge, BaseCharge, fuse_charges) import pytest def test_index(): D = 10 B = 4 dtype = np.int16 np.random.seed(10) q1 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) q2 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) i = Index(charges=[q1, q2], flow=[False, True]) assert len(i) == D**2 assert i.dim == D**2 def test_index_eq(): q1 = U1Charge(np.array([-1, -2, 0, 8, 7])) q2 = U1Charge(np.array([-1, -2, 0, 8, 7])) q3 = U1Charge(np.array([-1, 0, 8, 7])) i1 = Index(charges=q1, flow=False) i2 = Index(charges=q2, flow=False) i3 = Index(charges=q3, flow=False) i4 = Index(charges=[q1, q2], flow=[False, True]) i5 = Index(charges=[q1, q2], flow=[False, True]) i6 = Index(charges=[q1, q2], flow=[False, False]) assert i1 == i2 assert i1 != i3 assert i1 != i4 assert i4 == i5 assert i5 != i6 def test_index_flip_flow(): D = 10 B = 4 dtype = np.int16 np.random.seed(10) q1 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) q2 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) i = Index(charges=[q1, q2], flow=[False, True]) np.testing.assert_allclose(i.flip_flow().flow, [True, False]) def test_index_charges(): D = 10 B = 4 dtype = np.int16 np.random.seed(10) q1 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) q2 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) i = Index(charges=[q1, q2], flow=[False, True]) fused = fuse_charges([q1, q2], [False, True]) np.testing.assert_allclose(i.charges.charges, fused.charges) def test_index_fusion_mul(): D = 10 B = 4 dtype = np.int16 np.random.seed(10) q1 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) #quantum numbers on leg 1 q2 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) #quantum numbers on leg 1 charges = [q1, q2] i1 = Index(charges=q1, flow=False) #index on leg 1 i2 = Index(charges=q2, flow=False) #index on leg 2 i12 = i1 * i2 for n in range(i12.charges.charges.shape[1]): assert np.all(i12._charges[n].charges == charges[n].charges) assert np.all(i12.charges.charges == (q1 + q2).charges) def test_fuse_indices(): D = 10 B = 4 dtype = np.int16 np.random.seed(10) q1 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) #quantum numbers on leg 1 q2 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) #quantum numbers on leg 1 charges = [q1, q2] i1 = Index(charges=q1, flow=False) #index on leg 1 i2 = Index(charges=q2, flow=False) #index on leg 2 i12 = fuse_indices([i1, i2]) for n in range(i12.charges.charges.shape[1]): assert np.all(i12._charges[n].charges == charges[n].charges) assert np.all(i12.charges.charges == (q1 + q2).charges) def test_index_copy(): D = 10 B = 4 dtype = np.int16 np.random.seed(10) q1 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) q2 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) i = Index(charges=[q1, q2], flow=[False, True]) icopy = i.copy() assert not np.any([a is b for a, b in zip(i._charges, icopy._charges)]) assert i.flow is not icopy.flow def test_index_copy_2(): D = 10 B = 4 dtype = np.int16 np.random.seed(10) q1 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) #quantum numbers on leg 1 q2 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) #quantum numbers on leg 1 i1 = Index(charges=q1, flow=False) i2 = Index(charges=q2, flow=False) i3 = Index(charges=q1, flow=True) i4 = Index(charges=q2, flow=True) i12 = i1 * i2 i34 = i3 * i4 i1234 = i12 * i34 i1234_copy = i1234.copy() flat1234 = i1234_copy.flat_charges assert flat1234[0] is not i1.flat_charges[0] assert flat1234[1] is not i2.flat_charges[0] assert flat1234[2] is not i3.flat_charges[0] assert flat1234[3] is not i4.flat_charges[0] def test_index_raises(): D = 10 B = 4 dtype = np.int16 np.random.seed(10) q1 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) q2 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) with pytest.raises(TypeError): Index(charges=[q1, q2], flow=[2, True]) def test_repr(): D = 10 B = 4 dtype = np.int16 np.random.seed(10) q1 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) q2 = U1Charge(np.random.randint(-B // 2, B // 2 + 1, D).astype(dtype)) index = Index(charges=[q1, q2], flow=[False, True]) dense_shape = f"Dimension: {str(index.dim)} \n" charge_str = str(index._charges).replace('\n,', ',\n') charge_str = charge_str.replace('\n', '\n ') charges = f"Charges: {charge_str} \n" flow_info = f"Flows: {str(index.flow)} \n" res = f"Index:\n {dense_shape} {charges} {flow_info} " assert res == index.__repr__()
from __future__ import division import itertools import numpy as np import chainer from chainercv import utils class MultiboxCoder(object): """A helper class to encode/decode bounding boxes. This class encodes :obj:`(bbox, label)` to :obj:`(mb_loc, mb_label)` and decodes :obj:`(mb_loc, mb_conf)` to :obj:`(bbox, label, score)`. These encoding/decoding are used in Single Shot Multibox Detector [#]_. * :obj:`mb_loc`: An array representing offsets and scales \ from the default bounding boxes. \ Its shape is :math:`(K, 4)`, where :math:`K` is the number of \ the default bounding boxes. \ The second axis is composed by \ :math:`(\Delta y, \Delta x, \Delta h, \Delta w)`. \ These values are computed by the following formulas. * :math:`\Delta y = (b_y - m_y) / (m_h * v_0)` * :math:`\Delta x = (b_x - m_x) / (m_w * v_0)` * :math:`\Delta h = log(b_h / m_h) / v_1` * :math:`\Delta w = log(b_w / m_w) / v_1` :math:`(m_y, m_x)` and :math:`(m_h, m_w)` are \ center coodinates and size of a default bounding box. \ :math:`(b_y, b_x)` and :math:`(b_h, b_w)` are \ center coodinates and size of \ a given bounding boxes that is assined to the default bounding box. \ :math:`(v_0, v_1)` are coefficients that can be set \ by argument :obj:`variance`. * :obj:`mb_label`: An array representing classes of \ ground truth bounding boxes. Its shape is :math:`(K,)`. * :obj:`mb_conf`: An array representing classes of \ predicted bounding boxes. Its shape is :math:`(K, n\_fg\_class + 1)`. .. [#] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg. SSD: Single Shot MultiBox Detector. ECCV 2016. Args: grids (iterable of ints): An iterable of integers. Each integer indicates the size of a feature map. aspect_ratios (iterable of tuples of ints): An iterable of tuples of integers used to compute the default bounding boxes. Each tuple indicates the aspect ratios of the default bounding boxes at each feature maps. The length of this iterable should be :obj:`len(grids)`. steps (iterable of floats): The step size for each feature map. The length of this iterable should be :obj:`len(grids)`. sizes (iterable of floats): The base size of default bounding boxes for each feature map. The length of this iterable should be :obj:`len(grids) + 1`. variance (tuple of floats): Two coefficients for encoding/decoding the locations of bounding boxes. The first value is used to encode/decode coordinates of the centers. The second value is used to encode/decode the sizes of bounding boxes. """ def __init__(self, grids, aspect_ratios, steps, sizes, variance): if not len(aspect_ratios) == len(grids): raise ValueError('The length of aspect_ratios is wrong.') if not len(steps) == len(grids): raise ValueError('The length of steps is wrong.') if not len(sizes) == len(grids) + 1: raise ValueError('The length of sizes is wrong.') default_bbox = [] for k, grid in enumerate(grids): for v, u in itertools.product(range(grid), repeat=2): cy = (v + 0.5) * steps[k] cx = (u + 0.5) * steps[k] s = sizes[k] default_bbox.append((cy, cx, s, s)) s = np.sqrt(sizes[k] * sizes[k + 1]) default_bbox.append((cy, cx, s, s)) s = sizes[k] for ar in aspect_ratios[k]: default_bbox.append( (cy, cx, s / np.sqrt(ar), s * np.sqrt(ar))) default_bbox.append( (cy, cx, s * np.sqrt(ar), s / np.sqrt(ar))) # (center_y, center_x, height, width) self._default_bbox = np.stack(default_bbox) self._variance = variance @property def xp(self): return chainer.backends.cuda.get_array_module(self._default_bbox) def to_cpu(self): self._default_bbox = chainer.backends.cuda.to_cpu(self._default_bbox) def to_gpu(self, device=None): self._default_bbox = chainer.backends.cuda.to_gpu( self._default_bbox, device=device) def encode(self, bbox, label, iou_thresh=0.5): """Encodes coordinates and classes of bounding boxes. This method encodes :obj:`bbox` and :obj:`label` to :obj:`mb_loc` and :obj:`mb_label`, which are used to compute multibox loss. Args: bbox (array): A float array of shape :math:`(R, 4)`, where :math:`R` is the number of bounding boxes in an image. Each bounding box is organized by :math:`(y_{min}, x_{min}, y_{max}, x_{max})` in the second axis. label (array) : An integer array of shape :math:`(R,)`. Each value indicates the class of the bounding box. iou_thresh (float): The threshold value to determine a default bounding box is assigned to a ground truth or not. The default value is :obj:`0.5`. Returns: tuple of two arrays: This method returns a tuple of two arrays, :obj:`(mb_loc, mb_label)`. * **mb_loc**: A float array of shape :math:`(K, 4)`, \ where :math:`K` is the number of default bounding boxes. * **mb_label**: An integer array of shape :math:`(K,)`. """ xp = self.xp if len(bbox) == 0: return ( xp.zeros(self._default_bbox.shape, dtype=np.float32), xp.zeros(self._default_bbox.shape[0], dtype=np.int32)) iou = utils.bbox_iou( xp.hstack(( self._default_bbox[:, :2] - self._default_bbox[:, 2:] / 2, self._default_bbox[:, :2] + self._default_bbox[:, 2:] / 2)), bbox) index = xp.empty(len(self._default_bbox), dtype=int) # -1 is for background index[:] = -1 masked_iou = iou.copy() while True: i, j = xp.unravel_index(masked_iou.argmax(), masked_iou.shape) if masked_iou[i, j] <= 1e-6: break index[i] = j masked_iou[i, :] = 0 masked_iou[:, j] = 0 mask = xp.logical_and(index < 0, iou.max(axis=1) >= iou_thresh) index[mask] = iou[mask].argmax(axis=1) mb_bbox = bbox[index].copy() # (y_min, x_min, y_max, x_max) -> (y_min, x_min, height, width) mb_bbox[:, 2:] -= mb_bbox[:, :2] # (y_min, x_min, height, width) -> (center_y, center_x, height, width) mb_bbox[:, :2] += mb_bbox[:, 2:] / 2 mb_loc = xp.empty_like(mb_bbox) mb_loc[:, :2] = (mb_bbox[:, :2] - self._default_bbox[:, :2]) / \ (self._variance[0] * self._default_bbox[:, 2:]) mb_loc[:, 2:] = xp.log(mb_bbox[:, 2:] / self._default_bbox[:, 2:]) / \ self._variance[1] # [0, n_fg_class - 1] -> [1, n_fg_class] mb_label = label[index] + 1 # 0 is for background mb_label[index < 0] = 0 return mb_loc.astype(np.float32), mb_label.astype(np.int32) def decode(self, mb_loc, mb_conf, nms_thresh=0.45, score_thresh=0.6): """Decodes back to coordinates and classes of bounding boxes. This method decodes :obj:`mb_loc` and :obj:`mb_conf` returned by a SSD network back to :obj:`bbox`, :obj:`label` and :obj:`score`. Args: mb_loc (array): A float array whose shape is :math:`(K, 4)`, :math:`K` is the number of default bounding boxes. mb_conf (array): A float array whose shape is :math:`(K, n\_fg\_class + 1)`. nms_thresh (float): The threshold value for :func:`~chainercv.utils.non_maximum_suppression`. The default value is :obj:`0.45`. score_thresh (float): The threshold value for confidence score. If a bounding box whose confidence score is lower than this value, the bounding box will be suppressed. The default value is :obj:`0.6`. Returns: tuple of three arrays: This method returns a tuple of three arrays, :obj:`(bbox, label, score)`. * **bbox**: A float array of shape :math:`(R, 4)`, \ where :math:`R` is the number of bounding boxes in a image. \ Each bounding box is organized by \ :math:`(y_{min}, x_{min}, y_{max}, x_{max})` \ in the second axis. * **label** : An integer array of shape :math:`(R,)`. \ Each value indicates the class of the bounding box. * **score** : A float array of shape :math:`(R,)`. \ Each value indicates how confident the prediction is. """ xp = self.xp # (center_y, center_x, height, width) mb_bbox = self._default_bbox.copy() mb_bbox[:, :2] += mb_loc[:, :2] * self._variance[0] \ * self._default_bbox[:, 2:] mb_bbox[:, 2:] *= xp.exp(mb_loc[:, 2:] * self._variance[1]) # (center_y, center_x, height, width) -> (y_min, x_min, height, width) mb_bbox[:, :2] -= mb_bbox[:, 2:] / 2 # (center_y, center_x, height, width) -> (y_min, x_min, y_max, x_max) mb_bbox[:, 2:] += mb_bbox[:, :2] # softmax mb_score = xp.exp(mb_conf) mb_score /= mb_score.sum(axis=1, keepdims=True) bbox = [] label = [] score = [] for l in range(mb_conf.shape[1] - 1): bbox_l = mb_bbox # the l-th class corresponds for the (l + 1)-th column. score_l = mb_score[:, l + 1] mask = score_l >= score_thresh bbox_l = bbox_l[mask] score_l = score_l[mask] if nms_thresh is not None: indices = utils.non_maximum_suppression( bbox_l, nms_thresh, score_l) bbox_l = bbox_l[indices] score_l = score_l[indices] bbox.append(bbox_l) label.append(xp.array((l,) * len(bbox_l))) score.append(score_l) bbox = xp.vstack(bbox).astype(np.float32) label = xp.hstack(label).astype(np.int32) score = xp.hstack(score).astype(np.float32) return bbox, label, score
__docformat__ = "restructuredtext en" import sys from warnings import warn from logilab.common.changelog import Version class DeprecationWrapper(object): """proxy to print a warning on access to any attribute of the wrapped object """ def __init__(self, proxied, msg=None): self._proxied = proxied self._msg = msg def __getattr__(self, attr): warn(self._msg, DeprecationWarning, stacklevel=2) return getattr(self._proxied, attr) def __setattr__(self, attr, value): if attr in ('_proxied', '_msg'): self.__dict__[attr] = value else: warn(self._msg, DeprecationWarning, stacklevel=2) setattr(self._proxied, attr, value) class DeprecationManager(object): """Manage the deprecation message handling. Messages are dropped for versions more recent than the 'compatible' version. Example:: deprecator = deprecation.DeprecationManager("module_name") deprecator.compatibility('1.3') deprecator.warn('1.2', "message.") @deprecator.deprecated('1.2', 'Message') def any_func(): pass class AnyClass(object): __metaclass__ = deprecator.class_deprecated('1.2') """ def __init__(self, module_name=None): """ """ self.module_name = module_name self.compatible_version = None def compatibility(self, compatible_version): """Set the compatible version. """ self.compatible_version = Version(compatible_version) def deprecated(self, version=None, reason=None, stacklevel=2, name=None, doc=None): """Display a deprecation message only if the version is older than the compatible version. """ def decorator(func): message = reason or 'The function "%s" is deprecated' if '%s' in message: message %= func.__name__ def wrapped(*args, **kwargs): self.warn(version, message, stacklevel+1) return func(*args, **kwargs) return wrapped return decorator def class_deprecated(self, version=None): class metaclass(type): """metaclass to print a warning on instantiation of a deprecated class""" def __call__(cls, *args, **kwargs): msg = getattr(cls, "__deprecation_warning__", "%(cls)s is deprecated") % {'cls': cls.__name__} self.warn(version, msg, stacklevel=3) return type.__call__(cls, *args, **kwargs) return metaclass def moved(self, version, modpath, objname): """use to tell that a callable has been moved to a new module. It returns a callable wrapper, so that when its called a warning is printed telling where the object can be found, import is done (and not before) and the actual object is called. NOTE: the usage is somewhat limited on classes since it will fail if the wrapper is use in a class ancestors list, use the `class_moved` function instead (which has no lazy import feature though). """ def callnew(*args, **kwargs): from logilab.common.modutils import load_module_from_name message = "object %s has been moved to module %s" % (objname, modpath) self.warn(version, message) m = load_module_from_name(modpath) return getattr(m, objname)(*args, **kwargs) return callnew def class_renamed(self, version, old_name, new_class, message=None): clsdict = {} if message is None: message = '%s is deprecated, use %s' % (old_name, new_class.__name__) clsdict['__deprecation_warning__'] = message try: # new-style class return self.class_deprecated(version)(old_name, (new_class,), clsdict) except (NameError, TypeError): # old-style class warn = self.warn class DeprecatedClass(new_class): """FIXME: There might be a better way to handle old/new-style class """ def __init__(self, *args, **kwargs): warn(version, message, stacklevel=3) new_class.__init__(self, *args, **kwargs) return DeprecatedClass def class_moved(self, version, new_class, old_name=None, message=None): """nice wrapper around class_renamed when a class has been moved into another module """ if old_name is None: old_name = new_class.__name__ if message is None: message = 'class %s is now available as %s.%s' % ( old_name, new_class.__module__, new_class.__name__) return self.class_renamed(version, old_name, new_class, message) def warn(self, version=None, reason="", stacklevel=2): """Display a deprecation message only if the version is older than the compatible version. """ if (self.compatible_version is None or version is None or Version(version) < self.compatible_version): if self.module_name and version: reason = '[%s %s] %s' % (self.module_name, version, reason) elif self.module_name: reason = '[%s] %s' % (self.module_name, reason) elif version: reason = '[%s] %s' % (version, reason) warn(reason, DeprecationWarning, stacklevel=stacklevel) _defaultdeprecator = DeprecationManager() def deprecated(reason=None, stacklevel=2, name=None, doc=None): return _defaultdeprecator.deprecated(None, reason, stacklevel, name, doc) class_deprecated = _defaultdeprecator.class_deprecated() def moved(modpath, objname): return _defaultdeprecator.moved(None, modpath, objname) moved.__doc__ = _defaultdeprecator.moved.__doc__ def class_renamed(old_name, new_class, message=None): """automatically creates a class which fires a DeprecationWarning when instantiated. >>> Set = class_renamed('Set', set, 'Set is now replaced by set') >>> s = Set() sample.py:57: DeprecationWarning: Set is now replaced by set s = Set() >>> """ return _defaultdeprecator.class_renamed(None, old_name, new_class, message) def class_moved(new_class, old_name=None, message=None): return _defaultdeprecator.class_moved(None, new_class, old_name, message) class_moved.__doc__ = _defaultdeprecator.class_moved.__doc__
import json import logging import subprocess import sys import time from absl import flags FLAGS = flags.FLAGS flags.DEFINE_integer('num_streams', 1, 'Number of netperf processes to run') flags.DEFINE_string('netperf_cmd', None, 'netperf command to run') flags.DEFINE_integer('port_start', None, 'Starting port for netperf command and data ports') def Main(): # Parse command-line flags try: FLAGS(sys.argv) except flags.Error as e: logging.error('%s\nUsage: %s ARGS\n%s', e, sys.argv[0], FLAGS) sys.exit(1) netperf_cmd = FLAGS.netperf_cmd num_streams = FLAGS.num_streams port_start = FLAGS.port_start assert netperf_cmd assert num_streams >= 1 assert port_start stdouts = [None] * num_streams stderrs = [None] * num_streams return_codes = [None] * num_streams processes = [None] * num_streams # Start all of the netperf processes begin_starting_processes = time.time() for i in range(num_streams): command_port = port_start + i * 2 data_port = port_start + i * 2 + 1 cmd = netperf_cmd.format(command_port=command_port, data_port=data_port) processes[i] = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, universal_newlines=True) end_starting_processes = time.time() # Wait for all of the netperf processes to finish and save their return codes for i, process in enumerate(processes): stdouts[i], stderrs[i] = process.communicate() return_codes[i] = process.returncode # Dump the stdouts, stderrs, and return_codes to stdout in json form print(json.dumps((stdouts, stderrs, return_codes, begin_starting_processes, end_starting_processes))) if __name__ == '__main__': sys.exit(Main())
import argparse import matplotlib.pyplot as plt import chainer from chainercv.datasets import voc_bbox_label_names from chainercv.experimental.links import YOLOv2Tiny from chainercv.links import YOLOv2 from chainercv.links import YOLOv3 from chainercv import utils from chainercv.visualizations import vis_bbox def main(): parser = argparse.ArgumentParser() parser.add_argument( '--model', choices=('yolo_v2', 'yolo_v2_tiny', 'yolo_v3'), default='yolo_v2') parser.add_argument('--gpu', type=int, default=-1) parser.add_argument('--pretrained-model') parser.add_argument( '--dataset', choices=('voc',), default='voc') parser.add_argument('image') args = parser.parse_args() if args.model == 'yolo_v2': cls = YOLOv2 elif args.model == 'yolo_v2_tiny': cls = YOLOv2Tiny elif args.model == 'yolo_v3': cls = YOLOv3 if args.dataset == 'voc': if args.pretrained_model is None: args.pretrained_model = 'voc0712' label_names = voc_bbox_label_names model = cls(n_fg_class=len(label_names), pretrained_model=args.pretrained_model) if args.gpu >= 0: chainer.cuda.get_device_from_id(args.gpu).use() model.to_gpu() img = utils.read_image(args.image, color=True) bboxes, labels, scores = model.predict([img]) bbox, label, score = bboxes[0], labels[0], scores[0] vis_bbox( img, bbox, label, score, label_names=label_names) plt.show() if __name__ == '__main__': main()
import numpy as np import pytest from hypertools.tools.cluster import cluster from hypertools.plot.plot import plot cluster1 = np.random.multivariate_normal(np.zeros(3), np.eye(3), size=100) cluster2 = np.random.multivariate_normal(np.zeros(3)+100, np.eye(3), size=100) data = np.vstack([cluster1, cluster2]) labels = cluster(data, n_clusters=2) def test_cluster_n_clusters(): assert len(set(labels))==2 def test_cluster_returns_list(): assert type(labels) is list def test_cluster_hdbscan(): try: from hdbscan import HDBSCAN _has_hdbscan = True except: _has_hdbscan = False if _has_hdbscan: hdbscan_labels = cluster(data, cluster='HDBSCAN') assert len(set(hdbscan_labels)) == 2 else: with pytest.raises(ImportError): hdbscan_labels = cluster(data, cluster='HDBSCAN')
import datetime from homeassistant.components.zwave import binary_sensor, const from tests.async_mock import patch from tests.mock.zwave import MockEntityValues, MockNode, MockValue, value_changed def test_get_device_detects_none(mock_openzwave): """Test device is not returned.""" node = MockNode() value = MockValue(data=False, node=node) values = MockEntityValues(primary=value) device = binary_sensor.get_device(node=node, values=values, node_config={}) assert device is None def test_get_device_detects_trigger_sensor(mock_openzwave): """Test device is a trigger sensor.""" node = MockNode(manufacturer_id="013c", product_type="0002", product_id="0002") value = MockValue(data=False, node=node) values = MockEntityValues(primary=value) device = binary_sensor.get_device(node=node, values=values, node_config={}) assert isinstance(device, binary_sensor.ZWaveTriggerSensor) assert device.device_class == "motion" def test_get_device_detects_workaround_sensor(mock_openzwave): """Test that workaround returns a binary sensor.""" node = MockNode(manufacturer_id="010f", product_type="0b00") value = MockValue( data=False, node=node, command_class=const.COMMAND_CLASS_SENSOR_ALARM ) values = MockEntityValues(primary=value) device = binary_sensor.get_device(node=node, values=values, node_config={}) assert isinstance(device, binary_sensor.ZWaveBinarySensor) def test_get_device_detects_sensor(mock_openzwave): """Test that device returns a binary sensor.""" node = MockNode() value = MockValue( data=False, node=node, command_class=const.COMMAND_CLASS_SENSOR_BINARY ) values = MockEntityValues(primary=value) device = binary_sensor.get_device(node=node, values=values, node_config={}) assert isinstance(device, binary_sensor.ZWaveBinarySensor) def test_binary_sensor_value_changed(mock_openzwave): """Test value changed for binary sensor.""" node = MockNode() value = MockValue( data=False, node=node, command_class=const.COMMAND_CLASS_SENSOR_BINARY ) values = MockEntityValues(primary=value) device = binary_sensor.get_device(node=node, values=values, node_config={}) assert not device.is_on value.data = True value_changed(value) assert device.is_on async def test_trigger_sensor_value_changed(hass, mock_openzwave): """Test value changed for trigger sensor.""" node = MockNode(manufacturer_id="013c", product_type="0002", product_id="0002") value = MockValue(data=False, node=node) value_off_delay = MockValue(data=15, node=node) values = MockEntityValues(primary=value, off_delay=value_off_delay) device = binary_sensor.get_device(node=node, values=values, node_config={}) assert not device.is_on value.data = True await hass.async_add_executor_job(value_changed, value) assert device.invalidate_after is None device.hass = hass value.data = True await hass.async_add_executor_job(value_changed, value) assert device.is_on test_time = device.invalidate_after - datetime.timedelta(seconds=1) with patch("homeassistant.util.dt.utcnow", return_value=test_time): assert device.is_on test_time = device.invalidate_after with patch("homeassistant.util.dt.utcnow", return_value=test_time): assert not device.is_on
import os from absl import flags from perfkitbenchmarker import configs from perfkitbenchmarker import flag_util from perfkitbenchmarker import hpc_util from perfkitbenchmarker import sample from perfkitbenchmarker import vm_util from perfkitbenchmarker.linux_packages import cuda_toolkit from perfkitbenchmarker.linux_packages import nvidia_driver from perfkitbenchmarker.linux_packages import shoc_benchmark_suite flags.DEFINE_integer( 'stencil2d_iterations', 5, 'number of iterations to run', lower_bound=1) flag_util.DEFINE_integerlist( 'stencil2d_problem_sizes', flag_util.IntegerList([4096]), 'problem sizes to run. Can specify a single ' 'number, like --stencil2d_problem_sizes=4096 ' 'or a list like --stencil2d_problem_sizes=' '1024,4096', on_nonincreasing=flag_util.IntegerListParser.WARN, module_name=__name__) FLAGS = flags.FLAGS MACHINEFILE = 'machinefile' BENCHMARK_NAME = 'stencil2d' BENCHMARK_VERSION = '0.25' BENCHMARK_CONFIG = """ stencil2d: description: Runs Stencil2D from SHOC Benchmark Suite.\ Specify the number of VMs with --num_vms vm_groups: default: vm_spec: GCP: image: ubuntu-1604-xenial-v20170330 image_project: ubuntu-os-cloud machine_type: n1-standard-4 gpu_type: k80 gpu_count: 1 zone: us-east1-d boot_disk_size: 200 AWS: image: ami-d15a75c7 machine_type: p2.xlarge zone: us-east-1 boot_disk_size: 200 Azure: image: Canonical:UbuntuServer:16.04.0-LTS:latest machine_type: Standard_NC6 zone: eastus vm_count: null """ def GetConfig(user_config): config = configs.LoadConfig(BENCHMARK_CONFIG, user_config, BENCHMARK_NAME) return config def CheckPrerequisites(benchmark_config): """Verifies that the required resources are present. Raises: perfkitbenchmarker.data.ResourceNotFound: On missing resource. """ pass def _InstallAndAuthenticateVm(vm): """Install SHOC, ensure correct GPU state, and authenticate the VM for ssh. Args: vm: vm to operate on. """ vm.Install('shoc_benchmark_suite') nvidia_driver.SetAndConfirmGpuClocks(vm) vm.AuthenticateVm() # Configure ssh between vms for MPI def Prepare(benchmark_spec): """Install SHOC and push the machinefile. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. """ vm_util.RunThreaded(_InstallAndAuthenticateVm, benchmark_spec.vms) master_vm = benchmark_spec.vms[0] benchmark_spec.num_gpus = nvidia_driver.QueryNumberOfGpus(master_vm) hpc_util.CreateMachineFile(benchmark_spec.vms, lambda _: benchmark_spec.num_gpus, MACHINEFILE) def _CreateMedianStencilOutputSample(stencil2d_output, sample_name, pretty_name, metadata): """Extract the specified sample from the stencil2d output. Args: stencil2d_output: output from a Stencil2D run sample_name: the name of the sample, as it appears in stencil2d_output pretty_name: the name to use for the created sample metadata: metadata to add the sample Returns: A sample.Sample with the name, pretty_name, containing the value and units as parsed from stencil2d_output, along with metadata. """ results = [ x for x in stencil2d_output.splitlines() if x.find(sample_name) != -1 ][0].split() units = results[2] value = float(results[3]) return sample.Sample(pretty_name, value, units, metadata) def _MakeSamplesFromStencilOutput(stdout, metadata): """Make and return a list of samples, parsed from the Stencil2D output. Args: stdout: Stencil2D output metadata: metadata to append to the returned samples Returns: A list of sample.Samples """ results = [ _CreateMedianStencilOutputSample(stdout, 'DP_Sten2D(median)', 'Stencil2D DP median', metadata), _CreateMedianStencilOutputSample(stdout, 'DP_Sten2D(stddev)', 'Stencil2D DP stddev', metadata), _CreateMedianStencilOutputSample(stdout, 'SP_Sten2D(median)', 'Stencil2D SP median', metadata), _CreateMedianStencilOutputSample(stdout, 'SP_Sten2D(stddev)', 'Stencil2D SP stddev', metadata) # pyformat: disable ] return results def _RunSingleIteration(master_vm, problem_size, num_processes, num_iterations, metadata): """Run a single iteration of Stencil2D and return a list of samples. Args: master_vm: master VM which will start the MPI job problem_size: a single dimension of the Stencil2D problem_size num_processes: total number of MPI processes to launch (number of GPUs) num_iterations: number of Stencil2D iterations to run metadata: metadata to append to returned samples Returns: A list of sample.Samples """ stencil2d_path = os.path.join(shoc_benchmark_suite.SHOC_BIN_DIR, 'TP', 'CUDA', 'Stencil2D') current_problem_size = '%s,%s' % (problem_size, problem_size) run_as_root = '--allow-run-as-root' if FLAGS.mpirun_allow_run_as_root else '' run_command = ('mpirun --hostfile %s -np %s %s %s --customSize %s -n %s' % (MACHINEFILE, num_processes, run_as_root, stencil2d_path, current_problem_size, num_iterations)) metadata['run_command'] = run_command metadata['problem_size'] = current_problem_size stdout, _ = master_vm.RemoteCommand(run_command, should_log=True) return _MakeSamplesFromStencilOutput(stdout, metadata.copy()) def Run(benchmark_spec): """Runs the Stencil2D benchmark. GPU clock speeds must be set already. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. Returns: A list of sample.Sample objects. """ vms = benchmark_spec.vms num_gpus = benchmark_spec.num_gpus master_vm = vms[0] num_iterations = FLAGS.stencil2d_iterations problem_sizes = FLAGS.stencil2d_problem_sizes num_processes = len(vms) * num_gpus metadata = {} metadata.update(cuda_toolkit.GetMetadata(master_vm)) metadata['benchmark_version'] = BENCHMARK_VERSION metadata['num_iterations'] = num_iterations metadata['num_nodes'] = len(vms) metadata['num_processes'] = num_processes results = [] for problem_size in problem_sizes: results.extend( _RunSingleIteration(master_vm, problem_size, num_processes, num_iterations, metadata)) return results def Cleanup(benchmark_spec): pass
from pkg_resources import EntryPoint, iter_entry_points from subliminal.extensions import RegistrableExtensionManager, provider_manager, default_providers, disabled_providers def test_registrable_extension_manager_all_extensions(): manager = RegistrableExtensionManager('subliminal.providers', [ 'de7cidda = subliminal.providers.addic7ed:Addic7edProvider' ]) extensions = sorted(e.name for e in manager) assert len(extensions) == 9 assert extensions == ['addic7ed', 'argenteam', 'de7cidda', 'legendastv', 'opensubtitles', 'podnapisi', 'shooter', 'thesubdb', 'tvsubtitles'] def test_registrable_extension_manager_internal_extension(): manager = RegistrableExtensionManager('subliminal.test_providers', [ 'addic7ed = subliminal.providers.addic7ed:Addic7edProvider', 'opensubtitles = subliminal.providers.opensubtitles:OpenSubtitlesProvider', 'podnapisi = subliminal.providers.podnapisi:PodnapisiProvider', 'thesubdb = subliminal.providers.thesubdb:TheSubDBProvider', 'tvsubtitles = subliminal.providers.tvsubtitles:TVsubtitlesProvider' ]) assert len(list(manager)) == 5 assert len(manager.internal_extensions) == 5 def test_registrable_extension_manager_register(): manager = RegistrableExtensionManager('subliminal.test_providers', [ 'addic7ed = subliminal.providers.addic7ed:Addic7edProvider', 'opensubtitles = subliminal.providers.opensubtitles:OpenSubtitlesProvider' ]) assert len(list(manager)) == 2 manager.register('de7cidda = subliminal.providers.addic7ed:Addic7edProvider') assert len(list(manager)) == 3 assert 'de7cidda' in manager.names() def test_registrable_extension_manager_unregister(): manager = RegistrableExtensionManager('subliminal.test_providers', [ 'thesubdb = subliminal.providers.thesubdb:TheSubDBProvider', 'tvsubtitles = subliminal.providers.tvsubtitles:TVsubtitlesProvider' ]) assert len(list(manager)) == 2 manager.register('de7cidda = subliminal.providers.addic7ed:Addic7edProvider') manager.unregister('de7cidda = subliminal.providers.addic7ed:Addic7edProvider') assert len(list(manager)) == 2 assert set(manager.names()) == {'thesubdb', 'tvsubtitles'} def test_provider_manager(): setup_names = {ep.name for ep in iter_entry_points(provider_manager.namespace)} internal_names = {EntryPoint.parse(iep).name for iep in provider_manager.internal_extensions} enabled_names = set(default_providers) disabled_names = set(disabled_providers) assert setup_names == enabled_names assert internal_names == enabled_names | disabled_names
from collections import defaultdict import unittest from unittest import mock import pytest import voluptuous as vol from homeassistant.components.blackbird.const import DOMAIN, SERVICE_SETALLZONES from homeassistant.components.blackbird.media_player import ( DATA_BLACKBIRD, PLATFORM_SCHEMA, setup_platform, ) from homeassistant.components.media_player.const import ( SUPPORT_SELECT_SOURCE, SUPPORT_TURN_OFF, SUPPORT_TURN_ON, ) from homeassistant.const import STATE_OFF, STATE_ON import tests.common class AttrDict(dict): """Helper class for mocking attributes.""" def __setattr__(self, name, value): """Set attribute.""" self[name] = value def __getattr__(self, item): """Get attribute.""" return self[item] class MockBlackbird: """Mock for pyblackbird object.""" def __init__(self): """Init mock object.""" self.zones = defaultdict(lambda: AttrDict(power=True, av=1)) def zone_status(self, zone_id): """Get zone status.""" status = self.zones[zone_id] status.zone = zone_id return AttrDict(status) def set_zone_source(self, zone_id, source_idx): """Set source for zone.""" self.zones[zone_id].av = source_idx def set_zone_power(self, zone_id, power): """Turn zone on/off.""" self.zones[zone_id].power = power def set_all_zone_source(self, source_idx): """Set source for all zones.""" self.zones[3].av = source_idx class TestBlackbirdSchema(unittest.TestCase): """Test Blackbird schema.""" def test_valid_serial_schema(self): """Test valid schema.""" valid_schema = { "platform": "blackbird", "port": "/dev/ttyUSB0", "zones": { 1: {"name": "a"}, 2: {"name": "a"}, 3: {"name": "a"}, 4: {"name": "a"}, 5: {"name": "a"}, 6: {"name": "a"}, 7: {"name": "a"}, 8: {"name": "a"}, }, "sources": { 1: {"name": "a"}, 2: {"name": "a"}, 3: {"name": "a"}, 4: {"name": "a"}, 5: {"name": "a"}, 6: {"name": "a"}, 7: {"name": "a"}, 8: {"name": "a"}, }, } PLATFORM_SCHEMA(valid_schema) def test_valid_socket_schema(self): """Test valid schema.""" valid_schema = { "platform": "blackbird", "host": "192.168.1.50", "zones": { 1: {"name": "a"}, 2: {"name": "a"}, 3: {"name": "a"}, 4: {"name": "a"}, 5: {"name": "a"}, }, "sources": { 1: {"name": "a"}, 2: {"name": "a"}, 3: {"name": "a"}, 4: {"name": "a"}, }, } PLATFORM_SCHEMA(valid_schema) def test_invalid_schemas(self): """Test invalid schemas.""" schemas = ( {}, # Empty None, # None # Port and host used concurrently { "platform": "blackbird", "port": "/dev/ttyUSB0", "host": "192.168.1.50", "name": "Name", "zones": {1: {"name": "a"}}, "sources": {1: {"name": "b"}}, }, # Port or host missing { "platform": "blackbird", "name": "Name", "zones": {1: {"name": "a"}}, "sources": {1: {"name": "b"}}, }, # Invalid zone number { "platform": "blackbird", "port": "/dev/ttyUSB0", "name": "Name", "zones": {11: {"name": "a"}}, "sources": {1: {"name": "b"}}, }, # Invalid source number { "platform": "blackbird", "port": "/dev/ttyUSB0", "name": "Name", "zones": {1: {"name": "a"}}, "sources": {9: {"name": "b"}}, }, # Zone missing name { "platform": "blackbird", "port": "/dev/ttyUSB0", "name": "Name", "zones": {1: {}}, "sources": {1: {"name": "b"}}, }, # Source missing name { "platform": "blackbird", "port": "/dev/ttyUSB0", "name": "Name", "zones": {1: {"name": "a"}}, "sources": {1: {}}, }, ) for value in schemas: with pytest.raises(vol.MultipleInvalid): PLATFORM_SCHEMA(value) class TestBlackbirdMediaPlayer(unittest.TestCase): """Test the media_player module.""" def setUp(self): """Set up the test case.""" self.blackbird = MockBlackbird() self.hass = tests.common.get_test_home_assistant() self.hass.start() # Note, source dictionary is unsorted! with mock.patch( "homeassistant.components.blackbird.media_player.get_blackbird", new=lambda *a: self.blackbird, ): setup_platform( self.hass, { "platform": "blackbird", "port": "/dev/ttyUSB0", "zones": {3: {"name": "Zone name"}}, "sources": { 1: {"name": "one"}, 3: {"name": "three"}, 2: {"name": "two"}, }, }, lambda *args, **kwargs: None, {}, ) self.hass.block_till_done() self.media_player = self.hass.data[DATA_BLACKBIRD]["/dev/ttyUSB0-3"] self.media_player.hass = self.hass self.media_player.entity_id = "media_player.zone_3" self.addCleanup(self.tear_down_cleanup) def tear_down_cleanup(self): """Tear down the test case.""" self.hass.stop() def test_setup_platform(self, *args): """Test setting up platform.""" # One service must be registered assert self.hass.services.has_service(DOMAIN, SERVICE_SETALLZONES) assert len(self.hass.data[DATA_BLACKBIRD]) == 1 assert self.hass.data[DATA_BLACKBIRD]["/dev/ttyUSB0-3"].name == "Zone name" def test_setallzones_service_call_with_entity_id(self): """Test set all zone source service call with entity id.""" self.media_player.update() assert "Zone name" == self.media_player.name assert STATE_ON == self.media_player.state assert "one" == self.media_player.source # Call set all zones service self.hass.services.call( DOMAIN, SERVICE_SETALLZONES, {"entity_id": "media_player.zone_3", "source": "three"}, blocking=True, ) # Check that source was changed assert 3 == self.blackbird.zones[3].av self.media_player.update() assert "three" == self.media_player.source def test_setallzones_service_call_without_entity_id(self): """Test set all zone source service call without entity id.""" self.media_player.update() assert "Zone name" == self.media_player.name assert STATE_ON == self.media_player.state assert "one" == self.media_player.source # Call set all zones service self.hass.services.call( DOMAIN, SERVICE_SETALLZONES, {"source": "three"}, blocking=True ) # Check that source was changed assert 3 == self.blackbird.zones[3].av self.media_player.update() assert "three" == self.media_player.source def test_update(self): """Test updating values from blackbird.""" assert self.media_player.state is None assert self.media_player.source is None self.media_player.update() assert STATE_ON == self.media_player.state assert "one" == self.media_player.source def test_name(self): """Test name property.""" assert "Zone name" == self.media_player.name def test_state(self): """Test state property.""" assert self.media_player.state is None self.media_player.update() assert STATE_ON == self.media_player.state self.blackbird.zones[3].power = False self.media_player.update() assert STATE_OFF == self.media_player.state def test_supported_features(self): """Test supported features property.""" assert ( SUPPORT_TURN_ON | SUPPORT_TURN_OFF | SUPPORT_SELECT_SOURCE == self.media_player.supported_features ) def test_source(self): """Test source property.""" assert self.media_player.source is None self.media_player.update() assert "one" == self.media_player.source def test_media_title(self): """Test media title property.""" assert self.media_player.media_title is None self.media_player.update() assert "one" == self.media_player.media_title def test_source_list(self): """Test source list property.""" # Note, the list is sorted! assert ["one", "two", "three"] == self.media_player.source_list def test_select_source(self): """Test source selection methods.""" self.media_player.update() assert "one" == self.media_player.source self.media_player.select_source("two") assert 2 == self.blackbird.zones[3].av self.media_player.update() assert "two" == self.media_player.source # Trying to set unknown source. self.media_player.select_source("no name") assert 2 == self.blackbird.zones[3].av self.media_player.update() assert "two" == self.media_player.source def test_turn_on(self): """Testing turning on the zone.""" self.blackbird.zones[3].power = False self.media_player.update() assert STATE_OFF == self.media_player.state self.media_player.turn_on() assert self.blackbird.zones[3].power self.media_player.update() assert STATE_ON == self.media_player.state def test_turn_off(self): """Testing turning off the zone.""" self.blackbird.zones[3].power = True self.media_player.update() assert STATE_ON == self.media_player.state self.media_player.turn_off() assert not self.blackbird.zones[3].power self.media_player.update() assert STATE_OFF == self.media_player.state
from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags from perfkitbenchmarker import linux_packages from six.moves import range flags.DEFINE_integer('redis_total_num_processes', 1, 'Total number of redis server processes.', lower_bound=1) flags.DEFINE_boolean('redis_enable_aof', False, 'Enable append-only file (AOF) with appendfsync always.') flags.DEFINE_string('redis_server_version', '5.0.5', 'Version of redis server to use.') REDIS_FIRST_PORT = 6379 REDIS_PID_FILE = 'redis.pid' FLAGS = flags.FLAGS REDIS_GIT = 'https://github.com/antirez/redis.git' def _GetRedisTarName(): return 'redis-%s.tar.gz' % FLAGS.redis_server_version def GetRedisDir(): return '%s/redis' % linux_packages.INSTALL_DIR def _Install(vm): """Installs the redis package on the VM.""" vm.Install('build_tools') vm.Install('wget') vm.RemoteCommand('cd %s; git clone %s' % (linux_packages.INSTALL_DIR, REDIS_GIT)) vm.RemoteCommand('cd %s && git checkout %s && make' % ( GetRedisDir(), FLAGS.redis_server_version)) def YumInstall(vm): """Installs the redis package on the VM.""" vm.InstallPackages('tcl-devel') _Install(vm) def AptInstall(vm): """Installs the redis package on the VM.""" vm.InstallPackages('tcl-dev') _Install(vm) def Configure(vm): """Configure redis server.""" sed_cmd = ( r"sed -i -e '/^save /d' -e 's/# *save \"\"/save \"\"/' " "{0}/redis.conf").format(GetRedisDir()) vm.RemoteCommand( 'sudo sed -i "s/bind/#bind/g" {0}/redis.conf'.format(GetRedisDir())) vm.RemoteCommand( 'sudo sed -i "s/protected-mode yes/protected-mode no/g" {0}/redis.conf'. format(GetRedisDir())) vm.RemoteCommand(sed_cmd) if FLAGS.redis_enable_aof: vm.RemoteCommand( r'sed -i -e "s/appendonly no/appendonly yes/g" {0}/redis.conf'.format( GetRedisDir())) vm.RemoteCommand(( r'sed -i -e "s/appendfsync everysec/# appendfsync everysec/g" ' r'{0}/redis.conf' ).format(GetRedisDir())) vm.RemoteCommand(( r'sed -i -e "s/# appendfsync always/appendfsync always/g" ' r'{0}/redis.conf' ).format(GetRedisDir())) for i in range(FLAGS.redis_total_num_processes): port = REDIS_FIRST_PORT + i vm.RemoteCommand( ('cp {0}/redis.conf {0}/redis-{1}.conf').format(GetRedisDir(), port)) vm.RemoteCommand( r'sed -i -e "s/port %d/port %d/g" %s/redis-%d.conf' % (REDIS_FIRST_PORT, port, GetRedisDir(), port)) def Start(vm): """Start redis server process.""" for i in range(FLAGS.redis_total_num_processes): port = REDIS_FIRST_PORT + i vm.RemoteCommand( ('nohup sudo {0}/src/redis-server {0}/redis-{1}.conf ' '&> /dev/null & echo $! > {0}/{2}-{1}').format( GetRedisDir(), port, REDIS_PID_FILE)) def Cleanup(vm): """Remove redis.""" vm.RemoteCommand('sudo pkill redis-server')
import pytest from homeassistant import data_entry_flow from homeassistant.components import locative from homeassistant.components.device_tracker import DOMAIN as DEVICE_TRACKER_DOMAIN from homeassistant.components.locative import DOMAIN, TRACKER_UPDATE from homeassistant.config import async_process_ha_core_config from homeassistant.const import HTTP_OK, HTTP_UNPROCESSABLE_ENTITY from homeassistant.helpers.dispatcher import DATA_DISPATCHER from homeassistant.setup import async_setup_component from tests.async_mock import patch # pylint: disable=redefined-outer-name @pytest.fixture(autouse=True) def mock_dev_track(mock_device_tracker_conf): """Mock device tracker config loading.""" pass @pytest.fixture async def locative_client(loop, hass, hass_client): """Locative mock client.""" assert await async_setup_component(hass, DOMAIN, {DOMAIN: {}}) await hass.async_block_till_done() with patch("homeassistant.components.device_tracker.legacy.update_config"): return await hass_client() @pytest.fixture async def webhook_id(hass, locative_client): """Initialize the Geofency component and get the webhook_id.""" await async_process_ha_core_config( hass, {"internal_url": "http://example.local:8123"}, ) result = await hass.config_entries.flow.async_init( "locative", context={"source": "user"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM, result result = await hass.config_entries.flow.async_configure(result["flow_id"], {}) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY await hass.async_block_till_done() return result["result"].data["webhook_id"] async def test_missing_data(locative_client, webhook_id): """Test missing data.""" url = f"/api/webhook/{webhook_id}" data = { "latitude": 1.0, "longitude": 1.1, "device": "123", "id": "Home", "trigger": "enter", } # No data req = await locative_client.post(url) assert req.status == HTTP_UNPROCESSABLE_ENTITY # No latitude copy = data.copy() del copy["latitude"] req = await locative_client.post(url, data=copy) assert req.status == HTTP_UNPROCESSABLE_ENTITY # No device copy = data.copy() del copy["device"] req = await locative_client.post(url, data=copy) assert req.status == HTTP_UNPROCESSABLE_ENTITY # No location copy = data.copy() del copy["id"] req = await locative_client.post(url, data=copy) assert req.status == HTTP_UNPROCESSABLE_ENTITY # No trigger copy = data.copy() del copy["trigger"] req = await locative_client.post(url, data=copy) assert req.status == HTTP_UNPROCESSABLE_ENTITY # Test message copy = data.copy() copy["trigger"] = "test" req = await locative_client.post(url, data=copy) assert req.status == HTTP_OK # Test message, no location copy = data.copy() copy["trigger"] = "test" del copy["id"] req = await locative_client.post(url, data=copy) assert req.status == HTTP_OK # Unknown trigger copy = data.copy() copy["trigger"] = "foobar" req = await locative_client.post(url, data=copy) assert req.status == HTTP_UNPROCESSABLE_ENTITY async def test_enter_and_exit(hass, locative_client, webhook_id): """Test when there is a known zone.""" url = f"/api/webhook/{webhook_id}" data = { "latitude": 40.7855, "longitude": -111.7367, "device": "123", "id": "Home", "trigger": "enter", } # Enter the Home req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state_name = hass.states.get( "{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"]) ).state assert state_name == "home" data["id"] = "HOME" data["trigger"] = "exit" # Exit Home req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state_name = hass.states.get( "{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"]) ).state assert state_name == "not_home" data["id"] = "hOmE" data["trigger"] = "enter" # Enter Home again req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state_name = hass.states.get( "{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"]) ).state assert state_name == "home" data["trigger"] = "exit" # Exit Home req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state_name = hass.states.get( "{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"]) ).state assert state_name == "not_home" data["id"] = "work" data["trigger"] = "enter" # Enter Work req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state_name = hass.states.get( "{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"]) ).state assert state_name == "work" async def test_exit_after_enter(hass, locative_client, webhook_id): """Test when an exit message comes after an enter message.""" url = f"/api/webhook/{webhook_id}" data = { "latitude": 40.7855, "longitude": -111.7367, "device": "123", "id": "Home", "trigger": "enter", } # Enter Home req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state = hass.states.get("{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"])) assert state.state == "home" data["id"] = "Work" # Enter Work req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state = hass.states.get("{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"])) assert state.state == "work" data["id"] = "Home" data["trigger"] = "exit" # Exit Home req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state = hass.states.get("{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"])) assert state.state == "work" async def test_exit_first(hass, locative_client, webhook_id): """Test when an exit message is sent first on a new device.""" url = f"/api/webhook/{webhook_id}" data = { "latitude": 40.7855, "longitude": -111.7367, "device": "new_device", "id": "Home", "trigger": "exit", } # Exit Home req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state = hass.states.get("{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"])) assert state.state == "not_home" async def test_two_devices(hass, locative_client, webhook_id): """Test updating two different devices.""" url = f"/api/webhook/{webhook_id}" data_device_1 = { "latitude": 40.7855, "longitude": -111.7367, "device": "device_1", "id": "Home", "trigger": "exit", } # Exit Home req = await locative_client.post(url, data=data_device_1) await hass.async_block_till_done() assert req.status == HTTP_OK state = hass.states.get( "{}.{}".format(DEVICE_TRACKER_DOMAIN, data_device_1["device"]) ) assert state.state == "not_home" # Enter Home data_device_2 = dict(data_device_1) data_device_2["device"] = "device_2" data_device_2["trigger"] = "enter" req = await locative_client.post(url, data=data_device_2) await hass.async_block_till_done() assert req.status == HTTP_OK state = hass.states.get( "{}.{}".format(DEVICE_TRACKER_DOMAIN, data_device_2["device"]) ) assert state.state == "home" state = hass.states.get( "{}.{}".format(DEVICE_TRACKER_DOMAIN, data_device_1["device"]) ) assert state.state == "not_home" @pytest.mark.xfail( reason="The device_tracker component does not support unloading yet." ) async def test_load_unload_entry(hass, locative_client, webhook_id): """Test that the appropriate dispatch signals are added and removed.""" url = f"/api/webhook/{webhook_id}" data = { "latitude": 40.7855, "longitude": -111.7367, "device": "new_device", "id": "Home", "trigger": "exit", } # Exit Home req = await locative_client.post(url, data=data) await hass.async_block_till_done() assert req.status == HTTP_OK state = hass.states.get("{}.{}".format(DEVICE_TRACKER_DOMAIN, data["device"])) assert state.state == "not_home" assert len(hass.data[DATA_DISPATCHER][TRACKER_UPDATE]) == 1 entry = hass.config_entries.async_entries(DOMAIN)[0] await locative.async_unload_entry(hass, entry) await hass.async_block_till_done() assert not hass.data[DATA_DISPATCHER][TRACKER_UPDATE]
import pytest from django.contrib.auth.models import AnonymousUser from django.contrib.messages.storage import default_storage from shop.conf import app_settings from shop.models.cart import CartModel from shop.models.defaults.customer import Customer from shop.modifiers.pool import CartModifiersPool from shop.views.cart import CartViewSet, WatchViewSet from shop.modifiers.pool import cart_modifiers_pool from rest_framework.reverse import reverse CartModifiersPool.USE_CACHE = False @pytest.fixture(name='filled_cart') @pytest.mark.django_db def test_add_to_cart(commodity_factory, api_client, rf): # add a product to the cart product = commodity_factory() data = {'quantity': 2, 'product': product.id} response = api_client.post(reverse('shop:cart-list'), data) assert response.status_code == 201 assert response.data['quantity'] == 2 assert response.data['unit_price'] == str(product.unit_price) assert response.data['line_total'] == str(2 * product.unit_price) # verify that the product is in the cart request = rf.get('/my-cart') request.session = api_client.session request.user = AnonymousUser() request.customer = Customer.objects.get_from_request(request) filled_cart = CartModel.objects.get_from_request(request) filled_cart.update(request) assert filled_cart.num_items == 1 items = filled_cart.items.all() assert items[0].product == product assert items[0].quantity == 2 assert filled_cart.subtotal == 2 * product.unit_price return filled_cart @pytest.mark.django_db def test_list_cart(api_rf, filled_cart): request = api_rf.get('/shop/api/cart') request.customer = filled_cart.customer response = CartViewSet.as_view({'get': 'list'})(request) assert response.status_code == 200 assert response.data['num_items'] == 1 assert response.data['total_quantity'] == 2 assert response.data['subtotal'] == str(filled_cart.subtotal) assert response.data['total'] == str(filled_cart.total) @pytest.mark.django_db def test_unowned_cart(customer_factory, api_rf, filled_cart): request = api_rf.get('/shop/api/cart') request.customer = customer_factory() response = CartViewSet.as_view({'get': 'list'})(request) assert response.data['num_items'] == 0 @pytest.mark.django_db def test_change_quantity(api_rf, filled_cart): product = filled_cart.items.all()[0].product data = {'quantity': 3, 'product': product.id} request = api_rf.put('/shop/api/cart', data) request.customer = filled_cart.customer response = CartViewSet.as_view({'put': 'update'})(request, pk=product.id) assert response.status_code == 200 filled_cart.refresh_from_db() assert filled_cart.num_items == 1 assert filled_cart.items.all()[0].quantity == 3 @pytest.mark.django_db def test_too_greedy(session, api_rf, filled_cart): product = filled_cart.items.all()[0].product data = {'quantity': 10, 'product': product.id} request = api_rf.put('/shop/api/cart', data) request.customer = filled_cart.customer request.session = session request._messages = default_storage(request) response = CartViewSet.as_view({'put': 'update'})(request, pk=product.id) assert response.status_code == 200 filled_cart.refresh_from_db() assert filled_cart.num_items == 1 assert filled_cart.items.all()[0].quantity == 5 # not 10, as requested @pytest.mark.django_db def test_remove_item(api_rf, filled_cart): product = filled_cart.items.all()[0].product request = api_rf.delete(reverse('shop:cart-list')) request.customer = filled_cart.customer response = CartViewSet.as_view({'delete': 'destroy'})(request, pk=product.id) assert response.status_code == 200 filled_cart.refresh_from_db() assert filled_cart.num_items == 0 assert filled_cart.items.count() == 0 @pytest.fixture(name='watch_list') @pytest.mark.django_db def test_watch_cart_item(api_rf, filled_cart): product = filled_cart.items.all()[0].product data = {'quantity': 0, 'product': product.id} request = api_rf.put('/shop/api/cart', data) request.customer = filled_cart.customer response = WatchViewSet.as_view({'put': 'update'})(request, pk=product.id) assert response.status_code == 200 filled_cart.refresh_from_db() assert filled_cart.num_items == 0 assert filled_cart.items.all()[0].quantity == 0 return filled_cart @pytest.mark.django_db def test_add_watch_item(api_rf, watch_list): product = watch_list.items.all()[0].product data = {'quantity': 1, 'product': product.id} request = api_rf.put('/shop/api/cart', data) request.customer = watch_list.customer response = CartViewSet.as_view({'put': 'update'})(request, pk=product.id) assert response.status_code == 200 watch_list.refresh_from_db() assert watch_list.num_items == 1 assert watch_list.items.all()[0].quantity == 1 @pytest.mark.django_db def test_include_tax_modifier(api_rf, filled_cart): request = api_rf.get('/shop/api/cart') request.customer = filled_cart.customer response = CartViewSet.as_view({'get': 'list'})(request) assert response.status_code == 200 assert response.data['subtotal'] == str(filled_cart.subtotal) tax_rate = 1 + app_settings.SHOP_VALUE_ADDED_TAX / 100 assert response.data['total'] == str(filled_cart.subtotal * tax_rate) @pytest.mark.django_db def test_payment_modifiers_with_same_processors(api_rf, filled_cart): for modifier_to_test in cart_modifiers_pool.get_payment_modifiers(): for modifier_for_id in cart_modifiers_pool.get_payment_modifiers(): if modifier_to_test.is_active(modifier_for_id.identifier): assert modifier_for_id.identifier == modifier_to_test.identifier
from collections import namedtuple import logging from habitipy.aio import HabitipyAsync import voluptuous as vol from homeassistant.const import ( CONF_API_KEY, CONF_NAME, CONF_PATH, CONF_SENSORS, CONF_URL, ) from homeassistant.helpers import config_validation as cv, discovery from homeassistant.helpers.aiohttp_client import async_get_clientsession _LOGGER = logging.getLogger(__name__) CONF_API_USER = "api_user" DEFAULT_URL = "https://habitica.com" DOMAIN = "habitica" ST = SensorType = namedtuple("SensorType", ["name", "icon", "unit", "path"]) SENSORS_TYPES = { "name": ST("Name", None, "", ["profile", "name"]), "hp": ST("HP", "mdi:heart", "HP", ["stats", "hp"]), "maxHealth": ST("max HP", "mdi:heart", "HP", ["stats", "maxHealth"]), "mp": ST("Mana", "mdi:auto-fix", "MP", ["stats", "mp"]), "maxMP": ST("max Mana", "mdi:auto-fix", "MP", ["stats", "maxMP"]), "exp": ST("EXP", "mdi:star", "EXP", ["stats", "exp"]), "toNextLevel": ST("Next Lvl", "mdi:star", "EXP", ["stats", "toNextLevel"]), "lvl": ST("Lvl", "mdi:arrow-up-bold-circle-outline", "Lvl", ["stats", "lvl"]), "gp": ST("Gold", "mdi:currency-usd-circle", "Gold", ["stats", "gp"]), "class": ST("Class", "mdi:sword", "", ["stats", "class"]), } INSTANCE_SCHEMA = vol.Schema( { vol.Optional(CONF_URL, default=DEFAULT_URL): cv.url, vol.Optional(CONF_NAME): cv.string, vol.Required(CONF_API_USER): cv.string, vol.Required(CONF_API_KEY): cv.string, vol.Optional(CONF_SENSORS, default=list(SENSORS_TYPES)): vol.All( cv.ensure_list, vol.Unique(), [vol.In(list(SENSORS_TYPES))] ), } ) has_unique_values = vol.Schema(vol.Unique()) # because we want a handy alias def has_all_unique_users(value): """Validate that all API users are unique.""" api_users = [user[CONF_API_USER] for user in value] has_unique_values(api_users) return value def has_all_unique_users_names(value): """Validate that all user's names are unique and set if any is set.""" names = [user.get(CONF_NAME) for user in value] if None in names and any(name is not None for name in names): raise vol.Invalid("user names of all users must be set if any is set") if not all(name is None for name in names): has_unique_values(names) return value INSTANCE_LIST_SCHEMA = vol.All( cv.ensure_list, has_all_unique_users, has_all_unique_users_names, [INSTANCE_SCHEMA] ) CONFIG_SCHEMA = vol.Schema({DOMAIN: INSTANCE_LIST_SCHEMA}, extra=vol.ALLOW_EXTRA) SERVICE_API_CALL = "api_call" ATTR_NAME = CONF_NAME ATTR_PATH = CONF_PATH ATTR_ARGS = "args" EVENT_API_CALL_SUCCESS = f"{DOMAIN}_{SERVICE_API_CALL}_success" SERVICE_API_CALL_SCHEMA = vol.Schema( { vol.Required(ATTR_NAME): str, vol.Required(ATTR_PATH): vol.All(cv.ensure_list, [str]), vol.Optional(ATTR_ARGS): dict, } ) async def async_setup(hass, config): """Set up the Habitica service.""" conf = config[DOMAIN] data = hass.data[DOMAIN] = {} websession = async_get_clientsession(hass) class HAHabitipyAsync(HabitipyAsync): """Closure API class to hold session.""" def __call__(self, **kwargs): return super().__call__(websession, **kwargs) for instance in conf: url = instance[CONF_URL] username = instance[CONF_API_USER] password = instance[CONF_API_KEY] name = instance.get(CONF_NAME) config_dict = {"url": url, "login": username, "password": password} api = HAHabitipyAsync(config_dict) user = await api.user.get() if name is None: name = user["profile"]["name"] data[name] = api if CONF_SENSORS in instance: hass.async_create_task( discovery.async_load_platform( hass, "sensor", DOMAIN, {"name": name, "sensors": instance[CONF_SENSORS]}, config, ) ) async def handle_api_call(call): name = call.data[ATTR_NAME] path = call.data[ATTR_PATH] api = hass.data[DOMAIN].get(name) if api is None: _LOGGER.error("API_CALL: User '%s' not configured", name) return try: for element in path: api = api[element] except KeyError: _LOGGER.error( "API_CALL: Path %s is invalid for API on '{%s}' element", path, element ) return kwargs = call.data.get(ATTR_ARGS, {}) data = await api(**kwargs) hass.bus.async_fire( EVENT_API_CALL_SUCCESS, {"name": name, "path": path, "data": data} ) hass.services.async_register( DOMAIN, SERVICE_API_CALL, handle_api_call, schema=SERVICE_API_CALL_SCHEMA ) return True
import logging import os.path from . import criterions as cr from . import cumulative_criterions as cum_cr from ..Console import Plugin as ConsolePlugin from ...common.interfaces import AbstractPlugin, AggregateResultListener, AbstractInfoWidget logger = logging.getLogger(__name__) class Plugin(AbstractPlugin, AggregateResultListener): """ Plugin that accepts criterion classes and triggers autostop """ SECTION = 'autostop' def __init__(self, core, cfg, name): AbstractPlugin.__init__(self, core, cfg, name) AggregateResultListener.__init__(self) self.cause_criterion = None self.imbalance_rps = 0 self._criterions = {} self.custom_criterions = [] self.counting = [] self._stop_report_path = '' @staticmethod def get_key(): return __file__ def get_counting(self): """ get criterions that are activated """ return self.counting def add_counting(self, obj): """ add criterion that activated """ self.counting += [obj] def add_criterion_class(self, criterion_class): """ add new criterion class """ self.custom_criterions += [criterion_class] def get_available_options(self): return ["autostop", "report_file"] def configure(self): aggregator = self.core.job.aggregator aggregator.add_result_listener(self) self._stop_report_path = os.path.join( self.core.artifacts_dir, self.get_option("report_file", 'autostop_report.txt')) self.add_criterion_class(cr.AvgTimeCriterion) self.add_criterion_class(cr.NetCodesCriterion) self.add_criterion_class(cr.HTTPCodesCriterion) self.add_criterion_class(cr.QuantileCriterion) self.add_criterion_class(cr.SteadyCumulativeQuantilesCriterion) self.add_criterion_class(cr.TimeLimitCriterion) self.add_criterion_class(cum_cr.TotalFracTimeCriterion) self.add_criterion_class(cum_cr.TotalHTTPCodesCriterion) self.add_criterion_class(cum_cr.TotalNetCodesCriterion) self.add_criterion_class(cum_cr.TotalNegativeHTTPCodesCriterion) self.add_criterion_class(cum_cr.TotalNegativeNetCodesCriterion) self.add_criterion_class(cum_cr.TotalHTTPTrendCriterion) self.add_criterion_class(cum_cr.QuantileOfSaturationCriterion) def prepare_test(self): criterions = self.get_option("autostop") for criterion_str in criterions: if not criterion_str: continue self.log.debug("Criterion string: %s", criterion_str) self._criterions[criterion_str] = self.__create_criterion( criterion_str) self.log.debug("Criterion objects: %s", self._criterions) try: console = self.core.get_plugin_of_type(ConsolePlugin) except Exception as ex: # pylint: disable=W0703 self.log.debug("Console not found: %s", ex) console = None if console: console.add_info_widget(AutostopWidget(self)) def is_test_finished(self): if self.cause_criterion: self.log.warning( "Autostop criterion requested test stop: %s", self.cause_criterion.explain()) return self.cause_criterion.get_rc() else: return -1 def __create_criterion(self, criterion_str): """ instantiate criterion from config string """ parsed = criterion_str.split("(") type_str = parsed[0].strip().lower() parsed[1] = parsed[1].split(")")[0].strip() for criterion_class in self.custom_criterions: if criterion_class.get_type_string() == type_str: return criterion_class(self, parsed[1]) raise ValueError( "Unsupported autostop criterion type: %s" % criterion_str) def on_aggregated_data(self, data, stat): self.counting = [] if not self.cause_criterion: for criterion_text, criterion in self._criterions.items(): if criterion.notify(data, stat): self.cause_criterion = criterion if self.cause_criterion.cause_second: self.imbalance_rps = int(self.cause_criterion.cause_second[1]["metrics"]["reqps"]) if not self.imbalance_rps: self.imbalance_rps = int( self.cause_criterion.cause_second[0]["overall"]["interval_real"]["len"]) self.core.publish('autostop', 'rps', self.imbalance_rps) self.core.publish('autostop', 'reason', criterion.explain()) self.log.warning( "Autostop criterion requested test stop on %d rps: %s", self.imbalance_rps, criterion_text) open(self._stop_report_path, 'w').write(criterion_text) self.core.add_artifact_file(self._stop_report_path) class AutostopWidget(AbstractInfoWidget): """ widget that displays counting criterions """ def __init__(self, sender): AbstractInfoWidget.__init__(self) self.owner = sender def get_index(self): return 25 def render(self, screen): res = [] candidates = self.owner.get_counting() for candidate in candidates: text, perc = candidate.widget_explain() if perc >= 0.95: res += [screen.markup.RED_DARK + text + screen.markup.RESET] elif perc >= 0.8: res += [screen.markup.RED + text + screen.markup.RESET] elif perc >= 0.5: res += [screen.markup.YELLOW + text + screen.markup.RESET] else: res += [text] if res: return "Autostop:\n " + ("\n ".join(res)) else: return ''
import unittest import doctest import urwid import urwid.numedit def load_tests(loader, tests, ignore): module_doctests = [ urwid.widget, urwid.wimp, urwid.decoration, urwid.display_common, urwid.main_loop, urwid.numedit, urwid.monitored_list, urwid.raw_display, 'urwid.split_repr', # override function with same name urwid.util, urwid.signals, urwid.graphics, ] for m in module_doctests: tests.addTests(doctest.DocTestSuite(m, optionflags=doctest.ELLIPSIS | doctest.IGNORE_EXCEPTION_DETAIL)) return tests
import logging import pytest import voluptuous as vol import homeassistant.components.demo.notify as demo import homeassistant.components.notify as notify from homeassistant.core import callback from homeassistant.helpers import discovery from homeassistant.setup import async_setup_component from tests.async_mock import patch from tests.common import assert_setup_component CONFIG = {notify.DOMAIN: {"platform": "demo"}} @pytest.fixture def events(hass): """Fixture that catches notify events.""" events = [] hass.bus.async_listen(demo.EVENT_NOTIFY, callback(lambda e: events.append(e))) yield events @pytest.fixture def calls(): """Fixture to calls.""" return [] @pytest.fixture def record_calls(calls): """Fixture to record calls.""" @callback def record_calls(*args): """Record calls.""" calls.append(args) return record_calls @pytest.fixture(name="mock_demo_notify") def mock_demo_notify_fixture(): """Mock demo notify service.""" with patch("homeassistant.components.demo.notify.get_service", autospec=True) as ns: yield ns async def setup_notify(hass): """Test setup.""" with assert_setup_component(1, notify.DOMAIN) as config: assert await async_setup_component(hass, notify.DOMAIN, CONFIG) assert config[notify.DOMAIN] await hass.async_block_till_done() async def test_no_notify_service(hass, mock_demo_notify, caplog): """Test missing platform notify service instance.""" caplog.set_level(logging.ERROR) mock_demo_notify.return_value = None await setup_notify(hass) await hass.async_block_till_done() assert mock_demo_notify.called assert "Failed to initialize notification service demo" in caplog.text async def test_discover_notify(hass, mock_demo_notify): """Test discovery of notify demo platform.""" assert notify.DOMAIN not in hass.config.components mock_demo_notify.return_value = None await discovery.async_load_platform( hass, "notify", "demo", {"test_key": "test_val"}, {"notify": {}} ) await hass.async_block_till_done() assert notify.DOMAIN in hass.config.components assert mock_demo_notify.called assert mock_demo_notify.mock_calls[0][1] == ( hass, {}, {"test_key": "test_val"}, ) async def test_sending_none_message(hass, events): """Test send with None as message.""" await setup_notify(hass) with pytest.raises(vol.Invalid): await hass.services.async_call( notify.DOMAIN, notify.SERVICE_NOTIFY, {notify.ATTR_MESSAGE: None} ) await hass.async_block_till_done() assert len(events) == 0 async def test_sending_templated_message(hass, events): """Send a templated message.""" await setup_notify(hass) hass.states.async_set("sensor.temperature", 10) data = { notify.ATTR_MESSAGE: "{{states.sensor.temperature.state}}", notify.ATTR_TITLE: "{{ states.sensor.temperature.name }}", } await hass.services.async_call(notify.DOMAIN, notify.SERVICE_NOTIFY, data) await hass.async_block_till_done() last_event = events[-1] assert last_event.data[notify.ATTR_TITLE] == "temperature" assert last_event.data[notify.ATTR_MESSAGE] == "10" async def test_method_forwards_correct_data(hass, events): """Test that all data from the service gets forwarded to service.""" await setup_notify(hass) data = { notify.ATTR_MESSAGE: "my message", notify.ATTR_TITLE: "my title", notify.ATTR_DATA: {"hello": "world"}, } await hass.services.async_call(notify.DOMAIN, notify.SERVICE_NOTIFY, data) await hass.async_block_till_done() assert len(events) == 1 data = events[0].data assert { "message": "my message", "title": "my title", "data": {"hello": "world"}, } == data async def test_calling_notify_from_script_loaded_from_yaml_without_title(hass, events): """Test if we can call a notify from a script.""" await setup_notify(hass) step = { "service": "notify.notify", "data": { "data": {"push": {"sound": "US-EN-Morgan-Freeman-Roommate-Is-Arriving.wav"}} }, "data_template": {"message": "Test 123 {{ 2 + 2 }}\n"}, } await async_setup_component( hass, "script", {"script": {"test": {"sequence": step}}} ) await hass.services.async_call("script", "test") await hass.async_block_till_done() assert len(events) == 1 assert { "message": "Test 123 4", "data": {"push": {"sound": "US-EN-Morgan-Freeman-Roommate-Is-Arriving.wav"}}, } == events[0].data async def test_calling_notify_from_script_loaded_from_yaml_with_title(hass, events): """Test if we can call a notify from a script.""" await setup_notify(hass) step = { "service": "notify.notify", "data": { "data": {"push": {"sound": "US-EN-Morgan-Freeman-Roommate-Is-Arriving.wav"}} }, "data_template": {"message": "Test 123 {{ 2 + 2 }}\n", "title": "Test"}, } await async_setup_component( hass, "script", {"script": {"test": {"sequence": step}}} ) await hass.services.async_call("script", "test") await hass.async_block_till_done() assert len(events) == 1 assert { "message": "Test 123 4", "title": "Test", "data": {"push": {"sound": "US-EN-Morgan-Freeman-Roommate-Is-Arriving.wav"}}, } == events[0].data async def test_targets_are_services(hass): """Test that all targets are exposed as individual services.""" await setup_notify(hass) assert hass.services.has_service("notify", "demo") is not None service = "demo_test_target_name" assert hass.services.has_service("notify", service) is not None async def test_messages_to_targets_route(hass, calls, record_calls): """Test message routing to specific target services.""" await setup_notify(hass) hass.bus.async_listen_once("notify", record_calls) await hass.services.async_call( "notify", "demo_test_target_name", {"message": "my message", "title": "my title", "data": {"hello": "world"}}, ) await hass.async_block_till_done() data = calls[0][0].data assert { "message": "my message", "target": ["test target id"], "title": "my title", "data": {"hello": "world"}, } == data
from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import logging import posixpath from absl import flags from perfkitbenchmarker import configs from perfkitbenchmarker import data from perfkitbenchmarker import errors from perfkitbenchmarker import linux_virtual_machine from perfkitbenchmarker import sample from perfkitbenchmarker import vm_util from perfkitbenchmarker.configs import benchmark_config_spec from perfkitbenchmarker.configs import option_decoders import six class CopyThroughputBenchmarkSpec( benchmark_config_spec.BenchmarkConfigSpec): def __init__(self, component_full_name, **kwargs): self.data_size_in_mb = None super(CopyThroughputBenchmarkSpec, self).__init__( component_full_name, **kwargs) @classmethod def _GetOptionDecoderConstructions(cls): """Gets decoder classes and constructor args for each configurable option. Returns: dict. Maps option name string to a (ConfigOptionDecoder class, dict) pair. The pair specifies a decoder class and its __init__() keyword arguments to construct in order to decode the named option. """ result = super(CopyThroughputBenchmarkSpec, cls)._GetOptionDecoderConstructions() result.update({ 'data_size_in_mb': (option_decoders.FloatDecoder, {'default': None}), }) return result flags.DEFINE_enum('copy_benchmark_mode', 'cp', ['cp', 'dd', 'scp'], 'Runs either cp, dd or scp tests.') flags.DEFINE_integer('copy_benchmark_single_file_mb', None, 'If set, a ' 'single file of the specified number of MB is used ' 'instead of the normal cloud-storage-workload.sh basket ' 'of files. Not supported when copy_benchmark_mode is dd') FLAGS = flags.FLAGS BENCHMARK_NAME = 'copy_throughput' BENCHMARK_CONFIG = """ copy_throughput: description: Get cp and scp performance between vms. vm_groups: default: vm_spec: *default_single_core disk_spec: *default_500_gb disk_count: 2 vm_count: 1 """ BENCHMARK_CONFIG_SPEC_CLASS = CopyThroughputBenchmarkSpec # Preferred SCP ciphers, in order of preference: CIPHERS = ['aes128-cbc', 'aes128-ctr'] DATA_FILE = 'cloud-storage-workload.sh' # size of default data DEFAULT_DATA_SIZE_IN_MB = 256.1 # Unit for all benchmarks UNIT = 'MB/sec' def GetConfig(user_config): """Decide number of vms needed and return infomation for copy benchmark.""" if FLAGS.copy_benchmark_mode == 'dd' and FLAGS.copy_benchmark_single_file_mb: raise errors.Setup.InvalidFlagConfigurationError( 'Flag copy_benchmark_single_file_mb is not supported when flag ' 'copy_benchmark_mode is dd.') config = configs.LoadConfig(BENCHMARK_CONFIG, user_config, BENCHMARK_NAME) if FLAGS.copy_benchmark_mode == 'scp': config['vm_groups']['default']['vm_count'] = 2 config['vm_groups']['default']['disk_count'] = 1 if FLAGS.copy_benchmark_single_file_mb: config['data_size_in_mb'] = FLAGS.copy_benchmark_single_file_mb return config def CheckPrerequisites(benchmark_config): """Verifies that the required resources are present. Args: benchmark_config: Unused Raises: perfkitbenchmarker.data.ResourceNotFound: On missing resource. """ del benchmark_config # unused data.ResourcePath(DATA_FILE) def PrepareDataFile(vm, data_size_in_mb): """Generate data file on vm to destination directory. Args: vm: The VM which needs the data file. data_size_in_mb: The size of the data file in MB. """ file_path = data.ResourcePath(DATA_FILE) vm.PushFile(file_path, '%s/' % vm.GetScratchDir(0)) if data_size_in_mb: vm.RemoteCommand('cd %s/; bash cloud-storage-workload.sh single_file %s' % (vm.GetScratchDir(0), data_size_in_mb)) else: vm.RemoteCommand('cd %s/; bash cloud-storage-workload.sh' % vm.GetScratchDir(0)) def PreparePrivateKey(vm): vm.AuthenticateVm() def Prepare(benchmark_spec): """Prepare vms with additional scratch disks and create vms for scp. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. """ vms = benchmark_spec.vms vm_util.RunThreaded(PreparePrivateKey, vms) args = [((vm, benchmark_spec.config.data_size_in_mb), {}) for vm in benchmark_spec.vms] vm_util.RunThreaded(PrepareDataFile, args) def RunCp(vms, data_size_in_mb, metadata): """Runs cp benchmarks and parses results. Args: vms: The VMs running cp benchmarks. data_size_in_mb: The size of the data file in MB. metadata: The base metadata to attach to the sample. Returns: A list of sample.Sample objects. """ cmd = ('rm -rf %s/*; sudo sync; sudo sysctl vm.drop_caches=3; ' 'time cp %s/data/* %s/; ' % (vms[0].GetScratchDir(1), vms[0].GetScratchDir(0), vms[0].GetScratchDir(1))) _, res = vms[0].RemoteCommand(cmd) logging.info(res) time_used = vm_util.ParseTimeCommandResult(res) return [sample.Sample('cp throughput', data_size_in_mb / time_used, UNIT, metadata=metadata)] def RunDd(vms, data_size_in_mb, metadata): """Run dd benchmark and parses results. Args: vms: The VMs running dd benchmarks. data_size_in_mb: The size of the data file in MB. metadata: The metadata to attach to the sample. Returns: A list of samples. Each sample is a 4-tuple of (benchmark_name, value, unit, metadata), as accepted by PerfKitBenchmarkerPublisher.AddSamples. """ vm = vms[0] cmd = ('rm -rf %s/*; sudo sync; sudo sysctl vm.drop_caches=3; ' 'time for i in {0..99}; do dd if=%s/data/file-$i.dat ' 'of=%s/file-$i.dat bs=262144; done' % (vm.GetScratchDir(1), vm.GetScratchDir(0), vm.GetScratchDir(1))) _, res = vm.RemoteCommand(cmd) logging.info(res) time_used = vm_util.ParseTimeCommandResult(res) return [sample.Sample('dd throughput', data_size_in_mb / time_used, UNIT, metadata=metadata)] def AvailableCiphers(vm): """Returns the set of ciphers accepted by the vm's SSH server.""" ciphers, _ = vm.RemoteCommand('sshd -T | grep ^ciphers ') return set(ciphers.split()[1].split(',')) def ChooseSshCipher(vms): """Returns the most-preferred cipher that's available to all vms.""" available = functools.reduce(lambda a, b: a & b, [AvailableCiphers(vm) for vm in vms]) for cipher in CIPHERS: if cipher in available: return cipher raise Exception('None of the preferred ciphers (%s) are available (%s).' % (CIPHERS, available)) def RunScp(vms, data_size_in_mb, metadata): """Run scp benchmark. Args: vms: The vms running scp commands. data_size_in_mb: The size of the data file in MB. metadata: The metadata to attach to the sample. Returns: A list of samples. Each sample is a 4-tuple of (benchmark_name, value, unit, metadata), as accepted by PerfKitBenchmarkerPublisher.AddSamples. """ cipher = ChooseSshCipher(vms) result = RunScpSingleDirection( vms[0], vms[1], cipher, data_size_in_mb, metadata) result += RunScpSingleDirection( vms[1], vms[0], cipher, data_size_in_mb, metadata) return result MODE_FUNCTION_DICTIONARY = { 'cp': RunCp, 'dd': RunDd, 'scp': RunScp} def RunScpSingleDirection(sending_vm, receiving_vm, cipher, data_size_in_mb, base_metadata): """Run scp from sending_vm to receiving_vm and parse results. If 'receiving_vm' is accessible via internal IP from 'sending_vm', throughput over internal IP addresses will be tested in addition to external IP addresses. Args: sending_vm: The originating VM for the scp command. receiving_vm: The destination VM for the scp command. cipher: Name of the SSH cipher to use. data_size_in_mb: The size of the data file in MB. base_metadata: The base metadata to attach to the sample. Returns: A list of sample.Sample objects. """ results = [] metadata = base_metadata.copy() for vm_specifier, vm in ('receiving', receiving_vm), ('sending', sending_vm): for k, v in six.iteritems(vm.GetResourceMetadata()): metadata['{0}_{1}'.format(vm_specifier, k)] = v cmd_template = ('sudo sync; sudo sysctl vm.drop_caches=3; ' 'time /usr/bin/scp -o StrictHostKeyChecking=no -i %s -c %s ' '%s %s@%%s:%%s/;') % ( linux_virtual_machine.REMOTE_KEY_PATH, cipher, '%s/data/*' % sending_vm.GetScratchDir(0), receiving_vm.user_name) def RunForIpAddress(ip_address, ip_type): """Run SCP benchmark against a destination IP address.""" target_dir = posixpath.join(receiving_vm.GetScratchDir(0), ip_type) cmd = cmd_template % (ip_address, target_dir) receiving_vm.RemoteCommand('mkdir %s' % target_dir) meta = metadata.copy() meta['ip_type'] = ip_type _, res = sending_vm.RemoteCommand(cmd) time_used = vm_util.ParseTimeCommandResult(res) result = data_size_in_mb / time_used receiving_vm.RemoteCommand('rm -rf %s' % target_dir) return sample.Sample('scp throughput', result, UNIT, meta) if vm_util.ShouldRunOnExternalIpAddress(): results.append(RunForIpAddress(receiving_vm.ip_address, 'external')) if vm_util.ShouldRunOnInternalIpAddress(sending_vm, receiving_vm): results.append(RunForIpAddress(receiving_vm.internal_ip, 'internal')) return results def Run(benchmark_spec): """Run cp/scp on target vms. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. Returns: A list of throughput samples. Each sample contains the sample metric (string), value (float), unit (string), and metadata (dict). """ vms = benchmark_spec.vms data_size_for_calculation = DEFAULT_DATA_SIZE_IN_MB if benchmark_spec.config.data_size_in_mb: data_size_for_calculation = benchmark_spec.config.data_size_in_mb metadata = {'copy_benchmark_single_file_mb': benchmark_spec.config.data_size_in_mb} results = MODE_FUNCTION_DICTIONARY[FLAGS.copy_benchmark_mode]( vms, data_size_for_calculation, metadata) return results def Cleanup(benchmark_spec): # pylint: disable=unused-argument """Cleanup function. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. """ pass
import argparse import matplotlib.pyplot as plt import chainer from chainercv.datasets import voc_bbox_label_names from chainercv.links import FasterRCNNVGG16 from chainercv import utils from chainercv.visualizations import vis_bbox def main(): parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=-1) parser.add_argument('--pretrained-model') parser.add_argument( '--dataset', choices=('voc',), default='voc') parser.add_argument('image') args = parser.parse_args() if args.dataset == 'voc': if args.pretrained_model is None: args.pretrained_model = 'voc07' label_names = voc_bbox_label_names model = FasterRCNNVGG16( n_fg_class=len(label_names), pretrained_model=args.pretrained_model) if args.gpu >= 0: chainer.cuda.get_device_from_id(args.gpu).use() model.to_gpu() img = utils.read_image(args.image, color=True) bboxes, labels, scores = model.predict([img]) bbox, label, score = bboxes[0], labels[0], scores[0] vis_bbox( img, bbox, label, score, label_names=label_names) plt.show() if __name__ == '__main__': main()
from copy import deepcopy import pytest import homeassistant.components.nextbus.sensor as nextbus import homeassistant.components.sensor as sensor from homeassistant.setup import async_setup_component from tests.async_mock import patch from tests.common import assert_setup_component VALID_AGENCY = "sf-muni" VALID_ROUTE = "F" VALID_STOP = "5650" VALID_AGENCY_TITLE = "San Francisco Muni" VALID_ROUTE_TITLE = "F-Market & Wharves" VALID_STOP_TITLE = "Market St & 7th St" SENSOR_ID_SHORT = "sensor.sf_muni_f" CONFIG_BASIC = { "sensor": { "platform": "nextbus", "agency": VALID_AGENCY, "route": VALID_ROUTE, "stop": VALID_STOP, } } CONFIG_INVALID_MISSING = {"sensor": {"platform": "nextbus"}} BASIC_RESULTS = { "predictions": { "agencyTitle": VALID_AGENCY_TITLE, "routeTitle": VALID_ROUTE_TITLE, "stopTitle": VALID_STOP_TITLE, "direction": { "title": "Outbound", "prediction": [ {"minutes": "1", "epochTime": "1553807371000"}, {"minutes": "2", "epochTime": "1553807372000"}, {"minutes": "3", "epochTime": "1553807373000"}, ], }, } } async def assert_setup_sensor(hass, config, count=1): """Set up the sensor and assert it's been created.""" with assert_setup_component(count): assert await async_setup_component(hass, sensor.DOMAIN, config) await hass.async_block_till_done() @pytest.fixture def mock_nextbus(): """Create a mock py_nextbus module.""" with patch( "homeassistant.components.nextbus.sensor.NextBusClient" ) as NextBusClient: yield NextBusClient @pytest.fixture def mock_nextbus_predictions(mock_nextbus): """Create a mock of NextBusClient predictions.""" instance = mock_nextbus.return_value instance.get_predictions_for_multi_stops.return_value = BASIC_RESULTS yield instance.get_predictions_for_multi_stops @pytest.fixture def mock_nextbus_lists(mock_nextbus): """Mock all list functions in nextbus to test validate logic.""" instance = mock_nextbus.return_value instance.get_agency_list.return_value = { "agency": [{"tag": "sf-muni", "title": "San Francisco Muni"}] } instance.get_route_list.return_value = { "route": [{"tag": "F", "title": "F - Market & Wharves"}] } instance.get_route_config.return_value = { "route": {"stop": [{"tag": "5650", "title": "Market St & 7th St"}]} } async def test_valid_config(hass, mock_nextbus, mock_nextbus_lists): """Test that sensor is set up properly with valid config.""" await assert_setup_sensor(hass, CONFIG_BASIC) async def test_invalid_config(hass, mock_nextbus, mock_nextbus_lists): """Checks that component is not setup when missing information.""" await assert_setup_sensor(hass, CONFIG_INVALID_MISSING, count=0) async def test_validate_tags(hass, mock_nextbus, mock_nextbus_lists): """Test that additional validation against the API is successful.""" # with self.subTest('Valid everything'): assert nextbus.validate_tags(mock_nextbus(), VALID_AGENCY, VALID_ROUTE, VALID_STOP) # with self.subTest('Invalid agency'): assert not nextbus.validate_tags( mock_nextbus(), "not-valid", VALID_ROUTE, VALID_STOP ) # with self.subTest('Invalid route'): assert not nextbus.validate_tags(mock_nextbus(), VALID_AGENCY, "0", VALID_STOP) # with self.subTest('Invalid stop'): assert not nextbus.validate_tags(mock_nextbus(), VALID_AGENCY, VALID_ROUTE, 0) async def test_verify_valid_state( hass, mock_nextbus, mock_nextbus_lists, mock_nextbus_predictions ): """Verify all attributes are set from a valid response.""" await assert_setup_sensor(hass, CONFIG_BASIC) mock_nextbus_predictions.assert_called_once_with( [{"stop_tag": VALID_STOP, "route_tag": VALID_ROUTE}], VALID_AGENCY ) state = hass.states.get(SENSOR_ID_SHORT) assert state is not None assert state.state == "2019-03-28T21:09:31+00:00" assert state.attributes["agency"] == VALID_AGENCY_TITLE assert state.attributes["route"] == VALID_ROUTE_TITLE assert state.attributes["stop"] == VALID_STOP_TITLE assert state.attributes["direction"] == "Outbound" assert state.attributes["upcoming"] == "1, 2, 3" async def test_message_dict( hass, mock_nextbus, mock_nextbus_lists, mock_nextbus_predictions ): """Verify that a single dict message is rendered correctly.""" mock_nextbus_predictions.return_value = { "predictions": { "agencyTitle": VALID_AGENCY_TITLE, "routeTitle": VALID_ROUTE_TITLE, "stopTitle": VALID_STOP_TITLE, "message": {"text": "Message"}, "direction": { "title": "Outbound", "prediction": [ {"minutes": "1", "epochTime": "1553807371000"}, {"minutes": "2", "epochTime": "1553807372000"}, {"minutes": "3", "epochTime": "1553807373000"}, ], }, } } await assert_setup_sensor(hass, CONFIG_BASIC) state = hass.states.get(SENSOR_ID_SHORT) assert state is not None assert state.attributes["message"] == "Message" async def test_message_list( hass, mock_nextbus, mock_nextbus_lists, mock_nextbus_predictions ): """Verify that a list of messages are rendered correctly.""" mock_nextbus_predictions.return_value = { "predictions": { "agencyTitle": VALID_AGENCY_TITLE, "routeTitle": VALID_ROUTE_TITLE, "stopTitle": VALID_STOP_TITLE, "message": [{"text": "Message 1"}, {"text": "Message 2"}], "direction": { "title": "Outbound", "prediction": [ {"minutes": "1", "epochTime": "1553807371000"}, {"minutes": "2", "epochTime": "1553807372000"}, {"minutes": "3", "epochTime": "1553807373000"}, ], }, } } await assert_setup_sensor(hass, CONFIG_BASIC) state = hass.states.get(SENSOR_ID_SHORT) assert state is not None assert state.attributes["message"] == "Message 1 -- Message 2" async def test_direction_list( hass, mock_nextbus, mock_nextbus_lists, mock_nextbus_predictions ): """Verify that a list of messages are rendered correctly.""" mock_nextbus_predictions.return_value = { "predictions": { "agencyTitle": VALID_AGENCY_TITLE, "routeTitle": VALID_ROUTE_TITLE, "stopTitle": VALID_STOP_TITLE, "message": [{"text": "Message 1"}, {"text": "Message 2"}], "direction": [ { "title": "Outbound", "prediction": [ {"minutes": "1", "epochTime": "1553807371000"}, {"minutes": "2", "epochTime": "1553807372000"}, {"minutes": "3", "epochTime": "1553807373000"}, ], }, { "title": "Outbound 2", "prediction": {"minutes": "0", "epochTime": "1553807374000"}, }, ], } } await assert_setup_sensor(hass, CONFIG_BASIC) state = hass.states.get(SENSOR_ID_SHORT) assert state is not None assert state.state == "2019-03-28T21:09:31+00:00" assert state.attributes["agency"] == VALID_AGENCY_TITLE assert state.attributes["route"] == VALID_ROUTE_TITLE assert state.attributes["stop"] == VALID_STOP_TITLE assert state.attributes["direction"] == "Outbound, Outbound 2" assert state.attributes["upcoming"] == "0, 1, 2, 3" async def test_custom_name( hass, mock_nextbus, mock_nextbus_lists, mock_nextbus_predictions ): """Verify that a custom name can be set via config.""" config = deepcopy(CONFIG_BASIC) config["sensor"]["name"] = "Custom Name" await assert_setup_sensor(hass, config) state = hass.states.get("sensor.custom_name") assert state is not None async def test_no_predictions( hass, mock_nextbus, mock_nextbus_predictions, mock_nextbus_lists ): """Verify there are no exceptions when no predictions are returned.""" mock_nextbus_predictions.return_value = {} await assert_setup_sensor(hass, CONFIG_BASIC) state = hass.states.get(SENSOR_ID_SHORT) assert state is not None assert state.state == "unknown" async def test_verify_no_upcoming( hass, mock_nextbus, mock_nextbus_lists, mock_nextbus_predictions ): """Verify attributes are set despite no upcoming times.""" mock_nextbus_predictions.return_value = { "predictions": { "agencyTitle": VALID_AGENCY_TITLE, "routeTitle": VALID_ROUTE_TITLE, "stopTitle": VALID_STOP_TITLE, "direction": {"title": "Outbound", "prediction": []}, } } await assert_setup_sensor(hass, CONFIG_BASIC) state = hass.states.get(SENSOR_ID_SHORT) assert state is not None assert state.state == "unknown" assert state.attributes["upcoming"] == "No upcoming predictions"
import os from urllib.request import urlopen, Request import re import base64 import mimetypes from flexx import flx _leaflet_url = 'https://cdnjs.cloudflare.com/ajax/libs/leaflet/' _leaflet_version = '1.0.3' _leaflet_icons = [ 'marker-icon.png', 'marker-icon-2x.png', 'marker-shadow.png', ] if 'LEAFLET_DIR' in os.environ: _base_url = 'file://%s' % os.environ['LEAFLET_DIR'] else: _base_url = '%s/%s' % (_leaflet_url, _leaflet_version) mimetypes.init() def _get_code(item): """ Get a text item from _base_url """ url = '%s/%s' % (_base_url, item) req = Request(url, headers={'User-Agent': 'flexx/%s' % flx.__version__}) return urlopen(req).read().decode() def _get_data(item_or_url): """ Get a binary item from url or _base_url """ if '://' in item_or_url: url = item_or_url else: url = '%s/%s' % (_base_url, item_or_url) req = Request(url, headers={'User-Agent': 'flexx/%s' % flx.__version__}) return urlopen(req).read() def _embed_css_resources(css, types=('.png',)): """ Replace urls in css with data urls """ type_str = '|'.join('\%s' % t for t in types) rx = re.compile('(url\s*\(\s*(.*(%s))\s*\))' % type_str) found = rx.findall(css) for match, item, ext in found: data = base64.b64encode(_get_data(item)).decode() mime = mimetypes.types_map[ext] repl = 'url(data:%s;base64,%s)' % (mime, data) css = css.replace(match, repl) return css flx.assets.associate_asset( __name__, 'leaflet.js', lambda: _get_code('leaflet.js'), ) flx.assets.associate_asset( __name__, 'leaflet.css', lambda: _embed_css_resources(_get_code('leaflet.css')), ) for icon in _leaflet_icons: flx.assets.add_shared_data(icon, _get_data('images/%s' % icon)) class LeafletWidget(flx.Widget): """ A widget that shows a slippy/tile-map using Leaflet. """ layers = flx.ListProp([], doc=""" List of tilemap layer tuples: (url, 'Layer'). """) zoom = flx.IntProp(8, settable=True, doc=""" Zoom level for the map. """) min_zoom = flx.IntProp(0, settable=True, doc=""" self zoom level for the map. """) max_zoom = flx.IntProp(18, settable=True, doc=""" Maximum zoom level for the map. """) center = flx.FloatPairProp((5.2, 5.5), settable=True, doc=""" The center of the map. """) show_layers = flx.BoolProp(False, settable=True, doc=""" Whether to show layers-icon on the top-right of the map. """) show_scale = flx.BoolProp(False, settable=True, doc=""" Whether to show scale at bottom-left of map. """) @flx.action def add_layer(self, url, name=None): """ Add a layer to the map. """ # Avoid duplicates self.remove_layer(url) if name: self.remove_layer(name) # Add layer layers = self.layers + [(url, name or 'Layer')] self._mutate_layers(layers) @flx.action def remove_layer(self, url_or_name): """ Remove a layer from the map by url or name. """ layers = list(self.layers) for i in reversed(range(len(layers))): if url_or_name in layers[i]: layers.pop(i) self._mutate_layers(layers) def _create_dom(self): global L, document node = document.createElement('div') self.mapnode = document.createElement('div') node.appendChild(self.mapnode) self.mapnode.id = 'maproot' self.mapnode.style.position = 'absolute' self.mapnode.style.top = '0px' self.mapnode.style.left = '0px' self.map = L.map(self.mapnode) self.map.on('zoomend', self.map_handle_zoom) self.map.on('moveend', self.map_handle_move) self.map.on('click', self.map_handle_mouse) self.map.on('dblclick', self.map_handle_mouse) # Container to keep track of leaflet layer objects self.layer_container = [] self.layer_control = L.control.layers() self.scale = L.control.scale({'imperial': False, 'maxWidth': 200}) # Set the path for icon images L.Icon.Default.prototype.options.imagePath = '_data/shared/' return node def map_handle_zoom(self, e): global isNaN zoom = self.map.getZoom() if isNaN(zoom): return if zoom != self.zoom: self.set_zoom(zoom) def map_handle_move(self, e): center_coord = self.map.getCenter() center = center_coord.lat, center_coord.lng if center != self.center: self.set_center(center) def map_handle_mouse(self, e): latlng = [e.latlng.lat, e.latlng.lng] xy = [e.layerPoint.x, e.layerPoint.y] self.pointer_event(e.type, latlng, xy) @flx.emitter def pointer_event(self, event, latlng, xy): return {'event': event, 'latlng': latlng, 'xy': xy} @flx.reaction def __handle_zoom(self): self.map.setZoom(self.zoom) @flx.reaction def __handle_min_zoom(self): self.map.setMinZoom(self.min_zoom) @flx.reaction def __handle_max_zoom(self): self.map.setMaxZoom(self.max_zoom) @flx.reaction def __handle_center(self): self.map.panTo(self.center) @flx.reaction def __handle_show_layers(self): if self.show_layers: self.map.addControl(self.layer_control) else: self.map.removeControl(self.layer_control) @flx.reaction def __handle_show_scale(self): if self.show_scale: self.map.addControl(self.scale) else: self.map.removeControl(self.scale) @flx.reaction def __size_changed(self): size = self.size if size[0] or size[1]: self.mapnode.style.width = size[0] + 'px' self.mapnode.style.height = size[1] + 'px' # Notify the map that it's container's size changed self.map.invalidateSize() @flx.reaction def __layers_changed(self): global L for layer in self.layer_container: self.layer_control.removeLayer(layer) if self.map.hasLayer(layer): self.map.removeLayer(layer) for layer_url, layer_name in self.layers: if not layer_url.endswith('.png'): if not layer_url.endswith('/'): layer_url += '/' layer_url += '{z}/{x}/{y}.png' new_layer = L.tileLayer(layer_url) self.layer_container.append(new_layer) self.map.addLayer(new_layer) self.layer_control.addOverlay(new_layer, layer_name) class LeafletExample(flx.Widget): def init(self): with flx.HBox(): self.leaflet = LeafletWidget( flex=1, center=(52, 4.1), zoom=12, show_scale=lambda: self.cbs.checked, show_layers=lambda: self.cbl.checked, ) with flx.VBox(): self.btna = flx.Button(text='Add SeaMap') self.btnr = flx.Button(text='Remove SeaMap') self.cbs = flx.CheckBox(text='Show scale') self.cbl = flx.CheckBox(text='Show layers') self.list = flx.VBox() flx.Widget(flex=1) self.leaflet.add_layer('http://a.tile.openstreetmap.org/', 'OpenStreetMap') @flx.reaction('btna.pointer_click') def handle_seamap_add(self, *events): self.leaflet.add_layer('http://t1.openseamap.org/seamark/', 'OpenSeaMap') @flx.reaction('btnr.pointer_click') def handle_seamap_remove(self, *events): self.leaflet.remove_layer('http://t1.openseamap.org/seamark/', 'OpenSeaMap') # @flx.reaction('cbs.checked', 'cbl.checked') # def handle_checkboxes(self, *events): # self.leaflet.set_show_scale(self.cbs.checked # self.leaflet.show_layers = self.cbl.checked @flx.reaction('leaflet.pointer_event') def handle_leaflet_mouse(self, *events): global L ev = events[-1] latlng = tuple(ev['latlng']) flx.Label(text='%f, %f' % (int(100*latlng[0])/100, int(100*latlng[1])/100), parent=self.list) latlng = tuple(ev['latlng']) if ev['event'] == 'click': m = L.marker(ev['latlng']) m.bindTooltip('%f, %f' % (latlng[0], latlng[1])) m.addTo(self.leaflet.map) if __name__ == '__main__': flx.launch(LeafletExample, 'firefox') flx.run()
import pytest import sh from molecule import config from molecule.dependency import shell @pytest.fixture def _dependency_section_data(): return { 'dependency': { 'name': 'shell', 'command': 'ls -l -a /tmp', 'options': { 'foo': 'bar', }, 'env': { 'FOO': 'bar', } } } # NOTE(retr0h): The use of the `patched_config_validate` fixture, disables # config.Config._validate from executing. Thus preventing odd side-effects # throughout patched.assert_called unit tests. @pytest.fixture def _instance(_dependency_section_data, patched_config_validate, config_instance): return shell.Shell(config_instance) def test_config_private_member(_instance): assert isinstance(_instance._config, config.Config) def test_default_options_property(_instance): x = {} assert x == _instance.default_options def test_default_env_property(_instance): assert 'MOLECULE_FILE' in _instance.default_env assert 'MOLECULE_INVENTORY_FILE' in _instance.default_env assert 'MOLECULE_SCENARIO_DIRECTORY' in _instance.default_env assert 'MOLECULE_INSTANCE_CONFIG' in _instance.default_env @pytest.mark.parametrize( 'config_instance', ['_dependency_section_data'], indirect=True) def test_name_property(_instance): assert 'shell' == _instance.name def test_enabled_property(_instance): assert _instance.enabled @pytest.mark.parametrize( 'config_instance', ['_dependency_section_data'], indirect=True) def test_options_property(_instance): x = {'foo': 'bar'} assert x == _instance.options @pytest.mark.parametrize( 'config_instance', ['_dependency_section_data'], indirect=True) def test_options_property_handles_cli_args(_instance): _instance._config.args = {} x = {'foo': 'bar'} assert x == _instance.options @pytest.mark.parametrize( 'config_instance', ['_dependency_section_data'], indirect=True) def test_env_property(_instance): assert 'bar' == _instance.env['FOO'] @pytest.mark.parametrize( 'config_instance', ['_dependency_section_data'], indirect=True) def test_bake(_instance): _instance.bake() x = [ str(sh.ls), '-l', '-a', '/tmp', ] result = str(_instance._sh_command).split() assert sorted(x) == sorted(result) def test_execute(patched_run_command, patched_logger_success, _instance): _instance._sh_command = 'patched-command' _instance.execute() patched_run_command.assert_called_once_with('patched-command', debug=False) msg = 'Dependency completed successfully.' patched_logger_success.assert_called_once_with(msg) def test_execute_does_not_execute_when_disabled( patched_run_command, patched_logger_warn, _instance): _instance._config.config['dependency']['enabled'] = False _instance.execute() assert not patched_run_command.called msg = 'Skipping, dependency is disabled.' patched_logger_warn.assert_called_once_with(msg) @pytest.mark.parametrize( 'config_instance', ['_dependency_section_data'], indirect=True) def test_execute_bakes(patched_run_command, _instance): _instance.execute() assert _instance._sh_command is not None assert 1 == patched_run_command.call_count @pytest.mark.parametrize( 'config_instance', ['_dependency_section_data'], indirect=True) def test_executes_catches_and_exits_return_code(patched_run_command, _instance): patched_run_command.side_effect = sh.ErrorReturnCode_1(sh.ls, b'', b'') with pytest.raises(SystemExit) as e: _instance.execute() assert 1 == e.value.code def test_has_command_configured(_instance): assert _instance._has_command_configured()
from unittest import mock from pyfritzhome import LoginError import pytest from requests.exceptions import HTTPError from homeassistant.components.fritzbox.const import DOMAIN from homeassistant.components.ssdp import ( ATTR_SSDP_LOCATION, ATTR_UPNP_FRIENDLY_NAME, ATTR_UPNP_UDN, ) from homeassistant.const import CONF_DEVICES, CONF_HOST, CONF_PASSWORD, CONF_USERNAME from homeassistant.helpers.typing import HomeAssistantType from . import MOCK_CONFIG from tests.async_mock import Mock, patch MOCK_USER_DATA = MOCK_CONFIG[DOMAIN][CONF_DEVICES][0] MOCK_SSDP_DATA = { ATTR_SSDP_LOCATION: "https://fake_host:12345/test", ATTR_UPNP_FRIENDLY_NAME: "fake_name", ATTR_UPNP_UDN: "uuid:only-a-test", } @pytest.fixture(name="fritz") def fritz_fixture() -> Mock: """Patch libraries.""" with patch("homeassistant.components.fritzbox.config_flow.Fritzhome") as fritz: yield fritz async def test_user(hass: HomeAssistantType, fritz: Mock): """Test starting a flow by user.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "user"} ) assert result["type"] == "form" assert result["step_id"] == "user" result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input=MOCK_USER_DATA ) assert result["type"] == "create_entry" assert result["title"] == "fake_host" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_PASSWORD] == "fake_pass" assert result["data"][CONF_USERNAME] == "fake_user" assert not result["result"].unique_id async def test_user_auth_failed(hass: HomeAssistantType, fritz: Mock): """Test starting a flow by user with authentication failure.""" fritz().login.side_effect = [LoginError("Boom"), mock.DEFAULT] result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "user"}, data=MOCK_USER_DATA ) assert result["type"] == "form" assert result["step_id"] == "user" assert result["errors"]["base"] == "invalid_auth" async def test_user_not_successful(hass: HomeAssistantType, fritz: Mock): """Test starting a flow by user but no connection found.""" fritz().login.side_effect = OSError("Boom") result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "user"}, data=MOCK_USER_DATA ) assert result["type"] == "abort" assert result["reason"] == "no_devices_found" async def test_user_already_configured(hass: HomeAssistantType, fritz: Mock): """Test starting a flow by user when already configured.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "user"}, data=MOCK_USER_DATA ) assert result["type"] == "create_entry" assert not result["result"].unique_id result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "user"}, data=MOCK_USER_DATA ) assert result["type"] == "abort" assert result["reason"] == "already_configured" async def test_import(hass: HomeAssistantType, fritz: Mock): """Test starting a flow by import.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "import"}, data=MOCK_USER_DATA ) assert result["type"] == "create_entry" assert result["title"] == "fake_host" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_PASSWORD] == "fake_pass" assert result["data"][CONF_USERNAME] == "fake_user" assert not result["result"].unique_id async def test_ssdp(hass: HomeAssistantType, fritz: Mock): """Test starting a flow from discovery.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "ssdp"}, data=MOCK_SSDP_DATA ) assert result["type"] == "form" assert result["step_id"] == "confirm" result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={CONF_PASSWORD: "fake_pass", CONF_USERNAME: "fake_user"}, ) assert result["type"] == "create_entry" assert result["title"] == "fake_name" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_PASSWORD] == "fake_pass" assert result["data"][CONF_USERNAME] == "fake_user" assert result["result"].unique_id == "only-a-test" async def test_ssdp_no_friendly_name(hass: HomeAssistantType, fritz: Mock): """Test starting a flow from discovery without friendly name.""" MOCK_NO_NAME = MOCK_SSDP_DATA.copy() del MOCK_NO_NAME[ATTR_UPNP_FRIENDLY_NAME] result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "ssdp"}, data=MOCK_NO_NAME ) assert result["type"] == "form" assert result["step_id"] == "confirm" result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={CONF_PASSWORD: "fake_pass", CONF_USERNAME: "fake_user"}, ) assert result["type"] == "create_entry" assert result["title"] == "fake_host" assert result["data"][CONF_HOST] == "fake_host" assert result["data"][CONF_PASSWORD] == "fake_pass" assert result["data"][CONF_USERNAME] == "fake_user" assert result["result"].unique_id == "only-a-test" async def test_ssdp_auth_failed(hass: HomeAssistantType, fritz: Mock): """Test starting a flow from discovery with authentication failure.""" fritz().login.side_effect = LoginError("Boom") result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "ssdp"}, data=MOCK_SSDP_DATA ) assert result["type"] == "form" assert result["step_id"] == "confirm" assert result["errors"] == {} result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={CONF_PASSWORD: "whatever", CONF_USERNAME: "whatever"}, ) assert result["type"] == "form" assert result["step_id"] == "confirm" assert result["errors"]["base"] == "invalid_auth" async def test_ssdp_not_successful(hass: HomeAssistantType, fritz: Mock): """Test starting a flow from discovery but no device found.""" fritz().login.side_effect = OSError("Boom") result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "ssdp"}, data=MOCK_SSDP_DATA ) assert result["type"] == "form" assert result["step_id"] == "confirm" result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={CONF_PASSWORD: "whatever", CONF_USERNAME: "whatever"}, ) assert result["type"] == "abort" assert result["reason"] == "no_devices_found" async def test_ssdp_not_supported(hass: HomeAssistantType, fritz: Mock): """Test starting a flow from discovery with unsupported device.""" fritz().get_device_elements.side_effect = HTTPError("Boom") result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "ssdp"}, data=MOCK_SSDP_DATA ) assert result["type"] == "form" assert result["step_id"] == "confirm" result = await hass.config_entries.flow.async_configure( result["flow_id"], user_input={CONF_PASSWORD: "whatever", CONF_USERNAME: "whatever"}, ) assert result["type"] == "abort" assert result["reason"] == "not_supported" async def test_ssdp_already_in_progress_unique_id(hass: HomeAssistantType, fritz: Mock): """Test starting a flow from discovery twice.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "ssdp"}, data=MOCK_SSDP_DATA ) assert result["type"] == "form" assert result["step_id"] == "confirm" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "ssdp"}, data=MOCK_SSDP_DATA ) assert result["type"] == "abort" assert result["reason"] == "already_in_progress" async def test_ssdp_already_in_progress_host(hass: HomeAssistantType, fritz: Mock): """Test starting a flow from discovery twice.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "ssdp"}, data=MOCK_SSDP_DATA ) assert result["type"] == "form" assert result["step_id"] == "confirm" MOCK_NO_UNIQUE_ID = MOCK_SSDP_DATA.copy() del MOCK_NO_UNIQUE_ID[ATTR_UPNP_UDN] result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "ssdp"}, data=MOCK_NO_UNIQUE_ID ) assert result["type"] == "abort" assert result["reason"] == "already_in_progress" async def test_ssdp_already_configured(hass: HomeAssistantType, fritz: Mock): """Test starting a flow from discovery when already configured.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "user"}, data=MOCK_USER_DATA ) assert result["type"] == "create_entry" assert not result["result"].unique_id result2 = await hass.config_entries.flow.async_init( DOMAIN, context={"source": "ssdp"}, data=MOCK_SSDP_DATA ) assert result2["type"] == "abort" assert result2["reason"] == "already_configured" assert result["result"].unique_id == "only-a-test"
import os from tempfile import TemporaryDirectory from radicale import pathutils class StorageCreateCollectionMixin: def create_collection(self, href, items=None, props=None): folder = self._get_collection_root_folder() # Path should already be sanitized sane_path = pathutils.strip_path(href) filesystem_path = pathutils.path_to_filesystem(folder, sane_path) if not props: self._makedirs_synced(filesystem_path) return self._collection_class( self, pathutils.unstrip_path(sane_path, True)) parent_dir = os.path.dirname(filesystem_path) self._makedirs_synced(parent_dir) # Create a temporary directory with an unsafe name with TemporaryDirectory( prefix=".Radicale.tmp-", dir=parent_dir) as tmp_dir: # The temporary directory itself can't be renamed tmp_filesystem_path = os.path.join(tmp_dir, "collection") os.makedirs(tmp_filesystem_path) col = self._collection_class( self, pathutils.unstrip_path(sane_path, True), filesystem_path=tmp_filesystem_path) col.set_meta(props) if items is not None: if props.get("tag") == "VCALENDAR": col._upload_all_nonatomic(items, suffix=".ics") elif props.get("tag") == "VADDRESSBOOK": col._upload_all_nonatomic(items, suffix=".vcf") if os.path.lexists(filesystem_path): pathutils.rename_exchange(tmp_filesystem_path, filesystem_path) else: os.rename(tmp_filesystem_path, filesystem_path) self._sync_directory(parent_dir) return self._collection_class( self, pathutils.unstrip_path(sane_path, True))
from homeassistant import __main__ as main from homeassistant.const import REQUIRED_PYTHON_VER from tests.async_mock import PropertyMock, patch @patch("sys.exit") def test_validate_python(mock_exit): """Test validate Python version method.""" with patch("sys.version_info", new_callable=PropertyMock(return_value=(2, 7, 8))): main.validate_python() assert mock_exit.called is True mock_exit.reset_mock() with patch("sys.version_info", new_callable=PropertyMock(return_value=(3, 2, 0))): main.validate_python() assert mock_exit.called is True mock_exit.reset_mock() with patch("sys.version_info", new_callable=PropertyMock(return_value=(3, 4, 2))): main.validate_python() assert mock_exit.called is True mock_exit.reset_mock() with patch("sys.version_info", new_callable=PropertyMock(return_value=(3, 5, 2))): main.validate_python() assert mock_exit.called is True mock_exit.reset_mock() with patch( "sys.version_info", new_callable=PropertyMock( return_value=(REQUIRED_PYTHON_VER[0] - 1,) + REQUIRED_PYTHON_VER[1:] ), ): main.validate_python() assert mock_exit.called is True mock_exit.reset_mock() with patch( "sys.version_info", new_callable=PropertyMock(return_value=REQUIRED_PYTHON_VER) ): main.validate_python() assert mock_exit.called is False mock_exit.reset_mock() with patch( "sys.version_info", new_callable=PropertyMock( return_value=(REQUIRED_PYTHON_VER[:2]) + (REQUIRED_PYTHON_VER[2] + 1,) ), ): main.validate_python() assert mock_exit.called is False mock_exit.reset_mock()
import re from django.shortcuts import redirect from django.urls import reverse from django.utils.http import urlencode from django.utils.translation import gettext as _ from weblate.legal.models import Agreement from weblate.utils import messages class RequireTOSMiddleware: """Middleware to enforce TOS confirmation on certain requests.""" def __init__(self, get_response=None): self.get_response = get_response # Ignored paths regexp, mostly covers API and legal pages self.matcher = re.compile( r"^/(legal|about|contact|api|static|widgets|data|hooks)/" ) def process_view(self, request, view_func, view_args, view_kwargs): """Check request whether user has agreed to TOS.""" # We intercept only GET requests for authenticated users if request.method != "GET" or not request.user.is_authenticated: return None # Some paths are ignored if self.matcher.match(request.path): return None # Check TOS agreement agreement = Agreement.objects.get_or_create(user=request.user)[0] if not agreement.is_current(): messages.info( request, _( "We have new version of the Terms of Service document, " "please read it and confirm that you agree with it." ), ) return redirect( "{}?{}".format( reverse("legal:confirm"), urlencode({"next": request.get_full_path()}), ) ) # Explicitly return None for all non-matching requests return None def __call__(self, request): return self.get_response(request)
from django.core.management.base import CommandError from django.db import transaction from weblate.lang.models import Language from weblate.trans.models import Component, Translation, Unit from weblate.utils.management.base import BaseCommand class WeblateComponentCommand(BaseCommand): """Command which accepts project/component/--all params to process.""" needs_repo = False def add_arguments(self, parser): parser.add_argument( "--all", action="store_true", dest="all", default=False, help="process all components", ) parser.add_argument( "component", nargs="*", help="Slug <project/component> of component to process", ) def get_units(self, **options): """Return list of units matching parameters.""" if options["all"]: return Unit.objects.all() return Unit.objects.filter( translation__component__in=self.get_components(**options) ) def iterate_units(self, **options): """Memory effective iteration over units.""" units = self.get_units(**options).order_by("pk") count = units.count() if not count: return current = 0 last = units.order_by("-pk")[0].pk done = 0 step = 1000 # Iterate over chunks while current < last: self.stdout.write("Processing {:.1f}%".format(done * 100.0 / count)) with transaction.atomic(): step_units = units.filter(pk__gt=current)[:step].prefetch() for unit in step_units: current = unit.pk done += 1 yield unit self.stdout.write("Operation completed") def get_translations(self, **options): """Return list of translations matching parameters.""" return Translation.objects.prefetch().filter( component__in=self.get_components(**options) ) def get_components(self, **options): """Return list of components matching parameters.""" if options["all"]: # all components if self.needs_repo: result = Component.objects.exclude(repo__startswith="weblate:/") else: result = Component.objects.all() elif not options["component"]: # no argumets to filter projects self.stderr.write( "Please specify either --all " "or at least one <project/component>" ) raise CommandError("Nothing to process!") else: # start with none and add found result = Component.objects.none() # process arguments for arg in options["component"]: # do we have also component? parts = arg.split("/") # filter by project found = Component.objects.filter(project__slug=parts[0]) # filter by component if available if len(parts) == 2: found = found.filter(slug=parts[1]) # warn on no match if found.count() == 0: self.stderr.write(f'"{arg}" did not match any components') raise CommandError("Nothing to process!") # merge results result |= found return result def handle(self, *args, **options): """The actual logic of the command. Subclasses must implement this method. """ raise NotImplementedError() class WeblateLangCommand(WeblateComponentCommand): """Command accepting additional language parameter. It can filter list of languages to process. """ def add_arguments(self, parser): super().add_arguments(parser) parser.add_argument( "--lang", action="store", dest="lang", default=None, help="Limit only to given languages (comma separated list)", ) def get_units(self, **options): """Return list of units matching parameters.""" units = super().get_units(**options) if options["lang"] is not None: units = units.filter(translation__language__code=options["lang"]) return units def get_translations(self, **options): """Return list of translations matching parameters.""" result = super().get_translations(**options) if options["lang"] is not None: langs = options["lang"].split(",") result = result.filter(language_code__in=langs) return result def handle(self, *args, **options): """The actual logic of the command. Subclasses must implement this method. """ raise NotImplementedError() class WeblateTranslationCommand(BaseCommand): """Command with target of one translation.""" def add_arguments(self, parser): parser.add_argument("project", help="Slug of project") parser.add_argument("component", help="Slug of component") parser.add_argument("language", help="Slug of language") def get_translation(self, **options): """Get translation object.""" try: component = Component.objects.get( project__slug=options["project"], slug=options["component"] ) except Component.DoesNotExist: raise CommandError("No matching translation component found!") try: return Translation.objects.get( component=component, language__code=options["language"] ) except Translation.DoesNotExist: if "add" in options and options["add"]: language = Language.objects.fuzzy_get(options["language"]) if component.add_new_language(language, None): return Translation.objects.get( component=component, language=language ) raise CommandError("No matching translation project found!") def handle(self, *args, **options): """The actual logic of the command. Subclasses must implement this method. """ raise NotImplementedError()
from Handler import Handler from graphite import GraphiteHandler from copy import deepcopy class MultiGraphiteHandler(Handler): """ Implements the abstract Handler class, sending data to multiple graphite servers by using two instances of GraphiteHandler """ def __init__(self, config=None): """ Create a new instance of the MultiGraphiteHandler class """ # Initialize Handler Handler.__init__(self, config) self.handlers = [] # Initialize Options hosts = self.config['host'] for host in hosts: config = deepcopy(self.config) config['host'] = host self.handlers.append(GraphiteHandler(config)) def get_default_config_help(self): """ Returns the help text for the configuration options for this handler """ config = super(MultiGraphiteHandler, self).get_default_config_help() config.update({ 'host': 'Hostname, Hostname, Hostname', 'port': 'Port', 'proto': 'udp or tcp', 'timeout': '', 'batch': 'How many to store before sending to the graphite server', 'max_backlog_multiplier': 'how many batches to store before trimming', # NOQA 'trim_backlog_multiplier': 'Trim down how many batches', }) return config def get_default_config(self): """ Return the default config for the handler """ config = super(MultiGraphiteHandler, self).get_default_config() config.update({ 'host': ['localhost'], 'port': 2003, 'proto': 'tcp', 'timeout': 15, 'batch': 1, 'max_backlog_multiplier': 5, 'trim_backlog_multiplier': 4, }) return config def process(self, metric): """ Process a metric by passing it to GraphiteHandler instances """ for handler in self.handlers: handler.process(metric) def flush(self): """Flush metrics in queue""" for handler in self.handlers: handler.flush()
import numpy as np from ..evoked import Evoked from ..epochs import BaseEpochs from ..io import BaseRaw from ..event import find_events from ..io.pick import _picks_to_idx from ..utils import _check_preload, _check_option, fill_doc def _get_window(start, end): """Return window which has length as much as parameter start - end.""" from scipy.signal import hann window = 1 - np.r_[hann(4)[:2], np.ones(np.abs(end - start) - 4), hann(4)[-2:]].T return window def _fix_artifact(data, window, picks, first_samp, last_samp, mode): """Modify original data by using parameter data.""" from scipy.interpolate import interp1d if mode == 'linear': x = np.array([first_samp, last_samp]) f = interp1d(x, data[:, (first_samp, last_samp)][picks]) xnew = np.arange(first_samp, last_samp) interp_data = f(xnew) data[picks, first_samp:last_samp] = interp_data if mode == 'window': data[picks, first_samp:last_samp] = \ data[picks, first_samp:last_samp] * window[np.newaxis, :] @fill_doc def fix_stim_artifact(inst, events=None, event_id=None, tmin=0., tmax=0.01, mode='linear', stim_channel=None, picks=None): """Eliminate stimulation's artifacts from instance. .. note:: This function operates in-place, consider passing ``inst.copy()`` if this is not desired. Parameters ---------- inst : instance of Raw or Epochs or Evoked The data. events : array, shape (n_events, 3) The list of events. Required only when inst is Raw. event_id : int The id of the events generating the stimulation artifacts. If None, read all events. Required only when inst is Raw. tmin : float Start time of the interpolation window in seconds. tmax : float End time of the interpolation window in seconds. mode : 'linear' | 'window' Way to fill the artifacted time interval. 'linear' does linear interpolation 'window' applies a (1 - hanning) window. stim_channel : str | None Stim channel to use. %(picks_all_data)s Returns ------- inst : instance of Raw or Evoked or Epochs Instance with modified data. """ _check_option('mode', mode, ['linear', 'window']) s_start = int(np.ceil(inst.info['sfreq'] * tmin)) s_end = int(np.ceil(inst.info['sfreq'] * tmax)) if (mode == "window") and (s_end - s_start) < 4: raise ValueError('Time range is too short. Use a larger interval ' 'or set mode to "linear".') window = None if mode == 'window': window = _get_window(s_start, s_end) picks = _picks_to_idx(inst.info, picks, 'data', exclude=()) _check_preload(inst, 'fix_stim_artifact') if isinstance(inst, BaseRaw): if events is None: events = find_events(inst, stim_channel=stim_channel) if len(events) == 0: raise ValueError('No events are found') if event_id is None: events_sel = np.arange(len(events)) else: events_sel = (events[:, 2] == event_id) event_start = events[events_sel, 0] data = inst._data for event_idx in event_start: first_samp = int(event_idx) - inst.first_samp + s_start last_samp = int(event_idx) - inst.first_samp + s_end _fix_artifact(data, window, picks, first_samp, last_samp, mode) elif isinstance(inst, BaseEpochs): if inst.reject is not None: raise RuntimeError('Reject is already applied. Use reject=None ' 'in the constructor.') e_start = int(np.ceil(inst.info['sfreq'] * inst.tmin)) first_samp = s_start - e_start last_samp = s_end - e_start data = inst._data for epoch in data: _fix_artifact(epoch, window, picks, first_samp, last_samp, mode) elif isinstance(inst, Evoked): first_samp = s_start - inst.first last_samp = s_end - inst.first data = inst.data _fix_artifact(data, window, picks, first_samp, last_samp, mode) else: raise TypeError('Not a Raw or Epochs or Evoked (got %s).' % type(inst)) return inst
from __future__ import absolute_import from __future__ import division from __future__ import print_function from compare_gan.metrics import eval_task import numpy as np import tensorflow as tf class GeneratorConditionNumberTask(eval_task.EvalTask): """Computes the generator condition number. Computes the condition number for metric Tensor of the generator Jacobian. This condition number is computed locally for each z sample in a minibatch. Returns the mean log condition number and standard deviation across the minibatch. Follows the methods in https://arxiv.org/abs/1802.08768. """ _CONDITION_NUMBER_COUNT = "log_condition_number_count" _CONDITION_NUMBER_MEAN = "log_condition_number_mean" _CONDITION_NUMBER_STD = "log_condition_number_std" def metric_list(self): return frozenset([ self._CONDITION_NUMBER_COUNT, self._CONDITION_NUMBER_MEAN, self._CONDITION_NUMBER_STD ]) def run_in_session(self, options, sess, gan, real_images): del options, real_images result_dict = {} result = compute_generator_condition_number(sess, gan) result_dict[self._CONDITION_NUMBER_COUNT] = len(result) result_dict[self._CONDITION_NUMBER_MEAN] = np.mean(result) result_dict[self._CONDITION_NUMBER_STD] = np.std(result) return result_dict def compute_generator_condition_number(sess, gan): """Computes the generator condition number. Computes the Jacobian of the generator in session, then postprocesses to get the condition number. Args: sess: tf.Session object. gan: AbstractGAN object, that is already present in the current tf.Graph. Returns: A list of length gan.batch_size. Each element is the condition number computed at a single z sample within a minibatch. """ shape = gan.fake_images.get_shape().as_list() flat_generator_output = tf.reshape( gan.fake_images, [gan.batch_size, np.prod(shape[1:])]) tf_jacobian = compute_jacobian( xs=gan.z, fx=flat_generator_output) z_sample = gan.z_generator(gan.batch_size, gan.z_dim) np_jacobian = sess.run(tf_jacobian, feed_dict={gan.z: z_sample}) result_dict = analyze_jacobian(np_jacobian) return result_dict["metric_tensor"]["log_condition_number"] def compute_jacobian(xs, fx): """Computes df/dx matrix. We assume x and fx are both batched, so the shape of the Jacobian is: [fx.shape[0]] + fx.shape[1:] + xs.shape[1:] This function computes the grads inside a TF loop so that we don't end up storing many extra copies of the function we are taking the Jacobian of. Args: xs: input tensor(s) of arbitrary shape. fx: f(x) tensor of arbitrary shape. Returns: df/dx tensor of shape [fx.shape[0], fx.shape[1], xs.shape[1]]. """ # Declares an iterator and tensor array loop variables for the gradients. n = fx.get_shape().as_list()[1] loop_vars = [tf.constant(0, tf.int32), tf.TensorArray(xs.dtype, n)] def accumulator(j, result): return (j + 1, result.write(j, tf.gradients(fx[:, j], xs)[0])) # Iterates over all elements of the gradient and computes all partial # derivatives. _, df_dxs = tf.while_loop(lambda j, _: j < n, accumulator, loop_vars) df_dx = df_dxs.stack() df_dx = tf.transpose(df_dx, perm=[1, 0, 2]) return df_dx def _analyze_metric_tensor(metric_tensor): """Analyzes a metric tensor. Args: metric_tensor: A numpy array of shape [batch, dim, dim] Returns: A dict containing spectral statstics. """ # eigenvalues will have shape [batch, dim]. eigenvalues, _ = np.linalg.eig(metric_tensor) # Shape [batch,]. condition_number = np.linalg.cond(metric_tensor) log_condition_number = np.log(condition_number) (_, logdet) = np.linalg.slogdet(metric_tensor) return { "eigenvalues": eigenvalues, "logdet": logdet, "log_condition_number": log_condition_number } def analyze_jacobian(jacobian_array): """Computes eigenvalue statistics of the Jacobian. Computes the eigenvalues and condition number of the metric tensor for the Jacobian evaluated at each element of the batch and the mean metric tensor across the batch. Args: jacobian_array: A numpy array holding the Jacobian. Returns: A dict of spectral statistics with two elements, one containing stats for every metric tensor in the batch, another for the mean metric tensor. """ # Shape [batch, x_dim, fx_dim]. jacobian_transpose = np.transpose(jacobian_array, [0, 2, 1]) # Shape [batch, x_dim, x_dim]. metric_tensor = np.matmul(jacobian_transpose, jacobian_array) mean_metric_tensor = np.mean(metric_tensor, 0) # Reshapes to have a dummy batch dimension. mean_metric_tensor = np.reshape(mean_metric_tensor, (1,) + metric_tensor.shape[1:]) return { "metric_tensor": _analyze_metric_tensor(metric_tensor), "mean_metric_tensor": _analyze_metric_tensor(mean_metric_tensor) }
import copy import datetime import logging from absl import flags from perfkitbenchmarker import configs from perfkitbenchmarker import sample from perfkitbenchmarker import spark_service BENCHMARK_NAME = 'hadoop_terasort' BENCHMARK_CONFIG = """ hadoop_terasort: description: Run the Apache Hadoop MapReduce Terasort benchmark on a cluster. spark_service: service_type: managed worker_group: vm_spec: GCP: machine_type: n1-standard-4 boot_disk_size: 500 AWS: machine_type: m4.xlarge vm_count: 2 """ TERAGEN = 'teragen' TERASORT = 'terasort' TERAVALIDATE = 'teravalidate' flags.DEFINE_integer('terasort_num_rows', 10000, 'Number of 100-byte rows to generate.') flags.DEFINE_string('terasort_unsorted_dir', 'tera_gen_data', 'Location of ' 'the unsorted data. TeraGen writes here, and TeraSort ' 'reads from here.') flags.DEFINE_string('terasort_data_base', 'terasort_data/', 'The benchmark will append to this to create three ' 'directories: one for the generated, unsorted data, ' 'one for the sorted data, and one for the validate ' 'data. If using a static cluster or if using object ' 'storage buckets, you must cleanup.') flags.DEFINE_bool('terasort_append_timestamp', True, 'Append a timestamp to ' 'the directories given by terasort_unsorted_dir, ' 'terasort_sorted_dir, and terasort_validate_dir') FLAGS = flags.FLAGS def GetConfig(user_config): return configs.LoadConfig(BENCHMARK_CONFIG, user_config, BENCHMARK_NAME) def Prepare(benchmark_spec): pass def Run(benchmark_spec): """Executes the given jar on the specified Spark cluster. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. Returns: A list of sample.Sample objects. """ spark_cluster = benchmark_spec.spark_service start = datetime.datetime.now() terasort_jar = spark_cluster.GetExampleJar(spark_service.HADOOP_JOB_TYPE) results = [] metadata = copy.copy(spark_cluster.GetMetadata()) logging.info('metadata %s ' % str(metadata)) base_dir = FLAGS.terasort_data_base if FLAGS.terasort_append_timestamp: time_string = datetime.datetime.now().strftime('%Y%m%d%H%S') base_dir += time_string base_dir += '/' unsorted_dir = base_dir + 'unsorted' sorted_dir = base_dir + 'sorted' validate_dir = base_dir + 'validate' metadata.update({'terasort_num_rows': FLAGS.terasort_num_rows, 'terasort_sorted_dir': sorted_dir, 'terasort_unsorted_dir': unsorted_dir, 'terasort_validate_dir': validate_dir}) gen_args = [TERAGEN, str(FLAGS.terasort_num_rows), unsorted_dir] sort_args = [TERASORT, unsorted_dir, sorted_dir] validate_args = [TERAVALIDATE, sorted_dir, validate_dir] stages = [('generate', gen_args), ('sort', sort_args), ('validate', validate_args)] cumulative_runtime = 0 for (label, args) in stages: stats = spark_cluster.SubmitJob(terasort_jar, None, job_type=spark_service.HADOOP_JOB_TYPE, job_arguments=args) if not stats[spark_service.SUCCESS]: raise Exception('Stage {0} unsuccessful'.format(label)) current_time = datetime.datetime.now() wall_time = (current_time - start).total_seconds() results.append(sample.Sample(label + '_wall_time', wall_time, 'seconds', metadata)) start = current_time if spark_service.RUNTIME in stats: results.append(sample.Sample(label + '_runtime', stats[spark_service.RUNTIME], 'seconds', metadata)) cumulative_runtime += stats[spark_service.RUNTIME] if spark_service.WAITING in stats: results.append(sample.Sample(label + '_pending_time', stats[spark_service.WAITING], 'seconds', metadata)) results.append(sample.Sample('cumulative_runtime', cumulative_runtime, 'seconds', metadata)) if not spark_cluster.user_managed: create_time = (spark_cluster.resource_ready_time - spark_cluster.create_start_time) results.append(sample.Sample('cluster_create_time', create_time, 'seconds', metadata)) return results def Cleanup(benchmark_spec): pass
import numpy as np from hypertools.tools.align import align from hypertools.tools.load import load # weights = load('weights') weights = [np.random.rand(10, 300) for i in range(3)] geo = load('spiral') data1 = geo.get_data()[0] def test_procrustes(): rot = np.array([[-0.89433495, -0.44719485, -0.01348182], [-0.43426149, 0.87492975, -0.21427761], [-0.10761949, 0.18578133, 0.97667976]]) data2 = np.dot(data1, rot) result = align([data1,data2]) assert np.allclose(result[0],result[1]) def test_hyper(): rot = np.array([[-0.89433495, -0.44719485, -0.01348182], [-0.43426149, 0.87492975, -0.21427761], [-0.10761949, 0.18578133, 0.97667976]]) data2 = np.dot(data1, rot) result = align([data1,data2], align='hyper') assert np.allclose(result[0],result[1], rtol=1) #note: this tolerance is probably too high, but fails at anything lower def test_SRM(): rot = np.array([[-0.89433495, -0.44719485, -0.01348182], [-0.43426149, 0.87492975, -0.21427761], [-0.10761949, 0.18578133, 0.97667976]]) data2 = np.dot(data1, rot) result = align([data1,data2], align='SRM') assert np.allclose(result[0],result[1], rtol=1) def test_align_shapes(): # Should return data with the same shape as input data aligned = align(weights) assert all(al.shape == wt.shape for al, wt in zip(aligned, weights)) def test_align_geo(): aligned = align(geo) assert np.allclose(aligned[0], aligned[1])
from __future__ import absolute_import, unicode_literals import os import pytest import kaptan from tmuxp import config, exc from . import example_dir from .fixtures import config as fixtures TMUXP_DIR = os.path.join(os.path.dirname(__file__), '.tmuxp') def load_yaml(yaml): return kaptan.Kaptan(handler='yaml').import_config(yaml).get() def load_config(_file): return kaptan.Kaptan().import_config(_file).get() def test_export_json(tmpdir): json_config_file = tmpdir.join('config.json') configparser = kaptan.Kaptan() configparser.import_config(fixtures.sampleconfig.sampleconfigdict) json_config_data = configparser.export('json', indent=2) json_config_file.write(json_config_data) new_config = kaptan.Kaptan() new_config_data = new_config.import_config(str(json_config_file)).get() assert fixtures.sampleconfig.sampleconfigdict == new_config_data def test_export_yaml(tmpdir): yaml_config_file = tmpdir.join('config.yaml') configparser = kaptan.Kaptan() sampleconfig = config.inline(fixtures.sampleconfig.sampleconfigdict) configparser.import_config(sampleconfig) yaml_config_data = configparser.export('yaml', indent=2, default_flow_style=False) yaml_config_file.write(yaml_config_data) new_config_data = load_config(str(yaml_config_file)) assert fixtures.sampleconfig.sampleconfigdict == new_config_data def test_scan_config(tmpdir): configs = [] garbage_file = tmpdir.join('config.psd') garbage_file.write('wat') for r, d, f in os.walk(str(tmpdir)): for filela in (x for x in f if x.endswith(('.json', '.ini', 'yaml'))): configs.append(str(tmpdir.join(filela))) files = 0 if tmpdir.join('config.json').check(): files += 1 assert str(tmpdir.join('config.json')) in configs if tmpdir.join('config.yaml').check(): files += 1 assert str(tmpdir.join('config.yaml')) in configs if tmpdir.join('config.ini').check(): files += 1 assert str(tmpdir.join('config.ini')) in configs assert len(configs) == files def test_config_expand1(): """Expand shell commands from string to list.""" test_config = config.expand(fixtures.expand1.before_config) assert test_config == fixtures.expand1.after_config def test_config_expand2(): """Expand shell commands from string to list.""" unexpanded_dict = load_yaml(fixtures.expand2.unexpanded_yaml) expanded_dict = load_yaml(fixtures.expand2.expanded_yaml) assert config.expand(unexpanded_dict) == expanded_dict """Tests for :meth:`config.inline()`.""" ibefore_config = { # inline config 'session_name': 'sampleconfig', 'start_directory': '~', 'windows': [ { 'shell_command': ['top'], 'window_name': 'editor', 'panes': [{'shell_command': ['vim']}, {'shell_command': ['cowsay "hey"']}], 'layout': 'main-verticle', }, { 'window_name': 'logging', 'panes': [{'shell_command': ['tail -F /var/log/syslog']}], }, {'options': {'automatic-rename': True}, 'panes': [{'shell_command': ['htop']}]}, ], } iafter_config = { 'session_name': 'sampleconfig', 'start_directory': '~', 'windows': [ { 'shell_command': 'top', 'window_name': 'editor', 'panes': ['vim', 'cowsay "hey"'], 'layout': 'main-verticle', }, {'window_name': 'logging', 'panes': ['tail -F /var/log/syslog']}, {'options': {'automatic-rename': True}, 'panes': ['htop']}, ], } def test_inline_config(): """:meth:`config.inline()` shell commands list to string.""" test_config = config.inline(ibefore_config) assert test_config == iafter_config """Test config inheritance for the nested 'start_command'.""" inheritance_config_before = { 'session_name': 'sampleconfig', 'start_directory': '/', 'windows': [ { 'window_name': 'editor', 'start_directory': '~', 'panes': [{'shell_command': ['vim']}, {'shell_command': ['cowsay "hey"']}], 'layout': 'main-verticle', }, { 'window_name': 'logging', 'panes': [{'shell_command': ['tail -F /var/log/syslog']}], }, {'window_name': 'shufu', 'panes': [{'shell_command': ['htop']}]}, {'options': {'automatic-rename': True}, 'panes': [{'shell_command': ['htop']}]}, ], } inheritance_config_after = { 'session_name': 'sampleconfig', 'start_directory': '/', 'windows': [ { 'window_name': 'editor', 'start_directory': '~', 'panes': [{'shell_command': ['vim']}, {'shell_command': ['cowsay "hey"']}], 'layout': 'main-verticle', }, { 'window_name': 'logging', 'panes': [{'shell_command': ['tail -F /var/log/syslog']}], }, {'window_name': 'shufu', 'panes': [{'shell_command': ['htop']}]}, {'options': {'automatic-rename': True}, 'panes': [{'shell_command': ['htop']}]}, ], } def test_inheritance_config(): config = inheritance_config_before # TODO: Look at verifying window_start_directory # if 'start_directory' in config: # session_start_directory = config['start_directory'] # else: # session_start_directory = None # for windowconfitem in config['windows']: # window_start_directory = None # # if 'start_directory' in windowconfitem: # window_start_directory = windowconfitem['start_directory'] # elif session_start_directory: # window_start_directory = session_start_directory # # for paneconfitem in windowconfitem['panes']: # if 'start_directory' in paneconfitem: # pane_start_directory = paneconfitem['start_directory'] # elif window_start_directory: # paneconfitem['start_directory'] = window_start_directory # elif session_start_directory: # paneconfitem['start_directory'] = session_start_directory assert config == inheritance_config_after def test_shell_command_before(): """Config inheritance for the nested 'start_command'.""" test_config = fixtures.shell_command_before.config_unexpanded test_config = config.expand(test_config) assert test_config == fixtures.shell_command_before.config_expanded test_config = config.trickle(test_config) assert test_config == fixtures.shell_command_before.config_after def test_in_session_scope(): sconfig = load_yaml(fixtures.shell_command_before_session.before) config.validate_schema(sconfig) assert config.expand(sconfig) == sconfig assert config.expand(config.trickle(sconfig)) == load_yaml( fixtures.shell_command_before_session.expected ) def test_trickle_relative_start_directory(): test_config = config.trickle(fixtures.trickle.before) assert test_config == fixtures.trickle.expected def test_trickle_window_with_no_pane_config(): test_yaml = """ session_name: test_session windows: - window_name: test_1 panes: - shell_command: - ls -l - window_name: test_no_panes """ sconfig = load_yaml(test_yaml) config.validate_schema(sconfig) assert config.expand(config.trickle(sconfig))['windows'][1]['panes'][0] == { 'shell_command': [] } def test_expands_blank_panes(): """Expand blank config into full form. Handle ``NoneType`` and 'blank':: # nothing, None, 'blank' 'panes': [ None, 'blank' ] # should be blank 'panes': [ 'shell_command': [] ] Blank strings:: panes: [ '' ] # should output to: panes: 'shell_command': [''] """ yaml_config_file = os.path.join(example_dir, 'blank-panes.yaml') test_config = load_config(yaml_config_file) assert config.expand(test_config) == fixtures.expand_blank.expected def test_no_session_name(): yaml_config = """ - window_name: editor panes: shell_command: - tail -F /var/log/syslog start_directory: /var/log - window_name: logging automatic-rename: true panes: - shell_command: - htop """ sconfig = kaptan.Kaptan(handler='yaml') sconfig = sconfig.import_config(yaml_config).get() with pytest.raises(exc.ConfigError) as excinfo: config.validate_schema(sconfig) assert excinfo.matches(r'requires "session_name"') def test_no_windows(): yaml_config = """ session_name: test session """ sconfig = kaptan.Kaptan(handler='yaml') sconfig = sconfig.import_config(yaml_config).get() with pytest.raises(exc.ConfigError) as excinfo: config.validate_schema(sconfig) assert excinfo.match(r'list of "windows"') def test_no_window_name(): yaml_config = """ session_name: test session windows: - window_name: editor panes: shell_command: - tail -F /var/log/syslog start_directory: /var/log - automatic-rename: true panes: - shell_command: - htop """ sconfig = kaptan.Kaptan(handler='yaml') sconfig = sconfig.import_config(yaml_config).get() with pytest.raises(exc.ConfigError) as excinfo: config.validate_schema(sconfig) assert excinfo.matches('missing "window_name"') def test_replaces_env_variables(monkeypatch): env_key = "TESTHEY92" env_val = "HEYO1" yaml_config = """ start_directory: {TEST_VAR}/test shell_command_before: {TEST_VAR}/test2 before_script: {TEST_VAR}/test3 session_name: hi - {TEST_VAR} options: default-command: {TEST_VAR}/lol global_options: default-shell: {TEST_VAR}/moo windows: - window_name: editor panes: - shell_command: - tail -F /var/log/syslog start_directory: /var/log - window_name: logging @ {TEST_VAR} automatic-rename: true panes: - shell_command: - htop """.format( TEST_VAR="${%s}" % env_key ) sconfig = load_yaml(yaml_config) monkeypatch.setenv(str(env_key), str(env_val)) sconfig = config.expand(sconfig) assert "%s/test" % env_val == sconfig['start_directory'] assert "%s/test2" % env_val in sconfig['shell_command_before'] assert "%s/test3" % env_val == sconfig['before_script'] assert "hi - %s" % env_val == sconfig['session_name'] assert "%s/moo" % env_val == sconfig['global_options']['default-shell'] assert "%s/lol" % env_val == sconfig['options']['default-command'] assert "logging @ %s" % env_val == sconfig['windows'][1]['window_name']
import time import json import arrow from flask_script import Manager from flask import current_app from lemur.extensions import sentry from lemur.constants import SUCCESS_METRIC_STATUS from lemur.plugins import plugins from lemur.plugins.lemur_acme.plugin import AcmeHandler from lemur.plugins.lemur_aws import s3 manager = Manager( usage="Handles all ACME related tasks" ) @manager.option( "-d", "--domain", dest="domain", required=True, help="Name of the Domain to store to (ex. \"_acme-chall.test.com\".", ) @manager.option( "-t", "--token", dest="token", required=True, help="Value of the Token to store in DNS as content.", ) def dnstest(domain, token): """ Create, verify, and delete DNS TXT records using an autodetected provider. """ print("[+] Starting ACME Tests.") change_id = (domain, token) acme_handler = AcmeHandler() acme_handler.autodetect_dns_providers(domain) if not acme_handler.dns_providers_for_domain[domain]: raise Exception(f"No DNS providers found for domain: {format(domain)}.") # Create TXT Records for dns_provider in acme_handler.dns_providers_for_domain[domain]: dns_provider_plugin = acme_handler.get_dns_provider(dns_provider.provider_type) dns_provider_options = json.loads(dns_provider.credentials) account_number = dns_provider_options.get("account_id") print(f"[+] Creating TXT Record in `{dns_provider.name}` provider") change_id = dns_provider_plugin.create_txt_record(domain, token, account_number) print("[+] Verifying TXT Record has propagated to DNS.") print("[+] This step could take a while...") time.sleep(10) # Verify TXT Records for dns_provider in acme_handler.dns_providers_for_domain[domain]: dns_provider_plugin = acme_handler.get_dns_provider(dns_provider.provider_type) dns_provider_options = json.loads(dns_provider.credentials) account_number = dns_provider_options.get("account_id") try: dns_provider_plugin.wait_for_dns_change(change_id, account_number) print(f"[+] Verified TXT Record in `{dns_provider.name}` provider") except Exception: sentry.captureException() current_app.logger.debug( f"Unable to resolve DNS challenge for change_id: {change_id}, account_id: " f"{account_number}", exc_info=True, ) print(f"[+] Unable to Verify TXT Record in `{dns_provider.name}` provider") time.sleep(10) # Delete TXT Records for dns_provider in acme_handler.dns_providers_for_domain[domain]: dns_provider_plugin = acme_handler.get_dns_provider(dns_provider.provider_type) dns_provider_options = json.loads(dns_provider.credentials) account_number = dns_provider_options.get("account_id") # TODO(csine@: Add Exception Handling dns_provider_plugin.delete_txt_record(change_id, account_number, domain, token) print(f"[+] Deleted TXT Record in `{dns_provider.name}` provider") status = SUCCESS_METRIC_STATUS print("[+] Done with ACME Tests.") @manager.option( "-t", "--token", dest="token", default="date: " + arrow.utcnow().format("YYYY-MM-DDTHH-mm-ss"), required=False, help="Value of the Token", ) @manager.option( "-n", "--token_name", dest="token_name", default="Token-" + arrow.utcnow().format("YYYY-MM-DDTHH-mm-ss"), required=False, help="path", ) @manager.option( "-p", "--prefix", dest="prefix", default="test/", required=False, help="S3 bucket prefix", ) @manager.option( "-a", "--account_number", dest="account_number", required=True, help="AWS Account", ) @manager.option( "-b", "--bucket_name", dest="bucket_name", required=True, help="Bucket Name", ) def upload_acme_token_s3(token, token_name, prefix, account_number, bucket_name): """ This method serves for testing the upload_acme_token to S3, fetching the token to verify it, and then deleting it. It mainly serves for testing purposes. :param token: :param token_name: :param prefix: :param account_number: :param bucket_name: :return: """ additional_options = [ { "name": "bucket", "value": bucket_name, "type": "str", "required": True, "validation": r"[0-9a-z.-]{3,63}", "helpMessage": "Must be a valid S3 bucket name!", }, { "name": "accountNumber", "type": "str", "value": account_number, "required": True, "validation": r"[0-9]{12}", "helpMessage": "A valid AWS account number with permission to access S3", }, { "name": "region", "type": "str", "default": "us-east-1", "required": False, "helpMessage": "Region bucket exists", "available": ["us-east-1", "us-west-2", "eu-west-1"], }, { "name": "encrypt", "type": "bool", "value": False, "required": False, "helpMessage": "Enable server side encryption", "default": True, }, { "name": "prefix", "type": "str", "value": prefix, "required": False, "helpMessage": "Must be a valid S3 object prefix!", }, ] p = plugins.get("aws-s3") p.upload_acme_token(token_name, token, additional_options) if not prefix.endswith("/"): prefix + "/" token_res = s3.get(bucket_name, prefix + token_name, account_number=account_number) assert(token_res == token) s3.delete(bucket_name, prefix + token_name, account_number=account_number)
from __future__ import division import argparse import multiprocessing import numpy as np import PIL import chainer import chainer.functions as F import chainer.links as L from chainer.optimizer_hooks import WeightDecay from chainer import serializers from chainer import training from chainer.training import extensions import chainermn from chainercv.chainer_experimental.datasets.sliceable import TransformDataset from chainercv.chainer_experimental.training.extensions import make_shift from chainercv.links.model.fpn.misc import scale_img from chainercv import transforms from chainercv.datasets import coco_instance_segmentation_label_names from chainercv.datasets import COCOInstanceSegmentationDataset from chainercv.links import MaskRCNNFPNResNet101 from chainercv.links import MaskRCNNFPNResNet50 from chainercv.datasets import coco_bbox_label_names from chainercv.datasets import COCOBboxDataset from chainercv.links import FasterRCNNFPNResNet101 from chainercv.links import FasterRCNNFPNResNet50 from chainercv.links.model.fpn import bbox_head_loss_post from chainercv.links.model.fpn import bbox_head_loss_pre from chainercv.links.model.fpn import mask_head_loss_post from chainercv.links.model.fpn import mask_head_loss_pre from chainercv.links.model.fpn import rpn_loss # https://docs.chainer.org/en/stable/tips.html#my-training-process-gets-stuck-when-using-multiprocessiterator try: import cv2 cv2.setNumThreads(0) except ImportError: pass class TrainChain(chainer.Chain): def __init__(self, model): super(TrainChain, self).__init__() with self.init_scope(): self.model = model def forward(self, imgs, bboxes, labels, masks=None): B = len(imgs) pad_size = np.array( [im.shape[1:] for im in imgs]).max(axis=0) pad_size = ( np.ceil( pad_size / self.model.stride) * self.model.stride).astype(int) x = np.zeros( (len(imgs), 3, pad_size[0], pad_size[1]), dtype=np.float32) for i, img in enumerate(imgs): _, H, W = img.shape x[i, :, :H, :W] = img x = self.xp.array(x) bboxes = [self.xp.array(bbox) for bbox in bboxes] labels = [self.xp.array(label) for label in labels] sizes = [img.shape[1:] for img in imgs] with chainer.using_config('train', False): hs = self.model.extractor(x) rpn_locs, rpn_confs = self.model.rpn(hs) anchors = self.model.rpn.anchors(h.shape[2:] for h in hs) rpn_loc_loss, rpn_conf_loss = rpn_loss( rpn_locs, rpn_confs, anchors, sizes, bboxes) rois, roi_indices = self.model.rpn.decode( rpn_locs, rpn_confs, anchors, x.shape) rois = self.xp.vstack([rois] + bboxes) roi_indices = self.xp.hstack( [roi_indices] + [self.xp.array((i,) * len(bbox)) for i, bbox in enumerate(bboxes)]) rois, roi_indices = self.model.bbox_head.distribute(rois, roi_indices) rois, roi_indices, head_gt_locs, head_gt_labels = bbox_head_loss_pre( rois, roi_indices, self.model.bbox_head.std, bboxes, labels) head_locs, head_confs = self.model.bbox_head(hs, rois, roi_indices) head_loc_loss, head_conf_loss = bbox_head_loss_post( head_locs, head_confs, roi_indices, head_gt_locs, head_gt_labels, B) mask_loss = 0 if masks is not None: # For reducing unnecessary CPU/GPU copy, `masks` is kept in CPU. pad_masks = [ np.zeros( (mask.shape[0], pad_size[0], pad_size[1]), dtype=np.bool) for mask in masks] for i, mask in enumerate(masks): _, H, W = mask.shape pad_masks[i][:, :H, :W] = mask masks = pad_masks mask_rois, mask_roi_indices, gt_segms, gt_mask_labels =\ mask_head_loss_pre( rois, roi_indices, masks, bboxes, head_gt_labels, self.model.mask_head.segm_size) n_roi = sum([len(roi) for roi in mask_rois]) if n_roi > 0: segms = self.model.mask_head(hs, mask_rois, mask_roi_indices) mask_loss = mask_head_loss_post( segms, mask_roi_indices, gt_segms, gt_mask_labels, B) else: # Compute dummy variables to complete the computational graph mask_rois[0] = self.xp.array([[0, 0, 1, 1]], dtype=np.float32) mask_roi_indices[0] = self.xp.array([0], dtype=np.int32) segms = self.model.mask_head(hs, mask_rois, mask_roi_indices) mask_loss = 0 * F.sum(segms) loss = (rpn_loc_loss + rpn_conf_loss + head_loc_loss + head_conf_loss + mask_loss) chainer.reporter.report({ 'loss': loss, 'loss/rpn/loc': rpn_loc_loss, 'loss/rpn/conf': rpn_conf_loss, 'loss/bbox_head/loc': head_loc_loss, 'loss/bbox_head/conf': head_conf_loss, 'loss/mask_head': mask_loss}, self) return loss class Transform(object): def __init__(self, min_size, max_size, mean): self.min_size = min_size self.max_size = max_size self.mean = mean def __call__(self, in_data): if len(in_data) == 4: img, mask, label, bbox = in_data else: img, bbox, label = in_data # Flipping img, params = transforms.random_flip( img, x_random=True, return_param=True) x_flip = params['x_flip'] bbox = transforms.flip_bbox( bbox, img.shape[1:], x_flip=x_flip) # Scaling and mean subtraction img, scale = scale_img( img, self.min_size, self.max_size) img -= self.mean bbox = bbox * scale if len(in_data) == 4: mask = transforms.flip(mask, x_flip=x_flip) mask = transforms.resize( mask.astype(np.float32), img.shape[1:], interpolation=PIL.Image.NEAREST).astype(np.bool) return img, bbox, label, mask else: return img, bbox, label def converter(batch, device=None): # do not send data to gpu (device is ignored) return tuple(list(v) for v in zip(*batch)) def main(): parser = argparse.ArgumentParser() parser.add_argument( '--model', choices=('mask_rcnn_fpn_resnet50', 'mask_rcnn_fpn_resnet101', 'faster_rcnn_fpn_resnet50', 'faster_rcnn_fpn_resnet101'), default='faster_rcnn_fpn_resnet50') parser.add_argument('--batchsize', type=int, default=16) parser.add_argument('--iteration', type=int, default=90000) parser.add_argument('--step', type=int, nargs='*', default=[60000, 80000]) parser.add_argument('--out', default='result') parser.add_argument('--resume') args = parser.parse_args() # https://docs.chainer.org/en/stable/chainermn/tutorial/tips_faqs.html#using-multiprocessiterator if hasattr(multiprocessing, 'set_start_method'): multiprocessing.set_start_method('forkserver') p = multiprocessing.Process() p.start() p.join() comm = chainermn.create_communicator('pure_nccl') device = comm.intra_rank if args.model == 'faster_rcnn_fpn_resnet50': mode = 'bbox' model = FasterRCNNFPNResNet50( n_fg_class=len(coco_bbox_label_names), pretrained_model='imagenet') elif args.model == 'faster_rcnn_fpn_resnet101': mode = 'bbox' model = FasterRCNNFPNResNet101( n_fg_class=len(coco_bbox_label_names), pretrained_model='imagenet') elif args.model == 'mask_rcnn_fpn_resnet50': mode = 'instance_segmentation' model = MaskRCNNFPNResNet50( n_fg_class=len(coco_instance_segmentation_label_names), pretrained_model='imagenet') elif args.model == 'mask_rcnn_fpn_resnet101': mode = 'instance_segmentation' model = MaskRCNNFPNResNet101( n_fg_class=len(coco_instance_segmentation_label_names), pretrained_model='imagenet') model.use_preset('evaluate') train_chain = TrainChain(model) chainer.cuda.get_device_from_id(device).use() train_chain.to_gpu() if mode == 'bbox': train = TransformDataset( COCOBboxDataset(year='2017', split='train'), ('img', 'bbox', 'label'), Transform(800, 1333, model.extractor.mean)) elif mode == 'instance_segmentation': train = TransformDataset( COCOInstanceSegmentationDataset(split='train', return_bbox=True), ('img', 'bbox', 'label', 'mask'), Transform(800, 1333, model.extractor.mean)) if comm.rank == 0: indices = np.arange(len(train)) else: indices = None indices = chainermn.scatter_dataset(indices, comm, shuffle=True) train = train.slice[indices] train_iter = chainer.iterators.MultiprocessIterator( train, args.batchsize // comm.size, n_processes=args.batchsize // comm.size, shared_mem=100 * 1000 * 1000 * 4) optimizer = chainermn.create_multi_node_optimizer( chainer.optimizers.MomentumSGD(), comm) optimizer.setup(train_chain) optimizer.add_hook(WeightDecay(0.0001)) model.extractor.base.conv1.disable_update() model.extractor.base.res2.disable_update() for link in model.links(): if isinstance(link, L.BatchNormalization): link.disable_update() n_iteration = args.iteration * 16 / args.batchsize updater = training.updaters.StandardUpdater( train_iter, optimizer, converter=converter, device=device) trainer = training.Trainer( updater, (n_iteration, 'iteration'), args.out) @make_shift('lr') def lr_schedule(trainer): base_lr = 0.02 * args.batchsize / 16 warm_up_duration = 500 warm_up_rate = 1 / 3 iteration = trainer.updater.iteration if iteration < warm_up_duration: rate = warm_up_rate \ + (1 - warm_up_rate) * iteration / warm_up_duration else: rate = 1 for step in args.step: if iteration >= step * 16 / args.batchsize: rate *= 0.1 return base_lr * rate trainer.extend(lr_schedule) if comm.rank == 0: log_interval = 10, 'iteration' trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.observe_lr(), trigger=log_interval) trainer.extend(extensions.PrintReport( ['epoch', 'iteration', 'lr', 'main/loss', 'main/loss/rpn/loc', 'main/loss/rpn/conf', 'main/loss/bbox_head/loc', 'main/loss/bbox_head/conf', 'main/loss/mask_head' ]), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) trainer.extend(extensions.snapshot(), trigger=(10000, 'iteration')) trainer.extend( extensions.snapshot_object( model, 'model_iter_{.updater.iteration}'), trigger=(n_iteration, 'iteration')) if args.resume: serializers.load_npz(args.resume, trainer, strict=False) trainer.run() if __name__ == '__main__': main()
import voluptuous as vol from homeassistant.components.switch import PLATFORM_SCHEMA, SwitchEntity from homeassistant.const import CONF_NAME import homeassistant.helpers.config_validation as cv from . import CONF_ADS_VAR, DATA_ADS, STATE_KEY_STATE, AdsEntity DEFAULT_NAME = "ADS Switch" PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_ADS_VAR): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, } ) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up switch platform for ADS.""" ads_hub = hass.data.get(DATA_ADS) name = config[CONF_NAME] ads_var = config[CONF_ADS_VAR] add_entities([AdsSwitch(ads_hub, name, ads_var)]) class AdsSwitch(AdsEntity, SwitchEntity): """Representation of an ADS switch device.""" async def async_added_to_hass(self): """Register device notification.""" await self.async_initialize_device(self._ads_var, self._ads_hub.PLCTYPE_BOOL) @property def is_on(self): """Return True if the entity is on.""" return self._state_dict[STATE_KEY_STATE] def turn_on(self, **kwargs): """Turn the switch on.""" self._ads_hub.write_by_name(self._ads_var, True, self._ads_hub.PLCTYPE_BOOL) def turn_off(self, **kwargs): """Turn the switch off.""" self._ads_hub.write_by_name(self._ads_var, False, self._ads_hub.PLCTYPE_BOOL)
import base from docker_registry.core import compat json = compat.json class TestTags(base.TestCase): def test_simple(self, repos_name=None): if repos_name is None: repos_name = self.gen_random_string() image_id = self.gen_hex_string() layer_data = self.gen_random_string(1024) self.upload_image(image_id, parent_id=None, layer=layer_data) # test tags create url = '/v1/repositories/foo/{0}/tags/latest'.format(repos_name) headers = {'User-Agent': 'docker/0.7.2-dev go/go1.2 os/ostest arch/archtest'} resp = self.http_client.put(url, headers=headers, data=json.dumps(image_id)) self.assertEqual(resp.status_code, 200, resp.data) url = '/v1/repositories/foo/{0}/tags/test'.format(repos_name) resp = self.http_client.put(url, data=json.dumps(image_id)) self.assertEqual(resp.status_code, 200, resp.data) # test tags read url = '/v1/repositories/foo/{0}/tags/latest'.format(repos_name) resp = self.http_client.get(url) self.assertEqual(resp.status_code, 200, resp.data) # Note(dmp): unicode patch XXX not applied assume requests does the job self.assertEqual(json.loads(resp.data), image_id, resp.data) # test repository json url = '/v1/repositories/foo/{0}/json'.format(repos_name) resp = self.http_client.get(url) self.assertEqual(resp.status_code, 200, resp.data) # Note(dmp): unicode patch XXX not applied assume requests does the job props = json.loads(resp.data) self.assertEqual(props['docker_version'], '0.7.2-dev') self.assertEqual(props['docker_go_version'], 'go1.2') self.assertEqual(props['os'], 'ostest') self.assertEqual(props['arch'], 'archtest') # test repository tags json url = '/v1/repositories/foo/{0}/tags/latest/json'.format(repos_name) resp = self.http_client.get(url) self.assertEqual(resp.status_code, 200, resp.data) # Note(dmp): unicode patch XXX not applied assume requests does the job props = json.loads(resp.data) self.assertEqual(props['docker_version'], '0.7.2-dev') self.assertEqual(props['docker_go_version'], 'go1.2') self.assertEqual(props['os'], 'ostest') self.assertEqual(props['arch'], 'archtest') # test tags update url = '/v1/repositories/foo/{0}/tags/latest'.format(repos_name) headers = {'User-Agent': 'docker/0.7.2-dev go/go1.2 os/ostest arch/changedarch'} resp = self.http_client.put(url, headers=headers, data=json.dumps(image_id)) self.assertEqual(resp.status_code, 200, resp.data) url = '/v1/repositories/foo/{0}/tags/test'.format(repos_name) resp = self.http_client.put(url, headers=headers, data=json.dumps(image_id)) self.assertEqual(resp.status_code, 200, resp.data) # test repository latest tag json update url = '/v1/repositories/foo/{0}/tags/latest/json'.format(repos_name) resp = self.http_client.get(url) self.assertEqual(resp.status_code, 200, resp.data) # Note(dmp): unicode patch XXX not applied assume requests does the job props = json.loads(resp.data) self.assertEqual(props['docker_version'], '0.7.2-dev') self.assertEqual(props['docker_go_version'], 'go1.2') self.assertEqual(props['os'], 'ostest') self.assertEqual(props['arch'], 'changedarch') # test repository test tag json update url = '/v1/repositories/foo/{0}/tags/test/json'.format(repos_name) resp = self.http_client.get(url) self.assertEqual(resp.status_code, 200, resp.data) # Note(dmp): unicode patch XXX not applied assume requests does the job props = json.loads(resp.data) self.assertEqual(props['docker_version'], '0.7.2-dev') self.assertEqual(props['docker_go_version'], 'go1.2') self.assertEqual(props['os'], 'ostest') self.assertEqual(props['arch'], 'changedarch') # test tags list url = '/v1/repositories/foo/{0}/tags'.format(repos_name) resp = self.http_client.get(url) self.assertEqual(resp.status_code, 200, resp.data) # Note(dmp): unicode patch XXX not applied assume requests does the job self.assertEqual(len(json.loads(resp.data)), 2, resp.data) # test tag delete url = '/v1/repositories/foo/{0}/tags/latest'.format(repos_name) resp = self.http_client.delete(url) self.assertEqual(resp.status_code, 200, resp.data) url = '/v1/repositories/foo/{0}/tags'.format(repos_name) resp = self.http_client.get(url) self.assertEqual(resp.status_code, 200, resp.data) url = '/v1/repositories/foo/{0}/tags/latest'.format(repos_name) resp = self.http_client.get(url) self.assertEqual(resp.status_code, 404, resp.data) # test whole delete url = '/v1/repositories/foo/{0}/'.format(repos_name) resp = self.http_client.delete(url) self.assertEqual(resp.status_code, 200, resp.data) url = '/v1/repositories/foo/{0}/tags'.format(repos_name) resp = self.http_client.get(url) self.assertEqual(resp.status_code, 404, resp.data) def test_notfound(self): notexist = self.gen_random_string() url = '/v1/repositories/{0}/bar/tags'.format(notexist) resp = self.http_client.get(url) self.assertEqual(resp.status_code, 404, resp.data) def test_special_chars(self): repos_name = '{0}%$_-test'.format(self.gen_random_string(5)) self.test_simple(repos_name) def test_tag_name_validation(self): repos_name = self.gen_random_string() image_id = self.gen_hex_string() layer_data = self.gen_random_string(1024) self.upload_image(image_id, parent_id=None, layer=layer_data) headers = {'User-Agent': 'docker/0.7.2-dev go/go1.2 os/ostest arch/archtest'} url = lambda tag: '/v1/repositories/foo/{0}/tags/{1}'.format( repos_name, tag ) tag_name = '$<invalid>' resp = self.http_client.put( url(tag_name), headers=headers, data=json.dumps(image_id) ) self.assertEqual(resp.status_code, 400) tag_name = '.invalid' resp = self.http_client.put( url(tag_name), headers=headers, data=json.dumps(image_id) ) self.assertEqual(resp.status_code, 400) tag_name = '-invalid' resp = self.http_client.put( url(tag_name), headers=headers, data=json.dumps(image_id) ) self.assertEqual(resp.status_code, 400) tag_name = '_valid' resp = self.http_client.put( url(tag_name), headers=headers, data=json.dumps(image_id) ) self.assertEqual(resp.status_code, 200, resp.data)
from homeassistant.components.mobile_app.const import DATA_DELETED_IDS, DOMAIN from .const import CALL_SERVICE from tests.common import async_mock_service async def test_unload_unloads(hass, create_registrations, webhook_client): """Test we clean up when we unload.""" # Second config entry is the one without encryption config_entry = hass.config_entries.async_entries("mobile_app")[1] webhook_id = config_entry.data["webhook_id"] calls = async_mock_service(hass, "test", "mobile_app") # Test it works await webhook_client.post(f"/api/webhook/{webhook_id}", json=CALL_SERVICE) assert len(calls) == 1 await hass.config_entries.async_unload(config_entry.entry_id) # Test it no longer works await webhook_client.post(f"/api/webhook/{webhook_id}", json=CALL_SERVICE) assert len(calls) == 1 async def test_remove_entry(hass, create_registrations): """Test we clean up when we remove entry.""" for config_entry in hass.config_entries.async_entries("mobile_app"): await hass.config_entries.async_remove(config_entry.entry_id) assert config_entry.data["webhook_id"] in hass.data[DOMAIN][DATA_DELETED_IDS] dev_reg = await hass.helpers.device_registry.async_get_registry() assert len(dev_reg.devices) == 0 ent_reg = await hass.helpers.entity_registry.async_get_registry() assert len(ent_reg.entities) == 0
from __future__ import print_function, division from abc import abstractmethod from plumbum.lib import six, _setdoc from plumbum import local import os try: from configparser import ConfigParser, NoOptionError, NoSectionError # Py3 except ImportError: from ConfigParser import ConfigParser, NoOptionError, NoSectionError # type: ignore class ConfigBase(six.ABC): """Base class for Config parsers. :param filename: The file to use The ``with`` statement can be used to automatically try to read on entering and write if changed on exiting. Otherwise, use ``.read`` and ``.write`` as needed. Set and get the options using ``[]`` syntax. Usage: with Config("~/.myprog_rc") as conf: value = conf.get("option", "default") value2 = conf["option"] # shortcut for default=None """ __slots__ = "filename changed".split() def __init__(self, filename): self.filename = local.path(filename) self.changed = False def __enter__(self): try: self.read() except FileNotFoundError: pass return self def __exit__(self, exc_type, exc_val, exc_tb): if self.changed: self.write() @abstractmethod def read(self): '''Read in the linked file''' pass @abstractmethod def write(self): '''Write out the linked file''' self.changed = False @abstractmethod def _get(self, option): '''Internal get function for subclasses''' pass @abstractmethod def _set(self, option, value): '''Internal set function for subclasses. Must return the value that was set.''' pass def get(self, option, default=None): "Get an item from the store, returns default if fails" try: return self._get(option) except KeyError: self.changed = True return self._set(option, default) def set(self, option, value): """Set an item, mark this object as changed""" self.changed = True self._set(option, value) def __getitem__(self, option): return self._get(option) def __setitem__(self, option, value): return self.set(option, value) class ConfigINI(ConfigBase): DEFAULT_SECTION = 'DEFAULT' slots = "parser".split() def __init__(self, filename): super(ConfigINI, self).__init__(filename) self.parser = ConfigParser() @_setdoc(ConfigBase) def read(self): self.parser.read(self.filename) super(ConfigINI, self).read() @_setdoc(ConfigBase) def write(self): with open(self.filename, 'w') as f: self.parser.write(f) super(ConfigINI, self).write() @classmethod def _sec_opt(cls, option): if '.' not in option: sec = cls.DEFAULT_SECTION else: sec, option = option.split('.', 1) return sec, option @_setdoc(ConfigBase) def _get(self, option): sec, option = self._sec_opt(option) try: return self.parser.get(sec, option) except (NoSectionError, NoOptionError): raise KeyError("{sec}:{option}".format(sec=sec, option=option)) @_setdoc(ConfigBase) def _set(self, option, value): sec, option = self._sec_opt(option) try: self.parser.set(sec, option, str(value)) except NoSectionError: self.parser.add_section(sec) self.parser.set(sec, option, str(value)) return str(value) Config = ConfigINI
import asyncio from datetime import timedelta import logging from brother import Brother, SnmpError, UnsupportedModel from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_HOST, CONF_TYPE, EVENT_HOMEASSISTANT_STOP from homeassistant.core import Config, HomeAssistant from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers.update_coordinator import DataUpdateCoordinator, UpdateFailed from .const import DOMAIN PLATFORMS = ["sensor"] SCAN_INTERVAL = timedelta(seconds=30) _LOGGER = logging.getLogger(__name__) async def async_setup(hass: HomeAssistant, config: Config): """Set up the Brother component.""" return True async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry): """Set up Brother from a config entry.""" host = entry.data[CONF_HOST] kind = entry.data[CONF_TYPE] coordinator = BrotherDataUpdateCoordinator(hass, host=host, kind=kind) await coordinator.async_refresh() if not coordinator.last_update_success: raise ConfigEntryNotReady hass.data.setdefault(DOMAIN, {}) hass.data[DOMAIN][entry.entry_id] = coordinator for component in PLATFORMS: hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, component) ) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry): """Unload a config entry.""" unload_ok = all( await asyncio.gather( *[ hass.config_entries.async_forward_entry_unload(entry, component) for component in PLATFORMS ] ) ) if unload_ok: hass.data[DOMAIN].pop(entry.entry_id).shutdown() return unload_ok class BrotherDataUpdateCoordinator(DataUpdateCoordinator): """Class to manage fetching Brother data from the printer.""" def __init__(self, hass, host, kind): """Initialize.""" self.brother = Brother(host, kind=kind) self._unsub_stop = hass.bus.async_listen( EVENT_HOMEASSISTANT_STOP, self._handle_ha_stop ) super().__init__( hass, _LOGGER, name=DOMAIN, update_interval=SCAN_INTERVAL, ) async def _async_update_data(self): """Update data via library.""" # Race condition on shutdown. Stop all the fetches. if self._unsub_stop is None: return None try: await self.brother.async_update() except (ConnectionError, SnmpError, UnsupportedModel) as error: raise UpdateFailed(error) from error return self.brother.data def shutdown(self): """Shutdown the Brother coordinator.""" self._unsub_stop() self._unsub_stop = None self.brother.shutdown() def _handle_ha_stop(self, _): """Handle Home Assistant stopping.""" self.shutdown()
import argparse import json import sys from collections import defaultdict from paasta_tools.api.client import get_paasta_oapi_client from paasta_tools.utils import load_system_paasta_config def parse_capacity_check_options(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "type", choices=["cpus", "mem", "disk"], type=str, help="The resource to check." ) parser.add_argument( "--warn", "-w", dest="warn", type=float, default=80, help="Level to emit a warning status.", ) parser.add_argument( "--crit", "-c", dest="crit", type=float, default=90, help="Level to emit a critical status.", ) parser.add_argument( "--overrides", dest="overrides", type=str, help="json file of per-attribute overrides.\n" "In the format [{groupings: {attribute: value, ...}, warn: {cpus: num, disk: num, mem: num}, " "crit: {cpus: num, disk: num, mem: num}}, ...]", ) parser.add_argument( "--cluster", dest="cluster", type=str, help="Cluster to check. Defaults to looking for the current cluster.", ) parser.add_argument( "--attributes", dest="attributes", type=str, default="pool", help="Comma separated list of attributes to check.\n" "Checks combinations of attributes", ) options = parser.parse_args() return options def calc_percent_usage(resource_item, value_to_check): values = resource_item[value_to_check] if values["total"] == 0: return 0 return 100 * (values["used"] / values["total"]) def error_message(failures, level, cluster, value_to_check): result = f"{level} cluster {cluster} {value_to_check} usage:\n" results = [] for f in failures: attrs = ", ".join(["{}: {}".format(e["attr"], e["value"]) for e in f["attrs"]]) results.append( " {} is at {:.2f} percent {}, maximum {:.2f} percent".format( attrs, f["current"], value_to_check, f["maximum"] ) ) result += "\n".join(results) return result def get_check_from_overrides(overrides, default_check, groupings): """Get the overrides dict from overrides with the same groupings as groupings, or return the default""" checks = [o for o in overrides if o["groupings"] == groupings] if len(checks) == 0: return default_check elif len(checks) == 1: return checks[0] else: group_string = ", ".join([f"{k}: {v}" for k, v in groupings.items()]) print("UNKNOWN Multiple overrides specified for %s" % group_string) sys.exit(3) def read_overrides(override_file): if override_file: with open(override_file, "r") as f: return json.loads(f.read()) else: return {} def run_capacity_check(): options = parse_capacity_check_options() system_paasta_config = load_system_paasta_config() cluster = ( options.cluster if options.cluster is not None else system_paasta_config.get_cluster() ) value_to_check = options.type client = get_paasta_oapi_client(cluster=cluster) if client is None: print("UNKNOWN Failed to load paasta api client") sys.exit(3) overrides = read_overrides(options.overrides) attributes = options.attributes.split(",") try: resource_use = client.resources.resources(groupings=attributes) except client.api_error as e: print(f"UNKNOWN received exception from paasta api:\n\t%s{e}") sys.exit(3) default_check = { "warn": {"cpus": options.warn, "mem": options.warn, "disk": options.warn}, "crit": {"cpus": options.crit, "mem": options.crit, "disk": options.crit}, } failures = defaultdict(list) for usage_value in resource_use.value: check = get_check_from_overrides( overrides, default_check, usage_value["groupings"] ) usage_percent = calc_percent_usage(usage_value, value_to_check) for c in ["crit", "warn"]: if usage_percent > check[c][value_to_check]: failures[c].append( { "attrs": [ {"attr": a, "value": v} for a, v in usage_value["groupings"].items() ], "maximum": check[c][value_to_check], "current": usage_percent, } ) break return_value = [0] if len(failures["crit"]) > 0: result = error_message(failures["crit"], "CRITICAL", cluster, value_to_check) print(result) return_value.append(2) if len(failures["warn"]) > 0: result = error_message(failures["warn"], "WARNING", cluster, value_to_check) print(result) return_value.append(1) if max(return_value) == 0: print(f"OK cluster {cluster} is below critical capacity in {value_to_check}") sys.exit(max(return_value)) if __name__ == "__main__": run_capacity_check()
import datetime import logging from pyeconet.api import PyEcoNet import voluptuous as vol from homeassistant.components.water_heater import ( PLATFORM_SCHEMA, STATE_ECO, STATE_ELECTRIC, STATE_GAS, STATE_HEAT_PUMP, STATE_HIGH_DEMAND, STATE_OFF, STATE_PERFORMANCE, SUPPORT_OPERATION_MODE, SUPPORT_TARGET_TEMPERATURE, WaterHeaterEntity, ) from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_TEMPERATURE, CONF_PASSWORD, CONF_USERNAME, TEMP_FAHRENHEIT, ) import homeassistant.helpers.config_validation as cv from .const import DOMAIN, SERVICE_ADD_VACATION, SERVICE_DELETE_VACATION _LOGGER = logging.getLogger(__name__) ATTR_VACATION_START = "next_vacation_start_date" ATTR_VACATION_END = "next_vacation_end_date" ATTR_ON_VACATION = "on_vacation" ATTR_TODAYS_ENERGY_USAGE = "todays_energy_usage" ATTR_IN_USE = "in_use" ATTR_START_DATE = "start_date" ATTR_END_DATE = "end_date" ATTR_LOWER_TEMP = "lower_temp" ATTR_UPPER_TEMP = "upper_temp" ATTR_IS_ENABLED = "is_enabled" SUPPORT_FLAGS_HEATER = SUPPORT_TARGET_TEMPERATURE | SUPPORT_OPERATION_MODE ADD_VACATION_SCHEMA = vol.Schema( { vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, vol.Optional(ATTR_START_DATE): cv.positive_int, vol.Required(ATTR_END_DATE): cv.positive_int, } ) DELETE_VACATION_SCHEMA = vol.Schema({vol.Optional(ATTR_ENTITY_ID): cv.entity_ids}) ECONET_DATA = "econet" ECONET_STATE_TO_HA = { "Energy Saver": STATE_ECO, "gas": STATE_GAS, "High Demand": STATE_HIGH_DEMAND, "Off": STATE_OFF, "Performance": STATE_PERFORMANCE, "Heat Pump Only": STATE_HEAT_PUMP, "Electric-Only": STATE_ELECTRIC, "Electric": STATE_ELECTRIC, "Heat Pump": STATE_HEAT_PUMP, } PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( {vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string} ) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the EcoNet water heaters.""" hass.data[ECONET_DATA] = {} hass.data[ECONET_DATA]["water_heaters"] = [] username = config.get(CONF_USERNAME) password = config.get(CONF_PASSWORD) econet = PyEcoNet(username, password) water_heaters = econet.get_water_heaters() hass_water_heaters = [ EcoNetWaterHeater(water_heater) for water_heater in water_heaters ] add_entities(hass_water_heaters) hass.data[ECONET_DATA]["water_heaters"].extend(hass_water_heaters) def service_handle(service): """Handle the service calls.""" entity_ids = service.data.get("entity_id") all_heaters = hass.data[ECONET_DATA]["water_heaters"] _heaters = [ x for x in all_heaters if not entity_ids or x.entity_id in entity_ids ] for _water_heater in _heaters: if service.service == SERVICE_ADD_VACATION: start = service.data.get(ATTR_START_DATE) end = service.data.get(ATTR_END_DATE) _water_heater.add_vacation(start, end) if service.service == SERVICE_DELETE_VACATION: for vacation in _water_heater.water_heater.vacations: vacation.delete() _water_heater.schedule_update_ha_state(True) hass.services.register( DOMAIN, SERVICE_ADD_VACATION, service_handle, schema=ADD_VACATION_SCHEMA ) hass.services.register( DOMAIN, SERVICE_DELETE_VACATION, service_handle, schema=DELETE_VACATION_SCHEMA ) class EcoNetWaterHeater(WaterHeaterEntity): """Representation of an EcoNet water heater.""" def __init__(self, water_heater): """Initialize the water heater.""" self.water_heater = water_heater self.supported_modes = self.water_heater.supported_modes self.econet_state_to_ha = {} self.ha_state_to_econet = {} for mode in ECONET_STATE_TO_HA: if mode in self.supported_modes: self.econet_state_to_ha[mode] = ECONET_STATE_TO_HA.get(mode) for key, value in self.econet_state_to_ha.items(): self.ha_state_to_econet[value] = key for mode in self.supported_modes: if mode not in ECONET_STATE_TO_HA: error = f"Invalid operation mode mapping. {mode} doesn't map. Please report this." _LOGGER.error(error) @property def name(self): """Return the device name.""" return self.water_heater.name @property def available(self): """Return if the the device is online or not.""" return self.water_heater.is_connected @property def temperature_unit(self): """Return the unit of measurement.""" return TEMP_FAHRENHEIT @property def device_state_attributes(self): """Return the optional device state attributes.""" data = {} vacations = self.water_heater.get_vacations() if vacations: data[ATTR_VACATION_START] = vacations[0].start_date data[ATTR_VACATION_END] = vacations[0].end_date data[ATTR_ON_VACATION] = self.water_heater.is_on_vacation todays_usage = self.water_heater.total_usage_for_today if todays_usage: data[ATTR_TODAYS_ENERGY_USAGE] = todays_usage data[ATTR_IN_USE] = self.water_heater.in_use if self.water_heater.lower_temp is not None: data[ATTR_LOWER_TEMP] = round(self.water_heater.lower_temp, 2) if self.water_heater.upper_temp is not None: data[ATTR_UPPER_TEMP] = round(self.water_heater.upper_temp, 2) if self.water_heater.is_enabled is not None: data[ATTR_IS_ENABLED] = self.water_heater.is_enabled return data @property def current_operation(self): """ Return current operation as one of the following. ["eco", "heat_pump", "high_demand", "electric_only"] """ current_op = self.econet_state_to_ha.get(self.water_heater.mode) return current_op @property def operation_list(self): """List of available operation modes.""" op_list = [] for mode in self.supported_modes: ha_mode = self.econet_state_to_ha.get(mode) if ha_mode is not None: op_list.append(ha_mode) return op_list @property def supported_features(self): """Return the list of supported features.""" return SUPPORT_FLAGS_HEATER def set_temperature(self, **kwargs): """Set new target temperature.""" target_temp = kwargs.get(ATTR_TEMPERATURE) if target_temp is not None: self.water_heater.set_target_set_point(target_temp) else: _LOGGER.error("A target temperature must be provided") def set_operation_mode(self, operation_mode): """Set operation mode.""" op_mode_to_set = self.ha_state_to_econet.get(operation_mode) if op_mode_to_set is not None: self.water_heater.set_mode(op_mode_to_set) else: _LOGGER.error("An operation mode must be provided") def add_vacation(self, start, end): """Add a vacation to this water heater.""" if not start: start = datetime.datetime.now() else: start = datetime.datetime.fromtimestamp(start) end = datetime.datetime.fromtimestamp(end) self.water_heater.set_vacation_mode(start, end) def update(self): """Get the latest date.""" self.water_heater.update_state() @property def target_temperature(self): """Return the temperature we try to reach.""" return self.water_heater.set_point @property def min_temp(self): """Return the minimum temperature.""" return self.water_heater.min_set_point @property def max_temp(self): """Return the maximum temperature.""" return self.water_heater.max_set_point
from weblate.trans.management.commands import WeblateComponentCommand from weblate.trans.tasks import perform_update class Command(WeblateComponentCommand): help = "updates git repos" needs_repo = True def add_arguments(self, parser): super().add_arguments(parser) parser.add_argument( "--foreground", action="store_true", default=False, help="Perform load in foreground (by default backgroud task is used)", ) def handle(self, *args, **options): if options["foreground"]: updater = perform_update else: updater = perform_update.delay for component in self.get_components(*args, **options): updater("Component", component.pk)
from __future__ import unicode_literals import os import re from lib.fun.fun import cool, charanger from lib.data.data import pystrs, pyoptions def confmatcher(resource): configures = [] if not os.path.isfile(resource): matches = re.findall(pyoptions.confpattern, resource.strip()) for match in matches: for m in match: configures.append(m.strip()) else: with open(resource) as f: for item in f.readlines(): confline = item.strip() if len(confline) >= 1 and confline[0] == pyoptions.annotator: pass else: matches = re.findall(pyoptions.confpattern, confline) for match in matches: for m in match: configures.append(m.strip()) if configures: if len(configures) // 5 > 10: exit(pyoptions.CRLF + cool.red('[-] Max support 10 parser')) else: return configures else: exit(pyoptions.CRLF + cool.red('[-] Match configuration file for nothing')) def elementparser(configures): dicts = {pystrs.conf_head: [], pystrs.conf_char: [], pystrs.conf_minlen: [], pystrs.conf_maxlen: [], pystrs.conf_encode: [], pystrs.conf_tail: []} for x in range(1, len(configures) + 1): count = x - 1 x %= 5 if x == 1: dicts[pystrs.conf_head].append(configures[count].strip()) elif x == 2: dicts[pystrs.conf_char].append(charanger(configures[count])) elif x == 3: dicts[pystrs.conf_minlen].append(configures[count].split(pyoptions.length_split)[0]) dicts[pystrs.conf_maxlen].append(configures[count].split(pyoptions.length_split)[1]) elif x == 4: dicts[pystrs.conf_encode].append(configures[count]) elif x == 0: dicts[pystrs.conf_tail].append(configures[count].strip()) return dicts
import pytest from decimal import Decimal from django.core.exceptions import ValidationError from shop.money.money_maker import MoneyMaker from shop.money.fields import MoneyField EUR = MoneyMaker('EUR') def test_deconstruct(): f1 = MoneyField(currency='EUR', default=EUR(0)) name, path, args, kwargs = f1.deconstruct() f2 = MoneyField(*args, **kwargs) assert f1.currency_code == f2.currency_code assert f1.decimal_places == f2.decimal_places assert f1.default == f2.default def test_to_python(): f = MoneyField(currency='EUR', null=True) assert f.to_python(3) == EUR('3') assert f.to_python('3.14') == EUR('3.14') assert f.to_python(None) == EUR() assert f.to_python(EUR(3)) == EUR('3') with pytest.raises(ValidationError): f.to_python('abc') def test_get_prep_value(): f = MoneyField(currency='EUR', null=True) assert f.get_prep_value(EUR('3')) == Decimal('3') def test_from_db_value(): f = MoneyField(currency='EUR', null=True) assert f.from_db_value(Decimal('3'), None, None) == EUR('3') assert f.from_db_value(3.45, None, None) == EUR('3.45') assert f.from_db_value(None, None, None) is None def test_get_default(): OneEuro = EUR(1) f = MoneyField(currency='EUR', null=True) assert f.get_default() is None f = MoneyField(currency='EUR', null=True, default=EUR()) assert f.get_default() == EUR() f = MoneyField(currency='EUR', null=False, default=OneEuro) assert f.get_default() == OneEuro
import unittest from perfkitbenchmarker import sample from perfkitbenchmarker import test_util from perfkitbenchmarker.linux_benchmarks import scimark2_benchmark TEST_OUTPUT_C = """;;; C small ** ** ** SciMark2 Numeric Benchmark, see http://math.nist.gov/scimark ** ** for details. (Results can be submitted to [email protected]) ** ** ** Using 2.00 seconds min time per kenel. Composite Score: 1596.04 FFT Mflops: 1568.64 (N=1024) SOR Mflops: 1039.98 (100 x 100) MonteCarlo: Mflops: 497.64 Sparse matmult Mflops: 1974.39 (N=1000, nz=5000) LU Mflops: 2899.56 (M=100, N=100) """ TEST_OUTPUT_JAVA = """;;; Java small SciMark 2.0a Composite Score: 1716.3662351463677 FFT (1024): 1000.1380057152871 SOR (100x100): 1353.1987180103354 Monte Carlo : 727.7138820888014 Sparse matmult (N=1000, nz=5000): 1495.40225150659 LU (100x100): 4005.3783184108247 java.vendor: Oracle Corporation java.version: 1.7.0_75 os.arch: amd64 os.name: Linux os.version: 3.16.0-25-generic """ EXPECTED_C_METADATA = { 'benchmark_language': 'C', 'benchmark_size': 'small', } EXPECTED_JAVA_METADATA = { 'benchmark_language': 'Java', 'benchmark_size': 'small', 'java.vendor': 'Oracle Corporation', 'os.version': '3.16.0-25-generic', 'os.arch': 'amd64', 'os.name': 'Linux', 'java.version': '1.7.0_75', } EXPECTED_RESULT_C = [ sample.Sample(metric='Composite Score', value=1596.04, unit='Mflops', metadata=EXPECTED_C_METADATA), sample.Sample(metric='FFT (N=1024)', value=1568.64, unit='Mflops', metadata=EXPECTED_C_METADATA), sample.Sample(metric='SOR (100 x 100)', value=1039.98, unit='Mflops', metadata=EXPECTED_C_METADATA), sample.Sample(metric='MonteCarlo', value=497.64, unit='Mflops', metadata=EXPECTED_C_METADATA), sample.Sample(metric='Sparse matmult (N=1000, nz=5000)', value=1974.39, unit='Mflops', metadata=EXPECTED_C_METADATA), sample.Sample(metric='LU (M=100, N=100)', value=2899.56, unit='Mflops', metadata=EXPECTED_C_METADATA), ] EXPECTED_RESULT_JAVA = [ sample.Sample(metric='Composite Score', value=1716.3662351463677, unit='Mflops', metadata=EXPECTED_JAVA_METADATA), sample.Sample(metric='FFT (1024)', value=1000.1380057152871, unit='Mflops', metadata=EXPECTED_JAVA_METADATA), sample.Sample(metric='SOR (100x100)', value=1353.1987180103354, unit='Mflops', metadata=EXPECTED_JAVA_METADATA), sample.Sample(metric='Monte Carlo', value=727.7138820888014, unit='Mflops', metadata=EXPECTED_JAVA_METADATA), sample.Sample(metric='Sparse matmult (N=1000, nz=5000)', value=1495.40225150659, unit='Mflops', metadata=EXPECTED_JAVA_METADATA), sample.Sample(metric='LU (100x100)', value=4005.3783184108247, unit='Mflops', metadata=EXPECTED_JAVA_METADATA), ] class Scimark2BenchmarkTestCase(unittest.TestCase, test_util.SamplesTestMixin): def testParseResultsC(self): samples = scimark2_benchmark.ParseResults(TEST_OUTPUT_C) self.assertSampleListsEqualUpToTimestamp(samples, EXPECTED_RESULT_C) def testParseResultsJava(self): samples = scimark2_benchmark.ParseResults(TEST_OUTPUT_JAVA) self.assertSampleListsEqualUpToTimestamp(samples, EXPECTED_RESULT_JAVA) def testParseResultsCombined(self): samples = scimark2_benchmark.ParseResults(TEST_OUTPUT_C + TEST_OUTPUT_JAVA) self.assertSampleListsEqualUpToTimestamp( samples, EXPECTED_RESULT_C + EXPECTED_RESULT_JAVA) if __name__ == '__main__': unittest.main()
from datetime import timedelta import logging from fritzconnection.core.exceptions import FritzConnectionException from fritzconnection.lib.fritzstatus import FritzStatus from requests.exceptions import RequestException import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import CONF_HOST, CONF_NAME, STATE_UNAVAILABLE import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity from homeassistant.util import Throttle _LOGGER = logging.getLogger(__name__) CONF_DEFAULT_NAME = "fritz_netmonitor" CONF_DEFAULT_IP = "169.254.1.1" # This IP is valid for all FRITZ!Box routers. ATTR_BYTES_RECEIVED = "bytes_received" ATTR_BYTES_SENT = "bytes_sent" ATTR_TRANSMISSION_RATE_UP = "transmission_rate_up" ATTR_TRANSMISSION_RATE_DOWN = "transmission_rate_down" ATTR_EXTERNAL_IP = "external_ip" ATTR_IS_CONNECTED = "is_connected" ATTR_IS_LINKED = "is_linked" ATTR_MAX_BYTE_RATE_DOWN = "max_byte_rate_down" ATTR_MAX_BYTE_RATE_UP = "max_byte_rate_up" ATTR_UPTIME = "uptime" MIN_TIME_BETWEEN_UPDATES = timedelta(seconds=5) STATE_ONLINE = "online" STATE_OFFLINE = "offline" ICON = "mdi:web" PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Optional(CONF_NAME, default=CONF_DEFAULT_NAME): cv.string, vol.Optional(CONF_HOST, default=CONF_DEFAULT_IP): cv.string, } ) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the FRITZ!Box monitor sensors.""" name = config.get(CONF_NAME) host = config.get(CONF_HOST) try: fstatus = FritzStatus(address=host) except (ValueError, TypeError, FritzConnectionException): fstatus = None if fstatus is None: _LOGGER.error("Failed to establish connection to FRITZ!Box: %s", host) return 1 _LOGGER.info("Successfully connected to FRITZ!Box") add_entities([FritzboxMonitorSensor(name, fstatus)], True) class FritzboxMonitorSensor(Entity): """Implementation of a fritzbox monitor sensor.""" def __init__(self, name, fstatus): """Initialize the sensor.""" self._name = name self._fstatus = fstatus self._state = STATE_UNAVAILABLE self._is_linked = self._is_connected = None self._external_ip = self._uptime = None self._bytes_sent = self._bytes_received = None self._transmission_rate_up = None self._transmission_rate_down = None self._max_byte_rate_up = self._max_byte_rate_down = None @property def name(self): """Return the name of the sensor.""" return self._name.rstrip() @property def icon(self): """Icon to use in the frontend, if any.""" return ICON @property def state(self): """Return the state of the device.""" return self._state @property def state_attributes(self): """Return the device state attributes.""" # Don't return attributes if FritzBox is unreachable if self._state == STATE_UNAVAILABLE: return {} return { ATTR_IS_LINKED: self._is_linked, ATTR_IS_CONNECTED: self._is_connected, ATTR_EXTERNAL_IP: self._external_ip, ATTR_UPTIME: self._uptime, ATTR_BYTES_SENT: self._bytes_sent, ATTR_BYTES_RECEIVED: self._bytes_received, ATTR_TRANSMISSION_RATE_UP: self._transmission_rate_up, ATTR_TRANSMISSION_RATE_DOWN: self._transmission_rate_down, ATTR_MAX_BYTE_RATE_UP: self._max_byte_rate_up, ATTR_MAX_BYTE_RATE_DOWN: self._max_byte_rate_down, } @Throttle(MIN_TIME_BETWEEN_UPDATES) def update(self): """Retrieve information from the FritzBox.""" try: self._is_linked = self._fstatus.is_linked self._is_connected = self._fstatus.is_connected self._external_ip = self._fstatus.external_ip self._uptime = self._fstatus.uptime self._bytes_sent = self._fstatus.bytes_sent self._bytes_received = self._fstatus.bytes_received transmission_rate = self._fstatus.transmission_rate self._transmission_rate_up = transmission_rate[0] self._transmission_rate_down = transmission_rate[1] self._max_byte_rate_up = self._fstatus.max_byte_rate[0] self._max_byte_rate_down = self._fstatus.max_byte_rate[1] self._state = STATE_ONLINE if self._is_connected else STATE_OFFLINE except RequestException as err: self._state = STATE_UNAVAILABLE _LOGGER.warning("Could not reach FRITZ!Box: %s", err)
import asyncio from functools import wraps import logging import secrets from aiohttp.web import HTTPBadRequest, Request, Response, json_response from nacl.secret import SecretBox import voluptuous as vol from homeassistant.components import notify as hass_notify, tag from homeassistant.components.binary_sensor import ( DEVICE_CLASSES as BINARY_SENSOR_CLASSES, ) from homeassistant.components.camera import SUPPORT_STREAM as CAMERA_SUPPORT_STREAM from homeassistant.components.device_tracker import ( ATTR_BATTERY, ATTR_GPS, ATTR_GPS_ACCURACY, ATTR_LOCATION_NAME, ) from homeassistant.components.frontend import MANIFEST_JSON from homeassistant.components.sensor import DEVICE_CLASSES as SENSOR_CLASSES from homeassistant.components.zone.const import DOMAIN as ZONE_DOMAIN from homeassistant.const import ( ATTR_DOMAIN, ATTR_SERVICE, ATTR_SERVICE_DATA, ATTR_SUPPORTED_FEATURES, CONF_WEBHOOK_ID, HTTP_BAD_REQUEST, HTTP_CREATED, ) from homeassistant.core import EventOrigin from homeassistant.exceptions import HomeAssistantError, ServiceNotFound from homeassistant.helpers import ( config_validation as cv, device_registry as dr, template, ) from homeassistant.helpers.dispatcher import async_dispatcher_send from homeassistant.helpers.typing import HomeAssistantType from homeassistant.util.decorator import Registry from .const import ( ATTR_ALTITUDE, ATTR_APP_DATA, ATTR_APP_VERSION, ATTR_CAMERA_ENTITY_ID, ATTR_COURSE, ATTR_DEVICE_ID, ATTR_DEVICE_NAME, ATTR_EVENT_DATA, ATTR_EVENT_TYPE, ATTR_MANUFACTURER, ATTR_MODEL, ATTR_OS_VERSION, ATTR_SENSOR_ATTRIBUTES, ATTR_SENSOR_DEVICE_CLASS, ATTR_SENSOR_ICON, ATTR_SENSOR_NAME, ATTR_SENSOR_STATE, ATTR_SENSOR_TYPE, ATTR_SENSOR_TYPE_BINARY_SENSOR, ATTR_SENSOR_TYPE_SENSOR, ATTR_SENSOR_UNIQUE_ID, ATTR_SENSOR_UOM, ATTR_SPEED, ATTR_SUPPORTS_ENCRYPTION, ATTR_TEMPLATE, ATTR_TEMPLATE_VARIABLES, ATTR_VERTICAL_ACCURACY, ATTR_WEBHOOK_DATA, ATTR_WEBHOOK_ENCRYPTED, ATTR_WEBHOOK_ENCRYPTED_DATA, ATTR_WEBHOOK_TYPE, CONF_CLOUDHOOK_URL, CONF_REMOTE_UI_URL, CONF_SECRET, DATA_CONFIG_ENTRIES, DATA_DELETED_IDS, DATA_STORE, DOMAIN, ERR_ENCRYPTION_ALREADY_ENABLED, ERR_ENCRYPTION_NOT_AVAILABLE, ERR_ENCRYPTION_REQUIRED, ERR_INVALID_FORMAT, ERR_SENSOR_NOT_REGISTERED, SIGNAL_LOCATION_UPDATE, SIGNAL_SENSOR_UPDATE, ) from .helpers import ( _decrypt_payload, empty_okay_response, error_response, registration_context, safe_registration, savable_state, supports_encryption, webhook_response, ) _LOGGER = logging.getLogger(__name__) DELAY_SAVE = 10 WEBHOOK_COMMANDS = Registry() COMBINED_CLASSES = set(BINARY_SENSOR_CLASSES + SENSOR_CLASSES) SENSOR_TYPES = [ATTR_SENSOR_TYPE_BINARY_SENSOR, ATTR_SENSOR_TYPE_SENSOR] WEBHOOK_PAYLOAD_SCHEMA = vol.Schema( { vol.Required(ATTR_WEBHOOK_TYPE): cv.string, vol.Required(ATTR_WEBHOOK_DATA, default={}): vol.Any(dict, list), vol.Optional(ATTR_WEBHOOK_ENCRYPTED, default=False): cv.boolean, vol.Optional(ATTR_WEBHOOK_ENCRYPTED_DATA): cv.string, } ) def validate_schema(schema): """Decorate a webhook function with a schema.""" if isinstance(schema, dict): schema = vol.Schema(schema) def wrapper(func): """Wrap function so we validate schema.""" @wraps(func) async def validate_and_run(hass, config_entry, data): """Validate input and call handler.""" try: data = schema(data) except vol.Invalid as ex: err = vol.humanize.humanize_error(data, ex) _LOGGER.error("Received invalid webhook payload: %s", err) return empty_okay_response() return await func(hass, config_entry, data) return validate_and_run return wrapper async def handle_webhook( hass: HomeAssistantType, webhook_id: str, request: Request ) -> Response: """Handle webhook callback.""" if webhook_id in hass.data[DOMAIN][DATA_DELETED_IDS]: return Response(status=410) config_entry = hass.data[DOMAIN][DATA_CONFIG_ENTRIES][webhook_id] device_name = config_entry.data[ATTR_DEVICE_NAME] try: req_data = await request.json() except ValueError: _LOGGER.warning("Received invalid JSON from mobile_app device: %s", device_name) return empty_okay_response(status=HTTP_BAD_REQUEST) if ( ATTR_WEBHOOK_ENCRYPTED not in req_data and config_entry.data[ATTR_SUPPORTS_ENCRYPTION] ): _LOGGER.warning( "Refusing to accept unencrypted webhook from %s", device_name, ) return error_response(ERR_ENCRYPTION_REQUIRED, "Encryption required") try: req_data = WEBHOOK_PAYLOAD_SCHEMA(req_data) except vol.Invalid as ex: err = vol.humanize.humanize_error(req_data, ex) _LOGGER.error( "Received invalid webhook from %s with payload: %s", device_name, err ) return empty_okay_response() webhook_type = req_data[ATTR_WEBHOOK_TYPE] webhook_payload = req_data.get(ATTR_WEBHOOK_DATA, {}) if req_data[ATTR_WEBHOOK_ENCRYPTED]: enc_data = req_data[ATTR_WEBHOOK_ENCRYPTED_DATA] webhook_payload = _decrypt_payload(config_entry.data[CONF_SECRET], enc_data) if webhook_type not in WEBHOOK_COMMANDS: _LOGGER.error( "Received invalid webhook from %s of type: %s", device_name, webhook_type ) return empty_okay_response() _LOGGER.debug( "Received webhook payload from %s for type %s: %s", device_name, webhook_type, webhook_payload, ) # Shield so we make sure we finish the webhook, even if sender hangs up. return await asyncio.shield( WEBHOOK_COMMANDS[webhook_type](hass, config_entry, webhook_payload) ) @WEBHOOK_COMMANDS.register("call_service") @validate_schema( { vol.Required(ATTR_DOMAIN): cv.string, vol.Required(ATTR_SERVICE): cv.string, vol.Optional(ATTR_SERVICE_DATA, default={}): dict, } ) async def webhook_call_service(hass, config_entry, data): """Handle a call service webhook.""" try: await hass.services.async_call( data[ATTR_DOMAIN], data[ATTR_SERVICE], data[ATTR_SERVICE_DATA], blocking=True, context=registration_context(config_entry.data), ) except (vol.Invalid, ServiceNotFound, Exception) as ex: _LOGGER.error( "Error when calling service during mobile_app " "webhook (device name: %s): %s", config_entry.data[ATTR_DEVICE_NAME], ex, ) raise HTTPBadRequest() from ex return empty_okay_response() @WEBHOOK_COMMANDS.register("fire_event") @validate_schema( { vol.Required(ATTR_EVENT_TYPE): cv.string, vol.Optional(ATTR_EVENT_DATA, default={}): dict, } ) async def webhook_fire_event(hass, config_entry, data): """Handle a fire event webhook.""" event_type = data[ATTR_EVENT_TYPE] hass.bus.async_fire( event_type, data[ATTR_EVENT_DATA], EventOrigin.remote, context=registration_context(config_entry.data), ) return empty_okay_response() @WEBHOOK_COMMANDS.register("stream_camera") @validate_schema({vol.Required(ATTR_CAMERA_ENTITY_ID): cv.string}) async def webhook_stream_camera(hass, config_entry, data): """Handle a request to HLS-stream a camera.""" camera = hass.states.get(data[ATTR_CAMERA_ENTITY_ID]) if camera is None: return webhook_response( {"success": False}, registration=config_entry.data, status=HTTP_BAD_REQUEST, ) resp = {"mjpeg_path": "/api/camera_proxy_stream/%s" % (camera.entity_id)} if camera.attributes[ATTR_SUPPORTED_FEATURES] & CAMERA_SUPPORT_STREAM: try: resp["hls_path"] = await hass.components.camera.async_request_stream( camera.entity_id, "hls" ) except HomeAssistantError: resp["hls_path"] = None else: resp["hls_path"] = None return webhook_response(resp, registration=config_entry.data) @WEBHOOK_COMMANDS.register("render_template") @validate_schema( { str: { vol.Required(ATTR_TEMPLATE): cv.string, vol.Optional(ATTR_TEMPLATE_VARIABLES, default={}): dict, } } ) async def webhook_render_template(hass, config_entry, data): """Handle a render template webhook.""" resp = {} for key, item in data.items(): try: tpl = template.Template(item[ATTR_TEMPLATE], hass) resp[key] = tpl.async_render(item.get(ATTR_TEMPLATE_VARIABLES)) except template.TemplateError as ex: resp[key] = {"error": str(ex)} return webhook_response(resp, registration=config_entry.data) @WEBHOOK_COMMANDS.register("update_location") @validate_schema( { vol.Optional(ATTR_LOCATION_NAME): cv.string, vol.Required(ATTR_GPS): cv.gps, vol.Required(ATTR_GPS_ACCURACY): cv.positive_int, vol.Optional(ATTR_BATTERY): cv.positive_int, vol.Optional(ATTR_SPEED): cv.positive_int, vol.Optional(ATTR_ALTITUDE): vol.Coerce(float), vol.Optional(ATTR_COURSE): cv.positive_int, vol.Optional(ATTR_VERTICAL_ACCURACY): cv.positive_int, } ) async def webhook_update_location(hass, config_entry, data): """Handle an update location webhook.""" hass.helpers.dispatcher.async_dispatcher_send( SIGNAL_LOCATION_UPDATE.format(config_entry.entry_id), data ) return empty_okay_response() @WEBHOOK_COMMANDS.register("update_registration") @validate_schema( { vol.Optional(ATTR_APP_DATA, default={}): dict, vol.Required(ATTR_APP_VERSION): cv.string, vol.Required(ATTR_DEVICE_NAME): cv.string, vol.Required(ATTR_MANUFACTURER): cv.string, vol.Required(ATTR_MODEL): cv.string, vol.Optional(ATTR_OS_VERSION): cv.string, } ) async def webhook_update_registration(hass, config_entry, data): """Handle an update registration webhook.""" new_registration = {**config_entry.data, **data} device_registry = await dr.async_get_registry(hass) device_registry.async_get_or_create( config_entry_id=config_entry.entry_id, identifiers={(DOMAIN, config_entry.data[ATTR_DEVICE_ID])}, manufacturer=new_registration[ATTR_MANUFACTURER], model=new_registration[ATTR_MODEL], name=new_registration[ATTR_DEVICE_NAME], sw_version=new_registration[ATTR_OS_VERSION], ) hass.config_entries.async_update_entry(config_entry, data=new_registration) await hass_notify.async_reload(hass, DOMAIN) return webhook_response( safe_registration(new_registration), registration=new_registration, ) @WEBHOOK_COMMANDS.register("enable_encryption") async def webhook_enable_encryption(hass, config_entry, data): """Handle a encryption enable webhook.""" if config_entry.data[ATTR_SUPPORTS_ENCRYPTION]: _LOGGER.warning( "Refusing to enable encryption for %s because it is already enabled!", config_entry.data[ATTR_DEVICE_NAME], ) return error_response( ERR_ENCRYPTION_ALREADY_ENABLED, "Encryption already enabled" ) if not supports_encryption(): _LOGGER.warning( "Unable to enable encryption for %s because libsodium is unavailable!", config_entry.data[ATTR_DEVICE_NAME], ) return error_response(ERR_ENCRYPTION_NOT_AVAILABLE, "Encryption is unavailable") secret = secrets.token_hex(SecretBox.KEY_SIZE) data = {**config_entry.data, ATTR_SUPPORTS_ENCRYPTION: True, CONF_SECRET: secret} hass.config_entries.async_update_entry(config_entry, data=data) return json_response({"secret": secret}) @WEBHOOK_COMMANDS.register("register_sensor") @validate_schema( { vol.Optional(ATTR_SENSOR_ATTRIBUTES, default={}): dict, vol.Optional(ATTR_SENSOR_DEVICE_CLASS): vol.All( vol.Lower, vol.In(COMBINED_CLASSES) ), vol.Required(ATTR_SENSOR_NAME): cv.string, vol.Required(ATTR_SENSOR_TYPE): vol.In(SENSOR_TYPES), vol.Required(ATTR_SENSOR_UNIQUE_ID): cv.string, vol.Optional(ATTR_SENSOR_UOM): cv.string, vol.Optional(ATTR_SENSOR_STATE, default=None): vol.Any( None, bool, str, int, float ), vol.Optional(ATTR_SENSOR_ICON, default="mdi:cellphone"): cv.icon, } ) async def webhook_register_sensor(hass, config_entry, data): """Handle a register sensor webhook.""" entity_type = data[ATTR_SENSOR_TYPE] unique_id = data[ATTR_SENSOR_UNIQUE_ID] device_name = config_entry.data[ATTR_DEVICE_NAME] unique_store_key = f"{config_entry.data[CONF_WEBHOOK_ID]}_{unique_id}" existing_sensor = unique_store_key in hass.data[DOMAIN][entity_type] data[CONF_WEBHOOK_ID] = config_entry.data[CONF_WEBHOOK_ID] # If sensor already is registered, update current state instead if existing_sensor: _LOGGER.debug( "Re-register for %s of existing sensor %s", device_name, unique_id ) entry = hass.data[DOMAIN][entity_type][unique_store_key] data = {**entry, **data} hass.data[DOMAIN][entity_type][unique_store_key] = data hass.data[DOMAIN][DATA_STORE].async_delay_save( lambda: savable_state(hass), DELAY_SAVE ) if existing_sensor: async_dispatcher_send(hass, SIGNAL_SENSOR_UPDATE, data) else: register_signal = f"{DOMAIN}_{data[ATTR_SENSOR_TYPE]}_register" async_dispatcher_send(hass, register_signal, data) return webhook_response( {"success": True}, registration=config_entry.data, status=HTTP_CREATED, ) @WEBHOOK_COMMANDS.register("update_sensor_states") @validate_schema( vol.All( cv.ensure_list, [ # Partial schema, enough to identify schema. # We don't validate everything because otherwise 1 invalid sensor # will invalidate all sensors. vol.Schema( { vol.Required(ATTR_SENSOR_TYPE): vol.In(SENSOR_TYPES), vol.Required(ATTR_SENSOR_UNIQUE_ID): cv.string, }, extra=vol.ALLOW_EXTRA, ) ], ) ) async def webhook_update_sensor_states(hass, config_entry, data): """Handle an update sensor states webhook.""" sensor_schema_full = vol.Schema( { vol.Optional(ATTR_SENSOR_ATTRIBUTES, default={}): dict, vol.Optional(ATTR_SENSOR_ICON, default="mdi:cellphone"): cv.icon, vol.Required(ATTR_SENSOR_STATE): vol.Any(None, bool, str, int, float), vol.Required(ATTR_SENSOR_TYPE): vol.In(SENSOR_TYPES), vol.Required(ATTR_SENSOR_UNIQUE_ID): cv.string, } ) device_name = config_entry.data[ATTR_DEVICE_NAME] resp = {} for sensor in data: entity_type = sensor[ATTR_SENSOR_TYPE] unique_id = sensor[ATTR_SENSOR_UNIQUE_ID] unique_store_key = f"{config_entry.data[CONF_WEBHOOK_ID]}_{unique_id}" if unique_store_key not in hass.data[DOMAIN][entity_type]: _LOGGER.error( "Refusing to update %s non-registered sensor: %s", device_name, unique_store_key, ) err_msg = f"{entity_type} {unique_id} is not registered" resp[unique_id] = { "success": False, "error": {"code": ERR_SENSOR_NOT_REGISTERED, "message": err_msg}, } continue entry = hass.data[DOMAIN][entity_type][unique_store_key] try: sensor = sensor_schema_full(sensor) except vol.Invalid as err: err_msg = vol.humanize.humanize_error(sensor, err) _LOGGER.error( "Received invalid sensor payload from %s for %s: %s", device_name, unique_id, err_msg, ) resp[unique_id] = { "success": False, "error": {"code": ERR_INVALID_FORMAT, "message": err_msg}, } continue new_state = {**entry, **sensor} hass.data[DOMAIN][entity_type][unique_store_key] = new_state async_dispatcher_send(hass, SIGNAL_SENSOR_UPDATE, new_state) resp[unique_id] = {"success": True} hass.data[DOMAIN][DATA_STORE].async_delay_save( lambda: savable_state(hass), DELAY_SAVE ) return webhook_response(resp, registration=config_entry.data) @WEBHOOK_COMMANDS.register("get_zones") async def webhook_get_zones(hass, config_entry, data): """Handle a get zones webhook.""" zones = [ hass.states.get(entity_id) for entity_id in sorted(hass.states.async_entity_ids(ZONE_DOMAIN)) ] return webhook_response(zones, registration=config_entry.data) @WEBHOOK_COMMANDS.register("get_config") async def webhook_get_config(hass, config_entry, data): """Handle a get config webhook.""" hass_config = hass.config.as_dict() resp = { "latitude": hass_config["latitude"], "longitude": hass_config["longitude"], "elevation": hass_config["elevation"], "unit_system": hass_config["unit_system"], "location_name": hass_config["location_name"], "time_zone": hass_config["time_zone"], "components": hass_config["components"], "version": hass_config["version"], "theme_color": MANIFEST_JSON["theme_color"], } if CONF_CLOUDHOOK_URL in config_entry.data: resp[CONF_CLOUDHOOK_URL] = config_entry.data[CONF_CLOUDHOOK_URL] try: resp[CONF_REMOTE_UI_URL] = hass.components.cloud.async_remote_ui_url() except hass.components.cloud.CloudNotAvailable: pass return webhook_response(resp, registration=config_entry.data) @WEBHOOK_COMMANDS.register("scan_tag") @validate_schema({vol.Required("tag_id"): cv.string}) async def webhook_scan_tag(hass, config_entry, data): """Handle a fire event webhook.""" await tag.async_scan_tag( hass, data["tag_id"], config_entry.data[ATTR_DEVICE_ID], registration_context(config_entry.data), ) return empty_okay_response()
import logging import pyatmo from homeassistant.components.light import LightEntity from homeassistant.core import callback from homeassistant.exceptions import PlatformNotReady from homeassistant.helpers.dispatcher import async_dispatcher_connect from .const import ( DATA_HANDLER, DOMAIN, EVENT_TYPE_LIGHT_MODE, MANUFACTURER, SIGNAL_NAME, ) from .data_handler import CAMERA_DATA_CLASS_NAME, NetatmoDataHandler from .netatmo_entity_base import NetatmoBase _LOGGER = logging.getLogger(__name__) async def async_setup_entry(hass, entry, async_add_entities): """Set up the Netatmo camera light platform.""" if "access_camera" not in entry.data["token"]["scope"]: _LOGGER.info( "Cameras are currently not supported with this authentication method" ) return data_handler = hass.data[DOMAIN][entry.entry_id][DATA_HANDLER] async def get_entities(): """Retrieve Netatmo entities.""" await data_handler.register_data_class( CAMERA_DATA_CLASS_NAME, CAMERA_DATA_CLASS_NAME, None ) entities = [] all_cameras = [] if CAMERA_DATA_CLASS_NAME not in data_handler.data: raise PlatformNotReady try: for home in data_handler.data[CAMERA_DATA_CLASS_NAME].cameras.values(): for camera in home.values(): all_cameras.append(camera) except pyatmo.NoDevice: _LOGGER.debug("No cameras found") for camera in all_cameras: if camera["type"] == "NOC": if not data_handler.webhook: raise PlatformNotReady _LOGGER.debug("Adding camera light %s %s", camera["id"], camera["name"]) entities.append( NetatmoLight( data_handler, camera["id"], camera["type"], camera["home_id"], ) ) return entities async_add_entities(await get_entities(), True) class NetatmoLight(NetatmoBase, LightEntity): """Representation of a Netatmo Presence camera light.""" def __init__( self, data_handler: NetatmoDataHandler, camera_id: str, camera_type: str, home_id: str, ): """Initialize a Netatmo Presence camera light.""" LightEntity.__init__(self) super().__init__(data_handler) self._data_classes.append( {"name": CAMERA_DATA_CLASS_NAME, SIGNAL_NAME: CAMERA_DATA_CLASS_NAME} ) self._id = camera_id self._home_id = home_id self._model = camera_type self._device_name = self._data.get_camera(camera_id).get("name") self._name = f"{MANUFACTURER} {self._device_name}" self._is_on = False self._unique_id = f"{self._id}-light" async def async_added_to_hass(self) -> None: """Entity created.""" await super().async_added_to_hass() self._listeners.append( async_dispatcher_connect( self.hass, f"signal-{DOMAIN}-webhook-{EVENT_TYPE_LIGHT_MODE}", self.handle_event, ) ) @callback def handle_event(self, event): """Handle webhook events.""" data = event["data"] if not data.get("camera_id"): return if ( data["home_id"] == self._home_id and data["camera_id"] == self._id and data["push_type"] == "NOC-light_mode" ): self._is_on = bool(data["sub_type"] == "on") self.async_write_ha_state() return @property def is_on(self): """Return true if light is on.""" return self._is_on def turn_on(self, **kwargs): """Turn camera floodlight on.""" _LOGGER.debug("Turn camera '%s' on", self._name) self._data.set_state( home_id=self._home_id, camera_id=self._id, floodlight="on", ) def turn_off(self, **kwargs): """Turn camera floodlight into auto mode.""" _LOGGER.debug("Turn camera '%s' to auto mode", self._name) self._data.set_state( home_id=self._home_id, camera_id=self._id, floodlight="auto", ) @callback def async_update_callback(self): """Update the entity's state.""" self._is_on = bool(self._data.get_light_state(self._id) == "on")
from datetime import datetime import pytest from homeassistant.components.sensor import ( DEVICE_CLASS_CURRENT, DOMAIN as SENSOR_DOMAIN, ) from homeassistant.components.wled.const import ( ATTR_LED_COUNT, ATTR_MAX_POWER, CURRENT_MA, DOMAIN, ) from homeassistant.const import ( ATTR_DEVICE_CLASS, ATTR_ICON, ATTR_UNIT_OF_MEASUREMENT, DATA_BYTES, PERCENTAGE, SIGNAL_STRENGTH_DECIBELS_MILLIWATT, ) from homeassistant.core import HomeAssistant from homeassistant.util import dt as dt_util from tests.async_mock import patch from tests.components.wled import init_integration from tests.test_util.aiohttp import AiohttpClientMocker async def test_sensors( hass: HomeAssistant, aioclient_mock: AiohttpClientMocker ) -> None: """Test the creation and values of the WLED sensors.""" entry = await init_integration(hass, aioclient_mock, skip_setup=True) registry = await hass.helpers.entity_registry.async_get_registry() # Pre-create registry entries for disabled by default sensors registry.async_get_or_create( SENSOR_DOMAIN, DOMAIN, "aabbccddeeff_uptime", suggested_object_id="wled_rgb_light_uptime", disabled_by=None, ) registry.async_get_or_create( SENSOR_DOMAIN, DOMAIN, "aabbccddeeff_free_heap", suggested_object_id="wled_rgb_light_free_memory", disabled_by=None, ) registry.async_get_or_create( SENSOR_DOMAIN, DOMAIN, "aabbccddeeff_wifi_signal", suggested_object_id="wled_rgb_light_wifi_signal", disabled_by=None, ) registry.async_get_or_create( SENSOR_DOMAIN, DOMAIN, "aabbccddeeff_wifi_rssi", suggested_object_id="wled_rgb_light_wifi_rssi", disabled_by=None, ) registry.async_get_or_create( SENSOR_DOMAIN, DOMAIN, "aabbccddeeff_wifi_channel", suggested_object_id="wled_rgb_light_wifi_channel", disabled_by=None, ) registry.async_get_or_create( SENSOR_DOMAIN, DOMAIN, "aabbccddeeff_wifi_bssid", suggested_object_id="wled_rgb_light_wifi_bssid", disabled_by=None, ) # Setup test_time = datetime(2019, 11, 11, 9, 10, 32, tzinfo=dt_util.UTC) with patch("homeassistant.components.wled.sensor.utcnow", return_value=test_time): await hass.config_entries.async_setup(entry.entry_id) await hass.async_block_till_done() state = hass.states.get("sensor.wled_rgb_light_estimated_current") assert state assert state.attributes.get(ATTR_ICON) == "mdi:power" assert state.attributes.get(ATTR_LED_COUNT) == 30 assert state.attributes.get(ATTR_MAX_POWER) == 850 assert state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) == CURRENT_MA assert state.attributes.get(ATTR_DEVICE_CLASS) == DEVICE_CLASS_CURRENT assert state.state == "470" entry = registry.async_get("sensor.wled_rgb_light_estimated_current") assert entry assert entry.unique_id == "aabbccddeeff_estimated_current" state = hass.states.get("sensor.wled_rgb_light_uptime") assert state assert state.attributes.get(ATTR_ICON) == "mdi:clock-outline" assert state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) is None assert state.state == "2019-11-11T09:10:00+00:00" entry = registry.async_get("sensor.wled_rgb_light_uptime") assert entry assert entry.unique_id == "aabbccddeeff_uptime" state = hass.states.get("sensor.wled_rgb_light_free_memory") assert state assert state.attributes.get(ATTR_ICON) == "mdi:memory" assert state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) == DATA_BYTES assert state.state == "14600" entry = registry.async_get("sensor.wled_rgb_light_free_memory") assert entry assert entry.unique_id == "aabbccddeeff_free_heap" state = hass.states.get("sensor.wled_rgb_light_wifi_signal") assert state assert state.attributes.get(ATTR_ICON) == "mdi:wifi" assert state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) == PERCENTAGE assert state.state == "76" entry = registry.async_get("sensor.wled_rgb_light_wifi_signal") assert entry assert entry.unique_id == "aabbccddeeff_wifi_signal" state = hass.states.get("sensor.wled_rgb_light_wifi_rssi") assert state assert state.attributes.get(ATTR_ICON) == "mdi:wifi" assert ( state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) == SIGNAL_STRENGTH_DECIBELS_MILLIWATT ) assert state.state == "-62" entry = registry.async_get("sensor.wled_rgb_light_wifi_rssi") assert entry assert entry.unique_id == "aabbccddeeff_wifi_rssi" state = hass.states.get("sensor.wled_rgb_light_wifi_channel") assert state assert state.attributes.get(ATTR_ICON) == "mdi:wifi" assert state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) is None assert state.state == "11" entry = registry.async_get("sensor.wled_rgb_light_wifi_channel") assert entry assert entry.unique_id == "aabbccddeeff_wifi_channel" state = hass.states.get("sensor.wled_rgb_light_wifi_bssid") assert state assert state.attributes.get(ATTR_ICON) == "mdi:wifi" assert state.attributes.get(ATTR_UNIT_OF_MEASUREMENT) is None assert state.state == "AA:AA:AA:AA:AA:BB" entry = registry.async_get("sensor.wled_rgb_light_wifi_bssid") assert entry assert entry.unique_id == "aabbccddeeff_wifi_bssid" @pytest.mark.parametrize( "entity_id", ( "sensor.wled_rgb_light_uptime", "sensor.wled_rgb_light_free_memory", "sensor.wled_rgb_light_wi_fi_signal", "sensor.wled_rgb_light_wi_fi_rssi", "sensor.wled_rgb_light_wi_fi_channel", "sensor.wled_rgb_light_wi_fi_bssid", ), ) async def test_disabled_by_default_sensors( hass: HomeAssistant, aioclient_mock: AiohttpClientMocker, entity_id: str ) -> None: """Test the disabled by default WLED sensors.""" await init_integration(hass, aioclient_mock) registry = await hass.helpers.entity_registry.async_get_registry() state = hass.states.get(entity_id) assert state is None entry = registry.async_get(entity_id) assert entry assert entry.disabled assert entry.disabled_by == "integration"
import functools import logging import os import posixpath import re import time from absl import flags from perfkitbenchmarker import data from perfkitbenchmarker import linux_packages from perfkitbenchmarker import regex_util from perfkitbenchmarker import vm_util FLAGS = flags.FLAGS flags.DEFINE_string('hadoop_version', '3.2.1', 'Version of hadoop.') DATA_FILES = ['hadoop/core-site.xml.j2', 'hadoop/yarn-site.xml.j2', 'hadoop/hdfs-site.xml', 'hadoop/mapred-site.xml.j2', 'hadoop/hadoop-env.sh.j2', 'hadoop/workers.j2'] START_HADOOP_SCRIPT = 'hadoop/start-hadoop.sh.j2' HADOOP_DIR = posixpath.join(linux_packages.INSTALL_DIR, 'hadoop') HADOOP_BIN = posixpath.join(HADOOP_DIR, 'bin') HADOOP_SBIN = posixpath.join(HADOOP_DIR, 'sbin') HADOOP_CONF_DIR = posixpath.join(HADOOP_DIR, 'etc', 'hadoop') HADOOP_PRIVATE_KEY = posixpath.join(HADOOP_CONF_DIR, 'hadoop_keyfile') def CheckPrerequisites(): """Verifies that the required resources are present. Raises: perfkitbenchmarker.data.ResourceNotFound: On missing resource. """ for resource in DATA_FILES + [START_HADOOP_SCRIPT]: data.ResourcePath(resource) def _Install(vm): vm.Install('openjdk') vm.Install('curl') hadoop_url = ('https://www-us.apache.org/dist/hadoop/common/hadoop-{0}/' 'hadoop-{0}.tar.gz').format(FLAGS.hadoop_version) vm.RemoteCommand(('mkdir {0} && curl -L {1} | ' 'tar -C {0} --strip-components=1 -xzf -').format( HADOOP_DIR, hadoop_url)) def YumInstall(vm): """Installs Hadoop on the VM.""" vm.InstallPackages('snappy') _Install(vm) def AptInstall(vm): """Installs Hadoop on the VM.""" libsnappy = 'libsnappy1' if not vm.HasPackage(libsnappy): # libsnappy's name on ubuntu16.04 is libsnappy1v5. Let's try that instead. libsnappy = 'libsnappy1v5' vm.InstallPackages(libsnappy) _Install(vm) # Scheduling constants. # Give 90% of VM memory to YARN for scheduling. # This is roguhly consistent with Dataproc 2.0+ YARN_MEMORY_FRACTION = 0.9 # Give 80% of the memory YARN schedules to the JVM Heap space. # This is probably conservative on more memory mahcines, but is a traditonal # rule of thumb. HEAP_MEMORY_RATIO = 0.8 # Schedule slightly more tasks than vCPUs. This was found to be optimal for # sorting 240 GB using standard GCE virtual machines with sufficient disk. # Using a grid seach. # TODO(pclay): Confirm results generalize to larger data sizes. MAP_SLOTS_PER_CORE = 1.5 REDUCE_SLOTS_PER_CORE = 4 / 3 def _RenderConfig( vm, master, workers, memory_fraction=YARN_MEMORY_FRACTION): """Load Hadoop Condfiguration on VM.""" # Use first worker to get worker configuration worker = workers[0] num_workers = len(workers) worker_cores = worker.NumCpusForBenchmark() yarn_memory_mb = int((vm.total_memory_kb / 1024) * memory_fraction) # Reserve 1 GB per worker for AppMaster containers. usable_memory_mb = yarn_memory_mb - 1024 # YARN generally schedules based on memory (and ignores cores). We invert this # by calculating memory in terms of cores. This means that changing # machine memory will not change scheduling simply change the memory given to # each task. maps_per_node = int(worker_cores * MAP_SLOTS_PER_CORE) map_memory_mb = usable_memory_mb // maps_per_node map_heap_mb = int(map_memory_mb * HEAP_MEMORY_RATIO) reduces_per_node = int(worker_cores * REDUCE_SLOTS_PER_CORE) reduce_memory_mb = usable_memory_mb // reduces_per_node reduce_heap_mb = int(reduce_memory_mb * HEAP_MEMORY_RATIO) # This property is only used for generating data like teragen. # Divide 2 to avoid tiny files on large clusters. num_map_tasks = maps_per_node * num_workers # This determines the number of reduce tasks in Terasort and is critical to # scale with the cluster. num_reduce_tasks = reduces_per_node * num_workers if vm.scratch_disks: # TODO(pclay): support multiple scratch disks. A current suboptimal # workaround is RAID0 local_ssds with --num_striped_disks. scratch_dir = posixpath.join(vm.GetScratchDir(), 'hadoop') else: scratch_dir = posixpath.join('/tmp/pkb/local_scratch', 'hadoop') context = { 'master_ip': master.internal_ip, 'worker_ips': [vm.internal_ip for vm in workers], 'scratch_dir': scratch_dir, 'worker_vcpus': worker_cores, 'hadoop_private_key': HADOOP_PRIVATE_KEY, 'user': vm.user_name, 'yarn_memory_mb': yarn_memory_mb, 'map_memory_mb': map_memory_mb, 'map_heap_mb': map_heap_mb, 'num_map_tasks': num_map_tasks, 'reduce_memory_mb': reduce_memory_mb, 'reduce_heap_mb': reduce_heap_mb, 'num_reduce_tasks': num_reduce_tasks, } for file_name in DATA_FILES: file_path = data.ResourcePath(file_name) if (file_name == 'hadoop/workers.j2' and FLAGS.hadoop_version.split('.')[0] < '3'): file_name = 'hadoop/slaves.j2' remote_path = posixpath.join(HADOOP_CONF_DIR, os.path.basename(file_name)) if file_name.endswith('.j2'): vm.RenderTemplate(file_path, os.path.splitext(remote_path)[0], context) else: vm.RemoteCopy(file_path, remote_path) def _GetHDFSOnlineNodeCount(master): cmd = '{0} dfsadmin -report'.format(posixpath.join(HADOOP_BIN, 'hdfs')) stdout = master.RemoteCommand(cmd)[0] avail_str = regex_util.ExtractGroup(r'Live datanodes\s+\((\d+)\):', stdout) return int(avail_str) def _GetYARNOnlineNodeCount(master): cmd = '{0} node -list -all'.format(posixpath.join(HADOOP_BIN, 'yarn')) stdout = master.RemoteCommand(cmd)[0] return len(re.findall(r'RUNNING', stdout)) def ConfigureAndStart(master, workers, start_yarn=True): """Configure hadoop on a cluster. Args: master: VM. Master VM - will be the HDFS NameNode, YARN ResourceManager. workers: List of VMs. Each VM will run an HDFS DataNode, YARN node. start_yarn: bool. Start YARN and JobHistory server? Set to False if HDFS is the only service required. Default: True. """ vms = [master] + workers # If there are no workers set up in pseudo-distributed mode, where the master # node runs the worker daemons. workers = workers or [master] fn = functools.partial( _RenderConfig, master=master, workers=workers) vm_util.RunThreaded(fn, vms) master.RemoteCommand( "rm -f {0} && ssh-keygen -q -t rsa -N '' -f {0}".format( HADOOP_PRIVATE_KEY)) public_key = master.RemoteCommand('cat {0}.pub'.format(HADOOP_PRIVATE_KEY))[0] def AddKey(vm): vm.RemoteCommand('echo "{0}" >> ~/.ssh/authorized_keys'.format(public_key)) vm_util.RunThreaded(AddKey, vms) context = {'hadoop_dir': HADOOP_DIR, 'vm_ips': [vm.internal_ip for vm in vms], 'start_yarn': start_yarn} # HDFS setup and formatting, YARN startup script_path = posixpath.join(HADOOP_DIR, 'start-hadoop.sh') master.RenderTemplate(data.ResourcePath(START_HADOOP_SCRIPT), script_path, context=context) master.RemoteCommand('bash {0}'.format(script_path), should_log=True) logging.info('Sleeping 10s for Hadoop nodes to join.') time.sleep(10) logging.info('Checking HDFS status.') hdfs_online_count = _GetHDFSOnlineNodeCount(master) if hdfs_online_count != len(workers): raise ValueError('Not all nodes running HDFS: {0} < {1}'.format( hdfs_online_count, len(workers))) else: logging.info('HDFS running on all %d workers', len(workers)) if start_yarn: logging.info('Checking YARN status.') yarn_online_count = _GetYARNOnlineNodeCount(master) if yarn_online_count != len(workers): raise ValueError('Not all nodes running YARN: {0} < {1}'.format( yarn_online_count, len(workers))) else: logging.info('YARN running on all %d workers', len(workers)) def StopYARN(master): """Stop YARN on all nodes.""" master.RemoteCommand(posixpath.join(HADOOP_SBIN, 'stop-yarn.sh')) def StopHDFS(master): """Stop HDFS on all nodes.""" master.RemoteCommand(posixpath.join(HADOOP_SBIN, 'stop-dfs.sh')) def StopHistoryServer(master): """Stop the MapReduce JobHistory daemon.""" master.RemoteCommand('{0} stop historyserver'.format( posixpath.join(HADOOP_SBIN, 'mr-jobhistory-daemon.sh'))) def StopAll(master): """Stop HDFS and YARN. Args: master: VM. HDFS NameNode/YARN ResourceManager. """ StopHistoryServer(master) StopYARN(master) StopHDFS(master) def CleanDatanode(vm): """Delete Hadoop data from 'vm'.""" vm.RemoteCommand('rm -rf {0}'.format( posixpath.join(vm.GetScratchDir(), 'hadoop')))
from scattertext.diachronic.DiachronicVisualizer import DiachronicVisualizer class BubbleDiachronicVisualization(DiachronicVisualizer): @staticmethod def visualize(display_df): viridis = ['#440154', '#472c7a', '#3b518b', '#2c718e', '#21908d', '#27ad81', '#5cc863', '#aadc32', '#fde725'] import altair as alt color_scale = alt.Scale( domain=(display_df.dropna().trending.min(), 0, display_df.dropna().trending.max()), range=[viridis[0], viridis[len(viridis) // 2], viridis[-1]] ) return alt.Chart(display_df).mark_circle().encode( alt.X('variable'), alt.Y('term'), size='frequency', color=alt.Color('trending:Q', scale=color_scale), )