text
stringlengths
213
32.3k
import logging from homeassistant import config_entries from homeassistant.helpers import config_entry_oauth2_flow from .const import DOMAIN @config_entries.HANDLERS.register(DOMAIN) class SomfyFlowHandler(config_entry_oauth2_flow.AbstractOAuth2FlowHandler): """Config flow to handle Somfy OAuth2 authentication.""" DOMAIN = DOMAIN CONNECTION_CLASS = config_entries.CONN_CLASS_CLOUD_POLL @property def logger(self) -> logging.Logger: """Return logger.""" return logging.getLogger(__name__) async def async_step_user(self, user_input=None): """Handle a flow start.""" if self.hass.config_entries.async_entries(DOMAIN): return self.async_abort(reason="single_instance_allowed") return await super().async_step_user(user_input)
from ..cog_utils import CompositeMetaClass from .audioset import AudioSetCommands from .controller import PlayerControllerCommands from .equalizer import EqualizerCommands from .llset import LavalinkSetupCommands from .localtracks import LocalTrackCommands from .miscellaneous import MiscellaneousCommands from .player import PlayerCommands from .playlists import PlaylistCommands from .queue import QueueCommands class Commands( AudioSetCommands, PlayerControllerCommands, EqualizerCommands, LavalinkSetupCommands, LocalTrackCommands, MiscellaneousCommands, PlayerCommands, PlaylistCommands, QueueCommands, metaclass=CompositeMetaClass, ): """Class joining all command subclasses"""
import asyncio import voluptuous as vol from homeassistant.config import async_log_exception from homeassistant.const import CONF_SEQUENCE from homeassistant.exceptions import HomeAssistantError from homeassistant.helpers import config_validation as cv from homeassistant.helpers.script import async_validate_action_config from . import DOMAIN, SCRIPT_ENTRY_SCHEMA async def async_validate_config_item(hass, config, full_config=None): """Validate config item.""" config = SCRIPT_ENTRY_SCHEMA(config) config[CONF_SEQUENCE] = await asyncio.gather( *[ async_validate_action_config(hass, action) for action in config[CONF_SEQUENCE] ] ) return config async def _try_async_validate_config_item(hass, object_id, config, full_config=None): """Validate config item.""" try: cv.slug(object_id) config = await async_validate_config_item(hass, config, full_config) except (vol.Invalid, HomeAssistantError) as ex: async_log_exception(ex, DOMAIN, full_config or config, hass) return None return config async def async_validate_config(hass, config): """Validate config.""" if DOMAIN in config: validated_config = {} for object_id, cfg in config[DOMAIN].items(): cfg = await _try_async_validate_config_item(hass, object_id, cfg, config) if cfg is not None: validated_config[object_id] = cfg config[DOMAIN] = validated_config return config
from datetime import timedelta from pyruckus.exceptions import AuthenticationError from homeassistant import config_entries from homeassistant.components.ruckus_unleashed.const import DOMAIN from homeassistant.util import utcnow from tests.async_mock import patch from tests.common import async_fire_time_changed from tests.components.ruckus_unleashed import CONFIG, DEFAULT_SYSTEM_INFO, DEFAULT_TITLE async def test_form(hass): """Test we get the form.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["errors"] == {} with patch( "homeassistant.components.ruckus_unleashed.Ruckus.connect", return_value=None, ), patch( "homeassistant.components.ruckus_unleashed.Ruckus.mesh_name", return_value=DEFAULT_TITLE, ), patch( "homeassistant.components.ruckus_unleashed.Ruckus.system_info", return_value=DEFAULT_SYSTEM_INFO, ), patch( "homeassistant.components.ruckus_unleashed.async_setup", return_value=True ) as mock_setup, patch( "homeassistant.components.ruckus_unleashed.async_setup_entry", return_value=True, ) as mock_setup_entry: result2 = await hass.config_entries.flow.async_configure( result["flow_id"], CONFIG, ) await hass.async_block_till_done() assert result2["type"] == "create_entry" assert result2["title"] == DEFAULT_TITLE assert result2["data"] == CONFIG assert len(mock_setup.mock_calls) == 1 assert len(mock_setup_entry.mock_calls) == 1 async def test_form_invalid_auth(hass): """Test we handle invalid auth.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch( "homeassistant.components.ruckus_unleashed.Ruckus.connect", side_effect=AuthenticationError, ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], CONFIG, ) assert result2["type"] == "form" assert result2["errors"] == {"base": "invalid_auth"} async def test_form_cannot_connect(hass): """Test we handle cannot connect error.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch( "homeassistant.components.ruckus_unleashed.Ruckus.connect", side_effect=ConnectionError, ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], CONFIG, ) assert result2["type"] == "form" assert result2["errors"] == {"base": "cannot_connect"} async def test_form_unknown_error(hass): """Test we handle unknown error.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch( "homeassistant.components.ruckus_unleashed.Ruckus.connect", side_effect=Exception, ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], CONFIG, ) assert result2["type"] == "form" assert result2["errors"] == {"base": "unknown"} async def test_form_cannot_connect_unknown_serial(hass): """Test we handle cannot connect error on invalid serial number.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["errors"] == {} with patch( "homeassistant.components.ruckus_unleashed.Ruckus.connect", return_value=None, ), patch( "homeassistant.components.ruckus_unleashed.Ruckus.mesh_name", return_value=DEFAULT_TITLE, ), patch( "homeassistant.components.ruckus_unleashed.Ruckus.system_info", return_value={}, ): result2 = await hass.config_entries.flow.async_configure( result["flow_id"], CONFIG, ) assert result2["type"] == "form" assert result2["errors"] == {"base": "cannot_connect"} async def test_form_duplicate_error(hass): """Test we handle duplicate error.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) with patch( "homeassistant.components.ruckus_unleashed.Ruckus.connect", return_value=None, ), patch( "homeassistant.components.ruckus_unleashed.Ruckus.mesh_name", return_value=DEFAULT_TITLE, ), patch( "homeassistant.components.ruckus_unleashed.Ruckus.system_info", return_value=DEFAULT_SYSTEM_INFO, ): await hass.config_entries.flow.async_configure( result["flow_id"], CONFIG, ) future = utcnow() + timedelta(minutes=60) async_fire_time_changed(hass, future) await hass.async_block_till_done() result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": config_entries.SOURCE_USER} ) assert result["type"] == "form" assert result["errors"] == {} result2 = await hass.config_entries.flow.async_configure( result["flow_id"], CONFIG, ) assert result2["type"] == "abort" assert result2["reason"] == "already_configured"
from osgeo import osr from pyproj import Proj, transform def lat_lon_to_pixel(raster_dataset, location): """From zacharybears.com/using-python-to-translate-latlon-locations-to-pixels-on-a-geotiff/.""" ds = raster_dataset gt = ds.GetGeoTransform() srs = osr.SpatialReference() srs.ImportFromWkt(ds.GetProjection()) srs_lat_lon = srs.CloneGeogCS() ct = osr.CoordinateTransformation(srs_lat_lon, srs) new_location = [None, None] # Change the point locations into the GeoTransform space (new_location[1], new_location[0], holder) = ct.TransformPoint(location[1], location[0]) # Translate the x and y coordinates into pixel values x = (new_location[1] - gt[0]) / gt[1] y = (new_location[0] - gt[3]) / gt[5] return (int(x), int(y)) def pixel_to_lat_lon(raster_dataset, col, row): """From zacharybears.com/using-python-to-translate-latlon-locations-to-pixels-on-a-geotiff/.""" ds = raster_dataset gt = ds.GetGeoTransform() srs = osr.SpatialReference() srs.ImportFromWkt(ds.GetProjection()) srs_lat_lon = srs.CloneGeogCS() ct = osr.CoordinateTransformation(srs, srs_lat_lon) ulon = col * gt[1] + gt[0] ulat = row * gt[5] + gt[3] # Transform the point into the GeoTransform space (lon, lat, holder) = ct.TransformPoint(ulon, ulat) return (lat, lon) def pixel_to_lat_lon_web_mercator(raster_dataset, col, row): """Convert a pixel on the raster_dataset to web mercator (epsg:3857).""" spatial_reference = osr.SpatialReference() spatial_reference.ImportFromWkt(raster_dataset.GetProjection()) ds_spatial_reference_proj_string = spatial_reference.ExportToProj4() in_proj = Proj(ds_spatial_reference_proj_string) out_proj = Proj(init='epsg:3857') geo_transform = raster_dataset.GetGeoTransform() ulon = col * geo_transform[1] + geo_transform[0] ulat = row * geo_transform[5] + geo_transform[3] x2, y2 = transform(in_proj, out_proj, ulon, ulat) x2, y2 = out_proj(x2, y2, inverse=True) return x2, y2
from typing import Optional from gi.repository import Gio, GLib, Gtk from meld.conf import _ from meld.misc import get_modal_parent, modal_dialog from meld.ui.filechooser import MeldFileChooserDialog def trash_or_confirm(gfile: Gio.File) -> bool: """Trash or delete the given Gio.File Files and folders will be moved to the system Trash location without confirmation. If they can't be trashed, then the user is prompted for an irreversible deletion. :rtype: bool :returns: whether the file was deleted """ try: gfile.trash(None) return True except GLib.Error as e: # Handle not-supported, as that's due to the trashing target # being a (probably network) mount-point, not an underlying # problem. We also have to handle the generic FAILED code # because that's what we get with NFS mounts. expected_error = ( e.code == Gio.IOErrorEnum.NOT_SUPPORTED or e.code == Gio.IOErrorEnum.FAILED ) if not expected_error: raise RuntimeError(str(e)) file_type = gfile.query_file_type( Gio.FileQueryInfoFlags.NONE, None) if file_type == Gio.FileType.DIRECTORY: raise RuntimeError(_("Deleting remote folders is not supported")) elif file_type != Gio.FileType.REGULAR: raise RuntimeError(_("Not a file or directory")) delete_permanently = modal_dialog( primary=_( "“{}” can’t be put in the trash. Do you want to " "delete it immediately?".format( GLib.markup_escape_text(gfile.get_parse_name())) ), secondary=_( "This remote location does not support sending items " "to the trash." ), buttons=[ (_("_Cancel"), Gtk.ResponseType.CANCEL), (_("_Delete Permanently"), Gtk.ResponseType.OK), ], ) if delete_permanently != Gtk.ResponseType.OK: return False try: gfile.delete(None) # TODO: Deleting remote folders involves reimplementing # shutil.rmtree for gio, and then calling # self.recursively_update(). except Exception as e: raise RuntimeError(str(e)) return True def prompt_save_filename( title: str, parent: Optional[Gtk.Widget] = None) -> Optional[Gio.File]: dialog = MeldFileChooserDialog( title, transient_for=get_modal_parent(parent), action=Gtk.FileChooserAction.SAVE, ) dialog.set_default_response(Gtk.ResponseType.ACCEPT) response = dialog.run() gfile = dialog.get_file() dialog.destroy() if response != Gtk.ResponseType.ACCEPT or not gfile: return None try: file_info = gfile.query_info( 'standard::name,standard::display-name', Gio.FileQueryInfoFlags.NONE, None, ) except GLib.Error as err: if err.code == Gio.IOErrorEnum.NOT_FOUND: return gfile raise # The selected file exists, so we need to prompt for overwrite. parent_folder = gfile.get_parent() parent_name = parent_folder.get_parse_name() if parent_folder else '' file_name = file_info.get_display_name() replace = modal_dialog( primary=_("Replace file “%s”?") % file_name, secondary=_( "A file with this name already exists in “%s”.\n" "If you replace the existing file, its contents " "will be lost.") % parent_name, buttons=[ (_("_Cancel"), Gtk.ResponseType.CANCEL), (_("_Replace"), Gtk.ResponseType.OK), ], messagetype=Gtk.MessageType.WARNING, ) if replace != Gtk.ResponseType.OK: return None return gfile
import asyncio import logging from aiohttp import ClientError from griddypower.async_api import LOAD_ZONES, AsyncGriddy import voluptuous as vol from homeassistant import config_entries, core, exceptions from homeassistant.helpers import aiohttp_client from .const import CONF_LOADZONE from .const import DOMAIN # pylint:disable=unused-import _LOGGER = logging.getLogger(__name__) DATA_SCHEMA = vol.Schema({vol.Required(CONF_LOADZONE): vol.In(LOAD_ZONES)}) async def validate_input(hass: core.HomeAssistant, data): """Validate the user input allows us to connect. Data has the keys from DATA_SCHEMA with values provided by the user. """ client_session = aiohttp_client.async_get_clientsession(hass) try: await AsyncGriddy( client_session, settlement_point=data[CONF_LOADZONE] ).async_getnow() except (asyncio.TimeoutError, ClientError) as err: raise CannotConnect from err # Return info that you want to store in the config entry. return {"title": f"Load Zone {data[CONF_LOADZONE]}"} class ConfigFlow(config_entries.ConfigFlow, domain=DOMAIN): """Handle a config flow for Griddy Power.""" VERSION = 1 CONNECTION_CLASS = config_entries.CONN_CLASS_CLOUD_POLL async def async_step_user(self, user_input=None): """Handle the initial step.""" errors = {} info = None if user_input is not None: try: info = await validate_input(self.hass, user_input) except CannotConnect: errors["base"] = "cannot_connect" except Exception: # pylint: disable=broad-except _LOGGER.exception("Unexpected exception") errors["base"] = "unknown" if "base" not in errors: await self.async_set_unique_id(user_input[CONF_LOADZONE]) self._abort_if_unique_id_configured() return self.async_create_entry(title=info["title"], data=user_input) return self.async_show_form( step_id="user", data_schema=DATA_SCHEMA, errors=errors ) async def async_step_import(self, user_input): """Handle import.""" await self.async_set_unique_id(user_input[CONF_LOADZONE]) self._abort_if_unique_id_configured() return await self.async_step_user(user_input) class CannotConnect(exceptions.HomeAssistantError): """Error to indicate we cannot connect."""
import asyncio from collections import Counter import itertools from typing import Any, Callable, Iterator, List, Optional, Tuple, cast import voluptuous as vol from homeassistant.components import light from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_EFFECT, ATTR_EFFECT_LIST, ATTR_FLASH, ATTR_HS_COLOR, ATTR_MAX_MIREDS, ATTR_MIN_MIREDS, ATTR_TRANSITION, ATTR_WHITE_VALUE, PLATFORM_SCHEMA, SUPPORT_BRIGHTNESS, SUPPORT_COLOR, SUPPORT_COLOR_TEMP, SUPPORT_EFFECT, SUPPORT_FLASH, SUPPORT_TRANSITION, SUPPORT_WHITE_VALUE, ) from homeassistant.const import ( ATTR_ENTITY_ID, ATTR_SUPPORTED_FEATURES, CONF_ENTITIES, CONF_NAME, STATE_ON, STATE_UNAVAILABLE, ) from homeassistant.core import CoreState, State import homeassistant.helpers.config_validation as cv from homeassistant.helpers.event import async_track_state_change_event from homeassistant.helpers.typing import ConfigType, HomeAssistantType from homeassistant.util import color as color_util from . import GroupEntity # mypy: allow-incomplete-defs, allow-untyped-calls, allow-untyped-defs # mypy: no-check-untyped-defs DEFAULT_NAME = "Light Group" PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Required(CONF_ENTITIES): cv.entities_domain(light.DOMAIN), } ) SUPPORT_GROUP_LIGHT = ( SUPPORT_BRIGHTNESS | SUPPORT_COLOR_TEMP | SUPPORT_EFFECT | SUPPORT_FLASH | SUPPORT_COLOR | SUPPORT_TRANSITION | SUPPORT_WHITE_VALUE ) async def async_setup_platform( hass: HomeAssistantType, config: ConfigType, async_add_entities, discovery_info=None ) -> None: """Initialize light.group platform.""" async_add_entities( [LightGroup(cast(str, config.get(CONF_NAME)), config[CONF_ENTITIES])] ) class LightGroup(GroupEntity, light.LightEntity): """Representation of a light group.""" def __init__(self, name: str, entity_ids: List[str]) -> None: """Initialize a light group.""" self._name = name self._entity_ids = entity_ids self._is_on = False self._available = False self._icon = "mdi:lightbulb-group" self._brightness: Optional[int] = None self._hs_color: Optional[Tuple[float, float]] = None self._color_temp: Optional[int] = None self._min_mireds: Optional[int] = 154 self._max_mireds: Optional[int] = 500 self._white_value: Optional[int] = None self._effect_list: Optional[List[str]] = None self._effect: Optional[str] = None self._supported_features: int = 0 async def async_added_to_hass(self) -> None: """Register callbacks.""" async def async_state_changed_listener(event): """Handle child updates.""" self.async_set_context(event.context) await self.async_defer_or_update_ha_state() assert self.hass self.async_on_remove( async_track_state_change_event( self.hass, self._entity_ids, async_state_changed_listener ) ) if self.hass.state == CoreState.running: await self.async_update() return await super().async_added_to_hass() @property def name(self) -> str: """Return the name of the entity.""" return self._name @property def is_on(self) -> bool: """Return the on/off state of the light group.""" return self._is_on @property def available(self) -> bool: """Return whether the light group is available.""" return self._available @property def icon(self): """Return the light group icon.""" return self._icon @property def brightness(self) -> Optional[int]: """Return the brightness of this light group between 0..255.""" return self._brightness @property def hs_color(self) -> Optional[Tuple[float, float]]: """Return the HS color value [float, float].""" return self._hs_color @property def color_temp(self) -> Optional[int]: """Return the CT color value in mireds.""" return self._color_temp @property def min_mireds(self) -> Optional[int]: """Return the coldest color_temp that this light group supports.""" return self._min_mireds @property def max_mireds(self) -> Optional[int]: """Return the warmest color_temp that this light group supports.""" return self._max_mireds @property def white_value(self) -> Optional[int]: """Return the white value of this light group between 0..255.""" return self._white_value @property def effect_list(self) -> Optional[List[str]]: """Return the list of supported effects.""" return self._effect_list @property def effect(self) -> Optional[str]: """Return the current effect.""" return self._effect @property def supported_features(self) -> int: """Flag supported features.""" return self._supported_features @property def should_poll(self) -> bool: """No polling needed for a light group.""" return False @property def device_state_attributes(self): """Return the state attributes for the light group.""" return {ATTR_ENTITY_ID: self._entity_ids} async def async_turn_on(self, **kwargs): """Forward the turn_on command to all lights in the light group.""" data = {ATTR_ENTITY_ID: self._entity_ids} emulate_color_temp_entity_ids = [] if ATTR_BRIGHTNESS in kwargs: data[ATTR_BRIGHTNESS] = kwargs[ATTR_BRIGHTNESS] if ATTR_HS_COLOR in kwargs: data[ATTR_HS_COLOR] = kwargs[ATTR_HS_COLOR] if ATTR_COLOR_TEMP in kwargs: data[ATTR_COLOR_TEMP] = kwargs[ATTR_COLOR_TEMP] # Create a new entity list to mutate updated_entities = list(self._entity_ids) # Walk through initial entity ids, split entity lists by support for entity_id in self._entity_ids: state = self.hass.states.get(entity_id) if not state: continue support = state.attributes.get(ATTR_SUPPORTED_FEATURES) # Only pass color temperature to supported entity_ids if bool(support & SUPPORT_COLOR) and not bool( support & SUPPORT_COLOR_TEMP ): emulate_color_temp_entity_ids.append(entity_id) updated_entities.remove(entity_id) data[ATTR_ENTITY_ID] = updated_entities if ATTR_WHITE_VALUE in kwargs: data[ATTR_WHITE_VALUE] = kwargs[ATTR_WHITE_VALUE] if ATTR_EFFECT in kwargs: data[ATTR_EFFECT] = kwargs[ATTR_EFFECT] if ATTR_TRANSITION in kwargs: data[ATTR_TRANSITION] = kwargs[ATTR_TRANSITION] if ATTR_FLASH in kwargs: data[ATTR_FLASH] = kwargs[ATTR_FLASH] if not emulate_color_temp_entity_ids: await self.hass.services.async_call( light.DOMAIN, light.SERVICE_TURN_ON, data, blocking=True, context=self._context, ) return emulate_color_temp_data = data.copy() temp_k = color_util.color_temperature_mired_to_kelvin( emulate_color_temp_data[ATTR_COLOR_TEMP] ) hs_color = color_util.color_temperature_to_hs(temp_k) emulate_color_temp_data[ATTR_HS_COLOR] = hs_color del emulate_color_temp_data[ATTR_COLOR_TEMP] emulate_color_temp_data[ATTR_ENTITY_ID] = emulate_color_temp_entity_ids await asyncio.gather( self.hass.services.async_call( light.DOMAIN, light.SERVICE_TURN_ON, data, blocking=True, context=self._context, ), self.hass.services.async_call( light.DOMAIN, light.SERVICE_TURN_ON, emulate_color_temp_data, blocking=True, context=self._context, ), ) async def async_turn_off(self, **kwargs): """Forward the turn_off command to all lights in the light group.""" data = {ATTR_ENTITY_ID: self._entity_ids} if ATTR_TRANSITION in kwargs: data[ATTR_TRANSITION] = kwargs[ATTR_TRANSITION] await self.hass.services.async_call( light.DOMAIN, light.SERVICE_TURN_OFF, data, blocking=True, context=self._context, ) async def async_update(self): """Query all members and determine the light group state.""" all_states = [self.hass.states.get(x) for x in self._entity_ids] states: List[State] = list(filter(None, all_states)) on_states = [state for state in states if state.state == STATE_ON] self._is_on = len(on_states) > 0 self._available = any(state.state != STATE_UNAVAILABLE for state in states) self._brightness = _reduce_attribute(on_states, ATTR_BRIGHTNESS) self._hs_color = _reduce_attribute(on_states, ATTR_HS_COLOR, reduce=_mean_tuple) self._white_value = _reduce_attribute(on_states, ATTR_WHITE_VALUE) self._color_temp = _reduce_attribute(on_states, ATTR_COLOR_TEMP) self._min_mireds = _reduce_attribute( states, ATTR_MIN_MIREDS, default=154, reduce=min ) self._max_mireds = _reduce_attribute( states, ATTR_MAX_MIREDS, default=500, reduce=max ) self._effect_list = None all_effect_lists = list(_find_state_attributes(states, ATTR_EFFECT_LIST)) if all_effect_lists: # Merge all effects from all effect_lists with a union merge. self._effect_list = list(set().union(*all_effect_lists)) self._effect = None all_effects = list(_find_state_attributes(on_states, ATTR_EFFECT)) if all_effects: # Report the most common effect. effects_count = Counter(itertools.chain(all_effects)) self._effect = effects_count.most_common(1)[0][0] self._supported_features = 0 for support in _find_state_attributes(states, ATTR_SUPPORTED_FEATURES): # Merge supported features by emulating support for every feature # we find. self._supported_features |= support # Bitwise-and the supported features with the GroupedLight's features # so that we don't break in the future when a new feature is added. self._supported_features &= SUPPORT_GROUP_LIGHT def _find_state_attributes(states: List[State], key: str) -> Iterator[Any]: """Find attributes with matching key from states.""" for state in states: value = state.attributes.get(key) if value is not None: yield value def _mean_int(*args): """Return the mean of the supplied values.""" return int(sum(args) / len(args)) def _mean_tuple(*args): """Return the mean values along the columns of the supplied values.""" return tuple(sum(x) / len(x) for x in zip(*args)) def _reduce_attribute( states: List[State], key: str, default: Optional[Any] = None, reduce: Callable[..., Any] = _mean_int, ) -> Any: """Find the first attribute matching key from states. If none are found, return default. """ attrs = list(_find_state_attributes(states, key)) if not attrs: return default if len(attrs) == 1: return attrs[0] return reduce(*attrs)
import argparse import logging import sys from typing import Sequence import service_configuration_lib from kubernetes.client import V1beta1CustomResourceDefinition from kubernetes.client.rest import ApiException from paasta_tools.kubernetes_tools import KubeClient from paasta_tools.kubernetes_tools import paasta_prefixed from paasta_tools.utils import DEFAULT_SOA_DIR from paasta_tools.utils import load_system_paasta_config log = logging.getLogger(__name__) def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser(description="Creates/updates kubernetes CRDs.") parser.add_argument( "service_list", nargs="+", help="The list of services to create or update CRDs for", metavar="SERVICE", ) parser.add_argument( "-c", "--cluster", dest="cluster", metavar="CLUSTER", default=None, help="Kubernetes cluster name", ) parser.add_argument( "-d", "--soa-dir", dest="soa_dir", metavar="SOA_DIR", default=DEFAULT_SOA_DIR, help="define a different soa config directory", ) parser.add_argument( "-v", "--verbose", action="store_true", dest="verbose", default=False ) args = parser.parse_args() return args def main() -> None: args = parse_args() soa_dir = args.soa_dir if args.verbose: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.WARNING) if args.cluster: cluster = args.cluster else: system_paasta_config = load_system_paasta_config() cluster = system_paasta_config.get_cluster() kube_client = KubeClient() success = setup_kube_crd( kube_client=kube_client, cluster=cluster, services=args.service_list, soa_dir=soa_dir, ) sys.exit(0 if success else 1) def setup_kube_crd( kube_client: KubeClient, cluster: str, services: Sequence[str], soa_dir: str = DEFAULT_SOA_DIR, ) -> bool: existing_crds = kube_client.apiextensions.list_custom_resource_definition( label_selector=paasta_prefixed("service") ) success = True for service in services: crd_config = service_configuration_lib.read_extra_service_information( service, f"crd-{cluster}", soa_dir=soa_dir ) if not crd_config: log.info("nothing to deploy") continue metadata = crd_config.get("metadata", {}) if "labels" not in metadata: metadata["labels"] = {} metadata["labels"]["yelp.com/paasta_service"] = service metadata["labels"][paasta_prefixed("service")] = service desired_crd = V1beta1CustomResourceDefinition( api_version=crd_config.get("apiVersion"), kind=crd_config.get("kind"), metadata=metadata, spec=crd_config.get("spec"), ) existing_crd = None for crd in existing_crds.items: if crd.metadata.name == desired_crd.metadata["name"]: existing_crd = crd break try: if existing_crd: desired_crd.metadata[ "resourceVersion" ] = existing_crd.metadata.resource_version kube_client.apiextensions.replace_custom_resource_definition( name=desired_crd.metadata["name"], body=desired_crd ) else: try: kube_client.apiextensions.create_custom_resource_definition( body=desired_crd ) except ValueError as err: # TODO: kubernetes server will sometimes reply with conditions:null, # figure out how to deal with this correctly, for more details: # https://github.com/kubernetes/kubernetes/pull/64996 if "`conditions`, must not be `None`" in str(err): pass else: raise err log.info(f"deployed {desired_crd.metadata['name']} for {cluster}:{service}") except ApiException as exc: log.error( f"error deploying crd for {cluster}:{service}, " f"status: {exc.status}, reason: {exc.reason}" ) log.debug(exc.body) success = False return success if __name__ == "__main__": main()
import typing import numpy as np from .unit import Unit class FixedLength(Unit): """ FixedLengthUnit Class. Process unit to get the fixed length text. Examples: >>> from matchzoo.preprocessors.units import FixedLength >>> fixedlen = FixedLength(3) >>> fixedlen.transform(list(range(1, 6))) == [3, 4, 5] True >>> fixedlen.transform(list(range(1, 3))) == [0, 1, 2] True """ def __init__( self, text_length: int, pad_value: typing.Union[int, str] = 0, pad_mode: str = 'pre', truncate_mode: str = 'pre' ): """ Class initialization. :param text_length: fixed length of the text. :param pad_value: if text length is smaller than :attr:`text_length`, filling text with :attr:`pad_value`. :param pad_mode: String, `pre` or `post`: pad either before or after each sequence. :param truncate_mode: String, `pre` or `post`: remove values from sequences larger than :attr:`text_length`, either at the beginning or at the end of the sequences. """ self._text_length = text_length self._pad_value = pad_value self._pad_mode = pad_mode self._truncate_mode = truncate_mode def transform(self, input_: list) -> list: """ Transform list of tokenized tokens into the fixed length text. :param input_: list of tokenized tokens. :return tokens: list of tokenized tokens in fixed length. """ # padding process can not handle empty list as input if len(input_) == 0: input_ = [self._pad_value] np_tokens = np.array(input_) fixed_tokens = np.full([self._text_length], self._pad_value, dtype=np_tokens.dtype) if self._truncate_mode == 'pre': trunc_tokens = input_[-self._text_length:] elif self._truncate_mode == 'post': trunc_tokens = input_[:self._text_length] else: raise ValueError('{} is not a vaild ' 'truncate mode.'.format(self._truncate_mode)) if self._pad_mode == 'post': fixed_tokens[:len(trunc_tokens)] = trunc_tokens elif self._pad_mode == 'pre': fixed_tokens[-len(trunc_tokens):] = trunc_tokens else: raise ValueError('{} is not a vaild ' 'pad mode.'.format(self._pad_mode)) return fixed_tokens.tolist()
from itertools import izip try: import pynvml USE_PYTHON_BINDING = True except ImportError: USE_PYTHON_BINDING = False import diamond.collector class NvidiaGPUCollector(diamond.collector.ProcessCollector): def get_default_config_help(self): config_help = super(NvidiaGPUCollector, self).get_default_config_help() config_help.update({ 'bin': 'The path to the nvidia-smi binary', 'stats': 'A list of Nvidia GPU stats to collect. ' 'Use `nvidia-smi --help-query-gpu` for more information' }) return config_help def get_default_config(self): """ Returns the default collector settings """ config = super(NvidiaGPUCollector, self).get_default_config() config.update({ 'path': 'nvidia', 'bin': '/usr/bin/nvidia-smi', 'stats': [ 'index', 'memory.total', 'memory.used', 'memory.free', 'utilization.gpu', 'utilization.memory', 'temperature.gpu' ] }) return config def collect_via_nvidia_smi(self, stats_config): """ Use nvidia smi command line tool to collect metrics :param stats_config: :return: """ raw_output = self.run_command([ '--query-gpu={query_gpu}'.format(query_gpu=','.join(stats_config)), '--format=csv,nounits,noheader' ]) if raw_output is None: return results = raw_output[0].strip().split("\n") for result in results: stats = result.strip().split(',') assert len(stats) == len(stats_config) index = stats[0] for stat_name, metric in izip(stats_config[1:], stats[1:]): metric_name = 'gpu_{index}.{stat_name}'.format( index=str(index), stat_name=stat_name ) self.publish(metric_name, metric) def collect_via_pynvml(self, stats_config): """ Use pynvml python binding to collect metrics :param stats_config: :return: """ try: NVML_TEMPERATURE_GPU = 0 pynvml.nvmlInit() device_count = pynvml.nvmlDeviceGetCount() for device_index in xrange(device_count): handle = pynvml.nvmlDeviceGetHandleByIndex(device_index) memoryInfo = pynvml.nvmlDeviceGetMemoryInfo(handle) utilizationRates = pynvml.nvmlDeviceGetUtilizationRates(handle) metrics = { 'memory.total': memoryInfo.total / 1024 / 1024, 'memory.used': memoryInfo.total / 1024 / 1024, 'memory.free': memoryInfo.free / 1024 / 1024, 'utilization.gpu': utilizationRates.gpu, 'utilization.memory': utilizationRates.memory, 'temperature.gpu': pynvml.nvmlDeviceGetTemperature(handle, NVML_TEMPERATURE_GPU) } for stat_name in stats_config[1:]: metric = metrics.get(stat_name) if metric: metric_name = 'gpu_{index}.{stat_name}'.format( index=str(device_index), stat_name=stat_name ) self.publish(metric_name, metric) finally: pynvml.nvmlShutdown() def collect(self): """ Collector GPU stats """ stats_config = self.config['stats'] if USE_PYTHON_BINDING: collect_metrics = self.collect_via_pynvml else: collect_metrics = self.collect_via_nvidia_smi collect_metrics(stats_config)
import logging import pymitv import voluptuous as vol from homeassistant.components.media_player import PLATFORM_SCHEMA, MediaPlayerEntity from homeassistant.components.media_player.const import ( SUPPORT_TURN_OFF, SUPPORT_TURN_ON, SUPPORT_VOLUME_STEP, ) from homeassistant.const import CONF_HOST, CONF_NAME, STATE_OFF, STATE_ON import homeassistant.helpers.config_validation as cv DEFAULT_NAME = "Xiaomi TV" _LOGGER = logging.getLogger(__name__) SUPPORT_XIAOMI_TV = SUPPORT_VOLUME_STEP | SUPPORT_TURN_ON | SUPPORT_TURN_OFF # No host is needed for configuration, however it can be set. PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Optional(CONF_HOST): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, } ) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the Xiaomi TV platform.""" # If a hostname is set. Discovery is skipped. host = config.get(CONF_HOST) name = config.get(CONF_NAME) if host is not None: # Check if there's a valid TV at the IP address. if not pymitv.Discover().check_ip(host): _LOGGER.error("Could not find Xiaomi TV with specified IP: %s", host) else: # Register TV with Home Assistant. add_entities([XiaomiTV(host, name)]) else: # Otherwise, discover TVs on network. add_entities(XiaomiTV(tv, DEFAULT_NAME) for tv in pymitv.Discover().scan()) class XiaomiTV(MediaPlayerEntity): """Represent the Xiaomi TV for Home Assistant.""" def __init__(self, ip, name): """Receive IP address and name to construct class.""" # Initialize the Xiaomi TV. self._tv = pymitv.TV(ip) # Default name value, only to be overridden by user. self._name = name self._state = STATE_OFF @property def name(self): """Return the display name of this TV.""" return self._name @property def state(self): """Return _state variable, containing the appropriate constant.""" return self._state @property def assumed_state(self): """Indicate that state is assumed.""" return True @property def supported_features(self): """Flag media player features that are supported.""" return SUPPORT_XIAOMI_TV def turn_off(self): """ Instruct the TV to turn sleep. This is done instead of turning off, because the TV won't accept any input when turned off. Thus, the user would be unable to turn the TV back on, unless it's done manually. """ if self._state != STATE_OFF: self._tv.sleep() self._state = STATE_OFF def turn_on(self): """Wake the TV back up from sleep.""" if self._state != STATE_ON: self._tv.wake() self._state = STATE_ON def volume_up(self): """Increase volume by one.""" self._tv.volume_up() def volume_down(self): """Decrease volume by one.""" self._tv.volume_down()
from perfkitbenchmarker import linux_packages GIT_REPO = 'https://github.com/joyent/node.git' GIT_TAG = 'v0.11.14' NODE_DIR = '%s/node' % linux_packages.INSTALL_DIR def _Install(vm): """Installs the node.js package on the VM.""" vm.Install('build_tools') vm.RemoteCommand('git clone {0} {1}'.format(GIT_REPO, NODE_DIR)) vm.RemoteCommand('cd {0} && git checkout {1}'.format(NODE_DIR, GIT_TAG)) vm.RemoteCommand('cd {0} && ./configure --prefix=/usr'.format(NODE_DIR)) vm.RemoteCommand('cd {0} && make && sudo make install'.format(NODE_DIR)) def YumInstall(vm): """Installs the node.js package on the VM.""" _Install(vm) def AptInstall(vm): """Installs the node.js package on the VM.""" _Install(vm) def _Uninstall(vm): """Uninstalls the node.js package on the VM.""" vm.RemoteCommand('cd {0} && sudo make uninstall'.format(NODE_DIR)) def YumUninstall(vm): """Uninstalls the node.js package on the VM.""" _Uninstall(vm) def AptUninstall(vm): """Uninstalls the node.js package on the VM.""" _Uninstall(vm)
from hashlib import md5 import cherrypy from cherrypy._cpcompat import ntob from cherrypy.lib import auth_basic from cherrypy.test import helper class BasicAuthTest(helper.CPWebCase): @staticmethod def setup_server(): class Root: @cherrypy.expose def index(self): return 'This is public.' class BasicProtected: @cherrypy.expose def index(self): return "Hello %s, you've been authorized." % ( cherrypy.request.login) class BasicProtected2: @cherrypy.expose def index(self): return "Hello %s, you've been authorized." % ( cherrypy.request.login) class BasicProtected2_u: @cherrypy.expose def index(self): return "Hello %s, you've been authorized." % ( cherrypy.request.login) userpassdict = {'xuser': 'xpassword'} userhashdict = {'xuser': md5(b'xpassword').hexdigest()} userhashdict_u = {'xюзер': md5(ntob('їжа', 'utf-8')).hexdigest()} def checkpasshash(realm, user, password): p = userhashdict.get(user) return p and p == md5(ntob(password)).hexdigest() or False def checkpasshash_u(realm, user, password): p = userhashdict_u.get(user) return p and p == md5(ntob(password, 'utf-8')).hexdigest() or False basic_checkpassword_dict = auth_basic.checkpassword_dict(userpassdict) conf = { '/basic': { 'tools.auth_basic.on': True, 'tools.auth_basic.realm': 'wonderland', 'tools.auth_basic.checkpassword': basic_checkpassword_dict }, '/basic2': { 'tools.auth_basic.on': True, 'tools.auth_basic.realm': 'wonderland', 'tools.auth_basic.checkpassword': checkpasshash, 'tools.auth_basic.accept_charset': 'ISO-8859-1', }, '/basic2_u': { 'tools.auth_basic.on': True, 'tools.auth_basic.realm': 'wonderland', 'tools.auth_basic.checkpassword': checkpasshash_u, 'tools.auth_basic.accept_charset': 'UTF-8', }, } root = Root() root.basic = BasicProtected() root.basic2 = BasicProtected2() root.basic2_u = BasicProtected2_u() cherrypy.tree.mount(root, config=conf) def testPublic(self): self.getPage('/') self.assertStatus('200 OK') self.assertHeader('Content-Type', 'text/html;charset=utf-8') self.assertBody('This is public.') def testBasic(self): self.getPage('/basic/') self.assertStatus(401) self.assertHeader( 'WWW-Authenticate', 'Basic realm="wonderland", charset="UTF-8"' ) self.getPage('/basic/', [('Authorization', 'Basic eHVzZXI6eHBhc3N3b3JX')]) self.assertStatus(401) self.getPage('/basic/', [('Authorization', 'Basic eHVzZXI6eHBhc3N3b3Jk')]) self.assertStatus('200 OK') self.assertBody("Hello xuser, you've been authorized.") def testBasic2(self): self.getPage('/basic2/') self.assertStatus(401) self.assertHeader('WWW-Authenticate', 'Basic realm="wonderland"') self.getPage('/basic2/', [('Authorization', 'Basic eHVzZXI6eHBhc3N3b3JX')]) self.assertStatus(401) self.getPage('/basic2/', [('Authorization', 'Basic eHVzZXI6eHBhc3N3b3Jk')]) self.assertStatus('200 OK') self.assertBody("Hello xuser, you've been authorized.") def testBasic2_u(self): self.getPage('/basic2_u/') self.assertStatus(401) self.assertHeader( 'WWW-Authenticate', 'Basic realm="wonderland", charset="UTF-8"' ) self.getPage('/basic2_u/', [('Authorization', 'Basic eNGO0LfQtdGAOtGX0LbRgw==')]) self.assertStatus(401) self.getPage('/basic2_u/', [('Authorization', 'Basic eNGO0LfQtdGAOtGX0LbQsA==')]) self.assertStatus('200 OK') self.assertBody("Hello xюзер, you've been authorized.")
import redis import sys from flask import current_app from lemur.extensions import sentry from lemur.factory import create_app if current_app: flask_app = current_app else: flask_app = create_app() class RedisHandler: def __init__(self, host=flask_app.config.get('REDIS_HOST', 'localhost'), port=flask_app.config.get('REDIS_PORT', 6379), db=flask_app.config.get('REDIS_DB', 0)): self.host = host self.port = port self.db = db def redis(self, db=0): # The decode_responses flag here directs the client to convert the responses from Redis into Python strings # using the default encoding utf-8. This is client specific. function = f"{__name__}.{sys._getframe().f_code.co_name}" try: red = redis.StrictRedis(host=self.host, port=self.port, db=self.db, encoding="utf-8", decode_responses=True) red.set("test", 0) except redis.ConnectionError: log_data = { "function": function, "message": "Redis Connection error", "host": self.host, "port": self.port } current_app.logger.error(log_data) sentry.captureException() return red def redis_get(key, default=None): red = RedisHandler().redis() try: v = red.get(key) except redis.exceptions.ConnectionError: v = None if not v: return default return v
import argparse import csv FIELDS = { 'status': 0, 'transaction_id': 1, 'packet_num': (2, 4), 'proto_type': 4, 'data_size': 5, 'class': 6, 'command': 7, 'params': (8, 24) } def expand_payload(payload): """ Converts a payload string to a nice format :param payload: String of hex digits :type payload: str :return: Dictionary :rtype dict """ chunks = [payload[i:i + 2] for i in range(0, len(payload), 2)] result = {} for header, num_range in FIELDS.items(): if isinstance(num_range, tuple): result[header] = ''.join(chunks[num_range[0]:num_range[1]]) else: result[header] = chunks[num_range] return result def parse_args(): """ Parses command line arguments :return: Argparse arguments object """ parser = argparse.ArgumentParser(description="Extracts info from CSV") parser.add_argument("file", metavar='FILE', type=str, help="CSV file") return parser.parse_args() def run(): """ Main function """ args = parse_args() data = [] with open(args.file, 'r', newline='') as csv_file: csv_object = csv.DictReader(csv_file, delimiter=',', quotechar='"') for line in csv_object: if line['Leftover Capture Data'] == '': continue # Now we have data data.append(expand_payload(line['Leftover Capture Data'])) format_string = "{0:<6} {1:<2} {2:<10} {3:<4} {4:<5} {5:<7} {6}" print(format_string.format('Status', 'ID', 'Packet Num', 'Size', 'Class', 'Command', 'Params')) for frame in data: print(format_string.format(frame['status'], frame['transaction_id'], frame['packet_num'], frame['data_size'], frame['class'], frame['command'], frame['params'])) print("") if __name__ == '__main__': run()
import os import sys from setuptools import find_packages, setup from setuptools.command.test import test as TestCommand class PyTest(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = ['-x', 'build/lib/pygal'] self.test_suite = True def run_tests(self): # import here, cause outside the eggs aren't loaded import pytest errno = pytest.main(self.test_args) sys.exit(errno) ROOT = os.path.dirname(__file__) # Explicitly specify the encoding of pygal/__init__.py if we're on py3. kwargs = {} if sys.version_info[0] == 3: kwargs['encoding'] = 'utf-8' cairosvg = 'cairosvg' else: cairosvg = 'cairosvg==0.5' tests_requirements = [ "pyquery", "flask", cairosvg, 'lxml', 'pygal_maps_world', 'pygal_maps_fr', 'pygal_maps_ch', 'coveralls', 'pytest-runner', 'pytest-cov', 'pytest-flake8', 'pytest-isort', 'pytest' ] about = {} with open(os.path.join( os.path.dirname(__file__), "pygal", "__about__.py")) as f: exec(f.read(), about) setup( name=about['__title__'], version=about['__version__'], description=about['__summary__'], url=about['__uri__'], author=about['__author__'], author_email=about['__email__'], license=about['__license__'], platforms="Any", packages=find_packages(), provides=['pygal'], scripts=["pygal_gen.py"], keywords=[ "svg", "chart", "graph", "diagram", "plot", "histogram", "kiviat"], setup_requires=['pytest-runner'], cmdclass={'test': PyTest}, package_data={'pygal': ['css/*', 'graph/maps/*.svg']}, extras_require={ 'lxml': ['lxml'], 'docs': ['sphinx', 'sphinx_rtd_theme', 'pygal_sphinx_directives'], 'png': [cairosvg], 'test': tests_requirements }, classifiers=[ "Development Status :: 4 - Beta", "Environment :: Console", "Intended Audience :: End Users/Desktop", "License :: OSI Approved :: " "GNU Lesser General Public License v3 or later (LGPLv3+)", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Topic :: Multimedia :: Graphics :: Presentation"])
import numpy as np from ..io import BaseRaw from ..utils import _validate_type, warn, logger, verbose @verbose def realign_raw(raw, other, t_raw, t_other, verbose=None): """Realign two simultaneous recordings. Due to clock drift, recordings at a given same sample rate made by two separate devices simultaneously can become out of sync over time. This function uses event times captured by both acquisition devices to resample ``other`` to match ``raw``. Parameters ---------- raw : instance of Raw The first raw instance. other : instance of Raw The second raw instance. It will be resampled to match ``raw``. t_raw : array-like, shape (n_events,) The times of shared events in ``raw`` relative to ``raw.times[0]`` (0). Typically these could be events on some TTL channel like ``find_events(raw)[:, 0] - raw.first_event``. t_other : array-like, shape (n_events,) The times of shared events in ``other`` relative to ``other.times[0]``. %(verbose)s Notes ----- This function operates inplace. It will: 1. Estimate the zero-order (start offset) and first-order (clock drift) correction. 2. Crop the start of ``raw`` or ``other``, depending on which started recording first. 3. Resample ``other`` to match ``raw`` based on the clock drift. 4. Crop the end of ``raw`` or ``other``, depending on which stopped recording first (and the clock drift rate). This function is primarily designed to work on recordings made at the same sample rate, but it can also operate on recordings made at different sample rates to resample and deal with clock drift simultaneously. .. versionadded:: 0.22 """ from scipy import stats _validate_type(raw, BaseRaw, 'raw') _validate_type(other, BaseRaw, 'other') t_raw = np.array(t_raw, float) t_other = np.array(t_other, float) if t_raw.ndim != 1 or t_raw.shape != t_other.shape: raise ValueError('t_raw and t_other must be 1D with the same shape, ' f'got shapes {t_raw.shape} and {t_other.shape}') if len(t_raw) < 20: warn('Fewer than 20 times passed, results may be unreliable') # 1. Compute correction factors coef = np.polyfit(t_other, t_raw, deg=1) r, p = stats.pearsonr(t_other, t_raw) msg = f'Linear correlation computed as R={r:0.3f} and p={p:0.2e}' if p > 0.05 or r <= 0: raise ValueError(msg + ', cannot resample safely') if p > 1e-6: warn(msg + ', results may be unreliable') else: logger.info(msg) dr_ms_s = 1000 * abs(1 - coef[0]) logger.info( f'Drift rate: {1000 * dr_ms_s:0.1f} μs/sec ' f'(total drift over {raw.times[-1]:0.1f} sec recording: ' f'{raw.times[-1] * dr_ms_s:0.1f} ms)') # 2. Crop start of recordings to match using the zero-order term msg = f'Cropping {coef[1]:0.3f} sec from the start of ' if coef[1] > 0: # need to crop start of raw to match other logger.info(msg + 'raw') raw.crop(coef[1], None) t_raw -= coef[1] else: # need to crop start of other to match raw logger.info(msg + 'other') other.crop(-coef[1], None) t_other += coef[1] # 3. Resample data using the first-order term logger.info('Resampling other') coef = coef[0] sfreq_new = raw.info['sfreq'] * coef other.load_data().resample(sfreq_new, verbose=True) other.info['sfreq'] = raw.info['sfreq'] other._update_times() # 4. Crop the end of one of the recordings if necessary delta = raw.times[-1] - other.times[-1] msg = f'Cropping {abs(delta):0.3f} sec from the end of ' if delta > 0: logger.info(msg + 'raw') raw.crop(0, other.times[-1]) elif delta < 0: logger.info(msg + 'other') other.crop(0, raw.times[-1])
import datetime import pytest import pytz from arctic.date import mktz, datetime_to_ms, ms_to_datetime def assert_roundtrip(tz): ts = datetime.datetime(1982, 7, 1, 16, 5) ts1 = ts.replace(tzinfo=tz) ts2 = ms_to_datetime(datetime_to_ms(ts1.astimezone(mktz("UTC"))), tz) assert(ts2.hour == ts1.hour) assert ts2 == ts1 def get_tz(): tz = pytz.timezone("Europe/London") tmp = ms_to_datetime(0, tz) tz = tmp.tzinfo return tz def test_UTC_roundtrip(): tz = pytz.timezone("UTC") assert_roundtrip(tz) def test_weird_get_tz_local(): tz = get_tz() assert_roundtrip(tz) @pytest.mark.xfail def test_pytz_London(): # Don't use pytz tz = pytz.timezone("Europe/London") assert_roundtrip(tz) def test_mktz_London(): tz = mktz("Europe/London") assert_roundtrip(tz) def test_datetime_roundtrip_local_no_tz(): pdt = datetime.datetime(2012, 6, 12, 12, 12, 12, 123000) pdt2 = ms_to_datetime(datetime_to_ms(pdt)).replace(tzinfo=None) assert pdt2 == pdt pdt = datetime.datetime(2012, 1, 12, 12, 12, 12, 123000) pdt2 = ms_to_datetime(datetime_to_ms(pdt)).replace(tzinfo=None) assert pdt2 == pdt def test_datetime_roundtrip_local_tz(): pdt = datetime.datetime(2012, 6, 12, 12, 12, 12, 123000, tzinfo=mktz()) pdt2 = ms_to_datetime(datetime_to_ms(pdt)) assert pdt2 == pdt pdt = datetime.datetime(2012, 1, 12, 12, 12, 12, 123000, tzinfo=mktz()) pdt2 = ms_to_datetime(datetime_to_ms(pdt)) assert pdt2 == pdt def test_datetime_roundtrip_est_tz(): pdt = datetime.datetime(2012, 6, 12, 12, 12, 12, 123000, tzinfo=mktz('EST')) pdt2 = ms_to_datetime(datetime_to_ms(pdt)) assert pdt2.replace(tzinfo=mktz()) == pdt pdt = datetime.datetime(2012, 1, 12, 12, 12, 12, 123000, tzinfo=mktz('EST')) pdt2 = ms_to_datetime(datetime_to_ms(pdt)) assert pdt2.replace(tzinfo=mktz()) == pdt @pytest.mark.parametrize("microseconds,expected", [ (807000, 1074069004807), (807243, 1074069004807), (807675, 1074069004807) ]) def test_millisecond_conversion(microseconds, expected): pdt = datetime.datetime(2004, 1, 14, 8, 30, 4, microseconds, tzinfo=pytz.utc) pdt2 = datetime_to_ms(pdt) assert pdt2 == expected
import numpy as np import tempfile import unittest from chainer import testing from chainercv.utils import read_label from chainercv.utils import write_image @testing.parameterize(*testing.product({ 'file_obj': [False, True], 'format': ['bmp', 'jpeg', 'png'], 'size': [(48, 32)], 'dtype': [np.float32, np.uint8, np.int32, bool], })) class TestReadLabel(unittest.TestCase): def setUp(self): if self.file_obj: self.f = tempfile.TemporaryFile() self.file = self.f format = self.format else: if self.format == 'jpeg': suffix = '.jpg' else: suffix = '.' + self.format self.f = tempfile.NamedTemporaryFile(suffix=suffix, delete=False) self.file = self.f.name format = None self.img = np.random.randint( 0, 255, size=self.size, dtype=np.uint8) write_image(self.img[None], self.file, format=format) if self.file_obj: self.file.seek(0) def test_read_label(self): if self.dtype == np.int32: img = read_label(self.file) else: img = read_label(self.file, dtype=self.dtype) self.assertEqual(img.shape, self.size) self.assertEqual(img.dtype, self.dtype) if self.format in {'bmp', 'png'}: np.testing.assert_equal(img, self.img.astype(self.dtype)) def test_read_label_mutable(self): img = read_label(self.file, dtype=self.dtype) img[:] = 0 np.testing.assert_equal(img, 0) testing.run_module(__name__, __file__)
from datetime import timedelta import logging from pysuez import SuezClient from pysuez.client import PySuezError import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import CONF_PASSWORD, CONF_USERNAME, VOLUME_LITERS import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity _LOGGER = logging.getLogger(__name__) CONF_COUNTER_ID = "counter_id" SCAN_INTERVAL = timedelta(hours=12) COMPONENT_ICON = "mdi:water-pump" COMPONENT_NAME = "Suez Water Client" PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_USERNAME): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Required(CONF_COUNTER_ID): cv.string, } ) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the sensor platform.""" username = config[CONF_USERNAME] password = config[CONF_PASSWORD] counter_id = config[CONF_COUNTER_ID] try: client = SuezClient(username, password, counter_id) if not client.check_credentials(): _LOGGER.warning("Wrong username and/or password") return except PySuezError: _LOGGER.warning("Unable to create Suez Client") return add_entities([SuezSensor(client)], True) class SuezSensor(Entity): """Representation of a Sensor.""" def __init__(self, client): """Initialize the data object.""" self._attributes = {} self._state = None self._available = None self.client = client @property def name(self): """Return the name of the sensor.""" return COMPONENT_NAME @property def state(self): """Return the state of the sensor.""" return self._state @property def unit_of_measurement(self): """Return the unit of measurement.""" return VOLUME_LITERS @property def device_state_attributes(self): """Return the state attributes.""" return self._attributes @property def icon(self): """Return the icon of the sensor.""" return COMPONENT_ICON def _fetch_data(self): """Fetch latest data from Suez.""" try: self.client.update() # _state holds the volume of consumed water during previous day self._state = self.client.state self._available = True self._attributes["attribution"] = self.client.attributes["attribution"] self._attributes["this_month_consumption"] = {} for item in self.client.attributes["thisMonthConsumption"]: self._attributes["this_month_consumption"][ item ] = self.client.attributes["thisMonthConsumption"][item] self._attributes["previous_month_consumption"] = {} for item in self.client.attributes["previousMonthConsumption"]: self._attributes["previous_month_consumption"][ item ] = self.client.attributes["previousMonthConsumption"][item] self._attributes["highest_monthly_consumption"] = self.client.attributes[ "highestMonthlyConsumption" ] self._attributes["last_year_overall"] = self.client.attributes[ "lastYearOverAll" ] self._attributes["this_year_overall"] = self.client.attributes[ "thisYearOverAll" ] self._attributes["history"] = {} for item in self.client.attributes["history"]: self._attributes["history"][item] = self.client.attributes["history"][ item ] except PySuezError: self._available = False _LOGGER.warning("Unable to fetch data") def update(self): """Return the latest collected data from Linky.""" self._fetch_data() _LOGGER.debug("Suez data state is: %s", self._state)
from flask_script import Manager import arrow from datetime import timedelta from sqlalchemy import cast from sqlalchemy_utils import ArrowType from lemur import database from lemur.extensions import metrics, sentry from lemur.endpoints.models import Endpoint manager = Manager(usage="Handles all endpoint related tasks.") @manager.option( "-ttl", "--time-to-live", type=int, dest="ttl", default=2, help="Time in hours, which endpoint has not been refreshed to remove the endpoint.", ) def expire(ttl): """ Removed all endpoints that have not been recently updated. """ print("[+] Staring expiration of old endpoints.") try: now = arrow.utcnow() expiration = now - timedelta(hours=ttl) endpoints = database.session_query(Endpoint).filter( cast(Endpoint.last_updated, ArrowType) <= expiration ) for endpoint in endpoints: print( "[!] Expiring endpoint: {name} Last Updated: {last_updated}".format( name=endpoint.name, last_updated=endpoint.last_updated ) ) database.delete(endpoint) metrics.send("endpoint_expired", "counter", 1) print("[+] Finished expiration.") except Exception as e: sentry.captureException()
import numpy as np import pytest from pytest import raises from numpy.testing import assert_array_equal, assert_allclose from os import path as op import pickle from itertools import product import mne from mne.channels import equalize_channels from mne.utils import sum_squared, run_tests_if_main, _TempDir, requires_h5py from mne.time_frequency import (csd_fourier, csd_multitaper, csd_morlet, csd_array_fourier, csd_array_multitaper, csd_array_morlet, tfr_morlet, CrossSpectralDensity, read_csd, pick_channels_csd, psd_multitaper) from mne.time_frequency.csd import _sym_mat_to_vector, _vector_to_sym_mat base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(base_dir, 'test_raw.fif') event_fname = op.join(base_dir, 'test-eve.fif') def _make_csd(): """Make a simple CrossSpectralDensity object.""" frequencies = [1., 2., 3., 4.] n_freqs = len(frequencies) names = ['CH1', 'CH2', 'CH3'] tmin, tmax = (0., 1.) data = np.arange(6. * n_freqs).reshape(n_freqs, 6).T return CrossSpectralDensity(data, names, frequencies, 1, tmin, tmax) def test_csd(): """Test constructing a CrossSpectralDensity.""" csd = CrossSpectralDensity([1, 2, 3], ['CH1', 'CH2'], frequencies=1, n_fft=1, tmin=0, tmax=1) assert_array_equal(csd._data, [[1], [2], [3]]) # Conversion to 2D array assert_array_equal(csd.frequencies, [1]) # Conversion to 1D array # Channels don't match raises(ValueError, CrossSpectralDensity, [1, 2, 3], ['CH1', 'CH2', 'Too many!'], tmin=0, tmax=1, frequencies=1, n_fft=1) raises(ValueError, CrossSpectralDensity, [1, 2, 3], ['too little'], tmin=0, tmax=1, frequencies=1, n_fft=1) # Frequencies don't match raises(ValueError, CrossSpectralDensity, [[1, 2], [3, 4], [5, 6]], ['CH1', 'CH2'], tmin=0, tmax=1, frequencies=1, n_fft=1) # Invalid dims raises(ValueError, CrossSpectralDensity, [[[1]]], ['CH1'], frequencies=1, n_fft=1, tmin=0, tmax=1) def test_csd_repr(): """Test string representation of CrossSpectralDensity.""" csd = _make_csd() assert str(csd) == ('<CrossSpectralDensity | n_channels=3, time=0.0 to ' '1.0 s, frequencies=1.0, 2.0, 3.0, 4.0 Hz.>') assert str(csd.mean()) == ('<CrossSpectralDensity | n_channels=3, ' 'time=0.0 to 1.0 s, frequencies=1.0-4.0 Hz.>') csd_binned = csd.mean(fmin=[1, 3], fmax=[2, 4]) assert str(csd_binned) == ('<CrossSpectralDensity | n_channels=3, ' 'time=0.0 to 1.0 s, frequencies=1.0-2.0, ' '3.0-4.0 Hz.>') csd_binned = csd.mean(fmin=[1, 2], fmax=[1, 4]) assert str(csd_binned) == ('<CrossSpectralDensity | n_channels=3, ' 'time=0.0 to 1.0 s, frequencies=1.0, 2.0-4.0 ' 'Hz.>') csd_no_time = csd.copy() csd_no_time.tmin = None csd_no_time.tmax = None assert str(csd_no_time) == ( '<CrossSpectralDensity | n_channels=3, time=unknown, ' 'frequencies=1.0, 2.0, 3.0, 4.0 Hz.>' ) def test_csd_mean(): """Test averaging frequency bins of CrossSpectralDensity.""" csd = _make_csd() # Test different ways to average across all frequencies avg = [[9], [10], [11], [12], [13], [14]] assert_array_equal(csd.mean()._data, avg) assert_array_equal(csd.mean(fmin=None, fmax=4)._data, avg) assert_array_equal(csd.mean(fmin=1, fmax=None)._data, avg) assert_array_equal(csd.mean(fmin=0, fmax=None)._data, avg) assert_array_equal(csd.mean(fmin=1, fmax=4)._data, avg) # Test averaging across frequency bins csd_binned = csd.mean(fmin=[1, 3], fmax=[2, 4]) assert_array_equal( csd_binned._data, [[3, 15], [4, 16], [5, 17], [6, 18], [7, 19], [8, 20]], ) csd_binned = csd.mean(fmin=[1, 3], fmax=[1, 4]) assert_array_equal( csd_binned._data, [[0, 15], [1, 16], [2, 17], [3, 18], [4, 19], [5, 20]], ) # This flag should be set after averaging assert csd.mean()._is_sum # Test construction of .frequency attribute assert csd.mean().frequencies == [[1, 2, 3, 4]] assert (csd.mean(fmin=[1, 3], fmax=[2, 4]).frequencies == [[1, 2], [3, 4]]) # Test invalid inputs raises(ValueError, csd.mean, fmin=1, fmax=[2, 3]) raises(ValueError, csd.mean, fmin=[1, 2], fmax=[3]) raises(ValueError, csd.mean, fmin=[1, 2], fmax=[1, 1]) # Taking the mean twice should raise an error raises(RuntimeError, csd.mean().mean) def test_csd_get_frequency_index(): """Test the _get_frequency_index method of CrossSpectralDensity.""" csd = _make_csd() assert csd._get_frequency_index(1) == 0 assert csd._get_frequency_index(2) == 1 assert csd._get_frequency_index(4) == 3 assert csd._get_frequency_index(0.9) == 0 assert csd._get_frequency_index(2.1) == 1 assert csd._get_frequency_index(4.1) == 3 # Frequency can be off by a maximum of 1 raises(IndexError, csd._get_frequency_index, csd.frequencies[-1] + 1.0001) def test_csd_pick_frequency(): """Test the pick_frequency method of CrossSpectralDensity.""" csd = _make_csd() csd2 = csd.pick_frequency(freq=2) assert csd2.frequencies == [2] assert_array_equal( csd2.get_data(), [[6, 7, 8], [7, 9, 10], [8, 10, 11]] ) csd2 = csd.pick_frequency(index=1) assert csd2.frequencies == [2] assert_array_equal( csd2.get_data(), [[6, 7, 8], [7, 9, 10], [8, 10, 11]] ) # Nonexistent frequency raises(IndexError, csd.pick_frequency, -1) # Nonexistent index raises(IndexError, csd.pick_frequency, index=10) # Invalid parameters raises(ValueError, csd.pick_frequency) raises(ValueError, csd.pick_frequency, freq=2, index=1) def test_csd_get_data(): """Test the get_data method of CrossSpectralDensity.""" csd = _make_csd() # CSD matrix corresponding to 2 Hz. assert_array_equal( csd.get_data(frequency=2), [[6, 7, 8], [7, 9, 10], [8, 10, 11]] ) # Mean CSD matrix assert_array_equal( csd.mean().get_data(), [[9, 10, 11], [10, 12, 13], [11, 13, 14]] ) # Average across frequency bins, select bin assert_array_equal( csd.mean(fmin=[1, 3], fmax=[2, 4]).get_data(index=1), [[15, 16, 17], [16, 18, 19], [17, 19, 20]] ) # Invalid inputs raises(ValueError, csd.get_data) raises(ValueError, csd.get_data, frequency=1, index=1) raises(IndexError, csd.get_data, frequency=15) raises(ValueError, csd.mean().get_data, frequency=1) raises(IndexError, csd.mean().get_data, index=15) @requires_h5py def test_csd_save(): """Test saving and loading a CrossSpectralDensity.""" csd = _make_csd() tempdir = _TempDir() fname = op.join(tempdir, 'csd.h5') csd.save(fname) csd2 = read_csd(fname) assert_array_equal(csd._data, csd2._data) assert csd.tmin == csd2.tmin assert csd.tmax == csd2.tmax assert csd.ch_names == csd2.ch_names assert csd.frequencies == csd2.frequencies assert csd._is_sum == csd2._is_sum def test_csd_pickle(): """Test pickling and unpickling a CrossSpectralDensity.""" csd = _make_csd() tempdir = _TempDir() fname = op.join(tempdir, 'csd.dat') with open(fname, 'wb') as f: pickle.dump(csd, f) with open(fname, 'rb') as f: csd2 = pickle.load(f) assert_array_equal(csd._data, csd2._data) assert csd.tmin == csd2.tmin assert csd.tmax == csd2.tmax assert csd.ch_names == csd2.ch_names assert csd.frequencies == csd2.frequencies assert csd._is_sum == csd2._is_sum def test_pick_channels_csd(): """Test selecting channels from a CrossSpectralDensity.""" csd = _make_csd() csd = pick_channels_csd(csd, ['CH1', 'CH3']) assert csd.ch_names == ['CH1', 'CH3'] assert_array_equal(csd._data, [[0, 6, 12, 18], [2, 8, 14, 20], [5, 11, 17, 23]]) def test_sym_mat_to_vector(): """Test converting between vectors and symmetric matrices.""" mat = np.array([[0, 1, 2, 3], [1, 4, 5, 6], [2, 5, 7, 8], [3, 6, 8, 9]]) assert_array_equal(_sym_mat_to_vector(mat), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) vec = np.arange(10) assert_array_equal(_vector_to_sym_mat(vec), [[0, 1, 2, 3], [1, 4, 5, 6], [2, 5, 7, 8], [3, 6, 8, 9]]) # Test complex values: diagonals should be complex conjugates comp_vec = np.arange(3) + 1j assert_array_equal(_vector_to_sym_mat(comp_vec), [[0. + 0.j, 1. + 1.j], [1. - 1.j, 2. + 0.j]]) # Test preservation of data type assert _sym_mat_to_vector(mat.astype(np.int8)).dtype == np.int8 assert _vector_to_sym_mat(vec.astype(np.int8)).dtype == np.int8 assert _sym_mat_to_vector(mat.astype(np.float16)).dtype == np.float16 assert _vector_to_sym_mat(vec.astype(np.float16)).dtype == np.float16 def _generate_coherence_data(): """Create an epochs object with coherence at 22Hz between channels 1 and 3. A base 10 Hz sine wave is generated for all channels, but with different phases, which means no actual coherence. A 22Hz sine wave is laid on top for channels 1 and 3, with the same phase, so there is coherence between these channels. """ ch_names = ['CH1', 'CH2', 'CH3'] sfreq = 50. info = mne.create_info(ch_names, sfreq, 'eeg') tstep = 1. / sfreq n_samples = int(10 * sfreq) # 10 seconds of data times = np.arange(n_samples) * tstep events = np.array([[0, 1, 1]]) # one event # Phases for the signals phases = np.arange(info['nchan']) * 0.3 * np.pi # Generate 10 Hz sine waves with different phases signal = np.vstack([np.sin(times * 2 * np.pi * 10 + phase) for phase in phases]) data = np.zeros((1, info['nchan'], n_samples)) data[0, :, :] = signal # Generate 22Hz sine wave at the first and last electrodes with the same # phase. signal = np.sin(times * 2 * np.pi * 22) data[0, [0, -1], :] += signal return mne.EpochsArray(data, info, events, baseline=(0, times[-1])) def _test_csd_matrix(csd): """Perform a suite of tests on a CSD matrix.""" # Check shape of the CSD matrix n_chan = len(csd.ch_names) assert n_chan == 3 assert csd.ch_names == ['CH1', 'CH2', 'CH3'] n_freqs = len(csd.frequencies) assert n_freqs == 3 assert csd._data.shape == (6, 3) # Only upper triangle of CSD matrix # Extract CSD ndarrays. Diagonals are PSDs. csd_10 = csd.get_data(index=0) csd_22 = csd.get_data(index=2) power_10 = np.diag(csd_10) power_22 = np.diag(csd_22) # Check if the CSD matrices are hermitian assert np.all(np.tril(csd_10).T.conj() == np.triu(csd_10)) assert np.all(np.tril(csd_22).T.conj() == np.triu(csd_22)) # Off-diagonals show phase difference assert np.abs(csd_10[0, 1].imag) > 0.4 assert np.abs(csd_10[0, 2].imag) > 0.4 assert np.abs(csd_10[1, 2].imag) > 0.4 # No phase differences at 22 Hz assert np.all(np.abs(csd_22[0, 2].imag) < 1E-3) # Test CSD between the two channels that have a 20Hz signal and the one # that has only a 10 Hz signal assert np.abs(csd_22[0, 2]) > np.abs(csd_22[0, 1]) assert np.abs(csd_22[0, 2]) > np.abs(csd_22[1, 2]) # Check that electrodes/frequency combinations with signal have more # power than frequencies without signal. power_15 = np.diag(csd.get_data(index=1)) assert np.all(power_10 > power_15) assert np.all(power_22[[0, -1]] > power_15[[0, -1]]) def _test_fourier_multitaper_parameters(epochs, csd_epochs, csd_array): """Parameter tests for csd_*_fourier and csd_*_multitaper.""" raises(ValueError, csd_epochs, epochs, fmin=20, fmax=10) raises(ValueError, csd_array, epochs._data, epochs.info['sfreq'], epochs.tmin, fmin=20, fmax=10) raises(ValueError, csd_epochs, epochs, fmin=20, fmax=20.1) raises(ValueError, csd_array, epochs._data, epochs.info['sfreq'], epochs.tmin, fmin=20, fmax=20.1) raises(ValueError, csd_epochs, epochs, tmin=0.15, tmax=0.1) raises(ValueError, csd_array, epochs._data, epochs.info['sfreq'], epochs.tmin, tmin=0.15, tmax=0.1) raises(ValueError, csd_epochs, epochs, tmin=-1, tmax=10) raises(ValueError, csd_array, epochs._data, epochs.info['sfreq'], epochs.tmin, tmin=-1, tmax=10) raises(ValueError, csd_epochs, epochs, tmin=10, tmax=11) raises(ValueError, csd_array, epochs._data, epochs.info['sfreq'], epochs.tmin, tmin=10, tmax=11) # Test checks for data types and sizes diff_types = [np.random.randn(3, 5), "error"] err_data = [np.random.randn(3, 5), np.random.randn(2, 4)] raises(ValueError, csd_array, err_data, sfreq=1) raises(ValueError, csd_array, diff_types, sfreq=1) raises(ValueError, csd_array, np.random.randn(3), sfreq=1) def test_csd_fourier(): """Test computing cross-spectral density using short-term Fourier.""" epochs = _generate_coherence_data() sfreq = epochs.info['sfreq'] _test_fourier_multitaper_parameters(epochs, csd_fourier, csd_array_fourier) # Compute CSDs using various parameters times = [(None, None), (1, 9)] as_arrays = [False, True] parameters = product(times, as_arrays) for (tmin, tmax), as_array in parameters: if as_array: csd = csd_array_fourier(epochs.get_data(), sfreq, epochs.tmin, fmin=9, fmax=23, tmin=tmin, tmax=tmax, ch_names=epochs.ch_names) else: csd = csd_fourier(epochs, fmin=9, fmax=23, tmin=tmin, tmax=tmax) if tmin is None and tmax is None: assert csd.tmin == 0 and csd.tmax == 9.98 else: assert csd.tmin == tmin and csd.tmax == tmax csd = csd.mean([9.9, 14.9, 21.9], [10.1, 15.1, 22.1]) _test_csd_matrix(csd) # For the next test, generate a simple sine wave with a known power times = np.arange(20 * sfreq) / sfreq # 20 seconds of signal signal = np.sin(2 * np.pi * 10 * times)[None, None, :] # 10 Hz wave signal_power_per_sample = sum_squared(signal) / len(times) # Power per sample should not depend on time window length for tmax in [12, 18]: t_mask = (times <= tmax) n_samples = sum(t_mask) # Power per sample should not depend on number of FFT points for add_n_fft in [0, 30]: n_fft = n_samples + add_n_fft csd = csd_array_fourier(signal, sfreq, tmax=tmax, n_fft=n_fft).sum().get_data() first_samp = csd[0, 0] fourier_power_per_sample = np.abs(first_samp) * sfreq / n_fft assert abs(signal_power_per_sample - fourier_power_per_sample) < 0.001 def test_csd_multitaper(): """Test computing cross-spectral density using multitapers.""" epochs = _generate_coherence_data() sfreq = epochs.info['sfreq'] _test_fourier_multitaper_parameters(epochs, csd_multitaper, csd_array_multitaper) # Compute CSDs using various parameters times = [(None, None), (1, 9)] as_arrays = [False, True] adaptives = [False, True] parameters = product(times, as_arrays, adaptives) for (tmin, tmax), as_array, adaptive in parameters: if as_array: csd = csd_array_multitaper(epochs.get_data(), sfreq, epochs.tmin, adaptive=adaptive, fmin=9, fmax=23, tmin=tmin, tmax=tmax, ch_names=epochs.ch_names) else: csd = csd_multitaper(epochs, adaptive=adaptive, fmin=9, fmax=23, tmin=tmin, tmax=tmax) if tmin is None and tmax is None: assert csd.tmin == 0 and csd.tmax == 9.98 else: assert csd.tmin == tmin and csd.tmax == tmax csd = csd.mean([9.9, 14.9, 21.9], [10.1, 15.1, 22.1]) _test_csd_matrix(csd) # Test equivalence with PSD psd, psd_freqs = psd_multitaper(epochs, fmin=1e-3, normalization='full') # omit DC csd = csd_multitaper(epochs) assert_allclose(psd_freqs, csd.frequencies) csd = np.array([np.diag(csd.get_data(index=ii)) for ii in range(len(csd))]).T assert_allclose(psd[0], csd) # For the next test, generate a simple sine wave with a known power times = np.arange(20 * sfreq) / sfreq # 20 seconds of signal signal = np.sin(2 * np.pi * 10 * times)[None, None, :] # 10 Hz wave signal_power_per_sample = sum_squared(signal) / len(times) # Power per sample should not depend on time window length for tmax in [12, 18]: t_mask = (times <= tmax) n_samples = sum(t_mask) n_fft = len(times) # Power per sample should not depend on number of tapers for n_tapers in [1, 2, 5]: bandwidth = sfreq / float(n_samples) * (n_tapers + 1) csd_mt = csd_array_multitaper(signal, sfreq, tmax=tmax, bandwidth=bandwidth, n_fft=n_fft).sum().get_data() mt_power_per_sample = np.abs(csd_mt[0, 0]) * sfreq / n_fft assert abs(signal_power_per_sample - mt_power_per_sample) < 0.001 def test_csd_morlet(): """Test computing cross-spectral density using Morlet wavelets.""" epochs = _generate_coherence_data() sfreq = epochs.info['sfreq'] # Compute CSDs by a variety of methods freqs = [10, 15, 22] n_cycles = [20, 30, 44] times = [(None, None), (1, 9)] as_arrays = [False, True] parameters = product(times, as_arrays) for (tmin, tmax), as_array in parameters: if as_array: csd = csd_array_morlet(epochs.get_data(), sfreq, freqs, t0=epochs.tmin, n_cycles=n_cycles, tmin=tmin, tmax=tmax, ch_names=epochs.ch_names) else: csd = csd_morlet(epochs, frequencies=freqs, n_cycles=n_cycles, tmin=tmin, tmax=tmax) if tmin is None and tmax is None: assert csd.tmin == 0 and csd.tmax == 9.98 else: assert csd.tmin == tmin and csd.tmax == tmax _test_csd_matrix(csd) # CSD diagonals should contain PSD tfr = tfr_morlet(epochs, freqs, n_cycles, return_itc=False) power = np.mean(tfr.data, 2) csd = csd_morlet(epochs, frequencies=freqs, n_cycles=n_cycles) assert_allclose(csd._data[[0, 3, 5]] * sfreq, power) # Test using plain convolution instead of FFT csd = csd_morlet(epochs, frequencies=freqs, n_cycles=n_cycles, use_fft=False) assert_allclose(csd._data[[0, 3, 5]] * sfreq, power) # Test baselining warning epochs_nobase = epochs.copy() epochs_nobase.baseline = None epochs_nobase.info['highpass'] = 0 with pytest.warns(RuntimeWarning, match='baseline'): csd = csd_morlet(epochs_nobase, frequencies=[10], decim=20) def test_equalize_channels(): """Test equalization of channels for instances of CrossSpectralDensity.""" csd1 = _make_csd() csd2 = csd1.copy().pick_channels(['CH2', 'CH1'], ordered=True) csd1, csd2 = equalize_channels([csd1, csd2]) assert csd1.ch_names == ['CH1', 'CH2'] assert csd2.ch_names == ['CH1', 'CH2'] run_tests_if_main()
from aiohue.sensors import ( TYPE_ZLL_LIGHTLEVEL, TYPE_ZLL_ROTARY, TYPE_ZLL_SWITCH, TYPE_ZLL_TEMPERATURE, ) from homeassistant.const import ( DEVICE_CLASS_BATTERY, DEVICE_CLASS_ILLUMINANCE, DEVICE_CLASS_TEMPERATURE, LIGHT_LUX, PERCENTAGE, TEMP_CELSIUS, ) from homeassistant.helpers.entity import Entity from .const import DOMAIN as HUE_DOMAIN from .sensor_base import SENSOR_CONFIG_MAP, GenericHueSensor, GenericZLLSensor LIGHT_LEVEL_NAME_FORMAT = "{} light level" REMOTE_NAME_FORMAT = "{} battery level" TEMPERATURE_NAME_FORMAT = "{} temperature" async def async_setup_entry(hass, config_entry, async_add_entities): """Defer sensor setup to the shared sensor module.""" await hass.data[HUE_DOMAIN][ config_entry.entry_id ].sensor_manager.async_register_component("sensor", async_add_entities) class GenericHueGaugeSensorEntity(GenericZLLSensor, Entity): """Parent class for all 'gauge' Hue device sensors.""" async def _async_update_ha_state(self, *args, **kwargs): await self.async_update_ha_state(self, *args, **kwargs) class HueLightLevel(GenericHueGaugeSensorEntity): """The light level sensor entity for a Hue motion sensor device.""" device_class = DEVICE_CLASS_ILLUMINANCE unit_of_measurement = LIGHT_LUX @property def state(self): """Return the state of the device.""" if self.sensor.lightlevel is None: return None # https://developers.meethue.com/develop/hue-api/supported-devices/#clip_zll_lightlevel # Light level in 10000 log10 (lux) +1 measured by sensor. Logarithm # scale used because the human eye adjusts to light levels and small # changes at low lux levels are more noticeable than at high lux # levels. return round(float(10 ** ((self.sensor.lightlevel - 1) / 10000)), 2) @property def device_state_attributes(self): """Return the device state attributes.""" attributes = super().device_state_attributes attributes.update( { "lightlevel": self.sensor.lightlevel, "daylight": self.sensor.daylight, "dark": self.sensor.dark, "threshold_dark": self.sensor.tholddark, "threshold_offset": self.sensor.tholdoffset, } ) return attributes class HueTemperature(GenericHueGaugeSensorEntity): """The temperature sensor entity for a Hue motion sensor device.""" device_class = DEVICE_CLASS_TEMPERATURE unit_of_measurement = TEMP_CELSIUS @property def state(self): """Return the state of the device.""" if self.sensor.temperature is None: return None return self.sensor.temperature / 100 class HueBattery(GenericHueSensor): """Battery class for when a batt-powered device is only represented as an event.""" @property def unique_id(self): """Return a unique identifier for this device.""" return f"{self.sensor.uniqueid}-battery" @property def state(self): """Return the state of the battery.""" return self.sensor.battery @property def device_class(self): """Return the class of the sensor.""" return DEVICE_CLASS_BATTERY @property def unit_of_measurement(self): """Return the unit of measurement of this entity.""" return PERCENTAGE SENSOR_CONFIG_MAP.update( { TYPE_ZLL_LIGHTLEVEL: { "platform": "sensor", "name_format": LIGHT_LEVEL_NAME_FORMAT, "class": HueLightLevel, }, TYPE_ZLL_TEMPERATURE: { "platform": "sensor", "name_format": TEMPERATURE_NAME_FORMAT, "class": HueTemperature, }, TYPE_ZLL_SWITCH: { "platform": "sensor", "name_format": REMOTE_NAME_FORMAT, "class": HueBattery, }, TYPE_ZLL_ROTARY: { "platform": "sensor", "name_format": REMOTE_NAME_FORMAT, "class": HueBattery, }, } )
import unittest from urwid.compat import B from urwid.escape import str_util class DecodeOneTest(unittest.TestCase): def gwt(self, ch, exp_ord, exp_pos): ch = B(ch) o, pos = str_util.decode_one(ch,0) assert o==exp_ord, " got:%r expected:%r" % (o, exp_ord) assert pos==exp_pos, " got:%r expected:%r" % (pos, exp_pos) def test1byte(self): self.gwt("ab", ord("a"), 1) self.gwt("\xc0a", ord("?"), 1) # error def test2byte(self): self.gwt("\xc2", ord("?"), 1) # error self.gwt("\xc0\x80", ord("?"), 1) # error self.gwt("\xc2\x80", 0x80, 2) self.gwt("\xdf\xbf", 0x7ff, 2) def test3byte(self): self.gwt("\xe0", ord("?"), 1) # error self.gwt("\xe0\xa0", ord("?"), 1) # error self.gwt("\xe0\x90\x80", ord("?"), 1) # error self.gwt("\xe0\xa0\x80", 0x800, 3) self.gwt("\xef\xbf\xbf", 0xffff, 3) def test4byte(self): self.gwt("\xf0", ord("?"), 1) # error self.gwt("\xf0\x90", ord("?"), 1) # error self.gwt("\xf0\x90\x80", ord("?"), 1) # error self.gwt("\xf0\x80\x80\x80", ord("?"), 1) # error self.gwt("\xf0\x90\x80\x80", 0x10000, 4) self.gwt("\xf3\xbf\xbf\xbf", 0xfffff, 4)
import pytest import voluptuous as vol from homeassistant import data_entry_flow from homeassistant.util.decorator import Registry from tests.common import async_capture_events @pytest.fixture def manager(): """Return a flow manager.""" handlers = Registry() entries = [] class FlowManager(data_entry_flow.FlowManager): """Test flow manager.""" async def async_create_flow(self, handler_key, *, context, data): """Test create flow.""" handler = handlers.get(handler_key) if handler is None: raise data_entry_flow.UnknownHandler flow = handler() flow.init_step = context.get("init_step", "init") return flow async def async_finish_flow(self, flow, result): """Test finish flow.""" if result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY: result["source"] = flow.context.get("source") entries.append(result) return result mgr = FlowManager(None) mgr.mock_created_entries = entries mgr.mock_reg_handler = handlers.register return mgr async def test_configure_reuses_handler_instance(manager): """Test that we reuse instances.""" @manager.mock_reg_handler("test") class TestFlow(data_entry_flow.FlowHandler): handle_count = 0 async def async_step_init(self, user_input=None): self.handle_count += 1 return self.async_show_form( errors={"base": str(self.handle_count)}, step_id="init" ) form = await manager.async_init("test") assert form["errors"]["base"] == "1" form = await manager.async_configure(form["flow_id"]) assert form["errors"]["base"] == "2" assert manager.async_progress() == [ { "flow_id": form["flow_id"], "handler": "test", "step_id": "init", "context": {}, } ] assert len(manager.mock_created_entries) == 0 async def test_configure_two_steps(manager): """Test that we reuse instances.""" @manager.mock_reg_handler("test") class TestFlow(data_entry_flow.FlowHandler): VERSION = 1 async def async_step_first(self, user_input=None): if user_input is not None: self.init_data = user_input return await self.async_step_second() return self.async_show_form(step_id="first", data_schema=vol.Schema([str])) async def async_step_second(self, user_input=None): if user_input is not None: return self.async_create_entry( title="Test Entry", data=self.init_data + user_input ) return self.async_show_form(step_id="second", data_schema=vol.Schema([str])) form = await manager.async_init("test", context={"init_step": "first"}) with pytest.raises(vol.Invalid): form = await manager.async_configure(form["flow_id"], "INCORRECT-DATA") form = await manager.async_configure(form["flow_id"], ["INIT-DATA"]) form = await manager.async_configure(form["flow_id"], ["SECOND-DATA"]) assert form["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert len(manager.async_progress()) == 0 assert len(manager.mock_created_entries) == 1 result = manager.mock_created_entries[0] assert result["handler"] == "test" assert result["data"] == ["INIT-DATA", "SECOND-DATA"] async def test_show_form(manager): """Test that we can show a form.""" schema = vol.Schema({vol.Required("username"): str, vol.Required("password"): str}) @manager.mock_reg_handler("test") class TestFlow(data_entry_flow.FlowHandler): async def async_step_init(self, user_input=None): return self.async_show_form( step_id="init", data_schema=schema, errors={"username": "Should be unique."}, ) form = await manager.async_init("test") assert form["type"] == "form" assert form["data_schema"] is schema assert form["errors"] == {"username": "Should be unique."} async def test_abort_removes_instance(manager): """Test that abort removes the flow from progress.""" @manager.mock_reg_handler("test") class TestFlow(data_entry_flow.FlowHandler): is_new = True async def async_step_init(self, user_input=None): old = self.is_new self.is_new = False return self.async_abort(reason=str(old)) form = await manager.async_init("test") assert form["reason"] == "True" assert len(manager.async_progress()) == 0 assert len(manager.mock_created_entries) == 0 form = await manager.async_init("test") assert form["reason"] == "True" assert len(manager.async_progress()) == 0 assert len(manager.mock_created_entries) == 0 async def test_create_saves_data(manager): """Test creating a config entry.""" @manager.mock_reg_handler("test") class TestFlow(data_entry_flow.FlowHandler): VERSION = 5 async def async_step_init(self, user_input=None): return self.async_create_entry(title="Test Title", data="Test Data") await manager.async_init("test") assert len(manager.async_progress()) == 0 assert len(manager.mock_created_entries) == 1 entry = manager.mock_created_entries[0] assert entry["version"] == 5 assert entry["handler"] == "test" assert entry["title"] == "Test Title" assert entry["data"] == "Test Data" assert entry["source"] is None async def test_discovery_init_flow(manager): """Test a flow initialized by discovery.""" @manager.mock_reg_handler("test") class TestFlow(data_entry_flow.FlowHandler): VERSION = 5 async def async_step_init(self, info): return self.async_create_entry(title=info["id"], data=info) data = {"id": "hello", "token": "secret"} await manager.async_init("test", context={"source": "discovery"}, data=data) assert len(manager.async_progress()) == 0 assert len(manager.mock_created_entries) == 1 entry = manager.mock_created_entries[0] assert entry["version"] == 5 assert entry["handler"] == "test" assert entry["title"] == "hello" assert entry["data"] == data assert entry["source"] == "discovery" async def test_finish_callback_change_result_type(hass): """Test finish callback can change result type.""" class TestFlow(data_entry_flow.FlowHandler): VERSION = 1 async def async_step_init(self, input): """Return init form with one input field 'count'.""" if input is not None: return self.async_create_entry(title="init", data=input) return self.async_show_form( step_id="init", data_schema=vol.Schema({"count": int}) ) class FlowManager(data_entry_flow.FlowManager): async def async_create_flow(self, handler_name, *, context, data): """Create a test flow.""" return TestFlow() async def async_finish_flow(self, flow, result): """Redirect to init form if count <= 1.""" if result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY: if result["data"] is None or result["data"].get("count", 0) <= 1: return flow.async_show_form( step_id="init", data_schema=vol.Schema({"count": int}) ) else: result["result"] = result["data"]["count"] return result manager = FlowManager(hass) result = await manager.async_init("test") assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "init" result = await manager.async_configure(result["flow_id"], {"count": 0}) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "init" assert "result" not in result result = await manager.async_configure(result["flow_id"], {"count": 2}) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["result"] == 2 async def test_external_step(hass, manager): """Test external step logic.""" manager.hass = hass @manager.mock_reg_handler("test") class TestFlow(data_entry_flow.FlowHandler): VERSION = 5 data = None async def async_step_init(self, user_input=None): if not user_input: return self.async_external_step( step_id="init", url="https://example.com" ) self.data = user_input return self.async_external_step_done(next_step_id="finish") async def async_step_finish(self, user_input=None): return self.async_create_entry(title=self.data["title"], data=self.data) events = async_capture_events( hass, data_entry_flow.EVENT_DATA_ENTRY_FLOW_PROGRESSED ) result = await manager.async_init("test") assert result["type"] == data_entry_flow.RESULT_TYPE_EXTERNAL_STEP assert len(manager.async_progress()) == 1 # Mimic external step # Called by integrations: `hass.config_entries.flow.async_configure(…)` result = await manager.async_configure(result["flow_id"], {"title": "Hello"}) assert result["type"] == data_entry_flow.RESULT_TYPE_EXTERNAL_STEP_DONE await hass.async_block_till_done() assert len(events) == 1 assert events[0].data == { "handler": "test", "flow_id": result["flow_id"], "refresh": True, } # Frontend refreshses the flow result = await manager.async_configure(result["flow_id"]) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["title"] == "Hello" async def test_abort_flow_exception(manager): """Test that the AbortFlow exception works.""" @manager.mock_reg_handler("test") class TestFlow(data_entry_flow.FlowHandler): async def async_step_init(self, user_input=None): raise data_entry_flow.AbortFlow("mock-reason", {"placeholder": "yo"}) form = await manager.async_init("test") assert form["type"] == "abort" assert form["reason"] == "mock-reason" assert form["description_placeholders"] == {"placeholder": "yo"}
from datetime import timedelta import homeassistant.components.ring as ring from homeassistant.setup import async_setup_component from tests.common import load_fixture ATTRIBUTION = "Data provided by Ring.com" VALID_CONFIG = { "ring": {"username": "foo", "password": "bar", "scan_interval": timedelta(10)} } async def test_setup(hass, requests_mock): """Test the setup.""" await async_setup_component(hass, ring.DOMAIN, {}) requests_mock.post( "https://oauth.ring.com/oauth/token", text=load_fixture("ring_oauth.json") ) requests_mock.post( "https://api.ring.com/clients_api/session", text=load_fixture("ring_session.json"), ) requests_mock.get( "https://api.ring.com/clients_api/ring_devices", text=load_fixture("ring_devices.json"), ) requests_mock.get( "https://api.ring.com/clients_api/chimes/999999/health", text=load_fixture("ring_chime_health_attrs.json"), ) requests_mock.get( "https://api.ring.com/clients_api/doorbots/987652/health", text=load_fixture("ring_doorboot_health_attrs.json"), ) assert await ring.async_setup(hass, VALID_CONFIG)
from perfkitbenchmarker.memcache_service import MemcacheService from perfkitbenchmarker.providers import gcp class MemcacheService(MemcacheService): CLOUD = gcp.CLOUD def __init__(self): pass def Create(self): raise NotImplementedError def Destroy(self): raise NotImplementedError def Flush(self): raise NotImplementedError def GetHosts(self): raise NotImplementedError def GetMetadata(self): raise NotImplementedError
import pytest from yandextank.stepper.instance_plan import LoadPlanBuilder, create from yandextank.stepper.util import take class TestCreate(object): @pytest.mark.parametrize( 'n, loadplan, expected', [( 7, LoadPlanBuilder().ramp(5, 4000).create(), [0, 1000, 2000, 3000, 4000, 0, 0] ), ( 7, create(['ramp(5, 4s)']), [0, 1000, 2000, 3000, 4000, 0, 0] ), ( 12, create(['ramp(5, 4s)', 'wait(5s)', 'ramp(5,4s)']), [0, 1000, 2000, 3000, 4000, 9000, 10000, 11000, 12000, 13000, 0, 0] ), ( 7, create(['wait(5s)', 'ramp(5, 0)']), [5000, 5000, 5000, 5000, 5000, 0, 0] ), ( 7, create([]), [0, 0, 0, 0, 0, 0, 0] ), ( 12, create(['line(1, 9, 4s)']), [0, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 0, 0, 0] ), ( 12, create(['const(3, 5s)', 'line(7, 11, 2s)']), [0, 0, 0, 5000, 5000, 5000, 5000, 5500, 6000, 6500, 7000, 0] ), ( 12, create(['step(2, 10, 2, 3s)']), [0, 0, 3000, 3000, 6000, 6000, 9000, 9000, 12000, 12000, 0, 0] ), ( 12, LoadPlanBuilder().const(3, 1000).line(5, 10, 5000).steps, [(3, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1)] ), ( 12, LoadPlanBuilder().stairway(100, 950, 100, 30000).steps, [ (100, 30), (200, 30), (300, 30), (400, 30), (500, 30), (600, 30), (700, 30), (800, 30), (900, 30), (950, 30)] )]) # yapf:disable def test_steps(self, n, loadplan, expected): assert take(n, loadplan) == expected @pytest.mark.parametrize( 'loadplan, expected', [(LoadPlanBuilder().stairway(100, 950, 100, 30000), 950), (LoadPlanBuilder().const(3, 1000).line(5, 10, 5000), 10), (LoadPlanBuilder().line(1, 100, 60000), 100)]) def test_instances(self, loadplan, expected): assert loadplan.instances == expected
from typing import cast import os.path from PyQt5.QtNetwork import QNetworkDiskCache from qutebrowser.config import config from qutebrowser.utils import utils, standarddir diskcache = cast('DiskCache', None) class DiskCache(QNetworkDiskCache): """Disk cache which sets correct cache dir and size.""" def __init__(self, cache_dir, parent=None): super().__init__(parent) self.setCacheDirectory(os.path.join(cache_dir, 'http')) self._set_cache_size() config.instance.changed.connect(self._set_cache_size) def __repr__(self): return utils.get_repr(self, size=self.cacheSize(), maxsize=self.maximumCacheSize(), path=self.cacheDirectory()) @config.change_filter('content.cache.size') def _set_cache_size(self): """Set the cache size based on the config.""" size = config.val.content.cache.size if size is None: size = 1024 * 1024 * 50 # default from QNetworkDiskCachePrivate self.setMaximumCacheSize(size) def init(parent): """Initialize the global cache.""" global diskcache diskcache = DiskCache(standarddir.cache(), parent=parent)
import logging log = logging.getLogger(__name__) class LoadTest(object): def __init__(self, gun): self.gun = gun def case1(self, missile): with self.gun.measure("case1"): log.info("Shoot case 1: %s", missile) def case2(self, missile): with self.gun.measure("case2"): log.info("Shoot case 2: %s", missile) def setup(self): log.info("Setting up LoadTest") def teardown(self): log.info("Tearing down LoadTest")
from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging from compare_gan.architectures import arch_ops from compare_gan.architectures import resnet_cifar from six.moves import zip import tensorflow as tf class ResNetNormTest(tf.test.TestCase): def testDefaultGenerator(self): with tf.Graph().as_default(): # batch size 8, 32x32x3 images, 10 classes. z = tf.zeros((8, 128)) y = tf.one_hot(tf.ones((8,), dtype=tf.int32), 10) generator = resnet_cifar.Generator(image_shape=(32, 32, 3)) fake_images = generator(z, y=y, is_training=True, reuse=False) self.assertEqual(fake_images.shape.as_list(), [8, 32, 32, 3]) expected_variables = [ # Name and shape. ("generator/fc_noise/kernel:0", [128, 4096]), ("generator/fc_noise/bias:0", [4096]), ("generator/B1/up_conv_shortcut/kernel:0", [3, 3, 256, 256]), ("generator/B1/up_conv_shortcut/bias:0", [256]), ("generator/B1/up_conv1/kernel:0", [3, 3, 256, 256]), ("generator/B1/up_conv1/bias:0", [256]), ("generator/B1/same_conv2/kernel:0", [3, 3, 256, 256]), ("generator/B1/same_conv2/bias:0", [256]), ("generator/B2/up_conv_shortcut/kernel:0", [3, 3, 256, 256]), ("generator/B2/up_conv_shortcut/bias:0", [256]), ("generator/B2/up_conv1/kernel:0", [3, 3, 256, 256]), ("generator/B2/up_conv1/bias:0", [256]), ("generator/B2/same_conv2/kernel:0", [3, 3, 256, 256]), ("generator/B2/same_conv2/bias:0", [256]), ("generator/B3/up_conv_shortcut/kernel:0", [3, 3, 256, 256]), ("generator/B3/up_conv_shortcut/bias:0", [256]), ("generator/B3/up_conv1/kernel:0", [3, 3, 256, 256]), ("generator/B3/up_conv1/bias:0", [256]), ("generator/B3/same_conv2/kernel:0", [3, 3, 256, 256]), ("generator/B3/same_conv2/bias:0", [256]), ("generator/final_conv/kernel:0", [3, 3, 256, 3]), ("generator/final_conv/bias:0", [3]), ] actual_variables = [(v.name, v.shape.as_list()) for v in tf.trainable_variables()] for a, e in zip(actual_variables, expected_variables): logging.info("actual: %s, expected: %s", a, e) self.assertEqual(a, e) self.assertEqual(len(actual_variables), len(expected_variables)) def testDefaultDiscriminator(self): with tf.Graph().as_default(): # batch size 8, 32x32x3 images, 10 classes. x = tf.zeros((8, 32, 32, 3)) y = tf.one_hot(tf.ones((8,), dtype=tf.int32), 10) discriminator = resnet_cifar.Discriminator() _ = discriminator(x, y=y, is_training=True, reuse=False) expected_variables = [ # Name and shape. ("discriminator/B1/down_conv_shortcut/kernel:0", [3, 3, 3, 128]), ("discriminator/B1/down_conv_shortcut/bias:0", [128]), ("discriminator/B1/same_conv1/kernel:0", [3, 3, 3, 128]), ("discriminator/B1/same_conv1/bias:0", [128]), ("discriminator/B1/down_conv2/kernel:0", [3, 3, 128, 128]), ("discriminator/B1/down_conv2/bias:0", [128]), ("discriminator/B2/down_conv_shortcut/kernel:0", [3, 3, 128, 128]), ("discriminator/B2/down_conv_shortcut/bias:0", [128]), ("discriminator/B2/same_conv1/kernel:0", [3, 3, 128, 128]), ("discriminator/B2/same_conv1/bias:0", [128]), ("discriminator/B2/down_conv2/kernel:0", [3, 3, 128, 128]), ("discriminator/B2/down_conv2/bias:0", [128]), ("discriminator/B3/same_conv_shortcut/kernel:0", [3, 3, 128, 128]), ("discriminator/B3/same_conv_shortcut/bias:0", [128]), ("discriminator/B3/same_conv1/kernel:0", [3, 3, 128, 128]), ("discriminator/B3/same_conv1/bias:0", [128]), ("discriminator/B3/same_conv2/kernel:0", [3, 3, 128, 128]), ("discriminator/B3/same_conv2/bias:0", [128]), ("discriminator/B4/same_conv_shortcut/kernel:0", [3, 3, 128, 128]), ("discriminator/B4/same_conv_shortcut/bias:0", [128]), ("discriminator/B4/same_conv1/kernel:0", [3, 3, 128, 128]), ("discriminator/B4/same_conv1/bias:0", [128]), ("discriminator/B4/same_conv2/kernel:0", [3, 3, 128, 128]), ("discriminator/B4/same_conv2/bias:0", [128]), ("discriminator/disc_final_fc/kernel:0", [128, 1]), ("discriminator/disc_final_fc/bias:0", [1]), ] actual_variables = [(v.name, v.shape.as_list()) for v in tf.trainable_variables()] for a, e in zip(actual_variables, expected_variables): logging.info("actual: %s, expected: %s", a, e) self.assertEqual(a, e) self.assertEqual(len(actual_variables), len(expected_variables)) def testDefaultGeneratorWithBatchNorm(self): with tf.Graph().as_default(): # batch size 8, 32x32x3 images, 10 classes. z = tf.zeros((8, 128)) y = tf.one_hot(tf.ones((8,), dtype=tf.int32), 10) generator = resnet_cifar.Generator( image_shape=(32, 32, 3), batch_norm_fn=arch_ops.batch_norm) fake_images = generator(z, y=y, is_training=True, reuse=False) self.assertEqual(fake_images.shape.as_list(), [8, 32, 32, 3]) expected_variables = [ # Name and shape. ("generator/fc_noise/kernel:0", [128, 4096]), ("generator/fc_noise/bias:0", [4096]), ("generator/B1/up_conv_shortcut/kernel:0", [3, 3, 256, 256]), ("generator/B1/up_conv_shortcut/bias:0", [256]), ("generator/B1/bn1/gamma:0", [256]), ("generator/B1/bn1/beta:0", [256]), ("generator/B1/up_conv1/kernel:0", [3, 3, 256, 256]), ("generator/B1/up_conv1/bias:0", [256]), ("generator/B1/bn2/gamma:0", [256]), ("generator/B1/bn2/beta:0", [256]), ("generator/B1/same_conv2/kernel:0", [3, 3, 256, 256]), ("generator/B1/same_conv2/bias:0", [256]), ("generator/B2/up_conv_shortcut/kernel:0", [3, 3, 256, 256]), ("generator/B2/up_conv_shortcut/bias:0", [256]), ("generator/B2/bn1/gamma:0", [256]), ("generator/B2/bn1/beta:0", [256]), ("generator/B2/up_conv1/kernel:0", [3, 3, 256, 256]), ("generator/B2/up_conv1/bias:0", [256]), ("generator/B2/bn2/gamma:0", [256]), ("generator/B2/bn2/beta:0", [256]), ("generator/B2/same_conv2/kernel:0", [3, 3, 256, 256]), ("generator/B2/same_conv2/bias:0", [256]), ("generator/B3/up_conv_shortcut/kernel:0", [3, 3, 256, 256]), ("generator/B3/up_conv_shortcut/bias:0", [256]), ("generator/B3/bn1/gamma:0", [256]), ("generator/B3/bn1/beta:0", [256]), ("generator/B3/up_conv1/kernel:0", [3, 3, 256, 256]), ("generator/B3/up_conv1/bias:0", [256]), ("generator/B3/bn2/gamma:0", [256]), ("generator/B3/bn2/beta:0", [256]), ("generator/B3/same_conv2/kernel:0", [3, 3, 256, 256]), ("generator/B3/same_conv2/bias:0", [256]), ("generator/final_norm/gamma:0", [256]), ("generator/final_norm/beta:0", [256]), ("generator/final_conv/kernel:0", [3, 3, 256, 3]), ("generator/final_conv/bias:0", [3]), ] actual_variables = [(v.name, v.shape.as_list()) for v in tf.trainable_variables()] for a in actual_variables: logging.info(a) for a, e in zip(actual_variables, expected_variables): logging.info("actual: %s, expected: %s", a, e) self.assertEqual(a, e) self.assertEqual(len(actual_variables), len(expected_variables)) def testDefaultGeneratorWithConditionalBatchNorm(self): with tf.Graph().as_default(): # Batch size 8, 32x32x3 images, 10 classes. z = tf.zeros((8, 128)) y = tf.one_hot(tf.ones((8,), dtype=tf.int32), 10) generator = resnet_cifar.Generator( image_shape=(32, 32, 3), batch_norm_fn=arch_ops.conditional_batch_norm) fake_images = generator(z, y=y, is_training=True, reuse=False) self.assertEqual(fake_images.shape.as_list(), [8, 32, 32, 3]) expected_variables = [ # Name and shape. ("generator/fc_noise/kernel:0", [128, 4096]), ("generator/fc_noise/bias:0", [4096]), ("generator/B1/up_conv_shortcut/kernel:0", [3, 3, 256, 256]), ("generator/B1/up_conv_shortcut/bias:0", [256]), ("generator/B1/bn1/condition/gamma/kernel:0", [10, 256]), ("generator/B1/bn1/condition/beta/kernel:0", [10, 256]), ("generator/B1/up_conv1/kernel:0", [3, 3, 256, 256]), ("generator/B1/up_conv1/bias:0", [256]), ("generator/B1/bn2/condition/gamma/kernel:0", [10, 256]), ("generator/B1/bn2/condition/beta/kernel:0", [10, 256]), ("generator/B1/same_conv2/kernel:0", [3, 3, 256, 256]), ("generator/B1/same_conv2/bias:0", [256]), ("generator/B2/up_conv_shortcut/kernel:0", [3, 3, 256, 256]), ("generator/B2/up_conv_shortcut/bias:0", [256]), ("generator/B2/bn1/condition/gamma/kernel:0", [10, 256]), ("generator/B2/bn1/condition/beta/kernel:0", [10, 256]), ("generator/B2/up_conv1/kernel:0", [3, 3, 256, 256]), ("generator/B2/up_conv1/bias:0", [256]), ("generator/B2/bn2/condition/gamma/kernel:0", [10, 256]), ("generator/B2/bn2/condition/beta/kernel:0", [10, 256]), ("generator/B2/same_conv2/kernel:0", [3, 3, 256, 256]), ("generator/B2/same_conv2/bias:0", [256]), ("generator/B3/up_conv_shortcut/kernel:0", [3, 3, 256, 256]), ("generator/B3/up_conv_shortcut/bias:0", [256]), ("generator/B3/bn1/condition/gamma/kernel:0", [10, 256]), ("generator/B3/bn1/condition/beta/kernel:0", [10, 256]), ("generator/B3/up_conv1/kernel:0", [3, 3, 256, 256]), ("generator/B3/up_conv1/bias:0", [256]), ("generator/B3/bn2/condition/gamma/kernel:0", [10, 256]), ("generator/B3/bn2/condition/beta/kernel:0", [10, 256]), ("generator/B3/same_conv2/kernel:0", [3, 3, 256, 256]), ("generator/B3/same_conv2/bias:0", [256]), ("generator/final_norm/condition/gamma/kernel:0", [10, 256]), ("generator/final_norm/condition/beta/kernel:0", [10, 256]), ("generator/final_conv/kernel:0", [3, 3, 256, 3]), ("generator/final_conv/bias:0", [3]), ] actual_variables = [(v.name, v.shape.as_list()) for v in tf.trainable_variables()] for a in actual_variables: logging.info(a) for a, e in zip(actual_variables, expected_variables): logging.info("actual: %s, expected: %s", a, e) self.assertEqual(a, e) self.assertEqual(len(actual_variables), len(expected_variables)) def testDefaultGeneratorWithSelfModulatedBatchNorm(self): with tf.Graph().as_default(): # Batch size 8, 32x32x3 images, 10 classes. z = tf.zeros((8, 128)) y = tf.one_hot(tf.ones((8,), dtype=tf.int32), 10) generator = resnet_cifar.Generator( image_shape=(32, 32, 3), batch_norm_fn=arch_ops.self_modulated_batch_norm) fake_images = generator(z, y=y, is_training=True, reuse=False) self.assertEqual(fake_images.shape.as_list(), [8, 32, 32, 3]) expected_variables = [ # Name and shape. ("generator/fc_noise/kernel:0", [128, 4096]), ("generator/fc_noise/bias:0", [4096]), ("generator/B1/up_conv_shortcut/kernel:0", [3, 3, 256, 256]), ("generator/B1/up_conv_shortcut/bias:0", [256]), ("generator/B1/bn1/sbn/hidden/kernel:0", [128, 32]), ("generator/B1/bn1/sbn/hidden/bias:0", [32]), ("generator/B1/bn1/sbn/gamma/kernel:0", [32, 256]), ("generator/B1/bn1/sbn/gamma/bias:0", [256]), ("generator/B1/bn1/sbn/beta/kernel:0", [32, 256]), ("generator/B1/bn1/sbn/beta/bias:0", [256]), ("generator/B1/up_conv1/kernel:0", [3, 3, 256, 256]), ("generator/B1/up_conv1/bias:0", [256]), ("generator/B1/bn2/sbn/hidden/kernel:0", [128, 32]), ("generator/B1/bn2/sbn/hidden/bias:0", [32]), ("generator/B1/bn2/sbn/gamma/kernel:0", [32, 256]), ("generator/B1/bn2/sbn/gamma/bias:0", [256]), ("generator/B1/bn2/sbn/beta/kernel:0", [32, 256]), ("generator/B1/bn2/sbn/beta/bias:0", [256]), ("generator/B1/same_conv2/kernel:0", [3, 3, 256, 256]), ("generator/B1/same_conv2/bias:0", [256]), ("generator/B2/up_conv_shortcut/kernel:0", [3, 3, 256, 256]), ("generator/B2/up_conv_shortcut/bias:0", [256]), ("generator/B2/bn1/sbn/hidden/kernel:0", [128, 32]), ("generator/B2/bn1/sbn/hidden/bias:0", [32]), ("generator/B2/bn1/sbn/gamma/kernel:0", [32, 256]), ("generator/B2/bn1/sbn/gamma/bias:0", [256]), ("generator/B2/bn1/sbn/beta/kernel:0", [32, 256]), ("generator/B2/bn1/sbn/beta/bias:0", [256]), ("generator/B2/up_conv1/kernel:0", [3, 3, 256, 256]), ("generator/B2/up_conv1/bias:0", [256]), ("generator/B2/bn2/sbn/hidden/kernel:0", [128, 32]), ("generator/B2/bn2/sbn/hidden/bias:0", [32]), ("generator/B2/bn2/sbn/gamma/kernel:0", [32, 256]), ("generator/B2/bn2/sbn/gamma/bias:0", [256]), ("generator/B2/bn2/sbn/beta/kernel:0", [32, 256]), ("generator/B2/bn2/sbn/beta/bias:0", [256]), ("generator/B2/same_conv2/kernel:0", [3, 3, 256, 256]), ("generator/B2/same_conv2/bias:0", [256]), ("generator/B3/up_conv_shortcut/kernel:0", [3, 3, 256, 256]), ("generator/B3/up_conv_shortcut/bias:0", [256]), ("generator/B3/bn1/sbn/hidden/kernel:0", [128, 32]), ("generator/B3/bn1/sbn/hidden/bias:0", [32]), ("generator/B3/bn1/sbn/gamma/kernel:0", [32, 256]), ("generator/B3/bn1/sbn/gamma/bias:0", [256]), ("generator/B3/bn1/sbn/beta/kernel:0", [32, 256]), ("generator/B3/bn1/sbn/beta/bias:0", [256]), ("generator/B3/up_conv1/kernel:0", [3, 3, 256, 256]), ("generator/B3/up_conv1/bias:0", [256]), ("generator/B3/bn2/sbn/hidden/kernel:0", [128, 32]), ("generator/B3/bn2/sbn/hidden/bias:0", [32]), ("generator/B3/bn2/sbn/gamma/kernel:0", [32, 256]), ("generator/B3/bn2/sbn/gamma/bias:0", [256]), ("generator/B3/bn2/sbn/beta/kernel:0", [32, 256]), ("generator/B3/bn2/sbn/beta/bias:0", [256]), ("generator/B3/same_conv2/kernel:0", [3, 3, 256, 256]), ("generator/B3/same_conv2/bias:0", [256]), ("generator/final_norm/sbn/hidden/kernel:0", [128, 32]), ("generator/final_norm/sbn/hidden/bias:0", [32]), ("generator/final_norm/sbn/gamma/kernel:0", [32, 256]), ("generator/final_norm/sbn/gamma/bias:0", [256]), ("generator/final_norm/sbn/beta/kernel:0", [32, 256]), ("generator/final_norm/sbn/beta/bias:0", [256]), ("generator/final_conv/kernel:0", [3, 3, 256, 3]), ("generator/final_conv/bias:0", [3]), ] actual_variables = [(v.name, v.shape.as_list()) for v in tf.trainable_variables()] for a in actual_variables: logging.info(a) for a, e in zip(actual_variables, expected_variables): logging.info("actual: %s, expected: %s", a, e) self.assertEqual(a, e) self.assertEqual(len(actual_variables), len(expected_variables)) def testDefaultGeneratorWithSpectralNorm(self): with tf.Graph().as_default(): # Batch size 8, 32x32x3 images, 10 classes. z = tf.zeros((8, 128)) y = tf.one_hot(tf.ones((8,), dtype=tf.int32), 10) generator = resnet_cifar.Generator( image_shape=(32, 32, 3), spectral_norm=True) fake_images = generator(z, y=y, is_training=True, reuse=False) self.assertEqual(fake_images.shape.as_list(), [8, 32, 32, 3]) expected_variables = [ # Name and shape. ("generator/fc_noise/kernel:0", [128, 4096]), ("generator/fc_noise/kernel/u_var:0", [128, 1]), ("generator/fc_noise/bias:0", [4096]), ("generator/B1/up_conv_shortcut/kernel:0", [3, 3, 256, 256]), ("generator/B1/up_conv_shortcut/kernel/u_var:0", [3 * 3 * 256, 1]), ("generator/B1/up_conv_shortcut/bias:0", [256]), ("generator/B1/up_conv1/kernel:0", [3, 3, 256, 256]), ("generator/B1/up_conv1/kernel/u_var:0", [3 * 3 * 256, 1]), ("generator/B1/up_conv1/bias:0", [256]), ("generator/B1/same_conv2/kernel:0", [3, 3, 256, 256]), ("generator/B1/same_conv2/kernel/u_var:0", [3 * 3 * 256, 1]), ("generator/B1/same_conv2/bias:0", [256]), ("generator/B2/up_conv_shortcut/kernel:0", [3, 3, 256, 256]), ("generator/B2/up_conv_shortcut/kernel/u_var:0", [3 * 3 * 256, 1]), ("generator/B2/up_conv_shortcut/bias:0", [256]), ("generator/B2/up_conv1/kernel:0", [3, 3, 256, 256]), ("generator/B2/up_conv1/kernel/u_var:0", [3 * 3 * 256, 1]), ("generator/B2/up_conv1/bias:0", [256]), ("generator/B2/same_conv2/kernel:0", [3, 3, 256, 256]), ("generator/B2/same_conv2/kernel/u_var:0", [3 * 3 * 256, 1]), ("generator/B2/same_conv2/bias:0", [256]), ("generator/B3/up_conv_shortcut/kernel:0", [3, 3, 256, 256]), ("generator/B3/up_conv_shortcut/kernel/u_var:0", [3 * 3 * 256, 1]), ("generator/B3/up_conv_shortcut/bias:0", [256]), ("generator/B3/up_conv1/kernel:0", [3, 3, 256, 256]), ("generator/B3/up_conv1/kernel/u_var:0", [3 * 3 * 256, 1]), ("generator/B3/up_conv1/bias:0", [256]), ("generator/B3/same_conv2/kernel:0", [3, 3, 256, 256]), ("generator/B3/same_conv2/kernel/u_var:0", [3 * 3 * 256, 1]), ("generator/B3/same_conv2/bias:0", [256]), ("generator/final_conv/kernel:0", [3, 3, 256, 3]), ("generator/final_conv/kernel/u_var:0", [3 * 3 * 256, 1]), ("generator/final_conv/bias:0", [3]), ] actual_variables = [(v.name, v.shape.as_list()) for v in tf.global_variables()] for a in actual_variables: logging.info(a) for a, e in zip(actual_variables, expected_variables): logging.info("actual: %s, expected: %s", a, e) self.assertEqual(a, e) self.assertEqual(len(actual_variables), len(expected_variables)) if __name__ == "__main__": tf.test.main()
from asyncio import iscoroutinefunction from datetime import timedelta import logging import voluptuous as vol from homeassistant.const import CONF_ACCESS_TOKEN, CONF_DOMAIN from homeassistant.core import CALLBACK_TYPE, callback from homeassistant.helpers.aiohttp_client import async_get_clientsession import homeassistant.helpers.config_validation as cv from homeassistant.helpers.event import async_call_later from homeassistant.loader import bind_hass from homeassistant.util import dt as dt_util _LOGGER = logging.getLogger(__name__) ATTR_TXT = "txt" DOMAIN = "duckdns" INTERVAL = timedelta(minutes=5) SERVICE_SET_TXT = "set_txt" UPDATE_URL = "https://www.duckdns.org/update" CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.Schema( { vol.Required(CONF_DOMAIN): cv.string, vol.Required(CONF_ACCESS_TOKEN): cv.string, } ) }, extra=vol.ALLOW_EXTRA, ) SERVICE_TXT_SCHEMA = vol.Schema({vol.Required(ATTR_TXT): vol.Any(None, cv.string)}) async def async_setup(hass, config): """Initialize the DuckDNS component.""" domain = config[DOMAIN][CONF_DOMAIN] token = config[DOMAIN][CONF_ACCESS_TOKEN] session = async_get_clientsession(hass) async def update_domain_interval(_now): """Update the DuckDNS entry.""" return await _update_duckdns(session, domain, token) intervals = ( INTERVAL, timedelta(minutes=1), timedelta(minutes=5), timedelta(minutes=15), timedelta(minutes=30), ) async_track_time_interval_backoff(hass, update_domain_interval, intervals) async def update_domain_service(call): """Update the DuckDNS entry.""" await _update_duckdns(session, domain, token, txt=call.data[ATTR_TXT]) hass.services.async_register( DOMAIN, SERVICE_SET_TXT, update_domain_service, schema=SERVICE_TXT_SCHEMA ) return True _SENTINEL = object() async def _update_duckdns(session, domain, token, *, txt=_SENTINEL, clear=False): """Update DuckDNS.""" params = {"domains": domain, "token": token} if txt is not _SENTINEL: if txt is None: # Pass in empty txt value to indicate it's clearing txt record params["txt"] = "" clear = True else: params["txt"] = txt if clear: params["clear"] = "true" resp = await session.get(UPDATE_URL, params=params) body = await resp.text() if body != "OK": _LOGGER.warning("Updating DuckDNS domain failed: %s", domain) return False return True @callback @bind_hass def async_track_time_interval_backoff(hass, action, intervals) -> CALLBACK_TYPE: """Add a listener that fires repetitively at every timedelta interval.""" if not iscoroutinefunction: _LOGGER.error("action needs to be a coroutine and return True/False") return if not isinstance(intervals, (list, tuple)): intervals = (intervals,) remove = None failed = 0 async def interval_listener(now): """Handle elapsed intervals with backoff.""" nonlocal failed, remove try: failed += 1 if await action(now): failed = 0 finally: delay = intervals[failed] if failed < len(intervals) else intervals[-1] remove = async_call_later(hass, delay.total_seconds(), interval_listener) hass.async_run_job(interval_listener, dt_util.utcnow()) def remove_listener(): """Remove interval listener.""" if remove: remove() # pylint: disable=not-callable return remove_listener
__all__ = ["fetch", "available", "Base"] import functools import logging import pkgutil import urllib import docker_registry.drivers from .compat import json from .exceptions import NotImplementedError logger = logging.getLogger(__name__) def check(value): value = str(value) if value == '..': value = '%2E%2E' if value == '.': value = '%2E' return urllib.quote_plus(value) def filter_args(f): @functools.wraps(f) def wrapper(*args, **kwargs): args = list(args) ref = args.pop(0) args = [check(arg) for arg in args] args.insert(0, ref) for key, value in kwargs.iteritems(): kwargs[key] = check(value) return f(*args, **kwargs) return wrapper class Base(object): """Storage is a convenience class... ... that describes methods that must be implemented by any backend. You should inherit (or duck type) this if you are implementing your own. :param host: host name :type host: unicode :param port: port number :type port: int :param basepath: base path (will be prepended to actual requests) :type basepath: unicode """ # Useful if we want to change those locations later without rewriting # the code which uses Storage repositories = 'repositories' images = 'images' def _repository_path(self, namespace, repository): return '{0}/{1}/{2}'.format( self.repositories, namespace, repository) # Set the IO buffer to 128kB buffer_size = 128 * 1024 # By default no storage plugin supports it supports_bytes_range = False def __init__(self, path=None, config=None): pass # FIXME(samalba): Move all path resolver in each module (out of the base) @filter_args def images_list_path(self, namespace, repository): repository_path = self._repository_path( namespace=namespace, repository=repository) return '{0}/_images_list'.format(repository_path) @filter_args def image_json_path(self, image_id): return '{0}/{1}/json'.format(self.images, image_id) @filter_args def image_mark_path(self, image_id): return '{0}/{1}/_inprogress'.format(self.images, image_id) @filter_args def image_checksum_path(self, image_id): return '{0}/{1}/_checksum'.format(self.images, image_id) @filter_args def image_layer_path(self, image_id): return '{0}/{1}/layer'.format(self.images, image_id) @filter_args def image_ancestry_path(self, image_id): return '{0}/{1}/ancestry'.format(self.images, image_id) @filter_args def image_files_path(self, image_id): return '{0}/{1}/_files'.format(self.images, image_id) @filter_args def image_diff_path(self, image_id): return '{0}/{1}/_diff'.format(self.images, image_id) @filter_args def repository_path(self, namespace, repository): return '{0}/{1}/{2}'.format( self.repositories, namespace, repository) @filter_args def tag_path(self, namespace, repository, tagname=None): repository_path = self._repository_path( namespace=namespace, repository=repository) if not tagname: return repository_path return '{0}/tag_{1}'.format(repository_path, tagname) @filter_args def repository_json_path(self, namespace, repository): repository_path = self._repository_path( namespace=namespace, repository=repository) return '{0}/json'.format(repository_path) @filter_args def repository_tag_json_path(self, namespace, repository, tag): repository_path = self._repository_path( namespace=namespace, repository=repository) return '{0}/tag{1}_json'.format(repository_path, tag) @filter_args def index_images_path(self, namespace, repository): repository_path = self._repository_path( namespace=namespace, repository=repository) return '{0}/_index_images'.format(repository_path) @filter_args def private_flag_path(self, namespace, repository): repository_path = self._repository_path( namespace=namespace, repository=repository) return '{0}/_private'.format(repository_path) def is_private(self, namespace, repository): return self.exists(self.private_flag_path(namespace, repository)) def content_redirect_url(self, path): """Get a URL for content at path Get a URL to which client can be redirected to get the content from the path. Return None if not supported by this engine. Note, this feature will only be used if the `storage_redirect` configuration key is set to `True`. """ return None def get_json(self, path): return json.loads(self.get_unicode(path)) def put_json(self, path, content): return self.put_unicode(path, json.dumps(content)) def get_unicode(self, path): return self.get_bytes(path).decode('utf8') def put_unicode(self, path, content): return self.put_bytes(path, content.encode('utf8')) def get_bytes(self, path): return self.get_content(path) def put_bytes(self, path, content): return self.put_content(path, content) def get_content(self, path): """Method to get content.""" raise NotImplementedError( "You must implement get_content(self, path) on your storage %s" % self.__class__.__name__) def put_content(self, path, content): """Method to put content.""" raise NotImplementedError( "You must implement put_content(self, path, content) on %s" % self.__class__.__name__) def stream_read(self, path, bytes_range=None): """Method to stream read.""" raise NotImplementedError( "You must implement stream_read(self, path, , bytes_range=None) " + "on your storage %s" % self.__class__.__name__) def stream_write(self, path, fp): """Method to stream write.""" raise NotImplementedError( "You must implement stream_write(self, path, fp) " + "on your storage %s" % self.__class__.__name__) def list_directory(self, path=None): """Method to list directory.""" raise NotImplementedError( "You must implement list_directory(self, path=None) " + "on your storage %s" % self.__class__.__name__) def exists(self, path): """Method to test exists.""" raise NotImplementedError( "You must implement exists(self, path) on your storage %s" % self.__class__.__name__) def remove(self, path): """Method to remove.""" raise NotImplementedError( "You must implement remove(self, path) on your storage %s" % self.__class__.__name__) def get_size(self, path): """Method to get the size.""" raise NotImplementedError( "You must implement get_size(self, path) on your storage %s" % self.__class__.__name__) def fetch(name): try: # XXX The noqa below is because of hacking being non-sensical on this module = __import__('docker_registry.drivers.%s' % name, globals(), locals(), ['Storage'], 0) # noqa logger.debug("Will return docker-registry.drivers.%s.Storage" % name) except ImportError as e: logger.warn("Got exception: %s" % e) raise NotImplementedError( """You requested storage driver docker_registry.drivers.%s which is not installed. Try `pip install docker-registry-driver-%s` or check your configuration. The following are currently available on your system: %s. Exception was: %s""" % (name, name, available(), e) ) module.Storage.scheme = name return module.Storage def available(): return [modname for importer, modname, ispkg in pkgutil.iter_modules(docker_registry.drivers.__path__)]
import logging from openhomedevice.Device import Device import voluptuous as vol from homeassistant.components.media_player import MediaPlayerEntity from homeassistant.components.media_player.const import ( MEDIA_TYPE_MUSIC, SUPPORT_NEXT_TRACK, SUPPORT_PAUSE, SUPPORT_PLAY, SUPPORT_PLAY_MEDIA, SUPPORT_PREVIOUS_TRACK, SUPPORT_SELECT_SOURCE, SUPPORT_STOP, SUPPORT_TURN_OFF, SUPPORT_TURN_ON, SUPPORT_VOLUME_MUTE, SUPPORT_VOLUME_SET, SUPPORT_VOLUME_STEP, ) from homeassistant.const import STATE_IDLE, STATE_OFF, STATE_PAUSED, STATE_PLAYING from homeassistant.helpers import config_validation as cv, entity_platform from .const import ATTR_PIN_INDEX, DATA_OPENHOME, SERVICE_INVOKE_PIN SUPPORT_OPENHOME = SUPPORT_SELECT_SOURCE | SUPPORT_TURN_OFF | SUPPORT_TURN_ON _LOGGER = logging.getLogger(__name__) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the Openhome platform.""" if not discovery_info: return openhome_data = hass.data.setdefault(DATA_OPENHOME, set()) name = discovery_info.get("name") description = discovery_info.get("ssdp_description") _LOGGER.info("Openhome device found: %s", name) device = await hass.async_add_executor_job(Device, description) # if device has already been discovered if device.Uuid() in openhome_data: return True entity = OpenhomeDevice(hass, device) async_add_entities([entity]) openhome_data.add(device.Uuid()) platform = entity_platform.current_platform.get() platform.async_register_entity_service( SERVICE_INVOKE_PIN, {vol.Required(ATTR_PIN_INDEX): cv.positive_int}, "invoke_pin", ) class OpenhomeDevice(MediaPlayerEntity): """Representation of an Openhome device.""" def __init__(self, hass, device): """Initialise the Openhome device.""" self.hass = hass self._device = device self._track_information = {} self._in_standby = None self._transport_state = None self._volume_level = None self._volume_muted = None self._supported_features = SUPPORT_OPENHOME self._source_names = [] self._source_index = {} self._source = {} self._name = None self._state = STATE_PLAYING def update(self): """Update state of device.""" self._in_standby = self._device.IsInStandby() self._transport_state = self._device.TransportState() self._track_information = self._device.TrackInfo() self._source = self._device.Source() self._name = self._device.Room().decode("utf-8") self._supported_features = SUPPORT_OPENHOME source_index = {} source_names = [] if self._device.VolumeEnabled(): self._supported_features |= ( SUPPORT_VOLUME_STEP | SUPPORT_VOLUME_MUTE | SUPPORT_VOLUME_SET ) self._volume_level = self._device.VolumeLevel() / 100.0 self._volume_muted = self._device.IsMuted() for source in self._device.Sources(): source_names.append(source["name"]) source_index[source["name"]] = source["index"] self._source_index = source_index self._source_names = source_names if self._source["type"] == "Radio": self._supported_features |= SUPPORT_STOP | SUPPORT_PLAY | SUPPORT_PLAY_MEDIA if self._source["type"] in ("Playlist", "Spotify"): self._supported_features |= ( SUPPORT_PREVIOUS_TRACK | SUPPORT_NEXT_TRACK | SUPPORT_PAUSE | SUPPORT_PLAY | SUPPORT_PLAY_MEDIA ) if self._in_standby: self._state = STATE_OFF elif self._transport_state == "Paused": self._state = STATE_PAUSED elif self._transport_state in ("Playing", "Buffering"): self._state = STATE_PLAYING elif self._transport_state == "Stopped": self._state = STATE_IDLE else: # Device is playing an external source with no transport controls self._state = STATE_PLAYING def turn_on(self): """Bring device out of standby.""" self._device.SetStandby(False) def turn_off(self): """Put device in standby.""" self._device.SetStandby(True) def play_media(self, media_type, media_id, **kwargs): """Send the play_media command to the media player.""" if not media_type == MEDIA_TYPE_MUSIC: _LOGGER.error( "Invalid media type %s. Only %s is supported", media_type, MEDIA_TYPE_MUSIC, ) return track_details = {"title": "Home Assistant", "uri": media_id} self._device.PlayMedia(track_details) def media_pause(self): """Send pause command.""" self._device.Pause() def media_stop(self): """Send stop command.""" self._device.Stop() def media_play(self): """Send play command.""" self._device.Play() def media_next_track(self): """Send next track command.""" self._device.Skip(1) def media_previous_track(self): """Send previous track command.""" self._device.Skip(-1) def select_source(self, source): """Select input source.""" self._device.SetSource(self._source_index[source]) def invoke_pin(self, pin): """Invoke pin.""" self._device.InvokePin(pin) @property def name(self): """Return the name of the device.""" return self._name @property def supported_features(self): """Flag of features commands that are supported.""" return self._supported_features @property def unique_id(self): """Return a unique ID.""" return self._device.Uuid() @property def state(self): """Return the state of the device.""" return self._state @property def source_list(self): """List of available input sources.""" return self._source_names @property def media_image_url(self): """Image url of current playing media.""" return self._track_information.get("albumArtwork") @property def media_artist(self): """Artist of current playing media, music track only.""" artists = self._track_information.get("artist") if artists: return artists[0] @property def media_album_name(self): """Album name of current playing media, music track only.""" return self._track_information.get("albumTitle") @property def media_title(self): """Title of current playing media.""" return self._track_information.get("title") @property def source(self): """Name of the current input source.""" return self._source.get("name") @property def volume_level(self): """Volume level of the media player (0..1).""" return self._volume_level @property def is_volume_muted(self): """Return true if volume is muted.""" return self._volume_muted def volume_up(self): """Volume up media player.""" self._device.IncreaseVolume() def volume_down(self): """Volume down media player.""" self._device.DecreaseVolume() def set_volume_level(self, volume): """Set volume level, range 0..1.""" self._device.SetVolumeLevel(int(volume * 100)) def mute_volume(self, mute): """Mute (true) or unmute (false) media player.""" self._device.SetMute(mute)
import logging import psutil import socket from datetime import datetime, timedelta import uuid import locale from flask import render_template, request, session, jsonify, Response, Blueprint, current_app, g from werkzeug.local import LocalProxy from psdash.helpers import socket_families, socket_types logger = logging.getLogger('psdash.web') webapp = Blueprint('psdash', __name__, static_folder='static') def get_current_node(): return current_app.psdash.get_node(g.node) def get_current_service(): return get_current_node().get_service() current_node = LocalProxy(get_current_node) current_service = LocalProxy(get_current_service) def fromtimestamp(value, dateformat='%Y-%m-%d %H:%M:%S'): dt = datetime.fromtimestamp(int(value)) return dt.strftime(dateformat) @webapp.context_processor def inject_nodes(): return {"current_node": current_node, "nodes": current_app.psdash.get_nodes()} @webapp.context_processor def inject_header_data(): sysinfo = current_service.get_sysinfo() uptime = timedelta(seconds=sysinfo['uptime']) uptime = str(uptime).split('.')[0] return { 'os': sysinfo['os'].decode('utf-8'), 'hostname': sysinfo['hostname'].decode('utf-8'), 'uptime': uptime } @webapp.url_defaults def add_node(endpoint, values): values.setdefault('node', g.node) @webapp.before_request def add_node(): g.node = request.args.get('node', current_app.psdash.LOCAL_NODE) @webapp.before_request def check_access(): if not current_node: return 'Unknown psdash node specified', 404 allowed_remote_addrs = current_app.config.get('PSDASH_ALLOWED_REMOTE_ADDRESSES') if allowed_remote_addrs: if request.remote_addr not in allowed_remote_addrs: current_app.logger.info( 'Returning 401 for client %s as address is not in allowed addresses.', request.remote_addr ) current_app.logger.debug('Allowed addresses: %s', allowed_remote_addrs) return 'Access denied', 401 username = current_app.config.get('PSDASH_AUTH_USERNAME') password = current_app.config.get('PSDASH_AUTH_PASSWORD') if username and password: auth = request.authorization if not auth or auth.username != username or auth.password != password: return Response( 'Access deined', 401, {'WWW-Authenticate': 'Basic realm="psDash login required"'} ) @webapp.before_request def setup_client_id(): if 'client_id' not in session: client_id = uuid.uuid4() current_app.logger.debug('Creating id for client: %s', client_id) session['client_id'] = client_id @webapp.errorhandler(psutil.AccessDenied) def access_denied(e): errmsg = 'Access denied to %s (pid %d).' % (e.name, e.pid) return render_template('error.html', error=errmsg), 401 @webapp.errorhandler(psutil.NoSuchProcess) def access_denied(e): errmsg = 'No process with pid %d was found.' % e.pid return render_template('error.html', error=errmsg), 404 @webapp.route('/') def index(): sysinfo = current_service.get_sysinfo() netifs = current_service.get_network_interfaces().values() netifs.sort(key=lambda x: x.get('bytes_sent'), reverse=True) data = { 'load_avg': sysinfo['load_avg'], 'num_cpus': sysinfo['num_cpus'], 'memory': current_service.get_memory(), 'swap': current_service.get_swap_space(), 'disks': current_service.get_disks(), 'cpu': current_service.get_cpu(), 'users': current_service.get_users(), 'net_interfaces': netifs, 'page': 'overview', 'is_xhr': request.is_xhr } return render_template('index.html', **data) @webapp.route('/processes', defaults={'sort': 'cpu_percent', 'order': 'desc', 'filter': 'user'}) @webapp.route('/processes/<string:sort>') @webapp.route('/processes/<string:sort>/<string:order>') @webapp.route('/processes/<string:sort>/<string:order>/<string:filter>') def processes(sort='pid', order='asc', filter='user'): procs = current_service.get_process_list() num_procs = len(procs) user_procs = [p for p in procs if p['user'] != 'root'] num_user_procs = len(user_procs) if filter == 'user': procs = user_procs procs.sort( key=lambda x: x.get(sort), reverse=True if order != 'asc' else False ) return render_template( 'processes.html', processes=procs, sort=sort, order=order, filter=filter, num_procs=num_procs, num_user_procs=num_user_procs, page='processes', is_xhr=request.is_xhr ) @webapp.route('/process/<int:pid>', defaults={'section': 'overview'}) @webapp.route('/process/<int:pid>/<string:section>') def process(pid, section): valid_sections = [ 'overview', 'threads', 'files', 'connections', 'memory', 'environment', 'children', 'limits' ] if section not in valid_sections: errmsg = 'Invalid subsection when trying to view process %d' % pid return render_template('error.html', error=errmsg), 404 context = { 'process': current_service.get_process(pid), 'section': section, 'page': 'processes', 'is_xhr': request.is_xhr } if section == 'environment': penviron = current_service.get_process_environment(pid) whitelist = current_app.config.get('PSDASH_ENVIRON_WHITELIST') if whitelist: penviron = dict((k, v if k in whitelist else '*hidden by whitelist*') for k, v in penviron.iteritems()) context['process_environ'] = penviron elif section == 'threads': context['threads'] = current_service.get_process_threads(pid) elif section == 'files': context['files'] = current_service.get_process_open_files(pid) elif section == 'connections': context['connections'] = current_service.get_process_connections(pid) elif section == 'memory': context['memory_maps'] = current_service.get_process_memory_maps(pid) elif section == 'children': context['children'] = current_service.get_process_children(pid) elif section == 'limits': context['limits'] = current_service.get_process_limits(pid) return render_template( 'process/%s.html' % section, **context ) @webapp.route('/network') def view_networks(): netifs = current_service.get_network_interfaces().values() netifs.sort(key=lambda x: x.get('bytes_sent'), reverse=True) # {'key', 'default_value'} # An empty string means that no filtering will take place on that key form_keys = { 'pid': '', 'family': socket_families[socket.AF_INET], 'type': socket_types[socket.SOCK_STREAM], 'state': 'LISTEN' } form_values = dict((k, request.args.get(k, default_val)) for k, default_val in form_keys.iteritems()) for k in ('local_addr', 'remote_addr'): val = request.args.get(k, '') if ':' in val: host, port = val.rsplit(':', 1) form_values[k + '_host'] = host form_values[k + '_port'] = int(port) elif val: form_values[k + '_host'] = val conns = current_service.get_connections(form_values) conns.sort(key=lambda x: x['state']) states = [ 'ESTABLISHED', 'SYN_SENT', 'SYN_RECV', 'FIN_WAIT1', 'FIN_WAIT2', 'TIME_WAIT', 'CLOSE', 'CLOSE_WAIT', 'LAST_ACK', 'LISTEN', 'CLOSING', 'NONE' ] return render_template( 'network.html', page='network', network_interfaces=netifs, connections=conns, socket_families=socket_families, socket_types=socket_types, states=states, is_xhr=request.is_xhr, num_conns=len(conns), **form_values ) @webapp.route('/disks') def view_disks(): disks = current_service.get_disks(all_partitions=True) io_counters = current_service.get_disks_counters().items() io_counters.sort(key=lambda x: x[1]['read_count'], reverse=True) return render_template( 'disks.html', page='disks', disks=disks, io_counters=io_counters, is_xhr=request.is_xhr ) @webapp.route('/logs') def view_logs(): available_logs = current_service.get_logs() available_logs.sort(cmp=lambda x1, x2: locale.strcoll(x1['path'], x2['path'])) return render_template( 'logs.html', page='logs', logs=available_logs, is_xhr=request.is_xhr ) @webapp.route('/log') def view_log(): filename = request.args['filename'] seek_tail = request.args.get('seek_tail', '1') != '0' session_key = session.get('client_id') try: content = current_service.read_log(filename, session_key=session_key, seek_tail=seek_tail) except KeyError: error_msg = 'File not found. Only files passed through args are allowed.' if request.is_xhr: return error_msg return render_template('error.html', error=error_msg), 404 if request.is_xhr: return content return render_template('log.html', content=content, filename=filename) @webapp.route('/log/search') def search_log(): filename = request.args['filename'] query_text = request.args['text'] session_key = session.get('client_id') try: data = current_service.search_log(filename, query_text, session_key=session_key) return jsonify(data) except KeyError: return 'Could not find log file with given filename', 404 @webapp.route('/register') def register_node(): name = request.args['name'] port = request.args['port'] host = request.remote_addr current_app.psdash.register_node(name, host, port) return jsonify({'status': 'OK'})
import asyncio import argparse import txaio txaio.use_asyncio() import autobahn from autobahn.websocket.util import parse_url from autobahn.asyncio.websocket import WebSocketClientProtocol, \ WebSocketClientFactory from autobahn.websocket.compress import PerMessageDeflateOffer, \ PerMessageDeflateResponse, PerMessageDeflateResponseAccept class TesteeClientProtocol(WebSocketClientProtocol): def onOpen(self): if self.factory.endCaseId is None: self.log.info("Getting case count ..") elif self.factory.currentCaseId <= self.factory.endCaseId: self.log.info("Running test case {case_id}/{last_case_id} as user agent {agent} on peer {peer}", case_id=self.factory.currentCaseId, last_case_id=self.factory.endCaseId, agent=self.factory.agent, peer=self.peer) def onMessage(self, msg, binary): if self.factory.endCaseId is None: self.factory.endCaseId = int(msg) self.log.info("Ok, will run {case_count} cases", case_count=self.factory.endCaseId) else: self.sendMessage(msg, binary) def onClose(self, wasClean, code, reason): txaio.resolve(self.factory._done, None) class TesteeClientFactory(WebSocketClientFactory): protocol = TesteeClientProtocol def __init__(self, url, agent): self.agent = agent WebSocketClientFactory.__init__(self, url, useragent=agent) self.setProtocolOptions(failByDrop=False) # spec conformance # enable permessage-deflate WebSocket protocol extension offers = [PerMessageDeflateOffer()] self.setProtocolOptions(perMessageCompressionOffers=offers) def accept(response): if isinstance(response, PerMessageDeflateResponse): return PerMessageDeflateResponseAccept(response) self.setProtocolOptions(perMessageCompressionAccept=accept) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Autobahn Testee Client (asyncio)') parser.add_argument('--url', dest='url', type=str, default='ws://127.0.0.1:9001', help='The WebSocket fuzzing server URL.') parser.add_argument('--loglevel', dest='loglevel', type=str, default='info', help='Log level, eg "info" or "debug".') options = parser.parse_args() txaio.start_logging(level=options.loglevel) factory = TesteeClientFactory(options.url, autobahn.asyncio.__ident__) _, host, port, _, _, _ = parse_url(options.url) loop = asyncio.get_event_loop() factory.resource = '/getCaseCount' factory.endCaseId = None factory.currentCaseId = 0 factory.updateReports = True while True: factory._done = txaio.create_future() coro = loop.create_connection(factory, host, port) loop.run_until_complete(coro) loop.run_until_complete(factory._done) factory.currentCaseId += 1 if factory.currentCaseId <= factory.endCaseId: factory.resource = "/runCase?case={}&agent={}".format(factory.currentCaseId, factory.agent) elif factory.updateReports: factory.resource = "/updateReports?agent={}".format(factory.agent) factory.updateReports = False else: break loop.close()
import pytest from homeassistant.components.cloud import GACTIONS_SCHEMA from homeassistant.components.cloud.google_config import CloudGoogleConfig from homeassistant.components.google_assistant import helpers as ga_helpers from homeassistant.const import EVENT_HOMEASSISTANT_STARTED, HTTP_NOT_FOUND from homeassistant.core import CoreState, State from homeassistant.helpers.entity_registry import EVENT_ENTITY_REGISTRY_UPDATED from homeassistant.util.dt import utcnow from tests.async_mock import AsyncMock, Mock, patch from tests.common import async_fire_time_changed @pytest.fixture def mock_conf(hass, cloud_prefs): """Mock Google conf.""" return CloudGoogleConfig( hass, GACTIONS_SCHEMA({}), "mock-user-id", cloud_prefs, Mock(claims={"cognito:username": "abcdefghjkl"}), ) async def test_google_update_report_state(mock_conf, hass, cloud_prefs): """Test Google config responds to updating preference.""" await mock_conf.async_initialize() await mock_conf.async_connect_agent_user("mock-user-id") with patch.object(mock_conf, "async_sync_entities") as mock_sync, patch( "homeassistant.components.google_assistant.report_state.async_enable_report_state" ) as mock_report_state: await cloud_prefs.async_update(google_report_state=True) await hass.async_block_till_done() assert len(mock_sync.mock_calls) == 1 assert len(mock_report_state.mock_calls) == 1 async def test_sync_entities(aioclient_mock, hass, cloud_prefs): """Test sync devices.""" config = CloudGoogleConfig( hass, GACTIONS_SCHEMA({}), "mock-user-id", cloud_prefs, Mock(auth=Mock(async_check_token=AsyncMock())), ) with patch( "hass_nabucasa.cloud_api.async_google_actions_request_sync", return_value=Mock(status=HTTP_NOT_FOUND), ) as mock_request_sync: assert await config.async_sync_entities("user") == HTTP_NOT_FOUND assert len(mock_request_sync.mock_calls) == 1 async def test_google_update_expose_trigger_sync( hass, legacy_patchable_time, cloud_prefs ): """Test Google config responds to updating exposed entities.""" config = CloudGoogleConfig( hass, GACTIONS_SCHEMA({}), "mock-user-id", cloud_prefs, Mock(claims={"cognito:username": "abcdefghjkl"}), ) await config.async_initialize() await config.async_connect_agent_user("mock-user-id") with patch.object(config, "async_sync_entities") as mock_sync, patch.object( ga_helpers, "SYNC_DELAY", 0 ): await cloud_prefs.async_update_google_entity_config( entity_id="light.kitchen", should_expose=True ) await hass.async_block_till_done() async_fire_time_changed(hass, utcnow()) await hass.async_block_till_done() assert len(mock_sync.mock_calls) == 1 with patch.object(config, "async_sync_entities") as mock_sync, patch.object( ga_helpers, "SYNC_DELAY", 0 ): await cloud_prefs.async_update_google_entity_config( entity_id="light.kitchen", should_expose=False ) await cloud_prefs.async_update_google_entity_config( entity_id="binary_sensor.door", should_expose=True ) await cloud_prefs.async_update_google_entity_config( entity_id="sensor.temp", should_expose=True ) await hass.async_block_till_done() async_fire_time_changed(hass, utcnow()) await hass.async_block_till_done() assert len(mock_sync.mock_calls) == 1 async def test_google_entity_registry_sync(hass, mock_cloud_login, cloud_prefs): """Test Google config responds to entity registry.""" config = CloudGoogleConfig( hass, GACTIONS_SCHEMA({}), "mock-user-id", cloud_prefs, hass.data["cloud"] ) await config.async_initialize() await config.async_connect_agent_user("mock-user-id") with patch.object( config, "async_schedule_google_sync_all" ) as mock_sync, patch.object(ga_helpers, "SYNC_DELAY", 0): # Created entity hass.bus.async_fire( EVENT_ENTITY_REGISTRY_UPDATED, {"action": "create", "entity_id": "light.kitchen"}, ) await hass.async_block_till_done() assert len(mock_sync.mock_calls) == 1 # Removed entity hass.bus.async_fire( EVENT_ENTITY_REGISTRY_UPDATED, {"action": "remove", "entity_id": "light.kitchen"}, ) await hass.async_block_till_done() assert len(mock_sync.mock_calls) == 2 # Entity registry updated with relevant changes hass.bus.async_fire( EVENT_ENTITY_REGISTRY_UPDATED, { "action": "update", "entity_id": "light.kitchen", "changes": ["entity_id"], }, ) await hass.async_block_till_done() assert len(mock_sync.mock_calls) == 3 # Entity registry updated with non-relevant changes hass.bus.async_fire( EVENT_ENTITY_REGISTRY_UPDATED, {"action": "update", "entity_id": "light.kitchen", "changes": ["icon"]}, ) await hass.async_block_till_done() assert len(mock_sync.mock_calls) == 3 # When hass is not started yet we wait till started hass.state = CoreState.starting hass.bus.async_fire( EVENT_ENTITY_REGISTRY_UPDATED, {"action": "create", "entity_id": "light.kitchen"}, ) await hass.async_block_till_done() assert len(mock_sync.mock_calls) == 3 with patch.object(config, "async_sync_entities_all") as mock_sync: hass.bus.async_fire(EVENT_HOMEASSISTANT_STARTED) await hass.async_block_till_done() assert len(mock_sync.mock_calls) == 1 async def test_google_config_expose_entity_prefs(mock_conf, cloud_prefs): """Test Google config should expose using prefs.""" entity_conf = {"should_expose": False} await cloud_prefs.async_update( google_entity_configs={"light.kitchen": entity_conf}, google_default_expose=["light"], ) state = State("light.kitchen", "on") assert not mock_conf.should_expose(state) entity_conf["should_expose"] = True assert mock_conf.should_expose(state) entity_conf["should_expose"] = None assert mock_conf.should_expose(state) await cloud_prefs.async_update( google_default_expose=["sensor"], ) assert not mock_conf.should_expose(state)
from test import CollectorTestCase from test import get_collector_config from mock import Mock from mock import patch from diamond.collector import Collector from dseopscenter import DseOpsCenterCollector ########################################################################## class TestDseOpsCenterCollector(CollectorTestCase): def setUp(self): config = get_collector_config('DseOpsCenterCollector', {'cluster_id': 'MyTestCluster'}) self.collector = DseOpsCenterCollector(config, None) def test_import(self): self.assertTrue(DseOpsCenterCollector) @patch.object(Collector, 'publish') def test_should_work_with_real_data(self, publish_mock): urlopen_mock1 = patch('urllib2.urlopen', Mock( side_effect=lambda *args: self.getFixture('keyspaces.json'))) urlopen_mock1.start() self.collector._get_schema() urlopen_mock1.stop() urlopen_mock2 = patch('urllib2.urlopen', Mock( side_effect=lambda *args: self.getFixture('new-metrics.json'))) urlopen_mock2.start() self.collector.collect() urlopen_mock2.stop() metrics = { 'cf-bf-false-positives.dse_system.leases': 0, 'key-cache-requests': 38.28847822050253, 'key-cache-hits': 9.114316945274672, 'nonheap-max': 136314880, 'nonheap-used': 48491696.666666664, 'read-ops': 55.91526222229004, } self.setDocExample(collector=self.collector.__class__.__name__, metrics=metrics, defaultpath=self.collector.config['path']) self.assertPublishedMany(publish_mock, metrics)
from homeassistant.const import ATTR_ATTRIBUTION from homeassistant.core import callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from homeassistant.helpers.restore_state import RestoreEntity from . import ATTR_VERSION, DATA_UPDATED, DOMAIN as IPERF3_DOMAIN, SENSOR_TYPES ATTRIBUTION = "Data retrieved using Iperf3" ICON = "mdi:speedometer" ATTR_PROTOCOL = "Protocol" ATTR_REMOTE_HOST = "Remote Server" ATTR_REMOTE_PORT = "Remote Port" async def async_setup_platform(hass, config, async_add_entities, discovery_info): """Set up the Iperf3 sensor.""" sensors = [] for iperf3_host in hass.data[IPERF3_DOMAIN].values(): sensors.extend([Iperf3Sensor(iperf3_host, sensor) for sensor in discovery_info]) async_add_entities(sensors, True) class Iperf3Sensor(RestoreEntity): """A Iperf3 sensor implementation.""" def __init__(self, iperf3_data, sensor_type): """Initialize the sensor.""" self._name = f"{SENSOR_TYPES[sensor_type][0]} {iperf3_data.host}" self._state = None self._sensor_type = sensor_type self._unit_of_measurement = SENSOR_TYPES[sensor_type][1] self._iperf3_data = iperf3_data @property def name(self): """Return the name of the sensor.""" return self._name @property def state(self): """Return the state of the device.""" return self._state @property def unit_of_measurement(self): """Return the unit of measurement of this entity, if any.""" return self._unit_of_measurement @property def icon(self): """Return icon.""" return ICON @property def device_state_attributes(self): """Return the state attributes.""" return { ATTR_ATTRIBUTION: ATTRIBUTION, ATTR_PROTOCOL: self._iperf3_data.protocol, ATTR_REMOTE_HOST: self._iperf3_data.host, ATTR_REMOTE_PORT: self._iperf3_data.port, ATTR_VERSION: self._iperf3_data.data[ATTR_VERSION], } @property def should_poll(self): """Return the polling requirement for this sensor.""" return False async def async_added_to_hass(self): """Handle entity which will be added.""" await super().async_added_to_hass() self.async_on_remove( async_dispatcher_connect( self.hass, DATA_UPDATED, self._schedule_immediate_update ) ) state = await self.async_get_last_state() if not state: return self._state = state.state def update(self): """Get the latest data and update the states.""" data = self._iperf3_data.data.get(self._sensor_type) if data is not None: self._state = round(data, 2) @callback def _schedule_immediate_update(self, host): if host == self._iperf3_data.host: self.async_schedule_update_ha_state(True)
import asyncio from datetime import timedelta import logging import async_timeout from pywemo.ouimeaux_device.api.service import ActionException import voluptuous as vol from homeassistant.components.fan import ( SPEED_HIGH, SPEED_LOW, SPEED_MEDIUM, SPEED_OFF, SUPPORT_SET_SPEED, FanEntity, ) from homeassistant.const import ATTR_ENTITY_ID import homeassistant.helpers.config_validation as cv from homeassistant.helpers.dispatcher import async_dispatcher_connect from .const import ( DOMAIN as WEMO_DOMAIN, SERVICE_RESET_FILTER_LIFE, SERVICE_SET_HUMIDITY, ) SCAN_INTERVAL = timedelta(seconds=10) PARALLEL_UPDATES = 0 _LOGGER = logging.getLogger(__name__) ATTR_CURRENT_HUMIDITY = "current_humidity" ATTR_TARGET_HUMIDITY = "target_humidity" ATTR_FAN_MODE = "fan_mode" ATTR_FILTER_LIFE = "filter_life" ATTR_FILTER_EXPIRED = "filter_expired" ATTR_WATER_LEVEL = "water_level" # The WEMO_ constants below come from pywemo itself WEMO_ON = 1 WEMO_OFF = 0 WEMO_HUMIDITY_45 = 0 WEMO_HUMIDITY_50 = 1 WEMO_HUMIDITY_55 = 2 WEMO_HUMIDITY_60 = 3 WEMO_HUMIDITY_100 = 4 WEMO_FAN_OFF = 0 WEMO_FAN_MINIMUM = 1 WEMO_FAN_LOW = 2 # Not used due to limitations of the base fan implementation WEMO_FAN_MEDIUM = 3 WEMO_FAN_HIGH = 4 # Not used due to limitations of the base fan implementation WEMO_FAN_MAXIMUM = 5 WEMO_WATER_EMPTY = 0 WEMO_WATER_LOW = 1 WEMO_WATER_GOOD = 2 SUPPORTED_SPEEDS = [SPEED_OFF, SPEED_LOW, SPEED_MEDIUM, SPEED_HIGH] SUPPORTED_FEATURES = SUPPORT_SET_SPEED # Since the base fan object supports a set list of fan speeds, # we have to reuse some of them when mapping to the 5 WeMo speeds WEMO_FAN_SPEED_TO_HASS = { WEMO_FAN_OFF: SPEED_OFF, WEMO_FAN_MINIMUM: SPEED_LOW, WEMO_FAN_LOW: SPEED_LOW, # Reusing SPEED_LOW WEMO_FAN_MEDIUM: SPEED_MEDIUM, WEMO_FAN_HIGH: SPEED_HIGH, # Reusing SPEED_HIGH WEMO_FAN_MAXIMUM: SPEED_HIGH, } # Because we reused mappings in the previous dict, we have to filter them # back out in this dict, or else we would have duplicate keys HASS_FAN_SPEED_TO_WEMO = { v: k for (k, v) in WEMO_FAN_SPEED_TO_HASS.items() if k not in [WEMO_FAN_LOW, WEMO_FAN_HIGH] } SET_HUMIDITY_SCHEMA = vol.Schema( { vol.Required(ATTR_ENTITY_ID): cv.entity_ids, vol.Required(ATTR_TARGET_HUMIDITY): vol.All( vol.Coerce(float), vol.Range(min=0, max=100) ), } ) RESET_FILTER_LIFE_SCHEMA = vol.Schema({vol.Required(ATTR_ENTITY_ID): cv.entity_ids}) async def async_setup_entry(hass, config_entry, async_add_entities): """Set up WeMo binary sensors.""" entities = [] async def _discovered_wemo(device): """Handle a discovered Wemo device.""" entity = WemoHumidifier(device) entities.append(entity) async_add_entities([entity]) async_dispatcher_connect(hass, f"{WEMO_DOMAIN}.fan", _discovered_wemo) await asyncio.gather( *[ _discovered_wemo(device) for device in hass.data[WEMO_DOMAIN]["pending"].pop("fan") ] ) def service_handle(service): """Handle the WeMo humidifier services.""" entity_ids = service.data.get(ATTR_ENTITY_ID) humidifiers = [entity for entity in entities if entity.entity_id in entity_ids] if service.service == SERVICE_SET_HUMIDITY: target_humidity = service.data.get(ATTR_TARGET_HUMIDITY) for humidifier in humidifiers: humidifier.set_humidity(target_humidity) elif service.service == SERVICE_RESET_FILTER_LIFE: for humidifier in humidifiers: humidifier.reset_filter_life() # Register service(s) hass.services.async_register( WEMO_DOMAIN, SERVICE_SET_HUMIDITY, service_handle, schema=SET_HUMIDITY_SCHEMA, ) hass.services.async_register( WEMO_DOMAIN, SERVICE_RESET_FILTER_LIFE, service_handle, schema=RESET_FILTER_LIFE_SCHEMA, ) class WemoHumidifier(FanEntity): """Representation of a WeMo humidifier.""" def __init__(self, device): """Initialize the WeMo switch.""" self.wemo = device self._state = None self._available = True self._update_lock = None self._fan_mode = None self._target_humidity = None self._current_humidity = None self._water_level = None self._filter_life = None self._filter_expired = None self._last_fan_on_mode = WEMO_FAN_MEDIUM self._model_name = self.wemo.model_name self._name = self.wemo.name self._serialnumber = self.wemo.serialnumber def _subscription_callback(self, _device, _type, _params): """Update the state by the Wemo device.""" _LOGGER.info("Subscription update for %s", self.name) updated = self.wemo.subscription_update(_type, _params) self.hass.add_job(self._async_locked_subscription_callback(not updated)) async def _async_locked_subscription_callback(self, force_update): """Handle an update from a subscription.""" # If an update is in progress, we don't do anything if self._update_lock.locked(): return await self._async_locked_update(force_update) self.async_write_ha_state() @property def unique_id(self): """Return the ID of this WeMo humidifier.""" return self._serialnumber @property def name(self): """Return the name of the humidifier if any.""" return self._name @property def is_on(self): """Return true if switch is on. Standby is on.""" return self._state @property def available(self): """Return true if switch is available.""" return self._available @property def device_info(self): """Return the device info.""" return { "name": self._name, "identifiers": {(WEMO_DOMAIN, self._serialnumber)}, "model": self._model_name, "manufacturer": "Belkin", } @property def icon(self): """Return the icon of device based on its type.""" return "mdi:water-percent" @property def device_state_attributes(self): """Return device specific state attributes.""" return { ATTR_CURRENT_HUMIDITY: self._current_humidity, ATTR_TARGET_HUMIDITY: self._target_humidity, ATTR_FAN_MODE: self._fan_mode, ATTR_WATER_LEVEL: self._water_level, ATTR_FILTER_LIFE: self._filter_life, ATTR_FILTER_EXPIRED: self._filter_expired, } @property def speed(self) -> str: """Return the current speed.""" return WEMO_FAN_SPEED_TO_HASS.get(self._fan_mode) @property def speed_list(self) -> list: """Get the list of available speeds.""" return SUPPORTED_SPEEDS @property def supported_features(self) -> int: """Flag supported features.""" return SUPPORTED_FEATURES async def async_added_to_hass(self): """Wemo humidifier added to Home Assistant.""" # Define inside async context so we know our event loop self._update_lock = asyncio.Lock() registry = self.hass.data[WEMO_DOMAIN]["registry"] await self.hass.async_add_executor_job(registry.register, self.wemo) registry.on(self.wemo, None, self._subscription_callback) async def async_update(self): """Update WeMo state. Wemo has an aggressive retry logic that sometimes can take over a minute to return. If we don't get a state after 5 seconds, assume the Wemo humidifier is unreachable. If update goes through, it will be made available again. """ # If an update is in progress, we don't do anything if self._update_lock.locked(): return try: with async_timeout.timeout(5): await asyncio.shield(self._async_locked_update(True)) except asyncio.TimeoutError: _LOGGER.warning("Lost connection to %s", self.name) self._available = False async def _async_locked_update(self, force_update): """Try updating within an async lock.""" async with self._update_lock: await self.hass.async_add_executor_job(self._update, force_update) def _update(self, force_update=True): """Update the device state.""" try: self._state = self.wemo.get_state(force_update) self._fan_mode = self.wemo.fan_mode_string self._target_humidity = self.wemo.desired_humidity_percent self._current_humidity = self.wemo.current_humidity_percent self._water_level = self.wemo.water_level_string self._filter_life = self.wemo.filter_life_percent self._filter_expired = self.wemo.filter_expired if self.wemo.fan_mode != WEMO_FAN_OFF: self._last_fan_on_mode = self.wemo.fan_mode if not self._available: _LOGGER.info("Reconnected to %s", self.name) self._available = True except (AttributeError, ActionException) as err: _LOGGER.warning("Could not update status for %s (%s)", self.name, err) self._available = False self.wemo.reconnect_with_device() def turn_on(self, speed: str = None, **kwargs) -> None: """Turn the switch on.""" if speed is None: try: self.wemo.set_state(self._last_fan_on_mode) except ActionException as err: _LOGGER.warning("Error while turning on device %s (%s)", self.name, err) self._available = False else: self.set_speed(speed) self.schedule_update_ha_state() def turn_off(self, **kwargs) -> None: """Turn the switch off.""" try: self.wemo.set_state(WEMO_FAN_OFF) except ActionException as err: _LOGGER.warning("Error while turning off device %s (%s)", self.name, err) self._available = False self.schedule_update_ha_state() def set_speed(self, speed: str) -> None: """Set the fan_mode of the Humidifier.""" try: self.wemo.set_state(HASS_FAN_SPEED_TO_WEMO.get(speed)) except ActionException as err: _LOGGER.warning( "Error while setting speed of device %s (%s)", self.name, err ) self._available = False self.schedule_update_ha_state() def set_humidity(self, humidity: float) -> None: """Set the target humidity level for the Humidifier.""" if humidity < 50: target_humidity = WEMO_HUMIDITY_45 elif 50 <= humidity < 55: target_humidity = WEMO_HUMIDITY_50 elif 55 <= humidity < 60: target_humidity = WEMO_HUMIDITY_55 elif 60 <= humidity < 100: target_humidity = WEMO_HUMIDITY_60 elif humidity >= 100: target_humidity = WEMO_HUMIDITY_100 try: self.wemo.set_humidity(target_humidity) except ActionException as err: _LOGGER.warning( "Error while setting humidity of device: %s (%s)", self.name, err ) self._available = False self.schedule_update_ha_state() def reset_filter_life(self) -> None: """Reset the filter life to 100%.""" try: self.wemo.reset_filter_life() except ActionException as err: _LOGGER.warning( "Error while resetting filter life on device: %s (%s)", self.name, err ) self._available = False self.schedule_update_ha_state()
import unittest from trashcli.trash import Parser from mock import MagicMock, call class TestParser(unittest.TestCase): def setUp(self): self.invalid_option_callback = MagicMock() self.on_raw = MagicMock() self.on_help = MagicMock() self.on_option = MagicMock() self.parser = Parser() self.parser.on_invalid_option(self.invalid_option_callback) self.parser.add_option('raw', self.on_raw) self.parser.add_option('opt=', self.on_option) self.parser.on_help(self.on_help) def test_argument_option_called_without_argument(self): self.parser(['trash-list', '--opt']) assert [] == self.on_option.mock_calls self.invalid_option_callback.assert_called_with('trash-list', 'opt') def test_argument_option_called_with_argument(self): self.parser(['trash-list', '--opt=', 'arg']) assert [call('')] == self.on_option.mock_calls def test_argument_option_called_with_argument(self): self.parser(['trash-list', '--opt=arg']) assert [call('arg')] == self.on_option.mock_calls def test_argument_option_called_with_argument(self): self.parser(['trash-list', '--opt', 'arg']) assert [call('arg')] == self.on_option.mock_calls def test_it_calls_help(self): self.parser(['trash-list', '--help']) self.on_help.assert_called_with('trash-list') def test_it_calls_the_actions_passing_the_program_name(self): self.parser(['trash-list', '--raw']) self.on_raw.assert_called_with('') def test_how_getopt_works_with_an_invalid_option(self): self.parser(['command-name', '-x']) self.invalid_option_callback.assert_called_with('command-name', 'x')
import os from M2Crypto import BIO from M2Crypto import RSA import yaml from docker_registry.core import compat from docker_registry.core import exceptions class Config(object): """A simple config class * gives properties access through either items or attributes * enforce types (thanks to yaml) * interpolate from ENV """ def __init__(self, config=None): if config is None: config = {} if isinstance(config, compat.basestring): try: self._config = yaml.load(config) except Exception as e: # Failed yaml loading? Stop here! raise exceptions.ConfigError( 'Config is not valid yaml (%s): \n%s' % (e, config)) else: # Config is kept as-is... self._config = config def __repr__(self): return repr(self._config) def __dir__(self): return self._config.keys() def keys(self): return self._config.keys() # Python 2.6 and below need this @property def __members__(self): return self._config.keys() @property def __methods__(self): return [] def __getattr__(self, key): # Unset keys return None if key not in self._config: return None # raise exceptions.ConfigError("No such attribute: %s" % key) result = self._config[key] # Strings starting with `_env:' get evaluated if isinstance( result, compat.basestring) and result.startswith('_env:'): result = result.split(':', 2) varname = result[1] vardefault = '' if len(result) < 3 else result[2] try: result = yaml.load(os.environ.get(varname, vardefault)) except Exception as e: raise exceptions.ConfigError( 'Config `%s` (value: `%s`) is not valid: %s' % ( varname, e, result)) # Dicts are rewrapped inside a Config object if isinstance(result, dict): result = Config(result) return result def __getitem__(self, key): return getattr(self, key) def __contains__(self, key): return key in self._config def _init(): flavor = os.environ.get('SETTINGS_FLAVOR', 'dev') config_path = os.environ.get('DOCKER_REGISTRY_CONFIG', 'config.yml') if not os.path.isabs(config_path): config_path = os.path.join(os.path.dirname(__file__), '../../', 'config', config_path) try: f = open(config_path) except Exception: raise exceptions.FileNotFoundError( 'Heads-up! File is missing: %s' % config_path) conf = Config(f.read()) if flavor: if flavor not in conf: raise exceptions.ConfigError( 'The specified flavor (%s) is missing in your config file (%s)' % (flavor, config_path)) conf = conf[flavor] conf.flavor = flavor if conf.privileged_key: try: f = open(conf.privileged_key) except Exception: raise exceptions.FileNotFoundError( 'Heads-up! File is missing: %s' % conf.privileged_key) try: pk = f.read().split('\n') pk = 'MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8A' + ''.join(pk[1:-2]) pk = [pk[i: i + 64] for i in range(0, len(pk), 64)] pk = ('-----BEGIN PUBLIC KEY-----\n' + '\n'.join(pk) + '\n-----END PUBLIC KEY-----') bio = BIO.MemoryBuffer(pk) conf.privileged_key = RSA.load_pub_key_bio(bio) except Exception: raise exceptions.ConfigError( 'Key at %s is not a valid RSA key' % conf.privileged_key) f.close() if conf.index_endpoint: conf.index_endpoint = conf.index_endpoint.strip('/') return conf _config = None def load(): global _config if not _config: _config = _init() return _config
import contextlib import itertools import numpy as np import os import six import sys try: import pycocotools.coco import pycocotools.cocoeval _available = True except ImportError: _available = False def eval_detection_coco(pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_areas=None, gt_crowdeds=None): """Evaluate detections based on evaluation code of MS COCO. This function evaluates predicted bounding boxes obtained from a dataset by using average precision for each class. The code is based on the evaluation code used in MS COCO. .. _`evaluation page`: http://cocodataset.org/#detections-eval Args: pred_bboxes (iterable of numpy.ndarray): See the table below. pred_labels (iterable of numpy.ndarray): See the table below. pred_scores (iterable of numpy.ndarray): See the table below. gt_bboxes (iterable of numpy.ndarray): See the table below. gt_labels (iterable of numpy.ndarray): See the table below. gt_areas (iterable of numpy.ndarray): See the table below. If :obj:`None`, some scores are not returned. gt_crowdeds (iterable of numpy.ndarray): See the table below. .. csv-table:: :header: name, shape, dtype, format :obj:`pred_bboxes`, ":math:`[(R, 4)]`", :obj:`float32`, \ ":math:`(y_{min}, x_{min}, y_{max}, x_{max})`" :obj:`pred_labels`, ":math:`[(R,)]`", :obj:`int32`, \ ":math:`[0, \#fg\_class - 1]`" :obj:`pred_scores`, ":math:`[(R,)]`", :obj:`float32`, \ -- :obj:`gt_bboxes`, ":math:`[(R, 4)]`", :obj:`float32`, \ ":math:`(y_{min}, x_{min}, y_{max}, x_{max})`" :obj:`gt_labels`, ":math:`[(R,)]`", :obj:`int32`, \ ":math:`[0, \#fg\_class - 1]`" :obj:`gt_areas`, ":math:`[(R,)]`", \ :obj:`float32`, -- :obj:`gt_crowdeds`, ":math:`[(R,)]`", :obj:`bool`, -- All inputs should have the same length. For more detailed explanation of the inputs, please refer to :class:`chainercv.datasets.COCOBboxDataset`. .. seealso:: :class:`chainercv.datasets.COCOBboxDataset`. Returns: dict: The keys, value-types and the description of the values are listed below. The APs and ARs calculated with different iou thresholds, sizes of objects, and numbers of detections per image. For more details on the 12 patterns of evaluation metrics, please refer to COCO's official `evaluation page`_. .. csv-table:: :header: key, type, description ap/iou=0.50:0.95/area=all/max_dets=100, *numpy.ndarray*, \ [#coco_det_eval_1]_ ap/iou=0.50/area=all/max_dets=100, *numpy.ndarray*, \ [#coco_det_eval_1]_ ap/iou=0.75/area=all/max_dets=100, *numpy.ndarray*, \ [#coco_det_eval_1]_ ap/iou=0.50:0.95/area=small/max_dets=100, *numpy.ndarray*, \ [#coco_det_eval_1]_ [#coco_det_eval_5]_ ap/iou=0.50:0.95/area=medium/max_dets=100, *numpy.ndarray*, \ [#coco_det_eval_1]_ [#coco_det_eval_5]_ ap/iou=0.50:0.95/area=large/max_dets=100, *numpy.ndarray*, \ [#coco_det_eval_1]_ [#coco_det_eval_5]_ ar/iou=0.50:0.95/area=all/max_dets=1, *numpy.ndarray*, \ [#coco_det_eval_2]_ ar/iou=0.50/area=all/max_dets=10, *numpy.ndarray*, \ [#coco_det_eval_2]_ ar/iou=0.75/area=all/max_dets=100, *numpy.ndarray*, \ [#coco_det_eval_2]_ ar/iou=0.50:0.95/area=small/max_dets=100, *numpy.ndarray*, \ [#coco_det_eval_2]_ [#coco_det_eval_5]_ ar/iou=0.50:0.95/area=medium/max_dets=100, *numpy.ndarray*, \ [#coco_det_eval_2]_ [#coco_det_eval_5]_ ar/iou=0.50:0.95/area=large/max_dets=100, *numpy.ndarray*, \ [#coco_det_eval_2]_ [#coco_det_eval_5]_ map/iou=0.50:0.95/area=all/max_dets=100, *float*, \ [#coco_det_eval_3]_ map/iou=0.50/area=all/max_dets=100, *float*, \ [#coco_det_eval_3]_ map/iou=0.75/area=all/max_dets=100, *float*, \ [#coco_det_eval_3]_ map/iou=0.50:0.95/area=small/max_dets=100, *float*, \ [#coco_det_eval_3]_ [#coco_det_eval_5]_ map/iou=0.50:0.95/area=medium/max_dets=100, *float*, \ [#coco_det_eval_3]_ [#coco_det_eval_5]_ map/iou=0.50:0.95/area=large/max_dets=100, *float*, \ [#coco_det_eval_3]_ [#coco_det_eval_5]_ mar/iou=0.50:0.95/area=all/max_dets=1, *float*, \ [#coco_det_eval_4]_ mar/iou=0.50/area=all/max_dets=10, *float*, \ [#coco_det_eval_4]_ mar/iou=0.75/area=all/max_dets=100, *float*, \ [#coco_det_eval_4]_ mar/iou=0.50:0.95/area=small/max_dets=100, *float*, \ [#coco_det_eval_4]_ [#coco_det_eval_5]_ mar/iou=0.50:0.95/area=medium/max_dets=100, *float*, \ [#coco_det_eval_4]_ [#coco_det_eval_5]_ mar/iou=0.50:0.95/area=large/max_dets=100, *float*, \ [#coco_det_eval_4]_ [#coco_det_eval_5]_ coco_eval, *pycocotools.cocoeval.COCOeval*, \ result from :obj:`pycocotools` existent_labels, *numpy.ndarray*, \ used labels \ .. [#coco_det_eval_1] An array of average precisions. \ The :math:`l`-th value corresponds to the average precision \ for class :math:`l`. If class :math:`l` does not exist in \ either :obj:`pred_labels` or :obj:`gt_labels`, the corresponding \ value is set to :obj:`numpy.nan`. .. [#coco_det_eval_2] An array of average recalls. \ The :math:`l`-th value corresponds to the average precision \ for class :math:`l`. If class :math:`l` does not exist in \ either :obj:`pred_labels` or :obj:`gt_labels`, the corresponding \ value is set to :obj:`numpy.nan`. .. [#coco_det_eval_3] The average of average precisions over classes. .. [#coco_det_eval_4] The average of average recalls over classes. .. [#coco_det_eval_5] Skip if :obj:`gt_areas` is :obj:`None`. """ if not _available: raise ValueError( 'Please install pycocotools \n' 'pip install -e \'git+https://github.com/cocodataset/coco.git' '#egg=pycocotools&subdirectory=PythonAPI\'') gt_coco = pycocotools.coco.COCO() pred_coco = pycocotools.coco.COCO() pred_bboxes = iter(pred_bboxes) pred_labels = iter(pred_labels) pred_scores = iter(pred_scores) gt_bboxes = iter(gt_bboxes) gt_labels = iter(gt_labels) if gt_areas is None: compute_area_dependent_metrics = False gt_areas = itertools.repeat(None) else: compute_area_dependent_metrics = True gt_areas = iter(gt_areas) gt_crowdeds = (iter(gt_crowdeds) if gt_crowdeds is not None else itertools.repeat(None)) ids = [] pred_annos = [] gt_annos = [] existent_labels = {} for i, (pred_bbox, pred_label, pred_score, gt_bbox, gt_label, gt_area, gt_crowded) in enumerate(six.moves.zip( pred_bboxes, pred_labels, pred_scores, gt_bboxes, gt_labels, gt_areas, gt_crowdeds)): if gt_area is None: gt_area = itertools.repeat(None) if gt_crowded is None: gt_crowded = itertools.repeat(None) # Starting ids from 1 is important when using COCO. img_id = i + 1 for pred_bb, pred_lb, pred_sc in zip(pred_bbox, pred_label, pred_score): pred_annos.append( _create_anno(pred_bb, pred_lb, pred_sc, img_id=img_id, anno_id=len(pred_annos) + 1, crw=0, ar=None)) existent_labels[pred_lb] = True for gt_bb, gt_lb, gt_ar, gt_crw in zip( gt_bbox, gt_label, gt_area, gt_crowded): gt_annos.append( _create_anno(gt_bb, gt_lb, None, img_id=img_id, anno_id=len(gt_annos) + 1, ar=gt_ar, crw=gt_crw)) existent_labels[gt_lb] = True ids.append({'id': img_id}) existent_labels = sorted(existent_labels.keys()) pred_coco.dataset['categories'] = [{'id': i} for i in existent_labels] gt_coco.dataset['categories'] = [{'id': i} for i in existent_labels] pred_coco.dataset['annotations'] = pred_annos gt_coco.dataset['annotations'] = gt_annos pred_coco.dataset['images'] = ids gt_coco.dataset['images'] = ids with _redirect_stdout(open(os.devnull, 'w')): pred_coco.createIndex() gt_coco.createIndex() coco_eval = pycocotools.cocoeval.COCOeval(gt_coco, pred_coco, 'bbox') coco_eval.evaluate() coco_eval.accumulate() results = {'coco_eval': coco_eval} p = coco_eval.params common_kwargs = { 'prec': coco_eval.eval['precision'], 'rec': coco_eval.eval['recall'], 'iou_threshs': p.iouThrs, 'area_ranges': p.areaRngLbl, 'max_detection_list': p.maxDets} all_kwargs = { 'ap/iou=0.50:0.95/area=all/max_dets=100': { 'ap': True, 'iou_thresh': None, 'area_range': 'all', 'max_detection': 100}, 'ap/iou=0.50/area=all/max_dets=100': { 'ap': True, 'iou_thresh': 0.5, 'area_range': 'all', 'max_detection': 100}, 'ap/iou=0.75/area=all/max_dets=100': { 'ap': True, 'iou_thresh': 0.75, 'area_range': 'all', 'max_detection': 100}, 'ar/iou=0.50:0.95/area=all/max_dets=1': { 'ap': False, 'iou_thresh': None, 'area_range': 'all', 'max_detection': 1}, 'ar/iou=0.50:0.95/area=all/max_dets=10': { 'ap': False, 'iou_thresh': None, 'area_range': 'all', 'max_detection': 10}, 'ar/iou=0.50:0.95/area=all/max_dets=100': { 'ap': False, 'iou_thresh': None, 'area_range': 'all', 'max_detection': 100}, } if compute_area_dependent_metrics: all_kwargs.update({ 'ap/iou=0.50:0.95/area=small/max_dets=100': { 'ap': True, 'iou_thresh': None, 'area_range': 'small', 'max_detection': 100}, 'ap/iou=0.50:0.95/area=medium/max_dets=100': { 'ap': True, 'iou_thresh': None, 'area_range': 'medium', 'max_detection': 100}, 'ap/iou=0.50:0.95/area=large/max_dets=100': { 'ap': True, 'iou_thresh': None, 'area_range': 'large', 'max_detection': 100}, 'ar/iou=0.50:0.95/area=small/max_dets=100': { 'ap': False, 'iou_thresh': None, 'area_range': 'small', 'max_detection': 100}, 'ar/iou=0.50:0.95/area=medium/max_dets=100': { 'ap': False, 'iou_thresh': None, 'area_range': 'medium', 'max_detection': 100}, 'ar/iou=0.50:0.95/area=large/max_dets=100': { 'ap': False, 'iou_thresh': None, 'area_range': 'large', 'max_detection': 100}, }) for key, kwargs in all_kwargs.items(): kwargs.update(common_kwargs) metrics, mean_metric = _summarize(**kwargs) # pycocotools ignores classes that are not included in # either gt or prediction, but lies between 0 and # the maximum label id. # We set values for these classes to np.nan. results[key] = np.nan * np.ones(np.max(existent_labels) + 1) results[key][existent_labels] = metrics results['m' + key] = mean_metric results['existent_labels'] = existent_labels return results def _create_anno(bb, lb, sc, img_id, anno_id, ar=None, crw=None): y_min = bb[0] x_min = bb[1] y_max = bb[2] x_max = bb[3] height = y_max - y_min width = x_max - x_min if ar is None: # We compute dummy area to pass to pycocotools. # Note that area dependent scores are ignored afterwards. ar = height * width if crw is None: crw = False # Rounding is done to make the result consistent with COCO. anno = { 'image_id': img_id, 'category_id': lb, 'bbox': [np.round(x_min, 2), np.round(y_min, 2), np.round(width, 2), np.round(height, 2)], 'segmentation': [x_min, y_min, x_min, y_max, x_max, y_max, x_max, y_min], 'area': ar, 'id': anno_id, 'iscrowd': crw} if sc is not None: anno.update({'score': sc}) return anno def _summarize( prec, rec, iou_threshs, area_ranges, max_detection_list, ap=True, iou_thresh=None, area_range='all', max_detection=100): a_idx = area_ranges.index(area_range) m_idx = max_detection_list.index(max_detection) if ap: val_value = prec.copy() # (T, R, K, A, M) if iou_thresh is not None: val_value = val_value[iou_thresh == iou_threshs] val_value = val_value[:, :, :, a_idx, m_idx] else: val_value = rec.copy() # (T, K, A, M) if iou_thresh is not None: val_value = val_value[iou_thresh == iou_threshs] val_value = val_value[:, :, a_idx, m_idx] val_value[val_value == -1] = np.nan val_value = val_value.reshape((-1, val_value.shape[-1])) valid_classes = np.any(np.logical_not(np.isnan(val_value)), axis=0) cls_val_value = np.nan * np.ones(len(valid_classes), dtype=np.float32) cls_val_value[valid_classes] = np.nanmean( val_value[:, valid_classes], axis=0) if not np.any(valid_classes): mean_val_value = np.nan else: mean_val_value = np.nanmean(cls_val_value) return cls_val_value, mean_val_value @contextlib.contextmanager def _redirect_stdout(target): original = sys.stdout sys.stdout = target yield sys.stdout = original
from typing import Any, Dict, Optional from homeassistant.helpers.update_coordinator import CoordinatorEntity from .const import DOMAIN from .coordinator import ToonDataUpdateCoordinator class ToonEntity(CoordinatorEntity): """Defines a base Toon entity.""" def __init__( self, coordinator: ToonDataUpdateCoordinator, *, name: str, icon: str, enabled_default: bool = True, ) -> None: """Initialize the Toon entity.""" super().__init__(coordinator) self._enabled_default = enabled_default self._icon = icon self._name = name self._state = None @property def name(self) -> str: """Return the name of the entity.""" return self._name @property def icon(self) -> Optional[str]: """Return the mdi icon of the entity.""" return self._icon @property def entity_registry_enabled_default(self) -> bool: """Return if the entity should be enabled when first added to the entity registry.""" return self._enabled_default class ToonDisplayDeviceEntity(ToonEntity): """Defines a Toon display device entity.""" @property def device_info(self) -> Dict[str, Any]: """Return device information about this thermostat.""" agreement = self.coordinator.data.agreement model = agreement.display_hardware_version.rpartition("/")[0] sw_version = agreement.display_software_version.rpartition("/")[-1] return { "identifiers": {(DOMAIN, agreement.agreement_id)}, "name": "Toon Display", "manufacturer": "Eneco", "model": model, "sw_version": sw_version, } class ToonElectricityMeterDeviceEntity(ToonEntity): """Defines a Electricity Meter device entity.""" @property def device_info(self) -> Dict[str, Any]: """Return device information about this entity.""" agreement_id = self.coordinator.data.agreement.agreement_id return { "name": "Electricity Meter", "identifiers": {(DOMAIN, agreement_id, "electricity")}, "via_device": (DOMAIN, agreement_id, "meter_adapter"), } class ToonGasMeterDeviceEntity(ToonEntity): """Defines a Gas Meter device entity.""" @property def device_info(self) -> Dict[str, Any]: """Return device information about this entity.""" agreement_id = self.coordinator.data.agreement.agreement_id return { "name": "Gas Meter", "identifiers": {(DOMAIN, agreement_id, "gas")}, "via_device": (DOMAIN, agreement_id, "electricity"), } class ToonWaterMeterDeviceEntity(ToonEntity): """Defines a Water Meter device entity.""" @property def device_info(self) -> Dict[str, Any]: """Return device information about this entity.""" agreement_id = self.coordinator.data.agreement.agreement_id return { "name": "Water Meter", "identifiers": {(DOMAIN, agreement_id, "water")}, "via_device": (DOMAIN, agreement_id, "electricity"), } class ToonSolarDeviceEntity(ToonEntity): """Defines a Solar Device device entity.""" @property def device_info(self) -> Dict[str, Any]: """Return device information about this entity.""" agreement_id = self.coordinator.data.agreement.agreement_id return { "name": "Solar Panels", "identifiers": {(DOMAIN, agreement_id, "solar")}, "via_device": (DOMAIN, agreement_id, "meter_adapter"), } class ToonBoilerModuleDeviceEntity(ToonEntity): """Defines a Boiler Module device entity.""" @property def device_info(self) -> Dict[str, Any]: """Return device information about this entity.""" agreement_id = self.coordinator.data.agreement.agreement_id return { "name": "Boiler Module", "manufacturer": "Eneco", "identifiers": {(DOMAIN, agreement_id, "boiler_module")}, "via_device": (DOMAIN, agreement_id), } class ToonBoilerDeviceEntity(ToonEntity): """Defines a Boiler device entity.""" @property def device_info(self) -> Dict[str, Any]: """Return device information about this entity.""" agreement_id = self.coordinator.data.agreement.agreement_id return { "name": "Boiler", "identifiers": {(DOMAIN, agreement_id, "boiler")}, "via_device": (DOMAIN, agreement_id, "boiler_module"), }
from qutebrowser.config import configdata, configexc from qutebrowser.completion.models import completionmodel, listcategory, util from qutebrowser.commands import runners, cmdexc from qutebrowser.keyinput import keyutils def option(*, info): """A CompletionModel filled with settings and their descriptions.""" return _option(info, "Options", lambda opt: not opt.no_autoconfig) def customized_option(*, info): """A CompletionModel filled with set settings and their descriptions.""" model = completionmodel.CompletionModel(column_widths=(20, 70, 10)) options = ((values.opt.name, values.opt.description, info.config.get_str(values.opt.name)) for values in info.config if values) model.add_category(listcategory.ListCategory("Customized options", options)) return model def list_option(*, info): """A CompletionModel filled with settings whose values are lists.""" predicate = lambda opt: (isinstance(info.config.get_obj(opt.name), list) and not opt.no_autoconfig) return _option(info, "List options", predicate) def dict_option(*, info): """A CompletionModel filled with settings whose values are dicts.""" predicate = lambda opt: (isinstance(info.config.get_obj(opt.name), dict) and not opt.no_autoconfig) return _option(info, "Dict options", predicate) def _option(info, title, predicate): """A CompletionModel that is generated for several option sets. Args: info: The config info that can be passed through. title: The title of the options. predicate: The function for filtering out the options. Takes a single argument. """ model = completionmodel.CompletionModel(column_widths=(20, 70, 10)) options = ((opt.name, opt.description, info.config.get_str(opt.name)) for opt in configdata.DATA.values() if predicate(opt)) model.add_category(listcategory.ListCategory(title, options)) return model def value(optname, *values, info): """A CompletionModel filled with setting values. Args: optname: The name of the config option this model shows. values: The values already provided on the command line. info: A CompletionInfo instance. """ model = completionmodel.CompletionModel(column_widths=(30, 70, 0)) try: current = info.config.get_str(optname) except configexc.NoOptionError: return None opt = info.config.get_opt(optname) default = opt.typ.to_str(opt.default) cur_def = [] if current not in values: cur_def.append((current, "Current value")) if default not in values: cur_def.append((default, "Default value")) if cur_def: cur_cat = listcategory.ListCategory("Current/Default", cur_def) model.add_category(cur_cat) vals = opt.typ.complete() or [] vals = [x for x in vals if x[0] not in values] if vals: model.add_category(listcategory.ListCategory("Completions", vals)) return model def _bind_current_default(key, info): """Get current/default data for the given key.""" data = [] try: seq = keyutils.KeySequence.parse(key) except keyutils.KeyParseError as e: data.append(('', str(e), key)) return data cmd_text = info.keyconf.get_command(seq, 'normal') if cmd_text: parser = runners.CommandParser() try: cmd = parser.parse(cmd_text).cmd except cmdexc.NoSuchCommandError: data.append((cmd_text, '(Current) Invalid command!', key)) else: data.append((cmd_text, '(Current) {}'.format(cmd.desc), key)) cmd_text = info.keyconf.get_command(seq, 'normal', default=True) if cmd_text: parser = runners.CommandParser() cmd = parser.parse(cmd_text).cmd data.append((cmd_text, '(Default) {}'.format(cmd.desc), key)) return data def bind(key, *, info): """A CompletionModel filled with all bindable commands and descriptions. Args: key: the key being bound. """ model = completionmodel.CompletionModel(column_widths=(20, 60, 20)) data = _bind_current_default(key, info) if data: model.add_category(listcategory.ListCategory("Current/Default", data)) cmdlist = util.get_cmd_completions(info, include_hidden=True, include_aliases=True) model.add_category(listcategory.ListCategory("Commands", cmdlist)) return model
import asyncio import pyotgw from pyotgw import vars as gw_vars from serial import SerialException import voluptuous as vol from homeassistant import config_entries from homeassistant.const import ( CONF_DEVICE, CONF_ID, CONF_NAME, PRECISION_HALVES, PRECISION_TENTHS, PRECISION_WHOLE, ) from homeassistant.core import callback import homeassistant.helpers.config_validation as cv from . import DOMAIN from .const import CONF_FLOOR_TEMP, CONF_PRECISION class OpenThermGwConfigFlow(config_entries.ConfigFlow, domain=DOMAIN): """OpenTherm Gateway Config Flow.""" VERSION = 1 CONNECTION_CLASS = config_entries.CONN_CLASS_LOCAL_PUSH @staticmethod @callback def async_get_options_flow(config_entry): """Get the options flow for this handler.""" return OpenThermGwOptionsFlow(config_entry) async def async_step_init(self, info=None): """Handle config flow initiation.""" if info: name = info[CONF_NAME] device = info[CONF_DEVICE] gw_id = cv.slugify(info.get(CONF_ID, name)) entries = [e.data for e in self.hass.config_entries.async_entries(DOMAIN)] if gw_id in [e[CONF_ID] for e in entries]: return self._show_form({"base": "id_exists"}) if device in [e[CONF_DEVICE] for e in entries]: return self._show_form({"base": "already_configured"}) async def test_connection(): """Try to connect to the OpenTherm Gateway.""" otgw = pyotgw.pyotgw() status = await otgw.connect(self.hass.loop, device) await otgw.disconnect() return status.get(gw_vars.OTGW_ABOUT) try: res = await asyncio.wait_for(test_connection(), timeout=10) except (asyncio.TimeoutError, SerialException): return self._show_form({"base": "cannot_connect"}) if res: return self._create_entry(gw_id, name, device) return self._show_form() async def async_step_user(self, user_input=None): """Handle manual initiation of the config flow.""" return await self.async_step_init(user_input) async def async_step_import(self, import_config): """ Import an OpenTherm Gateway device as a config entry. This flow is triggered by `async_setup` for configured devices. """ formatted_config = { CONF_NAME: import_config.get(CONF_NAME, import_config[CONF_ID]), CONF_DEVICE: import_config[CONF_DEVICE], CONF_ID: import_config[CONF_ID], } return await self.async_step_init(info=formatted_config) def _show_form(self, errors=None): """Show the config flow form with possible errors.""" return self.async_show_form( step_id="init", data_schema=vol.Schema( { vol.Required(CONF_NAME): str, vol.Required(CONF_DEVICE): str, vol.Optional(CONF_ID): str, } ), errors=errors or {}, ) def _create_entry(self, gw_id, name, device): """Create entry for the OpenTherm Gateway device.""" return self.async_create_entry( title=name, data={CONF_ID: gw_id, CONF_DEVICE: device, CONF_NAME: name} ) class OpenThermGwOptionsFlow(config_entries.OptionsFlow): """Handle opentherm_gw options.""" def __init__(self, config_entry): """Initialize the options flow.""" self.config_entry = config_entry async def async_step_init(self, user_input=None): """Manage the opentherm_gw options.""" if user_input is not None: return self.async_create_entry(title="", data=user_input) return self.async_show_form( step_id="init", data_schema=vol.Schema( { vol.Optional( CONF_PRECISION, default=self.config_entry.options.get(CONF_PRECISION, 0), ): vol.All( vol.Coerce(float), vol.In( [0, PRECISION_TENTHS, PRECISION_HALVES, PRECISION_WHOLE] ), ), vol.Optional( CONF_FLOOR_TEMP, default=self.config_entry.options.get(CONF_FLOOR_TEMP, False), ): bool, } ), )
import logging from homeassistant.components.fan import FanEntity from homeassistant.core import callback from homeassistant.helpers.dispatcher import async_dispatcher_connect from . import ( DOMAIN, METRIC_KEY_MODE, METRIC_KEY_PROFILE_FAN_SPEED_AWAY, METRIC_KEY_PROFILE_FAN_SPEED_BOOST, METRIC_KEY_PROFILE_FAN_SPEED_HOME, SIGNAL_VALLOX_STATE_UPDATE, ) _LOGGER = logging.getLogger(__name__) # Device attributes ATTR_PROFILE_FAN_SPEED_HOME = { "description": "fan_speed_home", "metric_key": METRIC_KEY_PROFILE_FAN_SPEED_HOME, } ATTR_PROFILE_FAN_SPEED_AWAY = { "description": "fan_speed_away", "metric_key": METRIC_KEY_PROFILE_FAN_SPEED_AWAY, } ATTR_PROFILE_FAN_SPEED_BOOST = { "description": "fan_speed_boost", "metric_key": METRIC_KEY_PROFILE_FAN_SPEED_BOOST, } async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the fan device.""" if discovery_info is None: return client = hass.data[DOMAIN]["client"] client.set_settable_address(METRIC_KEY_MODE, int) device = ValloxFan( hass.data[DOMAIN]["name"], client, hass.data[DOMAIN]["state_proxy"] ) async_add_entities([device], update_before_add=False) class ValloxFan(FanEntity): """Representation of the fan.""" def __init__(self, name, client, state_proxy): """Initialize the fan.""" self._name = name self._client = client self._state_proxy = state_proxy self._available = False self._state = None self._fan_speed_home = None self._fan_speed_away = None self._fan_speed_boost = None @property def should_poll(self): """Do not poll the device.""" return False @property def name(self): """Return the name of the device.""" return self._name @property def available(self): """Return if state is known.""" return self._available @property def is_on(self): """Return if device is on.""" return self._state @property def device_state_attributes(self): """Return device specific state attributes.""" return { ATTR_PROFILE_FAN_SPEED_HOME["description"]: self._fan_speed_home, ATTR_PROFILE_FAN_SPEED_AWAY["description"]: self._fan_speed_away, ATTR_PROFILE_FAN_SPEED_BOOST["description"]: self._fan_speed_boost, } async def async_added_to_hass(self): """Call to update.""" self.async_on_remove( async_dispatcher_connect( self.hass, SIGNAL_VALLOX_STATE_UPDATE, self._update_callback ) ) @callback def _update_callback(self): """Call update method.""" self.async_schedule_update_ha_state(True) async def async_update(self): """Fetch state from the device.""" try: # Fetch if the whole device is in regular operation state. mode = self._state_proxy.fetch_metric(METRIC_KEY_MODE) if mode == 0: self._state = True else: self._state = False # Fetch the profile fan speeds. self._fan_speed_home = int( self._state_proxy.fetch_metric( ATTR_PROFILE_FAN_SPEED_HOME["metric_key"] ) ) self._fan_speed_away = int( self._state_proxy.fetch_metric( ATTR_PROFILE_FAN_SPEED_AWAY["metric_key"] ) ) self._fan_speed_boost = int( self._state_proxy.fetch_metric( ATTR_PROFILE_FAN_SPEED_BOOST["metric_key"] ) ) self._available = True except (OSError, KeyError) as err: self._available = False _LOGGER.error("Error updating fan: %s", err) async def async_turn_on(self, speed: str = None, **kwargs) -> None: """Turn the device on.""" _LOGGER.debug("Turn on: %s", speed) # Only the case speed == None equals the GUI toggle switch being # activated. if speed is not None: return if self._state is False: try: await self._client.set_values({METRIC_KEY_MODE: 0}) # This state change affects other entities like sensors. Force # an immediate update that can be observed by all parties # involved. await self._state_proxy.async_update(None) except OSError as err: self._available = False _LOGGER.error("Error turning on: %s", err) else: _LOGGER.error("Already on") async def async_turn_off(self, **kwargs) -> None: """Turn the device off.""" if self._state is True: try: await self._client.set_values({METRIC_KEY_MODE: 5}) # Same as for turn_on method. await self._state_proxy.async_update(None) except OSError as err: self._available = False _LOGGER.error("Error turning off: %s", err) else: _LOGGER.error("Already off")
import random from urllib.request import urlopen from flexx import flx # Define names of standard images image_names = ['clock.png', 'page.png', 'camera.png', 'coins.png', 'hubble_deep_field.png', 'text.png', 'chelsea.png', 'coffee.png', 'horse.png', 'wikkie.png', 'moon.png', 'astronaut.png', 'immunohistochemistry.png'] def get_img_blob(name): """ Given an image name, download the raw bytes from imageio's repository of standard images. """ url_root = 'https://github.com/imageio/imageio-binaries/raw/master/images/' return urlopen(url_root + name, timeout=2.0).read() # Randomly select a shared image at server start link1 = flx.assets.add_shared_data('image.png', get_img_blob(random.choice(image_names))) class Example(flx.PyComponent): def init(self): # Randomly select image - different between sessions link2 = self.session.add_data('image.png', get_img_blob(random.choice(image_names))) # Create widget to show images View(link1, link2) class View(flx.Label): def init(self, link1, link2): html = '<p>Hit F5 to reload the page (i.e. create a new session' html += ', unless this is an exported app)</p>' html += '<p>This is session "%s"</p>' % self.session.id html += '<img src="%s" />' % link1 html += '<img src="%s" />' % link2 self.set_html(html) if __name__ == '__main__': # Launch the app twice to show how different sessions have different data a = flx.App(Example) m1 = a.launch('browser') m2 = a.launch('browser') flx.run()
import os from tempfile import TemporaryDirectory from radicale import pathutils, storage class CollectionDeleteMixin: def delete(self, href=None): if href is None: # Delete the collection parent_dir = os.path.dirname(self._filesystem_path) try: os.rmdir(self._filesystem_path) except OSError: with TemporaryDirectory( prefix=".Radicale.tmp-", dir=parent_dir) as tmp: os.rename(self._filesystem_path, os.path.join( tmp, os.path.basename(self._filesystem_path))) self._storage._sync_directory(parent_dir) else: self._storage._sync_directory(parent_dir) else: # Delete an item if not pathutils.is_safe_filesystem_path_component(href): raise pathutils.UnsafePathError(href) path = pathutils.path_to_filesystem(self._filesystem_path, href) if not os.path.isfile(path): raise storage.ComponentNotFoundError(href) os.remove(path) self._storage._sync_directory(os.path.dirname(path)) # Track the change self._update_history_etag(href, None) self._clean_history()
from importlib import import_module from django.conf import settings from django.urls import reverse from django.utils.http import url_has_allowed_host_and_scheme from social_django.strategy import DjangoStrategy from weblate.utils.site import get_site_url def create_session(*args): engine = import_module(settings.SESSION_ENGINE) return engine.SessionStore(*args) class WeblateStrategy(DjangoStrategy): def __init__(self, storage, request=None, tpl=None): """Restore session data based on passed ID.""" super().__init__(storage, request, tpl) if request and "verification_code" in request.GET and "id" in request.GET: self.session = create_session(request.GET["id"]) def request_data(self, merge=True): if not self.request: return {} if merge: data = self.request.GET.copy() data.update(self.request.POST) elif self.request.method == "POST": data = self.request.POST.copy() else: data = self.request.GET.copy() # This is mostly fix for lack of next validation in Python Social Auth # - https://github.com/python-social-auth/social-core/pull/92 # - https://github.com/python-social-auth/social-core/issues/62 if "next" in data and not url_has_allowed_host_and_scheme( data["next"], allowed_hosts=None ): data["next"] = "{}#account".format(reverse("profile")) return data def build_absolute_uri(self, path=None): if self.request: self.request.__dict__["_current_scheme_host"] = get_site_url() return super().build_absolute_uri(path) def clean_partial_pipeline(self, token): # The cleanup somehow breaks our partial pipelines, simply skip # it for now # See https://github.com/python-social-auth/social-core/issues/287 return def really_clean_partial_pipeline(self, token): super().clean_partial_pipeline(token)
import errno import hashlib import inspect import locale import os import os.path import random import re import socket import sys import types from coverage import env from coverage.backward import to_bytes, unicode_class ISOLATED_MODULES = {} def isolate_module(mod): """Copy a module so that we are isolated from aggressive mocking. If a test suite mocks os.path.exists (for example), and then we need to use it during the test, everything will get tangled up if we use their mock. Making a copy of the module when we import it will isolate coverage.py from those complications. """ if mod not in ISOLATED_MODULES: new_mod = types.ModuleType(mod.__name__) ISOLATED_MODULES[mod] = new_mod for name in dir(mod): value = getattr(mod, name) if isinstance(value, types.ModuleType): value = isolate_module(value) setattr(new_mod, name, value) return ISOLATED_MODULES[mod] os = isolate_module(os) def dummy_decorator_with_args(*args_unused, **kwargs_unused): """Dummy no-op implementation of a decorator with arguments.""" def _decorator(func): return func return _decorator # Environment COVERAGE_NO_CONTRACTS=1 can turn off contracts while debugging # tests to remove noise from stack traces. # $set_env.py: COVERAGE_NO_CONTRACTS - Disable PyContracts to simplify stack traces. USE_CONTRACTS = env.TESTING and not bool(int(os.environ.get("COVERAGE_NO_CONTRACTS", 0))) # Use PyContracts for assertion testing on parameters and returns, but only if # we are running our own test suite. if USE_CONTRACTS: from contracts import contract # pylint: disable=unused-import from contracts import new_contract as raw_new_contract def new_contract(*args, **kwargs): """A proxy for contracts.new_contract that doesn't mind happening twice.""" try: return raw_new_contract(*args, **kwargs) except ValueError: # During meta-coverage, this module is imported twice, and # PyContracts doesn't like redefining contracts. It's OK. pass # Define contract words that PyContract doesn't have. new_contract('bytes', lambda v: isinstance(v, bytes)) if env.PY3: new_contract('unicode', lambda v: isinstance(v, unicode_class)) def one_of(argnames): """Ensure that only one of the argnames is non-None.""" def _decorator(func): argnameset = set(name.strip() for name in argnames.split(",")) def _wrapper(*args, **kwargs): vals = [kwargs.get(name) for name in argnameset] assert sum(val is not None for val in vals) == 1 return func(*args, **kwargs) return _wrapper return _decorator else: # pragma: not testing # We aren't using real PyContracts, so just define our decorators as # stunt-double no-ops. contract = dummy_decorator_with_args one_of = dummy_decorator_with_args def new_contract(*args_unused, **kwargs_unused): """Dummy no-op implementation of `new_contract`.""" pass def nice_pair(pair): """Make a nice string representation of a pair of numbers. If the numbers are equal, just return the number, otherwise return the pair with a dash between them, indicating the range. """ start, end = pair if start == end: return "%d" % start else: return "%d-%d" % (start, end) def expensive(fn): """A decorator to indicate that a method shouldn't be called more than once. Normally, this does nothing. During testing, this raises an exception if called more than once. """ if env.TESTING: attr = "_once_" + fn.__name__ def _wrapper(self): if hasattr(self, attr): raise AssertionError("Shouldn't have called %s more than once" % fn.__name__) setattr(self, attr, True) return fn(self) return _wrapper else: return fn # pragma: not testing def bool_or_none(b): """Return bool(b), but preserve None.""" if b is None: return None else: return bool(b) def join_regex(regexes): """Combine a list of regexes into one that matches any of them.""" return "|".join("(?:%s)" % r for r in regexes) def file_be_gone(path): """Remove a file, and don't get annoyed if it doesn't exist.""" try: os.remove(path) except OSError as e: if e.errno != errno.ENOENT: raise def ensure_dir(directory): """Make sure the directory exists. If `directory` is None or empty, do nothing. """ if directory and not os.path.isdir(directory): os.makedirs(directory) def ensure_dir_for_file(path): """Make sure the directory for the path exists.""" ensure_dir(os.path.dirname(path)) def output_encoding(outfile=None): """Determine the encoding to use for output written to `outfile` or stdout.""" if outfile is None: outfile = sys.stdout encoding = ( getattr(outfile, "encoding", None) or getattr(sys.__stdout__, "encoding", None) or locale.getpreferredencoding() ) return encoding def filename_suffix(suffix): """Compute a filename suffix for a data file. If `suffix` is a string or None, simply return it. If `suffix` is True, then build a suffix incorporating the hostname, process id, and a random number. Returns a string or None. """ if suffix is True: # If data_suffix was a simple true value, then make a suffix with # plenty of distinguishing information. We do this here in # `save()` at the last minute so that the pid will be correct even # if the process forks. dice = random.Random(os.urandom(8)).randint(0, 999999) suffix = "%s.%s.%06d" % (socket.gethostname(), os.getpid(), dice) return suffix class Hasher(object): """Hashes Python data into md5.""" def __init__(self): self.md5 = hashlib.md5() def update(self, v): """Add `v` to the hash, recursively if needed.""" self.md5.update(to_bytes(str(type(v)))) if isinstance(v, unicode_class): self.md5.update(v.encode('utf8')) elif isinstance(v, bytes): self.md5.update(v) elif v is None: pass elif isinstance(v, (int, float)): self.md5.update(to_bytes(str(v))) elif isinstance(v, (tuple, list)): for e in v: self.update(e) elif isinstance(v, dict): keys = v.keys() for k in sorted(keys): self.update(k) self.update(v[k]) else: for k in dir(v): if k.startswith('__'): continue a = getattr(v, k) if inspect.isroutine(a): continue self.update(k) self.update(a) self.md5.update(b'.') def hexdigest(self): """Retrieve the hex digest of the hash.""" return self.md5.hexdigest() def _needs_to_implement(that, func_name): """Helper to raise NotImplementedError in interface stubs.""" if hasattr(that, "_coverage_plugin_name"): thing = "Plugin" name = that._coverage_plugin_name else: thing = "Class" klass = that.__class__ name = "{klass.__module__}.{klass.__name__}".format(klass=klass) raise NotImplementedError( "{thing} {name!r} needs to implement {func_name}()".format( thing=thing, name=name, func_name=func_name ) ) class DefaultValue(object): """A sentinel object to use for unusual default-value needs. Construct with a string that will be used as the repr, for display in help and Sphinx output. """ def __init__(self, display_as): self.display_as = display_as def __repr__(self): return self.display_as def substitute_variables(text, variables): """Substitute ``${VAR}`` variables in `text` with their values. Variables in the text can take a number of shell-inspired forms:: $VAR ${VAR} ${VAR?} strict: an error if VAR isn't defined. ${VAR-missing} defaulted: "missing" if VAR isn't defined. $$ just a dollar sign. `variables` is a dictionary of variable values. Returns the resulting text with values substituted. """ dollar_pattern = r"""(?x) # Use extended regex syntax \$ # A dollar sign, (?: # then (?P<dollar>\$) | # a dollar sign, or (?P<word1>\w+) | # a plain word, or { # a {-wrapped (?P<word2>\w+) # word, (?: (?P<strict>\?) | # with a strict marker -(?P<defval>[^}]*) # or a default value )? # maybe. } ) """ def dollar_replace(match): """Called for each $replacement.""" # Only one of the groups will have matched, just get its text. word = next(g for g in match.group('dollar', 'word1', 'word2') if g) if word == "$": return "$" elif word in variables: return variables[word] elif match.group('strict'): msg = "Variable {} is undefined: {!r}".format(word, text) raise CoverageException(msg) else: return match.group('defval') text = re.sub(dollar_pattern, dollar_replace, text) return text class BaseCoverageException(Exception): """The base of all Coverage exceptions.""" pass class CoverageException(BaseCoverageException): """An exception raised by a coverage.py function.""" pass class NoSource(CoverageException): """We couldn't find the source for a module.""" pass class NoCode(NoSource): """We couldn't find any code at all.""" pass class NotPython(CoverageException): """A source file turned out not to be parsable Python.""" pass class ExceptionDuringRun(CoverageException): """An exception happened while running customer code. Construct it with three arguments, the values from `sys.exc_info`. """ pass class StopEverything(BaseCoverageException): """An exception that means everything should stop. The CoverageTest class converts these to SkipTest, so that when running tests, raising this exception will automatically skip the test. """ pass
import logging from . import initialize_bot _LOGGER = logging.getLogger(__name__) async def async_setup_platform(hass, config): """Set up the Telegram broadcast platform.""" bot = initialize_bot(config) bot_config = await hass.async_add_executor_job(bot.getMe) _LOGGER.debug( "Telegram broadcast platform setup with bot %s", bot_config["username"] ) return True
from aiohomekit.model.characteristics import CharacteristicsTypes from homeassistant.components.lock import LockEntity from homeassistant.const import ATTR_BATTERY_LEVEL, STATE_LOCKED, STATE_UNLOCKED from homeassistant.core import callback from . import KNOWN_DEVICES, HomeKitEntity STATE_JAMMED = "jammed" CURRENT_STATE_MAP = {0: STATE_UNLOCKED, 1: STATE_LOCKED, 2: STATE_JAMMED, 3: None} TARGET_STATE_MAP = {STATE_UNLOCKED: 0, STATE_LOCKED: 1} async def async_setup_entry(hass, config_entry, async_add_entities): """Set up Homekit lock.""" hkid = config_entry.data["AccessoryPairingID"] conn = hass.data[KNOWN_DEVICES][hkid] @callback def async_add_service(aid, service): if service["stype"] != "lock-mechanism": return False info = {"aid": aid, "iid": service["iid"]} async_add_entities([HomeKitLock(conn, info)], True) return True conn.add_listener(async_add_service) class HomeKitLock(HomeKitEntity, LockEntity): """Representation of a HomeKit Controller Lock.""" def get_characteristic_types(self): """Define the homekit characteristics the entity cares about.""" return [ CharacteristicsTypes.LOCK_MECHANISM_CURRENT_STATE, CharacteristicsTypes.LOCK_MECHANISM_TARGET_STATE, CharacteristicsTypes.BATTERY_LEVEL, ] @property def is_locked(self): """Return true if device is locked.""" value = self.service.value(CharacteristicsTypes.LOCK_MECHANISM_CURRENT_STATE) return CURRENT_STATE_MAP[value] == STATE_LOCKED async def async_lock(self, **kwargs): """Lock the device.""" await self._set_lock_state(STATE_LOCKED) async def async_unlock(self, **kwargs): """Unlock the device.""" await self._set_lock_state(STATE_UNLOCKED) async def _set_lock_state(self, state): """Send state command.""" await self.async_put_characteristics( {CharacteristicsTypes.LOCK_MECHANISM_TARGET_STATE: TARGET_STATE_MAP[state]} ) @property def device_state_attributes(self): """Return the optional state attributes.""" attributes = {} battery_level = self.service.value(CharacteristicsTypes.BATTERY_LEVEL) if battery_level: attributes[ATTR_BATTERY_LEVEL] = battery_level return attributes
import logging from homeassistant.components.cover import ( ATTR_POSITION, DEVICE_CLASS_CURTAIN, STATE_CLOSED, STATE_CLOSING, STATE_OPENING, CoverEntity, ) from homeassistant.const import ATTR_ID from .const import API, DEFAULT_OFFSET, DOMAIN, SLIDES _LOGGER = logging.getLogger(__name__) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up cover(s) for Slide platform.""" if discovery_info is None: return entities = [] for slide in hass.data[DOMAIN][SLIDES].values(): _LOGGER.debug("Setting up Slide entity: %s", slide) entities.append(SlideCover(hass.data[DOMAIN][API], slide)) async_add_entities(entities) class SlideCover(CoverEntity): """Representation of a Slide cover.""" def __init__(self, api, slide): """Initialize the cover.""" self._api = api self._slide = slide self._id = slide["id"] self._unique_id = slide["mac"] self._name = slide["name"] self._invert = slide["invert"] @property def unique_id(self): """Return the device unique id.""" return self._unique_id @property def name(self): """Return the device name.""" return self._name @property def device_state_attributes(self): """Return device specific state attributes.""" return {ATTR_ID: self._id} @property def is_opening(self): """Return if the cover is opening or not.""" return self._slide["state"] == STATE_OPENING @property def is_closing(self): """Return if the cover is closing or not.""" return self._slide["state"] == STATE_CLOSING @property def is_closed(self): """Return None if status is unknown, True if closed, else False.""" if self._slide["state"] is None: return None return self._slide["state"] == STATE_CLOSED @property def available(self): """Return False if state is not available.""" return self._slide["online"] @property def assumed_state(self): """Let HA know the integration is assumed state.""" return True @property def device_class(self): """Return the device class of the cover.""" return DEVICE_CLASS_CURTAIN @property def current_cover_position(self): """Return the current position of cover shutter.""" pos = self._slide["pos"] if pos is not None: if (1 - pos) <= DEFAULT_OFFSET or pos <= DEFAULT_OFFSET: pos = round(pos) if not self._invert: pos = 1 - pos pos = int(pos * 100) return pos async def async_open_cover(self, **kwargs): """Open the cover.""" self._slide["state"] = STATE_OPENING await self._api.slide_open(self._id) async def async_close_cover(self, **kwargs): """Close the cover.""" self._slide["state"] = STATE_CLOSING await self._api.slide_close(self._id) async def async_stop_cover(self, **kwargs): """Stop the cover.""" await self._api.slide_stop(self._id) async def async_set_cover_position(self, **kwargs): """Move the cover to a specific position.""" position = kwargs[ATTR_POSITION] / 100 if not self._invert: position = 1 - position if self._slide["pos"] is not None: if position > self._slide["pos"]: self._slide["state"] = STATE_CLOSING else: self._slide["state"] = STATE_OPENING await self._api.slide_set_position(self._id, position)
from django.db import migrations CREATE = "CREATE UNIQUE INDEX weblate_auth_user_{0}_ci ON weblate_auth_user(UPPER({0}))" DROP = "DROP INDEX weblate_auth_user_{0}_ci" def create_index(apps, schema_editor): if schema_editor.connection.vendor == "postgresql": schema_editor.execute(CREATE.format("username")) schema_editor.execute(CREATE.format("email")) def drop_index(apps, schema_editor): if schema_editor.connection.vendor == "postgresql": schema_editor.execute(DROP.format("username")) schema_editor.execute(DROP.format("email")) class Migration(migrations.Migration): dependencies = [ ("weblate_auth", "0010_migrate_componentlist"), ] operations = [ migrations.RunPython(create_index, drop_index, elidable=False, atomic=False) ]
import os import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( os.environ['MOLECULE_INVENTORY_FILE']).get_hosts('all') def test_hostname(host): assert 'delegated-instance-docker' == host.check_output('hostname -s') def test_etc_molecule_directory(host): f = host.file('/etc/molecule') assert f.is_directory assert f.user == 'root' assert f.group == 'root' assert f.mode == 0o755 def test_etc_molecule_ansible_hostname_file(host): f = host.file('/etc/molecule/delegated-instance-docker') assert f.is_file assert f.user == 'root' assert f.group == 'root' assert f.mode == 0o644
def sort_by_system_instance_health(instances): return sorted( instances, key=lambda i: ( i.instance_status["SystemStatus"]["Status"] != "ok" or i.instance_status["InstanceStatus"]["Status"] != "ok" ), ) def sort_by_upcoming_events(instances): return sorted(instances, key=lambda i: len(i.instance_status.get("Events", []))) def sort_by_total_tasks(instances): return sorted(instances, key=lambda i: i.task_counts.count, reverse=True) def sort_by_running_batch_count(instances): return sorted(instances, key=lambda i: i.task_counts.batch_count, reverse=True) def sort_by_ec2_fitness(instances): """ Sort a list according to their fitness. This will return the list of instances in order of 'fitness': that is, that which is least desirable to kill is first in the list. Fitness is judged according to the following rules: - any instance considered to have a non 'ok' system or instance status is always considered to be least healthy - next, instances are ranked according to whether they have events planned. an event planned marks against your fitness. - next, instances are sorted according to the number of batch tasks running on them. we can't drain batch tasks, so make an effort to avoid disrupting them. - finally, instances are sorted according to the number of total tasks they have. those with the hightest total task are considered fittest, because it's painful to drain them. """ return sort_by_system_instance_health( sort_by_upcoming_events( sort_by_running_batch_count(sort_by_total_tasks(instances)) ) )
from abc import ABC, abstractmethod from typing import List, Tuple, Optional, Dict from datetime import datetime import discord from redbot.core import Config, commands from redbot.core.bot import Red class MixinMeta(ABC): """ Base class for well behaved type hint detection with composite class. Basically, to keep developers sane when not all attributes are defined in each mixin. """ def __init__(self, *_args): self.config: Config self.bot: Red self._mutes_cache: Dict[int, Dict[int, Optional[datetime]]] @staticmethod @abstractmethod async def _voice_perm_check( ctx: commands.Context, user_voice_state: Optional[discord.VoiceState], **perms: bool ) -> bool: raise NotImplementedError()
import inspect import enum import pytest from PyQt5.QtCore import QUrl from qutebrowser.commands import argparser, cmdexc class Enum(enum.Enum): foo = enum.auto() foo_bar = enum.auto() class TestArgumentParser: @pytest.fixture def parser(self): return argparser.ArgumentParser('foo') def test_name(self, parser): assert parser.name == 'foo' def test_exit(self, parser): parser.add_argument('--help', action='help') with pytest.raises(argparser.ArgumentParserExit) as excinfo: parser.parse_args(['--help']) assert excinfo.value.status == 0 def test_error(self, parser): with pytest.raises(argparser.ArgumentParserError, match="Unrecognized arguments: --foo"): parser.parse_args(['--foo']) def test_help(self, parser, tabbed_browser_stubs): parser.add_argument('--help', action=argparser.HelpAction, nargs=0) with pytest.raises(argparser.ArgumentParserExit): parser.parse_args(['--help']) expected_url = QUrl('qute://help/commands.html#foo') assert tabbed_browser_stubs[1].loaded_url == expected_url @pytest.mark.parametrize('types, value, expected', [ ([Enum], 'foo', Enum.foo), ([Enum], 'foo-bar', Enum.foo_bar), ([int], '2', 2), ([int, str], 'foo', 'foo'), ]) @pytest.mark.parametrize('multi', [True, False]) def test_type_conv_valid(types, value, expected, multi): param = inspect.Parameter('foo', inspect.Parameter.POSITIONAL_ONLY) if multi: assert argparser.multitype_conv(param, types, value) == expected elif len(types) == 1: assert argparser.type_conv(param, types[0], value) == expected @pytest.mark.parametrize('typ, value', [ (Enum, 'blubb'), (Enum, 'foo_bar'), (int, '2.5'), (int, 'foo'), ]) @pytest.mark.parametrize('multi', [True, False]) def test_type_conv_invalid(typ, value, multi): param = inspect.Parameter('foo', inspect.Parameter.POSITIONAL_ONLY) if multi: msg = 'foo: Invalid value {}'.format(value) elif typ is Enum: msg = ('foo: Invalid value {} - expected one of: foo, ' 'foo-bar'.format(value)) else: msg = 'foo: Invalid {} value {}'.format(typ.__name__, value) with pytest.raises(cmdexc.ArgumentTypeError, match=msg): if multi: argparser.multitype_conv(param, [typ], value) else: argparser.type_conv(param, typ, value) def test_multitype_conv_invalid_type(): """Test using an invalid type with a multitype converter.""" param = inspect.Parameter('foo', inspect.Parameter.POSITIONAL_ONLY) with pytest.raises(ValueError, match="foo: Unknown type None!"): argparser.multitype_conv(param, [None], '') @pytest.mark.parametrize('value, typ', [(None, None), (42, int)]) def test_conv_default_param(value, typ): """The default value should always be a valid choice.""" def func(foo=value): pass param = inspect.signature(func).parameters['foo'] assert argparser.type_conv(param, typ, value, str_choices=['val']) == value def test_conv_str_type(): """Using a str literal as type used to mean exactly that's a valid value. This got replaced by @cmdutils.argument(..., choices=...), so we make sure no string annotations are there anymore. """ param = inspect.Parameter('foo', inspect.Parameter.POSITIONAL_ONLY) with pytest.raises(TypeError, match='foo: Legacy string type!'): argparser.type_conv(param, 'val', None) def test_conv_str_choices_valid(): """Calling str type with str_choices and valid value.""" param = inspect.Parameter('foo', inspect.Parameter.POSITIONAL_ONLY) converted = argparser.type_conv(param, str, 'val1', str_choices=['val1', 'val2']) assert converted == 'val1' def test_conv_str_choices_invalid(): """Calling str type with str_choices and invalid value.""" param = inspect.Parameter('foo', inspect.Parameter.POSITIONAL_ONLY) with pytest.raises(cmdexc.ArgumentTypeError, match='foo: Invalid value ' 'val3 - expected one of: val1, val2'): argparser.type_conv(param, str, 'val3', str_choices=['val1', 'val2'])
import pytest from voluptuous.error import MultipleInvalid from homeassistant.bootstrap import async_setup_component from homeassistant.components.rflink import ( CONF_RECONNECT_INTERVAL, DATA_ENTITY_LOOKUP, EVENT_KEY_COMMAND, EVENT_KEY_SENSOR, SERVICE_SEND_COMMAND, TMP_ENTITY, RflinkCommand, ) from homeassistant.const import ATTR_ENTITY_ID, SERVICE_STOP_COVER, SERVICE_TURN_OFF from tests.async_mock import Mock async def mock_rflink( hass, config, domain, monkeypatch, failures=None, failcommand=False ): """Create mock RFLink asyncio protocol, test component setup.""" transport, protocol = (Mock(), Mock()) async def send_command_ack(*command): return not failcommand protocol.send_command_ack = Mock(wraps=send_command_ack) def send_command(*command): return not failcommand protocol.send_command = Mock(wraps=send_command) async def create_rflink_connection(*args, **kwargs): """Return mocked transport and protocol.""" # failures can be a list of booleans indicating in which sequence # creating a connection should success or fail if failures: fail = failures.pop() else: fail = False if fail: raise ConnectionRefusedError else: return transport, protocol mock_create = Mock(wraps=create_rflink_connection) monkeypatch.setattr( "homeassistant.components.rflink.create_rflink_connection", mock_create ) await async_setup_component(hass, "rflink", config) await async_setup_component(hass, domain, config) await hass.async_block_till_done() # hook into mock config for injecting events event_callback = mock_create.call_args_list[0][1]["event_callback"] assert event_callback disconnect_callback = mock_create.call_args_list[0][1]["disconnect_callback"] return event_callback, mock_create, protocol, disconnect_callback async def test_version_banner(hass, monkeypatch): """Test sending unknown commands doesn't cause issues.""" # use sensor domain during testing main platform domain = "sensor" config = { "rflink": {"port": "/dev/ttyABC0"}, domain: { "platform": "rflink", "devices": {"test": {"name": "test", "sensor_type": "temperature"}}, }, } # setup mocking rflink module event_callback, _, _, _ = await mock_rflink(hass, config, domain, monkeypatch) event_callback( { "hardware": "Nodo RadioFrequencyLink", "firmware": "RFLink Gateway", "version": "1.1", "revision": "45", } ) async def test_send_no_wait(hass, monkeypatch): """Test command sending without ack.""" domain = "switch" config = { "rflink": {"port": "/dev/ttyABC0", "wait_for_ack": False}, domain: { "platform": "rflink", "devices": { "protocol_0_0": {"name": "test", "aliases": ["test_alias_0_0"]} }, }, } # setup mocking rflink module _, _, protocol, _ = await mock_rflink(hass, config, domain, monkeypatch) hass.async_create_task( hass.services.async_call( domain, SERVICE_TURN_OFF, {ATTR_ENTITY_ID: "switch.test"} ) ) await hass.async_block_till_done() assert protocol.send_command.call_args_list[0][0][0] == "protocol_0_0" assert protocol.send_command.call_args_list[0][0][1] == "off" async def test_cover_send_no_wait(hass, monkeypatch): """Test command sending to a cover device without ack.""" domain = "cover" config = { "rflink": {"port": "/dev/ttyABC0", "wait_for_ack": False}, domain: { "platform": "rflink", "devices": { "RTS_0100F2_0": {"name": "test", "aliases": ["test_alias_0_0"]} }, }, } # setup mocking rflink module _, _, protocol, _ = await mock_rflink(hass, config, domain, monkeypatch) hass.async_create_task( hass.services.async_call( domain, SERVICE_STOP_COVER, {ATTR_ENTITY_ID: "cover.test"} ) ) await hass.async_block_till_done() assert protocol.send_command.call_args_list[0][0][0] == "RTS_0100F2_0" assert protocol.send_command.call_args_list[0][0][1] == "STOP" async def test_send_command(hass, monkeypatch): """Test send_command service.""" domain = "rflink" config = {"rflink": {"port": "/dev/ttyABC0"}} # setup mocking rflink module _, _, protocol, _ = await mock_rflink(hass, config, domain, monkeypatch) hass.async_create_task( hass.services.async_call( domain, SERVICE_SEND_COMMAND, {"device_id": "newkaku_0000c6c2_1", "command": "on"}, ) ) await hass.async_block_till_done() assert protocol.send_command_ack.call_args_list[0][0][0] == "newkaku_0000c6c2_1" assert protocol.send_command_ack.call_args_list[0][0][1] == "on" async def test_send_command_invalid_arguments(hass, monkeypatch): """Test send_command service.""" domain = "rflink" config = {"rflink": {"port": "/dev/ttyABC0"}} # setup mocking rflink module _, _, protocol, _ = await mock_rflink(hass, config, domain, monkeypatch) # one argument missing with pytest.raises(MultipleInvalid): await hass.services.async_call(domain, SERVICE_SEND_COMMAND, {"command": "on"}) with pytest.raises(MultipleInvalid): await hass.services.async_call( domain, SERVICE_SEND_COMMAND, {"device_id": "newkaku_0000c6c2_1"} ) # no arguments with pytest.raises(MultipleInvalid): await hass.services.async_call(domain, SERVICE_SEND_COMMAND, {}) await hass.async_block_till_done() assert protocol.send_command_ack.call_args_list == [] # bad command (no_command) success = await hass.services.async_call( domain, SERVICE_SEND_COMMAND, {"device_id": "newkaku_0000c6c2_1", "command": "no_command"}, ) assert not success, "send command should not succeed for unknown command" async def test_reconnecting_after_disconnect(hass, monkeypatch): """An unexpected disconnect should cause a reconnect.""" domain = "sensor" config = { "rflink": {"port": "/dev/ttyABC0", CONF_RECONNECT_INTERVAL: 0}, domain: {"platform": "rflink"}, } # setup mocking rflink module _, mock_create, _, disconnect_callback = await mock_rflink( hass, config, domain, monkeypatch ) assert disconnect_callback, "disconnect callback not passed to rflink" # rflink initiated disconnect disconnect_callback(None) await hass.async_block_till_done() # we expect 2 call, the initial and reconnect assert mock_create.call_count == 2 async def test_reconnecting_after_failure(hass, monkeypatch): """A failure to reconnect should be retried.""" domain = "sensor" config = { "rflink": {"port": "/dev/ttyABC0", CONF_RECONNECT_INTERVAL: 0}, domain: {"platform": "rflink"}, } # success first time but fail second failures = [False, True, False] # setup mocking rflink module _, mock_create, _, disconnect_callback = await mock_rflink( hass, config, domain, monkeypatch, failures=failures ) # rflink initiated disconnect disconnect_callback(None) # wait for reconnects to have happened await hass.async_block_till_done() await hass.async_block_till_done() # we expect 3 calls, the initial and 2 reconnects assert mock_create.call_count == 3 async def test_error_when_not_connected(hass, monkeypatch): """Sending command should error when not connected.""" domain = "switch" config = { "rflink": {"port": "/dev/ttyABC0", CONF_RECONNECT_INTERVAL: 0}, domain: { "platform": "rflink", "devices": { "protocol_0_0": {"name": "test", "aliases": ["test_alias_0_0"]} }, }, } # success first time but fail second failures = [False, True, False] # setup mocking rflink module _, _, _, disconnect_callback = await mock_rflink( hass, config, domain, monkeypatch, failures=failures ) # rflink initiated disconnect disconnect_callback(None) success = await hass.services.async_call( domain, SERVICE_TURN_OFF, {ATTR_ENTITY_ID: "switch.test"} ) assert not success, "changing state should not succeed when disconnected" async def test_async_send_command_error(hass, monkeypatch): """Sending command should error when protocol fails.""" domain = "rflink" config = {"rflink": {"port": "/dev/ttyABC0"}} # setup mocking rflink module _, _, protocol, _ = await mock_rflink( hass, config, domain, monkeypatch, failcommand=True ) success = await hass.services.async_call( domain, SERVICE_SEND_COMMAND, {"device_id": "newkaku_0000c6c2_1", "command": SERVICE_TURN_OFF}, ) await hass.async_block_till_done() assert not success, "send command should not succeed if failcommand=True" assert protocol.send_command_ack.call_args_list[0][0][0] == "newkaku_0000c6c2_1" assert protocol.send_command_ack.call_args_list[0][0][1] == SERVICE_TURN_OFF async def test_race_condition(hass, monkeypatch): """Test race condition for unknown components.""" domain = "light" config = {"rflink": {"port": "/dev/ttyABC0"}, domain: {"platform": "rflink"}} tmp_entity = TMP_ENTITY.format("test3") # setup mocking rflink module event_callback, _, _, _ = await mock_rflink(hass, config, domain, monkeypatch) # test event for new unconfigured sensor event_callback({"id": "test3", "command": "off"}) event_callback({"id": "test3", "command": "on"}) # tmp_entity added to EVENT_KEY_COMMAND assert tmp_entity in hass.data[DATA_ENTITY_LOOKUP][EVENT_KEY_COMMAND]["test3"] # tmp_entity must no be added to EVENT_KEY_SENSOR assert tmp_entity not in hass.data[DATA_ENTITY_LOOKUP][EVENT_KEY_SENSOR]["test3"] await hass.async_block_till_done() # test state of new sensor new_sensor = hass.states.get(f"{domain}.test3") assert new_sensor assert new_sensor.state == "off" event_callback({"id": "test3", "command": "on"}) await hass.async_block_till_done() # tmp_entity must be deleted from EVENT_KEY_COMMAND assert tmp_entity not in hass.data[DATA_ENTITY_LOOKUP][EVENT_KEY_COMMAND]["test3"] # test state of new sensor new_sensor = hass.states.get(f"{domain}.test3") assert new_sensor assert new_sensor.state == "on" async def test_not_connected(hass, monkeypatch): """Test Error when sending commands to a disconnected device.""" import pytest from homeassistant.core import HomeAssistantError test_device = RflinkCommand("DUMMY_DEVICE") RflinkCommand.set_rflink_protocol(None) with pytest.raises(HomeAssistantError): await test_device._async_handle_command("turn_on")
import os import sys import logging import argparse import gensim from gensim import utils logger = logging.getLogger(__name__) def word2vec2tensor(word2vec_model_path, tensor_filename, binary=False): """Convert file in Word2Vec format and writes two files 2D tensor TSV file. File "tensor_filename"_tensor.tsv contains word-vectors, "tensor_filename"_metadata.tsv contains words. Parameters ---------- word2vec_model_path : str Path to file in Word2Vec format. tensor_filename : str Prefix for output files. binary : bool, optional True if input file in binary format. """ model = gensim.models.KeyedVectors.load_word2vec_format(word2vec_model_path, binary=binary) outfiletsv = tensor_filename + '_tensor.tsv' outfiletsvmeta = tensor_filename + '_metadata.tsv' with utils.open(outfiletsv, 'wb') as file_vector, utils.open(outfiletsvmeta, 'wb') as file_metadata: for word in model.index_to_key: file_metadata.write(gensim.utils.to_utf8(word) + gensim.utils.to_utf8('\n')) vector_row = '\t'.join(str(x) for x in model[word]) file_vector.write(gensim.utils.to_utf8(vector_row) + gensim.utils.to_utf8('\n')) logger.info("2D tensor file saved to %s", outfiletsv) logger.info("Tensor metadata file saved to %s", outfiletsvmeta) if __name__ == "__main__": logging.basicConfig(format='%(asctime)s - %(module)s - %(levelname)s - %(message)s', level=logging.INFO) parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__[:-138]) parser.add_argument("-i", "--input", required=True, help="Path to input file in word2vec format") parser.add_argument("-o", "--output", required=True, help="Prefix path for output files") parser.add_argument( "-b", "--binary", action='store_const', const=True, default=False, help="Set this flag if word2vec model in binary format (default: %(default)s)" ) args = parser.parse_args() logger.info("running %s", ' '.join(sys.argv)) word2vec2tensor(args.input, args.output, args.binary) logger.info("finished running %s", os.path.basename(sys.argv[0]))
import logging from bimmer_connected.state import LockState from homeassistant.components.lock import LockEntity from homeassistant.const import ATTR_ATTRIBUTION, STATE_LOCKED, STATE_UNLOCKED from . import DOMAIN as BMW_DOMAIN from .const import ATTRIBUTION DOOR_LOCK_STATE = "door_lock_state" _LOGGER = logging.getLogger(__name__) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the BMW Connected Drive lock.""" accounts = hass.data[BMW_DOMAIN] _LOGGER.debug("Found BMW accounts: %s", ", ".join([a.name for a in accounts])) devices = [] for account in accounts: if not account.read_only: for vehicle in account.account.vehicles: device = BMWLock(account, vehicle, "lock", "BMW lock") devices.append(device) add_entities(devices, True) class BMWLock(LockEntity): """Representation of a BMW vehicle lock.""" def __init__(self, account, vehicle, attribute: str, sensor_name): """Initialize the lock.""" self._account = account self._vehicle = vehicle self._attribute = attribute self._name = f"{self._vehicle.name} {self._attribute}" self._unique_id = f"{self._vehicle.vin}-{self._attribute}" self._sensor_name = sensor_name self._state = None self.door_lock_state_available = ( DOOR_LOCK_STATE in self._vehicle.available_attributes ) @property def should_poll(self): """Do not poll this class. Updates are triggered from BMWConnectedDriveAccount. """ return False @property def unique_id(self): """Return the unique ID of the lock.""" return self._unique_id @property def name(self): """Return the name of the lock.""" return self._name @property def device_state_attributes(self): """Return the state attributes of the lock.""" vehicle_state = self._vehicle.state result = { "car": self._vehicle.name, ATTR_ATTRIBUTION: ATTRIBUTION, } if self.door_lock_state_available: result["door_lock_state"] = vehicle_state.door_lock_state.value result["last_update_reason"] = vehicle_state.last_update_reason return result @property def is_locked(self): """Return true if lock is locked.""" return self._state == STATE_LOCKED def lock(self, **kwargs): """Lock the car.""" _LOGGER.debug("%s: locking doors", self._vehicle.name) # Optimistic state set here because it takes some time before the # update callback response self._state = STATE_LOCKED self.schedule_update_ha_state() self._vehicle.remote_services.trigger_remote_door_lock() def unlock(self, **kwargs): """Unlock the car.""" _LOGGER.debug("%s: unlocking doors", self._vehicle.name) # Optimistic state set here because it takes some time before the # update callback response self._state = STATE_UNLOCKED self.schedule_update_ha_state() self._vehicle.remote_services.trigger_remote_door_unlock() def update(self): """Update state of the lock.""" _LOGGER.debug("%s: updating data for %s", self._vehicle.name, self._attribute) vehicle_state = self._vehicle.state # Possible values: LOCKED, SECURED, SELECTIVE_LOCKED, UNLOCKED self._state = ( STATE_LOCKED if vehicle_state.door_lock_state in [LockState.LOCKED, LockState.SECURED] else STATE_UNLOCKED ) def update_callback(self): """Schedule a state update.""" self.schedule_update_ha_state(True) async def async_added_to_hass(self): """Add callback after being added to hass. Show latest data after startup. """ self._account.add_update_listener(self.update_callback)
import asyncio from datetime import timedelta import logging import aiohttp from foobot_async import FoobotClient import voluptuous as vol from homeassistant.const import ( ATTR_TEMPERATURE, ATTR_TIME, CONCENTRATION_MICROGRAMS_PER_CUBIC_METER, CONCENTRATION_PARTS_PER_BILLION, CONCENTRATION_PARTS_PER_MILLION, CONF_TOKEN, CONF_USERNAME, PERCENTAGE, TEMP_CELSIUS, TIME_SECONDS, ) from homeassistant.exceptions import PlatformNotReady from homeassistant.helpers.aiohttp_client import async_get_clientsession import homeassistant.helpers.config_validation as cv from homeassistant.helpers.config_validation import PLATFORM_SCHEMA from homeassistant.helpers.entity import Entity from homeassistant.util import Throttle _LOGGER = logging.getLogger(__name__) ATTR_HUMIDITY = "humidity" ATTR_PM2_5 = "PM2.5" ATTR_CARBON_DIOXIDE = "CO2" ATTR_VOLATILE_ORGANIC_COMPOUNDS = "VOC" ATTR_FOOBOT_INDEX = "index" SENSOR_TYPES = { "time": [ATTR_TIME, TIME_SECONDS], "pm": [ATTR_PM2_5, CONCENTRATION_MICROGRAMS_PER_CUBIC_METER, "mdi:cloud"], "tmp": [ATTR_TEMPERATURE, TEMP_CELSIUS, "mdi:thermometer"], "hum": [ATTR_HUMIDITY, PERCENTAGE, "mdi:water-percent"], "co2": [ATTR_CARBON_DIOXIDE, CONCENTRATION_PARTS_PER_MILLION, "mdi:molecule-co2"], "voc": [ ATTR_VOLATILE_ORGANIC_COMPOUNDS, CONCENTRATION_PARTS_PER_BILLION, "mdi:cloud", ], "allpollu": [ATTR_FOOBOT_INDEX, PERCENTAGE, "mdi:percent"], } SCAN_INTERVAL = timedelta(minutes=10) PARALLEL_UPDATES = 1 TIMEOUT = 10 PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( {vol.Required(CONF_TOKEN): cv.string, vol.Required(CONF_USERNAME): cv.string} ) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the devices associated with the account.""" token = config.get(CONF_TOKEN) username = config.get(CONF_USERNAME) client = FoobotClient( token, username, async_get_clientsession(hass), timeout=TIMEOUT ) dev = [] try: devices = await client.get_devices() _LOGGER.debug("The following devices were found: %s", devices) for device in devices: foobot_data = FoobotData(client, device["uuid"]) for sensor_type in SENSOR_TYPES: if sensor_type == "time": continue foobot_sensor = FoobotSensor(foobot_data, device, sensor_type) dev.append(foobot_sensor) except ( aiohttp.client_exceptions.ClientConnectorError, asyncio.TimeoutError, FoobotClient.TooManyRequests, FoobotClient.InternalError, ) as err: _LOGGER.exception("Failed to connect to foobot servers") raise PlatformNotReady from err except FoobotClient.ClientError: _LOGGER.error("Failed to fetch data from foobot servers") return async_add_entities(dev, True) class FoobotSensor(Entity): """Implementation of a Foobot sensor.""" def __init__(self, data, device, sensor_type): """Initialize the sensor.""" self._uuid = device["uuid"] self.foobot_data = data self._name = f"Foobot {device['name']} {SENSOR_TYPES[sensor_type][0]}" self.type = sensor_type self._unit_of_measurement = SENSOR_TYPES[sensor_type][1] @property def name(self): """Return the name of the sensor.""" return self._name @property def icon(self): """Icon to use in the frontend.""" return SENSOR_TYPES[self.type][2] @property def state(self): """Return the state of the device.""" try: data = self.foobot_data.data[self.type] except (KeyError, TypeError): data = None return data @property def unique_id(self): """Return the unique id of this entity.""" return f"{self._uuid}_{self.type}" @property def unit_of_measurement(self): """Return the unit of measurement of this entity.""" return self._unit_of_measurement async def async_update(self): """Get the latest data.""" await self.foobot_data.async_update() class FoobotData(Entity): """Get data from Foobot API.""" def __init__(self, client, uuid): """Initialize the data object.""" self._client = client self._uuid = uuid self.data = {} @Throttle(SCAN_INTERVAL) async def async_update(self): """Get the data from Foobot API.""" interval = SCAN_INTERVAL.total_seconds() try: response = await self._client.get_last_data( self._uuid, interval, interval + 1 ) except ( aiohttp.client_exceptions.ClientConnectorError, asyncio.TimeoutError, self._client.TooManyRequests, self._client.InternalError, ): _LOGGER.debug("Couldn't fetch data") return False _LOGGER.debug("The data response is: %s", response) self.data = {k: round(v, 1) for k, v in response[0].items()} return True
import pytest from homeassistant.components import geo_location from homeassistant.components.geo_location import GeolocationEvent from homeassistant.setup import async_setup_component async def test_setup_component(hass): """Simple test setup of component.""" result = await async_setup_component(hass, geo_location.DOMAIN, {}) assert result async def test_event(hass): """Simple test of the geolocation event class.""" entity = GeolocationEvent() assert entity.state is None assert entity.distance is None assert entity.latitude is None assert entity.longitude is None with pytest.raises(NotImplementedError): assert entity.source is None
import asyncio import pytest from homeassistant.core import callback from homeassistant.helpers import area_registry import tests.async_mock from tests.common import flush_store, mock_area_registry @pytest.fixture def registry(hass): """Return an empty, loaded, registry.""" return mock_area_registry(hass) @pytest.fixture def update_events(hass): """Capture update events.""" events = [] @callback def async_capture(event): events.append(event.data) hass.bus.async_listen(area_registry.EVENT_AREA_REGISTRY_UPDATED, async_capture) return events async def test_list_areas(registry): """Make sure that we can read areas.""" registry.async_create("mock") areas = registry.async_list_areas() assert len(areas) == len(registry.areas) async def test_create_area(hass, registry, update_events): """Make sure that we can create an area.""" area = registry.async_create("mock") assert area.name == "mock" assert len(registry.areas) == 1 await hass.async_block_till_done() assert len(update_events) == 1 assert update_events[0]["action"] == "create" assert update_events[0]["area_id"] == area.id async def test_create_area_with_name_already_in_use(hass, registry, update_events): """Make sure that we can't create an area with a name already in use.""" area1 = registry.async_create("mock") with pytest.raises(ValueError) as e_info: area2 = registry.async_create("mock") assert area1 != area2 assert e_info == "Name is already in use" await hass.async_block_till_done() assert len(registry.areas) == 1 assert len(update_events) == 1 async def test_delete_area(hass, registry, update_events): """Make sure that we can delete an area.""" area = registry.async_create("mock") await registry.async_delete(area.id) assert not registry.areas await hass.async_block_till_done() assert len(update_events) == 2 assert update_events[0]["action"] == "create" assert update_events[0]["area_id"] == area.id assert update_events[1]["action"] == "remove" assert update_events[1]["area_id"] == area.id async def test_delete_non_existing_area(registry): """Make sure that we can't delete an area that doesn't exist.""" registry.async_create("mock") with pytest.raises(KeyError): await registry.async_delete("") assert len(registry.areas) == 1 async def test_update_area(hass, registry, update_events): """Make sure that we can read areas.""" area = registry.async_create("mock") updated_area = registry.async_update(area.id, name="mock1") assert updated_area != area assert updated_area.name == "mock1" assert len(registry.areas) == 1 await hass.async_block_till_done() assert len(update_events) == 2 assert update_events[0]["action"] == "create" assert update_events[0]["area_id"] == area.id assert update_events[1]["action"] == "update" assert update_events[1]["area_id"] == area.id async def test_update_area_with_same_name(registry): """Make sure that we can reapply the same name to the area.""" area = registry.async_create("mock") updated_area = registry.async_update(area.id, name="mock") assert updated_area == area assert len(registry.areas) == 1 async def test_update_area_with_name_already_in_use(registry): """Make sure that we can't update an area with a name already in use.""" area1 = registry.async_create("mock1") area2 = registry.async_create("mock2") with pytest.raises(ValueError) as e_info: registry.async_update(area1.id, name="mock2") assert e_info == "Name is already in use" assert area1.name == "mock1" assert area2.name == "mock2" assert len(registry.areas) == 2 async def test_load_area(hass, registry): """Make sure that we can load/save data correctly.""" registry.async_create("mock1") registry.async_create("mock2") assert len(registry.areas) == 2 registry2 = area_registry.AreaRegistry(hass) await flush_store(registry._store) await registry2.async_load() assert list(registry.areas) == list(registry2.areas) async def test_loading_area_from_storage(hass, hass_storage): """Test loading stored areas on start.""" hass_storage[area_registry.STORAGE_KEY] = { "version": area_registry.STORAGE_VERSION, "data": {"areas": [{"id": "12345A", "name": "mock"}]}, } registry = await area_registry.async_get_registry(hass) assert len(registry.areas) == 1 async def test_loading_race_condition(hass): """Test only one storage load called when concurrent loading occurred .""" with tests.async_mock.patch( "homeassistant.helpers.area_registry.AreaRegistry.async_load" ) as mock_load: results = await asyncio.gather( area_registry.async_get_registry(hass), area_registry.async_get_registry(hass), ) mock_load.assert_called_once_with() assert results[0] == results[1]
from unittest.mock import Mock import pandas as pd import pytest import pytz from qstrader.execution.order import Order from qstrader.portcon.pcm import PortfolioConstructionModel SENTINEL_DT = pd.Timestamp('2019-01-01 15:00:00', tz=pytz.utc) @pytest.mark.parametrize( 'description,port_dict,uni_assets,expected', [ ( 'empty on both sides', {}, [], [] ), ( 'partially intersecting set of assets', { 'EQ:ABC': 100, 'EQ:DEF': 250, 'EQ:GHI': 38 }, ['EQ:123', 'EQ:GHI', 'EQ:ABC', 'EQ:567'], ['EQ:123', 'EQ:567', 'EQ:ABC', 'EQ:DEF', 'EQ:GHI'] ), ( 'non-intersecting set of assets', {'EQ:ABC': 450, 'EQ:DEF': 210}, ['EQ:567', 'EQ:123'], ['EQ:123', 'EQ:567', 'EQ:ABC', 'EQ:DEF'] ) ] ) def test_obtain_full_asset_list(description, port_dict, uni_assets, expected): """ Tests the _obtain_full_asset_list method of the PortfolioConstructionModel base class. """ port_id = '1234' broker = Mock() broker.get_portfolio_as_dict.return_value = port_dict universe = Mock() universe.get_assets.return_value = uni_assets order_sizer = Mock() optimiser = Mock() pcm = PortfolioConstructionModel( broker, port_id, universe, order_sizer, optimiser ) result = pcm._obtain_full_asset_list(SENTINEL_DT) assert result == expected @pytest.mark.parametrize( 'description,full_assets,expected', [ ( 'empty assets', [], {} ), ( 'non-empty assets', ['EQ:ABC', 'EQ:123', 'EQ:A1B2'], {'EQ:ABC': 0.0, 'EQ:123': 0.0, 'EQ:A1B2': 0.0} ) ] ) def test_create_zero_target_weight_vector(description, full_assets, expected): """ Tests the _create_zero_target_weight_vector method of the PortfolioConstructionModel base class. """ port_id = '1234' broker = Mock() universe = Mock() order_sizer = Mock() optimiser = Mock() pcm = PortfolioConstructionModel( broker, port_id, universe, order_sizer, optimiser ) result = pcm._create_zero_target_weight_vector(full_assets) assert result == expected @pytest.mark.parametrize( 'description,zero_weights,optimised_weights,expected', [ ( 'empty weights on both sides', {}, {}, {} ), ( 'non-intersecting weights', {'EQ:ABC': 0.0, 'EQ:DEF': 0.0}, {'EQ:123': 0.5, 'EQ:567': 0.5}, {'EQ:ABC': 0.0, 'EQ:DEF': 0.0, 'EQ:123': 0.5, 'EQ:567': 0.5}, ), ( 'partially-intersecting weights', {'EQ:ABC': 0.0, 'EQ:DEF': 0.0, 'EQ:123': 0.0}, {'EQ:123': 0.25, 'EQ:567': 0.25, 'EQ:890': 0.5}, {'EQ:ABC': 0.0, 'EQ:DEF': 0.0, 'EQ:123': 0.25, 'EQ:567': 0.25, 'EQ:890': 0.5}, ), ( 'fully-intersecting weights', {'EQ:ABC': 0.0, 'EQ:DEF': 0.0, 'EQ:123': 0.0}, {'EQ:ABC': 0.25, 'EQ:DEF': 0.25, 'EQ:123': 0.5}, {'EQ:ABC': 0.25, 'EQ:DEF': 0.25, 'EQ:123': 0.5}, ) ] ) def test_create_full_asset_weight_vector( description, zero_weights, optimised_weights, expected ): """ Tests the _create_full_asset_weight_vector method of the PortfolioConstructionModel base class. """ port_id = '1234' broker = Mock() universe = Mock() order_sizer = Mock() optimiser = Mock() pcm = PortfolioConstructionModel( broker, port_id, universe, order_sizer, optimiser ) result = pcm._create_full_asset_weight_vector(zero_weights, optimised_weights) assert result == expected @pytest.mark.parametrize( 'description,target_portfolio,current_portfolio,expected', [ ( 'empty portfolios on both sides', {}, {}, [] ), ( 'non-empty equal portfolios on both sides - no orders', {'EQ:ABC': {'quantity': 100}, 'EQ:DEF': {'quantity': 250}}, {'EQ:ABC': {'quantity': 100}, 'EQ:DEF': {'quantity': 250}}, [] ), ( 'non-empty target portfolio with empty current portfolio', {'EQ:ABC': {'quantity': 100}, 'EQ:DEF': {'quantity': 250}}, {}, [ Order(SENTINEL_DT, 'EQ:ABC', 100), Order(SENTINEL_DT, 'EQ:DEF', 250) ] ), ( 'empty target portfolio with non-empty current portfolio', {}, {'EQ:ABC': {'quantity': 345}, 'EQ:DEF': {'quantity': 223}}, [ Order(SENTINEL_DT, 'EQ:ABC', -345), Order(SENTINEL_DT, 'EQ:DEF', -250) ] ), ( 'non-empty portfolios, non-intersecting symbols', {'EQ:ABC': {'quantity': 123}, 'EQ:DEF': {'quantity': 456}}, {'EQ:GHI': {'quantity': 217}, 'EQ:JKL': {'quantity': 48}}, [ Order(SENTINEL_DT, 'EQ:ABC', 123), Order(SENTINEL_DT, 'EQ:DEF', 456), Order(SENTINEL_DT, 'EQ:GHI', -217), Order(SENTINEL_DT, 'EQ:JKL', -48) ] ), ( 'non-empty portfolios, partially-intersecting symbols', {'EQ:ABC': {'quantity': 123}, 'EQ:DEF': {'quantity': 456}}, {'EQ:DEF': {'quantity': 217}, 'EQ:GHI': {'quantity': 48}}, [ Order(SENTINEL_DT, 'EQ:ABC', 123), Order(SENTINEL_DT, 'EQ:DEF', 239), Order(SENTINEL_DT, 'EQ:GHI', -48) ] ), ( 'non-empty portfolios, fully-intersecting symbols', {'EQ:ABC': {'quantity': 123}, 'EQ:DEF': {'quantity': 456}}, {'EQ:ABC': {'quantity': 217}, 'EQ:DEF': {'quantity': 48}}, [ Order(SENTINEL_DT, 'EQ:ABC', -94), Order(SENTINEL_DT, 'EQ:DEF', 408) ] ) ] ) def test_generate_rebalance_orders( helpers, description, target_portfolio, current_portfolio, expected ): """ Tests the _generate_rebalance_orders method of the PortfolioConstructionModel base class. """ port_id = '1234' broker = Mock() universe = Mock() order_sizer = Mock() optimiser = Mock() pcm = PortfolioConstructionModel( broker, port_id, universe, order_sizer, optimiser ) result = pcm._generate_rebalance_orders(SENTINEL_DT, target_portfolio, current_portfolio) helpers.assert_order_lists_equal(result, expected)
from trashcli.put import TrashDirectoryForPut from trashcli.put import AbsolutePaths, TopDirRelativePaths from mock import Mock class TestHowOriginalLocationIsStored: def test_for_absolute_paths(self): fs = Mock() self.dir = TrashDirectoryForPut('/volume/.Trash', '/volume', fs) self.dir.path_maker = AbsolutePaths(None) self.assert_path_for_trashinfo_is('/file' , '/file') self.assert_path_for_trashinfo_is('/file' , '/dir/../file') self.assert_path_for_trashinfo_is('/outside/file' , '/outside/file') self.assert_path_for_trashinfo_is('/volume/file' , '/volume/file') self.assert_path_for_trashinfo_is('/volume/dir/file' , '/volume/dir/file') def test_for_relative_paths(self): self.dir = TrashDirectoryForPut('/volume/.Trash', '/volume', Mock()) self.dir.path_maker = TopDirRelativePaths('/volume') self.assert_path_for_trashinfo_is('/file' , '/file') self.assert_path_for_trashinfo_is('/file' , '/dir/../file') self.assert_path_for_trashinfo_is('/outside/file' , '/outside/file') self.assert_path_for_trashinfo_is('file' , '/volume/file') self.assert_path_for_trashinfo_is('dir/file' , '/volume/dir/file') def assert_path_for_trashinfo_is(self, expected_value, file_to_be_trashed): result = self.dir.path_for_trash_info_for_file(file_to_be_trashed) assert expected_value == result
import pytest import homeassistant.components.automation as automation from homeassistant.components.lock import DOMAIN from homeassistant.const import STATE_LOCKED, STATE_UNLOCKED from homeassistant.helpers import device_registry from homeassistant.setup import async_setup_component from tests.common import ( MockConfigEntry, assert_lists_same, async_get_device_automations, async_mock_service, mock_device_registry, mock_registry, ) @pytest.fixture def device_reg(hass): """Return an empty, loaded, registry.""" return mock_device_registry(hass) @pytest.fixture def entity_reg(hass): """Return an empty, loaded, registry.""" return mock_registry(hass) @pytest.fixture def calls(hass): """Track calls to a mock service.""" return async_mock_service(hass, "test", "automation") async def test_get_triggers(hass, device_reg, entity_reg): """Test we get the expected triggers from a lock.""" config_entry = MockConfigEntry(domain="test", data={}) config_entry.add_to_hass(hass) device_entry = device_reg.async_get_or_create( config_entry_id=config_entry.entry_id, connections={(device_registry.CONNECTION_NETWORK_MAC, "12:34:56:AB:CD:EF")}, ) entity_reg.async_get_or_create(DOMAIN, "test", "5678", device_id=device_entry.id) expected_triggers = [ { "platform": "device", "domain": DOMAIN, "type": "locked", "device_id": device_entry.id, "entity_id": f"{DOMAIN}.test_5678", }, { "platform": "device", "domain": DOMAIN, "type": "unlocked", "device_id": device_entry.id, "entity_id": f"{DOMAIN}.test_5678", }, ] triggers = await async_get_device_automations(hass, "trigger", device_entry.id) assert_lists_same(triggers, expected_triggers) async def test_if_fires_on_state_change(hass, calls): """Test for turn_on and turn_off triggers firing.""" hass.states.async_set("lock.entity", STATE_UNLOCKED) assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: [ { "trigger": { "platform": "device", "domain": DOMAIN, "device_id": "", "entity_id": "lock.entity", "type": "locked", }, "action": { "service": "test.automation", "data_template": { "some": ( "locked - {{ trigger.platform}} - " "{{ trigger.entity_id}} - {{ trigger.from_state.state}} - " "{{ trigger.to_state.state}} - {{ trigger.for }}" ) }, }, }, { "trigger": { "platform": "device", "domain": DOMAIN, "device_id": "", "entity_id": "lock.entity", "type": "unlocked", }, "action": { "service": "test.automation", "data_template": { "some": ( "unlocked - {{ trigger.platform}} - " "{{ trigger.entity_id}} - {{ trigger.from_state.state}} - " "{{ trigger.to_state.state}} - {{ trigger.for }}" ) }, }, }, ] }, ) # Fake that the entity is turning on. hass.states.async_set("lock.entity", STATE_LOCKED) await hass.async_block_till_done() assert len(calls) == 1 assert calls[0].data[ "some" ] == "locked - device - {} - unlocked - locked - None".format("lock.entity") # Fake that the entity is turning off. hass.states.async_set("lock.entity", STATE_UNLOCKED) await hass.async_block_till_done() assert len(calls) == 2 assert calls[1].data[ "some" ] == "unlocked - device - {} - locked - unlocked - None".format("lock.entity")
from homeassistant.components.broadlink.const import DOMAIN from tests.async_mock import MagicMock, patch from tests.common import MockConfigEntry # Do not edit/remove. Adding is ok. BROADLINK_DEVICES = { "Entrance": ( "192.168.0.11", "34ea34befc25", "RM mini 3", "Broadlink", "RM2", 0x2737, 57, 8, ), "Living Room": ( "192.168.0.12", "34ea34b43b5a", "RM mini 3", "Broadlink", "RM4", 0x5F36, 44017, 10, ), "Office": ( "192.168.0.13", "34ea34b43d22", "RM pro", "Broadlink", "RM2", 0x2787, 20025, 7, ), "Garage": ( "192.168.0.14", "34ea34c43f31", "RM4 pro", "Broadlink", "RM4", 0x6026, 52, 4, ), "Bedroom": ( "192.168.0.15", "34ea34b45d2c", "e-Sensor", "Broadlink", "A1", 0x2714, 20025, 5, ), "Kitchen": ( # Not supported. "192.168.0.64", "34ea34b61d2c", "LB1", "Broadlink", "SmartBulb", 0x504E, 57, 5, ), } class BroadlinkDevice: """Representation of a Broadlink device.""" def __init__( self, name, host, mac, model, manufacturer, type_, devtype, fwversion, timeout ): """Initialize the device.""" self.name: str = name self.host: str = host self.mac: str = mac self.model: str = model self.manufacturer: str = manufacturer self.type: str = type_ self.devtype: int = devtype self.timeout: int = timeout self.fwversion: int = fwversion async def setup_entry(self, hass, mock_api=None, mock_entry=None): """Set up the device.""" mock_api = mock_api or self.get_mock_api() mock_entry = mock_entry or self.get_mock_entry() mock_entry.add_to_hass(hass) with patch( "homeassistant.components.broadlink.device.blk.gendevice", return_value=mock_api, ), patch( "homeassistant.components.broadlink.updater.blk.discover", return_value=[mock_api], ): await hass.config_entries.async_setup(mock_entry.entry_id) await hass.async_block_till_done() return mock_api, mock_entry def get_mock_api(self): """Return a mock device (API).""" mock_api = MagicMock() mock_api.name = self.name mock_api.host = (self.host, 80) mock_api.mac = bytes.fromhex(self.mac) mock_api.model = self.model mock_api.manufacturer = self.manufacturer mock_api.type = self.type mock_api.devtype = self.devtype mock_api.timeout = self.timeout mock_api.is_locked = False mock_api.auth.return_value = True mock_api.get_fwversion.return_value = self.fwversion return mock_api def get_mock_entry(self): """Return a mock config entry.""" return MockConfigEntry( domain=DOMAIN, unique_id=self.mac, title=self.name, data=self.get_entry_data(), ) def get_entry_data(self): """Return entry data.""" return { "host": self.host, "mac": self.mac, "type": self.devtype, "timeout": self.timeout, } def get_device(name): """Get a device by name.""" return BroadlinkDevice(name, *BROADLINK_DEVICES[name])
import cherrypy from cherrypy.lib import auth_digest from cherrypy._cpcompat import ntob from cherrypy.test import helper def _fetch_users(): return {'test': 'test', '☃йюзер': 'їпароль'} get_ha1 = cherrypy.lib.auth_digest.get_ha1_dict_plain(_fetch_users()) class DigestAuthTest(helper.CPWebCase): @staticmethod def setup_server(): class Root: @cherrypy.expose def index(self): return 'This is public.' class DigestProtected: @cherrypy.expose def index(self, *args, **kwargs): return "Hello %s, you've been authorized." % ( cherrypy.request.login) conf = {'/digest': {'tools.auth_digest.on': True, 'tools.auth_digest.realm': 'localhost', 'tools.auth_digest.get_ha1': get_ha1, 'tools.auth_digest.key': 'a565c27146791cfb', 'tools.auth_digest.debug': True, 'tools.auth_digest.accept_charset': 'UTF-8'}} root = Root() root.digest = DigestProtected() cherrypy.tree.mount(root, config=conf) def testPublic(self): self.getPage('/') assert self.status == '200 OK' self.assertHeader('Content-Type', 'text/html;charset=utf-8') assert self.body == b'This is public.' def _test_parametric_digest(self, username, realm): test_uri = '/digest/?@/=%2F%40&%f0%9f%99%88=path' self.getPage(test_uri) assert self.status_code == 401 msg = 'Digest authentification scheme was not found' www_auth_digest = tuple(filter( lambda kv: kv[0].lower() == 'www-authenticate' and kv[1].startswith('Digest '), self.headers, )) assert len(www_auth_digest) == 1, msg items = www_auth_digest[0][-1][7:].split(', ') tokens = {} for item in items: key, value = item.split('=') tokens[key.lower()] = value assert tokens['realm'] == '"localhost"' assert tokens['algorithm'] == '"MD5"' assert tokens['qop'] == '"auth"' assert tokens['charset'] == '"UTF-8"' nonce = tokens['nonce'].strip('"') # Test user agent response with a wrong value for 'realm' base_auth = ('Digest username="%s", ' 'realm="%s", ' 'nonce="%s", ' 'uri="%s", ' 'algorithm=MD5, ' 'response="%s", ' 'qop=auth, ' 'nc=%s, ' 'cnonce="1522e61005789929"') encoded_user = username encoded_user = encoded_user.encode('utf-8') encoded_user = encoded_user.decode('latin1') auth_header = base_auth % ( encoded_user, realm, nonce, test_uri, '11111111111111111111111111111111', '00000001', ) auth = auth_digest.HttpDigestAuthorization(auth_header, 'GET') # calculate the response digest ha1 = get_ha1(auth.realm, auth.username) response = auth.request_digest(ha1) auth_header = base_auth % ( encoded_user, realm, nonce, test_uri, response, '00000001', ) self.getPage(test_uri, [('Authorization', auth_header)]) def test_wrong_realm(self): # send response with correct response digest, but wrong realm self._test_parametric_digest(username='test', realm='wrong realm') assert self.status_code == 401 def test_ascii_user(self): self._test_parametric_digest(username='test', realm='localhost') assert self.status == '200 OK' assert self.body == b"Hello test, you've been authorized." def test_unicode_user(self): self._test_parametric_digest(username='☃йюзер', realm='localhost') assert self.status == '200 OK' assert self.body == ntob( "Hello ☃йюзер, you've been authorized.", 'utf-8', ) def test_wrong_scheme(self): basic_auth = { 'Authorization': 'Basic foo:bar', } self.getPage('/digest/', headers=list(basic_auth.items())) assert self.status_code == 401
import re from absl import flags from perfkitbenchmarker import configs from perfkitbenchmarker import errors from perfkitbenchmarker import sample from perfkitbenchmarker import vm_util from perfkitbenchmarker.linux_packages import docker FLAGS = flags.FLAGS BENCHMARK_NAME = 'cloudsuite_data_analytics' BENCHMARK_CONFIG = """ cloudsuite_data_analytics: description: > Run Cloudsuite data analytics benchmark. Specify the number of slave VMs with --num_vms. vm_groups: master: vm_spec: *default_single_core vm_count: 1 slaves: vm_spec: *default_single_core """ def GetConfig(user_config): config = configs.LoadConfig(BENCHMARK_CONFIG, user_config, BENCHMARK_NAME) if FLAGS['num_vms'].present: config['vm_groups']['slaves']['vm_count'] = FLAGS.num_vms return config def Prepare(benchmark_spec): """Install docker. Pull images. Start the master and slaves. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. """ master = benchmark_spec.vm_groups['master'][0] slaves = benchmark_spec.vm_groups['slaves'] def PrepareCommon(vm): if not docker.IsInstalled(vm): vm.Install('docker') def PrepareMaster(vm): PrepareCommon(vm) vm.RemoteCommand('sudo docker pull cloudsuite/data-analytics') vm.RemoteCommand('sudo docker run -d --name master --net host ' 'cloudsuite/data-analytics master') def PrepareSlave(vm): PrepareCommon(vm) vm.RemoteCommand('sudo docker pull cloudsuite/hadoop') vm.RemoteCommand('sudo docker run -d --name slave --net host ' 'cloudsuite/hadoop slave %s' % master.internal_ip) target_arg_tuples = ([(PrepareSlave, [vm], {}) for vm in slaves] + [(PrepareMaster, [master], {})]) vm_util.RunParallelThreads(target_arg_tuples, len(target_arg_tuples)) def Run(benchmark_spec): """Run the data analytics benchmark. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. Returns: A list of sample.Sample objects. """ master = benchmark_spec.vm_groups['master'][0] results = [] stdout, _ = master.RemoteCommand('sudo docker exec master benchmark 2>&1', should_log=True) matches = re.findall(r'^Benchmark time: (\d+)ms$', stdout, re.MULTILINE) if len(matches) != 1: raise errors.Benchmark.RunError('Expected to find benchmark runtime') results.append(sample.Sample('Benchmark runtime', float(matches[0]) / 1000, 'seconds')) return results def Cleanup(benchmark_spec): """Stop and remove docker containers. Remove images. Args: benchmark_spec: The benchmark specification. Contains all data that is required to run the benchmark. """ master = benchmark_spec.vm_groups['master'][0] slaves = benchmark_spec.vm_groups['slaves'] def CleanupMaster(vm): vm.RemoteCommand('sudo docker stop master') vm.RemoteCommand('sudo docker rm master') vm.RemoteCommand('sudo docker rmi cloudsuite/data-analytics') def CleanupSlave(vm): vm.RemoteCommand('sudo docker stop slave') vm.RemoteCommand('sudo docker rm slave') vm.RemoteCommand('sudo docker rmi cloudsuite/hadoop') target_arg_tuples = ([(CleanupSlave, [vm], {}) for vm in slaves] + [(CleanupMaster, [master], {})]) vm_util.RunParallelThreads(target_arg_tuples, len(target_arg_tuples))
import mock from pytest import raises from paasta_tools.delete_kubernetes_deployments import get_deployment_names_from_list from paasta_tools.delete_kubernetes_deployments import main from paasta_tools.utils import InvalidJobNameError def test_main(): with mock.patch( "paasta_tools.delete_kubernetes_deployments.get_deployment_names_from_list", autospec=True, ) as mock_get_deployment_names_from_list, mock.patch( "paasta_tools.delete_kubernetes_deployments.delete_deployment", autospec=True, ) as mock_delete_deployment, mock.patch( "paasta_tools.delete_kubernetes_deployments.KubeClient", autospec=True ) as mock_kube_client, mock.patch( "paasta_tools.delete_kubernetes_deployments.ensure_namespace", autospec=True, ) as mock_ensure_namespace: # Test main() success mock_get_deployment_names_from_list.return_value = ["fake_pcm_deployment"] with raises(SystemExit) as e: main() assert e.value.code == 0 assert mock_ensure_namespace.called mock_delete_deployment.assert_called_with( kube_client=mock_kube_client.return_value, deployment_name="fake_pcm_deployment", ) # Test main() failed mock_delete_deployment.side_effect = Exception("Delete Error") with raises(SystemExit) as e: main() assert e.value.code == 1 def test_get_deployment_names_from_list(): with mock.patch( "paasta_tools.delete_kubernetes_deployments.decompose_job_id", autospec=True ) as mock_decompose_job_id: # Test get_deployment_names_from_list() success mock_decompose_job_id.return_value = ( "fake-service", "fake_instance", "fake_hash", "fake_hash", ) output = get_deployment_names_from_list(["fake-service.fake_instance"]) assert output[0] == "fake-service-fake--instance" # Test get_deployment_names_from_list() failed mock_decompose_job_id.side_effect = InvalidJobNameError() with raises(SystemExit) as e: get_deployment_names_from_list(["fake-service.fake_instance"]) assert e.value.code == 1
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf from datasets import dataset_utils slim = tf.contrib.slim _FILE_PATTERN = 'mnist_%s.tfrecord' _SPLITS_TO_SIZES = {'train': 60000, 'test': 10000} _NUM_CLASSES = 10 _ITEMS_TO_DESCRIPTIONS = { 'image': 'A [28 x 28 x 1] grayscale image.', 'label': 'A single integer between 0 and 9', } def get_split(split_name, dataset_dir, file_pattern=None, reader=None): """Gets a dataset tuple with instructions for reading MNIST. Args: split_name: A train/test split name. dataset_dir: The base directory of the dataset sources. file_pattern: The file pattern to use when matching the dataset sources. It is assumed that the pattern contains a '%s' string so that the split name can be inserted. reader: The TensorFlow reader type. Returns: A `Dataset` namedtuple. Raises: ValueError: if `split_name` is not a valid train/test split. """ if split_name not in _SPLITS_TO_SIZES: raise ValueError('split name %s was not recognized.' % split_name) if not file_pattern: file_pattern = _FILE_PATTERN file_pattern = os.path.join(dataset_dir, file_pattern % split_name) # Allowing None in the signature so that dataset_factory can use the default. if reader is None: reader = tf.TFRecordReader keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='raw'), 'image/class/label': tf.FixedLenFeature( [1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64)), } items_to_handlers = { 'image': slim.tfexample_decoder.Image(shape=[28, 28, 1], channels=1), 'label': slim.tfexample_decoder.Tensor('image/class/label', shape=[]), } decoder = slim.tfexample_decoder.TFExampleDecoder( keys_to_features, items_to_handlers) labels_to_names = None if dataset_utils.has_labels(dataset_dir): labels_to_names = dataset_utils.read_label_file(dataset_dir) return slim.dataset.Dataset( data_sources=file_pattern, reader=reader, decoder=decoder, num_samples=_SPLITS_TO_SIZES[split_name], num_classes=_NUM_CLASSES, items_to_descriptions=_ITEMS_TO_DESCRIPTIONS, labels_to_names=labels_to_names)
import argparse from django.core.management.base import CommandError from django.http.request import HttpRequest from weblate.trans.management.commands import WeblateTranslationCommand class Command(WeblateTranslationCommand): """Command for mass importing suggestions.""" help = "imports suggestions" def add_arguments(self, parser): super().add_arguments(parser) parser.add_argument( "--author", default="[email protected]", help=("Email address of author (has to be registered in Weblate)"), ) parser.add_argument("file", type=argparse.FileType("rb"), help="File to import") def handle(self, *args, **options): # Get translation object translation = self.get_translation(**options) # Create fake request object request = HttpRequest() request.user = None # Process import try: translation.merge_upload( request, options["file"], False, method="suggest", author_email=options["author"], ) except OSError as err: raise CommandError(f"Failed to import translation file: {err}") finally: options["file"].close()
import functools import itertools import time def merge(obj, *keys): return itertools.chain(*[obj[k] for k in keys]) class CachedProperty: def __init__(self, ttl=300): self.ttl = ttl def __call__(self, fget, doc=None): self.fget = fget self.__doc__ = doc or fget.__doc__ self.__name__ = fget.__name__ self.__module__ = fget.__module__ return self def __get__(self, inst, owner): try: value, last_update = inst._cache[self.__name__] if self.ttl > 0 and time.time() - last_update > self.ttl: raise AttributeError except (KeyError, AttributeError): value = self.fget(inst) try: cache = inst._cache except AttributeError: cache = inst._cache = {} cache[self.__name__] = (value, time.time()) return value def memoize(obj): cache = obj.cache = {} @functools.wraps(obj) def memoizer(*args, **kwargs): key = str(args) + str(kwargs) if key not in cache: cache[key] = obj(*args, **kwargs) return cache[key] return memoizer def humanize_bytes(b): abbrevs = ((1 << 30, "GB"), (1 << 20, "MB"), (1 << 10, "kB"), (1, "B")) for factor, suffix in abbrevs: if b >= factor: break return "%.*f %s" % (2, b / float(factor), suffix)
from django.core.management.base import CommandError from django.db.models import Q from weblate.auth.models import User from weblate.utils.backup import make_password from weblate.utils.management.base import BaseCommand class Command(BaseCommand): help = "setups admin user with random password" def add_arguments(self, parser): parser.add_argument( "--password", default=None, help="Password to set, random is generated if not specified", ) parser.add_argument( "--no-password", action="store_true", default=False, help="Do not set password at all (useful with --update)", ) parser.add_argument( "--username", default="admin", help='Admin username, defaults to "admin"' ) parser.add_argument( "--email", default="[email protected]", help='Admin email, defaults to "[email protected]"', ) parser.add_argument( "--name", default="Weblate Admin", help='Admin name, defaults to "Weblate Admin"', ) parser.add_argument( "--update", action="store_true", default=False, help="Change password for this account if exists", ) def handle(self, *args, **options): """Create admin account with admin password. This is useful mostly for setup inside appliances, when user wants to be able to login remotely and change password then. """ try: user = User.objects.filter( Q(username=options["username"]) | Q(email=options["email"]) ).get() except User.DoesNotExist: user = None except User.MultipleObjectsReturned: raise CommandError("Multiple users matched given parameters!") if user and not options["update"]: raise CommandError("User exists, specify --update to update existing") if options["no_password"]: password = None elif options["password"]: password = options["password"] else: password = make_password(13) self.stdout.write(f"Using generated password: {password}") if user and options["update"]: self.stdout.write(f"Updating user {user.username}") user.email = options["email"] if password is not None and not user.check_password(password): user.set_password(password) else: self.stdout.write("Creating user {}".format(options["username"])) user = User.objects.create_user( options["username"], options["email"], password ) user.full_name = options["name"] user.is_superuser = True user.is_active = True user.save()
import os from django.apps import AppConfig from django.core.checks import Warning, register from filelock import FileLock from weblate.utils.checks import weblate_check from weblate.utils.data import data_dir from weblate.vcs.base import RepositoryException from weblate.vcs.git import GitRepository from weblate.vcs.gpg import check_gpg GIT_ERRORS = [] def check_vcs(app_configs, **kwargs): from weblate.vcs.models import VCS_REGISTRY message = "Failure in loading VCS module for {}: {}" return [ weblate_check( f"weblate.W033.{key}", message.format(key, value.strip()), Warning ) for key, value in VCS_REGISTRY.errors.items() ] def check_git(app_configs, **kwargs): template = "Failure in configuring Git: {}" return [ weblate_check("weblate.C035", template.format(message)) for message in GIT_ERRORS ] class VCSConfig(AppConfig): name = "weblate.vcs" label = "vcs" verbose_name = "VCS" def ready(self): super().ready() register(check_vcs) register(check_git, deploy=True) register(check_gpg, deploy=True) home = data_dir("home") if not os.path.exists(home): os.makedirs(home) # Configure merge driver for Gettext PO # We need to do this behind lock to avoid errors when servers # start in parallel lockfile = FileLock(os.path.join(home, "gitlock")) with lockfile: try: GitRepository.global_setup() except RepositoryException as error: GIT_ERRORS.append(str(error)) # Use it for *.po by default configdir = os.path.join(home, ".config", "git") configfile = os.path.join(configdir, "attributes") if not os.path.exists(configfile): if not os.path.exists(configdir): os.makedirs(configdir) with open(configfile, "w") as handle: handle.write("*.po merge=weblate-merge-gettext-po\n")
import pytest from homeassistant.components.arcam_fmj.const import DOMAIN import homeassistant.components.automation as automation from homeassistant.setup import async_setup_component from tests.common import ( MockConfigEntry, assert_lists_same, async_get_device_automations, async_mock_service, mock_device_registry, mock_registry, ) @pytest.fixture def device_reg(hass): """Return an empty, loaded, registry.""" return mock_device_registry(hass) @pytest.fixture def entity_reg(hass): """Return an empty, loaded, registry.""" return mock_registry(hass) @pytest.fixture def calls(hass): """Track calls to a mock service.""" return async_mock_service(hass, "test", "automation") async def test_get_triggers(hass, device_reg, entity_reg): """Test we get the expected triggers from a arcam_fmj.""" config_entry = MockConfigEntry(domain=DOMAIN, data={}) config_entry.add_to_hass(hass) device_entry = device_reg.async_get_or_create( config_entry_id=config_entry.entry_id, identifiers={(DOMAIN, "host", 1234)}, ) entity_reg.async_get_or_create( "media_player", DOMAIN, "5678", device_id=device_entry.id ) expected_triggers = [ { "platform": "device", "domain": DOMAIN, "type": "turn_on", "device_id": device_entry.id, "entity_id": "media_player.arcam_fmj_5678", }, ] triggers = await async_get_device_automations(hass, "trigger", device_entry.id) assert_lists_same(triggers, expected_triggers) async def test_if_fires_on_turn_on_request(hass, calls, player_setup, state): """Test for turn_on and turn_off triggers firing.""" state.get_power.return_value = None assert await async_setup_component( hass, automation.DOMAIN, { automation.DOMAIN: [ { "trigger": { "platform": "device", "domain": DOMAIN, "device_id": "", "entity_id": player_setup, "type": "turn_on", }, "action": { "service": "test.automation", "data_template": {"some": "{{ trigger.entity_id }}"}, }, } ] }, ) await hass.services.async_call( "media_player", "turn_on", {"entity_id": player_setup}, blocking=True, ) await hass.async_block_till_done() assert len(calls) == 1 assert calls[0].data["some"] == player_setup
import os from integration_tests.files import (make_parent_for, make_file, make_unreadable_file) class FakeTrashDir: def __init__(self, path): self.info_path = os.path.join(path, 'info') self.files_path = os.path.join(path, 'files') self.number = 1 def add_unreadable_trashinfo(self, basename): path = self.a_trashinfo(basename) make_unreadable_file(path) def add_trashed_file(self, basename, path, content): trashinfo_path = self.a_trashinfo(basename) file_path = self.file_path(basename) make_file(trashinfo_path, a_trashinfo(path)) make_file(file_path, content) def a_trashinfo(self, basename): return '%s/%s.trashinfo' % (self.info_path, basename) def file_path(self, basename): return '%s/%s' % (self.files_path, basename) def add_trashinfo(self, contents, base_name = None): if not base_name: base_name = str(self.number) self.number += 1 path = '%(info_dir)s/%(name)s.trashinfo' % {'info_dir': self.info_path, 'name': base_name} make_parent_for(path) make_file(path, contents) self.path_of_last_file_added = path def add_trashinfo2(self, escaped_path_entry, formatted_deletion_date): self.add_trashinfo(a_trashinfo(escaped_path_entry, formatted_deletion_date)) def a_trashinfo(escaped_path_entry, formatted_deletion_date = '2000-01-01T00:00:01'): return ("[Trash Info]\n" + "Path=%s\n" % escaped_path_entry + "DeletionDate=%s\n" % formatted_deletion_date) def a_trashinfo_without_date(): return ("[Trash Info]\n" "Path=/path\n") def a_trashinfo_with_invalid_date(): return ("[Trash Info]\n" "Path=/path\n" "DeletionDate=Wrong Date") def a_trashinfo_without_path(): return ("[Trash Info]\n" "DeletionDate='2000-01-01T00:00:00'\n") def a_trashinfo_with_date(date): return ("[Trash Info]\n" "DeletionDate=%s\n" % date) def a_trashinfo_with_path(path): return ("[Trash Info]\n" "Path=%s\n" % path)
from homeassistant.const import ATTR_UNIT_OF_MEASUREMENT, PERCENTAGE, STATE_UNAVAILABLE from tests.components.august.mocks import ( _create_august_with_devices, _mock_activities_from_fixture, _mock_doorbell_from_fixture, _mock_doorsense_enabled_august_lock_detail, _mock_lock_from_fixture, ) async def test_create_doorbell(hass): """Test creation of a doorbell.""" doorbell_one = await _mock_doorbell_from_fixture(hass, "get_doorbell.json") await _create_august_with_devices(hass, [doorbell_one]) sensor_k98gidt45gul_name_battery = hass.states.get( "sensor.k98gidt45gul_name_battery" ) assert sensor_k98gidt45gul_name_battery.state == "96" assert ( sensor_k98gidt45gul_name_battery.attributes["unit_of_measurement"] == PERCENTAGE ) async def test_create_doorbell_offline(hass): """Test creation of a doorbell that is offline.""" doorbell_one = await _mock_doorbell_from_fixture(hass, "get_doorbell.offline.json") await _create_august_with_devices(hass, [doorbell_one]) entity_registry = await hass.helpers.entity_registry.async_get_registry() sensor_tmt100_name_battery = hass.states.get("sensor.tmt100_name_battery") assert sensor_tmt100_name_battery.state == "81" assert sensor_tmt100_name_battery.attributes["unit_of_measurement"] == PERCENTAGE entry = entity_registry.async_get("sensor.tmt100_name_battery") assert entry assert entry.unique_id == "tmt100_device_battery" async def test_create_doorbell_hardwired(hass): """Test creation of a doorbell that is hardwired without a battery.""" doorbell_one = await _mock_doorbell_from_fixture( hass, "get_doorbell.nobattery.json" ) await _create_august_with_devices(hass, [doorbell_one]) sensor_tmt100_name_battery = hass.states.get("sensor.tmt100_name_battery") assert sensor_tmt100_name_battery is None async def test_create_lock_with_linked_keypad(hass): """Test creation of a lock with a linked keypad that both have a battery.""" lock_one = await _mock_lock_from_fixture(hass, "get_lock.doorsense_init.json") await _create_august_with_devices(hass, [lock_one]) entity_registry = await hass.helpers.entity_registry.async_get_registry() sensor_a6697750d607098bae8d6baa11ef8063_name_battery = hass.states.get( "sensor.a6697750d607098bae8d6baa11ef8063_name_battery" ) assert sensor_a6697750d607098bae8d6baa11ef8063_name_battery.state == "88" assert ( sensor_a6697750d607098bae8d6baa11ef8063_name_battery.attributes[ "unit_of_measurement" ] == PERCENTAGE ) entry = entity_registry.async_get( "sensor.a6697750d607098bae8d6baa11ef8063_name_battery" ) assert entry assert entry.unique_id == "A6697750D607098BAE8D6BAA11EF8063_device_battery" state = hass.states.get("sensor.front_door_lock_keypad_battery") assert state.state == "60" assert state.attributes[ATTR_UNIT_OF_MEASUREMENT] == PERCENTAGE entry = entity_registry.async_get("sensor.front_door_lock_keypad_battery") assert entry assert entry.unique_id == "5bc65c24e6ef2a263e1450a8_linked_keypad_battery" async def test_create_lock_with_low_battery_linked_keypad(hass): """Test creation of a lock with a linked keypad that both have a battery.""" lock_one = await _mock_lock_from_fixture(hass, "get_lock.low_keypad_battery.json") await _create_august_with_devices(hass, [lock_one]) entity_registry = await hass.helpers.entity_registry.async_get_registry() sensor_a6697750d607098bae8d6baa11ef8063_name_battery = hass.states.get( "sensor.a6697750d607098bae8d6baa11ef8063_name_battery" ) assert sensor_a6697750d607098bae8d6baa11ef8063_name_battery.state == "88" assert ( sensor_a6697750d607098bae8d6baa11ef8063_name_battery.attributes[ "unit_of_measurement" ] == PERCENTAGE ) entry = entity_registry.async_get( "sensor.a6697750d607098bae8d6baa11ef8063_name_battery" ) assert entry assert entry.unique_id == "A6697750D607098BAE8D6BAA11EF8063_device_battery" state = hass.states.get("sensor.front_door_lock_keypad_battery") assert state.state == "10" assert state.attributes[ATTR_UNIT_OF_MEASUREMENT] == PERCENTAGE entry = entity_registry.async_get("sensor.front_door_lock_keypad_battery") assert entry assert entry.unique_id == "5bc65c24e6ef2a263e1450a8_linked_keypad_battery" # No activity means it will be unavailable until someone unlocks/locks it lock_operator_sensor = entity_registry.async_get( "sensor.a6697750d607098bae8d6baa11ef8063_name_operator" ) assert ( lock_operator_sensor.unique_id == "A6697750D607098BAE8D6BAA11EF8063_lock_operator" ) assert ( hass.states.get("sensor.a6697750d607098bae8d6baa11ef8063_name_operator").state == STATE_UNAVAILABLE ) async def test_lock_operator_bluetooth(hass): """Test operation of a lock with doorsense and bridge.""" lock_one = await _mock_doorsense_enabled_august_lock_detail(hass) activities = await _mock_activities_from_fixture( hass, "get_activity.lock_from_bluetooth.json" ) await _create_august_with_devices(hass, [lock_one], activities=activities) entity_registry = await hass.helpers.entity_registry.async_get_registry() lock_operator_sensor = entity_registry.async_get( "sensor.online_with_doorsense_name_operator" ) assert lock_operator_sensor assert ( hass.states.get("sensor.online_with_doorsense_name_operator").state == "Your favorite elven princess" ) assert ( hass.states.get("sensor.online_with_doorsense_name_operator").attributes[ "remote" ] is False ) assert ( hass.states.get("sensor.online_with_doorsense_name_operator").attributes[ "keypad" ] is False ) assert ( hass.states.get("sensor.online_with_doorsense_name_operator").attributes[ "autorelock" ] is False ) assert ( hass.states.get("sensor.online_with_doorsense_name_operator").attributes[ "method" ] == "mobile" ) async def test_lock_operator_keypad(hass): """Test operation of a lock with doorsense and bridge.""" lock_one = await _mock_doorsense_enabled_august_lock_detail(hass) activities = await _mock_activities_from_fixture( hass, "get_activity.lock_from_keypad.json" ) await _create_august_with_devices(hass, [lock_one], activities=activities) entity_registry = await hass.helpers.entity_registry.async_get_registry() lock_operator_sensor = entity_registry.async_get( "sensor.online_with_doorsense_name_operator" ) assert lock_operator_sensor assert ( hass.states.get("sensor.online_with_doorsense_name_operator").state == "Your favorite elven princess" ) assert ( hass.states.get("sensor.online_with_doorsense_name_operator").attributes[ "remote" ] is False ) assert ( hass.states.get("sensor.online_with_doorsense_name_operator").attributes[ "keypad" ] is True ) assert ( hass.states.get("sensor.online_with_doorsense_name_operator").attributes[ "autorelock" ] is False ) assert ( hass.states.get("sensor.online_with_doorsense_name_operator").attributes[ "method" ] == "keypad" ) async def test_lock_operator_remote(hass): """Test operation of a lock with doorsense and bridge.""" lock_one = await _mock_doorsense_enabled_august_lock_detail(hass) activities = await _mock_activities_from_fixture(hass, "get_activity.lock.json") await _create_august_with_devices(hass, [lock_one], activities=activities) entity_registry = await hass.helpers.entity_registry.async_get_registry() lock_operator_sensor = entity_registry.async_get( "sensor.online_with_doorsense_name_operator" ) assert lock_operator_sensor assert ( hass.states.get("sensor.online_with_doorsense_name_operator").state == "Your favorite elven princess" ) assert ( hass.states.get("sensor.online_with_doorsense_name_operator").attributes[ "remote" ] is True ) assert ( hass.states.get("sensor.online_with_doorsense_name_operator").attributes[ "keypad" ] is False ) assert ( hass.states.get("sensor.online_with_doorsense_name_operator").attributes[ "autorelock" ] is False ) assert ( hass.states.get("sensor.online_with_doorsense_name_operator").attributes[ "method" ] == "remote" ) async def test_lock_operator_autorelock(hass): """Test operation of a lock with doorsense and bridge.""" lock_one = await _mock_doorsense_enabled_august_lock_detail(hass) activities = await _mock_activities_from_fixture( hass, "get_activity.lock_from_autorelock.json" ) await _create_august_with_devices(hass, [lock_one], activities=activities) entity_registry = await hass.helpers.entity_registry.async_get_registry() lock_operator_sensor = entity_registry.async_get( "sensor.online_with_doorsense_name_operator" ) assert lock_operator_sensor assert ( hass.states.get("sensor.online_with_doorsense_name_operator").state == "Auto Relock" ) assert ( hass.states.get("sensor.online_with_doorsense_name_operator").attributes[ "remote" ] is False ) assert ( hass.states.get("sensor.online_with_doorsense_name_operator").attributes[ "keypad" ] is False ) assert ( hass.states.get("sensor.online_with_doorsense_name_operator").attributes[ "autorelock" ] is True ) assert ( hass.states.get("sensor.online_with_doorsense_name_operator").attributes[ "method" ] == "autorelock" )
import numpy as np from scipy import linalg from .epochs import Epochs from .utils import check_fname, logger, verbose, _check_option from .io.open import fiff_open from .io.pick import pick_types, pick_types_forward from .io.proj import (Projection, _has_eeg_average_ref_proj, _read_proj, make_projector, make_eeg_average_ref_proj, _write_proj) from .io.write import start_file, end_file from .event import make_fixed_length_events from .parallel import parallel_func from .cov import _check_n_samples from .forward import (is_fixed_orient, _subject_from_forward, convert_forward_solution) from .source_estimate import _make_stc @verbose def read_proj(fname, verbose=None): """Read projections from a FIF file. Parameters ---------- fname : str The name of file containing the projections vectors. It should end with -proj.fif or -proj.fif.gz. %(verbose)s Returns ------- projs : list The list of projection vectors. See Also -------- write_proj """ check_fname(fname, 'projection', ('-proj.fif', '-proj.fif.gz', '_proj.fif', '_proj.fif.gz')) ff, tree, _ = fiff_open(fname) with ff as fid: projs = _read_proj(fid, tree) return projs def write_proj(fname, projs): """Write projections to a FIF file. Parameters ---------- fname : str The name of file containing the projections vectors. It should end with -proj.fif or -proj.fif.gz. projs : list The list of projection vectors. See Also -------- read_proj """ check_fname(fname, 'projection', ('-proj.fif', '-proj.fif.gz', '_proj.fif', '_proj.fif.gz')) with start_file(fname) as fid: _write_proj(fid, projs) end_file(fid) @verbose def _compute_proj(data, info, n_grad, n_mag, n_eeg, desc_prefix, meg='separate', verbose=None): grad_ind = pick_types(info, meg='grad', ref_meg=False, exclude='bads') mag_ind = pick_types(info, meg='mag', ref_meg=False, exclude='bads') eeg_ind = pick_types(info, meg=False, eeg=True, ref_meg=False, exclude='bads') _check_option('meg', meg, ['separate', 'combined']) if meg == 'combined': if n_grad != n_mag: raise ValueError('n_grad (%d) must be equal to n_mag (%d) when ' 'using meg="combined"') kinds = ['meg', '', 'eeg'] n_mag = 0 grad_ind = pick_types(info, meg=True, ref_meg=False, exclude='bads') if (n_grad > 0) and len(grad_ind) == 0: logger.info("No MEG channels found for joint estimation. " "Forcing n_grad=n_mag=0") n_grad = 0 else: kinds = ['planar', 'axial', 'eeg'] if (n_grad > 0) and len(grad_ind) == 0: logger.info("No gradiometers found. Forcing n_grad to 0") n_grad = 0 if (n_mag > 0) and len(mag_ind) == 0: logger.info("No magnetometers found. Forcing n_mag to 0") n_mag = 0 if (n_eeg > 0) and len(eeg_ind) == 0: logger.info("No EEG channels found. Forcing n_eeg to 0") n_eeg = 0 ch_names = info['ch_names'] grad_names, mag_names, eeg_names = ([ch_names[k] for k in ind] for ind in [grad_ind, mag_ind, eeg_ind]) projs = [] for n, ind, names, desc in zip([n_grad, n_mag, n_eeg], [grad_ind, mag_ind, eeg_ind], [grad_names, mag_names, eeg_names], kinds): if n == 0: continue data_ind = data[ind][:, ind] # data is the covariance matrix: U * S**2 * Ut U, Sexp2, _ = linalg.svd(data_ind, full_matrices=False, overwrite_a=True) U = U[:, :n] exp_var = Sexp2 / Sexp2.sum() exp_var = exp_var[:n] for k, (u, var) in enumerate(zip(U.T, exp_var)): proj_data = dict(col_names=names, row_names=None, data=u[np.newaxis, :], nrow=1, ncol=u.size) this_desc = "%s-%s-PCA-%02d" % (desc, desc_prefix, k + 1) logger.info("Adding projection: %s" % this_desc) proj = Projection(active=False, data=proj_data, desc=this_desc, kind=1, explained_var=var) projs.append(proj) return projs @verbose def compute_proj_epochs(epochs, n_grad=2, n_mag=2, n_eeg=2, n_jobs=1, desc_prefix=None, meg='separate', verbose=None): """Compute SSP (signal-space projection) vectors on epoched data. %(compute_ssp)s Parameters ---------- epochs : instance of Epochs The epochs containing the artifact. n_grad : int Number of vectors for gradiometers. n_mag : int Number of vectors for magnetometers. n_eeg : int Number of vectors for EEG channels. %(n_jobs)s Number of jobs to use to compute covariance. desc_prefix : str | None The description prefix to use. If None, one will be created based on the event_id, tmin, and tmax. meg : str Can be 'separate' (default) or 'combined' to compute projectors for magnetometers and gradiometers separately or jointly. If 'combined', ``n_mag == n_grad`` is required and the number of projectors computed for MEG will be ``n_mag``. .. versionadded:: 0.18 %(verbose)s Returns ------- projs: list List of projection vectors. See Also -------- compute_proj_raw, compute_proj_evoked """ # compute data covariance data = _compute_cov_epochs(epochs, n_jobs) event_id = epochs.event_id if event_id is None or len(list(event_id.keys())) == 0: event_id = '0' elif len(event_id.keys()) == 1: event_id = str(list(event_id.values())[0]) else: event_id = 'Multiple-events' if desc_prefix is None: desc_prefix = "%s-%-.3f-%-.3f" % (event_id, epochs.tmin, epochs.tmax) return _compute_proj(data, epochs.info, n_grad, n_mag, n_eeg, desc_prefix, meg=meg) def _compute_cov_epochs(epochs, n_jobs): """Compute epochs covariance.""" parallel, p_fun, _ = parallel_func(np.dot, n_jobs) data = parallel(p_fun(e, e.T) for e in epochs) n_epochs = len(data) if n_epochs == 0: raise RuntimeError('No good epochs found') n_chan, n_samples = epochs.info['nchan'], len(epochs.times) _check_n_samples(n_samples * n_epochs, n_chan) data = sum(data) return data @verbose def compute_proj_evoked(evoked, n_grad=2, n_mag=2, n_eeg=2, desc_prefix=None, meg='separate', verbose=None): """Compute SSP (signal-space projection) vectors on evoked data. %(compute_ssp)s Parameters ---------- evoked : instance of Evoked The Evoked obtained by averaging the artifact. n_grad : int Number of vectors for gradiometers. n_mag : int Number of vectors for magnetometers. n_eeg : int Number of vectors for EEG channels. desc_prefix : str | None The description prefix to use. If None, one will be created based on tmin and tmax. .. versionadded:: 0.17 meg : str Can be 'separate' (default) or 'combined' to compute projectors for magnetometers and gradiometers separately or jointly. If 'combined', ``n_mag == n_grad`` is required and the number of projectors computed for MEG will be ``n_mag``. .. versionadded:: 0.18 %(verbose)s Returns ------- projs : list List of projection vectors. See Also -------- compute_proj_raw, compute_proj_epochs """ data = np.dot(evoked.data, evoked.data.T) # compute data covariance if desc_prefix is None: desc_prefix = "%-.3f-%-.3f" % (evoked.times[0], evoked.times[-1]) return _compute_proj(data, evoked.info, n_grad, n_mag, n_eeg, desc_prefix, meg=meg) @verbose def compute_proj_raw(raw, start=0, stop=None, duration=1, n_grad=2, n_mag=2, n_eeg=0, reject=None, flat=None, n_jobs=1, meg='separate', verbose=None): """Compute SSP (signal-space projection) vectors on continuous data. %(compute_ssp)s Parameters ---------- raw : instance of Raw A raw object to use the data from. start : float Time (in sec) to start computing SSP. stop : float Time (in sec) to stop computing SSP. None will go to the end of the file. duration : float Duration (in sec) to chunk data into for SSP If duration is None, data will not be chunked. n_grad : int Number of vectors for gradiometers. n_mag : int Number of vectors for magnetometers. n_eeg : int Number of vectors for EEG channels. reject : dict | None Epoch rejection configuration (see Epochs). flat : dict | None Epoch flat configuration (see Epochs). %(n_jobs)s Number of jobs to use to compute covariance. meg : str Can be 'separate' (default) or 'combined' to compute projectors for magnetometers and gradiometers separately or jointly. If 'combined', ``n_mag == n_grad`` is required and the number of projectors computed for MEG will be ``n_mag``. .. versionadded:: 0.18 %(verbose)s Returns ------- projs: list List of projection vectors. See Also -------- compute_proj_epochs, compute_proj_evoked """ if duration is not None: duration = np.round(duration * raw.info['sfreq']) / raw.info['sfreq'] events = make_fixed_length_events(raw, 999, start, stop, duration) picks = pick_types(raw.info, meg=True, eeg=True, eog=True, ecg=True, emg=True, exclude='bads') epochs = Epochs(raw, events, None, tmin=0., tmax=duration - 1. / raw.info['sfreq'], picks=picks, reject=reject, flat=flat, baseline=None, proj=False) data = _compute_cov_epochs(epochs, n_jobs) info = epochs.info if not stop: stop = raw.n_times / raw.info['sfreq'] else: # convert to sample indices start = max(raw.time_as_index(start)[0], 0) stop = raw.time_as_index(stop)[0] if stop else raw.n_times stop = min(stop, raw.n_times) data, times = raw[:, start:stop] _check_n_samples(stop - start, data.shape[0]) data = np.dot(data, data.T) # compute data covariance info = raw.info # convert back to times start = start / raw.info['sfreq'] stop = stop / raw.info['sfreq'] desc_prefix = "Raw-%-.3f-%-.3f" % (start, stop) projs = _compute_proj(data, info, n_grad, n_mag, n_eeg, desc_prefix, meg=meg) return projs @verbose def sensitivity_map(fwd, projs=None, ch_type='grad', mode='fixed', exclude=[], verbose=None): """Compute sensitivity map. Such maps are used to know how much sources are visible by a type of sensor, and how much projections shadow some sources. Parameters ---------- fwd : Forward The forward operator. projs : list List of projection vectors. ch_type : 'grad' | 'mag' | 'eeg' The type of sensors to use. mode : str The type of sensitivity map computed. See manual. Should be 'free', 'fixed', 'ratio', 'radiality', 'angle', 'remaining', or 'dampening' corresponding to the argument --map 1, 2, 3, 4, 5, 6 and 7 of the command mne_sensitivity_map. exclude : list of str | str List of channels to exclude. If empty do not exclude any (default). If 'bads', exclude channels in fwd['info']['bads']. %(verbose)s Returns ------- stc : SourceEstimate | VolSourceEstimate The sensitivity map as a SourceEstimate or VolSourceEstimate instance for visualization. """ # check strings _check_option('ch_type', ch_type, ['eeg', 'grad', 'mag']) _check_option('mode', mode, ['free', 'fixed', 'ratio', 'radiality', 'angle', 'remaining', 'dampening']) # check forward if is_fixed_orient(fwd, orig=True): raise ValueError('fwd should must be computed with free orientation') # limit forward (this will make a copy of the data for us) if ch_type == 'eeg': fwd = pick_types_forward(fwd, meg=False, eeg=True, exclude=exclude) else: fwd = pick_types_forward(fwd, meg=ch_type, eeg=False, exclude=exclude) convert_forward_solution(fwd, surf_ori=True, force_fixed=False, copy=False, verbose=False) if not fwd['surf_ori'] or is_fixed_orient(fwd): raise RuntimeError('Error converting solution, please notify ' 'mne-python developers') gain = fwd['sol']['data'] # Make sure EEG has average if ch_type == 'eeg': if projs is None or not _has_eeg_average_ref_proj(projs): eeg_ave = [make_eeg_average_ref_proj(fwd['info'])] else: eeg_ave = [] projs = eeg_ave if projs is None else projs + eeg_ave # Construct the projector residual_types = ['angle', 'remaining', 'dampening'] if projs is not None: proj, ncomp, U = make_projector(projs, fwd['sol']['row_names'], include_active=True) # do projection for most types if mode not in residual_types: gain = np.dot(proj, gain) elif ncomp == 0: raise RuntimeError('No valid projectors found for channel type ' '%s, cannot compute %s' % (ch_type, mode)) # can only run the last couple methods if there are projectors elif mode in residual_types: raise ValueError('No projectors used, cannot compute %s' % mode) n_sensors, n_dipoles = gain.shape n_locations = n_dipoles // 3 sensitivity_map = np.empty(n_locations) for k in range(n_locations): gg = gain[:, 3 * k:3 * (k + 1)] if mode != 'fixed': s = linalg.svd(gg, full_matrices=False, compute_uv=False) if mode == 'free': sensitivity_map[k] = s[0] else: gz = linalg.norm(gg[:, 2]) # the normal component if mode == 'fixed': sensitivity_map[k] = gz elif mode == 'ratio': sensitivity_map[k] = gz / s[0] elif mode == 'radiality': sensitivity_map[k] = 1. - (gz / s[0]) else: if mode == 'angle': co = linalg.norm(np.dot(gg[:, 2], U)) sensitivity_map[k] = co / gz else: p = linalg.norm(np.dot(proj, gg[:, 2])) if mode == 'remaining': sensitivity_map[k] = p / gz elif mode == 'dampening': sensitivity_map[k] = 1. - p / gz else: raise ValueError('Unknown mode type (got %s)' % mode) # only normalize fixed and free methods if mode in ['fixed', 'free']: sensitivity_map /= np.max(sensitivity_map) subject = _subject_from_forward(fwd) vertices = [s['vertno'] for s in fwd['src']] return _make_stc(sensitivity_map[:, np.newaxis], vertices, fwd['src'].kind, tmin=0., tstep=1., subject=subject)
from homeassistant.components.surepetcare.const import DOMAIN from homeassistant.const import CONF_PASSWORD, CONF_USERNAME from tests.async_mock import patch HOUSEHOLD_ID = "household-id" HUB_ID = "hub-id" MOCK_HUB = { "id": HUB_ID, "product_id": 1, "household_id": HOUSEHOLD_ID, "name": "Hub", "status": {"online": True, "led_mode": 0, "pairing_mode": 0}, } MOCK_FEEDER = { "id": 12345, "product_id": 4, "household_id": HOUSEHOLD_ID, "name": "Feeder", "parent": {"product_id": 1, "id": HUB_ID}, "status": { "battery": 6.4, "locking": {"mode": 0}, "learn_mode": 0, "signal": {"device_rssi": 60, "hub_rssi": 65}, }, } MOCK_CAT_FLAP = { "id": 13579, "product_id": 6, "household_id": HOUSEHOLD_ID, "name": "Cat Flap", "parent": {"product_id": 1, "id": HUB_ID}, "status": { "battery": 6.4, "locking": {"mode": 0}, "learn_mode": 0, "signal": {"device_rssi": 65, "hub_rssi": 64}, }, } MOCK_PET_FLAP = { "id": 13576, "product_id": 3, "household_id": HOUSEHOLD_ID, "name": "Pet Flap", "parent": {"product_id": 1, "id": HUB_ID}, "status": { "battery": 6.4, "locking": {"mode": 0}, "learn_mode": 0, "signal": {"device_rssi": 70, "hub_rssi": 65}, }, } MOCK_PET = { "id": 24680, "household_id": HOUSEHOLD_ID, "name": "Pet", "position": {"since": "2020-08-23T23:10:50", "where": 1}, "status": {}, } MOCK_API_DATA = { "devices": [MOCK_HUB, MOCK_CAT_FLAP, MOCK_PET_FLAP, MOCK_FEEDER], "pets": [MOCK_PET], } MOCK_CONFIG = { DOMAIN: { CONF_USERNAME: "test-username", CONF_PASSWORD: "test-password", "feeders": [12345], "flaps": [13579, 13576], "pets": [24680], }, } def _patch_sensor_setup(): return patch( "homeassistant.components.surepetcare.sensor.async_setup_platform", return_value=True, )
from mock import patch from test import unittest import configobj from diamond.collector import Collector class BaseCollectorTest(unittest.TestCase): def test_SetCustomHostname(self): config = configobj.ConfigObj() config['server'] = {} config['server']['collectors_config_path'] = '' config['collectors'] = {} config['collectors']['default'] = { 'hostname': 'custom.localhost', } c = Collector(config, []) self.assertEquals('custom.localhost', c.get_hostname()) def test_SetHostnameViaShellCmd(self): config = configobj.ConfigObj() config['server'] = {} config['server']['collectors_config_path'] = '' config['collectors'] = {} config['collectors']['default'] = { 'hostname': 'echo custom.localhost', 'hostname_method': 'shell', } c = Collector(config, []) self.assertEquals('custom.localhost', c.get_hostname()) @patch('diamond.collector.get_hostname') def test_get_metric_path_no_prefix(self, get_hostname_mock): config = configobj.ConfigObj() config['collectors'] = {} config['collectors']['default'] = {} config['collectors']['default']['path_prefix'] = '' config['collectors']['default']['path'] = 'bar' get_hostname_mock.return_value = None result = Collector(config, []).get_metric_path('foo') self.assertEqual('bar.foo', result) @patch('diamond.collector.get_hostname') def test_get_metric_path_no_prefix_no_path(self, get_hostname_mock): config = configobj.ConfigObj() config['collectors'] = {} config['collectors']['default'] = {} config['collectors']['default']['path_prefix'] = '' config['collectors']['default']['path'] = '' get_hostname_mock.return_value = None result = Collector(config, []).get_metric_path('foo') self.assertEqual('foo', result) @patch('diamond.collector.get_hostname') def test_get_metric_path_no_path(self, get_hostname_mock): config = configobj.ConfigObj() config['collectors'] = {} config['collectors']['default'] = {} config['collectors']['default']['path_prefix'] = 'bar' config['collectors']['default']['path'] = '' get_hostname_mock.return_value = None result = Collector(config, []).get_metric_path('foo') self.assertEqual('bar.foo', result) @patch('diamond.collector.get_hostname') def test_get_metric_path_dot_path(self, get_hostname_mock): config = configobj.ConfigObj() config['collectors'] = {} config['collectors']['default'] = {} config['collectors']['default']['path_prefix'] = 'bar' config['collectors']['default']['path'] = '.' get_hostname_mock.return_value = None result = Collector(config, []).get_metric_path('foo') self.assertEqual('bar.foo', result) @patch('diamond.collector.get_hostname') def test_get_metric_path(self, get_hostname_mock): config = configobj.ConfigObj() config['collectors'] = {} config['collectors']['default'] = {} config['collectors']['default']['path_prefix'] = 'poof' config['collectors']['default']['path'] = 'xyz' get_hostname_mock.return_value = 'bar' result = Collector(config, []).get_metric_path('foo') self.assertEqual('poof.bar.xyz.foo', result)
import warnings import numpy as np from typing import Any, Sequence, List, Optional, Union, Text, Tuple, Dict, Set from tensornetwork import tensor as tn_tensor from tensornetwork.backend_contextmanager import get_default_backend from tensornetwork.backends import backend_factory from tensornetwork.backends.abstract_backend import AbstractBackend import time Tensor = Any _CACHED_JITTED_NCONS = {} def _get_cont_out_labels( network_structure: Sequence[Sequence[Union[int, str]]]) -> Any: """ Compute the contracted and free and labels of `network_structure`, using the following rules: * Any negative number-type element and any hyphen-prepended str-type element are considered output labels. * Any positive number-type element and any non-hyphen-prepended str-type element are considered contracted labels. * Any negative number-type element appearing more than once, any hyphen-prepended str-type element appearing more than once, any positive element appearing exactly once and any element appearing more than twice are considered batch labels. Computed lists are ordered according to int and ASCII ordering for integer and string values, with first entries in each list being ordered integer labels followed by ASCII ordered string labels. Returns: int_cont_labels: The number-type contracted labels str_cont_labels: The str-type contracted labels int_out_labels: The number-type output labels str_out_labels: The str-type output labels """ flat_labels = [l for sublist in network_structure for l in sublist] int_labels = {o for o in flat_labels if not isinstance(o, str)} str_labels = {o for o in flat_labels if isinstance(o, str)} int_out_labels = sorted([l for l in int_labels if l < 0], reverse=True) int_cont_labels = sorted([label for label in int_labels if label >= 0]) # pylint: disable=unnecessary-lambda str_out_labels = sorted([label for label in str_labels if label[0] == '-'], key=lambda x: str(x)) # pylint: disable=unnecessary-lambda str_cont_labels = sorted([label for label in str_labels if label[0] != '-'], key=lambda x: str(x)) # pylint: disable=line-too-long return int_cont_labels, str_cont_labels, int_out_labels, str_out_labels def _canonicalize_network_structure( network_structure: Sequence[Sequence[Union[int, str]]] ) -> Tuple[List[List], Dict]: """ Map `network_structure` to a canonical form. The elements in `network_structure` are replaced by integers according to the following rules: 1. All negative numbers are sorted in decreasing order and mapped to to decreasing integers, starting with -1. E.g., the numbers [-4,-10,-1] are mapped to -1 -> -1, -4 -> -2, -10 -> -3 2. All strings prepended with a hyphen '-' are ordered increasingly using ASCII ordering, and mapped to decreasing negative integers starting with the next value following the last integer under point 1. above. E.g. [-4,-10,-1,'-303','-a','-33'] is mapped to -1 -> -1, -4 -> -2, -10 -> -3, '-303' -> -4, '-33' -> -5, '-a' -> -6 3. All positive numbers are sorted increasingly and mapped to increasing integers, starting at 1 4. All strings without a prepended hyphen are sorted increasingly using ASCII order and mapped to positive integers, starting with the next integer value following the last used value under point 3. """ flat_labels = [l for sublist in network_structure for l in sublist] neg_int_labels = sorted( list({l for l in flat_labels if not isinstance(l, str) and l < 0})) pos_int_labels = sorted( list({l for l in flat_labels if not isinstance(l, str) and l > 0})) neg_str_labels = sorted( {l for l in flat_labels if isinstance(l, str) and l[0] == '-'}, reverse=True) pos_str_labels = sorted( list({l for l in flat_labels if isinstance(l, str) and l[0] != '-'})) neg_mapping = dict( zip(neg_str_labels + neg_int_labels, np.arange(-len(neg_int_labels + neg_str_labels), 0))) pos_mapping = dict( zip(pos_int_labels + pos_str_labels, np.arange(1, 1 + len(pos_int_labels + pos_str_labels)))) neg_mapping.update(pos_mapping) mapped_network_structure = [ [neg_mapping[label] for label in labels] for labels in network_structure ] return mapped_network_structure, neg_mapping def _check_network(network_structure: Sequence[Sequence[Union[int, str]]], tensor_dimensions: List[Tuple[int]], con_order: Optional[List[Union[int, str]]] = None, out_order: Optional[List[Union[int, str]]] = None) -> None: """ Perform checks on `network_structure`. """ # check if number of tensors matches the number of lists # in network_structure if len(network_structure) != len(tensor_dimensions): raise ValueError("number of tensors does not match the" " number of network connections.") # check number of labels of each element in network_structure # matches the tensor order for n, dims in enumerate(tensor_dimensions): if len(dims) != len(network_structure[n]): raise ValueError(f"number of indices does not match" f" number of labels on tensor {n}.") flat_labels = [l for sublist in network_structure for l in sublist] # pylint: disable=line-too-long int_cont_labels, str_cont_labels, int_out_labels, str_out_labels = _get_cont_out_labels( network_structure) out_labels = int_out_labels + str_out_labels cont_labels = int_cont_labels + str_cont_labels str_labels = str_cont_labels + [l[1:] for l in str_out_labels] mask = [l.isalnum() for l in str_labels] if not np.all(mask): raise ValueError( f"only alphanumeric values allowed for string labels, " f"found {[l for n, l in enumerate(str_labels) if not mask[n]]}") # make sure no value 0 is used as a label (legacy behaviour) if int_cont_labels.count(0) > 0: raise ValueError("only nonzero values are allowed to " "specify network structure.") if con_order is not None: #check that all integer elements in `con_order` are positive int_cons = [o for o in con_order if not isinstance(o, str)] labels = [o for o in int_cons if o < 0] if len(labels) > 0: raise ValueError(f"all number type labels in `con_order` have " f"to be positive, found {labels}") str_cons = [o for o in con_order if isinstance(o, str)] labels = [o for o in str_cons if o[0] == '-'] #check that all string type elements in `con_order` have no hyphens if len(labels) > 0: raise ValueError(f"all string type labels in `con_order` " f"must be unhyphenized, found {labels}") # check that elements in `con_order` appear only once labels = [] for l in con_order: if (con_order.count(l) != 1) and (l not in labels): labels.append(l) if len(labels) > 0: raise ValueError(f"labels {labels} appear more than once in `con_order`.") # check if passed `con_order` makes sense if len(con_order) != len(cont_labels): raise ValueError(f"`con_order = {con_order} is not " f"a valid contraction order for contracted " f"labels {cont_labels}") # check if all labels in `con_order` appear in `network_structure` labels = [o for o in con_order if o not in flat_labels] if len(labels) != 0: raise ValueError(f"labels {labels} in `con_order` do not appear as " f"contracted labels in `network_structure`.") if out_order is not None: #check that all integer elements in `out_order` are negative int_outs = [o for o in out_order if not isinstance(o, str)] labels = [o for o in int_outs if o > 0] if len(labels) > 0: raise ValueError(f"all number type labels in `out_order` have " f"to be negative, found {labels}") #check that all string type elements in `out_order` have hyphens str_outs = [o for o in out_order if isinstance(o, str)] labels = [o for o in str_outs if o[0] != '-'] if len(labels) > 0: raise ValueError(f"all string type labels in `out_order` " f"have to be hyphenized, found {labels}") # check that all elements in `out_order` appear exactly once labels = [] for l in out_order: if (out_order.count(l) != 1) and (l not in labels): labels.append(l) if len(labels) > 0: raise ValueError(f"labels {labels} appear more than once in `out_order`.") # check if `out_order` has right length if len(out_order) != len(out_labels): raise ValueError(f"`out_order` = {out_order} is not " f"a valid output order for open " f"labels {out_labels}") # check if all labels in `out_order` appear in `network_structure` labels = [o for o in out_order if o not in flat_labels] if len(labels) != 0: raise ValueError(f"labels {labels} in `out_order` do not " f"appear in `network_structure`.") # check if contracted dimensions are matching mismatched_labels = [] for l in cont_labels: dims = { tensor_dimensions[m][n] for m, labels in enumerate(network_structure) for n, l1 in enumerate(labels) if l1 == l } if len(dims) > 1: mismatched_labels.append(l) if len(mismatched_labels) > 0: raise ValueError( f"tensor dimensions for labels {mismatched_labels} are mismatching") def _partial_trace( tensor: Tensor, labels: List, backend_obj: AbstractBackend) -> Tuple[Tensor, List, List]: """ Perform the partial trace of `tensor`. All labels appearing twice in `labels` are traced out. Argns: tensor: A tensor. labels: The ncon-style labels of `tensor`. Returns: Tensor: The result of the tracing. """ trace_labels = [l for l in labels if labels.count(l) == 2] if len(trace_labels) > 0: num_cont = len(trace_labels) // 2 unique_trace_labels = sorted(trace_labels)[0:-1:2] trace_label_positions = [[ n for n, label in enumerate(labels) if label == trace_label ] for trace_label in unique_trace_labels] contracted_indices = [l[0] for l in trace_label_positions ] + [l[1] for l in trace_label_positions] free_indices = [ n for n in range(len(labels)) if n not in contracted_indices ] shape = backend_obj.shape_tuple(tensor) contracted_dimension = np.prod( [shape[d] for d in contracted_indices[:num_cont]]) temp_shape = tuple([shape[pos] for pos in free_indices] + [contracted_dimension, contracted_dimension]) result = backend_obj.trace( backend_obj.reshape( backend_obj.transpose(tensor, tuple(free_indices + contracted_indices)), temp_shape)) new_labels = [l for l in labels if l not in unique_trace_labels] return result, new_labels, unique_trace_labels return tensor, labels, [] def _batch_cont( t1: Tensor, t2: Tensor, tensors: List[Tensor], network_structure: List[List], con_order: List, common_batch_labels: Set, labels_t1: List, labels_t2: List, backend_obj: AbstractBackend ) -> Tuple[Tensor, List[List], List]: """ Subroutine for performing a batched contraction of tensors `t1` and `t2`. Args: t1: A Tensor. t2: A Tensor. tensors: List of Tensor objects. network_structure: The canonical labels of the networks. con_order: Array of contracted labels. common_batch_labels: The common batch labels of `t1` and `t2`. labels_t1: The labels of `t1` labels_t2: The labels of `t2` backend_obj: A backend object. Returns: List[Tensor]: Updated list of tensors. List[List]: Updated `network_structure`. List: Updated `con_order` (contraction order). """ common_batch_labels = list(common_batch_labels) #find positions of common batch labels t1_batch_pos = [labels_t1.index(l) for l in common_batch_labels] t2_batch_pos = [labels_t2.index(l) for l in common_batch_labels] #find positions of contracted non-batch labels non_batch_labels_t1 = {l for l in labels_t1 if l not in common_batch_labels} non_batch_labels_t2 = {l for l in labels_t2 if l not in common_batch_labels} common_contracted_labels = list( non_batch_labels_t1.intersection(non_batch_labels_t2)) t1_cont = [labels_t1.index(l) for l in common_contracted_labels] t2_cont = [labels_t2.index(l) for l in common_contracted_labels] free_labels_t1 = set(labels_t1) - set(common_contracted_labels) - set( common_batch_labels) free_labels_t2 = set(labels_t2) - set(common_contracted_labels) - set( common_batch_labels) # find positions of uncontracted non-batch labels free_pos_t1 = [n for n, l in enumerate(labels_t1) if l in free_labels_t1] free_pos_t2 = [n for n, l in enumerate(labels_t2) if l in free_labels_t2] t1_shape = np.array(backend_obj.shape_tuple(t1)) t2_shape = np.array(backend_obj.shape_tuple(t2)) newshape_t1 = (np.prod(t1_shape[t1_batch_pos]), np.prod(t1_shape[free_pos_t1]), np.prod(t1_shape[t1_cont])) newshape_t2 = (np.prod(t2_shape[t2_batch_pos]), np.prod(t2_shape[t2_cont]), np.prod(t2_shape[free_pos_t2])) #bring batch labels to the front order_t1 = tuple(t1_batch_pos + free_pos_t1 + t1_cont) order_t2 = tuple(t2_batch_pos + t2_cont + free_pos_t2) mat1 = backend_obj.reshape(backend_obj.transpose(t1, order_t1), newshape_t1) mat2 = backend_obj.reshape(backend_obj.transpose(t2, order_t2), newshape_t2) result = backend_obj.matmul(mat1, mat2) final_shape = tuple( np.concatenate([ t1_shape[t1_batch_pos], t1_shape[free_pos_t1], t2_shape[free_pos_t2] ])) result = backend_obj.reshape(result, final_shape) # update labels, tensors, network_structure and con_order new_labels = [labels_t1[i] for i in t1_batch_pos] + [ labels_t1[i] for i in free_pos_t1 ] + [labels_t2[i] for i in free_pos_t2] network_structure.append(new_labels) tensors.append(result) con_order = [c for c in con_order if c not in common_contracted_labels] return tensors, network_structure, con_order def label_intersection(labels1, labels2): common_labels = list(set(labels1).intersection(labels2)) idx_1 = [labels1.index(l) for l in common_labels] idx_2 = [labels2.index(l) for l in common_labels] return common_labels, idx_1, idx_2 def _jittable_ncon(tensors: List[Tensor], flat_labels: Tuple[int], sizes: Tuple[int], con_order: Tuple[int], out_order: Tuple[int], backend_obj: AbstractBackend) -> Tensor: """ Jittable Ncon function. Performs the contraction of `tensors`. Args: tensors: List of tensors. flat_labels: A Tuple of integers. sizes: Tuple of int used to reconstruct `network_structure` from `flat_labels`. con_order: Order of the contraction. out_order: Order of the final axis order. backend_obj: A backend object. Returns: The final tensor after contraction. """ # some jax-juggling to avoid retracing ... flat_labels = list(flat_labels) slices = np.append(0, np.cumsum(sizes)) network_structure = [ flat_labels[slices[n]:slices[n + 1]] for n in range(len(slices) - 1) ] out_order = list(out_order) con_order = list(con_order) # pylint: disable=unnecessary-comprehension init_con_order = [c for c in con_order] init_network_structure = [c for c in network_structure] # partial trace for n, tensor in enumerate(tensors): tensors[n], network_structure[n], contracted_labels = _partial_trace( tensor, network_structure[n], backend_obj) if len(contracted_labels) > 0: con_order = [c for c in con_order if c not in contracted_labels] flat_labels = [l for sublist in network_structure for l in sublist] # contracted all positive labels appearing only once in `network_structure` contractable_labels = [ l for l in flat_labels if (flat_labels.count(l) == 1) and (l > 0) ] # update con_order if len(contractable_labels) > 0: con_order = [o for o in con_order if o not in contractable_labels] # collapse axes of single-labelled tensors locs = [] for n, labels in enumerate(network_structure): if len(set(labels).intersection(contractable_labels)) > 0: locs.append(n) for loc in locs: labels = network_structure[loc] contractable_inds = [labels.index(l) for l in contractable_labels] network_structure[loc] = [l for l in labels if l not in contractable_labels] tensors[loc] = backend_obj.sum(tensors[loc], tuple(contractable_inds)) # perform binary and batch contractions skip_counter = 0 batch_labels = [] batch_cnts = [] for l in set(flat_labels): cnt = flat_labels.count(l) if (cnt > 2) or (cnt == 2 and l < 0): batch_labels.append(l) batch_cnts.append(cnt) while len(con_order) > 0: # the next index to be contracted cont_ind = con_order[0] if cont_ind in batch_labels: # if its still a batch index then do it later con_order.append(con_order.pop(0)) skip_counter += 1 # avoid being stuck in an infinite loop if skip_counter > len(con_order): raise ValueError(f"ncon seems stuck in an infinite loop. \n" f"Please check if `con_order` = {init_con_order} is " f"a valid contraction order for \n" f"`network_structure` = {init_network_structure}") continue # find locations of `cont_ind` in `network_structure` locs = [ n for n, labels in enumerate(network_structure) if cont_ind in labels ] t2 = tensors.pop(locs[1]) t1 = tensors.pop(locs[0]) labels_t2 = network_structure.pop(locs[1]) labels_t1 = network_structure.pop(locs[0]) common_labels, t1_cont, t2_cont = label_intersection(labels_t1, labels_t2) # check if there are batch labels (i.e. labels appearing more than twice # in `network_structure`). common_batch_labels = set(batch_labels).intersection(common_labels) if len(common_batch_labels) > 0: # case1: both tensors have one or more common batch indices -> use matmul ix = np.nonzero( np.array(batch_labels)[:, None] == np.array( list(common_batch_labels))[None, :])[0] # reduce the counts of these labels in `batch_cnts` by 1 delete = [] for i in ix: batch_cnts[i] -= 1 if (batch_labels[i] > 0) and (batch_cnts[i] <= 2): delete.append(i) elif (batch_labels[i] < 0) and (batch_cnts[i] < 2): delete.append(i) for i in sorted(delete, reverse=True): del batch_cnts[i] del batch_labels[i] tensors, network_structure, con_order = _batch_cont( t1, t2, tensors, network_structure, con_order, common_batch_labels, labels_t1, labels_t2, backend_obj) # in all other cases do a regular tensordot else: # for len(t1_cont)~<20 this is faster than np.argsort ind_sort = [t1_cont.index(l) for l in sorted(t1_cont)] tensors.append( backend_obj.tensordot( t1, t2, axes=(tuple([t1_cont[i] for i in ind_sort]), tuple([t2_cont[i] for i in ind_sort])))) new_labels = [l for l in labels_t1 if l not in common_labels ] + [l for l in labels_t2 if l not in common_labels] network_structure.append(new_labels) # remove contracted labels from con_order con_order = [c for c in con_order if c not in common_labels] # perform outer products and remaining batch contractions while len(tensors) > 1: t2 = tensors.pop() t1 = tensors.pop() labels_t2 = network_structure.pop() labels_t1 = network_structure.pop() # check if there are negative batch indices left # (have to be collapsed to a single one) common_labels, t1_cont, t2_cont = label_intersection(labels_t1, labels_t2) common_batch_labels = set(batch_labels).intersection(common_labels) if len(common_batch_labels) > 0: # collapse all negative batch indices tensors, network_structure, con_order = _batch_cont( t1, t2, tensors, network_structure, con_order, common_batch_labels, labels_t1, labels_t2, backend_obj) else: tensors.append(backend_obj.outer_product(t1, t2)) network_structure.append(labels_t1 + labels_t2) # if necessary do a final permutation if len(network_structure[0]) > 1: labels = network_structure[0] final_order = tuple([labels.index(l) for l in out_order]) return backend_obj.transpose(tensors[0], final_order) return tensors[0] def ncon( tensors: Sequence[Union[tn_tensor.Tensor, Tensor]], network_structure: Sequence[Sequence[Union[str, int]]], con_order: Optional[Sequence] = None, out_order: Optional[Sequence] = None, check_network: bool = True, backend: Optional[Union[Text, AbstractBackend]] = None ) -> Union[tn_tensor.Tensor, Tensor]: r"""Contracts a list of backend-tensors or `Tensor`s according to a tensor network specification. The network is provided as a list of lists, one for each tensor, specifying the labels for the edges connected to that tensor. Labels can be any numbers or strings. Negative number-type labels and string-type labels with a prepended hyphen ('-') are open labels and remain uncontracted. Positive number-type labels and string-type labels with no prepended hyphen ('-') are closed labels and are contracted. Any open label appearing more than once is treated as an open batch label. Any closed label appearing more than once is treated as a closed batch label. Upon finishing the contraction, all open batch labels will have been collapsed into a single dimension, and all closed batch labels will have been summed over. If `out_order = None`, output labels are ordered according to descending number ordering and ascending ASCII ordering, with number labels always appearing before string labels. Example: network_structure = [[-1, 1, '-rick', '2',-2], [-2, '2', 1, '-morty']] results in an output order of [-1, -2, '-morty', '-rick']. If `out_order` is given, the indices of the resulting tensor will be transposed into this order. If `con_order = None`, `ncon` will first contract all number labels in ascending order followed by all string labels in ascending ASCII order. If `con_order` is given, `ncon` will contract according to this order. For example, matrix multiplication: .. code-block:: python A = np.array([[1.0, 2.0], [3.0, 4.0]]) B = np.array([[1.0, 1.0], [0.0, 1.0]]) ncon([A,B], [(-1, 1), (1, -2)]) Matrix trace: .. code-block:: python A = np.array([[1.0, 2.0], [3.0, 4.0]]) ncon([A], [(1, 1)]) # 5.0 Note: Disallowing `0` as an edge label is legacy behaviour, see `original NCON implementation`_. .. _original NCON implementation: https://arxiv.org/abs/1402.0939 Args: tensors: List of backend-tensors or `Tensor`s. network_structure: List of lists specifying the tensor network structure. con_order: List of edge labels specifying the contraction order. out_order: List of edge labels specifying the output order. check_network: Boolean flag. If `True` check the network. backend: String specifying the backend to use. Defaults to `tensornetwork.backend_contextmanager.get_default_backend`. Returns: The result of the contraction: * A backend-tensor: If all elements of `tensors` are backend-tensors. * A `Tensor`: If all elements of `tensors` are `Tensor` objects. """ # TODO (mganahl): for certain cases np.einsum is still faster than ncon: # - contractions containing batched outer products with small dimensions # This should eventually be fixed, but it's not a priority. if backend is None: backend = get_default_backend() if isinstance(backend, AbstractBackend): backend_obj = backend else: backend_obj = backend_factory.get_backend(backend) if out_order == []: #allow empty list as input out_order = None if con_order == []: #allow empty list as input con_order = None are_tensors = [isinstance(t, tn_tensor.Tensor) for t in tensors] tensors_set = {t for t in tensors if isinstance(t, tn_tensor.Tensor)} if not all([n.backend.name == backend_obj.name for n in tensors_set]): raise ValueError("Some tensors have backends different from '{}'".format( backend_obj.name)) _tensors = [] for t in tensors: if isinstance(t, tn_tensor.Tensor): _tensors.append(t.array) else: _tensors.append(t) _tensors = [backend_obj.convert_to_tensor(t) for t in _tensors] if check_network: _check_network(network_structure, [t.shape for t in _tensors], con_order, out_order) network_structure, mapping = _canonicalize_network_structure( network_structure) flat_labels = [l for sublist in network_structure for l in sublist] unique_flat_labels = list(set(flat_labels)) if out_order is None: # negative batch labels (negative labels appearing more than once) # are subject to the same output ordering as regular output labels out_order = sorted([l for l in unique_flat_labels if l < 0], reverse=True) else: out_order = [mapping[o] for o in out_order] if con_order is None: # canonicalization of network structure takes care of appropriate # contraction ordering (i.e. use ASCII ordering for str and # regular ordering for int) # all positive labels appearing are considered proper contraction labels. con_order = sorted([l for l in unique_flat_labels if l > 0]) else: con_order = [mapping[o] for o in con_order] if backend not in _CACHED_JITTED_NCONS: _CACHED_JITTED_NCONS[backend] = backend_obj.jit( _jittable_ncon, static_argnums=(1, 2, 3, 4, 5)) sizes = tuple([len(l) for l in network_structure]) res_tensor = _CACHED_JITTED_NCONS[backend](_tensors, tuple(flat_labels), sizes, tuple(con_order), tuple(out_order), backend_obj) if all(are_tensors): return tn_tensor.Tensor(res_tensor, backend=backend_obj) return res_tensor def finalize(ncon_builder: tn_tensor.NconBuilder) -> tn_tensor.Tensor: return ncon( ncon_builder.tensors, ncon_builder.axes, backend=ncon_builder.tensors[0].backend)
import os import tempfile from io import open from stash.tests.stashtest import StashTestCase class CopyPasteTests(StashTestCase): """ Test class for the 'pbcopy' and 'pbpaste' commands. """ def test_pbcopy_help(self): """ test 'pbcopy --help'. """ output_1 = self.run_command("pbcopy -h", exitcode=0) output_2 = self.run_command("pbcopy --help", exitcode=0) self.assertEqual(output_1, output_2) self.assertIn("-h", output_1) self.assertIn("--help", output_1) self.assertIn("file", output_1) self.assertIn("pbcopy", output_1) self.assertIn("...", output_1) def test_pbpaste_help(self): """ test 'pbpaste --help'. """ output_1 = self.run_command("pbpaste -h", exitcode=0) output_2 = self.run_command("pbpaste --help", exitcode=0) self.assertEqual(output_1, output_2) self.assertIn("-h", output_1) self.assertIn("--help", output_1) self.assertIn("file", output_1) self.assertIn("pbpaste", output_1) def test_copy_paste_stdin(self): """ Test copy of stdin & paste """ self.run_command("echo teststring | pbcopy", exitcode=0) output = self.run_command("pbpaste", exitcode=0) self.assertEqual("teststring\n", output) def test_copy_paste_file(self): """ Test copy of a file & paste """ p = os.path.join(self.get_data_path(), "testfile.txt") self.run_command("pbcopy " + p, exitcode=0) output = self.run_command("pbpaste", exitcode=0) with open(p, "r", encoding="utf-8") as fin: content = fin.read() self.assertEqual(output, content) def test_paste_into_file(self): """ Test copy of a file & paste into a file. Comparsion is done using 'md5sum' """ pin = os.path.join(self.get_data_path(), "testfile.txt") pout = os.path.join(tempfile.gettempdir(), "testpastefile.txt") if os.path.exists(pout): os.remove(pout) self.run_command("pbcopy " + pin, exitcode=0) self.run_command("pbpaste " + pout, exitcode=0) org_hash = self.run_command("md5sum " + pin, exitcode=0).split()[0] paste_hash = self.run_command("md5sum " + pout, exitcode=0).split()[0] self.assertEqual(org_hash, paste_hash)
import voluptuous as vol from homeassistant import config_entries from homeassistant.const import CONF_NAME from homeassistant.core import HomeAssistant import homeassistant.helpers.config_validation as cv from .const import ATTR_TARIFF, DEFAULT_NAME, DEFAULT_TARIFF, DOMAIN, PLATFORM, TARIFFS UI_CONFIG_SCHEMA = vol.Schema( { vol.Required(CONF_NAME, default=DEFAULT_NAME): str, vol.Required(ATTR_TARIFF, default=DEFAULT_TARIFF): vol.In(TARIFFS), } ) CONFIG_SCHEMA = vol.Schema( {DOMAIN: cv.ensure_list(UI_CONFIG_SCHEMA)}, extra=vol.ALLOW_EXTRA ) async def async_setup(hass: HomeAssistant, config: dict): """ Set up the electricity price sensor from configuration.yaml. ```yaml pvpc_hourly_pricing: - name: PVPC manual ve tariff: electric_car - name: PVPC manual nocturna tariff: discrimination timeout: 3 ``` """ for conf in config.get(DOMAIN, []): hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, data=conf, context={"source": config_entries.SOURCE_IMPORT} ) ) return True async def async_setup_entry(hass: HomeAssistant, entry: config_entries.ConfigEntry): """Set up pvpc hourly pricing from a config entry.""" hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, PLATFORM) ) return True async def async_unload_entry(hass: HomeAssistant, entry: config_entries.ConfigEntry): """Unload a config entry.""" return await hass.config_entries.async_forward_entry_unload(entry, PLATFORM)
from datetime import timedelta import logging import pysnmp.hlapi.asyncio as hlapi from pysnmp.hlapi.asyncio import ( CommunityData, ContextData, ObjectIdentity, ObjectType, SnmpEngine, UdpTransportTarget, UsmUserData, getCmd, ) import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import ( CONF_HOST, CONF_NAME, CONF_PORT, CONF_UNIT_OF_MEASUREMENT, CONF_USERNAME, CONF_VALUE_TEMPLATE, STATE_UNKNOWN, ) import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity from .const import ( CONF_ACCEPT_ERRORS, CONF_AUTH_KEY, CONF_AUTH_PROTOCOL, CONF_BASEOID, CONF_COMMUNITY, CONF_DEFAULT_VALUE, CONF_PRIV_KEY, CONF_PRIV_PROTOCOL, CONF_VERSION, DEFAULT_AUTH_PROTOCOL, DEFAULT_COMMUNITY, DEFAULT_HOST, DEFAULT_NAME, DEFAULT_PORT, DEFAULT_PRIV_PROTOCOL, DEFAULT_VERSION, MAP_AUTH_PROTOCOLS, MAP_PRIV_PROTOCOLS, SNMP_VERSIONS, ) _LOGGER = logging.getLogger(__name__) SCAN_INTERVAL = timedelta(seconds=10) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_BASEOID): cv.string, vol.Optional(CONF_ACCEPT_ERRORS, default=False): cv.boolean, vol.Optional(CONF_COMMUNITY, default=DEFAULT_COMMUNITY): cv.string, vol.Optional(CONF_DEFAULT_VALUE): cv.string, vol.Optional(CONF_HOST, default=DEFAULT_HOST): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_PORT): cv.port, vol.Optional(CONF_UNIT_OF_MEASUREMENT): cv.string, vol.Optional(CONF_VALUE_TEMPLATE): cv.template, vol.Optional(CONF_VERSION, default=DEFAULT_VERSION): vol.In(SNMP_VERSIONS), vol.Optional(CONF_USERNAME): cv.string, vol.Optional(CONF_AUTH_KEY): cv.string, vol.Optional(CONF_AUTH_PROTOCOL, default=DEFAULT_AUTH_PROTOCOL): vol.In( MAP_AUTH_PROTOCOLS ), vol.Optional(CONF_PRIV_KEY): cv.string, vol.Optional(CONF_PRIV_PROTOCOL, default=DEFAULT_PRIV_PROTOCOL): vol.In( MAP_PRIV_PROTOCOLS ), } ) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the SNMP sensor.""" name = config.get(CONF_NAME) host = config.get(CONF_HOST) port = config.get(CONF_PORT) community = config.get(CONF_COMMUNITY) baseoid = config.get(CONF_BASEOID) unit = config.get(CONF_UNIT_OF_MEASUREMENT) version = config.get(CONF_VERSION) username = config.get(CONF_USERNAME) authkey = config.get(CONF_AUTH_KEY) authproto = config.get(CONF_AUTH_PROTOCOL) privkey = config.get(CONF_PRIV_KEY) privproto = config.get(CONF_PRIV_PROTOCOL) accept_errors = config.get(CONF_ACCEPT_ERRORS) default_value = config.get(CONF_DEFAULT_VALUE) value_template = config.get(CONF_VALUE_TEMPLATE) if value_template is not None: value_template.hass = hass if version == "3": if not authkey: authproto = "none" if not privkey: privproto = "none" request_args = [ SnmpEngine(), UsmUserData( username, authKey=authkey or None, privKey=privkey or None, authProtocol=getattr(hlapi, MAP_AUTH_PROTOCOLS[authproto]), privProtocol=getattr(hlapi, MAP_PRIV_PROTOCOLS[privproto]), ), UdpTransportTarget((host, port)), ContextData(), ] else: request_args = [ SnmpEngine(), CommunityData(community, mpModel=SNMP_VERSIONS[version]), UdpTransportTarget((host, port)), ContextData(), ] errindication, _, _, _ = await getCmd( *request_args, ObjectType(ObjectIdentity(baseoid)) ) if errindication and not accept_errors: _LOGGER.error("Please check the details in the configuration file") return data = SnmpData(request_args, baseoid, accept_errors, default_value) async_add_entities([SnmpSensor(data, name, unit, value_template)], True) class SnmpSensor(Entity): """Representation of a SNMP sensor.""" def __init__(self, data, name, unit_of_measurement, value_template): """Initialize the sensor.""" self.data = data self._name = name self._state = None self._unit_of_measurement = unit_of_measurement self._value_template = value_template @property def name(self): """Return the name of the sensor.""" return self._name @property def state(self): """Return the state of the sensor.""" return self._state @property def unit_of_measurement(self): """Return the unit the value is expressed in.""" return self._unit_of_measurement async def async_update(self): """Get the latest data and updates the states.""" await self.data.async_update() value = self.data.value if value is None: value = STATE_UNKNOWN elif self._value_template is not None: value = self._value_template.async_render_with_possible_json_value( value, STATE_UNKNOWN ) self._state = value class SnmpData: """Get the latest data and update the states.""" def __init__(self, request_args, baseoid, accept_errors, default_value): """Initialize the data object.""" self._request_args = request_args self._baseoid = baseoid self._accept_errors = accept_errors self._default_value = default_value self.value = None async def async_update(self): """Get the latest data from the remote SNMP capable host.""" errindication, errstatus, errindex, restable = await getCmd( *self._request_args, ObjectType(ObjectIdentity(self._baseoid)) ) if errindication and not self._accept_errors: _LOGGER.error("SNMP error: %s", errindication) elif errstatus and not self._accept_errors: _LOGGER.error( "SNMP error: %s at %s", errstatus.prettyPrint(), errindex and restable[-1][int(errindex) - 1] or "?", ) elif (errindication or errstatus) and self._accept_errors: self.value = self._default_value else: for resrow in restable: self.value = str(resrow[-1])
from unittest import TestCase import numpy as np from scattertext.termscoring.CredTFIDF import CredTFIDF from scattertext.test.test_termDocMatrixFactory import build_hamlet_jz_corpus class TestCredTFIDF(TestCase): def test_get_score_df(self): corpus = build_hamlet_jz_corpus() self.assertEqual( set(CredTFIDF(corpus).set_categories('hamlet').get_score_df().columns), set(['pos_cred_tfidf', 'neg_cred_tfidf', 'delta_cred_tf_idf']) ) #print(CredTFIDF(corpus).set_categories('hamlet').get_score_df(bootstrap=True, num_bootstraps=2))
import os import socket import platform import logging import configobj import time import re import subprocess from diamond.metric import Metric from diamond.utils.config import load_config from error import DiamondException # Detect the architecture of the system and set the counters for MAX_VALUES # appropriately. Otherwise, rolling over counters will cause incorrect or # negative values. if platform.architecture()[0] == '64bit': MAX_COUNTER = (2 ** 64) - 1 else: MAX_COUNTER = (2 ** 32) - 1 def get_hostname(config, method=None): """ Returns a hostname as configured by the user """ method = method or config.get('hostname_method', 'smart') # case insensitive method method = method.lower() if 'hostname' in config and method != 'shell': return config['hostname'] if method in get_hostname.cached_results: return get_hostname.cached_results[method] if method == 'shell': if 'hostname' not in config: raise DiamondException( "hostname must be set to a shell command for" " hostname_method=shell") else: proc = subprocess.Popen(config['hostname'], shell=True, stdout=subprocess.PIPE) hostname = proc.communicate()[0].strip() if proc.returncode != 0: raise subprocess.CalledProcessError(proc.returncode, config['hostname']) get_hostname.cached_results[method] = hostname return hostname if method == 'smart': hostname = get_hostname(config, 'fqdn_short') if hostname != 'localhost': get_hostname.cached_results[method] = hostname return hostname hostname = get_hostname(config, 'hostname_short') get_hostname.cached_results[method] = hostname return hostname if method == 'fqdn_short': hostname = socket.getfqdn().split('.')[0] get_hostname.cached_results[method] = hostname if hostname == '': raise DiamondException('Hostname is empty?!') return hostname if method == 'fqdn': hostname = socket.getfqdn().replace('.', '_') get_hostname.cached_results[method] = hostname if hostname == '': raise DiamondException('Hostname is empty?!') return hostname if method == 'fqdn_rev': hostname = socket.getfqdn().split('.') hostname.reverse() hostname = '.'.join(hostname) get_hostname.cached_results[method] = hostname if hostname == '': raise DiamondException('Hostname is empty?!') return hostname if method == 'uname_short': hostname = os.uname()[1].split('.')[0] get_hostname.cached_results[method] = hostname if hostname == '': raise DiamondException('Hostname is empty?!') return hostname if method == 'uname_rev': hostname = os.uname()[1].split('.') hostname.reverse() hostname = '.'.join(hostname) get_hostname.cached_results[method] = hostname if hostname == '': raise DiamondException('Hostname is empty?!') return hostname if method == 'hostname': hostname = socket.gethostname() get_hostname.cached_results[method] = hostname if hostname == '': raise DiamondException('Hostname is empty?!') return hostname if method == 'hostname_short': hostname = socket.gethostname().split('.')[0] get_hostname.cached_results[method] = hostname if hostname == '': raise DiamondException('Hostname is empty?!') return hostname if method == 'hostname_rev': hostname = socket.gethostname().split('.') hostname.reverse() hostname = '.'.join(hostname) get_hostname.cached_results[method] = hostname if hostname == '': raise DiamondException('Hostname is empty?!') return hostname if method == 'none': get_hostname.cached_results[method] = None return None raise NotImplementedError(config['hostname_method']) get_hostname.cached_results = {} def str_to_bool(value): """ Converts string truthy/falsey strings to a bool Empty strings are false """ if isinstance(value, basestring): value = value.strip().lower() if value in ['true', 't', 'yes', 'y']: return True elif value in ['false', 'f', 'no', 'n', '']: return False else: raise NotImplementedError("Unknown bool %s" % value) return value class Collector(object): """ The Collector class is a base class for all metric collectors. """ def __init__(self, config=None, handlers=[], name=None, configfile=None): """ Create a new instance of the Collector class """ # Initialize Logger self.log = logging.getLogger('diamond') # Initialize Members if name is None: self.name = self.__class__.__name__ else: self.name = name self.handlers = handlers self.last_values = {} self.configfile = None self.load_config(configfile, config) def load_config(self, configfile=None, override_config=None): """ Process a configfile, or reload if previously given one. """ self.config = configobj.ConfigObj() # Load in the collector's defaults if self.get_default_config() is not None: self.config.merge(self.get_default_config()) if configfile is not None: self.configfile = os.path.abspath(configfile) if self.configfile is not None: config = load_config(self.configfile) if 'collectors' in config: if 'default' in config['collectors']: self.config.merge(config['collectors']['default']) if self.name in config['collectors']: self.config.merge(config['collectors'][self.name]) if override_config is not None: if 'collectors' in override_config: if 'default' in override_config['collectors']: self.config.merge(override_config['collectors']['default']) if self.name in override_config['collectors']: self.config.merge(override_config['collectors'][self.name]) self.process_config() def process_config(self): """ Intended to put any code that should be run after any config reload event """ if 'byte_unit' in self.config: if isinstance(self.config['byte_unit'], basestring): self.config['byte_unit'] = self.config['byte_unit'].split() if 'enabled' in self.config: self.config['enabled'] = str_to_bool(self.config['enabled']) if 'measure_collector_time' in self.config: self.config['measure_collector_time'] = str_to_bool( self.config['measure_collector_time']) # Raise an error if both whitelist and blacklist are specified if ((self.config.get('metrics_whitelist', None) and self.config.get('metrics_blacklist', None))): raise DiamondException( 'Both metrics_whitelist and metrics_blacklist specified ' + 'in file %s' % self.configfile) if self.config.get('metrics_whitelist', None): self.config['metrics_whitelist'] = re.compile( self.config['metrics_whitelist']) elif self.config.get('metrics_blacklist', None): self.config['metrics_blacklist'] = re.compile( self.config['metrics_blacklist']) def get_default_config_help(self): """ Returns the help text for the configuration options for this collector """ return { 'enabled': 'Enable collecting these metrics', 'byte_unit': 'Default numeric output(s)', 'measure_collector_time': 'Collect the collector run time in ms', 'metrics_whitelist': 'Regex to match metrics to transmit. ' + 'Mutually exclusive with metrics_blacklist', 'metrics_blacklist': 'Regex to match metrics to block. ' + 'Mutually exclusive with metrics_whitelist', } def get_default_config(self): """ Return the default config for the collector """ return { # Defaults options for all Collectors # Uncomment and set to hardcode a hostname for the collector path # Keep in mind, periods are seperators in graphite # 'hostname': 'my_custom_hostname', # If you perfer to just use a different way of calculating the # hostname # Uncomment and set this to one of these values: # fqdn_short = Default. Similar to hostname -s # fqdn = hostname output # fqdn_rev = hostname in reverse (com.example.www) # uname_short = Similar to uname -n, but only the first part # uname_rev = uname -r in reverse (com.example.www) # 'hostname_method': 'fqdn_short', # All collectors are disabled by default 'enabled': False, # Path Prefix 'path_prefix': 'servers', # Path Prefix for Virtual Machine metrics 'instance_prefix': 'instances', # Path Suffix 'path_suffix': '', # Default Poll Interval (seconds) 'interval': 300, # Default Event TTL (interval multiplier) 'ttl_multiplier': 2, # Default numeric output 'byte_unit': 'byte', # Collect the collector run time in ms 'measure_collector_time': False, # Whitelist of metrics to let through 'metrics_whitelist': None, # Blacklist of metrics to let through 'metrics_blacklist': None, } def get_metric_path(self, name, instance=None): """ Get metric path. Instance indicates that this is a metric for a virtual machine and should have a different root prefix. """ if 'path' in self.config: path = self.config['path'] else: path = self.__class__.__name__ if instance is not None: if 'instance_prefix' in self.config: prefix = self.config['instance_prefix'] else: prefix = 'instances' if path == '.': return '.'.join([prefix, instance, name]) else: return '.'.join([prefix, instance, path, name]) if 'path_prefix' in self.config: prefix = self.config['path_prefix'] else: prefix = 'systems' if 'path_suffix' in self.config: suffix = self.config['path_suffix'] else: suffix = None hostname = get_hostname(self.config) if hostname is not None: if prefix: prefix = ".".join((prefix, hostname)) else: prefix = hostname # if there is a suffix, add after the hostname if suffix: prefix = '.'.join((prefix, suffix)) is_path_invalid = path == '.' or not path if is_path_invalid and prefix: return '.'.join([prefix, name]) elif prefix: return '.'.join([prefix, path, name]) elif is_path_invalid: return name else: return '.'.join([path, name]) def get_hostname(self): return get_hostname(self.config) def collect(self): """ Default collector method """ raise NotImplementedError() def publish(self, name, value, raw_value=None, precision=0, metric_type='GAUGE', instance=None): """ Publish a metric with the given name """ # Check whitelist/blacklist if self.config['metrics_whitelist']: if not self.config['metrics_whitelist'].match(name): return elif self.config['metrics_blacklist']: if self.config['metrics_blacklist'].match(name): return # Get metric Path path = self.get_metric_path(name, instance=instance) # Get metric TTL ttl = float(self.config['interval']) * float( self.config['ttl_multiplier']) # Create Metric try: metric = Metric(path, value, raw_value=raw_value, timestamp=None, precision=precision, host=self.get_hostname(), metric_type=metric_type, ttl=ttl) except DiamondException: self.log.error(('Error when creating new Metric: path=%r, ' 'value=%r'), path, value) raise # Publish Metric self.publish_metric(metric) def publish_metric(self, metric): """ Publish a Metric object """ # Process Metric for handler in self.handlers: handler._process(metric) def publish_gauge(self, name, value, precision=0, instance=None): return self.publish(name, value, precision=precision, metric_type='GAUGE', instance=instance) def publish_counter(self, name, value, precision=0, max_value=0, time_delta=True, interval=None, allow_negative=False, instance=None): raw_value = value value = self.derivative(name, value, max_value=max_value, time_delta=time_delta, interval=interval, allow_negative=allow_negative, instance=instance) return self.publish(name, value, raw_value=raw_value, precision=precision, metric_type='COUNTER', instance=instance) def derivative(self, name, new, max_value=0, time_delta=True, interval=None, allow_negative=False, instance=None): """ Calculate the derivative of the metric. """ # Format Metric Path path = self.get_metric_path(name, instance=instance) if path in self.last_values: old = self.last_values[path] # Check for rollover if new < old: old = old - max_value # Get Change in X (value) derivative_x = new - old # If we pass in a interval, use it rather then the configured one if interval is None: interval = float(self.config['interval']) # Get Change in Y (time) if time_delta: derivative_y = interval else: derivative_y = 1 result = float(derivative_x) / float(derivative_y) if result < 0 and not allow_negative: result = 0 else: result = 0 # Store Old Value self.last_values[path] = new # Return result return result def _run(self): """ Run the collector unless it's already running """ try: start_time = time.time() # Collect Data self.collect() end_time = time.time() collector_time = int((end_time - start_time) * 1000) self.log.debug('Collection took %s ms', collector_time) if 'measure_collector_time' in self.config: if self.config['measure_collector_time']: metric_name = 'collector_time_ms' metric_value = collector_time self.publish(metric_name, metric_value) finally: # After collector run, invoke a flush # method on each handler. for handler in self.handlers: handler._flush() def find_binary(self, binary): """ Scan and return the first path to a binary that we can find """ if os.path.exists(binary): return binary # Extract out the filename if we were given a full path binary_name = os.path.basename(binary) # Gather $PATH search_paths = os.environ['PATH'].split(':') # Extra paths to scan... default_paths = [ '/usr/bin', '/bin' '/usr/local/bin', '/usr/sbin', '/sbin' '/usr/local/sbin', ] for path in default_paths: if path not in search_paths: search_paths.append(path) for path in search_paths: if os.path.isdir(path): filename = os.path.join(path, binary_name) if os.path.exists(filename): return filename return binary class ProcessCollector(Collector): """ Collector with helpers for handling running commands with/without sudo """ def get_default_config_help(self): config_help = super(ProcessCollector, self).get_default_config_help() config_help.update({ 'use_sudo': 'Use sudo?', 'sudo_cmd': 'Path to sudo', }) return config_help def get_default_config(self): """ Returns the default collector settings """ config = super(ProcessCollector, self).get_default_config() config.update({ 'use_sudo': False, 'sudo_cmd': self.find_binary('/usr/bin/sudo'), }) return config def run_command(self, args): if 'bin' not in self.config: raise Exception('config does not have any binary configured') if not os.access(self.config['bin'], os.X_OK): raise Exception('%s is not executable' % self.config['bin']) try: command = args command.insert(0, self.config['bin']) if str_to_bool(self.config['use_sudo']): command.insert(0, self.config['sudo_cmd']) return subprocess.Popen(command, stdout=subprocess.PIPE).communicate() except OSError: self.log.exception("Unable to run %s", command) return None
from homeassistant.components.group import GroupIntegrationRegistry from homeassistant.const import ( STATE_IDLE, STATE_OFF, STATE_ON, STATE_PAUSED, STATE_PLAYING, ) from homeassistant.core import callback from homeassistant.helpers.typing import HomeAssistantType @callback def async_describe_on_off_states( hass: HomeAssistantType, registry: GroupIntegrationRegistry ) -> None: """Describe group on off states.""" registry.on_off_states( {STATE_ON, STATE_PAUSED, STATE_PLAYING, STATE_IDLE}, STATE_OFF )
from homeassistant.components.remote import RemoteEntity from homeassistant.const import STATE_OFF, STATE_ON from tests.common import MockToggleEntity ENTITIES = [] def init(empty=False): """Initialize the platform with entities.""" global ENTITIES ENTITIES = ( [] if empty else [ MockRemote("TV", STATE_ON), MockRemote("DVD", STATE_OFF), MockRemote(None, STATE_OFF), ] ) async def async_setup_platform( hass, config, async_add_entities_callback, discovery_info=None ): """Return mock entities.""" async_add_entities_callback(ENTITIES) class MockRemote(MockToggleEntity, RemoteEntity): """Mock remote class.""" supported_features = 0
import numpy as np import pandas as pd from scattertext.termranking import AbsoluteFrequencyRanker from scattertext.termscoring.RankDifference import RankDifference class EmptyNeutralCategoriesError(Exception): pass ''' !!! Need to properly segregate interfaces ''' class SemioticSquareBase(object): def get_labels(self): raise NotImplementedError() def get_axes(self, **kwargs): raise NotImplementedError() def get_lexicons(self, num_terms=10): raise NotImplementedError() class SemioticSquare(SemioticSquareBase): ''' Create a visualization of a semiotic square. Requires Corpus to have at least three categories. >>> newsgroups_train = fetch_20newsgroups(subset='train', ... remove=('headers', 'footers', 'quotes')) >>> vectorizer = CountVectorizer() >>> X = vectorizer.fit_transform(newsgroups_train.data) >>> corpus = st.CorpusFromScikit( ... X=X, ... y=newsgroups_train.target, ... feature_vocabulary=vectorizer.vocabulary_, ... category_names=newsgroups_train.target_names, ... raw_texts=newsgroups_train.data ... ).build() >>> semseq = SemioticSquare(corpus, ... category_a = 'alt.atheism', ... category_b = 'soc.religion.christian', ... neutral_categories = ['talk.religion.misc'] ... ) >>> # A simple HTML table >>> html = SemioticSquareViz(semseq).to_html() >>> # The table with an interactive scatterplot below it >>> html = st.produce_semiotic_square_explorer(semiotic_square, ... x_label='More Atheism, Less Xtnity', ... y_label='General Religious Talk') ''' def __init__(self, term_doc_matrix, category_a, category_b, neutral_categories, labels=None, term_ranker=AbsoluteFrequencyRanker, scorer=None): ''' Parameters ---------- term_doc_matrix : TermDocMatrix TermDocMatrix (or descendant) which will be used in constructing square. category_a : str Category name for term A category_b : str Category name for term B (in opposition to A) neutral_categories : list[str] List of category names that A and B will be contrasted to. Should be in same domain. labels : dict None by default. Labels are dictionary of {'a_and_b': 'A and B', ...} to be shown above each category. term_ranker : TermRanker Class for returning a term-frequency convention_df scorer : termscoring class, optional Term scoring class for lexicon mining. Default: `scattertext.termscoring.ScaledFScore` ''' assert category_a in term_doc_matrix.get_categories() assert category_b in term_doc_matrix.get_categories() for category in neutral_categories: assert category in term_doc_matrix.get_categories() if len(neutral_categories) == 0: raise EmptyNeutralCategoriesError() self.category_a_ = category_a self.category_b_ = category_b self.neutral_categories_ = neutral_categories self._build_square(term_doc_matrix, term_ranker, labels, scorer) def _build_square(self, term_doc_matrix, term_ranker, labels, scorer): self.term_doc_matrix_ = term_doc_matrix self.term_ranker = term_ranker(term_doc_matrix) self.scorer = RankDifference() \ if scorer is None else scorer self.axes = self._build_axes(scorer) self.lexicons = self._build_lexicons() self._labels = labels def get_axes(self, scorer=None): ''' Returns ------- pd.DataFrame ''' if scorer: return self._build_axes(scorer) return self.axes def get_lexicons(self, num_terms=10): ''' Parameters ---------- num_terms, int Returns ------- dict ''' return {k: v.index[:num_terms] for k, v in self.lexicons.items()} def get_labels(self): a = self._get_default_a_label() b = self._get_default_b_label() default_labels = {'a': a, 'not_a': 'Not ' + a, 'b': b, 'not_b': 'Not ' + b, 'a_and_b': a + ' + ' + b, 'not_a_and_not_b': 'Not ' + a + ' + Not ' + b, 'a_and_not_b': a + ' + Not ' + b, 'b_and_not_a': 'Not ' + a + ' + ' + b} labels = self._labels if labels is None: labels = {} return {name + '_label': labels.get(name, default_labels[name]) for name in default_labels} def _get_default_b_label(self): return self.category_b_ def _get_default_a_label(self): return self.category_a_ def _build_axes(self, scorer): if scorer is None: scorer = self.scorer tdf = self._get_term_doc_count_df() counts = tdf.sum(axis=1) tdf['x'] = self._get_x_axis(scorer, tdf) tdf['x'][np.isnan(tdf['x'])] = self.scorer.get_default_score() tdf['y'] = self._get_y_axis(scorer, tdf) tdf['y'][np.isnan(tdf['y'])] = self.scorer.get_default_score() tdf['counts'] = counts return tdf[['x', 'y', 'counts']] def _get_x_axis(self, scorer, tdf): return scorer.get_scores( tdf[self.category_a_ + ' freq'], tdf[self.category_b_ + ' freq'] ) def _get_y_axis(self, scorer, tdf): return scorer.get_scores( tdf[[t + ' freq' for t in [self.category_a_, self.category_b_]]].sum(axis=1), tdf[[t + ' freq' for t in self.neutral_categories_]].sum(axis=1) ) def _get_term_doc_count_df(self): return (self.term_ranker.get_ranks() [[t + ' freq' for t in self._get_all_categories()]]) def _get_all_categories(self): return [self.category_a_, self.category_b_] + self.neutral_categories_ def _build_lexicons(self): self.lexicons = {} ax = self.axes x_max = ax['x'].max() y_max = ax['y'].max() x_min = ax['x'].min() y_min = ax['y'].min() x_baseline = self._get_x_baseline() y_baseline = self._get_y_baseline() def dist(candidates, x_bound, y_bound): return ((x_bound - candidates['x']) ** 2 + (y_bound - candidates['y']) ** 2).sort_values() self.lexicons['a'] = dist(ax[(ax['x'] > x_baseline) & (ax['y'] > y_baseline)], x_max, y_max) self.lexicons['not_a'] = dist(ax[(ax['x'] < x_baseline) & (ax['y'] < y_baseline)], x_min, y_min) self.lexicons['b'] = dist(ax[(ax['x'] < x_baseline) & (ax['y'] > y_baseline)], x_min, y_max) self.lexicons['not_b'] = dist(ax[(ax['x'] > x_baseline) & (ax['y'] < y_baseline)], x_max, y_min) self.lexicons['a_and_b'] = dist(ax[(ax['y'] > y_baseline)], x_baseline, y_max) self.lexicons['not_a_and_not_b'] = dist(ax[(ax['y'] < y_baseline)], x_baseline, y_min) self.lexicons['a_and_not_b'] = dist(ax[(ax['x'] > x_baseline)], x_max, y_baseline) self.lexicons['b_and_not_a'] = dist(ax[(ax['x'] < x_baseline)], x_min, y_baseline) return self.lexicons def _get_y_baseline(self): return self.scorer.get_default_score() def _get_x_baseline(self): return self.scorer.get_default_score()
import itertools import os import re import sys def get_characters(): """Find every Unicode character that is valid in a Python `identifier`_ but is not matched by the regex ``\\w`` group. ``\\w`` matches some characters that aren't valid in identifiers, but :meth:`str.isidentifier` will catch that later in lexing. All start characters are valid continue characters, so we only test for continue characters. _identifier: https://docs.python.org/3/reference/lexical_analysis.html#identifiers """ for cp in range(sys.maxunicode + 1): s = chr(cp) if ("a" + s).isidentifier() and not re.match(r"\w", s): yield s def collapse_ranges(data): """Given a sorted list of unique characters, generate ranges representing sequential code points. Source: https://stackoverflow.com/a/4629241/400617 """ for _, b in itertools.groupby(enumerate(data), lambda x: ord(x[1]) - x[0]): b = list(b) yield b[0][1], b[-1][1] def build_pattern(ranges): """Output the regex pattern for ranges of characters. One and two character ranges output the individual characters. """ out = [] for a, b in ranges: if a == b: # single char out.append(a) elif ord(b) - ord(a) == 1: # two chars, range is redundant out.append(a) out.append(b) else: out.append(f"{a}-{b}") return "".join(out) def main(): """Build the regex pattern and write it to ``jinja2/_identifier.py``. """ pattern = build_pattern(collapse_ranges(get_characters())) filename = os.path.abspath( os.path.join(os.path.dirname(__file__), "..", "src", "jinja2", "_identifier.py") ) with open(filename, "w", encoding="utf8") as f: f.write("import re\n\n") f.write("# generated by scripts/generate_identifier_pattern.py\n") f.write("pattern = re.compile(\n") f.write(f' r"[\\w{pattern}]+" # noqa: B950\n') f.write(")\n") if __name__ == "__main__": main()
import urllib2 import diamond.collector class ResqueWebCollector(diamond.collector.Collector): def get_default_config_help(self): config_help = super(ResqueWebCollector, self).get_default_config_help() config_help.update({ }) return config_help def get_default_config(self): """ Returns the default collector settings """ config = super(ResqueWebCollector, self).get_default_config() config.update({ 'host': 'localhost', 'port': 5678, 'path': 'resqueweb', }) return config def collect(self): try: response = urllib2.urlopen("http://%s:%s/stats.txt" % ( self.config['host'], int(self.config['port']))) except Exception as e: self.log.error('Couldnt connect to resque-web: %s', e) return {} for data in response.read().split("\n"): if data == "": continue item, count = data.strip().split("=") try: count = int(count) (item, queue) = item.split(".") if item == "resque": if queue[-1] == "+": self.publish("%s.total" % queue.replace("+", ""), count) else: self.publish("%s.current" % queue, count) else: self.publish("queue.%s.current" % queue, count) except Exception as e: self.log.error('Couldnt parse the queue: %s', e)
import asyncio import logging import aiohttp import attr import tp_connected import voluptuous as vol from homeassistant.const import ( CONF_HOST, CONF_NAME, CONF_PASSWORD, CONF_RECIPIENT, EVENT_HOMEASSISTANT_STOP, ) from homeassistant.core import callback from homeassistant.helpers import config_validation as cv, discovery from homeassistant.helpers.aiohttp_client import async_create_clientsession _LOGGER = logging.getLogger(__name__) DOMAIN = "tplink_lte" DATA_KEY = "tplink_lte" CONF_NOTIFY = "notify" _NOTIFY_SCHEMA = vol.Schema( { vol.Optional(CONF_NAME): cv.string, vol.Optional(CONF_RECIPIENT): vol.All(cv.ensure_list, [cv.string]), } ) CONFIG_SCHEMA = vol.Schema( { DOMAIN: vol.All( cv.ensure_list, [ vol.Schema( { vol.Required(CONF_HOST): cv.string, vol.Required(CONF_PASSWORD): cv.string, vol.Optional(CONF_NOTIFY): vol.All( cv.ensure_list, [_NOTIFY_SCHEMA] ), } ) ], ) }, extra=vol.ALLOW_EXTRA, ) @attr.s class ModemData: """Class for modem state.""" host = attr.ib() modem = attr.ib() connected = attr.ib(init=False, default=True) @attr.s class LTEData: """Shared state.""" websession = attr.ib() modem_data = attr.ib(init=False, factory=dict) def get_modem_data(self, config): """Get the requested or the only modem_data value.""" if CONF_HOST in config: return self.modem_data.get(config[CONF_HOST]) if len(self.modem_data) == 1: return next(iter(self.modem_data.values())) return None async def async_setup(hass, config): """Set up TP-Link LTE component.""" if DATA_KEY not in hass.data: websession = async_create_clientsession( hass, cookie_jar=aiohttp.CookieJar(unsafe=True) ) hass.data[DATA_KEY] = LTEData(websession) domain_config = config.get(DOMAIN, []) tasks = [_setup_lte(hass, conf) for conf in domain_config] if tasks: await asyncio.wait(tasks) for conf in domain_config: for notify_conf in conf.get(CONF_NOTIFY, []): hass.async_create_task( discovery.async_load_platform( hass, "notify", DOMAIN, notify_conf, config ) ) return True async def _setup_lte(hass, lte_config, delay=0): """Set up a TP-Link LTE modem.""" host = lte_config[CONF_HOST] password = lte_config[CONF_PASSWORD] websession = hass.data[DATA_KEY].websession modem = tp_connected.Modem(hostname=host, websession=websession) modem_data = ModemData(host, modem) try: await _login(hass, modem_data, password) except tp_connected.Error: retry_task = hass.loop.create_task(_retry_login(hass, modem_data, password)) @callback def cleanup_retry(event): """Clean up retry task resources.""" if not retry_task.done(): retry_task.cancel() hass.bus.async_listen_once(EVENT_HOMEASSISTANT_STOP, cleanup_retry) async def _login(hass, modem_data, password): """Log in and complete setup.""" await modem_data.modem.login(password=password) modem_data.connected = True hass.data[DATA_KEY].modem_data[modem_data.host] = modem_data async def cleanup(event): """Clean up resources.""" await modem_data.modem.logout() hass.bus.async_listen_once(EVENT_HOMEASSISTANT_STOP, cleanup) async def _retry_login(hass, modem_data, password): """Sleep and retry setup.""" _LOGGER.warning("Could not connect to %s. Will keep trying", modem_data.host) modem_data.connected = False delay = 15 while not modem_data.connected: await asyncio.sleep(delay) try: await _login(hass, modem_data, password) _LOGGER.warning("Connected to %s", modem_data.host) except tp_connected.Error: delay = min(2 * delay, 300)
from datetime import datetime, timedelta from functools import partial import json import logging import mimetypes import os from TwitterAPI import TwitterAPI import voluptuous as vol from homeassistant.components.notify import ( ATTR_DATA, PLATFORM_SCHEMA, BaseNotificationService, ) from homeassistant.const import CONF_ACCESS_TOKEN, CONF_USERNAME, HTTP_OK import homeassistant.helpers.config_validation as cv from homeassistant.helpers.event import async_track_point_in_time _LOGGER = logging.getLogger(__name__) CONF_CONSUMER_KEY = "consumer_key" CONF_CONSUMER_SECRET = "consumer_secret" CONF_ACCESS_TOKEN_SECRET = "access_token_secret" ATTR_MEDIA = "media" PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_ACCESS_TOKEN): cv.string, vol.Required(CONF_ACCESS_TOKEN_SECRET): cv.string, vol.Required(CONF_CONSUMER_KEY): cv.string, vol.Required(CONF_CONSUMER_SECRET): cv.string, vol.Optional(CONF_USERNAME): cv.string, } ) def get_service(hass, config, discovery_info=None): """Get the Twitter notification service.""" return TwitterNotificationService( hass, config[CONF_CONSUMER_KEY], config[CONF_CONSUMER_SECRET], config[CONF_ACCESS_TOKEN], config[CONF_ACCESS_TOKEN_SECRET], config.get(CONF_USERNAME), ) class TwitterNotificationService(BaseNotificationService): """Implementation of a notification service for the Twitter service.""" def __init__( self, hass, consumer_key, consumer_secret, access_token_key, access_token_secret, username, ): """Initialize the service.""" self.user = username self.hass = hass self.api = TwitterAPI( consumer_key, consumer_secret, access_token_key, access_token_secret ) def send_message(self, message="", **kwargs): """Tweet a message, optionally with media.""" data = kwargs.get(ATTR_DATA) media = None if data: media = data.get(ATTR_MEDIA) if not self.hass.config.is_allowed_path(media): _LOGGER.warning("'%s' is not a whitelisted directory", media) return callback = partial(self.send_message_callback, message) self.upload_media_then_callback(callback, media) def send_message_callback(self, message, media_id=None): """Tweet a message, optionally with media.""" if self.user: user_resp = self.api.request("users/lookup", {"screen_name": self.user}) user_id = user_resp.json()[0]["id"] if user_resp.status_code != HTTP_OK: self.log_error_resp(user_resp) else: _LOGGER.debug("Message posted: %s", user_resp.json()) event = { "event": { "type": "message_create", "message_create": { "target": {"recipient_id": user_id}, "message_data": {"text": message}, }, } } resp = self.api.request("direct_messages/events/new", json.dumps(event)) else: resp = self.api.request( "statuses/update", {"status": message, "media_ids": media_id} ) if resp.status_code != HTTP_OK: self.log_error_resp(resp) else: _LOGGER.debug("Message posted: %s", resp.json()) def upload_media_then_callback(self, callback, media_path=None): """Upload media.""" if not media_path: return callback() with open(media_path, "rb") as file: total_bytes = os.path.getsize(media_path) (media_category, media_type) = self.media_info(media_path) resp = self.upload_media_init(media_type, media_category, total_bytes) if 199 > resp.status_code < 300: self.log_error_resp(resp) return None media_id = resp.json()["media_id"] media_id = self.upload_media_chunked(file, total_bytes, media_id) resp = self.upload_media_finalize(media_id) if 199 > resp.status_code < 300: self.log_error_resp(resp) return None if resp.json().get("processing_info") is None: return callback(media_id) self.check_status_until_done(media_id, callback) def media_info(self, media_path): """Determine mime type and Twitter media category for given media.""" (media_type, _) = mimetypes.guess_type(media_path) media_category = self.media_category_for_type(media_type) _LOGGER.debug( "media %s is mime type %s and translates to %s", media_path, media_type, media_category, ) return media_category, media_type def upload_media_init(self, media_type, media_category, total_bytes): """Upload media, INIT phase.""" return self.api.request( "media/upload", { "command": "INIT", "media_type": media_type, "media_category": media_category, "total_bytes": total_bytes, }, ) def upload_media_chunked(self, file, total_bytes, media_id): """Upload media, chunked append.""" segment_id = 0 bytes_sent = 0 while bytes_sent < total_bytes: chunk = file.read(4 * 1024 * 1024) resp = self.upload_media_append(chunk, media_id, segment_id) if resp.status_code not in range(HTTP_OK, 299): self.log_error_resp_append(resp) return None segment_id = segment_id + 1 bytes_sent = file.tell() self.log_bytes_sent(bytes_sent, total_bytes) return media_id def upload_media_append(self, chunk, media_id, segment_id): """Upload media, APPEND phase.""" return self.api.request( "media/upload", {"command": "APPEND", "media_id": media_id, "segment_index": segment_id}, {"media": chunk}, ) def upload_media_finalize(self, media_id): """Upload media, FINALIZE phase.""" return self.api.request( "media/upload", {"command": "FINALIZE", "media_id": media_id} ) def check_status_until_done(self, media_id, callback, *args): """Upload media, STATUS phase.""" resp = self.api.request( "media/upload", {"command": "STATUS", "media_id": media_id}, method_override="GET", ) if resp.status_code != HTTP_OK: _LOGGER.error("media processing error: %s", resp.json()) processing_info = resp.json()["processing_info"] _LOGGER.debug("media processing %s status: %s", media_id, processing_info) if processing_info["state"] in {"succeeded", "failed"}: return callback(media_id) check_after_secs = processing_info["check_after_secs"] _LOGGER.debug( "media processing waiting %s seconds to check status", str(check_after_secs) ) when = datetime.now() + timedelta(seconds=check_after_secs) myself = partial(self.check_status_until_done, media_id, callback) async_track_point_in_time(self.hass, myself, when) @staticmethod def media_category_for_type(media_type): """Determine Twitter media category by mime type.""" if media_type is None: return None if media_type.startswith("image/gif"): return "tweet_gif" if media_type.startswith("video/"): return "tweet_video" if media_type.startswith("image/"): return "tweet_image" return None @staticmethod def log_bytes_sent(bytes_sent, total_bytes): """Log upload progress.""" _LOGGER.debug("%s of %s bytes uploaded", str(bytes_sent), str(total_bytes)) @staticmethod def log_error_resp(resp): """Log error response.""" obj = json.loads(resp.text) error_message = obj["errors"] _LOGGER.error("Error %s: %s", resp.status_code, error_message) @staticmethod def log_error_resp_append(resp): """Log error response, during upload append phase.""" obj = json.loads(resp.text) error_message = obj["errors"][0]["message"] error_code = obj["errors"][0]["code"] _LOGGER.error( "Error %s: %s (Code %s)", resp.status_code, error_message, error_code )
import asyncio import discord from datetime import datetime from redbot.core.utils.chat_formatting import pagify import io import weakref from typing import List, Optional from .common_filters import filter_mass_mentions _instances = weakref.WeakValueDictionary({}) class TunnelMeta(type): """ lets prevent having multiple tunnels with the same places involved. """ def __call__(cls, *args, **kwargs): lockout_tuple = ((kwargs.get("sender"), kwargs.get("origin")), kwargs.get("recipient")) if lockout_tuple in _instances: return _instances[lockout_tuple] # this is needed because weakvalue dicts can # change size without warning if an object is discarded # it can raise a runtime error, so .. while True: try: if not ( any(lockout_tuple[0] == x[0] for x in _instances.keys()) or any(lockout_tuple[1] == x[1] for x in _instances.keys()) ): # if this isn't temporarily stored, the weakref dict # will discard this before the return statement, # causing a key error temp = super(TunnelMeta, cls).__call__(*args, **kwargs) _instances[lockout_tuple] = temp return temp except: # NOQA: E722 # Am I really supposed to except a runtime error flake >.> continue else: return None class Tunnel(metaclass=TunnelMeta): """ A tunnel interface for messages This will return None on init if the destination or source + origin pair is already in use, or the existing tunnel object if one exists for the designated parameters Attributes ---------- sender: `discord.Member` The person who opened the tunnel origin: `discord.TextChannel` The channel in which it was opened recipient: `discord.User` The user on the other end of the tunnel """ def __init__( self, *, sender: discord.Member, origin: discord.TextChannel, recipient: discord.User ): self.sender = sender self.origin = origin self.recipient = recipient self.last_interaction = datetime.utcnow() async def react_close(self, *, uid: int, message: str = ""): send_to = self.recipient if uid == self.sender.id else self.origin closer = next(filter(lambda x: x.id == uid, (self.sender, self.recipient)), None) await send_to.send(filter_mass_mentions(message.format(closer=closer))) @property def members(self): return self.sender, self.recipient @property def minutes_since(self): return int((self.last_interaction - datetime.utcnow()).seconds / 60) @staticmethod async def message_forwarder( *, destination: discord.abc.Messageable, content: str = None, embed=None, files: Optional[List[discord.File]] = None, ) -> List[discord.Message]: """ This does the actual sending, use this instead of a full tunnel if you are using command initiated reactions instead of persistent event based ones Parameters ---------- destination: discord.abc.Messageable Where to send content: str The message content embed: discord.Embed The embed to send files: Optional[List[discord.File]] A list of files to send. Returns ------- List[discord.Message] The messages sent as a result. Raises ------ discord.Forbidden see `discord.abc.Messageable.send` discord.HTTPException see `discord.abc.Messageable.send` """ rets = [] if content: for page in pagify(content): rets.append(await destination.send(page, files=files, embed=embed)) if files: del files if embed: del embed elif embed or files: rets.append(await destination.send(files=files, embed=embed)) return rets @staticmethod async def files_from_attach( m: discord.Message, *, use_cached: bool = False, images_only: bool = False ) -> List[discord.File]: """ makes a list of file objects from a message returns an empty list if none, or if the sum of file sizes is too large for the bot to send Parameters --------- m: `discord.Message` A message to get attachments from use_cached: `bool` Whether to use ``proxy_url`` rather than ``url`` when downloading the attachment images_only: `bool` Whether only image attachments should be added to returned list Returns ------- list of `discord.File` A list of `discord.File` objects """ files = [] max_size = 8 * 1000 * 1000 if m.attachments and sum(a.size for a in m.attachments) <= max_size: for a in m.attachments: if images_only and a.height is None: # if this is None, it's not an image continue _fp = io.BytesIO() try: await a.save(_fp, use_cached=use_cached) except discord.HTTPException as e: # this is required, because animated webp files aren't cached if not (e.status == 415 and images_only and use_cached): raise files.append(discord.File(_fp, filename=a.filename)) return files # Backwards-compatible typo fix (GH-2496) files_from_attatch = files_from_attach async def close_because_disabled(self, close_message: str): """ Sends a mesage to both ends of the tunnel that the tunnel is now closed. Parameters ---------- close_message: str The message to send to both ends of the tunnel. """ tasks = [destination.send(close_message) for destination in (self.recipient, self.origin)] await asyncio.gather(*tasks, return_exceptions=True) async def communicate( self, *, message: discord.Message, topic: str = None, skip_message_content: bool = False ): """ Forwards a message. Parameters ---------- message : `discord.Message` The message to forward topic : `str` A string to prepend skip_message_content : `bool` If this flag is set, only the topic will be sent Returns ------- `int`, `int` a pair of ints matching the ids of the message which was forwarded and the last message the bot sent to do that. useful if waiting for reactions. Raises ------ discord.Forbidden This should only happen if the user's DMs are disabled the bot can't upload at the origin channel or can't add reactions there. """ if message.channel == self.origin and message.author == self.sender: send_to = self.recipient elif message.author == self.recipient and isinstance(message.channel, discord.DMChannel): send_to = self.origin else: return None if not skip_message_content: content = "\n".join((topic, message.content)) if topic else message.content else: content = topic if message.attachments: attach = await self.files_from_attach(message) if not attach: await message.channel.send( "Could not forward attachments. " "Total size of attachments in a single " "message must be less than 8MB." ) else: attach = [] rets = await self.message_forwarder(destination=send_to, content=content, files=attach) await message.add_reaction("\N{WHITE HEAVY CHECK MARK}") await message.add_reaction("\N{NEGATIVE SQUARED CROSS MARK}") self.last_interaction = datetime.utcnow() await rets[-1].add_reaction("\N{NEGATIVE SQUARED CROSS MARK}") return [rets[-1].id, message.id]
import pytest from marshmallow.exceptions import ValidationError from lemur.tests.factories import RoleFactory def test_get_object_attribute(): from lemur.schemas import get_object_attribute with pytest.raises(ValidationError): get_object_attribute({}) with pytest.raises(ValidationError): get_object_attribute([{}], many=True) with pytest.raises(ValidationError): get_object_attribute([{}, {"id": 1}], many=True) with pytest.raises(ValidationError): get_object_attribute([{}, {"name": "test"}], many=True) assert get_object_attribute({"name": "test"}) == "name" assert get_object_attribute({"id": 1}) == "id" assert get_object_attribute([{"name": "test"}], many=True) == "name" assert get_object_attribute([{"id": 1}], many=True) == "id" def test_fetch_objects(session): from lemur.roles.models import Role from lemur.schemas import fetch_objects role = RoleFactory() role1 = RoleFactory() session.commit() data = {"id": role.id} found_role = fetch_objects(Role, data) assert found_role == role data = {"name": role.name} found_role = fetch_objects(Role, data) assert found_role == role data = [{"id": role.id}, {"id": role1.id}] found_roles = fetch_objects(Role, data, many=True) assert found_roles == [role, role1] data = [{"name": role.name}, {"name": role1.name}] found_roles = fetch_objects(Role, data, many=True) assert found_roles == [role, role1] with pytest.raises(ValidationError): data = [{"name": "blah"}, {"name": role1.name}] fetch_objects(Role, data, many=True) with pytest.raises(ValidationError): data = {"name": "nah"} fetch_objects(Role, data)
import email.parser import sys import pkg_resources from django.conf import settings from django.core.cache import cache from django.core.exceptions import ImproperlyConfigured from django.db import connection import weblate from weblate.utils.errors import report_error from weblate.vcs.git import GitRepository, GitWithGerritRepository, SubversionRepository from weblate.vcs.mercurial import HgRepository REQUIRES = [ "Django", "siphashc", "Whoosh", "translate-toolkit", "lxml", "Pillow", "bleach", "python-dateutil", "social-auth-core", "social-auth-app-django", "django-crispy-forms", "oauthlib", "django-compressor", "djangorestframework", "django-filter", "django-appconf", "user-agents", "filelock", "setuptools", "jellyfish", "openpyxl", "celery", "kombu", "translation-finder", "weblate-language-data", "html2text", "pycairo", "pygobject", "diff-match-patch", "requests", "django-redis", "hiredis", "sentry_sdk", "Cython", "misaka", "GitPython", "borgbackup", "pyparsing", ] OPTIONAL = [ "psycopg2", "psycopg2-binary", "phply", "chardet", "ruamel.yaml", "tesserocr", "akismet", "boto3", "zeep", "aeidon", "iniparse", "mysqlclient", ] def get_version_module(name, optional=False): """Return module object. On error raises verbose exception with name and URL. """ try: dist = pkg_resources.get_distribution(name) metadata = email.parser.Parser().parsestr(dist.get_metadata(dist.PKG_INFO)) return ( name, metadata.get("Home-page"), pkg_resources.get_distribution(name).version, ) except pkg_resources.DistributionNotFound: if optional: return None raise ImproperlyConfigured( "Missing dependency {0}, please install using: pip install {0}".format(name) ) def get_optional_versions(): """Return versions of optional modules.""" result = [] for name in OPTIONAL: module = get_version_module(name, True) if module is not None: result.append(module) if HgRepository.is_supported(): result.append( ("Mercurial", "https://www.mercurial-scm.org/", HgRepository.get_version()) ) if SubversionRepository.is_supported(): result.append( ( "git-svn", "https://git-scm.com/docs/git-svn", SubversionRepository.get_version(), ) ) if GitWithGerritRepository.is_supported(): result.append( ( "git-review", "https://pypi.org/project/git-review/", GitWithGerritRepository.get_version(), ) ) return result def get_versions(): """Return list of used versions.""" result = [get_version_module(name) for name in REQUIRES] result.append(("Python", "https://www.python.org/", sys.version.split()[0])) try: result.append(("Git", "https://git-scm.com/", GitRepository.get_version())) except OSError: raise ImproperlyConfigured("Failed to run git, please install it.") return result def get_db_version(): if connection.vendor == "postgresql": try: with connection.cursor() as cursor: cursor.execute("SHOW server_version") version = cursor.fetchone() except RuntimeError: report_error(cause="PostgreSQL version check") return None return ( "PostgreSQL server", "https://www.postgresql.org/", version[0].split(" ")[0], ) try: with connection.cursor() as cursor: version = cursor.connection.get_server_info() except RuntimeError: report_error(cause="MySQL version check") return None return ( f"{connection.display_name} sever", "https://mariadb.org/" if connection.mysql_is_mariadb else "https://www.mysql.com/", version.split("-", 1)[0], ) def get_cache_version(): if settings.CACHES["default"]["BACKEND"] == "django_redis.cache.RedisCache": try: version = cache.client.get_client().info()["redis_version"] except RuntimeError: report_error(cause="Redis version check") return None return ("Redis server", "https://redis.io/", version) return None def get_db_cache_version(): """Returns the list of all the Database and Cache version.""" result = [] cache_version = get_cache_version() if cache_version: result.append(cache_version) db_version = get_db_version() if db_version: result.append(db_version) return result def get_versions_list(): """Return list with version information summary.""" return ( [("Weblate", "https://weblate.org/", weblate.GIT_VERSION)] + get_versions() + get_optional_versions() + get_db_cache_version() )