id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
49
117
c54606660107-3
del os.environ["LANGCHAIN_TRACING"] questions = [f"What is {i} raised to .123 power?" for i in range(1,4)] # start a background task task = asyncio.create_task(agent.arun(questions[0])) # this should not be traced with tracing_enabled() as session: assert session tasks = [agent.arun(q) for q in questions[1:3]] # these should be traced await asyncio.gather(*tasks) await task > Entering new AgentExecutor chain... > Entering new AgentExecutor chain... > Entering new AgentExecutor chain... I need to use a calculator to solve this. Action: Calculator Action Input: 3^0.123I need to use a calculator to solve this. Action: Calculator Action Input: 2^0.123Any number raised to the power of 0 is 1, but I'm not sure about a decimal power. Action: Calculator Action Input: 1^.123 Observation: Answer: 1.1446847956963533 Thought: Observation: Answer: 1.0889970153361064 Thought: Observation: Answer: 1.0 Thought: > Finished chain. > Finished chain. > Finished chain. '1.0' [Beta] Tracing V2# We are rolling out a newer version of our tracing service with more features coming soon. Here are the instructions on how to use it to trace your runs. To use, you can use the tracing_v2_enabled context manager or set LANGCHAIN_TRACING_V2 = 'true' Option 1 (Local): Run the local LangChainPlus Server pip install --upgrade langchain langchain plus start Option 2 (Hosted):
https://python.langchain.com/en/latest/tracing/agent_with_tracing.html
c54606660107-4
pip install --upgrade langchain langchain plus start Option 2 (Hosted): After making an account an grabbing a LangChainPlus API Key, set the LANGCHAIN_ENDPOINT and LANGCHAIN_API_KEY environment variables import os os.environ["LANGCHAIN_TRACING_V2"] = "true" # os.environ["LANGCHAIN_ENDPOINT"] = "https://langchainpro-api-gateway-12bfv6cf.uc.gateway.dev" # Uncomment this line if you want to use the hosted version # os.environ["LANGCHAIN_API_KEY"] = "<YOUR-LANGCHAINPLUS-API-KEY>" # Uncomment this line if you want to use the hosted version. import langchain from langchain.agents import Tool, initialize_agent, load_tools from langchain.agents import AgentType from langchain.callbacks import tracing_enabled from langchain.chat_models import ChatOpenAI from langchain.llms import OpenAI # Agent run with tracing. Ensure that OPENAI_API_KEY is set appropriately to run this example. llm = OpenAI(temperature=0) tools = load_tools(["llm-math"], llm=llm) agent = initialize_agent( tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True ) agent.run("What is 2 raised to .123243 power?") > Entering new AgentExecutor chain... I need to use a calculator to solve this. Action: Calculator Action Input: 2^.123243 Observation: Answer: 1.0891804557407723 Thought: I now know the final answer. Final Answer: 1.0891804557407723 > Finished chain. '1.0891804557407723' Contents [Beta] Tracing V2 By Harrison Chase
https://python.langchain.com/en/latest/tracing/agent_with_tracing.html
c54606660107-5
Contents [Beta] Tracing V2 By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/tracing/agent_with_tracing.html
197b6c738583-0
Source code for langchain.text_splitter """Functionality for splitting text.""" from __future__ import annotations import copy import logging from abc import ABC, abstractmethod from typing import ( AbstractSet, Any, Callable, Collection, Iterable, List, Literal, Optional, Sequence, Type, TypeVar, Union, ) from langchain.docstore.document import Document from langchain.schema import BaseDocumentTransformer logger = logging.getLogger(__name__) TS = TypeVar("TS", bound="TextSplitter") [docs]class TextSplitter(BaseDocumentTransformer, ABC): """Interface for splitting text into chunks.""" def __init__( self, chunk_size: int = 4000, chunk_overlap: int = 200, length_function: Callable[[str], int] = len, ): """Create a new TextSplitter.""" if chunk_overlap > chunk_size: raise ValueError( f"Got a larger chunk overlap ({chunk_overlap}) than chunk size " f"({chunk_size}), should be smaller." ) self._chunk_size = chunk_size self._chunk_overlap = chunk_overlap self._length_function = length_function [docs] @abstractmethod def split_text(self, text: str) -> List[str]: """Split text into multiple components.""" [docs] def create_documents( self, texts: List[str], metadatas: Optional[List[dict]] = None ) -> List[Document]: """Create documents from a list of texts.""" _metadatas = metadatas or [{}] * len(texts) documents = []
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
197b6c738583-1
documents = [] for i, text in enumerate(texts): for chunk in self.split_text(text): new_doc = Document( page_content=chunk, metadata=copy.deepcopy(_metadatas[i]) ) documents.append(new_doc) return documents [docs] def split_documents(self, documents: Iterable[Document]) -> List[Document]: """Split documents.""" texts, metadatas = [], [] for doc in documents: texts.append(doc.page_content) metadatas.append(doc.metadata) return self.create_documents(texts, metadatas=metadatas) def _join_docs(self, docs: List[str], separator: str) -> Optional[str]: text = separator.join(docs) text = text.strip() if text == "": return None else: return text def _merge_splits(self, splits: Iterable[str], separator: str) -> List[str]: # We now want to combine these smaller pieces into medium size # chunks to send to the LLM. separator_len = self._length_function(separator) docs = [] current_doc: List[str] = [] total = 0 for d in splits: _len = self._length_function(d) if ( total + _len + (separator_len if len(current_doc) > 0 else 0) > self._chunk_size ): if total > self._chunk_size: logger.warning( f"Created a chunk of size {total}, " f"which is longer than the specified {self._chunk_size}" ) if len(current_doc) > 0: doc = self._join_docs(current_doc, separator)
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
197b6c738583-2
doc = self._join_docs(current_doc, separator) if doc is not None: docs.append(doc) # Keep on popping if: # - we have a larger chunk than in the chunk overlap # - or if we still have any chunks and the length is long while total > self._chunk_overlap or ( total + _len + (separator_len if len(current_doc) > 0 else 0) > self._chunk_size and total > 0 ): total -= self._length_function(current_doc[0]) + ( separator_len if len(current_doc) > 1 else 0 ) current_doc = current_doc[1:] current_doc.append(d) total += _len + (separator_len if len(current_doc) > 1 else 0) doc = self._join_docs(current_doc, separator) if doc is not None: docs.append(doc) return docs [docs] @classmethod def from_huggingface_tokenizer(cls, tokenizer: Any, **kwargs: Any) -> TextSplitter: """Text splitter that uses HuggingFace tokenizer to count length.""" try: from transformers import PreTrainedTokenizerBase if not isinstance(tokenizer, PreTrainedTokenizerBase): raise ValueError( "Tokenizer received was not an instance of PreTrainedTokenizerBase" ) def _huggingface_tokenizer_length(text: str) -> int: return len(tokenizer.encode(text)) except ImportError: raise ValueError( "Could not import transformers python package. " "Please install it with `pip install transformers`." ) return cls(length_function=_huggingface_tokenizer_length, **kwargs)
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
197b6c738583-3
) return cls(length_function=_huggingface_tokenizer_length, **kwargs) [docs] @classmethod def from_tiktoken_encoder( cls: Type[TS], encoding_name: str = "gpt2", model_name: Optional[str] = None, allowed_special: Union[Literal["all"], AbstractSet[str]] = set(), disallowed_special: Union[Literal["all"], Collection[str]] = "all", **kwargs: Any, ) -> TS: """Text splitter that uses tiktoken encoder to count length.""" try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. " "This is needed in order to calculate max_tokens_for_prompt. " "Please install it with `pip install tiktoken`." ) if model_name is not None: enc = tiktoken.encoding_for_model(model_name) else: enc = tiktoken.get_encoding(encoding_name) def _tiktoken_encoder(text: str) -> int: return len( enc.encode( text, allowed_special=allowed_special, disallowed_special=disallowed_special, ) ) if issubclass(cls, TokenTextSplitter): extra_kwargs = { "encoding_name": encoding_name, "model_name": model_name, "allowed_special": allowed_special, "disallowed_special": disallowed_special, } kwargs = {**kwargs, **extra_kwargs} return cls(length_function=_tiktoken_encoder, **kwargs) [docs] def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]:
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
197b6c738583-4
) -> Sequence[Document]: """Transform sequence of documents by splitting them.""" return self.split_documents(list(documents)) [docs] async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Asynchronously transform a sequence of documents by splitting them.""" raise NotImplementedError [docs]class CharacterTextSplitter(TextSplitter): """Implementation of splitting text that looks at characters.""" def __init__(self, separator: str = "\n\n", **kwargs: Any): """Create a new TextSplitter.""" super().__init__(**kwargs) self._separator = separator [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" # First we naively split the large input into a bunch of smaller ones. if self._separator: splits = text.split(self._separator) else: splits = list(text) return self._merge_splits(splits, self._separator) [docs]class TokenTextSplitter(TextSplitter): """Implementation of splitting text that looks at tokens.""" def __init__( self, encoding_name: str = "gpt2", model_name: Optional[str] = None, allowed_special: Union[Literal["all"], AbstractSet[str]] = set(), disallowed_special: Union[Literal["all"], Collection[str]] = "all", **kwargs: Any, ): """Create a new TextSplitter.""" super().__init__(**kwargs) try: import tiktoken except ImportError: raise ImportError( "Could not import tiktoken python package. "
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
197b6c738583-5
raise ImportError( "Could not import tiktoken python package. " "This is needed in order to for TokenTextSplitter. " "Please install it with `pip install tiktoken`." ) if model_name is not None: enc = tiktoken.encoding_for_model(model_name) else: enc = tiktoken.get_encoding(encoding_name) self._tokenizer = enc self._allowed_special = allowed_special self._disallowed_special = disallowed_special [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" splits = [] input_ids = self._tokenizer.encode( text, allowed_special=self._allowed_special, disallowed_special=self._disallowed_special, ) start_idx = 0 cur_idx = min(start_idx + self._chunk_size, len(input_ids)) chunk_ids = input_ids[start_idx:cur_idx] while start_idx < len(input_ids): splits.append(self._tokenizer.decode(chunk_ids)) start_idx += self._chunk_size - self._chunk_overlap cur_idx = min(start_idx + self._chunk_size, len(input_ids)) chunk_ids = input_ids[start_idx:cur_idx] return splits [docs]class RecursiveCharacterTextSplitter(TextSplitter): """Implementation of splitting text that looks at characters. Recursively tries to split by different characters to find one that works. """ def __init__(self, separators: Optional[List[str]] = None, **kwargs: Any): """Create a new TextSplitter.""" super().__init__(**kwargs) self._separators = separators or ["\n\n", "\n", " ", ""]
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
197b6c738583-6
[docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" final_chunks = [] # Get appropriate separator to use separator = self._separators[-1] for _s in self._separators: if _s == "": separator = _s break if _s in text: separator = _s break # Now that we have the separator, split the text if separator: splits = text.split(separator) else: splits = list(text) # Now go merging things, recursively splitting longer texts. _good_splits = [] for s in splits: if self._length_function(s) < self._chunk_size: _good_splits.append(s) else: if _good_splits: merged_text = self._merge_splits(_good_splits, separator) final_chunks.extend(merged_text) _good_splits = [] other_info = self.split_text(s) final_chunks.extend(other_info) if _good_splits: merged_text = self._merge_splits(_good_splits, separator) final_chunks.extend(merged_text) return final_chunks [docs]class NLTKTextSplitter(TextSplitter): """Implementation of splitting text that looks at sentences using NLTK.""" def __init__(self, separator: str = "\n\n", **kwargs: Any): """Initialize the NLTK splitter.""" super().__init__(**kwargs) try: from nltk.tokenize import sent_tokenize self._tokenizer = sent_tokenize except ImportError: raise ImportError( "NLTK is not installed, please install it with `pip install nltk`."
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
197b6c738583-7
"NLTK is not installed, please install it with `pip install nltk`." ) self._separator = separator [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" # First we naively split the large input into a bunch of smaller ones. splits = self._tokenizer(text) return self._merge_splits(splits, self._separator) [docs]class SpacyTextSplitter(TextSplitter): """Implementation of splitting text that looks at sentences using Spacy.""" def __init__( self, separator: str = "\n\n", pipeline: str = "en_core_web_sm", **kwargs: Any ): """Initialize the spacy text splitter.""" super().__init__(**kwargs) try: import spacy except ImportError: raise ImportError( "Spacy is not installed, please install it with `pip install spacy`." ) self._tokenizer = spacy.load(pipeline) self._separator = separator [docs] def split_text(self, text: str) -> List[str]: """Split incoming text and return chunks.""" splits = (str(s) for s in self._tokenizer(text).sents) return self._merge_splits(splits, self._separator) [docs]class MarkdownTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Markdown-formatted headings.""" def __init__(self, **kwargs: Any): """Initialize a MarkdownTextSplitter.""" separators = [ # First, try to split along Markdown headings (starting with level 2) "\n## ", "\n### ", "\n#### ",
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
197b6c738583-8
"\n## ", "\n### ", "\n#### ", "\n##### ", "\n###### ", # Note the alternative syntax for headings (below) is not handled here # Heading level 2 # --------------- # End of code block "```\n\n", # Horizontal lines "\n\n***\n\n", "\n\n---\n\n", "\n\n___\n\n", # Note that this splitter doesn't handle horizontal lines defined # by *three or more* of ***, ---, or ___, but this is not handled "\n\n", "\n", " ", "", ] super().__init__(separators=separators, **kwargs) [docs]class LatexTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Latex-formatted layout elements.""" def __init__(self, **kwargs: Any): """Initialize a LatexTextSplitter.""" separators = [ # First, try to split along Latex sections "\n\\chapter{", "\n\\section{", "\n\\subsection{", "\n\\subsubsection{", # Now split by environments "\n\\begin{enumerate}", "\n\\begin{itemize}", "\n\\begin{description}", "\n\\begin{list}", "\n\\begin{quote}", "\n\\begin{quotation}", "\n\\begin{verse}", "\n\\begin{verbatim}", ## Now split by math environments "\n\\begin{align}", "$$", "$",
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
197b6c738583-9
"\n\\begin{align}", "$$", "$", # Now split by the normal type of lines " ", "", ] super().__init__(separators=separators, **kwargs) [docs]class PythonCodeTextSplitter(RecursiveCharacterTextSplitter): """Attempts to split the text along Python syntax.""" def __init__(self, **kwargs: Any): """Initialize a PythonCodeTextSplitter.""" separators = [ # First, try to split along class definitions "\nclass ", "\ndef ", "\n\tdef ", # Now split by the normal type of lines "\n\n", "\n", " ", "", ] super().__init__(separators=separators, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/text_splitter.html
38d2dadb3174-0
Source code for langchain.document_transformers """Transform documents""" from typing import Any, Callable, List, Sequence import numpy as np from pydantic import BaseModel, Field from langchain.embeddings.base import Embeddings from langchain.math_utils import cosine_similarity from langchain.schema import BaseDocumentTransformer, Document class _DocumentWithState(Document): """Wrapper for a document that includes arbitrary state.""" state: dict = Field(default_factory=dict) """State associated with the document.""" def to_document(self) -> Document: """Convert the DocumentWithState to a Document.""" return Document(page_content=self.page_content, metadata=self.metadata) @classmethod def from_document(cls, doc: Document) -> "_DocumentWithState": """Create a DocumentWithState from a Document.""" if isinstance(doc, cls): return doc return cls(page_content=doc.page_content, metadata=doc.metadata) [docs]def get_stateful_documents( documents: Sequence[Document], ) -> Sequence[_DocumentWithState]: return [_DocumentWithState.from_document(doc) for doc in documents] def _filter_similar_embeddings( embedded_documents: List[List[float]], similarity_fn: Callable, threshold: float ) -> List[int]: """Filter redundant documents based on the similarity of their embeddings.""" similarity = np.tril(similarity_fn(embedded_documents, embedded_documents), k=-1) redundant = np.where(similarity > threshold) redundant_stacked = np.column_stack(redundant) redundant_sorted = np.argsort(similarity[redundant])[::-1] included_idxs = set(range(len(embedded_documents))) for first_idx, second_idx in redundant_stacked[redundant_sorted]:
https://python.langchain.com/en/latest/_modules/langchain/document_transformers.html
38d2dadb3174-1
for first_idx, second_idx in redundant_stacked[redundant_sorted]: if first_idx in included_idxs and second_idx in included_idxs: # Default to dropping the second document of any highly similar pair. included_idxs.remove(second_idx) return list(sorted(included_idxs)) def _get_embeddings_from_stateful_docs( embeddings: Embeddings, documents: Sequence[_DocumentWithState] ) -> List[List[float]]: if len(documents) and "embedded_doc" in documents[0].state: embedded_documents = [doc.state["embedded_doc"] for doc in documents] else: embedded_documents = embeddings.embed_documents( [d.page_content for d in documents] ) for doc, embedding in zip(documents, embedded_documents): doc.state["embedded_doc"] = embedding return embedded_documents [docs]class EmbeddingsRedundantFilter(BaseDocumentTransformer, BaseModel): """Filter that drops redundant documents by comparing their embeddings.""" embeddings: Embeddings """Embeddings to use for embedding document contents.""" similarity_fn: Callable = cosine_similarity """Similarity function for comparing documents. Function expected to take as input two matrices (List[List[float]]) and return a matrix of scores where higher values indicate greater similarity.""" similarity_threshold: float = 0.95 """Threshold for determining when two documents are similar enough to be considered redundant.""" class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def transform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: """Filter down documents.""" stateful_documents = get_stateful_documents(documents)
https://python.langchain.com/en/latest/_modules/langchain/document_transformers.html
38d2dadb3174-2
"""Filter down documents.""" stateful_documents = get_stateful_documents(documents) embedded_documents = _get_embeddings_from_stateful_docs( self.embeddings, stateful_documents ) included_idxs = _filter_similar_embeddings( embedded_documents, self.similarity_fn, self.similarity_threshold ) return [stateful_documents[i] for i in sorted(included_idxs)] [docs] async def atransform_documents( self, documents: Sequence[Document], **kwargs: Any ) -> Sequence[Document]: raise NotImplementedError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/document_transformers.html
7100ccc4dca0-0
Source code for langchain.requests """Lightweight wrapper around requests library, with async support.""" from contextlib import asynccontextmanager from typing import Any, AsyncGenerator, Dict, Optional import aiohttp import requests from pydantic import BaseModel, Extra class Requests(BaseModel): """Wrapper around requests to handle auth and async. The main purpose of this wrapper is to handle authentication (by saving headers) and enable easy async methods on the same base object. """ headers: Optional[Dict[str, str]] = None aiosession: Optional[aiohttp.ClientSession] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True def get(self, url: str, **kwargs: Any) -> requests.Response: """GET the URL and return the text.""" return requests.get(url, headers=self.headers, **kwargs) def post(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response: """POST to the URL and return the text.""" return requests.post(url, json=data, headers=self.headers, **kwargs) def patch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response: """PATCH the URL and return the text.""" return requests.patch(url, json=data, headers=self.headers, **kwargs) def put(self, url: str, data: Dict[str, Any], **kwargs: Any) -> requests.Response: """PUT the URL and return the text.""" return requests.put(url, json=data, headers=self.headers, **kwargs) def delete(self, url: str, **kwargs: Any) -> requests.Response:
https://python.langchain.com/en/latest/_modules/langchain/requests.html
7100ccc4dca0-1
def delete(self, url: str, **kwargs: Any) -> requests.Response: """DELETE the URL and return the text.""" return requests.delete(url, headers=self.headers, **kwargs) @asynccontextmanager async def _arequest( self, method: str, url: str, **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """Make an async request.""" if not self.aiosession: async with aiohttp.ClientSession() as session: async with session.request( method, url, headers=self.headers, **kwargs ) as response: yield response else: async with self.aiosession.request( method, url, headers=self.headers, **kwargs ) as response: yield response @asynccontextmanager async def aget( self, url: str, **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """GET the URL and return the text asynchronously.""" async with self._arequest("GET", url, **kwargs) as response: yield response @asynccontextmanager async def apost( self, url: str, data: Dict[str, Any], **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """POST to the URL and return the text asynchronously.""" async with self._arequest("POST", url, **kwargs) as response: yield response @asynccontextmanager async def apatch( self, url: str, data: Dict[str, Any], **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """PATCH the URL and return the text asynchronously."""
https://python.langchain.com/en/latest/_modules/langchain/requests.html
7100ccc4dca0-2
"""PATCH the URL and return the text asynchronously.""" async with self._arequest("PATCH", url, **kwargs) as response: yield response @asynccontextmanager async def aput( self, url: str, data: Dict[str, Any], **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """PUT the URL and return the text asynchronously.""" async with self._arequest("PUT", url, **kwargs) as response: yield response @asynccontextmanager async def adelete( self, url: str, **kwargs: Any ) -> AsyncGenerator[aiohttp.ClientResponse, None]: """DELETE the URL and return the text asynchronously.""" async with self._arequest("DELETE", url, **kwargs) as response: yield response [docs]class TextRequestsWrapper(BaseModel): """Lightweight wrapper around requests library. The main purpose of this wrapper is to always return a text output. """ headers: Optional[Dict[str, str]] = None aiosession: Optional[aiohttp.ClientSession] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @property def requests(self) -> Requests: return Requests(headers=self.headers, aiosession=self.aiosession) [docs] def get(self, url: str, **kwargs: Any) -> str: """GET the URL and return the text.""" return self.requests.get(url, **kwargs).text [docs] def post(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """POST to the URL and return the text."""
https://python.langchain.com/en/latest/_modules/langchain/requests.html
7100ccc4dca0-3
"""POST to the URL and return the text.""" return self.requests.post(url, data, **kwargs).text [docs] def patch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """PATCH the URL and return the text.""" return self.requests.patch(url, data, **kwargs).text [docs] def put(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """PUT the URL and return the text.""" return self.requests.put(url, data, **kwargs).text [docs] def delete(self, url: str, **kwargs: Any) -> str: """DELETE the URL and return the text.""" return self.requests.delete(url, **kwargs).text [docs] async def aget(self, url: str, **kwargs: Any) -> str: """GET the URL and return the text asynchronously.""" async with self.requests.aget(url, **kwargs) as response: return await response.text() [docs] async def apost(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """POST to the URL and return the text asynchronously.""" async with self.requests.apost(url, **kwargs) as response: return await response.text() [docs] async def apatch(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str: """PATCH the URL and return the text asynchronously.""" async with self.requests.apatch(url, **kwargs) as response: return await response.text() [docs] async def aput(self, url: str, data: Dict[str, Any], **kwargs: Any) -> str:
https://python.langchain.com/en/latest/_modules/langchain/requests.html
7100ccc4dca0-4
"""PUT the URL and return the text asynchronously.""" async with self.requests.aput(url, **kwargs) as response: return await response.text() [docs] async def adelete(self, url: str, **kwargs: Any) -> str: """DELETE the URL and return the text asynchronously.""" async with self.requests.adelete(url, **kwargs) as response: return await response.text() # For backwards compatibility RequestsWrapper = TextRequestsWrapper By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/requests.html
bf96fcbb484a-0
Source code for langchain.memory.kg from typing import Any, Dict, List, Type, Union from pydantic import Field from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain from langchain.graphs import NetworkxEntityGraph from langchain.graphs.networkx_graph import KnowledgeTriple, get_entities, parse_triples from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.prompt import ( ENTITY_EXTRACTION_PROMPT, KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT, ) from langchain.memory.utils import get_prompt_input_key from langchain.prompts.base import BasePromptTemplate from langchain.schema import ( BaseMessage, SystemMessage, get_buffer_string, ) [docs]class ConversationKGMemory(BaseChatMemory): """Knowledge graph memory for storing conversation memory. Integrates with external knowledge graph to store and retrieve information about knowledge triples in the conversation. """ k: int = 2 human_prefix: str = "Human" ai_prefix: str = "AI" kg: NetworkxEntityGraph = Field(default_factory=NetworkxEntityGraph) knowledge_extraction_prompt: BasePromptTemplate = KNOWLEDGE_TRIPLE_EXTRACTION_PROMPT entity_extraction_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT llm: BaseLanguageModel summary_message_cls: Type[BaseMessage] = SystemMessage """Number of previous utterances to include in the context.""" memory_key: str = "history" #: :meta private: [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" entities = self._get_current_entities(inputs) summary_strings = []
https://python.langchain.com/en/latest/_modules/langchain/memory/kg.html
bf96fcbb484a-1
entities = self._get_current_entities(inputs) summary_strings = [] for entity in entities: knowledge = self.kg.get_entity_knowledge(entity) if knowledge: summary = f"On {entity}: {'. '.join(knowledge)}." summary_strings.append(summary) context: Union[str, List] if not summary_strings: context = [] if self.return_messages else "" elif self.return_messages: context = [ self.summary_message_cls(content=text) for text in summary_strings ] else: context = "\n".join(summary_strings) return {self.memory_key: context} @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str: """Get the input key for the prompt.""" if self.input_key is None: return get_prompt_input_key(inputs, self.memory_variables) return self.input_key def _get_prompt_output_key(self, outputs: Dict[str, Any]) -> str: """Get the output key for the prompt.""" if self.output_key is None: if len(outputs) != 1: raise ValueError(f"One output key expected, got {outputs.keys()}") return list(outputs.keys())[0] return self.output_key [docs] def get_current_entities(self, input_string: str) -> List[str]: chain = LLMChain(llm=self.llm, prompt=self.entity_extraction_prompt) buffer_string = get_buffer_string( self.chat_memory.messages[-self.k * 2 :], human_prefix=self.human_prefix,
https://python.langchain.com/en/latest/_modules/langchain/memory/kg.html
bf96fcbb484a-2
human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) output = chain.predict( history=buffer_string, input=input_string, ) return get_entities(output) def _get_current_entities(self, inputs: Dict[str, Any]) -> List[str]: """Get the current entities in the conversation.""" prompt_input_key = self._get_prompt_input_key(inputs) return self.get_current_entities(inputs[prompt_input_key]) [docs] def get_knowledge_triplets(self, input_string: str) -> List[KnowledgeTriple]: chain = LLMChain(llm=self.llm, prompt=self.knowledge_extraction_prompt) buffer_string = get_buffer_string( self.chat_memory.messages[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) output = chain.predict( history=buffer_string, input=input_string, verbose=True, ) knowledge = parse_triples(output) return knowledge def _get_and_update_kg(self, inputs: Dict[str, Any]) -> None: """Get and update knowledge graph from the conversation history.""" prompt_input_key = self._get_prompt_input_key(inputs) knowledge = self.get_knowledge_triplets(inputs[prompt_input_key]) for triple in knowledge: self.kg.add_triple(triple) [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) self._get_and_update_kg(inputs) [docs] def clear(self) -> None: """Clear memory contents.""" super().clear()
https://python.langchain.com/en/latest/_modules/langchain/memory/kg.html
bf96fcbb484a-3
"""Clear memory contents.""" super().clear() self.kg.clear() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/kg.html
f2f30d8b5142-0
Source code for langchain.memory.vectorstore """Class for a VectorStore-backed memory object.""" from typing import Any, Dict, List, Optional, Union from pydantic import Field from langchain.memory.chat_memory import BaseMemory from langchain.memory.utils import get_prompt_input_key from langchain.schema import Document from langchain.vectorstores.base import VectorStoreRetriever [docs]class VectorStoreRetrieverMemory(BaseMemory): """Class for a VectorStore-backed memory object.""" retriever: VectorStoreRetriever = Field(exclude=True) """VectorStoreRetriever object to connect to.""" memory_key: str = "history" #: :meta private: """Key name to locate the memories in the result of load_memory_variables.""" input_key: Optional[str] = None """Key name to index the inputs to load_memory_variables.""" return_docs: bool = False """Whether or not to return the result of querying the database directly.""" @property def memory_variables(self) -> List[str]: """The list of keys emitted from the load_memory_variables method.""" return [self.memory_key] def _get_prompt_input_key(self, inputs: Dict[str, Any]) -> str: """Get the input key for the prompt.""" if self.input_key is None: return get_prompt_input_key(inputs, self.memory_variables) return self.input_key [docs] def load_memory_variables( self, inputs: Dict[str, Any] ) -> Dict[str, Union[List[Document], str]]: """Return history buffer.""" input_key = self._get_prompt_input_key(inputs) query = inputs[input_key] docs = self.retriever.get_relevant_documents(query)
https://python.langchain.com/en/latest/_modules/langchain/memory/vectorstore.html
f2f30d8b5142-1
docs = self.retriever.get_relevant_documents(query) result: Union[List[Document], str] if not self.return_docs: result = "\n".join([doc.page_content for doc in docs]) else: result = docs return {self.memory_key: result} def _form_documents( self, inputs: Dict[str, Any], outputs: Dict[str, str] ) -> List[Document]: """Format context from this conversation to buffer.""" # Each document should only include the current turn, not the chat history filtered_inputs = {k: v for k, v in inputs.items() if k != self.memory_key} texts = [ f"{k}: {v}" for k, v in list(filtered_inputs.items()) + list(outputs.items()) ] page_content = "\n".join(texts) return [Document(page_content=page_content)] [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" documents = self._form_documents(inputs, outputs) self.retriever.add_documents(documents) [docs] def clear(self) -> None: """Nothing to clear.""" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/vectorstore.html
47a724e8988e-0
Source code for langchain.memory.token_buffer from typing import Any, Dict, List from langchain.base_language import BaseLanguageModel from langchain.memory.chat_memory import BaseChatMemory from langchain.schema import BaseMessage, get_buffer_string [docs]class ConversationTokenBufferMemory(BaseChatMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" llm: BaseLanguageModel memory_key: str = "history" max_token_limit: int = 2000 @property def buffer(self) -> List[BaseMessage]: """String buffer of memory.""" return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" buffer: Any = self.buffer if self.return_messages: final_buffer: Any = buffer else: final_buffer = get_buffer_string( buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) return {self.memory_key: final_buffer} [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer. Pruned.""" super().save_context(inputs, outputs) # Prune buffer if it exceeds max token limit buffer = self.chat_memory.messages curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) if curr_buffer_length > self.max_token_limit:
https://python.langchain.com/en/latest/_modules/langchain/memory/token_buffer.html
47a724e8988e-1
if curr_buffer_length > self.max_token_limit: pruned_memory = [] while curr_buffer_length > self.max_token_limit: pruned_memory.append(buffer.pop(0)) curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/token_buffer.html
d619c618c7b9-0
Source code for langchain.memory.entity import logging from abc import ABC, abstractmethod from itertools import islice from typing import Any, Dict, Iterable, List, Optional from pydantic import Field from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.prompt import ( ENTITY_EXTRACTION_PROMPT, ENTITY_SUMMARIZATION_PROMPT, ) from langchain.memory.utils import get_prompt_input_key from langchain.prompts.base import BasePromptTemplate from langchain.schema import BaseMessage, get_buffer_string logger = logging.getLogger(__name__) class BaseEntityStore(ABC): @abstractmethod def get(self, key: str, default: Optional[str] = None) -> Optional[str]: """Get entity value from store.""" pass @abstractmethod def set(self, key: str, value: Optional[str]) -> None: """Set entity value in store.""" pass @abstractmethod def delete(self, key: str) -> None: """Delete entity value from store.""" pass @abstractmethod def exists(self, key: str) -> bool: """Check if entity exists in store.""" pass @abstractmethod def clear(self) -> None: """Delete all entities from store.""" pass [docs]class InMemoryEntityStore(BaseEntityStore): """Basic in-memory entity store.""" store: Dict[str, Optional[str]] = {} [docs] def get(self, key: str, default: Optional[str] = None) -> Optional[str]: return self.store.get(key, default) [docs] def set(self, key: str, value: Optional[str]) -> None:
https://python.langchain.com/en/latest/_modules/langchain/memory/entity.html
d619c618c7b9-1
[docs] def set(self, key: str, value: Optional[str]) -> None: self.store[key] = value [docs] def delete(self, key: str) -> None: del self.store[key] [docs] def exists(self, key: str) -> bool: return key in self.store [docs] def clear(self) -> None: return self.store.clear() [docs]class RedisEntityStore(BaseEntityStore): """Redis-backed Entity store. Entities get a TTL of 1 day by default, and that TTL is extended by 3 days every time the entity is read back. """ redis_client: Any session_id: str = "default" key_prefix: str = "memory_store" ttl: Optional[int] = 60 * 60 * 24 recall_ttl: Optional[int] = 60 * 60 * 24 * 3 def __init__( self, session_id: str = "default", url: str = "redis://localhost:6379/0", key_prefix: str = "memory_store", ttl: Optional[int] = 60 * 60 * 24, recall_ttl: Optional[int] = 60 * 60 * 24 * 3, *args: Any, **kwargs: Any, ): try: import redis except ImportError: raise ImportError( "Could not import redis python package. " "Please install it with `pip install redis`." ) super().__init__(*args, **kwargs) try: self.redis_client = redis.Redis.from_url(url=url, decode_responses=True) except redis.exceptions.ConnectionError as error:
https://python.langchain.com/en/latest/_modules/langchain/memory/entity.html
d619c618c7b9-2
except redis.exceptions.ConnectionError as error: logger.error(error) self.session_id = session_id self.key_prefix = key_prefix self.ttl = ttl self.recall_ttl = recall_ttl or ttl @property def full_key_prefix(self) -> str: return f"{self.key_prefix}:{self.session_id}" [docs] def get(self, key: str, default: Optional[str] = None) -> Optional[str]: res = ( self.redis_client.getex(f"{self.full_key_prefix}:{key}", ex=self.recall_ttl) or default or "" ) logger.debug(f"REDIS MEM get '{self.full_key_prefix}:{key}': '{res}'") return res [docs] def set(self, key: str, value: Optional[str]) -> None: if not value: return self.delete(key) self.redis_client.set(f"{self.full_key_prefix}:{key}", value, ex=self.ttl) logger.debug( f"REDIS MEM set '{self.full_key_prefix}:{key}': '{value}' EX {self.ttl}" ) [docs] def delete(self, key: str) -> None: self.redis_client.delete(f"{self.full_key_prefix}:{key}") [docs] def exists(self, key: str) -> bool: return self.redis_client.exists(f"{self.full_key_prefix}:{key}") == 1 [docs] def clear(self) -> None: # iterate a list in batches of size batch_size def batched(iterable: Iterable[Any], batch_size: int) -> Iterable[Any]: iterator = iter(iterable) while batch := list(islice(iterator, batch_size)): yield batch for keybatch in batched(
https://python.langchain.com/en/latest/_modules/langchain/memory/entity.html
d619c618c7b9-3
yield batch for keybatch in batched( self.redis_client.scan_iter(f"{self.full_key_prefix}:*"), 500 ): self.redis_client.delete(*keybatch) [docs]class ConversationEntityMemory(BaseChatMemory): """Entity extractor & summarizer to memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" llm: BaseLanguageModel entity_extraction_prompt: BasePromptTemplate = ENTITY_EXTRACTION_PROMPT entity_summarization_prompt: BasePromptTemplate = ENTITY_SUMMARIZATION_PROMPT entity_cache: List[str] = [] k: int = 3 chat_history_key: str = "history" entity_store: BaseEntityStore = Field(default_factory=InMemoryEntityStore) @property def buffer(self) -> List[BaseMessage]: return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return ["entities", self.chat_history_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" chain = LLMChain(llm=self.llm, prompt=self.entity_extraction_prompt) if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key buffer_string = get_buffer_string( self.buffer[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) output = chain.predict( history=buffer_string, input=inputs[prompt_input_key], )
https://python.langchain.com/en/latest/_modules/langchain/memory/entity.html
d619c618c7b9-4
history=buffer_string, input=inputs[prompt_input_key], ) if output.strip() == "NONE": entities = [] else: entities = [w.strip() for w in output.split(",")] entity_summaries = {} for entity in entities: entity_summaries[entity] = self.entity_store.get(entity, "") self.entity_cache = entities if self.return_messages: buffer: Any = self.buffer[-self.k * 2 :] else: buffer = buffer_string return { self.chat_history_key: buffer, "entities": entity_summaries, } [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key buffer_string = get_buffer_string( self.buffer[-self.k * 2 :], human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) input_data = inputs[prompt_input_key] chain = LLMChain(llm=self.llm, prompt=self.entity_summarization_prompt) for entity in self.entity_cache: existing_summary = self.entity_store.get(entity, "") output = chain.predict( summary=existing_summary, entity=entity, history=buffer_string, input=input_data, ) self.entity_store.set(entity, output.strip()) [docs] def clear(self) -> None: """Clear memory contents.""" self.chat_memory.clear()
https://python.langchain.com/en/latest/_modules/langchain/memory/entity.html
d619c618c7b9-5
"""Clear memory contents.""" self.chat_memory.clear() self.entity_cache.clear() self.entity_store.clear() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/entity.html
35bc5d59b153-0
Source code for langchain.memory.simple from typing import Any, Dict, List from langchain.schema import BaseMemory [docs]class SimpleMemory(BaseMemory): """Simple memory for storing context or other bits of information that shouldn't ever change between prompts. """ memories: Dict[str, Any] = dict() @property def memory_variables(self) -> List[str]: return list(self.memories.keys()) [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: return self.memories [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Nothing should be saved or changed, my memory is set in stone.""" pass [docs] def clear(self) -> None: """Nothing to clear, got a memory like a vault.""" pass By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/simple.html
bc3c1d9640fc-0
Source code for langchain.memory.combined import warnings from typing import Any, Dict, List, Set from pydantic import validator from langchain.memory.chat_memory import BaseChatMemory from langchain.schema import BaseMemory [docs]class CombinedMemory(BaseMemory): """Class for combining multiple memories' data together.""" memories: List[BaseMemory] """For tracking all the memories that should be accessed.""" @validator("memories") def check_repeated_memory_variable( cls, value: List[BaseMemory] ) -> List[BaseMemory]: all_variables: Set[str] = set() for val in value: overlap = all_variables.intersection(val.memory_variables) if overlap: raise ValueError( f"The same variables {overlap} are found in multiple" "memory object, which is not allowed by CombinedMemory." ) all_variables |= set(val.memory_variables) return value @validator("memories") def check_input_key(cls, value: List[BaseMemory]) -> List[BaseMemory]: """Check that if memories are of type BaseChatMemory that input keys exist.""" for val in value: if isinstance(val, BaseChatMemory): if val.input_key is None: warnings.warn( "When using CombinedMemory, " "input keys should be so the input is known. " f" Was not set on {val}" ) return value @property def memory_variables(self) -> List[str]: """All the memory variables that this instance provides.""" """Collected from the all the linked memories.""" memory_variables = [] for memory in self.memories: memory_variables.extend(memory.memory_variables)
https://python.langchain.com/en/latest/_modules/langchain/memory/combined.html
bc3c1d9640fc-1
for memory in self.memories: memory_variables.extend(memory.memory_variables) return memory_variables [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Load all vars from sub-memories.""" memory_data: Dict[str, Any] = {} # Collect vars from all sub-memories for memory in self.memories: data = memory.load_memory_variables(inputs) memory_data = { **memory_data, **data, } return memory_data [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this session for every memory.""" # Save context for all sub-memories for memory in self.memories: memory.save_context(inputs, outputs) [docs] def clear(self) -> None: """Clear context from this session for every memory.""" for memory in self.memories: memory.clear() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/combined.html
a706b6b3282c-0
Source code for langchain.memory.buffer from typing import Any, Dict, List, Optional from pydantic import root_validator from langchain.memory.chat_memory import BaseChatMemory, BaseMemory from langchain.memory.utils import get_prompt_input_key from langchain.schema import get_buffer_string [docs]class ConversationBufferMemory(BaseChatMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" memory_key: str = "history" #: :meta private: @property def buffer(self) -> Any: """String buffer of memory.""" if self.return_messages: return self.chat_memory.messages else: return get_buffer_string( self.chat_memory.messages, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" return {self.memory_key: self.buffer} [docs]class ConversationStringBufferMemory(BaseMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" """Prefix to use for AI generated responses.""" buffer: str = "" output_key: Optional[str] = None input_key: Optional[str] = None memory_key: str = "history" #: :meta private: @root_validator() def validate_chains(cls, values: Dict) -> Dict:
https://python.langchain.com/en/latest/_modules/langchain/memory/buffer.html
a706b6b3282c-1
@root_validator() def validate_chains(cls, values: Dict) -> Dict: """Validate that return messages is not True.""" if values.get("return_messages", False): raise ValueError( "return_messages must be False for ConversationStringBufferMemory" ) return values @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Return history buffer.""" return {self.memory_key: self.buffer} [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" if self.input_key is None: prompt_input_key = get_prompt_input_key(inputs, self.memory_variables) else: prompt_input_key = self.input_key if self.output_key is None: if len(outputs) != 1: raise ValueError(f"One output key expected, got {outputs.keys()}") output_key = list(outputs.keys())[0] else: output_key = self.output_key human = f"{self.human_prefix}: " + inputs[prompt_input_key] ai = f"{self.ai_prefix}: " + outputs[output_key] self.buffer += "\n" + "\n".join([human, ai]) [docs] def clear(self) -> None: """Clear memory contents.""" self.buffer = "" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/buffer.html
7f4635ac854e-0
Source code for langchain.memory.summary from __future__ import annotations from typing import Any, Dict, List, Type from pydantic import BaseModel, root_validator from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.prompt import SUMMARY_PROMPT from langchain.prompts.base import BasePromptTemplate from langchain.schema import ( BaseChatMessageHistory, BaseMessage, SystemMessage, get_buffer_string, ) class SummarizerMixin(BaseModel): human_prefix: str = "Human" ai_prefix: str = "AI" llm: BaseLanguageModel prompt: BasePromptTemplate = SUMMARY_PROMPT summary_message_cls: Type[BaseMessage] = SystemMessage def predict_new_summary( self, messages: List[BaseMessage], existing_summary: str ) -> str: new_lines = get_buffer_string( messages, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) chain = LLMChain(llm=self.llm, prompt=self.prompt) return chain.predict(summary=existing_summary, new_lines=new_lines) [docs]class ConversationSummaryMemory(BaseChatMemory, SummarizerMixin): """Conversation summarizer to memory.""" buffer: str = "" memory_key: str = "history" #: :meta private: [docs] @classmethod def from_messages( cls, llm: BaseLanguageModel, chat_memory: BaseChatMessageHistory, *, summarize_step: int = 2, **kwargs: Any, ) -> ConversationSummaryMemory:
https://python.langchain.com/en/latest/_modules/langchain/memory/summary.html
7f4635ac854e-1
**kwargs: Any, ) -> ConversationSummaryMemory: obj = cls(llm=llm, chat_memory=chat_memory, **kwargs) for i in range(0, len(obj.chat_memory.messages), summarize_step): obj.buffer = obj.predict_new_summary( obj.chat_memory.messages[i : i + summarize_step], obj.buffer ) return obj @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" if self.return_messages: buffer: Any = [self.summary_message_cls(content=self.buffer)] else: buffer = self.buffer return {self.memory_key: buffer} @root_validator() def validate_prompt_input_variables(cls, values: Dict) -> Dict: """Validate that prompt input variables are consistent.""" prompt_variables = values["prompt"].input_variables expected_keys = {"summary", "new_lines"} if expected_keys != set(prompt_variables): raise ValueError( "Got unexpected prompt input variables. The prompt expects " f"{prompt_variables}, but it should have {expected_keys}." ) return values [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) self.buffer = self.predict_new_summary( self.chat_memory.messages[-2:], self.buffer ) [docs] def clear(self) -> None: """Clear memory contents."""
https://python.langchain.com/en/latest/_modules/langchain/memory/summary.html
7f4635ac854e-2
[docs] def clear(self) -> None: """Clear memory contents.""" super().clear() self.buffer = "" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/summary.html
41842cd408f7-0
Source code for langchain.memory.readonly from typing import Any, Dict, List from langchain.schema import BaseMemory [docs]class ReadOnlySharedMemory(BaseMemory): """A memory wrapper that is read-only and cannot be changed.""" memory: BaseMemory @property def memory_variables(self) -> List[str]: """Return memory variables.""" return self.memory.memory_variables [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Load memory variables from memory.""" return self.memory.load_memory_variables(inputs) [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Nothing should be saved or changed""" pass [docs] def clear(self) -> None: """Nothing to clear, got a memory like a vault.""" pass By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/readonly.html
24cda708048e-0
Source code for langchain.memory.buffer_window from typing import Any, Dict, List from langchain.memory.chat_memory import BaseChatMemory from langchain.schema import BaseMessage, get_buffer_string [docs]class ConversationBufferWindowMemory(BaseChatMemory): """Buffer for storing conversation memory.""" human_prefix: str = "Human" ai_prefix: str = "AI" memory_key: str = "history" #: :meta private: k: int = 5 @property def buffer(self) -> List[BaseMessage]: """String buffer of memory.""" return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]: """Return history buffer.""" buffer: Any = self.buffer[-self.k * 2 :] if self.k > 0 else [] if not self.return_messages: buffer = get_buffer_string( buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix, ) return {self.memory_key: buffer} By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/buffer_window.html
1f6521336a03-0
Source code for langchain.memory.summary_buffer from typing import Any, Dict, List from pydantic import root_validator from langchain.memory.chat_memory import BaseChatMemory from langchain.memory.summary import SummarizerMixin from langchain.schema import BaseMessage, get_buffer_string [docs]class ConversationSummaryBufferMemory(BaseChatMemory, SummarizerMixin): """Buffer with summarizer for storing conversation memory.""" max_token_limit: int = 2000 moving_summary_buffer: str = "" memory_key: str = "history" @property def buffer(self) -> List[BaseMessage]: return self.chat_memory.messages @property def memory_variables(self) -> List[str]: """Will always return list of memory variables. :meta private: """ return [self.memory_key] [docs] def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Return history buffer.""" buffer = self.buffer if self.moving_summary_buffer != "": first_messages: List[BaseMessage] = [ self.summary_message_cls(content=self.moving_summary_buffer) ] buffer = first_messages + buffer if self.return_messages: final_buffer: Any = buffer else: final_buffer = get_buffer_string( buffer, human_prefix=self.human_prefix, ai_prefix=self.ai_prefix ) return {self.memory_key: final_buffer} @root_validator() def validate_prompt_input_variables(cls, values: Dict) -> Dict: """Validate that prompt input variables are consistent.""" prompt_variables = values["prompt"].input_variables expected_keys = {"summary", "new_lines"} if expected_keys != set(prompt_variables): raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/memory/summary_buffer.html
1f6521336a03-1
if expected_keys != set(prompt_variables): raise ValueError( "Got unexpected prompt input variables. The prompt expects " f"{prompt_variables}, but it should have {expected_keys}." ) return values [docs] def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: """Save context from this conversation to buffer.""" super().save_context(inputs, outputs) self.prune() [docs] def prune(self) -> None: """Prune buffer if it exceeds max token limit""" buffer = self.chat_memory.messages curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) if curr_buffer_length > self.max_token_limit: pruned_memory = [] while curr_buffer_length > self.max_token_limit: pruned_memory.append(buffer.pop(0)) curr_buffer_length = self.llm.get_num_tokens_from_messages(buffer) self.moving_summary_buffer = self.predict_new_summary( pruned_memory, self.moving_summary_buffer ) [docs] def clear(self) -> None: """Clear memory contents.""" super().clear() self.moving_summary_buffer = "" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/summary_buffer.html
d535a989b422-0
Source code for langchain.memory.chat_message_histories.in_memory from typing import List from pydantic import BaseModel from langchain.schema import ( AIMessage, BaseChatMessageHistory, BaseMessage, HumanMessage, ) [docs]class ChatMessageHistory(BaseChatMessageHistory, BaseModel): messages: List[BaseMessage] = [] [docs] def add_user_message(self, message: str) -> None: self.messages.append(HumanMessage(content=message)) [docs] def add_ai_message(self, message: str) -> None: self.messages.append(AIMessage(content=message)) [docs] def clear(self) -> None: self.messages = [] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/in_memory.html
30576447745f-0
Source code for langchain.memory.chat_message_histories.file import json import logging from pathlib import Path from typing import List from langchain.schema import ( AIMessage, BaseChatMessageHistory, BaseMessage, HumanMessage, messages_from_dict, messages_to_dict, ) logger = logging.getLogger(__name__) [docs]class FileChatMessageHistory(BaseChatMessageHistory): """ Chat message history that stores history in a local file. Args: file_path: path of the local file to store the messages. """ def __init__(self, file_path: str): self.file_path = Path(file_path) if not self.file_path.exists(): self.file_path.touch() self.file_path.write_text(json.dumps([])) @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from the local file""" items = json.loads(self.file_path.read_text()) messages = messages_from_dict(items) return messages [docs] def add_user_message(self, message: str) -> None: self.append(HumanMessage(content=message)) [docs] def add_ai_message(self, message: str) -> None: self.append(AIMessage(content=message)) [docs] def append(self, message: BaseMessage) -> None: """Append the message to the record in the local file""" messages = messages_to_dict(self.messages) messages.append(messages_to_dict([message])[0]) self.file_path.write_text(json.dumps(messages)) [docs] def clear(self) -> None: """Clear session memory from the local file""" self.file_path.write_text(json.dumps([])) By Harrison Chase
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/file.html
30576447745f-1
self.file_path.write_text(json.dumps([])) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/file.html
cb9ac9e91643-0
Source code for langchain.memory.chat_message_histories.dynamodb import logging from typing import List from langchain.schema import ( AIMessage, BaseChatMessageHistory, BaseMessage, HumanMessage, _message_to_dict, messages_from_dict, messages_to_dict, ) logger = logging.getLogger(__name__) [docs]class DynamoDBChatMessageHistory(BaseChatMessageHistory): """Chat message history that stores history in AWS DynamoDB. This class expects that a DynamoDB table with name `table_name` and a partition Key of `SessionId` is present. Args: table_name: name of the DynamoDB table session_id: arbitrary key that is used to store the messages of a single chat session. """ def __init__(self, table_name: str, session_id: str): import boto3 client = boto3.resource("dynamodb") self.table = client.Table(table_name) self.session_id = session_id @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from DynamoDB""" from botocore.exceptions import ClientError try: response = self.table.get_item(Key={"SessionId": self.session_id}) except ClientError as error: if error.response["Error"]["Code"] == "ResourceNotFoundException": logger.warning("No record found with session id: %s", self.session_id) else: logger.error(error) if response and "Item" in response: items = response["Item"]["History"] else: items = [] messages = messages_from_dict(items) return messages
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/dynamodb.html
cb9ac9e91643-1
items = [] messages = messages_from_dict(items) return messages [docs] def add_user_message(self, message: str) -> None: self.append(HumanMessage(content=message)) [docs] def add_ai_message(self, message: str) -> None: self.append(AIMessage(content=message)) [docs] def append(self, message: BaseMessage) -> None: """Append the message to the record in DynamoDB""" from botocore.exceptions import ClientError messages = messages_to_dict(self.messages) _message = _message_to_dict(message) messages.append(_message) try: self.table.put_item( Item={"SessionId": self.session_id, "History": messages} ) except ClientError as err: logger.error(err) [docs] def clear(self) -> None: """Clear session memory from DynamoDB""" from botocore.exceptions import ClientError try: self.table.delete_item(Key={"SessionId": self.session_id}) except ClientError as err: logger.error(err) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/dynamodb.html
c1f93c470fad-0
Source code for langchain.memory.chat_message_histories.mongodb import json import logging from typing import List from langchain.schema import ( AIMessage, BaseChatMessageHistory, BaseMessage, HumanMessage, _message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) DEFAULT_DBNAME = "chat_history" DEFAULT_COLLECTION_NAME = "message_store" [docs]class MongoDBChatMessageHistory(BaseChatMessageHistory): """Chat message history that stores history in MongoDB. Args: connection_string: connection string to connect to MongoDB session_id: arbitrary key that is used to store the messages of a single chat session. database_name: name of the database to use collection_name: name of the collection to use """ def __init__( self, connection_string: str, session_id: str, database_name: str = DEFAULT_DBNAME, collection_name: str = DEFAULT_COLLECTION_NAME, ): from pymongo import MongoClient, errors self.connection_string = connection_string self.session_id = session_id self.database_name = database_name self.collection_name = collection_name try: self.client: MongoClient = MongoClient(connection_string) except errors.ConnectionFailure as error: logger.error(error) self.db = self.client[database_name] self.collection = self.db[collection_name] @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from MongoDB""" from pymongo import errors try: cursor = self.collection.find({"SessionId": self.session_id}) except errors.OperationFailure as error: logger.error(error) if cursor:
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/mongodb.html
c1f93c470fad-1
except errors.OperationFailure as error: logger.error(error) if cursor: items = [json.loads(document["History"]) for document in cursor] else: items = [] messages = messages_from_dict(items) return messages [docs] def add_user_message(self, message: str) -> None: self.append(HumanMessage(content=message)) [docs] def add_ai_message(self, message: str) -> None: self.append(AIMessage(content=message)) [docs] def append(self, message: BaseMessage) -> None: """Append the message to the record in MongoDB""" from pymongo import errors try: self.collection.insert_one( { "SessionId": self.session_id, "History": json.dumps(_message_to_dict(message)), } ) except errors.WriteError as err: logger.error(err) [docs] def clear(self) -> None: """Clear session memory from MongoDB""" from pymongo import errors try: self.collection.delete_many({"SessionId": self.session_id}) except errors.WriteError as err: logger.error(err) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/mongodb.html
80c2648b3671-0
Source code for langchain.memory.chat_message_histories.cosmos_db """Azure CosmosDB Memory History.""" from __future__ import annotations import logging from types import TracebackType from typing import TYPE_CHECKING, Any, List, Optional, Type from langchain.schema import ( AIMessage, BaseChatMessageHistory, BaseMessage, HumanMessage, messages_from_dict, messages_to_dict, ) logger = logging.getLogger(__name__) if TYPE_CHECKING: from azure.cosmos import ContainerProxy [docs]class CosmosDBChatMessageHistory(BaseChatMessageHistory): """Chat history backed by Azure CosmosDB.""" def __init__( self, cosmos_endpoint: str, cosmos_database: str, cosmos_container: str, session_id: str, user_id: str, credential: Any = None, connection_string: Optional[str] = None, ttl: Optional[int] = None, cosmos_client_kwargs: Optional[dict] = None, ): """ Initializes a new instance of the CosmosDBChatMessageHistory class. Make sure to call prepare_cosmos or use the context manager to make sure your database is ready. Either a credential or a connection string must be provided. :param cosmos_endpoint: The connection endpoint for the Azure Cosmos DB account. :param cosmos_database: The name of the database to use. :param cosmos_container: The name of the container to use. :param session_id: The session ID to use, can be overwritten while loading. :param user_id: The user ID to use, can be overwritten while loading. :param credential: The credential to use to authenticate to Azure Cosmos DB.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/cosmos_db.html
80c2648b3671-1
:param credential: The credential to use to authenticate to Azure Cosmos DB. :param connection_string: The connection string to use to authenticate. :param ttl: The time to live (in seconds) to use for documents in the container. :param cosmos_client_kwargs: Additional kwargs to pass to the CosmosClient. """ self.cosmos_endpoint = cosmos_endpoint self.cosmos_database = cosmos_database self.cosmos_container = cosmos_container self.credential = credential self.conn_string = connection_string self.session_id = session_id self.user_id = user_id self.ttl = ttl self.messages: List[BaseMessage] = [] try: from azure.cosmos import ( # pylint: disable=import-outside-toplevel # noqa: E501 CosmosClient, ) except ImportError as exc: raise ImportError( "You must install the azure-cosmos package to use the CosmosDBChatMessageHistory." # noqa: E501 ) from exc if self.credential: self._client = CosmosClient( url=self.cosmos_endpoint, credential=self.credential, **cosmos_client_kwargs or {}, ) elif self.conn_string: self._client = CosmosClient.from_connection_string( conn_str=self.conn_string, **cosmos_client_kwargs or {}, ) else: raise ValueError("Either a connection string or a credential must be set.") self._container: Optional[ContainerProxy] = None [docs] def prepare_cosmos(self) -> None: """Prepare the CosmosDB client. Use this function or the context manager to make sure your database is ready. """ try:
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/cosmos_db.html
80c2648b3671-2
""" try: from azure.cosmos import ( # pylint: disable=import-outside-toplevel # noqa: E501 PartitionKey, ) except ImportError as exc: raise ImportError( "You must install the azure-cosmos package to use the CosmosDBChatMessageHistory." # noqa: E501 ) from exc database = self._client.create_database_if_not_exists(self.cosmos_database) self._container = database.create_container_if_not_exists( self.cosmos_container, partition_key=PartitionKey("/user_id"), default_ttl=self.ttl, ) self.load_messages() def __enter__(self) -> "CosmosDBChatMessageHistory": """Context manager entry point.""" self._client.__enter__() self.prepare_cosmos() return self def __exit__( self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], traceback: Optional[TracebackType], ) -> None: """Context manager exit""" self.upsert_messages() self._client.__exit__(exc_type, exc_val, traceback) [docs] def load_messages(self) -> None: """Retrieve the messages from Cosmos""" if not self._container: raise ValueError("Container not initialized") try: from azure.cosmos.exceptions import ( # pylint: disable=import-outside-toplevel # noqa: E501 CosmosHttpResponseError, ) except ImportError as exc: raise ImportError( "You must install the azure-cosmos package to use the CosmosDBChatMessageHistory." # noqa: E501 ) from exc try:
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/cosmos_db.html
80c2648b3671-3
) from exc try: item = self._container.read_item( item=self.session_id, partition_key=self.user_id ) except CosmosHttpResponseError: logger.info("no session found") return if "messages" in item and len(item["messages"]) > 0: self.messages = messages_from_dict(item["messages"]) [docs] def add_user_message(self, message: str) -> None: """Add a user message to the memory.""" self.upsert_messages(HumanMessage(content=message)) [docs] def add_ai_message(self, message: str) -> None: """Add a AI message to the memory.""" self.upsert_messages(AIMessage(content=message)) [docs] def upsert_messages(self, new_message: Optional[BaseMessage] = None) -> None: """Update the cosmosdb item.""" if new_message: self.messages.append(new_message) if not self._container: raise ValueError("Container not initialized") self._container.upsert_item( body={ "id": self.session_id, "user_id": self.user_id, "messages": messages_to_dict(self.messages), } ) [docs] def clear(self) -> None: """Clear session memory from this memory and cosmos.""" self.messages = [] if self._container: self._container.delete_item( item=self.session_id, partition_key=self.user_id ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/cosmos_db.html
57eea050f0ba-0
Source code for langchain.memory.chat_message_histories.momento from __future__ import annotations import json from datetime import timedelta from typing import TYPE_CHECKING, Any, Optional from langchain.schema import ( AIMessage, BaseChatMessageHistory, BaseMessage, HumanMessage, _message_to_dict, messages_from_dict, ) from langchain.utils import get_from_env if TYPE_CHECKING: import momento def _ensure_cache_exists(cache_client: momento.CacheClient, cache_name: str) -> None: """Create cache if it doesn't exist. Raises: SdkException: Momento service or network error Exception: Unexpected response """ from momento.responses import CreateCache create_cache_response = cache_client.create_cache(cache_name) if isinstance(create_cache_response, CreateCache.Success) or isinstance( create_cache_response, CreateCache.CacheAlreadyExists ): return None elif isinstance(create_cache_response, CreateCache.Error): raise create_cache_response.inner_exception else: raise Exception(f"Unexpected response cache creation: {create_cache_response}") [docs]class MomentoChatMessageHistory(BaseChatMessageHistory): """Chat message history cache that uses Momento as a backend. See https://gomomento.com/""" def __init__( self, session_id: str, cache_client: momento.CacheClient, cache_name: str, *, key_prefix: str = "message_store:", ttl: Optional[timedelta] = None, ensure_cache_exists: bool = True, ): """Instantiate a chat message history cache that uses Momento as a backend. Note: to instantiate the cache client passed to MomentoChatMessageHistory,
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/momento.html
57eea050f0ba-1
Note: to instantiate the cache client passed to MomentoChatMessageHistory, you must have a Momento account at https://gomomento.com/. Args: session_id (str): The session ID to use for this chat session. cache_client (CacheClient): The Momento cache client. cache_name (str): The name of the cache to use to store the messages. key_prefix (str, optional): The prefix to apply to the cache key. Defaults to "message_store:". ttl (Optional[timedelta], optional): The TTL to use for the messages. Defaults to None, ie the default TTL of the cache will be used. ensure_cache_exists (bool, optional): Create the cache if it doesn't exist. Defaults to True. Raises: ImportError: Momento python package is not installed. TypeError: cache_client is not of type momento.CacheClientObject """ try: from momento import CacheClient from momento.requests import CollectionTtl except ImportError: raise ImportError( "Could not import momento python package. " "Please install it with `pip install momento`." ) if not isinstance(cache_client, CacheClient): raise TypeError("cache_client must be a momento.CacheClient object.") if ensure_cache_exists: _ensure_cache_exists(cache_client, cache_name) self.key = key_prefix + session_id self.cache_client = cache_client self.cache_name = cache_name if ttl is not None: self.ttl = CollectionTtl.of(ttl) else: self.ttl = CollectionTtl.from_cache_ttl() [docs] @classmethod def from_client_params( cls, session_id: str,
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/momento.html
57eea050f0ba-2
def from_client_params( cls, session_id: str, cache_name: str, ttl: timedelta, *, configuration: Optional[momento.config.Configuration] = None, auth_token: Optional[str] = None, **kwargs: Any, ) -> MomentoChatMessageHistory: """Construct cache from CacheClient parameters.""" try: from momento import CacheClient, Configurations, CredentialProvider except ImportError: raise ImportError( "Could not import momento python package. " "Please install it with `pip install momento`." ) if configuration is None: configuration = Configurations.Laptop.v1() auth_token = auth_token or get_from_env("auth_token", "MOMENTO_AUTH_TOKEN") credentials = CredentialProvider.from_string(auth_token) cache_client = CacheClient(configuration, credentials, default_ttl=ttl) return cls(session_id, cache_client, cache_name, ttl=ttl, **kwargs) @property def messages(self) -> list[BaseMessage]: # type: ignore[override] """Retrieve the messages from Momento. Raises: SdkException: Momento service or network error Exception: Unexpected response Returns: list[BaseMessage]: List of cached messages """ from momento.responses import CacheListFetch fetch_response = self.cache_client.list_fetch(self.cache_name, self.key) if isinstance(fetch_response, CacheListFetch.Hit): items = [json.loads(m) for m in fetch_response.value_list_string] return messages_from_dict(items) elif isinstance(fetch_response, CacheListFetch.Miss): return [] elif isinstance(fetch_response, CacheListFetch.Error):
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/momento.html
57eea050f0ba-3
return [] elif isinstance(fetch_response, CacheListFetch.Error): raise fetch_response.inner_exception else: raise Exception(f"Unexpected response: {fetch_response}") [docs] def add_user_message(self, message: str) -> None: """Store a user message in the cache. Args: message (str): The message to store. """ self.__add_message(HumanMessage(content=message)) [docs] def add_ai_message(self, message: str) -> None: """Store an AI message in the cache. Args: message (str): The message to store. """ self.__add_message(AIMessage(content=message)) def __add_message(self, message: BaseMessage) -> None: """Store a message in the cache. Args: message (BaseMessage): The message object to store. Raises: SdkException: Momento service or network error. Exception: Unexpected response. """ from momento.responses import CacheListPushBack item = json.dumps(_message_to_dict(message)) push_response = self.cache_client.list_push_back( self.cache_name, self.key, item, ttl=self.ttl ) if isinstance(push_response, CacheListPushBack.Success): return None elif isinstance(push_response, CacheListPushBack.Error): raise push_response.inner_exception else: raise Exception(f"Unexpected response: {push_response}") [docs] def clear(self) -> None: """Remove the session's messages from the cache. Raises: SdkException: Momento service or network error. Exception: Unexpected response. """ from momento.responses import CacheDelete
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/momento.html
57eea050f0ba-4
Exception: Unexpected response. """ from momento.responses import CacheDelete delete_response = self.cache_client.delete(self.cache_name, self.key) if isinstance(delete_response, CacheDelete.Success): return None elif isinstance(delete_response, CacheDelete.Error): raise delete_response.inner_exception else: raise Exception(f"Unexpected response: {delete_response}") By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/momento.html
c1294a2d42ec-0
Source code for langchain.memory.chat_message_histories.cassandra import json import logging from typing import List from langchain.schema import ( AIMessage, BaseChatMessageHistory, BaseMessage, HumanMessage, _message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) DEFAULT_KEYSPACE_NAME = "chat_history" DEFAULT_TABLE_NAME = "message_store" DEFAULT_USERNAME = "cassandra" DEFAULT_PASSWORD = "cassandra" DEFAULT_PORT = 9042 [docs]class CassandraChatMessageHistory(BaseChatMessageHistory): """Chat message history that stores history in Cassandra. Args: contact_points: list of ips to connect to Cassandra cluster session_id: arbitrary key that is used to store the messages of a single chat session. port: port to connect to Cassandra cluster username: username to connect to Cassandra cluster password: password to connect to Cassandra cluster keyspace_name: name of the keyspace to use table_name: name of the table to use """ def __init__( self, contact_points: List[str], session_id: str, port: int = DEFAULT_PORT, username: str = DEFAULT_USERNAME, password: str = DEFAULT_PASSWORD, keyspace_name: str = DEFAULT_KEYSPACE_NAME, table_name: str = DEFAULT_TABLE_NAME, ): self.contact_points = contact_points self.session_id = session_id self.port = port self.username = username self.password = password self.keyspace_name = keyspace_name self.table_name = table_name try: from cassandra import ( AuthenticationFailed, OperationTimedOut,
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/cassandra.html
c1294a2d42ec-1
from cassandra import ( AuthenticationFailed, OperationTimedOut, UnresolvableContactPoints, ) from cassandra.cluster import Cluster, PlainTextAuthProvider except ImportError: raise ValueError( "Could not import cassandra-driver python package. " "Please install it with `pip install cassandra-driver`." ) self.cluster: Cluster = Cluster( contact_points, port=port, auth_provider=PlainTextAuthProvider( username=self.username, password=self.password ), ) try: self.session = self.cluster.connect() except ( AuthenticationFailed, UnresolvableContactPoints, OperationTimedOut, ) as error: logger.error( "Unable to establish connection with \ cassandra chat message history database" ) raise error self._prepare_cassandra() def _prepare_cassandra(self) -> None: """Create the keyspace and table if they don't exist yet""" from cassandra import OperationTimedOut, Unavailable try: self.session.execute( f"""CREATE KEYSPACE IF NOT EXISTS {self.keyspace_name} WITH REPLICATION = {{ 'class' : 'SimpleStrategy', 'replication_factor' : 1 }};""" ) except (OperationTimedOut, Unavailable) as error: logger.error( f"Unable to create cassandra \ chat message history keyspace: {self.keyspace_name}." ) raise error self.session.set_keyspace(self.keyspace_name) try: self.session.execute( f"""CREATE TABLE IF NOT EXISTS
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/cassandra.html
c1294a2d42ec-2
try: self.session.execute( f"""CREATE TABLE IF NOT EXISTS {self.table_name} (id UUID, session_id varchar, history text, PRIMARY KEY ((session_id), id) );""" ) except (OperationTimedOut, Unavailable) as error: logger.error( f"Unable to create cassandra \ chat message history table: {self.table_name}" ) raise error @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from Cassandra""" from cassandra import ReadFailure, ReadTimeout, Unavailable try: rows = self.session.execute( f"""SELECT * FROM {self.table_name} WHERE session_id = '{self.session_id}' ;""" ) except (Unavailable, ReadTimeout, ReadFailure) as error: logger.error("Unable to Retreive chat history messages from cassadra") raise error if rows: items = [json.loads(row.history) for row in rows] else: items = [] messages = messages_from_dict(items) return messages [docs] def add_user_message(self, message: str) -> None: self.append(HumanMessage(content=message)) [docs] def add_ai_message(self, message: str) -> None: self.append(AIMessage(content=message)) [docs] def append(self, message: BaseMessage) -> None: """Append the message to the record in Cassandra""" import uuid from cassandra import Unavailable, WriteFailure, WriteTimeout try: self.session.execute( """INSERT INTO message_store
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/cassandra.html
c1294a2d42ec-3
try: self.session.execute( """INSERT INTO message_store (id, session_id, history) VALUES (%s, %s, %s);""", (uuid.uuid4(), self.session_id, json.dumps(_message_to_dict(message))), ) except (Unavailable, WriteTimeout, WriteFailure) as error: logger.error("Unable to write chat history messages to cassandra") raise error [docs] def clear(self) -> None: """Clear session memory from Cassandra""" from cassandra import OperationTimedOut, Unavailable try: self.session.execute( f"DELETE FROM {self.table_name} WHERE session_id = '{self.session_id}';" ) except (Unavailable, OperationTimedOut) as error: logger.error("Unable to clear chat history messages from cassandra") raise error def __del__(self) -> None: if self.session: self.session.shutdown() if self.cluster: self.cluster.shutdown() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/cassandra.html
635ea0c174aa-0
Source code for langchain.memory.chat_message_histories.redis import json import logging from typing import List, Optional from langchain.schema import ( AIMessage, BaseChatMessageHistory, BaseMessage, HumanMessage, _message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) [docs]class RedisChatMessageHistory(BaseChatMessageHistory): def __init__( self, session_id: str, url: str = "redis://localhost:6379/0", key_prefix: str = "message_store:", ttl: Optional[int] = None, ): try: import redis except ImportError: raise ImportError( "Could not import redis python package. " "Please install it with `pip install redis`." ) try: self.redis_client = redis.Redis.from_url(url=url) except redis.exceptions.ConnectionError as error: logger.error(error) self.session_id = session_id self.key_prefix = key_prefix self.ttl = ttl @property def key(self) -> str: """Construct the record key to use""" return self.key_prefix + self.session_id @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from Redis""" _items = self.redis_client.lrange(self.key, 0, -1) items = [json.loads(m.decode("utf-8")) for m in _items[::-1]] messages = messages_from_dict(items) return messages [docs] def add_user_message(self, message: str) -> None: self.append(HumanMessage(content=message))
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/redis.html
635ea0c174aa-1
self.append(HumanMessage(content=message)) [docs] def add_ai_message(self, message: str) -> None: self.append(AIMessage(content=message)) [docs] def append(self, message: BaseMessage) -> None: """Append the message to the record in Redis""" self.redis_client.lpush(self.key, json.dumps(_message_to_dict(message))) if self.ttl: self.redis_client.expire(self.key, self.ttl) [docs] def clear(self) -> None: """Clear session memory from Redis""" self.redis_client.delete(self.key) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/redis.html
f4ac1b35d790-0
Source code for langchain.memory.chat_message_histories.postgres import json import logging from typing import List from langchain.schema import ( AIMessage, BaseChatMessageHistory, BaseMessage, HumanMessage, _message_to_dict, messages_from_dict, ) logger = logging.getLogger(__name__) DEFAULT_CONNECTION_STRING = "postgresql://postgres:mypassword@localhost/chat_history" [docs]class PostgresChatMessageHistory(BaseChatMessageHistory): def __init__( self, session_id: str, connection_string: str = DEFAULT_CONNECTION_STRING, table_name: str = "message_store", ): import psycopg from psycopg.rows import dict_row try: self.connection = psycopg.connect(connection_string) self.cursor = self.connection.cursor(row_factory=dict_row) except psycopg.OperationalError as error: logger.error(error) self.session_id = session_id self.table_name = table_name self._create_table_if_not_exists() def _create_table_if_not_exists(self) -> None: create_table_query = f"""CREATE TABLE IF NOT EXISTS {self.table_name} ( id SERIAL PRIMARY KEY, session_id TEXT NOT NULL, message JSONB NOT NULL );""" self.cursor.execute(create_table_query) self.connection.commit() @property def messages(self) -> List[BaseMessage]: # type: ignore """Retrieve the messages from PostgreSQL""" query = f"SELECT message FROM {self.table_name} WHERE session_id = %s;" self.cursor.execute(query, (self.session_id,)) items = [record["message"] for record in self.cursor.fetchall()] messages = messages_from_dict(items) return messages
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/postgres.html
f4ac1b35d790-1
messages = messages_from_dict(items) return messages [docs] def add_user_message(self, message: str) -> None: self.append(HumanMessage(content=message)) [docs] def add_ai_message(self, message: str) -> None: self.append(AIMessage(content=message)) [docs] def append(self, message: BaseMessage) -> None: """Append the message to the record in PostgreSQL""" from psycopg import sql query = sql.SQL("INSERT INTO {} (session_id, message) VALUES (%s, %s);").format( sql.Identifier(self.table_name) ) self.cursor.execute( query, (self.session_id, json.dumps(_message_to_dict(message))) ) self.connection.commit() [docs] def clear(self) -> None: """Clear session memory from PostgreSQL""" query = f"DELETE FROM {self.table_name} WHERE session_id = %s;" self.cursor.execute(query, (self.session_id,)) self.connection.commit() def __del__(self) -> None: if self.cursor: self.cursor.close() if self.connection: self.connection.close() By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/memory/chat_message_histories/postgres.html
1bc60c45d356-0
Source code for langchain.agents.agent """Chain that takes in an input and produces an action and action input.""" from __future__ import annotations import asyncio import json import logging import time from abc import abstractmethod from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union import yaml from pydantic import BaseModel, root_validator from langchain.agents.agent_types import AgentType from langchain.agents.tools import InvalidTool from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.manager import ( AsyncCallbackManagerForChainRun, AsyncCallbackManagerForToolRun, CallbackManagerForChainRun, CallbackManagerForToolRun, Callbacks, ) from langchain.chains.base import Chain from langchain.chains.llm import LLMChain from langchain.input import get_color_mapping from langchain.prompts.base import BasePromptTemplate from langchain.prompts.few_shot import FewShotPromptTemplate from langchain.prompts.prompt import PromptTemplate from langchain.schema import ( AgentAction, AgentFinish, BaseMessage, BaseOutputParser, OutputParserException, ) from langchain.tools.base import BaseTool from langchain.utilities.asyncio import asyncio_timeout logger = logging.getLogger(__name__) [docs]class BaseSingleActionAgent(BaseModel): """Base Agent class.""" @property def return_values(self) -> List[str]: """Return values of the agent.""" return ["output"] [docs] def get_allowed_tools(self) -> Optional[List[str]]: return None [docs] @abstractmethod def plan( self,
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-1
return None [docs] @abstractmethod def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ [docs] @abstractmethod async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ @property @abstractmethod def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ [docs] def return_stopped_response( self, early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any, ) -> AgentFinish: """Return response when agent has been stopped due to max iterations.""" if early_stopping_method == "force": # `force` just returns a constant string return AgentFinish(
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-2
# `force` just returns a constant string return AgentFinish( {"output": "Agent stopped due to iteration limit or time limit."}, "" ) else: raise ValueError( f"Got unsupported early_stopping_method `{early_stopping_method}`" ) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any, ) -> BaseSingleActionAgent: raise NotImplementedError @property def _agent_type(self) -> str: """Return Identifier of agent type.""" raise NotImplementedError [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() _type = self._agent_type if isinstance(_type, AgentType): _dict["_type"] = str(_type.value) else: _dict["_type"] = _type return _dict [docs] def save(self, file_path: Union[Path, str]) -> None: """Save the agent. Args: file_path: Path to file to save the agent to. Example: .. code-block:: python # If working with agent executor agent.agent.save(file_path="path/agent.yaml") """ # Convert file to Path object. if isinstance(file_path, str): save_path = Path(file_path) else: save_path = file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) # Fetch dictionary to save
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-3
directory_path.mkdir(parents=True, exist_ok=True) # Fetch dictionary to save agent_dict = self.dict() if save_path.suffix == ".json": with open(file_path, "w") as f: json.dump(agent_dict, f, indent=4) elif save_path.suffix == ".yaml": with open(file_path, "w") as f: yaml.dump(agent_dict, f, default_flow_style=False) else: raise ValueError(f"{save_path} must be json or yaml") [docs] def tool_run_logging_kwargs(self) -> Dict: return {} [docs]class BaseMultiActionAgent(BaseModel): """Base Agent class.""" @property def return_values(self) -> List[str]: """Return values of the agent.""" return ["output"] [docs] def get_allowed_tools(self) -> Optional[List[str]]: return None [docs] @abstractmethod def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[List[AgentAction], AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Actions specifying what tool to use. """ [docs] @abstractmethod async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[List[AgentAction], AgentFinish]:
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-4
**kwargs: Any, ) -> Union[List[AgentAction], AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Actions specifying what tool to use. """ @property @abstractmethod def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ [docs] def return_stopped_response( self, early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any, ) -> AgentFinish: """Return response when agent has been stopped due to max iterations.""" if early_stopping_method == "force": # `force` just returns a constant string return AgentFinish({"output": "Agent stopped due to max iterations."}, "") else: raise ValueError( f"Got unsupported early_stopping_method `{early_stopping_method}`" ) @property def _agent_type(self) -> str: """Return Identifier of agent type.""" raise NotImplementedError [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() _dict["_type"] = str(self._agent_type) return _dict [docs] def save(self, file_path: Union[Path, str]) -> None: """Save the agent. Args: file_path: Path to file to save the agent to. Example: .. code-block:: python
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-5
Example: .. code-block:: python # If working with agent executor agent.agent.save(file_path="path/agent.yaml") """ # Convert file to Path object. if isinstance(file_path, str): save_path = Path(file_path) else: save_path = file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) # Fetch dictionary to save agent_dict = self.dict() if save_path.suffix == ".json": with open(file_path, "w") as f: json.dump(agent_dict, f, indent=4) elif save_path.suffix == ".yaml": with open(file_path, "w") as f: yaml.dump(agent_dict, f, default_flow_style=False) else: raise ValueError(f"{save_path} must be json or yaml") [docs] def tool_run_logging_kwargs(self) -> Dict: return {} [docs]class AgentOutputParser(BaseOutputParser): [docs] @abstractmethod def parse(self, text: str) -> Union[AgentAction, AgentFinish]: """Parse text into agent action/finish.""" [docs]class LLMSingleActionAgent(BaseSingleActionAgent): llm_chain: LLMChain output_parser: AgentOutputParser stop: List[str] @property def input_keys(self) -> List[str]: return list(set(self.llm_chain.input_keys) - {"intermediate_steps"}) [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() del _dict["output_parser"] return _dict [docs] def plan(
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-6
return _dict [docs] def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ output = self.llm_chain.run( intermediate_steps=intermediate_steps, stop=self.stop, callbacks=callbacks, **kwargs, ) return self.output_parser.parse(output) [docs] async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ output = await self.llm_chain.arun( intermediate_steps=intermediate_steps, stop=self.stop, callbacks=callbacks, **kwargs, ) return self.output_parser.parse(output) [docs] def tool_run_logging_kwargs(self) -> Dict: return { "llm_prefix": "", "observation_prefix": "" if len(self.stop) == 0 else self.stop[0], }
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-7
} [docs]class Agent(BaseSingleActionAgent): """Class responsible for calling the language model and deciding the action. This is driven by an LLMChain. The prompt in the LLMChain MUST include a variable called "agent_scratchpad" where the agent can put its intermediary work. """ llm_chain: LLMChain output_parser: AgentOutputParser allowed_tools: Optional[List[str]] = None [docs] def dict(self, **kwargs: Any) -> Dict: """Return dictionary representation of agent.""" _dict = super().dict() del _dict["output_parser"] return _dict [docs] def get_allowed_tools(self) -> Optional[List[str]]: return self.allowed_tools @property def return_values(self) -> List[str]: return ["output"] def _fix_text(self, text: str) -> str: """Fix the text.""" raise ValueError("fix_text not implemented for this agent.") @property def _stop(self) -> List[str]: return [ f"\n{self.observation_prefix.rstrip()}", f"\n\t{self.observation_prefix.rstrip()}", ] def _construct_scratchpad( self, intermediate_steps: List[Tuple[AgentAction, str]] ) -> Union[str, List[BaseMessage]]: """Construct the scratchpad that lets the agent continue its thought process.""" thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}" return thoughts [docs] def plan( self,
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-8
return thoughts [docs] def plan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) full_output = self.llm_chain.predict(callbacks=callbacks, **full_inputs) return self.output_parser.parse(full_output) [docs] async def aplan( self, intermediate_steps: List[Tuple[AgentAction, str]], callbacks: Callbacks = None, **kwargs: Any, ) -> Union[AgentAction, AgentFinish]: """Given input, decided what to do. Args: intermediate_steps: Steps the LLM has taken to date, along with observations callbacks: Callbacks to run. **kwargs: User inputs. Returns: Action specifying what tool to use. """ full_inputs = self.get_full_inputs(intermediate_steps, **kwargs) full_output = await self.llm_chain.apredict(callbacks=callbacks, **full_inputs) return self.output_parser.parse(full_output) [docs] def get_full_inputs( self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any ) -> Dict[str, Any]: """Create the full inputs for the LLMChain from intermediate steps."""
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-9
"""Create the full inputs for the LLMChain from intermediate steps.""" thoughts = self._construct_scratchpad(intermediate_steps) new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop} full_inputs = {**kwargs, **new_inputs} return full_inputs @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return list(set(self.llm_chain.input_keys) - {"agent_scratchpad"}) @root_validator() def validate_prompt(cls, values: Dict) -> Dict: """Validate that prompt matches format.""" prompt = values["llm_chain"].prompt if "agent_scratchpad" not in prompt.input_variables: logger.warning( "`agent_scratchpad` should be a variable in prompt.input_variables." " Did not find it, so adding it at the end." ) prompt.input_variables.append("agent_scratchpad") if isinstance(prompt, PromptTemplate): prompt.template += "\n{agent_scratchpad}" elif isinstance(prompt, FewShotPromptTemplate): prompt.suffix += "\n{agent_scratchpad}" else: raise ValueError(f"Got unexpected prompt type {type(prompt)}") return values @property @abstractmethod def observation_prefix(self) -> str: """Prefix to append the observation with.""" @property @abstractmethod def llm_prefix(self) -> str: """Prefix to append the LLM call with.""" [docs] @classmethod @abstractmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Create a prompt for this class.""" @classmethod
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-10
"""Create a prompt for this class.""" @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: """Validate that appropriate tools are passed in.""" pass @classmethod @abstractmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: """Get default output parser for this class.""" [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) llm_chain = LLMChain( llm=llm, prompt=cls.create_prompt(tools), callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser() return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, ) [docs] def return_stopped_response( self, early_stopping_method: str, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any, ) -> AgentFinish: """Return response when agent has been stopped due to max iterations.""" if early_stopping_method == "force": # `force` just returns a constant string return AgentFinish(
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-11
# `force` just returns a constant string return AgentFinish( {"output": "Agent stopped due to iteration limit or time limit."}, "" ) elif early_stopping_method == "generate": # Generate does one final forward pass thoughts = "" for action, observation in intermediate_steps: thoughts += action.log thoughts += ( f"\n{self.observation_prefix}{observation}\n{self.llm_prefix}" ) # Adding to the previous steps, we now tell the LLM to make a final pred thoughts += ( "\n\nI now need to return a final answer based on the previous steps:" ) new_inputs = {"agent_scratchpad": thoughts, "stop": self._stop} full_inputs = {**kwargs, **new_inputs} full_output = self.llm_chain.predict(**full_inputs) # We try to extract a final answer parsed_output = self.output_parser.parse(full_output) if isinstance(parsed_output, AgentFinish): # If we can extract, we send the correct stuff return parsed_output else: # If we can extract, but the tool is not the final tool, # we just return the full output return AgentFinish({"output": full_output}, full_output) else: raise ValueError( "early_stopping_method should be one of `force` or `generate`, " f"got {early_stopping_method}" ) [docs] def tool_run_logging_kwargs(self) -> Dict: return { "llm_prefix": self.llm_prefix, "observation_prefix": self.observation_prefix, } class ExceptionTool(BaseTool): name = "_Exception"
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-12
} class ExceptionTool(BaseTool): name = "_Exception" description = "Exception tool" def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: return query async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: return query [docs]class AgentExecutor(Chain): """Consists of an agent using tools.""" agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] tools: Sequence[BaseTool] return_intermediate_steps: bool = False max_iterations: Optional[int] = 15 max_execution_time: Optional[float] = None early_stopping_method: str = "force" handle_parsing_errors: Union[ bool, str, Callable[[OutputParserException], str] ] = False [docs] @classmethod def from_agent_and_tools( cls, agent: Union[BaseSingleActionAgent, BaseMultiActionAgent], tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, **kwargs: Any, ) -> AgentExecutor: """Create from agent and tools.""" return cls( agent=agent, tools=tools, callback_manager=callback_manager, **kwargs ) @root_validator() def validate_tools(cls, values: Dict) -> Dict: """Validate that tools are compatible with agent.""" agent = values["agent"] tools = values["tools"] allowed_tools = agent.get_allowed_tools()
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-13
tools = values["tools"] allowed_tools = agent.get_allowed_tools() if allowed_tools is not None: if set(allowed_tools) != set([tool.name for tool in tools]): raise ValueError( f"Allowed tools ({allowed_tools}) different than " f"provided tools ({[tool.name for tool in tools]})" ) return values @root_validator() def validate_return_direct_tool(cls, values: Dict) -> Dict: """Validate that tools are compatible with agent.""" agent = values["agent"] tools = values["tools"] if isinstance(agent, BaseMultiActionAgent): for tool in tools: if tool.return_direct: raise ValueError( "Tools that have `return_direct=True` are not allowed " "in multi-action agents" ) return values [docs] def save(self, file_path: Union[Path, str]) -> None: """Raise error - saving not supported for Agent Executors.""" raise ValueError( "Saving not supported for agent executors. " "If you are trying to save the agent, please use the " "`.save_agent(...)`" ) [docs] def save_agent(self, file_path: Union[Path, str]) -> None: """Save the underlying agent.""" return self.agent.save(file_path) @property def input_keys(self) -> List[str]: """Return the input keys. :meta private: """ return self.agent.input_keys @property def output_keys(self) -> List[str]: """Return the singular output key. :meta private: """ if self.return_intermediate_steps:
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-14
:meta private: """ if self.return_intermediate_steps: return self.agent.return_values + ["intermediate_steps"] else: return self.agent.return_values [docs] def lookup_tool(self, name: str) -> BaseTool: """Lookup tool by name.""" return {tool.name: tool for tool in self.tools}[name] def _should_continue(self, iterations: int, time_elapsed: float) -> bool: if self.max_iterations is not None and iterations >= self.max_iterations: return False if ( self.max_execution_time is not None and time_elapsed >= self.max_execution_time ): return False return True def _return( self, output: AgentFinish, intermediate_steps: list, run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: if run_manager: run_manager.on_agent_finish(output, color="green", verbose=self.verbose) final_output = output.return_values if self.return_intermediate_steps: final_output["intermediate_steps"] = intermediate_steps return final_output async def _areturn( self, output: AgentFinish, intermediate_steps: list, run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, Any]: if run_manager: await run_manager.on_agent_finish( output, color="green", verbose=self.verbose ) final_output = output.return_values if self.return_intermediate_steps: final_output["intermediate_steps"] = intermediate_steps return final_output def _take_next_step( self,
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-15
return final_output def _take_next_step( self, name_to_tool_map: Dict[str, BaseTool], color_mapping: Dict[str, str], inputs: Dict[str, str], intermediate_steps: List[Tuple[AgentAction, str]], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]: """Take a single step in the thought-action-observation loop. Override this to take control of how the agent makes and acts on choices. """ try: # Call the LLM to see what to do. output = self.agent.plan( intermediate_steps, callbacks=run_manager.get_child() if run_manager else None, **inputs, ) except OutputParserException as e: if isinstance(self.handle_parsing_errors, bool): raise_error = not self.handle_parsing_errors else: raise_error = False if raise_error: raise e text = str(e) if isinstance(self.handle_parsing_errors, bool): if e.send_to_llm: observation = str(e.observation) text = str(e.llm_output) else: observation = "Invalid or incomplete response" elif isinstance(self.handle_parsing_errors, str): observation = self.handle_parsing_errors elif callable(self.handle_parsing_errors): observation = self.handle_parsing_errors(e) else: raise ValueError("Got unexpected type of `handle_parsing_errors`") output = AgentAction("_Exception", observation, text) if run_manager: run_manager.on_agent_action(output, color="green")
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-16
if run_manager: run_manager.on_agent_action(output, color="green") tool_run_kwargs = self.agent.tool_run_logging_kwargs() observation = ExceptionTool().run( output.tool_input, verbose=self.verbose, color=None, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) return [(output, observation)] # If the tool chosen is the finishing tool, then we end and return. if isinstance(output, AgentFinish): return output actions: List[AgentAction] if isinstance(output, AgentAction): actions = [output] else: actions = output result = [] for agent_action in actions: if run_manager: run_manager.on_agent_action(agent_action, color="green") # Otherwise we lookup the tool if agent_action.tool in name_to_tool_map: tool = name_to_tool_map[agent_action.tool] return_direct = tool.return_direct color = color_mapping[agent_action.tool] tool_run_kwargs = self.agent.tool_run_logging_kwargs() if return_direct: tool_run_kwargs["llm_prefix"] = "" # We then call the tool on the tool input to get an observation observation = tool.run( agent_action.tool_input, verbose=self.verbose, color=color, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) else: tool_run_kwargs = self.agent.tool_run_logging_kwargs() observation = InvalidTool().run( agent_action.tool, verbose=self.verbose, color=None, callbacks=run_manager.get_child() if run_manager else None,
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-17
color=None, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) result.append((agent_action, observation)) return result async def _atake_next_step( self, name_to_tool_map: Dict[str, BaseTool], color_mapping: Dict[str, str], inputs: Dict[str, str], intermediate_steps: List[Tuple[AgentAction, str]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]: """Take a single step in the thought-action-observation loop. Override this to take control of how the agent makes and acts on choices. """ try: # Call the LLM to see what to do. output = await self.agent.aplan( intermediate_steps, callbacks=run_manager.get_child() if run_manager else None, **inputs, ) except OutputParserException as e: if isinstance(self.handle_parsing_errors, bool): raise_error = not self.handle_parsing_errors else: raise_error = False if raise_error: raise e text = str(e) if isinstance(self.handle_parsing_errors, bool): observation = "Invalid or incomplete response" elif isinstance(self.handle_parsing_errors, str): observation = self.handle_parsing_errors elif callable(self.handle_parsing_errors): observation = self.handle_parsing_errors(e) else: raise ValueError("Got unexpected type of `handle_parsing_errors`") output = AgentAction("_Exception", observation, text) tool_run_kwargs = self.agent.tool_run_logging_kwargs()
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-18
tool_run_kwargs = self.agent.tool_run_logging_kwargs() observation = await ExceptionTool().arun( output.tool_input, verbose=self.verbose, color=None, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) return [(output, observation)] # If the tool chosen is the finishing tool, then we end and return. if isinstance(output, AgentFinish): return output actions: List[AgentAction] if isinstance(output, AgentAction): actions = [output] else: actions = output async def _aperform_agent_action( agent_action: AgentAction, ) -> Tuple[AgentAction, str]: if run_manager: await run_manager.on_agent_action( agent_action, verbose=self.verbose, color="green" ) # Otherwise we lookup the tool if agent_action.tool in name_to_tool_map: tool = name_to_tool_map[agent_action.tool] return_direct = tool.return_direct color = color_mapping[agent_action.tool] tool_run_kwargs = self.agent.tool_run_logging_kwargs() if return_direct: tool_run_kwargs["llm_prefix"] = "" # We then call the tool on the tool input to get an observation observation = await tool.arun( agent_action.tool_input, verbose=self.verbose, color=color, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) else: tool_run_kwargs = self.agent.tool_run_logging_kwargs() observation = await InvalidTool().arun( agent_action.tool, verbose=self.verbose, color=None,
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-19
agent_action.tool, verbose=self.verbose, color=None, callbacks=run_manager.get_child() if run_manager else None, **tool_run_kwargs, ) return agent_action, observation # Use asyncio.gather to run multiple tool.arun() calls concurrently result = await asyncio.gather( *[_aperform_agent_action(agent_action) for agent_action in actions] ) return list(result) def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """Run text through and get agent response.""" # Construct a mapping of tool name to tool for easy lookup name_to_tool_map = {tool.name: tool for tool in self.tools} # We construct a mapping from each tool to a color, used for logging. color_mapping = get_color_mapping( [tool.name for tool in self.tools], excluded_colors=["green"] ) intermediate_steps: List[Tuple[AgentAction, str]] = [] # Let's start tracking the number of iterations and time elapsed iterations = 0 time_elapsed = 0.0 start_time = time.time() # We now enter the agent loop (until it returns something). while self._should_continue(iterations, time_elapsed): next_step_output = self._take_next_step( name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager=run_manager, ) if isinstance(next_step_output, AgentFinish): return self._return( next_step_output, intermediate_steps, run_manager=run_manager )
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-20
next_step_output, intermediate_steps, run_manager=run_manager ) intermediate_steps.extend(next_step_output) if len(next_step_output) == 1: next_step_action = next_step_output[0] # See if tool should return directly tool_return = self._get_tool_return(next_step_action) if tool_return is not None: return self._return( tool_return, intermediate_steps, run_manager=run_manager ) iterations += 1 time_elapsed = time.time() - start_time output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) return self._return(output, intermediate_steps, run_manager=run_manager) async def _acall( self, inputs: Dict[str, str], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: """Run text through and get agent response.""" # Construct a mapping of tool name to tool for easy lookup name_to_tool_map = {tool.name: tool for tool in self.tools} # We construct a mapping from each tool to a color, used for logging. color_mapping = get_color_mapping( [tool.name for tool in self.tools], excluded_colors=["green"] ) intermediate_steps: List[Tuple[AgentAction, str]] = [] # Let's start tracking the number of iterations and time elapsed iterations = 0 time_elapsed = 0.0 start_time = time.time() # We now enter the agent loop (until it returns something). async with asyncio_timeout(self.max_execution_time): try: while self._should_continue(iterations, time_elapsed):
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-21
try: while self._should_continue(iterations, time_elapsed): next_step_output = await self._atake_next_step( name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager=run_manager, ) if isinstance(next_step_output, AgentFinish): return await self._areturn( next_step_output, intermediate_steps, run_manager=run_manager, ) intermediate_steps.extend(next_step_output) if len(next_step_output) == 1: next_step_action = next_step_output[0] # See if tool should return directly tool_return = self._get_tool_return(next_step_action) if tool_return is not None: return await self._areturn( tool_return, intermediate_steps, run_manager=run_manager ) iterations += 1 time_elapsed = time.time() - start_time output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) return await self._areturn( output, intermediate_steps, run_manager=run_manager ) except TimeoutError: # stop early when interrupted by the async timeout output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) return await self._areturn( output, intermediate_steps, run_manager=run_manager ) def _get_tool_return( self, next_step_output: Tuple[AgentAction, str] ) -> Optional[AgentFinish]: """Check if the tool is a returning tool.""" agent_action, observation = next_step_output
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
1bc60c45d356-22
agent_action, observation = next_step_output name_to_tool_map = {tool.name: tool for tool in self.tools} # Invalid tools won't be in the map, so we return False. if agent_action.tool in name_to_tool_map: if name_to_tool_map[agent_action.tool].return_direct: return AgentFinish( {self.agent.return_values[0]: observation}, "", ) return None By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
fef20000937d-0
Source code for langchain.agents.initialize """Load agent.""" from typing import Any, Optional, Sequence from langchain.agents.agent import AgentExecutor from langchain.agents.agent_types import AgentType from langchain.agents.loading import AGENT_TO_CLASS, load_agent from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.tools.base import BaseTool [docs]def initialize_agent( tools: Sequence[BaseTool], llm: BaseLanguageModel, agent: Optional[AgentType] = None, callback_manager: Optional[BaseCallbackManager] = None, agent_path: Optional[str] = None, agent_kwargs: Optional[dict] = None, **kwargs: Any, ) -> AgentExecutor: """Load an agent executor given tools and LLM. Args: tools: List of tools this agent has access to. llm: Language model to use as the agent. agent: Agent type to use. If None and agent_path is also None, will default to AgentType.ZERO_SHOT_REACT_DESCRIPTION. callback_manager: CallbackManager to use. Global callback manager is used if not provided. Defaults to None. agent_path: Path to serialized agent to use. agent_kwargs: Additional key word arguments to pass to the underlying agent **kwargs: Additional key word arguments passed to the agent executor Returns: An agent executor """ if agent is None and agent_path is None: agent = AgentType.ZERO_SHOT_REACT_DESCRIPTION if agent is not None and agent_path is not None: raise ValueError( "Both `agent` and `agent_path` are specified, " "but at most only one should be."
https://python.langchain.com/en/latest/_modules/langchain/agents/initialize.html
fef20000937d-1
"but at most only one should be." ) if agent is not None: if agent not in AGENT_TO_CLASS: raise ValueError( f"Got unknown agent type: {agent}. " f"Valid types are: {AGENT_TO_CLASS.keys()}." ) agent_cls = AGENT_TO_CLASS[agent] agent_kwargs = agent_kwargs or {} agent_obj = agent_cls.from_llm_and_tools( llm, tools, callback_manager=callback_manager, **agent_kwargs ) elif agent_path is not None: agent_obj = load_agent( agent_path, llm=llm, tools=tools, callback_manager=callback_manager ) else: raise ValueError( "Somehow both `agent` and `agent_path` are None, " "this should never happen." ) return AgentExecutor.from_agent_and_tools( agent=agent_obj, tools=tools, callback_manager=callback_manager, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/initialize.html
f7744a02d1a6-0
Source code for langchain.agents.agent_types from enum import Enum [docs]class AgentType(str, Enum): ZERO_SHOT_REACT_DESCRIPTION = "zero-shot-react-description" REACT_DOCSTORE = "react-docstore" SELF_ASK_WITH_SEARCH = "self-ask-with-search" CONVERSATIONAL_REACT_DESCRIPTION = "conversational-react-description" CHAT_ZERO_SHOT_REACT_DESCRIPTION = "chat-zero-shot-react-description" CHAT_CONVERSATIONAL_REACT_DESCRIPTION = "chat-conversational-react-description" STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION = ( "structured-chat-zero-shot-react-description" ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_types.html
ba9542753c60-0
Source code for langchain.agents.loading """Functionality for loading agents.""" import json import logging from pathlib import Path from typing import Any, List, Optional, Union import yaml from langchain.agents.agent import BaseSingleActionAgent from langchain.agents.tools import Tool from langchain.agents.types import AGENT_TO_CLASS from langchain.base_language import BaseLanguageModel from langchain.chains.loading import load_chain, load_chain_from_config from langchain.utilities.loading import try_load_from_hub logger = logging.getLogger(__file__) URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/agents/" def _load_agent_from_tools( config: dict, llm: BaseLanguageModel, tools: List[Tool], **kwargs: Any ) -> BaseSingleActionAgent: config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") agent_cls = AGENT_TO_CLASS[config_type] combined_config = {**config, **kwargs} return agent_cls.from_llm_and_tools(llm, tools, **combined_config) def load_agent_from_config( config: dict, llm: Optional[BaseLanguageModel] = None, tools: Optional[List[Tool]] = None, **kwargs: Any, ) -> BaseSingleActionAgent: """Load agent from Config Dict.""" if "_type" not in config: raise ValueError("Must specify an agent Type in config") load_from_tools = config.pop("load_from_llm_and_tools", False) if load_from_tools: if llm is None: raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/agents/loading.html
ba9542753c60-1
if load_from_tools: if llm is None: raise ValueError( "If `load_from_llm_and_tools` is set to True, " "then LLM must be provided" ) if tools is None: raise ValueError( "If `load_from_llm_and_tools` is set to True, " "then tools must be provided" ) return _load_agent_from_tools(config, llm, tools, **kwargs) config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") agent_cls = AGENT_TO_CLASS[config_type] if "llm_chain" in config: config["llm_chain"] = load_chain_from_config(config.pop("llm_chain")) elif "llm_chain_path" in config: config["llm_chain"] = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` and `llm_chain_path` should be specified.") if "output_parser" in config: logger.warning( "Currently loading output parsers on agent is not supported, " "will just use the default one." ) del config["output_parser"] combined_config = {**config, **kwargs} return agent_cls(**combined_config) # type: ignore [docs]def load_agent(path: Union[str, Path], **kwargs: Any) -> BaseSingleActionAgent: """Unified method for loading a agent from LangChainHub or local fs.""" if hub_result := try_load_from_hub( path, _load_agent_from_file, "agents", {"json", "yaml"} ):
https://python.langchain.com/en/latest/_modules/langchain/agents/loading.html
ba9542753c60-2
): return hub_result else: return _load_agent_from_file(path, **kwargs) def _load_agent_from_file( file: Union[str, Path], **kwargs: Any ) -> BaseSingleActionAgent: """Load agent from file.""" # Convert file to Path object. if isinstance(file, str): file_path = Path(file) else: file_path = file # Load from either json or yaml. if file_path.suffix == ".json": with open(file_path) as f: config = json.load(f) elif file_path.suffix == ".yaml": with open(file_path, "r") as f: config = yaml.safe_load(f) else: raise ValueError("File type must be json or yaml") # Load the agent from the config now. return load_agent_from_config(config, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/loading.html