File size: 11,861 Bytes
44e46d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
'''
Utility functions for visualization using meshcat.
Installation:
pip install trimesh==4.5.3 objaverse==0.1.7 meshcat==0.0.12 webdataset==0.2.111
NOTE: Start meshcat server (in a different terminal) before running this script:
meshcat-server
'''
import numpy as np
import meshcat
import meshcat.geometry as g
import meshcat.transformations as mtf
import trimesh
import trimesh.transformations as tra
from typing import List, Optional, Tuple, Union, Any
control_points_franka = np.array([
[ 0.05268743, -0.00005996, 0.05900000],
[-0.05268743, 0.00005996, 0.05900000],
[ 0.05268743, -0.00005996, 0.10527314],
[-0.05268743, 0.00005996, 0.10527314]
])
control_points_robotiq2f140 = np.array([
[ 0.06801729, -0, 0.0975],
[-0.06801729, 0, 0.0975],
[ 0.06801729, -0, 0.1950],
[-0.06801729, 0, 0.1950]
])
control_points_suction = np.array([
[ 0, 0, -0.10],
[ 0, 0, -0.05],
[ 0, 0, 0],
])
control_points_data = {
"franka": control_points_franka,
"robotiq2f140": control_points_robotiq2f140,
"suction": control_points_suction,
}
def get_gripper_control_points(gripper_name: str = 'franka') -> np.ndarray:
"""
Get the control points for a specific gripper.
Args:
gripper_name (str): Name of the gripper ("franka", "robotiq2f140", "suction")
Returns:
np.ndarray: Array of control points for the specified gripper
Raises:
NotImplementedError: If the specified gripper is not implemented
"""
if gripper_name in control_points_data:
return control_points_data[gripper_name]
else:
raise NotImplementedError(f"Gripper {gripper_name} is not implemented.")
return control_points
def get_gripper_depth(gripper_name: str) -> float:
"""
Get the depth parameter for a specific gripper type.
Args:
gripper_name (str): Name of the gripper ("franka", "robotiq2f140", "suction")
Returns:
float: Depth parameter for the specified gripper
Raises:
NotImplementedError: If the specified gripper is not implemented
"""
# TODO: Use register module. Don't have this if-else name lookup
pts, d = None, None
if gripper_name in ["franka", "robotiq2f140"]:
pts = get_gripper_control_points(gripper_name)
elif gripper_name == "suction":
return 0.069
else:
raise NotImplementedError(f"Control points for gripper {gripper_name} not implemented!")
d = pts[-1][-1] if pts is not None else d
return d
def get_gripper_offset(gripper_name: str) -> np.ndarray:
"""
Get the offset transform for a specific gripper type.
Args:
gripper_name (str): Name of the gripper
Returns:
np.ndarray: 4x4 homogeneous transformation matrix representing the gripper offset
"""
return np.eye(4)
def load_visualize_control_points_suction() -> np.ndarray:
"""
Load visualization control points specific to the suction gripper.
Returns:
np.ndarray: Array of control points for suction gripper visualization
"""
h = 0
pts = [
[0.0, 0],
]
pts = [generate_circle_points(c, radius=0.005) for c in pts]
pts = np.stack(pts)
ptsz = h * np.ones([pts.shape[0], pts.shape[1], 1])
pts = np.concatenate([pts, ptsz], axis=2)
return pts
def generate_circle_points(center: List[float], radius: float = 0.007, N: int = 30) -> np.ndarray:
"""
Generate points forming a circle in 2D space.
Args:
center (List[float]): Center coordinates [x, y] of the circle
radius (float): Radius of the circle
N (int): Number of points to generate around the circle
Returns:
np.ndarray: Array of shape (N, 2) containing the circle points
"""
angles = np.linspace(0, 2 * np.pi, N, endpoint=False)
x_points = center[0] + radius * np.cos(angles)
y_points = center[1] + radius * np.sin(angles)
points = np.stack((x_points, y_points), axis=1)
return points
def get_gripper_visualization_control_points(gripper_name: str = 'franka') -> List[np.ndarray]:
"""
Get control points for visualizing a specific gripper type.
Args:
gripper_name (str): Name of the gripper ("franka", "robotiq2f140", "suction")
Returns:
List[np.ndarray]: List of control point arrays for gripper visualization
"""
if gripper_name == "suction":
control_points = load_visualize_control_points_suction()
offset = get_gripper_offset('suction')
ctrl_pts = [tra.transform_points(cpt, offset) for cpt in control_points]
d = get_gripper_depth(gripper_name)
line_pts = np.array([[0,0,0], [0,0,d]])
line_pts = np.expand_dims(line_pts, 0)
line_pts = [tra.transform_points(cpt, offset) for cpt in line_pts]
line_pts = line_pts[0]
ctrl_pts.append(line_pts)
return ctrl_pts
else:
control_points = get_gripper_control_points(gripper_name)
mid_point = (control_points[0] + control_points[1]) / 2
control_points = [
control_points[-2], control_points[0], mid_point,
[0, 0, 0], mid_point, control_points[1], control_points[-1]
]
return [control_points, ]
def get_color_from_score(labels: Union[float, np.ndarray], use_255_scale: bool = False) -> np.ndarray:
"""
Convert score labels to RGB colors for visualization.
Args:
labels (Union[float, np.ndarray]): Score values between 0 and 1
use_255_scale (bool): If True, output colors in [0-255] range, else [0-1]
Returns:
np.ndarray: RGB colors corresponding to the input scores
"""
scale = 255.0 if use_255_scale else 1.0
if type(labels) in [np.float32, float]:
return scale * np.array([1 - labels, labels, 0])
else:
scale = 255.0 if use_255_scale else 1.0
score = scale * np.stack(
[np.ones(labels.shape[0]) - labels, labels, np.zeros(labels.shape[0])],
axis=1,
)
return score.astype(np.int)
def trimesh_to_meshcat_geometry(mesh: trimesh.Trimesh) -> g.TriangularMeshGeometry:
"""
Convert a trimesh mesh to meshcat geometry format.
Args:
mesh (trimesh.Trimesh): Input mesh in trimesh format
Returns:
g.TriangularMeshGeometry: Mesh in meshcat geometry format
"""
return meshcat.geometry.TriangularMeshGeometry(mesh.vertices, mesh.faces)
def visualize_mesh(
vis: meshcat.Visualizer,
name: str,
mesh: trimesh.Trimesh,
color: Optional[List[int]] = None,
transform: Optional[np.ndarray] = None
) -> None:
"""
Visualize a mesh in meshcat with optional color and transform.
Args:
vis (meshcat.Visualizer): Meshcat visualizer instance
name (str): Name/path for the mesh in the visualizer scene
mesh (trimesh.Trimesh): Mesh to visualize
color (Optional[List[int]]): RGB color values [0-255]. Random if None
transform (Optional[np.ndarray]): 4x4 homogeneous transform matrix
"""
if vis is None:
return
if color is None:
color = np.random.randint(low=0, high=256, size=3)
mesh_vis = trimesh_to_meshcat_geometry(mesh)
color_hex = rgb2hex(tuple(color))
material = meshcat.geometry.MeshPhongMaterial(color=color_hex)
vis[name].set_object(mesh_vis, material)
if transform is not None:
vis[name].set_transform(transform)
def rgb2hex(rgb: Tuple[int, int, int]) -> str:
"""
Convert RGB color values to hexadecimal string.
Args:
rgb (Tuple[int, int, int]): RGB color values (0-255)
Returns:
str: Hexadecimal color string (format: "0xRRGGBB")
"""
return "0x%02x%02x%02x" % (rgb)
def create_visualizer(clear: bool = True) -> meshcat.Visualizer:
"""
Create a meshcat visualizer instance.
Args:
clear (bool): If True, clear the visualizer scene upon creation first
Returns:
meshcat.Visualizer: Initialized meshcat visualizer
"""
print(
"Waiting for meshcat server... have you started a server? Run `meshcat-server` to start a server"
)
vis = meshcat.Visualizer(zmq_url="tcp://127.0.0.1:6000")
if clear:
vis.delete()
return vis
def visualize_pointcloud(
vis: meshcat.Visualizer,
name: str,
pc: np.ndarray,
color: Optional[Union[List[int], np.ndarray]] = None,
transform: Optional[np.ndarray] = None,
**kwargs: Any
) -> None:
"""
Args:
vis: meshcat visualizer object
name: str
pc: Nx3 or HxWx3
color: (optional) same shape as pc[0 - 255] scale or just rgb tuple
transform: (optional) 4x4 homogeneous transform
"""
if vis is None:
return
if pc.ndim == 3:
pc = pc.reshape(-1, pc.shape[-1])
if color is not None:
if isinstance(color, list):
color = np.array(color)
color = np.array(color)
# Resize the color np array if needed.
if color.ndim == 3:
color = color.reshape(-1, color.shape[-1])
if color.ndim == 1:
color = np.ones_like(pc) * np.array(color)
# Divide it by 255 to make sure the range is between 0 and 1,
color = color.astype(np.float32) / 255
else:
color = np.ones_like(pc)
vis[name].set_object(
meshcat.geometry.PointCloud(position=pc.T, color=color.T, **kwargs)
)
if transform is not None:
vis[name].set_transform(transform)
def load_visualization_gripper_points(gripper_name: str = "franka") -> List[np.ndarray]:
"""
Load control points for gripper visualization.
Args:
gripper_name (str): Name of the gripper to visualize
Returns:
List[np.ndarray]: List of control point arrays, each of shape [4, N]
where N is the number of points for that segment
"""
ctrl_points = []
for ctrl_pts in get_gripper_visualization_control_points(gripper_name):
ctrl_pts = np.array(ctrl_pts, dtype=np.float32)
ctrl_pts = np.hstack([ctrl_pts, np.ones([len(ctrl_pts),1])])
ctrl_pts = ctrl_pts.T
ctrl_points.append(ctrl_pts)
return ctrl_points
def visualize_grasp(
vis: meshcat.Visualizer,
name: str,
transform: np.ndarray,
color: List[int] = [255, 0, 0],
gripper_name: str = "franka",
**kwargs: Any
) -> None:
"""
Visualize a gripper grasp pose in meshcat.
Args:
vis (meshcat.Visualizer): Meshcat visualizer instance
name (str): Name/path for the grasp in the visualizer scene
transform (np.ndarray): 4x4 homogeneous transform matrix for the grasp pose
color (List[int]): RGB color values [0-255] for the grasp visualization
gripper_name (str): Name of the gripper to visualize
**kwargs: Additional arguments passed to MeshBasicMaterial
"""
if vis is None:
return
grasp_vertices = load_visualization_gripper_points(gripper_name)
for i, grasp_vertex in enumerate(grasp_vertices):
vis[name + f"/{i}"].set_object(
g.Line(
g.PointsGeometry(grasp_vertex),
g.MeshBasicMaterial(color=rgb2hex(tuple(color)), **kwargs),
)
)
vis[name].set_transform(transform.astype(np.float64))
|