File size: 6,946 Bytes
44e46d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
#
'''
Visualize the data with both the object mesh and its corresponding grasps, using meshcat.
Installation:
pip install trimesh==4.5.3 objaverse==0.1.7 meshcat==0.0.12 webdataset==0.2.111
Usage:
Before running the script, start the meshcat server in a different terminal:
meshcat-server
To visualize a single object from the dataset:
python visualize_dataset.py --dataset_path /path/to/dataset --object_uuid {object_uuid} --object_file /path/to/mesh --gripper_name {choose from: franka, suction, robotiq2f140}
To visualize many objects (one at a time) from the dataset
python visualize_dataset.py --dataset_path /path/to/dataset --uuid_list /path/to/uuid_list.json --gripper_name {choose from: franka, suction, robotiq2f140} --uuid_object_paths_file /path/to/uuid_object_paths_file.json
NOTE:
- The uuid_object_paths_file is a json file, that contains a dictionary with a mapping from the UUID to the absolute path of the mesh file. if you are using the download_objaverse.py script, this file will be auto-generated.
- The uuid_list can be the split json file from the GraspGen dataset
- The gripper_name has to be one of the following: franka, suction, robotiq2f140
'''
import os
import argparse
import trimesh
import numpy as np
import json
from meshcat_utils import create_visualizer, visualize_mesh, visualize_grasp
from dataset import GraspWebDatasetReader, load_uuid_list
def visualize_mesh_with_grasps(
mesh_path: str,
mesh_scale: float,
gripper_name: str = "franka",
grasps: list[np.ndarray] = None,
color: list = [192, 192, 192],
transform: np.ndarray = None,
max_grasps_to_visualize: int = 20
):
"""
Visualize a single mesh with optional grasps using meshcat.
Args:
mesh_path (str): Path to the mesh file
mesh_scale (float): Scale factor for the mesh
gripper_name (str): Name of the gripper to visualize ("franka", "suction", etc.)
grasps (list[np.ndarray], optional): List of 4x4 grasp transforms
color (list, optional): RGB color for the mesh. Defaults to gray if None
transform (np.ndarray, optional): 4x4 transform matrix for the mesh. Defaults to identity if None
max_grasps_to_visualize (int, optional): Maximum number of grasps to visualize. Defaults to 20
"""
# Create visualizer
vis = create_visualizer()
vis.delete()
# Default transform if none provided
if transform is None:
transform = np.eye(4)
# Load and visualize the mesh
try:
transform = transform.astype(np.float64)
mesh = trimesh.load(mesh_path)
if type(mesh) == trimesh.Scene:
mesh = mesh.dump(concatenate=True)
mesh.apply_scale(mesh_scale)
T_move_mesh_to_origin = np.eye(4)
T_move_mesh_to_origin[:3, 3] = -mesh.centroid
transform = transform @ T_move_mesh_to_origin
visualize_mesh(vis, 'mesh', mesh, color=color, transform=transform)
except Exception as e:
print(f"Error loading mesh from {mesh_path}: {e}")
# Visualize grasps if provided
if grasps is not None:
for i, grasp in enumerate(np.random.permutation(grasps)[:max_grasps_to_visualize]):
visualize_grasp(
vis,
f"grasps/{i:03d}",
transform @ grasp.astype(np.float),
[0, 255, 0],
gripper_name=gripper_name,
linewidth=0.2
)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_path", type=str, required=True)
parser.add_argument("--object_uuid", type=str, help="The UUID of the object to visualize", default=None)
parser.add_argument("--uuid_list", type=str, help="Path to UUID list", default=None)
parser.add_argument("--uuid_object_paths_file", type=str, help="Path to JSON file, mapping UUID to absolute path of the mesh file", default=None)
parser.add_argument("--object_file", type=str, help="This has to be a .stl or .obj or .glb file", default=None)
parser.add_argument("--gripper_name", type=str, required=True, help="Specify the gripper name", choices=["franka", "suction", "robotiq2f140"])
parser.add_argument("--max_grasps_to_visualize", type=int, help="The max number of grasps to visualize", default=20)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
assert args.object_uuid is not None or args.uuid_list is not None, "Either object_uuid or uuid_list must be provided"
if args.object_uuid is not None:
webdataset_reader = GraspWebDatasetReader(os.path.join(args.dataset_path, args.gripper_name))
uuid_list = [args.object_uuid,]
object_paths = [args.object_file,]
assert args.object_file is not None, "object_file must be provided if object_uuid is provided"
assert os.path.exists(args.object_file), f"Object file {args.object_file} does not exist"
else:
assert os.path.exists(args.uuid_list), f"UUID list {args.uuid_list} does not exist"
uuid_list = load_uuid_list(args.uuid_list)
assert args.uuid_object_paths_file is not None, "uuid_object_paths_file must be provided if uuid_list is provided"
assert os.path.exists(args.uuid_object_paths_file), f"UUID object paths file {args.uuid_object_paths_file} does not exist"
object_paths = json.load(open(args.uuid_object_paths_file))
object_paths = [object_paths[uuid] for uuid in uuid_list]
webdataset_reader = GraspWebDatasetReader(os.path.join(args.dataset_path, args.gripper_name))
for uuid, object_path in zip(uuid_list, object_paths):
print(f"Visualizing object {uuid}")
grasp_data = webdataset_reader.read_grasps_by_uuid(uuid)
object_scale = grasp_data['object']['scale']
grasps = grasp_data["grasps"]
grasp_poses = np.array(grasps["transforms"])
grasp_mask = np.array(grasps["object_in_gripper"])
positive_grasps = grasp_poses[grasp_mask] # Visualizing only the positive grasps
if len(positive_grasps) > 0:
# Visualize the mesh with the grasps
visualize_mesh_with_grasps(
mesh_path=object_path,
mesh_scale=object_scale,
grasps=positive_grasps,
gripper_name=args.gripper_name,
max_grasps_to_visualize=args.max_grasps_to_visualize,
)
print("Press Enter to continue...")
input() |