Datasets:
Commit
·
0de2392
1
Parent(s):
11762d9
Delete legacy dataset_infos.json
Browse files- dataset_infos.json +0 -703
dataset_infos.json
DELETED
@@ -1,703 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cola": {
|
3 |
-
"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
|
4 |
-
"citation": "@article{warstadt2018neural,\n title={Neural Network Acceptability Judgments},\n author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1805.12471},\n year={2018}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n",
|
5 |
-
"homepage": "https://nyu-mll.github.io/CoLA/",
|
6 |
-
"license": "",
|
7 |
-
"features": {
|
8 |
-
"sentence": {
|
9 |
-
"dtype": "string",
|
10 |
-
"_type": "Value"
|
11 |
-
},
|
12 |
-
"label": {
|
13 |
-
"names": [
|
14 |
-
"unacceptable",
|
15 |
-
"acceptable"
|
16 |
-
],
|
17 |
-
"_type": "ClassLabel"
|
18 |
-
},
|
19 |
-
"idx": {
|
20 |
-
"dtype": "int32",
|
21 |
-
"_type": "Value"
|
22 |
-
}
|
23 |
-
},
|
24 |
-
"builder_name": "glue",
|
25 |
-
"dataset_name": "glue",
|
26 |
-
"config_name": "cola",
|
27 |
-
"version": {
|
28 |
-
"version_str": "1.0.0",
|
29 |
-
"description": "",
|
30 |
-
"major": 1,
|
31 |
-
"minor": 0,
|
32 |
-
"patch": 0
|
33 |
-
},
|
34 |
-
"splits": {
|
35 |
-
"train": {
|
36 |
-
"name": "train",
|
37 |
-
"num_bytes": 484869,
|
38 |
-
"num_examples": 8551,
|
39 |
-
"dataset_name": null
|
40 |
-
},
|
41 |
-
"validation": {
|
42 |
-
"name": "validation",
|
43 |
-
"num_bytes": 60322,
|
44 |
-
"num_examples": 1043,
|
45 |
-
"dataset_name": null
|
46 |
-
},
|
47 |
-
"test": {
|
48 |
-
"name": "test",
|
49 |
-
"num_bytes": 60513,
|
50 |
-
"num_examples": 1063,
|
51 |
-
"dataset_name": null
|
52 |
-
}
|
53 |
-
},
|
54 |
-
"download_size": 326394,
|
55 |
-
"dataset_size": 605704,
|
56 |
-
"size_in_bytes": 932098
|
57 |
-
},
|
58 |
-
"sst2": {
|
59 |
-
"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
|
60 |
-
"citation": "@inproceedings{socher2013recursive,\n title={Recursive deep models for semantic compositionality over a sentiment treebank},\n author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},\n booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},\n pages={1631--1642},\n year={2013}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n",
|
61 |
-
"homepage": "https://datasets.stanford.edu/sentiment/index.html",
|
62 |
-
"license": "",
|
63 |
-
"features": {
|
64 |
-
"sentence": {
|
65 |
-
"dtype": "string",
|
66 |
-
"_type": "Value"
|
67 |
-
},
|
68 |
-
"label": {
|
69 |
-
"names": [
|
70 |
-
"negative",
|
71 |
-
"positive"
|
72 |
-
],
|
73 |
-
"_type": "ClassLabel"
|
74 |
-
},
|
75 |
-
"idx": {
|
76 |
-
"dtype": "int32",
|
77 |
-
"_type": "Value"
|
78 |
-
}
|
79 |
-
},
|
80 |
-
"builder_name": "glue",
|
81 |
-
"dataset_name": "glue",
|
82 |
-
"config_name": "sst2",
|
83 |
-
"version": {
|
84 |
-
"version_str": "1.0.0",
|
85 |
-
"description": "",
|
86 |
-
"major": 1,
|
87 |
-
"minor": 0,
|
88 |
-
"patch": 0
|
89 |
-
},
|
90 |
-
"splits": {
|
91 |
-
"train": {
|
92 |
-
"name": "train",
|
93 |
-
"num_bytes": 4681603,
|
94 |
-
"num_examples": 67349,
|
95 |
-
"dataset_name": null
|
96 |
-
},
|
97 |
-
"validation": {
|
98 |
-
"name": "validation",
|
99 |
-
"num_bytes": 106252,
|
100 |
-
"num_examples": 872,
|
101 |
-
"dataset_name": null
|
102 |
-
},
|
103 |
-
"test": {
|
104 |
-
"name": "test",
|
105 |
-
"num_bytes": 216640,
|
106 |
-
"num_examples": 1821,
|
107 |
-
"dataset_name": null
|
108 |
-
}
|
109 |
-
},
|
110 |
-
"download_size": 3331080,
|
111 |
-
"dataset_size": 5004495,
|
112 |
-
"size_in_bytes": 8335575
|
113 |
-
},
|
114 |
-
"mrpc": {
|
115 |
-
"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
|
116 |
-
"citation": "@inproceedings{dolan2005automatically,\n title={Automatically constructing a corpus of sentential paraphrases},\n author={Dolan, William B and Brockett, Chris},\n booktitle={Proceedings of the Third International Workshop on Paraphrasing (IWP2005)},\n year={2005}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n",
|
117 |
-
"homepage": "https://www.microsoft.com/en-us/download/details.aspx?id=52398",
|
118 |
-
"license": "",
|
119 |
-
"features": {
|
120 |
-
"sentence1": {
|
121 |
-
"dtype": "string",
|
122 |
-
"_type": "Value"
|
123 |
-
},
|
124 |
-
"sentence2": {
|
125 |
-
"dtype": "string",
|
126 |
-
"_type": "Value"
|
127 |
-
},
|
128 |
-
"label": {
|
129 |
-
"names": [
|
130 |
-
"not_equivalent",
|
131 |
-
"equivalent"
|
132 |
-
],
|
133 |
-
"_type": "ClassLabel"
|
134 |
-
},
|
135 |
-
"idx": {
|
136 |
-
"dtype": "int32",
|
137 |
-
"_type": "Value"
|
138 |
-
}
|
139 |
-
},
|
140 |
-
"builder_name": "glue",
|
141 |
-
"dataset_name": "glue",
|
142 |
-
"config_name": "mrpc",
|
143 |
-
"version": {
|
144 |
-
"version_str": "1.0.0",
|
145 |
-
"description": "",
|
146 |
-
"major": 1,
|
147 |
-
"minor": 0,
|
148 |
-
"patch": 0
|
149 |
-
},
|
150 |
-
"splits": {
|
151 |
-
"train": {
|
152 |
-
"name": "train",
|
153 |
-
"num_bytes": 943843,
|
154 |
-
"num_examples": 3668,
|
155 |
-
"dataset_name": null
|
156 |
-
},
|
157 |
-
"validation": {
|
158 |
-
"name": "validation",
|
159 |
-
"num_bytes": 105879,
|
160 |
-
"num_examples": 408,
|
161 |
-
"dataset_name": null
|
162 |
-
},
|
163 |
-
"test": {
|
164 |
-
"name": "test",
|
165 |
-
"num_bytes": 442410,
|
166 |
-
"num_examples": 1725,
|
167 |
-
"dataset_name": null
|
168 |
-
}
|
169 |
-
},
|
170 |
-
"download_size": 1033400,
|
171 |
-
"dataset_size": 1492132,
|
172 |
-
"size_in_bytes": 2525532
|
173 |
-
},
|
174 |
-
"qqp": {
|
175 |
-
"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
|
176 |
-
"citation": "@online{WinNT,\n author = {Iyer, Shankar and Dandekar, Nikhil and Csernai, Kornel},\n title = {First Quora Dataset Release: Question Pairs},\n year = {2017},\n url = {https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs},\n urldate = {2019-04-03}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n",
|
177 |
-
"homepage": "https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs",
|
178 |
-
"license": "",
|
179 |
-
"features": {
|
180 |
-
"question1": {
|
181 |
-
"dtype": "string",
|
182 |
-
"_type": "Value"
|
183 |
-
},
|
184 |
-
"question2": {
|
185 |
-
"dtype": "string",
|
186 |
-
"_type": "Value"
|
187 |
-
},
|
188 |
-
"label": {
|
189 |
-
"names": [
|
190 |
-
"not_duplicate",
|
191 |
-
"duplicate"
|
192 |
-
],
|
193 |
-
"_type": "ClassLabel"
|
194 |
-
},
|
195 |
-
"idx": {
|
196 |
-
"dtype": "int32",
|
197 |
-
"_type": "Value"
|
198 |
-
}
|
199 |
-
},
|
200 |
-
"builder_name": "glue",
|
201 |
-
"dataset_name": "glue",
|
202 |
-
"config_name": "qqp",
|
203 |
-
"version": {
|
204 |
-
"version_str": "1.0.0",
|
205 |
-
"description": "",
|
206 |
-
"major": 1,
|
207 |
-
"minor": 0,
|
208 |
-
"patch": 0
|
209 |
-
},
|
210 |
-
"splits": {
|
211 |
-
"train": {
|
212 |
-
"name": "train",
|
213 |
-
"num_bytes": 50900820,
|
214 |
-
"num_examples": 363846,
|
215 |
-
"dataset_name": null
|
216 |
-
},
|
217 |
-
"validation": {
|
218 |
-
"name": "validation",
|
219 |
-
"num_bytes": 5653754,
|
220 |
-
"num_examples": 40430,
|
221 |
-
"dataset_name": null
|
222 |
-
},
|
223 |
-
"test": {
|
224 |
-
"name": "test",
|
225 |
-
"num_bytes": 55171111,
|
226 |
-
"num_examples": 390965,
|
227 |
-
"dataset_name": null
|
228 |
-
}
|
229 |
-
},
|
230 |
-
"download_size": 73982265,
|
231 |
-
"dataset_size": 111725685,
|
232 |
-
"size_in_bytes": 185707950
|
233 |
-
},
|
234 |
-
"stsb": {
|
235 |
-
"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
|
236 |
-
"citation": "@article{cer2017semeval,\n title={Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation},\n author={Cer, Daniel and Diab, Mona and Agirre, Eneko and Lopez-Gazpio, Inigo and Specia, Lucia},\n journal={arXiv preprint arXiv:1708.00055},\n year={2017}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n",
|
237 |
-
"homepage": "http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark",
|
238 |
-
"license": "",
|
239 |
-
"features": {
|
240 |
-
"sentence1": {
|
241 |
-
"dtype": "string",
|
242 |
-
"_type": "Value"
|
243 |
-
},
|
244 |
-
"sentence2": {
|
245 |
-
"dtype": "string",
|
246 |
-
"_type": "Value"
|
247 |
-
},
|
248 |
-
"label": {
|
249 |
-
"dtype": "float32",
|
250 |
-
"_type": "Value"
|
251 |
-
},
|
252 |
-
"idx": {
|
253 |
-
"dtype": "int32",
|
254 |
-
"_type": "Value"
|
255 |
-
}
|
256 |
-
},
|
257 |
-
"builder_name": "glue",
|
258 |
-
"dataset_name": "glue",
|
259 |
-
"config_name": "stsb",
|
260 |
-
"version": {
|
261 |
-
"version_str": "1.0.0",
|
262 |
-
"description": "",
|
263 |
-
"major": 1,
|
264 |
-
"minor": 0,
|
265 |
-
"patch": 0
|
266 |
-
},
|
267 |
-
"splits": {
|
268 |
-
"train": {
|
269 |
-
"name": "train",
|
270 |
-
"num_bytes": 754791,
|
271 |
-
"num_examples": 5749,
|
272 |
-
"dataset_name": null
|
273 |
-
},
|
274 |
-
"validation": {
|
275 |
-
"name": "validation",
|
276 |
-
"num_bytes": 216064,
|
277 |
-
"num_examples": 1500,
|
278 |
-
"dataset_name": null
|
279 |
-
},
|
280 |
-
"test": {
|
281 |
-
"name": "test",
|
282 |
-
"num_bytes": 169974,
|
283 |
-
"num_examples": 1379,
|
284 |
-
"dataset_name": null
|
285 |
-
}
|
286 |
-
},
|
287 |
-
"download_size": 766983,
|
288 |
-
"dataset_size": 1140829,
|
289 |
-
"size_in_bytes": 1907812
|
290 |
-
},
|
291 |
-
"mnli": {
|
292 |
-
"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
|
293 |
-
"citation": "@InProceedings{N18-1101,\n author = \"Williams, Adina\n and Nangia, Nikita\n and Bowman, Samuel\",\n title = \"A Broad-Coverage Challenge Corpus for\n Sentence Understanding through Inference\",\n booktitle = \"Proceedings of the 2018 Conference of\n the North American Chapter of the\n Association for Computational Linguistics:\n Human Language Technologies, Volume 1 (Long\n Papers)\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n pages = \"1112--1122\",\n location = \"New Orleans, Louisiana\",\n url = \"http://aclweb.org/anthology/N18-1101\"\n}\n@article{bowman2015large,\n title={A large annotated corpus for learning natural language inference},\n author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},\n journal={arXiv preprint arXiv:1508.05326},\n year={2015}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n",
|
294 |
-
"homepage": "http://www.nyu.edu/projects/bowman/multinli/",
|
295 |
-
"license": "",
|
296 |
-
"features": {
|
297 |
-
"premise": {
|
298 |
-
"dtype": "string",
|
299 |
-
"_type": "Value"
|
300 |
-
},
|
301 |
-
"hypothesis": {
|
302 |
-
"dtype": "string",
|
303 |
-
"_type": "Value"
|
304 |
-
},
|
305 |
-
"label": {
|
306 |
-
"names": [
|
307 |
-
"entailment",
|
308 |
-
"neutral",
|
309 |
-
"contradiction"
|
310 |
-
],
|
311 |
-
"_type": "ClassLabel"
|
312 |
-
},
|
313 |
-
"idx": {
|
314 |
-
"dtype": "int32",
|
315 |
-
"_type": "Value"
|
316 |
-
}
|
317 |
-
},
|
318 |
-
"builder_name": "glue",
|
319 |
-
"dataset_name": "glue",
|
320 |
-
"config_name": "mnli",
|
321 |
-
"version": {
|
322 |
-
"version_str": "1.0.0",
|
323 |
-
"description": "",
|
324 |
-
"major": 1,
|
325 |
-
"minor": 0,
|
326 |
-
"patch": 0
|
327 |
-
},
|
328 |
-
"splits": {
|
329 |
-
"train": {
|
330 |
-
"name": "train",
|
331 |
-
"num_bytes": 74619646,
|
332 |
-
"num_examples": 392702,
|
333 |
-
"dataset_name": null
|
334 |
-
},
|
335 |
-
"validation_matched": {
|
336 |
-
"name": "validation_matched",
|
337 |
-
"num_bytes": 1833783,
|
338 |
-
"num_examples": 9815,
|
339 |
-
"dataset_name": null
|
340 |
-
},
|
341 |
-
"validation_mismatched": {
|
342 |
-
"name": "validation_mismatched",
|
343 |
-
"num_bytes": 1949231,
|
344 |
-
"num_examples": 9832,
|
345 |
-
"dataset_name": null
|
346 |
-
},
|
347 |
-
"test_matched": {
|
348 |
-
"name": "test_matched",
|
349 |
-
"num_bytes": 1848654,
|
350 |
-
"num_examples": 9796,
|
351 |
-
"dataset_name": null
|
352 |
-
},
|
353 |
-
"test_mismatched": {
|
354 |
-
"name": "test_mismatched",
|
355 |
-
"num_bytes": 1950703,
|
356 |
-
"num_examples": 9847,
|
357 |
-
"dataset_name": null
|
358 |
-
}
|
359 |
-
},
|
360 |
-
"download_size": 57168425,
|
361 |
-
"dataset_size": 82202017,
|
362 |
-
"size_in_bytes": 139370442
|
363 |
-
},
|
364 |
-
"mnli_mismatched": {
|
365 |
-
"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
|
366 |
-
"citation": "@InProceedings{N18-1101,\n author = \"Williams, Adina\n and Nangia, Nikita\n and Bowman, Samuel\",\n title = \"A Broad-Coverage Challenge Corpus for\n Sentence Understanding through Inference\",\n booktitle = \"Proceedings of the 2018 Conference of\n the North American Chapter of the\n Association for Computational Linguistics:\n Human Language Technologies, Volume 1 (Long\n Papers)\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n pages = \"1112--1122\",\n location = \"New Orleans, Louisiana\",\n url = \"http://aclweb.org/anthology/N18-1101\"\n}\n@article{bowman2015large,\n title={A large annotated corpus for learning natural language inference},\n author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},\n journal={arXiv preprint arXiv:1508.05326},\n year={2015}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n",
|
367 |
-
"homepage": "http://www.nyu.edu/projects/bowman/multinli/",
|
368 |
-
"license": "",
|
369 |
-
"features": {
|
370 |
-
"premise": {
|
371 |
-
"dtype": "string",
|
372 |
-
"_type": "Value"
|
373 |
-
},
|
374 |
-
"hypothesis": {
|
375 |
-
"dtype": "string",
|
376 |
-
"_type": "Value"
|
377 |
-
},
|
378 |
-
"label": {
|
379 |
-
"names": [
|
380 |
-
"entailment",
|
381 |
-
"neutral",
|
382 |
-
"contradiction"
|
383 |
-
],
|
384 |
-
"_type": "ClassLabel"
|
385 |
-
},
|
386 |
-
"idx": {
|
387 |
-
"dtype": "int32",
|
388 |
-
"_type": "Value"
|
389 |
-
}
|
390 |
-
},
|
391 |
-
"builder_name": "glue",
|
392 |
-
"dataset_name": "glue",
|
393 |
-
"config_name": "mnli_mismatched",
|
394 |
-
"version": {
|
395 |
-
"version_str": "1.0.0",
|
396 |
-
"description": "",
|
397 |
-
"major": 1,
|
398 |
-
"minor": 0,
|
399 |
-
"patch": 0
|
400 |
-
},
|
401 |
-
"splits": {
|
402 |
-
"validation": {
|
403 |
-
"name": "validation",
|
404 |
-
"num_bytes": 1949231,
|
405 |
-
"num_examples": 9832,
|
406 |
-
"dataset_name": null
|
407 |
-
},
|
408 |
-
"test": {
|
409 |
-
"name": "test",
|
410 |
-
"num_bytes": 1950703,
|
411 |
-
"num_examples": 9847,
|
412 |
-
"dataset_name": null
|
413 |
-
}
|
414 |
-
},
|
415 |
-
"download_size": 2509009,
|
416 |
-
"dataset_size": 3899934,
|
417 |
-
"size_in_bytes": 6408943
|
418 |
-
},
|
419 |
-
"mnli_matched": {
|
420 |
-
"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
|
421 |
-
"citation": "@InProceedings{N18-1101,\n author = \"Williams, Adina\n and Nangia, Nikita\n and Bowman, Samuel\",\n title = \"A Broad-Coverage Challenge Corpus for\n Sentence Understanding through Inference\",\n booktitle = \"Proceedings of the 2018 Conference of\n the North American Chapter of the\n Association for Computational Linguistics:\n Human Language Technologies, Volume 1 (Long\n Papers)\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n pages = \"1112--1122\",\n location = \"New Orleans, Louisiana\",\n url = \"http://aclweb.org/anthology/N18-1101\"\n}\n@article{bowman2015large,\n title={A large annotated corpus for learning natural language inference},\n author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},\n journal={arXiv preprint arXiv:1508.05326},\n year={2015}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n",
|
422 |
-
"homepage": "http://www.nyu.edu/projects/bowman/multinli/",
|
423 |
-
"license": "",
|
424 |
-
"features": {
|
425 |
-
"premise": {
|
426 |
-
"dtype": "string",
|
427 |
-
"_type": "Value"
|
428 |
-
},
|
429 |
-
"hypothesis": {
|
430 |
-
"dtype": "string",
|
431 |
-
"_type": "Value"
|
432 |
-
},
|
433 |
-
"label": {
|
434 |
-
"names": [
|
435 |
-
"entailment",
|
436 |
-
"neutral",
|
437 |
-
"contradiction"
|
438 |
-
],
|
439 |
-
"_type": "ClassLabel"
|
440 |
-
},
|
441 |
-
"idx": {
|
442 |
-
"dtype": "int32",
|
443 |
-
"_type": "Value"
|
444 |
-
}
|
445 |
-
},
|
446 |
-
"builder_name": "glue",
|
447 |
-
"dataset_name": "glue",
|
448 |
-
"config_name": "mnli_matched",
|
449 |
-
"version": {
|
450 |
-
"version_str": "1.0.0",
|
451 |
-
"description": "",
|
452 |
-
"major": 1,
|
453 |
-
"minor": 0,
|
454 |
-
"patch": 0
|
455 |
-
},
|
456 |
-
"splits": {
|
457 |
-
"validation": {
|
458 |
-
"name": "validation",
|
459 |
-
"num_bytes": 1833783,
|
460 |
-
"num_examples": 9815,
|
461 |
-
"dataset_name": null
|
462 |
-
},
|
463 |
-
"test": {
|
464 |
-
"name": "test",
|
465 |
-
"num_bytes": 1848654,
|
466 |
-
"num_examples": 9796,
|
467 |
-
"dataset_name": null
|
468 |
-
}
|
469 |
-
},
|
470 |
-
"download_size": 2435055,
|
471 |
-
"dataset_size": 3682437,
|
472 |
-
"size_in_bytes": 6117492
|
473 |
-
},
|
474 |
-
"qnli": {
|
475 |
-
"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
|
476 |
-
"citation": "@article{rajpurkar2016squad,\n title={Squad: 100,000+ questions for machine comprehension of text},\n author={Rajpurkar, Pranav and Zhang, Jian and Lopyrev, Konstantin and Liang, Percy},\n journal={arXiv preprint arXiv:1606.05250},\n year={2016}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n",
|
477 |
-
"homepage": "https://rajpurkar.github.io/SQuAD-explorer/",
|
478 |
-
"license": "",
|
479 |
-
"features": {
|
480 |
-
"question": {
|
481 |
-
"dtype": "string",
|
482 |
-
"_type": "Value"
|
483 |
-
},
|
484 |
-
"sentence": {
|
485 |
-
"dtype": "string",
|
486 |
-
"_type": "Value"
|
487 |
-
},
|
488 |
-
"label": {
|
489 |
-
"names": [
|
490 |
-
"entailment",
|
491 |
-
"not_entailment"
|
492 |
-
],
|
493 |
-
"_type": "ClassLabel"
|
494 |
-
},
|
495 |
-
"idx": {
|
496 |
-
"dtype": "int32",
|
497 |
-
"_type": "Value"
|
498 |
-
}
|
499 |
-
},
|
500 |
-
"builder_name": "glue",
|
501 |
-
"dataset_name": "glue",
|
502 |
-
"config_name": "qnli",
|
503 |
-
"version": {
|
504 |
-
"version_str": "1.0.0",
|
505 |
-
"description": "",
|
506 |
-
"major": 1,
|
507 |
-
"minor": 0,
|
508 |
-
"patch": 0
|
509 |
-
},
|
510 |
-
"splits": {
|
511 |
-
"train": {
|
512 |
-
"name": "train",
|
513 |
-
"num_bytes": 25612443,
|
514 |
-
"num_examples": 104743,
|
515 |
-
"dataset_name": null
|
516 |
-
},
|
517 |
-
"validation": {
|
518 |
-
"name": "validation",
|
519 |
-
"num_bytes": 1368304,
|
520 |
-
"num_examples": 5463,
|
521 |
-
"dataset_name": null
|
522 |
-
},
|
523 |
-
"test": {
|
524 |
-
"name": "test",
|
525 |
-
"num_bytes": 1373093,
|
526 |
-
"num_examples": 5463,
|
527 |
-
"dataset_name": null
|
528 |
-
}
|
529 |
-
},
|
530 |
-
"download_size": 19278324,
|
531 |
-
"dataset_size": 28353840,
|
532 |
-
"size_in_bytes": 47632164
|
533 |
-
},
|
534 |
-
"rte": {
|
535 |
-
"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
|
536 |
-
"citation": "@inproceedings{dagan2005pascal,\n title={The PASCAL recognising textual entailment challenge},\n author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo},\n booktitle={Machine Learning Challenges Workshop},\n pages={177--190},\n year={2005},\n organization={Springer}\n}\n@inproceedings{bar2006second,\n title={The second pascal recognising textual entailment challenge},\n author={Bar-Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan},\n booktitle={Proceedings of the second PASCAL challenges workshop on recognising textual entailment},\n volume={6},\n number={1},\n pages={6--4},\n year={2006},\n organization={Venice}\n}\n@inproceedings{giampiccolo2007third,\n title={The third pascal recognizing textual entailment challenge},\n author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill},\n booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing},\n pages={1--9},\n year={2007},\n organization={Association for Computational Linguistics}\n}\n@inproceedings{bentivogli2009fifth,\n title={The Fifth PASCAL Recognizing Textual Entailment Challenge.},\n author={Bentivogli, Luisa and Clark, Peter and Dagan, Ido and Giampiccolo, Danilo},\n booktitle={TAC},\n year={2009}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n",
|
537 |
-
"homepage": "https://aclweb.org/aclwiki/Recognizing_Textual_Entailment",
|
538 |
-
"license": "",
|
539 |
-
"features": {
|
540 |
-
"sentence1": {
|
541 |
-
"dtype": "string",
|
542 |
-
"_type": "Value"
|
543 |
-
},
|
544 |
-
"sentence2": {
|
545 |
-
"dtype": "string",
|
546 |
-
"_type": "Value"
|
547 |
-
},
|
548 |
-
"label": {
|
549 |
-
"names": [
|
550 |
-
"entailment",
|
551 |
-
"not_entailment"
|
552 |
-
],
|
553 |
-
"_type": "ClassLabel"
|
554 |
-
},
|
555 |
-
"idx": {
|
556 |
-
"dtype": "int32",
|
557 |
-
"_type": "Value"
|
558 |
-
}
|
559 |
-
},
|
560 |
-
"builder_name": "glue",
|
561 |
-
"dataset_name": "glue",
|
562 |
-
"config_name": "rte",
|
563 |
-
"version": {
|
564 |
-
"version_str": "1.0.0",
|
565 |
-
"description": "",
|
566 |
-
"major": 1,
|
567 |
-
"minor": 0,
|
568 |
-
"patch": 0
|
569 |
-
},
|
570 |
-
"splits": {
|
571 |
-
"train": {
|
572 |
-
"name": "train",
|
573 |
-
"num_bytes": 847320,
|
574 |
-
"num_examples": 2490,
|
575 |
-
"dataset_name": null
|
576 |
-
},
|
577 |
-
"validation": {
|
578 |
-
"name": "validation",
|
579 |
-
"num_bytes": 90728,
|
580 |
-
"num_examples": 277,
|
581 |
-
"dataset_name": null
|
582 |
-
},
|
583 |
-
"test": {
|
584 |
-
"name": "test",
|
585 |
-
"num_bytes": 974053,
|
586 |
-
"num_examples": 3000,
|
587 |
-
"dataset_name": null
|
588 |
-
}
|
589 |
-
},
|
590 |
-
"download_size": 1274409,
|
591 |
-
"dataset_size": 1912101,
|
592 |
-
"size_in_bytes": 3186510
|
593 |
-
},
|
594 |
-
"wnli": {
|
595 |
-
"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
|
596 |
-
"citation": "@inproceedings{levesque2012winograd,\n title={The winograd schema challenge},\n author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},\n booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},\n year={2012}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n",
|
597 |
-
"homepage": "https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html",
|
598 |
-
"license": "",
|
599 |
-
"features": {
|
600 |
-
"sentence1": {
|
601 |
-
"dtype": "string",
|
602 |
-
"_type": "Value"
|
603 |
-
},
|
604 |
-
"sentence2": {
|
605 |
-
"dtype": "string",
|
606 |
-
"_type": "Value"
|
607 |
-
},
|
608 |
-
"label": {
|
609 |
-
"names": [
|
610 |
-
"not_entailment",
|
611 |
-
"entailment"
|
612 |
-
],
|
613 |
-
"_type": "ClassLabel"
|
614 |
-
},
|
615 |
-
"idx": {
|
616 |
-
"dtype": "int32",
|
617 |
-
"_type": "Value"
|
618 |
-
}
|
619 |
-
},
|
620 |
-
"builder_name": "glue",
|
621 |
-
"dataset_name": "glue",
|
622 |
-
"config_name": "wnli",
|
623 |
-
"version": {
|
624 |
-
"version_str": "1.0.0",
|
625 |
-
"description": "",
|
626 |
-
"major": 1,
|
627 |
-
"minor": 0,
|
628 |
-
"patch": 0
|
629 |
-
},
|
630 |
-
"splits": {
|
631 |
-
"train": {
|
632 |
-
"name": "train",
|
633 |
-
"num_bytes": 107109,
|
634 |
-
"num_examples": 635,
|
635 |
-
"dataset_name": null
|
636 |
-
},
|
637 |
-
"validation": {
|
638 |
-
"name": "validation",
|
639 |
-
"num_bytes": 12162,
|
640 |
-
"num_examples": 71,
|
641 |
-
"dataset_name": null
|
642 |
-
},
|
643 |
-
"test": {
|
644 |
-
"name": "test",
|
645 |
-
"num_bytes": 37889,
|
646 |
-
"num_examples": 146,
|
647 |
-
"dataset_name": null
|
648 |
-
}
|
649 |
-
},
|
650 |
-
"download_size": 63522,
|
651 |
-
"dataset_size": 157160,
|
652 |
-
"size_in_bytes": 220682
|
653 |
-
},
|
654 |
-
"ax": {
|
655 |
-
"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n",
|
656 |
-
"citation": "\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n",
|
657 |
-
"homepage": "https://gluebenchmark.com/diagnostics",
|
658 |
-
"license": "",
|
659 |
-
"features": {
|
660 |
-
"premise": {
|
661 |
-
"dtype": "string",
|
662 |
-
"_type": "Value"
|
663 |
-
},
|
664 |
-
"hypothesis": {
|
665 |
-
"dtype": "string",
|
666 |
-
"_type": "Value"
|
667 |
-
},
|
668 |
-
"label": {
|
669 |
-
"names": [
|
670 |
-
"entailment",
|
671 |
-
"neutral",
|
672 |
-
"contradiction"
|
673 |
-
],
|
674 |
-
"_type": "ClassLabel"
|
675 |
-
},
|
676 |
-
"idx": {
|
677 |
-
"dtype": "int32",
|
678 |
-
"_type": "Value"
|
679 |
-
}
|
680 |
-
},
|
681 |
-
"builder_name": "glue",
|
682 |
-
"dataset_name": "glue",
|
683 |
-
"config_name": "ax",
|
684 |
-
"version": {
|
685 |
-
"version_str": "1.0.0",
|
686 |
-
"description": "",
|
687 |
-
"major": 1,
|
688 |
-
"minor": 0,
|
689 |
-
"patch": 0
|
690 |
-
},
|
691 |
-
"splits": {
|
692 |
-
"test": {
|
693 |
-
"name": "test",
|
694 |
-
"num_bytes": 237694,
|
695 |
-
"num_examples": 1104,
|
696 |
-
"dataset_name": null
|
697 |
-
}
|
698 |
-
},
|
699 |
-
"download_size": 80767,
|
700 |
-
"dataset_size": 237694,
|
701 |
-
"size_in_bytes": 318461
|
702 |
-
}
|
703 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|