metadata
dict
text
stringlengths
60
3.49M
{ "source": "1geraldine1/project_landmark_image_recognition", "score": 2 }
#### File: project_landmark_image_recognition/landmark_train_model/Image_model_train.py ```python import os os.environ["CUDA_DEVICE_ORDER"] = 'PCI_BUS_ID' os.environ["CUDA_VISIBLE_DEVICES"] = "0" from pathlib import Path import tensorflow as tf from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau from matplotlib import pyplot as plt import numpy as np from tensorflow.python.keras.preprocessing.image_dataset import image_dataset_from_directory from sklearn.model_selection import train_test_split import tensorflow_datasets as tfds from glob import glob BASE_DIR = Path(__file__).resolve().parent # 4class = landmark, 72class = image_collected # data_dir = os.path.join(BASE_DIR, "landmark") data_dir = os.path.join(BASE_DIR, "image_collected") data_cropped_dir = os.path.join(BASE_DIR, "cropped_landmark") test_data_dir = os.path.join(BASE_DIR, "Test") json_dir = os.path.join(BASE_DIR, "landmark_json") categories = os.listdir(data_dir) num_classes = len(categories) gpus = tf.config.list_physical_devices('GPU') if gpus: try: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(gpus), "Physical GPUs, ", len(logical_gpus), "Logical GPUs") except RuntimeError as e: print(e) strategy = tf.distribute.MirroredStrategy() # tf.profiler.experimental.start('./log') def model_cnn(): img_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest', validation_split=0.2) feature_shape = (None, 128, 128, 3) label_shape = (None,) epoch = 50 train_ds = tf.data.Dataset.from_generator( lambda: img_gen.flow_from_directory( data_dir, classes=categories, class_mode='sparse', subset='training', seed=123, target_size=(128, 128), batch_size=32 ), output_signature=( tf.TensorSpec(shape=tf.TensorShape(feature_shape), dtype=tf.float16), tf.TensorSpec(shape=tf.TensorShape(label_shape), dtype=tf.float16) ) ) val_ds = tf.data.Dataset.from_generator( lambda: img_gen.flow_from_directory( data_dir, classes=categories, class_mode='sparse', subset='validation', seed=123, target_size=(128, 128), batch_size=32 ), output_signature=( tf.TensorSpec(shape=tf.TensorShape(feature_shape), dtype=tf.float16), tf.TensorSpec(shape=tf.TensorShape(label_shape), dtype=tf.float16) ) ) train_ds = train_ds.prefetch(100 * 32) val_ds = val_ds.prefetch(100 * 32) with tf.device('gpu:0'): model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32, (3, 3)), tf.keras.layers.PReLU(), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Conv2D(32, (3, 3)), tf.keras.layers.PReLU(), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Conv2D(32, (3, 3)), tf.keras.layers.PReLU(), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(64), tf.keras.layers.PReLU(), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(num_classes), tf.keras.layers.Softmax() ]) model.compile( optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) history = model.fit_generator( train_ds, epochs=epoch, # steps_per_epoch = train개수 / batch_size => 10259/32 => 올림하여 321 steps_per_epoch=321, validation_data=val_ds, # validation_steps = valid개수 / batch_size => 2563/32 => 올림하여 81 validation_steps=81 ) model.save('model01_noncrop.h5') plot_model(history, epoch) def model_efficientnet(): image_size = 600 batch_size = 16 ds = image_dataset_from_directory(data_dir, label_mode='categorical', class_names=categories, shuffle=True, batch_size=batch_size, image_size=(image_size, image_size) ) train_size = int(0.7 * len(list(ds))) test_size = int(0.15 * len(list(ds))) ds = ds.shuffle(buffer_size=len(list(ds))) train_ds = ds.take(train_size) test_ds = ds.skip(train_size) val_ds = test_ds.skip(test_size) test_ds = test_ds.take(test_size) AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) test_ds = test_ds.cache().prefetch(buffer_size=AUTOTUNE) data_augmentation = tf.keras.Sequential([ tf.keras.layers.experimental.preprocessing.RandomFlip('horizontal'), tf.keras.layers.experimental.preprocessing.RandomRotation(0.2), tf.keras.layers.experimental.preprocessing.RandomTranslation(0.2, 0.2, fill_mode='constant') ], name='data_augmentation') preprocess_input = tf.keras.applications.efficientnet.preprocess_input with strategy.scope(): inputs = tf.keras.layers.Input(shape=(image_size, image_size, 3)) x = preprocess_input(inputs) x = data_augmentation(x) IMG_SHAPE = (image_size, image_size) + (3,) base_model = tf.keras.applications.EfficientNetB7(input_shape=IMG_SHAPE, input_tensor=x, include_top=False, weights='imagenet') base_model.trainable = False x = tf.keras.layers.GlobalAveragePooling2D()(base_model.output) x = tf.keras.layers.BatchNormalization()(x) top_dropout_rate = 0.2 x = tf.keras.layers.Dropout(top_dropout_rate)(x) outputs = tf.keras.layers.Dense(num_classes, activation='softmax')(x) model = tf.keras.Model(inputs, outputs) optimizer = tf.keras.optimizers.Adam(learning_rate=1e-2) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) model.summary() with strategy.scope(): loss0, accuracy0 = model.evaluate(val_ds) print('initial loss : {:.2f}'.format(loss0)) print('initial accuracy: {:.1f}%'.format(accuracy0 * 100)) initial_epochs = 50 filepath = './checkpoint/full_data_v3_initial.h5' checkpoint = ModelCheckpoint(filepath=filepath, mode='max', monitor='val_accuracy', verbose=1, save_best_only=True) callbacks_list = [checkpoint] tf.debugging.set_log_device_placement(True) with strategy.scope(): history = model.fit(train_ds, epochs=initial_epochs, validation_data=val_ds, callbacks=callbacks_list) # model performance check acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] plt.figure(figsize=(8, 8)) plt.subplot(2, 1, 1) plt.plot(acc, label='Training Accuracy') plt.plot(val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.ylabel('Accuracy') plt.ylim([min(plt.ylim()), 1]) plt.title('Training and Validation Accuracy') plt.subplot(2, 1, 2) plt.plot(loss, label='Training Loss') plt.plot(val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.ylabel('Cross Entropy') plt.ylim([0, 1.0]) plt.title('Training and Validation Loss') plt.xlabel('epoch') # plt.show() # fine tuning - unfreeze model for layer in model.layers[-50:]: if not isinstance(layer, tf.keras.layers.BatchNormalization): layer.trainable = True optimizer = tf.keras.optimizers.Adam(learning_rate=1e-4) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) # fine tuning - training fine_tune_epochs = 50 total_epochs = initial_epochs + fine_tune_epochs filepath = './checkpoint/finetune_v3.h5' checkpoint = ModelCheckpoint(filepath=filepath, mode='max', monitor='val_accuracy', verbose=1, save_best_only=True) callbacks_list = [checkpoint] history_fine = model.fit(train_ds, epochs=fine_tune_epochs, validation_data=val_ds, callbacks=callbacks_list) # model performance check2 acc += history_fine.history['accuracy'] val_acc += history_fine.history['val_accuracy'] loss += history_fine.history['loss'] val_loss += history_fine.history['val_loss'] plt.figure(figsize=(8, 8)) plt.subplot(2, 1, 1) plt.plot(acc, label='Training Accuracy') plt.plot(val_acc, label='Validation Accuracy') plt.ylim([0.5, 1]) plt.plot([initial_epochs - 1, initial_epochs - 1], plt.ylim(), label='Start Fine Tuning') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(2, 1, 2) plt.plot(loss, label='Training Loss') plt.plot(val_loss, label='Validation Loss') plt.ylim([0, 1.0]) plt.plot([initial_epochs - 1, initial_epochs - 1], plt.ylim(), label='Start Fine Tuning') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.xlabel('epoch') # plt.show() # model.load_weights('./checkpoint/full_data_finetune.h5') # model test loss, accuracy = model.evaluate(test_ds) print('Test accuracy :', accuracy) model.save('efficientnetB7_full_data_train_done_v3') import pickle # Define the save names base_filepath = ''.join('./trained_model/efficientnetB7_full_data_trained_v3') json_filepath = base_filepath + '.json' weights_filepath = base_filepath + '.h5' pkl_filepath = base_filepath + '.pkl' # save model and weights model_json = model.to_json() with open(json_filepath, "w") as json_file: json_file.write(model_json) model.save_weights(weights_filepath) # save history with open(pkl_filepath, 'wb') as history_file: pickle.dump(history.history, history_file) # pickle.dump(history_file) def plot_model(history, epoch): acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epoch) plt.figure(figsize=(8, 8)) plt.subplot(1, 2, 1) plt.plot(epochs_range, acc, label='Training Accuracy') plt.plot(epochs_range, val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, label='Training Loss') plt.plot(epochs_range, val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show() def model_efficientnet_reduce_time(): files = tf.data.Dataset.list_files(str(data_dir + '\\*\\*'), shuffle=False) num_files = len([file for file in glob(str(data_dir + '\\*\\*'))]) print(num_files) class_names = np.array(sorted(categories)) print(class_names) image_size = 600 batch_size = 16 preprocess_input = tf.keras.applications.efficientnet.preprocess_input def get_label(file_path): parts = tf.strings.split(file_path, os.path.sep) one_hot = parts[-2] == class_names return tf.argmax(tf.cast(one_hot, tf.int32)) def decode_img(img): img = tf.image.decode_jpeg(img, channels=3) return tf.image.resize(img, [image_size, image_size]) def process_TL(file_path): label = get_label(file_path) img = tf.io.read_file(file_path) img = decode_img(img) img = preprocess_input(img) return img, label AUTOTUNE = tf.data.AUTOTUNE ds = files.interleave(lambda x: tf.data.Dataset.list_files(str(data_dir + '\\*\\*'), shuffle=True), cycle_length=4).map(process_TL, num_parallel_calls=AUTOTUNE) train_size = int(0.8 * num_files) val_size = int(0.2 * num_files) train_ds = ds.take(train_size) val_ds = ds.skip(train_size) train_ds = train_ds.repeat().batch(batch_size).prefetch(AUTOTUNE) val_ds = val_ds.batch(batch_size).prefetch(AUTOTUNE) data_augmentation = tf.keras.Sequential([ tf.keras.layers.experimental.preprocessing.RandomFlip('horizontal'), tf.keras.layers.experimental.preprocessing.RandomRotation(0.2), tf.keras.layers.experimental.preprocessing.RandomTranslation(0.2, 0.2, fill_mode='constant') ], name='data_augmentation') def create_model(): input_layer = tf.keras.layers.Input(shape=(image_size, image_size, 3)) x = data_augmentation(input_layer) base_model = tf.keras.applications.EfficientNetB7(input_tensor=x, include_top=False, weights='imagenet') base_model.trainable = False x = tf.keras.layers.GlobalAveragePooling2D()(base_model.output) x = tf.keras.layers.BatchNormalization()(x) top_dropout_rate = 0.2 x = tf.keras.layers.Dropout(top_dropout_rate)(x) outputs = tf.keras.layers.Dense(num_classes, activation='softmax')(x) model = tf.keras.Model(input_layer, outputs) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model model = create_model() model.summary() filepath = './checkpoint/full_data_v3_initial.h5' checkpoint = ModelCheckpoint(filepath=filepath, mode='max', monitor='val_accuracy', verbose=1, save_best_only=True, save_weights_only=False) class MyThresholdCallback(tf.keras.callbacks.Callback): def __init__(self, threshold): super(MyThresholdCallback, self).__init__() self.threshold = threshold def on_epoch_end(self, epoch, logs=None): val_acc = logs["val_accuracy"] if val_acc >= self.threshold: self.model.stop_training = True my_callback = MyThresholdCallback(threshold=0.99) history = model.fit(train_ds, steps_per_epoch=int(train_size / batch_size), validation_data=val_ds, validation_steps=int(val_size / batch_size), callbacks=[my_callback], epochs=50) model_efficientnet() ``` #### File: project_landmark_image_recognition/landmark_train_model/Image_To_Dataset.py ```python import os from pathlib import Path import cv2 import numpy as np from sklearn.model_selection import train_test_split import json import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras.models import Sequential import matplotlib.pyplot as plt import tensorboard import Tools BASE_DIR = Path(__file__).resolve().parent data_dir = os.path.join(BASE_DIR, "landmark") json_dir = os.path.join(BASE_DIR, "landmark_json") cropped_data_dir = os.path.join(BASE_DIR,'cropped_landmark') categories = os.listdir(data_dir) num_classes = len(categories) def create_dataset_noncrop_np(): image_size = 128 X = [] Y = [] for idx, category in enumerate(categories): label = [0 for i in range(num_classes)] label[idx] = 1 category_dir = os.path.join(data_dir, category) for top, dir, f in os.walk(category_dir): for filename in f: img_dir = os.path.join(category_dir, filename) print(img_dir) ff = np.fromfile(img_dir, np.uint8) img = cv2.imdecode(ff, cv2.IMREAD_UNCHANGED) img = cv2.resize(img, None, fx=image_size / img.shape[1], fy=image_size / img.shape[0]) X.append(img / 256) Y.append(label) X = np.array(X) Y = np.array(Y) X_train, X_test, Y_train, Y_test = train_test_split(X, Y) xy = (X_train, X_test, Y_train, Y_test) np.savez("./img_data_noncrop.npz", xy) def create_image_data_crop(): for idx, category in enumerate(categories): label = [0 for i in range(num_classes)] label[idx] = 1 category_dir = os.path.join(data_dir, category) category_json_dir = os.path.join(json_dir, category) cropped_save_dir = os.path.join(cropped_data_dir,category) print(cropped_save_dir) for top, dir, f in os.walk(category_dir): for filename in f: # 불러올 디렉터리 지정 img_dir = os.path.join(category_dir, filename) img_json_dir = os.path.join(category_json_dir, filename[:-4] + '.json') # 파일 불러오기 with open(img_json_dir, "r", encoding='UTF-8') as j: img_json = json.load(j) # 대부분의 경우, lx < rx, ly < ry lx, ly, rx, ry = img_json['regions'][0]['boxcorners'] print(img_dir) # 경로에 한글 포함시 우회 ff = np.fromfile(img_dir, np.uint8) img = cv2.imdecode(ff, cv2.IMREAD_UNCHANGED) # 이미지 자르기 crop_img = img[ly:ry, lx:rx] # 예외처리. 가끔 lx > rx, ly > ry인 데이터 존재. # 해당 상황에서 crop_img.shape가 [0,0,3]이 되는 현상 발견 if crop_img.shape[0] == 0: crop_img = img[ry:ly, rx:lx] print(crop_img.shape) # 자른 이미지를 그대로 저장 img = crop_img # 한글경로 인식 extension = os.path.splitext(filename)[1] result, encoded_img = cv2.imencode(extension,img) # 인코드 성공시 파일 경로에 저장 if result: with open(os.path.join(cropped_save_dir,filename), mode="w+b") as f: encoded_img.tofile(f) create_image_data_crop() ```
{ "source": "1gog/clickhouse-mysql-data-reader", "score": 3 }
#### File: clickhouse_mysql/converter/chwriteconverter.py ```python from clickhouse_mysql.converter.converter import Converter import datetime import decimal import logging class CHWriteConverter(Converter): # do not include empty columns into converted row delete_empty_columns = False types_to_convert = [ datetime.timedelta, bytes, decimal.Decimal, # jsonify # object, dict, list, # set - how to migrate MySQL's `set` type and tell it from `json` type - both of which are presented as `dict`? set, ] def __init__(self, column_skip): logging.debug("CHWriteConverter __init__()") super().__init__(column_skip=column_skip) def column(self, column, value): for _type in self.types_to_convert: if isinstance(value, _type): # print("Converting column", column, "of type", type(event.row[column]), event.row[column]) return str(value) # print("Using asis column", column, "of type", type(event.row[column])) return value def row(self, row): """ Convert row :param row: row to convert :return: converted row """ if row is None: return None # init list of columns to delete columns_to_delete = self.column_skip for column in row: # skip columns already prepared for deletion if column in columns_to_delete: continue # convert column row[column] = self.column(column, row[column]) # include empty column to the list of to be deleted columns if (row[column] is None) and self.delete_empty_columns: columns_to_delete.append(column) # delete columns according to the list of columns to delete for column in columns_to_delete: row.pop(column) return row ``` #### File: clickhouse-mysql-data-reader/clickhouse_mysql/daemon.py ```python import os import sys import atexit import signal class Daemon(object): pidfile = None root = '/' def __init__(self, pidfile='/tmp/daemon.pid', root='/'): self.pidfile = pidfile self.root = root def background(self): # first fork # root process waits for the child in order not to have zombies in the system pid = os.fork() if pid > 0: # parent - root process wait for first child and exits os.wait() sys.exit(0) # first child # setup own environment os.chdir(self.root) os.umask(0) os.setsid() # second fork # first-fork child produces the real worker process and exits # first-fork child is being waited now by root process pid = os.fork() if pid > 0: sys.exit(0) # worker signal.signal(signal.SIGINT, self.shutdown) signal.signal(signal.SIGTERM, self.shutdown) # handle pid file atexit.register(self.delete_pidfile) self.write_pidfile() # handle streams self.redirect_std_streams() def shutdown(self): self.delete_pidfile() sys.exit(0) def redirect_std_streams(self): sys.stdout.flush() sys.stderr.flush() stdin = open(os.devnull, 'r') stdout = open(os.devnull, 'a+') stderr = open(os.devnull, 'a+') os.dup2(stdin.fileno(), sys.stdin.fileno()) os.dup2(stdout.fileno(), sys.stdout.fileno()) os.dup2(stderr.fileno(), sys.stderr.fileno()) def write_pidfile(self): pid = str(os.getpid()) with open(self.pidfile, 'w+') as f: f.write(pid) def delete_pidfile(self): try: os.remove(self.pidfile) except: pass def get_pid(self): try: with open(self.pidfile, 'r') as pf: pid = int(pf.read().strip()) except: pid = None return pid def start(self): pid = self.get_pid() if pid: return False self.background() self.run() def stop(self, sig=signal.SIGTERM): pid = self.get_pid() if not pid: return False try: os.kill(pid, sig) except OSError as err: estr = str(err.args) if estr.find("No such process") > 0: self.delete_pidfile() def restart(self): self.stop() self.start() def run(self): pass ```
{ "source": "1grasse/conflowgen", "score": 3 }
#### File: conflowgen/api/container_length_distribution_manager.py ```python from typing import Dict from conflowgen.domain_models.distribution_repositories.container_length_distribution_repository import \ ContainerLengthDistributionRepository from conflowgen.domain_models.data_types.container_length import ContainerLength class ContainerLengthDistributionManager: """ This manager provides the interface to set and get the container length distribution. The default distribution is presented in the section `Container Length Distribution <notebooks/input_distributions.ipynb#Container-Length-Distribution>`_. """ def __init__(self): self.container_length_repository = ContainerLengthDistributionRepository() def get_container_length_distribution(self) -> Dict[ContainerLength, float]: """ Returns: The distribution of container lengths. Each length is assigned its frequency of showing up. """ return self.container_length_repository.get_distribution() def set_container_length_distribution( self, container_lengths: Dict[ContainerLength, float] ) -> None: """ Set the assumed global distribution of container lengths. This is applied to all vehicles that arrive at the terminal. Args: container_lengths: The distribution of container lengths and their corresponding frequency. """ self.container_length_repository.set_distribution(container_lengths) ``` #### File: conflowgen/api/container_storage_requirement_distribution_manager.py ```python from typing import Dict from conflowgen.domain_models.data_types.storage_requirement import StorageRequirement from conflowgen.domain_models.data_types.container_length import ContainerLength from conflowgen.domain_models.distribution_repositories.container_storage_requirement_distribution_repository import \ ContainerStorageRequirementDistributionRepository class ContainerStorageRequirementDistributionManager: """ This manager provides the interface to set and get the storage requirement distribution. """ def __init__(self): self.storage_requirement_repository = ContainerStorageRequirementDistributionRepository() def get_storage_requirement_distribution(self) -> Dict[ContainerLength, Dict[StorageRequirement, float]]: """ Returns: The distribution of storage requirements based on the length of the container. """ return self.storage_requirement_repository.get_distribution() def set_storage_requirement_distribution( self, storage_requirements: Dict[ContainerLength, Dict[StorageRequirement, float]] ) -> None: """ Set the assumed global distribution of container storage requirements. This is applied to all vehicles that arrive at the terminal. Args: storage_requirements: The distribution of storage requirements depending on the container length. """ self.storage_requirement_repository.set_distribution(storage_requirements) ``` #### File: conflowgen/api/port_call_manager.py ```python from __future__ import annotations import datetime from typing import List, Tuple, Optional from conflowgen.domain_models.factories.schedule_factory import ScheduleFactory from conflowgen.domain_models.data_types.mode_of_transport import ModeOfTransport class PortCallManager: """ This manager provides the interface to creates schedules for services that periodically call the container terminal, e.g. ships of any size and trains. This explicitly does not cover the trucks which arrive according to a probability distribution set at :class:`.TruckArrivalDistributionManager`. """ def __init__(self): self.schedule_factory = ScheduleFactory() def add_large_scheduled_vehicle( self, vehicle_type: ModeOfTransport, service_name: str, vehicle_arrives_at: datetime.date, vehicle_arrives_at_time: datetime.time, average_vehicle_capacity: int, average_moved_capacity: int, next_destinations: Optional[List[Tuple[str, float]]] = None, vehicle_arrives_every_k_days: Optional[int] = None ) -> None: """ Add the schedule of a ship of any size or a train. The concrete vehicle instances are automatically generated when :meth:`.ContainerFlowGenerationManager.generate` is invoked. Args: vehicle_type: One of :class:`ModeOfTransport.deep_sea_vessel`, :class:`ModeOfTransport.feeder`, :class:`ModeOfTransport.barge`, or :class:`ModeOfTransport.train` service_name: The name of the service, i.e. the shipping line or rail freight line vehicle_arrives_at: A date the service would arrive at the terminal. This can e.g. point at the week day for weekly services. In any case, this is combined with the parameter ``vehicle_arrives_every_k_days`` and only arrivals within the time scope between ``start_date`` and ``end_date`` are considered. vehicle_arrives_at_time: A time at the day (between 00:00 and 23:59). average_vehicle_capacity: Number of TEU that can be transported with the vehicle at most. average_moved_capacity: Number of TEU which is imported. next_destinations: Pairs of destination and frequency of the destination being chosen. vehicle_arrives_every_k_days: Defaults to weekly services (arrival every 7 days). Other frequencies are possible as well. In the special case of ``-1``, only a single arrival at the day ``vehicle_arrives_at`` is scheduled. This arrival is only part of the generated container flow if that arrival lies between ``start_date`` and ``end_date``. """ assert vehicle_type in ModeOfTransport.get_scheduled_vehicles(), f"Vehicle of type {vehicle_type} is not " \ f"suitable as is does not periodically arrive." self.schedule_factory.add_schedule( vehicle_type=vehicle_type, service_name=service_name, vehicle_arrives_at=vehicle_arrives_at, vehicle_arrives_at_time=vehicle_arrives_at_time, average_vehicle_capacity=average_vehicle_capacity, average_moved_capacity=average_moved_capacity, next_destinations=next_destinations, vehicle_arrives_every_k_days=vehicle_arrives_every_k_days ) def has_schedule( self, service_name: str, vehicle_type: ModeOfTransport ) -> bool: """ Args: service_name: The name of the service which moves to a schedule that is sought for. vehicle_type: The mode of transport to restrict the search to. Returns: Whether the requested schedule already exist in the database """ assert vehicle_type in ModeOfTransport.get_scheduled_vehicles(), f"Vehicle of type {vehicle_type} not " \ f"suitable for this method." return self.schedule_factory.get_schedule(service_name, vehicle_type) is not None ``` #### File: application/repositories/container_flow_generation_properties_repository.py ```python from conflowgen.application.models.container_flow_generation_properties import ContainerFlowGenerationProperties class DuplicatedContainerFlowGenerationPropertiesEntryException(Exception): pass class InvalidTimeRangeException(Exception): pass class MinimumNotStrictlySmallerThanMaximumException(Exception): pass class ContainerFlowGenerationPropertiesRepository: @staticmethod def _verify(properties) -> None: if properties.end_date < properties.start_date: raise InvalidTimeRangeException( f"start date '{properties.start_date}' is later than end date '{properties.end_date}'" ) if (properties.minimum_dwell_time_of_import_containers_in_hours >= properties.maximum_dwell_time_of_import_containers_in_hours): raise MinimumNotStrictlySmallerThanMaximumException( f"{properties.minimum_dwell_time_of_import_containers_in_hours} " f">= {properties.maximum_dwell_time_of_import_containers_in_hours}" ) if (properties.minimum_dwell_time_of_export_containers_in_hours >= properties.maximum_dwell_time_of_export_containers_in_hours): raise MinimumNotStrictlySmallerThanMaximumException( f"{properties.minimum_dwell_time_of_export_containers_in_hours} " f">= {properties.maximum_dwell_time_of_export_containers_in_hours}" ) @staticmethod def get_container_flow_generation_properties() -> ContainerFlowGenerationProperties: all_properties = ContainerFlowGenerationProperties.select().execute() number_found_rows = len(all_properties) if not (0 <= number_found_rows <= 1): raise DuplicatedContainerFlowGenerationPropertiesEntryException( f"Number of found rows were {number_found_rows} but expected only one entry" ) if len(all_properties) == 1: return all_properties[0] return ContainerFlowGenerationProperties.create() @classmethod def set_container_flow_generation_properties(cls, properties: ContainerFlowGenerationProperties) -> None: cls._verify(properties) properties.save() number_properties_entries: int = ContainerFlowGenerationProperties().select().count() if number_properties_entries > 1: raise DuplicatedContainerFlowGenerationPropertiesEntryException( f"Number of updated rows were {number_properties_entries} but expected only one entry" ) ``` #### File: conflowgen/database_connection/sqlite_database_connection.py ```python import logging import os from typing import List, Tuple, Optional from peewee import SqliteDatabase from conflowgen.database_connection.create_tables import create_tables from conflowgen.domain_models.base_model import database_proxy from conflowgen.domain_models.distribution_seeders import seed_all_distributions class SqliteDatabaseIsMissingException(Exception): pass class SqliteDatabaseAlreadyExistsException(Exception): pass class AmbiguousParameterException(Exception): pass class SqliteDatabaseConnection: """ The SQLite database stores all content from the API calls to enable reproducible results. See :class:`.DatabaseChooser` for more information. """ SQLITE_DEFAULT_SETTINGS = { # compare with recommended settings from # https://docs.peewee-orm.com/en/latest/peewee/database.html 'journal_mode': 'wal', 'cache_size': -32 * 1024, # counted in KiB, thus this means 32 MB cache 'foreign_keys': 1, 'ignore_check_constraints': 0, 'synchronous': 0 } SQLITE_DEFAULT_DIR = os.path.abspath( os.path.join( os.path.dirname(os.path.realpath(__file__)), os.pardir, "data", "databases" ) ) def __init__(self, sqlite_databases_directory: Optional[str] = None): if sqlite_databases_directory is None: sqlite_databases_directory = self.SQLITE_DEFAULT_DIR sqlite_databases_directory = os.path.abspath(sqlite_databases_directory) self.sqlite_databases_directory = sqlite_databases_directory self.logger = logging.getLogger("conflowgen") if not os.path.isdir(self.sqlite_databases_directory): self.logger.debug(f"Creating SQLite directory at {sqlite_databases_directory}") os.makedirs(self.sqlite_databases_directory, exist_ok=True) self.sqlite_db_connection = None def list_all_sqlite_databases(self) -> List[str]: sqlite_databases = [ _file for _file in os.listdir(self.sqlite_databases_directory) if _file.endswith(".sqlite") ] return sqlite_databases def choose_database( self, database_name: str, create: bool = False, reset: bool = False, **seeder_options ) -> SqliteDatabase: if database_name == ":memory:": path_to_sqlite_database = ":memory:" sqlite_database_existed_before = False else: path_to_sqlite_database, sqlite_database_existed_before = self._load_or_create_sqlite_file_on_hard_drive( database_name=database_name, create=create, reset=reset ) self.logger.debug(f"Opening file {path_to_sqlite_database}") self.sqlite_db_connection = SqliteDatabase( path_to_sqlite_database, pragmas=self.SQLITE_DEFAULT_SETTINGS ) database_proxy.initialize(self.sqlite_db_connection) self.sqlite_db_connection.connect() self.logger.debug(f'journal_mode: {self.sqlite_db_connection.journal_mode}') self.logger.debug(f'cache_size: {self.sqlite_db_connection.cache_size}') self.logger.debug(f'page_size: {self.sqlite_db_connection.page_size}') self.logger.debug(f'foreign_keys: {self.sqlite_db_connection.foreign_keys}') if not sqlite_database_existed_before: self.logger.debug(f"Creating new database: '{path_to_sqlite_database}'") create_tables(self.sqlite_db_connection) self.logger.debug("Seed with default values...") seed_all_distributions(**seeder_options) else: self.logger.debug(f"Open existing database: '{path_to_sqlite_database}'") return self.sqlite_db_connection def delete_database(self, database_name: str) -> None: path_to_sqlite_database = self._get_path_to_database(database_name) if os.path.isfile(path_to_sqlite_database): self.logger.debug(f"Deleting database at {path_to_sqlite_database}") os.remove(path_to_sqlite_database) else: raise SqliteDatabaseIsMissingException(path_to_sqlite_database) def _load_or_create_sqlite_file_on_hard_drive( self, database_name: str, create: bool, reset: bool ) -> Tuple[str, bool]: path_to_sqlite_database = self._get_path_to_database(database_name) sqlite_database_existed_before = os.path.isfile(path_to_sqlite_database) if sqlite_database_existed_before: if create and not reset: raise SqliteDatabaseAlreadyExistsException(path_to_sqlite_database) if reset: self.logger.debug(f"Deleting old database at {path_to_sqlite_database}") os.remove(path_to_sqlite_database) else: if not create: raise SqliteDatabaseIsMissingException(path_to_sqlite_database) if create: self.logger.debug(f"No previous database detected, creating new at {path_to_sqlite_database}") return path_to_sqlite_database, sqlite_database_existed_before def _get_path_to_database(self, database_name: str) -> str: return os.path.join( self.sqlite_databases_directory, database_name ) ``` #### File: domain_models/data_types/container_length.py ```python from __future__ import annotations import enum import enum_tools.documentation @enum_tools.documentation.document_enum class ContainerLength(enum.Enum): """ The container length is one of the most important factors of how much space a container occupies. Here, the most common container sizes (neglecting height) are represented. """ twenty_feet = 20 # doc: A twenty-foot container forty_feet = 40 # doc: A forty-foot container forty_five_feet = 45 # doc: A forty-five-foot container other = -1 # doc: Any other length usually does not fit into the standardized slots and handling processes. @classmethod def get_factor(cls, container_length: ContainerLength) -> float: """ Each container occupies a certain amount of space when stored which is expressed in TEU. .. note:: .. autodata:: conflowgen.domain_models.data_types.container_length.CONTAINER_LENGTH_TO_OCCUPIED_TEU Args: container_length: The length of the container Returns: The TEU factor of the container """ return CONTAINER_LENGTH_TO_OCCUPIED_TEU[container_length] def __str__(self) -> str: """ The textual representation is e.g. '20 feet' instead of '<ContainerLength.twenty_feet>' so it is easier to read in the logs. """ if self.value > 0: return f"{self.value} feet" return "other" @classmethod def cast_element_type(cls, text: str) -> ContainerLength | None: """ Args: text: The text to parse Returns: The container length enum name if the cast was successful, ``None`` otherwise. """ if text == "other": return cls.other feet_suffix = " feet" if text.endswith(feet_suffix): number_part = text[:-len(feet_suffix)] if not number_part.isdigit(): return None casted_number_part = int(number_part) return cls(casted_number_part) return None CONTAINER_LENGTH_TO_OCCUPIED_TEU = { ContainerLength.twenty_feet: 1, ContainerLength.forty_feet: 2, ContainerLength.forty_five_feet: 2.25, ContainerLength.other: 2.5 } """ This is the translation table to specify the occupied storage space in TEU. For 20', 40', and 45', the typical values are picked. The TEU factor for the value 'other' is chosen to be rather large because it is assumed to be difficult to find a proper storage position. """ ``` #### File: domain_models/distribution_repositories/__init__.py ```python import logging import math from typing import Dict, Any logger = logging.getLogger("conflowgen") def normalize_nested_distribution(distributions: Dict[Any, Dict[Any, float]]) -> Dict[Any, Dict[Any, float]]: normalized_distributions = {} for first_key, distribution in distributions.items(): second_keys, fractions = zip(*distribution.items()) sum_of_fractions = sum(fractions) if not math.isclose(sum_of_fractions, 1): logger.debug(f"Sum of fractions was not 1 for '{first_key}' and was automatically normalized.") fractions = [fraction / sum_of_fractions for fraction in fractions] for fraction in fractions: assert fraction >= 0 normalized_distributions[first_key] = dict(zip(second_keys, fractions)) return normalized_distributions ``` #### File: domain_models/distribution_seeders/__init__.py ```python from conflowgen.domain_models.distribution_seeders import mode_of_transport_distribution_seeder, \ container_weight_distribution_seeder, container_length_distribution_seeder, truck_arrival_distribution_seeder, \ container_storage_requirement_distribution_seeder def seed_all_distributions(**options) -> None: """ Seeds all databases with default values Args: **options: This allows to select different default values that are passed through to the seeder functions. """ mode_of_transport_distribution_seeder.seed() container_weight_distribution_seeder.seed() container_length_distribution_seeder.seed() if "assume_tas" in options: truck_arrival_distribution_seeder.seed(assume_tas=options["assume_tas"]) else: truck_arrival_distribution_seeder.seed() container_storage_requirement_distribution_seeder.seed() ``` #### File: conflowgen/domain_models/distribution_validators.py ```python from __future__ import annotations import copy import math from typing import Dict, Type, Any, Optional import enum class DistributionHasNoElementsException(Exception): pass class DistributionElementIsMissingException(Exception): pass class DistributionProbabilityOutOfRange(Exception): pass class DistributionProbabilitiesUnequalOne(Exception): pass class DistributionElementIsInvalidException(Exception): pass ABSOLUTE_TOLERANCE = 0.05 """ The absolute tolerance when comparing the sum of all frequencies with 1. """ def _format_dependent_variable(dependent_variable: enum.Enum): return f"the dependent variable '{dependent_variable}'" def _format_entry(value: Any): if str(value).replace('.', '', 1).replace('-', '', 1).isdigit(): return f"{value:.5f}" if isinstance(value, enum.Enum): return str(value) if isinstance(value, dict): return "{...}" return "..." def _format_entries(values: Any) -> str: return str([ _format_entry(value) for value in values ]) def _format_distribution(distribution: Dict[enum.Enum, Any]) -> str: entries = [] for enum_type_key, value in distribution.items(): entry = repr(str(enum_type_key)) + ": " + _format_entry(value) entries.append(entry) text = "{" text += ", ".join(entries) text += "}" return text def _cast_element_type(actual_element: Any, desired_element_type: Type[enum.Enum]) -> enum.Enum | None: """ Args: actual_element: The key the user provided desired_element_type: The required element type Returns: Is the actual element of the desired element type? """ if isinstance(actual_element, desired_element_type): return actual_element # no casting required try: # check if it is a valid value return desired_element_type(actual_element) except ValueError: pass try: # check if it is a valid name return desired_element_type[actual_element] except KeyError: pass if hasattr(desired_element_type, "cast_element_type"): # use enum custom code if available return desired_element_type.cast_element_type(actual_element) return None def _check_all_required_keys_are_set_in_distribution( distribution: Dict[enum.Enum, Any], desired_element_type: Type[enum.Enum], context: Optional[str] = None ) -> Dict[enum.Enum, Any]: sanitized_distribution = copy.deepcopy(distribution) if len(distribution) == 0: msg = "The distribution does not have any elements to draw from." if context is not None: msg += f" This is error occurred while examining {context}." raise DistributionHasNoElementsException(msg) provided_elements_in_distribution = list(distribution.keys()) for element in provided_elements_in_distribution: casted_element = _cast_element_type(element, desired_element_type) if casted_element is None: raise DistributionElementIsInvalidException( f"Element '{element}' could not be casted to type '{desired_element_type}'" ) if casted_element != element: sanitized_distribution[casted_element] = sanitized_distribution.pop(element) # update key theoretically_available_elements = [ desired_element_type(el) for el in desired_element_type.__members__.values() ] if not set(sanitized_distribution.keys()) == set(theoretically_available_elements): msg = (f"The distribution {_format_distribution(distribution)} was expected to have the following elements: " f"{_format_entries(theoretically_available_elements)} but it provided the following elements: " f"{_format_entries(provided_elements_in_distribution)}.") if context is not None: msg += f" This is error occurred while examining {context}." raise DistributionElementIsMissingException(msg) return sanitized_distribution def _check_value_range_of_frequencies_in_distribution( distribution: Dict[enum.Enum, float], context: Optional[str] = None ) -> None: sum_of_probabilities = 0 for element, probability in distribution.items(): if not (0 <= probability <= 1): msg = ( "The probability of an element to be drawn must range between 0 and 1 " f"but for the element '{element}' the probability was {probability} in the distribution " f"{_format_distribution(distribution)}." ) if context is not None: msg += f" This is error occurred while examining {context}." raise DistributionProbabilityOutOfRange(msg) sum_of_probabilities += probability if not math.isclose(sum_of_probabilities, 1, abs_tol=ABSOLUTE_TOLERANCE): msg = ( "The sum of all probabilities should sum to 1 " f"but for the distribution {_format_distribution(distribution)} the sum was {sum_of_probabilities:.5f}." ) if context is not None: msg += f" This is error occurred while examining {context}." raise DistributionProbabilitiesUnequalOne(msg) def validate_distribution_with_no_dependent_variables( distribution: Dict[enum.Enum, float], key_type: Type[enum.Enum] ) -> Dict[enum.Enum, Dict[enum.Enum, float]]: sanitized_distribution = _check_all_required_keys_are_set_in_distribution(distribution, key_type) _check_value_range_of_frequencies_in_distribution(sanitized_distribution) return sanitized_distribution def validate_distribution_with_one_dependent_variable( distribution: Dict[enum.Enum, Dict[enum.Enum, float]], key_type_of_independent_variable: Type[enum.Enum], key_type_of_dependent_variable: Type[enum.Enum] ) -> Dict[enum.Enum, Dict[enum.Enum, float]]: sanitized_distribution = _check_all_required_keys_are_set_in_distribution( distribution, key_type_of_independent_variable ) for dependent_variable, distribution_of_dependent_variable in sanitized_distribution.items(): sanitized_distribution_of_dependent_variable = _check_all_required_keys_are_set_in_distribution( distribution_of_dependent_variable, key_type_of_dependent_variable, context=_format_dependent_variable(dependent_variable) ) _check_value_range_of_frequencies_in_distribution( sanitized_distribution_of_dependent_variable, context=_format_dependent_variable(dependent_variable) ) sanitized_distribution[dependent_variable] = sanitized_distribution_of_dependent_variable return sanitized_distribution ``` #### File: domain_models/field_types/mode_of_transport.py ```python from __future__ import annotations from peewee import TextField from conflowgen.domain_models.data_types.mode_of_transport import ModeOfTransport from conflowgen.domain_models.field_types.enum_database_field import cast_to_db_value class ModeOfTransportField(TextField): """ This class enable an enum-like field for Peewee """ def db_value(self, value): return cast_to_db_value(value) def python_value(self, value): return ModeOfTransport(value) ``` #### File: conflowgen/posthoc_analyses/inbound_and_outbound_vehicle_capacity_analysis_report.py ```python from __future__ import annotations from conflowgen.posthoc_analyses.inbound_and_outbound_vehicle_capacity_analysis import \ InboundAndOutboundVehicleCapacityAnalysis from conflowgen.reporting import AbstractReportWithMatplotlib class InboundAndOutboundVehicleCapacityAnalysisReport(AbstractReportWithMatplotlib): """ This analysis report takes the data structure as generated by :class:`.InboundAndOutboundVehicleCapacityAnalysis` and creates a comprehensible representation for the user, either as text or as a graph. """ report_description = """ Analyze the vehicle capacity by vehicle type for the inbound and outbound journeys and check for the maximum capacity of each vehicle type. If e.g. for the vehicle type 'feeder' the maximum outbound capacity is used up, most likely there are more vehicles that deliver containers destined for feeder vessels than there are feeder vessels planned during the period of data generation (between `start_date` and `end_date`). """ def __init__(self): super().__init__() self.analysis = InboundAndOutboundVehicleCapacityAnalysis( transportation_buffer=self.transportation_buffer ) def get_report_as_text(self) -> str: inbound_capacities, outbound_actual_capacities, outbound_maximum_capacities = self._get_capacities() # create string representation report = "\n" report += "vehicle type " report += "inbound capacity " report += "outbound actual capacity " report += "outbound max capacity" report += "\n" for vehicle_type in self.order_of_vehicle_types_in_report: vehicle_type_as_text = str(vehicle_type).replace("_", " ") report += f"{vehicle_type_as_text:<15} " report += f"{inbound_capacities[vehicle_type]:>16.1f} " report += f"{outbound_actual_capacities[vehicle_type]:>24.1f} " report += f"{outbound_maximum_capacities[vehicle_type]:>21.1f}" report += "\n" report += "(rounding errors might exist)\n" return report def get_report_as_graph(self) -> object: """ The report as a graph is represented as a bar chart using pandas. Returns: The matplotlib axis of the bar chart. """ import pandas as pd # pylint: disable=import-outside-toplevel import seaborn as sns # pylint: disable=import-outside-toplevel sns.set_palette(sns.color_palette()) inbound_capacities, outbound_actual_capacities, outbound_maximum_capacities = self._get_capacities() df = pd.DataFrame({ "inbound capacities": inbound_capacities, "outbound actual capacities": outbound_actual_capacities, "outbound maximum capacities": outbound_maximum_capacities }) df.index = [str(i).replace("_", " ") for i in df.index] ax = df.plot.barh() ax.set_xlabel("Capacity (in TEU)") ax.set_title("Inbound and outbound vehicle capacity analysis") return ax def _get_capacities(self): assert self.transportation_buffer is not None self.analysis.update( transportation_buffer=self.transportation_buffer ) # gather data inbound_capacities = self.analysis.get_inbound_capacity_of_vehicles() outbound_actual_capacities, outbound_maximum_capacities = self.analysis.get_outbound_capacity_of_vehicles() return inbound_capacities, outbound_actual_capacities, outbound_maximum_capacities ``` #### File: conflowgen/posthoc_analyses/inbound_to_outbound_vehicle_capacity_utilization_analysis.py ```python from __future__ import annotations from typing import Dict, NamedTuple, Tuple from conflowgen.domain_models.container import Container from conflowgen.domain_models.data_types.container_length import ContainerLength from conflowgen.domain_models.data_types.mode_of_transport import ModeOfTransport from conflowgen.domain_models.large_vehicle_schedule import Schedule from conflowgen.domain_models.vehicle import LargeScheduledVehicle from conflowgen.posthoc_analyses.abstract_posthoc_analysis import AbstractPostHocAnalysis class CompleteVehicleIdentifier(NamedTuple): """ A vehicle identifier is a composition of the vehicle type, its service name, and the actual vehicle name """ mode_of_transport: ModeOfTransport service_name: str vehicle_name: str class InboundToOutboundVehicleCapacityUtilizationAnalysis(AbstractPostHocAnalysis): """ This analysis can be run after the synthetic data has been generated. The analysis returns a data structure that can be used for generating reports (e.g., in text or as a figure) as it is the case with :class:`.InboundToOutboundCapacityUtilizationAnalysisReport`. """ def __init__(self, transportation_buffer: float): super().__init__( transportation_buffer=transportation_buffer ) @staticmethod def get_inbound_and_outbound_capacity_of_each_vehicle( vehicle_type="all" ) -> Dict[CompleteVehicleIdentifier, Tuple[float, float]]: """ Args: vehicle_type: Either ``"all"``, a single vehicle of type :class:`.ModeOfTransport` or a whole collection of vehicle types, e.g. passed as a :class:`list` or :class:`set`. Only the vehicles that correspond to the provided vehicle type(s) are considered in the analysis. Returns: The transported containers of each vehicle on their inbound and outbound journey in TEU. """ capacities: Dict[CompleteVehicleIdentifier, (float, float)] = {} base_selection = LargeScheduledVehicle.select().join(Schedule) if vehicle_type == "all": selected_large_scheduled_vehicles = base_selection else: if vehicle_type in set(ModeOfTransport): selected_large_scheduled_vehicles = base_selection.where( LargeScheduledVehicle.schedule.vehicle_type == vehicle_type ) else: # assume it is some kind of collection (list, set, ...) selected_large_scheduled_vehicles = base_selection.where( LargeScheduledVehicle.schedule.vehicle_type << vehicle_type ) vehicle: LargeScheduledVehicle for vehicle in selected_large_scheduled_vehicles: vehicle_schedule: Schedule = vehicle.schedule mode_of_transport = vehicle_schedule.vehicle_type service_name = vehicle_schedule.service_name vehicle_name = vehicle.vehicle_name used_capacity_on_inbound_journey = vehicle.moved_capacity used_capacity_on_outbound_journey = 0 container: Container for container in Container.select().where( Container.picked_up_by_large_scheduled_vehicle == vehicle ): teu_factor_of_container: float = ContainerLength.get_factor(container.length) used_capacity_on_outbound_journey += teu_factor_of_container vehicle_id = CompleteVehicleIdentifier( mode_of_transport=mode_of_transport, service_name=service_name, vehicle_name=vehicle_name ) capacities[vehicle_id] = (used_capacity_on_inbound_journey, used_capacity_on_outbound_journey) return capacities ``` #### File: conflowgen/posthoc_analyses/inbound_to_outbound_vehicle_capacity_utilization_analysis_report.py ```python from __future__ import annotations from typing import Tuple, Any, Dict import matplotlib.pyplot as plt import matplotlib.ticker import pandas as pd from conflowgen.posthoc_analyses.inbound_to_outbound_vehicle_capacity_utilization_analysis import \ InboundToOutboundVehicleCapacityUtilizationAnalysis, CompleteVehicleIdentifier from conflowgen.reporting import AbstractReportWithMatplotlib class InboundToOutboundVehicleCapacityUtilizationAnalysisReport(AbstractReportWithMatplotlib): """ This analysis report takes the data structure as generated by :class:`.InboundToOutboundCapacityUtilizationAnalysis` and creates a comprehensible representation for the user, either as text or as a graph. """ report_description = """ Analyze the used vehicle capacity for each vehicle for the inbound and outbound journeys. Generally, it is striven for to reach an equilibrium - each vehicle should approximately pick up as many containers at the container terminal as it has delivered to. Great disparities between the transported capacities on the inbound and outbound journey are considered noteworthy but depending on the input data it might be acceptable. """ maximum_length_for_readable_name = 50 # doc: Each vehicle has a name that might be a bit lengthy for text output def __init__(self): super().__init__() self.analysis = InboundToOutboundVehicleCapacityUtilizationAnalysis( transportation_buffer=self.transportation_buffer ) @classmethod def _create_readable_name(cls, vehicle_identifier: Tuple[Any]) -> str: name = "-".join(str(part) for part in vehicle_identifier) if len(name) > cls.maximum_length_for_readable_name: name = name[:46] + "..." return name def get_report_as_text(self, **kwargs) -> str: """ The report as a text is represented as a table suitable for logging. It uses a human-readable formatting style. Keyword Args: vehicle_type: Either ``"all"``, a single vehicle of type :class:`.ModeOfTransport` or a whole collection of vehicle types, e.g. passed as a :class:`list` or :class:`set`. For the exact interpretation of the parameter, check :class:`.InboundToOutboundVehicleCapacityUtilizationAnalysis`. Returns: The report in text format (possibly spanning over several lines). """ capacities = self._get_capacities_depending_on_vehicle_type(kwargs) report = "\n" report += "vehicle identifier " report += "inbound capacity (in TEU) " report += "outbound capacity (in TEU)" report += "\n" for vehicle_identifier, (used_inbound_capacity, used_outbound_capacity) in capacities.items(): vehicle_name = self._create_readable_name(vehicle_identifier) report += f"{vehicle_name:<50} " # align this with cls.maximum_length_for_readable_name! report += f"{used_inbound_capacity:>25.1f} " report += f"{used_outbound_capacity:>26.1f}" report += "\n" if len(capacities) == 0: report += "--no vehicles exist--\n" else: report += "(rounding errors might exist)\n" return report def get_report_as_graph(self, **kwargs) -> object: """ The report as a graph is represented as a scatter plot using pandas. Keyword Args: plot_type: Either "absolute" or "relative". vehicle_type: Either ``"all"``, a single vehicle of type :class:`.ModeOfTransport` or a whole collection of vehicle types, e.g. passed as a :class:`list` or :class:`set`. For the exact interpretation of the parameter, check :class:`.InboundToOutboundVehicleCapacityUtilizationAnalysis`. Returns: The matplotlib axis of the scatter plot. """ plot_type = kwargs.get("plot_type", "absolute") df = self._convert_analysis_to_df(kwargs) if plot_type == "absolute": ax = self._plot_absolute_values(df) elif plot_type == "relative": ax = self._plot_relative_values(df) else: raise Exception(f"Plot type '{plot_type}' is not supported.") plt.legend( loc='lower left', bbox_to_anchor=(1, 0), fancybox=True, ) return ax def _plot_absolute_values(self, df: pd.DataFrame) -> matplotlib.pyplot.axis: ax = df.plot.scatter(x="inbound capacity (fixed)", y="used outbound capacity") slope = 1 + self.transportation_buffer ax.axline((0, 0), slope=slope, color='black', label='Maximum outbound capacity') ax.axline((0, 0), slope=1, color='gray', label='Equilibrium') ax.set_title("Inbound to outbound capacity utilization analysis (absolute)") ax.set_aspect('equal', adjustable='box') ax.grid(color='lightgray', linestyle=':', linewidth=.5) maximum = df[["inbound capacity (fixed)", "used outbound capacity"]].max(axis=1).max(axis=0) axis_limitation = maximum * 1.1 # add some white space to the top and left ax.set_xlim([0, axis_limitation]) ax.set_ylim([0, axis_limitation]) loc = matplotlib.ticker.MultipleLocator(base=25) ax.xaxis.set_major_locator(loc) return ax def _plot_relative_values(self, df: pd.DataFrame) -> matplotlib.pyplot.axis: ax = df.plot.scatter(x="inbound capacity (fixed)", y="ratio") ax.axline((0, (1 + self.transportation_buffer)), slope=0, color='black', label='Maximum outbound capacity') ax.axline((0, 1), slope=0, color='gray', label='Equilibrium') ax.set_title("Inbound to outbound capacity utilization analysis (relative)") ax.grid(color='lightgray', linestyle=':', linewidth=.5) return ax def _convert_analysis_to_df(self, kwargs: dict) -> pd.DataFrame: capacities = self._get_capacities_depending_on_vehicle_type(kwargs) rows = [] for vehicle_identifier, (inbound_capacity, used_outbound_capacity) in capacities.items(): vehicle_name = self._create_readable_name(vehicle_identifier) rows.append({ "vehicle name": vehicle_name, "inbound capacity (fixed)": inbound_capacity, "used outbound capacity": used_outbound_capacity }) df = pd.DataFrame(rows) df["ratio"] = df["used outbound capacity"] / df["inbound capacity (fixed)"] return df def _get_capacities_depending_on_vehicle_type(self, kwargs) -> Dict[CompleteVehicleIdentifier, Tuple[float, float]]: if "vehicle_type" in kwargs: vehicle_type = kwargs["vehicle_type"] capacities = self.analysis.get_inbound_and_outbound_capacity_of_each_vehicle( vehicle_type=vehicle_type ) else: capacities = self.analysis.get_inbound_and_outbound_capacity_of_each_vehicle() return capacities ``` #### File: application_models/repositories/test_container_stream_generation_properties_repository.py ```python import datetime import unittest from conflowgen.application.models.container_flow_generation_properties import ContainerFlowGenerationProperties from conflowgen.application.repositories.container_flow_generation_properties_repository import \ ContainerFlowGenerationPropertiesRepository, InvalidTimeRangeException, \ DuplicatedContainerFlowGenerationPropertiesEntryException, MinimumNotStrictlySmallerThanMaximumException from conflowgen.tests.substitute_peewee_database import setup_sqlite_in_memory_db class TestContainerFlowGenerationProperties(unittest.TestCase): def setUp(self) -> None: """Create container database in memory""" self.sqlite_db = setup_sqlite_in_memory_db() self.sqlite_db.create_tables([ ContainerFlowGenerationProperties ]) self.repository = ContainerFlowGenerationPropertiesRepository() def test_get_default_values(self): properties = self.repository.get_container_flow_generation_properties() self.assertIsNone(properties.name) self.assertIsNone(properties.start_date) self.assertIsNone(properties.end_date) self.assertLessEqual( properties.generated_at - datetime.datetime.now(), datetime.timedelta(minutes=1) ) self.assertLessEqual( properties.last_updated_at - datetime.datetime.now(), datetime.timedelta(minutes=1) ) def test_properties_creation_behavior_with_get(self): all_properties_first = list(ContainerFlowGenerationProperties.select()) self.assertEqual(all_properties_first, []) properties_1 = self.repository.get_container_flow_generation_properties() self.assertIsInstance(properties_1, ContainerFlowGenerationProperties) all_properties_second = list(ContainerFlowGenerationProperties.select()) self.assertEqual(len(all_properties_second), 1) properties_2 = self.repository.get_container_flow_generation_properties() self.assertIsInstance(properties_2, ContainerFlowGenerationProperties) all_properties_third = list(ContainerFlowGenerationProperties.select()) self.assertEqual(len(all_properties_third), 1) def test_set_values(self): properties = self.repository.get_container_flow_generation_properties() name = "Test" properties.name = name start_date = datetime.datetime.now() properties.start_date = start_date end_date = datetime.datetime.now() + datetime.timedelta(days=5) properties.end_date = end_date self.repository.set_container_flow_generation_properties(properties) loaded_properties = self.repository.get_container_flow_generation_properties() self.assertEqual(loaded_properties.name, name) self.assertEqual(loaded_properties.start_date, start_date.date()) self.assertEqual(loaded_properties.end_date, end_date.date()) self.assertLessEqual( properties.generated_at - datetime.datetime.now(), datetime.timedelta(minutes=1) ) self.assertLessEqual( properties.last_updated_at - datetime.datetime.now(), datetime.timedelta(minutes=1) ) def test_broken_properties__end_date_too_early(self): with self.assertRaises(InvalidTimeRangeException): self.repository.set_container_flow_generation_properties( ContainerFlowGenerationProperties.create( start_date=datetime.datetime.now(), end_date=datetime.datetime.now() - datetime.timedelta(days=5) ) ) def test_broken_properties__double_entry_in_database(self): ContainerFlowGenerationProperties.create( start_date=datetime.datetime.now(), end_date=datetime.datetime.now() - datetime.timedelta(days=5) ).save() ContainerFlowGenerationProperties.create( start_date=datetime.datetime.now(), end_date=datetime.datetime.now() - datetime.timedelta(days=5) ).save() with self.assertRaises(DuplicatedContainerFlowGenerationPropertiesEntryException): self.repository.get_container_flow_generation_properties() def test_set_values_on_old_instance(self): """ If not set, changes at the old instance should not have any effect. """ properties = self.repository.get_container_flow_generation_properties() name_old = "Test old" properties.name = name_old start_date_old = (datetime.datetime.now() - datetime.timedelta(days=5)).date() properties.start_date = start_date_old end_date_old = (datetime.datetime.now() - datetime.timedelta(days=2)).date() properties.end_date = end_date_old self.repository.set_container_flow_generation_properties(properties) name_new = "Test new" properties.name = name_new start_date_new = (datetime.datetime.now() + datetime.timedelta(days=2)).date() properties.start_date = start_date_new end_date_new = (datetime.datetime.now() + datetime.timedelta(days=5)).date() properties.end_date = end_date_new loaded_properties = self.repository.get_container_flow_generation_properties() self.assertEqual(loaded_properties.name, name_old) self.assertEqual(loaded_properties.start_date, start_date_old) self.assertEqual(loaded_properties.end_date, end_date_old) def test_set_values_twice(self): properties_old = self.repository.get_container_flow_generation_properties() name_old = "Test old" properties_old.name = name_old start_date_old = (datetime.datetime.now() - datetime.timedelta(days=5)).date() properties_old.start_date = start_date_old end_date_old = (datetime.datetime.now() - datetime.timedelta(days=2)).date() properties_old.end_date = end_date_old self.repository.set_container_flow_generation_properties(properties_old) properties_new = self.repository.get_container_flow_generation_properties() name_new = "Test new" properties_new.name = name_new start_date_new = (datetime.datetime.now() + datetime.timedelta(days=2)).date() properties_new.start_date = start_date_new end_date_new = (datetime.datetime.now() + datetime.timedelta(days=5)).date() properties_new.end_date = end_date_new self.repository.set_container_flow_generation_properties(properties_new) loaded_properties = self.repository.get_container_flow_generation_properties() self.assertEqual(loaded_properties.name, name_new) self.assertEqual(loaded_properties.start_date, start_date_new) self.assertEqual(loaded_properties.end_date, end_date_new) def test_set_invalid_minimum_maximum_pair_for_import_containers(self): properties = self.repository.get_container_flow_generation_properties() name = "Test" properties.name = name start_date = datetime.datetime.now() properties.start_date = start_date end_date = datetime.datetime.now() + datetime.timedelta(days=5) properties.end_date = end_date properties.minimum_dwell_time_of_import_containers_in_hours = 10 properties.maximum_dwell_time_of_import_containers_in_hours = 9 with self.assertRaises(MinimumNotStrictlySmallerThanMaximumException): self.repository.set_container_flow_generation_properties(properties) def test_set_invalid_minimum_maximum_pair_for_export_containers(self): properties = self.repository.get_container_flow_generation_properties() name = "Test" properties.name = name start_date = datetime.datetime.now() properties.start_date = start_date end_date = datetime.datetime.now() + datetime.timedelta(days=5) properties.end_date = end_date properties.minimum_dwell_time_of_export_containers_in_hours = 10 properties.maximum_dwell_time_of_export_containers_in_hours = 9 with self.assertRaises(MinimumNotStrictlySmallerThanMaximumException): self.repository.set_container_flow_generation_properties(properties) ``` #### File: tests/flow_generator/test_assign_destination_to_container_service.py ```python import datetime import unittest from conflowgen.flow_generator.assign_destination_to_container_service import \ AssignDestinationToContainerService from conflowgen.domain_models.arrival_information import TruckArrivalInformationForDelivery, \ TruckArrivalInformationForPickup from conflowgen.domain_models.container import Container from conflowgen.domain_models.distribution_models.mode_of_transport_distribution import ModeOfTransportDistribution from conflowgen.domain_models.distribution_repositories.container_destination_distribution_repository import \ ContainerDestinationDistributionRepository from conflowgen.domain_models.data_types.container_length import ContainerLength from conflowgen.domain_models.data_types.mode_of_transport import ModeOfTransport from conflowgen.domain_models.data_types.storage_requirement import StorageRequirement from conflowgen.domain_models.large_vehicle_schedule import Schedule, Destination from conflowgen.domain_models.vehicle import LargeScheduledVehicle, Train, Feeder, DeepSeaVessel, Truck, \ AbstractLargeScheduledVehicle from conflowgen.tests.substitute_peewee_database import setup_sqlite_in_memory_db class TestAssignDestinationToContainerService(unittest.TestCase): def setUp(self) -> None: """Create container database in memory""" sqlite_db = setup_sqlite_in_memory_db() sqlite_db.create_tables([ Schedule, LargeScheduledVehicle, Container, Destination, TruckArrivalInformationForDelivery, TruckArrivalInformationForPickup, Truck, Feeder, DeepSeaVessel, ModeOfTransportDistribution ]) self.repository = ContainerDestinationDistributionRepository() self.service = AssignDestinationToContainerService() @staticmethod def _create_feeder(scheduled_arrival: datetime.datetime) -> Feeder: schedule = Schedule.create( vehicle_type=ModeOfTransport.feeder, service_name="TestFeederService", vehicle_arrives_at=scheduled_arrival.date(), vehicle_arrives_at_time=scheduled_arrival.time(), average_vehicle_capacity=300, average_moved_capacity=300, ) schedule.save() feeder_lsv = LargeScheduledVehicle.create( vehicle_name="TestFeeder1", capacity_in_teu=schedule.average_vehicle_capacity, moved_capacity=schedule.average_moved_capacity, scheduled_arrival=scheduled_arrival, schedule=schedule ) feeder_lsv.save() feeder = Feeder.create( large_scheduled_vehicle=feeder_lsv ) feeder.save() return feeder @staticmethod def _create_train(scheduled_arrival: datetime.datetime) -> Train: schedule = Schedule.create( vehicle_type=ModeOfTransport.train, service_name="TestTrainService", vehicle_arrives_at=scheduled_arrival.date(), vehicle_arrives_at_time=scheduled_arrival.time(), average_vehicle_capacity=90, average_moved_capacity=90, ) schedule.save() train_lsv = LargeScheduledVehicle.create( vehicle_name="TestTrain1", capacity_in_teu=96, moved_capacity=schedule.average_moved_capacity, scheduled_arrival=scheduled_arrival, schedule=schedule ) train_lsv.save() train = Train.create( large_scheduled_vehicle=train_lsv ) train.save() return train @staticmethod def _create_truck(arrival: datetime.datetime) -> Truck: ati = TruckArrivalInformationForDelivery.create( realized_container_delivery_time=arrival, planned_container_delivery_time_at_window_start=None ) truck = Truck.create( delivers_container=False, picks_up_container=True, truck_arrival_information_for_delivery=ati ) truck.save() return truck @staticmethod def _create_container_for_truck(truck: Truck): container = Container.create( weight=20, length=ContainerLength.twenty_feet, storage_requirement=StorageRequirement.standard, delivered_by=ModeOfTransport.truck, delivered_by_truck=truck, picked_up_by=ModeOfTransport.feeder, picked_up_by_initial=ModeOfTransport.feeder ) return container @staticmethod def _create_container_for_large_scheduled_vehicle(vehicle: AbstractLargeScheduledVehicle): large_scheduled_vehicle = vehicle.large_scheduled_vehicle vehicle_type = vehicle.get_mode_of_transport() container = Container.create( weight=20, length=ContainerLength.twenty_feet, storage_requirement=StorageRequirement.standard, delivered_by=vehicle_type, delivered_by_large_scheduled_vehicle=large_scheduled_vehicle, picked_up_by=ModeOfTransport.feeder, picked_up_by_initial=ModeOfTransport.feeder ) container.save() return container def test_no_exception_for_empty_database(self): self.service.assign() def test_load_container_from_truck_onto_feeder(self): truck = self._create_truck(datetime.datetime(year=2021, month=8, day=5, hour=9, minute=0)) feeder = self._create_feeder(datetime.datetime(year=2021, month=8, day=7, hour=13, minute=15)) container = self._create_container_for_truck(truck) container.picked_up_by_large_scheduled_vehicle = feeder.large_scheduled_vehicle container.save() schedule = feeder.large_scheduled_vehicle.schedule destination_1 = Destination.create( belongs_to_schedule=schedule, sequence_id=1, destination_name="TestDestination1", ) destination_2 = Destination.create( belongs_to_schedule=schedule, sequence_id=2, destination_name="TestDestination2", ) distribution = { schedule: { destination_1: 0.4, destination_2: 0.6 } } self.repository.set_distribution(distribution) self.service.reload_distribution() self.service.assign() container_update: Container = Container.get_by_id(container.id) self.assertIn(container_update.destination, (destination_1, destination_2)) def test_wrong_direction(self): truck = self._create_truck(datetime.datetime(year=2021, month=8, day=5, hour=9, minute=0)) feeder = self._create_feeder(datetime.datetime(year=2021, month=8, day=7, hour=13, minute=15)) container = self._create_container_for_large_scheduled_vehicle(feeder) container.picked_up_by_large_scheduled_vehicle = None container.picked_up_by_truck = truck container.picked_up_by = ModeOfTransport.truck container.save() schedule = feeder.large_scheduled_vehicle.schedule destination_1 = Destination.create( belongs_to_schedule=schedule, sequence_id=1, destination_name="TestDestination1", ) destination_2 = Destination.create( belongs_to_schedule=schedule, sequence_id=2, destination_name="TestDestination2", ) distribution = { schedule: { destination_1: 0.4, destination_2: 0.6 } } self.repository.set_distribution(distribution) self.service.reload_distribution() self.service.assign() container_update: Container = Container.get_by_id(container.id) self.assertIsNone(container_update.destination) ``` #### File: tests/posthoc_analyses/test_quay_side_throughput_analysis.py ```python import datetime import unittest from conflowgen.domain_models.arrival_information import TruckArrivalInformationForPickup, \ TruckArrivalInformationForDelivery from conflowgen.domain_models.container import Container from conflowgen.domain_models.data_types.container_length import ContainerLength from conflowgen.domain_models.data_types.mode_of_transport import ModeOfTransport from conflowgen.domain_models.data_types.storage_requirement import StorageRequirement from conflowgen.domain_models.distribution_models.mode_of_transport_distribution import ModeOfTransportDistribution from conflowgen.domain_models.distribution_seeders import mode_of_transport_distribution_seeder from conflowgen.domain_models.large_vehicle_schedule import Schedule, Destination from conflowgen.domain_models.vehicle import LargeScheduledVehicle, Truck, Feeder from conflowgen.posthoc_analyses.quay_side_throughput_analysis import QuaySideThroughputAnalysis from conflowgen.tests.substitute_peewee_database import setup_sqlite_in_memory_db class TestQuaySideThroughputAnalysis(unittest.TestCase): def setUp(self) -> None: """Create container database in memory""" self.sqlite_db = setup_sqlite_in_memory_db() self.sqlite_db.create_tables([ Schedule, Container, LargeScheduledVehicle, Truck, TruckArrivalInformationForDelivery, TruckArrivalInformationForPickup, Feeder, ModeOfTransportDistribution, Destination ]) mode_of_transport_distribution_seeder.seed() self.analysis = QuaySideThroughputAnalysis( transportation_buffer=0.2 ) def test_with_no_data(self): """If no schedules are provided, no capacity is needed""" no_action_at_quay_side = self.analysis.get_throughput_over_time() self.assertEqual(no_action_at_quay_side, {}) def test_with_single_container(self): now = datetime.datetime.now() schedule = Schedule.create( vehicle_type=ModeOfTransport.feeder, service_name="TestFeederService", vehicle_arrives_at=now.date(), vehicle_arrives_at_time=now.time(), average_vehicle_capacity=300, average_moved_capacity=300, ) feeder_lsv = LargeScheduledVehicle.create( vehicle_name="TestFeeder1", capacity_in_teu=300, moved_capacity=schedule.average_moved_capacity, scheduled_arrival=now, schedule=schedule ) Feeder.create( large_scheduled_vehicle=feeder_lsv ) aip = TruckArrivalInformationForPickup.create( realized_container_pickup_time=datetime.datetime.now() + datetime.timedelta(hours=25) ) truck = Truck.create( delivers_container=False, picks_up_container=True, truck_arrival_information_for_delivery=None, truck_arrival_information_for_pickup=aip ) Container.create( weight=20, length=ContainerLength.twenty_feet, storage_requirement=StorageRequirement.standard, delivered_by=ModeOfTransport.feeder, delivered_by_large_scheduled_vehicle=feeder_lsv, picked_up_by=ModeOfTransport.truck, picked_up_by_initial=ModeOfTransport.truck, picked_up_by_truck=truck ) used_quay_side_capacity_over_time = self.analysis.get_throughput_over_time() self.assertEqual(len(used_quay_side_capacity_over_time), 3) self.assertSetEqual(set(used_quay_side_capacity_over_time.values()), {0, 1}) def test_with_two_containers(self): now = datetime.datetime.now() schedule = Schedule.create( vehicle_type=ModeOfTransport.feeder, service_name="TestFeederService", vehicle_arrives_at=now.date(), vehicle_arrives_at_time=now.time(), average_vehicle_capacity=300, average_moved_capacity=300, ) feeder_lsv = LargeScheduledVehicle.create( vehicle_name="TestFeeder1", capacity_in_teu=300, moved_capacity=schedule.average_moved_capacity, scheduled_arrival=now, schedule=schedule ) Feeder.create( large_scheduled_vehicle=feeder_lsv ) aip = TruckArrivalInformationForPickup.create( realized_container_pickup_time=datetime.datetime.now() + datetime.timedelta(hours=25) ) truck = Truck.create( delivers_container=False, picks_up_container=True, truck_arrival_information_for_delivery=None, truck_arrival_information_for_pickup=aip ) Container.create( weight=20, length=ContainerLength.twenty_feet, storage_requirement=StorageRequirement.standard, delivered_by=ModeOfTransport.feeder, delivered_by_large_scheduled_vehicle=feeder_lsv, picked_up_by=ModeOfTransport.truck, picked_up_by_initial=ModeOfTransport.truck, picked_up_by_truck=truck ) aip_2 = TruckArrivalInformationForPickup.create( realized_container_pickup_time=datetime.datetime.now() + datetime.timedelta(hours=12) ) truck_2 = Truck.create( delivers_container=False, picks_up_container=True, truck_arrival_information_for_delivery=None, truck_arrival_information_for_pickup=aip_2 ) Container.create( weight=20, length=ContainerLength.forty_feet, storage_requirement=StorageRequirement.standard, delivered_by=ModeOfTransport.feeder, delivered_by_large_scheduled_vehicle=feeder_lsv, picked_up_by=ModeOfTransport.truck, picked_up_by_initial=ModeOfTransport.truck, picked_up_by_truck=truck_2 ) used_quay_side_capacity_over_time = self.analysis.get_throughput_over_time() self.assertEqual(len(used_quay_side_capacity_over_time), 3) self.assertSetEqual(set(used_quay_side_capacity_over_time.values()), {0, 2}) ``` #### File: tests/previews/test_container_flow_by_vehicle_type_preview.py ```python import datetime import unittest from conflowgen.domain_models.data_types.mode_of_transport import ModeOfTransport from conflowgen.domain_models.distribution_models.mode_of_transport_distribution import ModeOfTransportDistribution from conflowgen.domain_models.distribution_repositories.mode_of_transport_distribution_repository import \ ModeOfTransportDistributionRepository from conflowgen.domain_models.large_vehicle_schedule import Schedule from conflowgen.previews.container_flow_by_vehicle_type_preview import \ ContainerFlowByVehicleTypePreview from conflowgen.tests.substitute_peewee_database import setup_sqlite_in_memory_db class TestContainerFlowByVehicleTypePreview(unittest.TestCase): def setUp(self) -> None: """Create container database in memory""" self.sqlite_db = setup_sqlite_in_memory_db() self.sqlite_db.create_tables([ Schedule, ModeOfTransportDistribution ]) now = datetime.datetime.now() ModeOfTransportDistributionRepository().set_mode_of_transport_distributions({ ModeOfTransport.truck: { ModeOfTransport.truck: 0, ModeOfTransport.train: 0, ModeOfTransport.barge: 0, ModeOfTransport.feeder: 0.5, ModeOfTransport.deep_sea_vessel: 0.5 }, ModeOfTransport.train: { ModeOfTransport.truck: 0, ModeOfTransport.train: 0, ModeOfTransport.barge: 0, ModeOfTransport.feeder: 0.5, ModeOfTransport.deep_sea_vessel: 0.5 }, ModeOfTransport.barge: { ModeOfTransport.truck: 0, ModeOfTransport.train: 0, ModeOfTransport.barge: 0, ModeOfTransport.feeder: 0.5, ModeOfTransport.deep_sea_vessel: 0.5 }, ModeOfTransport.feeder: { ModeOfTransport.truck: 0.2, ModeOfTransport.train: 0.4, ModeOfTransport.barge: 0.1, ModeOfTransport.feeder: 0.15, ModeOfTransport.deep_sea_vessel: 0.15 }, ModeOfTransport.deep_sea_vessel: { ModeOfTransport.truck: 0.2, ModeOfTransport.train: 0.4, ModeOfTransport.barge: 0.1, ModeOfTransport.feeder: 0.15, ModeOfTransport.deep_sea_vessel: 0.15 } }) self.preview = ContainerFlowByVehicleTypePreview( start_date=now.date(), end_date=(now + datetime.timedelta(weeks=2)).date(), transportation_buffer=0.2 ) def test_with_no_schedules(self): """If no schedules are provided, no capacity is needed""" empty_flow = self.preview.get_inbound_to_outbound_flow() self.assertSetEqual(set(ModeOfTransport), set(empty_flow.keys())) for mode_of_transport_from in ModeOfTransport: flow_from_vehicle_type = empty_flow[mode_of_transport_from] self.assertSetEqual(set(ModeOfTransport), set(flow_from_vehicle_type.keys())) for mode_of_transport_to in ModeOfTransport: capacity_in_teu = flow_from_vehicle_type[mode_of_transport_to] self.assertEqual(capacity_in_teu, 0, f"Expect no flow from {mode_of_transport_from} to " f"{mode_of_transport_to} but it was {capacity_in_teu}") def test_with_single_arrival_schedules(self): one_week_later = datetime.datetime.now() + datetime.timedelta(weeks=1) schedule = Schedule.create( vehicle_type=ModeOfTransport.feeder, service_name="TestFeederService", vehicle_arrives_at=one_week_later.date(), vehicle_arrives_at_time=one_week_later.time(), average_vehicle_capacity=300, average_moved_capacity=300, vehicle_arrives_every_k_days=-1 ) schedule.save() flow_with_one_entry = self.preview.get_inbound_to_outbound_flow() self.assertSetEqual(set(ModeOfTransport), set(flow_with_one_entry.keys())) uninvolved_vehicles = set(ModeOfTransport) - {ModeOfTransport.feeder, ModeOfTransport.truck} for mode_of_transport_from in uninvolved_vehicles: flow_from_vehicle_type = flow_with_one_entry[mode_of_transport_from] self.assertSetEqual(set(ModeOfTransport), set(flow_from_vehicle_type.keys())) for mode_of_transport_to in ModeOfTransport: capacity_in_teu = flow_from_vehicle_type[mode_of_transport_to] self.assertEqual(capacity_in_teu, 0, f"Expect no flow from {mode_of_transport_from} to " f"{mode_of_transport_to} but it was {capacity_in_teu}") flow_to_feeder = flow_with_one_entry[ModeOfTransport.feeder] for mode_of_transport_to in (set(ModeOfTransport) - {ModeOfTransport.barge}): transported_capacity = flow_to_feeder[mode_of_transport_to] self.assertGreater(transported_capacity, 0) flow_from_truck_to_feeder = flow_with_one_entry[ModeOfTransport.truck][ModeOfTransport.feeder] self.assertGreater(flow_from_truck_to_feeder, 0, "Some containers must be delivered by truck for the feeder") ``` #### File: tests/previews/test_inbound_and_outbound_vehicle_capacity_preview.py ```python import datetime import unittest from conflowgen.domain_models.distribution_repositories.mode_of_transport_distribution_repository import \ ModeOfTransportDistributionRepository from conflowgen.previews.inbound_and_outbound_vehicle_capacity_preview import \ InboundAndOutboundVehicleCapacityPreview from conflowgen.domain_models.data_types.mode_of_transport import ModeOfTransport from conflowgen.domain_models.distribution_models.mode_of_transport_distribution import ModeOfTransportDistribution from conflowgen.domain_models.large_vehicle_schedule import Schedule from conflowgen.tests.substitute_peewee_database import setup_sqlite_in_memory_db class TestInboundAndOutboundVehicleCapacityPreview(unittest.TestCase): def setUp(self) -> None: """Create container database in memory""" self.sqlite_db = setup_sqlite_in_memory_db() self.sqlite_db.create_tables([ Schedule, ModeOfTransportDistribution ]) now = datetime.datetime.now() ModeOfTransportDistributionRepository().set_mode_of_transport_distributions({ ModeOfTransport.truck: { ModeOfTransport.truck: 0, ModeOfTransport.train: 0, ModeOfTransport.barge: 0, ModeOfTransport.feeder: 0.5, ModeOfTransport.deep_sea_vessel: 0.5 }, ModeOfTransport.train: { ModeOfTransport.truck: 0, ModeOfTransport.train: 0, ModeOfTransport.barge: 0, ModeOfTransport.feeder: 0.5, ModeOfTransport.deep_sea_vessel: 0.5 }, ModeOfTransport.barge: { ModeOfTransport.truck: 0, ModeOfTransport.train: 0, ModeOfTransport.barge: 0, ModeOfTransport.feeder: 0.5, ModeOfTransport.deep_sea_vessel: 0.5 }, ModeOfTransport.feeder: { ModeOfTransport.truck: 0.2, ModeOfTransport.train: 0.4, ModeOfTransport.barge: 0.1, ModeOfTransport.feeder: 0.15, ModeOfTransport.deep_sea_vessel: 0.15 }, ModeOfTransport.deep_sea_vessel: { ModeOfTransport.truck: 0.2, ModeOfTransport.train: 0.4, ModeOfTransport.barge: 0.1, ModeOfTransport.feeder: 0.15, ModeOfTransport.deep_sea_vessel: 0.15 } }) self.preview = InboundAndOutboundVehicleCapacityPreview( start_date=now.date(), end_date=(now + datetime.timedelta(weeks=2)).date(), transportation_buffer=0.2 ) def test_inbound_with_no_schedules(self): """If no schedules are provided, no capacity is needed""" empty_capacity = self.preview.get_inbound_capacity_of_vehicles() self.assertSetEqual(set(ModeOfTransport), set(empty_capacity.keys())) for mode_of_transport in ModeOfTransport: capacity_in_teu = empty_capacity[mode_of_transport] self.assertEqual(capacity_in_teu, 0) def test_inbound_with_single_arrival_schedules(self): one_week_later = datetime.datetime.now() + datetime.timedelta(weeks=1) schedule = Schedule.create( vehicle_type=ModeOfTransport.feeder, service_name="TestFeederService", vehicle_arrives_at=one_week_later.date(), vehicle_arrives_at_time=one_week_later.time(), average_vehicle_capacity=300, average_moved_capacity=300, vehicle_arrives_every_k_days=-1 ) schedule.save() capacity_with_one_feeder = self.preview.get_inbound_capacity_of_vehicles() self.assertSetEqual(set(ModeOfTransport), set(capacity_with_one_feeder.keys())) uninvolved_vehicles = ( set(ModeOfTransport.get_scheduled_vehicles()) - {ModeOfTransport.feeder, ModeOfTransport.truck} ) for mode_of_transport in uninvolved_vehicles: capacity_in_teu = capacity_with_one_feeder[mode_of_transport] self.assertEqual(capacity_in_teu, 0) inbound_capacity_of_feeder_in_teu = capacity_with_one_feeder[ModeOfTransport.feeder] self.assertEqual(inbound_capacity_of_feeder_in_teu, 300) # based on the seeded ModeOfTransportDistribution, the following value might vary inbound_capacity_of_trucks_in_teu = capacity_with_one_feeder[ModeOfTransport.truck] self.assertGreater(inbound_capacity_of_trucks_in_teu, 0) self.assertLess(inbound_capacity_of_trucks_in_teu, 300) def test_inbound_with_several_arrivals_schedules(self): two_days_later = datetime.datetime.now() + datetime.timedelta(days=2) schedule = Schedule.create( vehicle_type=ModeOfTransport.feeder, service_name="TestFeederService", vehicle_arrives_at=two_days_later.date(), vehicle_arrives_at_time=two_days_later.time(), average_vehicle_capacity=300, average_moved_capacity=300 ) schedule.save() capacity_with_one_feeder = self.preview.get_inbound_capacity_of_vehicles() self.assertSetEqual(set(ModeOfTransport), set(capacity_with_one_feeder.keys())) uninvolved_vehicles = ( set(ModeOfTransport.get_scheduled_vehicles()) - {ModeOfTransport.feeder, ModeOfTransport.truck} ) for mode_of_transport in uninvolved_vehicles: capacity_in_teu = capacity_with_one_feeder[mode_of_transport] self.assertEqual(capacity_in_teu, 0) inbound_capacity_of_feeder_in_teu = capacity_with_one_feeder[ModeOfTransport.feeder] self.assertEqual(inbound_capacity_of_feeder_in_teu, 600) # based on the seeded ModeOfTransportDistribution, this value might vary if not properly set inbound_capacity_of_trucks_in_teu = capacity_with_one_feeder[ModeOfTransport.truck] self.assertAlmostEqual(inbound_capacity_of_trucks_in_teu, 120) def test_outbound_average_capacity_with_several_arrivals_schedules(self): """`capacity_with_one_feeder, _ = self.preview.get_outbound_capacity_of_vehicles()` is the key difference!""" two_days_later = datetime.datetime.now() + datetime.timedelta(days=2) schedule = Schedule.create( vehicle_type=ModeOfTransport.feeder, service_name="TestFeederService", vehicle_arrives_at=two_days_later.date(), vehicle_arrives_at_time=two_days_later.time(), average_vehicle_capacity=300, average_moved_capacity=300 ) schedule.save() capacity_with_one_feeder, _ = self.preview.get_outbound_capacity_of_vehicles() self.assertSetEqual(set(ModeOfTransport), set(capacity_with_one_feeder.keys())) uninvolved_vehicles = ( set(ModeOfTransport.get_scheduled_vehicles()) - {ModeOfTransport.feeder, ModeOfTransport.truck} ) for mode_of_transport in uninvolved_vehicles: capacity_in_teu = capacity_with_one_feeder[mode_of_transport] self.assertEqual(capacity_in_teu, 0) feeder_vessel_capacity_in_teu = capacity_with_one_feeder[ModeOfTransport.feeder] self.assertEqual(feeder_vessel_capacity_in_teu, 600) # based on the seeded ModeOfTransportDistribution, this value might vary if not properly set truck_capacity_in_teu = capacity_with_one_feeder[ModeOfTransport.truck] self.assertGreater(truck_capacity_in_teu, 0) self.assertLess(truck_capacity_in_teu, feeder_vessel_capacity_in_teu) self.assertAlmostEqual(truck_capacity_in_teu, 120, msg="20% of feeder traffic goes to trucks (600*0.2)") def test_outbound_maximum_capacity_with_several_arrivals_schedules(self): """`_, capacity_with_one_feeder = self.preview.get_outbound_capacity_of_vehicles()` is the key difference!""" two_days_later = datetime.datetime.now() + datetime.timedelta(days=2) schedule = Schedule.create( vehicle_type=ModeOfTransport.feeder, service_name="TestFeederService", vehicle_arrives_at=two_days_later.date(), vehicle_arrives_at_time=two_days_later.time(), average_vehicle_capacity=400, average_moved_capacity=300 ) schedule.save() _, capacity_with_one_feeder = self.preview.get_outbound_capacity_of_vehicles() self.assertSetEqual(set(ModeOfTransport), set(capacity_with_one_feeder.keys())) uninvolved_vehicles = ( set(ModeOfTransport.get_scheduled_vehicles()) - {ModeOfTransport.feeder, ModeOfTransport.truck} ) for mode_of_transport in uninvolved_vehicles: capacity_in_teu = capacity_with_one_feeder[mode_of_transport] self.assertEqual(capacity_in_teu, 0) feeder_vessel_capacity_in_teu = capacity_with_one_feeder[ModeOfTransport.feeder] self.assertEqual(feeder_vessel_capacity_in_teu, 720) # based on the seeded ModeOfTransportDistribution, this value might vary if not properly set truck_capacity_in_teu = capacity_with_one_feeder[ModeOfTransport.truck] self.assertEqual(truck_capacity_in_teu, -1, "There is no maximum capacity for trucks, they are generated " "as they are needed.") ```
{ "source": "1-gut/musicsamples", "score": 2 }
#### File: app/tests/test_urls.py ```python from django.test import SimpleTestCase from django.urls import resolve, reverse from app import views class TestUrls(SimpleTestCase): def test_index_url_resolves(self): url = reverse("home") self.assertEqual(resolve(url).func, views.index) def test_analytics_url_resolves(self): url = reverse("analytics") self.assertEqual(resolve(url).func, views.analytics) def test_reference_url_resolves(self): url = reverse("reference") self.assertEqual(resolve(url).func, views.reference) def test_archive_url_resolves(self): url = reverse("sample_archive") self.assertEqual(resolve(url).func, views.sample_archive) def test_add_sample_url_resolves(self): url = reverse("sample_add") self.assertEqual(resolve(url).func, views.sample_add) def test_view_single_sample_url_resolves(self): url = reverse("sample_detail", kwargs={"pk": 1}) self.assertEqual(resolve(url).func, views.sample_detail) def test_edit_sample_url_resolves(self): url = reverse("sample_edit", kwargs={"pk": 23}) self.assertEqual(resolve(url).func, views.sample_edit) def test_delete_sample_url_resolves(self): url = reverse("sample_delete", kwargs={"pk": 3}) self.assertEqual(resolve(url).func, views.sample_delete) def test_restore_sample_url_resolves(self): url = reverse("sample_restore", kwargs={"pk": 3}) self.assertEqual(resolve(url).func, views.sample_restore) def test_checkout_sample_url_resolves(self): url = reverse("sample_checkout", kwargs={"pk": 3}) self.assertEqual(resolve(url).func, views.sample_checkout) def test_search_url_resolves(self): url = reverse("sample_search") self.assertEqual(resolve(url).func, views.sample_search) def test_export_excel_url_resolves(self): url = reverse("export_excel") self.assertEqual(resolve(url).func, views.export_excel) def test_account_page_url_resolves(self): url = reverse("account") self.assertEqual(resolve(url).func, views.account) def test_autocomplete_locations_url_resolves(self): url = reverse("autocomplete_locations") self.assertEqual(resolve(url).func, views.autocomplete_locations) def test_autocomplete_patient_id_url_resolves(self): url = reverse("autocomplete_patients") self.assertEqual(resolve(url).func, views.autocomplete_patient_id) def test_barcode_url_resolves(self): url = reverse("barcode") self.assertEqual(resolve(url).func, views.barcode) def test_barcode_samples_used_url_resolves(self): url = reverse("barcode_samples_used") self.assertEqual(resolve(url).func, views.barcode_samples_used) def test_data_export_url_resolves(self): url = reverse("data_export") self.assertEqual(resolve(url).func, views.data_export) def test_export_study_samples_url(self): url = reverse("export_study_samples", kwargs={"study_name": "gidamps"}) self.assertEqual(resolve(url).func, views.export_study_samples) def test_filter_url(self): url = reverse("filter") self.assertEqual(resolve(url).func, views.filter) def test_filter_export_csv_url(self): url = reverse("filter_export_csv") self.assertEqual(resolve(url).func, views.filter_export_csv) ``` #### File: musicsamples/app/utils.py ```python import csv import datetime from django.http import HttpResponse def export_csv(queryset, study_name="gtrac"): """ Takes in queryset, returns csv download response study_name parameter is optional to control the name of the csv file. """ current_date = datetime.datetime.now().strftime("%d-%b-%Y") response = HttpResponse(content_type="text/csv") response["Content-Disposition"] = 'attachment; filename="%s_samples_%s.csv"' % ( study_name, current_date, ) writer = csv.writer(response) field_names = [field.name for field in queryset.model._meta.get_fields()] writer.writerow(field_names) for row in queryset: values = [] for field in field_names: value = getattr(row, field) if value is None: value = "" values.append(value) writer.writerow(values) return response ```
{ "source": "1handclapping/CumulusCI", "score": 2 }
#### File: core/tests/test_config.py ```python from __future__ import absolute_import import os import unittest import mock from cumulusci.core.config import BaseConfig from cumulusci.core.config import BaseGlobalConfig from cumulusci.core.config import BaseProjectConfig from cumulusci.core.config import BaseTaskFlowConfig from cumulusci.core.config import OrgConfig from cumulusci.core.exceptions import ConfigError from cumulusci.core.exceptions import DependencyResolutionError from cumulusci.core.exceptions import KeychainNotFound from cumulusci.core.exceptions import FlowNotFoundError from cumulusci.core.exceptions import TaskNotFoundError from cumulusci.utils import temporary_dir class TestBaseConfig(unittest.TestCase): def test_getattr_toplevel_key(self): config = BaseConfig() config.config = {"foo": "bar"} self.assertEqual(config.foo, "bar") def test_getattr_toplevel_key_missing(self): config = BaseConfig() config.config = {} self.assertEqual(config.foo, None) def test_getattr_child_key(self): config = BaseConfig() config.config = {"foo": {"bar": "baz"}} self.assertEqual(config.foo__bar, "baz") def test_getattr_child_parent_key_missing(self): config = BaseConfig() config.config = {} self.assertEqual(config.foo__bar, None) def test_getattr_child_key_missing(self): config = BaseConfig() config.config = {"foo": {}} self.assertEqual(config.foo__bar, None) def test_getattr_default_toplevel(self): config = BaseConfig() config.config = {"foo": "bar"} config.defaults = {"foo": "default"} self.assertEqual(config.foo, "bar") def test_getattr_default_toplevel_missing_default(self): config = BaseConfig() config.config = {"foo": "bar"} config.defaults = {} self.assertEqual(config.foo, "bar") def test_getattr_default_toplevel_missing_config(self): config = BaseConfig() config.config = {} config.defaults = {"foo": "default"} self.assertEqual(config.foo, "default") def test_getattr_default_child(self): config = BaseConfig() config.config = {"foo": {"bar": "baz"}} config.defaults = {"foo__bar": "default"} self.assertEqual(config.foo__bar, "baz") def test_getattr_default_child_missing_default(self): config = BaseConfig() config.config = {"foo": {"bar": "baz"}} config.defaults = {} self.assertEqual(config.foo__bar, "baz") def test_getattr_default_child_missing_config(self): config = BaseConfig() config.config = {} config.defaults = {"foo__bar": "default"} self.assertEqual(config.foo__bar, "default") class DummyContents(object): def __init__(self, content): self.decoded = content class DummyRepository(object): default_branch = "master" _api = "http://" def __init__(self, owner, name, contents, releases=None): self.owner = owner self.name = name self.html_url = "https://github.com/{}/{}".format(owner, name) self._contents = contents self._releases = releases def file_contents(self, path, **kw): try: return self._contents[path] except KeyError: raise AssertionError("Accessed unexpected file: {}".format(path)) def directory_contents(self, path, **kw): try: return self._contents[path] except KeyError: raise AssertionError("Accessed unexpected file: {}".format(path)) def _build_url(self, *args, **kw): return self._api def _get(self, url): res = mock.Mock() res.json.return_value = {"name": "2"} return res def releases(self): return iter(self._releases) class DummyRelease(object): def __init__(self, tag_name, name=None): self.tag_name = tag_name self.name = name CUMULUSCI_TEST_REPO = DummyRepository( "SFDO-Tooling", "CumulusCI-Test", { "cumulusci.yml": DummyContents( b""" project: name: CumulusCI-Test package: name: Cumulus-Test namespace: ccitest git: repo_url: https://github.com/SFDO-Tooling/CumulusCI-Test dependencies: - github: https://github.com/SFDO-Tooling/CumulusCI-Test-Dep """ ), "unpackaged/pre": {"pre": {}, "skip": {}}, "src": {"src": ""}, "unpackaged/post": {"post": {}, "skip": {}}, }, ) CUMULUSCI_TEST_DEP_REPO = DummyRepository( "SFDO-Tooling", "CumulusCI-Test-Dep", { "cumulusci.yml": DummyContents( b""" project: name: CumulusCI-Test-Dep package: name: Cumulus-Test-Dep namespace: ccitestdep git: repo_url: https://github.com/SFDO-Tooling/CumulusCI-Test-Dep """ ), "unpackaged/pre": {}, "src": {}, "unpackaged/post": {}, }, ) CUMULUSCI_REPO = DummyRepository( "SFDO-Tooling", "CumulusCI", {}, [ DummyRelease("beta/1.0-Beta_1"), DummyRelease("beta/bogus"), DummyRelease("release/1.0"), ], ) class DummyGithub(object): def repository(self, owner, name): if name == "CumulusCI": return CUMULUSCI_REPO elif name == "CumulusCI-Test": return CUMULUSCI_TEST_REPO elif name == "CumulusCI-Test-Dep": return CUMULUSCI_TEST_DEP_REPO else: raise AssertionError("Unexpected repository: {}".format(name)) class DummyService(object): password = "password" def __init__(self, name): self.name = name class DummyKeychain(object): def get_service(self, name): return DummyService(name) class TestBaseProjectConfig(unittest.TestCase): def test_config_global_local(self): global_config = BaseGlobalConfig() global_config.config_global_local = {} config = BaseProjectConfig(global_config) self.assertIs(global_config.config_global_local, config.config_global_local) def test_config_global(self): global_config = BaseGlobalConfig() global_config.config_global = {} config = BaseProjectConfig(global_config) self.assertIs(global_config.config_global, config.config_global) def test_repo_info(self): env = { "CUMULUSCI_AUTO_DETECT": "1", "HEROKU_TEST_RUN_ID": "TEST1", "HEROKU_TEST_RUN_BRANCH": "master", "HEROKU_TEST_RUN_COMMIT_VERSION": "HEAD", "CUMULUSCI_REPO_BRANCH": "feature/test", "CUMULUSCI_REPO_COMMIT": "HEAD~1", "CUMULUSCI_REPO_ROOT": ".", "CUMULUSCI_REPO_URL": "https://github.com/SFDO-Tooling/CumulusCI-Test.git", } with mock.patch.dict(os.environ, env): config = BaseProjectConfig(BaseGlobalConfig()) result = config.repo_info self.assertEqual( { "ci": "heroku", "name": "CumulusCI-Test", "owner": "SFDO-Tooling", "branch": "feature/test", "commit": "HEAD~1", "root": ".", "url": "https://github.com/SFDO-Tooling/CumulusCI-Test.git", }, result, ) def test_repo_info_missing_env(self): env = { "CUMULUSCI_AUTO_DETECT": "1", "HEROKU_TEST_RUN_ID": "TEST1", "HEROKU_TEST_RUN_BRANCH": "master", "HEROKU_TEST_RUN_COMMIT_VERSION": "HEAD", "CUMULUSCI_REPO_BRANCH": "feature/test", "CUMULUSCI_REPO_COMMIT": "HEAD~1", "CUMULUSCI_REPO_ROOT": ".", } with mock.patch.dict(os.environ, env): with self.assertRaises(ConfigError): config = BaseProjectConfig(BaseGlobalConfig()) config.repo_info def test_repo_root_from_env(self): config = BaseProjectConfig(BaseGlobalConfig()) config._repo_info = {"root": "."} self.assertEqual(".", config.repo_root) def test_repo_name_from_repo_info(self): config = BaseProjectConfig(BaseGlobalConfig()) config._repo_info = {"name": "CumulusCI"} self.assertEqual("CumulusCI", config.repo_name) def test_repo_name_no_repo_root(self): config = BaseProjectConfig(BaseGlobalConfig()) with temporary_dir() as d: self.assertIsNone(config.repo_name) def test_repo_name_from_git(self): config = BaseProjectConfig(BaseGlobalConfig()) self.assertEqual("CumulusCI", config.repo_name) def test_repo_url_from_repo_info(self): config = BaseProjectConfig(BaseGlobalConfig()) config._repo_info = {"url": "https://github.com/SFDO-Tooling/CumulusCI"} self.assertEqual("https://github.com/SFDO-Tooling/CumulusCI", config.repo_url) def test_repo_url_no_repo_root(self): config = BaseProjectConfig(BaseGlobalConfig()) with temporary_dir() as d: self.assertIsNone(config.repo_url) def test_repo_url_from_git(self): config = BaseProjectConfig(BaseGlobalConfig()) self.assertIn("/CumulusCI", config.repo_url) def test_repo_owner_from_repo_info(self): config = BaseProjectConfig(BaseGlobalConfig()) config._repo_info = {"owner": "SFDO-Tooling"} self.assertEqual("SFDO-Tooling", config.repo_owner) def test_repo_owner_no_repo_root(self): config = BaseProjectConfig(BaseGlobalConfig()) with temporary_dir() as d: self.assertIsNone(config.repo_owner) def test_repo_branch_from_repo_info(self): config = BaseProjectConfig(BaseGlobalConfig()) config._repo_info = {"branch": "master"} self.assertEqual("master", config.repo_branch) def test_repo_branch_no_repo_root(self): config = BaseProjectConfig(BaseGlobalConfig()) with temporary_dir() as d: self.assertIsNone(config.repo_branch) def test_repo_commit_from_repo_info(self): config = BaseProjectConfig(BaseGlobalConfig()) config._repo_info = {"commit": "abcdef"} self.assertEqual("abcdef", config.repo_commit) def test_repo_commit_no_repo_root(self): config = BaseProjectConfig(BaseGlobalConfig()) with temporary_dir() as d: self.assertIsNone(config.repo_commit) def test_repo_commit_no_repo_branch(self): config = BaseProjectConfig(BaseGlobalConfig()) with temporary_dir() as d: os.mkdir(os.path.join(d, ".git")) with open(os.path.join(d, ".git", "HEAD"), "w") as f: f.write("abcdef") self.assertIsNone(config.repo_commit) def test_repo_commit_packed_refs(self): config = BaseProjectConfig(BaseGlobalConfig()) with temporary_dir() as d: os.system("git init") with open(os.path.join(d, ".git", "packed-refs"), "w") as f: f.write("# pack-refs with: peeled fully-peeled sorted\n") f.write("#\n") f.write( "8ce67f4519190cd1ec9785105168e21b9599bc27 refs/remotes/origin/master\n" ) self.assertIsNotNone(config.repo_commit) def test_use_sentry(self): config = BaseProjectConfig(BaseGlobalConfig()) config.keychain = mock.Mock() self.assertTrue(config.use_sentry) @mock.patch("raven.Client") def test_init_sentry(self, raven_client): config = BaseProjectConfig(BaseGlobalConfig()) config.keychain = mock.Mock() config.init_sentry() self.assertEqual( {"repo", "commit", "cci version", "branch"}, set(raven_client.call_args[1]["tags"].keys()), ) def test_get_latest_version(self): config = BaseProjectConfig( BaseGlobalConfig(), { "project": { "git": {"prefix_beta": "beta/", "prefix_release": "release/"} } }, ) config.get_github_api = DummyGithub result = config.get_latest_version(beta=True) self.assertEqual("1.0 (Beta 1)", result) def test_config_project_path_no_repo_root(self): config = BaseProjectConfig(BaseGlobalConfig()) with temporary_dir() as d: self.assertIsNone(config.config_project_path) def test_get_tag_for_version(self): config = BaseProjectConfig( BaseGlobalConfig(), {"project": {"git": {"prefix_release": "release/"}}} ) self.assertEqual("release/1.0", config.get_tag_for_version("1.0")) def test_get_tag_for_version_beta(self): config = BaseProjectConfig( BaseGlobalConfig(), {"project": {"git": {"prefix_beta": "beta/"}}} ) self.assertEqual("beta/1.0-Beta_1", config.get_tag_for_version("1.0 (Beta 1)")) def test_get_version_for_tag(self): config = BaseProjectConfig( BaseGlobalConfig(), { "project": { "git": {"prefix_beta": "beta/", "prefix_release": "release/"} } }, ) self.assertEqual("1.0", config.get_version_for_tag("release/1.0")) def test_check_keychain(self): config = BaseProjectConfig(BaseGlobalConfig()) with self.assertRaises(KeychainNotFound): config._check_keychain() def test_get_static_dependencies(self): dep = {"namespace": "npsp", "version": "3"} config = BaseProjectConfig( BaseGlobalConfig(), {"project": {"dependencies": [dep]}} ) self.assertEqual([dep], config.get_static_dependencies()) def test_get_static_dependencies_no_dependencies(self): config = BaseProjectConfig(BaseGlobalConfig()) self.assertIsNone(config.get_static_dependencies()) def test_pretty_dependencies(self): repo = mock.Mock(full_name="TestRepo") dep = { "namespace": "npsp", "version": "3", "boolean": False, "dependencies": [{"repo": repo, "dependencies": []}], } config = BaseProjectConfig(BaseGlobalConfig()) result = "\n".join(config.pretty_dependencies([dep])) self.assertEqual( """ - dependencies: - repo: TestRepo namespace: npsp version: 3""", result, ) def test_process_github_dependency(self): global_config = BaseGlobalConfig() config = BaseProjectConfig(global_config) config.get_github_api = DummyGithub config.keychain = DummyKeychain() result = config.process_github_dependency( { "github": "https://github.com/SFDO-Tooling/CumulusCI-Test.git", "unmanaged": True, "skip": ["unpackaged/pre/skip", "unpackaged/post/skip"], } ) self.assertEqual( result, [ { u"repo": CUMULUSCI_TEST_REPO, u"ref": None, u"subfolder": u"unpackaged/pre/pre", u"unmanaged": True, u"namespace_inject": None, u"namespace_strip": None, u"namespace_tokenize": None, }, {u"version": "2", u"namespace": "ccitestdep"}, { u"repo": CUMULUSCI_TEST_REPO, u"ref": None, u"subfolder": u"src", u"unmanaged": True, u"namespace_inject": None, u"namespace_strip": None, u"namespace_tokenize": None, }, { u"repo": CUMULUSCI_TEST_REPO, u"ref": None, u"subfolder": u"unpackaged/post/post", u"unmanaged": True, u"namespace_inject": "ccitest", u"namespace_strip": None, u"namespace_tokenize": None, }, ], ) def test_process_github_dependency_with_tag(self): global_config = BaseGlobalConfig() config = BaseProjectConfig(global_config) config.get_github_api = DummyGithub config.keychain = DummyKeychain() result = config.process_github_dependency( { "github": "https://github.com/SFDO-Tooling/CumulusCI-Test.git", "tag": "release/1.0", } ) self.assertIn( { "namespace": "ccitest", "version": "1.0", "dependencies": [{"namespace": "ccitestdep", "version": "2"}], }, result, ) def test_process_github_dependency_latest(self): global_config = BaseGlobalConfig() config = BaseProjectConfig(global_config) config.get_github_api = DummyGithub config.keychain = DummyKeychain() CUMULUSCI_TEST_DEP_REPO._releases = [ DummyRelease("beta/1.1-Beta_1", "1.1 (Beta 1)"), DummyRelease("release/1.0"), ] result = config.process_github_dependency( { "github": "https://github.com/SFDO-Tooling/CumulusCI-Test.git", "unmanaged": True, "skip": ["unpackaged/pre/skip", "unpackaged/post/skip"], }, "", include_beta=True, ) self.assertEqual( result, [ { u"repo": CUMULUSCI_TEST_REPO, u"ref": None, u"subfolder": u"unpackaged/pre/pre", u"unmanaged": True, u"namespace_inject": None, u"namespace_strip": None, u"namespace_tokenize": None, }, {u"version": "1.1 (Beta 1)", u"namespace": "ccitestdep"}, { u"repo": CUMULUSCI_TEST_REPO, u"ref": None, u"subfolder": u"src", u"unmanaged": True, u"namespace_inject": None, u"namespace_strip": None, u"namespace_tokenize": None, }, { u"repo": CUMULUSCI_TEST_REPO, u"ref": None, u"subfolder": u"unpackaged/post/post", u"unmanaged": True, u"namespace_inject": "ccitest", u"namespace_strip": None, u"namespace_tokenize": None, }, ], ) CUMULUSCI_TEST_DEP_REPO._releases = None def test_process_github_dependency_cannot_find_latest(self): global_config = BaseGlobalConfig() config = BaseProjectConfig(global_config) config.get_github_api = DummyGithub config.keychain = DummyKeychain() CUMULUSCI_TEST_DEP_REPO._get = mock.Mock(side_effect=Exception) with self.assertRaises(DependencyResolutionError): config.process_github_dependency( {"github": "https://github.com/SFDO-Tooling/CumulusCI-Test-Dep.git"} ) del CUMULUSCI_TEST_DEP_REPO._get class TestBaseTaskFlowConfig(unittest.TestCase): def setUp(self): self.task_flow_config = BaseTaskFlowConfig( { "tasks": { "deploy": {"description": "Deploy Task"}, "manage": {}, "control": {}, }, "flows": { "coffee": {"description": "Coffee Flow"}, "juice": {"description": "Juice Flow"}, }, } ) def test_list_tasks(self): tasks = self.task_flow_config.list_tasks() self.assertEqual(len(tasks), 3) deploy = [task for task in tasks if task["name"] == "deploy"][0] self.assertEqual(deploy["description"], "Deploy Task") def test_get_task(self): task = self.task_flow_config.get_task("deploy") self.assertIsInstance(task, BaseConfig) self.assertIn(("description", "Deploy Task"), task.config.items()) def test_no_task(self): with self.assertRaises(TaskNotFoundError): self.task_flow_config.get_task("robotic_superstar") def test_get_flow(self): flow = self.task_flow_config.get_flow("coffee") self.assertIsInstance(flow, BaseConfig) self.assertIn(("description", "Coffee Flow"), flow.config.items()) def test_no_flow(self): with self.assertRaises(FlowNotFoundError): self.task_flow_config.get_flow("water") def test_list_flows(self): flows = self.task_flow_config.list_flows() self.assertEqual(len(flows), 2) coffee = [flow for flow in flows if flow["name"] == "coffee"][0] self.assertEqual(coffee["description"], "Coffee Flow") class TestOrgConfig(unittest.TestCase): @mock.patch("cumulusci.core.config.OrgConfig.SalesforceOAuth2") def test_refresh_oauth_token(self, SalesforceOAuth2): config = OrgConfig({"refresh_token": mock.sentinel.refresh_token}, "test") config._load_userinfo = mock.Mock() keychain = mock.Mock() SalesforceOAuth2.return_value = oauth = mock.Mock() oauth.refresh_token.return_value = resp = mock.Mock() resp.json.return_value = {} config.refresh_oauth_token(keychain) oauth.refresh_token.assert_called_once_with(mock.sentinel.refresh_token) def test_refresh_oauth_token_no_connected_app(self): config = OrgConfig({}, "test") with self.assertRaises(AttributeError): config.refresh_oauth_token(None) def test_lightning_base_url(self): config = OrgConfig({"instance_url": "https://na01.salesforce.com"}, "test") self.assertEqual("https://na01.lightning.force.com", config.lightning_base_url) def test_start_url(self): config = OrgConfig( {"instance_url": "https://na01.salesforce.com", "access_token": "TOKEN"}, "test", ) self.assertEqual( "https://na01.salesforce.com/secur/frontdoor.jsp?sid=TOKEN", config.start_url, ) def test_user_id(self): config = OrgConfig({"id": "org/user"}, "test") self.assertEqual("user", config.user_id) def test_can_delete(self): config = OrgConfig({}, "test") self.assertFalse(config.can_delete()) ``` #### File: core/tests/test_flows.py ```python import unittest import logging import mock from collections import Callable from cumulusci.core.flows import BaseFlow from cumulusci.core.tasks import BaseTask from cumulusci.core.config import FlowConfig from cumulusci.core.config import OrgConfig from cumulusci.core.exceptions import FlowConfigError from cumulusci.core.exceptions import FlowInfiniteLoopError from cumulusci.core.exceptions import FlowNotReadyError from cumulusci.core.exceptions import TaskNotFoundError from cumulusci.core.tests.utils import MockLoggingHandler from cumulusci.tests.util import create_project_config import cumulusci.core ORG_ID = "00D000000000001" class _TaskReturnsStuff(BaseTask): def _run_task(self): self.return_values = {"name": "supername"} class _TaskResponseName(BaseTask): task_options = {"response": {"description": "the response to print"}} def _run_task(self): return self.options["response"] class _TaskRaisesException(BaseTask): task_options = { "exception": {"description": "The exception to raise"}, "message": {"description": "The exception message"}, } def _run_task(self): raise self.options["exception"](self.options["message"]) class _SfdcTask(BaseTask): salesforce_task = True def _run_task(self): return -1 @mock.patch("cumulusci.core.flows.BaseFlow._init_org") class TestBaseFlow(unittest.TestCase): """ Tests the expectations of a BaseFlow caller """ @classmethod def setUpClass(cls): super(TestBaseFlow, cls).setUpClass() logger = logging.getLogger(cumulusci.core.__name__) logger.setLevel(logging.DEBUG) cls._flow_log_handler = MockLoggingHandler(logging.DEBUG) logger.addHandler(cls._flow_log_handler) def setUp(self): self.project_config = create_project_config("TestOwner", "TestRepo") self.project_config.config["tasks"] = { "pass_name": { "description": "Pass the name", "class_path": "cumulusci.core.tests.test_flows._TaskReturnsStuff", }, "name_response": { "description": "Pass the name", "class_path": "cumulusci.core.tests.test_flows._TaskResponseName", }, "raise_exception": { "description": "Raises an exception", "class_path": "cumulusci.core.tests.test_flows._TaskRaisesException", "options": { "exception": Exception, "message": "Test raised exception as expected", }, }, "sfdc_task": { "description": "An sfdc task", "class_path": "cumulusci.core.tests.test_flows._SfdcTask", }, } self.project_config.config["flows"] = { "nested_flow": { "description": "A flow that runs inside another flow", "steps": {1: {"task": "pass_name"}}, }, "nested_flow_2": { "description": "A flow that runs inside another flow, and calls another flow", "steps": {1: {"task": "pass_name"}, 2: {"flow": "nested_flow"}}, }, } self.org_config = OrgConfig( {"username": "<EMAIL>", "org_id": ORG_ID}, "test" ) self._flow_log_handler.reset() self.flow_log = self._flow_log_handler.messages def test_init(self, mock_class): """ BaseFlow initializes and offers a logger """ flow_config = FlowConfig({}) mock_class.return_value = None flow = BaseFlow(self.project_config, flow_config, self.org_config) self.assertEqual(hasattr(flow, "logger"), True) def test_is_callable(self, mock_class): """ BaseFlow exposes itself as a callable for use """ flow_config = FlowConfig({}) flow = BaseFlow(self.project_config, flow_config, self.org_config) self.assertIsInstance(flow, Callable) def test_pass_around_values(self, mock_class): """ A flow's options reach into return values from other tasks. """ mock_class.return_value = None # instantiate a flow with two tasks flow_config = FlowConfig( { "description": "Run two tasks", "steps": { 1: {"task": "pass_name"}, 2: { "task": "name_response", "options": {"response": "^^pass_name.name"}, }, }, } ) flow = BaseFlow(self.project_config, flow_config, self.org_config) # run the flow flow() # the flow results for the second task should be 'name' self.assertEqual("supername", flow.step_results[1]) def test_task_options(self, mock_class): """ A flow can accept task options and pass them to the task. """ mock_class.return_value = None # instantiate a flow with two tasks flow_config = FlowConfig( { "description": "Run two tasks", "steps": {1: {"task": "name_response", "options": {"response": "foo"}}}, } ) flow = BaseFlow( self.project_config, flow_config, self.org_config, options={"name_response__response": "bar"}, ) # run the flow flow() # the flow results for the first task should be 'bar' self.assertEqual("bar", flow.step_results[0]) def test_skip_kwarg(self, mock_class): """ A flow can receive during init a list of tasks to skip """ # instantiate a flow with two tasks flow_config = FlowConfig( { "description": "Run two tasks", "steps": { 1: {"task": "pass_name"}, 2: { "task": "name_response", "options": {"response": "^^pass_name.name"}, }, }, } ) flow = BaseFlow( self.project_config, flow_config, self.org_config, skip=["name_response"] ) # run the flow flow() # the number of tasks in the flow should be 1 instead of 2 self.assertEqual(1, len(flow.step_results)) def test_skip_task_value_none(self, mock_class): """ A flow skips any tasks whose name is None to allow override via yaml """ # instantiate a flow with two tasks flow_config = FlowConfig( { "description": "Run two tasks", "steps": {1: {"task": "pass_name"}, 2: {"task": "None"}}, } ) flow = BaseFlow( self.project_config, flow_config, self.org_config, skip=["name_response"] ) # run the flow flow() # the number of tasks in the flow should be 1 instead of 2 self.assertEqual(1, len(flow.step_results)) def test_find_step_by_name_no_steps(self, mock_class): """ Running a flow with no steps throws an error """ # instantiate a flow with two tasks flow_config = FlowConfig({"description": "Run two tasks"}) flow = BaseFlow(self.project_config, flow_config, self.org_config) self.assertIsNone(flow._find_step_by_name("task")) with self.assertRaises(FlowConfigError): flow() def test_find_step_by_name_not_first(self, mock_class): """ The _find_step_by_name method skips tasks that don't exist """ # instantiate a flow with two tasks flow_config = FlowConfig( { "description": "Run two tasks", "steps": { 1: {"task": "pass_name"}, 2: { "task": "name_response", "options": {"response": "^^pass_name.name"}, }, }, } ) flow = BaseFlow(self.project_config, flow_config, self.org_config) flow() task = flow._find_step_by_name("name_response") self.assertEqual( "cumulusci.core.tests.test_flows._TaskResponseName", task.task_config.class_path, ) def test_find_step_by_name__flow(self, mock_class): flow_config = FlowConfig( { "description": "Run two tasks", "steps": { 1: {"flow": "nested_flow"}, 2: { "task": "name_response", "options": { "response": "^^nested_flow.pass_name.name", "from_flow": "^^nested_flow.name", }, }, }, } ) flow = BaseFlow(self.project_config, flow_config, self.org_config) flow() step = flow._find_step_by_name("nested_flow") self.assertIsInstance(step, BaseFlow) def test_render_task_config_empty_value(self, mock_class): """ The _render_task_config method skips option values of None """ # instantiate a flow with two tasks flow_config = FlowConfig( { "description": "Run a tasks", "steps": {1: {"task": "name_response", "options": {"response": None}}}, } ) flow = BaseFlow(self.project_config, flow_config, self.org_config) flow() task = flow._find_step_by_name("name_response") config = flow._render_task_config(task) self.assertEqual(["Options:"], config) def test_task_raises_exception_fail(self, mock_class): """ A flow aborts when a task raises an exception """ flow_config = FlowConfig( {"description": "Run a task", "steps": {1: {"task": "raise_exception"}}} ) flow = BaseFlow(self.project_config, flow_config, self.org_config) self.assertRaises(Exception, flow) def test_task_raises_exception_ignore(self, mock_class): """ A flow continues when a task configured with ignore_failure raises an exception """ flow_config = FlowConfig( { "description": "Run a task", "steps": { 1: {"task": "raise_exception", "ignore_failure": True}, 2: {"task": "pass_name"}, }, } ) flow = BaseFlow(self.project_config, flow_config, self.org_config) flow() self.assertEqual(2, len(flow.steps)) def test_call_no_tasks(self, mock_class): """ A flow with no tasks will have no responses. """ flow_config = FlowConfig({"description": "Run no tasks", "steps": {}}) flow = BaseFlow(self.project_config, flow_config, self.org_config) flow() self.assertEqual([], flow.step_return_values) self.assertEqual([], flow.steps) def test_call_one_task(self, mock_class): """ A flow with one task will execute the task """ flow_config = FlowConfig( {"description": "Run one task", "steps": {1: {"task": "pass_name"}}} ) flow = BaseFlow(self.project_config, flow_config, self.org_config) flow() self.assertTrue( any("Flow Description: Run one task" in s for s in self.flow_log["info"]) ) self.assertEqual([{"name": "supername"}], flow.step_return_values) self.assertEqual(1, len(flow.steps)) def test_call_many_tasks(self, mock_class): """ A flow with many tasks will dispatch each task """ flow_config = FlowConfig( { "description": "Run two tasks", "steps": {1: {"task": "pass_name"}, 2: {"task": "pass_name"}}, } ) flow = BaseFlow(self.project_config, flow_config, self.org_config) flow() self.assertEqual( [{"name": "supername"}, {"name": "supername"}], flow.step_return_values ) self.assertEqual(2, len(flow.steps)) def test_call_task_not_found(self, mock_class): """ A flow with reference to a task that doesn't exist in the project will throw a TaskNotFoundError """ flow_config = FlowConfig( { "description": "Run two tasks", "steps": {1: {"task": "pass_name"}, 2: {"task": "do_delightulthings"}}, } ) with self.assertRaises(TaskNotFoundError): flow = BaseFlow(self.project_config, flow_config, self.org_config) def test_flow_prints_org_id(self, mock_class): """ A flow with an org prints the org ID """ flow_config = FlowConfig( { "description": "Run two tasks", "steps": {1: {"task": "pass_name"}, 2: {"task": "pass_name"}}, } ) flow = BaseFlow(self.project_config, flow_config, self.org_config) flow() org_id_logs = [s for s in self.flow_log["info"] if ORG_ID in s] self.assertEqual(1, len(org_id_logs)) def test_flow_no_org_no_org_id(self, mock_class): """ A flow without an org does not print the org ID """ flow_config = FlowConfig( { "description": "Run two tasks", "steps": {1: {"task": "pass_name"}, 2: {"task": "pass_name"}}, } ) flow = BaseFlow(self.project_config, flow_config, None) flow() self.assertFalse(any(ORG_ID in s for s in self.flow_log["info"])) def test_flow_prints_org_id_once_only(self, mock_class): """ A flow with sf tasks prints the org ID only once.""" flow_config = FlowConfig( { "description": "Run two tasks", "steps": {1: {"task": "sfdc_task"}, 2: {"task": "sfdc_task"}}, } ) flow = BaseFlow(self.project_config, flow_config, self.org_config) flow() org_id_logs = [s for s in self.flow_log["info"] if ORG_ID in s] self.assertEqual(1, len(org_id_logs)) def test_nested_flow(self, mock_class): """ Flows can run inside other flows """ flow_config = FlowConfig( { "description": "Run a task and a flow", "steps": {1: {"task": "pass_name"}, 2: {"flow": "nested_flow"}}, } ) flow = BaseFlow(self.project_config, flow_config, self.org_config) flow() self.assertEqual(2, len(flow.steps)) self.assertEqual(flow.step_return_values[0], flow.step_return_values[1][0]) def test_nested_flow_options(self, mock_class): flow_config = FlowConfig( { "description": "Run a flow with task options", "steps": { 1: {"flow": "nested_flow", "options": {"pass_name": {"foo": "bar"}}} }, } ) flow = BaseFlow(self.project_config, flow_config, self.org_config) flow() self.assertEqual("bar", flow.steps[0].options["pass_name__foo"]) def test_nested_flow_2(self, mock_class): """ Flows can run inside other flows and call other flows """ flow_config = FlowConfig( { "description": "Run a task and a flow", "steps": {1: {"task": "pass_name"}, 2: {"flow": "nested_flow_2"}}, } ) flow = BaseFlow(self.project_config, flow_config, self.org_config) flow() self.assertEqual(2, len(flow.steps)) self.assertEqual(flow.step_return_values[0], flow.step_return_values[1][0]) self.assertEqual(flow.step_return_values[0], flow.step_return_values[1][1][0]) def test_check_infinite_flows(self, mock_class): self.project_config.config["flows"] = { "nested_flow": { "description": "A flow that runs inside another flow", "steps": {1: {"flow": "nested_flow"}}, } } flow_config = FlowConfig({"steps": {1: {"flow": "nested_flow"}}}) with self.assertRaises(FlowInfiniteLoopError): BaseFlow(self.project_config, flow_config, self.org_config) def test_rejects_old_syntax(self, mock_class): flow_config = FlowConfig({"tasks": {1: {"task": "pass_name"}}}) flow = BaseFlow(self.project_config, flow_config, self.org_config) with self.assertRaises(FlowConfigError): flow._get_steps_ordered() def test_rejects_flow_and_task_in_same_step(self, mock_class): flow_config = FlowConfig( {"steps": {1: {"task": "pass_name", "flow": "nested_flow"}}} ) with self.assertRaises(FlowConfigError): BaseFlow(self.project_config, flow_config, self.org_config) def test_call__not_prepped(self, mock_class): flow_config = FlowConfig({}) flow = BaseFlow(self.project_config, flow_config, self.org_config, prep=False) with self.assertRaises(FlowNotReadyError): flow() ``` #### File: salesforce/tests/test_UpdateAdminProfile.py ```python import mock import os import unittest from cumulusci.core.config import BaseGlobalConfig from cumulusci.core.config import BaseProjectConfig from cumulusci.core.config import OrgConfig from cumulusci.core.config import TaskConfig from cumulusci.core.exceptions import TaskOptionsError from cumulusci.tasks.salesforce import UpdateAdminProfile from .util import create_task ADMIN_PROFILE_BEFORE = """<?xml version='1.0' encoding='utf-8'?> <Profile xmlns="http://soap.sforce.com/2006/04/metadata"> <applicationVisibilities> <application>npsp__Nonprofit_CRM</application> <default>true</default> <visible>false</visible> </applicationVisibilities> <classAccess> <apexClass>TestClass</apexClass> <enabled>false</enabled> </classAccess> <fieldPermissions> <field>Account.TestField__c</field> <editable>false</editable> <readable>false</readable> </fieldPermissions> <pageAccesses> <apexPage>TestPage</apexPage> <enabled>false</enabled> </pageAccesses> <recordTypeVisibilities> <recordType>Account.Business_Account</recordType> <default>true</default> <personAccountDefault>true</personAccountDefault> <visible>true</visible> </recordTypeVisibilities> <recordTypeVisibilities> <recordType>Account.HH_Account</recordType> <default>false</default> <personAccountDefault>false</personAccountDefault> <visible>false</visible> </recordTypeVisibilities> <tabVisibilities> <tab>NPSP_Settings</tab> <visibility>Hidden</visibility> </tabVisibilities> </Profile>""" ADMIN_PROFILE_EXPECTED = """<?xml version='1.0' encoding='utf-8'?> <Profile xmlns="http://soap.sforce.com/2006/04/metadata"> <applicationVisibilities> <application>npsp__Nonprofit_CRM</application> <default>true</default> <visible>true</visible> </applicationVisibilities> <classAccess> <apexClass>TestClass</apexClass> <enabled>true</enabled> </classAccess> <fieldPermissions> <field>Account.TestField__c</field> <editable>true</editable> <readable>true</readable> </fieldPermissions> <pageAccesses> <apexPage>TestPage</apexPage> <enabled>true</enabled> </pageAccesses> <recordTypeVisibilities> <recordType>Account.Business_Account</recordType> <default>false</default> <personAccountDefault>false</personAccountDefault> <visible>true</visible> </recordTypeVisibilities> <recordTypeVisibilities> <recordType>Account.HH_Account</recordType> <default>true</default> <personAccountDefault>true</personAccountDefault> <visible>true</visible> </recordTypeVisibilities> <tabVisibilities> <tab>NPSP_Settings</tab> <visibility>DefaultOn</visibility> </tabVisibilities> </Profile>""" class TestUpdateAdminProfile(unittest.TestCase): maxDiff = None def test_run_task(self): task = create_task( UpdateAdminProfile, { "record_types": [ { "record_type": "Account.HH_Account", "default": True, "person_account_default": True, } ], "namespaced_org": True, }, ) def _retrieve_unpackaged(): profiles_path = os.path.join(task.tempdir, "profiles") admin_profile_path = os.path.join(profiles_path, "Admin.profile") os.mkdir(profiles_path) with open(admin_profile_path, "w") as f: f.write(ADMIN_PROFILE_BEFORE) def _check_result(): with open( os.path.join(task.tempdir, "profiles", "Admin.profile"), "r" ) as f: result = f.read() self.assertMultiLineEqual(ADMIN_PROFILE_EXPECTED, result) task._retrieve_unpackaged = _retrieve_unpackaged task._deploy_metadata = _check_result task() def test_run_task__record_type_not_found(self): task = create_task( UpdateAdminProfile, {"record_types": [{"record_type": "DOESNT_EXIST"}], "namespaced_org": True}, ) def _retrieve_unpackaged(): profiles_path = os.path.join(task.tempdir, "profiles") admin_profile_path = os.path.join(profiles_path, "Admin.profile") os.mkdir(profiles_path) with open(admin_profile_path, "w") as f: f.write(ADMIN_PROFILE_BEFORE) task._retrieve_unpackaged = _retrieve_unpackaged with self.assertRaises(TaskOptionsError): task() @mock.patch("cumulusci.salesforce_api.metadata.ApiRetrieveUnpackaged.__call__") def test_retrieve_unpackaged(self, ApiRetrieveUnpackaged): task = create_task(UpdateAdminProfile) task.tempdir = "/tmp" task._retrieve_unpackaged() ApiRetrieveUnpackaged.assert_called_once() def test_deploy_metadata(self): task = create_task(UpdateAdminProfile) task.tempdir = "/tmp" task._get_api = mock.Mock() task._deploy_metadata() task._get_api.assert_called_once() ```
{ "source": "1Harshini/empress", "score": 3 }
#### File: empress/empress/compression_utils.py ```python def remove_empty_samples_and_features(table, sample_metadata, ordination=None): """Removes empty samples and features from the table and sample metadata. This should be called *after* matching the table with the sample metadata and other input artifacts: we assume that the columns of the table DataFrame are equivalent to the indices of the sample metadata DataFrame. Parameters ---------- table: biom.Table Representation of a feature table. sample_metadata: pd.DataFrame Sample metadata. The index should describe sample IDs, and the columns should describe sample metadata fields (e.g. "body site"). ordination: skbio.OrdinationResults, optional Ordination information to show in Emperor alongside Empress. If this is passed, this function will check to see if any of the empty samples or features to be removed from the table are included in the ordination; if so, this will raise an error (because these empty items shouldn't be in the ordination in the first place). Returns ------- filtered_table: biom.Table Copy of the input feature table with empty samples and features removed. filtered_sample_metadata: pd.DataFrame Copy of the input sample metadata with empty samples removed. Raises ------ ValueError - If the input table is completely empty (i.e. all zeroes). - If ordination is not None, and the ordination contains empty samples or features. References ---------- - Adapted from qurro._df_utils.remove_empty_samples_and_features(). """ orig_tbl_samples = set(table.ids()) orig_tbl_features = set(table.ids(axis='observation')) # this code is equivalent to the PR below, we should update once that gets # merged and a newer BIOM release is publicly available # https://github.com/biocore/biom-format/pull/847 filtered_table = table.copy() for ax in {'observation', 'sample'}: filtered_table = filtered_table.filter( table.ids(axis=ax)[table.sum(axis=ax) > 0], axis=ax, inplace=False) if filtered_table.is_empty(): raise ValueError("All samples / features in matched table are empty.") # Let user know about which samples/features may have been dropped, if any. # Also, if we dropped any empty samples, update the sample metadata. filtered_sample_metadata = sample_metadata sample_diff = orig_tbl_samples - set(filtered_table.ids()) if sample_diff: if ordination is not None: empty_samples_in_ord = sample_diff & set(ordination.samples.index) if empty_samples_in_ord: raise ValueError( ( "The ordination contains samples that are empty (i.e. " "all 0s) in the table. Problematic sample IDs: {}" ).format(", ".join(sorted(empty_samples_in_ord))) ) filtered_sample_metadata = filtered_sample_metadata.loc[ filtered_table.ids() ] print("Removed {} empty sample(s).".format(len(sample_diff))) feature_diff = orig_tbl_features - \ set(filtered_table.ids(axis='observation')) if feature_diff: if ordination is not None and ordination.features is not None: empty_feats_in_ord = feature_diff & set(ordination.features.index) if empty_feats_in_ord: raise ValueError( ( "The ordination contains features that are empty " "(i.e. all 0s) in the table. Problematic feature IDs: " "{}" ).format(", ".join(sorted(empty_feats_in_ord))) ) print("Removed {} empty feature(s).".format(len(feature_diff))) return filtered_table, filtered_sample_metadata def compress_table(table): """Converts a feature table to a space-saving format. Parameters ---------- table: biom.Table Representation of a feature table. It is assumed that empty samples / features have already been removed from the table. Returns ------- (s_ids, f_ids, s_ids_to_indices, f_ids_to_indices, compressed_table) s_ids: list List of the sample IDs in the table. f_ids: list List of the feature IDs in the table, analogous to s_ids. s_ids_to_indices: dict Inverse of s_ids: this maps sample IDs to their indices in s_ids. "Indices" refers to a feature or sample's 0-based position in f_ids or s_ids, respectively. f_ids_to_indices: dict Inverse of f_ids: this maps feature IDs to their indices in f_ids, analogous to s_ids_to_indices. compressed_table: list Two-dimensional list. The "outer list" is of length len(s_ids). Each position i within this outer list holds an "inner list" of arbitrary (but within the range [1, len(f_ids)]) length. The i-th inner list contains the feature indices of the features present (i.e. at any abundance > 0) within the sample with index i. Each inner list is sorted in ascending order. References ---------- - Inspired by redbiom and Qurro's JSON data models. """ feature_ids = table.ids(axis='observation') sample_ids = table.ids() f_ids_to_indices = {fid: idx for idx, fid in enumerate(feature_ids)} s_ids_to_indices = {sid: idx for idx, sid in enumerate(sample_ids)} compressed_table = [] for vec in table.iter_data(axis='sample', dense=False): compressed_table.append([int(i) for i in vec.indices]) return ( list(sample_ids), list(feature_ids), s_ids_to_indices, f_ids_to_indices, compressed_table ) def compress_sample_metadata(s_ids_to_indices, metadata): """Converts a sample metadata DataFrame to a space-saving format. We could ostensibly save more space by identifying repeated metadata values and mapping *those* to integer IDs. (For example, a lot of Qiita studies' sample metadata files have lots of frequently repeated values like "host_subject_id", the various empo_* fields, etc.) However, that may be 1) overkill and 2) not worth it until we get to really big datasets (and/or datasets with lots of repeated values). Parameters ---------- s_ids_to_indices: dict Maps sample IDs (strings) to 0-based indices in an existing list of sample IDs. In practice, this should just be the "s_ids_to_indices" output from compress_table(). metadata: pd.DataFrame Sample metadata. The index should describe sample IDs, and the columns should describe sample metadata fields (e.g. "body site"). The sample IDs in the index should match one-to-one with the keys in s_ids_to_indices. Returns ------- (metadata_columns, metadata_vals) metadata_columns: list List of the sample metadata column names, all converted to strings. metadata_vals: list Two-dimensional list. The "outer list" is of length len(s_ids_to_indices.keys()). Each position i within this outer list holds an "inner list" of length len(metadata_columns). The c-th value of the i-th inner list contains the c-th sample metadata column (in metadata_columns)'s value for the sample with index i, converted to a string. Raises ------ ValueError - If the metadata's index and the keys of s_ids_to_indices do not contain the exact same elements. - If the values of s_ids_to_indices are invalid: that is, if sorting the values in ascending order does not produce a list of [0, 1, 2, 3, ..., len(s_ids_to_indices.keys())]. References ---------- - Inspired by redbiom and Qurro's JSON data models. """ sample_ids = s_ids_to_indices.keys() # NOTE: I think that identically-named samples or metadata columns will # break this check, but I also think that we can assume by this point that # the data is at least that sane. (Checking that should be a responsibility # for earlier in the program.) if set(sample_ids) != set(metadata.index): raise ValueError( "The sample IDs in the metadata's index and s_ids_to_indices are " "not identical." ) if sorted(s_ids_to_indices.values()) != list(range(len(sample_ids))): raise ValueError("Indices (values) of s_ids_to_indices are invalid.") # Rename sample IDs to indices in the metadata indexed_metadata = metadata.rename(index=s_ids_to_indices) # Sort the metadata's rows by the sample indices sorted_i_metadata = indexed_metadata.sort_index( axis="index", ascending=True ) # Convert all of the metadata values to strings str_s_i_metadata = sorted_i_metadata.astype(str) # Generate a 2-D list of metadata values # Based on https://datatofish.com/convert-pandas-dataframe-to-list sm_vals = str_s_i_metadata.values.tolist() sm_cols = [str(c) for c in str_s_i_metadata.columns] return sm_cols, sm_vals def compress_feature_metadata(tip_metadata, int_metadata): """Converts tip/internal node metadata DataFrames to dicts to save space. This is a pretty early optimization -- ideally we would use 2-D lists as our final metadata structure, similar to the table / sample metadata compression. This should be revisited when the tree data node-name revamping has been merged in. Parameters ---------- tip_metadata: pd.DataFrame or None Metadata for tip nodes. If not None, the index should describe node names, and the columns should describe feature metadata fields. int_metadata: pd.DataFrame or None Metadata for internal nodes. If not None, the index should describe node names, and the columns should describe feature metadata fields. Note that the columns of tip_metadata and int_metadata should be identical, even if the feature metadata only describes tip or internal nodes. (In that case, then the other feature metadata parameter should still be a DataFrame -- albeit an empty one, with no feature names in its index.) The only case in which the parameters should be None is if there was no feature metadata at all. Returns ------- (metadata_columns, compressed_tip_metadata, compressed_int_metadata) metadata_columns: list List of the feature metadata column names, all converted to strings. If both input DFs are None, this will be {}. compressed_tip_metadata: dict Maps node names in tip_metadata to a list of feature metadata values, in the same order as in metadata_columns and converted to strings. If tip_metadata was empty, or if both input DFs were None, this will be {}. compressed_int_metadata: dict Maps node names in int_metadata to a list of feature metadata values, in the same order as in metadata_columns and converted to strings. If int_metadata was empty, or if both input DFs were None, this will be {}. Raises ------ ValueError - If only one of tip_metadata and int_metadata is None. - If the columns of tip_metadata are not identical to the columns of int_metadata. - If both the tip and internal node metadata DataFrames are empty. References ---------- - Inspired by redbiom and Qurro's JSON data models. """ # If the user didn't pass in any feature metadata, we'll get to this block if tip_metadata is None and int_metadata is None: return [], {}, {} # *This* should never happen. If it did, it's a sign that this function is # being misused. (The ^ is a logical XOR; see # https://stackoverflow.com/a/432844/10730311.) if (tip_metadata is None) ^ (int_metadata is None): raise ValueError( "Only one of tip & int. node feature metadata is None." ) # Verify that columns match up btwn. tip and internal node metadata if not tip_metadata.columns.equals(int_metadata.columns): raise ValueError("Tip & int. node feature metadata columns differ.") # Verify that at least one feature metadata entry exists (since at this # point we know that there should be at least *some* feature metadata) if tip_metadata.empty and int_metadata.empty: raise ValueError("Both tip & int. node feature metadata are empty.") fm_cols = [str(c) for c in tip_metadata.columns] # We want dicts mapping each feature ID to a list of the f.m. values for # this feature ID. Since we're not mapping feature IDs to indices first, # this is pretty simple to do with DataFrame.to_dict() using the # orient="list" option -- however, orient="list" uses column-major order, # so we transpose the metadata DFs before calling to_dict() in order to # make sure our dicts are in row-major order (i.e. feature IDs are keys). # # (Also, while we're at it, we make sure that both DFs' values are all # converted to strings.) compressed_tm = tip_metadata.astype(str).T.to_dict(orient="list") compressed_im = int_metadata.astype(str).T.to_dict(orient="list") return fm_cols, compressed_tm, compressed_im ``` #### File: empress/empress/core.py ```python from empress.tree import validate_tree, bp_tree_tips from empress.tools import ( match_inputs, match_tree_and_feature_metadata, shifting, filter_feature_metadata_to_tree ) from empress.compression_utils import ( remove_empty_samples_and_features, compress_table, compress_sample_metadata, compress_feature_metadata ) import pkg_resources import os import pandas as pd from shutil import copytree from emperor import Emperor from jinja2 import Environment, FileSystemLoader SUPPORT_FILES = pkg_resources.resource_filename('empress', 'support_files') TEMPLATES = os.path.join(SUPPORT_FILES, 'templates') EMPEROR_CALLBACK_PATH = os.path.join(SUPPORT_FILES, 'js', 'emperor-callbacks.js') class Empress(): def __init__(self, tree, table=None, sample_metadata=None, feature_metadata=None, ordination=None, ignore_missing_samples=False, filter_extra_samples=False, filter_missing_features=False, resource_path=None, shear_to_table=True, shear_to_feature_metadata=False): """Visualize a phylogenetic tree Use this object to interactively display a phylogenetic tree using the Empress GUI. Note that the table and sample metadata must either both be specified or both be None. If only one of them is None, this will raise a ValueError. If both are None, then the values of the ordination, ignore_missing_samples, filter_extra_samples, filter_missing_features, and shear_to_table arguments will be ignored since no sample information is available. Parameters ---------- tree: bp.BP The phylogenetic tree to visualize. table: biom.Table, optional The matrix to visualize paired with the phylogenetic tree. sample_metadata: pd.DataFrame, optional DataFrame object with the metadata associated to the samples in the ``ordination`` object, should have an index set and it should match the identifiers in the ``ordination`` object. feature_metadata: pd.DataFrame, optional DataFrame object with the metadata associated to the names of tips and/or internal nodes in the ``tree`` object, should have an index set and it should match at least one of these nodes' names. ordination: skbio.OrdinationResults, optional Object containing the computed values for an ordination method in scikit-bio. Currently supports skbio.stats.ordination.PCoA and skbio.stats.ordination.RDA results. ignore_missing_samples: bool, optional (default False) If True, pads missing samples (i.e. samples in the table but not the metadata) with placeholder metadata. If False, raises a DataMatchingError if any such samples exist. (Note that in either case, samples in the metadata but not in the table are filtered out; and if no samples are shared between the table and metadata, a DataMatchingError is raised regardless.) This is analogous to the ignore_missing_samples flag in Emperor. filter_extra_samples: bool, optional (default False) If True, ignores samples in the feature table that are not present in the ordination. If False, raises a DataMatchingError if such samples exist. filter_missing_features: bool, optional (default False) If True, filters features from the table that aren't present as tips in the tree. If False, raises a DataMatchingError if any such features exist. (Note that in either case, features in the tree but not in the table are preserved.) resource_path: str, optional Load the resources from a user-specified remote location. If set to None resources are loaded from the current directory. shear_to_table: bool, optional If True, shears the tree to just the tips that are present as features in the feature table. Otherwise, the tree is not shorn. Attributes ---------- tree: Phylogenetic tree. table: Contingency matrix for the phylogeny. samples: Sample metadata. features: Feature metadata. ordination: Ordination matrix to visualize simultaneously with the tree. base_url: Base path to the remote resources. """ self.tree = tree # Use XOR to verify that either both or neither of the table and # sample metadata are None. Parens needed for precedence stuff. if (table is None) ^ (sample_metadata is None): # The caller messed something up, so raise an error. # It should not be possible for the user to pass *just* one of # these things (qiime empress community-plot requires both, and # qiime empress tree-plot accepts neither). raise ValueError( "Both the table and sample metadata should be specified or " "None. However, only one of them is None." ) elif table is not None and sample_metadata is not None: self.is_community_plot = True else: self.is_community_plot = False self.table = table if sample_metadata is not None: self.samples = sample_metadata.copy() else: self.samples = None if feature_metadata is not None: # this will be transformed into self.tip_md and self.int_md in # self._validate_and_match_data() self.features = feature_metadata.copy() else: if shear_to_feature_metadata: raise ValueError( "Feature metadata must be provided in order to shear " "to feature metadata." ) self.features = None self.ordination = ordination self.is_empire_plot = (self.ordination is not None) self.base_url = resource_path if self.base_url is None: self.base_url = 'support_files' self._validate_and_match_data( ignore_missing_samples, filter_extra_samples, filter_missing_features, shear_to_table, shear_to_feature_metadata, ) if self.is_empire_plot: # biplot arrows can optionally have metadata, think for example # a study where the arrows represent pH, Alkalinity, etc. # Therefore, check if there are matches in the metadata, if # there aren't additional errors can be overriden with the # ignore_missing_samples flag feature_metadata = None if self.ordination.features is not None: # if there are no matches set to None so Emperor can ignore # the feature metadata if self.tip_md is None and self.int_md is None: feature_metadata = pd.DataFrame() else: feature_metadata = pd.concat([self.tip_md, self.int_md]) arrows = self.ordination.features.index if (feature_metadata.index.intersection(arrows).empty or feature_metadata.empty): feature_metadata = None self._emperor = Emperor( self.ordination, mapping_file=self.samples, feature_mapping_file=feature_metadata, ignore_missing_samples=ignore_missing_samples, remote='./emperor-resources') else: self._emperor = None def _validate_and_match_data(self, ignore_missing_samples, filter_extra_samples, filter_missing_features, shear_to_table, shear_to_feature_metadata): if self.is_community_plot: # Hack to unpack long tuples: https://stackoverflow.com/q/26036143 ( self.table, self.samples, self.tip_md, self.int_md, self.tax_cols ) = match_inputs( self.tree, self.table, self.samples, self.features, self.ordination, ignore_missing_samples, filter_extra_samples, filter_missing_features ) # Remove empty samples and features from the table (and remove the # removed samples from the sample metadata). We also pass in the # ordination, if present, to this function -- so we can throw an # error if the ordination actually contains these empty # samples/features. # # We purposefully do this removal *after* matching (so we know the # data inputs match up) and *before* shearing (so empty features # in the table are no longer included as tips in the tree). self.table, self.samples = remove_empty_samples_and_features( self.table, self.samples, self.ordination ) # remove unobserved features from the phylogeny (shear the tree) if shear_to_table: features = set(self.table.ids(axis='observation')) self.tree = self.tree.shear(features) # Remove features in the feature metadata that are no longer # present in the tree, due to being shorn off if self.tip_md is not None or self.int_md is not None: # (Technically they should always both be None or both be # DataFrames -- there's no in-between) self.tip_md, self.int_md = filter_feature_metadata_to_tree( self.tip_md, self.int_md, self.tree ) else: if shear_to_feature_metadata: features = set(self.features.index) all_tips = set(bp_tree_tips(self.tree)) # check that feature metadata contains at least 1 tip if not features.intersection(all_tips): raise ValueError( "Cannot shear tree to feature metadata: no tips in " "the tree are present in the feature metadata." ) self.tree = self.tree.shear(features) ( self.tip_md, self.int_md, self.tax_cols ) = match_tree_and_feature_metadata(self.tree, self.features) validate_tree(self.tree) def copy_support_files(self, target=None): """Copies the support files to a target directory If an ordination is included Emperor's support files will also be copied over (in a directory named emperor-resources). Parameters ---------- target : str The path where resources should be copied to. By default it copies the files to ``self.base_url``. """ if target is None: target = self.base_url # copy the required resources copytree(SUPPORT_FILES, os.path.join(target, 'support_files')) if self._emperor is not None: self._emperor.copy_support_files(os.path.join(target, 'emperor-resources')) def __str__(self): return self.make_empress() def make_empress(self): """Build an empress plot Returns ------- str Formatted empress plot. Notes ----- Once you generate the plot (and write it to a HTML file in a given directory) you will need to copy the support files (the JS/CSS/etc. code needed to view the visualization) to the same directory by calling the ``copy_support_files`` method. See Also -------- empress.core.Empress.copy_support_files """ main_template = self._get_template() # _process_data does a lot of munging to the coordinates data and # to_dict puts the data into a dictionary-like object for consumption data = self.to_dict() plot = main_template.render(data) return plot def to_dict(self): """Convert processed data into a dictionary Warning: the object returned by to_dict will contain references to internal variables. Exercise caution if modifying the value of objects returned by to_dict. Returns ------- dict A dictionary describing the plots contained in the ordination object and the sample + feature metadata. """ s_ids = f_ids = cmp_table = sm_cols = compressed_sm = None sid2idxs = fid2idxs = {} if self.is_community_plot: # The fid2idxs dict we get from compress_table() is temporary -- # later, we'll restructure it so that the keys (feature IDs) are # nodes' postorder positions in the tree rather than arbitrary # unique integers. (TODO: it should be possible to speed this up by # passing the tree to compress_table() so postorder positions can # immediately be used as keys / feature IDs without an intermediate # step.) s_ids, f_ids, sid2idxs, fid2idxs_t, cmp_table = compress_table( self.table ) sm_cols, compressed_sm = compress_sample_metadata( sid2idxs, self.samples ) fm_cols, compressed_tm_tmp, compressed_im_tmp = \ compress_feature_metadata(self.tip_md, self.int_md) # Use nodes' postorder positions as their "IDs" for the BIOM table and # feature metadata compressed_tm = {} compressed_im = {} # bptree indices start at one, hence we pad the arrays names = [-1] lengths = [-1] for i in range(1, len(self.tree) + 1): node = self.tree.postorderselect(i) name = self.tree.name(node) names.append(name) lengths.append(self.tree.length(node)) if self.is_community_plot and name in fid2idxs_t: fid2idxs[i] = fid2idxs_t[name] f_ids[fid2idxs[i]] = i if name in compressed_tm_tmp: compressed_tm[i] = compressed_tm_tmp[name] # Note: for internal metadata, node names may not be unique. Thus, # we duplicate the internal node metadata for each node in the # metadata with the same name. if name in compressed_im_tmp: compressed_im[i] = compressed_im_tmp[name] data_to_render = { 'base_url': self.base_url, # tree info 'tree': shifting(self.tree.B), 'lengths': lengths, 'names': names, # Should we show sample metadata coloring / animation panels? 'is_community_plot': self.is_community_plot, # Are we working with an EMPire plot? 'is_empire_plot': self.is_empire_plot, # feature table 's_ids': s_ids, 'f_ids': f_ids, 's_ids_to_indices': sid2idxs, 'f_ids_to_indices': fid2idxs, 'compressed_table': cmp_table, # sample metadata 'sample_metadata_columns': sm_cols, 'compressed_sample_metadata': compressed_sm, # feature metadata 'feature_metadata_columns': fm_cols, 'split_taxonomy_columns': self.tax_cols, 'compressed_tip_metadata': compressed_tm, 'compressed_int_metadata': compressed_im, # Emperor integration 'emperor_div': '', 'emperor_require_logic': '', 'emperor_style': '', 'emperor_base_dependencies': '', 'emperor_classes': '' } if self._emperor is not None: data_to_render.update(self._scavenge_emperor()) return data_to_render def _get_template(self, standalone=False): """Get the jinja template object Parameters ---------- standalone: bool, optional Whether or not the generated plot will load resources locally (``True``), or from a specified URL (``False``). Returns ------- jinja2.Template Template where the plot is created. """ # based on: http://stackoverflow.com/a/6196098 env = Environment(loader=FileSystemLoader(TEMPLATES)) return env.get_template('empress-template.html') def _scavenge_emperor(self): self._emperor.width = '50vw' self._emperor.height = '100vh; float: right' # make the background white so it matches Empress self._emperor.set_background_color('white') self._emperor.set_axes(color='black') # The following line references will be replace with API calls to the # Emperor object, however those are not implemented yet emperor_base_dependencies = self._emperor.render_base_dependencies() style = self._emperor.render_style() # main divs for emperor emperor_div = self._emperor.render_html('emperor-in-empire') # main js script for emperor, including additional callbacks with open(EMPEROR_CALLBACK_PATH) as f: self._emperor.js_on_ready = f.read() emperor_require_logic = self._emperor.render_js('emperor-in-empire') emperor_data = { 'emperor_div': emperor_div, 'emperor_require_logic': emperor_require_logic, 'emperor_style': style, 'emperor_base_dependencies': emperor_base_dependencies, 'emperor_classes': 'combined-plot-container' } return emperor_data ``` #### File: tests/python/test_cli.py ```python import os import unittest from click.testing import CliRunner import pandas as pd from empress.scripts._cli import empress from .util import extract_q2_artifact_to_path def files_present(output_dir): files = os.listdir(output_dir) assert "empress.html" in files assert os.path.isdir(f"{output_dir}/support_files") class TestCLI(unittest.TestCase): @classmethod def setUpClass(cls): q2_tree_loc = os.path.abspath("docs/moving-pictures/rooted-tree.qza") q2_table_loc = os.path.abspath("docs/moving-pictures/table.qza") q2_fm_loc = os.path.abspath("docs/moving-pictures/taxonomy.qza") q2_pcoa_loc = os.path.abspath("docs/moving-pictures/biplot.qza") q2_sm_loc = os.path.abspath( "docs/moving-pictures/sample_metadata.tsv" ) # create isolated filesystem for tests in this file # manually using __enter__ so that we can run all tests and close in # tearDown rather than use 'with runner.isolated_filesystem():' cls.runner = CliRunner() cls.iso_fs = cls.runner.isolated_filesystem() cls.iso_fs.__enter__() # extract Artifacts to temporary filesystem cls.tree_loc = extract_q2_artifact_to_path("tree", q2_tree_loc, "tree.nwk") cls.table_loc = extract_q2_artifact_to_path("tbl", q2_table_loc, "feature-table.biom") cls.fm_loc = extract_q2_artifact_to_path("fm", q2_fm_loc, "taxonomy.tsv") cls.pcoa_loc = extract_q2_artifact_to_path("pcoa", q2_pcoa_loc, "ordination.txt") # need to re-save sample metadata to remove q2:types row cls.sm_loc = "tmp_sample_metadata.tsv" pd.read_csv(q2_sm_loc, sep="\t", index_col=0, skiprows=[1]).to_csv( cls.sm_loc, sep="\t", index=True ) @classmethod def tearDownClass(cls): # https://stackoverflow.com/questions/51706836/manually-open-context-manager cls.iso_fs.__exit__(None, None, None) def test_tree_plot_basic(cls): output_dir = "tree_plot_basic" result = cls.runner.invoke( empress, ["tree-plot", "--tree", cls.tree_loc, "--output-dir", output_dir] ) assert result.exit_code == 0 files_present(output_dir) def test_comm_plot_basic(cls): output_dir = "comm_plot_basic" result = cls.runner.invoke( empress, ["community-plot", "--tree", cls.tree_loc, "--table", cls.table_loc, "--sample-metadata", cls.sm_loc, "--output-dir", output_dir] ) assert result.exit_code == 0 files_present(output_dir) def test_comm_plot_pcoa(cls): output_dir = "comm_plot_pcoa" result = cls.runner.invoke( empress, ["community-plot", "--tree", cls.tree_loc, "--table", cls.table_loc, "--sample-metadata", cls.sm_loc, "--output-dir", output_dir, "--pcoa", cls.pcoa_loc, "--filter-extra-samples", "--feature-metadata", cls.fm_loc] ) assert result.exit_code == 0 files_present(output_dir) assert os.path.isdir(f"{output_dir}/emperor-resources") def test_existing_directory(cls): output_dir = "existing_dir" os.mkdir("existing_dir") result = cls.runner.invoke( empress, ["community-plot", "--tree", cls.tree_loc, "--table", cls.table_loc, "--sample-metadata", cls.sm_loc, "--output-dir", output_dir] ) assert result.exit_code == 1 error_class, value, _ = result.exc_info assert error_class == OSError assert str(value) == "Output directory already exists!" assert not os.path.isdir(f"{output_dir}/support_files") assert "empress.html" not in os.listdir(output_dir) def test_tree_plot_basic_cli_abbrev(cls): output_dir = "tree_plot_basic_cli_abbrev" result = cls.runner.invoke( empress, ["tree-plot", "-t", cls.tree_loc, "-o", output_dir] ) assert result.exit_code == 0 files_present(output_dir) ```
{ "source": "1heart/differentiable-robot-model", "score": 2 }
#### File: differentiable-robot-model/tests/test_kinematics_dynamics.py ```python import os import random from dataclasses import dataclass import torch import numpy as np import pytest import pybullet as p import diff_robot_data from differentiable_robot_model.differentiable_robot_model import ( DifferentiableRobotModel, LearnableRigidBodyConfig, ) # (rel_urdf_path, test_link_list) test_data = [ # Toy ("2link_robot.urdf", [(2, "endEffector")]), # Kuka iiwa ("kuka_iiwa/urdf/iiwa7.urdf", [(7, "iiwa_link_ee")]), # Franka_panda ("panda_description/urdf/panda_no_gripper.urdf", [(7, "panda_virtual_ee_link")]), # Allegro hand ( "allegro/urdf/allegro_hand_description_left.urdf", [ (4, "link_11.0_tip"), (9, "link_7.0_tip"), (14, "link_3.0_tip"), (19, "link_15.0_tip"), ], ), ] ################ # Dataclasses ################ @dataclass class MetaTestInfo: urdf_path: str link_list: list zero_vel: bool zero_acc: bool @dataclass class PybulletInstance: pc_id: int robot_id: int num_joints: int @dataclass class SampledTestCase: joint_pos: list joint_vel: list joint_acc: list ################ # Arrange ################ @pytest.fixture(params=test_data) def test_info(request): rel_urdf_path = request.param[0] robot_description_folder = diff_robot_data.__path__[0] urdf_path = os.path.join(robot_description_folder, rel_urdf_path) return MetaTestInfo( urdf_path=urdf_path, link_list=request.param[1], zero_vel=False, zero_acc=False ) # Setup pybullet @pytest.fixture def sim(test_info): pc_id = p.connect(p.DIRECT) robot_id = p.loadURDF( test_info.urdf_path, basePosition=[0, 0, 0], useFixedBase=True, flags=p.URDF_USE_INERTIA_FROM_FILE, physicsClientId=pc_id, ) p.setGravity(0, 0, -9.81, physicsClientId=pc_id) num_joints = p.getNumJoints(robot_id, physicsClientId=pc_id) return PybulletInstance( pc_id=pc_id, robot_id=robot_id, num_joints=num_joints, ) # Setup differentiable robot model @pytest.fixture def robot_model(test_info): return DifferentiableRobotModel(test_info.urdf_path, LearnableRigidBodyConfig()) # Setup test @pytest.fixture def setup_dict(request, test_info, sim, robot_model): # Get num dofs num_dofs = len(robot_model.get_joint_limits()) # Update pybullet joint damping for link_idx in range(sim.num_joints): joint_damping = robot_model._bodies[link_idx + 1].get_joint_damping_const() p.changeDynamics( sim.robot_id, link_idx, linearDamping=0.0, angularDamping=0.0, jointDamping=joint_damping, physicsClientId=sim.pc_id, ) p.changeDynamics( sim.robot_id, link_idx, maxJointVelocity=200, physicsClientId=sim.pc_id ) # Set all seeds to ensure reproducibility random.seed(0) np.random.seed(1) torch.manual_seed(0) # Sample test cases limits_per_joint = robot_model.get_joint_limits() joint_lower_bounds = [joint["lower"] for joint in limits_per_joint] joint_upper_bounds = [joint["upper"] for joint in limits_per_joint] joint_velocity_limits = [0.01 * joint["velocity"] for joint in limits_per_joint] # NOTE: sample low velocities since PyBullet inhibits unknown clipping for large damping forces # (encountered with the allegro hand urdf) joint_angles = [] joint_velocities = [] joint_accelerations = [] for i in range(len(limits_per_joint)): joint_angles.append( np.random.uniform(low=joint_lower_bounds[i], high=joint_upper_bounds[i]) ) if test_info.zero_vel: joint_velocities.append(0.0) else: joint_velocities.append( np.random.uniform( low=-joint_velocity_limits[i], high=joint_velocity_limits[i] ) ) if test_info.zero_acc: joint_accelerations.append(0.0) else: joint_accelerations.append( np.random.uniform( low=-joint_velocity_limits[i] * 2.0, high=joint_velocity_limits[i] * 2.0, ) ) return { "robot_model": robot_model, "sim": sim, "num_dofs": num_dofs, "test_case": SampledTestCase( joint_pos=joint_angles, joint_vel=joint_velocities, joint_acc=joint_accelerations, ), } ################ # Act ################ # Helper functions def extract_setup_dict(setup_dict): robot_model = setup_dict["robot_model"] sim = setup_dict["sim"] num_dofs = setup_dict["num_dofs"] test_case = setup_dict["test_case"] return robot_model, sim, num_dofs, test_case def set_pybullet_state(sim, robot_model, num_dofs, angles, velocities): for i in range(num_dofs): j_idx = ( robot_model._controlled_joints[i] - 1 ) # pybullet link idx starts at -1 for base link p.resetJointState( bodyUniqueId=sim.robot_id, jointIndex=j_idx, targetValue=angles[i], targetVelocity=velocities[i], physicsClientId=sim.pc_id, ) # Main test class class TestRobotModel: def test_end_effector_state(self, request, setup_dict, test_info): robot_model, sim, num_dofs, test_case = extract_setup_dict(setup_dict) for ee_link_idx, ee_link_name in test_info.link_list: # Bullet sim set_pybullet_state( sim, robot_model, num_dofs, test_case.joint_pos, test_case.joint_vel ) bullet_ee_state = p.getLinkState( sim.robot_id, ee_link_idx, physicsClientId=sim.pc_id ) # Differentiable model model_ee_state = robot_model.compute_forward_kinematics( torch.Tensor(test_case.joint_pos).reshape(1, num_dofs), ee_link_name ) # Compare assert np.allclose( model_ee_state[0].detach().numpy(), np.asarray(bullet_ee_state[0]), atol=1e-7, ) assert np.allclose( model_ee_state[1].detach().numpy(), np.asarray(bullet_ee_state[1]), atol=1e-7, ) def test_ee_jacobian(self, request, setup_dict, test_info): robot_model, sim, num_dofs, test_case = extract_setup_dict(setup_dict) for ee_link_idx, ee_link_name in test_info.link_list: # Bullet sim set_pybullet_state( sim, robot_model, num_dofs, test_case.joint_pos, test_case.joint_vel ) bullet_jac_lin, bullet_jac_ang = p.calculateJacobian( bodyUniqueId=sim.robot_id, linkIndex=ee_link_idx, localPosition=[0, 0, 0], objPositions=test_case.joint_pos, objVelocities=test_case.joint_vel, objAccelerations=[0] * num_dofs, physicsClientId=sim.pc_id, ) # Differentiable model model_jac_lin, model_jac_ang = robot_model.compute_endeffector_jacobian( torch.Tensor(test_case.joint_pos).reshape(1, num_dofs), ee_link_name ) # Compare assert np.allclose( model_jac_lin.detach().numpy(), np.asarray(bullet_jac_lin), atol=1e-7 ) assert np.allclose( model_jac_ang.detach().numpy(), np.asarray(bullet_jac_ang), atol=1e-7 ) @pytest.mark.parametrize("use_damping", [True, False]) def test_inverse_dynamics(self, request, setup_dict, use_damping): robot_model, sim, num_dofs, test_case = extract_setup_dict(setup_dict) # Bullet sim set_pybullet_state( sim, robot_model, num_dofs, test_case.joint_pos, test_case.joint_vel ) bullet_torques = p.calculateInverseDynamics( sim.robot_id, test_case.joint_pos, test_case.joint_vel, test_case.joint_acc, physicsClientId=sim.pc_id, ) # Differentiable model model_torques = robot_model.compute_inverse_dynamics( torch.Tensor(test_case.joint_pos).reshape(1, num_dofs), torch.Tensor(test_case.joint_vel).reshape(1, num_dofs), torch.Tensor(test_case.joint_acc).reshape(1, num_dofs), include_gravity=True, use_damping=use_damping, ) if use_damping: # if we have non-zero joint damping, we'll have to subtract the damping term from our predicted torques, # because pybullet does not include damping/viscous friction in their inverse dynamics call damping_const = torch.zeros(1, num_dofs) qd = torch.Tensor(test_case.joint_vel).reshape(1, num_dofs) for i in range(robot_model._n_dofs): idx = robot_model._controlled_joints[i] damping_const[:, i] = robot_model._bodies[idx].get_joint_damping_const() damping_term = damping_const.repeat(1, 1) * qd model_torques -= damping_term # Compare assert np.allclose( model_torques.detach().squeeze().numpy(), np.asarray(bullet_torques), atol=1e-7, ) def test_mass_computation(self, request, setup_dict): robot_model, sim, num_dofs, test_case = extract_setup_dict(setup_dict) # Bullet sim set_pybullet_state( sim, robot_model, num_dofs, test_case.joint_pos, test_case.joint_vel ) bullet_mass = np.array( p.calculateMassMatrix( sim.robot_id, test_case.joint_pos, physicsClientId=sim.pc_id ) ) # Differentiable model inertia_mat = robot_model.compute_lagrangian_inertia_matrix( torch.Tensor(test_case.joint_pos).reshape(1, num_dofs) ) # Compare assert np.allclose( inertia_mat.detach().squeeze().numpy(), bullet_mass, atol=1e-7 ) @pytest.mark.parametrize("use_damping", [True, False]) def test_forward_dynamics(self, request, setup_dict, use_damping): robot_model, sim, num_dofs, test_case = extract_setup_dict(setup_dict) # Bullet sim dt = 1.0 / 240.0 controlled_joints = [i - 1 for i in robot_model._controlled_joints] if not use_damping: # update joint damping for link_idx in range(sim.num_joints): p.changeDynamics( sim.robot_id, link_idx, linearDamping=0.0, angularDamping=0.0, jointDamping=0.0, physicsClientId=sim.pc_id, ) p.setJointMotorControlArray( # activating torque control bodyIndex=sim.robot_id, jointIndices=controlled_joints, controlMode=p.VELOCITY_CONTROL, forces=np.zeros(num_dofs), physicsClientId=sim.pc_id, ) set_pybullet_state( sim, robot_model, num_dofs, test_case.joint_pos, test_case.joint_vel ) bullet_tau = ( np.array( # torque that achieves test_case.joint_acc from current state p.calculateInverseDynamics( sim.robot_id, test_case.joint_pos, test_case.joint_vel, test_case.joint_acc, physicsClientId=sim.pc_id, ) ) ) p.setJointMotorControlArray( bodyIndex=sim.robot_id, jointIndices=controlled_joints, controlMode=p.TORQUE_CONTROL, forces=bullet_tau, physicsClientId=sim.pc_id, ) p.stepSimulation(physicsClientId=sim.pc_id) cur_joint_states = p.getJointStates( sim.robot_id, controlled_joints, physicsClientId=sim.pc_id ) q = [cur_joint_states[i][0] for i in range(num_dofs)] qd = [cur_joint_states[i][1] for i in range(num_dofs)] qdd = (np.array(qd) - np.array(test_case.joint_vel)) / dt # Differentiable model model_qdd = robot_model.compute_forward_dynamics( torch.Tensor(test_case.joint_pos).reshape(1, num_dofs), torch.Tensor(test_case.joint_vel).reshape(1, num_dofs), torch.Tensor(bullet_tau).reshape(1, num_dofs), include_gravity=True, use_damping=use_damping, ) # Compare model_qdd = np.asarray(model_qdd.detach().squeeze()) assert np.allclose(model_qdd, qdd, atol=1e-7) if not use_damping: # we can only test this if joint damping is zero, # if it is non-zero the pybullet forward dynamics and inverse dynamics call will not be exactly the # "inverse" of each other assert np.allclose(model_qdd, np.asarray(test_case.joint_acc), atol=1e-7) ```
{ "source": "1heart/fairo", "score": 2 }
#### File: agents/locobot/locobot_agent.py ```python import os import subprocess import time import signal import random import logging import faulthandler from multiprocessing import set_start_method import shutil from droidlet import dashboard if __name__ == "__main__": # this line has to go before any imports that contain @sio.on functions # or else, those @sio.on calls become no-ops dashboard.start() from droidlet.dialog.dialogue_manager import DialogueManager from droidlet.dialog.map_to_dialogue_object import DialogueObjectMapper from droidlet.base_util import to_player_struct, Pos, Look, Player from droidlet.memory.memory_nodes import PlayerNode from droidlet.perception.semantic_parsing.nsp_querier import NSPQuerier from agents.droidlet_agent import DroidletAgent from agents.argument_parser import ArgumentParser import agents.locobot.label_prop as LP from droidlet.memory.robot.loco_memory import LocoAgentMemory, DetectedObjectNode from droidlet.perception.robot import Perception from droidlet.perception.semantic_parsing.utils.interaction_logger import InteractionLogger from self_perception import SelfPerception from droidlet.interpreter.robot import ( dance, default_behaviors, LocoGetMemoryHandler, PutMemoryHandler, LocoInterpreter, ) from droidlet.dialog.robot import LocoBotCapabilities import droidlet.lowlevel.locobot.rotation as rotation from droidlet.lowlevel.locobot.locobot_mover import LoCoBotMover from droidlet.event import sio faulthandler.register(signal.SIGUSR1) random.seed(0) log_formatter = logging.Formatter( "%(asctime)s [%(filename)s:%(lineno)s - %(funcName)s() %(levelname)s]: %(message)s" ) logging.getLogger().setLevel(logging.DEBUG) logging.getLogger().handlers.clear() class LocobotAgent(DroidletAgent): """Implements an instantiation of the LocoMCAgent on a Locobot. It starts off the agent processes including launching the dashboard. Args: opts (argparse.Namespace): opts returned by the ArgumentParser with defaults set that you can override. name (string, optional): a name for your agent (default: Locobot) Example: >>> python locobot_agent.py --backend 'locobot' """ coordinate_transforms = rotation def __init__(self, opts, name="Locobot"): super(LocobotAgent, self).__init__(opts) logging.info("LocobotAgent.__init__ started") self.agent_type = "locobot" self.opts = opts self.entityId = 0 self.no_default_behavior = opts.no_default_behavior self.last_chat_time = -1000000000000 self.name = name self.player = Player(100, name, Pos(0, 0, 0), Look(0, 0)) self.pos = Pos(0, 0, 0) self.uncaught_error_count = 0 self.last_task_memid = None self.point_targets = [] self.init_event_handlers() # list of (prob, default function) pairs self.visible_defaults = [(1.0, default_behaviors.explore)] self.interaction_logger = InteractionLogger() if os.path.exists("annotation_data/rgb"): shutil.rmtree("annotation_data/rgb") if os.path.exists("annotation_data/seg"): shutil.rmtree("annotation_data/seg") def init_event_handlers(self): super().init_event_handlers() @sio.on("movement command") def test_command(sid, commands, movement_values={}): if len(movement_values) == 0: movement_values["yaw"] = 0.01 movement_values["velocity"] = 0.1 movement = [0.0, 0.0, 0.0] for command in commands: if command == "MOVE_FORWARD": movement[0] += movement_values["velocity"] print("action: FORWARD") elif command == "MOVE_BACKWARD": movement[0] -= movement_values["velocity"] print("action: BACKWARD") elif command == "MOVE_LEFT": movement[2] += movement_values["yaw"] print("action: LEFT") elif command == "MOVE_RIGHT": movement[2] -= movement_values["yaw"] print("action: RIGHT") elif command == "PAN_LEFT": self.mover.bot.set_pan(self.mover.bot.get_pan() + 0.08) elif command == "PAN_RIGHT": self.mover.bot.set_pan(self.mover.bot.get_pan() - 0.08) elif command == "TILT_UP": self.mover.bot.set_tilt(self.mover.bot.get_tilt() - 0.08) elif command == "TILT_DOWN": self.mover.bot.set_tilt(self.mover.bot.get_tilt() + 0.08) self.mover.move_relative([movement]) @sio.on("shutdown") def _shutdown(sid, data): self.shutdown() @sio.on("get_memory_objects") def objects_in_memory(sid): objects = DetectedObjectNode.get_all(self.memory) for o in objects: del o["feature_repr"] # pickling optimization self.dashboard_memory["objects"] = objects sio.emit("updateState", {"memory": self.dashboard_memory}) @sio.on("interaction data") def log_interaction_data(sid, interactionData): self.interaction_logger.logInteraction(interactionData) # Returns an array of objects with updated masks @sio.on("label_propagation") def label_propagation(sid, postData): objects = LP.label_propagation(postData) sio.emit("labelPropagationReturn", objects) @sio.on("save_rgb_seg") def save_rgb_seg(sid, postData): LP.save_rgb_seg(postData) if "callback" in postData and postData["callback"]: sio.emit("saveRgbSegCallback") @sio.on("save_annotations") def save_annotations(sid, categories): LP.save_annotations(categories) @sio.on("save_categories_properties") def save_categories_properties(sid, categories, properties): LP.save_categories_properties(categories, properties) @sio.on("retrain_detector") def retrain_detector(sid, settings={}): inference_json = LP.retrain_detector(settings) sio.emit("annotationRetrain", inference_json) @sio.on("switch_detector") def switch_detector(sid): model_dir = "annotation_data/model" model_names = os.listdir(model_dir) model_nums = list(map(lambda x: int(x.split("v")[1]), model_names)) last_model_num = max(model_nums) model_path = os.path.join(model_dir, "v" + str(last_model_num)) detector_weights = "model_999.pth" properties_file = "props.json" things_file = "things.json" files = os.listdir(model_path) if detector_weights not in files: print( "Error switching model:", os.path.join(model_path, detector_weights), "not found", ) return if properties_file not in files: print( "Error switching model:", os.path.join(model_path, properties_file), "not found", ) return if things_file not in files: print("Error switching model:", os.path.join(model_path, things_file), "not found") return print("switching to", model_path) self.perception_modules["vision"] = Perception(model_path, default_keypoints_path=True) def init_memory(self): """Instantiates memory for the agent. Uses the DB_FILE environment variable to write the memory to a file or saves it in-memory otherwise. """ self.memory = LocoAgentMemory( db_file=os.environ.get("DB_FILE", ":memory:"), db_log_path=None, coordinate_transforms=self.coordinate_transforms, ) dance.add_default_dances(self.memory) logging.info("Initialized agent memory") def init_perception(self): """Instantiates all perceptual modules. Each perceptual module should have a perceive method that is called by the base agent event loop. """ if not hasattr(self, "perception_modules"): self.perception_modules = {} self.perception_modules["language_understanding"] = NSPQuerier(self.opts, self) self.perception_modules["self"] = SelfPerception(self) self.perception_modules["vision"] = Perception(self.opts.perception_model_dir) def perceive(self, force=False): # 1. perceive from NLU parser super().perceive(force=force) # 2. perceive from robot perception modules self.perception_modules["self"].perceive(force=force) rgb_depth = self.mover.get_rgb_depth() xyz = self.mover.get_base_pos_in_canonical_coords() x, y, yaw = xyz sio.emit( "map", {"x": x, "y": y, "yaw": yaw, "map": self.mover.get_obstacles_in_canonical_coords()}, ) previous_objects = DetectedObjectNode.get_all(self.memory) # perception_output is a namedtuple of : new_detections, updated_detections, humans perception_output = self.perception_modules["vision"].perceive(rgb_depth, xyz, previous_objects, force=force) self.memory.update(perception_output) def init_controller(self): """Instantiates controllers - the components that convert a text chat to task(s).""" dialogue_object_classes = {} dialogue_object_classes["bot_capabilities"] = {"task": LocoBotCapabilities, "data": {}} dialogue_object_classes["interpreter"] = LocoInterpreter dialogue_object_classes["get_memory"] = LocoGetMemoryHandler dialogue_object_classes["put_memory"] = PutMemoryHandler self.dialogue_manager = DialogueManager( memory=self.memory, dialogue_object_classes=dialogue_object_classes, dialogue_object_mapper=DialogueObjectMapper, opts=self.opts, ) def init_physical_interfaces(self): """Instantiates the interface to physically move the robot.""" self.mover = LoCoBotMover(ip=self.opts.ip, backend=self.opts.backend) def get_player_struct_by_name(self, speaker_name): p = self.memory.get_player_by_name(speaker_name) if p: return p.get_struct() else: return None def get_other_players(self): return [self.player] def get_incoming_chats(self): all_chats = [] speaker_name = "dashboard" if self.dashboard_chat is not None: if not self.memory.get_player_by_name(speaker_name): PlayerNode.create( self.memory, to_player_struct((None, None, None), None, None, None, speaker_name), ) all_chats.append(self.dashboard_chat) self.dashboard_chat = None return all_chats # # FIXME!!!! def send_chat(self, chat: str): logging.info("Sending chat: {}".format(chat)) # Send the socket event to show this reply on dashboard sio.emit("showAssistantReply", {"agent_reply": "Agent: {}".format(chat)}) self.memory.add_chat(self.memory.self_memid, chat) # actually send the chat, FIXME FOR HACKATHON # return self._cpp_send_chat(chat) def step(self): super().step() time.sleep(0) def task_step(self, sleep_time=0.0): super().task_step(sleep_time=sleep_time) def shutdown(self): self._shutdown = True try: self.perception_modules["vision"].vprocess_shutdown.set() except: """ the try/except is there in the event that self.perception_modules["vision"] has either: 1. not been fully started yet 2. already crashed / shutdown due to other effects """ pass time.sleep(5) # let the other threads die os._exit(0) # TODO: remove and figure out why multiprocess sometimes hangs on exit if __name__ == "__main__": base_path = os.path.dirname(__file__) parser = ArgumentParser("Locobot", base_path) opts = parser.parse() logging.basicConfig(level=opts.log_level.upper()) # set up stdout logging sh = logging.StreamHandler() sh.setFormatter(log_formatter) logger = logging.getLogger() logger.addHandler(sh) logging.info("LOG LEVEL: {}".format(logger.level)) # Check that models and datasets are up to date if not opts.dev: rc = subprocess.call([opts.verify_hash_script_path, "locobot"]) set_start_method("spawn", force=True) sa = LocobotAgent(opts) sa.start() ``` #### File: semantic_parsing/tests/test_nsp_loading.py ```python import os import unittest from droidlet.perception.semantic_parsing.nsp_transformer_model.query_model import NSPBertModel as Model NLU_MODEL_DIR = os.path.join( os.path.dirname(__file__), "../../../../agents/craftassist/models/semantic_parser/" ) NLU_DATA_DIR = os.path.join( os.path.dirname(__file__), "../../../../agents/craftassist/datasets/annotated_data/" ) class TestNSPModel(unittest.TestCase): def setUp(self): self.nsp_model_dir = os.path.join(NLU_MODEL_DIR, "ttad_bert_updated") self.model = Model(model_dir=self.nsp_model_dir, data_dir=NLU_DATA_DIR) def test_model_parse(self): chat = 'come here' logical_form = self.model.parse(chat=chat) self.assertEqual(type(logical_form), dict) self.assertTrue("dialogue_type" in logical_form) chat = 'hello' logical_form = self.model.parse(chat=chat) self.assertEqual(type(logical_form), dict) self.assertTrue("dialogue_type" in logical_form) chat = 'dance' logical_form = self.model.parse(chat=chat) self.assertEqual(type(logical_form), dict) self.assertTrue("dialogue_type" in logical_form) def test_model_dir(self): # change the model directory and assert model doesn't load self.assertRaises(Exception, Model, self.nsp_model_dir + "wert", NLU_DATA_DIR) if __name__ == '__main__': unittest.main() ``` #### File: semantic_parsing/tests/test_y_print_parsing_report.py ```python import os import unittest import json from ..nsp_querier import NSPQuerier from droidlet.shared_data_structs import MockOpt from prettytable import PrettyTable class fontcolors: HEADER = "\033[95m" OKBLUE = "\033[94m" OKCYAN = "\033[96m" OKGREEN = "\033[92m" WARNING = "\033[93m" FAIL = "\033[91m" ENDC = "\033[0m" BOLD = "\033[1m" UNDERLINE = "\033[4m" # NOTE: The following commands in locobot_commands can't be supported # right away but we'll attempt them in the next round: # "push the chair", # "find the closest red thing", # "copy this motion", # "topple the pile of notebooks", common_functional_commands = { "turn right": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "dance_type": {"body_turn": {"relative_yaw": {"fixed_value": "-90"}}}, "action_type": "DANCE", } ], }, "where are my keys": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "LOCATION"}, "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [3, 3]]}] }, }, }, "point at the table": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "dance_type": { "point": { "location": { "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [3, 3]]}] } } } } } }, "action_type": "DANCE", } ], }, "dig two tiny holes there": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "location": {"contains_coreference": "yes"}, "action_type": "DIG", "schematic": { "filters": { "where_clause": { "AND": [ {"pred_text": "has_name", "obj_text": [0, [3, 3]]}, {"pred_text": "has_size", "obj_text": [0, [2, 2]]}, ] }, "selector": { "return_quantity": "RANDOM", "ordinal": [0, [1, 1]], "same": "ALLOWED", }, } }, } ], }, "go there": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [{"location": {"contains_coreference": "yes"}, "action_type": "MOVE"}], }, "can you climb on top of the cube": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "location": { "relative_direction": "UP", "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [7, 7]]}] } } }, }, "action_type": "MOVE", } ], }, "go to the circle": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "location": { "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [3, 3]]}] } } } }, "action_type": "MOVE", } ], }, "what is the name of the yellow shape": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "NAME"}, "where_clause": { "AND": [{"pred_text": "has_colour", "obj_text": [0, [6, 6]]}] }, }, }, "what can you do": {"dialogue_type": "GET_CAPABILITIES", "action_type": "ANY"}, "what is that blue object": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "NAME"}, "where_clause": { "AND": [{"pred_text": "has_colour", "obj_text": [0, [3, 3]]}] }, "contains_coreference": "yes", }, }, "make two red cubes there": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "schematic": { "filters": { "where_clause": { "AND": [ {"pred_text": "has_name", "obj_text": [0, [3, 3]]}, {"pred_text": "has_colour", "obj_text": [0, [2, 2]]}, ] }, "selector": { "return_quantity": "RANDOM", "ordinal": [0, [1, 1]], "same": "ALLOWED", }, } }, "action_type": "BUILD", "location": {"contains_coreference": "yes"}, } ], }, "go to the window": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "location": { "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [3, 3]]}] } } } }, "action_type": "MOVE", } ], }, "point to the table": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "dance_type": { "point": { "location": { "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [3, 3]]}] } } } } } }, "action_type": "DANCE", } ], }, "look at the table": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "dance_type": { "look_turn": { "location": { "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [3, 3]]}] } } } } } }, "action_type": "DANCE", } ], }, "go left": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "location": { "relative_direction": "LEFT", "reference_object": {"special_reference": {"fixed_value": "AGENT"}}, }, "action_type": "MOVE", } ], }, "fill that hole up with sand": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "schematic": { "filters": { "where_clause": { "AND": [{"pred_text": "has_block_type", "obj_text": [0, [5, 5]]}] } } }, "action_type": "FILL", "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [2, 2]]}] } }, "contains_coreference": "yes", }, } ], }, "what size is the table": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "SIZE"}, "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [4, 4]]}] }, }, }, "what is outside the window": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "NAME"}, "selector": { "location": { "text_span": [0, [2, 4]], "relative_direction": "OUTSIDE", "reference_object": { "text_span": [0, [4, 4]], "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [4, 4]]}] } }, }, } }, }, }, "follow me": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "remove_condition": {"condition_type": "NEVER"}, "location": { "reference_object": {"special_reference": {"fixed_value": "SPEAKER"}} }, "action_type": "MOVE", } ], }, "make a yellow circle to the left of the square": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "schematic": { "filters": { "where_clause": { "AND": [ {"pred_text": "has_name", "obj_text": [0, [3, 3]]}, {"pred_text": "has_colour", "obj_text": [0, [2, 2]]}, ] } } }, "action_type": "BUILD", "location": { "relative_direction": "LEFT", "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [9, 9]]}] } } }, }, } ], }, "how many red things are there": { "dialogue_type": "GET_MEMORY", "filters": { "output": "COUNT", "where_clause": { "AND": [{"pred_text": "has_colour", "obj_text": [0, [2, 2]]}] }, }, }, "can you topple the circle": {"dialogue_type": "GET_CAPABILITIES", "action_type": "UNKNOWN"}, "spawn two pigs": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "action_type": "SPAWN", "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [2, 2]]}] }, "selector": { "return_quantity": "RANDOM", "ordinal": [0, [1, 1]], "same": "DISALLOWED", }, } }, } ], }, "what is to the left of that": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "NAME"}, "selector": { "location": { "relative_direction": "LEFT", "reference_object": {"filters": {"contains_coreference": "yes"}}, } }, "memory_type": "REFERENCE_OBJECT", }, }, "what is to the left of the square": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "NAME"}, "selector": { "location": { "relative_direction": "LEFT", "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [7, 7]]}] } } }, } }, "memory_type": "REFERENCE_OBJECT", }, }, "go to the table": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "location": { "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [3, 3]]}] } } } }, "action_type": "MOVE", } ], }, "have you seen my phone": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "LOCATION"}, "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [4, 4]]}] }, }, }, "what size is the square": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "SIZE"}, "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [4, 4]]}] }, }, }, "destroy that": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "action_type": "DESTROY", "reference_object": {"filters": {"contains_coreference": "yes"}}, } ], }, "go forward": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "location": { "relative_direction": "FRONT", "reference_object": {"special_reference": {"fixed_value": "AGENT"}}, }, "action_type": "MOVE", } ], }, "look at the circle": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "dance_type": { "look_turn": { "location": { "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [3, 3]]}] } } } } } }, "action_type": "DANCE", } ], }, "make a big green square behind me": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "schematic": { "filters": { "where_clause": { "AND": [ {"pred_text": "has_name", "obj_text": [0, [4, 4]]}, {"pred_text": "has_colour", "obj_text": [0, [3, 3]]}, {"pred_text": "has_size", "obj_text": [0, [2, 2]]}, ] } } }, "action_type": "BUILD", "location": { "relative_direction": "BACK", "reference_object": {"special_reference": {"fixed_value": "SPEAKER"}}, }, } ], }, "follow the sheep": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "remove_condition": {"condition_type": "NEVER"}, "location": { "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [2, 2]]}] } } } }, "action_type": "MOVE", } ], }, "find the pig": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "LOCATION"}, "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [2, 2]]}] }, }, }, "can you climb on top of the couch": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "location": { "relative_direction": "UP", "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [7, 7]]}] } } }, }, "action_type": "MOVE", } ], }, "where am i": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "LOCATION"}, "memory_type": "REFERENCE_OBJECT", "where_clause": { "AND": [{"pred_text": "has_tag", "obj_text": {"fixed_value": "SPEAKER"}}] }, }, }, "how many pencils are there": { "dialogue_type": "GET_MEMORY", "filters": { "output": "COUNT", "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [2, 2]]}] }, }, }, "what color is the chair": { "dialogue_type": "GET_MEMORY", "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [4, 4]]}] }, "output": {"attribute": "COLOUR"}, }, }, "come here": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [{"location": {"contains_coreference": "yes"}, "action_type": "MOVE"}], }, "where is the picture": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "LOCATION"}, "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [3, 3]]}] }, }, }, "make two circles there": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "location": {"contains_coreference": "yes"}, "action_type": "BUILD", "schematic": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [2, 2]]}] }, "selector": { "return_quantity": "RANDOM", "ordinal": [0, [1, 1]], "same": "ALLOWED", }, } }, } ], }, "show me to the bathroom": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "LOCATION"}, "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [4, 4]]}] }, }, }, "point to the jacket": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "dance_type": { "point": { "location": { "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [3, 3]]}] } } } } } }, "action_type": "DANCE", } ], }, "point at the cube": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "dance_type": { "point": { "location": { "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [3, 3]]}] } } } } } }, "action_type": "DANCE", } ], }, "hi": {"dialogue_type": "NOOP"}, "go back": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "location": { "relative_direction": "BACK", "reference_object": {"special_reference": {"fixed_value": "AGENT"}}, }, "action_type": "MOVE", } ], }, "how many cubes are there": { "dialogue_type": "GET_MEMORY", "filters": { "output": "COUNT", "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [2, 2]]}] }, }, }, "is there anything big": { "dialogue_type": "GET_MEMORY", "filters": { "output": "MEMORY", "where_clause": { "AND": [{"pred_text": "has_size", "obj_text": [0, [3, 3]]}] }, }, }, "what color is the square": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "COLOUR"}, "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [4, 4]]}] }, }, }, "show me to the square": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "LOCATION"}, "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [4, 4]]}] }, }, }, "have you seen the pig": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "LOCATION"}, "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [4, 4]]}] }, }, }, "can you topple the chair": {"dialogue_type": "GET_CAPABILITIES", "action_type": "UNKNOWN"}, "point at the square": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "dance_type": { "point": { "location": { "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [3, 3]]}] } } } } } }, "action_type": "DANCE", } ], }, "what is the name of the thing closest to you": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "NAME"}, "selector": { "ordinal": {"fixed_value": "FIRST"}, "return_quantity": { "argval": { "polarity": "MIN", "quantity": { "attribute": { "linear_extent": { "source": { "reference_object": { "special_reference": {"fixed_value": "AGENT"} } } } } }, } } }, }, }, "is there anything small": { "dialogue_type": "GET_MEMORY", "filters": { "output": "MEMORY", "where_clause": { "AND": [{"pred_text": "has_size", "obj_text": [0, [3, 3]]}] }, }, }, "look at the hole": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "dance_type": { "look_turn": { "location": { "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [3, 3]]}] } } } } } }, "action_type": "DANCE", } ], }, "how many yellow things do you see": { "dialogue_type": "GET_MEMORY", "filters": { "output": "COUNT", "where_clause": { "AND": [{"pred_text": "has_colour", "obj_text": [0, [2, 2]]}] }, }, }, "is there anything red": { "dialogue_type": "GET_MEMORY", "filters": { "output": "MEMORY", "where_clause": { "AND": [{"pred_text": "has_colour", "obj_text": [0, [3, 3]]}] }, }, }, "where is the circle": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "LOCATION"}, "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [3, 3]]}] }, }, }, "turn left": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "dance_type": {"body_turn": {"relative_yaw": {"fixed_value": "90"}}}, "action_type": "DANCE", } ], }, "where are you": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "LOCATION"}, "where_clause": { "AND": [{"pred_text": "has_tag", "obj_text": {"fixed_value": "SELF"}}] }, "memory_type": "REFERENCE_OBJECT", }, }, "what is the name of the object to my left": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "NAME"}, "selector": { "location": { "relative_direction": "LEFT", "reference_object": {"special_reference": {"fixed_value": "SPEAKER"}}, } }, }, }, "what is the name of the thing closest to me": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "NAME"}, "selector": { "ordinal": {"fixed_value": "FIRST"}, "return_quantity": { "argval": { "polarity": "MIN", "quantity": { "attribute": { "linear_extent": { "source": { "reference_object": { "special_reference": {"fixed_value": "SPEAKER"} } } } } }, } } }, }, }, "go right": { "dialogue_type": "HUMAN_GIVE_COMMAND", "action_sequence": [ { "location": { "relative_direction": "RIGHT", "reference_object": {"special_reference": {"fixed_value": "AGENT"}}, }, "action_type": "MOVE", } ], }, "find the hoodie": { "dialogue_type": "GET_MEMORY", "filters": { "output": {"attribute": "LOCATION"}, "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": [0, [2, 2]]}] }, }, }, } GROUND_TRUTH_PARSES = { "go to the gray chair": { "action_sequence": [ { "action_type": "MOVE", "location": { "reference_object": { "filters": { "where_clause": { "AND": [ {"pred_text": "has_colour", "obj_text": "gray"}, {"pred_text": "has_name", "obj_text": "chair"}, ] } } } }, } ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "go to the chair": { "action_sequence": [ { "action_type": "MOVE", "location": { "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": "chair"}] } } } }, } ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "go forward 0.2 meters": { "action_sequence": [ { "action_type": "MOVE", "location": { "reference_object": {"special_reference": "AGENT"}, "relative_direction": "FRONT", "steps": "0.2", "has_measure": "meters", }, } ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "go forward one meter": { "action_sequence": [ { "action_type": "MOVE", "location": { "reference_object": {"special_reference": "AGENT"}, "relative_direction": "FRONT", "steps": "one", "has_measure": "meter", }, } ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "go left 3 feet": { "action_sequence": [ { "action_type": "MOVE", "location": { "reference_object": {"special_reference": "AGENT"}, "relative_direction": "LEFT", "steps": "3", "has_measure": "feet", }, } ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "go right 3 feet": { "action_sequence": [ { "action_type": "MOVE", "location": { "reference_object": {"special_reference": "AGENT"}, "relative_direction": "RIGHT", "steps": "3", "has_measure": "feet", }, } ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "go left 3 meters": { "action_sequence": [ { "action_type": "MOVE", "location": { "reference_object": {"special_reference": "AGENT"}, "relative_direction": "LEFT", "steps": "3", "has_measure": "meters", }, } ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "go forward 1 feet": { "action_sequence": [ { "action_type": "MOVE", "location": { "reference_object": {"special_reference": "AGENT"}, "relative_direction": "FRONT", "steps": "1", "has_measure": "feet", }, } ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "go back 1 feet": { "action_sequence": [ { "action_type": "MOVE", "location": { "reference_object": {"special_reference": "AGENT"}, "relative_direction": "BACK", "steps": "1", "has_measure": "feet", }, } ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "turn right 90 degrees": { "action_sequence": [ {"action_type": "DANCE", "dance_type": {"body_turn": {"relative_yaw": "-90"}}} ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "turn left 90 degrees": { "action_sequence": [ {"action_type": "DANCE", "dance_type": {"body_turn": {"relative_yaw": "90"}}} ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "turn right 180 degrees": { "action_sequence": [ {"action_type": "DANCE", "dance_type": {"body_turn": {"relative_yaw": "-180"}}} ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "turn right": { "action_sequence": [ {"action_type": "DANCE", "dance_type": {"body_turn": {"relative_yaw": "-90"}}} ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "look at where I am pointing": { "action_sequence": [ { "action_type": "DANCE", "dance_type": { "look_turn": { "location": {"reference_object": {"special_reference": "SPEAKER_LOOK"}} } }, } ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "wave": { "action_sequence": [ { "action_type": "DANCE", "dance_type": { "filters": { "where_clause": { "AND" : [{"pred_text": "has_name", "obj_text": "wave"}] } } }, } ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "follow the chair": { "action_sequence": [ { "action_type": "MOVE", "location": { "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": "chair"}] } } } }, "remove_condition": {"condition_type": "NEVER"}, } ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "find Laurens": { "action_sequence": [ { "action_type": "SCOUT", "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": "Laurens"}] } } }, } ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "bring the cup to Mary": { "action_sequence": [ { "action_type": "GET", "receiver": { "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": "Mary"}] } } } }, "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": "cup"}] } } }, } ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, "go get me lunch": { "action_sequence": [ { "action_type": "GET", "receiver": {"reference_object": {"special_reference": "SPEAKER"}}, "reference_object": { "filters": { "where_clause": { "AND": [{"pred_text": "has_name", "obj_text": "lunch"}] } } }, } ], "dialogue_type": "HUMAN_GIVE_COMMAND", }, } common_functional_commands.update(GROUND_TRUTH_PARSES) TTAD_MODEL_DIR = os.path.join( os.path.dirname(__file__), "../../../../agents/craftassist/models/semantic_parser/" ) TTAD_BERT_DATA_DIR = os.path.join( os.path.dirname(__file__), "../../../../agents/craftassist/datasets/annotated_data/" ) GROUND_TRUTH_DATA_DIR = os.path.join( os.path.dirname(__file__), "../../../../agents/craftassist/datasets/ground_truth/" ) def remove_key_text_span(dictionary): copy_d = {} for key, value in dictionary.items(): if type(value) == dict and "text_span" in value: value.pop("text_span") copy_d[key] = value else: copy_d[key] = value if type(value) == dict: copy_d[key] = remove_key_text_span(value) return copy_d def remove_text_span(dictionary): updated_d = {} if dictionary["dialogue_type"] == "HUMAN_GIVE_COMMAND": updated_d["action_sequence"] = [] for action_dict in dictionary["action_sequence"]: updated_action_dict = remove_key_text_span(action_dict) updated_d["action_sequence"].append(updated_action_dict) updated_d["dialogue_type"] = "HUMAN_GIVE_COMMAND" else: updated_d = remove_key_text_span(dictionary) return updated_d def compare_dicts(dict1, dict2): for k, v in dict1.items(): if k not in dict2: return False if type(v) == str and dict2[k] != v: return False if type(v) == list: if type(dict2[k]) != list: return False for val in v: # for triples if not (val in dict2[k]): return False if type(v) == dict: if type(dict2[k]) != dict: return False if not compare_dicts(v, dict2[k]): return False return True def compare_full_dictionaries(d1, d2): if d1["dialogue_type"] == "HUMAN_GIVE_COMMAND": if d2["dialogue_type"] != d1["dialogue_type"]: return False actions = d1["action_sequence"] if len(actions) != len(d2["action_sequence"]): return False for i, action_dict in enumerate(actions): if not compare_dicts(action_dict, d2["action_sequence"][i]): return False return True else: return compare_dicts(d1, d2) class TestDialogueManager(unittest.TestCase): def setUp(self) : opts = MockOpt() opts.nsp_data_dir = TTAD_BERT_DATA_DIR opts.ground_truth_data_dir = GROUND_TRUTH_DATA_DIR opts.nsp_models_dir = TTAD_MODEL_DIR opts.no_ground_truth = False self.chat_parser = NSPQuerier(opts=opts) self.ground_truth_actions = {} print("fetching data from ground truth, from directory: %r" % (opts.ground_truth_data_dir)) if not opts.no_ground_truth: if os.path.isdir(opts.ground_truth_data_dir): dataset = opts.ground_truth_data_dir + "datasets/high_pri_commands.txt" with open(dataset) as f: for line in f.readlines(): text, logical_form = line.strip().split("|") clean_text = text.strip('"').lower() self.ground_truth_actions[clean_text] = json.loads(logical_form) self.ground_truth_actions.update(GROUND_TRUTH_PARSES) def test_parses(self): table = PrettyTable(["Command", "Overall parsing status", "Parsing model status"]) records = [] parsing_model_status = False pass_cnt, fail_cnt, model_pass_cnt, model_fail_cnt = 0, 0, 0, 0 for command in common_functional_commands.keys(): ground_truth_parse = common_functional_commands[command] if command in self.ground_truth_actions: model_prediction = self.ground_truth_actions[command] else: # else query the model and remove the value for key "text_span" model_prediction = remove_text_span( self.chat_parser.parsing_model.query_for_logical_form(chat=command) ) # compute parsing pipeline accuracy status = compare_full_dictionaries(ground_truth_parse, model_prediction) if status: pass_cnt += 1 record = [ fontcolors.OKGREEN + command + fontcolors.ENDC, fontcolors.OKGREEN + "PASS" + fontcolors.ENDC, ] else: fail_cnt += 1 record = [ fontcolors.FAIL + command + fontcolors.ENDC, fontcolors.FAIL + "FAIL" + fontcolors.ENDC, ] # compute model correctness status model_output = remove_text_span( self.chat_parser.parsing_model.query_for_logical_form(chat=command) ) parsing_model_status = compare_full_dictionaries(ground_truth_parse, model_output) if parsing_model_status: model_pass_cnt += 1 record += [fontcolors.OKGREEN + "PASS" + fontcolors.ENDC] else: model_fail_cnt += 1 record += [fontcolors.FAIL + "FAIL" + fontcolors.ENDC] records.append(record) for record in records: table.add_row(record) print(table) accuracy = round((pass_cnt / (pass_cnt + fail_cnt)) * 100.0, 2) model_accuracy = round((model_pass_cnt / (model_pass_cnt + model_fail_cnt)) * 100.0, 2) print_str = ( fontcolors.OKGREEN + "Pass: {} " + fontcolors.ENDC + fontcolors.FAIL + "Fail: {} " + fontcolors.ENDC + fontcolors.OKCYAN + "Parsing pipeline accuracy: {}%" + fontcolors.ENDC ) print_model_str = ( fontcolors.OKGREEN + "Pass: {} " + fontcolors.ENDC + fontcolors.FAIL + "Fail: {} " + fontcolors.ENDC + fontcolors.OKCYAN + "Parsing model accuracy: {}%" + fontcolors.ENDC ) print(print_str.format(pass_cnt, fail_cnt, accuracy)) print("Printing Model accuracy status ... ") print(print_model_str.format(model_pass_cnt, model_fail_cnt, model_accuracy)) # check that parsing pipeline is at a 100% accuracy self.assertTrue(accuracy == 100.0) if __name__ == "__main__": unittest.main() ``` #### File: tests/scripts/5_continuous_grasping_hw.py ```python import time import sys import numpy as np import torch import torchcontrol as toco from torchcontrol.transform import Rotation as R from torchcontrol.transform import Transformation as T from polymetis import RobotInterface, GripperInterface DEFAULT_MAX_ITERS = 3 # Sampling params GP_RANGE_UPPER = [0.7, 0.1, np.pi / 2] GP_RANGE_LOWER = [0.4, -0.1, -np.pi / 2] # Grasp params REST_POSE = ([0.5, 0.0, 0.7], [1.0, 0.0, 0.0, 0.0]) PREGRASP_HEIGHT = 0.55 GRASP_HEIGHT = 0.25 PLANNER_DT = 0.02 class ManipulatorSystem: def __init__(self): self.arm = RobotInterface() self.gripper = GripperInterface() time.sleep(0.5) # Set continuous control policy self.reset_policy() # Reset to rest pose self.rest_pos = torch.Tensor(REST_POSE[0]) self.rest_quat = torch.Tensor(REST_POSE[1]) self.reset() def __del__(self): self.arm.terminate_current_policy() def reset(self, time_to_go=2.0): self.move_to(self.rest_pos, self.rest_quat, time_to_go) self.open_gripper() def reset_policy(self): # Go home self.arm.go_home() # Send PD controller joint_pos_current = self.arm.get_joint_angles() policy = toco.policies.JointImpedanceControl( joint_pos_current=joint_pos_current, Kp=self.arm.metadata.default_Kq, Kd=self.arm.metadata.default_Kqd, robot_model=self.arm.robot_model, ) self.arm.send_torch_policy(policy, blocking=False) def move_to(self, pos, quat, time_to_go=2.0): # Plan trajectory joint_pos_current = self.arm.get_joint_angles() N = int(time_to_go / PLANNER_DT) plan = toco.modules.CartesianSpaceMinJerkJointPlanner( joint_pos_start=joint_pos_current, ee_pose_goal=T.from_rot_xyz(R.from_quat(quat), pos), steps=N, time_to_go=time_to_go, robot_model=self.arm.robot_model, ) # Execute trajectory t0 = time.time() t_target = t0 for i in range(N): # Update traj joint_pos_desired, _, _ = plan(i) self.arm.update_current_policy({"joint_pos_desired": joint_pos_desired}) # Spin once t_target += PLANNER_DT t_remaining = t_target - time.time() time.sleep(max(t_remaining, 0.0)) # Wait for robot to stabilize time.sleep(0.2) def close_gripper(self): self.gripper.grasp(speed=0.1, force=1.0) time.sleep(0.5) def open_gripper(self): max_width = self.gripper.get_state().max_width self.gripper.goto(width=max_width, speed=0.1, force=1.0) time.sleep(0.5) def grasp_pose_to_pos_quat(self, grasp_pose, z): x, y, rz = grasp_pose pos = torch.Tensor([x, y, z]) quat = ( R.from_rotvec(torch.Tensor([0, 0, rz])) * R.from_quat(self.rest_quat) ).as_quat() return pos, quat def grasp(self, grasp_pose0, grasp_pose1): # Move to pregrasp pos, quat = self.grasp_pose_to_pos_quat(grasp_pose0, PREGRASP_HEIGHT) self.move_to(pos, quat) # Lower (slower than other motions to prevent sudden collisions) pos, quat = self.grasp_pose_to_pos_quat(grasp_pose0, GRASP_HEIGHT) self.move_to(pos, quat, time_to_go=4.0) # Grasp self.close_gripper() # Lift to pregrasp pos, quat = self.grasp_pose_to_pos_quat(grasp_pose0, PREGRASP_HEIGHT) self.move_to(pos, quat) # Move to new pregrasp pos, quat = self.grasp_pose_to_pos_quat(grasp_pose1, PREGRASP_HEIGHT) self.move_to(pos, quat) # Release self.open_gripper() # Check if policy terminated due to issues if self.arm.get_previous_interval().end != -1: print("Interrupt detected. Reinstantiating control policy...") time.sleep(3) self.reset_policy() # Reset self.reset() def uniform_sample(lower, upper): return lower + (upper - lower) * torch.rand_like(lower) def main(argv): if len(argv) > 1: try: max_iters = int(argv[1]) except ValueError as exc: print("Usage: python 5_continuous_grasping.py <max_iterations>") return else: max_iters = DEFAULT_MAX_ITERS # Initialize interfaces robot = ManipulatorSystem() # Setup sampling gp_range_upper = torch.Tensor(GP_RANGE_UPPER) gp_range_lower = torch.Tensor(GP_RANGE_LOWER) # Perform grasping i = 0 try: while True: # Sample grasp grasp_pose0 = uniform_sample(gp_range_lower, gp_range_upper) grasp_pose1 = uniform_sample(gp_range_lower, gp_range_upper) # Perform grasp print(f"Grasp {i + 1}: grasp={grasp_pose0}, release={grasp_pose1}") robot.grasp(grasp_pose0, grasp_pose1) # Loop termination i += 1 if max_iters > 0 and i >= max_iters: break except KeyboardInterrupt: print("Interrupted by user.") if __name__ == "__main__": main(sys.argv) ```
{ "source": "1heart/graspnet-baseline", "score": 2 }
#### File: graspnet_baseline/dataset/graspnet_dataset.py ```python import os import sys import numpy as np import scipy.io as scio from PIL import Image import torch from collections import abc as container_abcs from torch.utils.data import Dataset from tqdm import tqdm BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.append(os.path.join(ROOT_DIR, 'utils')) from data_utils import CameraInfo, transform_point_cloud, create_point_cloud_from_depth_image,\ get_workspace_mask, remove_invisible_grasp_points class GraspNetDataset(Dataset): def __init__(self, root, valid_obj_idxs, grasp_labels, camera='kinect', split='train', num_points=20000, remove_outlier=False, remove_invisible=True, augment=False, load_label=True): assert(num_points<=50000) self.root = root self.split = split self.num_points = num_points self.remove_outlier = remove_outlier self.remove_invisible = remove_invisible self.valid_obj_idxs = valid_obj_idxs self.grasp_labels = grasp_labels self.camera = camera self.augment = augment self.load_label = load_label self.collision_labels = {} if split == 'train': self.sceneIds = list( range(100) ) elif split == 'test': self.sceneIds = list( range(100,190) ) elif split == 'test_seen': self.sceneIds = list( range(100,130) ) elif split == 'test_similar': self.sceneIds = list( range(130,160) ) elif split == 'test_novel': self.sceneIds = list( range(160,190) ) self.sceneIds = ['scene_{}'.format(str(x).zfill(4)) for x in self.sceneIds] self.colorpath = [] self.depthpath = [] self.labelpath = [] self.metapath = [] self.scenename = [] self.frameid = [] for x in tqdm(self.sceneIds, desc = 'Loading data path and collision labels...'): for img_num in range(256): self.colorpath.append(os.path.join(root, 'scenes', x, camera, 'rgb', str(img_num).zfill(4)+'.png')) self.depthpath.append(os.path.join(root, 'scenes', x, camera, 'depth', str(img_num).zfill(4)+'.png')) self.labelpath.append(os.path.join(root, 'scenes', x, camera, 'label', str(img_num).zfill(4)+'.png')) self.metapath.append(os.path.join(root, 'scenes', x, camera, 'meta', str(img_num).zfill(4)+'.mat')) self.scenename.append(x.strip()) self.frameid.append(img_num) if self.load_label: collision_labels = np.load(os.path.join(root, 'collision_label', x.strip(), 'collision_labels.npz')) self.collision_labels[x.strip()] = {} for i in range(len(collision_labels)): self.collision_labels[x.strip()][i] = collision_labels['arr_{}'.format(i)] def scene_list(self): return self.scenename def __len__(self): return len(self.depthpath) def augment_data(self, point_clouds, object_poses_list): # Flipping along the YZ plane if np.random.random() > 0.5: flip_mat = np.array([[-1, 0, 0], [ 0, 1, 0], [ 0, 0, 1]]) point_clouds = transform_point_cloud(point_clouds, flip_mat, '3x3') for i in range(len(object_poses_list)): object_poses_list[i] = np.dot(flip_mat, object_poses_list[i]).astype(np.float32) # Rotation along up-axis/Z-axis rot_angle = (np.random.random()*np.pi/3) - np.pi/6 # -30 ~ +30 degree c, s = np.cos(rot_angle), np.sin(rot_angle) rot_mat = np.array([[1, 0, 0], [0, c,-s], [0, s, c]]) point_clouds = transform_point_cloud(point_clouds, rot_mat, '3x3') for i in range(len(object_poses_list)): object_poses_list[i] = np.dot(rot_mat, object_poses_list[i]).astype(np.float32) return point_clouds, object_poses_list def __getitem__(self, index): if self.load_label: return self.get_data_label(index) else: return self.get_data(index) def get_data(self, index, return_raw_cloud=False): color = np.array(Image.open(self.colorpath[index]), dtype=np.float32) / 255.0 depth = np.array(Image.open(self.depthpath[index])) seg = np.array(Image.open(self.labelpath[index])) meta = scio.loadmat(self.metapath[index]) scene = self.scenename[index] try: intrinsic = meta['intrinsic_matrix'] factor_depth = meta['factor_depth'] except Exception as e: print(repr(e)) print(scene) camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2], factor_depth) # generate cloud cloud = create_point_cloud_from_depth_image(depth, camera, organized=True) # get valid points depth_mask = (depth > 0) seg_mask = (seg > 0) if self.remove_outlier: camera_poses = np.load(os.path.join(self.root, 'scenes', scene, self.camera, 'camera_poses.npy')) align_mat = np.load(os.path.join(self.root, 'scenes', scene, self.camera, 'cam0_wrt_table.npy')) trans = np.dot(align_mat, camera_poses[self.frameid[index]]) workspace_mask = get_workspace_mask(cloud, seg, trans=trans, organized=True, outlier=0.02) mask = (depth_mask & workspace_mask) else: mask = depth_mask cloud_masked = cloud[mask] color_masked = color[mask] seg_masked = seg[mask] if return_raw_cloud: return cloud_masked, color_masked # sample points if len(cloud_masked) >= self.num_points: idxs = np.random.choice(len(cloud_masked), self.num_points, replace=False) else: idxs1 = np.arange(len(cloud_masked)) idxs2 = np.random.choice(len(cloud_masked), self.num_points-len(cloud_masked), replace=True) idxs = np.concatenate([idxs1, idxs2], axis=0) cloud_sampled = cloud_masked[idxs] color_sampled = color_masked[idxs] ret_dict = {} ret_dict['point_clouds'] = cloud_sampled.astype(np.float32) ret_dict['cloud_colors'] = color_sampled.astype(np.float32) return ret_dict def get_data_label(self, index): color = np.array(Image.open(self.colorpath[index]), dtype=np.float32) / 255.0 depth = np.array(Image.open(self.depthpath[index])) seg = np.array(Image.open(self.labelpath[index])) meta = scio.loadmat(self.metapath[index]) scene = self.scenename[index] try: obj_idxs = meta['cls_indexes'].flatten().astype(np.int32) poses = meta['poses'] intrinsic = meta['intrinsic_matrix'] factor_depth = meta['factor_depth'] except Exception as e: print(repr(e)) print(scene) camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2], factor_depth) # generate cloud cloud = create_point_cloud_from_depth_image(depth, camera, organized=True) # get valid points depth_mask = (depth > 0) seg_mask = (seg > 0) if self.remove_outlier: camera_poses = np.load(os.path.join(self.root, 'scenes', scene, self.camera, 'camera_poses.npy')) align_mat = np.load(os.path.join(self.root, 'scenes', scene, self.camera, 'cam0_wrt_table.npy')) trans = np.dot(align_mat, camera_poses[self.frameid[index]]) workspace_mask = get_workspace_mask(cloud, seg, trans=trans, organized=True, outlier=0.02) mask = (depth_mask & workspace_mask) else: mask = depth_mask cloud_masked = cloud[mask] color_masked = color[mask] seg_masked = seg[mask] # sample points if len(cloud_masked) >= self.num_points: idxs = np.random.choice(len(cloud_masked), self.num_points, replace=False) else: idxs1 = np.arange(len(cloud_masked)) idxs2 = np.random.choice(len(cloud_masked), self.num_points-len(cloud_masked), replace=True) idxs = np.concatenate([idxs1, idxs2], axis=0) cloud_sampled = cloud_masked[idxs] color_sampled = color_masked[idxs] seg_sampled = seg_masked[idxs] objectness_label = seg_sampled.copy() objectness_label[objectness_label>1] = 1 object_poses_list = [] grasp_points_list = [] grasp_offsets_list = [] grasp_scores_list = [] grasp_tolerance_list = [] for i, obj_idx in enumerate(obj_idxs): if obj_idx not in self.valid_obj_idxs: continue if (seg_sampled == obj_idx).sum() < 50: continue object_poses_list.append(poses[:, :, i]) points, offsets, scores, tolerance = self.grasp_labels[obj_idx] collision = self.collision_labels[scene][i] #(Np, V, A, D) # remove invisible grasp points if self.remove_invisible: visible_mask = remove_invisible_grasp_points(cloud_sampled[seg_sampled==obj_idx], points, poses[:,:,i], th=0.01) points = points[visible_mask] offsets = offsets[visible_mask] scores = scores[visible_mask] tolerance = tolerance[visible_mask] collision = collision[visible_mask] idxs = np.random.choice(len(points), min(max(int(len(points)/4),300),len(points)), replace=False) grasp_points_list.append(points[idxs]) grasp_offsets_list.append(offsets[idxs]) collision = collision[idxs].copy() scores = scores[idxs].copy() scores[collision] = 0 grasp_scores_list.append(scores) tolerance = tolerance[idxs].copy() tolerance[collision] = 0 grasp_tolerance_list.append(tolerance) if self.augment: cloud_sampled, object_poses_list = self.augment_data(cloud_sampled, object_poses_list) ret_dict = {} ret_dict['point_clouds'] = cloud_sampled.astype(np.float32) ret_dict['cloud_colors'] = color_sampled.astype(np.float32) ret_dict['objectness_label'] = objectness_label.astype(np.int64) ret_dict['object_poses_list'] = object_poses_list ret_dict['grasp_points_list'] = grasp_points_list ret_dict['grasp_offsets_list'] = grasp_offsets_list ret_dict['grasp_labels_list'] = grasp_scores_list ret_dict['grasp_tolerance_list'] = grasp_tolerance_list return ret_dict def load_grasp_labels(root): obj_names = list(range(88)) valid_obj_idxs = [] grasp_labels = {} for i, obj_name in enumerate(tqdm(obj_names, desc='Loading grasping labels...')): if i == 18: continue valid_obj_idxs.append(i + 1) #here align with label png label = np.load(os.path.join(root, 'grasp_label', '{}_labels.npz'.format(str(i).zfill(3)))) tolerance = np.load(os.path.join(BASE_DIR, 'tolerance', '{}_tolerance.npy'.format(str(i).zfill(3)))) grasp_labels[i + 1] = (label['points'].astype(np.float32), label['offsets'].astype(np.float32), label['scores'].astype(np.float32), tolerance) return valid_obj_idxs, grasp_labels def collate_fn(batch): if type(batch[0]).__module__ == 'numpy': return torch.stack([torch.from_numpy(b) for b in batch], 0) elif isinstance(batch[0], container_abcs.Mapping): return {key:collate_fn([d[key] for d in batch]) for key in batch[0]} elif isinstance(batch[0], container_abcs.Sequence): return [[torch.from_numpy(sample) for sample in b] for b in batch] raise TypeError("batch must contain tensors, dicts or lists; found {}".format(type(batch[0]))) if __name__ == "__main__": root = '/data/Benchmark/graspnet' valid_obj_idxs, grasp_labels = load_grasp_labels(root) train_dataset = GraspNetDataset(root, valid_obj_idxs, grasp_labels, split='train', remove_outlier=True, remove_invisible=True, num_points=20000) print(len(train_dataset)) end_points = train_dataset[233] cloud = end_points['point_clouds'] seg = end_points['objectness_label'] print(cloud.shape) print(cloud.dtype) print(cloud[:,0].min(), cloud[:,0].max()) print(cloud[:,1].min(), cloud[:,1].max()) print(cloud[:,2].min(), cloud[:,2].max()) print(seg.shape) print((seg>0).sum()) print(seg.dtype) print(np.unique(seg)) ```
{ "source": "1heart/tactile-in-hand", "score": 2 }
#### File: digit_inhand/src/InhandpyDatasetCSVWriter.py ```python import rospy import rospkg import numpy as np import pandas as pd import io import os import tf import json import cv2 import imageio from cv_bridge import CvBridge from sensor_msgs.msg import PointCloud from sensor_msgs.msg import Image from geometry_msgs.msg import Point32 from cv_bridge import CvBridge, CvBridgeError from jsk_rviz_plugins.msg import OverlayText BASE_PATH = '' class InhandpyDatasetCSVWriter: def __init__(self): self.obj_shape = rospy.get_param("obj_shape") # ros vars self.tf_listener = tf.TransformListener() self.bridge = CvBridge() self.digit_image_sub = rospy.Subscriber( "/digit/digit_alpha/image_raw/", Image, self.callback_digit_image, queue_size=1) # overhead image editor self.bridge = CvBridge() self.overhead_image_sub = rospy.Subscriber( "/rgb/image_raw", Image, self.callback_overhead_image, queue_size=1) self.overhead_image_crop_pub = rospy.Publisher("/rgb/image_crop", Image, queue_size=1) # dataset vars self.dstdir_dataset = rospy.get_param("dstdir_dataset") self.bag_name = rospy.get_param("bag_name") rospy.loginfo("[InhandpyDatasetCSVWriter] Extracting bag {0}.bag".format(self.bag_name)) self.data_list = [] self.data_csvname = "poses_imgs" os.popen("mkdir -p {0}/{1}/{2:04d}/color".format(self.dstdir_dataset, self.bag_name, 0), 'r') # contact thresholds self.contact_thresh = 0.1 if (self.obj_shape == 'sphere'): self.contact_thresh = 0.1 if (self.obj_shape == 'cube'): self.contact_thresh = 0.075 # contact episode vars self.contact_episode_idx = 0 self.counter = 0 self.num_incontact = 0 self.min_num_incontact = 5 self.world_T_obj = np.array([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]) if (self.obj_shape == 'sphere'): self.world_T_obj = np.array([[1., 0., 0., 0.07], [0., 1., 0., -0.0675], [0., 0., 1., 0.09], [0., 0., 0., 1.]]) if (self.obj_shape == 'cube'): self.world_T_obj = np.array([[1., 0., 0., -0.15], [0., 1., 0., -0.1475], [0., 0., 1., 0.02], [0., 0., 0., 1.]]) # contact flag publisher self.contact_flag_pub = rospy.Publisher("/digit/contact/flag", OverlayText, queue_size=1) # cloud publisher: accumulate contact points over timesteps self.cloud_pub = rospy.Publisher("/digit/center/cloud", PointCloud, queue_size=1) self.cloud_msg = PointCloud() # read mean, std images from file for the particular bag dataset rospack = rospkg.RosPack() self.path_pkg = rospack.get_path('digit_inhand') filename = "{0}/local/resources/digit/{1}/mean_std_img.json".format(self.path_pkg, self.bag_name) with open(filename) as f: data = json.load(f) self.mean_img = np.asarray(data['mean_img'], dtype=np.float32) self.std_img = np.asarray(data['std_img'], dtype=np.float32) def in_contact(self, img): # Compute per-image sum of stddev squared diff = np.linalg.norm((img - self.mean_img)/self.std_img)**2 diff = diff / self.mean_img.size # Count the percent of pixels that are significantly different from their mean values diff_cnt = np.sum(((img - self.mean_img)/self.std_img)**2 > 4**2) diff_cnt = float(diff_cnt) / float(self.mean_img.size) # rospy.loginfo("[InhandpyDatasetCSVWriter::callback_digit_image] diff_cnt: {}".format(diff_cnt)) contact_flag = diff_cnt > self.contact_thresh # rospy.loginfo("diff_cnt: {0}, contact_flag: {1}\n".format(diff_cnt, contact_flag)) contact_flag_msg = OverlayText() contact_flag_msg.text = "IN CONTACT" if (contact_flag is True) else "" self.contact_flag_pub.publish(contact_flag_msg) rospy.loginfo("[InhandpyDatasetCSVWriter::in_contact] diff_cnt: {0}, contact_flag {1}".format(diff_cnt, contact_flag)) return contact_flag def rosimg_to_numpy(self, imgmsg): if hasattr(imgmsg, 'format') and 'compressed' in imgmsg.format: img = np.asarray(Image.open(io.BytesIO(imgmsg.data))) return img return np.frombuffer(imgmsg.data, dtype=np.uint8).reshape(imgmsg.height, imgmsg.width, 3)[:, :, ::-1] def interpolate_img(self, img, rows, cols): img = cv2.resize(img, dsize=(cols, rows),interpolation=cv2.INTER_AREA) return img def save_episode_step(self, eps_idx, step_idx, img_color, obj_pos, obj_ori, digit_pos, digit_ori): img_color_loc = "{0:04d}/color/{1:04d}.png".format(eps_idx, step_idx) # reshape img to match tacto: (240,320,3) -> (120,160,3) -> (160,120,3) img_color = self.interpolate_img(img=img_color, rows=120, cols=160) img_color = np.transpose(img_color, (1,0,2)) rospy.loginfo("[save_episode_step::in_contact] img_color_loc: {0}/{1}/{2}".format( self.dstdir_dataset, self.bag_name, img_color_loc)) imageio.imwrite("{0}/{1}/{2}".format(self.dstdir_dataset, self.bag_name, img_color_loc), img_color) img_normal_loc = "{0:04d}/normal/{1:04d}.png".format(eps_idx, step_idx) data_row = {'obj_pos': obj_pos.tolist(), 'obj_ori': obj_ori.tolist(), 'digit_pos': digit_pos.tolist(), 'digit_ori': digit_ori.tolist(), 'img_color_loc': img_color_loc, 'img_normal_loc': img_normal_loc } self.data_list.append(data_row) def save_episode_dataset(self, eps_idx): csvfile = "{0}/{1}/{2:04d}/{3}.csv".format(self.dstdir_dataset, self.bag_name, eps_idx, self.data_csvname) self.data_frame = pd.DataFrame(self.data_list) self.data_frame.to_csv(csvfile) rospy.loginfo("Saving episode {0} to {1}".format(eps_idx, csvfile)) # reset vars for a new episode self.data_list = [] os.popen("mkdir -p {0}/{1}/{2:04d}/color".format(self.dstdir_dataset, self.bag_name, eps_idx+1), 'r') def callback_overhead_image(self, msg): try: img = self.bridge.imgmsg_to_cv2(msg, desired_encoding='passthrough') # img = self.rosimg_to_numpy(msg) except CvBridgeError as e: rospy.logwarn( "[InhandpyDatasetCSVWriter::callback_digit_image] {0}".format(e)) return img_crop = img[100:500, 450:1000, :] # 720 x 1280 x 4 img_msg = self.bridge.cv2_to_imgmsg(img_crop, encoding='passthrough') self.overhead_image_crop_pub.publish(img_msg) def callback_digit_image(self, msg): try: img = self.rosimg_to_numpy(msg) except CvBridgeError as e: rospy.logwarn( "[InhandpyDatasetCSVWriter::callback_digit_image] {0}".format(e)) return try: # looks up arg2 frame transform in arg1 frame # (obj_pos, obj_ori) = self.tf_listener.lookupTransform( # "world", "/object/center/", rospy.Time(0)) (tf_digit_pos, tf_digit_ori) = self.tf_listener.lookupTransform( "world", "/digit/center/", rospy.Time(0)) # returns list except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): rospy.logwarn( "[InhandpyDatasetCSVWriter::callback_digit_image] TF lookup failed") return if (self.in_contact(img)): header = msg.header header.frame_id = "world" self.cloud_msg.header = header self.cloud_msg.points.append(Point32(tf_digit_pos[0], tf_digit_pos[1], tf_digit_pos[2])) self.cloud_pub.publish(self.cloud_msg) # tf listener tf_digit_ori = tf.transformations.quaternion_matrix(tf_digit_ori)[0:3, 0:3] # 4x4 tf_digit_pos, tf_digit_ori = np.array(tf_digit_pos), np.array(tf_digit_ori) world_T_digit = np.eye(4) world_T_digit[0:3, 0:3], world_T_digit[0:3,-1] = tf_digit_ori, tf_digit_pos # digit_pos = np.array([0.,0.,0.011]) # digit_ori = np.array([[2.220446049250313e-16, -0.0, -1.0], # [0.0, 1.0, -0.0], [1.0, 0.0, 2.220446049250313e-16]]) # T_digit = np.eye(4) # T_digit[0:3, 0:3], T_digit[0:3,-1] = digit_ori, digit_pos # placing digit in a new world frame world_prime_T_digit = np.eye(4) # object pose in new world frame world_prime_T_obj = np.matmul(world_prime_T_digit, np.matmul(np.linalg.inv(world_T_digit), self.world_T_obj)) # write to file T_digit = world_prime_T_digit T_obj = world_prime_T_obj obj_pos, obj_ori = T_obj[0:3,-1], T_obj[0:3,0:3] digit_pos, digit_ori = T_digit[0:3,-1], T_digit[0:3,0:3] self.save_episode_step(eps_idx=self.contact_episode_idx, step_idx=self.num_incontact, img_color=img, obj_pos=obj_pos, obj_ori=obj_ori, digit_pos=digit_pos, digit_ori=digit_ori) self.num_incontact = self.num_incontact + 1 else: self.counter = self.counter + 1 # start new contact episode if ((self.counter > 10) & (self.num_incontact > 1)): if (self.num_incontact > self.min_num_incontact): self.save_episode_dataset(eps_idx=self.contact_episode_idx) self.contact_episode_idx = self.contact_episode_idx + 1 else: self.data_list = [] self.counter = 0 self.num_incontact = 0 def main(): rospy.init_node('inhandpy_dataset_csv_writer', anonymous=True) rospy.loginfo("Initialized inhandpy_dataset_csv_writer node.") inhandpy_dataset_writer = InhandpyDatasetCSVWriter() try: rospy.spin() except KeyboardInterrupt: print("Shutting down") if __name__ == '__main__': main() ``` #### File: scripts/geometry/tactile_depth_to_cloud.py ```python import numpy as np import os import hydra import logging from attrdict import AttrDict import copy import cv2 import open3d as o3d import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import Dataset, DataLoader, ConcatDataset import torchvision import torchvision.transforms as transforms from torch.utils.tensorboard import SummaryWriter import types from inhandpy.dataio.sim_digit_data_loaders import DigitTactoImageTfSeqDataset from inhandpy.utils import geom_utils, vis_utils log = logging.getLogger(__name__) BASE_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")) CONFIG_PATH = os.path.join(BASE_PATH, "config/depth_normals_cloud.yaml") def visualize_geometries(vis3d, seq_idx, pose_seq_obj, pose_seq_digit_top, pose_seq_digit_bot, T_cam_offset, points3d, clouds, frames, meshes, params=None): # transforms T_obj_curr = geom_utils.Rt_to_T(pose_seq_obj[0][seq_idx, :], pose_seq_obj[1][seq_idx, :]) T_digit_top_curr = geom_utils.Rt_to_T(pose_seq_digit_top[0][seq_idx, :], pose_seq_digit_top[1][seq_idx, :]) T_digit_bot_curr = geom_utils.Rt_to_T(pose_seq_digit_bot[0][seq_idx, :], pose_seq_digit_bot[1][seq_idx, :]) T_cam_top_curr = torch.matmul(T_digit_top_curr, T_cam_offset) T_cam_bot_curr = torch.matmul(T_digit_bot_curr, T_cam_offset) # clouds points3d_vis = points3d.cpu().detach().numpy() clouds[0].points = o3d.utility.Vector3dVector(points3d_vis.transpose()) # meshes, frames meshes = [copy.deepcopy(mesh) for mesh in meshes] frames = [copy.deepcopy(frame) for frame in frames] vis3d.transform_geometry_absolute([T_obj_curr, T_digit_top_curr, T_digit_bot_curr], meshes) vis3d.transform_geometry_absolute([T_obj_curr, T_cam_top_curr, T_cam_bot_curr], frames) vis3d.add_geometry(clouds) vis3d.add_geometry(meshes) vis3d.add_geometry(frames) vis3d.render() # vis3d.pan_scene() vis3d.remove_geometry(clouds) vis3d.remove_geometry(meshes) vis3d.remove_geometry(frames) def visualize_imgs(seq_idx, img_seq_depth, img_seq_normal, params=None, tpause=100): img_depth = ((img_seq_depth[seq_idx, :, :, :]).permute(1, 2, 0)).cpu().detach().numpy() img_normal = ((img_seq_normal[seq_idx, :, :, :]).permute(1, 2, 0)).cpu().detach().numpy() img_depth = vis_utils.depth_to_color(img_depth) cv2.imshow("img_depth", img_depth) cv2.imshow("img_normal", img_normal) cv2.waitKey(tpause) def data_loader(dataset_names, datatype, params): transform = transforms.Compose([transforms.ToTensor()]) dataset_list = [] for (ds_idx, dataset_name) in enumerate(dataset_names): srcdir_dataset = f"{BASE_PATH}/local/datasets/{dataset_name}" dataset_list.append(DigitTactoImageTfSeqDataset( dir_dataset=f"{srcdir_dataset}/{datatype}", base_path=BASE_PATH, transform=transform, downsample_imgs=params.downsample_imgs, img_types=params.img_types, digit_id=params.digit_id)) dataset = ConcatDataset(dataset_list) dataloader = DataLoader(dataset, batch_size=params.batch_size, shuffle=params.shuffle, num_workers=params.num_workers) return dataloader, dataset @hydra.main(config_path=CONFIG_PATH) def main(cfg): # data loader train_dataloader, train_dataset = data_loader( dataset_names=cfg.dataset_names, datatype="train", params=cfg.dataloader) # init values view_params = AttrDict({'fov': 60, 'front': [-0.56, 0.81, 0.14], 'lookat': [ -0.006, -0.0117, 0.043], 'up': [0.0816, -0.112, 0.990], 'zoom': 0.5}) vis3d = vis_utils.Visualizer3d(base_path=BASE_PATH, view_params=view_params) T_cam_offset = torch.tensor(cfg.sensor.T_cam_offset) proj_mat = torch.tensor(cfg.sensor.P) gel_depth = torch.tensor(np.loadtxt(f"{BASE_PATH}/{cfg.sensor.gel_depth_map_loc}", delimiter=',') - cfg.sensor.gel_depth_offset) # iterate over dataset for ds_idx, dataset in enumerate(train_dataset): print(f"Dataset idx: {ds_idx:03d}") # load imgs: S x C x H x W , poses: (S x 3 x 3, S x 3) <-> (R, t) img_seq_color, img_seq_depth, img_seq_normal, pose_seq_obj, pose_seq_digit_top, pose_seq_digit_bot = dataset normals3d_seq = img_seq_normal.view(img_seq_normal.shape[0], img_seq_normal.shape[1], -1) # S x 3 x N pose_seq_sensor = pose_seq_digit_bot if (cfg.dataloader.digit_id == "bot") else pose_seq_digit_top S, C, H, W = img_seq_color.shape # initialize open3d geometries clouds = vis3d.init_geometry(geom_type="cloud", num_items=1) frames = vis3d.init_geometry(geom_type="frame", num_items=3) # obj, digit_top, digit_bot meshes = vis3d.init_geometry(geom_type="mesh", num_items=3, file_names=[ "textured_cube_rounded.obj", "digit.STL", "digit.STL"]) # obj, digit_top, digit_bot meshes[0].scale(0.25 * 0.05, center=(0, 0, 0)) step = 1 seq_idx = 0 while (seq_idx < S): print(f"Sequence idx: {seq_idx:03d}") # get points, normals normals3d = normals3d_seq[seq_idx, :, :] img_depth = img_seq_depth[seq_idx, :, :] # get transforms T_sensor = geom_utils.Rt_to_T(R=pose_seq_sensor[0][seq_idx, :], t=pose_seq_sensor[1][seq_idx, :]) T_camera = torch.matmul(T_sensor, T_cam_offset) T_obj = geom_utils.Rt_to_T(R=pose_seq_obj[0][seq_idx, :], t=pose_seq_obj[1][seq_idx, :]) # preprocess depth img_depth = torch.flip(img_depth, dims=[0, 1]) img_depth[img_depth >= gel_depth] = 0 # inverse projection points3d_world = geom_utils.depth_to_pts3d(depth=img_depth, P=proj_mat, V=torch.inverse(T_camera), params=cfg.sensor, ordered_pts=False) # visualization visualize_geometries(vis3d=vis3d, seq_idx=seq_idx, pose_seq_obj=pose_seq_obj, pose_seq_digit_top=pose_seq_digit_top, pose_seq_digit_bot=pose_seq_digit_bot, T_cam_offset=T_cam_offset, points3d=points3d_world, clouds=clouds, frames=frames, meshes=meshes, params=cfg) visualize_imgs(seq_idx, img_seq_depth, img_seq_normal, params=cfg) if not vis3d.paused.value: seq_idx = (seq_idx + step) % S vis3d.clear_geometries() vis3d.destroy() if __name__ == '__main__': main() ``` #### File: scripts/img_translation/create_pix2pix_dataset.py ```python import os import glob import pandas as pd import numpy as np from PIL import Image import imageio import logging log = logging.getLogger(__name__) def load_seq_from_file(csvfile): seq_data = pd.read_csv(csvfile) if os.path.exists(csvfile) else None if seq_data is not None: seq_data = None if (len(seq_data) < 2) else seq_data return seq_data def main(): base_path = '/home/paloma/code/fair_ws/tactile-in-hand/inhandpy/' # update src + dst dirs # src_dataset_dir = f'{base_path}/local/datasets/tacto/sphere/dataset_0000/' # src_dataset_dir = f'{base_path}/local/datasets/real/sphere/digit-0.5mm-ball-bearing-zup_2021-08-31-21-37-35/' src_dataset_dir = f'{base_path}/local/datasets/real/cube/digit-flatcorner_2021-09-10-21-13-17/' dst_dataset_dir = f'{base_path}/local/datasets/pix2pix/real_pyramid' dataset_types = ['train', 'test'] dir_A = f"{dst_dataset_dir}/A/" dir_B = f"{dst_dataset_dir}/B/" dir_AB = f"{dst_dataset_dir}/AB/" # iterate over train/test data for dataset_type in dataset_types: os.makedirs(f"{dir_A}/{dataset_type}", exist_ok=True) os.makedirs(f"{dir_B}/{dataset_type}", exist_ok=True) os.makedirs(f"{dir_AB}/{dataset_type}", exist_ok=True) csvfiles = sorted(glob.glob(f"{src_dataset_dir}/{dataset_type}/**/*.csv")) dst_img_idx = 0 # iterate over contact sequences for eps_idx in range(9, len(csvfiles)): csvfile = csvfiles[eps_idx] seq_data = load_seq_from_file(csvfile) if seq_data is None: continue print(f"Reading contact sequence from {csvfile}") img_color_locs, img_normal_locs = None, None if 'img_bot_color_loc' in seq_data: img_color_locs = seq_data[f"img_bot_color_loc"] if 'img_color_loc' in seq_data: img_color_locs = seq_data[f"img_color_loc"] if 'img_bot_normal_loc' in seq_data: img_normal_locs = seq_data[f"img_bot_normal_loc"] # if 'img_normal_loc' in seq_data: img_normal_locs = seq_data[f"img_normal_loc"] # iterate over images within each sequence for img_idx in range(0, len(img_color_locs)): img_color = Image.open(f"{src_dataset_dir}/{dataset_type}/{img_color_locs[img_idx]}") if img_normal_locs is not None: img_normal = Image.open(f"{src_dataset_dir}/{dataset_type}/{img_normal_locs[img_idx]}") else: img_normal = img_color img_normal = np.zeros_like(img_color) img_normal[:, :, 2] = 255 imageio.imwrite(f"{dir_A}/{dataset_type}/{dst_img_idx:04d}.png", img_color) imageio.imwrite(f"{dir_B}/{dataset_type}/{dst_img_idx:04d}.png", img_normal) dst_img_idx = dst_img_idx + 1 break # single episode os.system(f"python scripts/img_translation/combine_A_and_B.py --fold_A {dir_A} --fold_B {dir_B} --fold_AB {dir_AB}") log.info(f"Created tactile dataset of {dst_img_idx} images at {dst_dataset_dir}.") if __name__=='__main__': main() ``` #### File: scripts/img_translation/train_test_mlp_model.py ```python import os import imageio import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision.transforms as transforms from inhandpy.thirdparty.pix2pix.options.test_options import TestOptions from inhandpy.thirdparty.pix2pix.options.train_options import TrainOptions from inhandpy.thirdparty.pix2pix.data import create_dataset from inhandpy.utils import vis_utils, data_utils import matplotlib.pyplot as plt plt.ion() BASE_PATH = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")) class MLPNetwork(nn.Module): def __init__( self, input_size=5, output_size=3, hidden_size=32): super().__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def visualize_vector(img_vec, title=''): img_mat = img_vec.permute(1, 0) # n x 3 -> 3 x n img_mat = img_mat.reshape(3, 256, 256) # 3 x n -> 3 x H x W plt.imshow(img_mat.permute(1,2,0).cpu().detach().numpy()) plt.title(title) plt.show() plt.pause(1e-1) def vector_to_img(img_vec, img_numpy=False): img_mat = img_vec.permute(1, 0) # n x 3 -> 3 x n img_mat = img_mat.reshape(3, 256, 256) # 3 x n -> 3 x H x W if img_numpy: img_mat = img_mat.permute(1,2,0).cpu().detach().numpy() return img_mat def update_img_dict(img_dict, inputs, outputs, labels): img_color = (vector_to_img(img_vec=inputs[:, 0:3]) + 1) / 2.0 img_normal_gt = (vector_to_img(img_vec=labels) + 1) / 2.0 img_normal_pred = (vector_to_img(img_vec=outputs) + 1) / 2.0 img_list = [img_color, img_normal_gt, img_normal_pred] idx = 0 for key in img_dict: img = img_list[idx] img = data_utils.interpolate_img(img=img, rows=160, cols=120) img_dict[key].append(transforms.ToPILImage()(img)) idx = idx + 1 return img_dict def save_video(img_dict, dstdir, dataset_name, fps=15): print("Writing img dict outputs as videos to: {0}".format(dstdir)) for key in img_dict: vidfile = f"{dstdir}/{dataset_name}_{key}.mp4" imageio.mimwrite(vidfile, img_dict[key], fps=fps) def preproc_data(data): # read data color = data['A'].squeeze(0) normal = data['B'].squeeze(0) # compute network input ch, rows, cols = color.shape row_loc_mat = (torch.arange(0, cols)).repeat(rows, 1) / cols col_loc_mat = (torch.arange(0, rows).unsqueeze(-1)).repeat(1, cols) / rows inputs = torch.zeros((5, rows, cols)) inputs[0:3, :] = color inputs[3, :] = row_loc_mat inputs[4, :] = col_loc_mat # reshape input / labels inputs = inputs.reshape((5, -1)) labels = normal.reshape((3, -1)) inputs = inputs.permute(1,0) # 5 x n -> n x 5 labels = labels.permute(1,0) # 3 x n -> n x 3 return inputs, labels def train_model(dataset, n_epochs=500, opt=None): model = MLPNetwork() criterion = torch.nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=1e-3) for epoch in range(n_epochs): loss_vec = torch.zeros(len(dataset)) for i, data in enumerate(dataset): inputs, labels = preproc_data(data) # clear gradients optimizer.zero_grad() # forward, backward, optimize outputs = model.forward(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() loss_vec[i] = loss.item() print(f'epoch: {epoch}, loss: {torch.mean(loss_vec)}') # save model torch.save(model.state_dict(), "{BASE_PATH}/local/pix2pix/checkpoints/mlp") def test_model(dataset, opt=None): model = MLPNetwork() criterion = torch.nn.MSELoss() model.load_state_dict(torch.load("{BASE_PATH}/local/pix2pix/checkpoints/mlp")) model.eval() loss_vec = torch.zeros(len(dataset)) img_dict = {} img_dict['color'], img_dict['normal_gt'], img_dict['normal_pred'] = [], [], [] for i, data in enumerate(dataset): inputs, labels = preproc_data(data) # n x 5, n x 3 outputs = model.forward(inputs) # n x 3 ## collect imgs to be saved to file as a video img_dict = update_img_dict(img_dict, inputs, outputs, labels) ## visualize predictions # fig1, axs1 = plt.subplots(nrows=1, ncols=3, num=1, clear=True, figsize=(22, 8)) # img_color_np = (vector_to_img(img_vec=inputs[:, 0:3]) + 1) / 2.0 # img_normal_gt_np = (vector_to_img(img_vec=labels) + 1) / 2.0 # img_normal_pred_np = (vector_to_img(img_vec=outputs) + 1) / 2.0 # vis_utils.visualize_imgs(fig=fig1, axs=[axs1[0], axs1[1], axs1[2]], # img_list=[img_color_np, img_normal_gt_np, img_normal_pred_np], # titles=['img_color', 'img_normal_gt', 'img_normal_pred'], cmap='coolwarm') # plt.pause(1e-3) loss_vec[i] = criterion(outputs, labels) # save img lists as video to file dstdir_vid=f"{BASE_PATH}/local/pix2pix/qual_videos/mlp" os.makedirs(dstdir_vid, exist_ok=True) dataset_name = opt.dataroot.split('/')[-2] save_video(img_dict, dstdir=dstdir_vid, dataset_name=dataset_name) print(f"test mse reconstruction loss: {torch.mean(loss_vec)}") def main(): mode = 'test' # 'train', 'test' if (mode == 'train'): opt = TrainOptions().parse() if (mode == 'test'): opt = TestOptions().parse() opt.num_threads = 0 opt.batch_size = 1 opt.serial_batches = True opt.no_flip = True opt.display_id = -1 dataset = create_dataset(opt) if (mode == 'train'): train_model(dataset, opt=opt) if (mode == 'test'): test_model(dataset, opt=opt) if __name__ == '__main__': main() ``` #### File: inhandpy/utils/logger.py ```python import numpy as np import pandas as pd import logging log = logging.getLogger(__name__) class Logger: def __init__(self, params=None): self.params = params self.dataframe = pd.DataFrame() def get_data(self): return self.dataframe def log_val(self, names, vals, index_val, index_name=None): data_dict = {} for name, val in zip(names, vals): data_dict[name] = [val] data_row = pd.DataFrame(data_dict, index=[index_val], dtype=object) if index_name is not None: data_row.index.name = index_name dfs = [data_row] if self.dataframe.empty else [self.dataframe, data_row] self.dataframe = pd.concat([df.stack() for df in dfs], axis=0).unstack() def set_index(self, index_vals): self.dataframe = self.dataframe.set_index(index_vals) def write_data_to_file(self, csvfile, verbose=False): if verbose: log.info(f"Saving logged data to {csvfile}") self.dataframe.to_csv(csvfile) ```
{ "source": "1henno1/vcs-automat-misc", "score": 2 }
#### File: vcs-automat-misc/server/create_plots.py ```python import os,sys,inspect current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) sys.path.insert(0, current_dir) import time import configparser import logging import numpy as np from datetime import datetime, date, timedelta import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.dates as mdates import mysql.connector from mysql.connector import errorcode # try to set up a german locale import locale for lang in ('de_DE', 'de_DE.utf8', 'de_CH', 'de_CH.utf8'): try: locale.setlocale(locale.LC_ALL, lang) break except Exception: pass # globals for plot formatting YEAR = datetime.now().year SIZE = (6, 4.5) COLOR = 'gray' # set up logging config logging.basicConfig(level=logging.DEBUG, format='%(asctime)s\t%(levelname)s\t[%(name)s: %(funcName)s]\t%(message)s', datefmt='%Y-%m-%d %H:%M:%S', handlers=[logging.FileHandler("logs/create_plots.log"), logging.StreamHandler()]) # setting of global minimum logging level logging.disable(logging.DEBUG) # set-up for logging of main. Level options: DEBUG, INFO, WARNING, ERROR, CRITICAL loglevel = logging.DEBUG logtitle = 'main' logger = logging.getLogger(logtitle) logger.setLevel(loglevel) # start of script logger.info('started at '+time.strftime('%d.%m.%y, %H:%M')) # read config config = configparser.SafeConfigParser() config.read('settings.ini') # set up paths for the wordpress plugin and image directory plugin_path = str(config['general']['wordpress_plugin_dir']) img_path = plugin_path+"/img" if os.path.isdir(img_path) is False: logger.error('Image directory for wordpress plugin not found at '+img_path) sys.exit() # set up database connection try: dbcn = mysql.connector.connect(user=str(config['general']['mysql_user']), password=str(config['general']['mysql_password']), host='localhost', database='vcs_automat') except mysql.connector.Error as err: if err.errno == errorcode.ER_ACCESS_DENIED_ERROR: print("Username or password wrong") elif err.errno == errorcode.ER_BAD_DB_ERROR: print("Database does not exist") else: print(err) sys.exit() # read archive data from the database, each entry corresponds to one drink having been released db = dbcn.cursor() db.execute("SELECT unixtime FROM archive") raw_data = [unixtime for (unixtime,) in db] dbcn.close() # process and combine raw data into bins corresponding to hours, weekdays, weeks and years data = [{'hour': int(i.strftime('%H')), 'weekday': int(i.strftime('%w')), 'week': int(i.strftime('%W')), 'year': int(i.strftime('%Y'))} for i in map(datetime.fromtimestamp, raw_data)] hours = np.array([sum(entry.get('hour') == i for entry in data) for i in range(0,23+1)]) # all data is used weekdays = np.array([sum(entry.get('weekday') == i for entry in data) for i in range(0,6+1)]) # all data is used weeks = np.array([sum(entry.get('year') == YEAR and entry.get('week') == j for entry in data) for j in range(0,56+1)]) # only this year's data is used # function to format the title def set_title(plt, text): plt.suptitle(text) plt.title('aktualisiert '+time.strftime('%d.%m.%y, %H:%M'), fontdict={'fontsize': 8}, color='gray') # define axis formatter for months months = mdates.MonthLocator() monthsFmt = mdates.DateFormatter('1. %b') # # PLOT BASED ON WEEKDAYS # if sum(weekdays) != 0: fig, ax = plt.subplots() fig.set_size_inches(SIZE) weekdays_title = ['Montag', 'Dienstag', 'Mittwoch', 'Donnerstag', 'Freitag', 'Samstag', 'Sonntag'] ax.bar(weekdays_title, weekdays/sum(weekdays)*100, color=COLOR) fig.autofmt_xdate() plt.ylabel('relativer Konsum [%]') set_title(plt, 'Durchschnittlicher Konsum nach Wochentag') plt.savefig('img/weekday.svg', transparent=True) plt.savefig(img_path+'/weekday.svg', transparent=True) plt.close() # # PLOT BASED ON HOUR OF THE DAY # if sum(hours) != 0: fig, ax = plt.subplots() fig.set_size_inches(SIZE) ax.bar(range(0,23+1), hours/sum(hours)*100, align='edge', color=COLOR) ax.set_xlim(0, 24) ax.set_xticks([1,2,4,5,7,8,10,12,14,16,17,19,20,22,23], minor=True) plt.xticks((0,3,6,9,12,15,18,21,24)) plt.ylabel('relativer Konsum [%]') set_title(plt, 'Durchnittlicher Konsum nach Uhrzeit') plt.savefig(img_path+'/hour.svg', transparent=True) plt.close() # # PLOT OF WEEKLY CONSUMPTION THIS YEAR # fig, ax = plt.subplots() fig.set_size_inches(SIZE) first_day = date(YEAR, 1, 1) last_day = date(YEAR, 12, 31) # figure out which date the monday of the first week of the current year falls on, so that the weeknumbers are correctly defined monday_of_week_zero = first_day - timedelta(days = first_day.weekday()) weeknumber_start = 0 if first_day.weekday() > 0 else 1 weeknumber_end = int(last_day.strftime('%W')) x = range(int(mdates.date2num(monday_of_week_zero)), int(mdates.date2num(last_day))+1, 7) y = weeks[weeknumber_start:weeknumber_end+1] ax.bar(x, y, width=6, align='edge', color=COLOR) ax.xaxis.set_major_locator(mdates.MonthLocator()) ax.xaxis.set_major_formatter(mdates.DateFormatter('1. %b')) fig.autofmt_xdate() ax.set_xlim(int(mdates.date2num(datetime(YEAR, 1, 1))), int(mdates.date2num(datetime(YEAR, 12, 31)))) plt.ylabel('Gesamtkonsum') set_title(plt, 'Wöchentlicher Konsum in '+str(YEAR)) plt.savefig(img_path+'/year_'+str(YEAR)+'.svg', transparent=True) plt.close() ```
{ "source": "1hoen/ipet", "score": 2 }
#### File: ipet/evaluation/IPETFilter.py ```python import xml.etree.ElementTree as ElementTree import numpy as np from ipet.concepts import IpetNode, IpetNodeAttributeError import logging import pandas as pd from ipet.evaluation import TestSets logger = logging.getLogger(__name__) class IPETValue(IpetNode): nodetag = "Value" def __init__(self, name = None, active = True): """ constructs an Ipet Instance Parameters ---------- name : The name of this problem active : True or "True" if this element should be active, False otherwise """ super(IPETValue, self).__init__(active) self.name = name def checkAttributes(self): if self.name is None: raise IpetNodeAttributeError("name", "No name specified") return True def getEditableAttributes(self): return ["name"] + super(IPETValue, self).getEditableAttributes() @staticmethod def getNodeTag(): return IPETValue.nodetag def getName(self): return self.name def getValue(self, dtype = None): if dtype is None: for mytype in [int, float, str]: try: return mytype(self.name) except ValueError: continue elif dtype != object: return dtype.type(self.name) return self.name def toXMLElem(self): me = ElementTree.Element(IPETValue.getNodeTag(), self.attributesToStringDict()) return me class IPETComparison: """ comparison operators for filters. All standard binary comparisons + float comparisons (with tolerance) + percentage based inequality """ comparisondict = { "le":"le", "lt":"lt", "gt":"gt", "ge":"ge", "eq":"eq", "neq":"neq" } def __init__(self, operator): """ constructs a comparison object by passing an appropriate operator as string """ if str(operator) in IPETComparison.comparisondict: self.operator = str(operator) else: raise KeyError("Unknown key value %s" % (operator)) def compare(self, x, y): method = getattr(self, "method_" + IPETComparison.comparisondict[self.operator]) try: return method(x, y) except TypeError as t: logger.error("Got type error %s comparing elements x:%s and y:%s" % (t, x, y)) return 0 def method_le(self, x, y): return x <= y def method_lt(self, x, y): return x < y def method_ge(self, x, y): return x >= y def method_gt(self, x, y): return x > y def method_eq(self, x, y): return x == y def method_neq(self, x, y): return x != y class IPETFilter(IpetNode): """ Filters are used for selecting subsets of problems to analyze. """ valueoperators = ["keep", "drop"] listoperators = ["diff", "equal"] attribute2Options = { "anytestrun":["one", "all"], "operator":list(IPETComparison.comparisondict.keys()) +valueoperators +listoperators} nodetag = "Filter" DEFAULT_ANYTESTRUN = 'all' _storedcol_ = None _storeddf_ = None def __init__(self, expression1 = None, expression2 = None, operator = "ge", anytestrun = DEFAULT_ANYTESTRUN, active = True, datakey = None): """ filter constructor Parameters ---------- expression1 : integer, float, string, or column name expression2 : integer, float, string, or column name datakey : available data key for drop and keep filters operator : operator such that evaluation expression1 op expression2 yields True or False anytestrun : either 'one' or 'all' active : True or "True" if this filter should be active, False otherwise """ super(IPETFilter, self).__init__(active) self.expression1 = expression1 self.expression2 = expression2 self.anytestrun = anytestrun self.values = [] self._updatevalueset = False self.set_operator(operator) self.datakey = datakey def checkAttributes(self): if self.operator in self.valueoperators and self.values == []: raise IpetNodeAttributeError("operator", "Trying to use a filter with operator {0} and empty value set".format(self.operator)) if self.operator in self.valueoperators and self.datakey is None or self.datakey == "": raise IpetNodeAttributeError("datakey", "Trying to use a filter with operator '{}' and unspecified data key '{}'".format(self.operator, self.datakey)) if self.anytestrun not in self.attribute2Options["anytestrun"]: raise IpetNodeAttributeError("anytestrun", "Wrong attribute {} passed as 'anytestrun' property. Should be in {}".format(self.anytestrun, self.attribute2Options["anytestrun"])) return True @staticmethod def fromDict(attrdict): expression1 = attrdict.get('expression1') expression2 = attrdict.get('expression2') anytestrun = attrdict.get('anytestrun', IPETFilter.DEFAULT_ANYTESTRUN) operator = attrdict.get('operator') datakey = attrdict.get('datakey') active = attrdict.get('active', True) return IPETFilter(expression1, expression2, operator, anytestrun, active, datakey) @staticmethod def processXMLElem(elem): """ inspect and process an xml element """ elemdict = dict(elem.attrib) # filter_ must be written with a trailing underscore "_" not to conflict with the filter method of Python filter_ = IPETFilter.fromDict(elemdict) # add values one by one for child in elem: # catch wrong children if not child.tag == IPETValue.getNodeTag(): raise AttributeError("Cannot add a child of type {} to a Filter".format(child.tag)) instancename = child.attrib.get("name") if instancename: filter_.addChild(IPETValue(instancename)) # check the filter attributes filter_.checkAttributes() return filter_ def getName(self): prefix = self.anytestrun if self.operator in self.valueoperators: return "{} value filter (key: {})".format(self.operator, self.datakey) elif self.operator in self.listoperators: return "{}-{} list filter (key: {})".format(self.anytestrun, self.operator, self.datakey) else: return " ".join(map(str, (prefix, self.expression1, self.operator, self.expression2))) def set_operator(self, operator): self.operator = operator if self.operator in list(IPETComparison.comparisondict.keys()): self.comparison = IPETComparison(self.operator) def getEditableAttributes(self): """ returns editable attributes depending on the selected operator if a binary operator is selected, two expressions as left and right hand side of operator must be chosen For problem operators, no expressions are selectable. """ parenteditables = super(IPETFilter, self).getEditableAttributes() if self.operator in list(IPETComparison.comparisondict.keys()): return parenteditables + ['operator', 'anytestrun', 'expression1', 'expression2'] else: return parenteditables + ['operator', 'anytestrun', 'datakey'] @staticmethod def getNodeTag(): return IPETFilter.nodetag def getChildren(self): return self.values def acceptsAsChild(self, child): return child.__class__ is IPETValue def addChild(self, child): self.values.append(child) self._updatevalueset = True def removeChild(self, child): self.values.remove(child) self._updatevalueset = True def getActiveValues(self): return [x for x in self.values if x.isActive()] def getRequiredOptionsByAttribute(self, attr): return self.attribute2Options.get(attr, super(IPETFilter, self).getRequiredOptionsByAttribute(attr)) def checkAndUpdateValueSet(self, dtype = None): """Update the value set of this filter if necessary """ if not self._updatevalueset: return self.valueset = set([x.getValue(dtype) for x in self.getActiveValues()]) updateset = set() # # check for test set names among the values # for i in self.valueset: if i in TestSets.getTestSets(): logger.debug("Adding test set {} to value set".format(i)) updateset = updateset.union(set(TestSets.getTestSetByName(i))) self.valueset = self.valueset.union(updateset) logger.debug("Complete value set of filter {}:\n{}".format(self.getName(), self.valueset)) self._updatevalueset = False def applyValueOperator(self, df): dtype = df.dtypes[0] self.checkAndUpdateValueSet(dtype) contained = df.isin(self.valueset) logger.debug("Contained: {}\nData: {}".format(contained, df)) if self.operator == "keep": return contained else: return ~contained def isAllDiff(self, x): valueset = set() for x_i in x: if x_i in valueset: return False valueset.add(x_i) return True def isOneEqual(self, x): return not self.isAllDiff(x) def isAllEqual(self, x): first_x = x.iloc[0] for x_i in x: if first_x != x_i: return False return True def isOneDiff(self, x): return not self.isAllEqual(x) def applyListOperator(self, df, groupindex): """ Apply list operators 'diff' and 'equal' to the datakey. In combination with the 'anytestrun' attribute, there are four possibilities in total: | anytestrun | operator | result | |------------|----------|--------| | one |diff |True, if there are at least 2 different values in a group | | all |diff |True, if all values are different in this group | | one |equal |True, if at least one value occurs twice in a group | | all |equal |True, if there is only a single value for this group | """ # # 1. chose the right list function # if self.operator == "diff": if self.anytestrun == "one": fun = self.isOneDiff else: fun = self.isAllDiff if self.operator == "equal": if self.anytestrun == "one": fun = self.isOneEqual else: fun = self.isAllEqual # # 2. store the original index # dfindex = df.set_index(groupindex).index # # 3. group by the index and apply the list function # f_by_group = df.groupby(groupindex)[self.datakey].apply(fun) # # 4. reindex the result to match the original data frame row count # f_by_group_as_frame = pd.DataFrame(f_by_group.reindex(index = dfindex, axis = 0)) # # 5. set the index of the frame to match the original frame's index # f_by_group_as_frame.set_index(df.index, inplace = True) return f_by_group_as_frame def filterProblem(self, probname, testruns = []): """ return True or False depending on the evaluation of the filter operator comparison """ # apply an problem operator directly if self.operator in self.valueoperators: return self.applyValueOperator(probname) # evaluate the two expressions and filter according to the anytestrun attribute if one or all match the requirement for testrun in testruns: x = self.evaluate(self.expression1, probname, testrun) y = self.evaluate(self.expression2, probname, testrun) if self.anytestrun == 'one' and self.comparison.compare(x, y): return True elif self.anytestrun == 'all' and not self.comparison.compare(x, y): return False if self.anytestrun == 'one': return False return True def storeResult(self, df : pd.DataFrame, filtercol : pd.Series): """store a filter result for future reuse """ self._storeddf_ = df self._storedcol_ = filtercol def getStoredResult(self, df : pd.DataFrame): """return the already stored result for this data frame """ if self._storeddf_ is df: return self._storedcol_ else: return None def applyFilter(self, df, groupindex = None): """Apply the filter to a data frame rowwise Parameters ---------- df : DataFrame data frame object containing columns 'expression1' and 'expression2' or 'datakey' depending on the selected operator groupindex : list or None either a list of columns that should be used for groupby operations (only needed for list operators 'equal' and 'diff') Returns ------- booleanseries : """ if self.operator in self.listoperators: filtercol = self.applyListOperator(df, groupindex) elif self.operator in self.valueoperators: filtercol = self.applyValueOperator(df[[self.datakey]]) else: x = self.evaluateValueDataFrame(df, self.expression1) y = self.evaluateValueDataFrame(df, self.expression2) try: x.columns = ["comp"] except: pass try: y.columns = ["comp"] except: pass filtercol = self.comparison.compare(x, y) if groupindex is None: return filtercol dfindex = df.set_index(groupindex).index renaming = {i:"{}_filter".format(i) for i in groupindex} filtercol = filtercol.rename(renaming, axis = 1) filtercol.index = dfindex # group the filter by the specified data frame index columns. if self.anytestrun == "one": func = np.any elif self.anytestrun == "all": func = np.all fcol_index = filtercol.groupby(filtercol.index).apply(func) # # reshape the column to match the original data frame rows # fcol = fcol_index.reindex(index = dfindex, axis = 0) return fcol def getNeededColumns(self, df): return [exp for exp in [self.expression1, self.expression2, self.datakey] if exp in df.columns] def evaluateValueDataFrame(self, df, value): if value in df.columns: return df[[value]] else: for conversion in [int, float, str]: try: return conversion(value) except ValueError: pass return value def evaluate(self, value, probname, testrun): if value in testrun.getKeySet(): return testrun.getProblemDataById(probname, value) else: for conversion in [int, float, str]: try: return conversion(value) except ValueError: pass return value def filterProblems(self, probnames, testruns = []): return [self.filterProblem(probname, testruns) for probname in probnames] def getFilteredList(self, probnames, testruns = []): return [probname for probname in probnames if self.filterProblem(probname, testruns)] def toXMLElem(self): me = ElementTree.Element(IPETFilter.getNodeTag(), self.attributesToStringDict()) for value in self.values: me.append(value.toXMLElem()) return me def getDependency(self, i): if i == 1: value = self.expression1 else: value = self.expression2 try: float(value) except: return value return None def equals(self, other): """Compare this and another filter for equality """ if not IpetNode.equals(self, other): return False if self.operator == other.operator: if self.operator not in IPETFilter.valueoperators: return True if len(self.values) != len(other.values): return False for v1, v2 in zip(self.values, other.values): if not v1.equals(v2): return False return True class IPETFilterGroup(IpetNode): """ represents a list of filters, has a name attribute for quick tabular representation a filter group collects """ nodetag = "FilterGroup" attribute2options = {"filtertype":["union", "intersection"]} editableAttributes = ["name", "filtertype"] # global data frame and index that are reused for several filter groups _glbdf_ = None _glbindex_ = None # intersection row index which can be shared across all filter groups of type "intersection" _glbinterrows_ = None def __init__(self, name = None, filtertype = "intersection", active = True): """ constructor for a filter group Parameters: ---------- name : a suitable name for the filter group filtertype : either 'union' or 'intersection' active : True or "True" if this filter group should be active, False otherwise """ super(IPETFilterGroup, self).__init__(active) self.name = name self.filters = [] if filtertype not in ["intersection", "union"]: raise ValueError("Error: filtertype <%s> must be either 'intersection' or 'union'" % filtertype) self.filtertype = filtertype def getEditableAttributes(self): return super(IPETFilterGroup, self).getEditableAttributes() + self.editableAttributes def getChildren(self): return self.filters def addChild(self, child): self.addFilter(child) def acceptsAsChild(self, child): return child.__class__ is IPETFilter def removeChild(self, child): self.filters.remove(child) @staticmethod def getNodeTag(): return IPETFilterGroup.nodetag def getRequiredOptionsByAttribute(self, attr): return self.attribute2options.get(attr, super(IPETFilterGroup, self).getRequiredOptionsByAttribute(attr)) def addFilter(self, filter_): """ add a filter to the list of filters. Parameters ---------- filter_ : an problem of IPETFilter """ self.filters.append(filter_) def getName(self): return self.name def getActiveFilters(self): return [f for f in self.filters if f.isActive()] @staticmethod def setGlobalDataFrameAndIndex(df : pd.DataFrame, index): """Set global data frame and index for filtering, that will be reused by each filter group """ IPETFilterGroup._glbdf_ = df IPETFilterGroup._glbindex_ = index IPETFilterGroup._glbinterrows_ = IPETFilterGroup.computeIntersectionRows(df, index) @staticmethod def computeIntersectionRows(df : pd.DataFrame, index): """Compute intersection rows of a given data frame and index Intersection rows denote a boolean index to define the subset of rows of the input frame considered as "intersection" for filter groups that have the "intersection" type (which is the default). The intersection row computation is slow and is reused across all filter groups with the intersection type. """ logger.info("Computing rows for intersection groups") dfindex = df.set_index(index).index groups = df.groupby(index) instancecount = groups.apply(len).max() interrows = groups.apply(lambda x:len(x) == instancecount) return interrows.reindex(dfindex) def filterDataFrame(self, df, index): """ filters a data frame object as the intersection of all values that match the criteria defined by the filters """ activefilters = self.getActiveFilters() # treat the special case to keep everything quickly if len(activefilters) == 0 and self.filtertype == "union": return df # first, get the highest number of index occurrences. This number must be matched to keep the problem if self.filtertype == "intersection": if df is IPETFilterGroup._glbdf_: intersection_index = IPETFilterGroup._glbinterrows_ else: intersection_index = IPETFilterGroup.computeIntersectionRows(df, index) elif self.filtertype == "union": intersection_index = None for f_ in activefilters: # check first if the column has already been stored storedcol = f_.getStoredResult(df) if storedcol is not None: fcol = storedcol else: # apply the filter to the data frame rowwise and store the result in a temporary boolean column fcol = f_.applyFilter(df, index) if intersection_index is not None: intersection_index = intersection_index & fcol else: intersection_index = fcol # # aggregate the single, elementwise filters into a single intersection # series with one row per index element # # intersection_index = pd.concat(index_series, axis = 1).apply(np.all, axis = 1) lvalues = intersection_index.values return lvalues def filterProblem(self, probname, testruns = []): for filter_ in self.getActiveFilters(): if not filter_.filterProblem(probname, testruns): return False return True def getNeededColumns(self, df): needed = [] for filter_ in self.filters: needed += filter_.getNeededColumns(df) return needed def toXMLElem(self): me = ElementTree.Element('FilterGroup', self.attributesToStringDict()) for filter_ in self.filters: me.append(filter_.toXMLElem()) return me @staticmethod def processXMLElem(elem): """ inspect and process an xml element """ if elem.tag == IPETFilterGroup.getNodeTag(): filtergroup = IPETFilterGroup(**elem.attrib) for child in elem: filtergroup.addFilter(IPETFilterGroup.processXMLElem(child)) return filtergroup elif elem.tag == IPETFilter.getNodeTag(): return IPETFilter.processXMLElem(elem) @staticmethod def fromXML(xmlstring): """ parse an xml string matching the filter group XML syntax """ tree = ElementTree.fromstring(xmlstring) return IPETFilterGroup.processXMLElem(tree) @staticmethod def fromXMLFile(xmlfilename): """ parse a file containing an xml string matching the filter group XML representation syntax """ tree = ElementTree.parse(xmlfilename) return IPETFilterGroup.processXMLElem(tree.getroot()) ```
{ "source": "1ibrary/1ibrary-gzhu", "score": 2 }
#### File: 1ibrary/1ibrary-gzhu/manage.py ```python from yitu import create, db from flask_migrate import MigrateCommand, Migrate from flask_script import Manager, Shell import os app = create(os.getenv("yitu_cfg") or "default") @app.teardown_request def teardown(e): if e: db.session.rollback() db.session.remove() else: db.session.commit() db.session.remove() manage = Manager(app) migrate = Migrate(app, db) manage.add_command("db", MigrateCommand) manage.add_command("shell", Shell(make_context=lambda: {"app": app, "db": db})) if __name__ == "__main__": manage.run() ``` #### File: migrations/versions/525c4fa30db4_.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '525c4fa30db4' down_revision = '<KEY>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('hot_books', sa.Column('book_id', sa.Integer(), nullable=False), sa.Column('book_author', sa.Text(), nullable=True), sa.Column('book_cover', sa.Text(), nullable=True), sa.Column('book_rate', sa.Integer(), nullable=True), sa.Column('book_content', sa.Text(), nullable=True), sa.Column('book_publish', sa.Text(), nullable=True), sa.Column('book_last_number', sa.Integer(), nullable=True), sa.Column('book_key', sa.String(length=13), nullable=True), sa.Column('book_db_id', sa.Integer(), nullable=True), sa.Column('book_title', sa.Text(), nullable=True), sa.Column('book_place', sa.Text(), nullable=True), sa.Column('detail_data', sa.Text(), nullable=True), sa.Column('hot_id', sa.Integer(), nullable=True), sa.PrimaryKeyConstraint('book_id'), sa.UniqueConstraint('book_db_id') ) op.create_index(op.f('ix_hot_books_book_key'), 'hot_books', ['book_key'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_hot_books_book_key'), table_name='hot_books') op.drop_table('hot_books') # ### end Alembic commands ### ``` #### File: resources/books/main.py ```python import json import jpush from flask_restful import Resource from yitu import db from yitu.models.book import Book, HotBook as HBModel from yitu.models.hot_search import HotSearch as HSModel from yitu.models.user import User from yitu.services.douban import Douban from yitu.services.gzhu.library_search import NcuSearch from yitu.utils import get_request_params class HotBook(Resource): decorators = [] def post(self): args = get_request_params([ ("page", int, True, "json"), ("uid", int, True, "json"), ("timestamp", float, True, "json"), ("token", str, True, "json") ]) page = args["page"] uid = args["uid"] timestamp = args["timestamp"] token = args["token"] user = User.verify_token(token) if user is None or user.id_ != uid: return { "data": [], "status": 2, "msg": "认证失败" } try: pagination = Book.query.filter_by(is_hot=True) \ .order_by(Book.hot_id.desc()) \ .paginate(page, per_page=20, error_out=False).items return { "status": 0, "msg": "搜索成功", "data": [{ "book_last_number": book.book_last_number, "book_cover": book.book_cover, "book_id": book.book_id, "book_author": json.loads(book.book_author), "book_title": book.book_title, "book_db_id": book.book_db_id, "book_publish": book.book_publish, "book_rate": book.book_rate } for book in pagination] } except Exception as e: return { "data": [], "status": 2, "msg": "数据库溜了" } class SearchBook(Resource): decorators = [] def post(self): args = get_request_params([ ("timestamp", float, True, "json"), ("token", str, True, "json"), ("content", str, True, "json"), ("uid", int, True, "json"), ("type", int, True, "json"), ("page", int, False, "json") ]) timestamp = args["timestamp"] token = args["token"] content = args["content"] uid = args["uid"] type = args["type"] user = User.verify_token(token) if user is None or user.id_ != uid: return { "data": [], "status": 1, "msg": "认证失败" } try: clear_content = content if type == 0: books_of_db = Book.query.filter(Book.book_title.like('%' + clear_content + '%')).paginate( page=args["page"], per_page=20, error_out=False).items elif type == 1: books_of_db = Book.query.filter(Book.book_author.like('%' + clear_content + '%')).paginate( page=args["page"], per_page=20, error_out=False).items else: books_of_db = Book.query.filter(Book.book_publish.like('%' + clear_content + '%')).paginate( page=args["page"], per_page=20, error_out=False).items except Exception as e: return { "data": [], "status": 2, "msg": "数据库溜了" } if books_of_db: return { "status": 0, "msg": "搜索成功", "data": [{ "book_cover": book.book_cover, "book_id": book.book_id, "book_rate": book.book_rate, "book_title": book.book_title, "book_author": json.loads(book.book_author), "book_last_number": book.book_last_number, "book_db_id": book.book_db_id, "book_publish": book.book_publish } for book in books_of_db] } else: ncu_search = NcuSearch() douban = Douban() data = [] try: for book_info in ncu_search.get(content, args["page"]): if book_info["book_key"]: b = douban.search_by_isbn(book_info["book_key"]) if not b: continue book_info.update(b) b = Book.query.filter_by(book_key=book_info["book_key"]).first() if b: continue new_book = Book(book_author=book_info["book_author"]) new_book.book_cover = book_info["book_cover"] new_book.book_rate = book_info["book_rate"] new_book.book_content = book_info["book_content"] new_book.book_publish = book_info["book_publish"] new_book.book_last_number = len( list(filter(lambda x: not x["is_borrowed"], book_info["data"]))) new_book.book_key = book_info["book_key"] new_book.book_db_id = book_info["book_db_id"] new_book.book_title = book_info["book_title"] new_book.detail_data = json.dumps(book_info["data"]) db.session.add(new_book) db.session.commit() mydict = { "book_cover": book_info["book_cover"], "book_id": new_book.book_id, "book_rate": book_info["book_rate"], "book_title": book_info["book_title"], "book_author": json.loads(book_info["book_author"]), "book_last_number": new_book.book_last_number, "book_db_id": book_info["book_db_id"], "book_publish": book_info["book_publish"] } data.append(mydict) else: b = douban.search_by_isbn(book_info["book_title"]) if not b: continue book_info.update(b) b = Book.query.filter_by(book_db_id=book_info["book_db_id"]).first() if b: continue new_book = Book(book_author=book_info["book_author"]) new_book.book_cover = book_info["book_cover"] new_book.book_rate = book_info["book_rate"] new_book.book_content = book_info["book_content"] new_book.book_publish = book_info["book_publish"] new_book.book_last_number = len( list(filter(lambda x: not x["is_borrowed"], book_info["data"]))) new_book.book_key = book_info["book_key"] new_book.book_db_id = book_info["book_db_id"] new_book.book_title = book_info["book_title"] new_book.detail_data = json.dumps(book_info["data"]) db.session.add(new_book) db.session.commit() mydict = { "book_cover": book_info["book_cover"], "book_id": new_book.book_id, "book_rate": book_info["book_rate"], "book_title": book_info["book_title"], "book_author": json.loads(book_info["book_author"]), "book_last_number": new_book.book_last_number, "book_db_id": book_info["book_db_id"], "book_publish": book_info["book_publish"] } data.append(mydict) return { "status": 0, "msg": "搜索成功", "data": data } except Exception as e: print(e) return { "data": [], "status": 3, "msg": "服务器溜了" } class ShowDetail(Resource): decorators = [] def post(self): args = get_request_params([ ("timestamp", float, True, "json"), ("book_db_id", int, True, "json"), ("token", str, True, "json"), ("book_id", int, True, "json"), ("uid", int, True, "json"), ]) timestamp = args["timestamp"] book_db_id = args["book_db_id"] token = args["token"] book_id = args["book_id"] uid = args["uid"] user = User.verify_token(token) if user is None or user.id_ != uid: return { "data": [], "status": 2, "msg": "认证失败" } try: the_book = Book.query.filter_by(book_id=book_id).first() if not the_book: return { "status": 0, "message": "搜索成功", "data": None } the_detail_data = json.loads(the_book.detail_data) return { "status": 0, "msg": "搜索成功", "data": { "book_rate": the_book.book_rate, "book_content": the_book.book_content, "book_publish": the_book.book_publish, "book_last_number": the_book.book_last_number, "book_key": the_book.book_key, "book_db_id": the_book.book_db_id, "book_title": the_book.book_title, "detail_data": the_detail_data, "book_author": json.loads(the_book.book_author), "book_place": None if len(the_detail_data) == 0 else the_detail_data[0]["detail_place"], "book_id": the_book.book_id, "book_cover": the_book.book_cover, "is_subscribe": 1 if uid in the_book.subscribers else 0 } } except Exception as e: return { "data": [], "status": 2, "msg": "服务器溜了" } class Subscribe_(Resource): def post(self): args = get_request_params([ ("timestamp", float, True, "json"), ("token", str, True, "json"), ("book_id", int, True, "json"), ("uid", int, True, "json") ]) timestamp = args["timestamp"] token = args["token"] book_id = args["book_id"] uid = args["uid"] def _push_msg(message, device_id): app_key = 'app_key' master_secret = 'master_key' _jpush = jpush.JPush(app_key, master_secret) push = _jpush.create_push() # push.audience = jpush.audience([{"registration_id":device_id}]) push.audience = {'registration_id': [device_id]} # push.audience = device_id android_msg = jpush.android( message, None, None, { "msg": message, # 强行套用app中notification的相关格式 "status": 0 } ) ios_msg = jpush.ios( message, None, None, { "msg": message, # 强行套用app中notification的相关格式 "status": 0 } ) push.notification = jpush.notification("hello jpush", ios_msg, android_msg, None) # push.options = {"time_to_live": 86400, "sendno": 12345, "apns_production":True} push.options = {"time_to_live": 86400, "apns_production": True} push.platform = jpush.platform("all") push.send() the_book = Book.query.filter_by(book_id=book_id).first() the_detail_data = json.loads(the_book.detail_data) flag = 0 for a_book in the_detail_data: if a_book["is_borrowed"] == 1: flag = 1 if flag == 1: _push_msg("有书了", uid) class HotSearch(Resource): def post(self): hs = HSModel.query.all() return { "status": 0, "msg": "获取成功", "data": [k.name for k in hs] } ``` #### File: services/gzhu/book_details.py ```python import requests from bs4 import BeautifulSoup import re class BookDetails(object): def __init__(self): self.url = "http://lib.gzhu.edu.cn:8080/bookle/search2/detail/{0}?index=default&source=biblios" pass def get_details(self, uid): url = self.url.format(uid) data = requests.get(url) data.encoding = "utf-8" soup = BeautifulSoup(data.text, "lxml") isbn_pattern = re.compile('douban.com/isbn/(.*?)/', re.S) try: isbn = re.findall(isbn_pattern, data.text) book_key = isbn[0] if isbn else None book_key = book_key.replace("-", "") except Exception as e: book_key = None info = soup.select_one("table.book_holding") info_tr = [b.find_all("td") for b in info.find_all("tr")[1:]] detail_of_books = [ dict(zip(("detail_key", "detail_place", "is_borrowed"), [a.text.strip().replace('\r\n \r\n [架位]','') for a in [b[0]] + [b[4]] + [b[1]]] ) ) for b in info_tr] id_ = 1 for the_book in detail_of_books: the_book["detail_id"] = id_ id_ = id_ + 1 if the_book["is_borrowed"][:2] == '借出': the_book["is_borrowed"] = 1 else: the_book["is_borrowed"] = 0 return { "data": detail_of_books, "book_key": book_key, } ``` #### File: services/gzhu/hotbook.py ```python import json import requests from bs4 import BeautifulSoup from yitu import db from yitu.models.book import HotBook, Book from yitu.services.douban import Douban from yitu.services.gzhu.book_details import BookDetails class HotBooks(object): def __init__(self): self.url = "http://192.168.127.12/top/top_lend.php?cls_no={0}" pass def get(self, category="ALL"): """ 获取热门排行 :parameter category 分类 :return: """ db.session.execute("DELETE FROM hot_books WHERE is_hot=1") url = self.url.format(category) data = requests.get(url) data.encoding = "utf-8" soup = BeautifulSoup(data.text, "lxml") tbody = soup.find("table") books_tr = tbody.find_all("tr")[1:] books = [b.find_all("td") for b in books_tr] books_info = [{ "hot_id": int(b[0].text), "book_title": b[1].text, "book_publish": b[3].text, "book_last_number": int(b[5].text) - int(b[6].text), "uid": b[1].find("a").attrs["href"][-10:] } for b in books] douban = Douban() book_details = BookDetails() for book_info in books_info: book_info.update(book_details.get_details(book_info["uid"])) if book_info["book_key"]: b = douban.search_by_isbn(book_info["book_key"]) else: b = douban.search_by_else(book_info["book_title"]) if not b: continue book_info.update(b) b = Book.query.filter_by(book_db_id=book_info["book_db_id"]).first() if not b: book = Book(book_author=book_info["book_author"]) book.book_cover = book_info["book_cover"] book.book_rate = book_info["book_rate"] book.book_content = book_info["book_content"] book.book_publish = book_info["book_publish"] book.book_last_number = len(book_info["data"]) book.book_key = book_info["book_key"] book.book_db_id = book_info["book_db_id"] book.book_title = book_info["book_title"] book.detail_data = json.dumps(book_info["data"]) book.hot_id = book_info["hot_id"] book.book_last_number = book_info["book_last_number"] book.is_hot = True db.session.add(book) db.session.commit() def task(): h = HotBooks() h.get() print("task run") ```
{ "source": "1ierro1ast/flaskProjectCreator", "score": 3 }
#### File: 1ierro1ast/flaskProjectCreator/siteCreator.py ```python import sys import os from llib import install prefx = "" def openFile(filename): with open(filename,"r",encoding="UTF-8") as f: return f.read() def saveToFile(filename,data,mode="w"): with open(filename,mode,encoding="UTF-8") as f: f.write(data) return True def createTree(root,dirlist=["templates","static","src"],staticdirlist=["images","scripts"]): os.mkdir(prefx+root) for i in dirlist: os.mkdir(prefx+root+"/"+i) if i == "static": for j in staticdirlist: os.mkdir(prefx+root+"/"+i+"/"+j) return True def createIndexs(root, pathToCSS="{{ url_for('static', filename='style.css') }}", pathToJS="{{ url_for('static', filename='scripts/main.js') }}"): indexPage = openFile("pattern.html") indexPage = indexPage.replace("[title]",root) indexPage = indexPage.replace("[pathToCSS]",pathToCSS) indexPage = indexPage.replace("[pathToJS]",pathToJS) saveToFile(prefx+root+"/templates/index.html", indexPage) css = "/*place style here*/" js = "//place javascript here" app = openFile("pattern.py") saveToFile(prefx+root+"/static/style.css", css) saveToFile(prefx+root+"/static/scripts/main.js", js) saveToFile(prefx+root+"/app.py", app) return True def main(): try: if sys.argv[2] == "-f": print("====|Flask install enable|====") install("flask") except IndexError: print("====|Flask install disable|====") try: root=str(sys.argv[1]) except IndexError: print("====|Use \"python siteCreate.py [Name] [-f]\"|====") try: createTree(root) createIndexs(root) print("====|Project created!|====") except FileExistsError: print("====|Project \""+root+"\" is exists!|====") except UnboundLocalError: pass if __name__ == "__main__": sys.exit(main()) ```
{ "source": "1illeke/myownrank-cogs", "score": 2 }
#### File: myownrank-cogs/ticketer/__init__.py ```python from .ticketer import Ticketer async def setup(bot): cog = Ticketer() await cog.register_casetypes() bot.add_cog(cog) ``` #### File: myownrank-cogs/ticketer/ticketer.py ```python import discord from typing import Optional from datetime import datetime from redbot.core import commands, checks, Config, modlog class Ticketer(commands.Cog): """Ticketer""" def __init__(self): self.config = Config.get_conf(self, 200730042020, force_registration=True) default_guild = { "channel": None, "use_counter": False, "closed_category": None, "open_category": None, "current_ticket": 0, "role": None, "message": "Your ticket has been created. You can add information by typing in this channel. \n\nA member of the ticket-handling-team will be with you as soon as they can.", "active": [], "modlog": True, "closed": [], } self.config.register_guild(**default_guild) @staticmethod async def register_casetypes(): new_types = [ { "name": "ticket_created", "default_setting": True, "image": "\N{BALLOT BOX WITH BALLOT}\N{VARIATION SELECTOR-16}", "case_str": "Ticket created", } ] await modlog.register_casetypes(new_types) @commands.group() @checks.admin() async def ticketer(self, ctx): """All ticketer settings.""" pass @ticketer.command() async def channel(self, ctx, channel: discord.TextChannel): """Set the ticket-management channel.""" await self.config.guild(ctx.guild).channel.set(channel.id) await ctx.send(f"Channel has been set to {channel.mention}.") @ticketer.command() async def role(self, ctx, role: discord.Role): """Set the role for ticket managers.""" await self.config.guild(ctx.guild).role.set(role.id) await ctx.send(f"Ticket manager role has been set to {role.mention}.") @ticketer.group() async def category(self, ctx): """Set the categories for open and closed tickets.""" @category.group() async def open(self, ctx, category: discord.CategoryChannel): """Set the category for open tickets.""" await self.config.guild(ctx.guild).open_category.set(category.id) await ctx.send(f"Category for open tickets has been set to {category.mention}") @category.group() async def closed(self, ctx, category: discord.CategoryChannel): """Set the category for open tickets.""" await self.config.guild(ctx.guild).closed_category.set(category.id) await ctx.send(f"Category for closed tickets has been set to {category.mention}") @ticketer.command() async def message(self, ctx, *, message: str): """Set the message that is shown at the start of each ticket channel.""" await self.config.guild(ctx.guild).message.set(message) await ctx.send(f"The message has been set to ``{message}``.") @ticketer.command() async def counter(self, ctx, true_or_false: bool): """Toggle if the ticket channels should be named using a user's name and ID or counting upwards starting at 0.""" await self.config.guild(ctx.guild).use_counter.set(true_or_false) await ctx.send( "The counter has been {}.".format("enabled" if true_or_false else "disabled") ) @ticketer.command() async def modlog(self, ctx, true_or_false: bool): """Decide if ticketer should log to modlog.""" await self.config.guild(ctx.guild).modlog.set(true_or_false) await ctx.send( "Logging to modlog has been {}.".format("enabled" if true_or_false else "disabled") ) @ticketer.command() async def quicksetup(self, ctx): settings = await self.config.guild(ctx.guild).all() if not settings["role"]: role = await ctx.guild.create_role( name="Ticketmanagers", hoist=True, mentionable=False, reason="Ticketer quicksetup" ) await self.config.guild(ctx.guild).role.set(role.id) await ctx.send("Ticket-manager role created.") if not settings["open_category"]: category = await ctx.guild.create_category( name="Open-tickets", reason="Ticketer quicksetup" ) await self.config.guild(ctx.guild).open_category.set(category.id) await ctx.send("Category for open tickets created.") if not settings["closed_category"]: category = await ctx.guild.create_category( name="Closed-tickets", reason="Ticketer quicksetup" ) await self.config.guild(ctx.guild).closed_category.set(category.id) await ctx.send("Category for closed tickets created.") settings = await self.config.guild(ctx.guild).all() if not settings["channel"]: await ctx.send("Config queried for channel setup.") overwrite = { ctx.guild.default_role: discord.PermissionOverwrite(read_messages=False), ctx.guild.get_role(settings["role"]): discord.PermissionOverwrite( read_messages=True, send_messages=True, embed_links=True, attach_files=True, manage_messages=True, ), } channel = await ctx.guild.create_text_channel( "ticket-management", overwrites=overwrite, category=ctx.guild.get_channel(settings["open_category"]), topic="Ticket management channel.", reason="Ticketer quicksetup", ) await self.config.guild(ctx.guild).channel.set(channel.id) await ctx.send("Channel for ticket management created.") await ctx.send("Checking settings...") if await self._check_settings(ctx): await ctx.send("Quicksetup completed.") else: await ctx.send("Something went wrong...") @ticketer.command() async def purge(self, ctx, are_you_sure: Optional[bool]): if are_you_sure: async with self.config.guild(ctx.guild).closed() as closed: for channel in closed: try: await ctx.guild.get_channel(channel).delete(reason="Ticket purge") closed.remove(channel) except discord.Forbidden: await ctx.send( f"I could not delete channel ID {channel} because I don't have the required permissions." ) except discord.NotFound: closed.remove(channel) except discord.HTTPException: await ctx.send("Something went wrong. Aborting.") return else: await ctx.send( f"This action will permanently delete all closed ticket channels.\nThis action is irreversible.\nConfirm with ``{ctx.clean_prefix}ticketer purge true``" ) @commands.group() async def ticket(self, ctx): """Manage a ticket.""" pass @ticket.command(aliases=["open"]) async def create( self, ctx, *, reason: Optional[str] = "No reason provided.", ): """Create a ticket.""" if await self._check_settings(ctx): settings = await self.config.guild(ctx.guild).all() if settings["use_counter"]: name = f"ticket-{settings['current_ticket']}" await self.config.guild(ctx.guild).current_ticket.set( settings["current_ticket"] + 1 ) else: name = f"{ctx.author.name}-{ctx.author.id}" found = False for channel in ctx.guild.channels: if channel.name == name.lower(): found = True if not found: if settings["modlog"]: await modlog.create_case( ctx.bot, ctx.guild, ctx.message.created_at, action_type="ticket_created", user=ctx.author, moderator=ctx.author, reason=reason, ) overwrite = { ctx.guild.default_role: discord.PermissionOverwrite(read_messages=False), ctx.author: discord.PermissionOverwrite( read_messages=True, send_messages=True, embed_links=True, attach_files=True, ), ctx.guild.get_role(settings["role"]): discord.PermissionOverwrite( read_messages=True, send_messages=True, embed_links=True, attach_files=True, manage_messages=True, ), } ticketchannel = await ctx.guild.create_text_channel( name, overwrites=overwrite, category=ctx.guild.get_channel(settings["open_category"]), topic=reason, ) await ticketchannel.send(settings["message"]) embed = discord.Embed( title=name, description=reason, timestamp=datetime.utcnow(), ).set_footer(text="Last updated at:") message = await ctx.guild.get_channel(settings["channel"]).send(embed=embed) async with self.config.guild(ctx.guild).active() as active: active.append((ticketchannel.id, message.id)) else: await ctx.send("You already have an open ticket.") else: await ctx.send("Please finish the setup process before creating a ticket.") @ticket.command() async def close(self, ctx): """Close a ticket.""" settings = await self.config.guild(ctx.guild).all() active = settings["active"] success = False for ticket in active: if ctx.channel.id in ticket: new_embed = ( await ctx.guild.get_channel(settings["channel"]).fetch_message(ticket[1]) ).embeds[0] new_embed.add_field( name=datetime.utcnow().strftime("%H:%m UTC"), value=f"Ticket closed by {ctx.author.name}#{ctx.author.discriminator}", ) new_embed.timestamp = datetime.utcnow() await ( await ctx.guild.get_channel(settings["channel"]).fetch_message(ticket[1]) ).edit( embed=new_embed, delete_after=10, ) await ctx.send(embed=new_embed) await ctx.send( "This ticket can no longer be edited using ticketer.", delete_after=30 ) await ctx.channel.edit( category=ctx.guild.get_channel(settings["closed_category"]), name=f"{ctx.channel.name}-c-{datetime.utcnow().strftime('%B-%d-%Y-%H-%m')}", overwrites={ ctx.guild.default_role: discord.PermissionOverwrite(read_messages=False), ctx.guild.get_role(settings["role"]): discord.PermissionOverwrite( read_messages=True, send_messages=True, embed_links=True, attach_files=True, manage_messages=True, ), }, ) await ctx.send("Ticket closed.") active.remove(ticket) async with self.config.guild(ctx.guild).closed() as closed: closed.append(ticket[0]) success = True if not success: await ctx.send("This is not a ticket channel.") await self.config.guild(ctx.guild).active.set(active) @ticket.command() @checks.mod() async def update(self, ctx, ticket: Optional[discord.TextChannel] = None, *, update: str): """Update a ticket. This is visible to all participants of the ticket.""" if ticket is None: channel = ctx.channel else: channel = ticket settings = await self.config.guild(ctx.guild).all() active = settings["active"] for ticket in active: if channel.id in ticket: await channel.edit( topic=f'{channel.topic}\n\n{ctx.author.name}#{ctx.author.discriminator}:"{update}"' ) await ctx.send("Ticket updated.", delete_after=10) else: ctx.send(f"{channel.mention} is not a ticket channel.") @ticket.command() @checks.mod() async def note(self, ctx, ticket: discord.TextChannel, *, note: str): """Add a staff-only note to a ticket.""" channel = ticket for ticket in await self.config.guild(ctx.guild).active(): if channel.id in ticket: message = await ctx.guild.get_channel( await self.config.guild(ctx.guild).channel() ).fetch_message(ticket[1]) new_embed = message.embeds[0] new_embed.add_field( name=f"{ctx.author.name}#{ctx.author.discriminator}", value=note ) new_embed.timestamp = datetime.utcnow() await message.edit(embed=new_embed) await ctx.send("Note added.", delete_after=10) else: await ctx.send("This is not a ticket channel.") async def _check_settings(self, ctx: commands.Context) -> bool: settings = await self.config.guild(ctx.guild).all() count = 0 if settings["channel"]: count += 1 else: await ctx.send("Management channel not set up yet.") if settings["closed_category"]: count += 1 else: await ctx.send("Category for closed tickets not set up yet.") if settings["open_category"]: count += 1 else: await ctx.send("Category for open tickets not set up yet.") if settings["role"]: count += 1 else: await ctx.send("Ticket manager role not set up yet.") if count == 4: return True else: return False ``` #### File: myownrank-cogs/welcome/__init__.py ```python from redbot.core.bot import Red from .welcome import Welcome def setup(bot: Red): bot.add_cog(Welcome()) ```
{ "source": "1illeke/novi2", "score": 2 }
#### File: novi2/datautils/datautils.py ```python import string import unicodedata from asyncio import TimeoutError as AsyncTimeoutError from textwrap import shorten from types import SimpleNamespace from typing import Optional, Union import discord import tabulate from redbot.core import checks, commands from redbot.core.i18n import Translator, cog_i18n from redbot.core.utils import AsyncIter from redbot.core.utils import chat_formatting as chat from redbot.core.utils.menus import DEFAULT_CONTROLS, menu from redbot.core.utils.predicates import ReactionPredicate def bool_emojify(bool_var: bool) -> str: return "✅" if bool_var else "❌" T_ = Translator("DataUtils", __file__) _ = lambda s: s TWEMOJI_URL = "https://twemoji.maxcdn.com/v/latest/72x72" APP_ICON_URL = "https://cdn.discordapp.com/app-icons/{app_id}/{icon_hash}.png" NON_ESCAPABLE_CHARACTERS = string.ascii_letters + string.digits GUILD_FEATURES = { "VIP_REGIONS": _("384kbps voice bitrate"), "VANITY_URL": _("Vanity invite URL"), "INVITE_SPLASH": _("Invite splash{splash}"), "VERIFIED": _("Verified"), "PARTNERED": _("Discord Partner"), "MORE_EMOJI": _("Extended emoji limit"), # Non-boosted? "DISCOVERABLE": _("Shows in Server Discovery{discovery}"), # "FEATURABLE": _('Can be in "Featured" section of Server Discovery'), "COMMERCE": _("Store channels"), "NEWS": _("News channels"), "BANNER": _("Banner{banner}"), "ANIMATED_ICON": _("Animated icon"), "WELCOME_SCREEN_ENABLED": _("Welcome screen"), "PUBLIC_DISABLED": _("Cannot be public"), "ENABLED_DISCOVERABLE_BEFORE": _("Was in Server Discovery"), "COMMUNITY": _("Community server"), # Docs from https://github.com/vDelite/DiscordLists: "PREVIEW_ENABLED": _('Preview enabled ("Lurkable")'), "MEMBER_VERIFICATION_GATE_ENABLED": _("Member verification gate enabled"), "MEMBER_LIST_DISABLED": _("Member list disabled"), # im honestly idk what the fuck that shit means, and discord doesnt provides much docs, # so if you see that on your server while using my cog - idk what the fuck is that and how it got there, # ask discord to write fucking docs already "FORCE_RELAY": _( "Shards connections to the guild to different nodes that relay information between each other." ), } ACTIVITY_TYPES = { discord.ActivityType.playing: _("Playing"), discord.ActivityType.watching: _("Watching"), discord.ActivityType.listening: _("Listening to"), discord.ActivityType.competing: _("Competing in"), } CHANNEL_TYPE_EMOJIS = { discord.ChannelType.text: "\N{SPEECH BALLOON}", discord.ChannelType.voice: "\N{SPEAKER}", discord.ChannelType.category: "\N{BOOKMARK TABS}", discord.ChannelType.news: "\N{NEWSPAPER}", discord.ChannelType.store: "\N{SHOPPING TROLLEY}", discord.ChannelType.private: "\N{BUST IN SILHOUETTE}", discord.ChannelType.group: "\N{BUSTS IN SILHOUETTE}", } _ = T_ async def get_twemoji(emoji: str): emoji_unicode = [] for char in emoji: char = hex(ord(char))[2:] emoji_unicode.append(char) if "200d" not in emoji_unicode: emoji_unicode = list(filter(lambda c: c != "fe0f", emoji_unicode)) emoji_unicode = "-".join(emoji_unicode) return f"{TWEMOJI_URL}/{emoji_unicode}.png" async def find_app_by_name(where: list, name: str): async for item in AsyncIter(where): for k, v in item.items(): if v == name: return item @cog_i18n(_) class DataUtils(commands.Cog): """Commands for getting information about users or servers.""" __version__ = "2.4.18" # noinspection PyMissingConstructor def __init__(self, bot): self.bot = bot self.TIME_FORMAT = _("%d.%m.%Y %H:%M:%S %Z") async def red_delete_data_for_user(self, **kwargs): return @commands.command(aliases=["info", "i"]) @commands.guild_only() @checks.bot_has_permissions(embed_links=True) async def uinfo(self, ctx, *, member: discord.Member = None): """Information on a user""" if member is None: member = ctx.message.author em = discord.Embed( title=chat.escape(str(member), formatting=True), color=member.color.value and member.color or discord.Embed.Empty, ) if member.nick: em.add_field(name=_("Nickname"), value=member.nick) else: em.add_field(name=_("Name"), value=member.name) em.add_field(name=_("Joined server"), value=member.joined_at.strftime(self.TIME_FORMAT)) if member.premium_since: em.add_field( name=_("Boosted server"), value=member.premium_since.strftime(self.TIME_FORMAT) ), await ctx.send(embed=em) ```
{ "source": "1IllI1/BBS_MIGRATE", "score": 2 }
#### File: app/home/views.py ```python from . import home from flask import render_template, redirect, url_for, flash, session, request,current_app from app.home.forms import RegistForm, LoginForm, UserdetailForm, PwdForm, CommentForm, PostForm from app.models import User, UserLoginLog, Comment, Post,Col from werkzeug.security import generate_password_hash from werkzeug.utils import secure_filename import uuid from app import db from app.home.email import send_mail from functools import wraps import time import os # 定义用户登录判断装饰器 def user_login_req(func): @wraps(func) def decorated_function(*args, **kwargs): # session不存在时请求登录 if "user" not in session: return redirect(url_for("home.user_login", next=request.url)) return func(*args, **kwargs) return decorated_function # html测试路由 @home.route('/usefortest/') def ust(): return render_template('home/USERFORTEST.html') # 首页路由 @home.route('/') def index(): # posts = Post.query.all() current_user_id = 0 current_user_name ="" if "user" in session: current_user_name = session["user"] user = User.query.filter_by(name=current_user_name).first() current_user_id = user.id page_index = request.args.get('page', 1, type=int) query = Post.query.join(User).filter(User.id == Post.user_id).order_by(Post.addtime.desc()) pagination = query.paginate(page_index, per_page=10, error_out=False) posts = pagination.items return render_template('home/index.html', posts=posts, pagination=pagination,current_user_name=current_user_name,current_user_id=current_user_id) #首页删除个人发布的内容 @home.route("/index/del/") @user_login_req def index_del(): #获取当前登录用户id current_user_name = session["user"] user = User.query.filter_by(name=current_user_name).first() current_user_id = user.id index_id = request.args.get("id", '0') post = Post.query.get_or_404(int(index_id)) if post.user_id != current_user_id: flash("删除不合法") return redirect(url_for("home.index")) db.session.delete(post) db.session.commit() flash("删除成功") return redirect(url_for("home.index")) #设置帖子关注 @home.route("/index/col/") @user_login_req def index_col(): #获取当前登录用户id current_user_name = session["user"] user = User.query.filter_by(name=current_user_name).first() current_user_id = user.id index_id = request.args.get("id", '0') col_check = Col.query.filter_by(id=index_id).count() if col_check == 0: col=Col( post_id=index_id, user_id=current_user_id ) db.session.add(col) db.session.commit() flash("收藏成功","ok") flash("收藏已存在","err") return redirect(url_for("home.index")) #设置评论关注 @home.route("/play/col/") @user_login_req def play_col(): #获取当前登录用户id current_user_name = session["user"] user = User.query.filter_by(name=current_user_name).first() current_user_id = user.id index_id = request.args.get("id", '0') col_check = Col.query.filter_by(id=index_id).count() if col_check == 0: col=Col( comment_id=index_id, user_id=current_user_id ) db.session.add(col) db.session.commit() flash("收藏成功","ok") flash("收藏已存在","err") return redirect(url_for("home.index")) # # from io import BytesIO # from . import verify_code # @home.route('/code') # def get_code(): # image, code = verify_code.get_verify_code() # # 图片以二进制形式写入 # buf = BytesIO() # image.save(buf, 'jpeg') # buf_str = buf.getvalue() # # 把buf_str作为response返回前端,并设置首部字段 # response = verify_code.make_response(buf_str) # response.headers['Content-Type'] = 'image/gif' # # 将验证码字符串储存在session中 # session['image'] = code # return response @home.route('/activate/<token>') def activate(token): #验证token 提取id if User.check_active_token(token): flash("账户已经激活") return redirect(url_for("home.user_login")) else: flash("激活失败") return redirect(url_for("home.index")) # 登录路由 @home.route("/login/", methods=["POST", "GET"]) def user_login(): form = LoginForm() if form.validate_on_submit(): data = form.data user = User.query.filter_by(name=data["name"]).first() print("登录按钮被点击") # if session.get('image').lower() != form.verify_code.data.lower(): # flash('验证码错误') # return render_template('home/user_login.html', form=form) print("用户激活状态"+str(user.activate)) if user.activate: if not user.check_pwd(data["pwd"]): flash("用户名或密码错误!") return redirect(url_for("home.user_login")) session["user"] = data["name"] #session["user_id"] = user.id userloginlog = UserLoginLog( user_id=user.id, ip=request.remote_addr, addtime=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) ) db.session.add(userloginlog) db.session.commit() return redirect(request.args.get('next') or url_for("home.index")) else: flash("用户尚未激活,请激活以后再登录") return render_template('home/user_login.html', form=form) # 登出路由 @home.route("/logout/") @user_login_req def logout(): session.pop("user") return redirect(url_for("home.user_login")) # 会员注册 @home.route("/register/", methods=['GET', "POST"]) def register(): form = RegistForm() if form.validate_on_submit(): data = form.data user = User( name=data["name"], email=data["email"], phone=data["phone"], pwd=generate_password_hash(data["pwd"]), uuid=uuid.uuid4().hex, addtime=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) ) print(user) check = User.query.filter_by(name=data["name"]).count() if check == 0: db.session.add(user) db.session.commit() print("用户数据提交到数据库") token = user.generate_active_token() # 发送用户账户激活的邮件 send_mail(user.email, '激活您的账户', 'email/activate', username=user.name, token=token) # 弹出消息 提示用户 flash("注册成功,请点击邮件中的链接完成激活",'ok') return redirect(url_for("home.user_login")) flash("用户名已存在","err") return render_template('home/register.html', form=form) # 修改文件名称 def change_filename(filename): fileinfo = os.path.splitext(filename) # 对名字进行前后缀分离 #注意此处datetime.now() filename = time.strftime("%Y%m%d%H%M%S") + "_" + fileinfo[-1] # 生成新文件名 return filename # 用户中心 @home.route("/user/", methods=["GET", "POST"]) @user_login_req def user(): form = UserdetailForm() user = User.query.filter_by(name=(session["user"])).first() if user.face is not None: form.face.validators = [] if request.method == "GET": form.name.data = user.name form.email.data = user.email form.phone.data = user.phone form.info.data = user.info if form.validate_on_submit(): print('button pressed') data = form.data # if data["name"] != user.name and name_count == 1: # flash("用户名已被占用") # return redirect(url_for("home.user")) if request.method == 'POST': if request.files['imageup']: file = request.files['imageup'] print("获取文件成功") filename = secure_filename(str(hash(file.filename)))+str(user.id)+".jpg" print("secure成功"+filename) del_face = user.face file.save(os.path.join(current_app.config['UP_DIR']+os.sep+"users",filename)) print("上传成功" + filename) #os.remove(os.path.join(app.config['UP_DIR'] + os.sep+"users", del_face)) print("删除文件"+del_face+"成功") user.face = filename user.name=data["name"] user.email=data["email"] user.phone=data["phone"] user.info=data["info"] db.session.add(user) db.session.commit() flash("修改成功!") return redirect(url_for("home.user")) flash("失败") return render_template('home/user.html', form=form, user=user) @home.route("/pwd/", methods=["GET", "POST"]) @user_login_req def pwd(): form = PwdForm() if form.validate_on_submit(): data = form.data user = User.query.filter_by(name=session["user"]).first() user.pwd = <PASSWORD>_password_hash(data["new_pwd"]) db.session.add(user) db.session.commit() flash("修改密码成功,请重新登录!", "ok") return redirect(url_for("home.logout")) return render_template('home/pwd.html', form=form) # 会员中心评论列表 评论功能在paly路由中 @home.route("/comments/") @user_login_req def comments(): user_name = session["user"] user = User.query.filter_by(name=user_name).first() page = request.args.get('page', 1, type=int) # query = Comment.query.order_by(Comment.addtime.desc()) query = Comment.query.filter(Comment.user_id == user.id).order_by(Comment.addtime.desc()) pagination = query.paginate(page, per_page=10, error_out=False) comments = pagination.items return render_template('home/comments.html', user=user,user_name=user_name, comments=comments,pagination=pagination) @home.route("/comments/del/") @user_login_req def comment_del(): comment_id = request.args.get("id", '') comment = Comment.query.get_or_404(int(comment_id)) db.session.delete(comment) db.session.commit() flash("评论删除成功") return redirect(url_for("home.comments")) @home.route("/postrecords/") @user_login_req def postrecords(): user_name = session["user"] user = User.query.filter_by(name=user_name).first() user_id = user.id user = User.query.filter_by(id=user_id).first() page = request.args.get('page', 1, type=int) # query = Comment.query.order_by(Comment.addtime.desc()) query = Post.query.filter(Post.user_id == user_id).order_by(Post.addtime.desc()) pagination = query.paginate(page, per_page=5, error_out=False) posts = pagination.items return render_template('home/post_records.html', user=user,user_name=user_name, posts=posts, pagination=pagination) @home.route("/postrecords/del/") @user_login_req def post_del(): post_id = request.args.get("id", '') post = Post.query.get_or_404(int(post_id)) comment = Comment.query.filter_by(post_id=post_id).all() db.session.delete(post) db.session.commit() db.session.delete(comment) db.session.commit() flash("主题帖删除成功") return redirect(url_for("home.postrecords")) @home.route("/loginlog/", methods=["POST", "GET"]) @user_login_req def loginlog(): current_user_name = session["user"] user = User.query.filter_by(name=current_user_name).first() user_login_log = UserLoginLog.query.filter_by( user_id=user.id ).order_by( UserLoginLog.addtime.desc() # 此处限制了查寻到的登录日志为前15条 ).limit(15).all() return render_template("home/loginlog.html", user_login_log=user_login_log) @home.route("/col/del/") @user_login_req def col_del(): current_user_name = session["user"] user= User.query.filter_by(name=current_user_name).first() current_user_id = user.id col_id = request.args.get("id", '') col = Col.query.get_or_404(int(col_id)) if col.user_id != current_user_id: flash("收藏删除不合法") return redirect(url_for("home.col")) db.session.delete(col) db.session.commit() flash("收藏删除成功") return redirect(url_for("home.col")) ##会员中心收藏列表 @home.route("/col/") @user_login_req def col(): current_user_name = session["user"] user = User.query.filter_by(name=current_user_name).first() user_id = user.id # 获取当前分页页面编号(编号,默认值,类型) page = request.args.get('page', 1, type=int) # 从数据库中查找对应用户的收藏 #query =Col.query.filter_by(user_id =user_id).order_by(Col.addtime.desc()) query = Col.query.join(Post).join(User).filter(Col.user_id==user_id,Col.post_id == Col.post_id).order_by(Col.addtime.desc()) # 对当前贴的评论进行分页(分页号,每页展示的数量,error) pagination = query.paginate(page, per_page=5, error_out=False) # 获得分页后当前页显示的评论 cols = pagination.items # 渲染主题帖展示页面 print(query) return render_template('home/col.html',cols=cols,pagination=pagination) @home.route("/index/") def reindex(): # z此处index重复 return redirect(url_for("home.index")) @home.route('/animation/') def animation(): data = {'sgd.jpg', 'sutstudent.jpg', 'sutsight01.jpg', 'sutsight02.jpg', 'hxxy.jpg'} return render_template('home/animation.html', data=data) @home.route('/search/') def search(): current_user_id = 0 current_user_name = "" if "user" in session: current_user_name = session["user"] user = User.query.filter_by(name=current_user_name).first() current_user_id = user.id # 获取查询的内容 # search=request.args.get("search",'',type=str) search = request.args.get("search", "搜索结果为空") # print("搜索的的内容"+search) # 获取当前分页页面编号(编号,默认值,类型) page = request.args.get('page', 1, type=int) # 从数据库中查找对应当前主题贴的评论 query = Post.query.filter(Post.title.ilike('%' + search + '%')).order_by(Post.addtime.desc()) # 对当前主题帖的评论数量进行统计 post_count = Post.query.filter(Post.title.ilike('%' + search + '%')).count() # 对当前贴的评论进行分页(分页号,每页展示的数量,error) pagination = query.paginate(page, per_page=5, error_out=False) # 获得分页后当前页显示的评论 comments = pagination.items # 渲染主题帖展示页面 return render_template("home/search.html", search=search, count=post_count, current_user_name=current_user_name,pagination=pagination, results=comments,current_user_id=current_user_id) # 主题帖详情页 @home.route('/play/', methods=["GET", "POST"]) def play(): # 从请求参数拿到请求的post_id post_id = request.args.get("post_id", "") # 评论表单 form = CommentForm() # 清除表单内容 form.data['content'] = "" # 利用post_id找到要显示的主题贴 post = Post.query.filter(Post.id == post_id).first() # 利用post_id在User表中查找作者姓名 author = User.query.filter(User.id == post.user_id).first() # 从session中取得当前登陆中的用户名 current_user_id = 0 current_user_name = '游客' if "user" in session: current_user_name = session["user"] user = User.query.filter_by(name=current_user_name).first() current_user_id = user.id # 若用户登录则显示评论发布表单 if "user" in session and form.validate_on_submit(): comment = Comment( content=form.data["content"], post_id=int(post_id), user_id=current_user_id, addtime=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) ) db.session.add(comment) db.session.commit() flash("评论提交成功!") # 获取当前分页页面编号(编号,默认值,类型) page = request.args.get('page', 1, type=int) # 从数据库中查找对应当前主题贴的评论 query = Comment.query.join(User).filter(Comment.post_id == post_id).order_by(Comment.addtime.desc()) # 对当前主题帖的评论数量进行统计 comment_count = Comment.query.filter(Comment.post_id == post_id).count() # 对当前贴的评论进行分页(分页号,每页展示的数量,error) pagination = query.paginate(page, per_page=5, error_out=False) # 获得分页后当前页显示的评论 comments = pagination.items # 渲染主题帖展示页面 return render_template("home/play.html", post=post, form=form, comments=comments, pagination=pagination, author=author,current_user_name=current_user_name, count=comment_count,current_user_id=current_user_id) @home.route('/post/', methods=["GET", "POST"]) @user_login_req def post(): form = PostForm() current_user_name = session["user"] user = User.query.filter_by(name=current_user_name).first() current_user_id = user.id if form.validate_on_submit(): data = form.data post = Post( title=data["title"], content=data["content"], user_id=current_user_id, addtime=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) ) db.session.add(post) db.session.commit() flash("发布主题帖成功") return render_template("home/post_add.html", form=form,current_user_name=current_user_name) #404 @home.errorhandler(404) def page_not_found(error): return render_template("home/404.html"),404 ```
{ "source": "1im1/winspec", "score": 3 }
#### File: winspec/scripts/lightfield_metadata_oliver.py ```python import os import csv import re import getpass import logging from xml.parsers.expat import ExpatError import winspec def get_files(search_root, suffix): logging.info("Searching for {} files.".format(suffix)) parser = re.compile("{}$".format(suffix), re.IGNORECASE) for root, dirs, filenames in os.walk(search_root): for filename in filenames: if parser.search(filename): name = os.path.join(root, filename) logging.debug("Found {0}".format(name)) yield(name) def match_spe_tiff_files(spe_files, tiff_files): """ For each spe file, find any associated tiff file by checking that they share the same filename. """ logging.info("Matching spe and tiff files.") spe = dict() my_spe_files = list(spe_files) my_tiff_files = list(tiff_files) for spe_filename in my_spe_files: spe[spe_filename] = list() spe_name = re.sub("\.spe$", "", os.path.split(spe_filename)[1], re.IGNORECASE) for tiff_filename in my_tiff_files: if re.search(spe_name, tiff_filename): spe[spe_filename].append(tiff_filename) my_tiff_files.remove(tiff_filename) return(spe) def write_metadata_database(spe, database_filename): """ For each spe file, write an entry to a csv file which includes the pertinent metadata. """ logging.info("Writing database of metadata of {} files.".format(len( spe.keys()))) keys = [("Exposure start", "exposure_start"), ("Exposure stop", "exposure_stop"), ("Exposure time", "exposure_time"), ("Gain", "gain"), ("AD rate", "ad_rate"), ("Frame rate", "frame_rate"), ("Readout Time", "readout_time"), ("Temperature set", "temperature_set"), ("Temperature read", "temperature_read"), ("Background file", "background_file"), ("Number of frames", "n_frames"), ("Frames per readout", "frames_per_readout")] with open(database_filename, "wb") as stream_out: writer = csv.writer(stream_out) fields = ["Filename"] + list(map(lambda x: x[0], keys)) writer.writerow(fields) for filename in sorted(spe.keys()): try: w = winspec.Lightfield(filename) my_row = [filename] for name, key in keys: my_row.append(getattr(w, key)()) writer.writerow(my_row) except ExpatError: print("Failed to parse xml for {}".format(filename)) continue if __name__ == "__main__": logging.basicConfig(level=logging.INFO) if getpass.getuser() == "tsbischof": spe_directory = "/home/tsbischof/src/winspec" tiff_directory = spe_directory report_filename = "/home/tsbischof/src/winspec/scripts/oliver.csv" else: spe_directory = r"E:\raw_data" tiff_directory = spe_directory report_filename = r"C:\Users\Oliver\Desktop\data_processing\thomas_script_results\oliver.csv" spe_files = get_files(spe_directory, "spe") tiff_files = get_files(spe_directory, "tiff") spe_database = match_spe_tiff_files(spe_files, tiff_files) write_metadata_database(spe_database, report_filename) ## write_metadata_to_tiff(spe_database) ``` #### File: winspec/scripts/oliver_image_processing.py ```python import re import os import Tkinter, tkFileDialog import numpy import libtiff from winspec import Lightfield def subtract_mean(filename, dst_dir=None, discard_frames=[0], print_every=10): root, name = os.path.split(filename) if dst_dir is None: dst_dir = root name_base = re.sub("\.spe", "", name) mean_filename = os.path.normpath(os.path.join(dst_dir, "{}_mean_background.tif".format(name_base))) max_filename = os.path.normpath(os.path.join(dst_dir, "{}_max_mean_background.tif".format(name_base))) lf = Lightfield(filename) frames = list() for frame_index, frame in enumerate(lf.frames()): if frame_index % print_every == 0: print("Frame {} of {}".format(frame_index, lf.n_frames())) if frame_index in discard_frames: continue frames.append(numpy.array(list(frame.regions[0].data()))) frames = numpy.array(frames) mean_frame = frames.sum(0)/frames.shape[0] frames -= mean_frame[None,:,:] print("Writing to {}".format(mean_filename)) mean_image = libtiff.TIFFimage(frames.astype("int16")) mean_image.write_file(mean_filename, verbose=False) print("Writing to {}".format(max_filename)) max_image = libtiff.TIFFimage(numpy.amax(frames.astype("int16"), axis=0)) max_image.write_file(max_filename, verbose=False) if __name__ == "__main__": root = Tkinter.Tk() root.withdraw() filenames = root.tk.splitlist(tkFileDialog.askopenfilenames( title="Choose files to process", filetypes=[("Winspec/Lightfield files", "*.spe")])) ## filenames = ["blargh.spe"] dst_dir = tkFileDialog.askdirectory(title="Choose a destination directory") for filename in filenames: print("Processing {}".format(filename)) subtract_mean(filename, dst_dir=dst_dir, print_every=40) ``` #### File: winspec/winspec/cstruct.py ```python import struct import logging import pprint class CStruct(object): def __init__(self, definition): self.__definition = definition def __str__(self): result = list() # Change this to give a lisp-like output: # (name, value) # and so forth return(pprint.pformat(self.to_list())) def from_stream(self, data): stream_to_tuple(data, self.__definition, self) def to_list(self): result = list() for name, form in self.__definition: try: value = getattr(self, name) if isinstance(value, tuple): for index, f in enumerate(value): result.append(("{0}[{1}]".format(name, index), f.to_list())) elif isinstance(value, CStruct): result.append((name, value.to_list())) else: result.append((name, value)) except AttributeError: logging.debug("Attribute not found: {0}".format(name)) result.append((name, None)) return(result) def definition(self): return(self.__definition) def add_tab(string, tabs=1): result = str() for line in string.split("\n"): result += "\t{0}\n".format(line) return(result) def strip_null(string): return(string.rstrip("\x000").lstrip("\x000")) def stream_to_tuple(data, structure_definition, target): """Given the structure of interest, populates the named tuple with the appropriate data. Ideally, this could be done with tuple._make(struct.unpack())), but strings do not seem to work properly in this case.""" for index, definition in enumerate(structure_definition): logging.debug(definition) name, form = definition number, formtype = form logging.debug("{0}: {1}".format(name, form)) if type(formtype) == type(str()): # We have a string format, so no recursion formstr = "{0}{1}".format(number, formtype) logging.debug("Reading {0} ({1}) from stream at offset {2}.".format( name, formstr, data.tell())) size = struct.calcsize(formstr) my_data = data.read(size) value = struct.unpack_from(formstr, my_data) logging.debug("Found: {0}".format(value)) # Now that we have the data, we need to consider whether it is an # array or a single value. If a character array, create a string. # If a numerical array, make a list. If a single value, make a # single value if form[-1] in "?bBhHiIlLqQfdP": logging.debug("Numerical value.") # Numerical value if form[0] == 1: # Single value value = value[0] else: value = list(value) else: # Character value # Kludge to get rid of "\x00". This should be possible using nicer # methods. logging.debug("Character value.") value = strip_null(bytes("".encode()).join(value).decode()) logging.debug("{0}: {1}".format(name, value)) setattr(target, name, value) else: # Recursion! logging.debug("Recursing!") if number == 1: setattr(target, name, CStruct(formtype)) stream_to_tuple(data, formtype, getattr(target, name)) else: setattr(target, name, tuple([CStruct(formtype) for i in range(number)])) for i in range(number): stream_to_tuple(data, formtype, getattr(target, name)[i]) if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG) blargh_t = [ ("blargh", (20, "i")), ("cool", (10, "c"))] nyargh_t = [ ("nyargh", (2, "c")), ("fjord", (10, blargh_t))] a = CStruct(nyargh_t) with open("WINHEAD.TXT", "rb") as data: a.from_stream(data) print(a) ```
{ "source": "1imartinez/Final_Exam001", "score": 4 }
#### File: 1imartinez/Final_Exam001/one.py ```python def reverse(text): return text[::-1] def remove(test): return text.replace(" ","") def lower(text): return text.lower() def checkisPallendrome(text): undercase = lower(text) result = remove(undercase) backwards = reverse(result) if (result == backwards): x = True else: x = False return x def tester(text, expected_result): actual_result = checkisPallendrome(text) print_text = "The text was: " + str(text) + " | " if expected_result == actual_result: print_text += "Correct: " + str(expected_result) + " == " + str(actual_result) else: print_text += "Incorrect: " + str(expected_result) + " != " + str(actual_result) return print_text if __name__ == "__main__": # Try it on these to see if it works? text0 = "My foot is a hamburger" text1 = "Go hang a salami Im a lasagna hog" text2 = "She sells sea shells by the sea shore" text3 = "race car" text4 = "My school" # Test it like this print(tester(text0, False)) print(tester(text1, True)) print(tester(text2, False)) print(tester(text3, True)) print(tester(text4, False)) ```
{ "source": "1i-medialib/media-lib-tools", "score": 3 }
#### File: media-lib-tools/music/artist.py ```python from utilities.logging import Logging import psycopg2 import psycopg2.extras class Artist: "Music Artist class" def __init__(self, log, ytmusic, dbh, name=None, rating=0): self.l = log # Logging Object self.ytm = ytmusic # youtube Music API object self.dbh = dbh # database handle self.id = None # pk from database self.name = name self.rating = rating self.yt_id = None def print_attributes(self): self.l.debug('Artist:') self.l.debug(' ID : {}'.format(self.id)) self.l.debug(' Name : {}'.format(self.name)) self.l.debug(' Rating: {}'.format(self.rating)) def load_artist_from_youtube(self,youtube_artist): if 'id' in youtube_artist: self.yt_id = youtube_artist['id'] if 'name' in youtube_artist: self.name = youtube_artist['name'] self.query_artist() self.save() self.print_attributes() def query_artist_by_id(self): # query artist from db if not self.id: self.l.log('No id is defined to query artist by') return c_query = self.dbh.cursor(cursor_factory=psycopg2.extras.DictCursor) query_statement = """ SELECT * FROM medialib.artist s WHERE s.id = %s """ c_query.execute(query_statement, (self.id,)) if c_query.rowcount == 0: self.l.log('No artist found for id: {}'.format(self.id)) return sdata = c_query.fetchone() self.name = sdata['name'] self.rating = sdata['rating'] self.yt_id = sdata['youtube_id'] def query_artist(self): # query artist from db if self.id: # we have an id. Query by it self.query_artist_by_id() return # query by title, artist, album self.l.log('Querying artist with name: {}, type: {}'.format( self.name, type(self.name))) c_query = self.dbh.cursor(cursor_factory=psycopg2.extras.DictCursor) query_statement = """ SELECT * FROM medialib.artist s WHERE s.name = %s """ c_query.execute(query_statement, (self.name,)) if c_query.rowcount == 0: self.l.log('No artist found for name: {}, type: {}'.format(self.name, type(self.name))) return if c_query.rowcount != 1: self.l.log('Found multiple artists!') return sdata = c_query.fetchone() self.id = sdata['id'] self.name = sdata['name'] self.yt_id = sdata['youtube_id'] def update_db(self): pass def insert_db(self): try: c_stmt = self.dbh.cursor() insert_stmt = """ insert into medialib.artist ( name, rating, youtube_id ) values ( %s, %s, %s ) RETURNING id """ c_stmt.execute( insert_stmt, (self.name, self.rating, self.yt_id ) ) self.id = c_stmt.fetchone()[0] self.l.debug('Inserted artist: {} as id: {}'.format( self.name, self.id)) except (Exception, psycopg2.Error) as error: self.l.log('Error inserting artist: {}'.format(error)) self.print_attributes() raise finally: c_stmt.close() def save(self): # save artist to database # query first to see if it exists: self.query_artist() if self.id: self.update_db() else: self.insert_db() self.dbh.commit() ``` #### File: media-lib-tools/music/playlist.py ```python from utilities.logging import Logging from music.song import Song class Playlist: "Music Playlist class" def __init__(self, utilities, ytmusic, dbh, info=None): self.u = utilities # Utilities Object self.ytm = ytmusic # youtube Music API object self.dbh = dbh # database handle self.id = None # pk from database self.name = None self.rating = 0 self.description = None self.track_count = 0 self.songs = [] self.yt_id = None if info: if 'name' in info: self.name = info['name'] if 'description' in info: self.description = info['description'] if 'trackCount' in info: self.track_count = int(info['trackCount']) if 'songs' in info: self.songs = info['songs'] if 'rating' in info: self.rating = int(info['rating']) def print_attributes(self): self.u.log('Playlist:') self.u.log(' Name : {}'.format(self.name)) self.u.log(' Rating : {}'.format(self.rating)) self.u.log(' Track Count: {}'.format(self.track_count)) def get_songs_from_youtube_playlist_id(self): if not self.yt_id: self.u.log('No yt id set') return pl = self.ytm.get_playlist(self.yt_id, limit=(self.track_count + 1)) for track in pl['tracks']: s = Song(self.u,self.ytm,self.dbh) s.load_song_from_youtube(track) self.songs.append(s) def load_playlist_from_youtube(self, youtube_playlist): # self.u.pprintd(youtube_playlist) if 'id' in youtube_playlist: self.yt_id = youtube_playlist['id'] elif 'playlistId' in youtube_playlist: self.yt_id = youtube_playlist['playlistId'] if 'title' in youtube_playlist: self.name = youtube_playlist['title'] if 'description' in youtube_playlist: self.description = youtube_playlist['description'] if 'trackCount' in youtube_playlist: self.track_count = int(youtube_playlist['trackCount']) elif 'count' in youtube_playlist: self.track_count = int(youtube_playlist['count']) if 'tracks' in youtube_playlist: self.songs = youtube_playlist['tracks'] else: # get songs from pl self.get_songs_from_youtube_playlist_id() self.print_attributes() def save(self): # save items in the playlist to db self.u.debug('Saving playlist: {}'.format(self.name)) # iterate songs and save for song in self.songs: self.u.debug('Saving song: {}'.format(song.title)) song.save() ```
{ "source": "1inch/cumulative-merkle-drop", "score": 3 }
#### File: cumulative-merkle-drop/src/parse.py ```python import json from eth_utils import to_checksum_address monthly_files = [ 'data/21_08.json', 'data/21_09.json', 'data/21_10.json', 'data/21_11.json', 'data/21_12.json', 'data/bf.json' ] data_in = [] for filename in monthly_files: with open(filename) as in_f: data_in.extend(json.load(in_f)['data']['get_result_by_result_id']) dataset = [] for e in data_in: dataset.append({ # 'tx_hash': e['data']['tx_hash'].replace('\\', '0'), 'tx_from': e['data']['tx_from'].replace('\\', '0'), # 'eth_price': e['data']['eth_price'], # 'inch_price': e['data']['inch_price'], # 'inch_price': e['data']['inch_price'], 'inch_refund': e['data']['inch_refund'], # 'eth_used': e['data']['eth_used'], }) # with open('processed.json', 'w') as out_f: # json.dump(dataset, out_f) # with open('processed.json') as in_f: # dataset = json.load(in_f) # slippage_logs = {} # with open('trades.csv') as in_f: # for line in in_f.readlines()[1:]: # _, tx_hash, _, _, slippage = line[:-1].split(',') # slippage_logs[tx_hash[1:-1]] = float(slippage[1:-1]) # filtered_dataset = [] # def txns(addr): # total_txns = 0 # total_refund = 0 # low_slippage_txns = 0 # low_slippage_refund = 0 # untracked_txns = 0 # untracked_refund = 0 # last_untracked_txn = '' # for e in dataset: # if addr is not None and addr != e['tx_from']: # continue # log = slippage_logs.get(e['tx_hash']) # total_refund += e['inch_refund'] # total_txns += 1 # if log is not None: # if log < 1.0: # low_slippage_txns += 1 # low_slippage_refund += e['inch_refund'] # else: # if addr is None: # filtered_dataset.append(e) # else: # print(e['tx_hash']) # else: # untracked_txns += 1 # untracked_refund += e['inch_refund'] # last_untracked_txn = e['tx_hash'] # if addr is None: # filtered_dataset.append(e) # print(last_untracked_txn) # return total_refund, total_txns, low_slippage_refund, low_slippage_txns, untracked_refund, untracked_txns # def calc_stats(addr=None): # total_refund, total_txns, low_slippage_refund, low_slippage_txns, untracked_refund, untracked_txns = txns(addr) # if addr is None: # print('Total stats:') # else: # print('{} stats:'.format(addr)) # print('\ttotal txns: {}, total refund: {:.0f} 1INCH'.format(total_txns, total_refund)) # print('\tlow slippage txns: {}, low slippage refund: {:.0f} 1INCH'.format(low_slippage_txns, low_slippage_refund)) # print('\tuntracked txns: {}, untracked refund: {:.0f} 1INCH'.format(untracked_txns, untracked_refund)) # [calc_stats(addr) for addr in [ # None, # ]] drop_data = {} for e in dataset: addr = to_checksum_address(e['tx_from']) if addr in drop_data: drop_data[addr] += int(e['inch_refund'] * 1e18) else: drop_data[addr] = int(e['inch_refund'] * 1e18) # for k in sorted(drop_data.values(), reverse=True)[:5]: # print(k) # print(len(drop_data)) for k in drop_data.keys(): drop_data[k] = str(drop_data[k]) with open('drop_data.json', 'w') as out_f: json.dump(drop_data, out_f) ```
{ "source": "1iyiwei/topopt", "score": 3 }
#### File: topopt/src/fesolvers.py ```python import numpy as np # https://docs.scipy.org/doc/scipy-0.18.1/reference/sparse.html from scipy.sparse import coo_matrix, lil_matrix, csc_matrix, csr_matrix from scipy.sparse.linalg import spsolve class FESolver(object): def __init__(self, verbose = False): self.verbose = verbose # finite element computation for displacement def displace(self, load, x, ke, penal): f = load.force() fixdofs = np.array(load.fixdofs()) freedofs = np.array(load.freedofs()) nely, nelx = x.shape k_freedofs = self.gk_freedofs(load, x, ke, penal) u = np.zeros(load.dim*(nely+1)*(nelx+1)); u[freedofs] = spsolve(k_freedofs, f[freedofs]) u[fixdofs] = 0.0 return u # global stiffness matrix def gk_freedofs(self, load, x, ke, penal): raise NotImplementedError # Using lil_matrix is quite slow class LilFESolver(FESolver): def __init__(self, verbose = False): super().__init__(verbose) def gk_freedofs(self, load, x, ke, penal): nelx, nely = load.shape() dof = load.dim*(nelx+1)*(nely+1) k = lil_matrix((dof, dof)) for elx in range(nelx): for ely in range(nely): sel = load.edof(elx, ely, nelx, nely) k[np.ix_(sel, sel)] += ke*(x[ely, elx]**penal); freedofs = np.array(load.freedofs()) k_freedofs = k[np.ix_(freedofs, freedofs)].tocsc() return k_freedofs # coo_matrix should be faster class CooFESolver(FESolver): def __init__(self, verbose = False): super().__init__(verbose) def gk_freedofs(self, load, x, ke, penal): nelx, nely = load.shape() edof, x_list, y_list = load.edof(nelx, nely) kd = x.T.reshape(nelx*nely, 1, 1) ** penal value_list = (np.tile(ke, (nelx*nely, 1, 1))*kd).flatten() # coo_matrix automatically sums duplicated entries, so it is handy dof = load.dim*(nelx+1)*(nely+1) k = coo_matrix((value_list, (y_list, x_list)), shape=(dof, dof)).tocsc() freedofs = load.freedofs() k_freedofs = k[freedofs,:][:,freedofs] return k_freedofs ```
{ "source": "1iyiwei/video_ffmpeg", "score": 3 }
#### File: 1iyiwei/video_ffmpeg/video.py ```python import sys import os import shutil import subprocess import re import glob import shlex video_codec = 'libx264' audio_codec = 'libfdk_aac' preset = 'medium' # medium, veryslow def kbsfromline(line): m = re.search('(,\s*)(\d+)(\s*kb/s)', line) if (m!= None): answer = m.group(2) else: answer = '' return answer def bitrate(input_video_file_name): video_bitrate = '' audio_bitrate = '' query_command = "ffmpeg -i " + input_video_file_name process = subprocess.Popen(shlex.split(query_command), stderr=subprocess.PIPE) text = process.stderr.read() retcode = process.wait() lines = text.split("\n") for line in lines: m = re.search('Stream.*Video', line) if(m != None): video_bitrate = kbsfromline(line) m = re.search('Stream.*Audio', line) if(m != None): audio_bitrate = kbsfromline(line) return [video_bitrate, audio_bitrate] # convert video from one format to another def ffmpeg_convert(input_video_file_name, output_video_file_name, two_pass=True): #qp is the quantization parameter for the fixed-quality setting (0 = lossless). I cannot be sure if x264 is acceptable to the system yet, but it can be opened by Quicktime so I guess it is fine. #command = "ffmpeg -i " + input_video_file_name + " -vcodec libx264 -preset veryslow -qp 3 -pix_fmt yuv420p -loglevel warning " + output_video_file_name [video_bitrate, audio_bitrate] = bitrate(input_video_file_name) if video_bitrate == "": two_pass = False if two_pass: # two pass to control output size # https://trac.ffmpeg.org/wiki/Encode/H.264 spec = " -c:v " + video_codec + " -preset " + preset + " -b:v " + video_bitrate + 'k' command_pass1 = "ffmpeg -loglevel warning -y -i " + input_video_file_name + spec + " -pass 1 " + " -f mp4 NUL" command_pass2 = "ffmpeg -loglevel warning -i " + input_video_file_name + spec + " -pass 2 " + output_video_file_name command = command_pass1 + " && " + command_pass2 else: input_video_file_size = os.path.getsize(input_video_file_name) spec = " -fs " + str(input_video_file_size) + " -preset " + preset + " " command = "ffmpeg -loglevel warning -i " + input_video_file_name + spec + output_video_file_name os.system(command) if two_pass: remove_file_list = glob.glob("ffmpeg*pass*log*") for remove_file in remove_file_list: os.remove(remove_file) ```
{ "source": "1izard/mvs", "score": 3 }
#### File: mvs/tests/test_renames.py ```python import pytest import os import pathlib import shutil from renames import renames HERE = os.path.dirname(os.path.abspath(__file__)) TEST_PRODUCTS_PATH = os.path.join(HERE, 'test_products') TESTD0_PATH = os.path.join(HERE, 'testd0') TESTD1_PATH = os.path.join(HERE, 'testd1') TESTD2_PATH = os.path.join(HERE, 'testd2') def set_test_files(): if os.path.isdir(TESTD2_PATH): shutil.rmtree(TESTD2_PATH) os.makedirs(TESTD2_PATH) for i in range(3): inner_dir_path = os.path.join(TESTD2_PATH, f'tmpd2_{i}') os.makedirs(inner_dir_path) inner_file_path = os.path.join(TESTD2_PATH, f'tmp2_{i}.txt') with open(inner_file_path, 'w') as f: f.write(str(os.path.basename(inner_file_path))) for j in range(3): pathlib.Path(os.path.join(inner_dir_path, f'tmp2_{i}_{j}.txt')).touch() def test_glob_file_names(): expected = ['tmpd0', 'tmpd1', 'tmpd2', 'tmp0.txt', 'tmp1.txt', 'tmp2.txt'] expected.sort() actual = renames.glob_file_names(TESTD0_PATH) actual.sort() assert actual == expected def test_write_file_names(): file_names = ['tmpd0', 'tmpd1', 'tmpd2', 'tmp0.txt', 'tmp1.txt', 'tmp2.txt'] expected = ['tmpd0 >> tmpd0', 'tmpd1 >> tmpd1', 'tmpd2 >> tmpd2', 'tmp0.txt >> tmp0.txt', 'tmp1.txt >> tmp1.txt', 'tmp2.txt >> tmp2.txt'] expected.sort() dst_path = os.path.join(TEST_PRODUCTS_PATH, 'test_write_file_names_result.txt') renames.write_file_names(file_names, dst_path) with open(dst_path, 'r') as f: lines = [l.strip('\n') for l in f] actual = sorted(lines) assert actual == expected def test_read_file_lines(): expected = [ 'src1 >> dst1', 'src2 >> dst2', 'src3 >> dst3', ] actual = renames.read_file_list_lines(os.path.join(TESTD1_PATH, 'filelist.txt')) actual assert actual == expected def test_build_file_name_pair_valid(): expected = ('src1', 'dst1') arg = 'src1 >> dst1' actual = renames.build_file_name_pair(arg) assert actual == expected def test_build_file_name_pair_with_invalid_char_slash(): args = ['/src1 >> dst1', 'src1 >> /dst1'] for i, arg in enumerate(args, 1): with pytest.raises(ValueError) as excinfo: renames.build_file_name_pair(arg) assert 'line {}: Invalid character' in str(excinfo.value) def test_build_file_name_pair_with_invalid_char_single_quote(): arg = "'/src1' >> dst1" with pytest.raises(ValueError) as excinfo: renames.build_file_name_pair(arg) assert 'line {}: Invalid character' in str(excinfo.value) def test_build_file_name_pair_with_invalid_char_double_quote(): arg = '"/src1" >> dst1' with pytest.raises(ValueError) as excinfo: renames.build_file_name_pair(arg) assert 'line {}: Invalid character' in str(excinfo.value) def test_build_file_name_pair_invalid_syntax(): args = ['src1 > dst1', 'src 1 >> dst1'] for arg in args: with pytest.raises(ValueError) as excinfo: renames.build_file_name_pair(arg) assert 'line {}: Invalid syntax' in str(excinfo.value) def test_has_duplicate_value_true(): expected = True arg = { 'src1': 'dst1', 'src2': 'dst1', } actual = renames.has_duplicate_value(arg) assert actual == expected def test_has_duplicate_false(): expected = False arg = { 'src1': 'dst1', 'src2': 'dst2', } actual = renames.has_duplicate_value(arg) assert actual == expected def test_build_file_name_map_valid(): expected = { 'src1': 'dst1', 'src2': 'dst2' } arg = ['src1 >> dst1', 'src2 >> dst2'] actual = renames.build_file_name_map(arg) assert actual == expected def test_build_file_name_map_with_invalid_syntax(): with pytest.raises(ValueError) as excinfo: arg = ['src1 > dst1', 'src2 > dst2'] renames.build_file_name_map(arg) assert 'line 1: Invalid syntax;' in str(excinfo.value) def test_build_file_name_map_with_duplicate_src(): with pytest.raises(ValueError) as excinfo: arg = ['src1 >> dst1', 'src1 >> dst2'] renames.build_file_name_map(arg) assert 'Found a duplicate src file name' in str(excinfo.value) def test_build_file_name_map_with_duplicate_dst(): with pytest.raises(ValueError) as excinfo: arg = ['src1 >> dst1', 'src2 >> dst1'] renames.build_file_name_map(arg) assert 'Found a duplicate dst file name' in str(excinfo.value) def test_rename_files_normal(): set_test_files() file_name_map = { 'tmpd2_0': 'afterd2_0', 'tmpd2_1': 'afterd2_1', 'tmpd2_2': 'afterd2_2', 'tmp2_0.txt': 'after2_0', 'tmp2_1.txt': 'after2_1', 'tmp2_2.txt': 'after2_2', } expected = set(file_name_map.values()) renames.rename_files(file_name_map, TESTD2_PATH) with os.scandir(TESTD2_PATH) as it: actual = set([e.name for e in it]) assert actual == expected def test_rename_files_node(): set_test_files() file_name_map = { 'tmpd2_0': 'tmpd2_1', 'tmpd2_1': 'tmpd2_2', 'tmpd2_2': 'tmpd2_3', 'tmp2_0.txt': 'tmp2_1.txt', 'tmp2_1.txt': 'tmp2_2.txt', 'tmp2_2.txt': 'tmp2_3.txt', } expected = set(file_name_map.values()) renames.rename_files(file_name_map, TESTD2_PATH) with os.scandir(TESTD2_PATH) as it: actual = set([e.name for e in it]) assert actual == expected def test_rename_files_cycle(): set_test_files() file_name_map = { 'tmpd2_0': 'tmpd2_1', 'tmpd2_1': 'tmpd2_2', 'tmpd2_2': 'tmpd2_0', 'tmp2_0.txt': 'tmp2_1.txt', 'tmp2_1.txt': 'tmp2_2.txt', 'tmp2_2.txt': 'tmp2_0.txt', } expected = set(file_name_map.values()) renames.rename_files(file_name_map, TESTD2_PATH) with os.scandir(TESTD2_PATH) as it: actual = set([e.name for e in it]) assert actual == expected def test_rename_files_cycle_pair(): set_test_files() file_name_map = { 'tmpd2_0': 'tmpd2_1', 'tmpd2_1': 'tmpd2_0', 'tmpd2_2': 'tmpd2_2', 'tmp2_0.txt': 'tmp2_1.txt', 'tmp2_1.txt': 'tmp2_0.txt', 'tmp2_2.txt': 'tmp2_2.txt', } expected = set(file_name_map.values()) renames.rename_files(file_name_map, TESTD2_PATH) with os.scandir(TESTD2_PATH) as it: actual = set([e.name for e in it]) assert actual == expected def test_rename_files_including_same(): set_test_files() file_name_map = { 'tmpd2_0': 'tmpd2_0', 'tmpd2_1': 'tmpd2_1', 'tmpd2_2': 'tmpd2_3', 'tmp2_0.txt': 'tmp2_0.txt', 'tmp2_1.txt': 'tmp2_1.txt', 'tmp2_2.txt': 'tmp2_3.txt', } expected = set(file_name_map.values()) renames.rename_files(file_name_map, TESTD2_PATH) with os.scandir(TESTD2_PATH) as it: actual = set([e.name for e in it]) assert actual == expected ```
{ "source": "1izard/poetryenv", "score": 2 }
#### File: poetryenv/poetryenv/environments.py ```python import os def poetry_installed(): paths = os.environ.get('PATH', '') poetry_path = os.path.join('.poetry', 'bin') return poetry_path in paths PYENV_INSTALLED = bool(os.environ.get('PYENV_SHELL') or os.environ.get('PYENV_ROOT')) POETRY_INSTALLED = poetry_installed() ```
{ "source": "1jinwoo/YHack2018", "score": 3 }
#### File: 1jinwoo/YHack2018/item_title_cleaner.py ```python import data_cleaner as dc import re # In[42]: def clean_item_data(): #read in file using data_cleaner df = dc.read_search_strings() ''' removing . and all non-alphanumeric characters at the end of each word (e.g. 'oz.') and preventing the removing of '7.5mm', except ", ', and space. Æ stays, might remove later ''' for index, row in df.iterrows(): new_string = '' for item in row['item_title']: item = ''.join(c for c in item if c.isalnum() or c == '\"' or c == '\'' or c == ' ' or c == '.' or c == '$') new_string += item word_list = new_string.split() new_word = '' for w in word_list: if w.endswith('.'): new_word += w[:-1] + ' ' else: new_word += w + ' ' new_string = new_word df.at[index, 'item_title']= new_string return df # In[43]: ''' Returns item_title at specified index (from 0 to 11121) ''' def item_title(index): return df.loc[index]['item_title'] # In[44]: if __name__ == '__main__': df = clean_item_data() for n in range(11121): print(n, item_title(n)) ```
{ "source": "1joker4ever/libapps-mirror", "score": 2 }
#### File: libdot/bin/libdot.py ```python from __future__ import print_function import argparse import base64 import importlib.machinery import io import logging import logging.handlers import os from pathlib import Path import subprocess import sys import time import types from typing import Dict, List import urllib.request # Require recent Python 3 versions as a sanity check. # NB: We cannot require newer versions than CrOS itself supports. assert (sys.version_info.major, sys.version_info.minor) >= (3, 6), ( 'Python 3.6 or newer is required; found %s' % (sys.version,)) BIN_DIR = Path(__file__).resolve().parent DIR = BIN_DIR.parent LIBAPPS_DIR = DIR.parent class ColoredFormatter(logging.Formatter): """Colorize warning/error messages automatically.""" _COLOR_MAPPING = { 'WARNING': '\033[1;33m', 'ERROR': '\033[1;31m' } _RESET = '\033[m' def __init__(self, *args, **kwargs): """Initialize!""" self._use_colors = 'NOCOLOR' not in os.environ super(ColoredFormatter, self).__init__(*args, **kwargs) def format(self, record): """Formats |record| with color.""" msg = super(ColoredFormatter, self).format(record) color = self._COLOR_MAPPING.get(record.levelname) if self._use_colors and color: msg = '%s%s%s' % (color, msg, self._RESET) return msg def setup_logging(debug=False, quiet=0): """Setup the logging module.""" fmt = '%(asctime)s: %(levelname)-7s: ' if debug: fmt += '%(filename)s:%(funcName)s: ' fmt += '%(message)s' # 'Sat, 05 Oct 2013 18:58:50 -0400 (EST)' datefmt = '%a, %d %b %Y %H:%M:%S %z' tzname = time.strftime('%Z', time.localtime()) if tzname and ' ' not in tzname and len(tzname) <= 5: # If the name is verbose, don't include it. Some systems like to use # "Eastern Daylight Time" which is much too chatty. datefmt += f' ({tzname})' if debug: level = logging.DEBUG elif quiet <= 0: level = logging.INFO elif quiet <= 1: level = logging.WARNING elif quiet <= 2: level = logging.ERROR elif quiet <= 3: level = logging.CRITICAL formatter = ColoredFormatter(fmt, datefmt) handler = logging.StreamHandler(stream=sys.stdout) handler.setFormatter(formatter) logger = logging.getLogger() logger.addHandler(handler) logger.setLevel(level) class ArgumentParser(argparse.ArgumentParser): """Custom parser to hold a consistent set of options & runtime env.""" def __init__(self, short_options=True, **kwargs): """Initialize!""" super(ArgumentParser, self).__init__(**kwargs) self.add_common_arguments(short_options=short_options) def parse_args(self, args=None, namespace=None): """Parse all the |args| and save the results to |namespace|.""" # This will call our parse_known_args below, so don't use setup_logging. namespace = argparse.ArgumentParser.parse_args( self, args=args, namespace=namespace) return namespace def parse_known_args(self, args=None, namespace=None): """Parse all the |args| and save the results to |namespace|.""" namespace, unknown_args = argparse.ArgumentParser.parse_known_args( self, args=args, namespace=namespace) setup_logging(debug=namespace.debug, quiet=namespace.quiet) return (namespace, unknown_args) def add_common_arguments(self, short_options=True): """Add our custom/consistent set of command line flags.""" getopts = lambda *args: args if short_options else args[1:] self.add_argument(*getopts('-d', '--debug'), action='store_true', help='Run with debug output.') self.add_argument(*getopts('-q', '--quiet'), action='count', default=0, help='Use once to hide info messages, twice to hide ' 'warnings, and thrice to hide errors.') def touch(path): """Touch (and truncate) |path|.""" open(path, 'wb').close() def unlink(path): """Remove |path| and ignore errors if it doesn't exist.""" try: os.unlink(path) except FileNotFoundError: pass def symlink(target, path): """Always symlink |path| to a relativized |target|.""" unlink(path) path = os.path.realpath(path) target = os.path.relpath(os.path.realpath(target), os.path.dirname(path)) logging.info('Symlinking %s -> %s', path, target) os.symlink(target, path) def cmdstr(cmd): """Return a string for the |cmd| list w/reasonable quoting.""" if isinstance(cmd, str): return cmd quoted = [] for arg in cmd: if isinstance(arg, Path): arg = str(arg) if ' ' in arg: arg = '"%s"' % (arg,) quoted.append(arg) return ' '.join(quoted) def run(cmd: List[str], cmd_prefix: List[str] = None, log_prefix: List[str] = None, check: bool = True, cwd: str = None, extra_env: Dict[str, str] = None, **kwargs): """Run |cmd| inside of |cwd| and exit if it fails. Args: cmd: The command to run. cmd_prefix: (Unlogged) prefix for the command to run. Useful for passing interpreters like `java` or `python` but omitting from default output. log_prefix: Prefix for logging the command, but not running. Useful for wrapper scripts that get executed directly and use |cmd_prefix|. check: Whether to exit if |cmd| execution fails. cwd: The working directory to run |cmd| inside of. extra_env: Extra environment settings to set before running. Returns: A subprocess.CompletedProcess instance. """ # Python 3.6 doesn't support capture_output. if sys.version_info < (3, 7): capture_output = kwargs.pop('capture_output', None) if capture_output: assert 'stdout' not in kwargs and 'stderr' not in kwargs kwargs['stdout'] = subprocess.PIPE kwargs['stderr'] = subprocess.PIPE # The |env| setting specifies the entire environment, so we need to manually # merge our |extra_env| settings into it before passing it along. if extra_env is not None: env = kwargs.pop('env', os.environ) env = env.copy() env.update(extra_env) kwargs['env'] = env if not log_prefix: log_prefix = [] log_cmd = log_prefix + cmd if not cmd_prefix: cmd_prefix = [] real_cmd = cmd_prefix + cmd if cwd is None: cwd = os.getcwd() logging.info('Running: %s\n (cwd = %s)', cmdstr(log_cmd), cwd) if cmd_prefix: logging.debug('Real full command: %s', cmdstr(real_cmd)) result = subprocess.run(real_cmd, cwd=cwd, check=False, **kwargs) if check and result.returncode: logging.error('Running %s failed!', log_cmd[0]) if result.stdout is not None: logging.error('stdout:\n%s', result.stdout) if result.stderr is not None: logging.error('stderr:\n%s', result.stderr) sys.exit(result.returncode) return result def unpack(archive, cwd=None, files=()): """Unpack |archive| into |cwd|.""" if cwd is None: cwd = os.getcwd() if files: files = ['--'] + list(files) else: files = [] # Try to make symlink usage easier in Windows. extra_env = { 'MSYS': 'winsymlinks:nativestrict', } logging.info('Unpacking %s', os.path.basename(archive)) # We use relpath here to help out tar on platforms where it doesn't like # paths with colons in them (e.g. Windows). We have to construct the full # before running through relpath as relative archives will implicitly be # checked against os.getcwd rather than the explicit cwd. src = os.path.relpath(os.path.join(cwd, archive), cwd) run(['tar', '-xf', src] + files, cwd=cwd, extra_env=extra_env) def fetch_data(uri: str, output=None, verbose: bool = False, b64: bool = False): """Fetch |uri| and write the results to |output| (or return BytesIO).""" # This is the timeout used on each blocking operation, not the entire # life of the connection. So it's used for initial urlopen and for each # read attempt (which may be partial reads). 5 minutes should be fine. TIMEOUT = 5 * 60 if output is None: output = io.BytesIO() with urllib.request.urlopen(uri, timeout=TIMEOUT) as infp: mb = 0 length = infp.length while True: data = infp.read(1024 * 1024) if not data: break # Show a simple progress bar if the user is interactive. if verbose: mb += 1 print('~%i MiB downloaded' % (mb,), end='') if length: percent = mb * 1024 * 1024 * 100 / length print(' (%.2f%%)' % (percent,), end='') print('\r', end='', flush=True) if b64: data = base64.b64decode(data) output.write(data) return output def fetch(uri, output, b64=False): """Download |uri| and save it to |output|.""" output = os.path.abspath(output) distdir, name = os.path.split(output) if os.path.exists(output): logging.info('Using existing download: %s', name) return logging.info('Downloading %s to %s', uri, output) os.makedirs(distdir, exist_ok=True) # Use kokoro build cache or Gentoo distdir if available. for envvar in ('KOKORO_GFILE_DIR', 'DISTDIR'): cache_dir = os.getenv(envvar) if cache_dir: cache_file = os.path.join(cache_dir, name) if os.path.exists(cache_file): logging.info(' Cache hit via %s', envvar) symlink(cache_file, output) return # Don't be verbose if running on CI systems. verbose = os.isatty(sys.stdout.fileno()) # We use urllib rather than wget or curl to avoid external utils & libs. # This seems to be good enough for our needs. tmpfile = output + '.tmp' for _ in range(0, 5): try: with open(tmpfile, 'wb') as outfp: fetch_data(uri, outfp, verbose=verbose, b64=b64) break except ConnectionError as e: time.sleep(1) logging.warning('Download failed; retrying: %s', e) else: logging.error('Unabled to download; giving up') unlink(tmpfile) sys.exit(1) # Clear the progress bar. if verbose: print(' ' * 80, end='\r') os.rename(tmpfile, output) def node_and_npm_setup(): """Download our copies of node & npm to our tree and updates env ($PATH).""" # We have to update modules first as it'll nuke the dir node lives under. node.modules_update() node.update() def load_module(name, path): """Load a module from the filesystem. Args: name: The name of the new module to import. path: The full path to the file to import. """ loader = importlib.machinery.SourceFileLoader(name, path) module = types.ModuleType(loader.name) loader.exec_module(module) return module class HelperProgram: """Wrapper around local programs that get reused by other projects. This allows people to do inprocess execution rather than having to fork+exec another Python instance. This allows us to avoid filesystem symlinks (which aren't portable), and to avoid naming programs with .py extensions, and to avoid clashes between projects that use the same program name (e.g. "import lint" would confuse libdot/bin/lint & nassh/bin/lint), and to avoid merging all libdot helpers into the single libdot.py module. """ _BIN_DIR = BIN_DIR def __init__(self, name, path=None): """Initialize. Args: name: The base name of the program to import. path: The full path to the file. It defaults to libdot/bin/|name|. """ self._name = name if path is None: path = os.path.join(self._BIN_DIR, name) self._path = path self._module_cache = None @property def _module(self): """Load & cache the program module.""" if self._module_cache is None: self._module_cache = load_module(self._name, self._path) return self._module_cache def __getattr__(self, name): """Dynamic forwarder to module members.""" return getattr(self._module, name) # Wrappers around libdot/bin/ programs for other tools to access directly. closure_compiler = HelperProgram('closure-compiler') concat = HelperProgram('concat') cpplint = HelperProgram('cpplint') eslint = HelperProgram('eslint') headless_chrome = HelperProgram('headless-chrome') lint = HelperProgram('lint') load_tests = HelperProgram('load_tests') minify_translations = HelperProgram('minify-translations') node = HelperProgram('node') pylint = HelperProgram('pylint') ```
{ "source": "1jsebastian/gimme-aws-creds", "score": 3 }
#### File: gimme-aws-creds/tests/test_registered_authenticators.py ```python import json import os import unittest from gimme_aws_creds.registered_authenticators import RegisteredAuthenticators, RegisteredAuthenticator from tests.user_interface_mock import MockUserInterface class TestConfig(unittest.TestCase): """Class to test RegisteredAuthenticators Class.""" def setUp(self): """Set up for the unit tests""" ui_obj = MockUserInterface() self.registered_authenticators = RegisteredAuthenticators(ui_obj) self.file_path = self.registered_authenticators._json_path def test_file_creation_post_init(self): assert os.path.exists(self.file_path) def test_add_authenticator_sanity(self): cred_id, user = b'my-credential-id', '<PASSWORD>' self.registered_authenticators.add_authenticator(cred_id, user) with open(self.file_path) as f: data = json.load(f) assert len(data) == 1 assert type(data) == list assert type(data[0]) == dict authenticator = RegisteredAuthenticator(**data[0]) assert authenticator.user == user def test_get_authenticator_user_sanity(self): cred_id, user = b'my-credential-id', 'my-<PASSWORD>' self.registered_authenticators.add_authenticator(cred_id, user) authenticator_user = self.registered_authenticators.get_authenticator_user(cred_id) assert authenticator_user == user ```
{ "source": "1jsingh/rl_bipedal", "score": 2 }
#### File: deep_rl/network/network_heads.py ```python from .network_utils import * from .network_bodies import * class ActorCriticNet(nn.Module): def __init__(self, state_dim, action_dim, phi_body, actor_body, critic_body): super(ActorCriticNet, self).__init__() if phi_body is None: phi_body = DummyBody(state_dim) if actor_body is None: actor_body = DummyBody(phi_body.feature_dim) if critic_body is None: critic_body = DummyBody(phi_body.feature_dim) self.phi_body = phi_body self.actor_body = actor_body self.critic_body = critic_body self.fc_action = layer_init(nn.Linear(actor_body.feature_dim, action_dim), 1e-3) self.fc_critic = layer_init(nn.Linear(critic_body.feature_dim, 1), 1e-3) self.actor_params = list(self.actor_body.parameters()) + list(self.fc_action.parameters()) self.critic_params = list(self.critic_body.parameters()) + list(self.fc_critic.parameters()) self.phi_params = list(self.phi_body.parameters()) class GaussianActorCriticNet(nn.Module, BaseNet): def __init__(self, state_dim, action_dim, phi_body=None, actor_body=None, critic_body=None): super(GaussianActorCriticNet, self).__init__() self.network = ActorCriticNet(state_dim, action_dim, phi_body, actor_body, critic_body) self.std = nn.Parameter(torch.zeros(action_dim)) self.to(Config.DEVICE) def forward(self, obs, action=None): obs = tensor(obs) phi = self.network.phi_body(obs) phi_a = self.network.actor_body(phi) phi_v = self.network.critic_body(phi) mean = F.tanh(self.network.fc_action(phi_a)) v = self.network.fc_critic(phi_v) dist = torch.distributions.Normal(mean, F.softplus(self.std)) if action is None: action = dist.sample() log_prob = dist.log_prob(action).sum(-1).unsqueeze(-1) entropy = dist.entropy().sum(-1).unsqueeze(-1) return {'a': action, 'log_pi_a': log_prob, 'ent': entropy, 'mean': mean, 'v': v} ``` #### File: rl_bipedal/ppo/utils.py ```python from parallelEnv import parallelEnv import matplotlib import matplotlib.pyplot as plt import torch import numpy as np from JSAnimation.IPython_display import display_animation from matplotlib import animation from IPython.display import display import random as rand device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # collect trajectories for a parallelized parallelEnv object def collect_trajectories(envs, policy, tmax=200, nrand=5): # number of parallel instances n=len(envs.ps) #initialize returning lists and start the game! state_list=[] reward_list=[] action_list=[] states = envs.reset() for t in range(tmax): # probs will only be used as the pi_old # no gradient propagation is needed # so we move it to the cpu actions = policy(states).squeeze().cpu().detach().numpy() next_states,rewards,dones,_ = envs.step(actions) # store the result state_list.append(states) reward_list.append(rewards) action_list.append(action) # stop if any of the trajectories is done # we want all the lists to be retangular if np.any(dones): break # return pi_theta, states, actions, rewards, probability return state_list, action_list, reward_list def clipped_surrogate(policy, old_actions, states, actions, rewards, discount=0.995, epsilon=0.1, beta=0.01): discount = discount**np.arange(len(rewards)) rewards = np.asarray(rewards)*discount[:,np.newaxis] # convert rewards to future rewards rewards_future = rewards[::-1].cumsum(axis=0)[::-1] mean = np.mean(rewards_future, axis=1) std = np.std(rewards_future, axis=1) + 1.0e-10 rewards_normalized = (rewards_future - mean[:,np.newaxis])/std[:,np.newaxis] # convert everything into pytorch tensors and move to gpu if available actions = torch.tensor(actions, dtype=torch.int8, device=device) old_actions = torch.tensor(old_actions, dtype=torch.float, device=device) rewards = torch.tensor(rewards_normalized, dtype=torch.float, device=device) # ratio for clipping ratio = new_actions/old_actions # clipped function clip = torch.clamp(ratio, 1-epsilon, 1+epsilon) clipped_surrogate = torch.min(ratio*rewards, clip*rewards) # include a regularization term # this steers new_policy towards 0.5 # add in 1.e-10 to avoid log(0) which gives nan entropy = -(new_probs*torch.log(old_probs+1.e-10)+ \ (1.0-new_probs)*torch.log(1.0-old_probs+1.e-10)) # this returns an average of all the entries of the tensor # effective computing L_sur^clip / T # averaged over time-step and number of trajectories # this is desirable because we have normalized our rewards return torch.mean(clipped_surrogate + beta*entropy) ```
{ "source": "1jsingh/sudoku_solver", "score": 4 }
#### File: 1jsingh/sudoku_solver/solution.py ```python from utils import * from collections import defaultdict row_units = [cross(r, cols) for r in rows] column_units = [cross(rows, c) for c in cols] square_units = [cross(rs, cs) for rs in ('ABC','DEF','GHI') for cs in ('123','456','789')] unitlist = row_units + column_units + square_units # TODO: Update the unit list to add the new diagonal units diagonal_units = [[row_units[i][i] for i in range(9)],[row_units[i][9-i-1] for i in range(9)]] unitlist = unitlist + diagonal_units # Must be called after all units (including diagonals) are added to the unitlist units = extract_units(unitlist, boxes) peers = extract_peers(units, boxes) # print(peers) def naked_twins(values): """Eliminate values using the naked twins strategy. The naked twins strategy says that if you have two or more unallocated boxes in a unit and there are only two digits that can go in those two boxes, then those two digits can be eliminated from the possible assignments of all other boxes in the same unit. Parameters ---------- values(dict) a dictionary of the form {'box_name': '123456789', ...} Returns ------- dict The values dictionary with the naked twins eliminated from peers Notes ----- Your solution can either process all pairs of naked twins from the input once, or it can continue processing pairs of naked twins until there are no such pairs remaining -- the project assistant test suite will accept either convention. However, it will not accept code that does not process all pairs of naked twins from the original input. (For example, if you start processing pairs of twins and eliminate another pair of twins before the second pair is processed then your code will fail the PA test suite.) The first convention is preferred for consistency with the other strategies, and because it is simpler (since the reduce_puzzle function already calls this strategy repeatedly). See Also -------- Pseudocode for this algorithm on github: https://github.com/udacity/artificial-intelligence/blob/master/Projects/1_Sudoku/pseudocode.md """ # TODO: Implement this function! twins = defaultdict(list) out = values.copy() for box in boxes: if len(values[box])==2: twins[values[box]].append(box) for key in twins.keys(): # print (key) twin_pair_list = twins[key] if len(twin_pair_list)>=2: for i in range(len(twin_pair_list)-1): peer_list = peers[twin_pair_list[i]] # unit_list = list(map(tuple,units[twin_pair_list[i]])) for j in range(i+1,len(twin_pair_list)): if twin_pair_list[j] in peer_list: peer_list_check = peers[twin_pair_list[j]] common_unit = list(set(peer_list).intersection(peer_list_check)) for unit_box in common_unit: if unit_box not in [twin_pair_list[i],twin_pair_list[j]]: digits = key for digit in digits: #out[unit_box] = out[unit_box].replace(digit,'') out = assign_value(out,unit_box,out[unit_box].replace(digit,'')) return out def eliminate(values): """Apply the eliminate strategy to a Sudoku puzzle The eliminate strategy says that if a box has a value assigned, then none of the peers of that box can have the same value. Parameters ---------- values(dict) a dictionary of the form {'box_name': '123456789', ...} Returns ------- dict The values dictionary with the assigned values eliminated from peers """ # TODO: Copy your code from the classroom to complete this function solved_values = [box for box in values.keys() if len(values[box]) == 1] for box in solved_values: digit = values[box] for peer in peers[box]: #values[peer] = values[peer].replace(digit,'') values = assign_value(values,peer,values[peer].replace(digit,'')) return values def only_choice(values): """Apply the only choice strategy to a Sudoku puzzle The only choice strategy says that if only one box in a unit allows a certain digit, then that box must be assigned that digit. Parameters ---------- values(dict) a dictionary of the form {'box_name': '123456789', ...} Returns ------- dict The values dictionary with all single-valued boxes assigned Notes ----- You should be able to complete this function by copying your code from the classroom """ # TODO: Copy your code from the classroom to complete this function for unit in unitlist: for digit in '123456789': dplaces = [box for box in unit if digit in values[box]] if len(dplaces) == 1: #values[dplaces[0]] = digit values = assign_value(values,dplaces[0],digit) return values def reduce_puzzle(values): """Reduce a Sudoku puzzle by repeatedly applying all constraint strategies Parameters ---------- values(dict) a dictionary of the form {'box_name': '123456789', ...} Returns ------- dict or False The values dictionary after continued application of the constraint strategies no longer produces any changes, or False if the puzzle is unsolvable """ # TODO: Copy your code from the classroom and modify it to complete this function solved_values = [box for box in values.keys() if len(values[box]) == 1] stalled = False while not stalled: solved_values_before = len([box for box in values.keys() if len(values[box]) == 1]) values = eliminate(values) values = only_choice(values) values = naked_twins(values) solved_values_after = len([box for box in values.keys() if len(values[box]) == 1]) stalled = solved_values_before == solved_values_after if len([box for box in values.keys() if len(values[box]) == 0]): return False return values def search(values): """Apply depth first search to solve Sudoku puzzles in order to solve puzzles that cannot be solved by repeated reduction alone. Parameters ---------- values(dict) a dictionary of the form {'box_name': '123456789', ...} Returns ------- dict or False The values dictionary with all boxes assigned or False Notes ----- You should be able to complete this function by copying your code from the classroom and extending it to call the naked twins strategy. """ # TODO: Copy your code from the classroom to complete this function values = reduce_puzzle(values) if values is False: return False ## Failed earlier if all(len(values[s]) == 1 for s in boxes): return values ## Solved! # Choose one of the unfilled squares with the fewest possibilities n,s = min((len(values[s]), s) for s in boxes if len(values[s]) > 1) # Now use recurrence to solve each one of the resulting sudokus, and for value in values[s]: new_sudoku = values.copy() new_sudoku[s] = value attempt = search(new_sudoku) if attempt: return attempt def solve(grid): """Find the solution to a Sudoku puzzle using search and constraint propagation Parameters ---------- grid(string) a string representing a sudoku grid. Ex. '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3' Returns ------- dict or False The dictionary representation of the final sudoku grid or False if no solution exists. """ values = grid2values(grid) values = search(values) return values if __name__ == "__main__": diag_sudoku_grid = '2.............62....1....7...6..8...3...9...7...6..4...4....8....52.............3' display(grid2values(diag_sudoku_grid)) result = solve(diag_sudoku_grid) display(result) try: import PySudoku PySudoku.play(grid2values(diag_sudoku_grid), result, history) except SystemExit: pass except: print('We could not visualize your board due to a pygame issue. Not a problem! It is not a requirement.') ```
{ "source": "1K5KKKKKei/sensorutils", "score": 4 }
#### File: src/sensorutils/metrics.py ```python import typing import numpy as np def mae(true:np.ndarray, pred:np.ndarray, axis:typing.Optional[int]=None) -> typing.Union[float, np.ndarray]: """Calc Mean Absolute Error. $$ \\frac{1}{N}\sum_{i=0}^{N} |\hat{y}_i - y_i| $$ Parameters ---------- true: np.ndarray true data. pred: np.ndarray predicted data. Returns ------- :Union[float, np.ndarray] MAE Examples -------- >>> a = np.random.randn(2, 3, 4) >>> b = np.random.randn(2, 3, 4) >>> mae(a, b) >>> mae(a, b, axis=2) """ return np.abs(true - pred).mean(axis=axis) def mape(true:np.ndarray, pred:np.ndarray, axis:typing.Optional[int]=None) -> typing.Union[float, np.ndarray]: """Calc Mean Absolute Persentage Error. $$ \\frac{100}{N}\sum_{i=0}^{N} \\left| \\frac{\hat{y}_i - y_i}{y_i} \\right| $$ Parameters ---------- true: np.ndarray true data. pred: np.ndarray predicted data. Returns ------- :Union[float, np.ndarray] MAPE Examples -------- >>> a = np.random.randn(2, 3, 4) >>> b = np.random.randn(2, 3, 4) >>> mape(a, b) >>> mape(a, b, axis=2) """ return mae(np.ones_like(true), pred / true, axis) * 100 def mse(true:np.ndarray, pred:np.ndarray, axis:typing.Optional[int]=None) -> typing.Union[float, np.ndarray]: """Calc Mean Squared Error. $$ \\frac{1}{N}\sum_{i=0}^{N} (dst_i - src_i)^2 $$ Parameters ---------- true: np.ndarray true data. pred: np.ndarray predicted data. Returns ------- :Union[float, np.ndarray] MSE Examples -------- >>> a = np.random.randn(2, 3, 4) >>> b = np.random.randn(2, 3, 4) >>> mse(a, b) >>> mse(a, b, axis=2) """ return (np.square(true - pred)).mean(axis=axis) def rmse(true:np.ndarray, pred:np.ndarray, axis:typing.Optional[int]=None) -> typing.Union[float, np.ndarray]: """Calc Root Mean Squared Error. $$ \\left(\\frac{1}{N}\sum_{i=0}^{N} (\hat{y}_i - y_i)^2 \\right)^{\\frac{1}{2}} $$ Parameters ---------- true: np.ndarray true data. pred: np.ndarray predicted data. Returns ------- :Union[float, np.ndarray] RMSE Examples -------- >>> a = np.random.randn(2, 3, 4) >>> b = np.random.randn(2, 3, 4) >>> rmse(a, b) >>> rmse(a, b, axis=2) """ return np.sqrt(mse(true, pred, axis)) def rmspe(true:np.ndarray, pred:np.ndarray, axis:typing.Optional[int]=None) -> typing.Union[float, np.ndarray]: """Calc Root Mean Squared Persentage Error. $$ 100 \\left(\\frac{1}{N}\sum_{i=0}^{N} (\\frac{\hat{y}_i - y_i}{y_i})^2 \\right)^{\\frac{1}{2}} $$ Parameters ---------- true: np.ndarray true data. pred: np.ndarray predicted data. Returns ------- :Union[float, np.ndarray] RMSPE Example ------- >>> a = np.random.randn(2, 3, 4) >>> b = np.random.randn(2, 3, 4) >>> rmspe(a, b) >>> rmspe(a, b, axis=2) """ return rmse(np.ones_like(true), pred / true, axis) * 100 def rmsle(true:np.ndarray, pred:np.ndarray, axis:typing.Optional[int]=None) -> typing.Union[float, np.ndarray]: """Calc root mean squared logarithmic error. $$ \\left(\\frac{1}{N}\sum_{i=0}^{N} (\log (\hat{y}_i + 1) - \log (y_i + 1))^2 \\right)^{\\frac{1}{2}} $$ Parameters ---------- true: np.ndarray clean data pred: np.ndarray with noise axis: Optional[int], default=None mean axis Returns ------- :Union[float, np.ndarray] RMSLE Examples -------- >>> a = np.random.randn(2, 3, 4) >>> b = np.random.randn(2, 3, 4) >>> rmsle(a, b) >>> rmsle(a, b, axis=2) """ return rmse(np.log(true + 1), np.log(pred + 1), axis=axis) def r2(true:np.ndarray, pred:np.ndarray) -> float: """Calc r2 score(coefficient of determination). $$ {R^{2}}( \hat{y} ) := 1 - \\frac{ \\frac{1}{N} \sum_{i=1}^{N} { ( {y}_i - \hat{y}_{i} ) }^{2} }{ \\frac{1}{N} \sum_{i=1}^{N} { ( {y}_i - \\bar{y}) }^{2} } = 1 - \\frac{M S E(\hat{y})}{Var(y)} $$ Parameters ---------- true: np.ndarray clean data pred: np.ndarray with noise Returns ------- :float coefficient of determination Examples -------- >>> a = np.random.randn(2, 3, 4) >>> b = np.random.randn(2, 3, 4) >>> r2(a, b) """ return 1 - (mse(true, pred) / np.var(true)) def snr(true:np.ndarray, pred:np.ndarray, axis:typing.Optional[int]=None) -> typing.Union[float, np.ndarray]: """Calc Signal to Noise Ratio. $$ 10 \log_{10} \\left(\\frac{\sum_{i=0}^{N}true_i^2}{\sum_{i=0}^{N}(true_i - pred_i)^2} \\right) $$ Parameters ---------- true: np.ndarray clean data pred: np.ndarray with noise axis: Optional[int] mean axis (default=None) Returns ------- :Union[float, np.ndarray] SNR Examples -------- >>> a = np.random.randn(2, 3, 4) >>> b = np.random.randn(2, 3, 4) >>> snr(a, b) >>> snr(a, b, axis=2) """ assert true.shape == pred.shape, 'true.shape ({}) == pred.shape ({})'.format(true.shape, pred.shape) noise_mse = (np.square(true - pred)).sum(axis=axis) signal_ms = (np.square(true)).sum(axis=axis) return 10 * np.log10((signal_ms / noise_mse)) def lsd(true_spec:np.ndarray, pred_spec:np.ndarray, axis:typing.Optional[int]=None) -> typing.Union[float, np.ndarray]: """Calc Log Spectral Distance. $$ \mathrm{LSD}(S(\omega),\\tilde{S}(\omega)) = \sqrt{\\frac{1}{W}\sum_{\omega}^{W} \\left(20\log_{10}\\left|\\frac{S(\omega)}{\\tilde{S}(\omega)}\\right|\\right)^2} $$ $S(\omega)$と$\\tilde{S}(\omega)$ は,それぞれ原波形と雑音抑圧波形の対数スペクトル. 複数の短時間スペクトルの距離は各スペクトルで距離を算出した後,平均を取ること. Parameters ---------- true_spec: np.ndarray spectral 1 pred_spec: np.ndarray spectral 2 axis: Optional[int] Not use Returns ------- : Union[float, np.ndarray] LSD Examples -------- >>> a = np.random.randn(2, 3, 4) >>> b = np.random.randn(2, 3, 4) >>> lsd(a, b).shape """ return np.sqrt(np.mean(20 * np.log10(np.abs(true_spec / (true_spec - pred_spec))))) ``` #### File: sensorutils/tests/test_hasc_loader.py ```python import sys import unittest import numpy as np import pandas as pd from pathlib import Path sys.path.append('../src/') from sensorutils.datasets.hasc import HASC, load, load_raw, load_meta, reformat class HASCTest(unittest.TestCase): path = None cache_path = None @classmethod def setUpClass(cls) -> None: if cls.path is None: raise RuntimeError('dataset path is not specified') if cls.cache_path is None: raise RuntimeError('dataset cache path is not specified') def setUp(self): self.loader = HASC(self.path, self.cache_path) def tearDown(self): pass @classmethod def _gen_small_meta(cls, meta): # filed_meta = meta.query('Frequency == 100 & Person in ["person01068", "person03053", "person02033", "person01106", "person03079"] & Height > 170') filed_meta = meta.query('Person in ["person01068", "person03053", "person02033", "person01106", "person03079"]') return filed_meta def test_load_fn(self): meta_src = self._gen_small_meta(self.loader.meta.copy()) data, meta = load(self.path, meta=meta_src) # data ## type check self.assertIsInstance(data, list) self.assertTrue(all(isinstance(d, pd.DataFrame) for d in data)) # meta ## type check self.assertIsInstance(meta, pd.DataFrame) self.assertEqual(len(data), len(meta)) ## data check self.assertTrue(meta_src.equals(meta)) def test_load_raw_fn_base(self): meta_src = self._gen_small_meta(self.loader.meta.copy()) raw = load_raw(self.path, meta=meta_src) # raw ## type check self.assertIsInstance(raw, tuple) ## shape check self.assertEqual(len(raw), 2) data, meta = raw # data ## type check self.assertIsInstance(data, list) self.assertTrue(all(isinstance(d, pd.DataFrame) for d in data)) # meta ## type check self.assertIsInstance(meta, pd.DataFrame) self.assertEqual(len(data), len(meta)) ## data check self.assertTrue(meta_src.equals(meta)) @unittest.skip def test_load_meta_fn(self): meta = load_meta(self.path) self.assertIsInstance(meta, pd.DataFrame) @unittest.skip def test_reformat_fn(self): data, meta = load_raw(self.path, meta=self._gen_small_meta(self.loader.meta.copy())) data, _ = reformat(data, meta) # data ## type check self.assertIsInstance(data, list) self.assertTrue(all(isinstance(d, pd.DataFrame) for d in data)) # meta ## type check self.assertIsInstance(meta, pd.DataFrame) ## compare between data and meta self.assertEqual(len(data), len(meta)) @unittest.skip def test_hasc_meta_map(self): _ = self.loader.load(window_size=256, stride=256, ftrim=5, btrim=5, y_labels=['activity', 'frequency', 'gender', 'height', 'weight', 'person']) ... def test_hasc_load_method_base(self): # subjects = ['person01068', 'person03053', 'person02033', 'person01106', 'person03079'] # queries = {'Person': 'Person in {}'.format(subjects)} queries = None y_labels = ['activity', 'person'] _, _, label_map = self.loader.load(window_size=256, stride=256, ftrim=5, btrim=5, queries=queries, y_labels=y_labels) ## type check self.assertIsInstance(label_map, dict) ## data check self.assertTrue(set(y_labels), set(label_map.keys())) for k in label_map: M = label_map[k] if bool(M): with self.subTest(f'key of label map: {k}'): self.assertSetEqual(set(M.values()), set(range(min(list(M.values())), max(list(M.values()))+1))) def test_hasc_load_method_framing(self): subjects = ['person01068', 'person03053', 'person02033', 'person01106', 'person03079'] queries = {'Person': 'Person in {}'.format(subjects)} y_labels = ['activity', 'person'] ## shape check for ws in [128, 256, 512]: x, _, _= self.loader.load(window_size=ws, stride=ws, ftrim=5, btrim=5, queries=queries, y_labels=y_labels) with self.subTest(f'window_size: {ws}'): self.assertTupleEqual(x.shape[1:], (3, ws)) def test_hasc_load_method_ylabels(self): subjects = ['person01068', 'person03053', 'person02033', 'person01106', 'person03079'] queries = {'Person': 'Person in {}'.format(subjects)} y_labels = ['activity', 'frequency', 'gender', 'height', 'weight', 'person'] for n in range(1, len(y_labels)): with self.subTest(f'number of y labels: {n}'): Y = np.random.choice(y_labels, n) _, y, label_map = self.loader.load(window_size=256, stride=256, ftrim=5, btrim=5, queries=queries, y_labels=Y) ## type check self.assertIsInstance(label_map, dict) ## data check self.assertTrue(set(y_labels), set(label_map.keys())) ## shape check self.assertEqual(y.shape[1], n) def test_hasc_load_method_filed_meta(self): subjects = ['person01068', 'person03053', 'person02033', 'person01106', 'person03079', 'person02007', 'person01085', 'person01060', 'person01103', 'person03032', 'person01107', 'person01045', 'person02063', 'person03055', 'person01066', 'person03001', 'person01039', 'person01113', 'person03034', 'person03056', 'person02100', 'person01087', 'person01089', 'person01109', 'person01017', 'person01063', 'person01098', 'person03038', 'person02012', 'person01097', 'person03036', 'person03033', 'person01078', 'person02068', 'person03076', 'person01040', 'person02024', 'person01073', 'person02040'] with self.subTest('filtered by activity'): queries = {'Person': 'Person in {}'.format(subjects)} _, y, label_map = self.loader.load(window_size=256, stride=256, ftrim=5, btrim=5, queries=queries, y_labels=['activity', 'frequency', 'gender', 'height', 'weight', 'person']) # type check self.assertIsInstance(label_map, dict) # data check self.assertSetEqual(set(label_map['activity'].keys()), set(['1_stay', '2_walk', '3_jog', '4_skip', '5_stUp', '6_stDown'])) self.assertEqual(y[:, 0].min(), 0) self.assertEqual(y[:, 0].max(), 5) g = 'male' with self.subTest(f'filtered by gender(gender == "{g}")'): queries = {'Gender': f'Gender == "{g}"', 'Person': f'Person in {subjects}'} _, y, label_map = self.loader.load(window_size=256, stride=256, ftrim=5, btrim=5, queries=queries, y_labels=['activity', 'frequency', 'gender', 'height', 'weight', 'person']) self.assertIsInstance(label_map['gender'], dict) self.assertTrue(np.all(y[:, 2] == label_map['gender'][g])) h = 170 with self.subTest(f'filtered by height (height <= {h})'): queries = {'Height': f'Height <= {h}', 'Person': f'Person in {subjects}'} _, y, label_map = self.loader.load(window_size=256, stride=256, ftrim=5, btrim=5, queries=queries, y_labels=['activity', 'frequency', 'gender', 'height', 'weight', 'person']) self.assertDictEqual(label_map['height'], {}) self.assertTrue(np.all(y[:, 3] <= h)) w = 80 with self.subTest(f'filtered by weight (weight >= {w})'): queries = {'Weight': f'Weight >= {w}', 'Person': f'Person in {subjects}'} _, y, label_map = self.loader.load(window_size=256, stride=256, ftrim=5, btrim=5, queries=queries, y_labels=['activity', 'frequency', 'gender', 'height', 'weight', 'person']) self.assertDictEqual(label_map['height'], {}) self.assertTrue(np.all(y[:, 4] >= w)) freq = 50 with self.subTest(f'filtered by frequency (frequency == {freq})'): queries = {'Frequency': f'Frequency == {freq}', 'Person': f'Person in {subjects}'} _, y, label_map = self.loader.load(window_size=256, stride=256, ftrim=5, btrim=5, queries=queries, y_labels=['activity', 'frequency', 'gender', 'height', 'weight', 'person']) self.assertDictEqual(label_map['height'], {}) self.assertTrue(np.all(y[:, 1] == freq)) with self.subTest('filtered by subject'): queries = {'Person': f'Person in {subjects}'} _, y, label_map = self.loader.load(window_size=256, stride=256, ftrim=5, btrim=5, queries=queries, y_labels=['activity', 'frequency', 'gender', 'height', 'weight', 'person']) self.assertIsInstance(label_map, dict) self.assertSetEqual(set(label_map['person'].keys()), set(subjects)) # self.assertEqual(y[:, 5].min(), 0) # self.assertEqual(y[:, 5].max(), len(subjects)-1) self.assertSetEqual(set(subjects), set(label_map['person'].keys())) self.assertSetEqual(set([ 1068, 3053, 2033, 1106, 3079, 2007, 1085, 1060, 1103, 3032, 1107, 1045, 2063, 3055, 1066, 3001, 1039, 1113, 3034, 3056, 2100, 1087, 1089, 1109, 1017, 1063, 1098, 3038, 2012, 1097, 3036, 3033, 1078, 2068, 3076, 1040, 2024, 1073, 2040 ]), set(label_map['person'].values())) # self.assertIsInstance(raw, tuple) # self.assertEqual(len(raw), 2) # data, meta = raw # self.assertIsInstance(data, list) # self.assertTrue(all(isinstance(d, pd.DataFrame) for d in data)) # self.assertIsInstance(meta, pd.DataFrame) # self.assertEqual(len(data), len(meta)) if __name__ == '__main__': args = sys.argv if len(args) != 3: sys.stderr.write('Usage: {} <dataset path> <cache path>'.format(args[0])) sys.exit(1) ds_path = Path(args[1]) cache_path = Path(args[2]) HASCTest.path = ds_path HASCTest.cache_path = cache_path unittest.main(verbosity=2, argv=args[0:1]) ```
{ "source": "1-kane/Internship-Project", "score": 4 }
#### File: 1-kane/Internship-Project/python project.py ```python from nltk import * from nltk.corpus import * def lang_ratio(input): lang_ratio={} tokens = wordpunct_tokenize(input) words = [word.lower() for word in tokens] for language in stopwords.fileids(): stopwords_set = set(stopwords.words(language)) words_set = set(words) common_elements = words_set.intersection(stopwords_set) lang_ratio[language] = len(common_elements) return lang_ratio def detect_language(input): ratios = lang_ratio(input) lang = max(ratios, key = ratios.get) return lang ans = 'Y' while((ans=='y')|(ans=='Y')): input1 = input("Write a scentence") lang = detect_language(input1) print(input1+"\t Langauge: "+ lang) ans = input("to do this again enter (y/Y)") ```
{ "source": "1kastner/conflowgen", "score": 2 }
#### File: conflowgen/api/container_flow_generation_manager.py ```python import datetime import logging from typing import Union, Dict, Optional from conflowgen.application.repositories.container_flow_generation_properties_repository import \ ContainerFlowGenerationPropertiesRepository from conflowgen.flow_generator.container_flow_generation_service import \ ContainerFlowGenerationService class ContainerFlowGenerationManager: """ This manager provides the interface to set the properties (i.e., not the distributions that are handled elsewhere) and trigger the synthetic container flow generation. If not provided, for many of these values `default values <notebooks/input_distributions.ipynb#Default-Values>`_ exist. """ def __init__(self): self.container_flow_generation_service = ContainerFlowGenerationService() self.container_flow_generation_properties_repository = ContainerFlowGenerationPropertiesRepository() self.logger = logging.getLogger("conflowgen") def set_properties( self, start_date: datetime.date, end_date: datetime.date, name: Optional[str] = None, minimum_dwell_time_of_import_containers_in_hours: Optional[int] = None, maximum_dwell_time_of_import_containers_in_hours: Optional[int] = None, minimum_dwell_time_of_export_containers_in_hours: Optional[int] = None, maximum_dwell_time_of_export_containers_in_hours: Optional[int] = None, minimum_dwell_time_of_transshipment_containers_in_hours: Optional[int] = None, maximum_dwell_time_of_transshipment_containers_in_hours: Optional[int] = None, transportation_buffer: Optional[float] = None ) -> None: """ Args: start_date: The earliest day any scheduled vehicle arrives. Trucks that drop off containers might arrive earlier though. end_date: The latest day any scheduled vehicle arrives. Trucks that pick up containers might arrive later though. name: The name of the generated synthetic container flow which helps to distinguish different scenarios. minimum_dwell_time_of_import_containers_in_hours: No vehicle arrives earlier than this amount of hours to pick up an import container that has previously been dropped off. maximum_dwell_time_of_import_containers_in_hours: No vehicles arrives later than this amount of hours after the previous vehicle which has dropped off the import container has arrived. minimum_dwell_time_of_export_containers_in_hours: No vehicle arrives earlier than this amount of hours to pick up an export container that has previously been dropped off. maximum_dwell_time_of_export_containers_in_hours: No vehicles arrives later than this amount of hours after the previous vehicle which has dropped off the export container has arrived. minimum_dwell_time_of_transshipment_containers_in_hours: No vehicle arrives earlier than this amount of hours to pick up a transshipment container that has previously been dropped off. maximum_dwell_time_of_transshipment_containers_in_hours: No vehicles arrives later than this amount of hours after the previous vehicle which has dropped off the transshipment container has arrived. transportation_buffer: Determines how many percent more of the inbound journey capacity is used at most to transport containers on the outbound journey. """ properties = self.container_flow_generation_properties_repository.get_container_flow_generation_properties() if name is not None: properties.name = name properties.start_date = start_date properties.end_date = end_date if minimum_dwell_time_of_import_containers_in_hours is not None: properties.minimum_dwell_time_of_import_containers_in_hours = \ minimum_dwell_time_of_import_containers_in_hours if maximum_dwell_time_of_import_containers_in_hours is not None: properties.maximum_dwell_time_of_import_containers_in_hours = \ maximum_dwell_time_of_import_containers_in_hours if minimum_dwell_time_of_export_containers_in_hours is not None: properties.minimum_dwell_time_of_export_containers_in_hours = \ minimum_dwell_time_of_export_containers_in_hours if maximum_dwell_time_of_export_containers_in_hours is not None: properties.maximum_dwell_time_of_export_containers_in_hours = \ maximum_dwell_time_of_export_containers_in_hours if minimum_dwell_time_of_transshipment_containers_in_hours is not None: properties.minimum_dwell_time_of_transshipment_containers_in_hours = \ minimum_dwell_time_of_transshipment_containers_in_hours if maximum_dwell_time_of_transshipment_containers_in_hours is not None: properties.maximum_dwell_time_of_transshipment_containers_in_hours = \ maximum_dwell_time_of_transshipment_containers_in_hours if transportation_buffer is not None: properties.transportation_buffer = transportation_buffer self.container_flow_generation_properties_repository.set_container_flow_generation_properties( properties ) def get_properties(self) -> Dict[str, Union[str, datetime.date, float, int]]: """ Returns: The properties of the container flow. """ properties = self.container_flow_generation_properties_repository.get_container_flow_generation_properties() return { 'name': properties.name, 'start_date': properties.start_date, 'end_date': properties.end_date, 'transportation_buffer': properties.transportation_buffer, 'minimum_dwell_time_of_import_containers_in_hours': properties.minimum_dwell_time_of_import_containers_in_hours, 'minimum_dwell_time_of_export_containers_in_hours': properties.minimum_dwell_time_of_export_containers_in_hours, 'minimum_dwell_time_of_transshipment_containers_in_hours': properties.minimum_dwell_time_of_transshipment_containers_in_hours, 'maximum_dwell_time_of_import_containers_in_hours': properties.maximum_dwell_time_of_import_containers_in_hours, 'maximum_dwell_time_of_export_containers_in_hours': properties.maximum_dwell_time_of_export_containers_in_hours, 'maximum_dwell_time_of_transshipment_containers_in_hours': properties.maximum_dwell_time_of_transshipment_containers_in_hours } def container_flow_data_exists(self) -> bool: """ When an existing database is opened, pre-existing container flow data could already be stored inside. Invoking :meth:`.ContainerFlowGenerationManager.generate` again would reset that stored data. You might want to skip that set and just re-use the data already stored in the database. Returns: Whether container flow data exists in the database. """ return self.container_flow_generation_service.container_flow_data_exists() def generate(self, overwrite: bool = True) -> None: """ Generate the synthetic container flow according to all the information stored in the database so far. This triggers a multistep procedure of generating vehicles and the containers which are delivered or picked up by the vehicles. More is described in the Section `Data Generation Process <background.rst#data-generation-process>`_. The invocation of this method overwrites any already existent data in the database. Consider checking for :meth:`.ContainerFlowGenerationManager.container_flow_data_exists` and skip invoking this method. """ if not overwrite and self.container_flow_data_exists(): self.logger.debug("Data already exists and it was not asked to overwrite existent data, skip this.") return self.container_flow_generation_service.generate() ``` #### File: domain_models/distribution_repositories/__init__.py ```python import logging import math from typing import Dict, Any, Optional logger = logging.getLogger("conflowgen") def normalize_distribution_with_no_dependent_variable( distribution: Dict[Any, float], context: Optional[Any] = None ) -> Dict[Any, float]: keys, fractions = zip(*distribution.items()) sum_of_fractions = sum(fractions) if not math.isclose(sum_of_fractions, 1): context_text = f"for '{context}' " if context else "" logger.debug(f"Sum of fractions was not 1 {context_text}and was automatically normalized.") fractions = [fraction / sum_of_fractions for fraction in fractions] for fraction in fractions: assert fraction >= 0 normalized_distribution = dict(zip(keys, fractions)) return normalized_distribution def normalize_distribution_with_one_dependent_variable( distributions: Dict[Any, Dict[Any, float]] ) -> Dict[Any, Dict[Any, float]]: normalized_distributions = {} for first_level_key, second_level_distribution in distributions.items(): normalized_second_level_distribution = normalize_distribution_with_no_dependent_variable( second_level_distribution, context=first_level_key ) normalized_distributions[first_level_key] = normalized_second_level_distribution return normalized_distributions ``` #### File: domain_models/distribution_seeders/container_length_distribution_seeder.py ```python from conflowgen.domain_models.distribution_repositories.container_length_distribution_repository import \ ContainerLengthDistributionRepository from conflowgen.domain_models.data_types.container_length import ContainerLength #: In general, most containerized goods are transported in 20' and 40' sea containers. #: In Germany in August 2021, only 1% of containerized goods (measured in weight) were transported in a container #: different from these two standard sizes :cite:p:`destatis.seeschifffahrt.august.2021`. #: The same statistics says that approximately 30% of the goods (measured in weight again) are transported in 20' #: containers, and 40' containers make up 67%. #: For ConFlowGen, however, the fraction in numbers of containers is required instead of the fraction based on weight. #: In an expert interview it was said that the TEU factor in their case is approximately 1.6 and 45 foot containers made #: up less than 5%. #: #: The numbers used here are inspired by the reported statistics and the expert interview. #: They are believed to be a reasonable first assumption if no data is available. DEFAULT_CONTAINER_LENGTH_FREQUENCIES = { ContainerLength.twenty_feet: 0.4, ContainerLength.forty_feet: 0.57, ContainerLength.forty_five_feet: 0.029, ContainerLength.other: 0.001 } def seed(): ContainerLengthDistributionRepository().set_distribution( DEFAULT_CONTAINER_LENGTH_FREQUENCIES ) ``` #### File: conflowgen/posthoc_analyses/inbound_to_outbound_vehicle_capacity_utilization_analysis_report.py ```python from __future__ import annotations from typing import Tuple, Any, Dict, Iterable, Optional import matplotlib.pyplot as plt import matplotlib.ticker import pandas as pd from conflowgen.domain_models.data_types.mode_of_transport import ModeOfTransport from conflowgen.posthoc_analyses.inbound_to_outbound_vehicle_capacity_utilization_analysis import \ InboundToOutboundVehicleCapacityUtilizationAnalysis, CompleteVehicleIdentifier from conflowgen.reporting import AbstractReportWithMatplotlib from conflowgen.reporting.no_data_plot import no_data_graph class InboundToOutboundVehicleCapacityUtilizationAnalysisReport(AbstractReportWithMatplotlib): """ This analysis report takes the data structure as generated by :class:`.InboundToOutboundCapacityUtilizationAnalysis` and creates a comprehensible representation for the user, either as text or as a graph. """ report_description = """ Analyze the used vehicle capacity for each vehicle for the inbound and outbound journeys. Generally, it expected to reach an equilibrium - each vehicle should approximately pick up as many containers at the container terminal as it has delivered. Great disparities between the transported capacities on the inbound and outbound journey are considered noteworthy but depending on the input data it might be acceptable. """ maximum_length_for_readable_name = 50 # doc: Each vehicle has a name that might be a bit lengthy for text output plot_title = "Capacity utilization analysis" def __init__(self): super().__init__() self.analysis = InboundToOutboundVehicleCapacityUtilizationAnalysis( transportation_buffer=self.transportation_buffer ) @classmethod def _create_readable_name(cls, vehicle_identifier: Tuple[Any]) -> str: name = "-".join(str(part) for part in vehicle_identifier) if len(name) > cls.maximum_length_for_readable_name: name = name[:46] + "..." return name def get_report_as_text(self, **kwargs) -> str: """ The report as a text is represented as a table suitable for logging. It uses a human-readable formatting style. Keyword Args: vehicle_type: Either ``"all"``, a single vehicle of type :class:`.ModeOfTransport` or a whole collection of vehicle types, e.g. passed as a :class:`list` or :class:`set`. For the exact interpretation of the parameter, check :class:`.InboundToOutboundVehicleCapacityUtilizationAnalysis`. Returns: The report in text format (possibly spanning over several lines). """ vehicle_type, capacities = self._get_capacities_depending_on_vehicle_type(kwargs) report = "\n" report += "vehicle type = " + vehicle_type + "\n" report += "vehicle identifier " report += "inbound capacity (in TEU) " report += "outbound capacity (in TEU)" report += "\n" for vehicle_identifier, (used_inbound_capacity, used_outbound_capacity) in capacities.items(): vehicle_name = self._create_readable_name(vehicle_identifier) report += f"{vehicle_name:<50} " # align this with cls.maximum_length_for_readable_name! report += f"{used_inbound_capacity:>25.1f} " report += f"{used_outbound_capacity:>26.1f}" report += "\n" if len(capacities) == 0: report += "--no vehicles exist--\n" else: report += "(rounding errors might exist)\n" return report def get_report_as_graph(self, **kwargs) -> object: """ The report as a graph is represented as a scatter plot using pandas. Keyword Args: plot_type: Either "absolute", "relative", or "both". Defaults to "both". vehicle_type: Either ``"all"``, a single vehicle of type :class:`.ModeOfTransport` or a whole collection of vehicle types, e.g. passed as a :class:`list` or :class:`set`. For the exact interpretation of the parameter, check :class:`.InboundToOutboundVehicleCapacityUtilizationAnalysis`. Returns: The matplotlib figure """ plot_type = kwargs.get("plot_type", "both") vehicle_type, capacities = self._get_capacities_depending_on_vehicle_type(kwargs) if len(capacities) == 0: return no_data_graph() df = self._convert_analysis_to_df(capacities) if plot_type == "absolute": fig, ax = plt.subplots(1, 1) self._plot_absolute_values(df, vehicle_type, ax=ax) elif plot_type == "relative": fig, ax = plt.subplots(1, 1) self._plot_relative_values(df, vehicle_type, ax=ax) elif plot_type == "both": fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) self._plot_absolute_values(df, vehicle_type, ax=ax1) self._plot_relative_values(df, vehicle_type, ax=ax2) plt.subplots_adjust(wspace=0.4) else: raise Exception(f"Plot type '{plot_type}' is not supported.") plt.legend( loc='lower left', bbox_to_anchor=(1, 0), fancybox=True, ) return fig @staticmethod def _get_vehicle_type_representation(vehicle_type: Any) -> str: if vehicle_type is None: return "all" if isinstance(vehicle_type, ModeOfTransport): return str(vehicle_type) if isinstance(vehicle_type, Iterable): return " & ".join([str(element) for element in vehicle_type]) return str(vehicle_type) def _plot_absolute_values( self, df: pd.DataFrame, vehicle_type: str, ax: Optional[matplotlib.pyplot.axis] = None ) -> matplotlib.pyplot.axis: ax = df.plot.scatter(x="inbound capacity (fixed)", y="used outbound capacity", ax=ax) slope = 1 + self.transportation_buffer ax.axline((0, 0), slope=slope, color='black', label='Maximum outbound capacity') ax.axline((0, 0), slope=1, color='gray', label='Equilibrium') ax.set_title(self.plot_title + " (absolute),\n vehicle type = " + vehicle_type) ax.set_aspect('equal', adjustable='box') ax.grid(color='lightgray', linestyle=':', linewidth=.5) maximum = df[["inbound capacity (fixed)", "used outbound capacity"]].max(axis=1).max(axis=0) axis_limitation = maximum * 1.1 # add some white space to the top and left ax.set_xlim([0, axis_limitation]) ax.set_ylim([0, axis_limitation]) return ax def _plot_relative_values( self, df: pd.DataFrame, vehicle_type: str, ax: Optional[matplotlib.pyplot.axis] = None ) -> matplotlib.pyplot.axis: ax = df.plot.scatter(x="inbound capacity (fixed)", y="ratio", ax=ax) ax.axline((0, (1 + self.transportation_buffer)), slope=0, color='black', label='Maximum outbound capacity') ax.axline((0, 1), slope=0, color='gray', label='Equilibrium') ax.set_title(self.plot_title + " (relative),\n vehicle type = " + vehicle_type) ax.grid(color='lightgray', linestyle=':', linewidth=.5) return ax def _convert_analysis_to_df(self, capacities: Dict[CompleteVehicleIdentifier, Tuple[float, float]]) -> pd.DataFrame: rows = [] for vehicle_identifier, (inbound_capacity, used_outbound_capacity) in capacities.items(): vehicle_name = self._create_readable_name(vehicle_identifier) rows.append({ "vehicle name": vehicle_name, "inbound capacity (fixed)": inbound_capacity, "used outbound capacity": used_outbound_capacity }) df = pd.DataFrame(rows) df["ratio"] = df["used outbound capacity"] / df["inbound capacity (fixed)"] return df def _get_capacities_depending_on_vehicle_type( self, kwargs ) -> Tuple[str, Dict[CompleteVehicleIdentifier, Tuple[float, float]]]: if "vehicle_type" in kwargs: vehicle_type = kwargs["vehicle_type"] capacities = self.analysis.get_inbound_and_outbound_capacity_of_each_vehicle( vehicle_type=vehicle_type ) else: vehicle_type = None capacities = self.analysis.get_inbound_and_outbound_capacity_of_each_vehicle() return self._get_vehicle_type_representation(vehicle_type), capacities ``` #### File: conflowgen/posthoc_analyses/modal_split_analysis.py ```python from __future__ import annotations from typing import Dict from conflowgen.domain_models.data_types.mode_of_transport import ModeOfTransport from conflowgen.posthoc_analyses.abstract_posthoc_analysis import AbstractPostHocAnalysis from conflowgen.posthoc_analyses.container_flow_by_vehicle_type_analysis import ContainerFlowByVehicleTypeAnalysis from conflowgen.descriptive_datatypes import TransshipmentAndHinterlandComparison from conflowgen.descriptive_datatypes import HinterlandModalSplit class ModalSplitAnalysis(AbstractPostHocAnalysis): """ This analysis can be run after the synthetic data has been generated. The analysis returns a data structure that can be used for generating reports (e.g., in text or as a figure) as it is the case with :class:`.ModalSplitAnalysisReport`. """ vessels_considered_for_transshipment = { ModeOfTransport.deep_sea_vessel, ModeOfTransport.feeder } vehicles_considered_for_hinterland = { ModeOfTransport.truck, ModeOfTransport.barge, ModeOfTransport.train } def __init__(self): super().__init__() self.container_flow_by_vehicle_type_analysis = ContainerFlowByVehicleTypeAnalysis() def get_transshipment_and_hinterland_fraction(self) -> TransshipmentAndHinterlandComparison: """ Returns: The amount of containers in TEU dedicated for or coming from the hinterland versus the amount of containers in TEU that are transshipped. """ inbound_to_outbound_flow = self.container_flow_by_vehicle_type_analysis.get_inbound_to_outbound_flow() transshipment_capacity = 0 hinterland_capacity = 0 for inbound_vehicle_type in inbound_to_outbound_flow.keys(): for outbound_vehicle_type, capacity in inbound_to_outbound_flow[inbound_vehicle_type].items(): if (inbound_vehicle_type in self.vessels_considered_for_transshipment and outbound_vehicle_type in self.vessels_considered_for_transshipment): transshipment_capacity += capacity else: hinterland_capacity += capacity return TransshipmentAndHinterlandComparison( transshipment_capacity=transshipment_capacity, hinterland_capacity=hinterland_capacity ) def get_modal_split_for_hinterland( self, inbound: bool, outbound: bool ) -> HinterlandModalSplit: """ Args: inbound: Whether to account for inbound journeys outbound: Whether to account for outbound journeys Returns: The modal split for the hinterland as generated. """ inbound_to_outbound_flow = self.container_flow_by_vehicle_type_analysis.get_inbound_to_outbound_flow() transported_capacity: Dict[ModeOfTransport, float] = { ModeOfTransport.truck: 0, ModeOfTransport.train: 0, ModeOfTransport.barge: 0 } if (not inbound) and (not outbound): raise ValueError("The modal split must cover either the inbound traffic, the outbound traffic, or both") for inbound_vehicle_type, inbound_capacity in inbound_to_outbound_flow.items(): for outbound_vehicle_type, capacity in inbound_to_outbound_flow[inbound_vehicle_type].items(): if inbound and inbound_vehicle_type in self.vehicles_considered_for_hinterland: transported_capacity[inbound_vehicle_type] += capacity if outbound and outbound_vehicle_type in self.vehicles_considered_for_hinterland: transported_capacity[outbound_vehicle_type] += capacity return HinterlandModalSplit( train_capacity=transported_capacity[ModeOfTransport.train], barge_capacity=transported_capacity[ModeOfTransport.barge], truck_capacity=transported_capacity[ModeOfTransport.truck] ) ``` #### File: conflowgen/previews/vehicle_capacity_exceeded_preview_report.py ```python from __future__ import annotations from typing import Dict import pandas as pd import seaborn as sns from conflowgen.domain_models.data_types.mode_of_transport import ModeOfTransport from conflowgen.previews.vehicle_capacity_exceeded_preview import VehicleCapacityExceededPreview from conflowgen.reporting import AbstractReportWithMatplotlib class VehicleCapacityExceededPreviewReport(AbstractReportWithMatplotlib): """ This preview report takes the data structure as generated by :class:`.VehicleCapacityExceededPreview` and creates a comprehensible representation for the user, either as text or as a graph. A similar report can be found at :class:`.InboundAndOutboundVehicleCapacityPreviewReport`. The visual and table are expected to approximately look like in the `example InboundAndOutboundVehicleCapacityPreviewReport \ <notebooks/previews.ipynb#Inbound-And-Outbound-Vehicle-Capacity-Preview-Report>`_. """ report_description = """ This report previews the inbound and outbound traffic with a focus on up to which extend the vehicle capacities will be exceeded. This is only an estimate, additional restrictions (such as the dwell time restrictions) might further reduce the number of containers one vehicle can in fact pick up for its outbound journey. """ def __init__(self): super().__init__() self.preview = VehicleCapacityExceededPreview( start_date=self.start_date, end_date=self.end_date, transportation_buffer=self.transportation_buffer ) def hypothesize_with_mode_of_transport_distribution( self, mode_of_transport_distribution: Dict[ModeOfTransport, Dict[ModeOfTransport, float]] ): self.preview.hypothesize_with_mode_of_transport_distribution(mode_of_transport_distribution) def get_report_as_text( self ) -> str: comparison = self._get_comparison() # create string representation report = "\n" report += "vehicle type " report += "maximum capacity (in TEU) " report += "required capacity (in TEU) " report += "exceeded " report += "difference (in TEU)" report += "\n" for vehicle_type in self.order_of_vehicle_types_in_report: vehicle_type_as_text = str(vehicle_type).replace("_", " ") report += f"{vehicle_type_as_text:<17} " ( container_capacity_to_pick_up, maximum_capacity, vehicle_type_capacity_is_exceeded ) = comparison[vehicle_type] if not vehicle_type_capacity_is_exceeded: difference = 0 else: difference = container_capacity_to_pick_up - maximum_capacity vehicle_type_capacity_is_exceeded_as_text = "yes" if vehicle_type_capacity_is_exceeded else "no" report += f"{maximum_capacity:>24.1f} " report += f"{container_capacity_to_pick_up:>25.1f} " report += f"{vehicle_type_capacity_is_exceeded_as_text:>9}" report += f"{difference:>20.1f}" report += "\n" report += "(rounding errors might exist)\n" return report def get_report_as_graph(self) -> object: """ Returns: The matplotlib axis of the bar chart. """ comparison = self._get_comparison() sns.set_palette(sns.color_palette()) df = pd.DataFrame.from_dict(comparison).T df.columns = ["currently planned", "maximum", "exceeded"] df.index = [str(i).replace("_", " ") for i in df.index] df.rename({"truck": "truck (no max.)"}, axis=0, inplace=True) ax = df.plot.barh() ax.set_title("Capacity exceeded in preview?") ax.set_xlabel("Capacity (in TEU)") return ax def _get_comparison(self): assert self.start_date is not None assert self.end_date is not None assert self.transportation_buffer is not None self.preview.update( start_date=self.start_date, end_date=self.end_date, transportation_buffer=self.transportation_buffer ) # gather data comparison = self.preview.compare() return comparison ```
{ "source": "1kastner/CouchDBAuthenticator", "score": 3 }
#### File: CouchDBAuthenticator/couchdbauthenticator/user_manager.py ```python import requests class CouchDBConnection: """ See the following for more information: - https://docs.couchdb.org/en/stable/api/database/common.html - https://docs.couchdb.org/en/stable/intro/security.html """ def __init__(self, server_url, username, password, ssl_verification=True): """ The username and password are used to log into the CouchDB. As the database 'users' is deleted and recreated, that user must be an administrator of the CouchDB. """ self.server_url = f"https://{server_url}/" self.username = username self.auth = requests.auth.HTTPBasicAuth(username, password) self.ssl_verification = ssl_verification def reset_users_database(self): """ (Re-)Creates the database 'users' """ response_1 = requests.delete(self.server_url + "users", auth=self.auth, verify=self.ssl_verification) assert response_1.status_code in (200, 202, 404), "Deletion of database 'users' failed" response_2 = requests.put(self.server_url + "users", auth=self.auth, verify=self.ssl_verification) assert response_2.status_code in (201, 202), "Creation of database 'users' failed" def restrict_access_to_couchdb_user(self): """ Cited from the documentation at https://docs.couchdb.org/en/latest/api/database/security.html > Having no admins, only server admins (with the reserved _admin role) are able to update design > document and make other admin level changes. > > Having no members, any user can write regular documents (any non-design document) and read documents > from the database. """ security_endpoint = self.server_url + "/users/_security" security_document = { "admins":{ "names": [] }, "members":{ "names": [self.username] }, } response_1 = requests.put(security_endpoint, json=security_document, auth=self.auth, verify=self.ssl_verification) assert response_1.status_code == 200, "Security documet could not be inserted" response_2 = requests.get(self.server_url + "users", verify=self.ssl_verification) assert response_2.status_code == 401, "Database still accessible from unauthenticated users" def add_new_user(self, username, password): """ Adds new user document to the users database. """ user_doc = { "username": username, "password": password, "active": True } docid = username # Assert uniqueness response = requests.put(self.server_url + "users/" + docid, auth=self.auth, verify=self.ssl_verification, json=user_doc) assert response.status_code != 409, "User already exists in database." assert response.status_code in (201, 202), f"User could not be created. Status code: {response.status_code}" def _find_user(self, username): """ Find user in database. """ retrieve_url = self.server_url + "/users/" + username # username is docid response = requests.get(retrieve_url, auth=self.auth, verify=self.ssl_verification) user_doc = response.json() return user_doc def deactivate_user(self, username): user_doc = self._find_user(username) user_doc["active"] = False response = requests.put(self.server_url + "users/" + user_doc["_id"], auth=self.auth, verify=self.ssl_verification, json=user_doc) assert response.status_code in (201, 202), "User document could not be updated" def reactivate_user(self, username): user_doc = self._find_user(username) user_doc["active"] = True response = requests.put(self.server_url + "users/" + user_doc["_id"], auth=self.auth, verify=self.ssl_verification, json=user_doc) assert response.status_code in (201, 202), "User document could not be updated" ```
{ "source": "1kastner/einfuehrung-in-datenauswertung", "score": 3 }
#### File: 1kastner/einfuehrung-in-datenauswertung/gtsrb_image_database_loader.py ```python import os import pandas as pd def load_traffic_sign_database(path_to_directory): """ :param path_to_directory: Points to the root directory of the traffic sign folder structure (including the Readme.md) :return: DataFrame containing the paths to all images """ traffic_sign_class_dfs = [] if not os.path.exists(path_to_directory): raise Exception("The following path does not exist: '{p}'".format(p=path_to_directory)) for traffic_sign_class in log_progress(os.listdir(path_to_directory)): if os.path.isfile(os.path.join(path_to_directory, traffic_sign_class)): continue # e.g. the readme file meta_info_file_name = "GT-{class_id}.csv".format(class_id=traffic_sign_class) path_to_meta_info_file = os.path.join(path_to_directory, traffic_sign_class, meta_info_file_name) if not os.path.exists(path_to_meta_info_file): raise Exception("The following file does not exist: '{p}'".format(p=path_to_meta_info_file)) df = pd.read_csv(path_to_meta_info_file, delimiter=";") df.columns = [col.replace(".", "_") for col in df.columns] images = [] images = df.Filename.apply(lambda file_name : os.path.join(os.path.dirname(path_to_meta_info_file), file_name)) df = df.assign(path_to_image=images) traffic_sign_class_dfs.append(df) return pd.concat(traffic_sign_class_dfs) def log_progress(sequence, every=None, size=None, name='Items'): """ taken from https://github.com/alexanderkuk/log-progress """ from ipywidgets import IntProgress, HTML, VBox from IPython.display import display is_iterator = False if size is None: try: size = len(sequence) except TypeError: is_iterator = True if size is not None: if every is None: if size <= 200: every = 1 else: every = int(size / 200) # every 0.5% else: assert every is not None, 'sequence is iterator, set every' if is_iterator: progress = IntProgress(min=0, max=1, value=1) progress.bar_style = 'info' else: progress = IntProgress(min=0, max=size, value=0) label = HTML() box = VBox(children=[label, progress]) display(box) index = 0 try: for index, record in enumerate(sequence, 1): if index == 1 or index % every == 0: if is_iterator: label.value = '{name}: {index} / ?'.format( name=name, index=index ) else: progress.value = index label.value = u'{name}: {index} / {size}'.format( name=name, index=index, size=size ) yield record except: progress.bar_style = 'danger' raise else: progress.bar_style = 'success' progress.value = index label.value = "{name}: {index}".format( name=name, index=str(index or '?') ) ```
{ "source": "1kastner/hyperNN", "score": 3 }
#### File: hyperNN/report/plots.py ```python import matplotlib.pyplot as plt from sklearn.manifold import MDS import numpy as np def accuracy(acc): max_acc = [max(acc[:i+1]) for i in range(len(acc))] plt.figure(figsize=(16, 4), dpi=100) plt.plot(acc, color="grey", linewidth=2.5, label="Accuracy") plt.plot(max_acc, color="g", linewidth=2.5, label="Best accuracy") plt.xlabel("Iterations") plt.xlim(0, len(acc)) plt.legend(loc=4) plt.show() def mds_accuracy(X, acc): X = MDS(n_components=2, random_state=42).fit_transform(X) plt.figure(figsize=(16, 4), dpi=100) cb = plt.scatter(X[:, 0], X[:, 1], c=acc, cmap=plt.cm.get_cmap('jet'), vmin=0.1, vmax=1, s=45) plt.colorbar(cb) plt.title("Accuracy in two components MDS view") plt.show() def summary(acc, quantile): print("Best accuracy: {} at iteration {}".format(acc.max(), acc.argmax())) print("Number of solutions better than {0:g}%: {1:.1f}%".format( 100 * quantile, 100 * np.sum(acc >= quantile) / float(acc.shape[0]) )) ``` #### File: hyperNN/report/processing.py ```python import json import numpy as np def accuracy(filename): with open(filename, "r") as f: data = json.load(f) accuracy = np.array(list(map(lambda j: j["Accuracy"], data))) return accuracy def params(filename): with open(filename, "r") as f: data = json.load(f) return data ```
{ "source": "1kastner/illumidesk", "score": 2 }
#### File: illumidesk/authenticators/utils.py ```python import random import re import secrets import time import uuid from jupyterhub.handlers import BaseHandler from tornado.web import HTTPError from tornado.web import RequestHandler from typing import Any from typing import Dict from typing import List from typing import Tuple from traitlets.config import LoggingConfigurable # Determined from https://www.imsglobal.org/specs/ltiv1p1p1/implementation-guide # This page also provides a nice summary of the required, recommended, and optional # LTI 1.1 launch parameters: https://www.edu-apps.org/code.html. We define the user_id # as required even though it is defined as recommended since we need this value to track # this lms_user_id used in the grader db. LTI11_LAUNCH_PARAMS_REQUIRED = [ 'lti_message_type', 'lti_version', 'resource_link_id', 'user_id', ] LTI11_LAUNCH_PARAMS_RECOMMENDED = [ 'resource_link_title', 'roles', 'lis_person_name_given', 'lis_person_name_family', 'lis_person_name_full', 'lis_person_contact_email_primary', 'context_id', 'context_title', 'context_label', 'launch_presentation_locale', 'launch_presentation_document_target', 'launch_presentation_width', 'launch_presentation_height', 'launch_presentation_return_url', 'tool_consumer_info_product_family_code', 'tool_consumer_info_version', 'tool_consumer_instance_guid', 'tool_consumer_instance_name', 'tool_consumer_instance_contact_email', ] LTI11_LAUNCH_PARAMS_OTIONAL = [ 'resource_link_description', 'user_image', 'role_scope_mentor', 'context_type', 'launch_presentation_css_url', 'tool_consumer_instance_description', 'tool_consumer_instance_url', ] LTI11_LIS_OPTION = [ 'lis_outcome_service_url', 'lis_result_sourcedid', 'lis_person_sourcedid', 'lis_course_offering_sourcedid', 'lis_course_section_sourcedid', ] # https://www.imsglobal.org/specs/ltiv1p1/implementation-guide # Section 4.2 LTI11_OAUTH_ARGS = [ 'oauth_consumer_key', 'oauth_signature_method', 'oauth_timestamp', 'oauth_nonce', 'oauth_callback', 'oauth_version', 'oauth_signature', ] LAUNCH_PARAMS_REQUIRED = LTI11_LAUNCH_PARAMS_REQUIRED + LTI11_OAUTH_ARGS LAUNCH_PARAMS_ALL = ( LTI11_LAUNCH_PARAMS_REQUIRED + LTI11_LAUNCH_PARAMS_RECOMMENDED + LTI11_LAUNCH_PARAMS_OTIONAL ) class LTIUtils(LoggingConfigurable): """ A class which contains various utility functions which work in conjunction with LTI requests. """ def normalize_name_for_containers(self, name: str) -> str: """ Function used to strip special characters and convert strings to docker container compatible names. This function is used mostly with course labels, as they are used for the shared grader notebook container names. Args: name: The string to normalize for docker container and volume names (e.g. Dev-IllumiDesk) Returns: normalized_name: The normalized string """ if not name: raise ValueError('Name is empty') # truncate name after 30th character name = (name[:30] + '') if len(name) > 30 else name # remove special characters name = re.sub(r'[^\w-]+', '', name) # if the first character is any of _.- remove it name = name.lstrip('_.-') # convert to lower case name = name.lower() # limit course_id to 22 characters, since its used for o/s username # in jupyter/docker-stacks compatible grader notebook (NB_USER) normalized_name = name[0:20] self.log.debug('String normalized to %s' % normalized_name) return normalized_name def email_to_username(self, email: str) -> str: """ Normalizes an email to get a username. This function calculates the username by getting the string before the @ symbol, removing special characters, removing comments, converting string to lowercase, and adds 1 if the username has an integer value already in the string. Args: email: A valid email address Returns: username: A username string Raises: ValueError if email is empty """ if not email: raise ValueError('email is missing') username = email.split('@')[0] username = username.split('+')[0] username = re.sub(r'\([^)]*\)', '', username) username = re.sub(r'[^\w-]+', '', username) username = username.lower() self.log.debug('Username normalized to %s' % username) return username def get_client_protocol(self, handler: RequestHandler) -> Dict[str, str]: """ This is a copy of the jupyterhub-ltiauthenticator logic to get the first protocol value from the x-forwarded-proto list, assuming there is more than one value. Otherwise, this returns the value as-is. Extracted as a method to facilitate testing. Args: handler: a tornado.web.RequestHandler object Returns: A decoded dict with keys/values extracted from the request's arguments """ if 'x-forwarded-proto' in handler.request.headers: hops = [ h.strip() for h in handler.request.headers['x-forwarded-proto'].split(',') ] protocol = hops[0] else: protocol = handler.request.protocol return protocol def convert_request_to_dict( self, arguments: Dict[str, List[bytes]] ) -> Dict[str, str]: """ Converts the arguments obtained from a request to a dict. Args: handler: a tornado.web.RequestHandler object Returns: A decoded dict with keys/values extracted from the request's arguments """ args = {} for k, values in arguments.items(): args[k] = ( values[0].decode() if len(values) == 1 else [v.decode() for v in values] ) return args ``` #### File: illumidesk/spawners/spawner.py ```python import os import shutil from dockerspawner import DockerSpawner class IllumiDeskDockerSpawner(DockerSpawner): """ Custom DockerSpawner which assigns a user notebook image based on the user's role. This spawner requires: 1. That the `Authenticator.enable_auth_state = True` 2. That the user's `USER_ROLE` environment variable is set """ def _image_from_role(self, user_role: str) -> str: """ Given a user role, return the right image Args: user_role: the user's role Returns: docker_image: docker image used to spawn container based on role """ if not user_role: raise ValueError('user_role is missing') # default to standard image, otherwise assign image based on role self.log.debug('User role used to set image: %s' % user_role) docker_image = str(os.environ.get('DOCKER_STANDARD_IMAGE')) if user_role == 'Learner' or user_role == 'Student': docker_image = str(os.environ.get('DOCKER_LEARNER_IMAGE')) elif user_role == 'Instructor': docker_image = str(os.environ.get('DOCKER_INSTRUCTOR_IMAGE')) elif user_role == 'Grader': docker_image = str(os.environ.get('DOCKER_GRADER_IMAGE')) self.log.debug('Image based on user role set to %s' % docker_image) return docker_image async def auth_state_hook(self, spawner, auth_state): """ Customized hook to assign USER_ROLE environment variable to LTI user role. The USER_ROLE environment variable is used to select the notebook image based on the user's role. """ if not auth_state: self.log.debug('auth_state not enabled.') return self.log.debug('auth_state_hook set with %s role' % auth_state['user_role']) self.environment['USER_ROLE'] = auth_state['user_role'] self.log.debug( 'Assigned USER_ROLE env var to %s' % self.environment['USER_ROLE'] ) # Create a new user directory if it does not exist on the host, regardless # of whether or not its mounted with NFS. def pre_spawn_hook(self, spawner): """ Creates the user directory based on information passed from the `spawner` object. Args: spawner: JupyterHub spawner object """ if not self.user.name: raise ValueError('Spawner object does not contain the username') username = self.user.name user_path = os.path.join('/home', username) if not os.path.exists(user_path): os.mkdir(user_path) shutil.chown( user_path, user=int(os.environ.get('MNT_HOME_DIR_UID')), group=int(os.environ.get('MNT_HOME_DIR_GID')), ) os.chmod(user_path, 0o755) def start(self): user_role = self.user.spawner.environment.get('USER_ROLE') or 'Learner' self.log.debug('User %s has role: %s' % (self.user.name, user_role)) self.image = self._image_from_role(str(user_role)) self.log.debug('Starting with image: %s' % self.image) return super().start() ``` #### File: illumidesk/authenticators/test_lti11_authenticator.py ```python import os import pytest import unittest import json from tornado.web import RequestHandler from tornado.web import HTTPError from tornado.httputil import HTTPServerRequest from typing import Dict from unittest.mock import Mock from unittest.mock import MagicMock from unittest.mock import patch from illumidesk.authenticators.validator import LTI11LaunchValidator from illumidesk.authenticators.authenticator import LTI11Authenticator from illumidesk.authenticators.utils import LTIUtils def mock_lti11_args(lms_vendor: str) -> Dict[str, str]: args = { 'oauth_consumer_key': ['my_consumer_key'.encode()], 'oauth_signature_method': ['HMAC-SHA1'.encode()], 'oauth_timestamp': ['1585947271'.encode()], 'oauth_nonce': ['01fy8HKIASKuD9gK9vWUcBj9fql1nOCWfOLPzeylsmg'.encode()], 'oauth_version': ['1.0'.encode()], 'context_id': ['888efe72d4bbbdf90619353bb8ab5965ccbe9b3f'.encode()], 'context_label': ['intro101'.encode()], 'context_title': ['intro101'.encode()], 'ext_roles': ['urn:lti:instrole:ims/lis/Learner'.encode()], 'launch_presentation_document_target': ['iframe'.encode()], 'launch_presentation_height': ['1000'.encode()], 'launch_presentation_locale': ['en'.encode()], 'launch_presentation_return_url': [ 'https: //illumidesk.instructure.com/courses/161/external_content/success/external_tool_redirect'.encode() ], 'launch_presentation_width': ['1000'.encode()], 'lis_person_contact_email_primary': ['<EMAIL>'.encode()], 'lis_person_name_family': ['Bar'.encode()], 'lis_person_name_full': ['<NAME>'.encode()], 'lis_person_name_given': ['Foo'.encode()], 'lti_message_type': ['basic-lti-launch-request'.encode()], 'lti_version': ['LTI-1p0'.encode()], 'oauth_callback': ['about:blank'.encode()], 'resource_link_id': ['888efe72d4bbbdf90619353bb8ab5965ccbe9b3f'.encode()], 'resource_link_title': ['IllumiDesk'.encode()], 'roles': ['Learner,urn:lti:instrole:ims/lis/Learner'.encode()], 'tool_consumer_info_product_family_code': [lms_vendor.encode()], 'tool_consumer_info_version': ['cloud'.encode()], 'tool_consumer_instance_contact_email': ['<EMAIL>'.encode()], 'tool_consumer_instance_guid': [ 'srnuz6h1U8kOMmETzoqZTJiPWzbPXIYkAUnnAJ4u:test-lms'.encode() ], 'tool_consumer_instance_name': ['myorg'.encode()], 'user_id': ['185d6c59731a553009ca9b59ca3a885100000'.encode()], 'user_image': ['https://lms.example.com/avatar-50.png'.encode()], 'oauth_signature': ['abc123'.encode()], } return args def _side_effect_canvas_lms(lms_vendor: str) -> str: arguments = mock_lti11_args(lms_vendor) arguments['custom_canvas_user_login_id'] = ['mycanvasuser'.encode()] return arguments def _side_effect_other_lms(lms_vendor: str) -> str: arguments = mock_lti11_args(lms_vendor) return arguments @pytest.mark.asyncio @patch('illumidesk.authenticators.authenticator.LTI11LaunchValidator') async def test_authenticator_returns_auth_state_with_canvas_fields(lti11_authenticator): ''' Do we get a valid username when sending an argument with the custom canvas id? ''' with patch.object( LTI11LaunchValidator, 'validate_launch_request', return_value=True ): authenticator = LTI11Authenticator() handler = Mock( spec=RequestHandler, get_secure_cookie=Mock(return_value=json.dumps(['key', 'secret'])), request=Mock(arguments=mock_lti11_args('canvas'), headers={}, items=[],), ) result = await authenticator.authenticate(handler, None) expected = { 'name': 'foo', 'auth_state': { 'course_id': 'intro101', 'lms_user_id': '185d6c59731a553009ca9b59ca3a885100000', 'user_role': 'Learner', }, } assert result == expected @pytest.mark.asyncio @patch('illumidesk.authenticators.authenticator.LTI11LaunchValidator') async def test_authenticator_returns_auth_state_with_other_lms_vendor( lti11_authenticator, ): ''' Do we get a valid username with lms vendors other than canvas? ''' utils = LTIUtils() utils.convert_request_to_dict = MagicMock(name='convert_request_to_dict') utils.convert_request_to_dict(3, 4, 5, key='value') with patch.object( LTI11LaunchValidator, 'validate_launch_request', return_value=True ): authenticator = LTI11Authenticator() handler = Mock( spec=RequestHandler, get_secure_cookie=Mock(return_value=json.dumps(['key', 'secret'])), request=Mock(arguments=mock_lti11_args('moodle'), headers={}, items=[],), ) result = await authenticator.authenticate(handler, None) expected = { 'name': 'foo', 'auth_state': { 'course_id': 'intro101', 'lms_user_id': '185d6c59731a553009ca9b59ca3a885100000', 'user_role': 'Learner', }, } assert result == expected @pytest.mark.asyncio async def test_authenticator_uses_ltivalidator(): with patch.object( LTI11LaunchValidator, 'validate_launch_request', return_value=True ) as mock_validator: authenticator = LTI11Authenticator() handler = Mock(spec=RequestHandler) request = HTTPServerRequest(method='POST', connection=Mock(),) handler.request = request handler.request.arguments = mock_lti11_args('lmsvendor') handler.request.get_argument = lambda x, strip=True: mock_lti11_args( 'lmsvendor' )[x][0].decode() _ = await authenticator.authenticate(handler, None) assert mock_validator.called @pytest.mark.asyncio async def test_authenticator_invokes_validator_with_decoded_dict(): with patch.object( LTI11LaunchValidator, 'validate_launch_request', return_value=True ) as mock_validator: authenticator = LTI11Authenticator() handler = Mock(spec=RequestHandler) request = HTTPServerRequest(method='POST', uri='/hub', host='example.com') handler.request = request handler.request.protocol = 'https' handler.request.arguments = mock_lti11_args('canvas') handler.request.get_argument = lambda x, strip=True: mock_lti11_args('canvas')[ x ][0].decode() _ = await authenticator.authenticate(handler, None) # check our validator was called assert mock_validator.called decoded_args = { k: handler.request.get_argument(k, strip=False) for k, v in mock_lti11_args('canvas').items() } # check validator was called with correct dict params (decoded) mock_validator.assert_called_with('https://example.com/hub', {}, decoded_args) ```
{ "source": "1kastner/jupyterhub-hashauthenticator", "score": 3 }
#### File: jupyterhub-hashauthenticator/hashauthenticator/hashauthenticator.py ```python from jupyterhub.auth import Authenticator from tornado import gen from traitlets import Unicode, Integer import hashlib, binascii def generate_password_digest(username, secret_key): dk = hashlib.pbkdf2_hmac('sha256', username.encode(), secret_key.encode(), 25000) password_digest = binascii.hexlify(dk).decode() return password_digest class HashAuthenticator(Authenticator): secret_key = Unicode( config=True, help="Key used to encrypt usernames to produce passwords." ) password_length = Integer( default_value=6, config=True, help="Password length.") @gen.coroutine def authenticate(self, handler, data): username = data['username'] password = data['password'] password_digest = generate_password_digest(username, self.secret_key) expected_password = password_digest[:self.password_length] if password == <PASSWORD>: return username return None ```
{ "source": "1kastner/SSHSpawner", "score": 2 }
#### File: SSHSpawner/sshspawner/sshspawner.py ```python import os import pipes import pwd import re import random import stat import pexpect import shutil import signal from glob import glob from urllib.parse import urlparse, urlunparse from pexpect import popen_spawn from tempfile import TemporaryDirectory from jupyterhub.spawner import LocalProcessSpawner from traitlets import default from traitlets import ( Bool, Integer, Unicode, Int, List ) from jupyterhub.utils import ( random_port, can_connect, wait_for_http_server, make_ssl_context ) _script_template = """#!/bin/bash # entrypoint for shared kernel link? # start the notebook with appropriate args {} """ class HostNotFound(Exception): def __init__(self, host): super().__init__(self, "Unable to locate host {host}.".format(host=host)) class ConnectionError(Exception): def __init__(self, host): super().__init__(self, "Unable to connect to host {host}".format(host=host)) class SSHSpawner(LocalProcessSpawner): ssh_target = "" resource_path = Unicode( ".jupyter/jupyterhub/resources", help="""The base path where all necessary resources are placed. Generally left relative so that resources are placed into this base directory in the users home directory. """ ).tag(config=True) hostname = Unicode( "", help="Hostname of the hub host. Useful if the Hub is in a container." ).tag(config=True) known_hosts = Unicode( "/opt/jupyter/known_hosts", help="Premade known_hosts file to enable trusted, seamless ssh." ).tag(config=True) ssh_hosts = List( [], help="List of available hosts to ssh to." ).tag(config=True) allow_origin_pattern = Unicode( "", help="Pattern for CORS requests (when behind a reverse proxy)" ).tag(config=True) local_logfile = Unicode( "", help="""Name of the file to redirect stdout and stderr from the remote notebook.""" ).tag(config=True) ssh_control_persist_time = Int( 1, help="""The amount of time for SSH connections over the control master will stay active""" ).tag(config=True) cleanup_server = Bool( True, help="Teardown the notebook server when contact is lost with the hub." ).tag(config=True) hub_check_interval = Integer( 5, help="Interval in minutes to check if notebook has been orphaned." ).tag(config=True) notebook_max_lifetime = Integer( 12, help="Max lifetime in hours for a remotely spawned notebook to live." ).tag(config=True) idle_timeout = Integer( 300, help="""The amount of time before culling an idle kernel.""" ).tag(config=True) start_notebook_cmd = Unicode( "start-notebook", help="""The command to run to start a notebook""" ).tag(config=True) stop_notebook_cmd = Unicode( "stop-notebook", help="""The command to run to stop a running notebook""" ).tag(config=True) @property def ssh_socket(self): return "/tmp/{user}@{host}".format( user=self.user.name, host=self.ssh_target ) def get_user_ssh_hosts(self): return self.ssh_hosts @default('options_form') def _options_form(self): """Populate a list of ssh targets on the pre_spawn form""" hosts = self.get_user_ssh_hosts() if not hosts: return """ <label for="host">Input host for notebook launch:</label> <input type="text" name="host" class="form-control"> """ host_option_template = '<option value="{host}">{host}</option>' host_option_tags = [] for host in hosts: host_option_tags.append( host_option_template.format(host=host)) options = ''.join(host_option_tags) return """ <label for="host">Select host for notebook launch:</label> <select name="host" class="form-control">{options}</select> """.format(options=options) def options_from_form(self, formdata): """Turn html formdata from `options_form` into a dict for later use""" options = {} options['host'] = pipes.quote(formdata.get('host', [''])[0].strip()) return options def ips_for_host(self, host): """Return all the ips reported by the host command""" ip_pattern = r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}" child = pexpect.spawn("host {}".format(host), encoding="utf-8") i = child.expect([r"Host \w+ not found", ".*has address.*"]) if i == 0: raise HostNotFound(host) else: lines = child.after.split('\n') # Look for ip addresses and build a list of the ones found lines = [match.group() for match in [re.search(ip_pattern, line) for line in lines] if match] if len(lines) == 0: raise HostNotFound(host) return lines def ssh_opts(self, persist=180, known_hosts="", batch_mode=True, other_opts=None): """Default set of options to attach to ssh commands The minimum arguments are a good, known_hosts file and enabling batch mode. The known_hosts file avoids user's known_hosts files which may not trust other hosts. Batch mode will cause ssh to fail on prompting for a password. This implementation also uses ssh ControlMaster to speed up and simplify repeated operations over SSH. """ opts = { "ControlMaster": "auto", "ControlPath": "/tmp/%r@%h", "ControlPersist": persist, "BatchMode": batch_mode, } if known_hosts: opts["UserKnownHostsFile"] = known_hosts else: self.log.warning("Skipping host key check") opts["StrictHostKeyChecking"] = "no" if other_opts: opts.extend(other_opts) tmpl = "-o {opt}={val}" return ' '.join( [tmpl.format(opt=opt, val=val) for opt, val in opts.items()]) def spawn_as_user(self, cmd, timeout=10): """Run pexpect as the user spawning the notebook This method attaches kerberos credentals to the command env if they exist. """ user = pwd.getpwnam(self.user.name) uid = user.pw_uid env = os.environ krb_files = glob("/tmp/krb5cc_{uid}*".format(uid=uid)) if krb_files: env["KRB5CCNAME"] = max(krb_files, key=os.path.getctime) popen_kwargs = dict( env=env, timeout=timeout, encoding="utf-8", preexec_fn=self.make_preexec_fn(self.user.name) ) self.log.debug("Running: {cmd} as {user}".format( cmd=cmd, user=self.user.name)) return popen_spawn.PopenSpawn(cmd, **popen_kwargs) async def remote_env(self, host=None): """Command with the `get_env` environment as the input to `/bin/env` Used to pass the necessary environment to the `jupyterhub-singleuser` command and isolate/hide the environment variables via `/bin/env`. """ def env_str_to_dict(output): "Convert the output of `env` into a dict" d = {} lines = output.split('\n') for line in lines: divided = line.split('=') if len(divided) == 2: var, val = divided d[var] = val elif len(divided) == 1: var = divided[0] d[var] = '' return d if host: opts = self.ssh_opts( known_hosts=self.known_hosts ) self.log.info("Collecting remote environment from {}".format(host)) child = self.spawn_as_user( "ssh {opts} {host} env".format(opts=opts, host=host) ) child.expect(pexpect.EOF) return env_str_to_dict(child.before) def ip_for_host(self, host): """Return an ip for a given host This method is meant to pick from a series of ips that come back from invoking the host command. This could be used to implement load balancing. """ ips = self.ips_for_host(host) random.shuffle(ips) for ip in ips: if can_connect(ip, 22): return ip raise ConnectionError(host) def get_env(self, other_env=None): """Get environment variables to be set in the spawned process.""" def swap_host(url, hostname=""): if not hostname: return url parsed = urlparse(url) parsed = parsed._replace(netloc=hostname + ":" + str(parsed.port)) return urlunparse(parsed) env = super().get_env() if other_env: env.update(other_env) unwanted_keys = set(["VIRTUAL_ENV", "SSH_ASKPASS"]) for key in unwanted_keys: if key in env: del env[key] env['JUPYTERHUB_CLEANUP_SERVERS'] = self.cleanup_server env['JUPYTERHUB_CHECK_INTERVAL'] = self.hub_check_interval * 60 env['JUPYTERHUB_MAX_LIFETIME'] = self.notebook_max_lifetime * 60 * 60 # This is to account for running JupyterHub in a container since the # container hostname will be meaningless. env['JUPYTERHUB_API_URL'] = swap_host( env['JUPYTERHUB_API_URL'], hostname=self.hostname ) env['JUPYTERHUB_ACTIVITY_URL'] = swap_host( env['JUPYTERHUB_ACTIVITY_URL'], hostname=self.hostname ) # If the user starting their notebook is in the list of admins if self.user.name in self.user.settings.get('admin_users', []): env['JUPYTERHUB_ADMIN_ACCESS'] = 1 else: env['JUPYTERHUB_ADMIN_ACCESS'] = 0 return env def get_args(self): """Get the args to send to the jupyterhub-singleuser command Extends the default `get_args` command and adds arguments for security and specifically to make the SSHSpawner work. """ args = super().get_args() if self.allow_origin_pattern: args.append( '--SingleUserNotebookApp.allow_origin_pat={patt}' .format(patt=self.allow_origin_pattern) ) args.append( '--MappingKernelManager.cull_idle_timeout={timeout}' .format(timeout=self.idle_timeout) ) args.append('--KernelManager.transport=ipc') if self.local_logfile: args.append('2>&1 | tee -a {base}/{logfile}'.format( base=self.resource_path, logfile=self.local_logfile)) return args def stage_certs(self, paths, dest): shutil.move(paths['keyfile'], dest) shutil.move(paths['certfile'], dest) shutil.copy(paths['cafile'], dest) key_base_name = os.path.basename(paths['keyfile']) cert_base_name = os.path.basename(paths['certfile']) ca_base_name = os.path.basename(paths['cafile']) key = os.path.join(self.resource_path, key_base_name) cert = os.path.join(self.resource_path, cert_base_name) ca = os.path.join(self.resource_path, ca_base_name) return { "keyfile": key, "certfile": cert, "cafile": ca, } async def create_start_script(self, start_script, remote_env=None): user = pwd.getpwnam(self.user.name) uid = user.pw_uid gid = user.pw_gid env = self.get_env(other_env=remote_env) quoted_env = ["env"] +\ [pipes.quote("{var}={val}".format(var=var, val=val)) for var, val in env.items()] # environment + cmd + args cmd = quoted_env + self.cmd + self.get_args() with open(start_script, "w") as fh: fh.write( _script_template.format(' '.join(cmd)) ) shutil.chown(start_script, user=uid, group=gid) os.chmod( start_script, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR ) async def start(self): with TemporaryDirectory() as td: local_resource_path = td start_script = os.path.join( local_resource_path, self.start_notebook_cmd ) user = pwd.getpwnam(self.user.name) uid = user.pw_uid gid = user.pw_gid self.port = random_port() host = pipes.quote(self.user_options['host']) self.ssh_target = self.ip_for_host(host) remote_env = await self.remote_env(host=self.ssh_target) opts = self.ssh_opts( persist=self.ssh_control_persist_time, known_hosts=self.known_hosts ) self.cert_paths = self.stage_certs( self.cert_paths, local_resource_path ) # Create the start script (part of resources) await self.create_start_script(start_script, remote_env=remote_env) # Set proper ownership to the user we'll run as for f in [local_resource_path] + \ [os.path.join(local_resource_path, f) for f in os.listdir(local_resource_path)]: shutil.chown(f, user=uid, group=gid) # Create remote directory in user's home create_dir_proc = self.spawn_as_user( "ssh {opts} {host} mkdir -p {path}".format( opts=opts, host=self.ssh_target, path=self.resource_path ) ) create_dir_proc.expect(pexpect.EOF) copy_files_proc = self.spawn_as_user( "scp {opts} {files} {host}:{target_dir}/".format( opts=opts, files=' '.join([os.path.join(local_resource_path, f) for f in os.listdir(local_resource_path)]), cp_dir=local_resource_path, host=self.ssh_target, target_dir=self.resource_path ) ) i = copy_files_proc.expect([ ".*No such file or directory", "ssh: Could not resolve hostname", pexpect.EOF, ]) if i == 0: raise IOError("No such file or directory: {}".format( local_resource_path)) elif i == 1: raise HostNotFound( "Could not resolve hostname {}".format(self.ssh_target) ) elif i == 2: self.log.info("Copied resources for {user} to {host}".format( user=self.user.name, host=self.ssh_target )) # Start remote notebook start_notebook_child = self.spawn_as_user( "ssh {opts} -L {port}:{ip}:{port} {host} {cmd}".format( ip="127.0.0.1", port=self.port, opts=opts, host=self.ssh_target, cmd=os.path.join(self.resource_path, self.start_notebook_cmd) ), timeout=None ) self.proc = start_notebook_child.proc self.pid = self.proc.pid if self.ip: self.user.server.ip = self.ip self.user.server.port = self.port return (self.ip or '127.0.0.1', self.port) async def stop(self, now=False): """Stop the remote single-user server process for the current user. For the SSHSpawner, this means first attempting to stop the remote notebook and then killing the tunnel process (which should die once the notebook does). The `jupyterhub-singleuser` command has been modified to periodically poll the hub for contact and authorization. Failing these, it should think itself orphaned and shut itself down. """ status = await self.poll() if status is not None: return self.log.info("Stopping user {user}'s notebook at port {port} on host " "{host}".format(user=self.user.name, port=self.port, host=self.ssh_target)) stop_child = self.spawn_as_user("ssh {opts} {host} {cmd}".format( opts=self.ssh_opts(known_hosts=self.known_hosts), host=self.ssh_target, cmd=self.stop_notebook_cmd ) ) stop_child.expect(pexpect.EOF) ret_code = stop_child.wait() if ret_code == 0: self.log.info("Notebook stopped") self.log.debug("Killing %i", self.pid) await self._signal(signal.SIGKILL) # close the tunnel os.remove(self.ssh_socket) async def poll(self): """Poll the spawned process to see if it is still running and reachable If the process is still running, and we can connect to the remote singleuser server over the tunnel, we return None. If it is not running, or unreachable we return the exit code of the process if we have access to it, or 0 otherwise. """ status = await super().poll() if status is not None: return status elif not os.path.exists(self.ssh_socket): # tunnel is closed or non-existent return 0 else: protocol = "http" if not self.user.settings["internal_ssl"] \ else "https" url = "{protocol}://{ip}:{port}".format( protocol=protocol, ip=(self.ip or '127.0.0.1'), port=self.port ) key = self.user.settings.get('internal_ssl_key') cert = self.user.settings.get('internal_ssl_cert') ca = self.user.settings.get('internal_ssl_ca') ctx = make_ssl_context(key, cert, cafile=ca) try: reachable = await wait_for_http_server(url, ssl_context=ctx) except Exception as e: if isinstance(e, TimeoutError): e.reason = 'timeout' self.log.warning( "Unable to reach {user}'s server for 10 seconds. " "Giving up: {err}".format( user=self.user.name, err=e ), ) return 1 else: e.reason = 'error' self.log.warning( "Error reaching {user}'s server: {err}".format( user=self.user.name, err=e ) ) return 2 else: return None if reachable else 0 ```
{ "source": "1kc2/Minimal-Correlation-Portfolio", "score": 3 }
#### File: 1kc2/Minimal-Correlation-Portfolio/build_correlation_network.py ```python import pandas as pd import numpy as np import preprocess as pre import detrend as dtr import networkx as nx import distance_correlation as dc def build_network(): df = dc.distance_correlation() # converts the dataframe to a matrix (need this to generate the graph from the networkx package) cor_matrix = df.values.astype("float") sim_matrix = 1 - cor_matrix # transforms the similarity matrix into a weighted graph G = nx.from_numpy_matrix(sim_matrix) # extracts the indices (i.e., the stock names) from the correlation dataframe stocks = df.index.values # relabel nodes as the stock names G = nx.relabel_nodes(G, lambda x: stocks[x]) # prints the edges with their corresponding weights G.edges(data=True) # copy correlation network H = G.copy() # removes edges from H with data from G for (u, v, wt) in G.edges.data("weight"): # removes edges with absolute correlations less than or equal to 0.35 if wt >= 1 - 0.35: H.remove_edge(u, v) # remove self-edges from H using data from G. # this is needed for graph-theoretic analyses if u == v: H.remove_edge(u, v) return H if __name__ == "__main__": build_network() ``` #### File: 1kc2/Minimal-Correlation-Portfolio/detrend.py ```python import pandas as pd import numpy as np import preprocess as pre from stocks import tickers cols = ["Date", "Open", "High", "Low", "Close", "Volume", "Name"] names = tickers def detrend(): df = pre.preprocess() # detrends each stock time series using the difference method for n in names: df[n] = df[n].diff() return df if __name__ == "__main__": detrend() ``` #### File: 1kc2/Minimal-Correlation-Portfolio/plot_stocks_timeseries.py ```python import pandas as pd import numpy as np import preprocess as pre import matplotlib.pyplot as plt from matplotlib.dates import AutoDateFormatter, AutoDateLocator import seaborn as sns def plot_stocks_timeseries(): df = pre.preprocess() fig = plt.figure() ax = fig.add_subplot(111) xtick_locator = AutoDateLocator() xtick_formatter = AutoDateFormatter(xtick_locator) # the two stocks to compare df["AAPL"].plot() df["AMZN"].plot() ax.xaxis.set_major_locator(xtick_locator) ax.xaxis.set_major_formatter(xtick_formatter) plt.show() if __name__ == "__main__": plot_stocks_timeseries() ``` #### File: 1kc2/Minimal-Correlation-Portfolio/stats.py ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import detrend as dtr import networkx as nx import build_correlation_network as bnx def stats(): # import the correlation network H = bnx.build_network() close_ct_d = nx.closeness_centrality(H, distance="weight") between_ct_d = nx.betweenness_centrality(H, weight="weight") degree_ct_d = nx.degree_centrality(H) katz_ct_d = nx.katz_centrality( H, weight="weight", alpha=1 / (max(nx.adjacency_spectrum(H)) + 1), beta=close_ct_d, ) degree_ct_s = pd.Series(degree_ct_d).round(3) close_ct_s = pd.Series(close_ct_d).round(3) between_ct_s = pd.Series(between_ct_d).round(3) katz_ct_s = pd.Series(katz_ct_d).round(3).astype("float") close_ct_s.reset_index() degree_ct_s.reset_index() between_ct_s.reset_index() katz_ct_s.reset_index() degree_ct_df = ( pd.DataFrame({"stock_rank_1": degree_ct_s.index, "degree": degree_ct_s.values}) .sort_values(by="degree", ascending=True) .reset_index() .drop("index", axis=1) ) close_ct_df = ( pd.DataFrame({"stock_rank_2": close_ct_s.index, "closeness": close_ct_s.values}) .sort_values(by="closeness", ascending=True) .reset_index() .drop("index", axis=1) ) between_ct_df = ( pd.DataFrame( {"stock_rank_3": between_ct_s.index, "between": between_ct_s.values} ) .sort_values(by="between", ascending=True) .reset_index() .drop("index", axis=1) ) katz_ct_df = ( pd.DataFrame({"stock_rank_4": katz_ct_s.index, "katz": katz_ct_s.values}) .sort_values(by="katz", ascending=True) .reset_index() .drop("index", axis=1) ) df1 = degree_ct_df.join(close_ct_df) df2 = df1.join(between_ct_df) ct_df = df2.join(katz_ct_df) return print(ct_df) if __name__ == "__main__": stats() ``` #### File: 1kc2/Minimal-Correlation-Portfolio/timeseries_network.py ```python import numpy as np import pandas as pd import networkx as nx import dcor def timeseries_correlation_network(data, corr_param = 'pcor', prune=0.35): if corr_param == "dcor": col_names = data.columns.tolist() data_dcor = pd.DataFrame(index=col_names, columns=col_names) k = 0 for i in col_names: v_i = data.loc[:, i].values for j in col_names[k:]: v_j = data.loc[:, j].values dcor_val = dcor.distance_correlation(v_i, v_j) data_dcor.at[i, j] = dcor_val data_dcor.at[j, i] = dcor_val k += 1 # converts the dataframe to a matrix (need this to generate the graph from the networkx package) dcor_matrix = data_dcor.values.astype("float") sim_matrix = 1 - dcor_matrix nodes = data_dcor.index.values # transforms the similarity matrix into a weighted graph G = nx.from_numpy_matrix(sim_matrix) # relabel nodes as the stock names G = nx.relabel_nodes(G, lambda x: nodes[x]) # prints the edges with their corresponding weights G.edges(data=True) # copy correlation network H = G.copy() # remove self-edges from H (required for graph-theoretic analyses) for (u, v) in G.edges: if u == v: H.remove_edge(u,v) if prune != None: # removes weakly correlated edges from H for (u, v, wt) in G.edges.data("weight"): if wt >= 1 - prune: H.remove_edge(u, v) return H if corr_param == "pcor": pcor_matrix = data.iloc[:, 1:].corr() nodes = pcor_matrix.index.values pcor_matrix = np.asmatrix(pcor_matrix) sim_matrix = 1 - abs(pcor_matrix) G = nx.from_numpy_matrix(sim_matrix) G = nx.relabel_nodes(G, lambda x: nodes[x]) G.edges(data=True) H = G.copy() for (u, v) in G.edges: if u == v: H.remove_edge(u,v) if prune != None: for (u, v, wt) in G.edges.data("weight"): if wt >= 1 - prune: H.remove_edge(u, v) return H ```
{ "source": "1kc2/tetrisAI", "score": 3 }
#### File: tetrisAI/src/exceptions.py ```python class UnknownInstructionException(Exception): pass class BlockLimitException(Exception): pass class NoBlockException(Exception): def __init__(self): super().__init__("This board has no block to manipulate.") ``` #### File: tetrisAI/src/visual-pygame.py ```python from adversary import RandomAdversary from arguments import parser from board import Board, Direction, Rotation from constants import BOARD_WIDTH, BOARD_HEIGHT, DEFAULT_SEED, INTERVAL from player import Player, SelectedPlayer import pygame BLACK = (0, 0, 0) WHITE = (255, 255, 255) RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) CELL_WIDTH = 20 CELL_HEIGHT = 20 EVENT_FORCE_DOWN = pygame.USEREVENT + 1 FRAMES_PER_SECOND = 60 class Square(pygame.sprite.Sprite): def __init__(self, color, x, y): super().__init__() self.image = pygame.Surface([CELL_WIDTH, CELL_HEIGHT]) self.image.fill(color) self.rect = self.image.get_rect() self.rect.x = x * CELL_WIDTH self.rect.y = y * CELL_HEIGHT def render(screen, board): screen.fill(BLACK) sprites = pygame.sprite.Group() # Add the cells already on the board for drawing. for (x, y) in board: sprites.add(Square(pygame.Color(board.cellcolor[x, y]), x, y)) if board.falling is not None: # Add the cells of the falling block for drawing. for (x, y) in board.falling: sprites.add(Square(pygame.Color(board.falling.color), x, y)) if board.next is not None: for (x, y) in board.next: sprites.add( Square( pygame.Color(board.next.color), x + board.width + 2, y+1 ) ) sprites.draw(screen) pygame.draw.line( screen, BLUE, (board.width * CELL_WIDTH + 2, 0), (board.width * CELL_WIDTH + 2, board.height * CELL_HEIGHT) ) # Update window title with score. pygame.display.set_caption(f'Score: {board.score}') class UserPlayer(Player): """ A simple user player that reads moves from the command line. """ key_to_move = { pygame.K_RIGHT: Direction.Right, pygame.K_LEFT: Direction.Left, pygame.K_DOWN: Direction.Down, pygame.K_SPACE: Direction.Drop, pygame.K_UP: Rotation.Clockwise, pygame.K_z: Rotation.Anticlockwise, pygame.K_x: Rotation.Clockwise, } def choose_action(self, board): while True: event = pygame.event.wait() if event.type == pygame.QUIT: raise SystemExit elif event.type == pygame.KEYUP: if event.key in self.key_to_move: return self.key_to_move[event.key] elif event.key == pygame.K_ESCAPE: raise SystemExit elif event.type == EVENT_FORCE_DOWN: return None def check_stop(): for event in pygame.event.get(): if event.type == pygame.KEYUP and event.key == pygame.K_ESCAPE: raise SystemExit elif event.type == pygame.QUIT: raise SystemExit def run(): board = Board(BOARD_WIDTH, BOARD_HEIGHT) adversary = RandomAdversary(DEFAULT_SEED) args = parser.parse_args() if args.manual: player = UserPlayer() else: player = SelectedPlayer() pygame.init() screen = pygame.display.set_mode([ (BOARD_WIDTH + 6) * CELL_WIDTH, BOARD_HEIGHT * CELL_HEIGHT ]) clock = pygame.time.Clock() # Set timer to force block down when no input is given. pygame.time.set_timer(EVENT_FORCE_DOWN, INTERVAL) for move in board.run(player, adversary): render(screen, board) pygame.display.flip() # If we are not playing manually, clear the events. if not args.manual: check_stop() clock.tick(FRAMES_PER_SECOND) while True: check_stop() if __name__ == '__main__': run() ```
{ "source": "1kc/trinity", "score": 2 }
#### File: trinity/tests-trio/conftest.py ```python from pathlib import Path import secrets import tempfile import uuid from eth_keys.datatypes import PrivateKey from lahja import ConnectionConfig from lahja.trio.endpoint import TrioEndpoint import pytest import trio from eth2.beacon.chains.testnet import SkeletonLakeChain from eth2.beacon.state_machines.forks.skeleton_lake.config import ( MINIMAL_SERENITY_CONFIG, ) from eth2.beacon.tools.misc.ssz_vector import override_lengths from eth2.beacon.types.states import BeaconState from trinity.config import BeaconChainConfig # Fixtures below are copied from https://github.com/ethereum/lahja/blob/f0b7ead13298de82c02ed92cfb2d32a8bc00b42a/tests/core/trio/conftest.py # noqa: E501 @pytest.fixture def ipc_base_path(): with tempfile.TemporaryDirectory() as temp_dir: yield Path(temp_dir) def generate_unique_name() -> str: # We use unique names to avoid clashing of IPC pipes return str(uuid.uuid4()) @pytest.fixture def endpoint_server_config(ipc_base_path): config = ConnectionConfig.from_name(generate_unique_name(), base_path=ipc_base_path) return config @pytest.fixture async def endpoint_server(endpoint_server_config): async with TrioEndpoint.serve(endpoint_server_config) as endpoint: yield endpoint @pytest.fixture async def endpoint_client(endpoint_server_config, endpoint_server): async with TrioEndpoint("client-for-testing").run() as client: await client.connect_to_endpoints(endpoint_server_config) while not endpoint_server.is_connected_to("client-for-testing"): await trio.sleep(0) yield client @pytest.fixture def node_key(): key_bytes = secrets.token_bytes(32) return PrivateKey(key_bytes) @pytest.fixture def eth2_config(): config = MINIMAL_SERENITY_CONFIG # NOTE: have to ``override_lengths`` before we can parse ssz objects, like the BeaconState override_lengths(config) return config @pytest.fixture async def current_time(): return trio.current_time() @pytest.fixture def genesis_time(current_time, eth2_config): slots_after_genesis = 10 return int(current_time - slots_after_genesis * eth2_config.SECONDS_PER_SLOT) @pytest.fixture def genesis_state(eth2_config, genesis_time): state = BeaconState.create(config=eth2_config) state.genesis_time = genesis_time return state @pytest.fixture def chain_config(genesis_state, eth2_config): return BeaconChainConfig(genesis_state, eth2_config, {}) @pytest.fixture def database_dir(tmp_path): return tmp_path @pytest.fixture def chain_class(): return SkeletonLakeChain @pytest.fixture def get_trio_time(): def _f(): return trio.current_time() return _f ``` #### File: nodes/beacon/test_full.py ```python import pytest import trio from trinity._utils.version import construct_trinity_client_identifier from trinity.nodes.beacon.full import BeaconNode @pytest.mark.trio async def test_beacon_node_can_count_slots( autojump_clock, node_key, eth2_config, chain_config, database_dir, chain_class, get_trio_time, ): validator_api_port = 0 client_id = construct_trinity_client_identifier() node = BeaconNode( node_key, eth2_config, chain_config, database_dir, chain_class, validator_api_port, client_id, get_trio_time, ) some_slots = 10 a_future_slot = node.current_tick.slot + some_slots seconds = some_slots * eth2_config.SECONDS_PER_SLOT with trio.move_on_after(seconds): await node.run() assert node.current_tick.slot == a_future_slot ``` #### File: trinity/extensibility/trio.py ```python from abc import abstractmethod import asyncio from multiprocessing import Process import os import signal import trio from async_service import background_trio_service from asyncio_run_in_process.constants import SIGINT_TIMEOUT_SECONDS, SIGTERM_TIMEOUT_SECONDS from lahja import EndpointAPI from trinity._utils.logging import child_process_logging, get_logger from trinity._utils.mp import ctx from trinity._utils.profiling import profiler from trinity.boot_info import BootInfo from .component import BaseComponent, BaseIsolatedComponent from .event_bus import TrioEventBusService class TrioComponent(BaseComponent): """ ``TrioComponent`` is a component that executes in-process with the ``trio`` concurrency library. """ pass class TrioIsolatedComponent(BaseIsolatedComponent): logger = get_logger('trinity.extensibility.TrioIsolatedComponent') async def run(self) -> None: """ Call chain is: - multiprocessing.Process -> _run_process * isolates to a new process - _run_process -> run_process * sets up subprocess logging - run_process -> _do_run * runs the event loop and transitions into async context - _do_run -> do_run * sets up event bus and then enters user function. """ # FIXME: Use subprocess.Popen() so that we can make every process be its own process group # leader, like in AsyncioIsolatedComponent. process = ctx.Process( target=self.run_process, args=(self._boot_info,), ) loop = asyncio.get_event_loop() await loop.run_in_executor(None, process.start) try: await loop.run_in_executor(None, process.join) finally: # NOTE: Since the subprocess we start here runs in the same process group as us (see # comment above as to why), when we get a Ctrl-C in the terminal the subprocess will # get it as well, so we first wait a fraction of SIGINT_TIMEOUT_SECONDS for it to # terminate (which is usually enough for trio to terminate all pending tasks), and # only if it hasn't finished by then we send it a SIGINT. If we send a SIGINT straight # away we cause trio to crash when we've been Ctrl-C'ed (because it would get two # SIGINTs), and if we don't send one at all the subprocess never terminates when # trinity exits because of a crash. self.logger.debug("Waiting for process %d to terminate", process.pid) await loop.run_in_executor(None, process.join, SIGINT_TIMEOUT_SECONDS / 4) if process.is_alive(): self.logger.debug("Process %d did not terminate, sending SIGINT", process.pid) self._send_signal_and_join(process, signal.SIGINT, SIGINT_TIMEOUT_SECONDS) if process.is_alive(): self.logger.debug("Process %d did not terminate, sending SIGTERM", process.pid) self._send_signal_and_join(process, signal.SIGTERM, SIGTERM_TIMEOUT_SECONDS) def _send_signal_and_join(self, process: Process, sig: int, timeout: int) -> None: try: os.kill(process.pid, sig) except ProcessLookupError: self.logger.debug("Process %d has already terminated", process.pid) return # XXX: Using process.join() here is far from ideal as it blocks the main process, # forcing us to wait in sequence for every trio components, but try and run it # asynchronously (using an executor, like above) and you'll get a # RuntimeError: cannot reuse already awaited coroutine process.join(timeout) self.logger.debug( "process (%d) .join() returned, exitcode=%s", process.pid, process.exitcode) @classmethod def run_process(cls, boot_info: BootInfo) -> None: with child_process_logging(boot_info): if boot_info.profile: with profiler(f'profile_{cls.get_endpoint_name()}'): trio.run(cls._do_run, boot_info) else: trio.run(cls._do_run, boot_info) @classmethod async def _do_run(cls, boot_info: BootInfo) -> None: event_bus_service = TrioEventBusService( boot_info.trinity_config, cls.get_endpoint_name(), ) with trio.open_signal_receiver(signal.SIGINT, signal.SIGTERM) as signal_aiter: async with background_trio_service(event_bus_service): event_bus = await event_bus_service.get_event_bus() async with trio.open_nursery() as nursery: nursery.start_soon(cls.do_run, boot_info, event_bus) async for sig in signal_aiter: nursery.cancel_scope.cancel() @classmethod @abstractmethod async def do_run(cls, boot_info: BootInfo, event_bus: EndpointAPI) -> None: """ This is where subclasses should override """ ... ``` #### File: trinity/tools/_component_isolation.py ```python import logging from pathlib import Path import subprocess import tempfile from async_service import Service, background_asyncio_service, background_trio_service from asyncio_run_in_process.typing import SubprocessKwargs from eth_utils.toolz import merge from lahja import EndpointAPI, BaseEvent from trinity.boot_info import BootInfo from trinity.extensibility import AsyncioIsolatedComponent, TrioIsolatedComponent class IsStarted(BaseEvent): def __init__(self, path: Path) -> None: self.path = path class ComponentTestService(Service): logger = logging.getLogger('trinity.testing.ServiceForTest') def __init__(self, event_bus: EndpointAPI) -> None: self.event_bus = event_bus async def run(self) -> None: path = Path(tempfile.NamedTemporaryFile().name) self.logger.debug('Broadcasting `IsStarted(%s)`', path) try: await self.event_bus.broadcast(IsStarted(path)) self.logger.debug('Waiting for cancellation') await self.manager.wait_finished() except BaseException as err: self.logger.debug('Exiting due to error: `%r`', err) finally: self.logger.debug('Got cancellation: touching `%s`', path) path.touch() class AsyncioComponentForTest(AsyncioIsolatedComponent): name = "component-test" endpoint_name = 'component-test' logger = logging.getLogger('trinity.testing.ComponentForTest') def get_subprocess_kwargs(self) -> SubprocessKwargs: return merge( super().get_subprocess_kwargs(), { 'stdin': subprocess.PIPE, 'stdout': subprocess.PIPE, 'stderr': subprocess.PIPE, } ) @property def is_enabled(self) -> bool: return True @classmethod async def do_run(cls, boot_info: BootInfo, event_bus: EndpointAPI) -> None: cls.logger.debug('Entered `do_run`') service = ComponentTestService(event_bus) try: async with background_asyncio_service(service) as manager: cls.logger.debug('Running service') try: await manager.wait_finished() finally: cls.logger.debug('Exiting `do_run`') finally: # XXX: We never reach this line, so if you run test_isolated_component.py by itself it # will pass but hang forever after pytest reports success. # Figuring this out is probably the key to fixing our shutdown. cls.logger.debug('Finished: `do_run`') class TrioComponentForTest(TrioIsolatedComponent): name = "component-test-trio" endpoint_name = 'component-test-trio' @property def is_enabled(self) -> bool: return True @classmethod async def do_run(cls, boot_info: BootInfo, event_bus: EndpointAPI) -> None: cls.logger.debug('Entered `do_run`') service = ComponentTestService(event_bus) try: async with background_trio_service(service) as manager: cls.logger.debug('Running service') try: await manager.wait_finished() finally: cls.logger.debug('Exiting `do_run`') finally: cls.logger.debug('Finished: `do_run`') ```
{ "source": "1k-ct/send-cost", "score": 2 }
#### File: send-cost/aws_fee_to_line/parse_cost.py ```python from dotenv import load_dotenv import os import datetime # import dateutil import time # from dateutil.tz import tzlocal import boto3 import requests import logging logger = logging.getLogger() logger.setLevel(logging.INFO) client = boto3.client('cloudwatch', region_name='us-east-1') # 0.22sec def parse_services(): response = client.list_metrics( Namespace="AWS/Billing", MetricName="EstimatedCharges" ) services = [] for iRes in response["Metrics"]: value = iRes["Dimensions"][0]["Value"] if iRes["Dimensions"][0]["Name"] == "ServiceName": services.append(value) return services def parse_total_service_billing(): response = client.get_metric_statistics( Namespace='AWS/Billing', MetricName='EstimatedCharges', Dimensions=[ { 'Name': 'Currency', 'Value': 'USD' } ], StartTime=datetime.datetime.today() - datetime.timedelta(days=1), EndTime=datetime.datetime.today(), Period=86400, Statistics=['Maximum']) return response # AWSDataTransfer 0.0$ # awskms 1.07$ # AmazonEC2 0.0$ # AWSELB 0.0$ # AWSCloudTrail 0.0$ # AmazonRDS 0.21$ # AmazonS3 0.01$ # AWSMarketplace 0.0$ # AmazonCloudWatch 0.0$ # AWSSecretsManager 0.0$ # AmazonRoute53 def parse_service_billing(service_name): start = time.time() if service_name == "Total": return response = client.get_metric_statistics( Namespace='AWS/Billing', MetricName='EstimatedCharges', Dimensions=[ { 'Name': 'Currency', 'Value': 'USD' }, { 'Name': 'ServiceName', "Value": service_name, } ], StartTime=datetime.datetime.today() - datetime.timedelta(days=1), EndTime=datetime.datetime.today(), Period=86400, Statistics=['Maximum']) elapsed_time = time.time() - start return response # print(parse_service_billing("AWSDataTransfer")) # LINEPOSTURL = os.environ['LINEPostURL'] # LINETOKEN = os.environ['LINEtoken'] # # TODO あとで消す load_dotenv() LINEPOSTURL = os.getenv("LINEPostURL") LINETOKEN = os.getenv("LINEtoken") headers = {"Authorization": "Bearer " + LINETOKEN} def make_payload(): metric_statistics = parse_total_service_billing() cost = metric_statistics['Datapoints'][0]['Maximum'] date = metric_statistics['Datapoints'][0]['Timestamp'].strftime( '%Y年%m月%d日') message = "\n" + date services = parse_services() for service in services: response = parse_service_billing(service) value = str(response["Datapoints"][0]["Maximum"]) message += "\n"+value+"$"+" "+service message += "\n合計"+str(cost)+"$" return message def lambda_handler(event, context): message = make_payload() payload = {"message": message} try: req = requests.post(LINEPOSTURL, headers=headers, params=payload) except requests.exceptions.RequestException as e: logger.error("Request failed: %s", e) # TODO あとで消す # lambda_handler("", "") ```
{ "source": "1King-coder/Developing-Some-Python-Skills", "score": 3 }
#### File: Singleton/Borg/Monostate_Borg_2.py ```python class StrReprMixin: def __str__(self): params = ', '.join( [f'{k}={v}' for k, v in self.__dict__.items()] ) return f'{self.__class__.__name__} ({params})' def __repr__(self): return self.__str__() class A(StrReprMixin): def __init__(self, nome): self.x = 10 self.y = 20 self.nome = nome class MonoState(StrReprMixin): _state: dict = { 'x': 200, 'y': 900, 'nome': 'Vitor' } def __new__(cls, *args, **kwargs): obj = super().__new__(cls) obj.__dict__ = cls._state return obj def __init__(self, nome=None): if nome is not None: self.nome = nome class B(MonoState): pass if __name__ == '__main__': m1 = MonoState('Vitor') print(m1) m2 = MonoState() print(m1) b = B() print(b) ```
{ "source": "1King-coder/Graphs-creation-for-socfilhist-project", "score": 3 }
#### File: modules/Data_Classes/Answers.py ```python from abc import ABC class Answers(ABC): def __init__ (self, answers_obj) -> None: self.answers: list = list(answers_obj.items())[1:] @property def total_answers(self) -> dict: total_option_1, total_option_2, total_option_3 = [0, 0, 0] for _, value in self.answers: if (value == 1): total_option_1 += 1 if (value == 2): total_option_2 += 1 if (value == 3): total_option_3 += 1 return { 'total_option_1': total_option_1, 'total_option_2': total_option_2, 'total_option_3': total_option_3 } @property def predominant_options(self) -> str: total_options: dict = { "option 1": self.total_answers['total_option_1'], "option 2": self.total_answers['total_option_2'], "option 3": self.total_answers['total_option_3'] } predominant_options: str = '' major: int = 0 for option, total in total_options.items(): if total > major: major = total predominant_options = option elif total == major: predominant_options += f', {option}' return predominant_options ``` #### File: Graphs-creation-for-socfilhist-project/modules/log.py ```python from datetime import datetime def log(function): def wrapper(): with open('./Logs/log.txt', 'a') as log: log.writelines( f'Function {function.__name__} initialized at' f' {datetime.now()} \n' ) return function return wrapper() ```
{ "source": "1King-coder/LoginSistemWithMySQL", "score": 3 }
#### File: Login_sys/Data_base/Data_base.py ```python import pymysql.cursors from abc import ABC, abstractmethod import hashlib import re class DataBase(ABC): """ Base class for DataBases """ @abstractmethod def register_new_user(self, username, password, email): pass @abstractmethod def verify_if_user_is_registered(self, username): pass @abstractmethod def get_user_id(self, username): pass @abstractmethod def get_username(self, id_): pass @abstractmethod def get_email(self, id_): pass @abstractmethod def confirm_login(self, username, password, email): pass @abstractmethod def list_registered_users(self): pass @abstractmethod def delete_user_from_database(self, username, email): pass @abstractmethod def change_password(self, password, new_password): pass @abstractmethod def change_username(self, username, new_username): pass class Usuarios(DataBase): """ Usuarios Database class. """ _state: dict = { # Establish a unique connection with the Database 'conection': pymysql.connect( host='localhost', user='root', password='Password', db='users', charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor ) } def __new__(cls, *args, **kwargs): obj = super().__new__(cls) obj.__dict__ = cls._state return obj def __init__(self): self.conection = self._state['conection'] self.cursor = self.conection.cursor() def register_new_user(self, username, email, password): """ Insert a new user in the DB table. """ enc_pass = hashlib.sha256(password.strip().encode('utf-8')).hexdigest() self.cursor.execute('INSERT INTO users.users_login (username,' ' email, password_hash) VALUES' '(%s, %s, %s)', [username, email, enc_pass]) self.conection.commit() def verify_if_user_is_registered(self, username): """ Verify if the user's username is already in the DB table. """ self.cursor.execute('SELECT username FROM users.users_login' f" WHERE username='{username}'") result = self.cursor.fetchall() return result def get_user_id(self, user_input): """ Get the user id by his username or e-mail. """ if re.search(r'@.*\.com', user_input): self.cursor.execute('SELECT id FROM users.users_login' f" WHERE email='{user_input}'") return self.cursor.fetchall()[0]['id'] self.cursor.execute('SELECT id FROM users.users_login' f" WHERE username='{user_input}'") result = self.cursor.fetchall() return result[0]['id'] if result else None def get_username(self, user_input): """ Get user's username by his id. """ user_id = self.get_user_id(user_input) self.cursor.execute('SELECT username FROM users.users_login' f" WHERE id='{user_id}'") return self.cursor.fetchall()[0]['username'] def get_email(self, user_input): """ Get user's e-mail by his id. """ user_id = self.get_user_id(user_input) self.cursor.execute('SELECT email FROM users.users_login' f" WHERE id='{user_id}'") return self.cursor.fetchall()[0]['email'] def confirm_login(self, user_input, password): """ Makes the user's login input validation for logging in the system. """ user_id = self.get_user_id(user_input) if not user_id: return None enc_pass = hashlib.sha256(password.strip().encode('utf-8')).hexdigest() self.cursor.execute('SELECT password_hash FROM users.users_login' f" WHERE id='{user_id}'") confirmation = enc_pass == self.cursor.fetchall()[0]['password_hash'] return 'Confirm' if confirmation else 'Invalid password' def list_registered_users(self): self.cursor.execute('Select * FROM users.users_login') return self.cursor.fetchall() def delete_user_from_database(self, user_input): """ Delete a user in Database's Table using his id. """ try: user_id = int(user_input) except Exception: user_id = self.get_user_id(user_input) if not user_id: return None self.cursor.execute('DELETE FROM users.users_login ' f"WHERE id='{user_id}'") self.conection.commit() return True def change_password(self, user_input, new_password): """ Change user's password in Database's Table using his id. """ user_id = self.get_user_id(user_input) if not user_id: return None new_enc_pass = hashlib.sha256( <PASSWORD>_password.strip().encode('utf-8')).hexdigest() self.cursor.execute('UPDATE users.users_login SET ' f"password_hash='{<PASSWORD>_enc_pass}' " f"WHERE id='{user_id}'") self.conection.commit() return True def change_username(self, new_username, email): """ Change user's username in Database's Table using his id. """ user_id = self.get_user_id(email) if not user_id: return None self.cursor.execute('UPDATE users.users_login SET ' f"username='{new_username}' WHERE id='{user_id}'") self.conection.commit() return True ``` #### File: LoginSistemWithMySQL/Login_sys/RequestNewPassword.py ```python from .SendEmail import SendEmail from .Data_base.Data_base import Usuarios from PyQt5.QtWidgets import QMainWindow, QApplication from .Verifications_and_Responses.Verifications import Verifications from .Verifications_and_Responses.Responses import Responses from .RequestConfirmationCode import Request_Confirmation_Code from .SendCode.GenerateAuthCode import Get_Auth_Code from .SendCode.Cache import Cache from .GraphicGui.RequestNewPasswordInterface import * class Request_New_Password(QMainWindow, Ui_MainWindow): """ Class responsible for sending the authentication code to access the recovery password window where the user will be able to change his password. """ def __init__(self, parent=None): super().__init__(parent) super().setupUi(self) self.setWindowTitle('Request a New Password') self.Request_Confirmation_Code = Request_Confirmation_Code( 'Recovery Password') self.users_db = Usuarios() self.responses = Responses() self.verify = Verifications() self.Confirm.clicked.connect(self.confirm) def get_user_input(self): return [self.User_input.displayText()] def confirm(self): user_input = self.get_user_input() if self.verify.empty_fields(user_input): self.responses.raise_alert(self.Response, 'None of the fields can be empty.') return if self.verify.special_characters(user_input[0]): self.responses.raise_alert(self.Response, 'There must not be special' 'characters. ' "(! # $ % ¨ & * + ')") return """Try to get the user's input id.""" if not self.users_db.get_user_id(user_input[0]): self.responses.raise_error(self.Response, 'Invalid Username or E-mail.') return """Stores momentaly the user's input for Recovery Password.""" Cache(user_input[0]) """Get the Auth code and send it by the user's email.""" SendEmail(Get_Auth_Code(), user_input[0]).send_email() """Open the Authentication window.""" self.Request_Confirmation_Code.show() """Clear the inputs and responser.""" self.responses.clear([self.User_input], self.Response) self.close() ``` #### File: LoginSistemWithMySQL/Login_sys/RequestNewUsername.py ```python from .Data_base.Data_base import Usuarios from .GraphicGui.RequestNewUsernameInterface import * from PyQt5.QtWidgets import QMainWindow, QApplication from .Verifications_and_Responses.Verifications import Verifications from .Verifications_and_Responses.Responses import Responses from .SendEmail import SendEmail from .SendCode.Cache import Cache from .SendCode.GenerateAuthCode import Get_Auth_Code from .RequestConfirmationCode import Request_Confirmation_Code class Request_New_Username(QMainWindow, Ui_MainWindow): """ Class responsible for sending the authentication code to access the recovery username window where the user will be able to change his username. """ def __init__(self, parent=None): super().__init__(parent) super().setupUi(self) self.setWindowTitle('Request a New Username') self.Request_Confirmation_Code = Request_Confirmation_Code( 'Recovery Username' ) self.users_db = Usuarios() self.auth_code = Get_Auth_Code() self.responses = Responses() self.verify = Verifications() self.Send_Email.clicked.connect(self.next_window) def get_user_email(self) -> list: return [self.Email.text().strip()] def next_window(self): email = self.get_user_email() if self.verify.empty_fields(email): self.responses.raise_alert(self.Response, 'None of the fields can be empty.') return if self.verify.special_characters(email[0]): self.responses.raise_alert(self.Response, 'There must not be special' 'characters. ' "(! # $ % ¨ & * + ')") return if not self.users_db.get_user_id(email[0]): self.responses.raise_error(self.Response, 'Invalid Password.') return if not self.verify.is_email(email[0]): self.responses.raise_error(self.Response, 'Invalid E-mail.') return """Get the Auth code and send it by the user's email.""" SendEmail(self.auth_code, email[0]).send_email() """Open the Authentication window.""" self.Request_Confirmation_Code.show() """Clear the inputs and responser.""" self.responses.clear([self.Email], self.Response) self.close() ``` #### File: Login_sys/SendCode/GenerateAuthCode.py ```python from random import randint def generate_auth_code() -> str: """ Generate a six-numbers random code. """ code = '' for _ in range(6): code += str(randint(0, 9)) return code class Get_Auth_Code: """ Monostate for storing a generated code """ _state: dict = { 'AuthCode': generate_auth_code() } def __new__(cls, *args, **kwargs): obj = super().__new__(cls) obj.__dict__ = cls._state return obj def __init__(self, flag=None): """ Flag for saving a code for use and after it, generate another. """ if flag is not None: self._state['AuthCode'] = generate_auth_code() def __str__(self): """ Return the generated code when the class is called as a string """ return self._state['AuthCode'] ``` #### File: Login_sys/Verifications_and_Responses/Verifications.py ```python from re import search class Verifications: """ Makes verifications into the inputs fields. """ @staticmethod def empty_fields(fields) -> bool: for field in fields: if field.strip() == '': return True return False @staticmethod def is_email(input_) -> bool: if search(r'@.*\.com', input_): return True else: return False @staticmethod def special_characters(inputs) -> bool: for input_ in inputs: if search(r'.*!.*|.*#.*|.*\$.*|.*%.*' r'|.*¨.*|.*&.*|.*\*.*|.*\+.*|.*".*|.*\'.*', input_): return True return False ```
{ "source": "1King-coder/PythonEmailSender", "score": 3 }
#### File: PythonEmailSender/SendRoot/SendEmails.py ```python from string import Template from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.base import MIMEBase from email.mime.image import MIMEImage from email import encoders import os import mimetypes def template(template, file_name, p_name): """ Takes template and set html variables values, setting E-mail body. """ with open(f'{template}', 'r') as html: temp = Template(html.read()) body = temp.substitute(trabalho=file_name, nome=p_name) return body def get_path(file_name, path): """ Gets file's path. """ path_list = [] if not file_name: return None for r, d, fs in os.walk(path): for f in fs: if file_name in f: f_nome, ext = os.path.splitext(f) cp_path = os.path.join(r, f) path_list.append((f_nome, ext, cp_path)) return path_list # Configure attachments. def anexo(f_name, ext, cp_path): """ Returns attachment MIME. """ try: ctype, enconding = mimetypes.guess_type(f_name) if ctype is None or enconding is not None: ctype = 'application/octet-stream' maint, subt = ctype.split('/', 1) if maint == 'image': with open(f'{f_name}{ext}', 'rb') as img: mime = MIMEImage(img.read(), _subtype='jpg') else: with open(f'{cp_path}', 'rb') as f: mime = MIMEBase(maint, subt) mime.set_payload(f.read()) encoders.encode_base64(mime) mime.add_header('Content-Disposition', 'attachment', filename=f'{f_name}{ext}') return mime except Exception as e: print(f'Error: {e}') raise e def set_template(template_name, file_name, p_name): """ Insert template into the E-mail. """ corp = template(template_name, file_name, p_name) msg = MIMEMultipart() msg['from'] = p_name msg['subject'] = f'{file_name}' msg.attach(MIMEText(corp, 'html')) return msg ```
{ "source": "1kko/ezDHLoader", "score": 3 }
#### File: 1kko/ezDHLoader/ezDHLoader.py ```python import PySimpleGUI as sg import pafy from urllib.parse import urlparse, parse_qs import time import random import configparser import os def output_callback(total, recvd, ratio, rate, eta): global progress_bar try: # print(recvd, ratio, eta) progress_bar.UpdateBar(ratio) etaText = window['eta'] etaText.update("ETA: " + str(eta) + "s") except: pass if __name__ == "__main__": with_apikey = "" try: config = configparser.ConfigParser() config.read('config.ini') if config['DEFAULT']['YOUTUBE_API_KEY'] not in [None, '']: pafy.set_api_key(config['DEFAULT']['YOUTUBE_API_KEY']) with_apikey = " (API Key Enabled)" except: pass layout = [ [sg.Text("Youtube URL:")], [sg.InputText(size=(80, 20), key='url')], [sg.Submit("OK"), sg.Cancel()], [sg.ProgressBar(1, orientation='h', size=( 45, 5), key='progressbar'), sg.Text(size=(12, 1), key='eta', justification='r')], # [sg.Output(size=(80, 20))], [sg.Text("Destination", size=(15, 1)), sg.InputText(os.getcwd(), key='dstPath'), sg.FolderBrowse()], ] window = sg.Window('ezDHLoader v0.6' + with_apikey, layout) progress_bar = window['progressbar'] youtubeId = "" event, values = window.read() url = values['url'] try: if url.startswith("http"): res = urlparse(url) if res.netloc == "www.youtube.com" or res.netloc == "youtube.com": # Url starts with www.youtube.com youtubeId = parse_qs(res.query)['v'][0] if res.netloc == "youtu.be": # Url starts with youtu.be youtubeId = res.path[1:] # download y = pafy.new(youtubeId) video = y.getbest() vfilename = video.download(filepath=os.path.join(values['dstPath'], video.title+"."+video.extension), quiet=True, callback=output_callback, remux_audio=True) sg.Popup("Done") except Exception as e: sg.Popup("Oops", e) ```
{ "source": "1kko/python-holidays", "score": 3 }
#### File: holidays/countries/vietnam.py ```python from datetime import date, datetime, timedelta from dateutil.relativedelta import relativedelta as rd, FR, SA, MO from holidays.constants import JAN, APR, MAY, SEP from holidays.constants import SAT, SUN from holidays.holiday_base import HolidayBase class Vietnam(HolidayBase): # https://publicholidays.vn/ # http://vbpl.vn/TW/Pages/vbpqen-toanvan.aspx?ItemID=11013 Article.115 # https://www.timeanddate.com/holidays/vietnam/ def __init__(self, **kwargs): self.country = "VN" HolidayBase.__init__(self, **kwargs) def _populate(self, year): # New Year's Day name = "International New Year's Day" first_date = date(year, JAN, 1) self[first_date] = name if self.observed: self[first_date] = name if first_date.weekday() == SAT: self[first_date + rd(days=+2)] = name + " observed" elif first_date.weekday() == SUN: self[first_date + rd(days=+1)] = name + " observed" # Lunar New Year name = ["Vietnamese New Year", # index: 0 "The second day of Tet Holiday", # index: 1 "The third day of Tet Holiday", # index: 2 "The forth day of Tet Holiday", # index: 3 "The fifth day of Tet Holiday", # index: 4 "Vietnamese New Year's Eve", # index: -1 ] dt = self.get_solar_date(year, 1, 1) new_year_date = date(dt.year, dt.month, dt.day) if self.observed: for i in range(-1, 5, 1): tet_day = new_year_date + rd(days=+i) self[tet_day] = name[i] # Vietnamese Kings' Commemoration Day # https://en.wikipedia.org/wiki/H%C3%B9ng_Kings%27_Festival if year >= 2007: name = "Hung Kings Commemoration Day" dt = self.get_solar_date(year, 3, 10) king_hung_date = date(dt.year, dt.month, dt.day) self[king_hung_date] = name else: pass # Liberation Day/Reunification Day name = "Liberation Day/Reunification Day" libration_date = date(year, APR, 30) self[libration_date] = name # International Labor Day name = "International Labor Day" labor_date = date(year, MAY, 1) self[labor_date] = name # Independence Day name = "Independence Day" independence_date = date(year, SEP, 2) self[independence_date] = name # Store the number of days per year from 1901 to 2099, and the number of # days from the 1st to the 13th to store the monthly (including the month # of the month), 1 means that the month is 30 days. 0 means the month is # 29 days. The 12th to 15th digits indicate the month of the next month. # If it is 0x0F, it means that there is no leap month. g_lunar_month_days = [ 0xF0EA4, 0xF1D4A, 0x52C94, 0xF0C96, 0xF1536, 0x42AAC, 0xF0AD4, 0xF16B2, 0x22EA4, 0xF0EA4, # 1901-1910 0x6364A, 0xF164A, 0xF1496, 0x52956, 0xF055A, 0xF0AD6, 0x216D2, 0xF1B52, 0x73B24, 0xF1D24, # 1911-1920 0xF1A4A, 0x5349A, 0xF14AC, 0xF056C, 0x42B6A, 0xF0DA8, 0xF1D52, 0x23D24, 0xF1D24, 0x61A4C, # 1921-1930 0xF0A56, 0xF14AE, 0x5256C, 0xF16B4, 0xF0DA8, 0x31D92, 0xF0E92, 0x72D26, 0xF1526, 0xF0A56, # 1931-1940 0x614B6, 0xF155A, 0xF0AD4, 0x436AA, 0xF1748, 0xF1692, 0x23526, 0xF152A, 0x72A5A, 0xF0A6C, # 1941-1950 0xF155A, 0x52B54, 0xF0B64, 0xF1B4A, 0x33A94, 0xF1A94, 0x8152A, 0xF152E, 0xF0AAC, 0x6156A, # 1951-1960 0xF15AA, 0xF0DA4, 0x41D4A, 0xF1D4A, 0xF0C94, 0x3192E, 0xF1536, 0x72AB4, 0xF0AD4, 0xF16D2, # 1961-1970 0x52EA4, 0xF16A4, 0xF164A, 0x42C96, 0xF1496, 0x82956, 0xF055A, 0xF0ADA, 0x616D2, 0xF1B52, # 1971-1980 0xF1B24, 0x43A4A, 0xF1A4A, 0xA349A, 0xF14AC, 0xF056C, 0x60B6A, 0xF0DAA, 0xF1D92, 0x53D24, # 1981-1990 0xF1D24, 0xF1A4C, 0x314AC, 0xF14AE, 0x829AC, 0xF06B4, 0xF0DAA, 0x52D92, 0xF0E92, 0xF0D26, # 1991-2000 0x42A56, 0xF0A56, 0xF14B6, 0x22AB4, 0xF0AD4, 0x736AA, 0xF1748, 0xF1692, 0x53526, 0xF152A, # 2001-2010 0xF0A5A, 0x4155A, 0xF156A, 0x92B54, 0xF0BA4, 0xF1B4A, 0x63A94, 0xF1A94, 0xF192A, 0x42A5C, # 2011-2020 0xF0AAC, 0xF156A, 0x22B64, 0xF0DA4, 0x61D52, 0xF0E4A, 0xF0C96, 0x5192E, 0xF1956, 0xF0AB4, # 2021-2030 0x315AC, 0xF16D2, 0xB2EA4, 0xF16A4, 0xF164A, 0x63496, 0xF1496, 0xF0956, 0x50AB6, 0xF0B5A, # 2031-2040 0xF16D4, 0x236A4, 0xF1B24, 0x73A4A, 0xF1A4A, 0xF14AA, 0x5295A, 0xF096C, 0xF0B6A, 0x31B54, # 2041-2050 0xF1D92, 0x83D24, 0xF1D24, 0xF1A4C, 0x614AC, 0xF14AE, 0xF09AC, 0x40DAA, 0xF0EAA, 0xF0E92, # 2051-2060 0x31D26, 0xF0D26, 0x72A56, 0xF0A56, 0xF14B6, 0x52AB4, 0xF0AD4, 0xF16CA, 0x42E94, 0xF1694, # 2061-2070 0x8352A, 0xF152A, 0xF0A5A, 0x6155A, 0xF156A, 0xF0B54, 0x4174A, 0xF1B4A, 0xF1A94, 0x3392A, # 2071-2080 0xF192C, 0x7329C, 0xF0AAC, 0xF156A, 0x52B64, 0xF0DA4, 0xF1D4A, 0x41C94, 0xF0C96, 0x8192E, # 2081-2090 0xF0956, 0xF0AB6, 0x615AC, 0xF16D4, 0xF0EA4, 0x42E4A, 0xF164A, 0xF1516, 0x22936, # 2090-2099 ] # Define range of years START_YEAR, END_YEAR = 1901, 1900 + len(g_lunar_month_days) # 1901 The 1st day of the 1st month of the Gregorian calendar is 1901/2/19 LUNAR_START_DATE, SOLAR_START_DATE = (1901, 1, 1), datetime(1901, 2, 19) # The Gregorian date for December 30, 2099 is 2100/2/8 LUNAR_END_DATE, SOLAR_END_DATE = (2099, 12, 30), datetime(2100, 2, 18) def get_leap_month(self, lunar_year): return (self.g_lunar_month_days[lunar_year - self.START_YEAR] >> 16) \ & 0x0F def lunar_month_days(self, lunar_year, lunar_month): return 29 + ((self.g_lunar_month_days[lunar_year - self.START_YEAR] >> lunar_month) & 0x01) def lunar_year_days(self, year): days = 0 months_day = self.g_lunar_month_days[year - self.START_YEAR] for i in range(1, 13 if self.get_leap_month(year) == 0x0F else 14): day = 29 + ((months_day >> i) & 0x01) days += day return days # Calculate the Gregorian date according to the lunar calendar def get_solar_date(self, year, month, day): span_days = 0 for y in range(self.START_YEAR, year): span_days += self.lunar_year_days(y) leap_month = self.get_leap_month(year) for m in range(1, month + (month > leap_month)): span_days += self.lunar_month_days(year, m) span_days += day - 1 return self.SOLAR_START_DATE + timedelta(span_days) class VN(Vietnam): pass ```
{ "source": "1Konny/idgan", "score": 2 }
#### File: idgan/data/preprocess.py ```python import os import sys from PIL import Image from pathlib import Path from torchvision import transforms def preprocess_celeba(path): crop = transforms.CenterCrop((160, 160)) resample = Image.LANCZOS img = Image.open(path) img = crop(img) img_256_path = celeba_256_dir / path.name img.resize((256, 256), resample=resample).save(img_256_path) img_128_path = celeba_128_dir / path.name img.resize((128, 128), resample=resample).save(img_128_path) img_64_path = celeba_64_dir / path.name img.resize((64, 64), resample=resample).save(img_64_path) return None def preprocess_chairs(path): crop = transforms.CenterCrop((450, 450)) resample = Image.LANCZOS img = Image.open(path) img = crop(img) img_64_path = chairs_64_dir / path.parts[-3] / path.name img_64_path.parent.mkdir(parents=True, exist_ok=True) img.resize((64, 64), resample=resample).save(img_64_path) return None def preprocess_cars(meta): resample = Image.LANCZOS path, (x1, y1, x2, y2) = meta img = Image.open(path).crop((x1, y1, x2, y2)) if min(img.size) < 64: return img_64_path = cars_64_dir / path.parts[-2] / path.parts[-1] img_64_path.parent.mkdir(parents=True, exist_ok=True) img.resize((64, 64), resample=resample).save(img_64_path) return None if __name__ == '__main__': dataset = sys.argv[1] dataroot = Path('data') if dataset == 'celeba': preprocess = preprocess_celeba celeba_64_dir = dataroot / 'CelebA_64' / 'images' celeba_64_dir.mkdir(parents=True, exist_ok=True) celeba_128_dir = dataroot / 'CelebA_128' / 'images' celeba_128_dir.mkdir(parents=True, exist_ok=True) celeba_256_dir = dataroot / 'CelebA_256' / 'images' celeba_256_dir.mkdir(parents=True, exist_ok=True) os.system('unzip -q %s -d %s' % ((dataroot / 'img_align_celeba.zip'), dataroot)) paths = list((dataroot / 'img_align_celeba').glob('*.jpg')) elif dataset == 'celeba-hq': preprocess = preprocess_celeba os.system('unzip -q %s -d %s' % ((dataroot / 'data1024x1024.zip'), (dataroot / 'CelebA-HQ'))) paths = [] elif dataset == 'chairs': preprocess = preprocess_chairs chairs_64_dir = dataroot / 'Chairs_64' os.system('tar -xf %s -C %s' % ((dataroot / 'rendered_chairs.tar'), dataroot)) paths = list((dataroot / 'rendered_chairs').glob('**/*.png')) elif dataset == 'cars': preprocess = preprocess_cars cars_64_dir = dataroot / 'Cars_64' cars_64_dir.mkdir(parents=True, exist_ok=True) os.system('tar -xf %s -C %s' % ((dataroot / 'cars_train.tgz'), dataroot)) os.system('tar -xf %s -C %s' % ((dataroot / 'cars_test.tgz'), dataroot)) os.system('tar -xf %s -C %s' % ((dataroot / 'car_devkit.tgz'), dataroot)) from scipy import io train_annos = io.loadmat(dataroot / 'devkit' / 'cars_train_annos.mat') test_annos = io.loadmat(dataroot / 'devkit' / 'cars_test_annos.mat') paths = [] for anno in train_annos['annotations'][0]: path = dataroot / 'cars_train' / anno[-1][0] x1, x2, y1, y2 = anno[0][0][0], anno[1][0][0], anno[2][0][0], anno[3][0][0] paths.append([path, (x1, x2, y1, y2)]) for anno in test_annos['annotations'][0]: path = dataroot / 'cars_test' / anno[-1][0] x1, x2, y1, y2 = anno[0][0][0], anno[1][0][0], anno[2][0][0], anno[3][0][0] paths.append([path, (x1, x2, y1, y2)]) from multiprocessing import Pool with Pool(16) as pool: pool.map(preprocess, paths) ``` #### File: gan_training/models/resnet.py ```python import torch from torch import nn from torch.nn import functional as F from torch.autograd import Variable import torch.utils.data import torch.utils.data.distributed import numpy as np class View(nn.Module): def __init__(self, size): super(View, self).__init__() self.size = size def forward(self, tensor): return tensor.view(self.size) class AdaptiveInstanceNorm(nn.Module): def __init__(self, mode='channel', eps=1e-5): assert mode in ['channel', 'spatial'] super(AdaptiveInstanceNorm, self).__init__() self.mode = mode self.eps = eps self.normalizer = self._get_normalizer(mode) self.mean = None self.std = None def forward(self, x): x_normalised = self.normalizer(x) out = (x_normalised).mul(self.std).add(self.mean) return out def spatial_normalization(self, x): assert x.ndimension() == 4 x_mean = x.mean(1, keepdim=True) x_var = x.var(1, unbiased=False, keepdim=True) x_normalised = (x-x_mean).div((x_var+self.eps).sqrt()) return x_normalised def channel_normalization(self, x): assert x.ndimension() == 4 x_normalised = F.instance_norm(x) return x_normalised def update(self, mean, std): self.mean = mean self.std = std def _get_normalizer(self, mode): return self.channel_normalization if mode == 'channel' else self.spatial_normalization class SubMapper(nn.Module): def __init__(self, in_channels, out_channels, adain): super(SubMapper, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.adain = adain self.mapping = nn.Sequential( nn.Conv2d(in_channels, out_channels*2, 1), ) def forward(self, w_base): w = self.mapping(w_base) mean = w[:, :self.out_channels] std = w[:, self.out_channels:] self.adain.update(mean, std) return w_base class Mapper(nn.Module): def __init__(self, submappers, z2_dim, hidden_dim=256): super(Mapper, self).__init__() self.z2_dim = z2_dim self.hidden_dim = hidden_dim self.base_mapping = nn.Sequential( nn.Linear(z2_dim, hidden_dim), nn.LeakyReLU(0.2, True), nn.Linear(hidden_dim, hidden_dim), nn.LeakyReLU(0.2, True), nn.Linear(hidden_dim, hidden_dim), nn.LeakyReLU(0.2, True), nn.Linear(hidden_dim, hidden_dim), nn.LeakyReLU(0.2, True), View((-1, hidden_dim, 1, 1)) ) self.submappers = nn.Sequential(*submappers) def forward(self, z2): base_w = self.base_mapping(z2) for submapper in self.submappers: submapper(base_w) return None class GeneratorAdaIN(nn.Module): def __init__(self, z_dim, nlabels, size, embed_size=256, nfilter=64, nfilter_max=512, **kwargs): super().__init__() s0 = self.s0 = 4 nf = self.nf = nfilter nf_max = self.nf_max = nfilter_max self.z_dim = z_dim # Submodules nlayers = int(np.log2(size / s0)) map_base_dim = min(nf * 2**(nlayers-0), nf_max) self.nf0 = min(nf_max, nf * 2**nlayers) self.const_base = nn.Parameter(torch.ones(1, map_base_dim, 4, 4)) self.const_bias = nn.Parameter(torch.ones(1, map_base_dim, 1, 1)) self.embedding = nn.Embedding(nlabels, embed_size) self.fc = nn.Linear(z_dim + embed_size, self.nf0*s0*s0) blocks = [] submappers = [] for i in range(nlayers): nf0 = min(nf * 2**(nlayers-i), nf_max) nf1 = min(nf * 2**(nlayers-i-1), nf_max) adain = AdaptiveInstanceNorm() submappers += [SubMapper(map_base_dim, nf0, adain)] blocks += [ adain, ResnetBlock(nf0, nf1), nn.Upsample(scale_factor=2) ] adain = AdaptiveInstanceNorm() submappers += [SubMapper(map_base_dim, nf, adain)] blocks += [ adain, ResnetBlock(nf, nf), ] self.mapping = Mapper(submappers, z_dim+nlabels, hidden_dim=map_base_dim) self.resnet = nn.Sequential(*blocks) self.conv_img = nn.Conv2d(nf, 3, 3, padding=1) def forward(self, z, y): assert(z.size(0) == y.size(0)) batch_size = z.size(0) if y.dtype is torch.int64: yembed = self.embedding(y) else: yembed = y yembed = yembed / torch.norm(yembed, p=2, dim=1, keepdim=True) yz = torch.cat([z, yembed], dim=1) self.mapping(yz) input = self.const_base + self.const_bias out = self.resnet(input) out = self.conv_img(actvn(out)) out = F.tanh(out) return out class Generator(nn.Module): def __init__(self, z_dim, nlabels, size, embed_size=256, nfilter=64, nfilter_max=512, **kwargs): super().__init__() s0 = self.s0 = 4 nf = self.nf = nfilter nf_max = self.nf_max = nfilter_max self.z_dim = z_dim # Submodules nlayers = int(np.log2(size / s0)) self.nf0 = min(nf_max, nf * 2**nlayers) self.embedding = nn.Embedding(nlabels, embed_size) self.fc = nn.Linear(z_dim + embed_size, self.nf0*s0*s0) blocks = [] for i in range(nlayers): nf0 = min(nf * 2**(nlayers-i), nf_max) nf1 = min(nf * 2**(nlayers-i-1), nf_max) blocks += [ ResnetBlock(nf0, nf1), nn.Upsample(scale_factor=2) ] blocks += [ ResnetBlock(nf, nf), ] self.resnet = nn.Sequential(*blocks) self.conv_img = nn.Conv2d(nf, 3, 3, padding=1) def forward(self, z, y): assert(z.size(0) == y.size(0)) batch_size = z.size(0) if y.dtype is torch.int64: yembed = self.embedding(y) else: yembed = y yembed = yembed / torch.norm(yembed, p=2, dim=1, keepdim=True) yz = torch.cat([z, yembed], dim=1) out = self.fc(yz) out = out.view(batch_size, self.nf0, self.s0, self.s0) out = self.resnet(out) out = self.conv_img(actvn(out)) out = F.tanh(out) return out class Discriminator(nn.Module): def __init__(self, z_dim, nlabels, size, embed_size=256, nfilter=64, nfilter_max=1024): super().__init__() self.embed_size = embed_size s0 = self.s0 = 4 nf = self.nf = nfilter nf_max = self.nf_max = nfilter_max # Submodules nlayers = int(np.log2(size / s0)) self.nf0 = min(nf_max, nf * 2**nlayers) blocks = [ ResnetBlock(nf, nf) ] for i in range(nlayers): nf0 = min(nf * 2**i, nf_max) nf1 = min(nf * 2**(i+1), nf_max) blocks += [ nn.AvgPool2d(3, stride=2, padding=1), ResnetBlock(nf0, nf1), ] self.conv_img = nn.Conv2d(3, 1*nf, 3, padding=1) self.resnet = nn.Sequential(*blocks) self.fc = nn.Linear(self.nf0*s0*s0, nlabels) self.hiddens = dict() def named_hook(name): def hook(module, input, output): self.hiddens[name] = output.view(output.size(0), -1) return None return hook # self.resnet.register_forward_hook(named_hook('ds')) def forward(self, x, y, zs=None): assert(x.size(0) == y.size(0)) batch_size = x.size(0) out = self.conv_img(x) out = self.resnet(out) out = out.view(batch_size, self.nf0*self.s0*self.s0) out_temp = out # ds_ratio = None # if zs is not None: # bs_half = int(batch_size//2) # #out1, out2 = out[:bs_half], out[bs_half:bs_half+bs_half] # out1, out2 = self.hiddens['ds'][:bs_half], self.hiddens['ds'][bs_half:bs_half+bs_half] # z1, z2 = zs[:bs_half], zs[bs_half:bs_half+bs_half] # ds_ratio = (out1-out2).view(bs_half, -1).norm(p=2, dim=1).div((z1-z2).norm(p=2, dim=1)).mean() out = self.fc(actvn(out)) index = Variable(torch.LongTensor(range(out.size(0)))) if y.is_cuda: index = index.cuda() out = out[index, y] #return out, ds_ratio return out, out_temp class ResnetBlock(nn.Module): def __init__(self, fin, fout, fhidden=None, is_bias=True): super().__init__() # Attributes self.is_bias = is_bias self.learned_shortcut = (fin != fout) self.fin = fin self.fout = fout if fhidden is None: self.fhidden = min(fin, fout) else: self.fhidden = fhidden # Submodules self.conv_0 = nn.Conv2d(self.fin, self.fhidden, 3, stride=1, padding=1) self.conv_1 = nn.Conv2d(self.fhidden, self.fout, 3, stride=1, padding=1, bias=is_bias) if self.learned_shortcut: self.conv_s = nn.Conv2d(self.fin, self.fout, 1, stride=1, padding=0, bias=False) def forward(self, x): x_s = self._shortcut(x) dx = self.conv_0(actvn(x)) dx = self.conv_1(actvn(dx)) out = x_s + 0.1*dx return out def _shortcut(self, x): if self.learned_shortcut: x_s = self.conv_s(x) else: x_s = x return x_s def actvn(x): out = F.leaky_relu(x, 2e-1) return out ```
{ "source": "1kpp/python_trainnig", "score": 3 }
#### File: python_trainnig/test/test_add_contact_to_group.py ```python from model.contact import Contact from model.group import Group import random def test_add_contact_to_group(app, db, check_ui): # checks whether there are contacts available. If not - create one if len(db.get_contact_list()) == 0: app.contact.create(Contact(firstname="Name for deletion")) # check whether there are groups available. If not - create one if len(db.get_group_list()) == 0: app.group.create(Group(name="azazazaz")) # check whether there are free contacts (not part of any group) if len(db.get_contacts_not_in_any_of_groups()) == 0: app.contact.create(Contact(firstname="Contact not in groups")) # check whether there are free groups (do not have any contacts inside) if len(db.get_groups_without_contacts()) == 0: app.group.create(Group(name="Group without contacts")) # choose random contact to add random_contact = random.choice(db.get_contacts_not_in_any_of_groups()) # choose random group for contact addition random_group = random.choice(db.get_groups_without_contacts()) # add contact to group app.contact.add_contact_to_group(random_contact.id, random_group.id) # assert that random_contact is in list of contacts of random_group assert random_contact in db.get_contact_in_group(random_group) ```
{ "source": "1kpp/stepik_course", "score": 4 }
#### File: 1kpp/stepik_course/module3_lesson6.py ```python from selenium import webdriver import math #define a function wich calculates and returnes the result in accordance with the "X" def calc(x): return str(math.log(abs(12*math.sin(int(x))))) driver = webdriver.Chrome() #open the browser link = "http://SunInJuly.github.io/execute_script.html" driver.get(link) #find element which contains "X" and calculates the function x_element = driver.find_element_by_id("input_value") x = x_element.text y = calc(x) #enter the result of calculations into the text area driver.find_element_by_id("answer").send_keys(y) #scroll down the page to make another elements visible submit = driver.find_element_by_css_selector("[class='btn btn-primary']") driver.execute_script("return arguments[0].scrollIntoView(true);", submit) submit.click() #check radiobutton and checkbox option1 = driver.find_element_by_css_selector("[for='robotCheckbox']") option1.click() option2 = driver.find_element_by_css_selector("[for='robotsRule']") option2.click() #click submit submit.click() ```
{ "source": "1KVueltasAlCampo/VIP-KNN", "score": 3 }
#### File: src/visualization/visualizer.py ```python import numpy as np import plotly.express as px import plotly.graph_objects as go #Initial state. Base dataset. ##def __init__ visualizer(self): ##Falta que lo clasifique. def add_dot(sepal_width, sepal_length, color): df = px.data.iris() newDyc = {"sepal_width": sepal_width, "sepal_length": sepal_length, "species": color} df = df.append(newDyc, ignore_index=True) newFig = px.scatter(df, x="sepal_width", y="sepal_length", color="species") newFig.show() # KNN.fit(X, Y) #KNN.askNewData() if __name__ == "__main__": df = px.data.iris() speciesDyc = {"setosa": 0, "versicolor": 1, "virginica": 2} X = df["sepal_width", "sepal_length"].values Y = df["species"].apply(speciesDyc.get).values print(np.isnan(Y).sum() == 0) df = df[["sepal_width", "sepal_length", "species"]] fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species") fig.show() fig.show() ```
{ "source": "1kyu/qtile", "score": 2 }
#### File: libqtile/backend/__init__.py ```python import importlib from libqtile.utils import QtileError CORES = [ 'wayland', 'x11', ] def get_core(backend, *args): if backend not in CORES: raise QtileError(f"Backend {backend} does not exist") return importlib.import_module(f"libqtile.backend.{backend}.core").Core(*args) ``` #### File: libqtile/widget/keyboardlayout.py ```python from __future__ import annotations import re from abc import ABCMeta, abstractmethod from subprocess import CalledProcessError, check_output from typing import TYPE_CHECKING from libqtile.confreader import ConfigError from libqtile.log_utils import logger from libqtile.widget import base if TYPE_CHECKING: from typing import Optional from libqtile.core.manager import Qtile class _BaseLayoutBackend(metaclass=ABCMeta): def __init__(self, qtile: Qtile): """ This handles getting and setter the keyboard layout with the appropriate backend. """ @abstractmethod def get_keyboard(self) -> str: """ Return the currently used keyboard layout as a string Examples: "us", "us dvorak". In case of error returns "unknown". """ def set_keyboard(self, layout: str, options: Optional[str]) -> None: """ Set the keyboard layout with specified options. """ class _X11LayoutBackend(_BaseLayoutBackend): kb_layout_regex = re.compile(r'layout:\s+(?P<layout>\w+)') kb_variant_regex = re.compile(r'variant:\s+(?P<variant>\w+)') def get_keyboard(self) -> str: try: command = 'setxkbmap -verbose 10 -query' setxkbmap_output = check_output(command.split(' ')).decode() except CalledProcessError as e: logger.error('Can not get the keyboard layout: {0}'.format(e)) return "unknown" except OSError as e: logger.error('Please, check that xset is available: {0}'.format(e)) return "unknown" match_layout = self.kb_layout_regex.search(setxkbmap_output) if match_layout is None: return 'ERR' keyboard = match_layout.group('layout') match_variant = self.kb_variant_regex.search(setxkbmap_output) if match_variant: keyboard += " " + match_variant.group('variant') return keyboard def set_keyboard(self, layout: str, options: Optional[str]) -> None: command = ['setxkbmap'] command.extend(layout.split(" ")) if options: command.extend(['-option', options]) try: check_output(command) except CalledProcessError as e: logger.error('Can not change the keyboard layout: {0}'.format(e)) except OSError as e: logger.error('Please, check that setxkbmap is available: {0}'.format(e)) class _WaylandLayoutBackend(_BaseLayoutBackend): def __init__(self, qtile: Qtile) -> None: self.set_keymap = qtile.core.cmd_set_keymap # type: ignore self._layout: str = "" def get_keyboard(self) -> str: return self._layout def set_keyboard(self, layout: str, options: Optional[str]) -> None: maybe_variant: Optional[str] = None if " " in layout: layout_name, maybe_variant = layout.split(" ", maxsplit=1) else: layout_name = layout self.set_keymap(layout_name, options, maybe_variant) self._layout = layout layout_backends = { 'x11': _X11LayoutBackend, 'wayland': _WaylandLayoutBackend, } class KeyboardLayout(base.InLoopPollText): """Widget for changing and displaying the current keyboard layout To use this widget effectively you need to specify keyboard layouts you want to use (using "configured_keyboards") and bind function "next_keyboard" to specific keys in order to change layouts. For example: Key([mod], "space", lazy.widget["keyboardlayout"].next_keyboard(), desc="Next keyboard layout."), When running Qtile with the X11 backend, this widget requires setxkbmap to be available. """ orientations = base.ORIENTATION_HORIZONTAL defaults = [ ("update_interval", 1, "Update time in seconds."), ("configured_keyboards", ["us"], "A list of predefined keyboard layouts " "represented as strings. For example: " "['us', 'us colemak', 'es', 'fr']."), ("display_map", {}, "Custom display of layout. Key should be in format " "'layout variant'. For example: " "{'us': 'us', 'lt sgs': 'sgs', 'ru phonetic': 'ru'}"), ("option", None, "string of setxkbmap option. Ex., 'compose:menu,grp_led:scroll'"), ] def __init__(self, **config): base.InLoopPollText.__init__(self, **config) self.add_defaults(KeyboardLayout.defaults) self.add_callbacks({'Button1': self.next_keyboard}) def _configure(self, qtile, bar): base.InLoopPollText._configure(self, qtile, bar) if qtile.core.name not in layout_backends: raise ConfigError( "KeyboardLayout does not support backend: " + qtile.core.name ) self.backend = layout_backends[qtile.core.name](qtile) self.backend.set_keyboard(self.configured_keyboards[0], self.option) def next_keyboard(self): """Set the next layout in the list of configured keyboard layouts as new current layout in use If the current keyboard layout is not in the list, it will set as new layout the first one in the list. """ current_keyboard = self.backend.get_keyboard() if current_keyboard in self.configured_keyboards: # iterate the list circularly next_keyboard = self.configured_keyboards[ (self.configured_keyboards.index(current_keyboard) + 1) % len(self.configured_keyboards)] else: next_keyboard = self.configured_keyboards[0] self.backend.set_keyboard(next_keyboard, self.option) self.tick() def poll(self): keyboard = self.backend.get_keyboard() if keyboard in self.display_map.keys(): return self.display_map[keyboard] return keyboard.upper() def cmd_next_keyboard(self): """Select next keyboard layout""" self.next_keyboard() ``` #### File: qtile/test/test_popup.py ```python import textwrap def test_popup_focus(manager): manager.test_window("one") start_wins = len(manager.backend.get_all_windows()) success, msg = manager.c.eval(textwrap.dedent(""" from libqtile.popup import Popup popup = Popup(self, x=0, y=0, width=self.current_screen.width, height=self.current_screen.height, ) popup.place() popup.unhide() """)) assert success, msg end_wins = len(manager.backend.get_all_windows()) assert end_wins == start_wins + 1 assert manager.c.group.info()['focus'] == 'one' assert manager.c.group.info()['windows'] == ['one'] assert len(manager.c.windows()) == 1 ``` #### File: test/widgets/test_textbox.py ```python import libqtile.bar import libqtile.config import libqtile.confreader import libqtile.layout from libqtile import widget def test_command_interface(manager_nospawn, minimal_conf_noscreen): # Set a short interval and start so widget exits immediately textbox = widget.TextBox(text="Testing") config = minimal_conf_noscreen config.screens = [ libqtile.config.Screen( top=libqtile.bar.Bar([textbox], 10) ) ] manager_nospawn.start(config) bar = manager_nospawn.c.bar["top"] w = bar.info()["widgets"][0] assert w["text"] == "Testing" manager_nospawn.c.widget["textbox"].update("Updated") w = bar.info()["widgets"][0] assert w["text"] == "Updated" assert manager_nospawn.c.widget["textbox"].get() == "Updated" ```
{ "source": "1lann/home-assistant", "score": 2 }
#### File: homeassistant/components/feedreader.py ```python from datetime import datetime from logging import getLogger import voluptuous as vol from homeassistant.helpers.event import track_utc_time_change REQUIREMENTS = ['feedparser==5.2.1'] _LOGGER = getLogger(__name__) DOMAIN = "feedreader" EVENT_FEEDREADER = "feedreader" # pylint: disable=no-value-for-parameter CONFIG_SCHEMA = vol.Schema({ DOMAIN: { 'urls': [vol.Url()], } }, extra=vol.ALLOW_EXTRA) # pylint: disable=too-few-public-methods class FeedManager(object): """Abstraction over feedparser module.""" def __init__(self, url, hass): """Initialize the FeedManager object, poll every hour.""" self._url = url self._feed = None self._hass = hass # Initialize last entry timestamp as epoch time self._last_entry_timestamp = datetime.utcfromtimestamp(0).timetuple() _LOGGER.debug('Loading feed %s', self._url) self._update() track_utc_time_change(hass, lambda now: self._update(), minute=0, second=0) def _log_no_entries(self): """Send no entries log at debug level.""" _LOGGER.debug('No new entries in feed %s', self._url) def _update(self): """Update the feed and publish new entries in the event bus.""" import feedparser _LOGGER.info('Fetching new data from feed %s', self._url) self._feed = feedparser.parse(self._url, etag=None if not self._feed else self._feed.get('etag'), modified=None if not self._feed else self._feed.get('modified')) if not self._feed: _LOGGER.error('Error fetching feed data from %s', self._url) else: if self._feed.bozo != 0: _LOGGER.error('Error parsing feed %s', self._url) # Using etag and modified, if there's no new data available, # the entries list will be empty elif len(self._feed.entries) > 0: _LOGGER.debug('Entries available in feed %s', self._url) self._publish_new_entries() self._last_entry_timestamp = \ self._feed.entries[0].published_parsed else: self._log_no_entries() def _publish_new_entries(self): """Publish new entries to the event bus.""" new_entries = False for entry in self._feed.entries: # Consider only entries newer then the latest parsed one if entry.published_parsed > self._last_entry_timestamp: new_entries = True entry.update({'feed_url': self._url}) self._hass.bus.fire(EVENT_FEEDREADER, entry) if not new_entries: self._log_no_entries() def setup(hass, config): """Setup the feedreader component.""" urls = config.get(DOMAIN)['urls'] feeds = [FeedManager(url, hass) for url in urls] return len(feeds) > 0 ``` #### File: components/sensor/wink.py ```python import logging from homeassistant.const import (CONF_ACCESS_TOKEN, STATE_CLOSED, STATE_OPEN, TEMP_CELSIUS) from homeassistant.helpers.entity import Entity REQUIREMENTS = ['python-wink==0.7.4'] SENSOR_TYPES = ['temperature', 'humidity'] def setup_platform(hass, config, add_devices, discovery_info=None): """Setup the Wink platform.""" import pywink if discovery_info is None: token = config.get(CONF_ACCESS_TOKEN) if token is None: logging.getLogger(__name__).error( "Missing wink access_token. " "Get one at https://winkbearertoken.appspot.com/") return pywink.set_bearer_token(token) for sensor in pywink.get_sensors(): if sensor.capability() in SENSOR_TYPES: add_devices([WinkSensorDevice(sensor)]) add_devices(WinkEggMinder(eggtray) for eggtray in pywink.get_eggtrays()) class WinkSensorDevice(Entity): """Representation of a Wink sensor.""" def __init__(self, wink): """Initialize the sensor.""" self.wink = wink self.capability = self.wink.capability() if self.wink.UNIT == "°": self._unit_of_measurement = TEMP_CELSIUS else: self._unit_of_measurement = self.wink.UNIT @property def state(self): """Return the state.""" if self.capability == "humidity": return self.wink.humidity_percentage() elif self.capability == "temperature": return self.wink.temperature_float() else: return STATE_OPEN if self.is_open else STATE_CLOSED @property def unit_of_measurement(self): """Return the unit of measurement of this entity, if any.""" return self._unit_of_measurement @property def unique_id(self): """Return the ID of this wink sensor.""" return "{}.{}".format(self.__class__, self.wink.device_id()) @property def name(self): """Return the name of the sensor if any.""" return self.wink.name() @property def available(self): """True if connection == True.""" return self.wink.available def update(self): """Update state of the sensor.""" self.wink.update_state() @property def is_open(self): """Return true if door is open.""" return self.wink.state() class WinkEggMinder(Entity): """Representation of a Wink Egg Minder.""" def __init__(self, wink): """Initialize the sensor.""" self.wink = wink @property def state(self): """Return the state.""" return self.wink.state() @property def unique_id(self): """Return the id of this wink Egg Minder.""" return "{}.{}".format(self.__class__, self.wink.device_id()) @property def name(self): """Return the name of the Egg Minder if any.""" return self.wink.name() def update(self): """Update state of the Egg Minder.""" self.wink.update_state() ```
{ "source": "1lca/stix2arango", "score": 3 }
#### File: stix2arango/stix2arango/postgresql.py ```python import ipaddress import copy from nis import match from typing import Dict from stix2arango.exceptions import InvalidObjectForOptimizer from stix2arango.utils import deep_dict_update import psycopg2 from psycopg2.errors import DuplicateTable import uuid type_map = { 'str' : 'TEXT', 'int' : 'INT' } operator_map = { '>' : '>', '<' : '<', '=' : '=', '!=' : '!=', '<=' : '<=', '>=' : '>=', 'like' : 'LIKE', } def convert_type(type_, value_): """Map between python type/postgresql type Args: type_ (str): python field type value_ (str): python field value Raises: RuntimeError: When a type can't be converted Returns: str: the postgresql associed type """ if type_ in type_map: return type_map[type_] raise RuntimeError("%s type not found" % (type_)) class PGResult(dict): def __init__( self, arango_conn, arango_id=None, field0_value=None, optimizer=None ): self.arango_conn = arango_conn self.arango_id = arango_id self.field0_value = field0_value self.optimizer = optimizer super().__init__() def __call__(self): if self.field0_value: pass class PostgresOptimizer: postgres_conn = None count = 0 db_name = None db_host = None db_user = None db_pass = None db_port = None def __init__(self, field): self.uuid = str(uuid.uuid4()).replace('-','_') self.table_name = None self.field = field self.table_created = False if not(PostgresOptimizer.postgres_conn): raise RuntimeError('PostgresOptimizer.postgres_conn is not set') def insert_stix_obj(self, stix_object, arango_id, feed): if not self.table_created: self.__create_table(feed, stix_object) arango_id = int(arango_id.split('/')[-1]) if self.field != 'ipv4-addr:x_ip': value = self.__extract_field_value(self.field, stix_object) elif stix_object['type'] == 'ipv4-addr': value = stix_object['value'] else: raise InvalidObjectForOptimizer(stix_object['type']) sql = "INSERT INTO " + self.table_name + " values (%s, %s, %s);" with PostgresOptimizer.postgres_conn.cursor() as cursor: cursor.execute(sql, [value, arango_id, stix_object['id']]) if self.count % 1000 == 0: PostgresOptimizer.postgres_conn.commit() self.count += 1 return stix_object def craft_obj_from_request(self, stix_id, field0): type = self.field.split(':')[0] if self.field == 'ipv4-addr:x_ip': obj = {'id' : stix_id, 'type' : type, 'value' : field0} return obj path = self.field.split(':')[1:-1] value_name = self.field.split(':')[-1] obj = {'id' : stix_id, 'type' : type} current_obj = obj for step in path: current_obj[step] = {} current_obj = current_obj[step] current_obj[value_name] = field0 return obj def present_results(self, results): dict_results = {} for arango_id, stix_id, field0 in results: if not str(arango_id) in dict_results: dict_results[str(arango_id)] = [] dict_results[str(arango_id)] += [self.craft_obj_from_request(stix_id, field0)] return dict_results def query(self, operator, value, feed): if value[0] == '"' and value[-1] == '"': value = "'" + value[1:-1] + "'" self.table_name = feed.storage_paradigm.get_collection_name(feed) + self.uuid if self.field == 'ipv4-addr:x_ip': middle_sql = 'field0 >> ' + value middle_sql += ' OR field0 = ' + value else: middle_sql = 'field0 ' + operator_map[operator] + ' ' + value sql = 'select arango_id, stix_id, field0 from ' + self.table_name + ' where ' + middle_sql + ';' with PostgresOptimizer.postgres_conn.cursor() as cursor: cursor.execute(sql) results = cursor.fetchall() return self.present_results(results) def query_from_arango_results(self, col_name, results, arango_conn): # ! BUG : 2 times the same results self.table_name = col_name + self.uuid pg_results = [] for r in results: try: r = r.getStore() except: pass if r['type'] == self.field.split(':')[0] or\ (self.field == 'ipv4-addr:x_ip' and r['type'] == 'ipv4-addr'): sql = 'select arango_id, stix_id, field0 from ' + self.table_name + ' where arango_id = \'' + r['_key'] + '\'' cursor = PostgresOptimizer.postgres_conn.cursor() cursor.execute(sql) pg_results += cursor.fetchall() pg_results = self.present_results(pg_results) cross = [] for r in results: if r['_key'] in pg_results: for x in pg_results[r['_key']]: r = copy.deepcopy(r) cross.append(deep_dict_update(r, x)) return cross def crosses_results_with_arango(self, results, arango_conn, col_name) -> list: aql2 = 'for el in %s filter el._key in %s return el' % (col_name, str(list(results.keys()))) aql_results = [result.getStore() for result in arango_conn.AQLQuery(aql2, raw_results=True)] matched_results = [] for m in aql_results: obj = copy.deepcopy(m) for pg_obj in results[m['_key']]: deep_dict_update(obj, pg_obj) matched_results.append(obj) return matched_results def __del__(self): if self.table_created and PostgresOptimizer.postgres_conn: idx_name = 'idx_' + self.uuid sql = 'CREATE INDEX ' + idx_name + ' ON ' + self.table_name + '(field0)' try: with PostgresOptimizer.postgres_conn.cursor() as cursor: cursor.execute(sql) except: pass if PostgresOptimizer.postgres_conn: PostgresOptimizer.postgres_conn.commit() def __dict__(self): return { 'class': str(self.__class__.__name__).lower(), 'field' : self.field, 'uuid' : self.uuid } def __extract_field_type(self, field, stix_object): object = copy.deepcopy(stix_object) if field.split(':')[0] == object['type']: for f in field.split(':')[1:]: try: object = object[f] except (TypeError, KeyError): raise InvalidObjectForOptimizer(stix_object['type']) return type(object).__name__ else: raise InvalidObjectForOptimizer(stix_object['type']) def __extract_field_value(self, field, stix_object): object = copy.deepcopy(stix_object) if field.split(':')[0] == object['type']: for f in field.split(':')[1:]: try: object = object[f] except (TypeError, KeyError): raise InvalidObjectForOptimizer(stix_object['type']) return object else: raise InvalidObjectForOptimizer(stix_object['type']) def __create_table(self, feed, stix_object): try: if self.field != 'ipv4-addr:x_ip': type_ = self.__extract_field_type(self.field, stix_object) value = self.__extract_field_value(self.field, stix_object) type_ = convert_type(type_, value) else: type_ = 'inet' content = 'field0 ' + type_ + ', arango_id int, stix_id text' self.table_name = feed.storage_paradigm.get_collection_name(feed) + self.uuid cursor = PostgresOptimizer.postgres_conn.cursor() base_query = 'create table ' + self.table_name + ' (%s);' query = base_query % (content) cursor.execute(query) cursor.close() PostgresOptimizer.postgres_conn.commit() except DuplicateTable: pass self.table_created = True def list_all_table(self): s = "SELECT" s += " table_schema" s += ", table_name" s += " FROM information_schema.tables" s += " WHERE" s += " (" s += " table_schema = 'public'" s += " )" s += " ORDER BY table_schema, table_name;" with PostgresOptimizer.postgres_conn.cursor() as cursor: cursor.execute(s) results = cursor.fetchall() return [list(r)[1] for r in results] def drop_table(self, feed_name) -> bool: try: for table_name in self.list_all_table(): if table_name.startswith(feed_name): sql = 'drop table ' + table_name with PostgresOptimizer.postgres_conn.cursor() as cursor : cursor.execute(sql) PostgresOptimizer.postgres_conn.commit() self.table_created = False return True except Exception: return False def delete_fields_in_object(self, object): object = copy.deepcopy(object) object_type = self.field.split(':')[0] field_path = self.field.split(':')[1:-1] last_field = self.field.split(':')[-1] if object['type'] == object_type: dict_to_remove = object for f in field_path: if f in dict_to_remove: dict_to_remove = dict_to_remove[f] else: break if last_field in dict_to_remove: del dict_to_remove[last_field] if self.field == 'ipv4-addr:x_ip': if 'value' in object: del object['value'] if 'id' in object: del object['id'] return object @staticmethod def connect_db(): auth = "dbname='%s' user='%s' host='%s' password='%s' port='%s'" auth = auth % ( PostgresOptimizer.db_name, PostgresOptimizer.db_user, PostgresOptimizer.db_host, PostgresOptimizer.db_pass, PostgresOptimizer.db_port ) PostgresOptimizer.postgres_conn = psycopg2.connect(auth) ``` #### File: stix2arango/test/test_main.py ```python import unittest import sys sys.path.insert(0, '/app') sys.path.insert(0, '.') from stix2 import IPv4Address, AutonomousSystem, Identity from stix2 import Relationship, Incident, IPv6Address from pyArango.connection import * from stix2arango.feed import Feed, vaccum from stix2arango.request import Request from stix2arango.storage import GROUPED, GROUPED_BY_MONTH, TIME_BASED, STATIC from stix2arango.utils import get_database from stix2arango import stix_modifiers from datetime import datetime, timedelta db_conn = get_database() class GeneralTest(unittest.TestCase): def setUp(self): self.autonomous_system = AutonomousSystem(number=1234, name='Google') self.ipv4 = IPv4Address(value='172.16.17.32', belongs_to_refs=[self.autonomous_system.id]) self.identity = Identity(name='<NAME>', identity_class='individual') self.relation = Relationship(source_ref=self.identity.id, target_ref=self.ipv4.id, relationship_type='attributed-to') self.ipv4_net = IPv4Address(value='172.16.31.10/24', belongs_to_refs=[self.autonomous_system.id]) self.ipv6 = IPv6Address(value='2001:0db8:85a3:0000:0000:8a2e:0370:7334', belongs_to_refs=[self.autonomous_system.id]) self.feed = Feed(db_conn, 'timefeed', tags=['time_based'], storage_paradigm=TIME_BASED) def test_insert(self): self.feed.insert_stix_object_in_arango([self.ipv4, self.autonomous_system, self.identity, self.relation, self.ipv4_net, self.ipv6]) # test with grouped paradigm def test_grouped(self): autonomous_system = AutonomousSystem(number=1234, name='Google') ipv4 = IPv4Address(value='172.16.17.32', belongs_to_refs=[autonomous_system.id]) identity = Identity(name='<NAME>', identity_class='individual') relation = Relationship(source_ref=identity.id, target_ref=ipv4.id, relationship_type='attributed-to') feed = Feed(db_conn, 'groupedfeed', tags=['paynoattention', 'grouped'], storage_paradigm=GROUPED) feed.insert_stix_object_in_arango([ipv4, autonomous_system, identity, relation]) # test with grouped-by-month paradigm feed = Feed(db_conn, 'grouped_by_month_feed', tags=['paynoattention', 'dogstory'], storage_paradigm=GROUPED_BY_MONTH) identity = Identity(name='<NAME>', identity_class='individual') course_of_action = Incident(name='INC 1078', description='My dog barked on neighbors') relation = Relationship(source_ref=course_of_action.id, target_ref=identity.id, relationship_type='attributed-to') feed.insert_stix_object_in_arango([identity, course_of_action, relation]) feeds = Feed.get_last_feeds(db_conn, datetime(2022, 12, 12)) def test_request_1(self): request = Request(db_conn, datetime.now()) results = request.request(" [ipv4-addr:x_ip = '172.16.17.32' ] ", tags=['time_based'], max_depth=1) self.assertEqual(len(results), 5) request = Request(db_conn, datetime.now()) results = request.request("""[ identity:name = '<NAME>']""", tags=['time_based']) self.assertEqual(len(results), 3) def test_request_2(self): feed = Feed(db_conn, 'patterntestfeed', tags=['patterntestfeed'], storage_paradigm=TIME_BASED, ) ipv4 = IPv4Address(value='192.168.127.12/24') feed.insert_stix_object_in_arango([ipv4]) request = Request(db_conn, datetime.now()) results = request.request("[ipv4-addr:x_ip='172.16.17.32']", tags=['patterntestfeed']) self.assertEqual(len(results), 1) results = request.request("[ malware:name = 'Adware' ]", tags=['patterntestfeed']) self.assertEqual(len(results), 0) def test_vaccum(self): feed = Feed(db_conn, 'vaccumentest', tags=['vaccum'], storage_paradigm=TIME_BASED, vaccum_date=datetime.fromtimestamp(10)) ipv4 = IPv4Address(value='192.168.127.12/24') feed.insert_stix_object_in_arango([ipv4]) vaccum(db_conn) feeds = Feed.get_last_feeds(db_conn, datetime(2022, 12, 12)) for feed in feeds: if feed.feed_name == 'vaccumentest': raise Exception('Vaccum failed') def test_optimisation_patch(self): r = '[ipv4-addr:value = "mushroom" OR ipv4-addr:net != "red hot"]' request = Request(db_conn, datetime.now()) results = request.request(r) self.assertGreater(len(results), 0) def test_patch_issue20(self): feed = Feed(db_conn, 'patch20', tags=['patch20'], storage_paradigm=TIME_BASED) ipv4 = IPv4Address(value='172.16.17.32') identity = Identity(name='<NAME>', identity_class='individual') feed.insert_stix_object_in_arango([ipv4, identity]) autonomous_system = AutonomousSystem(number=1234, name='Google') ipv4 = IPv4Address(value='172.16.17.32', belongs_to_refs=[autonomous_system.id]) feed.insert_stix_object_in_arango([ipv4, autonomous_system]) feeds = Feed.get_last_feeds(db_conn, datetime.now()) for f in feeds: if f.feed_name == 'patch20': self.assertEqual(f.inserted_stix_types, ['ipv4-addr', 'identity', 'autonomous-system'] ) def test_static_storage_issue_21(self): feed = Feed(db_conn, 'staticfeed', storage_paradigm=STATIC) ipv4 = IPv4Address(value='172.16.17.32') feed.insert_stix_object_in_arango([ipv4]) col_name = feed.storage_paradigm.get_collection_name(feed) self.assertEqual(db_conn[col_name].count(), 1) feed = Feed(db_conn, 'staticfeed', storage_paradigm=STATIC) feed.insert_stix_object_in_arango([self.identity, self.autonomous_system]) self.assertEqual(db_conn[col_name].count(), 2) def test_grouped_search(self): request = Request(db_conn, datetime.now() - timedelta(days=1000)) r = request.request("[identity:name = '<NAME>']", tags=['grouped']) self.assertGreater(len(r), 0) ``` #### File: stix2arango/test/test_postgresql.py ```python from ipaddress import IPV4LENGTH import psycopg2 import unittest import os import sys from datetime import datetime from requests import request sys.path.insert(0, '/app') sys.path.insert(0, '.') sys.path.insert(0, '..') from psycopg2.errors import UndefinedTable, InFailedSqlTransaction from stix2 import IPv4Address, AutonomousSystem, Identity, File from stix2 import Relationship, Incident, IPv6Address from pyArango.connection import Connection from pyArango.theExceptions import CreationError from stix2arango.feed import Feed, vaccum from stix2arango.storage import TIME_BASED, STATIC from stix2arango.postgresql import PostgresOptimizer from stix2arango.request import Request from stix2arango.utils import get_database db = 'stix2arango' user = 'root' pass_ = '<PASSWORD>' host = 'localhost' def get_number_of_table_for_feed(feed_name, cursor): s = "SELECT" s += " table_schema" s += ", table_name" s += " FROM information_schema.tables" s += " WHERE" s += " (" s += " table_schema = 'public'" s += " )" s += " ORDER BY table_schema, table_name;" cursor = PostgresOptimizer.postgres_conn.cursor() cursor.execute(s) results = [list(r)[1] for r in cursor.fetchall()] results = [r for r in results if r.startswith(feed_name) ] cursor.close() return len(results) auth = "dbname='%s' user='%s' host='%s' password='%s'" % (db, user, host, pass_) arango_conn = get_database() postgres_conn = psycopg2.connect(auth) PostgresOptimizer.postgres_conn = postgres_conn class TestMerge(unittest.TestCase): def setUp(self) : self.feed = Feed( arango_conn, 'posgres_merge_test', tags=['postgres'], date=datetime.now(), storage_paradigm=TIME_BASED ) self.optimizer = PostgresOptimizer('ipv4-addr:x_ip') self.feed.optimizers.append(self.optimizer) self.insert_obj() def insert_obj(self): obj_list = [] autonomous_system_1 = AutonomousSystem(number=123, name='fake') autonomous_system_2 = AutonomousSystem(number=124, name='fake2') obj_list += [autonomous_system_1] obj_list += [autonomous_system_2] obj_list += [IPv4Address(value='192.168.127.12', belongs_to_refs=[autonomous_system_1.id])] obj_list += [IPv4Address(value='172.16.17.32', belongs_to_refs=[autonomous_system_1.id])] obj_list += [IPv4Address(value='192.168.3.11', belongs_to_refs=[autonomous_system_1.id])] obj_list += [IPv4Address(value='172.16.31.10', belongs_to_refs=[autonomous_system_2.id])] obj_list += [IPv4Address(value='172.16.58.3', belongs_to_refs=[autonomous_system_1.id])] obj_list += [IPv4Address(value='192.168.127.12', belongs_to_refs=[autonomous_system_2.id])] self.feed.insert_stix_object_in_arango(obj_list) def test_obj_merge(self): aql = 'for el in ' + self.feed.storage_paradigm.get_collection_name(self.feed) + ' return el' results = arango_conn.AQLQuery(aql, raw_results=True) assert(len(results) == 4) sql = 'select * from ' + self.optimizer.table_name + ';' cursor = PostgresOptimizer.postgres_conn.cursor() cursor.execute(sql) results = cursor.fetchall() cursor.close() assert(len(results) == 6) request = Request(arango_conn, datetime.now()) results = request.request(" [autonomous-system:number = 124 ] ", max_depth=1, tags=['postgres']) assert(len(results) == 3) class TestOptimizer(unittest.TestCase): def setUp(self): self.feed = Feed( arango_conn, 'posgres_test', tags=['test_postgres_optimizer'], date=datetime.now(), storage_paradigm=TIME_BASED ) optimized_field0 = 'ipv4-addr:value' optimizer0 = PostgresOptimizer(optimized_field0) optimized_field1 = 'ipv4-addr:x_ip:broadcast_addr' optimizer1 = PostgresOptimizer(optimized_field1) self.feed.optimizers.append(optimizer0) self.insert() def insert(self): _autonomous_system = AutonomousSystem(number=1234, name='Google') self.ipv4_1 = IPv4Address(value='172.16.31.10', belongs_to_refs=[_autonomous_system.id]) ipv4_2 = IPv4Address(value='192.168.3.11/24', belongs_to_refs=[_autonomous_system.id]) _identity = Identity(name='<NAME>', identity_class='individual') _relation = Relationship(source_ref=_identity.id, target_ref=self.ipv4_1.id, relationship_type='attributed-to') self.feed.insert_stix_object_in_arango([_autonomous_system,self.ipv4_1 , ipv4_2, _identity, _relation]) def test_postgres_optimizer(self): request = Request(arango_conn, datetime.now()) results = request.request(" [ipv4-addr:value = '172.16.31.10' ] ", max_depth=0, tags=['test_postgres_optimizer']) dict_1 = dict(self.ipv4_1) dict_2 = dict(results[0]) del dict_2['x_tags'] del dict_2['x_feed'] self.assertEqual(len(dict_1.keys()), len(dict_2.keys())) self.assertEqual(dict_1, dict_2) class TestRemoveField(unittest.TestCase): def test_remove_field(self): optimized_field0 = 'ipv4-addr:value' optimizer0 = PostgresOptimizer(optimized_field0) obj1 = {'type': 'ipv4-addr', 'value' : 'coucou'} obj2 = {'type': 'domain-name', 'value' : 'coucou'} r = optimizer0.delete_fields_in_object(obj1) self.assertEqual(r, {'type': 'ipv4-addr'}) r = optimizer0.delete_fields_in_object(obj2) self.assertEqual(r, {'type': 'domain-name', 'value': 'coucou'}) obj3 = {'type': 'ipv4-addr', 'value2' : 'coucou'} r = optimizer0.delete_fields_in_object(obj3) class TestVaccum(unittest.TestCase): def setUp(self): self.feed = Feed( arango_conn, 'v', tags=['postgres'], date=datetime.now(), storage_paradigm=TIME_BASED, vaccum_date=datetime.fromtimestamp(10) ) optimized_field0 = 'ipv4-addr:value' self.optimizer0 = PostgresOptimizer(optimized_field0) self.feed.optimizers.append(self.optimizer0) ipv4 = IPv4Address(value='172.16.31.10/24') self.feed.insert_stix_object_in_arango([ipv4]) def test_vaccum(self): vaccum(arango_conn) feeds = Feed.get_last_feeds(arango_conn, datetime(2022, 12, 12)) feeds = [f for f in feeds if 'v' == f.feed_name] self.assertEqual(len(feeds), 0) class StaticStorageTest(unittest.TestCase): def setUp(self): feed = Feed( arango_conn, 'posgres_test_static', tags=['postgres'], date=datetime.now(), storage_paradigm=STATIC ) optimizer2 = PostgresOptimizer('ipv4-addr:x_ip') feed.optimizers.append(optimizer2) ipv4 = IPv4Address(value='172.16.31.10') feed.insert_stix_object_in_arango([ipv4]) feed = Feed( arango_conn, 'posgres_test_static', tags=['postgres'], date=datetime.now(), storage_paradigm=STATIC ) optimizer2 = PostgresOptimizer('ipv4-addr:x_ip') feed.optimizers.append(optimizer2) ipv4_1 = IPv4Address(value='172.16.31.10/24') ipv4_2 = IPv4Address(value='172.16.17.32') feed.insert_stix_object_in_arango([ipv4_1, ipv4_2]) self.feed = feed def test_static_storage(self): nb_tables = get_number_of_table_for_feed( self.feed.feed_name, PostgresOptimizer.postgres_conn.cursor() ) self.assertEquals(nb_tables, 1) class MatchIpOnCidrTest(unittest.TestCase): def setUp(self): self.feed = Feed( arango_conn, 'postgres_test_cidr', tags=['postgres_test_cidr'], date=datetime.now(), storage_paradigm=TIME_BASED ) ipv4_1 = IPv4Address(value='172.16.31.10/24') ipv4_2 = IPv4Address(value='172.16.17.32') self.feed.insert_stix_object_in_arango([ipv4_1, ipv4_2]) self.pattern = "[ipv4-addr:x_ip = '172.16.17.32']" self.request = Request(arango_conn, datetime.now()) def test_match_ip_on_cidr(self): results = self.request.request(self.pattern, max_depth=0, tags=['postgres_test_cidr']) self.assertEqual(len(results), 2) class TwoOptimizesTest(unittest.TestCase): def setUp(self): feed = Feed( arango_conn, 'postgres_2optimizers', tags=['postgres_test2'], date=datetime.now(), storage_paradigm=TIME_BASED ) optimizer1 = PostgresOptimizer('ipv4-addr:x_ip') optimizer2 = PostgresOptimizer('autonomous-system:number') feed.optimizers.append(optimizer1) feed.optimizers.append(optimizer2) obj_list = [] autonomous_system_1 = AutonomousSystem(number=123, name='fake') autonomous_system_2 = AutonomousSystem(number=124, name='fake2') obj_list += [autonomous_system_1] obj_list += [autonomous_system_2] obj_list += [IPv4Address(value='192.168.127.12', belongs_to_refs=[autonomous_system_1.id])] obj_list += [IPv4Address(value='172.16.17.32', belongs_to_refs=[autonomous_system_1.id])] obj_list += [IPv4Address(value='192.168.3.11', belongs_to_refs=[autonomous_system_1.id])] obj_list += [IPv4Address(value='172.16.31.10', belongs_to_refs=[autonomous_system_2.id])] obj_list += [IPv4Address(value='172.16.58.3', belongs_to_refs=[autonomous_system_1.id])] obj_list += [IPv4Address(value='192.168.127.12', belongs_to_refs=[autonomous_system_2.id])] self.obj_list = obj_list self.feed = feed def test_insert(self): self.feed.insert_stix_object_in_arango(self.obj_list) def test_request(self): request = Request(arango_conn, datetime.now()) results = request.request(" [autonomous-system:number = 124 ] ", max_depth=1, tags=['postgres_test2']) # raise Exception(str(results)) self.assertEqual(len(results), 3) results = request.request(" [ipv4-addr:x_ip = '192.168.127.12' ] ", max_depth=1, tags=['postgres_test2']) self.assertEqual(len(results), 2) class TestTreesObject(unittest.TestCase): def setUp(self): self.feed = Feed( arango_conn, 'posgres_trees_obj', tags=['posgres_trees_obj'], date=datetime.now(), storage_paradigm=STATIC ) self.file1 = File(name='file1', hashes={ 'md5':'e0323a9039add2978bf5b49550572c7c', 'sha256':'961b6dd3ede3cb8ecbaacbd68de040cd78eb2ed5889130cceb4c49268ea4d506'}) self.file2 = File(name='file2', hashes={ 'md5':'1aabac6d068eef6a7bad3fdf50a05cc8', 'sha256':'3b64db95cb55c763391c707108489ae18b4112d783300de38e033b4c98c3deaf'}) self.optimizer = PostgresOptimizer('file:hashes:md5') self.feed.optimizers.append(self.optimizer) self.feed.insert_stix_object_in_arango([self.file1, self.file2]) def test_trees_obj(self): feed = Feed( arango_conn, 'posgres_trees_obj', tags=['posgres_trees_obj'], date=datetime.now(), storage_paradigm=STATIC ) file1 = File(name='file1', hashes={ 'md5':'e0323a9039add2978bf5b49550572c7c', 'sha256':'961b6dd3ede3cb8ecbaacbd68de040cd78eb2ed5889130cceb4c49268ea4d506'}) file2 = File(name='file2', hashes={ 'md5':'1aabac6d068eef6a7bad3fdf50a05cc8', 'sha256':'3b64db95cb55c763391c707108489ae18b4112d783300de38e033b4c98c3deaf'}) optimizer = PostgresOptimizer('file:hashes:MD5') feed.optimizers.append(optimizer) feed.insert_stix_object_in_arango([file1, file2]) request = Request(arango_conn, datetime.now()) results = request.request(" [file:hashes:MD5 = 'e0323a9039add2978bf5b49550572c7c'] ", max_depth=1, tags=['posgres_trees_obj']) self.assertEqual(len(results), 1) dict_file = {k:v for k,v in dict(file1).items() if k not in ['x_feed', 'x_tags'] } # ! OK dict_result0 = {k:v for k,v in results[0].items() if k not in ['x_feed', 'x_tags'] } # ! OK self.assertEqual(dict_result0, dict_file) cursor = PostgresOptimizer.postgres_conn.cursor() sql = 'select * from ' + optimizer.table_name + ';' cursor.execute(sql) results = cursor.fetchall() cursor.close() PostgresOptimizer.postgres_conn.commit() self.assertEqual(len(results), 2) TestMerge() ```
{ "source": "1lch2/PythonExercise", "score": 4 }
#### File: PythonExercise/data_structures/bit_operation.py ```python class Bit: """Bit operation solutions """ @staticmethod def getSmallest2Power(x: int) -> int: """For the given integer x, return the smallest power of 2 that bigger than x. """ i = 0 # 先循环右移得到最高有效位 while x > 0: x = x >> 1 i += 1 j = 1 # 再循环左移得到次幂 while i > 0: j = j << 1 i -= 1 return j @staticmethod def hammingWeight(n: int, method=0) -> int: """Count the number of 1 in the binary of input integer. Args: n: The input integer. method: Different method. Can be 0 or 1: """ count = 0 if method == 0: # n 循环右移和 1 按位与 while n != 0: count += n & 1 n = n >> 1 elif method == 1: # 统计 n 和 n-1 按位与得到 0 的次数 #* n - 1 : 最右边的 1 变为 0 , 此 1 右边的 0 都变为 1 #* n & (n-1): n 最右侧的 1 变为 0 #* e.g.: #* n = 1010 1000 #* n-1 = 1010 0111 #* n&(n-1) = 1010 0000 while n != 0: n = n & (n - 1) count += 1 else: raise(ValueError("Invalid method number, should be 0 or 1.")) return count @classmethod def reverseBits(cls, n: int) -> int: """Reverse a 32-bit unsigned integer. """ res = 0 power = 31 # 32位无符号整数 while n != 0: #* n&1 取最右侧的位 #* 左移 power 位将右侧的位换到左侧对称位置 res = res | ((n & 1) << power) n = n >> 1 power -= 1 return res @classmethod def isPowerOfTwo(cls, n: int, method=0) -> bool: """Judge if the input integer is power of 2. Args: n: Integer. method: method=0: using complement code method. method=1: using bit and method. Returns: Bool value. """ if method==0: # 补码表示法中,x 与 -x 的共同点为最右侧符号相同 #* e.g.: #* x补 = 15 = 0 0111 #* -x补 = -15 = 1 1001 #* x & (-x) = 0 0001 != x #* x补 = 16 = 0 1000 #* -x补 = -16 = 1 1000 #* x & (-x) = 0 1000 == x if n == 0: return False return n & (-n) == n elif method == 1: #* n & (n-1): n 最右侧的 1 变为 0 #* 若为 2 的 n 次幂, 只有一个 1 if n == 0: return False return n & (n-1) == 0 else: raise(ValueError("Invalid method number, should be 0 or 1.")) @classmethod def isDivisible(cls, a: int, b: int) -> bool: """Judge if the input integer b can be divided by a. Args: a: The dividend b: The divisor Returns: Bool value. """ #* 思路来源:github.com/LinkinYoung #* 若 a = kb,则可以将 k 转化为二进制 #* a / b 的过程转化为 a 减去多个 k 的整数倍,直到 b 不再需要乘倍数 #* 此时的结果为除法的余数,余数为 0 显然可以整除 if a < b: return cls.isDivisible(b, a) while True: k = b # 保留除数的副本 i = 0 # 记录左移次数 # 对除数循环左移,直到高位在被除数高位的下一位 while (k << 1) < a: k = k << 1 i += 1 a = a - k if i == 0: # 左移次数为 0 时除法结束,此时检查余数是否为 0 return a == 0 @classmethod def addWithoutSign(cls, a: int, b: int) -> int: """Calculate a + b without using "+" """ #* ^ 异或,相当于无进位求和 #* & 与,相当于求进位数 #* 公式:(a ^ b) ^ ((a & b) << 1) #* 重复直到没有进位 #* Python 中整数以补码形式存储 x = 0xffffffff # 32位无符号整数 a, b = a&x, b&x # 舍去32位以上的位数 while b != 0: # 当进位数为 0 时跳出 c = ((a & b) << 1) & x # 进位 a = a ^ b # 无进位求和 b = c# b 用进位数代替 # 0x7fffffff 是最大的32位正整数 if a <= 0x7fffffff: return a # 若结果为负数,则先将32位部分按位取反,再将整个数字取反 # 结果为32位以内的不变,32位之外取反,得到负数 else: return ~(a ^ x) if __name__ == "__main__": print(Bit.getSmallest2Power(20)) print(Bit.hammingWeight(15)) print(bin(31)) print(bin(Bit.reverseBits(31))) print(Bit.isDivisible(9, 3)) print(Bit.isDivisible(9, 2)) ``` #### File: PythonExercise/data_structures/LFUcache.py ```python class Node: """Dual linked list node object. """ def __init__(self, key, val): self.val = val self.key = key self.times = 0 self.prev = None self.next = None def insert(self, position: "Node"): """Insert node object before the given position. """ self.next = position self.prev = position.prev position.prev.next = self position.prev = self class LFUCache: """LFU cache object. The cache with less using times are closer to head. If there are caches with same using times, the older one is closer to head. """ def __init__(self, capacity: int): """Nodes are placed in ascending order of 'times' property. """ self.cap = capacity self.cache = {} # {key: pointer} self.head = Node("#", "#") self.tail = Node("#", "#") self.head.next = self.tail self.tail.prev = self.head # Set the using times for head and tail node in order to judge and sort. self.head.times = -1 self.tail.times = float("inf") def get(self, key: int) -> int: if key in self.cache: self.cache[key].times += 1 temp = self.remove_node(self.cache[key]) self.adjust(temp) return self.cache[key].val else: return -1 def put(self, key: int, value: int) -> None: """Update the LFU cache. """ if self.cap == 0: return if key in self.cache: self.cache[key].times += 1 # Add using times self.cache[key].val = value # Update value temp = self.remove_node(self.cache[key]) self.adjust(temp) # Adjust the location of the cache else: if len(self.cache) >= self.cap: temp = self.remove_node(self.head.next) # Remove node from linked list self.cache.pop(temp.key) # Remove key-value pair from cache # Create new node and insert. temp = Node(key, value) self.cache[key] = temp self.adjust(temp) def remove_node(self, node: Node) -> Node: """Remove the node from linked list and return the pointer of the node. """ # Remove from dual linked list node.prev.next = node.next node.next.prev = node.prev return node def adjust(self, node: Node): """Adjust the position of given node to suit the ascending order of times. With the while operation, the complexity is O(n) """ #TODO: improve the time complexity to O(1) temp = self.tail # Find insert position while node.times < temp.prev.times and temp != self.head.next: temp = temp.prev # Check using times and insert the node if temp.prev.times <= node.times and node.times < temp.times: node.insert(temp) ``` #### File: leetcode/array/238.py ```python from typing import List class Solution: def productExceptSelf(self, nums: List[int]) -> List[int]: res = [] l_len = len(nums) left = [0 for _ in range(l_len)] left[0] = 1 right = [0 for _ in range(l_len)] right[-1] = 1 # Calculate left side of the index. for i in range(l_len-1): left[i+1] = left[i] * nums[i] # Calculate right side of the index. for i in range(l_len-1, 0, -1): right[i-1] = right[i] * nums[i] for i in range(l_len): res.append(left[i] * right[i]) return res ``` #### File: leetcode/array/88.py ```python from typing import List # 双指针,从后向前,替换规则类似快排 class Solution: def merge(self, nums1: List[int], m: int, nums2: List[int], n: int) -> None: """ Do not return anything, modify nums1 in-place instead. """ i = m - 1 j = n - 1 p = len(nums1) - 1 # 下标不为负,需要包括 0 在内 while j >= 0 and i >= 0: if nums2[j] > nums1[i]: nums1[p] = nums2[j] j -= 1 else: # 若 nums1 当前位置数比 nums2 大,则交换nums1的数 nums1[p] = nums1[i] i -= 1 p -= 1 # 可能存在 nums1 已经交换完,但是nums1当前数字比nums2最大数字要大 # 此时 i 已经指向了负数,而 j 尚未遍历完 # nums1 此时剩下 j 个位置等待填入 (不能使用 p) nums1[:j+1] = nums2[:j+1] ``` #### File: leetcode/back_track/39.py ```python from typing import List class Solution: def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]: if target < min(candidates): return [] res = [] def backtrack(path: list, candidates: list): # 递归终止条件 1:已经达到要求 if sum(path) == target: res.append(path.copy()) # 将路径加入结果 return # 递归终止条件 2:候选为空: if candidates == []: return # 递归终止条件 3:当前无有效选择能满足要求 if sum(path) + min(candidates) > target: return for i in range(len(candidates)): if candidates[i] + sum(path) > target: # 跳过使目标不成立的候选 continue path.append(candidates[i]) backtrack(path, candidates[i:]) # 下一层递归中只能用当前及之后的元素 path.pop() backtrack([], candidates) return res if __name__ == "__main__": S = Solution() print(S.combinationSum([2,3,5], 8)) ``` #### File: leetcode/back_track/40.py ```python from typing import List class Solution: def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]: if target < min(candidates): return [] candidates.sort() res = [] used = [False for _ in range(len(candidates))] def backtrack(path: list, candidates: list, used: list): if sum(path) == target: res.append(path.copy()) return # 需要先判断候选是否为空,不然下一个递归结束条件会出错 if candidates == []: return if sum(path) + min(candidates) > target: return for i in range(len(candidates)): # 跳过不符合要求的元素 if sum(path) + candidates[i] > target: continue # 跳过已经使用过的元素 if used[i]: continue # 跳过上一轮迭代选择的相同元素 if i > 0: if candidates[i] == candidates[i-1] and not used[i]: continue used[i] = True path.append(candidates[i]) # 在本次选择之后的元素中进入下一层递归,同时对 used 数组做出同样调整 backtrack(path, candidates[i+1:], used[i+1:]) used[i] = False path.pop() backtrack([], candidates, used) return res if __name__ == "__main__": S = Solution() print(S.combinationSum2([10,1,2,7,6,1,5], 8)) ``` #### File: leetcode/back_track/77.py ```python from typing import List class Solution: def combine(self, n: int, k: int) -> List[List[int]]: if k < 1: return [] selection = [i for i in range(1, n+1)] # 选项 res = [] def backtrack(start: int, path: list, selection: list): # 递归终止:path 已经有指定数量的元素k if len(path) == k: res.append(path[:]) # 使用拷贝避免引用导致结果被修改 return # 遍历可用选择 for i in range(start, n): path.append(selection[i]) # 排除本次选择元素,进入下一层递归 backtrack(i+1, path, selection) path.pop() # 删除本次选择元素 backtrack(0, [], selection) return res ``` #### File: leetcode/binary_tree/100.py ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right # 使用广度优先遍历获取序列化的二叉树,再对比返回的序列 # 时间和空间复杂度不太好 class Solution: def isSameTree(self, p: TreeNode, q: TreeNode) -> bool: if self.bfs(p) == self.bfs(q): return True else: return False def bfs(self, root: TreeNode) -> str: if not root: return [] queue = [root] res = [] while len(queue) != 0: current = queue.pop(0) if current is not None: res.append(current.val) else: res.append(None) if current != None: queue.append(current.left) queue.append(current.right) return res # https://leetcode-cn.com/problems/same-tree/solution/hua-jie-suan-fa-100-xiang-tong-de-shu-by-guanpengc/ # 深度优先遍历并比较 class Solution2: def isSameTree(self, p: TreeNode, q: TreeNode) -> bool: # 若当前节点都为空 if p is None and q is None: return True # 若当前节点一个为空而一个不为空 if p is None or q is None: return False # 若当前节点值不相同 if p.val != q.val: return False # 递归进入左右子树并返回结果的与 # 触发任意截止条件返回布尔值 return self.isSameTree(p.left, q.left) and self.isSameTree(p.right, q.right) ``` #### File: leetcode/binary_tree/235.py ```python class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None import copy class Solution: def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode': if p.val > root.val and q.val > root.val: return self.lowestCommonAncestor(root.right, p, q) elif p.val < root.val and q.val < root.val: return self.lowestCommonAncestor(root.left, p, q) else: return root ``` #### File: leetcode/binary_tree/297.py ```python class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class Codec: def serialize(self, root): """Encodes a tree to a single string. :type root: TreeNode :rtype: str """ if root is None: return "[]" queue = [root] res = [] while len(queue) != 0: current = queue[0] if isinstance(current, TreeNode): res.append(current.val) else: res.append(current) queue.pop(0) if current != None: # 把空的子节点也加入队列 queue.append(current.left) queue.append(current.right) # Remove the None in tail. for i in range(len(res)-1, -1, -1): if res[i] != None: res = res[:i+1] break return str(res) def deserialize(self, data): """Decodes your encoded data to tree. :type data: str :rtype: TreeNode """ l = eval(data) # 解析list字符串 if len(l) == 0: return None root = TreeNode(l[0]) # root node queue = [root] # 建立队列并将root压入队列 i = 0 # 广度优先遍历添加节点 # 广度优先添加节点和遍历二叉树逻辑相同 # current标记当前父节点,依次更新下标将非空的子节点加入 while len(queue) != 0: current = queue.pop(0) i += 1 # 添加左节点 if i < len(l): if l[i] != None: current.left = left = TreeNode(l[i]) queue.append(left) i += 1 # 添加右节点 if i < len(l): if l[i] != None: current.right = right = TreeNode(l[i]) queue.append(right) return root # Your Codec object will be instantiated and called as such: # codec = Codec() # codec.deserialize(codec.serialize(root)) if __name__ == "__main__": # Test case: root # 0 # / \ # 1 2 # / \ \ # 3 4 5 # / \ # 6 7 # / # 8 root = TreeNode(0) node1 = TreeNode(1) node2 = TreeNode(2) node3 = TreeNode(3) node4 = TreeNode(4) node5 = TreeNode(5) node6 = TreeNode(6) node7 = TreeNode(7) node8 = TreeNode(8) root.left = node1 root.right = node2 node1.left = node3 node1.right = node4 node2.right = node5 node5.left = node6 node5.right = node7 node7.left = node8 codec = Codec() tree_str = codec.serialize(root) tree = codec.deserialize(tree_str) print(tree_str) queue = [tree] while len(queue) != 0: current = queue.pop(0) print(current.val, end=" -> ") if current.left: queue.append(current.left) if current.right: queue.append(current.right) ``` #### File: leetcode/binary_tree/98.py ```python class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None # Time: 89%, Memory: 67% class Solution: def isValidBST(self, root: TreeNode) -> bool: if root is None: return True return self.judgeTree(root) def judgeTree(self, root: TreeNode, lower=float("-inf"), upper=float("inf")) -> bool: #* 为节点的比较上下界设置默认值 #* 每次比较本节点和它的父节点而不是向下比较 #* e.g.: #* 左节点一定小于它的父节点,则将上界设为父节点,下界维持默认的负无穷 # 若到达为空的叶子节点,显然是BST if root is None: return True # 若非叶子节点时 rootVal = root.val if rootVal <= lower or rootVal >= upper: return False # 递归进入左右子树判断 return self.judgeTree(root.left, lower, rootVal) and self.judgeTree(root.right, rootVal, upper) if __name__ == "__main__": S = Solution() root = TreeNode(1) l1 = TreeNode(1) root.left = l1 print(S.isValidBST(root)) ``` #### File: leetcode/bit_operation/231.py ```python class Solution: def isPowerOfTwo(self, n: int) -> bool: # 补码表示法中,x 与 -x 的共同点为最右侧符号相同 #* e.g.: #* x补 = 15 = 0 0111 #* -x补 = -15 = 1 1001 #* x & (-x) = 0 0001 != x #* x补 = 16 = 0 1000 #* -x补 = -16 = 1 1000 #* x & (-x) = 0 1000 == x if n == 0: return False return n & (-n) == n class Solution2: def isPowerOfTw0(self, n: int) -> bool: #* n & (n-1): n 最右侧的 1 变为 0 #* 若为 2 的 n 次幂, 只有一个 1 if n == 0: return False return n & (n-1) == 0 ``` #### File: leetcode/bit_operation/JZ56-1.py ```python class Solution: def singleNumbers(self, nums: List[int]) -> List[int]: # 对所有数字异或得到 a,b两数的异或结果 xor = 0 for i in nums: xor = xor ^ i # 取异或后最后一个为 1 的位 # 因为异或结果为 1 的位在两数上必不相同 # 因此可以按照该位来对所有数字进行分组 mask = 1 while xor & mask == 0: mask = mask << 1 # 按照与 mask 的异或结果分组进行异或 m, n = 0, 0 for i in nums: if i & mask == 0: # 此处不能以 1 来判断,结果只能为 0 或者 mask m = m ^ i else: n = n ^ i return [m, n] ``` #### File: leetcode/bit_operation/JZ56-2.py ```python from typing import List # LeetCode 137 class Solution: def singleNumber(self, nums: List[int]) -> int: bits = [0 for x in range(32)] # 记录32位里每一位 1 出现的次数 for num in nums: j = 0 while j < 32: # 对一个数字进行32位循环右移,给对应出现 1 的位加 1 bits[j] += num & 1 num = num >> 1 j += 1 res = 0 for i in range(32): bits[i] %= 3 # 对每一位的 1 的数量求 3 的模 res += bits[i] * (2**i) # 累加将二进制转为十进制 return res if __name__ == "__main__": S = Solution() print(S.singleNumber([2,3,3,3])) print(S.singleNumber([1,3,3,3,4,4,4])) ``` #### File: leetcode/linked_list/203.py ```python class ListNode: def __init__(self, x): self.val = x self.next = None # O(n) 复杂度的遍历法 # Time: 24%, Memory: 71% class Solution: def removeElements(self, head: ListNode, val: int) -> ListNode: if head is None: return None res = ListNode("#") res.next = head temp = res while temp.next != None: # 若有值匹配的节点则删除,但是temp不移动 if temp.next.val == val: temp.next = temp.next.next else: # 没有匹配节点时向后移一位 temp = temp.next return res.next # 递归法 # 还更慢了什么玩意 class Solution2: def removeElements(self, head: ListNode, val: int) -> ListNode: # 递归终止条件:当前的头节点为空 if head is None: return None # 进入递归的部分,头节点之后的子链表 res = self.removeElements(head.next, val) # 每层递归的处理 #* 这部分处理从链表尾部向前连接 #* # -> 0 -> 1 -> 2 -> 3 -> 4 -> ^ #* head res # 若符合要求则不连接当前头节点,跳过head将res返回给下一层 if head.val == val: return res # 若不符合要求则将子链表接到当前头节点后 else: head.next = res return head ``` #### File: leetcode/linked_list/237.py ```python class Solution: def delete_node(self, node): # Idea: Delete the next node, but perserve the value of its next node to achieve the same result. node.val = node.next.val node.next = node.next.next ``` #### File: leetcode/linked_list/24.py ```python class ListNode: def __init__(self, x): self.val = x self.next = None # Time: 50%, Memory: 33% class Solution: def swapPairs(self, head: ListNode) -> ListNode: if not head: return None res = ListNode("#") # Dummy head res.next = head head = res while head.next.next != None: head = self.swapTwo(head) # 在进入下一次循环前检验是否还剩下两个以上节点 # 避免出现对 None 引用 next 的情况 if head.next is None: break return res.next # 两两交换 def swapTwo(self, head: ListNode) -> ListNode: # 0->1->2->3->4->^ first = head.next second = head.next.next head.next = second first.next = second.next second.next = first return first ``` #### File: leetcode/linked_list/25.py ```python class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def reverseKGroup(self, head: 'ListNode', k: int) -> 'ListNode': self.k = k p = ListNode(-1) res = p p.next = head q = p # Get length temp = head l_list = 1 while temp.next: temp = temp.next l_list += 1 for j in range(l_list // k): for i in range(k+1): q = q.next p = self.reverseList(p, q) q = p return res.next def reverseList(self, head, tail): _tail = tail p = head.next # 尾插法,将p指向的节点插到尾部 while p != tail: head.next = p.next p.next = _tail _tail = p p = head.next # 将head和逆序链表开头连接起来 head.next = _tail for i in range(self.k): head = head.next return head if __name__ == "__main__": l0 = ListNode(0) l1 = ListNode(1) l2 = ListNode(2) l3 = ListNode(3) l4 = ListNode(4) l5 = ListNode(5) l0.next = l1 l1.next = l2 l2.next = l3 l3.next = l4 l4.next = l5 s = Solution() res = s.reverseKGroup(l0, 2) temp = res while temp: print(temp.val) temp = temp.next ``` #### File: leetcode/search/57.py ```python from typing import List # Time: 10%, Memory: 100% class Solution: def insert(self, intervals: List[List[int]], newInterval: List[int]) -> List[List[int]]: if not intervals and not newInterval: return [] if not newInterval: return intervals intervals.append(newInterval) intervals.sort(key=lambda x: x[0]) # Same code as 56. i = 0 l = len(intervals) while i < l - 1: current = intervals[i] nextt = intervals[i+1] # 分情况讨论区间 if nextt[0] >= current[0] and nextt[0] <= current[1] and nextt[1] > current[1]: intervals.pop(i) intervals.pop(i) intervals.insert(i, [current[0], nextt[1]]) elif current[0] <= nextt[0] and current[1] >= nextt[1]: intervals.pop(i+1) elif nextt[1] <= current[1] and nextt[1] >= current[0] and nextt[0] < current[0]: intervals.pop(i) intervals.pop(i) intervals.insert(i, [nextt[0], current[1]]) else: i += 1 l = len(intervals) return intervals # Time: 45%, Memory: 100% class Solution2: def insert(self, intervals: List[List[int]], newInterval: List[int]) -> List[List[int]]: if not intervals and not newInterval: return [] if not intervals: return [newInterval] if not newInterval: return intervals i = self.binsearch(intervals, newInterval) l = len(intervals) while i < l - 1: current = intervals[i] nextt = intervals[i+1] # 分情况讨论区间 if nextt[0] >= current[0] and nextt[0] <= current[1] and nextt[1] > current[1]: intervals.pop(i) intervals.pop(i) intervals.insert(i, [current[0], nextt[1]]) elif current[0] <= nextt[0] and current[1] >= nextt[1]: intervals.pop(i+1) elif nextt[1] <= current[1] and nextt[1] >= current[0] and nextt[0] < current[0]: intervals.pop(i) intervals.pop(i) intervals.insert(i, [nextt[0], current[1]]) else: i += 1 l = len(intervals) return intervals def binsearch(self, seq: List[List[int]], target: List[int]) -> int: if target[0] > seq[len(seq)-1][0]: seq.append(target) if target[0] < seq[0][0]: seq.insert(0, target) low = 0 high = len(seq) - 1 l = high - low + 1 mid = (low + high) // 2 while l > 1: if target[0] < seq[mid][0]: high = mid elif target[0] > seq[mid][0]: low = mid elif target[0] == seq[mid][0]: seq.insert(mid+1, target) return mid l = high - low mid = (low + high) // 2 if seq[mid][0] > target[0]: seq.insert(mid, target) else: seq.insert(mid+1, target) return mid if __name__ == "__main__": intervals = [[2,3],[4,5]] newInterval = [0,3] S = Solution2() # print(S.binsearch(intervals, newInterval)) # print(intervals) print(S.insert(intervals, newInterval)) ``` #### File: leetcode/sort/350.py ```python from typing import List import collections # 求的不是按顺序的交集,是元素单独的带重复交集 # Credit: LeetCode/RUMIF class Solution: def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]: # 数两个数组中元素的个数,以元素为键,个数为值存入dict # 取两个dict的相同键的项的最小值 num1 = collections.Counter(nums1) num2 = collections.Counter(nums2) num = num1 & num2 return num.elements() # 排序后求交集 class Solution2: def intersect(self, nums1: List[int], nums2: List[int]) -> List[int]: self.qsort(nums1, 0, len(nums1)-1) self.qsort(nums2, 0, len(nums2)-1) i, j = 0, 0 res = [] while i < len(nums1) and j < len(nums2): if nums1[i] < nums2[j]: i += 1 elif nums1[i] > nums2[j]: j += 1 else: res.append(nums1[i]) i += 1 j += 1 return res # Quick sort def qsort(self, seq: list, low: int, high: int): i = low j = high if low < high: base = seq[i] while i < j: while i < j and seq[j] > base: j -= 1 if i < j: seq[i] = seq[j] i += 1 while i < j and seq[i] < base: i += 1 if i < j: seq[j] = seq[i] j -= 1 seq[i] = base self.qsort(seq, low, i-1) self.qsort(seq, i+1, high) ``` #### File: leetcode/stack/232.py ```python class MyQueue: def __init__(self): """ Initialize your data structure here. """ self.s1 = [] self.s2 = [] def push(self, x: int) -> None: """ Push element x to the back of queue. """ self.s1.append(x) def pop(self) -> int: """ Removes the element from in front of queue and returns that element. """ if not self.s2: while self.s1: self.s2.append(self.s1.pop()) return self.s2.pop() def peek(self) -> int: """ Get the front element. """ if not self.s2: while self.s1: self.s2.append(self.s1.pop()) res = self.s2.pop() self.s2.append(res) return res def empty(self) -> bool: """ Returns whether the queue is empty. """ return len(self.s1) == 0 and len(self.s2) == 0 ``` #### File: leetcode/string/1513.py ```python class Solution: def numSub(self, s: str) -> int: if not s or "1" not in s: return 0 count = 0 ones = s.split("0") for i in ones: if i == "": continue count += self.calculate(len(i)) return int(count % (1e9+7)) # 计算连续子集数量公式 # f(n) = n^2 - f(n-1) def calculate(self, num: int) -> int: f_1 = 1 i = 1 while i != num: i += 1 f_1 = i**2 - f_1 return f_1 ``` #### File: leetcode/string/151.py ```python class Solution: def reverseWords(self, s: str) -> str: stack = [] temp = "" i = 0 while i < len(s): if s[i] != " ": temp += str(s[i]) if s[i] == " " and temp != "": stack.insert(0, temp) temp = "" i += 1 if temp != "": stack.insert(0, temp) return " ".join(stack) ``` #### File: leetcode/string/165.py ```python class Solution: def compareVersion(self, version1: str, version2: str) -> int: version1 = version1.split(".") version2 = version2.split(".") l1 = len(version1) l2 = len(version2) # 补充 0 使两列表长度相等 if l1 > l2: version2.extend(['0' for _ in range(l1 - l2)]) elif l2 > l1: version1.extend(['0' for _ in range(l2 - l1)]) # 按规则比较 for i1, i2 in zip(version1, version2): if int(i1) > int(i2): return 1 elif int(i1) < int(i2): return -1 return 0 ``` #### File: leetcode/string/3.py ```python class Solution: def lengthOfLongestSubstring(self, s: str) -> int: l = len(s) if l <= 1: return l ch_set = set() right = -1 # Starts at the left of the left index length = 0 # Move left index for i in range(l): # Skip the first iteration. if i != 0: ch_set.remove(s[i-1]) # Remove last character # Move the right index # Break the loop when encounters existing character. while right + 1 < l and s[right+1] not in ch_set: # Judge the NEXT character BEFORE entering the loop ch_set.add(s[right+1]) # Add next character right += 1 # Get the maxmium length of sub-sequence. length = max(length, right - i + 1) return length ``` #### File: leetcode/string/9.py ```python class Solution: def isPalindrome(self, x: int) -> bool: return str(x) == "".join(reversed(str(x))) # 正经操作 class Solution: def isPalindrome(self, x: int) -> bool: x = str(x) i, j = 0, len(x) - 1 while i < j: # 截至条件:指针相遇并交叉后 if x[i] != x[j]: return False else: i += 1 j -= 1 return True ```
{ "source": "1liale/NameThat-", "score": 2 }
#### File: migration/versions/ef75d5fd23da_create_user_and_picture_tables.py ```python from alembic import op import sqlalchemy as sa import sqlalchemy_utils # revision identifiers, used by Alembic. revision = 'ef<PASSWORD>da' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('user', sa.Column('id', sqlalchemy_utils.types.uuid.UUIDType(), nullable=False), sa.Column('username', sa.String(length=20), nullable=False), sa.Column('email', sa.UnicodeText(), nullable=False), sa.Column('created_at', sa.DateTime(), nullable=False), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('id'), sa.UniqueConstraint('username') ) op.create_index(op.f('ix_user_email'), 'user', ['email'], unique=True) op.create_table('picture', sa.Column('id', sqlalchemy_utils.types.uuid.UUIDType(), nullable=False), sa.Column('storage_file_id', sa.String(length=60), nullable=False), sa.Column('date_created', sa.DateTime(), nullable=False), sa.Column('user_id', sqlalchemy_utils.types.uuid.UUIDType(), nullable=False), sa.ForeignKeyConstraint(['user_id'], ['user.id'], ), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('id'), sa.UniqueConstraint('storage_file_id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('picture') op.drop_index(op.f('ix_user_email'), table_name='user') op.drop_table('user') # ### end Alembic commands ### ``` #### File: backend/fish/routes.py ```python from flask import request from flask.wrappers import Response import io import json import logging from functools import wraps from keras.preprocessing.image import img_to_array import numpy as np from PIL import Image import tensorflow as tf from fish import app from backend.database.orm.models import User, Picture from backend.database.orm.session_context import SessionContext from backend.model.fish_identifier import make_model model = make_model(n_classes=20) latest = tf.train.latest_checkpoint('./model/trained_weights') model.load_weights(latest) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) fish = ['Atlamtic Salmon', 'Bluegill', 'Brook Trout', 'Channel Catfish', 'Chinook Salmon', 'Crappie', 'Flathead Catfish', 'Lake Sturgeon', 'Sea Lamphrey', 'Largemouth Bass', 'Muskellunge', 'Northern Pike', 'Not Recognized', 'Rainbow Trout', 'Rock Bass', 'Smallmouth Bass', 'Sunfish', 'Walleye', 'White Perch', 'Yellow Perch'] def exception_handler(func): @wraps(func) def _exception_handler(*args, **kwargs): try: result = func(*args, **kwargs) except Exception as e: logger.exception(e) return Response(json.dumps({'error': 'unexpected_error', 'message': str(e)}), status=401, content_type='application/json') return result return _exception_handler @app.route('/', methods=['GET', 'POST']) def handle_health_check(): """Return response 200 for successful health check""" return Response(status=200) @app.route("/user/<user_id>", methods=["GET"]) @exception_handler def get_user(user_id): with SessionContext() as session: user = session.get_first(User, id=user_id) logger.info('Successfully fetched the user') user_return = {'id': str(user.id), 'username': user.username, 'email': user.email, 'pictures': user.pictures} return Response(json.dumps(user_return), status=200, content_type='applications/json') @app.route("/user/create", methods=["POST"]) @exception_handler def create_user(): data = request.get_json() with SessionContext() as session: if data is not None: session.create(User(**data)) logger.info('Successfully created the user') return Response(status=200) else: raise('Query must be provided in the request body') @app.route("/user/update/<user_id>", methods=["POST"]) @exception_handler def update_user(user_id): data = request.get_json() with SessionContext() as session: if data is not None: session.update_any(User, User(**data), id=user_id) logger.info('Successfully updated the user') return Response(status=200) else: raise('Query must be provided in the request body') @app.route("/user/delete/<user_id>", methods=["POST"]) @exception_handler def delete_user(user_id): with SessionContext() as session: session.delete_any(User, id=user_id) logger.info('Successfully deleted the user') return Response(status=200) @app.route("/predict", methods=["POST"]) @exception_handler def predict(): if request.method == 'POST': image = request.files['fish'].read() image = Image.open(io.BytesIO(image)) if image.mode != 'RGB': image = image.convert('RGB') image = image.resize((512, 512)) image = img_to_array(image) image = np.expand_dims(image, axis=0) prediction = model.predict(image)[0] man_idx = np.argmax(prediction) predicted_fish = fish[man_idx] return Response(json.dumps({'prediction': predicted_fish}), status=200, content_type='applications/json') ```
{ "source": "1littlelamb/Dabdub_ecQuestions", "score": 3 }
#### File: Dabdub_ecQuestions/2017/erdosCalc.py ```python from tqdm import tqdm def primeFactorization(n): divisors = [ d for d in range(2,n//2+1) if n % d == 0 ] return [ d for d in divisors if \ all( d % od != 0 for od in divisors if od != d ) ] howMany = input('\n' + 'How many Erdos-Woods numbers would you like to find? ' + '\n' + '\n' +\ 'NOTICE: THIS ALGORITHM REQUIRES A LARGE AMOUNT OF COMPUTE POWER!' + '\n' + '\n' +\ 'Enter the number here: ') erdos_nums = [] while len(erdos_nums) < int(howMany): for k in tqdm(range(24)): if k < 2: continue a_list = [] min_extrema = 0 max_extrema = 0 primes_min = [] primes_max = [] primes_master = [] for a in range(2400): if a <= k: continue a_list = [a+i for i in range(k+1)] primes_min = primeFactorization(a_list[0]) primes_max = primeFactorization(a_list[-1]) primes_master = (primes_max + primes_min) if all(any(elem in primes_master for elem in primeFactorization(i)) for i in a_list[1:-1]): print(f'Erdos-Woods found: k={k} a={a}') erdos_nums.append(k) break ```
{ "source": "1lo0/pexcel_openpyxl", "score": 4 }
#### File: pexcel_openpyxl/common/util.py ```python class ExcelUtil: """ excel 工具类 """ @classmethod def get_letter_list(self, uppered = True): """ 获取26英文字母集合 :param uppered: 默认大写 :return: 26英文字母list """ lower_case_list = [chr(i) for i in range(97, 123)] if(uppered): upper_case_list = [] for i in lower_case_list: upper_case_list.append(i.upper()) return upper_case_list return lower_case_list def tuple_empty(self): """ 判断tuple是否为空 :return: """ ``` #### File: pexcel_openpyxl/style/default.py ```python from openpyxl.styles import PatternFill, Border, Side, Alignment, Protection, Font,NamedStyle class ExcelFontStyle: """ excel字体风格,背景 """ __default_style__ = NamedStyle('default') __default_style__.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'), top=Side(border_style='thin'), bottom=Side(border_style='thin')) __default_style__.font = Font(size=12) __default_style__.alignment = Alignment(horizontal='center', vertical='center', ) # header_style __header_style__ = NamedStyle("header_style") __header_style__.font = Font(bold=True, size=18) __header_style__.fill = PatternFill(fill_type='solid', start_color='00C0C0C0', end_color='00C0C0C0',) __header_style__.border = Border(left=Side(border_style='thin'), right=Side(border_style='thin'), top=Side(border_style='thin'), bottom=Side(border_style='thin')) __header_style__.alignment = Alignment(horizontal='center', vertical='center', ) __header_style__.number_format = 'General' #openpyxl默认样式 __openpyxl_default_style__ = NamedStyle("openpyxl_style") __openpyxl_default_style__.font = Font(name='Calibri', size=11, bold=False, italic=False, vertAlign=None, underline='none', strike=False, color='FF000000') __openpyxl_default_style__.fill = PatternFill(fill_type=None, start_color='FFFFFFFF', end_color='FF000000') __openpyxl_default_style__.border = Border(left=Side(border_style=None, color='FF000000'), right=Side(border_style=None, color='FF000000'), top=Side(border_style=None, color='FF000000'), bottom=Side(border_style=None, color='FF000000'), diagonal=Side(border_style=None, color='FF000000'), diagonal_direction=0, outline=Side(border_style=None, color='FF000000'), vertical=Side(border_style=None, color='FF000000'), horizontal=Side(border_style=None, color='FF000000') ) __openpyxl_default_style__.alignment = Alignment(horizontal='general', vertical='bottom', text_rotation=0, wrap_text=False, shrink_to_fit=False, indent=0) __openpyxl_default_style__.number_format = 'General' __openpyxl_default_style__.protection = Protection(locked=True, hidden=False) @classmethod def get_default_style(self): """ 设置单元格格式,其中字体及背景为默认 #TODO 表格样式和筛选 :return: """ return self.__default_style__ @classmethod def get_openpyxl_default_style(self): return self.__openpyxl_default_style__ @classmethod def get_header_style(self): return self.__header_style__ ```
{ "source": "1lol/Calibration-less_pMRI_optimal_control", "score": 2 }
#### File: 1lol/Calibration-less_pMRI_optimal_control/Utils.py ```python import tensorflow as tf import numpy as np import sys sys.path.append('../') from scipy.io import savemat import os import scipy.misc #from spectrum import fftshift #from tensorflow.python.ops.signal.helper import fftshift #from tensorflow.python.ops.signal.helper import ifftshift #from tensorflow.python import roll as _roll #from tensorflow.python.framework import ops #from tensorflow.python.util.tf_export import tf_export def fft2c(img): """ Centered fft2 """ return np.fft.fft2(img) / np.sqrt(img.shape[-2]*img.shape[-1]) def ifft2c(img): """ Centered ifft2 """ return np.fft.ifft2(img) * np.sqrt(img.shape[-2]*img.shape[-1]) def mriAdjointOp(rawdata, coilsens, mask): """ Adjoint MRI Cartesian Operator """ mask = np.expand_dims( mask.astype(np.float32), axis=1) return np.sum(ifft2c(rawdata * mask)*np.conj(coilsens), axis=1) def mriForwardOp(img, coilsens, mask): """ Forward MRI Cartesian Operator """ # mask = np.expand_dims( mask.astype(np.float32), axis=1) # img = np.expand_dims( img, axis=1) # return fft2c(coilsens * img)*mask def fftshift(x, axes=None): """ Shift the zero-frequency component to the center of the spectrum. This function swaps half-spaces for all axes listed (defaults to all). Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even. Parameters ---------- x : array_like, Tensor Input array. axes : int or shape tuple, optional Axes over which to shift. Default is None, which shifts all axes. Returns ------- y : Tensor. """ x = tf.convert_to_tensor(x) if axes is None: axes = tuple(range(tf.rank(x))) shift = [dim // 2 for dim in x.shape] elif isinstance(axes, int): shift = x.shape[axes] // 2 else: shift = [x.shape[ax] // 2 for ax in axes] return tf.roll(x, shift, axes) # ##@tf_export("signal.ifftshift") def ifftshift(x, axes=None): """ The inverse of `fftshift`. Although identical for even-length `x`, the functions differ by one sample for odd-length `x`. Parameters ---------- x : array_like, Tensor. axes : int or shape tuple, optional Axes over which to calculate. Defaults to None, which shifts all axes. Returns ------- y : Tensor. """ #x = ops.convert_to_tensor_v2(x) if axes is None: axes = tuple(range(tf.keras.backend.dim(x))) shift = [-(dim // 2) for dim in x.shape] elif isinstance(axes, int): shift = -(x.shape[axes] // 2) else: shift = [-(x.shape[ax] // 2) for ax in axes] return tf.roll(x, shift, axes) def ifftc2d(inp): """ Centered inverse 2d Fourier transform, performed on axis (-1,-2). """ shape = tf.shape(inp) numel = shape[-2]*shape[-1] scale = tf.sqrt(tf.cast(numel, tf.float32)) #out = fftshift(tf.ifft2d(ifftshift(inp, axes= None)), axes= None) out = tf.ifft2d(inp) out = tf.complex(tf.real(out)*scale, tf.imag(out)*scale) return out def fftc2d(inp): """ Centered 2d Fourier transform, performed on axis (-1,-2). """ shape = tf.shape(inp) numel = shape[-2]*shape[-1] scale = 1.0 / tf.sqrt(tf.cast(numel, tf.float32)) #out = fftshift(tf.fft2d(ifftshift(inp, axes= None)), axes= None) out = tf.fft2d(inp) out = tf.complex(tf.real(out) * scale, tf.imag(out) * scale) return out def removeFEOversampling(src): """ Remove Frequency Encoding (FE) oversampling. This is implemented such that they match with the DICOM images. """ assert src.ndim >= 2 nFE, nPE = src.shape[-2:] if nPE != nFE: return np.take(src, np.arange(int(nFE*0.25)+1, int(nFE*0.75)+1), axis=-2) else: return src def removePEOversampling(src): """ Remove Phase Encoding (PE) oversampling. """ nPE = src.shape[-1] nFE = src.shape[-2] PE_OS_crop = (nPE - nFE) / 2 if PE_OS_crop == 0: return src else: return np.take(src, np.arange(int(PE_OS_crop)+1, nPE-int(PE_OS_crop)+1), axis=-1) def removeFE(src): assert src.ndim >= 2 nFE, nPE = src.shape[-2:] return np.take(src, np.arange(int(nFE*0.25)+1, int(nFE*0.75)+1), axis=-2) def removePE(src): nPE = src.shape[-1] nFE = src.shape[-2] PE_OS_crop = (nPE - nFE) / 2 return np.take(src, np.arange(int(PE_OS_crop)+1, nPE-int(PE_OS_crop)+1), axis=-1) def ssim(input, target, ksize=11, sigma=1.5, L=1.0): def ssimKernel(ksize=ksize, sigma=sigma): if sigma == None: # no gauss weighting kernel = np.ones((ksize, ksize, 1, 1)).astype(np.float32) else: x, y = np.mgrid[-ksize // 2 + 1:ksize // 2 + 1, -ksize // 2 + 1:ksize // 2 + 1] kernel = np.exp(-((x ** 2 + y ** 2) / (2.0 * sigma ** 2))) kernel = kernel[:, :, np.newaxis, np.newaxis].astype(np.float32) return kernel / np.sum(kernel) kernel = tf.Variable(ssimKernel(), name='ssim_kernel', trainable=False) K1 = 0.01 K2 = 0.03 C1 = (K1 * L) ** 2 C2 = (K2 * L) ** 2 mu1 = tf.nn.conv2d(input, kernel, strides=[1, 1, 1, 1], padding='VALID', data_format='NHWC') mu2 = tf.nn.conv2d(target, kernel, strides=[1, 1, 1, 1], padding='VALID', data_format='NHWC') mu1_sqr = mu1 ** 2 mu2_sqr = mu2 ** 2 mu1mu2 = mu1 * mu2 sigma1_sqr = tf.nn.conv2d(input * input, kernel, strides=[1, 1, 1, 1], padding='VALID', data_format='NHWC') - mu1_sqr sigma2_sqr = tf.nn.conv2d(target * target, kernel, strides=[1, 1, 1, 1], padding='VALID', data_format='NHWC') - mu2_sqr sigma12 = tf.nn.conv2d(input * target, kernel, strides=[1, 1, 1, 1], padding='VALID', data_format='NHWC') - mu1mu2 ssim_maps = ((2.0 * mu1mu2 + C1) * (2.0 * sigma12 + C2)) / ((mu1_sqr + mu2_sqr + C1) * (sigma1_sqr + sigma2_sqr + C2)) return tf.reduce_mean(tf.reduce_mean(ssim_maps, axis=(1, 2, 3))) def saveAsMat(img, filename, matlab_id, mat_dict=None): """ Save mat files with ndim in [2,3,4] Args: img: image to be saved file_path: base directory matlab_id: identifer of variable mat_dict: additional variables to be saved """ assert img.ndim in [2, 3, 4] img_arg = img.copy() if img.ndim == 3: img_arg = np.transpose(img_arg, (1, 2, 0)) elif img.ndim == 4: img_arg = np.transpose(img_arg, (2, 3, 0, 1)) if mat_dict == None: mat_dict = {matlab_id: img_arg} else: mat_dict[matlab_id] = img_arg dirname = os.path.dirname(filename) or '.' if not os.path.exists(dirname): os.makedirs(dirname) savemat(filename, mat_dict) def _normalize(img): """ Normalize image between [0, 1] """ tmp = img - np.min(img) tmp /= np.max(tmp) return tmp def contrastStretching(img, saturated_pixel=0.004): """ constrast stretching according to imageJ http://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm""" values = np.sort(img, axis=None) nr_pixels = np.size(values) lim = int(np.round(saturated_pixel*nr_pixels)) v_min = values[lim] v_max = values[-lim-1] img = (img - v_min)*(255.0)/(v_max - v_min) img = np.minimum(255.0, np.maximum(0.0, img)) return img def getContrastStretchingLimits(img, saturated_pixel=0.004): """ constrast stretching according to imageJ http://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm""" values = np.sort(img, axis=None) nr_pixels = np.size(values) lim = int(np.round(saturated_pixel*nr_pixels)) v_min = values[lim] v_max = values[-lim-1] return v_min, v_max def normalize(img, v_min, v_max, max_int=255.0): """ normalize image to [0, max_int] according to image intensities [v_min, v_max] """ img = (img - v_min)*(max_int)/(v_max - v_min) img = np.minimum(max_int, np.maximum(0.0, img)) return img def imsave(img, filepath, normalize=True): """ Save an image. """ path = os.path.dirname(filepath) or '.' if not os.path.exists(path): os.makedirs(path) if img.dtype == np.complex64 or img.dtype == np.complex128: print('img is complex! Take absolute value.') img = np.abs(img) if normalize: img = _normalize(img) img *= 255.0 #scipy.misc.imsave(filepath, img.astype(np.uint8)) ```
{ "source": "1lomeno3/sap-hana", "score": 2 }
#### File: python/downloader/SAP_Scenarios.py ```python class Package(object): selector_newest = 'max(range(len(results)), key=lambda index: results[index]["ReleaseDate"])' selector_oldest = 'min(range(len(results)), key=lambda index: results[index]["ReleaseDate"])' dir_db = "DB" dir_app = "APP" dir_rti = "RTI" os_linux = "LINUX_X64" os_windows = "NT_X64" os_indep = "OSINDEP" def __init__(self, name=None, target_dir=None, retr_params=None, condition=None, filter=None, os_avail=None, os_var=None, selector=None): self.name = name if name else "" self.target_dir = target_dir if target_dir else "" self.retr_params = retr_params if retr_params else "" self.condition = condition if condition else [] self.filter = filter if filter else [] self.os_avail = os_avail if os_avail else [] self.os_var = os_var if os_var else "" self.selector = selector if selector else "" class Scenario(object): def __init__(self, name=None, required_params=None, packages=None): self.name = name self.required_params = required_params if required_params else [] self.packages = packages if packages else [] class DBScenario(Scenario): def __init__(self, **kwargs): super(DBComponent, self).__init__(**kwargs) S4 = Scenario( required_params = [], packages = [ ], ) RTI = Scenario( required_params = [], packages = [ Package( name = "SAPCAR", target_dir = Package.dir_rti, retr_params = {"ENR": "67838200100200019185"}, os_avail = [Package.os_linux, Package.os_windows], os_var = 'rti.os_type', selector = Package.selector_newest, ), ], ) HDB = Scenario( required_params = [ "product_version", ], packages = [ # _ _ _ _ __ ___ # | | | | /\ | \ | | /\ /_ | / _ \ # | |__| | / \ | \| | / \ | || | | | # | __ | / /\ \ | . ` | / /\ \ | || | | | # | | | |/ ____ \| |\ |/ ____ \ | || |_| | # |_| |_/_/ \_\_| \_/_/ \_\ |_(_)___/ # ############################################################# # HANA Platform 1.0 Package( name = "IMDB_PLATFORM100", target_dir = Package.dir_db, retr_params = {"ENR": "01200314690900003484", "SWTYPSC": "N", "PECCLSC": "NONE", "V": "INST", "TA": "ACTUAL"}, condition = ['db.product_version == "1.0"', '"PLATFORM" in db.components'], filter = ['"1.0" in r["Description"]', '"SAP HANA Platf" in r["Description"]','"ZIP" in r["Infotype"]'], os_avail = [Package.os_indep], os_var = 'Package.os_indep', selector = Package.selector_newest, ), # HANA Database 1.0 (Linux only) Package( name = "IMDB_SERVER100", target_dir = Package.dir_db, retr_params = {"ENR": "01200615320200017790"}, condition = ['db.product_version == "1.0"', '"DATABASE" in db.components'], filter = ['"Maintenance Revision" in r["Description"]'], os_avail = [Package.os_linux], os_var = 'Package.os_linux', selector = Package.selector_newest, ), ############################################################# # HANA Client for HANA 1.0 (Windows/Linux) Package( name = "IMDB_CLIENT100", target_dir = Package.dir_app, retr_params = {"ENR": "01200615320200017866"}, condition = ['db.product_version == "1.0"', '"CLIENT" in db.components'], filter = None, os_avail = [Package.os_linux, Package.os_windows], os_var = 'app.os_type', selector = Package.selector_newest, ), ############################################################# # HANA Studio for HANA 1.0 (Windows/Linux) Package( name = "IMC_STUDIO1", target_dir = Package.dir_db, retr_params = {"ENR": "73554900100200000585"}, condition = ['db.product_version == "1.0"', '"STUDIO" in db.components'], filter = ['"Revision 1" in r["Description"]'], os_avail = [Package.os_linux, Package.os_windows], os_var = 'Config.bastion_os', selector = Package.selector_newest, ), # _ _ _ _ ___ ___ # | | | | /\ | \ | | /\ |__ \ / _ \ # | |__| | / \ | \| | / \ ) || | | | # | __ | / /\ \ | . ` | / /\ \ / / | | | | # | | | |/ ____ \| |\ |/ ____ \ / /_ | |_| | # |_| |_/_/ \_\_| \_/_/ \_\ |____(_)___/ # ############################################################# # HANA Platform 2.0 Package( name = "IMDB_PLATFORM200", target_dir = Package.dir_db, retr_params = {"ENR": "73554900100900001301", "SWTYPSC": "N", "PECCLSC": "NONE", "V": "INST", "TA": "ACTUAL"}, condition = ['db.product_version == "2.0"', '"PLATFORM" in db.components'], filter = ['"2.0" in r["Description"]', '"86_64" in r["Description"]','"ZIP" in r["Infotype"]'], os_avail = [Package.os_indep], os_var = 'Package.os_indep', selector = Package.selector_newest, ), # HANA Database 2.0 (Linux only) Package( name = "IMDB_SERVER200", target_dir = Package.dir_db, retr_params = {"ENR": "73554900100200005327"}, condition = ['db.product_version == "2.0"', '"DATABASE" in db.components'], filter = ['"Revision" in r["Description"]'], os_avail = [Package.os_linux], os_var = 'Package.os_linux', selector = Package.selector_newest, ), ############################################################# # HANA Client for HANA 2.0 (Windows/Linux) Package( name = "IMDB_CLIENT20-NT_X64", target_dir = Package.dir_app, retr_params = {"ENR": "73554900100200005390"}, condition = ['db.product_version == "2.0"', '"CLIENT" in db.components'], filter = None, os_avail = [Package.os_linux, Package.os_windows], os_var = 'app.os_type', selector = Package.selector_newest, ), ############################################################# # HANA Studio for HANA 2.0 (Windows/Linux) Package( name = "IMC_STUDIO2-NT_X64", target_dir = Package.dir_db, retr_params = {"ENR": "73554900100200000585"}, condition = ['db.product_version == "2.0"', '"STUDIO" in db.components'], filter = ['"Revision 2" in r["Description"]'], os_avail = [Package.os_linux, Package.os_windows], os_var = 'Config.bastion_os', selector = Package.selector_newest, ), # __ __ _____ # \ \ / // ____| /\ # \ V /| (___ / \ # > < \___ \ / /\ \ # / . \ ____) / ____ \ # /_/ \_\_____/_/ \_\ # ############################################################# # XS Advanced Runtime (SAP Extended App Services) Package( name = "EXTAPPSER00P", target_dir = Package.dir_db, retr_params = {"ENR": "73555000100200004274"}, condition = ['"XSA" in db.components'], filter = None, os_avail = [Package.os_linux], os_var = 'Package.os_linux', selector = Package.selector_newest, ), # DI Core Package( name = "XSACDEVXDI", target_dir = Package.dir_db, retr_params = { "ENR" : "73554900100200003056", "PECCLSC" : "PLTFRM", "INCL_PECCLSC2" : "DB", "PECGRSC2" : "HDB" }, condition = ['"XSA" in db.components'], filter = None, os_avail = [Package.os_indep], os_var = 'Package.os_indep', selector = Package.selector_newest, ), # SAPUI5 FESV4 Package( name = "XSACUI5FESV4", target_dir = Package.dir_db, retr_params = {"ENR": "73554900100200006811"}, condition = ['"XSA" in db.components'], filter = None, os_avail = [Package.os_indep], os_var = 'Package.os_indep', selector = Package.selector_newest, ), ] ) avail_apps = {"S4": S4} avail_dbs = {"HANA": HDB} avail_rtis = {"RTI": RTI} ``` #### File: python/downloader/SAP_SMP.py ```python import urllib.error import urllib.parse import urllib.request from bs4 import BeautifulSoup from helper import * class SMP: url_launchpad = "https://launchpad.support.sap.com" url_auth = "https://authn.hana.ondemand.com/saml2/sp/mds" url_sso = "https://accounts.sap.com/saml2/idp/sso" url_portal = "https://authn.hana.ondemand.com/saml2/sp/acs/supportportal/supportportal" url_search = "https://launchpad.support.sap.com/services/odata/svt/swdcuisrv/SearchResultSet" url_retrieve = "https://launchpad.support.sap.com/services/odata/svt/swdcuisrv/DownloadItemSet" params_maint = { "SWTYPSC" : "SPP", "V" : "MAINT" } sess = None @staticmethod def process_page(url, desc=None, required_inputs=[], referer=None, extra_headers=None, post_data=None, body_prefix=None, allow_redirects=True): headers = SMP.sess.headers if referer: headers["Referer"] = referer if extra_headers: for field in list(extra_headers.keys()): headers[field] = extra_headers[field] if post_data: headers["Content-Type"] = "application/x-www-form-urlencoded" if not post_data: resp = SMP.sess.get( url, headers = headers, allow_redirects = allow_redirects, ) else: resp = SMP.sess.post( url, headers = headers, data = post_data, allow_redirects = allow_redirects, ) assert(resp.status_code < 400), \ "Unable to %s (%s); status = %d" % (desc, url, resp.status_code) soup = BeautifulSoup(resp.content, 'html.parser') inputs = {} for i in soup.find_all("input"): field, value = i.get("name"), i.get("value") inputs[field] = value assert(all(i in inputs for i in required_inputs)), \ "%s inputs (%s) does not contain required fields (%s)" % (desc, inputs, required_inputs) next_body = body_prefix + "&" if body_prefix else "" for cnt in range(len(required_inputs)): if cnt > 0: next_body += "&" i = required_inputs[cnt] next_body += "%s=%s" % (i, urllib.parse.quote(inputs[i])) return(resp.cookies, inputs, next_body) @staticmethod def init(): SMP.sess = HTTPSession( headers = { "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.109 Safari/537.36", }, ) # -------------------------------------------------------- # STEP 1 - Open SMP and obtain SAML envelope # -------------------------------------------------------- (cookies_launchpad, inputs_launchpad, body_auth) = SMP.process_page( url = SMP.url_launchpad, desc = "open SMP", required_inputs = [ "tenantId", "idpName", "requestUrl", "requestId", "relayState", "signature", ], body_prefix = "action=sso", ) # -------------------------------------------------------- # STEP 2 - Connect to IDP and send SAML envelope # -------------------------------------------------------- (cookies_auth, inputs_auth, body_sso) = SMP.process_page( url = SMP.url_auth, desc = "connect to IDP", required_inputs = [ "SAMLRequest", "RelayState", ], referer = SMP.url_launchpad, post_data = body_auth, ) # -------------------------------------------------------- # STEP 3 - Prepare SAML request and send credentials # -------------------------------------------------------- (cookies_sso, inputs_sso, body_sso) = SMP.process_page( url = SMP.url_sso, desc = "prepare SAML request", required_inputs = [ "authenticity_token", "xsrfProtection", "idpSSOEndpoint", "spId", "spName", ], referer = SMP.url_auth, post_data = body_sso, body_prefix = "utf8=%E2%9C%93&" + urllib.parse.urlencode({ "targetUrl" : "", "sourceUrl" : "", "org" : "", "mobileSSOToken" : "", "tfaToken" : "", "css" : "", "SAMLRequest" : inputs_auth["SAMLRequest"], "RelayState" : inputs_auth["RelayState"], "j_username" : Config.credentials.sap_user, "j_password" : Config.credentials.sap_password, }) ) # -------------------------------------------------------- # STEP 4 - Obtain SAML response # -------------------------------------------------------- (cookies_sso, inputs_sso, body_portal) = SMP.process_page( url = SMP.url_sso, desc = "obtain SAML response", required_inputs = [ "SAMLResponse", ], referer = SMP.url_sso, post_data = body_sso, body_prefix = "utf8=%E2%9C%93&" + urllib.parse.urlencode({ "RelayState": inputs_auth["RelayState"], "authenticity_token": inputs_sso["authenticity_token"], }) ) # -------------------------------------------------------- # STEP 5: Obtain JSESSION # -------------------------------------------------------- (cookies_portal, inputs_portal, body_search) = SMP.process_page( url = SMP.url_launchpad, desc = "obtain session", referer = SMP.url_portal, post_data = body_portal, allow_redirects = False, ) @staticmethod def search(query): SMP.sess.headers["Accept"] = "application/json" payload = { "SEARCH_MAX_RESULT" : "500", "RESULT_PER_PAGE" : "500", "SEARCH_STRING" : query, } resp = SMP.sess.get( SMP.url_search, params=payload ) assert(resp.status_code == 200), \ "Unable to retrieve search results; status = %d" % (resp.status_code) j = json.loads(resp.content.decode("utf-8")) assert("d" in j and "results" in j["d"]), \ "Invalid search result format" results = j["d"]["results"] return results @staticmethod def retrieve(params, os_filter): SMP.sess.headers["Accept"] = "application/json" print("retrieving %s for %s..." % (params, os_filter)) payload = { "_EVENT" : "LIST", "EVENT" : "LIST", "PECCLSC" : "OS", "INCL_PECCLSC1" : "OS", "PECGRSC1" : os_filter, } # Setting this to SUPPORT PACKAGES & PATCHES for now; # may need to update logic for future scenarios payload.update(SMP.params_maint) payload.update(params) resp = SMP.sess.get( SMP.url_retrieve, params=payload, ) assert(resp.status_code == 200), \ "Unable to retrieve search results; status = %d" % (resp.status_code) j = json.loads(resp.content.decode("utf-8")) assert("d" in j and "results" in j["d"]), \ "Invalid search result format" results = j["d"]["results"] return results ```
{ "source": "1LooperTrooper/Where2", "score": 2 }
#### File: where2_core/itinerary/views.py ```python from django.shortcuts import render, redirect from django.http import Http404 from django.views.generic import TemplateView from . import weather_itinerary, data_format, get_weather import threading itinerary_current = weather_itinerary.Itinerary('current') itinerary_full = weather_itinerary.Itinerary('full') def check_weather(): #Checks the weather once per hour get_weather.write_weather_data() threading.Timer(3600, check_weather).start() class HomeView(TemplateView): #Homepage view check_weather() template_name = 'itinerary/main.html' def itinerary_current_view(request): #Weather Itinerary View weather = get_weather.get_weather_data() itinerary_current.getItinerary() if weather == True: weather_statement = 'Today is a nice Day' else: weather_statement = 'Today is a bad Day' context = { 'Itinerary': itinerary_current.itinerary, 'Weather': weather_statement, } return render(request, 'itinerary/itinerary_page.html', context=context) def itinerary_full_view(request): #Weather Itinerary View weather = get_weather.get_weather_data() itinerary_full.getItinerary() if weather == True: weather_statement = 'Today is a nice Day' else: weather_statement = 'Today is a bad Day' context = { 'Itinerary': itinerary_full.itinerary, 'Weather': weather_statement, } return render(request, 'itinerary/itinerary_page.html', context=context) def activity_view(request): #Activities page resturants, activities = data_format.format_data() weather = get_weather.get_weather_data() if weather == True: activities = activities[0]['Sunny'] else: activities = activities[1]['Raining'] context = { 'Activities' : activities } return render(request, 'itinerary/activities.html', context=context) def resturant_view(request): #Resturants Page resturants, activities = data_format.format_data() breakfast_resturants = resturants[0]['Breakfast'] lunch_resturants = resturants[1]['Lunch'] dinner_resturants = resturants[2]['Dinner'] context = { 'Resturant': resturants, 'Breakfast_Resturants' : breakfast_resturants, 'Lunch_Resturants' : lunch_resturants, 'Dinner_Resturants' : dinner_resturants } return render(request, 'itinerary/resturants.html', context=context) ```
{ "source": "1Lorde/dataleak_detector", "score": 3 }
#### File: dataleak_detector/agent/api.py ```python import os import time from hashlib import sha256 import requests from config import management_host, management_port, local_db_filename, update_timeout check_url = "http://{}:{}/devices/check".format(management_host, management_port) allowed_url = "http://{}:{}/devices/allowed".format(management_host, management_port) allowed_hash_url = "http://{}:{}/devices/allowed/hash".format(management_host, management_port) def is_allowed_latest(): try: if not os.path.exists(local_db_filename): return False response = requests.get(allowed_hash_url).text with open(local_db_filename, 'r') as f: hashes = f.read() h = sha256() h.update(hashes.encode('utf-8')) if response == h.hexdigest(): print('[Auto updating task] Local database of allowed devices are latest') return True else: print('[Auto updating task] Local database of allowed devices are outdated') return False except Exception as e: print('[Auto updating task] Can`t get hash of allowed devices database, cause ' + str(type(e).__name__)) def update_allowed_drives(): while True: if not is_allowed_latest(): try: response = requests.get(allowed_url).text with open(local_db_filename, 'w') as f: f.writelines(response) print('[Auto updating task] List of allowed devices successfully updated') except Exception as e: print('[Auto updating task] List of allowed devices not updated, cause ' + str(type(e).__name__)) time.sleep(update_timeout) def offline_check(serial): if not os.path.exists(local_db_filename): print('Local database is empty. Drive {} are blocked'.format(serial)) return False h = sha256() h.update(serial.encode('utf-8')) with open(local_db_filename, 'r') as f: hashes = f.readline().split(';') if not h.hexdigest() in hashes: print('Drive {} not allowed'.format(serial)) return False else: return True ```
{ "source": "1Lorde/orders-tracker", "score": 2 }
#### File: orders_tracker/api/api.py ```python import json from flask import Blueprint, Response, request from orders_tracker.models import Client, Device, OrderStatus, Staff api_blueprint = Blueprint('api_bp', __name__) @api_blueprint.route('/api/autocomplete/clients', methods=['GET']) def client_autocomplete(): clients = [obj[0] for obj in Client.query.with_entities(Client.name).all()] return Response(json.dumps(clients), mimetype='application/json') @api_blueprint.route('/api/autocomplete/devices', methods=['GET']) def serial_autocomplete(): client_name = request.args.get('client_name') client_id = Client.query.filter_by(name=client_name).with_entities(Client.id).first() if client_id is not None: serials = [obj[0] for obj in Device.query.filter_by(client_id=client_id[0]).with_entities(Device.serial).all()] return Response(json.dumps(serials), mimetype='application/json') return Response(status=404) @api_blueprint.route('/api/autocomplete/staff', methods=['GET']) def staff_autocomplete(): staff = [obj[0] for obj in Staff.query.with_entities(Staff.name).all()] return Response(json.dumps(staff), mimetype='application/json') @api_blueprint.route('/api/order_status/<status_id>', methods=['GET']) def order_status(status_id): status_name = OrderStatus.query.filter_by(id=status_id).with_entities(OrderStatus.name).first()[0] return status_name ```
{ "source": "1m0r74l17y/random-files", "score": 3 }
#### File: python/euler/20.py ```python import math def fuck(me): stuff = 1 for i in range(me): stuff *= (i+1) return stuff def sumfuck(trees): sum = 0 for number in range(len(str(trees))): add = str(trees) sum += int(add[number]) return sum test = input("number") print sumfuck(fuck(test)) ``` #### File: python/euler/7test.py ```python option = input("Prime number?") def isPrime(option): if option % 2 == 0: return False p = 3 while p < option**0.5+1: if option % p == 0: return False p += 2 return True print(isPrime(option)) ```
{ "source": "1m38/OnlineJudgeHelper", "score": 3 }
#### File: 1m38/OnlineJudgeHelper/oj_sites.py ```python from __future__ import print_function from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import import os import sys import codecs import re import collections import requests import parse from bs4 import BeautifulSoup import warnings def detect_site(url): re_list = collections.OrderedDict() re_list["AtCoderBeta"] = re.compile(r"https?://atcoder\.jp") re_list["AtCoder"] = re.compile(r"https?://.*\.atcoder\.jp") re_list["Codeforces"] = re.compile(r"http://codeforces\.com") re_list["Yukicoder"] = re.compile(r"http://yukicoder\.me") for sitename, pattern in re_list.items(): if pattern.match(url): return sitename class ContestSite(object): url_format = None login_url = None site_name = None def __init__(self, url, config): if self.site_name is None: raise NotImplementedError self.url = url self.contest, self.pnumber = self.parse_url() if self.contest is None: self.contest = self.site_name self.s = requests.Session() if self.login_url is not None: self._login(config) self.page = self.get() try: self.testcases = self.parse_page(self.page) except: warnings.warn( "Failed to load testcases, so create a blank sample file.", RuntimeWarning) self.testcases = [] def result(self): return self.contest, self.pnumber, self.testcases def parse_url(self): if self.url_format is None: raise NotImplementedError r = parse.parse(self.url_format, self.url) contest = r["contest"] if "contest" in r.named.keys() else None pnumber = r["pnumber"] if "pnumber" in r.named.keys() else None return contest, pnumber def _login(self, config): if self.site_name not in config["sites"]: warnings.warn( "User credential for contest site {} not in config.json".format(self.site_name), RuntimeWarning) return else: self.username = config["sites"][self.site_name]["username"] self.password = config["sites"][self.site_name]["password"] try: login_status = self.login() if not login_status: raise RuntimeWarning("Failed to login") except: warnings.warn("Failed to login", RuntimeWarning) def login(self): raise NotImplementedError def get(self): r = self.s.get(self.url) return r.text def parse_page(self, page): """parse task page""" """return: testcases [[input_str, output_str], ...]""" raise NotImplementedError class AtCoderBeta(ContestSite): url_format = "https://atcoder.jp/contests/{contest}/tasks/{pnumber}" login_url = "https://atcoder.jp/login" site_name = "AtCoder" def login(self): payload = {"username": self.username, "password": <PASSWORD>} url = self.login_url # get csrf-token r = self.s.get(url) soup = BeautifulSoup(r.text, "html.parser") rform = soup.find_all("form")[-1] tokens = rform.find_all("input", type="hidden") for token in tokens: payload[token.attrs["name"]] = token.attrs["value"] r = self.s.post(url, payload) if r.status_code != 200: warnings.warn("Login request returns status code {}".format(r.status_code), RuntimeWarning) elif r.url == "https://atcoder.jp/login": warnings.warn("Failed to login. Is username or password incorrect?".format(r.status_code), RuntimeWarning) else: return True return False def parse_page(self, page): testcases = [] soup = BeautifulSoup(page, "html.parser") task = soup.find("div", {"id": "task-statement"}) task_ja = task.find("span", {"class": "lang-ja"}) if not task_ja: task_ja = task sections = task_ja.find_all("section") # <section>のうち、「Sample Input」or「入力例」から始まる<h3>を持つものを抽出 s_sample_inputs = \ [s for s in sections if s.h3 and "Sample Input" in s.h3.text or "入力例" in s.h3.text] s_sample_outputs = \ [s for s in sections if s.h3 and "Sample Output" in s.h3.text or "出力例" in s.h3.text] for s_in, s_out in zip(s_sample_inputs, s_sample_outputs): if not (s_in.find("pre") and s_out.find("pre")): continue input_str = s_in.pre.text.replace("\r\n", "\n").strip() + "\n" output_str = s_out.pre.text.replace("\r\n", "\n").strip() + "\n" testcases.append([input_str, output_str]) return testcases class AtCoder(ContestSite): url_format = "https://{contest}.contest.atcoder.jp/tasks/{pnumber}" login_url = "https://{contest}.contest.atcoder.jp/login" site_name = "AtCoder" def login(self): payload = {"name": self.username, "password": <PASSWORD>} url = self.login_url.format(contest=self.contest) r = self.s.post(url, payload) if r.status_code != 200: warnings.warn("Login request returns status code {}".format(r.status_code), RuntimeWarning) else: if "X-ImoJudge-SimpleAuth" in r.headers and \ r.headers["X-ImoJudge-SimpleAuth"] == "Passed": return True return False def parse_page(self, page): testcases = [] soup = BeautifulSoup(page, "html.parser") task = soup.find("div", {"id": "task-statement"}) task_ja = task.find("span", {"class": "lang-ja"}) if not task_ja: task_ja = task pres = task_ja.findAll("pre") n_pres = len(pres) for i in range(1, n_pres, 2): input_str = pres[i].text.replace("\r\n", "\n").strip() + "\n" output_str = pres[i+1].text.replace("\r\n", "\n").strip() + "\n" testcases.append([input_str, output_str]) return testcases class Codeforces(ContestSite): url_format = "http://codeforces.com/contest/{contest}/problem/{pnumber}" # login_url = "http://codeforces.com/enter" login_url = None site_name = "Codeforces" def parse_page(self, page): testcases = [] soup = BeautifulSoup(page, "html.parser") sample_test = soup.select("div.sample-test")[0] inputs = sample_test.find_all("div", class_="input") outputs = sample_test.find_all("div", class_="output") for i, o in zip(inputs, outputs): pre_i = i.find("pre") pre_o = o.find("pre") for br in pre_i.find_all("br"): br.replace_with("\n") for br in pre_o.find_all("br"): br.replace_with("\n") str_i = pre_i.text str_o = pre_o.text testcases.append([str_i, str_o]) return testcases class Yukicoder(ContestSite): url_format = "http://yukicoder.me/problems/no/{pnumber}" login_url = None site_name = "yukicoder" def parse_page(self, page): testcases = [] soup = BeautifulSoup(page, "html.parser") samples = soup.find_all("div", class_="sample") for sample in samples: pres = sample.find_all("pre") pre_i = pres[0] pre_o = pres[1] str_i = pre_i.text + "\n" str_o = pre_o.text + "\n" testcases.append([str_i, str_o]) return testcases ```
{ "source": "1mackenziekyle/cover-letters", "score": 3 }
#### File: 1mackenziekyle/cover-letters/task.py ```python from RPA.Browser.Selenium import Selenium import time import pandas as pd from bs4 import BeautifulSoup import json lib = Selenium() # Global vars fullStackJson = {} frontendJson = {} backendJson = {} import json with open('input/userinfo.json', 'r') as f: userJsonInfo = json.load(f) # Function: Open and navigate to SCOPE def navigate_to_browser(ubc_user, ubc_pw) -> None: # OPEN BROWSER lib.open_available_browser("https://scope.sciencecoop.ubc.ca/students/cwl-current-student-login.htm") lib.set_browser_implicit_wait(10) # SCOPE LOGIN login_button = lib.click_link("xpath:/html/body/div/main/div/div/a") lib.wait_until_element_is_visible('xpath:/html/body/div[1]/div/div/div/div/h1') # CWL LOGIN username_input_field = "xpath://*[@id='username']" password_input_field = "xpath://*[@id='password']" pause(0.1) lib.input_text_when_element_is_visible(username_input_field, ubc_user) pause(0.1) lib.input_text_when_element_is_visible(password_input_field, ubc_pw) lib.click_button('xpath://*[@id="col2"]/form/div[3]/button') # SCOPE HOMEPAGE pause(0.5) lib.click_button_when_visible('xpath:/html/body/div[2]/header/div[4]/div/div/button') pause(1) lib.click_button_when_visible('xpath:/html/body/div[2]/header/div[3]/div[1]/nav/ul/li[2]/button') pause(1) lib.click_element_when_visible('xpath://*[@id="myAccountNav"]/nav/ul/li[2]/ul/li[2]/a') pause(3) lib.click_element_when_visible('xpath://*[@id="quickSearchCountsContainer"]/table[2]/tbody/tr[1]/td[2]/a') pause(1) # Function: Pause def pause(secs) -> None: time.sleep(secs) def writeDataToDict(index) -> None: # write json object job_data = { 'job_title': table['Job Title'].iloc[index], 'organization' : table['Organization'].iloc[index], 'location': table['Location'].iloc[index], 'app_deadline': table['App Deadline'].iloc[index] } # Frontend? for word in ['web', 'front', 'app', 'ui', 'ux']: if word in job_data['job_title'].lower(): job_data['type'] = 'front-end' frontendJson[job_data['job_title'] + '-' + job_data['organization']] = job_data return # Backend? for word in ['data', 'science', 'back', 'machine', 'ops', 'firmware', 'embedded', 'systems']: if word in job_data['job_title'].lower(): job_data['type'] = 'back-end' backendJson[job_data['job_title'] + '-' + job_data['organization']] = job_data return # Fullstack? job_data['type'] = 'full-stack' fullStackJson[job_data['job_title'] + '-' + job_data['organization']] = job_data return # Main function def main(ubc_user, ubc_pw) -> None: try: # navigate navigate_to_browser(ubc_user=ubc_user, ubc_pw=ubc_pw) # get data soup = BeautifulSoup(lib.driver.page_source, "html.parser") global table table = pd.read_html(lib.driver.page_source)[0] # modify data lib.close_all_browsers() table.insert(1, "Job Type", "") print("Writing JSON...") # Write JSON to array for index in range(len(table)): writeDataToDict(index) # Write to file with open('output/json/fullstack.json', 'w') as outfile: outfile.write(json.dumps(fullStackJson, indent=4)) with open('output/json/frontend.json', 'w') as outfile: outfile.write(json.dumps(frontendJson, indent=4)) with open('output/json/backend.json', 'w') as outfile: outfile.write(json.dumps(backendJson, indent=4)) except Exception as e: print(e) # Main Method if __name__ == "__main__": username = userJsonInfo['ubc_username'] pw = userJsonInfo['ubc_password'] main(username, pw) ```
{ "source": "1maginasian/PaddleHub", "score": 2 }
#### File: paddlehub/datasets/base_nlp_dataset.py ```python from typing import Dict, List, Optional, Union, Tuple import csv import io import os import numpy as np import paddle from paddlehub.env import DATA_HOME from paddlehub.text.bert_tokenizer import BertTokenizer from paddlehub.text.tokenizer import CustomTokenizer from paddlehub.utils.log import logger from paddlehub.utils.utils import download from paddlehub.utils.xarfile import is_xarfile, unarchive class InputExample(object): """ The input data structure of Transformer modules (BERT, ERNIE and so on). """ def __init__(self, guid: int, text_a: str, text_b: Optional[str] = None, label: Optional[str] = None): """ The input data structure. Args: guid (:obj:`int`): Unique id for the input data. text_a (:obj:`str`, `optional`, defaults to :obj:`None`): The first sequence. For single sequence tasks, only this sequence must be specified. text_b (:obj:`str`, `optional`, defaults to :obj:`None`): The second sequence if sentence-pair. label (:obj:`str`, `optional`, defaults to :obj:`None`): The label of the example. Examples: .. code-block:: python from paddlehub.datasets.base_nlp_dataset import InputExample example = InputExample(guid=0, text_a='15.4寸笔记本的键盘确实爽,基本跟台式机差不多了', text_b='蛮喜欢数字小键盘,输数字特方便,样子也很美观,做工也相当不错', label='1') """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label def __str__(self): if self.text_b is None: return "text={}\tlabel={}".format(self.text_a, self.label) else: return "text_a={}\ttext_b={},label={}".format(self.text_a, self.text_b, self.label) class BaseNLPDataset(object): """ The virtual base class for nlp datasets, such TextClassificationDataset, SeqLabelingDataset, and so on. The base class must be supered and re-implemented the method _read_file. """ def __init__(self, base_path: str, tokenizer: Union[BertTokenizer, CustomTokenizer], max_seq_len: Optional[int] = 128, mode: Optional[str] = "train", data_file: Optional[str] = None, label_file: Optional[str] = None, label_list: Optional[List[str]] = None): """ Ags: base_path (:obj:`str`): The directory to the whole dataset. tokenizer (:obj:`BertTokenizer` or :obj:`CustomTokenizer`): It tokenizes the text and encodes the data as model needed. max_seq_len (:obj:`int`, `optional`, defaults to :128): If set to a number, will limit the total sequence returned so that it has a maximum length. mode (:obj:`str`, `optional`, defaults to `train`): It identifies the dataset mode (train, test or dev). data_file(:obj:`str`, `optional`, defaults to :obj:`None`): The data file name, which is relative to the base_path. label_file(:obj:`str`, `optional`, defaults to :obj:`None`): The label file name, which is relative to the base_path. It is all labels of the dataset, one line one label. label_list(:obj:`List[str]`, `optional`, defaults to :obj:`None`): The list of all labels of the dataset """ self.data_file = os.path.join(base_path, data_file) self.label_list = label_list self.mode = mode self.tokenizer = tokenizer self.max_seq_len = max_seq_len if label_file: self.label_file = os.path.join(base_path, label_file) if not self.label_list: self.label_list = self._load_label_data() else: logger.warning("As label_list has been assigned, label_file is noneffective") if self.label_list: self.label_map = {item: index for index, item in enumerate(self.label_list)} def _load_label_data(self): """ Loads labels from label file. """ if os.path.exists(self.label_file): with open(self.label_file, "r", encoding="utf8") as f: return f.read().strip().split("\n") else: raise RuntimeError("The file {} is not found.".format(self.label_file)) def _download_and_uncompress_dataset(self, destination: str, url: str): """ Downloads dataset and uncompresses it. Args: destination (:obj:`str`): The dataset cached directory. url (:obj: str): The link to be downloaded a dataset. """ if not os.path.exists(destination): dataset_package = download(url=url, path=DATA_HOME) if is_xarfile(dataset_package): unarchive(dataset_package, DATA_HOME) else: logger.info("Dataset {} already cached.".format(destination)) def _read_file(self, input_file: str, is_file_with_header: bool = False): """ Reads the files. Args: input_file (:obj:str) : The file to be read. is_file_with_header(:obj:bool, `optional`, default to :obj: False) : Whether or not the file is with the header introduction. """ raise NotImplementedError def get_labels(self): """ Gets all labels. """ return self.label_list class TextClassificationDataset(BaseNLPDataset, paddle.io.Dataset): """ The dataset class which is fit for all datatset of text classification. """ def __init__(self, base_path: str, tokenizer: Union[BertTokenizer, CustomTokenizer], max_seq_len: int = 128, mode: str = "train", data_file: str = None, label_file: str = None, label_list: list = None, is_file_with_header: bool = False): """ Ags: base_path (:obj:`str`): The directory to the whole dataset. tokenizer (:obj:`BertTokenizer` or :obj:`CustomTokenizer`): It tokenizes the text and encodes the data as model needed. max_seq_len (:obj:`int`, `optional`, defaults to :128): If set to a number, will limit the total sequence returned so that it has a maximum length. mode (:obj:`str`, `optional`, defaults to `train`): It identifies the dataset mode (train, test or dev). data_file(:obj:`str`, `optional`, defaults to :obj:`None`): The data file name, which is relative to the base_path. label_file(:obj:`str`, `optional`, defaults to :obj:`None`): The label file name, which is relative to the base_path. It is all labels of the dataset, one line one label. label_list(:obj:`List[str]`, `optional`, defaults to :obj:`None`): The list of all labels of the dataset is_file_with_header(:obj:bool, `optional`, default to :obj: False) : Whether or not the file is with the header introduction. """ super(TextClassificationDataset, self).__init__( base_path=base_path, tokenizer=tokenizer, max_seq_len=max_seq_len, mode=mode, data_file=data_file, label_file=label_file, label_list=label_list) self.examples = self._read_file(self.data_file, is_file_with_header) self.records = self._convert_examples_to_records(self.examples) def _read_file(self, input_file, is_file_with_header: bool = False) -> List[InputExample]: """ Reads a tab separated value file. Args: input_file (:obj:str) : The file to be read. is_file_with_header(:obj:bool, `optional`, default to :obj: False) : Whether or not the file is with the header introduction. Returns: examples (:obj:`List[InputExample]`): All the input data. """ if not os.path.exists(input_file): raise RuntimeError("The file {} is not found.".format(input_file)) else: with io.open(input_file, "r", encoding="UTF-8") as f: reader = csv.reader(f, delimiter="\t", quotechar=None) examples = [] seq_id = 0 header = next(reader) if is_file_with_header else None for line in reader: example = InputExample(guid=seq_id, label=line[0], text_a=line[1]) seq_id += 1 examples.append(example) return examples def _convert_examples_to_records(self, examples: List[InputExample]) -> List[dict]: """ Converts all examples to records which the model needs. Args: examples(obj:`List[InputExample]`): All data examples returned by _read_file. Returns: records(:obj:`List[dict]`): All records which the model needs. """ records = [] for example in examples: record = self.tokenizer.encode(text=example.text_a, text_pair=example.text_b, max_seq_len=self.max_seq_len) # CustomTokenizer will tokenize the text firstly and then lookup words in the vocab # When all words are not found in the vocab, the text will be dropped. if not record: logger.info( "The text %s has been dropped as it has no words in the vocab after tokenization." % example.text_a) continue if example.label: record['label'] = self.label_map[example.label] records.append(record) return records def __getitem__(self, idx): record = self.records[idx] if 'label' in record.keys(): return np.array(record['input_ids']), np.array(record['segment_ids']), np.array(record['label'], dtype=np.int64) else: return np.array(record['input_ids']), np.array(record['segment_ids']) def __len__(self): return len(self.records) class SeqLabelingDataset(BaseNLPDataset, paddle.io.Dataset): def __init__(self, base_path: str, tokenizer: Union[BertTokenizer, CustomTokenizer], max_seq_len: int = 128, mode: str = "train", data_file: str = None, label_file: str = None, label_list: list = None, split_char: str ="\002", no_entity_label: str = "O", ignore_label: int = -100, is_file_with_header: bool = False): super(SeqLabelingDataset, self).__init__( base_path=base_path, tokenizer=tokenizer, max_seq_len=max_seq_len, mode=mode, data_file=data_file, label_file=label_file, label_list=label_list) self.no_entity_label = no_entity_label self.split_char = split_char self.ignore_label = ignore_label self.examples = self._read_file(self.data_file, is_file_with_header) self.records = self._convert_examples_to_records(self.examples) def _read_file(self, input_file, is_file_with_header: bool = False) -> List[InputExample]: """Reads a tab separated value file.""" if not os.path.exists(input_file): raise RuntimeError("The file {} is not found.".format(input_file)) else: with io.open(input_file, "r", encoding="UTF-8") as f: reader = csv.reader(f, delimiter="\t", quotechar=None) examples = [] seq_id = 0 header = next(reader) if is_file_with_header else None for line in reader: example = InputExample(guid=seq_id, label=line[1], text_a=line[0]) seq_id += 1 examples.append(example) return examples def _convert_examples_to_records(self, examples: List[InputExample]) -> List[dict]: """ Returns a list[dict] including all the input information what the model need. Args: examples (list): the data examples, returned by _read_file. Returns: a list with all the examples record. """ records = [] for example in examples: tokens, labels = self._reseg_token_label( tokens=example.text_a.split(self.split_char), labels=example.label.split(self.split_char)) record = self.tokenizer.encode( text=tokens, max_seq_len=self.max_seq_len) # CustomTokenizer will tokenize the text firstly and then lookup words in the vocab # When all words are not found in the vocab, the text will be dropped. if not record: logger.info( "The text %s has been dropped as it has no words in the vocab after tokenization." % example.text_a) continue if labels: record["label"] = [] tokens_with_specical_token = self.tokenizer.convert_ids_to_tokens(record['input_ids']) tokens_index = 0 for token in tokens_with_specical_token: if tokens_index < len( tokens) and token == tokens[tokens_index]: record["label"].append( self.label_list.index(labels[tokens_index])) tokens_index += 1 elif token in [self.tokenizer.pad_token]: record["label"].append(self.ignore_label) # label of special token else: record["label"].append( self.label_list.index(self.no_entity_label)) records.append(record) return records def _reseg_token_label( self, tokens: List[str], labels: List[str] = None) -> Tuple[List[str], List[str]] or List[str]: if labels: if len(tokens) != len(labels): raise ValueError( "The length of tokens must be same with labels") ret_tokens = [] ret_labels = [] for token, label in zip(tokens, labels): sub_token = self.tokenizer(token) if len(sub_token) == 0: continue ret_tokens.extend(sub_token) ret_labels.append(label) if len(sub_token) < 2: continue sub_label = label if label.startswith("B-"): sub_label = "I-" + label[2:] ret_labels.extend([sub_label] * (len(sub_token) - 1)) if len(ret_tokens) != len(ret_labels): raise ValueError( "The length of ret_tokens can't match with labels") return ret_tokens, ret_labels else: ret_tokens = [] for token in tokens: sub_token = self.tokenizer(token) if len(sub_token) == 0: continue ret_tokens.extend(sub_token) if len(sub_token) < 2: continue return ret_tokens, None def __getitem__(self, idx): record = self.records[idx] if 'label' in record.keys(): return np.array(record['input_ids']), np.array(record['segment_ids']), np.array(record['seq_len']), np.array(record['label'], dtype=np.int64) else: return np.array(record['input_ids']), np.array(record['segment_ids']), np.array(record['seq_len']) def __len__(self): return len(self.records) ```
{ "source": "1Mans/test_task", "score": 2 }
#### File: test_task/departments/models.py ```python from django.conf import settings from django.db import models class Department(models.Model): name = models.CharField(max_length=200) description = models.TextField() def __str__(self): return self.name class Rank(models.Model): name = models.CharField(max_length=200) description = models.TextField() def __str__(self): return self.name class Employee(models.Model): first_name = models.CharField(max_length=200) last_name = models.CharField(max_length=200) middle_name = models.CharField(max_length=200) HIGH = "Высшее" MEDIUM = "Средне-специальное" SCHOOL = "Среднее" YEAR_IN_SCHOOL_CHOICES = [ (HIGH, "Высшее"), (MEDIUM, "Средне-специальное"), (SCHOOL, "Среднее"), ] year_in_school = models.CharField( max_length=20, choices=YEAR_IN_SCHOOL_CHOICES, ) years_worked = models.IntegerField() dob = models.DateField() date_accepted = models.DateField() department = models.ForeignKey( Department, on_delete=models.SET_NULL, null=True, blank=False ) rank = models.ForeignKey(Rank, on_delete=models.SET_NULL, null=True, blank=False) def __str__(self): return self.first_name ```
{ "source": "1marc1/pymp", "score": 3 }
#### File: 1marc1/pymp/pymp.py ```python import os import tempfile import logging import logging.handlers import multiprocessing import pymp_global as gv import pymp_common as dc def init_log(): _logfile = os.path.join(tempfile.gettempdir(),gv.GeneralLogFileName) gv.logger = logging.getLogger('pymp') gv.logger.setLevel(logging.DEBUG) file_handler = logging.handlers.RotatingFileHandler(_logfile, maxBytes=gv.GeneralLogSize, backupCount=gv.GeneralLogCount) file_handler.setFormatter(logging.Formatter(gv.GeneralLogFormat)) gv.logger.addHandler(file_handler) def MyFunction(): gv.logger.info('Starting MyFunction') dc.MPFunction() if __name__ == "__main__": multiprocessing.freeze_support() gv.GeneralLogFileName = 'pymp.log' init_log() gv.logger.info('Starting pymp') MyFunction() ```
{ "source": "1marc1/reportlab", "score": 3 }
#### File: reportlab/lib/units.py ```python __version__=''' $Id: units.py 3342 2008-12-12 15:55:34Z andy $ ''' __doc__='''Defines inch, cm, mm etc as multiples of a point You can now in user-friendly units by doing:: from reportlab.lib.units import inch r = Rect(0, 0, 3 * inch, 6 * inch) ''' inch = 72.0 cm = inch / 2.54 mm = cm * 0.1 pica = 12.0 def toLength(s): '''convert a string to a length''' try: if s[-2:]=='cm': return float(s[:-2])*cm if s[-2:]=='in': return float(s[:-2])*inch if s[-2:]=='pt': return float(s[:-2]) if s[-1:]=='i': return float(s[:-1])*inch if s[-2:]=='mm': return float(s[:-2])*mm if s[-4:]=='pica': return float(s[:-4])*pica return float(s) except: raise ValueError, "Can't convert '%s' to length" % s ``` #### File: reportlab/tests/test_lib_sequencer.py ```python __version__='''$Id: test_lib_sequencer.py 3288 2008-09-15 11:03:17Z rgbecker $''' from reportlab.lib.testutils import setOutDir,makeSuiteForClasses, printLocation setOutDir(__name__) import sys, random import unittest from reportlab.lib.sequencer import Sequencer class SequencerTestCase(unittest.TestCase): "Test Sequencer usage." def test0(self): "Test sequencer default counter." seq = Sequencer() msg = 'Initial value is not zero!' assert seq._this() == 0, msg def test1(self): "Test incrementing default counter." seq = Sequencer() for i in range(1, 101): n = seq.next() msg = 'Sequence value is not correct!' assert seq._this() == n, msg def test2(self): "Test resetting default counter." seq = Sequencer() start = seq._this() for i in range(1, 101): n = seq.next() seq.reset() msg = 'Sequence value not correctly reset!' assert seq._this() == start, msg def test3(self): "Test incrementing dedicated counter." seq = Sequencer() for i in range(1, 101): n = seq.next('myCounter1') msg = 'Sequence value is not correct!' assert seq._this('myCounter1') == n, msg def test4(self): "Test resetting dedicated counter." seq = Sequencer() start = seq._this('myCounter1') for i in range(1, 101): n = seq.next('myCounter1') seq.reset('myCounter1') msg = 'Sequence value not correctly reset!' assert seq._this('myCounter1') == start, msg def test5(self): "Test incrementing multiple dedicated counters." seq = Sequencer() startMyCounter0 = seq._this('myCounter0') startMyCounter1 = seq._this('myCounter1') for i in range(1, 101): n = seq.next('myCounter0') msg = 'Sequence value is not correct!' assert seq._this('myCounter0') == n, msg m = seq.next('myCounter1') msg = 'Sequence value is not correct!' assert seq._this('myCounter1') == m, msg ## def testRandom(self): ## "Test randomly manipulating multiple dedicated counters." ## ## seq = Sequencer() ## counterNames = ['c0', 'c1', 'c2', 'c3'] ## ## # Init. ## for cn in counterNames: ## setattr(self, cn, seq._this(cn)) ## msg = 'Counter start value is not correct!' ## assert seq._this(cn) == 0, msg ## ## # Increment/decrement. ## for i in range(1, 101): ## n = seq.next('myCounter0') ## msg = 'Sequence value is not correct!' ## assert seq._this('myCounter0') == n, msg ## m = seq.next('myCounter1') ## msg = 'Sequence value is not correct!' ## assert seq._this('myCounter1') == m, msg def makeSuite(): return makeSuiteForClasses(SequencerTestCase) #noruntests if __name__ == "__main__": unittest.TextTestRunner().run(makeSuite()) printLocation() ``` #### File: reportlab/tests/test_pdfgen_links.py ```python __version__='''$Id: test_pdfgen_links.py 3288 2008-09-15 11:03:17Z rgbecker $''' from reportlab.lib.testutils import setOutDir,makeSuiteForClasses, outputfile, printLocation setOutDir(__name__) # # Fit tests # # Modification History # ==================== # # 11-Mar-2003 <NAME> # * Initial version. # # from reportlab.pdfgen import canvas from reportlab.lib.units import inch from reportlab.lib.pagesizes import letter from reportlab.lib import colors import unittest def markPage(c,height=letter[1],width=letter[0]): height = height / inch width = width / inch for y in range(int(height)): for x in range(int(width)): c.drawString(x*inch,y*inch,"x=%d y=%d" % (x,y) ) c.line(x*inch,0,x*inch,height*inch) c.line(0,y*inch,width*inch,y*inch) fn = outputfile("test_pdfgen_links.pdf") class LinkTestCase(unittest.TestCase): "Test classes." def test1(self): c = canvas.Canvas(fn,pagesize=letter) #Page 1 c.setFont("Courier", 10) markPage(c) c.bookmarkPage("P1") c.addOutlineEntry("Page 1","P1") #Note : XYZ Left is ignored because at this zoom the whole page fits the screen c.bookmarkPage("P1_XYZ",fit="XYZ",top=7*inch,left=3*inch,zoom=0.5) c.addOutlineEntry("Page 1 XYZ #1 (top=7,left=3,zoom=0.5)","P1_XYZ",level=1) c.bookmarkPage("P1_XYZ2",fit="XYZ",top=7*inch,left=3*inch,zoom=5) c.addOutlineEntry("Page 1 XYZ #2 (top=7,left=3,zoom=5)","P1_XYZ2",level=1) c.bookmarkPage("P1_FIT",fit="Fit") c.addOutlineEntry("Page 1 Fit","P1_FIT",level=1) c.bookmarkPage("P1_FITH",fit="FitH",top=2*inch) c.addOutlineEntry("Page 1 FitH (top = 2 inch)","P1_FITH",level=1) c.bookmarkPage("P1_FITV",fit="FitV",left=3*inch) c.addOutlineEntry("Page 1 FitV (left = 3 inch)","P1_FITV",level=1) c.bookmarkPage("P1_FITR",fit="FitR",left=1*inch,bottom=2*inch,right=5*inch,top=6*inch) c.addOutlineEntry("Page 1 FitR (left=1,bottom=2,right=5,top=6)","P1_FITR",level=1) c.bookmarkPage("P1_FORWARD") c.addOutlineEntry("Forward References","P1_FORWARD",level=2) c.addOutlineEntry("Page 3 XYZ (top=7,left=3,zoom=0)","P3_XYZ",level=3) #Create link to FitR on page 3 c.saveState() c.setFont("Courier", 14) c.setFillColor(colors.blue) c.drawString(inch+20,inch+20,"Click to jump to the meaning of life") c.linkAbsolute("","MOL",(inch+10,inch+10,6*inch,2*inch)) c.restoreState() #Create linkAbsolute to page 2 c.saveState() c.setFont("Courier", 14) c.setFillColor(colors.green) c.drawString(4*inch,4*inch,"Jump to 2.5 inch position on page 2") c.linkAbsolute("","HYPER_1",(3.75*inch,3.75*inch,8.25*inch,4.25*inch)) c.restoreState() c.showPage() #Page 2 c.setFont("Helvetica", 10) markPage(c) c.bookmarkPage("P2") c.addOutlineEntry("Page 2","P2") #Note : This time left will be at 3*inch because the zoom makes the page to big to fit c.bookmarkPage("P2_XYZ",fit="XYZ",top=7*inch,left=3*inch,zoom=2) c.addOutlineEntry("Page 2 XYZ (top=7,left=3,zoom=2.0)","P2_XYZ",level=1) c.bookmarkPage("P2_FIT",fit="Fit") c.addOutlineEntry("Page 2 Fit","P2_FIT",level=1) c.bookmarkPage("P2_FITH",fit="FitH",top=2*inch) c.addOutlineEntry("Page 2 FitH (top = 2 inch)","P2_FITH",level=1) c.bookmarkPage("P2_FITV",fit="FitV",left=10*inch) c.addOutlineEntry("Page 2 FitV (left = 10 inch)","P2_FITV",level=1) c.bookmarkPage("P2_FITR",fit="FitR",left=1*inch,bottom=2*inch,right=5*inch,top=6*inch) c.addOutlineEntry("Page 2 FitR (left=1,bottom=2,right=5,top=6)","P2_FITR",level=1) c.bookmarkPage("P2_FORWARD") c.addOutlineEntry("Forward References","P2_FORWARD",level=2) c.addOutlineEntry("Page 3 XYZ (top=7,left=3,zoom=0)","P3_XYZ",level=3) c.bookmarkPage("P2_BACKWARD") c.addOutlineEntry("Backward References","P2_BACKWARD",level=2) c.addOutlineEntry("Page 1 Fit","P1_FIT",level=3) c.addOutlineEntry("Page 1 FitR (left=1,bottom=2,right=5,top=6)","P1_FITR",level=3) #Horizontal absolute test from page 1. Note that because of the page size used on page 3 all this will do #is put the view centered on the bookmark. If you want to see it "up close and personal" change page3 to be #the same page size as the other pages. c.saveState() c.setFont("Courier", 14) c.setFillColor(colors.green) c.drawString(2.5*inch,2.5*inch,"This line is hyperlinked from page 1") # c.bookmarkHorizontalAbsolute("HYPER_1",3*inch) #slightly higher than the text otherwise text is of screen above. c.bookmarkPage("HYPER_1",fit="XYZ",top=2.5*inch,bottom=2*inch) c.restoreState() # c.showPage() #Page 3 c.setFont("Times-Roman", 10) #Turn the page on its size and make it 2* the normal "width" in order to have something to test FitV against. c.setPageSize((2*letter[1],letter[0])) markPage(c,height=letter[0],width=2*letter[1]) c.bookmarkPage("P3") c.addOutlineEntry("Page 3 (Double-wide landscape page)","P3") #Note : XYZ with no zoom (set it to something first c.bookmarkPage("P3_XYZ",fit="XYZ",top=7*inch,left=3*inch,zoom=0) c.addOutlineEntry("Page 3 XYZ (top=7,left=3,zoom=0)","P3_XYZ",level=1) #FitV works here because the page is so wide it can"t all fit on the page c.bookmarkPage("P3_FITV",fit="FitV",left=10*inch) c.addOutlineEntry("Page 3 FitV (left = 10 inch)","P3_FITV",level=1) c.bookmarkPage("P3_BACKWARD") c.addOutlineEntry("Backward References","P3_BACKWARD",level=2) c.addOutlineEntry("Page 1 XYZ #1 (top=7,left=3,zoom=0.5)","P1_XYZ",level=3) c.addOutlineEntry("Page 1 XYZ #2 (top=7,left=3,zoom=5)","P1_XYZ2",level=3) c.addOutlineEntry("Page 2 FitV (left = 10 inch)","P2_FITV",level=3) #Add link from page 1 c.saveState() c.setFont("Courier", 40) c.setFillColor(colors.green) c.drawString(5*inch,6*inch,"42") c.bookmarkPage("MOL",fit="FitR",left=4*inch,top=7*inch,bottom=4*inch,right=6*inch) c.showOutline() c.save() def makeSuite(): return makeSuiteForClasses(LinkTestCase) #noruntests if __name__ == "__main__": unittest.TextTestRunner().run(makeSuite()) print "wrote", fn printLocation() ``` #### File: reportlab/tests/test_platypus_toc.py ```python __version__='''$Id: test_platypus_toc.py 3708 2010-05-12 14:49:43Z andy $''' from reportlab.lib.testutils import setOutDir,makeSuiteForClasses, outputfile, printLocation setOutDir(__name__) import sys, os from os.path import join, basename, splitext from math import sqrt import random import unittest from reportlab.lib.units import inch, cm from reportlab.lib.pagesizes import A4 from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from reportlab.platypus.paragraph import Paragraph from reportlab.platypus.xpreformatted import XPreformatted from reportlab.platypus.frames import Frame from reportlab.platypus.doctemplate \ import PageTemplate, BaseDocTemplate from reportlab.platypus import tableofcontents, PageBreak from reportlab.lib import randomtext def myMainPageFrame(canvas, doc): "The page frame used for all PDF documents." canvas.saveState() canvas.rect(2.5*cm, 2.5*cm, 15*cm, 25*cm) canvas.setFont('Times-Roman', 12) pageNumber = canvas.getPageNumber() canvas.drawString(10*cm, cm, str(pageNumber)) canvas.restoreState() class MyDocTemplate(BaseDocTemplate): "The document template used for all PDF documents." _invalidInitArgs = ('pageTemplates',) def __init__(self, filename, **kw): frame1 = Frame(2.5*cm, 2.5*cm, 15*cm, 25*cm, id='F1') self.allowSplitting = 0 BaseDocTemplate.__init__(self, filename, **kw) template = PageTemplate('normal', [frame1], myMainPageFrame) self.addPageTemplates(template) def afterFlowable(self, flowable): "Registers TOC entries." if flowable.__class__.__name__ == 'Paragraph': styleName = flowable.style.name if styleName[:7] == 'Heading': key = str(hash(flowable)) self.canv.bookmarkPage(key) # Register TOC entries. level = int(styleName[7:]) text = flowable.getPlainText() pageNum = self.page # Try calling this with and without a key to test both # Entries of every second level will have links, others won't if level % 2 == 1: self.notify('TOCEntry', (level, text, pageNum, key)) else: self.notify('TOCEntry', (level, text, pageNum)) def makeHeaderStyle(level, fontName='Times-Roman'): "Make a header style for different levels." assert level >= 0, "Level must be >= 0." PS = ParagraphStyle size = 24.0 / sqrt(1+level) style = PS(name = 'Heading' + str(level), fontName = fontName, fontSize = size, leading = size*1.2, spaceBefore = size/4.0, spaceAfter = size/8.0) return style def makeBodyStyle(): "Body text style - the default will do" return ParagraphStyle('body') def makeTocHeaderStyle(level, delta, epsilon, fontName='Times-Roman'): "Make a header style for different levels." assert level >= 0, "Level must be >= 0." PS = ParagraphStyle size = 12 style = PS(name = 'Heading' + str(level), fontName = fontName, fontSize = size, leading = size*1.2, spaceBefore = size/4.0, spaceAfter = size/8.0, firstLineIndent = -epsilon, leftIndent = level*delta + epsilon) return style class TocTestCase(unittest.TestCase): "Test TableOfContents class (eyeball-test)." def test0(self): """Test story with TOC and a cascaded header hierarchy. The story should contain exactly one table of contents that is immediatly followed by a list of of cascaded levels of header lines, each nested one level deeper than the previous one. Features to be visually confirmed by a human being are: 1. TOC lines are indented in multiples of 1 cm. 2. Wrapped TOC lines continue with additional 0.5 cm indentation. 3. Only entries of every second level has links ... """ maxLevels = 12 # Create styles to be used for document headers # on differnet levels. headerLevelStyles = [] for i in range(maxLevels): headerLevelStyles.append(makeHeaderStyle(i)) # Create styles to be used for TOC entry lines # for headers on differnet levels. tocLevelStyles = [] d, e = tableofcontents.delta, tableofcontents.epsilon for i in range(maxLevels): tocLevelStyles.append(makeTocHeaderStyle(i, d, e)) # Build story. story = [] styleSheet = getSampleStyleSheet() bt = styleSheet['BodyText'] description = '<font color=red>%s</font>' % self.test0.__doc__ story.append(XPreformatted(description, bt)) toc = tableofcontents.TableOfContents() toc.levelStyles = tocLevelStyles story.append(toc) for i in range(maxLevels): story.append(Paragraph('HEADER, LEVEL %d' % i, headerLevelStyles[i])) #now put some body stuff in. txt = randomtext.randomText(randomtext.PYTHON, 5) para = Paragraph(txt, makeBodyStyle()) story.append(para) path = outputfile('test_platypus_toc.pdf') doc = MyDocTemplate(path) doc.multiBuild(story) def test1(self): """This shows a table which would take more than one page, and need multiple passes to render. But we preload it with the right headings to make it go faster. We used a simple 100-chapter document with one level. """ chapters = 30 #goes over one page headerStyle = makeHeaderStyle(0) d, e = tableofcontents.delta, tableofcontents.epsilon tocLevelStyle = makeTocHeaderStyle(0, d, e) # Build most of the story; we'll re-use it to # make documents with different numbers of passes. story = [] styleSheet = getSampleStyleSheet() bt = styleSheet['BodyText'] description = '<font color=red>%s</font>' % self.test1.__doc__ story.append(XPreformatted(description, bt)) for i in range(chapters): story.append(PageBreak()) story.append(Paragraph('This is chapter %d' % (i+1), headerStyle)) #now put some lengthy body stuff in. for paras in range(random.randint(1,3)): txt = randomtext.randomText(randomtext.PYTHON, 5) para = Paragraph(txt, makeBodyStyle()) story.append(para) #try 1: empty TOC, 3 passes toc = tableofcontents.TableOfContents() toc.levelStyles = [tocLevelStyle] #only need one story1 = [toc] + story path = outputfile('test_platypus_toc_preload.pdf') doc = MyDocTemplate(path) passes = doc.multiBuild(story1) self.assertEquals(passes, 3) #try 2: now preload the TOC with the entries toc = tableofcontents.TableOfContents() toc.levelStyles = [tocLevelStyle] #only need one tocEntries = [] for i in range(chapters): #add tuple of (level, text, pageNum, key) #with an initial guess of pageNum=0 tocEntries.append((0, 'This is chapter %d' % (i+1), 0, None)) toc.addEntries(tocEntries) story2 = [toc] + story path = outputfile('test_platypus_toc_preload.pdf') doc = MyDocTemplate(path) passes = doc.multiBuild(story2) self.assertEquals(passes, 2) #try 3: preload again but try to be really smart and work out #in advance what page everything starts on. We cannot #use a random story for this. toc3 = tableofcontents.TableOfContents() toc3.levelStyles = [tocLevelStyle] #only need one tocEntries = [] for i in range(chapters): #add tuple of (level, text, pageNum, key) #with an initial guess of pageNum= 3 tocEntries.append((0, 'This is chapter %d' % i, 2+i, None)) toc3.addEntries(tocEntries) story3 = [toc3] for i in range(chapters): story3.append(PageBreak()) story3.append(Paragraph('This is chapter %d' % (i+1), headerStyle)) txt = """ The paragraphs in this are not at all random, because we need to be absolutely, totally certain they will fit on one page. Each chapter will be one page long. """ para = Paragraph(txt, makeBodyStyle()) story3.append(para) path = outputfile('test_platypus_toc_preload.pdf') doc = MyDocTemplate(path) passes = doc.multiBuild(story3) # I can't get one pass yet' #self.assertEquals(passes, 1) def makeSuite(): return makeSuiteForClasses(TocTestCase) #noruntests if __name__ == "__main__": unittest.TextTestRunner().run(makeSuite()) printLocation() ``` #### File: reportlab/tests/test_utils.py ```python __version__='''$Id: test_utils.py 3288 2008-09-15 11:03:17Z rgbecker $''' __doc__="""Test reportlab.lib.util module""" from reportlab.lib.testutils import setOutDir,makeSuiteForClasses, outputfile, printLocation setOutDir(__name__) import unittest class FmtTestCase(unittest.TestCase): def testFmt(self): from reportlab.lib.utils import FmtSelfDict class MixedIn(FmtSelfDict): def __init__(self): self.a = 'AA' self._b = '_BB' self.d = '(overridden)' obj = MixedIn() self.assertEqual('blah', obj._fmt('blah')) self.assertEqual('blah %', obj._fmt('blah %%')) self.assertRaises(ValueError, obj._fmt, 'blah %') self.assertEqual( 'moon AA june_BB spoon %(a)sCC ni', obj._fmt('moon %(a)s june%(_b)s spoon %%(a)s%(c)s %(d)s', c='CC', C='boon', d='ni')) self.assertRaises(AttributeError, obj._fmt, '%(c)s') # XXX bit weird, can this be changed? def makeSuite(): return makeSuiteForClasses(FmtTestCase) #noruntests if __name__ == "__main__": unittest.TextTestRunner().run(makeSuite()) printLocation() ``` #### File: tools/docco/t_parse.py ```python import re, string from types import StringType from string import find # # template parsing # # EG: T = Template("(NNN)NNN-NNNN X X", "X", "N") # ([area, exch, ext, fn, ln], index) = T.PARSE("(908)949-2726 <NAME>") # class Template: def __init__(self, template, wild_card_marker=None, single_char_marker=None, **marker_to_regex_dict): self.template = template self.wild_card = wild_card_marker self.char = single_char_marker # determine the set of markers for this template markers = marker_to_regex_dict.keys() if wild_card_marker: markers.append(wild_card_marker) if single_char_marker: for ch in single_char_marker: # allow multiple scm's markers.append(ch) self.char = single_char_primary = single_char_marker[0] self.markers = markers for mark in markers: if len(mark)>1: raise ValueError, "Marks must be single characters: "+repr(mark) # compile the regular expressions if needed self.marker_dict = marker_dict = {} for (mark, rgex) in marker_to_regex_dict.items(): if type(rgex) == StringType: rgex = re.compile(rgex) marker_dict[mark] = rgex # determine the parse sequence parse_seq = [] # dummy last char lastchar = None index = 0 last = len(template) # count the number of directives encountered ndirectives = 0 while index<last: start = index thischar = template[index] # is it a wildcard? if thischar == wild_card_marker: if lastchar == wild_card_marker: raise ValueError, "two wild cards in sequence is not allowed" parse_seq.append( (wild_card_marker, None) ) index = index+1 ndirectives = ndirectives+1 # is it a sequence of single character markers? elif single_char_marker and thischar in single_char_marker: if lastchar == wild_card_marker: raise ValueError, "wild card cannot precede single char marker" while index<last and template[index] == thischar: index = index+1 parse_seq.append( (single_char_primary, index-start) ) ndirectives = ndirectives+1 # is it a literal sequence? elif not thischar in markers: while index<last and not template[index] in markers: index = index+1 parse_seq.append( (None, template[start:index]) ) # otherwise it must be a re marker else: rgex = marker_dict[thischar] parse_seq.append( (thischar, rgex) ) ndirectives = ndirectives+1 index = index+1 lastchar = template[index-1] self.parse_seq = parse_seq self.ndirectives = ndirectives def PARSE(self, str, start=0): ndirectives = self.ndirectives wild_card = self.wild_card single_char = self.char parse_seq = self.parse_seq lparse_seq = len(parse_seq) - 1 # make a list long enough for substitutions for directives result = [None] * ndirectives current_directive_index = 0 currentindex = start # scan through the parse sequence, recognizing for parse_index in xrange(lparse_seq + 1): (indicator, data) = parse_seq[parse_index] # is it a literal indicator? if indicator is None: if find(str, data, currentindex) != currentindex: raise ValueError, "literal not found at "+repr((currentindex,data)) currentindex = currentindex + len(data) else: # anything else is a directive # is it a wildcard? if indicator == wild_card: # if it is the last directive then it matches the rest of the string if parse_index == lparse_seq: last = len(str) # otherwise must look at next directive to find end of wildcard else: # next directive must be re or literal (nextindicator, nextdata) = parse_seq[parse_index+1] if nextindicator is None: # search for literal last = find(str, nextdata, currentindex) if last<currentindex: raise ValueError, \ "couldn't terminate wild with lit "+repr(currentindex) else: # data is a re, search for it last = nextdata.search(str, currentindex) if last<currentindex: raise ValueError, \ "couldn't terminate wild with re "+repr(currentindex) elif indicator == single_char: # data is length to eat last = currentindex + data else: # other directives are always regular expressions last = data.match(str, currentindex) + currentindex if last<currentindex: raise ValueError, "couldn't match re at "+repr(currentindex) #print "accepting", str[currentindex:last] result[current_directive_index] = str[currentindex:last] current_directive_index = current_directive_index+1 currentindex = last # sanity check if current_directive_index != ndirectives: raise SystemError, "not enough directives found?" return (result, currentindex) # some useful regular expressions USERNAMEREGEX = \ "["+string.letters+"]["+string.letters+string.digits+"_]*" STRINGLITREGEX = "'[^\n']*'" SIMPLEINTREGEX = "["+string.digits+"]+" id = re.compile(USERNAMEREGEX) str = re.compile(STRINGLITREGEX) int = re.compile(SIMPLEINTREGEX) def test(): global T, T1, T2, T3 T = Template("(NNN)NNN-NNNN X X", "X", "N") print T.PARSE("(908)949-2726 <NAME>") T1 = Template("s --> s blah", s=str) s = "' <-- a string --> ' --> 'blah blah another string blah' blah" print T1.PARSE(s) T2 = Template("s --> NNNiX", "X", "N", s=str, i=int) print T2.PARSE("'A STRING' --> 15964653alpha beta gamma") T3 = Template("XsXi", "X", "N", s=str, i=int) print T3.PARSE("prefix'string'interior1234junk not parsed") T4 = Template("MMDDYYX", "X", "MDY") print T4.PARSE("122961 Somebody's birthday!") if __name__=="__main__": test() ```
{ "source": "1Mathias/PublicNLPA", "score": 3 }
#### File: 1Mathias/PublicNLPA/trigram_generator.py ```python import nltk def trigramm(s): sentence = s.split() #bigramed = list(nltk.bigrams(sentence)) trigrammed =list(nltk.trigrams(sentence)) trigrlist = [('የህዝብ', 'ተወካዮች','ቢሮ'), ('የሚንስትሮች','ምክር', 'ቤት')] isec = set(trigrammed) & set(trigrlist) newdata = [] i = [] c = [] for f in trigrammed: if f in isec: newdata.append(str(f).replace("'", "").replace(", ", "_")) c.append(str(f).replace("'", "").replace(", ", "_")) i.append(int(1)) else: newdata.append(str(f).replace("'", "").replace(", ", " ")) i.append(int(0)) c.append(tuple(f)) w = [] k = [] s = [] l = [] b = 0 f = 0 for x in range(len(i)): if (x == 0): b = 0 else: b = x - 1 if (x < len(i)): f = x + 1 else: f = x # if(i[b]!=1): # l.append(i[x]) # s.append(c[x]) b2 = 0 b = 0 y = 0 t=[] for x in range(len(i)): # Two forwards if (x == 0 or x == 1): b2 = x else: b2 = x - 2 y = 0 # forward loop if (x < len(i) - 1): y = x + 1 else: y = x b = 0 # backward loop if (x == 0): b = x else: b = x - 1 y2=0 # two forwards if(x<len(i)-2): y2=x+2 else: y2=x if(i[y]==1 and i[x]==0): continue elif(i[b]==1 and i[x]==0): continue elif(i[y]==1): t.append(c[x]) elif(i[y2]==1): t.append((c[x][0],c[x][1])) elif(i[b2]==1): t.append(c[x][1],c[x][2]) elif(i[x]==1): t.append(c[x]) elif(i[x]==0 and i[y]==0 and i[y2]==0): t.append(c[x][0]) if (i[x] == 0 and i[y] == 1 and i[b] == 0 and i[b2 == 0]): # print(c[x][0]) k.append(c[x][0]) elif (i[x] == 0 and i[y] == 1 and i[b] == 0 and i[b2 == 1]): continue elif (i[x] == 1 and i[y] == 0): # print(c[x]) k.append(c[x]) elif (i[x] == 0 and i[y] == 0 and i[b] == 0 and i[b2] == 0): k.append(c[x]) elif (i[x] == 0 and i[y] == 0 and i[b] == 0 and i[b2] == 1): k.append(c[x][1]) elif (i[x] == 0 and i[b] == 0): k.append(c[x]) elif (i[x] == 0 and i[b] == 1): k.append(c[x][1]) # print(c[x]) print(t) return k # s = "ዛሬ ፍርድ ቤት እና ትምህርት ቤት ነበርኩ" # sentence = ['ፍርድ','ቤት', 'beginning','ትምህርት','ቤት', 'God', 'created', 'the', 'heaven','and', 'the', 'earth', '.'] # sentence = s.split() # print(texts) # print(*map(' '.join, isec), sep=', ') ```
{ "source": "1matthewli/CornerNet", "score": 3 }
#### File: models/py_utils/tree_utils.py ```python from anytree import Node, RenderTree def read_tree(): tree_file = '../../metadata/9k.tree' f = open(tree_file, 'r') node_indices = {} node_dict = {} root = Node("root") node_indices[-1] = root lines = f.readlines() for i in range(len(lines)): line = lines[i] tokens = line.split() new_node = Node(tokens[0], parent=node_indices[int(tokens[1])]) node_indices[i] = new_node node_dict[tokens[0]] = new_node groups = [] print(groups) add_group([root], groups) print(groups[1]) return node_dict def add_group(level, groups): for node in level: if not node.is_leaf: children = node.children curr_group = [n.name for n in children] groups.append(curr_group) add_group(children, groups) tree_dict = read_tree() ```
{ "source": "1Maxnet1/opbasm", "score": 3 }
#### File: doc/util/extract_lib_docs.py ```python from sphinxcontrib.napoleon import * import re class PicoBlazeGoogleDocstring(GoogleDocstring): def __init__(self, docstring, config=None, app=None, what='', name='', obj=None, options=None): super(PicoBlazeGoogleDocstring, self).__init__(docstring, config, app, what, name, obj, options) def _parse_examples_section(self, section): '''Create an examples section with a PicoBlaze code block''' header = ['', '.. rubric:: Example:', ''] block = ['.. code-block:: picoblaze', ''] lines = self._consume_usage_section() lines = self._indent(lines, 3) return header + block + lines + [''] def _parse_parameters_section(self, section): '''Need to add blank line before parameter list''' fields = self._consume_fields() if self._config.napoleon_use_param: lines = [] for _name, _type, _desc in fields: field = ':param %s: ' % _name lines.extend(self._format_block(field, _desc)) if _type: lines.append(':type %s: %s' % (_name, _type)) return [''] + lines + [''] else: return [''] + self._format_fields('Parameters', fields) def extract_docstrings(fname): '''Pull out docstrings from picoblaze.m4''' funcs = {} state = None ds = [] with open(fname) as fh: for l in fh: if l.startswith(';--------'): state = 'docstring' ds = [] continue if state == 'docstring': if l.startswith(';'): ds.append(l[2:].rstrip()) elif l.startswith('define('): # Get macro name m = re.match(r"^\s*define\(\s*`([^_][\w]+)'", l) if not m: m = re.match(r"^\s*define\(\s*<!([^_][\w]+)!>", l) if m: funcs[m.group(1)] = ds state = None return funcs def indent(text, spaces=2): prefix = ' '*spaces return prefix + ('\n'+prefix).join(text.split('\n')) def build_signature(macro, body): '''Generate a macro signature from the parameter list''' params = [] for l in body.split('\n'): m = re.search(r':param\s+([^:]*)\s*:', l) if m: p = m.group(1) if p not in params: if 'optional' in l.lower(): p = '[{}]'.format(p) params.append(p) sig = '{}({})'.format(macro, ', '.join(params)) sig = sig.replace('], [', ', ') return sig funcs = extract_docstrings(sys.argv[1]) print ''' Opbasm PicoBlaze macro library reference ======================================== ''' for k in sorted(funcs.iterkeys()): body = indent(str(PicoBlazeGoogleDocstring(funcs[k]))) signature = build_signature(k, body) print '.. pb:macro:: {}\n\n{}\n'.format(signature, body) ``` #### File: opbasm/opbasm/color.py ```python from __future__ import print_function, division try: import colorama colorama.init() from colorama import Fore, Back, Style except ImportError: def note(t): return t def success(t): return t def warn(t): return t def error(t): return t else: import os _no_color = os.getenv('NO_COLOR', 'false') _no_color = True if _no_color.lower() in ['1', 'true', 't', 'y', 'yes'] else False def stdout_redirected(): return os.fstat(0) != os.fstat(1) _redir_stdout = stdout_redirected() def colorize(t, code): if _no_color or _redir_stdout: return t return ''.join([code, t, Style.RESET_ALL]) def note(t): return colorize(t, Fore.MAGENTA) def success(t): return colorize(t, Fore.GREEN) def warn(t): return colorize(t, Fore.YELLOW + Style.BRIGHT) def error(t): return colorize(t, Fore.RED + Style.BRIGHT) if __name__ == '__main__': print('Colorized text:\n') print('note("foobar") : ' + note('foobar')) print('success("foobar") : ' + success('foobar')) print('warn("foobar") : ' + warn('foobar')) print('error("foobar") : ' + error('foobar')) ``` #### File: opbasm/opbasm/devices.py ```python from __future__ import print_function, division, unicode_literals, absolute_import from opbasm.common import * class DeviceArch(object): def __init__(self): self.name = '' self.short_name = '' def instruction_words(self, asm, stmt): '''Determine the number of words generated for each instruction Normally this is 1 but the OUTPUTK and LOAD&RETURN instructions are replicated if a string or table is passed as an operand. s : Statement object ''' return 1 if stmt.is_instruction() else 0 class DevicePb3(DeviceArch): def __init__(self): self.name = 'PicoBlaze-3' self.short_name = 'pb3' self.has_string_table_support = False self.zero_instr = 'LOAD s0, 00' self.opcodes = { \ 'add': 0x18000, 'addcy': 0x1a000, 'and': 0x0a000, 'call': 0x30000, \ 'compare': 0x14000, 'disable': 0x3c000, 'enable': 0x3c001, 'fetch': 0x06000, 'input': 0x04000, 'jump': 0x34000, \ 'load': 0x00000, 'or': 0x0c000, 'output': 0x2c000, 'return': 0x2a000, \ 'returni': 0x38000, \ 'rl': 0x20002, 'rr': 0x2000c, 'sl0': 0x20006, 'sl1': 0x20007, \ 'slx': 0x20004, 'sla': 0x20000, 'sr0': 0x2000e, 'sr1': 0x2000f, \ 'sra': 0x20008, 'srx': 0x2000a, 'store': 0x2e000, 'sub': 0x1c000, \ 'subcy': 0x1e000, 'test': 0x12000, 'xor': 0x0e000, \ 'inst': 0x00000 \ } self.flag_opcodes = set(('call', 'jump', 'return')) self.flag_codes = { 'c' : 0x1800, 'nc': 0x1c00, 'z' : 0x1000, 'nz': 0x1400 } self.return_flag_codes = self.flag_codes self.addr_opcodes = set(('call', 'jump')) self.one_reg_opcodes = set(('rl', 'rr', 'sl0', 'sl1', 'sla', 'slx', 'sr0', 'sr1', 'sra', 'srx')) self.two_reg_opcodes = set(('add', 'addcy', 'and', 'compare', 'fetch', 'input', \ 'load', 'or', 'output', 'store', 'sub', 'subcy', 'test', 'xor')) self.two_reg_op_offset = 0x1000 self.directives = set(('address', 'constant', 'namereg', \ 'include', 'default_jump')) class DevicePb6(DeviceArch): def __init__(self): self.name = 'PicoBlaze-6' self.short_name = 'pb6' self.has_string_table_support = True self.zero_instr = 'LOAD s0, s0' self.opcodes = { \ 'add': 0x11000, 'addcy': 0x13000, 'and': 0x03000, 'call': 0x20000, \ 'compare': 0x1d000, 'disable': 0x28000, 'enable': 0x28001, 'fetch': 0x0b000, 'input': 0x09000, 'jump': 0x22000, \ 'load': 0x01000, 'or': 0x05000, 'output': 0x2d000, 'return': 0x25000, \ 'returni': 0x29000, \ 'rl': 0x14002, 'rr': 0x1400c, 'sl0': 0x14006, 'sl1': 0x14007, \ 'slx': 0x14004, 'sla': 0x14000, 'sr0': 0x1400e, 'sr1': 0x1400f, \ 'sra': 0x14008, 'srx': 0x1400a, 'store': 0x2f000, 'sub': 0x19000, \ 'subcy': 0x1b000, 'test': 0x0d000, 'xor': 0x07000, \ # New PicoBlaze-6 instructions: 'call@': 0x24000, 'comparecy': 0x1f000, 'hwbuild': 0x14080, 'jump@': 0x26000, \ 'load&return': 0x21000, 'outputk': 0x2b000, 'regbank': 0x37000, 'star': 0x17000, \ 'testcy': 0x0f000, 'inst': 0x00000 \ } self.flag_opcodes = set(('call', 'jump', 'return')) self.flag_codes = { 'c' : 0x18000, 'nc': 0x1c000, 'z' : 0x10000, 'nz': 0x14000 } # PicoBlaze-6 uses inconsistent offsets for the conditional return instructions self.return_flag_codes = { 'c' : 0x14000, 'nc': 0x18000, 'z' : 0x0c000, 'nz': 0x10000 } self.addr_opcodes = set(('call', 'jump')) self.one_reg_opcodes = set(('rl', 'rr', 'sl0', 'sl1', 'sla', 'slx', 'sr0', 'sr1', 'sra', 'srx', \ 'hwbuild')) self.two_reg_opcodes = set(('add', 'addcy', 'and', 'compare', 'fetch', 'input', \ 'load', 'or', 'output', 'store', 'sub', 'subcy', 'test', 'xor', \ 'comparecy', 'testcy')) self.two_reg_op_offset = -0x1000 self.directives = set(('address', 'constant', 'namereg', \ 'include', 'default_jump', 'string', 'table')) def instruction_words(self, asm, stmt): '''Determine the number of words generated for each instruction Normally this is 1 but the OUTPUTK and LOAD&RETURN instructions are replicated if a string or table is passed as an operand. s : Statement object ''' if stmt.is_instruction(): num_words = 1 array_name = None if stmt.command == 'outputk': if stmt.arg1 is not None and stmt.arg1[-1] in ('$', '#'): array_name = stmt.arg1 elif stmt.command == 'load&return': if stmt.arg2 is not None and stmt.arg2[-1] in ('$', '#'): array_name = stmt.arg2 if array_name is not None: if array_name[-1] == '$': if array_name not in asm.strings: raise StatementError(stmt, _('Unknown string:'), array_name) num_words = len(asm.strings[array_name].value) else: # Table if array_name not in asm.tables: raise StatementError(stmt, _('Unknown table:'), array_name) num_words = len(asm.tables[array_name].value) return num_words else: return 0 ``` #### File: opbasm/opbasm/hamming.py ```python from __future__ import print_function, division import math def split_bits(n, num_bits): '''Convert integer to a list of bits (MSB-first) n (int) The number to convert to bits. num_bits (int) The number of bits in the result. Returns a list of ints representing each bit in n. ''' bits = [0] * num_bits for i in xrange(num_bits-1, -1, -1): bits[i] = n & 0x01 n >>= 1 return bits def join_bits(bits): '''Convert an array of bits (MSB first) to an integer word bits (sequence of ints) The bits to be merged into an integer Returns an int representing the bits contained in the bits parameter. ''' word = 0 for b in bits: word = (word << 1) | b return word def hamming_message_size( data_size ): '''Calculate total message size from the data size''' psize = int(math.log(data_size, 2)) + 1 if (2**psize - 1) - psize < data_size: psize += 1 return data_size + psize def hamming_parity_size( message_size ): '''Calculate parity size from the total message size''' return int(math.ceil(math.log(message_size + 1, 2))) def hamming_data_size( message_size ): '''Calculate data size from the total message size''' return message_size - hamming_parity_size(message_size) def secded_message_size( data_size ): '''Calculate total SECDED message size from the data size''' return hamming_message_size(data_size) + 1 def secded_parity_size( message_size ): '''Calculate SECDED parity size from the total message size''' return hamming_parity_size(message_size) + 1 def secded_data_size( message_size ): '''Calculate SECDED data size from the total message size''' return message_size - secded_parity_size(message_size) def hamming_interleave( data, parity_bits ): '''Combine separate data and parity bits into a message with interleaved parity data : array of data bits parity_bits : array of parity_bits. Use all 0's when encoding Returns full message with interleaved bits ''' message_size = len(data) + len(parity_bits) assert len(data) == hamming_data_size(message_size), 'Data and parity size mismatch' msg = [0 for _ in xrange(message_size)] parity_ix = 0 data_ix = 0 for i in xrange(1,len(msg)+1): if 2**int(math.ceil(math.log(i,2))) == i: # This is a power of 2 and will be a parity bit msg[i-1] = parity_bits[parity_ix] parity_ix += 1 else: msg[i-1] = data[data_ix] data_ix += 1 return msg def hamming_parity( message ): '''Generate Hamming parity bits from an interleaved message This is the core routine of the package that determines which bits of a message to XOR together. It is employed for both encoding and decoding When encoding, the message should have all zeroes interleaved for the parity bits. The result is the parity to be used by a decoder. When decoding, the previously generated parity bits are interleaved and the result is a syndrome that can be used for error detection and correction. Returns the computed parity bits ''' result = [0 for _ in xrange(hamming_parity_size(len(message)))] result_ix = 0 for i in xrange(1, len(message)+1): if 2**int(math.ceil(math.log(i,2))) == i: # This is a power of 2 count = i parity_bit = 0 for d in xrange(i, len(message)+1): if count > 0: parity_bit ^= message[d-1] elif count == 1 - i: count = i + 1 count -= 1 result[result_ix] = parity_bit result_ix += 1 return result def hamming_encode( data ): '''Generate parity for the data''' parity_bits = [0 for _ in xrange(hamming_parity_size(hamming_message_size(len(data))))] parity_bits = hamming_parity(hamming_interleave(data, parity_bits)) return parity_bits def secded_encode( data ): '''Generate SECDED parity for the data''' parity_bits = hamming_encode(data) overall = reduce(lambda a,b: a ^ b, data) ^ reduce(lambda a,b: a ^ b, parity_bits) parity_bits.append(overall) return parity_bits def secded_encode_num( data, bits ): '''Generate SECDED parity from an integer values data : Integer data to computer SECDED parity on bits : Number of bits in the data_format Returns an integer representing the SECDED parity''' adata = [int(b) for b in reversed(split_bits(data, bits))] sparity = secded_encode(adata) return join_bits(reversed(sparity)) ```
{ "source": "1mbtxn/BitcoinUnlimited", "score": 2 }
#### File: test/functional/net.py ```python import time from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_raises_jsonrpc, connect_nodes_bi, p2p_port, start_nodes, ) class NetTest(BitcoinTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 2 def setup_network(self): self.nodes = start_nodes(self.num_nodes, self.options.tmpdir) connect_nodes_bi(self.nodes, 0, 1) self.is_network_split = False self.sync_all() def run_test(self): assert_equal(self.nodes[0].getnetworkinfo()['networkactive'], True) assert_equal(self.nodes[0].getnetworkinfo()['connections'], 2) self.nodes[0].setnetworkactive(False) assert_equal(self.nodes[0].getnetworkinfo()['networkactive'], False) timeout = 3 while self.nodes[0].getnetworkinfo()['connections'] != 0: # Wait a bit for all sockets to close assert timeout > 0, 'not all connections closed in time' timeout -= 0.1 time.sleep(0.1) self.nodes[0].setnetworkactive(True) connect_nodes_bi(self.nodes, 0, 1) assert_equal(self.nodes[0].getnetworkinfo()['networkactive'], True) assert_equal(self.nodes[0].getnetworkinfo()['connections'], 2) # test getaddednodeinfo assert_equal(self.nodes[0].getaddednodeinfo(), []) # add a node (node2) to node0 ip_port = "127.0.0.1:{}".format(p2p_port(2)) self.nodes[0].addnode(ip_port, 'add') # check that the node has indeed been added added_nodes = self.nodes[0].getaddednodeinfo(ip_port) assert_equal(len(added_nodes), 1) assert_equal(added_nodes[0]['addednode'], ip_port) # check that a non-existant node returns an error assert_raises_jsonrpc(-24, "Node has not been added", self.nodes[0].getaddednodeinfo, '1.1.1.1') if __name__ == '__main__': NetTest().main() ```
{ "source": "1mehal/imdb-graphql", "score": 2 }
#### File: python/imdb_graphql/schema.py ```python import graphene from graphene_sqlalchemy import SQLAlchemyObjectType from sqlalchemy import func, desc from .models import ( Title as TitleModel, Movie as MovieModel, Series as SeriesModel, Episode as EpisodeModel, EpisodeInfo as EpisodeInfoModel, Rating as RatingModel, Name as NameModel, TitleType as TitleTypeEnum ) TitleType = graphene.Enum.from_enum(TitleTypeEnum) class Rating(SQLAlchemyObjectType): class Meta: model = RatingModel interfaces = (graphene.relay.Node, ) imdbID = graphene.String() averageRating = graphene.Float() numVotes = graphene.Int() class Title(graphene.Interface): imdbID = graphene.String() titleType = graphene.String() primaryTitle = graphene.String() originalTitle = graphene.String() isAdult = graphene.Boolean() startYear = graphene.Int() endYear = graphene.Int() runtime = graphene.Int() genres = graphene.String() averageRating = graphene.Float() numVotes = graphene.Int() exclude_fields = ('titleSearchCol', '_type', ) class Movie(SQLAlchemyObjectType): class Meta: model = MovieModel interfaces = (Title, ) exclude_fields = exclude_fields class Episode(SQLAlchemyObjectType): class Meta: model = EpisodeModel interfaces = (Title, ) exclude_fields = exclude_fields seasonNumber = graphene.Int() episodeNumber = graphene.Int() series = graphene.Field(lambda: Series) class Series(SQLAlchemyObjectType): class Meta: model = SeriesModel interfaces = (Title, ) exclude_fields = exclude_fields totalSeasons = graphene.Int() episodes = graphene.Field( graphene.List(Episode), season=graphene.List(graphene.Int) ) def resolve_episodes(self, info, **args): query = ( Episode .get_query(info) .join(EpisodeModel.info) .filter_by(seriesID=self.imdbID) ) query = ( query.filter(EpisodeInfoModel.seasonNumber.in_(args['season'])) if 'season' in args else query ) query = ( query.order_by( EpisodeInfoModel.seasonNumber, EpisodeInfoModel.episodeNumber ) if 'season' in args and len(args['season']) > 1 else query.order_by(EpisodeInfoModel.episodeNumber) ) return query def resolve_totalSeasons(self, info): return( EpisodeInfoModel .query .with_entities(EpisodeInfoModel.seasonNumber) .filter_by(seriesID=self.imdbID) .group_by(EpisodeInfoModel.seasonNumber) .count() ) class Name(SQLAlchemyObjectType): class Meta: model = NameModel interfaces = (graphene.relay.Node, ) exclude_fields = ('id', ) imdbID = graphene.String() birthYear = graphene.Int() deathYear = graphene.Int() primaryName = graphene.String() primaryProfession = graphene.String() knownForTitles = graphene.List(Title) def resolve_knownForTitles(self, info): query = ( TitleModel .query .filter(TitleModel.imdbID.in_(self.knownForTitles.split(','))) ) if self.knownForTitles is not None else None return query class Query(graphene.ObjectType): title = graphene.Field(Title, imdbID=graphene.String(required=True)) movie = graphene.Field(Movie, imdbID=graphene.String(required=True)) series = graphene.Field(Series, imdbID=graphene.String(required=True)) episode = graphene.Field(Episode, imdbID=graphene.String(required=True)) titleSearch = graphene.Field( graphene.List(Title), title=graphene.String(required=True), types=graphene.List(TitleType), result=graphene.Int(default_value=5) ) name = graphene.Field(Name, imdbID=graphene.String(required=True)) rating = graphene.Field(Rating, imdbID=graphene.String(required=True)) nameSearch = graphene.Field( graphene.List(Name), name=graphene.String(required=True), result=graphene.Int(default_value=10) ) def resolve_title(self, info, imdbID): return TitleModel.query.filter_by(imdbID=imdbID).first() def resolve_movie(self, info, imdbID): return Movie.get_query(info).filter_by(imdbID=imdbID).first() def resolve_series(self, info, imdbID): return Series.get_query(info).filter_by(imdbID=imdbID).first() def resolve_episode(self, info, imdbID): return Episode.get_query(info).filter_by(imdbID=imdbID).first() def resolve_titleSearch(self, info, title, types=None, result=None): tsquery = func.to_tsquery(f'\'{title}\'') query = ( TitleModel .query .filter(TitleModel.titleSearchCol.op('@@')(tsquery)) ) query = ( query.filter(TitleModel._type.in_(types)) if types is not None else query ) query = ( query .join(TitleModel.rating) .order_by( desc(RatingModel.numVotes >= 1000), desc(TitleModel.primaryTitle.ilike(title)), desc(RatingModel.numVotes), desc(func.ts_rank_cd(TitleModel.titleSearchCol, tsquery, 1)) ) .limit(result) ) return query def resolve_name(self, info, imdbID): return NameModel.query.filter_by(imdbID=imdbID).first() def resolve_rating(self, info, imdbID): return RatingModel.query.filter_by(imdbID=imdbID).first() def resolve_nameSearch(self, info, name, result=None): query = ( NameModel .query .filter(NameModel.primaryName.ilike(f'%{name}%')) .order_by( NameModel.primaryName, NameModel.birthYear ) .limit(result) ) return query schema = graphene.Schema(query=Query, types=[Movie, Series, Episode, Name]) ```
{ "source": "1-MillionParanoidTterabytes/Blender-2.79b-blackened", "score": 3 }
#### File: python_api/examples/bpy.props.5.py ```python import bpy # Simple property reading/writing from ID properties. # This is what the RNA would do internally. def get_float(self): return self["testprop"] def set_float(self, value): self["testprop"] = value bpy.types.Scene.test_float = bpy.props.FloatProperty(get=get_float, set=set_float) # Read-only string property, returns the current date def get_date(self): import datetime return str(datetime.datetime.now()) bpy.types.Scene.test_date = bpy.props.StringProperty(get=get_date) # Boolean array. Set function stores a single boolean value, returned as the second component. # Array getters must return a list or tuple # Array size must match the property vector size exactly def get_array(self): return (True, self["somebool"]) def set_array(self, values): self["somebool"] = values[0] and values[1] bpy.types.Scene.test_array = bpy.props.BoolVectorProperty(size=2, get=get_array, set=set_array) # Enum property. # Note: the getter/setter callback must use integer identifiers! test_items = [ ("RED", "Red", "", 1), ("GREEN", "Green", "", 2), ("BLUE", "Blue", "", 3), ("YELLOW", "Yellow", "", 4), ] def get_enum(self): import random return random.randint(1, 4) def set_enum(self, value): print("setting value", value) bpy.types.Scene.test_enum = bpy.props.EnumProperty(items=test_items, get=get_enum, set=set_enum) # Testing scene = bpy.context.scene scene.test_float = 12.34 print(scene.test_float) scene.test_array = (True, False) print([x for x in scene.test_array]) # scene.test_date = "blah" # this would fail, property is read-only print(scene.test_date) scene.test_enum = 'BLUE' print(scene.test_enum) # >>> 12.34000015258789 # >>> [True, False] # >>> 2013-01-05 16:33:52.135340 # >>> setting value 3 # >>> GREEN ``` #### File: python_api/examples/bpy.types.Operator.6.py ```python import bpy from bpy.props import EnumProperty class SearchEnumOperator(bpy.types.Operator): bl_idname = "object.search_enum_operator" bl_label = "Search Enum Operator" bl_property = "my_search" my_search = EnumProperty( name="My Search", items=( ('FOO', "Foo", ""), ('BAR', "Bar", ""), ('BAZ', "Baz", ""), ), ) def execute(self, context): self.report({'INFO'}, "Selected:" + self.my_search) return {'FINISHED'} def invoke(self, context, event): context.window_manager.invoke_search_popup(self) return {'RUNNING_MODAL'} bpy.utils.register_class(SearchEnumOperator) # test call bpy.ops.object.search_enum_operator('INVOKE_DEFAULT') ``` #### File: release/datafiles/blender_icons_update.py ```python import os import sys def run(cmd): print(" ", cmd) os.system(cmd) BASEDIR = os.path.abspath(os.path.dirname(__file__)) + os.sep inkscape_path = 'inkscape' if sys.platform == 'darwin': inkscape_app_path = '/Applications/Inkscape.app/Contents/Resources/script' if os.path.exists(inkscape_app_path): inkscape_path = inkscape_app_path cmd = inkscape_path + ' "%sblender_icons.svg" --export-dpi=90 --without-gui --export-png="%sblender_icons16.png"' % (BASEDIR, BASEDIR) run(cmd) cmd = inkscape_path + ' "%sblender_icons.svg" --export-dpi=180 --without-gui --export-png="%sblender_icons32.png"' % (BASEDIR, BASEDIR) run(cmd) # For testing it can be good to clear all old # rm ./blender_icons16/*.dat # rm ./blender_icons32/*.dat datatoc_icon_split_py = os.path.join(BASEDIR, "..", "..", "source", "blender", "datatoc", "datatoc_icon_split.py") # create .dat pixmaps (which are stored in git) cmd = ( "blender " "--background -noaudio " "--python " + datatoc_icon_split_py + " -- " "--image=" + BASEDIR + "blender_icons16.png " "--output=" + BASEDIR + "blender_icons16 " "--output_prefix=icon16_ " "--name_style=UI_ICONS " "--parts_x 26 --parts_y 30 " "--minx 3 --maxx 53 --miny 3 --maxy 8 " "--minx_icon 2 --maxx_icon 2 --miny_icon 2 --maxy_icon 2 " "--spacex_icon 1 --spacey_icon 1" ) run(cmd) cmd = ( "blender " "--background -noaudio " "--python " + datatoc_icon_split_py + " -- " "--image=" + BASEDIR + "blender_icons32.png " "--output=" + BASEDIR + "blender_icons32 " "--output_prefix=icon32_ " "--name_style=UI_ICONS " "--parts_x 26 --parts_y 30 " "--minx 6 --maxx 106 --miny 6 --maxy 16 " "--minx_icon 4 --maxx_icon 4 --miny_icon 4 --maxy_icon 4 " "--spacex_icon 2 --spacey_icon 2" ) run(cmd) os.remove(BASEDIR + "blender_icons16.png") os.remove(BASEDIR + "blender_icons32.png") # For testing, if we want the PNG of each image # ./datatoc_icon_split_to_png.py ./blender_icons16/*.dat # ./datatoc_icon_split_to_png.py ./blender_icons32/*.dat ``` #### File: addons/space_view3d_pie_menus/pie_sculpt_menu.py ```python bl_info = { "name": "Hotkey: 'W'", "description": "Sculpt Brush Menu", "author": "pitiwazou, meta-androcto", "version": (0, 1, 0), "blender": (2, 77, 0), "location": "W key", "warning": "", "wiki_url": "", "category": "Sculpt Pie" } import bpy from bpy.types import ( Menu, Operator, ) # Sculpt Draw class SculptSculptDraw(Operator): bl_idname = "sculpt.sculptraw" bl_label = "Sculpt SculptDraw" bl_options = {'REGISTER', 'UNDO'} def execute(self, context): context.tool_settings.sculpt.brush = bpy.data.brushes['SculptDraw'] return {'FINISHED'} # Pie Sculp Pie Menus - W class PieSculptPie(Menu): bl_idname = "pie.sculpt" bl_label = "Pie Sculpt" def draw(self, context): layout = self.layout pie = layout.menu_pie() # 4 - LEFT pie.operator("paint.brush_select", text="Crease", icon='BRUSH_CREASE').sculpt_tool = 'CREASE' # 6 - RIGHT pie.operator("paint.brush_select", text='Blob', icon='BRUSH_BLOB').sculpt_tool = 'BLOB' # 2 - BOTTOM pie.menu(PieSculpttwo.bl_idname, text="More Brushes", icon='BRUSH_SMOOTH') # 8 - TOP pie.operator("sculpt.sculptraw", text='SculptDraw', icon='BRUSH_SCULPT_DRAW') # 7 - TOP - LEFT pie.operator("paint.brush_select", text="Clay", icon='BRUSH_CLAY').sculpt_tool = 'CLAY' # 9 - TOP - RIGHT pie.operator("paint.brush_select", text='Claystrips', icon='BRUSH_CLAY_STRIPS').sculpt_tool = 'CLAY_STRIPS' # 1 - BOTTOM - LEFT pie.operator("paint.brush_select", text='Inflate/Deflate', icon='BRUSH_INFLATE').sculpt_tool = 'INFLATE' # 3 - BOTTOM - RIGHT pie.menu(PieSculptthree.bl_idname, text="Grab Brushes", icon='BRUSH_GRAB') # Pie Sculpt 2 class PieSculpttwo(Menu): bl_idname = "pie.sculpttwo" bl_label = "Pie Sculpt 2" def draw(self, context): layout = self.layout layout.operator("paint.brush_select", text='Smooth', icon='BRUSH_SMOOTH').sculpt_tool = 'SMOOTH' layout.operator("paint.brush_select", text='Flatten', icon='BRUSH_FLATTEN').sculpt_tool = 'FLATTEN' layout.operator("paint.brush_select", text='Scrape/Peaks', icon='BRUSH_SCRAPE').sculpt_tool = 'SCRAPE' layout.operator("paint.brush_select", text='Fill/Deepen', icon='BRUSH_FILL').sculpt_tool = 'FILL' layout.operator("paint.brush_select", text='Pinch/Magnify', icon='BRUSH_PINCH').sculpt_tool = 'PINCH' layout.operator("paint.brush_select", text='Layer', icon='BRUSH_LAYER').sculpt_tool = 'LAYER' layout.operator("paint.brush_select", text='Mask', icon='BRUSH_MASK').sculpt_tool = 'MASK' # Pie Sculpt Three class PieSculptthree(Menu): bl_idname = "pie.sculptthree" bl_label = "Pie Sculpt 3" def draw(self, context): layout = self.layout layout.operator("paint.brush_select", text='Grab', icon='BRUSH_GRAB').sculpt_tool = 'GRAB' layout.operator("paint.brush_select", text='Nudge', icon='BRUSH_NUDGE').sculpt_tool = 'NUDGE' layout.operator("paint.brush_select", text='Thumb', icon='BRUSH_THUMB').sculpt_tool = 'THUMB' layout.operator("paint.brush_select", text='Snakehook', icon='BRUSH_SNAKE_HOOK').sculpt_tool = 'SNAKE_HOOK' layout.operator("paint.brush_select", text='Twist', icon='BRUSH_ROTATE').sculpt_tool = 'ROTATE' classes = ( PieSculptPie, PieSculpttwo, PieSculptthree, SculptSculptDraw, ) addon_keymaps = [] def register(): for cls in classes: bpy.utils.register_class(cls) wm = bpy.context.window_manager if wm.keyconfigs.addon: # Sculpt Pie Menu km = wm.keyconfigs.addon.keymaps.new(name='Sculpt') kmi = km.keymap_items.new('wm.call_menu_pie', 'W', 'PRESS') kmi.properties.name = "pie.sculpt" addon_keymaps.append((km, kmi)) def unregister(): for cls in classes: bpy.utils.unregister_class(cls) wm = bpy.context.window_manager kc = wm.keyconfigs.addon if kc: for km, kmi in addon_keymaps: km.keymap_items.remove(kmi) addon_keymaps.clear() if __name__ == "__main__": register() ``` #### File: startup/bl_operators/presets.py ```python import bpy from bpy.types import Menu, Operator from bpy.props import StringProperty, BoolProperty class AddPresetBase: """Base preset class, only for subclassing subclasses must define - preset_values - preset_subdir """ # bl_idname = "script.preset_base_add" # bl_label = "Add a Python Preset" # only because invoke_props_popup requires. Also do not add to search menu. bl_options = {'REGISTER', 'INTERNAL'} name = StringProperty( name="Name", description="Name of the preset, used to make the path name", maxlen=64, options={'SKIP_SAVE'}, ) remove_active = BoolProperty( default=False, options={'HIDDEN', 'SKIP_SAVE'}, ) # needed for mix-ins order = [ "name", "remove_active", ] @staticmethod def as_filename(name): # could reuse for other presets # lazy init maketrans def maketrans_init(): cls = AddPresetBase attr = "_as_filename_trans" trans = getattr(cls, attr, None) if trans is None: trans = str.maketrans({char: "_" for char in " !@#$%^&*(){}:\";'[]<>,.\\/?"}) setattr(cls, attr, trans) return trans name = name.lower().strip() name = bpy.path.display_name_to_filepath(name) trans = maketrans_init() return name.translate(trans) def execute(self, context): import os if hasattr(self, "pre_cb"): self.pre_cb(context) preset_menu_class = getattr(bpy.types, self.preset_menu) is_xml = getattr(preset_menu_class, "preset_type", None) == 'XML' if is_xml: ext = ".xml" else: ext = ".py" if not self.remove_active: name = self.name.strip() if not name: return {'FINISHED'} filename = self.as_filename(name) target_path = os.path.join("presets", self.preset_subdir) target_path = bpy.utils.user_resource('SCRIPTS', target_path, create=True) if not target_path: self.report({'WARNING'}, "Failed to create presets path") return {'CANCELLED'} filepath = os.path.join(target_path, filename) + ext if hasattr(self, "add"): self.add(context, filepath) else: print("Writing Preset: %r" % filepath) if is_xml: import rna_xml rna_xml.xml_file_write(context, filepath, preset_menu_class.preset_xml_map) else: def rna_recursive_attr_expand(value, rna_path_step, level): if isinstance(value, bpy.types.PropertyGroup): for sub_value_attr in value.bl_rna.properties.keys(): if sub_value_attr == "rna_type": continue sub_value = getattr(value, sub_value_attr) rna_recursive_attr_expand(sub_value, "%s.%s" % (rna_path_step, sub_value_attr), level) elif type(value).__name__ == "bpy_prop_collection_idprop": # could use nicer method file_preset.write("%s.clear()\n" % rna_path_step) for sub_value in value: file_preset.write("item_sub_%d = %s.add()\n" % (level, rna_path_step)) rna_recursive_attr_expand(sub_value, "item_sub_%d" % level, level + 1) else: # convert thin wrapped sequences # to simple lists to repr() try: value = value[:] except: pass file_preset.write("%s = %r\n" % (rna_path_step, value)) file_preset = open(filepath, 'w', encoding="utf-8") file_preset.write("import bpy\n") if hasattr(self, "preset_defines"): for rna_path in self.preset_defines: exec(rna_path) file_preset.write("%s\n" % rna_path) file_preset.write("\n") for rna_path in self.preset_values: value = eval(rna_path) rna_recursive_attr_expand(value, rna_path, 1) file_preset.close() preset_menu_class.bl_label = bpy.path.display_name(filename) else: preset_active = preset_menu_class.bl_label # fairly sloppy but convenient. filepath = bpy.utils.preset_find(preset_active, self.preset_subdir, ext=ext) if not filepath: filepath = bpy.utils.preset_find(preset_active, self.preset_subdir, display_name=True, ext=ext) if not filepath: return {'CANCELLED'} try: if hasattr(self, "remove"): self.remove(context, filepath) else: os.remove(filepath) except Exception as e: self.report({'ERROR'}, "Unable to remove preset: %r" % e) import traceback traceback.print_exc() return {'CANCELLED'} # XXX, stupid! preset_menu_class.bl_label = "Presets" if hasattr(self, "post_cb"): self.post_cb(context) return {'FINISHED'} def check(self, context): self.name = self.as_filename(self.name.strip()) def invoke(self, context, event): if not self.remove_active: wm = context.window_manager return wm.invoke_props_dialog(self) else: return self.execute(context) class ExecutePreset(Operator): """Execute a preset""" bl_idname = "script.execute_preset" bl_label = "Execute a Python Preset" filepath = StringProperty( subtype='FILE_PATH', options={'SKIP_SAVE'}, ) menu_idname = StringProperty( name="Menu ID Name", description="ID name of the menu this was called from", options={'SKIP_SAVE'}, ) def execute(self, context): from os.path import basename, splitext filepath = self.filepath # change the menu title to the most recently chosen option preset_class = getattr(bpy.types, self.menu_idname) preset_class.bl_label = bpy.path.display_name(basename(filepath)) ext = splitext(filepath)[1].lower() # execute the preset using script.python_file_run if ext == ".py": bpy.ops.script.python_file_run(filepath=filepath) elif ext == ".xml": import rna_xml rna_xml.xml_file_run(context, filepath, preset_class.preset_xml_map) else: self.report({'ERROR'}, "unknown filetype: %r" % ext) return {'CANCELLED'} return {'FINISHED'} class AddPresetRender(AddPresetBase, Operator): """Add or remove a Render Preset""" bl_idname = "render.preset_add" bl_label = "Add Render Preset" preset_menu = "RENDER_MT_presets" preset_defines = [ "scene = bpy.context.scene" ] preset_values = [ "scene.render.field_order", "scene.render.fps", "scene.render.fps_base", "scene.render.pixel_aspect_x", "scene.render.pixel_aspect_y", "scene.render.resolution_percentage", "scene.render.resolution_x", "scene.render.resolution_y", "scene.render.use_fields", "scene.render.use_fields_still", ] preset_subdir = "render" class AddPresetCamera(AddPresetBase, Operator): """Add or remove a Camera Preset""" bl_idname = "camera.preset_add" bl_label = "Add Camera Preset" preset_menu = "CAMERA_MT_presets" preset_defines = [ "cam = bpy.context.camera" ] preset_subdir = "camera" use_focal_length = BoolProperty( name="Include Focal Length", description="Include focal length into the preset", options={'SKIP_SAVE'}, ) @property def preset_values(self): preset_values = [ "cam.sensor_width", "cam.sensor_height", "cam.sensor_fit" ] if self.use_focal_length: preset_values.append("cam.lens") preset_values.append("cam.lens_unit") return preset_values class AddPresetSafeAreas(AddPresetBase, Operator): """Add or remove a Safe Areas Preset""" bl_idname = "safe_areas.preset_add" bl_label = "Add Safe Area Preset" preset_menu = "SAFE_AREAS_MT_presets" preset_defines = [ "safe_areas = bpy.context.scene.safe_areas" ] preset_values = [ "safe_areas.title", "safe_areas.action", "safe_areas.title_center", "safe_areas.action_center", ] preset_subdir = "safe_areas" class AddPresetSSS(AddPresetBase, Operator): """Add or remove a Subsurface Scattering Preset""" bl_idname = "material.sss_preset_add" bl_label = "Add SSS Preset" preset_menu = "MATERIAL_MT_sss_presets" preset_defines = [ ("material = " "bpy.context.material.active_node_material " "if bpy.context.material.active_node_material " "else bpy.context.material") ] preset_values = [ "material.subsurface_scattering.back", "material.subsurface_scattering.color", "material.subsurface_scattering.color_factor", "material.subsurface_scattering.error_threshold", "material.subsurface_scattering.front", "material.subsurface_scattering.ior", "material.subsurface_scattering.radius", "material.subsurface_scattering.scale", "material.subsurface_scattering.texture_factor", ] preset_subdir = "sss" class AddPresetCloth(AddPresetBase, Operator): """Add or remove a Cloth Preset""" bl_idname = "cloth.preset_add" bl_label = "Add Cloth Preset" preset_menu = "CLOTH_MT_presets" preset_defines = [ "cloth = bpy.context.cloth" ] preset_values = [ "cloth.settings.air_damping", "cloth.settings.bending_stiffness", "cloth.settings.mass", "cloth.settings.quality", "cloth.settings.spring_damping", "cloth.settings.structural_stiffness", ] preset_subdir = "cloth" class AddPresetFluid(AddPresetBase, Operator): """Add or remove a Fluid Preset""" bl_idname = "fluid.preset_add" bl_label = "Add Fluid Preset" preset_menu = "FLUID_MT_presets" preset_defines = [ "fluid = bpy.context.fluid" ] preset_values = [ "fluid.settings.viscosity_base", "fluid.settings.viscosity_exponent", ] preset_subdir = "fluid" class AddPresetHairDynamics(AddPresetBase, Operator): """Add or remove a Hair Dynamics Preset""" bl_idname = "particle.hair_dynamics_preset_add" bl_label = "Add Hair Dynamics Preset" preset_menu = "PARTICLE_MT_hair_dynamics_presets" preset_defines = [ "psys = bpy.context.particle_system", "cloth = bpy.context.particle_system.cloth", "settings = bpy.context.particle_system.cloth.settings", "collision = bpy.context.particle_system.cloth.collision_settings", ] preset_subdir = "hair_dynamics" preset_values = [ "settings.quality", "settings.mass", "settings.bending_stiffness", "psys.settings.bending_random", "settings.bending_damping", "settings.air_damping", "settings.internal_friction", "settings.density_target", "settings.density_strength", "settings.voxel_cell_size", "settings.pin_stiffness", ] class AddPresetSunSky(AddPresetBase, Operator): """Add or remove a Sky & Atmosphere Preset""" bl_idname = "lamp.sunsky_preset_add" bl_label = "Add Sunsky Preset" preset_menu = "LAMP_MT_sunsky_presets" preset_defines = [ "sky = bpy.context.lamp.sky" ] preset_values = [ "sky.atmosphere_extinction", "sky.atmosphere_inscattering", "sky.atmosphere_turbidity", "sky.backscattered_light", "sky.horizon_brightness", "sky.spread", "sky.sun_brightness", "sky.sun_intensity", "sky.sun_size", "sky.sky_blend", "sky.sky_blend_type", "sky.sky_color_space", "sky.sky_exposure", ] preset_subdir = "sunsky" class AddPresetInteraction(AddPresetBase, Operator): """Add or remove an Application Interaction Preset""" bl_idname = "wm.interaction_preset_add" bl_label = "Add Interaction Preset" preset_menu = "USERPREF_MT_interaction_presets" preset_defines = [ "user_preferences = bpy.context.user_preferences" ] preset_values = [ "user_preferences.edit.use_drag_immediately", "user_preferences.edit.use_insertkey_xyz_to_rgb", "user_preferences.inputs.invert_mouse_zoom", "user_preferences.inputs.select_mouse", "user_preferences.inputs.use_emulate_numpad", "user_preferences.inputs.use_mouse_continuous", "user_preferences.inputs.use_mouse_emulate_3_button", "user_preferences.inputs.view_rotate_method", "user_preferences.inputs.view_zoom_axis", "user_preferences.inputs.view_zoom_method", ] preset_subdir = "interaction" class AddPresetTrackingCamera(AddPresetBase, Operator): """Add or remove a Tracking Camera Intrinsics Preset""" bl_idname = "clip.camera_preset_add" bl_label = "Add Camera Preset" preset_menu = "CLIP_MT_camera_presets" preset_defines = [ "camera = bpy.context.edit_movieclip.tracking.camera" ] preset_subdir = "tracking_camera" use_focal_length = BoolProperty( name="Include Focal Length", description="Include focal length into the preset", options={'SKIP_SAVE'}, default=True ) @property def preset_values(self): preset_values = [ "camera.sensor_width", "camera.pixel_aspect", "camera.k1", "camera.k2", "camera.k3" ] if self.use_focal_length: preset_values.append("camera.units") preset_values.append("camera.focal_length") return preset_values class AddPresetTrackingTrackColor(AddPresetBase, Operator): """Add or remove a Clip Track Color Preset""" bl_idname = "clip.track_color_preset_add" bl_label = "Add Track Color Preset" preset_menu = "CLIP_MT_track_color_presets" preset_defines = [ "track = bpy.context.edit_movieclip.tracking.tracks.active" ] preset_values = [ "track.color", "track.use_custom_color" ] preset_subdir = "tracking_track_color" class AddPresetTrackingSettings(AddPresetBase, Operator): """Add or remove a motion tracking settings preset""" bl_idname = "clip.tracking_settings_preset_add" bl_label = "Add Tracking Settings Preset" preset_menu = "CLIP_MT_tracking_settings_presets" preset_defines = [ "settings = bpy.context.edit_movieclip.tracking.settings" ] preset_values = [ "settings.default_correlation_min", "settings.default_pattern_size", "settings.default_search_size", "settings.default_frames_limit", "settings.default_pattern_match", "settings.default_margin", "settings.default_motion_model", "settings.use_default_brute", "settings.use_default_normalization", "settings.use_default_mask", "settings.use_default_red_channel", "settings.use_default_green_channel", "settings.use_default_blue_channel" "settings.default_weight" ] preset_subdir = "tracking_settings" class AddPresetNodeColor(AddPresetBase, Operator): """Add or remove a Node Color Preset""" bl_idname = "node.node_color_preset_add" bl_label = "Add Node Color Preset" preset_menu = "NODE_MT_node_color_presets" preset_defines = [ "node = bpy.context.active_node" ] preset_values = [ "node.color", "node.use_custom_color" ] preset_subdir = "node_color" class AddPresetInterfaceTheme(AddPresetBase, Operator): """Add or remove a theme preset""" bl_idname = "wm.interface_theme_preset_add" bl_label = "Add Theme Preset" preset_menu = "USERPREF_MT_interface_theme_presets" preset_subdir = "interface_theme" class AddPresetKeyconfig(AddPresetBase, Operator): """Add or remove a Key-config Preset""" bl_idname = "wm.keyconfig_preset_add" bl_label = "Add Keyconfig Preset" preset_menu = "USERPREF_MT_keyconfigs" preset_subdir = "keyconfig" def add(self, context, filepath): bpy.ops.wm.keyconfig_export(filepath=filepath) bpy.utils.keyconfig_set(filepath) def pre_cb(self, context): keyconfigs = bpy.context.window_manager.keyconfigs if self.remove_active: preset_menu_class = getattr(bpy.types, self.preset_menu) preset_menu_class.bl_label = keyconfigs.active.name def post_cb(self, context): keyconfigs = bpy.context.window_manager.keyconfigs if self.remove_active: keyconfigs.remove(keyconfigs.active) class AddPresetOperator(AddPresetBase, Operator): """Add or remove an Operator Preset""" bl_idname = "wm.operator_preset_add" bl_label = "Operator Preset" preset_menu = "WM_MT_operator_presets" operator = StringProperty( name="Operator", maxlen=64, options={'HIDDEN', 'SKIP_SAVE'}, ) preset_defines = [ "op = bpy.context.active_operator", ] @property def preset_subdir(self): return AddPresetOperator.operator_path(self.operator) @property def preset_values(self): properties_blacklist = Operator.bl_rna.properties.keys() prefix, suffix = self.operator.split("_OT_", 1) op = getattr(getattr(bpy.ops, prefix.lower()), suffix) operator_rna = op.get_rna().bl_rna del op ret = [] for prop_id, prop in operator_rna.properties.items(): if not (prop.is_hidden or prop.is_skip_save): if prop_id not in properties_blacklist: ret.append("op.%s" % prop_id) return ret @staticmethod def operator_path(operator): import os prefix, suffix = operator.split("_OT_", 1) return os.path.join("operator", "%s.%s" % (prefix.lower(), suffix)) class WM_MT_operator_presets(Menu): bl_label = "Operator Presets" def draw(self, context): self.operator = context.active_operator.bl_idname # dummy 'default' menu item layout = self.layout layout.operator("wm.operator_defaults") layout.separator() Menu.draw_preset(self, context) @property def preset_subdir(self): return AddPresetOperator.operator_path(self.operator) preset_operator = "script.execute_preset" class AddPresetUnitsLength(AddPresetBase, Operator): """Add or remove length units preset""" bl_idname = "scene.units_length_preset_add" bl_label = "Add Length Units Preset" preset_menu = "SCENE_MT_units_length_presets" preset_defines = [ "scene = bpy.context.scene" ] preset_values = [ "scene.unit_settings.system", "scene.unit_settings.scale_length", ] preset_subdir = "units_length" classes = ( AddPresetCamera, AddPresetCloth, AddPresetFluid, AddPresetHairDynamics, AddPresetInteraction, AddPresetInterfaceTheme, AddPresetKeyconfig, AddPresetNodeColor, AddPresetOperator, AddPresetRender, AddPresetSSS, AddPresetSafeAreas, AddPresetSunSky, AddPresetTrackingCamera, AddPresetTrackingSettings, AddPresetTrackingTrackColor, AddPresetUnitsLength, ExecutePreset, WM_MT_operator_presets, ) ``` #### File: startup/bl_operators/wm.py ```python import bpy from bpy.types import Operator from bpy.props import ( StringProperty, BoolProperty, IntProperty, FloatProperty, EnumProperty, ) from bpy.app.translations import pgettext_tip as tip_ rna_path_prop = StringProperty( name="Context Attributes", description="RNA context string", maxlen=1024, ) rna_reverse_prop = BoolProperty( name="Reverse", description="Cycle backwards", default=False, ) rna_wrap_prop = BoolProperty( name="Wrap", description="Wrap back to the first/last values", default=False, ) rna_relative_prop = BoolProperty( name="Relative", description="Apply relative to the current value (delta)", default=False, ) def context_path_validate(context, data_path): try: value = eval("context.%s" % data_path) if data_path else Ellipsis except AttributeError as e: if str(e).startswith("'NoneType'"): # One of the items in the rna path is None, just ignore this value = Ellipsis else: # We have a real error in the rna path, don't ignore that raise return value def operator_value_is_undo(value): if value in {None, Ellipsis}: return False # typical properties or objects id_data = getattr(value, "id_data", Ellipsis) if id_data is None: return False elif id_data is Ellipsis: # handle mathutils types id_data = getattr(getattr(value, "owner", None), "id_data", None) if id_data is None: return False # return True if its a non window ID type return (isinstance(id_data, bpy.types.ID) and (not isinstance(id_data, (bpy.types.WindowManager, bpy.types.Screen, bpy.types.Brush, )))) def operator_path_is_undo(context, data_path): # note that if we have data paths that use strings this could fail # luckily we don't do this! # # When we cant find the data owner assume no undo is needed. data_path_head = data_path.rpartition(".")[0] if not data_path_head: return False value = context_path_validate(context, data_path_head) return operator_value_is_undo(value) def operator_path_undo_return(context, data_path): return {'FINISHED'} if operator_path_is_undo(context, data_path) else {'CANCELLED'} def operator_value_undo_return(value): return {'FINISHED'} if operator_value_is_undo(value) else {'CANCELLED'} def execute_context_assign(self, context): data_path = self.data_path if context_path_validate(context, data_path) is Ellipsis: return {'PASS_THROUGH'} if getattr(self, "relative", False): exec("context.%s += self.value" % data_path) else: exec("context.%s = self.value" % data_path) return operator_path_undo_return(context, data_path) def module_filesystem_remove(path_base, module_name): import os module_name = os.path.splitext(module_name)[0] for f in os.listdir(path_base): f_base = os.path.splitext(f)[0] if f_base == module_name: f_full = os.path.join(path_base, f) if os.path.isdir(f_full): os.rmdir(f_full) else: os.remove(f_full) class BRUSH_OT_active_index_set(Operator): """Set active sculpt/paint brush from it's number""" bl_idname = "brush.active_index_set" bl_label = "Set Brush Number" mode = StringProperty( name="Mode", description="Paint mode to set brush for", maxlen=1024, ) index = IntProperty( name="Number", description="Brush number", ) _attr_dict = {"sculpt": "use_paint_sculpt", "vertex_paint": "use_paint_vertex", "weight_paint": "use_paint_weight", "image_paint": "use_paint_image", } def execute(self, context): attr = self._attr_dict.get(self.mode) if attr is None: return {'CANCELLED'} toolsettings = context.tool_settings for i, brush in enumerate((cur for cur in bpy.data.brushes if getattr(cur, attr))): if i == self.index: getattr(toolsettings, self.mode).brush = brush return {'FINISHED'} return {'CANCELLED'} class WM_OT_context_set_boolean(Operator): """Set a context value""" bl_idname = "wm.context_set_boolean" bl_label = "Context Set Boolean" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path_prop value = BoolProperty( name="Value", description="Assignment value", default=True, ) execute = execute_context_assign class WM_OT_context_set_int(Operator): # same as enum """Set a context value""" bl_idname = "wm.context_set_int" bl_label = "Context Set" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path_prop value = IntProperty( name="Value", description="Assign value", default=0, ) relative = rna_relative_prop execute = execute_context_assign class WM_OT_context_scale_float(Operator): """Scale a float context value""" bl_idname = "wm.context_scale_float" bl_label = "Context Scale Float" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path_prop value = FloatProperty( name="Value", description="Assign value", default=1.0, ) def execute(self, context): data_path = self.data_path if context_path_validate(context, data_path) is Ellipsis: return {'PASS_THROUGH'} value = self.value if value == 1.0: # nothing to do return {'CANCELLED'} exec("context.%s *= value" % data_path) return operator_path_undo_return(context, data_path) class WM_OT_context_scale_int(Operator): """Scale an int context value""" bl_idname = "wm.context_scale_int" bl_label = "Context Scale Int" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path_prop value = FloatProperty( name="Value", description="Assign value", default=1.0, ) always_step = BoolProperty( name="Always Step", description="Always adjust the value by a minimum of 1 when 'value' is not 1.0", default=True, ) def execute(self, context): data_path = self.data_path if context_path_validate(context, data_path) is Ellipsis: return {'PASS_THROUGH'} value = self.value if value == 1.0: # nothing to do return {'CANCELLED'} if getattr(self, "always_step", False): if value > 1.0: add = "1" func = "max" else: add = "-1" func = "min" exec("context.%s = %s(round(context.%s * value), context.%s + %s)" % (data_path, func, data_path, data_path, add)) else: exec("context.%s *= value" % data_path) return operator_path_undo_return(context, data_path) class WM_OT_context_set_float(Operator): # same as enum """Set a context value""" bl_idname = "wm.context_set_float" bl_label = "Context Set Float" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path_prop value = FloatProperty( name="Value", description="Assignment value", default=0.0, ) relative = rna_relative_prop execute = execute_context_assign class WM_OT_context_set_string(Operator): # same as enum """Set a context value""" bl_idname = "wm.context_set_string" bl_label = "Context Set String" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path_prop value = StringProperty( name="Value", description="Assign value", maxlen=1024, ) execute = execute_context_assign class WM_OT_context_set_enum(Operator): """Set a context value""" bl_idname = "wm.context_set_enum" bl_label = "Context Set Enum" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path_prop value = StringProperty( name="Value", description="Assignment value (as a string)", maxlen=1024, ) execute = execute_context_assign class WM_OT_context_set_value(Operator): """Set a context value""" bl_idname = "wm.context_set_value" bl_label = "Context Set Value" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path_prop value = StringProperty( name="Value", description="Assignment value (as a string)", maxlen=1024, ) def execute(self, context): data_path = self.data_path if context_path_validate(context, data_path) is Ellipsis: return {'PASS_THROUGH'} exec("context.%s = %s" % (data_path, self.value)) return operator_path_undo_return(context, data_path) class WM_OT_context_toggle(Operator): """Toggle a context value""" bl_idname = "wm.context_toggle" bl_label = "Context Toggle" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path_prop def execute(self, context): data_path = self.data_path if context_path_validate(context, data_path) is Ellipsis: return {'PASS_THROUGH'} exec("context.%s = not (context.%s)" % (data_path, data_path)) return operator_path_undo_return(context, data_path) class WM_OT_context_toggle_enum(Operator): """Toggle a context value""" bl_idname = "wm.context_toggle_enum" bl_label = "Context Toggle Values" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path_prop value_1 = StringProperty( name="Value", description="Toggle enum", maxlen=1024, ) value_2 = StringProperty( name="Value", description="Toggle enum", maxlen=1024, ) def execute(self, context): data_path = self.data_path if context_path_validate(context, data_path) is Ellipsis: return {'PASS_THROUGH'} # failing silently is not ideal, but we don't want errors for shortcut # keys that some values that are only available in a particular context try: exec("context.%s = ('%s', '%s')[context.%s != '%s']" % (data_path, self.value_1, self.value_2, data_path, self.value_2, )) except: return {'PASS_THROUGH'} return operator_path_undo_return(context, data_path) class WM_OT_context_cycle_int(Operator): """Set a context value (useful for cycling active material, """ \ """vertex keys, groups, etc.)""" bl_idname = "wm.context_cycle_int" bl_label = "Context Int Cycle" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path_prop reverse = rna_reverse_prop wrap = rna_wrap_prop def execute(self, context): data_path = self.data_path value = context_path_validate(context, data_path) if value is Ellipsis: return {'PASS_THROUGH'} if self.reverse: value -= 1 else: value += 1 exec("context.%s = value" % data_path) if self.wrap: if value != eval("context.%s" % data_path): # relies on rna clamping integers out of the range if self.reverse: value = (1 << 31) - 1 else: value = -1 << 31 exec("context.%s = value" % data_path) return operator_path_undo_return(context, data_path) class WM_OT_context_cycle_enum(Operator): """Toggle a context value""" bl_idname = "wm.context_cycle_enum" bl_label = "Context Enum Cycle" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path_prop reverse = rna_reverse_prop wrap = rna_wrap_prop def execute(self, context): data_path = self.data_path value = context_path_validate(context, data_path) if value is Ellipsis: return {'PASS_THROUGH'} orig_value = value # Have to get rna enum values rna_struct_str, rna_prop_str = data_path.rsplit('.', 1) i = rna_prop_str.find('[') # just in case we get "context.foo.bar[0]" if i != -1: rna_prop_str = rna_prop_str[0:i] rna_struct = eval("context.%s.rna_type" % rna_struct_str) rna_prop = rna_struct.properties[rna_prop_str] if type(rna_prop) != bpy.types.EnumProperty: raise Exception("expected an enum property") enums = rna_struct.properties[rna_prop_str].enum_items.keys() orig_index = enums.index(orig_value) # Have the info we need, advance to the next item. # # When wrap's disabled we may set the value to its self, # this is done to ensure update callbacks run. if self.reverse: if orig_index == 0: advance_enum = enums[-1] if self.wrap else enums[0] else: advance_enum = enums[orig_index - 1] else: if orig_index == len(enums) - 1: advance_enum = enums[0] if self.wrap else enums[-1] else: advance_enum = enums[orig_index + 1] # set the new value exec("context.%s = advance_enum" % data_path) return operator_path_undo_return(context, data_path) class WM_OT_context_cycle_array(Operator): """Set a context array value """ \ """(useful for cycling the active mesh edit mode)""" bl_idname = "wm.context_cycle_array" bl_label = "Context Array Cycle" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path_prop reverse = rna_reverse_prop def execute(self, context): data_path = self.data_path value = context_path_validate(context, data_path) if value is Ellipsis: return {'PASS_THROUGH'} def cycle(array): if self.reverse: array.insert(0, array.pop()) else: array.append(array.pop(0)) return array exec("context.%s = cycle(context.%s[:])" % (data_path, data_path)) return operator_path_undo_return(context, data_path) class WM_OT_context_menu_enum(Operator): bl_idname = "wm.context_menu_enum" bl_label = "Context Enum Menu" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path_prop def execute(self, context): data_path = self.data_path value = context_path_validate(context, data_path) if value is Ellipsis: return {'PASS_THROUGH'} base_path, prop_string = data_path.rsplit(".", 1) value_base = context_path_validate(context, base_path) prop = value_base.bl_rna.properties[prop_string] def draw_cb(self, context): layout = self.layout layout.prop(value_base, prop_string, expand=True) context.window_manager.popup_menu(draw_func=draw_cb, title=prop.name, icon=prop.icon) return {'FINISHED'} class WM_OT_context_pie_enum(Operator): bl_idname = "wm.context_pie_enum" bl_label = "Context Enum Pie" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path_prop def invoke(self, context, event): wm = context.window_manager data_path = self.data_path value = context_path_validate(context, data_path) if value is Ellipsis: return {'PASS_THROUGH'} base_path, prop_string = data_path.rsplit(".", 1) value_base = context_path_validate(context, base_path) prop = value_base.bl_rna.properties[prop_string] def draw_cb(self, context): layout = self.layout layout.prop(value_base, prop_string, expand=True) wm.popup_menu_pie(draw_func=draw_cb, title=prop.name, icon=prop.icon, event=event) return {'FINISHED'} class WM_OT_operator_pie_enum(Operator): bl_idname = "wm.operator_pie_enum" bl_label = "Operator Enum Pie" bl_options = {'UNDO', 'INTERNAL'} data_path = StringProperty( name="Operator", description="Operator name (in python as string)", maxlen=1024, ) prop_string = StringProperty( name="Property", description="Property name (as a string)", maxlen=1024, ) def invoke(self, context, event): wm = context.window_manager data_path = self.data_path prop_string = self.prop_string # same as eval("bpy.ops." + data_path) op_mod_str, ob_id_str = data_path.split(".", 1) op = getattr(getattr(bpy.ops, op_mod_str), ob_id_str) del op_mod_str, ob_id_str try: op_rna = op.get_rna() except KeyError: self.report({'ERROR'}, "Operator not found: bpy.ops.%s" % data_path) return {'CANCELLED'} def draw_cb(self, context): layout = self.layout pie = layout.menu_pie() pie.operator_enum(data_path, prop_string) wm.popup_menu_pie(draw_func=draw_cb, title=op_rna.bl_rna.name, event=event) return {'FINISHED'} class WM_OT_context_set_id(Operator): """Set a context value to an ID data-block""" bl_idname = "wm.context_set_id" bl_label = "Set Library ID" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path_prop value = StringProperty( name="Value", description="Assign value", maxlen=1024, ) def execute(self, context): value = self.value data_path = self.data_path # match the pointer type from the target property to bpy.data.* # so we lookup the correct list. data_path_base, data_path_prop = data_path.rsplit(".", 1) data_prop_rna = eval("context.%s" % data_path_base).rna_type.properties[data_path_prop] data_prop_rna_type = data_prop_rna.fixed_type id_iter = None for prop in bpy.data.rna_type.properties: if prop.rna_type.identifier == "CollectionProperty": if prop.fixed_type == data_prop_rna_type: id_iter = prop.identifier break if id_iter: value_id = getattr(bpy.data, id_iter).get(value) exec("context.%s = value_id" % data_path) return operator_path_undo_return(context, data_path) doc_id = StringProperty( name="Doc ID", maxlen=1024, options={'HIDDEN'}, ) data_path_iter = StringProperty( description="The data path relative to the context, must point to an iterable") data_path_item = StringProperty( description="The data path from each iterable to the value (int or float)") class WM_OT_context_collection_boolean_set(Operator): """Set boolean values for a collection of items""" bl_idname = "wm.context_collection_boolean_set" bl_label = "Context Collection Boolean Set" bl_options = {'UNDO', 'REGISTER', 'INTERNAL'} data_path_iter = data_path_iter data_path_item = data_path_item type = EnumProperty( name="Type", items=(('TOGGLE', "Toggle", ""), ('ENABLE', "Enable", ""), ('DISABLE', "Disable", ""), ), ) def execute(self, context): data_path_iter = self.data_path_iter data_path_item = self.data_path_item items = list(getattr(context, data_path_iter)) items_ok = [] is_set = False for item in items: try: value_orig = eval("item." + data_path_item) except: continue if value_orig is True: is_set = True elif value_orig is False: pass else: self.report({'WARNING'}, "Non boolean value found: %s[ ].%s" % (data_path_iter, data_path_item)) return {'CANCELLED'} items_ok.append(item) # avoid undo push when nothing to do if not items_ok: return {'CANCELLED'} if self.type == 'ENABLE': is_set = True elif self.type == 'DISABLE': is_set = False else: is_set = not is_set exec_str = "item.%s = %s" % (data_path_item, is_set) for item in items_ok: exec(exec_str) return operator_value_undo_return(item) class WM_OT_context_modal_mouse(Operator): """Adjust arbitrary values with mouse input""" bl_idname = "wm.context_modal_mouse" bl_label = "Context Modal Mouse" bl_options = {'GRAB_CURSOR', 'BLOCKING', 'UNDO', 'INTERNAL'} data_path_iter = data_path_iter data_path_item = data_path_item header_text = StringProperty( name="Header Text", description="Text to display in header during scale", ) input_scale = FloatProperty( description="Scale the mouse movement by this value before applying the delta", default=0.01, ) invert = BoolProperty( description="Invert the mouse input", default=False, ) initial_x = IntProperty(options={'HIDDEN'}) def _values_store(self, context): data_path_iter = self.data_path_iter data_path_item = self.data_path_item self._values = values = {} for item in getattr(context, data_path_iter): try: value_orig = eval("item." + data_path_item) except: continue # check this can be set, maybe this is library data. try: exec("item.%s = %s" % (data_path_item, value_orig)) except: continue values[item] = value_orig def _values_delta(self, delta): delta *= self.input_scale if self.invert: delta = - delta data_path_item = self.data_path_item for item, value_orig in self._values.items(): if type(value_orig) == int: exec("item.%s = int(%d)" % (data_path_item, round(value_orig + delta))) else: exec("item.%s = %f" % (data_path_item, value_orig + delta)) def _values_restore(self): data_path_item = self.data_path_item for item, value_orig in self._values.items(): exec("item.%s = %s" % (data_path_item, value_orig)) self._values.clear() def _values_clear(self): self._values.clear() def modal(self, context, event): event_type = event.type if event_type == 'MOUSEMOVE': delta = event.mouse_x - self.initial_x self._values_delta(delta) header_text = self.header_text if header_text: if len(self._values) == 1: (item, ) = self._values.keys() header_text = header_text % eval("item.%s" % self.data_path_item) else: header_text = (self.header_text % delta) + " (delta)" context.area.header_text_set(header_text) elif 'LEFTMOUSE' == event_type: item = next(iter(self._values.keys())) self._values_clear() context.area.header_text_set() return operator_value_undo_return(item) elif event_type in {'RIGHTMOUSE', 'ESC'}: self._values_restore() context.area.header_text_set() return {'CANCELLED'} return {'RUNNING_MODAL'} def invoke(self, context, event): self._values_store(context) if not self._values: self.report({'WARNING'}, "Nothing to operate on: %s[ ].%s" % (self.data_path_iter, self.data_path_item)) return {'CANCELLED'} else: self.initial_x = event.mouse_x context.window_manager.modal_handler_add(self) return {'RUNNING_MODAL'} class WM_OT_url_open(Operator): """Open a website in the web-browser""" bl_idname = "wm.url_open" bl_label = "" bl_options = {'INTERNAL'} url = StringProperty( name="URL", description="URL to open", ) def execute(self, context): import webbrowser webbrowser.open(self.url) return {'FINISHED'} class WM_OT_path_open(Operator): """Open a path in a file browser""" bl_idname = "wm.path_open" bl_label = "" bl_options = {'INTERNAL'} filepath = StringProperty( subtype='FILE_PATH', options={'SKIP_SAVE'}, ) def execute(self, context): import sys import os import subprocess filepath = self.filepath if not filepath: self.report({'ERROR'}, "File path was not set") return {'CANCELLED'} filepath = bpy.path.abspath(filepath) filepath = os.path.normpath(filepath) if not os.path.exists(filepath): self.report({'ERROR'}, "File '%s' not found" % filepath) return {'CANCELLED'} if sys.platform[:3] == "win": os.startfile(filepath) elif sys.platform == "darwin": subprocess.check_call(["open", filepath]) else: try: subprocess.check_call(["xdg-open", filepath]) except: # xdg-open *should* be supported by recent Gnome, KDE, Xfce import traceback traceback.print_exc() return {'FINISHED'} def _wm_doc_get_id(doc_id, do_url=True, url_prefix=""): id_split = doc_id.split(".") url = rna = None if len(id_split) == 1: # rna, class if do_url: url = "%s/bpy.types.%s.html" % (url_prefix, id_split[0]) else: rna = "bpy.types.%s" % id_split[0] elif len(id_split) == 2: # rna, class.prop class_name, class_prop = id_split # an operator (common case - just button referencing an op) if hasattr(bpy.types, class_name.upper() + "_OT_" + class_prop): if do_url: url = ( "%s/bpy.ops.%s.html#bpy.ops.%s.%s" % (url_prefix, class_name, class_name, class_prop) ) else: rna = "bpy.ops.%s.%s" % (class_name, class_prop) else: rna_class = getattr(bpy.types, class_name) # an operator setting (selected from a running operator), rare case # note: Py defined operators are subclass of Operator, # C defined operators are subclass of OperatorProperties. # we may need to check on this at some point. if issubclass(rna_class, (bpy.types.Operator, bpy.types.OperatorProperties)): # note: ignore the prop name since we don't have a way to link into it class_name, class_prop = class_name.split("_OT_", 1) class_name = class_name.lower() if do_url: url = ( "%s/bpy.ops.%s.html#bpy.ops.%s.%s" % (url_prefix, class_name, class_name, class_prop) ) else: rna = "bpy.ops.%s.%s" % (class_name, class_prop) else: # an RNA setting, common case # detect if this is a inherited member and use that name instead rna_parent = rna_class.bl_rna rna_prop = rna_parent.properties.get(class_prop) if rna_prop: rna_parent = rna_parent.base while rna_parent and rna_prop == rna_parent.properties.get(class_prop): class_name = rna_parent.identifier rna_parent = rna_parent.base if do_url: url = ( "%s/bpy.types.%s.html#bpy.types.%s.%s" % (url_prefix, class_name, class_name, class_prop) ) else: rna = "bpy.types.%s.%s" % (class_name, class_prop) else: # We assume this is custom property, only try to generate generic url/rna_id... if do_url: url = ("%s/bpy.types.bpy_struct.html#bpy.types.bpy_struct.items" % (url_prefix,)) else: rna = "bpy.types.bpy_struct" return url if do_url else rna class WM_OT_doc_view_manual(Operator): """Load online manual""" bl_idname = "wm.doc_view_manual" bl_label = "View Manual" doc_id = doc_id @staticmethod def _find_reference(rna_id, url_mapping, verbose=True): if verbose: print("online manual check for: '%s'... " % rna_id) from fnmatch import fnmatchcase # XXX, for some reason all RNA ID's are stored lowercase # Adding case into all ID's isn't worth the hassle so force lowercase. rna_id = rna_id.lower() for pattern, url_suffix in url_mapping: if fnmatchcase(rna_id, pattern): if verbose: print(" match found: '%s' --> '%s'" % (pattern, url_suffix)) return url_suffix if verbose: print("match not found") return None @staticmethod def _lookup_rna_url(rna_id, verbose=True): for prefix, url_manual_mapping in bpy.utils.manual_map(): rna_ref = WM_OT_doc_view_manual._find_reference(rna_id, url_manual_mapping, verbose=verbose) if rna_ref is not None: url = prefix + rna_ref return url def execute(self, context): rna_id = _wm_doc_get_id(self.doc_id, do_url=False) if rna_id is None: return {'PASS_THROUGH'} url = self._lookup_rna_url(rna_id) if url is None: self.report( {'WARNING'}, "No reference available %r, " "Update info in 'rna_manual_reference.py' " "or callback to bpy.utils.manual_map()" % self.doc_id) return {'CANCELLED'} else: import webbrowser webbrowser.open(url) return {'FINISHED'} class WM_OT_doc_view(Operator): """Load online reference docs""" bl_idname = "wm.doc_view" bl_label = "View Documentation" doc_id = doc_id if bpy.app.version_cycle == "release": _prefix = ("https://docs.blender.org/api/blender_python_api_current") else: _prefix = ("https://docs.blender.org/api/blender_python_api_master") def execute(self, context): url = _wm_doc_get_id(self.doc_id, do_url=True, url_prefix=self._prefix) if url is None: return {'PASS_THROUGH'} import webbrowser webbrowser.open(url) return {'FINISHED'} rna_path = StringProperty( name="Property Edit", description="Property data_path edit", maxlen=1024, options={'HIDDEN'}, ) rna_value = StringProperty( name="Property Value", description="Property value edit", maxlen=1024, ) rna_property = StringProperty( name="Property Name", description="Property name edit", maxlen=1024, ) rna_min = FloatProperty( name="Min", default=-10000.0, precision=3, ) rna_max = FloatProperty( name="Max", default=10000.0, precision=3, ) rna_use_soft_limits = BoolProperty( name="Use Soft Limits", ) class WM_OT_properties_edit(Operator): bl_idname = "wm.properties_edit" bl_label = "Edit Property" # register only because invoke_props_popup requires. bl_options = {'REGISTER', 'INTERNAL'} data_path = rna_path property = rna_property value = rna_value min = rna_min max = rna_max use_soft_limits = rna_use_soft_limits soft_min = rna_min soft_max = rna_max description = StringProperty( name="Tooltip", ) def _cmp_props_get(self): # Changing these properties will refresh the UI return { "use_soft_limits": self.use_soft_limits, "soft_range": (self.soft_min, self.soft_max), "hard_range": (self.min, self.max), } def execute(self, context): from rna_prop_ui import ( rna_idprop_ui_prop_get, rna_idprop_ui_prop_clear, rna_idprop_ui_prop_update, ) data_path = self.data_path value = self.value prop = self.property prop_old = getattr(self, "_last_prop", [None])[0] if prop_old is None: self.report({'ERROR'}, "Direct execution not supported") return {'CANCELLED'} try: value_eval = eval(value) # assert else None -> None, not "None", see [#33431] assert(type(value_eval) in {str, float, int, bool, tuple, list}) except: value_eval = value # First remove item = eval("context.%s" % data_path) prop_type_old = type(item[prop_old]) rna_idprop_ui_prop_clear(item, prop_old) exec_str = "del item[%r]" % prop_old # print(exec_str) exec(exec_str) # Reassign exec_str = "item[%r] = %s" % (prop, repr(value_eval)) # print(exec_str) exec(exec_str) rna_idprop_ui_prop_update(item, prop) self._last_prop[:] = [prop] prop_type = type(item[prop]) prop_ui = rna_idprop_ui_prop_get(item, prop) if prop_type in {float, int}: prop_ui["min"] = prop_type(self.min) prop_ui["max"] = prop_type(self.max) if self.use_soft_limits: prop_ui["soft_min"] = prop_type(self.soft_min) prop_ui["soft_max"] = prop_type(self.soft_max) else: prop_ui["soft_min"] = prop_type(self.min) prop_ui["soft_max"] = prop_type(self.max) prop_ui["description"] = self.description # If we have changed the type of the property, update its potential anim curves! if prop_type_old != prop_type: data_path = '["%s"]' % bpy.utils.escape_identifier(prop) done = set() def _update(fcurves): for fcu in fcurves: if fcu not in done and fcu.data_path == data_path: fcu.update_autoflags(item) done.add(fcu) def _update_strips(strips): for st in strips: if st.type == 'CLIP' and st.action: _update(st.action.fcurves) elif st.type == 'META': _update_strips(st.strips) adt = getattr(item, "animation_data", None) if adt is not None: if adt.action: _update(adt.action.fcurves) if adt.drivers: _update(adt.drivers) if adt.nla_tracks: for nt in adt.nla_tracks: _update_strips(nt.strips) # otherwise existing buttons which reference freed # memory may crash blender [#26510] # context.area.tag_redraw() for win in context.window_manager.windows: for area in win.screen.areas: area.tag_redraw() return {'FINISHED'} def invoke(self, context, event): from rna_prop_ui import rna_idprop_ui_prop_get data_path = self.data_path if not data_path: self.report({'ERROR'}, "Data path not set") return {'CANCELLED'} self._last_prop = [self.property] item = eval("context.%s" % data_path) # setup defaults prop_ui = rna_idprop_ui_prop_get(item, self.property, False) # don't create if prop_ui: self.min = prop_ui.get("min", -1000000000) self.max = prop_ui.get("max", 1000000000) self.description = prop_ui.get("description", "") self.soft_min = prop_ui.get("soft_min", self.min) self.soft_max = prop_ui.get("soft_max", self.max) self.use_soft_limits = ( self.min != self.soft_min or self.max != self.soft_max) # store for comparison self._cmp_props = self._cmp_props_get() wm = context.window_manager return wm.invoke_props_dialog(self) def check(self, context): cmp_props = self._cmp_props_get() changed = False if self._cmp_props != cmp_props: if cmp_props["use_soft_limits"]: if cmp_props["soft_range"] != self._cmp_props["soft_range"]: self.min = min(self.min, self.soft_min) self.max = max(self.max, self.soft_max) changed = True if cmp_props["hard_range"] != self._cmp_props["hard_range"]: self.soft_min = max(self.min, self.soft_min) self.soft_max = min(self.max, self.soft_max) changed = True else: if cmp_props["soft_range"] != cmp_props["hard_range"]: self.soft_min = self.min self.soft_max = self.max changed = True changed |= (cmp_props["use_soft_limits"] != self._cmp_props["use_soft_limits"]) if changed: cmp_props = self._cmp_props_get() self._cmp_props = cmp_props return changed def draw(self, context): layout = self.layout layout.prop(self, "property") layout.prop(self, "value") row = layout.row(align=True) row.prop(self, "min") row.prop(self, "max") layout.prop(self, "use_soft_limits") row = layout.row(align=True) row.enabled = self.use_soft_limits row.prop(self, "soft_min", text="Soft Min") row.prop(self, "soft_max", text="Soft Max") layout.prop(self, "description") class WM_OT_properties_add(Operator): bl_idname = "wm.properties_add" bl_label = "Add Property" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path def execute(self, context): from rna_prop_ui import ( rna_idprop_ui_prop_get, rna_idprop_ui_prop_update, ) data_path = self.data_path item = eval("context.%s" % data_path) def unique_name(names): prop = "prop" prop_new = prop i = 1 while prop_new in names: prop_new = prop + str(i) i += 1 return prop_new prop = unique_name({ *item.keys(), *type(item).bl_rna.properties.keys(), }) item[prop] = 1.0 rna_idprop_ui_prop_update(item, prop) # not essential, but without this we get [#31661] prop_ui = rna_idprop_ui_prop_get(item, prop) prop_ui["soft_min"] = prop_ui["min"] = 0.0 prop_ui["soft_max"] = prop_ui["max"] = 1.0 return {'FINISHED'} class WM_OT_properties_context_change(Operator): """Jump to a different tab inside the properties editor""" bl_idname = "wm.properties_context_change" bl_label = "" bl_options = {'INTERNAL'} context = StringProperty( name="Context", maxlen=64, ) def execute(self, context): context.space_data.context = self.context return {'FINISHED'} class WM_OT_properties_remove(Operator): """Internal use (edit a property data_path)""" bl_idname = "wm.properties_remove" bl_label = "Remove Property" bl_options = {'UNDO', 'INTERNAL'} data_path = rna_path property = rna_property def execute(self, context): from rna_prop_ui import ( rna_idprop_ui_prop_clear, rna_idprop_ui_prop_update, ) data_path = self.data_path item = eval("context.%s" % data_path) prop = self.property rna_idprop_ui_prop_update(item, prop) del item[prop] rna_idprop_ui_prop_clear(item, prop) return {'FINISHED'} class WM_OT_keyconfig_activate(Operator): bl_idname = "wm.keyconfig_activate" bl_label = "Activate Keyconfig" filepath = StringProperty( subtype='FILE_PATH', ) def execute(self, context): if bpy.utils.keyconfig_set(self.filepath, report=self.report): return {'FINISHED'} else: return {'CANCELLED'} class WM_OT_appconfig_default(Operator): bl_idname = "wm.appconfig_default" bl_label = "Default Application Configuration" def execute(self, context): import os context.window_manager.keyconfigs.active = context.window_manager.keyconfigs.default filepath = os.path.join(bpy.utils.preset_paths("interaction")[0], "blender.py") if os.path.exists(filepath): bpy.ops.script.execute_preset( filepath=filepath, menu_idname="USERPREF_MT_interaction_presets", ) return {'FINISHED'} class WM_OT_appconfig_activate(Operator): bl_idname = "wm.appconfig_activate" bl_label = "Activate Application Configuration" filepath = StringProperty( subtype='FILE_PATH', ) def execute(self, context): import os bpy.utils.keyconfig_set(self.filepath) filepath = self.filepath.replace("keyconfig", "interaction") if os.path.exists(filepath): bpy.ops.script.execute_preset( filepath=filepath, menu_idname="USERPREF_MT_interaction_presets", ) return {'FINISHED'} class WM_OT_sysinfo(Operator): """Generate system information, saved into a text file""" bl_idname = "wm.sysinfo" bl_label = "Save System Info" filepath = StringProperty( subtype='FILE_PATH', options={'SKIP_SAVE'}, ) def execute(self, context): import sys_info sys_info.write_sysinfo(self.filepath) return {'FINISHED'} def invoke(self, context, event): import os if not self.filepath: self.filepath = os.path.join( os.path.expanduser("~"), "system-info.txt") wm = context.window_manager wm.fileselect_add(self) return {'RUNNING_MODAL'} class WM_OT_copy_prev_settings(Operator): """Copy settings from previous version""" bl_idname = "wm.copy_prev_settings" bl_label = "Copy Previous Settings" def execute(self, context): import os import shutil ver = bpy.app.version ver_old = ((ver[0] * 100) + ver[1]) - 1 path_src = bpy.utils.resource_path('USER', ver_old // 100, ver_old % 100) path_dst = bpy.utils.resource_path('USER') if os.path.isdir(path_dst): self.report({'ERROR'}, "Target path %r exists" % path_dst) elif not os.path.isdir(path_src): self.report({'ERROR'}, "Source path %r does not exist" % path_src) else: shutil.copytree(path_src, path_dst, symlinks=True) # reload recent-files.txt bpy.ops.wm.read_history() # don't loose users work if they open the splash later. if bpy.data.is_saved is bpy.data.is_dirty is False: bpy.ops.wm.read_homefile() else: self.report({'INFO'}, "Reload Start-Up file to restore settings") return {'FINISHED'} return {'CANCELLED'} class WM_OT_blenderplayer_start(Operator): """Launch the blender-player with the current blend-file""" bl_idname = "wm.blenderplayer_start" bl_label = "Start Game In Player" def execute(self, context): import os import sys import subprocess gs = context.scene.game_settings # these remain the same every execution blender_bin_path = bpy.app.binary_path blender_bin_dir = os.path.dirname(blender_bin_path) ext = os.path.splitext(blender_bin_path)[-1] player_path = os.path.join(blender_bin_dir, "blenderplayer" + ext) # done static vars if sys.platform == "darwin": player_path = os.path.join(blender_bin_dir, "../../../blenderplayer.app/Contents/MacOS/blenderplayer") if not os.path.exists(player_path): self.report({'ERROR'}, "Player path: %r not found" % player_path) return {'CANCELLED'} filepath = bpy.data.filepath + '~' if bpy.data.is_saved else os.path.join(bpy.app.tempdir, "game.blend") bpy.ops.wm.save_as_mainfile('EXEC_DEFAULT', filepath=filepath, copy=True) # start the command line call with the player path args = [player_path] # handle some UI options as command line arguments args.extend([ "-g", "show_framerate", "=", "%d" % gs.show_framerate_profile, "-g", "show_profile", "=", "%d" % gs.show_framerate_profile, "-g", "show_properties", "=", "%d" % gs.show_debug_properties, "-g", "ignore_deprecation_warnings", "=", "%d" % (not gs.use_deprecation_warnings), ]) # finish the call with the path to the blend file args.append(filepath) subprocess.call(args) os.remove(filepath) return {'FINISHED'} class WM_OT_keyconfig_test(Operator): """Test key-config for conflicts""" bl_idname = "wm.keyconfig_test" bl_label = "Test Key Configuration for Conflicts" def execute(self, context): from bpy_extras import keyconfig_utils wm = context.window_manager kc = wm.keyconfigs.default if keyconfig_utils.keyconfig_test(kc): print("CONFLICT") return {'FINISHED'} class WM_OT_keyconfig_import(Operator): """Import key configuration from a python script""" bl_idname = "wm.keyconfig_import" bl_label = "Import Key Configuration..." filepath = StringProperty( subtype='FILE_PATH', default="keymap.py", ) filter_folder = BoolProperty( name="Filter folders", default=True, options={'HIDDEN'}, ) filter_text = BoolProperty( name="Filter text", default=True, options={'HIDDEN'}, ) filter_python = BoolProperty( name="Filter python", default=True, options={'HIDDEN'}, ) keep_original = BoolProperty( name="Keep original", description="Keep original file after copying to configuration folder", default=True, ) def execute(self, context): import os from os.path import basename import shutil if not self.filepath: self.report({'ERROR'}, "Filepath not set") return {'CANCELLED'} config_name = basename(self.filepath) path = bpy.utils.user_resource('SCRIPTS', os.path.join("presets", "keyconfig"), create=True) path = os.path.join(path, config_name) try: if self.keep_original: shutil.copy(self.filepath, path) else: shutil.move(self.filepath, path) except Exception as e: self.report({'ERROR'}, "Installing keymap failed: %s" % e) return {'CANCELLED'} # sneaky way to check we're actually running the code. if bpy.utils.keyconfig_set(path, report=self.report): return {'FINISHED'} else: return {'CANCELLED'} def invoke(self, context, event): wm = context.window_manager wm.fileselect_add(self) return {'RUNNING_MODAL'} # This operator is also used by interaction presets saving - AddPresetBase class WM_OT_keyconfig_export(Operator): """Export key configuration to a python script""" bl_idname = "wm.keyconfig_export" bl_label = "Export Key Configuration..." filepath = StringProperty( subtype='FILE_PATH', default="keymap.py", ) filter_folder = BoolProperty( name="Filter folders", default=True, options={'HIDDEN'}, ) filter_text = BoolProperty( name="Filter text", default=True, options={'HIDDEN'}, ) filter_python = BoolProperty( name="Filter python", default=True, options={'HIDDEN'}, ) def execute(self, context): from bpy_extras import keyconfig_utils if not self.filepath: raise Exception("Filepath not set") if not self.filepath.endswith(".py"): self.filepath += ".py" wm = context.window_manager keyconfig_utils.keyconfig_export( wm, wm.keyconfigs.active, self.filepath, ) return {'FINISHED'} def invoke(self, context, event): wm = context.window_manager wm.fileselect_add(self) return {'RUNNING_MODAL'} class WM_OT_keymap_restore(Operator): """Restore key map(s)""" bl_idname = "wm.keymap_restore" bl_label = "Restore Key Map(s)" all = BoolProperty( name="All Keymaps", description="Restore all keymaps to default", ) def execute(self, context): wm = context.window_manager if self.all: for km in wm.keyconfigs.user.keymaps: km.restore_to_default() else: km = context.keymap km.restore_to_default() return {'FINISHED'} class WM_OT_keyitem_restore(Operator): """Restore key map item""" bl_idname = "wm.keyitem_restore" bl_label = "Restore Key Map Item" item_id = IntProperty( name="Item Identifier", description="Identifier of the item to remove", ) @classmethod def poll(cls, context): keymap = getattr(context, "keymap", None) return keymap def execute(self, context): km = context.keymap kmi = km.keymap_items.from_id(self.item_id) if (not kmi.is_user_defined) and kmi.is_user_modified: km.restore_item_to_default(kmi) return {'FINISHED'} class WM_OT_keyitem_add(Operator): """Add key map item""" bl_idname = "wm.keyitem_add" bl_label = "Add Key Map Item" def execute(self, context): km = context.keymap if km.is_modal: km.keymap_items.new_modal("", 'A', 'PRESS') else: km.keymap_items.new("none", 'A', 'PRESS') # clear filter and expand keymap so we can see the newly added item if context.space_data.filter_text != "": context.space_data.filter_text = "" km.show_expanded_items = True km.show_expanded_children = True return {'FINISHED'} class WM_OT_keyitem_remove(Operator): """Remove key map item""" bl_idname = "wm.keyitem_remove" bl_label = "Remove Key Map Item" item_id = IntProperty( name="Item Identifier", description="Identifier of the item to remove", ) @classmethod def poll(cls, context): return hasattr(context, "keymap") def execute(self, context): km = context.keymap kmi = km.keymap_items.from_id(self.item_id) km.keymap_items.remove(kmi) return {'FINISHED'} class WM_OT_keyconfig_remove(Operator): """Remove key config""" bl_idname = "wm.keyconfig_remove" bl_label = "Remove Key Config" @classmethod def poll(cls, context): wm = context.window_manager keyconf = wm.keyconfigs.active return keyconf and keyconf.is_user_defined def execute(self, context): wm = context.window_manager keyconfig = wm.keyconfigs.active wm.keyconfigs.remove(keyconfig) return {'FINISHED'} class WM_OT_operator_cheat_sheet(Operator): """List all the Operators in a text-block, useful for scripting""" bl_idname = "wm.operator_cheat_sheet" bl_label = "Operator Cheat Sheet" def execute(self, context): op_strings = [] tot = 0 for op_module_name in dir(bpy.ops): op_module = getattr(bpy.ops, op_module_name) for op_submodule_name in dir(op_module): op = getattr(op_module, op_submodule_name) text = repr(op) if text.split("\n")[-1].startswith("bpy.ops."): op_strings.append(text) tot += 1 op_strings.append('') textblock = bpy.data.texts.new("OperatorList.txt") textblock.write('# %d Operators\n\n' % tot) textblock.write('\n'.join(op_strings)) self.report({'INFO'}, "See OperatorList.txt textblock") return {'FINISHED'} # ----------------------------------------------------------------------------- # Add-on Operators class WM_OT_addon_enable(Operator): """Enable an add-on""" bl_idname = "wm.addon_enable" bl_label = "Enable Add-on" module = StringProperty( name="Module", description="Module name of the add-on to enable", ) def execute(self, context): import addon_utils err_str = "" def err_cb(ex): import traceback nonlocal err_str err_str = traceback.format_exc() print(err_str) mod = addon_utils.enable(self.module, default_set=True, handle_error=err_cb) if mod: info = addon_utils.module_bl_info(mod) info_ver = info.get("blender", (0, 0, 0)) if info_ver > bpy.app.version: self.report({'WARNING'}, ("This script was written Blender " "version %d.%d.%d and might not " "function (correctly), " "though it is enabled" % info_ver)) return {'FINISHED'} else: if err_str: self.report({'ERROR'}, err_str) return {'CANCELLED'} class WM_OT_addon_disable(Operator): """Disable an add-on""" bl_idname = "wm.addon_disable" bl_label = "Disable Add-on" module = StringProperty( name="Module", description="Module name of the add-on to disable", ) def execute(self, context): import addon_utils err_str = "" def err_cb(ex): import traceback nonlocal err_str err_str = traceback.format_exc() print(err_str) addon_utils.disable(self.module, default_set=True, handle_error=err_cb) if err_str: self.report({'ERROR'}, err_str) return {'FINISHED'} class WM_OT_theme_install(Operator): """Load and apply a Blender XML theme file""" bl_idname = "wm.theme_install" bl_label = "Install Theme..." overwrite = BoolProperty( name="Overwrite", description="Remove existing theme file if exists", default=True, ) filepath = StringProperty( subtype='FILE_PATH', ) filter_folder = BoolProperty( name="Filter folders", default=True, options={'HIDDEN'}, ) filter_glob = StringProperty( default="*.xml", options={'HIDDEN'}, ) def execute(self, context): import os import shutil import traceback xmlfile = self.filepath path_themes = bpy.utils.user_resource('SCRIPTS', "presets/interface_theme", create=True) if not path_themes: self.report({'ERROR'}, "Failed to get themes path") return {'CANCELLED'} path_dest = os.path.join(path_themes, os.path.basename(xmlfile)) if not self.overwrite: if os.path.exists(path_dest): self.report({'WARNING'}, "File already installed to %r\n" % path_dest) return {'CANCELLED'} try: shutil.copyfile(xmlfile, path_dest) bpy.ops.script.execute_preset( filepath=path_dest, menu_idname="USERPREF_MT_interface_theme_presets", ) except: traceback.print_exc() return {'CANCELLED'} return {'FINISHED'} def invoke(self, context, event): wm = context.window_manager wm.fileselect_add(self) return {'RUNNING_MODAL'} class WM_OT_addon_refresh(Operator): """Scan add-on directories for new modules""" bl_idname = "wm.addon_refresh" bl_label = "Refresh" def execute(self, context): import addon_utils addon_utils.modules_refresh() return {'FINISHED'} # Note: shares some logic with WM_OT_app_template_install # but not enough to de-duplicate. Fixed here may apply to both. class WM_OT_addon_install(Operator): """Install an add-on""" bl_idname = "wm.addon_install" bl_label = "Install Add-on from File..." overwrite = BoolProperty( name="Overwrite", description="Remove existing add-ons with the same ID", default=True, ) target = EnumProperty( name="Target Path", items=(('DEFAULT', "Default", ""), ('PREFS', "User Prefs", "")), ) filepath = StringProperty( subtype='FILE_PATH', ) filter_folder = BoolProperty( name="Filter folders", default=True, options={'HIDDEN'}, ) filter_python = BoolProperty( name="Filter python", default=True, options={'HIDDEN'}, ) filter_glob = StringProperty( default="*.py;*.zip", options={'HIDDEN'}, ) def execute(self, context): import addon_utils import traceback import zipfile import shutil import os pyfile = self.filepath if self.target == 'DEFAULT': # don't use bpy.utils.script_paths("addons") because we may not be able to write to it. path_addons = bpy.utils.user_resource('SCRIPTS', "addons", create=True) else: path_addons = context.user_preferences.filepaths.script_directory if path_addons: path_addons = os.path.join(path_addons, "addons") if not path_addons: self.report({'ERROR'}, "Failed to get add-ons path") return {'CANCELLED'} if not os.path.isdir(path_addons): try: os.makedirs(path_addons, exist_ok=True) except: traceback.print_exc() # Check if we are installing from a target path, # doing so causes 2+ addons of same name or when the same from/to # location is used, removal of the file! addon_path = "" pyfile_dir = os.path.dirname(pyfile) for addon_path in addon_utils.paths(): if os.path.samefile(pyfile_dir, addon_path): self.report({'ERROR'}, "Source file is in the add-on search path: %r" % addon_path) return {'CANCELLED'} del addon_path del pyfile_dir # done checking for exceptional case addons_old = {mod.__name__ for mod in addon_utils.modules()} # check to see if the file is in compressed format (.zip) if zipfile.is_zipfile(pyfile): try: file_to_extract = zipfile.ZipFile(pyfile, 'r') except: traceback.print_exc() return {'CANCELLED'} if self.overwrite: for f in file_to_extract.namelist(): module_filesystem_remove(path_addons, f) else: for f in file_to_extract.namelist(): path_dest = os.path.join(path_addons, os.path.basename(f)) if os.path.exists(path_dest): self.report({'WARNING'}, "File already installed to %r\n" % path_dest) return {'CANCELLED'} try: # extract the file to "addons" file_to_extract.extractall(path_addons) except: traceback.print_exc() return {'CANCELLED'} else: path_dest = os.path.join(path_addons, os.path.basename(pyfile)) if self.overwrite: module_filesystem_remove(path_addons, os.path.basename(pyfile)) elif os.path.exists(path_dest): self.report({'WARNING'}, "File already installed to %r\n" % path_dest) return {'CANCELLED'} # if not compressed file just copy into the addon path try: shutil.copyfile(pyfile, path_dest) except: traceback.print_exc() return {'CANCELLED'} addons_new = {mod.__name__ for mod in addon_utils.modules()} - addons_old addons_new.discard("modules") # disable any addons we may have enabled previously and removed. # this is unlikely but do just in case. bug [#23978] for new_addon in addons_new: addon_utils.disable(new_addon, default_set=True) # possible the zip contains multiple addons, we could disallow this # but for now just use the first for mod in addon_utils.modules(refresh=False): if mod.__name__ in addons_new: info = addon_utils.module_bl_info(mod) # show the newly installed addon. context.window_manager.addon_filter = 'All' context.window_manager.addon_search = info["name"] break # in case a new module path was created to install this addon. bpy.utils.refresh_script_paths() # print message msg = ( tip_("Modules Installed (%s) from %r into %r") % (", ".join(sorted(addons_new)), pyfile, path_addons) ) print(msg) self.report({'INFO'}, msg) return {'FINISHED'} def invoke(self, context, event): wm = context.window_manager wm.fileselect_add(self) return {'RUNNING_MODAL'} class WM_OT_addon_remove(Operator): """Delete the add-on from the file system""" bl_idname = "wm.addon_remove" bl_label = "Remove Add-on" module = StringProperty( name="Module", description="Module name of the add-on to remove", ) @staticmethod def path_from_addon(module): import os import addon_utils for mod in addon_utils.modules(): if mod.__name__ == module: filepath = mod.__file__ if os.path.exists(filepath): if os.path.splitext(os.path.basename(filepath))[0] == "__init__": return os.path.dirname(filepath), True else: return filepath, False return None, False def execute(self, context): import addon_utils import os path, isdir = WM_OT_addon_remove.path_from_addon(self.module) if path is None: self.report({'WARNING'}, "Add-on path %r could not be found" % path) return {'CANCELLED'} # in case its enabled addon_utils.disable(self.module, default_set=True) import shutil if isdir: shutil.rmtree(path) else: os.remove(path) addon_utils.modules_refresh() context.area.tag_redraw() return {'FINISHED'} # lame confirmation check def draw(self, context): self.layout.label(text="Remove Add-on: %r?" % self.module) path, isdir = WM_OT_addon_remove.path_from_addon(self.module) self.layout.label(text="Path: %r" % path) def invoke(self, context, event): wm = context.window_manager return wm.invoke_props_dialog(self, width=600) class WM_OT_addon_expand(Operator): """Display information and preferences for this add-on""" bl_idname = "wm.addon_expand" bl_label = "" bl_options = {'INTERNAL'} module = StringProperty( name="Module", description="Module name of the add-on to expand", ) def execute(self, context): import addon_utils module_name = self.module mod = addon_utils.addons_fake_modules.get(module_name) if mod is not None: info = addon_utils.module_bl_info(mod) info["show_expanded"] = not info["show_expanded"] return {'FINISHED'} class WM_OT_addon_userpref_show(Operator): """Show add-on user preferences""" bl_idname = "wm.addon_userpref_show" bl_label = "" bl_options = {'INTERNAL'} module = StringProperty( name="Module", description="Module name of the add-on to expand", ) def execute(self, context): import addon_utils module_name = self.module modules = addon_utils.modules(refresh=False) mod = addon_utils.addons_fake_modules.get(module_name) if mod is not None: info = addon_utils.module_bl_info(mod) info["show_expanded"] = True context.user_preferences.active_section = 'ADDONS' context.window_manager.addon_filter = 'All' context.window_manager.addon_search = info["name"] bpy.ops.screen.userpref_show('INVOKE_DEFAULT') return {'FINISHED'} # Note: shares some logic with WM_OT_addon_install # but not enough to de-duplicate. Fixes here may apply to both. class WM_OT_app_template_install(Operator): """Install an application-template""" bl_idname = "wm.app_template_install" bl_label = "Install Template from File..." overwrite = BoolProperty( name="Overwrite", description="Remove existing template with the same ID", default=True, ) filepath = StringProperty( subtype='FILE_PATH', ) filter_folder = BoolProperty( name="Filter folders", default=True, options={'HIDDEN'}, ) filter_glob = StringProperty( default="*.zip", options={'HIDDEN'}, ) def execute(self, context): import traceback import zipfile import shutil import os filepath = self.filepath path_app_templates = bpy.utils.user_resource( 'SCRIPTS', os.path.join("startup", "bl_app_templates_user"), create=True, ) if not path_app_templates: self.report({'ERROR'}, "Failed to get add-ons path") return {'CANCELLED'} if not os.path.isdir(path_app_templates): try: os.makedirs(path_app_templates, exist_ok=True) except: traceback.print_exc() app_templates_old = set(os.listdir(path_app_templates)) # check to see if the file is in compressed format (.zip) if zipfile.is_zipfile(filepath): try: file_to_extract = zipfile.ZipFile(filepath, 'r') except: traceback.print_exc() return {'CANCELLED'} if self.overwrite: for f in file_to_extract.namelist(): module_filesystem_remove(path_app_templates, f) else: for f in file_to_extract.namelist(): path_dest = os.path.join(path_app_templates, os.path.basename(f)) if os.path.exists(path_dest): self.report({'WARNING'}, "File already installed to %r\n" % path_dest) return {'CANCELLED'} try: # extract the file to "bl_app_templates_user" file_to_extract.extractall(path_app_templates) except: traceback.print_exc() return {'CANCELLED'} else: # Only support installing zipfiles self.report({'WARNING'}, "Expected a zip-file %r\n" % filepath) return {'CANCELLED'} app_templates_new = set(os.listdir(path_app_templates)) - app_templates_old # in case a new module path was created to install this addon. bpy.utils.refresh_script_paths() # print message msg = ( tip_("Template Installed (%s) from %r into %r") % (", ".join(sorted(app_templates_new)), filepath, path_app_templates) ) print(msg) self.report({'INFO'}, msg) return {'FINISHED'} def invoke(self, context, event): wm = context.window_manager wm.fileselect_add(self) return {'RUNNING_MODAL'} classes = ( BRUSH_OT_active_index_set, WM_OT_addon_disable, WM_OT_addon_enable, WM_OT_addon_expand, WM_OT_addon_install, WM_OT_addon_refresh, WM_OT_addon_remove, WM_OT_addon_userpref_show, WM_OT_app_template_install, WM_OT_appconfig_activate, WM_OT_appconfig_default, WM_OT_blenderplayer_start, WM_OT_context_collection_boolean_set, WM_OT_context_cycle_array, WM_OT_context_cycle_enum, WM_OT_context_cycle_int, WM_OT_context_menu_enum, WM_OT_context_modal_mouse, WM_OT_context_pie_enum, WM_OT_context_scale_float, WM_OT_context_scale_int, WM_OT_context_set_boolean, WM_OT_context_set_enum, WM_OT_context_set_float, WM_OT_context_set_id, WM_OT_context_set_int, WM_OT_context_set_string, WM_OT_context_set_value, WM_OT_context_toggle, WM_OT_context_toggle_enum, WM_OT_copy_prev_settings, WM_OT_doc_view, WM_OT_doc_view_manual, WM_OT_keyconfig_activate, WM_OT_keyconfig_export, WM_OT_keyconfig_import, WM_OT_keyconfig_remove, WM_OT_keyconfig_test, WM_OT_keyitem_add, WM_OT_keyitem_remove, WM_OT_keyitem_restore, WM_OT_keymap_restore, WM_OT_operator_cheat_sheet, WM_OT_operator_pie_enum, WM_OT_path_open, WM_OT_properties_add, WM_OT_properties_context_change, WM_OT_properties_edit, WM_OT_properties_remove, WM_OT_sysinfo, WM_OT_theme_install, WM_OT_url_open, ) ``` #### File: tools/check_blender_release/check_release.py ```python import os import sys import unittest import check_module_enabled import check_module_numpy import check_module_requests import check_static_binaries from check_utils import sliceCommandLineArguments def load_tests(loader, standard_tests, pattern): standard_tests.addTests(loader.loadTestsFromTestCase( check_module_enabled.UnitTesting)) standard_tests.addTests(loader.loadTestsFromTestCase( check_module_numpy.UnitTesting)) standard_tests.addTests(loader.loadTestsFromTestCase( check_module_requests.UnitTesting)) standard_tests.addTests(loader.loadTestsFromTestCase( check_static_binaries.UnitTesting)) return standard_tests def main(): # Slice command line arguments by '--' unittest_args, parser_args = sliceCommandLineArguments() # Construct and run unit tests. unittest.main(argv=unittest_args) if __name__ == "__main__": main() ``` #### File: qtcreator/externaltools/qtc_doxy_file.py ```python import sys import os import subprocess import tempfile def find_gitroot(filepath_reference): path = filepath_reference path_prev = "" while not os.path.exists(os.path.join(path, ".git")) and path != path_prev: path_prev = path path = os.path.dirname(path) return path doxyfile, sourcefile = sys.argv[-2:] doxyfile = os.path.join(find_gitroot(sourcefile), doxyfile) os.chdir(os.path.dirname(doxyfile)) tempfile = tempfile.NamedTemporaryFile(mode='w+b') doxyfile_tmp = tempfile.name tempfile.write(open(doxyfile, "r+b").read()) tempfile.write(b'\n\n') tempfile.write(b'INPUT=' + os.fsencode(sourcefile) + b'\n') tempfile.flush() subprocess.call(("doxygen", doxyfile_tmp)) del tempfile # Maybe handy, but also annoying? if "--browse" in sys.argv: import webbrowser webbrowser.open("html/files.html") ``` #### File: tests/python/bl_pyapi_mathutils.py ```python import unittest from mathutils import Matrix, Vector, Quaternion from mathutils import kdtree import math # keep globals immutable vector_data = ( (1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0), (1.0, 1.0, 1.0), (0.33783, 0.715698, -0.611206), (-0.944031, -0.326599, -0.045624), (-0.101074, -0.416443, -0.903503), (0.799286, 0.49411, -0.341949), (-0.854645, 0.518036, 0.033936), (0.42514, -0.437866, -0.792114), (-0.358948, 0.597046, 0.717377), (-0.985413,0.144714, 0.089294), ) # get data at different scales vector_data = sum( (tuple(tuple(a * scale for a in v) for v in vector_data) for scale in (s * sign for s in (0.0001, 0.1, 1.0, 10.0, 1000.0, 100000.0) for sign in (1.0, -1.0))), ()) + ((0.0, 0.0, 0.0),) class MatrixTesting(unittest.TestCase): def test_matrix_column_access(self): #mat = #[ 1 2 3 4 ] #[ 1 2 3 4 ] #[ 1 2 3 4 ] mat = Matrix(((1, 11, 111), (2, 22, 222), (3, 33, 333), (4, 44, 444))) self.assertEqual(mat[0], Vector((1, 11, 111))) self.assertEqual(mat[1], Vector((2, 22, 222))) self.assertEqual(mat[2], Vector((3, 33, 333))) self.assertEqual(mat[3], Vector((4, 44, 444))) def test_item_access(self): args = ((1, 4, 0, -1), (2, -1, 2, -2), (0, 3, 8, 3), (-2, 9, 1, 0)) mat = Matrix(args) for row in range(4): for col in range(4): self.assertEqual(mat[row][col], args[row][col]) self.assertEqual(mat[0][2], 0) self.assertEqual(mat[3][1], 9) self.assertEqual(mat[2][3], 3) self.assertEqual(mat[0][0], 1) self.assertEqual(mat[3][3], 0) def test_item_assignment(self): mat = Matrix() - Matrix() indices = (0, 0), (1, 3), (2, 0), (3, 2), (3, 1) checked_indices = [] for row, col in indices: mat[row][col] = 1 for row in range(4): for col in range(4): if mat[row][col]: checked_indices.append((row, col)) for item in checked_indices: self.assertIn(item, indices) def test_matrix_to_3x3(self): #mat = #[ 1 2 3 4 ] #[ 2 4 6 8 ] #[ 3 6 9 12 ] #[ 4 8 12 16 ] mat = Matrix(tuple((i, 2 * i, 3 * i, 4 * i) for i in range(1, 5))) mat_correct = Matrix(((1, 2, 3), (2, 4, 6), (3, 6, 9))) self.assertEqual(mat.to_3x3(), mat_correct) def test_matrix_to_translation(self): mat = Matrix() mat[0][3] = 1 mat[1][3] = 2 mat[2][3] = 3 self.assertEqual(mat.to_translation(), Vector((1, 2, 3))) def test_matrix_translation(self): mat = Matrix() mat.translation = Vector((1, 2, 3)) self.assertEqual(mat[0][3], 1) self.assertEqual(mat[1][3], 2) self.assertEqual(mat[2][3], 3) def test_non_square_mult(self): mat1 = Matrix(((1, 2, 3), (4, 5, 6))) mat2 = Matrix(((1, 2), (3, 4), (5, 6))) prod_mat1 = Matrix(((22, 28), (49, 64))) prod_mat2 = Matrix(((9, 12, 15), (19, 26, 33), (29, 40, 51))) self.assertEqual(mat1 * mat2, prod_mat1) self.assertEqual(mat2 * mat1, prod_mat2) def test_mat4x4_vec3D_mult(self): mat = Matrix(((1, 0, 2, 0), (0, 6, 0, 0), (0, 0, 1, 1), (0, 0, 0, 1))) vec = Vector((1, 2, 3)) prod_mat_vec = Vector((7, 12, 4)) prod_vec_mat = Vector((1, 12, 5)) self.assertEqual(mat * vec, prod_mat_vec) self.assertEqual(vec * mat, prod_vec_mat) def test_mat_vec_mult(self): mat1 = Matrix() vec = Vector((1, 2)) self.assertRaises(ValueError, mat1.__mul__, vec) self.assertRaises(ValueError, vec.__mul__, mat1) mat2 = Matrix(((1, 2), (-2, 3))) prod = Vector((5, 4)) self.assertEqual(mat2 * vec, prod) def test_matrix_inverse(self): mat = Matrix(((1, 4, 0, -1), (2, -1, 2, -2), (0, 3, 8, 3), (-2, 9, 1, 0))) inv_mat = (1 / 285) * Matrix(((195, -57, 27, -102), (50, -19, 4, 6), (-60, 57, 18, 27), (110, -133, 43, -78))) self.assertEqual(mat.inverted(), inv_mat) def test_matrix_inverse_safe(self): mat = Matrix(((1, 4, 0, -1), (2, -1, 0, -2), (0, 3, 0, 3), (-2, 9, 0, 0))) # Warning, if we change epsilon in py api we have to update this!!! epsilon = 1e-8 inv_mat_safe = mat.copy() inv_mat_safe[0][0] += epsilon inv_mat_safe[1][1] += epsilon inv_mat_safe[2][2] += epsilon inv_mat_safe[3][3] += epsilon inv_mat_safe.invert() ''' inv_mat_safe = Matrix(((1.0, -0.5, 0.0, -0.5), (0.222222, -0.111111, -0.0, 0.0), (-333333344.0, 316666656.0, 100000000.0, 150000000.0), (0.888888, -0.9444444, 0.0, -0.5))) ''' self.assertEqual(mat.inverted_safe(), inv_mat_safe) def test_matrix_mult(self): mat = Matrix(((1, 4, 0, -1), (2, -1, 2, -2), (0, 3, 8, 3), (-2, 9, 1, 0))) prod_mat = Matrix(((11, -9, 7, -9), (4, -3, 12, 6), (0, 48, 73, 18), (16, -14, 26, -13))) self.assertEqual(mat * mat, prod_mat) class VectorTesting(unittest.TestCase): def test_orthogonal(self): angle_90d = math.pi / 2.0 for v in vector_data: v = Vector(v) if v.length_squared != 0.0: self.assertAlmostEqual(v.angle(v.orthogonal()), angle_90d) class QuaternionTesting(unittest.TestCase): def test_to_expmap(self): q = Quaternion((0, 0, 1), math.radians(90)) e = q.to_exponential_map() self.assertAlmostEqual(e.x, 0) self.assertAlmostEqual(e.y, 0) self.assertAlmostEqual(e.z, math.radians(90), 6) def test_expmap_axis_normalization(self): q = Quaternion((1, 1, 0), 2) e = q.to_exponential_map() self.assertAlmostEqual(e.x, 2 * math.sqrt(0.5), 6) self.assertAlmostEqual(e.y, 2 * math.sqrt(0.5), 6) self.assertAlmostEqual(e.z, 0) def test_from_expmap(self): e = Vector((1, 1, 0)) q = Quaternion(e) axis, angle = q.to_axis_angle() self.assertAlmostEqual(angle, math.sqrt(2), 6) self.assertAlmostEqual(axis.x, math.sqrt(0.5), 6) self.assertAlmostEqual(axis.y, math.sqrt(0.5), 6) self.assertAlmostEqual(axis.z, 0) class KDTreeTesting(unittest.TestCase): @staticmethod def kdtree_create_grid_3d_data(tot): index = 0 mul = 1.0 / (tot - 1) for x in range(tot): for y in range(tot): for z in range(tot): yield (x * mul, y * mul, z * mul), index index += 1 @staticmethod def kdtree_create_grid_3d(tot, *, filter_fn=None): k = kdtree.KDTree(tot * tot * tot) for co, index in KDTreeTesting.kdtree_create_grid_3d_data(tot): if (filter_fn is not None) and (not filter_fn(co, index)): continue k.insert(co, index) k.balance() return k def assertAlmostEqualVector(self, first, second, places=7, msg=None, delta=None): self.assertAlmostEqual(first[0], second[0], places=places, msg=msg, delta=delta) self.assertAlmostEqual(first[1], second[1], places=places, msg=msg, delta=delta) self.assertAlmostEqual(first[2], second[2], places=places, msg=msg, delta=delta) def test_kdtree_single(self): co = (0,) * 3 index = 2 k = kdtree.KDTree(1) k.insert(co, index) k.balance() co_found, index_found, dist_found = k.find(co) self.assertEqual(tuple(co_found), co) self.assertEqual(index_found, index) self.assertEqual(dist_found, 0.0) def test_kdtree_empty(self): co = (0,) * 3 k = kdtree.KDTree(0) k.balance() co_found, index_found, dist_found = k.find(co) self.assertIsNone(co_found) self.assertIsNone(index_found) self.assertIsNone(dist_found) def test_kdtree_line(self): tot = 10 k = kdtree.KDTree(tot) for i in range(tot): k.insert((i,) * 3, i) k.balance() co_found, index_found, dist_found = k.find((-1,) * 3) self.assertEqual(tuple(co_found), (0,) * 3) co_found, index_found, dist_found = k.find((tot,) * 3) self.assertEqual(tuple(co_found), (tot - 1,) * 3) def test_kdtree_grid(self): size = 10 k = self.kdtree_create_grid_3d(size) # find_range ret = k.find_range((0.5,) * 3, 2.0) self.assertEqual(len(ret), size * size * size) ret = k.find_range((1.0,) * 3, 1.0 / size) self.assertEqual(len(ret), 1) ret = k.find_range((1.0,) * 3, 2.0 / size) self.assertEqual(len(ret), 8) ret = k.find_range((10,) * 3, 0.5) self.assertEqual(len(ret), 0) # find_n tot = 0 ret = k.find_n((1.0,) * 3, tot) self.assertEqual(len(ret), tot) tot = 10 ret = k.find_n((1.0,) * 3, tot) self.assertEqual(len(ret), tot) self.assertEqual(ret[0][2], 0.0) tot = size * size * size ret = k.find_n((1.0,) * 3, tot) self.assertEqual(len(ret), tot) def test_kdtree_grid_filter_simple(self): size = 10 k = self.kdtree_create_grid_3d(size) # filter exact index ret_regular = k.find((1.0,) * 3) ret_filter = k.find((1.0,) * 3, filter=lambda i: i == ret_regular[1]) self.assertEqual(ret_regular, ret_filter) ret_filter = k.find((-1.0,) * 3, filter=lambda i: i == ret_regular[1]) self.assertEqual(ret_regular[:2], ret_filter[:2]) # ignore distance def test_kdtree_grid_filter_pairs(self): size = 10 k_all = self.kdtree_create_grid_3d(size) k_odd = self.kdtree_create_grid_3d(size, filter_fn=lambda co, i: (i % 2) == 1) k_evn = self.kdtree_create_grid_3d(size, filter_fn=lambda co, i: (i % 2) == 0) samples = 5 mul = 1 / (samples - 1) for x in range(samples): for y in range(samples): for z in range(samples): co = (x * mul, y * mul, z * mul) ret_regular = k_odd.find(co) self.assertEqual(ret_regular[1] % 2, 1) ret_filter = k_all.find(co, lambda i: (i % 2) == 1) self.assertAlmostEqualVector(ret_regular, ret_filter) ret_regular = k_evn.find(co) self.assertEqual(ret_regular[1] % 2, 0) ret_filter = k_all.find(co, lambda i: (i % 2) == 0) self.assertAlmostEqualVector(ret_regular, ret_filter) # filter out all values (search odd tree for even values and the reverse) co = (0,) * 3 ret_filter = k_odd.find(co, lambda i: (i % 2) == 0) self.assertEqual(ret_filter[1], None) ret_filter = k_evn.find(co, lambda i: (i % 2) == 1) self.assertEqual(ret_filter[1], None) def test_kdtree_invalid_size(self): with self.assertRaises(ValueError): kdtree.KDTree(-1) def test_kdtree_invalid_balance(self): co = (0,) * 3 index = 2 k = kdtree.KDTree(2) k.insert(co, index) k.balance() k.insert(co, index) with self.assertRaises(RuntimeError): k.find(co) def test_kdtree_invalid_filter(self): k = kdtree.KDTree(1) k.insert((0,) * 3, 0) k.balance() # not callable with self.assertRaises(TypeError): k.find((0,) * 3, filter=None) # no args with self.assertRaises(TypeError): k.find((0,) * 3, filter=lambda: None) # bad return value with self.assertRaises(ValueError): k.find((0,) * 3, filter=lambda i: None) if __name__ == '__main__': import sys sys.argv = [__file__] + (sys.argv[sys.argv.index("--") + 1:] if "--" in sys.argv else []) unittest.main() ```
{ "source": "1-MillionParanoidTterabytes/blender-addons-master", "score": 2 }
#### File: 1-MillionParanoidTterabytes/blender-addons-master/development_edit_operator.py ```python bl_info = { "name": "Edit Operator Source", "author": "scorpion81", "version": (1, 2, 2), "blender": (2, 78, 0), "location": "Text Editor > Edit > Edit Operator", "description": "Opens source file of chosen operator, if it is an add-on one", "warning": "", "wiki_url": "https://wiki.blender.org/index.php/Extensions:2.6/" "Py/Scripts/Development/Edit_Operator_Source", "category": "Development"} import bpy import sys import inspect from bpy.types import ( Operator, Panel, ) from bpy.props import EnumProperty def get_py_class_from_op(opname): opid = opname.split(".") opmod = getattr(bpy.ops, opid[0]) op = getattr(opmod, opid[1]) id = op.get_rna().bl_rna.identifier # C operators won't be added return getattr(bpy.types, id, None) def getmodule(opname): cls = get_py_class_from_op(opname) if cls is None: addon = False line = -1 mod = 'C operator' else: addon = True mod_name = cls.__module__ try: line = inspect.getsourcelines(cls)[1] except IOError: line = -1 except TypeError: line = -1 if mod_name == 'bpy.types': addon = False elif mod_name != '__main__': mod = sys.modules[mod_name].__file__ else: addon = False mod = mod_name return mod, line, addon def get_ops(): allops = [] opsdir = dir(bpy.ops) for opmodname in opsdir: opmod = getattr(bpy.ops, opmodname) opmoddir = dir(opmod) for o in opmoddir: name = opmodname + "." + o cls = get_py_class_from_op(name) if cls is not None: allops.append(name) del opmoddir # add own operator name too, since its not loaded yet when this is called allops.append("text.edit_operator") l = sorted(allops) del allops del opsdir return [(y, y, "", x) for x, y in enumerate(l)] class EditOperator(Operator): bl_idname = "text.edit_operator" bl_label = "Edit Operator" bl_description = "Opens the source file of operators chosen from Menu" bl_property = "op" items = get_ops() op = EnumProperty( name="Op", description="", items=items ) def invoke(self, context, event): context.window_manager.invoke_search_popup(self) return {'PASS_THROUGH'} def execute(self, context): found = False path, line, addon = getmodule(self.op) if addon: for t in bpy.data.texts: if t.filepath == path: ctx = context.copy() ctx['edit_text'] = t bpy.ops.text.jump(ctx, line=line) found = True break if (found is False): self.report({'INFO'}, "Opened file: " + path) bpy.ops.text.open(filepath=path) bpy.ops.text.jump(line=line) return {'FINISHED'} else: self.report({'WARNING'}, "Found no source file for " + self.op) return {'CANCELLED'} class EditOperatorPanel(Panel): bl_idname = "DEVEDIT_PT_operator" bl_space_type = 'TEXT_EDITOR' bl_region_type = 'UI' bl_label = "Edit Operator" def draw(self, context): layout = self.layout layout.operator("text.edit_operator") def register(): bpy.utils.register_class(EditOperator) bpy.utils.register_class(EditOperatorPanel) def unregister(): bpy.utils.unregister_class(EditOperatorPanel) bpy.utils.unregister_class(EditOperator) if __name__ == "__main__": register() ``` #### File: blender-addons-master/materials_utils/material_converter.py ```python import bpy import math from mathutils import Vector from bpy.types import Operator from .warning_messages_utils import ( warning_messages, c_is_cycles_addon_enabled, c_data_has_materials, collect_report, ) # ----------------------------------------------------------------------------- # Globals nodesDictionary = None NODE_FRAME = 'NodeFrame' BI_MATERIAL_NODE = 'ShaderNodeMaterial' BI_OUTPUT_NODE = 'ShaderNodeOutput' TEXTURE_IMAGE_NODE = 'ShaderNodeTexImage' OUTPUT_NODE = 'ShaderNodeOutputMaterial' RGB_MIX_NODE = 'ShaderNodeMixRGB' MAPPING_NODE = 'ShaderNodeMapping' NORMAL_MAP_NODE = 'ShaderNodeNormalMap' SHADER_MIX_NODE = 'ShaderNodeMixShader' SHADER_ADD_NODE = 'ShaderNodeAddShader' COORD_NODE = 'ShaderNodeTexCoord' RGB_TO_BW_NODE = 'ShaderNodeRGBToBW' BSDF_DIFFUSE_NODE = 'ShaderNodeBsdfDiffuse' BSDF_EMISSION_NODE = 'ShaderNodeEmission' BSDF_TRANSPARENT_NODE = 'ShaderNodeBsdfTransparent' BSDF_GLOSSY_NODE = 'ShaderNodeBsdfGlossy' BSDF_GLASS_NODE = 'ShaderNodeBsdfGlass' textureNodeSizeX = 150 textureNodeSizeY = 350 # ----------------------------------------------------------------------------- # Functions def makeTextureNodeDict(cmat): global nodesDictionary nodesDictionary = {} textures = {textureSlot.texture for textureSlot in cmat.texture_slots if textureSlot} for tex in textures: texNode = None if tex.type == 'IMAGE': texNode = makeNodeUsingImage1(cmat, tex) if texNode: nodesDictionary[tex] = texNode return nodesDictionary def getTexNodeDic(texture): return nodesDictionary.get(texture) def clearNodes(TreeNodes): TreeNodes.nodes.clear() def clearCycleMaterial(cmat): TreeNodes = cmat.node_tree clearNodes(TreeNodes) def copyMapping(textureSlot, textureMapping): textureMapping.scale.x = textureSlot.scale.x textureMapping.scale.y = textureSlot.scale.y textureMapping.scale.z = textureSlot.scale.z def addRGBMixNode(TreeNodes, textureSlot, mixRgbNode, prevTexNode, newTexNode, nodeType, textureIdx): try: links = TreeNodes.links mixRgbNode.name = '{} Mix {:d}'.format(nodeType, textureIdx) mixRgbNode.blend_type = textureSlot.blend_type mixRgbNode.inputs['Fac'].default_value = textureSlot.diffuse_color_factor links.new(prevTexNode.outputs['Color'], mixRgbNode.inputs['Color2']) links.new(newTexNode.outputs['Color'], mixRgbNode.inputs['Color1']) except: collect_report("ERROR: Failure to find link with a Mix node") def makeBiNodes(cmat): # Create Blender Internal Material Nodes TreeNodes = cmat.node_tree links = TreeNodes.links BIFrame = TreeNodes.nodes.new(NODE_FRAME) BIFrame.name = 'BI Frame' BIFrame.label = 'BI Material' biShaderNodeMaterial = TreeNodes.nodes.new(BI_MATERIAL_NODE) biShaderNodeMaterial.parent = BIFrame biShaderNodeMaterial.name = 'BI Material' biShaderNodeMaterial.material = cmat biShaderNodeMaterial.location = 0, 600 biShaderNodeOutput = TreeNodes.nodes.new(BI_OUTPUT_NODE) biShaderNodeOutput.parent = BIFrame biShaderNodeOutput.name = 'BI Output' biShaderNodeOutput.location = 200, 600 try: links.new(biShaderNodeMaterial.outputs['Color'], biShaderNodeOutput.inputs['Color']) links.new(biShaderNodeMaterial.outputs['Alpha'], biShaderNodeOutput.inputs['Alpha']) except: collect_report("ERROR: Failure to find links with the BI Shader Material") def placeNode(node, posX, posY, deltaX, deltaY, countX, countY): nodeX = posX - (deltaX * countX) nodeY = posY - (deltaY * countY) node.location = nodeX, nodeY def makeImageTextureNode(TreeNodes, img): texNode = TreeNodes.nodes.new(TEXTURE_IMAGE_NODE) texNode.image = img return texNode def makeNodeUsingImage1(cmat, texture): TreeNodes = cmat.node_tree img = texture.image texNode = makeImageTextureNode(TreeNodes, img) return texNode def makeMainShader(TreeNodes): mainShader = TreeNodes.nodes.new(BSDF_DIFFUSE_NODE) mainShader.name = 'Diffuse BSDF' mainShader.location = 0, 0 return mainShader def makeEmissionShader(TreeNodes): mainShader = TreeNodes.nodes.new(BSDF_EMISSION_NODE) mainShader.name = 'Emmission' mainShader.location = 0, 0 return mainShader def makeMaterialOutput(TreeNodes): shout = TreeNodes.nodes.new(OUTPUT_NODE) shout.location = 200, 0 return shout def replaceNode(oldNode, newNode): newNode.location = oldNode.location try: for link in oldNode.outputs['BSDF'].links: link.new(newNode.outputs['BSDF'], link.to_socket) for link in oldNode.inputs['Color'].links: link.new(newNode.inputs['Color'], link.from_socket) for link in oldNode.inputs['Normal'].links: link.new(newNode.inputs['Normal'], link.from_socket) except: collect_report("ERROR: Failure to replace node") def BIToCycleTexCoord(links, textureSlot, texCoordNode, textureMappingNode): # Texture Coordinates linkOutput = None if textureSlot.texture_coords in {'TANGENT', 'STRESS', 'STRAND'}: linkOutput = None elif textureSlot.texture_coords == 'REFLECTION': linkOutput = 'Reflection' elif textureSlot.texture_coords == 'NORMAL': linkOutput = 'Normal' elif textureSlot.texture_coords == 'WINDOW': linkOutput = 'Window' elif textureSlot.texture_coords == 'UV': linkOutput = 'UV' elif textureSlot.texture_coords == 'ORCO': linkOutput = 'Generated' elif textureSlot.texture_coords == 'OBJECT': linkOutput = 'Object' elif textureSlot.texture_coords == 'GLOBAL': linkOutput = 'Camera' if linkOutput: links.new(texCoordNode.outputs[linkOutput], textureMappingNode.inputs['Vector']) def createDiffuseNodes(cmat, texCoordNode, mainShader, materialOutput): TreeNodes = cmat.node_tree links = TreeNodes.links texCount = len([node for node in TreeNodes.nodes if node.type == 'MAPPING']) currPosY = -textureNodeSizeY * texCount textureSlots = [textureSlot for textureSlot in cmat.texture_slots if (textureSlot and textureSlot.use_map_color_diffuse)] texCount = len(textureSlots) texNode = None latestNode = None groupName = 'Diffuse' if any(textureSlots): diffuseFrame = TreeNodes.nodes.new(NODE_FRAME) diffuseFrame.name = '{} Frame'.format(groupName) diffuseFrame.label = '{}'.format(groupName) for textureIdx, textureSlot in enumerate(textureSlots): texNode = getTexNodeDic(textureSlot.texture) if texNode: tex_node_name = getattr(texNode.image, "name", "") collect_report("INFO: Generating {} Nodes for: ".format(groupName) + tex_node_name) texNode.parent = diffuseFrame placeNode(texNode, -500 - ((texCount - 1) * 200), currPosY, textureNodeSizeX, textureNodeSizeY, 0, textureIdx) # Add mapping node textureMapping = TreeNodes.nodes.new(MAPPING_NODE) textureMapping.parent = diffuseFrame renameNode(textureMapping, '{} Mapping'.format(groupName), texCount, textureIdx) textureMapping.location = texNode.location + Vector((-400, 0)) copyMapping(textureSlot, textureMapping) # Texture Coordinates BIToCycleTexCoord(links, textureSlot, texCoordNode, textureMapping) # Place the texture node renameNode(texNode, '{} Texture'.format(groupName), texCount, textureIdx) links.new(textureMapping.outputs['Vector'], texNode.inputs['Vector']) # Add multiply node colorMult = TreeNodes.nodes.new(RGB_MIX_NODE) colorMult.parent = diffuseFrame renameNode(colorMult, 'Color Mult', texCount, textureIdx) colorMult.blend_type = 'MIX' colorMult.inputs['Fac'].default_value = 1 colorMult.inputs['Color1'].default_value = (1, 1, 1, 1) colorMult.location = texNode.location + Vector((200, 0)) links.new(texNode.outputs['Color'], colorMult.inputs['Color2']) texNode = colorMult if textureSlot.use and textureIdx == 0: latestNode = texNode if textureSlot.use and textureIdx > 0: try: # Create a node to mix multiple texture nodes mixRgbNode = TreeNodes.nodes.new(RGB_MIX_NODE) mixRgbNode.parent = diffuseFrame addRGBMixNode(TreeNodes, textureSlot, mixRgbNode, texNode, latestNode, '{}'.format(groupName), textureIdx) mixRgbNode.location = Vector( (max(texNode.location.x, latestNode.location.x), (texNode.location.y + latestNode.location.y) / 2)) + Vector((200, 0) ) latestNode = mixRgbNode except: continue if latestNode: links.new(latestNode.outputs['Color'], mainShader.inputs['Color']) # Y Position next texture node currPosY = currPosY - (textureNodeSizeY * (texCount)) # BI Material to Cycles - Alpha Transparency textureSlots = [textureSlot for textureSlot in cmat.texture_slots if (textureSlot and textureSlot.use_map_alpha)] texCount = len(textureSlots) texNode = None latestNode = None for textureIdx, textureSlot in enumerate(textureSlots): texNode = getTexNodeDic(textureSlot.texture) if texNode: tex_node_name = getattr(texNode.image, "name", "") collect_report("INFO: Generating Transparency Nodes for: " + tex_node_name) if textureSlot.use and textureIdx == 0: latestNode = texNode if textureSlot.use and textureIdx > 0: try: # Create a node to mix multiple texture nodes mixAlphaNode = TreeNodes.nodes.new(RGB_MIX_NODE) mixAlphaNode.name = 'Alpha Mix {:d}'.format(textureIdx) mixAlphaNode.blend_type = textureSlot.blend_type mixAlphaNode.inputs['Fac'].default_value = textureSlot.diffuse_color_factor placeNode(mixAlphaNode, -200 - ((texCount - textureIdx - 1) * 200), 400 - 240, textureNodeSizeX, textureNodeSizeY, 0, 0) links.new(texNode.outputs['Alpha'], mixAlphaNode.inputs['Color2']) links.new(latestNode.outputs['Alpha'], mixAlphaNode.inputs['Color1']) latestNode = mixAlphaNode except: continue if latestNode: alphaMixShader = TreeNodes.nodes.get('Alpha Mix Shader') if alphaMixShader: if latestNode.type == 'TEX_IMAGE': outputLink = 'Alpha' else: outputLink = 'Color' links.new(latestNode.outputs[outputLink], alphaMixShader.inputs['Fac']) def createNormalNodes(cmat, texCoordNode, mainShader, materialOutput): TreeNodes = cmat.node_tree links = TreeNodes.links texCount = len([node for node in TreeNodes.nodes if node.type == 'MAPPING']) currPosY = -textureNodeSizeY * texCount textureSlots = [textureSlot for textureSlot in cmat.texture_slots if (textureSlot and textureSlot.use_map_normal)] texCount = len(textureSlots) texNode = None latestNode = None groupName = 'Normal' if any(textureSlots): normalFrame = TreeNodes.nodes.new(NODE_FRAME) normalFrame.name = '{} Frame'.format(groupName) normalFrame.label = '{}'.format(groupName) for textureIdx, textureSlot in enumerate(textureSlots): texNode = getTexNodeDic(textureSlot.texture) if texNode: tex_node_name = getattr(texNode.image, "name", "") collect_report("INFO: Generating Normal Nodes for: " + tex_node_name) texNode.parent = normalFrame placeNode(texNode, -500 - ((texCount) * 200), currPosY, textureNodeSizeX, textureNodeSizeY, 0, textureIdx) # Add mapping node normalMapping = TreeNodes.nodes.new(MAPPING_NODE) normalMapping.parent = normalFrame renameNode(normalMapping, '{} Mapping'.format(groupName), texCount, textureIdx) normalMapping.location = texNode.location + Vector((-400, 0)) copyMapping(textureSlot, normalMapping) # Texture Coordinates BIToCycleTexCoord(links, textureSlot, texCoordNode, normalMapping) # Place the texture node renameNode(texNode, '{} Texture'.format(groupName), texCount, textureIdx) texNode.color_space = 'NONE' links.new(normalMapping.outputs['Vector'], texNode.inputs['Vector']) # Add multiply node normalMult = TreeNodes.nodes.new(RGB_MIX_NODE) normalMult.parent = normalFrame renameNode(normalMult, 'Normal Mult', texCount, textureIdx) normalMult.blend_type = 'MIX' normalMult.inputs['Fac'].default_value = 1 normalMult.inputs['Color1'].default_value = (.5, .5, 1, 1) normalMult.location = texNode.location + Vector((200, 0)) links.new(texNode.outputs['Color'], normalMult.inputs['Color2']) texNode = normalMult if textureSlot.use and textureIdx == 0: latestNode = texNode if textureSlot.use and textureIdx > 0: try: # Create a node to mix multiple texture nodes mixRgbNode = TreeNodes.nodes.new(RGB_MIX_NODE) mixRgbNode.parent = normalFrame addRGBMixNode(TreeNodes, textureSlot, mixRgbNode, texNode, latestNode, '{}'.format(groupName), textureIdx) mixRgbNode.location = Vector( (max(texNode.location.x, latestNode.location.x), (texNode.location.y + latestNode.location.y) / 2)) + Vector((200, 0) ) latestNode = mixRgbNode except: continue if latestNode: normalMapNode = TreeNodes.nodes.new(NORMAL_MAP_NODE) normalMapNode.parent = normalFrame normalMapNode.location = latestNode.location + Vector((200, 0)) links.new(latestNode.outputs['Color'], normalMapNode.inputs['Color']) links.new(normalMapNode.outputs['Normal'], mainShader.inputs['Normal']) def createSpecularNodes(cmat, texCoordNode, mainShader, mainDiffuse, materialOutput): TreeNodes = cmat.node_tree links = TreeNodes.links texCount = len([node for node in TreeNodes.nodes if node.type == 'MAPPING']) currPosY = -textureNodeSizeY * texCount textureSlots = [textureSlot for textureSlot in cmat.texture_slots if (textureSlot and textureSlot.use_map_color_spec)] texCount = len(textureSlots) texNode = None latestNode = None groupName = 'Specular' if any(textureSlots): specularFrame = TreeNodes.nodes.new(NODE_FRAME) specularFrame.name = '{} Frame'.format(groupName) specularFrame.label = '{}'.format(groupName) for textureIdx, textureSlot in enumerate(textureSlots): texNode = getTexNodeDic(textureSlot.texture) if texNode: tex_node_name = getattr(texNode.image, "name", "") collect_report("INFO: Generating {} Nodes for: ".format(groupName) + tex_node_name) texNode.parent = specularFrame placeNode(texNode, -500 - ((texCount) * 200), currPosY, textureNodeSizeX, textureNodeSizeY, 0, textureIdx) # Add mapping node specularMapping = TreeNodes.nodes.new(MAPPING_NODE) specularMapping.parent = specularFrame renameNode(specularMapping, '{} Mapping'.format(groupName), texCount, textureIdx) specularMapping.location = texNode.location + Vector((-400, 0)) copyMapping(textureSlot, specularMapping) # Texture Coordinates BIToCycleTexCoord(links, textureSlot, texCoordNode, specularMapping) # Place the texture node renameNode(texNode, '{} Texture'.format(groupName), texCount, textureIdx) links.new(specularMapping.outputs['Vector'], texNode.inputs['Vector']) # Add multiply node specularMult = TreeNodes.nodes.new(RGB_MIX_NODE) specularMult.parent = specularFrame renameNode(specularMult, 'Specular Mult', texCount, textureIdx) specularMult.blend_type = 'MULTIPLY' specularMult.inputs['Fac'].default_value = 1 specularMult.inputs['Color1'].default_value = (1, 1, 1, 1) specularMult.location = texNode.location + Vector((200, 0)) links.new(texNode.outputs['Color'], specularMult.inputs['Color2']) texNode = specularMult if textureSlot.use and textureIdx == 0: latestNode = texNode if textureSlot.use and textureIdx > 0: try: # Create a node to mix multiple texture nodes mixRgbNode = TreeNodes.nodes.new(RGB_MIX_NODE) mixRgbNode.parent = specularFrame addRGBMixNode(TreeNodes, textureSlot, mixRgbNode, texNode, latestNode, '{}'.format(groupName), textureIdx) mixRgbNode.location = Vector( (max(texNode.location.x, latestNode.location.x), (texNode.location.y + latestNode.location.y) / 2)) + Vector((200, 0) ) latestNode = mixRgbNode except: continue if latestNode: try: glossShader = TreeNodes.nodes.new(BSDF_GLOSSY_NODE) RGBToBW = TreeNodes.nodes.new(RGB_TO_BW_NODE) RGBToBW.location = Vector((0, latestNode.location.y)) + Vector((0, 0)) glossShader.location = Vector((0, latestNode.location.y)) + Vector((0, -80)) links.new(latestNode.outputs['Color'], glossShader.inputs['Color']) links.new(latestNode.outputs['Color'], RGBToBW.inputs['Color']) outputNode = TreeNodes.nodes.get('Material Output') spec_mixer_1 = TreeNodes.nodes.new(SHADER_MIX_NODE) spec_mixer_1.location = outputNode.location spec_mixer_2 = TreeNodes.nodes.new(SHADER_MIX_NODE) spec_mixer_2.inputs['Fac'].default_value = .4 spec_mixer_2.location = outputNode.location + Vector((180, 0)) links.new(spec_mixer_1.outputs['Shader'], spec_mixer_2.inputs[2]) links.new(spec_mixer_2.outputs['Shader'], outputNode.inputs['Surface']) links.new(RGBToBW.outputs['Val'], spec_mixer_1.inputs['Fac']) links.new(glossShader.outputs['BSDF'], spec_mixer_1.inputs[2]) outputNode.location += Vector((360, 0)) normalMapNode = TreeNodes.nodes.get('Normal Map') links.new(normalMapNode.outputs['Normal'], glossShader.inputs['Normal']) if mainDiffuse.type == 'BSDF_DIFFUSE': outputLink = 'BSDF' else: outputLink = 'Shader' links.new(mainDiffuse.outputs[outputLink], spec_mixer_1.inputs[1]) links.new(mainDiffuse.outputs[outputLink], spec_mixer_2.inputs[1]) except: return def createEmissionNodes(cmat, texCoordNode, mainShader, materialOutput): TreeNodes = cmat.node_tree links = TreeNodes.links texCount = len([node for node in TreeNodes.nodes if node.type == 'MAPPING']) currPosY = -textureNodeSizeY * texCount textureSlots = [textureSlot for textureSlot in cmat.texture_slots if (textureSlot and textureSlot.use_map_emit)] texCount = len(textureSlots) texNode = None latestNode = None groupName = 'Emission' if any(textureSlots): emissionFrame = TreeNodes.nodes.new(NODE_FRAME) emissionFrame.name = '{} Frame'.format(groupName) emissionFrame.label = '{}'.format(groupName) for textureIdx, textureSlot in enumerate(textureSlots): texNode = getTexNodeDic(textureSlot.texture) if texNode: tex_node_name = getattr(texNode.image, "name", "") collect_report("INFO: Generating {} Nodes for: ".format(groupName) + tex_node_name) texNode.parent = emissionFrame placeNode(texNode, -500 - ((texCount) * 200), currPosY, textureNodeSizeX, textureNodeSizeY, 0, textureIdx) # Add mapping node emissionMapping = TreeNodes.nodes.new(MAPPING_NODE) emissionMapping.parent = emissionFrame renameNode(emissionMapping, '{} Mapping'.format(groupName), texCount, textureIdx) emissionMapping.location = texNode.location + Vector((-400, 0)) copyMapping(textureSlot, emissionMapping) # Texture Coordinates BIToCycleTexCoord(links, textureSlot, texCoordNode, emissionMapping) # Place the texture node renameNode(texNode, '{} Texture'.format(groupName), texCount, textureIdx) texNode.color_space = 'NONE' links.new(emissionMapping.outputs['Vector'], texNode.inputs['Vector']) # Add multiply node emissionMult = TreeNodes.nodes.new(RGB_MIX_NODE) emissionMult.parent = emissionFrame renameNode(emissionMult, 'Emission Mult', texCount, textureIdx) emissionMult.blend_type = 'MIX' emissionMult.inputs['Fac'].default_value = 1 emissionMult.inputs['Color1'].default_value = (0, 0, 0, 1) emissionMult.location = texNode.location + Vector((200, 0)) links.new(texNode.outputs['Color'], emissionMult.inputs['Color2']) texNode = emissionMult if textureSlot.use and textureIdx == 0: latestNode = texNode if textureSlot.use and textureIdx > 0: try: # Create a node to mix multiple texture nodes mixRgbNode = TreeNodes.nodes.new(RGB_MIX_NODE) mixRgbNode.parent = emissionFrame addRGBMixNode(TreeNodes, textureSlot, mixRgbNode, texNode, latestNode, '{}'.format(groupName), textureIdx) mixRgbNode.location = Vector( (max(texNode.location.x, latestNode.location.x), (texNode.location.y + latestNode.location.y) / 2)) + Vector((200, 0) ) latestNode = mixRgbNode except: continue if latestNode: try: emissionNode = TreeNodes.nodes.new(BSDF_EMISSION_NODE) emissionNode.inputs['Strength'].default_value = 1 addShaderNode = TreeNodes.nodes.new(SHADER_ADD_NODE) addShaderNode.location = materialOutput.location + Vector((0, -100)) xPos = mainShader.location.x yPos = latestNode.location.y emissionNode.location = Vector((xPos, yPos)) materialOutput.location += Vector((400, 0)) node = materialOutput.inputs[0].links[0].from_node node.location += Vector((400, 0)) links.new(latestNode.outputs['Color'], emissionNode.inputs['Color']) links.new(emissionNode.outputs['Emission'], addShaderNode.inputs[1]) links.new(mainShader.outputs['BSDF'], addShaderNode.inputs[0]) links.new(addShaderNode.outputs['Shader'], node.inputs[2]) except: return def renameNode(node, baseName, nodesCount, nodeIndex): if nodesCount == 1: node.name = baseName else: node.name = '{} {:d}'.format(baseName, nodeIndex + 1) def hasAlphaTex(cmat): tex_is_transp = False for textureSlot in cmat.texture_slots: if textureSlot: if textureSlot.use: if textureSlot.use_map_alpha: tex_is_transp = tex_is_transp or True return tex_is_transp def AutoNode(active=False, operator=None): collect_report("________________________________________", True, False) collect_report("START CYCLES CONVERSION") if active: materials = [mat for obj in bpy.context.selected_objects if obj.type == 'MESH' for mat in obj.data.materials] else: materials = bpy.data.materials # No Materials for the chosen action - abort if not materials: if operator: if active: warning_messages(operator, 'CONV_NO_SEL_MAT', override=True) else: warning_messages(operator, 'CONV_NO_SC_MAT', override=True) return for cmat in materials: # check for empty material (it will fall through the first check) test_empty = getattr(cmat, "name", None) if test_empty is None: collect_report("INFO: An empty material was hit, skipping") continue else: cmat.use_nodes = True clearCycleMaterial(cmat) makeBiNodes(cmat) makeCyclesFromBI(cmat) collect_report("Conversion finished !", False, True) bpy.context.scene.render.engine = 'CYCLES' def makeCyclesFromBI(cmat): mat_name = getattr(cmat, "name", "NO NAME") collect_report("Converting Material: " + mat_name) global nodesDictionary TreeNodes = cmat.node_tree links = TreeNodes.links # Convert this material from non-nodes to Cycles nodes mainShader = None mainDiffuse = None Mix_Alpha = None tex_is_transp = hasAlphaTex(cmat) cmat_use_transp = cmat.use_transparency and cmat.alpha < 1 cmat_trans_method = cmat.transparency_method cmat_ior = cmat.raytrace_transparency.ior cmat_transp_z = cmat_use_transp and cmat_trans_method == 'Z_TRANSPARENCY' cmat_transp_ray = cmat_use_transp and cmat_trans_method == 'RAYTRACE' and cmat_ior == 1 cmat_mirror = cmat.raytrace_mirror.use cmat_mirror_fac = cmat.raytrace_mirror.reflect_factor # Material Shaders # Diffuse nodes # -------------------------------------- # Make Diffuse and Output nodes mainShader = makeMainShader(TreeNodes) mainShader.inputs['Roughness'].default_value = math.sqrt(max(cmat.specular_intensity, 0.0)) mainDiffuse = mainShader materialOutput = makeMaterialOutput(TreeNodes) links.new(mainShader.outputs['BSDF'], materialOutput.inputs['Surface']) texCoordNode = TreeNodes.nodes.new(COORD_NODE) texCoordNode.name = 'Texture Coordinate' # Material Transparent if not cmat_mirror and cmat_use_transp and tex_is_transp and (cmat_transp_z or cmat_transp_ray): collect_report("INFO: Make TRANSPARENT material nodes: " + cmat.name) Mix_Alpha = TreeNodes.nodes.new(SHADER_MIX_NODE) Mix_Alpha.name = 'Alpha Mix Shader' Mix_Alpha.location = materialOutput.location materialOutput.location += Vector((180, 0)) Mix_Alpha.inputs['Fac'].default_value = cmat.alpha transparentShader = TreeNodes.nodes.new(BSDF_TRANSPARENT_NODE) transparentShader.location = mainShader.location mainShader.location += Vector((0, -100)) links.new(transparentShader.outputs['BSDF'], Mix_Alpha.inputs[1]) links.new(mainShader.outputs['BSDF'], Mix_Alpha.inputs[2]) links.new(Mix_Alpha.outputs['Shader'], materialOutput.inputs['Surface']) mainDiffuse = Mix_Alpha if cmat_mirror and cmat_mirror_fac > 0.001: if cmat_use_transp: # Material Glass collect_report("INFO: Make GLASS shader node: " + cmat.name) newShader = TreeNodes.nodes.new(BSDF_GLASS_NODE) shader = newShader replaceNode(shader, newShader) TreeNodes.nodes.remove(shader) else: # Material Mirror collect_report("INFO: Make MIRROR shader node: " + cmat.name) newShader = TreeNodes.nodes.new(BSDF_GLOSSY_NODE) shader = newShader replaceNode(shader, newShader) TreeNodes.nodes.remove(shader) nodesDictionary = makeTextureNodeDict(cmat) # -------------------------------------- # Texture nodes # BI Material to Cycles - Diffuse Textures createDiffuseNodes(cmat, texCoordNode, mainShader, materialOutput) # BI Material to Cycles - Normal map createNormalNodes(cmat, texCoordNode, mainShader, materialOutput) # BI Material to Cycles - Specular map createSpecularNodes(cmat, texCoordNode, mainShader, mainDiffuse, materialOutput) # BI Material to Cycles - Emission map createEmissionNodes(cmat, texCoordNode, mainShader, materialOutput) # Texture coordinates # list all nodes conected to outputs mappingNodes = [link.to_node for output in texCoordNode.outputs for link in output.links] mappingNodesCount = len(mappingNodes) if mappingNodes: xList = [node.location.x for node in mappingNodes] yList = [node.location.y for node in mappingNodes] minPosX = min(xList) - 400 avgPosY = sum(yList) / mappingNodesCount texCoordNode.location = Vector((minPosX, avgPosY)) # ----------------------------------------------------------------------------- # Operator Classes class material_convert_all(Operator): bl_idname = "xps_tools.convert_to_cycles_all" bl_label = "Convert All Materials" bl_description = ("Convert All Materials to BI and Cycles Nodes\n" "Needs saving the .blend file first") bl_options = {'REGISTER', 'UNDO'} @classmethod def poll(cls, context): return (bpy.data.filepath != "" and c_is_cycles_addon_enabled() and c_data_has_materials()) def execute(self, context): AutoNode(False, self) return {'FINISHED'} class material_convert_selected(Operator): bl_idname = "xps_tools.convert_to_cycles_selected" bl_label = "Convert All Materials From Selected Objects" bl_description = ("Convert All Materials on Selected Objects to BI and Cycles Nodes\n" "Needs saving the .blend file first") bl_options = {'REGISTER', 'UNDO'} @classmethod def poll(cls, context): return (bpy.data.filepath != "" and c_data_has_materials() and c_is_cycles_addon_enabled() and bool(next((obj for obj in context.selected_objects if obj.type == 'MESH'), None)) ) def execute(self, context): AutoNode(True, self) return {'FINISHED'} def register(): bpy.utils.register_module(__name__) pass def unregister(): bpy.utils.unregister_module(__name__) pass if __name__ == "__main__": register() ``` #### File: modules/snap_context/__init__.py ```python __all__ = ( "SnapContext", ) import bgl from mathutils import Vector VERT = 1 EDGE = 2 FACE = 4 class _Internal: from .mesh_drawing import ( gpu_Indices_enable_state, gpu_Indices_restore_state, gpu_Indices_use_clip_planes, gpu_Indices_set_ProjectionMatrix, ) from .utils_projection import ( region_2d_to_orig_and_view_vector, intersect_boundbox_threshold, intersect_ray_segment_fac, project_co_v3, ) from mathutils.geometry import intersect_line_plane class _SnapObjectData(): __slots__ = ('data', 'mat') def __init__(self, data, omat): self.data = data self.mat = omat class SnapContext(): """ Initializes the snap context with the region and space where the snap objects will be added. .. note:: After the context has been created, add the objects with the `add_obj` method. :arg region: region of the 3D viewport, typically bpy.context.region. :type region: :class:`bpy.types.Region` :arg space: 3D region data, typically bpy.context.space_data. :type space: :class:`bpy.types.SpaceView3D` """ def __init__(self, region, space): import gpu import ctypes self.freed = False self.snap_objects = [] self.drawn_count = 0 self._offset_cur = 1 # Starts with index 1 self.region = region self.rv3d = space.region_3d if self.rv3d.is_perspective: self.depth_range = Vector((space.clip_start, space.clip_end)) else: self.depth_range = Vector((-space.clip_end, space.clip_end)) self.proj_mat = None self.mval = Vector((0, 0)) self._snap_mode = VERT | EDGE | FACE self.set_pixel_dist(12) self._offscreen = gpu.offscreen.new(self.region.width, self.region.height) self._texture = self._offscreen.color_texture bgl.glBindTexture(bgl.GL_TEXTURE_2D, self._texture) NULL = bgl.Buffer(bgl.GL_INT, 1, (ctypes.c_int32 * 1).from_address(0)) bgl.glTexImage2D(bgl.GL_TEXTURE_2D, 0, bgl.GL_R32UI, self.region.width, self.region.height, 0, bgl.GL_RED_INTEGER, bgl.GL_UNSIGNED_INT, NULL) del NULL bgl.glTexParameteri(bgl.GL_TEXTURE_2D, bgl.GL_TEXTURE_MIN_FILTER, bgl.GL_NEAREST) bgl.glTexParameteri(bgl.GL_TEXTURE_2D, bgl.GL_TEXTURE_MAG_FILTER, bgl.GL_NEAREST) bgl.glBindTexture(bgl.GL_TEXTURE_2D, 0) self.winsize = Vector((self._offscreen.width, self._offscreen.height)) ## PRIVATE ## def _get_snap_obj_by_index(self, index): for snap_obj in self.snap_objects[:self.drawn_count]: data = snap_obj.data[1] if index < data.first_index + data.get_tot_elems(): return snap_obj return None def _get_nearest_index(self): loc = [self._dist_px, self._dist_px] d = 1 m = self.threshold max = 2 * m - 1 offset = 1 last_snap_obj = None r_value = 0 while m < max: for i in range(2): while 2 * loc[i] * d < m: value = int(self._snap_buffer[loc[0]][loc[1]]) loc[i] += d if value >= offset: r_value = value snap_obj = self._get_snap_obj_by_index(r_value) if self._snap_mode & FACE and self._snap_mode & (VERT | EDGE) and last_snap_obj != snap_obj: data = snap_obj.data[1] offset = data.first_index + data.num_tris last_snap_obj = snap_obj continue return snap_obj, r_value d = -d m += 4 * self._dist_px * d + 1 return last_snap_obj, r_value def _get_loc(self, snap_obj, index): index -= snap_obj.data[1].first_index gpu_data = snap_obj.data[1] if gpu_data.draw_tris: if index < snap_obj.data[1].num_tris: tri_verts = gpu_data.get_tri_verts(index) tri_co = [snap_obj.mat * Vector(v) for v in gpu_data.get_tri_co(index)] nor = (tri_co[1] - tri_co[0]).cross(tri_co[2] - tri_co[0]) return _Internal.intersect_line_plane(self.last_ray[1], self.last_ray[1] + self.last_ray[0], tri_co[0], nor), tri_verts index -= gpu_data.num_tris if gpu_data.draw_edges: if index < snap_obj.data[1].num_edges: edge_verts = gpu_data.get_edge_verts(index) edge_co = [snap_obj.mat * Vector(v) for v in gpu_data.get_edge_co(index)] fac = _Internal.intersect_ray_segment_fac(*edge_co, *self.last_ray) if (self._snap_mode) & VERT and (fac < 0.25 or fac > 0.75): co = edge_co[0] if fac < 0.5 else edge_co[1] proj_co = _Internal.project_co_v3(self, co) dist = self.mval - proj_co if abs(dist.x) < self._dist_px and abs(dist.y) < self._dist_px: return co, (edge_verts[0] if fac < 0.5 else edge_verts[1],) if fac <= 0.0: co = edge_co[0] elif fac >= 1.0: co = edge_co[1] else: co = edge_co[0] + fac * (edge_co[1] - edge_co[0]) return co, edge_verts index -= gpu_data.num_edges if gpu_data.draw_verts: if index < snap_obj.data[1].num_verts: return snap_obj.mat * Vector(gpu_data.get_loosevert_co(index)), (gpu_data.get_loosevert_index(index),) return None, None def _get_snap_obj_by_obj(self, obj): for snap_obj in self.snap_objects: if obj == snap_obj.data[0]: return snap_obj def __del__(self): if not self.freed: self._offscreen.free() # Some objects may still be being referenced for snap_obj in self.snap_objects: del snap_obj.data del snap_obj.mat del snap_obj del self.snap_objects ## PUBLIC ## def update_all(self): self.drawn_count = 0 self._offset_cur = 1 bgl.glClearColor(0.0, 0.0, 0.0, 0.0) bgl.glClear(bgl.GL_COLOR_BUFFER_BIT | bgl.GL_DEPTH_BUFFER_BIT) def update_drawn_snap_object(self, snap_obj): if len(snap_obj.data) > 1: del snap_obj.data[1:] #self.update_all() # Update on next snap_get call # self.proj_mat = None def use_clip_planes(self, value): _Internal.gpu_Indices_use_clip_planes(self.rv3d, value) def set_pixel_dist(self, dist_px): self._dist_px = int(dist_px) self._dist_px_sq = self._dist_px ** 2 self.threshold = 2 * self._dist_px + 1 self._snap_buffer = bgl.Buffer(bgl.GL_FLOAT, (self.threshold, self.threshold)) def set_snap_mode(self, snap_to_vert, snap_to_edge, snap_to_face): snap_mode = 0 if snap_to_vert: snap_mode |= VERT if snap_to_edge: snap_mode |= EDGE if snap_to_face: snap_mode |= FACE if snap_mode != self._snap_mode: self._snap_mode = snap_mode self.update_all() def add_obj(self, obj, matrix): matrix = matrix.copy() snap_obj = self._get_snap_obj_by_obj(obj) if not snap_obj: self.snap_objects.append(_SnapObjectData([obj], matrix)) else: self.snap_objects.append(_SnapObjectData(snap_obj.data, matrix)) return self.snap_objects[-1] def get_ray(self, mval): self.last_ray = _Internal.region_2d_to_orig_and_view_vector(self.region, self.rv3d, mval) return self.last_ray def snap_get(self, mval): ret = None, None self.mval[:] = mval snap_vert = self._snap_mode & VERT != 0 snap_edge = self._snap_mode & EDGE != 0 snap_face = self._snap_mode & FACE != 0 _Internal.gpu_Indices_enable_state() self._offscreen.bind() #bgl.glDisable(bgl.GL_DITHER) # dithering and AA break color coding, so disable # #multisample_enabled = bgl.glIsEnabled(bgl.GL_MULTISAMPLE) #bgl.glDisable(bgl.GL_MULTISAMPLE) bgl.glEnable(bgl.GL_DEPTH_TEST) proj_mat = self.rv3d.perspective_matrix.copy() if self.proj_mat != proj_mat: self.proj_mat = proj_mat _Internal.gpu_Indices_set_ProjectionMatrix(self.proj_mat) self.update_all() ray_dir, ray_orig = self.get_ray(mval) for i, snap_obj in enumerate(self.snap_objects[self.drawn_count:], self.drawn_count): obj = snap_obj.data[0] bbmin = Vector(obj.bound_box[0]) bbmax = Vector(obj.bound_box[6]) if bbmin != bbmax: MVP = proj_mat * snap_obj.mat mat_inv = snap_obj.mat.inverted() ray_orig_local = mat_inv * ray_orig ray_dir_local = mat_inv.to_3x3() * ray_dir in_threshold = _Internal.intersect_boundbox_threshold(self, MVP, ray_orig_local, ray_dir_local, bbmin, bbmax) else: proj_co = _Internal.project_co_v3(self, snap_obj.mat.translation) dist = self.mval - proj_co in_threshold = abs(dist.x) < self._dist_px and abs(dist.y) < self._dist_px #snap_obj.data[1] = primitive_point if in_threshold: if len(snap_obj.data) == 1: from .mesh_drawing import GPU_Indices_Mesh snap_obj.data.append(GPU_Indices_Mesh(obj, snap_face, snap_edge, snap_vert)) snap_obj.data[1].set_draw_mode(snap_face, snap_edge, snap_vert) snap_obj.data[1].set_ModelViewMatrix(snap_obj.mat) snap_obj.data[1].Draw(self._offset_cur) self._offset_cur += snap_obj.data[1].get_tot_elems() self.snap_objects[self.drawn_count], self.snap_objects[i] = self.snap_objects[i], self.snap_objects[self.drawn_count] self.drawn_count += 1 bgl.glReadBuffer(bgl.GL_COLOR_ATTACHMENT0) bgl.glReadPixels( int(self.mval[0]) - self._dist_px, int(self.mval[1]) - self._dist_px, self.threshold, self.threshold, bgl.GL_RED_INTEGER, bgl.GL_UNSIGNED_INT, self._snap_buffer) bgl.glReadBuffer(bgl.GL_BACK) snap_obj, index = self._get_nearest_index() #print(index) if snap_obj: ret = self._get_loc(snap_obj, index) self._offscreen.unbind() _Internal.gpu_Indices_restore_state() return snap_obj, ret[0], ret[1] def free(self): self.__del__() self.freed = True ``` #### File: modules/snap_context/mesh_drawing.py ```python import bgl import bmesh import numpy as np from mathutils import Matrix from .utils_shader import Shader def load_shader(shadername): from os import path with open(path.join(path.dirname(__file__), 'resources', shadername), 'r') as f: return f.read() def gl_buffer_void_as_long(value): import ctypes a = (ctypes.c_byte * 1).from_address(value) return bgl.Buffer(bgl.GL_BYTE, 1, a) def get_mesh_vert_co_array(me): tot_vco = len(me.vertices) if tot_vco: verts_co = np.empty(len(me.vertices) * 3, 'f4') me.vertices.foreach_get("co", verts_co) verts_co.shape = (-1, 3) return verts_co return None def get_bmesh_vert_co_array(bm): tot_vco = len(bm.verts) if tot_vco: return np.array([v.co for v in bm.verts], 'f4') return None def get_mesh_tri_verts_array(me): me.calc_tessface() len_tessfaces = len(me.tessfaces) if len_tessfaces: tessfaces = np.empty(len_tessfaces * 4, 'i4') me.tessfaces.foreach_get("vertices_raw", tessfaces) tessfaces.shape = (-1, 4) quad_indices = tessfaces[:, 3].nonzero()[0] tris = np.empty(((len_tessfaces + len(quad_indices)), 3), 'i4') tris[:len_tessfaces] = tessfaces[:, :3] tris[len_tessfaces:] = tessfaces[quad_indices][:, (0, 2, 3)] del tessfaces return tris return None def get_bmesh_tri_verts_array(bm): ltris = bm.calc_tessface() tris = [[ltri[0].vert.index, ltri[1].vert.index, ltri[2].vert.index] for ltri in ltris if not ltri[0].face.hide] if tris: return np.array(tris, 'i4') return None def get_mesh_edge_verts_array(me): tot_edges = len(me.edges) if tot_edges: edge_verts = np.empty(tot_edges * 2, 'i4') me.edges.foreach_get("vertices", edge_verts) edge_verts.shape = tot_edges, 2 return edge_verts return None def get_bmesh_edge_verts_array(bm): bm.edges.ensure_lookup_table() edges = [[e.verts[0].index, e.verts[1].index] for e in bm.edges if not e.hide] if edges: return np.array(edges, 'i4') return None def get_mesh_loosevert_array(me, edges): verts = np.arange(len(me.vertices)) mask = np.in1d(verts, edges, invert=True) verts = verts[mask] if len(verts): return verts return None def get_bmesh_loosevert_array(bm): looseverts = [v.index for v in bm.verts if not (v.link_edges or v.hide)] if looseverts: return np.array(looseverts, 'i4') return None class _Mesh_Arrays(): def __init__(self, obj, create_tris, create_edges, create_looseverts): self.tri_verts = self.edge_verts = self.looseverts = None self.tris_co = self.edges_co = self.looseverts_co = None if obj.type == 'MESH': me = obj.data if me.is_editmode: bm = bmesh.from_edit_mesh(me) bm.verts.ensure_lookup_table() self.verts_co = get_bmesh_vert_co_array(bm) if create_tris: self.tri_verts = get_bmesh_tri_verts_array(bm) if create_edges: self.edge_verts = get_bmesh_edge_verts_array(bm) if create_looseverts: self.looseverts = get_bmesh_loosevert_array(bm) else: self.verts_co = get_mesh_vert_co_array(me) if create_tris: self.tri_verts = get_mesh_tri_verts_array(me) if create_edges: self.edge_verts = get_mesh_edge_verts_array(me) if create_looseverts: edge_verts = self.edge_verts if edge_verts is None: edge_verts = get_mesh_edge_verts_array(me) self.looseverts = get_mesh_loosevert_array(me, edge_verts) del edge_verts else: #TODO self.verts_co = np.zeros((1,3), 'f4') self.looseverts = np.zeros(1, 'i4') def __del__(self): del self.tri_verts, self.edge_verts, self.looseverts del self.verts_co class GPU_Indices_Mesh(): shader = None @classmethod def end_opengl(cls): del cls.shader del cls._NULL del cls.P del cls.MV del cls.MVP del cls.vert_index del cls.tri_co del cls.edge_co del cls.vert_co del cls @classmethod def init_opengl(cls): # OpenGL was already initialized, nothing to do here. if cls.shader is not None: return import atexit # Make sure we only registered the callback once. atexit.unregister(cls.end_opengl) atexit.register(cls.end_opengl) cls.shader = Shader( load_shader('3D_vert.glsl'), None, load_shader('primitive_id_frag.glsl'), ) cls.unif_use_clip_planes = bgl.glGetUniformLocation(cls.shader.program, 'use_clip_planes') cls.unif_clip_plane = bgl.glGetUniformLocation(cls.shader.program, 'clip_plane') cls._NULL = gl_buffer_void_as_long(0) cls.unif_MVP = bgl.glGetUniformLocation(cls.shader.program, 'MVP') cls.unif_MV = bgl.glGetUniformLocation(cls.shader.program, 'MV') cls.unif_offset = bgl.glGetUniformLocation(cls.shader.program, 'offset') cls.attr_pos = bgl.glGetAttribLocation(cls.shader.program, 'pos') cls.attr_primitive_id = bgl.glGetAttribLocation(cls.shader.program, 'primitive_id') cls.P = bgl.Buffer(bgl.GL_FLOAT, (4, 4)) cls.MV = bgl.Buffer(bgl.GL_FLOAT, (4, 4)) cls.MVP = bgl.Buffer(bgl.GL_FLOAT, (4, 4)) # returns of public API # cls.vert_index = bgl.Buffer(bgl.GL_INT, 1) cls.tri_co = bgl.Buffer(bgl.GL_FLOAT, (3, 3)) cls.edge_co = bgl.Buffer(bgl.GL_FLOAT, (2, 3)) cls.vert_co = bgl.Buffer(bgl.GL_FLOAT, 3) def __init__(self, obj, draw_tris, draw_edges, draw_verts): GPU_Indices_Mesh.init_opengl() self.obj = obj self.draw_tris = draw_tris self.draw_edges = draw_edges self.draw_verts = draw_verts self.vbo = None self.vbo_tris = None self.vbo_edges = None self.vbo_verts = None ## Create VAO ## self.vao = bgl.Buffer(bgl.GL_INT, 1) bgl.glGenVertexArrays(1, self.vao) bgl.glBindVertexArray(self.vao[0]) ## Init Array ## mesh_arrays = _Mesh_Arrays(obj, draw_tris, draw_edges, draw_verts) ## Create VBO for vertices ## if mesh_arrays.verts_co is None: self.draw_tris = False self.draw_edges = False self.draw_verts = False return if False: # Blender 2.8 self.vbo_len = len(mesh_arrays.verts_co) self.vbo = bgl.Buffer(bgl.GL_INT, 1) bgl.glGenBuffers(1, self.vbo) bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, self.vbo[0]) verts_co = bgl.Buffer(bgl.GL_FLOAT, mesh_arrays.verts_co.shape, mesh_arrays.verts_co) bgl.glBufferData(bgl.GL_ARRAY_BUFFER, self.vbo_len * 12, verts_co, bgl.GL_STATIC_DRAW) ## Create VBO for Tris ## if mesh_arrays.tri_verts is not None: self.tri_verts = mesh_arrays.tri_verts self.num_tris = len(self.tri_verts) np_tris_co = mesh_arrays.verts_co[mesh_arrays.tri_verts] np_tris_co = bgl.Buffer(bgl.GL_FLOAT, np_tris_co.shape, np_tris_co) self.vbo_tris = bgl.Buffer(bgl.GL_INT, 1) bgl.glGenBuffers(1, self.vbo_tris) bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, self.vbo_tris[0]) bgl.glBufferData(bgl.GL_ARRAY_BUFFER, self.num_tris * 36, np_tris_co, bgl.GL_STATIC_DRAW) del np_tris_co tri_indices = np.repeat(np.arange(self.num_tris, dtype = 'f4'), 3) tri_indices = bgl.Buffer(bgl.GL_FLOAT, tri_indices.shape, tri_indices) self.vbo_tri_indices = bgl.Buffer(bgl.GL_INT, 1) bgl.glGenBuffers(1, self.vbo_tri_indices) bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, self.vbo_tri_indices[0]) bgl.glBufferData(bgl.GL_ARRAY_BUFFER, self.num_tris * 12, tri_indices, bgl.GL_STATIC_DRAW) del tri_indices else: self.num_tris = 0 self.draw_tris = False ## Create VBO for Edges ## if mesh_arrays.edge_verts is not None: self.edge_verts = mesh_arrays.edge_verts self.num_edges = len(self.edge_verts) np_edges_co = mesh_arrays.verts_co[mesh_arrays.edge_verts] np_edges_co = bgl.Buffer(bgl.GL_FLOAT, np_edges_co.shape, np_edges_co) self.vbo_edges = bgl.Buffer(bgl.GL_INT, 1) bgl.glGenBuffers(1, self.vbo_edges) bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, self.vbo_edges[0]) bgl.glBufferData(bgl.GL_ARRAY_BUFFER, self.num_edges * 24, np_edges_co, bgl.GL_STATIC_DRAW) del np_edges_co edge_indices = np.repeat(np.arange(self.num_edges, dtype = 'f4'), 2) edge_indices = bgl.Buffer(bgl.GL_FLOAT, edge_indices.shape, edge_indices) self.vbo_edge_indices = bgl.Buffer(bgl.GL_INT, 1) bgl.glGenBuffers(1, self.vbo_edge_indices) bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, self.vbo_edge_indices[0]) bgl.glBufferData(bgl.GL_ARRAY_BUFFER, self.num_edges * 8, edge_indices, bgl.GL_STATIC_DRAW) del edge_indices else: self.num_edges = 0 self.draw_edges = False ## Create EBO for Loose Verts ## if mesh_arrays.looseverts is not None: self.looseverts = mesh_arrays.looseverts self.num_verts = len(mesh_arrays.looseverts) np_lverts_co = mesh_arrays.verts_co[mesh_arrays.looseverts] np_lverts_co = bgl.Buffer(bgl.GL_FLOAT, np_lverts_co.shape, np_lverts_co) self.vbo_verts = bgl.Buffer(bgl.GL_INT, 1) bgl.glGenBuffers(1, self.vbo_verts) bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, self.vbo_verts[0]) bgl.glBufferData(bgl.GL_ARRAY_BUFFER, self.num_verts * 12, np_lverts_co, bgl.GL_STATIC_DRAW) del np_lverts_co looseverts_indices = np.arange(self.num_verts, dtype = 'f4') looseverts_indices = bgl.Buffer(bgl.GL_FLOAT, looseverts_indices.shape, looseverts_indices) self.vbo_looseverts_indices = bgl.Buffer(bgl.GL_INT, 1) bgl.glGenBuffers(1, self.vbo_looseverts_indices) bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, self.vbo_looseverts_indices[0]) bgl.glBufferData(bgl.GL_ARRAY_BUFFER, self.num_verts * 4, looseverts_indices, bgl.GL_STATIC_DRAW) del looseverts_indices else: self.num_verts = 0 self.draw_verts = False del mesh_arrays bgl.glBindVertexArray(0) def get_tot_elems(self): tot = 0 if self.draw_tris: tot += self.num_tris if self.draw_edges: tot += self.num_edges if self.draw_verts: tot += self.num_verts return tot def set_draw_mode(self, draw_tris, draw_edges, draw_verts): self.draw_tris = draw_tris and self.vbo_tris self.draw_edges = draw_edges and self.vbo_edges self.draw_verts = draw_verts and self.vbo_verts def set_ModelViewMatrix(self, MV): self.MV[:] = MV[:] self.MVP[:] = Matrix(self.P) * MV def Draw(self, index_offset): self.first_index = index_offset bgl.glUseProgram(self.shader.program) bgl.glBindVertexArray(self.vao[0]) bgl.glUniformMatrix4fv(self.unif_MV, 1, bgl.GL_TRUE, self.MV) bgl.glUniformMatrix4fv(self.unif_MVP, 1, bgl.GL_TRUE, self.MVP) if self.draw_tris: bgl.glUniform1f(self.unif_offset, float(index_offset)) # bgl has no glUniform1ui :\ bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, self.vbo_tris[0]) bgl.glEnableVertexAttribArray(self.attr_pos) bgl.glVertexAttribPointer(self.attr_pos, 3, bgl.GL_FLOAT, bgl.GL_FALSE, 0, self._NULL) bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, self.vbo_tri_indices[0]) bgl.glEnableVertexAttribArray(self.attr_primitive_id) bgl.glVertexAttribPointer(self.attr_primitive_id, 1, bgl.GL_FLOAT, bgl.GL_FALSE, 0, self._NULL) bgl.glDrawArrays(bgl.GL_TRIANGLES, 0, self.num_tris * 3) index_offset += self.num_tris bgl.glDepthRange(-0.00005, 0.99995) if self.draw_edges: bgl.glUniform1f(self.unif_offset, float(index_offset)) #TODO: use glUniform1ui bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, self.vbo_edges[0]) bgl.glVertexAttribPointer(self.attr_pos, 3, bgl.GL_FLOAT, bgl.GL_FALSE, 0, self._NULL) bgl.glEnableVertexAttribArray(self.attr_pos) bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, self.vbo_edge_indices[0]) bgl.glVertexAttribPointer(self.attr_primitive_id, 1, bgl.GL_FLOAT, bgl.GL_FALSE, 0, self._NULL) bgl.glEnableVertexAttribArray(self.attr_primitive_id) bgl.glDrawArrays(bgl.GL_LINES, 0, self.num_edges * 2) index_offset += self.num_edges if self.draw_verts: bgl.glUniform1f(self.unif_offset, float(index_offset)) #TODO: use glUniform1ui bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, self.vbo_verts[0]) bgl.glVertexAttribPointer(self.attr_pos, 3, bgl.GL_FLOAT, bgl.GL_FALSE, 0, self._NULL) bgl.glEnableVertexAttribArray(self.attr_pos) bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, self.vbo_looseverts_indices[0]) bgl.glVertexAttribPointer(self.attr_primitive_id, 1, bgl.GL_FLOAT, bgl.GL_FALSE, 0, self._NULL) bgl.glEnableVertexAttribArray(self.attr_primitive_id) bgl.glDrawArrays(bgl.GL_POINTS, 0, self.num_verts) bgl.glDepthRange(0.0, 1.0) def get_tri_co(self, index): bgl.glBindVertexArray(self.vao[0]) bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, self.vbo_tris[0]) bgl.glGetBufferSubData(bgl.GL_ARRAY_BUFFER, index * 36, 36, self.tri_co) bgl.glBindVertexArray(0) return self.tri_co def get_edge_co(self, index): bgl.glBindVertexArray(self.vao[0]) bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, self.vbo_edges[0]) bgl.glGetBufferSubData(bgl.GL_ARRAY_BUFFER, index * 24, 24, self.edge_co) bgl.glBindVertexArray(0) return self.edge_co def get_loosevert_co(self, index): bgl.glBindVertexArray(self.vao[0]) bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, self.vbo_verts[0]) bgl.glGetBufferSubData(bgl.GL_ARRAY_BUFFER, index * 12, 12, self.vert_co) bgl.glBindVertexArray(0) return self.vert_co def get_tri_verts(self, index): return self.tri_verts[index] def get_edge_verts(self, index): return self.edge_verts[index] def get_loosevert_index(self, index): return self.looseverts[index] def __del__(self): if self.vbo_tris: bgl.glDeleteBuffers(1, self.vbo_tris) bgl.glDeleteBuffers(1, self.vbo_tri_indices) del self.tri_verts if self.vbo_edges: bgl.glDeleteBuffers(1, self.vbo_edges) bgl.glDeleteBuffers(1, self.vbo_edge_indices) del self.edge_verts if self.vbo_verts: bgl.glDeleteBuffers(1, self.vbo_verts) bgl.glDeleteBuffers(1, self.vbo_looseverts_indices) del self.looseverts bgl.glDeleteVertexArrays(1, self.vao) #print('mesh_del', self.obj.name) class PreviousGLState: buf = bgl.Buffer(bgl.GL_INT, (4, 1)) cur_program = buf[0] cur_vao = buf[1] cur_vbo = buf[2] cur_ebo = buf[3] def _store_current_shader_state(cls): bgl.glGetIntegerv(bgl.GL_CURRENT_PROGRAM, cls.cur_program) bgl.glGetIntegerv(bgl.GL_VERTEX_ARRAY_BINDING, cls.cur_vao) bgl.glGetIntegerv(bgl.GL_ARRAY_BUFFER_BINDING, cls.cur_vbo) bgl.glGetIntegerv(bgl.GL_ELEMENT_ARRAY_BUFFER_BINDING, cls.cur_ebo) def _restore_shader_state(cls): bgl.glUseProgram(cls.cur_program[0]) bgl.glBindVertexArray(cls.cur_vao[0]) bgl.glBindBuffer(bgl.GL_ARRAY_BUFFER, cls.cur_vbo[0]) bgl.glBindBuffer(bgl.GL_ELEMENT_ARRAY_BUFFER, cls.cur_ebo[0]) def gpu_Indices_enable_state(): _store_current_shader_state(PreviousGLState) GPU_Indices_Mesh.init_opengl() bgl.glUseProgram(GPU_Indices_Mesh.shader.program) #bgl.glBindVertexArray(GPU_Indices_Mesh.vao[0]) def gpu_Indices_restore_state(): bgl.glBindVertexArray(0) _restore_shader_state(PreviousGLState) def gpu_Indices_use_clip_planes(rv3d, value): if rv3d.use_clip_planes: planes = bgl.Buffer(bgl.GL_FLOAT, (6, 4), rv3d.clip_planes) _store_current_shader_state(PreviousGLState) GPU_Indices_Mesh.init_opengl() bgl.glUseProgram(GPU_Indices_Mesh.shader.program) bgl.glUniform1i(GPU_Indices_Mesh.unif_use_clip_planes, value) bgl.glUniform4fv(GPU_Indices_Mesh.unif_clip_plane, 4, planes) _restore_shader_state(PreviousGLState) def gpu_Indices_set_ProjectionMatrix(P): GPU_Indices_Mesh.P[:] = P ``` #### File: blender-addons-master/object_print3d_utils/operators.py ```python import array import bpy from bpy.types import Operator from bpy.props import ( IntProperty, FloatProperty, ) import bmesh from . import ( mesh_helpers, report, ) def clean_float(text): # strip trailing zeros: 0.000 -> 0.0 index = text.rfind(".") if index != -1: index += 2 head, tail = text[:index], text[index:] tail = tail.rstrip("0") text = head + tail return text # --------- # Mesh Info class MESH_OT_Print3D_Info_Volume(Operator): """Report the volume of the active mesh""" bl_idname = "mesh.print3d_info_volume" bl_label = "Print3D Info Volume" def execute(self, context): scene = context.scene unit = scene.unit_settings scale = 1.0 if unit.system == 'NONE' else unit.scale_length obj = context.active_object bm = mesh_helpers.bmesh_copy_from_object(obj, apply_modifiers=True) volume = bm.calc_volume() bm.free() info = [] if unit.system == 'METRIC': info.append(("Volume: %s cm³" % clean_float("%.4f" % ((volume * (scale ** 3.0)) / (0.01 ** 3.0))), None)) elif unit.system == 'IMPERIAL': info.append(("Volume: %s \"³" % clean_float("%.4f" % ((volume * (scale ** 3.0)) / (0.0254 ** 3.0))), None)) else: info.append(("Volume: %s³" % clean_float("%.8f" % volume), None)) report.update(*info) return {'FINISHED'} class MESH_OT_Print3D_Info_Area(Operator): """Report the surface area of the active mesh""" bl_idname = "mesh.print3d_info_area" bl_label = "Print3D Info Area" def execute(self, context): scene = context.scene unit = scene.unit_settings scale = 1.0 if unit.system == 'NONE' else unit.scale_length obj = context.active_object bm = mesh_helpers.bmesh_copy_from_object(obj, apply_modifiers=True) area = mesh_helpers.bmesh_calc_area(bm) bm.free() info = [] if unit.system == 'METRIC': info.append(("Area: %s cm²" % clean_float("%.4f" % ((area * (scale ** 2.0)) / (0.01 ** 2.0))), None)) elif unit.system == 'IMPERIAL': info.append(("Area: %s \"²" % clean_float("%.4f" % ((area * (scale ** 2.0)) / (0.0254 ** 2.0))), None)) else: info.append(("Area: %s²" % clean_float("%.8f" % area), None)) report.update(*info) return {'FINISHED'} # --------------- # Geometry Checks def execute_check(self, context): obj = context.active_object info = [] self.main_check(obj, info) report.update(*info) multiple_obj_warning(self, context) return {'FINISHED'} def multiple_obj_warning(self, context): if len(context.selected_objects) > 1: self.report({"INFO"}, "Multiple selected objects. Only the active one will be evaluated") class MESH_OT_Print3D_Check_Solid(Operator): """Check for geometry is solid (has valid inside/outside) and correct normals""" bl_idname = "mesh.print3d_check_solid" bl_label = "Print3D Check Solid" @staticmethod def main_check(obj, info): bm = mesh_helpers.bmesh_copy_from_object(obj, transform=False, triangulate=False) edges_non_manifold = array.array('i', (i for i, ele in enumerate(bm.edges) if not ele.is_manifold)) edges_non_contig = array.array('i', (i for i, ele in enumerate(bm.edges) if ele.is_manifold and (not ele.is_contiguous))) info.append(("Non Manifold Edge: %d" % len(edges_non_manifold), (bmesh.types.BMEdge, edges_non_manifold))) info.append(("Bad Contig. Edges: %d" % len(edges_non_contig), (bmesh.types.BMEdge, edges_non_contig))) bm.free() def execute(self, context): return execute_check(self, context) class MESH_OT_Print3D_Check_Intersections(Operator): """Check geometry for self intersections""" bl_idname = "mesh.print3d_check_intersect" bl_label = "Print3D Check Intersections" @staticmethod def main_check(obj, info): faces_intersect = mesh_helpers.bmesh_check_self_intersect_object(obj) info.append(("Intersect Face: %d" % len(faces_intersect), (bmesh.types.BMFace, faces_intersect))) def execute(self, context): return execute_check(self, context) class MESH_OT_Print3D_Check_Degenerate(Operator): """Check for degenerate geometry that may not print properly """ \ """(zero area faces, zero length edges)""" bl_idname = "mesh.print3d_check_degenerate" bl_label = "Print3D Check Degenerate" @staticmethod def main_check(obj, info): scene = bpy.context.scene print_3d = scene.print_3d threshold = print_3d.threshold_zero bm = mesh_helpers.bmesh_copy_from_object(obj, transform=False, triangulate=False) faces_zero = array.array('i', (i for i, ele in enumerate(bm.faces) if ele.calc_area() <= threshold)) edges_zero = array.array('i', (i for i, ele in enumerate(bm.edges) if ele.calc_length() <= threshold)) info.append(("Zero Faces: %d" % len(faces_zero), (bmesh.types.BMFace, faces_zero))) info.append(("Zero Edges: %d" % len(edges_zero), (bmesh.types.BMEdge, edges_zero))) bm.free() def execute(self, context): return execute_check(self, context) class MESH_OT_Print3D_Check_Distorted(Operator): """Check for non-flat faces """ bl_idname = "mesh.print3d_check_distort" bl_label = "Print3D Check Distorted Faces" @staticmethod def main_check(obj, info): scene = bpy.context.scene print_3d = scene.print_3d angle_distort = print_3d.angle_distort bm = mesh_helpers.bmesh_copy_from_object(obj, transform=True, triangulate=False) bm.normal_update() faces_distort = array.array( 'i', (i for i, ele in enumerate(bm.faces) if mesh_helpers.face_is_distorted(ele, angle_distort)) ) info.append(("Non-Flat Faces: %d" % len(faces_distort), (bmesh.types.BMFace, faces_distort))) bm.free() def execute(self, context): return execute_check(self, context) class MESH_OT_Print3D_Check_Thick(Operator): """Check geometry is above the minimum thickness preference """ \ """(relies on correct normals)""" bl_idname = "mesh.print3d_check_thick" bl_label = "Print3D Check Thickness" @staticmethod def main_check(obj, info): scene = bpy.context.scene print_3d = scene.print_3d faces_error = mesh_helpers.bmesh_check_thick_object(obj, print_3d.thickness_min) info.append(("Thin Faces: %d" % len(faces_error), (bmesh.types.BMFace, faces_error))) def execute(self, context): return execute_check(self, context) class MESH_OT_Print3D_Check_Sharp(Operator): """Check edges are below the sharpness preference""" bl_idname = "mesh.print3d_check_sharp" bl_label = "Print3D Check Sharp" @staticmethod def main_check(obj, info): scene = bpy.context.scene print_3d = scene.print_3d angle_sharp = print_3d.angle_sharp bm = mesh_helpers.bmesh_copy_from_object(obj, transform=True, triangulate=False) bm.normal_update() edges_sharp = [ele.index for ele in bm.edges if ele.is_manifold and ele.calc_face_angle_signed() > angle_sharp] info.append(("Sharp Edge: %d" % len(edges_sharp), (bmesh.types.BMEdge, edges_sharp))) bm.free() def execute(self, context): return execute_check(self, context) class MESH_OT_Print3D_Check_Overhang(Operator): """Check faces don't overhang past a certain angle""" bl_idname = "mesh.print3d_check_overhang" bl_label = "Print3D Check Overhang" @staticmethod def main_check(obj, info): import math from mathutils import Vector scene = bpy.context.scene print_3d = scene.print_3d angle_overhang = (math.pi / 2.0) - print_3d.angle_overhang if angle_overhang == math.pi: info.append(("Skipping Overhang", ())) return bm = mesh_helpers.bmesh_copy_from_object(obj, transform=True, triangulate=False) bm.normal_update() z_down = Vector((0, 0, -1.0)) z_down_angle = z_down.angle # 4.0 ignores zero area faces faces_overhang = [ele.index for ele in bm.faces if z_down_angle(ele.normal, 4.0) < angle_overhang] info.append(("Overhang Face: %d" % len(faces_overhang), (bmesh.types.BMFace, faces_overhang))) bm.free() def execute(self, context): return execute_check(self, context) class MESH_OT_Print3D_Check_All(Operator): """Run all checks""" bl_idname = "mesh.print3d_check_all" bl_label = "Print3D Check All" check_cls = ( MESH_OT_Print3D_Check_Solid, MESH_OT_Print3D_Check_Intersections, MESH_OT_Print3D_Check_Degenerate, MESH_OT_Print3D_Check_Distorted, MESH_OT_Print3D_Check_Thick, MESH_OT_Print3D_Check_Sharp, MESH_OT_Print3D_Check_Overhang, ) def execute(self, context): obj = context.active_object info = [] for cls in self.check_cls: cls.main_check(obj, info) report.update(*info) multiple_obj_warning(self, context) return {'FINISHED'} class MESH_OT_Print3D_Clean_Isolated(Operator): """Cleanup isolated vertices and edges""" bl_idname = "mesh.print3d_clean_isolated" bl_label = "Print3D Clean Isolated " bl_options = {'REGISTER', 'UNDO'} def execute(self, context): obj = context.active_object bm = mesh_helpers.bmesh_from_object(obj) info = [] change = False def face_is_isolated(ele): for loop in ele.loops: loop_next = loop.link_loop_radial_next if loop is not loop_next: return False return True def edge_is_isolated(ele): return ele.is_wire def vert_is_isolated(ele): return (not bool(ele.link_edges)) # --- face elems_remove = [ele for ele in bm.faces if face_is_isolated(ele)] remove = bm.faces.remove for ele in elems_remove: remove(ele) change |= bool(elems_remove) info.append(("Faces Removed: %d" % len(elems_remove), None)) del elems_remove # --- edge elems_remove = [ele for ele in bm.edges if edge_is_isolated(ele)] remove = bm.edges.remove for ele in elems_remove: remove(ele) change |= bool(elems_remove) info.append(("Edge Removed: %d" % len(elems_remove), None)) del elems_remove # --- vert elems_remove = [ele for ele in bm.verts if vert_is_isolated(ele)] remove = bm.verts.remove for ele in elems_remove: remove(ele) change |= bool(elems_remove) info.append(("Verts Removed: %d" % len(elems_remove), None)) del elems_remove # --- report.update(*info) if change: mesh_helpers.bmesh_to_object(obj, bm) return {'FINISHED'} else: return {'CANCELLED'} class MESH_OT_Print3D_Clean_Distorted(Operator): """Tessellate distorted faces""" bl_idname = "mesh.print3d_clean_distorted" bl_label = "Print3D Clean Distorted" bl_options = {'REGISTER', 'UNDO'} def execute(self, context): scene = bpy.context.scene print_3d = scene.print_3d angle_distort = print_3d.angle_distort obj = context.active_object bm = mesh_helpers.bmesh_from_object(obj) bm.normal_update() elems_triangulate = [ele for ele in bm.faces if mesh_helpers.face_is_distorted(ele, angle_distort)] if elems_triangulate: bmesh.ops.triangulate(bm, faces=elems_triangulate) mesh_helpers.bmesh_to_object(obj, bm) return {'FINISHED'} else: return {'CANCELLED'} class MESH_OT_Print3D_Clean_Non_Manifold(Operator): """Cleanup problems, like holes, non-manifold vertices, and inverted normals""" bl_idname = "mesh.print3d_clean_non_manifold" bl_label = "Print3D Clean Non-Manifold and Inverted" bl_options = {'REGISTER', 'UNDO'} threshold = bpy.props.FloatProperty( name="threshold", description="Minimum distance between elements to merge", default=0.0001, ) sides = bpy.props.IntProperty( name="sides", description="Number of sides in hole required to fill", default=4, ) def execute(self, context): self.context = context mode_orig = context.mode self.setup_environment() bm_key_orig = self.elem_count(context) self.delete_loose() self.remove_doubles(self.threshold) self.dissolve_degenerate(self.threshold) # may take a while self.fix_non_manifold(context, self.sides) self.make_normals_consistently_outwards() bm_key = self.elem_count(context) if mode_orig != 'EDIT_MESH': bpy.ops.object.mode_set(mode='OBJECT') self.report( {'INFO'}, "Modified Verts:%+d, Edges:%+d, Faces:%+d" % (bm_key[0] - bm_key_orig[0], bm_key[1] - bm_key_orig[1], bm_key[2] - bm_key_orig[2], )) return {'FINISHED'} @staticmethod def elem_count(context): bm = bmesh.from_edit_mesh(context.edit_object.data) return len(bm.verts), len(bm.edges), len(bm.faces) @staticmethod def setup_environment(): """set the mode as edit, select mode as vertices, and reveal hidden vertices""" bpy.ops.object.mode_set(mode='EDIT') bpy.ops.mesh.select_mode(type='VERT') bpy.ops.mesh.reveal() @staticmethod def remove_doubles(threshold): """remove duplicate vertices""" bpy.ops.mesh.select_all(action='SELECT') bpy.ops.mesh.remove_doubles(threshold=threshold) @staticmethod def delete_loose(): """delete loose vertices/edges/faces""" bpy.ops.mesh.select_all(action='SELECT') bpy.ops.mesh.delete_loose() @staticmethod def dissolve_degenerate(threshold): """dissolve zero area faces and zero length edges""" bpy.ops.mesh.select_all(action='SELECT') bpy.ops.mesh.dissolve_degenerate(threshold=threshold) @staticmethod def make_normals_consistently_outwards(): """have all normals face outwards""" bpy.ops.mesh.select_all(action='SELECT') bpy.ops.mesh.normals_make_consistent() @classmethod def fix_non_manifold(cls, context, sides): """naive iterate-until-no-more approach for fixing manifolds""" total_non_manifold = cls.count_non_manifold_verts(context) if not total_non_manifold: return bm_states = set() bm_key = cls.elem_count(context) bm_states.add(bm_key) while True: cls.fill_non_manifold(sides) cls.delete_newly_generated_non_manifold_verts() bm_key = cls.elem_count(context) if bm_key in bm_states: break else: bm_states.add(bm_key) @staticmethod def select_non_manifold_verts( use_wire=False, use_boundary=False, use_multi_face=False, use_non_contiguous=False, use_verts=False, ): """select non-manifold vertices""" bpy.ops.mesh.select_non_manifold( extend=False, use_wire=use_wire, use_boundary=use_boundary, use_multi_face=use_multi_face, use_non_contiguous=use_non_contiguous, use_verts=use_verts, ) @classmethod def count_non_manifold_verts(cls, context): """return a set of coordinates of non-manifold vertices""" cls.select_non_manifold_verts( use_wire=True, use_boundary=True, use_verts=True, ) bm = bmesh.from_edit_mesh(context.edit_object.data) return sum((1 for v in bm.verts if v.select)) @classmethod def fill_non_manifold(cls, sides): """fill holes and then fill in any remnant non-manifolds""" bpy.ops.mesh.select_all(action='SELECT') bpy.ops.mesh.fill_holes(sides=sides) # fill selected edge faces, which could be additional holes cls.select_non_manifold_verts(use_boundary=True) bpy.ops.mesh.fill() @classmethod def delete_newly_generated_non_manifold_verts(cls): """delete any newly generated vertices from the filling repair""" cls.select_non_manifold_verts(use_wire=True, use_verts=True) bpy.ops.mesh.delete(type='VERT') class MESH_OT_Print3D_Clean_Thin(Operator): """Ensure minimum thickness""" bl_idname = "mesh.print3d_clean_thin" bl_label = "Print3D Clean Thin" bl_options = {'REGISTER', 'UNDO'} def execute(self, context): # TODO return {'FINISHED'} # ------------- # Select Report # ... helper function for info UI class MESH_OT_Print3D_Select_Report(Operator): """Select the data associated with this report""" bl_idname = "mesh.print3d_select_report" bl_label = "Print3D Select Report" bl_options = {'INTERNAL'} index = IntProperty() _type_to_mode = { bmesh.types.BMVert: 'VERT', bmesh.types.BMEdge: 'EDGE', bmesh.types.BMFace: 'FACE', } _type_to_attr = { bmesh.types.BMVert: "verts", bmesh.types.BMEdge: "edges", bmesh.types.BMFace: "faces", } def execute(self, context): obj = context.edit_object info = report.info() text, data = info[self.index] bm_type, bm_array = data bpy.ops.mesh.reveal() bpy.ops.mesh.select_all(action='DESELECT') bpy.ops.mesh.select_mode(type=self._type_to_mode[bm_type]) bm = bmesh.from_edit_mesh(obj.data) elems = getattr(bm, MESH_OT_Print3D_Select_Report._type_to_attr[bm_type])[:] try: for i in bm_array: elems[i].select_set(True) except: # possible arrays are out of sync self.report({'WARNING'}, "Report is out of date, re-run check") # cool, but in fact annoying # bpy.ops.view3d.view_selected(use_all_regions=False) return {'FINISHED'} # ----------- # Scale to... def _scale(scale, report=None, report_suffix=""): if scale != 1.0: bpy.ops.transform.resize(value=(scale,) * 3, mirror=False, proportional='DISABLED', snap=False, texture_space=False) if report is not None: report({'INFO'}, "Scaled by %s%s" % (clean_float("%.6f" % scale), report_suffix)) class MESH_OT_Print3D_Scale_To_Volume(Operator): """Scale edit-mesh or selected-objects to a set volume""" bl_idname = "mesh.print3d_scale_to_volume" bl_label = "Scale to Volume" bl_options = {'REGISTER', 'UNDO'} volume_init = FloatProperty( options={'HIDDEN'}, ) volume = FloatProperty( name="Volume", unit='VOLUME', min=0.0, max=100000.0, ) def execute(self, context): import math scale = math.pow(self.volume, 1 / 3) / math.pow(self.volume_init, 1 / 3) self.report({'INFO'}, "Scaled by %s" % clean_float("%.6f" % scale)) _scale(scale, self.report) return {'FINISHED'} def invoke(self, context, event): def calc_volume(obj): bm = mesh_helpers.bmesh_copy_from_object(obj, apply_modifiers=True) volume = bm.calc_volume(signed=True) bm.free() return volume if context.mode == 'EDIT_MESH': volume = calc_volume(context.edit_object) else: volume = sum(calc_volume(obj) for obj in context.selected_editable_objects if obj.type == 'MESH') if volume == 0.0: self.report({'WARNING'}, "Object has zero volume") return {'CANCELLED'} self.volume_init = self.volume = abs(volume) wm = context.window_manager return wm.invoke_props_dialog(self) class MESH_OT_Print3D_Scale_To_Bounds(Operator): """Scale edit-mesh or selected-objects to fit within a maximum length""" bl_idname = "mesh.print3d_scale_to_bounds" bl_label = "Scale to Bounds" bl_options = {'REGISTER', 'UNDO'} length_init = FloatProperty( options={'HIDDEN'}, ) axis_init = IntProperty( options={'HIDDEN'}, ) length = FloatProperty( name="Length Limit", unit='LENGTH', min=0.0, max=100000.0, ) def execute(self, context): scale = self.length / self.length_init _scale(scale, report=self.report, report_suffix=", Clamping %s-Axis" % "XYZ"[self.axis_init]) return {'FINISHED'} def invoke(self, context, event): from mathutils import Vector def calc_length(vecs): return max(((max(v[i] for v in vecs) - min(v[i] for v in vecs)), i) for i in range(3)) if context.mode == 'EDIT_MESH': length, axis = calc_length([Vector(v) * obj.matrix_world for obj in [context.edit_object] for v in obj.bound_box]) else: length, axis = calc_length([Vector(v) * obj.matrix_world for obj in context.selected_editable_objects if obj.type == 'MESH' for v in obj.bound_box]) if length == 0.0: self.report({'WARNING'}, "Object has zero bounds") return {'CANCELLED'} self.length_init = self.length = length self.axis_init = axis wm = context.window_manager return wm.invoke_props_dialog(self) # ------ # Export class MESH_OT_Print3D_Export(Operator): """Export active object using print3d settings""" bl_idname = "mesh.print3d_export" bl_label = "Print3D Export" def execute(self, context): from . import export info = [] ret = export.write_mesh(context, info, self.report) report.update(*info) if ret: return {'FINISHED'} else: return {'CANCELLED'} ``` #### File: uv_magic_uv/op/transfer_uv.py ```python __author__ = "Nutti <<EMAIL>>, Mifth, MaxRobinot" __status__ = "production" __version__ = "5.1" __date__ = "24 Feb 2018" from collections import OrderedDict import bpy import bmesh from bpy.props import BoolProperty from .. import common class MUV_TransUVCopy(bpy.types.Operator): """ Operation class: Transfer UV copy Topological based copy """ bl_idname = "uv.muv_transuv_copy" bl_label = "Transfer UV Copy" bl_description = "Transfer UV Copy (Topological based copy)" bl_options = {'REGISTER', 'UNDO'} def execute(self, context): props = context.scene.muv_props.transuv active_obj = context.scene.objects.active bm = bmesh.from_edit_mesh(active_obj.data) if common.check_version(2, 73, 0) >= 0: bm.faces.ensure_lookup_table() # get UV layer if not bm.loops.layers.uv: self.report({'WARNING'}, "Object must have more than one UV map") return {'CANCELLED'} uv_layer = bm.loops.layers.uv.verify() props.topology_copied.clear() # get selected faces active_face = bm.faces.active sel_faces = [face for face in bm.faces if face.select] if len(sel_faces) != 2: self.report({'WARNING'}, "Two faces must be selected") return {'CANCELLED'} if not active_face or active_face not in sel_faces: self.report({'WARNING'}, "Two faces must be active") return {'CANCELLED'} # parse all faces according to selection active_face_nor = active_face.normal.copy() all_sorted_faces = main_parse( self, uv_layer, sel_faces, active_face, active_face_nor) if all_sorted_faces: for face_data in all_sorted_faces.values(): edges = face_data[1] uv_loops = face_data[2] uvs = [l.uv.copy() for l in uv_loops] pin_uvs = [l.pin_uv for l in uv_loops] seams = [e.seam for e in edges] props.topology_copied.append([uvs, pin_uvs, seams]) bmesh.update_edit_mesh(active_obj.data) return {'FINISHED'} class MUV_TransUVPaste(bpy.types.Operator): """ Operation class: Transfer UV paste Topological based paste """ bl_idname = "uv.muv_transuv_paste" bl_label = "Transfer UV Paste" bl_description = "Transfer UV Paste (Topological based paste)" bl_options = {'REGISTER', 'UNDO'} invert_normals = BoolProperty( name="Invert Normals", description="Invert Normals", default=False ) copy_seams = BoolProperty( name="Copy Seams", description="Copy Seams", default=True ) def execute(self, context): props = context.scene.muv_props.transuv active_obj = context.scene.objects.active bm = bmesh.from_edit_mesh(active_obj.data) if common.check_version(2, 73, 0) >= 0: bm.faces.ensure_lookup_table() # get UV layer if not bm.loops.layers.uv: self.report({'WARNING'}, "Object must have more than one UV map") return {'CANCELLED'} uv_layer = bm.loops.layers.uv.verify() # get selection history all_sel_faces = [ e for e in bm.select_history if isinstance(e, bmesh.types.BMFace) and e.select] if len(all_sel_faces) % 2 != 0: self.report({'WARNING'}, "Two faces must be selected") return {'CANCELLED'} # parse selection history for i, _ in enumerate(all_sel_faces): if (i == 0) or (i % 2 == 0): continue sel_faces = [all_sel_faces[i - 1], all_sel_faces[i]] active_face = all_sel_faces[i] # parse all faces according to selection history active_face_nor = active_face.normal.copy() if self.invert_normals: active_face_nor.negate() all_sorted_faces = main_parse( self, uv_layer, sel_faces, active_face, active_face_nor) if all_sorted_faces: # check amount of copied/pasted faces if len(all_sorted_faces) != len(props.topology_copied): self.report( {'WARNING'}, "Mesh has different amount of faces" ) return {'FINISHED'} for j, face_data in enumerate(all_sorted_faces.values()): copied_data = props.topology_copied[j] # check amount of copied/pasted verts if len(copied_data[0]) != len(face_data[2]): bpy.ops.mesh.select_all(action='DESELECT') # select problematic face list(all_sorted_faces.keys())[j].select = True self.report( {'WARNING'}, "Face have different amount of vertices" ) return {'FINISHED'} for k, (edge, uvloop) in enumerate(zip(face_data[1], face_data[2])): uvloop.uv = copied_data[0][k] uvloop.pin_uv = copied_data[1][k] if self.copy_seams: edge.seam = copied_data[2][k] bmesh.update_edit_mesh(active_obj.data) if self.copy_seams: active_obj.data.show_edge_seams = True return {'FINISHED'} def main_parse( self, uv_layer, sel_faces, active_face, active_face_nor): all_sorted_faces = OrderedDict() # This is the main stuff used_verts = set() used_edges = set() faces_to_parse = [] # get shared edge of two faces cross_edges = [] for edge in active_face.edges: if edge in sel_faces[0].edges and edge in sel_faces[1].edges: cross_edges.append(edge) # parse two selected faces if cross_edges and len(cross_edges) == 1: shared_edge = cross_edges[0] vert1 = None vert2 = None dot_n = active_face_nor.normalized() edge_vec_1 = (shared_edge.verts[1].co - shared_edge.verts[0].co) edge_vec_len = edge_vec_1.length edge_vec_1 = edge_vec_1.normalized() af_center = active_face.calc_center_median() af_vec = shared_edge.verts[0].co + (edge_vec_1 * (edge_vec_len * 0.5)) af_vec = (af_vec - af_center).normalized() if af_vec.cross(edge_vec_1).dot(dot_n) > 0: vert1 = shared_edge.verts[0] vert2 = shared_edge.verts[1] else: vert1 = shared_edge.verts[1] vert2 = shared_edge.verts[0] # get active face stuff and uvs face_stuff = get_other_verts_edges( active_face, vert1, vert2, shared_edge, uv_layer) all_sorted_faces[active_face] = face_stuff used_verts.update(active_face.verts) used_edges.update(active_face.edges) # get first selected face stuff and uvs as they share shared_edge second_face = sel_faces[0] if second_face is active_face: second_face = sel_faces[1] face_stuff = get_other_verts_edges( second_face, vert1, vert2, shared_edge, uv_layer) all_sorted_faces[second_face] = face_stuff used_verts.update(second_face.verts) used_edges.update(second_face.edges) # first Grow faces_to_parse.append(active_face) faces_to_parse.append(second_face) else: self.report({'WARNING'}, "Two faces should share one edge") return None # parse all faces while True: new_parsed_faces = [] if not faces_to_parse: break for face in faces_to_parse: face_stuff = all_sorted_faces.get(face) new_faces = parse_faces( face, face_stuff, used_verts, used_edges, all_sorted_faces, uv_layer) if new_faces == 'CANCELLED': self.report({'WARNING'}, "More than 2 faces share edge") return None new_parsed_faces += new_faces faces_to_parse = new_parsed_faces return all_sorted_faces def parse_faces( check_face, face_stuff, used_verts, used_edges, all_sorted_faces, uv_layer): """recurse faces around the new_grow only""" new_shared_faces = [] for sorted_edge in face_stuff[1]: shared_faces = sorted_edge.link_faces if shared_faces: if len(shared_faces) > 2: bpy.ops.mesh.select_all(action='DESELECT') for face_sel in shared_faces: face_sel.select = True shared_faces = [] return 'CANCELLED' clear_shared_faces = get_new_shared_faces( check_face, sorted_edge, shared_faces, all_sorted_faces.keys()) if clear_shared_faces: shared_face = clear_shared_faces[0] # get vertices of the edge vert1 = sorted_edge.verts[0] vert2 = sorted_edge.verts[1] common.debug_print(face_stuff[0], vert1, vert2) if face_stuff[0].index(vert1) > face_stuff[0].index(vert2): vert1 = sorted_edge.verts[1] vert2 = sorted_edge.verts[0] common.debug_print(shared_face.verts, vert1, vert2) new_face_stuff = get_other_verts_edges( shared_face, vert1, vert2, sorted_edge, uv_layer) all_sorted_faces[shared_face] = new_face_stuff used_verts.update(shared_face.verts) used_edges.update(shared_face.edges) if common.DEBUG: shared_face.select = True # test which faces are parsed new_shared_faces.append(shared_face) return new_shared_faces def get_new_shared_faces(orig_face, shared_edge, check_faces, used_faces): shared_faces = [] for face in check_faces: is_shared_edge = shared_edge in face.edges not_used = face not in used_faces not_orig = face is not orig_face not_hide = face.hide is False if is_shared_edge and not_used and not_orig and not_hide: shared_faces.append(face) return shared_faces def get_other_verts_edges(face, vert1, vert2, first_edge, uv_layer): face_edges = [first_edge] face_verts = [vert1, vert2] face_loops = [] other_edges = [edge for edge in face.edges if edge not in face_edges] for _ in range(len(other_edges)): found_edge = None # get sorted verts and edges for edge in other_edges: if face_verts[-1] in edge.verts: other_vert = edge.other_vert(face_verts[-1]) if other_vert not in face_verts: face_verts.append(other_vert) found_edge = edge if found_edge not in face_edges: face_edges.append(edge) break other_edges.remove(found_edge) # get sorted uvs for vert in face_verts: for loop in face.loops: if loop.vert is vert: face_loops.append(loop[uv_layer]) break return [face_verts, face_edges, face_loops] ``` #### File: blender-addons-master/uv_magic_uv/properites.py ```python __author__ = "Nutti <<EMAIL>>" __status__ = "production" __version__ = "5.1" __date__ = "24 Feb 2018" import bpy from bpy.props import ( FloatProperty, EnumProperty, BoolProperty, FloatVectorProperty, IntProperty ) from mathutils import Vector from . import common def get_loaded_texture_name(_, __): items = [(key, key, "") for key in bpy.data.images.keys()] items.append(("None", "None", "")) return items # Properties used in this add-on. class MUV_Properties(): cpuv = None cpuv_obj = None cpuv_selseq = None transuv = None uvbb = None texlock = None texproj = None texwrap = None mvuv = None uvinsp = None uvsculpt = None def __init__(self): self.cpuv = MUV_CPUVProps() self.cpuv_obj = MUV_CPUVProps() self.cpuv_selseq = MUV_CPUVSelSeqProps() self.transuv = MUV_TransUVProps() self.uvbb = MUV_UVBBProps() self.texlock = MUV_TexLockProps() self.texproj = MUV_TexProjProps() self.texwrap = MUV_TexWrapProps() self.mvuv = MUV_MVUVProps() self.uvinsp = MUV_UVInspProps() self.uvsculpt = MUV_UVSculptProps() class MUV_CPUVProps(): src_uvs = [] src_pin_uvs = [] src_seams = [] class MUV_CPUVSelSeqProps(): src_uvs = [] src_pin_uvs = [] src_seams = [] class MUV_TransUVProps(): topology_copied = [] class MUV_TexProjProps(): running = False class MUV_UVBBProps(): uv_info_ini = [] ctrl_points_ini = [] ctrl_points = [] running = False class MUV_TexLockProps(): verts_orig = None intr_verts_orig = None intr_running = False class MUV_TexWrapProps(): ref_face_index = -1 ref_obj = None class MUV_MVUVProps(): running = False class MUV_UVInspProps(): display_running = False overlapped_info = [] flipped_info = [] class MUV_UVSculptProps(): running = False def init_props(scene): scene.muv_props = MUV_Properties() # UV Sculpt scene.muv_uvsculpt_enabled = BoolProperty( name="UV Sculpt", description="UV Sculpt is enabled", default=False ) scene.muv_uvsculpt_radius = IntProperty( name="Radius", description="Radius of the brush", min=1, max=500, default=30 ) scene.muv_uvsculpt_strength = FloatProperty( name="Strength", description="How powerful the effect of the brush when applied", min=0.0, max=1.0, default=0.03, ) scene.muv_uvsculpt_tools = EnumProperty( name="Tools", description="Select Tools for the UV sculpt brushes", items=[ ('GRAB', "Grab", "Grab UVs"), ('RELAX', "Relax", "Relax UVs"), ('PINCH', "Pinch", "Pinch UVs") ], default='GRAB' ) scene.muv_uvsculpt_show_brush = BoolProperty( name="Show Brush", description="Show Brush", default=True ) scene.muv_uvsculpt_pinch_invert = BoolProperty( name="Invert", description="Pinch UV to invert direction", default=False ) scene.muv_uvsculpt_relax_method = EnumProperty( name="Method", description="Algorithm used for relaxation", items=[ ('HC', "HC", "Use HC method for relaxation"), ('LAPLACIAN', "Laplacian", "Use laplacian method for relaxation") ], default='HC' ) # Texture Wrap scene.muv_texwrap_enabled = BoolProperty( name="Texture Wrap", description="Texture Wrap is enabled", default=False ) scene.muv_texwrap_set_and_refer = BoolProperty( name="Set and Refer", description="Refer and set UV", default=True ) scene.muv_texwrap_selseq = BoolProperty( name="Selection Sequence", description="Set UV sequentially", default=False ) # UV inspection scene.muv_seluv_enabled = BoolProperty( name="Select UV Enabled", description="Select UV is enabled", default=False ) scene.muv_uvinsp_enabled = BoolProperty( name="UV Inspection Enabled", description="UV Inspection is enabled", default=False ) scene.muv_uvinsp_show_overlapped = BoolProperty( name="Overlapped", description="Show overlapped UVs", default=False ) scene.muv_uvinsp_show_flipped = BoolProperty( name="Flipped", description="Show flipped UVs", default=False ) scene.muv_uvinsp_show_mode = EnumProperty( name="Mode", description="Show mode", items=[ ('PART', "Part", "Show only overlapped/flipped part"), ('FACE', "Face", "Show overlapped/flipped face") ], default='PART' ) # Align UV scene.muv_auv_enabled = BoolProperty( name="Aline UV Enabled", description="Align UV is enabled", default=False ) scene.muv_auv_transmission = BoolProperty( name="Transmission", description="Align linked UVs", default=False ) scene.muv_auv_select = BoolProperty( name="Select", description="Select UVs which are aligned", default=False ) scene.muv_auv_vertical = BoolProperty( name="Vert-Infl (Vertical)", description="Align vertical direction influenced " "by mesh vertex proportion", default=False ) scene.muv_auv_horizontal = BoolProperty( name="Vert-Infl (Horizontal)", description="Align horizontal direction influenced " "by mesh vertex proportion", default=False ) scene.muv_auv_location = EnumProperty( name="Location", description="Align location", items=[ ('LEFT_TOP', "Left/Top", "Align to Left or Top"), ('MIDDLE', "Middle", "Align to middle"), ('RIGHT_BOTTOM', "Right/Bottom", "Align to Right or Bottom") ], default='MIDDLE' ) # Smooth UV scene.muv_smuv_enabled = BoolProperty( name="Smooth UV Enabled", description="Smooth UV is enabled", default=False ) scene.muv_smuv_transmission = BoolProperty( name="Transmission", description="Smooth linked UVs", default=False ) scene.muv_smuv_mesh_infl = FloatProperty( name="Mesh Influence", description="Influence rate of mesh vertex", min=0.0, max=1.0, default=0.0 ) scene.muv_smuv_select = BoolProperty( name="Select", description="Select UVs which are smoothed", default=False ) # UV Bounding Box scene.muv_uvbb_enabled = BoolProperty( name="UV Bounding Box Enabled", description="UV Bounding Box is enabled", default=False ) scene.muv_uvbb_uniform_scaling = BoolProperty( name="Uniform Scaling", description="Enable Uniform Scaling", default=False ) scene.muv_uvbb_boundary = EnumProperty( name="Boundary", description="Boundary", default='UV_SEL', items=[ ('UV', "UV", "Boundary is decided by UV"), ('UV_SEL', "UV (Selected)", "Boundary is decided by Selected UV") ] ) # Pack UV scene.muv_packuv_enabled = BoolProperty( name="Pack UV Enabled", description="Pack UV is enabled", default=False ) scene.muv_packuv_allowable_center_deviation = FloatVectorProperty( name="Allowable Center Deviation", description="Allowable center deviation to judge same UV island", min=0.000001, max=0.1, default=(0.001, 0.001), size=2 ) scene.muv_packuv_allowable_size_deviation = FloatVectorProperty( name="Allowable Size Deviation", description="Allowable sizse deviation to judge same UV island", min=0.000001, max=0.1, default=(0.001, 0.001), size=2 ) # Move UV scene.muv_mvuv_enabled = BoolProperty( name="Move UV Enabled", description="Move UV is enabled", default=False ) # UVW scene.muv_uvw_enabled = BoolProperty( name="UVW Enabled", description="UVW is enabled", default=False ) scene.muv_uvw_assign_uvmap = BoolProperty( name="Assign UVMap", description="Assign UVMap when no UVmaps are available", default=True ) # Texture Projection scene.muv_texproj_enabled = BoolProperty( name="Texture Projection Enabled", description="Texture Projection is enabled", default=False ) scene.muv_texproj_tex_magnitude = FloatProperty( name="Magnitude", description="Texture Magnitude", default=0.5, min=0.0, max=100.0 ) scene.muv_texproj_tex_image = EnumProperty( name="Image", description="Texture Image", items=get_loaded_texture_name ) scene.muv_texproj_tex_transparency = FloatProperty( name="Transparency", description="Texture Transparency", default=0.2, min=0.0, max=1.0 ) scene.muv_texproj_adjust_window = BoolProperty( name="Adjust Window", description="Size of renderered texture is fitted to window", default=True ) scene.muv_texproj_apply_tex_aspect = BoolProperty( name="Texture Aspect Ratio", description="Apply Texture Aspect ratio to displayed texture", default=True ) scene.muv_texproj_assign_uvmap = BoolProperty( name="Assign UVMap", description="Assign UVMap when no UVmaps are available", default=True ) # Texture Lock scene.muv_texlock_enabled = BoolProperty( name="Texture Lock Enabled", description="Texture Lock is enabled", default=False ) scene.muv_texlock_connect = BoolProperty( name="Connect UV", default=True ) # World Scale UV scene.muv_wsuv_enabled = BoolProperty( name="World Scale UV Enabled", description="World Scale UV is enabled", default=False ) scene.muv_wsuv_src_mesh_area = FloatProperty( name="Mesh Area", description="Source Mesh Area", default=0.0, min=0.0 ) scene.muv_wsuv_src_uv_area = FloatProperty( name="UV Area", description="Source UV Area", default=0.0, min=0.0 ) scene.muv_wsuv_src_density = FloatProperty( name="Density", description="Source Texel Density", default=0.0, min=0.0 ) scene.muv_wsuv_tgt_density = FloatProperty( name="Density", description="Target Texel Density", default=0.0, min=0.0 ) scene.muv_wsuv_mode = EnumProperty( name="Mode", description="Density calculation mode", items=[ ('PROPORTIONAL', 'Proportional', 'Scale proportionally by mesh'), ('SCALING', 'Scaling', 'Specify scale factor'), ('USER', 'User', 'Specify density'), ('CONSTANT', 'Constant', 'Constant density') ], default='CONSTANT' ) scene.muv_wsuv_scaling_factor = FloatProperty( name="Scaling Factor", default=1.0, max=1000.0, min=0.00001 ) scene.muv_wsuv_origin = EnumProperty( name="Origin", description="Aspect Origin", items=[ ('CENTER', 'Center', 'Center'), ('LEFT_TOP', 'Left Top', 'Left Bottom'), ('LEFT_CENTER', 'Left Center', 'Left Center'), ('LEFT_BOTTOM', 'Left Bottom', 'Left Bottom'), ('CENTER_TOP', 'Center Top', 'Center Top'), ('CENTER_BOTTOM', 'Center Bottom', 'Center Bottom'), ('RIGHT_TOP', 'Right Top', 'Right Top'), ('RIGHT_CENTER', 'Right Center', 'Right Center'), ('RIGHT_BOTTOM', 'Right Bottom', 'Right Bottom') ], default='CENTER' ) # Unwrap Constraint scene.muv_unwrapconst_enabled = BoolProperty( name="Unwrap Constraint Enabled", description="Unwrap Constraint is enabled", default=False ) scene.muv_unwrapconst_u_const = BoolProperty( name="U-Constraint", description="Keep UV U-axis coordinate", default=False ) scene.muv_unwrapconst_v_const = BoolProperty( name="V-Constraint", description="Keep UV V-axis coordinate", default=False ) # Preserve UV Aspect scene.muv_preserve_uv_enabled = BoolProperty( name="Preserve UV Aspect Enabled", description="Preserve UV Aspect is enabled", default=False ) scene.muv_preserve_uv_tex_image = EnumProperty( name="Image", description="Texture Image", items=get_loaded_texture_name ) scene.muv_preserve_uv_origin = EnumProperty( name="Origin", description="Aspect Origin", items=[ ('CENTER', 'Center', 'Center'), ('LEFT_TOP', 'Left Top', 'Left Bottom'), ('LEFT_CENTER', 'Left Center', 'Left Center'), ('LEFT_BOTTOM', 'Left Bottom', 'Left Bottom'), ('CENTER_TOP', 'Center Top', 'Center Top'), ('CENTER_BOTTOM', 'Center Bottom', 'Center Bottom'), ('RIGHT_TOP', 'Right Top', 'Right Top'), ('RIGHT_CENTER', 'Right Center', 'Right Center'), ('RIGHT_BOTTOM', 'Right Bottom', 'Right Bottom') ], default="CENTER" ) # Flip/Rotate UV scene.muv_fliprot_enabled = BoolProperty( name="Flip/Rotate UV Enabled", description="Flip/Rotate UV is enabled", default=False ) scene.muv_fliprot_seams = BoolProperty( name="Seams", description="Seams", default=True ) # Mirror UV scene.muv_mirroruv_enabled = BoolProperty( name="Mirror UV Enabled", description="Mirror UV is enabled", default=False ) scene.muv_mirroruv_axis = EnumProperty( items=[ ('X', "X", "Mirror Along X axis"), ('Y', "Y", "Mirror Along Y axis"), ('Z', "Z", "Mirror Along Z axis") ], name="Axis", description="Mirror Axis", default='X' ) # Copy/Paste UV scene.muv_cpuv_enabled = BoolProperty( name="Copy/Paste UV Enabled", description="Copy/Paste UV is enabled", default=False ) scene.muv_cpuv_copy_seams = BoolProperty( name="Copy Seams", description="Copy Seams", default=True ) scene.muv_cpuv_mode = EnumProperty( items=[ ('DEFAULT', "Default", "Default Mode"), ('SEL_SEQ', "Selection Sequence", "Selection Sequence Mode") ], name="Copy/Paste UV Mode", description="Copy/Paste UV Mode", default='DEFAULT' ) scene.muv_cpuv_strategy = EnumProperty( name="Strategy", description="Paste Strategy", items=[ ('N_N', 'N:N', 'Number of faces must be equal to source'), ('N_M', 'N:M', 'Number of faces must not be equal to source') ], default='N_M' ) # Transfer UV scene.muv_transuv_enabled = BoolProperty( name="Transfer UV Enabled", description="Transfer UV is enabled", default=False ) scene.muv_transuv_invert_normals = BoolProperty( name="Invert Normals", description="Invert Normals", default=False ) scene.muv_transuv_copy_seams = BoolProperty( name="Copy Seams", description="Copy Seams", default=True ) # Align UV Cursor def auvc_get_cursor_loc(self): area, _, space = common.get_space('IMAGE_EDITOR', 'WINDOW', 'IMAGE_EDITOR') bd_size = common.get_uvimg_editor_board_size(area) loc = space.cursor_location if bd_size[0] < 0.000001: cx = 0.0 else: cx = loc[0] / bd_size[0] if bd_size[1] < 0.000001: cy = 0.0 else: cy = loc[1] / bd_size[1] self['muv_auvc_cursor_loc'] = Vector((cx, cy)) return self.get('muv_auvc_cursor_loc', (0.0, 0.0)) def auvc_set_cursor_loc(self, value): self['muv_auvc_cursor_loc'] = value area, _, space = common.get_space('IMAGE_EDITOR', 'WINDOW', 'IMAGE_EDITOR') bd_size = common.get_uvimg_editor_board_size(area) cx = bd_size[0] * value[0] cy = bd_size[1] * value[1] space.cursor_location = Vector((cx, cy)) scene.muv_auvc_enabled = BoolProperty( name="Align UV Cursor Enabled", description="Align UV Cursor is enabled", default=False ) scene.muv_auvc_cursor_loc = FloatVectorProperty( name="UV Cursor Location", size=2, precision=4, soft_min=-1.0, soft_max=1.0, step=1, default=(0.000, 0.000), get=auvc_get_cursor_loc, set=auvc_set_cursor_loc ) scene.muv_auvc_align_menu = EnumProperty( name="Align Method", description="Align Method", default='TEXTURE', items=[ ('TEXTURE', "Texture", "Align to texture"), ('UV', "UV", "Align to UV"), ('UV_SEL', "UV (Selected)", "Align to Selected UV") ] ) # UV Cursor Location scene.muv_uvcloc_enabled = BoolProperty( name="UV Cursor Location Enabled", description="UV Cursor Location is enabled", default=False ) def clear_props(scene): del scene.muv_props # UV Sculpt del scene.muv_uvsculpt_enabled del scene.muv_uvsculpt_radius del scene.muv_uvsculpt_strength del scene.muv_uvsculpt_tools del scene.muv_uvsculpt_show_brush del scene.muv_uvsculpt_pinch_invert del scene.muv_uvsculpt_relax_method # Texture Wrap del scene.muv_texwrap_enabled del scene.muv_texwrap_set_and_refer del scene.muv_texwrap_selseq # UV Inspection del scene.muv_seluv_enabled del scene.muv_uvinsp_enabled del scene.muv_uvinsp_show_overlapped del scene.muv_uvinsp_show_flipped del scene.muv_uvinsp_show_mode # Align UV del scene.muv_auv_enabled del scene.muv_auv_transmission del scene.muv_auv_select del scene.muv_auv_vertical del scene.muv_auv_horizontal del scene.muv_auv_location # Smooth UV del scene.muv_smuv_enabled del scene.muv_smuv_transmission del scene.muv_smuv_mesh_infl del scene.muv_smuv_select # UV Bounding Box del scene.muv_uvbb_enabled del scene.muv_uvbb_uniform_scaling del scene.muv_uvbb_boundary # Pack UV del scene.muv_packuv_enabled del scene.muv_packuv_allowable_center_deviation del scene.muv_packuv_allowable_size_deviation # Move UV del scene.muv_mvuv_enabled # UVW del scene.muv_uvw_enabled del scene.muv_uvw_assign_uvmap # Texture Projection del scene.muv_texproj_enabled del scene.muv_texproj_tex_magnitude del scene.muv_texproj_tex_image del scene.muv_texproj_tex_transparency del scene.muv_texproj_adjust_window del scene.muv_texproj_apply_tex_aspect del scene.muv_texproj_assign_uvmap # Texture Lock del scene.muv_texlock_enabled del scene.muv_texlock_connect # World Scale UV del scene.muv_wsuv_enabled del scene.muv_wsuv_src_mesh_area del scene.muv_wsuv_src_uv_area del scene.muv_wsuv_src_density del scene.muv_wsuv_tgt_density del scene.muv_wsuv_mode del scene.muv_wsuv_scaling_factor del scene.muv_wsuv_origin # Unwrap Constraint del scene.muv_unwrapconst_enabled del scene.muv_unwrapconst_u_const del scene.muv_unwrapconst_v_const # Preserve UV Aspect del scene.muv_preserve_uv_enabled del scene.muv_preserve_uv_tex_image del scene.muv_preserve_uv_origin # Flip/Rotate UV del scene.muv_fliprot_enabled del scene.muv_fliprot_seams # Mirror UV del scene.muv_mirroruv_enabled del scene.muv_mirroruv_axis # Copy/Paste UV del scene.muv_cpuv_enabled del scene.muv_cpuv_copy_seams del scene.muv_cpuv_mode del scene.muv_cpuv_strategy # Transfer UV del scene.muv_transuv_enabled del scene.muv_transuv_invert_normals del scene.muv_transuv_copy_seams # Align UV Cursor del scene.muv_auvc_enabled del scene.muv_auvc_cursor_loc del scene.muv_auvc_align_menu # UV Cursor Location del scene.muv_uvcloc_enabled ``` #### File: uv_magic_uv/ui/view3d_uv_mapping.py ```python __author__ = "Nutti <<EMAIL>>" __status__ = "production" __version__ = "5.1" __date__ = "24 Feb 2018" import bpy from ..op import texture_projection from ..op import unwrap_constraint from ..op import uvw class OBJECT_PT_MUV_UVMapping(bpy.types.Panel): """ Panel class: UV Mapping on Property Panel on View3D """ bl_space_type = 'VIEW_3D' bl_region_type = 'TOOLS' bl_label = "UV Mapping" bl_category = "Magic UV" bl_context = 'mesh_edit' bl_options = {'DEFAULT_CLOSED'} def draw_header(self, _): layout = self.layout layout.label(text="", icon='IMAGE_COL') def draw(self, context): sc = context.scene props = sc.muv_props layout = self.layout box = layout.box() box.prop(sc, "muv_unwrapconst_enabled", text="Unwrap Constraint") if sc.muv_unwrapconst_enabled: ops = box.operator( unwrap_constraint.MUV_UnwrapConstraint.bl_idname, text="Unwrap") ops.u_const = sc.muv_unwrapconst_u_const ops.v_const = sc.muv_unwrapconst_v_const row = box.row(align=True) row.prop(sc, "muv_unwrapconst_u_const", text="U-Constraint") row.prop(sc, "muv_unwrapconst_v_const", text="V-Constraint") box = layout.box() box.prop(sc, "muv_texproj_enabled", text="Texture Projection") if sc.muv_texproj_enabled: row = box.row() if not props.texproj.running: row.operator(texture_projection.MUV_TexProjStart.bl_idname, text="Start", icon='PLAY') else: row.operator(texture_projection.MUV_TexProjStop.bl_idname, text="Stop", icon='PAUSE') row.prop(sc, "muv_texproj_tex_image", text="") box.prop(sc, "muv_texproj_tex_transparency", text="Transparency") col = box.column(align=True) row = col.row() row.prop(sc, "muv_texproj_adjust_window", text="Adjust Window") if not sc.muv_texproj_adjust_window: row.prop(sc, "muv_texproj_tex_magnitude", text="Magnitude") col.prop(sc, "muv_texproj_apply_tex_aspect", text="Texture Aspect Ratio") col.prop(sc, "muv_texproj_assign_uvmap", text="Assign UVMap") if props.texproj.running: box.operator(texture_projection.MUV_TexProjProject.bl_idname, text="Project") box = layout.box() box.prop(sc, "muv_uvw_enabled", text="UVW") if sc.muv_uvw_enabled: row = box.row(align=True) ops = row.operator(uvw.MUV_UVWBoxMap.bl_idname, text="Box") ops.assign_uvmap = sc.muv_uvw_assign_uvmap ops = row.operator(uvw.MUV_UVWBestPlanerMap.bl_idname, text="Best Planner") ops.assign_uvmap = sc.muv_uvw_assign_uvmap box.prop(sc, "muv_uvw_assign_uvmap", text="Assign UVMap") ```
{ "source": "1minus1/porespy", "score": 2 }
#### File: porespy/metrics/__funcs__.py ```python import numpy as np import warnings from skimage.measure import regionprops import scipy.ndimage as spim import scipy.spatial as sptl from porespy.tools import extend_slice, mesh_region from porespy.filters import find_dt_artifacts from collections import namedtuple from tqdm import tqdm from scipy import fftpack as sp_ft from skimage import measure def representative_elementary_volume(im, npoints=1000): r""" Calculates the porosity of the image as a function subdomain size. This function extracts a specified number of subdomains of random size, then finds their porosity. Parameters ---------- im : ND-array The image of the porous material npoints : int The number of randomly located and sized boxes to sample. The default is 1000. Returns ------- result : named_tuple A tuple containing the *volume* and *porosity* of each subdomain tested in arrays ``npoints`` long. They can be accessed as attributes of the tuple. They can be conveniently plotted by passing the tuple to matplotlib's ``plot`` function using the \* notation: ``plt.plot(*result, 'b.')``. The resulting plot is similar to the sketch given by Bachmat and Bear [1] Notes ----- This function is frustratingly slow. Profiling indicates that all the time is spent on scipy's ``sum`` function which is needed to sum the number of void voxels (1's) in each subdomain. Also, this function is a prime target for parallelization since the ``npoints`` are calculated independenlty. References ---------- [1] Bachmat and Bear. On the Concept and Size of a Representative Elementary Volume (Rev), Advances in Transport Phenomena in Porous Media (1987) """ im_temp = np.zeros_like(im) crds = np.array(np.random.rand(npoints, im.ndim)*im.shape, dtype=int) pads = np.array(np.random.rand(npoints)*np.amin(im.shape)/2+10, dtype=int) im_temp[tuple(crds.T)] = True labels, N = spim.label(input=im_temp) slices = spim.find_objects(input=labels) porosity = np.zeros(shape=(N,), dtype=float) volume = np.zeros(shape=(N,), dtype=int) for i in tqdm(np.arange(0, N)): s = slices[i] p = pads[i] new_s = extend_slice(s, shape=im.shape, pad=p) temp = im[new_s] Vp = np.sum(temp) Vt = np.size(temp) porosity[i] = Vp/Vt volume[i] = Vt profile = namedtuple('profile', ('volume', 'porosity')) profile.volume = volume profile.porosity = porosity return profile def porosity_profile(im, axis): r""" Returns a porosity profile along the specified axis Parameters ---------- im : ND-array The volumetric image for which to calculate the porosity profile axis : int The axis (0, 1, or 2) along which to calculate the profile. For instance, if `axis` is 0, then the porosity in each YZ plane is calculated and returned as 1D array with 1 value for each X position. Returns ------- result : 1D-array A 1D-array of porosity along the specified axis """ if axis >= im.ndim: raise Exception('axis out of range') im = np.atleast_3d(im) a = set(range(im.ndim)).difference(set([axis])) a1, a2 = a prof = np.sum(np.sum(im, axis=a2), axis=a1)/(im.shape[a2]*im.shape[a1]) return prof*100 def radial_density(im, bins=10, voxel_size=1): r""" Computes radial density function by analyzing the histogram of voxel values in the distance transform. This function is defined by Torquato [1] as: .. math:: \int_0^\infty P(r)dr = 1.0 where *P(r)dr* is the probability of finding a voxel at a lying at a radial distance between *r* and *dr* from the solid interface. This is equivalent to a probability density function (*pdf*) The cumulative distribution is defined as: .. math:: F(r) = \int_r^\infty P(r)dr which gives the fraction of pore-space with a radius larger than *r*. This is equivalent to the cumulative distribution function (*cdf*). Parameters ---------- im : ND-array Either a binary image of the pore space with ``True`` indicating the pore phase (or phase of interest), or a pre-calculated distance transform which can save time. bins : int or array_like This number of bins (if int) or the location of the bins (if array). This argument is passed directly to Scipy's ``histogram`` function so see that docstring for more information. The default is 10 bins, which reduces produces a relatively smooth distribution. voxel_size : scalar The size of a voxel side in preferred units. The default is 1, so the user can apply the scaling to the returned results after the fact. Returns ------- result : named_tuple A named-tuple containing several 1D arrays: *R* - radius, equivalent to ``bin_centers`` *pdf* - probability density function *cdf* - cumulative density function *bin_centers* - the center point of each bin *bin_edges* - locations of bin divisions, including 1 more value than the number of bins *bin_widths* - useful for passing to the ``width`` argument of ``matplotlib.pyplot.bar`` Notes ----- This function should not be taken as a pore size distribution in the explict sense, but rather an indicator of the sizes in the image. The distance transform contains a very skewed number of voxels with small values near the solid walls. Nonetheless, it does provide a useful indicator and it's mathematical formalism is handy. Torquato refers to this as the *pore-size density function*, and mentions that it is also known as the *pore-size distribution function*. These terms are avoided here since they have specific connotations in porous media analysis. References ---------- [1] <NAME>. Random Heterogeneous Materials: Mircostructure and Macroscopic Properties. Springer, New York (2002) - See page 48 & 292 """ if im.dtype == bool: im = spim.distance_transform_edt(im) mask = find_dt_artifacts(im) == 0 im[mask] = 0 x = im[im > 0].flatten() h = np.histogram(x, bins=bins, density=True) h = _parse_histogram(h=h, voxel_size=voxel_size) rdf = namedtuple('radial_density_function', ('R', 'pdf', 'cdf', 'bin_centers', 'bin_edges', 'bin_widths')) return rdf(h.bin_centers, h.pdf, h.cdf, h.bin_centers, h.bin_edges, h.bin_widths) def porosity(im): r""" Calculates the porosity of an image assuming 1's are void space and 0's are solid phase. All other values are ignored, so this can also return the relative fraction of a phase of interest in trinary or multiphase images. Parameters ---------- im : ND-array Image of the void space with 1's indicating void phase (or True) and 0's indicating the solid phase (or False). Returns ------- porosity : float Calculated as the sum of all 1's divided by the sum of all 1's and 0's. See Also -------- phase_fraction Notes ----- This function assumes void is represented by 1 and solid by 0, and all other values are ignored. This is useful, for example, for images of cylindrical cores, where all voxels outside the core are labelled with 2. Alternatively, images can be processed with ``find_disconnected_voxels`` to get an image of only blind pores. This can then be added to the orignal image such that blind pores have a value of 2, thus allowing the calculation of accessible porosity, rather than overall porosity. """ im = np.array(im, dtype=int) Vp = np.sum(im == 1) Vs = np.sum(im == 0) e = Vp/(Vs + Vp) return e def two_point_correlation_bf(im, spacing=10): r""" Calculates the two-point correlation function using brute-force (see Notes) Parameters ---------- im : ND-array The image of the void space on which the 2-point correlation is desired spacing : int The space between points on the regular grid that is used to generate the correlation (see Notes) Returns ------- result : named_tuple A tuple containing the x and y data for plotting the two-point correlation function, using the *args feature of matplotlib's plot function. The x array is the distances between points and the y array is corresponding probabilities that points of a given distance both lie in the void space. The distance values are binned as follows: ``bins = range(start=0, stop=np.amin(im.shape)/2, stride=spacing)`` Notes ----- The brute-force approach means overlaying a grid of equally spaced points onto the image, calculating the distance between each and every pair of points, then counting the instances where both pairs lie in the void space. This approach uses a distance matrix so can consume memory very quickly for large 3D images and/or close spacing. """ if im.ndim != im.squeeze().ndim: warnings.warn('Input image conains a singleton axis:' + str(im.shape) + ' Reduce dimensionality with np.squeeze(im) to avoid' + ' unexpected behavior.') if im.ndim == 2: pts = np.meshgrid(range(0, im.shape[0], spacing), range(0, im.shape[1], spacing)) crds = np.vstack([pts[0].flatten(), pts[1].flatten()]).T elif im.ndim == 3: pts = np.meshgrid(range(0, im.shape[0], spacing), range(0, im.shape[1], spacing), range(0, im.shape[2], spacing)) crds = np.vstack([pts[0].flatten(), pts[1].flatten(), pts[2].flatten()]).T dmat = sptl.distance.cdist(XA=crds, XB=crds) hits = im[tuple(pts)].flatten() dmat = dmat[hits, :] h1 = np.histogram(dmat, bins=range(0, int(np.amin(im.shape)/2), spacing)) dmat = dmat[:, hits] h2 = np.histogram(dmat, bins=h1[1]) tpcf = namedtuple('two_point_correlation_function', ('distance', 'probability')) return tpcf(h2[1][:-1], h2[0]/h1[0]) def _radial_profile(autocorr, r_max, nbins=100): r""" Helper functions to calculate the radial profile of the autocorrelation Masks the image in radial segments from the center and averages the values The distance values are normalized and 100 bins are used as default. Parameters ---------- autocorr : ND-array The image of autocorrelation produced by FFT r_max : int or float The maximum radius in pixels to sum the image over Returns ------- result : named_tuple A named tupling containing an array of ``bins`` of radial position and an array of ``counts`` in each bin. """ if len(autocorr.shape) == 2: adj = np.reshape(autocorr.shape, [2, 1, 1]) inds = np.indices(autocorr.shape) - adj/2 dt = np.sqrt(inds[0]**2 + inds[1]**2) elif len(autocorr.shape) == 3: adj = np.reshape(autocorr.shape, [3, 1, 1, 1]) inds = np.indices(autocorr.shape) - adj/2 dt = np.sqrt(inds[0]**2 + inds[1]**2 + inds[2]**2) else: raise Exception('Image dimensions must be 2 or 3') bin_size = np.int(np.ceil(r_max/nbins)) bins = np.arange(bin_size, r_max, step=bin_size) radial_sum = np.zeros_like(bins) for i, r in enumerate(bins): # Generate Radial Mask from dt using bins mask = (dt <= r) * (dt > (r-bin_size)) radial_sum[i] = np.sum(autocorr[mask])/np.sum(mask) # Return normalized bin and radially summed autoc norm_autoc_radial = radial_sum/np.max(autocorr) tpcf = namedtuple('two_point_correlation_function', ('distance', 'probability')) return tpcf(bins, norm_autoc_radial) def two_point_correlation_fft(im): r""" Calculates the two-point correlation function using fourier transforms Parameters ---------- im : ND-array The image of the void space on which the 2-point correlation is desired Returns ------- result : named_tuple A tuple containing the x and y data for plotting the two-point correlation function, using the *args feature of matplotlib's plot function. The x array is the distances between points and the y array is corresponding probabilities that points of a given distance both lie in the void space. Notes ----- The fourier transform approach utilizes the fact that the autocorrelation function is the inverse FT of the power spectrum density. For background read the Scipy fftpack docs and for a good explanation see: http://www.ucl.ac.uk/~ucapikr/projects/KamilaSuankulova_BSc_Project.pdf """ # Calculate half lengths of the image hls = (np.ceil(np.shape(im))/2).astype(int) # Fourier Transform and shift image F = sp_ft.ifftshift(sp_ft.fftn(sp_ft.fftshift(im))) # Compute Power Spectrum P = np.absolute(F**2) # Auto-correlation is inverse of Power Spectrum autoc = np.absolute(sp_ft.ifftshift(sp_ft.ifftn(sp_ft.fftshift(P)))) tpcf = _radial_profile(autoc, r_max=np.min(hls)) return tpcf def pore_size_distribution(im, bins=10, log=True, voxel_size=1): r""" Calculate a pore-size distribution based on the image produced by the ``porosimetry`` or ``local_thickness`` functions. Parameters ---------- im : ND-array The array of containing the sizes of the largest sphere that overlaps each voxel. Obtained from either ``porosimetry`` or ``local_thickness``. bins : scalar or array_like Either an array of bin sizes to use, or the number of bins that should be automatically generated that span the data range. log : boolean If ``True`` (default) the size data is converted to log (base-10) values before processing. This can help to plot wide size distributions or to better visualize the in the small size region. Note that you can anti-log the radii values in the retunred ``tuple``, but the binning is performed on the logged radii values. voxel_size : scalar The size of a voxel side in preferred units. The default is 1, so the user can apply the scaling to the returned results after the fact. Returns ------- result : named_tuple A named-tuple containing several values: *R* or *logR* - radius, equivalent to ``bin_centers`` *pdf* - probability density function *cdf* - cumulative density function *satn* - phase saturation in differential form. For the cumulative saturation, just use *cfd* which is already normalized to 1. *bin_centers* - the center point of each bin *bin_edges* - locations of bin divisions, including 1 more value than the number of bins *bin_widths* - useful for passing to the ``width`` argument of ``matplotlib.pyplot.bar`` Notes ----- (1) To ensure the returned values represent actual sizes you can manually scale the input image by the voxel size first (``im *= voxel_size``) plt.bar(psd.R, psd.satn, width=psd.bin_widths, edgecolor='k') """ im = im.flatten() vals = im[im > 0]*voxel_size if log: vals = np.log10(vals) h = _parse_histogram(np.histogram(vals, bins=bins, density=True)) psd = namedtuple('pore_size_distribution', (log*'log' + 'R', 'pdf', 'cdf', 'satn', 'bin_centers', 'bin_edges', 'bin_widths')) return psd(h.bin_centers, h.pdf, h.cdf, h.relfreq, h.bin_centers, h.bin_edges, h.bin_widths) def _parse_histogram(h, voxel_size=1): delta_x = h[1] P = h[0] temp = P*(delta_x[1:] - delta_x[:-1]) C = np.cumsum(temp[-1::-1])[-1::-1] S = P*(delta_x[1:] - delta_x[:-1]) bin_edges = delta_x * voxel_size bin_widths = (delta_x[1:] - delta_x[:-1]) * voxel_size bin_centers = ((delta_x[1:] + delta_x[:-1])/2) * voxel_size psd = namedtuple('histogram', ('pdf', 'cdf', 'relfreq', 'bin_centers', 'bin_edges', 'bin_widths')) return psd(P, C, S, bin_centers, bin_edges, bin_widths) def chord_counts(im): r""" Finds the length of each chord in the supplied image and returns a list of their individual sizes Parameters ---------- im : ND-array An image containing chords drawn in the void space. Returns ------- result : 1D-array A 1D array with one element for each chord, containing its length. Notes ---- The returned array can be passed to ``plt.hist`` to plot the histogram, or to ``np.histogram`` to get the histogram data directly. Another useful function is ``np.bincount`` which gives the number of chords of each length in a format suitable for ``plt.plot``. """ labels, N = spim.label(im > 0) props = regionprops(labels, coordinates='xy') chord_lens = np.array([i.filled_area for i in props]) return chord_lens def linear_density(im, bins=25, voxel_size=1, log=False): r""" Determines the probability that a point lies within a certain distance of the opposite phase *along a specified direction* This relates directly the radial density function defined by Torquato [1], but instead of reporting the probability of lying within a stated distance to the nearest solid in any direciton, it considers only linear distances along orthogonal directions.The benefit of this is that anisotropy can be detected in materials by performing the analysis in multiple orthogonal directions. Parameters ---------- im : ND-array An image with each voxel containing the distance to the nearest solid along a linear path, as produced by ``distance_transform_lin``. bins : int or array_like The number of bins or a list of specific bins to use voxel_size : scalar The side length of a voxel. This is used to scale the chord lengths into real units. Note this is applied *after* the binning, so ``bins``, if supplied, should be in terms of voxels, not length units. Returns ------- result : named_tuple References ---------- [1] Torquato, S. Random Heterogeneous Materials: Mircostructure and Macroscopic Properties. Springer, New York (2002) """ x = im[im > 0] h = list(np.histogram(x, bins=bins, density=True)) h = _parse_histogram(h=h, voxel_size=voxel_size) cld = namedtuple('linear_density_function', ('L', 'pdf', 'cdf', 'relfreq', 'bin_centers', 'bin_edges', 'bin_widths')) return cld(h.bin_centers, h.pdf, h.cdf, h.relfreq, h.bin_centers, h.bin_edges, h.bin_widths) def chord_length_distribution(im, bins=None, log=False, voxel_size=1, normalization='count'): r""" Determines the distribution of chord lengths in an image containing chords. Parameters ---------- im : ND-image An image with chords drawn in the pore space, as produced by ``apply_chords`` or ``apply_chords_3d``. ``im`` can be either boolean, in which case each chord will be identified using ``scipy.ndimage.label``, or numerical values in which case it is assumed that chords have already been identifed and labeled. In both cases, the size of each chord will be computed as the number of voxels belonging to each labelled region. bins : scalar or array_like If a scalar is given it is interpreted as the number of bins to use, and if an array is given they are used as the bins directly. log : Boolean If true, the logarithm of the chord lengths will be used, which can make the data more clear. normalization : string Indicates how to normalize the bin heights. Options are: *'count' or 'number'* - (default) This simply counts the number of chords in each bin in the normal sense of a histogram. This is the rigorous definition according to Torquato [1]. *'length'* - This multiplies the number of chords in each bin by the chord length (i.e. bin size). The normalization scheme accounts for the fact that long chords are less frequent than shorert chords, thus giving a more balanced distribution. voxel_size : scalar The size of a voxel side in preferred units. The default is 1, so the user can apply the scaling to the returned results after the fact. Returns ------- result : named_tuple A tuple containing the following elements, which can be retrieved by attribute name: *L* or *logL* - chord length, equivalent to ``bin_centers`` *pdf* - probability density function *cdf* - cumulative density function *relfreq* - relative frequency chords in each bin. The sum of all bin heights is 1.0. For the cumulative relativce, use *cdf* which is already normalized to 1. *bin_centers* - the center point of each bin *bin_edges* - locations of bin divisions, including 1 more value than the number of bins *bin_widths* - useful for passing to the ``width`` argument of ``matplotlib.pyplot.bar`` References ---------- [1] <NAME>. Random Heterogeneous Materials: Mircostructure and Macroscopic Properties. Springer, New York (2002) - See page 45 & 292 """ x = chord_counts(im) if bins is None: bins = np.array(range(0, x.max()+2))*voxel_size x = x*voxel_size if log: x = np.log10(x) if normalization == 'length': h = list(np.histogram(x, bins=bins, density=False)) h[0] = h[0]*(h[1][1:]+h[1][:-1])/2 # Scale bin heigths by length h[0] = h[0]/h[0].sum()/(h[1][1:]-h[1][:-1]) # Normalize h[0] manually elif normalization in ['number', 'count']: h = np.histogram(x, bins=bins, density=True) else: raise Exception('Unsupported normalization:', normalization) h = _parse_histogram(h) cld = namedtuple('chord_length_distribution', (log*'log' + 'L', 'pdf', 'cdf', 'relfreq', 'bin_centers', 'bin_edges', 'bin_widths')) return cld(h.bin_centers, h.pdf, h.cdf, h.relfreq, h.bin_centers, h.bin_edges, h.bin_widths) def region_interface_areas(regions, areas, voxel_size=1, strel=None): r""" Calculates the interfacial area between all pairs of adjecent regions Parameters ---------- regions : ND-array An image of the pore space partitioned into individual pore regions. Note that zeros in the image will not be considered for area calculation. areas : array_like A list containing the areas of each regions, as determined by ``region_surface_area``. Note that the region number and list index are offset by 1, such that the area for region 1 is stored in ``areas[0]``. voxel_size : scalar The resolution of the image, expressed as the length of one side of a voxel, so the volume of a voxel would be **voxel_size**-cubed. The default is 1. strel : array_like The structuring element used to blur the region. If not provided, then a spherical element (or disk) with radius 1 is used. See the docstring for ``mesh_region`` for more details, as this argument is passed to there. Returns ------- result : named_tuple A named-tuple containing 2 arrays. ``conns`` holds the connectivity information and ``area`` holds the result for each pair. ``conns`` is a N-regions by 2 array with each row containing the region number of an adjacent pair of regions. For instance, if ``conns[0, 0]`` is 0 and ``conns[0, 1]`` is 5, then row 0 of ``area`` contains the interfacial area shared by regions 0 and 5. """ print('_'*60) print('Finding interfacial areas between each region') from skimage.morphology import disk, square, ball, cube im = regions.copy() if im.ndim != im.squeeze().ndim: warnings.warn('Input image conains a singleton axis:' + str(im.shape) + ' Reduce dimensionality with np.squeeze(im) to avoid' + ' unexpected behavior.') if im.ndim == 2: cube = square ball = disk # Get 'slices' into im for each region slices = spim.find_objects(im) # Initialize arrays Ps = np.arange(1, np.amax(im)+1) sa = np.zeros_like(Ps, dtype=float) sa_combined = [] # Difficult to preallocate since number of conns unknown cn = [] # Start extracting area from im for i in tqdm(Ps): reg = i - 1 if slices[reg] is not None: s = extend_slice(slices[reg], im.shape) sub_im = im[s] mask_im = sub_im == i sa[reg] = areas[reg] im_w_throats = spim.binary_dilation(input=mask_im, structure=ball(1)) im_w_throats = im_w_throats*sub_im Pn = np.unique(im_w_throats)[1:] - 1 for j in Pn: if j > reg: cn.append([reg, j]) merged_region = im[(min(slices[reg][0].start, slices[j][0].start)): max(slices[reg][0].stop, slices[j][0].stop), (min(slices[reg][1].start, slices[j][1].start)): max(slices[reg][1].stop, slices[j][1].stop)] merged_region = ((merged_region == reg + 1) + (merged_region == j + 1)) mesh = mesh_region(region=merged_region, strel=strel) sa_combined.append(mesh_surface_area(mesh)) # Interfacial area calculation cn = np.array(cn) ia = 0.5 * (sa[cn[:, 0]] + sa[cn[:, 1]] - sa_combined) ia[ia <= 0] = 1 result = namedtuple('interfacial_areas', ('conns', 'area')) result.conns = cn result.area = ia * voxel_size**2 return result def region_surface_areas(regions, voxel_size=1, strel=None): r""" Extracts the surface area of each region in a labeled image. Optionally, it can also find the the interfacial area between all adjoining regions. Parameters ---------- regions : ND-array An image of the pore space partitioned into individual pore regions. Note that zeros in the image will not be considered for area calculation. voxel_size : scalar The resolution of the image, expressed as the length of one side of a voxel, so the volume of a voxel would be **voxel_size**-cubed. The default is 1. strel : array_like The structuring element used to blur the region. If not provided, then a spherical element (or disk) with radius 1 is used. See the docstring for ``mesh_region`` for more details, as this argument is passed to there. Returns ------- result : list A list containing the surface area of each region, offset by 1, such that the surface area of region 1 is stored in element 0 of the list. """ print('_'*60) print('Finding surface area of each region') im = regions.copy() # Get 'slices' into im for each pore region slices = spim.find_objects(im) # Initialize arrays Ps = np.arange(1, np.amax(im)+1) sa = np.zeros_like(Ps, dtype=float) # Start extracting marching cube area from im for i in tqdm(Ps): reg = i - 1 if slices[reg] is not None: s = extend_slice(slices[reg], im.shape) sub_im = im[s] mask_im = sub_im == i mesh = mesh_region(region=mask_im, strel=strel) sa[reg] = mesh_surface_area(mesh) result = sa * voxel_size**2 return result def mesh_surface_area(mesh=None, verts=None, faces=None): r""" Calculates the surface area of a meshed region Parameters ---------- mesh : tuple The tuple returned from the ``mesh_region`` function verts : array An N-by-ND array containing the coordinates of each mesh vertex faces : array An N-by-ND array indicating which elements in ``verts`` form a mesh element. Returns ------- surface_area : float The surface area of the mesh, calculated by ``skimage.measure.mesh_surface_area`` Notes ----- This function simply calls ``scikit-image.measure.mesh_surface_area``, but it allows for the passing of the ``mesh`` tuple returned by the ``mesh_region`` function, entirely for convenience. """ if mesh: verts = mesh.verts faces = mesh.faces else: if (verts is None) or (faces is None): raise Exception('Either mesh or verts and faces must be given') surface_area = measure.mesh_surface_area(verts, faces) return surface_area def phase_fraction(im, normed=True): r""" Calculates the number (or fraction) of each phase in an image Parameters ---------- im : ND-array An ND-array containing integer values normed : Boolean If ``True`` (default) the returned values are normalized by the total number of voxels in image, otherwise the voxel count of each phase is returned. Returns ------- result : 1D-array A array of length max(im) with each element containing the number of voxels found with the corresponding label. See Also -------- porosity """ if im.dtype == bool: im = im.astype(int) elif im.dtype != int: raise Exception('Image must contain integer values for each phase') labels = np.arange(0, np.amax(im)+1) results = np.zeros_like(labels) for i in labels: results[i] = np.sum(im == i) if normed: results = results/im.size return results ``` #### File: porespy/networks/__snow_dual__.py ```python import numpy as np from porespy.networks import regions_to_network from porespy.networks import add_boundary_regions from porespy.networks import label_boundary_cells from porespy.networks import _net_dict from porespy.tools import pad_faces from porespy.filters import snow_partitioning from porespy.metrics import region_surface_areas, region_interface_areas def snow_dual(im, voxel_size=1, boundary_faces=['top', 'bottom', 'left', 'right', 'front', 'back'], marching_cubes_area=False): r""" Analyzes an image that has been partitioned into void and solid regions and extracts the void and solid phase geometry as well as network connectivity. Parameters ---------- im : ND-array Binary image in the Boolean form with True’s as void phase and False’s as solid phase. It can process the inverted configuration of the boolean image as well, but output labelling of phases will be inverted and solid phase properties will be assigned to void phase properties labels which will cause confusion while performing the simulation. voxel_size : scalar The resolution of the image, expressed as the length of one side of a voxel, so the volume of a voxel would be **voxel_size**-cubed. The default is 1, which is useful when overlaying the PNM on the original image since the scale of the image is alway 1 unit lenth per voxel. boundary_faces : list of strings Boundary faces labels are provided to assign hypothetical boundary nodes having zero resistance to transport process. For cubical geometry, the user can choose ‘left’, ‘right’, ‘top’, ‘bottom’, ‘front’ and ‘back’ face labels to assign boundary nodes. If no label is assigned then all six faces will be selected as boundary nodes automatically which can be trimmed later on based on user requirements. marching_cubes_area : bool If ``True`` then the surface area and interfacial area between regions will be using the marching cube algorithm. This is a more accurate representation of area in extracted network, but is quite slow, so it is ``False`` by default. The default method simply counts voxels so does not correctly account for the voxelated nature of the images. Returns ------- A dictionary containing all the void and solid phase size data, as well as the network topological information. The dictionary names use the OpenPNM convention (i.e. 'pore.coords', 'throat.conns') so it may be converted directly to an OpenPNM network object using the ``update`` command. * ``net``: A dictionary containing all the void and solid phase size data, as well as the network topological information. The dictionary names use the OpenPNM convention (i.e. 'pore.coords', 'throat.conns') so it may be converted directly to an OpenPNM network object using the ``update`` command. * ``im``: The binary image of the void space * ``dt``: The combined distance transform of the image * ``regions``: The void and solid space partitioned into pores and solids phases using a marker based watershed with the peaks found by the SNOW Algorithm. References ---------- [1] <NAME>. "A versatile and efficient network extraction algorithm using marker-based watershed segmenation". Phys. Rev. E 96, 023307 (2017) [2] <NAME> et al. "Dual network extraction algorithm to investigate multiple transport processes in porous materials: Image-based modeling of pore and grain-scale processes. Computers and Chemical Engineering. 123(6), 64-77 (2019) """ # ------------------------------------------------------------------------- # SNOW void phase pore_regions = snow_partitioning(im, return_all=True) # SNOW solid phase solid_regions = snow_partitioning(~im, return_all=True) # ------------------------------------------------------------------------- # Combined Distance transform of two phases. pore_dt = pore_regions.dt solid_dt = solid_regions.dt dt = pore_dt + solid_dt # Calculates combined void and solid regions for dual network extraction pore_regions = pore_regions.regions solid_regions = solid_regions.regions pore_region = pore_regions*im solid_region = solid_regions*~im solid_num = np.amax(pore_regions) solid_region = solid_region + solid_num solid_region = solid_region * ~im regions = pore_region + solid_region b_num = np.amax(regions) # ------------------------------------------------------------------------- # Boundary Conditions regions = add_boundary_regions(regions=regions, faces=boundary_faces) # ------------------------------------------------------------------------- # Padding distance transform to extract geometrical properties dt = pad_faces(im=dt, faces=boundary_faces) # ------------------------------------------------------------------------- # Extract void,solid and throat information from image net = regions_to_network(im=regions, dt=dt, voxel_size=voxel_size) # ------------------------------------------------------------------------- # Extract marching cube surface area and interfacial area of regions if marching_cubes_area: areas = region_surface_areas(regions=regions) interface_area = region_interface_areas(regions=regions, areas=areas, voxel_size=voxel_size) net['pore.surface_area'] = areas * voxel_size**2 net['throat.area'] = interface_area.area # ------------------------------------------------------------------------- # Find void to void, void to solid and solid to solid throat conns loc1 = net['throat.conns'][:, 0] < solid_num loc2 = net['throat.conns'][:, 1] >= solid_num loc3 = net['throat.conns'][:, 1] < b_num pore_solid_labels = loc1 * loc2 * loc3 loc4 = net['throat.conns'][:, 0] >= solid_num loc5 = net['throat.conns'][:, 0] < b_num solid_solid_labels = loc4 * loc2 * loc5 * loc3 loc6 = net['throat.conns'][:, 1] < solid_num pore_pore_labels = loc1 * loc6 loc7 = net['throat.conns'][:, 1] >= b_num boundary_throat_labels = loc5 * loc7 solid_labels = ((net['pore.label'] > solid_num) * ~ (net['pore.label'] > b_num)) boundary_labels = net['pore.label'] > b_num b_sa = np.zeros(len(boundary_labels[boundary_labels == 1.0])) # ------------------------------------------------------------------------- # Calculates void interfacial area that connects with solid and vice versa p_conns = net['throat.conns'][:, 0][pore_solid_labels] ps = net['throat.area'][pore_solid_labels] p_sa = np.bincount(p_conns, ps) s_conns = net['throat.conns'][:, 1][pore_solid_labels] s_pa = np.bincount(s_conns, ps) s_pa = np.trim_zeros(s_pa) # remove pore surface area labels p_solid_surf = np.concatenate((p_sa, s_pa, b_sa)) # ------------------------------------------------------------------------- # Calculates interfacial area using marching cube method if marching_cubes_area: ps_c = net['throat.area'][pore_solid_labels] p_sa_c = np.bincount(p_conns, ps_c) s_pa_c = np.bincount(s_conns, ps_c) s_pa_c = np.trim_zeros(s_pa_c) # remove pore surface area labels p_solid_surf = np.concatenate((p_sa_c, s_pa_c, b_sa)) # ------------------------------------------------------------------------- # Adding additional information of dual network net['pore.solid_void_area'] = (p_solid_surf * voxel_size**2) net['throat.void'] = pore_pore_labels net['throat.interconnect'] = pore_solid_labels net['throat.solid'] = solid_solid_labels net['throat.boundary'] = boundary_throat_labels net['pore.void'] = net['pore.label'] <= solid_num net['pore.solid'] = solid_labels net['pore.boundary'] = boundary_labels # ------------------------------------------------------------------------- # label boundary cells net = label_boundary_cells(network=net, boundary_faces=boundary_faces) # ------------------------------------------------------------------------- # assign out values to dummy dict temp = _net_dict(net) temp.im = im.copy() temp.dt = dt temp.regions = regions return temp ``` #### File: test/unit/test_generators.py ```python import porespy as ps import numpy as np import scipy as sp import pytest import scipy.ndimage as spim import matplotlib.pyplot as plt plt.close('all') class GeneratorTest(): def setup_class(self): np.random.seed(10) def test_cylinders(self): X = 100 Y = 100 # Fibers don't work in 2D with pytest.raises(Exception): im = ps.generators.cylinders(shape=[X, Y], radius=4, ncylinders=20) # But this works im = ps.generators.cylinders(shape=[1, X, Y], radius=1, ncylinders=20) assert im.dtype == bool assert np.shape(im.squeeze()) == (X, Y) im = ps.generators.cylinders(shape=[50, 50, 50], radius=1, ncylinders=20) assert np.shape(im.squeeze()) == (50, 50, 50) def test_insert_shape_center_defaults(self): im = np.zeros([11, 11]) shape = np.ones([3, 3]) im = ps.generators.insert_shape(im, element=shape, center=[5, 5]) assert np.sum(im) == np.prod(shape.shape) im = np.zeros([11, 11]) shape = np.ones([4, 4]) with pytest.raises(Exception): im = ps.generators.insert_shape(im, element=shape, center=[5, 5]) def test_insert_shape_center_overlay(self): im = np.ones([10, 10]) shape = np.ones([3, 3]) im = ps.generators.insert_shape(im, element=shape, center=[5, 5], value=1.0, mode='overlay') assert np.sum(im) == (np.prod(im.shape) + np.prod(shape.shape)) def test_insert_shape_corner_overwrite(self): im = np.ones([10, 10]) shape = np.ones([3, 3]) im = ps.generators.insert_shape(im, element=shape, corner=[5, 5], value=1.0, mode='overlay') assert np.sum(im) == (np.prod(im.shape) + np.prod(shape.shape)) assert im[5, 5] == 2 assert im[4, 5] == 1 and im[5, 4] == 1 def test_insert_shape_center_outside_im(self): im = np.zeros([11, 11]) shape = np.ones([3, 3]) im = ps.generators.insert_shape(im, element=shape, center=[-1, -1]) assert np.sum(im) == 1 im = np.zeros([11, 11]) shape = np.ones([3, 3]) im = ps.generators.insert_shape(im, element=shape, center=[0, -1]) assert np.sum(im) == 2 im = np.zeros([11, 11]) shape = np.ones([3, 3]) im = ps.generators.insert_shape(im, element=shape, center=[10, 10]) assert np.sum(im) == 4 im = np.zeros([11, 11]) shape = np.ones([3, 3]) im = ps.generators.insert_shape(im, element=shape, center=[14, 14]) assert np.sum(im) == 0 im = np.zeros([11, 11]) shape = np.ones([4, 4]) with pytest.raises(Exception): im = ps.generators.insert_shape(im, element=shape, center=[10, 10]) im = np.zeros([11, 11]) shape = np.ones([4, 3]) with pytest.raises(Exception): im = ps.generators.insert_shape(im, element=shape, center=[10, 10]) def test_insert_shape_corner_outside_im(self): im = np.zeros([11, 11]) shape = np.ones([3, 3]) im = ps.generators.insert_shape(im, element=shape, corner=[-1, -1]) assert np.sum(im) == 4 im = np.zeros([11, 11]) shape = np.ones([3, 3]) im = ps.generators.insert_shape(im, element=shape, corner=[-1, 1]) assert np.sum(im) == 6 im = np.zeros([11, 11]) shape = np.ones([3, 3]) im = ps.generators.insert_shape(im, element=shape, corner=[-3, -3]) assert np.sum(im) == 0 im = np.zeros([11, 11]) shape = np.ones([3, 3]) im = ps.generators.insert_shape(im, element=shape, corner=[10, 9]) assert np.sum(im) == 2 im = np.zeros([11, 11]) shape = np.ones([3, 3]) im = ps.generators.insert_shape(im, element=shape, corner=[13, 13]) assert np.sum(im) == 0 im = np.zeros([11, 11]) shape = np.ones([3, 4]) im = ps.generators.insert_shape(im, element=shape, corner=[9, 9]) assert np.sum(im) == 4 im = np.zeros([11, 11]) shape = np.ones([3, 4]) im = ps.generators.insert_shape(im, element=shape, corner=[0, -1]) assert np.sum(im) == 9 def test_bundle_of_tubes(self): im = ps.generators.bundle_of_tubes(shape=[101, 101, 1], spacing=10) labels, N = spim.label(input=im) assert N == 100 def test_overlapping_spheres_2d(self): phis = np.arange(0.1, 0.9, 0.2) for phi in phis: im = ps.generators.overlapping_spheres(shape=[101, 101], radius=5, porosity=phi) phi_actual = im.sum() / np.size(im) assert abs(phi_actual - phi) < 0.02 def test_overlapping_spheres_3d(self): phis = np.arange(0.1, 0.9, 0.2) for phi in phis: im = ps.generators.overlapping_spheres(shape=[100, 100, 50], radius=8, porosity=phi) phi_actual = im.sum() / np.size(im) assert abs(phi_actual - phi) < 0.02 def test_polydisperse_spheres(self): phis = np.arange(0.1, 0.9, 0.2) dist = sp.stats.norm(loc=7, scale=2) for phi in phis: im = ps.generators.polydisperse_spheres(shape=[100, 100, 50], porosity=phi, dist=dist, nbins=10) phi_actual = im.sum() / np.size(im) assert abs(phi_actual - phi) < 0.1 def test_voronoi_edges(self): np.random.seed(0) im = ps.generators.voronoi_edges(shape=[50, 50, 50], radius=2, ncells=25, flat_faces=True) top_slice = im[:, :, 0] assert np.sum(top_slice) == 1409 def test_lattice_spheres_square(self): im = ps.generators.lattice_spheres(shape=[101, 101], radius=5, offset=0, lattice='sc') labels, N = spim.label(input=~im) assert N == 100 def test_lattice_spheres_triangular(self): im = ps.generators.lattice_spheres(shape=[101, 101], radius=5, lattice='triangular') labels, N = spim.label(input=~im) assert N == 85 def test_lattice_spheres_sc(self): im = ps.generators.lattice_spheres(shape=[101, 101, 101], radius=4, offset=1, lattice='sc') labels, N = spim.label(input=~im) assert N == 1000 def test_lattice_spheres_fcc(self): im = ps.generators.lattice_spheres(shape=[101, 101, 101], radius=4, offset=2, lattice='fcc') labels, N = spim.label(input=~im) assert N == 392 def test_lattice_spheres_bcc(self): im = ps.generators.lattice_spheres(shape=[101, 101, 101], radius=4, offset=2, lattice='bcc') labels, N = spim.label(input=~im) assert N == 1024 def test_noise_simplex(self): pass def test_noise_perlin(self): pass def test_blobs_1d_shape(self): im = ps.generators.blobs(shape=[101]) assert len(list(im.shape)) == 3 def test_RSA_2d_single(self): np.random.seed(0) im = np.zeros([100, 100], dtype=int) im = ps.generators.RSA(im, radius=10, volume_fraction=0.5) assert np.sum(im > 0) == 5095 assert np.sum(im > 1) == 20 def test_RSA_2d_multi(self): np.random.seed(0) im = np.zeros([100, 100], dtype=int) im = ps.generators.RSA(im, radius=10, volume_fraction=0.5) im = ps.generators.RSA(im, radius=5, volume_fraction=0.75) assert np.sum(im > 0) == 6520 assert np.sum(im > 1) == 44 def test_RSA_3d_single(self): np.random.seed(0) im = np.zeros([50, 50, 50], dtype=int) im = ps.generators.RSA(im, radius=5, volume_fraction=0.5) assert np.sum(im > 0) == 45602 assert np.sum(im > 1) == 121 def test_RSA_mask_edge_2d(self): im = np.zeros([100, 100], dtype=int) im = ps.generators.RSA(im, radius=10, volume_fraction=0.5, mode='contained') coords = np.argwhere(im == 2) assert ~np.any(coords < 10) assert ~np.any(coords > 90) def test_RSA_mask_edge_3d(self): im = np.zeros([50, 50, 50], dtype=int) im = ps.generators.RSA(im, radius=5, volume_fraction=0.5, mode='contained') coords = np.argwhere(im == 2) assert ~np.any(coords < 5) assert ~np.any(coords > 45) def test_line_segment(self): X0 = [3, 4] X1 = [5, 9] L1, L2 = ps.generators.line_segment(X0, X1) assert np.all(L1 == [3, 3, 4, 4, 5, 5]) assert np.all(L2 == [4, 5, 6, 7, 8, 9]) X0 = [3, 4, 5] X1 = [5, 9, 13] L1, L2, L3 = ps.generators.line_segment(X0, X1) assert np.all(L1 == [3, 3, 4, 4, 4, 4, 4, 5, 5]) assert np.all(L2 == [4, 5, 5, 6, 6, 7, 8, 8, 9]) assert np.all(L3 == [5, 6, 7, 8, 9, 10, 11, 12, 13]) if __name__ == '__main__': t = GeneratorTest() self = t t.setup_class() for item in t.__dir__(): if item.startswith('test'): print('running test: '+item) t.__getattribute__(item)() ``` #### File: test/unit/test_visualization.py ```python import porespy as ps import numpy as np class VisualizationTest(): def setup_class(self): self.im = ps.generators.blobs(shape=[51, 51, 51]) def test_sem_x(self): sem = ps.visualization.sem(self.im) assert sem.ndim == 2 def test_xray_x(self): xray = ps.visualization.xray(self.im) assert np.sum(xray) == np.sum(~self.im) def test_sem_y(self): sem = ps.visualization.sem(self.im, direction='Y') assert sem.ndim == 2 def test_xray_y(self): xray = ps.visualization.xray(self.im, direction='Y') assert np.sum(xray) == np.sum(~self.im) def test_sem_z(self): sem = ps.visualization.sem(self.im, direction='Z') assert sem.ndim == 2 def test_xray_z(self): xray = ps.visualization.xray(self.im, direction='Z') assert np.sum(xray) == np.sum(~self.im) if __name__ == '__main__': t = VisualizationTest() t.setup_class() t.test_sem_x() t.test_xray_x() t.test_sem_y() t.test_xray_y() t.test_sem_z() t.test_xray_z() ```
{ "source": "1MLightyears/AuraProII", "score": 2 }
#### File: AuraProII/src/Search.py ```python import requests as rq from time import sleep from json import loads, dump from PyQt5.QtCore import QMutex from Base import settings, getNamebyID, TMsgEntry, Valuable, history, RGB2Hex, MDStyleStr, SaveFile, log MutSearchName = QMutex() MutSearchKM = QMutex() def SearchName(name: str = '',ID:int=-1,is_strict=False): """ 获取角色ID与zkb统计信息。 name(str):角色名 ID(int):如果已有角色ID则跳过搜索characterID的步骤 is_strict(bool):严格模式,只搜索与name完全一致的角色名 """ global MutSearchName MutSearchName.lock() Msg = {} log("SearchName:name={name},ID={ID},is_strict={is_strict}".format(name=name,ID=ID,is_strict=is_strict)) #characterID if ID < 0: #如果没有给出characterID name = name.strip(" \n") for i in history: if i.upper() == name.upper(): name = i ID = history[name]["characterID"] break if ID < 0: #搜索历史记录未命中 log("SearchName:历史记录未命中") strict = "&strict=true" if is_strict else "&strict=false" url=r"https://esi.evetech.net/latest/search/?categories=character&datasource=tranquility&language=en-us&search="+name.replace(" ", "+")+strict try: with rq.get(url,timeout=5) as ret: ret = loads(ret.content) except Exception as e: log("SearchName:"+str(e),level="error") Msg.update({"Error":"esiError"}) MutSearchName.unlock() return Msg if "character" in ret: ID = ret["character"] if (len(ID) > 1): log("SearchName:命中{l}/{lmax}个结果".format(l=len(ID),lmax=settings["ResultCountLimit"])) #有多个命中结果 if len(ID) < settings["ResultCountLimit"]: Msg.update({"NameList":ID}) MutSearchName.unlock() return Msg else: #结果过多 Msg.update({ "TooManyResults": TMsgEntry("搜索结果数量超过" + \ str(settings["ResultCountLimit"]) + "个,改为严格模式...", style_str=MDStyleStr( color=settings["clHint"], font_size=settings["labelFontSize"] )), "name": name }) MutSearchName.unlock() return Msg else: ID=ID[0] else: Msg.update({"Error": "NoSuchCharacterError"}) log("SearchName:esi查询失败:{name}".format(name=name),level="warning") MutSearchName.unlock() return Msg Msg.update({"SearchName": [name, ID]}) #zkb url = r"https://zkillboard.com/api/stats/characterID/" + str(ID) + r"/" try: with rq.get(url,timeout=5) as ret: ret = loads(ret.content) except Exception as e: Msg.update({"Error":"zkbError"}) MutSearchName.unlock() return Msg #角色信息为None if (ret == {}) or (ret["info"] == None): Msg.update({"Error":"PlayerNoPVPData"}) MutSearchName.unlock() return Msg if "dangerRatio" not in ret: ret["dangerRatio"]=0 danger_ratio_color = (int(ret["dangerRatio"] / 100 * 255), int((1 - (ret["dangerRatio"] / 100)) * 255),0) if "gangRatio" not in ret: ret["gangRatio"]=100 solo_ratio_color = (int((1 - (ret["gangRatio"] / 100)) * 255), int(ret["gangRatio"] / 100 * 255),0) Msg.update({"SearchKB": { "name": [ret["info"]["name"], TMsgEntry(r"<a href='https://zkillboard.com/character/" + str(ID) + r"' style='color:blue'>" + ret["info"]["name"] + "</a>", style_str=MDStyleStr(color=settings["clURL"],font_size=settings["labelFontSize"]))], "dangerRatio":[ret["dangerRatio"],TMsgEntry("危险度:" + str(ret["dangerRatio"]) + "%", style_str=MDStyleStr(color=danger_ratio_color,font_size=settings["labelFontSize"]))], "soloRatio": [ret["gangRatio"],TMsgEntry("solo率:" + str(100-ret["gangRatio"]) + "%", style_str=MDStyleStr(color=solo_ratio_color,font_size=settings["labelFontSize"]))], "topShips": [[i["shipTypeID"] for i in ret["topLists"][3]["values"][:3]],TMsgEntry("最高击杀舰船:" + ','.join([ getNamebyID(i["shipTypeID"])+ "(" + str(i["kills"]) + "次)" for i in ret["topLists"][3]["values"][:3] if i["shipName"] != "Capsule" ]), style_str=MDStyleStr(color=settings["cltopShips"],font_size=settings["labelFontSize"]))], "topSolarSystem":[[i["solarSystemName"] for i in ret["topLists"][4]["values"][:3]],TMsgEntry("最常出没:"+','.join([ i["solarSystemName"] + "(" + str(i["kills"]) + "次)" for i in ret["topLists"][4]["values"][:3] ]), style_str=MDStyleStr(color=settings["cltopSolarSystem"],font_size=settings["labelFontSize"]))]}}) history.update({ret["info"]["name"]: {"characterID": ID}}) SaveFile(history,settings["workingDir"]+"history.json") #getKMList url = r"https://zkillboard.com/api/kills/characterID/" + str(ID) + r"/" try: with rq.get(url,timeout=5) as ret: ret = loads(ret.content) except Exception as e: log("getKMList:"+str(e),level="error") Msg.update({"Error":"getKMListError"}) MutSearchName.unlock() return Msg #玩家可能没有击杀km if ret == []: Msg.update({"getKMList": []}) MutSearchName.unlock() return Msg km_count = min(settings["KMCounts"],len(ret)) killmail_pairs = [(ret[i]["killmail_id"], ret[i]["zkb"]["hash"]) for i in range(km_count)] remap = [] label_list = [TMsgEntry(str(i+1)+".最近km("+Valuable(ret[i]["zkb"]["totalValue"])+' isk)', style_str=MDStyleStr(color=settings["clKM"],font_size=settings["labelFontSize"]), ClickEvent=SearchKM, ClickArgs=(ID, killmail_pairs[i][0], killmail_pairs[i][1])) for i in range(len(killmail_pairs))] for i in killmail_pairs: remap.append([i, label_list[0], {}]) label_list = label_list[1:] Msg.update({"getKMList": remap}) log("getKMList:完成") MutSearchName.unlock() return Msg def SearchKM(character_id:int,killmail_id: int = 0, killmail_hash: str = ''): """ 获取一个特定的km character_id(int):角色id killmail_id(int):该killmail的id killmail_hash(str):由ccp给出的km哈希值 """ global MutSearchKM MutSearchKM.lock() Msg = {} log("SearchKM:character_id={character_id},killmail_id={killmail_id},killmail_hash={killmail_hash}".format(character_id=character_id,killmail_id=killmail_id,killmail_hash=killmail_hash)) url = r"https://esi.evetech.net/latest/killmails/"\ + str(killmail_id)\ + r"/" + killmail_hash + r"/?datasource=tranquility" try: with rq.get(url,timeout=5) as ret: ret = loads(ret.content) except Exception as e: log("SearchKM:"+str(e),level="error") Msg.update({"Error":"SearchKMError"}) MutSearchKM.unlock() return -1 Msg = {"SearchKM": {"time": [ret["killmail_time"].replace('T', ' ').replace('Z', ''),TMsgEntry(" ("+ret["killmail_time"].replace('T', ' ').replace('Z', ''+")"), style_str=MDStyleStr(color=settings["clHint"],font_size=settings["labelFontSize"])) ], "victimShip": [ret["victim"]["ship_type_id"],TMsgEntry( r"&nbsp;&nbsp;<a href='https://zkillboard.com/kill/"+str(killmail_id)+r"/' style='color:blue'>击毁:"+getNamebyID(ret["victim"]["ship_type_id"])+r"</a>", style_str=MDStyleStr(color=settings["clURL"],font_size=settings["labelFontSize"])) ] }} for i in ret["attackers"]: if ("character_id"in i)and(i["character_id"] == character_id): ship=getNamebyID(i["ship_type_id"]) if "ship_type_id" in i else "(?)" weapon = getNamebyID(i["weapon_type_id"]) if "weapon_type_id" in i else "(?)" if ship == weapon: weapon="(混合)" Msg["SearchKM"].update({ "shipType":[ship,TMsgEntry( " · " + ship, style_str=MDStyleStr(color=settings["clshipType"],font_size=settings["labelFontSize"]) )], "weaponType":[weapon,TMsgEntry( " · " + weapon, style_str=MDStyleStr(color=settings["clweaponType"],font_size=settings["labelFontSize"]) )]}) break log("SearchKM:完成") MutSearchKM.unlock() return Msg def addName(ID: int,no:int=0): """ 为characterID获取name。 ID(int):要搜索name的ID。 no(int):第no个搜索项。 """ url=r"https://esi.evetech.net/latest/characters/"+str(ID)+r"/?datasource=tranquility" Msg = {"addName": []} try: with rq.get(url,timeout=5) as ret: ret = loads(ret.content) except Exception as e: log("addName:" + str(e), level="error") return Msg log("addName:ID={ID}已获取到".format(ID=ID)) if "name" in ret: history.update({ret["name"]:{"characterID":ID}}) Msg["addName"].append([ID, TMsgEntry(ret["name"], ClickEvent=SearchName, ClickArgs=(ret["name"],ID), style_str=MDStyleStr(color=settings["claddName"],font_size=settings["labelFontSize"]))] ) return Msg ```
{ "source": "1MLightyears/baike", "score": 3 }
#### File: baike/baike/baike.py ```python import re from sys import stderr from typing import List from os.path import exists import time import requests as rq from lxml import html class Baike: """ 主对象部分。进行百科搜索。 """ # private def __init__(self, *args, **kwargs): self.reset() self.setting(*args, **kwargs) def __regularize(self, i: int, j: int): """ 将i规范到-j~j-1之间,以便于列表索引。 """ if i >= j: i = j - 1 elif i < -j: i = -j return i def __getTitles(self, doc): """ 获取主副标题。 doc(lxml.html):需要获取标题的页面 """ self.title = doc.xpath( "//dd[@class='lemmaWgt-lemmaTitle-title J-lemma-title']/h1/text()" )[0] self.subtitle = doc.xpath( "//dd[@class='lemmaWgt-lemmaTitle-title J-lemma-title']/h2/text()" ) if self.subtitle != []: self.subtitle = self.subtitle[0] else: self.subtitle = "" def __getSummaryPic(self, url: str): """ 保存某个义项的概要图。 """ # 先获取到不带附加参数的url链接 url = re.search(r"^(.*?)\?", url).group(1) try: ir = rq.get(url, stream=True) pic_path = f"{self.__setup['keyword']}_{str(self.__setup['no'][0])}_{time.strftime('%Y%m%d%H%M%S',time.localtime())}.jpg" if not exists(pic_path): if ir.status_code == 200: with open(pic_path, "wb") as f: # 默认图片为jpg格式 for chunk in ir: f.write(chunk) return True # 成功存图返回True except rq.exceptions.Timeout: stderr.write("超时错误:" + url + ";" + "HTTP状态码:" + str(ir.status_code) + "\n") return False # 存图失败返回False def __getParagraph(self, url: str): """ 获取词条的内容简介。 """ endl = "ANewLine" try: ret = rq.get(url, headers=self.__header, timeout=self.__setup["timeout"]) except rq.exceptions.Timeout: stderr.write("超时错误:" + url + ";" + "HTTP状态码:" + str(ret.status_code) + "\n") return "" doc = html.fromstring(ret.text) # 换了一个新页面,重新获取一次标题副标题 self.__getTitles(doc) # 获取summary图 if self.__setup["pic"]: img = doc.xpath("//div[@class='summary-pic']//img") if img != []: self.__getSummaryPic(img[0].attrib["src"]) self.text = "" # 如果no的第二个参数是空列表,那么显示段落目录 if self.__setup["no"][1] == []: self.text = "【目录】" + endl + "0简介" + endl index = doc.xpath("//dt[@class='catalog-title level1']") for item in index: self.text += item.text_content() + endl # 处理词条文本,分成段落 para_list = [] # 某些带头部海报的页面,简介单独放置,因此需要单独选出 post_title = doc.xpath("//body/div[3]") if post_title != []: if post_title[0].attrib["class"] != "body-wrapper": para_list.append( post_title[0] .xpath(".//div[@class='lemma-summary']")[0] .text_content() ) div_list = doc.xpath("//div[@class='content']/div/div") # 某些页面的结构有所不同:比如某些电影页面,其主要内容多一个div warp list_check = [ i for i in div_list if ("class" in i.attrib.keys()) and ("main_tab" in i.attrib["class"]) ] if list_check != []: div_list = list_check[0].xpath("./div") for div in div_list: attrib_class = div.attrib.get("class", "") if not attrib_class: continue elif "lemma-summary" in attrib_class: # 是简介部分 para_list.append(div.text_content()) elif "level-2" in attrib_class: # 一个段落的标题 para_list.append(f"{len(para_list)}.") for t in div.getchildren()[0].itertext(): # 段落标题是一个<h2>,这个标签底下有一个<span>会影响分切出的 # 段落标题,因此需要过滤掉这个<span>,它的text和页面标题一致。 # 拼接出适合阅读的标题 if t != self.title: para_list[len(para_list) - 1] += t + " " elif ("para" in attrib_class) and ("style" not in attrib_class): # 前一个段落的内容,且不是图片,添加内容到列表的最后一个里 para_list[len(para_list) - 1] += endl + div.text_content() elif "album-list" in attrib_class: # 内容结束 break # 选出对应片段 for i in self.__setup["no"][1]: self.text += para_list[self.__regularize(i, len(para_list))] + endl # 对description进行后期处理 # 删去\xa0 self.text = re.sub(r"\xa0", "", self.text) # 删去角标部分 self.text = re.sub(r"\[[0-9\-]*?\]", "", self.text) # 删去换行符 self.text = re.sub(r"[\n\r]", "", self.text) # 把换行标记ANewLine变成\n self.text = re.sub(endl, "\n", self.text) # 处理完毕,拼接结果 return self.title + self.subtitle + "\n" + self.text def __getEntries(self, url: str): """ 获取义项列表。 """ try: ret = rq.get(url, headers=self.__header, timeout=self.__setup["timeout"]) except rq.exceptions.Timeout: stderr.write("超时错误:" + url + ";" + "HTTP状态码:" + str(ret.status_code) + "\n") return "" doc = html.fromstring(ret.text) # 现在我们在第一个义项页面里 self.__getTitles(doc) # 获取义项列表 self.entrylist = doc.xpath( "//ul[@class='polysemantList-wrapper cmn-clearfix']//li/*" ) # 如果义项列表是空的,说明这是个单义词,为其添加标题 if self.entrylist == []: self.entrylist = [html.HtmlElement()] self.entrylist[0].text = self.title + "\n" + self.subtitle # 为使得第i个索引指向第i个义项,需要添加一个dummy0号义项在entrylist里 self.entrylist = [html.HtmlElement()] + self.entrylist # 为能返回正确的url,对其他url添加头部 for i in range(len(self.entrylist)): if self.entrylist[i].attrib.has_key("href"): self.entrylist[i].attrib["href"] = ( "https://baike.baidu.com" + self.entrylist[i].attrib["href"] ) else: # 没有href属性的是当前义项,为它加一个url self.entrylist[i].attrib["href"] = url # 对no进行处理 # 如果no是单个整数,把它变成列表 if isinstance(self.__setup["no"], int): self.__setup["no"] = [self.__setup["no"], [0]] # 获取第no[0]号义项的内容 if self.__setup["no"][0] != 0: return self.__getParagraph( self.entrylist[ self.__regularize(self.__setup["no"][0], len(self.entrylist)) ].attrib["href"] ) elif self.__setup["no"][0] == 0: # 如果no[0]是0那么说明要求显示义项列表 entries = "" self.title = self.__setup["keyword"] for i in range(1, len(self.entrylist)): entries += str(i) + ":" + self.entrylist[i].text + "\n" # 处理完毕,拼接结果 return self.title + "\n" + entries def __call__(self, *args, **kwargs): ret = self.setting(*args, **kwargs) if ret == 0: return self.query() else: return "" # public def query(self): """ 搜索关键字。 """ if self.setting() != 0: return "" # 获取搜索结果 try: ret = rq.get( "https://baike.baidu.com/search?word=" + self.__setup["keyword"], headers=self.__header, timeout=self.__setup["timeout"], ) except rq.exceptions.Timeout: stderr.write( "超时错误:" + "https://baike.baidu.com/search?word=" + self.__setup["keyword"] + ";" + "HTTP状态码:" + str(ret.status_code) + "\n" ) return "" ret.encoding = "utf-8" doc = html.fromstring(ret.text) x = "//div[@class='searchResult']/dl[1]/dd[1]/a[@class='result-title']" ans = doc.xpath(x) if ans == []: stderr.write("没有匹配的搜索结果:" + self.__setup["keyword"] + "\n") return "" url = ans[0].attrib["href"] if url[0] == "/": url = "https://baike.baidu.com" + url return self.__getEntries(url) def setting(self, *args, **kwargs): """ 设置搜索关键字和header。 keyword(str):要搜索的关键字。默认为None,这时返回空字符串。 no(List of int):第一个参数:整数no1。 为整数时,获取第no1个义项; 为0时,获取义项列表; 负数的no1意味着从最后一个义项开始倒数。 默认为1。 第二个参数:列表no2. 为空(“[]”)时,获取目录; 为0时,获取简介段落; 为整数时,依次获取各段落并拼接。 默认为[0]。 timeout(int):请求的超时限制。超时后会报错'超时错误'并返回空字符串。默认为5(秒)。 pic(bool):是否下载简介图片。默认为False。 如果设置合法,该函数返回0。如果设置不合法,该函数返回大于0的值,此时调用query()会报错。 """ # 用户设置部分 for i, j in zip(self.__setup.keys(), args): self.__setup[i] = j self.__setup.update(kwargs) # 检查各变量是否合法 # keyword if not isinstance(self.__setup["keyword"], str): stderr.write("参数不正确:keyword必须是字符串\n") return 1 # no if not ( ( isinstance(self.__setup["no"], int) or ( isinstance(self.__setup["no"], List) and (len(self.__setup["no"]) == 2) and (isinstance(self.__setup["no"][0], int)) and (isinstance(self.__setup["no"][1], List)) and ( [i for i in self.__setup["no"][1] if not isinstance(i, int)] == [] ) ) ) ): stderr.write("参数不正确:no必须是整数或描述段落的列表\n") return 2 # timeout if self.__setup["timeout"] <= 0: stderr.write("参数不正确:timeout必须大于0\n") return 3 # pic if not isinstance(self.__setup["pic"], bool): stderr.write("参数不正确:pic必须是True或False\n") return 4 # 自动获取部分 # header # 暂时使用Firefox的header self.__header = { "Host": "baike.baidu.com", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:75.0) Gecko/20100101 Firefox/75.0", "Accept": "application/json, text/javascript, */*; q=0.01", "Accept-Language": "zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5,en-US;q=0.3,en;q=0.2", "Accept-Encoding": "gzip, deflate", } self.title = "" self.subtitle = "" self.text = "" return 0 def reset(self): self.__setup = {"keyword": "", "no": [1, [0]], "timeout": 5, "pic": False} # 提供一个预先定义好的对象getBaike方便直接调用 def getBaike(*args, **kwargs): return Baike()(*args, **kwargs) ```
{ "source": "1MLightyears/clarisse", "score": 2 }
#### File: clarisse/clarisse/types_supported.py ```python from PySide2.QtWidgets import ( QLabel, QSpinBox, QLineEdit, QDoubleSpinBox, QTextEdit, QTableWidget, QCheckBox, QTableWidgetItem, ) from PySide2.QtCore import Qt import typing from . import log __all__ = [ "ClrsUnknown", "ClrsInt", "ClrsFloat", "ClrsString", "ClrsList", "ClrsBool", "ClrsDict", ] class ClrsUnknown(QLineEdit): __name__ = "ClrsUnknown" def __init__(self, name: str = "", target_kwargs: dict = {}, *args, **kwargs): super(ClrsUnknown, self).__init__(*args, **kwargs) if name != "": self.setObjectName(name) self.target_kwargs = target_kwargs def setDefault(self, default=None): if default != None: self.setPlaceholderText(str(default)) def getValue(self): return self.text() or self.placeholderText() class ClrsString(QLineEdit): __name__ = "ClrsString" def __init__(self, name: str = "", target_kwargs: dict = {}, *args, **kwargs): super(ClrsString, self).__init__(*args, **kwargs) if name != "": self.setObjectName(name) self.target_kwargs = target_kwargs def setDefault(self, default=None): if default != None: self.setPlaceholderText(default) def getValue(self): return self.text() or self.placeholderText() class ClrsInt(QSpinBox): __name__ = "ClrsInt" def __init__(self, name: str = "", target_kwargs: dict = {}, *args, **kwargs): super(ClrsInt, self).__init__(*args, **kwargs) if name != "": self.setObjectName(name) self.target_kwargs = target_kwargs def setDefault(self, default=None): if default != None: self.setValue(default) def getValue(self): return self.value() class ClrsFloat(QDoubleSpinBox): __name__ = "ClrsFloat" def __init__(self, name: str = "", target_kwargs: dict = {}, *args, **kwargs): super(ClrsFloat, self).__init__(*args, **kwargs) if name != "": self.setObjectName(name) self.target_kwargs = target_kwargs def setDefault(self, default=None): if default != None: self.setValue(default) def getValue(self): return self.value() class ClrsList(QTextEdit): __name__ = "ClrsList" def __init__( self, name: str = "", target_kwargs: dict = {}, ElementType: type = None, *args, **kwargs ): super(ClrsList, self).__init__(*args, **kwargs) if name != "": self.setObjectName(name) self.target_kwargs = target_kwargs self.ElementType = ElementType def setDefault(self, default=None): if isinstance(default, list): self.setPlaceholderText("\n".join([str(i) for i in default])) def getValue(self): t = self.placeholderText() if self.toPlainText() == "" else self.toPlainText() if (isinstance(self.ElementType, tuple)) and (len(self.ElementType) > 0): return [self.ElementType(i) for i in t.split("\n")] return [i for i in t.split("\n")] class ClrsBool(QCheckBox): __name__ = "ClrsBool" def __init__(self, name: str = "", target_kwargs: dict = {}, *args, **kwargs): super(ClrsBool, self).__init__(*args, **kwargs) if name != "": self.setObjectName(name) self.target_kwargs = target_kwargs def setDefault(self, default=None): if default != None: self.setChecked(default) def getValue(self): return self.isChecked() class ClrsDict(QTableWidget): __name__ = "ClrsDict" def __init__( self, name: str = "", target_kwargs: dict = {}, ElementType=None, *args, **kwargs ): super(ClrsDict, self).__init__(*args, **kwargs) if name != "": self.setObjectName(name) self.target_kwargs = target_kwargs self.setDefaultDropAction(Qt.TargetMoveAction) self.ElementType = ElementType def setDefault(self, default=None): if default != None: # create a 2 column table keys = list(default.keys()) keys_count = len(keys) self.setRowCount(keys_count) self.setColumnCount(2) for i in range(keys_count): k, v = QTableWidgetItem(), QTableWidgetItem() k.setText(str(keys[i])) v.setText(str(default[keys[i]])) self.setItem(i, 0, k) self.setItem(i, 1, v) # TODO:add approaches to add/delete items def getValue(self): ret = {} for i in range(self.rowCount()): k, v = self.item(i, 0).text(), self.item(i, 1).text() if isinstance(self.ElementType, tuple): if len(self.ElementType) > 0: k = self.ElementType[0](k) if len(self.ElementType) > 1: v = self.ElementType[1](v) ret.update({k: v}) return ret ```
{ "source": "1MLightyears/easylog", "score": 3 }
#### File: easylog/easylog/__init__.py ```python from .logger import Logger, loggers, Format, brackets from .trigger import error_loggers import sys from functools import partial __all__ = [ "default_logger", "log", "print", "error_loggers", "Logger", "brackets", "info", "warning", "error", "fatal", "debug" ] default_logger = Logger() def log(*args, sep=" ", level="info", dest=sys.stderr): """ Write the log message. In fact, this function broadcast a log request to all loggers, see if any logger answer the request. """ for logger in loggers: logger.log(sep.join([str(i) for i in args]), level, dest) def print(*args, **kwargs): """ 'print' the log message to designated dest and level for once. The default logger(i.e. default_logger) will always answer, while other loggers answer when their dest & level match the designated dest & level. """ global default_logger sep = kwargs.get("sep", " ") l = default_logger.level d = default_logger.dest default_logger.level = kwargs.get("level", "info") default_logger.dest = kwargs.get("dest", sys.stderr) # default_logger would respond in any cases, # other loggers would respond if their conditions met. log(*args, sep=sep, level=default_logger.level, dest=default_logger.dest) default_logger.level = l default_logger.dest = d # for legacy use info = partial(log, level="info") warning = partial(log, level="warning") error = partial(log, level="error") fatal = partial(log, level="fatal") debug = partial(log, level="debug") ```
{ "source": "1MLightyears/latexify_py", "score": 2 }
#### File: 1MLightyears/latexify_py/setup.py ```python import setuptools def main(): with open('README.md', 'r') as fp: readme = fp.read() setuptools.setup( name='latexify-py', version='0.0.7', description='Generates LaTeX source from Python functions.', long_description=readme, long_description_type='text/markdown', url='https://github.com/google/latexify_py', author='<NAME>', author_email='<EMAIL>', license='Apache Software License 2.0', classifiers=[ 'Framework :: IPython', 'Framework :: Jupyter', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Software Development :: Code Generators', 'Topic :: Text Processing :: Markup :: LaTeX', ], keywords='equation latex math mathematics', packages=['latexify'], install_requires=[ 'dill>=0.3.2', ], python_requires='>=3.6, <3.9', ) main() ``` #### File: latexify_py/tests/node_visitor_base_test.py ```python import pytest from latexify import node_visitor_base class MockVisitor(node_visitor_base.NodeVisitorBase): """Mock visitor class.""" def __init__(self): # Dummy member to fail visitor invocation. self.visit_Baz = None # pylint: disable=invalid-name def generic_visit(self, node, action): return 'generic_visit: {}, {}'.format(node.__class__.__name__, action) def visit_Foo(self, node, action): # pylint: disable=invalid-name del node return 'visit_Foo: {}'.format(action) def visit_Foo_abc(self, node): # pylint: disable=invalid-name del node return 'visit_Foo_abc' def visit_Foo_xyz(self, node): # pylint: disable=invalid-name del node return 'visit_Foo_xyz' class Foo: pass class Bar: pass class Baz: pass def test_generic_visit(): visitor = MockVisitor() assert visitor.visit(Bar()) == 'generic_visit: Bar, None' assert visitor.visit(Bar(), 'unknown') == 'generic_visit: Bar, unknown' assert visitor.visit(Bar(), '123') == 'generic_visit: Bar, 123' def test_visit_node(): visitor = MockVisitor() assert visitor.visit(Foo()) == 'visit_Foo: None' assert visitor.visit(Foo(), 'unknown') == 'visit_Foo: unknown' assert visitor.visit(Foo(), '123') == 'visit_Foo: 123' def test_visit_node_action(): visitor = MockVisitor() assert visitor.visit(Foo(), 'abc') == 'visit_Foo_abc' assert visitor.visit(Foo(), 'xyz') == 'visit_Foo_xyz' def test_invalid_visit(): visitor = MockVisitor() with pytest.raises(AttributeError, match='visit_Baz is not callable'): visitor.visit(Baz()) ```
{ "source": "1Mmanoncouronne/appnexus-client", "score": 3 }
#### File: appnexus-client/appnexus/utils.py ```python from thingy import names_regex class classproperty(property): def __get__(self, cls, owner): return self.fget(owner) def normalize_service_name(service_name, delimiter='-'): words = [word.lower() for word in names_regex.findall(service_name)] normalized_name = delimiter.join(words) return normalized_name __all__ = ["classproperty", "normalize_service_name"] ```
{ "source": "1MochaChan1/pafy", "score": 3 }
#### File: 1MochaChan1/pafy/yt_mod_1.py ```python import requests import json import re from bs4 import BeautifulSoup def search_content(query): search = "https://www.youtube.com/results?search_query=" text = query text = list(text.split(" ")) search_query = f"{search}{'+'.join(str(x) for x in text)}" source = requests.get(search_query).text soup = BeautifulSoup(source, 'lxml') script = soup.find_all('script')[32] json_text = re.search('var ytInitialData = (.+)[,;]{1}', str(script)).group(1) data = json.loads(json_text) #converts json string to dictionary meta_data = (data['contents']['twoColumnSearchResultsRenderer'] ['primaryContents']['sectionListRenderer'] ['contents'][0]['itemSectionRenderer'] ['contents']) videos = {} res = [] #making global variables to use in the nested loops and conditional statements below link, duration, thumbs, title, num, gafla = '','','','', '', '' if type(meta_data) is list: for data in meta_data: if type(data) is dict: for key, value in data.items(): if type(value) is dict: for k,v in value.items(): #if (k == 'videoId') or (k == 'thumbnail') or (k == 'title' and 'runs' in v) or (k=='lengthText'): #Checks if the key we need are present if k=='videoId' and type(v) is not dict and len(v) == 11: #count += 1 link = "https://www.youtube.com/watch?v="+v if type(v) is dict: if 'thumbnails' in v: if not v['thumbnails'][0]['url'].startswith('//'): #This code is written to avoid getting a channel's thumbnail thumbs = v['thumbnails'][0]['url'] if k=='title' and 'runs' in v : title = v['runs'][0]['text'] if k=='lengthText' and 'simpleText' in v: duration=v['simpleText'] num = [int(x) for x in duration.split(":")] if len(num) == 2: duration=(num[0]*60+num[1]) elif len(num) > 2: duration=(num[0]*3600+num[1]*60+num[0]) res.append((title, thumbs, link, duration)) for x in range(len(res)): #Storing the video resources in a dictionary videos[x+1] = res[x] return videos """vid = search_content("dsad") for k,v in vid.items(): print(f"{k}:{v}")""" ```
{ "source": "1MochaChan1/WorkoutPlanner", "score": 2 }
#### File: 1MochaChan1/WorkoutPlanner/workout_planner.py ```python from kivymd.app import MDApp from kivymd.uix.screen import Screen from kivymd.uix.button import* from kivymd.uix.textfield import MDTextField from kivymd.uix.dialog import MDDialog from kivymd.uix.menu import MDDropdownMenu from kivymd.uix.chip import MDChip, MDChooseChip from kivymd.uix.boxlayout import BoxLayout from kivymd.uix.datatables import MDDataTable from kivy.metrics import dp import numpy as np from kivy.lang import Builder import sqlite3 as sql #===================== Global Variables =======================# #Builder.load_file("KV.kv") chip_color = [0.12941176470588237, 0.5882352941176471, 0.9529411764705882, 0.7] selected_color = [0.12941176470588237, 0.5882352941176471, 0.9529411764705882, 1.0] #Exercise Databse each sublist has various difficulty, 0 : easy, 1 : medium, 2 : hard push = ( ["Pushup", "Close Grip", "Wide Grip", "Inclined Pushup"], ["Diamond Pushup", "Archer Pushup","Knuckle Pushup", "Declined Pushups"], ["Decline Diamond", "Pseudo Planche Pushup", "Explosives"] ) pull = (["Chin-ups", "Negatives", "Hanging Hold"], ["Leg Raises", "Slow Pullups", "Dead Hang"], ["Perfect Arched Pullups", "90 degree -Top Hold", "Dead Hang (1 Arm)"]) leg = (["Squats", "Bunny Hops", "Lunges", "Calf Raises"], ["Jumping Squats", "Jumping Lunges", "Bulgarian Split Squats",], ["Pistol Squats", "180 Squats", "Close-Wide Squats", "1 Legged Calf Raises"]) #List of selected exercises. push_list = [] pull_list = [] leg_list = [] #Database Creation. con = sql.connect("Workout.db") cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS Plans(Plan varchar(50) UNIQUE, Push TEXT, Pull TEXT, Leg TEXT);") class BuildApp(Screen): #This class handles everything on screen def __init__(self, **kwargs): super().__init__(**kwargs) diffs = [{'text' : 'Easy'}, {'text' : 'Medium'}, {'text' : 'Hard'}] self.drop = MDDropdownMenu( caller = self.ids.pushup_diff, items = diffs, width_mult = 4, ) self.drop.bind(on_release=self.diff_sel) self.drop1 = MDDropdownMenu( caller = self.ids.pullup_diff, items = diffs, width_mult = 4, ) self.drop1.bind(on_release=self.diff_sel) self.drop2 = MDDropdownMenu( caller = self.ids.legs_diff, items = diffs, width_mult = 4, ) self.drop2.bind(on_release=self.diff_sel) self.table = MDDataTable( check = True, column_data = [ ("Plan", dp(30)), ("Push", dp(50)), ("Pull", dp(50)), ("Legs", dp(50)), ], row_data =[ ("Plan Name", "Push Exercises", "Pull Exercises", "Leg Exercises"), ("","","","") ], pos_hint = {"center_x":0.5, "center_y":0.35}, size_hint = (0.75,0.25), ) self.add_widget(self.table) self.table.bind(on_check_press = self.selection) #Adding the data to the data table def add_data(self, *args): cur.execute("SELECT *FROM Plans;") rows = cur.fetchall() for row in rows: self.table.row_data = [ (row), ("","","","") ] def selection(self, table, table_item): self.sel_plan = table_item[0] #Searching a Record def searching(self, *args): plan_name = str(self.ids.plan_name.text.strip()) cur.execute("SELECT *FROM Plans WHERE Plan = ?", (plan_name,)) rows = cur.fetchall() for row in rows: self.table.row_data = [ (row), ("","","","") ] print(plan_name) #Updating A Record def updation(self, *args): #Wasn't able to do it using self.push_str and stuff push_str = ", ".join([str(x) for x in push_list]) pull_str = ", ".join([str(x) for x in pull_list]) leg_str = ", ".join([str(x) for x in leg_list]) record = [push_str, pull_str, leg_str, self.sel_plan] update = """UPDATE Plans SET Push = ?, Pull = ?, Leg = ? WHERE Plan = ?""" cur.execute(update, (record)) con.commit() self.table.row_data=[ (self.sel_plan, push_str, pull_str, leg_str), ("","","","") ] #Deleting A Record def deletion(self, *args): cur.execute("DELETE FROM Plans WHERE Plan = ?", (self.sel_plan,)) con.commit() self.table.row_data = [ ] #Inserting(Creating) A Record. def insertion(self): global push_list, pull_list, leg_list plan_name = self.ids.plan_name.text.strip() con = sql.connect("Workout.db") cur = con.cursor() push_str = ", ".join([str(x) for x in push_list]) pull_str = ", ".join([str(x) for x in pull_list]) leg_str = ", ".join([str(x) for x in leg_list]) #record = [plan_name, self.push_str, self.pull_str, self.leg_str] record = [plan_name, push_str, pull_str, leg_str] cur.execute("INSERT INTO Plans(Plan, Push, Pull, Leg) VALUES(?,?,?,?)", (record)) cur.execute("SELECT *FROM Plans WHERE Plan = ?", (plan_name,)) rows = cur.fetchall() con.commit() con.close() self.add_data() print(rows) print("[RECORD INSERTED IN DATABASE SUCCESSFULLY]") #Fetch the Difficulty and Exercise Selection def diff_sel(self, menu, menu_item): global push, pull, leg print(menu.caller.text) #menu.caller.text gives the text of the helper print(menu_item.text+"\n") if menu.caller.text == "Push": if menu_item.text == "Easy": #Clearing previous widgets for child in self.children[:]: if isinstance(child, MDChip): if child.text in push[0] + push[1] + push[2]: self.remove_widget(child) push_e = {} for ex,y in zip(push[0], np.arange(0.73,-1,-0.05)): push_e[round(y,2)] = ex for pos,ex in push_e.items(): chip = MDChip( text= ex, pos_hint = {'center_x':0.2, 'center_y':float(pos)}, on_release = self.selected_push, check = True ) chip.color = chip_color chip.icon = "coffee" self.add_widget(chip) elif menu_item.text == "Medium": #Clearing previous widgets. for child in self.children[:]: if isinstance(child, MDChip): if child.text in push[0] + push[1] + push[2]: self.remove_widget(child) push_m = {} for ex,y in zip(push[1], np.arange(0.73,-1,-0.05)): push_m[round(y,2)] = ex for pos,ex in push_m.items(): chip = MDChip( text= ex, pos_hint = {'center_x':0.2, 'center_y':float(pos)}, on_release = self.selected_push, check = True ) chip.color = chip_color chip.icon = "coffee" self.add_widget(chip) elif menu_item.text == "Hard": #Clearing previous widgets. for child in self.children[:]: if isinstance(child, MDChip): if child.text in push[0] + push[1] + push[2]: self.remove_widget(child) push_h = {} for ex,y in zip(push[2], np.arange(0.73,-1,-0.05)): push_h[round(y,2)] = ex for pos,ex in push_h.items(): chip = MDChip( text= ex, pos_hint = {'center_x':0.2, 'center_y':float(pos)}, on_release = self.selected_push, check = True ) chip.color = chip_color chip.icon = "coffee" self.add_widget(chip) if menu.caller.text == "Pull": if menu_item.text == "Easy": #Clearing previous widgets. for child in self.children[:]: if isinstance(child, MDChip): if child.text in pull[0] + pull[1] + pull[2]: self.remove_widget(child) pull_e = {} for ex,y in zip(pull[0], np.arange(0.73,-1,-0.05)): pull_e[round(y,2)] = ex for pos,ex in pull_e.items(): chip = MDChip( text= ex, pos_hint = {'center_x':0.505, 'center_y':float(pos)}, on_release = self.selected_pull, check = True ) chip.color = chip_color chip.icon = "coffee" self.add_widget(chip) elif menu_item.text == "Medium": #Clearing previous widgets. for child in self.children[:]: if isinstance(child, MDChip): if child.text in pull[0] + pull[1] + pull[2]: self.remove_widget(child) pull_m = {} for ex,y in zip(pull[1], np.arange(0.73,-1,-0.05)): pull_m[round(y,2)] = ex for pos,ex in pull_m.items(): chip = MDChip( text= ex, pos_hint = {'center_x':0.505, 'center_y':float(pos)}, on_release = self.selected_pull, check = True ) chip.color = chip_color chip.icon = "coffee" self.add_widget(chip) elif menu_item.text == "Hard": #Clearing previous widgets. for child in self.children[:]: if isinstance(child, MDChip): if child.text in pull[0] + pull[1] + pull[2]: self.remove_widget(child) pull_h = {} for ex,y in zip(pull[2], np.arange(0.73,-1,-0.05)): pull_h[round(y,2)] = ex for pos,ex in pull_h.items(): chip = MDChip( text= ex, pos_hint = {'center_x':0.505, 'center_y':float(pos)}, on_release = self.selected_pull, check = True ) chip.color = chip_color chip.icon = "coffee" self.add_widget(chip) if menu.caller.text == "Legs": if menu_item.text == "Easy": #Clearing previous widgets. for child in self.children[:]: if isinstance(child, MDChip): #Checks if the widget exists or not. similar to type() if child.text in leg[0] + leg[1] + leg[2]: self.remove_widget(child) leg_e = {} for ex,y in zip(leg[0], np.arange(0.73,-1,-0.05)): leg_e[round(y,2)] = ex for pos,ex in leg_e.items(): chip = MDChip( text= ex, pos_hint = {'center_x':0.8, 'center_y':float(pos)}, on_release = self.selected_legs, check = True ) chip.color = chip_color chip.icon = "coffee" self.add_widget(chip) elif menu_item.text == "Medium": #Clearing previous widgets. for child in self.children[:]: if isinstance(child, MDChip): if child.text in leg[0] + leg[1] + leg[2]: self.remove_widget(child) leg_m = {} for ex,y in zip(leg[1], np.arange(0.73,-1,-0.05)): leg_m[round(y,2)] = ex for pos,ex in leg_m.items(): chip = MDChip( text= ex, pos_hint = {'center_x':0.8, 'center_y':float(pos)}, on_release = self.selected_legs, check = True ) chip.color = chip_color chip.icon = "coffee" self.add_widget(chip) elif menu_item.text == "Hard": #Clearing previous widgets. for child in self.children[:]: if isinstance(child, MDChip): if child.text in leg[0] + leg[1] + leg[2]: self.remove_widget(child) leg_h = {} for ex,y in zip(leg[2], np.arange(0.73,-1,-0.05)): leg_h[round(y,2)] = ex for pos,ex in leg_h.items(): chip = MDChip( text= ex, pos_hint = {'center_x':0.8, 'center_y':float(pos)}, on_release = self.selected_legs, check = True ) chip.color = chip_color chip.icon = "coffee" self.add_widget(chip) #Creating a list of selected exercises. def selected_push(self, chip_widget): if chip_widget.color == chip_color: #self.root.remove_widget(chip_widget) #Root refers to the parent they are inside (Screen) chip_widget.color = selected_color if chip_widget.text not in push_list: push_list.append(chip_widget.text) else: chip_widget.color = chip_color push_list.remove(chip_widget.text) print(f"Push : {push_list}", chip_widget.pos_hint) def selected_pull(self, chip_widget): if chip_widget.color == chip_color: #self.root.remove_widget(chip_widget) #Root refers to the parent they are inside (Screen) chip_widget.color = selected_color if chip_widget.text not in pull_list: pull_list.append(chip_widget.text) else: chip_widget.color = chip_color pull_list.remove(chip_widget.text) print(f"Pull : {pull_list}") def selected_legs(self, chip_widget): if chip_widget.color == chip_color: #self.root.remove_widget(chip_widget) #Root refers to the parent they are inside (Screen) chip_widget.color = selected_color if chip_widget.text not in leg_list: leg_list.append(chip_widget.text) else: chip_widget.color = chip_color leg_list.remove(chip_widget.text) print(f"Legs : {leg_list}") def submit(self, obj): if self.ids.plan_name.text is "": dialog = "Please Enter a Plan Name" plan_name = "Error" else: dialog = f"You successfully created a plan named : {self.ids.plan_name.text}" plan_name = "Success" for child in self.children[:]: if isinstance(child, MDChip): self.remove_widget(child) push_list.clear() pull_list.clear() leg_list.clear() close_btn = MDRectangleFlatButton(text = "Close", on_release = self.close_dial) self.dial = MDDialog( title = plan_name, text = dialog, buttons= [close_btn], ) self.dial.open() def close_dial(self, obj): self.dial.dismiss() class DemoApp(MDApp): def build(self): #Screen() is present in this function, widget positioning is done here self.theme_cls.primary_palette = "LightBlue" self.theme_cls.theme_hue = "500" self.theme_cls.theme_style = "Dark" return BuildApp() DemoApp().run() ```
{ "source": "1moere1/molecule-vmware", "score": 2 }
#### File: molecule-vmware/molecule_vmware/driver.py ```python import os from molecule.api import Driver from molecule import logger, util LOG = logger.get_logger(__name__) class VMware(Driver): def __init__(self, config=None): super(VMware, self).__init__(config) self._name = "vmware" @property def name(self): return self._name @name.setter def name(self, value): self._name = value @property def default_safe_files(self): return [self.instance_config] @property def login_cmd_template(self): return ( "ssh {address} -l {user} -p {port} -i {identity_file}" ) @property def default_ssh_connection_options(self): return self._get_ssh_connection_options() def login_options(self, instance_name): d = {"instance": instance_name} return util.merge_dicts(d, self._get_instance_config(instance_name)) def ansible_connection_options(self, instance_name): try: d = self._get_instance_config(instance_name) if "instance_os_type" in d: if d['instance_os_type'] == "linux": return { "ansible_user": d["user"], "ansible_host": d["address"], "ansible_port": d["port"], "ansible_private_key_file": d["identity_file"], "connection": "ssh", "ansible_ssh_common_args": " ".join(self.ssh_connection_options), } if d['instance_os_type'] == "windows": return { "ansible_user": d["user"], "ansible_host": d["address"], "ansible_password": d["password"], "ansible_port": d["port"], "ansible_connection": d["connection"], "ansible_winrm_transport": d["winrm_transport"], "ansible_winrm_server_cert_validation": d["winrm_server_cert_validation"] } except StopIteration: return {} except IOError: # Instance has yet to be provisioned , therefore the # instance_config is not on disk. return {} def _get_instance_config(self, instance_name): instance_config_dict = util.safe_load_file(self._config.driver.instance_config) return next( item for item in instance_config_dict if item["instance"] == instance_name ) def template_dir(self): """Return path to its own cookiecutterm templates. It is used by init command in order to figure out where to load the templates from. """ return os.path.join(os.path.dirname(__file__), "cookiecutter") ```
{ "source": "1mplex/few-shot-object-detection", "score": 2 }
#### File: fsdet/data/builtin.py ```python import os from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.data.datasets.lvis import ( get_lvis_instances_meta, register_lvis_instances, ) from detectron2.data.datasets.pascal_voc import register_pascal_voc from detectron2.data.datasets.register_coco import register_coco_instances from .builtin_meta import _get_builtin_metadata from .meta_coco import register_meta_coco from .meta_lvis import register_meta_lvis from .meta_pascal_voc import register_meta_pascal_voc # ==== Predefined datasets and splits for COCO ========== _PREDEFINED_SPLITS_COCO = {} _PREDEFINED_SPLITS_COCO["coco"] = { "coco_2014_train": ( "coco/train2014", "coco/annotations/instances_train2014.json", ), "coco_2014_val": ( "coco/val2014", "coco/annotations/instances_val2014.json", ), "coco_2014_minival": ( "coco/val2014", "coco/annotations/instances_minival2014.json", ), "coco_2014_minival_100": ( "coco/val2014", "coco/annotations/instances_minival2014_100.json", ), "coco_2014_valminusminival": ( "coco/val2014", "coco/annotations/instances_valminusminival2014.json", ), "coco_2017_train": ( "coco/train2017", "coco/annotations/instances_train2017.json", ), "coco_2017_val": ( "coco/val2017", "coco/annotations/instances_val2017.json", ), "coco_2017_test": ( "coco/test2017", "coco/annotations/image_info_test2017.json", ), "coco_2017_test-dev": ( "coco/test2017", "coco/annotations/image_info_test-dev2017.json", ), "coco_2017_val_100": ( "coco/val2017", "coco/annotations/instances_val2017_100.json", ), } def register_all_coco(root="datasets"): # for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_COCO.items(): # for key, (image_root, json_file) in splits_per_dataset.items(): # # Assume pre-defined datasets live in `./datasets`. # register_coco_instances( # key, # _get_builtin_metadata(dataset_name), # os.path.join(root, json_file) # if "://" not in json_file # else json_file, # os.path.join(root, image_root), # ) # register meta datasets METASPLITS = [ ( "coco_trainval_all", "coco/trainval2014", "cocosplit/datasplit/trainvalno5k.json", ), ( "coco_trainval_base", "coco/trainval2014", "cocosplit/datasplit/trainvalno5k.json", ), ("coco_test_all", "coco/val2014", "cocosplit/datasplit/5k.json"), ("coco_test_base", "coco/val2014", "cocosplit/datasplit/5k.json"), ("coco_test_novel", "coco/val2014", "cocosplit/datasplit/5k.json"), ] # register small meta datasets for fine-tuning stage for prefix in ["all", "novel"]: for shot in [1, 2, 3, 5, 10, 30]: for seed in range(10): seed = "" if seed == 0 else "_seed{}".format(seed) name = "coco_trainval_{}_{}shot{}".format(prefix, shot, seed) METASPLITS.append((name, "coco/trainval2014", "")) for name, imgdir, annofile in METASPLITS: register_meta_coco( name, _get_builtin_metadata("coco_fewshot"), os.path.join(root, imgdir), os.path.join(root, annofile), ) # ==== Predefined datasets and splits for LVIS ========== _PREDEFINED_SPLITS_LVIS = { "lvis_v0.5": { # "lvis_v0.5_train": ("coco/train2017", "lvis/lvis_v0.5_train.json"), "lvis_v0.5_train_freq": ( "coco/train2017", "lvis/lvis_v0.5_train_freq.json", ), "lvis_v0.5_train_common": ( "coco/train2017", "lvis/lvis_v0.5_train_common.json", ), "lvis_v0.5_train_rare": ( "coco/train2017", "lvis/lvis_v0.5_train_rare.json", ), # "lvis_v0.5_val": ("coco/val2017", "lvis/lvis_v0.5_val.json"), # "lvis_v0.5_val_rand_100": ( # "coco/val2017", # "lvis/lvis_v0.5_val_rand_100.json", # ), # "lvis_v0.5_test": ( # "coco/test2017", # "lvis/lvis_v0.5_image_info_test.json", # ), }, } def register_all_lvis(root="datasets"): for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_LVIS.items(): for key, (image_root, json_file) in splits_per_dataset.items(): # Assume pre-defined datasets live in `./datasets`. register_lvis_instances( key, _get_builtin_metadata(dataset_name), os.path.join(root, json_file) if "://" not in json_file else json_file, os.path.join(root, image_root), ) # register meta datasets METASPLITS = [ ( "lvis_v0.5_train_shots", "coco/train2017", "lvissplit/lvis_shots.json", ), ( "lvis_v0.5_train_rare_novel", "coco/train2017", "lvis/lvis_v0.5_train_rare.json", ), ("lvis_v0.5_val_novel", "coco/val2017", "lvis/lvis_v0.5_val.json"), ] for name, image_root, json_file in METASPLITS: dataset_name = "lvis_v0.5_fewshot" if "novel" in name else "lvis_v0.5" register_meta_lvis( name, _get_builtin_metadata(dataset_name), os.path.join(root, json_file) if "://" not in json_file else json_file, os.path.join(root, image_root), ) # ==== Predefined splits for PASCAL VOC =========== def register_all_pascal_voc(root="datasets"): # SPLITS = [ # ("voc_2007_trainval", "VOC2007", "trainval"), # ("voc_2007_train", "VOC2007", "train"), # ("voc_2007_val", "VOC2007", "val"), # ("voc_2007_test", "VOC2007", "test"), # ("voc_2012_trainval", "VOC2012", "trainval"), # ("voc_2012_train", "VOC2012", "train"), # ("voc_2012_val", "VOC2012", "val"), # ] # for name, dirname, split in SPLITS: # year = 2007 if "2007" in name else 2012 # register_pascal_voc(name, os.path.join(root, dirname), split, year) # MetadataCatalog.get(name).evaluator_type = "pascal_voc" # register meta datasets METASPLITS = [ ("voc_2007_trainval_base1", "VOC2007", "trainval", "base1", 1), ("voc_2007_trainval_base2", "VOC2007", "trainval", "base2", 2), ("voc_2007_trainval_base3", "VOC2007", "trainval", "base3", 3), ("voc_2012_trainval_base1", "VOC2012", "trainval", "base1", 1), ("voc_2012_trainval_base2", "VOC2012", "trainval", "base2", 2), ("voc_2012_trainval_base3", "VOC2012", "trainval", "base3", 3), ("voc_2007_trainval_all1", "VOC2007", "trainval", "base_novel_1", 1), ("voc_2007_trainval_all2", "VOC2007", "trainval", "base_novel_2", 2), ("voc_2007_trainval_all3", "VOC2007", "trainval", "base_novel_3", 3), ("voc_2012_trainval_all1", "VOC2012", "trainval", "base_novel_1", 1), ("voc_2012_trainval_all2", "VOC2012", "trainval", "base_novel_2", 2), ("voc_2012_trainval_all3", "VOC2012", "trainval", "base_novel_3", 3), ("voc_2007_test_base1", "VOC2007", "test", "base1", 1), ("voc_2007_test_base2", "VOC2007", "test", "base2", 2), ("voc_2007_test_base3", "VOC2007", "test", "base3", 3), ("voc_2007_test_novel1", "VOC2007", "test", "novel1", 1), ("voc_2007_test_novel2", "VOC2007", "test", "novel2", 2), ("voc_2007_test_novel3", "VOC2007", "test", "novel3", 3), ("voc_2007_test_all1", "VOC2007", "test", "base_novel_1", 1), ("voc_2007_test_all2", "VOC2007", "test", "base_novel_2", 2), ("voc_2007_test_all3", "VOC2007", "test", "base_novel_3", 3), ] # register small meta datasets for fine-tuning stage for prefix in ["all", "novel"]: for sid in range(1, 4): for shot in [1, 2, 3, 5, 10]: for year in [2007, 2012]: for seed in range(100): seed = "" if seed == 0 else "_seed{}".format(seed) name = "voc_{}_trainval_{}{}_{}shot{}".format( year, prefix, sid, shot, seed ) dirname = "VOC{}".format(year) img_file = "{}_{}shot_split_{}_trainval".format( prefix, shot, sid ) keepclasses = ( "base_novel_{}".format(sid) if prefix == "all" else "novel{}".format(sid) ) METASPLITS.append( (name, dirname, img_file, keepclasses, sid) ) for name, dirname, split, keepclasses, sid in METASPLITS: year = 2007 if "2007" in name else 2012 register_meta_pascal_voc( name, _get_builtin_metadata("pascal_voc_fewshot"), os.path.join(root, dirname), split, year, keepclasses, sid, ) MetadataCatalog.get(name).evaluator_type = "pascal_voc" # Register them all under "./datasets" register_all_coco() register_all_lvis() register_all_pascal_voc() ``` #### File: fsdet/evaluation/coco_evaluation.py ```python import contextlib import copy import io import itertools import json import logging import numpy as np import os import torch from collections import OrderedDict from fvcore.common.file_io import PathManager from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from tabulate import tabulate import detectron2.utils.comm as comm from detectron2.data import MetadataCatalog from detectron2.data.datasets.coco import convert_to_coco_json from detectron2.structures import BoxMode from detectron2.utils.logger import create_small_table from fsdet.evaluation.evaluator import DatasetEvaluator class COCOEvaluator(DatasetEvaluator): """ Evaluate instance detection outputs using COCO's metrics and APIs. """ def __init__(self, dataset_name, cfg, distributed, output_dir=None): """ Args: dataset_name (str): name of the dataset to be evaluated. It must have either the following corresponding metadata: "json_file": the path to the COCO format annotation Or it must be in detectron2's standard dataset format so it can be converted to COCO format automatically. cfg (CfgNode): config instance distributed (True): if True, will collect results from all ranks for evaluation. Otherwise, will evaluate the results in the current process. output_dir (str): optional, an output directory to dump results. """ self._distributed = distributed self._output_dir = output_dir self._dataset_name = dataset_name self._cpu_device = torch.device("cpu") self._logger = logging.getLogger(__name__) self._metadata = MetadataCatalog.get(dataset_name) if not hasattr(self._metadata, "json_file"): self._logger.warning( f"json_file was not found in MetaDataCatalog for '{dataset_name}'") cache_path = convert_to_coco_json(dataset_name, output_dir) self._metadata.json_file = cache_path self._is_splits = "all" in dataset_name or "base" in dataset_name \ or "novel" in dataset_name self._base_classes = [ 8, 10, 11, 13, 14, 15, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 65, 70, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, ] self._novel_classes = [1, 2, 3, 4, 5, 6, 7, 9, 16, 17, 18, 19, 20, 21, 44, 62, 63, 64, 67, 72] json_file = PathManager.get_local_path(self._metadata.json_file) with contextlib.redirect_stdout(io.StringIO()): self._coco_api = COCO(json_file) # Test set json files do not contain annotations (evaluation must be # performed using the COCO evaluation server). self._do_evaluation = "annotations" in self._coco_api.dataset def reset(self): self._predictions = [] self._coco_results = [] def process(self, inputs, outputs): """ Args: inputs: the inputs to a COCO model (e.g., GeneralizedRCNN). It is a list of dict. Each dict corresponds to an image and contains keys like "height", "width", "file_name", "image_id". outputs: the outputs of a COCO model. It is a list of dicts with key "instances" that contains :class:`Instances`. """ for input, output in zip(inputs, outputs): prediction = {"image_id": input["image_id"]} # TODO this is ugly if "instances" in output: instances = output["instances"].to(self._cpu_device) prediction["instances"] = instances_to_coco_json( instances, input["image_id"]) self._predictions.append(prediction) def evaluate(self): if self._distributed: comm.synchronize() self._predictions = comm.gather(self._predictions, dst=0) self._predictions = list(itertools.chain(*self._predictions)) if not comm.is_main_process(): return {} if len(self._predictions) == 0: self._logger.warning( "[COCOEvaluator] Did not receive valid predictions.") return {} if self._output_dir: PathManager.mkdirs(self._output_dir) file_path = os.path.join( self._output_dir, "instances_predictions.pth") with PathManager.open(file_path, "wb") as f: torch.save(self._predictions, f) self._results = OrderedDict() if "instances" in self._predictions[0]: self._eval_predictions() # Copy so the caller can do whatever with results return copy.deepcopy(self._results) def _eval_predictions(self): """ Evaluate self._predictions on the instance detection task. Fill self._results with the metrics of the instance detection task. """ self._logger.info("Preparing results for COCO format ...") self._coco_results = list( itertools.chain(*[x["instances"] for x in self._predictions])) # unmap the category ids for COCO if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"): reverse_id_mapping = { v: k for k, v in self._metadata.thing_dataset_id_to_contiguous_id.items() } for result in self._coco_results: result["category_id"] = reverse_id_mapping[result["category_id"]] if self._output_dir: file_path = os.path.join(self._output_dir, "coco_instances_results.json") self._logger.info("Saving results to {}".format(file_path)) with PathManager.open(file_path, "w") as f: f.write(json.dumps(self._coco_results)) f.flush() if not self._do_evaluation: self._logger.info("Annotations are not available for evaluation.") return self._logger.info("Evaluating predictions ...") if self._is_splits: self._results["bbox"] = {} for split, classes, names in [ ("all", None, self._metadata.get("thing_classes")), ("base", self._base_classes, self._metadata.get("base_classes")), ("novel", self._novel_classes, self._metadata.get("novel_classes"))]: if "all" not in self._dataset_name and \ split not in self._dataset_name: continue coco_eval = ( _evaluate_predictions_on_coco( self._coco_api, self._coco_results, "bbox", classes, ) if len(self._coco_results) > 0 else None # cocoapi does not handle empty results very well ) res_ = self._derive_coco_results( coco_eval, "bbox", class_names=names, ) res = {} for metric in res_.keys(): if len(metric) <= 4: if split == "all": res[metric] = res_[metric] elif split == "base": res["b"+metric] = res_[metric] elif split == "novel": res["n"+metric] = res_[metric] self._results["bbox"].update(res) # add "AP" if not already in if "AP" not in self._results["bbox"]: if "nAP" in self._results["bbox"]: self._results["bbox"]["AP"] = self._results["bbox"]["nAP"] else: self._results["bbox"]["AP"] = self._results["bbox"]["bAP"] else: coco_eval = ( _evaluate_predictions_on_coco( self._coco_api, self._coco_results, "bbox", ) if len(self._coco_results) > 0 else None # cocoapi does not handle empty results very well ) res = self._derive_coco_results( coco_eval, "bbox", class_names=self._metadata.get("thing_classes") ) self._results["bbox"] = res def _derive_coco_results(self, coco_eval, iou_type, class_names=None): """ Derive the desired score numbers from summarized COCOeval. Args: coco_eval (None or COCOEval): None represents no predictions from model. iou_type (str): class_names (None or list[str]): if provided, will use it to predict per-category AP. Returns: a dict of {metric name: score} """ metrics = ["AP", "AP50", "AP75", "APs", "APm", "APl"] if coco_eval is None: self._logger.warn("No predictions from the model! Set scores to -1") return {metric: -1 for metric in metrics} # the standard metrics results = { metric: float(coco_eval.stats[idx] * 100) \ for idx, metric in enumerate(metrics) } self._logger.info( "Evaluation results for {}: \n".format(iou_type) + \ create_small_table(results) ) if class_names is None or len(class_names) <= 1: return results # Compute per-category AP # from https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L222-L252 # noqa precisions = coco_eval.eval["precision"] # precision has dims (iou, recall, cls, area range, max dets) assert len(class_names) == precisions.shape[2] results_per_category = [] for idx, name in enumerate(class_names): # area range index 0: all area ranges # max dets index -1: typically 100 per image precision = precisions[:, :, idx, 0, -1] precision = precision[precision > -1] ap = np.mean(precision) if precision.size else float("nan") results_per_category.append(("{}".format(name), float(ap * 100))) # tabulate it N_COLS = min(6, len(results_per_category) * 2) results_flatten = list(itertools.chain(*results_per_category)) results_2d = itertools.zip_longest( *[results_flatten[i::N_COLS] for i in range(N_COLS)]) table = tabulate( results_2d, tablefmt="pipe", floatfmt=".3f", headers=["category", "AP"] * (N_COLS // 2), numalign="left", ) self._logger.info("Per-category {} AP: \n".format(iou_type) + table) results.update({"AP-" + name: ap for name, ap in results_per_category}) return results def instances_to_coco_json(instances, img_id): """ Dump an "Instances" object to a COCO-format json that's used for evaluation. Args: instances (Instances): img_id (int): the image id Returns: list[dict]: list of json annotations in COCO format. """ num_instance = len(instances) if num_instance == 0: return [] boxes = instances.pred_boxes.tensor.numpy() boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) boxes = boxes.tolist() scores = instances.scores.tolist() classes = instances.pred_classes.tolist() results = [] for k in range(num_instance): result = { "image_id": img_id, "category_id": classes[k], "bbox": boxes[k], "score": scores[k], } results.append(result) return results def _evaluate_predictions_on_coco(coco_gt, coco_results, iou_type, catIds=None): """ Evaluate the coco results using COCOEval API. """ assert len(coco_results) > 0 coco_dt = coco_gt.loadRes(coco_results) coco_eval = COCOeval(coco_gt, coco_dt, iou_type) if catIds is not None: coco_eval.params.catIds = catIds coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() return coco_eval ```
{ "source": "1mplex/segmentation_image_augmentation", "score": 2 }
#### File: segmentation_image_augmentation/augment/MultiPartAugmentor.py ```python from augment.Augmentor import Augmentor from utils import * class MultiPartAugmentor(Augmentor): def __init__(self, params): super().__init__(params) def get_input_type(self): return 'multi-part' def _transform_masks(self): self._call_buffer['small_masks'] = [] object_colors = generate_colors(len(self._call_buffer['mask_list'])) if 'class' in self.output_type_list: class_colors = generate_colors(self.num_classes + 1) if 'multi-part' in self.output_type_list: objects = [] total_parts = 0 for i, mask in enumerate(self._call_buffer['mask_list']): obj = semantic2binary_list(mask) total_parts += len(obj) objects.append(obj) parts_colors = generate_colors(total_parts) for i, mask in enumerate(self._call_buffer['mask_list']): m = {} if 'single' in self.output_type_list: m['single'] = single2multi(semantic2binary(mask)) if 'multi-object' in self.output_type_list: m['multi-object'] = color_mask(mask, object_colors[i]) if 'multi-part' in self.output_type_list: obj_colors = [parts_colors.pop(0) for i in range(len(objects[i]))] m['multi-part'] = binary_list2semantic(objects[i], obj_colors) if 'class' in self.output_type_list: m['class'] = color_mask(mask, class_colors[self._call_buffer['class_list'][i]]) self._call_buffer['small_masks'].append(m) ``` #### File: segmentation_image_augmentation/datagen/DataGen.py ```python import os import random from utils import * from augment.SingleAugmentor import SingleAugmentor from augment.MultiPartAugmentor import MultiPartAugmentor from augment.SemanticAugmentor import SemanticAugmentor class DataGen: def __init__(self, input_path, input_type, img_prefix='rgb', mask_prefix='label', augmentor_params=None, class_mapping=None, balance=False, separable_class=False): self.input_path = input_path self.input_type = input_type self.augmentor_params = augmentor_params self.img_prefix = img_prefix self.mask_prefix = mask_prefix self.class_mapping = class_mapping self.balance = balance self.separable_class = separable_class self._get_classes() self.set_class_mappings() self._get_pairs_list() self._get_stats() self._set_augmentor() def _set_augmentor(self): augmentor_types = { 'single': SingleAugmentor, 'multi-part': MultiPartAugmentor, 'semantic': SemanticAugmentor } if self.input_type not in list(augmentor_types.keys()): raise UserWarning('Unrecognized input type: {}'.format(self.input_type)) else: self.augmentor = augmentor_types[self.input_type](self.augmentor_params) self.output_type_list = self.augmentor.output_type_list def _get_classes(self): self.classes = next(os.walk(self.input_path))[1] def set_class_mappings(self): if self.class_mapping is None: class2num = {} for i, c in enumerate(self.classes): class2num[c] = i self.class2num = class2num else: self.class2num = self.class_mapping num2class = {} for k, v in self.class2num.items(): num2class[v] = k self.num2class = num2class def _get_pairs_list(self): input_pairs = {} for class_name in self.classes: class_dir = os.path.join(self.input_path, class_name) subdirs = set(next(os.walk(class_dir))[1]) if len(subdirs) == 0: images, masks = get_img_mask_list(class_dir, mask_path=None, img_prefix=self.img_prefix, mask_prefix=self.mask_prefix) elif subdirs == {self.img_prefix, self.mask_prefix}: img_class_dir = os.path.join(class_dir, self.img_prefix) mask_class_dir = os.path.join(class_dir, self.mask_prefix) images, masks = get_img_mask_list(img_class_dir, mask_path=mask_class_dir, img_prefix=self.img_prefix, mask_prefix=self.mask_prefix) else: raise UserWarning('Wrong input files structure') input_pairs[class_name] = { 'images': images, 'masks': masks } self.input_pairs = input_pairs def _get_stats(self): self.classes = list(self.input_pairs.keys()) self.num_classes = len(self.classes) self.sample_per_class = [len(self.input_pairs[c]['images']) for c in self.input_pairs] self.total_samples = sum(self.sample_per_class) if self.balance: self.class_weights = [i / self.total_samples for i in self.sample_per_class] else: self.class_weights = [1 / self.num_classes] * self.num_classes def _choose_class(self): return random.choices(self.classes, weights=self.class_weights, k=1)[0] def _get_next_input_pair(self, class_name=None): if class_name is None: class_name = self._choose_class() sample_num = random.randint(0, len(self.input_pairs[class_name]['images']) - 1) img = self.input_pairs[class_name]['images'][sample_num] mask = self.input_pairs[class_name]['masks'][sample_num] return read(img), read(mask), self.class2num[class_name] def get_scene(self, scene_samples=1): images = [] masks = [] classes = [] class_name = self._choose_class() if self.separable_class else None for i in range(scene_samples): img, msk, cl = self._get_next_input_pair(class_name) images.append(img) masks.append(msk) classes.append(cl) transformed_scene = self.augmentor.transform(images, masks, classes) return transformed_scene, classes ``` #### File: segmentation_image_augmentation/datagen/SavingDataGen.py ```python import os from pathlib import Path from collections import Counter from utils import * from datagen.DataGen import DataGen class SavingDataGen(DataGen): def __init__(self, input_path, input_type, output_path, split_masks=False, img_prefix='rgb', mask_prefix='label', augmentor_params=None, class_mapping=None, balance=True, separable_class=False, img_format='jpg', mask_format='png'): super().__init__(input_path, input_type, img_prefix=img_prefix, mask_prefix=mask_prefix, augmentor_params=augmentor_params, class_mapping=class_mapping, balance=balance, separable_class=separable_class) self.output_path = output_path self.split_masks = split_masks self.img_format = img_format self.mask_format = mask_format def prepare_folders(self): Path(self.output_path).mkdir(parents=True, exist_ok=True) if self.separable_class: for c in self.classes: class_dir = os.path.join(self.output_path, c) Path(class_dir).mkdir(parents=True, exist_ok=True) if self.split_masks: for out_type in self.output_type_list: Path(os.path.join(class_dir, out_type)).mkdir(parents=True, exist_ok=True) Path(os.path.join(class_dir, 'images')).mkdir(parents=True, exist_ok=True) else: if self.split_masks: for out_type in self.output_type_list: Path(os.path.join(self.output_path, out_type)).mkdir(parents=True, exist_ok=True) Path(os.path.join(self.output_path, 'images')).mkdir(parents=True, exist_ok=True) def create_dataset(self, num_samples=1, scene_samples=1): self.prepare_folders() data_file = os.path.join(self.output_path, 'description.csv') try: previous_data = read_csv(data_file) sample_num = previous_data['sample_num'].max() + 1 except: sample_num = 1 total_time = 0 load_time = 0 transform_time = 0 streaming_time = 0 avg_h = [] avg_w = [] for sample in range(num_samples): transformed_scene, classes = self.get_scene(scene_samples) avg_h.append(transformed_scene['scene'].shape[0]) avg_w.append(transformed_scene['scene'].shape[1]) samples_per_class_num = dict(Counter(classes)) for input_class in range(self.num_classes): if input_class not in samples_per_class_num.keys(): samples_per_class_num[input_class] = 0 sample_data = { 'sample_num': sample_num, 'height': transformed_scene['scene'].shape[0], 'width': transformed_scene['scene'].shape[1] } for input_class in range(self.num_classes): sample_data[str(input_class) + '_class'] = samples_per_class_num[input_class] c = self.num2class[classes[0]] if self.separable_class else '' image_path = os.path.join( self.output_path, c, 'images' if self.split_masks else '', 'generated_{:0>5}_{}.{}'.format(sample_num, self.img_prefix, self.img_format) ) write(image_path, transformed_scene['scene']) sample_data['image_path'] = image_path for mask_type in self.output_type_list: m = mask_type if self.split_masks else '' mask_path = os.path.join( self.output_path, c, m, 'generated_{:0>5}_{}_{}.{}'.format(sample_num, mask_type, self.mask_prefix, self.mask_format) ) write(mask_path, transformed_scene['masks'][mask_type]) sample_data[mask_type + '_path'] = mask_path if 'bboxes' in transformed_scene: subdir = 'bboxes' if self.split_masks else '' bbox_dir = os.path.join(self.output_path, subdir) Path(bbox_dir).mkdir(parents=True, exist_ok=True) bbox_path = os.path.join(bbox_dir, 'generated_{:0>5}_bbox.csv'.format(sample_num)) x_min_list = [] x_max_list = [] y_min_list = [] y_max_list = [] for bbox in transformed_scene['bboxes']['multi-object']: [(x_min, y_max), (_, y_min), (x_max, _), (_, _), (_, _)] = bbox x_min_list.append(x_min) x_max_list.append(x_max) y_min_list.append(y_min) y_max_list.append(y_max) bboxes_df = pd.DataFrame({ 'x_min': x_min_list, 'x_max': x_max_list, 'y_min': y_min_list, 'y_max': y_max_list, 'class': classes }) write_csv(bboxes_df, bbox_path) sample_data['bbox_path'] = bbox_path write_csv(pd.DataFrame(sample_data, index=[0]), data_file) sample_num += 1 return (total_time, load_time, transform_time, streaming_time), (sum(avg_h) / len(avg_h), sum(avg_w) / len(avg_w)) ``` #### File: segmentation_image_augmentation/transformations/binarize_mask.py ```python def binarize_mask(mask): """Returns binary 2D mask. Args: mask (numpy.array): RGB or grayscale mask. Returns: mask (numpy.array): binarized grayscale mask. """ if len(list(mask.shape)) == 2: return mask else: return (mask > 0).max(axis=2).astype(int) * 255 ``` #### File: segmentation_image_augmentation/transformations/random_crop.py ```python import random def random_crop(img, size): if (img.shape[0] < size[0]) or (img.shape[1] < size[1]): raise UserWarning("Can't crop a big image from a small one") if (img.shape[0] == size[0]) and (img.shape[1] == size[1]): return img start_height = random.randint(0, img.shape[0] - size[0] - 1) start_width = random.randint(0, img.shape[1] - size[1] - 1) return img[start_height:start_height + size[0], start_width:start_width + size[1], :] ``` #### File: segmentation_image_augmentation/transformations/resize.py ```python import cv2 def resize(img, shape): return cv2.resize(img, (shape[1], shape[0])) ``` #### File: segmentation_image_augmentation/transformations/rotate.py ```python import random from utils.pil import * def rotate_pair(img, mask, degree): """Rotates image and mask for the degree from range [-degree, degree] Args: img (numpy.array): RGB or grayscale image. mask (numpy.array): image mask. degree (int): maximum rotation degree. Returns: img (numpy.array): rotated image. mask (numpy.array): rotated image mask. """ rotation_degree = int(random.random() * degree) rotation_degree = rotation_degree if random.random() < 0.5 else -rotation_degree img = rotate(img, rotation_degree) mask = rotate(mask, rotation_degree) return img, mask def rotate(img, degree): """Rotates image for the specified degree. Args: img (numpy.array): RGB or grayscale image. degree (int): rotation degree Returns: img (numpy.array): rotated image. """ pil_img = np2pil(img) pil_img = pil_img.rotate(degree) np_img = pil2np(pil_img) return np_img ``` #### File: segmentation_image_augmentation/utils/check_is_image.py ```python def check_is_image(img): try: if not ((img.shape[2] == 3) and (img.shape[0] > 10) and (img.shape[1] > 10)): raise UserWarning('Wrong image size') except: raise UserWarning('Not an numpy image') ``` #### File: segmentation_image_augmentation/utils/colors.py ```python import itertools import math import numpy as np def generate_colors(n): levels_count = math.ceil(math.pow(n + 2, 1 / 3)) # remove black and white step = 1 / levels_count levels = [1 - (step * i) for i in range(levels_count)] colors = [] for p in itertools.product(levels, repeat=3): colors.append((np.array([*p]) * 255).astype(int)) return colors[1:n + 1] def human2machine_mask(mask, num2class_dict): new_mask = np.zeros((mask.shape[0], mask.shape[1])) colors = generate_colors(len(list(num2class_dict.keys()))) for i, c in enumerate(num2class_dict.keys()): a = np.any((mask).astype(int) == list(colors[i]), axis=-1) new_mask[a] = int(c) return new_mask.astype('int8') ``` #### File: segmentation_image_augmentation/utils/mask2mask.py ```python import numpy as np from utils.colors import generate_colors from utils.format_image import format_image def semantic2binary(mask): return format_image((mask > 0).max(axis=2)) def single2multi(mask): return np.stack((mask,) * 3, axis=-1) def semantic2binary_list(mask): """Input RGB image""" unsqueezed_mask = mask.reshape(-1, mask.shape[2]) masks_colors = np.unique(unsqueezed_mask, axis=0) background_index = np.argwhere(np.sum(masks_colors, axis=1) == 0) masks_colors = np.delete(masks_colors, background_index, 0) colors_count = masks_colors.shape[0] masks = [] for i in range(colors_count): masks.append(format_image((mask == masks_colors[i]).reshape(mask.shape))) return masks def binary_list2semantic(mask_list, colors=None): main_mask = np.zeros_like(mask_list[0]) if colors is None: colors = generate_colors(len(mask_list)) for i, mask in enumerate(mask_list): main_mask[:, :, :3][mask[:, :, 0] > 0] = colors[i] return format_image(main_mask) def color_mask(mask, color): m = (mask[:, :, 0] > 0) | (mask[:, :, 1] > 0) | (mask[:, :, 2] > 0) new_mask = mask.copy() new_mask[m] = color return format_image(new_mask) ``` #### File: segmentation_image_augmentation/utils/pack_images.py ```python import copy import math import numpy as np # import rpack from rectpack import newPacker from rectpack.maxrects import MaxRectsBssf def _change_dim_order(sizes): return [[s[1], s[0]] for s in sizes] # def get_pack_coords(sizes): # # list of [height, width] i.e. img.shape order # sizes = _change_dim_order(sizes) # positions = rpack.pack(sizes) # return _change_dim_order(positions) def _pack(rectangles, bins): packer = newPacker(pack_algo=MaxRectsBssf) for r in rectangles: packer.add_rect(*r) for b in bins: packer.add_bin(*b) packer.pack() all_rects = packer.rect_list() res = [] for rect in all_rects: res.append(np.array(rect)) res = np.array(res) res.view('i8,i8,i8,i8,i8,i8,').sort(order=['f5'], axis=0) res = [list(i) for i in res[:, 1:3]] return res def get_pack_coords(sizes): s = copy.deepcopy(sizes) [s[i].append(i + 1) for i in range(len(s))] s = np.array([np.array(i) for i in s]).copy() total_h, total_w, _ = s.sum(axis=0) max_h = s[:, 0].max(axis=0) virtual_cols = math.ceil(math.sqrt(len(sizes))) height_limit = max(max_h, int(1.2 * (total_h / virtual_cols))) rectangles = [tuple(i) for i in s] bins = [(height_limit, total_w)] coords = _pack(rectangles, bins) if len(coords) != len(sizes): coords = _pack(rectangles, [(int(2 * max_h), total_w)]) return coords ``` #### File: segmentation_image_augmentation/utils/read.py ```python import matplotlib.pyplot as plt def read(path): """Reads an image from the specified path. Args: path (str): image path. :Returns: img (numpy.array): RGB image """ return plt.imread(path)[:, :, :3] ``` #### File: segmentation_image_augmentation/utils/supervisely2sia.py ```python import os import sys import json from pathlib import Path import shutil from utils import * def supervisely2sia(init_data_folder, sia_data_folder): ''' Prepares data collected in https://app.supervise.ly to work with SIA. Returns images and masks lists. ''' # with open(os.path.join(init_data_folder, 'obj_class_to_machine_color.json'), 'r') as file: # data = file.read() # class_colors_config = json.loads(data) # objects = list(class_colors_config.keys()) # instances = [i for i in objects if 'Instance' in i] classes = [i for i in os.listdir(init_data_folder) if os.path.isdir(os.path.join(init_data_folder, i))] for c in classes: Path(os.path.join(sia_data_folder, c)).mkdir(parents=True, exist_ok=True) for i in get_images_list(os.path.join(init_data_folder, c, 'img')): orig_file = i.split('/')[-1] img_num, file_type = orig_file.split('.') shutil.copy(i, os.path.join(sia_data_folder, c, img_num + '_rgb.' + file_type)) shutil.copy(i.replace('img', 'masks_machine').replace('jpg', 'png'), os.path.join(sia_data_folder, c, img_num + '_label.png')) ```
{ "source": "1MT3J45/DS-StockAnalysis", "score": 3 }
#### File: 1MT3J45/DS-StockAnalysis/face.py ```python from kivy.uix.boxlayout import BoxLayout from kivy.lang import Builder from kivy.app import App import YP03 import sys import dfgui import pandas as pd Builder.load_string(''' <faceTool>: num1: num1 result: result orientation: 'vertical' BoxLayout: orientation: 'horizontal' Label: id: num1 text: 'Stock Data Analysis' BoxLayout: orientation: 'horizontal' GridLayout: cols: 6 Label: id: blank1 Label: id: blank2 Button: text: 'Execute' height: 10 width: 30 on_press: root.display_fun(self) Label: text: 'EMPTY SLOT' height: 10 width: 30 on_press: Button: text: "Show XLS Sheet" height: 10 width: 30 on_press: root.graph() Button: text: "Clear" height: 10 width: 30 on_press: root.clear_screen() BoxLayout: orientation: 'horizontal' Label: id: result GridLayout: cols: 2 size_hint_y: None Button: text: "Clear" on_press: root.clear_screen() height: 10 width: 30 BubbleButton: text: 'Exit' on_press: root.exit_it() height: 10 width: 30 ''') class face_app(App): def build(self): return faceTool() class faceTool(BoxLayout): def __init__(self, **kwargs): super(faceTool, self).__init__(**kwargs) def display_fun(self, instance): '''Fuction called when numeric buttons are pressed, if the operation button is pressed the numbers after will be on the right hand side. ''' DayClusterNames, length = YP03.execute() res = '' for i in range(len(DayClusterNames)): res = str(DayClusterNames[i])+'\n'+res self.result.text = str(res) def exit_it(self): sys.exit() def graph(self): # xls = pd.read_excel('Res.xls') # df = pd.DataFrame(xls) # dfgui.show(df) import main def clear_screen(self): self.result.text = '' face_app().run() ```
{ "source": "1MT3J45/ML-DroughtAnalysisNLP", "score": 3 }
#### File: 1MT3J45/ML-DroughtAnalysisNLP/freqWordSelection.py ```python from __future__ import division from __future__ import print_function from __future__ import with_statement from replacers import * import pandas as pd import nltk import subprocess def findFreqWord(fuzzyDF): f1 = fuzzyDF # pd.read_csv("SubmittedCSV/fuzzy.csv") f2 = pd.DataFrame(columns=['Tweets', 'Classified', 'FreqWord']) f3 = pd.read_csv("SubmittedCSV/fuzzyptag.csv", ) pop_list = list(f3.iloc[:, 0]) for zero_cl_row in range(f1.__len__()): row = 1 found = False splitted_sentence = f1.iloc[zero_cl_row, 0].split() print(splitted_sentence) for tag in pop_list: print("Popular tags:", pop_list) for word in splitted_sentence: if word in tag and f1.iloc[zero_cl_row, 1] == "Highly Positive": f2 = f2.append( {'Tweets': f1.iloc[zero_cl_row, 0], 'Classified': 'Highly Positive', 'FreqWord': tag}, ignore_index=True) found = True row += 1 elif word in tag and f1.iloc[zero_cl_row, 1] == "Highly Negative": f2 = f2.append( {'Tweets': f1.iloc[zero_cl_row, 0], 'Classified': 'Highly Negative', 'FreqWord': tag}, ignore_index=True) found = True row += 1 elif word in tag and f1.iloc[zero_cl_row, 1] == "Moderately Positive": f2 = f2.append( {'Tweets': f1.iloc[zero_cl_row, 0], 'Classified': 'Moderately Positive', 'FreqWord': tag}, ignore_index=True) found = True row += 1 elif word in tag and f1.iloc[zero_cl_row, 1] == "Moderately Negative": f2 = f2.append( {'Tweets': f1.iloc[zero_cl_row, 0], 'Classified': 'Moderately Negative', 'FreqWord': tag}, ignore_index=True) found = True row += 1 elif word in tag and f1.iloc[zero_cl_row, 1] == "Positive": f2 = f2.append({'Tweets': f1.iloc[zero_cl_row, 0], 'Classified': 'Positive', 'FreqWord': tag}, ignore_index=True) found = True row += 1 elif word in tag and f1.iloc[zero_cl_row, 1] == "Negative": f2 = f2.append({'Tweets': f1.iloc[zero_cl_row, 0], 'Classified': 'Negative', 'FreqWord': tag}, ignore_index=True) found = True row += 1 else: print("Unmatched") if not found: print("NO") f2.to_csv("SubmittedCSV/fuzzyfreq.csv", index=False) try: subprocess.call(['libreoffice','--calc','SubmittedCSV/fuzzyfreq.csv']) except OSError: print("Works with DEBIAN OS & LIBREOFFICE 5 only \n Use MS Excel or equivalent Software to open : " "SubmittedCSV/fuzzyfreq.csv") return f2 def pivotTable(): pass # ---------------------------------- SUBMITTED LOGIC - TEST CASE # ---------------------------------- #01 UNIT TESTING FAILED ##10, 11, 27, 30 # ---------------------------------- #02 LOGICAL GLITCH # ---------------------------------- #03 COMPLIANCE MISUSE # ---------------------------------- #04 MEMDUMP DETECTED # ---------------------------------- #05 UNUSED OBJECTS, MEMORY BLOCK 0x0008 # for hosts_row in f1: # row = 1 # found = False # # t1=nltk.word_tokenize(hosts_row[0]) # t1 = hosts_row.split() # print("t1=", t1) # for master_row in pop_list: # print("popular tags=", pop_list) # for word in t1: # # if word == master_row[0] and hosts_row[1] == "Highly Positive": # # >>> master_row[0] # Logical glitch, value uncompilable # # 'b' # f2.write(str(hosts_row[1]) + "," + word) # Will always look for 1st element of string # # >>> hosts_row # # ' neville rooney end ever tons trophy drought httpcocryingeyesjebfkdp,Positive\r\n' # # >>> hosts_row[1] # # 'n' # found = True # row = row + 1 # # elif word == master_row[0] and hosts_row[1] == "Highly Negative": # f2.write(str(hosts_row[1]) + "," + str(master_row[0])) # found = True # row = row + 1 # elif word == master_row[0] and hosts_row[1] == "Moderately Positive": # f2.write(str(hosts_row[1]) + "," + str(master_row[0])) # found = True # row = row + 1 # elif word == master_row[0] and hosts_row[1] == "Moderately Negative": # f2.write(str(hosts_row[1]) + "," + str(master_row[0])) # found = True # row = row + 1 # elif word == master_row[0] and hosts_row[1] == "Positive": # f2.write(str(hosts_row[1]) + "," + str(master_row[0])) # # >>> master_row[0] # # 'business' # # >>> hosts_row[1] # # 'n' # found = True # row = row + 1 # elif word == master_row[0] and hosts_row[1] == "Negative": # f2.write(str(hosts_row[1]) + "," + str(master_row[0])) # found = True # row = row + 1 # # # print count # if not found: # print("no") # # print(count) # f1.close() # f2.close() ``` #### File: 1MT3J45/ML-DroughtAnalysisNLP/SL_RanForGen.py ```python import numpy as np import matplotlib.pyplot as plt import pandas as pd def read_fit(data_frame): # IMPORTING DATASET dataset = data_frame # Cleaning the Texts import re import nltk nltk.download('stopwords') from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer # Creating a Corpus corpus = [] for i in range(0, dataset.__len__()): review = re.sub('[^a-zA-Z]', ' ', str(dataset['tweet'][i])) review = review.lower() review = review.split() ps = PorterStemmer() review = [ps.stem(word) for word in review if not word in set(stopwords.words('english'))] review = ' '.join(review) corpus.append(review) # Creating the Bag Of Words Model from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer(max_features=144) # Sparse Matrix -> CV X = cv.fit_transform(corpus).toarray() y = dataset.iloc[:, -1].values # Splitting Data into Training & Testing from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) # Feature Scaling from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test) # Fitting Random Forest class to the Training set from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier(n_estimators=10, criterion='entropy', random_state=0) classifier.fit(X_train, y_train) return classifier, X_test, y_test def rfg_spv_predict(machine, X_input, y_input): X_test = X_input y_test = y_input classifier = machine # Predicting the Test set results y_pred = classifier.predict(X_test) # Making the Confusion Matrix from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, y_pred) return cm ```
{ "source": "1MT3J45/ML-RestaurantReviewAnalysis-NLP", "score": 3 }
#### File: 1MT3J45/ML-RestaurantReviewAnalysis-NLP/test.py ```python from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from nltk.stem import WordNetLemmatizer from multiprocessing.dummy import Pool as ThreadPool import os import pandas as pd import nltk import re import spacy import progressbar as bar testB = pd.read_csv("CSV/Restaurants_Test_Data_phaseB.csv") trainB = pd.read_csv("CSV/Restaurants_Train_v2.csv") # print(testB.head(5)) # print(trainB.head(5)) trainB_1 = trainB.iloc[:, [0, 7, 5]] testB_1 = testB.iloc[:, [0, 5, 4]] fullB = pd.concat([testB_1, trainB_1], axis=0, ignore_index=True) nltk.download('stopwords') dataset = fullB # MAJOR DATA-SET # --------------------- FUNCTIONS -------------------------- def check_dep_parse(token_dep): dep_str = token_dep check_list = list() if dep_str.startswith('nsub'): pass elif dep_str.startswith('amod'): pass elif dep_str.startswith('rcmod'): pass elif dep_str.startswith('dobj'): pass elif dep_str.startswith('neg'): pass else: return False return True # --------------------- STREAM INITIALIZER ---------------------------- PoS_Tag_sent = list() S1_corpus = [] # CORPUS (For Collecting Lemmas) corpora = '' # CORPORA (For Collecting Corpora of single sentence) S2_super_corpus =[] # CORPUS (For Collecting Bigrams sentence wise) # --------------------- SPACY SPECS ------------------------ nlp_en = spacy.load('en_core_web_sm') plot_nlp = 0 # For Plotting of Dependency chart S3_dep_corpus = [] # CORPUS (For Collecting Dependency Relations) # ---------------------------------------------------------- STREAM 1 - LEMMATIZATION try: for i in range(0, len(dataset)): review = re.sub("[^a-zA-Z]", ' ', dataset['text'][i]) review = review.lower() review = review.split() # Learn More at https://www.quora.com/What-is-difference-between-stemming-and-lemmatization ps = PorterStemmer() nl = WordNetLemmatizer() review = [ps.stem(nl.lemmatize(word, pos='v')) for word in review if not word in set(stopwords.words('english'))] review = list(set(review)) S1_corpus.append(review) bar.load(i, base=dataset, text='Stream 1') print('Stream 1: Processed') # print(S1_corpus) # ----------------------------------------------------------- STREAM 2 - BIGRAMS for i in range(len(dataset)): sent = nltk.word_tokenize(dataset.iloc[i, 0].lower()) PoS_Tag_sent = nltk.pos_tag(sent) for (w1, tag1), (w2, tag2) in nltk.bigrams(PoS_Tag_sent): if tag1.startswith('JJ') and tag2.startswith('NN'): # R1 corpora += w1+' '+w2+';' elif tag1.startswith('RB') and tag2.startswith('JJ'): # R2 corpora += w1+' '+w2+';' elif tag1.startswith('JJ') and tag2.startswith('JJ'): # R3 corpora += w1+' '+w2+';' elif tag1.startswith('NN') and tag2.startswith('JJ'): # R4 corpora += w1+' '+w2+';' elif tag1.startswith('RB') and tag2.startswith('VB'): # R5 corpora += w1+' '+w2+';' elif tag1.startswith('VB') and tag2.startswith('NN'): # R6 corpora += w1+' '+w2+';' elif tag1.startswith('JJ') and tag2.startswith('VB'): # R7 corpora += w1+' '+w2+';' elif tag1.startswith('RB') and tag2.startswith('RB'): # R8 corpora += w1+' '+w2+';' elif tag1.startswith('RB') and tag2.startswith('VB'): # R9 corpora += w1+' '+w2+';' S2_super_corpus.append(corpora) corpora = '' bar.load(i, base=dataset, text='Stream 2') print('Stream 2: Processed') except KeyboardInterrupt: print("Terminating. Human Intervention Not Allowed") exit(0) # ----------------------------------------------------------- STREAM 3 - DEPENDENCY FEATURES (spaCy) try: for increment in range(len(dataset)): sentence = dataset.iloc[increment, 0].lower() #print(increment) for token in nlp_en(sentence): dep = check_dep_parse(token.dep_) if dep is True: # print(token.dep_, end="> ") # print(token.head, token) corpora += str(token.head)+' '+str(token)+';' else: pass S3_dep_corpus.append(corpora) corpora = '' bar.load(increment,base=dataset, text='Stream 3') print('Stream 3: Processed') plot_nlp = nlp_en(sentence) pass except TypeError as e: print("Unexpected Termination:", e) exit(0) except KeyboardInterrupt: print("Human Interrupt Received! Exiting...") exit(0) stream1 = pd.Series(S1_corpus) stream2 = pd.Series(S2_super_corpus) stream3 = pd.Series(S3_dep_corpus) df = pd.concat([stream1, stream2, stream3], axis=1) df = df.rename(columns={0: 'lemmas', 1: 'bigrams', 2: 'depenrel'}) df.to_csv('FeatureSet.csv', index=False) df =pd.read_csv('FeatureSet.csv', sep=',') try: pool = ThreadPool(2) pool.map(os.system('firefox localhost:5000 &'), spacy.displacy.serve(plot_nlp, style='dep')).join() exit(0) except OSError: print("Browser must start with Graph. If doesn't please make sure to use Ubuntu with Firefox") except TypeError: print("Browser must start with Graph. If doesn't please make sure to use Ubuntu with Firefox") # # Set up spaCy # from spacy.lang.en import English # parser = English() # # # Test Data # multiSentence = "There is an art, it says, or rather, a knack to flying." \ # "The knack lies in learning how to throw yourself at the ground and miss." \ # "In the beginning the Universe was created. This has made a lot of people "\ # "very angry and been widely regarded as a bad move." # # # all you have to do to parse text is this: # #note: the first time you run spaCy in a file it takes a little while to load up its modules # parsedData = parser(multiSentence) # # # Let's look at the tokens # # All you have to do is iterate through the parsedData # # Each token is an object with lots of different properties # # A property with an underscore at the end returns the string representation # # while a property without the underscore returns an index (int) into spaCy's vocabulary # # The probability estimate is based on counts from a 3 billion word # # corpus, smoothed using the Simple Good-Turing method. # for i, token in enumerate(parsedData): # print("original:", token.orth, token.orth_) # print("lowercased:", token.lower, token.lower_) # print("lemma:", token.lemma, token.lemma_) # print("shape:", token.shape, token.shape_) # print("prefix:", token.prefix, token.prefix_) # print("suffix:", token.suffix, token.suffix_) # print("log probability:", token.prob) # print("Brown cluster id:", token.cluster) # print("----------------------------------------") # if i > 1: # break # # # Let's look at the sentences # sents = [] # parsedData.is_parsed = True # # the "sents" property returns spans # # spans have indices into the original string # # where each index value represents a token # for span in parsedData.sents: # # go from the start to the end of each span, returning each token in the sentence # # combine each token using join() # sent = ''.join(parsedData[i].string for i in range(span.start, span.end)).strip() # sents.append(sent) # # for sentence in sents: # print(sentence) # # # Let's look at the part of speech tags of the first sentence # for span in parsedData.sents: # sent = [parsedData[i] for i in range(span.start, span.end)] # break # # for token in sent: # print(token.orth_, token.pos_) # # ---------------------------------------------------- # import spacy # nlp = spacy.load("en") # # document = "There is an art, it says, or rather, a knack to flying." \ # "The knack lies in learning how to throw yourself at the ground and miss." \ # "In the beginning the Universe was created. This has made a lot of people "\ # "very angry and been widely regarded as a bad move." # # document = nlp(document) # dir(document) # # # Getting sentences: # list(document.sents) # # # Part of Speech tagging # all_tags = {w.pos: w.pos_ for w in document} # # # All tags of first sentence of our document # for word in list(document.sents)[0]: # print(word, word.tag_) # # # Defining some parameters # noisy_pos_tags = ["PROP"] # min_token_length = 2 # # # Dependency Parsing # # Extracting all review sentences that contains the term 'art' # art = [sent for sent in document.sents if 'art' in sent.string.lower()] # # # create dependency tree # sentence = art[0] # for word in sentence: # print(word, ': ', str(list(word.children))) ```
{ "source": "1Nathane/pythonbirds", "score": 4 }
#### File: pythonbirds/oo/pessoa.py ```python class Pessoa: olhos = 2 def __init__(self,*filhos, nome = None, idade = 50): self.idade = idade self.nome = nome self.filhos = list(filhos) def cumprimentar(self): return f'Olá, meu nome é {self.nome}' @staticmethod def metodo_estatico(): return 45 @classmethod def nome_e_atributos_de_classe(cls): return f'{cls} - olhos {cls.olhos}' class Homem(Pessoa): def cumprimentar(self): cumprimentar_da_classe = super().cumprimentar() return f'{cumprimentar_da_classe}. Aperto de mão' class Mutante(Pessoa): olhos = 3 if __name__ == '__main__': nathane = Mutante(nome = 'Nathane', idade = 27) layane = Homem(nome = 'Layane', idade = 27) rafael = Pessoa(nome = 'Rafael', idade = 18) luciano = Homem(nathane,rafael,layane, nome = 'Luciano') print(Pessoa.cumprimentar(luciano)) print(id(luciano)) print(luciano.cumprimentar())#Mesma expressão da linha 15 print(f'Nome: {luciano.nome}') print(f'Idade: {luciano.idade}') print(f'Filhos de {luciano.nome}:') for filho in luciano.filhos:#Necessário porque os filhos de luciano são objetos da classe Pessoa print(filho.nome) print(Pessoa.metodo_estatico(), nathane.metodo_estatico()) print(Pessoa.nome_e_atributos_de_classe(),luciano.nome_e_atributos_de_classe()) pessoa = Pessoa('Anonimo') print(isinstance(pessoa, Pessoa)) print(isinstance(pessoa, Homem)) print(isinstance(nathane, Homem)) print(isinstance(nathane, Pessoa)) print(nathane.olhos) print(luciano.cumprimentar()) print(nathane.cumprimentar()) ```
{ "source": "1NCE-GmbH/blueprint-pycom", "score": 2 }
#### File: lib/AWSIoTPythonSDK/MQTTClient.py ```python import lib.AWSIoTPythonSDK.MQTTMsgHandler as msgHandler import lib.AWSIoTPythonSDK.MQTTConst as mqttConst import time import struct import _thread class MQTTMessage: def __init__(self): self.timestamp = 0 self.state = 0 self.dup = False self.mid = 0 self.topic = "" self.payload = None self.qos = 0 self.retain = False class MQTTClient: def __init__(self, clientID, cleanSession, protocol): self.client_id = clientID self._cleanSession = cleanSession self._protocol = protocol self._userdata = None self._user = "" self._password = "" self._keepAliveInterval = 60 self._will = False self._will_topic = "" self._will_message = None self._will_qos = 0 self._will_retain = False self._connectdisconnectTimeout = 30 self._mqttOperationTimeout = 5 self._topic_callback_queue = [] self._callback_mutex = _thread.allocate_lock() self._pid = 0 self._subscribeSent = False self._unsubscribeSent = False self._baseReconnectTimeSecond = 1 self._maximumReconnectTimeSecond = 32 self._minimumConnectTimeSecond = 20 self._msgHandler = msgHandler.MsgHandler(self._recv_callback) def getClientID(self): return self.client_id def configEndpoint(self, srcHost, srcPort): self._msgHandler.setEndpoint(srcHost, srcPort) def configCredentials(self, srcCAFile, srcKey, srcCert): self._msgHandler.setCredentials(srcCAFile, srcKey, srcCert) def setConnectDisconnectTimeoutSecond(self, srcConnectDisconnectTimeout): self._connectdisconnectTimeout = srcConnectDisconnectTimeout def setMQTTOperationTimeoutSecond(self, srcMQTTOperationTimeout): self._mqttOperationTimeout = srcMQTTOperationTimeout self._msgHandler.setOperationTimeout(srcMQTTOperationTimeout) def clearLastWill(self): self._will = False self._will_topic = "" self._will_message = None self._will_qos = 0 self._will_retain = False def setLastWill(self, topic, payload=None, QoS=0, retain=False): self._will = True self._will_qos = QoS self._will_retain = retain self._will_topic = topic.encode('utf-8') if isinstance(payload, bytearray): self._will_message = payload elif isinstance(payload, str): self._will_message = payload.encode('utf-8') elif isinstance(payload, int) or isinstance(payload, float): self._will_message = str(payload) def configIAMCredentials(self, srcAWSAccessKeyID, srcAWSSecretAccessKey, srcAWSSessionToken): raise NotImplementedError('Websockets not supported') def setOfflinePublishQueueing(self, srcQueueSize, srcDropBehavior): if srcDropBehavior != mqttConst.DROP_OLDEST and srcDropBehavior != mqttConst.DROP_NEWEST: raise ValueError("Invalid packet drop behavior") self._msgHandler.setOfflineQueueConfiguration(srcQueueSize, srcDropBehavior) def setDrainingIntervalSecond(self, srcDrainingIntervalSecond): self._msgHandler.setDrainingInterval(srcDrainingIntervalSecond) def setBackoffTiming(self, srcBaseReconnectTimeSecond, srcMaximumReconnectTimeSecond, srcMinimumConnectTimeSecond): self._baseReconnectTimeSecond = srcBaseReconnectTimeSecond self._maximumReconnectTimeSecond = srcMaximumReconnectTimeSecond self._minimumConnectTimeSecond = srcMinimumConnectTimeSecond def connect(self, keepAliveInterval=30): self._keepAliveInterval = keepAliveInterval if not self._msgHandler.createSocketConnection(): return False self._send_connect(self._keepAliveInterval, self._cleanSession) # delay to check the state count_10ms = 0 while (count_10ms <= self._connectdisconnectTimeout * 100 and not self._msgHandler.isConnected()): count_10ms += 1 time.sleep(0.01) return True if self._msgHandler.isConnected() else False def subscribe(self, topic, qos, callback): if (topic is None or callback is None): raise TypeError("Invalid subscribe values.") topic = topic.encode('utf-8') header = mqttConst.MSG_SUBSCRIBE | (1 << 1) pkt = bytearray([header]) pkt_len = 2 + 2 + len(topic) + 1 # packet identifier + len of topic (16 bits) + topic len + QOS pkt.extend(self._encode_varlen_length(pkt_len)) # len of the remaining self._pid += 1 pkt.extend(self._encode_16(self._pid)) pkt.extend(self._pascal_string(topic)) pkt.append(qos) self._subscribeSent = False self._msgHandler.push_on_send_queue(pkt) count_10ms = 0 while (count_10ms <= self._mqttOperationTimeout * 100 and not self._subscribeSent): count_10ms += 1 time.sleep(0.01) if self._subscribeSent: self._callback_mutex.acquire() self._topic_callback_queue.append((topic, callback)) self._callback_mutex.release() return True return False def publish(self, topic, payload, qos, retain, dup=False): topic = topic.encode('utf-8') payload = payload.encode('utf-8') header = mqttConst.MSG_PUBLISH | (dup << 3) | (qos << 1) | retain pkt_len = (2 + len(topic) + (2 if qos else 0) + (len(payload))) pkt = bytearray([header]) pkt.extend(self._encode_varlen_length(pkt_len)) # len of the remaining pkt.extend(self._pascal_string(topic)) if qos: self._pid += 1 # todo: I don't think this is the way to deal with the packet id pkt.extend(self._encode_16(self._pid)) pkt = pkt + payload self._msgHandler.push_on_send_queue(pkt) def _encode_16(self, x): return struct.pack("!H", x) def _pascal_string(self, s): return struct.pack("!H", len(s)) + s def _encode_varlen_length(self, length): i = 0 buff = bytearray() while 1: buff.append(length % 128) length = length // 128 if length > 0: buff[i] = buff[i] | 0x80 i += 1 else: break return buff def _topic_matches_sub(self, sub, topic): result = True multilevel_wildcard = False slen = len(sub) tlen = len(topic) if slen > 0 and tlen > 0: if (sub[0] == '$' and topic[0] != '$') or (topic[0] == '$' and sub[0] != '$'): return False spos = 0 tpos = 0 while spos < slen and tpos < tlen: if sub[spos] == topic[tpos]: if tpos == tlen - 1: # Check for e.g. foo matching foo/# if spos == slen - 3 and sub[spos + 1] == '/' and sub[spos + 2] == '#': result = True multilevel_wildcard = True break spos += 1 tpos += 1 if tpos == tlen and spos == slen - 1 and sub[spos] == '+': spos += 1 result = True break else: if sub[spos] == '+': spos += 1 while tpos < tlen and topic[tpos] != '/': tpos += 1 if tpos == tlen and spos == slen: result = True break elif sub[spos] == '#': multilevel_wildcard = True if spos + 1 != slen: result = False break else: result = True break else: result = False break if not multilevel_wildcard and (tpos < tlen or spos < slen): result = False return result def _remove_topic_callback(self, topic): deleted = False self._callback_mutex.acquire() for i in range(0, len(self._topic_callback_queue)): if self._topic_callback_queue[i][0] == topic: self._topic_callback_queue.pop(i) deleted = True self._callback_mutex.release() return deleted def unsubscribe(self, topic): self._unsubscribeSent = False self._send_unsubscribe(topic, False) count_10ms = 0 while (count_10ms <= self._mqttOperationTimeout * 100 and not self._unsubscribeSent): count_10ms += 1 time.sleep(0.01) if self._unsubscribeSent: topic = topic.encode('utf-8') return self._remove_topic_callback(topic) return False def disconnect(self): pkt = struct.pack('!BB', mqttConst.MSG_DISCONNECT, 0) self._msgHandler.push_on_send_queue(pkt) time.sleep(self._connectdisconnectTimeout) self._msgHandler.disconnect() return True def _send_connect(self, keepalive, clean_session): msg_sent = False pkt_len = (12 + len(self.client_id) + # 10 + 2 + len(client_id) (2 + len(self._user) if self._user else 0) + (2 + len(self._password) if self._password else 0)) flags = (0x80 if self._user else 0x00) | (0x40 if self._password else 0x00) | (0x02 if clean_session else 0x00) if self._will_message: flags |= (self._will_retain << 3 | self._will_qos << 1 | 1) << 2 pkt_len += 4 + len(self._will_topic) + len(self._will_message) pkt = bytearray([mqttConst.MSG_CONNECT]) # connect pkt.extend(self._encode_varlen_length(pkt_len)) # len of the remaining pkt.extend(b'\x00\x04MQTT\x04') # len of "MQTT" (16 bits), protocol name, and protocol version pkt.append(flags) pkt.extend(b'\x00\x00') # disable keepalive pkt.extend(self._pascal_string(self.client_id)) if self._will_message: pkt.extend(self._pascal_string(self._will_topic)) pkt.extend(self._pascal_string(self._will_message)) if self._user: pkt.extend(self._pascal_string(self._user)) if self._password: pkt.extend(self._pascal_string(self._password)) return self._msgHandler.priority_send(pkt) def _send_unsubscribe(self, topic, dup=False): pkt = bytearray() msg_type = mqttConst.MSG_UNSUBSCRIBE | (dup << 3) | (1 << 1) pkt.extend(struct.pack("!B", msg_type)) remaining_length = 2 + 2 + len(topic) pkt.extend(self._encode_varlen_length(remaining_length)) self._pid += 1 pkt.extend(self._encode_16(self._pid)) pkt.extend(self._pascal_string(topic)) return self._msgHandler.push_on_send_queue(pkt) def _send_puback(self, msg_id): remaining_length = 2 pkt = struct.pack('!BBH', mqttConst.MSG_PUBACK, remaining_length, msg_id) return self._msgHandler.push_on_send_queue(pkt) def _send_pubrec(self, msg_id): remaining_length = 2 pkt = struct.pack('!BBH', mqttConst.MSG_PUBREC, remaining_length, msg_id) return self._msgHandler.push_on_send_queue(pkt) def _parse_connack(self, payload): if len(payload) != 2: return False (flags, result) = struct.unpack("!BB", payload) if result == 0: self._msgHandler.setConnectionState(mqttConst.STATE_CONNECTED) return True else: self._msgHandler.setConnectionState(mqttConst.STATE_DISCONNECTED) return False def _parse_suback(self, payload): self._subscribeSent = True print('Subscribed to topic') return True def _parse_puback(self, payload): return True def _notify_message(self, message): notified = False self._callback_mutex.acquire() for t_obj in self._topic_callback_queue: if self._topic_matches_sub(t_obj[0], message.topic): t_obj[1](self, self._userdata, message) notified = True self._callback_mutex.release() return notified def _parse_publish(self, cmd, packet): msg = MQTTMessage() msg.dup = (cmd & 0x08) >> 3 msg.qos = (cmd & 0x06) >> 1 msg.retain = (cmd & 0x01) pack_format = "!H" + str(len(packet) - 2) + 's' (slen, packet) = struct.unpack(pack_format, packet) pack_format = '!' + str(slen) + 's' + str(len(packet) - slen) + 's' (msg.topic, packet) = struct.unpack(pack_format, packet) if len(msg.topic) == 0: return False if msg.qos > 0: pack_format = "!H" + str(len(packet) - 2) + 's' (msg.mid, packet) = struct.unpack(pack_format, packet) msg.payload = packet if msg.qos == 0: self._notify_message(msg) elif msg.qos == 1: self._send_puback(msg.mid) self._notify_message(msg) elif msg.qos == 2: self._send_pubrec(msg.mid) self._notify_message(msg) else: return False return True def _parse_unsuback(self, payload): self._unsubscribeSent = True return True def _parse_pingresp(self): self._msgHandler.setPingFlag(True) return True def _recv_callback(self, cmd, payload): msg_type = cmd & 0xF0 if msg_type == mqttConst.MSG_CONNACK: return self._parse_connack(payload) elif msg_type == mqttConst.MSG_SUBACK: return self._parse_suback(payload) elif msg_type == mqttConst.MSG_PUBACK: return self._parse_puback(payload) elif msg_type == mqttConst.MSG_PUBLISH: return self._parse_publish(cmd, payload) elif msg_type == mqttConst.MSG_UNSUBACK: return self._parse_unsuback(payload) elif msg_type == mqttConst.MSG_PINGRESP: return self._parse_pingresp() else: print('Unknown message type: %d' % msg_type) return False def insertShadowCallback(self, callback, payload, status, token): self._msgHandler.insertShadowCallback(callback, payload, status, token) ``` #### File: lib/microcoapy/coap_packet.py ```python import lib.microcoapy.coap_macros as macros from lib.microcoapy.coap_option import CoapOption class CoapPacket: def __init__(self): self.version = macros.COAP_VERSION.COAP_VERSION_UNSUPPORTED self.type = macros.COAP_TYPE.COAP_CON # uint8_t self.method = macros.COAP_METHOD.COAP_GET # uint8_t self.token = bytearray() self.payload = bytearray() self.message_id = 0 self.content_format = macros.COAP_CONTENT_FORMAT.COAP_NONE self.query = bytearray() # uint8_t* self.options = [] def add_option(self, number, opt_payload): if len(self.options) >= macros.MAX_OPTION_NUM: return self.options.append(CoapOption(number, opt_payload)) def set_uri_host(self, address): self.add_option(macros.COAP_OPTION_NUMBER.COAP_URI_HOST, address) def set_uri_path(self, url): for subPath in url.split('/'): self.add_option(macros.COAP_OPTION_NUMBER.COAP_URI_PATH, subPath) def to_string(self): class_, detail = macros.CoapResponseCode.decode(self.method) return "type: {}, method: {}.{:02d}, messageid: {}, payload: {}".format( macros.coap_type_to_string(self.type), class_, detail, self.message_id, self.payload) ``` #### File: lib/microcoapy/microcoapy.py ```python import binascii import uos import usocket as socket import utime as time import lib.microcoapy.coap_macros as macros from lib.microcoapy.coap_packet import CoapPacket from lib.microcoapy.coap_reader import parse_packet_header_info from lib.microcoapy.coap_reader import parse_packet_options_and_payload from lib.microcoapy.coap_writer import write_packet_header_info from lib.microcoapy.coap_writer import write_packet_options from lib.microcoapy.coap_writer import write_packet_payload class Coap: TRANSMISSION_STATE = macros.enum( STATE_IDLE=0, STATE_SEPARATE_ACK_RECEIVED_WAITING_DATA=1 ) def __init__(self): self.debug = True self.sock = None self.callbacks = {} self.response_callback = None self.port = 0 self.isServer = False self.state = self.TRANSMISSION_STATE.STATE_IDLE self.isCustomSocket = False # beta flags self.discardRetransmissions = False self.lastPacketStr = "" def log(self, s): if self.debug: print("[microcoapy]: " + s) # Create and initialize a new UDP socket to listen to. # port: the local port to be used. def start(self, port=macros.COAP_DEFAULT_PORT): self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.sock.bind(('', port)) # Stop and destroy the socket that has been created by # a previous call of 'start' function def stop(self): if self.sock is not None: self.sock.close() self.sock = None # Set a custom instance of a UDP socket # Is used instead of calling start/stop functions. # # Note: This overrides the automatic socket that has been created # by the 'start' function. # The custom socket must support functions: # * socket.sendto(bytes, address) # * socket.recvfrom(bufsize) # * socket.setblocking(flag) def set_custom_socket(self, custom_socket): self.stop() self.isCustomSocket = True self.sock = custom_socket def add_incoming_request_callback(self, request_url, callback): self.callbacks[request_url] = callback self.isServer = True def send_packet(self, ip, port, coap_packet): if coap_packet.content_format != macros.COAP_CONTENT_FORMAT.COAP_NONE: option_buffer = bytearray(2) option_buffer[0] = (coap_packet.content_format & 0xFF00) >> 8 option_buffer[1] = (coap_packet.content_format & 0x00FF) coap_packet.add_option(macros.COAP_OPTION_NUMBER.COAP_CONTENT_FORMAT, option_buffer) if (coap_packet.query is not None) and (len(coap_packet.query) > 0): coap_packet.add_option(macros.COAP_OPTION_NUMBER.COAP_URI_QUERY, coap_packet.query) buffer = bytearray() write_packet_header_info(buffer, coap_packet) write_packet_options(buffer, coap_packet) write_packet_payload(buffer, coap_packet) status = 0 try: socket_address = (ip, port) try: socket_address = socket.getaddrinfo(ip, port)[0][-1] except Exception as e: pass status = self.sock.sendto(buffer, socket_address) if status > 0: status = coap_packet.message_id self.log('Packet sent. messageid: ' + str(status)) except Exception as e: status = 0 print('Exception while sending packet...') import sys sys.print_exception(e) return status def send(self, ip, port, url, packet_type, method, token, payload, content_format, query_option): packet = CoapPacket() packet.type = packet_type packet.method = method packet.token = token packet.payload = payload packet.content_format = content_format packet.query = query_option return self.send_ex(ip, port, url, packet) def send_ex(self, ip, port, url, packet): self.state = self.TRANSMISSION_STATE.STATE_IDLE # messageId field: 16bit -> 0-65535 # urandom to generate 2 bytes random_bytes = uos.urandom(2) packet.message_id = (random_bytes[0] << 8) | random_bytes[1] packet.set_uri_host(ip) packet.set_uri_path(url) return self.send_packet(ip, port, packet) # to be tested def send_response(self, ip, port, message_id, payload, method, content_format, token): packet = CoapPacket() packet.type = macros.COAP_TYPE.COAP_ACK packet.method = method packet.token = token packet.payload = payload packet.message_id = message_id packet.content_format = content_format return self.send_packet(ip, port, packet) def get(self, ip, port, url, token=bytearray()): return self.send(ip, port, url, macros.COAP_TYPE.COAP_CON, macros.COAP_METHOD.COAP_GET, token, None, macros.COAP_CONTENT_FORMAT.COAP_NONE, None) def put(self, ip, port, url, payload=bytearray(), query_option=None, content_format=macros.COAP_CONTENT_FORMAT.COAP_NONE, token=bytearray()): return self.send(ip, port, url, macros.COAP_TYPE.COAP_CON, macros.COAP_METHOD.COAP_PUT, token, payload, content_format, query_option) def post(self, ip, port, url, payload=bytearray(), query_option=None, content_format=macros.COAP_CONTENT_FORMAT.COAP_NONE, token=bytearray()): return self.send(ip, port, url, macros.COAP_TYPE.COAP_CON, macros.COAP_METHOD.COAP_POST, token, payload, content_format, query_option) def get_non_confirmable(self, ip, port, url, token=bytearray()): return self.send(ip, port, url, macros.COAP_TYPE.COAP_NONCON, macros.COAP_METHOD.COAP_GET, token, None, macros.COAP_CONTENT_FORMAT.COAP_NONE, None) def put_non_confirmable(self, ip, port, url, payload=bytearray(), query_option=None, content_format=macros.COAP_CONTENT_FORMAT.COAP_NONE, token=bytearray()): return self.send(ip, port, url, macros.COAP_TYPE.COAP_NONCON, macros.COAP_METHOD.COAP_PUT, token, payload, content_format, query_option) def post_non_confirmable(self, ip, port, url, payload=bytearray(), query_option=None, content_format=macros.COAP_CONTENT_FORMAT.COAP_NONE, token=bytearray()): return self.send(ip, port, url, macros.COAP_TYPE.COAP_NONCON, macros.COAP_METHOD.COAP_POST, token, payload, content_format, query_option) def handle_incoming_request(self, request_packet, source_ip, source_port): url = "" for opt in request_packet.options: if (opt.number == macros.COAP_OPTION_NUMBER.COAP_URI_PATH) and (len(opt.buffer) > 0): if url != "": url += "/" url += opt.buffer.decode('unicode_escape') url_callback = None if url != "": url_callback = self.callbacks.get(url) if url_callback is None: print('Callback for url [', url, "] not found") self.send_response(source_ip, source_port, request_packet.message_id, None, macros.COAP_RESPONSE_CODE.COAP_NOT_FOUND, macros.COAP_CONTENT_FORMAT.COAP_NONE, request_packet.token) else: url_callback(request_packet, source_ip, source_port) def read_bytes_from_socket(self, num_of_bytes): try: return self.sock.recvfrom(num_of_bytes) except Exception: return None, None def parse_packet_token(self, buffer, packet): if packet.tokenLength == 0: packet.token = None elif packet.tokenLength <= 8: packet.token = buffer[4:4 + packet.tokenLength] else: (tempBuffer, tempRemoteAddress) = self.read_bytes_from_socket(macros.BUF_MAX_SIZE - len(buffer)) if tempBuffer is not None: buffer.extend(tempBuffer) return False return True def loop(self, blocking=True): if self.sock is None: return False self.sock.setblocking(blocking) (buffer, remoteAddress) = self.read_bytes_from_socket(macros.BUF_MAX_SIZE) self.sock.setblocking(True) while (buffer is not None) and (len(buffer) > 0): buffer_len = len(buffer) if (buffer_len < macros.COAP_HEADER_SIZE) or (((buffer[0] & 0xC0) >> 6) != 1): (tempBuffer, tempRemoteAddress) = self.read_bytes_from_socket(macros.BUF_MAX_SIZE - buffer_len) if tempBuffer is not None: buffer.extend(tempBuffer) continue packet = CoapPacket() self.log("Incoming Packet bytes: " + str(binascii.hexlify(bytearray(buffer)))) parse_packet_header_info(buffer, packet) if not self.parse_packet_token(buffer, packet): continue if not parse_packet_options_and_payload(buffer, packet): return False # beta functionality if self.discardRetransmissions: if packet.to_string() == self.lastPacketStr: self.log("Discarded retransmission message: " + packet.to_string()) return False else: self.lastPacketStr = packet.to_string() #### if self.isServer: self.handle_incoming_request(packet, remoteAddress[0], remoteAddress[1]) else: # To handle cases of Separate response (rfc7252 #5.2.2) if packet.type == macros.COAP_TYPE.COAP_ACK and \ packet.method == macros.COAP_METHOD.COAP_EMPTY_MESSAGE: self.state = self.TRANSMISSION_STATE.STATE_SEPARATE_ACK_RECEIVED_WAITING_DATA return False # case of piggybacked response where the response is in the ACK (rfc7252 #5.2.1) # or the data of a separate message else: if self.state == self.TRANSMISSION_STATE.STATE_SEPARATE_ACK_RECEIVED_WAITING_DATA: self.state = self.TRANSMISSION_STATE.STATE_IDLE self.send_response(remoteAddress[0], remoteAddress[1], packet.message_id, None, macros.COAP_TYPE.COAP_ACK, macros.COAP_CONTENT_FORMAT.COAP_NONE, packet.token) if self.response_callback is not None: self.response_callback(packet, remoteAddress) return True return False def poll(self, timeout_ms=-1, poll_period_ms=500): start_time = time.ticks_ms() status = False while not status: status = self.loop(False) if time.ticks_diff(time.ticks_ms(), start_time) >= timeout_ms: break time.sleep_ms(poll_period_ms) return status def set_response_callback(self, callback): self.response_callback = callback ``` #### File: onboarding/helper/file_helper.py ```python class FileHelper: @staticmethod def write_file(content, path): """ Writes the content to a file :param content: Content that needs to be written to the file :param path: File path """ with open(path, "wb") as file: file.write(content) ``` #### File: nce/translator/message_service.py ```python import ustruct as struct class ValueType: STRING = "string" CHAR = "char" DOUBLE = "double" FLOAT = "float" INT = "int" UINT = "uint" SHORT = "short" BOOLEAN = "boolean" def fill_bytes(byte_array, start, end, value, value_type): if value_type == ValueType.CHAR and value is not None and value is not '': byte_array[start:end] = struct.pack("s", value) elif value_type == ValueType.STRING and value is not None and value is not '': byte_array[start:end] = struct.pack("{}s".format(end - start), value) elif value_type == ValueType.DOUBLE and value is not None and value is not '': byte_array[start:end] = struct.pack("d", float(value)) elif value_type == ValueType.FLOAT and value is not None and value is not '': byte_array[start:end] = struct.pack("f", float(value)) elif value_type == ValueType.INT and value is not None and value is not '': byte_array[start:end] = struct.pack("i", int(value)) elif value_type == ValueType.UINT and value is not None and value is not '': byte_array[start:end] = struct.pack("I", int(value)) elif value_type == ValueType.SHORT and value is not None and value is not '': byte_array[start:end] = struct.pack("h", int(value)) return byte_array ```
{ "source": "1ncend1ary/Habitican-Curse", "score": 3 }
#### File: Habitican-Curse/habitican_curse/config.py ```python import curses import datetime import os NUM_CONTEXT_REGISTERS = 4 # Screen Specifications - Will be adjusted during runtime SCR_MAX_MENU_ROWS = 22 # Keep this as an even number please SCR_X = 0 SCR_Y = 0 SCR_MENU_ITEM_WIDTH = 0 SCR_FIRST_HALF_LENGTH = 0 # Space taken up by the upper half menu of tasks SCR_TEXT_AREA_LENGTH = 0 # Colors SCR_COLOR_RED = 2 SCR_COLOR_GREEN = 3 SCR_COLOR_YELLOW = 4 SCR_COLOR_BLUE = 5 SCR_COLOR_WHITE = 6 SCR_COLOR_MAGENTA = 7 SCR_COLOR_CYAN = 14 SCR_COLOR_LIGHT_ORANGE = 8 SCR_COLOR_DARK_ORANGE = 9 SCR_COLOR_DARK_GRAY = 15 SCR_COLOR_LIGHT_GRAY = 16 # Display Colors with Background SCR_COLOR_WHITE_GRAY_BGRD = 12 SCR_COLOR_GRAY_WHITE_BGRD = 13 SCR_COLOR_RED_GRAY_BGRD = 17 SCR_COLOR_GREEN_GRAY_BGRD = 18 SCR_COLOR_YELLOW_GRAY_BGRD = 19 SCR_COLOR_BLUE_GRAY_BGRD = 20 SCR_COLOR_WHITE_GRAY_BGRD = 21 SCR_COLOR_MAGENTA_GRAY_BGRD = 22 # Background Color (Default black) SCR_COLOR_BGRD = curses.COLOR_BLACK # Special Color Codes SCR_COLOR_NEUTRAL = SCR_COLOR_LIGHT_GRAY # Special Symbols SYMBOL_TICK = '\u2714' SYMBOL_DISC = '\u25CF' SYMBOL_DOWN_TRIANGLE = '\u25BC' SYMBOL_UP_TRIANGLE = '\u25B2' SYMBOL_DELETE = 'x' SYMBOL_HEART = '\u2665' SYMBOL_EXPERIENCE = '\u2605' SYMBOL_GOLD = '\u25CF' SYMBOL_MANA = '\u2600' SYMBOL_EDIT = '\u270E' SYMBOL_LEVEL = '\u2949' SYMBOL_DUE = '\u29D6' SYMBOL_CHALLENGE_FLAG = '\u2691' # Status Attributes HabitStatus = {'+': 0, '-': 0, SYMBOL_DELETE: False, SYMBOL_EDIT: False} HabitPosStatus = {'+': 0, SYMBOL_DELETE: False, SYMBOL_EDIT: False} HabitNegStatus = {'-': 0, SYMBOL_DELETE: False, SYMBOL_EDIT: False} UnscoredHabitStatus = {SYMBOL_DELETE: False, SYMBOL_EDIT: False} TODODailyStatus = {SYMBOL_TICK: False, SYMBOL_DELETE: False, SYMBOL_EDIT: False} ChecklistStatus = {SYMBOL_TICK: False, SYMBOL_DELETE: False, SYMBOL_EDIT: False} # Function for setting values at runtime def ConfigureRuntime(screen): global SCR_Y, SCR_X, SCR_MENU_ITEM_WIDTH, SCR_TEXT_AREA_LENGTH, SCR_FIRST_HALF_LENGTH SCR_X, SCR_Y = screen.getmaxyx() SCR_MENU_ITEM_WIDTH = (SCR_Y - 10)/3 SCR_TEXT_AREA_LENGTH = (SCR_X - (SCR_MAX_MENU_ROWS + 7 + 4)) SCR_FIRST_HALF_LENGTH = SCR_MAX_MENU_ROWS + 7 # Parser Settings SET_COMMANDS = ["d", "due", "every", "weekly", "direction"] DIFFS = ["trivial", "easy", "medium", "hard"] DATEPARSER = datetime.datetime.strptime DATEFORMATS = ["%d/%m/%Y", "%d/%m/%y"] DEFAULT_REPEAT = {'m': True, 't': True, 'w': True, 'th': True, 'f': True, 's': True, 'su': True} # Configuration file settings user_config = None #Read in the configuration files def ReadConfigFile(): global user_config user_config = dict() CONFIG_FILE = os.getenv("HOME")+'/.habiticarc' try: f = open(CONFIG_FILE, 'r') except: import sys print("Enter UUID: ", end=' ') uuid = input().strip() print(" ") print("Enter API-Key: ", end=' ') key = input().strip() f = open(CONFIG_FILE, 'w+') f.write("uuid="+uuid+"\n") f.write("key="+key+"\n") f.write("debug_lvl=50\n") f.close() f = open(CONFIG_FILE, 'r') for x in f.readlines(): x = x[:-1].split("=") user_config[x[0]] = x[1] f.close() def getConfig(value): if( user_config is None): ReadConfigFile() if( value in user_config ): return user_config[value] return None ```
{ "source": "1ncend1ary/wwa", "score": 3 }
#### File: wwa/web/scraper.py ```python import requests from web import logger, secret _imagenet_url = 'http://www.image-net.org/api/text/imagenet.synset.geturls?wnid={}' _bing_url = "https://api.cognitive.microsoft.com/bing/v7.0/images/search" def bing_suppy_images(keyword, number_of_images): """ Get list of supplementary images from bing search by keyword """ headers = {'Ocp-Apim-Subscription-Key': secret.subscription_key} params = {'q': keyword, 'license': 'public', 'imageType': 'photo'} try: response = requests.get(_bing_url, headers=headers, params=params) response.raise_for_status() search_results = response.json() logger.info('Got a list of images from Bing.') return [img['thumbnailUrl'] for img in search_results['value'][:number_of_images]] except requests.exceptions.RequestException as e: # any error caught while reading from the web, returning no images logger.exception(e) return [] def i_supply_images(category_id): """ Get list of images from image-net by category_id """ url = _imagenet_url.format(category_id) try: logger.info('Got a list of images from image-net.') return requests.get(url).text.splitlines() except requests.exceptions.RequestException as e: # any error caught while reading from the web, returning no images logger.exception(e) return [] def supply_images(category_id, category_names): """ Get list of images from both Bing and image-net :returns: list of images """ images = i_supply_images(category_id) for cn in category_names: images = bing_suppy_images(cn, 2) + images return images ``` #### File: wwa/web/word2vec.py ```python import gensim import numpy import math from web import logger from statistics import mean class Vectoriser: """ Words and vectors handling utility class """ __path = 'web/model/GoogleNews-vectors-negative300.bin.gz' __limit = 100000 __isBinary = True logger.info('Starting training.') __model = gensim.models.KeyedVectors.load_word2vec_format(__path, binary=__isBinary, limit=__limit) logger.info('Finished training.') def __to_vec(self, word): """ Convert a word to vector using a pre trained model """ vector = None for w in word.split(): try: cur_model = self.__model[w] if vector is None: vector = cur_model else: vector = numpy.add(vector, cur_model) except KeyError: # Word not found in model return None return vector def sort(self, base, words): """ Sort words based on euclidean distance from base word :deprecated: """ base_vec = self.__to_vec(base) sorted_words = sorted(words, key=lambda x: self.__euclidean(base_vec, self.__to_vec(x))) return sorted_words def sort_with_f(self, bases, words, f): """ Sort words based on average euclidean distance from all base words applying a function to every element :param bases: list of base words to calculate distance to :param words: list of tuples - words to be sorted :param f: function to be applied to every word before sort :returns: list of sorted tuples """ base_vectors = [self.__to_vec(base) for base in bases if self.__to_vec(base) is not None] if len(base_vectors) > 0: sorted_words = sorted(words, key=lambda x: mean([self.__euclidean(basevec, self.__to_vec(f(x))) for basevec in base_vectors])) return sorted_words else: return words @staticmethod def __pow2(value): return math.pow(value, 2) def __euclidean(self, vector1, vector2): """ Get euclidean distance between two vectors """ if vector1 is None or vector2 is None: return float('inf') return math.sqrt(sum(list((map(self.__pow2, map(lambda x, y: x - y, vector1, vector2)))))) def __new__(cls): """ Declare this class as singleton This method is initiated before __init__ and check whether an instance of this class already exists """ if not hasattr(cls, 'instance'): cls.instance = super(Vectoriser, cls).__new__(cls) return cls.instance ```
{ "source": "1ncurred-da3mon/Cells", "score": 3 }
#### File: Cells/sense_cells/emulator.py ```python import threading import turtle import random import time import init import sys import re global sensor global window global funcs global isinfunc global incomment funcs = dict() currentfunc = None isinfunc = False incomment = False class Cell: def __init__(self): self.color = None self.t_obj = turtle.Turtle(shape='circle') self.t_obj.shapesize(3) self.t_obj.speed(0) self.t_obj.penup() self.t_obj.ht() def initialize(self, color='#787878'): self.color = color self.t_obj.color(color) def set_color(self, color): self.color = color self.t_obj.color(self.color) class Vector2: def __init__(self, x = -1, y = -1): self.X = x self.Y = y def __repr__(self): return (self.X, self.Y) def __str__(self): return f"({self.X}, {self.Y})" class Senser: def __init__(self, countx, county): self.cells = [[Cell() for x in range(countx)] for y in range(county)] self.cell_count = Vector2(countx, county) def initialize_all(self): self.initializeAll() def initializeAll(self): px = -390/2 py = 390/2 - 10 for j in range(self.cell_count.Y): px = -390/2 for i in range(self.cell_count.X): self.cells[j][i].initialize() self.cells[j][i].t_obj.goto(px, py) self.cells[j][i].t_obj.showturtle() px += 80 if px >= 390: print("Too many x Objects") print(self.cell_count) if py <= -390/2: print("Too many y objects!") print(self.cell_count) print("current y:", j+1) sys.exit(1) py -= 90 sensor = Senser(6, 5) def matchesColor(obj: str) -> bool: for color in ("yellow, gold, orange, red, maroon, violet, magenta, purple, navy, blue, skyblue, cyan, turquoise, lightgreen, green, darkgreen, chocolate, brown, black, gray, white".split(', ')): if obj == color or re.match(r"#([0-9A-F]{6})", obj): return True return False def gen_random_color(): rstr = '#' for _ in range(6): rstr += random.choice(list('0123456789ABCDEF')) return rstr def InterpretInput(str_input: str) -> None: global currentfunc global incomment global isinfunc global window global sensor global funcs # check if insdie comments if incomment: if '*/' in str_input: str_input = str_input[str_input.find('*/')+2:] incomment = False else: return str_input = str_input.strip().lower() # current adding words to a function if isinfunc: if str_input == "end": isinfunc = False currentfunc = None else: funcs[currentfunc].append(str_input) # call help command elif str_input == "help": print("set [cell.../color] <color>") # single line comment elif str_input.startswith('//'): return #multiline comment elif str_input.startswith('/*'): incomment = True # set a cell to a certain color elif str_input.startswith("set "): splitinput = str_input.split(' ') if len(splitinput) < 2: print("invalid input!") elif matchesColor(splitinput[-1]) or splitinput[-1] == 'rand_color': if len(splitinput) == 2: for y in range(sensor.cell_count.Y): for x in range(sensor.cell_count.X): if splitinput[-1] == 'rand_color': sensor.cells[y][x].set_color(gen_random_color()) else: sensor.cells[y][x].set_color(splitinput[1]) else: newinp = splitinput[1:len(splitinput)-1] #currentcell = [] #try: for cell in newinp: line = list(cell)[0].upper() #print(enumerate(list("ABCDE"))) for i in enumerate(list("ABCDE")): if line == i[1]: line = i[0] break else: print("Out of range!") sys.exit(1) if len(list(cell)) == 1: for i in range(6): print(i) if splitinput[-1] == 'rand_color': sensor.cells[line][i].set_color(gen_random_color()) else: sensor.cells[line][i].set_color(splitinput[-1]) else: col = int(list(cell)[1]) if splitinput[-1] == 'rand_color': randomcolor = gen_random_color() sensor.cells[line][col].set_color(randomcolor) else: sensor.cells[line][col].set_color(splitinput[-1]) # check for the sleep function elif str_input.startswith("sleep") or str_input.startswith("slp"): if len(str_input.strip().split()) < 2: print("Invalid use for sleep command!") else: time.sleep(float(str_input.split()[1])) # creates functions elif str_input.startswith("func "): if len(str_input.split()) != 2: print("failed to create function. Template: \"func myfunc:\"") elif isinfunc: print("already in function. cannot create nested functions.") else: isinfunc = True currentfunc = str_input.split()[1].replace(':', '') funcs[currentfunc]=list() # user wants to exit elif str_input == "exit": sys.exit(0) # user called a function elif str_input in funcs.keys(): for com in funcs[str_input]: InterpretInput(com) # user entered nothing elif len(str_input.strip()) == 0: return # invalid input else: print(f"invalid command: {str_input}") window.update() def CreateGUI(): global sensor global window window = turtle.Screen() window.screensize(800, 710) #window.update() filler = turtle.Turtle() filler.speed(0) filler.hideturtle() filler.penup() filler.pensize(4) filler.fd(600) init.draw_n_fill(Vector2(600, 600), '#474747', filler) filler.penup() filler.goto(500, 0) init.draw_n_fill(Vector2(500, 500), 'green', filler) window.update() sensor.initializeAll() def InteractiveSession(): global sensor global window global funcs global isinfunc global currentfunc CreateGUI() TakeInput() def PostFileInteractiveSession(): global sensor global funcs global isinfunc global currentfunc TakeInput() def TakeInput(): while True: str_input = input("~>: ") InterpretInput(str_input) # sensor = Senser(5, 5) # sensor.initialize_all() if __name__ == '__main__': if len(sys.argv) <= 1: InteractiveSession() else: CreateGUI() with open(sys.argv[1], 'r') as f: for line in f.readlines(): InterpretInput(line.replace('\n', '')) PostFileInteractiveSession() ```
{ "source": "1nd0m1nu3v01d3/Master", "score": 2 }
#### File: src/replit/__init__.py ```python from . import web from .audio import Audio from .database import ( db, Database, AsyncDatabase, make_database_proxy_blueprint, start_database_proxy, ) from .info import ReplInfo info = ReplInfo() # Backwards compatibility. def clear() -> None: """Clear the terminal.""" print("\033[H\033[2J", end="", flush=True) audio = Audio() ```