metadata
dict
text
stringlengths
60
3.49M
{ "source": "jcontesti/spotify-solar-radio-chart", "score": 3 }
#### File: spotify-solar-radio-chart/correctors/google_misspelling_corrector.py ```python from typing import Dict, Final, Optional from googleapiclient.discovery import build from settings import environment_settings from . import misspelling_corrector class GoogleMisspellingCorrector(misspelling_corrector.MisspellingCorrector): """ Class that allows to correct artists and songs titles using Google Search Console. """ GOOGLE_API_KEY: Final[str] = environment_settings.GOOGLE_API_KEY GOOGLE_CSE_KEY: Final[str] = environment_settings.GOOGLE_CSE_KEY SEPARATOR: Final[str] = " : " def __init__(self, cache_path: str = "google_misspelling_corrections_cache.json"): super().__init__(cache_path) def correct(self, artist: str, song: str) -> Optional[Dict[str, str]]: # If previously queried, return from cache cached_corrected: Optional[str] = ( self._get_from_cached_misspelling_corrections(artist, song) ) if cached_corrected: return self._decode_artist_song(cached_corrected) # Not typed because it returns a generic Resource service = build( serviceName="customsearch", version="v1", developerKey=environment_settings.GOOGLE_API_KEY, cache_discovery=False, ) query: str = artist + self.SEPARATOR + song # Not typed because it returns a generic result query_result = ( # pylint: disable=no-member service.cse().list(q=query, cx=self.GOOGLE_CSE_KEY).execute() ) corrected_result: Optional[Dict[str, str]] = None if "spelling" in query_result: corrected: str = ( query_result["spelling"]["correctedQuery"].split(self.SEPARATOR) ) corrected_artist = corrected[0] corrected_song = corrected[1] if len(corrected) == 2 else "" # Cache queried values self._cache_correction(artist, song, corrected_artist, corrected_song) corrected_result = {"artist": corrected_artist, "song": corrected_song} return corrected_result ``` #### File: spotify-solar-radio-chart/extracted_data/extracted_song.py ```python from typing import List class ExtractedSong: """Class that represents an song that has been extracted from any source.""" ARTISTS_SEPARATORS = [ ' & ', ' ft ', ' ft. ', ' feat ', ' feat. ', ' presents ', ' pres. ', ' with ', ' and ', ', ', ] SONGS_TITLES_SEPARATORS = [ '/', ' - ', ] def __init__(self, artist: str, song_title: str, album_title: str = "", label: str = "") -> None: self._artist = artist self._song_title = song_title self._album_title = album_title self._label = label @property def artist(self) -> str: """Return the artist text.""" return self._artist @property def song_title(self) -> str: """Return the title text.""" return self._song_title @property def album_title(self) -> str: """Return the album name.""" return self._album_title @property def label(self) -> str: """Return the label of the song.""" return self._label def get_separated_artists(self) -> List[str]: """ Split artists names into a list. For instance "Artist A feat. Artist B" returns ["Artist A", "Artist B"]. :return: list of artists related to the song. """ replaced_artists = self._artist for separator in self.ARTISTS_SEPARATORS: replaced_artists = replaced_artists.replace(separator, "#") if "#" in replaced_artists: separated_artists = replaced_artists.split("#") else: separated_artists = [replaced_artists] return separated_artists def get_separated_titles(self) -> List[str]: """ Split songs titles into a list. For instance "Song 1 / Song 2" returns ["Song 1", "Song 2"]. :return: list of different titles related to the extracted song. """ replaced_song_titles = self._song_title for separator in self.SONGS_TITLES_SEPARATORS: replaced_song_titles = replaced_song_titles.replace(separator, "#") if "#" in replaced_song_titles: separated_song_titles = replaced_song_titles.split("#") else: separated_song_titles = [replaced_song_titles] return separated_song_titles def format(self) -> None: """Format artists, titles and label.""" self._artist = self._artist.lower().strip(" \t\n\r") self._song_title = self._song_title.lower().strip(" \t\n\r") self._album_title = self._album_title.lower().strip(" \t\n\r") self._label = self._label.lower().strip(" \t\n\r") ```
{ "source": "jcook00/q2-api-client", "score": 2 }
#### File: clients/back_office/branch_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.back_office_endpoints import BranchEndpoint class BranchClient(BaseQ2Client): def retrieve_branches(self): """POST /backoffice/v3/branch/retrieve :return: Response object :rtype: requests.Response """ endpoint = BranchEndpoint.RETRIEVE_BRANCH.value return self._post(url=self._build_url(endpoint)) ``` #### File: clients/back_office/custom_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.back_office_endpoints import CustomEndpoint class CustomClient(BaseQ2Client): def search_deleted(self, request_body): """POST /custom/associate/searchDeleted :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = CustomEndpoint.SEARCH_DELETED.value return self._post(url=self._build_url(endpoint), json=request_body) ``` #### File: clients/back_office/user_login_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.back_office_endpoints import UserLoginEndpoint class UserLoginClient(BaseQ2Client): def retrieve_user_logins(self, request_body): """POST /backoffice/v3/userLogin/retrieve :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = UserLoginEndpoint.RETRIEVE_USER_LOGINS.value return self._post(url=self._build_url(endpoint), json=request_body) def retrieve_user_login(self, user_id): """POST /backoffice/v3/userLogin/{id}/retrieve :param str user_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = UserLoginEndpoint.RETRIEVE_USER_LOGIN.value.format(id=user_id) return self._post(url=self._build_url(endpoint)) def patch_user_login(self, user_id, request_body): """POST /backoffice/v3/userLogin/{id}/patch :param str user_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = UserLoginEndpoint.PATCH_USER_LOGIN.value.format(id=user_id) return self._post(url=self._build_url(endpoint), json=request_body) def update_user_login(self, user_id, request_body): """POST /backoffice/v3/userLogin/{id}/update :param str user_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = UserLoginEndpoint.UPDATE_USER_LOGIN.value.format(id=user_id) return self._post(url=self._build_url(endpoint), json=request_body) def reset_device_registration(self, user_id): """POST /backoffice/v3/userLogin/{id}/resetDeviceRegistration :param str user_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = UserLoginEndpoint.RESET_DEVICE_REGISTRATION.value.format(id=user_id) return self._post(url=self._build_url(endpoint)) def restore_user_login(self, user_id, request_body): """POST /backoffice/v3/userLogin/{id}/restore :param str user_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = UserLoginEndpoint.RESTORE_USER_LOGIN.value.format(id=user_id) return self._post(url=self._build_url(endpoint), json=request_body) def change_user_password(self, user_id, request_body): """POST /backoffice/v3/userLogin/{id}/changePassword :param str user_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = UserLoginEndpoint.CHANGE_PASSWORD.value.format(id=user_id) return self._post(url=self._build_url(endpoint), json=request_body) ``` #### File: q2_api_client/clients/base_q2_client.py ```python from q2_api_client.clients.rest_client import RestClient from q2_api_client.endpoints.mobile_ws_endpoints import LoginEndpoint from q2_api_client.utils.url import URL class BaseQ2Client(RestClient): def __init__(self, **kwargs): super().__init__(**kwargs) self._connect_timeout = kwargs.get('connect_timeout', 60) self._read_timeout = kwargs.get('read_timeout', 120) self._scheme = kwargs.get('scheme', "https") self._base_path = kwargs.get('base_path') self._headers['Accept'] = "application/json" self._headers['q2token'] = kwargs.get('q2token') if kwargs.get('q2token') is not None else self._get_q2token() def _get_q2token(self): """Sends a logon POST request and returns the Q2 token from the response headers. :return: the q2token header value :rtype: str :raises HTTPError: failed to authenticate """ request_body = {'userId': self._username, 'password': <PASSWORD>} endpoint = LoginEndpoint.LOGON_USER.value response = self._post(url=self._build_url(endpoint), json=request_body) response.raise_for_status() return response.headers.get('q2token') def _build_url(self, endpoint='/'): """Builds a URL using the endpoint. :param str endpoint: the endpoint to add to the path :return: the URL :rtype: str """ path = endpoint if self._base_path is None else "".join((self._base_path, endpoint)) url = URL(scheme=self._scheme, host=self._host, port=self._port, path=path) return url.build() ``` #### File: clients/central/gam_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.central_endpoints import GAMEndpoint class GAMClient(BaseQ2Client): def get_gam_rights(self): """GET /central/gam/rights :return: Response object :rtype: requests.Response """ endpoint = GAMEndpoint.RIGHTS.value return self._get(url=self._build_url(endpoint)) def get_gam_teams(self): """GET /central/gam/team :return: Response object :rtype: requests.Response """ endpoint = GAMEndpoint.TEAM.value return self._get(url=self._build_url(endpoint)) def create_gam_team(self, request_body): """POST /central/gam/team :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = GAMEndpoint.TEAM.value return self._post(url=self._build_url(endpoint), json=request_body) def get_gam_team(self, team_id): """GET /central/gam/team/{team_id} :param int team_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = GAMEndpoint.TEAM_ID.value.format(team_id=team_id) return self._get(url=self._build_url(endpoint)) def delete_gam_team(self, team_id): """DELETE /central/gam/team/{team_id} :param int team_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = GAMEndpoint.TEAM_ID.value.format(team_id=team_id) return self._delete(url=self._build_url(endpoint)) def get_gam_user(self, user_id): """GET /central/gam/user/{user_id} :param int user_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = GAMEndpoint.USER_ID.value.format(user_id=user_id) return self._get(url=self._build_url(endpoint)) ``` #### File: clients/hq/hq_client.py ```python from q2_api_client.clients.hq.back_office_client import BackOfficeClient from q2_api_client.clients.hq.core_client import CoreClient from q2_api_client.clients.hq.front_end_client import FrontEndClient from q2_api_client.clients.hq.token_client import TokenClient class HQClient: def __init__(self, **kwargs): self._back_office = BackOfficeClient(**kwargs) kwargs['q2token'] = self._back_office.get_header('q2token') self._core = CoreClient(**kwargs) self._front_end = FrontEndClient(**kwargs) self._token = TokenClient(**kwargs) @property def back_office(self): return self._back_office @property def core(self): return self._core @property def front_end(self): return self._front_end @property def token(self): return self._token ``` #### File: clients/hq/token_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.hq_endpoints import TokenEndpoint class TokenClient(BaseQ2Client): def get_token_info(self): """GET /hq/tokeninfo :return: Response object :rtype: requests.Response """ endpoint = TokenEndpoint.TOKEN_INFO.value return self._get(url=self._build_url(endpoint)) ``` #### File: clients/mobile_ws/account_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.mobile_ws_endpoints import AccountEndpoint class AccountClient(BaseQ2Client): def get_accounts(self): """GET /mobilews/account :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT.value return self._get(url=self._build_url(endpoint)) def set_pfm_enrollment_to_true(self): """GET /mobilews/account/Pfm/setEnrolledToTrue :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT_SET_ENROLLED.value return self._get(url=self._build_url(endpoint)) def get_account_groups(self): """GET /mobilews/account/group :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT_GROUP.value return self._get(url=self._build_url(endpoint)) def create_account_group(self, request_body): """POST /mobilews/account/group :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT_GROUP.value return self._post(url=self._build_url(endpoint), json=request_body) def delete_account_group(self, group_id): """DELETE /mobilews/account/group/{id} :param str group_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT_GROUP_ID.value.format(id=group_id) return self._delete(url=self._build_url(endpoint)) def update_account_group(self, group_id, request_body): """PUT /mobilews/account/group/{id} :param str group_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT_GROUP_ID.value.format(id=group_id) return self._put(url=self._build_url(endpoint), json=request_body) def get_account_labels(self): """GET /mobilews/account/label :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT_LABEL.value return self._get(url=self._build_url(endpoint)) def create_account_label(self, request_body): """POST /mobilews/account/label :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT_LABEL.value return self._post(url=self._build_url(endpoint), json=request_body) def delete_account_label(self, label_id): """DELETE /mobilews/account/label/{id} :param str label_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT_LABEL_ID.value.format(id=label_id) return self._delete(url=self._build_url(endpoint)) def update_account_label(self, label_id, request_body): """PUT /mobilews/account/label/{id} :param str label_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT_LABEL_ID.value.format(id=label_id) return self._put(url=self._build_url(endpoint), json=request_body) def get_inquiry_link_history_template(self, account_id): """GET /mobilews/account/{id}/inquiryLink :param str account_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT_INQUIRY_LINK.value.format(id=account_id) return self._get(url=self._build_url(endpoint)) def create_inquiry_link_history_template(self, account_id, request_body): """POST /mobilews/account/{id}/inquiryLink :param str account_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT_INQUIRY_LINK.value.format(id=account_id) return self._post(url=self._build_url(endpoint), json=request_body) def get_account(self, account_id): """GET /mobilews/account/{id} :param str account_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT_ID.value.format(id=account_id) return self._get(url=self._build_url(endpoint)) def create_account(self, account_id, request_body): """POST /mobilews/account/{id} :param str account_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT_ID.value.format(id=account_id) return self._post(url=self._build_url(endpoint), json=request_body) def delete_account(self, account_id): """DELETE /mobilews/account/{id} :param str account_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT_ID.value.format(id=account_id) return self._delete(url=self._build_url(endpoint)) def update_account(self, account_id, request_body): """PUT /mobilews/account/{id} :param str account_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT_ID.value.format(id=account_id) return self._put(url=self._build_url(endpoint), json=request_body) def get_account_detail_click_value(self, account_id, hade_id): """GET /mobilews/account/{id}/{hadeId} :param str account_id: path parameter :param str hade_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = AccountEndpoint.ACCOUNT_HADE_ID.value.format(id=account_id, hadeId=hade_id) return self._get(url=self._build_url(endpoint)) ``` #### File: clients/mobile_ws/audit_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.mobile_ws_endpoints import AuditEndpoint class AuditClient(BaseQ2Client): def get_audit(self): """GET /mobilews/audit :return: Response object :rtype: requests.Response """ endpoint = AuditEndpoint.AUDIT.value return self._get(url=self._build_url(endpoint)) def create_audit(self, request_body): """POST /mobilews/audit :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = AuditEndpoint.AUDIT.value return self._post(url=self._build_url(endpoint), json=request_body) ``` #### File: clients/mobile_ws/calendar_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.mobile_ws_endpoints import CalendarEndpoint class CalendarClient(BaseQ2Client): def get_calendar(self): """GET /mobilews/calendar :return: Response object :rtype: requests.Response """ endpoint = CalendarEndpoint.CALENDAR.value return self._get(url=self._build_url(endpoint)) def get_calendar_by_type(self, transaction_type): """GET /mobilews/calendar/{transactionType} :param str transaction_type: path parameter :return: Response object :rtype: requests.Response """ endpoint = CalendarEndpoint.CALENDAR_TRANSACTION_TYPE.value.format(transactionType=transaction_type) return self._get(url=self._build_url(endpoint)) ``` #### File: clients/mobile_ws/config_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.mobile_ws_endpoints import ConfigEndpoint class ConfigClient(BaseQ2Client): def get_uux_configuration(self): """GET /mobilews/uuxConfiguration :return: Response object :rtype: requests.Response """ endpoint = ConfigEndpoint.UUX_CONFIGURATION.value return self._get(url=self._build_url(endpoint)) def delete_uux_configuration(self): """DELETE /mobilews/uuxConfiguration :return: Response object :rtype: requests.Response """ endpoint = ConfigEndpoint.UUX_CONFIGURATION.value return self._delete(url=self._build_url(endpoint)) def create_uux_configuration(self, request_body): """POST /mobilews/uuxConfiguration :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = ConfigEndpoint.UUX_CONFIGURATION.value return self._post(url=self._build_url(endpoint), json=request_body) def update_uux_configuration(self, request_body): """PUT /mobilews/uuxConfiguration :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = ConfigEndpoint.UUX_CONFIGURATION.value return self._put(url=self._build_url(endpoint), json=request_body) ``` #### File: clients/mobile_ws/login_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.mobile_ws_endpoints import LoginEndpoint class LoginClient(BaseQ2Client): def login_csr(self, request_body): """POST /mobilews/logincsr :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = LoginEndpoint.LOGIN_CSR.value return self._post(url=self._build_url(endpoint), json=request_body) def login_user(self, request_body): """POST /mobilews/logonUser :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = LoginEndpoint.LOGON_USER.value return self._post(url=self._build_url(endpoint), json=request_body) def logout_user(self): """GET /mobilews/logoffUser :return: Response object :rtype: requests.Response """ endpoint = LoginEndpoint.LOGOFF_USER.value return self._get(url=self._build_url(endpoint)) ``` #### File: clients/mobile_ws/marketing_message_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.mobile_ws_endpoints import MarketingMessageEndpoint class MarketingMessageClient(BaseQ2Client): def get_marketing_message(self, page_name): """GET /mobilews/marketingMessage/{pageNameAndSize} :param str page_name: path parameter :return: Response object :rtype: requests.Response """ endpoint = MarketingMessageEndpoint.MARKETING_MESSAGE.value.format(pageNameAndSize=page_name) return self._get(url=self._build_url(endpoint)) def create_marketing_message_unauth(self, request_body): """POST /mobilews/marketingMessageUnauth :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = MarketingMessageEndpoint.MARKETING_MESSAGE_UNAUTH.value return self._post(url=self._build_url(endpoint), json=request_body) ``` #### File: clients/mobile_ws/message_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.mobile_ws_endpoints import MessageEndpoint class MessageClient(BaseQ2Client): def get_messages(self): """GET /mobilews/message :return: Response object :rtype: requests.Response """ endpoint = MessageEndpoint.MESSAGE.value return self._get(url=self._build_url(endpoint)) def send_message(self, request_body): """POST /mobilews/message :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = MessageEndpoint.MESSAGE.value return self._post(url=self._build_url(endpoint), json=request_body) def mark_message_as_read(self, request_body): """PUT /mobilews/message :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = MessageEndpoint.MESSAGE.value return self._put(url=self._build_url(endpoint), json=request_body) def get_message_attachments(self): """GET /mobilews/message/attachment :return: Response object :rtype: requests.Response """ endpoint = MessageEndpoint.MESSAGE_ATTACHMENT.value return self._get(url=self._build_url(endpoint)) def get_message_attachment(self, attachment_id): """GET /mobilews/message/attachment/{id} :param str attachment_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = MessageEndpoint.MESSAGE_ATTACHMENT_ID.value.format(id=attachment_id) return self._get(url=self._build_url(endpoint)) def get_message_count(self): """GET /mobilews/message/count :return: Response object :rtype: requests.Response """ endpoint = MessageEndpoint.MESSAGE_COUNT.value return self._get(url=self._build_url(endpoint)) def delete_messages(self, request_body): """PUT /mobilews/message/delete :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = MessageEndpoint.MESSAGE_DELETE.value return self._put(url=self._build_url(endpoint), json=request_body) def remove_message_expiration(self, request_body): """PUT /mobilews/message/expire :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = MessageEndpoint.MESSAGE_EXPIRE.value return self._put(url=self._build_url(endpoint), json=request_body) def get_message_recipients(self): """GET /mobilews/message/messageRecipient :return: Response object :rtype: requests.Response """ endpoint = MessageEndpoint.MESSAGE_RECIPIENT.value return self._get(url=self._build_url(endpoint)) def get_message(self, message_id): """GET /mobilews/message/{id} :param str message_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = MessageEndpoint.MESSAGE_ID.value.format(id=message_id) return self._get(url=self._build_url(endpoint)) def delete_message(self, message_id): """DELETE /mobilews/message/{id} :param str message_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = MessageEndpoint.MESSAGE_ID.value.format(id=message_id) return self._delete(url=self._build_url(endpoint)) def send_reply_message(self, message_id, request_body): """POST /mobilews/message/{id} :param str message_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = MessageEndpoint.MESSAGE_ID.value.format(id=message_id) return self._post(url=self._build_url(endpoint), json=request_body) ``` #### File: clients/mobile_ws/pdf_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.mobile_ws_endpoints import PDFEndpoint class PDFClient(BaseQ2Client): def get_pdf_acceptance_code(self): """GET /mobilews/pdf :return: Response object :rtype: requests.Response """ endpoint = PDFEndpoint.PDF.value return self._get(url=self._build_url(endpoint)) def verify_pdf_acceptance_code(self, request_body): """PUT /mobilews/pdf/validate :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = PDFEndpoint.PDF_VALIDATE.value return self._put(url=self._build_url(endpoint), json=request_body) ``` #### File: clients/mobile_ws/pre_logon_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.mobile_ws_endpoints import PreLogonEndpoint class PreLogonClient(BaseQ2Client): def pre_logon_user(self): """GET /mobilews/preLogonUser :return: Response object :rtype: requests.Response """ endpoint = PreLogonEndpoint.PRE_LOGON_USER.value return self._get(url=self._build_url(endpoint)) def trigger_pre_logon_user(self, request_body): """POST /mobilews/preLogonUser :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = PreLogonEndpoint.PRE_LOGON_USER.value return self._post(url=self._build_url(endpoint), json=request_body) def pre_logon_user_clear_cache(self): """GET /mobilews/preLogonUser/clearCache :return: Response object :rtype: requests.Response """ endpoint = PreLogonEndpoint.PRE_LOGON_USER_CLEAR_CACHE.value return self._get(url=self._build_url(endpoint)) ``` #### File: clients/mobile_ws/push_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.mobile_ws_endpoints import PushEndpoint class PushClient(BaseQ2Client): def get_push_notification_targets(self): """GET /mobilews/push :return: Response object :rtype: requests.Response """ endpoint = PushEndpoint.PUSH.value return self._get(url=self._build_url(endpoint)) def create_push_notification_target(self, request_body): """PUSH /mobilews/push :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = PushEndpoint.PUSH.value return self._post(url=self._build_url(endpoint), json=request_body) def delete_push_notification_target(self, q2_token): """DELETE /mobilews/push/{qtwoToken} :param str q2_token: path parameter :return: Response object :rtype: requests.Response """ endpoint = PushEndpoint.PUSH_TOKEN.value.format(qtwoToken=q2_token) return self._delete(url=self._build_url(endpoint)) def update_push_notification_target(self, q2_token, request_body): """PUT /mobilews/push/{qtwoToken} :param str q2_token: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = PushEndpoint.PUSH_TOKEN.value.format(qtwoToken=q2_token) return self._put(url=self._build_url(endpoint), json=request_body) ``` #### File: clients/mobile_ws/rate_app_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.mobile_ws_endpoints import RateAppEndpoint class RateAppClient(BaseQ2Client): def decline_rate_app(self): """PUT /mobilews/rateApp/decline :return: Response object :rtype: requests.Response """ endpoint = RateAppEndpoint.RATE_DECLINE.value return self._put(url=self._build_url(endpoint)) def rate_app(self): """PUT /mobilews/rateApp/rate :return: Response object :rtype: requests.Response """ endpoint = RateAppEndpoint.RATE.value return self._put(url=self._build_url(endpoint)) ``` #### File: clients/mobile_ws/report_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.mobile_ws_endpoints import ReportEndpoint class ReportClient(BaseQ2Client): def get_latest_report(self): """GET /mobilews/report/latest :return: Response object :rtype: requests.Response """ endpoint = ReportEndpoint.REPORT_LATEST.value return self._get(url=self._build_url(endpoint)) def get_report_plans(self): """GET /mobilews/report/plan :return: Response object :rtype: requests.Response """ endpoint = ReportEndpoint.REPORT_PLAN.value return self._get(url=self._build_url(endpoint)) def create_report_plan(self, request_body): """POST /mobilews/report/plan :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = ReportEndpoint.REPORT_PLAN.value return self._post(url=self._build_url(endpoint), json=request_body) def get_report_plan(self, plan_id): """GET /mobilews/report/plan/{id} :param str plan_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = ReportEndpoint.REPORT_PLAN_ID.value.format(id=plan_id) return self._get(url=self._build_url(endpoint)) def delete_report_plan(self, plan_id): """DELETE /mobilews/report/plan/{id} :param str plan_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = ReportEndpoint.REPORT_PLAN_ID.value.format(id=plan_id) return self._delete(url=self._build_url(endpoint)) def update_report_plan(self, plan_id, request_body): """PUT /mobilews/report/plan/{id} :param str plan_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = ReportEndpoint.REPORT_PLAN_ID.value.format(id=plan_id) return self._put(url=self._build_url(endpoint), json=request_body) def execute_report_plan(self, plan_id): """GET /mobilews/report/plan/{id}/run :param str plan_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = ReportEndpoint.REPORT_PLAN_ID_RUN.value.format(id=plan_id) return self._get(url=self._build_url(endpoint)) def get_reports_run(self): """GET /mobilews/report/report :return: Response object :rtype: requests.Response """ endpoint = ReportEndpoint.REPORT.value return self._get(url=self._build_url(endpoint)) def get_report_output_list(self, report_id): """GET /mobilews/report/report/{id} :param str report_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = ReportEndpoint.REPORT_ID.value.format(id=report_id) return self._get(url=self._build_url(endpoint)) def get_report_detail(self, report_id, detail_id): """GET /mobilews/report/report/{id}/{detailId} :param str report_id: path parameter :param str detail_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = ReportEndpoint.REPORT_DETAIL_ID.value.format(id=report_id, detailId=detail_id) return self._get(url=self._build_url(endpoint)) def get_report_templates(self): """GET /mobilews/report/template :return: Response object :rtype: requests.Response """ endpoint = ReportEndpoint.REPORT_TEMPLATE.value return self._get(url=self._build_url(endpoint)) def get_report_template(self, template_id): """GET /mobilews/report/template/{id} :param str template_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = ReportEndpoint.REPORT_TEMPLATE_ID.value.format(id=template_id) return self._get(url=self._build_url(endpoint)) ``` #### File: clients/mobile_ws/security_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.mobile_ws_endpoints import SecurityEndpoint class SecurityClient(BaseQ2Client): def change_password(self, request_body): """POST /mobilews/changePassword :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = SecurityEndpoint.CHANGE_PASSWORD.value return self._post(url=self._build_url(endpoint), json=request_body) def validate_password(self, request_body): """POST /mobilews/validatePassword :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = SecurityEndpoint.VALIDATE_PASSWORD.value return self._post(url=self._build_url(endpoint), json=request_body) ``` #### File: clients/mobile_ws/user_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.mobile_ws_endpoints import UserEndpoint class UserClient(BaseQ2Client): def get_users(self): """GET /mobilews/user :return: Response object :rtype: requests.Response """ endpoint = UserEndpoint.USER.value return self._get(url=self._build_url(endpoint)) def create_user(self, request_body): """POST /mobilews/user :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = UserEndpoint.USER.value return self._post(url=self._build_url(endpoint), json=request_body) def get_user(self, user_id): """GET /mobilews/user/{id} :param str user_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = UserEndpoint.USER_ID.value.format(id=user_id) return self._get(url=self._build_url(endpoint)) def delete_user(self, user_id): """DELETE /mobilews/user/{id} :param str user_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = UserEndpoint.USER_ID.value.format(id=user_id) return self._delete(url=self._build_url(endpoint)) def update_user(self, user_id, request_body): """PUT /mobilews/user/{id} :param str user_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = UserEndpoint.USER_ID.value.format(id=user_id) return self._put(url=self._build_url(endpoint), json=request_body) def update_user_role(self, user_id, request_body): """PUT /mobilews/user/role/{id} :param str user_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = UserEndpoint.USER_ROLE_ID.value.format(id=user_id) return self._put(url=self._build_url(endpoint), json=request_body) def update_user_role_decision(self, user_id, request_body): """PUT /mobilews/user/role/{id}/decide :param str user_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = UserEndpoint.USER_ROLE_DECIDE.value.format(id=user_id) return self._put(url=self._build_url(endpoint), json=request_body) def update_user_status(self, user_id, request_body): """PUT /mobilews/user/status/{id} :param str user_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = UserEndpoint.USER_STATUS_ID.value.format(id=user_id) return self._put(url=self._build_url(endpoint), json=request_body) def update_user_status_decision(self, user_id, request_body): """PUT /mobilews/user/status/{id}/decide :param str user_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = UserEndpoint.USER_STATUS_DECIDE.value.format(id=user_id) return self._put(url=self._build_url(endpoint), json=request_body) def get_user_profiles(self): """GET /mobilews/userProfile :return: Response object :rtype: requests.Response """ endpoint = UserEndpoint.USER_PROFILE.value return self._get(url=self._build_url(endpoint)) def update_user_profiles(self, request_body): """PUT /mobilews/userProfile :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = UserEndpoint.USER_PROFILE.value return self._put(url=self._build_url(endpoint), json=request_body) def update_user_profile_decision(self, user_id, request_body): """PUT /mobilews/userProfile/decide/{id} :param str user_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = UserEndpoint.USER_PROFILE_DECIDE_ID.value.format(id=user_id) return self._put(url=self._build_url(endpoint), json=request_body) def get_user_profile_form(self): """GET /mobilews/userProfile/form :return: Response object :rtype: requests.Response """ endpoint = UserEndpoint.USER_PROFILE_FORM.value return self._get(url=self._build_url(endpoint)) def get_user_profile(self, user_id): """GET /mobilews/userProfile/{id} :param str user_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = UserEndpoint.USER_PROFILE_ID.value.format(id=user_id) return self._get(url=self._build_url(endpoint)) def update_user_profile(self, user_id, request_body): """PUT /mobilews/userProfile/{id} :param str user_id: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = UserEndpoint.USER_PROFILE_ID.value.format(id=user_id) return self._put(url=self._build_url(endpoint), json=request_body) def create_user_agent(self, request_body): """POST /mobilews/useragent :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = UserEndpoint.USER_AGENT.value return self._post(url=self._build_url(endpoint), json=request_body) ``` #### File: clients/mobile_ws/v2_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.mobile_ws_endpoints import V2Endpoint class V2Client(BaseQ2Client): def get_commercial_tax_payments(self): """GET /mobilews/v2/commercial/taxpayment :return: Response object :rtype: requests.Response """ endpoint = V2Endpoint.COMMERCIAL_TAX_PAYMENT.value return self._get(url=self._build_url(endpoint)) def get_commercial_tax_payment(self, tax_payment_id): """GET /mobilews/v2/commercial/taxpayment/{id} :param str tax_payment_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = V2Endpoint.COMMERCIAL_TAX_PAYMENT_ID.value.format(id=tax_payment_id) return self._get(url=self._build_url(endpoint)) ``` #### File: clients/refresh_cache/refresh_cache_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.refresh_cache_endpoints import RefreshCacheEndpoint class RefreshCacheClient(BaseQ2Client): def refresh_cache(self): """POST /refreshCache :return: Response object :rtype: requests.Response """ endpoint = RefreshCacheEndpoint.REFRESH_CACHE.value return self._post(url=self._build_url(endpoint)) ``` #### File: clients/v2/pfm_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.v2_endpoints import PFMEndpoint class PFMClient(BaseQ2Client): def get_account(self, account_guid, member_guid=None): """GET /v2/pfm/accounts/{accountGuid} :param str account_guid: path parameter :param str member_guid: query parameter :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.ACCOUNT_GUID.value.format(accountGuid=account_guid) query_parameters = self._copy_query_parameters() query_parameters['member_guid'] = member_guid return self._get(url=self._build_url(endpoint), query_parameters=query_parameters) def update_account(self, account_guid, request_body): """PUT /v2/pfm/accounts/{accountGuid} :param str account_guid: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.ACCOUNT_GUID.value.format(accountGuid=account_guid) return self._put(url=self._build_url(endpoint), json=request_body) def get_categories(self): """GET /v2/pfm/categories :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.CATEGORIES.value return self._get(url=self._build_url(endpoint)) def create_category(self, request_body): """POST /v2/pfm/categories :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.CATEGORIES.value return self._post(url=self._build_url(endpoint), json=request_body) def delete_category(self, category_guid): """DELETE /v2/pfm/categories/{categoryGuid} :param str category_guid: path parameter :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.CATEGORY_GUID.value.format(categoryGuid=category_guid) return self._delete(url=self._build_url(endpoint)) def update_category(self, category_guid, request_body): """PUT /v2/pfm/categories/{categoryGuid} :param str category_guid: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.CATEGORY_GUID.value.format(categoryGuid=category_guid) return self._put(url=self._build_url(endpoint), json=request_body) def get_institutions(self, name=None, count=None): """GET /v2/pfm/institutions :param str name: query parameter (string to search the institution names by) :param int count: query parameter (number of results to return) :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.INSTITUTIONS.value query_parameters = self._copy_query_parameters() query_parameters['name'] = name query_parameters['count'] = count return self._get(url=self._build_url(endpoint), query_parameters=query_parameters) def get_institution(self, institution_guid): """GET /v2/pfm/institutions/{institutionGuid} :param str institution_guid: path parameter :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.INSTITUTION_GUID.value.format(institutionGuid=institution_guid) return self._get(url=self._build_url(endpoint)) def get_institution_credentials(self, institution_guid): """GET /v2/pfm/institutions/{institutionGuid}/credentials :param str institution_guid: path parameter :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.INSTITUTION_CREDENTIALS.value.format(institutionGuid=institution_guid) return self._get(url=self._build_url(endpoint)) def get_job(self, job_guid): """GET /v2/pfm/jobs/{jobGuid} :param str job_guid: path parameter :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.JOB.value.format(jobGuid=job_guid) return self._get(url=self._build_url(endpoint)) def get_job_mfa_credentials(self, job_guid): """GET /v2/pfm/jobs/{jobGuid}/mfa_credentials :param str job_guid: path parameter :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.JOB_MFA_CREDENTIALS.value.format(jobGuid=job_guid) return self._get(url=self._build_url(endpoint)) def resume_job(self, job_guid): """POST /v2/pfm/jobs/{jobGuid}/resume :param str job_guid: path parameter :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.JOB_RESUME.value.format(jobGuid=job_guid) return self._post(url=self._build_url(endpoint)) def get_member(self, member_guid): """GET /v2/pfm/members/{memberGuid} :param str member_guid: path parameter :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.MEMBER_GUID.value.format(memberGuid=member_guid) return self._get(url=self._build_url(endpoint)) def create_member(self, request_body): """POST /v2/pfm/members/ :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.MEMBERS.value return self._post(url=self._build_url(endpoint), json=request_body) def update_member(self, member_guid, request_body): """PUT /v2/pfm/members/{memberGuid} :param str member_guid: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.MEMBER_GUID.value.format(memberGuid=member_guid) return self._put(url=self._build_url(endpoint), json=request_body) def delete_member(self, member_guid): """DELETE /v2/pfm/members/{memberGuid} :param str member_guid: path parameter :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.MEMBER_GUID.value.format(memberGuid=member_guid) return self._delete(url=self._build_url(endpoint)) def delete_all_members(self): """DELETE /v2/pfm/members/all :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.ALL_MEMBERS.value return self._delete(url=self._build_url(endpoint)) def create_member_credentials(self, member_guid, request_body): """POST /v2/pfm/members/{memberGuid}/credentials :param str member_guid: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.MEMBER_CREDENTIALS.value.format(memberGuid=member_guid) return self._post(url=self._build_url(endpoint), json=request_body) def refresh_member(self, member_guid): """POST /v2/pfm/members/{memberGuid}/refresh :param str member_guid: path parameter :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.MEMBER_REFRESH.value.format(memberGuid=member_guid) return self._post(url=self._build_url(endpoint)) def update_transaction(self, transaction_guid, request_body): """PUT /v2/pfm/transactions/{transactionGuid} :param str transaction_guid: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.TRANSACTION_GUID.value.format(transactionGuid=transaction_guid) return self._put(url=self._build_url(endpoint), json=request_body) def update_split_transaction(self, transaction_guid, request_body): """PUT /v2/pfm/transactions/{transactionGuid}/splits :param str transaction_guid: path parameter :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.TRANSACTION_SPLITS.value.format(transactionGuid=transaction_guid) return self._put(url=self._build_url(endpoint), json=request_body) def create_user(self): """POST /v2/pfm/users :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.USERS.value return self._post(url=self._build_url(endpoint)) def get_widget(self, widget_short_name, no_redirect=None, q2token=None): """GET /v2/pfm/widgets/{widgetShortName} :param str widget_short_name: path parameter :param bool no_redirect: query parameter (Flag to return url data and not send a 302 redirect) :param str q2token: query parameter (Allow passing in q2token by query string for authentication) :return: Response object :rtype: requests.Response """ endpoint = PFMEndpoint.WIDGET.value.format(widgetShortName=widget_short_name) query_parameters = self._copy_query_parameters() query_parameters['no_redirect'] = no_redirect query_parameters['q2token'] = q2token return self._get(url=self._build_url(endpoint), query_parameters=query_parameters) ``` #### File: clients/v3/file_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.v3_endpoints import FileEndpoint class FileClient(BaseQ2Client): def retrieve_file(self, file_id): """POST /v3/file/{id}/retrieve :param str file_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = FileEndpoint.RETRIEVE_FILE.value.format(id=file_id) return self._post(url=self._build_url(endpoint)) ``` #### File: clients/v3/funds_transfer_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.v3_endpoints import FundsTransferEndpoint class FundsTransferClient(BaseQ2Client): def get_funds_transfer_permission(self): """GET /v3/fundsTransfer/permission :return: Response object :rtype: requests.Response """ endpoint = FundsTransferEndpoint.FUNDS_TRANSFER_PERMISSION.value return self._get(url=self._build_url(endpoint)) def create_funds_transfer(self, request_body): """POST /v3/fundsTransfer/create :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = FundsTransferEndpoint.CREATE_FUNDS_TRANSFER.value return self._post(url=self._build_url(endpoint), json=request_body) def retrieve_funds_transfers(self, request_body): """POST /v3/fundsTransfer/retrieve :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = FundsTransferEndpoint.RETRIEVE_FUNDS_TRANSFERS.value return self._post(url=self._build_url(endpoint), json=request_body) def retrieve_funds_transfer(self, transfer_id): """POST /v3/fundsTransfer/{id}/retrieve :param str transfer_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = FundsTransferEndpoint.RETRIEVE_FUNDS_TRANSFER.value.format(id=transfer_id) return self._post(url=self._build_url(endpoint)) def cancel_funds_transfer(self, transfer_id): """POST /v3/fundsTransfer/{id}/cancel :param str transfer_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = FundsTransferEndpoint.CANCEL_FUNDS_TRANSFER.value.format(id=transfer_id) return self._post(url=self._build_url(endpoint)) def authorize_funds_transfer(self, transfer_id): """POST /v3/fundsTransfer/{id}/authorize :param str transfer_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = FundsTransferEndpoint.AUTHORIZE_FUNDS_TRANSFER.value.format(id=transfer_id) return self._post(url=self._build_url(endpoint)) ``` #### File: clients/v3/pfm_account_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.v3_endpoints import PFMAccountEndpoint class PFMAccountClient(BaseQ2Client): def get_pfm_account_permission(self): """GET /v3/pfmAccount/permission :return: Response object :rtype: requests.Response """ endpoint = PFMAccountEndpoint.PFM_ACCOUNT_PERMISSION.value return self._get(url=self._build_url(endpoint)) def retrieve_pfm_accounts(self, request_body): """POST /v3/pfmAccount/retrieve :param dict request_body: Dictionary object to send in the body of the request :return: Response object :rtype: requests.Response """ endpoint = PFMAccountEndpoint.RETRIEVE_PFM_ACCOUNTS.value return self._post(url=self._build_url(endpoint), json=request_body) def retrieve_pfm_account(self, pfm_account_id, request_body): """POST /v3/pfmAccount/{id}/retrieve :param dict request_body: Dictionary object to send in the body of the request :param str pfm_account_id: path parameter :return: Response object :rtype: requests.Response """ endpoint = PFMAccountEndpoint.RETRIEVE_PFM_ACCOUNT.value.format(id=pfm_account_id) return self._post(url=self._build_url(endpoint), json=request_body) ``` #### File: clients/v3/type_client.py ```python from q2_api_client.clients.base_q2_client import BaseQ2Client from q2_api_client.endpoints.v3_endpoints import TypeEndpoint class TypeClient(BaseQ2Client): def get_action_types(self): """GET /v3/actionType :return: Response object :rtype: requests.Response """ endpoint = TypeEndpoint.ACTION_TYPE.value return self._get(url=self._build_url(endpoint)) def get_image_types(self): """GET /v3/imageType :return: Response object :rtype: requests.Response """ endpoint = TypeEndpoint.IMAGE_TYPE.value return self._get(url=self._build_url(endpoint)) def get_product_types(self): """GET /v3/productType :return: Response object :rtype: requests.Response """ endpoint = TypeEndpoint.PRODUCT_TYPE.value return self._get(url=self._build_url(endpoint)) ``` #### File: jcook00/q2-api-client/setup.py ```python from setuptools import setup, find_packages LICENSE = 'LICENSE' README = 'README.md' INSTALL_REQUIREMENTS = 'requirements/install.txt' TEST_REQUIREMENTS = 'requirements/test.txt' DOCUMENTATION_REQUIREMENTS = 'requirements/documentation.txt' def get_requirements(*files): requirements = list() for file in files: dependencies = read_file(file, split_lines=True) for dependency in dependencies: requirements.append(dependency) return requirements def read_file(file, split_lines=False): with open(file, 'r') as f: return f.read().splitlines() if split_lines else f.read() setup( name='q2-api-client', version='0.1.0', description='Q2 Rest API Client', long_description=read_file(README), author='<NAME>', author_email='<EMAIL>', url='https://bitbucket.q2dc.local/projects/IMPS/repos/q2-api-client/browse', license=read_file(LICENSE), packages=find_packages(exclude=('tests', 'docs')), python_requires=">=3.7", install_requires=get_requirements(INSTALL_REQUIREMENTS), tests_require=get_requirements(TEST_REQUIREMENTS) ) ```
{ "source": "jcook793/C256Mgr", "score": 3 }
#### File: C256Mgr/C256Mgr/c256mgr.py ```python import intelhex import wdc import foenix import srec import configparser import re import sys import argparse import os from serial.tools import list_ports FLASH_SIZE = 524288 # Required size of flash file: 512 KB CHUNK_SIZE = 4096 # Size of block of binary data to transfer label_file = "" to_send = "" port = "" start_address = "" count = "" label = "" def confirm(question): return input(question).lower().strip()[:1] == "y" def revision(port): """Get the version code for the debug port.""" c256 = foenix.FoenixDebugPort() try: c256.open(port) c256.enter_debug() try: data = c256.get_revision() return "%X" % data finally: c256.exit_debug() finally: c256.close() def upload_binary(port, filename, address): """Upload a binary file into the C256 memory.""" with open(filename, "rb") as f: c256 = foenix.FoenixDebugPort() try: c256.open(port) c256.enter_debug() try: current_addr = int(address, 16) block = f.read(CHUNK_SIZE) while block: c256.write_block(current_addr, block) current_addr += len(block) block = f.read(CHUNK_SIZE) finally: c256.exit_debug() finally: c256.close() def program_flash(port, filename, hex_address): """Program the flash memory using the contents of the C256's RAM.""" base_address = int(hex_address, 16) address = base_address print("About to upload image to address 0x{:X}".format(address), flush=True) if os.path.getsize(filename) == FLASH_SIZE: if confirm("Are you sure you want to reprogram the flash memory? (y/n): "): with open(filename, "rb") as f: c256 = foenix.FoenixDebugPort() try: c256.open(port) c256.enter_debug() try: block = f.read(CHUNK_SIZE) while block: c256.write_block(address, block) address += len(block) block = f.read(CHUNK_SIZE) print("Binary file uploaded...", flush=True) c256.erase_flash() print("Flash memory erased...", flush=True) c256.program_flash(base_address) print("Flash memory programmed...") finally: c256.exit_debug() finally: c256.close() else: print("The provided flash file is not the right size.") def dereference(port, file, label): """Get the address contained in the pointer with the label in the label file.""" c256 = foenix.FoenixDebugPort() try: address = lookup(file, label) c256.open(port) c256.enter_debug() try: data = c256.read_block(int(address, 16), 3) deref = data[2] << 16 | data[1] << 8 | data[0] return "%X" % deref finally: c256.exit_debug() finally: c256.close() def lookup(file, label): """Return the hex address linked to the passed label in the label file.""" with open(file) as f: for line in f: match = re.match('^(\S+)\s*\=\s*\$(\S+)', line) if match: if match.group(1) == label: return match.group(2) sys.stderr.write("Could not find a definition for that label.\n") sys.exit(2) def display(base_address, data): """Write a block of data to the console in a nice, hexadecimal format.""" text_buff = "" for i in range(0, len(data)): if (i % 16) == 0: if text_buff != "": sys.stdout.write(" {}\n".format(text_buff)) text_buff = "" sys.stdout.write("{:06X}: ".format(base_address + i)) elif (i % 8) == 0: sys.stdout.write(" ") sys.stdout.write("{:02X}".format(data[i])) b = bytearray(1) b[0] = data[i] if (b[0] & 0x80 == 0): c = b.decode('ascii') if c.isprintable(): text_buff = text_buff + c else: text_buff = text_buff + "." else: text_buff = text_buff + "." sys.stdout.write(' {}\n'.format(text_buff)) def send_wdc(port, filename): """Send the data in the hex file 'filename' to the C256 on the given serial port.""" infile = wdc.WdcBinFile() c256 = foenix.FoenixDebugPort() try: c256.open(port) infile.open(filename) try: infile.set_handler(lambda address, data: c256.write_block(address, data)) c256.enter_debug() try: # Process the lines in the hex file infile.read_blocks() finally: c256.exit_debug() finally: infile.close() finally: c256.close() def send_srec(port, filename): """Send the data in the SREC hex file 'filename' to the C256 on the given serial port.""" infile = srec.SRECFile() c256 = foenix.FoenixDebugPort() try: c256.open(port) infile.open(filename) try: infile.set_handler(lambda address, data: c256.write_block(address, bytes.fromhex(data))) c256.enter_debug() try: # Process the lines in the hex file infile.read_lines() finally: c256.exit_debug() finally: infile.close() finally: c256.close() def send(port, filename): """Send the data in the hex file 'filename' to the C256 on the given serial port.""" infile = intelhex.HexFile() c256 = foenix.FoenixDebugPort() try: c256.open(port) infile.open(filename) try: infile.set_handler(lambda address, data: c256.write_block(address, bytes.fromhex(data))) c256.enter_debug() try: # Process the lines in the hex file infile.read_lines() finally: c256.exit_debug() finally: infile.close() finally: c256.close() def get(port, address, length): """Read a block of data from the C256.""" c256 = foenix.FoenixDebugPort() try: c256.open(port) c256.enter_debug() try: data = c256.read_block(int(address, 16), int(length, 16)) display(int(address, 16), data) finally: c256.exit_debug() finally: c256.close() def list_serial_ports(): serial_ports = list_ports.comports() if len(serial_ports) == 0: print("No serial ports found") for serial_port in serial_ports: print(f"{serial_port.device}") print(f" Description: {serial_port.description}") print(f" Manufacturer: {serial_port.manufacturer}") print(f" Product: {serial_port.product}") print() def tcp_bridge(tcp_host_port, serial_port): """ Listen for TCP socket connections and relay messages to Foenix via serial port """ parsed_host_port = tcp_host_port.split(":") tcp_host = parsed_host_port[0] tcp_port = int(parsed_host_port[1]) if len(parsed_host_port) > 0 else 2560 tcp_listener = foenix.FoenixTcpBridge(tcp_host, tcp_port, serial_port) tcp_listener.listen() config = configparser.ConfigParser() config.read('c256.ini') parser = argparse.ArgumentParser(description='Manage the C256 Foenix through its debug port.') parser.add_argument("--port", dest="port", default=config['DEFAULT'].get('port', 'COM3'), help="Specify the serial port to use to access the C256 debug port.") parser.add_argument("--list-ports", dest="list_ports", action="store_true", help="List available serial ports.") parser.add_argument("--label-file", dest="label_file", default=config['DEFAULT'].get('labels', 'basic8'), help="Specify the label file to use for dereference and lookup") parser.add_argument("--count", dest="count", default="10", help="the number of bytes to read") parser.add_argument("--dump", metavar="ADDRESS", dest="dump_address", help="Read memory from the C256's memory and display it.") parser.add_argument("--deref", metavar="LABEL", dest="deref_name", help="Lookup the address stored at LABEL and display the memory there.") parser.add_argument("--lookup", metavar="LABEL", dest="lookup_name", help="Display the memory starting at the address indicated by the label.") parser.add_argument("--revision", action="store_true", dest="revision", help="Display the revision code of the debug interface.") parser.add_argument("--flash", metavar="BINARY FILE", dest="flash_file", help="Attempt to reprogram the flash using the binary file provided.") parser.add_argument("--binary", metavar="BINARY FILE", dest="binary_file", help="Upload a binary file to the C256's RAM.") parser.add_argument("--address", metavar="ADDRESS", dest="address", default=config['DEFAULT'].get('flash_address', '380000'), help="Provide the starting address of the memory block to use in flashing memory.") parser.add_argument("--upload", metavar="HEX FILE", dest="hex_file", help="Attempt to reprogram the flash using the binary file provided.") parser.add_argument("--upload-wdc", metavar="BINARY FILE", dest="wdc_file", help="Upload a WDCTools binary hex file. (WDCLN.EXE -HZ)") parser.add_argument("--upload-srec", metavar="SREC FILE", dest="srec_file", help="Upload a Motorola SREC hex file.") parser.add_argument("--tcp-bridge", metavar="HOST:PORT", dest="tcp_host_port", help="Setup a TCP-serial bridge, listening on HOST:PORT and relaying messages to the Foenix via " + "the configured serial port") options = parser.parse_args() try: if options.list_ports: list_serial_ports() elif options.port != "": if options.hex_file: send(options.port, options.hex_file) elif options.wdc_file: send_wdc(options.port, options.wdc_file) elif options.srec_file: send_srec(options.port, options.srec_file) elif options.deref_name and options.label_file: address = dereference(options.port, options.label_file, options.deref_name) get(options.port, address, options.count) elif options.lookup_name and options.label_file: address = lookup(options.label_file, options.lookup_name) get(options.port, address, options.count) elif options.dump_address: get(options.port, options.dump_address, options.count) elif options.revision: rev = revision(options.port) print(rev) elif options.address and options.binary_file: upload_binary(options.port, options.binary_file, options.address) elif options.address and options.flash_file: program_flash(options.port, options.flash_file, options.address) elif options.tcp_host_port: tcp_bridge(options.tcp_host_port, options.port) else: parser.print_help() else: parser.print_help() finally: print ``` #### File: C256Mgr/C256Mgr/foenix.py ```python from abc import ABC, abstractmethod import serial import socket import constants class FoenixDebugPort: """Provide the connection to a C256 Foenix debug port.""" connection = None status0 = 0 status1 = 0 def open(self, port): """Open a connection to the C256 Foenix.""" if ':' in port: # A pretty weak test, looking for something like '192.168.1.114:2560' self.connection = SocketFoenixConnection() else: # Otherwise assume it's a serial connection self.connection = SerialFoenixConnection() self.connection.open(port=port) def is_open(self): return self.connection.is_open() def close(self): """Close the connection to the C256 Foenix.""" self.connection.close() def enter_debug(self): """Send the command to make the C256 Foenix enter its debug mode.""" self.transfer(constants.CMD_ENTER_DEBUG, 0, 0, 0) def exit_debug(self): """Send the command to make the C256 Foenix leave its debug mode. This will make the C256 reset. """ self.transfer(constants.CMD_EXIT_DEBUG, 0, 0, 0) def erase_flash(self): """Send the command to have the C256 Foenix erase its flash memory.""" self.transfer(constants.CMD_ERASE_FLASH, 0, 0, 0) def get_revision(self): """Gets the revision code for the debug interface. RevB2's revision code is 0, RevC4A is 1.""" self.transfer(constants.CMD_REVISION, 0, 0, 0) return self.status1 def program_flash(self, address): """Send the command to have the C256 Foenix reprogram its flash memory. Data to be written should already be in the C256's RAM at address.""" self.transfer(constants.CMD_PROGRAM_FLASH, address, 0, 0) def write_block(self, address, data): """Write a block of data to the specified starting address in the C256's memory.""" self.transfer(constants.CMD_WRITE_MEM, address, data, 0) def read_block(self, address, length): """Read a block of data of the specified length from the specified starting address of the C256's memory.""" return self.transfer(constants.CMD_READ_MEM, address, 0, length) def readbyte(self): b = self.connection.read(1) return b[0] def transfer(self, command, address, data, read_length): """Send a command to the C256 Foenix""" self.status0 = 0 self.status1 = 0 lrc = 0 length = 0 if data == 0: length = read_length else: length = len(data) # if command == 0x80: # print('Switching to debug mode') # elif command == 0x81: # print('Resetting') # else: # print('Writing data of length {:X} to {:X}'.format(length, address)) command_bytes = command.to_bytes(1, byteorder='big') address_bytes = address.to_bytes(3, byteorder='big') length_bytes = length.to_bytes(2, byteorder='big') header = bytearray(7) header[0] = constants.REQUEST_SYNC_BYTE header[1] = command_bytes[0] header[2] = address_bytes[0] header[3] = address_bytes[1] header[4] = address_bytes[2] header[5] = length_bytes[0] header[6] = length_bytes[1] for i in range(0, 6): lrc = lrc ^ header[i] if data: for i in range(0, length): lrc = lrc ^ data[i] lrc_bytes = lrc.to_bytes(1, byteorder='big') if data: packet = header + data + lrc_bytes written = self.connection.write(packet) if written != len(packet): raise Exception("Could not write packet correctly.") else: packet = header + lrc_bytes written = self.connection.write(packet) if written != len(packet): raise Exception("Could not write packet correctly.") # print('Sent [{}]'.format(packet.hex())) c = 0 while c != constants.RESPONSE_SYNC_BYTE: c = self.readbyte() # print('Got 0xAA') read_bytes = 0 if c == constants.RESPONSE_SYNC_BYTE: self.status0 = self.readbyte() self.status1 = self.readbyte() if read_length > 0: read_bytes = self.connection.read(read_length) read_lrc = self.readbyte() # print("Status: {:X}, {:X}".format(self.status0, self.status1)) return read_bytes class FoenixConnection(ABC): @abstractmethod def open(self, port): pass @abstractmethod def close(self): pass @abstractmethod def is_open(self): pass @abstractmethod def read(self, num_bytes): pass @abstractmethod def write(self, data): pass class SerialFoenixConnection(FoenixConnection): """ Connects to Foenix via local serial port """ serial_port = None def open(self, port): self.serial_port = serial.Serial(port=port, baudrate=6000000, bytesize=serial.EIGHTBITS, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, timeout=60, write_timeout=60) try: self.serial_port.open() except: self.serial_port.close() self.serial_port.open() def close(self): self.serial_port.close() def is_open(self): return self.serial_port.is_open() def read(self, num_bytes): return self.serial_port.read(num_bytes) def write(self, data): return self.serial_port.write(data) class SocketFoenixConnection(FoenixConnection): """ Connects to Foenix via TCP-serial bridge """ tcp_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # AF_INET = IPv4, SOCK_STREAM = TCP socket _is_open = False def open(self, port): parsed_host_port = port.split(":") tcp_host = parsed_host_port[0] tcp_port = int(parsed_host_port[1]) if len(parsed_host_port) > 0 else 2560 print("Connecting to remote Foenix at {}:{}...".format(tcp_host, tcp_port), end="") self.tcp_socket.connect(tuple([tcp_host, tcp_port])) print(" ✓") self._is_open = True def close(self): self.tcp_socket.close() self._is_open = False def is_open(self): return self._is_open def read(self, num_bytes): bytes_read = self.tcp_socket.recv(num_bytes) return bytes_read def write(self, data): self.tcp_socket.sendall(data) return len(data) class FoenixTcpBridge(): """ Listens on a TCP socket and relays communications to the Foenix serial debug port """ def __init__(self, tcp_host, tcp_port, serial_port): self.tcp_host = tcp_host self.tcp_port = tcp_port self.serial_port = serial_port def recv_bytes(self, num_bytes): total_bytes_received = self.tcp_connection.recv(num_bytes) if not total_bytes_received: # Client hung up return total_bytes_received total_bytes_received = bytearray(total_bytes_received) while len(total_bytes_received) < num_bytes: bytes_received = self.tcp_connection.recv(num_bytes - len(total_bytes_received)) total_bytes_received.extend(bytes_received) return bytes(total_bytes_received) def listen(self): """ Listen for TCP socket connections and relay messages to Foenix via serial port """ while True: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: # AF_INET=IPv4, SOCK_STREAM=TCP s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind((self.tcp_host, self.tcp_port)) s.listen() print("Listening for connections to {} on port {}".format(self.tcp_host, self.tcp_port)) self.tcp_connection, tcp_address = s.accept() print("Received connection from {}".format(tcp_address[0])) with self.tcp_connection: while True: # First get the 7-byte request header header = self.recv_bytes(7) if not header: print("Connection from {} closed".format(tcp_address[0])) break command = header[1] # The data size comes from bytes 5 and 6 in the header data_length = int.from_bytes(header[5:7], byteorder="big") # The data payload only comes along with a write command data = None if command == constants.CMD_WRITE_MEM: data = self.recv_bytes(data_length) # The LRC byte is required and denotes the end of the request request_lrc_byte = self.recv_bytes(1) # TCP request is now complete, time to pass along to Foenix bytes_to_write = bytearray(header) if data is not None: bytes_to_write.extend(data) bytes_to_write.extend(request_lrc_byte) with serial.Serial(port=self.serial_port, baudrate=6000000, timeout=60, write_timeout=60) as serial_connection: num_bytes_written = serial_connection.write(bytes_to_write) # Probably should handle this situation a bit more elegantly if num_bytes_written != len(bytes_to_write): raise Exception("Serial port error - tried writing {} bytes, was only able to write {}" .format(len(bytes_to_write), num_bytes_written)) # Read until we get the start of the response response_sync_byte = serial_connection.read(1) # Next two bytes are the status bytes response_status_bytes = serial_connection.read(2) # Read the data payload if requested response_data = None if command == constants.CMD_READ_MEM and data_length > 0: response_data = serial_connection.read(data_length) response_lrc_byte = serial_connection.read(1) # Construct the response response = bytearray(response_sync_byte) response.extend(response_status_bytes) if response_data is not None: response.extend(response_data) response.extend(response_lrc_byte) # Return the response back to the TCP client self.tcp_connection.sendall(response) ```
{ "source": "jcook/utilities", "score": 2 }
#### File: utilities/cstool/cstool.py ```python import sys, getopt import requests __VERSION__ = '0.0.1' welcome = """ Checking Status from [http://192.168.3.11:8002/] (Shanghai) v%s License: https://github.com/jcook/utilities/blob/master/LICENSE """ % __VERSION__ def req_post(id=201625200000, step_forward=10): print 'Checking Status from [%d] to [%d]' % (id-step_forward, id) url = 'http://202.109.79.211:8002/TransFlowQueryResult.jsp' headers = {'Content-Type': 'application/x-www-form-urlencoded', 'Host': '192.168.3.11:8002', 'Connection': 'keep-alive', 'Content-Length': '58', 'Cache-Control': 'max-age=0', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Origin': 'http://192.168.3.11:8002', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/43.0.2357.134 Safari/537.36', 'Referer': 'http://192.168.3.11:8002/', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN,zh;q=0.8,en;q=0.6', } for i in range(id-step_forward, id+1): s = 'query=1&transactionid=%s' % str(i) s += '&button1=+%C8%B7+%B6%A8+' try: r = requests.post(url, data=s, headers=headers) ret = r.text idx1 = ret.find('<P>&nbsp;</P>') + len('<P>&nbsp;</P>') idx2 = ret.find('</BODY>') print ret[idx1:idx2-4] except: print 'Unexcepted error orrur. Checking network first.' sys.exit(1) def Usage(): print 'Usage:' print ' -h, --help: print help message' print ' -v, --version: Show version info' print ' -i, --id: Indicate id for checking' print ' -f, --forward: Indicate forward number for checking' print '' print 'Example:' print ' tool.exe -i 201625200020 -f 5' print 'Will check the result from 201625200015 to 201625200020.' def Version(): print welcome def main(argv): id = 0 forward = 10 try: opts, args = getopt.getopt(argv[1:], 'hvi:f:', ['id=', 'forward=']) except getopt.GetoptError, err: print str(err) Usage() sys.exit(2) for o, a in opts: if o in ('-h', '--help'): Usage() sys.exit(1) elif o in ('-v', '--version'): Version() sys.exit(1) elif o in ('-i', '--id'): id = int(a) elif o in ('-f', '--forward'): forward=int(a) else: print 'Invalid option(s)!' Usage() sys.exit(3) if id == 0: Usage() sys.exit(1) req_post(id, forward) if __name__ == '__main__': main(sys.argv) ```
{ "source": "jcooky/flask-clova", "score": 2 }
#### File: flask-clova/flask_clova/directives.py ```python class directive: @staticmethod def open_mike(): return { "header": { "name": "KeepConversation", "namespace": "Clova" }, "payload": { "explicit": True } } ```
{ "source": "jcoombes/computing-year-2", "score": 4 }
#### File: jcoombes/computing-year-2/pion.py ```python from __future__ import division import numpy as np import fourvectors as fv import properties as props class Particle(object): """ A particle base class, provides relativistic movement. Inputs: e - energy. float. measured in MeV. born - initial location. expect len(born)==3. k - direction of travel. m - mass. float. measured in MeV tau - lifetime. measured in s. """ def __init__(self, e, born, k, m, tau): """ Make sure e is greater than rest mass of particle. """ if e < m: raise ValueError('particle energy is less than the rest mass energy.') self.e = e #MeV Lab frame. #2:pf self.m = m #MeV self.tau = tau #Particle frame. #2:pf self.k = np.array(k, dtype='float64') #Lab frame #2: pf self.born = np.array(born, dtype = 'float64') #Lf #2: lf self.life = tau #pf self.g = self.e/self.m #lf self.b = np.sqrt(1-1/(self.g*self.g)) #lf self.p = self.e*self.b # lf self.knorm = self.k/np.sqrt(self.k.dot(self.k)) #normalised direction lf self.pvec = self.p * self.knorm #momentum vector. # lf self.emom = fv.FourVector(self.e, self.pvec) #energy momentum 4-vector. #Muon position 4-vector currently uses lifetime in own frame, position in lab frame #Muon energy 4-vector currently uses energy in pion frame. Momentum in momentum/lab frame. self.walls = None def decay_direction(self): """ Randomly generates a uniform vector on the unit sphere. """ u = np.random.sample() v = np.random.sample() phi = 2*np.pi*u theta = np.arccos(2*v-1) #mathworld.wolfram.com/SpherePointPicking.html x = np.sin(theta) * np.cos(phi) y = np.sin(theta) * np.sin(phi) z = np.cos(theta) return np.array([x,y,z]) def hits_walls(self): """ Method to determine location particle ultimately intersects detector walls. Use after particle.move() """ t1 = (0-self.born[2])/self.lab_u[2] # z = 0 t2 = (props.chamber_z-self.born[2])/self.lab_u[2] # z = 100 quant = (self.born[0]*self.lab_u[0] + self.born[1]*self.lab_u[1]) t3 = (-quant+np.sqrt(quant*quant \ - (self.lab_u.dot(self.lab_u)*\ (self.born[:2].dot(self.born[:2])-(props.chamber_r*props.chamber_r)))))\ /self.lab_u.dot(self.lab_u) first_intersection_time = min([t for t in [t1, t2, t3] if t>0]) hits = self.born + first_intersection_time*self.lab_u if first_intersection_time <= self.lab_life: #hits wall before it decays self.walls = hits return hits else: return None def inside(self): """ Return true if a particle is inside chamber. Use after particle.move(). """ if hasattr(self, 'walls') and self.walls is not None: x = self.walls elif hasattr(self, 'died') and self.died is not None: x = self.died else: x = self.born if x[0]*x[0] + x[1] * x[1] <= props.chamber_r*props.chamber_r: return True elif 100 >= x[2] >= 0: return True else: return False class Pion(Particle): """ It's a pion. All our particles start off as these. """ pion_lives = np.random.exponential(props.pion_lifetime,2E7) seed = 0 # so we can get back the same exp-distributed rand numbers. #Code is faster if we generate lots at once then look it up. instances = [] def __init__(self, e, born = [0,0,0], k = [0,0,1], m = props.pion_mass , tau = props.pion_lifetime, branch = 0.5): super(Pion, self).__init__(e, born, k, m, tau) self.branch = branch #Branching Ratio. REALLY IMPORTANT. self.life = self.pion_lives[self.seed] Pion.seed += 1 Pion.instances.append(self) def move(self): """ Special faster pion method to move faster than the general lorenz boost. propagates particle for length of life in lab frame. Output distances in light-seconds as c=1. See ls2m function in properties file for output in metres. """ self.died = self.knorm * self.life * self.b * self.g return self.died def decay(self): """ Deletes particle. Makes new particle. Note if self.died hasn't been set by move() the particle decays in place. """ if np.random.sample() > self.branch: energy = (props.pion_mass*props.pion_mass +props.muon_mass*props.muon_mass)/(2*props.pion_mass) #Assumes zero neutrino mass. return Muon(energy, self.died, self.decay_direction()) else: energy = (props.pion_mass*props.pion_mass +props.electron_mass*props.electron_mass)/(2*props.pion_mass) #Assumes zero neutrino mass. return Electron(energy, self.died, self.decay_direction(),parent = 'Pion') def hits_walls(self): """ Specific pion method to detect if pion hits the back wall of the chamber. Returns None if False, Returns co-ordinates if true. """ if self.died[2] >= props.chamber_z: self.walls = np.array([0,0,props.chamber_z], dtype = 'float64') return self.walls """ def detect(self): raise NotImplementedError """ def __str__(self): '''Returns a string representation of particle. This output should be used to debug. Do not use the output of this to create new pions.''' #Note that I need to use energy, self.born, self.hits, detected? if hasattr(self, 'walls'): if hasattr(self, 'detected'): ans = 'Pion({},died = {}, walls = {}, detected = {})'\ .format(self.e, self.died, self.walls, self.detected) else: ans = 'Pion({},died = {}, walls = {}, detected = {})'\ .format(self.e, self.died, self.walls, 'None') elif hasattr(self, 'detected'): ans = 'Pion({},died = {}, walls = {}, detected = {})'\ .format(self.e, self.died, 'None ',self.detected) else: ans = 'Pion({},died = {}, walls = {}, detected = {})'\ .format(self.e, self.died, 'None ','None') return ans class Muon(Particle): """ It's a muon. Pions decay into this. Inputs: e - total energy. born - initial position. 3-position. k - initial direction in created frame. """ muon_lives = np.random.exponential(props.muon_lifetime, 2e7) seed = 0 # so we can get back the same exp-distributed rand numbers. #Code is faster if we generate lots at once then look it up. instances = [] def __init__(self, e, born, k, m = props.muon_mass, tau = props.muon_lifetime): super(Muon, self).__init__(e, born, k, m, tau) self.life = self.muon_lives[self.seed] Muon.seed += 1 Muon.instances.append(self) def decay(self): """ Unlike pion decays, muons can only decay into electrons. """ return Electron(props.michel(), self.died, self.decay_direction(), parent = 'Muon') def move(self): """ propagates particle for length of life in lab frame. This method will only work for derived classes (with defined self.life) Output distances in light-seconds as c=1. Use pion.props.ls2m() for an output in metres. """ self.lab_emom = self.emom.super_boost(-self.b, self.knorm) self.lab_pvec = self.lab_emom.r self.lab_e = self.lab_emom.ct self.lab_u = self.lab_pvec/self.lab_e self.lab_life = Pion.instances[-1].g * self.life self.died = self.born + self.lab_u * self.lab_life return self.died def __str__(self): ''' Returns a string representation of the particle. This output should be used to debug. Do not use this output to make new muons. ''' #Note that I need to use energy, self.born, self.hits, detected? if hasattr(self, 'walls'): if hasattr(self, 'detected'): ans = 'Muon({},died = {}, walls = {}, detected = {})'\ .format(self.e, self.died, self.walls, self.detected) else: ans = 'Muon({},died = {}, walls = {}, detected = {})'\ .format(self.e, self.died, self.walls, 'None') elif hasattr(self, 'detected'): ans = 'Muon({},died = {}, walls = {}, detected = {})'\ .format(self.e, self.died, 'None ',self.detected) else: ans = 'Muon({},died = {}, walls = {}, detected = {})'\ .format(self.e, self.died, 'None ','None') return ans class Electron(Particle): """ It's an electron. Electrons have an extra parameter showing their parent. """ instances = [] def __init__(self, e, born, k, m = props.electron_mass, parent = 'Pion'): tau = 1 super(Electron, self).__init__(e, born, k, m, tau) self.parent = parent #Easier to have both pion and muon inherit from particle, #and delete tau in electron, than implement for both pion and muon. Electron.instances.append(self) def move(self): """ propagates particle for length of life in lab frame. This method will only work for derived classes (with defined self.life) Output distances in light-seconds as c=1. Use pion.props.ls2m() for an output in metres. """ self.lab_emom = self.emom.super_boost(-self.b, self.knorm) self.lab_pvec = self.lab_emom.r self.lab_e = self.lab_emom.ct self.lab_u = self.lab_pvec/self.lab_e if self.parent == 'Pion': self.lab_life = Pion.instances[-1].g * self.life elif self.parent == 'Muon': self.lab_life = Muon.instances[-1].g * self.life else: raise ValueError, 'electron has no parents.' self.died = self.born + self.lab_u * self.lab_life return self.died def __str__(self): ''' Returns a string representation of the particle. This output should be used to debug. Do not use this output to make new electrons. ''' #Note that I need to use energy, self.born, self.hits, detected? if hasattr(self, 'walls'): if hasattr(self, 'detected'): ans = 'Electron({},died = {}, walls = {}, detected = {})'\ .format(self.e, self.died, self.walls, self.detected) else: ans = 'Electron({},died = {}, walls = {}, detected = {})'\ .format(self.e, self.died, self.walls, 'None') elif hasattr(self, 'detected'): ans = 'Electron({},died = {}, walls = {}, detected = {})'\ .format(self.e, self.died, 'None ',self.detected) else: ans = 'Electron({},died = {}, walls = {}, detected = {})'\ .format(self.e, self.died, 'None ','None') return ans ``` #### File: jcoombes/computing-year-2/properties.py ```python import numpy as np pion_mass = 139.6 #MeV pion_lifetime = 2.6e-8 #s muon_mass = 105.7 #MeV muon_lifetime = 2.2e-6 #s electron_mass = 0.5 #MeV #electron lifetime is so long we can assume it lives forever. #also neutrino mass is 0.320eV. We can assume they're massless. chamber_z = 3.335640952e-7 # 100m in light seconds chamber_r = 8.339102380e-9 #2.5m in light seconds # 1eV^-1 of length = 1.97327e-7 m # 1eV of mass = 1.782662e-36 kilograms # 1eV-1 of time = 6.582119e-16 seconds def michel(): x,y = np.random.sample(2) if x > y: return x * 53 else: return y * 53 def ls2m(lightseconds): """ Convert light seconds to natural units. Only use this to make output more human friendly. Not built to do any calculations in metres. Inputs: lightseconds - float. """ if type(lightseconds) is list: raise TypeError,'Convert this list to an array or float.' return lightseconds*299792458 ```
{ "source": "jcoombes/tictactoe", "score": 4 }
#### File: jcoombes/tictactoe/tictactoe.py ```python import numpy as np import random import copy import time def show_board(board: np.ndarray) -> str: zeroth_line = "\n" first_line = " {} | {} | {} ".format(board[0, 0], board[0, 1], board[0, 2]) line_of_dashes = "--- --- ---" second_line = " {} | {} | {} ".format(board[1, 0], board[1, 1], board[1, 2]) third_line = " {} | {} | {} ".format(board[2, 0], board[2, 1], board[2, 2]) return "\n".join((zeroth_line, first_line, line_of_dashes, second_line, line_of_dashes, third_line, zeroth_line)) def turn_flipper(x_or_o: str) -> str: if x_or_o == 'x': return 'o' elif x_or_o == 'o': return 'x' else: raise ValueError(x_or_o + 'is neither "x" nor "o"') def human_turn(board: np.ndarray, x_or_o: str) -> np.ndarray: """ Careful, this also mutates data. :param board: numpy array containing game state. :param x_or_o: the string 'x' or the string 'o', whose side are they on. :return: board after move. """ input2rowcol = {'e': (0, 0), 'r': (0, 1), 't': (0, 2), 'd': (1, 0), 'f': (1, 1), 'g': (1, 2), 'c': (2, 0), 'v': (2, 1), 'b': (2, 2)} user_input = "" while user_input not in input2rowcol.keys(): user_input = input("Use your keyboard to select your location, player " + x_or_o + ": ") board[input2rowcol[user_input]] = x_or_o return board def score_one_gamestate(board: np.array, x_or_o: str, available: list, ai_player_choice: str, score_dict=None, weight=1) -> int: if score_dict is None: score_dict = {'wins': 0, 'losses': 0, 'draws': 0} is_finished = game_over(board) if is_finished == ai_player_choice: # This might be wrong, we want ai_player_choice score_dict['wins'] += 1 / weight return score_dict elif is_finished == turn_flipper(ai_player_choice): score_dict['losses'] += 1 / weight return score_dict elif is_finished == 'draw': score_dict['draws'] += 1 / weight return score_dict else: weight *= len(available) for candidate_move in available: deeper = copy.deepcopy(board) deeper[candidate_move] = x_or_o available_moves = find_available_moves(deeper) score_dict = score_one_gamestate(deeper, turn_flipper(x_or_o), available_moves, ai_player_choice, score_dict, weight) return score_dict def optimal_ai_move(board: np.array, x_or_o: str, available: list): """ The heart of the robot brain. Given a board state, will return the optimal move. :param board: numpy array of the board. :param x_or_o: which side is the AI playing on? #This isn't exactly true in recursive calls. :param available: available[(row, col)] = True, if the space hasn't been taken yet. :return: best_move: (row, col). The move with the greatest number of simulated wins. """ possibility_dict = {} for candidate_move in available: deeper = copy.deepcopy(board) deeper[candidate_move] = x_or_o available = find_available_moves(deeper) possibility_dict[candidate_move] = score_one_gamestate(deeper, turn_flipper(x_or_o), available, x_or_o, score_dict=None) metric_dict = {candidate_move: (score_dict['wins'] + score_dict['draws']) / sum(score_dict.values()) for candidate_move, score_dict in possibility_dict.items()} best_move = max(metric_dict, key=metric_dict.get) return best_move, possibility_dict def find_available_moves(board: np.array) -> list: not_x_mask: np.array = board != 'x' not_o_mask: np.array = board != 'o' neither_mask: np.array = np.logical_and(not_x_mask, not_o_mask) available = [(i, j) for i in range(3) for j in range(3) if neither_mask[(i, j)]] return available def ai_turn(board: np.array, x_or_o: str) -> np.array: # First policy is random policy, it randomly decides to pick from the available spaces. print("bleep bloop, now it is my turn") policy = 'optimal' available = find_available_moves(board) if policy == 'random': next_move = random.choice(available) if policy == 'optimal': if len(available) == 9: next_move = (1, 1) # Really hacky memoisation, solving the first move takes 120 seconds otherwise. elif 6 < len(available) < 9: time.sleep(0.1) next_move = optimal_ai_move(board, x_or_o, available)[0] else: time.sleep(0.3) next_move = optimal_ai_move(board, x_or_o, available)[0] board[next_move] = x_or_o return board def game_over(board: np.array) -> str: """ Reads board to determine whether x, o, or a draw has occurred. :param board: :return: scenario "" = False, game not finished, 'x'=x_won, 'o'=o_won, 'draw'=draw """ mask = { 'x': board == 'x', # Boolean mask of all the squares x resides in. 'o': board == 'o' } for x_or_o, v in mask.items(): has_winning_row = np.any(np.all(v, axis=1)) has_winning_col = np.any(np.all(v, axis=0)) has_winning_diagonal = np.all(v.diagonal()) has_winning_off_diagonal = np.all(np.fliplr(v).diagonal()) if has_winning_row or has_winning_col or has_winning_diagonal or has_winning_off_diagonal: return x_or_o if np.all(mask['x'] + mask['o']): # all the squares are filled. return 'draw' else: return "" def game_loop() -> None: """ :return: None. """ num_players = '' human_player_choice = '' while num_players not in ('0', '1', '2'): num_players = input("Number of players: ") board = np.array( [["e", "r", "t"], ["d", "f", "g"], ["c", "v", "b"]] ) whose_turn = 'x' if num_players == '0': print("Ah, you would like to see robots compete for your entertainment. Sit back for two minutes and enjoy.") while not (game_over(board)): print(show_board(ai_turn(board, whose_turn))) whose_turn = turn_flipper(whose_turn) if num_players == '1': while human_player_choice not in ('x', 'o'): human_player_choice = input("Would you like to play as x or o: ") ai_player_choice = turn_flipper(human_player_choice) print("Welcome player " + human_player_choice) print(show_board(board)) while not (game_over(board)): if whose_turn == human_player_choice: print(show_board(human_turn(board, human_player_choice))) whose_turn = turn_flipper(whose_turn) elif whose_turn != human_player_choice: print(show_board(ai_turn(board, ai_player_choice))) whose_turn = turn_flipper(whose_turn) if num_players == '2': print(show_board(board)) while not (game_over(board)): print(show_board(human_turn(board, whose_turn))) whose_turn = turn_flipper(whose_turn) not_x_mask: np.array = board != 'x' not_o_mask: np.array = board != 'o' neither_mask: np.array = np.logical_and(not_x_mask, not_o_mask) print(show_board(np.where(neither_mask, ' ', board))) print(game_over(board)) if __name__ == "__main__": game_loop() ```
{ "source": "jcooper036/tri_hybid_mapping", "score": 3 }
#### File: tri_hybid_mapping/analysis/read_sort.py ```python import sys import pickle import time import re def cigarParse(genPos, seq, cigarString): """returns a new sequence and/or modified start position based on the cigar string""" cigarString = re.split('(\d+)',cigarString) oper = [] cigarString = cigarString[1:] for idx, item in enumerate(cigarString): if item.isdigit(): ent = (int(item),cigarString[idx+1]) oper.append(ent) if (len(oper) == 0): return genPos, seq, False readPos = 0 for idx, ent in enumerate(oper): ## soft clip if idx == 0: # if ent[1] == 'S': # seq = seq[ent[0]:] # clip out the sequence that soft clip actually clipped if ent[1] == 'S' or ent[1] == 'I' or ent[1] == 'D': return genPos, seq, False else: if ent[1] == 'S': seq = seq[:-ent[0]] # clip out the sequence that soft clip actually clipped # if ent[1] == 'S': # return genPos, seq, False if ent[1] == 'I': seq = seq[:readPos] + seq[(readPos + ent[0]):] if ent[1] == 'P': seq = seq[:readPos] + seq[(readPos + ent[0]):] if ent[1] == 'D': add = '-' * ent[0] seq = seq[:readPos] + add + seq[readPos:] ## add on the number of BP that have been covered readPos += ent[0] return genPos, seq, True ## variables scaffolds = [ 'X', 'Y', '2L', '2R', '3L', '3R', '4' ] bamFile = sys.argv[1] vcfTable = sys.argv[2] outFile = sys.argv[3] timeStart = time.clock() ## make a dictionary of all postions by scaffold countTable = {} for scaf in scaffolds: countTable[scaf] = {} ## load in the SNP table snpDict = {} for scaf in scaffolds: snpDict[scaf] = {} with open (vcfTable) as vcf: for line in vcf: line = line.strip() if 'CHRM' not in line: line = line.split('\t') if line[0] not in snpDict.keys(): snpDict[line[0]] = {} snpDict[line[0]][int(line[1])] = [line[2], line[3], line[4]] ## make the header for the out file printOut = open(outFile, 'w') printOut.write('CHRM\tPOS1\tPOS2\tTYPE1\tTYPE2\tRead1\tRead2\tSAMPLE\n') print('CHRM\tPOS1\tPOS2\tTYPE1\tTYPE2\tRead1\tRead2\tSAMPLE') ## load in the bam file, and process each read with open (bamFile, 'r') as bam: readDict = {} saveDict = {} for line in bam: if ('@SQ' not in line) and ('@PG' not in line) and ('@HD' not in line) and ('@RG' not in line): # line.split('\t')[2] is the CHR, [3] is the starting position, [9] is the sequence read = line.split('\t')[0] chrom = line.split('\t')[2] posit = line.split('\t')[3] seq = line.split('\t')[9] qualCheck = False if int(line.split('\t')[4]) > 36: qualCheck = True sample = line.split('RG:Z:')[1].split('\t')[0] mateCheck = False if line.split('\t')[6] == '=': mateCheck = True matePos = line.split('\t')[7] cigarString = line.split('\t')[5] mel = 0 sim = 0 sec = 0 ukn = True readType = 'ukn' if sample not in readDict: readDict[sample] = {} if sample not in saveDict: saveDict[sample] = {} ## modify the sequence and start position based of the cigar string posit, seq, cigFlag = cigarParse(posit, seq, cigarString) ## just don't do anything if these fail if chrom not in scaffolds or not qualCheck or not mateCheck or not cigFlag: continue ## sort through the postions in a read and find out if it matches anything for pos in range(0, len(seq)): genPOS = pos + int(posit) if genPOS in snpDict[chrom]: # print(snpDict[chrom][genPOS], seq[pos-1:pos+2], seq[pos], sample) ukn = False if snpDict[chrom][genPOS][0] == seq[pos]: mel += 1 if snpDict[chrom][genPOS][1] == seq[pos]: sim += 1 if snpDict[chrom][genPOS][2] == seq[pos]: sec += 1 ## now classify the read # if (mel > 0) and (sim == 0) and (sec == 0): # readType = 'mel' if (mel == 0) and (sim > 0) and (sec == 0): readType = 'sim' elif (mel == 0) and (sim == 0) and (sec > 0): readType = 'sec' else: ukn = True # if (mel < sim) and (mel < sec): # if sim > sec: # readType = 'sim' # elif sec > sim: # readType = 'sec' # else: # ukn = True # else: # ukn = True # add it to the dictionary of the read file if not ukn and mateCheck: if (read in readDict[sample]) and (matePos == readDict[sample][read]['pos1']): if readDict[sample][read]['type1'] != readType: saveDict[sample][read] = readDict[sample][read] saveDict[sample][read]['pos2'] = posit saveDict[sample][read]['type2'] = readType saveDict[sample][read]['read2'] = read printOut.write(str(saveDict[sample][read]['CHROM']) + '\t' + str(saveDict[sample][read]['pos1']) + '\t' + str(saveDict[sample][read]['pos2']) + '\t' + str(saveDict[sample][read]['type1']) + '\t' + str(saveDict[sample][read]['type2']) + '\t' + str(saveDict[sample][read]['read1']) + '\t' + str(saveDict[sample][read]['read2']) + '\t' + str(sample) + '\n') print(str(saveDict[sample][read]['CHROM']) + '\t' + str(saveDict[sample][read]['pos1']) + '\t' + str(saveDict[sample][read]['pos2']) + '\t' + str(saveDict[sample][read]['type1']) + '\t' + str(saveDict[sample][read]['type2']) + '\t' + str(saveDict[sample][read]['read1']) + '\t' + str(saveDict[sample][read]['read2']) + '\t' + str(sample)) else: readDict[sample][read] = {'pos1' : posit, 'pos2' : '', 'type1' : readType, 'type2' : 'ukn', 'CHROM' : chrom, 'read1' : read} ## close the file handle printOut.close() # measure time print(str(time.clock()-timeStart) + ' seconds to process bam file') ``` #### File: tri_hybid_mapping/analysis/window_controls.py ```python import time import sys controlFile = sys.argv[1] experFile = sys.argv[2] outName = sys.argv[3] def readTsv(file): """Reads a TSV file""" file = open(file, 'r') outdict = {} ## skip the first line i = 0 for line in file.readlines(): if i > 0: line = line.strip() line = line.split('\t') if line[0] not in outdict: outdict[line[0]] = {} outdict[line[0]][line[1]] = [line[2], line[3], line[4]] i += 1 file.close() return outdict def normalizeTsv(controlFile, experFile): """Gets dictionaries, finds difference between values, returns dictionary""" controlDict = readTsv(controlFile) experDict = readTsv(experFile) diffDict = {} for scaff in controlDict: if scaff in experDict: if scaff not in diffDict: diffDict[scaff] = {} for pos in controlDict[scaff]: if pos in experDict[scaff]: diffDict[scaff][pos] = [float(experDict[scaff][pos][idx]) - float(controlDict[scaff][pos][idx]) for idx in range(0, len(experDict[scaff][pos]))] return diffDict def outWrite(outFile, diffDict): """Writes the results to an output file""" with open(outFile, 'w') as f: f.write('CHROM\tPOS\tmel\tsim\tsec\n') for scaff in diffDict: for pos in diffDict[scaff]: f.write(str(scaff) + '\t' + str(pos) + '\t' + str(diffDict[scaff][pos][0]) + '\t' + str(diffDict[scaff][pos][1]) + '\t' + str(diffDict[scaff][pos][2]) + '\n') diffDict = normalizeTsv(controlFile, experFile) outWrite(outName, diffDict) ``` #### File: tri_hybid_mapping/simulation/02a_simulated_analysis.py ```python import random import copy import numpy as np from scipy.signal import find_peaks_cwt import pickle LENGTH = 50000000 N_TRIALS = 350 selection_strength = 1 replicates = 10 window = 1000000 step = 20000 out_pre = '/Volumes/Jacob_2TB_storage/sim_sec_recombination_mapping/simulation/' def load_tsv(idx, out_pre): table = {} # load files male_reps = {} female_reps = {} for idx2 in range(3): male_reps[idx2] = [] filename = out_pre + 'data/simulated_data/' + str(idx) + '_' + str(idx2) + '_male.tsv' with open(filename, 'r') as f: for line in f: line = line.rstrip() if '@@@' in line: sel_spot = int(line.split(':')[1]) elif 'CHROM' not in line: line = line.split('\t') male_reps[idx2].append(line) female_reps[idx2] = [] filename = out_pre + 'data/simulated_data/' + str(idx) + '_' + str(idx2) + '_female.tsv' with open(filename, 'r') as f: for line in f: line = line.rstrip() if '@@@' in line: sel_spot = int(line.split(':')[1]) elif 'CHROM' not in line: line = line.split('\t') female_reps[idx2].append(line) return male_reps, female_reps, sel_spot def window_average(reps, window, step): win_reps = {} for rep in reps: win2 = window/2 pos = window/2 winds = [] posits = [int(x[1]) for x in reps[rep]] while pos < max(posits): melav = [] simav = [] secav = [] start = 0 for idx in range(start, len(reps[rep])): x = reps[rep][idx] if (int(x[1]) > pos-win2): start = idx if (int(x[1]) < pos+win2): melav.append(float(x[2])) simav.append(float(x[3])) secav.append(float(x[4])) else: break if melav and simav and secav: winds.append([pos, np.mean(melav), np.mean(simav), np.mean(secav)]) pos += step win_reps[rep] = winds return win_reps def sex_difference(male_reps, female_reps): reps = {} for i in male_reps: reps[i] = [] for idx, entry in enumerate(male_reps[i]): male = male_reps[i][idx] female = female_reps[i][idx] freq = [(male[0]), (male[1] - female[1]), (male[2] - female[2]), (male[3] - female[3])] reps[i].append(freq) return reps def average_replicates(reps): table = [] for pos, lis in enumerate(reps[0]): melav = (reps[0][pos][1] + reps[1][pos][1] + reps[2][pos][1]) / 3 simav = (reps[0][pos][2] + reps[1][pos][2] + reps[2][pos][2]) / 3 secav = (reps[0][pos][3] + reps[1][pos][3] + reps[2][pos][3]) / 3 table.append([reps[0][pos][0], melav, simav, secav]) return table def estimate_max(table): table = table[1:] sim_freqs = [(x[0],(x[2]-x[3]))for x in table] sim_freqs = sorted(sim_freqs, key=lambda x: x[1]) # find the peaks xs = [x[1] for x in sim_freqs] peaks = list(find_peaks_cwt(xs, np.arange(50, 200))) # this produces a list. Find the biggest one in the list big = (0,0) for peak in peaks: if sim_freqs[peak][1] > big[1]: big = (sim_freqs[peak][0], sim_freqs[peak][1]) return big[0] differences = [] for i2 in range(replicates): male_reps, female_reps, sel_spot = load_tsv(i2, out_pre) male_reps = window_average(male_reps, window, step) female_reps = window_average(female_reps, window, step) table = sex_difference(male_reps, female_reps) table = average_replicates(table) estimated_site = estimate_max(table) out = { 'est_site' : estimated_site, 'difference' : estimated_site-sel_spot, 'sel_site' : sel_spot, 'table' : table } pickle_file = out_pre + 'data/parsed_data/' + str(i2) + '.pkl' with open(pickle_file, 'wb') as f: pickle.dump(out, f, pickle.HIGHEST_PROTOCOL) # print(differences) # print("2x std:", np.std(differences)) # print("Average:", np.average(differences)) # plt.hist(differences, bins=20) # plt.savefig(out_pre+'confidence_hist.pdf') # plot_frequencies(table, sel_spot, estimated_site, 'final') ``` #### File: tri_hybid_mapping/simulation/02b_plotting.py ```python import random import copy import pickle import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.signal import find_peaks_cwt LENGTH = 50000000 N_TRIALS = 350 selection_strength = 1 replicates = 10 window = 1000000 step = 20000 out_pre = '/Volumes/Jacob_2TB_storage/sim_sec_recombination_mapping/simulation/' def load_table(filename): with open(filename, 'rb') as f: data = pickle.load(f) return data['table'], data['sel_site'], data['est_site'] def plot_frequencies(table, sel_spot, esitmate, num, out_pre): fig = plt.figure(figsize=(6, 8)) table = np.array(table) plt.plot(table[::,0], table[::,1], color = 'blue', label = 'D.mel') plt.plot(table[::,0], table[::,2], color = 'orange', label = 'D.sim') plt.plot(table[::,0], table[::,3], color = 'red', label = 'D.sec') plt.axvline(x=sel_spot, color='black', label = 'actual site') plt.axvline(x=esitmate, color='green', label = 'estimated site') plt.ylim(-0.4,0.4) plt.legend() plt.ylabel('Allele Frequency (Male - Female)') plt.xlabel('Genomic position') plotname = out_pre + 'simulated_graph.pdf' plt.savefig(plotname) differences = [] for i2 in range(replicates): filename = out_pre + 'data/parsed_data/' + str(i2) + '.pkl' table, sel_spot, estimated_site = load_table(filename) differences.append(estimated_site-sel_spot) print(differences) print("2x std:", np.std(differences)) print("Average:", np.average(differences)) plt.hist(differences, bins=20) plt.savefig(out_pre+'confidence_hist.pdf') plot_frequencies(table, sel_spot, estimated_site, 'final', out_pre) ``` #### File: tri_hybid_mapping/simulation/03b_plotting copy.py ```python import random import copy import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.signal import find_peaks_cwt LENGTH = 50000000 N_TRIALS = 350 selection_strength = 1 replicates = 3 window = 1000000 step = 20000 out_pre = '/Volumes/Jacob_2TB_storage/sim_sec_recombination_mapping/simulation/' def load_tsv(idx, out_pre): table = {} # load files male_reps = {} female_reps = {} for idx2 in range(3): male_reps[idx2] = [] filename = out_pre + 'data/simulated_data/' + str(idx) + '_' + str(idx2) + '_male.tsv' with open(filename, 'r') as f: for line in f: line = line.rstrip() if '@@@' in line: sel_spot = int(line.split(':')[1]) elif 'CHROM' not in line: line = line.split('\t') male_reps[idx2].append(line) female_reps[idx2] = [] filename = out_pre + 'data/simulated_data/' + str(idx) + '_' + str(idx2) + '_female.tsv' with open(filename, 'r') as f: for line in f: line = line.rstrip() if '@@@' in line: sel_spot = int(line.split(':')[1]) elif 'CHROM' not in line: line = line.split('\t') female_reps[idx2].append(line) return male_reps, female_reps, sel_spot def window_average(reps, window, step): win_reps = {} for rep in reps: win2 = window/2 pos = window/2 winds = [] posits = [int(x[1]) for x in reps[rep]] while pos < max(posits): melav = [] simav = [] secav = [] for x in reps[rep]: if (int(x[1]) > pos-win2): if (int(x[1]) < pos+win2): melav.append(float(x[2])) simav.append(float(x[3])) secav.append(float(x[4])) else: break if melav and simav and secav: winds.append([pos, np.mean(melav), np.mean(simav), np.mean(secav)]) pos += step win_reps[rep] = winds return win_reps def sex_difference(male_reps, female_reps): reps = {} for i in male_reps: reps[i] = [] for idx, entry in enumerate(male_reps[i]): male = male_reps[i][idx] female = female_reps[i][idx] freq = [(male[0]), (male[1] - female[1]), (male[2] - female[2]), (male[3] - female[3])] reps[i].append(freq) return reps def average_replicates(reps): table = [] for pos, lis in enumerate(reps[0]): melav = (reps[0][pos][1] + reps[1][pos][1] + reps[2][pos][1]) / 3 simav = (reps[0][pos][2] + reps[1][pos][2] + reps[2][pos][2]) / 3 secav = (reps[0][pos][3] + reps[1][pos][3] + reps[2][pos][3]) / 3 table.append([reps[0][pos][0], melav, simav, secav]) return table def estimate_max(table): table = table[1:] sim_freqs = [(x[0],(x[2]-x[3]))for x in table] sim_freqs = sorted(sim_freqs, key=lambda x: x[1]) # find the peaks xs = [x[1] for x in sim_freqs] peaks = list(find_peaks_cwt(xs, np.arange(50, 200))) # this produces a list. Find the biggest one in the list big = (0,0) for peak in peaks: if sim_freqs[peak][1] > big[1]: big = (sim_freqs[peak][0], sim_freqs[peak][1]) return big[0] def plot_frequencies(table, sel_spot, esitmate, num): df = pd.read_csv(filename) fig = plt.figure(figsize=(6, 8)) plt.plot(table[::0], table[::1], color = 'blue', label = 'D.mel') plt.plot(table[::0], table[::2], color = 'orange', label = 'D.sim') plt.plot(table[::0], table[::3], color = 'red', label = 'D.sec') plt.axvline(x=sel_spot, color='black', label = 'actual site') plt.axvline(x=esitmate, color='green', label = 'estimated site') plt.ylim(-0.4,0.4) plt.legend() plt.ylabel('Allele Frequency (Male - Female)') plt.xlabel('Genomic position') plotname = filename.split('.csv')[0] + str(num) + '.pdf' plt.savefig(plotname) differences = [] for i2 in range(replicates): male_reps, female_reps, sel_spot = load_tsv(i2, out_pre) male_reps = window_average(male_reps, window, step) female_reps = window_average(female_reps, window, step) table = sex_difference(male_reps, female_reps) table = average_replicates(table) estimated_site = estimate_max(table) differences.append(estimated_site-sel_spot) print(differences) print("2x std:", np.std(differences)) print("Average:", np.average(differences)) plt.hist(differences, bins=20) plt.savefig(out_pre+'confidence_hist.pdf') plot_frequencies(table, sel_spot, estimated_site, 'final') ```
{ "source": "jcoopere/binary-image-classification", "score": 3 }
#### File: jcoopere/binary-image-classification/vgg16-with-dropout.py ```python import os import sys import time import glob import matplotlib.pyplot as plt from keras import layers, models, optimizers, backend as K from keras.preprocessing.image import ImageDataGenerator # Globals image_dimensions = 224 num_channels = 3 def count_images_in_dir(path): # This code assumes .tiff image format...to accept a different format, modify the following line. return len(glob.glob(os.path.join(path, '*', '*.tiff'))) def smooth_curve(points, factor=0.8): smoothed_points = [] for point in points: if smoothed_points: previous = smoothed_points[-1] smoothed_points.append(previous * factor + point * (1 - factor)) else: smoothed_points.append(point) return smoothed_points def train_cnn(corpus_path): train_dir = os.path.join(corpus_path, 'train') validate_dir = os.path.join(corpus_path, 'validate') test_dir = os.path.join(corpus_path, 'test') training_image_count = count_images_in_dir(train_dir) validation_image_count = count_images_in_dir(validate_dir) testing_image_count = count_images_in_dir(test_dir) print('INFO: {} images will be used for training ({})'.format(training_image_count, train_dir)) print('INFO: {} images will be used for validation ({})'.format(validation_image_count, validate_dir)) print('INFO: {} images will be used for testing ({})'.format(testing_image_count, test_dir)) labels = os.listdir(train_dir) num_labels = len(labels) print("INFO: Training set contains the following {} labels...".format(num_labels)) for label in labels: print(' - {}'.format(label)) # Train K.clear_session() model = models.Sequential() model.add(layers.Conv2D(64, (3, 3), input_shape=(image_dimensions, image_dimensions, num_channels), padding='same', activation='relu')) model.add(layers.Dropout(0.2)) model.add(layers.Conv2D(64, (3, 3), padding='same', activation='relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(layers.Dropout(0.2)) model.add(layers.Conv2D(128, (3, 3), padding='same', activation='relu')) model.add(layers.Conv2D(128, (3, 3), padding='same', activation='relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(layers.Dropout(0.2)) model.add(layers.Conv2D(256, (3, 3), padding='same', activation='relu')) model.add(layers.Conv2D(256, (3, 3), padding='same', activation='relu')) model.add(layers.Conv2D(256, (3, 3), padding='same', activation='relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(layers.Dropout(0.2)) model.add(layers.Conv2D(512, (3, 3), padding='same', activation='relu')) model.add(layers.Conv2D(512, (3, 3), padding='same', activation='relu')) model.add(layers.Conv2D(512, (3, 3), padding='same', activation='relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(layers.Dropout(0.2)) model.add(layers.Conv2D(512, (3, 3), padding='same', activation='relu')) model.add(layers.Conv2D(512, (3, 3), padding='same', activation='relu')) model.add(layers.Conv2D(512, (3, 3), padding='same', activation='relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(layers.Dropout(0.2)) model.add(layers.Flatten()) model.add(layers.Dense(4096, activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(4096, activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(num_labels, activation='softmax')) model.summary() model.compile(optimizers.RMSprop(lr=1e-5), loss='categorical_crossentropy', metrics=['accuracy']) train_datagen = ImageDataGenerator(rescale=1./255) validate_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory(train_dir, target_size=(image_dimensions, image_dimensions), batch_size=20, shuffle=True) validate_generator = validate_datagen.flow_from_directory(validate_dir, target_size=(image_dimensions, image_dimensions), batch_size=20, shuffle=True) for data_batch, labels_batch in train_generator: print('INFO: Data batch shape: {}'.format(data_batch.shape)) print('INFO: Labels batch shape: {}'.format(labels_batch.shape)) break t_start = time.time() history = model.fit_generator( train_generator, steps_per_epoch=training_image_count // 20 + 1, epochs=300, validation_data=validate_generator, validation_steps=validation_image_count // 20 + 1) t_end = time.time() elapsed_time = t_end - t_start print('INFO: Training complete! Elapsed time: {}'.format(elapsed_time)) print('INFO: Saving model as vgg16-classifier-model.h5') model.save('vgg16-classifier-model.h5') print('INFO: Plotting training & validation accuracy and loss...') acc = history.history['acc'] val_acc = history.history['val_acc'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(acc)) plt.ylim(0.8, 1.0) plt.plot(epochs, acc, 'bo') plt.plot(epochs, smooth_curve(val_acc), 'b') plt.title('Training & Validation Accuracy') plt.figure() plt.plot(epochs, loss, 'bo') plt.plot(epochs, smooth_curve(val_loss), 'b') plt.title('Training & Validation Loss') plt.show() def test_cnn(corpus_path, model_path): from keras.models import load_model model = load_model(model_path) test_dir = os.path.join(corpus_path, 'test') testing_image_count = count_images_in_dir(test_dir) print('INFO: {} images will be used for testing'.format(testing_image_count)) # Test test_datagen = ImageDataGenerator(rescale=1./255) test_generator = test_datagen.flow_from_directory(test_dir, target_size=(image_dimensions, image_dimensions), batch_size=20) test_loss, test_acc = model.evaluate_generator(test_generator, testing_image_count // 20 + 1) print('INFO: Model accuracy on test data set is {}'.format(test_acc)) # Train, test, and save CNN split_corpus_path = '/home/cdsw/split-sorted-images' train_cnn(split_corpus_path) test_cnn(split_corpus_path, '/home/cdsw/vgg16-classifier-model.h5') ```
{ "source": "jcooper-korg/talon_user", "score": 2 }
#### File: jcooper-korg/talon_user/clipboard.py ```python from talon.voice import ctrl, Key, Context ctx = Context('clipboard') def double_click(m): x, y = ctrl.mouse_pos() ctrl.mouse_click(x, y, button=0, times=2, wait=16000) ctx.keymap({ '(copy | stoosh)': Key('cmd-c'), '(paste | spark)': Key('cmd-v'), '(cut | snatch)': Key('cmd-x'), 'allspark': Key('cmd-a cmd-v'), 'allcopy': Key('cmd-a cmd-c'), 'do park': [double_click, Key('cmd-v')], 'match park': Key('cmd-shift-alt-v'), 'do koosh': [double_click, Key('cmd-c')], }) ``` #### File: jcooper-korg/talon_user/generic_editor.py ```python from talon.voice import Key, press, Str, Context ctx = Context('generic_editor') # , bundle='com.microsoft.VSCode') numeral_map = dict((str(n), n) for n in range(0, 20)) for n in [20, 30, 40, 50, 60, 70, 80, 90]: numeral_map[str(n)] = n numeral_map["oh"] = 0 # synonym for zero numerals = ' (' + ' | '.join(sorted(numeral_map.keys())) + ')+' optional_numerals = ' (' + ' | '.join(sorted(numeral_map.keys())) + ')*' def text_to_number(words): tmp = [str(s).lower() for s in words] words = [parse_word(word) for word in tmp] result = 0 factor = 1 for word in reversed(words): if word not in numerals: raise Exception('not a number') result = result + factor * int(numeral_map[word]) factor = 10 * factor return result def parse_word(word): word = word.lstrip('\\').split('\\', 1)[0] return word def jump_to_bol(m): line = text_to_number(m) press('cmd-l') Str(str(line))(None) press('enter') def jump_to_end_of_line(): press('cmd-right') def jump_to_beginning_of_text(): press('cmd-left') def jump_to_nearly_end_of_line(): press('left') def jump_to_bol_and(then): def fn(m): if len(m._words) > 1: jump_to_bol(m._words[1:]) else: press('ctrl-a') press('cmd-left') then() return fn def jump_to_eol_and(then): def fn(m): if len(m._words) > 1: jump_to_bol(m._words[1:]) press('cmd-right') then() return fn def toggle_comments(): # works in VSCode with Finnish keyboard layout # press('cmd-shift-7') # does not work in VSCode, see https://github.com/talonvoice/talon/issues/3 press('cmd-/') def snipline(): press('shift-cmd-right') press('delete') press('delete') press('ctrl-a') press('cmd-left') keymap = { 'sprinkle' + optional_numerals: jump_to_bol, 'spring' + optional_numerals: jump_to_eol_and(jump_to_beginning_of_text), 'dear' + optional_numerals: jump_to_eol_and(lambda: None), 'smear' + optional_numerals: jump_to_eol_and(jump_to_nearly_end_of_line), 'trundle' + optional_numerals: jump_to_bol_and(toggle_comments), 'jolt': Key('ctrl-a cmd-left shift-down cmd-c down cmd-v' ), # jsc simplified 'snipline' + optional_numerals: jump_to_bol_and(snipline), # NB these do not work properly if there is a selection 'snipple': Key('shift-cmd-left delete'), 'snipper': Key('shift-cmd-right delete'), 'shackle': Key('cmd-right shift-cmd-left'), 'bracken': [Key('cmd-shift-ctrl-right')], 'shockey': Key('ctrl-a cmd-left enter up'), 'shockoon': Key('cmd-right enter'), 'sprinkoon' + numerals: jump_to_eol_and(lambda: press('enter')), 'olly': Key('cmd-a'), # jsc added '(indent | shabble)': Key('cmd-['), '(outdent | shabber)': Key('cmd-]'), } ctx.keymap(keymap) ``` #### File: jcooper-korg/talon_user/utils.py ```python import itertools # Useful for identifying app/window information for context selection def context_func(app, win): print('---') # print(app) print(app.bundle) print(win) print(win.title) print(win.doc) print('---') return True number_conversions = { # 'oh': '0', # 'oh' => zero } for i, w in enumerate(['zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine',]): number_conversions[str(i)] = str(i) number_conversions[w] = str(i) number_conversions['%s\\number'%(w)] = str(i) def parse_words_as_integer(words): # TODO: Once implemented, use number input value rather than manually parsing number words with this function # Ignore any potential trailing non-number words number_words = list(itertools.takewhile(lambda w: w not in number_conversions, words)) # Somehow, no numbers were detected if len(number_words) == 0: return None # Map number words to simple number values number_values = list(map(lambda w: number_conversions[w.word], number_words)) # Filter out initial zero values normalized_number_values = [] non_zero_found = False for n in number_values: if not non_zero_found and n == '0': continue non_zero_found = True normalized_number_values.append(n) # If the entire sequence was zeros, return single zero if len(normalized_number_values) == 0: normalized_number_values = ['0'] # Create merged number string and convert to int return int(''.join(normalized_number_values)) ```
{ "source": "jcoopertech/autoread", "score": 3 }
#### File: autoread/scripts/AR_track.py ```python import math import COM_CONFIG import sys, getopt class Coordinate(): def __init__(self, X, Y, Z): self.X = X self.Y = Y self.Z = Z def print_me(self): print("\tX:\t", self.X) print("\tY:\t", self.Y) print("\tZ:\t", self.Z) class TrackingPoint(): def __init__(self, CoordTuple, Name, ID): self.Coordinate = Coordinate(CoordTuple[0], CoordTuple[1], CoordTuple[2]) self.Name = Name self.ID = ID def print_me(self): print("TrackingPoint") print("Name:\t\t", self.Name) print("ID:\t\t", self.ID) self.Coordinate.print_me() def print_simple(self): print("Tracking Point:\t\t", self.Name) class Axis(): def __init__(self, AxisNumber, position, WinchCalibration = 0,): self.AxisNumber = AxisNumber self.Coordinate = Coordinate(None, COM_CONFIG.AxisYValues[int(self.AxisNumber)-1], position) self.WinchCalibration = WinchCalibration self.CalibratedCoordinate = Coordinate(None, COM_CONFIG.AxisYValues[int(self.AxisNumber)-1], position + self.WinchCalibration) def print_me(self): #print("--") #print("Axis object print_me") print("AxisNumber:\t\t", self.AxisNumber) print("WinchCalibration:\t", self.WinchCalibration) print("Coordinate:") self.Coordinate.print_me() print("CalibratedCoordinate:") self.CalibratedCoordinate.print_me() #print("--") class Light(): def __init__(self,ThisLightType,CoordTuple,AxisClass,unitID): # Calculate maximum pan ranges in degrees. if isinstance(AxisClass, Axis): self.Axis = AxisClass else: self.Axis = None #Use LightType.type_name etc to access type variables self.LightType = ThisLightType self.unitID = unitID self.plus_pan = self.LightType.total_pan / 2 self.neg_pan = - self.plus_pan self.plus_tilt = self.LightType.total_tilt / 2 self.neg_tilt = - self.plus_tilt if self.Axis == None: self.BaseCoord = AxisClass print(self.BaseCoord) if self.Axis != None: self.BaseCoord = Coordinate(CoordTuple[0], self.Axis.CalibratedCoordinate.Y, self.Axis.CalibratedCoordinate.Z) self.OffsetCoord = Coordinate( self.BaseCoord.X, self.BaseCoord.Y, self.BaseCoord.Z - self.LightType.yoke_offset) self.TrackingPoint = None self.PanDeg = None self.TiltDeg = None self.Pan = None self.Tilt = None self.Addresses = [] self.Universe = None def print_me(self): print("Unit ID:", self.unitID) print(".LightType attributes") self.LightType.print_me() print(".Axis attributes") if self.Axis != None: self.Axis.print_me() print(".BaseCoord attributes") self.BaseCoord.print_me() print(".OffsetCoord attributes") self.OffsetCoord.print_me() print("plus_pan:\t\t", self.plus_pan) print("neg_pan\t\t\t", self.neg_pan) print("plus_tilt\t\t", self.plus_tilt) print("neg_tilt\t\t", self.neg_tilt) print("PanDeg\t\t", self.PanDeg) print("TiltDeg\t\t", self.TiltDeg) print("Pan:\t\t", self.Pan) print("Tilt:\t\t", self.Tilt) print("Universe:\t\t", self.Universe) print("Addresses:\t\t", self.Addresses) if self.TrackingPoint != None: self.TrackingPoint.print_me() else: print("TrackingPoint\t\t", self.TrackingPoint) def print_simple(self): print("Unit ID:", self.unitID) print("PanDeg\t\t", self.PanDeg) print("TiltDeg\t\t", self.TiltDeg) self.TrackingPoint.print_simple() LightTypeObjects = COM_CONFIG.LightTypeObjects def setup_AxisObjects(axisDict): AxisObjects = [] for key, value in axisDict.items(): AxisObjects.append(Axis(key, value[0])) return AxisObjects def setup_LightObjects(Lights, AxisObjects, LightTypeObjects): LightObjects = [] #Get Axis Object to be written to Light object #print([LightType for LightType in LightTypeObjects if LightType.type_name == "TW1"]) for LightItem in Lights: unitID = LightItem[3] CurrentLightType = [LightType for LightType in LightTypeObjects if LightType.type_name == LightItem[0]][0] #print(LightItem[2]) if LightItem[2] == None: #If there is no Axis assigned BaseCoord = Coordinate(LightItem[1][0], LightItem[1][1], LightItem[1][2]) LightObjects.append(Light(CurrentLightType, LightItem[1], BaseCoord, unitID)) else: Axis = [Axis for Axis in AxisObjects if Axis.AxisNumber == LightItem[2]][0] LightObjects.append(Light(CurrentLightType, LightItem[1], Axis, unitID)) return LightObjects def setup_TrackingPoints(TrackingPoints): TrackingObjects = [] for Point in TrackingPoints: TrackingObjects.append(TrackingPoint(Point[0], Point[1], Point[2])) return TrackingObjects def printAllLightDetails(LightObjects, argv, opts): for opt, arg in opts: if opt == "-v": verbose = arg else: verbose = 0 for Light in LightObjects: if int(verbose) == 2: Light.print_me() elif int(verbose) == 1: Light.print_simple() else: "" print("\n") def printAllTrackingPointDetails(TrackingObjects): for Point in TrackingObjects: Point.print_me() print("\n") def GiveLightTrackingPoint(LightObjects, TrackingObjects): for Light in LightObjects: try: WhichPointID = int(input("Which point should Light:{0} track?\n\t-\tType 0 for no Point".format(Light.unitID))) except ValueError: print("ValueError raised. Telling to track no point.") WhichPointID = 0 if WhichPointID != 0: Light.TrackingPoint = [Point for Point in TrackingObjects if WhichPointID == Point.ID][0] else: Light.TrackingPoint = None def CalculateLightAngles(LightsTracking, Light, TrackingObjects): """Calculate Azimuth and Elevation (Pan/Tilt) for all the lights defined in the AutoRead system.""" LightX = Light.OffsetCoord.X LightY = Light.OffsetCoord.Y LightZ = Light.OffsetCoord.Z PointX = Light.TrackingPoint.Coordinate.X PointY = Light.TrackingPoint.Coordinate.Z PointZ = Light.TrackingPoint.Coordinate.Y Z_Difference = LightZ - PointZ X_Difference = LightX - PointX Y_Difference = LightY - PointY # print("Light ", Light.unitID, "X",X_Difference, "Y",Y_Difference, "Z",Z_Difference) TiltAngle = math.degrees(math.atan2(math.sqrt(X_Difference**2 + Y_Difference**2), Z_Difference)) # print("Tilt", TiltAngle) # PanDeg = -(math.degrees(math.atan2(Y_Difference, X_Difference)))+90 PanDeg = math.degrees(math.atan2(Y_Difference, X_Difference))+90 # print("Pan", PanDeg) Light.TiltDeg = TiltAngle Light.PanDeg = PanDeg #https://planetcalc.com/7952/""" def updateTrackingPointsAssociation(LightsTracking, LightObjects, TrackingObjects): for Light in LightObjects: association = [Assignment for Assignment in LightsTracking if Assignment[0] == Light.unitID][0] # print(association) Light.TrackingPoint = [Point for Point in TrackingObjects if association[1] == Point.ID][0] def remap(degreeinput,degreemin,degreemax,dmxmin=0,dmxmax=65536): """ Convert the degree value to a 16 bit dmx number. """ DMXvalue = ((degreeinput - degreemin) * (dmxmax-dmxmin) / (degreemax - degreemin) + dmxmin) return DMXvalue def resplitfinecontrol(DMXvalue): DMXvalue = round(int(DMXvalue)) coarse = int(DMXvalue) >> 8 fine = DMXvalue % 256 return coarse,fine def AssignAddressesToLights(LightsUniverseAddr, Light): try: Light.Addresses = [LightAsAddresses[1:6] for LightAsAddresses in LightsUniverseAddr if LightAsAddresses[0] == Light.unitID][0] Light.Universe = Light.Addresses[0] Light.Addresses.remove(Light.Addresses[0]) except IndexError: print("Light {0}'s address could not be found!' ".format(Light.unitID)) def main_track(axisDict, Lights, argv=None, opts=None): #Lights = GenerateNewLightList() AxisObjects = setup_AxisObjects(axisDict) LightObjects = setup_LightObjects(Lights, AxisObjects, LightTypeObjects) TrackingObjects = setup_TrackingPoints(COM_CONFIG.TrackingPoints) # GiveLightTrackingPoint(LightObjects, TrackingObjects) updateTrackingPointsAssociation(COM_CONFIG.LightsTracking, LightObjects, TrackingObjects) for Light in LightObjects: if Light.TrackingPoint != None: CalculateLightAngles(COM_CONFIG.LightsTracking, Light, TrackingObjects) """Calculate Pan sACN 16 bit""" Light.Pan = resplitfinecontrol(remap(Light.PanDeg,Light.neg_pan,Light.plus_pan)) Light.Tilt = resplitfinecontrol(remap(Light.TiltDeg,Light.neg_tilt,Light.plus_tilt)) AssignAddressesToLights(COM_CONFIG.LightsUniverseAddr, Light) #CalculatesACNforLights(COM_CONFIG.LightsUniverseAddr) COM_CONFIG.LightObjects = LightObjects printAllLightDetails(LightObjects, argv, opts) if __name__ == "__main__": if COM_CONFIG._offline_test_ == True: pass #COM_CONFIG.GenerateNewLightList() argv = sys.argv[1:] try: opts, args = getopt.getopt(argv,"v:") main_track(COM_CONFIG.axisDict,COM_CONFIG.Lights, args, opts) except getopt.GetoptError: print('AR_track.py -v [0-2]') sys.exit(2) ``` #### File: scripts/AutoRead-GUI/GUI.py ```python __doc__ = """ This software takes UDP readouts from TAIT Stage Tech's eChameleon software, and translates it into useful things. Originally written for the Guildhall School of Music and Drama by <NAME>, whilst studying on the BA Hons Technical Theatre Arts course. """ __author__ = "<NAME>" __copyright__ = "Copyright 2019, <NAME>" __credits__ = ["<NAME>"] __license__ = "GNU AGPLv3" __version__ = "0.1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" import sys try: import Tkinter as tk except ImportError: import tkinter as tk try: import ttk py3 = False except ImportError: import tkinter.ttk as ttk py3 = True import GUI_support from AR_read import read_main def vp_start_gui(): '''Starting point when module is the main routine.''' global val, w, root root = tk.Tk() top = MainWindow (root) GUI_support.init(root, top) root.mainloop() w = None def create_MainWindow(root, *args, **kwargs): '''Starting point when module is imported by another program.''' global w, w_win, rt rt = root w = tk.Toplevel (root) top = MainWindow (w) GUI_support.init(w, top, *args, **kwargs) return (w, top) def destroy_MainWindow(): global w w.destroy() w = None class MainWindow: def __init__(self, top=None): def updater(): print("updater running") top.after(0,updater) '''This class configures and populates the toplevel window. top is the toplevel containing window.''' _bgcolor = '#d9d9d9' # X11 color: 'gray85' _fgcolor = '#000000' # X11 color: 'black' _compcolor = '#d9d9d9' # X11 color: 'gray85' _ana1color = '#d9d9d9' # X11 color: 'gray85' _ana2color = '#ececec' # Closest X11 color: 'gray92' self.style = ttk.Style() if sys.platform == "win32": self.style.theme_use('winnative') self.style.configure('.',background=_bgcolor) self.style.configure('.',foreground=_fgcolor) self.style.map('.',background= [('selected', _compcolor), ('active',_ana2color)]) pad = 3 top.geometry("{0}x{1}+0+0".format( top.winfo_screenwidth()-pad, top.winfo_screenheight()-pad)) top.minsize(0, 0) top.maxsize(2000, 1500) top.resizable(1, 1) top.title("Autoread: <NAME>") top.configure(borderwidth="1") top.configure(background="#550000") top.configure(highlightbackground="#d9d9d9") top.configure(highlightcolor="black") self.Master_Container = tk.Frame(top) self.Master_Container.place(x=12, y=12, relheight=0.958 , relwidth=0.988) self.Master_Container.configure(relief='flat') self.Master_Container.configure(borderwidth="1") self.Master_Container.configure(background="#000000") self.Master_Container.configure(highlightbackground="#d9d9d9") self.Master_Container.configure(highlightcolor="black") def importAutoData(): AxisArray = read_main() return AxisArray AxisArray = importAutoData() def importAxisNames(): with open("AR_axis_names.txt","r") as file: AxisNames = list(file.readlines()) for line in AxisNames: AxisNames[AxisNames.index(line)] = line.replace("\n","") return AxisNames AxisNames = importAxisNames() self.MCC1 = tk.LabelFrame(self.Master_Container) self.MCC1.place(x=12, y=12, relheight=0.872, relwidth=0.98) self.MCC1.configure(relief='groove') self.MCC1.configure(foreground="#ffffff") self.MCC1.configure(text='''<NAME>''') self.MCC1.configure(background="#000066") self.MCC1.configure(highlightbackground="#d9d9d9") self.MCC1.configure(highlightcolor="black") self.TkStorage = list([]*len(AxisArray)) AxisOffset = 1 #"""Choose the Axes to display here:""" AxisNumbers = [*range(1,36),*range(41,47),*range(91,94)] for Axis in AxisArray: AxisItem = 0 AxisLabels = [] #Labels per axis: 7 AxisLabels.append(tk.Frame(self.MCC1)) VertSpacing = 75 """Insert frame for item.""" if AxisOffset % 4 == 1: AxisLabels[AxisItem].place(x=10, y=17*((AxisOffset*4)-(AxisOffset * 3))+17, height=60 #rely=0.023 , width=400, bordermode='ignore') elif AxisOffset % 4 == 2: AxisLabels[AxisItem].place(x=430, y=17*((AxisOffset*4)-(AxisOffset * 3)), height=60 #rely=0.023 , width=400, bordermode='ignore') elif AxisOffset % 4 == 3: AxisLabels[AxisItem].place(x=850, y=17*((AxisOffset*4)-(AxisOffset * 3))-17, height=60 #rely=0.023 , width=400, bordermode='ignore') elif AxisOffset % 4 == 0: AxisLabels[AxisItem].place(x=1270, y=17*((AxisOffset*4)-(AxisOffset * 3))-(17*2), height=60 #rely=0.023 , width=400, bordermode='ignore') AxisLabels[AxisItem].configure(relief='flat') AxisLabels[AxisItem].configure(borderwidth="2") AxisLabels[AxisItem].configure(background="#d9d9d9") AxisLabels[AxisItem].configure(highlightbackground="#d9d9d9") AxisLabels[AxisItem].configure(highlightcolor="black") AxisItem += 1 AxisLabels.append(tk.Label(AxisLabels[0])) AxisLabels[AxisItem].place(relx=0.0, rely=0.364, height=35, width=40) AxisLabels[AxisItem].configure(activebackground="#f9f9f9") AxisLabels[AxisItem].configure(activeforeground="black") AxisLabels[AxisItem].configure(background="#000000") AxisLabels[AxisItem].configure(font="-family {Arial} -size 30") AxisLabels[AxisItem].configure(foreground="#ffff00") AxisLabels[AxisItem].configure(highlightbackground="#d9d9d9") AxisLabels[AxisItem].configure(highlightcolor="black") AxisLabels[AxisItem].configure(text=str(AxisNumbers[AxisOffset-1])) AxisItem += 1 AxisLabels.append(tk.Label(AxisLabels[0])) AxisLabels[AxisItem].place(relx=0.098, rely=0.364, height=35, width=140) AxisLabels[AxisItem].configure(activebackground="#f9f9f9") AxisLabels[AxisItem].configure(activeforeground="black") AxisLabels[AxisItem].configure(anchor='e') AxisLabels[AxisItem].configure(background="#ffffff") AxisLabels[AxisItem].configure(font="-family {Arial} -size 30") AxisLabels[AxisItem].configure(foreground="#000000") AxisLabels[AxisItem].configure(highlightbackground="#d9d9d9") AxisLabels[AxisItem].configure(highlightcolor="black") AxisLabels[AxisItem].configure(text=str(AxisArray[str(AxisNumbers[AxisOffset-1])][0])) AxisItem += 1 AxisLabels.append(tk.Label(AxisLabels[0])) AxisLabels[AxisItem].place(relx=0.439, rely=0.364, height=35, width=159) AxisLabels[AxisItem].configure(activebackground="#000000") AxisLabels[AxisItem].configure(activeforeground="white") AxisLabels[AxisItem].configure(activeforeground="black") AxisLabels[AxisItem].configure(anchor='e') AxisLabels[AxisItem].configure(background="#000000") AxisLabels[AxisItem].configure(font="-family {Arial} -size 30") AxisLabels[AxisItem].configure(foreground="#ffffff") AxisLabels[AxisItem].configure(highlightbackground="#d9d9d9") AxisLabels[AxisItem].configure(highlightcolor="black") AxisLabels[AxisItem].configure(text='''0 mm/s''') AxisItem += 1 AxisLabels.append(tk.Label(AxisLabels[0])) AxisLabels[AxisItem].place(relx=0.0, rely=0.0, height=20, width=410) AxisLabels[AxisItem].configure(activebackground="#f9f9f9") AxisLabels[AxisItem].configure(activeforeground="black") AxisLabels[AxisItem].configure(anchor='w') AxisLabels[AxisItem].configure(background="#bcbcbc") AxisLabels[AxisItem].configure(font="-family {Arial} -size 16 -weight bold") AxisLabels[AxisItem].configure(foreground="#000000") AxisLabels[AxisItem].configure(highlightbackground="#d9d9d9") AxisLabels[AxisItem].configure(highlightcolor="black") AxisLabels[AxisItem].configure(padx="25") AxisLabels[AxisItem].configure(text=AxisNames[AxisOffset-1]) AxisItem += 1 AxisLabels.append(tk.Label(AxisLabels[0])) AxisLabels[AxisItem].place(relx=0.829, rely=0.364, height=35, width=71) AxisLabels[AxisItem].configure(activebackground="#f9f9f9") AxisLabels[AxisItem].configure(activeforeground="black") AxisLabels[AxisItem].configure(anchor='se') AxisLabels[AxisItem].configure(background="#d9d9d9") AxisLabels[AxisItem].configure(font="-family {Arial} -size 24") AxisLabels[AxisItem].configure(foreground="#000000") AxisLabels[AxisItem].configure(highlightbackground="#d9d9d9") AxisLabels[AxisItem].configure(highlightcolor="black") AxisLabels[AxisItem].configure(text='''0s''') AxisOffset += 1 self.Status = tk.LabelFrame(self.Master_Container) self.Status.place(relx=0.006, rely=0.898, height=70 , relwidth=0.988) self.Status.configure(relief='groove') self.Status.configure(foreground="#ffffff") self.Status.configure(text='''Status''') self.Status.configure(background="#505050") self.Status.configure(highlightbackground="#d9d9d9") self.Status.configure(highlightcolor="black") self.Scrolledlistbox1 = ScrolledListBox(self.Status) self.Scrolledlistbox1.place(relx=0.006, rely=0.235, relheight=0.635 , relwidth=0.989, bordermode='ignore') self.Scrolledlistbox1.configure(background="white") self.Scrolledlistbox1.configure(font="TkDefaultFont") self.Scrolledlistbox1.configure(foreground="black") self.Scrolledlistbox1.configure(highlightbackground="#d9d9d9") self.Scrolledlistbox1.configure(highlightcolor="#d9d9d9") self.Scrolledlistbox1.configure(selectbackground="#c4c4c4") self.Scrolledlistbox1.configure(selectforeground="black") self.Label1 = tk.Label(top) self.Label1.place(relx=0.006, rely=0.968, height=22, width=1433) self.Label1.configure(background="#550000") self.Label1.configure(foreground="#aaaaaa") self.Label1.configure(text='''Developed by <NAME> for the Guildhall School of Music and Drama. Not working? Contact <EMAIL>. This system should not be relied upon for show or safety critical purposes. System provided as is, with no guarantee.''') # The following code is added to facilitate the Scrolled widgets you specified. class AutoScroll(object): '''Configure the scrollbars for a widget.''' def __init__(self, master): # Rozen. Added the try-except clauses so that this class # could be used for scrolled entry widget for which vertical # scrolling is not supported. 5/7/14. try: vsb = ttk.Scrollbar(master, orient='vertical', command=self.yview) except: pass hsb = ttk.Scrollbar(master, orient='horizontal', command=self.xview) #self.configure(yscrollcommand=_autoscroll(vsb), # xscrollcommand=_autoscroll(hsb)) try: self.configure(yscrollcommand=self._autoscroll(vsb)) except: pass self.configure(xscrollcommand=self._autoscroll(hsb)) self.grid(column=0, row=0, sticky='nsew') try: vsb.grid(column=1, row=0, sticky='ns') except: pass hsb.grid(column=0, row=1, sticky='ew') master.grid_columnconfigure(0, weight=1) master.grid_rowconfigure(0, weight=1) # Copy geometry methods of master (taken from ScrolledText.py) if py3: methods = tk.Pack.__dict__.keys() | tk.Grid.__dict__.keys() \ | tk.Place.__dict__.keys() else: methods = tk.Pack.__dict__.keys() + tk.Grid.__dict__.keys() \ + tk.Place.__dict__.keys() for meth in methods: if meth[0] != '_' and meth not in ('config', 'configure'): setattr(self, meth, getattr(master, meth)) @staticmethod def _autoscroll(sbar): '''Hide and show scrollbar as needed.''' def wrapped(first, last): first, last = float(first), float(last) if first <= 0 and last >= 1: sbar.grid_remove() else: sbar.grid() sbar.set(first, last) return wrapped def __str__(self): return str(self.master) def _create_container(func): '''Creates a ttk Frame with a given master, and use this new frame to place the scrollbars and the widget.''' def wrapped(cls, master, **kw): container = ttk.Frame(master) container.bind('<Enter>', lambda e: _bound_to_mousewheel(e, container)) container.bind('<Leave>', lambda e: _unbound_to_mousewheel(e, container)) return func(cls, container, **kw) return wrapped class ScrolledListBox(AutoScroll, tk.Listbox): '''A standard Tkinter Listbox widget with scrollbars that will automatically show/hide as needed.''' @_create_container def __init__(self, master, **kw): tk.Listbox.__init__(self, master, **kw) AutoScroll.__init__(self, master) def size_(self): sz = tk.Listbox.size(self) return sz import platform def _bound_to_mousewheel(event, widget): child = widget.winfo_children()[0] if platform.system() == 'Windows' or platform.system() == 'Darwin': child.bind_all('<MouseWheel>', lambda e: _on_mousewheel(e, child)) child.bind_all('<Shift-MouseWheel>', lambda e: _on_shiftmouse(e, child)) else: child.bind_all('<Button-4>', lambda e: _on_mousewheel(e, child)) child.bind_all('<Button-5>', lambda e: _on_mousewheel(e, child)) child.bind_all('<Shift-Button-4>', lambda e: _on_shiftmouse(e, child)) child.bind_all('<Shift-Button-5>', lambda e: _on_shiftmouse(e, child)) def _unbound_to_mousewheel(event, widget): if platform.system() == 'Windows' or platform.system() == 'Darwin': widget.unbind_all('<MouseWheel>') widget.unbind_all('<Shift-MouseWheel>') else: widget.unbind_all('<Button-4>') widget.unbind_all('<Button-5>') widget.unbind_all('<Shift-Button-4>') widget.unbind_all('<Shift-Button-5>') def _on_mousewheel(event, widget): if platform.system() == 'Windows': widget.yview_scroll(-1*int(event.delta/120),'units') elif platform.system() == 'Darwin': widget.yview_scroll(-1*int(event.delta),'units') else: if event.num == 4: widget.yview_scroll(-1, 'units') elif event.num == 5: widget.yview_scroll(1, 'units') def _on_shiftmouse(event, widget): if platform.system() == 'Windows': widget.xview_scroll(-1*int(event.delta/120), 'units') elif platform.system() == 'Darwin': widget.xview_scroll(-1*int(event.delta), 'units') else: if event.num == 4: widget.xview_scroll(-1, 'units') elif event.num == 5: widget.xview_scroll(1, 'units') if __name__ == '__main__': vp_start_gui() ``` #### File: autoread/tools/COM_LED.py ```python import RPi.GPIO as GPIO import COM_CONFIG """This is a common file for controlling GPIO. Don't try to run this""" def GPIO_ON(Channel): """Turns on the pin.""" GPIO.output(Channel, GPIO.HIGH) print("COM_LED.py: Pin {0} is HIGH".format(Channel)) def GPIO_OFF(Channel): """Turns off the channel.""" GPIO.output(Channel, GPIO.LOW) print("COM_LED.py: Pin {0} is LOW".format(Channel)) def setupGPIO(LED_def=COM_CONFIG.LED_def): """By default, read GPIO pins from COM_CONFIG""" GPIO.setmode(GPIO.BOARD) for key, value in COM_CONFIG.LED_def.items(): GPIO.setup(value, GPIO.OUT) print("COM_LED: {0} has been set up on PIN {1}".format(key,value)) ```
{ "source": "jcoopertech/sACNtoArtNet", "score": 3 }
#### File: jcoopertech/sACNtoArtNet/sACN.py ```python import time from params.UserParams import * from params.sACNParams import * from setup import * def flush_buffer(buffer_size): buffer = bytearray() for i in range(buffer_size): buffer.append(0) return buffer def merge_sacn_inputs(sacn_data): # Input Universe, CID and DMX data if merge is True: # Merge can be enabled and disabled in the UserParams.py if sacn_data["cid"] not in merge_dict[sacn_data["universe"]]: merge_dict[sacn_data["universe"]].update({sacn_data["cid"]: {}}) # Create new entry for this CID if not already created if "priority" not in merge_dict[sacn_data["universe"]][sacn_data["cid"]]: # If per channel priority does not exist yet, add it. per_channel_priority = bytearray() # Create empty bytearray for i in range(512): per_channel_priority.append(sacn_data["priority"]) # Copy universe priority to every channel merge_dict[sacn_data["universe"]][sacn_data["cid"]].update(priority=per_channel_priority) merge_dict[sacn_data["universe"]][sacn_data["cid"]].update(dmx=sacn_data["dmx_data"], time=time.time()) # Update Time and DMX data output_dmx = flush_buffer(512) # Reset DMX output to 0 output_priority = flush_buffer(512) # Reset Priority output to 0 for cids in merge_dict[sacn_data["universe"]]: # Loop for every CID input on this universe for dmx_length in range(512): # Loop for every position of the DMX packet if use_per_channel_priority is True: # Merge mode can be changed in the UserParams.py if output_priority[dmx_length] < merge_dict[sacn_data["universe"]][cids]["priority"][dmx_length]: # If priority is higher, overwrite output. output_priority[dmx_length] = merge_dict[sacn_data["universe"]][cids]["priority"][dmx_length] if "dmx" not in merge_dict[sacn_data["universe"]][cids]: pass # Do not do anything if we receive a priority packet first. else: output_dmx[dmx_length] = merge_dict[sacn_data["universe"]][cids]["dmx"][dmx_length] # Update DMX if priority is higher. if output_priority[dmx_length] == merge_dict[sacn_data["universe"]][cids]["priority"][dmx_length]: # If priority is equal, check DMX value if "dmx" not in merge_dict[sacn_data["universe"]][cids]: pass elif output_dmx[dmx_length] < merge_dict[sacn_data["universe"]][cids]["dmx"][dmx_length]: # If priority is equal, the highest value wins. output_dmx[dmx_length] = merge_dict[sacn_data["universe"]][cids]["dmx"][dmx_length] if use_per_channel_priority is False: if "dmx" not in merge_dict[sacn_data["universe"]][cids]: pass elif output_dmx[dmx_length] < merge_dict[sacn_data["universe"]][cids]["dmx"][dmx_length]: # If priority is equal, the highest value wins. output_dmx[dmx_length] = merge_dict[sacn_data["universe"]][cids]["dmx"][dmx_length] for universes in merge_dict: # If a universe has timeout, remove it from the dictionary, so it won't overwrite the priority of the other # active universes. for cids in merge_dict[sacn_data["universe"]]: if time.time() - merge_dict[sacn_data["universe"]][cids]["time"] > E131_NETWORK_DATA_LOSS_TIMEOUT: if debug_level >= 2: print(f"From {sacn_data['cid']} deleting universe {sacn_data['universe']}. Timeout after " f"{time.time() - merge_dict[sacn_data['universe']][cids]['time']} seconds.") del merge_dict[sacn_data["universe"]][cids] # Delete the Universe on this CID and leave the loop. break sacn_data["dmx_data"] = output_dmx sacn_data["per_channel_priority"] = output_priority elif merge is False: pass # Store these data in the input dict and return return sacn_data["dmx_data"] def add_sacn_priority(sacn_data): if sacn_data["cid"] not in merge_dict[sacn_data["universe"]]: merge_dict[sacn_data["universe"]] = {sacn_data["cid"]: {}} # Create new entry for this CID if not already created per_channel_priority = bytearray() for i in range(512): per_channel_priority.append(sacn_data["per_channel_priority"][i]) merge_dict[sacn_data["universe"]][sacn_data["cid"]].update(priority=per_channel_priority, time=time.time()) def identify_sacn_startcode(sacn_input): # Identifies the start code of this sACN packet if sacn_input[125] == 0x00: return "DMX" elif sacn_input[125] == 0xDD: return "PER_CHANNEL_PRIORITY" elif sacn_input[125] == 0xCC: return "RDM" else: return "ALTERNATE" def identify_sacn_packet(sacn_input): # Identifies the type of this sACN packet. Raises an error if the packet is too short. try: len(sacn_input) < 126 if len(sacn_input) < 126: raise TypeError("Unknown Package. The minimum length for a sACN package is 126.") except TypeError as error_message: if debug_level >= 1: print("LENGTH ERROR:", error_message) if tuple(sacn_input[40:44]) == VECTOR_E131_DATA_PACKET: # sACN Data Packet return "sACN_DATA_PACKET" elif tuple(sacn_input[40:44]) == VECTOR_E131_EXTENDED_SYNCHRONIZATION: # sACN Sync Packet return "sACN_EXTENDED_SYNCHRONIZATION" elif tuple(sacn_input[40:44]) == VECTOR_E131_EXTENDED_DISCOVERY: # sACN Discovery Packet return "sACN_EXTENDED_DISCOVERY" def sacn_data_check_validity(sacn_packet): # E131 Data Packet: # # # ROOT LAYER # # # # 0-1: Preamble Size (0x0010) <- Discard if not valid # 2-3: Postable Size (0x0000) <- Discard if not valid # 4-15: ACN Packet Identifier # (0x41 0x53 0x43 0x2d 0x45 0x31 0x2e 0x31 0x37 0x00 0x00 0x00) <- Discard if not valid # 16-17: Flags and length (Low 12 bits = PDU length, High 4 bits = 0x7) # 18-21: Identifies RLP Data as 1.31 Protocol # (VECTOR_ROOT_E131_DATA or VECTOR_ROOT_E131_EXTENDED) <- Discard if not valid # 22-37: Senders unique CID # # # DATA PACKET FRAMING LAYER # # # # 38-39 Flags and lenght (Low 12 bits = PDU length, High 4 bits = 0x7 # 40-43 Identifies 1.31 data as DMP Protocol PDU (VECTOR_E131_DATA_PACKET) # 44-107: Source Name assigned by User (UTF-8 encoded string) # 108: Package Priority of multiple sources (0-200, 100 being default) # 109-110: Synchronization Address (Universe on which sync packets will be sent) # 111: Sequence Number (To detect duplicate or out of order packets) # 112: Options (Bit 5 = Force_Synchronization, Bit 6 = Stream_Terminated, Bit 7 = Preview Data) # 113-114: Universe Number # # # DMP Layer # # # # 115-116: Flags and length (Low 12 bits = PDU Length, High 4 bits = 0x7) # 117: Identifies DMP Set Property Message PDU (VECTOR_DMP_SET_PROPERTY) <- Discard if not valid # 118: Address Type and Data Type (0xa1) <- Discard if not valid # 119-120: First property address, Indicates DMX Start Code is at DMP address 0 (0x0000) <- Discard if not valid # 121-122: Address Increment, Indicate each property is 1 octet (0x0001) <- Discard if not valid # 123-124: Property value count, Indicates +1 the number of slots in packet (0x0001 -- 0x0201) # 125-637: Property values, DMX Start Code and data (Start Code + data) <- DMX DATA # The following IF-Statements discard the package if it does not comply with E1.31 standards if tuple(sacn_packet[0:2]) != PREAMBLE_SIZE or tuple(sacn_packet[2:4]) != POST_AMBLE_SIZE or \ tuple(sacn_packet[4:16]) != ACN_PACKET_IDENTIFIER or \ tuple(sacn_packet[18:22]) != VECTOR_ROOT_E131_DATA or \ tuple(sacn_packet[40:44]) != VECTOR_E131_DATA_PACKET or \ sacn_packet[117] != VECTOR_DMP_SET_PROPERTY or \ sacn_packet[118] != ADDRESS_TYPE_DATA_TYPE or \ tuple(sacn_packet[119:121]) != FIRST_PROPERTY_ADDRESS or \ tuple(sacn_packet[121:123]) != ADDRESS_INCREMENT: # Raise an error, if any of the package content is not valid. Print out what it should be and what was sent. raise TypeError(f"Package does not comply E1.31 standard! \ Preamble {PREAMBLE_SIZE} was {tuple(sacn_packet[0:2])}, \ Postamble {POST_AMBLE_SIZE} was {tuple(sacn_packet[2:4])}, \ ACN Packet Identifier {ACN_PACKET_IDENTIFIER} was {tuple(sacn_packet[4:16])}, \ VECTOR E1.31 {VECTOR_ROOT_E131_DATA} was {tuple(sacn_packet[18:22])}, \ VECTOR E1.31 Data {VECTOR_ROOT_E131_DATA} was {tuple(sacn_packet[40:44])}, \ VECTOR DMP {VECTOR_DMP_SET_PROPERTY} was {(sacn_packet[117])}, \ Address Type {ADDRESS_TYPE_DATA_TYPE} was {sacn_packet[118]}, \ First Property Address {FIRST_PROPERTY_ADDRESS} was {tuple(sacn_packet[119:121])}, \ Address Increment {ADDRESS_INCREMENT} was {tuple(sacn_packet[121:123])}") def sacn_dmx_input(sacn_packet): # If this is a normal DMX packet (Start Code = 0x00) # Dictionary with all the information we can get from this package sacn_data = {"cid": sacn_packet[22:38], "source_name": str(sacn_packet[44:108]), "priority": sacn_packet[108], "sync_address": tuple(sacn_packet[109:111]), "sequence_number": sacn_packet[111], "option_flags": sacn_packet[112], "universe": tuple(sacn_packet[113:115]), "start_code": sacn_packet[125], "dmx_data": sacn_packet[126:638], "universe_hibyte": sacn_packet[113], "universe_lobyte": sacn_packet[114]} return sacn_data # Merge DMX data from multiple sources. def sacn_per_channel_input(sacn_packet): # If this is a per channel priority packet (Start Code = 0xDD) # Dictionary with all the information we can get from this package sacn_data = {"cid": sacn_packet[22:38], "source_name": str(sacn_packet[44:108]), "sync_address": tuple(sacn_packet[109:111]), "sequence_number": sacn_packet[111], "option_flags": sacn_packet[112], "universe": tuple(sacn_packet[113:115]), "start_code": sacn_packet[125], "per_channel_priority": sacn_packet[126:638], "universe_hibyte": sacn_packet[113], "universe_lobyte": sacn_packet[114]} return sacn_data def sacn_rdm_input(sacn_packet): # If this is a alternate start code packet (Start Code != 0xDD or 0x00) # Dictionary with all the information we can get from this package sacn_data = {"cid": sacn_packet[22:38], "source_name": str(sacn_packet[44:108]), "priority": sacn_packet[108], "sync_address": tuple(sacn_packet[109:111]), "sequence_number": sacn_packet[111], "option_flags": sacn_packet[112], "universe": tuple(sacn_packet[113:115]), "start_code": sacn_packet[125], "alternate_data": sacn_packet[126:638], "universe_hibyte": sacn_packet[113], "universe_lobyte": sacn_packet[114]} return sacn_data def sacn_alternate_input(sacn_packet): pass def sacn_sync_input(sacn_packet): # E131 Data Packet: # # # ROOT LAYER # # # # 0-1: Preamble Size (0x0010) <- Discard if not valid # 2-3: Postable Size (0x0000) <- Discard if not valid # 4-15: ACN Packet Identifier # (0x41 0x53 0x43 0x2d 0x45 0x31 0x2e 0x31 0x37 0x00 0x00 0x00) <- Discard if not valid # 16-17: Flags and length (Low 12 bits = PDU length, High 4 bits = 0x7) # 18-21: Identifies RLP Data as 1.31 Protocol # (VECTOR_ROOT_E131_DATA or VECTOR_ROOT_E131_EXTENDED) <- Discard if not valid # 22-37: Senders unique CID # # # SYNCHRONIZATION PACKET FRAMING LAYER # # # # 38-39 Flags and lenght (Low 12 bits = PDU length, High 4 bits = 0x7 # 40-43 Identifies 1.31 data as DMP Protocol PDU (VECTOR_E131_EXTENDED_SYNCHRONIZATION) # 44: Sequence Number (To detect duplicate or out of order packets) # 45-46: Synchronization Address (Universe on which synchronization packets are transmitted) <- Discard if zero # 47-48: Reserved (Transmit as zero) # The following IF-Statement discards the package if it does not comply with E1.31 standards if tuple(sacn_packet[0:2]) != PREAMBLE_SIZE or tuple(sacn_packet[2:4]) != POST_AMBLE_SIZE or \ tuple(sacn_packet[4:16]) != ACN_PACKET_IDENTIFIER or \ tuple(sacn_packet[18:22]) != VECTOR_ROOT_E131_EXTENDED or \ tuple(sacn_packet[40:44]) != VECTOR_E131_EXTENDED_SYNCHRONIZATION or \ tuple(sacn_packet[45:47]) != (0, 0): # Raise an error, if any of the package content is not valid. Print out what it should be and what was sent. raise TypeError(f"Package does not comply E1.31 standard! \ Preamble {PREAMBLE_SIZE} was {tuple(sacn_packet[0:2])}, \ Postamble {POST_AMBLE_SIZE} was {tuple(sacn_packet[2:4])}, \ ACN Packet Identifier {ACN_PACKET_IDENTIFIER} was {tuple(sacn_packet[4:16])}, \ VECTOR E1.31 {VECTOR_ROOT_E131_EXTENDED} was {tuple(sacn_packet[18:22])}, \ VECTOR E1.31 Sync {VECTOR_E131_EXTENDED_SYNCHRONIZATION} was {tuple[40:44]}") # Dictionary with all the information we can get from this package sACN_data = {"cid": sacn_packet[22:38], "sync_address": tuple(sacn_packet[45:47]), "sequence_number": sacn_packet[44]} return sACN_data def sacn_discovery_input(sacn_packet): # E131 Data Packet: # # # ROOT LAYER # # # # 0-1: Preamble Size (0x0010) <- Discard if not valid # 2-3: Postable Size (0x0000) <- Discard if not valid # 4-15: ACN Packet Identifier # (0x41 0x53 0x43 0x2d 0x45 0x31 0x2e 0x31 0x37 0x00 0x00 0x00) <- Discard if not valid # 16-17: Flags and length (Low 12 bits = PDU length, High 4 bits = 0x7) # 18-21: Identifies RLP Data as 1.31 Protocol # (VECTOR_ROOT_E131_DATA or VECTOR_ROOT_E131_EXTENDED) <- Discard if not valid # 22-37: Senders unique CID # # # FRAMING LAYER # # # # 38-39 Flags and lenght (Low 12 bits = PDU length, High 4 bits = 0x7 # 40-43 Identifies 1.31 data as DMP Protocol PDU (VECTOR_E131_EXTENDED_DISCOVERY) # 44-107: Source Name assigned by User (UTF-8 encoded string) # 108-111: Reserved (Transmit as zero) # # # UNIVERSE DISCOVERY LAYER # # # # 112-113: Flags and length (Low 12 bits = PDU Length, High 4 bits = 0x7) # 114-117: Identifies Universe Discovery data as universe list (VECTOR_UNIVERSE_DICOVERY_UNIVERSE_LIST) # 118: Page (Indicating which packet of N this is - page numbers start at 0) # 119: Final page (Page number N of the final page to be transmitted # 120-1143: List of Universes (Sorted list of up to 512 16-bit universes) # The following IF-Statement discards the package if it does not comply with E1.31 standards if tuple(sacn_packet[0:2]) != PREAMBLE_SIZE or tuple(sacn_packet[2:4]) != POST_AMBLE_SIZE or \ tuple(sacn_packet[4:16]) != ACN_PACKET_IDENTIFIER or \ tuple(sacn_packet[18:22]) != VECTOR_ROOT_E131_EXTENDED or \ tuple(sacn_packet[40:44]) != VECTOR_E131_EXTENDED_DISCOVERY or \ tuple(sacn_packet[114:118]) != VECTOR_UNIVERSE_DISCOVERY_UNIVERSE_LIST: # Raise an error, if any of the package content is not valid. Print out what it should be and what was sent. raise TypeError(f"Package does not comply E1.31 standard! \ Preamble {PREAMBLE_SIZE} was {tuple(sacn_packet[0:2])}, \ Postamble {POST_AMBLE_SIZE} was {tuple(sacn_packet[2:4])}, \ ACN Packet Identifier {ACN_PACKET_IDENTIFIER} was {tuple(sacn_packet[4:16])}, \ VECTOR E1.31 {VECTOR_ROOT_E131_EXTENDED} was {tuple(sacn_packet[18:22])}, \ VECTOR E1.31 Discovery {VECTOR_E131_EXTENDED_DISCOVERY} was {tuple[40:44]}, \ VECTOR E1.31 Discovery List {VECTOR_UNIVERSE_DISCOVERY_UNIVERSE_LIST} was {tuple[114:118]}") # Dictionary with all the information we can get from this package sACN_data = {"cid": sacn_packet[22:38], "source_name": str(sacn_packet[44:108]), "page": tuple(sacn_packet[118]), "final_page": sacn_packet[119], "universes": sacn_packet[120:1143]} return sACN_data ``` #### File: jcoopertech/sACNtoArtNet/socket_settings.py ```python import socket from params import ArtNetParams, sACNParams from params.UserParams import * def calculate_multicast_addr(universemin: int): hibyte = universemin >> 8 lobyte = universemin & 0xFF return F"239.255.{hibyte}.{lobyte}" def sacn_socket_setup(udp_ip="127.0.0.1", min_universe=universe_min, max_universe=universe_max, sacn_port=sACNParams.ACN_SDT_MULTICAST_PORT): """SACN SOCKET""" if debug_level >= 3: print("RUNNING sACN SOCKET SETUP...") sacn_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) # Set up socket try: sacn_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # Reuse address if already taken by another application except RuntimeWarning: if debug_level >= 1: print(f"Address can't be reused! Please close all applications that are assigned to Port \ {sacn_port}") sacn_sock.bind((udp_ip, sacn_port)) # Calculate multicast addresses and bind to it multicast_list = [] if debug_level >= 3: print(f"Listening to sACN on Universe {min_universe} thru {max_universe}") while min_universe <= max_universe: multicast_list.append(calculate_multicast_addr(min_universe)) sacn_sock.setsockopt(socket.SOL_IP, socket.IP_ADD_MEMBERSHIP, socket.inet_aton(calculate_multicast_addr(min_universe)) + socket.inet_aton(udp_ip)) min_universe = min_universe + 1 if debug_level >= 3: print(f"Joined Multicast Group:{multicast_list}") print(f"UDP target IP: {udp_ip}") print(f"UDP target Port: {sacn_port}") return sacn_sock def artnet_socket_setup(udp_ip="127.0.0.1", artnet_port=ArtNetParams.UDP_PORT): """ART-NET SOCKET""" if debug_level >= 3: print("RUNNING ART-NET SOCKET SETUP...") artnet_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) # Set up socket artnet_sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, True) # Broadcast for ArtNet-Broadcast sending artnet_sock.setblocking(False) try: artnet_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # Reuse address if already taken by another application except: if debug_level >= 1: print(f"Address can't be reused! Please close all applications that are assigned to Port \ {artnet_port}") artnet_sock.bind((udp_ip, artnet_port)) if debug_level >= 3: print(f"UDP target IP: {udp_ip}") print(f"UDP target Port: {artnet_port}") return artnet_sock def artnet_socket_unicast_setup(udp_ip="127.0.0.1", artnet_port=ArtNetParams.UDP_PORT): """ART-NET SOCKET""" if debug_level >= 3: print("RUNNING ART-NET SOCKET SETUP...") artnet_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) # Set up socket artnet_sock.setblocking(False) try: artnet_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # Reuse address if already taken by another application except: if debug_level >= 1: print(f"Address can't be reused! Please close all applications that are assigned to Port \ {artnet_port}") artnet_sock.bind((udp_ip, artnet_port)) if debug_level >= 3: print(f"UDP target IP: {udp_ip}") print(f"UDP target Port: {artnet_port}") return artnet_sock ```
{ "source": "JCoopzKnoxRox/thatsTheNews", "score": 2 }
#### File: thatsTheNews/server/autoArtUpdate.py ```python import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize, sent_tokenize import json import sys import newspaper import requests import datetime from mongoengine.errors import ValidationError from newspaper import Article, Config, news_pool from schema import And, Schema from apscheduler.schedulers.background import BackgroundScheduler from time import strftime from flask import jsonify, request from app import app from authorization import login_required from models import NewsArticle import utils def auto_article_go_getter(): print("starting builds ", file=sys.stderr) cnn_paper = newspaper.build("https://www.cnn.com", memorize_articles=True, language = 'en') print("cnn_paper built", file=sys.stderr) nbc_paper = newspaper.build("https://www.nbcnews.com", memorize_articles=True, language = 'en') #print("nbc_paper built", file=sys.stderr) #nyt_paper = newspaper.build("https://www.nytimes.com/", memorize_articles=True, language = 'en') #print("nyt_paper built", file=sys.stderr) apn_paper = newspaper.build("https://apnews.com/", memorize_articles=True, language = 'en') print("apn_paper built", file=sys.stderr) abc_paper = newspaper.build("https://abcnews.go.com/", memorize_articles=True, language = 'en') print("abc_paper built", file=sys.stderr) papers = [cnn_paper, nbc_paper, apn_paper, abc_paper] verge_paper = newspaper.build("https://www.theverge.com/", memorize_articles=True, language = 'en') print("verge_paper built", file=sys.stderr) techP = [verge_paper] espn_paper = newspaper.build("https://www.espn.com/", memorize_articles=True, language = 'en') print("espn_paper built", file=sys.stderr) sportP = [espn_paper] et_paper = newspaper.build("https://ew.com/", memorize_articles=True, language = 'en') print("ew_paper built", file=sys.stderr) entertainmentP = [et_paper] crypto_paper = newspaper.build("https://cryptonews.com/", memorize_articles=True, language = 'en') print("crypto_paper built", file=sys.stderr) cryptoP = [crypto_paper] climate_paper = newspaper.build("https://www.climatechangenews.com/", memorize_articles=True, language = 'en') print("climate_paper built", file=sys.stderr) climateP = [climate_paper] print("all papers built", file=sys.stderr) count = 0 article_list = [] print("Starting pool threading", file=sys.stderr) print("Starting pool for papers", file=sys.stderr) news_pool.set(papers, threads_per_source=1000) news_pool.join() print("Finished pool threading for papers", file=sys.stderr) print("Starting pool for techp", file=sys.stderr) news_pool.set(techP, threads_per_source=1000) news_pool.join() print("Finished pool threading for techp", file=sys.stderr) print("Starting pool for sportp", file=sys.stderr) news_pool.set(sportP, threads_per_source=1000) news_pool.join() print("Finished pool threading for sportp", file=sys.stderr) print("Starting pool for entertainmentp", file=sys.stderr) news_pool.set(entertainmentP, threads_per_source=1000) news_pool.join() print("Finished pool threading for entertainmentp", file=sys.stderr) print("Starting pool for cryptop", file=sys.stderr) news_pool.set(cryptoP, threads_per_source=1000) news_pool.join() print("Finished pool threading for cryptop", file=sys.stderr) print("Starting pool for climatep", file=sys.stderr) news_pool.set(climateP, threads_per_source=1000) news_pool.join() print("Finished pool threading for climatep", file=sys.stderr) print("Saving articles to mongodb", file=sys.stderr) for build in papers: for news in (build.articles): if "politics" in news.url and "cnnespanol" not in news.url: news.parse() #call on text summarizer with text of article textSum = text_summarizer(news.text) if "apnews.com" in news.url: textSum = news.text article = NewsArticle( link = news.url, image = news.top_image, wing = "political", #text = news.text, text = textSum, title = news.title ).save() #email_services = ["hotmail", "gmail", "yahoo"] #email_contains_service = any(email_service in user_email for email_service in email_services) elif ["stock", "net", "loss", "Q1", "Q2", "Q3", "Q4", "Gain"] in word_tokenize(news.text): news.parse() #call on text summarizer with text of article textSum = text_summarizer(news.text) if "apnews.com" in news.url: textSum = news.text article = NewsArticle( link = news.url, image = news.top_image, wing = "buisness", text = textSum, title = news.title ).save() elif "covid" in news.url or "corona" in news.url: news.parse() #call on text summarizer with text of article textSum = text_summarizer(news.text) if "apnews.com" in news.url: textSum = news.text article = NewsArticle( link = news.url, image = news.top_image, wing = "covid", text = textSum, title = news.title ).save() count += 1 for build in techP: for news in (build.articles): news.parse() #call on text summarizer with text of article textSum = text_summarizer(news.text) if "apnews.com" in news.url: textSum = news.text if "#comments" not in news.url: article = NewsArticle( link = news.url, image = news.top_image, wing = "tech", text = textSum, title = news.title ).save() for build in sportP: for news in (build.articles): news.parse() #call on text summarizer with text of article textSum = text_summarizer(news.text) article = NewsArticle( link = news.url, image = news.top_image, wing = "sports", text = textSum, title = news.title ).save() for build in entertainmentP: for news in (build.articles): news.parse() #call on text summarizer with text of article textSum = text_summarizer(news.text) article = NewsArticle( link = news.url, image = news.top_image, wing = "entertainment", text = textSum, title = news.title ).save() for build in cryptoP: for news in (build.articles): news.parse() #call on text summarizer with text of article textSum = text_summarizer(news.text) article = NewsArticle( link = news.url, image = news.top_image, wing = "crypto", text = textSum, title = news.title ).save() for build in climateP: for news in (build.articles): news.parse() #call on text summarizer with text of article textSum = text_summarizer(news.text) article = NewsArticle( link = news.url, image = news.top_image, wing = "climate", text = textSum, title = news.title ).save() print("Articles saved in mongodb", file=sys.stderr) #Schedule the above function to run every hour to look for new news articles print("instantiating scheduler", file=sys.stderr) scheduler = BackgroundScheduler() print("adding job to scheduler", file=sys.stderr) scheduler.add_job(auto_article_go_getter, 'interval', next_run_time=datetime.datetime.now(), hours=1) print("starting scheduler", file=sys.stderr) scheduler.start() print("finished schedule", file=sys.stderr) def text_summarizer(text): print("Starting Text Summarizer", file=sys.stderr) if (len(text) <= 0): return text else: # Tokenizing the text stopWords = set(stopwords.words("english")) words = word_tokenize(text) #print(text, file=sys.stderr) print(text +"\n \n \n \n \n \n \n \n \n", file=sys.stderr) # Creating a frequency table to keep the # score of each word freqTable = dict() for word in words: word = word.lower() if word in stopWords: continue if word in freqTable: freqTable[word] += 1 else: freqTable[word] = 1 # Creating a dictionary to keep the score # of each sentence sentences = sent_tokenize(text) sentenceValue = dict() for sentence in sentences: for word, freq in freqTable.items(): if word in sentence.lower(): if sentence in sentenceValue: sentenceValue[sentence] += freq else: sentenceValue[sentence] = freq sumValues = 0 for sentence in sentenceValue: sumValues += sentenceValue[sentence] # Average value of a sentence from the original text average = int(sumValues / len(sentenceValue)) # Storing sentences into our summary. summary = '' for sentence in sentences: if (sentence in sentenceValue) and (sentenceValue[sentence] > (1.2 * average)): summary += " " + sentence print(summary + "\n \n \n", file=sys.stderr) return summary if __name__ == "__main__": auto_article_go_getter() ```
{ "source": "jcooter/awsprocesscreds", "score": 2 }
#### File: awsprocesscreds/awsprocesscreds/__init__.py ```python import logging __version__ = '0.0.2' class NullHandler(logging.Handler): def emit(self, record): pass logger = logging.getLogger(__name__) logger.addHandler(NullHandler()) ```
{ "source": "jcopi/py_test", "score": 3 }
#### File: jcopi/py_test/test.py ```python import time class Test(object): def __init__(self): pass def initialize(self): pass def execute(self, delta_t): # delta_t represents the amount of time having passed since the last call pass def is_finished(self): return False def end(self): pass def command(self, name): pass def accept_data(self, jobj): pass def schedule(test, pipe): test_inst = test() last_t = time.time() test_inst.initialize() while not test_inst.is_finished(): test_inst.execute(time.time() - last_time) last_t = time.time() if pipe.poll(): test_inst.accept_data(pipe.recv()) time.sleep(0.02) test_inst.end() ```
{ "source": "jcoppin/home-assistant", "score": 2 }
#### File: components/rainwise/sensor.py ```python import asyncio import logging import async_timeout import aiohttp import voluptuous as vol from bs4 import BeautifulSoup import homeassistant.helpers.config_validation as cv from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.helpers.aiohttp_client import async_get_clientsession from homeassistant.const import ( CONF_NAME, CONF_URL, ATTR_ATTRIBUTION, CONF_MONITORED_CONDITIONS, ) from homeassistant.helpers.entity import Entity from homeassistant.helpers.event import async_call_later REQUIREMENTS = ["beautifulsoup4==4.8.0"] _LOGGER = logging.getLogger(__name__) ATTRIBUTION = "Weather from a Rainwise IP-100" SENSOR_TYPES = { "precipitation": [ "Precipitation", "in", "#rfd", "mdi:weather-pouring", lambda text: float(text[0][:-1]), ], "temperature": [ "Temperature", "°F", "#tic", "mdi:thermometer", lambda text: float(text[0][:-1]), ], "humidity": [ "Humidity", "%", "#ric", "mdi:water-percent", lambda text: int(text[0][:-1]), ], "windDirection": [ "Wind direction", "", "#wic", "mdi:compass-outline", lambda text: _get_wind_direction(float(text[0][:-1].split(", ")[1])), ], "pressure": [ "Pressure", "inHg", "#bic", "mdi:gauge", lambda text: float(text[0][:-1]), ], "windSpeed": [ "Wind speed", "mph", "#wic", "mdi:weather-windy", lambda text: float(text[0].split(", ")[0][:-4]), ], "windGust": [ "Wind gust", "mph", "#wdh", "mdi:weather-windy", lambda text: float(text[0].split(", ")[0][:-4]), ], "battery": [ "Sation Battery", "Volts", "#batt", "mdi:gauge", lambda text: float(text[0][:-6]), ], } DEFAULT_NAME = "Rainwise" PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_URL): cv.string, vol.Optional(CONF_MONITORED_CONDITIONS, default=["symbol"]): vol.All( cv.ensure_list, vol.Length(min=1), [vol.In(SENSOR_TYPES)] ), vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, } ) def _get_wind_direction(wind_direction_degree: float) -> str: """Convert wind direction degree to named direction.""" if 11.25 <= wind_direction_degree < 33.75: return "NNE" if 33.75 <= wind_direction_degree < 56.25: return "NE" if 56.25 <= wind_direction_degree < 78.75: return "ENE" if 78.75 <= wind_direction_degree < 101.25: return "E" if 101.25 <= wind_direction_degree < 123.75: return "ESE" if 123.75 <= wind_direction_degree < 146.25: return "SE" if 146.25 <= wind_direction_degree < 168.75: return "SSE" if 168.75 <= wind_direction_degree < 191.25: return "S" if 191.25 <= wind_direction_degree < 213.75: return "SSW" if 213.75 <= wind_direction_degree < 236.25: return "SW" if 236.25 <= wind_direction_degree < 258.75: return "WSW" if 258.75 <= wind_direction_degree < 281.25: return "W" if 281.25 <= wind_direction_degree < 303.75: return "WNW" if 303.75 <= wind_direction_degree < 326.25: return "NW" if 326.25 <= wind_direction_degree < 348.75: return "NNW" return "N" async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the Rainwise sensor.""" name = config.get(CONF_NAME) url = config.get(CONF_URL) dev = [] for sensor_type in config[CONF_MONITORED_CONDITIONS]: dev.append(RainwiseSensor(name, sensor_type)) async_add_entities(dev) weather = RainwiseData(hass, url, dev) await weather.fetching_data() class RainwiseSensor(Entity): """Representation of an Rainwise sensor.""" def __init__(self, name, sensor_type): """Initialize the sensor.""" self.client_name = name self._name = SENSOR_TYPES[sensor_type][0] self.type = sensor_type self._state = None self._unit_of_measurement = SENSOR_TYPES[self.type][1] self._selector = SENSOR_TYPES[self.type][2] self._icon = SENSOR_TYPES[self.type][3] self._parser = SENSOR_TYPES[self.type][4] def update_changes(self, new_state): """Update the state if it has changed, return true if it changed""" if new_state != self._state: _LOGGER.info("Changing state of %s to: %s", self._name, new_state) self._state = new_state return True else: return False @property def name(self): """Return the name of the sensor.""" return f"{self.client_name} {self._name}" @property def parser(self): """Return the parser method.""" return self._parser @property def state(self): """Return the state of the device.""" return self._state @property def should_poll(self): """No polling needed.""" return False @property def selector(self): """Return the CSS selector""" return self._selector @property def icon(self): """Return the icon to use in the frontend, if any.""" return self._icon @property def entity_picture(self): return None @property def device_state_attributes(self): """Return the state attributes.""" return {ATTR_ATTRIBUTION: ATTRIBUTION} @property def unit_of_measurement(self): """Return the unit of measurement of this entity, if any.""" return self._unit_of_measurement class RainwiseData: """Get the latest data and update the sensors.""" def __init__(self, hass, url, devices): """Initialize the data object.""" self._url = url self.devices = devices self.data = {} self.hass = hass async def fetching_data(self, *_): """Ensure this is called every 60 seconds""" def try_again(err: str): async_call_later(self.hass, 60, self.fetching_data) websession = async_get_clientsession(self.hass) data = b"" try: with async_timeout.timeout(10): request = await websession.get(self._url) if request.status != 200: _LOGGER.error( "Error %d on load URL %s", request.status, request.url ) try_again("HTTP Error") data = await request.text() except (asyncio.TimeoutError, aiohttp.ClientError): _LOGGER.error("Timeout calling IP-100") try_again("Timeout Error") raw_data = BeautifulSoup(data, "html.parser") tasks = [] for dev in self.devices: new_state = None new_state = dev.parser(raw_data.select(dev.selector)[0].contents) if dev.update_changes(new_state): tasks.append(dev.async_update_ha_state()) if tasks: await asyncio.wait(tasks) async_call_later(self.hass, 60, self.fetching_data) ```
{ "source": "jcopps/BhavCopyPRParser", "score": 3 }
#### File: bhavpr/collection/download_helper.py ```python from datetime import datetime, timedelta from bhavpr.collection.constants import ( PR_URL, PERIOD, PR_DIR_FORMAT, DATE_FORMAT_STR ) def date_range_iter(start_date, end_date): for n in range(int((end_date - start_date).days)): yield start_date + timedelta(n) def preprocess_date(input_date): if isinstance(input_date, str): input_date = datetime.strptime(input_date, DATE_FORMAT_STR) return input_date class PrProperties(object): def __init__(self, day, month, year) -> None: self.day = day self.month = month self.year = year @staticmethod def pad_zero(element, final_len=2): if element < 10: element = str(element).rjust(final_len, "0") return element @staticmethod def format_year(year): year = str(year) if len(year) > 2: year = year[-2:] return year @staticmethod def create_instance_from_directory(directory_name) -> object: dir_date = datetime.strptime(directory_name, PR_DIR_FORMAT) return PrProperties(dir_date.day, dir_date.month, dir_date.year) def get_file_name(self, directory=False) -> str: file_name = "PR{0}{1}{2}" day = PrProperties.pad_zero(self.day) month = PrProperties.pad_zero(self.month) year = PrProperties.format_year(self.year) file_name = file_name.format(day, month, year) if directory: return file_name file_name = "".join([file_name, ".zip"]) return file_name def get_anddmmyy_file_name(self) -> str: file_name = self.get_file_name(directory=True) file_name = file_name.replace("PR", "an") return "".join([file_name, ".txt"]) def get_bcddmmyy_file_name(self) -> str: file_name = self.get_file_name(directory=True) file_name = file_name.replace("PR", "bc") return "".join([file_name, ".csv"]) def get_specific_file_name(self, prefix, extension) -> str: file_name = self.get_file_name(directory=True) file_name = file_name.replace("PR", prefix) return "".join([file_name, PERIOD, extension]) def get_download_url(self) -> str: file_name = self.get_file_name() url = PR_URL.format(file_name) return url ```
{ "source": "Jcorb08/programming-support-skill", "score": 3 }
#### File: Jcorb08/programming-support-skill/duckduckgo.py ```python import requests from lxml import html import time from mycroft.util.log import LOG # https://github.com/thibauts/duckduckgo # prints out list of urls # edited to add headers and css selecting and now fully understand code def search(keywords, max_results=None): url = 'https://html.duckduckgo.com/html/' params = {'q': keywords} headers = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:86.0) Gecko/20100101 Firefox/86.0'} yielded = 0 while True: res = requests.post(url, data=params, headers=headers) doc = html.fromstring(res.text) results = [a.get('href') for a in doc.cssselect('#links .links_main a')] for result in results: yield result time.sleep(0.1) yielded += 1 if max_results and yielded >= max_results: return try: form = doc.cssselect('.results_links_more form')[-1] except IndexError: return params = dict(form.fields) ``` #### File: Jcorb08/programming-support-skill/output.py ```python import webbrowser # create a new object Output class Output: def __init__(self, link): # set url to the link url from resource class self.url = link # output url to user self.output_url() def output_url(self): # opens a new tab in the webbrowser that has the url set before webbrowser.open(self.url, new=2, autoraise=True) ```
{ "source": "jcorbette/ice-cream-poll", "score": 3 }
#### File: ice-cream-poll/ice_cream_poll_app/models.py ```python from django.db import models from django.db.models import Sum # Create your models here. class Questions(models.Model): question = models.CharField(max_length=350) def __str__(self): return self.question class Choices(models.Model): question = models.ForeignKey(Questions, on_delete=models.CASCADE, related_name='choices') option = models.CharField(max_length=100) vote = models.IntegerField(default=0) def get_percentage(self): total_votes = Choices.objects.all().aggregate(vote_sum=Sum("vote"))["vote_sum"] vote_num = self.vote percentage_calc = (vote_num / total_votes) * 100 return percentage_calc ```
{ "source": "jcorbettfrank/find_pisne", "score": 3 }
#### File: find_pisne/archive/OpenSNAPI_v2.py ```python import requests import os import pandas as pd import numpy as np from io import StringIO import errno import pdb import string # In[56]: OverArchDirs = ['Data','Data_BVRI'] SN_types = ['SLSN','1a','IIn','IIp','IIb'] for OverArchDir in OverArchDirs: for SN_type in SN_types: catalog = 'astrocats' fn = 'The Open Supernova Catalog '+ SN_type+ '.csv' data_dir = os.path.join(OverArchDir,SN_type) Phot_lim = 20 #if doesn't have Phot lim photometry datapoints then we won't look at it if OverArchDir =='Data': Filters = ['g','r','i','z'] #if it doesnt have photometry in these filters we won't look at it else: Filters = ['B','V','R','I'] try: os.makedirs(data_dir) except OSError as e: if e.errno != errno.EEXIST: raise # In[57]: api_str_base = 'https://api.'+catalog+'.space/' df = pd.read_csv(fn) sort_df = df.sort_values(by=['Phot.'],axis=0,ascending=False) exp_df = sort_df.drop(['Radio','X-ray'],axis = 1, inplace=False) exp_df['Fit?'] = np.zeros(len(exp_df)) exp_df = exp_df[exp_df['Phot.'] > Phot_lim] print(exp_df) #need to delete entries that do not have redshift # In[58]: #add column to dataframe containing absolute magnitudes - assumes apparent magnitudes are in AB system def appAB2Abs(df,DL): #DL in Mpc app = df['magnitude'].values Abs = app-5*np.log10(DL*10**6)+5 df['AbsMag'] = pd.Series(Abs,index=df.index) return(df) # In[60]: arr_holder = np.zeros((1,len(exp_df.values[0]))) goodSNs = 0 badSNs = 0 for i in range(len(exp_df)): rowDf = pd.DataFrame(exp_df.iloc[[i]]) SN_name = rowDf['Name'].values[0] #get luminosity distance dLum = requests.get(api_str_base+SN_name+'/lumdist+redshift?complete&format=csv') api_response = dLum.text #check if data is available if api_response[2:9] == 'message': #remove from SNinfodf badSNs+=1 else: dLum_df = pd.read_csv(StringIO(api_response)) lumdist = dLum_df['lumdist'].values[0] redshift = dLum_df['redshift'].values[0] try: redshift = redshift[0] #think the first is most believed except IndexError: pass redshift = float(redshift) #make sure redshift makes sense if redshift >= 0: rowDf['z'] = redshift #get SN photometry data = requests.get(api_str_base+SN_name+'/photometry/time+magnitude+e_magnitude+upperlimit+band+zeropoint+system+kcorrected+scorrected+mcorrected?format=csv') api_response2 = data.text if api_response2[2:9] == 'message': #remove from SNinfodf badSNs+=1 else: SNdf = pd.read_csv(StringIO(api_response2)) #add Absolute Magnitudes newDf = appAB2Abs(SNdf,lumdist) #make sure the filters we want are in this file bands = newDf['band'].values lower_bands = [] for b in bands: try: lower_bands.append(b) except AttributeError: pass FilterTroll = 0 for filt in Filters: if filt in lower_bands or filt+"'" in lower_bands: FilterTroll += 1 if FilterTroll != len(Filters): #not all the filters are in this file badSNs+=1 else: try: invalidChars = set(string.punctuation.replace(":","")) if any(char in invalidChars for char in SN_name): SN_name = SN_name.replace(":","-") exp_df.at[i,'Name'] = SN_name os.makedirs(os.path.join(data_dir,SN_name)) #try to make a directory, will return OSerror if already exist except OSError as e: if e.errno != errno.EEXIST: raise #we made it rowDf.to_csv(os.path.join(data_dir,SN_name,'info.csv')) newDf.to_csv(os.path.join(data_dir,SN_name,'Photometry.csv')) arr_holder = np.concatenate((arr_holder,np.array([exp_df.iloc[i].values])),axis=0) arr_holder = arr_holder[1:,:]#get rid of first row master_holderDF = pd.DataFrame(arr_holder,columns = exp_df.columns.values) print(master_holderDF) master_holderDF.to_csv(os.path.join(data_dir,'OverallSNinfo.csv')) # In[55]: master_holderDF.to_csv(os.path.join(data_dir,'OverallSNinfo.csv')) # In[49]: ''' SN_name = 'SN2015bn' dLum = requests.get(api_str_base+SN_name+'/lumdist+redshift?complete&format=csv') print(dLum.text) data = requests.get(api_str_base+SN_name+'/photometry/time+magnitude+e_magnitude+upperlimit+band+zeropoint+system+kcorrected+scorrected+mcorrected?format=csv') api_response2 = data.text SNdf = pd.read_csv(StringIO(api_response2)) display(SNdf) ''' # In[ ]: "'" ``` #### File: jcorbettfrank/find_pisne/lightCurve.py ```python import numpy as np import pandas as pd class lightCurve(object): def __init__(self, name): self.name = name l = lightCurve("red") ```
{ "source": "jcordatauclair/ari-tfidf", "score": 3 }
#### File: part2/Prog/remove_common_words.py ```python import nltk nltk.download('punkt') from nltk import word_tokenize from nltk.stem.porter import * inpathname = "../../TP1/Collection/Token/" outpathname = "../Collection/NoCommonWords/" commonwordsfile = "../../TP1/Data/common_words" # ici, stembool est un booléen qui indique si oui ou non on souhaite l'incorporer # dans le traitement def RemoveCommonWords(inpath, outpath, stembool): if (stembool == True): stemmer = PorterStemmer() # nombre de documents disponibles dans la librairie nDocs = 3204; # on définit un dictionnaire auquel on va associer un 'common-word' (mot) # et une clé (1) stopList = {} # on créé notre stop-list depuis notre fichier de common-words with open(commonwordsfile) as CwFile: for line in CwFile: commonWord = nltk.word_tokenize(line)[0] stopList[commonWord] = 1 # on parcourt chacun de nos fichiers filtrés for i in range(1, nDocs + 1): file = "CACM-" + str(i) infile = inpath + file + ".flt" outfile = outpath + file + ".sttr" # on ouvre le fichier filtré CACM-i with open(infile, "r") as TokenFile: print("processing file " + file) # on créé le fichier sans les common-words CACM-i with open(outfile, "w+") as NoCwFile: for line in TokenFile: word = nltk.word_tokenize(line)[0] if word not in stopList: if (stembool == True): NoCwFile.write(stemmer.stem(word) + " ") else: NoCwFile.write(word + " ") else: print(" removing " + word) RemoveCommonWords(inpathname, outpathname, True) ```
{ "source": "jcordell/fantasycalc-utils", "score": 2 }
#### File: core/factory/DatabaseFactory.py ```python from services.MongoDB import MongoDB from config import LocalHostConfig as config _db_instances = { 'mongodb': MongoDB(), } def get_database(): return _db_instances[config.DATABASE_TYPE] ``` #### File: services/fantasysites/ESPNService.py ```python import sys sys.path.append('/Users/jkc023/Documents/homeprojects/fantasycalc-utils/') from services.fantasysites.FantasySiteService import FantasySiteService from services.apis.mfl_api import mfl_api from datatypes.trade import trade_dtype from datatypes.fantasy_league import fantasy_league_dtype from bs4 import BeautifulSoup import re import requests import json import time from services.MongoDB import MongoDB class ESPNService(FantasySiteService): name = 'ESPN' basic_settings = {'Number of Teams': 'num_teams', 'League Name': 'name', 'Quarterback (QB)': 'num_qbs'} # dictionary used to rename scoring setting advanced_settings = {'Each reception (REC)': 'ppr'} league_settings = {} def __init__(self, year): self.year = year self._db = MongoDB() self._db.connect() def make_trade(self, trade_columns): team1 = None team2 = None # get team name of each trade index teams = [team.split(' ')[0] for team in trade_columns[2] if 'traded' in team] # make sure only 2 teams (error if team names are the same) if len(set(teams)) is not 2: raise ValueError trade_side1 = [] trade_side2 = [] for player, team in zip(trade_columns[2].findAll('b'), teams): # if player on espn is injured, they will show as example: <NAME>* if player is not None: player = player.text.replace('*', '') # if first trade item, set team1, add to trade if team1 is None and team2 is None: team1 = team trade_side1.append(player) elif team2 is None and team1 == team: trade_side1.append(player) else: team2 = team trade_side2.append(player) return trade_side1, trade_side2 def get_trades(self, league_id): url = "http://games.espn.com/ffl/recentactivity?leagueId=" + str(league_id) + "&seasonId=" \ + str(self.year) + \ "&activityType=2&startDate=20180911&endDate=20181129&teamId=-1&tranType=4" try: # headers = { # 'User-Agent': 'Mozilla/5.0 (iPad; U; CPU OS 3_2_1 like Mac OS X; en-us) AppleWebKit/531.21.10 (KHTML, like Gecko) Mobile/7B405'} page = requests.get(url) except Exception as e: print(e) print( 'Warning: Unable to download, couldn\'t request trades from:', league_id) # return [] soup = BeautifulSoup(page.text, 'lxml') trade_data = [] tables = soup.findAll('table') for transaction in soup.findAll(text="Transaction"): trade_table = transaction.parent.parent.parent # trades can be accepted and processed, don't want duplicates if 'Processed' not in trade_table.text: continue col = trade_table.find_all('td') try: trade_side1, trade_side2 = self.make_trade(col) except ValueError: # print('Warning: Unable to make trade in ESPNServices.get_trades in league', league_id) continue # Convert date to epoch (example preprocessed format: Wed, Nov 22 7:30 PM) date = str(col[0].renderContents()).replace( '<br/>', ' ')[2:-4].split(',')[1].lstrip() + " " + str(self.year) date_epoch = int(time.mktime( time.strptime(date, '%b %d %H:%M %Y'))) single_trade = trade_dtype() single_trade.league_id = league_id single_trade.side1 = trade_side1 single_trade.side2 = trade_side2 single_trade.timestamp = date_epoch single_trade.fantasy_site = self.name single_trade.all_players = [*trade_side1, *trade_side2] if single_trade is None: continue single_trade.league_settings = self.get_settings( league_id).to_json() trade_data.append(single_trade) return trade_data def get_settings(self, league_id): if league_id in self.league_settings: return self.league_settings[league_id] league_settings = fantasy_league_dtype() url = 'http://games.espn.com/ffl/leaguesetup/settings?leagueId=' + \ str(league_id) page = requests.get(url) soup = BeautifulSoup(page.text, 'lxml') tables = soup.find_all('table', attrs={'class': 'leagueSettingsTable'}) settings = {} league_settings.league_id = league_id # PPR scoring defaults to 0, since ESPN does not display this setting if it is 0 settings['ppr'] = 0 for table in tables: rows = table.find_all('tr') for row in rows: cols = row.find_all('td') cols = [ele.text.strip() for ele in cols] # add to settings dictionary if setting is needed if cols[0] in self.basic_settings: settings[self.basic_settings[cols[0]]] = cols[1] # check if any advanced settings are in string for setting in self.advanced_settings: if setting in cols: settings[self.advanced_settings[setting] ] = cols[cols.index(setting) + 1] settings['league_id'] = league_id league_settings.name = settings['name'] league_settings.num_teams = settings['num_teams'] league_settings.num_qbs = settings['num_qbs'] league_settings.ppr = settings['ppr'] league_settings.site = 'ESPN' self.league_settings[league_id] = league_settings return league_settings def get_valid_leagues(self, fast_search=False): if fast_search: # return leagues which have already been found to have a trade in them raise NotImplementedError else: # return [841145] # return range(841145, 1726141) # return range(930430, 1726141) # updated this after college lib # return range(1264529 + 35533 + 16262 + 8772, 1726141) league_ids = self._db.get_league_ids('ESPN') print(league_ids) print(len(league_ids)) return league_ids # espn = ESPNService() # # print(espn.get_settings(842623)) # print(espn.get_trades(841145)) # print(espn.get_settings(841145)) # service = MFLService(2018) # service.get_settings(35465) # service.get_settings(10431) ```
{ "source": "jcordell/keras-optimization", "score": 3 }
#### File: keras-optimization/GA/train.py ```python from keras.datasets import mnist, cifar10 from keras.models import Sequential from keras.layers import Dense, Dropout from keras.utils.np_utils import to_categorical from keras.callbacks import EarlyStopping import data_parser import numpy as np from keras.optimizers import Adadelta, Adam, rmsprop from sklearn.metrics import mean_squared_error # Helper: Early stopping. early_stopper = EarlyStopping(patience=5) def get_cifar10(): """Retrieve the CIFAR dataset and process the data.""" # Set defaults. nb_classes = 10 batch_size = 64 input_shape = (3072,) # Get the data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train = x_train.reshape(50000, 3072) x_test = x_test.reshape(10000, 3072) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # convert class vectors to binary class matrices y_train = to_categorical(y_train, nb_classes) y_test = to_categorical(y_test, nb_classes) return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test) def get_mnist(): """Retrieve the MNIST dataset and process the data.""" # Set defaults. nb_classes = 10 batch_size = 128 input_shape = (784,) # Get the data. (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_test = x_test.reshape(10000, 784) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # convert class vectors to binary class matrices y_train = to_categorical(y_train, nb_classes) y_test = to_categorical(y_test, nb_classes) return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test) def get_dbtt(): data = data_parser.parse("DBTT_Data22.csv") data_lwr = data_parser.parse("CD_LWR_clean8.csv") X = ["N_log(eff fl p =.05)", "N_log(eff fl p =.4)", "N_log(eff fl p =.5)", "N(Cu)", "N(Ni)", "N(Mn)", "N(P)", "N(Si)", "N( C )", "N_log(eff fl p =.1)", "N_log(eff fl p =.2)", "N_log(eff fl p =.3)", "N(Temp)"] Y = "CD delta sigma" data.set_x_features(X) data.set_y_feature(Y) data_lwr.set_y_feature(Y) data_lwr.set_x_features(X) data.add_exclusive_filter("Alloy", '=', 29) data.add_exclusive_filter("Alloy", '=', 8) data.add_exclusive_filter("Alloy", '=', 1) data.add_exclusive_filter("Alloy", '=', 2) data.add_exclusive_filter("Alloy", '=', 14) data_lwr.add_exclusive_filter("Alloy", '=', 29) data_lwr.add_exclusive_filter("Alloy", '=', 14) x_test = np.array(data_lwr.get_x_data()) y_test = np.array(data_lwr.get_y_data()) x_train = np.array(data.get_x_data()) y_train = np.array(data.get_y_data()) #print("Training with", np.shape(y_train)[0], "data points") nb_classes = -1 batch_size = np.shape(y_train)[0] input_shape = (13,) # normalize y columns y_train = y_train/758.92 return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test) def compile_model(network, nb_classes, input_shape): """Compile a sequential model. Args: network (dict): the parameters of the network Returns: a compiled network. """ # Get our network parameters. nb_layers = network['nb_layers'] nb_neurons = network['nb_neurons'] activation = network['activation'] optimizer = network['optimizer'] learning_rate = network['learning_rate'] model = Sequential() # Add each layer. for i in range(nb_layers): # Need input shape for first layer. if i == 0: print(nb_neurons) model.add(Dense(units=nb_neurons, activation=activation, input_shape=input_shape)) else: print(nb_neurons) model.add(Dense(nb_neurons, activation=activation)) model.add(Dropout(0.2)) # hard-coded dropout # Output layer. if(nb_classes == -1): model.add(Dense(1, activation='linear')) ADAM = Adam(lr=learning_rate) model.compile(loss='mean_squared_error', metrics=['accuracy'], optimizer=ADAM) else: model.add(Dense(nb_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model def train_and_score(network, dataset): """Train the model, return test loss. Args: network (dict): the parameters of the network dataset (str): Dataset to use for training/evaluating """ if dataset == 'cifar10': nb_classes, batch_size, input_shape, x_train, \ x_test, y_train, y_test = get_cifar10() elif dataset == 'mnist': nb_classes, batch_size, input_shape, x_train, \ x_test, y_train, y_test = get_mnist() elif dataset == 'dbtt': nb_classes, batch_size, input_shape, x_train, \ x_test, y_train, y_test = get_dbtt() model = compile_model(network, nb_classes, input_shape) if dataset == 'dbtt': model.fit(x_train, y_train, epochs=10, batch_size=1406, verbose=0) y_predict = model.predict(x_test) * 758.92 # todo way to not hardcode this? rms = np.sqrt(mean_squared_error(y_test, y_predict)) print(rms) return rms else: model.fit(x_train, y_train, batch_size=batch_size, epochs=10000, # using early stopping, so no real limit verbose=0, validation_data=(x_test, y_test), callbacks=[early_stopper]) score = model.evaluate(x_test, y_test, verbose=0) return score[1] # 1 is accuracy. 0 is loss. ``` #### File: jcordell/keras-optimization/StochasticityTest.py ```python from hyperopt import fmin, tpe, hp, STATUS_OK, Trials import sys import numpy as np from sklearn.metrics import mean_squared_error import data_parser def getData(): data = data_parser.parse("DBTT_Data22.csv") data_lwr = data_parser.parse("CD_LWR_clean8.csv") X = ["N_log(eff fl p =.05)", "N_log(eff fl p =.4)", "N_log(eff fl p =.5)", "N(Cu)", "N(Ni)", "N(Mn)", "N(P)", "N(Si)","N( C )", "N_log(eff fl p =.1)", "N_log(eff fl p =.2)", "N_log(eff fl p =.3)", "N(Temp)"] Y = "CD delta sigma" data.set_x_features(X) data.set_y_feature(Y) data_lwr.set_y_feature(Y) data_lwr.set_x_features(X) data.add_exclusive_filter("Alloy",'=', 29) data.add_exclusive_filter("Alloy",'=', 8) data.add_exclusive_filter("Alloy", '=', 1) data.add_exclusive_filter("Alloy", '=', 2) data.add_exclusive_filter("Alloy", '=', 14) data_lwr.add_exclusive_filter("Alloy",'=', 29) data_lwr.add_exclusive_filter("Alloy", '=', 14) x_test = np.array(data_lwr.get_x_data()) y_test = np.array(data_lwr.get_y_data()) x_train = np.array(data.get_x_data()) y_train = np.array(data.get_y_data()) print("Training with", np.shape(y_train)[0], "data points") return x_train, y_train, x_test, y_test x_train, y_train, x_test, y_test = getData() # normalize y column y_train = y_train/758.92 # gridsearch parameters learning_rate = [.005, .05] hidden1 = [5] hidden2 = [5, 40] num_ensembles = 2 # intializing rms_list columns = 3 rows = len(learning_rate) * len(hidden1) * len(hidden2) rms_list = [[0 for i in range(rows)] for j in range(columns)] for i in range(0, columns): j = 0 for lr in learning_rate: for h1 in hidden1: for h2 in hidden2: for n in range(num_ensembles): from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import Adadelta, Adam, rmsprop model = Sequential() model.add(Dense(units=h1, input_dim=np.shape(x_train)[1])) model.add(Activation('sigmoid')) model.add(Dense(h2)) model.add(Activation('sigmoid')) model.add(Dense(1)) model.add(Activation('linear')) ADAM = Adam(lr=lr) model.compile(loss='mean_squared_error', metrics=['accuracy'], optimizer=ADAM) # model.compile(loss='binary_crossentropy', optimizer=params['optimizer']) model.fit(x_train, y_train, nb_epoch=2000, batch_size=1400, verbose=0) y_predict = model.predict(x_test) * 758.92 # todo way to not hardcode this? if(n == 0): y_predict_all = y_predict else: np.column_stack((y_predict, y_predict_all)) # find average prediction y_predict_avg = np.mean(y_predict_all, axis = 1) rms = np.sqrt(mean_squared_error(y_test, y_predict)) print('RMS:', rms) rms_list[i][j] = rms j+=1 print(rms_list) print(np.shape(rms_list)[0]) rank_final = [] for i in range(np.shape(rms_list)[0]): temp = np.array(rms_list[i]).argsort() ranks = np.empty(len(rms_list[i]), int) ranks[temp] = np.arange(len(rms_list[i])) rank_final.append(ranks) print("Average rank:") print(np.mean(rank_final, axis=0)) print(" ") print("StDev:") print(np.std(rank_final, axis=0)) print(" ") print("Average StDev:") print(np.mean(np.std(rank_final, axis=0))) ```
{ "source": "jcoreyes/erl", "score": 2 }
#### File: rlkit/core/batch_rl_algorithm_modenv.py ```python from collections import OrderedDict from rlkit.core.timer import timer from rlkit.core import logger from rlkit.data_management.replay_buffer import ReplayBuffer from rlkit.misc import eval_util from rlkit.samplers.data_collector.path_collector import PathCollector from rlkit.core.rl_algorithm import BaseRLAlgorithm import numpy as np def linear_schedule(start, end, current): return float(current) / (end - start) class BatchRLAlgorithmModEnv(BaseRLAlgorithm): def __init__( self, batch_size, max_path_length, num_eval_steps_per_epoch, num_expl_steps_per_train_loop, num_trains_per_train_loop, mod_env_epoch_schedule, env_class, env_mod_params, env_mod_dist, lifelong, num_train_loops_per_epoch=1, min_num_steps_before_training=0, *args, **kwargs ): super().__init__(*args, **kwargs) self.batch_size = batch_size self.max_path_length = max_path_length self.num_eval_steps_per_epoch = num_eval_steps_per_epoch self.num_trains_per_train_loop = num_trains_per_train_loop self.num_train_loops_per_epoch = num_train_loops_per_epoch self.num_expl_steps_per_train_loop = num_expl_steps_per_train_loop self.min_num_steps_before_training = min_num_steps_before_training self.lifelong = lifelong self.mod_env_epoch_schedule = mod_env_epoch_schedule self.env_class = env_class self.env_mod_params = env_mod_params self.env_mod_dist = env_mod_dist def _train(self): if self.lifelong: return self._train_lifelong() else: return self._train_batch() def _train_lifelong(self): done = (self.epoch == self.num_epochs) if done: return OrderedDict(), done self.training_mode(False) if self.min_num_steps_before_training > 0 and self.epoch == 0: self.expl_data_collector.collect_new_steps( self.max_path_length, self.min_num_steps_before_training, discard_incomplete_paths=False, ) init_expl_paths = self.expl_data_collector.get_epoch_paths() self.replay_buffer.add_paths(init_expl_paths) self.expl_data_collector.end_epoch(-1) num_trains_per_expl_step = self.num_trains_per_train_loop // self.num_expl_steps_per_train_loop timer.start_timer('evaluation sampling') if self.epoch % self._eval_epoch_freq == 0: self.eval_data_collector.collect_new_paths( self.max_path_length, self.num_eval_steps_per_epoch, discard_incomplete_paths=True, ) timer.stop_timer('evaluation sampling') if not self._eval_only: for _ in range(self.num_train_loops_per_epoch): for _ in range(self.num_expl_steps_per_train_loop): timer.start_timer('exploration sampling', unique=False) self.expl_data_collector.collect_new_steps( self.max_path_length, 1, # num steps discard_incomplete_paths=False, ) timer.stop_timer('exploration sampling') timer.start_timer('training', unique=False) self.training_mode(True) for _ in range(num_trains_per_expl_step): train_data = self.replay_buffer.random_batch( self.batch_size) self.trainer.train(train_data) timer.stop_timer('training') self.training_mode(False) timer.start_timer('replay buffer data storing', unique=False) new_expl_paths = self.expl_data_collector.get_epoch_paths() self.replay_buffer.add_paths(new_expl_paths) timer.stop_timer('replay buffer data storing') log_stats = self._get_diagnostics() return log_stats, False def _train_batch(self): done = (self.epoch == self.num_epochs) if done: return OrderedDict(), done if self.epoch == 0 and self.min_num_steps_before_training > 0: init_expl_paths = self.expl_data_collector.collect_new_paths( self.max_path_length, self.min_num_steps_before_training, discard_incomplete_paths=False, ) self.replay_buffer.add_paths(init_expl_paths) self.expl_data_collector.end_epoch(-1) timer.start_timer('evaluation sampling') if self.epoch % self._eval_epoch_freq == 0: self.eval_data_collector.collect_new_paths( self.max_path_length, self.num_eval_steps_per_epoch, discard_incomplete_paths=True, ) timer.stop_timer('evaluation sampling') if not self._eval_only: for _ in range(self.num_train_loops_per_epoch): timer.start_timer('exploration sampling', unique=False) new_env_mod_parms = dict() if self.env_mod_dist: current = max(1, self.epoch / (self.mod_env_epoch_schedule * self.num_epochs)) for k, v in self.env_mod_params.items(): lbound, ubound = v low = current + (1.0 - current) * lbound high = current + (1.0 - current) * ubound new_env_mod_parms[k] = np.random.uniform(low, high) else: current = max(1, self.epoch / (self.mod_env_epoch_schedule * self.num_epochs)) for k, v in self.env_mod_params.items(): new_env_mod_parms[k] = 1.0 * current + (1.0 - current) * v self.expl_data_collector._env = self.env_class(new_env_mod_parms) new_expl_paths = self.expl_data_collector.collect_new_paths( self.max_path_length, self.num_expl_steps_per_train_loop, discard_incomplete_paths=False, ) timer.stop_timer('exploration sampling') timer.start_timer('replay buffer data storing', unique=False) self.replay_buffer.add_paths(new_expl_paths) timer.stop_timer('replay buffer data storing') timer.start_timer('training', unique=False) for _ in range(self.num_trains_per_train_loop): train_data = self.replay_buffer.random_batch(self.batch_size) self.trainer.train(train_data) timer.stop_timer('training') log_stats = self._get_diagnostics() return log_stats, False ``` #### File: envs/contextual/goal_conditioned.py ```python import warnings from typing import Any, Callable, Dict, List import random import numpy as np import gym from gym.spaces import Box, Dict from multiworld.core.multitask_env import MultitaskEnv from rlkit.misc.asset_loader import load_local_or_remote_file from gym.spaces import Box, Dict from rlkit import pythonplusplus as ppp from rlkit.core.distribution import DictDistribution from rlkit.envs.contextual import ContextualRewardFn from rlkit.envs.contextual.contextual_env import ( ContextualDiagnosticsFn, Path, Context, Diagnostics, ) from rlkit.envs.images import EnvRenderer Observation = Dict Goal = Any GoalConditionedDiagnosticsFn = Callable[ [List[Path], List[Goal]], Diagnostics, ] class GoalDictDistributionFromMultitaskEnv(DictDistribution): def __init__( self, env: MultitaskEnv, desired_goal_keys=('desired_goal',), ): self._env = env self._desired_goal_keys = desired_goal_keys env_spaces = self._env.observation_space.spaces self._spaces = { k: env_spaces[k] for k in self._desired_goal_keys } def sample(self, batch_size: int): return { k: self._env.sample_goals(batch_size)[k] for k in self._desired_goal_keys } @property def spaces(self): return self._spaces class AddImageDistribution(DictDistribution): def __init__( self, env: MultitaskEnv, base_distribution: DictDistribution, renderer: EnvRenderer, image_goal_key='image_desired_goal', _suppress_warning=False, ): self._env = env self._base_distribution = base_distribution img_space = Box(0, 1, renderer.image_shape, dtype=np.float32) self._spaces = base_distribution.spaces self._spaces[image_goal_key] = img_space self._image_goal_key = image_goal_key self._renderer = renderer self._suppress_warning = _suppress_warning def sample(self, batch_size: int): if batch_size > 1 and not self._suppress_warning: warnings.warn( "Sampling many goals is slow. Consider using " "PresampledImageAndStateDistribution" ) contexts = self._base_distribution.sample(batch_size) images = [] for i in range(batch_size): goal = ppp.treemap(lambda x: x[i], contexts, atomic_type=np.ndarray) env_state = self._env.get_env_state() self._env.set_to_goal(goal) img_goal = self._renderer(self._env) self._env.set_env_state(env_state) images.append(img_goal) contexts[self._image_goal_key] = np.array(images) return contexts @property def spaces(self): return self._spaces class PresampledDistribution(DictDistribution): def __init__( self, slow_sampler: DictDistribution, num_presampled_goals, ): self._sampler = slow_sampler self._num_presampled_goals = num_presampled_goals self._presampled_goals = self._sampler.sample(num_presampled_goals) def sample(self, batch_size: int): idx = np.random.randint(0, self._num_presampled_goals, batch_size) sampled_goals = { k: v[idx] for k, v in self._presampled_goals.items() } return sampled_goals @property def spaces(self): return self._sampler.spaces class PresampledPathDistribution(DictDistribution): def __init__( self, datapath, ): self._presampled_goals = load_local_or_remote_file(datapath) self._num_presampled_goals = self._presampled_goals[list(self._presampled_goals)[0]].shape[0] self._set_spaces() def sample(self, batch_size: int): idx = np.random.randint(0, self._num_presampled_goals, batch_size) sampled_goals = { k: v[idx] for k, v in self._presampled_goals.items() } return sampled_goals def _set_spaces(self): pairs = [] for key in self._presampled_goals: dim = self._presampled_goals[key][0].shape[0] box = gym.spaces.Box(-np.ones(dim), np.ones(dim)) pairs.append((key, box)) self.observation_space = Dict(pairs) @property def spaces(self): return self.observation_space.spaces class ContextualRewardFnFromMultitaskEnv(ContextualRewardFn): def __init__( self, env: MultitaskEnv, achieved_goal_from_observation: Callable[[Observation], Goal], desired_goal_key='desired_goal', achieved_goal_key='achieved_goal', additional_obs_keys=None, additional_context_keys=None, ): self._env = env self._desired_goal_key = desired_goal_key self._achieved_goal_key = achieved_goal_key self._achieved_goal_from_observation = achieved_goal_from_observation self._additional_obs_keys = additional_obs_keys self._additional_context_keys = additional_context_keys def __call__(self, states, actions, next_states, contexts): del states achieved = self._achieved_goal_from_observation(next_states) obs = { self._achieved_goal_key: achieved, self._desired_goal_key: contexts[self._desired_goal_key], } if self._additional_obs_keys is not None: for key in self._additional_obs_keys: obs[key] = next_states[key] if self._additional_context_keys is not None: for key in self._additional_context_keys: obs[key] = contexts[key] return self._env.compute_rewards(actions, obs) class IndexIntoAchievedGoal(object): def __init__(self, key): self._key = key def __call__(self, observations): return observations[self._key] class L2Distance(ContextualRewardFn): def __init__( self, achieved_goal_from_observation: Callable[[Observation], Goal], desired_goal_key='desired_goal', dimension_weights=None, ): self._desired_goal_key = desired_goal_key self._achieved_goal_from_observation = achieved_goal_from_observation self._dimension_weights = dimension_weights def __call__(self, states, actions, next_states, contexts): del states achieved = self._achieved_goal_from_observation(next_states) desired = contexts[self._desired_goal_key] if self._dimension_weights is None: distance = np.linalg.norm(achieved - desired, axis=-1) else: difference = achieved - desired weighted_difference = ( self._dimension_weights[None, :] * difference ) distance = np.linalg.norm(weighted_difference, axis=-1) return distance class NegativeL2Distance(ContextualRewardFn): def __init__( self, achieved_goal_from_observation: Callable[[Observation], Goal], desired_goal_key='desired_goal', dimension_weights=None, ): self.distance_fn = L2Distance( achieved_goal_from_observation, desired_goal_key=desired_goal_key, dimension_weights=dimension_weights, ) def __call__(self, states, actions, next_states, contexts): distance = self.distance_fn(states, actions, next_states, contexts) return - distance class ThresholdDistanceReward(ContextualRewardFn): def __init__(self, distance_fn: ContextualRewardFn, threshold): self._distance_fn = distance_fn self._distance_threshold = threshold def __call__(self, states, actions, next_states, contexts): distance = self._distance_fn(states, actions, next_states, contexts) return -(distance > self._distance_threshold).astype(np.float32) class GoalConditionedDiagnosticsToContextualDiagnostics(ContextualDiagnosticsFn): # use a class rather than function for serialization def __init__( self, goal_conditioned_diagnostics: GoalConditionedDiagnosticsFn, desired_goal_key: str, observation_key: str, ): self._goal_conditioned_diagnostics = goal_conditioned_diagnostics self._desired_goal_key = desired_goal_key self._observation_key = observation_key def __call__(self, paths: List[Path], contexts: List[Context]) -> Diagnostics: goals = [c[self._desired_goal_key] for c in contexts] non_contextual_paths = [self._remove_context(p) for p in paths] return self._goal_conditioned_diagnostics(non_contextual_paths, goals) def _remove_context(self, path): new_path = path.copy() new_path['observations'] = np.array([ o[self._observation_key] for o in path['observations'] ]) new_path['next_observations'] = np.array([ o[self._observation_key] for o in path['next_observations'] ]) new_path.pop('full_observations', None) new_path.pop('full_next_observations', None) return new_path ``` #### File: samplers/data_collector/path_collector.py ```python from collections import deque, OrderedDict from functools import partial import numpy as np #from rlkit.envs.vae_wrappers import VAEWrappedEnv from rlkit.misc.eval_util import create_stats_ordered_dict from rlkit.samplers.data_collector.base import PathCollector from rlkit.samplers.rollout_functions import rollout class MdpPathCollector(PathCollector): def __init__( self, env, policy, max_num_epoch_paths_saved=None, render=False, render_kwargs=None, rollout_fn=rollout, save_env_in_snapshot=True, ): if render_kwargs is None: render_kwargs = {} self._env = env self._policy = policy self._max_num_epoch_paths_saved = max_num_epoch_paths_saved self._epoch_paths = deque(maxlen=self._max_num_epoch_paths_saved) self._render = render self._render_kwargs = render_kwargs self._rollout_fn = rollout_fn self._num_steps_total = 0 self._num_paths_total = 0 self._save_env_in_snapshot = save_env_in_snapshot def collect_new_paths( self, max_path_length, num_steps, discard_incomplete_paths, ): paths = [] num_steps_collected = 0 while num_steps_collected < num_steps: max_path_length_this_loop = min( # Do not go over num_steps max_path_length, num_steps - num_steps_collected, ) path = self._rollout_fn( self._env, self._policy, max_path_length=max_path_length_this_loop, render=self._render, render_kwargs=self._render_kwargs, ) path_len = len(path['actions']) if ( path_len != max_path_length and not path['terminals'][-1] and discard_incomplete_paths ): break num_steps_collected += path_len paths.append(path) self._num_paths_total += len(paths) self._num_steps_total += num_steps_collected self._epoch_paths.extend(paths) return paths def get_epoch_paths(self): return self._epoch_paths def end_epoch(self, epoch): self._epoch_paths = deque(maxlen=self._max_num_epoch_paths_saved) def get_diagnostics(self): path_lens = [len(path['actions']) for path in self._epoch_paths] stats = OrderedDict([ ('num steps total', self._num_steps_total), ('num paths total', self._num_paths_total), ]) stats.update(create_stats_ordered_dict( "path length", path_lens, always_show_all_stats=True, )) return stats def get_snapshot(self): snapshot_dict = dict( policy=self._policy, ) if self._save_env_in_snapshot: snapshot_dict['env'] = self._env return snapshot_dict class GoalConditionedPathCollector(MdpPathCollector): def __init__( self, *args, observation_key='observation', desired_goal_key='desired_goal', goal_sampling_mode=None, **kwargs ): def obs_processor(o): return np.hstack((o[observation_key], o[desired_goal_key])) rollout_fn = partial( rollout, preprocess_obs_for_policy_fn=obs_processor, ) super().__init__(*args, rollout_fn=rollout_fn, **kwargs) self._observation_key = observation_key self._desired_goal_key = desired_goal_key self._goal_sampling_mode = goal_sampling_mode def collect_new_paths(self, *args, **kwargs): self._env.goal_sampling_mode = self._goal_sampling_mode return super().collect_new_paths(*args, **kwargs) def get_snapshot(self): snapshot = super().get_snapshot() snapshot.update( observation_key=self._observation_key, desired_goal_key=self._desired_goal_key, ) return snapshot class ObsDictPathCollector(MdpPathCollector): def __init__( self, *args, observation_key='observation', **kwargs ): def obs_processor(obs): return obs[observation_key] rollout_fn = partial( rollout, preprocess_obs_for_policy_fn=obs_processor, ) super().__init__(*args, rollout_fn=rollout_fn, **kwargs) self._observation_key = observation_key def get_snapshot(self): snapshot = super().get_snapshot() snapshot.update( observation_key=self._observation_key, ) return snapshot class VAEWrappedEnvPathCollector(GoalConditionedPathCollector): def __init__( self, env, policy, decode_goals=False, **kwargs ): super().__init__(env, policy, **kwargs) self._decode_goals = decode_goals def collect_new_paths(self, *args, **kwargs): self._env.decode_goals = self._decode_goals return super().collect_new_paths(*args, **kwargs) ``` #### File: torch/sets/models.py ```python import numpy as np from torch import nn from rlkit.launchers.experiments.disentanglement import ( contextual_encoder_distance_launcher as cedl, ) from rlkit.torch.core import PyTorchModule from rlkit.torch.distributions import MultivariateDiagonalNormal from rlkit.torch.networks import ( BasicCNN, Flatten, Mlp, ConcatMultiHeadedMlp, Reshape, ) from rlkit.torch.networks import basic from rlkit.torch.networks.dcnn import BasicDCNN from rlkit.torch.networks.mlp import MultiHeadedMlp from rlkit.torch.networks.stochastic.distribution_generator import ( BernoulliGenerator, Gaussian, IndependentGenerator, ) from rlkit.torch.vae.vae_torch_trainer import VAE import rlkit.torch.pytorch_util as ptu from rlkit.torch.sets.fancy_vae_architecture import ( get_fancy_vae, ) class DummyNetwork(PyTorchModule): def __init__(self, *output_shapes): super().__init__() self._output_shapes = output_shapes # if len(output_shapes) == 1: # self.output = ptu.zeros(output_shapes[0]) # else: # self.output = tuple( # ptu.zeros(shape) for shape in output_shapes # ) def forward(self, input): # import ipdb; ipdb.set_trace() if len(self._output_shapes) == 1: return ptu.zeros((input.shape[0], *self._output_shapes[0])) else: return tuple( ptu.zeros((input.shape[0], *shape)) for shape in self._output_shapes ) # return self.output def create_dummy_image_vae( img_chw, latent_dim, *args, **kwargs ) -> VAE: encoder_network = DummyNetwork((latent_dim,), (latent_dim,)) decoder_network = DummyNetwork(img_chw) encoder = Gaussian(encoder_network) decoder = Gaussian(decoder_network, std=1, reinterpreted_batch_ndims=3) prior = MultivariateDiagonalNormal( loc=ptu.zeros(1, latent_dim), scale_diag=ptu.ones(1, latent_dim), ) return VAE(encoder, decoder, prior) def create_image_vae( img_chw, latent_dim, encoder_cnn_kwargs, encoder_mlp_kwargs, decoder_mlp_kwargs=None, decoder_dcnn_kwargs=None, use_mlp_decoder=False, decoder_distribution="bernoulli", use_fancy_architecture=False, ) -> VAE: img_num_channels, img_height, img_width = img_chw if use_fancy_architecture: decoder_network, encoder_network = get_fancy_vae(img_height, img_num_channels, img_width, latent_dim) else: encoder_network = create_image_encoder( img_chw, latent_dim, encoder_cnn_kwargs, encoder_mlp_kwargs, ) if decoder_mlp_kwargs is None: decoder_mlp_kwargs = cedl.invert_encoder_mlp_params( encoder_mlp_kwargs ) if use_mlp_decoder: decoder_network = create_mlp_image_decoder( img_chw, latent_dim, decoder_mlp_kwargs, two_headed=decoder_distribution == 'gaussian_learned_variance', ) else: if decoder_distribution == "gaussian_learned_variance": raise NotImplementedError() pre_dcnn_chw = encoder_network._modules["0"].output_shape if decoder_dcnn_kwargs is None: decoder_dcnn_kwargs = cedl.invert_encoder_params( encoder_cnn_kwargs, img_num_channels, ) decoder_network = create_image_decoder( pre_dcnn_chw, latent_dim, decoder_dcnn_kwargs, decoder_mlp_kwargs, ) encoder = Gaussian(encoder_network) encoder.input_size = encoder_network.input_size if decoder_distribution in { "gaussian_learned_global_scalar_variance", "gaussian_learned_global_image_variance", "gaussian_learned_variance", }: if decoder_distribution == "gaussian_learned_global_image_variance": log_std = basic.LearnedPositiveConstant( ptu.zeros((img_num_channels, img_height, img_width)) ) decoder_network = basic.ApplyMany(decoder_network, log_std) elif decoder_distribution == "gaussian_learned_global_scalar_variance": log_std = basic.LearnedPositiveConstant(ptu.zeros(1)) decoder_network = basic.ApplyMany(decoder_network, log_std) decoder = Gaussian(decoder_network, reinterpreted_batch_ndims=3) elif decoder_distribution == "gaussian_fixed_unit_variance": decoder = Gaussian(decoder_network, std=1, reinterpreted_batch_ndims=3) elif decoder_distribution == "bernoulli": decoder = IndependentGenerator( BernoulliGenerator(decoder_network), reinterpreted_batch_ndims=3 ) else: raise NotImplementedError(decoder_distribution) prior = MultivariateDiagonalNormal( loc=ptu.zeros(1, latent_dim), scale_diag=ptu.ones(1, latent_dim), ) return VAE(encoder, decoder, prior) def create_image_encoder( img_chw, latent_dim, encoder_cnn_kwargs, encoder_kwargs, ): img_num_channels, img_height, img_width = img_chw cnn = BasicCNN( input_width=img_width, input_height=img_height, input_channels=img_num_channels, **encoder_cnn_kwargs ) cnn_output_size = np.prod(cnn.output_shape) mlp = MultiHeadedMlp( input_size=cnn_output_size, output_sizes=[latent_dim, latent_dim], **encoder_kwargs ) enc = nn.Sequential(cnn, Flatten(), mlp) enc.input_size = img_width * img_height * img_num_channels enc.output_size = latent_dim return enc def create_image_decoder( pre_dcnn_chw, latent_dim, decoder_dcnn_kwargs, decoder_kwargs, ): dcnn_in_channels, dcnn_in_height, dcnn_in_width = pre_dcnn_chw dcnn_input_size = dcnn_in_channels * dcnn_in_width * dcnn_in_height dcnn = BasicDCNN( input_width=dcnn_in_width, input_height=dcnn_in_height, input_channels=dcnn_in_channels, **decoder_dcnn_kwargs ) mlp = Mlp( input_size=latent_dim, output_size=dcnn_input_size, **decoder_kwargs ) dec = nn.Sequential(mlp, dcnn) dec.input_size = latent_dim return dec def create_mlp_image_decoder( img_chw, latent_dim, decoder_kwargs, two_headed, ): img_num_channels, img_height, img_width = img_chw output_size = img_num_channels * img_height * img_width if two_headed: dec = nn.Sequential( MultiHeadedMlp( input_size=latent_dim, output_sizes=[output_size, output_size], **decoder_kwargs ), basic.Map(Reshape(img_num_channels, img_height, img_width)), ) else: dec = nn.Sequential( Mlp( input_size=latent_dim, output_size=output_size, **decoder_kwargs ), Reshape(img_num_channels, img_height, img_width), ) dec.input_size = latent_dim dec.output_size = img_num_channels * img_height * img_width return dec def create_vector_vae(data_dim, latent_dim, encoder_kwargs): encoder = create_vector_encoder(data_dim, latent_dim, encoder_kwargs) decoder_kwargs = cedl.invert_encoder_mlp_params(encoder_kwargs) decoder = create_vector_decoder(data_dim, latent_dim, decoder_kwargs) prior = MultivariateDiagonalNormal( loc=ptu.zeros(1, latent_dim), scale_diag=ptu.ones(1, latent_dim), ) return VAE(encoder, decoder, prior) def create_vector_encoder(data_dim, latent_dim, encoder_kwargs): enc = ConcatMultiHeadedMlp( input_size=data_dim, output_sizes=[latent_dim, latent_dim], **encoder_kwargs ) enc.input_size = data_dim enc.output_size = latent_dim return enc def create_vector_decoder(data_dim, latent_dim, decoder_kwargs): dec = Mlp(input_size=latent_dim, output_size=data_dim, **decoder_kwargs) return dec ``` #### File: torch/sets/set_creation.py ```python import pickle from os import path as osp from multiworld.envs.pygame import PickAndPlaceEnv from rlkit.envs.pygame import pnp_util from rlkit.launchers.contextual.util import get_gym_env from rlkit.misc import asset_loader from rlkit.torch.sets.set_projection import Set from rlkit.launchers.config import LOCAL_LOG_DIR def create_sets( env_id, env_class, env_kwargs, renderer, saved_filename=None, save_to_filename=None, **kwargs ): if saved_filename is not None: sets = asset_loader.load_local_or_remote_file(saved_filename) else: env = get_gym_env(env_id, env_class=env_class, env_kwargs=env_kwargs) if isinstance(env, PickAndPlaceEnv): sets = sample_pnp_sets(env, renderer, **kwargs) else: raise NotImplementedError() if save_to_filename: save(sets, save_to_filename) return sets def sample_pnp_sets( env, renderer, num_sets=1, num_samples_per_set=128, set_configs=None, example_state_key="example_state", example_image_key="example_image", ): if set_configs is None: print(__file__, "WARNING: will deprecate soon") set_projections = pnp_util.sample_set_projections(env, num_sets) else: set_projections = [ pnp_util.create_set_projection(**set_config) for set_config in set_configs ] sets = [] for set_projection in set_projections: # for set_config in set_configs: # set_projection = pnp_util.create_set_projection(**set_config) example_dict = pnp_util.sample_examples_with_images( env, renderer, set_projection, num_samples_per_set, state_key=example_state_key, image_key=example_image_key, ) sets.append(Set(example_dict, set_projection)) return sets def get_absolute_path(relative_path): return osp.join(LOCAL_LOG_DIR, relative_path) def load(relative_path): path = get_absolute_path(relative_path) print("loading data from", path) return pickle.load(open(path, "rb")) def save(data, relative_path): path = get_absolute_path(relative_path) pickle.dump(data, open(path, "wb")) ```
{ "source": "jcorm714/PokemonUtils", "score": 4 }
#### File: PokemonUtils/Objects/Nature.py ```python from enum import Enum import typing from Objects.Stats import Stats class Nature(Enum): """An Enum representing the list of pokemon antures""" HARDY = "Hardy" LONELY = "Lonely" BRAVE = "Brave" ADAMANT = "Adamant" NAUGHTY = "Naughty" BOLD = "Bold" DOCILE = "Docile" RELAXED = "Relaxed" IMPISH = "Impish" LAX = "Lax" TIMID = "Timid" HASTY = "Hasty" SERIOUS = "Serious" JOLLY = "Jolly" NAIVE = "Naive" MODEST = "Modest" MILD = "Mild" QUIET = "Quiet" BASHFUL = "Bashful" RASH = "Rash" CALM = "Calm" GENTLE = "Gentle" SASSY = "Sassy" CAREFUL = "Careful" QUIRKY = "Quirky" def get_affected_stats(nature: Nature): """Returns the positive and negative stat affected by a nature Parameters ---------- nature: Nature An enumeration of the pokemon natures returns dictionary called modifiers with positive and negative stat modifed if the nature is neutral the dictionary will be empty keys: POS NEG""" modifiers = {"POS": "", "NEG": ""} if nature == Nature.LONELY: modifiers["POS"] = Stats.ATTACK modifiers["NEG"] = Stats.DEFENSE elif nature == Nature.BRAVE: modifiers["POS"] = Stats.ATTACK modifiers["NEG"] = Stats.SPEED elif nature == Nature.ADAMANT: modifiers["POS"] = Stats.ATTACK modifiers["NEG"] = Stats.SP_ATTACK elif nature == Nature.NAUGHTY: modifiers["POS"] = Stats.ATTACK modifiers["NEG"] = Stats.DEFENSE elif nature == Nature.BOLD: modifiers["POS"] = Stats.DEFENSE modifiers["NEG"] = Stats.ATTACK elif nature == Nature.RELAXED: modifiers["POS"] = Stats.DEFENSE modifiers["NEG"] = Stats.SPEED elif nature == Nature.IMPISH: modifiers["POS"] = Stats.DEFENSE modifiers["NEG"] = Stats.SP_ATTACK elif nature == Nature.LAX: modifiers["POS"] = Stats.DEFENSE modifiers["NEG"] = Stats.SP_DEFENSE elif nature == Nature.TIMID: modifiers["POS"] = Stats.SPEED modifiers["NEG"] = Stats.ATTACK elif nature == Nature.HASTY: modifiers["POS"] = Stats.SPEED modifiers["NEG"] = Stats.DEFENSE elif nature == Nature.JOLLY: modifiers["POS"] = Stats.SPEED modifiers["NEG"] = Stats.SP_ATTACK elif nature == Nature.NAIVE: modifiers["POS"] = Stats.SPEED modifiers["NEG"] = Stats.SP_DEFENSE elif nature == Nature.MODEST: modifiers["POS"] = Stats.SP_ATTACK modifiers["NEG"] = Stats.ATTACK elif nature == Nature.MILD: modifiers["POS"] = Stats.SP_ATTACK modifiers["NEG"] = Stats.DEFENSE elif nature == Nature.QUIET: modifiers["POS"] = Stats.SP_ATTACK modifiers["NEG"] = Stats.SPEED elif nature == Nature.RASH: modifiers["POS"] = Stats.SP_ATTACK modifiers["NEG"] = Stats.SP_DEFENSE elif nature == Nature.CALM: modifiers["POS"] = Stats.SP_DEFENSE modifiers["NEG"] = Stats.ATTACK elif nature == Nature.GENTLE: modifiers["POS"] = Stats.SP_DEFENSE modifiers["NEG"] = Stats.DEFENSE elif nature == Nature.SASSY: modifiers["POS"] = Stats.SP_DEFENSE modifiers["NEG"] = Stats.SPEED elif nature == Nature.CAREFUL: modifiers["POS"] = Stats.SP_DEFENSE modifiers["NEG"] = Stats.SP_ATTACK return modifiers ```
{ "source": "jcormier/harvesters", "score": 2 }
#### File: harvesters/util/pfnc.py ```python from harvesters.util._pfnc import symbolics as _symbolics # symbolics = _symbolics dict_by_ints = symbolics dict_by_names = {n: i for i, n in symbolics.items()} # 32-bit value layout # |31 24|23 16|15 08|07 00| # | C| Comp. Layout| Effective Size | Pixel ID | # Custom flag pfnc_custom = 0x80000000 # Component layout pfnc_single_component = 0x01000000 pfnc_multiple_component = 0x02000000 pfnc_component_mask = 0x02000000 # Effective size pfnc_pixel_size_mask = 0x00ff0000 pfnc_pixel_size_shift = 16 def get_effective_pixel_size(pixel_format_value): """ Returns the effective pixel size (number of bits a pixel occupies in memory). This includes padding in many cases and the actually used bits are less. """ return (pixel_format_value & pfnc_pixel_size_mask) >> \ pfnc_pixel_size_shift def is_custom(pixel_format_value): return (pixel_format_value & pfnc_custom) == pfnc_custom def is_single_component(pixel_format_value): return (pixel_format_value & pfnc_component_mask) == pfnc_single_component def is_multiple_component(pixel_format_value): return (pixel_format_value & pfnc_component_mask) == pfnc_multiple_component def get_bits_per_pixel(data_format): """ Returns the number of (used) bits per pixel. So without padding. Returns None if format is not known. """ if data_format in component_8bit_formats: return 8 elif data_format in component_10bit_formats: return 10 elif data_format in component_12bit_formats: return 12 elif data_format in component_14bit_formats: return 14 elif data_format in component_16bit_formats: return 16 # format not known return None mono_location_formats = [ # 'Mono8', 'Mono8s', 'Mono10', 'Mono12', 'Mono14', 'Mono16', # 'R8', 'R10', 'R12', 'R16', 'G8', 'G10', 'G12', 'G16', 'B8', 'B10', 'B12', 'B16', # 'Coord3D_A8', 'Coord3D_B8', 'Coord3D_C8', 'Coord3D_A16', 'Coord3D_B16', 'Coord3D_C16', 'Coord3D_A32f', 'Coord3D_B32f', 'Coord3D_C32f', # 'Confidence1', 'Confidence8', 'Confidence16', 'Confidence32f', ] mono_packed_location_formats = [ 'Mono1p', 'Mono2p', 'Mono4p', 'Mono10Packed', 'Mono10p', 'Mono12Packed', 'Mono12p', 'Coord3D_A10p', 'Coord3D_B10p', 'Coord3D_C10p', 'Coord3D_A12p', 'Coord3D_B12p', 'Coord3D_C12p', ] lmn_444_location_formats = [ # 'RGB8', 'RGB10', 'RGB12', 'RGB14', 'RGB16', # 'BGR8', 'BGR10', 'BGR12', 'BGR14', 'BGR16', # 'Coord3D_ABC8', 'Coord3D_ABC8_Planar', 'Coord3D_ABC16', 'Coord3D_ABC16_Planar', 'Coord3D_ABC32f', 'Coord3D_ABC32f_Planar', ] lmn_444_packed_location_formats = [ # 'RGB8Packed', # 'Coord3D_ABC10p', 'Coord3D_ABC10p_Planar', 'Coord3D_ABC12p', 'Coord3D_ABC12p_Planar', ] lmn_422_location_formats = [ 'YUV422_8_UYVY', 'YUV422_8', 'YCbCr422_8', 'YCbCr601_422_8', 'YCbCr709_422_8', 'YCbCr422_8_CbYCrY', 'YCbCr601_422_8_CbYCrY', 'YCbCr709_422_8_CbYCrY', 'YCbCr422_10', 'YCbCr422_12', 'YCbCr601_422_10', 'YCbCr601_422_12', 'YCbCr709_422_10', 'YCbCr709_422_12', 'YCbCr422_10_CbYCrY', 'YCbCr422_12_CbYCrY', 'YCbCr601_422_10_CbYCrY', 'YCbCr601_422_12_CbYCrY', 'YCbCr709_422_10_CbYCrY', 'YCbCr709_422_12_CbYCrY', 'YCbCr2020_422_8', 'YCbCr2020_422_8_CbYCrY', 'YCbCr2020_422_10', 'YCbCr2020_422_10_CbYCrY', 'YCbCr2020_422_12', 'YCbCr2020_422_12_CbYCrY', ] lmn_422_packed_location_formats = [ 'YCbCr422_10p', 'YCbCr422_12p', 'YCbCr601_422_10p', 'YCbCr601_422_12p', 'YCbCr709_422_10p', 'YCbCr709_422_12p', 'YCbCr422_10p_CbYCrY', 'YCbCr422_12p_CbYCrY', 'YCbCr601_422_10p_CbYCrY', 'YCbCr601_422_12p_CbYCrY', 'YCbCr709_422_10p_CbYCrY', 'YCbCr709_422_12p_CbYCrY', 'YCbCr2020_422_10p', 'YCbCr2020_422_10p_CbYCrY', 'YCbCr2020_422_12p', 'YCbCr2020_422_12p_CbYCrY', ] lmn_411_location_formats = [ 'YUV411_8_UYYVYY', 'YCbCr411_8_CbYYCrYY', 'YCbCr601_411_8_CbYYCrYY', 'YCbCr709_411_8_CbYYCrYY', 'YCbCr411_8', 'YCbCr2020_411_8_CbYYCrYY', ] lmno_4444_location_formats = [ 'RGBa8', 'RGBa10', 'RGBa12', 'RGBa14', 'RGBa16', 'BGRa8', 'BGRa10', 'BGRa12', 'BGRa14', 'BGRa16', ] lmno_4444_packed_location_formats = [ 'RGBa10p', 'RGBa12p', 'BGRa10p', 'BGRa12p', ] lm_44_location_formats = [ 'Coord3D_AC8', 'Coord3D_AC8_Planar', 'Coord3D_AC16', 'Coord3D_AC16_Planar', 'Coord3D_AC32f', 'Coord3D_AC32f_Planar', ] lm_44_packed_location_formats = [ 'Coord3D_AC10p', 'Coord3D_AC10p_Planar', 'Coord3D_AC12p', 'Coord3D_AC12p_Planar', ] bayer_location_formats = [ 'BayerGR8', 'BayerRG8', 'BayerGB8', 'BayerBG8', 'BayerGR10', 'BayerRG10', 'BayerGB10', 'BayerBG10', 'BayerGR12', 'BayerRG12', 'BayerGB12', 'BayerBG12', 'BayerGR16', 'BayerRG16', 'BayerGB16', 'BayerBG16', ] bayer_packed_location_formats = [ 'BayerGR10Packed', 'BayerRG10Packed', 'BayerGB10Packed', 'BayerBG10Packed', 'BayerGR12Packed', 'BayerRG12Packed', 'BayerGB12Packed', 'BayerBG12Packed', 'BayerBG10p', 'BayerBG12p', 'BayerGB10p', 'BayerGB12p', 'BayerGR10p', 'BayerGR12p', 'BayerRG10p', 'BayerRG12p', ] uint8_formats = [ # 'Mono8', # 'RGB8', 'RGB8Packed', 'RGBa8', # 'BGR8', 'BGRa8', # 'BayerGR8', 'BayerGB8', 'BayerRG8', 'BayerBG8', # 'Coord3D_A8', 'Coord3D_B8', 'Coord3D_C8', 'Coord3D_ABC8', 'Coord3D_ABC8_Planar', 'Coord3D_AC8', 'Coord3D_AC8_Planar', # 'Confidence1', 'Confidence8', ] uint16_formats = [ # 'Mono10', 'Mono12', 'Mono14', 'Mono16', # 'RGB10', 'RGB12', 'RGB14', 'RGB16', # 'BGR10', 'BGR12', 'BGR14', 'BGR16', # 'RGBa10', 'RGBa12', 'RGBa14', 'RGBa16', # 'BGRa10', 'BGRa12', 'BGRa14', 'BGRa16', # 'BayerGR10', 'BayerGB10', 'BayerRG10', 'BayerBG10', # 'BayerGR12', 'BayerGB12', 'BayerRG12', 'BayerBG12', # 'BayerGR16', 'BayerRG16', 'BayerGB16', 'BayerBG16', # 'Coord3D_A16', 'Coord3D_B16', 'Coord3D_C16', # 'Coord3D_ABC16', 'Coord3D_ABC16_Planar', # 'Coord3D_AC16', 'Coord3D_AC16_Planar', # 'Coord3D_A10p', 'Coord3D_B10p', 'Coord3D_C10p', # 'Coord3D_A12p', 'Coord3D_B12p', 'Coord3D_C12p', # 'Coord3D_ABC10p', 'Coord3D_ABC10p_Planar', # 'Coord3D_ABC12p', 'Coord3D_ABC12p_Planar', # 'Coord3D_AC10p', 'Coord3D_AC10p_Planar', # 'Coord3D_AC12p', 'Coord3D_AC12p_Planar', # 'Confidence16', ] uint32_formats = [ 'Mono32', ] float32_formats = [ # 'Coord3D_A32f', 'Coord3D_B32f', 'Coord3D_C32f', # 'Coord3D_ABC32f', 'Coord3D_ABC32f_Planar', # 'Coord3D_AC32f', 'Coord3D_AC32f_Planar', # 'Confidence32f', ] component_8bit_formats = [ # 'Mono8', # 'RGB8', 'RGBa8', # 'BGR8', 'BGRa8', # 'BayerGR8', 'BayerGB8', 'BayerRG8', 'BayerBG8', # 'Confidence8', ] component_10bit_formats = [ # 'Mono10', # 'RGB10', 'RGBa10', # 'BGR10', 'BGRa10', # 'BayerGR10', 'BayerGB10', 'BayerRG10', 'BayerBG10', ] component_12bit_formats = [ # 'Mono12', # 'RGB12', 'RGBa12', # 'BGR12', 'BGRa12', # 'BayerGR12', 'BayerGB12', 'BayerRG12', 'BayerBG12', ] component_14bit_formats = [ # 'Mono14', # 'RGB14', 'RGBa14', # 'BGR14', 'BGRa14', ] component_16bit_formats = [ # 'Mono16', # 'RGB16', 'RGBa16', # 'BayerGR16', 'BayerRG16', 'BayerGB16', 'BayerBG16', # 'Coord3D_A16', 'Coord3D_B16', 'Coord3D_C16', # 'Coord3D_ABC16', 'Coord3D_ABC16_Planar', # 'Coord3D_AC16', 'Coord3D_AC16_Planar', # 'Confidence16', ] component_32bit_formats = [ 'Confidence32f', ] component_2d_formats = [ # 'Mono8', 'Mono10', 'Mono12', 'Mono14', 'Mono16', # 'RGB8', 'RGB10', 'RGB12', 'RGB14', 'RGB16', # 'BGR8', 'BGR10', 'BGR12', 'BGR14', 'BGR16', # 'RGBa8', 'RGBa10', 'RGBa12', 'RGBa14', 'RGBa16', # 'BGRa8', 'BGRa10', 'BGRa12', 'BGRa14', 'BGRa16', # 'BayerGR8', 'BayerGB8', 'BayerRG8', 'BayerBG8', # 'BayerGR10', 'BayerGB10', 'BayerRG10', 'BayerBG10', # 'BayerGR12', 'BayerGB12', 'BayerRG12', 'BayerBG12', # 'BayerGR16', 'BayerRG16', 'BayerGB16', 'BayerBG16', # 'Coord3D_A8', 'Coord3D_B8', 'Coord3D_C8', 'Coord3D_ABC8', 'Coord3D_ABC8_Planar', 'Coord3D_AC8', 'Coord3D_AC8_Planar', 'Coord3D_A16', 'Coord3D_B16', 'Coord3D_C16', 'Coord3D_ABC16', 'Coord3D_ABC16_Planar', 'Coord3D_AC16', 'Coord3D_AC16_Planar', 'Coord3D_A32f', 'Coord3D_B32f', 'Coord3D_C32f', 'Coord3D_ABC32f', 'Coord3D_ABC32f_Planar', 'Coord3D_AC32f', 'Coord3D_AC32f_Planar', 'Coord3D_A10p', 'Coord3D_B10p', 'Coord3D_C10p', 'Coord3D_A12p', 'Coord3D_B12p', 'Coord3D_C12p', 'Coord3D_ABC10p', 'Coord3D_ABC10p_Planar', 'Coord3D_ABC12p', 'Coord3D_ABC12p_Planar', 'Coord3D_AC10p', 'Coord3D_AC10p_Planar', 'Coord3D_AC12p', 'Coord3D_AC12p_Planar', # 'Confidence1', 'Confidence1p', 'Confidence8', 'Confidence16', 'Confidence32f', ] rgb_formats = [ # 'RGB8', 'RGB10', 'RGB12', 'RGB14', 'RGB16', ] rgba_formats = [ # 'RGBa8', 'RGBa10', 'RGBa12', 'RGBa14', 'RGBa16', ] bgr_formats = [ # 'BGR8', 'BGR10', 'BGR12', 'BGR14', 'BGR16', ] bgra_formats = [ # 'BGRa8', 'BGRa10', 'BGRa12', 'BGRa14', 'BGRa16', ] ```
{ "source": "JCorn64/QT-Study-App", "score": 3 }
#### File: QT-Study-App/students/forms.py ```python from django import forms from .models import StudentSignup class StudentSignupForm(forms.ModelForm): class Meta: model = StudentSignup fields = ('name', 'phone_number', 'classes') required = ('name', 'phone_number', 'classes') labels = { "phone_number": "Phone Number", "classes": "Classes (ex. CS 3240, CS 2150)", } def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) for field in self.Meta.required: self.fields[field].required = True ``` #### File: QT-Study-App/students/tests.py ```python from django.test import TestCase from students.models import StudentSignup from django.contrib.auth.models import User #test class BasicTestCase(TestCase): def test_1eq1(self): self.assertTrue(1 == 1) class StudentSignUpTestCase(TestCase): def setUp(self): user = User.objects.create_user('john', '<EMAIL>', 'johnpassword') StudentSignup.objects.create(phone_number="123-456-7890", classes="CS 3240", user=user) blank = User.objects.create_user('blank', '<EMAIL>', 'password') StudentSignup.objects.create(phone_number="5", classes="", user = blank) def test_student_equivalence(self): student = StudentSignup.objects.get(phone_number="123-456-7890") self.assertEqual(student.classes, "CS 3240") def test_student_boundary(self): blank = StudentSignup.objects.get(phone_number="5") self.assertEqual(blank.classes, "") def test_student_edit(self): student = StudentSignup.objects.get(phone_number="123-456-7890") student.phone_number="5" student.classes="CS 2150" student.save() self.assertEqual(student.phone_number,"5") self.assertEqual(student.classes,"CS 2150") ```
{ "source": "jcornaz/hesso.cloud.plex", "score": 2 }
#### File: webserver/controllers/file_delete_controller.py ```python from os import remove from os.path import isfile from shutil import rmtree from flask import jsonify from services.PathService import get_absolute_storage_path def file_delete_controller(path): absolute_path = get_absolute_storage_path(path) try: if isfile(absolute_path): remove(absolute_path) json = {'error': False, 'message': "File %s successfully deleted." % path} else: rmtree(absolute_path) json = {'error': False, 'message': "Directory %s successfully deleted." % path} except Exception as e: json = {'error': True, 'message': e} return jsonify(json) ```
{ "source": "jcornford/ndf_reader", "score": 2 }
#### File: jcornford/ndf_reader/ndfconverter.py ```python import sys import struct import os import time import logging import pandas as pd import h5py import matplotlib.pyplot as plt import numpy as np import scipy.stats as ss from scipy import signal, stats #from line_profiler import LineProfiler if sys.version_info < (3,): range = xrange ''' # decorator needed when profiling def lprofile(): def inner(func): def profiled_func(*args, **kwargs): try: profiler = LineProfiler() profiler.add_function(func) profiler.enable_by_count() return func(*args, **kwargs) finally: profiler.print_stats() return profiled_func return inner ''' class NdfFile: """ TODO: - glitch detection is a little messy, relying on bindings. - bad messages doesnt delete if 2 messages in window for one (minor but would be better to delete both) - Find out if they ever start recording half way through - for auto fs detection - Code up printing the ndf object __repr__ - Clean up unused __init__ attributes Class to load ndf binary files. The NDF file starts with a header of at least twelve bytes: - The first four bytes spell the NDF identifier " ndf". The identifier is then followed by three four-byte big-endian numbers. - The first number is the address of the meta-data string, i.e. the byte offset from the first byte of the file (indexed from 0). This is therefore the number of bytes to skip from the start of the file to begin reading the meta-data. - The second number is the address of the first data byte. The data extends to the end of the file. - The third number is the actual length of the meta-data string, as it was last written. If this number is zero, any routines dealing with the meta-data string must determine the length of the string themselves. The messages in the data recorder's message buffer are each four bytes long. The bytes of each message are listed in the table below. The Channel Number is used to identify the source of the message. Channel number zero is reserved for clock messages. Following the channel number, each message contains a sixteen-bit data word. In the case of transmitters , the sixteen-bit data word is a digitized voltage. The last byte of the message is a timestamp. Byte Contents 0 Channel Number 1 Most Significant Data Byte 2 Least Significant Data Byte 3 Timestamp or Version Number All messages with channel number zero are clock messages. This channel acts as a reference clock that is subsequently used to align the data messages from the transmitter channels and do error correction. The messages in this channel are generated at a frequency of 128 Hz. Each ndf file typically encodes 1 hour of data at 512 Hz, although it can also encode data at other frequencies (e.g. 1024 Hz) it does so for up to 14 transmitters. Each channel sends a message roughly 4 times for every channel 0 message (because they are operating at 512 Hz, while the clock is at 128 Hz). """ def __init__(self, file_path, verbose = False, fs = 'auto', amp_factor = 200): self.filepath = file_path # some unused self.tid_set = set() self.tid_to_fs_dict = {} self.tid_raw_data_time_dict = {} self.tid_data_time_dict = {} self.resampled = False self.file_label = file_path.split('/')[-1].split('.')[0] self.identifier = None self.data_address = None self.metadata = None self.t_stamps = None self.read_ids = None self.fs = fs self._n_possible_glitches = None self._glitch_count = None self._plot_each_glitch = None self.read_id = None self.verbose = verbose self.file_time_len_sec = 3600 self.micro_volt_div = 0.4 # this is the dac units? # firmware dependent: self.clock_tick_cycle = 7.8125e-3 # the "big" clock messages are 128Hz, 1/128 = 7.8125e-3 self.clock_division = self.clock_tick_cycle / 256.0 # diff values from one byte self._read_file_metadata() self.get_valid_tids_and_fs() def __getitem__(self, item): #assert type(item) == int assert item in self.tid_set, 'ERROR: Invalid tid for file' return self.tid_data_time_dict[item] def _read_file_metadata(self): with open(self.filepath, 'rb') as f: f.seek(0) self.identifier = f.read(4) assert (self.identifier == b' ndf') meta_data_string_address = struct.unpack('>I', f.read(4))[0] self.data_address = struct.unpack('>I', f.read(4))[0] meta_data_length = struct.unpack('>I', f.read(4))[0] if meta_data_length != 0: f.seek(meta_data_string_address) self.metadata = f.read(meta_data_length) # need to handle the fact it is in bytes? #print ('\n'.join(self.metadata.split('\n')[1:-2])) #print (self.metadata) else: print('meta data length unknown - not bothering to work it out...') def get_valid_tids_and_fs(self): """ - Here work out which t_ids are in the file and their sampling frequency. Threshold of at least 5000 datapoints! """ f = open(self.filepath, 'rb') f.seek(self.data_address) self._e_bit_reads = np.fromfile(f, dtype = 'u1') self.transmitter_id_bytes = self._e_bit_reads[::4] tid_message_counts = pd.Series(self.transmitter_id_bytes).value_counts() possible_freqs = [256,512,1024] for tid, count in tid_message_counts.iteritems(): if count > 5000 and tid != 0: # arbitrary threshold to exclude glitches error = [abs(3600 - count/fs) for fs in possible_freqs] if self.fs == 'auto': self.tid_to_fs_dict[tid] = possible_freqs[np.argmin(error)] else: self.fs = float(self.fs) self.tid_to_fs_dict[tid] = self.fs self.tid_set.add(tid) self.tid_raw_data_time_dict[tid] = {} self.tid_data_time_dict[tid] = {} logging.info(self.filepath +' valid ids and freq are: '+str(self.tid_to_fs_dict)) #@lprofile() def glitch_removal(self, plot_glitches=False, print_output=False, plot_sub_glitches = False, tactic = 'mad'): """ Tactics can either be 'std', 'mad','roll_med', 'big_guns' """ for tid in self.read_ids: # create binding between tid data and the data to deglitch self.data_to_deglitch = self.tid_data_time_dict[tid]['data'] self.time_to_deglitch = self.tid_data_time_dict[tid]['time'] #print (self.data_to_deglitch is self.tid_data_time_dict[tid]['data']) self._n_possible_glitches = 0 self._glitch_count = 0 self._plot_each_glitch = plot_sub_glitches if plot_glitches: plt.figure(figsize = (15, 4)) plt.plot(self.time_to_deglitch , self.data_to_deglitch, 'k') plt.title('Full raw trace');plt.xlabel('Time (seconds)') plt.xlim(0,self.time_to_deglitch[-1]) plt.show() if tactic == 'std': crossing_locations = self._stddev_based_outlier() self._check_glitch_candidates(crossing_locations) elif tactic == 'mad': crossing_locations = np.where(self._mad_based_outlier())[0] self._check_glitch_candidates(crossing_locations) elif tactic == 'roll_med': crossing_locations = np.where(self._rolling_median_based_outlier())[0] self._check_glitch_candidates(crossing_locations) elif tactic == 'big_guns': crossing_locations = np.where(self._rolling_median_based_outlier())[0] self._check_glitch_candidates(crossing_locations) crossing_locations = np.where(self._mad_based_outlier())[0] self._check_glitch_candidates(crossing_locations) crossing_locations = self._stddev_based_outlier() self._check_glitch_candidates(crossing_locations) else: print ('Please specify detection tactic: ("mad","roll_med","big_guns", "std")') raise logging.debug('Tid '+str(tid)+': removed '+str(self._glitch_count)+' datapoints as glitches. There were '+str(self._n_possible_glitches)+' possible glitches.') if self.verbose: print('Tid '+str(tid)+': removed '+str(self._glitch_count)+' datapoints as glitches. There were '+str(self._n_possible_glitches)+' possible glitches.') if plot_glitches: plt.figure(figsize = (15, 4)) plt.plot(self.time_to_deglitch , self.data_to_deglitch, 'k') plt.title('De-glitched trace');plt.xlabel('Time (seconds)') plt.xlim(0,self.time_to_deglitch[-1] ) plt.show() #self.tid_data_time_dict[tid]['data'] = self.data_to_deglitch[:] #self.tid_data_time_dict[tid]['time'] = self.time_to_deglitch[:] def _mad_based_outlier(self, thresh=3.5): """ From stackoverflow? points : An numobservations by numdimensions array of observations thresh : The modified z-score to use as a threshold. Observations with a modified z-score (based on the median absolute deviation) greater than this value will be classified as outliers. """ points = self.data_to_deglitch if len(points.shape) == 1: points = points[:,None] median = np.median(points, axis=0) diff = np.sum((points - median)**2, axis=-1) diff = np.sqrt(diff) med_abs_deviation = np.median(diff) modified_z_score = 0.6745 * diff / med_abs_deviation return modified_z_score > thresh def _rolling_median_based_outlier(self, threshold = 1): data = self.data_to_deglitch if len(data.shape) == 1: data = data[:, None] df = pd.DataFrame(data, columns=['raw']) df['rolling'] = df['raw'].rolling(window=10, center = True).median().fillna(method='bfill').fillna(method='ffill') difference = np.abs(df['raw'] - df['rolling']) #inlier_idx = difference < threshold outlier_idx = difference > threshold n_glitch = sum(abs(outlier_idx)) if n_glitch > 200: logging.warning('Warning: more than 200 glitches detected! n_glitch = '+str(n_glitch)) return outlier_idx def _stddev_based_outlier(self, x_std_threshold=10): std_dev = np.std(self.data_to_deglitch) mean_point = np.mean(self.data_to_deglitch) threshold = std_dev * x_std_threshold + mean_point crossing_locations = np.where(self.data_to_deglitch > threshold)[0] return crossing_locations def _check_glitch_candidates(self,crossing_locations, diff_threshold=10,): self._n_possible_glitches += len(crossing_locations) # check local difference is much bigger than the mean difference between points glitch_count = 0 std_dev = np.std(self.data_to_deglitch) for location in crossing_locations: i = location - 1 ii = location + 1 try: if abs(self.data_to_deglitch[location] - self.data_to_deglitch[ii]) > diff_threshold * std_dev: # plot glitches to be removed if plotting option is on if self._plot_each_glitch: plt.figure(figsize = (15, 4)) plt.plot(self.time_to_deglitch[location - 512:location + 512], self.data_to_deglitch[location - 512:location + 512], 'k') plt.ylabel('Time (s)'); plt.title('Glitch '+str(glitch_count+1)) plt.show() try: value = self.data_to_deglitch[i] + (self.time_to_deglitch[location] - self.time_to_deglitch[i]) * ( self.data_to_deglitch[ii] - self.data_to_deglitch[i]) / (self.data_to_deglitch[ii] - self.data_to_deglitch[i]) self.data_to_deglitch[location] = value except IndexError: pass glitch_count += 1 except IndexError: pass self._glitch_count += glitch_count def correct_sampling_frequency(self): ''' Remeber, this is acting on the modified data (bad message and glitch already) so self.tid_data_time dict :return: ''' # this occurs after bad messages, so working with data ditc # first check that we are not interpolating datapoints for more than 1 second? for tid in self.read_ids: max_interp = max(np.diff(self.tid_data_time_dict[tid]['time'])) try: assert max_interp < 2.0 except: logging.warning('WARNING: You interpolated for greater than two seconds! ('+ str('{first:.2f}'.format(first = max_interp))+' sec)') logging.warning('File was '+str(os.path.split(self.filepath)[1])+ ', transmitter id was '+ str(tid)) # do linear interpolation between the points, where !nan regularised_time = np.linspace(0, 3600.0, num= 3600 * self.tid_to_fs_dict[tid]) not_nan = np.logical_not(np.isnan(self.tid_data_time_dict[tid]['data'])) self.tid_data_time_dict[tid]['data'] = np.interp(regularised_time, self.tid_data_time_dict[tid]['time'][not_nan], self.tid_data_time_dict[tid]['data'][not_nan]) self.tid_data_time_dict[tid]['time'] = regularised_time if self.verbose: print('Tid '+str(tid)+': regularised fs to '+str(self.tid_to_fs_dict[tid])+' Hz '+str(self.tid_data_time_dict[tid]['data'].shape[0]) +' datapoints') self._resampled = True def save(self, save_file_name = None): """ Saves file in h5 format. Will only save the tid/tids that have loaded. Args: save_file_name: """ if not save_file_name: hdf5_filename = self.filepath.strip('.ndf')+'_Tid_'+''.join(str([tid for tid in self.read_ids]))+ '.h5' else: hdf5_filename = save_file_name + '.h5' with h5py.File(hdf5_filename, 'w') as f: f.attrs['num_channels'] = len(self.read_ids) f.attrs['t_ids'] = list(self.read_ids) f.attrs['fs_dict'] = str(self.tid_to_fs_dict) file_group = f.create_group(os.path.split(self.filepath)[1][:-4]) for tid in self.read_ids: transmitter_group = file_group.create_group(str(tid)) transmitter_group.attrs['fs'] = self.tid_to_fs_dict[tid] transmitter_group.attrs['tid'] = tid transmitter_group.create_dataset('data', data=self.tid_data_time_dict[tid]['data'], compression = "gzip", dtype='f4', chunks = self.tid_data_time_dict[tid]['data'].shape) transmitter_group.create_dataset('time', data=self.tid_data_time_dict[tid]['time'], compression = "gzip", dtype='f4', chunks = self.tid_data_time_dict[tid]['time'].shape) transmitter_group.attrs["resampled"] = self._resampled f.close() #print f.attrs['fs_dict'] if self.verbose: print('Saved data as:'+str(hdf5_filename)+ ' Resampled = ' + str(self._resampled)) def _merge_coarse_and_fine_clocks(self): # convert timestamps into correct time using clock id t_clock_data = np.zeros(self.voltage_messages.shape) t_clock_data[self.transmitter_id_bytes == 0] = 1 # this is big ticks corse_time_vector = np.cumsum(t_clock_data) * self.clock_tick_cycle fine_time_vector = self.t_stamps_256 * self.clock_division self.time_array = fine_time_vector + corse_time_vector def load(self, read_ids = [], auto_glitch_removal = True, auto_resampling = True, auto_filter = True, scale_and_filter = False): ''' N.B. Should run glitch removal before high pass filtering and auto resampling... If unhappy with glitches, turn off filtering and the resampling and then run their methods etc. Args: read_ids: ids to load, can be integer of list of integers auto_glitch_removal: to automatically detect glitches with default tactic median abs deviation auto_resampling: to resample fs to regular sampling frequency auto_filter : high pass filter traces at default 1 hz scale_and_filter: high pass filter (default 1 hz) and scale to mode std dev 5 second blocks of trace WARNING: This is more for visualisation of what the feature extractor is working on. TO keep things simple, when saving HDF5 files, save non-scaled. Returns: data and time is stored in self.tid_data_time_dict attribute. Access data via obj[tid]['data']. ''' self.read_ids = read_ids logging.info('Loading '+ self.filepath +'read ids are: '+str(self.read_ids)) if read_ids == [] or str(read_ids).lower() == 'all': self.read_ids = list(self.tid_set) if not hasattr(self.read_ids, '__iter__'): self.read_ids = [read_ids] f = open(self.filepath, 'rb') f.seek(self.data_address) # read everything in 8bits, grabs time stamps, then get_file props has already read these ids self.t_stamps_256 = self._e_bit_reads[3::4] # read again, but in 16 bit chunks, grab messages f.seek(self.data_address + 1) self.voltage_messages = np.fromfile(f, '>u2')[::2] self._merge_coarse_and_fine_clocks() # this assigns self.time_array for read_id in self.read_ids: assert read_id in self.tid_set, "Transmitter %i is not a valid transmitter id" % read_id self.tid_raw_data_time_dict[read_id]['data'] = self.voltage_messages[self.transmitter_id_bytes == read_id] * self.micro_volt_div self.tid_raw_data_time_dict[read_id]['time'] = self.time_array[self.transmitter_id_bytes == read_id] # remove bad messages self._correct_bad_messages() if auto_glitch_removal: self.glitch_removal(tactic='mad') if auto_resampling: self.correct_sampling_frequency() # there should now be no nans surviving here! if auto_filter and not scale_and_filter: self.highpass_filter() if scale_and_filter: self.highpass_filter() self.standardise_to_mode_stddev() def highpass_filter(self, cutoff_hz = 1): ''' Implements high pass digital butterworth filter, order 2. Args: cutoff_hz: default is 1hz ''' for read_id in self.read_ids: fs = self.tid_to_fs_dict[read_id] nyq = 0.5 * fs cutoff_decimal = cutoff_hz/nyq logging.debug('Highpassfiltering, tid = '+str(read_id)+' fs: ' + str(fs) + ' at '+ str(cutoff_hz)+ ' Hz') data = self.tid_data_time_dict[read_id]['data'] data = data - np.mean(data) # remove mean to try and reduce any filtering artifacts b, a = signal.butter(2, cutoff_decimal, 'highpass', analog=False) filtered_data = signal.filtfilt(b, a, data) self.tid_data_time_dict[read_id]['data'] = filtered_data def standardise_to_mode_stddev(self, stdtw = 5, std_sigfigs = 2): ''' Calculates mode std dev and divides by it. Args: stdtw: time period over which to calculate std deviation std_sigfigs: n signfigs to round to ''' for read_id in self.read_ids: fs = self.tid_to_fs_dict[read_id] data = self.tid_data_time_dict[read_id]['data'] logging.debug('Standardising to mode std dev, tid = '+str(read_id)) reshaped = np.reshape(data, (int(3600/stdtw), int(stdtw*fs))) #std_vector = self.round_to_sigfigs(np.std(reshaped, axis = 1), sigfigs=std_sigfigs) std_vector = np.round(np.std(data, axis = 1), 0) std_vector = std_vector[std_vector != 0] if std_vector.shape[0] > 0: mode_std = stats.mode(std_vector)[0] # can be zero if there is big signal loss scaled = np.divide(data, mode_std) self.tid_data_time_dict[read_id]['data'] = scaled logging.debug(str(mode_std)+' is mode std of trace split into '+ str(stdtw)+ ' second chunks') elif std_vector.shape[0] == 0: self.tid_data_time_dict[read_id]['data'] = None logging.error(' File std is all 0, changed data to be None') @staticmethod def round_to_sigfigs(x, sigfigs): """ N.B Stolen from stack overflow: http://stackoverflow.com/questions/18915378/rounding-to-significant-figures-in-numpy Rounds the value(s) in x to the number of significant figures in sigfigs. Restrictions: sigfigs must be an integer type and store a positive value. x must be a real value or an array like object containing only real values. """ #The following constant was computed in maxima 5.35.1 using 64 bigfloat digits of precision __logBase10of2 = 3.010299956639811952137388947244930267681898814621085413104274611e-1 if not ( type(sigfigs) is int or np.issubdtype(sigfigs, np.integer)): raise TypeError( "RoundToSigFigs: sigfigs must be an integer." ) if not np.all(np.isreal( x )): raise TypeError( "RoundToSigFigs: all x must be real." ) if sigfigs <= 0: raise ValueError( "RoundtoSigFigs: sigfigs must be positive." ) mantissas, binaryExponents = np.frexp(x) decimalExponents = __logBase10of2 * binaryExponents intParts = np.floor(decimalExponents) mantissas *= 10.0**(decimalExponents - intParts) return np.around(mantissas, decimals=sigfigs - 1 ) * 10.0**intParts def _correct_bad_messages(self): ''' - okay so we have 128hz as the clock... - fs / clock_rate is the n_messages between clocks - 256 / n_messages is the thing we are diving to get the residuals ''' for tid in self.read_ids: transmitter_timestamps = self.t_stamps_256[self.transmitter_id_bytes == tid] fs = self.tid_to_fs_dict[tid] n_messages = fs/128 # 128 is clock expected_interval = 256/n_messages # 256 is bits (if 512hz fs this is 64) timestamp_moduli = transmitter_timestamps % expected_interval # now get params for reshaping... n_rows = int(fs*4) #n_rows = 2000 n_fullcols = int(timestamp_moduli.size//n_rows) n_extra_stamps = timestamp_moduli.shape[0] - (n_rows*n_fullcols) end_moduli = timestamp_moduli[-n_extra_stamps:] if n_extra_stamps: reshaped_moduli = np.reshape(timestamp_moduli[:-n_extra_stamps], (n_rows, n_fullcols), order = 'F') # order F reshaped in a "fortran manner, first axis changing fastest", calculating down the columns here end_mean= ss.circmean(end_moduli, high = expected_interval) end_moduli_corrected = (end_moduli - end_mean) mean_vector = ss.circmean(reshaped_moduli, high=expected_interval, axis=0) moduli_array_corrected = (reshaped_moduli - mean_vector) drift_corrected_timestamp_moduli = np.concatenate([np.ravel(moduli_array_corrected, order = 'F'), end_moduli_corrected]) elif n_extra_stamps == 0: # can be reshaped exactly reshaped_moduli = np.reshape(timestamp_moduli, (n_rows, n_fullcols), order = 'F') mean_vector = ss.circmean(reshaped_moduli, high=expected_interval, axis=0) moduli_array_corrected = (reshaped_moduli - mean_vector) drift_corrected_timestamp_moduli = np.ravel(moduli_array_corrected, order = 'F') drift_corrected_timestamp_moduli = np.absolute(drift_corrected_timestamp_moduli) self.drift_corrected_timestamp_moduli = drift_corrected_timestamp_moduli bad_message_locs = np.where(np.logical_and(drift_corrected_timestamp_moduli > 9, drift_corrected_timestamp_moduli < (expected_interval-9)))[0] self.tid_data_time_dict[tid]['data'] = np.delete(self.tid_raw_data_time_dict[tid]['data'], bad_message_locs) self.tid_data_time_dict[tid]['time'] = np.delete(self.tid_raw_data_time_dict[tid]['time'], bad_message_locs) logging.debug('Tid ' +str(tid)+ ': Detected '+ str(len(bad_message_locs)) + ' bad messages out of '+ str(self.tid_raw_data_time_dict[tid]['data'].shape[0]) + ' Remaining : '+str(self.tid_data_time_dict[tid]['data'].shape[0])) if len(bad_message_locs) > 0.5*self.tid_raw_data_time_dict[tid]['data'].shape[0]: logging.error(' >half messages detected as bad messages. Probably change fs from auto to the correct frequency') if self.verbose: print ('Tid ' +str(tid)+ ': Detected '+ str(len(bad_message_locs)) + ' bad messages out of '+ str(self.tid_raw_data_time_dict[tid]['data'].shape[0]) + ' Remaining : '+str(self.tid_data_time_dict[tid]['data'].shape[0])) #if len(bad_message_locs) > 0.5*self.tid_raw_data_time_dict[tid]['data'].shape[0]: # print('WARNING: >half messages detected as bad messages. Probably change fs from auto to the correct frequency') ```
{ "source": "jcorredorc/udemy_ros_beginners", "score": 3 }
#### File: src/scan_laser_example/scan_subscriber.py ```python import rospy from sensor_msgs.msg import LaserScan import math def scan_callback(scan_data): #Find minimum range min_value, min_index = min_range_index(scan_data.ranges) print("\nthe minimum range value is: ", min_value) print("the minimum range index is: ", min_index) max_value, max_index = max_range_index(scan_data.ranges) print("\nthe maximum range value is: ", max_value) print("the maximum range index is: ", max_index) average_value = average_range (scan_data.ranges) print("\nthe average range value is: ", average_value) average2 = average_between_indices(scan_data.ranges, 2, 7) print("\nthe average between 2 indices is: ", average2) print("the field of view: ", field_of_view(scan_data)) def field_of_view(scan_data): return (scan_data.angle_max-scan_data.angle_min)*180.0/3.14 #find the max range and its index def min_range_index(ranges): ranges = [x for x in ranges if not math.isnan(x)] return (min(ranges), ranges.index(min(ranges)) ) #find the max range def max_range_index(ranges): ranges = [x for x in ranges if not math.isnan(x)] return (max(ranges), ranges.index(max(ranges)) ) #find the average range def average_range(ranges): ranges = [x for x in ranges if not math.isnan(x)] return ( sum(ranges) / float(len(ranges)) ) def average_between_indices(ranges, i, j): ranges = [x for x in ranges if not math.isnan(x)] slice_of_array = ranges[i: j+1] return ( sum(slice_of_array) / float(len(slice_of_array)) ) if __name__ == '__main__': #init new a node and give it a name rospy.init_node('scan_node', anonymous=True) #subscribe to the topic /scan. rospy.Subscriber("scan", LaserScan, scan_callback) # spin() simply keeps python from exiting until this node is stopped rospy.spin() ```
{ "source": "jcortejoso/cloud-builders-community", "score": 3 }
#### File: examples/tests/dag_integrity_test.py ```python import unittest from airflow.models import DagBag class TestDags(unittest.TestCase): LOAD_THRESHOLD_SECONDS = 2 def setUp(self): self.dagbag = DagBag() def test_dags_syntax(self): for key in self.dagbag.dags.keys(): print(key) self.assertFalse( len(self.dagbag.import_errors), f"DAG import errors. Errors: {self.dagbag.import_errors}" ) if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(TestDags) unittest.TextTestRunner(verbosity=2).run(suite) ```
{ "source": "jcostacurta11/panda-env", "score": 2 }
#### File: jcostacurta11/panda-env/objects.py ```python import os import pybullet as p import numpy as np class Object(object): def __init__(self): self.body_id = None self.loaded = False def load(self): if self.loaded: return self.body_id self.body_id = self._load() self.loaded = True return self.body_id def get_position(self): pos, _ = p.getBasePositionAndOrientation(self.body_id) return pos def get_orientation(self): _, orn = p.getBasePositionAndOrientation(self.body_id) return orn def set_position(self, pos): _, old_orn = p.getBasePositionAndOrientation(self.body_id) p.resetBasePositionAndOrientation(self.body_id, pos, old_orn) def set_orientation(self, orn): old_pos, _ = p.getBasePositionAndOrientation(self.body_id) p.resetBasePositionAndOrientation(self.body_id, old_pos, orn) def set_position_orientation(self, pos, orn): p.resetBasePositionAndOrientation(self.body_id, pos, orn) class YCBObject(Object): def __init__(self, name, scale=1): super(YCBObject, self).__init__() self.visual_filename = os.path.join('assets', 'ycb', name, 'textured_simple.obj') self.collision_filename = os.path.join('assets', 'ycb', name, 'textured_simple_vhacd.obj') self.scale = scale def _load(self): collision_id = p.createCollisionShape(p.GEOM_MESH, fileName=self.collision_filename, meshScale=self.scale) visual_id = p.createVisualShape(p.GEOM_MESH, fileName=self.visual_filename, meshScale=self.scale) body_id = p.createMultiBody(baseCollisionShapeIndex=collision_id, baseVisualShapeIndex=visual_id, basePosition=[0.2, 0.2, 0.1], baseMass=0.1) return body_id class InteractiveObj(Object): def __init__(self, filename, scale=1): super(InteractiveObj, self).__init__() self.filename = filename self.scale = scale def _load(self): body_id = p.loadURDF(self.filename, globalScaling=self.scale, flags=p.URDF_USE_MATERIAL_COLORS_FROM_MTL) self.mass = p.getDynamicsInfo(body_id, -1)[0] return body_id class RBOObject(InteractiveObj): def __init__(self, name, scale=1): filename = os.path.join('assets', 'rbo', name, 'configuration', '{}.urdf'.format(name)) super(RBOObject, self).__init__(filename, scale) ``` #### File: jcostacurta11/panda-env/traj_mix_mc.py ```python import numpy as np from scipy.optimize import minimize import matplotlib.pyplot as plt from copy import deepcopy num_agents = 1 theta = np.array([0, 6, 6, 8]) #TODO: ask mengxi about these variables num_correction = 4 T = 5 gamma = 0. # human effort beta = 1. # procedure trajctory cost num_samples = 1000 seq_decay = 0.9 seq_smooth = False #distance function for two points def dist(u, v): return np.sqrt(np.sum((u-v) * (u-v))) #distance function for point and segment # def dist_point_segment(u, v, p): # l2 = np.sum((u - v) * (u - v)) # if (l2 == 0.0): # return dist(p, v) # t = max(0, min(1, np.sum((p-v) * (u-v)) / l2)) # v_proj = v + t * (u-v) # return dist(v_proj, p) class TrajEnv(object): """docstring for task_env""" def __init__(self, init_obs, delta_t, num_agents=1): # init_obs for each agent is 4d array [[x0, y0, vx0, vy0],[x1, y1, vx1, vy1]...] super(TrajEnv, self).__init__() #inherit all properties from input object self.init_obs = init_obs self.delta_t = delta_t self.num_agents = num_agents def _v(self, actions): # actions is n*2*T dimensional array [ax^0_0, ax^0_1, ..., ax^0_T, ay^0_0, ay^0_1, ..., a^0y_T, ax^1_0, ax^1_1, ..., ] # returned velocity is n*2*(T+1) dimensional array [vx^0_0,vx^0_1, ..., vx^0_{T+1}, vy^0_0, vy^0_1, ..., vy^0_{T+1},vx^1_0,v^0_1, ...] if len(actions.shape) > 1: actions = self.flat_action(actions) #working with flat action vector act_len = len(actions) // (2 * self.num_agents) #account for number of agents and x,y actions vx = [] vy = [] for i in range(self.num_agents): #complete for each agent ax, ay = actions[i * 2 * act_len: (i * 2 + 1) * act_len], actions[( i * 2 + 1) * act_len:(i * 2 + 2) * act_len] #picking out which actions apply to the agent (won't need to do this exactly) tmp_vx = ax tmp_vy = ay # tmp_vx = np.hstack([self.init_obs[i][2], np.cumsum( # ax) * self.delta_t + self.init_obs[i][2]]) #TODO: I think this is getting the resulting velocities from the actions? ask mengxi what the actions are # tmp_vy = np.hstack([self.init_obs[i][3], np.cumsum( # ay) * self.delta_t + self.init_obs[i][3]]) vx.append(tmp_vx) vy.append(tmp_vy) vx = np.array(vx) vy = np.array(vy) return np.stack([vx, vy]).transpose(1, 0, 2) #reshape: look into this later def _pos(self, actions): # actions is n*2*T dimensional array [ax^0_0, ax^0_1, ..., ax^0_T, ay^0_0, ay^0_1, ..., a^0y_T, ax^1_0, ax^1_1, ..., ] # returned position is n*2*(T+1) dimensional array [x^0_0, x^0_1, ..., x^0_{T+1}, y^0_0, y^0_1, ..., y^0_{T+1}, x^1_0, x^1_1, ...,] if len(actions.shape) > 1: actions = self.flat_action(actions) act_len = len(actions) // (2 * self.num_agents) x = [] y = [] v = self._v(actions) for i in range(self.num_agents): ax, ay = actions[i * 2 * act_len: (i * 2 + 1) * act_len], actions[( i * 2 + 1) * act_len:(i * 2 + 2) * act_len] #TODO: make vector of all x positions (is this over time? ask mengxi) tmp_x = np.hstack([self.init_obs[i][0], self.init_obs[i][0] + np.cumsum( ax) * self.delta_t ]) tmp_y = np.hstack([self.init_obs[i][1], self.init_obs[i][1] + np.cumsum( ay) * self.delta_t ]) x.append(tmp_x) y.append(tmp_y) x = np.array(x) y = np.array(y) return np.stack([x, y]).transpose(1, 0, 2) def flat_action(self, action): assert len(action.shape) == 3 assert action.shape[1] == 2 # convert from shape [num_agent, 2, T] to flatten return action.reshape([-1]) def unflat_action(self, action, shape): assert shape[1] == 2 return action.reshape([shape[0], shape[1], shape[2]]) def vis_traj(self, actions, task_obj, fig=None, ax=None): #plotter (would be nice to adapt this but not priority) pos = self._pos(actions) x = pos[:, 0, :] y = pos[:, 1, :] if ax is None: fig, ax = plt.subplots() # for i in range(task_obj.num_obstacles): # ax.add_artist(plt.Circle( # (task_obj.obs_x[i], task_obj.obs_y[i]), task_obj.obs_r_min[i], color='#000033', alpha=0.5)) for i in range(task_obj.num_agents): ax.plot(x[i], y[i], marker="o", color=task_obj.colors[i]) ax.set_aspect('equal', adjustable='datalim') return fig, ax class Navigation:#the first thing defined in mengxi's main loop, takes in theta def __init__(self, theta): self.num_agents = num_agents #self.num_obstacles = 1 # limit self.u_max = 5.0 self.v_max = 5.0 # setting initial position and velocities for up to 3 agents self.mass = np.array([1, 1, 1]) self.x_init = np.array([0, -1, 1]) self.y_init = np.array([2, 0, 0]) self.vx_init = np.array([0, 0, 0]) self.vy_init = np.array([0, 0, 0]) self.colors = ['b', 'g', 'y'] #TODO: what are these?? ask mengxi self.x_formation = self.x_init[:self.num_agents] - \ self.x_init[:self.num_agents].mean() self.y_formation = self.y_init[:self.num_agents] - \ self.y_init[:self.num_agents].mean() #setting goal end states self.x_end = np.array([0, -1, 1]) self.y_end = np.array([12, 10, 10]) self.vx_end = np.array([0, 0, 0]) self.vy_end = np.array([0, 0, 0]) #obstacle placement and radius # self.obs_x = np.array([0.5]) # self.obs_y = np.array([5]) # # self.obs_r_max = np.array([2.5]) # self.obs_r_min = np.array([2]) self.theta = theta class OptimizeMultiTraj(object): # T: time horizon of action for a single agent def __init__(self, task_env, task_obj, T, gamma=1., beta=1., seed=0, seq_decay=0, seq_smooth=False): self.actions = np.zeros(2*T*task_obj.num_agents) #looks like we'll be creating the actions in this class self.task_env = task_env self.num_agents = task_env.num_agents self.task_obj = task_obj self.T = T self.gamma = gamma self.beta = beta self.seed(seed) self.epsilon = 1e-6 self.seq_decay = seq_decay self.seq_smooth = seq_smooth self.constraints = [{'type': 'ineq', 'fun': self.a_con}, #TODO: look into this syntax, I think it's needed for the optimize command {'type': 'ineq', 'fun': self.v_con}] # {'type': 'ineq', 'fun': self.goal_con_ineq}] self.options = {'maxiter': 150000, 'disp': True} def seed(self, n): self.np_random = np.random.RandomState(n) #start at random set of actions def init_actions(self): self.actions = np.zeros_like(self.actions) #clear actions to all zero theta = deepcopy(self.task_obj.theta) #TODO: what is deepcopy? look into this self.task_obj.theta[:-2] = 0 self.task_obj.theta[-2] = 1 self.task_obj.theta[-1] = 2 #resetting some theta values #TODO: what is theta? res = minimize(self.objective, self.actions, constraints=self.constraints, options=self.options) self.actions = res.x + self.np_random.randn(len(res.x)) self.task_obj.theta = theta #putting theta values back? def get_traj_cost(self, x, y, task_obj): center_x = np.zeros_like(x[0]) center_y = np.zeros_like(y[0]) for i in range(task_obj.num_agents): center_x = center_x + x[i] center_y = center_y + y[i] #average position of agents? center_x = center_x / task_obj.num_agents center_y = center_y / task_obj.num_agents #does this cost have to do with the number of agents? cost_formation = np.zeros_like(center_x) for i in range(task_obj.num_agents): cost_formation += np.square(x[i] - center_x - task_obj.x_formation[i]) + \ np.square(y[i] - center_y - task_obj.y_formation[i]) cost_formation = np.mean(cost_formation) # cost_formation = 0 #costs for colliding with obstacle (won't need this) cost_collision = 0 # for i in range(task_obj.num_agents): # for j in range(task_obj.num_obstacles): # distance = np.sqrt( # np.square(x[i] - task_obj.obs_x[j]) + np.square(y[i] - task_obj.obs_y[j])) # min_ind = np.argmin(distance) # min_dist = distance[min_ind] # p = np.array([task_obj.obs_x[j], task_obj.obs_y[j]]) # if min_ind > 0: # u = np.array([x[i][min_ind-1], y[i][min_ind-1]]) # v = np.array([x[i][min_ind], y[i][min_ind]]) # new_dist = dist_point_segment(u=u, v=v, p=p) # if new_dist < min_dist: # min_dist = new_dist # if min_ind + 1 < len(x[i]): # u = np.array([x[i][min_ind+1], y[i][min_ind+1]]) # v = np.array([x[i][min_ind], y[i][min_ind]]) # new_dist = dist_point_segment(u=u, v=v, p=p) # if new_dist < min_dist: # min_dist = new_dist # raw_cost = -np.minimum(0, min_dist - task_obj.obs_r_min[j]) # cost_collision += raw_cost #cost based on how long the path is (need this!) cost_length = 0 for i in range(task_obj.num_agents): dx = x[i][:-1] - x[i][1:] dy = y[i][:-1] - y[i][1:] tmp_l = np.sum(np.sqrt(dx * dx + dy * dy)) cost_length += tmp_l #cost based on how far you are from the goal cost_goal = 0 for i in range(task_obj.num_agents): pos = np.array([x[i][-1], y[i][-1]]) goal = np.array([task_obj.x_end[i], task_obj.y_end[i]]) cost_goal += dist(pos, goal) #weight all the costs together cost = cost_formation * \ task_obj.theta[0] + cost_collision * \ task_obj.theta[1] + cost_length * \ task_obj.theta[2] + cost_goal * task_obj.theta[3] return cost def objective(self, actions, task_obj=None): # actions is all decision variables, (n*T*2, ) array #gives the cost if len(actions.shape) > 1: actions = self.task_env.flat_action(actions) if task_obj is None: task_obj = self.task_obj pos = self.task_env._pos(actions) x = pos[:, 0, :] y = pos[:, 1, :] return self.get_traj_cost(x, y, task_obj) #these two functions are used somehow in the constraints def a_con(self, actions, epsilon=0): return self.task_obj.u_max + epsilon - np.abs(actions) def v_con(self, actions, epsilon=0): v = self.task_env._v(actions) return self.task_obj.v_max + epsilon - np.abs(v.reshape([-1])) def optimize(self): self.init_actions() res = minimize(self.objective, self.actions, constraints=self.constraints, options=self.options) self.actions = res.x self.actions = self.task_env.unflat_action( self.actions, [self.num_agents, 2, self.T]) return self.actions, self.objective(res.x) if __name__ == "__main__": task_obj = Navigation(theta=theta) init_obs = [[task_obj.x_init[i], task_obj.y_init[i], task_obj.vx_init[i], task_obj.vy_init[i]] for i in range(num_agents)] task_env = TrajEnv(init_obs=init_obs, delta_t=1, num_agents=num_agents) optimizer = OptimizeMultiTraj( task_env=task_env, task_obj=task_obj, T=T, gamma=gamma, beta=beta, seq_decay=seq_decay, seq_smooth=seq_smooth) actions, _ = optimizer.optimize() print(task_env._pos(actions)) print(task_env._v(actions)) fig_0, ax_0 = task_env.vis_traj(actions, task_obj) plt.show() ```
{ "source": "jcostaroberts/mouseloaf", "score": 3 }
#### File: mouseloaf/mouseloaf/actor.py ```python class Actor(object): def __init__(self, coordinator): #self.name = "%s-%s" % \ # (self.__class__.__bases__[0].__name__.replace("Base", ""), # self.__class__.__name__) self.name = self.__class__.__name__ self.coordinator = coordinator """ API exposed to subclasses """ def _subscribe(self, publisher, handler): self.coordinator.subscribe(self.name, publisher, handler) def _publish(self, message): self.coordinator.publish(self.name, message) def _register_activity(self, activity_name, activity): self.coordinator.register_activity(activity_name, self.name, activity) def _register_auxiliary_data(self, name, data): self.coordinator.register_auxiliary_data(name, data) def _mount_auxiliary_data(self, name, ready_callback): return self.coordinator.mount_auxiliary_data(self.name, name, ready_callback) ``` #### File: plugin/feed/EverythingIsFree.py ```python from datetime import datetime from feed import FeedBase class EverythingIsFree(FeedBase): def feed_init(self): self.symbols = [] self._get_quote_on_timer(self.name, self._get_quote, 1) def _get_quote(self): for s in self.symbols: self._publish_data(s, ask_price=0.01) def handle_symbol_request(self, symbol): self.symbols.append(symbol) print "[%s] Feed %s received request for ticker %s" % \ (datetime.now(), self.name, symbol) ```
{ "source": "jcostateixeira/fhir-roadmap", "score": 3 }
#### File: jcostateixeira/fhir-roadmap/extract_metadata2.py ```python import os, json import pandas as pd import glob from csv_diff import load_csv, compare import datetime EXCLUSION_LIST=['package-list.json',".index.json",'package.json',"validation-summary","example"] def create_current_df(path): """ reads a csv in the specified folder, if it does not exists returns None """ if os.path.exists(path): df = pd.read_csv(path,sep=";", header=0) return df else: return None def get_target_id(row,resources_df): for idx,r in resources_df.iterrows(): # print(idx,r) # print(row["target_url"]) if row["target_url"]==r["url"]: return r["id"] return None def extract_relation(res,resource_type): """ this function takes a unique resource and create the entries for relation.csv Logic: Profile: Bound (Req) = element.binding[strength = required].valueset Bound (Ext) = element.binding[strength = extensible].valueset Bound (Pref) = element.binding[strength = preferred].valueset Bound (Exam) = element.binding[strength = example].valueset Extension = element.type[code = extension].profile ValueSet: valuesFrom = compose.include.system valuesFrom = expansion.contains.system includes = compose.include.valueSet """ dict_relat=[] relation_type_data={"required":"Bound_Req","extensible":"Bound_Ext","preferred":"Bound_Pref","example":"Bound_Exam"} # if res.get("id")=="be-ext-laterality": # print(resource_type,res.get("id")) if resource_type in ["Profile","Data type"]: elements=res.get('snapshot', {}).get('element',[] ) for element in elements: binding=element.get("binding",{}).get("strength") value=element.get("binding",{}).get("valueSet") if binding: # print(value) stripped = value.split("|", 1)[0] #remove pipes # if res.get("id")=="be-allergyintolerance": # print(stripped) #print(resource_type,"binding -> ",binding,value) dict_relat.append({"source":res.get("id"),"target_url":stripped,"relation":relation_type_data[binding]}) for l in element.get("type",[]): if l.get("code",{})=="Extension": #pass if l.get("profile"): dict_relat.append({"source":res.get("id"),"target_url":l.get("profile")[0],"relation":"extension"}) for target_profile in l.get("targetProfile",[]): dict_relat.append({"source":res.get("id"),"target_url":target_profile,"relation":"references"}) # print() elements=res.get('differential', {}).get('element', []) for element in elements: binding=element.get("binding",{}).get("strength") value=element.get("binding",{}).get("valueSet") if binding: # print(res.get("id"),value) # print(value,res.get("id")) stripped = value.split("|", 1)[0] #remove pipes #print(resource_type,"binding -> ",binding,value) dict_relat.append({"source":res.get("id"),"target_url":stripped,"relation":relation_type_data[binding]}) for l in element.get("type",[]): if l.get("code",{})=="Extension": #pass if l.get("profile"): # print(l.get("profile")[0],res.get("id")) dict_relat.append({"source":res.get("id"),"target_url":l.get("profile")[0],"relation":"extension"}) for target_profile in l.get("targetProfile",[]): dict_relat.append({"source":res.get("id"),"target_url":target_profile,"relation":"references"}) # print() elif resource_type=="ValueSet": for s in res.get("compose",{}).get("include",[]): #print(s) if s.get("system"): dict_relat.append({"source":res.get("id"),"target_url":s.get("system"),"relation":"valuesFrom"}) if s.get("valueSet"): # print(s.get("valueSet")) dict_relat.append({"source":res.get("id"),"target_url":s.get("valueSet")[0],"relation":"includes"}) #print(res.get("expansion",{}).get("contains",[])) return dict_relat def read_package(folder): """ reads a folder and every json inside it and subsequent folders. From them, the keys are extracted and a df is built """ new_files=[] # r=root, d=directories, f = files for r, d, f in os.walk(folder): for file in f: if file.endswith(".json"): new_files.append(os.path.join(r, file)) result=[] relations=[] record_upper={} for index, js in enumerate(new_files): if (js == 'packages/package.json'): with open(js, encoding='utf-8') as json_file: json_text = json.load(json_file) # print(json_text) date = '1900' # set a old date to initialize variable and then overwrite as needed if('date' in json_text): record_upper["pack_last_review_date"] = json_text['date'] if('author' in json_text): record_upper["pack_author"] = json_text['author'] if('fhirVersion' in json_text) and (len(json_text['fhirVersion']) == 1) : record_upper["pack_fhir_version"] = json_text['fhirVersion'] if('maintainers' in json_text): for m in json_text['maintainers']: if ('url' in m): record_upper["pack_wg_url"] = m['url'] #print(record_upper) for index, js in enumerate(new_files): # print(js) if not any(ext in js for ext in EXCLUSION_LIST): # for all other jsons: with open(js, encoding='utf-8') as json_file: record=record_upper.copy() json_text = json.load(json_file) # get the rtype (resource type) and dtype (actual detailed type) rtype = json_text['resourceType'] record["id"]= json_text.get('id') if (rtype=="StructureDefinition"): if (json_text['kind']=='logical'): # in this case, this is a logical model record["type"]="Logical Model" if (json_text['type'].lower()=='extension'): # in this case, it's an extension record["type"]="Extension" if (json_text['kind']=='resource'): # in this case, it's a profile record["type"]="Profile" if (json_text['kind']=='complex-type') and (json_text['type'].lower()!='extension'): # in this case, it's a data type record["type"]="Data type" else: record["type"]=rtype # for other resources, the resource type is the detailed ty if (rtype=="NamingSystem"): if ("uniqueId" in json_text) : uris = [x for x in json_text["uniqueId"] if (x["type"] == "uri" )] record["url"] = [x for x in uris if x["preferred"] == True][0]["value"] else: record["url"] = json_text.get('url') # record["type"] = record["dtype"] # record.pop("dtype") # check if the paths are correct record["name"] = json_text.get('name') record["version"] = json_text.get('version') record["date"] = json_text.get('date') record["topic"] = json_text.get('topic') record["subtopic"] = json_text.get('subtopic') record["owner"] = json_text.get('owner') record["maturity"] = json_text.get('maturity') record["status"] = json_text.get('status') record["pack_wg_url"] = json_text.get('pack_wg_url') record["pack_author"] = json_text.get('pack_author') record["pack_last_review_date"] = json_text.get('pack_last_review_date') # record["relation"] = json_text.get('relation') # record["relation_type"] = json_text.get('relation_type') record["legal"] = json_text.get('legal') relations.extend(extract_relation(json_text,record["type"])) #adds entries to relation list result.append(record) # print(result) # print(relations) #relation_unique = {x['source']:x for x in relations}.values() #dont quite know why so much duplicates #df_relation=pd.DataFrame(relation_unique)#.drop_duplicates() # try: df_relation=pd.DataFrame(relations).drop_duplicates() # except: # pd.DataFrame(relations).to_csv("erro.csv") # break # print(df_relation) # we cannot assume csv exists when creating, so after each package folder we search for it in the elements df_relation["target_id"]=df_relation.apply(get_target_id,resources_df=pd.DataFrame(result),axis=1) # print(df_relation.head(10)) return pd.DataFrame(result),df_relation # CSV structure: # idx (autoincrement index) # Topic # Subtopic # Type # Name # Status # URL # FhirVersion # Owner # Date proposed # Published date # last revision date # Maturity # Legal Status # Version. def update_resource_csv(old,new): #all columns here are overlaped by procedure, for other sutff, remove or change list_of_changes={"updated":[],"created":[],"other":[]} for idx,row in new.iterrows(): #for every row in new df #print(row["url"]) if row["url"] in old["url"].values: #if url in new df is in old df #update values list_of_changes["updated"].append(row["url"]) old.loc[old["url"]==row["url"],"date"]=row.get("date") old.loc[old["url"]==row["url"],"version"]=row.get("version") old.loc[old["url"]==row["url"],"status"]=row.get("status") old.loc[old["url"]==row["url"],"type"]=row.get("type") old.loc[old["url"]==row["url"],"id"]=row.get("id") old.loc[old["url"]==row["url"],"pack_wg_url"]=row.get("pack_wg_url") old.loc[old["url"]==row["url"],"pack_author"]=row.get("pack_author") old.loc[old["url"]==row["url"],"pack_last_review_date"]=row.get("pack_last_review_date") old.loc[old["url"]==row["url"],"date_started"]=row.get("date_started") old.loc[old["url"]==row["url"],"date_published"]=row.get("date_published") old.loc[old["url"]==row["url"],"date_reviewed"]=row.get("date_reviewed") old.loc[old["url"]==row["url"],"maturity"]=row.get("maturity") old.loc[old["url"]==row["url"],"legal"]=row.get("legal") elif row["url"] is not None: #if does not exist, add to df (must have url) #print(row) list_of_changes["created"].append(row["url"]) old=old.append(row,ignore_index=True) else: list_of_changes["other"].append("something weird on row "+str(idx)) #save the old again old.to_csv("resources.csv",sep=";",index=False) #return track changes return list_of_changes def update_relation_csv(old,new): #print(new.head(10)) # print(old,new) ###right now it overlaps manual actions list_of_changes={"updated":[],"created":[],"other":[]} #make primary key on both df: old["pk"]=old["source"]+old["target_url"] #try: new["pk"]=new["source"]+new["target_url"] # except Exception as err: # print("eerorrrr------------",err) # print(new) # new.to_csv("errro.csv") for idx,row in new.iterrows(): #for every row in new df #print(row["url"]) if row["pk"] in old["pk"].values: #if primary key exists (source+target) #update values list_of_changes["updated"].append(row["source"]) old.loc[old["pk"]==row["pk"],"target_id"]=row.get("target_id") old.loc[old["pk"]==row["pk"],"relation"]=row.get("relation") old.loc[old["pk"]==row["pk"],"target_url"]=row.get("target_url") elif row["source"] is not None: #if does not exist, add to df (must have url) #print(row) list_of_changes["created"].append(row["source"]) old=old.append(row,ignore_index=True) else: list_of_changes["other"].append("something weird on row "+str(idx)) #save the old again old.drop(columns=["pk"],inplace=True) old.to_csv("relation.csv",sep=";",index=False) #return track changes return list_of_changes def create_csv_and_update(current_resource,current_relation,package_folder): ## Done. Now the logic: ## 1. If there is a URL and that URL already exists in the csv, replace the values in the CSV ## 2. If there is no CSV, then create a new entry with the values. ## Also update the data table: # the URL for the resource is a hyperlink on the resource name - opens a new window # the URL for the maintainer is a hyperlink on the owner - opens a new window # url is the # print(current_resource) outcome={"resource_status":"error","resource_outcome":"N/A","relation_outcome":"N/A","relation_status":"error"} resource_df,relation_df=read_package(package_folder) #print(relation_df) # print(n_relation) # n_df.to_csv("new_.csv",sep=";",index=False) if type(current_resource)==pd.DataFrame and len(resource_df)>0: print("has a resource csv which was updated") changes=update_resource_csv(current_resource,resource_df) #return changes outcome["resource_status"]="changed" outcome["resource_outcome"]=changes elif type(current_resource)!=pd.DataFrame and len(resource_df)>0: print("no resource csv and new written") resource_df.to_csv("resources.csv",sep=";",index=False) #return None outcome["resource_status"]="new" else: print("no resource csv and not able to create new") if type(current_relation)==pd.DataFrame and len(relation_df)>0: print("has a relation csv which was updated") changes=update_relation_csv(current_relation,relation_df) #return changes outcome["relation_status"]="changed" outcome["relation_outcome"]=changes elif type(current_relation)!=pd.DataFrame and len(relation_df)>0: print("no relation csv and new written") relation_df.to_csv("relation.csv",sep=";",index=False) #return None outcome["relation_status"]="new" else: print("no relation csv and not able to create new") return outcome def getPackageFolders(path): directoryList = [] #return nothing if path is a file if os.path.isfile(path): return [] #add dir to directorylist if it contains package.json files if len([f for f in os.listdir(path) if (f == 'package.json')])>0: with open(path+"/package.json") as packge_file: pkg_json=json.load(packge_file) # print(pkg_json) package_date=pkg_json.get("date") #not all have date if not package_date: raise ValueError("Package without date: "+path) # package_date="19900801000000" just for testing directoryList.append((path,datetime.datetime.strptime(package_date, '%Y%m%d%H%M%S'))) # here, check the package.json and populate the list with the directory and the date in the json for d in os.listdir(path): new_path = os.path.join(path, d) if os.path.isdir(new_path): directoryList.extend(getPackageFolders(new_path)) # now, sort the directotyList by the date # print(directoryList) # return sorted(directoryList, key=lambda tup:(tup[1], tup[0])) def main(package_folder): folders = getPackageFolders(package_folder) print("Folders---",folders) current_df=create_current_df("resources.csv") current_relation=create_current_df("relation.csv") if type(current_df)==pd.DataFrame: current_df.to_csv("resources_backup.csv",sep=";",index=False) if type(current_relation)==pd.DataFrame: current_relation.to_csv("relation_backup.csv",sep=";",index=False) for pack in folders: current_df=create_current_df("resources.csv")#redo for newly created data in loop current_relation=create_current_df("relation.csv")#redo for newly created data in loop create_csv_and_update(current_df,current_relation,pack[0]) if os.path.exists("resources_backup.csv"): diff = compare( load_csv(open("resources_backup.csv"), key="url"), load_csv(open("resources.csv"), key="url") ) print(diff) diff_df=pd.DataFrame.from_dict(diff,orient='index').T diff_df["timestamp"]=datetime.datetime.now().strftime("%Y%m%d%H") #check if diff exists: if not os.path.exists("diff.csv"): diff_df.to_csv("diff.csv",sep=";",index=False) else: current_diff=create_current_df("diff.csv") current_diff.append(diff_df,ignore_index=True) current_diff.to_csv("diff.csv",sep=";",index=False) return "ok" main("packages") #print(dict_relat) ``` #### File: jcostateixeira/fhir-roadmap/extract_metadata.py ```python import os, json import pandas as pd import glob import datetime def create_current_df(path): if os.path.exists(path): df = pd.read_csv(path, sep =';', header=0).to_dict(orient="records") return df else: return None def update_record(record, key, value): # if key in record: if (value != ''): record[key] = value # else: # record[key] = json_text.get(key) # CSV structure: # idx (autoincrement index) # Topic # Subtopic # Type # Name # Status # URL # FhirVersion # Owner # Date proposed # Published date # last revision date # Maturity # Legal Status # Version. def read_package(folder): # 2. read json files from packages - each package is a folder under packages folder new_files=[] # r=root, d=directories, f = files for r, d, f in os.walk(folder): for file in f: if file.endswith(".json"): new_files.append(os.path.join(r, file)) result=[] record_upper={} for index, js in enumerate(new_files): if (js == 'packages/package.json'): with open(js, encoding='utf-8') as json_file: json_text = json.load(json_file) # print(json_text) date = '1900' # set a old date to initialize variable and then overwrite as needed if('date' in json_text): record_upper["pack_last_review_date"] = json_text['date'] if('author' in json_text): record_upper["pack_author"] = json_text['author'] if('fhirVersion' in json_text) and (len(json_text['fhirVersion']) == 1) : record_upper["pack_fhir_version"] = json_text['fhirVersion'] if('maintainers' in json_text): for m in json_text['maintainers']: if ('url' in m): record_upper["pack_wg_url"] = m['url'] #print(record_upper) for index, js in enumerate(new_files): #print(js) if not any(ext in js for ext in ['package-list.json',".index.json",'package.json',"validation-summary","example"]): # for all other jsons: with open(js, encoding='utf-8') as json_file: # print(js) record=record_upper.copy() json_text = json.load(json_file) # print(json_text) # print("----") # get the rtype (resource type) and dtype (actual detailed type) rtype = json_text['resourceType'] record["id"]= json_text.get('id') if (rtype=="StructureDefinition"): if (json_text['kind']=='logical'): # in this case, this is a logical model dtype="Logical Model" if (json_text['type']=='extension'): # in this case, it's an extension dtype="Extension" if (json_text['kind']=='resource'): # in this case, it's a profile dtype="Profile" if (json_text['kind']=='complex-type') and (json_text['type']!='extension'): # in this case, it's a data type dtype="Data type" else: dtype=rtype # for other resources, the resource type is the detailed ty if('name' in json_text): name = json_text['name'] else: name = '' if('version' in json_text): version = json_text['version'] else: name = '' if('url' in json_text): url = json_text['url'] else: url = '' if('date' in json_text): date = json_text['date'].split("T")[0] date = datetime.datetime.strptime(date, '%Y-%m-%d') else: date = '' if('status' in json_text): status = json_text['status'] else: status = '' if('fhirVersion' in json_text): fhirVersion = json_text['fhirVersion'] else: fhirVersion = '' update_record(record, "version", version) update_record(record, "name", name) update_record(record, "url", url) update_record(record, "date",date) update_record(record, "status", status) update_record(record, "type", dtype) update_record(record, "fhirVersion", fhirVersion) # CSV structure: # idx (autoincrement index) # Topic # Subtopic # Type # Name # Status # URL # FhirVersion # Owner # Date proposed # Published date # last revision date # Maturity # Legal Status # Version. print("NEW---------------------------------") result.append(record) #print(result) return result ## Done. Now the logic: ## 1. If there is a URL and that URL already exists in the csv, replace the values in the CSV ## 2. If there is no CSV, then create a new entry with the values. Default values if not existing to '' ## Also update the data table: # the URL for the resource is a hyperlink on the resource name - opens a new window # the URL for the maintainer is a hyperlink on the owner - opens a new window # save the CSV back #df=create_current_df('resources.csv') if os.path.exists('resources.csv'): df = pd.read_csv('resources.csv', sep =';', header=0).to_dict(orient="records") n_list= read_package("packages/") #print(n_list) n_df=pd.DataFrame(n_list) print(n_df) n_df.to_csv("resources.csv") ```
{ "source": "jcosteatcyberark/cyberark-aws-auto-onboarding", "score": 2 }
#### File: src/shared_libraries/pvwa_api_calls.py ```python import requests import json from pvwa_integration import PvwaIntegration from log_mechanism import LogMechanism DEBUG_LEVEL_DEBUG = 'debug' # Outputs all information DEFAULT_HEADER = {"content-type": "application/json"} pvwa_integration_class = PvwaIntegration() logger = LogMechanism() def create_account_on_vault(session, account_name, account_password, store_parameters_class, platform_id, address, instance_id, username, safe_name): logger.trace(session, account_name, store_parameters_class, platform_id, address, instance_id, username, safe_name, caller_name='create_account_on_vault') logger.info(f'Creating account in vault for {instance_id}') header = DEFAULT_HEADER header.update({"Authorization": session}) url = f"{store_parameters_class.pvwa_url}/WebServices/PIMServices.svc/Account" data = { "account": { "safe": safe_name, "platformID": platform_id, "address": address, "accountName": account_name, "password": <PASSWORD>, "username": username, "disableAutoMgmt": "false" } } if platform_id == store_parameters_class.windows_platform_name: logger.trace(f'Adding LogonDomain property to account {instance_id}', caller_name='create_account_on_vault') data['account']['properties'] = [{"Key": "LogonDomain", "Value": address}] rest_response = pvwa_integration_class.call_rest_api_post(url, json.dumps(data), header) if rest_response.status_code == requests.codes.created: logger.info(f"Account for {instance_id} was successfully created") return True, "" logger.error(f'Failed to create the account for {instance_id} from the vault. status code:{rest_response.status_code}') return False, f"Error Creating Account, Status Code:{rest_response.status_code}" def rotate_credentials_immediately(session, pvwa_url, account_id, instance_id): logger.trace(session, pvwa_url, account_id, instance_id, caller_name='rotate_credentials_immediately') logger.info(f'Rotating {instance_id} credentials') header = DEFAULT_HEADER header.update({"Authorization": session}) url = f"{pvwa_url}/API/Accounts/{account_id}/Change" data = "" rest_response = pvwa_integration_class.call_rest_api_post(url, data, header) if rest_response.status_code == requests.codes.ok: logger.info(f"Call for immediate key change for {instance_id} performed successfully") return True logger.error(f'Failed to call key change for {instance_id}. an error occurred') return False def get_account_value(session, account, instance_id, rest_url): logger.trace(session, account, instance_id, rest_url, caller_name='get_account_value') logger.info(f'Getting {instance_id} account from vault') header = DEFAULT_HEADER header.update({"Authorization": session}) pvwa_url = f"{rest_url}/api/Accounts/{account}/Password/Retrieve" rest_logon_data = """{ "reason":"AWS Auto On-Boarding Solution" }""" rest_response = pvwa_integration_class.call_rest_api_post(pvwa_url, rest_logon_data, header) if rest_response.status_code == requests.codes.ok: return rest_response.text elif rest_response.status_code == requests.codes.not_found: logger.info(f"Account {account} for instance {instance_id}, not found on vault") return False logger.error(f"Unexpected result from rest service - get account value, status code: {rest_response.status_code}") return False def delete_account_from_vault(session, account_id, instance_id, pvwa_url): logger.trace(session, account_id, instance_id, pvwa_url, caller_name='delete_account_from_vault') logger.info(f'Deleting {instance_id} from vault') header = DEFAULT_HEADER header.update({"Authorization": session}) rest_url = f"{pvwa_url}/WebServices/PIMServices.svc/Accounts/{account_id}" rest_response = pvwa_integration_class.call_rest_api_delete(rest_url, header) if rest_response.status_code != requests.codes.ok: if rest_response.status_code == requests.codes.not_found: logger.error(f"Failed to delete the account for {instance_id} from the vault. The account does not exists") raise Exception(f"Failed to delete the account for {instance_id} from the vault. The account does not exists") logger.error(f"Failed to delete the account for {instance_id} from the vault. an error occurred") raise Exception(f"Unknown status code received {rest_response.status_code}") logger.info(f"The account for {instance_id} was successfully deleted") return True def check_if_kp_exists(session, account_name, safe_name, instance_id, rest_url): logger.trace(session, account_name, safe_name, instance_id, rest_url, caller_name='check_if_kp_exists') logger.info('Checking if key pair is onboarded') header = DEFAULT_HEADER header.update({"Authorization": session}) # 2 options of search - if safe name not empty, add it to query, if not - search without it if safe_name: # has value pvwa_url = f"{rest_url}/api/accounts?search={account_name}&filter=safeName eq {safe_name}" else: # has no value pvwa_url = f"{rest_url}/api/accounts?search={account_name}" try: rest_response = pvwa_integration_class.call_rest_api_get(pvwa_url, header) if not rest_response: raise Exception(f"Unknown Error when calling rest service - retrieve account - REST response: {rest_response}") except Exception as e: logger.error(f'An error occurred: {str(e)}') raise Exception(e) if rest_response.status_code == requests.codes.ok: # if response received, check account is not empty {"Count": 0,"accounts": []} if 'value' in rest_response.json() and rest_response.json()["value"]: parsed_json_response = rest_response.json()['value'] return parsed_json_response[0]['id'] return False logger.error(f"Status code {rest_response.status_code}, received from REST service") raise Exception(f"Status code {rest_response.status_code}, received from REST service") def retrieve_account_id_from_account_name(session, account_name, safe_name, instance_id, rest_url): logger.trace(session, account_name, safe_name, instance_id, rest_url, caller_name='retrieve_account_id_from_account_name') logger.info('Retrieving account_id from account_name') header = DEFAULT_HEADER header.update({"Authorization": session}) # 2 options of search - if safe name not empty, add it to query, if not - search without it if safe_name: # has value pvwa_url = f"{rest_url}/api/accounts?search={account_name}&filter=safeName eq {safe_name}" else: # has no value pvwa_url = f"{rest_url}/api/accounts?search={account_name}" try: rest_response = pvwa_integration_class.call_rest_api_get(pvwa_url, header) if not rest_response: raise Exception("Unknown Error when calling rest service - retrieve account_id") except Exception as e: logger.error(f'An error occurred:\n{str(e)}') raise Exception(e) if rest_response.status_code == requests.codes.ok: # if response received, check account is not empty {"Count": 0,"accounts": []} if 'value' in rest_response.json() and rest_response.json()["value"]: parsed_json_response = rest_response.json()['value'] return filter_get_accounts_result(parsed_json_response, instance_id) logger.info(f'No match for account: {account_name}') return False logger.error(f"Status code {rest_response.status_code}, received from REST service") raise Exception(f"Status code {rest_response.status_code}, received from REST service") def filter_get_accounts_result(parsed_json_response, instance_id): logger.trace(parsed_json_response, instance_id, caller_name='filter_get_accounts_result') for element in parsed_json_response: if instance_id in element['name']: return element['id'] return False ```
{ "source": "jcostlow/suntime", "score": 3 }
#### File: jcostlow/suntime/suntime.py ```python import argparse import datetime import pytz import astral import astral.sun import ics def main(): args = parse_arguments() a = astral.Observer(latitude= args.latlong[0], longitude = args.latlong[1], elevation= args.altitude) thisday = datetime.datetime(args.year,args.month, args.day) lastday = thisday + datetime.timedelta(days = args.numdays) if args.icsfile: c=ics.Calendar() while thisday < lastday: suntime = astral.sun.time_at_elevation(a, date=thisday, elevation=args.elevation, tzinfo=args.timezone) print (suntime) thisday = thisday + datetime.timedelta(days=1) if args.icsfile: # TODO, add an argument for the title of the calendar entry. e=ics.event.Event(name='Sun time', begin = suntime, duration= {'minutes':10} ) c.events.add(e) if args.icsfile: args.icsfile.write(str(c)) def parse_arguments(): '''Parse arguments to print times when the sun is at your favorite elevation''' parser = argparse.ArgumentParser( description='Print times when the sun is at your favorite elevation.' ) locationgroup = parser.add_mutually_exclusive_group(required=True) locationgroup.add_argument( '--city', action='store', help='Specify a city. TODO DOES NOT WORK YET' ) locationgroup.add_argument( '--latlong', nargs=2, action='store', type=float, help='Latitude longitude', metavar=('Latitude', 'Longitude') ) parser.add_argument( '--altitude', help='Altitude in meters at the location', default = 2 ) parser.add_argument( '--timezone', help='Local timezone', type=lambda tz: pytz.timezone(tz), default=pytz.timezone('US/Pacific') ) parser.add_argument( '--year', '-y', help='Year', type=int, default=datetime.datetime.now().year ) parser.add_argument( '--month', '-m', help='Month', type=int, default=datetime.datetime.now().month ) parser.add_argument( '--day', help='Day', type=int, default=datetime.datetime.now().day ) parser.add_argument( '--numdays', help='Number of Days to write', type=int, default=1 ) parser.add_argument( '--elevation', type=float, help='Elevation on the sun in degrees, dawn=0, dusk=180', default=174 ) parser.add_argument('--icsfile', type=argparse.FileType('w') ) # TODO, add an argument for whether to set or disable an alarm on the calendar entry. return parser.parse_args() if __name__ == '__main__': main() ```
{ "source": "jcosto/news_summary", "score": 3 }
#### File: jcosto/news_summary/news_nlp_lemma.py ```python from nltk import word_tokenize from nltk.stem import WordNetLemmatizer import nltk # nltk.download('wordnet') # nltk.download('stopwords') from nltk.corpus import stopwords # nltk.download('punkt') stop_words = set(stopwords.words('english')) class LemmaTokenizer: ignore_tokens = [',','.',';',':','"','``',"''",'`'] def __init__(self): self.wnl = WordNetLemmatizer() def __call__(self, doc): return [ self.wnl.lemmatize(t) for t in word_tokenize(doc) if t not in self.ignore_tokens ] tokenizer = LemmaTokenizer() token_stop = tokenizer(' '.join(stop_words)) ``` #### File: jcosto/news_summary/news.py ```python from pprint import pprint from typing import Callable, List from selenium import webdriver from selenium.webdriver.remote.webdriver import WebDriver as RemoteWebDriver import time import os import requests dirs = list() out_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'out') dirs.append(out_dir) html_dir = os.path.join(out_dir, "html") dirs.append(html_dir) json_dir = os.path.join(out_dir, "json") dirs.append(json_dir) def ensure_dirs_exist(dirs_): for d in dirs_: if not os.path.exists(d): os.makedirs(d) ensure_dirs_exist(dirs) from msedge.selenium_tools import EdgeOptions, Edge def get_page_source_selenium(url, sleep_s=0): print("get_page_source_selenium") options = EdgeOptions() options.use_chromium = True options.add_argument("headless") options.add_argument("disable-gpu") driver = Edge('MicrosoftWebDriver.exe', options=options) driver.get(url) if sleep_s > 0: time.sleep(sleep_s) page_source = driver.page_source driver.quit() return page_source def get_page_source_requests(url, sleep_s=0): print(f"getting page {url}") page = requests.get(url) print(f"retrieved page {url}") return page.text def get_page_source(url, dst, sleep_s=0, hold_proc=True, use_selenium=False): print(dst) if os.path.exists(dst): with open(dst,'r', encoding='utf8') as fin: ret = fin.read() if len(ret) > 0: return ret if use_selenium: page_source = get_page_source_selenium(url, sleep_s=sleep_s) else: page_source = get_page_source_requests(url) with open(dst, 'w', encoding='utf8') as fout: fout.write(page_source) if hold_proc: input("pausing execution, press enter to continue...") return page_source def get_filesafe_url(url): return url.replace(":","_").replace("/","_").replace(".","_") from dataclasses import dataclass, asdict, field import datetime import bs4 import json from threading import Thread @dataclass class NewsGroup(): base_url: str url: str page_html_dst: str page_json_dst: str @classmethod def process( cls, news_item__cls, front_url, html_dir_=html_dir, json_dir_=json_dir, threaded=False, use_selenium_ng=False, use_selenium_ni=False ): print(front_url) front_filesafe = get_filesafe_url(front_url) front_html = os.path.join(html_dir_, front_filesafe) front_json = os.path.join(json_dir_, front_filesafe) ng = NewsGroup(news_item__cls.BASE_URL, front_url, front_html, front_json) n_gen = ng.extract_soup(news_item__cls.yield_news, hold_proc=False, use_selenium=use_selenium_ng) if threaded: t_list = list() for n in n_gen: if isinstance(n, NewsItem): t = Thread(target=n.process_item, args=[html_dir_], kwargs={"use_selenium":use_selenium_ni},daemon=True) t_list.append(t) t.start() if len(t_list) > 8: for t_ in t_list: t_.join() t_list = list() for t_ in t_list: t_.join() else: for n in n_gen: if isinstance(n, NewsItem): n.process_item(html_dir_, use_selenium=use_selenium_ni) ng.save_json() return front_html, front_json, ng def extract_soup(self, yield_news: Callable, sleep_s=0, hold_proc=True, use_selenium=False): src_html_path = self.page_html_dst page_source = get_page_source( self.url, src_html_path, sleep_s=sleep_s, hold_proc=hold_proc, use_selenium=use_selenium ) soup = bs4.BeautifulSoup(page_source, features='html.parser') self.news_item__list = list() for n in yield_news(soup, self.base_url): self.news_item__list.append(n) self.save_json() for n in self.news_item__list: yield n def save_json(self): with open(self.page_json_dst, 'w') as fout: json.dump( [asdict(i) for i in self.news_item__list], fout, sort_keys=True, indent=4 ) @dataclass class NewsItem(): base_url: str url: str date: str header: str section: str front_page_summary: str = None summary: str = None full_date: str = None dt: datetime.datetime = None content: List = field(default_factory=lambda : list()) content_raw: List = field(default_factory=lambda : list()) @classmethod def yield_news_reuters(cls, soup: bs4.BeautifulSoup, base_url: str): pass def extract_news_content(self, news_content_html_dir, sleep_s=0, hold_proc=True, use_selenium=False): pass def cleanup_data(self): pass def process_item(self, html_dir_, use_selenium=False): n = self print("------------") print(n.base_url) print(n.url) a = n.extract_news_content(html_dir_, hold_proc=False, use_selenium=use_selenium) if not a is None: n.cleanup_data() for i, j in zip(n.content, n.content_raw): print("-- " + i) print("++ " + j) # input("enter to continue...") def has_class_name(s, c_ref_list): try: meron = list() for c_ref in c_ref_list: meron.append(sum([c_ref in c for c in s["class"]]) > 0) return len(meron) == sum(meron) except KeyError: return False def get_filesafe_url(url: str): return url.replace(":","_").replace("/","_").replace(".","_") @dataclass class NewsMinimal(): url: str header: str summary: str doc: str date: str ``` #### File: news_summary/news_sources/news_cnbc.py ```python from news import NewsGroup, NewsItem, has_class_name, get_page_source, get_filesafe_url from news import html_dir, json_dir import bs4 import os import datetime class NewsItem_CNBC(NewsItem): BASE_URL = "https://www.cnbc.com" URLS = [ "https://www.cnbc.com/finance/" ] @classmethod def yield_news(cls, soup: bs4.BeautifulSoup, base_url: str): for s in soup.findAll("div"): # print(s["class"]) # print(['StoryCollection__story' in c for c in s["class"]]) if has_class_name(s, ["Card-titleAndFooter"]): # print(s) a = s.findAll("a", {"class": "Card-title"})[0] n = NewsItem_CNBC( base_url, a["href"], s.findAll("span", {"class": "Card-time"}), a.findAll("div")[0].text, "" ) yield n @classmethod def cleanup_content(cls, content: list): return content @classmethod def cleanup_content_item(cls, c: str, i: int): return c def extract_header(self, soup: bs4.BeautifulSoup): self.header = soup.find("div", {"class", "ArticleHeader-headerContentContainer"}).find("h1").text def extract_full_date(self, soup: bs4.BeautifulSoup): self.full_date = soup.find("div", {"class", "ArticleHeader-headerContentContainer"}).find("time")["datetime"] print(self.full_date) def extract_summary_content(self, soup: bs4.BeautifulSoup): summary = list() content = list() d = soup.find("div", {"class": "group"}) if not d: return for d in soup.findAll("div", {"class": "group"}): for p in d.findAll("p"): if "Check out the companies making headlines before the bell:" in p.text: continue elif "Check out the companies making headlines in midday trading." in p.text: continue elif "Take a look at some of the biggest movers in the premarket:" in p.text: continue if len(summary) < 2: print(p.text) summary.append(p.text) content.append(p.text) self.summary = ' '.join(summary) print(self.summary) self.content = list(content) self.content_raw = list(content) def extract_news_content( self, news_content_html_dir, sleep_s=0, hold_proc=True, use_selenium=False ): url = self.url page_source = get_page_source( url, os.path.join(news_content_html_dir, get_filesafe_url(url)), sleep_s=sleep_s, hold_proc=hold_proc, use_selenium=use_selenium ) soup = bs4.BeautifulSoup(page_source, features='html.parser') if "We're sorry, the page you were looking for cannot be found." in soup.text: return None a = soup.find("a", {"class": "ArticleHeader-eyebrow"}) if a: self.section = a.text self.extract_header(soup) self.extract_full_date(soup) self.extract_summary_content(soup) return self def cleanup_data(self): self.date = datetime.datetime.strptime(self.full_date[:10],"%Y-%m-%d").isoformat() self.content = NewsItem_CNBC.cleanup_content(self.content) if __name__ == "__main__": for front_url in NewsItem_CNBC.URLS: html_path, json_path, ng = NewsGroup.process( NewsItem_CNBC, front_url, html_dir_=html_dir, json_dir_=json_dir ) ```
{ "source": "jcotton42/ficdl", "score": 2 }
#### File: ficdl/ficdl/callbacks.py ```python from typing import Callable, Union from ficdl.scrapers.types import StoryMetadata class InitialStoryDetails: metadata: StoryMetadata def __init__(self, metadata: StoryMetadata): self.metadata = metadata class ChapterDetails: chapter_title: str chatper_number: int chapter_count: int def __init__(self, chapter_title, chapter_number, chapter_count): self.chapter_title = chapter_title self.chatper_number = chapter_number self.chapter_count = chapter_count ProgressCallback = Callable[[Union[InitialStoryDetails, ChapterDetails]], None] ``` #### File: ficdl/gui/converter.py ```python import tkinter as tk import tkinter.ttk as ttk class Converter(tk.Frame): def __init__(self, master, window): super().__init__(master) self.window = window self.create_widgets() def create_widgets(self): self.input_path = tk.StringVar() self.output_path = tk.StringVar() row = 0 ttk.Label(self, text='Convert an existing book').grid(row=row, column=0, columnspan=3, sticky=tk.W) row += 1 ttk.Label(self, text='NOT SUPPORTED YET').grid(row=row, column=0, columnspan=3, sticky=tk.W) row += 1 ttk.Label(self, text='Input path: ').grid(row=row, column=0, sticky=tk.W) ttk.Entry(self, textvariable=self.input_path).grid(row=row, column=1, sticky=tk.W) ttk.Button(self, text='Browse...', command=self.on_browse_input_path).grid(row=row, column=2, sticky=tk.W) row += 1 ttk.Label(self, text='Output path: ').grid(row=row, column=0, sticky=tk.W) ttk.Entry(self, textvariable=self.output_path).grid(row=row, column=1, sticky=tk.W) ttk.Button(self, text='Browse...', command=self.on_browse_output_path).grid(row=row, column=2, sticky=tk.W) row += 1 ttk.Button(self, text='Convert', command=self.on_convert).grid(row=row, column=0, sticky=tk.W) def on_browse_input_path(self): print('Browse input') def on_browse_output_path(self): print('Browse output') def on_convert(self): print('Convert') ``` #### File: ficdl/gui/downloader.py ```python from dataclasses import dataclass from ficdl.scrapers.types import StoryMetadata from pathlib import Path import queue from typing import Optional, Union import threading import tkinter as tk import tkinter.ttk as ttk import tkinter.filedialog as filedialog import tkinter.messagebox as messagebox from bs4 import PageElement from ficdl.callbacks import ChapterDetails, InitialStoryDetails from ficdl.config import CONFIG from ficdl.downloader import download_story, write_story from ficdl.utils import make_path_safe from ficdl.writers.types import OutputFormat, WriterOptions DOWNLOAD_STATE_CHANGED = '<<DownloadStateChanged>>' @dataclass(eq=False) class DownloadFinished: text: list[list[PageElement]] metadata: StoryMetadata cover_path: Optional[Path] @dataclass(eq=False) class SaveFinished: save_path: Path class Downloader(tk.Frame): def __init__(self, master, window): super().__init__(master) self.window = window self.download_data = queue.SimpleQueue() self.bind(DOWNLOAD_STATE_CHANGED, self.on_download_state_changed) self.create_widgets() def create_widgets(self): self.url = tk.StringVar() self.cover_path = tk.StringVar() self.progress_value = tk.IntVar() row = 0 ttk.Label(self, text='Download a story').grid(row=row, column=0, columnspan=3, sticky=tk.W) row += 1 ttk.Label(self, text='URL: ').grid(row=row, column=0, sticky=tk.W) ttk.Entry(self, textvariable=self.url).grid(row=row, column=1, sticky=tk.W) row += 1 ttk.Label(self, text='Cover to use in place of story cover:').grid(row=row, column=0, sticky=tk.W) ttk.Entry(self, textvariable=self.cover_path).grid(row=row, column=1, sticky=tk.W) ttk.Button(self, text='Browse...', command=self.on_browse_for_cover).grid(row=row, column=2, sticky=tk.W) row += 1 self.download_progress_bar = ttk.Progressbar(self, orient='horizontal', mode='determinate', variable=self.progress_value) self.download_progress_bar.grid(row=row, column=0, columnspan=2, sticky='ew') self.download_button = ttk.Button(self, text='Download...', command=self.on_download) self.download_button.grid(row=row, column=2, sticky=tk.W) def on_browse_for_cover(self): file = filedialog.askopenfilename( parent=self.window, filetypes=( ('All supported images', '.jpg .jpeg .png'), ('PNG', '.png'), ('JPG', '.jpg .jpeg'), ) ) if file == '': return self.cover_path.set(file) def download_callback(self, details: Union[ChapterDetails, InitialStoryDetails]): # not run on the UI thread, so use events self.download_data.put(details) self.event_generate(DOWNLOAD_STATE_CHANGED) def ask_for_save_location(self, suggest_name: str) -> Optional[Path]: file = filedialog.asksaveasfilename( parent=self.window, defaultextension='.epub', initialfile=suggest_name, filetypes=( ('ePub (all eReaders *except* Kindle)', '.epub'), ('Mobipocket (all Kindles)', '.mobi'), ('PDF', '.pdf'), ) ) if file == '': # Cancel was clicked return None return Path(file) def on_download_state_changed(self, _event): def save_to_disk(metadata, text, format, output_path, cover_path): write_story(format, WriterOptions( chapter_text=text, metadata=metadata, output_path=output_path, cover_path=cover_path, font_family=CONFIG.default_font_family, font_size=CONFIG.default_font_size, line_height=CONFIG.default_line_height, page_size=CONFIG.default_page_size, )) self.download_data.put(SaveFinished(save_path=output_path)) self.event_generate(DOWNLOAD_STATE_CHANGED) while not self.download_data.empty(): data = self.download_data.get() if isinstance(data, InitialStoryDetails): self.progress_value.set((1 / len(data.metadata.chapter_names)) * 100) elif isinstance(data, ChapterDetails): self.progress_value.set((data.chatper_number / data.chapter_count) * 100) elif isinstance(data, DownloadFinished): suggest_name = make_path_safe(data.metadata.title) save_path = self.ask_for_save_location(suggest_name) if save_path is not None: self.progress_value.set(0) self.download_progress_bar.configure(mode='indeterminate') self.download_progress_bar.start() thread = threading.Thread(target=save_to_disk, args=( data.metadata, data.text, OutputFormat(save_path.suffix.lstrip('.').lower()), save_path, data.cover_path, )) thread.start() else: self.progress_value.set(0) self.download_button.configure(state=tk.NORMAL) elif isinstance(data, SaveFinished): self.download_button.configure(state=tk.NORMAL) self.download_progress_bar.stop() self.progress_value.set(0) self.download_progress_bar.configure(mode='determinate') messagebox.showinfo('Download finished', 'All done.') else: raise Exception("A callback case isn't being handled in the GUI: " + type(data)) def on_download(self): def on_download_inner(url: str, cover: Path): metadata, text = download_story(url, self.download_callback) self.download_data.put(DownloadFinished(text=text, metadata=metadata, cover_path=cover)) self.event_generate(DOWNLOAD_STATE_CHANGED) url = self.url.get().strip() cover = self.cover_path.get().strip() if cover == '': cover = None else: cover = Path(cover) if not cover.exists(): messagebox.showerror(title='Cover does not exist', message='The path you gave for the cover does not exist.') return self.download_button.configure(state=tk.DISABLED) thread = threading.Thread(target=on_download_inner, args=(url, cover)) thread.start() ``` #### File: ficdl/gui/subscription_manager.py ```python import tkinter as tk import tkinter.ttk as ttk import tkinter.filedialog as filedialog class SubscriptionManager(tk.Frame): def __init__(self, master, window): super().__init__(master) self.window = window self.create_widgets() def create_widgets(self): row = 0 ttk.Label(self, text='Subscribed stories').grid(row=row, column=0, columnspan=3, sticky=tk.W) row += 1 ttk.Label(self, text='NOT SUPPORTED YET').grid(row=row, column=0, sticky=tk.W) ``` #### File: ficdl/scrapers/ffn.py ```python from bs4 import BeautifulSoup, PageElement, Tag from datetime import datetime, timezone from typing import Optional from ficdl.scrapers.types import Scraper, StoryMetadata from ficdl.utils import download_and_decompress import logging import re CENTER_STYLE = re.compile(r'text-align\s*:\s*center', re.IGNORECASE) UNDERLINE_STYLE = re.compile(r'text-decoration\s*:\s*underline', re.IGNORECASE) logger = logging.getLogger(__name__) def extract_story_title(page: BeautifulSoup) -> str: # sadly there is no ID for the title :/ return page.select('#profile_top > b')[0].string def extract_author(page: BeautifulSoup) -> str: # no better way for this either return page.select('#profile_top > a')[0].string def extract_chapter_names(page: BeautifulSoup) -> Optional[list[str]]: chapters = [] data = page.find(id='chap_select') if data is None: # story has only 1 chapter return None for chapter in data.children: _, title = chapter.string.split('. ', maxsplit=1) chapters.append(title) return chapters def extract_cover_url(page: BeautifulSoup) -> Optional[str]: cover = page.select_one('.cimage[data-original]') if cover is None: return None url = cover['data-original'] if url.startswith('//'): url = 'https:' + url return url def extract_text(page: BeautifulSoup) -> list[PageElement]: text = [] for child in page.find(id='storytext').children: if isinstance(child, Tag) and child.name == 'p': if child.has_attr('style') and CENTER_STYLE.match(child['style']): # pandoc throws away the centering CSS on parsing, so add a div with a custom CSS class div = page.new_tag('div') div['class'] = 'center' del child['style'] child = child.wrap(div) for span in child.find_all(name='span', style=UNDERLINE_STYLE): span['class'] = 'underline' del span['style'] text.append(child) return text def extract_description(page: BeautifulSoup) -> str: return page.select_one('#profile_top > div').string def extract_update_date_utc(page: BeautifulSoup) -> datetime: # update date is either by itself, or the first date return datetime.fromtimestamp(int(page.select('#profile_top span[data-xutime]')[0]['data-xutime']), timezone.utc) class FFNScraper(Scraper): base_url: str title_from_url: str first_chapter: BeautifulSoup def __init__(self, url: str) -> None: self.base_url, _chap_num, self.title_from_url = url.rsplit('/', maxsplit=2) def get_metadata(self) -> StoryMetadata: url = f'{self.base_url}/1/{self.title_from_url}' if getattr(self, 'first_chapter', None) is None: page, _mimetype = download_and_decompress(url) self.first_chapter = BeautifulSoup(page, 'html5lib') title = extract_story_title(self.first_chapter) author = extract_story_title(self.first_chapter) cover_url = extract_cover_url(self.first_chapter) chapter_names = extract_chapter_names(self.first_chapter) description = extract_description(self.first_chapter) update_date_utc = extract_update_date_utc(self.first_chapter) if chapter_names is None: chapter_names = [title] return StoryMetadata( title=title, author=author, cover_url=cover_url, chapter_names=chapter_names, description=description, update_date_utc=update_date_utc ) def get_text_for_chapter(self, number: int) -> list[PageElement]: if number == 1 and self.first_chapter is not None: chapter = self.first_chapter else: url = f'{self.base_url}/{number}/{self.title_from_url}' page, _mimetype = download_and_decompress(url) chapter = BeautifulSoup(page, 'html5lib') return extract_text(chapter) ``` #### File: ficdl/scrapers/types.py ```python from abc import ABCMeta, abstractmethod from dataclasses import dataclass from datetime import datetime from typing import Optional @dataclass(eq=False) class StoryMetadata: title: str author: str cover_url: Optional[str] chapter_names: list[str] description: str update_date_utc: datetime class Scraper(metaclass=ABCMeta): @abstractmethod def get_metadata(self) -> StoryMetadata: pass @abstractmethod def get_text_for_chapter(self, number: int) -> list: pass ``` #### File: ficdl/ficdl/updater.py ```python from pathlib import Path from typing import NoReturn from urllib.request import Request, urlopen import json import os import pkgutil import tempfile import sys import ficdl class ReleaseInfo: def __init__(self, version, download_url, release_notes): self.version = version self.download_url = download_url self.release_notes = release_notes def get_latest_release() -> ReleaseInfo: request = Request( 'https://api.github.com/repos/jcotton42/ficdl/releases/latest', headers={'Accpet': 'application/vnd.github.v3+json'} ) with urlopen(request) as respone: release = json.loads(respone.read()) return ReleaseInfo( tuple(map(int, release['tag_name'].lstrip('v').split('.'))), release['assets'][0]['url'], release['body'], ) def install_update(download_url: str, restart_app: bool) -> NoReturn: work_dir = Path(tempfile.mkdtemp()) updater = work_dir.joinpath('updater.py') updater.write_bytes(pkgutil.get_data('ficdl', 'assets/updater.py')) current_ficdl_path = Path(ficdl.__file__).parent.parent.resolve() updated_ficdl_path = work_dir.joinpath('ficdl.pyz') request = Request(download_url, headers={ 'accept': 'application/octet-stream', }) with urlopen(request) as response: updated_ficdl_path.write_bytes(response.read()) python_args = [ str(updater), str(updated_ficdl_path), str(current_ficdl_path), str(work_dir) ] if restart_app: python_args.append('--restart-app') # no that's not a typo, the second sys.executable provides sys.argv[0] os.execl(sys.executable, sys.executable, *python_args) ``` #### File: ficdl/ficdl/utils.py ```python from gzip import GzipFile from io import BytesIO import logging import os from pathlib import Path import re import shutil import sys import tkinter as tk import tkinter.font as tkfont from typing import Optional, Tuple from urllib.request import urlopen from ficdl.config import CONFIG logger = logging.getLogger(__name__) INVALID_PATH_CHARS = re.compile(r'[<>:"/\\|?*]') INVALID_PATH = re.compile(r'^(con|prn|aux|nul|com[1-9]|lpt[1-9])$', re.IGNORECASE) def make_path_safe(stem: str) -> str: if INVALID_PATH.match(stem): return stem + '_' else: return INVALID_PATH_CHARS.sub('_', stem) def get_font_families(root: Optional[tk.Misc]) -> list[str]: if root is None: root = tk.Tk() fonts = sorted(tkfont.families(root)) root.destroy() else: fonts = sorted(tkfont.families(root)) return fonts def find_tool(tool: str) -> Optional[Path]: path = os.environ.get(f'FICDL_TOOL_{tool.upper()}', None) if path is not None: return Path(path) path = CONFIG.tool_paths.get(tool, None) if path is not None: return Path(path) path = shutil.which(tool) if path is not None: return Path(path) else: return None def download_and_decompress(url) -> Tuple[bytes, str]: with urlopen(url) as response: if not 200 <= response.status < 300: logger.critical('Failed to download story asset with HTTP status %d', response.status) sys.exit(2) # FIXME, should raise instead data = response.read() is_gzip = response.headers['Content-Encoding'] == 'gzip' mimetype = response.headers['Content-Type'] return (decompress(data, is_gzip), mimetype) def decompress(data, is_gzip) -> bytes: if is_gzip: buf = BytesIO(data) with GzipFile(fileobj=buf) as f: return f.read() else: return data ```
{ "source": "JCouderc/gs15-kasumi", "score": 3 }
#### File: blockchain/blockchain/wallet.py ```python from os import path from app.blockchain.signature.rsa import RSASignature from app.keys_generator.keys_manager.rsa_keys import RSAKeysManager from app.utils.file_manager import read_file, write_file path_data = path.join(path.abspath(path.dirname(__file__)), '../../../data/') path_wallet = path.join(path_data, 'wallets/') path_keys = path.join(path_data, 'keys/') path_public = path.join(path_keys, 'public/') path_private = path.join(path_keys, 'private/') class Wallet: def __init__(self, wallet_filename: str = None): if path.exists(path.join(path_wallet, wallet_filename)): # Load user wallet from file wallet_lines = read_file(path.join(path_wallet, wallet_filename)).splitlines() self.__user = wallet_lines[0] self.__keys_filename = wallet_lines[1] self.__keys_mngr = RSAKeysManager(self.__keys_filename) else: # Create user wallet from keys keys_filename = 'key_' + wallet_filename.split('_')[0] + '.txt' self.__keys_mngr = RSAKeysManager(keys_filename) self.__user = keys_filename.split('.')[0].split('_')[1] # Use filename as username self.__keys_filename = keys_filename # Checks if user already exists if path.exists(path.join(path_wallet, self.__user + '_wallet.txt')): raise Exception("Le wallet de cet utilisateur existe déjà") self.__save() # Write the new wallet file def execute_transaction(self, recipient: "Wallet", amount: int) -> str: """ Signs a transaction :param recipient: :param amount: The amount of currency the sender will give and the recipient will receive :return: Signature of the transaction """ # Sign the transaction rsa_signer = RSASignature(self.__keys_mngr) trans_signature = rsa_signer.sign(self.__user + recipient.user + str(amount)) self.__save() return trans_signature def __save(self): """ Saves the Wallet into a file :return: """ write_file(path.join(path_wallet, self.__user + '_wallet.txt'), self.__user + '\n' + self.__keys_filename) @property def user(self): return self.__user @property def public_key(self): return self.__keys_mngr.get_public() ``` #### File: gs15-kasumi/app/cli.py ```python import getpass import os from app.kasumi import cli as kasumi from app.keys_generator import cli as keysgen from app.hashes import cli as hashes from app.blockchain import cli as blockchain def cls(): """ Efface le contenu du terminal """ os.system('cls' if os.name == 'nt' else 'clear') def check_all_cmds(): """ Effectue toutes les commandes du menu """ kasumi.all() keysgen.all() hashes.all() blockchain.all() def switch_command(cmd): available_cmds = { 1: kasumi.encrypt, 2: kasumi.decrypt, 3: keysgen.generate_keys, 4: hashes.generate, 5: hashes.check, 6: blockchain.create_proof_of_work, 7: blockchain.check_transaction, 8: blockchain.increment, 9: blockchain.check_integrity, 10: check_all_cmds, 11: blockchain.print_blockchain, 12: blockchain.users_wallets, } cmd_nb = 0 try: cmd_nb = int(cmd) except ValueError: print('La commande entrée doit être un nombre') if cmd_nb in available_cmds: func_to_run = available_cmds.get(cmd_nb) func_to_run() input("\nAppuyez sur Entrée pour continuer...\n") else: print('La commande n\'est pas disponible') def run(): while True: print(f'Bonjour ô maître {getpass.getuser()} ! Que souhaitez vous faire aujourd’hui ? (q pour quitter)') print('->1<- Chiffrer un message.') print('->2<- Déchiffrer un message.') print('->3<- Générer des couples de clés publiques / privées.') print('->4<- Générer un hash / une empreinte.') print('->5<- Vérifier un hash / une empreinte.') print('->6<- Effectuer une preuve de travail.') print('->7<- Vérifier une transaction (une signature).') print('->8<- Débuter / incrémenter la Block-chain.') print('->9<- Vérifier l’intégrité de la block-chain.') print('->10<- I WANT IT ALL !! I WANT IT NOW !!') cmd = input() if cmd == 'q': print(f'Au revoir, ô maître {getpass.getuser()} !') break switch_command(cmd) ``` #### File: hashes/hash/sponge_hash.py ```python from app.hashes.hash.hash import Hash from app.hashes.hash.sha256 import SHA256 class SpongeHash(Hash): __message_part_size = 256 # Size of of the messages parts in bits (chosen arbitrarily) __message_count_size = 64 # Size of the allocated part for message payload size in bits (chosen arbitrarily) def hash(self, message: str, to_hex: bool = True): """ Calculate the hash of the message with SHA-256 encapsulated in a sponge function :param message: :param to_hex: If true, returns an hexadecimal string of the hash else an integer :return: String or integer format of the hash """ message_parts = self.__split_message(message) state = self.__absorb(message_parts) hash_parts = self.__squeeze(state) raw_hash = self.__merge_hash(hash_parts) if to_hex: return hex(raw_hash).lstrip('0x') return raw_hash def __absorb(self, message_parts: list) -> int: """ Absorb the message parts and gives the final state :param message_parts: :return: The final state of the absorb phase """ # State is composed of the bitrate and capacity parts # | State | # | capacity | bitrate | state = 0 f_hash = SHA256() for msg_part in message_parts: state ^= msg_part state = f_hash.hash(state, to_hex=False, pad_message=False) if len(message_parts) < 2: # Following the constraint to apply the function at least twice state = f_hash.hash(state, to_hex=False, pad_message=False) return state def __squeeze(self, state: int) -> list: """ Extract the final hash from the squeezed states :param state: The last state of the absorb process :return: The final hash as a list """ bitrate_mask = (1 << self.__message_part_size) - 1 hash_parts = [] f_hash = SHA256() for i in range(f_hash.get_block_size() // self.__message_part_size): hash_parts.insert(0, state & bitrate_mask) state = f_hash.hash(state, to_hex=False, pad_message=False) return hash_parts def __split_message(self, message: str) -> list: """ Splits the message into a list of integers to be processed by the absorption phase :param message: Given message as a string :return: The list of integers representing the message """ # String to integer message_bytes = bytearray(message, 'utf-8') # String to byte array message_length = len(message_bytes) * 8 if message_length >= (1 << self.__message_count_size): raise Exception('Message size must be lower than 2^', self.__message_count_size, ' bits') message_int = message_bytes[0] for i in range(1, len(message_bytes)): message_int = (message_int << 8) | message_bytes[i] # Padding nb_blocks = (message_length // self.__message_part_size) + 1 remaining_bits = message_length % self.__message_part_size if remaining_bits + 1 + self.__message_count_size <= self.__message_part_size: # Enough space in the last block nb_padding_zeros = self.__message_part_size - remaining_bits - 1 - self.__message_count_size else: # Not enough place in the last block so we will create one more nb_padding_zeros = (2 * self.__message_part_size) - remaining_bits - 1 - self.__message_count_size nb_blocks += 1 message_int = (message_int << 1) | 1 # End of message separator message_int = message_int << nb_padding_zeros # Padding of the message to fit the blocks size message_int = (message_int << self.__message_count_size) | message_length # Message bit length at the end # Parsing mask_block = (1 << self.__message_part_size) - 1 message_payload = [] for i in range(nb_blocks): message_payload.append((message_int >> ((nb_blocks - i - 1) * self.__message_part_size)) & mask_block) return message_payload def __merge_hash(self, hash_parts): final_hash = 0 for i in range(len(hash_parts)): final_hash = (final_hash << self.__message_part_size) | hash_parts[i] return final_hash ``` #### File: kasumi/cipher_mode/pcbc.py ```python from app.kasumi.cipher_mode.cipher_mode import CipherMode from app.kasumi.kasumi import Kasumi class PCBC(CipherMode): def __init__(self, kasumi: Kasumi): super().__init__(kasumi) def encrypt(self, message: str, key: str, iv: str) -> str: """ Encrypts message with key using PCBC mode :param message: :param key: :param iv: :return: """ kasumi_blocks = super()._string_to_blocks(message) key = int(key, 16) prev_block = int(iv, 16) # PCBC for i in range(len(kasumi_blocks)): curr_plaintext_block = kasumi_blocks[i] kasumi_blocks[i] = prev_block = self.kasumi.encrypt(kasumi_blocks[i] ^ prev_block, key) prev_block ^= curr_plaintext_block return super()._blocks_to_string(kasumi_blocks, True) def decrypt(self, message: str, key: str, iv: str) -> str: """ Decrypts message with key using PCBC mode :param message: :param key: :param iv: :return: """ kasumi_blocks = super()._string_to_blocks(message, True) key = int(key, 16) prev_block = int(iv, 16) # PCBC for i in range(len(kasumi_blocks)): curr_block = kasumi_blocks[i] kasumi_blocks[i] = self.kasumi.decrypt(curr_block, key) ^ prev_block prev_block = curr_block ^ kasumi_blocks[i] return super()._blocks_to_string(kasumi_blocks) ``` #### File: app/kasumi/cli.py ```python from app.kasumi.cipher_mode.cbc import CBC from app.kasumi.cipher_mode.cfb import CFB from app.kasumi.cipher_mode.ctr import CTR from app.kasumi.cipher_mode.gcm import GCM from app.kasumi.cipher_mode.ofb import OFB from app.kasumi.cipher_mode.ecb import ECB from app.kasumi.cipher_mode.pcbc import PCBC from app.kasumi.kasumi import Kasumi from os import path from app.utils.file_manager import file_loader, add_to_filename, write_file, read_file path_data = path.join(path.abspath(path.dirname(__file__)), '../../data/') path_keys = path.join(path_data, 'keys/') path_ivs = path.join(path_data, 'iv/') available_ciphermodes = { "ECB": ECB, "CBC": CBC, "PCBC": PCBC, "CFB": CFB, "OFB": OFB, "CTR": CTR, "GCM": GCM, } def encrypt(): """ CLI to encrypt a file using Kasumi :return: """ # Message message, filename, q_pressed = file_loader("Fichier du dossier data à chiffrer (kasumi.txt par défaut) :", "kasumi.txt", path_data) if q_pressed: return # Key (128 bits in hexadecimal) key, _, q_pressed = file_loader("Clé du dossier data/keys à utiliser (kasumi_key.txt par défaut) :", "kasumi_key.txt", path_keys) if q_pressed: return # Cipher mode cipher_name, q_pressed = _get_cipher_name() if q_pressed: return # Initialization vector (64 bits in hexadecimal) iv, _, q_pressed = file_loader("Vecteur d'initialisation du dossier data/iv à utiliser (iv.txt par défaut, " "entrée pour ECB) :", "iv.txt", path_ivs) # Creates cipher the desired cipher mode cipher_mode = available_ciphermodes.get(cipher_name) cipher = cipher_mode(Kasumi()) encrypted = cipher.encrypt(message, key, iv) # Add '-encrypted' to the filename filename = add_to_filename(filename, '-encrypted') write_file(path.join(path_data, filename), encrypted) print('Chiffré :') print(encrypted) def decrypt(): """ CLI to decrypt a file using Kasumi :return: """ # Message message, filename, q_pressed = file_loader( "Fichier du dossier data à déchiffrer (kasumi-encrypted.txt par défaut) :", "kasumi-encrypted.txt", path_data ) if q_pressed: return # Key key, _, q_pressed = file_loader("Clé du dossier data/keys à utiliser (kasumi_key.txt par défaut) :", "kasumi_key.txt", path_keys) if q_pressed: return # Cipher mode cipher_name, q_pressed = _get_cipher_name() if q_pressed: return # Initialization vector (64 bits in hexadecimal) iv, _, q_pressed = file_loader("Vecteur d'initialisation du dossier data/iv à utiliser (iv.txt par défaut, " "entrée pour ECB) :", "iv.txt", path_ivs) # Creates cipher the desired cipher mode cipher_mode = available_ciphermodes.get(cipher_name) cipher = cipher_mode(Kasumi()) decrypted = cipher.decrypt(message, key, iv) # Add '-decrypted' to the filename filename = add_to_filename(filename, '-decrypted') write_file(path.join(path_data, filename), decrypted) print('Déchiffré :') print(decrypted) def all(): """ Does all the possible actions in Kasumi :return: """ print('Kasumi\n') cleartext = read_file(path.join(path_data, "kasumi.txt")) key = read_file(path.join(path_keys, "kasumi_key.txt")) iv = read_file(path.join(path_ivs, "iv.txt")) kasumi = Kasumi() # ECB ecb = ECB(kasumi) if ecb.decrypt(ecb.encrypt(cleartext, key, iv), key, iv) != cleartext: print('Erreur Kasumi ECB\n') else: print('ECB ok!\n') # CBC cbc = CBC(kasumi) if cbc.decrypt(cbc.encrypt(cleartext, key, iv), key, iv) != cleartext: print('Erreur Kasumi CBC\n') else: print('CBC ok!\n') # PCBC pcbc = PCBC(kasumi) if pcbc.decrypt(pcbc.encrypt(cleartext, key, iv), key, iv) != cleartext: print('Erreur Kasumi PCBC\n') else: print('PCBC ok!\n') # CFB cfb = CFB(kasumi) if cfb.decrypt(cfb.encrypt(cleartext, key, iv), key, iv) != cleartext: print('Erreur Kasumi CFB\n') else: print('CFB ok!\n') # OFB ofb = OFB(kasumi) if ofb.decrypt(ofb.encrypt(cleartext, key, iv), key, iv) != cleartext: print('Erreur Kasumi OFB\n') else: print('OFB ok!\n') # CTR ctr = CTR(kasumi) if ctr.decrypt(ctr.encrypt(cleartext, key, iv), key, iv) != cleartext: print('Erreur Kasumi CTR\n') else: print('CTR ok!\n') # GCM gcm = GCM(kasumi) if gcm.decrypt(gcm.encrypt(cleartext, key, iv), key, iv) != cleartext: print('Erreur Kasumi GCM\n') else: print('GCM ok!\n') def _get_cipher_name() -> (str, bool): """ Get the desired cipher name from the user input :return: cipher name and quit boolean """ cipher_name = None while True: print("Mode de chiffrement à utiliser (ECB (défaut), CBC, PCBC, CFB, OFB, CTR, GCM) :") cipher_name = input().upper() if cipher_name == 'q': return '', True if len(cipher_name) == 0: cipher_name = 'ECB' if cipher_name in available_ciphermodes: break else: print("Ce mode de chiffrement n'est pas dans la liste") return cipher_name, False ``` #### File: app/kasumi/galois_field.py ```python from os import path import random from pyfinite import ffield # TODO Create our own implementation ! def multiply_galois_64(a: int, b: int): """ Multiplies a and b in a Galois Field of 2^64 :param a: :param b: :return: """ galois_128 = ffield.FField(64, 2**64 + 2**63 + 2**62 + 2**60 + 2**59 + 2**57 + 2**54 + 2**53 + 2**52 + 2**51 + 2**46 + 2**44 + 2**43 + 2**42 + 2**41 + 2**40 + 2**39 + 2**38 + 2**34 + 2**31 + 2**0) return galois_128.Multiply(a, b) class GaloisField: """ Manages a Galois Field of the form GF(2^n) """ def __init__(self, bit_length: int = 16, fn_poly: str = 'polynomial.txt'): self.irr_polys_8 = [ 2 ** 8 + 2 ** 4 + 2 ** 3 + 2 ** 2 + 2 ** 0, 2 ** 8 + 2 ** 5 + 2 ** 3 + 2 ** 1 + 2 ** 0, 2 ** 8 + 2 ** 6 + 2 ** 4 + 2 ** 3 + 2 ** 2 + 2 ** 1 + 2 ** 0, 2 ** 8 + 2 ** 6 + 2 ** 5 + 2 ** 1 + 2 ** 0, 2 ** 8 + 2 ** 6 + 2 ** 5 + 2 ** 2 + 2 ** 0, 2 ** 8 + 2 ** 6 + 2 ** 5 + 2 ** 3 + 2 ** 0, 2 ** 8 + 2 ** 7 + 2 ** 6 + 2 ** 1 + 2 ** 0, 2 ** 8 + 2 ** 7 + 2 ** 6 + 2 ** 5 + 2 ** 2 + 2 ** 1 + 2 ** 0 ] self.irr_polys_16 = [ 2 ** 16 + 2 ** 9 + 2 ** 8 + 2 ** 7 + 2 ** 6 + 2 ** 4 + 2 ** 3 + 2 ** 2 + 2 ** 0, 2 ** 16 + 2 ** 12 + 2 ** 3 + 2 ** 1 + 2 ** 0, 2 ** 16 + 2 ** 12 + 2 ** 7 + 2 ** 2 + 2 ** 0, 2 ** 16 + 2 ** 13 + 2 ** 12 + 2 ** 10 + 2 ** 9 + 2 ** 7 + 2 ** 6 + 2 ** 1 + 2 ** 0, 2 ** 16 + 2 ** 13 + 2 ** 12 + 2 ** 11 + 2 ** 7 + 2 ** 6 + 2 ** 3 + 2 ** 1 + 2 ** 0, 2 ** 16 + 2 ** 13 + 2 ** 12 + 2 ** 11 + 2 ** 10 + 2 ** 6 + 2 ** 2 + 2 ** 1 + 2 ** 0, 2 ** 16 + 2 ** 14 + 2 ** 10 + 2 ** 8 + 2 ** 3 + 2 ** 1 + 2 ** 0, 2 ** 16 + 2 ** 14 + 2 ** 13 + 2 ** 12 + 2 ** 6 + 2 ** 5 + 2 ** 3 + 2 ** 2 + 2 ** 0, 2 ** 16 + 2 ** 14 + 2 ** 13 + 2 ** 12 + 2 ** 10 + 2 ** 7 + 2 ** 0, 2 ** 16 + 2 ** 15 + 2 ** 10 + 2 ** 6 + 2 ** 5 + 2 ** 3 + 2 ** 2 + 2 ** 1 + 2 ** 0, 2 ** 16 + 2 ** 15 + 2 ** 11 + 2 ** 9 + 2 ** 8 + 2 ** 7 + 2 ** 5 + 2 ** 4 + 2 ** 2 + 2 ** 1 + 2 ** 0, 2 ** 16 + 2 ** 15 + 2 ** 11 + 2 ** 10 + 2 ** 7 + 2 ** 6 + 2 ** 5 + 2 ** 3 + 2 ** 2 + 2 ** 1 + 2 ** 0, 2 ** 16 + 2 ** 15 + 2 ** 11 + 2 ** 10 + 2 ** 9 + 2 ** 6 + 2 ** 2 + 2 ** 1 + 2 ** 0, 2 ** 16 + 2 ** 15 + 2 ** 11 + 2 ** 10 + 2 ** 9 + 2 ** 8 + 2 ** 6 + 2 ** 4 + 2 ** 2 + 2 ** 1 + 2 ** 0 ] self.polynomial = 0 self.generator = 0 self.bit_length = bit_length self.path_poly = path.join(path.join(path.abspath(path.dirname(__file__)), '../../data/'), fn_poly) self.galois_field = None if path.exists(self.path_poly): # Open previously written polynomial setting with open(self.path_poly, 'r') as file_poly: line_elems = file_poly.readline().split(' ') if int(line_elems[0]) == self.bit_length: self.polynomial = int(line_elems[1]) self.generator = int(line_elems[2]) self.galois_field = ffield.FField(self.bit_length, self.polynomial) if self.polynomial == 0: self.__generate_polynomial() def __generate_polynomial(self): """ Generates a generator element in the polynomial """ power = 0 res = 1 # Select a random generator possibility # primes_field, _ = _prime_factorize(2 ** self.bit_length - 1) # possibilities = _products(primes_field) possibilities = [i for i in range(2, 2 ** self.bit_length - 1)] # Select a random irreducible polynomial according to the degree if self.bit_length == 16: self.polynomial = self.irr_polys_16[random.randint(0, len(self.irr_polys_16) - 1)] elif self.bit_length == 8: self.polynomial = self.irr_polys_8[random.randint(0, len(self.irr_polys_8) - 1)] else: # TODO select an irreducible polynomial for degrees other than 16 (not required for now) print('Oups') self.galois_field = ffield.FField(self.bit_length, self.polynomial) while True: # Select one random polynomial to check if it is a generator elem = possibilities[random.randint(0, len(possibilities) - 1)] possibilities.remove(elem) # Remove it from remaining possibilities for power in range(2 ** self.bit_length): res = self.galois_field.Multiply(res, elem) if res == 1: break if power == (2 ** self.bit_length) - 2: # Generator !!! break self.generator = elem with open(self.path_poly, 'w+') as file_poly: file_poly.write(str(self.bit_length) + ' ' + str(self.polynomial) + ' ' + str(self.generator)) def inverse(self, a: int) -> int: """ Gives the inverse of 'a' in the irreducible polynomial :param a: The number to get inverse off of it :return: The inverse of 'a' """ return self.galois_field.DoInverseForSmallField(a) ``` #### File: keys_generator/keys_manager/keys_manager.py ```python import abc class KeysManager(abc.ABC): """ Manages a public / private key pair """ @classmethod def __subclasshook__(cls, subclass): return (hasattr(subclass, 'get_public') and callable(subclass.get_public) and hasattr(subclass, 'get_public_key') and callable(subclass.get_public_key) and hasattr(subclass, 'get_private_key') and callable(subclass.get_private_key) or NotImplemented) @abc.abstractmethod def get_public(self): """ Gives the public elements of the keys :return: """ raise NotImplementedError @abc.abstractmethod def get_public_key(self): """ Gives the public key :return: """ raise NotImplementedError @abc.abstractmethod def get_private_key(self): """ Gives the private key :return: """ raise NotImplementedError ``` #### File: app/utils/bit_operation.py ```python def add_mod(x: int, y: int, modulo: int = 32) -> int: """ Modular addition :param x: :param y: :param modulo: :return: """ return (x + y) & ((1 << modulo) - 1) def left_circ_shift(x: int, shift: int, n_bits: int) -> int: """ Does a left binary circular shift on the number x of n_bits bits :param x: A number :param shift: The number of bits to shift :param n_bits: The number of bits of x :return: The shifted result """ mask = (1 << n_bits) - 1 # Trick to create a ones mask of n bits x_base = (x << shift) & mask # Keep it in the n_bits range return x_base | (x >> (n_bits - shift)) # Add the out of bounds bits def right_circ_shift(x: int, shift: int, n_bits: int) -> int: """ Does a right binary circular shift on the number x of n_bits bits :param x: A number :param shift: The number of bits to shift :param n_bits: The number of bits of x :return: The shifted result """ mask = (1 << n_bits) - 1 # Trick to create a ones mask of n bits x_base = x >> shift return x_base | (x << (n_bits - shift) & mask) def merge_bytes(payload_list: list) -> int: """ Gives an 8 bytes value from a byte list :param payload_list: Byte list (max size is 8) :return: """ while len(payload_list) < 8: payload_list.append(0x00) result = payload_list[0] for i in range(1, 8): result = (result << 8) | payload_list[i] return result def split_bytes(payload: int) -> bytearray: """ Gives a byte list of an 8 bytes value :param payload: The 8 bytes value :return: """ payload_list = bytearray() for i in range(8): payload_list.insert(0, (payload >> (8 * i)) & 0xFF) # Extract bytes by shifting right and masking return payload_list ``` #### File: app/utils/modular_arithmetic.py ```python from collections import Counter def prime_decomposition(n: int) -> (list, list): """ Decompose a number in prime factors :param n: The number to decompose :return: List of prime factors and list of occurrences of prime factors """ prime_factors = [] while n % 2 == 0: # Check if divisible by 2 prime_factors.append(2) n /= 2 factor = 3 while (factor * factor) <= n: if n % factor == 0: prime_factors.append(factor) n /= factor else: factor += 2 # Next possible factor if n != 0: prime_factors.append(n) # Add last prime prime_factors_count = Counter(prime_factors).values() # Count prime factors occurrences prime_factors = list(set(prime_factors)) # Remove duplicates return prime_factors, prime_factors_count def square_and_multiply(a: int, power: int, modulo: int) -> int: """ Fast technique for exponentiation of a base to a power with a modulo :param a: :param power: :param modulo: :return: """ result = 1 while power > 0: if (power & 1) == 1: result = (result * a) % modulo power //= 2 a = (a * a) % modulo return result def products(el: list) -> list: """ Generates all possible multiplication combinations of given numbers :param el: List of numbers :return: List of the combinations """ result = [] bit_size = len(el) for i in range(2 ** bit_size): cur_num = 1 for j in range(bit_size): if i & (1 << j): # If the bit is on for this position then multiply by the number at that index cur_num *= el[j] result.append(int(cur_num)) return result def gcd_extended(a: int, b: int) -> list: """ Calculates the greatest common divisor of a and b and gives the bezout coefficients :param a: :param b: :return: """ # Bezout coefficients u_prev = v = 1 v_prev = u = 0 round_nb = 1 while True: quotient, remains = divmod(a, b) if remains == 0: if round_nb & 1: return [b, -u, v] return [b, u, -v] # updating coefficients u_tmp = u v_tmp = v u = u * quotient + u_prev v = v * quotient + v_prev u_prev = u_tmp v_prev = v_tmp # updating remains a = b b = remains # Increment round number round_nb += 1 def gcd(a: int, b: int) -> int: """ Calculates the greatest common divisor of a and b :param a: :param b: :return: """ while True: quotient, remains = divmod(a, b) if remains == 0: return b # updating remains a = b b = remains def inverse(a: int, b: int) -> int: """ Calculates the modular inverse of a in b :param a: :param b: :return: """ _, inv, _ = gcd_extended(a, b) return inv % b ```
{ "source": "jcoughlin11/scholarphi", "score": 2 }
#### File: common/commands/locate_entities.py ```python import glob import logging import os.path import shutil from abc import ABC, abstractmethod from argparse import ArgumentParser from collections import deque from dataclasses import dataclass from typing import Any, Callable, Deque, Dict, Iterator, List, Optional, Type from common import directories, file_utils from common.colorize_tex import ColorizedTex, ColorizeOptions, colorize_entities from common.commands.base import ArxivBatchCommand from common.commands.compile_tex import save_compilation_result from common.commands.raster_pages import raster_pages from common.compile import ( compile_tex, get_last_autotex_compiler, get_last_colorized_entity_id, ) from common.diff_images import diff_images_in_raster_dirs from common.locate_entities import locate_entities from common.types import ( ArxivId, ColorizationRecord, FileContents, HueLocationInfo, RelativePath, SerializableEntity, ) from common.unpack import unpack @dataclass(frozen=True) class LocationTask: arxiv_id: ArxivId tex_path: RelativePath file_contents: FileContents entities: List[SerializableEntity] ColorizeFunc = Callable[[str, List[SerializableEntity], ColorizeOptions], ColorizedTex] class LocateEntitiesCommand(ArxivBatchCommand[LocationTask, HueLocationInfo], ABC): """ Integrated batch processing for locating entities. Includes adding colorization commands to the LaTeX, compiling the document, rastering the pages, differencing the pages, and searching for the colorized entities. Attempts to be tolerant to colorization faults. The command detects which entity appears to cause colorization issues (both compilation issues, and formula layout changes), and isolates those entities to be extracted on their own. Because of this fault sensitivity, this command merges together many stages of the pipeline that could theoretically be separated---adding color commands, compiling, rastering pages, and image processing. They are merged to make it easier to loop back to earlier stages of the pipeline when errors are detected in later stages. """ def __init__(self, *args: Any, **kwargs: Any) -> None: super(LocateEntitiesCommand, LocateEntitiesCommand).__init__( self, *args, **kwargs ) entity_name = self.get_entity_name() self.output_base_dirs = { "sources": f"sources-with-colorized-{entity_name}", "compiled-sources": f"compiled-sources-with-colorized-{entity_name}", "paper-images": f"paper-images-with-colorized-{entity_name}", "diffed-images": f"diffed-images-with-colorized-{entity_name}", "entity-locations": f"{entity_name}-locations", } @staticmethod def init_parser(parser: ArgumentParser) -> None: super(LocateEntitiesCommand, LocateEntitiesCommand).init_parser(parser) parser.add_argument( "--batch-size", type=int, default=30, help=( "Number of entities to detect at a time. This number is limited by the number " + "of distinct hues that OpenCV can detect." ), ) parser.add_argument( "--skip-visual-validation", action="store_true", help=( "Whether to skip visual validation. When visual validation is enabled, the " + "paper diff will be checked for black pixels before hues are located. Black " + "pixels indicate that the layout of the page changed based on changes made to " + "the TeX. If visual validation fails for a diff for a paper, that diff will " + "not be processed. Set this flag to skip visual validation and therefore " + "process all diffs of all papers regardless of evidence of layout shift." ), ) @staticmethod @abstractmethod def get_entity_name() -> str: """ Get the name of the type of entity that will be batch processed in these commands. This command will be used to determine the names of output directories. """ def get_arxiv_ids_dirkey(self) -> str: return f"detected-{self.get_entity_name()}" @staticmethod def get_detected_entity_type() -> Type[SerializableEntity]: """ Override this method if you need access to entity data that are present on a subclass of 'SerializableEntity'. For example, if you need colorization to occur only when equations have a specific depth, this function should return the 'Equation' type, so that the 'when' colorization callback can have access to the 'depth' property. """ return SerializableEntity @staticmethod @abstractmethod def get_colorize_options() -> ColorizeOptions: """ Override this to set a custom options for colorizing entities. One example is that you may want to wrap all entities in curly braces before applying colorization commands to them. """ @staticmethod @abstractmethod def get_colorize_func() -> Optional[ColorizeFunc]: """ Override this when you want to set a custom function for colorizing entities. One example of when to set this is for bibliography items, where colorization commands are to be inserted at the top of a TeX file, instead of around the citation commands. """ @staticmethod @abstractmethod def should_sanity_check_images() -> Optional[bool]: """ Force visual validation of images before locating hues, or force skipping of validation. """ def load(self) -> Iterator[LocationTask]: entity_name = self.get_entity_name() for arxiv_id in self.arxiv_ids: for output_base_dir in self.output_base_dirs.values(): file_utils.clean_directory( directories.arxiv_subdir(output_base_dir, arxiv_id) ) # A directory of entities may contain files for each of multiple types of entities. # One example is that the definition detector detects both terms and definitions. # In that case, the colorizer colorizes all entities from all of these files. # Earlier entity extractor commands should include enough information in the entity IDs # so that the type of entities can be inferred from the entity ID in later commands. entities_dir = directories.arxiv_subdir(f"detected-{entity_name}", arxiv_id) entities: List[SerializableEntity] = [] for entities_path in glob.glob(os.path.join(entities_dir, "entities*.csv")): entities.extend( file_utils.load_from_csv( entities_path, self.get_detected_entity_type() ) ) original_sources_path = directories.arxiv_subdir("sources", arxiv_id) for tex_path in file_utils.find_files( original_sources_path, [".tex"], relative=True ): file_contents = file_utils.read_file_tolerant( os.path.join(original_sources_path, tex_path) ) entities_for_tex_path = [ e for e in entities if e.tex_path == tex_path or e.tex_path == "N/A" ] if file_contents is not None: yield LocationTask( arxiv_id, tex_path, file_contents, entities_for_tex_path ) def process(self, item: LocationTask) -> Iterator[HueLocationInfo]: # Filter out entities that are empty (i.e., have nothing to color) # A '-1' in the 'start' or 'end' field indicates that the entity does not occur in a # specific place in the TeX, but rather a custom coloring technique based on other # entity properties will be used. So entities that have a '-1' for their start and # end should still be processed even though they appear to be zero-length. entities_filtered = [e for e in item.entities if e.start == -1 or e.end == -1 or e.start != e.end] # Sort entities by the order in which they appear in the TeX. This allows the pipeline # to keep track of which ones appear first, when trying to recover from errors (i.e., when # trying to detect which entity in a batch may have shifted to cause many others to move.) entities_ordered = sorted(entities_filtered, key=lambda e: e.start) # Construct a queue of entities to detect. entities_by_id = {e.id_: e for e in entities_ordered} to_process = deque([e.id_ for e in entities_ordered]) to_process_alone: Deque[str] = deque() def next_batch() -> List[str]: """ Get the next batch of entities to process. First tries to sample a batch from 'to_process', and then attempts to sample individual entities from 'to_process_alone'. """ if len(to_process) > 0: return [ to_process.popleft() for _ in range(min(self.args.batch_size, len(to_process))) ] return [to_process_alone.popleft()] batch_index = -1 while len(to_process) > 0 or len(to_process_alone) > 0: # Fetch the next batch of entities to process. batch_index += 1 logging.debug( "Locating bounding boxes for batch %d of entities of type %s for paper %s.", batch_index, self.get_entity_name(), item.arxiv_id, ) iteration_id = directories.tex_iteration(item.tex_path, str(batch_index)) batch = next_batch() entities: List[SerializableEntity] = [entities_by_id[id_] for id_ in batch] # Colorize the TeX for all the entities. custom_colorize_func = self.get_colorize_func() if custom_colorize_func is not None: colorized_tex = custom_colorize_func( item.file_contents.contents, entities, self.get_colorize_options() ) if len(colorized_tex.entity_hues) == 0: logging.info( # pylint: disable=logging-not-lazy "Custom colorization function colored nothing for entity batch %d of " + "paper %s when coloring file %s. The function probably decide there was " + "nothing to do for this file, and will hopefullly colorize these " + "entities in another file. Skipping this batch for this file.", batch_index, item.arxiv_id, item.file_contents.path, ) continue else: colorized_tex = colorize_entities( item.file_contents.contents, entities, self.get_colorize_options() ) # If some entities were skipped during colorization, perhaps because they # overlapped with each other, add them back to the work queue. if colorized_tex.skipped is not None and len(colorized_tex.skipped) > 0: logging.info( # pylint: disable=logging-not-lazy "Entities %s were skipped during colorization batch %d for paper " + "%s. They will be processed in a later batch.", [e.id_ for e in colorized_tex.skipped], batch_index, item.arxiv_id, ) # Queue skipped entities in the order that they initially appeared in the batch. reprocess_ids = {e.id_ for e in colorized_tex.skipped} reprocess_sorted = [id_ for id_ in batch if id_ in reprocess_ids] to_process.extendleft(reversed(reprocess_sorted)) # Remove skipped entities from the current batch. for skip in colorized_tex.skipped: del batch[batch.index(skip.id_)] # Save the colorized TeX to the file system. colorized_tex_dir = directories.iteration( self.output_base_dirs["sources"], item.arxiv_id, iteration_id ) save_success = save_colorized_tex( item.arxiv_id, colorized_tex_dir, item.tex_path, iteration_id, colorized_tex.tex, item.file_contents.encoding, colorized_tex.entity_hues, ) if not save_success: logging.error( # pylint: disable=logging-not-lazy "Failed to save colorized TeX files for arXiv paper %s. " "This paper will be skipped.", item.arxiv_id, ) # Compile the TeX with the colors. compiled_tex_dir = directories.iteration( self.output_base_dirs["compiled-sources"], item.arxiv_id, iteration_id, ) shutil.copytree(colorized_tex_dir, compiled_tex_dir) compilation_result = compile_tex(compiled_tex_dir) save_compilation_result( "compiled-sources", item.arxiv_id, compiled_tex_dir, compilation_result ) if not compilation_result.success: # If colorizing a specific entity caused the failure, remove the entity that caused # the problem from the batch and restart with a new batch, minus this entity. last_colorized_entity_id = get_last_colorized_entity( item.arxiv_id, compiled_tex_dir ) if last_colorized_entity_id is not None: problem_ids = [last_colorized_entity_id] if batch.index(last_colorized_entity_id) < len(batch) - 1: problem_ids += [batch[batch.index(last_colorized_entity_id) + 1]] if len(batch) == 1: logging.warning( # pylint: disable=logging-not-lazy "Failed to compile paper %s with colorized entity %s, even when it was " + "colorized in isolation. The location of this entity will not be detected.", item.arxiv_id, batch[0] ) continue logging.warning( # pylint: disable=logging-not-lazy "Failed to compile paper %s with colorized entities. The culprit may be " + "the colorization command for entity %s. The problematic entities will be " + "colorized on their own, and the rest of the entities will be colorized " + "together in the next batch.", item.arxiv_id, " or ".join(problem_ids), ) for id_ in problem_ids: to_process_alone.append(id_) del batch[batch.index(id_)] to_process.extendleft(reversed(batch)) continue # If there was some other reason for the error, remove just the first entity from the batch. logging.error( # pylint: disable=logging-not-lazy "Failed to compile paper %s with colorized entities %s. The cause " + "is assumed to be in the first colorized entity. The location for the " + "first entity %s will not be detected. The remainder of the entities in " + "this batch will be processed in another batch.", item.arxiv_id, batch, batch[0], ) del [batch[0]] to_process.extendleft(reversed(batch)) continue # Raster the pages to images, and compute diffs from the original images. output_files = compilation_result.output_files raster_output_dir = directories.iteration( self.output_base_dirs["paper-images"], item.arxiv_id, iteration_id ) for output_file in output_files: raster_success = raster_pages( compiled_tex_dir, os.path.join( raster_output_dir, directories.escape_slashes(output_file.path) ), output_file.path, output_file.output_type, ) if not raster_success: logging.error( # pylint: disable=logging-not-lazy "Failed to rasterize pages %s iteration %d. The locations for entities " + "with IDs %s with not be detected.", item.arxiv_id, iteration_id, batch, ) continue diffs_output_dir = directories.iteration( self.output_base_dirs["diffed-images"], item.arxiv_id, iteration_id ) diff_success = diff_images_in_raster_dirs( output_files, raster_output_dir, diffs_output_dir, item.arxiv_id, ) if not diff_success: logging.error( # pylint: disable=logging-not-lazy "Failed to difference images of original and colorized versions of " + "papers %s in batch processing iteration %d. The locations for entities with IDs " + "%s will not be detected.", item.arxiv_id, iteration_id, batch, ) continue # Locate the entities in the diffed images. entity_hues = colorized_tex.entity_hues location_result = locate_entities( item.arxiv_id, raster_output_dir, diffs_output_dir, entity_hues ) if location_result is None: logging.warning( # pylint: disable=logging-not-lazy "Error occurred when locating entities by hue in diffed images " + "for paper %s. None of the entities in batch %s will be detected.", item.arxiv_id, batch, ) continue if self.should_sanity_check_images() and location_result.black_pixels_found: logging.warning( # pylint: disable=logging-not-lazy "Ignoring bounding boxes found for paper %s in batch %s due to " + "black pixels found in the images. This might indicate that the colorization " + "commands introduced subtle shifts of the text.", item.arxiv_id, batch, ) continue # If colorizing entities seemed to cause drift in the document... if len(location_result.shifted_entities) > 0: logging.warning( # pylint: disable=logging-not-lazy "Some entities shifted position in the colorized TeX for paper %s batch %s: " + "%s. Attempting to remove the first shifted entity from the batch.", item.arxiv_id, batch, location_result.shifted_entities, ) first_shifted_entity_id = None for entity_id in batch: if entity_id in location_result.shifted_entities: first_shifted_entity_id = entity_id break if first_shifted_entity_id is not None: if len(batch) > 1: logging.info( # pylint: disable=logging-not-lazy "Entity %s has been marked as being the potential cause of shifting in " + "the colorized document for paper %s batch %d. It will be processed " + "later on its own. The other shifted entities in %s will be queued to " + "process as a group in an upcoming batch.", first_shifted_entity_id, item.arxiv_id, batch_index, location_result.shifted_entities, ) # Get the index of the first entity for which the location has shifted # during colorization. moved_entity_index = batch.index(first_shifted_entity_id) # Mark all other entities that have shifted after the first one one to be processed # in a later batch (instead of on their own). It could be that they won't shift # once the first shifted entity is removed. for i in range(len(batch) - 1, moved_entity_index, -1): if batch[i] in location_result.shifted_entities: to_process.appendleft(batch[i]) del batch[i] # Mark the first entity that shifted to be reprocessed alone, where its position # might be discoverable, without affecting the positions of other element. del batch[moved_entity_index] to_process_alone.append(first_shifted_entity_id) elif len(batch) == 1 and self.should_sanity_check_images(): logging.info( # pylint: disable=logging-not-lazy "Skipping entity %s for paper %s as it caused " + "colorization errors even when colorized in isolation.", first_shifted_entity_id, item.arxiv_id, ) continue elif len(batch) == 1: logging.info( # pylint: disable=logging-not-lazy "Entity %s has been marked as the cause of shifting in " + "the colorized document for paper %s. Its location will " + "still be saved (if one was found), though this location should be " + "considered potentially inaccurate.", first_shifted_entity_id, item.arxiv_id, ) else: logging.warning( # pylint: disable=logging-not-lazy "Could not find a single entity that was likely responsible for shifting in " + "the colorized version of paper %s batch %d. All entities in batch %s will " + "be processed on their own.", item.arxiv_id, batch_index, batch, ) to_process_alone.extend(batch) # The code above is responsible for filter 'batch' to ensure that it doesn't include # any entity IDs that shouldn't be save to file, for example if the client has asked that # entity IDs that cause colorization errors be omitted from the results. for entity_id in batch: for box in location_result.locations[entity_id]: yield HueLocationInfo( tex_path=item.tex_path, iteration=iteration_id, hue=entity_hues[entity_id], entity_id=entity_id, page=box.page, left=box.left, top=box.top, width=box.width, height=box.height, ) def save(self, item: LocationTask, result: HueLocationInfo) -> None: logging.debug( "Found bounding box for %s entity %s in iteration %s, hue %f", item.arxiv_id, result.entity_id, result.iteration, result.hue, ) output_dir = directories.arxiv_subdir( self.output_base_dirs["entity-locations"], item.arxiv_id ) if not os.path.exists(output_dir): os.makedirs(output_dir) output_path = os.path.join(output_dir, "entity_locations.csv") file_utils.append_to_csv(output_path, result) EntityId = str def get_last_colorized_entity( arxiv_id: ArxivId, compilation_path: RelativePath ) -> Optional[EntityId]: original_compilation_path = directories.arxiv_subdir("compiled-sources", arxiv_id) original_autogen_log_path = os.path.join( original_compilation_path, "auto_gen_ps.log" ) error_message = None if not os.path.exists(original_autogen_log_path): error_message = ( f"Could not find auto_gen_ps.log output from AutoTeX at {original_autogen_log_path}. " + "Has the original TeX for paper {arxiv_id} been compiled?" ) new_autogen_log_path = os.path.join(compilation_path, "auto_gen_ps.log") if not os.path.exists(new_autogen_log_path): error_message = ( f"Could not find auto_gen_ps.log output from AutoTeX at {original_autogen_log_path}. " + f"There may have been an error running AutoTeX on a colorized copy of paper {arxiv_id}." ) if error_message is not None: logging.warning( # pylint: disable=logging-not-lazy error_message + "It will not be possible to determine what compiler succeeded at compiling the " + "original paper, and therefore to determine which entities may have been " + "responsible for compilation failure. Entity batching may be less efficient.", ) return None with open(original_autogen_log_path) as file_: original_autogen_log = file_.read() with open(new_autogen_log_path) as file_: new_autogen_log = file_.read() # Get the name of the TeX compiler that successfully compiled the original TeX. compiler_name = get_last_autotex_compiler(original_autogen_log) if compiler_name is None: logging.warning( # pylint: disable=logging-not-lazy "Could not find the name of the TeX compiler that compiled the original TeX by " + "scanning the logs at %s. It will not be possible to determine what was the last " + "entity colorized before the compilation failure. Entity batching may be less efficient.", original_autogen_log_path, ) return None # Get the ID of the last entity that was colorized before compilation failure last_colorized_entity_id = get_last_colorized_entity_id( new_autogen_log, compiler_name ) if last_colorized_entity_id is not None: logging.debug( # pylint: disable=logging-not-lazy "Entity '%s' was the last entity colorized before compilation failure in " + "directory %s. The colorization of this entity may be responsible for the " + "compilation error.", last_colorized_entity_id, original_autogen_log_path, ) else: logging.warning( # pylint: disable=logging-not-lazy "Unable to determine what was the last entity colorized before compilation failure " + "in source directory %s from log %s for compiler '%s'. Entity batching may be less efficient.", compilation_path, new_autogen_log_path, compiler_name, ) return last_colorized_entity_id def save_colorized_tex( arxiv_id: ArxivId, output_sources_path: RelativePath, tex_path: RelativePath, iteration: str, tex: str, encoding: str, entity_hues: Dict[str, float], ) -> bool: logging.debug("Outputting colorized TeX to %s.", output_sources_path) # Each colorization batch gets a new sources directory. unpack_path = unpack(arxiv_id, output_sources_path) sources_unpacked = unpack_path is not None if unpack_path is None: logging.warning("Could not unpack sources into %s.", output_sources_path) return False if sources_unpacked: # Rewrite the TeX with the colorized TeX. tex_path = os.path.join(output_sources_path, tex_path) with open(tex_path, "w", encoding=encoding) as tex_file: tex_file.write(tex) # Save a log of which hues were assigned to which entities. hues_path = os.path.join(output_sources_path, "entity_hues.csv") for entity_id, hue in entity_hues.items(): file_utils.append_to_csv( hues_path, ColorizationRecord( tex_path=tex_path, iteration=str(iteration), hue=hue, entity_id=entity_id, ), ) return True def make_locate_entities_command( entity_name: str, DetectedEntityType: Optional[Type[SerializableEntity]] = None, colorize_options: ColorizeOptions = ColorizeOptions(), colorize_func: Optional[ColorizeFunc] = None, sanity_check_images: Optional[bool] = None, ) -> Type[LocateEntitiesCommand]: """ Create a command for locating the bounding boxes for entities. Help the command cast the entities loaded into the right data type by providing a 'DetectedEntityType'. Colorization of entities can be customized, either by providing a unique 'colorize_func', or by providing a set of 'colorize_options'. Specify 'sanity_check_images' to force visual validation of image differences. Bounding boxes will be omitted for entities when unexpected visual artifacts are found in image differences. """ class C(LocateEntitiesCommand): @staticmethod def get_name() -> str: return f"locate-bounding-boxes-for-{entity_name}" @staticmethod def get_description() -> str: return f"Find bounding boxes of {entity_name}." @staticmethod def get_entity_name() -> str: return entity_name @staticmethod def get_detected_entity_type() -> Type[SerializableEntity]: if DetectedEntityType is None: return super(C, C).get_detected_entity_type() return DetectedEntityType @staticmethod def get_colorize_options() -> ColorizeOptions: return colorize_options @staticmethod def get_colorize_func() -> Optional[ColorizeFunc]: return colorize_func @staticmethod def should_sanity_check_images() -> Optional[bool]: return sanity_check_images return C ``` #### File: sentences/commands/extract_contexts.py ```python import logging import os.path from abc import abstractmethod from collections import defaultdict from dataclasses import dataclass from typing import Any, Callable, Dict, Iterator, List, Optional, Type from common import directories, file_utils from common.colorize_tex import wrap_span from common.commands.base import ArxivBatchCommand from common.types import ArxivId, RelativePath, SerializableEntity from ..types import Context, Sentence, TexWrapper @dataclass(frozen=True) class Task: arxiv_id: ArxivId tex_path: RelativePath entities: List[SerializableEntity] sentences: List[Sentence] SentenceId = str EntityKey = Any class ExtractContextsCommand(ArxivBatchCommand[Task, Context]): """ Extract contexts in which entities appear in the paper. This command is meant to be used as a part of the pipelines for collecting descriptive data for other entities. """ @abstractmethod def get_entity_name(self) -> str: " Get the key for the type of entity for which contexts will be extracted. " @staticmethod def get_entity_type() -> Type[SerializableEntity]: """ Override this method if you need access to entity data that are present on a subclass of 'SerializableEntity'. For example, to have access to the MathML property on a symbol during comparison of symbols in the 'compare' callback, override this method to return the type 'SerializableSymbol'. """ return SerializableEntity @abstractmethod def get_wrapper( self, entity: SerializableEntity ) -> Optional[TexWrapper]: # pylint: disable=unused-argument """ Override this method to insert custom TeX before and after each appearance of the entity in the TeX, i.e., to add custom styling around the entity where it appears in the TeX. """ def get_key(self, entity: SerializableEntity) -> Any: """ Get key that can be used to compare entities for semantic equality. Used when composing text snippets to determine whether two entities refer to the same thing. For example, a key for symbols might be the symbol's MathML, so that other symbols with the same MathML also get highlighted in the snippet. Override this to use a custom key. """ return entity.tex def load(self) -> Iterator[Task]: for arxiv_id in self.arxiv_ids: output_dir = directories.arxiv_subdir( f"contexts-for-{self.get_entity_name()}", arxiv_id ) file_utils.clean_directory(output_dir) # Load entities from file. entities_path = os.path.join( directories.arxiv_subdir( f"detected-{self.get_entity_name()}", arxiv_id ), "entities.csv", ) entities = list( file_utils.load_from_csv(entities_path, self.get_entity_type()) ) # Load sentences from file. sentences_path = os.path.join( directories.arxiv_subdir("detected-sentences", arxiv_id), "entities.csv" ) try: sentences = list(file_utils.load_from_csv(sentences_path, Sentence)) except FileNotFoundError: logging.warning( # pylint: disable=logging-not-lazy "No sentences data found for arXiv paper %s. Try re-running the pipeline, " + "this time enabling the processing of sentences. If that doesn't work, " + "there was likely an error in detecting sentences for this paper.", arxiv_id, ) continue tex_paths = {e.tex_path for e in entities} for tex_path in tex_paths: entities_for_file = [e for e in entities if e.tex_path == tex_path] sentences_for_file = [s for s in sentences if s.tex_path == tex_path] yield Task(arxiv_id, tex_path, entities_for_file, sentences_for_file) def process(self, item: Task) -> Iterator[Context]: sentences_ordered = iter(sorted(item.sentences, key=lambda s: s.start)) sentences_by_id = {s.id_: s for s in item.sentences} entities_ordered = iter(sorted(item.entities, key=lambda e: e.start)) # Entities, grouped by similarity and sentence. sentence_entities: Dict[ SentenceId, Dict[EntityKey, List[SerializableEntity]] ] = {} if len(item.sentences) == 0: logging.warning( # pylint: disable=logging-not-lazy "No sentences found for file %s for arXiv ID %s. Skipping detection of sentences " + "that contain entities.", item.tex_path, item.arxiv_id, ) return if len(item.entities) == 0: logging.warning( # pylint: disable=logging-not-lazy "No entities found for file %s for arXiv ID %s for sentence detection task." + "Skipping detection of sentences for this entity for this paper.", item.tex_path, item.arxiv_id, ) return sentence = next(sentences_ordered) sentence_entities[sentence.id_] = defaultdict(list) entity = next(entities_ordered) while True: try: if entity.start < sentence.start: logging.warning( # pylint: disable=logging-not-lazy "Could not find sentence for entity from character %d to %d for arXiv " + "paper %s.", entity.start, entity.end, item.arxiv_id, ) entity = next(entities_ordered) elif entity.start >= sentence.start and entity.end <= sentence.end: sentence_entities[sentence.id_][self.get_key(entity)].append(entity) entity = next(entities_ordered) else: sentence = next(sentences_ordered) sentence_entities[sentence.id_] = defaultdict(list) except StopIteration: break for sentence_id in sentence_entities: sentence = sentences_by_id[sentence_id] for entity_key in sentence_entities[sentence_id]: entities = sentence_entities[sentence_id][entity_key] # Assemble a snippet for this sentences with entity appearances highlighted. # Wrap all repeat appearances of the same entity in a tag that can be used # by the KaTeX browser-based LaTeX renderer to style the matches. snippet = sentence.tex for entity in sorted(entities, key=lambda e: e.start, reverse=True): start_in_snippet = entity.start - sentence.start end_in_snippet = entity.end - sentence.start tex_wrapper = self.get_wrapper(entity) if tex_wrapper is not None: snippet = wrap_span( snippet, start_in_snippet, end_in_snippet, before=tex_wrapper.before, after=tex_wrapper.after, braces=tex_wrapper.braces, ) for entity in entities: neighbor_ids = [e.id_ for e in entities if e != entity] yield Context( tex_path=entity.tex_path, entity_id=entity.id_, sentence_id=sentence_id, snippet=snippet, neighbor_entity_ids=neighbor_ids, ) def save(self, item: Task, result: Context) -> None: output_dir = directories.arxiv_subdir( f"contexts-for-{self.get_entity_name()}", item.arxiv_id ) if not os.path.exists(output_dir): os.makedirs(output_dir) contexts_path = os.path.join(output_dir, "contexts.csv") file_utils.append_to_csv(contexts_path, result) EntityKeyFunc = Callable[[SerializableEntity], Any] def make_extract_contexts_command( entity_name: str, entity_key: Optional[EntityKeyFunc] = None, tex_wrapper: Optional[TexWrapper] = None, EntityType: Optional[Type[SerializableEntity]] = None, ) -> Type[ExtractContextsCommand]: class C(ExtractContextsCommand): @staticmethod def get_name() -> str: return f"extract-contexts-for-{entity_name}" def get_entity_name(self) -> str: return entity_name @staticmethod def get_entity_type() -> Type[SerializableEntity]: if EntityType is None: return super(C, C).get_entity_type() return EntityType def get_key(self, entity: SerializableEntity) -> Any: if entity_key is None: return super(C, C).get_key(self, entity) return entity_key(entity) def get_wrapper(self, entity: SerializableEntity) -> Optional[TexWrapper]: return tex_wrapper @staticmethod def get_description() -> str: return f"Extract contexts for each appearance of {entity_name}." def get_arxiv_ids_dirkey(self) -> str: return self.get_detected_entities_dirkey() def get_detected_entities_dirkey(self) -> str: return f"detected-{entity_name}" def get_output_base_dirkey(self) -> str: return f"sentences-for-{entity_name}" return C ``` #### File: symbols/commands/upload_symbols.py ```python import logging import os.path from collections import defaultdict from typing import Callable, Dict, Iterator, Optional from common import directories, file_utils from common.colorize_tex import wrap_span from common.commands.database import DatabaseUploadCommand from common.s2_data import get_s2_id from common.types import ( BoundingBox, EntityData, EntityInformation, EntityReference, EntityRelationships, Match, Matches, SymbolId, SymbolLocation, ) from common.upload_entities import upload_entities from entities.sentences.types import Context from ..types import SymbolData, DefiningFormula class UploadSymbols(DatabaseUploadCommand[SymbolData, None]): @staticmethod def get_name() -> str: return "upload-symbols" @staticmethod def get_description() -> str: return "Upload symbols to the database." def get_arxiv_ids_dirkey(self) -> str: return "sources" def load(self) -> Iterator[SymbolData]: for arxiv_id in self.arxiv_ids: s2_id = get_s2_id(arxiv_id) if s2_id is None: continue symbols_with_ids = file_utils.load_symbols(arxiv_id) if symbols_with_ids is None: continue symbols_by_id = {s.symbol_id: s.symbol for s in symbols_with_ids} boxes: Dict[SymbolId, BoundingBox] = {} boxes_path = os.path.join( directories.arxiv_subdir("symbol-locations", arxiv_id), "symbol_locations.csv", ) if not os.path.exists(boxes_path): logging.warning( "Could not find bounding boxes information for %s. Skipping", arxiv_id, ) continue for location in file_utils.load_from_csv(boxes_path, SymbolLocation): symbol_id = SymbolId( tex_path=location.tex_path, equation_index=location.equation_index, symbol_index=location.symbol_index, ) box = BoundingBox( page=int(location.page), left=location.left, top=location.top, width=location.width, height=location.height, ) boxes[symbol_id] = box matches: Matches = {} matches_path = os.path.join( directories.arxiv_subdir("symbol-matches", arxiv_id), "matches.csv" ) if not os.path.exists(matches_path): logging.warning( "Could not find symbol matches information for %s. Skipping", arxiv_id, ) continue for match in file_utils.load_from_csv(matches_path, Match): if match.queried_mathml not in matches: matches[match.queried_mathml] = [] matches[match.queried_mathml].append(match) context_data_missing = False contexts_path = os.path.join( directories.arxiv_subdir("contexts-for-symbols", arxiv_id), "contexts.csv", ) if not os.path.exists(contexts_path): logging.warning( # pylint: disable=logging-not-lazy "Contexts have not been found for symbols for arXiv paper %s. " + "Symbol data will be uploaded without contexts.", arxiv_id, ) context_data_missing = True symbol_contexts = {} mathml_contexts = defaultdict(list) if not context_data_missing: for context in file_utils.load_from_csv(contexts_path, Context): tex_path = context.tex_path equation_index, symbol_index = [ int(t) for t in context.entity_id.split("-") ] symbol_id = SymbolId(tex_path, equation_index, symbol_index) symbol_contexts[symbol_id] = context symbol = symbols_by_id[symbol_id] mathml_contexts[symbol.mathml].append(context) symbol_formulas = {} mathml_formulas = defaultdict(set) for id_, symbol in symbols_by_id.items(): if ( symbol.is_definition and symbol.equation is not None and symbol.relative_start is not None and symbol.relative_end is not None ): highlighted = wrap_span( symbol.equation, symbol.relative_start, symbol.relative_end, before=r"\htmlClass{match-highlight}{", after="}", braces=True, ) formula = DefiningFormula( tex=highlighted, tex_path=id_.tex_path, equation_id=id_.equation_index, ) symbol_formulas[id_] = formula mathml_formulas[symbol.mathml].add(formula) yield SymbolData( arxiv_id, s2_id, symbols_with_ids, boxes, symbol_contexts, symbol_formulas, mathml_contexts, mathml_formulas, matches, ) def process(self, _: SymbolData) -> Iterator[None]: yield None def save(self, item: SymbolData, _: None) -> None: symbols_with_ids = item.symbols_with_ids boxes = item.boxes matches = item.matches symbol_contexts = item.symbol_contexts mathml_contexts = item.mathml_contexts symbol_formulas = item.symbol_formulas mathml_formulas = item.mathml_formulas symbol_ids_by_symbol_object_ids = {} for symbol_with_id in symbols_with_ids: symbol_ids_by_symbol_object_ids[ id(symbol_with_id.symbol) ] = symbol_with_id.symbol_id entity_infos = [] for symbol_with_id in symbols_with_ids: symbol = symbol_with_id.symbol # TODO(andrewhead): move this filtering condition into 'parse_equation' if symbol.tex in ["$|$", "|"]: continue symbol_id = symbol_with_id.symbol_id # Get context and formula of the symbol, and other matching ones. context = symbol_contexts.get(symbol_id) matching_contexts = mathml_contexts.get(symbol.mathml, []) other_context_texs = [] other_context_sentence_ids = [] for c in matching_contexts: matching_sentence_id = f"{c.tex_path}-{c.sentence_id}" if ( matching_sentence_id not in other_context_sentence_ids # and c.sentence_id != context.sentence_id ): other_context_texs.append(c.snippet) other_context_sentence_ids.append(matching_sentence_id) formula = symbol_formulas.get(symbol_id) matching_formulas = mathml_formulas.get(symbol.mathml, []) other_formula_texs = [] other_formula_ids = [] for f in matching_formulas: equation_id = f"{f.tex_path}-{f.equation_id}" if equation_id not in other_formula_ids : # and ( # : formula is None or equation_id != formula.equation_id # ) other_formula_texs.append(f.tex) other_formula_ids.append(equation_id) box = boxes.get(symbol_id) if box is None: continue data: EntityData = { "tex": f"${symbol.tex}$", "tex_start": symbol.start, "tex_end": symbol.end, "mathml": symbol.mathml, "mathml_near_matches": [ m.matching_mathml for m in matches[symbol.mathml] ], # "snippet": context.snippet, "snippets": other_context_texs, "defining_formulas": other_formula_texs, "is_definition": symbol.is_definition or False, } # if formula is not None: # data['formula'] = formula.tex create_symbol_id_string: Callable[[SymbolId], str] = ( lambda sid: f"{sid.tex_path}-{sid.equation_index}-{sid.symbol_index}" ) sentence_id = ( f"{context.tex_path}-{context.sentence_id}" if context is not None else None ) parent_id: Optional[str] = None for other_symbol_with_id in symbols_with_ids: other_symbol_id = other_symbol_with_id.symbol_id other_symbol = other_symbol_with_id.symbol try: other_symbol.children.index(symbol) parent_id = create_symbol_id_string(other_symbol_id) except ValueError: continue child_ids = [] for child_symbol in symbol.children: child_symbol_id = symbol_ids_by_symbol_object_ids[id(child_symbol)] string_id = create_symbol_id_string(child_symbol_id) child_ids.append(string_id) relationships: EntityRelationships = { "equation": EntityReference( type_="equation", id_=f"{symbol_id.tex_path}-{symbol_id.equation_index}", ), "parent": EntityReference(type_="symbol", id_=parent_id), "children": [ EntityReference(type_="symbol", id_=id_) for id_ in child_ids ], "sentence": EntityReference(type_="sentence", id_=sentence_id) if sentence_id is not None else EntityReference(type_="sentence", id_=None), "defining_formula_equations": [ EntityReference(type_="equation", id_=id_) for id_ in other_formula_ids ], "snippet_sentences": [ EntityReference(type_="sentence", id_=id_) for id_ in other_context_sentence_ids ], # "snippet_sentence": EntityReference( # type_="sentence", id_=f"{symbol_id.tex_path}-f{context.sentence_id}" # ) # if context is not None # else None, # "formula_equation": EntityReference( # type_="equation", # id_=f"{symbol_id.tex_path}-f{formula.equation_id}" # if formula is not None # else None, # ), } entity_information = EntityInformation( id_=f"{symbol_id.tex_path}-{symbol_id.equation_index}-{symbol_id.symbol_index}", type_="symbol", bounding_boxes=[box], data=data, relationships=relationships, ) entity_infos.append(entity_information) upload_entities(item.s2_id, item.arxiv_id, entity_infos, self.args.data_version) ``` #### File: data-processing/tests/test_colorize_sentences.py ```python from entities.sentences.colorize import adjust_color_positions from entities.sentences.types import Sentence def create_sentence(tex: str, start: int) -> Sentence: return Sentence( start=start, end=start + len(tex), tex_path="main.tex", id_=0, tex=tex, context_tex="<extracted tex>", text="<plaintext>", text_journal=None, sanitized="<sanitized>", sanitized_journal=None, validity_guess=True, section_name="<current section>", in_figure=False, in_table=False, in_itemize=False, label=[], ref=[], cite=[], url=[], others=[], ) def test_colorize_at_sentence_bounds(): sentence = create_sentence("This is a sentence.", start=100) positions = adjust_color_positions(sentence) assert positions.start == 100 assert positions.end == 119 def test_adjust_color_start_to_within_equation(): sentence = create_sentence( "$x$ is an equation at the start of the sentence.", start=0 ) positions = adjust_color_positions(sentence) # The start position should not be at 0 (the start of the equation), but instead should be # adjusted to fall within the equation at the start of the sentence. assert positions.start != 0 assert positions.start == 1 assert positions.end == 48 def test_adjust_color_end_to_within_equation(): sentence = create_sentence( # Note that this sentence doesn't end with a period. My hunch is that if a sentence ends # with a period, it's okay to put the coloring commands after the period, as they will not # be in the problematic position of right after the equation. "This sentence ends with the equation $x$", start=0, ) positions = adjust_color_positions(sentence) assert positions.start == 0 assert positions.end != 40 assert positions.end == 39 def test_no_adjust_color_positions_if_equation_within_text(): sentence = create_sentence( "This sentence has the equation $x$ in the middle.", start=0 ) positions = adjust_color_positions(sentence) assert positions.start == 0 assert positions.end == 49 def test_adjust_color_to_within_equations_even_if_sentence_starts_or_ends_with_space(): sentence = create_sentence( " $x$ is the equation that opens the text, even though it appears after a space, and" + "this sentence ends with an equation followed by space $x$ ", start=0, ) positions = adjust_color_positions(sentence) assert positions.start == 4 assert positions.end == 141 ``` #### File: data-processing/tests/test_extract_abbreviations.py ```python import pytest from entities.abbreviations.extractor import AbbreviationExtractor extractor = None @pytest.fixture(scope="module", autouse=True) def setup_extractor(): """ Only set up the extractor once, as it requires the time-consuming initialization of an NLP model. """ global extractor # pylint: disable=global-statement extractor = AbbreviationExtractor() def assert_abbreviation(abb, id_, text, start, end, expansion, tex): # test the equivalence of an abbreviation instance abb and the values it should have assert abb.id_ == id_, "ID Incorrect" assert abb.text == text, "Abbreviation Short Form Incorrect" assert abb.start == start, "Abbreviation Start Position Incorrect" assert abb.end == end, "Abbreviation End Position Incorrect" assert abb.expansion == expansion, "Abbreviation Expansion Incorrect" assert abb.tex == tex, "Abbreviation Instance Incorrect" def test_basic(): # tests the most basic plaintext version abbs = list( extractor.parse( "", "Natural Language Processing (NLP) is a sub-field of artificial " + "intelligence (AI).", ) ) # this ensures if you have a different yield order it still works abbs.sort(key=lambda x: x.start) assert len(abbs) == 4, "Incorrect Number of Abbreviations Detected" assert_abbreviation( abbs[0], "expansion-0", "NLP", 0, 27, "Natural Language Processing", "Natural Language Processing", ) assert_abbreviation( abbs[1], "abbreviation-0-0", "NLP", 29, 32, "Natural Language Processing", "NLP", ) assert_abbreviation( abbs[2], "expansion-1", "AI", 52, 75, "artificial intelligence", "artificial intelligence", ) assert_abbreviation( abbs[3], "abbreviation-1-0", "AI", 77, 79, "artificial intelligence", "AI", ) def test_multiple(): # slightly more involved example, fail-safe to catch additional bugs anywhere abbs = list( extractor.parse( "", "Natural Language Processing (NLP) is a sub-field of artificial intelligence (AI).\n" + " AI can also be applied to other areas that are not NLP.", ) ) abbs.sort(key=lambda x: x.start) assert len(abbs) == 6 assert_abbreviation( abbs[4], "abbreviation-1-1", "AI", 83, 85, "artificial intelligence", "AI" ) assert_abbreviation( abbs[5], "abbreviation-0-1", "NLP", 134, 137, "Natural Language Processing", "NLP", ) def test_latex(): # More realistic example, latex formatting included. abbs = list( extractor.parse( "", "Natural Language Processing \\textbf{(NLP)} is a sub-field of artificial intelligence (AI).\n" + " Here's a random equation: $E=mc^2$ to throw you off. AI can also be applied to \\textbf{c}omputer \\textbf{v}ision (CV).", ) ) abbs.sort(key=lambda x: x.start) assert len(abbs) == 7 assert_abbreviation( abbs[0], "expansion-0", "NLP", 0, 27, "Natural Language Processing", "Natural Language Processing", ) assert_abbreviation( abbs[1], "abbreviation-0-0", "NLP", 37, 40, "Natural Language Processing", "NLP", ) assert_abbreviation( abbs[2], "expansion-1", "AI", 61, 84, "artificial intelligence", "artificial intelligence", ) assert_abbreviation( abbs[3], "abbreviation-1-0", "AI", 86, 88, "artificial intelligence", "AI" ) assert_abbreviation( abbs[5], "expansion-2", "CV", 179, 204, "computer vision", "c}omputer \\textbf{v}ision", ) assert_abbreviation( abbs[6], "abbreviation-2-0", "CV", 206, 208, "computer vision", "CV" ) ```
{ "source": "jcoughlin11/yt", "score": 2 }
#### File: jcoughlin11/yt/conftest.py ```python import os import shutil import tempfile from importlib.util import find_spec from pathlib import Path import matplotlib import pytest import yaml from packaging.version import Version from yt.config import ytcfg from yt.utilities.answer_testing.testing_utilities import ( _compare_raw_arrays, _hash_results, _save_raw_arrays, _save_result, _streamline_for_io, data_dir_load, ) MPL_VERSION = Version(matplotlib.__version__) def pytest_addoption(parser): """ Lets options be passed to test functions. """ parser.addoption( "--with-answer-testing", action="store_true", ) parser.addoption( "--answer-store", action="store_true", ) parser.addoption( "--answer-raw-arrays", action="store_true", ) parser.addoption( "--raw-answer-store", action="store_true", ) parser.addoption( "--force-overwrite", action="store_true", ) parser.addoption( "--no-hash", action="store_true", ) parser.addoption("--local-dir", default=None, help="Where answers are saved.") # Tell pytest about the local-dir option in the ini files. This # option is used for creating the answer directory on CI parser.addini( "local-dir", default=str(Path(__file__).parent / "answer-store"), help="answer directory.", ) parser.addini( "test_data_dir", default=ytcfg.get("yt", "test_data_dir"), help="Directory where data for tests is stored.", ) def pytest_configure(config): r""" Reads in the tests/tests.yaml file. This file contains a list of each answer test's answer file (including the changeset number). """ ytcfg["yt", "internals", "within_pytest"] = True # Register custom marks for answer tests and big data config.addinivalue_line("markers", "answer_test: Run the answer tests.") config.addinivalue_line( "markers", "big_data: Run answer tests that require large data files." ) for value in ( # treat most warnings as errors "error", # >>> internal deprecation warnings with no obvious solution # see https://github.com/yt-project/yt/issues/3381 ( r"ignore:The requested field name 'pd?[xyz]' is ambiguous and corresponds " "to any one of the following field types.*:yt._maintenance.deprecation.VisibleDeprecationWarning" ), # >>> warnings emitted by testing frameworks, or in testing contexts # we still have some yield-based tests, awaiting for transition into pytest "ignore::pytest.PytestCollectionWarning", # imp is used in nosetest "ignore:the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses:DeprecationWarning", # the deprecation warning message for imp changed in Python 3.10, so we ignore both versions "ignore:the imp module is deprecated in favour of importlib and slated for removal in Python 3.12; see the module's documentation for alternative uses:DeprecationWarning", # matplotlib warnings related to the Agg backend which is used in CI, not much we can do about it "ignore:Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.:UserWarning", "ignore:tight_layout . falling back to Agg renderer:UserWarning", # # >>> warnings from wrong values passed to numpy # these should normally be curated out of the test suite but they are too numerous # to deal with in a reasonable time at the moment. "ignore:invalid value encountered in log10:RuntimeWarning", "ignore:divide by zero encountered in log10:RuntimeWarning", "ignore:invalid value encountered in true_divide:RuntimeWarning", # # >>> there are many places in yt (most notably at the frontend level) # where we open files but never explicitly close them # Although this is in general bad practice, it can be intentional and # justified in contexts where reading speeds should be optimized. # It is not clear at the time of writing how to approach this, # so I'm going to ignore this class of warnings altogether for now. "ignore:unclosed file.*:ResourceWarning", ): config.addinivalue_line("filterwarnings", value) if MPL_VERSION < Version("3.0.0"): config.addinivalue_line( "filterwarnings", ( "ignore:Using or importing the ABCs from 'collections' instead of from 'collections.abc' " "is deprecated since Python 3.3,and in 3.9 it will stop working:DeprecationWarning" ), ) # at the time of writing, astropy's wheels are behind numpy's latest # version but this doesn't cause actual problems in our test suite, so # we allow this warning to pass. # last checked with astropy 4.2.1 config.addinivalue_line( "filterwarnings", ( "ignore:numpy.ndarray size changed, may indicate binary incompatibility. " "Expected 80 from C header, got 88 from PyObject:RuntimeWarning" ), ) if find_spec("astropy") is not None: # astropy triggers this warning from itself, there's not much we can do on our side # last checked with astropy 4.2.1 config.addinivalue_line( "filterwarnings", "ignore::astropy.wcs.wcs.FITSFixedWarning" ) if find_spec("cartopy") is not None: # cartopy still triggers this numpy warning # last checked with cartopy 0.19.0 config.addinivalue_line( "filterwarnings", ( "ignore:`np.float` is a deprecated alias for the builtin `float`. " "To silence this warning, use `float` by itself. " "Doing this will not modify any behavior and is safe. " "If you specifically wanted the numpy scalar type, use `np.float64` here." ":DeprecationWarning: " ), ) # this warning *still* shows up on cartopy 0.19 so we'll ignore it config.addinivalue_line( "filterwarnings", ( r"ignore:The default value for the \*approx\* keyword argument to " r"\w+ will change from True to False after 0\.18\.:UserWarning" ), ) # this one could be resolved by upgrading PROJ on Jenkins, # but there's isn't much else that can be done about it. config.addinivalue_line( "filterwarnings", ( "ignore:The Stereographic projection in Proj older than 5.0.0 incorrectly " "transforms points when central_latitude=0. Use this projection with caution.:UserWarning" ), ) def pytest_collection_modifyitems(config, items): r""" Decide which tests to skip based on command-line options. """ # Set up the skip marks skip_answer = pytest.mark.skip(reason="--with-answer-testing not set.") skip_unit = pytest.mark.skip(reason="Running answer tests, so skipping unit tests.") skip_big = pytest.mark.skip(reason="--answer-big-data not set.") # Loop over every collected test function for item in items: # If it's an answer test and the appropriate CL option hasn't # been set, skip it if "answer_test" in item.keywords and not config.getoption( "--with-answer-testing" ): item.add_marker(skip_answer) # If it's an answer test that requires big data and the CL # option hasn't been set, skip it if ( "big_data" in item.keywords and not config.getoption("--with-answer-testing") and not config.getoption("--answer-big-data") ): item.add_marker(skip_big) if "answer_test" not in item.keywords and config.getoption( "--with-answer-testing" ): item.add_marker(skip_unit) def _param_list(request): r""" Saves the non-ds, non-fixture function arguments for saving to the answer file. """ # pytest treats parameterized arguments as fixtures, so there's no # clean way to separate them out from other other fixtures (that I # know of), so we do it explicitly blacklist = [ "hashing", "answer_file", "request", "answer_compare", "temp_dir", "orbit_traj", "etc_traj", ] test_params = {} for key, val in request.node.funcargs.items(): if key not in blacklist: # For plotwindow, the callback arg is a tuple and the second # element contains a memory address, so we need to drop it. # The first element is the callback name, which is all that's # needed if key == "callback": val = val[0] test_params[key] = str(val) # Convert python-specific data objects (such as tuples) to a more # io-friendly format (in order to not have python-specific anchors # in the answer yaml file) test_params = _streamline_for_io(test_params) return test_params def _get_answer_files(request): """ Gets the path to where the hashed and raw answers are saved. """ answer_file = f"{request.cls.__name__}_{request.cls.answer_version}.yaml" raw_answer_file = f"{request.cls.__name__}_{request.cls.answer_version}.h5" # Add the local-dir aspect of the path. If there's a command line value, # have that override the ini file value clLocalDir = request.config.getoption("--local-dir") iniLocalDir = request.config.getini("local-dir") if clLocalDir is not None: answer_file = os.path.join(os.path.expanduser(clLocalDir), answer_file) raw_answer_file = os.path.join(os.path.expanduser(clLocalDir), raw_answer_file) else: answer_file = os.path.join(os.path.expanduser(iniLocalDir), answer_file) raw_answer_file = os.path.join(os.path.expanduser(iniLocalDir), raw_answer_file) # Make sure we don't overwrite unless we mean to overwrite = request.config.getoption("--force-overwrite") storing = request.config.getoption("--answer-store") raw_storing = request.config.getoption("--raw-answer-store") raw = request.config.getoption("--answer-raw-arrays") if os.path.exists(answer_file) and storing and not overwrite: raise FileExistsError( "Use `--force-overwrite` to overwrite an existing answer file." ) if os.path.exists(raw_answer_file) and raw_storing and raw and not overwrite: raise FileExistsError( "Use `--force-overwrite` to overwrite an existing raw answer file." ) # If we do mean to overwrite, do so here by deleting the original file if os.path.exists(answer_file) and storing and overwrite: os.remove(answer_file) if os.path.exists(raw_answer_file) and raw_storing and raw and overwrite: os.remove(raw_answer_file) print(os.path.abspath(answer_file)) return answer_file, raw_answer_file @pytest.fixture(scope="function") def hashing(request): r""" Handles initialization, generation, and saving of answer test result hashes. """ no_hash = request.config.getoption("--no-hash") store_hash = request.config.getoption("--answer-store") raw = request.config.getoption("--answer-raw-arrays") raw_store = request.config.getoption("--raw-answer-store") # This check is so that, when checking if the answer file exists in # _get_answer_files, we don't continuously fail. With this check, # _get_answer_files is called once per class, despite this having function # scope if request.cls.answer_file is None: request.cls.answer_file, request.cls.raw_answer_file = _get_answer_files( request ) if not no_hash and not store_hash and request.cls.saved_hashes is None: try: with open(request.cls.answer_file) as fd: request.cls.saved_hashes = yaml.safe_load(fd) except FileNotFoundError: module_filename = f"{request.function.__module__.replace('.', os.sep)}.py" with open(f"generate_test_{os.getpid()}.txt", "a") as fp: fp.write(f"{module_filename}::{request.cls.__name__}\n") pytest.fail(msg="Answer file not found.", pytrace=False) request.cls.hashes = {} # Load the saved answers if we're comparing. We don't do this for the raw # answers because those are huge yield # Get arguments and their values passed to the test (e.g., axis, field, etc.) params = _param_list(request) # Hash the test results. Don't save to request.cls.hashes so we still have # raw data, in case we want to work with that hashes = _hash_results(request.cls.hashes) # Add the other test parameters hashes.update(params) # Add the function name as the "master" key to the hashes dict hashes = {request.node.name: hashes} # Save hashes if not no_hash and store_hash: _save_result(hashes, request.cls.answer_file) # Compare hashes elif not no_hash and not store_hash: try: for test_name, test_hash in hashes.items(): assert test_name in request.cls.saved_hashes assert test_hash == request.cls.saved_hashes[test_name] except AssertionError: pytest.fail(f"Comparison failure: {request.node.name}", pytrace=False) # Save raw data if raw and raw_store: _save_raw_arrays( request.cls.hashes, request.cls.raw_answer_file, request.node.name ) # Compare raw data. This is done one test at a time because the # arrays can get quite large and storing everything in memory would # be bad if raw and not raw_store: _compare_raw_arrays( request.cls.hashes, request.cls.raw_answer_file, request.node.name ) @pytest.fixture(scope="function") def temp_dir(): r""" Creates a temporary directory needed by certain tests. """ curdir = os.getcwd() if int(os.environ.get("GENERATE_YTDATA", 0)): tmpdir = os.getcwd() else: tmpdir = tempfile.mkdtemp() os.chdir(tmpdir) yield tmpdir os.chdir(curdir) if tmpdir != curdir: shutil.rmtree(tmpdir) @pytest.fixture(scope="class") def ds(request): # data_dir_load can take the cls, args, and kwargs. These optional # arguments, if present, are given in a dictionary as the second # element of the list if isinstance(request.param, str): ds_fn = request.param opts = {} else: ds_fn, opts = request.param try: return data_dir_load( ds_fn, cls=opts.get("cls"), args=opts.get("args"), kwargs=opts.get("kwargs") ) except FileNotFoundError: return pytest.skip(f"Data file: `{request.param}` not found.") @pytest.fixture(scope="class") def field(request): """ Fixture for returning the field. Needed because indirect=True is used for loading the datasets. """ return request.param @pytest.fixture(scope="class") def dobj(request): """ Fixture for returning the ds_obj. Needed because indirect=True is used for loading the datasets. """ return request.param @pytest.fixture(scope="class") def axis(request): """ Fixture for returning the axis. Needed because indirect=True is used for loading the datasets. """ return request.param @pytest.fixture(scope="class") def weight(request): """ Fixture for returning the weight_field. Needed because indirect=True is used for loading the datasets. """ return request.param @pytest.fixture(scope="class") def ds_repr(request): """ Fixture for returning the string representation of a dataset. Needed because indirect=True is used for loading the datasets. """ return request.param @pytest.fixture(scope="class") def Npart(request): """ Fixture for returning the number of particles in a dataset. Needed because indirect=True is used for loading the datasets. """ return request.param ``` #### File: yt/_maintenance/backports.py ```python import sys if sys.version_info < (3, 8): from _thread import RLock from typing import List GenericAlias = type(List[int]) _NOT_FOUND = object() class cached_property: def __init__(self, func): self.func = func self.attrname = None self.__doc__ = func.__doc__ self.lock = RLock() def __set_name__(self, owner, name): if self.attrname is None: self.attrname = name elif name != self.attrname: raise TypeError( "Cannot assign the same cached_property to two different names " f"({self.attrname!r} and {name!r})." ) def __get__(self, instance, owner=None): if instance is None: return self if self.attrname is None: raise TypeError( "Cannot use cached_property instance without calling __set_name__ on it." ) try: cache = instance.__dict__ except AttributeError: # not all objects have __dict__ (e.g. class defines slots) msg = ( f"No '__dict__' attribute on {type(instance).__name__!r} " f"instance to cache {self.attrname!r} property." ) raise TypeError(msg) from None val = cache.get(self.attrname, _NOT_FOUND) if val is _NOT_FOUND: with self.lock: # check if another thread filled cache while we awaited lock val = cache.get(self.attrname, _NOT_FOUND) if val is _NOT_FOUND: val = self.func(instance) try: cache[self.attrname] = val except TypeError: msg = ( f"The '__dict__' attribute on {type(instance).__name__!r} instance " f"does not support item assignment for caching {self.attrname!r} property." ) raise TypeError(msg) from None return val __class_getitem__ = classmethod(GenericAlias) else: pass ``` #### File: yt/tests/test_load_sample.py ```python import logging import os import re import sys import textwrap import numpy as np import pytest from yt.config import ytcfg from yt.loaders import load_sample from yt.sample_data.api import get_data_registry_table from yt.testing import requires_module_pytest from yt.utilities.logger import ytLogger @pytest.fixture() def tmp_data_dir(tmp_path): pre_test_data_dir = ytcfg["yt", "test_data_dir"] ytcfg.set("yt", "test_data_dir", str(tmp_path)) yield tmp_path ytcfg.set("yt", "test_data_dir", pre_test_data_dir) @pytest.fixture() def capturable_logger(caplog): """ This set the minimal conditions to make pytest's caplog fixture usable. """ propagate = ytLogger.propagate ytLogger.propagate = True with caplog.at_level(logging.INFO): yield ytLogger.propagate = propagate @requires_module_pytest("pandas", "pooch") @pytest.mark.usefixtures("capturable_logger") @pytest.mark.parametrize( "fn, archive, exact_loc, class_", [ ( "ToroShockTube", "ToroShockTube.tar.gz", "ToroShockTube/DD0001/data0001", "EnzoDataset", ), ( "KeplerianDisk", "KeplerianDisk.tar.gz", "KeplerianDisk/disk.out1.00000.athdf", "AthenaPPDataset", ), # trying with an exact name as well ( "KeplerianDisk/disk.out1.00000.athdf", "KeplerianDisk.tar.gz", "KeplerianDisk/disk.out1.00000.athdf", "AthenaPPDataset", ), # check this special case because it relies on implementations # details in the AMRVAC frontend (using parfiles) # and could easily fail to load. See GH PR #3343 ( "rmi_dust_2d", "rmi_dust_2d.tar.gz", "rmi_dust_2d/output0001.dat", "AMRVACDataset", ), ], ) def test_load_sample_small_dataset( fn, archive, exact_loc, class_: str, tmp_data_dir, caplog ): ds = load_sample(fn, progressbar=False, timeout=30) assert type(ds).__name__ == class_ text = textwrap.dedent( f""" '{fn.replace('/', os.path.sep)}' is not available locally. Looking up online. Downloading from https://yt-project.org/data/{archive} Untaring downloaded file to '{str(tmp_data_dir)}' """ ).strip("\n") expected = [("yt", 20, message) for message in text.split("\n")] assert caplog.record_tuples[:3] == expected caplog.clear() # loading a second time should not result in a download request ds2 = load_sample(fn) assert type(ds2).__name__ == class_ assert caplog.record_tuples[0] == ( "yt", 20, f"Sample dataset found in '{os.path.join(str(tmp_data_dir), *exact_loc.split('/'))}'", ) @requires_module_pytest("pandas", "pooch") @pytest.mark.usefixtures("capturable_logger") def test_load_sample_timeout(tmp_data_dir, caplog): from requests.exceptions import ConnectTimeout, ReadTimeout # note that requests is a direct dependency to pooch, # so we don't need to mark it in a decorator. with pytest.raises((ConnectTimeout, ReadTimeout)): load_sample("IsolatedGalaxy", progressbar=False, timeout=0.00001) @requires_module_pytest("pandas", "requests") @pytest.mark.xfail(reason="Registry is currently incomplete.") def test_registry_integrity(): reg = get_data_registry_table() assert not any(reg.isna()) @pytest.fixture() def sound_subreg(): # this selection is needed because the full dataset is incomplete # so we test only the values that can be parsed reg = get_data_registry_table() return reg[["size", "byte_size"]][reg["size"].notna()] @requires_module_pytest("pandas", "requests") def test_registry_byte_size_dtype(sound_subreg): from pandas import Int64Dtype assert sound_subreg["byte_size"].dtype == Int64Dtype() @requires_module_pytest("pandas", "requests") def test_registry_byte_size_sign(sound_subreg): np.testing.assert_array_less(0, sound_subreg["byte_size"]) @requires_module_pytest("pandas", "requests") def test_unknown_filename(): fake_name = "these_are_not_the_files_your_looking_for" with pytest.raises(ValueError, match=f"'{fake_name}' is not an available dataset."): load_sample(fake_name) @requires_module_pytest("pandas", "requests") def test_typo_filename(): wrong_name = "Isolatedgalaxy" with pytest.raises( ValueError, match=re.escape( f"'{wrong_name}' is not an available dataset. Did you mean 'IsolatedGalaxy' ?" ), ): load_sample(wrong_name, timeout=1) @pytest.fixture() def fake_data_dir_in_a_vaccum(tmp_path): pre_test_data_dir = ytcfg["yt", "test_data_dir"] ytcfg.set("yt", "test_data_dir", "/does/not/exist") origin = os.getcwd() os.chdir(tmp_path) yield ytcfg.set("yt", "test_data_dir", pre_test_data_dir) os.chdir(origin) @pytest.mark.skipif( sys.platform.startswith("win"), reason="can't figure out how to match the warning message in a cross-platform way", ) @requires_module_pytest("pandas", "pooch") @pytest.mark.usefixtures("fake_data_dir_in_a_vaccum") def test_data_dir_broken(): # check that load_sample still works if the test_data_dir # isn't properly set, in which case we should dl to the # cwd and issue a warning. msg = ( r"Storage directory from yt config doesn't exist " r"\(currently set to '/does/not/exist'\)\. " r"Current working directory will be used instead\." ) with pytest.warns(UserWarning, match=msg): load_sample("ToroShockTube") ``` #### File: visualization/tests/test_line_annotation_unit.py ```python import numpy as np from yt.loaders import load_uniform_grid from yt.visualization.plot_window import ProjectionPlot def test_ds_arr_invariance_under_projection_plot(tmp_path): data_array = np.random.random((10, 10, 10)) bbox = np.array([[-100, 100], [-100, 100], [-100, 100]]) data = {("gas", "density"): (data_array, "g*cm**(-3)")} ds = load_uniform_grid(data, data_array.shape, length_unit="kpc", bbox=bbox) start_source = np.array((0, 0, -0.5)) end_source = np.array((0, 0, 0.5)) start = ds.arr(start_source, "unitary") end = ds.arr(end_source, "unitary") start_i = start.copy() end_i = end.copy() p = ProjectionPlot(ds, 0, "number_density") p.annotate_line(start, end) p.save(tmp_path) # for lack of a unyt.testing.assert_unit_array_equal function np.testing.assert_array_equal(start_i, start) assert start_i.units == start.units np.testing.assert_array_equal(end_i, end) assert end_i.units == end.units ```
{ "source": "jcourt562/aries-cloudagent-python", "score": 2 }
#### File: v1_0/models/credential_exchange.py ```python from typing import Any from marshmallow import fields, validate from .....config.injection_context import InjectionContext from .....messaging.models.base_record import BaseExchangeRecord, BaseExchangeSchema from .....messaging.valid import INDY_CRED_DEF_ID, INDY_SCHEMA_ID, UUIDFour class V10CredentialExchange(BaseExchangeRecord): """Represents an Aries#0036 credential exchange.""" class Meta: """CredentialExchange metadata.""" schema_class = "V10CredentialExchangeSchema" RECORD_TYPE = "credential_exchange_v10" RECORD_ID_NAME = "credential_exchange_id" WEBHOOK_TOPIC = "issue_credential" TAG_NAMES = {"thread_id"} INITIATOR_SELF = "self" INITIATOR_EXTERNAL = "external" ROLE_ISSUER = "issuer" ROLE_HOLDER = "holder" STATE_PROPOSAL_SENT = "proposal_sent" STATE_PROPOSAL_RECEIVED = "proposal_received" STATE_OFFER_SENT = "offer_sent" STATE_OFFER_RECEIVED = "offer_received" STATE_REQUEST_SENT = "request_sent" STATE_REQUEST_RECEIVED = "request_received" STATE_ISSUED = "credential_issued" STATE_CREDENTIAL_RECEIVED = "credential_received" STATE_ACKED = "credential_acked" def __init__( self, *, credential_exchange_id: str = None, connection_id: str = None, thread_id: str = None, parent_thread_id: str = None, initiator: str = None, role: str = None, state: str = None, credential_definition_id: str = None, schema_id: str = None, credential_proposal_dict: dict = None, # serialized credential proposal message credential_offer: dict = None, # indy credential offer credential_request: dict = None, # indy credential request credential_request_metadata: dict = None, credential_id: str = None, raw_credential: dict = None, # indy credential as received credential: dict = None, # indy credential as stored revoc_reg_id: str = None, revocation_id: str = None, auto_offer: bool = False, auto_issue: bool = False, auto_remove: bool = True, error_msg: str = None, trace: bool = False, **kwargs, ): """Initialize a new V10CredentialExchange.""" super().__init__(credential_exchange_id, state, trace=trace, **kwargs) self._id = credential_exchange_id self.connection_id = connection_id self.thread_id = thread_id self.parent_thread_id = parent_thread_id self.initiator = initiator self.role = role self.state = state self.credential_definition_id = credential_definition_id self.schema_id = schema_id self.credential_proposal_dict = credential_proposal_dict self.credential_offer = credential_offer self.credential_request = credential_request self.credential_request_metadata = credential_request_metadata self.credential_id = credential_id self.raw_credential = raw_credential self.credential = credential self.revoc_reg_id = revoc_reg_id self.revocation_id = revocation_id self.auto_offer = auto_offer self.auto_issue = auto_issue self.auto_remove = auto_remove self.error_msg = error_msg self.trace = trace @property def credential_exchange_id(self) -> str: """Accessor for the ID associated with this exchange.""" return self._id @property def record_value(self) -> dict: """Accessor for the JSON record value generated for this credential exchange.""" return { prop: getattr(self, prop) for prop in ( "connection_id", "credential_proposal_dict", "credential_offer", "credential_request", "credential_request_metadata", "error_msg", "auto_offer", "auto_issue", "auto_remove", "raw_credential", "credential", "parent_thread_id", "initiator", "credential_definition_id", "schema_id", "credential_id", "revoc_reg_id", "revocation_id", "role", "state", "trace", ) } @classmethod async def retrieve_by_connection_and_thread( cls, context: InjectionContext, connection_id: str, thread_id: str ) -> "V10CredentialExchange": """Retrieve a credential exchange record by connection and thread ID.""" cache_key = f"credential_exchange_ctidx::{connection_id}::{thread_id}" record_id = await cls.get_cached_key(context, cache_key) if record_id: record = await cls.retrieve_by_id(context, record_id) else: record = await cls.retrieve_by_tag_filter( context, {"thread_id": thread_id}, {"connection_id": connection_id} ) await cls.set_cached_key(context, cache_key, record.credential_exchange_id) return record def __eq__(self, other: Any) -> bool: """Comparison between records.""" return super().__eq__(other) class V10CredentialExchangeSchema(BaseExchangeSchema): """Schema to allow serialization/deserialization of credential exchange records.""" class Meta: """V10CredentialExchangeSchema metadata.""" model_class = V10CredentialExchange credential_exchange_id = fields.Str( required=False, description="Credential exchange identifier", example=UUIDFour.EXAMPLE, ) connection_id = fields.Str( required=False, description="Connection identifier", example=UUIDFour.EXAMPLE ) thread_id = fields.Str( required=False, description="Thread identifier", example=UUIDFour.EXAMPLE ) parent_thread_id = fields.Str( required=False, description="Parent thread identifier", example=UUIDFour.EXAMPLE ) initiator = fields.Str( required=False, description="Issue-credential exchange initiator: self or external", example=V10CredentialExchange.INITIATOR_SELF, validate=validate.OneOf(["self", "external"]), ) role = fields.Str( required=False, description="Issue-credential exchange role: holder or issuer", example=V10CredentialExchange.ROLE_ISSUER, validate=validate.OneOf(["holder", "issuer"]), ) state = fields.Str( required=False, description="Issue-credential exchange state", example=V10CredentialExchange.STATE_ACKED, ) credential_definition_id = fields.Str( required=False, description="Credential definition identifier", **INDY_CRED_DEF_ID, ) schema_id = fields.Str( required=False, description="Schema identifier", **INDY_SCHEMA_ID ) credential_proposal_dict = fields.Dict( required=False, description="Serialized credential proposal message" ) credential_offer = fields.Dict( required=False, description="(Indy) credential offer" ) credential_request = fields.Dict( required=False, description="(Indy) credential request" ) credential_request_metadata = fields.Dict( required=False, description="(Indy) credential request metadata" ) credential_id = fields.Str( required=False, description="Credential identifier", example=UUIDFour.EXAMPLE ) raw_credential = fields.Dict( required=False, description="Credential as received, prior to storage in holder wallet", ) credential = fields.Dict(required=False, description="Credential as stored") auto_offer = fields.Bool( required=False, description="Holder choice to accept offer in this credential exchange", example=False, ) auto_issue = fields.Bool( required=False, description="Issuer choice to issue to request in this credential exchange", example=False, ) auto_remove = fields.Bool( required=False, default=True, description=( "Issuer choice to remove this credential exchange record when complete" ), example=False, ) error_msg = fields.Str( required=False, description="Error message", example="credential definition identifier is not set in proposal", ) revoc_reg_id = fields.Str( required=False, description="Revocation registry identifier" ) revocation_id = fields.Str( required=False, description="Credential identifier within revocation registry" ) ``` #### File: v1_0/models/route_record.py ```python from marshmallow import fields from aries_cloudagent.messaging.models.base import BaseModel, BaseModelSchema class RouteRecord(BaseModel): """Class representing stored route information.""" class Meta: """RouteRecord metadata.""" schema_class = "RouteRecordSchema" def __init__( self, *, record_id: str = None, connection_id: str = None, recipient_key: str = None, created_at: str = None, updated_at: str = None, **kwargs ): """ Initialize a RouteRecord instance. Args: recipient_key: The recipient verkey of the route """ super(RouteRecord, self).__init__(**kwargs) self.record_id = record_id self.connection_id = connection_id self.recipient_key = recipient_key self.created_at = created_at self.updated_at = updated_at class RouteRecordSchema(BaseModelSchema): """RouteRecord schema.""" class Meta: """RouteRecordSchema metadata.""" model_class = "RouteRecord" record_id = fields.Str(required=False) connection_id = fields.Str(required=True) recipient_key = fields.Str(required=True) created_at = fields.Str(required=False) updated_at = fields.Str(required=False) ``` #### File: v1_0/tests/test_routes.py ```python import json import pytest from asynctest import TestCase as AsyncTestCase from asynctest import mock as async_mock from .. import routes as test_module class TestHolderRoutes(AsyncTestCase): def setUp(self): self.context = async_mock.MagicMock() self.app = { "request_context": self.context, "outbound_message_router": async_mock.CoroutineMock(), } async def test_connections_send_ping(self): request = async_mock.MagicMock( app=self.app, json=async_mock.CoroutineMock(return_value={"comment": "some comment"}), match_info={"conn_id": "dummy"}, ) with async_mock.patch.object( test_module.ConnectionRecord, "retrieve_by_id", async_mock.CoroutineMock() ) as mock_retrieve, async_mock.patch.object( test_module, "Ping", async_mock.MagicMock() ) as mock_ping, async_mock.patch.object( test_module.web, "json_response", async_mock.MagicMock() ) as json_response: mock_ping.return_value = async_mock.MagicMock(_thread_id="dummy") mock_retrieve.return_value = async_mock.MagicMock(is_ready=True) result = await test_module.connections_send_ping(request) json_response.assert_called_once_with({"thread_id": "dummy"}) assert result is json_response.return_value async def test_connections_send_ping_no_conn(self): request = async_mock.MagicMock( app=self.app, json=async_mock.CoroutineMock(return_value={"comment": "some comment"}), match_info={"conn_id": "dummy"}, ) with async_mock.patch.object( test_module.ConnectionRecord, "retrieve_by_id", async_mock.CoroutineMock() ) as mock_retrieve, async_mock.patch.object( test_module.web, "json_response", async_mock.MagicMock() ) as json_response: mock_retrieve.side_effect = test_module.StorageNotFoundError() with self.assertRaises(test_module.web.HTTPNotFound): await test_module.connections_send_ping(request) async def test_connections_send_ping_not_ready(self): request = async_mock.MagicMock( app=self.app, json=async_mock.CoroutineMock(return_value={"comment": "some comment"}), match_info={"conn_id": "dummy"}, ) with async_mock.patch.object( test_module.ConnectionRecord, "retrieve_by_id", async_mock.CoroutineMock() ) as mock_retrieve, async_mock.patch.object( test_module.web, "json_response", async_mock.MagicMock() ) as json_response: mock_retrieve.return_value = async_mock.MagicMock(is_ready=False) with self.assertRaises(test_module.web.HTTPBadRequest): await test_module.connections_send_ping(request) async def test_register(self): mock_app = async_mock.MagicMock() mock_app.add_routes = async_mock.MagicMock() await test_module.register(mock_app) mock_app.add_routes.assert_called_once() ```
{ "source": "jcox-dev/django-localflavor", "score": 3 }
#### File: localflavor/is_/forms.py ```python from __future__ import unicode_literals from django.core.validators import EMPTY_VALUES from django.forms import ValidationError from django.forms.fields import RegexField from django.forms.widgets import Select from django.utils.encoding import force_text from django.utils.translation import ugettext_lazy as _ from localflavor.generic.forms import DeprecatedPhoneNumberFormFieldMixin from .is_postalcodes import IS_POSTALCODES class ISIdNumberField(RegexField): """ Icelandic identification number (kennitala). This is a number every citizen of Iceland has. """ default_error_messages = { 'invalid': _('Enter a valid Icelandic identification number. The format is XXXXXX-XXXX.'), 'checksum': _('The Icelandic identification number is not valid.'), } def __init__(self, max_length=11, min_length=10, *args, **kwargs): super(ISIdNumberField, self).__init__(r'^\d{6}(-| )?\d{4}$', max_length, min_length, *args, **kwargs) def clean(self, value): value = super(ISIdNumberField, self).clean(value) if value in EMPTY_VALUES: return '' value = self._canonify(value) if self._validate(value): return self._format(value) else: raise ValidationError(self.error_messages['checksum']) def _canonify(self, value): """Returns the value as only digits.""" return value.replace('-', '').replace(' ', '') def _validate(self, value): """ Takes in the value in canonical form and checks the verifier digit. The method is modulo 11. """ check = [3, 2, 7, 6, 5, 4, 3, 2, 1, 0] return sum([int(value[i]) * check[i] for i in range(10)]) % 11 == 0 def _format(self, value): """Takes in the value in canonical form and returns it in the common display format.""" return force_text(value[:6] + '-' + value[6:]) class ISPhoneNumberField(RegexField, DeprecatedPhoneNumberFormFieldMixin): """ Icelandic phone number. Seven digits with an optional hyphen or space after the first three digits. """ def __init__(self, max_length=8, min_length=7, *args, **kwargs): super(ISPhoneNumberField, self).__init__(r'^\d{3}(-| )?\d{4}$', max_length, min_length, *args, **kwargs) def clean(self, value): value = super(ISPhoneNumberField, self).clean(value) if value in EMPTY_VALUES: return '' return value.replace('-', '').replace(' ', '') class ISPostalCodeSelect(Select): """A Select widget that uses a list of Icelandic postal codes as its choices.""" def __init__(self, attrs=None): super(ISPostalCodeSelect, self).__init__(attrs, choices=IS_POSTALCODES) ```
{ "source": "jcpayne/aerial_survey_ai", "score": 2 }
#### File: dev_packages/trident_dev/model.py ```python __all__ = ['build_augmentation', 'RandomCorruption', 'TridentDatasetMapper', 'TileDatasetMapper', 'IterableTileDataset', 'build_train_loader', 'JTFMEvaluator', 'Trainer', 'JP_RepeatFactorTrainingSampler'] # Cell import math import random import itertools import numpy as np import torch from torch import nn from torch.utils.data.distributed import DistributedSampler from torchvision import transforms as transforms import imgaug as ia from imgaug import augmenters as iaa import imagecorruptions from adabound import AdaBound from typing import List, Optional, Union from collections import defaultdict import math import logging #Detectron imports import detectron2 from detectron2.config import configurable from detectron2.data import transforms as T from detectron2.data.transforms import TransformGen from detectron2.data import DatasetCatalog, MetadataCatalog, DatasetMapper,build_detection_test_loader from detectron2.data import DatasetFromList, MapDataset, detection_utils as utils, get_detection_dataset_dicts from detectron2.data import transforms as T from detectron2.data.samplers import InferenceSampler, RepeatFactorTrainingSampler from detectron2.data.build import build_detection_test_loader, build_batch_data_loader, trivial_batch_collator from detectron2.data.transforms import TransformGen from fvcore.transforms.transform import (BlendTransform,NoOpTransform,Transform) from detectron2.engine import DefaultTrainer from detectron2.evaluation import DatasetEvaluator,DatasetEvaluators,COCOEvaluator from detectron2.solver.build import * #from detectron2.solver import build_optimizer import detectron2.utils.comm as comm # Cell def build_augmentation(cfg, is_train): """Overrides the default method (in detection_utils.py) to add image corruption as an augmentation.""" #logger = logging.getLogger(__name__) result = utils.build_augmentation(cfg, is_train) #Returns list[Augmentation(s)] containing default behavior if is_train: random_corruption = RandomCorruption(cfg.INPUT.corruption) #prob of adding corruption ([0,1]) result.append(random_corruption) print("Random corruption augmentation used in training") #logger.info("Random corruption augmentation used in training: " + str(random_corruption)) print(result) return result # Cell class RandomCorruption(TransformGen): """ Randomly transforms image corruption using the 'imgaug' package (which is only guaranteed to work for uint8 images). Returns an Numpy ndarray. """ def __init__(self, p): """ Args: p probability of applying corruption (p is on [0,1]) """ super().__init__() self._init(locals()) self.p = p def get_transform(self, img): r = random.random() if(r <= self.p): #A selection of effects from imgaug #ia.seed(None) severity = random.randint(1,5) augmenter_list = [ iaa.BlendAlphaSimplexNoise( foreground=iaa.EdgeDetect(alpha=(0.5, 0.9)), background=iaa.LinearContrast((0.5, 0.2)), per_channel=0.5), iaa.CoarseDropout(p=0.25, size_px=8), iaa.imgcorruptlike.GaussianBlur(severity), iaa.imgcorruptlike.SpeckleNoise(severity), iaa.Cutout(fill_mode="gaussian", fill_per_channel=True,nb_iterations=(1, 5), size=0.2, squared=False), iaa.imgcorruptlike.Spatter(severity)] #Blend noise with the source image augmenter = random.choice(augmenter_list) blended_img = augmenter.augment_image(img) return BlendTransform(src_image=blended_img, src_weight=1, dst_weight=0) else: return(NoOpTransform()) # Cell class TridentDatasetMapper(DatasetMapper): """ A customized version of DatasetMapper. A callable which takes a dataset dict in Detectron2 Dataset format, and maps it into a format used by the model. """ #The only change I made is to switch build_augmentation for utils.build_augmentation @classmethod def from_config(cls, cfg, is_train: bool = True): augs = build_augmentation(cfg, is_train) #changed here if cfg.INPUT.CROP.ENABLED and is_train: augs.insert(0, T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE)) recompute_boxes = cfg.MODEL.MASK_ON else: recompute_boxes = False ret = { "is_train": is_train, "augmentations": augs, "image_format": cfg.INPUT.FORMAT, "use_instance_mask": cfg.MODEL.MASK_ON, "instance_mask_format": cfg.INPUT.MASK_FORMAT, "use_keypoint": cfg.MODEL.KEYPOINT_ON, "recompute_boxes": recompute_boxes, } if cfg.MODEL.KEYPOINT_ON: ret["keypoint_hflip_indices"] = utils.create_keypoint_hflip_indices(cfg.DATASETS.TRAIN) if cfg.MODEL.LOAD_PROPOSALS: ret["precomputed_proposal_topk"] = ( cfg.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TRAIN if is_train else cfg.DATASETS.PRECOMPUTED_PROPOSAL_TOPK_TEST ) return ret # Cell class TileDatasetMapper(DatasetMapper): """ Just like DatasetMapper except instead of opening the file, it is passed a dict containing an already-opened file. Note: the __init__ class is decorated with @configurable so you can pass a cfgNode object and it will use the from_config() method for initiation. 1. Accept an opened image as a Pytorch array 2. Potentially applies cropping/geometric transforms to the image and annotations """ @configurable def __init__( self, is_train: bool, *, augmentations: List[Union[T.Augmentation, T.Transform]], image_format: str, use_instance_mask: bool = False, use_keypoint: bool = False, instance_mask_format: str = "polygon", keypoint_hflip_indices: Optional[np.ndarray] = None, precomputed_proposal_topk: Optional[int] = None, recompute_boxes: bool = False ): if recompute_boxes: assert use_instance_mask, "recompute_boxes requires instance masks" # fmt: off self.is_train = is_train self.augmentations = augmentations self.image_format = image_format self.use_instance_mask = use_instance_mask self.instance_mask_format = instance_mask_format self.use_keypoint = use_keypoint self.keypoint_hflip_indices = keypoint_hflip_indices self.proposal_topk = precomputed_proposal_topk self.recompute_boxes = recompute_boxes # fmt: on logger = logging.getLogger(__name__) logger.info("Augmentations used in training: " + str(augmentations)) @classmethod def from_config(cls, cfg, is_train: bool = False): augs = utils.build_augmentation(cfg, is_train) #returns T.ResizeShortestEdge, plus optionally others if cfg.INPUT.CROP.ENABLED and is_train: augs.insert(0, T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE)) recompute_boxes = cfg.MODEL.MASK_ON else: recompute_boxes = False ret = { "is_train": is_train, "augmentations": augs, "image_format": cfg.INPUT.FORMAT, "use_instance_mask": cfg.MODEL.MASK_ON, "instance_mask_format": cfg.INPUT.MASK_FORMAT, "use_keypoint": cfg.MODEL.KEYPOINT_ON, "recompute_boxes": recompute_boxes, } return ret def __call__(self, dataset_dict): """ Args: dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. Returns: dict: a format that builtin models in detectron2 accept """ # dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below # # USER: Write your own image loading if it's not from a file # # We just use the image that is passed in, instead of opening the file and converting # #The returned dict has 2 things in it: file_name and image (which contains a tensor). That's all. # image = dataset_dict["image"] # image_shape = image.shape[1:] # h, w if not self.is_train: return dataset_dict # Cell class IterableTileDataset(torch.utils.data.IterableDataset): """ An IterableDataset for passing arbitrary-length data to a Dataloader. The iter() method ensures that data is not duplicated if there is more than one worker, by splitting the data into separate pieces and only passing each worker one piece to iterate. """ def __init__(self, tilelist): super(IterableTileDataset).__init__() #The init method of IterableDataset self.data = tilelist self.start = 0 self.end = len(self.data) def reset_dataset(self, newdataset): self.data = newdataset self.start = 0 self.end = len(newdataset) def __iter__(self): worker_info = torch.utils.data.get_worker_info() print("IterableDataset worker_info.id",worker_info.id) if worker_info is None: # single-process data loading, return the full iterator indexes = range(self.start,self.end) else: # in a worker process # split workload per_worker = int(math.ceil((self.end - self.start) / float(worker_info.num_workers))) worker_id = worker_info.id # print() iter_start = self.start + worker_id * per_worker iter_end = min(iter_start + per_worker, self.end) indexes = range(iter_start, iter_end) itemlist = [self.data[t] for t in indexes] #print("worker_id:",worker_id,"items:",itemlist) #very useful for debugging return iter(itemlist) def __len__(self): return len(self.data) def __getitem__(self,idx): return self.data[idx] # Cell # class IterableTileDataset(torch.utils.data.IterableDataset): # """ # An IterableDataset for passing arbitrary-length data to a Dataloader. The # iter() method ensures that data is not duplicated if there is more than one worker, by splitting # the data into separate pieces and only passing each worker one piece to iterate. # """ # def __init__(self, tilelist): # super(IterableTileDataset).__init__() #The init method of IterableDataset # self.data = tilelist # self.start = 0 # self.end = len(self.data) # def reset_dataset(self, newdataset): # self.data = newdataset # self.start = 0 # self.end = len(newdataset) # def __iter__(self): # indexes = range(self.start,self.end) # itemlist = [self.data[t] for t in indexes] # return iter(itemlist) # #return iter(range(self.start, self.end)) # def __len__(self): # return len(self.data) # def __getitem__(self,idx): # return self.data[idx] # #NOTE: This function must live outside the dataset class (not here!) # def worker_init_fn(worker_id): # worker_info = torch.utils.data.get_worker_info() # print("worker_info.id",worker_info.id,"worker_info.num_workers",worker_info.num_workers) # dataset = worker_info.dataset # the dataset copy in this worker process # overall_start = dataset.start # overall_end = dataset.end # # configure the dataset to only process the split workload # per_worker = int(math.ceil((overall_end - overall_start) / float(worker_info.num_workers))) # worker_id = worker_info.id # dataset.start = overall_start + worker_id * per_worker # dataset.end = min(dataset.start + per_worker, overall_end) # Cell def build_train_loader(cfg, mapper=None): """ This is an edited version of build_detection_train_loader; it adds JP_RepeatFactorTrainingSampler, which fixes a bug in RepeatFactorTrainingSampler that caused it to crash when it encountered empty images. A data loader is created by the following steps: 1. Use the dataset names in config to query :class:`DatasetCatalog`, and obtain a list of dicts. 2. Coordinate a random shuffle order shared among all processes (all GPUs) 3. Each process spawn another few workers to process the dicts. Each worker will: * Map each metadata dict into another format to be consumed by the model. * Batch them by simply putting dicts into a list. The batched ``list[mapped_dict]`` is what this dataloader will yield. Args: cfg (CfgNode): the config mapper (callable): a callable which takes a sample (dict) from dataset and returns the format to be consumed by the model. By default it will be ``DatasetMapper(cfg, True)``. Returns: an infinite iterator of training data """ dataset_dicts = get_detection_dataset_dicts( cfg.DATASETS.TRAIN, filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE if cfg.MODEL.KEYPOINT_ON else 0, proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, ) dataset = DatasetFromList(dataset_dicts, copy=False) if mapper is None: mapper = DatasetMapper(cfg, True) dataset = MapDataset(dataset, mapper) sampler_name = cfg.DATALOADER.SAMPLER_TRAIN logger = logging.getLogger(__name__) logger.info("Using training sampler {}".format(sampler_name)) # TODO avoid if-else? if sampler_name == "TrainingSampler": sampler = TrainingSampler(len(dataset)) elif sampler_name == "RepeatFactorTrainingSampler": repeat_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency( dataset_dicts, cfg.DATALOADER.REPEAT_THRESHOLD ) sampler = RepeatFactorTrainingSampler(repeat_factors) elif sampler_name == "JP_RepeatFactorTrainingSampler": repeat_factors = JP_RepeatFactorTrainingSampler.repeat_factors_from_category_frequency( dataset_dicts, cfg.DATALOADER.REPEAT_THRESHOLD ) sampler = RepeatFactorTrainingSampler(repeat_factors) else: raise ValueError("Unknown training sampler: {}".format(sampler_name)) return build_batch_data_loader( dataset, sampler, cfg.SOLVER.IMS_PER_BATCH, aspect_ratio_grouping=cfg.DATALOADER.ASPECT_RATIO_GROUPING, num_workers=cfg.DATALOADER.NUM_WORKERS, ) # Cell class JTFMEvaluator(DatasetEvaluator): """ A dead-simple, Just The Facts, Ma'am evaluator. Just compiles and returns results. The `process()` method evaluates each iteration; the `evaluate()` method summarizes at the end. """ def __init__(self, distributed, output_dir=None): """ Arguments: distributed (T/F): if True, will collect results from all ranks and run evaluation in the main process. Otherwise, will evaluate the results in the current process. output_dir (str): optional, an output directory to dump all results predicted on the dataset [not implemented at present]: """ self._tasks = ("bbox",) self._distributed = distributed self._output_dir = output_dir self._cpu_device = torch.device("cpu") self._logger = logging.getLogger(__name__) print("Evaluator: JTFMEvaluator") def reset(self): self._predictions = [] def process(self, inputs, outputs): """ Args: inputs: the inputs to a model (e.g., GeneralizedRCNN). It is a list of dicts. Each dict corresponds to an image and contains keys like "height", "width", "file_name", "image_id". outputs: the outputs of a model. It is a list of dicts with key "instances" that contains :class:`Instances`. """ for input, output in zip(inputs, outputs): #Copy some input values to the output prediction = {"image_id":input["image_id"], "trow":input["trow"], "tcol":input["tcol"]} # TODO this is ugly if "instances" in output: instances = output["instances"].to(self._cpu_device) prediction["instances"] = instances else: prediction["instances"] = [] self._predictions.append(prediction) def evaluate(self): if self._distributed: comm.synchronize() predictions = comm.gather(self._predictions, dst=0) predictions = list(itertools.chain(*predictions)) #Necessary. I think it joins a set of lists into one if not comm.is_main_process(): return {} else: predictions = self._predictions if len(predictions) == 0: self._logger.warning("[COCOEvaluator] Did not receive valid predictions.") return {} return {"Predictions":predictions} def _eval_predictions(self, tasks, predictions): """ Evaluate predictions on the given tasks. Fill self._results with the metrics of the tasks. """ pass # Cell class Trainer(DefaultTrainer): """Customized version of DefaultTrainer, which enables augmentation to be added via a custom DatasetMapper during training. It also optionally uses the Adabound optimizer, and it calls build_train_loader, which adds JP_RepeatFactorTrainingSampler. """ #For testing, we don't use augmentation (but see detectron2/tools/train_net.py to add test-time augmentation) # @classmethod # def build_inference_loader(cls, cfg, dataset_name): # return build_test_loader(cfg, dataset_name, mapper=TileDatasetMapper(cfg,False)) #For training we add image augmentation (=corruption of several kinds) @classmethod def build_train_loader(cls, cfg): return build_train_loader(cfg, mapper=TridentDatasetMapper(cfg, True)) @classmethod def build_test_loader(cls, cfg, dataset_name, dataset_dicts, mapper): return build_inference_loader(cfg, dataset_name, dataset_dicts, mapper=TileDatasetMapper) @classmethod def build_optimizer(cls, cfg, model): """ Builds either a default SGD optimizer or an Adabound optimizer, depending on what is specified in configs (cfg.SOLVER.OPTIMIZER_TYPE). Returns: torch.optim.Optimizer: """ if cfg.SOLVER.OPTIMIZER_TYPE == 'Adabound': print("Building Adabound optimizer") return build_adabound_optimizer(cfg, model) else: print("Building default SGD optimizer") return build_optimizer(cfg, model) #This is an instance method, called by the class method. #Add this method to use a custom optimizer (but how does it interact with momentum, weight decay?) def build_adabound_optimizer(cls, cfg, model): """ Build an optimizer from config. This is built on`detectron2.solver.build_optimizer`, but it returns an AdaBound optimizer instead of SGD. """ norm_module_types = ( nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.SyncBatchNorm, # NaiveSyncBatchNorm inherits from BatchNorm2d nn.GroupNorm, nn.InstanceNorm1d, nn.InstanceNorm2d, nn.InstanceNorm3d, nn.LayerNorm, nn.LocalResponseNorm, ) params: List[Dict[str, Any]] = [] memo: Set[nn.parameter.Parameter] = set() for module in model.modules(): for key, value in module.named_parameters(recurse=False): if not value.requires_grad: continue # Avoid duplicating parameters if value in memo: continue memo.add(value) lr = cfg.SOLVER.BASE_LR weight_decay = cfg.SOLVER.WEIGHT_DECAY if isinstance(module, norm_module_types): weight_decay = cfg.SOLVER.WEIGHT_DECAY_NORM elif key == "bias": # NOTE: unlike Detectron v1, we now default BIAS_LR_FACTOR to 1.0 # and WEIGHT_DECAY_BIAS to WEIGHT_DECAY so that bias optimizer # hyperparameters are by default exactly the same as for regular # weights. lr = cfg.SOLVER.BASE_LR * cfg.SOLVER.BIAS_LR_FACTOR weight_decay = cfg.SOLVER.WEIGHT_DECAY_BIAS params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}] #optimizer = adabound.AdaBound(model.parameters(), lr=1e-3, final_lr=0.1) #orig #print('LR before optimizer: ',cfg.SOLVER.BASE_LR) optimizer = AdaBound(params, lr=cfg.SOLVER.BASE_LR, final_lr=0.05) optimizer = maybe_add_gradient_clipping(cfg, optimizer) #print('LR after optimizer: ',cfg.SOLVER.BASE_LR) return optimizer # Cell class JP_RepeatFactorTrainingSampler(RepeatFactorTrainingSampler): #This is a bug fix (didn't handle empty images correctly) @staticmethod def repeat_factors_from_category_frequency(dataset_dicts, repeat_thresh): """ Compute (fractional) per-image repeat factors based on category frequency. The repeat factor for an image is a function of the frequency of the rarest category labeled in that image. The "frequency of category c" in [0, 1] is defined as the fraction of images in the training set (without repeats) in which category c appears. See :paper:`lvis` (>= v2) Appendix B.2. Args: dataset_dicts (list[dict]): annotations in Detectron2 dataset format. repeat_thresh (float): frequency threshold below which data is repeated. If the frequency is half of `repeat_thresh`, the image will be repeated twice. Returns: torch.Tensor: the i-th element is the repeat factor for the dataset image at index i. """ # 1. For each category c, compute the fraction of images that contain it: f(c) category_freq = defaultdict(int) for dataset_dict in dataset_dicts: # For each image (without repeats) cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]} for cat_id in cat_ids: category_freq[cat_id] += 1 num_images = len(dataset_dicts) for k, v in category_freq.items(): category_freq[k] = v / num_images # 2. For each category c, compute the category-level repeat factor: # r(c) = max(1, sqrt(t / f(c))) category_rep = { cat_id: max(1.0, math.sqrt(repeat_thresh / cat_freq)) for cat_id, cat_freq in category_freq.items() } # 3. For each image I, compute the image-level repeat factor: # r(I) = max_{c in I} r(c) # In other words, if the image includes a rare category, you prioritize that and re-sample the image # even if it also has common categories in it. rep_factors = [] for dataset_dict in dataset_dicts: #Assume empty images are plentiful (don't sample them more often) if len(dataset_dict["annotations"]) == 0: rep_factors.append(1) else: cat_ids = {ann["category_id"] for ann in dataset_dict["annotations"]} rep_factor = max({category_rep[cat_id] for cat_id in cat_ids}) rep_factors.append(rep_factor) return torch.tensor(rep_factors, dtype=torch.float32) ``` #### File: aerial_survey_ai/trident_project/distrib_run_and_inference.py ```python import sys sys.path.insert(1, '/') #The container root print('Loading imports') import argparse import os import time import cv2 import torch from torch.nn.parallel import DistributedDataParallel from torch.utils.data.distributed import DistributedSampler import numpy as np import copy from PIL import Image import random import logging from pathlib import Path import pandas as pd import datetime import logging from collections import OrderedDict,Counter from contextlib import contextmanager #Detectron2 imports from detectron2.utils.comm import get_world_size, is_main_process from detectron2.utils.logger import log_every_n_seconds from detectron2.evaluation import inference_context from detectron2.config import get_cfg from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.data.build import build_detection_test_loader, trivial_batch_collator from detectron2.data.common import DatasetFromList, MapDataset from detectron2.utils.logger import setup_logger from detectron2.checkpoint import DetectionCheckpointer from detectron2.engine import default_setup, launch from detectron2.evaluation import inference_on_dataset,DatasetEvaluators from detectron2.evaluation import DatasetEvaluator,COCOEvaluator from detectron2.structures import Instances, Boxes import detectron2.utils.comm as comm from detectron2.utils.comm import get_world_size, get_rank, get_local_rank, is_main_process #My code from dev_packages.TridentNet.tridentnet import add_tridentnet_config from trident_dev.detectron2_utilities import * from trident_dev.tiling import * from trident_dev.model import * from trident_dev.utilities import * #Azureml SDK from azureml.core.run import Run print("All imports passed") print("Rank:",comm.get_rank()) logger = logging.getLogger("detectron2") #WARNING: if you mis-format a value, it will be silently ignored (i.e., use 'key:value' instead of 'key=value') def setup_model_configuration(rootdir, output_dir, CLASS_NAMES): cfg = get_cfg() add_tridentnet_config(cfg) #Loads a few values that distinguish TridentNet from Detectron2 #MODEL cfg.MODEL.WEIGHTS = str(Path(rootdir)/"model_final.pth") #In blobstore cfg.MODEL.MASK_ON = False cfg.MODEL.RESNETS.DEPTH = 101 cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64, 128, 256, 512]] cfg.MODEL.BACKBONE.FREEZE_AT = 0 #There are 4 conv stages. 0 means unfreeze. cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512 #(default is 512) cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(CLASS_NAMES) # cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set threshold for this model cfg.MODEL.DEVICE='cuda' #THIS IS FOR INFERENCE! Options: 'cuda' or 'cpu' # Specify the test branch index TridentNet Fast inference: # - use -1 to aggregate results of all branches during inference. # - otherwise, only using specified branch for fast inference. Recommended setting is # to use the middle branch. cfg.MODEL.TRIDENT.TEST_BRANCH_IDX = 1 #SOLVER #KEEP. Default Solver specs. (Note; 3x seems to require 3 times as many steps as 1x) #Base-TridentNet-Fast-C4.yaml 60,000-80,000 steps and 90,000 max_iter. #tridentnet_fast_R_50_C4_1x.yaml SAME #tridentnet_fast_R_50_C4_3x.yaml 210,000 - 250,000 steps and 270,000 max_iter. #tridentnet_fast_R_101_C4_3x.yaml SAME cfg.SOLVER.LR_SCHEDULER_NAME = "WarmupMultiStepLR" #Options: 'WarmupCosineLR' #You idiot! The steps are the places where the default "WarmupMultiStepLR" scheduler drops the learning rate by gamma=0.1. #V3 TRAINING: A 4-GPU machine takes 1.41 s/img = ~25 mins/1000 tiles or 4 hours/10,000 tiles #V3 INFERENCE a 4-GPU machine takes 0.05s/img x 54 tiles/img = ~47 minutes/1000 images. cfg.SOLVER.MAX_ITER = 12000 # 270000 for trident by default cfg.SOLVER.STEPS = (2000,3000,4000,5000,10000)#If a single value, then trailing comma is required (must be iterable) #(210000, 250000) for trident cfg.SOLVER.GAMMA = 0.5 cfg.SOLVER.WARMUP_ITERS = 1000 #1000 is default cfg.SOLVER.IMS_PER_BATCH = 3 #16 if using 4 GPUs cfg.SOLVER.CHECKPOINT_PERIOD = 5000 #How often the model is written #Learning Rates #From Goyal et al. 2017: Linear Scaling Rule: When the minibatch size is multiplied by k, #multiply the learning rate by k. i.e., as you increase the batch size because of using #additional GPUs, increase the learning rate too. Works up to very large batches (8,000 images) #See auto_scale_workers() in Detectron2 (very important!) cfg.SOLVER.BASE_LR = 0.002 #LR is .001 in defaults.py but .02 in tridentnet, but they trained on 8 GPUs cfg.SOLVER.OPTIMIZER_TYPE = "Default" # 'Default' or 'Adabound' #INPUT #Pixel means are from 19261 500x500 tiles on Aug 15 2020 cfg.INPUT.FORMAT = "RGB" cfg.MODEL.PIXEL_MEAN = [143.078, 140.690, 120.606] cfg.MODEL.PIXEL_STD = [34.139, 29.849, 31.695] #Auugmentation. Add corruption to images with probability p cfg.INPUT.corruption = 0.1 cfg.INPUT.MIN_SIZE_TRAIN = (640, 672, 704, 736, 768, 800) cfg.INPUT.MIN_SIZE_TEST = 800 #DATASETS cfg.DATASETS.TRAIN = ("survey_train",) #Why the comma? Bcs you can have multiple training datasets cfg.DATASETS.TEST = ("survey_valid",) #DATALOADER cfg.DATALOADER.SAMPLER_TRAIN = "JP_RepeatFactorTrainingSampler" cfg.DATALOADER.REPEAT_THRESHOLD = 0.02 #Goal is 400 images per category given 20,000 images total. cfg.DATALOADER.NUM_WORKERS = 4 #Set to equal the number of GPUs. # if True, the dataloader will filter out images that have no associated # annotations at train time. cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS = False cfg.OUTPUT_DIR = output_dir #WARNING. #freeze() makes the config immutable; hence it must come last cfg.freeze() return cfg def jp_inference_on_dataset(model, data_loader, evaluator): """ Run model on the data_loader and evaluate the metrics with evaluator. Also benchmark the inference speed of `model.forward` accurately. The model will be used in eval mode. Args: model (nn.Module): a module which accepts an object from `data_loader` and returns some outputs. It will be temporarily set to `eval` mode. If you wish to evaluate a model in `training` mode instead, you can wrap the given model and override its behavior of `.eval()` and `.train()`. data_loader: an iterable object with a length. The elements it generates will be the inputs to the model. evaluator (DatasetEvaluator): the evaluator to run. Use `None` if you only want to benchmark, but don't want to do any evaluation. Returns: The return value of `evaluator.evaluate()` """ num_devices = get_world_size() logger = logging.getLogger(__name__) logger.info("Start inference on {} images".format(len(data_loader))) total = len(data_loader) # inference data loader must have a fixed length if evaluator is None: # create a no-op evaluator evaluator = DatasetEvaluators([]) evaluator.reset() num_warmup = min(5, total - 1) start_time = time.perf_counter() total_compute_time = 0 with inference_context(model), torch.no_grad(): for idx, inputs in enumerate(data_loader): print("rank",comm.get_rank(),"is processing batch",idx) if idx == num_warmup: start_time = time.perf_counter() total_compute_time = 0 start_compute_time = time.perf_counter() outputs = model(inputs) #RUN THE MODEL!!!!!!!!! if torch.cuda.is_available(): torch.cuda.synchronize() total_compute_time += time.perf_counter() - start_compute_time evaluator.process(inputs, outputs) iters_after_start = idx + 1 - num_warmup * int(idx >= num_warmup) seconds_per_img = total_compute_time / iters_after_start if idx >= num_warmup * 2 or seconds_per_img > 5: total_seconds_per_img = (time.perf_counter() - start_time) / iters_after_start eta = datetime.timedelta(seconds=int(total_seconds_per_img * (total - idx - 1))) log_every_n_seconds( logging.INFO, "Inference done {}/{}. {:.4f} s / img. ETA={}".format( idx + 1, total, seconds_per_img, str(eta) ), n=5, ) # Measure the time only for this worker (before the synchronization barrier) total_time = time.perf_counter() - start_time total_time_str = str(datetime.timedelta(seconds=total_time)) # NOTE this format is parsed by grep logger.info( "Total inference time: {} ({:.6f} s / img per device, on {} devices)".format( total_time_str, total_time / (total - num_warmup), num_devices ) ) total_compute_time_str = str(datetime.timedelta(seconds=int(total_compute_time))) logger.info( "Total inference pure compute time: {} ({:.6f} s / img per device, on {} devices)".format( total_compute_time_str, total_compute_time / (total - num_warmup), num_devices ) ) results = evaluator.evaluate() # An evaluator may return None when not in main process. # Replace it by an empty dict instead to make it easier for downstream code to handle if results is None: results = {} return results def main(args): #You need this line to get the 'run' object so you can log to it run = Run.get_context() run.log('Data folder', args.data_folder,) run.log('Output folder', args.output_dir,'') #run.log('test', 100, 'test logging a single value') #Log a value #run.log_list('test_list', [1,2,3], description='test logging a list') #Log a list #Set paths rootdir = Path(str(args.data_folder)) imagepath = Path(rootdir/'tiled_images') annotationpath = Path(rootdir/'tiled_annotations') inferencepath = Path(rootdir/'inferencetest') output_dir = args.output_dir run.log("rootdir",rootdir,) run.log("imagepath",imagepath,) run.log("annotationpath",annotationpath,) run.log("inferencepath",inferencepath,) run.log("output_dir",output_dir) #Define allowed file types imagefile_extensions = ['.jpg','.JPG'] annotationfile_extensions = ['.xml'] #Get annotation files annotation_files = get_files(annotationpath,annotationfile_extensions,recursive=False) #Log a count of the original classes classcounts = count_classes(annotation_files) #Returns a list of tuples (class, count) orig_class_names = [tup[0] for tup in classcounts] #Get a list of classes run.log_list('Original class names',orig_class_names,'Class names found in annotation files.') #Set list of permitted class names. CLASS_NAMES = [ 'buffalo', 'building', 'charcoal mound', 'charcoal sack', 'cow', 'donkey', 'eland', 'elephant', 'gazelle', 'giraffe', 'hartebeest', 'human', 'impala', 'kudu', 'oryx', 'other_animal', 'shoats', 'warthog', 'wildebeest', 'zebra'] omit_classes = ['boma'] #Classes to be dropped rename_classes = {} #The format of this dict is oldname:newname if required. #Load datasets and register them with Detectron trainfile = rootdir/'train.txt' validfile = rootdir/'valid.txt' register_dataset_from_file(imagepath,annotationpath,trainfile,True, 'survey_train', CLASS_NAMES, rename_classes, omit_classes) register_dataset_from_file(imagepath,annotationpath,validfile,False, 'survey_valid', CLASS_NAMES,rename_classes,omit_classes) sval = str(MetadataCatalog.get("survey_valid")) run.log('survey_valid',sval,) #Create the config (cfg) object. This is my function (above) cfg = setup_model_configuration(rootdir, output_dir, CLASS_NAMES) # default_setup performs some basic common setups at the beginning of a job, including: # 1. Set up the detectron2 logger # 2. Log basic information about environment, cmdline arguments, and config # 3. Backup the config to the output directory default_setup(cfg, args) ##in detectron2/engine/defaults.py. #If you are doing inference (=evaluation), build the model first if args.eval_only: print("Building model") #NOTE: we are NOT creating a new Trainer here; we are only using its class method 'build_model' #Therefore it doesn't do some of the other tricks like wrapping the model and calling build_train_loader model = Trainer.build_model(cfg) DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( cfg.MODEL.WEIGHTS, resume=args.resume ) #Wrap the model in DistributedDataParallel module distributed = comm.get_world_size() > 1 if distributed: world_size = comm.get_world_size() rank = comm.get_local_rank() model = DistributedDataParallel(model, device_ids=[rank], broadcast_buffers=False) print("This is rank",rank) #Run the evaluation (build one evaluator; then for each image file, rebuild the test loader with new tiles.) print("Building evaluator") image_files = get_files(inferencepath,imagefile_extensions,recursive=False) #Build evaluator (doesn't need to be in the for loop). Note: distributed MUST BE True if total number of GPUs is > 1. evaluators = DatasetEvaluators([JTFMEvaluator(distributed=True, output_dir=cfg.OUTPUT_DIR)]) mapper = TileDatasetMapper(cfg, False) results = [] for f in image_files: file_results = [] pil_img = Image.open(f) pil_img = np.asarray(pil_img) pil_img = copy.deepcopy(pil_img) #necessary step #Convert to tensor img = torch.from_numpy(pil_img) img = img.permute(2,0,1) fullimage_size = img.shape[1:] #Get tiles tile_size = (800, 800) #H, W in pixels tile_overlap = 100 tiles = get_tiles(img,tile_size,tile_overlap) #Now put in a list and make sure the tiles are contiguous (they weren't) nrows, ncols = tiles.shape[1],tiles.shape[2] tilelist = [] tilelist = [tiles[0][ir][ic].contiguous() for ir in range(nrows) for ic in range(ncols) ] #Create a set of tile positions (note: order must match that of tilelist!) tile_positions = [{"trow":ir,"tcol":ic} for ir in range(nrows) for ic in range(ncols)] #Create a list of dicts (one per image) for Detectron2 input (note: list comprehension zips names and positions) datasetdicts = [{"image_id":str(f), "trow":tile_pos["trow"], "tcol":tile_pos["tcol"],\ "image":tile, "width":tile_size[1],"height":tile_size[0]} \ for tile_pos,tile in zip(tile_positions,tilelist)] inference_dataset = DatasetFromList(datasetdicts) inferencesampler = torch.utils.data.distributed.DistributedSampler( inference_dataset, num_replicas=cfg.DATALOADER.NUM_WORKERS, rank=rank ) testloader = torch.utils.data.DataLoader( dataset=inference_dataset, batch_size=cfg.SOLVER.IMS_PER_BATCH, shuffle=False, num_workers=cfg.DATALOADER.NUM_WORKERS, pin_memory=True, collate_fn=trivial_batch_collator, sampler=inferencesampler) print(f'Running {f}: {len(datasetdicts)} tiles./n') if comm.is_main_process(): tic = time.perf_counter() tile_results = [] tile_results = jp_inference_on_dataset(model, testloader, evaluators) if comm.is_main_process(): print("Inference on full-size image done in {:.2f}s".format(time.perf_counter() - tic)) #Recombine tile annotations into a full-image annotation print("Reassembling tile annotations") if 'Predictions' in tile_results: all_instances = combine_tile_annotations(tile_results,tile_size,tile_overlap,fullimage_size) print("all_instances after combine_tile_annotations",all_instances) #Create the dict for this file file_results = {'file_name':f} file_results['height'] = fullimage_size[0] file_results['width'] = fullimage_size[1] file_results['instances'] = all_instances['instances'] results.append(file_results) else: next if comm.is_main_process(): #Write the results dict to disk: one xml annotation file per image plus a summary (class_counts.csv) write_results_to_xml(results,output_dir,CLASS_NAMES) if args.write_annotated_images==True: print("n_image_files",len(image_files)) print("n_results",len(results)) print(CLASS_NAMES) save_annotated_images(image_files,results,CLASS_NAMES,output_dir,'ann') return results #if doing evaluation print("rank",comm.get_local_rank(),"returning") return #Else train (build the Trainer and return it) else: print("Creating or loading a trainer") #Note: __init__ calls self.build_train_loader(cfg) and wraps the model in DistributedDataParallel trainer = Trainer(cfg) trainer.resume_or_load(resume=args.resume) print("Training") if args.eval_after_training==True: trainer.train() #Run the evaluation (build a test loader, an evaluator, and run) print("Building data loader and evaluator") val_loader = build_detection_test_loader(cfg, "survey_valid") evaluators = DatasetEvaluators([COCOEvaluator("survey_valid", cfg, distributed=True, output_dir=cfg.OUTPUT_DIR)]) #Note: 'results' holds the summary table values. Predictions are written to "instances_predictions.pth" print("Doing inference") results = inference_on_dataset(trainer.model, val_loader, evaluators) return results else: return trainer.train() if __name__ == '__main__': # __spec__ = None #fixes an error that pops up when debugging with pdb from commandline print("Testing if I can parse arguments") parser = argparse.ArgumentParser() parser.add_argument('--data_folder', type=str,dest='data_folder', help='Root folder for input data') parser.add_argument('--eval_only', dest='eval_only', action='store_true') parser.set_defaults(eval_only=False) parser.add_argument('--eval_after_training', dest='eval_after_training', action='store_true') parser.set_defaults(eval_only=False) parser.add_argument('--write_annotated_images', dest='write_annotated_images', action='store_true') parser.set_defaults(eval_only=False) parser.add_argument('--resume', dest='resume', action='store_true') parser.set_defaults(resume=False) #Note: <NAME> says --resume must come before --output_dir (https://github.com/facebookresearch/detectron2/issues/148) parser.add_argument('--output_dir',type=str,dest='output_dir',help='Root folder for output') parser.add_argument('--num_gpus_per_machine', type=int,dest='num_gpus_per_machine') parser.set_defaults(num_gpus_per_machine=1) parser.add_argument('--num_machines',type=int, dest='num_machines') parser.set_defaults(num_machines=1) parser.add_argument('--machine_rank', type=int,dest='machine_rank') parser.set_defaults(machine_rank=0) parser.add_argument('--dist_url', type=str, dest='dist_url') parser.set_defaults(dist_url="auto") #Call the parser args = parser.parse_args() print("Command Line Args:", args) #main(args) launch( main, args.num_gpus_per_machine, num_machines=args.num_machines, machine_rank=args.machine_rank, dist_url=args.dist_url, args=(args,), ) ```
{ "source": "jcp/django-names", "score": 2 }
#### File: django-names/names/mixins.py ```python from django.db import models from django.utils.translation import gettext_lazy as _ from nameparser import HumanName from nameparser.config import CONSTANTS from .conf import settings class NameModelMixin(models.Model): """ An abstract base class model mixin that contains a full name and its individual components. """ DEFAULTS = {"max_length": settings.MAX_LENGTH, "blank": True} full = models.CharField(verbose_name=_("Full name"), max_length=settings.MAX_LENGTH) title = models.CharField(verbose_name=_("Title"), **DEFAULTS) first = models.CharField(verbose_name=_("First name"), **DEFAULTS) last = models.CharField(verbose_name=_("Last name"), **DEFAULTS) middle = models.CharField(verbose_name=_("Middle name"), **DEFAULTS) nickname = models.CharField(verbose_name=_("Nickname"), **DEFAULTS) suffix = models.CharField(verbose_name=_("Suffix"), **DEFAULTS) # Stores previous value of `full` _initial = None class Meta: abstract = True def __init__(self, *args, **kwargs): """ Stores `self.full` for comparison in `save` method. """ super().__init__(*args, **kwargs) self._initial = self.full def __str__(self): return self.full def save(self, *args, **kwargs): """ Parses and saves a full name and its individual components. """ # Use name components to create a full name. This ensures # modifications to individual name components are reflected # in the full name. name = CONSTANTS.string_format.format(**self.__dict__) # If this is a new instance, or `self.full` has been modified, # use `self.full` for the full name. if not self.pk or self._initial != self.full: name = self.full instance = self._parse(name=name) for attr, val in instance.as_dict().items(): setattr(self, attr, val) self.full = instance.full_name super().save(*args, **kwargs) @classmethod def _parse(cls, name): """ Parses and returns a `HumanName` instance. """ instance = HumanName( full_name=name, constants=settings.OPTIONS, string_format=settings.STRING_FORMAT, ) return instance ```
{ "source": "JCPedroza/algorithms-and-data-structures-py", "score": 4 }
#### File: numeric/factorial/factorial_recursive.py ```python def factorial(num: int) -> int: if num < 2: return 1 return num * factorial(num - 1) algorithm = factorial name = 'recursive if' ``` #### File: numeric/factorial/test_factorial.py ```python from . import factorial_forloop from . import factorial_native from . import factorial_recursive from . import factorial_reduce from . import factorial_match from . import factorial_tail test_subjects = [ factorial_forloop, factorial_native, factorial_recursive, factorial_reduce, factorial_match, factorial_tail ] def test_factorial(): for subject in test_subjects: assert subject.algorithm(0) == 1 assert subject.algorithm(1) == 1 assert subject.algorithm(2) == 2 assert subject.algorithm(3) == 6 assert subject.algorithm(4) == 24 assert subject.algorithm(5) == 120 ``` #### File: sorting/bubble_sort/bubble_sort_naive.py ```python def bubble_sort(nums: list[float]) -> list[float]: for _ in range(len(nums)): for indx in range(len(nums) - 1): if nums[indx] > nums[indx + 1]: nums[indx], nums[indx + 1] = nums[indx + 1], nums[indx] return nums algorithm = bubble_sort name = 'naive' ``` #### File: sorting/bubble_sort/test_bubble_sort.py ```python from . import bubble_sort_naive from . import bubble_sort_optimized test_subjects = [ bubble_sort_naive, bubble_sort_optimized ] def test_bubble_sort(test_sorting_algorithm): test_sorting_algorithm(test_subjects) ``` #### File: sorting/insertion_sort/insertion_sort_naive.py ```python def insertion_sort(nums: list[float]) -> list[float]: """Sorts a list in-place using the insertion sort approach. This version does more comparisons and moves more data than necessary, so it is sub-optimal. Time complexity: O(n) best O(n^2) worst O(n^2) average. Space complexity: O(n) total O(1) auxiliary. Args: nums: A list of numbers. Returns. The sorted list. """ for target in range(1, len(nums)): swap = target while swap > 0 and nums[swap - 1] > nums[swap]: nums[swap - 1], nums[swap] = nums[swap], nums[swap - 1] swap -= 1 return nums algorithm = insertion_sort name = 'in-place naive' ``` #### File: project_euler/e001_multiples_of_3_or_5/mul_of_3_or_5_filter.py ```python def mul_of_3_or_5(limit: int) -> int: """Computes the sum of all the multiples of 3 or 5 below the given limit, using filter and range. :param limit: Limit of the values to sum (exclusive). :return: Sum of all the multiples of 3 or 5 below the given limit. """ return sum(filter( lambda x: x % 3 == 0 or x % 5 == 0, range(3, limit))) solution = mul_of_3_or_5 name = 'filter' ```
{ "source": "JCPedroza/freeCodeCamp-coding-interview-prep-python", "score": 4 }
#### File: algorithms/implement_bubble_sort/implement_bubble_sort_flag_while.py ```python def bubble_sort(nums: list[float]) -> list[float]: is_sorted = False while (not is_sorted): is_sorted = True for index in range(len(nums) - 1): if nums[index] > nums[index + 1]: nums[index], nums[index + 1] = nums[index + 1], nums[index] is_sorted = False return nums ``` #### File: algorithms/implement_insertion_sort/implement_insertion_sort.py ```python def insertion_sort(nums: list[float]) -> list[float]: for start in range(1, len(nums)): index = start while nums[index] < nums[index - 1] and index > 0: nums[index], nums[index - 1] = nums[index - 1], nums[index] index -= 1 return nums ``` #### File: data_structures/create_a_stack_class/create_a_stack_class_test.py ```python from create_a_stack_class import Stack def assert_stack_state(stack, expected_list): assert stack.list == expected_list assert stack.is_empty() == (not expected_list) assert len(stack) == len(expected_list) assert stack.size() == len(expected_list) assert stack.peek() == (expected_list[-1] if expected_list else None) def test_basic_stack_operations(): stack = Stack() assert_stack_state(stack, []) assert stack.pop() is None stack.push(0) assert_stack_state(stack, [0]) stack.push(1).push(2).push(3) assert_stack_state(stack, [0, 1, 2, 3]) assert stack.pop() == 3 assert stack.pop() == 2 assert_stack_state(stack, [0, 1]) stack.clear() assert_stack_state(stack, []) ``` #### File: project_euler/001_multiples_of_3_and_5/multiples_of_3_and_5.py ```python def num_filter(num: int) -> bool: return num % 3 == 0 or num % 5 == 0 def multiples_of_3_and_5(limit: int) -> int: return sum(filter(num_filter, range(1, limit))) ``` #### File: project_euler/004_largest_palindrome_product/largest_palindrome_product.py ```python def is_num_palindrome(num): return str(num) == str(num)[::-1] def ndigit_range(ndigit): return range(10**(ndigit - 1), 10**(ndigit)) def largest_palindrome_product(ndigit): ndigit_nums = ndigit_range(ndigit) palindrome_products = [] for num in ndigit_nums: for factor in range(num, ndigit_nums[-1] + 1): product = num * factor if is_num_palindrome(product): palindrome_products.append(product) return max(palindrome_products) ```
{ "source": "J-CPelletier/WebComicToCBZ", "score": 2 }
#### File: download/tests/test_comic_pipeline.py ```python import os from scrapy.exceptions import DropItem import pytest from webcomix.scrapy.download.comic_pipeline import ComicPipeline from webcomix.scrapy.download.comic_page import ComicPage from webcomix.supported_comics import supported_comics first_comic = list(sorted(supported_comics.values()))[0] expected_url_image = "http://imgs.xkcd.com/comics/barrel_cropped_(1).jpg" expected_image_location = "test/1.jpg" expected_image_filename = "1.jpg" def test_get_media_requests_returns_good_request_when_file_not_present(mocker): mocker.patch("os.path.isfile", return_value=False) mock_spider_info = mocker.patch("scrapy.pipelines.media.MediaPipeline.SpiderInfo") mocker.patch( "webcomix.comic.Comic.save_image_location", return_value=expected_image_location ) mocker.patch( "webcomix.comic.Comic.save_image_filename", return_value=expected_image_filename ) pipeline = ComicPipeline(store_uri="foo") elements = list( pipeline.get_media_requests( ComicPage(url=expected_url_image, page=1, title=False, alt_text=None), mock_spider_info, ) ) request = elements[0] assert request.url == expected_url_image assert request.meta["image_file_name"] == expected_image_filename os.rmdir("foo") def test_get_media_requests_drops_item_when_file_present(mocker): mocker.patch("os.path.isfile", return_value=True) mock_spider_info = mocker.patch("scrapy.pipelines.media.MediaPipeline.SpiderInfo") mocker.patch( "webcomix.comic.Comic.save_image_location", return_value=expected_image_location ) pipeline = ComicPipeline(store_uri="foo") with pytest.raises(DropItem): list( pipeline.get_media_requests( ComicPage(url=expected_url_image, page=1, title=False, alt_text=None), mock_spider_info, ) ) os.rmdir("foo") def test_get_media_requests_drops_item_when_file_present_in_zip(mocker): mocker.patch("os.path.isfile", side_effect=[False]) mocker.patch( "webcomix.scrapy.download.comic_pipeline.ComicPipeline.image_in_zipfile", return_value=True, ) mock_spider_info = mocker.patch("scrapy.pipelines.media.MediaPipeline.SpiderInfo") mocker.patch( "webcomix.comic.Comic.save_image_location", return_value=expected_image_location ) pipeline = ComicPipeline(store_uri="foo") with pytest.raises(DropItem): list( pipeline.get_media_requests( ComicPage(url=expected_url_image, page=1, title=False, alt_text=None), mock_spider_info, ) ) os.rmdir("foo") def test_item_completed_returns_item_when_file_downloaded(mocker): results = [(True, {"path": expected_image_location})] item = ComicPage() pipeline = ComicPipeline(store_uri="foo") result = pipeline.item_completed(results, item, mocker.ANY) assert result == item os.rmdir("foo") def test_item_completed_returns_drops_when_file_not_downloaded(mocker): results = [(False, {})] item = ComicPage() pipeline = ComicPipeline(store_uri="foo") with pytest.raises(DropItem): pipeline.item_completed(results, item, mocker.ANY) os.rmdir("foo") def test_file_path_is_image_path(mocker): mock_request = mocker.patch("scrapy.http.Request") mock_request.meta = {"image_file_name": expected_image_location} pipeline = ComicPipeline(store_uri="foo") file_path = pipeline.file_path(mock_request) assert file_path == expected_image_location os.rmdir("foo") def test_image_not_in_zip_if_zip_does_not_exist(mocker): mocker.patch("os.path.isfile", return_value=False) assert ComicPipeline.image_in_zipfile(mocker.ANY, mocker.ANY) == False ``` #### File: webcomix/scrapy/request_factory.py ```python from scrapy import Request from scrapy_splash import SplashRequest class RequestFactory: def __init__(self, javascript): self.javascript = javascript def create(self, url, next_page): if self.javascript: return SplashRequest(url, args={"wait": 0.5}, meta={"page": next_page}) else: return Request(url, meta={"page": next_page}) ``` #### File: scrapy/tests/test_request_factory.py ```python from scrapy import Request from scrapy_splash import SplashRequest from webcomix.scrapy.request_factory import RequestFactory AN_URL = "https://xkcd.com" def test_factory_creates_request_without_javascript(mocker): request_factory = RequestFactory(False) request = request_factory.create(AN_URL, mocker.ANY) assert type(request) == Request def test_factory_creates_splash_request_with_javascript(mocker): request_factory = RequestFactory(True) request = request_factory.create(AN_URL, mocker.ANY) assert type(request) == SplashRequest ``` #### File: webcomix/tests/test_docker.py ```python import docker import pytest from webcomix.docker import DockerManager, CONTAINER_NAME @pytest.fixture def cleanup_container(): yield None client = docker.from_env() for container in client.containers.list(): if container.attrs["Config"]["Image"] == CONTAINER_NAME: container.kill() def test_no_javascript_spawns_no_container(cleanup_container): manager = DockerManager(False) manager.__enter__() manager.client = docker.from_env() assert manager._get_container() is None def test_javascript_spawns_container(cleanup_container): manager = DockerManager(True) manager.__enter__() assert manager._get_container() is not None manager.__exit__(None, None, None) def test_javascript_exit_removes_container(cleanup_container): manager = DockerManager(True) manager.__enter__() manager.__exit__(None, None, None) assert manager._get_container() is None ``` #### File: webcomix/tests/test_search.py ```python from webcomix.comic import Comic from webcomix.search import discovery from webcomix.tests.fake_websites.fixture import ( one_webpage_searchable_uri, three_webpages_uri, three_webpages_classes_uri, ) def test_search_searchable_website(mocker, three_webpages_classes_uri): expected = Comic( "Blindsprings", three_webpages_classes_uri, "//*[contains(translate(@class, 'ABCDEFGHIJKLMNOPQRSTUVWXYZ','abcdefghijklmnopqrstuvwxyz'), 'comic')]//@src", "//*[contains(translate(@class, 'ABCDEFGHIJKLMNOPQRSTUVWXYZ','abcdefghijklmnopqrstuvwxyz'), 'next')]//@href", ) mocker.patch("webcomix.search.possible_image_xpath", ["comic"]) mocker.patch("webcomix.search.possible_next_page_xpath", ["next"]) mocker.patch("webcomix.search.possible_tags_image", ["*"]) mocker.patch("webcomix.search.possible_tags_next", ["*"]) mocker.patch("webcomix.search.possible_attributes_image", ["@class"]) mocker.patch("webcomix.search.possible_attributes_next", ["@class"]) mocker.patch("webcomix.util.check_first_pages") comic, result = discovery("Blindsprings", three_webpages_classes_uri) three_webpages_classes_folder = three_webpages_classes_uri.strip("1.html") assert result == [ { "page": 1, "url": three_webpages_classes_uri, "image_urls": [three_webpages_classes_folder + "1.jpeg"], "alt_text": None, }, { "page": 2, "url": three_webpages_classes_folder + "2.html", "image_urls": [three_webpages_classes_folder + "2.jpeg"], "alt_text": None, }, { "page": 3, "url": three_webpages_classes_folder + "3.html", "image_urls": [three_webpages_classes_folder + "3.jpeg"], "alt_text": None, }, ] assert comic.start_url == expected.start_url assert comic.next_page_selector == expected.next_page_selector assert comic.comic_image_selector == expected.comic_image_selector def test_search_unsearchable_website(mocker, three_webpages_uri): mocker.patch("webcomix.search.possible_image_xpath", ["comic"]) mocker.patch("webcomix.search.possible_next_page_xpath", ["next"]) mocker.patch("webcomix.search.possible_tags_image", ["*"]) mocker.patch("webcomix.search.possible_tags_next", ["*"]) mocker.patch("webcomix.search.possible_attributes_image", ["@class"]) mocker.patch("webcomix.search.possible_attributes_next", ["@class"]) assert discovery("test", three_webpages_uri) == (None, None) def test_can_stop_searching(mocker, three_webpages_classes_uri): mocker.patch("webcomix.search.possible_image_xpath", ["comic"]) mocker.patch("webcomix.search.possible_next_page_xpath", ["next"]) mocker.patch("webcomix.search.possible_tags_image", ["div"]) mocker.patch("webcomix.search.possible_tags_next", ["div"]) mocker.patch("webcomix.search.possible_attributes_image", ["@rel"]) mocker.patch("webcomix.search.possible_attributes_next", ["@class"]) exit_called = mocker.patch("sys.exit") mocker.patch("webcomix.comic.Comic.verify_xpath", side_effect=KeyboardInterrupt) result = discovery("test", three_webpages_classes_uri) assert exit_called.call_count == 1 assert result == (None, None) def test_can_find_single_page_correctly_while_searching( mocker, one_webpage_searchable_uri ): mocker.patch("webcomix.search.possible_image_xpath", ["image"]) mocker.patch("webcomix.search.possible_next_page_xpath", ["next"]) mocker.patch("webcomix.search.possible_tags_image", ["*"]) mocker.patch("webcomix.search.possible_tags_next", ["*"]) mocker.patch("webcomix.search.possible_attributes_image", ["@class"]) mocker.patch("webcomix.search.possible_attributes_next", ["."]) comic, result = discovery("test", one_webpage_searchable_uri, single_page=True) validation = comic.verify_xpath() assert len(result) == 1 assert result == validation assert len(result[0]["image_urls"]) == 2 ```
{ "source": "jcpeterson/Dallinger", "score": 2 }
#### File: dallinger/heroku/messages.py ```python import logging import six import smtplib from cached_property import cached_property from datetime import datetime from email.mime.text import MIMEText logger = logging.getLogger(__file__) def get_email_server(host): """Return an SMTP server using the specified host. Abandon attempts to connect after 8 seconds. """ return smtplib.SMTP(host, timeout=8) resubmit_whimsical = """Dearest Friend, I am writing to let you know that at {when}, during my regular (and thoroughly enjoyable) perousal of the most charming participant data table, I happened to notice that assignment {assignment_id} has been taking longer than we were expecting. I recall you had suggested {duration} minutes as an upper limit for what was an acceptable length of time for each assignement, however this assignment had been underway for a shocking {minutes_so_far} minutes, a full {minutes_excess} minutes over your allowance. I immediately dispatched a telegram to our mutual friends at AWS and they were able to assure me that although the notification had failed to be correctly processed, the assignment had in fact been completed. Rather than trouble you, I dealt with this myself and I can assure you there is no immediate cause for concern. Nonetheless, for my own peace of mind, I would appreciate you taking the time to look into this matter at your earliest convenience. I remain your faithful and obedient servant, <NAME> P.S. Please do not respond to this message, I am busy with other matters. """ resubmit = """Dear experimenter, This is an automated email from Dallinger. You are receiving this email because the Dallinger platform has discovered evidence that a notification from Amazon Web Services failed to arrive at the server. Dallinger has automatically contacted AWS and has determined the dropped notification was a submitted notification (i.e. the participant has finished the experiment). This is a non-fatal error and so Dallinger has auto-corrected the problem. Nonetheless you may wish to check the database. Best, The Dallinger dev. team. Error details: Assignment: {assignment_id} Allowed time: {duration} Time since participant started: {minutes_so_far} """ cancelled_hit_whimsical = """Dearest Friend, I am afraid I write to you with most grave tidings. At {when}, during a routine check of the usually most delightful participant data table, I happened to notice that assignment {assignment_id} has been taking longer than we were expecting. I recall you had suggested {duration} minutes as an upper limit for what was an acceptable length of time for each assignment, however this assignment had been underway for a shocking {minutes_so_far} minutes, a full {minutes_excess} minutes over your allowance. I immediately dispatched a telegram to our mutual friends at AWS and they infact informed me that they had already sent us a notification which we must have failed to process, implying that the assignment had not been successfully completed. Of course when the seriousness of this scenario dawned on me I had to depend on my trusting walking stick for support: without the notification I didn't know to remove the old assignment's data from the tables and AWS will have already sent their replacement, meaning that the tables may already be in a most unsound state! I am sorry to trouble you with this, however, I do not know how to proceed so rather than trying to remedy the scenario myself, I have instead temporarily ceased operations by expiring the HIT with the fellows at AWS and have refrained from posting any further invitations myself. Once you see fit I would be most appreciative if you could attend to this issue with the caution, sensitivity and intelligence for which I know you so well. I remain your faithful and obedient servant, <NAME> P.S. Please do not respond to this message, I am busy with other matters. """ cancelled_hit = """Dear experimenter, This is an automated email from Dallinger. You are receiving this email because the Dallinger platform has discovered evidence that a notification from Amazon Web Services failed to arrive at the server. Dallinger has automatically contacted AWS and has determined the dropped notification was an abandoned/returned notification (i.e. the participant had returned the experiment or had run out of time). This is a serious error and so Dallinger has paused the experiment - expiring the HIT on MTurk and setting auto_recruit to false. Participants currently playing will be able to finish, however no further participants will be recruited until you do so manually. We strongly suggest you use the details below to check the database to make sure the missing notification has not caused additional problems before resuming. If you are receiving a lot of these emails this suggests something is wrong with your experiment code. Best, The Dallinger dev. team. Error details: Assignment: {assignment_id} Allowed time: {duration} Time since participant started: {minutes_so_far} """ idle_template = """Dear experimenter, This is an automated email from Dallinger. You are receiving this email because your dyno has been running for over {minutes_so_far} minutes. The application id is: {app_id} To see the logs, use the command "dallinger logs --app {app_id}" To pause the app, use the command "dallinger hibernate --app {app_id}" To destroy the app, use the command "dallinger destroy --app {app_id}" The Dallinger dev. team. """ hit_error_template = """Dear experimenter, This is an automated email from Dallinger. You are receiving this email because a recruited participant has been unable to complete the experiment due to a bug. The application id is: {app_id} The information about the failed HIT is recorded in the database in the Notification table, with assignment_id {assignment_id}. To see the logs, use the command "dallinger logs --app {app_id}" To pause the app, use the command "dallinger hibernate --app {app_id}" To destroy the app, use the command "dallinger destroy --app {app_id}" The Dallinger dev. team. """ class MessengerError(Exception): """A message could not be relayed.""" class HITSummary(object): def __init__(self, assignment_id, duration, time_active, app_id, when=datetime.now()): self.when = when self.assignment_id = assignment_id self.duration = int(round(duration / 60)) self.minutes_so_far = int(round(time_active / 60)) self.minutes_excess = int(round((time_active - duration) / 60)) self.app_id = app_id CONFIG_PLACEHOLDER = '???' class EmailConfig(object): """Extracts and validates email-related values from a Configuration """ _map = { 'username': 'smtp_username', 'toaddr': 'contact_email_on_error', 'fromaddr': 'dallinger_email_address', 'password': '<PASSWORD>', } def __init__(self, config): self.host = config.get('smtp_host', '') self.username = config.get('smtp_username', '') self.toaddr = config.get('contact_email_on_error', '') self.password = config.get('smtp_password', '') self.fromaddr = config.get('dallinger_email_address', '') self.whimsical = config.get('whimsical', False) def validate(self): """Could this config be used to send a real email?""" missing = [] for k, v in self._map.items(): attr = getattr(self, k, False) if not attr or attr == CONFIG_PLACEHOLDER: missing.append(v) if missing: return "Missing or invalid config values: {}".format( ', '.join(sorted(missing)) ) class HITMessages(object): @staticmethod def by_flavor(hit_info, whimsical): if whimsical: return WhimsicalHITMessages(hit_info) return HITMessages(hit_info) _templates = { 'resubmitted': { 'subject': 'Dallinger automated email - minor error.', 'template': resubmit, }, 'cancelled': { 'subject': 'Dallinger automated email - major error.', 'template': cancelled_hit, }, 'idle': { 'subject': 'Idle Experiment.', 'template': idle_template, }, 'hit_error': { 'subject': 'Error during HIT.', 'template': hit_error_template, }, } def __init__(self, hit_info): self.when = hit_info.when self.assignment_id = hit_info.assignment_id self.duration = hit_info.duration self.minutes_so_far = hit_info.minutes_so_far self.minutes_excess = hit_info.minutes_excess self.app_id = hit_info.app_id def resubmitted_msg(self): return self._build('resubmitted') def hit_cancelled_msg(self): return self._build('cancelled') def idle_experiment_msg(self): return self._build('idle') def hit_error_msg(self): return self._build('hit_error') def _build(self, category): data = self._templates[category] return { 'message': data['template'].format(**self.__dict__), 'subject': data['subject'], } class WhimsicalHITMessages(HITMessages): _templates = { 'resubmitted': { 'subject': 'A matter of minor concern.', 'template': resubmit_whimsical, }, 'cancelled': { 'subject': 'Most troubling news.', 'template': cancelled_hit_whimsical, }, 'idle': { 'subject': 'Idle Experiment.', 'template': idle_template, }, 'hit_error': { 'subject': 'Error during HIT.', 'template': hit_error_template, }, } class BaseHITMessenger(object): def __init__(self, hit_info, email_settings): self.messages = HITMessages.by_flavor(hit_info, email_settings.whimsical) self.app_id = hit_info.app_id self.host = email_settings.host self.username = email_settings.username self.fromaddr = email_settings.fromaddr self.toaddr = email_settings.toaddr self.password = <PASSWORD>_settings.password def send_resubmitted_msg(self): data = self.messages.resubmitted_msg() self._send(data) return data def send_hit_cancelled_msg(self): data = self.messages.hit_cancelled_msg() self._send(data) return data def send_idle_experiment_msg(self): data = self.messages.idle_experiment_msg() self._send(data) return data def send_hit_error_msg(self): data = self.messages.hit_error_msg() self._send(data) return data class EmailingHITMessenger(BaseHITMessenger): """Actually sends an email message to the experiment owner. """ @cached_property def server(self): return get_email_server(self.host) def _send(self, data): msg = MIMEText(data['message']) msg['Subject'] = data['subject'] try: self.server.starttls() self.server.login(self.username, self.password) self.server.sendmail(self.fromaddr, self.toaddr, msg.as_string()) self.server.quit() except smtplib.SMTPException as ex: six.raise_from( MessengerError('SMTP error sending HIT error email.'), ex ) except Exception as ex: six.raise_from( MessengerError("Unknown error sending HIT error email."), ex ) class DebugHITMessenger(BaseHITMessenger): """Used in debug mode. Prints the message contents to the log instead of sending an email. """ def _send(self, data): logger.info("{}:\n{}".format(self.__class__.__name__, data['message'])) def get_messenger(hit_info, config): """Return an appropriate Messenger. If we're in debug mode, or email settings aren't set, return a debug version which logs the message instead of attempting to send a real email. """ email_settings = EmailConfig(config) if config.get("mode") == "debug": return DebugHITMessenger(hit_info, email_settings) problems = email_settings.validate() if problems: logger.info(problems + " Will log errors instead of emailing them.") return DebugHITMessenger(hit_info, email_settings) return EmailingHITMessenger(hit_info, email_settings) ``` #### File: Dallinger/tests/test_command_line.py ```python import mock import os import pexpect import re import six import subprocess import sys import tempfile from six.moves import configparser from time import sleep from uuid import UUID from click.testing import CliRunner import pytest from pytest import raises import dallinger.command_line from dallinger.command_line import new_webbrowser_profile from dallinger.command_line import verify_package from dallinger.command_line import report_idle_after from dallinger.config import get_config from dallinger import recruiters import dallinger.version def found_in(name, path): return os.path.exists(os.path.join(path, name)) @pytest.fixture def output(): class Output(object): def __init__(self): self.log = mock.Mock() self.error = mock.Mock() self.blather = mock.Mock() return Output() @pytest.fixture def sleepless(): # Use this fixture to ignore sleep() calls, for speed. with mock.patch('dallinger.command_line.time.sleep'): yield @pytest.fixture def browser(): with mock.patch('dallinger.command_line.is_command') as mock_is_command: mock_is_command.return_value = False with mock.patch('dallinger.command_line.webbrowser') as mock_browser: yield mock_browser @pytest.fixture def heroku(): from dallinger.heroku.tools import HerokuApp instance = mock.Mock(spec=HerokuApp) with mock.patch('dallinger.command_line.HerokuApp') as mock_app_class: mock_app_class.return_value = instance yield instance @pytest.fixture def data(): with mock.patch('dallinger.command_line.data') as mock_data: mock_data.backup.return_value = 'fake backup url' mock_bucket = mock.Mock() mock_key = mock.Mock() mock_key.generate_url.return_value = 'fake restore url' mock_bucket.lookup.return_value = mock_key mock_data.user_s3_bucket.return_value = mock_bucket yield mock_data @pytest.fixture def mturk(): with mock.patch('dallinger.command_line.MTurkService') as mock_mturk: mock_instance = mock.Mock() mock_instance.get_hits.return_value = [ {'id': 'hit-id-1'}, {'id': 'hit-id-2', 'annotation': 'exp-id-2'} ] mock_mturk.return_value = mock_instance yield mock_mturk class TestIsolatedWebbrowser(object): def test_chrome_isolation(self): import webbrowser with mock.patch('dallinger.command_line.is_command') as is_command: is_command.side_effect = lambda s: s == 'google-chrome' isolated = new_webbrowser_profile() assert isinstance(isolated, webbrowser.Chrome) assert isolated.remote_args[:2] == [r'%action', r'%s'] assert isolated.remote_args[-1].startswith( '--user-data-dir="{}'.format(tempfile.gettempdir()) ) def test_firefox_isolation(self): import webbrowser with mock.patch('dallinger.command_line.is_command') as is_command: is_command.side_effect = lambda s: s == 'firefox' isolated = new_webbrowser_profile() assert isinstance(isolated, webbrowser.Mozilla) assert isolated.remote_args[0] == '-profile' assert isolated.remote_args[1].startswith(tempfile.gettempdir()) assert isolated.remote_args[2:] == ['-new-instance', '-no-remote', '-url', r'%s'] def test_fallback_isolation(self): import webbrowser with mock.patch('dallinger.command_line.is_command') as is_command: is_command.return_value = False isolated = new_webbrowser_profile() assert isolated == webbrowser @pytest.mark.usefixtures('bartlett_dir') class TestVerify(object): def test_verify(self): subprocess.check_call(["dallinger", "verify"]) class TestCommandLine(object): def test_dallinger_no_args(self): output = subprocess.check_output(["dallinger"]) assert(b"Usage: dallinger [OPTIONS] COMMAND [ARGS]" in output) def test_log_empty(self): id = "dlgr-3b9c2aeb" assert ValueError, subprocess.call(["dallinger", "logs", "--app", id]) def test_log_no_flag(self): assert TypeError, subprocess.call(["dallinger", "logs"]) def test_deploy_empty(self): id = "dlgr-3b9c2aeb" assert ValueError, subprocess.call(["dallinger", "deploy", "--app", id]) def test_sandbox_empty(self): id = "dlgr-3b9c2aeb" assert ValueError, subprocess.call(["dallinger", "sandbox", "--app", id]) def test_verify_id_short_fails(self): id = "dlgr-3b9c2aeb" assert ValueError, dallinger.commandline.verify_id(id) def test_empty_id_fails_verification(self): assert ValueError, dallinger.commandline.verify_id(None) def test_new_uuid(self): output = subprocess.check_output(["dallinger", "uuid"]) assert isinstance(UUID(output.strip().decode('utf8'), version=4), UUID) def test_dallinger_help(self): output = subprocess.check_output(["dallinger", "--help"]) assert(b"Commands:" in output) def test_setup(self): subprocess.check_call(["dallinger", "setup"]) subprocess.check_call(["dallinger", "setup"]) class TestReportAfterIdleDecorator(object): def test_reports_timeout(self, active_config): @report_idle_after(1) def will_time_out(): sleep(5) with mock.patch('dallinger.command_line.get_messenger') as messenger: will_time_out() messenger.assert_called_once() @pytest.mark.usefixtures('bartlett_dir', 'active_config') class TestSetupExperiment(object): def test_setup_creates_new_experiment(self): from dallinger.command_line import setup_experiment # Baseline exp_dir = os.getcwd() assert found_in('experiment.py', exp_dir) assert not found_in('experiment_id.txt', exp_dir) assert not found_in('Procfile', exp_dir) assert not found_in('launch.py', exp_dir) assert not found_in('worker.py', exp_dir) assert not found_in('clock.py', exp_dir) exp_id, dst = setup_experiment() # dst should be a temp dir with a cloned experiment for deployment assert(exp_dir != dst) assert('/tmp' in dst) assert found_in('experiment_id.txt', dst) assert found_in('experiment.py', dst) assert found_in('models.py', dst) assert found_in('Procfile', dst) assert found_in('launch.py', dst) assert found_in('worker.py', dst) assert found_in('clock.py', dst) assert found_in(os.path.join("static", "css", "dallinger.css"), dst) assert found_in(os.path.join("static", "scripts", "dallinger2.js"), dst) assert found_in(os.path.join("static", "scripts", "reconnecting-websocket.js"), dst) assert found_in(os.path.join("static", "scripts", "reqwest.min.js"), dst) assert found_in(os.path.join("static", "scripts", "spin.min.js"), dst) assert found_in(os.path.join("static", "scripts", "store+json2.min.js"), dst) assert found_in(os.path.join("static", "robots.txt"), dst) assert found_in(os.path.join("templates", "error.html"), dst) assert found_in(os.path.join("templates", "error-complete.html"), dst) assert found_in(os.path.join("templates", "launch.html"), dst) assert found_in(os.path.join("templates", "complete.html"), dst) def test_setup_with_custom_dict_config(self): from dallinger.command_line import setup_experiment config = get_config() assert config.get('num_dynos_web') == 1 exp_id, dst = setup_experiment(exp_config={'num_dynos_web': 2}) # Config is updated assert config.get('num_dynos_web') == 2 # Code snapshot is saved os.path.exists(os.path.join('snapshots', exp_id + '-code.zip')) # There should be a modified configuration in the temp dir deploy_config = configparser.SafeConfigParser() deploy_config.read(os.path.join(dst, 'config.txt')) assert int(deploy_config.get('Parameters', 'num_dynos_web')) == 2 def test_setup_excludes_sensitive_config(self): from dallinger.command_line import setup_experiment config = get_config() # Auto detected as sensitive config.register('a_password', six.text_type) # Manually registered as sensitive config.register('something_sensitive', six.text_type, sensitive=True) # Not sensitive at all config.register('something_normal', six.text_type) config.extend({'a_password': u'<PASSWORD>', 'something_sensitive': u'hide this', 'something_normal': u'show this'}) exp_id, dst = setup_experiment() # The temp dir should have a config with the sensitive variables missing deploy_config = configparser.SafeConfigParser() deploy_config.read(os.path.join(dst, 'config.txt')) assert(deploy_config.get( 'Parameters', 'something_normal') == 'show this' ) with raises(configparser.NoOptionError): deploy_config.get('Parameters', 'a_password') with raises(configparser.NoOptionError): deploy_config.get('Parameters', 'something_sensitive') def test_payment_type(self): config = get_config() with raises(TypeError): config['base_payment'] = 12 def test_large_float_payment(self): config = get_config() config['base_payment'] = 1.2342 assert verify_package() is False def test_negative_payment(self): config = get_config() config['base_payment'] = -1.99 assert verify_package() is False @pytest.mark.usefixtures('in_tempdir') class TestGitClient(object): @pytest.fixture def git(self): from dallinger.utils import GitClient git = GitClient() return git def test_client(self, git, stub_config): stub_config.write() config = {'user.name': 'Test User', 'user.email': '<EMAIL>'} git.init(config=config) git.add("--all") git.commit("Test Repo") assert b"Test Repo" in subprocess.check_output(['git', 'log']) def test_includes_details_in_exceptions(self, git): with pytest.raises(Exception) as ex_info: git.push('foo', 'bar') assert ex_info.match('Not a git repository') def test_can_use_alternate_output(self, git): import tempfile git.out = tempfile.NamedTemporaryFile() git.encoding = 'utf8' git.init() git.out.seek(0) assert b"git init" in git.out.read() @pytest.fixture def faster(tempdir): with mock.patch.multiple('dallinger.command_line', time=mock.DEFAULT, setup_experiment=mock.DEFAULT) as mocks: mocks['setup_experiment'].return_value = ('fake-uid', tempdir) yield mocks @pytest.fixture def launch(): with mock.patch('dallinger.command_line._handle_launch_data') as hld: hld.return_value = {'recruitment_msg': 'fake\nrecruitment\nlist'} yield hld @pytest.fixture def fake_git(): with mock.patch('dallinger.command_line.GitClient') as git: yield git @pytest.fixture def herokuapp(): # Patch addon since we're using a free app which doesn't support them: from dallinger.heroku.tools import HerokuApp instance = HerokuApp('fake-uid', output=None, team=None) instance.addon = mock.Mock() with mock.patch('dallinger.command_line.HerokuApp') as mock_app_class: mock_app_class.return_value = instance yield instance instance.destroy() @pytest.fixture def heroku_mock(): # Patch addon since we're using a free app which doesn't support them: from dallinger.heroku.tools import HerokuApp instance = mock.Mock(spec=HerokuApp) instance.redis_url = '\n' instance.name = u'dlgr-fake-uid' instance.url = u'fake-url' instance.db_url = u'fake-url' with mock.patch('dallinger.command_line.heroku') as heroku_module: heroku_module.auth_token.return_value = u'fake token' with mock.patch('dallinger.command_line.HerokuApp') as mock_app_class: mock_app_class.return_value = instance yield instance @pytest.mark.usefixtures('active_config', 'launch', 'fake_git', 'faster') class TestDeploySandboxSharedSetupNoExternalCalls(object): @pytest.fixture def dsss(self): from dallinger.command_line import deploy_sandbox_shared_setup return deploy_sandbox_shared_setup def test_result(self, dsss, heroku_mock): result = dsss() assert result == { 'app_home': u'fake-url', 'app_name': u'dlgr-fake-uid', 'recruitment_msg': 'fake\nrecruitment\nlist' } def test_bootstraps_heroku(self, dsss, heroku_mock): dsss() heroku_mock.bootstrap.assert_called_once() def test_installs_phantomjs(self, dsss, heroku_mock): dsss() heroku_mock.buildpack.assert_called_once_with( 'https://github.com/stomita/heroku-buildpack-phantomjs' ) def test_installs_addons(self, dsss, heroku_mock): dsss() heroku_mock.addon.assert_has_calls([ mock.call('heroku-postgresql:standard-0'), mock.call('heroku-redis:premium-0'), mock.call('papertrail'), mock.call('sentry') ]) def test_sets_app_properties(self, dsss, heroku_mock): dsss() heroku_mock.set.assert_has_calls([ mock.call('auto_recruit', True), mock.call('aws_access_key_id', u'fake aws key'), mock.call('aws_region', u'us-east-1'), mock.call('aws_secret_access_key', u'fake aws secret'), mock.call('smtp_password', u'<PASSWORD>'), mock.call('smtp_username', u'fake email username'), mock.call('whimsical', True), ]) def test_scales_dynos(self, dsss, heroku_mock): dsss() heroku_mock.scale_up_dyno.assert_has_calls([ mock.call('web', 1, u'free'), mock.call('worker', 1, u'free'), mock.call('clock', 1, u'free') ]) @pytest.mark.skipif(not pytest.config.getvalue("heroku"), reason="--heroku was not specified") @pytest.mark.usefixtures('bartlett_dir', 'active_config', 'launch', 'herokuapp') class TestDeploySandboxSharedSetupFullSystem(object): @pytest.fixture def dsss(self): from dallinger.command_line import deploy_sandbox_shared_setup return deploy_sandbox_shared_setup def test_full_deployment(self, dsss): no_clock = {'clock_on': False} # can't run clock on free dyno result = dsss(exp_config=no_clock) # can't run clock on free dyno app_name = result.get('app_name') assert app_name.startswith('dlgr') @pytest.mark.usefixtures('bartlett_dir') class Test_handle_launch_data(object): @pytest.fixture def handler(self): from dallinger.command_line import _handle_launch_data return _handle_launch_data def test_success(self, handler): log = mock.Mock() with mock.patch('dallinger.command_line.requests.post') as mock_post: result = mock.Mock( ok=True, json=mock.Mock(return_value={'message': u'msg!'}), ) mock_post.return_value = result assert handler('/some-launch-url', error=log) == {'message': u'msg!'} def test_failure(self, handler): from requests.exceptions import HTTPError log = mock.Mock() with mock.patch('dallinger.command_line.requests.post') as mock_post: mock_post.return_value = mock.Mock( ok=False, json=mock.Mock(return_value={'message': u'msg!'}), raise_for_status=mock.Mock(side_effect=HTTPError) ) with pytest.raises(HTTPError): handler('/some-launch-url', error=log, delay=0.05, remaining=5) log.assert_has_calls([ mock.call('Experiment launch failed, retrying in 0.1 seconds ...'), mock.call('Experiment launch failed, retrying in 0.2 seconds ...'), mock.call('Experiment launch failed, retrying in 0.4 seconds ...'), mock.call('Experiment launch failed, retrying in 0.8 seconds ...'), mock.call('Experiment launch failed, check web dyno logs for details.'), mock.call(u'msg!') ]) def test_non_json_response_error(self, handler): log = mock.Mock() with mock.patch('dallinger.command_line.requests.post') as mock_post: mock_post.return_value = mock.Mock( json=mock.Mock(side_effect=ValueError), text='Big, unexpected problem.' ) with pytest.raises(ValueError): handler('/some-launch-url', error=log) log.assert_called_once_with( 'Error parsing response from /launch, check web dyno logs for details: ' 'Big, unexpected problem.' ) @pytest.mark.usefixtures('bartlett_dir', 'clear_workers', 'env') class TestDebugServer(object): @pytest.fixture def debugger_unpatched(self, output): from dallinger.command_line import DebugSessionRunner debugger = DebugSessionRunner( output, verbose=True, bot=False, proxy_port=None, exp_config={} ) yield debugger if debugger.status_thread: debugger.status_thread.join() @pytest.fixture def debugger(self, debugger_unpatched): from dallinger.heroku.tools import HerokuLocalWrapper debugger = debugger_unpatched debugger.notify = mock.Mock(return_value=HerokuLocalWrapper.MONITOR_STOP) return debugger def test_startup(self, debugger): debugger.run() "Server is running" in str(debugger.out.log.call_args_list[0]) def test_raises_if_heroku_wont_start(self, debugger): mock_wrapper = mock.Mock( __enter__=mock.Mock(side_effect=OSError), __exit__=mock.Mock(return_value=False) ) with mock.patch('dallinger.command_line.HerokuLocalWrapper') as Wrapper: Wrapper.return_value = mock_wrapper with pytest.raises(OSError): debugger.run() def test_new_participant(self, debugger_unpatched): from dallinger.config import get_config debugger = debugger_unpatched get_config().load() debugger.new_recruit = mock.Mock(return_value=None) assert not debugger.new_recruit.called debugger.notify(' New participant requested: http://example.com') assert debugger.new_recruit.called def test_recruitment_closed(self, debugger_unpatched): from dallinger.config import get_config get_config().load() debugger = debugger_unpatched debugger.new_recruit = mock.Mock(return_value=None) debugger.heroku = mock.Mock() response = mock.Mock( json=mock.Mock(return_value={'completed': True}) ) with mock.patch('dallinger.command_line.requests') as mock_requests: mock_requests.get.return_value = response debugger.notify(recruiters.CLOSE_RECRUITMENT_LOG_PREFIX) debugger.status_thread.join() debugger.out.log.assert_called_with('Experiment completed, all nodes filled.') debugger.heroku.stop.assert_called_once() def test_new_recruit(self, debugger_unpatched, browser): debugger_unpatched.notify( " {} some-fake-url".format(recruiters.NEW_RECRUIT_LOG_PREFIX) ) browser.open.assert_called_once_with( 'some-fake-url', autoraise=True, new=1 ) def test_new_recruit_not_triggered_if_quoted(self, debugger_unpatched, browser): debugger_unpatched.notify( ' "{}" some-fake-url'.format(recruiters.NEW_RECRUIT_LOG_PREFIX) ) browser.open.assert_not_called() @pytest.mark.skipif(not pytest.config.getvalue("runbot"), reason="--runbot was specified") def test_debug_bots(self, env): # Make sure debug server runs to completion with bots p = pexpect.spawn( 'dallinger', ['debug', '--verbose', '--bot'], env=env, encoding='utf-8', ) p.logfile = sys.stdout try: p.expect_exact('Server is running', timeout=300) p.expect_exact('Recruitment is complete', timeout=600) p.expect_exact('Experiment completed', timeout=60) p.expect_exact('Local Heroku process terminated', timeout=10) finally: try: p.sendcontrol('c') p.read() except IOError: pass @pytest.mark.usefixtures('bartlett_dir', 'clear_workers', 'env') class TestLoad(object): exp_id = "some_experiment_id" @pytest.fixture def export(self): # Data export created, then removed after test[s] from dallinger.data import export path = export(self.exp_id, local=True) yield path os.remove(path) @pytest.fixture def loader(self, db_session, output, clear_workers): from dallinger.command_line import LoadSessionRunner from dallinger.heroku.tools import HerokuLocalWrapper loader = LoadSessionRunner(self.exp_id, output, verbose=True, exp_config={}) loader.notify = mock.Mock(return_value=HerokuLocalWrapper.MONITOR_STOP) yield loader @pytest.fixture def replay_loader(self, db_session, env, output, clear_workers): from dallinger.command_line import LoadSessionRunner loader = LoadSessionRunner(self.exp_id, output, verbose=True, exp_config={'replay': True}) loader.keep_running = mock.Mock(return_value=False) def launch_and_finish(self): from dallinger.heroku.tools import HerokuLocalWrapper loader.out.log("Launching replay browser...") return HerokuLocalWrapper.MONITOR_STOP loader.start_replay = mock.Mock( return_value=None, side_effect=launch_and_finish ) yield loader def test_load_runs(self, loader, export): loader.keep_running = mock.Mock(return_value=False) loader.run() loader.out.log.assert_has_calls([ mock.call('Starting up the server...'), mock.call('Ingesting dataset from some_experiment_id-data.zip...'), mock.call('Server is running on http://0.0.0.0:5000. Press Ctrl+C to exit.'), mock.call('Terminating dataset load for experiment some_experiment_id'), mock.call('Cleaning up local Heroku process...'), mock.call('Local Heroku process terminated.') ]) def test_load_raises_on_nonexistent_id(self, loader): loader.app_id = 'nonsense' loader.keep_running = mock.Mock(return_value=False) with pytest.raises(IOError): loader.run() def test_load_with_replay(self, replay_loader, export): replay_loader.run() replay_loader.out.log.assert_has_calls([ mock.call('Starting up the server...'), mock.call('Ingesting dataset from some_experiment_id-data.zip...'), mock.call('Server is running on http://0.0.0.0:5000. Press Ctrl+C to exit.'), mock.call('Launching the experiment...'), mock.call('Launching replay browser...'), mock.call('Terminating dataset load for experiment some_experiment_id'), mock.call('Cleaning up local Heroku process...'), mock.call('Local Heroku process terminated.') ]) class TestOutput(object): @pytest.fixture def output(self): from dallinger.command_line import Output return Output() def test_outs(self, output): output.log('logging') output.error('an error') output.blather('blah blah blah') class TestHeader(object): def test_header_contains_version_number(self): # Make sure header contains the version number. assert dallinger.version.__version__ in dallinger.command_line.header class TestSandboxAndDeploy(object): @pytest.fixture def sandbox(self): from dallinger.command_line import sandbox return sandbox @pytest.fixture def deploy(self): from dallinger.command_line import deploy return deploy @pytest.fixture def dsss(self): with mock.patch('dallinger.command_line.deploy_sandbox_shared_setup') as mock_dsss: yield mock_dsss def test_sandbox_with_app_id(self, sandbox, dsss): CliRunner().invoke( sandbox, [ '--verbose', '--app', 'some app id', ] ) dsss.assert_called_once_with(app='some app id', verbose=True) assert get_config().get('mode') == 'sandbox' def test_sandbox_with_no_app_id(self, sandbox, dsss): CliRunner().invoke( sandbox, [ '--verbose', ] ) dsss.assert_called_once_with(app=None, verbose=True) assert get_config().get('mode') == 'sandbox' def test_sandbox_with_invalid_app_id(self, sandbox, dsss): result = CliRunner().invoke( sandbox, [ '--verbose', '--app', 'dlgr-some app id', ] ) dsss.assert_not_called() assert result.exit_code == -1 assert 'The --app flag requires the full UUID' in str(result.exception) def test_deploy_with_app_id(self, deploy, dsss): CliRunner().invoke( deploy, [ '--verbose', '--app', 'some app id', ] ) dsss.assert_called_once_with(app='some app id', verbose=True) assert get_config().get('mode') == 'live' class TestSummary(object): @pytest.fixture def summary(self): from dallinger.command_line import summary return summary @pytest.fixture def patched_summary_route(self): response = mock.Mock() response.json.return_value = { u'completed': True, u'nodes_remaining': 0, u'required_nodes': 0, u'status': 'success', u'summary': [['approved', 1], ['submitted', 1]], u'unfilled_networks': 0 } with mock.patch('dallinger.command_line.requests') as req: req.get.return_value = response yield req def test_summary(self, summary, patched_summary_route): result = CliRunner().invoke( summary, [ '--app', 'some app id', ] ) assert "Yield: 50.00%" in result.output @pytest.mark.usefixtures('bartlett_dir') class TestBot(object): @pytest.fixture def bot_command(self): from dallinger.command_line import bot return bot @pytest.fixture def mock_bot(self): bot = mock.Mock() with mock.patch('dallinger.command_line.bot_factory') as bot_factory: bot_factory.return_value = bot yield bot def test_bot_factory(self): from dallinger.command_line import bot_factory from dallinger.command_line import setup_experiment from dallinger.bots import BotBase setup_experiment() bot = bot_factory('some url') assert isinstance(bot, BotBase) def test_bot_no_debug_url(self, bot_command, mock_bot): CliRunner().invoke( bot_command, [ '--app', 'some app id', ] ) assert mock_bot.run_experiment.called def test_bot_with_debug_url(self, bot_command, mock_bot): CliRunner().invoke( bot_command, [ '--app', 'some app id', '--debug', 'some url' ] ) assert mock_bot.run_experiment.called class TestQualify(object): @pytest.fixture def qualify(self): from dallinger.command_line import qualify return qualify @pytest.fixture def mturk(self): with mock.patch('dallinger.command_line.MTurkService') as mock_mturk: mock_results = [{'id': 'some qid', 'score': 1}] mock_instance = mock.Mock() mock_instance.get_workers_with_qualification.return_value = mock_results mock_mturk.return_value = mock_instance yield mock_instance def test_qualify_single_worker(self, qualify, mturk): qual_value = 1 result = CliRunner().invoke( qualify, [ '--qualification', 'some qid', '--value', six.text_type(qual_value), 'some worker id', ] ) assert result.exit_code == 0 mturk.set_qualification_score.assert_called_once_with( 'some qid', 'some worker id', qual_value, notify=False ) mturk.get_workers_with_qualification.assert_called_once_with('some qid') def test_uses_mturk_sandbox_if_specified(self, qualify): qual_value = 1 with mock.patch('dallinger.command_line.MTurkService') as mock_mturk: mock_mturk.return_value = mock.Mock() CliRunner().invoke( qualify, [ '--sandbox', '--qualification', 'some qid', '--value', six.text_type(qual_value), 'some worker id', ] ) assert 'sandbox=True' in str(mock_mturk.call_args_list[0]) def test_raises_with_no_worker(self, qualify, mturk): qual_value = 1 result = CliRunner().invoke( qualify, [ '--qualification', 'some qid', '--value', six.text_type(qual_value), ] ) assert result.exit_code != 0 assert 'at least one worker ID' in result.output def test_can_elect_to_notify_worker(self, qualify, mturk): qual_value = 1 result = CliRunner().invoke( qualify, [ '--qualification', 'some qid', '--value', six.text_type(qual_value), '--notify', 'some worker id', ] ) assert result.exit_code == 0 mturk.set_qualification_score.assert_called_once_with( 'some qid', 'some worker id', qual_value, notify=True ) def test_qualify_multiple_workers(self, qualify, mturk): qual_value = 1 result = CliRunner().invoke( qualify, [ '--qualification', 'some qid', '--value', six.text_type(qual_value), 'worker1', 'worker2', ] ) assert result.exit_code == 0 mturk.set_qualification_score.assert_has_calls([ mock.call(u'some qid', u'worker1', 1, notify=False), mock.call(u'some qid', u'worker2', 1, notify=False) ]) def test_use_qualification_name(self, qualify, mturk): qual_value = 1 mturk.get_qualification_type_by_name.return_value = {'id': 'some qid'} result = CliRunner().invoke( qualify, [ '--qualification', 'some qual name', '--value', six.text_type(qual_value), '--by_name', 'some worker id', ] ) assert result.exit_code == 0 mturk.set_qualification_score.assert_called_once_with( 'some qid', 'some worker id', qual_value, notify=False ) mturk.get_workers_with_qualification.assert_called_once_with('some qid') def test_use_qualification_name_with_bad_name(self, qualify, mturk): qual_value = 1 mturk.get_qualification_type_by_name.return_value = None result = CliRunner().invoke( qualify, [ '--qualification', 'some qual name', '--value', six.text_type(qual_value), '--by_name', 'some worker id', ] ) assert result.exit_code == 2 assert 'No qualification with name "some qual name" exists.' in result.output class TestRevoke(object): DO_IT = 'Y\n' DO_NOT_DO_IT = 'N\n' @pytest.fixture def revoke(self): from dallinger.command_line import revoke return revoke @pytest.fixture def mturk(self): with mock.patch('dallinger.command_line.MTurkService') as mock_mturk: mock_instance = mock.Mock() mock_instance.get_qualification_type_by_name.return_value = 'some qid' mock_instance.get_workers_with_qualification.return_value = [ {'id': 'some qid', 'score': 1} ] mock_mturk.return_value = mock_instance yield mock_instance def test_revoke_single_worker_by_qualification_id(self, revoke, mturk): result = CliRunner().invoke( revoke, [ '--qualification', 'some qid', '--reason', 'some reason', 'some worker id', ], input=self.DO_IT, ) assert result.exit_code == 0 mturk.revoke_qualification.assert_called_once_with( u'some qid', u'some worker id', u'some reason' ) def test_can_be_aborted_cleanly_after_warning(self, revoke, mturk): result = CliRunner().invoke( revoke, [ '--qualification', 'some qid', '--reason', 'some reason', 'some worker id', ], input=self.DO_NOT_DO_IT, ) assert result.exit_code == 0 mturk.revoke_qualification.assert_not_called() def test_uses_mturk_sandbox_if_specified(self, revoke): with mock.patch('dallinger.command_line.MTurkService') as mock_mturk: mock_mturk.return_value = mock.Mock() CliRunner().invoke( revoke, [ '--sandbox', '--qualification', 'some qid', '--reason', 'some reason', 'some worker id', ], input=self.DO_IT, ) assert 'sandbox=True' in str(mock_mturk.call_args_list[0]) def test_reason_has_a_default(self, revoke, mturk): result = CliRunner().invoke( revoke, [ '--qualification', 'some qid', 'some worker id', ], input=self.DO_IT, ) assert result.exit_code == 0 mturk.revoke_qualification.assert_called_once_with( u'some qid', u'some worker id', u'Revoking automatically assigned Dallinger qualification' ) def test_raises_with_no_worker(self, revoke, mturk): result = CliRunner().invoke( revoke, [ '--qualification', 'some qid', ], input=self.DO_IT, ) assert result.exit_code != 0 assert 'at least one worker ID' in result.output def test_raises_with_no_qualification(self, revoke, mturk): result = CliRunner().invoke( revoke, [ u'some worker id', ], input=self.DO_IT, ) assert result.exit_code != 0 assert 'at least one worker ID' in result.output def test_revoke_for_multiple_workers(self, revoke, mturk): result = CliRunner().invoke( revoke, [ '--qualification', 'some qid', '--reason', 'some reason', 'worker1', 'worker2', ], input=self.DO_IT, ) assert result.exit_code == 0 mturk.revoke_qualification.assert_has_calls([ mock.call(u'some qid', u'worker1', u'some reason'), mock.call(u'some qid', u'worker2', u'some reason') ]) def test_use_qualification_name(self, revoke, mturk): mturk.get_qualification_type_by_name.return_value = {'id': 'some qid'} result = CliRunner().invoke( revoke, [ '--qualification', 'some qual name', '--reason', 'some reason', '--by_name', 'some worker id', ], input=self.DO_IT, ) assert result.exit_code == 0 mturk.revoke_qualification.assert_called_once_with( u'some qid', u'some worker id', u'some reason' ) def test_bad_qualification_name_shows_error(self, revoke, mturk): mturk.get_qualification_type_by_name.return_value = None result = CliRunner().invoke( revoke, [ '--qualification', 'some bad name', '--reason', 'some reason', '--by_name', 'some worker id', ], input=self.DO_IT, ) assert result.exit_code == 2 assert 'No qualification with name "some bad name" exists.' in result.output class TestHibernate(object): @pytest.fixture def hibernate(self, sleepless): from dallinger.command_line import hibernate return hibernate def test_creates_backup(self, hibernate, heroku, data): CliRunner().invoke( hibernate, ['--app', 'some-app-uid', ] ) data.backup.assert_called_once_with('some-app-uid') def test_scales_down_dynos(self, hibernate, heroku, data): CliRunner().invoke( hibernate, ['--app', 'some-app-uid', ] ) heroku.scale_down_dynos.assert_called_once() def test_kills_addons(self, hibernate, heroku, data): CliRunner().invoke( hibernate, ['--app', 'some-app-uid', ] ) heroku.addon_destroy.assert_has_calls([ mock.call('heroku-postgresql'), mock.call('heroku-redis') ]) @pytest.mark.usefixtures('active_config') class TestAwaken(object): @pytest.fixture def awaken(self, sleepless): from dallinger.command_line import awaken return awaken def test_creates_database_of_configured_size(self, awaken, heroku, data, active_config): CliRunner().invoke( awaken, ['--app', 'some-app-uid', ] ) size = active_config.get('database_size') expected = mock.call('heroku-postgresql:{}'.format(size)) assert expected == heroku.addon.call_args_list[0] def test_adds_redis(self, awaken, heroku, data, active_config): active_config['redis_size'] = u'premium-2' CliRunner().invoke( awaken, ['--app', 'some-app-uid', ] ) assert mock.call('heroku-redis:premium-2') == heroku.addon.call_args_list[1] def test_restores_database_from_backup(self, awaken, heroku, data): CliRunner().invoke( awaken, ['--app', 'some-app-uid', ] ) heroku.restore.assert_called_once_with('fake restore url') def test_scales_up_dynos(self, awaken, heroku, data, active_config): CliRunner().invoke( awaken, ['--app', 'some-app-uid', ] ) web_count = active_config.get('num_dynos_web') worker_count = active_config.get('num_dynos_worker') size = active_config.get('dyno_type') heroku.scale_up_dyno.assert_has_calls([ mock.call('web', web_count, size), mock.call('worker', worker_count, size), mock.call('clock', 1, size) ]) class TestDestroy(object): @pytest.fixture def destroy(self): from dallinger.command_line import destroy return destroy def test_calls_destroy(self, destroy, heroku): CliRunner().invoke( destroy, ['--app', 'some-app-uid', '--yes'] ) heroku.destroy.assert_called_once() def test_destroy_expires_hits(self, destroy, heroku, mturk): CliRunner().invoke( destroy, ['--app', 'some-app-uid', '--yes', '--expire-hit'] ) heroku.destroy.assert_called_once() mturk_instance = mturk.return_value mturk_instance.get_hits.assert_called_once() mturk_instance.expire_hit.assert_called() def test_requires_confirmation(self, destroy, heroku): CliRunner().invoke( destroy, ['--app', 'some-app-uid'] ) heroku.destroy.assert_not_called() def test_destroy_expire_uses_sandbox(self, destroy, heroku, mturk): CliRunner().invoke( destroy, ['--app', 'some-app-uid', '--yes', '--expire-hit', '--sandbox'] ) assert 'sandbox=True' in str(mturk.call_args_list[0]) mturk_instance = mturk.return_value mturk_instance.get_hits.assert_called_once() mturk_instance.expire_hit.assert_called() class TestLogs(object): @pytest.fixture def logs(self): from dallinger.command_line import logs return logs def test_opens_logs(self, logs, heroku): CliRunner().invoke( logs, ['--app', 'some-app-uid', ] ) heroku.open_logs.assert_called_once() class TestMonitor(object): def _twice(self): count = [2] def countdown(): if count[0]: count[0] -= 1 return True return False return countdown @pytest.fixture def command_line_check_call(self): with mock.patch('dallinger.command_line.check_call') as call: yield call @pytest.fixture def summary(self): with mock.patch('dallinger.command_line.get_summary') as sm: sm.return_value = 'fake summary' yield sm @pytest.fixture def two_summary_checks(self): countdown = self._twice() counter_factory = mock.Mock(return_value=countdown) with mock.patch('dallinger.command_line._keep_running', new_callable=counter_factory): yield @pytest.fixture def monitor(self, sleepless, summary, two_summary_checks): from dallinger.command_line import monitor return monitor def test_opens_browsers(self, monitor, heroku, browser, command_line_check_call): heroku.dashboard_url = 'fake-dashboard-url' CliRunner().invoke( monitor, ['--app', 'some-app-uid', ] ) browser.open.assert_has_calls([ mock.call('fake-dashboard-url'), mock.call('https://requester.mturk.com/mturk/manageHITs') ]) def test_calls_open_with_db_uri(self, monitor, heroku, browser, command_line_check_call): heroku.db_uri = 'fake-db-uri' CliRunner().invoke( monitor, ['--app', 'some-app-uid', ] ) command_line_check_call.assert_called_once_with(['open', 'fake-db-uri']) def test_shows_summary_in_output(self, monitor, heroku, browser, command_line_check_call): heroku.db_uri = 'fake-db-uri' result = CliRunner().invoke( monitor, ['--app', 'some-app-uid', ] ) assert len(re.findall('fake summary', result.output)) == 2 def test_raises_on_null_app_id(self, monitor, heroku, browser, command_line_check_call): heroku.db_uri = 'fake-db-uri' result = CliRunner().invoke( monitor, ['--app', None, ] ) assert str(result.exception) == 'Select an experiment using the --app flag.' class TestHits(object): @pytest.fixture def output(self): with mock.patch('dallinger.command_line.Output') as mock_data: output_instance = mock.Mock() mock_data.return_value = output_instance yield output_instance @pytest.fixture def hits(self): from dallinger.command_line import hits return hits @pytest.fixture def expire(self): from dallinger.command_line import expire return expire def test_hits(self, hits, mturk): result = CliRunner().invoke( hits, [ '--app', 'exp-id-2' ] ) assert result.exit_code == 0 mturk_instance = mturk.return_value mturk_instance.get_hits.assert_called_once() def test_uses_mturk_sandbox_if_specified(self, hits, mturk): CliRunner().invoke( hits, [ '--sandbox', '--app', 'exp-id-2', ] ) assert 'sandbox=True' in str(mturk.call_args_list[0]) def test_expire(self, expire, mturk): result = CliRunner().invoke( expire, [ '--app', 'exp-id-2' ] ) assert result.exit_code == 0 mturk_instance = mturk.return_value mturk_instance.get_hits.assert_called_once() mturk_instance.expire_hit.assert_called() def test_expire_no_hits(self, expire, mturk, output): mturk_instance = mturk.return_value mturk_instance.get_hits.return_value = [] result = CliRunner().invoke( expire, [ '--app', 'exp-id-2' ] ) assert result.exit_code == 1 mturk_instance.get_hits.assert_called_once() mturk_instance.expire_hit.assert_not_called() assert output.log.call_count == 2 output.log.assert_has_calls([ mock.call('No hits found for this application.'), mock.call( 'If this experiment was run in the MTurk sandbox, use: ' '`dallinger expire --sandbox --app exp-id-2`' ) ]) def test_expire_no_hits_sandbox(self, expire, mturk, output): mturk_instance = mturk.return_value mturk_instance.get_hits.return_value = [] result = CliRunner().invoke( expire, [ '--app', 'exp-id-2', '--sandbox' ] ) assert result.exit_code == 1 mturk_instance.get_hits.assert_called_once() mturk_instance.expire_hit.assert_not_called() output.log.assert_called_once_with( 'No hits found for this application.' ) def test_expire_with_failure(self, expire, mturk, output): mturk_instance = mturk.return_value def mturk_raiser(*args, **kwargs): from dallinger.mturk import MTurkServiceException raise MTurkServiceException() mturk_instance.expire_hit.side_effect = mturk_raiser result = CliRunner().invoke( expire, [ '--app', 'exp-id-2' ] ) assert result.exit_code == 1 mturk_instance.get_hits.assert_called_once() mturk_instance.expire_hit.call_count = 2 assert output.log.call_count == 1 assert 'Could not expire 2 hits:' in str( output.log.call_args_list[0] ) ``` #### File: Dallinger/tests/test_config.py ```python from __future__ import unicode_literals import mock import os import sys from tempfile import NamedTemporaryFile import pexpect import pytest import six from dallinger.config import Configuration from dallinger.config import get_config, LOCAL_CONFIG @pytest.mark.usefixtures('experiment_dir') class TestConfiguration(object): def test_register_new_variable(self): config = Configuration() config.register('num_participants', int) config.extend({'num_participants': 1}) config.ready = True assert config.get('num_participants', 1) def test_register_duplicate_variable_raises(self): config = Configuration() config.register('num_participants', int) with pytest.raises(KeyError): config.register('num_participants', int) def test_register_unknown_type_raises(self): config = Configuration() with pytest.raises(TypeError): config.register('num_participants', object) def test_type_mismatch(self): config = Configuration() config.register('num_participants', int) with pytest.raises(TypeError): config.extend({'num_participants': 1.0}) def test_type_mismatch_with_cast_types(self): config = Configuration() config.register('num_participants', int) config.ready = True config.extend({'num_participants': 1.0}, cast_types=True) assert config.get('num_participants', 1) == 1 def test_type_cast_types_failure_raises(self): config = Configuration() config.register('num_participants', int) config.ready = True with pytest.raises(TypeError): config.extend({'num_participants': 'A NUMBER'}, cast_types=True) def test_get_before_ready_is_not_possible(self): config = Configuration() config.register('num_participants', int) config.extend({'num_participants': 1}) with pytest.raises(RuntimeError): config.get('num_participants', 1) def test_layering_of_configs(self): config = Configuration() config.register('num_participants', int) config.extend({'num_participants': 1}) config.ready = True assert config.get('num_participants', 1) == 1 config.extend({'num_participants': 2}) assert config.get('num_participants', 1) == 2 def test_setting_unknown_key_is_ignored(self): config = Configuration() config.ready = True config.extend({'num_participants': 1}) config.get('num_participants', None) def test_setting_by_set(self): config = Configuration() config.ready = True config.set("mode", "live") def test_setting_by_assignment(self): config = Configuration() config.ready = True config["mode"] = "live" def test_get_without_default_raises(self): config = Configuration() config.register('num_participants', int) config.ready = True with pytest.raises(KeyError): config.get('num_participants') def test_get_has_default_value(self): config = Configuration() config.register('num_participants', int) config.ready = True assert config.get('num_participants', 10) == 10 def test_dict_access(self): config = Configuration() config.register('num_participants', int) config.ready = True config.extend({'num_participants': 1}) assert config['num_participants'] == 1 def test_attribute_access(self): config = Configuration() config.register('num_participants', int) config.ready = True config.extend({'num_participants': 1}) assert config.num_participants == 1 def test_attribute_setting(self): config = Configuration() config.register('num_participants', int) config.ready = True config.num_participants = 1 assert config.num_participants == 1 def test_strict_extending_blocks_unknown_keys(self): config = Configuration() config.register('num_participants', int) config.ready = True with pytest.raises(KeyError): config.extend({'unknown_key': 1}, strict=True) def test_setting_values_supports_synonyms(self): config = Configuration() config.register('num_participants', int, synonyms={'n', }) config.ready = True config.extend({'n': 1}) assert config.get('num_participants') == 1 def test_loading_keys_from_config_file(self): config = Configuration() config.register('num_participants', int, synonyms={'n', }) config.register('deploy_worldwide', bool, synonyms={'worldwide', }) with NamedTemporaryFile() as configfile: configfile.write(b""" [Example Section] num_participants = 10 worldwide = false """) configfile.flush() config.load_from_file(configfile.name) config.ready = True assert config.get('num_participants') == 10 assert config.get('deploy_worldwide') is False def test_loading_keys_from_environment_variables(self): config = Configuration() config.register('num_participants', int, synonyms={'n', }) os.environ['num_participants'] = '1' try: config.load_from_environment() finally: del os.environ['num_participants'] config.ready = True assert config.get('num_participants') == 1 def test_experiment_defined_parameters(self): try: python = pexpect.spawn("python", encoding='utf-8') python.read_nonblocking(10000) python.setecho(False) python.sendline('from dallinger.experiment_server import experiment_server') python.sendline('config = experiment_server._config()') python.sendline('print(config.types)') if six.PY3: python.expect_exact("custom_parameter': <class 'int'>") else: python.expect_exact("custom_parameter': <type 'int'>") finally: python.sendcontrol('d') python.read() def test_reload_config(self): # replicate the experiment API runner config loading config = get_config() config.register_extra_parameters() config.load_from_file(LOCAL_CONFIG) # Failse with _reset() config.clear() config.register_extra_parameters() config.load_from_file(LOCAL_CONFIG) def test_custom_experiment_module_set_and_retained(self): config = get_config() with mock.patch.dict('sys.modules', dallinger_experiment=None): config.register_extra_parameters() assert sys.modules['dallinger_experiment'] is not None exp_module = mock.Mock() with mock.patch.dict('sys.modules', dallinger_experiment=exp_module): config.clear() config.register_extra_parameters() assert sys.modules['dallinger_experiment'] is exp_module def test_local_base_url(self): from dallinger.utils import get_base_url config = get_config() config.ready = True config.set('host', 'localhost') config.set('base_port', 5000) assert(get_base_url() == 'http://localhost:5000') def test_remote_base_url(self): from dallinger.utils import get_base_url config = get_config() config.ready = True config.set('host', 'https://dlgr-bogus.herokuapp.com') assert(get_base_url() == 'https://dlgr-bogus.herokuapp.com') def test_remote_base_url_always_ssl(self): from dallinger.utils import get_base_url config = get_config() config.ready = True config.set('host', 'http://dlgr-bogus.herokuapp.com') assert(get_base_url() == 'https://dlgr-bogus.herokuapp.com') def test_write_omits_sensitive_keys_if_filter_sensitive(self, in_tempdir): config = get_config() config.set('aws_region', 'some region') config.set('aws_secret_access_key', 'foo') config.ready = True config.write(filter_sensitive=True) with open(LOCAL_CONFIG) as txt: contents = txt.read() assert 'aws_region' in contents assert 'aws_secret_access_key' not in contents def test_write_includes_all_keys_if_filter_sensitive_false(self, in_tempdir): config = get_config() config.set('aws_region', 'some region') config.set('aws_secret_access_key', 'foo') config.ready = True config.write(filter_sensitive=False) with open(LOCAL_CONFIG) as txt: contents = txt.read() assert 'aws_region' in contents assert 'aws_secret_access_key' in contents ``` #### File: Dallinger/tests/test_heroku.py ```python import os import mock import pytest import dallinger.db import datetime import signal from dallinger.config import get_config from dallinger.heroku import app_name from dallinger.heroku.messages import EmailingHITMessenger from dallinger.heroku.messages import EmailConfig @pytest.fixture def run_check(): db = dallinger.db.init_db(drop_all=True) os.chdir('tests/experiment') config = get_config() if not config.ready: config.load() # Import the FUT here, after config load, and return it from dallinger.heroku.clock import run_check yield run_check db.rollback() db.close() os.chdir('../..') @pytest.fixture def check_call(): with mock.patch('dallinger.heroku.tools.check_call') as check_call: yield check_call @pytest.fixture def check_output(): with mock.patch('dallinger.heroku.tools.check_output') as check_output: yield check_output class TestHeroku(object): def test_heroku_app_name(self): id = "8fbe62f5-2e33-4274-8aeb-40fc3dd621a0" assert(len(app_name(id)) < 30) class TestClockScheduler(object): def setup(self): """Set up the environment by moving to the demos directory.""" os.chdir('tests/experiment') config = get_config() config.ready = False from dallinger.heroku import clock self.clock = clock def teardown(self): os.chdir("../..") def test_scheduler_has_job(self): jobs = self.clock.scheduler.get_jobs() assert len(jobs) == 1 assert jobs[0].func_ref == 'dallinger.heroku.clock:check_db_for_missing_notifications' def test_clock_expects_config_to_be_ready(self): assert not get_config().ready jobs = self.clock.scheduler.get_jobs() with pytest.raises(RuntimeError) as excinfo: jobs[0].func() assert excinfo.match('Config not loaded') def test_launch_loads_config(self): original_start = self.clock.scheduler.start data = {'launched': False} def start(): data['launched'] = True try: self.clock.scheduler.start = start self.clock.launch() assert data['launched'] assert get_config().ready finally: self.clock.scheduler.start = original_start class TestHerokuClockTasks(object): def test_check_db_for_missing_notifications_assembles_resources(self, run_check): # Can't import until after config is loaded: from dallinger.heroku.clock import check_db_for_missing_notifications with mock.patch.multiple('dallinger.heroku.clock', run_check=mock.DEFAULT, MTurkService=mock.DEFAULT) as mocks: mocks['MTurkService'].return_value = 'fake connection' check_db_for_missing_notifications() mocks['run_check'].assert_called() def test_does_nothing_if_assignment_still_current(self, a, stub_config, run_check): mturk = mock.Mock(**{'get_assignment.return_value': ['fake']}) participants = [a.participant()] session = None reference_time = datetime.datetime.now() run_check(stub_config, mturk, participants, session, reference_time) mturk.get_assignment.assert_not_called() def test_rejects_bot_participants(self, a, stub_config, run_check): from dallinger.recruiters import BotRecruiter mturk = mock.Mock(**{'get_assignment.return_value': ['fake']}) participants = [a.participant(recruiter_id=BotRecruiter.nickname)] session = mock.Mock() # Move the clock forward so assignment is overdue: reference_time = datetime.datetime.now() + datetime.timedelta(hours=6) run_check(stub_config, mturk, participants, session, reference_time) assert participants[0].status == 'rejected' session.commit.assert_called() def test_sets_participant_status_if_mturk_reports_approved(self, a, stub_config, run_check): fake_assignment = {'status': 'Approved'} mturk = mock.Mock(**{'get_assignment.return_value': fake_assignment}) participants = [a.participant()] session = mock.Mock() # Move the clock forward so assignment is overdue: reference_time = datetime.datetime.now() + datetime.timedelta(hours=6) run_check(stub_config, mturk, participants, session, reference_time) assert participants[0].status == 'approved' session.commit.assert_called() def test_sets_participant_status_if_mturk_reports_rejected(self, a, stub_config, run_check): fake_assignment = {'status': 'Rejected'} mturk = mock.Mock(**{'get_assignment.return_value': fake_assignment}) participants = [a.participant()] session = mock.Mock() # Move the clock forward so assignment is overdue: reference_time = datetime.datetime.now() + datetime.timedelta(hours=6) run_check(stub_config, mturk, participants, session, reference_time) assert participants[0].status == 'rejected' session.commit.assert_called() def test_resubmits_notification_if_mturk_reports_submitted(self, a, stub_config, run_check): # Include whimsical set to True to avoid error in the False code branch: stub_config.extend({'host': u'fakehost.herokuapp.com'}) fake_assignment = {'status': 'Submitted'} mturk = mock.Mock(**{'get_assignment.return_value': fake_assignment}) participants = [a.participant()] session = None # Move the clock forward so assignment is overdue: reference_time = datetime.datetime.now() + datetime.timedelta(hours=6) with mock.patch('dallinger.heroku.clock.requests') as mock_requests: run_check(stub_config, mturk, participants, session, reference_time) mock_requests.post.assert_called_once_with( 'http://fakehost.herokuapp.com/notifications', data={ 'Event.1.EventType': 'AssignmentSubmitted', 'Event.1.AssignmentId': participants[0].assignment_id } ) def test_sends_notification_if_resubmitted(self, a, stub_config, run_check): fake_assignment = {'status': 'Submitted'} mturk = mock.Mock(**{'get_assignment.return_value': fake_assignment}) participants = [a.participant()] session = None # Move the clock forward so assignment is overdue: reference_time = datetime.datetime.now() + datetime.timedelta(hours=6) mock_messenger = mock.Mock(spec=EmailingHITMessenger) with mock.patch.multiple('dallinger.heroku.clock', requests=mock.DEFAULT, get_messenger=mock.DEFAULT) as mocks: mocks['get_messenger'].return_value = mock_messenger run_check(stub_config, mturk, participants, session, reference_time) mock_messenger.send_resubmitted_msg.assert_called() def test_no_assignment_on_mturk_shuts_down_hit(self, a, stub_config, run_check): # Include whimsical set to True to avoid error in the False code branch: stub_config.extend({'host': u'fakehost.herokuapp.com'}) mturk = mock.Mock(**{'get_assignment.return_value': None}) participants = [a.participant()] session = None # Move the clock forward so assignment is overdue: reference_time = datetime.datetime.now() + datetime.timedelta(hours=6) with mock.patch('dallinger.heroku.clock.requests') as mock_requests: run_check(stub_config, mturk, participants, session, reference_time) mock_requests.patch.assert_called_once_with( 'https://api.heroku.com/apps/fakehost/config-vars', data='{"auto_recruit": "false"}', headers={ "Accept": "application/vnd.heroku+json; version=3", "Content-Type": "application/json", "Authorization": "Bearer {}".format('heroku secret'), } ) mock_requests.post.assert_called_once_with( 'http://fakehost.herokuapp.com/notifications', data={ 'Event.1.EventType': 'NotificationMissing', 'Event.1.AssignmentId': participants[0].assignment_id } ) def test_no_assignment_on_mturk_sends_hit_cancelled_message(self, a, stub_config, run_check): mturk = mock.Mock(**{'get_assignment.return_value': None}) participants = [a.participant()] session = None # Move the clock forward so assignment is overdue: reference_time = datetime.datetime.now() + datetime.timedelta(hours=6) mock_messenger = mock.Mock(spec=EmailingHITMessenger) with mock.patch.multiple('dallinger.heroku.clock', requests=mock.DEFAULT, get_messenger=mock.DEFAULT) as mocks: mocks['get_messenger'].return_value = mock_messenger run_check(stub_config, mturk, participants, session, reference_time) mock_messenger.send_hit_cancelled_msg.assert_called() @pytest.fixture def hit_summary(): from dallinger.heroku.messages import HITSummary return HITSummary( assignment_id='some assignment id', duration=60, time_active=120, app_id='some app id', when='the time', ) class TestEmailConfig(object): @pytest.fixture def klass(self): from dallinger.heroku.messages import EmailConfig return EmailConfig def test_catches_missing_config_values(self, klass, stub_config): stub_config.extend({ 'dallinger_email_address': u'', 'contact_email_on_error': u'', 'smtp_username': u'???', 'smtp_password': u'???', }) econfig = klass(stub_config) problems = econfig.validate() assert problems == ( 'Missing or invalid config values: contact_email_on_error, ' 'dallinger_email_address, smtp_password, smtp_username' ) def emailing_messenger(summary, config): messenger = EmailingHITMessenger( hit_info=summary, email_settings=EmailConfig(config) ) return messenger @pytest.fixture def whimsical(hit_summary, stub_config): stub_config.extend({'whimsical': True}) return emailing_messenger(hit_summary, stub_config) @pytest.fixture def nonwhimsical(hit_summary, stub_config): stub_config.extend({'whimsical': False}) return emailing_messenger(hit_summary, stub_config) class TestMessengerFactory(object): @pytest.fixture def factory(self): from dallinger.heroku.messages import get_messenger return get_messenger def test_returns_debug_version_if_configured(self, factory, stub_config, hit_summary): from dallinger.heroku.messages import DebugHITMessenger assert isinstance(factory(hit_summary, stub_config), DebugHITMessenger) def test_returns_emailing_version_if_configured(self, factory, stub_config, hit_summary): from dallinger.heroku.messages import EmailingHITMessenger stub_config.extend({'mode': u'sandbox'}) assert isinstance(factory(hit_summary, stub_config), EmailingHITMessenger) def test_returns_debug_version_if_email_config_invalid(self, factory, stub_config, hit_summary): from dallinger.heroku.messages import DebugHITMessenger stub_config.extend({'mode': u'sandbox', 'dallinger_email_address': u''}) assert isinstance(factory(hit_summary, stub_config), DebugHITMessenger) @pytest.mark.usefixtures('dummy_mailer') class TestEmailingHITMessenger(object): def test_send_negotiates_email_server(self, whimsical, dummy_mailer): whimsical.send_resubmitted_msg() assert whimsical.server is dummy_mailer whimsical.server.starttls.assert_called() whimsical.server.login.assert_called_once_with( 'fake email username', '<PASSWORD> email password' ) whimsical.server.sendmail.assert_called() whimsical.server.quit.assert_called() assert whimsical.server.sendmail.call_args[0][0] == u'<EMAIL>' assert whimsical.server.sendmail.call_args[0][1] == u'<EMAIL>' def test_wraps_mail_server_exceptions(self, whimsical, dummy_mailer): import smtplib from dallinger.heroku.messages import MessengerError dummy_mailer.login.side_effect = smtplib.SMTPException("Boom!") with pytest.raises(MessengerError): whimsical.send_resubmitted_msg() def test_send_resubmitted_msg_whimsical(self, whimsical): data = whimsical.send_resubmitted_msg() assert data['subject'] == 'A matter of minor concern.' assert 'a full 1 minutes over' in data['message'] def test_send_resubmitted_msg_nonwhimsical(self, nonwhimsical): data = nonwhimsical.send_resubmitted_msg() assert data['subject'] == 'Dallinger automated email - minor error.' assert 'Allowed time: 1' in data['message'] def test_send_hit_cancelled_msg_whimsical(self, whimsical): data = whimsical.send_hit_cancelled_msg() assert data['subject'] == 'Most troubling news.' assert 'a full 1 minutes over' in data['message'] def test_send_hit_cancelled_msg_nonwhimsical(self, nonwhimsical): data = nonwhimsical.send_hit_cancelled_msg() assert data['subject'] == 'Dallinger automated email - major error.' assert 'Allowed time: 1' in data['message'] def test_send_idle_experiment_msg(self, nonwhimsical): data = nonwhimsical.send_idle_experiment_msg() assert data['subject'] == 'Idle Experiment.' def test_send_hit_error_msg(self, nonwhimsical): data = nonwhimsical.send_hit_error_msg() assert data['subject'] == 'Error during HIT.' class TestHerokuUtilFunctions(object): @pytest.fixture def heroku(self): from dallinger.heroku import tools return tools def test_auth_token(self, heroku, check_output): check_output.return_value = b'some response ' assert heroku.auth_token() == u'some response' def test_log_in_ok(self, heroku, check_output): check_output.return_value = b'all good' heroku.log_in() def test_log_in_fails(self, heroku, check_output): check_output.side_effect = Exception('boom!') with pytest.raises(Exception) as excinfo: heroku.log_in() assert excinfo.match('You are not logged into Heroku.') class TestHerokuApp(object): @pytest.fixture def temp_repo(self, in_tempdir, stub_config): from dallinger.utils import GitClient stub_config.write() config = {'user.name': 'Test User', 'user.email': '<EMAIL>'} git = GitClient() git.init(config=config) git.add("--all") git.commit("Test Repo") @pytest.fixture def full_app(self): from dallinger.heroku.tools import HerokuApp the_app = HerokuApp(dallinger_uid='fake-uid', output=None, team=None) yield the_app the_app.destroy() @pytest.fixture def app(self): from dallinger.heroku.tools import HerokuApp with mock.patch('dallinger.heroku.tools.subprocess'): the_app = HerokuApp( dallinger_uid='fake-uid', output=None, team="fake team" ) yield the_app def test_name(self, app): assert app.name == u'dlgr-fake-uid' def test_url(self, app): assert app.url == u'https://dlgr-fake-uid.herokuapp.com' def test_dashboard_url(self, app): assert app.dashboard_url == u'https://dashboard.heroku.com/apps/dlgr-fake-uid' def test_bootstrap_creates_app_with_team(self, app, check_call): app.team = 'some-team' app.bootstrap() check_call.assert_has_calls([ mock.call(['heroku', 'apps:create', 'dlgr-fake-uid', '--buildpack', 'heroku/python', '--org', 'some-team'], stdout=None), ]) def test_bootstrap_sets_hostname(self, app, check_call): app.team = 'some-team' app.bootstrap() check_call.assert_has_calls([ mock.call(['heroku', 'config:set', 'HOST=https://dlgr-fake-uid.herokuapp.com', '--app', 'dlgr-fake-uid'], stdout=None) ]) def test_addon(self, app, check_call): app.addon('some-fake-addon') check_call.assert_called_once_with( ["heroku", "addons:create", "some-fake-addon", "--app", app.name], stdout=None ) def test_addon_destroy(self, app, check_call): app.addon_destroy('some-fake-addon') check_call.assert_called_once_with( [ "heroku", "addons:destroy", 'some-fake-addon', "--app", app.name, "--confirm", app.name ], stdout=None ) def test_buildpack(self, app, check_call): app.buildpack('some-fake-buildpack') check_call.assert_called_once_with( ["heroku", "buildpacks:add", "some-fake-buildpack", "--app", app.name], stdout=None ) def test_clock_is_on_checks_psscale(self, app, check_output): app.clock_is_on check_output.assert_called_once_with( ["heroku", "ps:scale", "--app", app.name] ) def test_clock_is_on_returns_true_if_clock_1(self, app, check_output): check_output.return_value = b'clock=1:Standard-2X console=0:Standard-1X' assert app.clock_is_on is True def test_clock_is_on_returns_false_if_clock_0(self, app, check_output): check_output.return_value = b'clock=0:Standard-2X console=0:Standard-1X' assert app.clock_is_on is False def test_clock_is_on_returns_false_if_no_clock(self, app, check_output): check_output.return_value = b'console=0:Standard-1X web=1:Standard-2X' assert app.clock_is_on is False def test_db_uri(self, app, check_output): check_output.return_value = b'blahblahpostgres://foobar' assert app.db_uri == u'postgres://foobar' def test_db_uri_raises_if_no_match(self, app, check_output): check_output.return_value = u'└─ as DATABASE on ⬢ dlgr-da089b8f app'.encode('utf8') with pytest.raises(NameError) as excinfo: app.db_uri assert excinfo.match("Could not retrieve the DB URI") def test_db_url(self, app, check_output, check_call): check_output.return_value = b'some url ' assert app.db_url == u'some url' check_call.assert_called_once_with( ["heroku", "pg:wait", "--app", app.name], stdout=None ) def test_backup_capture(self, app, check_call): app.backup_capture() check_call.assert_called_once_with( ["heroku", "pg:backups:capture", "--app", app.name], stdout=None, stderr=None ) def test_backup_download(self, app, check_call): app.backup_download() check_call.assert_called_once_with( ["heroku", "pg:backups:download", "--app", app.name], stdout=None, stderr=None ) def test_destroy(self, app, check_output): check_output.return_value = b'some response message' assert app.destroy() == 'some response message' check_output.assert_called_once_with( ["heroku", "apps:destroy", "--app", app.name, "--confirm", app.name], ) def test_get(self, app, check_output): check_output.return_value = b'some value' assert app.get('some key') == u'some value' check_output.assert_called_once_with( ["heroku", "config:get", "some key", "--app", app.name], ) def test_open_logs(self, app, check_call): app.open_logs() check_call.assert_called_once_with( ["heroku", "addons:open", "papertrail", "--app", app.name], stdout=None ) def test_pg_pull(self, app, check_call): app.pg_pull() check_call.assert_called_once_with( ["heroku", "pg:pull", "DATABASE_URL", app.name, "--app", app.name], stdout=None ) def test_pg_wait(self, app, check_call): app.pg_wait() check_call.assert_called_once_with( ["heroku", "pg:wait", "--app", app.name], stdout=None ) def test_redis_url(self, app, check_output): check_output.return_value = b'some url' assert app.redis_url == u'some url' check_output.assert_called_once_with( ["heroku", "config:get", "REDIS_URL", "--app", app.name], ) def test_restore(self, app, check_call): app.restore('some url') check_call.assert_called_once_with( [ "heroku", "pg:backups:restore", "some url", "DATABASE_URL", "--app", app.name, "--confirm", app.name, ], stdout=None ) def test_scale_up_dyno(self, app, check_call): app.scale_up_dyno('some process', quantity=1, size='free') check_call.assert_called_once_with( [ "heroku", "ps:scale", "some process=1:free", "--app", app.name, ], stdout=None ) def test_scale_down_dyno(self, app, check_call): app.scale_down_dyno('some process') check_call.assert_called_once_with( [ "heroku", "ps:scale", "some process=0", "--app", app.name, ], stdout=None ) def test_scale_down_dynos_with_clock_off(self, app, check_call, check_output): check_output.return_value = b'[string indicating no clock process]' app.scale_down_dynos() check_call.assert_has_calls([ mock.call(['heroku', 'ps:scale', 'web=0', '--app', u'dlgr-fake-uid'], stdout=None), mock.call(['heroku', 'ps:scale', 'worker=0', '--app', u'dlgr-fake-uid'], stdout=None) ]) def test_scale_down_dynos_with_clock_on(self, app, check_call, check_output): check_output.return_value = b'clock=1 <= indicates clock is on' app.scale_down_dynos() check_call.assert_has_calls([ mock.call(['heroku', 'ps:scale', 'web=0', '--app', u'dlgr-fake-uid'], stdout=None), mock.call(['heroku', 'ps:scale', 'worker=0', '--app', u'dlgr-fake-uid'], stdout=None), mock.call(['heroku', 'ps:scale', 'clock=0', '--app', u'dlgr-fake-uid'], stdout=None), ]) def test_set(self, app, check_call): app.set('some key', 'some value') check_call.assert_called_once_with( [ "heroku", "config:set", "some key='some value'", "--app", app.name, ], stdout=None ) def test_set_called_with_nonsensitive_key_uses_stdoutput(self, app, check_call): app.set('some_nonsensitive_key', 'some value') assert check_call.call_args_list[0][-1]['stdout'] is app.out def test_set_called_with_sensitive_key_suppresses_stdoutput(self, app, check_call): app.set('aws_secret_access_key', 'some value') assert len(check_call.call_args_list) == 0 @pytest.mark.skipif(not pytest.config.getvalue("heroku"), reason="--heroku was not specified") def test_full_monty(self, full_app, temp_repo): app = full_app assert app.name == u'dlgr-fake-uid' assert app.url == u'https://dlgr-fake-uid.herokuapp.com' assert app.dashboard_url == u"https://dashboard.heroku.com/apps/dlgr-fake-uid" app.bootstrap() app.buildpack("https://github.com/stomita/heroku-buildpack-phantomjs") app.set('auto_recruit', True) @pytest.mark.usefixtures('bartlett_dir') class TestHerokuLocalWrapper(object): @pytest.fixture def config(self): from dallinger.command_line import setup_experiment cwd = os.getcwd() config = get_config() if not config.ready: config.load() (id, tmp) = setup_experiment(verbose=True, exp_config={}) os.chdir(tmp) yield config os.chdir(cwd) @pytest.fixture def output(self): class Output(object): def __init__(self): self.log = mock.Mock() self.error = mock.Mock() self.blather = mock.Mock() return Output() @pytest.fixture def heroku(self, config, env, output, clear_workers): from dallinger.heroku.tools import HerokuLocalWrapper wrapper = HerokuLocalWrapper(config, output, env=env) yield wrapper try: print("Calling stop() on {}".format(wrapper)) print(wrapper._record[-1]) wrapper.stop(signal.SIGKILL) except IndexError: pass def test_start(self, heroku): assert heroku.start() assert heroku.is_running def test_start_raises_without_home_dir_set(self, heroku): from dallinger.heroku.tools import HerokuStartupError env = heroku.env.copy() del env['HOME'] heroku.env = env with pytest.raises(HerokuStartupError) as excinfo: heroku.start() assert excinfo.match('"HOME" environment not set... aborting.') def test_gives_up_after_timeout(self, heroku): from dallinger.heroku.tools import HerokuTimeoutError with pytest.raises(HerokuTimeoutError): heroku.start(timeout_secs=1) def test_quits_on_gunicorn_startup_error(self, heroku): from dallinger.heroku.tools import HerokuStartupError heroku.verbose = False # more coverage heroku._stream = mock.Mock(return_value=['[DONE] Killing all processes']) with pytest.raises(HerokuStartupError): heroku.start() def test_start_fails_if_stream_ends_without_matching_success_regex(self, heroku): from dallinger.heroku.tools import HerokuStartupError heroku._stream = mock.Mock( return_value=['apple', 'orange', heroku.STREAM_SENTINEL] ) heroku.success_regex = 'not going to match anything' with pytest.raises(HerokuStartupError): heroku.start() assert not heroku.is_running def test_stop(self, heroku): heroku.start() heroku.stop(signal.SIGKILL) heroku.out.log.assert_called_with('Local Heroku process terminated.') def test_stop_on_killed_process_no_error(self, heroku): heroku.start() heroku._process.terminate() heroku.stop() mock.call("Local Heroku was already terminated.") in heroku.out.log.mock_calls def test_start_when_shell_command_fails(self, heroku): heroku.shell_command = 'nonsense' with pytest.raises(OSError): heroku.start() heroku.out.error.assert_called_with( "Couldn't start Heroku for local debugging.") def test_stop_before_start_is_noop(self, heroku): heroku.stop() heroku.out.log.assert_called_with("No local Heroku process was running.") def test_start_when_already_started_is_noop(self, heroku): heroku.start() heroku.start() heroku.out.log.assert_called_with("Local Heroku is already running.") def test_monitor(self, heroku): heroku._stream = mock.Mock(return_value=['apple', 'orange']) listener = mock.Mock() heroku.monitor(listener) listener.assert_has_calls([ mock.call('apple'), mock.call('orange'), ]) def test_monitor_stops_iterating_when_told(self, heroku): heroku._stream = mock.Mock(return_value=['apple', 'orange']) listener = mock.Mock() listener.return_value = heroku.MONITOR_STOP heroku.monitor(listener) listener.assert_has_calls([ mock.call('apple'), ]) def test_as_context_manager(self, config, env, output, clear_workers): from dallinger.heroku.tools import HerokuLocalWrapper with HerokuLocalWrapper(config, output, env=env) as heroku: assert heroku.is_running assert not heroku.is_running ```
{ "source": "jcphill/gdal", "score": 2 }
#### File: autotest/alg/applyverticalshiftgrid.py ```python import gdaltest from osgeo import gdal, osr ############################################################################### # Rather dummy test: grid = DEM def test_applyverticalshiftgrid_1(): src_ds = gdal.Open('../gcore/data/byte.tif') src_ds = gdal.Translate('', src_ds, format='MEM', width=20, height=40) grid_ds = gdal.Translate('', src_ds, format='MEM') out_ds = gdal.ApplyVerticalShiftGrid(src_ds, grid_ds) assert out_ds.GetRasterBand(1).DataType == gdal.GDT_Byte assert out_ds.RasterXSize == src_ds.RasterXSize assert out_ds.RasterYSize == src_ds.RasterYSize assert out_ds.GetGeoTransform() == src_ds.GetGeoTransform() assert out_ds.GetProjectionRef() == src_ds.GetProjectionRef() # Check that we can drop the reference to the sources src_ds = None grid_ds = None cs = out_ds.GetRasterBand(1).Checksum() assert cs == 10038 src_ds = gdal.Open('../gcore/data/byte.tif') src_ds = gdal.Translate('', src_ds, format='MEM', width=20, height=40) # Test block size out_ds = gdal.ApplyVerticalShiftGrid(src_ds, src_ds, options=['BLOCKSIZE=15']) cs = out_ds.GetRasterBand(1).Checksum() assert cs == 10038 # Inverse transformer out_ds = gdal.ApplyVerticalShiftGrid(src_ds, src_ds, True, options=['DATATYPE=Float32']) assert out_ds.GetRasterBand(1).DataType == gdal.GDT_Float32 cs = out_ds.GetRasterBand(1).Checksum() assert cs == 0 ############################################################################### # Error cases def test_applyverticalshiftgrid_2(): sr = osr.SpatialReference() sr.SetFromUserInput("WGS84") for i in range(6): src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) if i != 0: src_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) if i != 1: src_ds.SetProjection(sr.ExportToWkt()) if i == 2: src_ds.AddBand(gdal.GDT_Byte) grid_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) if i != 3: grid_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) if i != 4: grid_ds.SetProjection(sr.ExportToWkt()) if i == 5: grid_ds.AddBand(gdal.GDT_Byte) with gdaltest.error_handler(): out_ds = gdal.ApplyVerticalShiftGrid(src_ds, grid_ds) assert out_ds is None, i # Non invertable source geotransform src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) src_ds.SetGeoTransform([0, 0, 0, 0, 0, 0]) src_ds.SetProjection(sr.ExportToWkt()) grid_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) grid_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) grid_ds.SetProjection(sr.ExportToWkt()) with gdaltest.error_handler(): out_ds = gdal.ApplyVerticalShiftGrid(src_ds, grid_ds) assert out_ds is None # Non invertable grid geotransform src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) src_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) src_ds.SetProjection(sr.ExportToWkt()) grid_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) grid_ds.SetGeoTransform([0, 0, 0, 0, 0, 0]) grid_ds.SetProjection(sr.ExportToWkt()) with gdaltest.error_handler(): out_ds = gdal.ApplyVerticalShiftGrid(src_ds, grid_ds) assert out_ds is None # No PROJ.4 translation for source SRS, coordinate transformation # initialization has failed src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) src_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) src_ds.SetProjection(sr.ExportToWkt()) grid_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) grid_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) grid_ds.SetProjection('LOCAL_CS["foo"]') with gdaltest.error_handler(): out_ds = gdal.ApplyVerticalShiftGrid(src_ds, grid_ds) assert out_ds is None # Out of memory if gdal.GetConfigOption('SKIP_MEM_INTENSIVE_TEST') is None: src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) src_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) src_ds.SetProjection(sr.ExportToWkt()) grid_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) grid_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) grid_ds.SetProjection(sr.ExportToWkt()) with gdaltest.error_handler(): out_ds = gdal.ApplyVerticalShiftGrid(src_ds, grid_ds, options=['BLOCKSIZE=2000000000']) assert out_ds is None # Wrong DATATYPE src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) src_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) src_ds.SetProjection(sr.ExportToWkt()) grid_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) grid_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) grid_ds.SetProjection(sr.ExportToWkt()) with gdaltest.error_handler(): out_ds = gdal.ApplyVerticalShiftGrid(src_ds, grid_ds, options=['DATATYPE=x']) assert out_ds is None ############################################################################### # Test with grid and src not in same projection def test_applyverticalshiftgrid_3(): src_ds = gdal.Open('../gcore/data/byte.tif') grid_ds = gdal.Warp('', src_ds, format='MEM', dstSRS='EPSG:4326', width=40, height=40) out_ds = gdal.ApplyVerticalShiftGrid(src_ds, grid_ds, options=['RESAMPLING=NEAREST']) assert out_ds.RasterXSize == src_ds.RasterXSize assert out_ds.RasterYSize == src_ds.RasterYSize assert out_ds.GetGeoTransform() == src_ds.GetGeoTransform() assert out_ds.GetProjectionRef() == src_ds.GetProjectionRef() cs = out_ds.GetRasterBand(1).Checksum() assert cs == 5112 out_ds = gdal.ApplyVerticalShiftGrid(src_ds, grid_ds, options=['RESAMPLING=BILINEAR']) cs = out_ds.GetRasterBand(1).Checksum() assert cs == 4867 or cs == 4868 out_ds = gdal.ApplyVerticalShiftGrid(src_ds, grid_ds, options=['RESAMPLING=CUBIC']) cs = out_ds.GetRasterBand(1).Checksum() assert cs in (4841, 4854, 4842) # 4842 on Mac / Conda ############################################################################### # Test nodata def test_applyverticalshiftgrid_4(): sr = osr.SpatialReference() sr.SetFromUserInput("WGS84") # Nodata on source src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) src_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) src_ds.SetProjection(sr.ExportToWkt()) src_ds.GetRasterBand(1).Fill(1) src_ds.GetRasterBand(1).SetNoDataValue(1) grid_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) grid_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) grid_ds.SetProjection(sr.ExportToWkt()) grid_ds.GetRasterBand(1).Fill(30) out_ds = gdal.ApplyVerticalShiftGrid(src_ds, grid_ds) assert out_ds.GetRasterBand(1).GetNoDataValue() == 1 cs = out_ds.GetRasterBand(1).Checksum() assert cs == 1 # Nodata on grid src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) src_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) src_ds.SetProjection(sr.ExportToWkt()) src_ds.GetRasterBand(1).Fill(1) grid_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) grid_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) grid_ds.SetProjection(sr.ExportToWkt()) grid_ds.GetRasterBand(1).Fill(30) grid_ds.GetRasterBand(1).SetNoDataValue(30) out_ds = gdal.ApplyVerticalShiftGrid(src_ds, grid_ds) assert out_ds.GetRasterBand(1).GetNoDataValue() is None cs = out_ds.GetRasterBand(1).Checksum() assert cs == 1 # ERROR_ON_MISSING_VERT_SHIFT due to non compatible extents src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) src_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) src_ds.SetProjection(sr.ExportToWkt()) src_ds.GetRasterBand(1).Fill(255) grid_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) grid_ds.SetGeoTransform([10, 1, 0, 0, 0, -1]) grid_ds.SetProjection(sr.ExportToWkt()) out_ds = gdal.ApplyVerticalShiftGrid(src_ds, grid_ds, options=['ERROR_ON_MISSING_VERT_SHIFT=YES']) with gdaltest.error_handler(): data = out_ds.GetRasterBand(1).ReadRaster() assert data is None # ERROR_ON_MISSING_VERT_SHIFT due to nodata in grid src_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) src_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) src_ds.SetProjection(sr.ExportToWkt()) src_ds.GetRasterBand(1).Fill(255) grid_ds = gdal.GetDriverByName('MEM').Create('', 1, 1) grid_ds.SetGeoTransform([0, 1, 0, 0, 0, -1]) grid_ds.SetProjection(sr.ExportToWkt()) grid_ds.GetRasterBand(1).SetNoDataValue(0) out_ds = gdal.ApplyVerticalShiftGrid(src_ds, grid_ds, options=['ERROR_ON_MISSING_VERT_SHIFT=YES']) with gdaltest.error_handler(): data = out_ds.GetRasterBand(1).ReadRaster() assert data is None ############################################################################### # Test scaling parameters def test_applyverticalshiftgrid_5(): src_ds = gdal.Open('../gcore/data/byte.tif') grid_ds = gdal.Translate('', src_ds, format='MEM') grid_ds.GetRasterBand(1).Fill(0) src_ds = gdal.Translate('', src_ds, format='MEM', outputType=gdal.GDT_Float32, scaleParams=[[0, 1, 0, 0.5]]) out_ds = gdal.ApplyVerticalShiftGrid(src_ds, grid_ds, srcUnitToMeter=2) cs = out_ds.GetRasterBand(1).Checksum() assert cs == 4672 src_ds = gdal.Open('../gcore/data/byte.tif') grid_ds = gdal.Translate('', src_ds, format='MEM') grid_ds.GetRasterBand(1).Fill(0) src_ds = gdal.Translate('', src_ds, format='MEM', outputType=gdal.GDT_Float32, scaleParams=[[0, 1, 0, 0.5]]) out_ds = gdal.ApplyVerticalShiftGrid(src_ds, grid_ds, dstUnitToMeter=0.5) cs = out_ds.GetRasterBand(1).Checksum() assert cs == 4672 ############################################################################### # Simulate EGM grids def test_applyverticalshiftgrid_6(): grid_ds = gdal.GetDriverByName('GTX').Create( 'tmp/applyverticalshiftgrid_6.gtx', 1440, 721, 1, gdal.GDT_Float32) grid_ds.SetGeoTransform([-180.125, 0.25, 0, 90.125, 0, -0.25]) grid_ds.GetRasterBand(1).Fill(10) grid_ds = None ds = gdal.Warp('', '../gcore/data/byte.tif', format='MEM', srcSRS='EPSG:32611', dstSRS='+proj=utm +zone=11 +datum=WGS84 +geoidgrids=./tmp/applyverticalshiftgrid_6.gtx +vunits=m +no_defs') cs = ds.GetRasterBand(1).Checksum() assert cs == 4783 gdal.Unlink('tmp/applyverticalshiftgrid_6.gtx') ############################################################################### # Simulate USA geoid grids with long origin > 180 def test_applyverticalshiftgrid_7(): grid_ds = gdal.GetDriverByName('GTX').Create( 'tmp/applyverticalshiftgrid_7.gtx', 700, 721, 1, gdal.GDT_Float32) grid_ds.SetGeoTransform([-150 + 360, 0.25, 0, 90.125, 0, -0.25]) grid_ds.GetRasterBand(1).Fill(10) grid_ds = None ds = gdal.Warp('', '../gcore/data/byte.tif', format='MEM', srcSRS='EPSG:32611', dstSRS='+proj=utm +zone=11 +datum=WGS84 +geoidgrids=./tmp/applyverticalshiftgrid_7.gtx +vunits=m +no_defs') cs = ds.GetRasterBand(1).Checksum() assert cs == 4783 gdal.Unlink('tmp/applyverticalshiftgrid_7.gtx') ``` #### File: python/osgeo/__init__.py ```python from sys import platform, version_info if version_info >= (3, 8, 0) and platform == 'win32': import os if 'USE_PATH_FOR_GDAL_PYTHON' in os.environ and 'PATH' in os.environ: for p in os.environ['PATH'].split(';'): if p: try: os.add_dll_directory(p) except (FileNotFoundError, OSError): continue elif 'PATH' in os.environ: import glob for p in os.environ['PATH'].split(';'): if glob.glob(os.path.join(p, 'gdal*.dll')) or glob.glob(os.path.join(p, 'libgdal*.dll')): try: os.add_dll_directory(p) break except (FileNotFoundError, OSError): continue def swig_import_helper(): import importlib from os.path import dirname, basename mname = basename(dirname(__file__)) + '._gdal' try: return importlib.import_module(mname) except ImportError: if version_info >= (3, 8, 0) and platform == 'win32': import os if not 'USE_PATH_FOR_GDAL_PYTHON' in os.environ: msg = 'On Windows, with Python >= 3.8, DLLs are no longer imported from the PATH.\n' msg += 'If gdalXXX.dll is in the PATH, then set the USE_PATH_FOR_GDAL_PYTHON=YES environment variable\n' msg += 'to feed the PATH into os.add_dll_directory().' import sys import traceback traceback_string = ''.join(traceback.format_exception(*sys.exc_info())) raise ImportError(traceback_string + '\n' + msg) return importlib.import_module('_gdal') _gdal = swig_import_helper() del swig_import_helper __version__ = _gdal.__version__ = _gdal.VersionInfo("RELEASE_NAME") gdal_version = tuple(int(s) for s in str(__version__).split('.') if s.isdigit())[:3] python_version = tuple(version_info)[:3] # Setting this flag to True will cause importing osgeo to fail on an unsupported Python version. # Otherwise a deprecation warning will be issued instead. # Importing osgeo fom an unsupported Python version might still partially work # because the core of GDAL Python bindings might still support an older Python version. # Hence the default option to just issue a warning. # To get complete functionality upgrading to the minimum supported version is needed. fail_on_unsupported_version = False # The following is a Sequence of tuples in the form of (gdal_version, python_version). # Each line represents the minimum supported Python version of a given GDAL version. # Introducing a new line for the next GDAL version will trigger a deprecation warning # when importing osgeo from a Python version which will not be # supported in the next version of GDAL. gdal_version_and_min_supported_python_version = ( ((0, 0), (0, 0)), ((1, 0), (2, 0)), ((2, 0), (2, 7)), ((3, 3), (3, 6)), # ((3, 4), (3, 7)), # ((3, 5), (3, 8)), ) def ver_str(ver): return '.'.join(str(v) for v in ver) if ver is not None else None minimum_supported_python_version_for_this_gdal_version = None this_python_version_will_be_deprecated_in_gdal_version = None last_gdal_version_to_supported_your_python_version = None next_version_of_gdal_will_use_python_version = None for gdal_ver, py_ver in gdal_version_and_min_supported_python_version: if gdal_version >= gdal_ver: minimum_supported_python_version_for_this_gdal_version = py_ver if python_version >= py_ver: last_gdal_version_to_supported_your_python_version = gdal_ver if not this_python_version_will_be_deprecated_in_gdal_version: if python_version < py_ver: this_python_version_will_be_deprecated_in_gdal_version = gdal_ver next_version_of_gdal_will_use_python_version = py_ver if python_version < minimum_supported_python_version_for_this_gdal_version: msg = 'Your Python version is {}, which is no longer supported by GDAL {}. ' \ 'Please upgrade your Python version to Python >= {}, ' \ 'or use GDAL <= {}, which supports your Python version.'.\ format(ver_str(python_version), ver_str(gdal_version), ver_str(minimum_supported_python_version_for_this_gdal_version), ver_str(last_gdal_version_to_supported_your_python_version)) if fail_on_unsupported_version: raise Exception(msg) else: from warnings import warn, simplefilter simplefilter('always', DeprecationWarning) warn(msg, DeprecationWarning) elif this_python_version_will_be_deprecated_in_gdal_version: msg = 'You are using Python {} with GDAL {}. ' \ 'This Python version will be deprecated in GDAL {}. ' \ 'Please consider upgrading your Python version to Python >= {}, ' \ 'Which will be the minimum supported Python version of GDAL {}.'.\ format(ver_str(python_version), ver_str(gdal_version), ver_str(this_python_version_will_be_deprecated_in_gdal_version), ver_str(next_version_of_gdal_will_use_python_version), ver_str(this_python_version_will_be_deprecated_in_gdal_version)) from warnings import warn, simplefilter simplefilter('always', DeprecationWarning) warn(msg, DeprecationWarning) ``` #### File: swig/python/trimmedsysconfig.py ```python import os import sys from sysconfig import get_python_version # These are needed in a couple of spots, so just compute them once. PREFIX = os.path.normpath(sys.prefix) EXEC_PREFIX = os.path.normpath(sys.exec_prefix) BASE_PREFIX = os.path.normpath(sys.base_prefix) BASE_EXEC_PREFIX = os.path.normpath(sys.base_exec_prefix) # Added by GDAL def _is_debian(): for p in sys.path: if 'dist-packages' in p: return True return False def get_python_lib(plat_specific=0, standard_lib=0, prefix=None): """Return the directory containing the Python library (standard or site additions). If 'plat_specific' is true, return the directory containing platform-specific modules, i.e. any module from a non-pure-Python module distribution; otherwise, return the platform-shared library directory. If 'standard_lib' is true, return the directory containing standard Python library modules; otherwise, return the directory for site-specific modules. If 'prefix' is supplied, use it instead of sys.base_prefix or sys.base_exec_prefix -- i.e., ignore 'plat_specific'. """ is_default_prefix = not prefix or os.path.normpath(prefix) in ('/usr', '/usr/local') if prefix is None: if standard_lib: prefix = plat_specific and BASE_EXEC_PREFIX or BASE_PREFIX else: prefix = plat_specific and EXEC_PREFIX or PREFIX if os.name == "posix": libpython = os.path.join(prefix, "lib", "python" + get_python_version()) if standard_lib: return libpython # This check is Debian specific elif (_is_debian() and is_default_prefix and 'PYTHONUSERBASE' not in os.environ and 'VIRTUAL_ENV' not in os.environ and 'real_prefix' not in sys.__dict__ and sys.prefix == sys.base_prefix): return os.path.join(prefix, "lib", "python3", "dist-packages") else: return os.path.join(libpython, "site-packages") elif os.name == "nt": if standard_lib: return os.path.join(prefix, "Lib") else: return os.path.join(prefix, "Lib", "site-packages") else: raise Exception( "I don't know where Python installs its library " "on platform '%s'" % os.name) ```
{ "source": "jcpince/algorithms", "score": 4 }
#### File: algorithms/algos/bst.seq.py ```python class BST(object): pass class BSTNode: def __init__(self, value: int, ref: object): self.right = None self.left = None self.value = value self.ref = ref def to_list(self): l = list() l.append([self.value, self.ref]) #print("Append value(%d)" % self.value) if self.left: print("Append (%d).left(%d)" % (self.value, self.left.value)) l.append(self.left.to_list()) else: l.append(None) if self.right: print("Append (%d).right(%d)" % (self.value, self.right.value)) l.append(self.right.to_list()) else: l.append(None) return l class BST: def __init__(self): self.root = None def insert_node(self, node: BST) -> None: # O(h) with h height of the tree if self.root is None: self.root = node return current = self.root while(True): if node.value >= current.value: if current.right: current = current.right else: current.right = node break else: if current.left: current = current.left else: current.left = node break def delete_node(self, node: BSTNode) -> bool: return self.delete_value(node.value) def delete_value(self, value: int) -> bool: pred, to_delete = self.search_with_pred(value) if to_delete is None: return False # Delete the root if pred == None: if to_delete.right is None: self.root = to_delete.left return True smallest_pred, smallest = self.smallest_with_pred(None, to_delete.right) # if smallest_pred is not None: # print("Root delete -- smallest_pred(%d), smallest(%d)" % (smallest_pred.value, smallest.value)) # else: # print("Root delete -- smallest_pred(None), smallest(%d)" % (smallest.value)) if smallest_pred is not None: smallest.left = self.root.left else: smallest.left = self.root.left self.root = smallest return True # print("Removing %d, pred is %d" % (to_delete.value, pred.value)) # Delete a leaf if to_delete.right is None and to_delete.left is None: if pred.right == to_delete: pred.right = None else: pred.left = None return True # Delete a node with a single child if to_delete.right is None: if pred.right == to_delete: pred.right = to_delete.left else: pred.left = to_delete.left return True if to_delete.left is None: if pred.left == to_delete: pred.left = to_delete.right else: pred.right = to_delete.right return True # Delete a node with 2 children if pred.right == to_delete: smallest_pred, smallest = self.smallest_with_pred(pred, to_delete.left) # print("smallest_pred(%d), smallest(%d)" % (smallest_pred.value, smallest.value)) #smallest_pred.right = None pred.right = smallest smallest.left = to_delete.left if (smallest != to_delete.left) else None smallest.right = to_delete.right else: smallest_pred, smallest = self.smallest_with_pred(pred, to_delete.right) # print("smallest_pred(%d), smallest(%d)" % (smallest_pred.value, smallest.value)) #smallest_pred.left = None pred.left = smallest smallest.left = to_delete.left smallest.right = to_delete.right if (smallest != to_delete.right) else None return True def search(self, value: int, intermediate_root = None) -> BSTNode: _, found = self.search_with_pred(value, intermediate_root) return found def search_with_pred(self, value: int, intermediate_root = None) -> BSTNode: # O(h) with h height of the tree or subtree # (which can be n if the tree is all left or right) current = intermediate_root pred = None if current is None: current = self.root while current is not None: if value > current.value: pred = current current = current.right elif value < current.value: pred = current current = current.left else: return pred, current return None, None def smallest(self, intermediate_root = None) -> BSTNode: _, smallest = self.smallest_with_pred(None, intermediate_root) return smallest def smallest_with_pred(self, pred, intermediate_root) -> BSTNode: # O(h) with h height of the tree or subtree # (which can be n if the tree is all left or right) current = intermediate_root if current is None: current = self.root smallest = current smallest_pred = pred while current is not None: if smallest.value > current.value: smallest = current smallest_pred = pred pred = current current = current.left return smallest_pred, smallest def to_list(self, current: BSTNode = None): if current is None: current = self.root if current is None: return [] l = list() l.append([current.value, current.ref]) if current.left: l.append(self.to_list(current.left)) else: l.append(None) if current.right: l.append(self.to_list(current.right)) else: l.append(None) return l ``` #### File: hackerrank/euler007/euler007_2.py ```python import time from math import sqrt count3 = 0 count5 = 0 count7 = 0 def get_prime(primes, N): global count3, count5, count7 if N < len(primes): return primes[N-1] candidate = primes[-1] while len(primes) != N: candidate += 2 count3 += 1 count5 += 1 count7 += 1 if count3 == 2: #print("count3 = %d -- candidate = %d" % (count3, candidate)) count3 = 0 count5 += 1 count7 += 1 candidate += 2 if candidate % 5 == 0: #count5 == 5: #print("count5 = %d -- candidate = %d" % (count5, candidate)) count5 = 0 count3 += 1 count7 += 1 candidate += 2 if candidate % 7 == 0: #count7 == 6: #print("count7 = %d -- candidate = %d" % (count7, candidate)) count7 = 0 count3 += 1 count5 += 1 candidate += 2 elif candidate % 5 == 0: #count5 == 5: #print("count5 = %d -- candidate = %d" % (count5, candidate)) count5 = 0 count3 += 1 count7 += 1 candidate += 2 if candidate % 7 == 0: #count7 == 6: #print("count7 = %d -- candidate = %d" % (count7, candidate)) count7 = 0 count3 += 1 count5 += 1 candidate += 2 elif candidate % 7 == 0: #count7 == 6: #print("count7 = %d -- candidate = %d" % (count7, candidate)) count7 = 0 count3 += 1 count5 += 1 candidate += 2 s = int(sqrt(candidate)) #print("candidate = %d, primes = %s" % (candidate, primes)) for p in primes[1:]: if p > s: primes.append(candidate) break if (candidate % p) == 0: break return primes[-1] start = time.time() primes = [2, 3, 5, 7, 11] t = int(input().strip()) for a0 in range(t): n = int(input().strip()) print(get_prime(primes, n)) assert(get_prime(primes, 168) == 997) assert(get_prime(primes, 10000) == 104729) print("Computation time: %f seconds" % (time.time() - start)) #print(primes) ``` #### File: hackerrank/euler010/euler010_2.py ```python import time import array from math import sqrt primes = bytearray(1000000) primes_sums = array.array('L', bytearray(8000000)) primes_sums[2] = 2 # print(len(primes)) # print(len(primes_sums)) def get_primes_below_N(N): global primes for i in range(3, int(sqrt(N))+1, 2): if primes[i] == 0: j = i**2 while j < N: primes[j] = 1 j += i def get_primes_sums(): global primes, primes_sums primes_sum = 2 for i in range(3, len(primes), 2): if primes[i] == 0: primes_sum += i primes_sums[i] = primes_sum start = time.time() get_primes_below_N(1000000) get_primes_sums() #print("Computation time: %f seconds" % (time.time() - start)) # print(primes_sums[0:20]) # print(primes_sums[2]) # print(primes_sums[9]) t = int(input().strip()) start = time.time() for _ in range(t): n = int(input().strip()) if n&0x1 == 0x0 and n != 2: n -= 1 #print("%d => %d" % (n, primes_sums[n])) print(primes_sums[n]) # Input: an integer n > 1. # # Let A be an array of Boolean values, indexed by integers 2 to n, # initially all set to true. # # for i = 2, 3, 4, ..., not exceeding √n: # if A[i] is true: # for j = i2, i2+i, i2+2i, i2+3i, ..., not exceeding n: # A[j] := false. # # Output: all i such that A[i] is true. ``` #### File: graph/goingtooffice/goingtooffice.py ```python import sys MAXINT = 2**32 def rsd(graph, start, destination, visited, closed_road): result = MAXINT for (neighbor, distance) in graph[start]: if (neighbor in closed_road) and (start in closed_road): print("start %d, visited %s, %d to destination is closed" % (start, visited, neighbor)) continue if neighbor in visited: print("start %d, visited %s, %d already visited" % (start, visited, neighbor)) continue if neighbor == destination: print("start %d, visited %s, found the destination %d, returns %d" % (start, visited, neighbor, distance)) return distance print("start %d, visited %s, explore %d" % (start, visited, neighbor)) v = visited.copy() v.append(neighbor) result = min(result, distance + rsd(graph, neighbor, destination, v, closed_road)) print("returns %d" % result) return result def call_rsd(graph, start, destination, closed_road): result = MAXINT for (neighbor, distance) in graph[start]: if (neighbor in closed_road) and (destination in closed_road): continue if neighbor == destination: result = min(result, distance) neighbor_distance = rsd(graph, neighbor, destination, [neighbor], closed_road) result = min(result, distance + neighbor_distance) if result >= MAXINT: return "Infinity" return result def recursive_sd(graph, start, destination, visited0, current_distance, min_distance, closed_road): #print("recursive_sd(%s)" % str( # ("graph", start, visited0, current_distance, min_distance))) for (neighbor, distance) in graph[start]: print("Visited %s, start %d, neighbor %d" % (visited0, start, neighbor)) visited = visited0.copy() if (current_distance + distance) >= min_distance: continue if neighbor == destination: #print("Found destination(%d) returns %d" % (neighbor, distance)) return current_distance + distance if neighbor in visited: continue if (neighbor in closed_road) and (start in closed_road): continue # else... visited.add(neighbor) #print("Visiting neighbor %d" % neighbor) neighbor_result = recursive_sd(graph, neighbor, destination, visited, current_distance + distance, min_distance, closed_road) #print("neighbor_result %d" % neighbor_result) min_distance = min(min_distance, neighbor_result) #print("returns2 %d" % min_distance) return min_distance def shortest_distance(graph, start, destination, closed_road): min_distance = MAXINT visited0 = set() visited0.add(start) # makes sure that the start's neighbors won't be explored in recursive_sd for (neighbor, distance) in graph[start]: if (neighbor not in closed_road) or (start not in closed_road): visited0.add(neighbor) for (neighbor, distance) in graph[start]: if (neighbor in closed_road) and (start in closed_road): continue visited = visited0.copy() neighbor_result = recursive_sd(graph, neighbor, destination, visited, distance, min_distance, closed_road) min_distance = min(min_distance, neighbor_result) if min_distance >= MAXINT: return "Infinity" return min_distance def filter_roads(graph, start, destination): # remove all the cul-de-sac not start or destination citys = list(graph.keys()) for city in citys: if (city == start) or (city == destination): continue tos = graph[city] if len(tos) == 1: del graph[city] def build_graph(roads): graph = dict() for road in roads: u, v, w = road if u not in graph.keys(): graph[u] = list() graph[u].append((v, w)) if v not in graph.keys(): graph[v] = list() graph[v].append((u, w)) return graph stdin = sys.stdin n, m = (int(i) for i in stdin.readline().strip('\n').split(' ')) roads = list() for idx in range (0, m): (u, v, w) = (int(i) for i in stdin.readline().strip('\n').split(' ')) roads.append((u, v, w)) start, destination = (int(i) for i in stdin.readline().strip('\n').split(' ')) nb_days = int(stdin.readline().strip('\n')) closed_roads = list() for idx in range (0, m): (u, v) = (int(i) for i in stdin.readline().strip('\n').split(' ')) closed_roads.append((u, v)) graph = build_graph(roads) filter_roads(graph, start, destination) print(graph) for closed_road in closed_roads: print("\n\nStart %d, Destination %d, close_road %s" % (start, destination, str(closed_road))) # print("%s: %s" % (str(closed_road), # str(shortest_distance(graph, start, destination, closed_road)))) print("%s: %s" % (str(closed_road), str(call_rsd(graph, start, destination, closed_road)))) break ``` #### File: algorithms/hackerrank/magicSquareChecker.py ```python N = 3 # Returns true if mat[][] is magic # square, else returns false. def isMagicSquare( mat) : # calculate the sum of # the prime diagonal s = 0 for i in range(0, N) : s = s + mat[i][i] # the secondary diagonal s2 = 0 for i in range(0, N) : s2 = s2 + mat[i][N-i-1] if(s!=s2) : print("Diagonals are different %d vs %d" % (s, s2)) return False # For sums of Rows for i in range(0, N) : rowSum = 0; for j in range(0, N) : rowSum += mat[i][j] # check if every row sum is # equal to prime diagonal sum if (rowSum != s) : print("Row[%d] %s is different from %d" % (i, mat[i], s)) return False # For sums of Columns for i in range(0, N): colSum = 0 for j in range(0, N) : colSum += mat[j][i] # check if every column sum is # equal to prime diagonal sum if (s != colSum) : col = [mat[0][i], mat[1][i], mat[2][i]] print("Column[%d] %s is different from %d" % (i, col, s)) return False return True # Driver Code # mat = [ [ 2, 7, 6 ], # [ 9, 5, 1 ], # [ 4, 3, 8 ] ] mat = [ [ 4, 3, 8 ], [ 2, 6, 7 ], [ 1, 9, 5 ] ] if (isMagicSquare(mat)) : print( "Magic Square") else : print( "Not a magic Square") # This code is contributed by <NAME>. ``` #### File: algorithms/leetcode/allPathsSourceTarget.py ```python from typing import List class Solution: def allPathsSourceTarget(self, graph: List[List[int]]) -> List[List[int]]: # Acyclic so no need to check for visited node # A DFS stopping on destination should be ok def dfs(graph, current, destination, results, local_result = None): #print("dfs(%d) -- %s -- local_result %s" % (current, graph[current], local_result)) if local_result is None: local_result = [current] if current == destination: results.append(local_result) return if len(graph[current]) == 0: return for node in graph[current][:-1]: #print("Calling dfs(%d)" % node) tmp = local_result.copy() tmp.append(node) dfs(graph, node, destination, results, tmp) node = graph[current][-1] #print("Calling last node dfs(%d)" % node) local_result.append(node) dfs(graph, node, destination, results, local_result) results = [] dfs(graph, 0, len(graph)-1, results) print("Results: %s" % results) return results def check_solution(): s = Solution() assert(len(s.allPathsSourceTarget([[1,2], [3], [3], []])) == 2) print("All tests passed successfully!!") check_solution() ``` #### File: algorithms/leetcode/graph.py ```python from heapq import heappush, heappop from typing import List class GraphEdge(object): def __init__(self, fr: int, to: int, weight: int): self.fr = fr self.to = to self.weight = weight def __lt__(self, other): return self.weight < other.weight def __str__(self): return "[%d, %d]" % (self.to, self.weight) class GraphNode(object): def __init__(self, id: int): self.id = id self.tos = [] # total_weight is used for visited flag self.total_weight = -1 def addEdge(self, to: int, weight: int): heappush(self.tos, GraphEdge(self.id, to, weight)) def __str__(self): string = "(%d ,[" % self.id for edge in self.tos: string += str(edge) return string + "])" class GraphPath(object): def __init__(self, weight: int, nodes: List[int]): self.weight = weight self.nodes = nodes def __lt__(self, other): return self.weight < other.weight class Graph(object): def __init__(self, nodes: List[GraphNode] = []): self.nodes = nodes def addNode(self, node: GraphNode) -> None: self.nodes.append(node) def __str__(self): string = "(%d nodes: [" % len(self.nodes) for node in self.nodes: string += str(node) return string + "])" def topologicalOrder(self) -> List[int]: N = len(self.nodes) result = [] in_degree = [0] * N # initialize the array of inedges per node for node in self.nodes: for edge in node.tos: in_degree[edge.to] += 1 # Push the nodes with no incoming edge to our resulting array queue = [] for node_idx, degree in enumerate(in_degree): if degree == 0: queue.append(node_idx) in_degree[node_idx] = -1 while len(queue) != 0: node = self.nodes[queue.pop(0)] result.append(node.id) for edge in node.tos: to = edge.to if in_degree[to] == -1: continue in_degree[to] -= 1 if in_degree[to] == 0: queue.append(to) in_degree[to] = -1 return result def djikstra(self, start: GraphNode, end: GraphNode) -> List[int]: if start.id == end.id: return 0, [start.id] if len(start.tos) == 0: return -1, None for node in self.nodes: node.total_weight = -1 paths = [] for edge in start.tos: heappush(paths, GraphPath(edge.weight, [start.id, edge.to])) self.nodes[edge.to].total_weight = edge.weight while len(paths) > 0: path = heappop(paths) path_end = self.nodes[path.nodes[-1]] if path_end is end: return path.weight, path.nodes create_route = len(path_end.tos) for edge in path_end.tos: next = self.nodes[edge.to] create_route -= 1 if ((next.total_weight == -1) or (next.total_weight > (path_end.total_weight + edge.weight))): next.total_weight = path_end.total_weight + edge.weight else: continue if create_route > 0: nodes = path.nodes.copy() nodes.append(next.id) heappush(paths, GraphPath(next.total_weight, nodes)) else: path.nodes.append(next.id) path.weight = next.total_weight heappush(paths, path) return -1, None def djikstraK(self, start: GraphNode, end: GraphNode, max_path_len: int) -> List[int]: if start.id == end.id: return 0, [start.id] if len(start.tos) == 0: return -1, None paths = [] for edge in start.tos: heappush(paths, GraphPath(edge.weight, [start.id, edge.to])) self.nodes[edge.to].total_weight = edge.weight while len(paths) > 0: path = heappop(paths) path_end = self.nodes[path.nodes[-1]] if path_end is end: return path.weight, path.nodes if len(path.nodes) == max_path_len: continue create_route = len(path_end.tos) for edge in path_end.tos: next = self.nodes[edge.to] create_route -= 1 # print("(len(path.nodes)(%d) >= (max_path_len(%d) - 1)) and next(%d) is not end(%d)" % # (len(path.nodes), max_path_len, next.id, end.id)) if create_route > 0: nodes = path.nodes.copy() nodes.append(next.id) new_path = GraphPath(path.weight + edge.weight, nodes) heappush(paths, new_path) else: path.nodes.append(next.id) path.weight += edge.weight heappush(paths, path) return -1, None if __name__ == "__main__": nodes = [GraphNode(i) for i in range(0, 6)] nodes[0].addEdge(1, 1) nodes[0].addEdge(2, 1) nodes[1].addEdge(2, 1) nodes[1].addEdge(3, 2) nodes[2].addEdge(3, 1) nodes[2].addEdge(4, 1) nodes[4].addEdge(5, 1) graph = Graph(nodes) print("Graph: %s" % graph) print("Topological order: %s" % graph.topologicalOrder()) w, route = graph.djikstra(nodes[3], nodes[5]) print("Shortest path from 3 to 5 is (%d km) %s" % (w, route)) assert(w == -1 and route is None) w, route = graph.djikstra(nodes[0], nodes[3]) print("Shortest path from 0 to 3 is (%d km) %s" % (w, route)) assert(w == 2 and len(route) == 3) w, route = graph.djikstra(nodes[0], nodes[5]) print("Shortest path from 0 to 5 is (%d km) %s" % (w, route)) assert(w == 3 and len(route) == 4) w, route = graph.djikstraK(nodes[0], nodes[5], 3) print("Shortest path from 0 to 5 is (%d km) %s" % (w, route)) assert(w == -1 and route is None) w, route = graph.dfs(nodes[0], nodes[5], 3) print("Shortest path from 0 to 5 is (%d km) %s" % (w, route)) assert(w == -1 and route is None) ``` #### File: algorithms/leetcode/isBipartite.py ```python from typing import List import itertools class Solution: def isBipartite(self, graph: List[List[int]]) -> bool: if len(graph) < 2: # print("len(graph) is %d" % len(graph)) return True g1 = {0} g2 = set(graph[0]) # We build g1 and g2 and every time we add some element to one, we check it is not in the # second (if dst_node in g2: return false) # We alternate g1 and g2 to factorize the code # When we can't grow g1 and g2 (islands), we append one of the group with the next # unexplored node (list(set(range(len(graph))).difference(g1.union(g2)))[0]) and # we continue changed = True while changed: changed = False for src_node in g2: #print("explore the node %d from %s" % (src_node, g2)) for dst_node in graph[src_node]: if dst_node in g2: # print("-- g1", g1) # print("Aye! %d already in g2(%s)" % (dst_node, g2)) return False if dst_node not in g1: #print("append %d to g1(%s)" % (dst_node, g1)) g1.add(dst_node) changed = True if not changed and ((len(g1) + len(g2)) < len(graph)): # append unexplored node l = list(set(range(len(graph))).difference(g1.union(g2))) #print("Isolated nodes found; append %d to %s" % (l[0], g1)) g1.add(l[0]) changed = True # swap groups tmp = g2 g2 = g1 g1 = tmp # print("g1", g1) # print("g2", g2) return True def check_solution(): s = Solution() graph = [[1,3], [0,2], [1,3], [0,2]] result = s.isBipartite(graph) assert(result == True) graph = [[1,2,3], [0,2], [0,1,3], [0,2]] result = s.isBipartite(graph) assert(result == False) graph = [[1,3,4], [0,2], [1,3,4], [0,2], []] result = s.isBipartite(graph) assert(result == True) graph = [[1,3,4,6], [0,2], [1,3,4,5], [0,2], [0,2], [2,6], [0,5]] result = s.isBipartite(graph) assert(result == False) graph = [[3],[2,4],[1],[0,4],[1,3]] result = s.isBipartite(graph) assert(result == True) graph = [[]] result = s.isBipartite(graph) assert(result == True) graph = [[],[2,4,6],[1,4,8,9],[7,8],[1,2,8,9],[6,9],[1,5,7,8,9],[3,6,9],[2,3,4,6,9],[2,4,5,6,7,8]] result = s.isBipartite(graph) assert(result == False) graph = [[47],[48],[52,58,62],[77,84],[9,13,24,73],[15,41,47,49,55,68,83,85,88],[72], [10,37,57,79],[12,14,42,58],[4,26,65,74],[7,26,33,37],[41,53,83,90],[8],[4,68,81],[8,86], [5,19,51,54,96],[39,81],[47,74,76],[55,60,64,77],[15,23,44,74,88,90,91],[22,39,57,72], [59,77],[20,48],[19,59,90,92,98],[4,84,87],[43,63,81,90,91,92],[9,10,64,84,91],[42,54], [54,83,87],[36,45,77],[59],[32,40,52,57],[31,65],[10,79],[35,46,62,70,89,91],[34,70], [29,78],[7,10,43,75,99],[55,56],[16,20,65,74],[31,42,58,63],[5,11,45,63],[8,27,40,65,72,78], [25,37],[19,53],[29,41,66,97],[34],[0,5,17,59,66,91],[1,22,81],[5,55,64,78,98],[68,71], [15,52,87,97],[2,31,51,91],[11,44,54,66,70,74],[15,27,28,53],[5,18,38,49,63,83],[38,69,75], [7,20,31],[2,8,40,90],[21,23,30,47,67,96],[18,84],[],[2,34],[25,40,41,55],[18,26,49], [9,32,39,42],[45,47,53,96,99],[59,70,77],[5,13,50],[56,83,89,94],[34,35,53,67],[50,83,85], [6,20,42],[4,83],[9,17,19,39,53],[37,56],[17],[3,18,21,29,67,90],[36,42,49,83],[7,33,90], [90,91],[13,16,25,48,99],[],[5,11,28,55,69,71,73,78,90],[3,24,26,60],[5,71],[14],[24,28,51], [5,19,93],[34,69],[11,19,23,25,58,77,79,80,83,92],[19,25,26,34,47,52,80],[23,25,90],[88,95], [69,96],[93,99],[15,59,66,94],[45,51],[23,49],[37,66,81,95]] result = s.isBipartite(graph) assert(result == False) graph = [[],[10,44,62],[98],[59],[90],[],[31,59],[52,58],[],[53],[1,63],[51,71],[18,64], [24,26,45,95],[61,67,96],[],[40],[39,74,79],[12,21,72],[35,85],[86,88],[18,76],[71,80], [27,58,85],[13,26,87],[75,94],[13,24,68,77,82],[23],[56,96],[67],[56,73],[6],[41], [50,88,91,94],[],[19,72,92],[59],[49],[49,89],[17],[16],[32,84,86],[61,73,77],[94,98], [1,74],[13,57,90],[],[93],[],[37,38,54,68],[33],[11],[7,85],[9],[49],[61],[28,30,87,93], [45,69,77],[7,23,76],[3,6,36,62],[81],[14,42,55,62],[1,59,61],[10],[12,93],[],[96], [14,29,70,73],[26,49,71,76],[57,83],[67],[11,22,68,89],[18,35],[30,42,67],[17,44],[25], [21,58,68],[26,42,57,95],[],[17],[22,83],[60],[26,83,84,94],[69,80,82],[41,82],[19,23,52], [20,41],[24,56],[20,33],[38,71,99],[4,45],[33],[35],[47,56,64],[25,33,43,82],[13,77], [14,28,66],[],[2,43],[89]] result = s.isBipartite(graph) assert(result == False) graph = [[1],[0],[4],[4],[2,3]] result = s.isBipartite(graph) assert(result == True) print("All tests passed successfully!!") check_solution() # def isBipartite(self, graph: List[List[int]]) -> bool: # g1 = graph[0] # g2 = list() # for n in graph[1:]: # found = False # for e in n: # if e in g1: # found = True # g1 += n # for e in n: # if e in g2: # return False # break # if not found: # g2 += n # return len(g2) != 0 ``` #### File: algorithms/leetcode/kthgrammar.py ```python class Solution: cache = {} def kthGrammar(self, N: int, K: int) -> int: if N in self.cache: return self.cache[N][K-1] self.cache[N] = self.NthRow(N) print("Row(%d) : %s" % (N, self.cache[N])) return self.cache[N][K-1] def NthRow(self, N:int) -> list: if N == 1: return [0] if N in self.cache: return self.cache[N] if N-1 in self.cache: prev = self.cache[N-1] else: prev = self.NthRow(N-1) self.cache[N-1] = prev idx = 0 max_idx = 2 * len(prev) while idx < max_idx: if prev[idx] == 0: prev.insert(idx+1, 1) else: prev.insert(idx+1, 0) idx += 2 return prev row_cached = '0' def kthGrammar(self, N: int, K: int) -> int: N -= 1 K -= 1 if K >= len(self.row_cached): self.update_row_cached(N, K) #print("Row(%d) : %s" % (N+1, self.row_cached)) return int(self.row_cached[K]) def update_row_cached(self, N:int, K: int) -> None: if len(self.row_cached) > K: return missing_01s = len(self.row_cached) idx = 0 while missing_01s: to_add = '0' if self.row_cached[idx] == '0': to_add = '1' self.row_cached += to_add missing_01s -= 1 idx += 1 self.update_row_cached(N, K) def kthGrammar(self, N: int, K: int) -> int: if K < 3: return K - 1 K -= 1 pivot = 1 while K >= (pivot * 2): pivot *= 2 return int(1 - self.get_mirror(pivot, K)) def get_mirror(self, pivot:int, K: int) -> int: if K <= 1: return 1 - K while pivot > K: pivot /= 2 return 1 - self.get_mirror(pivot/2, K-pivot) translate = { 0: [0, 1], 1: [1, 0] } def kthGrammar_sol1(self, N: int, K: int) -> int: if N == 1 and K == 1: return 0 index = (K+1) % 2 source = (K+1) // 2 res = self.kthGrammar_sol1(N-1, source) return res if index == 0 else res ^ 1 def kthGrammar_sol2(self, N, K): if N == 1: if K == 1: return 0 else: return 1 half = 2**(N - 1) if K <= half: return self.kthGrammar_sol2(N - 1, K) else: res = self.kthGrammar_sol2(N - 1, K - half) if res == 0: return 1 else: return 0 def kthGrammar_sol3(self, N: 'int', K: 'int') -> 'int': # my solution ... 28 ms ... 100 % without bar ... 12.4 MB ... 87 % def find(N, K): if N == 1: return 0 if K <= 2**(N-2): # row 3: "0110" return find(N-1, K) else: return 1 - find(N-1, K - 2**(N-2)) # row 4: "0110" + "1001" return find(N, K) def check_solution(): s = Solution() # N = 1 # K = 1 # res = s.kthGrammar(N, K) # print("kthGrammar(%d, %d) = %d" % (N, K, res)) # assert(res == 0) # # N = 2 # K = 1 # res = s.kthGrammar(N, K) # print("kthGrammar(%d, %d) = %d" % (N, K, res)) # assert(res == 0) # # N = 2 # K = 2 # res = s.kthGrammar(N, K) # print("kthGrammar(%d, %d) = %d" % (N, K, res)) # assert(res == 1) # # N = 3 # K = 3 # res = s.kthGrammar(N, K) # print("kthGrammar(%d, %d) = %d" % (N, K, res)) # assert(res == 1) # # N = 3 # K = 4 # res = s.kthGrammar(N, K) # print("kthGrammar(%d, %d) = %d" % (N, K, res)) # assert(res == 0) # # N = 4 # K = 5 # res = s.kthGrammar(N, K) # print("kthGrammar(%d, %d) = %d" % (N, K, res)) # assert(res == 1) # # N = 5 # K = 5 # res = s.kthGrammar(N, K) # print("kthGrammar(%d, %d) = %d" % (N, K, res)) # assert(res == 1) # # N = 6 # K = 5 # res = s.kthGrammar(N, K) # print("kthGrammar(%d, %d) = %d" % (N, K, res)) # assert(res == 1) # # N = 7 # K = 5 # res = s.kthGrammar(N, K) # print("kthGrammar(%d, %d) = %d" % (N, K, res)) # assert(res == 1) # # # N = 8 # K = 5 # res = s.kthGrammar(N, K) # print("kthGrammar(%d, %d) = %d" % (N, K, res)) # assert(res == 1) # # # N = 8 # K = 10 # res = s.kthGrammar(N, K) # print("kthGrammar(%d, %d) = %d" % (N, K, res)) # assert(res == 0) # # N = 30 # K = 434991989 # res = s.kthGrammar(N, K) # print("kthGrammar(%d, %d) = %d" % (N, K, res)) # assert(res == 0) # # N = 30 # K = 434991990 # res = s.kthGrammar(N, K) # print("kthGrammar(%d, %d) = %d" % (N, K, res)) # assert(res == 1) # # N = 60 # K = 84349919900 # res = s.kthGrammar(N, K) # print("kthGrammar(%d, %d) = %d" % (N, K, res)) # assert(res == 1) N = 30 K = 434991990 for idx in range(0, 800000): s.kthGrammar(N, K) check_solution() ``` #### File: algorithms/leetcode/mypow.py ```python class Solution: cache = {} cache_root = None nb_rec = 0 def pow(self, x: float, n: int) -> float: return x**n def _myPow1(self, x: float, n: int) -> float: self.nb_rec += 1 if n == 0: return 1 if n not in self.cache: self.cache[n] = x * self._myPow1(x, n-1) return self.cache[n] def _myPow2(self, x: float, n: int) -> float: #self.nb_rec += 1 if n == 0: return 1 if n == 1: return x if n % 2: if (n-1) not in self.cache: self.cache[n-1] = self._myPow2(x, n-1) #print("_myPow2(%f, %d) = %f" % (x, n-1, self.cache[n-1])) return x * self.cache[n-1] n //= 2 if n not in self.cache: self.cache[n] = self._myPow2(x, n) #print("_myPow2(%f, %d) = %f" % (x, n, self.cache[n])) return self.cache[n] * self.cache[n] def myPow(self, x: float, n: int) -> float: if n == 0: return 1 if self.cache_root != x: self.cache_root = x self.cache = {} if n < 0: return 1.0 / self._myPow2(x, -n) return self._myPow2(x, n) def check_solution(): s = Solution() root = 2 power = 2 result = s.myPow(root, power) print("myPow(%f, %d) = %f" % (root, power, result)) assert(result == s.pow(root, power)) power = 3 result = s.myPow(root, power) print("myPow(%f, %d) = %f" % (root, power, result)) assert(result == s.pow(root, power)) power = 10 result = s.myPow(root, power) print("myPow(%f, %d) = %f" % (root, power, result)) assert(result == s.pow(root, power)) power = 50 result = s.myPow(root, power) print("myPow(%f, %d) = %f" % (root, power, result)) assert(result == s.pow(root, power)) power = -2 result = s.myPow(root, power) print("myPow(%f, %d) = %f" % (root, power, result)) power = -4 result = s.myPow(root, power) print("myPow(%f, %d) = %f" % (root, power, result)) assert(result == s.pow(root, power)) # power = 123456 # result = s.myPow(root, power) # print("myPow(%f, %d) = %ld" % (root, power, result)) # assert(result == s.pow(root, power)) root = 2.1 power = 3 result = s.myPow(root, power) print("myPow(%f, %d) = %f" % (root, power, result)) assert(result == s.pow(root, power)) print("nb_rec = %d" % s.nb_rec) check_solution() ``` #### File: algorithms/leetcode/numrabiits.py ```python import array class Solution: def numRabbits(self, answers: list) -> int: groups = dict() for g in answers: if (g+1) in groups.keys(): groups[g+1] += 1 else: groups[g+1] = 1 #print(groups) num_rabbits = 0 for r in groups.keys(): n = groups[r] if n == 1: # Unique groups num_rabbits += r else: # Multiple groups num_rabbits += r * int(n / r) if n % r != 0: num_rabbits += r return num_rabbits def numRabbits(self, answers: list) -> int: groups = array.array('H', [0]*1000) for g in answers: groups[g+1] += 1 num_rabbits = 0 r = 0 for n in groups: if n == 0: r += 1 continue if n == 1: # Unique groups num_rabbits += r else: # Multiple groups num_rabbits += r * int(n / r) if n % r != 0: num_rabbits += r r += 1 return num_rabbits def check_solution(): s = Solution() answers = [1, 1, 2] result = s.numRabbits(answers) assert(result == 5) answers = [] result = s.numRabbits(answers) assert(result == 0) answers = [10, 10, 10] result = s.numRabbits(answers) assert(result == 11) answers = [2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4] result = s.numRabbits(answers) assert(result == 17) print("All tests passed successfully!!") check_solution() ``` #### File: algorithms/tools/listnode.py ```python class ListNode: def __init__(self, x): self.val = x self.next = None def __str__(self): l = list() cell = self while cell.next is not None: l.append(cell.val) cell = cell.next l.append(cell.val) return str(l) def prepend(self, x): new_root = ListNode(x) new_root.next = self return new_root def append(self, x) -> None: new_root = ListNode(x) cell = self while cell.next is not None: cell = cell.next cell.next = new_root ```
{ "source": "JCPistell/looker_deployer", "score": 2 }
#### File: looker_deployer/tests/test_deploy_group_in_group.py ```python from looker_deployer.commands import deploy_group_in_group from looker_sdk import methods, models class mockSettings: base_url = "taco" class mockAuth: settings = mockSettings() def mock_responses(responses, default_response=None): return lambda input: responses[input] \ if input in responses else default_response sdk = methods.LookerSDK(mockAuth(), "bar", "baz", "bosh", "bizz") source_sdk = methods.LookerSDK(mockAuth(), "bar", "baz", "bosh", "bizz") target_sdk = methods.LookerSDK(mockAuth(), "bar", "baz", "bosh", "bizz") def test_get_filtered_groups(mocker): group_list = [ models.Group(name="Taco"), models.Group(name="Burrito") ] mocker.patch.object(sdk, "all_groups") sdk.all_groups.return_value = group_list groups = deploy_group_in_group.get_filtered_groups(sdk) assert groups == group_list def test_get_filtered_groups_filter(mocker): group_list = [ models.Group(name="Taco"), models.Group(name="Burrito") ] mocker.patch.object(sdk, "all_groups") sdk.all_groups.return_value = group_list groups = deploy_group_in_group.get_filtered_groups(sdk, "Burrito") assert groups == [models.Group(name="Burrito")] def test_write_groups_in_group_new(mocker): group_1 = models.Group(name="Taco", id=1) group_2 = models.Group(name="Taco Supreme", id=2) groups_list = [group_1, group_2] group_in_group = [group_1] mocker.patch.object(source_sdk, "all_groups") mocker.patch.object(source_sdk, "all_group_groups") mocker.patch.object(target_sdk, "all_groups") mocker.patch.object(target_sdk, "all_group_groups") mocker.patch.object(target_sdk, "add_group_group") source_sdk.all_groups.return_value = groups_list target_sdk.all_groups.return_value = groups_list source_sdk.all_group_groups.side_effect = mock_responses( { 1: [], 2: group_in_group }) deploy_group_in_group.write_groups_in_group(source_sdk, target_sdk) target_sdk.add_group_group.assert_called_once_with( group_id=group_2.id, body=models.GroupIdForGroupInclusion(group_id=1)) def test_write_groups_in_group_change(mocker): group_1 = models.Group(name="Taco", id=1) group_2 = models.Group(name="Taco Supreme", id=2) group_3 = models.Group(name="Chalupa", id=3) groups_list = [group_1, group_2, group_3] group_in_group = [group_1] mocker.patch.object(source_sdk, "all_groups") mocker.patch.object(source_sdk, "all_group_groups") mocker.patch.object(target_sdk, "all_groups") mocker.patch.object(target_sdk, "all_group_groups") mocker.patch.object(target_sdk, "add_group_group") mocker.patch.object(target_sdk, "delete_group_from_group") source_sdk.all_groups.return_value = groups_list target_sdk.all_groups.return_value = groups_list source_sdk.all_group_groups.side_effect = mock_responses( { 1: [], 2: [], 3: group_in_group }) target_sdk.all_group_groups.side_effect = mock_responses( { 1: [], 2: group_in_group, 3: [] }) deploy_group_in_group.write_groups_in_group(source_sdk, target_sdk) target_sdk.delete_group_from_group.assert_called_once_with( group_id=group_2.id, deleting_group_id=1) target_sdk.add_group_group.assert_called_once_with( group_id=group_3.id, body=models.GroupIdForGroupInclusion(group_id=1)) ```
{ "source": "jcPOLO/polonet", "score": 3 }
#### File: app/core/exceptions.py ```python import logging from app.core.helpers import configure_logging logger = logging.getLogger(__name__) class AutoNornirException(Exception): configure_logging(logger) REASONS = ( "fail-config", # config provided is not valid "fail-connect", # device is unreachable at IP:PORT "fail-execute", # unable to execute device/API command "fail-login", # bad username/password "fail-general", # other error ) def __init__(self, reason, message, **kwargs): """Exception Init.""" super(AutoNornirException, self).__init__(kwargs) self.reason = reason self.message = message logger.error(message) def __str__(self): """Exception __str__.""" return f"{self.__class__.__name__}: {self.reason}: {self.message}" class ValidationException(AutoNornirException): pass class RuntimeErrorException(AutoNornirException): pass ``` #### File: core/models/platform.py ```python from nornir_napalm.plugins.tasks import napalm_get from nornir_netmiko.tasks import netmiko_send_command from nornir.core.task import Task import logging class PlatformBase: def __init__(self, task: Task): self.task = task def get_facts(self) -> str: r = self.task.run( task=napalm_get, name=f"FACTs PARA: {self.task.host}", getters=["facts"], # severity_level=logging.DEBUG, ).result return r # TODO: Think about this cause this is not multiplatform def send_command(self, command: str) -> str: r = self.task.run( task=netmiko_send_command, name="SEND COMMAND - Send the command to all devices", # severity_level=logging.DEBUG command_string=command, use_textfsm=True, ).result return r def get_version(self): pass def get_config(self): pass def get_config_section(self): pass def get_interfaces_status(self): pass def get_interfaces_trunk(self): pass def get_interface_description(self, interface: str): pass def get_neighbor(self, interface: str): pass def save_config(self): pass def software_upgrade(self): pass def set_rsa(self): pass def get_dir(self): pass ``` #### File: core/models/template.py ```python import logging import os logger = logging.getLogger(__name__) dir_path = os.path.dirname(os.path.realpath(__file__)) TEMPLATES_DIR = dir_path + "/../templates/ios/" class Template(object): def __init__(self, templates: list) -> None: self.templates = templates def merge_templates(self, platform: str = "ios") -> str: result = [] for template in self.templates: file = str(template) path = f"{dir_path}/../templates/{platform}/" filename = f"{path}{file}" with open(filename, "r") as f: lines = f.read() result.append(lines) template = "\n".join(result) return template def create_final_template(self, platform: str = "ios") -> None: file = "final.j2" path = f"{dir_path}/../templates/{platform}/" filename = f"{path}{file}" with open(filename, "w") as f: f.write(self.merge_templates(platform)) ``` #### File: app/core/output.py ```python def facts_for_customer_csv(result): for h in result.keys(): # facts = result[h][2] for task_result in result[h]: if "FACT" in task_result.name: r = task_result.result facts = r["facts"] hostname = facts["hostname"] os_version = facts["os_version"] serial_number = facts["serial_number"] model = facts["model"] print( "{};{};{};{};{}".format( h, hostname, os_version, serial_number, model ) ) ``` #### File: polonet/app/forms.py ```python from flask_wtf import FlaskForm from flask import flash class BaseForm(FlaskForm): __abstract__ = True def flash_errors(self): """Flashes form errors""" for field, errors in self.errors.items(): for error in errors: flash( "Error in the %s field - %s" % (getattr(self, field).label.text, error), "error", ) ``` #### File: app/job/helper.py ```python import logging import pprint import threading from typing import List, Optional, cast from collections import OrderedDict import json import sys from io import StringIO from colorama import Fore, Style, init from typing import Union from nornir.core.task import AggregatedResult, MultiResult, Result LOCK = threading.Lock() # String buffer stream to use in case formatted string output is needed. OUT_BUFFER = StringIO() init(autoreset=True, strip=False) def print_title(title: str) -> None: """ Helper function to print a title. """ msg = "**** {} ".format(title) print("{}{}{}{}".format(Style.BRIGHT, Fore.GREEN, msg, "*" * (80 - len(msg)))) def _get_color(result: Result, failed: bool) -> str: if result.failed or failed: color = Fore.RED elif result.changed: color = Fore.YELLOW else: color = Fore.GREEN return cast(str, color) def _print_individual_result( result: Result, host: Optional[str], attrs: List[str], failed: bool, severity_level: int, task_group: bool = False, return_output: bool = False, ): global OUT_BUFFER out_buffer = None if return_output: out_buffer = OUT_BUFFER else: out_buffer = sys.stdout if result.severity_level < severity_level: return color = _get_color(result, failed) subtitle = ( "" if result.changed is None else " ** changed : {} ".format(result.changed) ) level_name = logging.getLevelName(result.severity_level) symbol = "v" if task_group else "-" msg = "{} {}{}".format(symbol * 4, result.name, subtitle) print( "{}{}{}{} {}".format( Style.BRIGHT, color, msg, symbol * (80 - len(msg)), level_name ), file=out_buffer, ) for attribute in attrs: x = getattr(result, attribute, "") if isinstance(x, BaseException): # for consistency between py3.6 and py3.7 print(f"{x.__class__.__name__}{x.args}", file=out_buffer) elif x and not isinstance(x, str): if isinstance(x, OrderedDict): print(json.dumps(x, indent=2), file=out_buffer) else: pprint.pprint(x, indent=2, stream=out_buffer) elif x: print(x, file=out_buffer) def _print_result( result: Result, host: Optional[str] = None, attrs: List[str] = None, failed: bool = False, severity_level: int = logging.INFO, return_output: bool = False, ) -> Union[None, str]: global OUT_BUFFER out_buffer = None if return_output: out_buffer = OUT_BUFFER else: out_buffer = sys.stdout attrs = attrs or ["diff", "result", "stdout"] if isinstance(attrs, str): attrs = [attrs] if isinstance(result, AggregatedResult): msg = result.name print( "{}{}{}{}".format(Style.BRIGHT, Fore.CYAN, msg, "*" * (80 - len(msg))), file=out_buffer, ) for host, host_data in sorted(result.items()): title = ( "" if host_data.changed is None else " ** changed : {} ".format(host_data.changed) ) msg = "* {}{}".format(host, title) print( "{}{}{}{}".format(Style.BRIGHT, Fore.BLUE, msg, "*" * (80 - len(msg))), file=out_buffer, ) _print_result( host_data, host, attrs, failed, severity_level, return_output=return_output, ) elif isinstance(result, MultiResult): _print_individual_result( result[0], host, attrs, failed, severity_level, task_group=True, return_output=return_output, ) for r in result[1:]: _print_result( r, host, attrs, failed, severity_level, return_output=return_output ) color = _get_color(result[0], failed) msg = "^^^^ END {} ".format(result[0].name) print( "{}{}{}{}".format(Style.BRIGHT, color, msg, "^" * (80 - len(msg))), file=out_buffer, ) elif isinstance(result, Result): _print_individual_result( result, host, attrs, failed, severity_level, return_output=return_output ) if return_output: return out_buffer.getvalue() def print_result( result: Result, host: Optional[str] = None, vars: List[str] = None, failed: bool = False, severity_level: int = logging.INFO, return_output: bool = False, ) -> Union[None, str]: """ Prints the :obj:`nornir.core.task.Result` from a previous task to screen Arguments: result: from a previous task host: # TODO vars: Which attributes you want to print failed: if ``True`` assume the task failed severity_level: Print only errors with this severity level or higher return_output: If ``True``, return the formatted output instead of printing on stdout """ LOCK.acquire() global OUT_BUFFER try: string_output = _print_result( result, host, vars, failed, severity_level, return_output=return_output ) return string_output finally: LOCK.release() OUT_BUFFER.close() ``` #### File: app/job/views.py ```python from crypt import methods from datetime import datetime import json import logging from typing import Dict, List from flask import ( Blueprint, render_template, request, flash, redirect, session, url_for, jsonify, current_app, ) from flask_login import login_required, current_user from app import db from app.inventory.schemas import InventorySchema, DeviceSchema from app.inventory.models import Device, Inventory from app.job.models import Job from app.job.schemas import JobSchema from app.core.helpers import dir_path, json_to_csv from app.core.core import Core from nornir_utils.plugins.functions import print_result job_bp = Blueprint("job_bp", __name__, template_folder="templates") logger = logging.getLogger(__name__) ALLOWED_EXTENSIONS = {"txt", "csv"} DEFAULT_DEVICE_ATTR = [ "hostname", "platform", "port", "custom", "user_id", "id", "date_created", "date_modified", ] OMITTED_DEVICE_ATTR = ["groups", "user_id", "_sa_instance_state"] CFG_FILE = f"{dir_path}/config.yaml" @job_bp.route("/job", methods=["GET", "POST"]) @login_required def tasks(): tasks = [ {"name": "get_version", "description": "hacer un show version"}, {"name": "save_config", "description": "guardar la configuracion"}, {"name": "set_ip_domain.j2", "description": "poner el ip domain <prueba.com>"}, ] devices = session.get("devices") or [] if request.method == "POST": devices = json.loads(request.data) session["devices"] = devices return jsonify(devices), 200 return render_template( "job/tasks.html", tasks=tasks, devices=devices, user=current_user, ) # TODO: temporary web result '/job/<id>/result' @job_bp.route("/job/result", methods=["GET", "POST"]) @login_required def jobs(): job_schema = JobSchema() # GET results = session.get("results") if request.method == "GET": pass if request.method == "POST": devices = session["devices"] tasks = request.form.getlist("data") devices = json_to_csv(list(devices)) # TODO: I have to do a way to chose credentials to pass them core = Core( csv_text=devices, tasks=tasks, cli=False, username="cisco", password="<PASSWORD>" ) data = dict( inventory_id=session["inventory_id"], output="", status=1, ) job = job_schema.load(data) results = core.run() job.finished_at = datetime.now() db.session.commit() result = job_schema.dump(job) result_tasks = {k: [] for k in tasks if ".j2" not in k} # TODO: remove this. Just prints what nornir would print in CLI. from app.job.helper import print_result # TODO: implement a way to toggle between ansible like result or nornir like result output = print_result(results, return_output=True) if isinstance(output, str): output = output.split("\n") status = results.failed # True if at least 1 task failed # Ansible like result # TODO: Exceptions are not serializable. Do a better thing in all of this. # TODO: Diff for jinja2 templates is not implemented (only napalm config have it) for host, tasks_result in sorted(results.items()): for task in tasks_result: task_name = str(task.name).split(" ")[0].lower() if ( task_name in tasks or task_name == "get_config" or "plantilla" in task_name ): if isinstance(task.result, str): task.result = task.result.split("\n") taskres = { "result": task.result, "failed": task.failed, "ip": str(host), "changed": task.changed, "diff": task.diff, "stderr": task.stderr, # 'exception': task.exception } result_tasks[task_name] = result_tasks.get(task_name, []) result_tasks[task_name].append(taskres) # TODO: remove this. It is just to simulate what is going to be seen in results.html for task, hosts in result_tasks.items(): print(f"{task} ************") for host in hosts: if host["failed"]: print(f"{host['ip']} : FAIL") # print(f"EXCEPTION: {host['exception']}") else: print(f"{host['ip']} : OK") return render_template( "job/result.html", user=current_user, status=status, session=session, result=result, tasks=result_tasks, output=output, ) ``` #### File: polonet/tests/conftest.py ```python import json import tempfile import os from flask import jsonify import pytest from app import create_app from flask_sqlalchemy import SQLAlchemy from flask_marshmallow import Marshmallow from flask.testing import FlaskClient from app.auth.models import User from app.inventory.models import Inventory, Device from app import db from werkzeug.security import generate_password_hash, check_password_hash @pytest.fixture def runner(client): return client.test_cli_runner() def feed_db(): db.drop_all() db.create_all() new_user() db.session.commit() def new_user(): new_user = User( email="<EMAIL>", first_name="<NAME>", password=generate_password_hash("<PASSWORD>", method="sha256"), ) db.session.add(new_user) db.session.commit() new_user = User.query.filter_by(email=new_user.email).first() new_user.inventories.append(new_inventory(new_user)) return new_user def new_inventory(new_user): new_inventory = Inventory( name="inventory1", slug="inventory1", data=""" hostname,port,platform,site 1.1.1.1,22,ios,zaragoza 2.2.2.2,23,nxos,huesca 3.3.3.3,22,ios,teruel """, user_id=new_user.id, ) devices = new_devices(new_user) for device in devices: new_inventory.devices.append(device) db.session.add(new_inventory) return new_inventory def new_devices(new_user): new_devices = [] device = Device( hostname="1.1.1.1", platform="ios", port=22, custom=json.dumps({"site": "zaragoza"}), user_id=new_user.id, ) db.session.add(device) new_devices.append(device) device = Device( hostname="2.2.2.2", platform="nxos", port=23, custom=json.dumps({"site": "huesca"}), user_id=new_user.id, ) db.session.add(device) new_devices.append(device) device = Device( hostname="3.3.3.3", platform="ios", port=22, custom=json.dumps({"site": "teruel"}), user_id=new_user.id, ) db.session.add(device) new_devices.append(device) return new_devices def test_app(test=True): db_fd, db_path = tempfile.mkstemp() app = create_app(test, db_path=db_path) return app, db_fd, db_path @pytest.fixture def client(): app, db_fd, db_path = test_app() with app.test_client() as client: with app.app_context(): feed_db() yield client os.close(db_fd) os.unlink(db_path) @pytest.fixture def client_no_csrf(): app, db_fd, db_path = test_app(test="no_csrf") with app.test_client() as client: with app.app_context(): feed_db() yield client os.close(db_fd) os.unlink(db_path) ```
{ "source": "jcpowermac/aos-api-examples", "score": 3 }
#### File: aos-api-examples/images/layers.py ```python from subprocess import Popen, PIPE import requests import pprint import json import yaml def gettoken(): p = Popen(['oc', 'whoami', '-t'], stdin=PIPE, stdout=PIPE, stderr=PIPE) output, err = p.communicate() rc = p.returncode return output.rstrip('\n') def aosget_text(url, token): headers = {'Authorization': 'Bearer %s' % token, 'Accept': 'application/yaml'} req = requests.get(url, headers=headers, verify=False) if req.status_code == 200: text = req.text return text return "" def aosget_yaml(url, token): headers = {'Authorization': 'Bearer %s' % token, 'Accept': 'application/yaml'} req = requests.get(url, headers=headers, verify=False) if req.status_code == 200: text = req.text return yaml.load(text) return {} def aosget(url, token): headers = {'Authorization': 'Bearer %s' % token } req = requests.get(url, headers=headers, verify=False) if req.status_code == 200: json = req.json() return json return {} def main(): pp = pprint.PrettyPrinter(indent=4) token = gettoken() url = "https://origin-master1.virtomation.com:8443/oapi/v1/images" results = aosget_text(url, token) print results if __name__ == '__main__': main() ```
{ "source": "jcpowermac/flask-cap", "score": 2 }
#### File: jcpowermac/flask-cap/app.py ```python from docker import Client from flask import Flask, render_template, request, session, url_for, redirect, \ Response, abort from flask_login import LoginManager, UserMixin, \ login_required, login_user, logout_user from flask_socketio import SocketIO import psutil import capng import json import sys DEBUG = True SECRET_KEY = 'development key' app = Flask(__name__) app.config.from_object(__name__) app.config.from_envvar('FLASKCAP_SETTINGS', silent=True) async_mode = None socketio = SocketIO(app, async_mode=async_mode) # flask-login login_manager = LoginManager() login_manager.init_app(app) login_manager.login_view = "login" pids = [] # silly user model class User(UserMixin): def __init__(self, id): self.id = id self.name = "user" + str(id) self.password = "password" def __repr__(self): return "%d/%s/%s" % (self.id, self.name, self.password) # create some users with ids 1 to 20 users = [User(id) for id in range(1, 21)] def capabilities(pid): permitted = None capng.capng_setpid(pid) capng.capng_clear(capng.CAPNG_SELECT_BOTH) capng.capng_get_caps_process() caps = capng.capng_have_capabilities(capng.CAPNG_SELECT_CAPS) if caps > capng.CAPNG_NONE: if caps == capng.CAPNG_PARTIAL: permitted = capng.capng_print_caps_text(capng.CAPNG_PRINT_BUFFER, capng.CAPNG_PERMITTED) if capng.capng_have_capabilities(capng.CAPNG_SELECT_BOUNDS) == capng.CAPNG_FULL: permitted += "+" else: permitted = "full" return permitted @app.route('/', methods=['GET', 'POST']) def index(): return redirect(url_for('login')) @app.route('/login', methods=['GET', 'POST']) def login(): error = "Error" if request.method == "POST": username = request.form['username'] password = request.form['password'] if password == 'password': id = username.split('user')[1] user = User(id) login_user(user) return redirect(url_for('docker')) return render_template('login.html', error=error) @app.route('/docker', methods=['GET', 'POST']) def docker(): if request.method == "POST": total = 0 current = 0 layerids = [] cli = Client(base_url='unix://var/run/docker.sock', version='auto') image = request.form["dockerimage"] dockerrun = request.form["dockerrun"] for line in cli.pull(image, tag="latest", stream=True): pull = json.loads(line) if 'id' in pull and 'progressDetail' in pull: id = pull['id'] progressDetail = pull['progressDetail'] # print(json.dumps(pull, indent=4)) # sys.stdout.flush() if 'total' in progressDetail and 'current' in progressDetail: if id in layerids: current += pull['progressDetail']['current'] else: layerids.append(id) total += pull['progressDetail']['total'] # print current / total # sys.stdout.flush() value = str(current / total) style = "width: %s%%;" % value socketio.emit('progressupdate', {'style': style, 'value': value }, namespace='') container = cli.create_container(image=image) container_id = container['Id'] cli.start(container_id) socketio.sleep(10) pids = cli.top(container_id) print pids return redirect(url_for('results')) return render_template('docker.html', async_mode=socketio.async_mode) @app.route('/results') def results(): results = [] for proc in psutil.process_iter(): try: pinfo = proc.as_dict(attrs=['ppid', 'pid', 'name', 'username', 'uids', 'gids']) pinfo["capabilities"] = "Not available" except psutil.NoSuchProcess: pass else: capstext = capabilities(pinfo["pid"]) if capstext is not None: pinfo["capabilities"] = capstext results.append(pinfo) return render_template('results.html', results=results) # somewhere to logout @app.route("/logout") @login_required def logout(): logout_user() return Response('<p>Logged out</p>') # handle login failed @app.errorhandler(401) def page_not_found(e): return Response('<p>Login failed</p>') # callback to reload the user object @login_manager.user_loader def load_user(userid): return User(userid) if __name__ == '__main__': socketio.run(app, debug=True) ```
{ "source": "jcps07/connectedhomeip", "score": 2 }
#### File: build/builders/host.py ```python import os from platform import uname from enum import Enum, auto from .gn import GnBuilder class HostApp(Enum): ALL_CLUSTERS = auto() CHIP_TOOL = auto() THERMOSTAT = auto() RPC_CONSOLE = auto() MIN_MDNS = auto() ADDRESS_RESOLVE = auto() TV_APP = auto() LOCK = auto() TESTS = auto() SHELL = auto() CERT_TOOL = auto() OTA_PROVIDER = auto() OTA_REQUESTOR = auto() def ExamplePath(self): if self == HostApp.ALL_CLUSTERS: return 'all-clusters-app/linux' elif self == HostApp.CHIP_TOOL: return 'chip-tool' elif self == HostApp.THERMOSTAT: return 'thermostat/linux' elif self == HostApp.RPC_CONSOLE: return 'common/pigweed/rpc_console' elif self == HostApp.MIN_MDNS: return 'minimal-mdns' elif self == HostApp.ADDRESS_RESOLVE: return '../' elif self == HostApp.TV_APP: return 'tv-app/linux' elif self == HostApp.LOCK: return 'door-lock-app/linux' elif self == HostApp.TESTS: return '../' elif self == HostApp.SHELL: return 'shell/standalone' elif self == HostApp.CERT_TOOL: return '..' elif self == HostApp.OTA_PROVIDER: return 'ota-provider-app/linux' elif self == HostApp.OTA_REQUESTOR: return 'ota-requestor-app/linux' else: raise Exception('Unknown app type: %r' % self) def OutputNames(self): if self == HostApp.ALL_CLUSTERS: yield 'chip-all-clusters-app' yield 'chip-all-clusters-app.map' elif self == HostApp.CHIP_TOOL: yield 'chip-tool' yield 'chip-tool.map' elif self == HostApp.THERMOSTAT: yield 'thermostat-app' yield 'thermostat-app.map' elif self == HostApp.RPC_CONSOLE: yield 'chip_rpc_console_wheels' elif self == HostApp.MIN_MDNS: yield 'mdns-advertiser' yield 'mdns-advertiser.map' yield 'minimal-mdns-client' yield 'minimal-mdns-client.map' yield 'minimal-mdns-server' yield 'minimal-mdns-server.map' elif self == HostApp.ADDRESS_RESOLVE: yield 'address-resolve-tool' yield 'address-resolve-tool.map' elif self == HostApp.TV_APP: yield 'chip-tv-app' yield 'chip-tv-app.map' elif self == HostApp.LOCK: yield 'chip-door-lock-app' yield 'chip-door-lock-app.map' elif self == HostApp.TESTS: pass elif self == HostApp.SHELL: yield 'chip-shell' yield 'chip-shell.map' elif self == HostApp.CERT_TOOL: yield 'chip-cert' yield 'chip-cert.map' elif self == HostApp.OTA_PROVIDER: yield 'chip-ota-provider-app' yield 'chip-ota-provider-app.map' elif self == HostApp.OTA_REQUESTOR: yield 'chip-ota-requestor-app' yield 'chip-ota-requestor-app.map' else: raise Exception('Unknown app type: %r' % self) class HostBoard(Enum): NATIVE = auto() # cross-compile support ARM64 = auto() # for test support FAKE = auto() def BoardName(self): if self == HostBoard.NATIVE: uname_result = uname() arch = uname_result.machine # standardize some common platforms if arch == 'x86_64': arch = 'x64' elif arch == 'i386' or arch == 'i686': arch = 'x86' elif arch == 'aarch64' or arch == 'aarch64_be' or arch == 'armv8b' or arch == 'armv8l': arch = 'arm64' return arch elif self == HostBoard.ARM64: return 'arm64' elif self == HostBoard.FAKE: return 'fake' else: raise Exception('Unknown host board type: %r' % self) def PlatformName(self): if self == HostBoard.NATIVE: return uname().system.lower() elif self == HostBoard.FAKE: return 'fake' else: # Cross compilation assumes linux currently return 'linux' class HostBuilder(GnBuilder): def __init__(self, root, runner, app: HostApp, board=HostBoard.NATIVE, enable_ipv4=True, enable_ble=True, enable_wifi=True, use_tsan=False, use_asan=False, separate_event_loop=True, test_group=False, use_libfuzzer=False, use_clang=False, interactive_mode=True, use_platform_mdns=False): super(HostBuilder, self).__init__( root=os.path.join(root, 'examples', app.ExamplePath()), runner=runner) self.app = app self.board = board self.extra_gn_options = [] if not enable_ipv4: self.extra_gn_options.append('chip_inet_config_enable_ipv4=false') if not enable_ble: self.extra_gn_options.append('chip_config_network_layer_ble=false') if not enable_wifi: self.extra_gn_options.append('chip_enable_wifi=false') if use_tsan: self.extra_gn_options.append('is_tsan=true') if use_asan: self.extra_gn_options.append('is_asan=true') if not separate_event_loop: self.extra_gn_options.append('config_use_separate_eventloop=false') if not interactive_mode: self.extra_gn_options.append('config_use_interactive_mode=false') if test_group: self.extra_gn_options.append( 'chip_enable_group_messaging_tests=true') if use_libfuzzer: self.extra_gn_options.append('is_libfuzzer=true') if use_clang: self.extra_gn_options.append('is_clang=true') if use_platform_mdns: self.extra_gn_options.append('chip_mdns="platform"') if app == HostApp.TESTS: self.extra_gn_options.append('chip_build_tests=true') self.build_command = 'check' if app == HostApp.CERT_TOOL: # Certification only built for openssl if self.board == HostBoard.ARM64: # OpenSSL and MBEDTLS conflict. We only cross compile with mbedtls raise Exception( "Cannot cross compile CERT TOOL: ssl library conflict") self.extra_gn_options.append('chip_crypto="openssl"') self.build_command = 'src/tools/chip-cert' if app == HostApp.ADDRESS_RESOLVE: self.build_command = 'src/lib/address_resolve:address-resolve-tool' def GnBuildArgs(self): if self.board == HostBoard.NATIVE: return self.extra_gn_options elif self.board == HostBoard.ARM64: self.extra_gn_options.extend( [ 'target_cpu="arm64"', 'is_clang=true', 'chip_crypto="mbedtls"', 'sysroot="%s"' % self.SysRootPath('SYSROOT_AARCH64') ] ) return self.extra_gn_options elif self.board == HostBoard.FAKE: self.extra_gn_options.extend( [ 'custom_toolchain="//build/toolchain/fake:fake_x64_gcc"', 'chip_link_tests=true', 'chip_device_platform="fake"', ] ) return self.extra_gn_options else: raise Exception('Unknown host board type: %r' % self) def GnBuildEnv(self): if self.board == HostBoard.NATIVE: return None elif self.board == HostBoard.FAKE: return None elif self.board == HostBoard.ARM64: return { 'PKG_CONFIG_PATH': self.SysRootPath('SYSROOT_AARCH64') + '/lib/aarch64-linux-gnu/pkgconfig', } else: raise Exception('Unknown host board type: %r' % self) def SysRootPath(self, name): if not name in os.environ: raise Exception('Missing environment variable "%s"' % name) return os.environ[name] def build_outputs(self): outputs = {} for name in self.app.OutputNames(): path = os.path.join(self.output_dir, name) if os.path.isdir(path): for root, dirs, files in os.walk(path): for file in files: outputs.update({ file: os.path.join(root, file) }) else: outputs.update({ name: os.path.join(self.output_dir, name) }) return outputs ```
{ "source": "jcq15/chooseCourseHelper", "score": 3 }
#### File: jcq15/chooseCourseHelper/filter.py ```python import pandas as pd # change this def filter_func(x): return x['credit'] >= 5 data = pd.read_csv('output/courses.csv') df = data[data.apply(filter_func, axis=1)] #data.iloc[0,:].to_csv('output/query.csv', header=False, index=False) df.to_csv('output/query.csv', index=False) ```
{ "source": "jcq15/frogWechaty", "score": 2 }
#### File: jcq15/frogWechaty/baoshi.py ```python from local_libs.cyjl_server import CYJLServer from local_libs.gif_generator import GIFGenerator from local_libs.time_reporter import TimeReporter from local_libs.astrologist import Astrologist from local_libs.weather_forecaster import WeatherForecaster from local_libs import calculator from local_libs import PyOJAgent from local_libs.latex_delegate import LaTeXDelegate from local_libs.sudoku_manager import SudokuManager import numpy as np import random import re from pypinyin import pinyin, Style import uuid class Baoshi: def __init__(self): self.abs_path = '/home/wechat/wechatbot/' # self.abs_path = 'D:/bot_local/wechatbot/' self.prob_threshold = 0.2 self.status = 0 # 0: 无状态, 'cyjl': 在玩成语接龙 self.cyjl = CYJLServer(abs_path=self.abs_path) self.time_reporter = TimeReporter() self.astrologist = Astrologist() self.weather_forecaster = WeatherForecaster(abs_path=self.abs_path) self.oj_agent = PyOJAgent.PyOJAgent() self.oj_in_progress = False self.latex_color_str = '000000' self.gif_fg_color_str = '660874' self.gif_bg_color_str = 'ffffff' self.gif_generator = GIFGenerator( fg_color='#' + self.gif_fg_color_str, bg_color='#' + self.gif_bg_color_str) self.latex_resolution = 600 self.latex_delegate = LaTeXDelegate() self.sudoku_manager = SudokuManager() self.function = '@我并发送【括号】里的内容就行噢!\n' \ '0. 【功能】\n' \ '1. 【报时】\n' \ '2. 【24点】或【48点】\n' \ '3. 【运行 code】运行python代码,例如【运行 [i*i for i in range(10)]】\n' \ '4. 【天气 城市】查询天气,例如【天气 北京】\n' \ '5. 【今日运势 星座】算命,例如【今日运势 狮子座】\n' \ '6. 【成语接龙】,例如【成语接龙】\n' \ '7. 【OJ 题号】 做OJ题目,例如 【OJ 2】\n' \ '8. 【提交OJ 代码】 提交OJ代码,例如【提交OJ def main_function(a, b): return a + b】\n' \ '9. 【latex 表达式】 由LaTeX表达式生成图片,例如【latex e^{i\\pi} + 1 = 0】\n' \ 'A. 【latex颜色 6位色号(RRGGBB)】 修改LaTeX颜色,例如【颜色 114514】\n' \ 'B. 【分辨率 数值】 修改LaTeX分辨率,例如【分辨率 600】\n' \ 'C. 【gif 文本】 由文本生成gif图片,例如【gif 苟利国家生死以】\n'\ 'D. 【gif前景色 6位色号(RRGGBB)】 修改gif前景色,例如【gif前景色 660874】\n' \ 'E. 【数独】 显示当前数独题目,例如【数独】\n'\ 'F. 【数独 重新出题】 出一道新数独题,例如【数独 重新出题】\n'\ '10. 【数独 rcn】 在当前数独第r行第c列填入数字n,行列范围均为1-9,例如【数独 123】\n'\ '11. 【数独 答案】 显示当前数独答案,例如【数独 答案】\n' # 'E. 【gif背景色 6位色号(RRGGBB)】 修改gif背景色,例如【gif背景色 123456】\n' def cyjl_helper(self, data, text): userid = data['contact'].id usernick = data['contact'].name if text == '结束成语接龙': # 结束 reply = self.cyjl.end_game() self.status = 0 return reply elif text == '成语接龙': # 成语接龙 return '你是不是沙雕,我们已经在玩成语接龙了!当前是第%s个成语:\n【%s】' % (self.cyjl.index, self.cyjl.now) elif text == '要看答案': return self.cyjl.report_solutions() elif len(text) > 0 and self.cyjl.data[self.cyjl.now][-1] in pinyin(text, style=Style.NORMAL)[0]: # 第一个字对上了 reply = self.cyjl.judge(text, userid, usernick) if not self.cyjl.next_list: # 后面没法接 reply += '\n这成语没法接,算了,就玩到这吧!\n' + self.cyjl.end_game() self.status = 0 else: pass return reply else: return '我们玩成语接龙呢,你少来插嘴没用的!' @staticmethod def parse_text(text): main_arg = None other_arg = None segs = text.split() if len(segs) > 0: main_arg = segs[0] if len(segs) > 1: other_arg = segs[1] else: pass else: pass return main_arg, other_arg def handle(self, data): if data['mentionSelf']: text = data['text'].replace('\u2005', '') text = text.replace('@青蛙', '') text = text.lstrip() main_arg, other_arg = self.parse_text(text) if not main_arg: return '不说话就别撩我!' else: pass if self.status == 0 and main_arg == '成语接龙': # 结束 self.status = 'cyjl' self.cyjl.start() return '成语接龙开始!当前是第%s个成语:\n%s' % (self.cyjl.index, self.cyjl.now) elif other_arg and main_arg == '修改模板': self.time_reporter.set_template(other_arg) return '修改成功!现在的模板是:\n' + self.time_reporter.template elif main_arg == '功能': return self.function elif main_arg == '报时': return self.time_reporter.gettext() elif other_arg and (main_arg == '计算' or main_arg == '运行'): expression = text[2:] res = calculator.safe_calculate(expression.lstrip(), 2) print(res) return res elif text == 'ping': return str(data['age']) elif text == '24点': array_data = np.loadtxt(self.abs_path + 'resources/24p_1_9.txt') ind = np.random.randint(low=0, high=len(list(array_data))) choice = list(array_data)[ind] choice = [int(c) for c in choice] num_str_list = [str(c) for c in choice] res = ' '.join(num_str_list) return '4 numbers: ' + res elif text == '48点': array_data = np.loadtxt(self.abs_path + 'resources/48p_1_13.txt') ind = np.random.randint(low=0, high=len(list(array_data))) choice = list(array_data)[ind] choice = [int(c) for c in choice] num_str_list = [str(c) for c in choice] res = ' '.join(num_str_list) return '4 numbers: ' + res # 今日星座运势功能 elif other_arg and main_arg == '今日运势': return self.astrologist.get_data(other_arg) elif len(text) >= 5 and text[:5] == '晚安小青蛙': return '你是猪吗?还睡!别@我了,再@自杀!' elif other_arg and main_arg == '天气': return self.weather_forecaster.get_weather(other_arg) elif other_arg and main_arg.lower() == 'oj': try: problem_id = int(other_arg) except ValueError as e: # print(repr(e)) return '请输入合法的题号!' else: oj_filename = self.abs_path + 'resources/OJ/Problems/Problem' + str(problem_id) + '.plm' success = self.oj_agent.load_problem_file(oj_filename) if not success: return '田了!题库里没这题!' else: return self.oj_agent.describe_problem() elif other_arg and main_arg.lower() == '提交oj': if self.oj_in_progress: return '上一个OJ还没测试完呢,先等会儿!急什么!' else: self.oj_in_progress = True code = text[4:].lstrip() self.oj_agent.test_submission(code) self.oj_in_progress = False return self.oj_agent.report_submission_result() elif main_arg.lower() == 'latex': expression = text[5:].lstrip() filename = self.abs_path + 'resources/images/' + str(uuid.uuid1()) + '.png' status, info = self.latex_delegate.latex2png( expression=expression, local_file_name=filename, resolution=self.latex_resolution, color_str=self.latex_color_str ) if status: return info, 'image' else: return info elif main_arg == 'latex颜色': if len(other_arg) == 6 and re.match(r'[0-9a-fA-F]{6}', other_arg): self.latex_color_str = other_arg return 'LaTeX颜色修改成功!当前颜色为:' + other_arg.lower() else: return '别胡闹,没这色儿!' elif main_arg == '分辨率': try: res = int(other_arg) if 1 <= res <= 1000: self.latex_resolution = res return '分辨率修改成功!当前分辨率为:{0}'.format(res) else: return '分辨率过大或过小!' except Exception as e: return '分辨率必须是正整数!' elif main_arg == '数独': filename = self.abs_path + 'resources/images/' + str(uuid.uuid1()) + '.jpg' if not other_arg: if not self.sudoku_manager.problem: self.sudoku_manager.generate() self.sudoku_manager.generate_image(filename=filename, option='problem') else: self.sudoku_manager.generate_image(filename=filename, option='user') return filename, 'image' elif other_arg == '重新出题': self.sudoku_manager.generate() self.sudoku_manager.generate_image(filename=filename, option='problem') return filename, 'image' elif other_arg == '答案': if not self.sudoku_manager.problem: return '题都没有,哪来的答案!' else: self.sudoku_manager.generate_image(filename=filename, option='answer') return filename, 'image' else: if len(other_arg) == 3 and re.match(r'[1-9]{2}[0-9]{1}', other_arg): row = int(other_arg[0]) - 1 col = int(other_arg[1]) - 1 num = int(other_arg[2]) result = self.sudoku_manager.user_fill(row, col, num) if not result[0]: return result[1] else: if result[1].lower() == 'Finished': print('完成!') else: print('未完成!') self.sudoku_manager.generate_image(filename=filename, option='user') return filename, 'image' else: return '输入不合法!' elif main_arg.lower() == 'gif前景色': if len(other_arg) == 6 and re.match(r'[0-9a-fA-F]{6}', other_arg): self.gif_fg_color_str = other_arg self.gif_generator.fg_color = '#' + self.gif_fg_color_str return 'gif前景色修改成功!当前颜色为:' + other_arg.lower() else: return '别胡闹,没这色儿!' # 未正式上线的测试功能 elif main_arg.lower() == 'gif背景色': if len(other_arg) == 6 and re.match(r'[0-9a-fA-F]{6}', other_arg): self.gif_bg_color_str = other_arg self.gif_generator.bg_color = '#' + self.gif_bg_color_str return 'gif背景色修改成功!当前颜色为:' + other_arg.lower() else: return '别胡闹,没这色儿!' elif text == '测试图片': return self.abs_path + 'resources/images/testgif.gif', 'image' elif len(text) >= 5 and text[:3] == 'gif': content = text[4:] filename = self.abs_path + 'resources/images/' + str(uuid.uuid1()) + '.gif' self.gif_generator.create_gif(content, filename=filename) return filename, 'image' elif self.status == 'cyjl': return self.cyjl_helper(data, text) else: if random.random() < self.prob_threshold: return '本蛙懒得理你!' else: return None else: if random.random() < self.prob_threshold: return '本蛙不说话就静静看你们聊天!' else: return None ``` #### File: frogWechaty/local_libs/PyOJAgent.py ```python from RestrictedPython import compile_restricted from RestrictedPython import Eval from RestrictedPython import Guards from RestrictedPython import safe_globals from RestrictedPython import utility_builtins from RestrictedPython.PrintCollector import PrintCollector from multiprocessing import Process from multiprocessing import Manager import local_libs.ProblemFileHandler as Handler import time class PyOJAgent: def __init__(self, memory_limit=1048576, time_limit=5): self.name = 'default_agent' self.memory_limit = memory_limit self.time_limit = time_limit self.submission_result = [] self.problem_dict = {} self.compile_error_flag = False self.compile_error_info = '' self.problem_file_handler = Handler.ProblemFileHandler() def load_problem_file(self, problem_file): self.problem_dict = self.problem_file_handler.load_problem_file(problem_file) if self.problem_dict: return True else: return False def test_submission(self, submission_code_str): self.submission_result = [] self.compile_error_flag = False if not self.problem_dict: return else: pass try: compile_restricted(submission_code_str, '<inline>', 'exec') except Exception as e: self.compile_error_flag = True self.compile_error_info = repr(e) return for test_case in self.problem_dict['test_cases']: print('testing test case:', test_case, sep='\n') suffix = '\noutput = main_function' + str(tuple(test_case[0])) try: manager = Manager() py_code = submission_code_str + suffix ret_dict = manager.dict() p = Process(target=target_function, args=(py_code, ret_dict)) p.start() time.sleep(self.time_limit) p.terminate() p.join() if not ret_dict: self.submission_result.append('服务器资源不足!') return else: print('submission result: ', ret_dict['output']) if ret_dict['RE_flag']: self.submission_result.append('Runtime Error! ' + ret_dict['RE_info']) elif ret_dict['TLE_flag']: self.submission_result.append('Time Limit Exceeded! ') elif ret_dict['output'] == test_case[1]: self.submission_result.append('Accepted! ') else: self.submission_result.append('Wrong Answer! ') # add error types here maybe except Exception as e: print(repr(e)) def report_submission_result(self): if self.compile_error_flag: return "Compile Error!\n" + self.compile_error_info elif not self.problem_dict: return '未加载题目!' elif not self.submission_result: return 'No Report Available!' else: ret = '' n = len(self.submission_result) ret += '{0}组数据已测试,结果如下:\n'.format(n) for i in range(n): ret += '测试点{0}/{1}:'.format(i + 1, n) ret += self.submission_result[i] ret += '\n' return ret def describe_problem(self): if not self.problem_dict: return '未加载题目!' else: ret = '题目描述:\n' ret += self.problem_dict['text'] ret += '\n========\n' ret += '附加信息:\n' ret += '本次测试时间限制:{0} s,内存限制:{1} KB\n'.format(self.time_limit, self.memory_limit) return ret def reset(self): self.submission_result = [] self.problem_dict = {} # this function has to be defined outside the PyOJAgent class for multiprocessing to pickle def target_function(py_code, ret_dict): policy_globals = generate_restricted_environment_policy() policy_globals['output'] = None ret_dict['RE_flag'] = False ret_dict['RE_info'] = '' ret_dict['TLE_flag'] = True ret_dict['output'] = None try: byte_code = compile_restricted(py_code, '<inline>', 'exec') exec(byte_code, policy_globals) ret_dict['TLE_flag'] = False ret_dict['output'] = policy_globals['output'] except Exception as e: print(repr(e)) ret_dict['RE_flag'] = True # if RE, TLE flag would also be True ret_dict['RE_info'] = repr(e) finally: pass # print('finally') def generate_restricted_environment_policy(): policy_globals = {**safe_globals, **utility_builtins} policy_globals['__builtins__']['__metaclass__'] = type policy_globals['__builtins__']['__name__'] = type policy_globals['_getattr_'] = Guards.safer_getattr policy_globals['_write_'] = Guards.full_write_guard policy_globals['_getiter_'] = Eval.default_guarded_getiter policy_globals['_getitem_'] = Eval.default_guarded_getitem policy_globals['_print_'] = PrintCollector policy_globals['_iter_unpack_sequence_'] = Guards.guarded_iter_unpack_sequence return policy_globals ``` #### File: frogWechaty/local_libs/weather_forecaster.py ```python import pandas as pd import requests from bs4 import BeautifulSoup class WeatherForecaster: def __init__(self, abs_path='/home/wechat/wechatbot/'): self.abs_path = abs_path self.source_file = self.abs_path + 'resources/weather_city_id.csv' self.source_url = 'http://www.weather.com.cn/weather/' def get_weather(self, city): city_id = pd.read_csv(self.source_file, encoding='gbk') li = list(city_id[city_id['城市'] == city]['citycode']) if not li: return '没这地儿!' else: str_id = str(li[0]) ui = self.source_url + str_id + '.shtml' ri = requests.get(url=ui) # 访问页面 ri.encoding = ri.apparent_encoding # encoding soup = BeautifulSoup(ri.text, 'html.parser') #ul_tag = soup.find('ul', 't clearfix') body1 = soup.body # 获取body部分 data = body1.find('div', {'id': '7d'}) # 找到id为7d的div ul = data.find('ul') # 获取ul部分 li = ul.find_all('li') # 获取所有的li final = city + '7日天气速递:\n' for day in li: # 对每个li标签中的内容进行遍历 data = day.find('h1').string # 找到日期 temp = '【' + data + '】' inf = day.find_all('p') # 找到li中的所有p标签 if inf[1].find('span') is None: temperature_highest = '无' # 天气当中可能没有最高气温(傍晚) else: temperature_highest = inf[1].find('span').string # 找到最高气温 temperature_highest = temperature_highest temperature_lowest = inf[1].find('i').string # 找到最低温 temperature_lowest = temperature_lowest # 最低温度后面有个℃,去掉这个符号 temp += inf[0].string + ' ' temp += '最高:' + str(temperature_highest) + ' ' temp += '最低:' + str(temperature_lowest) + '\n' final += temp return final ``` #### File: jcq15/frogWechaty/mingyuan.py ```python def handle(data): if data['contact'].name == 'tensorspace': return ('闭嘴吧张量空间,本机器人看不下去了!', 'mention') ```
{ "source": "jcq15/mahjong", "score": 2 }
#### File: jcq15/mahjong/hnk05_hupai.py ```python import operator from global_data import * class HupaiCheck: # 对一副具有14张牌的手牌的胡牌与否、胡牌拆分形式进行判断,拥有两个输入接口:self.tehai和self.numtehai,分别表示用数字字母表示的手牌和 # 转化成了方便处理的数字形式的手牌,33332拆解形式是递归,返回存储在了self.hupaiway中,是一个最多三层嵌套的列表。如果没胡是空列表,和了的话 # 最大列表的第一层列表是胡牌形式,里面的每一个列表是拆分成33332中的一份、或者七对子的一对,或者国士无双的所有内容。 # 下一个版本的改进:输入不一定要输入28个字符,即2m3m4m应该被允许输入成234m,支持东南西北白发中输入 # 突然发现的问题:没做吃碰杠,计划改成负数来 def __init__(self, *, tehai='', numtehai=[]): self.tehai = tehai # 手牌,用mspz表示的 self.numtehai = numtehai # 手牌,用数字列表记录的东西 # 胡牌拆分完毕的嵌套列表,如果没胡是空列表,和了的话最大列表的第一层列表是胡牌形式,里面的每一个列表是拆分成 # 33332中的一份、或者七对子的一对,或者国士无双的所有内容 # 国士也是三层列表,这样格式统一,能省去一些田事 self.hupaiway = [] def hupai32_deal(self): hupaidevide_unranked = [] # 胡牌分割,没有进行排序之前的部分 hupaidevide = [] # 胡牌处理过程的中间变量 def hupai(tehai, sorted_): if len(tehai) == 2 and tehai[0] == tehai[1]: hupaidevide_unranked.append(sorted_ + [tehai]) else: for i in range(0, len(tehai)): if tehai[i] + 1 in tehai and tehai[i] + 2 in tehai: tehainext = tehai + [] i1 = tehainext.pop(i) a = tehainext.index(tehai[i] + 1) a1 = tehainext.pop(a) b = tehainext.index(tehai[i] + 2) b1 = tehainext.pop(b) hupai(tehainext, sorted_ + [[i1, a1, b1]]) for i in range(0, len(tehai)): if i + 2 < len(tehai) and tehai[i] == tehai[i + 1] and tehai[i] == tehai[i + 2]: hupai(tehai[:i] + tehai[i + 3:], sorted_ + [tehai[i:i + 3]]) hupai(self.tehai, []) for h in hupaidevide_unranked: h.sort(key=operator.itemgetter(0), reverse=False) for i in hupaidevide_unranked: if i not in hupaidevide: hupaidevide.append(i) for i in hupaidevide: for j in range(len(i)): if len(i[j]) == 2: i.append(i[j]) i.remove(i[j]) return hupaidevide @staticmethod def tehaitonumtehai(tehai, num=14): numtehai = [] for i in range(1, num + 1): numtehai.append(paitonum[tehai[:2]]) tehai = tehai[2:] numtehai.sort() return numtehai # 如果不是七对,返回空列表 def qidui(self): #qiduisymbol = True ans = [] for i in range(0, 7): if self.tehai[i * 2] != self.tehai[i * 2 + 1] or self.tehai[i * 2] == self.tehai[i * 2 - 1]: pass # qiduisymbol = False else: ans.append([tehai[i * 2], tehai[i * 2 + 1]]) #if qiduisymbol: # return ans return ans def gsws(self): gswslist = [1, 9, 11, 19, 21, 29, 31, 32, 34, 35, 37, 38, 40] symbol = True for i in gswslist: if i not in self.tehai: symbol = False if symbol: return [self.tehai] else: return [] def hupai_dealall(self): self.hupaiway = self.hupai32_deal() + self.qidui() + self.gsws() return self.hupaiway def hupaiway_usersee(self): if self.hupaiway != []: for i in self.hupaiway: print('胡牌方式有:') for j in i: for k in j: print(numtopai[k], end='') print(' ', end='') print('\n') if __name__ == '__main__': pai = '1m1m1m2m3m4m5m6m7m8m9m9m9m1z' hc = HupaiCheck(tehai=pai) hc.hupai_dealall() hc.hupaiway_usersee() # pai.numtehai = [1,1,2,2,2,3,3,3,4,4,5,5,6,6] #print(pai.hupai32_deal(pai.numtehai)) #print(pai.hupai_dealall(pai.numtehai)) #print(pai.hupaiway_usersee(pai.hupai_dealall(pai.numtehai))) ```
{ "source": "jcq15/wechatDevelop", "score": 3 }
#### File: jcq15/wechatDevelop/handle.py ```python import hashlib import web import reply import receive import requests import json import passwd #各种token import time import chrishat import traceback import cv2 import numpy as np import gufeng import newyear from urllib import parse class Handle(object): welcome = ('感谢关注!\n0.发送help2019查看2019年会发生的事\n' '1.直接发送消息即可调戏机器人\n' '2.表情包制作:回复helpmake查看\n' '3.古风歌词制作:发送gufeng随机生成古风歌词\n' '4.后台代码已经托管到GitHub,回复\"code\"查看项目\n' '5.公众号有很多有趣的推送,欢迎查看历史消息!\n' '6.您可随时回复menu查看此消息\n' '----------------\n' '商业合作请联系<EMAIL>') def POST(self): try: #if True: webData = web.data() print("Handle Post webdata is ", webData) #后台打日志 recMsg = receive.parse_xml(webData) if isinstance(recMsg, receive.Msg): openid = recMsg.FromUserName #用户 me = recMsg.ToUserName #我 # 文本消息 if recMsg.MsgType == 'text': #如果是文本消息 receive_content = recMsg.Content.decode() #消息内容 # 文本处理 send_content = self.dealText(receive_content) print("\nreceive: ", receive_content, '\nsend: ', send_content) replyMsg = reply.TextMsg(openid, me, send_content) return replyMsg.send() # 图片 if recMsg.MsgType == 'image': return success ''' pic_url = recMsg.PicUrl + '.jpg' response = requests.get(pic_url) image = np.asarray(bytearray(response.content), dtype="uint8") img = cv2.imdecode(image, cv2.IMREAD_COLOR) # 读帽子图,做 hat_img = cv2.imread("chris/hat.png",-1) output = chrishat.add_hat(img, hat_img) # 存 timename = time.strftime("%Y%m%d%H%M%S", time.localtime()) cv2.imwrite("/assets/image/"+timename+".png", output) cv2.destroyAllWindows() replyMsg = reply.TextMsg(openid, me, send_content) return replyMsg.send() ''' # 事件 if recMsg.MsgType == 'event': event = recMsg.Event if event == 'subscribe': #如果是关注 print("有人关注了!") replyMsg = reply.TextMsg(openid, me, Handle.welcome) return replyMsg.send() return "success" else: print("啥玩意啊") return "success" #微信爸爸要求回复success,否则不依不饶 except Exception as Argment: print(traceback.format_exc()) return "success" # 一开始验证用 def GET(self): try: data = web.input() if len(data) == 0: return "hello, this is handle view" signature = data.signature timestamp = data.timestamp nonce = data.nonce echostr = data.echostr token = passwd.check_token #按照公众号-基本配置中的自定义的token填写 list = [token, timestamp, nonce] list.sort() #为啥要排序 sha1 = hashlib.sha1() map(sha1.update, list) hashcode = sha1.hexdigest() print("handle/GET func: hashcode, signature: ", hashcode, signature) if hashcode == signature: return echostr else: return echostr except Exception as Argument: return Argument # 表情包制作 def makegif(self, txt): t = txt.split(' ') # value第一项是模板里几句话,第二项是API的template name makeDict = { 'makewjz':(4, 'wangjingze'), 'makejkl':(6, 'jinkela'), 'maketbs':(2, 'marmot'), 'makeqgwl':(6, 'dagong'), 'makewsyw':(9, 'sorry'), } try: tmplt = makeDict[t[0]] except KeyError as keyerr: return ('输入错误!第一行只能是:' '\nmakewjz\nmakejkl\nmaketbs\nmakeqgwl\nmakewsyw\n' '可是你这个皮孩子竟然输入了') + txt if len(t)-1 != tmplt[0]: return '不对!应该输入%d句话,但你竟然输入了%d句话,我的天呐,笨死!%s'\ % (tmplt[0], len(t)-1, '要不然你回复helpmake查看一下说明吧!') # 一会要post的东西 postDict = dict([(str(i), t[i+1]) for i in range(tmplt[0])]) response = requests.post(url = 'https://sorry.xuty.tk/api/%s/make' % tmplt[1],\ data = json.dumps(postDict)) if 200 == response.status_code: res = bytes.decode(response.content) r = ('制作成功!打开后点击下面的“访问原网页”或者复制链接用浏览器打开即可!\nhttps://sorry.xuty.tk') + res return r else: return "API出现异常,请联系我查看情况!\n<EMAIL>" # 机器人 def robot(self, txt): url = 'http://api.qingyunke.com/api.php?key=free&appid=0&msg=%s' % txt response = requests.post(url=url) res_dic = json.loads(response.content.decode('utf-8')) return res_dic['content'] # 处理文本,先检查是否是关键词,不是就发送到图灵 def dealText(self, txt): if len(txt) >= 4 and txt[0:4] == 'make': return self.makegif(txt) if txt == 'helpmake': return ('表情包制作功能,格式为:\n\n' 'makexxx 第1句 第2句 ... 第n句\n\n' '每句之间用一个半角空格分割,将xxx替换为下列表情包名字即可:\n' 'wjz:王境泽,4句\njkl:金坷垃,6句\ntbs:土拨鼠,2句\n' 'qgwl:窃格瓦拉,6句\nwsyw:为所欲为,9句\n\n' '示例:\n\nmakewjz 我就是饿死 死外边 不吃你们东西 真香') if txt == 'code': return '项目地址:https://github.com/jcq15/wechatDevelop' if txt == 'menu': return Handle.welcome #if txt == 'helphat': # return '直接发送图片即可制作,但必须有人脸。做完之后点击链接,再点下面的“访问原网页”。如果打开一片空白,说明没检测到人脸。' if txt == 'gufeng': return gufeng.getSentence(10) if len(txt) >= 4 and txt[0:4] == '2019': return newyear.makeNewYear(txt) if txt == 'help2019': return '发送“2019+你的名字”,例如“2019李华”,打开后点击下面的“访问原网页”保存即可!' # 不是关键词,发送到机器人 return self.robot(txt) ``` #### File: jcq15/wechatDevelop/menu.py ```python import requests import passwd import json # 这个函数以后分离出来 def get_access_token(): url = 'https://api.weixin.qq.com/cgi-bin/token?grant_type=client_credential&appid=%s&secret=%s' % (passwd.appid, passwd.app_secret) response = requests.get(url) #print(response.content.decode('utf-8')) res_dic = json.loads(response.content.decode('utf-8')) return res_dic['access_token'] data = { "button":[ { "name":"药春女少", "sub_button":[ { "type":"view", "name":"更换微信号之后", "url":"https://mp.weixin.qq.com/s?__biz=MzIwOTgzOTI5MQ==&mid=2247484353" }, ] }, { "type":"click", "name":"你是个啥", "key":"menu" }, { "name":"冰开塞露", "sub_button":[ { "type":"view", "name":"学霸谈996", "url":"https://mp.weixin.qq.com/s/h3sibQFx_Lq-dZLV7vMgGw" }, ] } ] } url = 'https://api.weixin.qq.com/cgi-bin/menu/create?access_token=%s' % get_access_token() if __name__ == '__main__': response = requests.post(url, data=json.dumps(data)) res_dic = json.loads(response.content.decode('utf-8')) print(res_dic) ```
{ "source": "jcq15/wechaty", "score": 3 }
#### File: wechaty/features/gif_manager.py ```python from features.feature_manager import ReflectiveManager from local_libs.gif_generator import GIFGenerator import uuid import re class GIFManager(ReflectiveManager): def __init__(self): super().__init__() self.gif_generator = GIFGenerator() self.default_resolution = 600 self.default_fg_color = '660874' self.default_bg_color = 'ffffff' self.user_config = {'default': [self.default_fg_color, self.default_bg_color]} self.gif_generator.set_fg(self.default_fg_color) self.gif_generator.set_bg(self.default_bg_color) def reflective_handle(self, data) -> list: args, text = self.preprocess(data) recipient = ReflectiveManager.get_source(data) if not args or len(args) < 2: return self.make_null_response() else: if args[0].lower() == 'gif': filename = self.abs_path + 'resources/images/' + str(uuid.uuid1()) + '.gif' fg_color, bg_color = self.user_config.get(recipient, self.user_config['default']) self.gif_generator.set_fg(fg_color) self.gif_generator.set_bg(bg_color) self.gif_generator.create_gif(text, filename=filename) return ReflectiveManager.reply_image(filename, data) elif args[0].lower() == 'gif前景色': if len(args[1]) == 6 and re.match(r'[0-9a-fA-F]{6}', args[1]): args[1] = args[1].lower() if recipient in self.user_config: self.user_config[recipient][0] = args[1] else: self.user_config[recipient] = [args[1], self.default_bg_color] msg = 'gif前景色修改成功!当前颜色为:' + args[1] return self.reply_text(msg, data) else: msg = '别胡闹,没这色儿!' return self.reply_text(msg, data, with_mention=True) elif args[0].lower() == 'gif背景色': # temporarily hidden if len(args[1]) == 6 and re.match(r'[0-9a-fA-F]{6}', args[1]): args[1] = args[1].lower() if recipient in self.user_config: self.user_config[recipient][1] = args[1] else: self.user_config[recipient] = [self.default_fg_color, args[1]] msg = 'gif背景色修改成功!当前颜色为:' + args[1] return self.reply_text(msg, data) else: msg = '别胡闹,没这色儿!' return self.reply_text(msg, data, with_mention=True) else: return self.make_null_response() ``` #### File: wechaty/features/twenty_four_manager.py ```python from features.feature_manager import ReflectiveManager from features.response_message import ResponseMessage import numpy as np class TwentyFourManager(ReflectiveManager): def __init__(self): super().__init__() self.file24 = self.abs_path + 'resources/24p_1_9.txt' self.file48 = self.abs_path + 'resources/48p_1_13.txt' self.data24 = np.loadtxt(self.file24) self.data48 = np.loadtxt(self.file48) def reflective_handle(self, data) -> list: args, _ = self.preprocess(data) if not args: return self.make_null_response() else: if args[0] == '24点': ind = np.random.randint(low=0, high=len(list(self.data24))) choice = list(self.data24)[ind] choice = [int(c) for c in choice] num_str_list = [str(c) for c in choice] res = ' '.join(num_str_list) text = '4 numbers: ' + res return self.reply_text(text, data, with_mention=True) elif args[0] == '48点': ind = np.random.randint(low=0, high=len(list(self.data48))) choice = list(self.data48)[ind] choice = [int(c) for c in choice] num_str_list = [str(c) for c in choice] res = ' '.join(num_str_list) text = '4 numbers: ' + res return self.reply_text(text, data, with_mention=True) else: return self.make_null_response() ``` #### File: wechaty/local_libs/gif_generator.py ```python from PIL import Image from PIL import ImageDraw from PIL import ImageFont import unicodedata # 根据文本创建gif class GIFGenerator: def __init__(self, fg_color=(0, 0, 0), bg_color=(255, 255, 255)): self.SELECTOR = '\ufe0f' # emoji selector self.canvas_height = 1024 self.canvas_width = 1024 self.max_cols = 10 self.max_rows = 10 self.max_chars = 100 self.font_file = 'simhei' # self.fontsize = 56 self.fontsize = 96 self.fg_color = fg_color self.bg_color = bg_color # self.font_file = 'resources/fonts/EmojiOneColor-SVGinOT.ttf' def set_fg(self, color_str): self.fg_color = '#' + color_str def set_bg(self, color_str): self.bg_color = '#' + color_str def parse(self, txt): # return parsed text with \n added output = "" current_row = 1 current_col = 0 # width already occupied char_count = 0 for ch in txt: # what will happen AFTER ch is appended (not yet if unicodedata.east_asian_width(ch) in ['W', 'F', 'A']: current_width = 1 else: current_width = 0.5 if ch == '\n': current_row += 1 current_col = 0 elif ch == self.SELECTOR: continue else: current_col += current_width if current_col > self.max_cols: output += '\n' char_count += 1 current_row += 1 current_col = current_width else: pass if current_row > self.max_rows: print('Warning: canvas full. String may be trimmed.') break elif char_count > self.max_chars: print('Warning: Memory limit reached. String may be trimmed.') break else: output += ch char_count += 1 return output def create_gif(self, text, filename='test.gif', imgsize=None, duration=200, loop=0): if not imgsize: imgsize = self.canvas_width, self.canvas_height else: pass img_seed = Image.new('RGB', imgsize, self.bg_color) font = ImageFont.truetype(self.font_file, self.fontsize) ctr = 0 images = [img_seed] text = self.parse(text) for ind in range(len(text)): print('{0}/{1} frames'.format(ind + 1, len(text))) if text[ind] != '\n': frame = img_seed.copy() d = ImageDraw.Draw(frame) d.text((10, 10), text[: ind + 1], fill=self.fg_color, font=font) ctr = ctr + 1 images.append(frame) else: continue images[0].save(filename, save_all=True, append_images=images[1:], optimize=True, duration=duration, loop=loop) ```
{ "source": "JcQSteven/wanballk", "score": 3 }
#### File: JcQSteven/wanballk/main.py ```python import colorsys import cv2 import numpy as np import collections import os import time def canConnect(x1,y1,x2,y2,imageMatrix): ''' :两个方块是否可以连通函数 ''' # 将传入的二维数组赋值给本地全局变量, result = imageMatrix # 如果有一个为0 直接返回False if result[x1][y1] == 0 or result[x2][y2] == 0: return False if x1 == x2 and y1 == y2: return False if result[x1][y1] != result[x2][y2]: return False # 先判断横向可连通 if horizontalCheck(x1, y1, x2, y2,result): return True # 在判断纵向可连通 if verticalCheck(x1, y1, x2, y2,result): return True # 判断一个拐点的可连通情况 if turnOnceCheck(x1, y1, x2, y2,result): return True # 判断两个拐点的可连通情况 if turnTwiceCheck(x1, y1, x2, y2,result): return True # 都不可连通,返回false return False def horizontalCheck(x1,y1,x2,y2,result): ''' :判断水平方向能够连通 ''' # 判断两个不是同一个方块 if x1 == x2 and y1 == y2: return False # 判断两个的纵坐标相同 if x1 != x2: return False startY = min(y1, y2) endY = max(y1, y2) # 判断两个方块是否相邻 if (endY - startY) == 1: return True # 判断两个方块通路上是否都是0,有一个不是,就说明不能联通,返回false for i in range(startY+1,endY): if result[x1][i] != 0: return False return True def verticalCheck(x1,y1,x2,y2,result): ''' :判断垂直方向能否连通 ''' # 判断不是同一个方块 if x1 == x2 and y1 == y2: return False # 判断两个横坐标相同 if y1 != y2: return False startX = min(x1, x2) endX = max(x1, x2) # 判断两个方块是否相邻 if (endX - startX) == 1: return True # 判断两方块儿通路上是否可连。 for i in range(startX+1,endX): if result[i][y1] != 0: return False return True def turnOnceCheck(x1,y1,x2,y2,result): ''' :判断单拐点情况能否连通 ''' # 实现单拐点校验。 if x1 == x2 and y1 == y2: return False # 一个拐点,说明两个方块必须在不同行不同列! if x1 != x2 and y1 != y2: # cx cy dx dy 记录两个拐点的坐标 cx = x1 cy = y2 dx = x2 dy = y1 # 拐点为空,从第一个点到拐点并且从拐点到第二个点可通,则整条路可通。 if result[cx][cy] == 0: if horizontalCheck(x1, y1, cx, cy,result) and verticalCheck(cx, cy, x2, y2,result): return True if result[dx][dy] == 0: if verticalCheck(x1, y1, dx, dy,result) and horizontalCheck(dx, dy, x2, y2,result): return True return False def turnTwiceCheck(x1,y1,x2,y2,result): ''' :两个拐点的情况能否连通 ''' if x1 == x2 and y1 == y2: return False # 遍历整个数组找合适的拐点 for i in range(0,len(result)): for j in range(0,len(result[1])): # 不为空不能作为拐点 if result[i][j] != 0: continue # 不和被选方块在同一行列的 # 不能作为拐点 if i != x1 and i != x2 and j != y1 and j != y2: continue # 作为交点的部分也要过滤掉 if (i == x1 and j == y2) or (i == x2 and j == y1): continue if turnOnceCheck(x1, y1, i, j,result) and (horizontalCheck(i, j, x2, y2,result) or verticalCheck(i, j, x2, y2,result)): return True if turnOnceCheck(i, j, x2, y2,result) and (horizontalCheck(x1, y1, i, j,result) or verticalCheck(x1, y1, i, j,result)): return True return False def getColorList(): dict = collections.defaultdict(list) # 黑色 lower_black = np.array([0, 0, 0]) upper_black = np.array([180, 255, 46]) color_list = [] color_list.append(lower_black) color_list.append(upper_black) dict['black'] = color_list # #灰色 # lower_gray = np.array([0, 0, 46]) # upper_gray = np.array([180, 43, 220]) # color_list = [] # color_list.append(lower_gray) # color_list.append(upper_gray) # dict['gray']=color_list # 白色 lower_white = np.array([0, 0, 221]) upper_white = np.array([180, 30, 255]) color_list = [] color_list.append(lower_white) color_list.append(upper_white) dict['white'] = color_list # 红色 lower_red = np.array([156, 43, 46]) upper_red = np.array([180, 255, 255]) color_list = [] color_list.append(lower_red) color_list.append(upper_red) dict['red'] = color_list # 红色2 lower_red = np.array([0, 43, 46]) upper_red = np.array([10, 255, 255]) color_list = [] color_list.append(lower_red) color_list.append(upper_red) dict['red2'] = color_list # 橙色 lower_orange = np.array([11, 43, 46]) upper_orange = np.array([19, 255, 255]) color_list = [] color_list.append(lower_orange) color_list.append(upper_orange) dict['orange'] = color_list # 黄色 lower_yellow = np.array([20, 43, 46]) upper_yellow = np.array([34, 255, 255]) color_list = [] color_list.append(lower_yellow) color_list.append(upper_yellow) dict['yellow'] = color_list # 绿色 lower_green = np.array([35, 43, 46]) upper_green = np.array([77, 255, 255]) color_list = [] color_list.append(lower_green) color_list.append(upper_green) dict['green'] = color_list # 青色 lower_cyan = np.array([78, 43, 46]) upper_cyan = np.array([99, 255, 255]) color_list = [] color_list.append(lower_cyan) color_list.append(upper_cyan) dict['cyan'] = color_list # 蓝色 lower_blue = np.array([100, 43, 46]) upper_blue = np.array([124, 255, 255]) color_list = [] color_list.append(lower_blue) color_list.append(upper_blue) dict['blue'] = color_list # 紫色 lower_purple = np.array([125, 43, 46]) upper_purple = np.array([155, 255, 255]) color_list = [] color_list.append(lower_purple) color_list.append(upper_purple) dict['purple'] = color_list return dict def get_color(frame): print('go in get_color') hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) maxsum = -100 color = None color_dict = getColorList() for d in color_dict: mask = cv2.inRange(hsv, color_dict[d][0], color_dict[d][1]) # cv2.imwrite(d + '.jpg', mask) binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1] binary = cv2.dilate(binary, None, iterations=2) img, cnts, hiera = cv2.findContours(binary.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) sum = 0 for c in cnts: sum += cv2.contourArea(c) if sum > maxsum: maxsum = sum color = d return color def getImage(): os.system("adb shell /system/bin/screencap -p /sdcard/tmp/tupian.png") os.system("adb pull /sdcard/tmp/tupian.png /Users/steven/Desktop/lianliankan/tupian.png") img=cv2.imread('./tupian.png') # print(img.shape) cropImage=img[790:2207,45:1033] cv2.imwrite("./cropImage.png", cropImage) return cropImage def getMatrix(cropImage): #对单个方块进行切割 square_list=[] lenX=130 blankX=13 lenY=130 blankY=13 numX=7 #列数 numY=10 #行数 count=0 types = [] # 记录颜色种类 tmp=[] #缓存队列 imageMatrix=[] #生成的矩阵 for y in range(numY): for x in range(numX): square=cropImage[(lenY+blankY)*y:blankY*y+lenY*(y+1),(lenX+blankX)*x:blankX*x+lenX*(x+1)] cv2.imwrite("./tmp/{0}.png".format(count), square) square_list.append(square) count=count+1 #获取方块主体颜色种类并生成矩阵 count=0 for square in square_list: print("tag:{0}".format(count)) count = count + 1 image_value = get_color(square) tmp.append(image_value) print(image_value) if len(tmp) == numX: imageMatrix.append(tmp) tmp=[] if image_value not in types: types.append(image_value) print("types:{0}".format(len(types))) return imageMatrix def removeSquare(imageMatrix): for i in range(35): autoRemove(imageMatrix) def autoRemove(imageMatrix): game_x=45 game_y=790 touchSize=65 TIME_INTERVAL=0.5 for i in range(0,len(imageMatrix)): for j in range(0,len(imageMatrix[0])): # 以上两个for循环,定位第一个选中点 if imageMatrix[i][j] != 0: for m in range(0,len(imageMatrix)): for n in range(0,len(imageMatrix[0])): if imageMatrix[m][n] != 0: # 后两个for循环定位第二个选中点 # 执行消除算法并返回 if canConnect(i,j,m,n,imageMatrix): imageMatrix[i][j] = 0 imageMatrix[m][n] = 0 print('可消除点:'+ str(i+1) + ',' + str(j+1) + '和' + str(m+1) + ',' + str(n+1)) x1 = game_x + j*130+touchSize y1 = game_y + i*130+touchSize x2 = game_x + n*130+touchSize y2 = game_y + m*130+touchSize print("点击:({0},{1}),({2},{3})".format(x1,y1,x2,y2)) adbControl(x1,y1) time.sleep(TIME_INTERVAL) adbControl(x2,y2) time.sleep(TIME_INTERVAL) # win32api.SetCursorPos((x1 + 15,y1 + 18)) # win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, x1+15, y1+18, 0, 0) # win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, x1+15, y1+18, 0, 0) # time.sleep(TIME_INTERVAL) # # win32api.SetCursorPos((x2 + 15, y2 + 18)) # win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, x2 + 15, y2 + 18, 0, 0) # win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, x2 + 15, y2 + 18, 0, 0) # time.sleep(TIME_INTERVAL) return True return False pass def adbControl(x,y): os.system("adb shell input tap {0} {1}".format(x,y)) if __name__ == '__main__': cropImage=getImage() imageMatrix=getMatrix(cropImage) removeSquare(imageMatrix) # print(imageMatrix) ```
{ "source": "JcQSteven/zjutmail", "score": 3 }
#### File: JcQSteven/zjutmail/zjutmail.py ```python from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait import time class BrowserTest: browser = None def getBrowser(self): self.browser = webdriver.Chrome() return self def getWeb(self,url): self.browser.get(url) def getElement(self,element): try: wait = WebDriverWait(self.browser, 5) ele = wait.until(lambda x: x.find_element_by_xpath(element)) except: print("元素不存在") raise return ele def setElement(self,element,param): ele = self.getElement(element) ele.clear() ele.send_keys(param) def clickElement(self,element): ele = self.browser.find_element_by_xpath(element) ele.click() def close(self): self.browser.close() class FileObj: route = None def setRoute(self,route): self.route = route def Write(self,str): with open(self.route,'a') as f: f.write(str+'\n') setPswd = '123qweQWE' Outputfile = FileObj() Outputfile.setRoute("/Users/jerry-pc/Desktop/1.out") browser = BrowserTest() count = -1 for count, f in enumerate(open('/Users/jerry-pc/Desktop/1.in', 'rU')): user,pswd = f.strip('\n').split(",") print(user+" "+pswd) browser.getBrowser().getWeb(url="http://mail.zjut.edu.cn/") browser.setElement('//input[@id="user"]',user) browser.setElement('//input[@id="password"]',pswd) browser.clickElement('//input[@id="submit"]') try: browser.setElement('//input[@id="oldpassword"]',"<PASSWORD>") #实际使用时修改为pswd browser.setElement('//input[@id="newpassword"]',setPswd) browser.setElement('//input[@id="repassword"]',setPswd) browser.clickElement('//div[@class="layercontentbtn"]/input') except: Outputfile.Write("%s,%s,Error,%s"%(user,pswd,pswd)) else: Outputfile.Write("%s,%s,Success,%s"%(user,pswd,setPswd)) browser.close() count += 1 ```
{ "source": "jcquinlan/colophon", "score": 2 }
#### File: core/forms/edit_design_document_form.py ```python import json from django import forms from core.models import DesignDocument, DesignDocumentImage, DesignDocumentPackage class EditDesignDocumentForm(forms.ModelForm): document_images = forms.CharField(widget=forms.HiddenInput(), required=False, label='') asset_url = forms.CharField(widget=forms.HiddenInput(), required=False, label='') document_images_to_remove = forms.CharField( widget=forms.HiddenInput(), required=False, label='' ) asset_url_to_remove = forms.CharField(widget=forms.HiddenInput(), required=False, label='') class Meta: model = DesignDocument exclude = ['uploaded_by', 'created_at', 'has_download', 'has_assets',] def is_valid(self): valid = super(EditDesignDocumentForm, self).is_valid() if not valid: return valid design_document = self.instance removing_too_many_images = False trying_to_remove_asset = False document_images_to_remove = self.pull_and_parse_attr('document_images_to_remove', []) asset_url = self.pull_and_parse_attr('asset_url', None) asset_url_to_remove = self.pull_and_parse_attr('asset_url_to_remove', None) # If the user is trying to remove all their images if len(document_images_to_remove) >= len(design_document.images.all()): removing_too_many_images = True self.add_error(None, 'You must leave at least one image.') # If the user is trying to remove an asset without also providing one if asset_url_to_remove and not asset_url: trying_to_remove_asset = True self.add_error(None, 'You cannot remove an asset without providing a new one.') if removing_too_many_images or trying_to_remove_asset: return False return valid def save(self, request): data = self.cleaned_data design_document = super(EditDesignDocumentForm, self).save(commit=False) # Mutably move the file urls from the cleaned data file_urls = self.pull_and_parse_attr('document_images', []) asset_url = self.pull_and_parse_attr('asset_url', None) document_images_to_remove = self.pull_and_parse_attr('document_images_to_remove', []) # Assign the user that created/edited the document design_document.uploaded_by = request.user # Save document package if available if asset_url: design_document_package = DesignDocumentPackage( design_document=design_document, package_url=asset_url ) design_document.has_download = True design_document.save() design_document_package.save() # Save document images if available for url in file_urls: design_document_image = DesignDocumentImage( design_document=design_document, image_url=url, ) design_document_image.save() design_document.images.add(design_document_image) for image_id in document_images_to_remove: design_document_images = DesignDocumentImage.objects.filter( id=image_id, design_document=design_document, ) if design_document_images: design_document_images.delete() design_document.save() return design_document def pull_and_parse_attr(self, attr_name, default): """Pulls an attribute from the uncleaned data and parses it into a useable value""" string_val = self.data.get(attr_name) return json.loads(string_val) if string_val else default ``` #### File: core/templatetags/format_font_name_filter.py ```python from django import template from django.template.defaultfilters import stringfilter register = template.Library() @register.filter @stringfilter def format_font_name(value): """Formats a font name into the display version""" return value \ .replace('_', ' ') \ .title() ``` #### File: views/design_documents/design_document_detail.py ```python from django.views import View from django.http import JsonResponse from django.shortcuts import render, reverse, redirect, get_object_or_404 from core.models import DesignDocument, DesignDocumentPackage, UserDocumentFavorite class DesignDocumentDetailView(View): template_name = 'core/design-documents/design-document-detail.html' def get(self, request, document_id): design_document = get_object_or_404(DesignDocument, id=document_id) document_package = None if design_document.has_download: document_package = DesignDocumentPackage.objects.get(design_document=design_document) context = { 'document': design_document, 'document_package': document_package } return render(request, self.template_name, context) def delete(self, request, document_id): design_document = DesignDocument.objects.get(id=document_id) if design_document: design_document.delete() return JsonResponse({'message': 'Document deleted'}, status=204) else: return JsonResponse({'message': 'Document not found'}, status=404) ``` #### File: views/design_documents/design_document_edit.py ```python from django.views import View from django.shortcuts import render, reverse, redirect, get_object_or_404 from django.contrib.auth.mixins import LoginRequiredMixin from core.models import DesignDocument, DesignDocumentPackage from core.forms.edit_design_document_form import EditDesignDocumentForm class DesignDocumentEditView(LoginRequiredMixin, View): template_name = 'core/design-documents/design-document-edit.html' def get(self, request, document_id): design_document = get_object_or_404(DesignDocument, id=document_id, uploaded_by=request.user) design_document_form = EditDesignDocumentForm(instance=design_document) document_package = None if design_document.has_download: document_package = DesignDocumentPackage.objects.get(design_document=design_document) context = { 'document': design_document, 'design_document_form': design_document_form, 'document_package': document_package } return render(request, self.template_name, context) def post(self, request, document_id): design_document = get_object_or_404(DesignDocument, id=document_id, uploaded_by=request.user) design_document_form = EditDesignDocumentForm(request.POST, instance=design_document) document_package = None if design_document_form.is_valid(): design_document_form.save(request) if design_document.has_download: document_package = DesignDocumentPackage \ .objects.get(design_document=design_document) # Redirect to the detail page, with message param for successful edit return redirect("%s?m=es" % reverse( 'design_document_detail', args=(design_document.id,) )) context = { 'document': design_document, 'design_document_form': design_document_form, 'document_package': document_package } return render(request, self.template_name, context) ```
{ "source": "jcrafts318/Project-Submission-Portal", "score": 3 }
#### File: Project-Submission-Portal/python/network_lib.py ```python import re # Transport functions def ConstructRequest(type, size, flags): # PRE: type is a type of request; must be one that is laid out # in the "options" variable of the receiving host # size is the size of a buffer to be sent following the # request, or 0 if no buffer is to be sent # flags represents any special options for this request # POST: FCTVAL == a string usable as a request to send across the network return type + ":" + str(size) + ":" + str(flags) def ValidateResponse(connection, request, type, size, flags): # PRE: connection is an active socket connecting 2 hosts # request is the request that has just been made # type, size, and flags, are the arguments used to # create the request # a request has just been passed to the host on the other side of # connection # POST: if request is not equal to the request that would be constructed # using type, size, and flags, the connection is closed # NOTE: each request results in receiving the same request back from # the other host, so this should only be used in SendRequest to validate # that the request has been received successfully, as it will close the # connection if not if request != ConstructRequest(type, size, flags): print "Connection error has occured. Closing Connection." connection.close() exit(3) def SendRequest(connection, type, size, flags): # PRE: connection is an active socket connecting 2 hosts # type is a type of request; must be one that is laid out # in the "options" variable of the receiving host # size is the size of a buffer to be sent following the # request, or 0 if no buffer is to be sent # flags represents any special options for this request # POST: FCTVAL == response from the other host # if the response is valid, the other host is prepared to handle the request, # o.w. the connection is closed connection.send(ConstructRequest(type, size, flags)) response = connection.recv(1024) ValidateResponse(connection, response, type, size, flags) return response def ReceiveRequest(connection): # PRE: connection is an active socket connecting 2 hosts # POST: FCTVAL == an array of size 3 containing type, size, and flags # of the received request request = connection.recv(1024) connection.send(request) return re.split(":", request) def SendBuf(connection, size, buf): # PRE: connection is an active socket connecting 2 hosts # size is the size of the buffer to be sent # buf is the buffer itself # POST: the buffer is received by the other host bytesSent = 0 while (bytesSent < size): bytesSent += connection.send(buf[bytesSent:]) def ReceiveBuf(connection, size): # PRE: connection is an active socket connecting 2 hosts # size is the size of the buffer to be sent # POST: FCTVAL == the data contained in the buffer sent by the other host bytesRemaining = size buf = "" while (bytesRemaining > 0): chunk = connection.recv(min(bytesRemaining, 1024)) bytesRemaining -= len(chunk) buf += chunk return buf # Request Handling Functions def ConfirmConnection(connection, size, flags): # PRE: connection is an active socket connecting 2 hosts # size is the size communicated by the preceding request # flags are the flags communicated by the preceding request # POST: FCTVAL == the data contained in the buffer sent by the other host return "connected", 0 def GetEmail(connection, size, flags): # PRE: connection is an active socket connecting 2 hosts # size is the size communicated by the preceding request # flags are the flags communicated by the preceding request # POST: FCTVAL == a tuple containing the post-status of this function and # email sent from the other host email = ReceiveBuf(connection, size) return "email_set", email def GetFilename(connection, size, flags): # PRE: connection is an active socket connecting 2 hosts # size is the size communicated by the preceding request # flags are the flags communicated by the preceding request # POST: FCTVAL == a tuple containing the post-status of this function and # filename sent from the other host filename = ReceiveBuf(connection, size) return "filename_set", filename def GetProject(connection, size, flags): # PRE: connection is an active socket connecting 2 hosts # size is the size communicated by the preceding request # flags are the flags communicated by the preceding request # POST: FCTVAL == a tuple containing the post-status of this function and # tar sent from the other host tar = ReceiveBuf(connection, size) return "project_set", tar def GetStatus(connection, size, flags): # PRE: connection is an active socket connecting 2 hosts # size is the size communicated by the preceding request # flags are the flags communicated by the preceding request # POST: FCTVAL == a tuple containing the post-status of this function and # status of this thread print "status check" status = 0 return "status_check", status def CloseConnection(connection, size, flags): # PRE: connection is an active socket connecting 2 hosts # size is the size communicated by the preceding request # flags are the flags communicated by the preceding request # POST: FCTVAL == a tuple containing the post-status of this function and # 0 as the result return "close", 0 ```
{ "source": "jcrafts/dragon-radar", "score": 2 }
#### File: jcrafts/dragon-radar/auto_detect.py ```python import os import re import sys import logging import constants import subprocess from utils import load_autodetect, save_autodetect, load_episode_disc_data APP_NAME = constants.APP_NAME logger = logging.getLogger(APP_NAME) def _detect_ifo(directory): files = os.listdir(directory) max_vobs = 0 ifo_file = '' for f in files: fname, ext = os.path.splitext(f) if fname.upper().startswith('VTS') and ext.upper() == '.IFO': ifo_base = fname.rsplit('_', 1)[0] vobs = list( filter( lambda v: v != f and v.startswith(ifo_base), files) ) if len(vobs) > max_vobs: max_vobs = len(vobs) ifo_file = f return ifo_file def auto_detect(episode): ''' Run PGCDemux for each VOB ID and check the logfile Also save this information for later use ''' demux_map = load_autodetect(episode.number) if demux_map: return demux_map logger.info('Auto-detecting demux information for ' 'R1 DBox episode %s...', episode.number) disc_name = episode.demux_map['R1_DBOX']['disc'] logger.debug('Disc: %s', disc_name) auto_demux_map = {} disc_dir = os.path.join(episode.src_dir_top, episode.series, 'R1_DBOX', disc_name, 'VIDEO_TS') # get list of episodes that are on the current disc m = re.match(r'DRAGON_BOX_S(\d)_D(\d)', disc_name) disc_ep_range = load_episode_disc_data('DBoxZ', m.group(1), m.group(2)) disc_eps = range(disc_ep_range[0], disc_ep_range[1] + 1) ifo_file = _detect_ifo(disc_dir) ifo_file_abspath = os.path.join(disc_dir, ifo_file) vts = int(re.match(r'VTS_(\d\d)_0\.IFO', ifo_file.upper()).group(1)) logger.debug('Using detected IFO file %s', ifo_file_abspath) eps_detected = 0 for v in range(1, 100): # only generate logfile if eps_detected == len(disc_eps): break args = [episode.pgcdemux, '-vid', str(v), '-nom2v', '-noaud', '-nosub', '-nocellt', '-log', '-nogui', ifo_file_abspath, episode.temp_dir] subprocess.call(args) logfile = os.path.join(episode.temp_dir, 'LogFile.txt') with open(logfile) as file_: for line in file_: if line.startswith('Number of Cells in Selected VOB='): num_cells = int(line.strip().split('=')[1]) # at least 5 cells per episode if num_cells >= 5: episode_num = str(disc_eps[eps_detected]).zfill(3) logger.debug('Detected episode: %s', episode_num) auto_demux_map[episode_num] = { 'audio': ['en', 'jp'], 'cells': None, 'disc': disc_name, 'pgc': 1, 'type': 'vid', 'vid': [v], 'vts': vts } eps_detected = eps_detected + 1 break if disc_name == 'DRAGON_BOX_S6_D3': # weird offset of episodes on this disc vids = {k: m['vid'][0] for (k, m) in auto_demux_map.items()} for e in disc_eps: if e < 230: cur = str(e) nxt = str(e+1) auto_demux_map[nxt]['vid'][0] = vids[cur] auto_demux_map['224']['vid'][0] = vids['230'] logger.debug('Saving detected information for disc %s.', disc_name) save_autodetect(auto_demux_map) return auto_demux_map[episode.number] ``` #### File: jcrafts/dragon-radar/__main__.py ```python import os import sys import argparse import configparser import tempfile import logging import atexit import colorama import time import constants from episode import Episode from utils import (get_op_offset, pad_zeroes, load_validate, delete_temp, create_dir) from subtitle import detect_streams WELCOME_MSG = constants.WELCOME_MSG CONF_FILE = constants.CONF_FILE APP_NAME = constants.APP_NAME LOG_FILE = constants.LOG_FILE logger = logging.getLogger(APP_NAME) def load_config_file(): ''' Load config from dragon-radar.ini ''' config = configparser.ConfigParser() try: config.read(CONF_FILE) except configparser.Error: pass try: config.add_section(APP_NAME) except configparser.Error: pass return config def create_args(): ''' Set up command line options ''' parser = argparse.ArgumentParser(description='Create multiplexed Dragon ' 'Ball MKVs with Dragon Box ' 'video, and English audio ' 'and subtitles.') parser.add_argument('--series', metavar='<series>', help='Choose a series [DB, DBZ, DBGT]', required=True) episode_group = parser.add_mutually_exclusive_group(required=True) episode_group.add_argument('--episode', metavar='<number>', help='Episode to process. ' 'Can also be used with a range, i.e. ' '--episode <first>:<last>') episode_group.add_argument('--movie', metavar='<number>', help='Movie to process. ' 'Can also be used with a range, i.e. ' '--movie <first>:<last>') parser.add_argument('--verbose', action='store_true', default=False, help='More descriptive output') # for Z, get R1 assets from Dragon Box parser.add_argument('--r1-dbox', action='store_true', default=False, help='For DBZ, use the audio and subtitle assets ' 'from the Funimation Dragon Box') # the first 3 Z movies, get R1 assets from Pioneer DVDs parser.add_argument('--pioneer', action='store_true', default=False, help='For the first 3 DBZ movies, use the audio and ' 'subtitle assets from the Pioneer DVDs.') # don't use Funimation Remastered DVDs for the first 3 movies parser.add_argument('--no-funi', action='store_true', default=False, help='Use in conjunction with --pioneer to ignore ' 'assets from the Funimation remastered DVDs.') # shh, hidden options for debug use only # skip demux parser.add_argument('--no-demux', action='store_true', default=False, help=argparse.SUPPRESS) # save demuxed files to destination directory parser.add_argument('--no-mux', action='store_true', default=False, help=argparse.SUPPRESS) # skip retiming parser.add_argument('--no-retime', action='store_true', default=False, help=argparse.SUPPRESS) # only demux subtitles parser.add_argument('--sub-only', action='store_true', default=False, help=argparse.SUPPRESS) # create AVIsynth after demux parser.add_argument('--make-avs', action='store_true', default=False, help=argparse.SUPPRESS) # demux r1 video in addition to audio/subs parser.add_argument('--r1-vid', action='store_true', default=False, help=argparse.SUPPRESS) return parser def init_logging(verbose): level = logging.INFO if verbose: level = logging.DEBUG logger.setLevel(logging.DEBUG) stdout_handler = logging.StreamHandler() stdout_handler.setLevel(level) file_handler = logging.FileHandler(LOG_FILE, mode='w') file_handler.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') file_handler.setFormatter(formatter) logger.addHandler(stdout_handler) logger.addHandler(file_handler) def pre_check(args, config): ''' Make sure directories are correct and required programs are installed ''' def exe_check(name, isfile=False): try: path = config.get(APP_NAME, name.lower()) except configparser.Error: logger.error('Path to %s is not defined in dragon-radar.ini', name) return True logger.debug('%s path: %s', name, path) if isfile and not os.path.isfile(path): logger.error('Path to %s \"%s\" is invalid.', name, path) return True return False logger.debug('Performing pre-check...') bad_conf = False bad_conf = bad_conf or exe_check('PGCDemux', True) bad_conf = bad_conf or exe_check('VSRip', True) bad_conf = bad_conf or exe_check('DelayCut', True) bad_conf = bad_conf or exe_check('ReStream', True) bad_conf = bad_conf or exe_check('source_dir') bad_conf = bad_conf or exe_check('output_dir') if (args.series == 'DB' and args.episode in [26, 41] or args.series == 'DBZ' and args.episode == 24 or args.make_avs): # complex demux or avs generation, DGIndex required bad_conf = bad_conf or exe_check('DGIndex', True) if not args.no_mux: bad_conf = bad_conf or exe_check('mkvmerge', True) if bad_conf: sys.exit(1) else: logger.debug('Pre-check finished.') def bad_arg_exit(arg): logger.error('Bad argument for --%s', arg) sys.exit(1) def bad_combos(args): msg = 'Bad combination: ' for a in args: msg += '--' + a + ' ' if args.index(a) < len(args) - 1: msg += ', ' logger.error(msg) sys.exit(1) def split_args(argtype, arg): ''' Split argument into start/end ''' spread = arg.split(':', 1) try: start = int(spread[0]) end = int(spread[1]) except ValueError: bad_arg_exit(argtype) except IndexError: logger.debug('No end %s specified.', argtype) end = start return start, end def validate_args(args): ''' Validate all arguments ''' # series/episode checks start = 0 end = 0 special = None if args.series not in ['DB', 'DBZ', 'DBGT']: bad_arg_exit('series') valid = load_validate(args.series) if args.episode: argtype = 'episode' if args.series == 'DBZ': if args.episode in ['bardock', 'trunks']: special = args.episode elif 'bardock' in args.episode or 'trunks' in args.episode: logger.error('Please run --episode bardock or ' '--episode trunks on their own.') sys.exit(1) if args.series == 'DBGT': if args.episode == 'special': special = args.episode elif 'special' in args.episode: logger.error('Please run --episode special on its own.') sys.exit(1) if not special: start, end = split_args('episode', args.episode) elif args.movie: argtype = 'movie' start, end = split_args('movie', args.movie) if not special and not all((a - 1) in range( valid[argtype]) for a in (start, end)): bad_arg_exit(argtype) # contradictory arguments if args.r1_dbox and args.series != 'DBZ': logger.error('--r1-dbox can only be used with --series DBZ') sys.exit(1) if args.movie and args.r1_dbox: logger.error('Bad combination --movie and --r1-dbox') sys.exit(1) if not args.movie and args.pioneer: logger.error('--pioneer can only be used with --movie') sys.exit(1) if not args.pioneer and args.no_funi: logger.error('--no-funi can only be used with --pioneer') sys.exit(1) return start, end, special def main(): colorama.init() config = load_config_file() args, wtf = create_args().parse_known_args() if (wtf): logger.error('Unknown argument %s', wtf[0]) sys.exit(1) init_logging(args.verbose) # don't proceed if paths aren't right/programs missing pre_check(args, config) try: working_dir = config.get(APP_NAME, 'working_dir') except configparser.Error: working_dir = None if working_dir: if not os.path.isdir(working_dir): create_dir(working_dir) tempfile.tempdir = working_dir tmp_dir = tempfile.mkdtemp() logger.debug('Episode temp folder: %s', tmp_dir) atexit.register(delete_temp, tmp_dir) start, end, special = validate_args(args) print(WELCOME_MSG) for ep in range(start, end + 1): start_time = time.clock() episode = Episode(ep, config, args, tmp_dir, special) if not args.no_demux: episode.demux() else: if args.sub_only: detect_streams(os.path.join(config.get(APP_NAME, 'output_dir'), args.series, str(ep if not special else special).zfill(3), 'R1', 'Subtitle.idx')) if not args.no_retime: episode.retime_subs() episode.retime_audio() if not args.no_demux and args.no_mux: # move files to destination folder episode.move_demuxed_files() if not args.no_mux: episode.mux() if args.make_avs: # only works on files generated with --no-mux episode.make_avs() delete_temp(episode.temp_dir) elapsed = time.clock() - start_time logger.debug('Elapsed time: %s seconds', elapsed) logger.info('Finished!') if __name__ == "__main__": try: main() except EOFError: # cancel the input in the input prompt logger.error('Aborting.') sys.exit(1) except KeyboardInterrupt: logger.error('Aborting.') sys.exit(1) ```
{ "source": "jcraig0/MiniAlphaZero", "score": 4 }
#### File: jcraig0/MiniAlphaZero/othello.py ```python class OthelloBoard(): def __init__(self): self.grid = [[' '] * 8 for i in range(8)] self.grid[3][4] = self.grid[4][3] = 'X' self.grid[3][3] = self.grid[4][4] = 'O' self.turn = True self.winner = '' self.pieces = ('O', 'X') self.directions = ((-1, -1), (-1, 0), (-1, 1), (0, 1), (1, 1), (1, 0), (1, -1), (0, -1)) self.legal_moves = self.get_legal_moves(self.turn) self.num_total_moves = 65 self.size = 8 def get_legal_moves(self, turn): moves = [] for i in range(8): for j in range(8): if self.grid[i][j] == self.pieces[turn]: for dir in self.directions: span = 1 while True: new_i, new_j = i+dir[0]*span, j+dir[1]*span if new_i < 0 or new_i > 7 or \ new_j < 0 or new_j > 7: break space = self.grid[new_i][new_j] # If opponent's line of pieces continues if space == self.pieces[1-turn]: span += 1 else: # If current player can place piece # at end of the line if space == ' ' and span != 1: moves.append(new_i * 8 + new_j) break return set(moves) if moves else [64] def is_game_over(self): if self.legal_moves == [64] and \ self.get_legal_moves(not self.turn) == [64]: num_X = sum([i == 'X' for row in self.grid for i in row]) num_O = sum([i == 'O' for row in self.grid for i in row]) if num_X > num_O: self.winner = '1-0' elif num_O > num_X: self.winner = '0-1' else: self.winner = '1/2-1/2' return True def flip_pieces(self, i, j): for dir in self.directions: places = [] span = 1 while True: new_i, new_j = i+dir[0]*span, j+dir[1]*span if new_i < 0 or new_i > 7 or new_j < 0 or new_j > 7: break # If opponent's line of pieces continues if self.grid[new_i][new_j] == self.pieces[1-self.turn]: places.append((new_i, new_j)) span += 1 else: # If current player's piece at end of the line if self.grid[new_i][new_j] == self.pieces[self.turn]: for place in places: self.grid[place[0]][place[1]] = \ self.pieces[self.turn] break def push(self, move): if move != 64: i, j = move // 8, move % 8 self.grid[i][j] = self.pieces[self.turn] self.flip_pieces(i, j) self.turn = False if self.turn else True self.legal_moves = self.get_legal_moves(self.turn) def __str__(self): return '\n' + '\n'.join( [' '.join(['_' if i == ' ' else i for i in row]) for row in self.grid]) + '\n' ```
{ "source": "jcraig5/Pippin", "score": 2 }
#### File: Pippin/pippin/config.py ```python import configparser import inspect import os import logging import hashlib import shutil import os import shutil import stat def singleton(fn): instance = None def get(*args, **kwargs): nonlocal instance if instance is None: instance = fn(*args, **kwargs) return instance return get @singleton def get_config(): filename = os.path.abspath(os.path.dirname(inspect.stack()[0][1]) + "/../cfg.ini") config = configparser.ConfigParser() config.read(filename) return config def get_output_dir(): output_dir = get_config()['OUTPUT']['output_dir'] if output_dir.startswith("$"): output_dir = os.path.expandvars(output_dir) elif not output_dir.startswith("/"): output_dir = os.path.abspath(os.path.dirname(inspect.stack()[0][1]) + "/../" + output_dir) return output_dir def get_output_loc(path): if "$" in path: path = os.path.expandvars(path) if path.startswith("/"): return path else: return os.path.join(get_output_dir(), path) def get_hash(input_string): return hashlib.sha256(input_string.encode('utf-8')).hexdigest() @singleton def get_logger(): return logging.getLogger("pippin") def mkdirs(path): if not os.path.exists(path): os.makedirs(path, exist_ok=True, mode=0o775) chown_dir(path) def copytree(src, dst, symlinks=False, ignore=None): lst = os.listdir(src) if ignore: excl = ignore(src, lst) lst = [x for x in lst if x not in excl] for item in lst: s = os.path.join(src, item) d = os.path.join(dst, item) if symlinks and os.path.islink(s): if os.path.lexists(d): os.remove(d) os.symlink(os.readlink(s), d) try: st = os.lstat(s) mode = stat.S_IMODE(st.st_mode) os.lchmod(d, mode) except: pass # lchmod not available elif os.path.isdir(s): copytree(s, d, symlinks, ignore) else: shutil.copy2(s, d) def chown_dir(directory): global_config = get_config() logger = get_logger() try: shutil.chown(directory, group=global_config["SNANA"]["group"]) except Exception as e: logger.debug(str(e)) return for root, dirs, files in os.walk(directory): for d in dirs: try: shutil.chown(os.path.join(root, d), group=global_config["SNANA"]["group"]) except Exception: logger.debug(f"Chown error: {os.path.join(root, d)}") for f in files: try: shutil.chown(os.path.join(root, f), group=global_config["SNANA"]["group"]) except Exception: logger.debug(f"Chown error: {os.path.join(root, f)}") if __name__ == "__main__": c = get_config() print(c.sections()) print(c.get("SNANA", "sim_dir")) print(c["OUTPUT"].getint("ping_frequency")) ``` #### File: Pippin/pippin/dataprep.py ```python import shutil import subprocess import os from pippin.config import mkdirs, get_output_loc, get_config from pippin.task import Task class DataPrep(Task): # TODO: Define the location of the output so we can run the lc fitting on it. """ Smack the data into something that looks like the simulated data """ def __init__(self, name, output_dir, options, dependencies=None): super().__init__(name, output_dir, dependencies=dependencies) self.options = options self.global_config = get_config() self.logfile = os.path.join(self.output_dir, "output.log") self.conda_env = self.global_config["DataSkimmer"]["conda_env"] self.path_to_task = output_dir self.raw_dir = self.options.get("RAW_DIR") self.genversion = os.path.basename(self.raw_dir) self.data_path = os.path.dirname(self.raw_dir) self.job_name = f"DATAPREP_{self.name}" self.output["genversion"] = self.genversion self.output["data_path"] = self.data_path self.output["photometry_dir"] = get_output_loc(self.raw_dir) self.output["raw_dir"] = self.raw_dir self.clump_file = os.path.join(self.output_dir, self.genversion + ".SNANA.TEXT") self.output["clump_file"] = self.clump_file self.slurm = """#!/bin/bash #SBATCH --job-name={job_name} #SBATCH --time=0:20:00 #SBATCH --nodes=1 #SBATCH --ntasks-per-node=1 #SBATCH --partition=broadwl #SBATCH --output={log_file} #SBATCH --account=pi-rkessler #SBATCH --mem=2GB cd {path_to_task} snana.exe clump.nml if [ $? -eq 0 ]; then echo SUCCESS > {done_file} else echo FAILURE > {done_file} fi """ self.clump_command = """# # Obtaining Clump fit # to run: # snana.exe SNFIT_clump.nml # outputs csv file with space delimiters &SNLCINP ! For SNN-integration: OPT_SETPKMJD = 16 SNTABLE_LIST = 'SNANA(text:key)' TEXTFILE_PREFIX = '{genversion}' ! data PRIVATE_DATA_PATH = '{data_path}' VERSION_PHOTOMETRY = '{genversion}' PHOTFLAG_MSKREJ = 1016 !PHOTFLAG eliminate epoch that has errors, not LC &END """ def _get_types(self): self.logger.warning("Data does not report types, let's hope the defaults are up to date!") return None def _check_completion(self, squeue): if os.path.exists(self.done_file): self.logger.debug(f"Done file found at f{self.done_file}") with open(self.done_file) as f: if "FAILURE" in f.read(): self.logger.info(f"Done file reported failure. Check output log {self.logfile}") return Task.FINISHED_FAILURE else: self.output["types"] = self._get_types() return Task.FINISHED_SUCCESS return 1 # The number of CPUs being utilised def _run(self, force_refresh): command_string = self.clump_command.format(genversion=self.genversion, data_path=self.data_path) format_dict = { "job_name": self.job_name, "log_file": self.logfile, "path_to_task": self.path_to_task, "done_file": self.done_file } final_slurm = self.slurm.format(**format_dict) new_hash = self.get_hash_from_string(command_string + final_slurm) old_hash = self.get_old_hash() if force_refresh or new_hash != old_hash: self.logger.debug("Regenerating and launching task") shutil.rmtree(self.output_dir, ignore_errors=True) mkdirs(self.output_dir) self.save_new_hash(new_hash) slurm_output_file = os.path.join(self.output_dir, "slurm.job") clump_file = os.path.join(self.output_dir, "clump.nml") with open(slurm_output_file, "w") as f: f.write(final_slurm) with open(clump_file, "w") as f: f.write(command_string) self.logger.info(f"Submitting batch job for data prep") subprocess.run(["sbatch", slurm_output_file], cwd=self.output_dir) else: self.logger.info("Hash check passed, not rerunning") return True ```
{ "source": "jcramer/bchscript", "score": 3 }
#### File: bchscript/bchscript/bchprimitives.py ```python import pdb import copy import bchscript.bchopcodes as bchopcodes statementConsumerCallout = None def SetStatementConsumerCallout(t): global statementConsumerCallout statementConsumerCallout = t def compileStatementList(statements, symbols): ret = [] for s in statements: if type(s) in [int, str, bytes]: ret.append(s) else: ret.extend(s.compile(symbols)) return ret def compileParamsList(params, symbols): ret = [] if params is None: return [] # parameter is not yet bound (passing a macro) for s in params: if type(s) is int: ret.append(s) elif type(s) is str: ret.append(s) else: temp = s.compile(symbols) if type(temp) == list: ret.extend(temp) else: ret.append(temp) return ret def isInt(obj): try: i = int(obj) # Push a number onto the stack return True except: pass return False def paramsConsumer(tokens, n): args = {} assert tokens[n] == "(" n += 1 count = 0 while tokens[n] != ")": args[tokens[n]] = Param(tokens[n]) # store by name args[count] = tokens[n] # store by order n += 1 count += 1 if tokens[n] == ",": n += 1 n += 1 return (n, args) def argsConsumer(tokens, n, validSymbols): args = [] arg = [] assert tokens[n] == "(" n += 1 while tokens[n] != ")": if isInt(tokens[n]): arg.append(int(tokens[n])) n += 1 elif tokens[n][0] == '"': # Push data onto the stack arg.append(tokens[n]) n += 1 elif tokens[n] in validSymbols: (n, obj) = validSymbols[tokens[n]].parse(tokens, n + 1, validSymbols) arg.append(obj) else: if tokens[n] == ")": continue pdb.set_trace() raise Exception("invalid symbol: %s" % tokens[n]) if tokens[n] == ",": if len(arg) > 1: args.append(arg) else: args.extend(arg) arg = [] n += 1 if len(arg) > 1: args.append(arg) else: args.extend(arg) n += 1 return (n, args) class Binding: """Connects a macro definition with the arguments of a particular invocation """ def __init__(self, name, parserFn=None): self.name = name self.invocation = None self.outputs = None self.parserFn = parserFn self.instanceOf = None def matchArgs(self, bindings): """Match passed arguments with their definitions to produce a dictionary of { symbol: binding } pairs. Since this is itself a binding, apply both this binding & the outer binding to the definition to create the final argument binding """ if self.invocation: invocation = copy.copy(self.invocation) else: invocation = {} if bindings: invocation += bindings return self.instanceOf.matchArgs(invocation) def compile(self, symbols=None): """Compile into a list of statements, given an input substitution (symbol) table""" if self.instanceOf is None: # name has no binding, self.instanceOf = symbols[self.name] # so find it if symbols: syms = copy.copy(symbols) else: syms = {} cinv = compileParamsList(self.invocation, symbols) # Compile all the args syms.update(self.instanceOf.matchArgs(cinv)) ret = self.instanceOf.compile(syms) return ret def parse(self, tokens, n, symbols=None): """ could be a basic variable or an invocation """ if self.parserFn: return self.parserFn(self, tokens, n, symbols) else: params = None if tokens[n] == "(": params = [] (n, p) = argsConsumer(tokens, n, symbols) params += p if n < len(tokens) and tokens[n] == "->": n += 1 (n, p) = paramsConsumer(tokens, n) self.outputs = p self.invocation = params return (n, copy.copy(self)) class Param: """ """ def __init__(self, name, parserFn=None): self.name = name def compile(self, symbols=None): if self.name[0] == "@": # This is an implicitly pushed stack parameter return [symbols.get(self.name, self.name)] # return the binding if it exists or the param name binding = symbols.get(self.name) if binding is None: assert not "parameter %s is not bound" % self.name if type(binding) is list: # Already compiled return binding if type(binding) is str: # primitive return [binding] elif type(binding) is int: # primitive return [binding] elif type(binding) is bytes: # primitive return [binding] return binding.compile(symbols) # compile it def parse(self, tokens, n, symbols=None): """ could be a basic variable use or an invocation, used in the body of the function """ if 1: params = None if tokens[n] == "(": params = [] (n, p) = argsConsumer(tokens, n, symbols) params += p if n < len(tokens) and tokens[n] == "->": n += 1 (n, p) = paramsConsumer(tokens, n) self.outputs = p self.invocation = params return (n, copy.copy(self)) class Primitive: def __init__(self, name, bin, parserFn=None): self.name = name self.parserFn = parserFn self.outputs = None self.bin = bin self.params = [] def str(self): return self.name def serialize(self): return bytes([self.bin]) def compile(self, symbols): if self.params: ret = compileParamsList(self.params, symbols) else: ret = [] ret.append(self) return ret def parse(self, tokens, n, symbols=None): """ default doesn't accept any other tokens """ if self.parserFn: return self.parserFn(self, tokens, n, symbols) else: if tokens[n] == "(": # invocation with params is optional (n, self.params) = argsConsumer(tokens, n, symbols) if tokens[n] == "->": (n, self.outputs) = paramsConsumer(tokens, n + 1) dup = copy.copy(self) return (n, dup) class IfConstruct: """Implement the if () {} construct""" def __init__(self): self.name = "OP_IF" self.statements = None self.arg = None self.outputs = None def parse(self, tokens, n, symbols=None): if tokens[n] == "(": # optional if param (n, self.arg) = argsConsumer(tokens, n, symbols) if tokens[n] == "{": (n, self.statements) = statementConsumerCallout(tokens, n + 1, symbols) else: assert 0, "need block" assert tokens[n] == "}" return (n + 1, copy.copy(self)) def compile(self, symbols): ret = [] if not self.arg is None: assert len(self.arg) == 1, "if statement can only have one argument" ret.extend(compileParamsList(self.arg, symbols)) ret.append("OP_IF") if not self.statements is None: ret.extend(compileStatementList(self.statements, symbols)) # TODO what if no else follows? return ret class ElseConstruct: """Implement the if () {} construct""" def __init__(self): self.name = "OP_ELSE" self.statements = None self.arg = None self.outputs = None def parse(self, tokens, n, symbols=None): if tokens[n] == "(": # optional if param (n, self.arg) = argsConsumer(tokens, n, symbols) if tokens[n] == "{": (n, self.statements) = statementConsumerCallout(tokens, n + 1, symbols) else: assert 0, "need block" assert tokens[n] == "}" return (n + 1, copy.copy(self)) def compile(self, symbols): ret = [] if not self.arg is None: assert len(self.arg) == 1, "if statement can only have one argument" ret.extend(compileParamsList(self.arg, symbols)) ret.append("OP_ELSE") if not self.statements is None: ret.extend(compileStatementList(self.statements, symbols)) ret.append("OP_ENDIF") return ret def elseParser(prim, tokens, n, symbols): if tokens[n] == "{": (n, prim.statements) = statementConsumerCallout(tokens, n + 1, symbols) else: assert 0, "need block" assert tokens[n] == "}" return (n + 1, prim) def repeatParser(prim, tokens, n, symbols): if tokens[n] == "(": (n, prim.arg) = argsConsumer(tokens, n, symbols) else: assert 0, "need args" if tokens[n] == "{": (n, prim.statements) = statementConsumerCallout(tokens, n + 1, symbols) else: assert 0, "need block" assert tokens[n] == "}" return (n + 1, prim) SP_IF = IfConstruct() SP_ELSE = ElseConstruct() # Primitive("else", None, elseParser) SP_REPEAT = Primitive("repeat", None, repeatParser) SP_EXEC = Primitive("exec", None) primitives = { "if": SP_IF, "else": SP_ELSE, "exec": SP_EXEC, "repeat": SP_REPEAT } for name, bin in bchopcodes.opcode2bin.items(): primitives[name] = Primitive(name, bin) ```
{ "source": "JCRamzz/Fyyur", "score": 2 }
#### File: migrations/versions/7a28c474398d_changed_relationships_between_artists_.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '5<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint('Artist_venue_id_fkey', 'Artist', type_='foreignkey') op.drop_column('Artist', 'venue_id') op.add_column('shows', sa.Column('venues_id', sa.Integer(), nullable=False)) op.create_foreign_key(None, 'shows', 'Venue', ['venues_id'], ['id']) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, 'shows', type_='foreignkey') op.drop_column('shows', 'venues_id') op.add_column('Artist', sa.Column('venue_id', sa.INTEGER(), autoincrement=False, nullable=False)) op.create_foreign_key('Artist_venue_id_fkey', 'Artist', 'Venue', ['venue_id'], ['id']) # ### end Alembic commands ### ```
{ "source": "jcrangel/AI-for-Trading", "score": 3 }
#### File: m1_quant_basics/l2_stock_prices/quiz_tests.py ```python from collections import OrderedDict import pandas as pd from tests import project_test, assert_output @project_test def test_csv_to_close(fn): tickers = ['A', 'B', 'C'] dates = ['2017-09-22', '2017-09-25', '2017-09-26', '2017-09-27', '2017-09-28'] fn_inputs = { 'csv_filepath': 'prices_2017_09_22_2017-09-28.csv', 'field_names': ['ticker', 'date', 'open', 'high', 'low', 'close', 'volume', 'adj_close', 'adj_volume']} fn_correct_outputs = OrderedDict([ ( 'close', pd.DataFrame( [ [152.48000000, 149.19000000, 59.35000000], [151.11000000, 145.06000000, 60.29000000], [152.42000000, 145.21000000, 57.74000000], [154.34000000, 147.02000000, 58.41000000], [153.68000000, 147.19000000, 56.76000000]], dates, tickers))]) assert_output(fn, fn_inputs, fn_correct_outputs) ``` #### File: m1_quant_basics/l6_momentum_trading/project_tests.py ```python from collections import OrderedDict import pandas as pd from tests import project_test, generate_random_tickers, generate_random_dates, assert_output @project_test def test_date_top_industries(fn): tickers = generate_random_tickers(10) dates = generate_random_dates(2) fn_inputs = { 'prices': pd.DataFrame( [ [21.050810483942833, 17.013843810658827, 10.984503755486879, 11.248093428369392, 12.961712733997235, 482.34539247360806, 35.202580592515041, 3516.5416782257166, 66.405314327318209, 13.503960481087077], [15.63570258751384, 14.69054309070934, 11.353027688995159, 475.74195118202061, 11.959640427803022, 10.918933017418304, 17.9086438675435, 24.801265417692324, 12.488954191854916, 15.63570258751384]], dates, tickers), 'sector': pd.Series( ['ENERGY', 'MATERIALS', 'ENERGY', 'ENERGY', 'TELECOM', 'FINANCIALS', 'TECHNOLOGY', 'HEALTH', 'MATERIALS', 'REAL ESTATE'], tickers), 'date': dates[-1], 'top_n': 4} fn_correct_outputs = OrderedDict([ ( 'top_industries', {'ENERGY', 'HEALTH', 'TECHNOLOGY'})]) assert_output(fn, fn_inputs, fn_correct_outputs) @project_test def test_generate_positions(fn): tickers = generate_random_tickers(5) dates = generate_random_dates(6) fn_inputs = { 'prices': pd.DataFrame( [ [65.40757705426432, 27.556319958924323, 50.59935209411175, 56.274712269629134, 99.9873070881051], [47.82126720752715, 56.812865745668375, 40.75685814634723, 27.469680989736023, 41.449858088448735], [88.20038097315815, 45.573972499280494, 36.592711369868724, 21.36570423559795, 0.698919959739297], [14.670236824202721, 49.557949251949054, 18.935364730808935, 23.163368660093298, 8.075599541367884], [41.499140208637705, 9.75987296846733, 66.08677766062186, 37.927861417544385, 10.792730405945827], [86.26923464863536, 32.12679487375028, 15.621592524570282, 77.1908860965619, 52.733950486350444]], dates, tickers)} fn_correct_outputs = OrderedDict([ ( 'final_positions', pd.DataFrame( [ [30, 0, 30, 30, 30], [0, 30, 0, 0, 0], [30, 0, 0, 0, -10], [-10, 0, -10, 0, -10], [0, -10, 30, 0, -10], [30, 0, -10, 30, 30]], dates, tickers))]) assert_output(fn, fn_inputs, fn_correct_outputs) ``` #### File: m2_advanced_quants/l5_volatility/volatility_estimation.py ```python import pandas as pd import numpy as np def estimate_volatility(prices, l): """Create an exponential moving average model of the volatility of a stock price, and return the most recent (last) volatility estimate. Parameters ---------- prices : pandas.Series A series of adjusted closing prices for a stock. l : float The 'lambda' parameter of the exponential moving average model. Making this value smaller will cause the model to weight older terms less relative to more recent terms. Returns ------- last_vol : float The last element of your exponential moving averge volatility model series. """ # TODO: Implement the exponential moving average volatility model and return the last value. return prices.ewm(alpha=(1-l)).mean()[-1] def test_run(filename='data.csv'): """Test run get_most_volatile() with stock prices from a file.""" prices = pd.read_csv(filename, parse_dates=[ 'date'], index_col='date', squeeze=True) print("Most recent volatility estimate: {:.6f}".format(estimate_volatility(prices, 0.7))) # print(estimate_volatility(prices, 0.7)) if __name__ == '__main__': test_run() ``` #### File: m2_advanced_quants/l5_volatility/volatility.py ```python import pandas as pd import numpy as np def get_most_volatile(prices): """Return the ticker symbol for the most volatile stock. Parameters ---------- prices : pandas.DataFrame a pandas.DataFrame object with columns: ['ticker', 'date', 'price'] Returns ------- ticker : string ticker symbol for the most volatile stock """ # TODO: Fill in this function. pass def test_run(filename='prices.csv'): """Test run get_most_volatile() with stock prices from a file.""" prices = pd.read_csv(filename, parse_dates=['date']) print("Most volatile stock: {}".format(get_most_volatile(prices))) if __name__ == '__main__': test_run() ``` #### File: m3_funds_etfs_portfolio_optimization/l4_portfolio_optimization/quiz_tests_advanced.py ```python from collections import OrderedDict import numpy as np import cvxpy as cvx from tests import project_test, generate_random_tickers, generate_random_dates, assert_output import string @project_test def test_optimize_portfolio(fn): """Test with a 3 simulated stock return series""" days_per_year = 252 years = 3 total_days = days_per_year * years return_market = np.random.normal(loc=0.05, scale=0.3, size=days_per_year) return_1 = np.random.uniform(low=-0.000001, high=.000001, size=days_per_year) + return_market return_2 = np.random.uniform(low=-0.000001, high=.000001, size=days_per_year) + return_market return_3 = np.random.uniform(low=-0.000001, high=.000001, size=days_per_year) + return_market returns = np.array([return_1, return_2, return_3]) """simulate index weights""" index_weights = np.array([0.9,0.15,0.05]) scale = .00001 m = returns.shape[0] cov = np.cov(returns) x = cvx.Variable(m) portfolio_variance = cvx.quad_form(x, cov) distance_to_index = cvx.norm(x - index_weights) objective = cvx.Minimize(portfolio_variance + scale* distance_to_index) constraints = [x >= 0, sum(x) == 1] problem = cvx.Problem(objective, constraints).solve() x_values = x.value fn_inputs = { 'returns': returns, 'index_weights': index_weights, 'scale': scale } fn_correct_outputs = OrderedDict([ ('x_values',x_values) ]) assert_output(fn, fn_inputs, fn_correct_outputs) ``` #### File: Quiz/m5_financial_statements/bagofwords_solutions.py ```python import numpy as np from math import log # for nice number printing np.set_printoptions(precision=3, suppress=True) # tokenize and clean the text import nltk from nltk.stem import WordNetLemmatizer, SnowballStemmer from collections import Counter from nltk.corpus import stopwords from nltk import word_tokenize from nltk.tokenize import RegexpTokenizer # tokenize anything that is not a number and not a symbol word_tokenizer = RegexpTokenizer(r'[^\d\W]+') nltk.download('stopwords') nltk.download('wordnet') sno = SnowballStemmer('english') wnl = WordNetLemmatizer() # get our list of stop_words stop_words = set(stopwords.words('english')) # add some extra stopwords stop_words |= {"may", "business", "company", "could", "service", "result", "product", "operation", "include", "law", "tax", "change", "financial", "require", "cost", "market", "also", "user", "plan", "actual", "cash", "other", "thereto", "thereof", "therefore"} # useful function to print a dictionary sorted by value (largest first by default) def print_sorted(d, ascending=False): factor = 1 if ascending else -1 sorted_list = sorted(d.items(), key=lambda v: factor*v[1]) for i, v in sorted_list: print("{}: {:.3f}".format(i, v)) # convert text into bag-of-words def clean_text(txt): lemm_txt = [ wnl.lemmatize(wnl.lemmatize(w.lower(),'n'),'v') \ for w in word_tokenizer.tokenize(txt) if \ w.isalpha() and w not in stop_words ] return [ sno.stem(w) for w in lemm_txt if w not in stop_words and len(w) > 2 ] from collections import defaultdict def bag_of_words(words): bag = defaultdict(int) for w in words: bag[w] += 1 return bag def get_sentiment(txt, wordlist): matching_words = [ w for w in txt if w in wordlist ] return len(matching_words)/len(txt) # compute idf def get_idf(corpus, include_log=True): N = len(corpus) freq = defaultdict(int) words = set() for c in corpus: words |= set(c) for w in words: freq[w] = sum([ w in c for c in corpus]) if include_log: return { w:log(N/freq[w]) for w in freq } else: return { w:N/freq[w] for w in freq } def _tf(freq, avg, include_log=True): if include_log: return 0 if freq == 0 else (1+log(freq))/(1+log(avg)) else: return freq/avg def get_tf(txt, include_log=True): freq = bag_of_words(txt) avg = np.mean(list(freq.values())) tf = {w:_tf(f,avg, include_log) for w,f in freq.items()} return defaultdict(int, tf) def get_vector(tf, idf): return np.array([ tf[w]*idf[w] for w in idf ]) from numpy.linalg import norm def sim_cos(u,v): return np.dot(u,v)/(norm(u)*norm(v)) def sim_jac(u,v): return np.sum(np.minimum(u,v))/np.sum(np.maximum(u,v)) ```
{ "source": "jcrangel/Dual-encoder-with-BERT", "score": 2 }
#### File: jcrangel/Dual-encoder-with-BERT/train.py ```python import pdb, time, math from biencoder_parameters import Biencoder_params from utils import experiment_logger, EmbLoader, ForOnlyFaiss_KBIndexer, cuda_device_parser, parse_cuidx2encoded_emb_for_debugging from utils import parse_cuidx2encoded_emb_2_cui2emb from data_reader import FixedDatasetTokenizedReader, AllEntityCanonical_and_Defs_loader from allennlp.data.vocabulary import Vocabulary from allennlp.data.iterators import BucketIterator from allennlp.training.trainer import Trainer from mention_and_entity_encoders import Concatenate_Right_and_Left_MentionEncoder, Pooler_for_cano_and_def, Pooler_for_blink_mention from biencoder_models import InBatchBiencoder, InBatchBLINKBiencoder, WrappedModel_for_entityencoding, BLINKBiencoder_OnlyforEncodingMentions import torch.optim as optim from KBentities_encoder import InKBAllEntitiesEncoder from evaluator import BLINKBiEncoderTopXRetriever, DevandTest_BLINKBiEncoder_IterateEvaluator import copy import torch from allennlp.models.archival import archive_model, load_archive import os CANONICAL_AND_DEF_CONNECTTOKEN = '[unused3]' def main(): exp_start_time = time.time() Parameters = Biencoder_params() opts = Parameters.get_params() experiment_logdir = experiment_logger(args=opts) Parameters.dump_params(experiment_dir=experiment_logdir) cuda_devices = cuda_device_parser(str_ids=opts.cuda_devices) reader_for_mentions = FixedDatasetTokenizedReader(args=opts, canonical_and_def_connecttoken=CANONICAL_AND_DEF_CONNECTTOKEN) trains = reader_for_mentions.read('train') if not opts.allen_lazyload: print('\ntrain statistics:', len(trains), '\n') vocab = Vocabulary() iterator_for_training_and_evaluating_mentions = BucketIterator(batch_size=opts.batch_size_for_train, sorting_keys=[('context', 'num_tokens')]) iterator_for_training_and_evaluating_mentions.index_with(vocab) embloader = EmbLoader(args=opts) emb_mapper, emb_dim, textfieldEmbedder = embloader.emb_returner() if opts.model_for_training == 'blink_implementation_inbatchencoder': mention_encoder = Pooler_for_blink_mention(args=opts, word_embedder=textfieldEmbedder) else: mention_encoder = Concatenate_Right_and_Left_MentionEncoder(args=opts, input_dim=emb_dim, word_embedder=textfieldEmbedder) current_cui2idx, current_idx2cui, current_cui2emb, current_cui2cano, current_cui2def = reader_for_mentions.currently_stored_KB_dataset_returner() if opts.model_for_training == 'biencoder': entity_encoder = Pooler_for_cano_and_def(args=opts, word_embedder=textfieldEmbedder) model = InBatchBiencoder(args=opts, mention_encoder=mention_encoder, entity_encoder=entity_encoder, vocab=vocab, input_dim=emb_dim) elif opts.model_for_training == 'blink_implementation_inbatchencoder': entity_encoder = Pooler_for_cano_and_def(args=opts, word_embedder=textfieldEmbedder) model = InBatchBLINKBiencoder(args=opts, mention_encoder=mention_encoder, entity_encoder=entity_encoder, vocab=vocab) else: print('currently', opts.model_for_training,'are not supported') raise NotImplementedError model = model.cuda() if not opts.debug_for_entity_encoder: optimizer = optim.Adam(filter(lambda param: param.requires_grad, model.parameters()), lr=opts.lr,eps=opts.epsilon, weight_decay=opts.weight_decay, betas=(opts.beta1, opts.beta2), amsgrad=opts.amsgrad) trainer = Trainer(model=model,optimizer=optimizer, iterator=iterator_for_training_and_evaluating_mentions, train_dataset=trains, # validation_dataset=devs, cuda_device=cuda_devices, num_epochs=opts.num_epochs ) trainer.train() else: print('\n==Skip Biencoder training==\n') # Save the model serialization_dir = 'model' config_file = os.path.join(serialization_dir, 'config.json') vocabulary_dir = os.path.join(serialization_dir, 'vocabulary') weights_file = os.path.join(serialization_dir, 'weights.th') model_pytorch_file = os.path.join(serialization_dir, 'model.th') os.makedirs(serialization_dir, exist_ok=True) #params.to_file(config_file) #vocab.save_to_files(vocabulary_dir) torch.save(model, model_pytorch_file) with torch.no_grad(): model.eval() model.switch2eval() print('======Start encoding all entities in KB=====\n======1. Start Tokenizing All Entities=====') entity_encoder_wrapping_model = WrappedModel_for_entityencoding(args=opts, entity_encoder=entity_encoder, vocab=vocab) entity_encoder_wrapping_model.eval() # entity_encoder_wrapping_model.cpu() Tokenizer = reader_for_mentions.berttokenizer_returner() TokenIndexer = reader_for_mentions.token_indexer_returner() kbentity_loader = AllEntityCanonical_and_Defs_loader(args=opts, idx2cui=current_idx2cui, cui2cano=current_cui2cano, cui2def=current_cui2def, textfield_embedder=textfieldEmbedder, pretrained_tokenizer=Tokenizer, tokenindexer=TokenIndexer, canonical_and_def_connect_token=CANONICAL_AND_DEF_CONNECTTOKEN) Allentity_embedding_encodeIterator = InKBAllEntitiesEncoder(args=opts, entity_loader_datasetreaderclass=kbentity_loader, entity_encoder_wrapping_model=entity_encoder_wrapping_model, vocab=vocab) print('======2. Encoding All Entities=====') cuidx2encoded_emb = Allentity_embedding_encodeIterator.encoding_all_entities() if opts.debug_for_entity_encoder: cuidx2encoded_emb = parse_cuidx2encoded_emb_for_debugging(cuidx2encoded_emb=cuidx2encoded_emb, original_cui2idx=current_cui2idx) cui2encoded_emb = parse_cuidx2encoded_emb_2_cui2emb(cuidx2encoded_emb=cuidx2encoded_emb, original_cui2idx=current_cui2idx) print('=====Encoding all entities in KB FINISHED!=====') print('\n+++++Indexnizing KB from encoded entites+++++') forstoring_encoded_entities_to_faiss = ForOnlyFaiss_KBIndexer(args=opts, input_cui2idx=current_cui2idx, input_idx2cui=current_idx2cui, input_cui2emb=cui2encoded_emb, search_method_for_faiss=opts.search_method_before_re_sorting_for_faiss, entity_emb_dim=768) print('+++++Indexnizing KB from encoded entites FINISHED!+++++') print('Loading BLINKBiencoder') blinkbiencoder_onlyfor_encodingmentions = BLINKBiencoder_OnlyforEncodingMentions(args=opts, mention_encoder=mention_encoder, vocab=vocab) blinkbiencoder_onlyfor_encodingmentions.cuda() blinkbiencoder_onlyfor_encodingmentions.eval() print('Loaded: BLINKBiencoder') print('Evaluation for BLINK start') blinkBiEncoderEvaluator = BLINKBiEncoderTopXRetriever(args=opts, vocab=vocab, blinkbiencoder_onlyfor_encodingmentions=blinkbiencoder_onlyfor_encodingmentions, fortrainigmodel_faiss_stored_kb_kgemb=forstoring_encoded_entities_to_faiss.indexed_faiss_returner(), reader_for_mentions=reader_for_mentions) finalblinkEvaluator = DevandTest_BLINKBiEncoder_IterateEvaluator(args=opts, blinkBiEncoderEvaluator=blinkBiEncoderEvaluator, experiment_logdir=experiment_logdir) finalblinkEvaluator.final_evaluation(dev_or_test_flag='dev') finalblinkEvaluator.final_evaluation(dev_or_test_flag='test') exp_end_time = time.time() print('Experiment time', math.floor(exp_end_time - exp_start_time), 'sec') if __name__ == '__main__': main() ```
{ "source": "jcranmer/dxr", "score": 2 }
#### File: dxr/dxr/app.py ```python from logging import StreamHandler import os.path from os.path import isdir from sys import stderr from time import time from urllib import quote_plus from flask import (Blueprint, Flask, send_from_directory, current_app, send_file, request, redirect, jsonify, render_template) from dxr.query import Query from dxr.server_utils import connect_db from dxr.utils import non_negative_int, search_url, sqlite3 # Make sure we load trilite before possibly importing the wrong version of sqlite3. # Look in the 'dxr' package for static files, templates, etc.: dxr_blueprint = Blueprint('dxr_blueprint', 'dxr') def make_app(instance_path): """Return a DXR application which looks in the given folder for configuration. Also set up the static and template folder according to the configured template. """ # TODO: Actually obey the template selection in the config file by passing # a different static_folder and template_folder to Flask(). app = Flask('dxr', instance_path=instance_path) app.register_blueprint(dxr_blueprint) # Load the special config file generated by dxr-build: app.config.from_pyfile(os.path.join(app.instance_path, 'config.py')) # Log to Apache's error log in production: app.logger.addHandler(StreamHandler(stderr)) return app @dxr_blueprint.route('/') def index(): return send_file(current_app.open_instance_resource('trees/index.html')) @dxr_blueprint.route('/<tree>/search') def search(tree): """Search by regex, caller, superclass, or whatever.""" # TODO: This function still does too much. querystring = request.values offset = non_negative_int(querystring.get('offset'), 0) limit = non_negative_int(querystring.get('limit'), 100) config = current_app.config # Arguments for the template: arguments = { # Common template variables 'wwwroot': config['WWW_ROOT'], 'tree': config['TREES'][0], 'trees': config['TREES'], 'config': config['TEMPLATE_PARAMETERS'], 'generated_date': config['GENERATED_DATE']} error = warning = '' status_code = None if tree in config['TREES']: arguments['tree'] = tree # Connect to database conn = connect_db(tree, current_app.instance_path) if conn: # Parse the search query qtext = querystring.get('q', '') q = Query(conn, qtext, should_explain='explain' in querystring) # Try for a direct result: if querystring.get('redirect') == 'true': result = q.direct_result() if result: path, line = result # TODO: Does this escape qtext properly? return redirect( '%s/%s/source/%s?from=%s#l%i' % (config['WWW_ROOT'], tree, path, qtext, line)) # Return multiple results: template = 'search.html' start = time() try: results = list(q.results(offset, limit)) except sqlite3.OperationalError as e: if e.message.startswith('REGEXP:'): # Malformed regex warning = e.message[7:] results = [] elif e.message.startswith('QUERY:'): warning = e.message[6:] results = [] else: error = 'Database error: %s' % e.message if not error: # Search template variables: arguments['query'] = qtext arguments['search_url'] = search_url(arguments['wwwroot'], arguments['tree'], qtext, redirect=False) arguments['results'] = results arguments['offset'] = offset arguments['limit'] = limit arguments['time'] = time() - start else: error = 'Failed to establish database connection.' else: error = "Tree '%s' is not a valid tree." % tree status_code = 404 if warning or error: arguments['error'] = error or warning if querystring.get('format') == 'json': if error: # Return a non-OK code so the live search doesn't try to replace # the results with our empty ones: return jsonify(arguments), status_code or 500 # Tuples are encoded as lists in JSON, and these are not real # easy to unpack or read in Javascript. So for ease of use, we # convert to dictionaries before returning the json results. # If further discrepancies are introduced, please document them in # templating.mkd. arguments['results'] = [ {'icon': icon, 'path': path, 'lines': [{'line_number': nb, 'line': l} for nb, l in lines]} for icon, path, lines in arguments['results']] return jsonify(arguments) if error: return render_template('error.html', **arguments), status_code or 500 else: return render_template('search.html', **arguments) @dxr_blueprint.route('/<tree>/source/') @dxr_blueprint.route('/<tree>/source/<path:path>') def browse(tree, path=''): """Show a directory listing or a single file from one of the trees.""" tree_folder = os.path.join(current_app.instance_path, 'trees', tree) if isdir(os.path.join(tree_folder, path)): # It's a bare directory. Add the index file to the end: path = os.path.join(path, current_app.config['DIRECTORY_INDEX']) else: # It's a file. Add the .html extension: path += '.html' return send_from_directory(tree_folder, path) ``` #### File: plugins/omniglot/htmlifier.py ```python import os import subprocess import urlparse import dxr.plugins """Omniglot - Speaking all commonly-used version control systems. At present, this plugin is still under development, so not all features are fully implemented. Omniglot first scans the project directory looking for the hallmarks of a VCS (such as the .hg or .git directory). It also looks for these in parent directories in case DXR is only parsing a fraction of the repository. Once this information is found, it attempts to extract upstream information about the repository. From this information, it builds the necessary information to reproduce the links. Currently supported VCSes and upstream views: - git (github) - mercurial (hgweb) Todos: - add gitweb support for git - add cvs, svn, bzr support - produce in-DXR blame information using VCSs - check if the mercurial paths are specific to Mozilla's customization or not. """ # Global variables tree = None source_repositories = {} class VCS(object): """A class representing an abstract notion of a version-control system. In general, all path arguments to query methods should be normalized to be relative to the root directory of the VCS. """ def __init__(self, root): self.root = root self.untracked_files = set() def get_root_dir(self): """Return the directory that is at the root of the VCS.""" return self.root def get_vcs_name(self): """Return a recognizable name for the VCS.""" return type(self).__name__ def invoke_vcs(self, args): """Return the result of invoking said command on the repository, with the current working directory set to the root directory. """ return subprocess.check_output(args, cwd=self.get_root_dir()) def is_tracked(self, path): """Does the repository track this file?""" return path not in self.untracked_files def get_rev(self, path): """Return a human-readable revision identifier for the repository.""" raise NotImplemented def generate_log(self, path): """Return a URL for a page that lists revisions for this file.""" raise NotImplemented def generate_blame(self, path): """Return a URL for a page that lists source annotations for lines in this file. """ raise NotImplemented def generate_diff(self, path): """Return a URL for a page that shows the last change made to this file. """ raise NotImplemented def generate_raw(self, path): """Return a URL for a page that returns a raw copy of this file.""" raise NotImplemented class Mercurial(VCS): def __init__(self, root): super(Mercurial, self).__init__(root) # Find the revision self.revision = self.invoke_vcs(['hg', 'id', '-i']).strip() # Sometimes hg id returns + at the end. if self.revision.endswith("+"): self.revision = self.revision[:-1] # Make and normalize the upstream URL upstream = urlparse.urlparse(self.invoke_vcs(['hg', 'paths', 'default']).strip()) recomb = list(upstream) if upstream.scheme == 'ssh': recomb[0] == 'http' recomb[1] = upstream.hostname # Eliminate any username stuff if not upstream.path.endswith('/'): recomb[2] += '/' # Make sure we have a '/' on the end recomb[3] = recomb[4] = recomb[5] = '' # Just those three self.upstream = urlparse.urlunparse(recomb) # Find all untracked files self.untracked_files = set(line.split()[1] for line in self.invoke_vcs(['hg', 'status', '-u', '-i']).split('\n')[:-1]) @staticmethod def claim_vcs_source(path, dirs): if '.hg' in dirs: dirs.remove('.hg') return Mercurial(path) return None def get_rev(self, path): return self.revision def generate_log(self, path): return self.upstream + 'filelog/' + self.revision + '/' + path def generate_blame(self, path): return self.upstream + 'annotate/' + self.revision + '/' + path def generate_diff(self, path): return self.upstream + 'diff/' + self.revision + '/' + path def generate_raw(self, path): return self.upstream + 'raw-file/' + self.revision + '/' + path class Git(VCS): def __init__(self, root): super(Git, self).__init__(root) self.untracked_files = set(line for line in self.invoke_vcs(['git', 'ls-files', '-o']).split('\n')[:-1]) self.revision = self.invoke_vcs(['git', 'rev-parse', 'HEAD']) source_urls = self.invoke_vcs(['git', 'remote', '-v']).split('\n') for src_url in source_urls: name, url, _ = src_url.split() if name == 'origin': self.upstream = self.synth_web_url(url) break @staticmethod def claim_vcs_source(path, dirs): if '.git' in dirs: dirs.remove('.git') return Git(path) return None def get_rev(self, path): return self.revision[:10] def generate_log(self, path): return self.upstream + "/commits/" + self.revision + "/" + path def generate_blame(self, path): return self.upstream + "/blame/" + self.revision + "/" + path def generate_diff(self, path): # I really want to make this anchor on the file in question, but github # doesn't seem to do that nicely return self.upstream + "/commit/" + self.revision def generate_raw(self, path): return self.upstream + "/raw/" + self.revision + "/" + path def synth_web_url(self, repo): if repo.startswith("<EMAIL>:"): self._is_github = True return "https://github.com/" + repo[len("<EMAIL>:"):] elif repo.startswith("git://github.com/"): self._is_github = True if repo.endswith(".git"): repo = repo[:-len(".git")] return "https" + repo[len("git"):] raise Exception("I don't know what's going on") every_vcs = [Mercurial, Git] # Load global variables def load(tree_, conn): global tree, lookup_order tree = tree_ # Find all of the VCS's in the source directory for cwd, dirs, files in os.walk(tree.source_folder): for vcs in every_vcs: attempt = vcs.claim_vcs_source(cwd, dirs) if attempt is not None: source_repositories[attempt.root] = attempt # It's possible that the root of the tree is not a VCS by itself, so walk up # the hierarchy until we find a parent folder that is a VCS. If we can't # find any, than no VCSs exist for the top-level of this repository. directory = tree.source_folder while directory != '/' and directory not in source_repositories: directory = os.path.dirname(directory) for vcs in every_vcs: attempt = vcs.claim_vcs_source(directory, os.listdir(directory)) if attempt is not None: source_repositories[directory] = attempt # Note: we want to make sure that we look up source repositories by deepest # directory first. lookup_order = source_repositories.keys() lookup_order.sort(key=len) def find_vcs_for_file(path): """Given an absolute path, find a source repository we know about that claims to track that file. """ for directory in lookup_order: # This seems to be the easiest way to find "is path in the subtree # rooted at directory?" if os.path.relpath(path, directory).startswith('..'): continue vcs = source_repositories[directory] if vcs.is_tracked(os.path.relpath(path, vcs.get_root_dir())): return vcs return None class LinksHtmlifier(object): """Htmlifier which adds blame and external links to VCS web utilities.""" def __init__(self, path): if not os.path.isabs(path): path = os.path.join(tree.source_folder, path) self.vcs = find_vcs_for_file(path) if self.vcs is not None: self.path = os.path.relpath(path, self.vcs.get_root_dir()) self.name = self.vcs.get_vcs_name() def refs(self): return [] def regions(self): return [] def annotations(self): return [] def links(self): if self.vcs is None: yield 5, 'Untracked file', [] return def items(): yield 'log', "Log", self.vcs.generate_log(self.path) yield 'blame', "Blame", self.vcs.generate_blame(self.path) yield 'diff', "Diff", self.vcs.generate_diff(self.path) yield 'raw', "Raw", self.vcs.generate_raw(self.path) yield 5, '%s (%s)' % (self.name, self.vcs.get_rev(self.path)), items() def htmlify(path, text): return LinksHtmlifier(path) __all__ = dxr.plugins.htmlifier_exports() ``` #### File: dxr/dxr/server_utils.py ```python import ctypes import os.path import sys import dxr.utils # Load trilite before we load sqlite3. Here be dragons. Reorder these import normally once we merge connect_db and connect_database. import sqlite3 # This makes results a lot more fun! def _collate_loc(str1, str2): parts1 = str1.split(':') parts2 = str2.split(':') for i in range(1, len(parts1)): parts1[i] = int(parts1[i]) for i in range(2, len(parts2)): parts2[i] = int(parts2[i]) return cmp(parts1, parts2) # Get database connection for tree # TODO: Why do both this and connect_database() exist? def connect_db(tree, instance_path): dbname = os.path.join(instance_path, 'trees', tree, '.dxr-xref.sqlite') try: conn = sqlite3.connect(dbname) conn.text_factory = str conn.execute("PRAGMA temp_store = MEMORY;") conn.create_collation("loc", _collate_loc) conn.row_factory = sqlite3.Row return conn except: # TODO: Die, bare except, die! return None # Log message def log(msg): print >> sys.stderr, "Log: %s" % msg ``` #### File: dxr/tests/test_types.py ```python from dxr.testing import SingleFileTestCase, MINIMAL_MAIN class TypeTests(SingleFileTestCase): source = r""" class Foo {}; class Bar {}; """ + MINIMAL_MAIN def test_simple_type(self): self.found_line_eq('type:Foo', 'class <b>Foo</b> {};') self.found_line_eq('type:Bar', 'class <b>Bar</b> {};') def test_two_terms(self): # There's no type that matches both of these conditions self.found_nothing('type:*Foo* type:*Quux*') ```
{ "source": "jcranmer/factorio-tools", "score": 3 }
#### File: jcranmer/factorio-tools/factorio_types.py ```python mining_schema = [{ "amount": { "optional": True, "type": "float", "default": 0 }, "amount_max": { "optional": True, "type": "float", "default": 0 }, "amount_min": { "optional": True, "type": "float", "default": 0 }, "name": { "optional": False, "type": "string" }, "type": { "optional": False, "type": "string" }, "probability": { "optional": True, "type": "float", "default": 1.0 } }] def mining_results(data, lua, output_dict): from factorio_schema import parse_data_value # First level of lua is a dict, watch out! if 'results' in lua: arr = parse_data_value(mining_schema, data, lua['results']) claimed = ['results'] else: arr = [{ 'count': lua.get('count', 1), 'name': lua['result'], 'type': 'item', 'probability': 1.0 }] claimed = ['result', 'count'] output_dict['results'] = arr return claimed def encode_lua(obj): resp = dict() for key, value in obj.items(): resp[key] = value if all(x + 1 in resp for x in range(len(resp))): return list(resp[x + 1] for x in range(len(resp))) return resp def _map_array(lua_array, out_dict): for element in lua_array.values(): if element.name: name = element.name ty = element.type or 'item' if element.amount is not None: amount = element.amount if element.probability: amount *= element.probability else: amount = (element.amount_max + element.amount_min) / 2.0 else: name = element[1] ty = "item" amount = element[2] out_dict[name] = amount return def recipe_ingredients(data, lua): if not lua.ingredients: return recipe_ingredients(data, lua.normal) ingredients = {} _map_array(lua.ingredients, ingredients) return (ingredients, ['ingredients']) def recipe_results(data, lua): results = {} if lua.result: results[lua.result] = lua.result_count if lua.result_count else 1 return (results, ['result', 'result_count']) elif lua.results: _map_array(lua.results, results) return (results, ['results']) else: return recipe_results(data, lua.normal) picture_schema = { "animation_speed": {"optional": True, "type": "float", "default": 1.0}, "apply_projection": {"optional": True, "type": "bool", "default": False}, "direction_count": {"optional": True, "type": "integer", "default": 4}, "filename": {"optional": False, "type": "FileName"}, "flags": {"optional": True, "type": ["string"], "default": []}, "frame_count": {"optional": True, "type": "integer", "default": 1}, "height": {"optional": False, "type": "integer"}, "line_length": {"optional": True, "type": "integer", "default": 1}, "priority": {"optional": True, "type": "string", "default": "normal"}, "scale": {"optional": True, "type": "float", "default": 1.0}, "shift": {"optional": True, "type": ["float"], "default": [0, 0]}, "tint": {"optional": True, "default": None, "type": { "r": {"optional": False, "type": "float"}, "g": {"optional": False, "type": "float"}, "b": {"optional": False, "type": "float"}, "a": {"optional": True, "type": "float", "default": 1.0} }}, "variation_count": {"optional": True, "type": "integer", "default": 1}, "width": {"optional": False, "type": "integer"}, "x": {"optional": True, "type": "integer", "default": 0}, "y": {"optional": True, "type": "integer", "default": 0} } animation_schema = dict(picture_schema) animation_schema.update({ "axially_symmetrical": {"optional": True, "type": "bool", "default": True}, "blend_mode": {"optional": True, "type": "string", "default": ""}, "duration": {"optional": True, "type": "integer", "default": 0}, "fade_away_duration": {"optional": True, "type": "integer", "default": 0} }) def entity_animation(data, lua): return (None, []) # XXX skip brokenness for now from factorio_schema import parse_data_value def parse_block(lua_block, schema): keys = list(lua_block.keys()) if keys == range(1, len(keys) + 1): d = [parse_block(lua_block[k], schema) for k in keys] elif 'filename' in keys: d = parse_data_value(schema, data, lua_block) elif 'layers' in keys or 'sheet' in keys: # XXX: fix me. d = {} else: d = [] for k in keys: val = parse_block(lua_block[k], schema) # Rail remnants are PITAs. May need to change tack here. if isinstance(val, dict): val['name'] = k d.append(val) return d if 'animation' in lua: d = parse_block(lua.animation, animation_schema) return (d, ['animation']) elif 'pictures' in lua: d = parse_block(lua.pictures, picture_schema) return (d, ['pictures']) elif 'picture' in lua: d = parse_block(lua.picture, picture_schema) return (d, ['picture']) else: return (None, []) def tech_effects(data, lua): from factorio_schema import encode_lua d = {'recipes': [], 'modifiers': []} if 'effects' not in lua: return (d, []) for effect in lua.effects.values(): if effect.type == 'unlock-recipe': d['recipes'].append(effect.recipe) elif 'modifier' in effect: d['modifiers'].append(encode_lua(effect)) else: raise Exception("Unknown technology effect: %s" % str(list(effect.keys()))) return (d, ['effects']) complex_types = [ ] ```
{ "source": "jcranmer-intel/llvm-sycl", "score": 2 }
#### File: llvm-sycl/buildbot/configure.py ```python import argparse import os import subprocess import sys import platform def do_configure(args): ret = False llvm_dir = os.path.join(args.src_dir, "llvm") sycl_dir = os.path.join(args.src_dir, "sycl") spirv_dir = os.path.join(args.src_dir, "llvm-spirv") ocl_header_dir = os.path.join(args.obj_dir, "OpenCL-Headers") icd_loader_lib = '' if platform.system() == 'Linux': icd_loader_lib = os.path.join(args.obj_dir, "OpenCL-ICD-Loader", "build", "libOpenCL.so") else: icd_loader_lib = os.path.join(args.obj_dir, "OpenCL-ICD-Loader", "build", "OpenCL.lib") cmake_cmd = ["cmake", "-G", "Ninja", "-DCMAKE_BUILD_TYPE={}".format(args.build_type), "-DLLVM_EXTERNAL_PROJECTS=sycl;llvm-spirv", "-DLLVM_EXTERNAL_SYCL_SOURCE_DIR={}".format(sycl_dir), "-DLLVM_EXTERNAL_LLVM_SPIRV_SOURCE_DIR={}".format(spirv_dir), "-DLLVM_ENABLE_PROJECTS=clang;llvm-spirv;sycl", "-DOpenCL_INCLUDE_DIR={}".format(ocl_header_dir), "-DOpenCL_LIBRARY={}".format(icd_loader_lib), "-DLLVM_BUILD_TOOLS=OFF", llvm_dir] print(cmake_cmd) try: subprocess.check_call(cmake_cmd, cwd=args.obj_dir) except subprocess.CalledProcessError: cmake_cache = os.path.join(args.obj_dir, "CMakeCache.txt") if os.path.isfile(cmake_cache): os.remove(cmake_cache) subprocess.check_call(cmake_cmd, cwd=args.obj_dir) ret = True return ret def main(): parser = argparse.ArgumentParser(prog="configure.py", description="script to do configure", formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("-n", "--build-number", metavar="BUILD_NUM", help="build number") parser.add_argument("-b", "--branch", metavar="BRANCH", help="pull request branch") parser.add_argument("-d", "--base-branch", metavar="BASE_BRANCH", help="pull request base branch") parser.add_argument("-r", "--pr-number", metavar="PR_NUM", help="pull request number") parser.add_argument("-w", "--builder-dir", metavar="BUILDER_DIR", help="builder directory, which is the directory contains source and build directories") parser.add_argument("-s", "--src-dir", metavar="SRC_DIR", required=True, help="source directory") parser.add_argument("-o", "--obj-dir", metavar="OBJ_DIR", required=True, help="build directory") parser.add_argument("-t", "--build-type", metavar="BUILD_TYPE", required=True, help="build type, debug or release") args = parser.parse_args() print("args:{}".format(args)) return do_configure(args) if __name__ == "__main__": ret = main() exit_code = 0 if ret else 1 sys.exit(exit_code) ```
{ "source": "jcran/vulnerability-rating-taxonomy", "score": 3 }
#### File: vulnerability-rating-taxonomy/tests/test_deprecated_mapping.py ```python import utils import unittest from semantic_version import Version class TestDeprecatedMapping(unittest.TestCase): def setUp(self): self.vrt_versions = utils.all_versions(utils.VRT_FILENAME) self.last_tagged_version = max([Version.coerce(x) for x in self.vrt_versions.keys() if x != 'current']) self.deprecated_json = utils.get_json(utils.DEPRECATED_MAPPING_FILENAME) def test_old_vrt_ids_have_current_node(self): for version, vrt in self.vrt_versions.iteritems(): if version == 'current': continue for id_list in utils.all_id_lists(vrt): vrt_id = '.'.join(id_list) if vrt_id in self.deprecated_json: max_ver = sorted(self.deprecated_json[vrt_id].keys(), key=lambda s: map(int, s.split('.')))[-1] vrt_id = self.deprecated_json[vrt_id][max_ver] id_list = vrt_id.split('.') self.assertTrue(vrt_id == 'other' or self.check_mapping(id_list), '%s from v%s has no mapping' % (vrt_id, version)) def test_deprecated_nodes_map_valid_node(self): for old_id, mapping in self.deprecated_json.iteritems(): for new_version, new_id in mapping.iteritems(): self.assertTrue(new_id == 'other' or utils.id_valid(self.vrt_version(new_version), new_id.split('.')), new_id + ' is not valid') def check_mapping(self, id_list): if utils.id_valid(self.vrt_versions['current'], id_list): return True elif len(id_list) == 1: return False else: return self.check_mapping(id_list[0:-1]) def vrt_version(self, version): if version in self.vrt_versions: return self.vrt_versions[version] elif Version.coerce(version) > self.last_tagged_version: return self.vrt_versions['current'] else: self.fail('Unknown version: %s' % version) if __name__ == "__main__": unittest.main() ```
{ "source": "jcraver1021/downer", "score": 3 }
#### File: downer/downer/downer.py ```python import time import random import requests from os.path import exists, join, dirname # Settings INTERVALS = [2, 3, 5, 8] """INTERVALS (list): list of ints representing a choice of seconds to wait between requests""" FILTER = True """FILTER (boolean): whether to filter out destination files that already exists (without even making the request to download)""" AFILE = join(dirname(__file__), 'agents.txt') """AFILE (string): filename containing default list of user agent choices""" CLOSE = True """CLOSE (boolean): whether to tell server to close connection after download (equivalent to adding it into header map)""" # Since you can't raise in a lambda def _raise_value(msg): raise ValueError(msg) # Interpret a file as a list of strings def _load_file_as_list(filename): with open(filename, 'r') as strings_file: return [line.strip() for line in strings_file] # This is a "switch statement" of behaviors for the agent setting _agent_ldr_ = { 'list': (lambda h: h['list'] if 'list' in h else _raise_value("'list' option required if list is used for agent")), 'file': (lambda h: _load_file_as_list(h['file']) if 'agents-file' in h else _raise_value("'file' option required if file is used for agent")), 'default': (lambda h: _load_file_as_list(AFILE)), } def download(pairs, **kwargs): """Given a list of (source url, destination filename) pairs, download all of them Inputs: pairs: List of (string, string) pairs representing source URL to be downloaded and destination filename to put it options: agent: user-agent to claim in the header file None - the default requests user-agent will be used list - choose from the list of agents provided in list file - choose from the list of agents found in the file file default - equivalent to file with file = "agents.txt" filter: whether to filter out existing files (default true) intervals: list of numbers of seconds from which to sample wait times between requests (default [2, 3, 5, 8]) close: whether to close connection after download (equivalent to adding it to header map) headers: map of headers to use in the requests (default {}) Output: None """ headers = {} settings = {} # Apply settings if 'agent' in kwargs: # Options are 'list', 'file', and 'default' (equivalent to 'file' with 'file' equal to 'agents.txt') # 'list' requires 'list' argument # 'file' requires 'file' argument settings['agents'] = _agent_ldr_.get(kwargs['agent'], (lambda h: _raise_value("'%s' not a valid value for 'agent'" % h['agent'])))(kwargs) settings['filter'] = kwargs.get('filter', FILTER) settings['intervals'] = kwargs.get('intervals', INTERVALS) settings['close'] = kwargs.get('close', CLOSE) headers = kwargs.get('headers', {}) if settings['close']: headers['Connection'] = 'close' # Download each URL in the list for url, filename in pairs: # If filter is True, do not download if the file is already written if settings['filter'] and not exists(filename): # Break out once we download while True: # Choose a random user agent to represent ourselves if 'agents' in settings: headers['user-agent'] = random.choice(settings['agents']) try: # Wait a random amount of time to avoid a regular request profile (i.e. requested URLs are likely to be served by the same server) time.sleep(random.choice(settings['intervals'])) # Get that bread! response = requests.get(url, headers=headers) # Write it out to a file with open(filename, "w") as text_file: print(response.text, file=text_file) break except: # This is not suited to general exceptions in the above (e.g. file write exception would cause an unnecessary loop) print('Unexpected error:', sys.exc_info()[0]) ```
{ "source": "jcraver1021/flex-chess", "score": 3 }
#### File: flex-chess/common/object.py ```python from copy import deepcopy from typing import Generator, List, NamedTuple, Optional, Tuple, Union from common.common import Point, Tensor from common.player import Player class IllegalBoardState(Exception): """Raised when the board is moved into an illegal state""" class Piece: """A piece belonging to a player.""" def __init__(self, player: Player, token: str = 'X', move_generators: Generator['Mutation', None, None] = None ) -> None: self.player = player self.token = token self.move_generators = move_generators or [] self._board = None self._place = None def find(self) -> Tuple['Board', Point]: """Get the board and the place where this piece is.""" return self._board, self._place def place(self, board: 'Board', place: Point) -> None: """Place this piece on a board.""" self._board = board self._place = place def get_moves(self) -> List[List['Mutation']]: """Get a list of all legal sequences by this piece from this point.""" moves = [] for generator in self.move_generators: for sequence in generator(self._board, self._place): # It is incumbent on the board to say if it has been put into an illegal state try: board_copy = deepcopy(self._board) board_copy.apply(sequence) moves.append(sequence) except IllegalBoardState: pass return moves def __str__(self) -> str: return self.token class Mutation(NamedTuple): """A mutation of the board state.""" source: Optional[Union[Point, Piece]] target: Point class Board: """A game board with cartesian coordinates. Point are finite and at least 0.""" def __init__(self, shape: Tuple) -> None: self.shape = Point(*shape) self._board = Tensor(self.shape) def __getitem__(self, point) -> Piece: return self._board[point] def _place(self, piece: Optional[Piece], point: Optional[Point]) -> None: """Update a piece to the new location. Do nothing if both inputs are None. """ if point: self._board[point] = piece if piece: piece.place(self, point) def mutate(self, mutation: Mutation) -> Optional[Piece]: """Mutate the board state. Args: mutation: The mutation to apply to the board. Returns: The piece displaced by this mutation, or None if no piece was displaced """ current_piece = self[mutation.target] if current_piece: self._place(current_piece, None) new_piece = None if mutation.source: if isinstance(mutation.source, Point): new_piece = self[mutation.source] self._board[mutation.source] = None else: new_piece = mutation.source self._place(new_piece, mutation.target) # Do not return if no-op move, since this represents capture/removal return current_piece if current_piece != new_piece else None ```
{ "source": "jcravi/plantuml-markdown", "score": 2 }
#### File: plantuml-markdown/test/test_plantuml_legacy.py ```python import unittest from test.markdown_builder import MarkdownBuilder from test.test_plantuml import PlantumlTest class PlantumlTest_legacy(PlantumlTest): def setUp(self): super(PlantumlTest_legacy, self).setUp() # Setup testing with old block delimiter (I don't remember where I've seen this syntax) self.text_builder = MarkdownBuilder('::uml::') if __name__ == '__main__': unittest.main() ``` #### File: plantuml-markdown/test/test_plantuml.py ```python import os import re import markdown import tempfile from unittest import TestCase, SkipTest import mock class PlantumlTest(TestCase): @classmethod def setUpClass(cls): if cls is PlantumlTest: raise SkipTest("Base class") super(PlantumlTest, cls).setUpClass() def setUp(self): self.md = markdown.Markdown(extensions=['markdown.extensions.fenced_code', 'pymdownx.snippets', 'plantuml_markdown']) self.text_builder = None def _load_file(self, filename): dir_path = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(dir_path, 'data', filename), 'r') as f: return f.read()[:-1] # skip the last newline FAKE_IMAGE = 'ABCDEF==' IMAGE_REGEX = re.compile(r'<(?:img|.*object)(?:( alt=".*?")|( class=".*?")|( title=".*?")|( style=".*?")|( src=".*?")|(?:.*?))+/>') BASE64_REGEX = re.compile( r'("data:image/[a-z+]+;base64,)(?:[A-Za-z0-9+/]{4})*(?:[A-Za-z0-9+/]{2}==|[A-Za-z0-9+/]{3}=)?') @classmethod def _stripImageData(cls, html): def sort_attributes(groups): alt = next(x for x in groups if x.startswith(' alt=')) title = next(x for x in groups if x.startswith(' title=')) classes = next(x for x in groups if x.startswith(' class=')) style = next(iter(x for x in groups if x and x.startswith(' style=')), None) src = next(iter(x for x in groups if x and x.startswith(' src=')), None) style = style if style and '""' not in style else '' src = src if src and '""' not in src else '' html = "<img{}{}{}{}{}/>".format(alt, title, classes, style, src) return cls.BASE64_REGEX.sub(r'\1%s' % cls.FAKE_IMAGE, html) return cls.IMAGE_REGEX.sub(lambda x: sort_attributes(x.groups()), html) #return cls.BASE64_REGEX.sub(r'\1%s' % cls.FAKE_IMAGE, html) FAKE_SVG = '...svg-body...' SVG_REGEX = re.compile(r'<(?:\w+:)?svg(?:( alt=".*?")|( class=".*?")|( title=".*?")|( style=".*?")|(?:.*?))+>.*</(?:\w+:)?svg>') @classmethod def _stripSvgData(cls, html): """ Simplifies SVG tags to easy comparing. :param html: source HTML :return: HTML code with simplified svg tags """ def sort_attributes(groups): """ Sorts attributes in a specific order. :param groups: matched attributed groups :return: a SVG tag string source """ alt = next(x for x in groups if x.startswith(' alt=')) title = next(x for x in groups if x.startswith(' title=')) classes = next(x for x in groups if x.startswith(' class=')) style = next(iter(x for x in groups if x and x.startswith(' style=')), None) style = style if style and '""' not in style else '' return "<svg{}{}{}{}>{}</svg>".format(alt, title, classes, style, cls.FAKE_SVG) return cls.SVG_REGEX.sub(lambda x: sort_attributes(x.groups()), html) def test_priority_after_snippets(self): """ Verifies the normal priority of the plantuml_markdown plugin: it must be execute before the fenced code but after the snippets plugin. """ self._test_snippets(30, 'A --> B\n') def test_priority_before_snippets(self): """ Verifies changing plugin priority: in must be execute even before the snippets plugin. :return: """ # raising priority, so the plantuml plugin is executed before the snippet plugin # expecting that the snippet is not inserted in the plantuml source code self._test_snippets(40, '--8<-- "'+os.path.join(tempfile.gettempdir(), 'test-defs.puml')+'"\n') def _test_snippets(self, priority, expected): """ Verifies the execution order with the snippets plugin. If priority is lower than 32, the snippets plugin has priority; if greater, the plantml_markdown plugin has priority over the snippets plugin. :param priority: execution priority of the plantuml_markdown plugin :param expected: expected generated plantuml source code """ self.md = markdown.Markdown(extensions=['markdown.extensions.fenced_code', 'pymdownx.snippets', 'plantuml_markdown'], extension_configs={ 'plantuml_markdown': { 'priority': priority } }) tempdir = tempfile.gettempdir() defs_file = os.path.join(tempdir, 'test-defs.puml') # preparing a file to include with open(defs_file, 'w') as f: f.write('A --> B') from test.markdown_builder import MarkdownBuilder from plantuml_markdown import PlantUMLPreprocessor # mcking a method to capture the generated PlantUML source code with mock.patch.object(PlantUMLPreprocessor, '_render_diagram', return_value='testing'.encode('utf8')) as mocked_plugin: text = self.text_builder.diagram("--8<-- \"" + defs_file + "\"").build() self.md.convert(text) mocked_plugin.assert_called_with(expected, 'png') def test_arg_title(self): """ Test for the correct parsing of the title argument """ text = self.text_builder.diagram("A --> B").title("Diagram test").build() self.assertEqual( self._stripImageData('<p><img alt="uml diagram" class="uml" src="data:image/png;base64,%s" title="Diagram test" /></p>' % self.FAKE_IMAGE), self._stripImageData(self.md.convert(text))) def test_arg_title_characters(self): """ Test for the correct parsing of the title argument with special characters """ text = self.text_builder.diagram("A --> B").title("Diagram-test/%&\"").build() self.assertEqual( self._stripImageData('<p><img alt="uml diagram" class="uml" src="data:image/png;base64,%s" title="Diagram-test/%%&amp;&quot;" /></p>' % self.FAKE_IMAGE), self._stripImageData(self.md.convert(text))) def test_arg_title_inline_svg(self): """ Test for setting title attribute in inline SVG """ text = self.text_builder.diagram("A --> B").format("svg_inline").title("Diagram test").build() self.assertEqual( self._stripImageData('<p><svg alt="uml diagram" title="Diagram test" class="uml">%s</svg></p>' % self.FAKE_SVG), self._stripSvgData(self.md.convert(text))) def test_arg_alt(self): """ Test for the correct parsing of the alt argument """ text = self.text_builder.diagram("A --> B").alt("Diagram test").build() self.assertEqual( self._stripImageData('<p><img alt="Diagram test" class="uml" src="data:image/png;base64,%s" title="" /></p>' % self.FAKE_IMAGE), self._stripImageData(self.md.convert(text))) def test_arg_alt_characters(self): """ Test for the correct parsing of the alt argument with special characters """ text = self.text_builder.diagram("A --> B").alt("Diagram-test/%&\"").build() self.assertEqual( self._stripImageData('<p><img alt="Diagram-test/%%&amp;&quot;" class="uml" src="data:image/png;base64,%s" title="" /></p>' % self.FAKE_IMAGE), self._stripImageData(self.md.convert(text))) def test_arg_alt_inline_svg(self): """ Test for setting alt attribute in inline SVG """ text = self.text_builder.diagram("A --> B").format("svg_inline").alt("Diagram test").build() self.assertEqual( self._stripImageData('<p><svg alt="Diagram test" title="" class="uml">%s</svg></p>' % self.FAKE_SVG), self._stripSvgData(self.md.convert(text))) def test_arg_classes(self): """ Test for the correct parsing of the classes argument """ text = self.text_builder.diagram("A --> B").classes("class1 class2").build() self.assertEqual( self._stripImageData('<p><img alt="uml diagram" class="class1 class2" src="data:image/png;base64,%s" title="" /></p>' % self.FAKE_IMAGE), self._stripImageData(self.md.convert(text))) def test_arg_classes_inline_svg(self): """ Test for setting class attribute in inline SVG """ text = self.text_builder.diagram("A --> B").format("svg_inline").classes("class1 class2").build() self.assertEqual( self._stripImageData('<p><svg alt="uml diagram" title="" class="class1 class2">%s</svg></p>' % self.FAKE_SVG), self._stripSvgData(self.md.convert(text))) def test_arg_format_png(self): """ Test for the correct parsing of the format argument, generating a png image """ text = self.text_builder.diagram("A --> B").format("png").build() self.assertEqual(self._stripImageData(self._load_file('png_diag.html')), self._stripImageData(self.md.convert(text))) def test_arg_format_svg(self): """ Test for the correct parsing of the format argument, generating a svg image """ text = self.text_builder.diagram("A --> B").format("svg").build() self.assertEqual(self._stripImageData(self._load_file('svg_diag.html')), self._stripImageData(self.md.convert(text))) def test_arg_format_svg_object(self): """ Test for the correct parsing of the format argument, generating a svg image """ text = self.text_builder.diagram("A --> B").format("svg_object").build() self.assertEqual(self._stripImageData(self._load_file('svg_object_diag.html')), self._stripImageData(self.md.convert(text))) def test_arg_format_svg_inline(self): """ Test for the correct parsing of the format argument, generating a svg image """ text = self.text_builder.diagram("A --> B").format("svg_inline").build() self.assertEqual(self._stripSvgData(self._load_file('svg_inline_diag.html')), self._stripSvgData(self.md.convert(text))) def test_arg_format_txt(self): """ Test for the correct parsing of the format argument, generating a txt image """ text = self.text_builder.diagram("A --> B").format("txt").build() self.assertEqual(self._load_file('txt_diag.html'), self.md.convert(text)) def test_arg_width(self): """ Test for the correct parsing of the width argument """ text = self.text_builder.diagram("A --> B").width("120px").build() self.assertEqual( self._stripImageData('<p><img alt="uml diagram" class="uml" src="data:image/png;base64,%s" style="max-width:120px" title="" width="100%%" /></p>' % self.FAKE_IMAGE), self._stripImageData(self.md.convert(text))) def test_arg_with_percent(self): """ Test for the correct parsing of the width argument """ text = self.text_builder.diagram("A --> B").width("70%").build() self.assertEqual( self._stripImageData('<p><img alt="uml diagram" class="uml" src="data:image/png;base64,%s" style="max-width:70%%" title="" width="100%%" /></p>' % self.FAKE_IMAGE), self._stripImageData(self.md.convert(text))) def test_arg_height(self): """ Test for the correct parsing of the width argument """ text = self.text_builder.diagram("A --> B").height("120px").build() self.assertEqual( self._stripImageData('<p><img alt="uml diagram" class="uml" src="data:image/png;base64,%s" style="max-height:120px" title="" width="100%%" /></p>' % self.FAKE_IMAGE), self._stripImageData(self.md.convert(text))) def test_arg_height_percent(self): """ Test for the correct parsing of the width argument """ text = self.text_builder.diagram("A --> B").height("50%").build() self.assertEqual( self._stripImageData('<p><img alt="uml diagram" class="uml" src="data:image/png;base64,%s" style="max-height:50%%" title="" width="100%%" /></p>' % self.FAKE_IMAGE), self._stripImageData(self.md.convert(text))) def test_arg_width_and_height(self): """ Test for the correct parsing of the width and height arguments """ text = self.text_builder.diagram("A --> B").width("120px").height("120px").build() self.assertEqual( self._stripImageData('<p><img alt="uml diagram" class="uml" src="data:image/png;base64,%s" style="max-width:120px;max-height:120px" title="" width="100%%" /></p>' % self.FAKE_IMAGE), self._stripImageData(self.md.convert(text))) def test_arg_format_width_svg_inline(self): """ Test for the correct parsing of the format argument, generating a svg image """ text = self.text_builder.diagram("A --> B").format("svg_inline").width("120px").build() self.assertEqual(self._stripSvgData('<p><svg alt="uml diagram" title="" class="uml" style="max-width:120px">...svg-body...</svg></p>'), self._stripSvgData(self.md.convert(text))) def test_arg_format_height_svg_inline(self): """ Test for the correct parsing of the format argument, generating a svg image """ text = self.text_builder.diagram("A --> B").format("svg_inline").height("120px").build() self.assertEqual(self._stripSvgData('<p><svg alt="uml diagram" title="" class="uml" style="max-height:120px">...svg-body...</svg></p>'), self._stripSvgData(self.md.convert(text))) def test_arg_format_width_and_height_svg_inline(self): """ Test for the correct parsing of the format argument, generating a svg image """ text = self.text_builder.diagram("A --> B").format("svg_inline").width('120px').height("120px").build() self.assertEqual(self._stripSvgData('<p><svg alt="uml diagram" title="" class="uml" style="max-width:120px;max-height:120px">...svg-body...</svg></p>'), self._stripSvgData(self.md.convert(text))) def test_multidiagram(self): """ Test for the definition of multiple diagrams on the same document - """ text = self.text_builder.text('Paragraph before.\n\n') \ .diagram('A --> B') \ .text('\nMiddle paragraph.\n\n') \ .diagram('A <- B') \ .text('\nParagraph after.\n\n') \ .build() self.assertEqual(self._stripImageData(self._load_file('multiple_diag.html')), self._stripImageData(self.md.convert(text))) def test_other_fenced_code(self): """ Test the coexistence of diagrams and other fenced code """ text = self.text_builder.text('```bash\nls -l\n```\n') \ .text('\nA paragraph\n\n') \ .diagram('A --> B') \ .text('\nAnother paragraph\n') \ .build() self.assertEqual(self._stripImageData(self._load_file('code_and_diag.html')), self._stripImageData(self.md.convert(text))) def test_indented_fenced_code(self): """ Test handling of indented fenced code """ text = self.text_builder.text('* list item\n\n') \ .indent(4) \ .diagram('A --> B') \ .build() self.assertEqual(self._stripImageData('''<ul> <li> <p>list item</p> <p><img alt="uml diagram" class="uml" src="data:image/png;base64,%s" title="" /></p> </li> </ul>''' % self.FAKE_IMAGE), self._stripImageData(self.md.convert(text))) def test_unicode_chars(self): """indented_code Test that svg_inline handles correctly utf8 characters """ # Example diagram from issue 21 text = self.text_builder.diagram(u'Alicja -> Łukasz: "Zażółć gęślą jaźń"')\ .format("svg_inline")\ .build() svg = self.md.convert(text) self.assertTrue('Alicja' in svg) self.assertTrue('&#321;ukasz' in svg) self.assertTrue('"Za&#380;&#243;&#322;&#263; g&#281;&#347;l&#261; ja&#378;&#324;"' in svg) ```
{ "source": "jcrawford888/mbc", "score": 4 }
#### File: mbc/mbc/mbc.py ```python import requests import html2text import random import os import pickle # Just a magic number to distinguish different formats MAGIC = 0x1 # Encryption methods # FAST - all characters lower cased # FLEX - attempts to find a capital Letter in book, otherwise uses lower case. (default) # STRICT - Match the message exactly, fails if can't find capitals METHOD_FAST = 1 METHOD_FLEX = 2 METHOD_STRICT = 3 def encrypts(message=None, url=None, method=METHOD_FLEX): """ Encrypt the message string specified in the parameters. Use the contents of the url as the 'book' for encrypting the contents. NOTE: html tags are removed from the book contents and all text is lower-cased. :param message: parameter containing the message to encrypt :param url: the url pointing to a page of text that will be used as the 'book' :param method: encryption method :return: array of integer offsets into the 'book' """ if not message: raise ValueError("Missing message to encrypt") if not url: raise ValueError("Missing url") try: book = _prepare_book(url, method) except Exception: raise def _encode_char(ch, book, offsetmap): attempts = 0 while True: # find a random offset in the book then search forward to find the character offset = random.randint(0, len(book) - 1) if ch != book[offset]: # hunt forward for a character (loop to beginning if not found) # abort if we looped and hit this index again offsetorig = offset looped = False while True: offset = offset + 1 if offset >= len(book): looped = True offset = 0 if looped and offset >= offsetorig: # looped once and couldn't find a character in the book to encode the message character, abort return -1 if ch == book[offset]: # found the character we need break # make sure we don't use the same offset more than once in the encoded message if offset not in offsetmap: return offset attempts += 1 if attempts >= 3: # prevent infinite loop if char only appears once in the book return -1 offsetmap = {} offsets = [] for ch in message: if method == METHOD_FAST: ch = ch.lower() bk_offset = _encode_char(ch, book, offsetmap) if bk_offset < 0 and method == METHOD_FLEX: # try again with lower cased char bk_offset = _encode_char(ch.lower(), book, offsetmap) if bk_offset < 0: raise ValueError( f"Could not find a character in the book to encode the message character '{ch}'." ) offsetmap[bk_offset] = 1 offsets.append(bk_offset) return offsets def encrypt(infilename=None, url=None, method=METHOD_FLEX): """ Encrypt the contents of the file specified in the parameters. Use the contents of the url as the 'book' for encrypting the contents. NOTE: html tags are removed from the book contents and all text is lower-cased. :param infilename: file containing the message to encrypt :param url: the url pointing to a page of text that will be used as the 'book' :param method: encryption method :return: array of integer offsets into the 'book' """ if not url: raise ValueError("Missing url") if not infilename: raise ValueError("Missing input file") fh = open(infilename, "r") lines = [] for line in fh: lines.append(line) fh.close() message = " ".join(lines) return encrypts(message, url, method) def decrypts(cipher_arr=None, url=None, method=METHOD_FLEX): """ Decrypt an array of cipher offsets that has been encoded using mbc. :param cipher_arr: The cipher array encrypted using the encryption routine :param url: same url as used by the encryption routine :param method: encryption method :return: string containing the decrypted message """ if not url: raise ValueError("Missing url") if not cipher_arr: raise ValueError("Missing cipher array") try: book = _prepare_book(url, method) except Exception: raise if len(book) == 0: raise ValueError("Book is empty") message_arr = [] for offset in cipher_arr: if offset >= len(book) or offset < 0: raise ValueError(f"Bad offset ({offset}). Out of bounds for this book") message_arr.append(book[offset]) message = "".join(message_arr) return message def decrypt(infilename=None, url=None): """ Decrypt a file that has been encoded using mbc. :param infilename: The cipher text file encrypted using the encryption routine :param url: same url as used by the encryption routine :return: string containing the decrypted message """ if not url: raise ValueError("Missing url") if not infilename: raise ValueError("Missing input file") if not os.path.isfile(infilename): raise ValueError(f"Unable to open file: {infilename}") with open(infilename, "rb") as fh: header = pickle.load(fh) if not header or header != "mbc": raise ValueError("Invalid mbc cipher file") # We may use this later if we have different versions of the output format magicnum = pickle.load(fh) if magicnum != MAGIC: raise ValueError("Bad Magic Number") # Get the encryption method used to encrypt the file method = pickle.load(fh) # load the cipher text offsets cipher_arr = pickle.load(fh) return decrypts(cipher_arr, url, method) def _prepare_book(url_link, method=METHOD_FLEX): # try to get the data from the url raw = requests.get(url_link) handler = html2text.HTML2Text() handler.ignore_images = True handler.ignore_links = True handler.ignore_tables = True # extract the text from the url (e.g. 'book') if method == METHOD_FAST: clean = handler.handle(raw.text).lower() else: clean = handler.handle(raw.text) return clean def write(outfile, data, method=METHOD_FLEX): """ Routine to write out the encrypted data to a file convert the ints to a binary format and put a small header in the front. e.g.) mbc :param outfile: the name of the file to write the encrypted contents into :param data: array of offsets to write (encrypted message) :param method: algorithm identifier (e.g fast, flex, strict) :return: None """ if os.path.isfile(outfile): raise ValueError(f"File {outfile} already exists. aborting.") fh = open(outfile, "wb") # write the header pickle.dump("mbc", fh) # write the magic number pickle.dump(MAGIC, fh) # write the algorithm id used to encrypt the data pickle.dump(method, fh) # write the data pickle.dump(data, fh) fh.close() ```
{ "source": "JC-R/cluster-semantic-vectors", "score": 3 }
#### File: JC-R/cluster-semantic-vectors/cluster_vectors.py ```python from __future__ import division from sklearn.cluster import MiniBatchKMeans from numbers import Number from pandas import DataFrame import sys, codecs, numpy, json class autovivify_list(dict): '''Pickleable class to replicate the functionality of collections.defaultdict''' def __missing__(self, key): value = self[key] = [] return value def __add__(self, x): '''Override addition for numeric types when self is empty''' if not self and isinstance(x, Number): return x raise ValueError def __sub__(self, x): '''Also provide subtraction method''' if not self and isinstance(x, Number): return -1 * x raise ValueError def build_word_vector_matrix(vector_file, n_words): '''Iterate over the GloVe array read from sys.argv[1] and return its vectors and labels as arrays''' numpy_arrays = [] labels_array = [] with codecs.open(vector_file, 'r', 'latin1') as f: for c, r in enumerate(f): sr = r.lower().split() if len(sr) != 301: continue try: labels_array.append(sr[0]) numpy_arrays.append( numpy.array([float(i) for i in sr[1:]]) ) except ValueError: print c, len(sr) if c == n_words: return numpy.array( numpy_arrays ), labels_array return numpy.array( numpy_arrays ), labels_array def find_word_clusters(labels_array, cluster_labels): '''Read in the labels array and clusters label and return the set of words in each cluster''' cluster_to_words = autovivify_list() for c, i in enumerate(cluster_labels): cluster_to_words[ str(i) ].append( labels_array[c] ) return cluster_to_words if __name__ == "__main__": input_vector_file = sys.argv[1] n_words = int(sys.argv[2]) reduction_factor = float(sys.argv[3]) clusters_to_make = int( n_words * reduction_factor ) df, labels_array = build_word_vector_matrix(input_vector_file, n_words) kmeans_model = MiniBatchKMeans(init='k-means++', n_clusters=clusters_to_make) kmeans_model.fit(df) cluster_labels = kmeans_model.labels_ cluster_inertia = kmeans_model.inertia_ cluster_to_words = find_word_clusters(labels_array, cluster_labels) with open("glove_clusters_" + str(sys.argv[2]) + "_words.json",'w') as json_out: json.dump(cluster_to_words, json_out) ''' for c in cluster_to_words: print cluster_to_words[c] print "\n" ''' ```
{ "source": "jcrd/devlog", "score": 3 }
#### File: devlog/devlog/config.py ```python from configparser import ConfigParser from pathlib import Path CONFIG_NAME = ".devlog.conf" DEFAULT_CONFIG = """# [options] # auto_push = true # title = """ class Config(ConfigParser): """ A configuration object. """ @property def auto_push(self): """ The state of the auto push option. :return: `True` if set, otherwise `False` """ return self.get("options", "auto_push", fallback=True) def new_config(path, init=False): """ Create a new config object. :param path: Path to config file to read "param init: Initialize config file if `True`, defaults to `False` :return: A `ConfigParser` object """ path = Path(path, CONFIG_NAME).resolve() config = Config() if path.is_file(): config.read(path) elif init: path.write_text(DEFAULT_CONFIG) return config ``` #### File: devlog/devlog/editor.py ```python import os import subprocess import shutil DEFAULT_METADATA = """--- title: {title} | {date} date: {date} author: {author} --- """ class Editor: """ An editor interface. :param config: Config object :param cmd: Editor command. Falls back to the environment variables \ `DEVLOG_EDITOR` or `EDITOR`, then the command "vim" """ def __init__(self, config, cmd=None): self.config = config if cmd: self.cmd = cmd else: self.cmd = os.environ.get("DEVLOG_EDITOR") if not self.cmd: self.cmd = os.environ.get("EDITOR", "vim") if not shutil.which(self.cmd): raise FileNotFoundError(self.cmd) def _set_config_opt(self, kwargs, opt, value): kwargs[opt] = self.config.get("options", opt, fallback=kwargs.get(opt, value)) def edit(self, file, **kwargs): """ Edit file with editor. :param file: Pathlib-based file path :param \**kwargs: Keyword arguments corresponding to file metadata """ if not file.is_file(): self._set_config_opt(kwargs, "title", "unknown") file.write_text(DEFAULT_METADATA.format(**kwargs)) subprocess.run(self.cmd.split() + [str(file)], check=True) ``` #### File: devlog/devlog/__main__.py ```python from subprocess import CalledProcessError import argparse import sys from devlog.config import new_config from devlog.editor import Editor from devlog.repo import GitRepo def get_repo(path): try: repo = GitRepo(path) except FileNotFoundError: sys.stderr.write("Repo uninitialized; run `devlog init`\n") sys.exit(1) return repo def cmd_init(args): print("Initializing git repo...") GitRepo(args.directory, init=True) print("Initializing config file...") new_config(args.directory, init=True) def cmd_remote(args): repo = get_repo(args.directory) repo.set_remote(args.url) def cmd_push(args): repo = get_repo(args.directory) try: if repo.push() == GitRepo.PushStatus.NO_REMOTE: sys.stderr.write("No remote; run `devlog remote <URL>`\n") sys.exit(1) except GitRepo.PushError as err: sys.stderr.write(str(err)) sys.exit(1) def cmd_pull(args): repo = get_repo(args.directory) try: if not repo.pull(): sys.stderr.write("No remote; run `devlog remote <URL>`\n") sys.exit(1) except CalledProcessError as err: sys.stderr.write(err.stderr) sys.exit(err.returncode) def main(): parser = argparse.ArgumentParser() parser.add_argument("-d", "--directory", default=".", help="Path to dev directory") parser.add_argument("-e", "--editor", help="Editor to use") subp = parser.add_subparsers(title="commands", dest="cmd") initp = subp.add_parser("init", help="Initialize repo") initp.set_defaults(cmd=cmd_init) remotep = subp.add_parser("remote", help="Set remote URL") remotep.add_argument("url", help="Remote URL") remotep.set_defaults(cmd=cmd_remote) pushp = subp.add_parser("push", help="Update remote") pushp.set_defaults(cmd=cmd_push) pullp = subp.add_parser("pull", help="Pull from remote") pullp.set_defaults(cmd=cmd_pull) args = parser.parse_args() if args.cmd: args.cmd(args) sys.exit() config = new_config(args.directory) repo = get_repo(args.directory) if config.auto_push: try: repo.auto_push() except GitRepo.PushError as err: sys.stderr.write(str(err)) sys.exit(1) try: editor = Editor(config, cmd=args.editor) except FileNotFoundError as error: sys.stderr.write("Command not found: {}\n".format(error.args[0])) sys.exit(2) try: repo.edit_today(editor) except GitRepo.CommitError as err: sys.stderr.write(str(err)) sys.exit(1) if __name__ == "__main__": main() ``` #### File: devlog/devlog/repo.py ```python from datetime import date, datetime from enum import Enum, auto from pathlib import Path import subprocess GIT_REPO = ".devlog" GIT_BRANCH = "devlog" class GitRepo: """ A git repo interface. :param path: Path to directory containing git repo "param init: Initialize git repo if `True`, defaults to `False` """ DATE_FORMAT = "%Y-%m-%d" class CommitError(Exception): """ An exception raised when committing fails. """ class PushError(Exception): """ An exception raised when updating remote fails. """ class CommitStatus(Enum): """ Status of commit made after editing an entry. """ NEW = auto() AMEND = auto() class PushStatus(Enum): """ Status of push command. """ NO_REMOTE = auto() INACTION = auto() DRY_RUN = auto() SUCCESS = auto() def __init__(self, path, init=False): path = Path(path).resolve() self.name = path.name self.path = Path(path, GIT_REPO).resolve(strict=not init) if init: if not self.path.is_dir(): self.path.mkdir() if not Path(self.path, ".git").is_dir(): self._git("init", "-q") self._git("checkout", "--orphan", GIT_BRANCH) def _git(self, *args, check=True, **kwargs): return subprocess.run( ["git", "-C", str(self.path)] + list(args), check=check, **kwargs ) def _git_dry_run(self, *args): return self._git( *args, "--dry-run", check=False, capture_output=True, text=True ) def _username(self): ret = self._git( "config", "user.name", check=False, capture_output=True, text=True ) if ret.returncode != 0: return "unknown" return ret.stdout.rstrip() def last_commit_date(self): """ Get date of last commit. :return: Date of last commit """ ret = self._git( "log", "-1", "--pretty=format:%B", check=False, capture_output=True, text=True, ) if ret.returncode == 128: return None return datetime.strptime(ret.stdout.rstrip(), self.DATE_FORMAT).date() def _check_remote(self): return ( self._git( "remote", "get-url", "origin", check=False, capture_output=True ).returncode != 2 ) def edit_today(self, editor, today=None): """ Edit entry for current or specified date. :param editor: Editor instance :param today: Date of entry to edit, defaults to current date :raises CommitError: Raised when committing fails :return: Commit status, one of `GitRepo.CommitStatus` """ if not today: today = date.today() path = Path(self.path, str(today.year), str(today.month)) file = Path(path, str(today.day) + ".md") path.mkdir(parents=True, exist_ok=True) datefmt = today.strftime(self.DATE_FORMAT) editor.edit(file, title=self.name, date=datefmt, author=self._username()) self._git("add", str(file)) ret = self._git_dry_run("commit") if ret.returncode == 1: raise self.CommitError(ret.stdout.rstrip()) cmd = ["commit", "-m", datefmt] status = self.CommitStatus.NEW if self.last_commit_date() == today: cmd.append("--amend") status = self.CommitStatus.AMEND self._git(*cmd) return status def set_remote(self, url): """ Set remote URL. :param url: The remote URL """ self._git("remote", "add", "origin", url) def push(self, dry_run=False): """ Update remote. :param dry_run: If `True`, don't update remote, only return status :raises PushError: Raised when updating remote fails :return: Push status, one of `GitRepo.PushStatus` """ if not self._check_remote(): return self.PushStatus.NO_REMOTE if dry_run: return self.PushStatus.DRY_RUN ret = self._git_dry_run("push", "origin") if ret.returncode > 0: raise self.PushError(ret.stderr.rstrip()) if not dry_run: self._git("push", "origin") return self.PushStatus.SUCCESS def auto_push(self, today=None, dry_run=False): """ Automatically update remote if the last commit date is before today. :param today: Date to use as condition, defaults to current date :param dry_run: If `True`, don't update remote, only return status :raises PushError: Raised when updating remote fails :return: Push status, one of `GitRepo.PushStatus` """ if not today: today = date.today() last_date = self.last_commit_date() if last_date and last_date < today: return self.push(dry_run=dry_run) return self.PushStatus.INACTION def pull(self): """ Pull from remote. :raises CalledProcessError: Raised when pull command fails :return: `True` if pulling succeeds, `False` otherwise """ if not self._check_remote(): return False self._git("pull", "origin", GIT_BRANCH, capture_output=True, text=True) return True ``` #### File: devlog/test/test_repo.py ```python from datetime import date import tempfile import unittest from devlog.repo import GitRepo class RepoCtx: def __init__(self): self.dir = tempfile.TemporaryDirectory() self.repo = GitRepo(self.dir.name, init=True) self.repo._git("config", "user.email", "<EMAIL>") self.repo._git("config", "user.name", "<NAME>") def __enter__(self): return self.repo def __exit__(self, *_): self.dir.cleanup() class Editor: def __init__(self): self.text = "" def edit(self, file, **_): file.write_text(self.text) class TestGitRepo(unittest.TestCase): def setUp(self): self.editor = Editor() self.yesterday = date(2021, 1, 1) self.today = date(2021, 1, 2) def test_commit_status(self): with RepoCtx() as repo: def assert_status(text, today, status): self.editor.text = text ret = repo.edit_today(self.editor, today=today) self.assertEqual(ret, status) assert_status("1", self.yesterday, GitRepo.CommitStatus.NEW) assert_status("1", self.today, GitRepo.CommitStatus.NEW) with self.assertRaises(GitRepo.CommitError): repo.edit_today(self.editor, today=self.today) assert_status("1 2", self.today, GitRepo.CommitStatus.AMEND) assert_status("1 2 3", self.today, GitRepo.CommitStatus.AMEND) def test_push_status(self): with RepoCtx() as repo: ret = repo.push(dry_run=True) self.assertEqual(ret, GitRepo.PushStatus.NO_REMOTE) repo.set_remote("https://github.com/jones/test.git") with self.assertRaises(GitRepo.PushError): repo.push() def test_last_commit_date(self): with RepoCtx() as repo: self.assertIsNone(repo.last_commit_date()) repo.edit_today(self.editor, today=self.today) self.assertEqual(repo.last_commit_date(), self.today) def test_auto_push(self): with RepoCtx() as repo: repo.set_remote("https://github.com/jones/test.git") repo.edit_today(self.editor, today=self.yesterday) ret = repo.auto_push(today=self.today, dry_run=True) self.assertEqual(ret, GitRepo.PushStatus.DRY_RUN) repo.edit_today(self.editor, today=self.today) ret = repo.auto_push(today=self.today, dry_run=True) self.assertEqual(ret, GitRepo.PushStatus.INACTION) ```
{ "source": "jcrd/lifelight", "score": 3 }
#### File: python/samples/rotating-block-generator.py ```python from samplebase import SampleBase import math def scale_col(val, lo, hi): if val < lo: return 0 if val > hi: return 255 return 255 * (val - lo) / (hi - lo) def rotate(x, y, sin, cos): return x * cos - y * sin, x * sin + y * cos class RotatingBlockGenerator(SampleBase): def __init__(self, *args, **kwargs): super(RotatingBlockGenerator, self).__init__(*args, **kwargs) def run(self): cent_x = self.matrix.width / 2 cent_y = self.matrix.height / 2 rotate_square = min(self.matrix.width, self.matrix.height) * 1.41 min_rotate = cent_x - rotate_square / 2 max_rotate = cent_x + rotate_square / 2 display_square = min(self.matrix.width, self.matrix.height) * 0.7 min_display = cent_x - display_square / 2 max_display = cent_x + display_square / 2 deg_to_rad = 2 * 3.14159265 / 360 rotation = 0 # Pre calculate colors col_table = [] for x in range(int(min_rotate), int(max_rotate)): col_table.insert(x, scale_col(x, min_display, max_display)) offset_canvas = self.matrix.CreateFrameCanvas() while True: rotation += 1 rotation %= 360 # calculate sin and cos once for each frame angle = rotation * deg_to_rad sin = math.sin(angle) cos = math.cos(angle) for x in range(int(min_rotate), int(max_rotate)): for y in range(int(min_rotate), int(max_rotate)): # Our rotate center is always offset by cent_x rot_x, rot_y = rotate(x - cent_x, y - cent_x, sin, cos) if x >= min_display and x < max_display and y >= min_display and y < max_display: x_col = col_table[x] y_col = col_table[y] offset_canvas.SetPixel(rot_x + cent_x, rot_y + cent_y, x_col, 255 - y_col, y_col) else: offset_canvas.SetPixel(rot_x + cent_x, rot_y + cent_y, 0, 0, 0) offset_canvas = self.matrix.SwapOnVSync(offset_canvas) # Main function if __name__ == "__main__": rotating_block_generator = RotatingBlockGenerator() if (not rotating_block_generator.process()): rotating_block_generator.print_help() ```
{ "source": "jcrd/python-pkgbuilder", "score": 2 }
#### File: python-pkgbuilder/pkgbuilder/aur.py ```python from pathlib import Path from subprocess import run import json import logging import tarfile import urllib.request log = logging.getLogger('pkgbuilder.aur') class GitRepo: """ A local git repository. :param path: Path to local repository """ def __init__(self, path): self.path = Path(path) def _git(self, cmd): return 'git -C {} {}'.format(str(self.path), cmd).split() def is_repo(self): return run(self._git('status')).returncode == 0 def up_to_date(self): """ Check if the repository is up-to-date. :return: `True` if up-to-date, `False` otherwise :raises CalledProcessError: Raised if the git command fails """ run(self._git('fetch origin master'), check=True) r = run(self._git('rev-list HEAD..origin/master --count'), check=True) return r.stdout == '0' def pull(self): """ Run git pull in this repository. :raises CalledProcessError: Raised if the git command fails """ run(self._git('pull'), check=True) def clone(self, url): """ Clone a git repository to self.path. :param url: Git repository URL :raises FileExistsError: Raised if self.path already exists :raises CalledProcessError: Raised if the git command fails """ if self.path.exists(): raise FileExistsError run(['git', 'clone', '--depth=1', url, str(self.path)], check=True) class AurPackage: """ A package found on the AUR that can be downloaded or cloned via git. :param info: Package info :param url: URL to the AUR interface """ def __init__(self, info, url): self.info = info self.url = url self.name = info['Name'] self.urlpath = url + info['URLPath'] self.giturl = url + '/{}.git'.format(self.name) def download(self, dest): """ Download and extract package snapshot to given destination. :param dest: Extraction destination """ with urllib.request.urlopen(self.urlpath) as r: with tarfile.open(fileobj=r, mode='r:gz') as t: log.info('%s: Downloading AUR snapshot to %s...', self.name, dest) prefix = self.name + '/' members = [] for m in t.getmembers(): if m.name.startswith(prefix): m.name = m.name[len(prefix):] members.append(m) t.extractall(dest, members) def git_clone(self, dest): """ Clone the AUR package's git repository to given destination. :param dest: Local repository destination :raises FileExistsError: Raised if the destination already exists :raises CalledProcessError: Raised if the git command fails """ GitRepo(dest).clone(self.giturl) class Aur: """ Wrapper around the AUR RPC interface with caching for package info. See https://aur.archlinux.org/rpc.php. :param url: URL providing the RPC interface, defaults to \ https://aur.archlinux.org """ def __init__(self, url='https://aur.archlinux.org'): self.url = url self.rpc = url + '/rpc/?v=5&type=info' self.cache = {} def infos(self, *names): """ Get info about AUR packages. :param names: Positional arguments specifying package names :return: A dictionary mapping names to info """ res = {} args = '' for name in names: if name in self.cache: res[name] = self.cache[name] else: args += '&arg[]={}'.format(name) if not args: return res with urllib.request.urlopen(self.rpc + args) as r: s = r.read().decode('utf-8') for pkg in json.loads(s)['results']: name = pkg['Name'] self.cache[name] = pkg res[name] = pkg return res def info(self, name): """ Get info about an AUR package. :param name: Name of the AUR package :return: Package info or None if name is not found """ try: return self.infos(name)[name] except KeyError: return None def get_package(self, name): """ Get an AurPackage that can be downloaded. :param name: Name of the AUR package :return: an AurPackage or None if name is not found """ i = self.info(name) if i: return AurPackage(i, self.url) ``` #### File: python-pkgbuilder/test/common.py ```python from pathlib import Path test1_pkg = 'test1-1-1-any.pkg.tar.xz' test1_dep1_pkg = 'test1-dep1-1-1-any.pkg.tar.xz' test1_makedep1_pkg = 'test1-makedep1-1-1-any.pkg.tar.xz' localdir = str(Path(__file__).parent) + '/pkgbuilds' chrootdir = '/var/lib/pkgbuilder' def pkgnames(pkgs): return [str(Path(p).name) for p in pkgs] ``` #### File: python-pkgbuilder/test/test_utils.py ```python from pathlib import Path from shutil import copytree from tempfile import TemporaryDirectory import os import unittest from pkgbuilder.utils import synctree class TestSynctree(unittest.TestCase): def setUp(self): self.seed = TemporaryDirectory() self.tmp = TemporaryDirectory() self.dest = Path(self.tmp.name, 'synctree') self.dir = Path(self.seed.name, 'dir') os.mkdir(self.dir) def echo(contents, *args): with open(Path(self.seed.name, *args), 'w') as f: f.write(contents) echo('before', 'file1') echo('before', 'file2') echo('before', 'file3') echo('before', self.dir, 'file1') echo('before', self.dir, 'file2') echo('before', self.dir, 'file3') copytree(self.seed.name, self.dest) echo('after', 'file1') echo('after', self.dir, 'file1') echo('new', 'file4') echo('new', self.dir, 'file4') def test_synctree(self): synctree(self.seed.name, self.dest) with open(Path(self.dest, 'file1')) as f: content = list(f) self.assertEqual(content[0], 'after') with open(Path(self.dest, self.dir, 'file1')) as f: content = list(f) self.assertEqual(content[0], 'after') self.assertTrue(Path(self.dest, 'file4').exists()) self.assertTrue(Path(self.dest, self.dir, 'file4').exists()) def tearDown(self): self.seed.cleanup() self.tmp.cleanup() ```
{ "source": "jcredi/article-titles-generator", "score": 3 }
#### File: jcredi/article-titles-generator/lstmtrainer.py ```python from __future__ import print_function import numpy as np import random import os import sys import argparse from keras.models import Sequential from keras.layers import LSTM, Dense, Activation from keras.optimizers import RMSprop __author__ = "<NAME>" __license__ = "MIT" __version__ = "1.4.1-rc" __email__ = "<EMAIL>" parser = argparse.ArgumentParser(description='Trains an LSTM for scientific paper titles generation.') parser.add_argument('--dataDumpPath', dest='dump_file_path', default=os.getcwd()+'/data/dump.csv', help='Path to text corpus file. Default: "<current_working_directory>/data_dump/arxiv_dump.csv"') parser.add_argument('--sequenceLength', dest='seq_length', type=int, default=40, help='Length of sequences to be extracted from the corpus. Default: 40') parser.add_argument('--step', dest='step', type=int, default=3, help='Steps by which the corpus will be cut into sequences. Default: 3') parser.add_argument('--lstmUnits', dest='lstm_units', type=int, default=128, help='Number of LSTM units. Default: 128') parser.add_argument('--epochs', dest='epochs', type=int, default=60, help='Number of training epochs. Default: 60') parser.add_argument('--learningRate', dest='learning_rate', type=float, default=0.01, help='Learning rate used by the RMSprop optimizer. Default: 0.01') parser.add_argument('--batchSize', dest='batch_size', type=int, default=128, help='Mini-batch size. Default: 128') parser.add_argument('--temperature', dest='temperature', type=float, default=0.5, help='Controls the randomness level in the generation of new sequences. Default: 0.5') parser.add_argument('--outputSequenceLength', dest='output_seq_length', type=int, default=400, help='Length of the generated text to be displayed after each epoch. Default: 400') args = parser.parse_args() # retrieve dumped data titles = [] with open(args.dump_file_path, 'r') as data_dump_file: for line in data_dump_file: titles.append(line.rstrip()) corpus = '. '.join(titles) print('Corpus length:', len(corpus)) chars = sorted(list(set(corpus))) print('Total chars:', len(chars)) char_indices = dict((c, i) for i, c in enumerate(chars)) indices_char = dict((i, c) for i, c in enumerate(chars)) # cut the text in semi-redundant sequences of maxlen characters maxlen = args.seq_length step = args.step sequences = [] next_chars = [] for i in range(0, len(corpus) - maxlen, step): sequences.append(corpus[i: i + maxlen]) next_chars.append(corpus[i + maxlen]) print('Number of sequences:', len(sequences)) print('One-hot vectorization...') X = np.zeros((len(sequences), maxlen, len(chars)), dtype=np.bool) y = np.zeros((len(sequences), len(chars)), dtype=np.bool) for i, sequence in enumerate(sequences): for t, char in enumerate(sequence): X[i, t, char_indices[char]] = 1 y[i, char_indices[next_chars[i]]] = 1 # build the model: a single LSTM print('Build model...') model = Sequential() model.add(LSTM(args.lstm_units, input_shape=(maxlen, len(chars)))) model.add(Dense(len(chars))) model.add(Activation('softmax')) optimizer = RMSprop(lr=args.learning_rate) model.compile(loss='categorical_crossentropy', optimizer=optimizer) def sample(preds, temperature=1.0): # helper function to sample an index from a probability array preds = np.asarray(preds).astype('float64') preds = np.log(preds) / temperature exp_preds = np.exp(preds) preds = exp_preds / np.sum(exp_preds) probas = np.random.multinomial(1, preds, 1) return np.argmax(probas) # train the model, output generated text after each epoch for epoch in range(1, args.epochs): print() print('-' * 50) print('Epoch ', epoch) model.fit(X, y, batch_size=args.batch_size, nb_epoch=1) start_index = random.randint(0, len(corpus) - maxlen - 1) generated = '' sequence = corpus[start_index: start_index + maxlen] generated += sequence print('----- Generating with seed: "' + sequence + '"') sys.stdout.write(generated) for i in range(args.output_seq_length): x = np.zeros((1, maxlen, len(chars))) for t, char in enumerate(sequence): x[0, t, char_indices[char]] = 1. preds = model.predict(x, verbose=0)[0] next_index = sample(preds, args.temperature) next_char = indices_char[next_index] generated += next_char sequence = sequence[1:] + next_char sys.stdout.write(next_char) sys.stdout.flush() print() ```
{ "source": "jcreigh/pysurfshark", "score": 2 }
#### File: pysurfshark/surfshark/common.py ```python import json from collections import UserDict class JsonObject(UserDict): def __init__(self, data): super().__init__(data) def __getattr__(self, attr): if attr in self.data: return self.data[attr] return self.__getattribute__(attr) #def __setattr__(self, attr, value): # if attr != "data" and attr in self.data: # self.data[attr] = value # else: # object.__setattr__(self, attr, value) def getMainPublicKey(): import subprocess try: main_pubkey = subprocess.check_output(["dig", "+short", "TXT", "wgs.prod.surfshark.com"]).strip()[13:-2].decode() except FileNotFoundError: try: output = subprocess.check_output(["nslookup", "-q=txt", "wgs.prod.surfshark.com"]) main_pubkey = output.split(b'public_key', 1)[1].split(b']', 1)[0][1:] except FileNotFoundError: raise RuntimeError('Could not lookup Surfshark\'s main public key. Install dig or nslookup') return main_pubkey ``` #### File: pysurfshark/surfshark/ConnectionInfo.py ```python from .common import JsonObject def ConnectionInfo(JsonObject): def __init__(self, data): super().__init__(data) def __str__(self): out = f"ConnectionInfo(ip={self.ip}, isp={self.isp}, countryCode={self.countryCode}, country={self.country}, " out += f"city={self.city}, secured={self.secured}, restricted={self.restricted})" return out ```
{ "source": "jcreighton669/ProjectEuler100-Challenge", "score": 4 }
#### File: ProjectEuler100-Challenge/003: Largest Prime/LargestPrimeFactor.py ```python def main(): num = int(input("Enter the number to get its largest prime factor: ")) print(largest_factor(num)) def largest_factor(number): largest_prime = 0 factors = [] prime_factors = [] for i in range(2, number): if number % i == 0: factors.append(i) for num in factors: if is_prime(num) == True and num > largest_prime: prime_factors.append(num) # print(prime_factors) return max(prime_factors) def is_prime(factor): prime = True for i in range(2, factor): if factor % i == 0: prime = False break i += 1 return prime main() ``` #### File: ProjectEuler100-Challenge/004: Palindromic Product/LargestPalindromicProduct.py ```python import math def main(): digits = int(input("Enter number of digits for multiplier: ")) count = 0 first_value = 0 second_value = 0 product = 0 palindromic_product = 0 lower_limit = int(math.pow(10, digits - 1)) upper_limit = int(math.pow(10, digits)) for i in range(lower_limit, upper_limit): for j in range(lower_limit, upper_limit): product = i * j if isPalindrome(product): count += 1 first_value = i second_value = j palindromic_product = product print(first_value, "*", second_value, "=", palindromic_product) print(count) def isPalindrome(product): remain = 0 reverse_product = 0 temp = product palindrome = False while temp != 0: remain = temp % 10 reverse_product = reverse_product * 10 + remain temp = int(temp / 10) if product == reverse_product: palindrome = True return palindrome main() ``` #### File: ProjectEuler100-Challenge/007: 10001st Prime/NthPrime.py ```python import math import sys def main(): count = 0 nth = int(input("Enter which prime you want: ")) nthPrime = 0 max_int = sys.maxsize for i in range(2, max_int): isPrime = is_prime(i) if isPrime: count += 1 nthPrime = i if nth == count: break print(nthPrime, "is the", nth, "prime number") def is_prime(factor): prime = True for i in range(2, factor): if factor % i == 0: prime = False break i += 1 return prime main() ``` #### File: ProjectEuler100-Challenge/010: Summation of Primes/SummationOfPrimes.py ```python def primes(number): prime = [] sum = 0 for i in range(number): prime.append(True) for p in range(2, number): if prime[p] == True: for i in range(p * 2, number): prime[i] = False for i in range(2, number): if prime[i] == True: sum += i return sum def main(): upper_limit = int(input("Enter an upper limit: ")) print(primes(upper_limit)) main() ```
{ "source": "jcreinhold/counterfactualms", "score": 2 }
#### File: counterfactualms/arch/hierarchical.py ```python from functools import partial import numpy as np import torch from torch import nn from counterfactualms.arch.layers import Conv2d, ConvTranspose2d class HierarchicalEncoder(nn.Module): def __init__(self, num_convolutions=3, filters=(16,32,64,128,256), latent_dim=100, input_size=(1,128,128), use_weight_norm=False, use_spectral_norm=False, hierarchical_layers=(1,3,5), div_factor=8): super().__init__() self.num_convolutions = num_convolutions self.filters = filters if use_weight_norm and use_spectral_norm: raise ValueError('Cannot use both weight norm and spectral norm.') self.use_weight_norm = use_weight_norm self.use_spectral_norm = use_spectral_norm self.hierarchical_layers = hierarchical_layers self.div_factor = div_factor self.down_layers = nn.ModuleList([]) self.resolution_layers = nn.ModuleList([]) self.intermediate_shapes = [] self.out_layers = nn.ModuleList([]) cur_channels = input_size[0] for i, c in enumerate(filters): resolution_layer = [] for _ in range(0, num_convolutions - 1): resolution_layer += self._conv_layer(cur_channels, c) cur_channels = c self.resolution_layers.append(nn.Sequential(*resolution_layer)) if i in self.hierarchical_layers: out_channels = max(cur_channels // div_factor, 1) self.out_layers.append(self._conv(cur_channels, out_channels, 1, bias=True)) self.intermediate_shapes.append(np.array(input_size) // (2 ** i)) self.intermediate_shapes[-1][0] = out_channels self.down_layers.append(nn.Sequential(*self._down_conv_layer(cur_channels, c))) cur_channels = c if len(filters) in self.hierarchical_layers: self.intermediate_shapes.append(np.array(input_size) // (2 ** len(filters))) self.intermediate_shapes[-1][0] = cur_channels self.fc = nn.Sequential( nn.Linear(np.prod(self.intermediate_shapes[-1]), latent_dim, bias=False), nn.BatchNorm1d(latent_dim), nn.LeakyReLU(.1, inplace=True) ) @property def _conv(self): return partial(Conv2d, use_weight_norm=self.use_weight_norm, use_spectral_norm=self.use_spectral_norm) def _conv_layer(self, ci, co): return [self._conv(ci, co, 3, 1, 1, bias=False), nn.BatchNorm2d(co, momentum=0.05), nn.LeakyReLU(.1, inplace=True)] def _down_conv_layer(self, ci, co): return [self._conv(ci, co, 4, 2, 1, bias=False), nn.BatchNorm2d(co, momentum=0.05), nn.LeakyReLU(.1, inplace=True)] def forward(self, x): out = [] c = 0 for i, (conv, down) in enumerate(zip(self.resolution_layers, self.down_layers)): x = conv(x) if i in self.hierarchical_layers: out.append(self.out_layers[c](x)) c += 1 x = down(x) if len(self.filters) in self.hierarchical_layers: x = x.view(-1, np.prod(self.intermediate_shapes[-1])) out.append(self.fc(x)) return out class HierarchicalDecoder(nn.Module): def __init__(self, num_convolutions=3, filters=(256,128,64,32,16), latent_dim=100, output_size=(1,128,128), upconv=False, use_weight_norm=False, use_spectral_norm=False, hierarchical_layers=(1,3,5), context_dim=4, div_factor=8): super().__init__() self.num_convolutions = num_convolutions self.filters = filters self.upconv = upconv if use_weight_norm and use_spectral_norm: raise ValueError('Cannot use both weight norm and spectral norm.') self.use_weight_norm = use_weight_norm self.use_spectral_norm = use_spectral_norm self.hierarchical_layers = hierarchical_layers hierarchical_layers_ = [h for h in hierarchical_layers if h != len(filters)] self.context_dim = context_dim self.div_factor = div_factor self.resolution_layers = nn.ModuleList([]) self.up_layers = nn.ModuleList([]) self.intermediate_shapes = [] self.context_attention = nn.ModuleList([]) cur_channels = filters[0] self.start_context_attention = self._attn(cur_channels) self.start_up_layer = nn.Sequential(*self._upsample_layer(cur_channels, cur_channels)) if len(filters) in hierarchical_layers: self.intermediate_shapes.append(np.array(output_size) // (2 ** (len(filters)))) self.intermediate_shapes[-1][0] = cur_channels for i, c in enumerate(filters[1:], 1): resolution_layer = [] i = (len(filters) - i) input_layer = i in hierarchical_layers_ in_channels = max(cur_channels // div_factor, 1) for j in range(0, num_convolutions - 1): ci = (in_channels+cur_channels) if j == 0 and input_layer else cur_channels resolution_layer += self._conv_layer(ci, cur_channels) self.resolution_layers.append(nn.Sequential(*resolution_layer)) self.context_attention.append(self._attn(cur_channels)) self.up_layers.append(nn.Sequential(*self._upsample_layer(cur_channels, c))) if input_layer: self.intermediate_shapes.append(np.array(output_size) // (2 ** i)) self.intermediate_shapes[-1][0] = in_channels cur_channels = c final_layer = self._conv_layer(cur_channels, cur_channels) final_layer.append(self._conv(cur_channels, output_size[0], 1, 1, bias=True)) self.final_layer = nn.Sequential(*final_layer) self.fc = nn.Sequential( nn.Linear(latent_dim, np.prod(self.intermediate_shapes[0]), bias=False), nn.BatchNorm1d(np.prod(self.intermediate_shapes[0])), nn.LeakyReLU(.1, inplace=True) ) @property def _conv(self): return partial(Conv2d, use_weight_norm=self.use_weight_norm, use_spectral_norm=self.use_spectral_norm) @property def _conv_transpose(self): return partial(ConvTranspose2d, use_weight_norm=self.use_weight_norm, use_spectral_norm=self.use_spectral_norm) def _conv_layer(self, ci, co): return [self._conv(ci, co, 3, 1, 1, bias=False), nn.BatchNorm2d(co, momentum=0.05), nn.LeakyReLU(.1, inplace=True)] def _upsample_layer(self, ci, co): if self.upconv: layer = [nn.Upsample(scale_factor=2, mode='nearest'), self._conv(ci, co, kernel_size=5, stride=1, padding=2, bias=False)] else: layer = [self._conv_transpose(ci, co, kernel_size=4, stride=2, padding=1, bias=False)] layer += [nn.BatchNorm2d(co, momentum=0.05), nn.LeakyReLU(.1, inplace=True)] return layer def _attn(self, co): hidden_dim = max(co // 4, self.context_dim) return nn.Sequential(nn.Linear(self.context_dim, hidden_dim), nn.LeakyReLU(0.1, inplace=True), nn.Linear(hidden_dim, co), nn.Sigmoid()) def forward(self, x, ctx): assert x[0].size(0) == ctx.size(0) batch_size = ctx.size(0) layers = zip(self.resolution_layers, self.up_layers, self.context_attention) ctx_attn = self.start_context_attention(ctx).view(batch_size, -1, 1, 1) y = self.fc(x.pop()).view(-1, *self.intermediate_shapes[0]) y = self.start_up_layer(y) * ctx_attn for i, (conv, up, attn) in enumerate(layers, 1): i = len(self.filters) - i output_layer = i in self.hierarchical_layers ctx_attn = attn(ctx).view(batch_size, -1, 1, 1) if output_layer: y = torch.cat([y, x.pop()], 1) y = conv(y) * ctx_attn y = up(y) y = self.final_layer(y) return y if __name__ == "__main__": hl = (1, 2, 3, 4, 5) filters = [20, 40, 80, 160, 320] div_factor = 80 img_shape = (3,128,128) enc = HierarchicalEncoder( hierarchical_layers=hl, filters=filters, div_factor=div_factor, input_size=img_shape ) dec = HierarchicalDecoder( hierarchical_layers=hl, filters=filters[::-1], div_factor=div_factor, output_size=img_shape ) print(enc.intermediate_shapes) print(dec.intermediate_shapes) ctx = torch.randn(2, 4) x = torch.randn(2, *img_shape) y = enc(x) z = dec(y, ctx) assert z.shape == x.shape print(enc) print(dec) ``` #### File: counterfactualms/arch/layers.py ```python import torch.nn as nn from torch.nn.utils import spectral_norm, weight_norm class Conv2d(nn.Module): def __init__(self, *args, use_weight_norm=True, use_spectral_norm=False, **kwargs): super().__init__() self.conv = nn.Conv2d(*args, **kwargs) self.use_weight_norm = use_weight_norm self.use_spectral_norm = use_spectral_norm if use_weight_norm: self.conv = weight_norm(self.conv) if use_spectral_norm: self.conv = spectral_norm(self.conv) def forward(self, x): return self.conv(x) def _norm_str(self): norm = '' if self.use_weight_norm: norm += f', weight_norm={self.use_weight_norm}' if self. use_spectral_norm: norm += f', spectral_norm={self.use_spectral_norm}' norm += ')' return norm def __repr__(self): return self.conv.__repr__()[:-1] + self._norm_str() def __str__(self): return self.conv.__str__()[:-1] + self._norm_str() class ConvTranspose2d(nn.Module): def __init__(self, *args, use_weight_norm=True, use_spectral_norm=False, **kwargs): super().__init__() self.conv = nn.ConvTranspose2d(*args, **kwargs) self.use_weight_norm = use_weight_norm self.use_spectral_norm = use_spectral_norm if use_weight_norm: self.conv = weight_norm(self.conv) if use_spectral_norm: self.conv = spectral_norm(self.conv) def forward(self, x): return self.conv(x) def _norm_str(self): norm = '' if self.use_weight_norm: norm += f', weight_norm={self.use_weight_norm}' if self. use_spectral_norm: norm += f', spectral_norm={self.use_spectral_norm}' norm += ')' return norm def __repr__(self): return self.conv.__repr__()[:-1] + self._norm_str() def __str__(self): return self.conv.__str__()[:-1] + self._norm_str() ``` #### File: counterfactualms/arch/nvae.py ```python import numpy as np from torch import nn from counterfactualms.arch.layers import Conv2d from counterfactualms.arch.thirdparty.neural_operations import ConvBNSwish from counterfactualms.arch.thirdparty.utils import get_arch_cells from counterfactualms.arch.thirdparty.cells import Cell from counterfactualms.arch.thirdparty.batchnormswish import BatchNormSwish class Encoder(nn.Module): def __init__(self, num_convolutions=3, filters=(16,32,64,128,256), latent_dim:int=100, input_size=(1,128,128), arch='res_mbconv'): super().__init__() self.filters = filters self.latent_dim = latent_dim self.arch_instance = get_arch_cells(arch) self.arch = arch layers = [] n_resolutions = len(filters) filters = (filters[0],) + tuple(filters) layers += [Conv2d(input_size[0], filters[0], 3, padding=1, use_weight_norm=False)] cur_channels = filters[0] for ci, co in zip(filters, filters[1:]): cell_type = 'normal_pre' arch = self.arch_instance[cell_type] for _ in range(0, num_convolutions - 1): layers += [Cell(cur_channels, ci, cell_type=cell_type, arch=arch, use_se=True)] cur_channels = ci cell_type = 'down_pre' arch = self.arch_instance[cell_type] layers += [Cell(ci, co, cell_type=cell_type, arch=arch, use_se=True)] cur_channels = co self.cnn = nn.Sequential(*layers) self.intermediate_shape = np.array(input_size) // (2 ** n_resolutions) self.intermediate_shape[0] = cur_channels self.fc = nn.Sequential( nn.Linear(np.prod(self.intermediate_shape), latent_dim), BatchNormSwish(latent_dim, momentum=0.05) ) def forward(self, x): x = self.cnn(x).view(-1, np.prod(self.intermediate_shape)) return self.fc(x) class Decoder(nn.Module): def __init__(self, num_convolutions=3, filters=(256,128,64,32,16), latent_dim:int=100, output_size=(1,128,128), arch='res_mbconv'): super().__init__() self.filters = filters self.latent_dim = latent_dim self.arch_instance = get_arch_cells(arch) self.arch = arch self.intermediate_shape = np.array(output_size) // (2 ** len(filters)) self.intermediate_shape[0] = filters[0] self.fc = nn.Linear(latent_dim, np.prod(self.intermediate_shape), bias=False) layers = [] cur_channels = filters[0] cell_type = 'up_post' arch = self.arch_instance[cell_type] layers += [Cell(cur_channels, cur_channels, cell_type=cell_type, arch=arch, use_se=True)] for c in filters[1:]: cell_type = 'normal_post' arch = self.arch_instance[cell_type] for _ in range(0, num_convolutions - 1): layers += [Cell(cur_channels, cur_channels, cell_type=cell_type, arch=arch, use_se=True)] cell_type = 'up_post' arch = self.arch_instance[cell_type] layers += [Cell(cur_channels, c, cell_type=cell_type, arch=arch, use_se=True)] cur_channels = c layers += [ConvBNSwish(cur_channels, cur_channels), Conv2d(cur_channels, output_size[0], 1, 1)] self.cnn = nn.Sequential(*layers) def forward(self, x): x = self.fc(x).view(-1, *self.intermediate_shape) return self.cnn(x) ``` #### File: arch/thirdparty/batchnormswish.py ```python from __future__ import division from torch.nn.modules.batchnorm import _BatchNorm import torch.nn.functional as F from counterfactualms.arch.thirdparty.swish import Swish as swish class BatchNormSwish(_BatchNorm): def _check_input_dim(self, input): if input.dim() < 2: raise ValueError('expected at least 2D input (got {}D input)' .format(input.dim())) def forward(self, input): self._check_input_dim(input) # exponential_average_factor is set to self.momentum # (when it is available) only so that it gets updated # in ONNX graph when this node is exported to ONNX. if self.momentum is None: exponential_average_factor = 0.0 else: exponential_average_factor = self.momentum if self.training and self.track_running_stats: # TODO: if statement only here to tell the jit to skip emitting this when it is None if self.num_batches_tracked is not None: self.num_batches_tracked = self.num_batches_tracked + 1 if self.momentum is None: # use cumulative moving average exponential_average_factor = 1.0 / float(self.num_batches_tracked) else: # use exponential moving average exponential_average_factor = self.momentum r""" Decide whether the mini-batch stats should be used for normalization rather than the buffers. Mini-batch stats are used in training mode, and in eval mode when buffers are None. """ if self.training: bn_training = True else: bn_training = (self.running_mean is None) and (self.running_var is None) r""" Buffers are only updated if they are to be tracked and we are in training mode. Thus they only need to be passed when the update should occur (i.e. in training mode when they are tracked), or when buffer stats are used for normalization (i.e. in eval mode when buffers are not None). """ out = F.batch_norm( input, # If buffers are not to be tracked, ensure that they won't be updated self.running_mean if not self.training or self.track_running_stats else None, self.running_var if not self.training or self.track_running_stats else None, self.weight, self.bias, bn_training, exponential_average_factor, self.eps) return swish.apply(out) ``` #### File: arch/thirdparty/cells.py ```python import torch import torch.nn as nn from counterfactualms.arch.thirdparty.neural_operations import OPS, get_skip_connection, SE from counterfactualms.arch.thirdparty.neural_ar_operations import ARInvertedResidual, MixLogCDFParam, mix_log_cdf_flow from counterfactualms.arch.thirdparty.neural_ar_operations import ELUConv as ARELUConv from counterfactualms.arch.thirdparty.utils import get_stride_for_cell_type class Cell(nn.Module): def __init__(self, Cin, Cout, cell_type, arch, use_se=True): super(Cell, self).__init__() self.cell_type = cell_type stride = get_stride_for_cell_type(self.cell_type) self.skip = get_skip_connection(Cin, Cout, stride) self.use_se = use_se self._num_nodes = len(arch) self._ops = nn.ModuleList() for i in range(self._num_nodes): stride = get_stride_for_cell_type(self.cell_type) if i == 0 else 1 C = Cin if i == 0 else Cout primitive = arch[i] op = OPS[primitive](C, Cout, stride) self._ops.append(op) if self.use_se: self.se = SE(Cout, Cout) def forward(self, s): # skip branch skip = self.skip(s) for i in range(self._num_nodes): s = self._ops[i](s) s = self.se(s) if self.use_se else s return skip + 0.1 * s class CellAR(nn.Module): def __init__(self, num_z, num_ftr, num_c, arch, mirror): super(CellAR, self).__init__() assert num_c % num_z == 0 self.cell_type = 'ar_nn' # s0 will the random samples ex = 6 self.conv = ARInvertedResidual(num_z, num_ftr, ex=ex, mirror=mirror) self.use_mix_log_cdf = False if self.use_mix_log_cdf: self.param = MixLogCDFParam(num_z, num_mix=3, num_ftr=self.conv.hidden_dim, mirror=mirror) else: # 0.1 helps bring mu closer to 0 initially self.mu = ARELUConv(self.conv.hidden_dim, num_z, kernel_size=1, padding=0, masked=True, zero_diag=False, weight_init_coeff=0.1, mirror=mirror) def forward(self, z, ftr): s = self.conv(z, ftr) if self.use_mix_log_cdf: logit_pi, mu, log_s, log_a, b = self.param(s) new_z, log_det = mix_log_cdf_flow(z, logit_pi, mu, log_s, log_a, b) else: mu = self.mu(s) new_z = (z - mu) log_det = torch.zeros_like(new_z) return new_z, log_det class PairedCellAR(nn.Module): def __init__(self, num_z, num_ftr, num_c, arch=None): super(PairedCellAR, self).__init__() self.cell1 = CellAR(num_z, num_ftr, num_c, arch, mirror=False) self.cell2 = CellAR(num_z, num_ftr, num_c, arch, mirror=True) def forward(self, z, ftr): new_z, log_det1 = self.cell1(z, ftr) new_z, log_det2 = self.cell2(new_z, ftr) log_det1 += log_det2 return new_z, log_det1 ``` #### File: arch/thirdparty/neural_operations.py ```python import torch import torch.nn as nn import torch.nn.functional as F import torch.distributed as dist from counterfactualms.arch.thirdparty.swish import Swish as SwishFN from counterfactualms.arch.thirdparty.batchnormswish import BatchNormSwish from counterfactualms.arch.layers import Conv2d from collections import OrderedDict BN_EPS = 1e-5 SYNC_BN = False OPS = OrderedDict([ ('res_elu', lambda Cin, Cout, stride: ELUConv(Cin, Cout, 3, stride, 1)), ('res_bnelu', lambda Cin, Cout, stride: BNELUConv(Cin, Cout, 3, stride, 1)), ('res_bnswish', lambda Cin, Cout, stride: BNSwishConv(Cin, Cout, 3, stride, 1)), ('res_bnswish5', lambda Cin, Cout, stride: BNSwishConv(Cin, Cout, 3, stride, 2, 2)), ('mconv_e6k5g0', lambda Cin, Cout, stride: InvertedResidual(Cin, Cout, stride, ex=6, dil=1, k=5, g=0)), ('mconv_e3k5g0', lambda Cin, Cout, stride: InvertedResidual(Cin, Cout, stride, ex=3, dil=1, k=5, g=0)), ('mconv_e3k5g8', lambda Cin, Cout, stride: InvertedResidual(Cin, Cout, stride, ex=3, dil=1, k=5, g=8)), ('mconv_e6k11g0', lambda Cin, Cout, stride: InvertedResidual(Cin, Cout, stride, ex=6, dil=1, k=11, g=0)), ]) def average_tensor(t, is_distributed): if is_distributed: size = float(dist.get_world_size()) dist.all_reduce(t.data, op=dist.ReduceOp.SUM) t.data /= size def get_skip_connection(Cin, Cout, stride): if stride == 1: return Identity() elif stride == 2: return FactorizedReduce(Cin, Cout) elif stride == -1: return nn.Sequential(UpSample(), Conv2d(Cin, Cout, kernel_size=1)) def norm(t, dim): return torch.sqrt(torch.sum(t * t, dim)) def logit(t): return torch.log(t) - torch.log(1 - t) def act(t): # The following implementation has lower memory. return SwishFN.apply(t) class Swish(nn.Module): def __init__(self): super(Swish, self).__init__() def forward(self, x): return act(x) @torch.jit.script def normalize_weight_jit(log_weight_norm, weight): n = torch.exp(log_weight_norm) wn = torch.sqrt(torch.sum(weight * weight, dim=[1, 2, 3])) # norm(w) weight = n * weight / (wn.view(-1, 1, 1, 1) + 1e-5) return weight class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class SyncBatchNorm(nn.Module): def __init__(self, *args, **kwargs): super(SyncBatchNorm, self).__init__() self.bn = nn.SyncBatchNorm(*args, **kwargs) def forward(self, x): # Sync BN only works with distributed data parallel with 1 GPU per process. I don't use DDP, so I need to let # Sync BN to know that I have 1 gpu per process. self.bn.ddp_gpu_size = 1 return self.bn(x) # quick switch between multi-gpu, single-gpu batch norm def get_batchnorm(*args, **kwargs): if SYNC_BN: return SyncBatchNorm(*args, **kwargs) else: return nn.BatchNorm2d(*args, **kwargs) class ELUConv(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride=1, padding=0, dilation=1): super(ELUConv, self).__init__() self.upsample = stride == -1 stride = abs(stride) self.conv_0 = Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, bias=True, dilation=dilation) def forward(self, x): out = F.elu(x) if self.upsample: out = F.interpolate(out, scale_factor=2, mode='nearest') out = self.conv_0(out) return out class BNELUConv(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride=1, padding=0, dilation=1): super(BNELUConv, self).__init__() self.upsample = stride == -1 stride = abs(stride) self.bn = get_batchnorm(C_in, eps=BN_EPS, momentum=0.05) self.conv_0 = Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, bias=True, dilation=dilation) def forward(self, x): x = self.bn(x) out = F.elu(x) if self.upsample: out = F.interpolate(out, scale_factor=2, mode='nearest') out = self.conv_0(out) return out class BNSwishConv(nn.Module): """ReLU + Conv2d + BN.""" def __init__(self, C_in, C_out, kernel_size, stride=1, padding=0, dilation=1): super(BNSwishConv, self).__init__() self.upsample = stride == -1 stride = abs(stride) self.bn_act = BatchNormSwish(C_in, eps=BN_EPS, momentum=0.05) self.conv_0 = Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, bias=True, dilation=dilation) def forward(self, x): """ Args: x (torch.Tensor): of size (B, C_in, H, W) """ out = self.bn_act(x) if self.upsample: out = F.interpolate(out, scale_factor=2, mode='nearest') out = self.conv_0(out) return out class FactorizedReduce(nn.Module): def __init__(self, C_in, C_out): super(FactorizedReduce, self).__init__() assert C_out % 2 == 0 self.conv_1 = Conv2d(C_in, C_out // 4, 1, stride=2, padding=0, bias=True) self.conv_2 = Conv2d(C_in, C_out // 4, 1, stride=2, padding=0, bias=True) self.conv_3 = Conv2d(C_in, C_out // 4, 1, stride=2, padding=0, bias=True) self.conv_4 = Conv2d(C_in, C_out - 3 * (C_out // 4), 1, stride=2, padding=0, bias=True) def forward(self, x): out = act(x) conv1 = self.conv_1(out) conv2 = self.conv_2(out[:, :, 1:, 1:]) conv3 = self.conv_3(out[:, :, :, 1:]) conv4 = self.conv_4(out[:, :, 1:, :]) out = torch.cat([conv1, conv2, conv3, conv4], dim=1) return out class UpSample(nn.Module): def __init__(self): super(UpSample, self).__init__() pass def forward(self, x): return F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) class EncCombinerCell(nn.Module): def __init__(self, Cin1, Cin2, Cout, cell_type): super(EncCombinerCell, self).__init__() self.cell_type = cell_type # Cin = Cin1 + Cin2 self.conv = Conv2d(Cin2, Cout, kernel_size=1, stride=1, padding=0, bias=True) def forward(self, x1, x2): x2 = self.conv(x2) out = x1 + x2 return out # original combiner class DecCombinerCell(nn.Module): def __init__(self, Cin1, Cin2, Cout, cell_type): super(DecCombinerCell, self).__init__() self.cell_type = cell_type self.conv = Conv2d(Cin1 + Cin2, Cout, kernel_size=1, stride=1, padding=0, bias=True) def forward(self, x1, x2): out = torch.cat([x1, x2], dim=1) out = self.conv(out) return out class ConvBNSwish(nn.Module): def __init__(self, Cin, Cout, k=3, stride=1, groups=1, dilation=1): padding = dilation * (k - 1) // 2 super(ConvBNSwish, self).__init__() self.conv = nn.Sequential( Conv2d(Cin, Cout, k, stride, padding, groups=groups, bias=False, dilation=dilation, use_weight_norm=False), BatchNormSwish(Cout, eps=BN_EPS, momentum=0.05) # drop in replacement for BN + Swish ) def forward(self, x): return self.conv(x) class SE(nn.Module): def __init__(self, Cin, Cout): super(SE, self).__init__() num_hidden = max(Cout // 16, 4) self.se = nn.Sequential(nn.Linear(Cin, num_hidden), nn.ReLU(inplace=True), nn.Linear(num_hidden, Cout), nn.Sigmoid()) def forward(self, x): se = torch.mean(x, dim=[2, 3]) se = se.view(se.size(0), -1) se = self.se(se) se = se.view(se.size(0), -1, 1, 1) return x * se class InvertedResidual(nn.Module): def __init__(self, Cin, Cout, stride, ex, dil, k, g): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2, -1] hidden_dim = int(round(Cin * ex)) self.use_res_connect = self.stride == 1 and Cin == Cout self.upsample = self.stride == -1 self.stride = abs(self.stride) groups = hidden_dim if g == 0 else g layers0 = [nn.UpsamplingNearest2d(scale_factor=2)] if self.upsample else [] layers = [get_batchnorm(Cin, eps=BN_EPS, momentum=0.05), ConvBNSwish(Cin, hidden_dim, k=1), ConvBNSwish(hidden_dim, hidden_dim, stride=self.stride, groups=groups, k=k, dilation=dil), Conv2d(hidden_dim, Cout, 1, 1, 0, bias=False, use_weight_norm=False), get_batchnorm(Cout, momentum=0.05)] layers0.extend(layers) self.conv = nn.Sequential(*layers0) def forward(self, x): return self.conv(x) ``` #### File: arch/thirdparty/utils.py ```python import logging import os import shutil import time from datetime import timedelta import sys import torch import torch.nn as nn import numpy as np import torch.distributed as dist import torch.nn.functional as F #from tensorboardX import SummaryWriter class AvgrageMeter(object): def __init__(self): self.reset() def reset(self): self.avg = 0 self.sum = 0 self.cnt = 0 def update(self, val, n=1): self.sum += val * n self.cnt += n self.avg = self.sum / self.cnt class ExpMovingAvgrageMeter(object): def __init__(self, momentum=0.9): self.momentum = momentum self.reset() def reset(self): self.avg = 0 def update(self, val): self.avg = (1. - self.momentum) * self.avg + self.momentum * val class DummyDDP(nn.Module): def __init__(self, model): super(DummyDDP, self).__init__() self.module = model def forward(self, *input, **kwargs): return self.module(*input, **kwargs) def count_parameters_in_M(model): return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6 def save_checkpoint(state, is_best, save): filename = os.path.join(save, 'checkpoint.pth.tar') torch.save(state, filename) if is_best: best_filename = os.path.join(save, 'model_best.pth.tar') shutil.copyfile(filename, best_filename) def save(model, model_path): torch.save(model.state_dict(), model_path) def load(model, model_path): model.load_state_dict(torch.load(model_path)) def create_exp_dir(path, scripts_to_save=None): if not os.path.exists(path): os.makedirs(path, exist_ok=True) print('Experiment dir : {}'.format(path)) if scripts_to_save is not None: if not os.path.exists(os.path.join(path, 'scripts')): os.mkdir(os.path.join(path, 'scripts')) for script in scripts_to_save: dst_file = os.path.join(path, 'scripts', os.path.basename(script)) shutil.copyfile(script, dst_file) class Logger(object): def __init__(self, rank, save): self.rank = rank if self.rank == 0: log_format = '%(asctime)s %(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p') fh = logging.FileHandler(os.path.join(save, 'log.txt')) fh.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(fh) self.start_time = time.time() def info(self, string, *args): if self.rank == 0: elapsed_time = time.time() - self.start_time elapsed_time = time.strftime( '(Elapsed: %H:%M:%S) ', time.gmtime(elapsed_time)) if isinstance(string, str): string = elapsed_time + string else: logging.info(elapsed_time) logging.info(string, *args) class Writer(object): def __init__(self, rank, save): self.rank = rank if self.rank == 0: self.writer = None #SummaryWriter(log_dir=save, flush_secs=20) def add_scalar(self, *args, **kwargs): if self.rank == 0: self.writer.add_scalar(*args, **kwargs) def add_figure(self, *args, **kwargs): if self.rank == 0: self.writer.add_figure(*args, **kwargs) def add_image(self, *args, **kwargs): if self.rank == 0: self.writer.add_image(*args, **kwargs) def add_histogram(self, *args, **kwargs): if self.rank == 0: self.writer.add_histogram(*args, **kwargs) def add_histogram_if(self, write, *args, **kwargs): if write and False: # Used for debugging. self.add_histogram(*args, **kwargs) def close(self, *args, **kwargs): if self.rank == 0: self.writer.close() def reduce_tensor(tensor, world_size): rt = tensor.clone() dist.all_reduce(rt, op=dist.ReduceOp.SUM) rt /= world_size return rt def get_stride_for_cell_type(cell_type): if cell_type.startswith('normal') or cell_type.startswith('combiner'): stride = 1 elif cell_type.startswith('down'): stride = 2 elif cell_type.startswith('up'): stride = -1 else: raise NotImplementedError(cell_type) return stride def get_cout(cin, stride): if stride == 1: cout = cin elif stride == -1: cout = cin // 2 elif stride == 2: cout = 2 * cin return cout def kl_balancer_coeff(num_scales, groups_per_scale, fun): if fun == 'equal': coeff = torch.cat([torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], dim=0).cuda() elif fun == 'linear': coeff = torch.cat([(2 ** i) * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], dim=0).cuda() elif fun == 'sqrt': coeff = torch.cat( [np.sqrt(2 ** i) * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], dim=0).cuda() elif fun == 'square': coeff = torch.cat( [np.square(2 ** i) / groups_per_scale[num_scales - i - 1] * torch.ones(groups_per_scale[num_scales - i - 1]) for i in range(num_scales)], dim=0).cuda() else: raise NotImplementedError # convert min to 1. coeff /= torch.min(coeff) return coeff def kl_per_group(kl_all): kl_vals = torch.mean(kl_all, dim=0) kl_coeff_i = torch.abs(kl_all) kl_coeff_i = torch.mean(kl_coeff_i, dim=0, keepdim=True) + 0.01 return kl_coeff_i, kl_vals def kl_balancer(kl_all, kl_coeff=1.0, kl_balance=False, alpha_i=None): if kl_balance and kl_coeff < 1.0: alpha_i = alpha_i.unsqueeze(0) kl_all = torch.stack(kl_all, dim=1) kl_coeff_i, kl_vals = kl_per_group(kl_all) total_kl = torch.sum(kl_coeff_i) kl_coeff_i = kl_coeff_i / alpha_i * total_kl kl_coeff_i = kl_coeff_i / torch.mean(kl_coeff_i, dim=1, keepdim=True) kl = torch.sum(kl_all * kl_coeff_i.detach(), dim=1) # for reporting kl_coeffs = kl_coeff_i.squeeze(0) else: kl_all = torch.stack(kl_all, dim=1) kl_vals = torch.mean(kl_all, dim=0) kl = torch.sum(kl_all, dim=1) kl_coeffs = torch.ones(size=(len(kl_vals),)) return kl_coeff * kl, kl_coeffs, kl_vals def kl_coeff(step, total_step, constant_step, min_kl_coeff): return max(min((step - constant_step) / total_step, 1.0), min_kl_coeff) def log_iw(decoder, x, log_q, log_p, crop=False): recon = reconstruction_loss(decoder, x, crop) return - recon - log_q + log_p def reconstruction_loss(decoder, x, crop=False): from counterfactualms.arch.thirdparty.distributions import Normal, DiscMixLogistic recon = decoder.log_prob(x) if crop: recon = recon[:, :, 2:30, 2:30] if isinstance(decoder, DiscMixLogistic): return - torch.sum(recon, dim=[1, 2]) # summation over RGB is done. else: return - torch.sum(recon, dim=[1, 2, 3]) def tile_image(batch_image, n): assert n * n == batch_image.size(0) channels, height, width = batch_image.size(1), batch_image.size(2), batch_image.size(3) batch_image = batch_image.view(n, n, channels, height, width) batch_image = batch_image.permute(2, 0, 3, 1, 4) # n, height, n, width, c batch_image = batch_image.contiguous().view(channels, n * height, n * width) return batch_image def average_gradients(params, is_distributed): """ Gradient averaging. """ if is_distributed: size = float(dist.get_world_size()) for param in params: if param.requires_grad: dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM) param.grad.data /= size def average_params(params, is_distributed): """ parameter averaging. """ if is_distributed: size = float(dist.get_world_size()) for param in params: dist.all_reduce(param.data, op=dist.ReduceOp.SUM) param.data /= size def average_tensor(t, is_distributed): if is_distributed: size = float(dist.get_world_size()) dist.all_reduce(t.data, op=dist.ReduceOp.SUM) t.data /= size def one_hot(indices, depth, dim): indices = indices.unsqueeze(dim) size = list(indices.size()) size[dim] = depth y_onehot = torch.zeros(size).cuda() y_onehot.zero_() y_onehot.scatter_(dim, indices, 1) return y_onehot def num_output(dataset): if dataset == 'mnist': return 28 * 28 elif dataset == 'cifar10': return 3 * 32 * 32 elif dataset.startswith('celeba') or dataset.startswith('imagenet') or dataset.startswith('lsun'): size = int(dataset.split('_')[-1]) return 3 * size * size elif dataset == 'ffhq': return 3 * 256 * 256 else: raise NotImplementedError def get_input_size(dataset): if dataset == 'mnist': return 32 elif dataset == 'cifar10': return 32 elif dataset.startswith('celeba') or dataset.startswith('imagenet') or dataset.startswith('lsun'): size = int(dataset.split('_')[-1]) return size elif dataset == 'ffhq': return 256 else: raise NotImplementedError def pre_process(x, num_bits): if num_bits != 8: x = torch.floor(x * 255 / 2 ** (8 - num_bits)) x /= (2 ** num_bits - 1) return x def get_arch_cells(arch_type): if arch_type == 'res_elu': arch_cells = dict() arch_cells['normal_enc'] = ['res_elu', 'res_elu'] arch_cells['down_enc'] = ['res_elu', 'res_elu'] arch_cells['normal_dec'] = ['res_elu', 'res_elu'] arch_cells['up_dec'] = ['res_elu', 'res_elu'] arch_cells['normal_pre'] = ['res_elu', 'res_elu'] arch_cells['down_pre'] = ['res_elu', 'res_elu'] arch_cells['normal_post'] = ['res_elu', 'res_elu'] arch_cells['up_post'] = ['res_elu', 'res_elu'] arch_cells['ar_nn'] = [''] elif arch_type == 'res_bnelu': arch_cells = dict() arch_cells['normal_enc'] = ['res_bnelu', 'res_bnelu'] arch_cells['down_enc'] = ['res_bnelu', 'res_bnelu'] arch_cells['normal_dec'] = ['res_bnelu', 'res_bnelu'] arch_cells['up_dec'] = ['res_bnelu', 'res_bnelu'] arch_cells['normal_pre'] = ['res_bnelu', 'res_bnelu'] arch_cells['down_pre'] = ['res_bnelu', 'res_bnelu'] arch_cells['normal_post'] = ['res_bnelu', 'res_bnelu'] arch_cells['up_post'] = ['res_bnelu', 'res_bnelu'] arch_cells['ar_nn'] = [''] elif arch_type == 'res_bnswish': arch_cells = dict() arch_cells['normal_enc'] = ['res_bnswish', 'res_bnswish'] arch_cells['down_enc'] = ['res_bnswish', 'res_bnswish'] arch_cells['normal_dec'] = ['res_bnswish', 'res_bnswish'] arch_cells['up_dec'] = ['res_bnswish', 'res_bnswish'] arch_cells['normal_pre'] = ['res_bnswish', 'res_bnswish'] arch_cells['down_pre'] = ['res_bnswish', 'res_bnswish'] arch_cells['normal_post'] = ['res_bnswish', 'res_bnswish'] arch_cells['up_post'] = ['res_bnswish', 'res_bnswish'] arch_cells['ar_nn'] = [''] elif arch_type == 'mbconv_sep': arch_cells = dict() arch_cells['normal_enc'] = ['mconv_e6k5g0'] arch_cells['down_enc'] = ['mconv_e6k5g0'] arch_cells['normal_dec'] = ['mconv_e6k5g0'] arch_cells['up_dec'] = ['mconv_e6k5g0'] arch_cells['normal_pre'] = ['mconv_e3k5g0'] arch_cells['down_pre'] = ['mconv_e3k5g0'] arch_cells['normal_post'] = ['mconv_e3k5g0'] arch_cells['up_post'] = ['mconv_e3k5g0'] arch_cells['ar_nn'] = [''] elif arch_type == 'mbconv_sep11': arch_cells = dict() arch_cells['normal_enc'] = ['mconv_e6k11g0'] arch_cells['down_enc'] = ['mconv_e6k11g0'] arch_cells['normal_dec'] = ['mconv_e6k11g0'] arch_cells['up_dec'] = ['mconv_e6k11g0'] arch_cells['normal_pre'] = ['mconv_e3k5g0'] arch_cells['down_pre'] = ['mconv_e3k5g0'] arch_cells['normal_post'] = ['mconv_e3k5g0'] arch_cells['up_post'] = ['mconv_e3k5g0'] arch_cells['ar_nn'] = [''] elif arch_type == 'res_mbconv': arch_cells = dict() arch_cells['normal_enc'] = ['res_bnswish', 'res_bnswish'] arch_cells['down_enc'] = ['res_bnswish', 'res_bnswish'] arch_cells['normal_dec'] = ['mconv_e6k5g0'] arch_cells['up_dec'] = ['mconv_e6k5g0'] arch_cells['normal_pre'] = ['res_bnswish', 'res_bnswish'] arch_cells['down_pre'] = ['res_bnswish', 'res_bnswish'] arch_cells['normal_post'] = ['mconv_e3k5g0'] arch_cells['up_post'] = ['mconv_e3k5g0'] arch_cells['ar_nn'] = [''] elif arch_type == 'res53_mbconv': arch_cells = dict() arch_cells['normal_enc'] = ['res_bnswish5', 'res_bnswish'] arch_cells['down_enc'] = ['res_bnswish5', 'res_bnswish'] arch_cells['normal_dec'] = ['mconv_e6k5g0'] arch_cells['up_dec'] = ['mconv_e6k5g0'] arch_cells['normal_pre'] = ['res_bnswish5', 'res_bnswish'] arch_cells['down_pre'] = ['res_bnswish5', 'res_bnswish'] arch_cells['normal_post'] = ['mconv_e3k5g0'] arch_cells['up_post'] = ['mconv_e3k5g0'] arch_cells['ar_nn'] = [''] elif arch_type == 'res35_mbconv': arch_cells = dict() arch_cells['normal_enc'] = ['res_bnswish', 'res_bnswish5'] arch_cells['down_enc'] = ['res_bnswish', 'res_bnswish5'] arch_cells['normal_dec'] = ['mconv_e6k5g0'] arch_cells['up_dec'] = ['mconv_e6k5g0'] arch_cells['normal_pre'] = ['res_bnswish', 'res_bnswish5'] arch_cells['down_pre'] = ['res_bnswish', 'res_bnswish5'] arch_cells['normal_post'] = ['mconv_e3k5g0'] arch_cells['up_post'] = ['mconv_e3k5g0'] arch_cells['ar_nn'] = [''] elif arch_type == 'res55_mbconv': arch_cells = dict() arch_cells['normal_enc'] = ['res_bnswish5', 'res_bnswish5'] arch_cells['down_enc'] = ['res_bnswish5', 'res_bnswish5'] arch_cells['normal_dec'] = ['mconv_e6k5g0'] arch_cells['up_dec'] = ['mconv_e6k5g0'] arch_cells['normal_pre'] = ['res_bnswish5', 'res_bnswish5'] arch_cells['down_pre'] = ['res_bnswish5', 'res_bnswish5'] arch_cells['normal_post'] = ['mconv_e3k5g0'] arch_cells['up_post'] = ['mconv_e3k5g0'] arch_cells['ar_nn'] = [''] elif arch_type == 'res_mbconv9': arch_cells = dict() arch_cells['normal_enc'] = ['res_bnswish', 'res_bnswish'] arch_cells['down_enc'] = ['res_bnswish', 'res_bnswish'] arch_cells['normal_dec'] = ['mconv_e6k9g0'] arch_cells['up_dec'] = ['mconv_e6k9g0'] arch_cells['normal_pre'] = ['res_bnswish', 'res_bnswish'] arch_cells['down_pre'] = ['res_bnswish', 'res_bnswish'] arch_cells['normal_post'] = ['mconv_e3k9g0'] arch_cells['up_post'] = ['mconv_e3k9g0'] arch_cells['ar_nn'] = [''] elif arch_type == 'mbconv_res': arch_cells = dict() arch_cells['normal_enc'] = ['mconv_e6k5g0'] arch_cells['down_enc'] = ['mconv_e6k5g0'] arch_cells['normal_dec'] = ['res_bnswish', 'res_bnswish'] arch_cells['up_dec'] = ['res_bnswish', 'res_bnswish'] arch_cells['normal_pre'] = ['mconv_e3k5g0'] arch_cells['down_pre'] = ['mconv_e3k5g0'] arch_cells['normal_post'] = ['res_bnswish', 'res_bnswish'] arch_cells['up_post'] = ['res_bnswish', 'res_bnswish'] arch_cells['ar_nn'] = [''] elif arch_type == 'mbconv_den': arch_cells = dict() arch_cells['normal_enc'] = ['mconv_e6k5g0'] arch_cells['down_enc'] = ['mconv_e6k5g0'] arch_cells['normal_dec'] = ['mconv_e6k5g0'] arch_cells['up_dec'] = ['mconv_e6k5g0'] arch_cells['normal_pre'] = ['mconv_e3k5g8'] arch_cells['down_pre'] = ['mconv_e3k5g8'] arch_cells['normal_post'] = ['mconv_e3k5g8'] arch_cells['up_post'] = ['mconv_e3k5g8'] arch_cells['ar_nn'] = [''] else: raise NotImplementedError return arch_cells def groups_per_scale(num_scales, num_groups_per_scale, is_adaptive, divider=2, minimum_groups=1): g = [] n = num_groups_per_scale for s in range(num_scales): assert n >= 1 g.append(n) if is_adaptive: n = n // divider n = max(minimum_groups, n) return g ``` #### File: distributions/transforms/affine.py ```python from pyro.distributions.conditional import ConditionalTransformModule from pyro.distributions.torch_transform import TransformModule from pyro.distributions import transforms as pyro_transforms import torch from torch.distributions import transforms class LearnedAffineTransform(TransformModule, transforms.AffineTransform): def __init__(self, loc=None, scale=None, **kwargs): super().__init__(loc=loc, scale=scale, **kwargs) if loc is None: self.loc = torch.nn.Parameter(torch.zeros([1, ])) if scale is None: self.scale = torch.nn.Parameter(torch.ones([1, ])) def _broadcast(self, val): dim_extension = tuple(1 for _ in range(val.dim() - 1)) loc = self.loc.view(-1, *dim_extension) scale = self.scale.view(-1, *dim_extension) return loc, scale def _call(self, x): loc, scale = self._broadcast(x) return loc + scale * x def _inverse(self, y): loc, scale = self._broadcast(y) return (y - loc) / scale class ConditionalAffineTransform(ConditionalTransformModule): def __init__(self, context_nn, event_dim=0, **kwargs): super().__init__(**kwargs) self.event_dim = event_dim self.context_nn = context_nn def condition(self, context): loc, log_scale = self.context_nn(context) scale = torch.exp(log_scale) ac = transforms.AffineTransform(loc, scale, event_dim=self.event_dim) return ac class LowerCholeskyAffine(pyro_transforms.LowerCholeskyAffine): def log_abs_det_jacobian(self, x, y): """ Calculates the elementwise determinant of the log Jacobian, i.e. log(abs(dy/dx)). """ return torch.ones(x.size()[:-1], dtype=x.dtype, layout=x.layout, device=x.device) * \ self.scale_tril.diagonal(dim1=-2, dim2=-1).log().sum(-1).sum(-1) ``` #### File: experiments/classifier/classifier_experiment.py ```python import logging import os import numpy as np import pytorch_lightning as pl from pytorch_lightning.metrics.classification import Accuracy import torch from torch import nn import torch.nn.functional as F from torch.utils.data import DataLoader from torch.optim import AdamW from counterfactualms.datasets.calabresi import CalabresiDataset from counterfactualms.arch.medical import Encoder logger = logging.getLogger(__name__) class ClassifierExperiment(pl.LightningModule): def __init__(self, hparams): super().__init__() self.hparams = hparams self.train_batch_size = hparams.train_batch_size self.test_batch_size = hparams.test_batch_size self.input_size = ((3,) if hparams.pseudo3d else (1,)) + tuple(hparams.resize) self.classifier = Encoder(num_convolutions=hparams.num_convolutions, filters=hparams.filters, input_size=self.input_size, latent_dim=1, use_weight_norm=hparams.use_weight_norm, dropout_rate=hparams.dropout_rate) self.classifier.fc = nn.Linear(np.prod(self.classifier.intermediate_shape), 1, bias=True) self.train_acc = Accuracy() self.val_acc = Accuracy() self.test_acc = Accuracy() if hparams.validate: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.autograd.set_detect_anomaly(self.hparams.validate) resize = None if self.hparams.resize == (0,0) else self.hparams.resize train_crop_type = self.hparams.train_crop_type if hasattr(self.hparams, 'train_crop_type') else 'random' crop_size = self.hparams.crop_size if hasattr(self.hparams, 'crop_size') else (224, 224) self.calabresi_train = CalabresiDataset(self.hparams.train_csv, crop_size=crop_size, crop_type=train_crop_type, resize=resize) # noqa: E501 self.calabresi_val = CalabresiDataset(self.hparams.valid_csv, crop_size=crop_size, crop_type='center', resize=resize) self.calabresi_test = CalabresiDataset(self.hparams.test_csv, crop_size=crop_size, crop_type='center', resize=resize) @property def required_data(self): return {'x', 'type'} def configure_optimizers(self): optimizer = AdamW(self.classifier.parameters(), lr=self.hparams.lr, betas=self.hparams.betas, weight_decay=self.hparams.weight_decay) return optimizer def _dataloader_params(self): num_workers = len(os.sched_getaffinity(0)) // 2 # use half of the available cpus return {'num_workers': num_workers, 'pin_memory': self.trainer.on_gpu} def train_dataloader(self): return DataLoader(self.calabresi_train, batch_size=self.train_batch_size, shuffle=True, drop_last=True, **self._dataloader_params()) def val_dataloader(self): return DataLoader(self.calabresi_val, batch_size=self.test_batch_size, shuffle=False, **self._dataloader_params()) def test_dataloader(self): return DataLoader(self.calabresi_test, batch_size=self.test_batch_size, shuffle=False, **self._dataloader_params()) def _theis_noise(self, obs): """ add noise to discrete variables per Theis 2016 """ if self.training: obs['x'] += (torch.rand_like(obs['x']) - 0.5) return obs def prep_batch(self, batch): x = batch['image'].float() out = dict(x=x) for k in self.required_data: if k in batch: out[k] = batch[k].unsqueeze(1).float() out = self._theis_noise(out) return out def _step(self, batch, label=''): batch = self.prep_batch(batch) preds = self.classifier(batch['x']) loss = F.binary_cross_entropy_with_logits(preds, batch['type']) self.log(f'{label}_loss', loss) acc = getattr(self, f'{label}_acc') acc(preds.sigmoid(), batch['type']) self.log(f'{label}_acc', acc, on_step=False, on_epoch=True) return loss def forward(self, x): return self.classifier(x) def training_step(self, batch, batch_idx): loss = self._step(batch, 'train') return loss def validation_step(self, batch, batch_idx): loss = self._step(batch, 'val') return loss def test_step(self, batch, batch_idx): loss = self._step(batch, 'test') return loss @classmethod def add_arguments(cls, parser): parser.add_argument('--train-csv', default="/iacl/pg20/jacobr/calabresi/png/csv/train_png.csv", type=str, help="csv for training data (default: %(default)s)") # noqa: E501 parser.add_argument('--valid-csv', default="/iacl/pg20/jacobr/calabresi/png/csv/valid_png.csv", type=str, help="csv for validation data (default: %(default)s)") # noqa: E501 parser.add_argument('--test-csv', default="/iacl/pg20/jacobr/calabresi/png/csv/test_png.csv", type=str, help="csv for testing data (default: %(default)s)") # noqa: E501 parser.add_argument('--crop-size', default=(224,224), type=int, nargs=2, help="size of patch to take from image (default: %(default)s)") parser.add_argument('--resize', default=(128,128), type=int, nargs=2, help="resize cropped image to this size (use 0,0 for no resize) (default: %(default)s)") parser.add_argument('--train-crop-type', default='random', choices=['random', 'center'], help="how to crop training images (default: %(default)s)") parser.add_argument('--train-batch-size', default=128, type=int, help="train batch size (default: %(default)s)") parser.add_argument('--test-batch-size', default=256, type=int, help="test batch size (default: %(default)s)") parser.add_argument('--lr', default=1e-3, type=float, help="lr of deep part (default: %(default)s)") parser.add_argument('--weight-decay', default=0., type=float, help="weight decay for adam (default: %(default)s)") parser.add_argument('--dropout-rate', default=0., type=float, help="dropout rate for classifier (default: %(default)s)") parser.add_argument('--betas', default=(0.9,0.999), type=float, nargs=2, help="betas for adam (default: %(default)s)") parser.add_argument('--filters', default=[8,16,32,64,128], nargs='+', type=int, help="number of filters in each layer of classifier (default: %(default)s)") parser.add_argument('--num-convolutions', default=3, type=int, help="number of convolutions in each layer (default: %(default)s)") parser.add_argument('--use-weight-norm', default=False, action='store_true', help="use weight norm in conv layers (default: %(default)s)") parser.add_argument('--pseudo3d', default=False, action='store_true', help="use pseudo-3d images (3 channels) (default: %(default)s)") parser.add_argument('--validate', default=False, action='store_true', help="more verbose validation (default: %(default)s)") return parser ``` #### File: experiments/classifier/trainer.py ```python import argparse import logging import os import warnings import sys from pytorch_lightning import Trainer, seed_everything from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.loggers import TensorBoardLogger from counterfactualms.experiments import classifier # noqa: F401 from counterfactualms.experiments.classifier.classifier_experiment import ClassifierExperiment logger = logging.getLogger(__name__) def main(): exp_parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) exp_parser.add_argument('--model-path', '-mp', help='pre-trained model to load', default='/iacl/pg20/jacobr/calabresi/models/pretrained.ckpt', type=str) exp_parser.add_argument('--seed', default=1337, type=int, help='random seed') exp_parser.add_argument('-v', '--verbosity', action="count", default=0, help="increase output verbosity (e.g., -vv is more than -v)") exp_args, other_args = exp_parser.parse_known_args() seed_everything(exp_args.seed) if exp_args.verbosity == 1: level = logging.getLevelName('INFO') elif exp_args.verbosity >= 2: level = logging.getLevelName('DEBUG') else: level = logging.getLevelName('WARNING') logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=level) parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser = Trainer.add_argparse_args(parser) parser.set_defaults(checkpoint_callback=True) parser._action_groups[1].title = 'lightning_options' experiment_group = parser.add_argument_group('experiment') ClassifierExperiment.add_arguments(experiment_group) args = parser.parse_args(other_args) if args.gpus is not None and isinstance(args.gpus, int): # Make sure that it only uses a single GPU os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpus) args.gpus = 1 groups = {} for group in parser._action_groups: group_dict = {a.dest: getattr(args, a.dest, None) for a in group._group_actions} groups[group.title] = argparse.Namespace(**group_dict) lightning_args = groups['lightning_options'] tb_logger = TensorBoardLogger(lightning_args.default_root_dir, name=f'ClassifierExperiment/') lightning_args.logger = tb_logger hparams = groups['experiment'] setattr(hparams, 'n_epochs', args.max_epochs) setattr(hparams, 'verbosity', exp_args.verbosity) callbacks = [ModelCheckpoint( monitor='val_loss', save_top_k=10, save_last=True, mode='min', filename='{epoch}-{val_acc:.2f}-{val_loss:.2f}' )] trainer = Trainer.from_argparse_args(lightning_args, callbacks=callbacks) experiment = ClassifierExperiment(hparams) warning_level = "once" if hparams.validate else "ignore" with warnings.catch_warnings(): warnings.simplefilter(warning_level) trainer.fit(experiment) if __name__ == '__main__': sys.exit(main()) ```
{ "source": "jcreinhold/lesion-metrics", "score": 2 }
#### File: lesion-metrics/tests/test_metrics.py ```python import builtins import pathlib import medio.image as mioi import pytest import lesion_metrics.metrics as lmm import lesion_metrics.typing as lmt import lesion_metrics.volume as lmv backends = ["numpy"] try: import torch backends.append("torch") except (ModuleNotFoundError, ImportError): pass @pytest.fixture def cwd() -> pathlib.Path: cwd = pathlib.Path.cwd().resolve() if cwd.name == "tests": return cwd cwd = (cwd / "tests").resolve(strict=True) return cwd @pytest.fixture(params=backends) def backend(request) -> builtins.str: # type: ignore[no-untyped-def] _backend: str = request.param return _backend @pytest.fixture def pred_filename(cwd: pathlib.Path) -> pathlib.Path: return cwd / "test_data" / "pred" / "pred.nii.gz" @pytest.fixture def pred(backend: builtins.str, pred_filename: pathlib.Path) -> lmt.Label: pred_data: lmt.Label = mioi.Image.from_path(pred_filename) if backend == "torch": pred_data = torch.from_numpy(pred_data) # type: ignore[assignment] return pred_data @pytest.fixture def truth_filename(cwd: pathlib.Path) -> pathlib.Path: return cwd / "test_data" / "truth" / "truth.nii.gz" @pytest.fixture def truth(backend: builtins.str, truth_filename: pathlib.Path) -> lmt.Label: truth_data: lmt.Label = mioi.Image.from_path(truth_filename) if backend == "torch": truth_data = torch.from_numpy(truth_data) # type: ignore[assignment] return truth_data def test_dice(pred: lmt.Label, truth: lmt.Label) -> None: dice_coef = lmm.dice(pred, truth) correct = 2 * (3 / ((8 + 1 + 1) + (2 + 1 + 1))) assert dice_coef == correct def test_jaccard(pred: lmt.Label, truth: lmt.Label) -> None: jaccard_idx = lmm.jaccard(pred, truth) correct = 3 / ((8 + 1 + 1) + 1) assert jaccard_idx == correct def test_ppv(pred: lmt.Label, truth: lmt.Label) -> None: ppv_score = lmm.ppv(pred, truth) correct = 3 / (2 + 1 + 1) assert ppv_score == correct def test_tpr(pred: lmt.Label, truth: lmt.Label) -> None: tpr_score = lmm.tpr(pred, truth) correct = 3 / (8 + 1 + 1) assert tpr_score == correct def test_lfdr(pred: lmt.Label, truth: lmt.Label) -> None: lfpr_score = lmm.lfdr(pred, truth) correct = 1 / 3 assert lfpr_score == correct def test_ltpr(pred: lmt.Label, truth: lmt.Label) -> None: ltpr_score = lmm.ltpr(pred, truth) correct = 2 / 3 assert ltpr_score == correct def test_avd(pred: lmt.Label, truth: lmt.Label) -> None: avd_score = lmm.avd(pred, truth) correct = 0.6 assert avd_score == correct def test_corr(pred: lmt.Label, truth: lmt.Label) -> None: ps = pred.sum() ts = truth.sum() eps = 0.1 pred_vols = [ps, ps + eps, ps - eps] truth_vols = [ts, ts + eps, ts - eps] corr_score = lmm.corr(pred_vols, truth_vols) correct = 1.0 assert pytest.approx(corr_score, 1e-3) == correct def test_isbi15_score(pred: lmt.Label, truth: lmt.Label) -> None: isbi15 = lmm.isbi15_score(pred, truth) correct = 0.6408730158730158 assert isbi15 == pytest.approx(correct, 1e-3) def test_segmentation_volume(pred_filename: pathlib.Path) -> None: sv = lmv.SegmentationVolume.from_filename(pred_filename) vol = sv.volume() assert vol == 4.0 @pytest.mark.skip("Not implemented.") def test_assd(pred: lmt.Label, truth: lmt.Label) -> None: pass ```
{ "source": "jcreinhold/lesionqc", "score": 3 }
#### File: lesionqc/lesionqc/metrics.py ```python __all__ = ['dice', 'jaccard', 'ppv', 'tpr', 'lfpr', 'ltpr', 'avd', 'assd', 'corr', 'isbi15_score'] import numpy as np from scipy.stats import pearsonr from skimage.measure import label def dice(pred, truth): """ dice coefficient between predicted and true binary masks """ p, t = (pred > 0), (truth > 0) intersection = (p & t).sum() cardinality = p.sum() + t.sum() if cardinality == 0.: return np.nan return 2 * intersection / cardinality def jaccard(pred, truth): """ jaccard index (IoU) between predicted and true binary masks """ p, t = (pred > 0), (truth > 0) intersection = (p & t).sum() union = (p | t).sum() if union == 0.: return np.nan return intersection / union def ppv(pred, truth): """ positive predictive value (precision) between predicted and true binary masks """ p, t = (pred > 0), (truth > 0) intersection = (p & t).sum() denom = p.sum() if denom == 0.: return np.nan return intersection / denom def tpr(pred, truth): """ true positive rate (sensitivity) between predicted and true binary masks """ p, t = (pred > 0), (truth > 0) intersection = (p & t).sum() denom = t.sum() if denom == 0.: return np.nan return intersection / denom def lfpr(pred, truth): """ lesion false positive rate between predicted and true binary masks """ p, t = (pred > 0), (truth > 0) cc, n = label(p, return_num=True) if n == 0: return np.nan count = 0 for i in range(1, n+1): if ((cc == i) & t).sum() == 0: count += 1 return count / n def ltpr(pred, truth): """ lesion true positive rate between predicted and true binary masks """ p, t = (pred > 0), (truth > 0) cc, n = label(t, return_num=True) if n == 0: return np.nan count = 0 for i in range(1, n+1): if ((cc == i) & p).sum() > 0: count += 1 return count / n def avd(pred, truth): """ absolute volume difference between predicted and true binary masks """ p, t = (pred > 0), (truth > 0) numer = np.abs(p.sum() - t.sum()) denom = t.sum() if denom == 0.: return np.nan return numer / denom def assd(pred, truth): """ average symmetric surface difference between predicted and true binary masks """ raise NotImplementedError def corr(pred_vols, truth_vols): """ pearson correlation coefficient between list of predicted and true binary volumes """ return pearsonr(pred_vols, truth_vols)[0] def isbi15_score(pred, truth, reweighted=True): """ report the score (minus volume correlation) for a given prediction as described in [1] reweighted flag puts the score (minus volume correlation) between 0 and 1 References: [1] Carass, Aaron, et al. "Longitudinal multiple sclerosis lesion segmentation: resource and challenge." NeuroImage 148 (2017): 77-102. """ score = (dice(pred, truth) / 8 + ppv(pred, truth) / 8 + (1 - lfpr(pred, truth)) / 4 + ltpr(pred, truth) / 4) if reweighted: score *= (4 / 3) return score ```
{ "source": "jcreinhold/msseg", "score": 2 }
#### File: msseg/msseg/cutmix.py ```python __all__ = ['cutmix2d', 'cutmix3d', 'CutMixCollator'] import numpy as np import torch def cutmix2d(batch, alpha:float=1.): data, targets = batch indices = torch.randperm(data.size(0)) shuffled_data = data[indices] shuffled_targets = targets[indices] lam = np.random.beta(alpha, alpha) image_h, image_w = data.shape[2:] cx = np.random.uniform(0, image_w) cy = np.random.uniform(0, image_h) w = image_w * np.sqrt(1 - lam) h = image_h * np.sqrt(1 - lam) x0 = int(np.round(max(cx - w / 2, 0))) x1 = int(np.round(min(cx + w / 2, image_w))) y0 = int(np.round(max(cy - h / 2, 0))) y1 = int(np.round(min(cy + h / 2, image_h))) data[:, :, y0:y1, x0:x1] = shuffled_data[:, :, y0:y1, x0:x1] targets[:,:,y0:y1,x0:x1] = shuffled_targets[:,:,y0:y1,x0:x1] return data, targets def cutmix3d(batch, alpha:float=1.): data, targets = batch indices = torch.randperm(data.size(0)) shuffled_data = data[indices] shuffled_targets = targets[indices] lam = np.random.beta(alpha, alpha) image_d, image_h, image_w = data.shape[2:] cx = np.random.uniform(0, image_w) cy = np.random.uniform(0, image_h) cz = np.random.uniform(0, image_d) w = image_w * np.sqrt(1 - lam) h = image_h * np.sqrt(1 - lam) d = image_d * np.sqrt(1 - lam) x0 = int(np.round(max(cx - w / 2, 0))) x1 = int(np.round(min(cx + w / 2, image_w))) y0 = int(np.round(max(cy - h / 2, 0))) y1 = int(np.round(min(cy + h / 2, image_h))) z0 = int(np.round(max(cz - d / 2, 0))) z1 = int(np.round(min(cz + d / 2, image_d))) data[:,:,z0:z1,y0:y1,x0:x1] = shuffled_data[:,:,z0:z1,y0:y1,x0:x1] targets[:,:,z0:z1,y0:y1,x0:x1] = shuffled_targets[:,:,z0:z1,y0:y1,x0:x1] return data, targets class CutMixCollator: def __init__(self, alpha:float=1., dim:int=3): assert 0. < alpha self.alpha = alpha assert 1 < dim < 4 self.dim = dim def __call__(self, batch): batch = torch.utils.data.dataloader.default_collate(batch) if self.dim == 2: batch = cutmix2d(batch, self.alpha) elif self.dim == 3: batch = cutmix3d(batch, self.alpha) else: raise NotImplementedError('Only 2 and 3 dimensional images are supported.') return batch ``` #### File: msseg/tests/test_tiramisu3d.py ```python import contextlib import os from os.path import join import shutil import tempfile import unittest import warnings from pytorch_lightning import Trainer, seed_everything with open(os.devnull, "w") as f: with contextlib.redirect_stdout(f): import torchio import msseg from msseg.loss import binary_combo_loss from msseg.data import csv_to_subjectlist from msseg.util import n_dirname from _test_configs import test_lightningtiramisu3d_config from _test_lightningtiramisu import ( _create_test_csv, LightningTiramisuTester ) seed_everything(1337) msseg_dir = n_dirname(msseg.__file__, 2) DATA_DIR = join(msseg_dir, "tests/test_data/") class LightningTiramisu3d(LightningTiramisuTester): def training_step(self, batch, batch_idx): x = batch['t1'][torchio.DATA] y = batch['label'][torchio.DATA] y_hat = self.forward(x) loss = self.criterion(y_hat, y) tensorboard_logs = {'train_loss': loss} return {'loss': loss, 'log': tensorboard_logs} def validation_step(self, batch, batch_idx): x = batch['t1'][torchio.DATA] y = batch['label'][torchio.DATA] y_hat = self.forward(x) loss = self.criterion(y_hat, y) return {'val_loss': loss} class TestTiramisu3d(unittest.TestCase): def setUp(self): self.out_dir = tempfile.mkdtemp() csv = join(self.out_dir, "data.csv") _create_test_csv(csv, DATA_DIR) subject_list = csv_to_subjectlist(csv) self.net = LightningTiramisu3d( test_lightningtiramisu3d_config, subject_list) def tearDown(self): shutil.rmtree(self.out_dir) del self.net def test_fit(self): with warnings.catch_warnings(): warnings.simplefilter("ignore") trainer = Trainer( default_root_dir=self.out_dir, fast_dev_run=True, progress_bar_refresh_rate=0) trainer.fit(self.net) def test_weight(self): csv = join(self.out_dir, "data.csv") _create_test_csv(csv, DATA_DIR, weight=True) subject_list = csv_to_subjectlist(csv) self.net = LightningTiramisu3d( test_lightningtiramisu3d_config, subject_list) with warnings.catch_warnings(): warnings.simplefilter("ignore") trainer = Trainer( default_root_dir=self.out_dir, fast_dev_run=True, progress_bar_refresh_rate=0) trainer.fit(self.net) def test_combo_loss(self): with warnings.catch_warnings(): warnings.simplefilter("ignore") self.net.criterion = binary_combo_loss trainer = Trainer( default_root_dir=self.out_dir, fast_dev_run=True, progress_bar_refresh_rate=0) trainer.fit(self.net) if __name__ == "__main__": unittest.main() ```
{ "source": "jcreinhold/nimanifold", "score": 3 }
#### File: nimanifold/nimanifold/types.py ```python __all__ = [ 'Array', 'Axes', 'DataFrame', 'DataLocSlice', 'Grid', 'Loc', 'Number', 'Sample', 'Shape', 'SubGrid' ] from typing import * from copy import copy import h5py from matplotlib.axes import Axes import numpy as np import pandas as pd Array = np.ndarray DataFrame = pd.DataFrame DataLocSlice = Tuple[List[Array], List[Array], List[Array]] Grid = Tuple[Array, Array, Array] Loc = Tuple[int, int, int] Number = Union[int, float] Shape = Tuple[int, int, int] SubGrid = Tuple[Array, Array, Array] class Sample: def __init__(self, data: Array, locs: Array, pids: Array, slices: Array, sites: Optional[Array] = None, contrasts: Optional[Array] = None): self.data = data self.locs = locs self.pids = pids self.slices = slices self.sites = sites self.contrasts = contrasts self.is_valid() def __len__(self): return self.data.shape[0] def __repr__(self): return f"{len(self)} Samples" def is_valid(self): N = len(self) assert (self.locs.shape[0] == N) assert (self.locs.shape[1] == 3) assert (self.pids.shape[0] == N) assert (self.pids.shape[1] == 3) assert (self.slices.shape[0] == N) if self.sites is not None: assert (self.sites.shape[0] == N) assert (self.sites.shape[1] == 3) if self.contrasts is not None: assert (self.contrasts.shape[0] == N) assert (self.contrasts.shape[1] == 3) def new_data(self, data: Array): sample = copy(self) sample.data = data sample.is_valid() return sample def subsample(self, n: int): N = len(self) assert (n <= N) idxs = np.random.choice(N, size=n, replace=False) sample = Sample( self.data[idxs], self.locs[idxs], self.pids[idxs], self.slices[idxs], self.sites[idxs] if self.sites is not None else None, self.contrasts[idxs] if self.contrasts is not None else None, ) return sample def to_hdf5(self, filename: str): with h5py.File(filename, "w") as f: f.create_dataset('data', data=self.data) f.create_dataset('locs', data=self.locs) f.create_dataset('pids', data=self.pids) f.create_dataset('slices', data=self.slices) if self.sites is not None: f.create_dataset('sites', data=self.sites) if self.contrasts is not None: f.create_dataset('contrasts', data=self.contrasts) @classmethod def from_hdf5(cls, filename: str): with h5py.File(filename, "r") as f: data = np.asarray(f['data']) locs = np.asarray(f['locs']) pids = np.asarray(f['pids']) slices = np.asarray(f['slices']) sites = np.asarray(f['sites']) if 'sites' in f else None contrasts = np.asarray(f['contrasts']) if 'contrasts' in f else None return cls(data, locs, pids, slices, sites, contrasts) ```
{ "source": "jcreinhold/pymedio", "score": 2 }
#### File: pymedio/pymedio/image.py ```python from __future__ import annotations __all__ = ["Image"] import builtins import typing import zipfile import numpy as np import numpy.typing as npt try: import nibabel as nib import SimpleITK as sitk except ImportError as imp_exn: imp_exn_msg = f"NiBabel and SimpleITK must be installed to use {__name__}." raise ImportError(imp_exn_msg) from imp_exn import pymedio.base as miob import pymedio.dicom as miod import pymedio.functional as miof import pymedio.typing as miot class Image(miob.BasicImage[typing.Any, miot.DType]): # type: ignore[type-arg] @property def repr_properties(self) -> builtins.list[builtins.str]: props = super().repr_properties props += [f"orientation: {''.join(self.orientation)}+"] return props @property def orientation(self) -> builtins.tuple[builtins.str, builtins.str, builtins.str]: """Orientation codes.""" codes: builtins.tuple[builtins.str, builtins.str, builtins.str] codes = nib.aff2axcodes(self.affine) return codes @property def bounds(self) -> npt.NDArray[np.float64]: """Position of centers of voxels in smallest and largest indices.""" ini = 0, 0, 0 fin: np.ndarray = np.asarray(self.shape) - 1 point_ini = nib.affines.apply_affine(self.affine, ini) point_fin = nib.affines.apply_affine(self.affine, fin) return np.asarray((point_ini, point_fin)) def axis_name_to_index(self, axis: builtins.str) -> builtins.int: # Top and bottom are used for the vertical 2D axis as the use of # Height vs Horizontal might be ambiguous if not isinstance(axis, str): raise ValueError("Axis must be a string") axis = axis[0].upper() if axis in "TB": # Top, Bottom return -2 else: try: index = self.orientation.index(axis) except ValueError: index = self.orientation.index(self.flip_axis(axis)) # Return negative indices so that it does not matter whether we # refer to spatial dimensions or not index = -3 + index return index @staticmethod def flip_axis(axis: builtins.str) -> builtins.str: labels = "LRPAISTBDV" first = labels[::2] last = labels[1::2] flip_dict = {a: b for a, b in zip(first + last, last + first)} axis = axis[0].upper() flipped_axis = flip_dict.get(axis) if flipped_axis is None: values = ", ".join(labels) message = f"Axis not understood. Please use one of: {values}" raise ValueError(message) return flipped_axis def get_bounds(self) -> miot.Bounds: """Get minimum and maximum world coordinates occupied by the image.""" first_index = 3 * (-0.5,) last_index: np.ndarray = np.asarray(self.shape) - 0.5 first_point = nib.affines.apply_affine(self.affine, first_index) last_point = nib.affines.apply_affine(self.affine, last_index) array: np.ndarray = np.asarray((first_point, last_point)) bounds_x, bounds_y, bounds_z = array.T.tolist() return bounds_x, bounds_y, bounds_z def save(self, path: miot.PathLike, *, squeeze: builtins.bool = True) -> None: miof.write_image(np.array(self), self.affine, path, squeeze=squeeze) def to_filename(self, path: miot.PathLike) -> None: self.save(path, squeeze=False) def get_center(self, lps: builtins.bool = False) -> miot.TripletFloat: """Get image center in RAS+ or LPS+ coordinates""" size: np.ndarray = np.asarray(self.shape) center_index = (size - 1) / 2 r, a, s = nib.affines.apply_affine(self.affine, center_index) return (-r, -a, s) if lps else (r, a, s) @classmethod def from_path( cls: typing.Type[Image], path: miot.PathLike, *, dtype: typing.Type[miot.DType] | None = None, eager: builtins.bool = True, ) -> Image[miot.DType]: data, affine = miof.read_image(path, dtype=dtype, eager=eager) return cls(data=data, affine=affine) @classmethod def from_stream( cls: typing.Type[Image], data_stream: typing.IO, *, dtype: typing.Type[miot.DType] | None = None, gzipped: builtins.bool = False, image_class: miof.NibabelImageClass | None = None, ) -> Image[miot.DType]: data, affine = miof.read_image_from_stream( data_stream, dtype=dtype, gzipped=gzipped, image_class=image_class ) return cls(data=data, affine=affine) @classmethod def from_zipped_stream( cls: typing.Type[Image], data_stream: typing.IO, *, dtype: typing.Type[miot.DType] | None = None, gzipped: builtins.bool = False, image_class: miof.NibabelImageClass | None = None, **zip_kwargs: typing.Any, ) -> Image[miot.DType]: with zipfile.ZipFile(data_stream, "r", **zip_kwargs) as zf: names = [name for name in zf.namelist() if not name.endswith("/")] if (n := len(names)) != 1: msg = f"{n} files in zipped archive. This constructor requires only 1." raise RuntimeError(msg) name = names[0] with zf.open(name, mode="r") as f: return cls.from_stream( typing.cast(typing.BinaryIO, f), dtype=dtype, gzipped=gzipped, image_class=image_class, ) @classmethod def from_sitk( cls: typing.Type[Image], sitk_image: sitk.Image, *, dtype: typing.Type[miot.DType] | None = None, ) -> Image: data, affine = miof.sitk_to_array(sitk_image, dtype=dtype) return cls(data=data, affine=affine) @classmethod def from_dicom_image( cls: typing.Type[Image], dicom_image: miod.DICOMImage ) -> Image: return cls(data=dicom_image, affine=dicom_image.affine) @classmethod def from_dicom_zipped_stream( cls: typing.Type[Image], data_stream: typing.IO, *, max_nonuniformity: builtins.float = 5e-4, fail_outside_max_nonuniformity: builtins.bool = True, remove_anomalous_images: builtins.bool = True, encryption_key: builtins.bytes | builtins.str | None = None, rescale: builtins.bool | None = None, rescale_dtype: typing.Type[miot.DType] | None = None, ) -> Image[miot.DType]: dicom_image = miod.DICOMImage.from_zipped_stream( data_stream, max_nonuniformity=max_nonuniformity, fail_outside_max_nonuniformity=fail_outside_max_nonuniformity, remove_anomalous_images=remove_anomalous_images, encryption_key=encryption_key, rescale=rescale, rescale_dtype=rescale_dtype, ) return cls.from_dicom_image(dicom_image) def to_sitk(self, **kwargs: builtins.bool) -> sitk.Image: """Get the image as an instance of :class:`sitk.Image`.""" return miof.array_to_sitk(np.array(self), self.affine, **kwargs) def to_nibabel(self) -> nib.Nifti1Image: return nib.Nifti1Image(np.array(self), self.affine) ```
{ "source": "jcreinhold/synthqc", "score": 2 }
#### File: synthqc/tests/test_plot.py ```python import os import shutil import tempfile import unittest from synthqc import directory_view, plot_dir_synth_quality class TestPlot(unittest.TestCase): def setUp(self): wd = os.path.dirname(os.path.abspath(__file__)) self.data_dir = os.path.join(wd, 'test_data', 'images') self.mask_dir = os.path.join(wd, 'test_data', 'masks') self.out_dir = tempfile.mkdtemp() def test_directory_view(self): directory_view(self.data_dir, out_dir=self.out_dir, trim=False) def test_synth_quality(self): plot_dir_synth_quality(self.data_dir, self.data_dir, mask_dir=self.mask_dir, out_dir=self.out_dir) def test_synth_quality_mean(self): plot_dir_synth_quality(self.data_dir, self.data_dir, mask_dir=self.mask_dir, out_dir=self.out_dir, mean=True) def tearDown(self): shutil.rmtree(self.out_dir) if __name__ == '__main__': unittest.main() ```
{ "source": "jcreinhold/synthtorch", "score": 2 }
#### File: synthtorch/exec/nn_predict.py ```python import logging import os import random import sys import warnings with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=FutureWarning) warnings.filterwarnings('ignore', category=UserWarning) import numpy as np import torch from niftidataset import glob_imgs, split_filename from synthtorch import Learner, SynthtorchError from synthtorch.exec.exec import get_args, setup_log, determine_ext ######### Main routine ########### def main(args=None): args, no_config_file = get_args(args) setup_log(args.verbosity) logger = logging.getLogger(__name__) try: # set random seeds for reproducibility random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) # since prediction only uses one gpu (at most), make the batch size small enough to fit if args.n_gpus > 1: args.batch_size = args.batch_size // args.n_gpus learner = Learner.predict_setup(args) # determine how many samples we will use in prediction nsyn = (args.monte_carlo or 1) if (args.nn_arch not in ('hotnet', 'unburnnet', 'ocnet1', 'ocnet2')) else 1 # get relevant prediction directories and determine extension predict_dir = args.predict_dir or args.valid_source_dir output_dir = args.predict_out or os.getcwd() + '/syn_' ext = determine_ext(predict_dir[0]) # setup and start prediction loop axis = args.sample_axis or 0 if axis < 0 or axis > 2 and not isinstance(axis, int): raise ValueError('sample_axis must be an integer between 0 and 2 inclusive') n_imgs = len(glob_imgs(predict_dir[0], ext)) if n_imgs == 0: raise SynthtorchError('Prediction directory does not contain valid images.') if any([len(glob_imgs(pd, ext)) != n_imgs for pd in predict_dir]): raise SynthtorchError( 'Number of images in prediction directories must have an equal number of images in each ' 'directory (e.g., so that img_t1_1 aligns with img_t2_1 etc. for multimodal synth)') predict_fns = zip(*[glob_imgs(pd, ext) for pd in predict_dir]) if args.dim == 3 and args.patch_size is not None and args.calc_var: raise SynthtorchError('Patch-based 3D variance calculation not currently supported.') for k, fn in enumerate(predict_fns): _, base, ext = split_filename(fn[0]) if 'png' in ext: ext = '.tif' # force tif output in this case if 'nii' in ext: ext = '.nii.gz' # force compressed output in this case logger.info(f'Starting synthesis of image: {base} ({k + 1}/{n_imgs})') out_imgs = learner.predict(fn, nsyn, args.calc_var) for i, oin in enumerate(out_imgs): out_fn = output_dir + f'{k}_{i}{ext}' if hasattr(oin, 'to_filename'): oin.to_filename(out_fn) else: oin.save(out_fn) logger.info(f'Finished synthesis. Saved as: {out_fn}') return 0 except Exception as e: logger.exception(e) return 1 if __name__ == "__main__": sys.exit(main(sys.argv[1:])) ``` #### File: synthtorch/learn/learner.py ```python __all__ = ['get_data_augmentation', 'get_dataloader', 'get_device', 'get_model', 'Learner'] from dataclasses import dataclass from typing import List, Tuple, Union import logging import os import random import nibabel as nib import numpy as np from PIL import Image import torch from torch import nn from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts, CyclicLR from torch.utils.data import DataLoader from torch.utils.data.sampler import SubsetRandomSampler from torchvision.transforms import Compose from niftidataset import MultimodalNiftiDataset, MultimodalImageDataset, split_filename import niftidataset.transforms as niftitfms from synthtorch.errors import SynthtorchError from synthtorch.plot.loss import plot_loss from synthtorch.learn.predict import Predictor from synthtorch.util.config import ExperimentConfig from synthtorch.util.helper import get_optim, init_weights try: from torch.utils.tensorboard import SummaryWriter except (ImportError, ModuleNotFoundError): SummaryWriter = None try: from apex import amp except (ImportError, ModuleNotFoundError): amp = None logger = logging.getLogger(__name__) class Learner: def __init__(self, model, device=None, train_loader=None, valid_loader=None, optimizer=None, predictor=None, config=None): self.model = model self.model_name = model.__class__.__name__.lower() self.train_loader = train_loader self.valid_loader = valid_loader self.optimizer = optimizer self.device = device self.predictor = predictor self.config = config self.record = None self.use_fp16 = False @classmethod def train_setup(cls, config: Union[str, ExperimentConfig]): if isinstance(config, str): config = ExperimentConfig.load_json(config) if isinstance(config.kernel_size, int): config.kernel_size = tuple([config.kernel_size for _ in range(config.dim)]) device, use_cuda = get_device(config.disable_cuda) if config.color: config.n_input, config.n_output = config.n_input * 3, config.n_output * 3 model = get_model(config, True, False) if config.color: config.n_input, config.n_output = config.n_input // 3, config.n_output // 3 logger.debug(model) logger.info(f'Number of trainable parameters in model: {num_params(model)}') load_chkpt = os.path.isfile(config.trained_model) checkpoint = torch.load(config.trained_model, map_location=device) if load_chkpt else None if load_chkpt: logger.info(f"Loading checkpoint: {config.trained_model} (epoch {checkpoint['epoch']})") model.load_state_dict(checkpoint['model']) model = model.to(device) else: logger.info(f'Initializing weights with {config.init}') init_weights(model, config.init, config.init_gain) if use_cuda: model.cuda(device=device) train_loader, valid_loader = get_dataloader(config) if config.lr_scheduler is None: logger.info(f'LR: {config.learning_rate:.2e}') def gopt(name, mp, **kwargs): return get_optim(name)(mp, lr=config.learning_rate, weight_decay=config.weight_decay, **kwargs) try: optimizer = gopt(config.optimizer, model.parameters(), betas=config.betas) except TypeError: try: optimizer = gopt(config.optimizer, model.parameters(), momentum=config.betas[0]) except TypeError: optimizer = gopt(config.optimizer, model.parameters()) if load_chkpt and not config.no_load_opt: optimizer.load_state_dict(checkpoint['optimizer']) model.train() if config.freeze: model.freeze() predictor = Predictor(model, config.patch_size, config.batch_size, device, config.sample_axis, config.dim, config.mean, config.std, config.tfm_x, config.tfm_y) return cls(model, device, train_loader, valid_loader, optimizer, predictor, config) @classmethod def predict_setup(cls, config: Union[str, ExperimentConfig]): if isinstance(config, str): config = ExperimentConfig.load_json(config) if isinstance(config.kernel_size, int): config.kernel_size = tuple([config.kernel_size for _ in range(config.dim)]) device, use_cuda = get_device(config.disable_cuda) nsyn = config.monte_carlo or 1 if config.color: config.n_input, config.n_output = config.n_input * 3, config.n_output * 3 model = get_model(config, nsyn > 1 and config.dropout_prob > 0, True) logger.debug(model) checkpoint = torch.load(config.trained_model, map_location=device) model.load_state_dict(checkpoint['model']) model = model.to(device) if use_cuda: model.cuda(device=device) model.eval() predictor = Predictor(model, config.patch_size, config.batch_size, device, config.sample_axis, config.dim, config.mean, config.std, config.tfm_x, config.tfm_y) return cls(model, device, predictor=predictor, config=config) def fit(self, n_epochs, clip: float = None, checkpoint: int = None, trained_model: str = None): """ training loop for neural network """ self.model.train() use_tb = self.config.tensorboard and SummaryWriter is not None if use_tb: writer = SummaryWriter() use_valid = self.valid_loader is not None use_scheduler = hasattr(self, 'scheduler') use_restarts = self.config.lr_scheduler == 'cosinerestarts' train_losses, valid_losses = [], [] n_batches = len(self.train_loader) for t in range(1, n_epochs + 1): # training t_losses = [] if use_valid: self.model.train(True) for i, (src, tgt) in enumerate(self.train_loader): logger.debug(f'Epoch {t} - training iteration {i} - ' f'Src. shape: {src.shape}; Tgt. shape: {tgt.shape}') src, tgt = src.to(self.device), tgt.to(self.device) self.optimizer.zero_grad() out = self.model(src) loss = self._criterion(out, tgt) t_losses.append(loss.item()) if self.use_fp16: with amp.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() if clip is not None: nn.utils.clip_grad_norm_(self.model.parameters(), clip) self.optimizer.step() if use_scheduler: self.scheduler.step(((t - 1) + (i / n_batches)) if use_restarts else None) if use_tb: if i % 20 == 0: writer.add_scalar('Loss/train', loss.item(), ((t - 1) * n_batches) + i) del loss # save memory by removing ref to gradient tree train_losses.append(t_losses) if checkpoint is not None: if t % checkpoint == 0: path, base, ext = split_filename(trained_model) fn = os.path.join(path, base + f'_chk_{t}' + ext) self.save(fn, t) # validation v_losses = [] if use_valid: self.model.train(False) with torch.no_grad(): for i, (src, tgt) in enumerate(self.valid_loader): logger.debug(f'Epoch {t} - validation iteration {i} - ' f'Src. shape: {src.shape}; Tgt. shape: {tgt.shape}') src, tgt = src.to(self.device), tgt.to(self.device) out = self.model(src) loss = self._criterion(out, tgt) if use_tb: if i % 20 == 0: writer.add_scalar('Loss/valid', loss.item(), ((t - 1) * n_batches) + i) do_plot = i == 0 and ((t - 1) % 5) == 0 if do_plot and self.model.dim == 2: writer.add_images('source', src[:8], t, dataformats='NCHW') outimg = out[0][:8] if isinstance(out, tuple) else out[:8] if self.config.color: outimg = torch.round(outimg) writer.add_images('target', outimg, t, dataformats='NCHW') if do_plot: self._histogram_weights(writer, t) v_losses.append(loss.item()) valid_losses.append(v_losses) if not np.all(np.isfinite(t_losses)): raise SynthtorchError( 'NaN or Inf in training loss, cannot recover. Exiting.') if logger is not None: log = f'Epoch: {t} - Training Loss: {np.mean(t_losses):.2e}' if use_valid: log += f', Validation Loss: {np.mean(v_losses):.2e}' if use_scheduler: log += f', LR: {self.scheduler.get_last_lr()[0]:.2e}' logger.info(log) self.record = Record(train_losses, valid_losses) if use_tb: writer.close() def predict(self, fn: str, nsyn: int = 1, calc_var: bool = False): self.model.eval() f = fn[0].lower() if f.endswith('.nii') or f.endswith('.nii.gz'): img_nib = nib.load(fn[0]) img = np.stack([nib.load(f).get_fdata(dtype=np.float32) for f in fn]) out = self.predictor.predict(img, nsyn, calc_var) out_img = [nib.Nifti1Image(o, img_nib.affine, img_nib.header) for o in out] elif f.split('.')[-1] in ('tif', 'tiff', 'png', 'jpg', 'jpeg'): out_img = self._img_predict(fn, nsyn, calc_var) else: raise SynthtorchError(f'File: {fn[0]}, not supported.') return out_img def _img_predict(self, fn, nsyn, calc_var): img = np.stack([np.asarray(Image.open(f), dtype=np.float32) for f in fn]) if self.config.color: img = img.transpose((0, 3, 1, 2)) out = self.predictor.img_predict(img, nsyn, calc_var) if self.config.color: out = out.transpose((1, 2, 0)) # only support one color image as output out = [np.around(out[..., 0:3]).astype(np.uint8)] + [out[..., i] for i in range(3, out.shape[-1])] \ if self.config.nn_arch not in ('nconv', 'unet', 'densenet') else \ np.around(out[None, ...]).astype(np.uint8) return [Image.fromarray(o) for o in out] def _criterion(self, out, tgt): """ helper function to handle multiple outputs in model evaluation """ c = self.model.module.criterion if isinstance(self.model, nn.DataParallel) else self.model.criterion return c(out, tgt) def fp16(self): """ import and initialize mixed precision training package """ if amp is not None: self.model, self.optimizer = amp.initialize(self.model, self.optimizer, opt_level='O1') self.use_fp16 = True else: logger.info('Mixed precision training (i.e., the package `apex`) not available.') def multigpu(self): """ put the model on the GPU if available and desired """ n_gpus = torch.cuda.device_count() if n_gpus <= 1: logger.warning('Multi-GPU functionality is not available on your system.') else: logger.info(f'Enabling use of {n_gpus} gpus') self.model = torch.nn.DataParallel(self.model) def lr_scheduler(self, n_epochs, lr_scheduler='cyclic', restart_period=None, t_mult=None, num_cycles=1, cycle_mode='triangular', momentum_range=(0.85, 0.95), div_factor=25, pct_start=0.3, **kwargs): lr = self.config.learning_rate if lr_scheduler == 'cyclic': logger.info(f'Enabling cyclic LR scheduler with {num_cycles} cycle(s)') ss = int((n_epochs * len(self.train_loader)) / num_cycles) ssu = int(pct_start * ss) ssd = ss - ssu cycle_momentum = self.config.optimizer in ('sgd', 'sgdw', 'nsgd', 'nsgdw', 'rmsprop') momentum_kwargs = {'cycle_momentum': cycle_momentum} if not cycle_momentum and momentum_range is not None: logger.warning(f'{self.config.optimizer} not compatible with momentum cycling, disabling.') elif momentum_range is not None: momentum_kwargs.update({'base_momentum': momentum_range[0], 'max_momentum': momentum_range[1]}) self.scheduler = CyclicLR(self.optimizer, lr / div_factor, lr, step_size_up=ssu, step_size_down=ssd, mode=cycle_mode, **momentum_kwargs) elif lr_scheduler == 'cosinerestarts': logger.info('Enabling cosine annealing with restarts LR scheduler') self.scheduler = CosineAnnealingWarmRestarts(self.optimizer, restart_period, T_mult=t_mult, eta_min=lr / div_factor) else: raise SynthtorchError(f'Invalid type {type} for scheduler.') logger.info(f'Max LR: {lr:.2e}, Min LR: {lr / div_factor:.2e}') def load(self, fn): checkpoint = torch.load(fn, map_location=self.device) logger.info(f"Loaded checkpoint: {fn} (epoch {checkpoint['epoch']})") if 'amp' in checkpoint.keys(): amp.initialize(self.model, self.optimizer, opt_level='O1') amp.load_state_dict(checkpoint['amp']) self.model.load_state_dict(checkpoint['model']).to(self.device) self.optimizer.load_state_dict(checkpoint['optimizer']) def save(self, fn, epoch=0): """ save a model, an optimizer state and the epoch number to a file """ model = self.model.module.state_dict() if hasattr(self.model, 'module') else self.model.state_dict() state = {'epoch': epoch, 'model': model, 'optimizer': self.optimizer.state_dict()} if self.use_fp16: state['amp'] = amp.state_dict() torch.save(state, fn) def _histogram_weights(self, writer, epoch): """ write histogram of weights to tensorboard """ for (name, values) in self.model.named_parameters(): writer.add_histogram(tag='weights/' + name, values=values.clone().detach().cpu(), global_step=epoch) def num_params(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def get_model(config: ExperimentConfig, enable_dropout: bool = True, inplace: bool = False): """ instantiate a model based on an ExperimentConfig class instance Args: config (ExperimentConfig): instance of the ExperimentConfig class enable_dropout (bool): enable dropout in the model (usually for training) Returns: model: instance of one of the available models in the synthtorch package """ if config.nn_arch == 'nconv': from ..models.nconvnet import SimpleConvNet logger.warning('The nconv network is for basic testing.') model = SimpleConvNet(**config) elif config.nn_arch == 'unet': from ..models.unet import Unet model = Unet(enable_dropout=enable_dropout, inplace=inplace, **config) elif config.nn_arch == 'vae': from ..models.vae import VAE model = VAE(**config) elif config.nn_arch == 'densenet': from ..models.densenet import DenseNet model = DenseNet(**config) elif config.nn_arch == 'ordnet': try: from annom.models import OrdNet except (ImportError, ModuleNotFoundError): raise SynthtorchError('Cannot use the OrdNet without the annom toolbox.') model = OrdNet(enable_dropout=enable_dropout, inplace=inplace, **config) elif config.nn_arch == 'hotnet': try: from annom.models import HotNet except (ImportError, ModuleNotFoundError): raise SynthtorchError('Cannot use the HotNet without the annom toolbox.') model = HotNet(inplace=inplace, **config) elif config.nn_arch == 'burnnet': try: from annom.models import BurnNet except (ImportError, ModuleNotFoundError): raise SynthtorchError('Cannot use the BurnNet without the annom toolbox.') model = BurnNet(inplace=inplace, **config) elif config.nn_arch == 'burn2net': try: from annom.models import Burn2Net except (ImportError, ModuleNotFoundError): raise SynthtorchError('Cannot use the Burn2Net without the annom toolbox.') model = Burn2Net(inplace=inplace, **config) elif config.nn_arch == 'burn2netp12': try: from annom.models import Burn2NetP12 except (ImportError, ModuleNotFoundError): raise SynthtorchError('Cannot use the Burn2NetP12 without the annom toolbox.') model = Burn2NetP12(inplace=inplace, **config) elif config.nn_arch == 'burn2netp21': try: from annom.models import Burn2NetP21 except (ImportError, ModuleNotFoundError): raise SynthtorchError('Cannot use the Burn2NetP21 without the annom toolbox.') model = Burn2NetP21(inplace=inplace, **config) elif config.nn_arch == 'unburnnet': try: from annom.models import UnburnNet except (ImportError, ModuleNotFoundError): raise SynthtorchError('Cannot use the UnburnNet without the annom toolbox.') model = UnburnNet(inplace=inplace, **config) elif config.nn_arch == 'unburn2net': try: from annom.models import Unburn2Net except (ImportError, ModuleNotFoundError): raise SynthtorchError('Cannot use the Unburn2Net without the annom toolbox.') model = Unburn2Net(inplace=inplace, **config) elif config.nn_arch == 'lavanet': try: from annom.models import LavaNet except (ImportError, ModuleNotFoundError): raise SynthtorchError('Cannot use the LavaNet without the annom toolbox.') model = LavaNet(inplace=inplace, **config) elif config.nn_arch == 'lava2net': try: from annom.models import Lava2Net except (ImportError, ModuleNotFoundError): raise SynthtorchError('Cannot use the Lava2Net without the annom toolbox.') model = Lava2Net(inplace=inplace, **config) elif config.nn_arch == 'lautonet': try: from annom.models import LAutoNet except (ImportError, ModuleNotFoundError): raise SynthtorchError('Cannot use the LAutoNet without the annom toolbox.') model = LAutoNet(enable_dropout=enable_dropout, inplace=inplace, **config) elif config.nn_arch == 'ocnet1': try: from annom.models import OCNet1 except (ImportError, ModuleNotFoundError): raise SynthtorchError('Cannot use the OCNet without the annom toolbox.') model = OCNet1(enable_dropout=enable_dropout, inplace=inplace if config.dropout_prob == 0 else False, **config) elif config.nn_arch == 'ocnet2': try: from annom.models import OCNet2 except (ImportError, ModuleNotFoundError): raise SynthtorchError('Cannot use the OCNet without the annom toolbox.') model = OCNet2(enable_dropout=enable_dropout, inplace=inplace if config.dropout_prob == 0 else False, **config) else: raise SynthtorchError(f'Invalid NN type: {config.nn_arch}. ' f'{{nconv,unet,vae,densenet,ordnet,hotnet,burnnet,burn2netp12,burn2netp21,' f'unburnnet,unburn2net,lavanet,lava2net,lautonet,ocnet1,ocnet2}} ' f'are the only supported options.') return model def get_device(disable_cuda=False): """ get the device(s) for tensors to be put on """ cuda_avail = torch.cuda.is_available() use_cuda = cuda_avail and not disable_cuda if use_cuda: torch.backends.cudnn.benchmark = True if not cuda_avail and not disable_cuda: logger.warning('CUDA does not appear to be available on your system.') device = torch.device("cuda" if use_cuda else "cpu") return device, use_cuda def get_dataloader(config: ExperimentConfig, tfms: Tuple[List, List] = None): """ get the dataloaders for training/validation """ if config.dim > 1: # get data augmentation if not defined train_tfms, valid_tfms = get_data_augmentation(config) if tfms is None else tfms # check number of jobs requested and CPUs available num_cpus = os.cpu_count() if num_cpus < config.n_jobs: logger.warning(f'Requested more workers than available (n_jobs={config.n_jobs}, # cpus={num_cpus}). ' f'Setting n_jobs={num_cpus}.') config.n_jobs = num_cpus # define dataset and split into training/validation set use_nii_ds = config.ext is None or 'nii' in config.ext dataset = MultimodalNiftiDataset.setup_from_dir(config.source_dir, config.target_dir, Compose(train_tfms), preload=config.preload) if use_nii_ds else \ MultimodalImageDataset.setup_from_dir(config.source_dir, config.target_dir, Compose(train_tfms), ext='*.' + config.ext, color=config.color, preload=config.preload) logger.info(f'Number of training images: {len(dataset)}') if config.valid_source_dir is not None and config.valid_target_dir is not None: valid_dataset = MultimodalNiftiDataset.setup_from_dir(config.valid_source_dir, config.valid_target_dir, Compose(valid_tfms), preload=config.preload) if use_nii_ds else \ MultimodalImageDataset.setup_from_dir(config.valid_source_dir, config.valid_target_dir, Compose(valid_tfms), ext='*.' + config.ext, color=config.color, preload=config.preload) logger.info(f'Number of validation images: {len(valid_dataset)}') train_loader = DataLoader(dataset, batch_size=config.batch_size, num_workers=config.n_jobs, shuffle=True, pin_memory=config.pin_memory, worker_init_fn=init_fn) valid_loader = DataLoader(valid_dataset, batch_size=config.batch_size, num_workers=config.n_jobs, pin_memory=config.pin_memory, worker_init_fn=init_fn) else: # setup training and validation set num_train = len(dataset) indices = list(range(num_train)) split = int(config.valid_split * num_train) valid_idx = np.random.choice(indices, size=split, replace=False) train_idx = list(set(indices) - set(valid_idx)) train_sampler = SubsetRandomSampler(train_idx) valid_sampler = SubsetRandomSampler(valid_idx) # set up data loader for nifti images train_loader = DataLoader(dataset, sampler=train_sampler, batch_size=config.batch_size, num_workers=config.n_jobs, pin_memory=config.pin_memory, worker_init_fn=init_fn) valid_loader = DataLoader(dataset, sampler=valid_sampler, batch_size=config.batch_size, num_workers=config.n_jobs, pin_memory=config.pin_memory, worker_init_fn=init_fn) else: try: from altdataset import CSVDataset except (ImportError, ModuleNotFoundError): raise SynthtorchError('Cannot use 1D ConvNet in CLI without the altdataset toolbox.') train_dataset, valid_dataset = CSVDataset(config.source_dir[0]), CSVDataset(config.valid_source_dir[0]) train_loader = DataLoader(train_dataset, batch_size=config.batch_size, num_workers=config.n_jobs, shuffle=True, pin_memory=config.pin_memory) valid_loader = DataLoader(valid_dataset, batch_size=config.batch_size, num_workers=config.n_jobs, pin_memory=config.pin_memory) return train_loader, valid_loader def init_fn(worker_id): random.seed((torch.initial_seed() + worker_id) % (2 ** 32)) np.random.seed((torch.initial_seed() + worker_id) % (2 ** 32)) def get_data_augmentation(config: ExperimentConfig): """ get all data augmentation transforms for training """ train_tfms, valid_tfms = [], [] # add data augmentation if desired if config.prob is not None: logger.info('Adding data augmentation transforms') train_tfms.extend( niftitfms.get_transforms(config.prob, config.tfm_x, config.tfm_y, config.rotate, config.translate, config.scale, config.vflip, config.hflip, config.gamma, config.gain, config.noise_pwr, config.block, config.threshold, config.dim == 3, config.mean, config.std, config.color)) if config.mean is not None and config.std is not None: valid_tfms.extend([niftitfms.ToTensor(config.color), niftitfms.Normalize(config.mean, config.std, config.tfm_x, config.tfm_y, config.dim == 3)]) else: logger.info('No data augmentation will be used') train_tfms.append(niftitfms.ToTensor(config.color)) valid_tfms.append(niftitfms.ToTensor(config.color)) # control random cropping patch size (or if used at all) if (config.ext is None or config.ext == 'nii') and config.patch_size is not None: cropper = niftitfms.RandomCrop3D(config.patch_size, config.threshold, config.sample_pct, config.sample_axis) if config.dim == 3 else \ niftitfms.RandomCrop2D(config.patch_size, config.sample_axis, config.threshold) train_tfms.append(cropper if config.patch_size is not None and config.dim == 3 else \ niftitfms.RandomSlice(config.sample_axis)) valid_tfms.append(cropper if config.patch_size is not None and config.dim == 3 else \ niftitfms.RandomSlice(config.sample_axis)) else: if config.patch_size is not None: train_tfms.append(niftitfms.RandomCrop(config.patch_size, config.threshold)) valid_tfms.append(niftitfms.RandomCrop(config.patch_size, config.threshold)) logger.debug(f'Training transforms: {train_tfms}') return train_tfms, valid_tfms @dataclass class Record: train_loss: List[List[float]] valid_loss: List[List[float]] def plot_loss(self, fn: str = None, plot_error: bool = False): """ plot training and validation losses on the same plot (with or without error bars) """ ax = plot_loss(self.train_loss, ecolor='darkorchid', label='Train', plot_error=plot_error) _ = plot_loss(self.valid_loss, filename=fn, ecolor='firebrick', ax=ax, label='Validation', plot_error=plot_error) def write_csv(self, fn: str): """ write training and validation losses to a csv file """ import csv head = ['epochs', 'avg train', 'std train', 'avg valid', 'std valid'] epochs = list(range(1, len(self.train_loss) + 1)) avg_tl = [np.mean(losses) for losses in self.train_loss] std_tl = [np.std(losses) for losses in self.train_loss] avg_vl = [np.mean(losses) for losses in self.valid_loss] std_vl = [np.std(losses) for losses in self.valid_loss] out = np.vstack([epochs, avg_tl, std_tl, avg_vl, std_vl]).T with open(fn, "w") as f: wr = csv.writer(f) wr.writerow(head) wr.writerows(out) ``` #### File: synthtorch/learn/loss.py ```python __all__ = ['CosineProximityLoss', 'VAELoss'] import torch from torch import nn class CosineProximityLoss(nn.Module): """ minimize the cosine proximity between an input and a target """ def forward(self, y_hat: torch.Tensor, y: torch.Tensor): cp = torch.dot(y_hat.flatten(), y.flatten()) / (torch.norm(y_hat) * torch.norm(y)) return 1 - cp class VAELoss(nn.Module): def __init__(self): super(VAELoss, self).__init__() self.mse_loss = nn.MSELoss(reduction="sum") def forward(self, xhat, x): recon_x, mu, logvar = xhat MSE = self.mse_loss(recon_x, x) KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) return MSE + KLD ``` #### File: synthtorch/tests/test_exec.py ```python import os import unittest import torch torch.autograd.set_detect_anomaly(True) from synthtorch.exec.nn_train import main as nn_train from synthtorch.exec.nn_predict import main as nn_predict from ._test_funcs import TestCLI class TestNConv(TestCLI): def test_nconv_nopatch_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv_nopatch.mdl -na nconv -ne 1 -nl 2 -bs 2 -dm 3 ' f'--plot-loss {self.out_dir}/loss.png -ocf {self.jsonfn} ' f'-vsd {self.train_dir} -vtd {self.train_dir} -v').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_patch_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv_patch.mdl -na nconv -ne 1 -nl 1 -ps 16 16 ' f'-ocf {self.jsonfn} -bs 2').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_preload_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv_patch.mdl -na nconv -ne 1 -nl 1 -ps 16 16 ' f'-ocf {self.jsonfn} -bs 2 -pr').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_swish_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv_patch.mdl -na nconv -ne 1 -nl 1 -ps 16 16 ' f'-ocf {self.jsonfn} -bs 2 -ac swish').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_checkpoint_and_load_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv.mdl -na nconv -ne 2 -nl 1 -ps 16 16 ' f'-ocf {self.jsonfn} -bs 2 -chk 1').split() retval = nn_train(args) self.assertEqual(retval, 0) args = self.train_args + (f'-o {self.out_dir}/nconv.mdl -na nconv -ne 2 -nl 1 -ps 16 16 ' f'-ocf {self.jsonfn} -bs 2').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_cyclic_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv_patch.mdl -na nconv -ne 3 -nl 1 -ps 16 16 ' f'-ocf {self.jsonfn} -bs 2 -lrs cyclic -v -opt sgdw').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_restarts_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv_patch.mdl -na nconv -ne 3 -nl 1 -ps 16 16 ' f'-ocf {self.jsonfn} -bs 2 -lrs cosinerestarts -tm 2 -rp 2 -v').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_amsgrad_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv_patch.mdl -na nconv -ne 3 -nl 1 -ps 16 16 ' f'-ocf {self.jsonfn} -bs 2 -v -opt amsgrad').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_nesterov_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv_patch.mdl -na nconv -ne 3 -nl 1 -ps 16 16 ' f'-ocf {self.jsonfn} -bs 2 -v -opt nsgd').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_nesterovw_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv_patch.mdl -na nconv -ne 3 -nl 1 -ps 16 16 ' f'-ocf {self.jsonfn} -bs 2 -v -opt nsgdw').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_sgdw_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv_patch.mdl -na nconv -ne 3 -nl 1 -ps 16 16 ' f'-ocf {self.jsonfn} -bs 2 -v -opt sgdw').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_weightdecay_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv_patch.mdl -na nconv -ne 3 -nl 1 -ps 16 16 ' f'-ocf {self.jsonfn} -bs 2 -v -wd 0.1').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_writecsv_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv_patch.mdl -na nconv -ne 3 -nl 1 -ps 16 16 ' f'-ocf {self.jsonfn} -bs 2 -v -csv {self.out_dir}/test.csv').split() retval = nn_train(args) self.assertEqual(retval, 0) def test_nconv_data_aug_2d_cli(self): train_args = f'-s {self.train_dir}/tif/ -t {self.train_dir}/tif/'.split() args = train_args + (f'-o {self.out_dir}/nconv_nopatch.mdl -na nconv -ne 1 -nl 2 -bs 2 ' f'--plot-loss {self.out_dir}/loss.png -ocf {self.jsonfn} -e tif ' f'-p 1 1 1 1 1 -r 10 -ts 0.5 -sc 0.1 -mean 1 -std 1 ' f'-hf -vf -g 0.1 -gn 0.2 -pwr 1 -tx -ty -blk 5 6 -th 0').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_data_aug_3d_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv_nopatch.mdl -na nconv -ne 1 -nl 2 -bs 2 ' f'--plot-loss {self.out_dir}/loss.png -ocf {self.jsonfn} -dm 3 ' f'-vsd {self.train_dir} -vtd {self.train_dir} -p 0 0 1 1 1 ' f'-g 0.01 -gn 0 -pwr 1 -tx -ty -blk 5 10 -mean 1 -std 1').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_clip_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv_patch.mdl -na nconv -ne 1 -nl 1 -ps 16 16 ' f'-ocf {self.jsonfn} -bs 2 -c 0.25').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_whole_img_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv_patch.mdl -na nconv -ne 1 -nl 1 -dm 3 ' f'-ocf {self.jsonfn} -bs 1').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_2d_crop_cli(self): train_args = f'-s {self.train_dir}/tif/ -t {self.train_dir}/tif/'.split() args = train_args + (f'-o {self.out_dir}/nconv.mdl -na nconv -ne 1 -nl 1 -cbp 1 -bs 2 -e tif -ps 8 8 ' f'-ocf {self.jsonfn}').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_2d_var_cli(self): train_args = f'-s {self.train_dir}/tif/ -t {self.train_dir}/tif/'.split() args = train_args + (f'-o {self.out_dir}/nconv.mdl -na nconv -ne 1 -nl 1 -cbp 1 -bs 2 -e tif ' f'-ocf {self.jsonfn}').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn, calc_var=True) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_png_cli(self): train_args = f'-s {self.train_dir}/png/ -t {self.train_dir}/png/'.split() args = train_args + (f'-o {self.out_dir}/nconv.mdl -na nconv -ne 1 -nl 1 -cbp 1 -bs 2 -e png ' f'-ocf {self.jsonfn} -p 1 1 0 0 0 ').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn, calc_var=True, png_out=True) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_color_cli(self): train_args = f'-s {self.train_dir}/color/ -t {self.train_dir}/color/'.split() args = train_args + (f'-o {self.out_dir}/nconv.mdl -na nconv -ne 1 -nl 1 -cbp 1 -bs 2 -e png -co -dm 2 ' f'-ocf {self.jsonfn}').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn, color_out=True, bs=1) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) @unittest.skipIf("TRAVIS" in os.environ and os.environ["TRAVIS"] == "true", "Skipping this test on Travis CI.") def test_nconv_color_tb_cli(self): train_args = f'-s {self.train_dir}/color/ -t {self.train_dir}/color/'.split() args = train_args + (f'-o {self.out_dir}/nconv.mdl -na nconv -ne 1 -nl 1 -cbp 1 -bs 2 -e png -co -dm 2 ' f'-ocf {self.jsonfn} -tb').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn, color_out=True, bs=1) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_tif_predict_cli(self): train_args = f'-s {self.train_dir}/tif/ -t {self.train_dir}/tif/'.split() args = train_args + (f'-o {self.out_dir}/nconv.mdl -na nconv -ne 1 -nl 1 -cbp 1 -bs 2 -e tif ' f'-ocf {self.jsonfn}').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn, calc_var=True, tif_out=True) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_3d_var_cli(self): args = self.train_args + (f'-o {self.out_dir}/nconv.mdl -na nconv -ne 1 -nl 1 -cbp 1 -bs 1 -dm 3 ' f'-ocf {self.jsonfn}').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn, calc_var=True) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_multimodal_cli(self): train_args = f'-s {self.train_dir} {self.train_dir} -t {self.train_dir} {self.train_dir}'.split() args = train_args + (f'-o {self.out_dir}/nconv_patch.mdl -na nconv -ne 1 -nl 1 -ps 16 16 ' f'-ocf {self.jsonfn} -bs 2').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn, multi=2) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_nconv_multimodal_tiff_cli(self): train_args = f'-s {self.train_dir}/tif/ {self.train_dir}/tif/ -t {self.train_dir}/tif/ {self.train_dir}/tif/'.split() args = train_args + (f'-o {self.out_dir}/nconv_patch.mdl -na nconv -ne 1 -nl 1 -ps 16 16 ' f'-ocf {self.jsonfn} -bs 2 -e tif -th 0').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn, multi=2) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) class TestDenseNet(TestCLI): def test_densenet_cli(self): train_args = f'-s {self.train_dir}/tif/ -t {self.train_dir}/tif/'.split() args = train_args + (f'-o {self.out_dir}/densenet.mdl -na densenet -ne 1 -bs 2 -e tif ' f'-ocf {self.jsonfn}').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) class TestUnet(TestCLI): def test_unet_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 3 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn}').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_freeze_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 3 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -fr').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_ic_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 3 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -ic').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_sep3d_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 3 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -sp').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_sep2d_cli(self): train_args = f'-s {self.train_dir}/tif/ -t {self.train_dir}/tif/'.split() args = train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 3 -cbp 1 -bs 2 -e tif ' f'-ocf {self.jsonfn} -sp').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_cp_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 1 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -l cp').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_bce_cli(self): train_args = f'-s {self.train_dir} -t {self.train_dir}/mask/'.split() args = train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 1 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -l bce').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_mae_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 1 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -l mae').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_layernorm_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 2 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -nm layer').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_spectral_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 2 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -nm spectral').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_spectral_ks1_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 2 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -nm spectral -ks 1 1 1').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_ks331_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 2 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -ks 3 3 1 -ic').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_ks331_semi3d1_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 2 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -ks 3 3 1 -ic -s3 1').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_ks331_semi3d2_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 2 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -ks 3 3 1 -ic -s3 2').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_ks331_acv_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 2 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -ks 3 3 1 -ic -acv').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_ks331_ns_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 2 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -ks 3 3 1 -ns -ic').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_weight_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 2 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -nm weight').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_selfattention_cli(self): train_args = f'-s {self.train_dir}/tif/ -t {self.train_dir}/tif/'.split() args = train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 2 -cbp 3 -bs 2 -e tif -ps 8 8 ' f'-ocf {self.jsonfn} -at self').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_cwattention_2d_cli(self): train_args = f'-s {self.train_dir}/tif/ -t {self.train_dir}/tif/'.split() args = train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 2 -cbp 4 -bs 4 -e tif -ps 8 8 ' f'-ocf {self.jsonfn} -at channel').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_cwattention_3d_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 2 -cbp 4 -bs 4 -ps 8 8 8 -dm 3 ' f'-ocf {self.jsonfn} -at channel').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_cwattention_semi3d_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 2 -cbp 4 -bs 4 -ps 8 8 8 -dm 3 ' f'-ocf {self.jsonfn} -at channel -ks 3 3 1 -ic -s3 2').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_softmax_cli(self): train_args = f'-s {self.train_dir}/tif/ -t {self.train_dir}/tif/'.split() args = train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 2 -cbp 3 -bs 2 -e tif -ps 8 8 ' f'-ocf {self.jsonfn} -sx').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_noise_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 2 -nl 3 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -nz 1').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_no_skip_cli(self): args = self.train_args + ( f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 3 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 --no-skip ' f'-ocf {self.jsonfn}').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_multimodal_cli(self): train_args = f'-s {self.train_dir}/tif/ {self.train_dir}/tif/ -t {self.train_dir}/tif/ {self.train_dir}/tif/'.split() args = train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 3 -cbp 1 -ps 16 16 -bs 2 -e tif ' f'-ocf {self.jsonfn}').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn, multi=2) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_allconv_3d_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 3 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -acv').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_allconv_2d_cli(self): train_args = f'-s {self.train_dir}/tif/ -t {self.train_dir}/tif/'.split() args = train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 3 -cbp 1 -bs 2 -e tif -ps 16 16 ' f'-ocf {self.jsonfn} -acv').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_color_2d_cli(self): train_args = f'-s {self.train_dir}/color/ -t {self.train_dir}/color/'.split() args = train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 3 -cbp 1 -bs 2 -e png -dm 2 ' f'-ocf {self.jsonfn} -co').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn, color_out=True, bs=1) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_resblock_2d_cli(self): train_args = f'-s {self.train_dir}/tif/ -t {self.train_dir}/tif/'.split() args = train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 3 -cbp 1 -bs 2 -e tif -ps 16 16 ' f'-ocf {self.jsonfn} -acv -rb').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_resblock_2d_no_skip_cli(self): train_args = f'-s {self.train_dir}/tif/ -t {self.train_dir}/tif/'.split() args = train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 3 -cbp 1 -bs 2 -e tif -ps 16 16 ' f'-ocf {self.jsonfn} -acv -rb -ns').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) def test_unet_resblock_3d_cli(self): args = self.train_args + (f'-o {self.out_dir}/unet.mdl -na unet -ne 1 -nl 3 -cbp 1 -ps 16 16 16 -bs 2 -dm 3 ' f'-ocf {self.jsonfn} -acv -rb').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) class TestVAE(TestCLI): def test_vae_2d_3l_cli(self): train_args = f'-s {self.train_dir}/tif/ -t {self.train_dir}/tif/'.split() args = train_args + (f'-o {self.out_dir}/vae.mdl -na vae -ne 1 -nl 3 -cbp 2 -bs 4 -e tif -ps 32 32 ' f'--img-dim 32 32 --latent-size 10 -ocf {self.jsonfn} -sa 0').split() retval = nn_train(args) self.assertEqual(retval, 0) # TODO: cannot test 2d prediction here because nii needs to be same size as tiff, fix def test_vae_2d_5l_cli(self): train_args = f'-s {self.train_dir}/tif/ -t {self.train_dir}/tif/'.split() args = train_args + (f'-o {self.out_dir}/vae.mdl -na vae -ne 1 -nl 5 -cbp 1 -bs 4 -e tif -ps 32 32 ' f'--img-dim 32 32 --latent-size 10 -ocf {self.jsonfn} -sa 0').split() retval = nn_train(args) self.assertEqual(retval, 0) # TODO: cannot test 2d prediction here because nii needs to be same size as tiff, fix def test_vae_3d_cli(self): args = self.train_args + (f'-o {self.out_dir}/vae.mdl -na vae -ne 1 -nl 3 -cbp 1 -ps 16 16 16 -bs 4 -dm 3 ' f'--img-dim 16 16 16 --latent-size 10 -ocf {self.jsonfn}').split() retval = nn_train(args) self.assertEqual(retval, 0) self._modify_ocf(self.jsonfn) retval = nn_predict([self.jsonfn]) self.assertEqual(retval, 0) if __name__ == '__main__': unittest.main() ``` #### File: synthtorch/tests/_test_funcs.py ```python import json import os import shutil import tempfile import unittest from niftidataset import glob_imgs, split_filename class TestCLI(unittest.TestCase): def setUp(self): wd = os.path.dirname(os.path.abspath(__file__)) self.nii_dir = os.path.join(wd, 'test_data', 'nii') self.mask_dir = os.path.join(wd, 'test_data', 'masks') self.tif_dir = os.path.join(wd, 'test_data', 'tif') self.png_dir = os.path.join(wd, 'test_data', 'png') self.color_dir = os.path.join(wd, 'test_data', 'color') self.out_dir = tempfile.mkdtemp() os.mkdir(os.path.join(self.out_dir, 'models')) self.train_dir = os.path.join(self.out_dir, 'imgs') os.mkdir(self.train_dir) os.mkdir(os.path.join(self.train_dir, 'mask')) os.mkdir(os.path.join(self.train_dir, 'tif')) os.mkdir(os.path.join(self.train_dir, 'png')) os.mkdir(os.path.join(self.train_dir, 'color')) nii = glob_imgs(self.nii_dir)[0] msk = glob_imgs(self.mask_dir)[0] tif = os.path.join(self.tif_dir, 'test.tif') png = os.path.join(self.png_dir, 'test.png') color = os.path.join(self.color_dir, 'test.png') path, base, ext = split_filename(nii) for i in range(8): shutil.copy(nii, os.path.join(self.train_dir, base + str(i) + ext)) shutil.copy(msk, os.path.join(self.train_dir, 'mask', base + str(i) + ext)) shutil.copy(tif, os.path.join(self.train_dir, 'tif', base + str(i) + '.tif')) shutil.copy(png, os.path.join(self.train_dir, 'png', base + str(i) + '.png')) shutil.copy(color, os.path.join(self.train_dir, 'color', base + str(i) + '.png')) self.train_args = f'-s {self.train_dir} -t {self.train_dir}'.split() self.predict_args = f'-s {self.train_dir} -o {self.out_dir}/test'.split() self.jsonfn = f'{self.out_dir}/test.json' def _modify_ocf(self, jsonfn, multi=1, calc_var=False, mc=None, png_out=False, tif_out=False, color_out=False, model=None, bs=None): with open(jsonfn, 'r') as f: arg_dict = json.load(f) with open(jsonfn, 'w') as f: use_nii = not png_out and not tif_out and not color_out arg_dict['Required']['predict_dir'] = ([f'{self.nii_dir}'] * multi) if use_nii else \ [f'{self.train_dir}/png'] if png_out else \ [f'{self.train_dir}/color'] if color_out else \ [f'{self.train_dir}/tif'] arg_dict['Required']['predict_out'] = f'{self.out_dir}/test' arg_dict['Prediction Options']['calc_var'] = calc_var arg_dict['Prediction Options']['monte_carlo'] = mc if bs is not None: arg_dict['Options']['batch_size'] = bs if model is not None: arg_dict['Neural Network Options']['nn_arch'] = model json.dump(arg_dict, f, sort_keys=True, indent=2) def tearDown(self): shutil.rmtree(self.out_dir) ```
{ "source": "jcreinhold/tiramisu-brulee", "score": 2 }
#### File: tiramisu-brulee/tests/test_lesion_seg.py ```python import builtins import pathlib import sys import typing import pytest from tiramisu_brulee.experiment.cli.predict import predict, predict_image from tiramisu_brulee.experiment.cli.train import train @pytest.fixture def file() -> pathlib.Path: return pathlib.Path(__file__).resolve() @pytest.fixture def cwd(file: pathlib.Path) -> pathlib.Path: return file.parent @pytest.fixture def data_dir(cwd: pathlib.Path) -> pathlib.Path: return cwd / "test_data" @pytest.fixture(scope="session") def temp_dir(tmpdir_factory) -> pathlib.Path: # type: ignore[no-untyped-def] return pathlib.Path(tmpdir_factory.mktemp("out")) def _create_csv( temp_dir: pathlib.Path, data_dir: pathlib.Path, stage: builtins.str ) -> pathlib.Path: csv_path = temp_dir / f"{stage}.csv" image_path = data_dir / "img.nii.gz" label_path = data_dir / "mask.nii.gz" out_path = temp_dir / "out.nii.gz" headers = "subject,label,t1,t2" filenames = [f"subj{i},{label_path},{image_path},{image_path}" for i in range(2)] if stage == "predict": headers += ",out\n" filenames = [fns + f",{out_path}\n" for fns in filenames] else: headers += "\n" filenames = [fns + "\n" for fns in filenames] with open(csv_path, "w") as f: f.write(headers) for fns in filenames: f.write(fns) return csv_path @pytest.fixture def train_csv(temp_dir: pathlib.Path, data_dir: pathlib.Path) -> pathlib.Path: return _create_csv(temp_dir, data_dir, "train") @pytest.fixture def predict_csv(temp_dir: pathlib.Path, data_dir: pathlib.Path) -> pathlib.Path: return _create_csv(temp_dir, data_dir, "predict") @pytest.fixture def cli_train_args(temp_dir: pathlib.Path) -> typing.List[builtins.str]: args = [] args += f"--default_root_dir {temp_dir}".split() args += "--enable_progress_bar false".split() args += "--num-input 2".split() args += "--batch-size 2".split() args += "--queue-length 1".split() args += "--samples-per-volume 1".split() args += "--n-epochs 2".split() args += "--down-blocks 2 2".split() args += "--up-blocks 2 2".split() args += "--bottleneck-layers 2".split() args += "--first-conv-out-channels 2".split() args += "--num-workers 0".split() args += "--pos-weight 2.0".split() return args @pytest.fixture def cli_predict_args( temp_dir: pathlib.Path, predict_csv: pathlib.Path ) -> typing.List[builtins.str]: args = [] args += f"--default_root_dir {temp_dir}".split() args += f"--predict-csv {predict_csv}".split() args += "--enable_progress_bar false".split() args += "--num-workers 0".split() return args def _handle_fast_dev_run( predict_args: typing.List[builtins.str], ) -> typing.List[builtins.str]: """py36-compatible pytorch-lightning has problem parsing fast_dev_run""" py_version = sys.version_info assert py_version.major == 3 if py_version.minor > 6: predict_args += ["--fast_dev_run"] return predict_args def _get_and_format_best_model_paths(args: typing.List[builtins.str]) -> builtins.str: best_model_paths = train(args, return_best_model_paths=True) assert isinstance(best_model_paths, list) best_model_paths_strlist = [str(bmp) for bmp in best_model_paths] best_model_paths_str = " ".join(best_model_paths_strlist) return best_model_paths_str def test_cli( cli_train_args: typing.List[builtins.str], cli_predict_args: typing.List[builtins.str], train_csv: pathlib.Path, ) -> None: csv_ = " ".join([str(csv) for csv in [train_csv] * 2]) cli_train_args += f"--train-csv {csv_}".split() cli_train_args += f"--valid-csv {csv_}".split() cli_train_args += "--patch-size 8 8 8".split() cli_train_args += "--track-metric dice".split() best_model_paths = _get_and_format_best_model_paths(cli_train_args) cli_predict_args += f"--model-path {best_model_paths}".split() cli_predict_args = _handle_fast_dev_run(cli_predict_args) retcode = predict(cli_predict_args) assert retcode == 0 def test_reorient_cli( cli_train_args: typing.List[builtins.str], cli_predict_args: typing.List[builtins.str], train_csv: pathlib.Path, ) -> None: csv_ = " ".join([str(csv) for csv in [train_csv] * 2]) cli_train_args += f"--train-csv {csv_}".split() cli_train_args += f"--valid-csv {csv_}".split() cli_train_args += "--patch-size 8 8 8".split() cli_train_args += ["--reorient-to-canonical"] best_model_paths = _get_and_format_best_model_paths(cli_train_args) cli_predict_args += f"--model-path {best_model_paths}".split() cli_predict_args += ["--reorient-to-canonical"] cli_predict_args = _handle_fast_dev_run(cli_predict_args) retcode = predict(cli_predict_args) assert retcode == 0 def test_mixup_train_cli( cli_train_args: typing.List[builtins.str], train_csv: pathlib.Path ) -> None: csv_ = " ".join([str(csv) for csv in [train_csv] * 2]) cli_train_args += f"--train-csv {csv_}".split() cli_train_args += f"--valid-csv {csv_}".split() cli_train_args += "--patch-size 8 8 8".split() cli_train_args += "--mixup".split() retcode = train(cli_train_args, return_best_model_paths=False) assert retcode == 0 def test_mlflow_train_cli( cli_train_args: typing.List[builtins.str], train_csv: pathlib.Path, temp_dir: pathlib.Path, ) -> None: csv_ = " ".join([str(csv) for csv in [train_csv] * 2]) cli_train_args += f"--train-csv {csv_}".split() cli_train_args += f"--valid-csv {csv_}".split() cli_train_args += "--patch-size 8 8 8".split() for i in range(len(cli_train_args)): if cli_train_args[i] == "--n-epochs": cli_train_args[i + 1] = "4" break cli_train_args += f"--tracking-uri file:./{temp_dir}/ml-runs".split() retcode = train(cli_train_args, return_best_model_paths=False) assert retcode == 0 def test_multiclass_train_cli( cli_train_args: typing.List[builtins.str], train_csv: pathlib.Path ) -> None: csv_ = " ".join([str(csv) for csv in [train_csv] * 2]) cli_train_args += f"--train-csv {csv_}".split() cli_train_args += f"--valid-csv {csv_}".split() cli_train_args += "--patch-size 8 8 8".split() cli_train_args += "--num-classes 2".split() retcode = train(cli_train_args, return_best_model_paths=False) assert retcode == 0 def test_patch_prediction_cli( cli_train_args: typing.List[builtins.str], cli_predict_args: typing.List[builtins.str], train_csv: pathlib.Path, ) -> None: csv_ = " ".join([str(csv) for csv in [train_csv] * 2]) cli_train_args += f"--train-csv {csv_}".split() cli_train_args += f"--valid-csv {csv_}".split() cli_train_args += "--patch-size 8 8 8".split() cli_train_args += "--pos-sampling-weight 0.8".split() cli_train_args += ["--label-sampler"] best_model_paths = _get_and_format_best_model_paths(cli_train_args) cli_predict_args += f"--model-path {best_model_paths}".split() cli_predict_args += "--patch-size 32 32 32".split() cli_predict_args += "--patch-overlap 0 0 0".split() retcode = predict(cli_predict_args) assert retcode == 0 @pytest.fixture def cli_predict_image_args( temp_dir: pathlib.Path, data_dir: pathlib.Path ) -> typing.List[builtins.str]: image_path = data_dir / "img.nii.gz" out_path = temp_dir / "out.nii.gz" args = [] args += f"--default_root_dir {temp_dir}".split() args += f"--t1 {image_path}".split() args += f"--t2 {image_path}".split() args += f"--out {out_path}".split() args += "--enable_progress_bar false".split() args += "--num-workers 0".split() return args def test_predict_image_cli( cli_train_args: typing.List[builtins.str], cli_predict_image_args: typing.List[builtins.str], train_csv: pathlib.Path, ) -> None: csv_ = " ".join([str(csv) for csv in [train_csv] * 2]) cli_train_args += f"--train-csv {csv_}".split() cli_train_args += f"--valid-csv {csv_}".split() cli_train_args += "--patch-size 8 8 8".split() best_model_paths = _get_and_format_best_model_paths(cli_train_args) cli_predict_image_args += f"--model-path {best_model_paths}".split() cli_predict_image_args = _handle_fast_dev_run(cli_predict_image_args) retcode = predict_image(cli_predict_image_args) assert retcode == 0 def test_pseudo3d_cli( cli_train_args: typing.List[builtins.str], cli_predict_args: typing.List[builtins.str], train_csv: pathlib.Path, ) -> None: csv_ = " ".join([str(csv) for csv in [train_csv] * 3]) cli_train_args += f"--train-csv {csv_}".split() cli_train_args += f"--valid-csv {csv_}".split() cli_train_args += "--patch-size 8 8".split() cli_train_args += "--pseudo3d-dim 0 1 2".split() cli_train_args += "--pseudo3d-size 31".split() best_model_paths = _get_and_format_best_model_paths(cli_train_args) cli_predict_args += f"--model-path {best_model_paths}".split() cli_predict_args += "--patch-size None None".split() cli_predict_args += "--pseudo3d-dim 0 1 2".split() cli_predict_args += "--pseudo3d-size 31".split() cli_predict_args += "--patch-overlap 0 0 0".split() retcode = predict(cli_predict_args) assert retcode == 0 def test_union_aggregate_cli( cli_train_args: typing.List[builtins.str], cli_predict_args: typing.List[builtins.str], train_csv: pathlib.Path, ) -> None: csv_ = " ".join([str(csv) for csv in [train_csv] * 2]) cli_train_args += f"--train-csv {csv_}".split() cli_train_args += f"--valid-csv {csv_}".split() cli_train_args += "--patch-size 8 8".split() cli_train_args += "--pseudo3d-dim 0 1".split() cli_train_args += "--pseudo3d-size 31".split() best_model_paths = _get_and_format_best_model_paths(cli_train_args) cli_predict_args += f"--model-path {best_model_paths}".split() cli_predict_args += "--patch-size None None".split() cli_predict_args += "--pseudo3d-dim 0 1".split() cli_predict_args += "--pseudo3d-size 31".split() cli_predict_args += "--patch-overlap 0 0 0".split() cli_predict_args += "--aggregation-type union".split() retcode = predict(cli_predict_args) assert retcode == 0 def test_vote_aggregate_cli( cli_train_args: typing.List[builtins.str], cli_predict_args: typing.List[builtins.str], train_csv: pathlib.Path, ) -> None: csv_ = " ".join([str(csv) for csv in [train_csv] * 2]) cli_train_args += f"--train-csv {csv_}".split() cli_train_args += f"--valid-csv {csv_}".split() cli_train_args += "--patch-size 8 8".split() cli_train_args += "--pseudo3d-dim 0 1".split() cli_train_args += "--pseudo3d-size 31".split() best_model_paths = _get_and_format_best_model_paths(cli_train_args) cli_predict_args += f"--model-path {best_model_paths}".split() cli_predict_args += "--patch-size None None".split() cli_predict_args += "--pseudo3d-dim 0 1".split() cli_predict_args += "--pseudo3d-size 31".split() cli_predict_args += "--patch-overlap 0 0 0".split() cli_predict_args += "--aggregation-type vote".split() retcode = predict(cli_predict_args) assert retcode == 0 def test_pseudo3d_all_cli( cli_train_args: typing.List[builtins.str], cli_predict_args: typing.List[builtins.str], train_csv: pathlib.Path, ) -> None: cli_train_args += f"--train-csv {train_csv}".split() cli_train_args += f"--valid-csv {train_csv}".split() cli_train_args += "--patch-size 8 8".split() cli_train_args += "--pseudo3d-dim all".split() cli_train_args += "--pseudo3d-size 31".split() cli_train_args += ["--random-validation-patches"] best_model_paths = _get_and_format_best_model_paths(cli_train_args) cli_predict_args += f"--model-path {best_model_paths}".split() cli_predict_args += "--patch-size None None".split() cli_predict_args += "--pseudo3d-dim 0".split() cli_predict_args += "--pseudo3d-size 31".split() cli_predict_args += "--patch-overlap 0 0 0".split() retcode = predict(cli_predict_args) assert retcode == 0 ``` #### File: tiramisu_brulee/experiment/util.py ```python __all__ = [ "append_num_to_filename", "BoundingBox3D", "image_one_hot", "minmax_scale_batch", "reshape_for_broadcasting", "to_np", "setup_log", "split_filename", ] import builtins import logging import pathlib import typing import numpy as np import torch import torch.nn.functional as F from tiramisu_brulee.experiment.type import Indices T = typing.TypeVar("T", bound="BoundingBox3D") def minmax_scale_batch(x: torch.Tensor) -> torch.Tensor: """rescale a batch of image PyTorch tensors to be between 0 and 1""" dims = list(range(1, x.dim())) xmin = x.amin(dim=dims, keepdim=True) xmax = x.amax(dim=dims, keepdim=True) return (x - xmin) / (xmax - xmin) def to_np(x: torch.Tensor) -> np.ndarray: """convert a PyTorch torch.Tensor (potentially on GPU) to a numpy array""" data = x.detach().cpu().numpy() assert isinstance(data, np.ndarray) return data def image_one_hot(image: torch.Tensor, *, num_classes: builtins.int) -> torch.Tensor: num_channels = image.shape[1] if num_channels > 1: msg = f"Image must only have one channel. Got {num_channels} channels." raise RuntimeError(msg) encoded: torch.Tensor = F.one_hot(image.long(), num_classes) encoded = encoded.transpose(1, -1)[..., 0].type(image.type()) return encoded class BoundingBox3D: def __init__( self, i_low: builtins.int, i_high: builtins.int, j_low: builtins.int, j_high: builtins.int, k_low: builtins.int, k_high: builtins.int, *, original_shape: typing.Optional[ typing.Tuple[builtins.int, builtins.int, builtins.int] ] = None, ): """bounding box indices and crop/uncrop func for 3d vols""" self.i = slice(i_low, i_high) self.j = slice(j_low, j_high) self.k = slice(k_low, k_high) self.original_shape = original_shape def crop_to_bbox(self, tensor: torch.Tensor) -> torch.Tensor: """returns the tensor cropped around the saved bbox""" return tensor[..., self.i, self.j, self.k] def __call__(self, tensor: torch.Tensor) -> torch.Tensor: return self.crop_to_bbox(tensor) def uncrop(self, tensor: torch.Tensor) -> torch.Tensor: """places a tensor back into the saved original shape""" assert tensor.ndim == 3, "expects tensors with shape HxWxD" assert self.original_shape is not None out = torch.zeros(self.original_shape, dtype=tensor.dtype, device=tensor.device) out[self.i, self.j, self.k] = tensor return out def uncrop_batch(self, batch: torch.Tensor) -> torch.Tensor: """places a batch back into the saved original shape""" assert batch.ndim == 5, "expects tensors with shape NxCxHxWxD" assert self.original_shape is not None batch_size, channel_size = batch.shape[:2] out_shape = (batch_size, channel_size) + tuple(self.original_shape) out = torch.zeros(out_shape, dtype=batch.dtype, device=batch.device) out[..., self.i, self.j, self.k] = batch return out @staticmethod def find_bbox(mask: torch.Tensor, *, pad: builtins.int = 0) -> Indices: h = torch.where(torch.any(torch.any(mask, dim=1), dim=1))[0] w = torch.where(torch.any(torch.any(mask, dim=0), dim=1))[0] d = torch.where(torch.any(torch.any(mask, dim=0), dim=0))[0] h_low, h_high = h[0].item(), h[-1].item() w_low, w_high = w[0].item(), w[-1].item() d_low, d_high = d[0].item(), d[-1].item() i, j, k = mask.shape return ( builtins.int(max(h_low - pad, 0)), builtins.int(min(h_high + pad, i)), builtins.int(max(w_low - pad, 0)), builtins.int(min(w_high + pad, j)), builtins.int(max(d_low - pad, 0)), builtins.int(min(d_high + pad, k)), ) @classmethod def from_image( cls: typing.Type[T], image: torch.Tensor, *, pad: builtins.int = 0, foreground_min: builtins.float = 1e-4, ) -> T: """find a bounding box for a 3D tensor (with optional padding)""" foreground_mask = image > foreground_min assert isinstance(foreground_mask, torch.Tensor) bbox_idxs = cls.find_bbox(foreground_mask, pad=pad) original_shape = cls.get_shape(image) return cls(*bbox_idxs, original_shape=original_shape) @classmethod def from_batch( cls: typing.Type[T], batch: torch.Tensor, *, pad: builtins.int = 0, channel: builtins.int = 0, foreground_min: builtins.float = 1e-4, ) -> T: """create bbox that works for a batch of 3d vols""" assert batch.ndim == 5, "expects tensors with shape NxCxHxWxD" batch_size = batch.shape[0] assert batch_size > 0 image_shape = batch.shape[2:] h_low, h_high = image_shape[0], -1 w_low, w_high = image_shape[1], -1 d_low, d_high = image_shape[2], -1 for i in range(batch_size): image = batch[i, channel, ...] hl, hh, wl, wh, dl, dh = cls.find_bbox(image > foreground_min, pad=pad) h_low, h_high = min(hl, h_low), max(hh, h_high) w_low, w_high = min(wl, w_low), max(wh, w_high) d_low, d_high = min(dl, d_low), max(dh, d_high) # noinspection PyUnboundLocalVariable original_shape = cls.get_shape(image) return cls( h_low, h_high, w_low, w_high, d_low, d_high, original_shape=original_shape, ) @staticmethod def get_shape( image: torch.Tensor, ) -> typing.Tuple[builtins.int, builtins.int, builtins.int]: assert image.ndim == 3 orig_x, orig_y, orig_z = tuple(image.shape) return (orig_x, orig_y, orig_z) def reshape_for_broadcasting( tensor: torch.Tensor, *, ndim: builtins.int ) -> torch.Tensor: """expand dimensions of a 0- or 1-dimensional tensor to ndim for broadcast ops""" assert tensor.ndim <= 1 dims = [1 for _ in range(ndim - 1)] return tensor.view(-1, *dims) def split_filename( filepath: typing.Union[builtins.str, pathlib.Path] ) -> typing.Tuple[pathlib.Path, builtins.str, builtins.str]: """split a filepath into the directory, base, and extension""" filepath = pathlib.Path(filepath).resolve() path = filepath.parent _base = pathlib.Path(filepath.stem) ext = filepath.suffix if ext == ".gz": ext2 = _base.suffix base = str(_base.stem) ext = ext2 + ext else: base = str(_base) return pathlib.Path(path), base, ext def append_num_to_filename( filepath: typing.Union[builtins.str, pathlib.Path], *, num: builtins.int ) -> pathlib.Path: """append num to the filename of filepath and return the modified path""" path, base, ext = split_filename(filepath) base += f"_{num}" return path / (base + ext) def setup_log(verbosity: builtins.int) -> None: """set logger with verbosity logging level and message""" if verbosity == 1: level = logging.getLevelName("INFO") elif verbosity >= 2: level = logging.getLevelName("DEBUG") else: level = logging.getLevelName("WARNING") fmt = "%(asctime)s - %(name)s - %(levelname)s - %(message)s" logging.basicConfig(format=fmt, level=level) logging.captureWarnings(True) ``` #### File: tiramisu-brulee/tiramisu_brulee/loss.py ```python __all__ = [ "binary_combo_loss", "binary_focal_loss", "deeply_supervised_loss", "dice_loss", "l1_segmentation_loss", "mse_segmentation_loss", ] import builtins import typing import torch import torch.nn.functional as F def per_channel_dice( tensor1: torch.Tensor, tensor2: torch.Tensor, *, eps: builtins.float = 1e-3, keepdim: builtins.bool = False, ) -> torch.Tensor: """compute dice score for each channel separately and reduce""" spatial_dims = tuple(range(2 - len(tensor1.shape), 0)) intersection = torch.sum(tensor1 * tensor2, dim=spatial_dims, keepdim=keepdim) x_sum = torch.sum(tensor1, dim=spatial_dims, keepdim=keepdim) y_sum = torch.sum(tensor2, dim=spatial_dims, keepdim=keepdim) pc_dice = (2 * intersection + eps) / (x_sum + y_sum + eps) return pc_dice def weighted_channel_avg(tensor: torch.Tensor, *, weight: torch.Tensor) -> torch.Tensor: weight = weight[None, ...].repeat([tensor.shape[0], 1]) weighted = torch.mean(weight * tensor) return weighted def dice_loss( pred: torch.Tensor, target: torch.Tensor, *, weight: typing.Optional[torch.Tensor] = None, reduction: builtins.str = "mean", eps: builtins.float = 1e-3, ) -> torch.Tensor: """sorensen-dice coefficient loss function""" keepdim = reduction != "mean" pc_dice = per_channel_dice(pred, target, eps=eps, keepdim=keepdim) dice: torch.Tensor if reduction == "mean": if weight is None: dice = torch.mean(pc_dice) else: dice = weighted_channel_avg(pc_dice, weight=weight) elif reduction == "none": dice = pc_dice else: raise NotImplementedError(f"{reduction} not implemented.") one_minus_dice: torch.Tensor = 1.0 - dice return one_minus_dice def binary_focal_loss( pred: torch.Tensor, target: torch.Tensor, *, pos_weight: typing.Optional[typing.Union[builtins.float, torch.Tensor]] = None, reduction: builtins.str = "mean", gamma: builtins.float = 2.0, ) -> torch.Tensor: """focal loss for binary classification or segmentation""" use_focal = gamma > 0.0 bce_reduction = "none" if use_focal else reduction if use_focal: bce_pos_weight = None else: if pos_weight is not None and isinstance(pos_weight, builtins.float): bce_pos_weight = torch.tensor( [pos_weight], dtype=pred.dtype, device=pred.device ) elif pos_weight is None or isinstance(pos_weight, torch.Tensor): bce_pos_weight = pos_weight else: msg = ( f"pos_weight must be a none, float, or tensor. Got {type(pos_weight)}." ) raise ValueError(msg) bce_loss = F.binary_cross_entropy_with_logits( pred, target, reduction=bce_reduction, pos_weight=bce_pos_weight, ) loss_val: torch.Tensor if use_focal: p = torch.sigmoid(pred) p_t = p * target + (1 - p) * (1 - target) loss_val = bce_loss * ((1 - p_t) ** gamma) else: loss_val = bce_loss if pos_weight is not None and use_focal: weight = pos_weight / (1.0 + pos_weight) weight_t = weight * target + (1 - weight) * (1 - target) loss_val = weight_t * loss_val if use_focal: if reduction == "mean": loss_val = loss_val.mean() elif reduction == "sum": loss_val = loss_val.sum() elif reduction == "batchwise_mean": loss_val = loss_val.sum(0) elif reduction == "none": pass else: raise NotImplementedError(f"{reduction} not implemented.") return loss_val def binary_combo_loss( pred: torch.Tensor, target: torch.Tensor, *, reduction: builtins.str = "mean", pos_weight: typing.Optional[builtins.float] = None, focal_gamma: builtins.float = 0.0, combo_weight: builtins.float = 0.5, ) -> torch.Tensor: """combo loss (dice + focal weighted by combo_weight) for binary labels""" assert 0.0 <= combo_weight <= 1.0 assert 0.0 <= focal_gamma f_loss = binary_focal_loss( pred, target, pos_weight=pos_weight, reduction=reduction, gamma=focal_gamma, ) p = torch.sigmoid(pred) d_loss = dice_loss(p, target, reduction=reduction) loss = combo_weight * f_loss + (1 - combo_weight) * d_loss return loss def combo_loss( pred: torch.Tensor, target: torch.Tensor, *, num_classes: builtins.int, reduction: builtins.str = "mean", combo_weight: builtins.float = 0.5, ) -> torch.Tensor: """combo loss (dice + focal weighted by combo_weight) for multi-class labels""" assert 0.0 <= combo_weight <= 1.0 assert 2 <= num_classes channel_not_removed = pred.ndim == target.ndim if channel_not_removed and target.shape[1] > 1: msg = f"Channel size must be 1 or 0. Got {target.shape[1]}" raise ValueError(msg) _target = target[:, 0, ...] if channel_not_removed else target _target = _target.long() f_loss = F.cross_entropy(pred, _target, reduction=reduction) p = torch.softmax(pred, dim=1) target_one_hot = F.one_hot(_target, num_classes) target_one_hot = torch.movedim(target_one_hot, -1, 1) target_one_hot = target_one_hot.float() d_loss = dice_loss(p, target_one_hot, reduction=reduction) loss = combo_weight * f_loss + (1 - combo_weight) * d_loss return loss def deeply_supervised_loss( # type: ignore[no-untyped-def] preds: typing.List[torch.Tensor], target: torch.Tensor, *, loss_func: typing.Callable, level_weights: typing.Union[builtins.float, typing.List[builtins.float]] = 1.0, **loss_func_kwargs, ) -> torch.Tensor: """compute loss_func by comparing multiple same-shape preds to target""" if isinstance(level_weights, builtins.float): level_weights = [level_weights] * len(preds) loss_val = torch.tensor(0.0, dtype=target.dtype, device=target.device) for lw, x in zip(level_weights, preds): loss_val += lw * loss_func(x, target, **loss_func_kwargs) return loss_val def l1_segmentation_loss( pred: torch.Tensor, target: torch.Tensor, *, reduction: builtins.str = "mean", ) -> torch.Tensor: """l1 loss for segmentation by applying sigmoid to pred -> l1""" return F.l1_loss(torch.sigmoid(pred), target, reduction=reduction) def mse_segmentation_loss( pred: torch.Tensor, target: torch.Tensor, *, reduction: builtins.str = "mean", ) -> torch.Tensor: """mse loss for segmentation by applying sigmoid to pred -> mse""" return F.mse_loss(torch.sigmoid(pred), target, reduction=reduction) ``` #### File: tiramisu_brulee/model/tiramisu.py ```python __all__ = [ "Tiramisu2d", "Tiramisu3d", ] import builtins import typing import torch import torch.nn as nn from tiramisu_brulee.model.dense import ( Bottleneck2d, Bottleneck3d, DenseBlock2d, DenseBlock3d, ResizeMethod, TransitionDown2d, TransitionDown3d, TransitionUp2d, TransitionUp3d, ) class Tiramisu(nn.Module): _bottleneck: typing.ClassVar[ typing.Union[typing.Type[Bottleneck2d], typing.Type[Bottleneck3d]] ] _conv: typing.ClassVar[typing.Union[typing.Type[nn.Conv2d], typing.Type[nn.Conv3d]]] _denseblock: typing.ClassVar[ typing.Union[typing.Type[DenseBlock2d], typing.Type[DenseBlock3d]] ] _trans_down: typing.ClassVar[ typing.Union[typing.Type[TransitionDown2d], typing.Type[TransitionDown3d]] ] _trans_up: typing.ClassVar[ typing.Union[typing.Type[TransitionUp2d], typing.Type[TransitionUp3d]] ] _first_kernel_size: typing.ClassVar[ typing.Union[ typing.Tuple[builtins.int, builtins.int], typing.Tuple[builtins.int, builtins.int, builtins.int], ] ] _final_kernel_size: typing.ClassVar[ typing.Union[ typing.Tuple[builtins.int, builtins.int], typing.Tuple[builtins.int, builtins.int, builtins.int], ] ] _padding_mode: typing.ClassVar[builtins.str] = "replicate" # flake8: noqa: E501 def __init__( self, *, in_channels: builtins.int = 3, out_channels: builtins.int = 1, down_blocks: typing.Collection[builtins.int] = (5, 5, 5, 5, 5), up_blocks: typing.Collection[builtins.int] = (5, 5, 5, 5, 5), bottleneck_layers: builtins.int = 5, growth_rate: builtins.int = 16, first_conv_out_channels: builtins.int = 48, dropout_rate: builtins.float = 0.2, resize_method: ResizeMethod = ResizeMethod.CROP, input_shape: typing.Optional[typing.Tuple[builtins.int, ...]] = None, static_upsample: builtins.bool = False, ): """ Base class for Tiramisu convolutional neural network See Also: Jégou, Simon, et al. "The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation." CVPR. 2017. Based on: https://github.com/bfortuner/pytorch_tiramisu Args: in_channels (builtins.int): number of input channels out_channels (builtins.int): number of output channels down_blocks (typing.Collection[builtins.int]): number of layers in each block in down path up_blocks (typing.Collection[builtins.int]): number of layers in each block in up path bottleneck_layers (builtins.int): number of layers in the bottleneck growth_rate (builtins.int): number of channels to grow by in each layer first_conv_out_channels (builtins.int): number of output channels in first conv dropout_rate (builtins.float): dropout rate/probability resize_method (ResizeMethod): method to resize the image in upsample branch input_shape: optionally provide shape of the input image (for onnx) static_upsample: use static upsampling when capable if input_shape provided (doesn't check upsampled size matches) """ super().__init__() assert len(down_blocks) == len(up_blocks) self.down_blocks = down_blocks self.up_blocks = up_blocks skip_connection_channel_counts: typing.List[builtins.int] = [] if input_shape is not None: tensor_shape = torch.as_tensor(input_shape) shapes = [input_shape] self.first_conv = nn.Sequential( self._conv( in_channels, first_conv_out_channels, self._first_kernel_size, # type: ignore[arg-type] bias=False, padding="same", padding_mode=self._padding_mode, ), ) cur_channels_count: builtins.int = first_conv_out_channels # Downsampling path self.dense_down = nn.ModuleList([]) self.trans_down = nn.ModuleList([]) for i, n_layers in enumerate(down_blocks, 1): denseblock = self._denseblock( in_channels=cur_channels_count, growth_rate=growth_rate, n_layers=n_layers, upsample=False, dropout_rate=dropout_rate, ) self.dense_down.append(denseblock) cur_channels_count += growth_rate * n_layers skip_connection_channel_counts.insert(0, cur_channels_count) trans_down_block = self._trans_down( in_channels=cur_channels_count, out_channels=cur_channels_count, dropout_rate=dropout_rate, ) self.trans_down.append(trans_down_block) if i < len(down_blocks) and input_shape is not None: tensor_shape = torch.div(tensor_shape, 2, rounding_mode="floor") shapes.append(tuple(tensor_shape)) # Bottleneck self.bottleneck = self._bottleneck( in_channels=cur_channels_count, growth_rate=growth_rate, n_layers=bottleneck_layers, dropout_rate=dropout_rate, ) prev_block_channels = growth_rate * bottleneck_layers cur_channels_count += prev_block_channels # Upsampling path self.dense_up = nn.ModuleList([]) self.trans_up = nn.ModuleList([]) up_info = zip(up_blocks, skip_connection_channel_counts) for i, (n_layers, sccc) in enumerate(up_info, 1): resize_shape = None if input_shape is None else shapes.pop() if resize_shape is not None and static_upsample: _static_upsample = all(x % 2 == 0 for x in resize_shape) else: _static_upsample = False trans_up_block = self._trans_up( in_channels=prev_block_channels, out_channels=prev_block_channels, resize_method=resize_method, resize_shape=resize_shape, static=_static_upsample, ) self.trans_up.append(trans_up_block) cur_channels_count = prev_block_channels + sccc upsample = i < len(up_blocks) # do not upsample on last block denseblock = self._denseblock( in_channels=cur_channels_count, growth_rate=growth_rate, n_layers=n_layers, upsample=upsample, dropout_rate=dropout_rate, ) self.dense_up.append(denseblock) prev_block_channels = growth_rate * n_layers cur_channels_count += prev_block_channels self.final_conv = self._conv( in_channels=cur_channels_count, out_channels=out_channels, kernel_size=self._final_kernel_size, # type: ignore[arg-type] bias=True, padding="same", padding_mode=self._padding_mode, ) def forward(self, x: torch.Tensor) -> torch.Tensor: out = self.first_conv(x) skip_connections = [] for dbd, tdb in zip(self.dense_down, self.trans_down): out = dbd(out) skip_connections.append(out) out = tdb(out) out = self.bottleneck(out) for ubd, tub in zip(self.dense_up, self.trans_up): skip = skip_connections.pop() out = tub(out, skip=skip) out = ubd(out) out = self.final_conv(out) assert isinstance(out, torch.Tensor) return out class Tiramisu2d(Tiramisu): _bottleneck = Bottleneck2d _conv = nn.Conv2d _denseblock = DenseBlock2d _pad = nn.ReplicationPad2d _trans_down = TransitionDown2d _trans_up = TransitionUp2d _first_kernel_size = (3, 3) _final_kernel_size = (1, 1) class Tiramisu3d(Tiramisu): _bottleneck = Bottleneck3d _conv = nn.Conv3d _denseblock = DenseBlock3d _pad = nn.ReplicationPad3d _trans_down = TransitionDown3d _trans_up = TransitionUp3d _first_kernel_size = (3, 3, 3) _final_kernel_size = (1, 1, 1) ```
{ "source": "jcreinhold/uncertaintorch", "score": 2 }
#### File: uncertaintorch/learn/loss.py ```python __all__ = ['GaussianDiagLoss', 'L1OnlyLoss', 'LaplacianDiagLoss', 'MSEOnlyLoss', 'BinaryFocalLoss', 'FocalLoss', 'ExtendedCrossEntropy', 'DiceLoss', 'SquaredDiceLoss', 'MonsterLoss', 'MonsterLossAux', 'ExtendedMonsterLoss'] import numpy as np import torch from torch import sigmoid from torch import nn from torch.nn.modules.loss import _WeightedLoss import torch.nn.functional as F from torch.nn.functional import softmax class MaskLoss(nn.Module): def __init__(self, beta=25.): super().__init__() self.beta = beta def forward(self, out, y): if y.size(1) == 1: loss = self.loss_fn(out, y) else: tgt, mask = torch.chunk(y, 2, dim=1) mask *= self.beta mask[mask == 0.] = 1. mask /= self.beta loss = torch.mean(mask * self.loss_fn(out, tgt, reduction='none')) return loss def loss_fn(self, out, y, reduction='mean'): raise NotImplementedError class MSEOnlyLoss(MaskLoss): def loss_fn(self, out, y, reduction='mean'): yhat, _ = out return F.mse_loss(yhat, y, reduction=reduction) class L1OnlyLoss(MaskLoss): def loss_fn(self, out, y, reduction='mean'): yhat, _ = out return F.l1_loss(yhat, y, reduction=reduction) class GaussianDiagLoss(MaskLoss): def loss_fn(self, out, y, reduction='mean'): yhat, s = out loss = 0.5 * (torch.exp(-s) * F.mse_loss(yhat, y, reduction='none') + s) if reduction == 'mean': loss = torch.mean(loss) return loss class LaplacianDiagLoss(MaskLoss): def loss_fn(self, out, y, reduction='mean'): yhat, s = out loss = (torch.exp(-s) * F.l1_loss(yhat, y, reduction='none')) + s if reduction == 'mean': loss = torch.mean(loss) return loss class MaskLossSegmentation(nn.Module): def __init__(self, beta=25., use_mask=False): super().__init__() self.use_mask = use_mask self.beta = beta def forward(self, out, y): if not self.use_mask: loss = self.loss_fn(out, y) else: tgt, mask = torch.chunk(y, 2, dim=1) tgt, mask = tgt.squeeze(), mask.squeeze().float() mask *= self.beta mask[mask == 0.] = 1. mask /= self.beta loss = torch.mean(mask * self.loss_fn(out, tgt, reduction='none')) return loss def loss_fn(self, out, y, reduction='mean'): raise NotImplementedError class BinaryMaskLossSegmentation(MaskLossSegmentation): def forward(self, out, y): if not self.use_mask: loss = self.loss_fn(out, y) else: tgt, mask = torch.chunk(y, 2, dim=1) mask = mask.float() mask *= self.beta mask[mask == 0.] = 1. mask /= self.beta loss = torch.mean(mask * self.loss_fn(out, tgt, reduction='none')) return loss class BinaryFocalLoss(BinaryMaskLossSegmentation): def __init__(self, beta=25., use_mask=False, weight=None, gamma=2.): super().__init__(beta, use_mask) self.weight = weight self.gamma = gamma def loss_fn(self, out, y, reduction='mean'): """ Taken from: https://github.com/catalyst-team/catalyst/, https://github.com/facebookresearch/fvcore """ pred, _ = out p = torch.sigmoid(pred) ce_loss = F.binary_cross_entropy_with_logits(pred, y, reduction="none") p_t = p * y + (1 - p) * (1 - y) loss = ce_loss * ((1 - p_t) ** self.gamma) if self.weight is not None: weight_t = self.weight * y + (1 - self.weight) * (1 - y) loss = weight_t * loss if reduction == "mean": loss = loss.mean() if reduction == "sum": loss = loss.sum() if reduction == "batchwise_mean": loss = loss.sum(0) return loss class FocalLoss(MaskLossSegmentation): def __init__(self, beta=25., use_mask=False, weight=None, gamma=2.): super().__init__(beta, use_mask) self.weight = weight self.gamma = gamma def loss_fn(self, out, y, reduction='mean'): pred, _ = out log_prob = F.log_softmax(pred, dim=1) prob = torch.exp(log_prob) p = ((1 - prob) ** self.gamma) * log_prob return F.nll_loss(p, y, weight=self.weight, reduction=reduction) class ExtendedCrossEntropy(MaskLossSegmentation): def __init__(self, beta=25., use_mask=False, weight=None, n_samples=10): super().__init__(beta, use_mask) self.weight = weight self.nsamp = n_samples def loss_fn(self, out, y, reduction='mean'): """ https://github.com/alainjungo/reliability-challenges-uncertainty """ logits, sigma = out dist = torch.distributions.Normal(logits, torch.exp(sigma)) x_hat = dist.rsample((self.nsamp,)) mc_prob = F.softmax(x_hat, dim=2).mean(dim=0) # channel dim = 2 b/c samples return F.nll_loss(mc_prob.log(), y, weight=self.weight, reduction=reduction) # The below is from Shuo Han's repo: https://gitlab.com/shan-deep-networks/pytorch-metrics/ def prob_encode(input): """Apply softmax or sigmoid. Args: input (torch.Tensor): Input tensor Returns: result (torch.Tensor): The result """ result = softmax(input, dim=1) if input.shape[1] > 1 else sigmoid(input) return result def one_hot(input, shape): """One hot encoding; torch does not have it as the current version Args: input (torch.LongTensor): The tensor to encode. The values should be "normalized" to 0 : num_labels Returns: result (torch.FloatTensor): The encoded tensor """ result = torch.FloatTensor(shape).zero_() if input.is_cuda: result = result.cuda(device=input.device) result.scatter_(1, input, 1) return result def _calc_dices(input, target, eps=0.001, keepdim=False): """Calculate dices for each sample and each channel Args: input (torch.FloatTensor): The input tensor target (torch.FloatTensor): The target tensor, one_hot encoded Returns: dices (torch.FloatTensor): The dices of each sample (first dim) and each channel (second dim) """ spatial_dims = tuple(range(2 - len(input.shape), 0)) intersection = torch.sum(input * target, dim=spatial_dims, keepdim=keepdim) sum1 = torch.sum(input, dim=spatial_dims, keepdim=keepdim) sum2 = torch.sum(target, dim=spatial_dims, keepdim=keepdim) dices = (2 * intersection + eps) / (sum1 + sum2 + eps) return dices def _calc_squared_dices(input, target, eps=0.001): """Calculate squared dices for each sample and each channel Args: input (torch.FloatTensor): The input tensor target (torch.FloatTensor): The target tensor, one_hot encoded eps (float): The smoothing term preventing division by 0 Returns: dices (torch.FloatTensor): The dices of each sample (first dim) and each channel (second dim) """ spatial_dims = tuple(range(2 - len(input.shape), 0)) intersection = torch.sum(input * target, dim=spatial_dims) sum1 = torch.sum(input ** 2, dim=spatial_dims) sum2 = torch.sum(target ** 2, dim=spatial_dims) dices = (2 * intersection + eps) / (sum1 + sum2 + eps) return dices def calc_weighted_average(vals, weight): """Calculate weighted average along the second dim of values Args: vals (torch.Tensor): The values to weight; the first dim is samples weight (torch.Tensor): The 1d weights to apply to the second dim of vals Returns: result (torch.Tensor): The result """ weight = weight[None, ...].repeat([vals.shape[0], 1]) result = torch.mean(weight * vals) return result def calc_dice_loss(input, target, weight=None, average=True, eps=0.001): """Calculate the dice loss Args: input (torch.Tensor): The input tensor target (torch.Tensor): The target tensor eps (float): The smoothing term preventing division by 0 Return: dice (torch.Tensor): The weighted dice """ dices = _calc_dices(input, target, eps=eps, keepdim=not average) if average: if weight is None: dice = torch.mean(dices) else: dice = calc_weighted_average(dices, weight) else: dice = dices return 1 - dice def calc_squared_dice_loss(input, target, weight=None, eps=0.001): """Calculate the squared dice loss Args: input (torch.Tensor): The input tensor target (torch.Tensor): The target tensor eps (float): The smoothing term preventing division by 0 Return: dice (torch.Tensor): The weighted dice """ dices = _calc_squared_dices(input, target, eps=eps) if weight is None: dice = torch.mean(dices) else: dice = calc_weighted_average(dices, weight) return 1 - dice def calc_dice(input, target, channel_indices=None, eps=0): """Calculate average Dice coefficients across samples and channels Args: input (torch.Tensor): The input tensor target (torch.Tensor): The target tensor channel_indices (list of int): The channels to calculate dices across. If None, use all channels eps (float): Small number preventing division by zero Returns: dice (torch.Tensor): The average Dice """ input = prob_encode(input) if input.shape[1] > 2: input_seg = one_hot(torch.argmax(input, dim=1, keepdim=True), input.shape) target_onehot = one_hot(target, input.shape) else: input_seg = (input >= 0.5).float() target_onehot = target.float() if channel_indices is not None: input_seg = input_seg[:, channel_indices, ...] target_onehot = target_onehot[:, channel_indices, ...] dices = _calc_dices(input_seg, target_onehot, eps=eps) return torch.mean(dices) class SquaredDiceLoss(_WeightedLoss): """ Wrapper of squared Dice loss. """ def __init__(self, weight=None): super().__init__(weight=weight) def forward(self, input, target): input = prob_encode(input) target_onehot = one_hot(target, input.shape) return calc_squared_dice_loss(input, target_onehot, weight=self.weight) class DiceLoss(_WeightedLoss): """ Wrapper of Dice loss. """ def __init__(self, weight=None, average=True): super().__init__(weight=weight) self.average = average def forward(self, input, target): input = prob_encode(input) if input.shape[1] > 2: target_onehot = one_hot(target, input.shape) else: target_onehot = target.float() return calc_dice_loss(input, target_onehot, weight=self.weight, average=self.average) class MonsterLoss(BinaryMaskLossSegmentation): """ use focal, dice, and l1 loss together """ def __init__(self, alpha=(1.,1.,1.), beta=25., use_mask=False, gamma=2., weight=None, use_l2=True): super().__init__(beta, use_mask) self.alpha = alpha self.weight = weight self.gamma = gamma self.use_l2 = use_l2 def loss_fn(self, out, y, reduction='mean'): average = reduction == 'mean' pred, _ = out pred_t = torch.tanh(pred) if self.alpha[0] > 0.: if self.gamma == 0.: focal_loss = F.binary_cross_entropy_with_logits(pred, y, pos_weight=self.weight, reduction=reduction) else: ce_loss = F.binary_cross_entropy_with_logits(pred, y, reduction="none") p = (pred_t + 1.) / 2. p_t = p * y + (1 - p) * (1 - y) focal_loss = ce_loss * ((1 - p_t) ** self.gamma) if self.weight is not None: weight_t = self.weight * y + (1 - self.weight) * (1 - y) focal_loss = weight_t * focal_loss if average: focal_loss = focal_loss.mean() else: focal_loss = 0. if self.alpha[1] > 0.: p = (pred_t + 1.) / 2. dice_loss = calc_dice_loss(p, y, average=average) else: dice_loss = 0. if self.alpha[2] > 0.: y = (y * 2.) - 1. reg_loss = F.mse_loss(pred_t, y, reduction=reduction) if self.use_l2 else \ F.l1_loss(pred_t, y, reduction=reduction) else: reg_loss = 0. return self.alpha[0] * focal_loss + self.alpha[1] * dice_loss + self.alpha[2] * reg_loss class ExtendedMonsterLoss(BinaryMaskLossSegmentation): def __init__(self, alpha=(1.,1.,1.), beta=25., use_mask=False, gamma=2., weight=None, n_samples=10, use_l2=True, extended_regression=False): super().__init__(beta, use_mask) self.alpha = alpha self.weight = weight self.gamma = gamma self.nsamp = n_samples self.mlv = -13.816 # min log variance = ~log(1e-6) self.use_l2 = use_l2 self.extended_regression = extended_regression def loss_fn(self, out, y, reduction='mean'): average = reduction == 'mean' pred, sigma = out sigma = torch.clamp_min(sigma, self.mlv) dist = torch.distributions.Normal(pred, torch.exp(sigma)) mc_logs = dist.rsample((self.nsamp,)) pred_t = torch.tanh(mc_logs.mean(dim=0)) if self.alpha[0] > 0.: focal_loss = 0. if self.gamma == 0.: for mc_log in mc_logs: focal_loss += F.binary_cross_entropy_with_logits(mc_log, y, pos_weight=self.weight, reduction=reduction) else: for mc_log in mc_logs: ce_loss = F.binary_cross_entropy_with_logits(mc_log, y, reduction="none") mc_pred_t = torch.tanh(mc_log) p = (mc_pred_t + 1.) / 2. p_t = p * y + (1. - p) * (1. - y) focal_loss += (ce_loss * ((1. - p_t) ** self.gamma)) / self.nsamp if self.weight is not None: weight_t = self.weight * y + (1. - self.weight) * (1. - y) focal_loss *= weight_t if average: focal_loss = focal_loss.mean() else: focal_loss = 0. if self.alpha[1] > 0.: p = (pred_t + 1.) / 2. dice_loss = calc_dice_loss(p, y, average=average) else: dice_loss = 0. if self.alpha[2] > 0.: y = (y * 2.) - 1. if self.extended_regression: if self.use_l2: reg_loss = 0.5 * (torch.exp(-sigma) * F.mse_loss(pred_t, y, reduction='none') + sigma) else: reg_loss = (torch.exp(-sigma) * F.l1_loss(pred_t, y, reduction='none')) + sigma else: reg_loss = F.mse_loss(pred_t, y, reduction='none') if self.use_l2 else F.l1_loss(pred_t, y, reduction='none') if average: reg_loss = torch.mean(reg_loss) else: reg_loss = 0. return self.alpha[0] * focal_loss + self.alpha[1] * dice_loss + self.alpha[2] * reg_loss class MonsterLossAux(BinaryMaskLossSegmentation): """ use focal, dice, and l1 loss together """ def __init__(self, alpha=(1.,1.,1.), beta=25., use_mask=False, gamma=2., weight=None, use_l2=True, balance_weights=(1.0, 0.4)): super().__init__(beta, use_mask) self.alpha = alpha self.weight = weight self.gamma = gamma self.use_l2 = use_l2 self.balance_weights = balance_weights def loss_fn(self, out, y, reduction='mean'): average = reduction == 'mean' loss = 0. for bw, pred in zip(self.balance_weights, out): pred_t = torch.tanh(pred) if self.alpha[0] > 0.: if self.gamma == 0.: focal_loss = F.binary_cross_entropy_with_logits(pred, y, pos_weight=self.weight, reduction=reduction) else: ce_loss = F.binary_cross_entropy_with_logits(pred, y, reduction="none") p = (pred_t + 1.) / 2. p_t = p * y + (1 - p) * (1 - y) focal_loss = ce_loss * ((1 - p_t) ** self.gamma) if self.weight is not None: weight_t = self.weight * y + (1 - self.weight) * (1 - y) focal_loss = weight_t * focal_loss if average: focal_loss = focal_loss.mean() else: focal_loss = 0. if self.alpha[1] > 0.: p = (pred_t + 1.) / 2. dice_loss = calc_dice_loss(p, y, average=average) else: dice_loss = 0. if self.alpha[2] > 0.: y = (y * 2.) - 1. reg_loss = F.mse_loss(pred_t, y, reduction=reduction) if self.use_l2 else \ F.l1_loss(pred_t, y, reduction=reduction) else: reg_loss = 0. loss += bw * (self.alpha[0] * focal_loss + self.alpha[1] * dice_loss + self.alpha[2] * reg_loss) return loss ``` #### File: uncertaintorch/models/resnet3d.py ```python __all__ = ['ResNet3d', 'resnet3d18', 'resnet3d34', 'resnet3d50', 'resnet3d101'] import torch from torch import nn import torch.nn.functional as F BASE_WIDTH = 32 EXPANSION = 2 def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Sequential(nn.ReplicationPad3d(dilation), nn.Conv3d(in_planes, out_planes, kernel_size=3, stride=stride, groups=groups, bias=False, dilation=dilation)) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv3d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class Bottleneck(nn.Module): expansion = EXPANSION __constants__ = ['downsample'] def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=BASE_WIDTH, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm3d width = int(planes * (base_width / BASE_WIDTH)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet3d(nn.Module): def __init__(self, block, layers, zero_init_residual=False, groups=1, width_per_group=BASE_WIDTH, replace_stride_with_dilation=None, norm_layer=None, in_channels=1, dropout_rate=0., bayesian=False): super(ResNet3d, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm3d self._norm_layer = norm_layer self.p = dropout_rate self.bayesian = bayesian self.inplanes = BASE_WIDTH self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Sequential(nn.ReplicationPad3d(3), nn.Conv3d(in_channels, self.inplanes, kernel_size=7, stride=2, bias=False)) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool3d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, BASE_WIDTH, layers[0]) self.layer2 = self._make_layer(block, BASE_WIDTH*2, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, BASE_WIDTH*(2 if replace_stride_with_dilation[0] else 4), layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, BASE_WIDTH*(2 if replace_stride_with_dilation[1] else 8), layers[3], stride=2, dilate=replace_stride_with_dilation[2]) for m in self.modules(): if isinstance(m, nn.Conv3d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm3d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) def dropout(self, x): use_dropout = self.training or self.bayesian return F.dropout3d(x, self.p, training=use_dropout, inplace=False) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def _forward_impl(self, x): # See note [TorchScript super()] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) start = x.clone() x = self.maxpool(x) x = self.layer1(x) mid = x.clone() x = self.dropout(x) x = self.dropout(self.layer2(x)) x = self.dropout(self.layer3(x)) x = self.dropout(self.layer4(x)) return x, start, mid def forward(self, x): return self._forward_impl(x) def resnet3d18(**kwargs): return ResNet3d(Bottleneck, [2, 2, 2, 2], **kwargs) def resnet3d34(**kwargs): return ResNet3d(Bottleneck, [3, 4, 6, 3], **kwargs) def resnet3d50(**kwargs): return ResNet3d(Bottleneck, [3, 4, 6, 3], **kwargs) def resnet3d101(**kwargs): return ResNet3d(Bottleneck, [3, 4, 23, 3], **kwargs) ``` #### File: uncertaintorch/models/uncertainunetv3.py ```python __all__ = ['UncertainUnetv3'] from torch import nn import torch.nn.functional as F from ..learn import * from .unet_tools import * from .uncertainty_tools import * class UncertainUnetv3(UncertainNet): def __init__(self, s=32, ic=1, oc=1, p=0.15, segnet=True, laplacian=True, bayesian=True, concat=True, beta=25.): super().__init__(p, segnet, laplacian, bayesian, concat, beta) c = 2 if concat else 1 self.start_0, self.start_1 = unet_list(ic,s,s,(7,7,3),(5,5,3),1,(2,2,1)) self.down1_0, self.down1_1 = unet_list(s,s*2,s*2,(3,3,1),(3,3,1),1,(2,2,1)) self.down2_0, self.down2_1 = unet_list(s*2,s*4,s*4,(3,3,1),(3,3,1),1,(2,2,1)) self.bridge = nn.Sequential(*conv(s*4,s*4,(3,3,1))) self.up2_0, self.up2_1 = unet_up(s*4*c,s*4,s*2,(3,3,1),(3,3,1),1,1,(2,2,1),concat) self.up1_0, self.up1_1 = unet_up(s*2*c,s*2,s,(3,3,1),(3,3,1),1,1,(2,2,1),concat) self.end_0, self.end_1 = unet_up(s*c,s,s,(3,3,1),(3,3,1),1,1,(2,2,1),concat) self.syn = nn.Sequential(*conv(s+ic,s,3,1), nn.Conv3d(s,oc,1)) self.unc = nn.Sequential(*conv(s+ic,s,3,1), nn.Conv3d(s,oc,1)) def fwd_bayesian_segnet(self, x): orig = x.clone() x = self.start_0(x) d1 = x.clone() x = self.start_1(x) x = self.down1_0(x) d2 = x.clone() x = self.dropout(x) x = self.down1_1(x) x = self.down2_0(x) d3 = x.clone() x = self.dropout(x) x = self.down2_1(x) x = self.bridge(x) x = self.up2_0(x) x = self.catadd(x, d3) x = self.up2_1(x) x = self.dropout(x) x = self.up1_0(x) x = self.catadd(x, d2) x = self.up1_1(x) x = self.dropout(x) x = self.end_0(x) x = self.catadd(x, d1) x = self.end_1(x) x = self.cat(x,orig) yhat = self.syn(x) s = self.unc(x) return yhat, s def fwd_full_bayesian(self,x): raise NotImplementedError ``` #### File: uncertaintorch/models/unet_tools.py ```python __all__ = ['conv','conv2d','unet_block','unet_block2d','unet_list','unet_up'] from functools import partial import numpy as np import torch from torch import nn import torch.nn.functional as F from ..learn import * from ..util import * activation = partial(nn.ReLU, inplace=True) def conv2d(i,o,k=3,s=1): pad = k//2 if isinstance(k,int) else tuple([ks//2 for p in zip(reversed(k),reversed(k)) for ks in p]) if isinstance(k,int): c = [] if k < 3 else [nn.ReflectionPad2d(pad)] if isinstance(k,tuple): c = [] if all([p == 0 for p in pad]) else [nn.ReflectionPad2d(pad)] c.extend([nn.Conv2d(i,o,k,s,bias=False), nn.BatchNorm2d(o), activation()]) return c def unet_block2d(i,m,o,k1,k2): return nn.Sequential(*conv2d(i,m,k1),*conv2d(m,o,k2)) def conv(i,o,k=3,s=1): pad = k//2 if isinstance(k,int) else tuple([ks//2 for p in zip(reversed(k),reversed(k)) for ks in p]) if isinstance(k,int): c = [] if k < 3 else [nn.ReplicationPad3d(pad)] if isinstance(k,tuple): c = [] if all([p == 0 for p in pad]) else [nn.ReplicationPad3d(pad)] c.extend([nn.Conv3d(i,o,k,s,bias=False), nn.BatchNorm3d(o), activation()]) return c def unet_block(i,m,o,k1,k2): return nn.Sequential(*conv(i,m,k1),*conv(m,o,k2)) def unet_list(i,m,o,k1,k2,s1=1,s2=1): layers = [nn.Sequential(*conv(i,m,k1,s1)), nn.Sequential(*conv(m,o,k2,s2))] return nn.ModuleList(layers) def unet_up(i,m,o,k1,k2,s1=1,s2=1,scale_factor=2,cat=True,full=False,upk=1): c = 2 if cat else 1 layers = [Upconv3d(i//c,i//c,scale_factor,full,upk), nn.Sequential(*conv(i,m,k1,s1), *conv(m,o,k2,s2))] return nn.ModuleList(layers) ``` #### File: uncertaintorch/util/analysis.py ```python __all__ = ['tidy_losses', 'tidy_uncertainty'] import pandas as pd def tidy_losses(train, valid): out = {'epoch': [], 'type': [], 'value': [], 'phase': []} for i, (tl,vl) in enumerate(zip(train,valid),1): for tli in tl: out['epoch'].append(i) out['type'].append('loss') out['value'].append(tli) out['phase'].append('train') for vli in vl: out['epoch'].append(i) out['type'].append('loss') out['value'].append(vli) out['phase'].append('valid') return pd.DataFrame(out) def tidy_uncertainty(ep, al, sb): out = {'epoch': [], 'type': [], 'value': [], 'phase': []} for i, (epi, ali, sbi) in enumerate(zip(ep, al, sb)): phase = 'train' if i == 0 else 'valid' for j, (epij,alij,sbij) in enumerate(zip(epi,ali,sbi),1): for epijk in epij: out['epoch'].append(j) out['type'].append('epistemic') out['value'].append(epijk) out['phase'].append(phase) for alijk in alij: out['epoch'].append(j) out['type'].append('aleatoric') out['value'].append(alijk) out['phase'].append(phase) for sbijk in sbij: out['epoch'].append(j) out['type'].append('scibilic') out['value'].append(sbijk) out['phase'].append(phase) return pd.DataFrame(out) ```
{ "source": "jcrichard/firls", "score": 3 }
#### File: firls/firls/ccd.py ```python from numba import njit from numba.types import float64, int64, none, boolean,Tuple,List import numpy as np @njit("float64[:,:](float64[:,:])") def add_constant(data): """add constant to the data. """ n, p = data.shape x = np.zeros((n, p + 1)) x[:, 1:] = data x[:, 0] = 1 return x @njit("float64(float64,float64)") def soft_threshold(x, s): """Soft thresholding operator. """ return np.sign(x) * np.maximum(np.abs(x) - s, 0) @njit( "Tuple((float64[:,:], List(int64)))(float64[:,:],float64[:],List(int64),optional(float64[:,:]),float64[:,:],float64[:,:],float64,float64[:],float64,float64)" ) def _cycle(beta, h, active_set, bounds,Xty,XtX,fit_intercept,sum_sq_X,lambda_l1,lambda_l2): for j in active_set: if len(active_set) == 0: beta = beta * 0 break beta_j_old = beta[j] h += beta_j_old * XtX[:, j] rho = (XtX[:, j].T@ h) if (fit_intercept) and (j == 0): beta_j_new = rho / sum_sq_X[j] else: beta_j_new = soft_threshold(rho, lambda_l1) / ( sum_sq_X[j] + lambda_l2 ) if bounds is not None: beta_j_new = np.minimum( np.maximum(beta_j_new, bounds[j, 0]), bounds[j, 1] ) if (lambda_l1 > 0.0) & (abs(beta_j_new) == 0.0): beta[j] = beta_j_new continue h -= beta_j_new * XtX[:, j] beta[j] = beta_j_new return beta,active_set @njit( "Tuple((float64[:,:],int64))(float64[:,:],float64[:,:],optional(float64[:,:]),optional(float64[:,:]),boolean,float64,float64,optional(float64[:,:]),optional(float64[:,:]),int64,float64)",fastmath=True ) def ccd_pwls( X, y, W=None, b = None, fit_intercept=False, lambda_l1=0.0, lambda_l2=0.0, Gamma=None, bounds=None, max_iters=1000, tol=1e-3 ): """Coordinate descent algorithm for penalized weighted least squared. Please respect the signature.""" if fit_intercept: X = add_constant(X) n, p = X.shape if W is None: sum_sq_X = np.sum(X ** 2, 0) else: sum_sq_X = np.sum((X ** 2) * W, 0) X = X * W ** 0.5 y = y * W ** 0.5 beta = np.zeros((p,1)) beta_old = np.zeros_like(beta)+1 XtX = X Xty = np.empty((1,1)) active_set = list(range(p)) h = y.copy().ravel() for niter in range(max_iters): beta, active_set = _cycle(beta, h, active_set, bounds, Xty, XtX, fit_intercept, sum_sq_X, lambda_l1, lambda_l2) if np.sum((beta_old - beta) ** 2) ** 0.5 < tol: beta, active_set = _cycle(beta, h, list(range(p)), bounds, Xty, XtX, fit_intercept, sum_sq_X, lambda_l1, lambda_l2) if np.sum((beta_old - beta) ** 2) ** 0.5 < tol: break beta_old = np.copy(beta) return beta,niter ``` #### File: firls/tests/test_ccd.py ```python from firls.ccd import ccd_pwls from firls.tests.simulate import simulate_supervised_gaussian import numpy as np import pytest def test_wlsq(): n = 1000 y, X, true_beta = simulate_supervised_gaussian(n, 40) w, niters = ccd_pwls( X, y.reshape(n, 1), W=None, b=None, fit_intercept=False, lambda_l1=0.0, lambda_l2=0.0, Gamma=None, bounds=None, max_iters=10000, tol=1e-10, ) w_cf = np.linalg.inv(X.T @ X) @ X.T @ y np.testing.assert_almost_equal(w.ravel(), w_cf, 4) ```
{ "source": "jcrickmer/pyvision", "score": 3 }
#### File: vision/reconstruction/plywriter.py ```python import cStringIO def red(value, lower, upper): red = int((value - lower) / (upper - lower) * 255) return red, 0, 0 def filtertrue(value, lower, upper): return True def filterlower(value, lower, upper): return value > lower def filterupper(value, lower, upper): return value < upper def write(outfile, data, colormap = red, condition = filtertrue, bounds = None): f = cStringIO.StringIO() lower = data.min() upper = data.max() count = 0 xs, ys, zs = data.shape if not bounds: bounds = (0, xs), (0, ys), (0, zs) (xmin, xmax), (ymin, ymax), (zmin, zmax) = bounds for x in range(0, xs): xi = float(x) / xs * (xmax - xmin) + xmin for y in range(0, ys): yi = float(y) / ys * (ymax - ymin) + ymin for z in range(0, zs): zi = float(z) / zs * (zmax - zmin) + zmin value = data[x, y, z] if not condition(value, lower, upper): continue count += 1 r, g, b = colormap(value, lower, upper) f.write("{0} {1} {2} {3} {4} {5}\n".format(xi, yi, zi, r, g, b)) outfile.write("ply\n") outfile.write("format ascii 1.0\n") outfile.write("element vertex {0}\n".format(count)) outfile.write("property float x\n") outfile.write("property float y\n") outfile.write("property float z\n") outfile.write("property uchar diffuse_red\n") outfile.write("property uchar diffuse_green\n") outfile.write("property uchar diffuse_blue\n") outfile.write("end_header\n") outfile.write(f.getvalue()) f.close() ```
{ "source": "jcrigby/jscfs", "score": 2 }
#### File: jcrigby/jscfs/jscfs.py ```python import errno import json import llfuse import logging import os import stat import sys import time import unittest from argparse import ArgumentParser from collections import namedtuple from grp import getgrnam from pwd import getpwnam log = logging.getLogger(__name__) from enum import Enum class NodeType(Enum): File = 'file' Dir = 'directory' DirEntry = namedtuple('DirEntry', ['name', 'inode']) class Node: def __init__(self, inode, **kwargs): self.inode = inode self.name = kwargs.get('name', None) self.type = NodeType(kwargs.get('type', None)) mode = int(kwargs.get('mode', None), 8) attr = llfuse.EntryAttributes() attr.st_size = 0 attr.st_mode = mode if self.type == NodeType.Dir: attr.st_mode |= stat.S_IFDIR self.children = kwargs.get('children', None) for n, child in enumerate(self.children): self.children[n] = DirEntry(child.name.encode('utf-8'), child.inode) elif self.type == NodeType.File: attr.st_mode |= stat.S_IFREG self.contents = kwargs.get('contents', None) if self.contents != None: self.contents = self.contents.encode('utf-8') attr.st_size = len(self.contents) else: raise llfuse.FUSEError(errno.ENOENT) stamp = int(time.time() * 1e9) attr.st_atime_ns = stamp attr.st_ctime_ns = stamp attr.st_mtime_ns = stamp attr.st_uid = getgrnam(kwargs.get('group', None)).gr_gid attr.st_gid = getpwnam(kwargs.get('user', None)).pw_uid attr.st_ino = inode self.attr = attr def __repr__(self): s = '({1.st_ino} {0.name} {0.type} {1.st_mode:o} {1.st_uid} {1.st_gid})'.format(self,self.attr) if self.type == NodeType.Dir and self.children is not None: s += "\n\t{}".format(self.children) if self.type == NodeType.File and self.contents is not None: s += "contents:[{}]".format(self.contents) return s class JsonSysClassFS(llfuse.Operations): def __init__(self, json_str ): super(JsonSysClassFS, self).__init__() self.root_inode = llfuse.ROOT_INODE self.superblock = [None] * (self.root_inode + 1) self.jdata = json.loads(json_str, object_hook=self.mknode) def mknode(self, d): name = d.get('name', None) assert(name != None) node = Node(len(self.superblock), **d) if node.name == '/': node.inode = self.root_inode self.superblock[self.root_inode] = node else: self.superblock.append(node) type = d.get('type', None) assert(type != None) return node def __repr__(self): s = '\n'.join(str(n) for n in self.superblock) return s # llfuse.Operations start here def getattr(self, inode, ctx=None): node = self.superblock[inode] attr = node.attr log.debug('getattr for inode %d:%s', inode, attr) return attr def lookup(self, dirinode, name, ctx=None): log.debug('lookup for %s in %d', name, dirinode) dirnode = self.superblock[dirinode] assert dirnode.type == NodeType.Dir for child in dirnode.children: if child.name == name: return self.getattr(child.inode) raise llfuse.FUSEError(errno.ENOENT) def opendir(self, inode, ctx): log.debug('opendir %d', inode) return inode def readdir(self, dirinode, off): log.debug('opendir %d starting at %d', dirinode, off) dirnode = self.superblock[dirinode] assert dirnode.type == NodeType.Dir for n, child in enumerate(dirnode.children[off:]): yield(child.name, self.getattr(child.inode), n+1) def open(self, inode, flags, ctx): log.debug('open %d', inode) filenode = self.superblock[inode] assert filenode.type == NodeType.File #if flags & os.O_RDWR or flags & os.O_WRONLY: # raise llfuse.FUSEError(errno.EPERM) return inode def release(self, inode): pass def read(self, inode, off, size): log.debug('read %d %d:%d', inode, off, size) filenode = self.superblock[inode] assert filenode.type == NodeType.File if filenode.contents != None: return filenode.contents[off:off+size] return b'' def write(self, inode, off, buf): log.debug('write %d %d:%s', inode, off, buf) filenode = self.superblock[inode] assert filenode.type == NodeType.File if filenode.contents == None: filenode.contents = b'' filenode.contents = filenode.contents[:offset] + buf + filenode.contents[offset+len(buf):] return len(buf) class TestJscfsMethods(unittest.TestCase): test_json_str = """[ { "name" : "/", "type" : "directory", "mode" : "0755", "user" : "root", "group" : "root", "children" : [ { "name" : "devices", "type" : "directory", "mode" : "0755", "user" : "root", "group" : "root", "children" : [ { "name" : "cpu", "type" : "directory", "mode" : "0755", "user" : "root", "group" : "root", "children" : [ { "name" : "perf_event_mux_interval_ms", "type" : "file", "mode" : "0644", "user" : "root", "group" : "root" }, { "name" : "power", "type" : "directory", "mode" : "0755", "user" : "root", "group" : "root", "children" : [ { "name" : "runtime_active_kids", "type" : "file", "mode" : "0444", "user" : "root", "group" : "root" }, { "name" : "runtime_suspended_time", "type" : "file", "mode" : "0444", "user" : "root", "group" : "root" } ] }, { "name" : "uevent", "type" : "file", "mode" : "0644", "user" : "root", "group" : "root" } ] }, { "name" : "breakpoint", "type" : "directory", "mode" : "0755", "user" : "root", "group" : "root", "children" : [ { "name" : "power", "type" : "directory", "mode" : "0755", "user" : "root", "group" : "root", "children" : [ { "name" : "runtime_status", "type" : "file", "mode" : "0666", "user" : "root", "group" : "root", "contents" : "contents of runtime_status" } ] }, { "name" : "uevent", "type" : "file", "mode" : "0644", "user" : "root", "group" : "root" } ] } ] } ] } ] """ expectedjdata = [{ "name" : "/", "type" : "directory", "mode" : "0755", "user" : "root", "group" : "root", "children" : [ { "name" : "devices", "type" : "directory", "mode" : "0755", "user" : "root", "group" : "root", "children" : [ { "name" : "cpu", "type" : "directory", "mode" : "0755", "user" : "root", "group" : "root", "children" : [ { "name" : "perf_event_mux_interval_ms", "type" : "file", "mode" : "0644", "user" : "root", "group" : "root" }, { "name" : "power", "type" : "directory", "mode" : "0755", "user" : "root", "group" : "root", "children" : [ { "name" : "runtime_active_kids", "type" : "file", "mode" : "0444", "user" : "root", "group" : "root" }, { "name" : "runtime_suspended_time", "type" : "file", "mode" : "0444", "user" : "root", "group" : "root" } ] }, { "name" : "uevent", "type" : "file", "mode" : "0644", "user" : "root", "group" : "root" } ] }, { "name" : "breakpoint", "type" : "directory", "mode" : "0755", "user" : "root", "group" : "root", "children" : [ { "name" : "power", "type" : "directory", "mode" : "0755", "user" : "root", "group" : "root", "children" : [ { "name" : "runtime_status", "type" : "file", "mode" : "0666", "user" : "root", "group" : "root", "contents" : "contents of runtime_status" } ] }, { "name" : "uevent", "type" : "file", "mode" : "0644", "user" : "root", "group" : "root" } ] } ] } ] } ] def test_json_import(self): jdata = json.loads(self.test_json_str) self.assertTrue(jdata == self.expectedjdata) def test_llfuse_rootinode(self): # make sure our assumption about ROOT_INODE is true self.assertTrue(llfuse.ROOT_INODE > 0) def test_jscfs(self): jscfs = JsonSysClassFS(self.test_json_str) # there should be as many entries in superblock as json "name" nodes # plus one self.assertTrue(self.test_json_str.count("name") == 12) print(jscfs) def init_logging(debug=False): formatter = logging.Formatter('%(asctime)s.%(msecs)03d %(threadName)s: ' '[%(name)s] %(message)s', datefmt="%Y-%m-%d %H:%M:%S") handler = logging.StreamHandler() handler.setFormatter(formatter) root_logger = logging.getLogger() if debug: handler.setLevel(logging.DEBUG) root_logger.setLevel(logging.DEBUG) else: handler.setLevel(logging.INFO) root_logger.setLevel(logging.INFO) root_logger.addHandler(handler) def parse_args(): '''Parse command line''' parser = ArgumentParser() parser.add_argument('mountpoint', type=str, help='Where to mount the file system') parser.add_argument('--debug', action='store_true', default=False, help='Enable debugging output') parser.add_argument('--debug-fuse', action='store_true', default=False, help='Enable FUSE debugging output') return parser.parse_args() def main(): options = parse_args() init_logging(options.debug) testfs = JsonSysClassFS(TestJscfsMethods.test_json_str) fuse_options = set(llfuse.default_options) fuse_options.add('fsname=jscfs') if options.debug_fuse: fuse_options.add('debug') llfuse.init(testfs, options.mountpoint, fuse_options) try: llfuse.main(workers=1) except: llfuse.close(unmount=False) raise llfuse.close() if __name__ == '__main__': if len(sys.argv) > 1 and sys.argv[1] in ["-t", "--test"]: del(sys.argv[1]) sys.exit(unittest.main()) main() ```