metadata
dict
text
stringlengths
60
3.49M
{ "source": "jeanfrancis/codeforcmr.cm", "score": 3 }
#### File: jeanfrancis/codeforcmr.cm/update_avatars.py ```python import glob import os import logging import requests import yaml from email.utils import formatdate logging.basicConfig(level=logging.INFO) BLACKLIST = ('blog', '_site',) AVATAR_PATH = 'img/avatars/' def get_avatar(username, last_modified): """ Gets the users avatar from the github api whilst using the If-Modified-Since header to work around rate limits. :param username: the github username :param last_modified: timestamp formatted in the http stlye :return: True if the profile didn't change didn't change, False if there was an error or the avatar """ headers = {'If-Modified-Since': last_modified} github_auth_token = os.environ.get("GITHUB_AUTH_TOKEN", None) if github_auth_token: headers["Authorization"] = "token " + github_auth_token response = requests.get('https://api.github.com/users/' + username, headers=headers) if response.status_code == 304: return False if response.status_code != 200: logging.error('Unexpected HTTP status code {} returned for {}'.format(response.status_code, username)) return False url = response.json()['avatar_url'] avatar = requests.get(url, headers=headers) if response.status_code == 304: return False if response.status_code != 200: logging.error('Unexpected HTTP status code {} returned for {}'.format(response.status_code, username)) return False return avatar.content def main(): # Get date for the If-Last-Modified header with open(os.path.join(AVATAR_PATH, 'last_modified.txt')) as fd: last_modified = fd.readline().rstrip() current_timestamp_formatted = formatdate(timeval=None, localtime=False, usegmt=True) usernames = set() labs = [x for x in glob.glob('_labs/*.yml') if not x.startswith(BLACKLIST)] for lab in labs: with open(lab) as f: contents = f.read() try: _, frontmatter = contents.split('---\n', 2) except ValueError: _, frontmatter, _ = contents.split('---\n', 2) meta = yaml.load(frontmatter) if 'members' not in meta: continue for member in meta['members']: if member['name'] is None: continue username = member.get('username-github') if username == None: continue usernames.add((username, member['name'])) usernames = sorted(list(usernames)) logging.info("Found %d users", len(usernames)) for username, member_name in usernames: logging.info('Processing Lab Member %s (%s)', member_name, username) avatar = get_avatar(username, last_modified) if not avatar: continue avatar_path = os.path.join(AVATAR_PATH, username + '.jpg') print(avatar_path, AVATAR_PATH, username) logging.info('Saving image to %s', avatar_path) with open(avatar_path, 'wb') as fd: fd.write(avatar) # Remember the last successful run for the If-Last-Modified header with open(os.path.join(AVATAR_PATH, 'last_modified.txt'), 'w') as fd: fd.write(current_timestamp_formatted) if __name__ == '__main__': main() ```
{ "source": "JeanFred/inteGraality", "score": 3 }
#### File: inteGraality/integraality/column_config.py ```python from enum import Enum from ww import f class GroupingType(Enum): YEAR = "year" class ColumnSyntaxException(Exception): pass class ColumnConfigMaker: @staticmethod def make(key, title): if key.startswith('P'): splitted = key.split('/') if len(splitted) == 3: (property_name, value, qualifier) = splitted elif len(splitted) == 2: (property_name, value, qualifier) = (splitted[0], None, splitted[1]) else: (property_name, value, qualifier) = (key, None, None) return PropertyConfig(property=property_name, title=title, qualifier=qualifier, value=value) elif key.startswith('L'): return LabelConfig(language=key[1:]) elif key.startswith('D'): return DescriptionConfig(language=key[1:]) else: raise ColumnSyntaxException("Unknown column syntax %s" % key) class ColumnConfig: def get_info_query(self, property_statistics): """ Get the usage counts for a column for the groupings :return: (str) SPARQL query """ query = f(""" SELECT ?grouping (COUNT(DISTINCT ?entity) as ?count) WHERE {{ ?entity {property_statistics.selector_sparql} .""") if property_statistics.grouping_type == GroupingType.YEAR: query += f(""" ?entity wdt:{property_statistics.grouping_property} ?date . BIND(YEAR(?date) as ?grouping).""") else: query += f(""" ?entity wdt:{property_statistics.grouping_property} ?grouping .""") query += f(""" FILTER(EXISTS {{{self.get_filter_for_info()} }}) }} GROUP BY ?grouping HAVING (?count >= {property_statistics.property_threshold}) ORDER BY DESC(?count) LIMIT 1000 """) return query def get_totals_query(self, property_statistics): """ Get the totals of entities with the column set. :return: (str) SPARQL query """ query = f(""" SELECT (COUNT(*) as ?count) WHERE {{ ?entity {property_statistics.selector_sparql} FILTER(EXISTS {{{self.get_filter_for_info()} }}) }} """) return query def get_info_no_grouping_query(self, property_statistics): """ Get the usage counts for a column without a grouping :return: (str) SPARQL query """ query = f(""" SELECT (COUNT(*) AS ?count) WHERE {{ ?entity {property_statistics.selector_sparql} . MINUS {{ ?entity wdt:{property_statistics.grouping_property} _:b28. }} FILTER(EXISTS {{{self.get_filter_for_info()} }}) }} """) return query class PropertyConfig(ColumnConfig): def __init__(self, property, title=None, value=None, qualifier=None): self.property = property self.title = title self.value = value self.qualifier = qualifier def __eq__(self, other): return ( self.property == other.property and self.title == other.title and self.value == other.value and self.qualifier == other.qualifier ) def get_title(self): return "/".join([x for x in [self.property, self.value, self.qualifier] if x]) def get_key(self): return "".join([x for x in [self.property, self.value, self.qualifier] if x]) def make_column_header(self): if self.qualifier: property_link = self.qualifier else: property_link = self.property if self.title: label = f('[[Property:{property_link}|{self.title}]]') else: label = f('{{{{Property|{property_link}}}}}') return f('! data-sort-type="number"|{label}\n') def get_filter_for_info(self): if self.qualifier: return f(""" ?entity p:{self.property} [ ps:{self.property} {self.value or '[]'} ; pq:{self.qualifier} [] ]""") else: return f(""" ?entity p:{self.property}[]""") class TextConfig(ColumnConfig): def __init__(self, language, title=None): self.language = language self.title = title def __eq__(self, other): return ( self.language == other.language and self.title == other.title ) def get_title(self): return self.get_key() def make_column_header(self): if self.title: text = f('{self.title}') else: text = f('{{{{#language:{self.language}}}}}') return f('! data-sort-type="number"|{text}\n') def get_filter_for_info(self): return f(""" ?entity {self.get_selector()} ?lang_label. FILTER((LANG(?lang_label)) = '{self.language}').""") class LabelConfig(TextConfig): def get_key(self): return 'L%s' % self.language def get_selector(self): return 'rdfs:label' class DescriptionConfig(TextConfig): def get_key(self): return 'D%s' % self.language def get_selector(self): return 'schema:description' ```
{ "source": "jeanggi90/sensorCar", "score": 4 }
#### File: jeanggi90/sensorCar/dataSet.py ```python import numpy as np # import linecache # Get a specific line of a file import os.path # check if a file exists at a certain path import random # Shuffle lines in dataset class DataSet(): """ DataSets is responsible for processing, normalising and providing dataSets entires to other classes for training of the network. """ fullDataSetPath = None trainingDataSetPath = None testDataSetPath = None def __init__(self, fullDataSetPath, inputLabelNumber, trainingTestRatio=[9, 1]): """ Initiate dataSet with a fullDataSetPath, inputLabelNumber an array representing the ration between inputs and lables. Optionally a trainingTestRatio array cen be given which determines the ration between training and test data. Default is 9:1 """ self.inputLabelNumber = inputLabelNumber self.trainingTestRatio = trainingTestRatio # Check if path is valid and file exists if os.path.exists(fullDataSetPath): self.fullDataSetPath = fullDataSetPath # Check if the trainingDataSetPath and testDataSetPath file already exists trainingDataSetPath = self.fullDataSetPath[:self.fullDataSetPath.rfind(".")] + "_training.txt" testDataSetPath = self.fullDataSetPath[:self.fullDataSetPath.rfind(".")] + "_test.txt" # Assign them to attribute if they exists if os.path.exists(trainingDataSetPath) and os.path.exists(testDataSetPath): print("trainingDataSetPath and testDataSetPath exist, assigning them to attributes") self.trainingDataSetPath = trainingDataSetPath self.testDataSetPath = testDataSetPath # Generate them if they do not exists yet else: self.splitDataSet() else: print("Given path is invalid. Reasign right path to attribute") def normalizeInput(self, vector): """ Normalizes the vector by return a vector with the reciprocal value of each element in vector """ return np.divide(1, vector, out=np.zeros_like(vector), where=vector != 0) def splitDataSet(self): """ Split the fullDataSetPath by the trainingTestRation into two files, which are saved in the same path as the fullDataSetPath but with the ending "_training.txt" resp. "_test.txt". """ print("Splitting fullDataSetPath into trainingDataSetPath and testDataSetPath") # Get number of lines(=data) in the fullDataSetPath numberOfLines = 0 with open(self.fullDataSetPath, "r") as ff: for line in ff: numberOfLines += 1 self.trainingDataSetPath = self.fullDataSetPath[:self.fullDataSetPath.rfind(".")] + "_training.txt" self.testDataSetPath = self.fullDataSetPath[:self.fullDataSetPath.rfind(".")] + "_test.txt" # Get the number of elements for the training set (testset equals the remainder) splitRatioSum = float(self.trainingTestRatio[0] + self.trainingTestRatio[1]) numberTrainingEntities = int(round(float(self.trainingTestRatio[0]) * numberOfLines / splitRatioSum)) # Split the entites of the fullDataSetPath into the two files with open(self.fullDataSetPath, "r") as ff: for (i, line) in enumerate(ff): if i < numberTrainingEntities: with open(self.trainingDataSetPath, "a") as trf: trf.write(line) if i >= numberTrainingEntities: with open(self.testDataSetPath, "a") as tef: tef.write(line) print("Done creating training and test dataSet") def shuffleDataSet(self, dataSetPath): """ dataSetPath is the path to the dataset which is then shuffled and saved """ with open(dataSetPath, "r+") as f: lines = f.readlines() random.shuffle(lines) f.seek(0) f.writelines(lines) def getStats(self): """ Analyses the dataset and gives the following statis about it: Extrema of each collumn, mean of each collumn """ print("Analysing dataset") with open(self.fullDataSetPath, "r") as ff: # Get the first line in order to get the number of columns and set the extrema to the values of the first line firstLine = ff.readline().strip() firstLineEntities = np.array([float(i) for i in firstLine.split("\t")], dtype=np.float128) numberOfColumns = firstLine.count("\t") + 1 # Holds the max value of each column in the first matrix row and the min value in the second row # For initialisation set the firstLine's entities as the extremas extremaVector = np.array([firstLineEntities, firstLineEntities], dtype=np.float128) # Holds the sum of each column sumVector = np.zeros(numberOfColumns) numberOfLines = 0 # Get one line after another for line in ff: lineEntities = np.array([float(i) for i in line.split("\t")]) sumVector = np.add(lineEntities, sumVector) # Check each entity if it is a extrema and assign it to the extremaVector if so for (i, entity) in enumerate(lineEntities): # If max if entity > extremaVector[0][i]: extremaVector[0][i] = entity # If min if entity < extremaVector[1][i]: extremaVector[1][i] = entity numberOfLines += 1 print("NumberOfColumns: {0},\nMaxValue: {1},\nMinValue: {2},\nNumberOfLines: {3},\nMeanValue: {4}".format(numberOfColumns, extremaVector[0], extremaVector[1], numberOfLines, np.divide(sumVector, numberOfLines))) ``` #### File: jeanggi90/sensorCar/experimentNetTF.py ```python import tensorflow as tf import numpy as np import os import shutil from functools import wraps def callOnce(inputFunc): attribute = "_cache_" + inputFunc.__name__ @property @wraps(inputFunc) def checkAttribute(self): if not hasattr(self, attribute): setattr(self, attribute, inputFunc(self)) return getattr(self, attribute) return checkAttribute class ExperimentNetTF: def __init__(self, shape, learningRate): self.shape = shape self.x = tf.placeholder(tf.float32, shape=[None, self.shape[0]], name="InputData") self.y = tf.placeholder(tf.float32, shape=[None, self.shape[-1]], name="LabelData") self.weights = self._getInitWeights() self.logDir = "./log/experiment" shutil.rmtree(self.logDir) os.makedirs(self.logDir) self.learningRate = learningRate self.summaryWriter = tf.summary.FileWriter(self.logDir, graph=tf.get_default_graph()) self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) self.output self.optimizer self.loss tf.summary.scalar("loss", self.loss) self.mergedSummary = tf.summary.merge_all() def _getInitWeights(self): return [tf.Variable(tf.truncated_normal([fromLayer, toLayer], stddev=0.1, name="Weight{}".format(i))) for i, (fromLayer, toLayer) in enumerate(zip(self.shape[:-1], self.shape[1:]))] def train(self, datasetPath, epochs=1): costMeanList = [] for epoch in range(epochs): print(f"Epoch {epoch + 1}") with open(datasetPath, "r") as ds: costList = [] for i, line in enumerate(ds): lineEntities = np.array([float(i) for i in line.split(",")], dtype=np.float128) inputs = np.reshape(lineEntities[:3], (1, 3)) labels = np.reshape(np.divide(lineEntities[3:], 25), (1, 1)) # inputs = np.reshape(lineEntities[:2], (1, 2)) # labels = np.reshape(lineEntities[2:], (1, 1)) _, loss, summary = self.sess.run([self.optimizer, self.loss, self.mergedSummary], {self.x: inputs, self.y: labels}) costList.append(loss) self.summaryWriter.add_summary(summary, epoch * 1000 + epoch + i) tempList = np.array(costList) costMeanList.append(np.mean(tempList)) addListSummary = tf.Summary() addListSummary.value.add(tag="MeanLoss", simple_value=np.mean(tempList)) self.summaryWriter.add_summary(addListSummary, epoch) self.summaryWriter.flush() self.saveTrainingData("./experimentSave/test.txt", costMeanList) def getPrediction(self, xData): return self.sess.run(self.output, {self.x: xData}) @callOnce def output(self): layerInput = self.x for weight in self.weights: layerInput = tf.math.tanh(tf.matmul(layerInput, weight)) return layerInput @callOnce def loss(self): return tf.reduce_mean(tf.square(self.y - self.output)) # return tf.square(self.y - self.output) @callOnce def optimizer(self): return tf.train.GradientDescentOptimizer(self.learningRate).minimize(self.loss) def saveTrainingData(self, filePath, lossList): file = open(filePath, "a") for loss in lossList: file.write(str(loss) + "\n") file.close() def doSave(self, step): savePath = self.saver.save(self.sess, os.path.join(self.savePath, "model"), global_step = step) print("Saved current model to {}".format(savePath)) if __name__ == '__main__': net = ExperimentNetTF([3, 10, 1], learningRate=0.0005) net.train("simulation/dataset/trackMaster1k.txt", epochs=10) # net.train("simulation/dataset/testAnd.txt", epochs=100) ```
{ "source": "jeanguanda/vmanage-dailybackup", "score": 3 }
#### File: jeanguanda/vmanage-dailybackup/dailybackup.py ```python import datetime as DT import subprocess import sys from netmiko import ConnectHandler keyfile = "vmanage" logfile = "backupjob.log" backup_path = "./backupdata" login_info = { "device_type": "linux", "host": "10.75.58.50", "username": "admin", "use_keys": True, "key_file": keyfile, } date = str(DT.date.today()) week_ago = DT.datetime.today() - DT.timedelta(days=7) week_ago = str(week_ago.date()) zerofile = "/tmp/confdb_backup" + week_ago + ".tar.gz" logtitle = "=" * 15 + "Day of " + date + "=" * 15 + "\n" class SSHjob: """SSHjob defines a class for a job running through SSH by calling the module netmiko. ... Attributes ---------- net_connect : netmiko return object. backup_ret : str The return of running backup on vmanage. ret1 : str The first return, copy backup file. ret2 : str The second return, copy zero size file. Methods ------- connect(): Call the netmiko to connect. run_backup(): Run backup request on vmanage. copy_backup_file(): Copy backup file through scp. copy_zero_file(): Copy zero size file to vmanage. disconnect(): Disconnect vmanage """ def __init__(self): self.net_connect = None self.backup_ret = None self.ret1 = None self.ret2 = None def connect(self): self.net_connect = ConnectHandler(**login_info) def run_backup(self): backup_cmd = ( "request nms configuration-db backup path \ /home/admin/confdb_backup" + date ) self.backup_ret = self.net_connect.send_command(backup_cmd) def copy_backup_file(self): runcmd = ( "scp -i " + keyfile + " " + login_info["username"] + "@" + login_info["host"] + ":" + "/home/admin/confdb_backup" + date + ".tar.gz " + backup_path ) self.ret1 = str( subprocess.run( runcmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding="utf-8", timeout=5, ) ) def copy_zero_file(self): runcmd = ( "touch " + zerofile + " && " + "scp -i vmanage " + zerofile + " admin@" + login_info["host"] + ":/home/admin/" + " && " + "rm " + zerofile ) self.ret2 = str( subprocess.run( runcmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding="utf-8", timeout=5, ) ) def disconnect(self): self.net_connect.disconnect() def main(): jobstart = str(DT.datetime.now()) backup_job = SSHjob() backup_job.connect() backup_job.run_backup() backup_job.copy_backup_file() backup_job.copy_zero_file() backup_job.disconnect() jobend = str(DT.datetime.now()) logdata = ( logtitle + jobstart + " Job started...\n" + backup_job.backup_ret + "\n" + backup_job.ret1 + "\n" + backup_job.ret2 + "\n" + jobend + " Job ended...\n" ) with open(logfile, "a") as fobj: fobj.write(logdata) sys.exit(0) if __name__ == "__main__": main() ```
{ "source": "jean-heibig/PokerZ", "score": 3 }
#### File: poker_ai/interface/text.py ```python from time import time from .translate import Translate from ..blueprint.game.rules import Combo color_chars = {2: '♠', 3: '♦', 5: '♥', 7: '♣'} color_chars = {2: 's', 3: 'd', 5: 'h', 7: 'c'} class Text: """Text for logs or graphic interface.""" def __init__(self, language): self.log_name = "log/tree/{}.txt".format(str(time()).replace('.', '_')) self.texts = Translate(language) def get_player_showdown(self, player_nbr): player = self.deal.players[player_nbr] if player.alive: hand_eval = self.hand_evals[player_nbr] if self.best_eval <= hand_eval: self.second_best_eval = self.best_eval self.best_eval = hand_eval self.showed.append(player_nbr) def get_round_actions(self): """Return the bounds of each betting rounds.""" folds = 0 calls = 0 checks = 0 round_end = [] for action_nbr in range(len(self.deal.actions)): move = self.deal.actions[action_nbr].move if move == "bet": calls = 0 checks = 0 elif move == "call": calls += 1 elif move == "check": checks += 1 elif move == "fold": folds += 1 elif move == "raise": calls = 0 checks = 0 if 4 < action_nbr: if action_nbr == 5 and move == "check": round_end.append(action_nbr + 1) calls = 0 checks = 0 elif folds + calls == 5 or folds + checks == 6: round_end.append(action_nbr + 1) calls = 0 checks = 0 while len(round_end) < 3: round_end.append(len(self.deal.actions)) return [self.deal.actions[:round_end[0]], self.deal.actions[round_end[0]:round_end[1]], self.deal.actions[round_end[1]:round_end[2]], self.deal.actions[round_end[2]:]] def primes_eval(self, hand_eval): if hand_eval[0] in [2, 6]: return hand_eval[1][:2] else: return [hand_eval[1][0]] def primes_kickers(self, best_eval, hand_eval): if hand_eval[0] in [2, 6]: best_kickers = best_eval[1][2:] hand_kickers = hand_eval[1][2:] else: best_kickers = best_eval[1][1:] hand_kickers = hand_eval[1][1:] kickers = [] for kicker_nbr in range(len(best_kickers)): kickers.append(hand_kickers[kicker_nbr]) if best_kickers[kicker_nbr] == hand_kickers[kicker_nbr]: pass else: return kickers return kickers def process_action(self, move): """Set hand states after each action.""" # Update bettors. if move == "fold": # Fold. self.alive_nbr -= 1 if move == "raise": # Raise. self.bettors_nbr = self.alive_nbr self.bettors_nbr -= 1 def reduce_evals(self): """Use kickers only for winners if any doubt. Other hands are always in short form. """ win_player_nbr = min([player_nbr for player_nbr in self.showed if self.hand_evals[player_nbr] == self.best_eval]) best_primes = self.primes_eval(self.best_eval) for player_nbr in self.showed: hand_eval = self.hand_evals[player_nbr] hand_primes = self.primes_eval(hand_eval) if player_nbr == win_player_nbr: self.reduce_best_hand(hand_eval, hand_primes, player_nbr) else: if hand_eval[0] < self.best_eval[0]: self.hand_evals[player_nbr] = ('short', hand_eval[0]) elif hand_primes == best_primes: kickers = self.primes_kickers(self.best_eval, hand_eval) if kickers == []: self.hand_evals[player_nbr] = ('long', [hand_eval[0]] + hand_primes) else: self.hand_evals[player_nbr] = ('kickers', [hand_eval[0]] + hand_primes, kickers) if hand_eval[0] == 9: self.hand_evals[player_nbr] = ('short', 9) else: self.hand_evals[player_nbr] = ('long', [hand_eval[0]] + hand_primes) def reduce_best_hand(self, hand_eval, hand_primes, player_nbr): second_best_primes = self.primes_eval(self.second_best_eval) if self.second_best_eval[0] < hand_eval[0]: self.hand_evals[player_nbr] = ('short', hand_eval[0]) elif hand_primes == second_best_primes: kickers = self.primes_kickers(self.second_best_eval, hand_eval) if kickers == []: self.hand_evals[player_nbr] = ('long', [hand_eval[0]] + hand_primes) else: self.hand_evals[player_nbr] = ('kickers', [hand_eval[0]] + hand_primes, kickers) if hand_eval[0] == 9: self.hand_evals[player_nbr] = ('short', 9) else: self.hand_evals[player_nbr] = ('long', [hand_eval[0]] + hand_primes) def write_action(self, action): """Represent one action.""" self.write_log(self.texts.action_text(action.move, action.total_value)) def write_actions(self): """Print hand history.""" self.alive_nbr = 6 self.allin_nbr = 0 self.bettors_nbr = 6 self.stage = 2 round_actions = self.get_round_actions() while 1 < self.alive_nbr and self.stage < 6: if 0 < self.bettors_nbr and self.allin_nbr < self.alive_nbr: self.write_board() self.write_log(self.texts.text.start_round_text) for action in round_actions[self.stage - 2]: self.write_action(action) self.process_action(action.move) self.allin_nbr += action.allin self.bettors_nbr = self.alive_nbr self.write_log(self.texts.text.end_round_text) self.stage += 1 else: self.write_log('\n') return self.write_log('\n') def write_board(self): """Show board through different stages.""" self.write_log('') self.write_log(self.texts.stage_text(self.stage)) if 2 < self.stage: self.write_log(self.texts.board_text(self.deal.board, self.stage)) self.write_log('') def write_deal(self, deal, hand_nbr): """Print hand history.""" self.best_eval = 0, [0] self.deal = deal self.second_best_eval = 0, [0] self.showed = [] self.write_start(hand_nbr) self.write_actions() self.write_showdown() self.write_result() def write_player_showdown(self, player_nbr): player = self.deal.players[player_nbr] if player.alive: hand_eval = self.hand_evals[player_nbr] if player_nbr in self.showed: hole_cards = self.deal.hole_cards[player_nbr] self.write_log(self.texts.reveal_text(hand_eval, hole_cards, player.player_name)) else: self.write_log(self.texts.muck_text(player.player_name)) def write_start(self, hand_nbr): """Show deal state at beginning of play.""" self.write_log(self.texts.hand_nbr_text(hand_nbr)) self.write_log('') [self.write_log(self.texts.info_text(10000 - (player_nbr < 3) * 50 * player_nbr, self.deal.hole_cards[player_nbr], self.deal.players[player_nbr] .player_name)) for player_nbr in range(6)] self.write_log('') def write_result(self): """Show result of play.""" self.write_log(self.texts.text.show_result_text) for player in self.deal.players: self.write_log(self.texts.result_text(player.player_name, player.chips - 10000)) self.write_log('\n\n') def write_showdown(self): """Show cards at showdown.""" if 1 < self.alive_nbr: while self.stage < 6: self.write_board() self.stage += 1 self.write_log(self.texts.text.showdown_text) self.hand_evals = Combo(self.deal.board, self.deal.hole_cards).hand_evals for hand_nbr in range(6): hand_eval = self.hand_evals[hand_nbr] if hand_eval[0] == 8 and hand_eval[1][0] == 41: hand_eval = (9, [0]) for player_nbr in range(3, 9): self.get_player_showdown(player_nbr % 6) self.reduce_evals() for player_nbr in range(3, 9): self.write_player_showdown(player_nbr % 6) self.write_log('\n') def write_log(self, text): self.log = open(self.log_name, "a") self.log.write(text + '\n') self.log.close() ```
{ "source": "JeanHenri79/mocodo", "score": 2 }
#### File: mocodo/mocodo/argument_parser.py ```python from __future__ import division import argparse import random import os import json from .file_helpers import read_contents from .common import version import sys import re import gettext import locale from time import time from io import open from .mocodo_error import MocodoError DESCRIPTION = """ NAME: Mocodo - An Entity-Relation Diagram Generator. DESCRIPTION: Mocodo is an open-source tool for designing and teaching relational databases. It takes as an input a textual description of both entities and associations of an entity-relationship diagram (ERD). It outputs a vectorial drawing in SVG and a relational schema in various formats (SQL, LaTeX, Markdown, etc.). NOTE: Each one of the following value is: - explicitely specified by the user as a command line option; - otherwise, retrieved from a file located at --params_path; - otherwise, retrieved from a file named 'params.json' in the input directory; - otherwise, calculated from a default value, possibly dependant of your system. """ EPILOG = u""" SEE ALSO: Online version http://mocodo.net Source code https://github.com/laowantong/mocodo Localization https://www.transifex.com/aristide/mocodo/ LICENSE: GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007. CONTACT: Mail <<EMAIL> Author <NAME> Address Universite de Lorraine Laboratoire LCOMS - UFR MIM Ile du Saulcy 57000 Metz France """ # NB: accents raise an error in Jupyter Notebook class ArgumentDefaultsRawDescriptionHelpFormatter(argparse.ArgumentDefaultsHelpFormatter, argparse.RawDescriptionHelpFormatter): pass def init_localization(script_directory, language): if not language: if sys.platform.lower().startswith("darwin") and os.system("defaults read -g AppleLanguages > /tmp/languages.txt") == 0: language = re.search("\W*(\w+)", read_contents("/tmp/languages.txt")).group(1) else: try: language = locale.getdefaultlocale()[0][:2] except: language = "en" try: with open("%s/res/messages_%s.mo" % (script_directory, language), "rb") as mo_contents: trans = gettext.GNUTranslations(mo_contents) except IOError: trans = gettext.NullTranslations() if sys.version_info.major == 2: trans.install(unicode=True) else: trans.install() return language def has_expired(timeout): if timeout: timeout += time() def inner_function(): return time() > timeout else: def inner_function(): return False return inner_function def rate(string): try: value = float(string) except ValueError: msg = "The rate %r cannot be coerced to float" % string raise argparse.ArgumentTypeError(msg) if not (0 <= value <= 1): msg = "The rate %r is not between 0 and 1" % string raise argparse.ArgumentTypeError(msg) return value def scale(string): try: value = float(string) except ValueError: msg = "The scale %r cannot be coerced to float" % string raise argparse.ArgumentTypeError(msg) if value <= 0: msg = "The scale %r is not strictly positive" % string raise argparse.ArgumentTypeError(msg) return value def non_negative_integer(string): try: value = int(string) except ValueError: msg = "The value %r cannot be coerced to an integer" % string raise argparse.ArgumentTypeError(msg) if value < 0: msg = "The integer %r is negative" % string raise argparse.ArgumentTypeError(msg) return value def positive_integer(string): try: value = int(string) except ValueError: msg = "The value %r cannot be coerced to an integer" % string raise argparse.ArgumentTypeError(msg) if value <= 0: msg = "The integer %r is negative or zero" % string raise argparse.ArgumentTypeError(msg) return value def parsed_arguments(): def add_key(key, value): params[key] = value params["added_keys"].append(key) script_directory = os.path.dirname(os.path.realpath(os.path.join(__file__))) parser = argparse.ArgumentParser( prog="mocodo", add_help=False, formatter_class=ArgumentDefaultsRawDescriptionHelpFormatter, description=DESCRIPTION, epilog=EPILOG ) mocodo_group = parser.add_argument_group("OPTIONS ON MOCODO ITSELF") io_group = parser.add_argument_group("INPUT/OUTPUT") aspect_group = parser.add_argument_group("ASPECT OF THE GRAPHICAL OUTPUT") relational_group = parser.add_argument_group("RELATIONAL OUTPUT") source_group = parser.add_argument_group("MODIFICATIONS OF THE SOURCE TEXT") bb_group = parser.add_argument_group("BRANCH & BOUND LAYOUT REARRANGEMENT", "sub-options triggered by the option --arrange=bb") ga_group = parser.add_argument_group("GENETIC ALGORITHM LAYOUT REARRANGEMENT", "sub-options triggered by the option --arrange=ga") lp_group = parser.add_argument_group("LINEAR PROGRAMMING LAYOUT REARRANGEMENT", "sub-options triggered by the option --arrange=lp") nb_group = parser.add_argument_group("NOTEBOOK SPECIFIC OPTIONS", "ignored when called from the command line") if sys.platform.lower().startswith("darwin"): default_params = { "encodings": ["utf8", "macroman"], "image_format": "nodebox" if os.path.exists("/Applications/NodeBox/NodeBox.app") or os.path.exists("/Applications/NodeBox.app") else "svg", "shapes": "copperplate", } elif sys.platform.lower().startswith("win"): default_params = { "encodings": ["utf8", "ISO_8859-15"], "image_format": "svg", "shapes": "trebuchet", } else: # linux default_params = { "encodings": ["utf8", "ISO_8859-15"], "image_format": "svg", "shapes": "serif", } mocodo_group.add_argument("--language", metavar="CODE", type=str, help="override the automatic localization of the messages with the given language code (e.g., 'fr', 'en', ...)") io_group.add_argument("--params_path", metavar="PATH", default="params.json", help="the path of the parameter file. If omitted, use 'params.json' in the input directory. If non existent, use default parameters.") io_group.add_argument("--input", metavar="PATH", help="the path of the input file. By default, the output files will be generated in the same directory") (args, remaining_args) = parser.parse_known_args() text_type = (unicode if sys.version_info.major == 2 else str) if args.input and not os.path.exists(args.input): if os.path.exists(args.input + ".mcd"): args.input += ".mcd" else: # the user has explicitely specified a non existent input file init_localization(script_directory, default_params.get("language", args.language)) raise MocodoError(18, _('The file "{input}" doesn\'t exist.').format(input=args.input)) default_params["input"] = args.input if os.path.exists(args.params_path): default_params.update(json.loads(read_contents(args.params_path))) if not default_params["input"]: default_params["input"] = "sandbox.mcd" default_params["language"] = init_localization(script_directory, default_params.get("language", args.language)) default_params.setdefault("output_dir", os.path.dirname(default_params["input"])) mocodo_group.add_argument("--help", action="help", help="show this help message and exit") mocodo_group.add_argument("--version", action="version", version="%(prog)s " + version, help="display the version number, then exit") mocodo_group.add_argument("--restore", action="store_true", help="recreate a pristine version of the files 'sandbox.mcd' and 'params.json' in the input directory, then exit") aspect_group.add_argument("--df", metavar="STR", type=text_type, default=u"DF", help="the acronym to be circled in a functional dependency") aspect_group.add_argument("--card_format", metavar="STR", type=text_type, nargs="?", default=u"{min_card},{max_card}", help="format string for minimal and maximal cardinalities") aspect_group.add_argument("--strengthen_card", metavar="STR", type=text_type, nargs="?", default=u"_1,1_", help="string for relative cardinalities") source_group.add_argument("--flex", metavar="FLOAT", type=float, default=0.75, help="flex straight legs whose cardinalities may collide") aspect_group.add_argument("--tkinter", action="store_true", help="use Tkinter to calculate the pixel-dimensions of the labels") aspect_group.add_argument("--colors", metavar="PATH", default="bw", help="the color palette to use when generating the drawing. Name (without extension) of a file located in the directory 'colors', or path to a personal file") aspect_group.add_argument("--shapes", metavar="PATH", help="specification of the fonts, dimensions, etc. Name (without extension) of a file located in the directory 'shapes', or path to a personal file") aspect_group.add_argument("--scale", metavar="RATE", type=scale, default=1, help="scale the diagram by the given factor") aspect_group.add_argument("--hide_annotations", action="store_true", help="ignore the hovering of annotated elements") relational_group.add_argument("--relations", metavar="NAME", nargs="*", default=["html", "text"], help="one or several templates for the generated relational schemas. Cf. directory 'relation_templates'") relational_group.add_argument("--disambiguation", choices=["numbers_only", "annotations"], default="annotations", help="specify the way to disambiguate foreign attributes") relational_group.add_argument("--title", metavar="STR", default=_(u'Untitled').encode("utf8"), type=str, help="database name (used for SQL output)") relational_group.add_argument("--guess_title", action="store_true", help="use the name of the most referred entity as title") io_group.add_argument("--output_dir", metavar="PATH", help="the directory of the output files") io_group.add_argument("--encodings", metavar="STR", nargs="*", help="one or several encodings to be tried successively when reading the input file") io_group.add_argument("--extract", action="store_true", help="create a separated JSON file for the geometric parameters") io_group.add_argument("--image_format", choices=["svg", "nodebox"], help="override the automatic selection (depending on your installation) of the image format produced by the generated script") io_group.add_argument("--print_params", action="store_true", help="display the contents of the parameter file, then exit") source_group.add_argument("--arrange", nargs="?", const="bb", choices=["bb", "ga", "lp"], help="rearrange the layout with either a Branch & Bound, a Genetic Algorithm, or a Linear Program solver, then exit") source_group.add_argument("--timeout", metavar="SECONDS", type=int, help="limit the duration of the layout rearrangement") source_group.add_argument("--verbose", action="store_true", help="display some gory details during the layout rearrangement") source_group.add_argument("--fit", metavar="INT", type=int, const=0, nargs="?", help="fit the layout in the nth smallest grid") source_group.add_argument("--flip", choices=["h", "v", "d"], help="display an horizontal / vertical / diagonal flip of the input file, then exit") source_group.add_argument("--obfuscate", metavar="PATH", type=os.path.abspath, nargs="?", const="lorem_ipsum.txt", help="display an obfuscated version of the input file, then exit. Cf. directory 'lorem'") source_group.add_argument("--obfuscation_max_length", metavar="NAT*", type=positive_integer, help="maximal length of obfuscated labels") source_group.add_argument("--obfuscation_min_distance", metavar="NAT*", type=positive_integer, default=3, help="minimal Damerau-Levenshtein's distance between any two obfuscated labels") source_group.add_argument("--seed", metavar="FLOAT", type=float, help="initial value for the random number generator") bb_group.add_argument("--call_limit", metavar="NAT*", type=positive_integer, default=10000, help="maximal number of calls for a given starting box") bb_group.add_argument("--min_objective", metavar="NAT*", type=positive_integer, default=0, help="best acceptable fitness for a layout") bb_group.add_argument("--max_objective", metavar="NAT*", type=positive_integer, default=15, help="worst acceptable fitness for a layout") bb_group.add_argument("--organic", action="store_true", help="unconstrained Branch & Bound") ga_group.add_argument("--population_size", metavar="NAT*", type=positive_integer, default=1000, help="number of individuals to evolve") ga_group.add_argument("--crossover_rate", metavar="RATE", type=rate, default=0.9, help="crossover rate, between 0 and 1") ga_group.add_argument("--mutation_rate", metavar="RATE", type=rate, default=0.06, help="mutation rate, between 0 and 1") ga_group.add_argument("--sample_size", metavar="NAT*", type=positive_integer, default=7, help="the sample size in tournaments") ga_group.add_argument("--max_generations", metavar="NAT*", type=positive_integer, default=300, help="maximal number of generations") ga_group.add_argument("--plateau", metavar="NAT*", type=positive_integer, default=30, help="maximal number of consecutive generations without improvement") lp_group.add_argument("--engine", nargs="?", const="cplex", choices=["cplex", "gurobi"], help="solver for the linear program") nb_group.add_argument("--mld", action="store_true", help="display the HTML relational model in the cell output") nb_group.add_argument("--no_mcd", action="store_true", help="do not display the conceptual diagram in the cell output") nb_group.add_argument("--replace", action="store_true", help="replaces the cell contents by its output") parser.set_defaults(**default_params) params = vars(parser.parse_args(remaining_args)) params["added_keys"] = ["added_keys", "params_path"] add_key("script_directory", script_directory) add_key("has_expired", has_expired(params["timeout"])) add_key("output_name", os.path.join(params["output_dir"], os.path.splitext(os.path.basename(params["input"]))[0])) # import pprint # pprint.pprint(params) if not os.path.exists(params["input"]): import shutil shutil.copyfile(os.path.join(params["script_directory"], "pristine_sandbox.mcd"), params["input"]) random.seed(params["seed"]) # params["title"] = params["title"].decode("utf8") return params ``` #### File: mocodo/mocodo/arrange_bb.py ```python from __future__ import division from itertools import product, count from random import random, shuffle, randrange, choice from .cross import cross, memoize from math import hypot, sqrt from .mocodo_error import MocodoError def arrange(col_count, row_count, successors, multiplicity, organic, min_objective, max_objective, call_limit, verbose, has_expired, **kwargs): @memoize def bounded_neighborhood(x1, y1): result = set() for x2 in range(max(0, x1 - radius), min(col_count, x1 + radius + 1)): for y2 in range(max(0, y1 - radius + abs(x1 - x2)), min(row_count, y1 + radius - abs(x1 - x2) + 1)): if x1 != x2 or y1 != y2: result.add((x2, y2)) return result @memoize def organic_neighborhood(x1, y1): result = set() for x2 in range(x1 - radius, x1 + radius + 1): for y2 in range(y1 - radius + abs(x1 - x2), y1 + radius - abs(x1 - x2) + 1): if x1 != x2 or y1 != y2: result.add((x2, y2)) return result @memoize def bounded_hull(coords): result = set() for (x, y) in coords: if x - 1 >= 0: result.add((x - 1, y)) if x + 1 < col_count: result.add((x + 1, y)) if y - 1 >= 0: result.add((x, y - 1)) if y + 1 < row_count: result.add((x, y + 1)) return result.difference(coords) @memoize def organic_hull(coords): result = set() for (x, y) in coords: result.add((x - 1, y)) result.add((x + 1, y)) result.add((x, y - 1)) result.add((x, y + 1)) return result.difference(coords) def recurs(box_coords, next_boxes, already_placed_segments, cumulated_distances): if cumulated_distances > objective: # print "cut" return None if len(next_boxes) == 0: return { "coords": box_coords, "crossings": 0, "distances": cumulated_distances, } outside_hull_count = len(next_boxes) - len(hull(frozenset(box_coords.values()))) if outside_hull_count * outside_hull_minimal_distance + cumulated_distances > objective: # print "Lower bound cut" return None if has_expired(): raise MocodoError(10, _('Layout calculation time exceeded.')) if next(iteration) > call_limit: # print "call limit exceeded" return None box_to_place = next_boxes[0] already_placed_successors = {box_coords[box]: box for box in successors[box_to_place] if box in box_coords} if already_placed_successors: already_placed_successor_coords = iter(already_placed_successors) (x1, y1) = next(already_placed_successor_coords) possible_coords = neighborhood(x1, y1).copy() # print already_placed_successors[0], possible_coords for (x1, y1) in already_placed_successor_coords: possible_coords.intersection_update(neighborhood(x1, y1)) if not possible_coords: # print "neighborhood intersection is empty" return None else: # print "the box to place has no successors: all empty coords are possible" possible_coords = set(product(range(col_count), range(row_count))) possible_coords.difference_update(box_coords.values()) if not possible_coords: # print "neighborhood intersection is not free" return None non_crossing_possible_coords = [] for (x1, y1) in possible_coords: for ((x2, y2), (x3, y3, x4, y4)) in product(already_placed_successors, already_placed_segments): if cross(x1, y1, x2, y2, x3, y3, x4, y4): break else: non_crossing_possible_coords.append((x1, y1)) if not non_crossing_possible_coords: # print "all possible coords result in a crossing with existing segment" return None weighted_possible_coords = [] for (x1, y1) in non_crossing_possible_coords: cumulated_distance = 0 for ((x2, y2), placed_box) in already_placed_successors.items(): cumulated_distance += distances[abs(x1-x2)][abs(y1-y2)] * multiplicity[(box_to_place, placed_box)] weighted_possible_coords.append((cumulated_distance, random(), x1, y1)) weighted_possible_coords.sort() for (cumulated_distance, _, x1, y1) in weighted_possible_coords: box_coords[box_to_place] = (x1, y1) new_segments = [(x1, y1, x2, y2) for (x2, y2) in already_placed_successors] new_next_boxes = list(successors[box_to_place].difference(box_coords).difference(next_boxes)) if len(next_boxes) == 1 and len(new_next_boxes) == 0 and len(box_coords) != box_count: # print "the placed boxes have no more non placed successors" new_next_boxes = list(set(range(box_count)).difference(box_coords)) if new_next_boxes: new_next_boxes = [choice(new_next_boxes)] shuffle(new_next_boxes) result = recurs( box_coords, next_boxes[1:] + new_next_boxes, already_placed_segments + new_segments, cumulated_distances + cumulated_distance ) if result: return result del box_coords[box_to_place] box_count = col_count * row_count neighborhood = organic_neighborhood if organic else bounded_neighborhood hull = organic_hull if organic else bounded_hull neighborhood_cache = {} radius = 3 distances = [[hypot(i, j) - 1 for j in range(radius + 1)] for i in range(radius + 1)] outside_hull_minimal_distance = distances[1][2] if all(not successor for successor in successors): # print "no link: return a random layout" layout = list(range(box_count)) shuffle(layout) return { "layout": layout, "crossings": 0, "distances": 0, } for objective in range(min_objective, max_objective + 1): if verbose: print("Objective %s." % objective) boxes = list(range(box_count)) shuffle(boxes) for first_box in boxes: iteration = count() if successors[first_box]: if verbose: print(" Starting from box %s." % first_box) result = recurs( {first_box: (0, 0)}, list(successors[first_box]), [], 0 ) if result: coords = result["coords"] if organic: min_x = min(x for (x, y) in coords.values()) max_x = max(x for (x, y) in coords.values()) min_y = min(y for (x, y) in coords.values()) max_y = max(y for (x, y) in coords.values()) for (box_index, (x, y)) in coords.items(): coords[box_index] = (x - min_x, y - min_y) result["row_count"] = row_count = max_y - min_y + 1 result["col_count"] = col_count = max_x - min_x + 1 result["layout"] = [None] * row_count * col_count for (box_index, (x, y)) in coords.items(): result["layout"][x + y * col_count] = box_index return result if organic: break objective += 1 if __name__ == "__main__": from .mcd import Mcd from .argument_parser import parsed_arguments from time import time from random import seed clauses = u""" SUSPENDISSE: diam SOLLICITUDIN, 0N SUSPENDISSE, 0N CONSECTETUER, 0N LOREM: lectus CONSECTETUER: elit, sed MAECENAS, 1N DIGNISSIM, 1N DIGNISSIM DF1, 11 LOREM, 1N SUSPENDISSE LOREM: ipsum, dolor, sit TORTOR, 0N RISUS, 11 DIGNISSIM, 1N CONSECTETUER: nec DIGNISSIM: ligula, massa, varius DF, 11 RISUS, 0N RISUS AMET, 11> LOREM, 01 CONSECTETUER: adipiscing RISUS: ultricies, _cras, elementum SEMPER, 0N RISUS, 1N DIGNISSIM """.replace(" ", "").split("\n") params = parsed_arguments() mcd = Mcd(clauses, params) params.update(mcd.get_layout_data()) starting_time = time() seed(42) result = arrange(**params) if result: print() print(mcd.get_clauses_from_layout(**result)) print() print("Cumulated distances:", result["distances"]) print("Duration:", time() - starting_time) print() ``` #### File: mocodo/mocodo/damerau_levenshtein.py ```python from __future__ import division def damerau_levenshtein(seq1, seq2): """Calculate the Damerau-Levenshtein distance between sequences. This distance is the number of additions, deletions, substitutions, and transpositions needed to transform the first sequence into the second. Although generally used with strings, any sequences of comparable objects will work. Transpositions are exchanges of *consecutive* characters; all other operations are self-explanatory. This implementation is O(N*M) time and O(M) space, for N and M the lengths of the two sequences. >>> damerau_levenshtein('ba', 'abc') 2 >>> damerau_levenshtein('fee', 'deed') 2 It works with arbitrary sequences too: >>> damerau_levenshtein('abcd', ['b', 'a', 'c', 'd', 'e']) 2 """ # codesnippet:D0DE4716-B6E6-4161-9219-2903BF8F547F # Conceptually, this is based on a len(seq1) + 1 * len(seq2) + 1 matrix. # However, only the current and two previous rows are needed at once, # so we only store those. one_ago = None this_row = list(range(1, len(seq2) + 1)) + [0] for x in range(len(seq1)): # Python lists wrap around for negative indices, so put the # leftmost column at the *end* of the list. This matches with # the zero-indexed strings and saves extra calculation. two_ago, one_ago, this_row = one_ago, this_row, [0] * len(seq2) + [x + 1] for y in range(len(seq2)): del_cost = one_ago[y] + 1 add_cost = this_row[y - 1] + 1 sub_cost = one_ago[y - 1] + (seq1[x] != seq2[y]) this_row[y] = min(del_cost, add_cost, sub_cost) # This block deals with transpositions if (x > 0 and y > 0 and seq1[x] == seq2[y - 1] and seq1[x-1] == seq2[y] and seq1[x] != seq2[y]): this_row[y] = min(this_row[y], two_ago[y - 2] + 1) return this_row[len(seq2) - 1] ``` #### File: mocodo/mocodo/entity.py ```python from __future__ import division from .attribute import * from .dynamic import Dynamic class Entity: def __init__(self, clause): def clean_up(name, attributes): name = name.strip(" \n\t") cartouche = (name[:-1] if name[-1].isdigit() else name) # get rid of digit suffix, if any return (name, cartouche, outer_split(attributes)) (self.name, self.attribute_labels) = clause.split(":", 1) (self.name, self.cartouche, self.attribute_labels) = clean_up(self.name, self.attribute_labels) self.legs = [] # iterating over box's legs does nothing if it is not an association self.kind = "entity" self.clause = clause def set_strengthen_legs(self, legs): self.strengthen_legs = legs IdentifierAttribute = WeakAttribute if legs else StrongAttribute self.attributes = [] for (i, attribute_label) in enumerate(self.attribute_labels): if attribute_label == "": self.attributes.append(PhantomAttribute(i)) elif attribute_label.startswith("_"): if i == 0: self.attributes.append(SimpleEntityAttribute(attribute_label[1:], i)) else: self.attributes.append(IdentifierAttribute(attribute_label[1:], i)) elif i == 0: self.attributes.append(IdentifierAttribute(attribute_label, i)) else: self.attributes.append(SimpleEntityAttribute(attribute_label, i)) def calculate_size(self, style, get_font_metrics): cartouche_font = get_font_metrics(style["entity_cartouche_font"]) self.get_cartouche_string_width = cartouche_font.get_pixel_width self.cartouche_height = cartouche_font.get_pixel_height() attribute_font = get_font_metrics(style["entity_attribute_font"]) self.attribute_height = attribute_font.get_pixel_height() for attribute in self.attributes: attribute.calculate_size(style, get_font_metrics) cartouche_and_attribute_widths = [self.get_cartouche_string_width(self.cartouche)] + [a.w for a in self.attributes] self.w = 2 * style["rect_margin_width"] + max(cartouche_and_attribute_widths) self.h = len(self.attributes) * (self.attribute_height + style["line_skip_height"]) \ - style["line_skip_height"] \ + 4 * style["rect_margin_height"] \ + self.cartouche_height self.w += self.w % 2 self.h += self.h % 2 self.style = style def description(self): result = ["Entity %s" % self.name] result.extend([ { "key": "env", "env": [("x", """cx[u"%s"]""" % self.name), ("y", """cy[u"%s"]""" % self.name)], }, { "key": "begin", "id": u"entity-%s" % self.name, }, { "key": "begin", "id": u"frame-%s" % self.name, }, { "key": "stroke_depth", "stroke_depth": 0, }, { "key": "stroke_color", "stroke_color": Dynamic("colors['entity_cartouche_color']"), }, { "key": "color", "color": Dynamic("colors['entity_cartouche_color']"), }, { "key": "rect", "x": Dynamic("%s+x" % (-self.w // 2)), "y": Dynamic("%s+y" % (-self.h // 2)), "w": self.w, "h": self.cartouche_height + 2 * self.style["rect_margin_height"], }, { "key": "stroke_color", "stroke_color": Dynamic("colors['entity_color']"), }, { "key": "color", "color": Dynamic("colors['entity_color']"), }, { "key": "rect", "x": Dynamic("%s+x" % (-self.w // 2)), "y": Dynamic("%s+y" % round(-self.h / 2 + self.cartouche_height + 2 * self.style["rect_margin_height"], 1)), "w": self.w, "h": self.h - self.cartouche_height - 2 * self.style["rect_margin_height"], }, { "key": "stroke_color", "stroke_color": Dynamic("colors['entity_stroke_color']"), }, { "key": "stroke_depth", "stroke_depth": self.style["box_stroke_depth"], }, { "key": "color", "color": Dynamic("colors['transparent_color']"), }, { "key": "rect", "x": Dynamic("%s+x" % (-self.w // 2)), "y": Dynamic("%s+y" % (-self.h // 2)), "w": self.w, "h": self.h, }, { "key": "stroke_depth", "stroke_depth": self.style["inner_stroke_depth"], }, { "key": "line", "x0": Dynamic("%s+x" % (-self.w // 2)), "y0": Dynamic("%s+y" % (-self.h // 2 + self.cartouche_height + 2 * self.style["rect_margin_height"])), "x1": Dynamic("%s+x" % (self.w // 2)), "y1": Dynamic("%s+y" % (-self.h // 2 + self.cartouche_height + 2 * self.style["rect_margin_height"])), }, { "key": "end", }, { "key": "text", "family": self.style["entity_cartouche_font"]["family"], "size": self.style["entity_cartouche_font"]["size"], "text": self.cartouche, "text_color": Dynamic("colors['entity_cartouche_text_color']"), "x": Dynamic("%s+x" % (-self.get_cartouche_string_width(self.cartouche) // 2)), "y": Dynamic("%s+y" % round(-self.h / 2 + self.style["rect_margin_height"] + self.style["cartouche_text_height_ratio"] * self.cartouche_height, 1)), }, ]) dx = self.style["rect_margin_width"] - self.w // 2 dy = self.cartouche_height + 3 * self.style["rect_margin_height"] - self.h // 2 for attribute in self.attributes: attribute.name = self.name result.extend(attribute.description(dx, dy)) dy += self.attribute_height + self.style["line_skip_height"] result.extend([ { "key": "end", }, ]) return result ``` #### File: mocodo/mocodo/fitness.py ```python from __future__ import division from itertools import product from math import hypot from collections import Counter from .cross import cross def fitness(links, multiplicity, col_count, row_count, max_distance = 4): """ Return (by closure) a function evaluating the aesthetic quality of a given layout. """ def evaluate(layout): for (position, index) in enumerate(layout): coordinates[index] = divmod(position, col_count) segments = [(coordinates[p1], coordinates[p2], multiplicity[p1, p2]) for (p1, p2) in links] total_distances = 0 short_segments = [] for ((y1, x1), (y2, x2), m) in segments: distance = distances[abs(x1-x2)][abs(y1-y2)] * m if distance <= max_distance: short_segments.append((x1, y1, x2, y2)) total_distances += distance crossing_count = (link_count - len(short_segments)) * link_count for (i, (x1, y1, x2, y2)) in enumerate(short_segments): for (x3, y3, x4, y4) in short_segments[i+1:]: crossing_count += cross(x1, y1, x2, y2, x3, y3, x4, y4) return (crossing_count, total_distances) distances = [[hypot(i, j) - 1 for j in range(row_count)] for i in range(col_count)] coordinates = [(0, 0)] * (row_count * col_count) link_count = len(links) return evaluate ``` #### File: mocodo/mocodo/mcd.py ```python from __future__ import division import re from .association import Association from .entity import Entity from .phantom import Phantom from .diagram_link import DiagramLink import itertools from collections import defaultdict from .grid import Grid from .mocodo_error import MocodoError compress_colons = re.compile(r"(?m)^:\n(?=:$)").sub def cmp(x, y): return (x > y) - (x < y) SYS_MAXINT = 9223372036854775807 # an integer larger than any practical list or string index class Mcd: def __init__(self, clauses, params, get_font_metrics=None): def parse_clauses(): self.entities = {} self.associations = {} seen = set() self.rows = [[]] self.header = "" for clause in clauses: clause = clause.strip(" \n\r\t") if not clause: self.rows.append([]) continue if clause.startswith("%"): if not self.rows[-1]: self.header += "%s\n" % clause continue if clause == ":" * len(clause): self.rows[-1].extend(Phantom(next(phantom_counter)) for colon in clause) continue if clause.startswith(":"): raise MocodoError(19, _('The clause "{clause}" starts with a colon.').format(clause=clause)) clause = re.sub("\[.+?\]", substitute_forbidden_symbols_between_brackets, clause) if "," in clause.split(":", 1)[0]: element = Association(clause, params) if element.name in self.associations: raise MocodoError(7, _('Duplicate association "{association}". If you want to make two associations appear with the same name, you must suffix it with a number.').format(association=element.name)) self.associations[element.name] = element elif ":" in clause: element = Entity(clause) if element.name in self.entities: raise MocodoError(6, _('Duplicate entity "{entity}". If you want to make two entities appear with the same name, you must suffix it with a number.').format(entity=element.name)) self.entities[element.name] = element else: raise MocodoError(21, _('"{clause}" does not constitute a valid declaration of an entity or association.').format(clause=clause)) if element.name in seen: raise MocodoError(8, _('One entity and one association share the same name "{name}".').format(name=element.name)) seen.add(element.name) self.rows[-1].append(element) if not seen: raise MocodoError(4, _('The ERD is empty.')) self.rows = [row for row in self.rows if row] self.col_count = max(len(row) for row in self.rows) self.row_count = len(self.rows) def add_legs(): for association in self.associations.values(): for leg in association.legs: try: leg.entity = self.entities[leg.entity_name] except KeyError: if leg.entity_name in self.associations: raise MocodoError(20, _(u'Association "{association_1}" linked to another association "{association_2}"!').format(association_1=association.name, association_2=leg.entity_name)) else: raise MocodoError(1, _(u'Association "{association}" linked to an unknown entity "{entity}"!').format(association=association.name, entity=leg.entity_name)) def add_attributes_and_strength(): strengthen_legs = dict((entity_name, []) for entity_name in self.entities) for association in self.associations.values(): for leg in association.legs: if leg.strengthen: strengthen_legs[leg.entity_name].append(leg) for (entity_name, legs) in strengthen_legs.items(): self.entities[entity_name].set_strengthen_legs(legs) def tweak_straight_cards(): coordinates = {} for (j, row) in enumerate(self.rows): for (i, box) in enumerate(row): coordinates[box] = (i, j) d = defaultdict(list) tweakable_legs = {} for association in self.associations.values(): for leg in association.legs: (ei, ej) = coordinates[leg.entity] (ai, aj) = coordinates[leg.association] vector = (cmp(ai, ei), cmp(aj, ej)) vector = (" SN"[cmp(aj, ej)] + " EW"[cmp(ai, ei)]).strip() d[leg.entity].append(vector) tweakable_legs[(leg.entity, vector)] = leg flex = params.get("flex", 0) for (entity, vectors) in d.items(): for vector in vectors: leg = tweakable_legs[(entity, vector)] if not leg.cardinalities.strip(): continue elif vector == "E": if vectors.count("E") == 1 and "SE" in vectors and "NE" not in vectors: leg.twist = True elif vector == "S": if vectors.count("S") == 1 and "SE" in vectors and "SW" not in vectors: leg.twist = True elif vector == "W": if vectors.count("W") == 1 and "SW" in vectors and "NW" not in vectors: leg.twist = True elif vector == "N": if vectors.count("N") == 1 and "NE" in vectors and "NW" not in vectors: leg.twist = True elif flex == 0: continue elif vector == "SE" and vectors.count("SE") == 1: if vectors.count("E") > 1: leg.set_spin_strategy(flex) elif vectors.count("S") > 1: leg.set_spin_strategy(-flex) elif vector == "SW" and vectors.count("SW") == 1: if vectors.count("S") > 1: leg.set_spin_strategy(flex) elif vectors.count("W") > 1: leg.set_spin_strategy(-flex) elif vector == "NW" and vectors.count("NW") == 1: if vectors.count("W") > 1: leg.set_spin_strategy(flex) elif vectors.count("N") > 1: leg.set_spin_strategy(-flex) elif vector == "NE" and vectors.count("NE") == 1: if vectors.count("N") > 1: leg.set_spin_strategy(flex) elif vectors.count("E") > 1: leg.set_spin_strategy(-flex) def add_diagram_links(): self.diagram_links = [] for (entity_name, entity) in self.entities.items(): for attribute in entity.attributes: if attribute.primary_entity_name: self.diagram_links.append(DiagramLink(self.entities, entity, attribute)) def may_center(): for row in self.rows: n = self.col_count - len(row) if n: row[0:0] = [Phantom(next(phantom_counter)) for i in range(n // 2)] row.extend(Phantom(next(phantom_counter)) for i in range(n // 2 + n % 2)) def make_boxes(): i = itertools.count() self.boxes = [] for row in self.rows: for box in row: box.identifier = next(i) self.boxes.append(box) self.box_count = len(self.boxes) def substitute_forbidden_symbols_between_brackets(text): return text.group().replace(",", "<<<protected-comma>>>").replace(":", "<<<protected-colon>>>") self.get_font_metrics = get_font_metrics phantom_counter = itertools.count() parse_clauses() add_legs() add_attributes_and_strength() add_diagram_links() may_center() make_boxes() tweak_straight_cards() self.title = params["title"] def get_layout_data(self): successors = [set() for i in range(self.box_count)] # use `set` to deduplicate reflexive associations multiplicity = defaultdict(int) # but count the multiplicity (1 or 2) of each link if self.associations: for association in self.associations.values(): for leg in association.legs: successors[association.identifier].add(leg.entity.identifier) successors[leg.entity.identifier].add(association.identifier) multiplicity[(association.identifier, leg.entity.identifier)] += 1 multiplicity[(leg.entity.identifier, association.identifier)] += 1 else: for diagram_link in self.diagram_links: fei = diagram_link.foreign_entity.identifier pei = diagram_link.primary_entity.identifier if fei != pei: successors[fei].add(pei) successors[pei].add(fei) multiplicity[(fei, pei)] += 1 multiplicity[(pei, fei)] += 1 return { "links": tuple((node, child) for (node, children) in enumerate(successors) for child in children if node < child), "successors": successors, "col_count": self.col_count, "row_count": self.row_count, "multiplicity": dict(multiplicity) } def get_layout(self): return [box.identifier for row in self.rows for box in row] def get_row_text(self, row): return "\n".join(box.clause.replace("<<<protected-comma>>>", ",").replace("<<<protected-colon>>>", ":") for box in row) def set_layout(self, layout, col_count=None, row_count=None, **kwargs): if col_count and row_count: (self.col_count, self.row_count) = (col_count, row_count) def get_or_create_box(index): return Phantom() if layout[index] is None else self.boxes[layout[index]] i = itertools.count() self.rows = [[get_or_create_box(next(i)) for x in range(self.col_count)] for y in range(self.row_count)] def suppress_empty_rows(y): while self.rows: # there's at least one row for box in self.rows[y]: if box.kind != "phantom": return del self.rows[y] self.row_count -= 1 suppress_empty_rows(0) suppress_empty_rows(-1) def suppress_empty_cols(x): while self.rows[0]: # there's at least one column for row in self.rows: if row[x].kind != "phantom": return for row in self.rows: del row[x] self.col_count -= 1 suppress_empty_cols(0) suppress_empty_cols(-1) def get_clauses(self): result = self.header if self.associations: result += "\n\n".join(self.get_row_text(row) for row in self.rows) else: result += "\n\n".join(":\n" + "\n:\n".join(self.get_row_text(row).split("\n")) + "\n:" for row in self.rows) return compress_colons(":", result) def get_clauses_horizontal_mirror(self): result = self.header + "\n\n".join(self.get_row_text(row) for row in self.rows[::-1]) return compress_colons(":", result) def get_clauses_vertical_mirror(self): result = self.header + "\n\n".join(self.get_row_text(row[::-1]) for row in self.rows) return compress_colons(":", result) def get_clauses_diagonal_mirror(self): result = self.header + "\n\n".join(self.get_row_text(row) for row in zip(*self.rows)) return compress_colons(":", result) def get_reformatted_clauses(self, nth_fit): grid = Grid(len(self.boxes) + 100) # make sure there are enough precalculated grids start = len(self.entities) + len(self.associations) # number of nonempty boxes if nth_fit < 0: if (self.col_count, self.row_count) in grid: # the current grid is among precalculated ones start = self.col_count * self.row_count # start from the completed grid nth_fit = 1 # and calculate the next one (col_count, row_count) = grid.get_nth_next(start, nth_fit) result = [] i = 0 for box in self.boxes: if box.kind != "phantom": if i % col_count == 0 and i: result.append("") result.append(box.clause.replace("<<<protected-comma>>>", ",").replace("<<<protected-colon>>>", ":")) i += 1 for i in range(i, col_count * row_count): if i % col_count == 0 and i: result.append("") result.append(":") return self.header + compress_colons(":", "\n".join(result)) def calculate_size(self, style): def card_max_width(): get_pixel_width = self.get_font_metrics(style["card_font"]).get_pixel_width cardinalities = {"0,N"} # default value, in case there is no cardinalities at all for association in self.associations.values(): for leg in association.legs: cardinalities.add(leg.cardinalities) return max(map(get_pixel_width, cardinalities)) # def calculate_sizes(): for row in self.rows: for (i, box) in enumerate(row): box.calculate_size(style, self.get_font_metrics) max_box_width_per_column[i] = max(box.w, max_box_width_per_column[i]) for diagram_link in self.diagram_links: diagram_link.calculate_size(style, self.get_font_metrics) # def make_horizontal_layout(): self.w = style["margin_size"] for row in self.rows: horizontal_offset = style["margin_size"] for (i, box) in enumerate(row): box.x = horizontal_offset + (max_box_width_per_column[i] - box.w) // 2 horizontal_offset += max_box_width_per_column[i] + join_width self.w = max(self.w, horizontal_offset) self.w += style["margin_size"] - join_width # def compress_horizontally(): dx = 0 for i in range(1, self.col_count): dx = SYS_MAXINT for row in self.rows: b1 = row[i-1] b2 = row[i] space = b2.x - b1.x - b1.w - join_width dx = min(dx, space) for row in self.rows: row[i].x -= dx self.w -= dx # def make_vertical_layout(): vertical_offset = style["margin_size"] for row in self.rows: max_box_height = max(box.h for box in row) for box in row: box.y = vertical_offset + (max_box_height - box.h) // 2 vertical_offset += max_box_height + join_height self.h = vertical_offset + style["margin_size"] - join_height # def compress_vertically(): dy = 0 for j in range(1, self.row_count): dy = SYS_MAXINT for (i2, b2) in enumerate(self.rows[j]): y1_max = 0 for (i1, b1) in enumerate(self.rows[j-1]): if (i1 == i2) or (b1.x < b2.x < b1.x + b1.w + join_width) or (b1.x - join_width < b2.x + b2.w < b1.x + b1.w): y1_max = max(y1_max, b1.y + b1.h) space = b2.y - y1_max - join_height dy = min(dy, space) for box in self.rows[j]: box.y -= dy self.h -= dy # style["card_max_width"] = card_max_width() style["card_max_height"] = self.get_font_metrics(style["card_font"]).get_pixel_height() join_width = 2 * style["card_margin"] + style["card_max_width"] join_height = 2 * style["card_margin"] + style["card_max_height"] max_box_width_per_column = [0] * self.col_count calculate_sizes() make_horizontal_layout() compress_horizontally() make_vertical_layout() compress_vertically() def description(self): result = [] for element in self.associations.values(): result.extend(element.description()) for element in self.entities.values(): result.extend(element.description()) for element in self.diagram_links: result.extend(element.description()) return result if __name__=="__main__": from .argument_parser import parsed_arguments clauses = u""" CLIENT: Réf. client, Nom, Prénom, Adresse PASSER, 0N CLIENT, 11 COMMANDE COMMANDE: Num commande, Date, Montant INCLURE, 1N COMMANDE, 0N PRODUIT: Quantité PRODUIT: Réf. produit, Libellé, Prix unitaire """.replace(" ", "").split("\n") params = parsed_arguments() mcd = Mcd(clauses, params) print(mcd.get_clauses_vertical_mirror()) ``` #### File: mocodo/tests/arrange_lp_tests.py ```python from __future__ import division import sys sys.path[0:0] = ["."] from arrange_lp import * import unittest from mocodo.mcd import Mcd from mocodo.argument_parser import parsed_arguments from time import time from random import seed clauses = u""" SUSPENDISSE: diam SOLLICITUDIN, 0N SUSPENDISSE, 0N CONSECTETUER, 0N LOREM: lectus CONSECTETUER: elit, sed MAECENAS, 1N DIGNISSIM, 1N DIGNISSIM DF1, 11 LOREM, 1N SUSPENDISSE LOREM: ipsum, dolor, sit TORTOR, 0N RISUS, 11 DIGNISSIM, 1N CONSECTETUER: nec DIGNISSIM: ligula, massa, varius DF, 11 RISUS, 0N RISUS AMET, 11> LOREM, 01 CONSECTETUER: adipiscing RISUS: ultricies, _cras, elementum SEMPER, 0N RISUS, 1N DIGNISSIM """.replace(" ", "") params = parsed_arguments() mcd = Mcd(clauses.split("\n"), params) params.update(mcd.get_layout_data()) class ArrangeLP(unittest.TestCase): def test_with_cplex(self): params["engine"] = "cplex" rearrangement = arrange(**params) mcd.set_layout(**rearrangement) result = mcd.get_clauses() self.assertEqual(rearrangement["crossings"], 0) self.assertEqual(round(rearrangement["distances"], 4), 0.8284) self.assertEqual(rearrangement["layout"], [11, 3, 0, 4, 10, 7, 1, 5, 8, 6, 2, 9]) self.assertEqual(result, u""" SEMPER, 0N RISUS, 1N DIGNISSIM MAECENAS, 1N DIGNISSIM, 1N DIGNISSIM SUSPENDISSE: diam DF1, 11 LOREM, 1N SUSPENDISSE RISUS: ultricies, _cras, elementum DIGNISSIM: ligula, massa, varius SOLLICITUDIN, 0N SUSPENDISSE, 0N CONSECTETUER, 0N LOREM: lectus LOREM: ipsum, dolor, sit DF, 11 RISUS, 0N RISUS TORTOR, 0N RISUS, 11 DIGNISSIM, 1N CONSECTETUER: nec CONSECTETUER: elit, sed AMET, 11> LOREM, 01 CONSECTETUER: adipiscing """.strip().replace(" ", "")) def test_with_gurobi(self): params["engine"] = "gurobi" rearrangement = arrange(**params) mcd.set_layout(**rearrangement) result = mcd.get_clauses() self.assertEqual(rearrangement["crossings"], 0) self.assertEqual(round(rearrangement["distances"], 4), 0.8284) self.assertEqual(rearrangement["layout"], [4, 0, 3, 11, 5, 1, 7, 10, 9, 2, 6, 8]) self.assertEqual(result, u""" DF1, 11 LOREM, 1N SUSPENDISSE SUSPENDISSE: diam MAECENAS, 1N DIGNISSIM, 1N DIGNISSIM SEMPER, 0N RISUS, 1N DIGNISSIM LOREM: ipsum, dolor, sit SOLLICITUDIN, 0N SUSPENDISSE, 0N CONSECTETUER, 0N LOREM: lectus DIGNISSIM: ligula, massa, varius RISUS: ultricies, _cras, elementum AMET, 11> LOREM, 01 CONSECTETUER: adipiscing CONSECTETUER: elit, sed TORTOR, 0N RISUS, 11 DIGNISSIM, 1N CONSECTETUER: nec DF, 11 RISUS, 0N RISUS """.strip().replace(" ", "")) if __name__ == '__main__': unittest.main() ``` #### File: mocodo/tests/fitness_tests.py ```python from __future__ import division import sys sys.path[0:0] = ["."] from mocodo.fitness import * import unittest from mocodo.mcd import Mcd from mocodo.argument_parser import parsed_arguments from math import hypot class ArrangeBB(unittest.TestCase): def test_optimal_layout(self): clauses = u""" SCELERISQUE LOREM: blandit, elit, ligula EROS, 11 SCELERISQUE LOREM, 1N PELLENTESQUE IPSUM: metus, congue NIBH, 1N SCELERISQUE LOREM, 11 PELLENTESQUE IPSUM PELLENTESQUE IPSUM: tincidunt, bibendum, consequat, integer """.replace(" ", "") params = parsed_arguments() mcd = Mcd(clauses.split("\n"), params) params.update(mcd.get_layout_data()) d = mcd.get_layout_data() evaluate = fitness(d["links"], d["multiplicity"], d["col_count"], d["row_count"]) size = d["col_count"] * d["row_count"] (crossing_count, total_distances) = evaluate(list(range(size))) self.assertEqual(crossing_count, 0) self.assertEqual(total_distances, 0.0) def test_optimal_layout_with_reflexive_association(self): clauses = u""" Assistas, 01 Hci poilu, 0N Hci poilu Hci poilu: graffiti, champignon, troussa, graffiti Rayonnait, 0N Hci poilu, 0N Lappa: monobloc Brisa: souffrait Pillards, 0N Brisa, 0N Lappa, 0N Hci poilu: disions, lascar Lappa: graffiti, champignon Puni, 11 Lappa, 0N Lappa """.replace(" ", "") params = parsed_arguments() mcd = Mcd(clauses.split("\n"), params) params.update(mcd.get_layout_data()) d = mcd.get_layout_data() evaluate = fitness(d["links"], d["multiplicity"], d["col_count"], d["row_count"]) size = d["col_count"] * d["row_count"] (crossing_count, total_distances) = evaluate(list(range(size))) self.assertEqual(crossing_count, 0) self.assertEqual(total_distances, 0.0) def test_diagonal_reflexive_association(self): clauses = u""" Norm : Draw, Unit, Folk, Peer, Tour, Hall : : Baby, 1N Norm, 0N> Norm """.replace(" ", "") params = parsed_arguments() mcd = Mcd(clauses.split("\n"), params) params.update(mcd.get_layout_data()) d = mcd.get_layout_data() evaluate = fitness(d["links"], d["multiplicity"], d["col_count"], d["row_count"]) size = d["col_count"] * d["row_count"] (crossing_count, total_distances) = evaluate(list(range(size))) self.assertEqual(crossing_count, 0) self.assertEqual(round(total_distances, 4), 0.8284) def test_2_0_link(self): clauses = u""" CLIENT: Réf. client, Nom, Prénom, Adresse PASSER, 0N CLIENT, 11 COMMANDE : COMMANDE: Num commande, Date, Montant """.replace(" ", "") params = parsed_arguments() mcd = Mcd(clauses.split("\n"), params) params.update(mcd.get_layout_data()) d = mcd.get_layout_data() evaluate = fitness(d["links"], d["multiplicity"], d["col_count"], d["row_count"]) size = d["col_count"] * d["row_count"] (crossing_count, total_distances) = evaluate(list(range(size))) self.assertEqual(crossing_count, 0) self.assertEqual(total_distances, 1.0) def test_1_1_link(self): clauses = u""" CLIENT: Réf. client, Nom, Prénom, Adresse PASSER, 0N CLIENT, 11 COMMANDE COMMANDE: Num commande, Date, Montant : """.replace(" ", "") params = parsed_arguments() mcd = Mcd(clauses.split("\n"), params) params.update(mcd.get_layout_data()) d = mcd.get_layout_data() evaluate = fitness(d["links"], d["multiplicity"], d["col_count"], d["row_count"]) size = d["col_count"] * d["row_count"] (crossing_count, total_distances) = evaluate(list(range(size))) self.assertEqual(crossing_count, 0) self.assertEqual(total_distances, hypot(1, 1) - 1) def test_2_1_link(self): clauses = u""" : CLIENT: Réf. client, Nom, Prénom, Adresse PASSER, 0N CLIENT, 11 COMMANDE COMMANDE: Num commande, Date, Montant : : """.replace(" ", "") params = parsed_arguments() mcd = Mcd(clauses.split("\n"), params) params.update(mcd.get_layout_data()) d = mcd.get_layout_data() evaluate = fitness(d["links"], d["multiplicity"], d["col_count"], d["row_count"]) size = d["col_count"] * d["row_count"] (crossing_count, total_distances) = evaluate(list(range(size))) self.assertEqual(crossing_count, 0) self.assertEqual(total_distances, hypot(2, 1) - 1) def test_k33(self): clauses = u""" DIGNISSIM: nec sem, nunc, vulputate IMPERDIET: a praesent, nibh, semper TINCIDUNT: faucibus, orci, cursus RHONCUS, 1N DIGNISSIM, 1N IMPERDIET, 1N TINCIDUNT SODALES, 1N DIGNISSIM, 1N IMPERDIET, 1N TINCIDUNT QUIS ENIM, 1N DIGNISSIM, 1N IMPERDIET, 1N TINCIDUNT """.replace(" ", "") params = parsed_arguments() mcd = Mcd(clauses.split("\n"), params) params.update(mcd.get_layout_data()) d = mcd.get_layout_data() evaluate = fitness(d["links"], d["multiplicity"], d["col_count"], d["row_count"]) size = d["col_count"] * d["row_count"] (crossing_count, total_distances) = evaluate(list(range(size))) self.assertEqual(crossing_count, 9) def test_k33_better(self): clauses = u""" DIGNISSIM: nec sem, nunc, vulputate RHONCUS, 1N DIGNISSIM, 1N IMPERDIET, 1N TINCIDUNT IMPERDIET: a praesent, nibh, semper SODALES, 1N DIGNISSIM, 1N IMPERDIET, 1N TINCIDUNT TINCIDUNT: faucibus, orci, cursus QUIS ENIM, 1N DIGNISSIM, 1N IMPERDIET, 1N TINCIDUNT """.replace(" ", "") params = parsed_arguments() mcd = Mcd(clauses.split("\n"), params) params.update(mcd.get_layout_data()) d = mcd.get_layout_data() evaluate = fitness(d["links"], d["multiplicity"], d["col_count"], d["row_count"]) size = d["col_count"] * d["row_count"] (crossing_count, total_distances) = evaluate(list(range(size))) self.assertEqual(crossing_count, 3) if __name__ == '__main__': unittest.main() ``` #### File: mocodo/tests/font_metrics_tests.py ```python from __future__ import division import sys sys.path[0:0] = ["."] import unittest from mocodo.font_metrics import * import tkFont params = {} params["tkinter"] = True FontMetrics = font_metrics_factory(params) helv36 = FontMetrics({"family": "Helvetica", "size": 36}) helv36b = FontMetrics({"family": "Helvetica", "size": 36, "weight": "bold"}) helv36b2 = FontMetrics({"family": "Helvetica-Bold", "size": 36}) helv36b3 = FontMetrics({"family": "Helvetica-Bold", "size": 36, "weight": "bold"}) helv36b4 = FontMetrics({"family": "Helvetica-Bold", "size": 36, "weight": tkFont.BOLD}) times12 = FontMetrics({"family": "Times", "size": 12}) class FontMetricsWithTkTest(unittest.TestCase): def test_helv36_get_pixel_height(self): self.assertEqual(helv36.get_pixel_height(), 36) def test_helv36_get_pixel_width(self): self.assertEqual(helv36.get_pixel_width("My string"), 146) def test_helv36b_get_pixel_height(self): self.assertEqual(helv36b.get_pixel_height(), 36) def test_helv36b_get_pixel_width(self): self.assertEqual(helv36b.get_pixel_width("My string"), 160) def test_helv36b2_get_pixel_width(self): self.assertEqual(helv36b2.get_pixel_width("My string"), 161) def test_helv36b3_get_pixel_width(self): self.assertEqual(helv36b3.get_pixel_width("My string"), 177) def test_helv36b4_get_pixel_width(self): self.assertEqual(helv36b4.get_pixel_width("My string"), 177) def test_times12_get_pixel_height(self): self.assertEqual(times12.get_pixel_height(), 12) def test_times12_get_pixel_width(self): self.assertEqual(times12.get_pixel_width("My string"), 47) def test_empty_string_get_pixel_width(self): self.assertEqual(times12.get_pixel_width(""), 0) if __name__ == '__main__': unittest.main() ```
{ "source": "jeanie76/Datacrat-Agg", "score": 3 }
#### File: code/sheet_cleaner/functions.py ```python from constants import * from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request import pickle import os import pandas as pd import re def read_values(sheetid, range_, config): # returns values read from a google sheet, as is. SCOPES = ['https://www.googleapis.com/auth/spreadsheets.readonly'] TOKEN = config['token'] CREDENTIALS = config['credentials'] creds = None # The file token.pickle stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists(TOKEN): with open(TOKEN, 'rb') as token: creds = pickle.load(token) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( CREDENTIALS, SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open(TOKEN, 'wb') as token: pickle.dump(creds, token) service = build('sheets', 'v4', credentials=creds) # Call the Sheets API sheet = service.spreadsheets() values = sheet.values().get(spreadsheetId=sheetid, range=range_).execute().get('values', []) if not values: raise ValueError('Sheet data not found') else: return values def insert_values(sheetid, body, config, **kwargs): ''' Insert values into spreadsheet. range should be included in body. example body: body = { 'range': 'SheetName!A1:A3', 'majorDimension': 'ROWS', 'values': [[1], [2], [3]] } ''' SCOPES = ['https://www.googleapis.com/auth/spreadsheets'] TOKEN = config['token'] CREDENTIALS = config['credentials'] INPUTOPTION = kwargs['inputoption'] if 'inputoption' in kwargs.keys() else 'USER_ENTERED' # values = list # placement = A1 notation range. creds = None # The file token.pickle stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists(TOKEN): with open(TOKEN, 'rb') as token: creds = pickle.load(token) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( CREDENTIALS, SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open(TOKEN, 'wb') as token: pickle.dump(creds, token) service = build('sheets', 'v4', credentials=creds) # Call the Sheets API sheet = service.spreadsheets() request = sheet.values().update(spreadsheetId=sheetid, range=body['range'], body=body, valueInputOption=INPUTOPTION) response = request.execute() return response def values2dataframe(values): ''' Convert raw values as retrieved from read_values to a pandas dataframe Adds a "row" number going off the assumption that we are reading from the top. ''' columns = values[0] ncols = len(columns) data = values[1:] for d in data: if len(d) < ncols: extension = ['']*(ncols-len(d)) d.extend(extension) data = pd.DataFrame(data=data, columns=columns) data['row'] = list(range(2, len(data)+2)) # keeping row number (+1 for 1 indexing +1 for column headers in sheet) data['row'] = data['row'].astype(str) return data def index2A1(num): if 0 <= num <= 25: return alpha[num] elif 26 <= num <= 51: return 'A{}'.format(alpha[num%26]) elif 52 <= num <= 77: return 'B{}'.format(alpha[num%26]) else: raise ValueError('Could not convert index "{}" to A1 notation'.format(num)) def get_trailing_spaces(data): ''' Generate error table for trailing whitespaces (front and back). return: error_table[row, ID, column_name, value]. ''' # fix trailing spaces. This applies to all columns except "row" df = data.copy() error_table = pd.DataFrame(columns=['row', 'ID', 'column', 'value', 'fix']) for c in df.columns: if c == 'row': continue else: stripped = df[c].str.strip() invalid_bool = stripped != df[c] invalid = df[invalid_bool][['row', 'ID']].copy() invalid['column'] = c invalid['value'] = df[c][invalid_bool].copy() invalid['fix'] = stripped[invalid_bool] error_table = error_table.append(invalid, ignore_index=True, sort=True) return error_table def get_NA_errors(data): ''' Generate error table for mispelled NA values. We chose to write them as "NA", and so far we only replace "N/A" with "NA" return error_table[row, ID, column, value, fix ''' df = data.copy() table = pd.DataFrame(columns=['row', 'ID', 'column', 'value', 'fix']) for c in df.columns: if c == 'row': continue else: test = df[c].str.match('N/A') errors = df[test][['row', 'ID']] errors['column'] = c errors['value'] = df[test][c] errors['fix'] = df[test][c].replace('N/A', 'NA') table = table.append(errors, ignore_index=True, sort=True) return table def ErrorTest(data, columns, rgx, table): ''' Test a regex pattern on passed columns, generate error table for things that did not pass the test. Note this does not generate the fix. We do this after. ''' df = data.copy() for c in columns: test = df[c].str.match(rgx) invalid = df[~test][['row', "ID"]].copy() invalid['column'] = c invalid['value'] = df[~test][c] table = table.append(invalid, ignore_index=True, sort=False) return table def fix_cells(sheetid, sheetname, error_table, column_dict, config): ''' Fix specific cells on the private sheet, based on error table. Error table also needs to provide the "fix" column which is what we are replacing the current value with. :column_dict: map from 'column_name' to A1 notation. ''' assert 'fix' in error_table.columns assert 'value' in error_table.columns fixed = 0 for i,error in error_table.iterrows(): row = error['row'] a1 = column_dict[error['column']] + row range_ = '{}!{}'.format(sheetname, a1) try: fetch = read_values(sheetid, f'{sheetname}!A{row}', config) # fetch ID to ensure that it is the same. assert error['ID'] == fetch[0][0] body = { 'range': range_, 'majorDimension': 'ROWS', 'values': [[error['fix']]] } insert_values(sheetid, body, config) fixed += 1 except Exception as E: print(error) print(fetch) raise E return fixed def generate_error_tables(data): ''' Generate table for fields that don't pass the rgex tests. For easy fixes (e.g. spacing) we can do it automatically, for tricker ones we save the table (fixed ones are omitted in error_report) ''' table = pd.DataFrame(columns=['row', 'ID', 'value']) table = ErrorTest(data, ['age'], rgx_age, table) table = ErrorTest(data, ['sex'], rgx_sex, table) table = ErrorTest(data, ['city', 'province', 'country'], rgx_country, table) table = ErrorTest(data, ['latitude', 'longitude'], rgx_latlong, table) table = ErrorTest(data, ['geo_resolution'], rgx_geo_res, table) table = ErrorTest(data, date_columns, rgx_date, table) table = ErrorTest(data, ['lives_in_Wuhan'], rgx_lives_in_wuhan, table) fixable_errors = pd.DataFrame(columns=['row', 'ID', 'column', 'value', 'fix']) not_fixable = [] for i, r in table.iterrows(): row = r.copy() fix = False col = row['column'] if col == 'sex': test = row['value'].lower().strip() in ['male', 'female', ''] if test: fix = row['value'].lower().strip() elif col == 'age': test = bool(re.match(rgx_age, row['value'].replace(' ', ''))) if test: fix = row['value'].replace(' ', '') elif col == 'country': pass elif col in ['latitude', 'longitude']: pass elif col == 'geo_resolution': s = row['value'] test = bool(re.match(rgx_geo_res, s.replace(' ', ''))) if test: fix = s.replace(' ', '') elif col in date_columns: pass elif col == 'lives_in_Wuhan': s = row['value'] test1 = bool(re.match(rgx_lives_in_wuhan, s.lower().strip())) test2 = True if s in ['1', '0'] else False if test1: fix = s.lower().strip() elif test2: fix = 'yes' if s == '1' else 'no' if fix: row['fix'] = fix fixable_errors = fixable_errors.append(row, ignore_index=True, sort=False) else: not_fixable.append(r.name) fixable = fixable_errors.reset_index() unfixable = table.loc[not_fixable].copy().reset_index() return [fixable, unfixable] def update_id_column(sheetid, sheetname, config, new=5000): ''' Updates the ID column in private sheet. --> inputs function in to 5000 next blank cells. ''' range_ = f'{sheetname}!A:A' # ID column ids = read_values(sheetid, range_, config) nrows = len(ids) # 2 start = nrows + 1 end = start + new entries = [] template = "=IF(NOT(ISBLANK({}!F{})), A{}+1, )" for i in range(start, end+1): string = template.format(sheetname, i, i-1) entries.append(string) body = { 'range': f'{sheetname}!A{start}:A{end}', 'majorDimension': 'ROWS', 'values': [[x] for x in entries] } response = insert_values(sheetid, body, config) return response def update_lat_long_columns(sheetid, sheetname, config): ''' Input Lookup function into lat/long columns that have associated IDs ''' # figure out range, based on ids I guess. id_range_ = f'{sheetname}!A:A' lat_range_ = f'{sheetname}!H:H' lon_range_ = f'{sheetname}!I:I' geo_range_ = f'{sheetname}!J:J' ids = read_values(sheetid, id_range_, config) lats = read_values(sheetid, lat_range_, config) lons = read_values(sheetid, lon_range_, config) geos = read_values(sheetid, geo_range_, config) assert len(geos) == len(lats) == len(lons), 'columns H-J have different lengths' assert len(ids) >= len(geos), 'ID column has less values than coordinate columns' # figure out how many new entries we need. N_new = len(ids) - len(geos) start = len(geos) + 1 # number for first row to insert in. end = start + N_new # last row. # make entries htemplate = '=IFNA(VLOOKUP(D{}&";"&E{}&";"&F{},geo_admin!I:S,3, false),)' itemplate = '=IFNA(VLOOKUP(D{}&";"&E{}&";"&F{},geo_admin!I:S,4, false),)' jtemplate = '=IFNA(VLOOKUP(D{}&";"&E{}&";"&F{},geo_admin!I:S,5, false),)' entries = [] for row in range(start, end): h = htemplate.format(row, row, row) i = itemplate.format(row, row, row) j = jtemplate.format(row, row, row) entries.append([h, i, j]) body = { 'range': f'{sheetname}!H{start}:J{end}', 'majorDimension': 'ROWS', 'values': entries } response = insert_values(sheetid, body, config) return response def update_admin_columns(sheetid, sheetname, config): ''' Input function into columns AA-AF. ''' range0 = f'{sheetname}!A:A' # ids ranges = ['{}!A{}:A{}'.format(sheetname, x, x) for x in ['A', 'B', 'C', 'D', 'E', 'F']] ids = read_values(sheetid, range0, config) values = [read_values(sheetid, r, config) for r in ranges] max_ = max([len(x) for x in values]) N_new = len(ids) - max_ start = max_ + 1 end = start + N_new template = '=IFNA(VLOOKUP(D{}&";"&E{}&";"&F{},geo_admin!I:S,REPLACEME, false), )' templates = [template.replace('REPLACEME', str(i)) for i in range(6,12)] entries = [] for row in range(start, end): entry = [t.format(row, row, row) for t in templates] entries.append(entry) body = { 'range': f'{sheetname}!AA{start}:AF{end}', 'majorDimension': 'ROWS', 'values': entries } response = insert_values(sheetid, body, config) return response ```
{ "source": "jeanielim/cookiecutter-data-science", "score": 3 }
#### File: {{ cookiecutter.repo_name }}/tests/test_train_data.py ```python cookiecutter.repo_name }}/tests/test_train_data.py import pandas as pd from unittest.mock import patch, Mock from src.models.train_model import fetch_processed, fit_model mock_data = { 'label': [1, 0, 0, 1], 'fizz': ['John', 'Bob', 'Sam', 'Kevin'], 'buzz': ['foo', 'bar', 'buzz', 'fizz'], 'foo': ['y', 'n', 'm', 'y'], 'bar': ['a', 'b', 'c', 'd'], 'fish': ['nyc', 'la', 'boston', 'amherst'] } def test_fetch_processed(monkeypatch): def mock_read_csv(fin): return pd.DataFrame(mock_data) monkeypatch.setattr(pd, 'read_csv', mock_read_csv) x_train, x_test, y_train, y_test = fetch_processed('foo') assert all(y_train >= 0) assert all(y_test >= 0) assert x_train.shape[0] > 0 assert x_test.shape[0] > 0 @patch('src.models.train_model.RandomForestClassifier') def test_fit_model(mock_forest, monkeypatch): mock_model = Mock() attrs = {'fit.return_value': 'foo'} mock_model.configure_mock(**attrs) mock_forest.return_value = mock_model model = fit_model('foo', 'bar') assert model.fit() == 'foo' ```
{ "source": "jeanineharb/butterfree", "score": 3 }
#### File: butterfree/clients/spark_client.py ```python from typing import Any, Dict, List, Optional, Union from pyspark.sql import DataFrame, DataFrameReader, SparkSession from pyspark.sql.streaming import DataStreamReader, StreamingQuery from pyspark.sql.types import StructType from butterfree.clients import AbstractClient class SparkClient(AbstractClient): """Handle Spark session connection. Get query results with SQL, reads and writes data on external systems. """ def __init__(self) -> None: self._session: Optional[SparkSession] = None @property def conn(self) -> SparkSession: """Gets or creates an SparkSession. Returns: Spark session """ if not self._session: self._session = SparkSession.builder.getOrCreate() return self._session def read( self, format: str, options: Dict[str, Any], schema: Optional[StructType] = None, stream: bool = False, ) -> DataFrame: """Use the SparkSession.read interface to load data into a dataframe. Check docs for more information: https://spark.apache.org/docs/latest/sql-data-sources-load-save-functions.html#generic-loadsave-functions Args: format: string with the format to be used by the DataframeReader. options: options to setup the DataframeReader. stream: flag to indicate if data must be read in stream mode. schema: an optional pyspark.sql.types.StructType for the input schema. Returns: Dataframe """ if not isinstance(format, str): raise ValueError("format needs to be a string with the desired read format") if not isinstance(options, dict): raise ValueError("options needs to be a dict with the setup configurations") df_reader: Union[ DataStreamReader, DataFrameReader ] = self.conn.readStream if stream else self.conn.read df_reader = df_reader.schema(schema) if schema else df_reader return df_reader.format(format).options(**options).load() def read_table(self, table: str, database: str = None) -> DataFrame: """Use the SparkSession.read interface to read a metastore table. Args: database: name of the metastore database/schema table: name of the table in metastore Returns: Dataframe """ if not isinstance(table, str): raise ValueError( "table needs to be a string with the name of the registered table" ) return self.conn.read.table(f"{database}.{table}" if database else table) def sql(self, query: str) -> DataFrame: """Run a query using Spark SQL. Args: query: Spark SQL query. Returns: Dataframe """ return self.conn.sql(query) @staticmethod def write_dataframe( dataframe: DataFrame, format_: str, mode: str, **options: Any ) -> None: """Receive a spark DataFrame and write it. Args: dataframe: dataframe containing data from a feature set. format_: format used to save the dataframe. mode: writing modem can be "error", "append", "overwrite" or "ignore". For more information: [here](https://spark.apache.org/docs/2.3.0/sql-programming-guide.html#save-modes). **options: all other options that can be used in a DataFrameWriter. """ if not isinstance(format_, str): raise ValueError("format needs to be a string") if not isinstance(mode, str): raise ValueError("mode needs to be a string") dataframe.write.save(format=format_, mode=mode, **options) def write_stream( self, dataframe: DataFrame, processing_time: str, output_mode: str, checkpoint_path: str, format_: str, mode: str, **options: Any, ) -> StreamingQuery: """Starts streaming data writing job. Args: dataframe: Spark dataframe containing data from a feature set. processing_time: a processing time interval as a string. E.g. '5 seconds', '1 minute'. Set a trigger that runs the mini-batch periodically based on the processing time. If the effect of processing data as soon as the data arrives, without having to wait for the time frame, is desired, the value '0 seconds' can be set. output_mode: specifies how data of a streaming DataFrame/Dataset is written to a streaming sink destination. checkpoint_path: path on S3 to save checkpoints for the stream job. These checkpoint can be used on the the job re-start to return from where it stops. format_: format used to save the dataframe. mode: writing modem can be "error", "append", "overwrite" or "ignore". For more information: [here](https://spark.apache.org/docs/2.3.0/sql-programming-guide.html#save-modes). **options: all other options that can be used in a DataFrameWriter. More information about processing_time, output_mode and checkpoint_path can be found in Spark documentation: [here](https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html) Returns: Streaming handler. """ if not dataframe.isStreaming: raise ValueError("A stream df is needed to start a streaming job.") return ( dataframe.writeStream.trigger(processingTime=processing_time) .outputMode(output_mode) .option("checkpointLocation", checkpoint_path) .foreachBatch( lambda batch_df, _: self.write_dataframe( batch_df, format_, mode, **options ) ) .start() ) @staticmethod def write_table( dataframe: DataFrame, database: str, table_name: str, path: str, format_: str = None, mode: str = None, partition_by: List[str] = None, **options: Any, ) -> None: """Receive a spark DataFrame and write it as a table in metastore. Args: dataframe: spark dataframe containing data from a feature set. database: specified database name. table_name: specified table name. path: string with the local to save the table. format_: string with the format used to save. mode: writing mode, it can be: "error", "append", "overwrite" or "ignore". More information: [here](https://spark.apache.org/docs/2.3.0/sql-programming-guide.html#save-modes). partition_by: names of partitioning columns. options: all other options that can be used in a DataFrameWriter. """ if not isinstance(database, str): raise ValueError("database needs to be a string") if not isinstance(table_name, str): raise ValueError("table_name needs to be a string") if not isinstance(path, str): raise ValueError("path needs to be a string of the local to save") name = "{}.{}".format(database, table_name) dataframe.write.saveAsTable( mode=mode, format=format_, partitionBy=partition_by, name=name, path=path, **options, ) def create_temporary_view( self, dataframe: DataFrame, name: str ) -> Optional[StreamingQuery]: """Create a temporary view from a given dataframe. Args: dataframe: dataframe to be be queried by the view. name: name of the temporary view. """ if not dataframe.isStreaming: return dataframe.createOrReplaceTempView(name) return dataframe.writeStream.format("memory").queryName(name).start() ```
{ "source": "Jeaninezpp/Simplified_DMC", "score": 2 }
#### File: Jeaninezpp/Simplified_DMC/location_dmc.py ```python import argparse import os import torch from torch.utils.data import DataLoader from torch import optim import numpy as np from data.MUSIC_dataset import MUSIC_Dataset, MUSIC_AV_Classify from model.base_model import resnet18 from model.dmc_model import DMC_NET from sklearn import cluster, metrics import numpy as np from sklearn.preprocessing import normalize from torch import nn import torch.nn.functional as F import pickle def batch_organize(audio_data, posi_img_data, nega_img_data, posi_label, nega_label): batch_audio_data = torch.zeros(audio_data.shape[0] * 2, audio_data.shape[1], audio_data.shape[2], audio_data.shape[3]) batch_image_data = torch.zeros(posi_img_data.shape[0] * 2, posi_img_data.shape[1], posi_img_data.shape[2], posi_img_data.shape[3]) batch_labels = torch.zeros(audio_data.shape[0] * 2) class_labels = torch.zeros(audio_data.shape[0] * 2) for i in range(audio_data.shape[0]): batch_audio_data[i * 2, :] = audio_data[i, :] batch_audio_data[i * 2 + 1, :] = audio_data[i, :] batch_image_data[i * 2, :] = posi_img_data[i, :] batch_image_data[i * 2 + 1, :] = nega_img_data[i, :] batch_labels[i * 2] = 1 batch_labels[i * 2 + 1] = 0 class_labels[i * 2] = posi_label[i] class_labels[i * 2 + 1] = nega_label[i] return batch_audio_data, batch_image_data, batch_labels, class_labels def eva_metric2(predict, gt, pair_num=2): num = int(predict.shape[0]/pair_num) correct = 0 for i in range(num): pos = predict[pair_num*i] flag = True for j in range(pair_num-1): neg = predict[pair_num*i+j+1] if pos >= neg: flag = False if flag == True: correct += 1 return correct / num class ContrastiveLoss(nn.Module): """ Contrastive loss Takes embeddings of two samples and a target label == 1 if samples are from the same class and label == 0 otherwise """ def __init__(self, margin=5.): super(ContrastiveLoss, self).__init__() self.margin = margin self.eps = 1e-9 def forward(self, output, target, size_average=True): distances = output.pow(2).sum(1) # squared distances losses = 0.5 * (target.float() * distances + (1 + -1 * target).float() * F.relu(self.margin - (distances + self.eps).sqrt()).pow(2)) return losses.mean() if size_average else losses.sum() def location_model_train(model, data_loader, optimizer, criterion): model.train() accs = 0 count = 0 losses = 0 for i, data in enumerate(data_loader, 0): if i % 200 == 0: print('location batch:%d' % i) audio_data, posi_img_data, nega_img_data, posi_label, nega_label, _, _ = data audio_data, image_data, av_labels, class_labels = batch_organize(audio_data, posi_img_data, nega_img_data, posi_label, nega_label) audio_data, image_data, av_labels = audio_data.type(torch.FloatTensor).cuda(), \ image_data.type(torch.FloatTensor).cuda(), \ av_labels.type(torch.FloatTensor).cuda() optimizer.zero_grad() av_outputs, _, _ = model(image_data, audio_data) loss = criterion(av_outputs, av_labels) loss.backward() optimizer.step() losses += loss.detach().cpu().numpy() # acc = eva_metric2(av_outputs.detach().cpu().numpy(), av_labels.cpu().numpy()) # accs += acc count += 1 print('location loss is %.3f ' % (losses / count)) return accs / count def location_model_eva(model, data_loader): model.eval() accs = 0 num = len(data_loader.dataset) count = 0 results = {} with torch.no_grad(): for i, data in enumerate(data_loader, 0): audio_data, posi_img_data, nega_img_data, posi_label, nega_label, img_path, _ = data audio_data, image_data, av_labels, class_labels = batch_organize(audio_data, posi_img_data, nega_img_data, posi_label, nega_label) audio_data, image_data = audio_data.type(torch.FloatTensor).cuda(), image_data.type(torch.FloatTensor).cuda() av_outputs, av_maps, av_dists = model(image_data, audio_data) obj_localization = av_maps.detach().cpu().numpy() obj_localization = obj_localization[::2] av_dists = av_dists[::2] # accs += eva_metric2(av_outputs.detach().cpu().numpy(), av_labels.numpy()) count += 1 _, idx = torch.sort(av_dists, dim=1) idx = idx[:, 1].detach().cpu().numpy() for k in range(len(img_path)): results[img_path[k][:-4]] = obj_localization[k] pickle.dump(results, open('dmc.pkl', 'wb')) return accs / count def main(): parser = argparse.ArgumentParser(description='AID_PRETRAIN') parser.add_argument('--data_list_dir', type=str, default='./data/data_indicator/music/solo') parser.add_argument('--data_dir', type=str, default='/home/ruiq/Music/solo') parser.add_argument('--mode', type=str, default='train', help='train/val/test') parser.add_argument('--json_file', type=str,default='./data/MUSIC_label/MUSIC_solo_videos.json') parser.add_argument('--use_pretrain', type=int, default=0, help='whether to init from ckpt') parser.add_argument('--ckpt_file', type=str, default='location_net_009_0.665.pth', help='pretrained model name') parser.add_argument('--enable_img_augmentation', type=int, default=1, help='whether to augment input image') parser.add_argument('--enable_audio_augmentation', type=int, default=1, help='whether to augment input audio') parser.add_argument('--batch_size', type=int, default=32, help='training batch size') parser.add_argument('--learning_rate', type=float, default=1e-4, help='training batch size') parser.add_argument('--epoch', type=int, default=100, help='training epoch') parser.add_argument('--gpu_ids', type=str, default='[0,1,2,3]', help='USING GPU IDS e.g.\'[0,4]\'') parser.add_argument('--num_threads', type=int, default=4, help='number of threads') parser.add_argument('--seed', type=int, default=10) parser.add_argument('--evaluate', type=int, default=0, help='only evaluate or not') parser.add_argument('--v_cluster', type=int, default=2, help='number of visual cluster') parser.add_argument('--a_cluster', type=int, default=1, help='number of audio cluster') args = parser.parse_args() train_list_file = os.path.join(args.data_list_dir, 'solo_training_1.txt') val_list_file = os.path.join(args.data_list_dir, 'solo_validation.txt') test_list_file = os.path.join(args.data_list_dir, 'solo_testing.txt') train_dataset = MUSIC_Dataset(args.data_dir, train_list_file, args) val_dataset = MUSIC_Dataset(args.data_dir, val_list_file, args) test_dataset = MUSIC_Dataset(args.data_dir, test_list_file, args) train_dataloader = DataLoader(dataset=train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_threads) val_dataloader = DataLoader(dataset=val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_threads) test_dataloader = DataLoader(dataset=test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_threads) # net setup visual_backbone = resnet18(modal='vision',pretrained=False) audio_backbone = resnet18(modal='audio') av_model = DMC_NET(visual_net=visual_backbone, audio_net=audio_backbone, v_cluster_num=args.v_cluster, a_cluster_num=args.a_cluster) if args.use_pretrain: PATH = args.ckpt_file state = torch.load(PATH) av_model.load_state_dict(state, strict=False) av_model_cuda = av_model.cuda() loss_func = ContrastiveLoss() optimizer = optim.Adam(params=av_model_cuda.parameters(), lr=args.learning_rate, betas=(0.9, 0.999), weight_decay=0.0001) if args.evaluate: eva_location_acc = location_model_eva(av_model_cuda, test_dataloader) return for e in range(0, args.epoch): print('Epoch is %03d' % e) train_location_acc = location_model_train(av_model_cuda, train_dataloader, optimizer, loss_func) eva_location_acc = location_model_eva(av_model_cuda, test_dataloader) print('train acc is %.3f, val acc is %.3f' % (train_location_acc, eva_location_acc)) if e % 3 == 0: PATH = 'ckpt/dmc/dmc_stage_one_%03d_%.3f.pth' % (e, eva_location_acc) torch.save(av_model_cuda.state_dict(), PATH) if __name__ == '__main__': main() ```
{ "source": "jeanings/jng-portfolio", "score": 3 }
#### File: application/index/routes.py ```python from flask import Blueprint, render_template, url_for from flask import current_app as app from .assets import build_assets DEBUG_MODE = app.config['FLASK_DEBUG'] # Blueprint config. index_bp = Blueprint('index_bp', __name__, static_folder='static', template_folder='templates' ) if DEBUG_MODE == 'True': build_assets(app) # Index route. @index_bp.route('/', methods=['GET']) def index(): return render_template('index.html', title="Some personal site on the web —— jeanings.space" ) ``` #### File: projects/japan_real_estate_choropleth/routes.py ```python from flask import Blueprint, render_template from flask import current_app as app from .assets import build_assets DEBUG_MODE = app.config['FLASK_DEBUG'] # Blueprint config. japan_real_estate_choropleth_bp = Blueprint('japan_real_estate_choropleth_bp', __name__, static_folder='static', template_folder='templates' ) if DEBUG_MODE == 'True': build_assets(app) # Japan real estate choropleth route. @japan_real_estate_choropleth_bp.route('/fudousan-kakaku-nuriwake-chizu-2010-2020', methods=['GET']) @japan_real_estate_choropleth_bp.route('/fudousan-kakaku-nuriwake-chizu-2010-2020/', methods=['GET']) def japan_real_estate_choropleth(): return render_template('japan_real_estate_choropleth.html', title="不動産取引価格塗り分け地図 2010~2020 —— jeanings.space", MAPBOX_ACCESS_KEY=app.config["MAPBOX_ACCESS_KEY"] ) ``` #### File: tokaido/tools/create_db.py ```python from pathlib import Path from flask import current_app as app from os import environ from dotenv import load_dotenv from sqlalchemy import create_engine, Table, Column, DECIMAL, Integer, String, Text, VARCHAR, MetaData import json load_dotenv(Path.cwd() / '.env') DATABASE_URL = environ.get('DATABASE_URL') DATAFILE = Path.cwd() / "application" / "projects" / "tokaido" / "tools" / "journal" / "journal.json" engine = create_engine(DATABASE_URL) meta = MetaData() def table_exists(): """ Helper: Checks for table. """ print("Checking for table 'journalEntries' in database...") if engine.dialect.has_table(engine, "journal"): return True else: return False def create_table(): """ Helper: create SQL model. """ print("Table doesn't exist, creating now.") journal_entries = Table("journal", meta, Column("id", Integer, primary_key=True), Column("day", Integer, index=True, unique=True, nullable=True), Column("date", String(50), index=False, unique=True, nullable=True), Column("route", VARCHAR(75), index=False, unique=False, nullable=True), Column("weather", VARCHAR(50), index=False, unique=False, nullable=True), Column("weather_data", VARCHAR(100), index=False, unique=False, nullable=True), Column("temp", Integer, index=False, unique=False, nullable=True), Column("distance", DECIMAL(4,2), index=False, unique=False, nullable=True), Column("distance_percent", DECIMAL(4,2), index=False, unique=False, nullable=True), Column("distance_percent_cum", DECIMAL(5,2), index=False, unique=False, nullable=True), Column("moving", String(20), index=False, unique=False, nullable=True), Column("lodging", DECIMAL(6,2), index=False, unique=False, nullable=True), Column("food", DECIMAL(6,2), index=False, unique=False, nullable=True), Column("strava", VARCHAR(85), index=False, unique=False, nullable=True), Column("entry", Text, index=False, unique=False, nullable=True) ) journal_entries.create(engine) def populate_table(data): """ Helper: Fill in table. """ print("Adding data to table...") for index, entry in enumerate(data['journalEntries']): id_num = data['journalEntries'][index]['id'] day = data['journalEntries'][index]['day'] date = data['journalEntries'][index]['date'] route = data['journalEntries'][index]['route'] weather = data['journalEntries'][index]['weather'] weather_data = data['journalEntries'][index]['weatherData'] temp = data['journalEntries'][index]['temp'] distance = data['journalEntries'][index]['distance'] distancePercent = data['journalEntries'][index]['distancePercent'] distancePercentCum = data['journalEntries'][index]['distancePercentCum'] moving = data['journalEntries'][index]['moving'] lodging = data['journalEntries'][index]['lodging'] food = data['journalEntries'][index]['food'] strava = data['journalEntries'][index]['strava'] text_entry = data['journalEntries'][index]['entry'] with engine.connect() as connection: connection.execute(""" INSERT INTO journal (id, day, date, route, weather, weather_data, temp, distance, distance_percent, distance_percent_cum, moving, lodging, food, strava, entry) VALUES (%(id)s, %(day)s, %(date)s, %(route)s, %(weather)s, %(weather_data)s, %(temp)s, %(distance)s, %(distance_percent)s, %(distance_percent_cum)s, \ %(moving)s, %(lodging)s, %(food)s, %(strava)s, %(entry)s);""", { "id": id_num, "day": day, "date": date, "route": route, "weather": weather, "weather_data": weather_data, "temp": temp, "distance": distance, "distance_percent": distancePercent, "distance_percent_cum": distancePercentCum, "moving": moving, "lodging": lodging, "food": food, "strava": strava, "entry": text_entry } ) def update_table(data): """ Helper: Update table. """ print("Table exists - updating table instead.") for index, entry in enumerate(data['journalEntries']): id_num = data['journalEntries'][index]['id'] day = data['journalEntries'][index]['day'] date = data['journalEntries'][index]['date'] route = data['journalEntries'][index]['route'] weather = data['journalEntries'][index]['weather'] weather_data = data['journalEntries'][index]['weatherData'] temp = data['journalEntries'][index]['temp'] distance = data['journalEntries'][index]['distance'] distancePercent = data['journalEntries'][index]['distancePercent'] distancePercentCum = data['journalEntries'][index]['distancePercentCum'] moving = data['journalEntries'][index]['moving'] lodging = data['journalEntries'][index]['lodging'] food = data['journalEntries'][index]['food'] strava = data['journalEntries'][index]['strava'] text_entry = data['journalEntries'][index]['entry'] with engine.connect() as connection: connection.execute(""" UPDATE journal SET entry = %(entry)s WHERE id = %(id)s;""", { "id": id_num, "entry": text_entry } ) def create_db(): """ Reads in json and builds db with model from models.py """ with open(DATAFILE) as file: print(">>> Opening {0}...".format(DATAFILE)) data = json.load(file) if table_exists() is False: create_table() populate_table(data) print("Table created and populated, closing.") else: update_table(data) print("Table updated, closing.") if __name__ == '__main__': create_db() ``` #### File: tokaido/tools/photo_json.py ```python import json, piexif, pytz, jsons from copy import deepcopy from datetime import datetime from pathlib import Path PROJ_FOLDER = Path.cwd() / "application" / "projects" / "tokaido" IMG_FOLDER = PROJ_FOLDER / "tools" / "journal" / "images" PHOTO_JSON = IMG_FOLDER / "tools" / "journal" / "photo.json" JSON_FILE = PROJ_FOLDER / "tools" / "data" / "photo_data.json" class Photo(object): class Geometry(object): def __init__(self): self.type = "Point" self.coordinates = None class Properties(object): def __init__(self): self.filename = None self.url = None self.thumbnail = None self.icon = None self.date = None self.day = None def __init__(self): self.type = "Feature" self.geometry = self.Geometry() self.properties = self.Properties() def dms_to_deci_deg(dms_coord): """ Helper function to convert degrees/minutes/seconds to decimal degree coordinates. https://docs.microsoft.com/en-us/office/troubleshoot/excel/convert-degrees-minutes-seconds-angles """ degrees = dms_coord[0][0] minutes = dms_coord[1][0] seconds = dms_coord[2][0] deci_coord = degrees + (minutes / 60) + (seconds / 100 / 3600) return deci_coord def build_photo_json(): """ Crawls through images to extract data and generate a json from it. """ allowed_extensions = ['.jpg', '.JPG'] image_list = [item for item in IMG_FOLDER.rglob('**/*') if item.suffix in allowed_extensions] collection = {"type": "FeatureCollection", "features": []} data_dict = [] with open(JSON_FILE, 'w') as file: for image in image_list: # Load existing EXIF metadata. exif_data = piexif.load(str(image)) print(">>> Extracting data from {0}...".format(image.name)) # Clean up date format. tz_JPT = pytz.timezone('Japan') raw_exif_time = exif_data['Exif'][piexif.ExifIFD.DateTimeOriginal] exif_time = raw_exif_time.decode('ASCII') exif_time = datetime.strptime(exif_time, "%Y:%m:%d %H:%M:%S") exif_time = tz_JPT.localize(exif_time, is_dst=False) latitude = dms_to_deci_deg(exif_data['GPS'][2]) longitude = dms_to_deci_deg(exif_data['GPS'][4]) # Add wanted data. photo_data = Photo() photo_data.geometry.coordinates = [longitude, latitude] photo_data.properties.filename = image.name.strip(".jpg") photo_data.properties.url = "https://storage.googleapis.com/jn-portfolio/projects/tokaido/images/" + image.name photo_data.properties.thumbnail = "https://storage.googleapis.com/jn-portfolio/projects/tokaido/images/thumbs/" + image.name photo_data.properties.icon = "https://storage.googleapis.com/jn-portfolio/projects/tokaido/images/icons/" + image.name photo_data.properties.date = exif_time.strftime("%Y/%m/%d, %H:%M:%S") photo_data.properties.day = exif_time.strftime("%Y/%m/%d") temp_dict = {image.stem: photo_data} # dump = json.dumps(temp_dict[image.stem].__dict__) dump = temp_dict[image.stem].__dict__ # data_dict.append(deepcopy(temp_dict)) data_dict.append(deepcopy(dump)) # file.write(dump + "\n") collection["features"] = data_dict collectionString = jsons.dumps(collection) # json.dump(data_dict, file, indent=2) file.write(collectionString) file.close() print(">>> JSON generated, closing program.") if __name__ == '__main__': build_photo_json() ```
{ "source": "jeanjacquesp/via-cms", "score": 2 }
#### File: via-cms/via_cms/cli.py ```python import click from via_cms.model import * # from via_cms.model._relationship import GeolocPost # from via_cms.model.feed.basket_dao import Basket # from via_cms.model.feed.feed_document_dao import FeedDocument # from via_cms.model.feed.feed_finance_dao import FeedFinance # from via_cms.model.feed.feed_news_dao import FeedNews # from via_cms.model.feed.feed_post_dao import FeedPost # from via_cms.model.feed.price_dao import Price # from via_cms.model.internal.role_dao import Role # from via_cms.model.internal.workflow_dao import Workflow # from via_cms.model.internal.user_dao import User # from via_cms.model.monitor.client_dao import Client # from via_cms.model.monitor.feedback_dao import Feedback # from via_cms.model.static.command_dao import Command # from via_cms.model.feed.feed_dao import Feed # from via_cms.model.static.geoloc_dao import Geoloc # from via_cms.model.static.profile_dao import Profile # from via_cms.model.static.status_dao import Status # from via_cms.model.static.subject_dao import Subject # from via_cms.model.static.widget_dao import Widget def command_translate(app): @app.cli.group() def translate(): """Translation and localization commands.""" pass @translate.command() @click.argument('lang') def init(lang): """Initialize a new language.""" if os.system('pybabel extract -F babel.cfg -k _l -o messages.pot .'): raise RuntimeError('extract command failed') # end if os.system('pybabel extract -F babel.cfg -k _l -o messages.pot .') if os.system('pybabel init -i messages.pot -d via_cms\translations -l ' + lang): raise RuntimeError('init command failed') # end if os.system('pybabel init -i messages.pot -d translations -l ' + lang) os.remove('messages.pot') @translate.command() def update(): """Update all languages.""" if os.system('pybabel extract -F babel.cfg -k _l -o messages.pot .'): raise RuntimeError('extract command failed') # end if os.system('pybabel extract -F babel.cfg -k _l -o messages.pot .') if os.system('pybabel update -i messages.pot -d translations'): raise RuntimeError('update command failed') # end if os.system('pybabel update -i messages.pot -d translations') os.remove('messages.pot') @translate.command() def compile(): """Compile all languages.""" if os.system('pybabel compile -d translations'): raise RuntimeError('compile command failed') def command_importer(app): @app.cli.group() def importer(): pass @importer.command(help='import from csv (UTF-8)') @click.argument('file_path') @click.argument('table_name') def from_csv(file_path, table_name): """Import a csv file to the database.""" if not file_path: raise FileExistsError('{} does not exist'.format(file_path)) # end if not file_path if not table_name: raise ValueError('Table name should not be empty') elif table_name.lower() == 'basket_tbl': Basket.import_from_csv(file_path) elif table_name.lower() == 'command_tbl': Command.import_from_csv(file_path) elif table_name.lower() == 'feed_tbl': Feed.import_from_csv(file_path) elif table_name.lower() == 'widget_tbl': Widget.import_from_csv(file_path) elif table_name.lower() == 'geoloc_tbl': Geoloc.import_from_csv(file_path) elif table_name.lower() == 'profile_tbl': Profile.import_from_csv(file_path) elif table_name.lower() == 'status_tbl': Status.import_from_csv(file_path) elif table_name.lower() == 'subject_tbl': Subject.import_from_csv(file_path) elif table_name.lower() == 'role_tbl': Role.import_from_csv(file_path) elif table_name.lower() == 'user_tbl': User.import_from_csv(file_path) elif table_name.lower() == 'workflow_tbl': Workflow.import_from_csv(file_path) else: raise ValueError('Table name not part of the CLI.') @importer.command(help='export a table to csv (UTF-8)') @click.argument('file_path') @click.argument('table_name') def to_csv(file_path, table_name): if not file_path: raise FileExistsError('{} does not exist'.format(file_path)) # end if not file_path if not table_name: raise ValueError('Table name should not be empty') # end if not table_name if table_name.lower() == 'geoloc': Geoloc.export_to_csv(file_path) # end if table_name.lower() == 'geoloc' ``` #### File: model/internal/role_dao.py ```python from sqlalchemy.orm import validates from via_cms.extension import db from via_cms.model._database import Model from via_cms.model._database import ValidateName from via_cms.model.static.geoloc_dao import Geoloc class Role(Model, ValidateName): __tablename__ = 'role_tbl' id = db.Column(db.Integer, primary_key=True, autoincrement=False) principal = db.Column(db.Unicode(31), nullable=False) # admin editor supervisor constraint = db.Column(db.Unicode(31)) # null, region name = db.Column(db.Unicode(64), nullable=False, unique=True) label_ar = db.Column(db.Unicode(128), nullable=False, unique=True) label_en = db.Column(db.Unicode(128), nullable=False, unique=True) description_ar = db.Column(db.Unicode(512)) description_en = db.Column(db.Unicode(512)) geoloc_list = db.relationship('Geoloc', secondary='role_geoloc_tbl', backref=db.backref('role_list_br', lazy='dynamic')) user_list = db.relationship('User', secondary='user_role_tbl', backref=db.backref('role_list_br', lazy='dynamic')) @validates('constraint') def validate_constraint(self, _, data): if data: assert data in ['region'] # the list of constraints return data @validates('principal') def validate_principal(self, _, data): if data: assert data in ['admin', 'supervisor', 'editor', 'third_party'] # the list of constraints return data @staticmethod def import_from_csv(file_path): import csv with open(file_path, encoding='utf-8') as csvfile: reader = csv.reader(csvfile, quoting=csv.QUOTE_NONE) first = True for row in reader: if first: first = False else: id = row[0] name = row[1] principal = row[2] constraint = row[3] label_ar = row[4] label_en = row[5] description_ar = row[6] description_en = row[7] geoloc_list_column_separated = row[8] if geoloc_list_column_separated: geoloc_list_column_separated = geoloc_list_column_separated.split(':') role = Role(id=id, name=name, principal=principal, constraint=constraint, label_en=label_en, label_ar=label_ar, description_en=description_en, description_ar=description_ar) for geoloc_id in geoloc_list_column_separated: geoloc = Geoloc.query.get(int(geoloc_id)) if geoloc: role.geoloc_list.append(geoloc) role.save() ``` #### File: model/internal/user_dao.py ```python import datetime as dt from flask_login import UserMixin from sqlalchemy.orm import validates from via_cms.extension import bcrypt from via_cms.extension import db from via_cms.model._database import Model from via_cms.model.internal.role_dao import Role class User(UserMixin, Model): __tablename__ = 'user_tbl' # flask packages required to name the identifier column: id, no other choice. id = db.Column(db.Integer, primary_key=True, autoincrement=False) username = db.Column(db.Unicode(64), unique=True, nullable=False) email = db.Column(db.Unicode(128), unique=True, nullable=False) password = db.Column(db.String(128), nullable=True) created = db.Column(db.DateTime, nullable=False, default=dt.datetime.utcnow) updated = db.Column(db.DateTime, nullable=False, default=dt.datetime.utcnow) last_seen = db.Column(db.DateTime, default=dt.datetime.utcnow) alias_ar = db.Column(db.Unicode(64), nullable=True) alias_en = db.Column(db.Unicode(64), nullable=True) active = db.Column(db.Boolean, default=False) # post_list = db.relationship('FeedPost', backref=db.backref('editor')) basket_list = db.relationship('Basket', backref=db.backref('editor')) # role_list = db.relationship('Role', secondary='user_role_tbl', backref=db.backref('user_list_br', lazy='dynamic')) # TODO rights for accesses. def __init__(self, username, email, password=None, **kwargs): db.Model.__init__(self, username=username, email=email, **kwargs) if password: self.set_password(password) else: self.password = None def set_password(self, password): self.password = bcrypt.generate_password_hash(password) def check_password(self, value): return bcrypt.check_password_hash(self.password, value) def __repr__(self): return '<User({username!r})>'.format(username=self.username) @classmethod def get_by_id(cls, user_id): if any((isinstance(user_id, (str, bytes)) and user_id.isdigit(), isinstance(user_id, (int, float))), ): return cls.query.get(int(user_id)) return None def get_geoloc_rights(self): result = [] role_list = self.role_list for role in role_list: geoloc_list = role.geoloc_list for geoloc in geoloc_list: result.append(geoloc.id) return result @validates('email') def validate_email(self, key, address): assert '@' in address return address def is_admin(self): return 'admin' in (x.principal for x in self.role_list) def is_supervisor(self): return 'supervisor' in (x.principal for x in self.role_list) or self.is_admin() def is_supervisor_news(self): return 'supervisor_news' in (x.principal for x in self.role_list) or self.is_supervisor() or self.is_admin() def is_supervisor_price(self): return 'supervisor_price' in (x.principal for x in self.role_list) or self.is_supervisor() or self.is_admin() def is_editor(self): return 'editor' in (x.principal for x in self.role_list) or self.is_supervisor() or self.is_admin() def is_editor_price(self): # A price editor is an editor limited to edit prices return 'editor/price' in (x.principal for x in self.role_list) or self.is_editor() or self.is_supervisor() or self.is_admin() def is_editor_news(self): # A price editor is an editor limited to edit news return 'editor/news' in (x.principal for x in self.role_list) or self.is_editor() or self.is_supervisor() or self.is_admin() def is_allowed(self, requirement_list): for role in self.role_list: if role.principal in requirement_list: return True return False @staticmethod def import_from_csv(file_path): import csv with open(file_path, encoding='utf-8') as csvfile: reader = csv.reader(csvfile, quoting=csv.QUOTE_NONE) first = True for row in reader: if first: first = False else: id = row[0] username = row[1] email = row[2] password = <PASSWORD>[3] alias_ar = row[4] alias_en = row[5] role_id_columnseperated_list = row[6] if role_id_columnseperated_list: role_id_columnseperated_list = role_id_columnseperated_list.split(':') user = User(id=int(id), username=username, email=email, password=password, alias_ar=alias_ar, alias_en=alias_en, active=True) for role_id in role_id_columnseperated_list: role = Role.query.get(int(role_id)) user.role_list.append(role) user.save() ``` #### File: remote/subscriber/message_handler.py ```python import datetime as dt # # import json import traceback from via_common.multiprocess.logger_manager import LoggerManager from via_common.network.source_type import SourceType from via_common.util.error import Error from via_common.util.helper import deserialize_device_post from via_cms.model import FeedPost from via_cms.model.monitor.client_dao import Client from via_cms.model.monitor.feedback_dao import Feedback from via_cms.model.static.geoloc_dao import Geoloc from via_cms.model.static.profile_dao import Profile from via_cms.model.static.subject_dao import Subject class MessageHandler: """ A callable data handler that transform compressed in-house formatted payload into the json format (similar to iptc ninjs) readable by the external receiver (e.g. CMS). """ def __init__(self, app, sync_manager): self.app = app self.sync_manager = sync_manager self.logger = LoggerManager.get_logger(__class__.__name__) def __call__(self, mqtt_message): return self.handle_payload(mqtt_message) def handle_message(self, source_type, payload): self.logger.debug('handle_message') error = Error() try: if source_type == SourceType.DEVICE: message = deserialize_device_post(payload) error += self._handle_device_post(message) else: return 'Unknown source' except Exception as e: # TODO Exception import traceback traceback.print_tb(e.__traceback__) # TODO err_msg = 'handle_message - raise EXCEPTION for message. Source_type: {}, error: {}'.format(source_type, str(e)) error.add(err_msg) # TODO log if error: self.logger.warning(error.msg()) return error def _handle_device_post(self, device_post): error = Error() with self.app.app_context(): if device_post.profile_id == Profile.query.filter_by(name='device').one().id: if device_post.subject_id == Subject.query.filter_by(name='new_client').one().id: # 'new_client': TODO magic error += self._handle_new_client(device_post) elif device_post.subject_id == Subject.query.filter_by(name='feedback').one().id: # 'feedback': TODO magic error += self._handle_feedback(device_post) elif device_post.subject_id == Subject.query.filter_by(name='location_change').one().id: # 'location_change': TODO magic error += self._handle_location_change(device_post) else: # todo unknown profile err_msg = 'handle_message - UNKNOWN profile for input message {}/{}'.format(packet_type, packet_id) error.add(err_msg) else: # todo unknown profile err_msg = 'handle_message - UNKNOWN profile for input message {}/{}'.format(packet_type, packet_id) error.add(err_msg) return error def _handle_feedback(self, device_post): self.logger.debug('_handle_feedback') error = Error() with self.app.app_context(): device_id = device_post.device_id item_id = device_post.feedback.item_id item_version = device_post.feedback.item_version try: feedback_json = json.dumps(device_post.feedback.feedback_json) except Exception as e: traceback.print_tb(e.__traceback__) # TODO error.add('json error: {}'.format(str(e))) post = FeedPost.query.get((item_id, item_version)) if not post: error.add('Post unknown for id: {}, version: {}'.format(item_id, item_version)) else: client = Client.query.filter_by(device_id=device_id).first() # TODO error prone if client: feedback = Feedback(client_id=client.id, client=client, post=post, feedback_json=feedback_json) feedback.save() if post: post.feedback_list.append(feedback) post.save() client.feedback_list.append(feedback) client.save() client_fdb_json = "" try: client_fdb_json = str(device_post.feedback.feedback_json) except: # TODO properly error.add('Error while handling feedback for client id, item_id, feedback: {}, {}, {}. No feedback found' .format(client.id, item_id, client_fdb_json)) else: self.logger.info('Handle feedback for client id, item_id, feedback: {}, {}, {}'.format(client.id, item_id, client_fdb_json)) else: error.add('client unknown') # End if client # end if not post # End with self.app.app_context() return error def _handle_new_client(self, device_post): self.logger.debug('_handle_new_client') error = Error() with self.app.app_context(): device_id = device_post.device_id geoloc_id = device_post.geoloc_id try: geoloc_id = int(geoloc_id) except ValueError as e: error.add('Invalid geoloc_id string {} for device id: {}'.format(geoloc_id, device_id)) self.logger.warning(error.msg()) return error geoloc = Geoloc.query.get(geoloc_id) if not geoloc: # It is ok not to have geoloc as the device gps might not have got the geoloc yet. error.add('Unknown geoloc {} for device id: {}'.format(geoloc_id, device_id)) self.logger.warning(error.msg()) # TODO this is temporary. the issue is that mysql does not accept a geoloc that does not exist, obviously geoloc_id = 1000 # end if not geoloc client = Client.query.filter_by(device_id=device_id).first() # The client should be new if not client: client = Client(device_id=device_id, geoloc_id=geoloc_id) client.save() else: error.add('client already registered, device_id: {}, geoloc_id: {}'.format(device_id.geoloc_id)) if not error: self.logger.info('Handle new client id: {}, device_id: {}'.format(client.id, device_id)) error += self.sync_manager.sync_client_content(client) # End with self.app.app_context() return error def _handle_location_change(self, device_post): self.logger.debug('_handle_location_change') error = Error() with self.app.app_context(): device_id = device_post.device_id geoloc_id = device_post.geoloc_id try: geoloc_id = int(geoloc_id) except ValueError as e: error.add('Invalid geoloc_id string {} for device id: {}'.format(geoloc_id, device_id)) self.logger.warning(error.msg()) return error geoloc = Geoloc.query.get(geoloc_id) if not geoloc: error.add('Unknown geoloc {} for device id: {}'.format(geoloc_id, device_id)) self.logger.warning(error.msg()) return error client = Client.query.filter_by(device_id=device_id).first() # The client should exist already if client: client.geoloc_id = geoloc_id client.updated = dt.datetime.utcnow() client.save() else: # it is an error but we should then create it anyway error += self._handle_new_client(device_post) if error: return error # end if error client = Client.query.filter_by(device_id=device_id).first() # end if client self.logger.info('Handle location change client id, geoloc_id: {}, {}'.format(client.id if client else 'Unknown', geoloc_id)) error += self.sync_manager.sync_client_content(client) # End with self.app.app_context() return error ``` #### File: via_cms/util/config_logger.py ```python import os # # # from via_common.util.config_mixin_logger import ConfigMixInLogger class ConfigLogger(ConfigMixInLogger): def __init__(self, logger_queue=None): super().__init__(logger_queue) @classmethod def get_config_path(cls): return os.getenv('VIA_CMS_CONFIG_PATH') @classmethod def get_config_filename(cls): return os.getenv('VIA_CMS_CONFIG_LOGGER_FILENAME') or 'logger.json' @classmethod def _init_config_logger(cls, logger_queue): pass ``` #### File: via_cms/viewmodel/vm_basket.py ```python from via_common.multiprocess.logger_manager import LoggerManager from via_cms.model.feed.basket_dao import Basket from via_cms.util.helper import get_locale logger = LoggerManager.get_logger('vm_price') def get_basket_list(subject_list): """ Returns a page of slugs """ lang = get_locale() basket_list_blob = [] for subject in subject_list: basket_list = Basket.query.filter_by(subject_id=subject.id) for basket in basket_list: subject = basket.subject status = basket.status status_label = '' subject_label = '' label = '' editor = '' if lang == 'ar': status_label = status.label_ar subject_label = subject.label_ar label = basket.label_ar editor = basket.editor.alias_ar elif lang == 'en': status_label = status.label_en subject_label = subject.label_en label = basket.label_en editor = basket.editor.alias_en basket_list_blob.append({ 'id': basket.id, 'status_label': status_label, 'label': label, 'unit': basket.unit, 'created_date': basket.created.strftime('%y/%m/%d'), 'subject_id': basket.subject_id, 'code': basket.code, 'subject_name': basket.subject.name, 'editor': editor, }) return basket_list_blob def get_top_tag_list(n): """ Returns N top tag_list """ raise NotImplementedError def get_tagged_post_list(tag, limit): """ Gets the most recent limit post_list with a certain tag """ raise NotImplementedError ``` #### File: via_cms/viewmodel/vm_document.py ```python import json import traceback from flask import current_app from via_common.multiprocess.logger_manager import LoggerManager from via_cms.model.feed.feed_document_dao import FeedDocument from via_cms.model.feed.feed_post_dao import FeedPost from via_cms.model.internal.user_dao import User from via_cms.model.static.profile_dao import Profile from via_cms.model.static.subject_dao import Subject from via_cms.util.helper import get_locale logger = LoggerManager.get_logger('vm_document') def get_page_document(request_size, page_num): """ Returns a page of slugs """ lang = get_locale() doc_list = FeedDocument.query.order_by(FeedDocument.created.asc()).offset(page_num * request_size).limit(request_size) doc_list_blob = [] for doc in doc_list: editor = '' subject_label = '' feedback_nb = len(doc.feedback_list) feedback_list = ', '.join(("{}".format(x.id) for x in doc.feedback_list)) status_label = '' workflow_label = '' profile_label = '' geotag = '' if lang == 'ar': status_label = doc.status.label_ar workflow_label = doc.workflow.label_ar subject_label = doc.subject.label_ar profile_label = doc.profile.label_ar geotag = '; '.join((x.label_ar for x in doc.geoloc_list)) editor = doc.editor.alias_ar elif lang == 'en': status_label = doc.status.label_en workflow_label = doc.workflow.label_en subject_label = doc.subject.label_en profile_label = doc.profile.label_en geotag = '; '.join((x.label_en for x in doc.geoloc_list)) editor = doc.editor.alias_en geoloc_id_list = '; '.join((str(x.id) for x in doc.geoloc_list)) doc_list_blob.append({ 'id': doc.id, 'version': doc.version, 'language': doc.language, 'title': doc.title[:30] + " ..." if doc.title and len(doc.title) > 34 else doc.title, 'created_date': doc.created.strftime('%y/%m/%d'), 'updated_date': doc.updated.strftime('%y/%m/%d'), 'updated_time': doc.updated.strftime('%H:%M:%S'), 'editor': editor, 'status_label': status_label, 'workflow_label': workflow_label, 'subject_label': subject_label, 'profile_label': profile_label, 'geotag': geotag, 'geoloc_id_list': geoloc_id_list, 'caption': doc.caption[:18] + " ..." if doc.caption and len(doc.caption) > 22 else doc.caption, 'headline': doc.headline[:30] + " ..." if doc.headline and len(doc.headline) > 34 else doc.headline, 'feedback_nb': feedback_nb, 'feedback_list': feedback_list }) return doc_list_blob def itemize_document(post_id): lang = get_locale() item = {} post = FeedPost.query.filter_by(id=post_id).one() doc = FeedDocument.query.filter_by(id=post_id).one() from via_cms.main import get_config_flask config_flask = get_config_flask() if post and doc: item['post_id'] = str(post.id) item['created'] = post.created item['updated'] = post.updated item['posted'] = post.created.strftime("%a %d %B %Y - %H:%M") item['lang'] = doc.language item['title'] = doc.title item['headline'] = doc.headline item['caption'] = doc.caption item['more_info'] = doc.more_info item['feedback_definition'] = doc.feedback_definition item['rendition_thumbnail_filename'] = doc.rendition_thumbnail_filename if doc.rendition_thumbnail_filename else '' item['rendition_main_filename'] = doc.rendition_main_filename profile = Profile.query.get(post.profile_id) item['profile_name'] = profile.name if lang == 'ar': item['profile'] = profile.label_ar elif lang == 'en': item['profile'] = profile.label_en subject = Subject.query.get(post.subject_id) item['subject_name'] = subject.name if lang == 'ar': item['subject'] = subject.label_ar elif lang == 'en': item['subject'] = subject.label_en item['status_name'] = doc.status.name if lang == 'ar': item['status'] = doc.status.label_ar elif lang == 'en': item['status'] = doc.status.label_en user = User.query.get(post.user_id) item['user_id'] = user.id if lang == 'ar': item['user'] = user.alias_ar + " - " + user.alias_en elif lang == 'en': item['user'] = user.alias_en + " - " + user.alias_ar geoloc_list = {} for geoloc in doc.geoloc_list: label = '' if lang == 'ar': label = geoloc.label_ar elif lang == 'en': label = geoloc.label_en geoloc_list.update({geoloc.id: label}) item['geoloc_list'] = geoloc_list else: item['error'] = "Document " + post_id + " Not found" # TODO manage error properly return item # TODO splitting here between geoloc is not optimal :( def publish_document(doc, topic_prefix=''): error = '' if doc: try: result = doc.to_dict_of_dict_by_geoloc() # content_profile = int(doc.profile.id).to_bytes(4, byteorder='little', signed=True) # item_id = int(doc.id).to_bytes(8, byteorder='little', signed=True) logger.debug('Publishing {}: post_id: {}'.format(doc.profile.name, doc.id)) for geoloc_id, content in result.items(): # TODO should be a future... _, error = current_app.forwarder.send_data_sync(json.dumps(content).encode()) except ValueError as e: error += '{}\n'.format(str(e)) # TODO exception traceback.print_tb(e.__traceback__) except Exception as e: error += '{}\n'.format(str(e)) # TODO exception traceback.print_tb(e.__traceback__) return error ``` #### File: private/form/create_form_notice.py ```python from flask_babel import lazy_gettext as _l from flask_wtf import FlaskForm from flask_wtf.file import FileAllowed from wtforms import FileField from wtforms import IntegerField from wtforms import Label from wtforms import RadioField from wtforms import SelectField from wtforms import SubmitField from wtforms import TextAreaField from wtforms.validators import DataRequired from wtforms.validators import Length from wtforms.validators import NumberRange from wtforms.validators import Optional from via_cms.config_flask import ConfigFlask from via_cms.model.static.profile_dao import Profile from via_cms.model.static.subject_dao import Subject from via_cms.util.helper import get_locale class CreateFormNotice(FlaskForm): language = SelectField(_l('Language of the post'), choices=[(k, v) for k, v in ConfigFlask.LANGUAGE_DICT.items()]) subject = Label(_l('Subject'), "") # For future use. Not displayed for now. It is why it is optional # subtitle1 = SelectField(_l('Subtitle - top'), choices=[('place', '$location'), ], validators=[Optional()]) # For future use. Not displayed for now. It is why it is optional # subtitle2 = SelectField(_l('Subtitle - bottom'), choices=[('event', '$event_date'), ], validators=[Optional()]) headline = TextAreaField(_l('Headline'), render_kw={'rows': '1', 'data-label': _l('Headline'), 'placeholder': _l('Headline')}, validators=[DataRequired(), Length(max=128)]) place = TextAreaField(_l('Place'), render_kw={'rows': '1', 'data-label': _l('Place'), 'placeholder': _l('Place')}, validators=[Length(max=70)]) # # additional_Info = TextAreaField(_l('Additional Information'), # render_kw={'rows': '3', 'data-label': _l('Additional Information'), # 'placeholder': _l('Additional Information')}, # validators=[Length(max=255)]) summary = TextAreaField(_l('Summary'), render_kw={'rows': '2', 'data-label': _l('Summary'), 'placeholder': _l('Summary')}, validators=[Length(max=255)]) date = TextAreaField(_l('Date'), render_kw={'rows': '1', 'data-label': _l('Date'), 'placeholder': _l('23.09.2019')}, validators=[Length(max=10)]) end_date = TextAreaField(_l('End Date (Optional)'), render_kw={'rows': '1', 'placeholder': _l('22.01.2020')}, validators=[Length(max=10)]) # ----------------------------------------------------------------------------- # body_json = TextAreaField(_l('Body in json format <small>(required)</small>'), render_kw={'rows': '8'}, validators=[DataRequired(), Length(max=2000)]) feedback_definition = TextAreaField(_l('Feedback as a series of json string'), render_kw={ 'rows': '10'}, validators=[Optional(), Length(max=2000)]) more_info = TextAreaField(_l('URL for More Info <small>(must start with http:// or https://)</small>'), render_kw={'rows': '1'}, validators=[Optional(), Length(max=127)]) contact_json = TextAreaField(_l('Contact information as a json string'), render_kw={ 'rows': '4'}, validators=[Optional(), Length(max=1000)]) geotag_list = TextAreaField(_l('List of Locations <small>(required)</small>'), render_kw={'rows': '1'}, validators=[DataRequired()]) rendition_thumbnail = FileField(_l('Icon file<p><small>The icon should be square, ideally 40x40 or 80x80 pixels. ' 'The image should be optimised for the web (minimal size). It\'s resolution should be 72 ppi ' '(96 ppi if needed) Max size is 2kb. Format supported are jpg and png</small></p>'), default='', validators=[Optional(), FileAllowed(['jpg', 'png', 'jpeg'], _l('Only images of type jpeg or png can be used'))]) submit = SubmitField(_l('Submit')) def __init__(self, subject_name): super().__init__() profile_news_id = Profile.query.filter_by(name='notice').first().id lang = get_locale() if lang == 'ar': # TODO add safeguard self.subject.text = Subject.query.filter_by(profile_id=profile_news_id, name=subject_name).one().label_ar elif lang == 'en': self.subject.text = Subject.query.filter_by(profile_id=profile_news_id, name=subject_name).one().label_en def validate(self): #: additional validation initial_validation = super().validate() if not initial_validation: return False # TODO return True ``` #### File: private/form/create_form_registration.py ```python from flask_babel import lazy_gettext as _l from flask_wtf import FlaskForm from wtforms import PasswordField from wtforms import SelectField from wtforms import StringField from wtforms.validators import DataRequired from wtforms.validators import Email from wtforms.validators import EqualTo from wtforms.validators import Length from wtforms.validators import Optional from via_cms.model.internal.role_dao import Role from via_cms.model.internal.user_dao import User from via_cms.util.helper import get_locale class CreateFormRegistration(FlaskForm): username = StringField(_l('User name <small>(required)</small>'), validators=[DataRequired(), Length(min=3, max=55)]) alias_ar = StringField(_l('Alias in arabic <small>(required)</small>'), validators=[DataRequired(), Length(min=1, max=55)]) alias_en = StringField(_l('Alias in english <small>(required)</small>'), validators=[DataRequired(), Length(min=1, max=100)]) email = StringField(_l('Email <small>(required)</small>'), validators=[DataRequired(), Email(), Length(min=6, max=40)]) password = PasswordField(_l('Password <small>(required)</small>'), validators=[DataRequired(), Length(min=6, max=40)]) confirm = PasswordField(_l('Verify password <small>(required)</small>'), [DataRequired(), EqualTo('password', message=_l('Passwords must match'))]) role_list = SelectField(_l('Role list (except admin)'), validators=[Optional()]) def __init__(self, *args, **kwargs): super(CreateFormRegistration, self).__init__(*args, **kwargs) self.user = None lang = get_locale() if lang == 'ar': self.role_list.choices = [(role.name, role.label_ar) for role in Role.query if role.name != 'admin'] elif lang == 'en': self.role_list.choices = [(role.name, role.label_en) for role in Role.query if role.name != 'admin'] def validate(self): initial_validation = super(CreateFormRegistration, self).validate() if not initial_validation: return False user = User.query.filter_by(username=self.username.data).first() if user: self.username.errors.append(_l("Username already registered")) return False user = User.query.filter_by(email=self.email.data).first() if user: self.email.errors.append(_l("Email already registered")) return False return True class EmailForm(FlaskForm): email = StringField(_l('Email <small>(required)</small>'), validators=[DataRequired(), Email()]) class PasswordForm(FlaskForm): password = PasswordField('Password <small>(required)</small>', validators=[DataRequired()]) password2 = PasswordField(_l('Confirm Password <small>(required)</small>'), validators=[DataRequired(), EqualTo('password', message=_l('Passwords must match'))]) class UsernameForm(FlaskForm): username = StringField('Username <small>(required)</small>', validators=[DataRequired()]) username2 = StringField('Confirm Username <small>(required)</small>', validators=[DataRequired(), EqualTo('username', message=_l('Usernames must match'))]) ``` #### File: private/visualization/dashboard_basket.py ```python from collections import namedtuple from flask import Blueprint from flask_login import login_required from via_common.multiprocess.logger_manager import LoggerManager from via_cms.model.static.profile_dao import Profile from via_cms.model.static.subject_dao import Subject from via_cms.util.helper import get_locale from via_cms.util.helper import render_extensions from via_cms.util.helper import role_required from via_cms.viewmodel.vm_basket import get_basket_list logger = LoggerManager.get_logger('dashboard_basket') bp = Blueprint('private.visualization.dashboard_basket', __name__, url_prefix='/private/dashboard/', static_folder="../static") @bp.route("/basket", methods=["GET", "POST"]) @login_required @role_required(['editor', 'supervisor', 'admin']) def dashboard_basket(page=None): """ """ page = int(page) if page else 0 # TODO page + ValueError _page_size = 100 # TODO: selectable on html if not page or page <= 0: next_page = 0 prev_page = 1 current = True else: next_page = page - 1 prev_page = page + 1 current = False profile_id_price = Profile.query.filter_by(name='price').one().id subject_list = Subject.query.filter_by(profile_id=profile_id_price) basket_list = get_basket_list(subject_list) lang = get_locale() if lang == 'ar': subject_list = [namedtuple('X', ('name', 'label'))(x.name, x.label_ar) for x in subject_list] elif lang == 'en': subject_list = [namedtuple('X', ('name', 'label'))(x.name, x.label_en) for x in subject_list] return render_extensions("private/basket/dashboard_basket.html", subject_list=subject_list, basket_list=basket_list, next_page=next_page, prev_page=prev_page, current=current) ```
{ "source": "jeanjacquesp/via-common", "score": 2 }
#### File: test/multiprocess/test_background_thread.py ```python import multiprocessing import multiprocessing.queues from unittest.mock import patch, mock_open import pytest from test.tool import config_server_obj, middleware_obj, backgroundthread_obj, config_logger_obj, ConfigServerPure, ConnectRaised from via_common.multiprocess.logger_manager import LoggerManager from via_common.multiprocess.pipe_adapter import SIGNAL_SHUTDOWN_START from via_common.multiprocess.queue_manager import QueueManager class SomeException(Exception): pass class TestBackgroundThread: config_internal_conn = None middleware = None backgroundthread = None queue_manager = None @pytest.fixture(scope="class") def setup(self): with patch("via_common.multiprocess.logger_manager.LoggerManager._check_or_create_directory"): LoggerManager().__del__() config_logger = config_logger_obj(config_logger='{"root":{"version":1}, "subprocess":{}}') LoggerManager.init_root_logger(config_logger) config_conn = {"host": "127.0.0.1", "port": 41567, "authkey": "abc"} # We need a proper config otherwise cannot be pickled self.__class__.config_internal_conn = ConfigServerPure(config_conn, 'test') config_server = '{"host":"127.0.0.1", "port":12346, "authkey":"xyz", "user_id": "pqr", "login": "uvw", "timeout":123, "keepalive":456, "retry":789}' with patch("builtins.open", new_callable=mock_open, read_data=config_server): self.__class__.config_server = config_server_obj() self.__class__.middleware = middleware_obj(self.config_server) self.__class__.queue_manager = QueueManager(self.config_internal_conn) self.__class__.backgroundthread = backgroundthread_obj(self.config_internal_conn, self.middleware) yield "teardown" LoggerManager().__del__() def test_shutdown(self, setup): self.backgroundthread.shutdown() assert self.backgroundthread.called_shutdown def test__initialise_thread_logger(self, setup): self.backgroundthread._initialise_thread_logger() assert self.backgroundthread.logger is not None @patch("via_common.network.middleware.Middleware.connect") def test__start_background_async(self, setup2): self.backgroundthread._start_background_async(lambda x: x, 'X') self.backgroundthread.system_queue.put(SIGNAL_SHUTDOWN_START) assert self.backgroundthread.called_shutdown @patch("via_common.network.middleware.Middleware.connect", side_effect=ConnectRaised) def test__run_thread_forever(self, setup): with pytest.raises(ConnectRaised) as ctx: self.backgroundthread._run_thread_forever(lambda x: x, 'X') assert isinstance(ctx.value, ConnectRaised) def test__setup_system_queue(self, setup): self.backgroundthread._setup_system_queue() assert isinstance(self.backgroundthread.system_queue, multiprocessing.managers.BaseProxy) @patch("multiprocessing.managers.BaseManager.connect", side_effect=ConnectRaised) def test__setup_system_queue_error(self, setup): with pytest.raises(ConnectionError) as ctx: self.backgroundthread._setup_system_queue() assert isinstance(ctx.value, ConnectionError) ``` #### File: test/network/test_middleware.py ```python from unittest.mock import patch, mock_open import pytest from test.tool import config_server_obj, middleware_obj class TestMiddleware: @pytest.fixture(scope="class") def setup(self): config_server = '{"host":"abc", "port":1234, "authkey":"xyz", "user_id": "pqr", "login": "uvw", "timeout":123, "keepalive":456, "retry":789}' with patch("builtins.open", new_callable=mock_open, read_data=config_server): self.__class__.config_server = config_server_obj() self.__class__.middleware = middleware_obj(self.config_server) def test__init__(self, setup): assert self.middleware.config == self.config_server assert self.middleware.host == self.config_server.host() assert self.middleware.port == self.config_server.port() assert self.middleware.password == self.config_server.authkey() def test_connect(self, setup): with pytest.raises(NotImplementedError) as ctx: self.middleware.connect() assert isinstance(ctx.value, NotImplementedError) def test_shutdown(self, setup): with pytest.raises(NotImplementedError) as ctx: self.middleware.shutdown() assert isinstance(ctx.value, NotImplementedError) def test_publish(self, setup): with pytest.raises(NotImplementedError) as ctx: self.middleware.publish('channel', 'message') assert isinstance(ctx.value, NotImplementedError) def test_subscribe_one_forever(self, setup): with pytest.raises(NotImplementedError) as ctx: self.middleware.subscribe_one_forever('channel', None) assert isinstance(ctx.value, NotImplementedError) def test__check_conn(self, setup): with pytest.raises(NotImplementedError) as ctx: self.middleware._check_conn() assert isinstance(ctx.value, NotImplementedError) # @classmethod # def _middleware_obj(cls, config): # class MiddlewareTest(Middleware): # # def __init__(self, config_server: ConfigMixInServer): # super().__init__(config_server) # # # MiddlewareTest.__abstractmethods__ = frozenset() # return MiddlewareTest(config) # @classmethod # @patch("os.path.isfile", lambda x: True if x == 'path/filename.json' else False) # @patch("os.path.join", lambda x, y: 'path/filename.json') # @patch('via_common.util.config_mixin.ConfigMixIn.get_config_path', lambda: 'path') # @patch('via_common.util.config_mixin.ConfigMixIn.get_config_filename', lambda: 'filename.json') # @patch('via_common.util.config_mixin.ConfigMixIn._init_config', lambda x: None) # def _config_server_obj(cls): # class ConfigServerTest(ConfigMixInServer): # # def __init__(self, server_name): # super().__init__(server_name) # # # config_server = '{"host":"abc", "port":1234, "authkey":"xyz", "user_id": "pqr", "login": "uvw", "timeout":123, "keepalive":456, "retry":789}' # ConfigServerTest.__abstractmethods__ = frozenset() # with patch("builtins.open", new_callable=mock_open, read_data=config_server): # config_server = ConfigServerTest('queue') # return config_server ``` #### File: test/util/test_config_mixin_server.py ```python from unittest.mock import patch, mock_open import pytest from test.tool import config_server_obj @patch("os.path.isfile", lambda x: True if x == 'path/filename.json' else False) @patch("os.path.join", lambda x, y: 'path/filename.json') @patch('via_common.util.config_mixin.ConfigMixIn.get_config_path', lambda: 'path') @patch('via_common.util.config_mixin.ConfigMixIn.get_config_filename', lambda: 'filename.json') @patch('via_common.util.config_mixin.ConfigMixIn._init_config', lambda x: None) class TestConfigMixinLogger: test_json = '{"host":"abc", "port":1234, "authkey":"xyz", "user_id": "pqr", "login": "uvw", "timeout":123, "keepalive":456, "retry":789}' EXPECTED = {"host": "abc", "port": 1234, "authkey": "xyz", "user_id": "pqr", "login": "uvw", "timeout": 123, "keepalive": 456, "retry": 789} def test_base(self): with patch("builtins.open", new_callable=mock_open, read_data=self.test_json): some_config = config_server_obj("tmp_server_name_base") assert some_config.config == self.EXPECTED assert some_config.get_config_dict() == self.EXPECTED assert some_config.host() == 'abc' assert some_config.port() == 1234 assert some_config.authkey() == 'xyz' assert some_config.timeout() == 123 assert some_config.keepalive() == 456 assert some_config.retry() == 789 assert some_config.server_name == 'tmp_server_name_base' def test__check_config(self): with patch("builtins.open", new_callable=mock_open, read_data=self.test_json): some_config = config_server_obj("tmp_server_name_cfg") assert some_config._check_config() == None # Port is int test_json_error_port = '{"host":"abc", "port":"1234", "authkey":"xyz", "timeout":"123", "keepalive":"456", "retry":"789"}' with patch("builtins.open", new_callable=mock_open, read_data=test_json_error_port): with pytest.raises(AttributeError) as ctx: config_server_obj('tmp_server_name_cfg2') assert ctx.errisinstance(AttributeError) and 'port' in ctx.exconly().lower() # Timeout is int test_json_error_timeout = '{"host":"abc", "port":1234, "authkey":"xyz", "timeout":"123", "keepalive":456, "retry":789}' with patch("builtins.open", new_callable=mock_open, read_data=test_json_error_timeout): with pytest.raises(AttributeError) as ctx: config_server_obj('tmp_server_name_cfg3') assert ctx.errisinstance(AttributeError) and 'timeout' in ctx.exconly().lower() # Keepalive is int test_json_error_keepalive = '{"host":"abc", "port":1234, "authkey":"xyz", "timeout":123, "keepalive":"456", "retry":789}' with patch("builtins.open", new_callable=mock_open, read_data=test_json_error_keepalive): with pytest.raises(AttributeError) as ctx: config_server_obj('tmp_server_name_cfg4') assert ctx.errisinstance(AttributeError) and 'keepalive' in ctx.exconly().lower() # retry is int test_json_error_retry = '{"host":"abc", "port":1234, "authkey":"xyz", "timeout":123, "keepalive":456, "retry":"789"}' with patch("builtins.open", new_callable=mock_open, read_data=test_json_error_retry): with pytest.raises(AttributeError) as ctx: config_server_obj('tmp_server_name_cfg5') assert ctx.errisinstance(AttributeError) and 'retry' in ctx.exconly().lower() def test_host(self): with patch("builtins.open", new_callable=mock_open, read_data=self.test_json): some_config = config_server_obj('tmp_server_name_cfg6') assert some_config.host() == 'abc' def test_port(self): with patch("builtins.open", new_callable=mock_open, read_data=self.test_json): some_config = config_server_obj('tmp_server_name_cfg7') assert some_config.port() == 1234 def test_login(self): with patch("builtins.open", new_callable=mock_open, read_data=self.test_json): some_config = config_server_obj('tmp_server_name_cfg8') assert some_config.login() == 'uvw' def test_authkey(self): with patch("builtins.open", new_callable=mock_open, read_data=self.test_json): some_config = config_server_obj("tmp_server_name_cfg9") assert some_config.authkey() == 'xyz' def test_user_id(self): with patch("builtins.open", new_callable=mock_open, read_data=self.test_json): some_config = config_server_obj("tmp_server_name_cfg10") assert some_config.user_id() == 'pqr' def test_timeout(self): with patch("builtins.open", new_callable=mock_open, read_data=self.test_json): some_config = config_server_obj('tmp_server_name_cfg11') assert some_config.timeout() == 123 def test_keepalive(self): with patch("builtins.open", new_callable=mock_open, read_data=self.test_json): some_config = config_server_obj('tmp_server_name_cfg12') assert some_config.keepalive() == 456 def test_retry(self): with patch("builtins.open", new_callable=mock_open, read_data=self.test_json): some_config = config_server_obj('tmp_server_name_cfg13') assert some_config.retry() == 789 # @classmethod # def _config_obj(cls, queue): # class ConfigTest(ConfigMixInServer): # # def __init__(self, logger_queue): # super().__init__(logger_queue) # # # ConfigTest.__abstractmethods__ = frozenset() # return ConfigTest(queue) ``` #### File: via_common/multiprocess/pipe_adapter.py ```python import threading from multiprocessing import Pipe SIGNAL_SHUTDOWN_START = '#shutdown' SIGNAL_SHUTDOWN_DONE = '#shutdown_done' class PipeAdapter: """ A simple helper class used for managing shutdown through Pipe """ def __init__(self, pipe_receiver: Pipe, callback): self.pipe_receiver = pipe_receiver self.callback = callback self.worker = None @classmethod def listen(cls, pipe_receiver, callback): try: pipe_receiver.recv() callback() except EOFError: pass def start(self): self.worker = threading.Thread(target=self.listen, args=(self.pipe_receiver, self.callback,)) self.worker.start() ``` #### File: via_common/util/config_mixin.py ```python import json import os # # Global config as a data class # from abc import ABCMeta from abc import abstractmethod class ConfigMixIn(metaclass=ABCMeta): """ A helper MixIn for loading a json config. """ config = None def __init__(self): if self.__class__.config is None: self.__class__.config = self._read_config() self._init_config() @classmethod def get_config_dict(cls): return cls.config @classmethod @abstractmethod def get_config_path(cls): # Something like return os.getenv('CONFIG_PATH') raise NotImplementedError @classmethod @abstractmethod def get_config_filename(cls): # Something like return os.getenv('CONFIG_FILENAME') raise NotImplementedError @classmethod @abstractmethod def _init_config(cls): raise NotImplementedError @classmethod def _read_config(cls): """ Read the global config. CONFIG_PATH environment variable can hold the path to the config, otherwise current running directory is used. """ config_path = cls.get_config_path() if config_path is None: raise AttributeError('Config PATH missing') # end if config_path is None config_filename = cls.get_config_filename() if config_filename is None: raise AttributeError('Config FILENAME missing') # end if config_filename is None config_fullpath = os.path.join(config_path, config_filename) if os.path.isfile(config_fullpath): f = open(config_fullpath) try: config = json.load(f) except json.JSONDecodeError: raise except TypeError: raise else: raise FileNotFoundError('Config file not found at {}/{}'.format(config_path, config_filename)) # end if os.path.isfile(config_path) return config ``` #### File: via_common/util/helper.py ```python import json import random import uuid import zlib from collections import namedtuple from via_common.generated.proto.feed_pb2 import DevicePost from via_common.generated.proto.internal_pb2 import FromBroker, FromCMS """ Helper classes and functions """ # # json helpers # def dict2obj(data): """ Helper function for creating the tuple subclasses with well-formed named fields """ return namedtuple('X', (''.join(c if c.isalnum() else '_' for c in x) if not x[0].isnumeric() else 'O' + ''.join(c if c.isalnum() else '_' for c in x) for x in data.keys()))(*data.values()) def json2obj(data): """ Deserialize a str or bytes to a Python object using a helper functions to deduce the object attributes """ return json.loads(data, object_hook=dict2obj) def json2dict(obj): """ Translates a deserialized json object to a dictionary. The assumption is that any contained object type has the same class name 'X'. """ res = {} if not hasattr(obj, '_fields'): return {} # TODO manage properly errors for k in obj._fields: v = getattr(obj, k) if isinstance(v, str): res.update({k: v}) elif isinstance(v, list): res2 = [] for i in v: res2.append(json2dict(i)) res.update({k: res2}) elif v.__class__.__name__ == obj.__class__.__name__: res.update({k: json2dict(v)}) # if isinstance(v, str) # end for k in obj._fields return res # # IDs # def generate_unique_id(): """ Generates a random UUID """ return str(uuid.uuid4()) def get_next_cms_id(): # TODO aproperway to manage message ID return random.getrandbits(32) def get_next_broker_id(): # TODO aproperway to manage message ID return random.getrandbits(32) def get_next_internal_id(): # TODO # TODO aproperway to manage message ID return random.getrandbits(32) # # Internal message wrappers # def wrap_message(message_id, source_type, message: bytes): message_id_b = int(message_id).to_bytes(8, byteorder='little', signed=True) source_type_b = int(source_type).to_bytes(4, byteorder='little', signed=True) payload = message_id_b + source_type_b if message: payload += zlib.compress(message) # end if message return payload def unwrap_payload(payload: bytes): message_id = int.from_bytes(payload[:8], 'little', signed=True) source_type = int.from_bytes(payload[8:12], 'little', signed=True) try: message = zlib.decompress(payload[12:]) except: message = payload[12:] return message_id, source_type, message # # PROTO Internal # def serialize_from_broker(message_id, item_id, item_version, topic, payload: bytes): serialized = FromBroker() serialized.message_id = message_id serialized.item_id = item_id serialized.item_version = item_version serialized.topic = topic serialized.payload = payload serialized = serialized.SerializeToString() return serialized def deserialize_from_broker(payload: bytes): deserialized = FromBroker() deserialized.ParseFromString(payload) return deserialized def serialize_from_cms(message_id, profile_id, subject_id, item_id, item_version, message: bytes): serialized = FromCMS() serialized.message_id = message_id serialized.profile_id = profile_id serialized.subject_id = subject_id serialized.item_id = item_id serialized.item_version = item_version serialized.payload = message serialized = serialized.SerializeToString() return serialized def deserialize_from_cms(payload: bytes): deserialized = FromCMS() deserialized.ParseFromString(payload) return deserialized def deserialize_from_cms(payload: bytes): deserialized = FromCMS() deserialized.ParseFromString(payload) return deserialized # # PROTO Gateway # def serialize_broker_post(broker_post): return broker_post.SerializeToString() def deserialize_device_post(payload): deserialized = DevicePost() deserialized.ParseFromString(payload) return deserialized ```
{ "source": "JeanJdkJebuf/RAD_tk_builder", "score": 3 }
#### File: RAD_tk_builder/builder/file_constructor.py ```python import json class FileConstructor: """This class is meant to be called by ParseIntoCreate class.""" def __init__(self): with open("builder/dao.json") as json_file: data = json.load(json_file) self.data = data def create_stock_class(self, arg1): """This function adds tkinter module into the document It also adds variables with an import. arg1 = file of variables for new document n """ return self.data["introduction"].format(arg1) def create_class_and_init(self, arg1): """This function creates the name of the new class It also adds __init__() to the document. arg1 is the TITLE name """ if arg1: #if title exists return self.data["classcreation"].format(arg1) return self.data["classcreation"].format("") def add_main_widget_function_to_init(self, arg1): """This function adds function in init so it launches itself at start. arg1 is the name of the function. arg1 should look like : self.add_"function_name" """ return self.data["addfunction"].format(arg1, arg1) def add_widgets_to_master_widgets_func(self, arg1): """This function adds function in init so it launches itself at start This function adds widgets to arg1. arg1 is the name of the function. arg1 should look like : self.add_"function_name" """ return self.data["addfuncmaster"].format(arg1, arg1) def add_master_function(self, arg1): """This function adds master function arg1. Takes only one arg """ return self.data["masterfunctionname"].format(arg1, arg1) def add_widgets_function(self, arg1): """This function adds widgets to arg1. Takes only one arg as master widget of slave widgets """ return self.data["widgetfunctionname"].format(arg1, arg1) def add_identify_id_class_master(self, arg1, arg2, arg3=""): """This function creates widget's name and instanciates it. It gives his name as arg1 arg2 is his class If it is not a master widget (that doesn't instanciates from Tk()), you can give arg3 as his master widget """ return self.data["functionidandclass"].format(arg1, arg2, arg3) def add_widget_conf(self, arg1, arg2): """This function adds config to the current widget. arg1 is the name of widget arg2 is the configuration. args should match this : self.{arg1}.config({arg2}) """ return self.data["widgetconfig"].format(arg1, arg2) def add_widget_loc(self, arg1, arg2): """This function adds placement to the current widget. arg1 is the name of widget arg2 is its placement args should match this: self.{arg1}.{arg2} """ return self.data["widgetplace"].format(arg1, arg2) def add_launch_function(self): """This function adds the "launch" function in the new document. No args needed. """ return self.data["launchfunction"] def add_name_eq_main(self): """This function adds if__name__ == '__main__' This allow the tkinter window to launch automatically if called from the name of document. No argument needed. """ return self.data["ifnameeqmain"] def add_intro_conf(self, arg1): """This function adds intro to conf file. Takes name of tk file as arg1 """ return self.data["introconf"].format(arg1) def add_text(self, arg1, arg2): """This function adds text in conf file for new_file configuration. Takes arg1 as name of variable arg2 is the text """ return self.data["addtext"].format(arg1, arg2) if __name__ == '__main__': print("This is a constructor class, made for ParseIntoCreate class. \ For more informations on how to use this program, please consult README.md \ file") ``` #### File: RAD_tk_builder/builder/python_builder.py ```python import xml.etree.ElementTree as ET import errno import os.path try: from builder.xml_converter import XmlDictConfig from builder.conf import FILEERROR, ATTRIBERROR, DEFAULTTITLE, PYERROR,\ PYCONFERROR, PYERROREXISTS, PYCONFERROREXISTS from builder.file_constructor import FileConstructor from builder.recursive_packager import RecursivePackager except: from xml_converter import XmlDictConfig from conf import FILEERROR, ATTRIBERROR, DEFAULTTITLE, PYERROR,\ PYCONFERROR, PYERROREXISTS, PYCONFERROREXISTS from file_constructor import FileConstructor from recursive_packager import RecursivePackager class ParseIntoCreate: """This class is meant to create a tkinter code. It takes as argument uifile a .ui file, created on pygubu-designer It will convert and create a new document coded in python in newfile. if you don't give uifile any argument, it will load a default template you can consult in your target path. newfile is the file that's going to be created. defaultconf is the file that will include all variables for newfile. For more informations, please consult the README.md file. Have fun ! """ def __init__(self, newfile, uifile="tests/template_ui_file.ui", defaultconf="conf.py"): # newfile is the file that this class will create self.newfile = newfile # ui file is the file that's going to be converted self.uifile = uifile # defaultconf is the file that will be created and will include all # variables for newfile self.defaultconf = defaultconf # getting all informations from ui file try: tree = ET.parse(self.uifile) root = tree.getroot() except OSError as er: #if file isn't an xml file if er.errno == errno.ENOENT: print(FILEERROR) return try: # Converting xml data into dictionnary self.xmldict = XmlDictConfig(root) except UnboundLocalError: # if file can't be read print(ATTRIBERROR) return # Loading constructor class self.constructor = FileConstructor() # Converting object into dictionnary self.creating_new_dicts() # self.realdict is now a packaged list self.real_list = RecursivePackager(self.realdict) self.real_list = self.real_list.return_converted_list() # dictionnary of text for conf.py file # List valors goes like this : [["LABEL_FRAME_TEXT", "some text"], # ... # ] self.conf_text = [] # Adding erros if self.newfile or self.default_conf isn't .py if self.newfile[-3:] != ".py": print(PYERROR) return if self.defaultconf[-3:] != ".py": print(PYCONFERROR) return # Adding erros if self.newfile or self.default_conf already exists if os.path.isfile(self.newfile): print(PYERROREXISTS) return if os.path.isfile(self.defaultconf): print(PYCONFERROREXISTS) return # Running creating_new_file() self.creating_new_file() def creating_new_dicts(self): """This function is taking data inside xmldict and converts them into a new dictionnary. XmlDictConfig looks like a dictionnary, but it renders an object. This class also prevents the code from being spread out in the new file. """ # removing useless data self.xmldict = self.xmldict["object"] # Creating a new dictionnary from self.xmldict # xmldict is actually an instance of XmlDictConfig # class, and by no mean a dictionnary self.realdict = {} # Adding xmldict values to realdict # cant do for x, y for some reasons for keys in self.xmldict: self.realdict[keys] = self.xmldict[keys] def creating_new_file(self): """This function takes self.realdict datas and converts them into code, using conf.py file as database.""" widget_list = self.getting_master_widgets() # Fullfilling self.newfile with data with open(self.newfile, "w") as newdoc: #Documentation # Removing .py in self.defaultconf using [:-3] newdoc.write(self.constructor.create_stock_class(self.defaultconf[:-3])) #Creating class and init self.conf_text.append(["TITLE", DEFAULTTITLE]) newdoc.write(self.constructor.create_class_and_init("text."+"TITLE")) # Adding functions in init for widgets in widget_list: # If widget is master widget # and instanciates from tk() if widgets[1]: newdoc.write(self.constructor.add_main_widget_function_to_init(widgets[0])) newdoc.write(self.constructor.add_widgets_to_master_widgets_func(widgets[0])) else: newdoc.write(self.constructor.add_widgets_to_master_widgets_func(widgets[0])) # Creating functions, fulfilling them # Know which widgets gets two functions passes for widgets in widget_list: # If widgets[0] is an instance of Tk() if widgets[1]: # Create master widget in its own function self.creating_function(self.who_s_your_master(widgets[0], True), newdoc, True) # Add slave widgets self.creating_function(self.who_s_your_master(widgets[0]), newdoc) # Add launch function newdoc.write(self.constructor.add_launch_function()) # Add if name == main function newdoc.write(self.constructor.add_name_eq_main()) # Finally newdoc.close() ########################### # Now we can finally # create document for conf ########################### self.creating_conf_file() def who_s_your_master(self, arg1, master=False): """This function takes arg1, parses self.real_list and returns a list only containing widgets that have arg1 as master. Optionnal argument as "master" is given if we're looking for all informations of arg1 only. """ new_list = [] # If arg1 is instance of Tk() if master: for widgets in self.real_list: if arg1 == widgets[1]: new_list.append(widgets) # If we're looking for all widgets that arg1 has elif not master: for widgets in self.real_list: if arg1 == widgets[0]: new_list.append(widgets) # Return new_list once completed return new_list def creating_function(self, list_widgets, document, master=False): """This function helps creating_new_file function. It parses RecursivePackager result to create a function for the new file. Change master to True ONLY if you need to create a master function. """ # If master = True # Unique case if master: document.write(self.constructor.add_master_function(list_widgets[0][1])) elif not master: document.write(self.constructor.add_widgets_function(list_widgets[0][0])) # Create loop, adding all widgets in list_widgets inside the function for widgets in list_widgets: # Add id and class for current widget # if master = True, no arg3 if master: document.write(self.constructor.add_identify_id_class_master(widgets[1], widgets[2])) # Add arg3 if master = False and widgets[0] is not null elif not master and widgets[0]: document.write(self.constructor.add_identify_id_class_master(widgets[1], widgets[2], "self." + widgets[0])) elif not master and not widgets[0]: document.write(self.constructor.add_identify_id_class_master(widgets[1], widgets[2])) if widgets[3]: # if there is text in properties if len(widgets[3]) > 1: # Add text in conf_text list self.conf_text.append([self.cap_text(widgets[1]), widgets[3][1]]) document.write(self.constructor.add_widget_conf(widgets[1], widgets[3][0].format("text." + self.cap_text(widgets[1])))) elif len(widgets[3]) == 1: document.write(self.constructor.add_widget_conf(widgets[1], widgets[3][0])) if widgets[4]: document.write(self.constructor.add_widget_loc(widgets[1], widgets[4][0])) # If _propagate == False # Add place_propagate(0) if len(widgets[4]) > 1: document.write(self.constructor.add_widget_loc(widgets[1], widgets[4][1])) # Add spaces between widgets / functions # for each iteration document.write("\n") def cap_text(self, arg): """This function takes arg and converts it to ARG_TEXT. This function is usefull for the conf.py text. """ return arg.upper() + "_TEXT" def getting_master_widgets(self): """This function works with creating_functions_for_new_file It returns a list with all master widgets. Initial list is self.real_list. Returns valors like this : [[example_widget, True]...] True means example_widget is a master widget that instanciates directly from tk() False means example_widget is an instance of another widget. """ return_list = [] # Loop that gets all master widgets for valors in self.real_list: if valors[0]not in return_list: return_list.append(valors[0]) list_valors = [] # Checking which widget is main widget. for masters in return_list: for valors in self.real_list: # Do not count [] empty list if isinstance(masters, str): if masters == valors[1] and not valors[0]: list_valors.append([masters, True]) if masters == valors[1] and valors[0]: list_valors.append([masters, False]) return list_valors def creating_conf_file(self): """This function is going to create a conf file. Data are stocked in the self.conf_text list They are gathered during the writing of newfile process, in the creating_function function. conf file name is by default conf.py Can be changed during class creation, by changing defaultconf arg """ # Fullfilling self.defaultconf with data with open(self.defaultconf, "w") as newconf: # Documentation newconf.write(self.constructor.add_intro_conf(self.newfile)) # Adding all variables and text for self.newfile file for text in self.conf_text: newconf.write(self.constructor.add_text(text[0], text[1])) newconf.close() if __name__ == '__main__': # test to make sure everything is working properly parser = ParseIntoCreate("newdocument.py", "tests/template_ui_file.ui") ```
{ "source": "Jean-KOUAGOU/Cat-vs-Dog-Classifier", "score": 3 }
#### File: Cat-vs-Dog-Classifier/utilities/custom_loss_print.py ```python class LossPrettifier(object): STYLE = { 'green' : '\033[32m', 'red' : '\033[91m', 'bold' : '\033[1m', } STYLE_END = '\033[0m' def __init__(self, show_percentage=False): self.show_percentage = show_percentage self.color_up = 'green' self.color_down = 'red' self.loss_terms = {} def __call__(self, epoch=None, **kwargs): if epoch is not None: print_string = f'Epoch {epoch: 5d} ' else: print_string = '' for key, value in kwargs.items(): pre_value = self.loss_terms.get(key, value) if value > pre_value: indicator = '▲' show_color = self.STYLE[self.color_up] elif value == pre_value: indicator = '' show_color = '' else: indicator = '▼' show_color = self.STYLE[self.color_down] if self.show_percentage: show_value = 0 if pre_value == 0 \ else (value - pre_value) / float(pre_value) key_string = f'| {key}: {show_color}{value:3.4f}({show_value:+3.4%}) {indicator}' else: key_string = f'| {key}: {show_color}{value:.4f} {indicator}' # Trim some long outputs key_string_part = key_string[:32] print_string += key_string_part+f'{self.STYLE_END}\t' self.loss_terms[key] = value print(print_string) # reporter = LossPrettifier(show_percentage=True) ``` #### File: Cat-vs-Dog-Classifier/utilities/test_class.py ```python import numpy as np def test(loaders, model, criterion, use_cuda): # monitor test loss and accuracy test_loss = 0. correct = 0. total = 0. model.eval() for batch_idx, (data, target) in enumerate(loaders['train']): # move to GPU if use_cuda: data, target = data.cuda(), target.cuda() # forward pass: compute predicted outputs by passing inputs to the model output = model(data) # calculate the loss loss = criterion(output, target) # update average test loss test_loss = test_loss + ((1 / (batch_idx + 1)) * (loss.data - test_loss)) # convert output probabilities to predicted class pred = output.data.max(1, keepdim=True)[1] # compare predictions to true label correct += np.sum(np.squeeze(pred.eq(target.data.view_as(pred))).cpu().numpy()) total += data.size(0) print('Test Loss: {:.6f}\n'.format(test_loss)) print('\nTest Accuracy: %2d%% (%2d/%2d)' % ( 100. * correct / total, correct, total)) ```
{ "source": "Jean-KOUAGOU/CLLearner", "score": 3 }
#### File: CLLearner/Modified_ConEx/helper_funcs.py ```python import datetime import logging import os def create_experiment_folder(folder_name='Experiments'): directory = os.getcwd() + '/' + folder_name + '/' folder_name = str(datetime.datetime.now()) path_of_folder = directory + folder_name os.makedirs(path_of_folder) return path_of_folder, path_of_folder[:path_of_folder.rfind('/')] def create_logger(*, name, p): logger = logging.getLogger(name) logger.setLevel(logging.INFO) # create file handler which logs even debug messages fh = logging.FileHandler(p + '/info.log') fh.setLevel(logging.INFO) # create console handler with a higher log level ch = logging.StreamHandler() ch.setLevel(logging.INFO) # create formatter and add it to the handlers formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) fh.setFormatter(formatter) # add the handlers to logger logger.addHandler(ch) logger.addHandler(fh) return logger ```
{ "source": "jeanku/pyutil", "score": 2 }
#### File: pyutil/simutil/ConfigParser.py ```python import importlib class ConfigParser(object): __loaded__ = dict() def __call__(self, module, default=None): module = module.split('.') key = '{}'.format('.'.join(module[:-1])) if self.__loaded__.get(key) is None: self.__loaded__[key] = importlib.import_module(key) return getattr(self.__loaded__[key], module[-1], default) def get(self, module, default=None): return self.__call__(module, default) if __name__ == '__main__': data = ConfigParser()('Config.Filepath.RESOURCE_BASE_PATH') data = ConfigParser()('Config.Filepath.RESOURCE_BASE_PATH1', 'default') data = ConfigParser().get('Config.Filepath.RESOURCE_BASE_PATH') data = ConfigParser().get('Config.Settings.BLUR_MASK_MODIFIER', 'default') print(data) ``` #### File: pyutil/simutil/Log.py ```python __author__ = '' import logging import datetime from .Env import Env from pathlib import Path class Log(object): _instance = {} # 安日志存储logging 实例对象 def debug(self, msg): self.logger().debug(self._format_msg(msg)) def info(self, msg): self.logger().info(self._format_msg(msg)) def warning(self, msg): self.logger().warning(self._format_msg(msg)) def error(self, msg): self.logger().error(self._format_msg(msg)) def critical(self, msg): self.logger().critical(self._format_msg(msg)) def logger(self): date = datetime.datetime.now().strftime("%Y%m%d") if self._instance.get(date) is None: logger = logging.getLogger("logging1") formatter = logging.Formatter('%(asctime)s 【%(levelname)s】%(message)s') logger.setLevel(Env()('LOG_LEVEL', 'DEBUG')) # log level fh = logging.FileHandler(self._logfile()) fh.setFormatter(formatter) if Env()('LOG_DEBUG', 'false').lower() == 'true': # debug sh = logging.StreamHandler() sh.setFormatter(formatter) logger.addHandler(sh) logger.addHandler(fh) self._instance[date] = logger return self._instance.get(date) def _logfile(self): ''' 处理日志文件路径 :return: ''' date = datetime.datetime.now().strftime("%Y%m%d") path = Env()('LOG_PATH', None) if path is not None and path: path = Path(path) if path.is_dir(): return path.joinpath('{}.log'.format(date)) return path else: raise Exception('LOG_PATH not set in .env file') # return Path(Env.basedir).joinpath('Storage/Logs/{}.log'.format(date)) # 默认 ./Storage/Logs/**.log def _format_msg(self, msg): if isinstance(msg, BaseException): import traceback return traceback.format_exc() return msg.__str__() ``` #### File: pyutil/simutil/Oss.py ```python from .Env import Env import oss2 from oss2.models import BucketCors, CorsRule, BucketReferer class Oss(): ''' 阿里OSS服务类 ''' _oss_sinstance = None def __init__(self, access_key=None, access_secret=None, end_point=None, bucket_name=None): if access_key is not None: self._oss_sinstance = oss2.Bucket( oss2.Auth(access_key, access_secret), end_point, bucket_name ) else: env = Env() self._oss_sinstance = oss2.Bucket( oss2.Auth(env('OSS_ACCESS_KEY'), env('OSS_ACCESS_SECRET')), env('OSS_END_POINT'), env('OSS_BUCKET_NAME'), ) def push(self, filename, content, header=None): ''' 上传文件 :param filename: 上传文件名, 例如:'data/test.json' :param content: 上传的文件内容 :param header: header :return: ''' return self._oss_sinstance.put_object(filename, content, headers=header) def push_file(self, filename, local_filename, header=None): ''' 上传本地文件 :param filename: 上传文件名, 例如:'data/test.json' :param local_filename: '本地文件路径' :param header: header :return: ''' return self._oss_sinstance.put_object_from_file(filename, local_filename, headers=header) def rule(self, allowed_origins=['*'], allowed_methods=['GET', 'POST', 'HEAD'], allowed_headers=['*'], max_age_seconds=600): ''' 处理跨域 :param allowed_origins: 来源 :param allowed_methods: 接受的请求方法 :param allowed_headers: 接受的请求头 :param max_age_seconds: 缓存时间(秒) :return: ''' rule = CorsRule(allowed_origins=allowed_origins, allowed_methods=allowed_methods, allowed_headers=allowed_headers, max_age_seconds=max_age_seconds) self._oss_sinstance.put_bucket_cors(BucketCors([rule])) return self def referer(self, referers=None): ''' 防盗链 :param referers: ['http://www.longhash.com', 'http://api.longhash.com'] :return: self ''' if referers is not None: self._oss_sinstance.put_bucket_referer(BucketReferer(False, referers)) else: self._oss_sinstance.put_bucket_referer(BucketReferer(True, [])) return self ``` #### File: pyutil/simutil/Path.py ```python __author__ = '' from pathlib import Path as BasePath from simutil.App import app class Path(): _instance = None def __new__(cls, *args, **kwargs): if not cls._instance: cls._instance = BasePath(app('BASE_PATH')) return cls._instance ``` #### File: pyutil/simutil/Redis.py ```python import redis from .Env import Env class Redis(): _instance = dict() def __init__(self, host=None, port=6379, password=<PASSWORD>, db=0): ''' 构造方法 :param host: host :param port: port :param password: 密码 :param db: 默认db ''' env = Env() if host is not None: self.host = host self.port = port self.password = password self.db = db else: self.host = env("REDIS_HOST", 'localhost') self.port = int(env("REDIS_PORT", 6379)) self.password = env('REDIS_PASSWORD', None) self.db = int(env("REDIS_DB", 0)) if self._instance.get(self.db) is None: pool = redis.ConnectionPool(host=self.host, port=self.port, db=self.db, password=self.password, decode_responses=True) self._instance[self.db] = redis.Redis(connection_pool=pool) def select(self, db): ''' 切换redis库 :param db: 库index :return: redis.Redis ''' if type(db) != int: raise Exception('select db must be the type of int') if self._instance.get(db) is None: pool = redis.ConnectionPool(host=self.host, port=self.port, db=db, password=self.password, decode_responses=True) self._instance[db] = redis.Redis(connection_pool=pool) return self._instance[db] def __getattr__(self, key): ''' 默认库则调用 :param key: redis 执行方法 :return: result ''' return self._instance.get(self.db).__getattribute__(key) ``` #### File: simutil/Scaffold/Artisan.py ```python import sys import pymysql import codecs, os class Artisan(): author = 'jemes' # 作者 profix = 'lh_' # 表前缀 profix_filter = True # 表前缀过滤 符合才生成model namespace = 'Models.Longhash' # 命名空间 database = 'database' # 数据库名称 path = os.path.abspath(os.path.dirname(__file__)) # 当前路径 output = None # 输出路径 config = { # 数据库配置 'host': '127.0.0.1', 'port': 3306, 'user': 'dev', 'password': '<PASSWORD>', 'db': 'database', 'charset': 'utf8mb4', } def handle(self, args=sys.argv): ''' 处理model入口方法 :param args: 命令行输入参数 :return: ''' self.check(args) if args.__len__() == 2: # 只有一个表名称 modelname = self.auth_model_name(args[1]) else: modelname = self.define_model_name(args[2]) tablename = args[1] if tablename[:self.profix.__len__()] != self.profix and self.profix_filter: # 表面前缀不一致 则不处理 return sql = self.table_sql(tablename) self.model(modelname, tablename, sql) def all(self): ''' 处理model入口方法 :param args: 命令行输入参数 :return: ''' tables = [index[0] for index in self.tables()] for index in tables: self.handle([None, index]) self.basemodel() def check(self, args): ''' 校验配置是否正确 :param args: :return: ''' if args.__len__() == 1: raise Exception('invalid params') if self.config is None: raise Exception('databse not config') if self.output is None: raise Exception('output path invalid') def auth_model_name(self, tablename): ''' 根据表名自动生成model名称 :param tablename: 表名称 :return: ''' if tablename[:self.profix.__len__()] != self.profix: # 表面前缀不一致 则不处理 tablename = tablename.replace('-', '_').split('_') else: tablename = tablename[self.profix.__len__():].replace('-', '_').split('_') return ''.join([index.capitalize() for index in tablename]) + 'Model' def define_model_name(self, name): ''' 生成用户自定义model名称 :param name: model名称 :return: ''' return name.capitalize() if name[-5:] == 'Model' else name.capitalize() + 'Model' def tables(self): ''' 显示sql :param tablesname: :return: ''' db = pymysql.connect(**self.config) cursor = db.cursor() cursor.execute("show tables") result = cursor.fetchall() db.close() return result def table_sql(self, tablesname): ''' 显示sql :param tablesname: :return: ''' db = pymysql.connect(**self.config) cursor = db.cursor() cursor.execute("show full columns from `%s`" % tablesname) result = cursor.fetchall() db.close() return result def model(self, modelname, tablename, sql): ''' 生成model :param name: 生成的model名称 :param tablename: 表名称 :param sql: 表的结构 :return: ''' columns = [index[0] for index in sql] with codecs.open(self.path + '/model.txt', "rb", "UTF-8") as f: s = f.read() _template_parameter = { 'author': self.author, 'namespace': self.namespace, 'classname': modelname, 'database': self.database, 'tablename': tablename, 'columns': self.format_columns(sql), 'create_time': '\'create_time\'' if 'create_time' in columns else None, 'update_time': '\'update_time\'' if 'update_time' in columns else None } s = s % _template_parameter with codecs.open(self.output + '/' + modelname + '.py', "wb", "UTF-8") as f: f.write(s) f.flush() def format_columns(self, sql): ''' 生成column & 注释 :param sql: :return: ''' columns = [index[0] for index in sql] max_value = max([index.__len__() for index in columns]) comments = [index[-1] for index in sql] data = ['\'{}\', {} # {}'.format(columns[i], ' ' * (50 + max_value - columns[i].__len__()), comments[i]) for i in range(columns.__len__())] return '\n '.join(data) def basemodel(self): ''' 生成base model.txt :return: ''' with codecs.open(self.path + '/basemodel.txt', "rb", "UTF-8") as f: s = f.read() with codecs.open(self.output + '/BaseModel.py', "wb", "UTF-8") as f: f.write(s) f.flush() if __name__ == '__main__': sql = Artisan().handle([None, 'lh_test']) # sql = Artisan().all() # sql = Artisan().basemodel() pass ``` #### File: pyutil/test/sklearnDemo.py ```python ''' Created on 2016年4月24日 @author: <NAME> ''' # Simple Regession import numpy as np # 周广告播放数量 x = [6, 8, 10, 14, 18] # 周汽车销售数据 y = [7, 9, 13, 17.5, 18] # 使用最小二乘法 def fitSLR(x, y): n = len(x) denominator = 0 numerator = 0 for i in range(0, n): numerator += ((x[i] - np.mean(x)) * (y[i] - np.mean(y))) denominator += (x[i] - np.mean(x)) ** 2 print("denominator:", denominator / (n - 1)) print("numerator:", numerator / (n - 1)) b1 = numerator / float(denominator) # b0 = np.mean(y)/float(np.mean(x)) b0 = np.mean(y) - b1 * np.mean(x) return b0, b1 def predict(b0, b1, x): return b0 + b1 * x b0, b1 = fitSLR(x, y) print(b0, b1) x_test = 16 # [17.5862069] print("y_test:", predict(b0, b1, x_test)) exit(0) ```
{ "source": "jean/labels", "score": 2 }
#### File: jean/labels/setup.py ```python import pathlib import setuptools def read(*args: str) -> str: file_path = pathlib.Path(__file__).parent.joinpath(*args) return file_path.read_text("utf-8") setuptools.setup( name="labels", version="0.3.0.dev0", author="<NAME>", author_email="<EMAIL>", maintainer="<NAME>", maintainer_email="<EMAIL>", license="MIT", url="https://github.com/hackebrot/labels", project_urls={ "Repository": "https://github.com/hackebrot/labels", "Issues": "https://github.com/hackebrot/labels/issues", }, description="CLI app for managing GitHub labels for Python 3.6 and newer. 📝", long_description=read("README.md"), long_description_content_type="text/markdown", packages=setuptools.find_packages("src"), package_dir={"": "src"}, include_package_data=True, zip_safe=False, python_requires=">=3.6", install_requires=["click", "requests", "pytoml", "attrs"], entry_points={"console_scripts": ["labels = labels.cli:labels"]}, classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Operating System :: OS Independent", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: Implementation :: CPython", "Topic :: Utilities", ], keywords=["github", "command-line"], ) ``` #### File: labels/tests/test_cli.py ```python import typing import shlex import pytest from click.testing import CliRunner from labels import __version__ from labels.cli import labels @pytest.fixture(name="set_username", autouse=True) def fixture_set_username(monkeypatch: typing.Any, username: str) -> None: """Set the username environment variable.""" monkeypatch.setenv("LABELS_USERNAME", username) @pytest.fixture(name="set_token", autouse=True) def fixture_set_token(monkeypatch: typing.Any, token: str) -> None: """Set the token environment variable.""" monkeypatch.setenv("LABELS_TOKEN", token) @pytest.fixture(name="run_cli") def fixture_run_cli() -> typing.Callable: """Return a function that invokes a click CLI runner.""" runner = CliRunner() def run(cli_options: str) -> typing.Any: """Run the CLI with the given options and return the result.""" return runner.invoke(labels, shlex.split(cli_options)) return run @pytest.mark.parametrize("version_option", ["-V", "--version"]) def test_version_option(run_cli: typing.Callable, version_option: str) -> None: """Test for the CLI version option.""" result = run_cli(version_option) assert result.exit_code == 0 assert result.output == f"labels, version {__version__}\n" @pytest.mark.usefixtures("mock_list_labels", "mock_repo_info") @pytest.mark.parametrize( "repo_owner, repo_name, remote_url", [("hackebrot", "pytest-emoji", "<EMAIL>:hackebrot/pytest-emoji.git")], ids=["no_override"], ) def test_fetch_default_owner_and_repo( run_cli: typing.Callable, repo_owner: str, repo_name: str, labels_file_write: str ) -> None: """Test that fetch loads repo_owner and repo info from the Git repository.""" result = run_cli(f"-v fetch -f {labels_file_write}") assert result.exit_code == 0 assert f"Requesting labels for {repo_owner}/{repo_name}" in result.output @pytest.mark.usefixtures("mock_list_labels", "mock_repo_info") @pytest.mark.parametrize( "repo_owner, repo_name, remote_url", [("hackebrot", "labels", "<EMAIL>:hackebrot/pytest-emoji.git")], ids=["override_repo"], ) def test_fetch_default_owner( run_cli: typing.Callable, repo_owner: str, repo_name: str, labels_file_write: str ) -> None: """Test that fetch overrides the repo from the Git repository.""" result = run_cli(f"-v fetch -r {repo_name} -f {labels_file_write}") assert result.exit_code == 0 assert f"Requesting labels for {repo_owner}/{repo_name}" in result.output @pytest.mark.usefixtures("mock_list_labels", "mock_repo_info") @pytest.mark.parametrize( "repo_owner, repo_name, remote_url", [("pytest-dev", "pytest-emoji", "<EMAIL>:hackebrot/pytest-emoji.git")], ids=["override_owner"], ) def test_fetch_default_repo( run_cli: typing.Callable, repo_owner: str, repo_name: str, labels_file_write: str ) -> None: """Test that fetch overrides the owner from the Git repository.""" result = run_cli(f"-v fetch -o {repo_owner} -f {labels_file_write}") assert result.exit_code == 0, result.exc_info assert f"Requesting labels for {repo_owner}/{repo_name}" in result.output @pytest.mark.usefixtures("mock_list_labels", "mock_repo_info") @pytest.mark.parametrize( "repo_owner, repo_name, remote_url", [("pytest-dev", "pytest", "<EMAIL>:hackebrot/pytest-emoji.git")], ids=["override_owner_and_repo"], ) def test_fetch( run_cli: typing.Callable, repo_owner: str, repo_name: str, labels_file_write: str ) -> None: """Test that fetch overrides the owner and repo from the Git repository.""" result = run_cli(f"-v fetch -o {repo_owner} -r {repo_name} -f {labels_file_write}") assert result.exit_code == 0 assert f"Requesting labels for {repo_owner}/{repo_name}" in result.output @pytest.mark.usefixtures("mock_sync", "mock_repo_info") @pytest.mark.parametrize( "repo_owner, repo_name, remote_url", [("hackebrot", "pytest-emoji", "<EMAIL>:hackebrot/pytest-emoji.git")], ids=["no_override"], ) def test_sync_default_owner_and_repo( run_cli: typing.Callable, repo_owner: str, repo_name: str, labels_file_sync: str ) -> None: """Test that sync loads owner and repo info from the Git repository.""" result = run_cli(f"-v sync -f {labels_file_sync}") assert result.exit_code == 0 assert f"Requesting labels for {repo_owner}/{repo_name}" in result.output assert f"Deleting label 'infra' for {repo_owner}/{repo_name}" in result.output assert f"Editing label 'bug' for {repo_owner}/{repo_name}" in result.output assert ( f"Creating label 'dependencies' for {repo_owner}/{repo_name}" in result.output ) @pytest.mark.usefixtures("mock_sync", "mock_repo_info") @pytest.mark.parametrize( "repo_owner, repo_name, remote_url", [("hackebrot", "labels", "<EMAIL>:hackebrot/pytest-emoji.git")], ids=["override_repo"], ) def test_sync_default_owner( run_cli: typing.Callable, repo_owner: str, repo_name: str, labels_file_sync: str ) -> None: """Test that sync overrides the repo from the Git repository.""" result = run_cli(f"-v sync -r {repo_name} -f {labels_file_sync}") assert result.exit_code == 0 assert f"Requesting labels for {repo_owner}/{repo_name}" in result.output assert f"Deleting label 'infra' for {repo_owner}/{repo_name}" in result.output assert f"Editing label 'bug' for {repo_owner}/{repo_name}" in result.output assert ( f"Creating label 'dependencies' for {repo_owner}/{repo_name}" in result.output ) @pytest.mark.usefixtures("mock_sync", "mock_repo_info") @pytest.mark.parametrize( "repo_owner, repo_name, remote_url", [("pytest-dev", "pytest-emoji", "<EMAIL>:hackebrot/pytest-emoji.git")], ids=["override_owner"], ) def test_sync_default_repo( run_cli: typing.Callable, repo_owner: str, repo_name: str, labels_file_sync: str ) -> None: """Test that sync overrides the owner from the Git repository.""" result = run_cli(f"-v sync -o {repo_owner} -f {labels_file_sync}") assert result.exit_code == 0 assert f"Requesting labels for {repo_owner}/{repo_name}" in result.output assert f"Deleting label 'infra' for {repo_owner}/{repo_name}" in result.output assert f"Editing label 'bug' for {repo_owner}/{repo_name}" in result.output assert ( f"Creating label 'dependencies' for {repo_owner}/{repo_name}" in result.output ) @pytest.mark.usefixtures("mock_sync", "mock_repo_info") @pytest.mark.parametrize( "repo_owner, repo_name, remote_url", [("pytest-dev", "pytest", "<EMAIL>:hackebrot/pytest-emoji.git")], ids=["override_owner_and_repo"], ) def test_sync( run_cli: typing.Callable, repo_owner: str, repo_name: str, labels_file_sync: str ) -> None: """Test that sync overrides the owner and repo from the Git repository.""" result = run_cli(f"-v sync -o {repo_owner} -r {repo_name} -f {labels_file_sync}") assert result.exit_code == 0 assert f"Requesting labels for {repo_owner}/{repo_name}" in result.output assert f"Deleting label 'infra' for {repo_owner}/{repo_name}" in result.output assert f"Editing label 'bug' for {repo_owner}/{repo_name}" in result.output assert ( f"Creating label 'dependencies' for {repo_owner}/{repo_name}" in result.output ) @pytest.mark.usefixtures("mock_list_labels", "mock_repo_info") @pytest.mark.parametrize( "repo_owner, repo_name, remote_url", [("pytest-dev", "pytest", "<EMAIL>:hackebrot/pytest-emoji.git")], ids=["override_owner_and_repo"], ) def test_sync_dryrun( run_cli: typing.Callable, repo_owner: str, repo_name: str, labels_file_sync: str ) -> None: """Test that sync with the dryrun option works as designed.""" result = run_cli(f"-v sync -n -o {repo_owner} -r {repo_name} -f {labels_file_sync}") assert result.exit_code == 0 output = ( "This would update the following labels:\n" " - bug\n" "This would delete the following labels:\n" " - infra\n" "This would create the following labels:\n" " - dependencies\n" "This would NOT modify the following labels:\n" " - docs\n" ) assert output in result.output ```
{ "source": "jeanlaroche/pythran", "score": 2 }
#### File: pythran/omp/__init__.py ```python from ctypes.util import find_library from subprocess import check_output, CalledProcessError from numpy.distutils.misc_util import ( msvc_runtime_major, get_shared_lib_extension ) import ctypes import os import sys try: # there may be an environ modification when loading config from pythran.config import compiler except ImportError: def compiler(): return os.environ.get('CXX', 'c++') cxx = compiler() class OpenMP(object): """ Internal representation of the OpenMP module. Custom class is used to dynamically add omp runtime function to this library when function is called. """ def __init__(self): ver = msvc_runtime_major() if ver is None: self.init_not_msvc() else: self.init_msvc(ver) def init_msvc(self, ver): vcomp_path = find_library('vcomp%d.dll' % ver) if not vcomp_path: raise ImportError("I can't find a shared library for vcomp.") else: # Load the library (shouldn't fail with an absolute path right?) self.libomp = ctypes.CDLL(vcomp_path) self.version = 20 def get_libomp_names(self): """Return list of OpenMP libraries to try, based on platform and compiler detected.""" if cxx is None: # Can't tell what compiler we're using, guessing we need libgomp names = ['libgomp'] else: cmd = [cxx, '--version'] try: version_str = os.path.dirname(check_output(cmd).decode().strip()) except (OSError, CalledProcessError): version_str = '' if 'clang' in version_str: names = ['libomp', 'libiomp5', 'libgomp'] elif version_str.startswith('Intel'): names = ['libiomp5'] else: # Too many GCC flavors and version strings, make this the default # rather than try to detect if it's GCC names = ['libgomp'] return [name + get_shared_lib_extension() for name in names] def init_not_msvc(self): """ Find OpenMP library and try to load if using ctype interface. """ # find_library() does not automatically search LD_LIBRARY_PATH # until Python 3.6+, so we explicitly add it. # LD_LIBRARY_PATH is used on Linux, while macOS uses DYLD_LIBRARY_PATH # and DYLD_FALLBACK_LIBRARY_PATH. env_vars = [] if sys.platform == 'darwin': env_vars = ['DYLD_LIBRARY_PATH', 'DYLD_FALLBACK_LIBRARY_PATH'] else: env_vars = ['LD_LIBRARY_PATH'] paths = [] for env_var in env_vars: paths += os.environ.get(env_var, '').split(os.pathsep) libomp_names = self.get_libomp_names() for libomp_name in libomp_names: if cxx is None or sys.platform == 'win32': # Note: Clang supports -print-file-name, but not yet for # clang-cl as of v12.0.0 (April '21) continue cmd = [cxx, '-print-file-name=' + libomp_name] # the subprocess can fail in various ways in that case just give up try: path = os.path.dirname(check_output(cmd).decode().strip()) if path: paths.append(path) except (OSError, CalledProcessError): pass for libomp_name in libomp_names: # Try to load find libomp shared library using loader search dirs libomp_path = find_library(libomp_name) # Try to use custom paths if lookup failed for path in paths: if libomp_path: break path = path.strip() if os.path.isfile(os.path.join(path, libomp_name)): libomp_path = os.path.join(path, libomp_name) if libomp_path: # Load the library try: self.libomp = ctypes.CDLL(libomp_path) except OSError: raise ImportError("found openMP library '{}' but couldn't load it. " "This may happen if you are cross-compiling.".format(libomp_path)) self.version = 45 return raise ImportError("I can't find a shared library for libomp, you may need to install it " "or adjust the {} environment variable.".format(env_vars[0])) def __getattr__(self, name): """ Get correct function name from libgomp ready to be use. __getattr__ is call only `name != libomp` as libomp is a real attribute. """ if name == 'VERSION': return self.version return getattr(self.libomp, 'omp_' + name) # see http://mail.python.org/pipermail/python-ideas/2012-May/014969.html sys.modules[__name__] = OpenMP() ``` #### File: pythran/optimizations/loop_full_unrolling.py ```python from pythran import metadata from pythran.analyses import HasBreak, HasContinue, NodeCount from pythran.openmp import OMPDirective from pythran.conversion import to_ast from pythran.passmanager import Transformation from copy import deepcopy import gast as ast class LoopFullUnrolling(Transformation): ''' Fully unroll loops with static bounds >>> import gast as ast >>> from pythran import passmanager, backend >>> node = ast.parse('for j in [1,2,3]: i += j') >>> pm = passmanager.PassManager("test") >>> _, node = pm.apply(LoopFullUnrolling, node) >>> print(pm.dump(backend.Python, node)) j = 1 i += j j = 2 i += j j = 3 i += j >>> node = ast.parse('for j in (a,b): i += j') >>> pm = passmanager.PassManager("test") >>> _, node = pm.apply(LoopFullUnrolling, node) >>> print(pm.dump(backend.Python, node)) j = a i += j j = b i += j >>> node = ast.parse('for j in {1}: i += j') >>> pm = passmanager.PassManager("test") >>> _, node = pm.apply(LoopFullUnrolling, node) >>> print(pm.dump(backend.Python, node)) j = 1 i += j >>> node = ast.parse('for j in builtins.enumerate("1"): j') >>> pm = passmanager.PassManager("test") >>> _, node = pm.apply(LoopFullUnrolling, node) >>> print(pm.dump(backend.Python, node)) j = (0, '1') j ''' MAX_NODE_COUNT = 4096 def visit_For(self, node): # if the user added some OpenMP directive, trust him and no unroll if metadata.get(node, OMPDirective): return node # don't visit children because of collapse # first unroll children if needed or possible self.generic_visit(node) # a break or continue in the loop prevents unrolling too has_break = any(self.gather(HasBreak, n) for n in node.body) has_cont = any(self.gather(HasContinue, n) for n in node.body) if has_break or has_cont: return node # do not unroll too much to prevent code growth node_count = self.gather(NodeCount, node) def unroll(elt, body): return [ast.Assign([deepcopy(node.target)], elt, None)] + body def dc(body, i, n): if i == n - 1: return body else: return deepcopy(body) def getrange(n): return getattr(getattr(n, 'func', None), 'attr', None) if isinstance(node.iter, (ast.Tuple, ast.List)): elts_count = len(node.iter.elts) total_count = node_count * elts_count issmall = total_count < LoopFullUnrolling.MAX_NODE_COUNT if issmall: self.update = True return sum([unroll(elt, dc(node.body, i, elts_count)) for i, elt in enumerate(node.iter.elts)], []) code = compile(ast.gast_to_ast(ast.Expression(node.iter)), '<loop unrolling>', 'eval') try: values = list(eval(code, {'builtins': __import__('builtins')})) except Exception: return node values_count = len(values) total_count = node_count * values_count issmall = total_count < LoopFullUnrolling.MAX_NODE_COUNT if issmall: try: new_node = sum([unroll(to_ast(elt), dc(node.body, i, values_count)) for i, elt in enumerate(values)], []) self.update = True return new_node except Exception: return node return node ``` #### File: pythran/optimizations/simplify_except.py ```python from pythran.passmanager import Transformation import gast as ast def getid(node): if isinstance(node, ast.Attribute): return getid(node.value), node.attr if isinstance(node, ast.Name): return node.id return node class SimplifyExcept(Transformation): """ Remove redundant except clauses >>> import gast as ast >>> from pythran import passmanager, backend >>> node = ast.parse('try: pass\\nexcept (OSError, OSError): pass') >>> pm = passmanager.PassManager("test") >>> _, node = pm.apply(SimplifyExcept, node) >>> print(pm.dump(backend.Python, node)) try: pass except OSError: pass """ def visit_ExceptHandler(self, node): if isinstance(node.type, ast.Tuple): all_ids = {getid(elt) for elt in node.type.elts} to_remove = [] for i, elt in enumerate(node.type.elts): eltid = getid(elt) if eltid in all_ids: all_ids.remove(eltid) else: to_remove.append(i) for i in reversed(to_remove): node.type.elts.pop(i) if len(node.type.elts) == 1: node.type = node.type.elts[0] self.update = True self.update |= bool(to_remove) return node ``` #### File: pythran/tests/test_named_parameters.py ```python from pythran.tests import TestEnv from pythran.syntax import PythranSyntaxError class TestNamedParameters(TestEnv): def test_call_with_named_argument(self): self.run_test(""" def foo(a): return a def call_with_named_argument(n): return foo(a=n)""", 1, call_with_named_argument=[int]) def test_call_with_named_arguments(self): self.run_test(""" def foo(a,b): return a / b def call_with_named_arguments(n): return foo(b=n, a=2*n)""", 1, call_with_named_arguments=[int]) def test_call_with_args_and_named_argument(self): self.run_test(""" def foo(a, b): return a - b def call_with_args_and_named_argument(m,n): return foo(m, b=n)""", 1, 2, call_with_args_and_named_argument=[int, int]) def test_call_with_args_and_named_arguments(self): self.run_test(""" def foo(a,b,c): return c + a / b def call_with_args_and_named_arguments(n, m): return foo(m, c=2*n, b=n)""", 1, 2, call_with_args_and_named_arguments=[int, int]) def test_call_with_default_and_named_argument(self): self.run_test(""" def foo(a, b=1): return a - b def call_with_default_and_named_argument(m,n): return foo(a=m)""", 1, 2, call_with_default_and_named_argument=[int, int]) def test_call_with_default_and_named_arguments(self): self.run_test(""" def foo(a,b,c=1): return c + a / b def call_with_default_and_named_arguments(n, m): return foo(m, b=n)""", 1, 2, call_with_default_and_named_arguments=[int, int]) def test_intrinsic_named_argument(self): """ Check named arguments with attributes as value. """ self.run_test(""" def intrinsic_named_argument(n): import numpy return numpy.ones(n, dtype=numpy.uint8).nbytes""", 4, intrinsic_named_argument=[int]) def test_intrinsic_named_argument_without_default(self): self.run_test(""" def intrinsic_named_argument_without_default(n): import numpy as np return np.expand_dims(np.ones(n), axis=0)""", 4, intrinsic_named_argument_without_default=[int]) def test_nested_function_with_named_arguments(self): self.run_test(''' def nested_function_with_named_arguments(a): b = a * 2 def foo(c): return b + c return foo(c=a)''', 4, nested_function_with_named_arguments=[int]) def test_nested_function_with_several_named_arguments(self): self.run_test(''' def nested_function_with_several_named_arguments(a): b = a * 2 def foo(c, e): return b + c + e return foo(e = 4, c=a)''', 4, nested_function_with_several_named_arguments=[int]) def test_aliasing_functions_with_named_arguments(self): self.run_test(''' def aliasing_functions_with_named_arguments(n): import numpy if n > 10: my = numpy.ones else: my = numpy.zeros return my(n, dtype=numpy.uint8).nbytes''', 4, aliasing_functions_with_named_arguments=[int]) def test_aliasing_functions_with_different_structural_types(self): with self.assertRaises(PythranSyntaxError): self.run_test(''' def aliasing_functions_with_different_structural_types(n): import numpy if n > 10: my = sum else: my = numpy.zeros return my(n, dtype=numpy.uint8).nbytes''', 4, aliasing_functions_with_different_structural_types=[int]) def test_default_argument_all_filled(self): code = ''' def default_argument_all_filled(x): return test2(x,2) def test2(a, b=3): return a, b''' self.run_test(code, 10, default_argument_all_filled=[int]) ``` #### File: pythran/tests/test_version.py ```python import re import pythran from pythran.tests import TestEnv class TestVersion(TestEnv): def test_version_check_cython(self): # Cython actually does this check (variable is named # `pythran_is_pre_0_9_6`). Make sure it doesn't break. v = pythran.__version__ pre_096 = tuple(map(int, v.split('.')[0:3])) < (0, 9, 6) self.assertFalse(pre_096) def test_valid_version_string(self): # Verify that the pythran version is a valid one (note: excludes # .post suffix, and complies to PEP 440. Test taken from NumPy version_pattern = r"^[0-9]+\.[0-9]+\.[0-9]+(|a[0-9]|b[0-9]|rc[0-9])" dev_suffix = r"\.dev0\+[0-9]*\.g[0-9a-f]+" # For released versions: res1 = re.match(version_pattern, pythran.__version__) # For dev versions: res2 = re.match(version_pattern + dev_suffix, pythran.__version__) self.assertTrue(res1 is not None or res2 is not None, pythran.__version__) ```
{ "source": "jeanlego/nxBender", "score": 2 }
#### File: nxBender/nxbender/ppp.py ```python import subprocess import threading import pty import os import logging import sys from . import sslconn import ssl import signal import select import socket class PPPSession(object): def __init__(self, options, session_id, routecallback=None): self.options = options self.session_id = session_id self.routecallback = routecallback self.pppargs = [ 'debug', 'debug', 'dump', 'logfd', '2', # we extract the remote IP thru this 'lcp-echo-interval', '10', 'lcp-echo-failure', '2', 'ktune', 'local', 'noipdefault', 'noccp', # server is buggy 'noauth', 'nomp', 'usepeerdns', ] def run(self): master, slave = pty.openpty() self.pty = master try: self.pppd = subprocess.Popen(['pppd'] + self.pppargs, stdin = slave, stdout = slave, stderr = subprocess.PIPE) except OSError as e: logging.error("Unable to start pppd: %s" % e.strerror) sys.exit(1) os.close(slave) self.tunsock = sslconn.SSLTunnel(self.session_id, self.options, self.options.server, self.options.port) self.pty = master def sigint_twice(*args): logging.info('caught SIGINT again, killing pppd') self.pppd.send_signal(signal.SIGKILL) def sigint(*args): logging.info('caught SIGINT, signalling pppd') self.killing_pppd = True self.pppd.send_signal(signal.SIGTERM) signal.signal(signal.SIGINT, sigint_twice) os.kill(os.getpid(), signal.SIGHUP) # break out of select() old_sigint = signal.signal(signal.SIGINT, sigint) signal.signal(signal.SIGHUP, signal.SIG_IGN) signal.signal(signal.SIGWINCH, signal.SIG_IGN) try: while self.pppd.poll() is None: stop = self._pump() if stop: break except ssl.SSLError as e: # unexpected logging.exception(e) except socket.error as e: # expected (peer disconnect) logging.error(e.strerror) finally: code = self.pppd.poll() if code is not None: # pppd caused termination logger = logging.error if getattr(self, 'killing_pppd', False) and code == 5: logger = logging.info logger("pppd exited with code %d" % code) if code in [2, 3]: logging.warn("Are you root? You almost certainly need to be root") else: self.pppd.send_signal(signal.SIGHUP) logging.info("Shutting down...") os.close(self.pty) self.pppd.wait() signal.signal(signal.SIGINT, old_sigint) self.tunsock.close() def _pump(self): r_set = [self.tunsock, self.pppd.stderr] w_set = [] # If the SSL tunnel is blocked on writes, apply backpressure (stop reading from pppd) if self.tunsock.writes_pending: w_set.append(self.tunsock) else: r_set.append(self.pty) try: r, w, x = select.select(r_set, w_set, []) except select.error: return True # interrupted if self.tunsock in r: self.tunsock.read_to(self.pty) if self.pty in r: stop = self.tunsock.write_from(self.pty) if stop: return stop if self.tunsock in w: self.tunsock.write_pump() if self.pppd.stderr in r: line = self.pppd.stderr.readline().strip().decode('utf-8', errors='replace') if self.options.show_ppp_log: print("pppd: %s" % line) if line.startswith("remote IP address"): remote_ip = line.split(' ')[-1] self.routecallback(remote_ip) ```
{ "source": "jeanlescure/sphinxcontrib-apa", "score": 3 }
#### File: sphinxcontrib-apa/sphinxcontrib/apa.py ```python from __future__ import unicode_literals from collections import Counter import re import unicodedata from pybtex.style.labels import BaseLabelStyle from pybtex.plugin import register_plugin from dataclasses import dataclass, field import sphinxcontrib.bibtex.plugin from sphinxcontrib.bibtex.style.referencing import BracketStyle, PersonStyle from sphinxcontrib.bibtex.style.referencing.author_year \ import AuthorYearReferenceStyle from sphinxcontrib.bibtex.style.referencing.label \ import LabelReferenceStyle from typing import Union _nonalnum_pattern = re.compile('[^A-Za-z0-9 \-]+', re.UNICODE) def bracket_style() -> BracketStyle: return BracketStyle( left='(', right=')', ) def person_style() -> PersonStyle: return PersonStyle( style='last', abbreviate=False, sep=' & ', sep2=None, last_sep=None, other=' et al', ) def _strip_accents(s): return "".join( (c for c in unicodedata.normalize('NFD', s) if not unicodedata.combining(c))) def _strip_nonalnum(parts): """Strip all non-alphanumerical characters from a list of strings. >>> print(_strip_nonalnum([u"ÅA. B. Testing 12+}[.@~_", u" 3%"])) AABTesting123 """ s = "".join(parts) return _nonalnum_pattern.sub("", _strip_accents(s)) class ApaLabelStyle(BaseLabelStyle): def format_labels(self, sorted_entries): labels = [self.format_label(entry) for entry in sorted_entries] count = Counter(labels) counted = Counter() for label in labels: if count[label] == 1: yield label else: yield label + chr(ord('a') + counted[label]) counted.update([label]) def format_label(self, entry): label = "Anonymous" if 'author' in entry.persons: label = self.format_author_or_editor_names(entry.persons['author']) elif 'editor' in entry.persons: label = self.format_author_or_editor_names(entry.persons['editor']) elif 'organization' in entry.fields: label = entry.fields['organization'] if label.startswith("The "): label = label[4:] if 'year' in entry.fields: return "{}, {}".format(label, entry.fields['year']) else: return "{}, n.d.".format(label) def format_author_or_editor_names(self, persons): if len(persons) == 1: return _strip_nonalnum(persons[0].last_names) elif len(persons) == 2: return "{} & {}".format( _strip_nonalnum(persons[0].last_names), _strip_nonalnum(persons[1].last_names)) else: return "{} et al.".format( _strip_nonalnum(persons[0].last_names)) register_plugin('pybtex.style.labels', 'apa', ApaLabelStyle) @dataclass class ApaReferenceStyle(AuthorYearReferenceStyle): bracket_parenthetical: BracketStyle = field(default_factory=bracket_style) bracket_textual: BracketStyle = field(default_factory=bracket_style) bracket_author: BracketStyle = field(default_factory=bracket_style) bracket_label: BracketStyle = field(default_factory=bracket_style) bracket_year: BracketStyle = field(default_factory=bracket_style) person: PersonStyle = field(default_factory=person_style) sphinxcontrib.bibtex.plugin.register_plugin( 'sphinxcontrib.bibtex.style.referencing', 'apastyle', ApaReferenceStyle) def setup(app): return { 'version': '1.0.0', 'parallel_read_safe': True, 'parallel_write_safe': True, } ```
{ "source": "jeanlilly/awsgi", "score": 3 }
#### File: awsgi/awsgi/__init__.py ```python from base64 import b64encode, b64decode from io import BytesIO import itertools import collections import sys import gzip ONE_MTU_SIZE = 1400 try: # Python 3 from urllib.parse import urlencode # Convert bytes to str, if required def convert_str(s): return s.decode('utf-8') if isinstance(s, bytes) else s # Convert str to bytes, if required def convert_byte(b): return b.encode('utf-8', errors='strict') if ( isinstance(b, str)) else b except ImportError: # Python 2 from urllib import urlencode # No conversion required def convert_str(s): return s # Convert str to bytes, if required def convert_byte(b): return b.encode('utf-8', errors='strict') if ( isinstance(b, (str, unicode))) else b try: service_version = open("./VERSION").read().strip() except Exception: service_version = "undefined" __all__ = 'response', def convert_b46(s): return b64encode(s).decode('ascii') class StartResponse(object): def __init__(self, base64_content_types=None, use_gzip=False): ''' Args: base64_content_types (set): Set of HTTP Content-Types which should return a base64 encoded body. Enables returning binary content from API Gateway. ''' self.status = 500 self.status_line = '500 Internal Server Error' self.headers = [ ("version", service_version) ] self.use_gzip = use_gzip self.chunks = collections.deque() self.base64_content_types = set(base64_content_types or []) or set() def __call__(self, status, headers, exc_info=None): self.status_line = status self.status = int(status.split()[0]) self.headers[:] = headers return self.chunks.append def use_binary_response(self, headers, body): content_type = headers.get('Content-Type') if content_type and ';' in content_type: content_type = content_type.split(';')[0] return content_type in self.base64_content_types def use_gzip_response(self, headers, body): content_type = headers.get('Content-Type') return self.use_gzip and content_type in { "application/javascript", "application/json", "text/css", "text/html", "text/plain", "text/html", "image/svg+xml", "font/otf", "font/ttf" } and len(body) > ONE_MTU_SIZE def build_body(self, headers, output): totalbody = b''.join(itertools.chain( self.chunks, output, )) is_gzip = self.use_gzip_response(headers, totalbody) is_b64 = self.use_binary_response(headers, totalbody) print(f"IS_GZIP = {is_gzip}") print(f"is_b64 = {is_b64}") if is_gzip: totalbody = gzip.compress(totalbody) headers["Content-Encoding"] = "gzip" is_b64 = True if is_b64: converted_output = convert_b46(totalbody) else: converted_output = convert_str(totalbody) return { 'isBase64Encoded': is_b64, 'body': converted_output, } def response(self, output): headers = dict(self.headers) rv = { 'statusCode': self.status, 'headers': headers, } rv.update(self.build_body(headers, output)) return rv class StartResponse_GW(StartResponse): def response(self, output): rv = super(StartResponse_GW, self).response(output) rv['statusCode'] = str(rv['statusCode']) return rv class StartResponse_ELB(StartResponse): def response(self, output): rv = super(StartResponse_ELB, self).response(output) rv['statusCode'] = int(rv['statusCode']) rv['statusDescription'] = self.status_line return rv def environ(event, context): body = event.get('body', '') or '' if event.get('isBase64Encoded', False): body = b64decode(body) # FIXME: Flag the encoding in the headers body = convert_byte(body) environ = { 'REQUEST_METHOD': event['httpMethod'], 'SCRIPT_NAME': '', 'SERVER_NAME': '', 'SERVER_PORT': '', 'PATH_INFO': event['path'], 'QUERY_STRING': urlencode(event['queryStringParameters'] or {}), 'REMOTE_ADDR': '127.0.0.1', 'CONTENT_LENGTH': str(len(body)), 'HTTP': 'on', 'SERVER_PROTOCOL': 'HTTP/1.1', 'wsgi.version': (1, 0), 'wsgi.input': BytesIO(body), 'wsgi.errors': sys.stderr, 'wsgi.multithread': False, 'wsgi.multiprocess': False, 'wsgi.run_once': False, 'wsgi.url_scheme': '', 'awsgi.event': event, 'awsgi.context': context, } headers = event.get('headers', {}) or {} for k, v in headers.items(): k = k.upper().replace('-', '_') if k == 'CONTENT_TYPE': environ['CONTENT_TYPE'] = v elif k == 'ACCEPT_ENCODING': environ['ACCEPT_ENCODING'] = v elif k == 'HOST': environ['SERVER_NAME'] = v elif k == 'X_FORWARDED_FOR': environ['REMOTE_ADDR'] = v.split(', ')[0] elif k == 'X_FORWARDED_PROTO': environ['wsgi.url_scheme'] = v elif k == 'X_FORWARDED_PORT': environ['SERVER_PORT'] = v environ['HTTP_' + k] = v return environ def select_impl(event, context): if 'elb' in event.get('requestContext', {}): return environ, StartResponse_ELB else: return environ, StartResponse_GW def response(app, event, context, base64_content_types=None): environ, StartResponse = select_impl(event, context) use_gzip = bool("gzip" in event.get("headers", {}).get('accept-encoding', "")) sr = StartResponse(base64_content_types=base64_content_types, use_gzip=use_gzip) output = app(environ(event, context), sr) response = sr.response(output) return response ```
{ "source": "jeanlks/ARP", "score": 3 }
#### File: ARP/QDA/QDA.py ```python import math import numpy as np import pandas as pd def normalizationBySd(matrix): result = [] for vector in matrix: line = [] mean = np.mean(vector) median = np.median(vector) for item in vector: val = (item - median / mean); line.append(val) result.append(line) return result def normalizationByMaxMin(matrix, max, min): result = [] for column in matrix: line = [] for item in column: val = (item - min) / (max - min) line.append(val) result.append(line) return result def predict(testVector, meansVector, covarianceMatrix): inverseMatrix = np.linalg.inv(covarianceMatrix) features_sub = np.subtract(testVector, meansVector) partial_result = np.dot(np.dot(features_sub, inverseMatrix), np.transpose(features_sub)) return 1/2 * np.log(covarianceMatrix) + partial_result ```
{ "source": "Jean-LouisH/Lilliputian", "score": 2 }
#### File: assets/scripts/debug_escape_to_splash_screen.py ```python import lilliputian as lp def on_input(): if lp.get_input_api().is_on_release("escape"): lp.get_scene_api().load_scene("assets/scenes/splash_screen.yml") ``` #### File: assets/scripts/debug_time_display.py ```python import lilliputian as lp import time def on_frame(): scene_api = lp.get_scene_api() if scene_api.this_has_component(lp.CV.UI_TEXT_LABEL): current_time_string = time.strftime("%H:%M:%S", time.localtime()) ui_text_label = scene_api.get_this_component_variant(lp.CV.UI_TEXT_LABEL).get_ui_text_label() ui_text_label.set_text("Time: " + current_time_string) ```
{ "source": "Jean-LouisH/Omnia", "score": 2 }
#### File: scripts/python/constantly_rotate.py ```python import omnia def on_logic_frame(): omnia.get_component("Transform").rotate_y(0.325) ``` #### File: scripts/python/debug_time_display.py ```python import omnia import time def on_logic_frame(): scene_api = omnia.get_scene_api() if scene_api.has_component("UITextLabel"): current_time_string = time.strftime("%H:%M:%S", time.localtime()) ui_text_label = scene_api.get_component("UITextLabel") ui_text_label.set_text("Time: " + current_time_string) ```
{ "source": "jeanlst/soen691-clustering-project", "score": 3 }
#### File: soen691-clustering-project/soen691_clustering_project/bfr.py ```python import glob import os from pathlib import Path import numpy as np import math from cluster import Cluster from bin_heap import BinHeap #the BFR class proper class BFR: def __init__(self, data=None, k=None, alpha=1, beta=1): """ DATA: numpy matrix K: Number of Clusters ALPHA: for Primary Compression. Number of standard deviations from the centroid under which points are grouped together and summarized BETA: for Secondary Compression. Merge groups of points where their "tightness" is under this value """ self.__data = np.array(data) if isinstance(data, list) else data self.__k = k self.__alpha = alpha self.__beta = beta #Data Dimensionality self.__dims = None #list of Clusters self.__clusters = [] def __convertStoG(self, mtx): ''' Convert a matrix of singleton points into a matrix group of (SUM, SUMSQ, N) ''' #get number of rows and columns rows = mtx.shape[0] cols = mtx.shape[1] #set number of cols and rows for new mtx nrows = rows ncols = cols * 2 + 1 #new mtx nmtx = np.zeros((nrows, ncols)) #set values nmtx[:,:cols] = mtx * 1.0 nmtx[:,cols:-1] = mtx ** 2.0 nmtx[:,-1] = 1 * 1.0 return nmtx def __dist_mean(self, row1, row2, dims): ''' distance calculation for grouped values ''' #number of elements n1 = row1[dims * 2] n2 = row2[dims * 2] #means mean1 = (row1 * 1.0) / n1 mean2 = (row2 * 1.0) / n2 #distance calculation #squared euclidean total_dist = 0 for i in list(range(dims)): total_dist += (mean1[i] - mean2[i]) ** 2.0 return total_dist def __closest(self, row, centroids, dims): ''' Given a row and a matrix of centroids, return index number for closest centroid dims: number of dimensions ''' #assign distance to row #leave out ID list for centroids distances = np.apply_along_axis(lambda x: self.__dist_mean(row, x, dims), 1, centroids[:,:-1]) #get index of closest min_index = np.argmin(distances) #return 'ID no.' of closest centroid return centroids[min_index,-1] def __cmean(self, row, dims): """ given a row, return the mean """ nrow = (row[:dims] * 1.0) / row[dims * 2] return nrow def __centroid_selection(self, mtx, k, dims): ''' Select centroid at random, ensuring that the selected centroids are all different values ''' #attempt to find centroids that are unique (no duplicate rows) unique_cts = False itr = 0 while unique_cts == False: #select k points indices = np.random.choice(mtx.shape[0], k, replace=False) #get the centroids selected = mtx[indices,:] #get means sel_means = np.apply_along_axis(lambda x: self.__cmean(x, dims), 1, selected) #should be more robust way to check uniqueness #filter for uniqueness unique_cents = np.unique(sel_means, axis=0) #check if unique and orig are same size if selected.shape[0] == unique_cents.shape[0]: unique_cts = True itr += 1 if itr > 100: print("Unable to find unique centroids!") break return selected def __kmeans_groups_init(self, mtx, k, dims): ''' perform weighed kmeans with groups of values choose initial centroids ''' centroids = self.__centroid_selection(mtx, k, dims) #index numbers for the newly selected centroids c_inds = np.arange(k).reshape((k,1)) #append indices to end of centroid list centroids = np.hstack((centroids, c_inds)) #assign to each point closest centroid #column vector for assignments assignments = np.apply_along_axis(lambda x: self.__closest(x, centroids, dims), 1, mtx) #matrix plus assignments assigned = np.hstack((mtx, assignments.reshape(assignments.shape[0], 1))) return assigned, centroids def __recenter(self, mtx, dims): ''' given a matrix of assigned points, average points and return new centroids ''' #get all centroid IDs cent_IDs = np.unique(mtx[:,-1]) #calculate averages current = np.zeros((cent_IDs.shape[0], mtx.shape[1])) #creating a dictionary to associate IDs with indices cent_dict = {k: cent_IDs[k] for k in list(range(len(cent_IDs)))} #for each unique value / centroid #dont see how to do this without a loop for i in list(range(len(cent_IDs))): #slicing for current value cind = np.where(mtx[:,-1] == cent_dict[i])[0] #selecting c_slice = mtx[cind,:] #sum c_sum = np.sum(c_slice, 0) #set to index current[int(i),:-1] = c_sum[:-1] #set last slot (index) current[int(i),-1] = cent_dict[i] return current def __centroid_comp(self, cts1, cts2, dims): ''' compare 2 lists of centroids, check if identical, regardless of number of members in the subgroup ''' #check if centroids are the same same_cents = True for i in range(cts1.shape[0]): #get averages for cluster center cls_c1 = cts1[i,:dims] / cts1[i,dims*2] cls_c2 = cts2[i,:dims] / cts2[i,dims*2] #equality check if np.array_equal(cls_c1, cls_c2) == False: same_cents = False return same_cents def __matrix_insert(self, old_c, new_c): """ Attempt to fix the "dissapearing centroid" issue. reinsert discarded centroid into new matrix """ #get IDs for centroids old_ids = np.unique(old_c[:,-1]) new_ids = np.unique(new_c[:,-1]) #find missing indices missed = np.setdiff1d(old_ids, new_ids) #create empty matrix, same size as old reconst = np.zeros((old_c.shape[0], old_c.shape[1])) #fill it #new values for i in new_ids: #get relevant indexes rind = np.where(new_c[:,-1] == i)[0][0] r2ind = np.where(old_c[:,-1] == i)[0][0] reconst[r2ind,:] = new_c[rind,:] for i in missed: #get relevant index rind = np.where(old_c[:,-1] == i)[0][0] reconst[rind,:] = old_c[rind,:] #return reconstructed mtx return reconst def __kmeans_converge(self, mtx, cents, k, dims): ''' given a set of assigned points, average and reassign until convergeance ''' converge = False while converge == False: #get new centroids from average of new_cents = self.__recenter(mtx, dims) if cents.shape[0] != new_cents.shape[0]: #print("disappearing centroid") #attempting to fix the "Disapearing Centroid" problem new_cents = self.__matrix_insert(cents, new_cents) if self.__centroid_comp(cents, new_cents, dims) == True: #centroids are equivalent, convergeance gained converge = True else: #reassign reassign = np.apply_along_axis(lambda x: self.__closest(x, new_cents, dims), 1, mtx[:,:-1]) #orig matrix plus assignments mtx = np.hstack((mtx[:,:-1], reassign.reshape(reassign.shape[0], 1))) #assign new centroids as old cents = new_cents #return matrix with new centroids return mtx, new_cents def __kmeans_assign(self, mtx, centroids, k, dims): ''' Given an unassigned matrix and some centroids, assign centroids to rows then perform kmeans ''' #take matrix and centroids and assign to points assigned = self.__assign_pts(mtx, centroids, dims) #perform k_means until convergeance final_asg, final_cents = self.__kmeans_converge(assigned, centroids, k, dims) #return new assignments and centroids return final_asg, final_cents def __kmeans_group(self, data, k, convert=True, dm=1): ''' perform kmeans. Convert Data into summary groups prior. data = matrix of points, either converted or not k = number of centroids convert = indicate whether to convert or not the data dims = dimensionality of the data. Fed to alg if ''' #dimensionality set if working with groups already dims = dm mtx = data #conversion to "Triplice" Format if not already done #ignore if working with an already converted set if convert == True: #number of dimensions dims = data.shape[1] #data conversion mtx = self.__convertStoG(data) #initial assignment init_mtx, init_cents = self.__kmeans_groups_init(mtx, k, dims) #loop until convergeance final_asg, final_cents = self.__kmeans_converge(init_mtx, init_cents, k, dims) #return matrix with assignments as well as centroids return final_asg, final_cents def __nearest_cls(self, mtx, dims): ''' given a matrix of assigned points/clusters, return the indices of the two nearest clusters ''' nb_rows = mtx.shape[0] #minimum dist set to infinity min_distance = math.inf #placeholder indices min_inds = [-1, -1] #for each row for i in range(nb_rows): #for each pair of rows for j in range(i + 1, nb_rows): #get distance of these two current_dist = self.__dist_mean(mtx[i,:], mtx[j,:], dims) #current distance less than minimum if current_dist < min_distance: #reset minimum min_distance = current_dist #set new minimum indices min_inds = [i, j] return min_inds def __merge_clusters(self, mtx, merge_inds, group_nb): ''' Given an assigned matrix and a list of indices to merge together, return a matrix with the specified rows merged together. group_nb = integer identifying the cluster used for the newly merged cluster assigned matrix: (SUM, SUMSQ, N, CLUSTER Nb.) ''' #indices for rows to keep as is keep_inds = [x for x in list(range(mtx.shape[0])) if x not in merge_inds] #retrieve merging rows merging_rows = mtx[merge_inds,:] #retrieve rows to keep keep_rows = mtx[keep_inds,:] #sum rows merged = np.sum(merging_rows, 0) #replace last in index with group number merged[-1] = group_nb #re-add merged row to rest of dataset new_mtx = np.vstack((keep_rows, merged)) return new_mtx def __assign_pts(self, mtx, cents, dims): ''' given matrices for both points and centroids, assign to the points the nearest centroid. Return list of points with assigned centroids. ''' #assign to each point closest centroid #column vector for assignments assignments = np.apply_along_axis(lambda x: self.__closest(x, cents, dims), 1, mtx) #matrix plus assignments assigned = np.hstack((mtx, assignments.reshape(assignments.shape[0], 1))) return assigned def __hierar_cls_agg(self, data, k): ''' Perform Agglomerative Hierarchical Clustering on the given Dataset, assigning to each point an individual cluster and progressively merging until k clusters is reached Return both assignments and the list of clusters ''' #get number of dimensions dims = data.shape[1] #convert data to required format mtx = self.__convertStoG(data) #keep original matrix for later transformation mtx_init = self.__convertStoG(data) #initial assignment #list of clusters cluster_lst = np.arange(mtx.shape[0]) #add to matrix mtx = np.hstack((mtx,cluster_lst.reshape(cluster_lst.shape[0], 1))) #while correct number of clusters has not been found while mtx.shape[0] != k: #get the two nearest rows near_ind = self.__nearest_cls(mtx[:,:-1], dims) #get cluster number of first row to merge cls_nb = mtx[near_ind[0],-1] #merge them together mtx = self.__merge_clusters(mtx, near_ind, cls_nb) #change matrix 'id's to just '0,1,2' mtx[:,-1] = np.arange(k) #assign points in original matrix to clusters assign_mtx = self.__assign_pts(mtx_init, mtx[:,], dims) return assign_mtx, mtx def __get_variances(self, row, dims): ''' given a row, and number of dimensions, return the variance for each element. Return an array where elements are the variance for each element of the row. ''' #sum row_sum = row[:dims] #sum of squares row_ssq = row[dims:dims * 2] #number of elements row_n = row[dims * 2] #variance variances = (row_ssq / row_n) - (((row_sum) ** 2) / (row_n ** 2)) return variances def __mahalanobis_dist(self, row, centroids, dims): ''' return a given element (singleton or otherwise)'s mahalanobis distance from the given distribution. using centroid distance if the row in question is a collection of points summary ''' #get point point = row[:dims] / row[dims*2] #select from the list of centroids the distribution to use #row's assignment is currently closest centroid dist = centroids[int(row[-1]),:] #get dist avg dist_avg = dist[:dims] / dist[dims*2] #interval interval = point - dist_avg #get variances for distribution varis = self.__get_variances(dist, dims) #square interval and divide by vars int2 = (interval ** 2) / varis #sum and return distance return np.sum(int2) def __pc_merge(self, mtx): ''' Merge operation used in primary compression. Given a submatrix, merge together all rows that have the same assignment ''' #for each centroid ID c_ids = np.unique(mtx[:,-1]) #print("Centroid IDs to merge") #print(c_ids) #print("Merge Matrix:") #print(mtx) for i in c_ids: #indices for the merge merge_inds = np.where(mtx[:,-1] == i)[0] #check if there are actually more than 1 row to merge #skip if not if len(merge_inds) > 1: mtx = self.__merge_clusters(mtx, merge_inds, i) #return newly formed matrix at the end return mtx def __primary_compression(self, mtx, centroids, dims, radius): ''' Primary Compression step for the BFR clustering algorithm. mtx : matrix of assigned points centroids: current centroids dims: dimensionality radius: minimum mahalanobis distance under which points are compressed under the centroid ''' #calculate mahalanobis distances for each point to the nearest centroid mh_dists = np.apply_along_axis(lambda x: self.__mahalanobis_dist(x, centroids, dims), 1, mtx) #convert NaN values to 0 mh_dists = np.nan_to_num(mh_dists) #print("Mahalanobis Distances") #print(mh_dists) #check if distance is less than threshold #compress points to centroid if distance is less threshold = mh_dists < radius #select rows to be compressed, this includes the centroids, #as their dist is 0 compr_inds = np.where(threshold == True)[0] #separate matrix into 2: indices to be merged and #those to be left alone #print("Full mtx: ", mtx.shape) #rows to merge to_merge = mtx[compr_inds,:] #rows to keep noCompr_inds = [x for x in list(range(mtx.shape[0])) if x not in compr_inds] to_leave = mtx[noCompr_inds,:] #print("To merge: ", to_merge.shape) #print("To keep: ", to_leave.shape) #merge selected indices, then append to kept merged = self.__pc_merge(to_merge) new_mtx = np.vstack((merged, to_leave)) #print("Remade Matrix:") #print(new_mtx) return new_mtx def __get_tightness(self, row, dims): ''' get tightness for given distribution, which is essentially the max of the standard deviations ''' #get array of variances variances = self.__get_variances(row, dims) #square root is standard deviation st_div = variances ** (1 / 2) #get maximum value std_max = np.max(st_div) return std_max def __merged_tightness(self, row1, row2, dims): ''' merge two rows together and get check their tightness ''' row_c = row1 + row2 tgt = self.__get_tightness(row_c, dims) return tgt def __valid_merge(self, row1, row2, dims, orig_cts): """ Verify whether a proposed merge is valid according to whether the merged rows have at least one subcluster """ #get IDs id_1 = row1[(dims * 2) + 1] id_2 = row2[(dims * 2) + 1] #check if they are in the centroid list check1 = id_1 in orig_cts check2 = id_2 in orig_cts #if at least one is not if (check1 and check2) == False: return True #if both original centroids, invalid return False def __get_tightest_pair(self, mtx, dims, orig_cts): ''' given a matrix of rows of clusters, return the indices of the rows that are considered the "tightest", as well as the value ORIG_CTS: index values of original centroids, make sure not to merge groups that are both "REAL" clusters ''' nb_rows = mtx.shape[0] #minimum dist set to infinity min_tightness = math.inf #placeholder indices min_inds = [-1, -1] #for each row for i in range(nb_rows): #for each pair of rows for j in range(i + 1, nb_rows): #get tightness from merged row of these two proj_tightness = self.__merged_tightness(mtx[i,:], mtx[j,:], dims) #current distance less than minimum if proj_tightness < min_tightness: #check assigned IDs are not BOTH part of original matrices i1_check = mtx[i,(dims * 2) + 1] in orig_cts i2_check = mtx[j,(dims * 2) + 1] in orig_cts #only merge if at least one index is from a subgroup if (i1_check and i2_check) == False: #reset minimum min_tightness = proj_tightness #set new minimum indices min_inds = [i, j] return min_inds, min_tightness def __hierar_cls_agg_tight(self, mtx, k, beta, dims, orig_cts): ''' Perform Agglomerative Hierarchical Clustering on the given matrix, assigning to each point an individual cluster and progressively merging the groups whose projected "tightness" is less than or equal to beta. Stop when no more merge options are available mtx: matrix of assigned points k: number of clusters beta: rows who are tighter than this value are merged dims: dimensions orig_cts: IDs of centroids from original Clustering Algorithm K. We want make sure we only merge if one of the subclusters available is not already assigned to a "Main" cluster. ''' #stopping condition stop_merge = False #while correct number of clusters has not been found while stop_merge == False: #get the two tightest row indices, and the value tight_ind, t_val = self.__get_tightest_pair(mtx, dims, orig_cts) #if the value is greater than beta, stop if t_val > beta: stop_merge = True else: #if value equal or less, merge and iterate again #get cluster number of first row to merge cls_nb1 = mtx[tight_ind[0],-1] #get ID for second row to merge cls_nb2 = mtx[tight_ind[1],-1] #take the minimum of the two cls_nb = min(cls_nb1, cls_nb2) #merge them together mtx = self.__merge_clusters(mtx, tight_ind, cls_nb) #return new matrix return mtx def __heap_clust(self, mtx, k, beta, dims, orig_cts): """ Hierarchical Agglomerative Clustering using a priority queue implemented with a min_heap Otherwise similar to above mtx: matrix of assigned points (SUMS, SUMSQ, N, ID) k: nb. of clusters beta: merge rows that are "tighter" than this value dims: dimensionality orig_cts: original centroids """ #Create Heap m_heap = BinHeap() #generate list of indices row_inds = list(np.arange(mtx.shape[0])) #counter for future indices future_ind = mtx.shape[0] #populate the heap with valid merges nb_rows = mtx.shape[0] #for each pair of rows for i in range(nb_rows): for j in range(i + 1, nb_rows): #get rows r1 = mtx[i,:] r2 = mtx[j,:] #check for valid merge if self.__valid_merge(r1, r2, dims, orig_cts): #get tightness tightn = self.__merged_tightness(r1, r2, dims) #get indices index1 = row_inds[i] index2 = row_inds[j] ilist = [index1, index2] #create heap object addh = [tightn,ilist] #add to heap m_heap.insert(addh) #heap populated, now check for merges looping = True while looping == True: #if heap is empty, break if m_heap.heapSize() == 0: break #check top element of heap top = m_heap.top() #if value exceeds beta, break if top[0] > beta: break #assume value is still valid #check if indices still exist, not merged before m_inds = top[1] inds_exist = all(e in row_inds for e in m_inds) if inds_exist == True: #proceed to merge and update heap #get, from inds, matching rows in the matrix ir1 = row_inds.index(m_inds[0]) ir2 = row_inds.index(m_inds[1]) tight_ri = [ir1, ir2] #get ID to use for merged #get cluster number of first row to merge cls_nb1 = mtx[ir1,dims * 2 + 1] #get ID for second row to merge cls_nb2 = mtx[ir2,dims * 2 + 1] #take the minimum of the two cls_nb = min(cls_nb1, cls_nb2) #merge rows mtx = self.__merge_clusters(mtx, tight_ri, cls_nb) #remove indices from index list row_inds.remove(m_inds[0]) row_inds.remove(m_inds[1]) #add new index to index list row_inds.append(future_ind) future_ind +=1 #get lnew row nrow = mtx[-1,:] #populate heap with tightness metrics for new row for i in range(mtx.shape[0] - 1): #for every row except last (recently merged) crow = mtx[i,:] #if the merge is valid if self.__valid_merge(crow, nrow, dims, orig_cts): #same process as above during initialization #get tightness p_tight = self.__merged_tightness(nrow, crow, dims) #get associated row indices #latest for new row nr_ind = row_inds[-1] #get other row index cr_ind = row_inds[i] inlst = [nr_ind, cr_ind] #create heap object nheap_o = [p_tight, inlst] #add to heap m_heap.insert(nheap_o) #regardless of whether we have merged or not, pop top of heap m_heap.remove() #restart loop until end conditions fulfilled #return reduced matrix return mtx def __secondary_compression(self, mtx, centroids, dims, beta, k2): ''' Secondary Compression Step. Take remaining singleton points and attempt to cluster them though kmeans. Find subclusters that are "tight", then merge them together through agglomerative hierarchical clustering while the tightness bound still holds. beta: tightness bound, standard deviation. Merge subclusters while they are still considered "tight". k2: number of clusters for subclustering, assumed k2 > K ''' #separate singleton points from clusters #indices for singletons single_inds = np.where(mtx[:,dims*2] == 1)[0] #indices for clusters clust_inds = [x for x in list(range(mtx.shape[0])) if x not in single_inds] #separate #singleton elements singletons = mtx[single_inds,:] #clustered elements clustered_pts = mtx[clust_inds,:] #If the value of k2 is greater than the number of singletons, #skip secondary compression if k2 > singletons.shape[0]: return mtx #run kmeans on the singleton points with k2 > K #only if the number of singleton points exceeds k2 subclusters, subcls_cts = self.__kmeans_group(singletons[:,:-1], k2, convert=False, dm=dims) #adjust IDs of subclusters so that they are not confounded with #"main" centroids #get number of centroids octs_nb = centroids.shape[0] #get IDs for the K centroids k1_ids = np.unique(centroids[:,-1]) #adjust IDs subclusters[:,-1] += octs_nb subcls_cts[:,-1] += octs_nb #Identify "Tight" Subclusters #get tightness for subclusters sub_tight = np.apply_along_axis(lambda x: self.__get_tightness(x, dims), 1, subcls_cts) #identify "tight" subclusters #discard any over the threshold tight_thresh = sub_tight > beta #get indices tight_inds = np.where(tight_thresh == False)[0] #get the others loose_inds = np.where(tight_thresh == True)[0] #proceed if there are any tight subclusters if len(tight_inds) > 0: #slice tight_cls = subcls_cts[tight_inds,:] #add to list of clusters from earlier cls_plus_t = np.vstack((clustered_pts, tight_cls)) #perform agglomerative hierarchical clustering on cls_plus_t #NAIVE IMPLEMENTATION: Commented out and use alternate version when ready #cls_merged = self.__hierar_cls_agg_tight(cls_plus_t, k2, beta, dims, k1_ids) #PRIORITY LIST IMPLEMENTATION: cls_merged = self.__heap_clust(cls_plus_t, k2, beta, dims, k1_ids) #slice loose centroids loose_cls = subcls_cts[loose_inds,:] #get remaining singletons that were not merged subc_nm = np.apply_along_axis(lambda x: x[-1] in loose_cls[:,-1], 1, subclusters) unmerged_inds = np.where(subc_nm == True)[0] #print('Unmerged inds:', unmerged) #print(unmerged_inds) #slice singleton list loose_singles = subclusters[unmerged_inds,:] #stack with centroids/tight clusters final_mtx = np.vstack((cls_merged, loose_singles)) else: #no tight subclusters, just return original matrix final_mtx = mtx return final_mtx def __bfr_loop(self, data, centroids, k, dims): """ The standard loop for the BFR algorithm: K-means, then Primary Compression, Then Secondary Compression K-means not done from scratch, points data: matrix of unassigned points, in cluster format centroids: matrix of points chosen as centroids """ #assign data to centroids and perform k-means mtx_assign, new_cents = self.__kmeans_assign(data, centroids, self.__k, self.__dims) #primary compression compressed_asg = self.__primary_compression(mtx_assign, new_cents, self.__dims, self.__alpha) #secondary compression #k2 > K. Set to k2 = K * 2 compressed2_asg = self.__secondary_compression(compressed_asg, new_cents, self.__dims, self.__beta, self.__k * 2) #return compressed matrix and new centroids return compressed2_asg, new_cents def __create_clusters(self, centroids, mtx): """ Given a list of centroids and a matrix of assigned points, create cluster objects and store them """ #for each centroid: for i in range(centroids.shape[0]): #create base cluster cluster_W = Cluster(None, None) #set center #take sum of points and divide by size of group cluster_W.center = list(centroids[i,:self.__dims] / centroids[i,-2]) #add to list of clusters self.__clusters.append(cluster_W) #iterating through matrix to store values for i in range(mtx.shape[0]): #identify assigned centroid cent = mtx[i,-1] #get points point = list(mtx[i,:self.__dims]) #add to the right cluster self.__clusters[int(cent)].points.append(point) self.__clusters[int(cent)].indexes.append(i) def get_clusters(self): """ Return list of clusters """ return self.__clusters def get_indexes(self): """ Return list of Indexes """ return [cluster.indexes for cluster in self.__clusters] def get_centres(self): """ Return Cluster Centroids """ return [cluster.center for cluster in self.__clusters] def cluster_noPart(self): """ Cluster the given data without partitioning it. Essentially going through one cycle of KMEANS, PRIMARY COMPRESSION and SECONDARY COMPRESSION, then returning a result. """ #begin by performing K-Means on the data data = self.__data self.__dims = data.shape[1] assignments_k, centroids_k = self.__kmeans_group(data, self.__k) #next, do primary compression compressed_asg = self.__primary_compression(assignments_k, centroids_k, self.__dims, self.__alpha) #next, secondary compression #using k2 = 2 * K for now. compressed2_asg = self.__secondary_compression(compressed_asg, centroids_k, self.__dims, self.__beta, self.__k * 2) #reassign centroids to points from secondary compr. reassigned = self.__assign_pts(compressed2_asg[:,:-1], centroids_k, self.__dims) #reassign until convergeance #get final centroids assignments_k, centroids_k = self.__kmeans_converge(reassigned, centroids_k, self.__k, self.__dims) #convert data to group format data_g = self.__convertStoG(self.__data) #assign to original points final_assign = self.__assign_pts(data_g, centroids_k, self.__dims) #create cluster objects self.__create_clusters(centroids_k, final_assign) #return final_assign, centroids_k def cluster_partition(self, filename, chunk_size, separator, k, alpha, beta, truths=True): """ Read a dataset from file in chunks of the specified size. filename: name of file to read chunk_size: size of chunks to load into memory. in Bytes separator: separator for the file to read Then BFR arguments... truths : will ignore last column during clustering, assuming these are true values """ #set params self.__data = None self.__k = k self.__alpha = alpha self.__beta = beta #list of Clusters self.__clusters = [] #open the file f = open(filename, "r") #read the first line to determine number of rows / item size line1 = f.readline() #turn into numpy array #take 1 less column is truths values are read l1 = np.fromstring(line1, sep=separator) if truths == False else np.fromstring(line1, sep=separator)[:-1] #get memory size per line, size is size of item by number of columns chunk_line = l1.itemsize * l1.size #get number of columns nb_cols = l1.size # #Data Dimensionality self.__dims = nb_cols #get number of lines to load per partition lines_per_chunk = int(chunk_size / chunk_line) #check for end of file end_file = False #checks for first iteration exception first_iter = True f_iter2 = True #sum total of data to return data_total = np.zeros(nb_cols).reshape(1,nb_cols) #holding centroids cents = None while end_file == False: #until end of file is reached #array with dummy line, to be removed data_m = np.zeros(nb_cols).reshape(1,nb_cols) #First, read the next chunk of data into memory for i in range(lines_per_chunk): #check if this is the first iteration if first_iter == True: #special case for first iteration #add first line to matrix data_m = np.vstack((data_m, l1)) #remove first iteration first_iter = False else: #normal execution #read a line from the file nline = f.readline() #check line size l_size = len(nline) #if the string read is of length 0, end of file reached if l_size == 0: #mark end of file, break loop end_file = True break #otherwise, continue #convert to numpy array line_a = np.fromstring(nline, sep=separator) if truths == False else np.fromstring(nline, sep=separator)[:-1] #add to matrix data_m = np.vstack((data_m, line_a)) #loop complete #if resulting matrix had no rows added, stop loop if data_m.shape[0] == 1: break #remove dummy line data_m = data_m[1:,:] #otherwise, continue #convert data to summary format data_m = self.__convertStoG(data_m) #do operations here #add to totals if f_iter2 == True: #check for first iteration #keep the uncompressed data in memory for final assignment self.__data = data_m #set as total data_total = data_m #run K-means on the data, get assigned points and centroids #remove the assigned column from data_total data_total, cents = self.__kmeans_group(data_total, self.__k, convert=False, dm=self.__dims) #pass a loop of BFR data_total, cents = self.__bfr_loop(data_total[:,:-1], cents, self.__k, self.__dims) #drop point assignments data_total = data_total[:,:-1] #first iter done f_iter2 = False else: #add to uncompressed data self.__data = np.vstack((self.__data, data_m)) #add to working data data_total = np.vstack((data_total, data_m)) #perform BFR loop data_total, cents = self.__bfr_loop(data_total, cents, self.__k, self.__dims) #drop point assignments data_total = data_total[:,:-1] #close file f.close() #final assignment final_assign = self.__assign_pts(self.__data, cents, self.__dims) #convert to cluster object self.__create_clusters(cents, final_assign) #done if __name__ == "__main__": #testing data_path = Path('./data/2d/shaped/flame.dat') #load data flame = np.loadtxt(data_path, delimiter="\t") b = BFR(flame[:,:-1], 2) print("Clustering...") b.cluster_noPart() print("Results:") print(b.get_clusters()) ``` #### File: soen691-clustering-project/soen691_clustering_project/clustering.py ```python class Clustering: def get_clusters(self): raise NotImplementedError("The method not implemented") def get_indexes(self): raise NotImplementedError("The method not implemented") ``` #### File: soen691-clustering-project/soen691_clustering_project/hierarchical_agglomerative.py ```python from cluster import Cluster from clustering import Clustering import heapq class HierarchicalAgglomerative(Clustering): def __init__(self, data, number_of_clusters): self.__data = data self.__number_of_clusters = number_of_clusters self.__clusters = {str([index]): Cluster(point, index) for index, point in enumerate(self.__data)} self.__dimension = len(data[0]) if len(data) > 0 else 0 self.__validate_arguments() def clustering(self): self.__build_priority_queue(self.__compute_distances()) old_clusters = [] while len(self.__clusters) > self.__number_of_clusters: min_distance, min_heap_node = heapq.heappop(self.__heap) closest_clusters = min_heap_node[1] if not self.__valid_heap_node(min_heap_node, old_clusters): continue str_closest_clusters = list(map(str, closest_clusters)) closest_clusters_objs = [self.__clusters[str_closest_clusters[0]], self.__clusters[str_closest_clusters[1]]] merged_cluster = Cluster(None, None) merged_cluster.points = closest_clusters_objs[0].points + closest_clusters_objs[1].points merged_cluster.indexes = closest_clusters_objs[0].indexes + closest_clusters_objs[1].indexes merged_cluster.center = self.__compute_centroid(merged_cluster) del self.__clusters[str_closest_clusters[0]] del self.__clusters[str_closest_clusters[1]] old_clusters.extend(closest_clusters) self.__update_heap(merged_cluster) self.__clusters[str(merged_cluster.indexes)] = merged_cluster def __compute_centroid(self, cluster): center = [0] * self.__dimension for point in cluster.points: for idx_coord, coord in enumerate(point): center[idx_coord] += coord return [coord / len(cluster) for coord in center] def __compute_distances(self): distances = [] for idx_n, cluster_n in self.__clusters.items(): for idx_i, cluster_i in self.__clusters.items(): if idx_n != idx_i: dist = cluster_n.distance(cluster_i) distances.append((dist, [dist, [cluster_n.indexes, cluster_i.indexes]])) return distances def __build_priority_queue(self, distances): heapq.heapify(distances) self.__heap = distances return self.__heap def __update_heap(self, new_cluster): for idx, cluster in self.__clusters.items(): dist = new_cluster.distance(cluster) heapq.heappush(self.__heap, (dist, [dist, [new_cluster.indexes, cluster.indexes]])) def __valid_heap_node(self, heap_node, old_clusters): for old_cluster in old_clusters: if old_cluster in heap_node[1]: return False return True def __merge_clusters(self): """ Naive approach""" min_distance = float('inf') closest_clusters = None for idx_a, cluster_a in enumerate(self.__clusters): for cluster_b in self.__clusters[idx_a + 1:]: distance = cluster_a.distance(cluster_b) if distance < min_distance: min_distance = distance closest_clusters = [cluster_a, cluster_b] merged_cluster = Cluster(None, None) merged_cluster.points = closest_clusters[0].points + closest_clusters[1].points merged_cluster.indexes = closest_clusters[0].indexes + closest_clusters[1].indexes merged_cluster.center = [0] * self.__dimension for point in merged_cluster.points: for idx_coord, coord in enumerate(point): merged_cluster.center[idx_coord] += coord merged_cluster.center = [coord / len(merged_cluster) for coord in merged_cluster.center] self.__clusters.remove(closest_clusters[0]) self.__clusters.remove(closest_clusters[1]) self.__clusters.append(merged_cluster) def get_clusters(self): return list(self.__clusters.values()) def get_indexes(self): return [cluster.indexes for cluster in self.__clusters.values()] def __validate_arguments(self): if len(self.__data) == 0: raise ValueError("Empty input data. Data should contain at least one point.") if self.__number_of_clusters <= 0: raise ValueError( "Incorrect amount of clusters '{:d}'. Amount of cluster should be greater than 0.".format( self.__number_of_clusters)) elif not type(self.__number_of_clusters) == int: raise ValueError( "Incorret type for amount of clusters '{:d}'. Amount of cluster should be an integer.".format( self.__number_of_clusters)) ``` #### File: soen691-clustering-project/soen691_clustering_project/soen691_clustering_project.py ```python import glob import os from collections import defaultdict from cure import Cure from kmeans import KMeans from bfr import BFR from hierarchical_agglomerative import HierarchicalAgglomerative from visualizer import ClusteringVisualizer from sklearn.datasets.samples_generator import make_circles import numpy as np """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" """ Helper Functions """ """ """ """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" def read_all_data_labeled(directory, extension, pattern='*', dimension='2d', all_data_dict=None): data_dict = defaultdict(dict) if all_data_dict is None else all_data_dict for path in glob.glob(directory + pattern + extension): data_dict[dimension][os.path.basename(path).replace(extension, '')] = read_data_labeled(path) return data_dict def read_data_labeled(filename): with open(filename) as f: data_dict = defaultdict(list) for line in f.readlines(): split = line.split('\t') size = len(split) data_dict[split[size - 1].strip()].append([float(coord) for coord in split[:size - 1]]) return data_dict def get_data(data_name, data_dict): data = [] for cluster in data_dict[data_name].values(): data.extend(cluster) return data def compare_clustering(data, clusters): data_to_analyze = {} clustering_to_analyze = {} for label, points_list in enumerate(sorted([sorted(cluster) for cluster in data.values()])): for point in sorted(points_list): data_to_analyze[tuple(point)] = int(label) sorted_clusters = sorted([sorted(cluster.points) for cluster in clusters]) if not type( clusters[0]) == list else sorted([sorted(cluster) for cluster in clusters]) for label, cluster in enumerate(sorted_clusters): for point in cluster: clustering_to_analyze[tuple(point)] = int(label) total = len(data_to_analyze) miss = 0.0 for point, label in clustering_to_analyze.items(): if data_to_analyze[point] != label: miss += 1 return (1 - miss / total) * 100 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" """ Main Method """ """ """ """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" if __name__ == '__main__': all_data = read_all_data_labeled('./data/3d/shaped/', extension='.dat', dimension='3d', all_data_dict=read_all_data_labeled('./data/2d/shaped/', '.dat')) """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" """ Non-Spherical 2D """ """ """ """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" results_nonspherical_2d = [] dataset_name = 'spiral' dataset = get_data(dataset_name, all_data['2d']) real_clusters = all_data['2d'][dataset_name] len_data = sorted([len(cluster) for cluster in all_data['2d'][dataset_name].values()]) n_clusters = len(all_data['2d'][dataset_name].keys()) print('---------{} DATASET---------'.format(dataset_name.upper()), len_data, n_clusters) df_list = dataset kmeans = KMeans(df_list, n_clusters) kmeans.clustering() kmeans_clusters = [] for indexes in kmeans.get_indexes(): cluster = [] for index in indexes: cluster.append(df_list[index]) kmeans_clusters.append(cluster) hac = HierarchicalAgglomerative(df_list, n_clusters) hac.clustering() cure = Cure(df_list, n_clusters, 0.15, 10) cure.clustering() bfr = BFR(data=df_list, k=n_clusters) bfr.cluster_noPart() results_nonspherical_2d.append([compare_clustering(real_clusters, kmeans_clusters), compare_clustering(real_clusters, hac.get_clusters()), compare_clustering(real_clusters, cure.get_clusters()), compare_clustering(real_clusters, bfr.get_clusters())]) visualizer = ClusteringVisualizer(number_canvas=4, number_columns=2, number_clusters=n_clusters, titles=['KMEANS', 'HAC', 'CURE', 'BFR'], fig_title='Path-based2: SPIRAL') visualizer.add_clustering(kmeans.get_indexes(), df_list, canvas=0) visualizer.add_clustering(hac.get_indexes(), df_list, canvas=1) visualizer.add_clustering(cure.get_indexes(), df_list, canvas=2) visualizer.add_clustering(bfr.get_indexes(), df_list, canvas=3) visualizer.plot(invisible_axis=True) dataset_name = 'jain' dataset = get_data(dataset_name, all_data['2d']) real_clusters = all_data['2d'][dataset_name] len_data = sorted([len(cluster) for cluster in all_data['2d'][dataset_name].values()]) n_clusters = len(all_data['2d'][dataset_name].keys()) print('---------{} DATASET---------'.format(dataset_name.upper()), len_data, n_clusters) df_list = dataset kmeans = KMeans(df_list, n_clusters) kmeans.clustering() kmeans_clusters = [] for indexes in kmeans.get_indexes(): cluster = [] for index in indexes: cluster.append(df_list[index]) kmeans_clusters.append(cluster) hac = HierarchicalAgglomerative(df_list, n_clusters) hac.clustering() cure = Cure(df_list, n_clusters, 0.3, 5) cure.clustering() bfr = BFR(data=df_list, k=n_clusters) bfr.cluster_noPart() results_nonspherical_2d.append([compare_clustering(real_clusters, kmeans_clusters), compare_clustering(real_clusters, hac.get_clusters()), compare_clustering(real_clusters, cure.get_clusters()), compare_clustering(real_clusters, bfr.get_clusters())]) visualizer = ClusteringVisualizer(number_canvas=4, number_columns=2, number_clusters=n_clusters, titles=['KMEANS', 'HAC', 'CURE', 'BFR'], fig_title='Jain') visualizer.add_clustering(kmeans.get_indexes(), df_list, canvas=0) visualizer.add_clustering(hac.get_indexes(), df_list, canvas=1) visualizer.add_clustering(cure.get_indexes(), df_list, canvas=2) visualizer.add_clustering(bfr.get_indexes(), df_list, canvas=3) visualizer.plot(invisible_axis=True) circles = make_circles(factor=0.5, noise=0.05, n_samples=700) circles_clusters = defaultdict(list) real_clusters = defaultdict(list) for k, v in list(zip(circles[0], circles[1])): circles_clusters[v].append(k) real_clusters[v].append(list(k)) circles_clusters = list(circles_clusters.values()) df = np.concatenate(circles_clusters) df_list = df.tolist() n_clusters = 2 # dataset_name = 'r15' # dataset = get_data(dataset_name, all_data['2d']) # real_clusters = all_data['2d'][dataset_name] # len_data = sorted([len(cluster) for cluster in all_data['2d'][dataset_name].values()]) # n_clusters = len(all_data['2d'][dataset_name].keys()) # print('---------{} DATASET---------'.format(dataset_name.upper()), len_data, n_clusters) # df_list = dataset kmeans = KMeans(df_list, n_clusters) kmeans.clustering() kmeans_clusters = [] for indexes in kmeans.get_indexes(): cluster = [] for index in indexes: cluster.append(df_list[index]) kmeans_clusters.append(cluster) hac = HierarchicalAgglomerative(df_list, n_clusters) hac.clustering() cure = Cure(df_list, n_clusters, 0.1, 10) cure.clustering() bfr = BFR(data=df_list, k=n_clusters) bfr.cluster_noPart() results_nonspherical_2d.append([compare_clustering(real_clusters, kmeans_clusters), compare_clustering(real_clusters, hac.get_clusters()), compare_clustering(real_clusters, cure.get_clusters()), compare_clustering(real_clusters, bfr.get_clusters())]) visualizer = ClusteringVisualizer(number_canvas=4, number_columns=2, number_clusters=n_clusters, titles=['KMEANS', 'HAC', 'CURE', 'BFR'], fig_title='Circles') visualizer.add_clustering(kmeans.get_indexes(), df_list, canvas=0) visualizer.add_clustering(hac.get_indexes(), df_list, canvas=1) visualizer.add_clustering(cure.get_indexes(), df_list, canvas=2) visualizer.add_clustering(bfr.get_indexes(), df_list, canvas=3) visualizer.plot(invisible_axis=True) dataset_name = 'pathbased' dataset = get_data(dataset_name, all_data['2d']) real_clusters = all_data['2d'][dataset_name] len_data = sorted([len(cluster) for cluster in all_data['2d'][dataset_name].values()]) n_clusters = len(all_data['2d'][dataset_name].keys()) print('---------{} DATASET---------'.format(dataset_name.upper()), len_data, n_clusters) df_list = dataset kmeans = KMeans(df_list, n_clusters) kmeans.clustering() kmeans_clusters = [] for indexes in kmeans.get_indexes(): cluster = [] for index in indexes: cluster.append(df_list[index]) kmeans_clusters.append(cluster) hac = HierarchicalAgglomerative(df_list, n_clusters) hac.clustering() cure = Cure(df_list, n_clusters, 0.1, 10) cure.clustering() bfr = BFR(data=df_list, k=n_clusters) bfr.cluster_noPart() results_nonspherical_2d.append([compare_clustering(real_clusters, kmeans_clusters), compare_clustering(real_clusters, hac.get_clusters()), compare_clustering(real_clusters, cure.get_clusters()), compare_clustering(real_clusters, bfr.get_clusters())]) visualizer = ClusteringVisualizer(number_canvas=4, number_columns=2, number_clusters=n_clusters, titles=['KMEANS', 'HAC', 'CURE', 'BFR'], fig_title='Path-based1') visualizer.add_clustering(kmeans.get_indexes(), df_list, canvas=0) visualizer.add_clustering(hac.get_indexes(), df_list, canvas=1) visualizer.add_clustering(cure.get_indexes(), canvas=2) visualizer.add_clustering(bfr.get_indexes(), df_list, canvas=3) visualizer.plot(invisible_axis=True) """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" """ Non-Spherical 3D """ """ """ """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" dataset_name = 'fcps_atom' dataset = get_data(dataset_name, all_data['3d']) real_clusters = all_data['3d'][dataset_name] len_data = sorted([len(cluster) for cluster in all_data['3d'][dataset_name].values()]) n_clusters = len(all_data['3d'][dataset_name].keys()) print('---------{} DATASET---------'.format(dataset_name.upper()), len_data, n_clusters) df_list = dataset kmeans = KMeans(df_list, n_clusters) kmeans.clustering() kmeans_clusters = [] for indexes in kmeans.get_indexes(): cluster = [] for index in indexes: cluster.append(df_list[index]) kmeans_clusters.append(cluster) hac = HierarchicalAgglomerative(df_list, n_clusters) hac.clustering() cure = Cure(df_list, n_clusters, 0.1, 10) cure.clustering() bfr = BFR(data=df_list, k=n_clusters) bfr.cluster_noPart() print([compare_clustering(real_clusters, kmeans_clusters), compare_clustering(real_clusters, hac.get_clusters()), compare_clustering(real_clusters, cure.get_clusters()), compare_clustering(real_clusters, bfr.get_clusters())]) visualizer = ClusteringVisualizer(number_canvas=4, number_columns=2, number_clusters=n_clusters, titles=['KMEANS', 'HAC', 'CURE', 'BFR'], fig_title='FCPS Atom') visualizer.add_clustering(kmeans.get_indexes(), df_list, canvas=0) visualizer.add_clustering(hac.get_indexes(), df_list, canvas=1) visualizer.add_clustering(cure.get_indexes(), df_list, canvas=2) visualizer.add_clustering(bfr.get_indexes(), df_list, canvas=3) visualizer.plot(invisible_axis=True) dataset_name = 'fcps_chainlink' dataset = get_data(dataset_name, all_data['3d']) real_clusters = all_data['3d'][dataset_name] len_data = sorted([len(cluster) for cluster in all_data['3d'][dataset_name].values()]) n_clusters = len(all_data['3d'][dataset_name].keys()) print('---------{} DATASET---------'.format(dataset_name.upper()), len_data, n_clusters) df_list = dataset kmeans = KMeans(df_list, n_clusters) kmeans.clustering() kmeans_clusters = [] for indexes in kmeans.get_indexes(): cluster = [] for index in indexes: cluster.append(df_list[index]) kmeans_clusters.append(cluster) hac = HierarchicalAgglomerative(df_list, n_clusters) hac.clustering() cure = Cure(df_list, n_clusters, 0.1, 10) cure.clustering() bfr = BFR(data=df_list, k=n_clusters) bfr.cluster_noPart() print([compare_clustering(real_clusters, kmeans_clusters), compare_clustering(real_clusters, hac.get_clusters()), compare_clustering(real_clusters, cure.get_clusters()), compare_clustering(real_clusters, bfr.get_clusters())]) visualizer = ClusteringVisualizer(number_canvas=4, number_columns=2, number_clusters=n_clusters, titles=['KMEANS', 'HAC', 'CURE', 'BFR'], fig_title='FCPS Chainlink') visualizer.add_clustering(kmeans.get_indexes(), df_list, canvas=0) visualizer.add_clustering(hac.get_indexes(), df_list, canvas=1) visualizer.add_clustering(cure.get_indexes(), df_list, canvas=2) visualizer.add_clustering(bfr.get_indexes(), df_list, canvas=3) visualizer.plot(invisible_axis=True) ```
{ "source": "jeanluc243/Apprends-Moi-Python", "score": 4 }
#### File: POO/exercices3/CompteBancaire.py ```python class CompteBancaire(): """ Gestion des Banques """ def __init__(self, nom = 'Dupont', solde = 1000 ): """ constructeur """ self.nom = nom self.solde = solde def depot(self, somme): """ ajouter somme au solde """ self.solde = self.solde + somme def retrait(self, somme): """ retirer somme du solde """ self.solde = self.solde - somme def affiche(self): print("Le compte bancaire de {0} est de {1} euros".format( self.nom , self.solde)) if __name__ == '__main__': compte1 = CompteBancaire('Duchmo1', 800) compte1.depot(350) compte1.retrait(200) compte1.affiche() ```
{ "source": "jeanlucancey/pronunciamento", "score": 2 }
#### File: pronunciamento/blog/views.py ```python from django.shortcuts import ( get_object_or_404, redirect, render) from django.views.decorators.http import \ require_http_methods from django.views.generic import View from .forms import PostForm from .models import Post class PostCreate(View): form_class = PostForm template_name = 'blog/post_form.html' def get(self, request): return render( request, self.template_name, {'form': self.form_class()}) def post(self, request): bound_form = self.form_class(request.POST) if bound_form.is_valid(): new_post = bound_form.save() return redirect(new_post) else: return render( request, self.template_name, {'form': bound_form}) class PostDelete(View): def get(self, request, year, month, slug): post = get_object_or_404( Post, pub_date__year=year, pub_date__month=month, slug__iexact=slug) return render( request, 'blog/post_confirm_delete.html', {'post': post}) def post(self, request, year, month, slug): post = get_object_or_404( Post, pub_date__year=year, pub_date__month=month, slug__iexact=slug) post.delete() return redirect('blog_post_list') @require_http_methods(['HEAD', 'GET']) def post_detail(request, year, month, slug): post = get_object_or_404( Post, pub_date__year=year, pub_date__month=month, slug=slug) return render( request, 'blog/post_detail.html', {'post': post}) class PostList(View): def get(self, request): return render( request, 'blog/post_list.html', {'post_list': Post.objects.all()}) class PostUpdate(View): form_class = PostForm model = Post template_name = 'blog/post_form_update.html' def get_object(self, year, month, slug): return get_object_or_404( self.model, pub_date__year=year, pub_date__month=month, slug=slug) def get(self, request, year, month, slug): post = self.get_object(year, month, slug) context = { 'form': self.form_class( instance=post), 'post': post, } return render( request, self.template_name, context) def post(self, request, year, month, slug): post = self.get_object(year, month, slug) bound_form = self.form_class( request.POST, instance=post) if bound_form.is_valid(): new_post = bound_form.save() return redirect(new_post) else: context = { 'form': bound_form, 'post': post, } return render( request, self.template_name, context) ``` #### File: pronunciamento/cestmoilechef/views.py ```python import django from os import system from django.http import (Http404, HttpResponse) from django.template import Context, loader from django.shortcuts import (get_object_or_404, \ redirect, \ # render_to_response, \ render) from django.views.generic import View # Pour faire des class-based views, voir p. 255 from blog.models import Post from jla_utils.utils import Fichier from .models import Categorie, Photo from .forms import CategorieForm, PhotoForm # * A - Divers à mettre en tête # ** A1 - Principal def pronunciamento(request): template = loader.get_template('cestmoilechef/pronunciamento.html') message = "J'ai quétchoze à dire, et ce que j'ai à dire, " + \ "c'est que c'est moi le chef, pas ce connard de Django!" context = Context({'message': message}) output = template.render(context) return HttpResponse(output) # ** A2 - Routines def vireGuill (mention): if mention[0] == '"' and mention[len(mention) - 1] == '"': mention = mention[1:len(mention) - 1] return mention # * B - Categorie, dans l'ordre L-CRUD-PIE # ** B1 - Categorie - L comme List def listeCategories(request): pageEntiere = "" pageEntiere += "<html>\n" pageEntiere += "<body>\n" pageEntiere += "<p>Voici la liste des catégories incluses dans la base " pageEntiere += "(nom complet, puis slug).</p>\n" mesCategories = Categorie.objects.all() nbCategories = Categorie.objects.count() for numCategorie in range(nbCategories): maCategorie = mesCategories[numCategorie] monNom = maCategorie.nom monSlug = maCategorie.slug ligneAEcrire = "<p>[%s] - [%s]</p>\n" % (monNom, monSlug) pageEntiere += ligneAEcrire pageEntiere += "</body>\n" pageEntiere += "</html>\n" return HttpResponse(pageEntiere) def listeCategories2(request): # Fonction écrite sans shortcuts, et que je trouve beaucoup plus claire et souple, # mais que Pinkham recommande de remplacer par listeCategories3 ou plutôt # listeCategories4 categorie_list = Categorie.objects.all() template = loader.get_template('cestmoilechef/categorie_list.html') context = Context({'categorie_list': categorie_list}) output = template.render(context) return HttpResponse(output) # def listeCategories3(request): # Variante de la fonction précédente, avec shortcuts et nonobstant # deja obsolete car render tend a remplacer render_to_response (ca fait # plus de trucs au prix d'une degradation des temps de réponse). # Perso moi-je, je trouve ça de toute façon beaucoup moins clair # et de surcroît pas souple du tout. Voir Pinkham 5.6.3 p. 139 # return render_to_response('cestmoilechef/categorie_list.html', # {'categorie_list': Categorie.objects.all()}) # Ce qui suit a ete neutralise au profit d'une class-based view, voir p. 255 # def listeCategories4(request): # Variante de la variante précédente (celle avec des #), employant le shortcut render # au lieu du shortcut render_to_response (ca fait plus de trucs # supposes utiles quoique au prix d'une degradation des temps de réponse). # Ce n'est donc pas vraiment equivalent ni a listeCategories3 ni surout à listeCategories2, # à mon grand désespoir car listeCategories2 me paraît beaucoup plus clair # et souple. Voir Pinkham 5.6.3 p. 139 # return render(request, \ # 'cestmoilechef/categorie_list.html', \ # {'categorie_list': Categorie.objects.all()}) # Remplacement de la fonction précédente par une class-based view class CategorieList(View): def get(self, request): return render(request, \ 'cestmoilechef/categorie_list.html', \ {'categorie_list': Categorie.objects.all()}) # ** B2 - Categorie - C comme Create # Je crois bien que la méthode qui suit est caduque, vu que Pinkham lui # substitue la class-based view CategorieCreate en 9.2.2.3 p. 246, # mais c'est sa façon de faire à lui et il signale qu'écrire quelque chose # du genre de categorieCreate est ce qui est préconisé dans la plupart # des tutoriels, donc il vaut mieux garder ce code à titre de référence. def categorieCreate(request): # Pompé sur Pinkham, p. 244. Le style n'est pas le mien et il n'est # pas vraiment aimé par Pinkham, qui le signale juste comme de pratique standard. # En tout cas, je signale qu'il y a deux return a l'intérieur de boucles if, et # non pas un seul à la fin de la méthode, comme je fais d'ordinaire. if request.method == 'POST': # bind data to form form = CategorieForm(request.POST) # if the data is valid: if form.is_valid(): # L'appel de cette méthode crée errors et cleaned_data # create new object from data new_categorie = form.save() return redirect(new_categorie) # show webpage for new objects # else implicite: form contient des données invalides else: # request.method != 'POST' # show unbound HTML form form = CategorieForm() return render( request, 'cestmoilechef/categorie_form.html', {'form': form} ) class CategorieCreate(View): form_class = CategorieForm template_name = 'cestmoilechef/categorie_form.html' def get(self, request): return render( request, self.template_name, {'form': self.form_class()} ) def post(self, request): # Attention, code façon Pinkham, avec deux return dans une boucle if bound_form = self.form_class(request.POST) if bound_form.is_valid(): new_categorie = bound_form.save() return redirect(new_categorie) else: return render( request, self.template_name, {'form': bound_form} ) # ** B3 - Categorie - R comme Read def categorieDetailPabon(request): # Comme l'explique Pinkham au bas de la page 129, on peut faire # ce que je fais ici, mais c'est moche et pas propre. Ca fait rien, # ca me parait pedagogique. monFullPath = request.path_info # Et cette variable, on la bidouille comme on veut pageEntiere = "" pageEntiere += "<html>\n" pageEntiere += "<body>\n" pageEntiere += "<p>Cette page cherche juste à montrer que l'URL peut être bidouillée à la mimine.</p>\n" pageEntiere += "<p>monFullPath est une variable et vaut&nbsp;: [%s]</p>\n" % (monFullPath) pageEntiere += "</body>\n" pageEntiere += "</html>\n" return HttpResponse(pageEntiere) def categorieDetailPabon2(request, slugUrl): # Pour rendre les choses plus claires et ne pas écrire des horreurs du genre # slug=slug, je distingue slug (attribut d'une catégorie) et slugUrl (la # mention écrite dans l'URL) try: categorie = Categorie.objects.get(slug__iexact = slugUrl) except Categorie.DoesNotExist: raise Http404 pageEntiere = "" pageEntiere += "<html>\n" pageEntiere += "<body>\n" pageEntiere += "<p>Cette page cherche juste à vérifier que le slug est bien compris.</p>\n" pageEntiere += "<p>slug est une variable et vaut&nbsp;: [%s]</p>\n" % (slugUrl) pageEntiere += "<p>categorie.nom vaut&nbsp;: [%s]</p>\n" % (categorie.nom) pageEntiere += "<p>categorie.slug vaut&nbsp;: [%s]</p>\n" % (categorie.slug) pageEntiere += "</body>\n" pageEntiere += "</html>\n" return HttpResponse(pageEntiere) def categorieDetail(request, slugUrl): # Voir ci-dessous categorieDetailShortcut, une version abrégée qui fait # la même chose avec un shortcut, et aussi categorieDetailShortcut2, qui # fait un petit peu plus avec deux shortcuts, ce qui est sûrement plus # orthodoxe et recommandé par les bonnes pratiques mais imbitable et # in-modifiable, à mon grand désespoir. try: categorie = Categorie.objects.get(slug__iexact = slugUrl) except Categorie.DoesNotExist: raise Http404 template = loader.get_template('cestmoilechef/categorie_detail.html') context = Context({'categorie': categorie}) output = template.render(context) return HttpResponse(output) # def categorieDetailShortcut(request, slugUrl): # Rigoureusement la même chose que la fonction précédente, mais avec un shortcut # Même si je l'ai neutralisée, je recommande de la garder pour le cas où il # faudrait intercaler des lignes # categorie = get_object_or_404(Categorie, slug__iexact = slugUrl) # template = loader.get_template('cestmoilechef/categorie_detail.html') # context = Context({'categorie': categorie}) # output = template.render(context) # return HttpResponse(output) def categorieDetailShortcut2(request, slugUrl): # Un petit peu plus que la version précédente, et donc que categorie_detail # que pourtant je trouve beaucoup plus claire et plus souple. # Voir Pinkham 5.6.3 p. 139 categorie = get_object_or_404(Categorie, slug__iexact = slugUrl) return render(request, \ 'cestmoilechef/categorie_detail.html', \ {'categorie': categorie}) # ** B4 - Categorie - U comme Update class CategorieUpdate(View): form_class = CategorieForm model = Categorie template_name = 'cestmoilechef/categorie_form_update.html' def get_object(self, slugArg): return get_object_or_404( self.model, slug=slugArg ) def get(self, request, slugUrl): maCategorie = self.get_object(slugUrl) context = { 'form': self.form_class(instance=maCategorie), 'categorie': maCategorie, } return render(request, self.template_name, context) def post(self, request, slugUrl): maCategorie = self.get_object(slugUrl) bound_form = self.form_class( request.POST, instance=maCategorie ) if bound_form.is_valid(): new_categorie = bound_form.save() return redirect(new_categorie) else: context = { 'form': bound_form, 'categorie': maCategorie, } return render( request, self.template_name, context ) # ** B5 - Categorie - D comme Delete class CategorieDelete(View): def get(self, request, slugUrl): maCategorie = get_object_or_404( Categorie, slug__iexact = slugUrl # slug au lieu de slug__iexact marcherait ) return render(request, 'cestmoilechef/categorie_confirm_delete.html', {'categorie': maCategorie} ) def post(self, request, slugUrl): maCategorie = get_object_or_404( Categorie, slug__iexact = slugUrl # slug au lieu de slug__iexact marcherait ) maCategorie.delete() return redirect('liste_categories') # ** B6 - Categorie - P comme Purge def purgeCategories(request): tableauDeLignes = [] tableauDeLignes.append("Cette page radioactive est vouée à détruire les catégories de la base.") mesCategories = Categorie.objects.all() nbCategories = Categorie.objects.count() for numCategorie in range(nbCategories - 1, -1, -1): maCategorie = mesCategories[numCategorie] monNom = maCategorie.nom monSlug = maCategorie.slug ligneAEcrire = "%d - [%s] - [%s]\n" % (numCategorie, monNom, monSlug) tableauDeLignes.append(ligneAEcrire) # Je neutralise la ligne qui suit, par prudence # maCategorie.delete() template = loader.get_template('cestmoilechef/petite_merdasse.html') context = Context({ 'tabDeLignes': tableauDeLignes }) output = template.render(context) return HttpResponse(output) # ** B7 - Categorie - I comme Import def importeCategories(request): # C'est volontairement que cette fonction n'utilise pas de template, pour # ne pas oublier totalement comment on peut s'y prendre. pageEntiere = "" pageEntiere += "<html>\n" pageEntiere += "<body>\n" pageEntiere += "<p>Ceci est voué à remplir la table des categories à partir d'un fichier CSV.</p>\n" monFichier = Fichier("categories.csv", False) while monFichier.index < monFichier.longueur: ligneLue = monFichier.litUneLigne() ligneAEcrire = "<p>%s</p>" % (ligneLue) pageEntiere += ligneAEcrire mesBazars = ligneLue.split(',') monNom = vireGuill(mesBazars[0]) monSlug = vireGuill(mesBazars[1]) ligneAEcrire = "<p>[%s] - [%s]</p>" % (monNom, monSlug) pageEntiere += ligneAEcrire # Je neutralise ce qui suit parce que ca a marche et que ce n'est # pas voue a etre utilise deux fois # Categorie.objects.create(nom=monNom, slug=monSlug) monFichier.close() pageEntiere += "</body>\n" pageEntiere += "</html>\n" return HttpResponse(pageEntiere) # ** B8 - Categorie - E comme Export def exporteCategories(request): tableauDeLignes = [] tableauDeLignes.append("Cette page est vouée à permettre l'export des catégories.") monFichier = Fichier("categories_export.csv", True) mesCategories = Categorie.objects.all() nbCategories = Categorie.objects.count() for numCategorie in range(nbCategories): maCategorie = mesCategories[numCategorie] monNom = maCategorie.nom monSlug = maCategorie.slug ligneAEcrire = '"%s","%s"' % (monNom, monSlug) monFichier.ecritUneLigne(ligneAEcrire) tableauDeLignes.append(ligneAEcrire) monFichier.close() tableauDeLignes.append("En principe, si vous lisez ça, c'est que l'export a eu lieu.") template = loader.get_template('cestmoilechef/petite_merdasse.html') context = Context({ 'tabDeLignes': tableauDeLignes }) output = template.render(context) return HttpResponse(output) # * C - Photo, dans l'ordre L-CRUD-PIE # ** C1 - Photo - L comme List def listePhotos(request): pageEntiere = "" pageEntiere += "<html>\n" pageEntiere += "<body>\n" pageEntiere += "<p>Voici la liste des photos incluses dans la base " pageEntiere += "(nom abrégé, catégorie, puis nomEntier).</p>\n" mesPhotos = Photo.objects.all() nbPhotos = Photo.objects.count() for numPhoto in range(nbPhotos): maPhoto = mesPhotos[numPhoto] monNomAbrege = maPhoto.nomAbrege monNomComplet = maPhoto.nomComplet maCateg = maPhoto.categorie.slug ligneAEcrire = "<p>[%s] - [%s] - [%s]</p>\n" % (monNomAbrege, maCateg, monNomComplet) pageEntiere += ligneAEcrire pageEntiere += "</body>\n" pageEntiere += "</html>\n" return HttpResponse(pageEntiere) def listePhotos2(request): # Fonction écrite sans shortcuts, et que je trouve beaucoup plus claire et souple, # mais que Pinkham recommande de remplacer par listePhotos3 ou plutôt listePhotos4 # et même finalement par une class-based view PhotoList. # Même si je n'utilise pas ce listing, je recommande de le conserver car il # autorise une certaine souplesse. photo_list = Photo.objects.all() template = loader.get_template('cestmoilechef/photo_list.html') context = Context({'photo_list': photo_list}) output = template.render(context) return HttpResponse(output) # def listePhotos3(request): # Variante de la fonction précédente, avec shortcuts et nonobstant # deja obsolete car render tend a remplacer render_to_response (ca fait # plus de trucs au prix d'une degradation des temps de réponse). # Perso moi-je, je trouve ça de toute façon beaucoup moins clair # et de surcroît pas souple du tout. Voir Pinkham 5.6.3 p. 139 # return render_to_response('cestmoilechef/photo_list.html', # {'photo_list': Photo.objects.all()}) # def listePhotos4(request): # Variante de la variante précédente (celle avec des #), employant le shortcut render # au lieu du shortcut render_to_response (ca fait plus de trucs # supposes utiles quoique au prix d'une degradation des temps de réponse). # Ce n'est donc pas vraiment equivalent ni a listePhotos3 ni surout à listePhotos2, # à mon grand désespoir car listePhotos2 me paraît beaucoup plus clair # et souple. Voir Pinkham 5.6.3 p. 139 # Finalement, j'ai remplacé ce listePhotos4 par une class-based view, # voir juste en dessous # return render(request, \ # 'cestmoilechef/photo_list.html', \ # {'photo_list': Photo.objects.all()}) # Remplacement de la fonction précédente par une class-based view class PhotoList(View): def get(self, request): return render(request, \ 'cestmoilechef/photo_list.html', \ {'photo_list': Photo.objects.all()}) # ** C2 - Photo - C comme Create class PhotoCreate(View): form_class = PhotoForm template_name = 'cestmoilechef/photo_form.html' def get(self, request): return render( request, self.template_name, {'form': self.form_class()} ) def post(self, request): # Attention, code façon Pinkham, avec deux return dans une boucle if bound_form = self.form_class(request.POST) if bound_form.is_valid(): new_photo = bound_form.save() return redirect(new_photo) else: return render( request, self.template_name, {'form': bound_form} ) # ** C3 - Photo - R comme Read def montrePhotoPrecise(request, nomPhotoUrl): maPhoto = get_object_or_404(Photo, nomAbrege__iexact = nomPhotoUrl) template = loader.get_template('cestmoilechef/photo_precise.html') context = Context({'photo': maPhoto}) output = template.render(context) return HttpResponse(output) # ** C4 - Photo - U comme Update class PhotoUpdate(View): # Inspiré de la p. 259 form_class = PhotoForm model = Photo template_name = 'cestmoilechef/photo_form_update.html' def get_object(self, nomPhotoArg): return get_object_or_404( self.model, nomAbrege=nomPhotoArg ) def get(self, request, nomPhotoUrl): maPhoto = self.get_object(nomPhotoUrl) context = { 'form': self.form_class(instance=maPhoto), 'photo': maPhoto, } return render(request, self.template_name, context) def post(self, request, nomPhotoUrl): maPhoto = self.get_object(nomPhotoUrl) bound_form = self.form_class( request.POST, instance=maPhoto ) if bound_form.is_valid(): new_photo = bound_form.save() return redirect(new_photo) else: context = { 'form': bound_form, 'photo': maPhoto, } return render( request, self.template_name, context ) # ** C5 - Photo - D comme Delete class PhotoDelete(View): # Inspiré de la p. 270 def get(self, request, nomPhotoUrl): maPhoto = get_object_or_404( Photo, nomAbrege = nomPhotoUrl ) return render(request, 'cestmoilechef/photo_confirm_delete.html', {'photo': maPhoto} ) def post(self, request, nomPhotoUrl): maPhoto = get_object_or_404( Photo, nomAbrege = nomPhotoUrl ) maPhoto.delete() return redirect('liste_photos') # ** C6 - Photo - P comme Purge def purgePhotos(request): tableauDeLignes = [] tableauDeLignes.append("Cette page radioactive est vouée à détruire les photos de la base.") mesPhotos = Photo.objects.all() nbPhotos = Photo.objects.count() for numPhoto in range(nbPhotos - 1, -1, -1): maPhoto = mesPhotos[numPhoto] monNomAbrege = maPhoto.nomAbrege monNomComplet = maPhoto.nomComplet maCateg = maPhoto.categorie.slug ligneAEcrire = "%d - [%s] - [%s] - [%s]" % (numPhoto, monNomAbrege, maCateg, monNomComplet) tableauDeLignes.append(ligneAEcrire) # Je neutralise la ligne qui suit, par prudence # maPhoto.delete() template = loader.get_template('cestmoilechef/petite_merdasse.html') context = Context({ 'tabDeLignes': tableauDeLignes }) output = template.render(context) return HttpResponse(output) # ** C7 - Photo - I comme Import def importePhotos(request): # C'est volontairement que cette fonction n'utilise pas de template, pour # ne pas oublier totalement comment on peut s'y prendre. pageEntiere = "" pageEntiere += "<html>\n" pageEntiere += "<body>\n" pageEntiere += "<p>Ceci est voué à remplir la table des photos à partir d'un fichier CSV.</p>\n" monFichier = Fichier("portes_classees.csv", False) while monFichier.index < monFichier.longueur: ligneLue = monFichier.litUneLigne() ligneAEcrire = "<p>%s</p>" % (ligneLue) pageEntiere += ligneAEcrire mesBazars = ligneLue.split(',') monNomAbrege = vireGuill(mesBazars[0]) maCategEnClair = vireGuill(mesBazars[1]) maCategEnVrai = Categorie.objects.get(slug=maCategEnClair) monPathEtNom = vireGuill(mesBazars[2]) ligneAEcrire = "<p>[%s]</p>" % (maCategEnClair) pageEntiere += ligneAEcrire # Je neutralise ce qui suit parce que ca a marche et que ce n'est # pas voue a etre utilise deux fois. A noter que certes ca a # marche, mais que ca a aussi considerablement ramé. # Photo.objects.create(nomComplet=monPathEtNom, nomAbrege=monNomAbrege, categorie=maCategEnVrai) monFichier.close() pageEntiere += "</body>\n" pageEntiere += "</html>\n" return HttpResponse(pageEntiere) # ** C8 - Photo - E comme Export def exportePhotos(request): tableauDeLignes = [] tableauDeLignes.append("Cette page est vouée à permettre l'export des photos.") monFichier = Fichier("portes_classees_export.csv", True) mesPhotos = Photo.objects.all() nbPhotos = Photo.objects.count() for numPhoto in range(nbPhotos): maPhoto = mesPhotos[numPhoto] monNomAbrege = maPhoto.nomAbrege monNomComplet = maPhoto.nomComplet maCateg = maPhoto.categorie.slug ligneAEcrire = '"%s","%s","%s"' % (monNomAbrege, maCateg, monNomComplet) monFichier.ecritUneLigne(ligneAEcrire) tableauDeLignes.append(ligneAEcrire) monFichier.close() tableauDeLignes.append("En principe, si vous lisez ça, c'est que l'export a eu lieu.") template = loader.get_template('cestmoilechef/petite_merdasse.html') context = Context({ 'tabDeLignes': tableauDeLignes }) output = template.render(context) return HttpResponse(output) # * D - Divers à mettre à part # ** D1 - Petites merdasses diverses def echoPath(request): blabla = "" system("echo $PATH > deleatur.txt") monFichier = Fichier("deleatur.txt", False) while monFichier.index < monFichier.longueur: ligneLue = monFichier.litUneLigne() ligneAEcrire = "<p>%s</p>\n" % (ligneLue) blabla += ligneAEcrire monFichier.close() system("rm -f deleatur.txt") # Je purge, j'aime pas laisser des saletés return HttpResponse(blabla) def lsLong(request): blabla = "" system("ls -l > deleatur.txt") monFichier = Fichier("deleatur.txt", False) ligneAEcrire = django.get_version() ligneAEcrire = "Ce site tourne avec Django " + ligneAEcrire blabla += ligneAEcrire while monFichier.index < monFichier.longueur: ligneLue = monFichier.litUneLigne() ligneAEcrire = "<p>%s</p>\n" % (ligneLue) blabla += ligneAEcrire monFichier.close() system("rm -f deleatur.txt") # Je purge, j'aime pas laisser des saletés return HttpResponse(blabla) def multiplication(request): tableauDeLignes = [] maxMultiplicande = 3 maxMultiplicateur = 5 for multiplicande2 in range(maxMultiplicande): multiplicande = multiplicande2 + 1 for multiplicateur2 in range(maxMultiplicateur): multiplicateur = multiplicateur2 + 1 blabla = "%d * %d = %d" % (multiplicande, multiplicateur, \ multiplicande * multiplicateur) tableauDeLignes.append(blabla) if multiplicateur2 == maxMultiplicateur - 1 and multiplicande2 < maxMultiplicande - 1: tableauDeLignes.append("") template = loader.get_template('cestmoilechef/petite_merdasse.html') context = Context({ 'tabDeLignes': tableauDeLignes }) output = template.render(context) return HttpResponse(output) # ** D2 - Usage d'images stockées ailleurs def imagePorte(request): pageEntiere = "" pageEntiere += "<html>\n" pageEntiere += "<body>\n" pageEntiere += "<p>Merci bien.</p>\n" pageEntiere += "<center><img src=\"http://courteline.org/hotes/portes_todito/porte230.jpg\" width=480 height=640></center>\n" pageEntiere += "</body>\n" pageEntiere += "</html>\n" return HttpResponse(pageEntiere) def vignettes(request): pageEntiere = "" pageEntiere += "<html>\n" pageEntiere += "<body>\n" pageEntiere += "<p><a href=\"http://courteline.org/hotes/vignettes/\">Accès à la page des vignettes</a></p>\n" pageEntiere += "</body>\n" pageEntiere += "</html>\n" return HttpResponse(pageEntiere) # ** D3 - Ajout au site de Pinkham (exportation des posts) def exportePosts(request): tableauDeLignes = [] tableauDeLignes.append("Cette page est vouée à permettre l'export des posts.") monFichier = Fichier("posts_exportes.txt", True) mesPosts = Post.objects.all() nbPosts = Post.objects.count() for numPost in range(nbPosts): monPost = mesPosts[numPost] monTitre = monPost.title monFichier.ecritUneLigne(monTitre) tableauDeLignes.append(monTitre) monTexte = monPost.text monFichier.ecritUneLigne(monTexte) tableauDeLignes.append(monTexte) if numPost < nbPosts - 1: monFichier.ecritUneLigne("") tableauDeLignes.append("") monFichier.close() tableauDeLignes.append("En principe, si vous lisez ça, c'est que l'export a eu lieu.") template = loader.get_template('cestmoilechef/petite_merdasse.html') context = Context({ 'tabDeLignes': tableauDeLignes }) output = template.render(context) return HttpResponse(output) ``` #### File: pronunciamento/dialogue/sinodoju.py ```python import time from os import system from django.http import HttpResponse from django.template import Context, loader from django.views.decorators.csrf import csrf_exempt # Pour des formulaires POST libres from jla_utils.utils import Fichier from .models import ElementDialogue class Tunnel: def __init__(self, longueurArg, generationArg): self.longueur = longueurArg self.generation = generationArg def alimenteBaseDeDonnees (nomEntree, identifiantSerpicon, descriptifTunnel, serveur): ElementDialogue.objects.create( nom = nomEntree, param1 = identifiantSerpicon, param2 = descriptifTunnel, param3 = serveur ) def analyseGraine (ligneLue): graine = ligneLue[10:len(ligneLue) - 1] return graine def analyseNbCell (ligneLue): nbCellString = ligneLue[9:len(ligneLue)] nbCell = int(nbCellString) return nbCell def analyseTunnel (request): nomFichTunnel = "resultat_longtun2.txt" numLigneLue = 0 fichALire = Fichier(nomFichTunnel, 0) chouBlanc = True # Par defaut nbCell = 0 graine = "" mesTunnels = [] while fichALire.index < fichALire.longueur: ligneLue = fichALire.litUneLigne() numLigneLue += 1 if numLigneLue == 1: nbCell = analyseNbCell(ligneLue) elif numLigneLue == 2: graine = analyseGraine(ligneLue) else: if (len(ligneLue) > 10) and (ligneLue[0:6] == "Tunnel"): chouBlanc = False monTunnelNormalise = analyseTunnelMoteur(ligneLue) mesTunnels.append(monTunnelNormalise) fichALire.close() print("Le nombre de cellules est de %d." % (nbCell)) print("La graine est [%s]." % (graine)) nomEntreeDeBase = fabriqueTempsSyntaxeUrl() identifiantSerpicon = "%d %s" % (nbCell, graine) nomServeur = "alwaysdata" if chouBlanc: alimenteBaseDeDonnees(nomEntreeDeBase, identifiantSerpicon, "Chou blanc !", nomServeur) else: for numTunnel in range(len(mesTunnels)): monTunnel = mesTunnels[numTunnel] maLongueur = monTunnel.longueur maGeneration = monTunnel.generation print("Tunnel de %s a la generation %s" % \ (separateurMille(maLongueur, ' '), separateurMille(maGeneration, ' '))) nomEntreeDeBase = fabriqueTempsSyntaxeUrl() nomEntree = nomEntreeDeBase + "__" + separateurMille(maLongueur, '_') descriptifTunnel = separateurMille(maLongueur, ' ') + " en " \ + separateurMille(maGeneration, ' ') alimenteBaseDeDonnees(nomEntree, identifiantSerpicon, descriptifTunnel, nomServeur) if numTunnel < len(mesTunnels) - 1: attend(5.0) # time.sleep(2.0) # A tout hasard, pour ne pas venir trop vite apres les requetes # d'analyse_tunnel.py # lanceSinodoju () # On va laisser courteline s'occuper de relancer amarelia tableauDeLignes = [] tableauDeLignes.append("Cette page est la page de l'analyse des tunnels.") template = loader.get_template('cestmoilechef/petite_merdasse.html') context = Context({ 'tabDeLignes': tableauDeLignes }) output = template.render(context) return HttpResponse(output) def attend (dureeEnSecondes): time.sleep(dureeEnSecondes) def analyseTunnelMoteur (ligneLue): chaineLongueur = "" chaineGeneration = "" caracLu = "" numSigne = 10 eTrouve = False while (not eTrouve) and (numSigne < len(ligneLue)): signeLu = ligneLue[numSigne] if signeLu == "e": eTrouve = True else: chaineLongueur += signeLu numSigne += 1 chaineLongueur = chaineLongueur[0:len(chaineLongueur) - 1] # pour virer l'espace finale maLongueur = int(vireSigne(chaineLongueur, ' ')) numSigne += 2 chaineGeneration = ligneLue[numSigne:len(ligneLue)] maGene = int(vireSigne(chaineGeneration, ' ')) monTunnel = Tunnel(maLongueur, maGene) return monTunnel def fabriqueTempsSyntaxeGraine (): graine = time.strftime("jlancey%Y%m%da%Hh%Mm%S", time.localtime()) return graine def fabriqueTempsSyntaxeUrl (): # tempsSyntaxeUrl = time.strftime("%Y-%m-%d_%H-%M-%S", time.gmtime()) tempsSyntaxeUrl = time.strftime("%Y-%m-%d_%H-%M-%S", time.localtime()) return tempsSyntaxeUrl def lanceSinodoju (): conn = http.client.HTTPConnection("www.amarelia.ch") conn.request("GET", "/sinodoju/sinodoju.php") r1 = conn.getresponse() print(r1.status, r1.reason) data1 = r1.read() # print(data1) conn.close() def separateurMille (monEntier, monSeparateur): maChaine0 = "%d" % (monEntier) maChaine1 = "" for numSigne in range(len(maChaine0)): numSigne2 = len(maChaine0) -1 - numSigne monSigne = maChaine0[numSigne2] if (numSigne % 3 == 0) and numSigne > 0: maChaine1 = monSeparateur + maChaine1 maChaine1 = monSigne + maChaine1 return maChaine1 @csrf_exempt # En théorie, c'est une brèche de sécurité; en pratique... ca depend def viewSinodoju (request): tableauDeLignes = [] tableauDeLignes.append("Cette page est la page de Sinodoju.") graine = fabriqueTempsSyntaxeGraine() nbBitsFournis = len(graine) * 6 tableauDeLignes.append("La graine est [%s], soit assez pour %d bits." % (graine, nbBitsFournis)) nbCellules = 145 system("./sinodoju.pl %d %s > cr_perl.txt 2> cr2_perl.txt &" % (nbCellules, graine)) tableauDeLignes.append("En principe, si vous lisez ça, c'est qu'un daemon Sinodoju a été lancé.") tableauDeLignes.append("Donc ça aura un effet... quand le daemon aura fini de travailler.") tableauDeLignes.append("Ce template a été écrit pour vous rendre la main tout de suite...") tableauDeLignes.append("... mais des limitations d'AlwaysData, compréhensibles d'ailleurs,") tableauDeLignes.append("imposent d'attendre quand même la fin du processus. Cette page ne") tableauDeLignes.append("sert donc qu'à titre de test.") template = loader.get_template('cestmoilechef/petite_merdasse.html') context = Context({ 'tabDeLignes': tableauDeLignes }) output = template.render(context) return HttpResponse(output) def vireSigne (maChaine, monSigneAVirer): maChainePurgee = "" for numSigne in range(len(maChaine)): monSigne = maChaine[numSigne] if monSigne != monSigneAVirer: maChainePurgee += monSigne return maChainePurgee ``` #### File: pronunciamento/dvd/models.py ```python from django.db import models from django.core.urlresolvers import reverse class Dvd(models.Model): titre = models.CharField(max_length=80) slug = models.SlugField( max_length=31, unique=True, help_text='Un slug pour les DVD.') actClair = models.CharField(max_length=120) reaClair = models.CharField(max_length=80) genre = models.CharField(max_length=40) place = models.CharField(max_length=40) obs = models.CharField(max_length=160) class Meta: ordering = ['titre'] def get_absolute_url(self): return reverse('dvd_detail', kwargs={'slugUrl': self.slug}) def get_update_url(self): return reverse('dvd_update', kwargs={'slugUrl': self.slug}) def get_delete_url(self): return reverse('dvd_delete', kwargs={'slugUrl': self.slug}) def __str__(self): return self.titre ``` #### File: pronunciamento/dvd/views.py ```python from django.http import (Http404, HttpResponse) from django.template import Context, loader from django.shortcuts import (get_object_or_404, \ redirect, \ # render_to_response, \ render) from django.views.generic import View # Pour faire des class-based views, voir p. 255 from jla_utils.utils import Fichier, BidouillesTexte from .models import Dvd from .forms import DvdForm def accueilDvd (request): template = loader.get_template('dvd/accueil.html') message = "Je veux pouvoir faire un peu de saisie pour mes DVD." context = Context({'message': message}) output = template.render(context) return HttpResponse(output) def nettoieExport (maChaine): bid = BidouillesTexte() maChaine = bid.enleveCaracSpec(maChaine) maChaine = bid.virePointSeul(maChaine) return maChaine def nettoieImport (maChaine): bid = BidouillesTexte() maChaine = bid.vireGuill(maChaine) maChaine = bid.remetCaracSpec(maChaine) return maChaine class DvdList(View): def get(self, request): return render(request, \ 'dvd/liste.html', \ {'dvd_list': Dvd.objects.all()}) class DvdCreate(View): form_class = DvdForm template_name = 'dvd/dvd_form.html' def get(self, request): return render( request, self.template_name, {'form': self.form_class()} ) def post(self, request): # Attention, code façon Pinkham, avec deux return dans une boucle if bound_form = self.form_class(request.POST) if bound_form.is_valid(): new_element = bound_form.save() return redirect(new_element) else: return render( request, self.template_name, {'form': bound_form} ) def dvdDetail(request, slugUrl): try: monDvd = Dvd.objects.get(slug__iexact = slugUrl) except Dvd.DoesNotExist: raise Http404 template = loader.get_template('dvd/dvd_detail.html') context = Context({'dvd': monDvd}) output = template.render(context) return HttpResponse(output) class DvdUpdate(View): form_class = DvdForm model = Dvd template_name = 'dvd/dvd_form_update.html' def get_object(self, slugArg): return get_object_or_404( self.model, slug=slugArg ) def get(self, request, slugUrl): monElement = self.get_object(slugUrl) context = { 'form': self.form_class(instance=monElement), 'element': monElement, } return render(request, self.template_name, context) def post(self, request, slugUrl): monDvd = self.get_object(slugUrl) bound_form = self.form_class( request.POST, instance=monDvd ) if bound_form.is_valid(): new_element = bound_form.save() return redirect(new_element) else: context = { 'form': bound_form, 'dvd': monDvd, } return render( request, self.template_name, context ) class DvdDelete(View): def get(self, request, slugUrl): monElement = get_object_or_404( Dvd, slug = slugUrl ) return render(request, 'dvd/dvd_confirm_delete.html', {'element': monElement} ) def post(self, request, slugUrl): monElement = get_object_or_404( Dvd, slug = slugUrl ) monElement.delete() return redirect('dvd_liste') def purgeDvd(request): tableauDeLignes = [] tableauDeLignes.append("Cette page radioactive est vouée à détruire les DVD.") mesDvd = Dvd.objects.all() nbDvd = Dvd.objects.count() tableauDeLignes.append("J'ai compté %d DVD." % (nbDvd)) for numDvd in range(nbDvd - 1, -1, -1): monDvd = mesDvd[numDvd] monTitre = monDvd.titre ligneAEcrire = "%d - [%s]\n" % \ (numDvd, monTitre) tableauDeLignes.append(ligneAEcrire) # La ligne qui suit est vouée à être neutralisée par prudence # monDvd.delete() template = loader.get_template('cestmoilechef/petite_merdasse.html') context = Context({ 'tabDeLignes': tableauDeLignes }) output = template.render(context) return HttpResponse(output) def importeDvd(request): tableauDeLignes = [] tableauDeLignes.append("Cette page est vouée à permettre l'importation des DVD.") monFichier = Fichier("dvd.csv", False) ligneLue = monFichier.litUneLigne() # On passe la ligne d'en-tête while monFichier.index < monFichier.longueur: ligneLue = monFichier.litUneLigne() tableauDeLignes.append(ligneLue) mesBazars = ligneLue.split(',') monTitre = nettoieImport(mesBazars[0]) monSlug = nettoieImport(mesBazars[1]) monActClair = nettoieImport(mesBazars[2]) monReaClair = nettoieImport(mesBazars[3]) monGenre = nettoieImport(mesBazars[4]) maPlace = nettoieImport(mesBazars[5]) mesObs = nettoieImport(mesBazars[6]) tableauDeLignes.append("[%s], [%s], [%s], [%s], [%s], [%s], [%s]" % \ (monTitre, monSlug, monActClair, monReaClair, monGenre, maPlace, mesObs)) # La ligne qui suit est vouée à être neutralisée si on ne veut pas qu'elle # soit employée par erreur # Dvd.objects.create(titre=monTitre, slug=monSlug, actClair=monActClair, \ # reaClair=monReaClair, genre=monGenre, place=maPlace, \ # obs=mesObs) monFichier.close() tableauDeLignes.append("En principe, si vous lisez ça, c'est que l'importation a eu lieu.") template = loader.get_template('cestmoilechef/petite_merdasse.html') context = Context({ 'tabDeLignes': tableauDeLignes }) output = template.render(context) return HttpResponse(output) def exporteDvd(request): tableauDeLignes = [] tableauDeLignes.append("Cette page est vouée à permettre l'export des DVD.") monFichier = Fichier("dvd_export.csv", True) ligneAEcrire = '"titre","slug","act_clair","rea_clair","genre","place","obs"' tableauDeLignes.append(ligneAEcrire) monFichier.ecritUneLigne(ligneAEcrire) mesDvd = Dvd.objects.all() nbDvd = Dvd.objects.count() for numDvd in range(nbDvd): monDvd = mesDvd[numDvd] monTitre = nettoieExport(monDvd.titre) monSlug = nettoieExport(monDvd.slug) monActClair = nettoieExport(monDvd.actClair) monReaClair = nettoieExport(monDvd.reaClair) monGenre = nettoieExport(monDvd.genre) maPlace = nettoieExport(monDvd.place) mesObs = nettoieExport(monDvd.obs) ligneAEcrire = '"%s","%s","%s","%s","%s","%s","%s"' % \ (monTitre, monSlug, monActClair, monReaClair, monGenre, maPlace, mesObs) monFichier.ecritUneLigne(ligneAEcrire) tableauDeLignes.append(ligneAEcrire) monFichier.close() tableauDeLignes.append("En principe, si vous lisez ça, c'est que l'export a eu lieu.") template = loader.get_template('cestmoilechef/petite_merdasse.html') context = Context({ 'tabDeLignes': tableauDeLignes }) output = template.render(context) return HttpResponse(output) ``` #### File: pronunciamento/jla_utils/utils.py ```python class BidouillesTexte: def chomp (self, maChaine): # remplace la fonction du meme nom en Perl, qui vire le ou les # caracteres de fin de ligne index = 0 maChaine2 = '' while index < len(maChaine): signe = maChaine[index] if signe != '\n' and signe != '\r': maChaine2 += signe index += 1 return maChaine2 def enleveCaracSpec (self, maChaine): maChaine = self.rechercheEtRemplace(maChaine, ',', '<vg>') maChaine = self.rechercheEtRemplace(maChaine, ':', '<2p>') maChaine = self.rechercheEtRemplace(maChaine, '"', '<gl>') maChaine = self.rechercheEtRemplace(maChaine, "'", '<ap>') return maChaine def rechercheEtRemplace (self, chaine, aChercher, aMettre): # Attention, cette routine est faite pour traiter des chaines # banales, constituees d'octets, avec les caracteres UTF-8 codes sur # DEUX signes et non sur un seul comme dans les chaines Unicode fini = 0 # false numSigneDep = 0 while not fini: if numSigneDep >= len(chaine): fini = 1 # true elif len(chaine) - len(aChercher) < numSigneDep: fini = 1 # true else: intro = chaine[0:numSigneDep] extrait = chaine[numSigneDep:numSigneDep + len(aChercher)] concl = chaine[numSigneDep + len(aChercher):len(chaine)] if aChercher == extrait: chaine = intro + aMettre + concl numSigneDep += len(aMettre) else: numSigneDep += 1 return chaine def remetCaracSpec (self, maChaine): maChaine = self.rechercheEtRemplace(maChaine, '<vg>', ',') maChaine = self.rechercheEtRemplace(maChaine, '<2p>', ':') maChaine = self.rechercheEtRemplace(maChaine, '<gl>', '"') maChaine = self.rechercheEtRemplace(maChaine, '<ap>', "'") return maChaine def vireGuill (self, mention): if mention[0] == '"' and mention[len(mention) - 1] == '"': mention = mention[1:len(mention) - 1] return mention def virePointSeul(self, mentionAExporter): # Ce cretin de Django ne permettant pas de laisser des cases vides # dans ses formulaires de saisie, je saisis un point dans chaque # case de saisie que je préférerais laisser vide. Cette routine # permet de virer ce point (utile au moment de l'exportation en CSV). if mentionAExporter == '.': mentionAExporter = "" return mentionAExporter class Fichier: def __init__(self, nomFichierArg, boolEcriture): self.nomFichier = nomFichierArg if boolEcriture: self.fichier = open(self.nomFichier, 'wb') # 'b' pour des octets self.fichier.seek(0, 0) # Se place au debut du fichier self.longueur = 0 else: self.fichier = open(self.nomFichier, 'rb') # 'b' pour des octets self.fichier.seek(0, 2) # Se place a la fin du fichier self.longueur = self.fichier.tell() self.index = 0 def close (self): self.fichier.close() def deByteStringAChaineUnicode (self, monByteString): chaineUnicode = monByteString.decode(encoding='UTF-8') return chaineUnicode def deChaineUnicodeAByteString (self, chaineUnicode): monByteString = chaineUnicode.encode(encoding='UTF-8') return monByteString def ecritUneLigne (self, ligneAEcrire): ligneAEcrire2 = self.deChaineUnicodeAByteString(ligneAEcrire) for numOctet in range(len(ligneAEcrire2)): octet = ligneAEcrire2[numOctet:numOctet + 1] # La ligne precedente a l'air amphigourique, mais # ligneAEcrire2[numOctet:numOctet + 1] est de type "bytes", # alors que ligneAEcrire2[numOctet] serait de type "int" self.ecritUnOctet(octet) self.ecritUnOctet(b'\n') def ecritUnOctet (self, signe): self.fichier.seek(self.index, 0) self.fichier.write(signe) self.index += 1 self.longueur += 1 def interromptLecture (self): self.close() def litUneLigne (self): octetLu = '' ligneLue = b"" # Soit un bytestring vide finDeLigne = 0 # false while self.index < self.longueur and not finDeLigne: octetLu = self.litUnOctet(self.index) if octetLu == b'\n': finDeLigne = 1 # true else: ligneLue += octetLu ligneLue2 = self.deByteStringAChaineUnicode(ligneLue) return ligneLue2 def litUnOctet (self, numOctet): self.fichier.seek(numOctet, 0) octet = self.fichier.read(1) self.index += 1 return octet def reprendLecture (self): self.fichier = open(self.nomFichier, 'r') self.fichier.seek(self.index, 0) # Se place ou on s'etait arrete def seek (self, numOctet): self.fichier.seek(numOctet, 0) self.index = numOctet ```
{ "source": "jeanlucchamaa/LED-SuperController", "score": 3 }
#### File: Downsize_Update/ledapp/ledapp.py ```python import serial, time, datetime from datetime import timedelta from flask import Flask, render_template, request, jsonify app = Flask(__name__) @app.route("/") def hello(): global hardware hardware=1 global on on=False if 'ser' not in locals(): global ser ser = serial.Serial('/dev/ttyUSB0', 38400) return render_template('ui.html') @app.route("/apply") def application(): hardware=0 red=int(request.args.get('r')) green=int(request.args.get('g')) blue=int(request.args.get('b')) sendbit=int(request.args.get('s')) ba=bytearray() ba[0:3]=[red,green,blue,sendbit] for index,value in enumerate(ba): ba[index]=min(255,value+1) ser.write(ba) ser.write('\0') return('potato') @app.route("/supply") def supplication(): new=0 r=0 g=0 b=0 if(ser.in_waiting >= 4): ba=bytearray() ba[0:4]=[90,90,90,90,90] i=0 x='w' while(x != '\0'): x=ser.read() ba[i]=x i=i+1 r=ba[0]-1 g=ba[1]-1 b=ba[2]-1 new=1 return jsonify(red=r,green=g,blue=b,info=new) @app.route("/nappy") def nappytime(): on=True #start=int(request.args.get('start')) #end=int(request.args.get('end')) alarm=datetime.datetime(2016,10,19,22,39) print "initialize" while(on): now=datetime.datetime.now() delta = timedelta(alarm - now) if(delta.seconds<0): print "caramel" break if __name__ == "__main__": app.run(processes=2) ```
{ "source": "jeanlucf22/mgmol", "score": 2 }
#### File: mgmol/util/averageDistance.py ```python import sys, string, os from math import sqrt, acos from numpy import * import matplotlib.pyplot as plt kb_au=3.16678939e-06 # [Ha/K] au2ps = 2.418885e-05 distances=[] times=[] time=0. def getMassAtom(name): one=name[0] mass=0. if one[0:2] in spmass.keys(): mass=spmass[one[0:0+2]] else: mass=spmass[one[0]] return mass def analyzeDistance(filename,name0,name1,dt): global distances global times global time found0=0 found1=0 file=open(filename,'r') L1=file.readlines() for line in L1: ## loop over lines of file words=string.split(line) if len(words)>1: if words[0][0:2]=='##' and words[0][0:3]!='###': name=words[1] if name[0:1]=='*': name=name[1:] if( name0==name ): x0=eval(words[2]) y0=eval(words[3]) z0=eval(words[4]) found0=1 if( name1==name ): x1=eval(words[2]) y1=eval(words[3]) z1=eval(words[4]) found1=1 if found0==1 & found1==1 : d=sqrt((x1-x0)**2+(y1-y0)**2+(z1-z0)**2) print "#d [Bohr]=",d, ", d [Ang]=",d*0.529177 times.append(time) distances.append(d) time=time+dt*au2ps found0=0 found1=0 file.close() #main filesdir=sys.argv[1] filenames=os.listdir(filesdir) name0 =sys.argv[2] name1 =sys.argv[3] inputs=[] for filename in filenames: if 'md_run' in filename: inputs.append(filename) inputs.sort() inputs[0] file=open(inputs[0],'r') L1=file.readlines() for line in L1: ## loop over lines of file word=string.split(line) if len(word)>1: if word[0]=='Timestep': dt=eval(word[5]) for filename in inputs: analyzeDistance(filename,name0,name1,dt) nf=int(ceil(1./(dt*au2ps))) skip=5 distancep = [ distances[i] for i in range(0, len(distances), skip)] timesp = [ times[i] for i in range(0, len(distances), skip)] skip=25 aves1 = [sum(distances[i-nf:i])/nf for i in range(nf, len(distances), skip)] aves2 = [sum(distances[i-2*nf:i])/(2*nf) for i in range(2*nf, len(distances), skip)] aves3 = [sum(distances[i-3*nf:i])/(3*nf) for i in range(3*nf, len(distances), skip)] times1 = [ times[i] for i in range(nf, len(distances), skip)] times2 = [ times[i] for i in range(2*nf, len(distances), skip)] times3 = [ times[i] for i in range(3*nf, len(distances), skip)] print '#time distance' for i in range(len(distances)): print times[i],distances[i] if len(aves1)>1: print '#Running average over 1 ps, last value: ',aves1[-1] if len(aves2)>1: print '#Running average over 2 ps, last value: ',aves2[-1] if len(aves3)>1: print '#Running average over 3 ps, last value: ',aves3[-1] xmax=len(distances)*dt*au2ps ymin=min(distances) ymax=max(distances) plt.figure(1) plt.subplot(211) plt.axis([0.,xmax,ymin,ymax]) plt.plot(timesp, distancep, 'go') plt.ylabel('distance (Bohr)') #plt.show() #plt.subplot(212) #ymin=min(aves2) #ymax=max(aves2) #plt.axis([0.,xmax,ymin,ymax]) #plt.plot(times1, aves1, 'ro') plt.plot(times2, aves2, 'ro') plt.plot(times3, aves3, 'bo') #plt.show() plt.savefig('aves.png') ``` #### File: mgmol/util/averageMDpositions.py ```python import sys, string, os from numpy import * from pdb_tools import printPDBfile from collections import defaultdict au2ps = 2.418885e-05 times=[] #coords={} coords=defaultdict(list) nsteps=0 time=0. dt=0. def appendPositions(filename): global coords global nsteps global time global dt found=0 found_force=0 #print '#',filename file=open(filename,'r') L1=file.readlines() for line in L1: ## loop over lines of file words=string.split(line) if len(words)>1: #find positions if 'Stepper' in words and 'Forces:' in words: found_force=1 found=0 nsteps=nsteps+1 time=time+dt*au2ps times.append(time) if words[0][0:2]=='##' and found_force: name=words[1] found=found+1 valx=eval(words[2]) valy=eval(words[3]) valz=eval(words[4]) if name not in coords: coords[name]=list() coords[name].append([valx,valy,valz]) else: if found>0: found_force=0 file.close() #main filesdir=sys.argv[1] filenames=os.listdir(filesdir) inputs=[] for filename in filenames: if 'md_run' in filename: inputs.append(filename) inputs.sort() #read 'dt' inputs[0] file=open(inputs[0],'r') L1=file.readlines() for line in L1: ## loop over lines of file word=string.split(line) if len(word)>1: if word[0]=='Timestep': dt=eval(word[5]) for filename in inputs: appendPositions(filename) #number of steps/ps nf=int(ceil(1./(dt*au2ps))) #sampling length in ps number_ps=3 xyz=[] names=[] movables=[] #loop over atoms for c in coords.keys(): #print coords[c] #print len(coords[c]) npts=min(number_ps*nf,len(coords[c])) names.append(c) #build lists with latest npts values x=[] y=[] z=[] for i in range(len(coords[c])-npts,len(coords[c])-1): x.append(coords[c][i][0]) y.append(coords[c][i][1]) z.append(coords[c][i][2]) #calculate averages with latest npts values avex = sum(x[-npts:])/npts avey = sum(y[-npts:])/npts avez = sum(z[-npts:])/npts xyz.append(str(avex)+' '+str(avey)+' '+str(avez)) movables.append('1') na=len(names) printPDBfile(na,names,xyz,movables,'') ``` #### File: mgmol/util/generate_LinXYZPot.py ```python import sys, string, struct, getopt from array import array opts, args = getopt.getopt(sys.argv[1:], "hf:e:d:bo:") def usage(): usage = """ -h --help Prints this -f --file (argument) input file -e --efield (argument) field -d --direction (argument) Direction -o --output (argument) Output -b --binary binary output """ print usage bin_flag=0 ifilename='0' ofilename='0' for o,a in opts: #print o,a if o in ("-h", "--help"): usage() sys.exit() elif o in ("-f", "--file"): ifilename = a print "Input file is", ifilename elif o in ("-e", "--efield"): efield = eval(a) print "Field is" , efield elif o in ("-d", "--direction"): direction = eval(a) print "Direction is" , direction elif o in ("-o", "--output"): print "Output file is " , a ofilename=a elif o in ("-b", "--binary"): bin_flag=1 else: print 'unknown option' print opts usage() sys.exit() ifile =open(ifilename,'r') if bin_flag>0: print 'Binary output...' output=open(ofilename,'wb') else: output=open(ofilename,'w') flag=0 origin=[0.,0.,0.] end=[0.,0.,0.] while flag<1: line = ifile.readline() words=string.split(line) if words[0][0]!='#': origin[0]=eval(words[0]) origin[1]=eval(words[1]) origin[2]=eval(words[2]) end[0]=eval(words[3]) end[1]=eval(words[4]) end[2]=eval(words[5]) print 'origin=',origin print 'end=',end flag=1 if bin_flag>0: packed_string = struct.pack('fff',*origin) output.write(packed_string) packed_string = struct.pack('fff',*end) output.write(packed_string) #float_array = array('f', [0.,-4.69,-14.07]) #float_array = array('f', origin) #float_array.tofile(output) else: output.write('#Cell\n') output.write(str(origin[0])) output.write('\t') output.write(str(origin[1])) output.write('\t') output.write(str(origin[2])) output.write('\t') output.write(str(end[0])) output.write('\t') output.write(str(end[1])) output.write('\t') output.write(str(end[2])) output.write('\n') flag=0 n=[0,0,0] while flag<1: line = ifile.readline() words=string.split(line) if words[0][0]!='#': n[0]=eval(words[0]) n[1]=eval(words[1]) n[2]=eval(words[2]) print 'mesh=',n flag=1 if bin_flag>0: packed_string = struct.pack('iii',*n) output.write(packed_string) else: output.write('#Mesh:\n') output.write(str(n[0])) output.write('\t') output.write(str(n[1])) output.write('\t') output.write(str(n[2])) output.write('\n') output.write('#E-field=') output.write(str(efield)) output.write(', direction=') output.write(str(direction)) output.write('\n') h=((end[0]-origin[0])/n[0],(end[1]-origin[1])/n[1],(end[2]-origin[2])/n[2]) count=0 for i in range(n[0]): for j in range(n[1]): for k in range(n[2]): val=0. if direction==0: val=(origin[direction]+i*h[direction])*efield if direction==1: val=(origin[direction]+j*h[direction])*efield if direction==2: val=(origin[direction]+k*h[direction])*efield if bin_flag>0: packed_string = struct.pack('f',val) output.write(packed_string) else: output.write(str(val)) output.write('\n') count=count+1 if count!=(n[0]*n[1]*n[2]): print 'ERROR: count!=n[0]*n[1]*n[2]' ``` #### File: mgmol/util/generateLocalGTHpseudo.py ```python from math import exp, erf, sqrt, pi #coefficients for H rloc=0.2 c1=-4.0663326 c2=0.6778322 c3=0. c4=0. zion=1. anumber=1 name="HydrogenGTH_LDA" mass=1. def radialfunction(r): alpha = (r/rloc)**2 val = exp(-0.5*alpha)*(c1+c2*alpha+c3*alpha*alpha+c4*alpha*alpha*alpha) if r>1.e-8: val = val - zion*erf(r/(sqrt(2.)*rloc))/r else: #print("special case for r = {}".format(r)) val = val -zion*sqrt(2.)/(sqrt(pi)*rloc) return val npts = 301 #header print("# Short description of the species type. One line only!") print(name) print("#") print("White") print("#radii of balls and covalent bonds") print("0.4 1.0") print("# Nlcc flag") print("0") print("# Atomic number") print(anumber) print("# Atomic mass") print(mass) print("# Number of valence electrons") print(zion) print("# Gaussian core charge parameter rc") print("1.") print("# Number of potentials") print("1") print("# l-value for state which is local") print("0 0") print("# Local potential radius") print("3.") print("# Non-local potential radius") print("3.") print("# number of points in radial grid") print(npts) print("# log mesh parameter") print("0.") print("# radial grid, reference state, and potential for l=0") #potential for i in range(npts): r = round(0.01*i,2) f = radialfunction(r) print("{} {}".format(r,f)) ```
{ "source": "jeanlucmargot/pyvax", "score": 2 }
#### File: pyvax/tests/tests.py ```python import pyvax as pv import numpy as np from pytest import approx def func_i2(x): fstr = pv.from_vax_i2(x) print(np.frombuffer(fstr, dtype=np.int16, count=1)) return np.frombuffer(fstr, dtype=np.int16, count=1) def func_i4(x): fstr = pv.from_vax_i4(x) print(np.frombuffer(fstr, dtype=np.int32, count=1)) return np.frombuffer(fstr, dtype=np.int32, count=1) def func_f4(x): fstr = pv.from_vax_r4(x) print(np.frombuffer(fstr, dtype=np.float32, count=1)) return np.frombuffer(fstr, dtype=np.float32, count=1) def func_d8(x): fstr = pv.from_vax_d8(x) print(np.frombuffer(fstr, dtype=np.float64, count=1)) return np.frombuffer(fstr, dtype=np.float64, count=1) def func_g8(x): fstr = pv.from_vax_g8(x) print(np.frombuffer(fstr, dtype=np.float64, count=1)) return np.frombuffer(fstr, dtype=np.float64, count=1) def test_i2(): assert func_i2(b'\x01\x00') == 1 assert func_i2(b'\xFF\xFF') == -1 assert func_i2(b'\x00\x01') == 256 assert func_i2(b'\x00\xFF') == -256 assert func_i2(b'\x39\x30') == 12345 assert func_i2(b'\xC7\xCF') == -12345 def test_i4(): assert func_i4(b'\x01\x00\x00\x00') == 1 assert func_i4(b'\xFF\xFF\xFF\xFF') == -1 assert func_i4(b'\x00\x01\x00\x00') == 256 assert func_i4(b'\x00\xFF\xFF\xFF') == -256 assert func_i4(b'\x00\x00\x01\x00') == 65536 assert func_i4(b'\x00\x00\xFF\xFF') == -65536 assert func_i4(b'\x00\x00\x00\x01') == 16777216 assert func_i4(b'\x00\x00\x00\xFF') == -16777216 assert func_i4(b'\x15\xCD\x5B\x07') == 123456789 assert func_i4(b'\xEB\x32\xA4\xF8') == -123456789 def test_f4(): assert func_f4(b'\x80\x40\x00\x00') == approx(1.000000, rel=1e-7) assert func_f4(b'\x80\xC0\x00\x00') == approx(-1.000000, rel=1e-7) assert func_f4(b'\x60\x41\x00\x00') == approx(3.500000, rel=1e-7) assert func_f4(b'\x60\xC1\x00\x00') == approx(-3.500000, rel=1e-7) assert func_f4(b'\x49\x41\xD0\x0F') == approx(3.141590, rel=1e-7) assert func_f4(b'\x49\xC1\xD0\x0F') == approx(-3.141590, rel=1e-7) assert func_f4(b'\xF0\x7D\xC2\xBD') == approx(9.9999999E+36, rel=1e-7) assert func_f4(b'\xF0\xFD\xC2\xBD') == approx(-9.9999999E+36, rel=1e-7) assert func_f4(b'\x08\x03\xEA\x1C') == approx(9.9999999E-38, rel=1e-7) assert func_f4(b'\x08\x83\xEA\x1C') == approx(-9.9999999E-38, rel=1e-7) assert func_f4(b'\x9E\x40\x52\x06') == approx(1.234568, rel=1e-7) assert func_f4(b'\x9E\xC0\x52\x06') == approx(-1.234568, rel=1e-7) def test_d8(): assert func_d8(b'\x80\x40\x00\x00\x00\x00\x00\x00') == approx(1.000000000000000, rel=1e-14) assert func_d8(b'\x80\xC0\x00\x00\x00\x00\x00\x00') == approx(-1.000000000000000, rel=1e-14) assert func_d8(b'\x60\x41\x00\x00\x00\x00\x00\x00') == approx(3.500000000000000, rel=1e-14) assert func_d8(b'\x60\xC1\x00\x00\x00\x00\x00\x00') == approx(-3.500000000000000, rel=1e-14) assert func_d8(b'\x49\x41\xDA\x0F\x21\xA2\xBE\x68') == approx(3.141592653589793, rel=1e-14) assert func_d8(b'\x49\xC1\xDA\x0F\x21\xA2\xBE\x68') == approx(-3.141592653589793, rel=1e-14) assert func_d8(b'\xF0\x7D\xC2\xBD\xBB\x1A\xDB\x48') == approx(1.0000000000000000E+37, rel=1e-14) assert func_d8(b'\xF0\xFD\xC2\xBD\xBB\x1A\xDB\x48') == approx(-1.0000000000000000E+37, rel=1e-14) assert func_d8(b'\x08\x03\xEA\x1C\x54\x14\x75\x5C') == approx(9.9999999999999999E-38, rel=1e-14) assert func_d8(b'\x08\x83\xEA\x1C\x54\x14\x75\x5C') == approx(-9.9999999999999999E-38, rel=1e-14) assert func_d8(b'\x9E\x40\x52\x06\x62\x14\xE7\xCE') == approx(1.234567890123450, rel=1e-14) assert func_d8(b'\x9E\xC0\x52\x06\x62\x14\xE7\xCE') == approx(-1.234567890123450, rel=1e-14) def test_g8(): assert func_g8(b'\x10\x40\x00\x00\x00\x00\x00\x00') == approx(1.000000000000000, rel=1e-14) assert func_g8(b'\x10\xC0\x00\x00\x00\x00\x00\x00') == approx(-1.000000000000000, rel=1e-14) assert func_g8(b'\x2C\x40\x00\x00\x00\x00\x00\x00') == approx(3.500000000000000, rel=1e-14) assert func_g8(b'\x2C\xC0\x00\x00\x00\x00\x00\x00') == approx(-3.500000000000000, rel=1e-14) assert func_g8(b'\x29\x40\xFB\x21\x44\x54\x18\x2D') == approx(3.141592653589793, rel=1e-14) assert func_g8(b'\x29\xC0\xFB\x21\x44\x54\x18\x2D') == approx(-3.141592653589793, rel=1e-14) assert func_g8(b'\xBE\x47\xB8\x17\x57\x43\x1B\x69') == approx(1.0000000000000000E+37, rel=1e-14) assert func_g8(b'\xBE\xC7\xB8\x17\x57\x43\x1B\x69') == approx(-1.0000000000000000E+37, rel=1e-14) assert func_g8(b'\x61\x38\x9D\x03\x8A\x42\x8F\x8B') == approx(9.9999999999999999E-38, rel=1e-14) assert func_g8(b'\x61\xB8\x9D\x03\x8A\x42\x8F\x8B') == approx(-9.9999999999999999E-38, rel=1e-14) assert func_g8(b'\x13\x40\xCA\xC0\x8C\x42\xDD\x59') == approx(1.234567890123450, rel=1e-14) assert func_g8(b'\x13\xC0\xCA\xC0\x8C\x42\xDD\x59') == approx(-1.234567890123450, rel=1e-14) ```
{ "source": "Jeanluis019/rss-reader", "score": 3 }
#### File: rss_reader/feeds/tasks.py ```python from logging import getLogger from django.conf import settings # noqa from background_task import background from .models import Feed logger = getLogger(__name__) # Execute this task # 20 seconds after call it @background(schedule=20) def update_feeds_posts(): """ Iterate over all Feeds in order to update their posts and make sure users have the latest news from their Feeds """ logger.debug("Background Task 'update_feeds_posts' started") for feed in Feed.objects.all(): try: feed.fetch_latest_posts() except Exception as error: logger.debug( 'Fail to update posts. ' f'Feed ID: {feed.id} ', f'Error: {error}') logger.debug("Background Task 'update_feeds_posts' finished") ``` #### File: feeds/tests/test_models.py ```python from rss_reader.feeds.models import Feed def test_is_url_valid_method(): """ Make sure the 'is_url_valid' method returns False when the passed url is invalid """ is_valid = Feed.is_url_valid('https://a_bad_url.com') assert is_valid == False ``` #### File: rss_reader/feeds/views.py ```python from django.shortcuts import render # noqa from django.views import View # noqa from django.contrib.auth.mixins import LoginRequiredMixin # noqa class IndexView(LoginRequiredMixin, View): template_name = 'feeds/index.html' def get(self, request): return render(request, self.template_name) ```
{ "source": "Jean-Lytehouse/Lytehouse-Autocam", "score": 3 }
#### File: app/users/models.py ```python from datetime import datetime, timedelta from app import db, bcrypt, LOGGER from app.utils.misc import make_code from flask_login import UserMixin def expiration_date(): return datetime.now() + timedelta(days=1) class AppUser(db.Model, UserMixin): id = db.Column(db.Integer(), primary_key=True) email = db.Column(db.String(255), unique=True, nullable=False) firstname = db.Column(db.String(100), nullable=False) lastname = db.Column(db.String(100), nullable=False) camera1Ip = db.Column(db.String(100), nullable=False) camera1Name = db.Column(db.String(100), nullable=False) camera2Ip = db.Column(db.String(100), nullable=False) camera2Name = db.Column(db.String(100), nullable=False) camera3Ip = db.Column(db.String(100), nullable=False) camera3Name = db.Column(db.String(100), nullable=False) password = db.Column(db.String(255), nullable=False) verified_email = db.Column(db.Boolean(), nullable=True) verify_token = db.Column(db.String(255), nullable=True, unique=True, default=make_code) def __init__(self, email, firstname, lastname, camera1Ip, camera1Name, camera2Ip, camera2Name, camera3Ip, camera3Name, password): self.email = email self.firstname = firstname self.lastname = lastname self.camera1Ip = camera1Ip self.camera1Name = camera1Name self.camera2Ip = camera2Ip self.camera2Name = camera2Name self.camera3Ip = camera3Ip self.camera3Name = camera3Name self.set_password(password) self.verified_email = True def set_password(self, password): self.password = <PASSWORD>.generate_password_hash(password) def deactivate(self): self.active = False def verify(self): self.verified_email = True def update_email(self, new_email): self.verified_email = False self.verify_token = make_code() self.email = new_email def delete(self): self.is_deleted = True self.deleted_datetime_utc = datetime.now() class PasswordReset(db.Model): id = db.Column(db.Integer(), primary_key=True) user_id = db.Column(db.Integer(), db.ForeignKey('app_user.id')) code = db.Column(db.String(255), unique=True, default=make_code) date = db.Column(db.DateTime(), default=expiration_date) user = db.relationship(AppUser) db.UniqueConstraint('user_id', 'code', name='uni_user_code') def __init__(self, user): self.user = user ```
{ "source": "JeanMainguy/MeTAfisher", "score": 2 }
#### File: MeTAfisher/metafisher/compute_tadb_stat.py ```python import Object_MetaF as obj import Function_MetaF as fct import Orf_MetaF as orf import OutputFct_MetaF as out import Score_MetaF as score import csv import argparse import os import logging import sys import gzip import re import json def encoder(filename, dict): logging.info(f'writing json file {filename}') with open(filename, 'w') as file: json.dump(dict, file, indent=4) def write_table(filename, domain_domain_dict): logging.info(f'writing tsv file {filename}') domain_list = list(domain_domain_dict) with open(filename, 'w') as fl: fl.write('domains\t'+'\t'.join(domain_list)+'\n') for d in domain_list: line = [d] for d_n in domain_list: nb_pairs_in_common = '0' if d_n not in domain_domain_dict[d] else str( domain_domain_dict[d][d_n]) line.append(nb_pairs_in_common) fl.write('\t'.join(line)+'\n') def init_logging(verbose_flag): """Initialise logging.""" if verbose_flag: logging.basicConfig(format="%(levelname)s: %(message)s", level=logging.DEBUG) logging.info('Mode verbose ON') logging.info('command line: %s', ' '.join(sys.argv)) else: logging.basicConfig(format="%(levelname)s: %(message)s") def parse_arguments(): """Parse command line arguments. Returns Options object with command line argument values as attributes. Will exit the program on a command line error. """ project_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) default_tadb_stat_dir = os.path.join(project_dir, "TADB_stat") default_hmm_db = os.path.join(default_tadb_stat_dir, 'TA_domains.hmm') parser = argparse.ArgumentParser( prog='MeTAfisher', description='Identification of Toxin Antitoxin Systems', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--toxin_faa', help="Path to the reference toxin protein sequence.", required=True) parser.add_argument('--antitoxin_faa', help="Path to the reference antitoxin protein sequence.", required=True) parser.add_argument("-o", '--outdir', help="Path to the directory where files will be written", default=default_tadb_stat_dir) parser.add_argument("--hmm_db", default=default_hmm_db, help="path of the HMM database.") parser.add_argument("-v", "--verbose", help="increase output verbosity", action="store_true") args = parser.parse_args() return args def domain_domain_pair_association(domain_type_dict, opposite_type_dict={'T': 'AT', 'AT': 'T'}): """ Compute domain domain association. domain_type_dict is a {domain_name:{T:[gene_ids], AT:[gene_ids]} ... } """ domain_domain_dict = {} for domain, type2genes in domain_type_dict.items(): domain_dict = domain_domain_dict.setdefault(domain, {}) for domain_next, type2genes_next in domain_type_dict.items(): if domain_next in domain_dict: continue domain_dict_next = domain_domain_dict.setdefault(domain_next, {}) pairs = [] for type, opposite_type in opposite_type_dict.items(): genes = type2genes.setdefault(type, []) genes_next = type2genes_next.setdefault(opposite_type, []) pairs += list(set(genes_next) & set(genes)) if len(pairs) > 0: domain_dict[domain_next] = pairs domain_dict_next[domain] = pairs return domain_domain_dict def extract_db_and_gene_number(gene_id): gene_number_pattern = re.compile(r'[^\d]+(\d+)$') try: gene_number = gene_number_pattern.match(gene_id).group(1) except AttributeError: raise AttributeError(f'regex pattern failed to extract gene number in id {id}.') db_name = gene_id.split('|')[0] return db_name, gene_number def parse_tadb_ids(seq_file): gene_number_to_id = {} with open(seq_file) as fl: gene_ids = (l.split()[0][1:] for l in fl if l.startswith('>')) for i, id in enumerate(gene_ids): db_and_nb = extract_db_and_gene_number(id) if db_and_nb in gene_number_to_id: #raise ValueError(f'db and gene number {db_and_nb} are used twice to identify a sequence in {seq_file}') logging.critical(f'Gene id {id} is used more than once in {seq_file}') gene_number_to_id[db_and_nb] = id # assert i == len(gene_number_to_id), "Same gene number is used at least twice. Check consistency of sequence id of {seq_file}" return gene_number_to_id def get_genes_association(toxin_file, antitoxin_file): toxin_id_to_number = parse_tadb_ids(toxin_file) antitoxin_id_to_number = parse_tadb_ids(antitoxin_file) if len(toxin_id_to_number) != len(antitoxin_id_to_number): logging.critical( f"Not the same number of toxin genes ({len(toxin_id_to_number)}) and antitoxin genes ({len(antitoxin_id_to_number)}). check files: {toxin_file} and {antitoxin_file}") gene_numbers = set(toxin_id_to_number) | set(antitoxin_id_to_number) genes_association = {} genes_type = {} for db_name, gene_number in gene_numbers: try: antitoxin_id = antitoxin_id_to_number[(db_name, gene_number)] genes_type[antitoxin_id] = {'AT': 1, 'T': 0} except KeyError: logging.critical(f'No antitoxin gene with id {db_name}|AT{gene_number}') try: toxin_id = toxin_id_to_number[(db_name, gene_number)] genes_type[toxin_id] = {'AT': 0, 'T': 1} except KeyError: logging.critical(f'No toxin with id {db_name}|T{gene_number}') if toxin_id and antitoxin_id: genes_association[antitoxin_id] = {toxin_id: 1} genes_association[toxin_id] = {antitoxin_id: 1} return genes_association, genes_type def domains_genes_association(hmm_result, domain_type_dict): gene_id_parser = re.compile(r"(?P<db_name>[^|]+)\|(?P<type>[A,T]{1,2})(?P<gene_number>\d+)") type_name = set() for hmmhit in fct.hmm_result_parser(hmm_result): domain = hmmhit.query_name re_result = gene_id_parser.match(hmmhit.target_name) type = re_result.group("type") # T or AT gene_number = re_result.group("gene_number") domain_type_dict.setdefault(domain, {}).setdefault(type, []).append(gene_number) # domain_gene_dict.setdefault(domain, []).append(gene_number) type_name.add(type) assert len(type_name) == 1 return type_name.pop() def run_hmmsearch(faa_file, hmm_db, outdir): element_to_rm = -2 if faa_file.endswith('.gz') else -1 simple_name = '.'.join(os.path.basename(faa_file).split('.')[:-element_to_rm]) hmm_result = os.path.join(outdir, f"{simple_name}.hmmsearch") fct.hmmsearch(faa_file, hmm_db, hmm_result) return hmm_result def main(): """Orchestrate the execution of the program""" args = parse_arguments() init_logging(args.verbose) toxin_seq_file = args.toxin_faa antitoxin_seq_file = args.antitoxin_faa outdir = args.outdir hmm_db = args.hmm_db domain_type_dict = {} # get_genes_association(toxin_seq_file, 'T', domain_type_dict) genes_association, genes_type = get_genes_association(toxin_seq_file, antitoxin_seq_file) hmm_result_T = run_hmmsearch(toxin_seq_file, hmm_db, outdir) type_T = domains_genes_association(hmm_result_T, domain_type_dict) hmm_result_AT = run_hmmsearch(antitoxin_seq_file, hmm_db, outdir) type_AT = domains_genes_association(hmm_result_AT, domain_type_dict) types = {type_T: type_AT, type_AT: type_T} domain_domain_dict = domain_domain_pair_association(domain_type_dict, types) # count domain_domain_count_asso = {} for d, d_n in domain_domain_dict.items(): domain_domain_count_asso[d] = {k: len(v) for k, v in d_n.items()} table_file = os.path.join(outdir, 'domain_domain_association.tsv') write_table(table_file, domain_domain_count_asso) domain_domain_count_asso.update(genes_association) json_d_d_file = os.path.join(outdir, 'domain_domain_association.json') encoder(json_d_d_file, domain_domain_count_asso) for domain, type_dict in domain_type_dict.items(): domain_type_dict[domain] = {type_gene: len(set(gene_ids)) for type_gene, gene_ids in type_dict.items()} domain_type_dict.update(genes_type) json_d_t_file = os.path.join(outdir, 'domain_gene_type.json') encoder(json_d_t_file, domain_type_dict) if __name__ == '__main__': main() ```
{ "source": "jean-maradiaga/python-data-mining", "score": 3 }
#### File: python-data-mining/Chapter12/extract_posts.py ```python import os import re from mrjob.job import MRJob from mrjob.step import MRStep word_search_re = re.compile(r"[\w']+") class ExtractPosts(MRJob): post_start = False post = [] def mapper(self, key, line): filename = os.environ["map_input_file"] gender = filename.split(".")[1] try: docnum = int(filename[0]) except: docnum = 8 # remove leading and trailing whitespace line = line.strip() if line == "<post>": self.post_start = True elif line == "</post>": self.post_start = False yield gender, repr("\n".join(self.post)) self.post = [] elif self.post_start: self.post.append(line) if __name__ == '__main__': ExtractPosts.run() ```
{ "source": "jeanmarc2019/PTHacks2019-Planning", "score": 2 }
#### File: app/flaskApp/config.py ```python import configparser import os dir_path = os.path.dirname(os.path.realpath(__file__)) dir_path += '/cfg.ini' class Configuration(object): def __init__(self,debug=False): section = "Flask-debug" if debug else "Flask" cfg = configparser.ConfigParser() cfg.read(dir_path if debug else "/var/www/html/flaskApp/cfg.ini") self.debug = cfg.getboolean(section, "DEBUG") self.csrf_enabled = cfg.getboolean(section,"CSRF_ENABLED") self.threads_per_page = cfg.getint(section,"THREADS_PER_PAGE") self.port = cfg.getint(section,"PORT") self.host = cfg.get(section,"HOST") ```
{ "source": "JeanMarc-Moly/mugimugi_client_api", "score": 3 }
#### File: mugimugi_client_api/mugimugi_client_api/abstract_paginated.py ```python from abc import ABC from dataclasses import dataclass from enum import Enum from typing import AsyncGenerator, ClassVar from mugimugi_client_api_entity.common.element import Element from mugimugi_client_api_entity.root import ValidRoot from ._constants import PARALLEL_PAGES_COUNT, RESPONSE_MAX_COUNT from .abstract import Params from .abstract_xml import AbstractXMLAction, AsyncClient @dataclass class _AbstractPaginatedAction(ABC): page: int = 0 class AbstractPaginatedAction(AbstractXMLAction, _AbstractPaginatedAction, ABC): class Parameter(Enum): PAGE = "page" # int > 0 PAGES: ClassVar[int] = PARALLEL_PAGES_COUNT PAGE_SIZE: ClassVar[int] = RESPONSE_MAX_COUNT def params(self) -> Params: yield from super().params() yield AbstractPaginatedAction.Parameter.PAGE.value, self.page async def query_bulks_fast( self, client: AsyncClient ) -> AsyncGenerator[ValidRoot, None]: current, swap = 0, self.page while True: self.page = current = current + 1 query = self.get_query(client) self.page = swap yield self.send_and_parse(client, query) async def query_elements( self, client: AsyncClient ) -> AsyncGenerator[Element, None]: current, swap = 0, self.page count = max_ = self.PAGE_SIZE while count == max_: self.page = current = current + 1 result = await self.send_and_parse(client, self.get_query(client)) self.page = swap elements = result.elements for e in elements: yield e count = len(elements) ``` #### File: mugimugi_client_api/mugimugi_client_api/abstract_user_list.py ```python from __future__ import annotations from abc import ABC from dataclasses import dataclass from enum import Enum from typing import ClassVar, Iterable from mugimugi_client_api_entity.enum import ElementNode from ._constants import REQUEST_EDIT_LIST_MAX_COUNT from .abstract import Params from .abstract_xml import AbstractXMLAction @dataclass class _AbstractUserListAction(ABC): books: set[int] def __init__(self, books: Iterable[int]): if not books: raise Exception("Requires at least one book") self.books = set(books) class AbstractUserListAction(AbstractXMLAction, _AbstractUserListAction, ABC): class Parameter(Enum): ID = "ID" CONTENT_SEPARATOR: ClassVar[str] = "," BOOK_ID_PREFIX: ClassVar[str] = ElementNode.BOOK.value # Beyond this count, books are ignored. MAX_COUNT_OF_BOOK = REQUEST_EDIT_LIST_MAX_COUNT def params(self) -> Params: yield from super().params() p = self.BOOK_ID_PREFIX yield self.Parameter.ID.value, self.CONTENT_SEPARATOR.join( p + str(b) for b in self.books ) ``` #### File: mugimugi_client_api/mugimugi_client_api/search_object.py ```python from dataclasses import dataclass from datetime import date from enum import Enum from typing import ClassVar, Iterable, Optional from mugimugi_client_api_entity.enum import ElementPrefix from mugimugi_client_api_entity.root import BookRoot from .abstract_paginated import AbstractPaginatedAction, Params from .enum import Action, ObjectType, SortOrder, YesNo @dataclass class SearchObject(AbstractPaginatedAction): class SortCriterion(Enum): TITLE = "title" JAPANESE_TITLE = "jtitle" PUBLISHED_DATE = "date" PAGES_COUNT = "pages" PAGE_VIEWS_COUNT = "page_views" SCORE = "score" SUBMITTED_DATE = "added" LAST_MODIFICATION_DATE = "changed" KATAKANA_TITLE = "kana" class Parameter(Enum): # Q=s& TITLE = "sn" # str # MATCH_TYPE = "match" # match # Seems to not work on API TYPE = "flist" # object RELEASE_DATE_FROM = "date" # str YYYY-MM-DD RELEASE_DATE_TO = "date2" # str YYYY-MM-DD CONTRIBUTOR = "cont" SUBMITTER = "sub" SORT_CRITERION = "order" # SortCriterion SORT_ORDER = "flow" # SortOrder IS_ADULT_ONLY = "age" # yes_no IS_ANTHOLOGY = "anth" # yes_no IS_COPY_BOOK = "bcopy" # yes_no IS_FREE = "FREE" # yes_no IS_CENSORED = "scen" # yes_no # Regroup several parameters of the HTML API: # - SLIST_CIRCLE, # - SLIST_AUTHOR, # - SLIST_PARODY, # - SLIST_CHAR, # - SLIST_CONTENT, # - SLIST_GENRE, # - SLIST_CONVE, # - SLIST_COLL # - SLIST_PUBL # - SLIST_IMPRINT # Will have to include ElementPrefix as prefix of each element # All elements are pipe separated. # ex: &slist=C:Electro|K:Swimsuit|P:Moetan CONTENT = "slist" ACTION: ClassVar[Action] = Action.SEARCH_OBJECT ROOT: ClassVar[type] = BookRoot CONTENT_SEPARATOR: ClassVar[str] = "|" CONTENT_ASSOCIATION: ClassVar[str] = ":" title: Optional[str] = None is_adult_only: Optional[YesNo] = None is_anthology: Optional[YesNo] = None is_copy_book: Optional[YesNo] = None is_free: Optional[YesNo] = None is_censored: Optional[YesNo] = None object_type: Optional[ObjectType] = None date_from: Optional[date] = None date_to: Optional[date] = None circles: Optional[Iterable[str]] = None authors: Optional[Iterable[str]] = None parodies: Optional[Iterable[str]] = None characters: Optional[Iterable[str]] = None contents: Optional[Iterable[str]] = None genres: Optional[Iterable[str]] = None convention: Optional[str] = None collection: Optional[str] = None publisher: Optional[str] = None imprint: Optional[str] = None contributor: Optional[str] = None submitter: Optional[str] = None sort_criterion: Optional[SortCriterion] = None sort_order: Optional[SortOrder] = None def params(self) -> Params: yield from super().params() p = self.Parameter if title := self.title: yield p.TITLE.value, title if contributor := self.contributor: yield p.CONTRIBUTOR.value, contributor if submitter := self.submitter: yield p.SUBMITTER.value, submitter if is_adult_only := self.is_adult_only: yield p.IS_ADULT_ONLY.value, is_adult_only.value if is_anthology := self.is_anthology: yield p.IS_ANTHOLOGY.value, is_anthology.value if is_copy_book := self.is_copy_book: yield p.IS_COPY_BOOK.value, is_copy_book.value if is_free := self.is_free: yield p.IS_FREE.value, is_free.value if is_censored := self.is_censored: yield p.IS_CENSORED.value, is_censored.value if object_type := self.object_type: yield p.TYPE.value, object_type.value if date_from := self.date_from: yield p.RELEASE_DATE_FROM.value, f"{date_from:Date.FORMAT}" if date_to := self.date_to: yield p.RELEASE_DATE_TO.value, f"{date_to:Date.FORMAT}" if sort_criterion := self.sort_criterion: yield p.SORT_CRITERION.value, sort_criterion.value if sort_order := self.sort_order: yield p.SORT_ORDER.value, sort_order.value a = self.CONTENT_ASSOCIATION i = ElementPrefix query: list[str] = [] if circles := self.circles: t = i.CIRCLE.value query.extend(f"{t}{a}{c}" for c in set(circles)) if authors := self.authors: t = i.AUTHOR.value query.extend(f"{t}{a}{c}" for c in set(authors)) if parodies := self.parodies: t = i.PARODY.value query.extend(f"{t}{a}{c}" for c in set(parodies)) if characters := self.characters: t = i.CHARACTER.value query.extend(f"{t}{a}{c}" for c in set(characters)) if contents := self.contents: t = i.CONTENT.value query.extend(f"{t}{a}{c}" for c in set(contents)) if genres := self.genres: t = i.GENRE.value query.extend(f"{t}{a}{c}" for c in set(genres)) if convention := self.convention: query.append(f"{i.CONVENTION.value}{a}{convention}") if collection := self.collection: query.append(f"{i.COLLECTION.value}{a}{collection}") if publisher := self.publisher: query.append(f"{i.PUBLISHER.value}{a}{publisher}") if imprint := self.imprint: query.append(f"{i.IMPRINT.value}{a}{imprint}") if query: yield p.CONTENT.value, self.CONTENT_SEPARATOR.join(query) ```
{ "source": "JeanmarieAlder/bollards-api", "score": 3 }
#### File: bollards_api/api/routes.py ```python import json from os import name from flask_cors import CORS from bollards_api.models import Bollard from flask import Blueprint, jsonify from bollards_api.api.utils import get_neighbours_by_number api = Blueprint('api', __name__, url_prefix='/api/v1') CORS(api) @api.route('/bollards/list') def bollards_list(): bollards = Bollard.query.all() resp = [] for bollard in bollards: resp.append({ "id": bollard.id, "b_number": bollard.b_number, "b_letter": bollard.b_letter, "b_name": bollard.b_name, "image_icon": bollard.image_icon }) return jsonify(resp) @api.route('/bollards/markers') def bollards_markers(): bollards = Bollard.query.all() resp = [] for bollard in bollards: resp.append({ "id": bollard.id, "b_number": bollard.b_number, "b_letter": bollard.b_letter, "b_name": bollard.b_name, "b_type": bollard.b_type, "image_icon": bollard.image_icon, "b_lat": str(bollard.b_lat), "b_lng": str(bollard.b_lng) }) return jsonify(resp) @api.route('/bollards/details/<int:bollard_id>') def bollards_details(bollard_id): bollard = Bollard.query.filter_by(id=bollard_id).first_or_404() images = [] for img in bollard.images: images.append(img.uri) neighbours = get_neighbours_by_number(bollard) return jsonify({ 'id': bollard.id, 'b_number': bollard.b_number, 'b_letter': bollard.b_letter, 'b_type': bollard.b_type, 'b_name': bollard.b_name, 'comment': bollard.comment, 'b_lat': str(bollard.b_lat), 'b_lng': str(bollard.b_lng), 'image_icon': bollard.image_icon, 'images': images, 'neighbours': neighbours }) ``` #### File: bollards-api/bollards_api/__init__.py ```python from flask import Flask from flask_bcrypt import Bcrypt from flask_login import LoginManager from flask_migrate import Migrate from flask_sqlalchemy import SQLAlchemy from bollards_api.config import Config db = SQLAlchemy() migrate = Migrate() bcrypt = Bcrypt() login_manager = LoginManager() login_manager.login_view = 'users.login' login_manager.login_message_category = 'info' def create_app(config_class=Config): app = Flask(__name__) app.config.from_object(config_class) db.init_app(app) migrate.init_app(app, db) bcrypt.init_app(app) login_manager.init_app(app) from bollards_api.api.routes import api from bollards_api.bollards.routes import bollards from bollards_api.errors.handlers import errors from bollards_api.main.routes import main from bollards_api.users.routes import users app.register_blueprint(main) app.register_blueprint(users) app.register_blueprint(bollards) app.register_blueprint(api) app.register_blueprint(errors) return app ``` #### File: bollards_api/users/utils.py ```python import os import secrets from flask import current_app from PIL import Image def crop_center(pil_img, crop_width, crop_height): img_width, img_height = pil_img.size return pil_img.crop(((img_width - crop_width) // 2, (img_height - crop_height) // 2, (img_width + crop_width) // 2, (img_height + crop_height) // 2)) def crop_max_square(pil_img): return crop_center(pil_img, min(pil_img.size), min(pil_img.size)) def crop_save_picture(new_picture, folder_path, fixed_square_size): random_hex = secrets.token_hex(8) _, file_ext = os.path.splitext(new_picture.filename) picture_filename = random_hex + file_ext picture_path = os.path.join(current_app.root_path, 'static', 'img', folder_path, picture_filename) output_size = (fixed_square_size, fixed_square_size) i = Image.open(new_picture) i_width = i.width i_height = i.height if i_width > fixed_square_size and i_height > fixed_square_size: i = crop_max_square(i) # Reduce the size of picture i.thumbnail(output_size, Image.ANTIALIAS) i.save(picture_path) return picture_filename def save_picture_profile(new_picture): fixed_square_size = 150 folder_path = 'profile_pics' return crop_save_picture(new_picture, folder_path, fixed_square_size) ``` #### File: bollards-api/tests/test_main.py ```python from bollards_api.main.forms import ContactForm def test_home_page(client): """Test that home page displays correctly""" rv = client.get('/') assert b'<h1 class="text-center">Welcome to Bollards API</h1>' in rv.data assert b'<p class="card-text">Discover all bollards between Vaud, Switzerland and France.</p>' in rv.data assert b'Welcome to the bollards.ch API.' in rv.data # /home should be equal to / rv_home = client.get('/home') assert rv_home.data == rv.data def test_about_page(client): rv = client.get('/about') assert b'42' in rv.data def test_about_page2(client): rv = client.get('/about') assert b'42' in rv.data def test_contact_form_works(app): """Currently not in use""" with app.app_context(): contactForm = ContactForm() assert True def test_404_on_bad_request(client): rv = client.get('/randomlink') assert b'<h1>Looks like you ran into 404.</h1>' in rv.data ```
{ "source": "JeanmarieAlder/python-swissalti3d-fetcher", "score": 3 }
#### File: JeanmarieAlder/python-swissalti3d-fetcher/util.py ```python import pandas as pd df_urls_done = pd.read_csv("input/done.csv", header=None) def file_allready_dl(url): for url_done in df_urls_done[0]: if url_done == url: print(f"File {url} already downloaded, skipping.") return True return False ```
{ "source": "jeanmarie-dormoy/GDEB-archi-PS5", "score": 3 }
#### File: GDEB-archi-PS5/assembly/assembleur.py ```python import sys def getInstructions(file) : f = open(file, "r") lines = f.readlines() for i in range(0,len(lines)) : lines[i] = lines[i].strip() return lines def translate(lines) : f = open("out", "w") res = "v2.0 raw\n" for line in lines : spacesplit = line.split(" ") if len(spacesplit) > 2 : for i in range(2,len(spacesplit)) : spacesplit[1]+=spacesplit[i].strip() spacesplit[0] = spacesplit[0].upper() if spacesplit[0]=='LDR' : res += str(getLDR(spacesplit[1])) +"\n" if spacesplit[0]=='CMP' : res += str(getCMP(spacesplit[1])) +"\n" if spacesplit[0]=='STR' : res += str(getSTR(spacesplit[1])) +"\n" if spacesplit[0][0] == 'B' : res += conditional(spacesplit,searchStr(lines,spacesplit[1]+':')) + "\n" if spacesplit[0]=='MOVS' or spacesplit[0]=='MOV': res += str(getMOVS(spacesplit[1])) +"\n" if spacesplit[0]=='MUL' or spacesplit[0]=='MULS' : res += str(getMUL(spacesplit[1])) +"\n" if spacesplit[0]=='ADDS' : res += str(getADDS(spacesplit[1])) +"\n" if spacesplit[0]=='ADD' : res += str(getADD(spacesplit[1])) +"\n" if spacesplit[0]=='LSLS' or spacesplit[0]=='LSL' : res += str(getLSLS(spacesplit[1])) +"\n" if spacesplit[0]=='LSRS' : res += str(getLSLS(spacesplit[1])) +"\n" if spacesplit[0]=='ASRS' : res += str(getASRS(spacesplit[1])) +"\n" if spacesplit[0]=='SUBS' or spacesplit[0]=='SUB' : res += str(getSUBS(spacesplit[1])) +"\n" if spacesplit[0]=='ANDS' : res += str(getANDS(spacesplit[1])) +"\n" if spacesplit[0]=='EORS' : res += str(getEORS(spacesplit[1])) +"\n" if spacesplit[0]=='ADCS' : res += str(getADCS(spacesplit[1])) +"\n" if spacesplit[0]=='SBCS' : res += str(getSBCS(spacesplit[1])) +"\n" if spacesplit[0]=='RORS' : res += str(getRORS(spacesplit[1])) +"\n" if spacesplit[0]=='RSBS' : res += str(getRSBS(spacesplit[1])) +"\n" if spacesplit[0]=='CMN' : res += str(getCMN(spacesplit[1])) +"\n" if spacesplit[0]=='ORRS' : res += str(getORRS(spacesplit[1])) +"\n" if spacesplit[0]=='BICS' : res += str(getBICS(spacesplit[1])) +"\n" if spacesplit[0]=='MVNS' : res += str(getMVNS(spacesplit[1])) +"\n" f.write(res) def reformat(val,length): if (int(val)<0) : temp = -int(val) temp = bin(temp)[2:] new='' for i in range(0,len(temp)) : if temp[i] =='0': new+='1' if temp[i] =='1': new+='0' leng = len(new) new = int(new,2)+1 new = bin(new)[2:] for i in range (0,leng-len(new)) : new = '0'+new nbzero = length - len(new) for i in range(0,nbzero) : new = '1'+new return new else : val = bin(int(val))[2:] nbzero = length - len(val) for i in range(0,nbzero) : val = "0"+val return val def getANDS(values) : values= values.split(',') rdn = reformat(values[0][1],3) rm = reformat(values[1][1],3) res = "0100000000" + rm + rdn return hex(int(res, 2))[2:] def getADCS(values) : values= values.split(',') rdn = reformat(values[0][1],3) rm = reformat(values[1][1],3) res = "0100000101" + rm + rdn return hex(int(res, 2))[2:] def getSBCS(values) : values= values.split(',') rdn = reformat(values[0][1],3) rm = reformat(values[1][1],3) res = "0100000110" + rm + rdn return hex(int(res, 2))[2:] def getTST(values) : values= values.split(',') rn = reformat(values[0][1],3) rm = reformat(values[1][1],3) res = "0100001000" + rm + rn return hex(int(res, 2))[2:] def getRSBS(values) : values= values.split(',') rd = reformat(values[0][1],3) rn = reformat(values[1][1],3) res = "0100001001" + rn + rd return hex(int(res, 2))[2:] def getRORS(values) : values= values.split(',') rdn = reformat(values[0][1],3) rm = reformat(values[1][1],3) res = "0100000111" + rm + rdn return hex(int(res, 2))[2:] def getEORS(values) : values= values.split(',') rdn = reformat(values[0][1],3) rm = reformat(values[1][1],3) res = "0100000001" + rm + rdn return hex(int(res, 2))[2:] def getLSLS(values) : if (values.find('#')!=-1) : imm = values.split('#')[1] imm = reformat(imm,5) rd = reformat(values[0][len(values[0])-1],3) rm = reformat(values[1][len(values[1])-1],3) res = '00000'+imm+rm+rd return hex(int(res, 2))[2:] else : values= values.split(',') rd = reformat(values[0][1],3) rm = reformat(values[1][1],3) res = '0100000010'+rm+rd return hex(int(res, 2))[2:] def getASRS(values) : if (values.find('#')!=-1) : imm = values.split('#')[1] imm = reformat(imm,5) rd = reformat(values[0][len(values[0])-1],3) rm = reformat(values[1][len(values[1])-1],3) res = '00010'+imm+rm+rd return hex(int(res, 2))[2:] else : values= values.split(',') rd = reformat(values[0][1],3) rm = reformat(values[1][1],3) res = '0100000100'+rm+rd return hex(int(res, 2))[2:] def getLSRS(values) : if (values.find('#')!=-1): imm = values.split('#')[1] imm = reformat(imm,5) rd = reformat(values[0][len(values[0])-1],3) rm = reformat(values[1][len(values[1])-1],3) res = '00001'+imm+rm+rd return hex(int(res, 2))[2:] else : values= values.split(',') rd = reformat(values[0][1],3) rm = reformat(values[1][1],3) res = '0100000011'+rm+rd return hex(int(res, 2))[2:] def getLDR(values) : values = values.replace('[','') values = values.replace(']','') imm = reformat(values.split('#')[1],8) values = values.split(',') rt = reformat(values[0][len(values[0])-1],3) res = "10011" + rt + imm return hex(int(res, 2))[2:] def getADDS(values) : values = values.replace('[','') values = values.replace(']','') if (values.find('#') != -1): imm = values.split('#')[1] imm = reformat(imm,3) values = values.split(',') rd = reformat(values[0][1],3) rn = reformat(values[1][1],3) res = "0001110" + imm + rn + rd return hex(int(res, 2))[2:] else : values = values.split(',') rd = reformat(values[0][1],3) rn = reformat(values[1][1],3) rm = reformat(values[2][1],3) res = "0001100" + rm + rn + rd return hex(int(res, 2))[2:] def getSUBS(values) : values = values.replace('[','') values = values.replace(']','') if((values.find("SP") !=-1 or values.find("sp")!=-1) and values.find('#') != -1) : values = values.split('#') a = reformat(values[1],7) a = '101100001' + a return hex(int(a, 2))[2:] if (values.find('#') != -1): imm = reformat(values.split('#')[1],3) values = values.split(',') rd = reformat(values[0][1],3) rn = reformat(values[1][1],3) res = "0001111" + imm + rn + rd return hex(int(res, 2))[2:] else : values = values.split(',') print(values[0][1]) rd = reformat(values[0][1],3) rn = reformat(values[1][1],3) rm = reformat(values[2][1],3) res = "0001101" + rm + rn + rd return hex(int(res, 2))[2:] def getADD(values) : imm = reformat(values.split('#')[1],7) res = "101100000"+imm return hex(int(res, 2))[2:] def getMUL(values) : values = values.split(',') rdm = reformat(values[0][len(values[0])-1],3) rn = reformat(values[1][len(values[0])-1],3) res = '0100001101'+rn+rdm return hex(int(res, 2))[2:] def getMOVS(values) : if values.find('#')!=-1 : imm = values.split('#')[1] values = values.split(',') imm = reformat(imm,8) part2 = reformat(values[0][len(values[0])-1],3) res = "00100" +part2+ imm return hex(int(res, 2))[2:] return '0000' def getSTR(values) : values = values.replace('[','') values = values.replace(']','') imm = values.split('#')[1] imm = reformat(imm,8) values = values.split(',') part2 = reformat(values[0][len(values[0])-1],3) res = "10010" + part2 + imm return hex(int(res, 2))[2:] def getCMN(values) : values = values.split(",") rm = reformat(values[1][1],3) rn = reformat(values[0][1],3) res = "0100001011"+rm+rn return hex(int(res, 2))[2:] def getORRS(values) : values = values.split(",") rm = reformat(values[1][1],3) rdn = reforat(values[0][1],3) res = "0100001100"+rm+rdn return hex(int(res, 2))[2:] def getBICS(values) : values = values.split(",") rm = reformat(values[1][1],3) rdn = reformat(values[0][1],3) res = "0100001110"+rm+rdn return hex(int(res, 2))[2:] def getMVNS(values) : values = values.split(",") rm = reformat(values[1][1],3) rd = reformat(values[0][1],3) res = "0100001111"+rm+rd return hex(int(res, 2))[2:] def getCMP(values) : values = values.split(",") rm = reformat(values[1][1],3) rn = reformat(values[0][1],3) res = "0100001010"+rm+rn return hex(int(res, 2))[2:] def searchStr(lines,strn) : i=0 d = 0 while i<len(lines) : if (lines[i][0]=='@') : d+= 1 if lines[i][len(lines[i])-1] == ':' : d += 1 if lines[i] == strn: return i - d + 1 i+=1 return 0; def getSUB(line): line = line.split('#') a = reformat(line[1],7) a = '101100001' + a return hex(int(a, 2))[2:] def conditional(lineArray,position) : res ="" r = "" cond = lineArray[0][1:] imm = bin(position) imm = imm[2:] nbzero = 8 - len(imm) for i in range(0,nbzero) : imm = "0"+imm conds = {'EQ' : '0000','NE' : '0001','CS' : '0010','CC' : '0011','MI' : '0100','PL' : '0101','VS' : '0110','VC' : '0111','HI' : '1000','LS' : '1001','GE' : '1010','LT' : '1011','GT' : '1100','LE' : '1101','AL' : '1110','' : '1110'} r=conds[cond] res = "1101"+r+imm return hex(int(res,2))[2:] if __name__ == '__main__': if (len(sys.argv) != 2) : print("N'oubliez pas d'ajouter en argument le fichier d'entree") else : translate(getInstructions(sys.argv[1])) print("Ecriture reussie dans le fichier \'out\'") ```
{ "source": "jeanmariepm/vipapi", "score": 2 }
#### File: games/tests/test_player.py ```python from django.test import client from rest_framework.test import APIClient from rest_framework import status import pytest @pytest.mark.django_db(transaction=True) class TestUserCredentials: def test_browse_players(self): client = APIClient() response = client.get('/games/players/') assert response.status_code == status.HTTP_200_OK assert len(response.data) == 0 ``` #### File: vipapi/home/views.py ```python from django.shortcuts import render from django.http import HttpResponse def index(request): return HttpResponse('Use vipveed.herokuapp.com to access') ```
{ "source": "JeanMaritain/spvsdkpy", "score": 3 }
#### File: spvsdkpy/test/tool.py ```python import os def backup_file(src_dir, file_name, tgt_dir): if not os.path.isdir(tgt_dir): os.makedirs(tgt_dir) def shasum(path): shasum_res = os.popen(f"shasum -a 256 {path}").readlines() sha256, file = shasum_res[0].split()[0], shasum_res[0].split()[1] print(f"shasum 256 value: {sha256}, file: {file}") return sha256 def copy(source, target): os.system(f"cp {source} {target}") print(f"{source} \ncopied to \n{target}") _src_path = os.path.expanduser(os.path.join(src_dir, file_name)) _tgt_path = os.path.join(os.getcwd(), tgt_dir, file_name) if os.path.exists(_tgt_path): if not shasum(_src_path) == shasum(_tgt_path): copy(_src_path, _tgt_path) print("target file updated.") else: print("target file stills same.\n") else: print("target file not found.") copy(_src_path, _tgt_path) def clear_spv_local_data_and_logfile(root_path, wid, clear_all=False): from os import remove, path, listdir from shutil import rmtree keep_log = False log = path.join(root_path, "spvsdk.log") data = path.join(root_path, wid) for _path in listdir(root_path): full_path = path.join(root_path, _path) if path.isdir(full_path) and _path != wid: keep_log = True if path.isdir(full_path) and _path == wid: rmtree(data) print(f"{data} removed") if path.isdir(full_path) and clear_all: rmtree(full_path) print(f"{data} removed") if path.exists(log): if not keep_log: remove(log) print(f"{log} removed") class AnsiChr(object): class T(object): Default, Bold, Light, Italic, Underline, Blink, Inverse, Invisible = 0, 1, 2, 3, 4, 5, 7, 8 # Non_Bold, Non_Underline, Non_Blink = 22, 24, 25 class C(object): Black, Red, Green, Yellow, Blue, Magenta, Cyan, White, Clear_ = 0, 1, 2, 3, 4, 5, 6, 7, 8 def __init__(self, style=T.Default, front=C.Black, back=C.White): self.style = style self.front = front self.back = back @classmethod def rc(cls, x): return cls.formatted_str(x, cls.T.Default, cls.C.Red, cls.C.Clear_) @classmethod def yb(cls, x): return cls.formatted_str(x, cls.T.Default, cls.C.Yellow, cls.C.Blue) @classmethod def bc(cls, x): return cls.formatted_str(x, cls.T.Default, cls.C.Blue, cls.C.Clear_) @classmethod def formatted_str(cls, content, style=T.Default, front=C.Red, back=C.Cyan): return f'\033[{str(style)};3{str(front)};4{str(back)}m{str(content)}\033[0m' def stain(self, content): return self.formatted_str(content, self.style, self.front, self.back) @staticmethod def test(): i = 0 for cfk, cfv in AnsiChr.C.__dict__.items(): if cfk[0:1] != "_": for tk, tv in AnsiChr.T.__dict__.items(): if tk[0:1] != "_": for cbk, cbv in AnsiChr.C.__dict__.items(): if cbk[0:1] != "_": i += 1 s = "{0:3}l {2:2}{1:9} {4}{3:7} {6}{5:7}"\ .format(i, tk, tv, cfk, cfv, cbk, cbv) a = AnsiChr(tv, cfv, cbv).stain(s) print(a, end='') print(" ") if i%9 == 0 else print('', end='') def ctprint(x, c=AnsiChr.rc, end="\n", t=True): colored_type = AnsiChr.bc(type(x)) colored_value = c(x) if type(x) == str else AnsiChr.yb(x) s = f"{colored_type}{colored_value}" if t else f"{colored_value}" print(s, end=end) ```
{ "source": "jeanmask/opps-feedcrawler", "score": 2 }
#### File: opps/feedcrawler/models.py ```python import json import urllib import urlparse from random import getrandbits from django.db import models from django.utils.translation import ugettext_lazy as _ from django.core.exceptions import ValidationError from django.utils import timezone from opps.core.models import Publishable, Slugged from opps.containers.models import Container from opps.channels.models import Channel from opps.images.models import Image from opps.utils.text import unescape RSS_PROCESSOR = 'opps.feedcrawler.processors.rss.RSSProcessor' RSS_ACTIONS = 'opps.feedcrawler.actions.rss.RSSActions' def _url_fix(s, charset='utf-8'): """Sometimes you get an URL by a user that just isn't a real URL because it contains unsafe characters like ' ' and so on. This function can fix some of the problems in a similar way browsers handle data entered by the user: >>> url_fix(u'http://de.wikipedia.org/wiki/Elf (Begriffsklärung)') 'http://de.wikipedia.org/wiki/Elf%20%28Begriffskl%C3%A4rung%29' :param charset: The target charset for the URL if the url was given as unicode string. """ if isinstance(s, unicode): s = s.encode(charset, 'ignore') scheme, netloc, path, qs, anchor = urlparse.urlsplit(s) path = urllib.quote(path, '/%') qs = urllib.quote_plus(qs, ':&=') return urlparse.urlunsplit((scheme, netloc, path, qs, anchor)) class FeedType(models.Model): name = models.CharField(max_length=255, unique=True) processor = models.CharField(max_length=255, default=RSS_PROCESSOR) actions = models.CharField(max_length=255, default=RSS_ACTIONS) def __unicode__(self): return self.name class Meta: verbose_name = _(u'Feed Type') verbose_name_plural = _(u'Feed Types') class Group(models.Model): name = models.CharField(max_length=250, unique=True) class Meta: ordering = ['name'] verbose_name = _(u'Group') verbose_name_plural = _(u'Groups') def __unicode__(self): return self.name def num_unread(self): return len(Entry.objects.filter(feed__group=self, read=False)) class Feed(Publishable, Slugged): title = models.CharField(max_length=255) description = models.TextField(blank=True, null=True) link = models.CharField(max_length=2000, blank=True, null=True) source_url = models.CharField(max_length=255) source_username = models.CharField(max_length=255, blank=True, null=True) source_password = models.CharField(max_length=255, blank=True, null=True) source_port = models.PositiveIntegerField(blank=True, null=True) source_root_folder = models.CharField(max_length=255, default="/") source_json_params = models.TextField(blank=True, null=True) published_time = models.DateTimeField(blank=True, null=True) last_polled_time = models.DateTimeField(blank=True, null=True) group = models.ForeignKey(Group, blank=True, null=True, verbose_name=_(u"Group or Source")) feed_type = models.ForeignKey(FeedType) max_entries = models.PositiveIntegerField(blank=True, null=True) publish_entries = models.BooleanField(default=True) channel = models.ForeignKey( 'channels.Channel', null=True, blank=True, on_delete=models.SET_NULL ) main_image = models.ForeignKey( 'images.Image', verbose_name=_(u'Feed Image'), blank=True, null=True, on_delete=models.SET_NULL, related_name='feed_image' ) interval = models.PositiveIntegerField( blank=True, null=True, default=20, help_text=_(u'interval in minutes (celery only)') ) class Meta: ordering = ['title'] verbose_name = _(u'Feed') verbose_name_plural = _(u'Feeds') def __unicode__(self): return self.title def load_json_params(self): if self.source_json_params: try: return json.loads(self.source_json_params or "{}") except: raise ValidationError(_(u'Invalid JSON')) def clean(self): self.load_json_params() @property def entries(self): return self.entry_set.all() # def get_absolute_url(self): # return "/feed/{0}/{1}".format(self.channel.long_slug, self.slug) def get_http_absolute_url(self): protocol, path = "http://{0}/{1}".format( self.channel, self.slug).split(self.site.domain) return "{0}{1}/feed{2}".format(protocol, self.site, path) def get_processor(self, verbose=False): try: processor = self.feed_type.processor _module = '.'.join(processor.split('.')[:-1]) _processor = processor.split('.')[-1] _temp = __import__(_module, globals(), locals(), [_processor], -1) Processor = getattr(_temp, _processor) return Processor(self, verbose=verbose) except Exception as e: print str(e) return def create_channel(self): try: channel = Channel.objects.get(slug=self.slug) except: channel = Channel.objects.create( name=self.title, slug=self.slug, published=True, site=self.site, user=self.user ) self.channel = channel self.save() return channel def get_channel(self): return (self.channel or Channel.objects.get_homepage(site=self.site) or self.create_channel()) def save(self, *args, **kwargs): exclude = {} self.title = unescape(self.title) filters = dict(slug=self.slug) if self.pk is not None: exclude = dict(pk=self.pk) if Feed.objects.filter(**filters).exclude(**exclude).exists(): # print("exists creating a new slug") self.slug = u'{random}-{o.slug}'.format( o=self, random=getrandbits(16) ) super(Feed, self).save(*args, **kwargs) class Entry(Container): entry_feed = models.ForeignKey(Feed) entry_title = models.CharField( max_length=255, blank=True, null=True ) entry_link = models.CharField(max_length=2000, blank=True, null=True) entry_description = models.TextField(blank=True, null=True) entry_content = models.TextField(blank=True, null=True) entry_published_time = models.DateTimeField(auto_now_add=True) entry_pulled_time = models.DateTimeField(auto_now_add=True) entry_json = models.TextField(blank=True, null=True) entry_category = models.CharField(max_length=255, blank=True, null=True) entry_category_code = models.CharField(max_length=255, blank=True, null=True) entry_original_id = models.PositiveIntegerField(blank=True, null=True) post_created = models.BooleanField(_(u"Post created"), default=False) def save(self, *args, **kwargs): self.title = unescape(self.title) self.hat = unescape(self.hat) super(Entry, self).save(*args, **kwargs) def define_main_image(self, archive_link, save=False, *args, **kwargs): image = Image( title=u"{0}-{1}".format(self.title, self.id), slug=u"{0}-{1}".format(self.slug, self.id), user=self.user, site=self.site, archive_link=_url_fix(archive_link), **kwargs ) image.save() self.main_image = image if save: self.save() return image class Meta: ordering = ['-entry_published_time'] verbose_name = _(u'Entry') verbose_name_plural = _(u'Entries') def __unicode__(self): return self.title def get(self, key): data = self.load_json() return data.get(key) def load_json(self): try: return json.loads(self.entry_json or "{}") except: raise ValidationError(u"Invalid Json") class ProcessLog(models.Model): feed = models.ForeignKey(Feed) type = models.CharField(max_length=255, blank=True, null=True) text = models.CharField(max_length=255, blank=True, null=True) log_time = models.DateTimeField(auto_now_add=True, default=timezone.now) def __unicode__(self): return self.text class Meta: verbose_name = _(u'Process Log') verbose_name_plural = _(u'Process Logs') ``` #### File: feedcrawler/processors/rss_news.py ```python import feedparser import logging import json from datetime import datetime, timedelta from time import mktime from django.utils import html from django.template.defaultfilters import striptags from django.utils.text import slugify from .base import BaseProcessor from .category_brasil import CATEGORY_BRASIL from opps.articles.models import Post from opps.channels.models import Channel logger = logging.getLogger() # Agencia Brasil has a different rule for timezones TZ_DELTA = timedelta(hours=3) class RSSProcessor(BaseProcessor): def fetch(self): self.parsed = feedparser.parse(self.feed.source_url) if hasattr(self.parsed.feed, 'bozo_exception'): msg = "Malformed feed %s" % self.feed.source_url logger.warning(msg) self.verbose_print(msg) return self.verbose_print("Feed succesfully parsed") return self.parsed def update_feed(self): self.verbose_print("updating feed") if hasattr(self.parsed, 'published_parsed'): published_time = datetime.fromtimestamp( mktime(self.parsed.feed.published_parsed) ) published_time = published_time - TZ_DELTA if (self.feed.published_time and self.feed.published_time >= published_time): return self.feed.published_time = published_time for attr in ['title', 'title_detail', 'link']: if not hasattr(self.parsed.feed, attr): msg = 'refresh_feeds. Feed "%s" has no %s' logger.error(msg % (self.feed.source_url, attr)) self.verbose_print(msg % (self.feed.source_url, attr)) return if self.parsed.feed.title_detail.type == 'text/plain': self.feed.title = striptags(self.parsed.feed.title)[:150] else: self.feed.title = self.parsed.feed.title[:150] self.feed.link = self.feed.link or self.parsed.feed.link try: if self.parsed.feed.description_detail.type == 'text/plain': self.feed.description = \ html.escape(self.parsed.feed.description) else: self.feed.description = self.parsed.feed.description except: pass self.feed.last_polled_time = datetime.now() self.feed.save() self.verbose_print("Feed obj updated %s" % self.feed.last_polled_time) return len(self.parsed.entries) def create_entries(self): self.verbose_print("creating entry") count = 0 for i, entry in enumerate(self.parsed.entries): e_id = getattr(entry, 'id', getattr(entry, 'guid', None)) if self.log_created(e_id): self.verbose_print("Already processed") continue if i > self.max_entries_saved: break missing_attr = False for attr in ['title', 'title_detail', 'link', 'description']: if not hasattr(entry, attr): msg = 'Feedcrawler refresh_feeds. Entry "%s" has no %s' logger.error(msg % (entry.link, attr)) missing_attr = True if missing_attr: continue if entry.title == "": msg = 'Feedcrawler refresh_feeds. Entry "%s" has a blank title' logger.warning(msg % (entry.link)) continue if entry.title_detail.type == 'text/plain': entry_title = html.escape(entry.title) else: entry_title = entry.title if not entry_title: entry_title = "" self.verbose_print("will create entry") if hasattr(entry, 'published_parsed'): published_time = datetime.fromtimestamp( mktime(entry.published_parsed) ) # published_time = pytz.timezone( # settings.TIME_ZONE # ).localize( # published_time, # is_dst=None # ) published_time = published_time - TZ_DELTA now = datetime.now() if published_time.date() > now.date(): self.verbose_print("Entry date is > now") self.verbose_print(published_time) self.verbose_print(now) published_time = now elif published_time.date() < now.date(): self.verbose_print( "Entry time is in the past, skipping: %s - %s" % (published_time.date(), now.date()) ) continue if not published_time: continue pub_time_str = published_time.strftime("%Y-%m-%d") slug = slugify( self.feed.slug + "-" + entry_title[:100] + pub_time_str) exists = self.entry_model.objects.filter(slug=slug).exists() if exists: self.verbose_print("Entry slug exists, skipping") continue try: tags = ",".join([tag.term for tag in entry.tags]) except: tags = None db_entry, created = self.entry_model.objects.get_or_create( entry_feed=self.feed, entry_link=entry.link, channel=self.feed.get_channel(), title=entry_title[:150].replace('&quot;', '"'), slug=slug[:150], entry_title=entry_title[:150], site=self.feed.site, user=self.feed.user, published=self.feed.publish_entries, show_on_root_channel=False, tags=tags ) self.verbose_print("Entry found or created!!!") if created: if hasattr(entry, 'published_parsed'): db_entry.entry_published_time = published_time # Lots of entries are missing description_detail attributes. # Escape their content by default if hasattr(entry, 'description_detail') and \ entry.description_detail.type != 'text/plain': db_entry.entry_description = entry.description else: db_entry.entry_description = html.escape(entry.description) try: content = None if hasattr(entry, 'content'): content = entry.content if isinstance(content, list) and content: content = entry.content[0] if content and content.type != 'text/plain': db_entry.entry_content = content.value elif hasattr(entry, 'content'): db_entry.entry_content = html.escape(content.value) except Exception, e: self.verbose_print(str(e)) msg = 'Feedcrawler refresh_feeds. Entry "%s" content error' logger.warning(msg % (entry.link)) try: allowed = (str, unicode, dict, list, int, float, long) entry_source = json.dumps( {k: v for k, v in entry.iteritems() if isinstance(v, allowed)} ) db_entry.entry_json = entry_source except Exception, e: self.verbose_print(str(e)) msg = 'Feedcrawler refresh_feeds. Entry "%s" json error' logger.warning(msg % (entry.link)) # fill Article properties db_entry.headline = db_entry.entry_description db_entry.save() count += 1 if self.verbose: self.verbose_print( "Entry fully created %s" % db_entry.title) self.record_log(e_id) try: self.verbose_print('creating post') db_entry.pub_time_str = pub_time_str self.create_post(db_entry) except Exception as e: self.verbose_print(str(e)) self.verbose_print("%d entries created" % count) return count def delete_old_entries(self): entries = self.entry_model.objects.filter(entry_feed=self.feed) entries = entries[self.max_entries_saved:] # Cannot use 'limit' or 'offset' with delete. for entry in entries: entry.delete() if self.verbose: self.verbose_print("%d entries deleted" % len(entries)) def process(self): # fetch and parse the feed self.max_entries_saved = self.feed.max_entries or 1000 self.verbose_print("fetching") if not self.fetch(): logger.warning("Feed cannot be parsed") return 0 self.verbose_print("updating") if not self.update_feed(): logger.info("No entry returned") return 0 self.verbose_print("creating entries") created_count = self.create_entries() self.delete_old_entries() return created_count def get_channel_by_slug(self, slug): if not slug: return try: return Channel.objects.filter(long_slug=slug)[0] except: return def create_post(self, entry): # match category X channel channel_slug = CATEGORY_BRASIL.get(self.feed.source_url) channel = self.get_channel_by_slug(channel_slug) or entry.channel self.verbose_print(channel_slug) slug = slugify(entry.entry_title + "-" + entry.pub_time_str)[:150] if Post.objects.filter(channel=channel, slug=slug, site=entry.site).exists(): # slug = str(random.getrandbits(8)) + "-" + slug self.verbose_print("Post slug exists") # do not create duplicates return post = Post( title=entry.entry_title[:150], slug=slug, content=entry.entry_content or entry.entry_description, channel=channel, site=entry.site, user=entry.user, show_on_root_channel=True, published=self.feed.publish_entries, # hat=entry.hat, tags=entry.tags, date_insert=entry.entry_published_time, date_available=entry.entry_published_time ) if self.feed.group: post.source = self.feed.group.name post.save() entry.post_created = True entry.save() self.verbose_print( "Post {p.id}- {p.title} - {p.slug} created".format(p=post)) return post ``` #### File: feedcrawler/sample/ftpserver.py ```python import os,socket,threading,time #import traceback allow_delete = False local_ip = socket.gethostbyname(socket.gethostname()) local_port = 8888 currdir=os.path.abspath('.') class FTPserverThread(threading.Thread): def __init__(self,(conn,addr)): self.conn=conn self.addr=addr self.basewd=currdir self.cwd=self.basewd self.rest=False self.pasv_mode=False threading.Thread.__init__(self) def run(self): self.conn.send('220 Welcome!\r\n') while True: cmd=self.conn.recv(256) if not cmd: break else: print 'Recieved:',cmd try: func=getattr(self,cmd[:4].strip().upper()) func(cmd) except Exception,e: print 'ERROR:',e #traceback.print_exc() self.conn.send('500 Sorry.\r\n') def SYST(self,cmd): self.conn.send('215 UNIX Type: L8\r\n') def OPTS(self,cmd): if cmd[5:-2].upper()=='UTF8 ON': self.conn.send('200 OK.\r\n') else: self.conn.send('451 Sorry.\r\n') def USER(self,cmd): self.conn.send('331 OK.\r\n') def PASS(self,cmd): self.conn.send('230 OK.\r\n') #self.conn.send('530 Incorrect.\r\n') def QUIT(self,cmd): self.conn.send('221 Goodbye.\r\n') def NOOP(self,cmd): self.conn.send('200 OK.\r\n') def TYPE(self,cmd): self.mode=cmd[5] self.conn.send('200 Binary mode.\r\n') def CDUP(self,cmd): if not os.path.samefile(self.cwd,self.basewd): #learn from stackoverflow self.cwd=os.path.abspath(os.path.join(self.cwd,'..')) self.conn.send('200 OK.\r\n') def PWD(self,cmd): cwd=os.path.relpath(self.cwd,self.basewd) if cwd=='.': cwd='/' else: cwd='/'+cwd self.conn.send('257 \"%s\"\r\n' % cwd) def CWD(self,cmd): chwd=cmd[4:-2] if chwd=='/': self.cwd=self.basewd elif chwd[0]=='/': self.cwd=os.path.join(self.basewd,chwd[1:]) else: self.cwd=os.path.join(self.cwd,chwd) self.conn.send('250 OK.\r\n') def PORT(self,cmd): if self.pasv_mode: self.servsock.close() self.pasv_mode = False l=cmd[5:].split(',') self.dataAddr='.'.join(l[:4]) self.dataPort=(int(l[4])<<8)+int(l[5]) self.conn.send('200 Get port.\r\n') def PASV(self,cmd): # from http://goo.gl/3if2U self.pasv_mode = True self.servsock = socket.socket(socket.AF_INET,socket.SOCK_STREAM) self.servsock.bind((local_ip,0)) self.servsock.listen(1) ip, port = self.servsock.getsockname() print 'open', ip, port self.conn.send('227 Entering Passive Mode (%s,%u,%u).\r\n' % (','.join(ip.split('.')), port>>8&0xFF, port&0xFF)) def start_datasock(self): if self.pasv_mode: self.datasock, addr = self.servsock.accept() print 'connect:', addr else: self.datasock=socket.socket(socket.AF_INET,socket.SOCK_STREAM) self.datasock.connect((self.dataAddr,self.dataPort)) def stop_datasock(self): self.datasock.close() if self.pasv_mode: self.servsock.close() def LIST(self,cmd): self.conn.send('150 Here comes the directory listing.\r\n') print 'list:', self.cwd self.start_datasock() for t in os.listdir(self.cwd): k=self.toListItem(os.path.join(self.cwd,t)) self.datasock.send(k+'\r\n') self.stop_datasock() self.conn.send('226 Directory send OK.\r\n') def NLST(self,cmd): self.conn.send('150 Here comes the directory listing.\r\n') print 'list:', self.cwd self.start_datasock() for t in os.listdir(self.cwd): self.datasock.send(t+'\r\n') self.stop_datasock() self.conn.send('226 Directory send OK.\r\n') def toListItem(self,fn): st=os.stat(fn) fullmode='rwxrwxrwx' mode='' for i in range(9): mode+=((st.st_mode>>(8-i))&1) and fullmode[i] or '-' d=(os.path.isdir(fn)) and 'd' or '-' ftime=time.strftime(' %b %d %H:%M ', time.gmtime(st.st_mtime)) return d+mode+' 1 user group '+str(st.st_size)+ftime+os.path.basename(fn) def MKD(self,cmd): dn=os.path.join(self.cwd,cmd[4:-2]) os.mkdir(dn) self.conn.send('257 Directory created.\r\n') def RMD(self,cmd): dn=os.path.join(self.cwd,cmd[4:-2]) if allow_delete: os.rmdir(dn) self.conn.send('250 Directory deleted.\r\n') else: self.conn.send('450 Not allowed.\r\n') def DELE(self,cmd): fn=os.path.join(self.cwd,cmd[5:-2]) if allow_delete: os.remove(fn) self.conn.send('250 File deleted.\r\n') else: self.conn.send('450 Not allowed.\r\n') def RNFR(self,cmd): self.rnfn=os.path.join(self.cwd,cmd[5:-2]) self.conn.send('350 Ready.\r\n') def RNTO(self,cmd): fn=os.path.join(self.cwd,cmd[5:-2]) os.rename(self.rnfn,fn) self.conn.send('250 File renamed.\r\n') def REST(self,cmd): self.pos=int(cmd[5:-2]) self.rest=True self.conn.send('250 File position reseted.\r\n') def RETR(self,cmd): fn=os.path.join(self.cwd,cmd[5:-2]) #fn=os.path.join(self.cwd,cmd[5:-2]).lstrip('/') print 'Downlowding:',fn if self.mode=='I': fi=open(fn,'rb') else: fi=open(fn,'r') self.conn.send('150 Opening data connection.\r\n') if self.rest: fi.seek(self.pos) self.rest=False data= fi.read(1024) self.start_datasock() while data: self.datasock.send(data) data=fi.read(1024) fi.close() self.stop_datasock() self.conn.send('226 Transfer complete.\r\n') def STOR(self,cmd): fn=os.path.join(self.cwd,cmd[5:-2]) print 'Uplaoding:',fn if self.mode=='I': fo=open(fn,'wb') else: fo=open(fn,'w') self.conn.send('150 Opening data connection.\r\n') self.start_datasock() while True: data=self.datasock.recv(1024) if not data: break fo.write(data) fo.close() self.stop_datasock() self.conn.send('226 Transfer complete.\r\n') class FTPserver(threading.Thread): def __init__(self): self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.bind((local_ip,local_port)) threading.Thread.__init__(self) def run(self): self.sock.listen(5) while True: th=FTPserverThread(self.sock.accept()) th.daemon=True th.start() def stop(self): self.sock.close() if __name__=='__main__': ftp=FTPserver() ftp.daemon=True ftp.start() print 'On', local_ip, ':', local_port raw_input('Enter to end...\n') ftp.stop() ```
{ "source": "jeanmask/opps", "score": 2 }
#### File: opps/articles/search_indexes.py ```python from datetime import datetime from django.conf import settings from haystack.indexes import Indexable from opps.containers.search_indexes import ContainerIndex from .models import Post, Album, Link migration_date = getattr(settings, 'MIGRATION_DATE', None) if migration_date: m_date = datetime.strptime(migration_date, "%Y-%m-%d").date() Post.is_legacy = lambda self: m_date >= self.date_insert.date() else: Post.is_legacy = lambda self: False class PostIndex(ContainerIndex, Indexable): def get_model(self): return Post class AlbumIndex(ContainerIndex, Indexable): def get_model(self): return Album class LinkIndex(ContainerIndex, Indexable): def get_model(self): return Link ``` #### File: opps/articles/signals.py ```python from django.contrib.redirects.models import Redirect def redirect_generate(sender, instance, created, **kwargs): obj, create = Redirect.objects.get_or_create( old_path=instance.get_absolute_url(), site=instance.site) obj.new_path = instance.url obj.save() ``` #### File: opps/articles/views.py ```python from django.contrib.sites.models import get_current_site from django.utils import timezone from django.conf import settings from opps.views.generic.list import ListView from opps.containers.views import ContainerList from opps.containers.models import Container, ContainerBox from opps.articles.models import Album class AlbumList(ContainerList): model = Album type = 'articles' def get_template_names(self): templates = [] domain_folder = self.get_template_folder() list_name = 'list' templates.append('{0}/{1}/{2}.html'.format( self.model._meta.app_label, self.model._meta.module_name, list_name)) if self.request.GET.get('page') and\ self.__class__.__name__ not in\ settings.OPPS_PAGINATE_NOT_APP: templates.append('{0}/{1}/{2}/{3}_paginated.html'.format( domain_folder, self.model._meta.app_label, self.model._meta.module_name, list_name)) return templates def get_queryset(self): # TODO: refatoring, used super() self.site = get_current_site(self.request) self.long_slug = self.get_long_slug() if not self.long_slug: return None self.set_channel_rules() self.articleboxes = ContainerBox.objects.filter( channel__long_slug=self.long_slug) is_paginated = self.page_kwarg in self.request.GET if not is_paginated: for box in self.articleboxes: self.excluded_ids.update( [a.pk for a in box.ordered_containers()]) filters = {} filters['site_domain'] = self.site.domain filters['date_available__lte'] = timezone.now() filters['published'] = True filters['child_class'] = 'Album' if self.channel and self.channel.is_root_node() and not is_paginated: filters['show_on_root_channel'] = True queryset = Container.objects.filter( **filters).exclude(pk__in=self.excluded_ids) return queryset._clone() class AlbumChannelList(ListView): model = Album type = 'articles' template_name_suffix = 'album' def get_template_list(self, domain_folder="containers"): templates = [] list_name = 'list' if self.template_name_suffix: list_fullname = "{0}_{1}".format(self.template_name_suffix, list_name) if self.channel: if self.channel.group and self.channel.parent: templates.append('{0}/{1}/{2}.html'.format( domain_folder, self.channel.parent.long_slug, list_fullname)) if self.request.GET.get('page') and\ self.__class__.__name__ not in\ settings.OPPS_PAGINATE_NOT_APP: templates.append('{0}/{1}/{2}_paginated.html'.format( domain_folder, self.channel.parent.long_slug, list_fullname)) if self.request.GET.get('page') and\ self.__class__.__name__ not in settings.OPPS_PAGINATE_NOT_APP: templates.append('{0}/{1}/{2}_paginated.html'.format( domain_folder, self.channel.long_slug, list_fullname)) templates.append('{0}/{1}/{2}.html'.format( domain_folder, self.channel.long_slug, list_fullname)) for t in self.channel.get_ancestors()[::-1]: templates.append('{0}/{1}/{2}.html'.format( domain_folder, t.long_slug, list_fullname)) if self.request.GET.get('page') and\ self.__class__.__name__ not in\ settings.OPPS_PAGINATE_NOT_APP: templates.append('{0}/{1}/{2}_paginated.html'.format( domain_folder, t.long_slug, list_fullname)) if self.request.GET.get('page') and\ self.__class__.__name__ not in settings.OPPS_PAGINATE_NOT_APP: templates.append('{0}/{1}_paginated.html'.format(domain_folder, list_fullname)) templates.append('{0}/{1}/{2}.html'.format( self.model._meta.app_label, self.model._meta.module_name, list_name)) return templates def get_template_names(self): domain_folder = self.get_template_folder() template_list = self.get_template_list(domain_folder) return template_list def get_queryset(self): self.site = get_current_site(self.request) queryset = super(AlbumChannelList, self).get_queryset() filters = {} filters['site_domain'] = self.site.domain filters['date_available__lte'] = timezone.now() filters['published'] = True filters['show_on_root_channel'] = True queryset = queryset.filter(**filters) return queryset._clone() ``` #### File: opps/boxes/models.py ```python import json from datetime import datetime from django.db import models from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from django.core.exceptions import ValidationError from opps.core.models import Publishable, Channeling class QuerySet(Publishable): name = models.CharField(_(u"Dynamic queryset name"), max_length=140) slug = models.SlugField( _(u"Slug"), db_index=True, max_length=150, unique=True, ) model = models.CharField(_(u'Model'), max_length=150) limit = models.PositiveIntegerField(_(u'Limit'), default=7) offset = models.PositiveIntegerField(_(u'Offset'), default=0) order_field = models.CharField( _(u"Order Field"), max_length=100, default='id', help_text=_(u"Take care, should be an existing field or lookup") ) order = models.CharField(_('Order'), max_length=1, choices=( ('-', 'DESC'), ('+', 'ASC'))) channel = models.ManyToManyField( 'channels.Channel', verbose_name=_(u"Channel"), blank=True, null=True, default=None ) recursive = models.BooleanField( _("Recursive"), help_text=_("Bring the content channels and subchannels (tree)"), default=False ) filters = models.TextField( _(u'Filters'), help_text=_(u'Json format extra filters for queryset'), blank=True, null=True ) excludes = models.TextField( _(u'Excludes'), help_text=_(u'Json format for queryset excludes'), blank=True, null=True ) def __init__(self, *args, **kwargs): """ to avoid re-execution of methods its results are cached in a local storage per instance cache """ super(QuerySet, self).__init__(*args, **kwargs) if not hasattr(self, 'local_cache'): self.local_cache = {} def __unicode__(self): return u"{0} {1} {2}".format(self.name, self.slug, self.model) def clean(self): if self.filters: try: json.loads(self.filters) except: raise ValidationError(_(u'Invalid JSON for filters')) if self.excludes: try: json.loads(self.excludes) except: raise ValidationError(_(u'Invalid JSON for excludes')) try: # TODO: See how to test queryset before channel exist # self.get_queryset().all() pass except Exception as e: raise ValidationError( u'Invalid Queryset: {0}'.format(str(e)) ) if self.offset >= self.limit: raise ValidationError(_(u'Offset can\'t be equal or higher than' u'limit')) if self.recursive: if not self.channel: raise ValidationError(_(u"To use recursion (channel) is " u"necessary to select a channel")) def get_queryset(self, content_group='default', exclude_ids=None, use_local_cache=True): cached = self.local_cache.get('get_queryset') if use_local_cache and cached: return cached exclude_ids = exclude_ids or [] _app, _model = self.model.split('.') model = models.get_model(_app, _model) queryset = model.objects.filter( published=True, date_available__lte=timezone.now(), site=self.site ).exclude(child_class='Mirror') try: if model._meta.get_field_by_name('show_on_root_channel'): queryset = queryset.filter(show_on_root_channel=True) except: # silently pass when FieldDoesNotExists pass if self.channel.exists(): ch_long_slug_in = [ ch.long_slug for ch in self.channel.all() if ch.published and not ch.homepage] if self.recursive: channel_descendants = [ ch.get_descendants(include_self=False) for ch in self.channel.all() if ch.published and not ch.homepage] for children in channel_descendants: [ch_long_slug_in.append(chi.long_slug) for chi in children if chi.published] queryset = queryset.filter( channel_long_slug__in=ch_long_slug_in) else: queryset = queryset.filter( channel_long_slug__in=ch_long_slug_in) if self.filters: filters = json.loads(self.filters) for key, value in filters.iteritems(): if value == "datetime.now()": filters[key] = datetime.now() queryset = queryset.filter(**filters) if self.excludes: excludes = json.loads(self.excludes) for key, value in excludes.iteritems(): if value == "datetime.now()": excludes[key] = datetime.now() queryset = queryset.exclude(**excludes) # importing here to avoid circular imports from opps.containers.models import Container if issubclass(model, Container): queryset = queryset.exclude( id__in=exclude_ids ) order_term = self.order_field or 'id' if self.order == '-': order_term = "-{0}".format(self.order_field or 'id') queryset = queryset.order_by(order_term) result = queryset[self.offset:self.limit] if use_local_cache: self.local_cache['get_queryset'] = result return result class BaseBox(Publishable, Channeling): name = models.CharField(_(u"Box name"), max_length=140) slug = models.SlugField( _(u"Slug"), db_index=True, max_length=150, ) class Meta: abstract = True unique_together = ['site', 'channel_long_slug', 'slug'] def __unicode__(self): return u"{0}-{1}".format(self.slug, self.site.name) ``` #### File: opps/containers/api.py ```python from django.utils import timezone from opps.api import BaseHandler from .models import Container, ContainerBox class Handler(BaseHandler): allowed_methods = ('GET',) def read(self, request): filters = request.GET.dict() filters['date_available__lte'] = timezone.now() filters['published'] = True # Removed field from automatic filtering [filters.pop(b, None) for b in self.blackfield] return self.model.objects.filter( **filters)[self._page(request):self._limit(request)] class ContainerHandler(Handler): model = Container class ContainerBoxHandler(Handler): model = ContainerBox fields = ( 'name', 'slug', 'title', 'title_url', 'channel', ('containers', ()) ) exclude = ['queryset'] ``` #### File: contrib/logging/api.py ```python from django.contrib.auth import get_user_model from django.contrib.sites.models import Site from opps.api import BaseHandler from .models import Logging class LoggingHandler(BaseHandler): allowed_methods = ('POST', 'GET') model = Logging def create(self, request): method = getattr(request, request.method) User = get_user_model() username = method.get('api_username') try: user = User.objects.get(username=username) except User.DoesNotExist: return {} try: site = Site.objects.get(domain=method.get('site')) except Site.DoesNotExist: site = Site.objects.order_by('id')[0] log = Logging.objects.create( user=user, site=site, application=method.get('application'), action=method.get('action'), text=method.get('text'), ) return log ``` #### File: contrib/multisite/middleware.py ```python from django.contrib.sites.models import Site from django.conf import settings class DynamicSiteMiddleware(object): def hosting_parse(self, hosting): """ Returns ``(host, port)`` for ``hosting`` of the form ``'host:port'``. If hosting does not have a port number, ``port`` will be None. """ if ':' in hosting: return hosting.rsplit(':', 1) return hosting, None def get_hosting(self, hosting): domain, port = self.hosting_parse(hosting) if domain in settings.OPPS_DEFAULT_URLS: domain = 'example.com' try: return Site.objects.get(domain=domain) except Site.DoesNotExist: return Site.objects.order_by('id')[0] def process_request(self, request): hosting = request.get_host().lower() site = self.get_hosting(hosting) request.site = site settings.SITE_ID = site.id settings.CACHE_MIDDLEWARE_KEY_PREFIX = "opps_site-{0}".format(site.id) ``` #### File: contrib/notifications/models.py ```python import json from django.db import models from django.utils.translation import ugettext_lazy as _ from opps.core.models import Publishable from opps.db import Db NOTIFICATION_TYPE = ( (u'json', _(u'JSON')), (u'text', _(u'Text')), (u'html', _(u'HTML')), ) class Notification(Publishable): container = models.ForeignKey('containers.Container') channel_long_slug = models.CharField( _(u"Channel long slug"), max_length=250, null=True, blank=True, db_index=True, ) slug = models.SlugField( _(u"Slug"), max_length=150, null=True, blank=True, db_index=True, ) action = models.CharField(_('Action'), max_length=75, default="message") type = models.CharField(_('Type'), max_length=10, choices=NOTIFICATION_TYPE, default='json') message = models.TextField(_('Message')) def save(self, *args, **kwargs): self.channel_long_slug = self.container.channel_long_slug self.slug = self.container.slug super(Notification, self).save(*args, **kwargs) _db = Db(self.container.get_absolute_url(), self.container.id) message = self.message if self.type == "json": message = json.dumps(self.message) _db.publish(json.dumps({ "action": self.action, "id": self.id, "published": self.published, "date": self.date_available.strftime("%D %T"), "message": message})) _db.close() ``` #### File: contrib/notifications/views.py ```python import json import time from django.conf import settings from django.http import StreamingHttpResponse from django.utils.decorators import method_decorator from django.views.decorators.csrf import csrf_exempt from opps.views.generic.list import ListView from opps.views.generic.json_views import JSONPResponse from opps.db import Db from .models import Notification class AsyncServer(ListView): model = Notification def _db(self, obj): _db = Db( obj.container.get_absolute_url(), obj.container.id) pubsub = _db.object().pubsub() pubsub.subscribe(_db.key) return pubsub def _queue(self): try: obj = self.get_queryset()[0] except: obj = False if not obj: while True: msg = u"compatibility: true\n" msg += u"retry: 10000\n" msg += u"data: {0}\n\n".format( json.dumps({"action": "error"})) yield msg time.sleep(10) else: while True: pubsub = self._db(obj) for m in pubsub.listen(): if m['type'] == 'message': msg = u"compatibility: true\n" msg += u"retry: 10000\n" msg += u"data: {0}\n\n".format(m['data']) yield msg ping = u"compatibility: true\n" ping += u"retry: 10000\n" ping += u"data: {0}\n\n".format( json.dumps({"action": "ping"})) yield ping time.sleep(0.5) @method_decorator(csrf_exempt) def dispatch(self, request, *args, **kwargs): response = StreamingHttpResponse(self._queue(), mimetype='text/event-stream') response['Cache-Control'] = 'no-cache' response['Software'] = 'opps-liveblogging' response['Access-Control-Allow-Origin'] = '*' response.flush() return response class LongPullingServer(ListView, JSONPResponse): model = Notification def get_template_names(self): templates = [] domain_folder = self.get_template_folder() if not self.long_slug: templates.append('{0}/none.json'.format(domain_folder)) return templates list_name = 'list' if self.template_name_suffix: list_name = "{0}{1}".format(list_name, self.template_name_suffix) if self.channel: # Check layout, change via admin if self.channel.layout != u'default': list_name = self.channel.layout if self.channel.group and self.channel.parent: templates.append('{0}/{1}/{2}.json'.format( domain_folder, self.channel.parent.long_slug, list_name)) if self.request.GET.get('page') and\ self.__class__.__name__ not in\ settings.OPPS_PAGINATE_NOT_APP: templates.append('{0}/{1}/{2}_paginated.json'.format( domain_folder, self.channel.parent.long_slug, list_name)) if self.request.GET.get('page') and\ self.__class__.__name__ not in settings.OPPS_PAGINATE_NOT_APP: templates.append('{0}/{1}/{2}_paginated.json'.format( domain_folder, self.channel.long_slug, list_name)) templates.append('{0}/{1}/{2}.json'.format( domain_folder, self.channel.long_slug, list_name)) for t in self.channel.get_ancestors()[::-1]: templates.append('{0}/{1}/{2}.json'.format( domain_folder, t.long_slug, list_name)) if self.request.GET.get('page') and\ self.__class__.__name__ not in\ settings.OPPS_PAGINATE_NOT_APP: templates.append('{0}/{1}/{2}_paginated.json'.format( domain_folder, t.long_slug, list_name)) if self.request.GET.get('page') and\ self.__class__.__name__ not in settings.OPPS_PAGINATE_NOT_APP: templates.append('{0}/{1}_paginated.json'.format(domain_folder, list_name)) templates.append('{0}/{1}.json'.format(domain_folder, list_name)) return templates def get_queryset(self): query = super(LongPullingServer, self).get_queryset() old_id = self.request.GET.get('old_id', 0) return query.filter(id__gte=old_id)._clone() ``` #### File: management/commands/update_channel_denormalization.py ```python from django.core.management.base import BaseCommand, CommandError from opps.channels.models import Channel from opps.containers.models import ContainerBox from opps.articles.models import Post class Command(BaseCommand): def handle(self, *args, **options): models = [Channel, Post, ContainerBox] for m in models: [p.save() for p in m.objects.all()] ``` #### File: core/tags/views.py ```python from django.utils import timezone from django.contrib.sites.models import get_current_site from django.conf import settings from haystack.query import SearchQuerySet from opps.views.generic.list import ListView from opps.containers.models import Container from opps.channels.models import Channel from .models import Tag USE_HAYSTACK = getattr(settings, 'OPPS_TAGS_USE_HAYSTACK', False) class TagList(ListView): model = Container def get_template_list(self, domain_folder="containers"): templates = [] list_name = 'list_tags' if self.request.GET.get('page') and\ self.__class__.__name__ not in settings.OPPS_PAGINATE_NOT_APP: templates.append('{0}/{1}_paginated.html'.format(domain_folder, list_name)) templates.append('{0}/{1}.html'.format(domain_folder, list_name)) return templates def get_context_data(self, **kwargs): context = super(TagList, self).get_context_data(**kwargs) context['tag'] = self.kwargs['tag'] site = get_current_site(self.request) context['channel'] = Channel.objects.get_homepage(site) return context def get_queryset(self): self.site = get_current_site(self.request) # without the long_slug, the queryset will cause an error self.long_slug = 'tags' self.tag = self.kwargs['tag'] if USE_HAYSTACK: return self.get_queryset_from_haystack() return self.get_queryset_from_db() def get_queryset_from_haystack(self): models = Container.get_children_models() sqs = SearchQuerySet().models(*models).filter( tags=self.tag).order_by('-date_available') sqs.model = Container return sqs def get_queryset_from_db(self): tags = Tag.objects.filter(slug=self.tag).values_list('name') or [] tags_names = [] if tags: tags_names = [i[0] for i in tags] ids = [] for tag in tags_names: result = self.containers = self.model.objects.filter( site_domain=self.site, tags__contains=tag, date_available__lte=timezone.now(), published=True ) if result.exists(): ids.extend([i.id for i in result]) # remove the repeated ids = list(set(ids)) # grab the containers self.containers = self.model.objects.filter(id__in=ids) return self.containers ``` #### File: opps/fields/utils.py ```python def field_template_read(obj): """Use replace because the django template can't read variable with "-" """ fields = {} for o in obj: fields[o.replace("-", "_")] = obj[o] return fields ``` #### File: tests/contrib/test_mobile.py ```python from django.test import TestCase from django.test.client import RequestFactory from opps.contrib.mobile import template from opps.contrib.mobile.middleware import ( MobileDetectionMiddleware, MobileRedirectMiddleware ) class TestMobileTemplatesDir(TestCase): def setUp(self): self.detection_middleware = MobileDetectionMiddleware() self.factory = RequestFactory() self.template_loader = template.Loader() def test_useragent_based_templatedirs(self): # Override the TEMPLATE_LOADERS and MIDDLEWARE_CLASSES settings # to use the middlewares in ``opps.contrib.mobile.middleware`` # and the ``opps.contrib.mobile.template.Loader`` MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'opps.contrib.mobile.middleware.MobileDetectionMiddleware', 'opps.contrib.mobile.middleware.MobileRedirectMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.contrib.redirects.middleware.RedirectFallbackMiddleware', ) TEMPLATE_LOADERS = ( 'opps.contrib.mobile.template.Loader', 'django.template.loaders.app_directories.Loader', ) TEMPLATE_DIRS_MOBILE = ('mobile-templates',) TEMPLATE_DIRS_WEB = ('web-templates',) custom_settings = self.settings( MIDDLEWARE_CLASSES=MIDDLEWARE_CLASSES, TEMPLATE_LOADERS=TEMPLATE_LOADERS, TEMPLATE_DIRS_MOBILE=TEMPLATE_DIRS_MOBILE, TEMPLATE_DIRS_WEB=TEMPLATE_DIRS_WEB, OPPS_CHECK_MOBILE=True, OPPS_DOMAIN_MOBILE='m.testserver' ) with custom_settings: mobile_request = self.factory.get('/', HTTP_USER_AGENT='mobi') desktop_request = self.factory.get('/', HTTP_USER_AGENT='Mozilla/5.0') get_template_sources = self.template_loader.get_template_sources self.detection_middleware.process_request(desktop_request) self.assertEqual( get_template_sources('index.html').next(), get_template_sources('index.html', TEMPLATE_DIRS_WEB).next() ) self.detection_middleware.process_request(mobile_request) self.assertEqual( get_template_sources('index.html').next(), get_template_sources('index.html', TEMPLATE_DIRS_MOBILE).next() ) ``` #### File: tests/images/generate.py ```python from unittest import TestCase from django.template import Template, Context from django.conf import settings class TestImagesTagsImageUrl(TestCase): url = 'oppsproject.org/path/image.jpg' generate_url_path = 'opps.images.templatetags.images_tags.image_url' def render(self, arguments): source = u'{% load images_tags %}{% image_url ' + arguments + ' %}' template = Template(source) rendered = template.render(Context({'url': self.url})) return rendered.strip() def test_templatetag_return(self): self.assertTrue(self.render(u'url unsafe=True')) def test_should_pass_the_image_url_arg_to_the_helper(self): if settings.THUMBOR_ENABLED: image_url = (u'http://localhost:8888/unsafe/localhost:8000/media/' u'oppsproject.org/path/image.jpg') else: image_url = self.url self.assertEqual(self.render(u'url unsafe=True'), image_url) def test_should_pass_kwargs_to_the_helper(self): if settings.THUMBOR_ENABLED: image_url = (u'http://localhost:8888/unsafe/300x200/' u'localhost:8000/media/oppsproject.org/path/' u'image.jpg') else: image_url = self.url self.assertEqual(self.render(u'url width=300 height=200 unsafe=True'), image_url) ``` #### File: tests/_site/runner.py ```python from django_coverage.coverage_runner import CoverageRunner class Runner(CoverageRunner): def build_suite(self, *args, **kwargs): suite = super(Runner, self).build_suite(*args, **kwargs) tests = [] for case in suite: pkg = case.__class__.__module__.split('.')[0] if pkg in ['opps']: tests.append(case) suite._tests = tests return suite ``` #### File: tests/views/test_generic_detail.py ```python from django.test import TestCase, Client from django.contrib.auth.models import User from django.utils import timezone from opps.articles.models import Post, Link from opps.channels.models import Channel class TemplateNameTest(TestCase): def setUp(self): self.client = Client() self.user = User.objects.create( username='<EMAIL>', email='<EMAIL>', password=User.objects.make_random_password(), ) self.channel = Channel.objects.create( name='test channel', slug='test-channel', user=self.user, published=True, date_available=timezone.now(), ) self.post = Post.objects.create( headline=u'a simple headline', short_title=u'a simple short title', title=u'a simple title', hat=u'a simple hat', channel=self.channel, user=self.user, published=True, date_available=timezone.now(), ) def test_get_template_name_basic(self): response = self.client.get(self.post.get_absolute_url()) self.assertTrue(response) self.assertEqual(response.status_code, 200) self.assertEqual( response.template_name, ['containers/test-channel/a-simple-title/detail.html', 'containers/test-channel/post_detail.html', 'containers/post_detail.html', 'containers/test-channel/detail.html', 'containers/detail.html']) def test_get_template_name_channel_with_father(self): channel = Channel.objects.create( name='child', slug='child', parent=self.channel, user=self.user, published=True, date_available=timezone.now(), ) self.post.channel = channel self.post.save() response = self.client.get(self.post.get_absolute_url()) self.assertTrue(response) self.assertEqual(response.status_code, 200) self.assertEqual( response.template_name, ['containers/test-channel/child/a-simple-title/detail.html', 'containers/test-channel/child/post_detail.html', 'containers/test-channel/post_detail.html', 'containers/post_detail.html', 'containers/test-channel/child/detail.html', 'containers/test-channel/detail.html', 'containers/detail.html']) class LinkResponseToRedirecTest(TestCase): def setUp(self): self.client = Client() self.user = User.objects.create( username='<EMAIL>', email='<EMAIL>', password=User.objects.make_random_password(), ) self.channel = Channel.objects.create( name='test channel', slug='test-channel', user=self.user, published=True, date_available=timezone.now(), ) self.link = Link.objects.create( title=u'a simple title', url=u'http://www.oppsproject.org/', channel=self.channel, user=self.user, published=True, date_available=timezone.now(), ) def test_redirect(self): response = self.client.get(self.link.get_absolute_url()) self.assertTrue(response) self.assertEqual(response.status_code, 302) try: self.assertEqual(response.items()[2][1], u'http://www.oppsproject.org/') except: self.assertEqual(response.items()[3][1], u'http://www.oppsproject.org/') class TestAjaxRequests(TestCase): def setUp(self): self.client = Client() self.user = User.objects.create( username='<EMAIL>', email='<EMAIL>', password=User.objects.make_random_password(), ) self.channel = Channel.objects.create( name='test channel 2', slug='test-channel-2', user=self.user, published=True, date_available=timezone.now(), ) self.post = Post.objects.create( headline=u'a simple headline 2', short_title=u'a simple short title 2', title=u'a simple title 2', hat=u'a simple hat 2', channel=self.channel, user=self.user, published=True, date_available=timezone.now(), ) def test_if_ajax_extends_variable_in_context_is_empty_without_ajax(self): response = self.client.get(self.post.get_absolute_url()) self.assertTrue(response) self.assertEqual(response.status_code, 200) def test_get_ajax_extends_variable_in_context(self): response = self.client.get(self.post.get_absolute_url(), HTTP_X_REQUESTED_WITH='XMLHttpRequest') self.assertTrue(response) self.assertEqual(response.status_code, 200) self.assertEqual(response.context['extends_parent'], 'base_ajax.html') ```
{ "source": "JeanMax/babao", "score": 2 }
#### File: src/babao/commands.py ```python import time import babao.config as conf import babao.inputs.ledger.ledgerManager as lm import babao.inputs.inputManager as im import babao.inputs.inputBase as ib import babao.models.modelManager as mm import babao.utils.date as du import babao.utils.file as fu import babao.utils.log as log import babao.utils.signal as sig def wetRun(unused_args): """Dummy""" print("Sorry, this is not implemented yet :/") def dryRun(unused_args): """Real-time bot simulation""" while not sig.EXIT: if im.fetchInputs(): mm.predictModelsMaybeTrade( since=du.TIME_TRAVELER.nowMinus(days=ib.REAL_TIME_LOOKBACK_DAYS) ) def fetch(unused_args): """Fetch raw trade data since the beginning of times""" while not sig.EXIT and not im.fetchInputs(): last_fetch = min( (i.current_row.name for i in ib.INPUTS if i.current_row is not None) ) log.info("Fetched data till", du.toStr(last_fetch)) if not sig.EXIT: log.debug("Fetching done, optimizing database...") fu.maintenance() log.info("Database up to date!") def backtest(args): """ Just a naive backtester It will call the trained strategies on each test data point """ now = du.TIME_TRAVELER.getTime(force=True) t = du.TIME_TRAVELER.getTime() log.info( "Test data: from", du.toStr(t), "to", du.toStr(now) ) while t < now and not lm.gameOver() and not sig.EXIT: t += du.secToNano(conf.TIME_INTERVAL * 60) # TODO im.timeTravel(t) mm.predictModelsMaybeTrade( since=du.TIME_TRAVELER.nowMinus(days=ib.REAL_TIME_LOOKBACK_DAYS) ) score = lm.getGlobalBalanceInQuote() # hodl = price / big_fat_data_prices[0] * 100 log.info( "Backtesting done! Score: " + str(round(float(score))) # + "% vs HODL: " + str(round(hodl)) + "%" ) if args.graph: # TODO: exit if graph is closed while not sig.EXIT: time.sleep(0.1) def train(args): """Train the various (awesome) algorithms""" im.timeTravel(ib.SPLIT_DATE) log.debug( "Train data: from", du.toStr(du.EPOCH), "to", du.toStr(ib.SPLIT_DATE) ) mm.trainModels(since=du.EPOCH) if args.graph: log.debug("Plot models on train data") mm.plotModels(since=du.EPOCH) log.debug("Plot models on test data") im.timeTravel( du.TIME_TRAVELER.getTime(force=True) ) # back to the future log.debug( "Test data: from", du.toStr(du.toStr(ib.SPLIT_DATE)), "to", du.toStr(du.TIME_TRAVELER.getTime()) ) mm.plotModels(since=ib.SPLIT_DATE) log.debug("Job done!") if args.graph: import matplotlib.pyplot as plt plt.show() ``` #### File: src/babao/graph.py ```python import os import sys import re from functools import partial # import traceback import matplotlib.animation as animation import matplotlib.pyplot as plt from matplotlib.widgets import MultiCursor, Button import babao.config as conf import babao.inputs.inputBase as ib import babao.inputs.inputManager as im import babao.inputs.ledger.ledgerManager as lm import babao.utils.date as du import babao.utils.file as fu import babao.utils.indicators as indic import babao.utils.log as log import babao.utils.signal as sig INDEX = None DATA = None INDICATORS_COLUMNS = [ "sma_vwap_9", "sma_vwap_26", "sma_vwap_77", "sma_volume_26", "sma_volume_77", ] MAX_LOOK_BACK = 77 class Index(): """Class keeping track of the current crypto to display""" def __init__(self, axes, lines): self.axes = axes self.lines = lines self.ind = 0 self._update() def next(self, unused_event): """Show the next crypto""" self.ind = (self.ind + 1) % len(conf.CRYPTOS) self._update() def prev(self, unused_event): """Show the previous crypto""" self.ind = (self.ind - 1) % len(conf.CRYPTOS) self._update() def _update(self): """Update graph data and zoom after a next/prev click""" _updateGraph(42, self.lines) self.axes["vwap"].set_title(conf.CRYPTOS[self.ind].name) y_min = DATA["vwap"].min() y_max = DATA["vwap"].max() space = (y_max - y_min) * 0.05 # 5% space up and down self.axes["vwap"].set_ylim( bottom=y_min - space, top=y_max + space ) y_max = DATA["volume"].max() space = y_max * 0.05 self.axes["volume"].set_ylim(bottom=0, top=y_max - space) y_max = max(DATA["signal_line"].max(), DATA["signal_line"].min() * -1) self.axes["macd"].set_ylim(bottom=-y_max, top=y_max) self.axes["total-balance"].set_ylim(bottom=0, top=200) plt.draw() def _getData(): """ Initialize ´DATA´ global Basically read ´conf.MAX_GRAPH_POINTS´ from data files """ global DATA if not os.path.isfile(conf.DB_FILE): log.warning("Data files not found... Is it your first time around?") return False if INDEX is None: crypto = conf.CRYPTOS[0] else: crypto = conf.CRYPTOS[INDEX.ind] inputs = [ lm.TRADES[crypto], lm.LEDGERS[conf.QUOTE], lm.LEDGERS[crypto] ] if conf.CURRENT_COMMAND == "backtest": for i in inputs: i._cache_data = None # pylint: disable=W0212 since = ib.SPLIT_DATE else: im.refreshInputs(inputs) since = lm.TRADES[crypto].current_row.name - du.secToNano( (MAX_LOOK_BACK + conf.MAX_GRAPH_POINTS) * conf.TIME_INTERVAL * 60 ) DATA = im.readInputs(inputs, since) DATA.rename( partial(re.sub, r'.*Trades.*-', ""), axis="columns", inplace=True ) DATA.rename( partial(re.sub, r'.*Ledger' + conf.QUOTE.name + '.*-', "quote-"), axis="columns", inplace=True ) DATA.rename( partial(re.sub, r'.*Ledger.*-', "crypto-"), axis="columns", inplace=True ) DATA = DATA.loc[ :, ['close', 'vwap', 'volume', 'quote-balance', 'crypto-balance'] ] DATA = indic.get(DATA, INDICATORS_COLUMNS) DATA["macd_line"], DATA["signal_line"], DATA["macd"] = indic.macd( DATA["vwap"], 46, 75, 22, True ) if conf.CURRENT_COMMAND == "backtest": DATA = DATA.fillna(0) else: DATA = DATA.dropna() DATA["total-balance"] = DATA["quote-balance"] \ + DATA["crypto-balance"] * DATA["close"] du.toDatetime(DATA) return True def _updateGraph(unused_counter, lines): """Function called (back) by FuncAnimation, will update graph""" if sig.EXIT: sys.exit(0) if not _getData(): return lines.values() for key in lines: lines[key].set_data(DATA.index, DATA[key]) return lines.values() def _createAxes(): """Create the different axes we'll need to draw in""" axes = {} axes["vwap"] = plt.subplot2grid( (8, 1), (0, 0), rowspan=5 ) axes["volume"] = plt.subplot2grid( (8, 1), (5, 0), sharex=axes["vwap"] ) axes["macd"] = plt.subplot2grid( (8, 1), (6, 0), sharex=axes["vwap"] ) axes["total-balance"] = plt.subplot2grid( (8, 1), (7, 0), sharex=axes["vwap"] ) return axes def _createLines(axes): """Draw desired lines with matplotlib""" lines = {} for key in axes: # TODO: this is *really* ugly lines[key], = axes[key].plot( DATA.index, DATA[key], # "-+", label=key, color="b", alpha=0.5 ) plt.setp(axes[key].get_xticklabels(), visible=False) if key == "total-balance": col = "quote-balance" lines[col], = axes[key].plot( DATA.index, DATA[col], label=col.replace("_", " "), color="r", alpha=0.5 ) elif key == "macd": for i, col in enumerate(["macd_line", "signal_line"]): lines[col], = axes[key].plot( DATA.index, DATA[col], label=col.replace("_", " "), color="r", alpha=0.7 - 0.2 * (i % 3) ) else: # add indicators to vol/vwap for i, col in enumerate(INDICATORS_COLUMNS): if key in col: lines[col], = axes[key].plot( DATA.index, DATA[col], label=col.replace("_" + key, "").replace("_", " "), color="r", alpha=0.7 - 0.2 * (i % 3) ) if key == "vwap": col = "close" lines[col], = axes[key].plot( DATA.index, DATA[col], label=col, color="g", alpha=0.5 ) return lines def _initGraph(): """Wrapped to display errors (this is running in a separate process)""" fig = plt.figure() axes = _createAxes() lines = _createLines(axes) # the assignation is needed to avoid garbage collection... unused_cursor = MultiCursor( # NOQA: F841 fig.canvas, list(axes.values()), useblit=True, color="black", lw=0.5, horizOn=True ) # TODO: redraw me! plt.setp(axes["total-balance"].get_xticklabels(), visible=True) for label in axes["total-balance"].xaxis.get_ticklabels(): label.set_rotation(45) adf = axes["total-balance"].xaxis.get_major_formatter() adf.scaled[1. / 86400] = "%d/%m/%y %H:%M" adf.scaled[1. / 1440] = "%d/%m/%y %H:%M" adf.scaled[1. / 24] = "%d/%m/%y %H:%M" adf.scaled[1.] = "%d/%m/%y" adf.scaled[30.] = "%d/%m/%y" adf.scaled[365.] = "%d/%m/%y" axes["vwap"].set_ylabel("PRICE") axes["volume"].set_ylabel("VOL") axes["macd"].set_ylabel("MACD") axes["total-balance"].set_ylabel("BAL") for key in axes: axes[key].grid(True) axes[key].legend( loc="upper left", prop={'size': 8}, fancybox=True, framealpha=0.3 ) axes[key].yaxis.set_label_position("right") axes[key].yaxis.tick_right() # # not so good when zooming in :/ # last_x = DATA.index[-1] # last_y = DATA[key].iloc[-1] # axes[key].annotate( # str(int(last_y)), # (last_x, last_y), # xytext=( # last_x + (last_x - DATA.index[-21]), # last_y # ), # bbox={"boxstyle": "larrow"} # ) # TODO: save this, then give it to the update fun plt.subplots_adjust(top=0.97, left=0.03, right=0.92, hspace=0.05) global INDEX INDEX = Index(axes, lines) axprev = plt.axes([0.13, 0.974, 0.1, 0.025]) axnext = plt.axes([0.75, 0.974, 0.1, 0.025]) bnext = Button(axnext, 'next', color='0.5', hovercolor='0.9') bprev = Button(axprev, 'prev', color='0.5', hovercolor='0.9') bnext.on_clicked(INDEX.next) bprev.on_clicked(INDEX.prev) # the assignations are needed to avoid garbage collection... unused_animation = animation.FuncAnimation( # NOQA: F841 fig, _updateGraph, fargs=(lines,), # blit=True, # bug? interval=5000 ) plt.show() # this is blocking! def initGraph(log_lock, file_lock): """Launch an awesome matplotlib graph!""" log.setLock(log_lock) fu.setLock(file_lock) du.TIME_TRAVELER.setTime(None) sig.catchSignal() try: _getData() _initGraph() except Exception as e: log.warning("Something's bjorked in your graph :/") log.info("Try to run babao again with the env variable DEBUG_GRAPH set") # traceback.print_exc() raise e sys.exit(0) # we exit explicitly in the subprocess, to avoid double clean ``` #### File: inputs/trades/tradesInputBase.py ```python from abc import abstractmethod import numpy as np import babao.inputs.inputBase as ib class ABCTradesInput(ib.ABCInput): """Base class for any trades input""" raw_columns = [ "price", "volume" ] resampled_columns = [ "open", "high", "low", "close", "vwap", "volume", "count" ] @property @abstractmethod def quote(self): """ Overide this method with the desired QuoteEnum ex: self.quote = QuoteEnum.EUR """ pass @property @abstractmethod def crypto(self): """ Overide this method with the desired CryptoEnum ex: self.crypto = CryptoEnum.XBT """ pass def _resample(self, raw_data): p = ib.resampleSerie(raw_data["price"]) resampled_data = p.ohlc() # tmp var for ordering v = ib.resampleSerie(raw_data["volume"]).sum() resampled_data["vwap"] = ib.resampleSerie( raw_data["price"] * raw_data["volume"] ).sum() / v resampled_data["volume"] = v resampled_data["count"] = p.count() return resampled_data def fillMissing(self, resampled_data): resampled_data["count"].fillna(0, inplace=True) resampled_data["volume"].fillna(0, inplace=True) resampled_data["vwap"].replace(np.inf, np.nan, inplace=True) i = resampled_data.index[0] for col in ["vwap", "close"]: if np.isnan(resampled_data.loc[i, col]): if self.current_row is not None: resampled_data.loc[i, col] = self.current_row.price else: resampled_data.loc[i, col] = 0 resampled_data[col].ffill(inplace=True) c = resampled_data["close"] resampled_data["open"].fillna(c, inplace=True) resampled_data["high"].fillna(c, inplace=True) resampled_data["low"].fillna(c, inplace=True) return resampled_data @abstractmethod def fetch(self): pass ``` #### File: babao/utils/scale.py ```python class Scaler: """Basic min/max scaler""" def __init__(self): self.scale_min = 0 self.scale_max = 100000 def fit(self, arr): """Init scaler""" self.scale_min = arr.min() self.scale_max = arr.max() if len(arr.shape) > 1: self.scale_min = min(self.scale_min) self.scale_max = max(self.scale_max) def scale(self, arr): """Scale features before train/predict""" return ( (arr - self.scale_min) / (self.scale_max - self.scale_min) ) def unscale(self, arr): """Unscale features after train/predict""" return ( arr * (self.scale_max - self.scale_min) + self.scale_min ) def scaleFit(self, arr): """Scale n Fit""" self.fit(arr) return self.scale(arr) ``` #### File: tests/api/test_kraken.py ```python # import babao.api.kraken as kraken # import babao.babao as babao # # TODO: how should we test private api requests? # def test_getRawTrades(): # babao._init("d") # TODO: hardcode api config? # raw_data = kraken.getRawTrades("")[0] # assert raw_data.index[0] > 1500000000 # assert len(raw_data.index) == 1000 # assert not raw_data["price"].empty # assert not raw_data["volume"].empty # babao._kthxbye() ```
{ "source": "JeanMaximilienCadic/deepspeech2paddle-docker", "score": 2 }
#### File: JeanMaximilienCadic/deepspeech2paddle-docker/infer.py ```python import sys import argparse import functools import paddle.fluid as fluid from data_utils.data import DataGenerator from model_utils.model import DeepSpeech2Model from model_utils.model_check import check_cuda, check_version from utils.error_rate import wer, cer from utils.utility import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('num_samples', int, 10, "# of samples to infer.") add_arg('beam_size', int, 500, "Beam search width.") add_arg('num_proc_bsearch', int, 8, "# of CPUs for beam search.") add_arg('num_conv_layers', int, 2, "# of convolution layers.") add_arg('num_rnn_layers', int, 3, "# of recurrent layers.") add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.") add_arg('alpha', float, 2.5, "Coef of LM for beam search.") add_arg('beta', float, 0.3, "Coef of WC for beam search.") add_arg('cutoff_prob', float, 1.0, "Cutoff probability for pruning.") add_arg('cutoff_top_n', int, 40, "Cutoff number for pruning.") add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.") add_arg('use_gpu', bool, True, "Use GPU or not.") add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across " "bi-directional RNNs. Not for GRU.") add_arg('infer_manifest', str, 'data/librispeech/manifest.dev-clean', "Filepath of manifest to infer.") add_arg('mean_std_path', str, 'data/librispeech/mean_std.npz', "Filepath of normalizer's mean & std.") add_arg('vocab_path', str, 'data/librispeech/vocab.txt', "Filepath of vocabulary.") add_arg('lang_model_path', str, 'models/lm/common_crawl_00.prune01111.trie.klm', "Filepath for language model.") add_arg('model_path', str, './checkpoints/libri/step_final', "If None, the training starts from scratch, " "otherwise, it resumes from the pre-trained model.") add_arg('decoding_method', str, 'ctc_beam_search', "Decoding method. Options: ctc_beam_search, ctc_greedy", choices = ['ctc_beam_search', 'ctc_greedy']) add_arg('error_rate_type', str, 'wer', "Error rate type for evaluation.", choices=['wer', 'cer']) add_arg('specgram_type', str, 'linear', "Audio feature type. Options: linear, mfcc.", choices=['linear', 'mfcc']) # yapf: disable args = parser.parse_args() def infer(): """Inference for DeepSpeech2.""" # check if set use_gpu=True in paddlepaddle cpu version check_cuda(args.use_gpu) # check if paddlepaddle version is satisfied check_version() if args.use_gpu: place = fluid.CUDAPlace(0) else: place = fluid.CPUPlace() data_generator = DataGenerator( vocab_filepath=args.vocab_path, mean_std_filepath=args.mean_std_path, augmentation_config='{}', specgram_type=args.specgram_type, keep_transcription_text=True, place = place, is_training = False) batch_reader = data_generator.batch_reader_creator( manifest_path=args.infer_manifest, batch_size=args.num_samples, sortagrad=False, shuffle_method=None) infer_data = next(batch_reader()) ds2_model = DeepSpeech2Model( vocab_size=data_generator.vocab_size, num_conv_layers=args.num_conv_layers, num_rnn_layers=args.num_rnn_layers, rnn_layer_size=args.rnn_layer_size, use_gru=args.use_gru, share_rnn_weights=args.share_rnn_weights, place=place, init_from_pretrained_model=args.model_path) # decoders only accept string encoded in utf-8 vocab_list = [chars for chars in data_generator.vocab_list] if args.decoding_method == "ctc_greedy": ds2_model.logger.info("start inference ...") probs_split = ds2_model.infer_batch_probs( infer_data=infer_data, feeding_dict=data_generator.feeding) result_transcripts = ds2_model.decode_batch_greedy( probs_split=probs_split, vocab_list=vocab_list) else: ds2_model.init_ext_scorer(args.alpha, args.beta, args.lang_model_path, vocab_list) ds2_model.logger.info("start inference ...") probs_split= ds2_model.infer_batch_probs( infer_data=infer_data, feeding_dict=data_generator.feeding) result_transcripts= ds2_model.decode_batch_beam_search( probs_split=probs_split, beam_alpha=args.alpha, beam_beta=args.beta, beam_size=args.beam_size, cutoff_prob=args.cutoff_prob, cutoff_top_n=args.cutoff_top_n, vocab_list=vocab_list, num_processes=args.num_proc_bsearch) error_rate_func = cer if args.error_rate_type == 'cer' else wer target_transcripts = infer_data[1] for target, result in zip(target_transcripts, result_transcripts): print("\nTarget Transcription: %s\nOutput Transcription: %s" % (target, result)) print("Current error rate [%s] = %f" % (args.error_rate_type, error_rate_func(target, result))) ds2_model.logger.info("finish inference") def main(): print_arguments(args) infer() if __name__ == '__main__': main() ```
{ "source": "JeanMaximilienCadic/FlowerApp-PytorchMobile", "score": 3 }
#### File: JeanMaximilienCadic/FlowerApp-PytorchMobile/train.py ```python import torch import numpy as np from torch import nn, optim import torch.nn.functional as F from torchvision import datasets, models, transforms from torch.utils.data import DataLoader from collections import OrderedDict from PIL import Image from torch import Tensor import torchvision import shutil import argparse import os from torchsummary import summary def validation(model, testloader, criterion, device): test_loss = 0 accuracy = 0 model.to(device) for images, labels in testloader: images, labels = images.to(device), labels.to(device) # images.resize_(images.shape[0], 3, 224, 224) output = model.forward(images) test_loss += criterion(output, labels).item() ps = torch.exp(output) equality = (labels.data == ps.max(dim=1)[1]) accuracy += equality.type(torch.FloatTensor).mean() return test_loss, accuracy def evaluate_model(model, validloader,e ,epochs, running_loss, print_every): # Make sure network is in eval mode for inference model.eval() # Turn off gradients for validation, saves memory and computations with torch.no_grad(): validation_loss, accuracy = validation(model, validloader, criterion, device) print("Epoch: {}/{}.. ".format(e + 1, epochs), "Training Loss: {:.3f}.. ".format(running_loss / print_every), "Validation Loss: {:.3f}.. ".format(validation_loss / len(validloader)), "Validation Accuracy: {:.3f}".format((accuracy / len(validloader)) * 100)) model.train() return 0, accuracy def train(model, trainloader, validloader, epochs, print_every, criterion, optimizer, arch, model_dir="models"): epochs = epochs print_every = print_every steps = 0 # Change to train mode if not already model.train() best_accuracy = 0 for e in range(epochs): running_loss = 0 accuracy = None for (images, labels) in trainloader: steps += 1 images, labels = images.to(device), labels.to(device) optimizer.zero_grad() # Forward and backward passes outputs = model.forward(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if steps % print_every == 0: running_loss, accuracy = evaluate_model(model, validloader, e, epochs, running_loss, print_every) if accuracy is None: running_loss, accuracy = evaluate_model(model, validloader, e, epochs, running_loss, print_every) is_best = accuracy > best_accuracy best_accuracy = max(accuracy, best_accuracy) save_checkpoint({ 'epoch': epochs, 'classifier': model.classifier, 'state_dict': model.state_dict(), 'optimizer' : optimizer.state_dict(), 'class_idx_mapping': model.class_idx_mapping, 'best_accuracy': (best_accuracy/len(validloader))*100 }, arch=arch, is_best=is_best, model_dir=model_dir, filename=f'{arch}.ckpt.pth') def save_checkpoint(state, arch, is_best=False, model_dir="models", filename='checkpoint.pth'): torch.save(state, os.path.join(model_dir, filename)) if is_best: shutil.copyfile(os.path.join(model_dir, filename), os.path.join(model_dir,f'{arch}.pth')) def check_accuracy_on_test(testloader, model): correct = 0 total = 0 model.to('cuda') with torch.no_grad(): for data in testloader: images, labels = data images, labels = images.to('cuda'), labels.to('cuda') outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() return 100 * correct / total def load_data_folder(data_folder="data", batch_size=64): """ Loads the dataset into a dataloader. Arguments: data_folder: Path to the folder where data resides. Should have two sub folders named "train" and "valid". Returns: train_dataloader: Train dataloader iterator. valid_dataloader: Validation dataloader iterator. """ train_dir = os.path.join(data_folder, "train") valid_dir = os.path.join(data_folder, "valid") # Define transforms for the training, validation, and testing sets train_transforms = transforms.Compose([ transforms.RandomRotation(30), transforms.RandomResizedCrop(size=224), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) validation_transforms = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # Load the datasets with ImageFolder train_dataset = datasets.ImageFolder(train_dir, transform=train_transforms) validation_dataset = datasets.ImageFolder(valid_dir, transform=validation_transforms) # Using the image datasets and the transforms, define the dataloaders train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=4) valid_dataloader = DataLoader(validation_dataset, shuffle=True, batch_size=batch_size, num_workers=4) return train_dataloader, valid_dataloader, train_dataset.class_to_idx def replace_head(model): for param in model.parameters(): param.requires_grad = False last_child = list(model.children())[-1] if type(last_child) == torch.nn.modules.linear.Linear: input_features = last_child.in_features head = torch.nn.Sequential(OrderedDict([ ('fc1', nn.Linear(input_features, 4096)), ('relu', nn.ReLU()), ('dropout', nn.Dropout(p=0.5)), ('fc2', nn.Linear(4096, len(class_idx_mapping))), ('output', nn.LogSoftmax(dim=1))])) model.fc = head model.classifier = model.fc elif type(last_child) == torch.nn.Sequential: input_features = list(last_child.children())[0].in_features head = torch.nn.Sequential(OrderedDict([ ('fc1', nn.Linear(input_features, 4096)), ('relu', nn.ReLU()), ('dropout', nn.Dropout(p=0.5)), ('fc2', nn.Linear(4096, len(class_idx_mapping))), ('output', nn.LogSoftmax(dim=1))])) model.classifier = head return model def build_model(arch="vgg16", class_idx_mapping=None): my_local = dict() exec("model = models.{}(pretrained=True)".format(arch), globals(), my_local) model = my_local['model'] model = replace_head(model) model.class_idx_mapping = class_idx_mapping return model if __name__ == '__main__': ap = argparse.ArgumentParser() ap.add_argument("data_dir", help="Directory containing the dataset.", default="data", nargs="?") ap.add_argument("--learning_rate", help="Learning rate for Adam optimizer. (default: 0.001)", default=0.001, type=float) ap.add_argument("--epochs", help="Number of iterations over the whole dataset. (default: 3)", default=100, type=int) ap.add_argument("--model_dir", help="Directory which will contain the model checkpoints.", default="models") ap.add_argument("--arch", help="Directory which will contain the model checkpoints.", default="densenet161") ap.add_argument("--batch_size", default=1, type=int) args = vars(ap.parse_args()) os.system("mkdir -p " + args["model_dir"]) (train_dataloader, valid_dataloader, class_idx_mapping) = load_data_folder(data_folder=args["data_dir"], batch_size=args["batch_size"]) device = torch.device("cuda:0") model = build_model(arch=args["arch"], class_idx_mapping=class_idx_mapping) model.to(device) summary(model, input_size=(3, 224, 224)) criterion = nn.NLLLoss() # optimizer = optim.Adam(list(model.children())[-1].parameters(), lr=args["learning_rate"]) optimizer = optim.Adam(model.classifier.parameters(), lr=args["learning_rate"]) train(model=model, trainloader=train_dataloader, validloader=valid_dataloader, epochs=args["epochs"], print_every=20, arch=args["arch"], criterion=criterion, optimizer=optimizer, model_dir=args["model_dir"]) # model = torchvision.models.resnet18(pretrained=True) # model.eval() # example = torch.rand(1, 3, 224, 224) # traced_script_module = torch.jit.trace(model, example) # traced_script_module.save("android/app/src/main/assets/model.pt") ``` #### File: JeanMaximilienCadic/FlowerApp-PytorchMobile/utils.py ```python import matplotlib.pyplot as plt import numpy as np from PIL import Image def imshow_original(image, ax=None, title=None, normalize=True): """Imshow for Tensor.""" if ax is None: fig, ax = plt.subplots() image = image.numpy().transpose((1, 2, 0)) if normalize: mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) image = std * image + mean image = np.clip(image, 0, 1) ax.imshow(image) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.tick_params(axis='both', length=0) ax.set_xticklabels('') ax.set_yticklabels('') return ax def process_image(img_path): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' img = Image.open(img_path) w, h = img.size if w<h: size = 256, 999999999 else: size = 999999999, 256 img.thumbnail(size=size) w, h = img.size left = (w - 224) / 2 right = (w + 224) / 2 top = (h - 224) / 2 bottom = (h + 224) / 2 img = img.crop((left, top, right, bottom)) # Convert to numpy array np_img = np.array(img)/255 # Normalize mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) np_img = (np_img - mean) / std np_img = np_img.transpose(2, 0, 1) return np_img def imshow(image, ax=None, title=None): """Imshow for Tensor.""" if ax is None: fig, ax = plt.subplots() # PyTorch tensors assume the color channel is the first dimension # but matplotlib assumes is the third dimension image = image.transpose((1, 2, 0)) # Undo preprocessing mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) image = std * image + mean # Image needs to be clipped between 0 and 1 or it looks like noise when displayed image = np.clip(image, 0, 1) ax.imshow(image) return ax ```
{ "source": "JeanMaximilienCadic/redison", "score": 3 }
#### File: redison/redison/redis_object.py ```python import redis import pickle import time from gnutools.utils import id_generator class RedisObject: def __init__(self, data=None,id=None, host="127.0.0.1", port="6379", db=0): self._host = host self._port = port self._db = db self._id = id if id is not None else "x" + id_generator(16) self._redis = redis.Redis(host=host, port=port, db=db) self.set(data) if data is not None else None def load_binary(self, binary): """ Nested loading of the json files :param binary: :return: """ if type(binary)==dict: return dict([(k, self.load_binary(v)) for k, v in binary]) elif type(binary)==bytes: return pickle.loads(binary) def get(self, blocking=False): """ Pull the redis object from the database :return: """ redis_object = self._redis.get(self._id) while blocking: try: assert redis_object is not None blocking=False except AssertionError: time.sleep(0.001) redis_object = self._redis.get(self._id) return self.load_binary(redis_object) def set(self, data): """ Push the redis object to the database :param data: :return: """ return self._redis.set(self._id, pickle.dumps(data)) def delete(self): """ Delete the redis object from the database :return: """ return self._redis.delete(self._id) ```
{ "source": "JeanMaximilienCadic/YoutubeJADataset", "score": 2 }
#### File: JeanMaximilienCadic/YoutubeJADataset/youtube_master.py ```python from gnutools.www import Youtube from gnutools.utils import read_csv from concurrent.futures import ProcessPoolExecutor, as_completed from tqdm import tqdm import os import time import argparse import numpy as np import random class YoutubeMaster: def __init__(self, root_convert, world_size=1, rank=0, csv_file=None, id_list=None): self.root_convert = root_convert self.ids_completed = self.get_completed(self.root_convert) if id_list is None: lines = read_csv(csv_file) annotations = set([line[0] for line in lines]) N = len(list(annotations)) step = N // world_size start = np.arange(0, N, step + 1)[rank] id_list = [annotation for annotation in list(annotations)[start:start + step + 1]] random.shuffle(id_list) self.id_list = self.filter_completed(set(id_list)) self.fs=[] def launch(self): with ProcessPoolExecutor() as e: self.fs = [e.submit(self.prepare, id=id, root_convert=self.root_convert) for id in tqdm(self.id_list)] for f in tqdm(as_completed(self.fs)): pass @staticmethod def prepare(id, root_convert): yt = Youtube(id=id) yt.download(root=root_convert) yt.post_process(fq=16000, split_audio=True, split_captions=True) def get_completed(self, root_convert): def is_completed(dir): try: dirs = os.listdir(dir) assert dirs.__contains__("audio") assert dirs.__contains__("text") files_audio = os.listdir("{dir}/audio".format(dir=dir)) files_text = os.listdir("{dir}/text".format(dir=dir)) assert len(files_audio) == len(files_text) except: return False return True ids=set() for id in os.listdir("{root}".format(root=root_convert)): if is_completed("{root}/{id}".format(root=root_convert, id=id)): ids.add(id) return ids def filter_completed(self, ids): return ids.difference(self.ids_completed) if __name__=="__main__": yt = Youtube(id="e3Odkr4yhD0") yt.download(root="/mnt/IYONas3/ASR/ja/audio_text/YOUTUBE/all") yt.post_process(fq=16000, split_audio=True, split_captions=True) ```
{ "source": "JeanMax/SuperDatabase3000", "score": 3 }
#### File: src/superdatabase3000/packet.py ```python import collections import struct import hashlib CANARI = 0xdeadbeef CANARI_SIZE = 4 # unsigned int CHECKSUM_SIZE = 20 # sha1 INT_SIZE = 8 # unsigned long long PAYLOAD_MIN_SIZE = 32 # TODO: tweak me based on DbClient requests size: 256-32 PACKET_MIN_SIZE = ( CANARI_SIZE + CHECKSUM_SIZE + INT_SIZE + PAYLOAD_MIN_SIZE ) # 64 CHECKSUM_OFFSET = CANARI_SIZE + CHECKSUM_SIZE # we'll start hasing from there STRUCT_FORMAT = ( "!" "I" # canari f"{CHECKSUM_SIZE}s" # checksum "Q" # payload_size "{payload_size}s" # payload: complete its size using format ) Packet = collections.namedtuple( "Packet", ["canari", "checksum", "payload_size", "payload"] ) def _checksum(bytes_buf): """Return the sha1 digest of the given 'bytes_buf'.""" return hashlib.sha1(bytes_buf[CHECKSUM_OFFSET:]).digest() def _verify_checksum(ctrl_checksum, bytes_buf): """ Return True if the given 'ctrl_checksum' matches the checksum of 'bytes_buf', otherwise throw a ValueError. """ if ctrl_checksum != _checksum(bytes_buf): raise ValueError("packet: invalid checksum") return True def pack(payload, with_checksum=True): """ Create a packet from the given 'payload' byte object that you want to send. If the 'with_checksum' argument is True, the checksum of the payload will be calculated and inserted in the packet, otherwise the checksum will be set to zeros. Returns a bytes object of the created packet (ready to send). """ packet = Packet( canari=CANARI, checksum=b"\x00" * CHECKSUM_SIZE, payload_size=len(payload), payload=payload.ljust(PAYLOAD_MIN_SIZE, b"\x00") ) payload_size = max(packet.payload_size, PAYLOAD_MIN_SIZE) try: bytes_buf = struct.pack( STRUCT_FORMAT.format(payload_size=payload_size), *packet ) except struct.error as e: raise ValueError(f"packet: {e}") if with_checksum: packet = packet._replace(checksum=_checksum(bytes_buf)) bytes_buf = struct.pack( STRUCT_FORMAT.format(payload_size=payload_size), *packet ) return bytes_buf def unpack(bytes_buf, with_checksum=True): """ Extract the payload (as a bytes object) from the given 'bytes_buf' packet. If the 'with_checksum' argument is True, the checksum in the packet will be checked against a calculated checksum of the packet payload. Otherwise it will just be ignored. Returns a bytes object of the extracted payload. A ValueError will be thrown if an invalid packet is given as 'bytes_buf' (invalid canari, checksum, payload length) """ # first, we try to unpack as if it was a 64 bytes packet try: packet = struct.unpack( STRUCT_FORMAT.format(payload_size=PAYLOAD_MIN_SIZE), bytes_buf[:PACKET_MIN_SIZE] ) except struct.error as e: raise ValueError(f"packet: {e}") packet = Packet(*packet) if packet.canari != CANARI: raise ValueError("packet: the canari is dead") # payload can fit in a 64 bytes packet: just verify checksum, then job done if packet.payload_size <= PAYLOAD_MIN_SIZE: if with_checksum: _verify_checksum(packet.checksum, bytes_buf) packet = packet._replace( payload=packet.payload[:packet.payload_size] ) return packet # packet is actually bigger than 64 bytes (extra_payload) if len(bytes_buf) <= PACKET_MIN_SIZE: return packet # the payload is incomplete, and checksum not verified try: packet = struct.unpack( STRUCT_FORMAT.format(payload_size=packet.payload_size), bytes_buf ) except struct.error as e: raise ValueError(f"packet: {e}") packet = Packet(*packet) if with_checksum: _verify_checksum(packet.checksum, bytes_buf) return packet # complete packet with extra payload ``` #### File: src/superdatabase3000/signal.py ```python import signal class ExitSignalWatcher(): """This class allows to store any caught SIGINT/SIGTERM""" EXIT = 0 def __init__(self): self.sig_handler = None @staticmethod def _signal_handler(signal_code, unused_frame): """Just store the exit status, for later safe exiting""" ExitSignalWatcher.EXIT = 128 + signal_code def catch(self): """Catch signal INT/TERM, so we won't exit while playing with files""" if self.sig_handler is None: self.sig_handler = {} self.sig_handler.setdefault( signal.SIGINT, signal.signal(signal.SIGINT, ExitSignalWatcher._signal_handler) ) self.sig_handler.setdefault( signal.SIGTERM, signal.signal(signal.SIGTERM, ExitSignalWatcher._signal_handler) ) ExitSignalWatcher.EXIT = 0 def restore(self): """Restore the previous signal handler""" signal.signal(signal.SIGINT, self.sig_handler[signal.SIGINT]) signal.signal(signal.SIGTERM, self.sig_handler[signal.SIGTERM]) ``` #### File: src/superdatabase3000/socket.py ```python import os import socket import select import pickle import collections import superdatabase3000.packet as pckt DEFAULT_SOCK_FILENAME = "/tmp/superdatabase3000.sock" BUF_SIZE = 0x1000 # TODO: tweak me def _send_to(sock, msg): """ Send 'msg' to given 'sock'. 'msg' can be any python object, it well be pickled first, then sent as a packet to the socket. """ payload = pickle.dumps(msg) bytes_buf = pckt.pack(payload) del payload sock.send(bytes_buf[:pckt.PACKET_MIN_SIZE]) bytes_buf = bytes_buf[pckt.PACKET_MIN_SIZE:] while bytes_buf: buf_size = min(len(bytes_buf), BUF_SIZE) sock.send(bytes_buf[:buf_size]) bytes_buf = bytes_buf[buf_size:] def _recv_from(sock): """ Receive a message from the given 'sock'. The returned message can be any valid python object. This function will block till a packet is fully received. """ bytes_buf = sock.recv(pckt.PACKET_MIN_SIZE) packet = pckt.unpack(bytes_buf) if packet.payload_size != len(packet.payload): bytes_to_read = packet.payload_size - len(packet.payload) while bytes_to_read: buf_size = min(bytes_to_read, BUF_SIZE) bytes_buf += sock.recv(buf_size) bytes_to_read -= buf_size packet = pckt.unpack(bytes_buf) msg = pickle.loads(packet.payload) return msg def _msg_head_str(msg): """A utility to print the head of the str representation of an object.""" msg_limit = 32 msg_str = f"'{msg}'" if len(msg_str) > msg_limit: msg_str = msg_str[:msg_limit] + "'..." return msg_str class _SocketBase(): """Base socket class for client/server socket.""" def __init__(self, sock_filename): """Open a unix socket on the given 'sock_filename' path.""" if sock_filename is None: sock_filename = DEFAULT_SOCK_FILENAME self.sock_filename = sock_filename self.sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) def __del__(self): """Close the previously opened socket.""" self.sock.close() class SocketClient(_SocketBase): """ This class can exchange messages with a SocketServer over a unix socket. """ def __init__(self, sock_filename=None): """ Initialize the connection to the SocketServer on the given 'sock_filename' unix socket path. """ super().__init__(sock_filename) self._connect() def _connect(self): """ Connect to the SocketServer on 'self.sock_filename'. This function might raise a socket.error if it fails to connect. """ if not os.path.exists(self.sock_filename): raise socket.error(f"Can't find socket at '{self.sock_filename}'") self.sock.connect(self.sock_filename) def send(self, msg): """Send a 'msg' (any python object) to the SocketServer.""" _send_to(self.sock, msg) def recv(self): """Receive a message (any python object) from the SocketServer.""" return _recv_from(self.sock) # This named-tuple is used to represent a client from the server perspective _Client = collections.namedtuple( "_Client", ["sock", "to_send_msg_queue"] ) class SocketServer(_SocketBase): """ This class can exchange messages with multiples clients over a unix socket. """ def __init__(self, sock_filename=None): """ Start listening for SocketClient on the given 'sock_filename' unix socket path. """ super().__init__(sock_filename) self._listen() self.clients = {} # dict(client_sock_fd: _Client) def __del__(self): """Ensure each connection is closed.""" for client in self.clients.values(): client.sock.close() super().__del__() def _listen(self): """Listen for SocketClient on 'self.sock_filename'.""" if os.path.exists(self.sock_filename): os.unlink(self.sock_filename) # self.sock.setblocking(0) self.sock.bind(self.sock_filename) self.sock.listen() def _accept(self): """Accept a new SocketClient.""" client_sock, _ = self.sock.accept() print("socket: accept:", client_sock) # client_sock.setblocking(0) self.clients[client_sock.fileno()] = _Client( sock=client_sock, to_send_msg_queue=[] ) def _remove_client(self, client_sock): """Remove a SocketClient.""" print("socket: remove:", client_sock) fd = client_sock.fileno() client_sock.close() del self.clients[fd] def _handle_error_stream(self, sock): """Handle socket 'sock' with an error status returned by select.""" if sock is self.sock: print("socket: PANIC! error on server sock:", sock) # it's the server socket itself, so we're screwed anyway :/ else: print("socket: error on sock:", sock) self._remove_client(sock) def _handle_write_stream(self, sock): """Handle socket 'sock' which can be written to.""" msg_queue = self.clients[sock.fileno()].to_send_msg_queue if not msg_queue: return msg = msg_queue.pop(0) print(f"socket: sending message {_msg_head_str(msg)} to sock: {sock}") _send_to(sock, msg) def _handle_read_stream(self, sock, on_msg): """ Handle socket 'sock' which can be read from. """ if sock is self.sock: self._accept() return try: msg = _recv_from(sock) except ValueError: print("socket: received an empty/invalid packet, removing client") self._remove_client(sock) return print(f"socket: received message: {_msg_head_str(msg)}") on_msg(sock.fileno(), msg) def poll_events(self, on_msg, timeout=0.5): """ Check for events on the server. This will handle: - accepting/removing clients - sending messages (the ones added to the queue with send_to) - reading messages If a message is successfully read from the socket, the 'on_msg' callback will be called with 2 parameters: on_msg(socket_fd, msg) - socket_fd (int): the socket fd of the client - msg (object): the message received from the client (You can use 'socket_fd' to answer to the client with send_to) """ inputs = [c.sock for c in self.clients.values()] + [self.sock] rlist, wlist, xlist = select.select( inputs, [c.sock for c in self.clients.values() if c.to_send_msg_queue], inputs, timeout ) for sock in rlist: self._handle_read_stream(sock, on_msg) for sock in wlist: self._handle_write_stream(sock) for sock in xlist: self._handle_error_stream(sock) def send_to(self, client_sock_fd, msg): """ Send a message 'msg' (any python object) to the socket fd 'client_sock_fd'. Actually it will just put the message in a queue, eh. The message will be sent on a later call to poll_events if the socket destination can be written to. """ self.clients[client_sock_fd].to_send_msg_queue.append(msg) ```
{ "source": "jean/measure-areas", "score": 3 }
#### File: measure-areas/measure_areas/cli.py ```python import click from measure_areas.measure_areas import measure_areas @click.command() @click.argument('filenames', type=click.Path(exists=True), nargs=-1) def main(filenames): """Console script for measure_areas.""" if not filenames: print("No files specified") return for fn in filenames: measure_areas(fn) if __name__ == "__main__": main() ```
{ "source": "jeanmichelscherer/gradam", "score": 2 }
#### File: src/gradam/material_models.py ```python _author__ = "<NAME>" __license__ = "CC BY-SA 4.0" __email__ = "<EMAIL>" import meshio from dolfin import * from .material_properties import * from .rotation_matrix import * from .tensors import * from .mfront_behaviour import * import numpy as np from ufl import sign import ufl import mgis.fenics as mf parameters["form_compiler"]["representation"] = 'uflacs' ufl.algorithms.apply_derivatives.CONDITIONAL_WORKAROUND = True # allows to use a TrialFunction in conditional( ) for spectral_decomposition # residual stiffness kres = Constant(1e-6) def eps(v,dim): e = sym(grad(v)) if (dim == 2): return as_matrix([[e[0,0],e[0,1],0.],[e[1,0],e[1,1],0.],[0.,0.,0.]]) else: return e def strain2voigt(e): #return as_vector([e[0,0],e[1,1],e[2,2],2*e[0,1],2*e[1,2],2*e[2,0]]) return as_vector([e[0,0],e[1,1],e[2,2],2*e[1,2],2*e[0,2],2*e[0,1]]) def voigt2stress(s): return as_tensor([[s[0], s[5], s[4]],[s[5], s[1], s[3]],[s[4], s[3], s[2]]]) def voigt2strain(e): return as_tensor([[e[0], e[5]/2., e[4]/2.],[e[5]/2., e[1], e[3]/2.],[e[4]/2., e[3]/2., e[2]]]) ppos = lambda x: (abs(x)+x)/2. pneg = lambda x: x-ppos(x) Heav = lambda x: (sign(x)+1.)/2. #Heav = lambda x: ((x/sqrt(x**2+1.e-30))+1.)/2. class EXD: """ Elastic Crystal Damage (EXD) model with X variables and associated fracture energies """ def __init__(self,dim,damage_dim,material_parameters,mesh,mf,geometry,behaviour="linear_elasticity",\ mfront_behaviour=None,damage_model="AT1",anisotropic_elasticity="cubic",damage_tensor=[False,0,0]): self.mp = material_parameters self.dim = dim self.damage_dim = damage_dim self.damage_model = damage_model self.anisotropic_elasticity = anisotropic_elasticity self.mesh = mesh self.mf = mf self.geometry = geometry if (self.anisotropic_elasticity=="cubic"): E=self.mp["E"] nu=self.mp["nu"] G=self.mp["G"] self.moduli=list(zip(E,nu,G)) elif (self.anisotropic_elasticity=="orthotropic"): E1,E2,E3=self.mp["E1"],self.mp["E2"],self.mp["E3"] nu12,nu21,nu13,nu31,nu23,nu32=self.mp["nu12"],\ self.mp["nu21"],self.mp["nu13"],self.mp["nu31"],self.mp["nu23"],self.mp["nu32"] G12,G13,G23=self.mp["G12"],self.mp["G13"],self.mp["G23"] self.moduli=list(zip(E1,E2,E3,nu12,nu21,nu13,nu31,nu23,nu32,G12,G13,G23)) Gc_ = self.mp["Gc"] l0_ = self.mp["l0"] dub_= self.mp["dub"] self.Gc,self.l0,self.dub = make_fracture_properties_per_domain(self.dim,self.mesh,self.mf,self.damage_dim,Gc_,l0_,dub_) #if ("B_crystal" in self.mp): # self.B_crystal = self.mp["B_crystal"] #el if ("alpha" in self.mp and "M" in self.mp): self.alpha = self.mp["alpha"] self.M = self.mp["M"] self.damage_induced_anisotropy = self.mp["damage_induced_anisotropy"] self.damage_tensor = damage_tensor # only implemented in 2D for orthogonal cleavage planes self.anisotropic_degradation = False if self.damage_tensor[0]: self.anisotropic_degradation = True if ("D_crystal" in self.mp): self.D_crystal = self.mp["D_crystal"] self.anisotropic_degradation = True self.tension_compression_asymmetry = False self.spheric_deviatoric_decomposition = [False] self.cleavage_planes_decomposition = False self.spectral_decomposition = False self.C, self.R, self.phi1, self.Phi, self.phi2 = self.setup_behaviour() self.behaviour = behaviour self.mfront_behaviour = mfront_behaviour if (not self.behaviour=='linear_elasticity'): mat_prop = {} #if (self.anisotropic_elasticity=="cubic"): #mat_prop = {"YoungModulus": self.E, "PoissonRatio": self.nu} #,\ # #, "ShearModulus": self.G,\ ## "YieldStrength": 1000., "HardeningSlope": 0.} ## elif (self.anisotropic_elasticity=="orthotropic"): ## mat_prop = {#"YoungModulus1": self.E1, "YoungModulus2": self.E2, "YoungModulus3": self.E3,\ ## #"PoissonRatio12": self.nu12, "PoissonRatio13": self.nu13, "PoissonRatio23": self.nu23,\ ## #"ShearModulus12": self.G12, "ShearModulus13": self.G13, "ShearModulus23": self.G23,\ ## "YieldStrength": 1000., "HardeningSlope": 0.} self.mfront_behaviour.set_material_properties(self.dim,self.mesh,self.mf,mat_prop) self.mfront_behaviour.set_rotation_matrix(self.R.T) def setup_behaviour(self): if (self.anisotropic_elasticity=="cubic"): C, self.y1111, self.y1122, self.y1212, self.E, self.nu, self.G = \ make_cubic_elasticity_stiffness_tensor(self.dim,self.moduli,self.mesh,self.mf) elif (self.anisotropic_elasticity=="orthotropic"): C, self.E1, self.E2, self.E3, self.nu12, self.nu21, self.nu13, self.nu31, self.nu23, self.nu32,\ self.G12, self.G13, self.G23 = make_orthotropic_elasticity_stiffness_tensor(self.dim,self.moduli,self.mesh,self.mf) if (self.anisotropic_degradation and ("D_crystal" in self.mp)): self.Cdam = [] for n in range(self.damage_dim): D_array = np.array( self.D_crystal[n] ) D = full_3x3x3x3_to_Voigt_6x6( D_array ) self.Cdam.append( dot(dot(as_matrix(D),C),as_matrix(D)) ) # compute rotation matrix for the set of euler angles associated to the mesh R, phi1, Phi, phi2 = make_rotation_matrix_from_euler(self.dim, self.geometry, self.mesh, self.mf) if self.geometry.endswith("single_crystal"): R, v1, v2, v3 = make_rotation_matrix_from_V1V2V3(self.dim, self.geometry, self.mesh, self.mf) return C, R, phi1, Phi, phi2 def sigma0(self,e): return dot(self.R.T,dot(voigt2stress(dot(self.C, e)),self.R)) def sigma(self,v,d,P1,P2,P3): if (self.tension_compression_asymmetry): self.strain_decomposition(v,P1,P2,P3) else: self.eps_crystal_pos = strain2voigt(dot(self.R,dot(eps(v,self.dim),self.R.T))) #self.eps_crystal_neg = strain2voigt(dot(self.R,dot(as_tensor(np.zeros((3,3))),self.R.T))) self.eps_crystal_neg = 0.*self.eps_crystal_pos if (self.dim==2 and self.damage_dim==2 and self.anisotropic_degradation and self.damage_tensor[0]): q = self.damage_tensor[1] p = self.damage_tensor[2] degrad_type = self.damage_tensor[3] if (degrad_type == 'Lorentz'): gamma = self.damage_tensor[4] r = self.damage_tensor[5] #d1 = ((1-d[0])/(1+gamma*d[0]))**q*((1-d[1])/(1+gamma*d[1]))**r + kres #d2 = ((1-d[1])/(1+gamma*d[1]))**q*((1-d[0])/(1+gamma*d[0]))**r + kres #dd = ((1-d[0])/(1+gamma*d[0]))**p*((1-d[1])/(1+gamma*d[1]))**p + kres #d1 = ((1-d[0])/(1+gamma*d[0]))**q + kres #d2 = ((1-d[1])/(1+gamma*d[1]))**q + kres #dd = ((1-d[0])/(1+gamma*d[0]))**p*((1-d[1])/(1+gamma*d[1]))**p + kres d1 = ((1-d[0])/(1+gamma*d[0])) + kres d2 = ((1-d[1])/(1+gamma*d[1])) + kres dd = ((1-d[0])/(1+gamma*d[0]))*((1-d[1])/(1+gamma*d[1])) + kres #d1 = ((1-d[0])) + kres #d2 = ((1-d[1])) + kres #dd = ((1-d[0]))*((1-d[1])) + kres elif (degrad_type=='tan'): gamma = self.damage_tensor[4] d1 = ((0.5/tan(gamma/2.))*tan(-gamma*(d[0]-0.5)) + 0.5)**q d2 = ((0.5/tan(gamma/2.))*tan(-gamma*(d[1]-0.5)) + 0.5)**q dd = ((0.5/tan(gamma/2.))*tan(-gamma*(d[0]-0.5)) + 0.5)**p*((0.5/tan(gamma/2.))*tan(-gamma*(d[1]-0.5)) + 0.5)**p else: d1 = (1-d[0])**q + kres d2 = (1-d[1])**q + kres dd = (1-d[0])**p*(1-d[1])**p + kres iD0 = as_tensor([[d1,0,0,0,0,0],[0,d2,0,0,0,0],[0,0,0,0,0,0],\ [0,0,0,dd,0,0],[0,0,0,0,dd,0],[0,0,0,0,0,dd]]) degraded_stiffness = dot(iD0,dot(self.C,iD0)) return dot(self.R.T,dot(voigt2stress(dot(degraded_stiffness,self.eps_crystal_pos)),self.R)) +\ self.sigma0(self.eps_crystal_neg) if (self.damage_dim==1): return ((1.-d)**2 + kres)*self.sigma0(self.eps_crystal_pos) + self.sigma0(self.eps_crystal_neg) #return self.sigma0(self.eps_crystal_neg) else: if (self.anisotropic_degradation): g = [] for n in range(self.damage_dim): g.append( (1.-d[n])**2 ) q = [] for (i, gi) in enumerate(g): #q.append( (1-gi) ) q.append( np.prod(g[:i]+g[i+1:])*(1-gi) ) degraded_stiffness = (np.prod(g) + kres)*self.C for n in range(self.damage_dim): degraded_stiffness += q[n]*self.Cdam[n] return dot(self.R.T,dot(voigt2stress(dot(degraded_stiffness,\ self.eps_crystal_pos)),self.R)) +\ self.sigma0(self.eps_crystal_neg) else: g = 1. for n in range(self.damage_dim): g*=(1.-d[n])**2 return (g+kres)*self.sigma0(self.eps_crystal_pos) + self.sigma0(self.eps_crystal_neg) #return self.sigma0(self.eps_crystal_neg) def strain_decomposition(self,v,P1,P2,P3): e = eps(v,self.dim) if (self.spheric_deviatoric_decomposition[0]==True): trace = tr(e) if (self.spheric_deviatoric_decomposition[1]=='Amor'): self.eps_crystal_pos = strain2voigt(e - (1./3.)*Heav(-trace)*trace*Identity(3)) self.eps_crystal_neg = strain2voigt((1./3.)*Heav(-trace)*trace*Identity(3)) else: self.eps_crystal_pos = strain2voigt(e - (1./3.)*trace*Identity(3)) self.eps_crystal_neg = strain2voigt((1./3.)*trace*Identity(3)) elif (self.spectral_decomposition and self.dim==2): def eig_plus(A): return (tr(A) + sqrt(tr(A)**2-4*det(A)))/2 def eig_minus(A): return (tr(A) - sqrt(tr(A)**2-4*det(A)))/2 # Diagonal matrix with positive and negative eigenvalues as the diagonal elements def diag_eig(A): lambdap1 = 0.5*(eig_plus(A)+ abs(eig_plus(A))) lambdap2 = 0.5*(eig_minus(A) + abs(eig_minus(A))) lambdan1 = 0.5*(eig_plus(A) - abs(eig_plus(A))) lambdan2 = 0.5*(eig_minus(A) - abs(eig_minus(A))) matp = as_matrix(((lambdap1,0),(0,lambdap2))) matn = as_matrix(((lambdan1,0),(0,lambdan2))) return (matp,matn) # Eigenvectors of the matrix arranged in columns of matrix def eig_vecmat(A): lambdap = eig_plus(A) lambdan = eig_minus(A) a = A[0,0] b = A[0,1] c = A[1,0] d = A[1,1] v11 = lambdap - d v12 = lambdan - d nv11 = sqrt(v11**2 + c**2) nv12 = sqrt(v12**2 + c**2) a1 = v11/nv11 b1 = v12/nv12 c1 = c/nv11 d1 = c/nv12 v21 = lambdap - a v22 = lambdan - a nv21 = sqrt(v21**2 + b**2) nv22 = sqrt(v22**2 + b**2) A1 = b/nv21 B1 = b/nv22 C1 = v21/nv21 D1 = v22/nv22 tol = 1.e-10 #if (gt(abs(c),tol)): # Eigvecmat = as_matrix(((a1,b1),(c1,d1))) #else: # if (gt(abs(b),tol)): # Eigvecmat = as_matrix(((A1,B1),(C1,D1))) # else: # Eigvecmat = Identity(2) Eigvecmat = conditional(gt(abs(c), tol) ,as_matrix(((a1,b1),(c1,d1))), conditional(gt(abs(b), tol),as_matrix(((A1,B1),(C1,D1))),Identity(2))) return Eigvecmat def eps_split(A): P = eig_vecmat(A) (diag_eigp,diag_eign) = diag_eig(A) epsp = dot(P,dot(diag_eigp,P.T)) epsn = dot(P,dot(diag_eign,P.T)) epsp = strain2voigt(as_matrix([[epsp[0,0],epsp[0,1],0.],[epsp[1,0],epsp[1,1],0.],[0.,0.,0.]])) epsn = strain2voigt(as_matrix([[epsn[0,0],epsn[0,1],0.],[epsn[1,0],epsn[1,1],0.],[0.,0.,0.]])) return (epsp,epsn) self.eps_crystal_pos, self.eps_crystal_neg = eps_split( as_matrix([[e[0,0],e[0,1]],[e[1,0],e[1,1]]]) ) elif (self.cleavage_planes_decomposition): self.eps_crystal = dot(self.R,dot(e,self.R.T)) #eps(v,self.dim) self.eps_crystal_pos = as_tensor(np.zeros((3,3))) self.eps_crystal_neg = as_tensor(np.zeros((3,3))) self.n = [as_tensor([1.,0.,0.]),as_tensor([0.,1.,0.]),as_tensor([0.,0.,1.])] self.epsilon = [] for i in range(3): #self.n.append(self.R[:,i]) self.epsilon.append(dot(dot(self.eps_crystal,self.n[i]),self.n[i])) #print(self.n[i],self.epsilon[i]) self.eps_crystal_pos += ppos(self.epsilon[i])*outer(self.n[i],self.n[i]) self.eps_crystal_neg += pneg(self.epsilon[i])*outer(self.n[i],self.n[i]) self.eps_crystal_pos = strain2voigt(self.eps_crystal_pos) self.eps_crystal_neg = strain2voigt(self.eps_crystal_neg) else: self.eps_crystal_pos = dot(as_tensor([[P1,0,0,0,0,0],[0,P2,0,0,0,0],[0,0,P3,0,0,0],\ [0,0,0,1.,0,0],[0,0,0,0,1.,0],[0,0,0,0,0,1.]]),strain2voigt(dot(self.R,dot(e,self.R.T)))) self.eps_crystal_neg = dot(as_tensor([[1.-P1,0,0,0,0,0],[0,1.-P2,0,0,0,0],[0,0,1.-P3,0,0,0],\ [0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0]]),strain2voigt(dot(self.R,dot(e,self.R.T)))) # self.eps_crystal = dot(self.R,dot(e,self.R.T)) #eps(v,self.dim) # self.eps_crystal_pos = as_tensor(np.zeros((3,3))) # self.eps_crystal_neg = as_tensor(np.zeros((3,3))) # self.n = [] # self.epsilon = [] # for i in range(3): # self.n.append(self.R[:,i]) # self.epsilon.append(dot(dot(self.eps_crystal,self.n[i]),self.n[i])) # print(self.n[i],self.epsilon[i]) # self.eps_crystal_pos += ppos(self.epsilon[i])*outer(self.n[i],self.n[i]) # self.eps_crystal_neg += pneg(self.epsilon[i])*outer(self.n[i],self.n[i]) def make_B_sample(self,d,d_prev_iter): if ("alpha" in self.mp and "M" in self.mp): I = np.eye(3) if (self.damage_dim==1): if (self.damage_induced_anisotropy==True): k_dam = d_prev_iter else: k_dam = 1.0 self.B_crystal = as_tensor(I) + k_dam*self.alpha*(as_tensor(I) - outer(self.M,self.M)) else: self.B_crystal = [] for n in range(self.damage_dim): if (self.damage_induced_anisotropy==True): k_dam = d_prev_iter.sub(n)**2 else: k_dam = 1.0 self.B_crystal.append( as_tensor(I) + k_dam*self.alpha*(as_tensor(I) - outer(self.M[n],self.M[n])) ) else: self.B_crystal = as_tensor( np.eye(3) ) if (self.damage_dim==1): self.B_sample = dot(self.R.T,dot(self.B_crystal,self.R)) if (self.dim==2): self.B_sample = as_tensor([[self.B_sample[0,0], self.B_sample[0,1]], [self.B_sample[1,0], self.B_sample[1,1]]]) else: self.B_sample = [] for n in range(self.damage_dim): self.B_sample.append(dot(self.R.T,dot(self.B_crystal[n],self.R))) if (self.dim==2): self.B_sample[n] = as_tensor([[self.B_sample[n][0,0], self.B_sample[n][0,1]], [self.B_sample[n][1,0], self.B_sample[n][1,1]]]) def fracture_energy_density(self,d,d_prev_iter): if self.damage_model == "AT1": cw = Constant(8/3.) w = lambda d: d elif self.damage_model == "AT2": cw = Constant(2.) w = lambda d: d**2 self.make_B_sample(d,d_prev_iter) if (self.damage_dim==1): # self.B_sample = dot(self.R.T,dot(self.B_crystal,self.R)) # if (self.dim==2): # self.B_sample = as_tensor([[self.B_sample[0,0], self.B_sample[0,1]], # [self.B_sample[1,0], self.B_sample[1,1]]]) return [self.Gc/cw*(w(d)/self.l0+self.l0*dot(dot(self.B_sample, grad(d)),grad(d)))] else: Efrac = [] # self.B_sample = [] for n in range(self.damage_dim): # self.B_sample.append(dot(self.R.T,dot(self.B_crystal[n],self.R))) # if (self.B_crystal == as_tensor(np.eye(3))): # self.B_sample = as_tensor(np.eye(3)) # if (self.dim==2): # self.B_sample[n] = as_tensor([[self.B_sample[n][0,0], self.B_sample[n][0,1]], # [self.B_sample[n][1,0], self.B_sample[n][1,1]]]) Efrac.append( self.Gc[n]/cw*(w(d[n])/self.l0[n]+self.l0[n]*dot(dot(self.B_sample[n], grad(d[n])),grad(d[n]))) ) return Efrac ``` #### File: src/gradam/material_properties.py ```python _author__ = "<NAME>" __license__ = "CC BY-SA 4.0" __email__ = "<EMAIL>" from dolfin import * import numpy as np #from .ELtensor import * #import matscipy def make_property_per_domain(dim, mesh, mf, mat_prop_key, mat_prop): # interpolate material property class MP(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 values[0] = mat_prop[k] def value_shape(self): return () V0 = FunctionSpace(mesh, "DG", 0) MP_ = MP(mf) mp = Function(V0, name=mat_prop_key) mp.interpolate(MP_) return mp def make_cubic_elasticity_stiffness_tensor(dim, moduli, #=[[E1,nu1,G1], [E2,nu2,G2], ..., [En,nun,Gn]] mesh, mf): # interpolate elasticity moduli class YOUNG(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 values[0] = moduli[k][0] def value_shape(self): return () class POISSON(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 values[0] = moduli[k][1] def value_shape(self): return () class SHEAR(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 values[0] = moduli[k][2] def value_shape(self): return () V0 = FunctionSpace(mesh, "DG", 0) E_, nu_, G_ = YOUNG(mf), POISSON(mf), SHEAR(mf) E, nu, G = Function(V0, name='E'), Function(V0, name='nu'), Function(V0, name='G') E.interpolate(E_) nu.interpolate(nu_) G.interpolate(G_) y1111 = E*(1.-nu**2)/(1.-3.*nu**2-2.*nu**3) y1122 = E*nu*(1.+nu)/(1.-3.*nu**2-2.*nu**3) y1212 = G C = as_matrix( [[y1111, y1122, y1122, 0., 0., 0. ], [y1122, y1111, y1122, 0., 0., 0. ], [y1122, y1122, y1111, 0., 0., 0. ], [0., 0., 0., y1212, 0., 0., ], [0., 0., 0., 0., y1212, 0., ], [0., 0., 0., 0., 0., y1212]]) return C, y1111, y1122, y1212, E, nu, G def make_orthotropic_elasticity_stiffness_tensor(dim, moduli, #=[[E1,E2,E3,nu12,nu21,nu13,nu31,nu23,nu32,G12,G13,G23], ...] mesh, mf): # interpolate elasticity moduli class YOUNG1(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 values[0] = moduli[k][0] def value_shape(self): return () class YOUNG2(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 values[0] = moduli[k][1] def value_shape(self): return () class YOUNG3(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 values[0] = moduli[k][2] def value_shape(self): return () class POISSON12(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 values[0] = moduli[k][3] def value_shape(self): return () class POISSON21(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 values[0] = moduli[k][4] def value_shape(self): return () class POISSON13(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 values[0] = moduli[k][5] def value_shape(self): return () class POISSON31(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 values[0] = moduli[k][6] def value_shape(self): return () class POISSON23(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 values[0] = moduli[k][7] def value_shape(self): return () class POISSON32(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 values[0] = moduli[k][8] def value_shape(self): return () class SHEAR12(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 values[0] = moduli[k][9] def value_shape(self): return () class SHEAR13(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 values[0] = moduli[k][10] def value_shape(self): return () class SHEAR23(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 values[0] = moduli[k][11] def value_shape(self): return () V0 = FunctionSpace(mesh, "DG", 0) E1_,E2_,E3_ = YOUNG1(mf), YOUNG2(mf), YOUNG3(mf) nu12_,nu21_,nu13_,nu31_,nu23_,nu32_ = POISSON12(mf), POISSON21(mf),\ POISSON13(mf), POISSON31(mf), POISSON23(mf), POISSON32(mf) G12_,G13_,G23_ = SHEAR12(mf), SHEAR13(mf), SHEAR23(mf) E1, E2, E3 = Function(V0, name='E1'), Function(V0, name='E2'), Function(V0, name='E3') nu12, nu21, nu13, nu31, nu23, nu32 = Function(V0, name='nu12'), Function(V0, name='nu21'),\ Function(V0, name='nu13'), Function(V0, name='nu31'), Function(V0, name='nu23'), Function(V0, name='nu32') G12, G13, G23 = Function(V0, name='G12'), Function(V0, name='G13'), Function(V0, name='G23') E1.interpolate(E1_) E2.interpolate(E2_) E3.interpolate(E3_) nu12.interpolate(nu12_) nu21.interpolate(nu21_) nu13.interpolate(nu13_) nu31.interpolate(nu31_) nu23.interpolate(nu23_) nu32.interpolate(nu32_) G12.interpolate(G12_) G13.interpolate(G13_) G23.interpolate(G23_) delta = (1.-nu23*nu32-nu31*nu13-nu12*nu21-2.*nu23*nu31*nu12)/(E1*E2*E3) y1111 = (1.-nu23*nu32)/(delta*E2*E3) y1122 = (nu21+nu31*nu23)/(delta*E2*E3) y1133 = (nu31+nu21*nu32)/(delta*E2*E3) y2211 = (nu12+nu13*nu32)/(delta*E1*E3) y2222 = (1.-nu31*nu13)/(delta*E1*E3) y2233 = (nu32+nu31*nu12)/(delta*E1*E3) y3311 = (nu13+nu12*nu23)/(delta*E1*E2) y3322 = (nu23+nu21*nu13)/(delta*E1*E2) y3333 = (1.-nu12*nu21)/(delta*E1*E2) y2323 = G23 y1313 = G13 y1212 = G12 C = as_matrix( [[y1111, y1122, y1133, 0., 0., 0. ], [y2211, y2222, y2233, 0., 0., 0. ], [y3311, y3322, y3333, 0., 0., 0. ], [0., 0., 0., y2323, 0., 0., ], [0., 0., 0., 0., y1313, 0., ], [0., 0., 0., 0., 0., y1212]]) return C, E1, E2, E3, nu12, nu21, nu13, nu31, nu23, nu32, G12, G13, G23 def make_fracture_properties_per_domain(dim, mesh, mf, damage_dim, Gc_, l0_, dub_): # interpolate fracture properties class GC(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 for i in range(damage_dim): values[i] = Gc_[k][i] def value_shape(self): if (damage_dim==1): return () else: return (damage_dim,) class L0(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 for i in range(damage_dim): values[i] = l0_[k][i] def value_shape(self): if (damage_dim==1): return () else: return (damage_dim,) # damage upper bound (=1 if damageable else =0) class DUB(UserExpression): def __init__(self, mf, **kwargs): super().__init__(**kwargs) self.mf = mf def eval_cell(self, values, x, cell): k = self.mf[cell.index]-1 for i in range(damage_dim): values[i] = dub_[k][i] def value_shape(self): if (damage_dim==1): return () else: return (damage_dim,) if (damage_dim == 1): V0 = FunctionSpace(mesh, "DG", 1) Vd = FunctionSpace(mesh, "CG", 1) else: #V0 = VectorFunctionSpace(mesh, "DG", damage_dim) V0 = VectorFunctionSpace(mesh, "DG", 1, dim=damage_dim) #Vd = VectorFunctionSpace(mesh, "CG", damage_dim) Vd = VectorFunctionSpace(mesh, "CG", 1, dim=damage_dim) GC_, L0_, DUB_ = GC(mf), L0(mf), DUB(mf) Gc, l0, dub = Function(V0, name='Gc'), Function(V0, name='l0'), Function(Vd, name='Damage upper bound') Gc.interpolate(GC_) l0.interpolate(L0_) dub.interpolate(DUB_) return Gc, l0, dub def transfer_function(function, function_space): temp = Function(function_space, name=function.name()) # function.set_allow_extrapolation(True) A = PETScDMCollection.create_transfer_matrix(function.ufl_function_space(), function_space) temp.vector()[:] = A*function.vector() return temp ``` #### File: src/gradam/problem.py ```python _author__ = "<NAME>" __license__ = "CC BY-SA 4.0" __email__ = "<EMAIL>" from dolfin import * import matplotlib.pyplot as plt import numpy as np from ufl import replace from .material_models import * from .hybrid_linear_solver import * from time import time from time import sleep import os from .remesher import * from .mesh_converter import * import types import scipy as sp import scipy.ndimage import sys import subprocess #import h5py from mpi4py import MPI as pyMPI from .j_integral import * from .version_date import * ## Setting up damage-part optimization solver class DamageProblem(OptimisationProblem): def __init__(self, Wtot,DW_d,D2W_d,d): OptimisationProblem.__init__(self) self.obj_func = Wtot self.residual = DW_d self.Jac = D2W_d self.var = d self.bcs = [] def f(self, x): self.var.vector()[:] = x return assemble(self.obj_func) def F(self, b, x): self.var.vector()[:] = x assemble(self.residual, b, self.bcs) def J(self, A, x): self.var.vector()[:] = x assemble(self.Jac, A, self.bcs) class FractureProblem: def __init__(self,mesh,facets,mat,prefix,loads=[[0,Constant(0.)]],Jcontours=[],mf=None,mvc=None): self.staggered_solver = dict({"iter_max":500,"tol":1e-4,"accelerated":False,"history_function":False}) self.comm = MPI.comm_world self.rank = MPI.rank(self.comm) self.mesh = mesh self.mf = mf self.mvc = mvc self.u_degree = 1 self.d_degree = 1 self.num_vertices = self.mesh.num_vertices() # NOK in parallel, use metric size instead self.facets = facets self.dim = mesh.geometric_dimension() self.mat = mat self.prefix = prefix if (not os.path.isdir(self.prefix)): os.system("mkdir %s" % self.prefix) self.bcs = [] self.bc_d =[] self.Uimp = [Expression("t", t=0, degree=0)] self.incr = 0 self.incr_save = 1 self.t = 0. self.dtime = 1.e-4 self.desired_dincr = 1.e-2 self.max_dincr = 1.e-2 self.min_dtime = 1.e-5 self.max_dtime = 1.e-3 self.final_time = 1.e-2 self.niter_tot = 0 self.niter_TAO = 0 self.niter_iterative = 0 self.niter_direct = 0 self.set_functions() self.dx = Measure("dx") self.ds = Measure("ds") self.loads = loads self.load_boundaries = [self.ds] self.Wext = self.define_external_work() self.resultant = self.sig[1,1]*self.ds self.results = XDMFFile(MPI.comm_world,self.prefix+"output.xdmf") self.results.parameters["flush_output"] = True self.results.parameters["functions_share_mesh"] = True self.J_results = XDMFFile(MPI.comm_world,self.prefix+"J_integral.xdmf") self.J_results.parameters["flush_output"] = True self.J_results.parameters["functions_share_mesh"] = True self.checkpoints = XDMFFile(MPI.comm_world,self.prefix+"checkpoint.xdmf") self.checkpoints.parameters["flush_output"] = True self.checkpoints.parameters["functions_share_mesh"] = True self.save_all = True self.save_intermediate = False self.save_checkpoints = False self.write_checkpoint_count = 0 self.use_hybrid_solver = False self.normal = FacetNormal(mesh) self.dsJ = Jcontours self.J = [] self.remesh = False self.use_remeshing = False self.remeshing_criterion = 1.e-2 self.remeshing_index = 1 self.nbgrains = -1 self.remesher = None self.boundaries = [] self.markers = [] self.domains = [] self.domains_markers = [] self.myBCS = self.BCS(self.Vu,self.Vd,self.facets) self.myResultant = self.Resultant(self.mat,self.u,self.d,self.P1pos,self.P2pos,self.P3pos,self.ds) self.gaussian_filter_sigma = 1. self.no_residual_stiffness=[False,0.99] self.JIntegral = None self.timings = True self.null_space_basis = None self.rigid_body_motion=[] class BCS(): def __init__(self, Vu, Vd, facets): self.Vu = Vu self.Vd = Vd self.facets = facets class Resultant(): def __init__(self, mat, u, d, P1pos, P2pos, P3pos, ds): self.mat = mat self.u = u self.d = d self.P1pos = P1pos self.P2pos = P2pos self.P3pos = P3pos self.ds = ds def set_functions(self): # Definition of functions spaces and test/trial functions self.Vu = VectorFunctionSpace(self.mesh, "CG", self.u_degree, dim=self.dim) if self.mat.damage_dim == 1: self.Vd = FunctionSpace(self.mesh, "CG", self.d_degree) else: self.Vd = VectorFunctionSpace(self.mesh, "CG", self.d_degree, dim=self.mat.damage_dim) self.V0 = FunctionSpace(self.mesh, "DG", 0) self.Vsig = TensorFunctionSpace(self.mesh, "CG", self.u_degree, shape=(3,3)) self.VV = VectorFunctionSpace(self.mesh, "DG", 0, dim=3) self.Vr = TensorFunctionSpace(self.mesh, "DG", 0, shape=(3,3)) self.Vmetric = FunctionSpace(self.mesh, "CG", self.d_degree) self.u_ = TestFunction(self.Vu) self.du = TrialFunction(self.Vu) self.d_ = TestFunction(self.Vd) self.dd = TrialFunction(self.Vd) # Definition of functions self.u = Function(self.Vu,name="Displacement") #self.u_prev = Function(self.Vu,name="Previous displacement") self.d = Function(self.Vd,name="Damage") self.d_prev = Function(self.Vd,name="Previous damage") self.d_prev_iter = Function(self.Vd,name="Previous damage in staggered minimization") #self.dold = Function(self.Vd,name="Old damage") self.d_lb = Function(self.Vd,name="Lower bound d_n") self.d_ub = Function(self.Vd,name="Damage upper bound") #"Upper bound 1") self.d_ar= Function(self.Vd,name="Damage field after remeshing") self.d_ub = self.mat.dub self.sig = Function(self.Vsig,name="Stress") self.eel = Function(self.Vsig,name="ElasticStrain") self.epspos = Function(self.Vsig,name="Strain (+)") self.epsneg = Function(self.Vsig,name="Strain (-)") #self.V1 = Function(self.VV,name="V1") #self.V2 = Function(self.VV,name="V2") #self.V3 = Function(self.VV,name="V3") # if self.staggered_solver["accelerated"]: # self.tmp_u = Function(self.Vu) # self.tmp_d = Function(self.Vd) self.R = Function(self.Vr,name="Rotation matrix") self.dissipated = Function(self.V0,name="Plastic dissipation") self.stored = Function(self.V0,name="Stored energy") self.P1pos = Function(self.V0,name="P1pos") self.P2pos = Function(self.V0,name="P2pos") self.P3pos = Function(self.V0,name="P3pos") self.P1pos.interpolate(Constant(1.)) self.P2pos.interpolate(Constant(1.)) self.P3pos.interpolate(Constant(1.)) self.Efrac_field = Function(self.V0,name="Efrac") self.d_eq_fiss = Function(self.Vd,name="deq") if self.mat.damage_dim==1: self.d_eq_fiss.interpolate(Constant((1.))) self.d_prev_iter.interpolate(Constant(0.)) else: self.d_eq_fiss.interpolate(Constant((1.,)*self.mat.damage_dim)) self.d_prev_iter.interpolate(Constant((0.,)*self.mat.damage_dim)) #self.Vstiffness = TensorFunctionSpace(self.mesh, "CG", 1, shape=(6,6)) #self.stiffness = Function(self.Vstiffness,name="Stiffness") self.metric = Function(self.Vmetric,name="Remeshing metric") self.metric.interpolate(Constant(0.)) def set_load(self,u): L = self.loads[0][1]*u[self.loads[0][0]]*self.load_boundaries[0] for (load,load_boundary) in list(zip(self.loads[1:],self.load_boundaries[1:])): L += load[1]*u[load[0]]*load_boundary return L def define_external_work(self): return self.set_load(self.u) #return dot(self.load,self.u)*self.ds def set_energies(self): if (not self.mat.behaviour=="linear_elasticity"): self.mb = self.mat.mfront_behaviour.create_material() self.solver_u = mf.MFrontNonlinearProblem(self.u, self.mb, quadrature_degree=1, bcs=self.bcs) self.solver_u.register_external_state_variable("Damage", self.d) ''' prm = self.solver_u.solver.parameters #prm['nonlinear_solver'] = 'newton' prm['linear_solver'] = 'gmres' #'mumps' #'minres' #'cg' #'cg' #'mumps' #'gmres' #'petsc' #'umfpack' #'tfqmr' #prm['preconditioner'] = 'petsc_amg' #'ilu' # 'sor' # 'icc' # 'petsc_amg' #prm['krylov_solver']['error_on_nonconvergence'] = True #prm['krylov_solver']['monitor_convergence'] = True #prm['krylov_solver']['absolute_tolerance'] = 1E-14 #prm['krylov_solver']['relative_tolerance'] = 1E-14 #prm['krylov_solver']['maximum_iterations'] = 10000 prm['krylov_solver']['nonzero_initial_guess'] = True prm['preconditioner'] = 'hypre_amg' prm['absolute_tolerance'] = 1E-6 #-9 prm['relative_tolerance'] = 1E-8 #-8 #prm['maximum_iterations'] = 1000 #25 #prm['relaxation_parameter'] = 1. ##prm['krylov_solver']['gmres']['restart'] = 40 ##prm['krylov_solver']['preconditioner']['ilu']['fill_level'] = 0 prm["report"] = True #prm['lu_solver']['symmetric'] = True #False ''' self.solver_u.solver = PETScSNESSolver('newtonls') #'newtontr') #'newtonls') prm = self.solver_u.solver.parameters #prm['nonlinear_solver'] = 'snes' #prm['line_search'] = 'bt' #'cp' #'cp' #'nleqerr' # 'bt' # 'basic' # 'l2' prm['line_search'] = 'nleqerr' #prm['linear_solver'] = 'mumps' prm['linear_solver'] = 'cg' #'gmres' #'cg' #'gmres' prm['preconditioner'] = 'amg' #'hypre_amg' prm['krylov_solver']['nonzero_initial_guess'] = False # True #prm['maximum_iterations'] = 50 prm['absolute_tolerance'] = 1E-5 #prm['relative_tolerance'] = 1E-8 #prm['report'] = False #True self.load = self.set_load(self.u) self.solver_u.set_loading(self.load) self.dissipated.vector().set_local(self.mb.data_manager.s1.dissipated_energies) self.dissipated.vector().apply("insert") self.stored.vector().set_local(self.mb.data_manager.s1.stored_energies) self.stored.vector().apply("insert") #print(max(_dummy_function.vector()[:])) self.sigma() #self.eps_elas() ## self.Wel = 0.5*inner(self.sig,self.eel)*self.dx ## self.Wel = 0.5*(1.-self.d)**2*inner(self.sig,self.eel)*self.dx self.Wel = (1.-self.d)**2*self.stored*self.dx #self.Wel = 0.5*self.stored*self.dx self.Wdis = (1.-self.d)**2*self.dissipated*self.dx else: # Definition of energy densities # self.Wel = 0.5*inner(self.mat.sigma(self.u,self.d,self.P1pos,self.P2pos),eps(self.u))*self.dx # self.Wel = 0.5*inner(self.mat.sigma(self.u,self.d,self.P1pos,self.P2pos,self.P3pos),eps(self.u,self.dim))*self.dx self.sigma() self.Wel = 0.5*inner(self.sig,eps(self.u,self.dim))*self.dx self.Efrac = self.mat.fracture_energy_density(self.d,self.d_prev_iter) self.Wfrac = sum(self.Efrac)*self.dx self.Wtot = self.Wel + self.Wfrac - self.Wext if (not self.mat.behaviour=="linear_elasticity"): self.Wtot += self.Wdis # Definition of J integral if (self.dim == 2): normal3 = as_vector([self.normal[0],self.normal[1],0.]) sigma_n3 = dot(normal3, self.sig) sigma_n = as_vector([sigma_n3[0],sigma_n3[1]]) elif (self.dim == 3): normal3 = self.normal sigma_n = dot(normal3, self.sig) if (not self.dsJ==[]): self.J=[] for c in self.dsJ: #self.J.append( (0.5*inner(self.sig,eps(self.u,self.dim))*self.normal[1] \ # - inner(sigma_n, grad(self.u)[:,0]) ) * c ) # for outer boundaries self.J.append( (0.5*inner(self.sig,eps(self.u,self.dim))*self.normal[1]) * c ) self.J.append( (- inner(sigma_n, grad(self.u)[:,0]) ) * c ) # for outer boundaries for c in self.dsJ: #self.J.append( (0.5*inner(self.sig,eps(self.u,self.dim))*self.normal[0] \ # - inner(sigma_n, grad(self.u)[:,1]) ) * c ) # for outer boundaries self.J.append( (0.5*inner(self.sig,eps(self.u,self.dim))*self.normal[0] ) * c) self.J.append( (- inner(sigma_n, grad(self.u)[:,1]) ) * c ) # for outer boundaries # self.J.append( (0.5*inner(self.sig,eps(self.u,self.dim))*self.normal[1] \ # - inner(sigma_n, grad(self.u)[:,0]) )('-') * c ) # for inner boundaries # Definition of energy derivatives self.DW_u = derivative(self.Wtot,self.u,self.u_) self.D2W_u = derivative(self.DW_u,self.u,self.du) self.DW_d = derivative(self.Wtot,self.d,self.d_) self.D2W_d = derivative(self.DW_d,self.d,self.dd) def set_problems(self): if not self.rigid_body_motion==[]: null_space = [interpolate(n, self.Vu).vector() for n in self.rigid_body_motion] # Make into unit vectors [normalize(n, 'l2') for n in null_space] # Create null space basis object self.null_space_basis = VectorSpaceBasis(null_space) # Setting up displacement-part linear solver # LinearVariationalProblem(lhs(self.D2W_u),replace(self.Wext,{self.u:self.u_}), self.u, self.bcs) if (self.mat.behaviour=='linear_elasticity'): self.load = self.set_load(self.u_) if (self.use_hybrid_solver): #self.solver_u = HybridLinearSolver(lhs(self.D2W_u),dot(self.load,self.u_)*self.ds,\ self.solver_u = HybridLinearSolver(lhs(self.D2W_u),self.load,\ self.u,bcs=self.bcs,parameters={"iteration_switch": 5,\ "user_switch": True},null_space_basis=self.null_space_basis) #not self.remesh or (self.niter>0)}) else: if (not self.mat.tension_compression_asymmetry): #self.problem_u = LinearVariationalProblem(lhs(self.D2W_u),dot(self.load,self.u_)*self.ds,self.u,self.bcs) self.problem_u = LinearVariationalProblem(lhs(self.D2W_u),self.load,self.u,self.bcs) self.solver_u = LinearVariationalSolver(self.problem_u) self.solver_u.parameters["linear_solver"] = "mumps" else: self.problem_u = NonlinearVariationalProblem(self.DW_u,self.u,self.bcs,J=self.D2W_u) self.solver_u = NonlinearVariationalSolver(self.problem_u) prm = self.solver_u.parameters prm['nonlinear_solver'] = 'newton' prm['newton_solver']['linear_solver'] = 'mumps' #'gmres' #'mumps' #'petsc' prm['newton_solver']['error_on_nonconvergence'] = False #True prm['newton_solver']['absolute_tolerance'] = 1E-9 prm['newton_solver']['relative_tolerance'] = 1E-8 prm['newton_solver']['maximum_iterations'] = 25 #10000 #25 prm['newton_solver']['relaxation_parameter'] = 1.0 prm['newton_solver']['lu_solver']['report'] = True #prm['newton_solver']['lu_solver']['reuse_factorization'] = False #prm['newton_solver']['lu_solver']['same_nonzero_pattern'] = False prm['newton_solver']['lu_solver']['symmetric'] = False prm['newton_solver']['krylov_solver']['error_on_nonconvergence'] = True prm['newton_solver']['krylov_solver']['absolute_tolerance'] = 1E-7 prm['newton_solver']['krylov_solver']['relative_tolerance'] = 1E-5 prm['newton_solver']['krylov_solver']['maximum_iterations'] = 1000 prm['newton_solver']['krylov_solver']['nonzero_initial_guess'] = True if prm['newton_solver']['linear_solver'] == 'gmres': prm['newton_solver']['preconditioner'] = 'ilu' #self.solver_u.parameters["newton_solver"]["linear_solver"] = "mumps" self.solver_d = PETScTAOSolver() self.solver_d.parameters["method"] = "tron" self.solver_d.parameters["line_search"] = "gpcg" self.solver_d.parameters["linear_solver"] = "cg" #"mumps" #"mumps" #'cg", "gltr", "gmres", "nash" #self.solver_d.parameters["preconditioner"] = "hypre_amg" self.solver_d.parameters["maximum_iterations"] = 5000 # self.solver_d.parameters["gradient_absolute_tol"] = self.staggered_solver["tol"] # self.solver_d.parameters["gradient_relative_tol"] = self.staggered_solver["tol"] # self.solver_d.parameters["gradient_t_tol"] = self.staggered_solver["tol"] self.solver_d.parameters["gradient_absolute_tol"] = 1.e-4 self.solver_d.parameters["gradient_relative_tol"] = 1.e-4 self.solver_d.parameters["gradient_t_tol"] = 1.e-4 #@profile def staggered_solve(self): DeltaE = 1. self.niter = 0 if(self.remesh == False): self.d_prev.assign(self.d) # boundary conditions for damage problem for bc in self.bc_d: bc.apply(self.d_lb.vector()) while (DeltaE>self.staggered_solver["tol"]) and (self.niter<self.staggered_solver["iter_max"]): if self.rank == 0: print(" Iteration %i "%(self.niter)) # u-solve : gives u_{n+1}^{pred} from d_{n} tic_u = time() if self.mat.behaviour=='linear_elasticity': count = self.solver_u.solve() self.sigma() else: self.solver_u.dt = self.dtime count = self.solver_u.solve(self.u.vector()) self.dissipated.vector().set_local(self.mb.data_manager.s1.dissipated_energies) self.dissipated.vector().apply("insert") self.stored.vector().set_local(self.mb.data_manager.s1.stored_energies) self.stored.vector().apply("insert") self.sigma() self.runtime_u += time() - tic_u if self.use_hybrid_solver: self.niter_iterative += count[0] self.niter_direct += count[1] else: self.niter_direct += 1 ''' # Update pos/neg indicators Eloc = strain2voigt(dot(self.mat.R,dot(eps(self.u,self.dim),self.mat.R.T))) #self.P1pos = Heav(Eloc[0]) self.P1pos.assign(local_project(Heav(Eloc[0]),self.V0)) #self.P2pos = Heav(Eloc[1]) self.P2pos.assign(local_project(Heav(Eloc[1]),self.V0)) #self.P3pos = Heav(Eloc[2]) self.P3pos.assign(local_project(Heav(Eloc[2]),self.V0)) # print("\nP1pos = ", np.sum(self.P1pos.vector()[:])) ''' # u-update # self.u_prev.assign(self.u) tic_assemble = time() Etot_old = assemble(self.Wtot) self.runtime_assemble += time() - tic_assemble # d-solve : gives d_{n+1}^{pred} from u^{n+1} #self.dold.assign(self.d) dam_prob = DamageProblem(self.Wtot,self.DW_d,self.D2W_d,self.d) tic_d = time() self.niter_TAO += self.solver_d.solve(dam_prob, self.d.vector(), self.d_lb.vector(), self.d_ub.vector())[0] self.runtime_d += time() - tic_d self.d_prev_iter.assign(self.d) # Energy computation tic_assemble = time() Etot = assemble(self.Wtot) self.runtime_assemble += time() - tic_assemble if (not Etot==0.): DeltaE = abs(Etot_old/Etot-1) else: DeltaE = abs(Etot_old - Etot) self.niter += 1 self.niter_tot += 1 if self.rank == 0: print(" Energy variation : %.5e"%(DeltaE)) # if self.save_intermediate == True: # self.user_postprocess() if self.mat.damage_dim==2 and self.no_residual_stiffness==True: d1,d2 = self.equalize_damage(self.d,self.d_ub,0.99) assign(self.d.sub(0),d1) assign(self.d.sub(1),d2) ''' # Update lower bound to account for irreversibility self.d_lb.assign(self.d) self.max_dincr = norm(self.d.vector()-self.d_prev.vector(),'linf') if (self.max_dincr==0.): self.max_dincr = self.desired_dincr/2. ''' # Update pos/neg indicators Eloc = strain2voigt(dot(self.mat.R,dot(eps(self.u,self.dim),self.mat.R.T))) #self.P1pos = Heav(Eloc[0]) self.P1pos.assign(local_project(Heav(Eloc[0]),self.V0)) #self.P2pos = Heav(Eloc[1]) self.P2pos.assign(local_project(Heav(Eloc[1]),self.V0)) #self.P3pos = Heav(Eloc[2]) self.P3pos.assign(local_project(Heav(Eloc[2]),self.V0)) # print("\nP1pos = ", np.sum(self.P1pos.vector()[:])) # print("\nP2pos = ", np.sum(self.P2pos.vector()[:])) def equalize_damage(self, d, d_ub, threshold): d1,d2 = self.d.split(deepcopy = True) d1_ub,d2_ub = d_ub.split(deepcopy = True) d1_ = d1.vector()[:] d2_ = d2.vector()[:] d1_ub_ = d1_ub.vector()[:] d2_ub_ = d2_ub.vector()[:] np.place(d1_, d2_>threshold, d1_ub_) np.place(d2_, d1_>threshold, d2_ub_) d1.vector()[:] = d1_ d2.vector()[:] = d2_ return d1, d2 def export_damage(self,t): tic_export = time() self.results.write(self.d,t) #self.results.write(self.d_eq_fiss,t) if ((not self.write_checkpoint_count % 10) and self.save_checkpoints): self.results.write_checkpoint(self.d,"Damage",t,append=True) self.write_checkpoint_count = 1 self.write_checkpoint_count += 1 self.runtime_export += time() - tic_export def export_J(self,t): tic_export = time() self.sigma() #os.system('rm %s' % self.prefix+"J_integral.xdmf") if (self.mat.behaviour=="linear_elasticity"): sigma = Function(self.Vsig,name="Stress") sigma.assign(local_project(self.sig,self.Vsig)) #, solver_type='cg', preconditioner_type='hypre_amg')) self.results.write(sigma,t) else: #sigma = Function(self.Vsig,name="Stress") #sigma.assign(local_project((1.-self.d)**2*self.sig,self.Vsig)) #self.results.write(sigma,t) self.results.write(self.solver_u.get_flux("Stress", project_on=("DG", 0)),t) #self.results.write((1.-self.d)**2*self.sig,t) self.J_results.write(self.u,t) self.J_results.write(self.sig,t) self.runtime_export += time() - tic_export def export_all(self,t): tic_export = time() self.sigma() if (self.mat.behaviour=="linear_elasticity"): sigma = Function(self.Vsig,name="Stress") sigma.assign(local_project(self.sig,self.Vsig)) self.results.write(sigma,t) else: #sigma = Function(self.Vsig,name="Stress") #sigma.assign(local_project((1.-self.d)**2*self.sig,self.Vsig)) #, solver_type='cg', preconditioner_type='hypre_amg')) #Vsig = TensorFunctionSpace(self.mesh, "DG", 0, shape=(3,3)) #sigma.assign(local_project(self.sig,Vsig)) #self.results.write(sigma,t) self.results.write(self.solver_u.get_flux("Stress", project_on=("DG", 0)),t) #self.results.write((1.-self.d)**2*self.sig,t) self.results.write(self.u,t) ##self.epspos.assign(local_project(dot(self.mat.R.T,dot(voigt2strain(self.mat.eps_crystal_pos),self.mat.R)),self.Vsig)) #, solver_type='cg', preconditioner_type='hypre_amg')) ##self.epsneg.assign(local_project(dot(self.mat.R.T,dot(voigt2strain(self.mat.eps_crystal_neg),self.mat.R)),self.Vsig)) #, solver_type='cg', preconditioner_type='hypre_amg')) ##self.results.write(self.epspos,t) ##self.results.write(self.epsneg,t) # write rotation matrix #self.R.assign(project(self.mat.R,self.Vr)) #, solver_type='cg', preconditioner_type='hypre_amg')) #self.results.write(self.R,t) self.results.write(self.mat.phi1,t) self.results.write(self.mat.Phi,t) self.results.write(self.mat.phi2,t) if (not self.mat.behaviour=='linear_elasticity'): for var in self.mb.get_internal_state_variable_names(): self.results.write(self.solver_u.get_state_variable(var,project_on=('DG',0)),t) #self.V1.assign(local_project(self.mat.R[0,:],self.VV)) #self.V2.assign(local_project(self.mat.R[1,:],self.VV)) #self.V3.assign(local_project(self.mat.R[2,:],self.VV)) #self.results.write(self.V1,t) #self.results.write(self.V2,t) #self.results.write(self.V3,t) #self.results.write(self.P1pos,t) #self.results.write(self.P2pos,t) #self.results.write(self.P3pos,t) #self.Efrac_field.assign(local_project(sum(self.Efrac),self.V0)) #self.results.write(self.Efrac_field,t) #self.stiffness.assign(local_project(self.mat.C,self.Vstiffness)) #self.results.write(self.stiffness,t) if ((not self.write_checkpoint_count % 10) and self.save_checkpoints): self.checkpoints.write_checkpoint(self.u,self.u.name(),t,append=True) self.runtime_export += time() - tic_export def solve(self): self.startup_message() #log = [[0]*13] if (self.rank==0): f = open(self.prefix+"results.txt","a") Jint_cols = '' if (not self.dsJ==[]): Jint_cols = "[15-%s]_J_integrals " % (16+len(self.dsJ)-1) f.write("#1_incr 2_time 3_F 4_Eel 5_Ed 6_Ep 7_Etot 8_niter 9_niter_tot 10_niter_TAO 11_niter_iterative 12_niter_direct 13_runtime 14_runtime_u 15_runtime_d "\ + Jint_cols + "[%s-%s]_Efrac_i " % (16+len(self.dsJ),16+len(self.dsJ)+self.mat.damage_dim-1) + "\n") f.close() if (not self.JIntegral==None): for contour in self.JIntegral.keys(): J_file = open(self.prefix+'J_integral_%s.txt' % contour,'a') J_file.write("#1_incr 2_time J_left J_bot J_right J_top J_tot\n") J_file.close() if (self.timings==True): f = open(self.prefix+"timings.txt","a") f.write("#1_incr 2_time 3_runtime_u 4_runtime_d 5_runtime_assemble "+\ "6_runtime_export 7_runtime_JIntegral 8_runtime_remeshing_mmg 9_runtime_remeshing_interpolation 10_runtime_tot "+\ "11_number_of_vertices\n") f.close() self.runtime = 0. #time() self.runtime_u = 0. self.runtime_d = 0. self.runtime_assemble = 0. self.runtime_export = 0. self.runtime_remeshing_mmg = 0. self.runtime_remeshing_interpolation = 0. self.runtime_JIntegral = 0. self.set_energies() self.set_problems() while (self.t < self.final_time): tic = time() if (self.remesh == False): self.dtime = max(self.dtime*self.desired_dincr/self.max_dincr,self.min_dtime) self.dtime = min(self.dtime,self.max_dtime) if ((self.t + self.dtime) > self.final_time): self.dtime = self.final_time - self.t if (self.incr==0): self.dtime = 0 for load in self.loads: load[1].t = self.t + self.dtime for uimp in self.Uimp: uimp.t = self.t + self.dtime if self.rank == 0: print( "Increment %i | Loading : %.5e"%(self.incr,self.t+self.dtime)) self.staggered_solve() if (self.use_remeshing): self.remeshing() if self.remesh == False: # Update lower bound to account for irreversibility self.d_lb.assign(self.d) self.max_dincr = norm(self.d.vector()-self.d_prev.vector(),'linf') if (self.max_dincr==0.): self.max_dincr = self.desired_dincr/2. self.t += self.dtime if ((not self.incr % self.incr_save) or (self.incr < 1)): if self.save_all: self.export_all(self.t/self.final_time) self.export_damage(self.t/self.final_time) if(not self.JIntegral==None): self.export_J(self.t/self.final_time) tic_assemble = time() F = assemble(self.resultant) Eel = assemble(self.Wel) Ed = assemble(self.Wfrac) Ep = 0. if (not self.mat.behaviour=="linear_elasticity"): Ep = assemble(self.Wdis) Etot = assemble(self.Wtot) Efrac = [assemble(Efrac_i*self.dx) for Efrac_i in self.Efrac] Jint=[] if (not self.J==[]): for j in self.J: Jint.append( assemble(j) ) self.runtime_assemble += time() - tic_assemble if ((not self.JIntegral==None) and self.rank==0): tic_JIntegral = time() for contour in self.JIntegral.keys(): if ((not self.incr % self.JIntegral[contour].incr_save) or (self.incr < 1)): self.JIntegral[contour].compute_J_integral(contour,self.incr, self.t) self.runtime_JIntegral += time() - tic_JIntegral self.runtime += time() - tic if (self.rank==0): log = ([self.incr,self.t,F,Eel,Ed,Ep,Etot,self.niter,self.niter_tot, \ self.niter_TAO,self.niter_iterative,self.niter_direct,self.runtime,\ self.runtime_u,self.runtime_d] + Jint + Efrac) f = open(self.prefix+"results.txt","a") f.write(' '.join(map(str, log))+"\n") f.close() if (self.timings==True): timings = ([self.incr,self.t,self.runtime_u,self.runtime_d,self.runtime_assemble,\ self.runtime_export,self.runtime_JIntegral,self.runtime_remeshing_mmg,self.runtime_remeshing_interpolation,self.runtime,\ self.num_vertices]) f = open(self.prefix+"timings.txt","a") f.write(' '.join(map(str, timings))+"\n") f.close() self.incr += 1 if (self.rank==0): f = open(self.prefix+"results.txt","a") f.write("# elapsed time in solve() = %.3f seconds\n" % self.runtime) f.write("# elapsed time in solve_u() = %.3f seconds\n" % self.runtime_u) f.write("# elapsed time in solve_d() = %.3f seconds\n" % self.runtime_d) f.write("# elapsed time in assemble() = %.3f seconds\n" % self.runtime_assemble) f.write("# elapsed time in export() = %.3f seconds\n" % self.runtime_export) f.write("# elapsed time in JIntegral() = %.3f seconds\n" % self.runtime_JIntegral) f.write("# elapsed time in remeshing_mmg() = %.3f seconds\n" % self.runtime_remeshing_mmg) f.write("# elapsed time in remeshing_interpolation() = %.3f seconds\n" % self.runtime_remeshing_interpolation) f.close() def remeshing(self): tic_remeshing_mmg = time() self.d_var = Function(self.Vd,name="Damage variation") self.d_var.vector()[:] = self.d.vector()[:] - self.d_ar.vector()[:] max_d_var = max(self.d_var.vector()) #norm(self.d_var.vector(),'linf') #max(self.d_var.vector()) self.comm.barrier() max_d_var = self.comm.allreduce(max_d_var, op=pyMPI.MAX) if (max_d_var > self.remeshing_criterion): #if (np.hstack(self.comm.allgather(self.d_var.compute_vertex_values())).max() > self.remeshing_criterion): self.remesh = True #self.d_var_smooth = filter_function(self.d,self.d_var,self.Vd,self.gaussian_filter_sigma,\ # self.mat.damage_dim,self.dim) #self.metric_field = np.array(self.d_var_smooth.compute_vertex_values()) self.metric = self.remesher.metric(self.metric,self.mat.damage_dim,self.d,self.Vd,self.remeshing_index) if (self.rank == 0): metric = meshio.xdmf.read(self.remesher.mesh_path+"metric_%s.xdmf" % self.remeshing_index).point_data["v:metric"][:,0] self.num_vertices = metric.size self.remesher.write_sol(metric,self.num_vertices,self.remeshing_index) geo_tmpl = 'mmg_tmp' self.remesher.remesh(self.dim,geo_tmpl,self.nbgrains,self.remeshing_index) xdmf = MeshioMsh2Xdmf(self.dim,self.remesher.mesh_path+self.remesher.mesh_file+'_remeshed_%s'\ % self.remeshing_index,extras='') xdmf.write_xdmf_mesh() xdmf.read_xdmf_mesh() self.mesh = xdmf.mesh #self.num_vertices = self.mesh.num_vertices() # NOK in parallel, use metric size insteadn.num self.mf = xdmf.mf self.facets = xdmf.facets self.mvc = xdmf.mvc self.dx = xdmf.dx self.normal = FacetNormal(self.mesh) hmin, hmax = self.mesh.hmin(), self.mesh.hmax() self.comm.barrier() hmin, hmax = self.comm.allreduce(hmin, op=pyMPI.MIN), self.comm.allreduce(hmax, op=pyMPI.MAX) if (self.rank == 0): print("max cell size =", hmax) print("min cell size =", hmin) self.runtime_remeshing_mmg += time() - tic_remeshing_mmg tic_remeshing_interpolation = time() for (boundary,marker) in list(zip(self.boundaries,self.markers)): boundary().mark(self.facets, marker) for (domain,domain_marker) in list(zip(self.domains,self.domains_markers)): domain().mark(self.mf, domain_marker) if (not self.dsJ==[]): mfJ = MeshFunction("size_t", self.mesh, 1) dsj = Measure("ds", subdomain_data=mfJ) #dSJ = Measure("dS", subdomain_data=mfJ) for (i,(Jcontour,Jmarker)) in enumerate(list(zip(self.jcontours,self.jmarkers))): Jcontour().mark(mfJ, Jmarker) self.dsJ[i] = dsj(Jmarker) self.ds = Measure("ds", subdomain_data=self.facets) self.mat = EXD(self.mat.dim,self.mat.damage_dim,self.mat.mp,\ self.mesh,self.mf,self.mat.geometry,behaviour=self.mat.behaviour,mfront_behaviour=self.mat.mfront_behaviour,\ damage_model=self.mat.damage_model,anisotropic_elasticity=self.mat.anisotropic_elasticity,\ damage_tensor=self.mat.damage_tensor) # Re-Definition of functions spaces self.Vu = VectorFunctionSpace(self.mesh, "CG", self.u_degree, dim=self.dim) if self.mat.damage_dim == 1: self.Vd = FunctionSpace(self.mesh, "CG", self.d_degree) else: self.Vd = VectorFunctionSpace(self.mesh, "CG", self.d_degree, dim=self.mat.damage_dim) self.V0 = FunctionSpace(self.mesh, "DG", 0) self.Vsig = TensorFunctionSpace(self.mesh, "CG", 1, shape=(3,3)) self.VV = VectorFunctionSpace(self.mesh, "DG", 0, dim=3) self.Vr = TensorFunctionSpace(self.mesh, "DG", 0, shape=(3,3)) #self.Vstiffness = TensorFunctionSpace(self.mesh, "CG", 1, shape=(6,6)) self.Vmetric = FunctionSpace(self.mesh, "CG", self.d_degree) self.u_ = TestFunction(self.Vu) self.du = TrialFunction(self.Vu) self.d_ = TestFunction(self.Vd) self.dd = TrialFunction(self.Vd) # Interpolation of functions onto the new function spaces tmp = self.u self.u = Function(self.Vu,name="Displacement") LagrangeInterpolator.interpolate(self.u,tmp) #tmp = self.u_prev #self.u_prev = Function(self.Vu,name="Previous displacement") #LagrangeInterpolator.interpolate(self.u_prev,tmp) tmp = self.d self.d = Function(self.Vd,name="Damage") LagrangeInterpolator.interpolate(self.d,tmp) tmp = self.d_prev self.d_prev = Function(self.Vd,name="Previous Damage") LagrangeInterpolator.interpolate(self.d_prev,tmp) tmp = self.d_prev_iter self.d_prev_iter = Function(self.Vd,name="Previous damage in staggered minimization") LagrangeInterpolator.interpolate(self.d_prev_iter,tmp) #tmp = self.dold #self.dold = Function(self.Vd,name="Old Damage") #LagrangeInterpolator.interpolate(self.dold,tmp) tmp = self.d_ub self.d_ub = Function(self.Vd,name="Damage upper bound") #LagrangeInterpolator.interpolate(self.d_ub,tmp) self.d_ub = self.mat.dub tmp = self.d_lb self.d_lb = Function(self.Vd,name="Lower bound d_n") LagrangeInterpolator.interpolate(self.d_lb,tmp) self.d_ar= Function(self.Vd,name="Damage field after remeshing") self.d_ar.vector()[:] = self.d.vector()[:] #LagrangeInterpolator.interpolate(self.d_ar,self.d) tmp = self.metric self.metric = Function(self.Vmetric,name="Remeshing metric") LagrangeInterpolator.interpolate(self.metric,tmp) #tmp = self.sig self.sig = Function(self.Vsig,name="Stress") self.eel = Function(self.Vsig,name="ElasticStrain") #LagrangeInterpolator.interpolate(self.sig,tmp) #tmp = self.V1 #self.V1 = Function(self.VV,name="V1") #LagrangeInterpolator.interpolate(self.V1,tmp) #tmp = self.V2 #self.V2 = Function(self.VV,name="V2") #LagrangeInterpolator.interpolate(self.V2,tmp) #tmp = self.V3 #self.V3 = Function(self.VV,name="V3") #LagrangeInterpolator.interpolate(self.V3,tmp) #tmp = self.R self.R = Function(self.Vr,name="Rotation matrix") #LagrangeInterpolator.interpolate(self.R,tmp) self.myBCS.Vu = self.Vu self.myBCS.Vd = self.Vd self.myBCS.facets = self.facets self.bcs, self.bc_d = self.myBCS.make_bcs(self.dim,self.mat.damage_dim) self.myResultant.u = self.u self.myResultant.d = self.d self.myResultant.P1pos = self.P1pos self.myResultant.P2pos = self.P2pos self.myResultant.P3pos = self.P3pos self.myResultant.ds = self.ds self.resultant = self.sig[1,1]*self.ds(5) #self.resultant = self.mat.sigma(self.u,self.d,self.P1pos,self.P2pos,self.P3pos)[1,1]*self.dsJ[3] #self.resultant = self.myResultant.make_resultant() #*Measure("ds", subdomain_data=self.facets) self.Wext = self.define_external_work() self.set_energies() self.set_problems() self.remeshing_index += 1 self.runtime_remeshing_interpolation += time() - tic_remeshing_interpolation else: self.remesh = False self.set_problems() #self.solver_u.params["user_switch"] = (not self.remesh) # def sigma(self): if (self.mat.behaviour=="linear_elasticity"): self.sig = self.mat.sigma(self.u,self.d,self.P1pos,self.P2pos,self.P3pos) else: s = self.solver_u.get_flux("Stress", project_on=("DG", 0)) if self.dim==2: sig = as_matrix([[s[0], s[3]/sqrt(2.), 0.],\ [s[3]/sqrt(2.), s[1], 0.],\ [0., 0., s[2]]]) else: sig = as_matrix([[s[0], s[3]/sqrt(2.), s[4]/sqrt(2.)],\ [s[3]/sqrt(2.), s[1], s[5]/sqrt(2.)],\ [s[4]/sqrt(2.), s[5]/sqrt(2.), s[2]]]) #self.sig.vector()[:] = sig.vector() #self.sig = Function(self.Vsig,name="Stress") self.sig.assign(local_project(sig, self.Vsig)) #self.sig *= (1.-self.d)**2 def eps_elas(self): if (not self.mat.behaviour=="linear_elasticity"): e = self.solver_u.get_state_variable("ElasticStrain", project_on=("DG", 0)) if self.dim==2: e = as_matrix([[e[0], e[3]/sqrt(2.), 0.],\ [e[3]/sqrt(2.), e[1], 0.],\ [0., 0., e[2]]]) else: e = as_matrix([[e[0], e[3]/sqrt(2.), e[4]/sqrt(2.)],\ [e[3]/sqrt(2.), e[1], e[5]/sqrt(2.)],\ [e[4]/sqrt(2.), e[5]/sqrt(2.), e[2]]]) self.eel.assign(local_project(e, self.Vsig)) def startup_message(self): if (self.rank==0): version, date = get_version_date(package_name='gradam') print(' ##################################################################\n',\ '########## gradam-%s ##########\n' % version,\ '########## <NAME> (C) ##########\n',\ '########## <EMAIL> ##########\n',\ '########## Installed on: %s ##########\n' % date,\ '##################################################################\n') # def user_postprocess(self): # if (self.niter % 10) ==0: # intermediate_loading = self.load_steps[self.incr-1]+self.niter/float(self.staggered_solver["iter_max"])*(self.load_steps[self.incr]-self.load_steps[self.incr-1]) # self.export_damage(intermediate_loading/self.final_time) # if self.save_all: # self.export_all(intermediate_loading/self.final_time) def local_project(v,V,u=None): dv = TrialFunction(V) v_ = TestFunction(V) a_proj = inner(dv, v_)*dx b_proj = inner(v, v_)*dx solver = LocalSolver(a_proj, b_proj) solver.factorize() if u is None: u = Function(V) solver.solve_local_rhs(u) return u else: solver.solve_local_rhs(u) return def gaussian_filter(v,sigma): values = v.vector()[:].T #recover values of d as numpy array values = sp.ndimage.filters.gaussian_filter(values, sigma, mode='constant') filtered = Function(v.function_space()) # generate a new function filtered.vector()[:] = values.T return filtered def filter_function(u,v,V,sigma,damage_dim,dim): xyz = V.tabulate_dof_coordinates() xyz = xyz.reshape((int(len(xyz)/damage_dim),damage_dim,dim))[:,0,:] x = xyz[:,0] y = xyz[:,1] #z = xyz[:,2] xmin, xmax = x.min(), x.max() ymin, ymax = y.min(), y.max() Ly, Lx = xmax-xmin, ymax-ymin # Lx and Ly are inverted volontarily N = x.shape[0] #zmin, zmax = z.min(), z.max() #grid_x, grid_y, grid_z = np.mgrid[xmin:xmax:(x.shape*1j), ymin:ymax:(y.shape*1j), zmin:zmax:(z.shape*1j)] # xi = range(x.shape[0]) #np.linspace(0,x.shape[0]) # yi = range(y.shape[0]) #np.linspace(0,y.shape[0]) grid_x, grid_y = np.mgrid[xmin:xmax:(int(((xmax-xmin)/(ymax-ymin))*np.sqrt(N*Lx/Ly))*1j), ymin:ymax:(int(((ymax-ymin)/(xmax-xmin))*np.sqrt(N*Ly/Lx))*1j)] #grid_x, grid_y = np.mgrid[xmin:xmax:(100*1j), ymin:ymax:(100*1j)] field = u.vector().get_local() field = field.reshape((int(len(field)/damage_dim),damage_dim)) field = LA.norm(field,ord=np.inf,axis=1) values = u.vector().get_local() values = values.reshape((int(len(values)/damage_dim),damage_dim)) values = LA.norm(values,ord=np.inf,axis=1) for (i,value) in enumerate(field): if (field[i]>0.5): values[i] = max(values[i],values.max()/10.) from scipy.interpolate import griddata image = griddata(xyz, values, (grid_x, grid_y), method='cubic') #nearest image = values.max()*image/image.max() image_filtered = sp.ndimage.filters.gaussian_filter(image, sigma, mode='constant') image_filtered = values.max()*image_filtered/image_filtered.max() # x_coords = {value: index for index, value in list(zip(xi,x))} # y_coords = {value: index for index, value in list(zip(yi,y))} # plt.imshow(image) values_filtered = np.zeros_like(values) q,p=image_filtered.shape for (i,(xic,yic)) in enumerate(list(zip(x,y))): #print(int(np.round(xic*(x.shape[0]-1))),int(np.round(yic*(y.shape[0]-1)))) values_filtered[i] = image_filtered[min(max(int(np.floor(((xic-xmin)/(ymax-ymin))*np.floor(np.sqrt(N*Lx/Ly)))),0),q-1),\ min(max(int(np.floor(((yic-ymin)/(xmax-xmin))*np.floor(np.sqrt(N*Ly/Lx)))),0),p-1)] # values_filtered[i] = image_filtered[int(np.floor(((xic-xmin)/(ymax-ymin))*np.sqrt(N-1))),\ # int(np.floor(((yic-ymin)/(xmax-xmin))*np.sqrt(N-1)))] # if (field[i]==1.): # values_filtered[i] = values.max() #values_filtered = image_filtered.T values_filtered[values_filtered<values_filtered.max()/100.]=0 # plt.imshow( griddata(xyz, values_filtered, (grid_x, grid_y), method='cubic') ) v_filtered = Function(v.function_space().sub(0).collapse()) # generate a new function v_filtered.vector()[:] = values_filtered return v_filtered ``` #### File: src/gradam/remesher.py ```python _author__ = "<NAME>" __license__ = "CC BY-SA 4.0" __email__ = "<EMAIL>" import os from dolfin import * import numpy as np import meshio from mpi4py import MPI as pyMPI import matplotlib.pyplot as plt from .hybrid_linear_solver import * # import subprocess class Remesher: def __init__(self,mesh_path='',mesh_file='',sol_file='',beta=None,delta=None,number_of_nodes_index=None,\ sol_min=None,sol_max=None,save_files=False): self.mesh_path = mesh_path self.mesh_file = mesh_file self.sol_file = sol_file self.beta = beta self.delta = delta self.number_of_nodes_index = number_of_nodes_index # index of the nodes number in msh files (depends on msh version) self.sol_min = sol_min self.sol_max = sol_max self.save_files = save_files def diffusion(self,v,V): dv = TrialFunction(V) v_ = TestFunction(V) a = dv*v_*dx + self.delta**2*dot(grad(dv), grad(v_))*dx L = v*v_*dx #inner(v, v_)*dx u = Function(V) solver_metric = HybridLinearSolver(a,L,u,bcs=[],parameters={"iteration_switch": 5,"user_switch": True}) #solve(a == L, u) if (MPI.rank(MPI.comm_world)==0): print("Solving the pseudo heat equation to compute the remeshing metric field") solver_metric.solve() return u def metric(self,previous_metric,damage_dim,d,Vd,remeshing_index): VV = Vd if (damage_dim>1): VV = Vd.sub(0).collapse() diffuse = Function(VV,name="Diffused damage") metric_field = Function(VV,name="v:metric") metric_field.vector()[:] = diffuse.vector()[:] if (damage_dim>1): for k in range(damage_dim): diffuse = self.diffusion(d.sub(k),VV) metric_field.vector()[:] = np.maximum(metric_field.vector()[:], diffuse.vector()[:]) #element wise maximum #or # += diffuse.compute_vertex_values() #sum else: diffuse = self.diffusion(d,VV) metric_field.vector()[:] = np.maximum(metric_field.vector()[:], diffuse.vector()[:]) mini, maxi = min(metric_field.vector()), max(metric_field.vector()) pyMPI.COMM_WORLD.barrier() mini, maxi = pyMPI.COMM_WORLD.allreduce(mini, op=pyMPI.MIN), pyMPI.COMM_WORLD.allreduce(maxi, op=pyMPI.MAX) metric_field.vector()[:] = (metric_field.vector()[:] - mini)/(max(maxi - mini,1.e-6)) metric_field.vector()[:] = np.maximum(metric_field.vector()[:], previous_metric.vector()[:]) #/!\ prevents mesh to coarsen xdmf = XDMFFile(pyMPI.COMM_WORLD, self.mesh_path+"metric_%s.xdmf" % remeshing_index) xdmf.write(metric_field) xdmf.close() return metric_field def write_uniform_sol(self,uniform_metric): s = open(self.mesh_path+self.mesh_file+'_remeshed_0.sol','w') f = open(self.mesh_path+self.mesh_file+'.msh', "r") lines = f.readlines() f.close() i = 0 number_of_nodes = 0 while (number_of_nodes==0): if lines[i].startswith("$Nodes"): number_of_nodes = int(lines[i+1].split()[self.number_of_nodes_index]) i+=1 s.write(\ 'MeshVersionFormatted 2\n\\n\Dimension 3\n\\n\SolAtVertices\n\%s\n\1 1\n\\n'%number_of_nodes) for i in range(number_of_nodes): s.write('%s\n' % uniform_metric) s.write('\nEND') s.close() def write_sol(self,metric_field,number_of_nodes,remeshing_index): ''' f = open(self.mesh_path+self.mesh_file+'_remeshed_%s.msh' % (remeshing_index-1), "r") lines = f.readlines() f.close() i = 0 number_of_nodes = 0 while (number_of_nodes==0): if lines[i].startswith("$Nodes"): number_of_nodes = int(lines[i+1].split()[self.number_of_nodes_index]) i+=1 ''' s = open(self.mesh_path+self.sol_file+'_remeshed_%s.sol' % (remeshing_index-1),'w') s.write('MeshVersionFormatted 2\n\nDimension 3\n\nSolAtVertices\n%s\n1 1\n\n'%number_of_nodes) for i in range(number_of_nodes): #new_sol = min( max( self.sol_max*(1. - 2.*metric_field[i]) , self.sol_min) , self.sol_max ) #new_sol = min( max( self.sol_max*(1. - 5.*metric_field[i]) , self.sol_min) , self.sol_max ) new_sol = max( self.sol_max*max((1. - self.beta*metric_field[i]),0.)**0.5 , self.sol_min) s.write( '%s\n' % format(new_sol, '.4f') ) s.write('\nEND') s.close() def remesh(self,dim,geo_tmpl,nbgrains,remeshing_index): if (remeshing_index==1): self.convert_msh2mesh(dim,remeshing_index-1) oldmesh = self.mesh_file+"_remeshed_%s" % (remeshing_index-1) newmesh = self.mesh_file+"_remeshed_%s" % (remeshing_index) #+1) medit = "" if (dim==2): medit = "-3dMedit %s" % dim command = "mmg%sd_O3 %s %s" % (dim,medit,self.mesh_path+oldmesh+'.mesh') print("\nCalling MMG to perform remeshing: %s \n" % command ) os.system(command) #subprocess.call(["mmg%sd_O3" % dim, "-3dMedit", "%s" % dim, "%s" % (mesh_path+oldmesh+'.mesh')] ) f = open(self.mesh_path+geo_tmpl+'.geo.tmpl','r') lines = f.readlines() f.close() geo = self.mesh_path+geo_tmpl+'.geo' out = open(geo,'w') for line in lines: new_line = line if "!oldmesh" in line: new_line = line.replace("!oldmesh",oldmesh) if "!newmesh" in line: new_line = line.replace("!newmesh",newmesh) if "!nbgrains" in line: new_line = line.replace("!nbgrains",str(nbgrains)) out.write(new_line) out.close() print("\nCalling GMSH inline to save MMG output as new mesh and future MMG input\n") os.system("gmsh -%s %s" % (dim,geo)) #subprocess.call(["gmsh", "-%s" % dim, "%s" % geo]) if (not self.save_files): self.cleanup_files(remeshing_index-1) def convert_msh2mesh(self,dim,remeshing_index): geo = self.mesh_path+'convert_0.geo' c = open(geo,'w') c.write('Merge "%s_remeshed_%s.msh";\n' % (self.mesh_file,remeshing_index)) c.write('Save "%s_remeshed_%s.mesh";' % (self.mesh_file,remeshing_index)) c.close() os.system("gmsh -%s %s" % (dim,geo)) def cleanup_files(self,remeshing_index): files = [f for f in os.listdir(self.mesh_path) if '_'+str(remeshing_index)+'.' in f] if (remeshing_index==0): files.remove(self.mesh_file+'_remeshed_0.msh') for f in files: os.system("rm %s%s" % (self.mesh_path,f)) #os.system("rm %s*_%s.*" % (self.mesh_path,remeshing_index)) ``` #### File: gradam/tests/single_crystal_tension.py ```python _author__ = "<NAME>" __license__ = "CC BY-SA 4.0" __email__ = "<EMAIL>" import numpy as np from dolfin import * from mshr import * from gradam import * set_log_level(40) # remove unnecessary console outputs # Create mesh mesh_folder = "meshes/" dim=2 refinement_level = 3 hole_spacing = 0 aspect_ratio = .01 L, W, R = 50., 1., 0.01 N = 150 if(0): domain = Rectangle(Point(0, 0), Point(L, W)) \ - Ellipse(Point(L/2-hole_spacing, 0.), R/aspect_ratio, R, 10) \ - Ellipse(Point(L/2+hole_spacing, W), R/aspect_ratio, R, 10) mesh = generate_mesh(domain, N) # mesh refinement for r in range(refinement_level): class CentralPart(SubDomain): def inside(self, x, on_boundary): return L/2-2.*(((1+1/aspect_ratio)*R)/2-hole_spacing) <= x[0] <= L/2+2.*(((1+1/aspect_ratio)*R)/2+hole_spacing) to_refine = MeshFunction("bool", mesh, 2) CentralPart().mark(to_refine, True) mesh = refine(mesh, to_refine) # plt.figure() # plot(mesh) # plt.show() xdmf_file = XDMFFile(MPI.comm_world, mesh_folder+"single_crystal_bar.xdmf") xdmf_file.write(mesh) #mesh_file = File(mesh_folder+"single_crystal_bar.xml") #mesh_file << mesh # Load mesh mesh_path = mesh_folder+"single_crystal_bar" #mesh = Mesh(mesh_path+".xml") xdmf_file = XDMFFile(MPI.comm_world, mesh_path+".xdmf") mesh = Mesh() xdmf_file.read(mesh) print("number cells =", mesh.num_cells()) print("max cell size =", mesh.hmax()) # Define boundaries and boundary integration measure facets = MeshFunction("size_t", mesh, 1) facets.set_all(0) class Left(SubDomain): def inside(self, x, on_boundary): return near(x[0], 0) class Right(SubDomain): def inside(self, x, on_boundary): return near(x[0], L) class Bottom(SubDomain): def inside(self, x, on_boundary): return near(x[1], 0) class Top(SubDomain): def inside(self, x, on_boundary): return near(x[1], W) class Crack(SubDomain): def inside(self, x, on_boundary): return True if near(x[0],L/2,0.02) and near(x[1],W/2,0.02) else False Left().mark(facets, 1) Right().mark(facets, 2) Bottom().mark(facets, 3) Top().mark(facets, 4) Crack().mark(facets, 5) # make MeshFunction for grain(s) subdomain(s) one_func = MeshFunction("size_t",mesh,2) for cell in cells(mesh): one_func[cell] = 1 mf = one_func dx = Measure("dx", subdomain_data=mf) # define material parameters damage_tensor = True q_, p_ = 1., .5 q, p = Constant(q_), Constant(p_) gamma_, r_ = 4.0, 0.0 gamma, r = Constant(gamma_), Constant(r_) zener = 1. E_, nu_ = 200., 0.3 G_ = zener*E_/(2.*(1.+nu_)) E = [E_]*1 nu = [nu_]*1 G = [G_]*1 # damage model parameters damage_dim = 2 l0_= 4.e-1 l0 = [[l0_]*damage_dim]*1 Gc_= 1.e-1 Gc = [[Gc_]*damage_dim]*1 dub = [[.99]*damage_dim]*1 # make the fracture toughness anisotropy tensor B(3x3) in the crystal frame I_ = np.eye(3) I = as_tensor(I_) if (damage_dim==1): B_crystal = I else: B_crystal = [] D_crystal = [] alp = 0. # set a value > 0 to use the AFE model alpha = Constant(alp) M_ = [[1., 0., 0.], [0.,1.,0]] M = [as_vector([1., 0., 0.]), as_vector([0.,1.,0])] P = [ [[0., 1., 0.],[0., 0., 1.]], [[0., 0., 1.],[1., 0., 0.]] ] if dim == 3: M_.append([0., 0., 1.]) M.append(as_vector([0., 0., 1.])) P.append([[1., 0., 0.],[0., 1., 0.]]) for n in range(damage_dim): B_crystal.append(as_tensor(I) + alpha*(as_tensor(I) - outer(M[n],M[n]))) D_crystal.append(0.5*( np.einsum('ij,kl->ikjl',I_,I_) + np.einsum('ij,kl->iljk',I_,I_) ) -\ np.einsum('i,j,k,l->ijkl',M_[n],M_[n],M_[n],M_[n]) -\ np.einsum('i,j,k,l->ijkl',M_[n],P[n][0],M_[n],P[n][0]) -\ np.einsum('i,j,k,l->ijkl',M_[n],P[n][1],M_[n],P[n][1]) -\ np.einsum('i,j,k,l->ijkl',P[n][0],M_[n],P[n][0],M_[n]) -\ np.einsum('i,j,k,l->ijkl',P[n][1],M_[n],P[n][1],M_[n]) ) # initialize material model class material_parameters = {"E":E, "nu":nu, "G":G, "Gc":Gc, "l0": l0,\ "B_crystal": B_crystal, "D_crystal": D_crystal, "dub": dub} mat = EXD(dim,damage_dim,material_parameters,mesh,mf,mesh_path,damage_model="AT1",\ damage_tensor=[damage_tensor,q,p,'Lorentz',gamma,r]) suffix = mat.__class__.__name__ mat.anisotropic_degradation = True # set this to False and alp>0 to use the AFE model #mat.tension_compression_asymmetry = False #True # not implemented yet # initialize problem class save_folder = "TensionLocalized/" # The path must exist problem = FractureProblem(mesh,facets,mat,save_folder,load=Constant((0.,)*dim)) problem.max_dtime = 1.e-2 problem.final_time = 2. problem.use_hybrid_solver = True # setup boundary conditions problem.Uimp = [Expression("t", t=0, degree=0)] problem.bcs = [DirichletBC(problem.Vu.sub(0), Constant(0.), facets, 1), DirichletBC(problem.Vu.sub(0), problem.Uimp[0], facets, 2)] problem.bc_d = [DirichletBC(problem.Vd.sub(0), Constant(.01), facets, 5)] # compute resultant force problem.ds = Measure('ds')(subdomain_data=facets) problem.resultant = problem.mat.sigma(problem.u,problem.d,problem.P1pos,problem.P2pos,problem.P3pos)[0,0]*problem.ds(2) # Increase staggered solver accuracy problem.staggered_solver["tol"]=1e-6 # solve problem if (not os.path.isfile(save_folder+"output.xdmf")): print("START") problem.solve() else: print("Please remove data from %s to launch a new simulation" % save_folder) ```
{ "source": "jeanmichelscherer/mef90", "score": 3 }
#### File: mef90/bin/exoProject2D.py ```python def parse(): import argparse parser = argparse.ArgumentParser() parser.add_argument("inputFile", help = "The name of the exodus file to fix.", type = str) parser.add_argument("outputFile", help = "The name of the exodus file to be written.", type = str) args = parser.parse_args() return args def main(): import sys if sys.version_info.major == 3: import exodus3 as exo else: import exodus2 as exo import numpy as np options = parse() print options exoin = exo.exodus(options.inputFile,mode='r') numNodes = exoin.num_nodes() numElems = exoin.num_elems() numBlocks = exoin.num_blks() numNodeSets = exoin.num_node_sets() exoout=exo.exodus(options.outputFile, mode='w',title=exoin.title(),numDims=2,numNodes=numNodes, numElems=numElems,numBlocks=numBlocks,numNodeSets=numNodeSets,numSideSets=0) exoout.put_coord_names(exoin.get_coord_names()[0:2]) coord = exoin.get_coords() exoout.put_coords(coord[0],coord[1],coord[2]) # cell sets blkids = exoin.get_elem_blk_ids() for id in blkids: blkName = exoin.get_elem_blk_name(id) (elemType,numElemInBlock,numNodesPerElem,numAttr) = exoin.elem_blk_info(id) exoout.put_elem_blk_info(id,elemType,numElemInBlock,numNodesPerElem,0) #ignoring attributes exoout.put_elem_connectivity(id,exoin.get_elem_connectivity(id)[0]) # node sets setids = exoin.get_node_set_ids() for id in setids: # e.get_node_set_params() -> get number of nodes and distribution factors numNodes,numDistFactors = exoin.get_node_set_params(id) exoout.put_node_set_params(id,numNodes,numDistFactors) exoout.put_node_set_name(id,exoin.get_node_set_name(id)) exoout.put_node_set(id,exoin.get_node_set_nodes(id)) exoin.close() ### Adding a QA record, needed until visit fixes its exodus reader import datetime import os.path import sys QA_rec_len = 32 QA = [os.path.basename(sys.argv[0]),os.path.basename(__file__),datetime.date.today().strftime('%Y%m%d'),datetime.datetime.now().strftime("%H:%M:%S")] exoout.put_qa_records([[ q[0:31] for q in QA],]) exoout.close() if __name__ == "__main__": import sys sys.exit(main()) ``` #### File: python/pymef90/energies.py ```python def plot(energies, showwork=False): import matplotlib.pyplot as plt plt.plot(energies[:,1], energies[:,2], 'r-', label='Elastic energy') if showwork: plt.plot(energies[:,1], energies[:,3], 'k-', label='External Forces') plt.plot(energies[:,1], energies[:,4], 'g-', label='Surface energy') plt.plot(energies[:,1], energies[:,5], 'b-', label='Total energy', lw=2) plt.grid() plt.legend(loc=0) plt.xlabel('t') plt.ylabel('Energy') plt.title('Energies vs normalized time') ### return 0 def getlaststep2(fname): ### open file f=open(fname) ### Read last line in a string lastline = f.readlines()[-1] laststep = lastline.rsplit()[0] return(int(laststep)) def getlaststep(fname): import numpy as np ### open file ener = np.readtxt(fname) print(ener[-1]) return ener[-1][0] def save(fname, energies): import numpy as np np.savetxt(fname, energies, fmt='%7d %13.5E %13.5E %13.5E %13.5E %13.5E %13.5E') def fixBT(energies, laststep=None): import numpy as np ### if laststep == None: laststep = int(energies[-1,0]) else: laststep = min(int(energies[-1,0]), int(laststep)) maxstep = energies.shape[0] ### energiesBT = np.zeros([laststep,energies.shape[1]]) ### i = 0 while True: step = energies[i,0] energiesBT[step-1,:] = energies[i,:] i += 1 if step == laststep or i >= maxstep: break return energiesBT def computeG(t, Eel, l): import numpy as np ### G = -(Eel[1:]/np.power(t[1:],2)-Eel[:-1]/np.power(t[:-1],2)) / (l[1:]-l[:-1]) ### return G def ReadCompositeEnergies(prefix, stepmin=None, stepmax=None): import numpy as np ### toughness = np.loadtxt(prefix+'.CST', skiprows=1, usecols=[1]) all_energies = [] for blk in range(toughness.shape[0]): blkfile="%s-%.4i.enerblk" % (prefix, blk+1) all_energies.append(np.loadtxt(blkfile)) ### if stepmin == None: tmin = 0 else: tmin = int(stepmin) if stepmax == None: tmax = all_energies[0].shape[0] else: tmax = int(stepmax) ### Eel = np.sum(e[tmin:tmax,2] for e in all_energies) l = np.sum(e[tmin:tmax,4]/k for (e,k) in zip(all_energies, toughness)) t = all_energies[0][tmin:tmax,1] return Eel, l, t, toughness def ReadCompositeEnergiesBT(prefix, laststep=None): import numpy as np ### toughness = np.loadtxt(prefix+'.CST', skiprows=1, usecols=[1]) all_energies = [] for blk in range(toughness.shape[0]): blkfile="%s-%.4i.enerblk" % (prefix, blk+1) all_energies.append(np.loadtxt(blkfile)) ### ### Compute last step and larger step ### if laststep == None: laststep = int(all_energies[0][-1,0]) else: lasstep = min(int(laststep), int(all_energies[0][-1,0])) maxstep = all_energies[0].shape[0] ### ### Initialize all_energies_BT ### all_energiesBT=[] for e in all_energies: all_energiesBT.append(np.zeros([int(laststep),e.shape[1]])) ### ### Remove redundant computations ### i = 0 while True: step = all_energies[0][i,0] for (energiesBT, energies) in zip(all_energiesBT, all_energies): energiesBT[step-1,:] = energies[i,:] i += 1 if step == int(laststep) or i >= maxstep: break ### ### Extract Elastic Energy, length, time, toughness ## Eel = np.sum(e[:,2] for e in all_energiesBT) l = np.sum(e[:,4]/k for (e,k) in zip(all_energiesBT, toughness)) t = all_energiesBT[0][:,1] return Eel, l, t, toughness ``` #### File: python/pymef90/jobs.py ```python def HookeLawIsotropicEnu3D(E,nu): lmbda = E * nu / (1. + nu) / (1. - 2. * nu) mu = E / (1. + nu) * .5 A=(lmbda + 2. * mu,lmbda, lmbda, 0.,0.,0., lmbda + 2. * mu,lmbda, 0.,0.,0., lmbda + 2.*mu, 0.,0.,0., mu,0.,0., mu,0., mu) return(A) def HookeLawIsotropicEnu2DPlainStress(E,nu): lmbda = E * nu / (1. - nu*nu) mu = E / (1. + nu) * .5 A=(lmbda + 2. * mu,lmbda, 0., lmbda + 2. * mu,0., mu) return(A) def HookeLawIsotropicEnu2DPlainStrain(E,nu): lmbda = E * nu / (1. + nu) / (1. - 2. * nu) mu = E / (1. + nu) * .5 A=(lmbda + 2. * mu,lmbda, 0., lmbda + 2. * mu,0., mu) return(A) def PrepareJob(Geometry,Parameters,debug=False): import hashlib import shutil import os import sys Parameters['hash'] = hashlib.sha1(repr(Geometry).encode('utf-8')).hexdigest() if os.getenv('PBS_JOBID'): Parameters['jobid'] = os.getenv('PBS_JOBID') elif os.getenv('JOB_ID'): Parameters['jobid'] = os.getenv('JOB_ID') elif os.getenv('SLURM_JOB_ID'): Parameters['jobid'] = os.getenv('SLURM_JOB_ID') else: Parameters['jobid'] = '0000' ### ### Create a long file prefix if necessary ### #if Parameters['prefix']: # for k in sorted(Geometry.keys()): # Parameters['prefix'] +='-%s_%s'%(k,Geometry[k]) #else: # Parameters['prefix'] = Parameters['jobid'] if not Parameters['prefix']: Parameters['prefix'] = Parameters['jobid'] ### ### Find where the script was submitted from ### if os.getenv('PBS_O_WORKDIR'): # We are runnning inside a PBS job submitdir = os.getenv('PBS_O_WORKDIR') elif os.getenv('SGE_O_WORKDIR'): # We are running inside a SGE job submitdir = os.getenv('SGE_O_WORKDIR') elif os.getenv('SLURM_SUBMIT_DIR'): # We are running inside a SLURM/SBATCH job submitdir = os.getenv('SLURM_SUBMIT_DIR') else: # We are running in interactive mode submitdir = os.getcwd() ### ### Set workdir ### if Parameters['workdir']: ### ### Try to figure out if workdir is a relative or absolute path ### if not Parameters['workdir'][0] == '/': Parameters['workdir'] = os.path.join(submitdir,Parameter['workdir']) else: if os.getenv('PBS_O_WORKDIR'): # We are runnning inside a PBS job Parameters['workdir'] = os.path.join(os.getenv('PBS_O_WORKDIR'),Parameters['jobid']) elif os.getenv('SGE_O_WORKDIR'): # We are running inside a SGE job Parameters['workdir'] = os.path.join(os.getenv('SGE_O_WORKDIR'),Parameters['jobid']) elif os.getenv('SLURM_SUBMIT_DIR'): # We are running inside a SBATCH / SRUN job Parameters['workdir'] = os.path.join(os.getenv('SLURM_SUBMIT_DIR'),Parameters['jobid']) else: # We are running in interactive mode Parameters['workdir'] = os.path.join(os.getcwd(),Parameters['jobid']) ### ### Find the argument file ### Try absolute path then submission directory, then script directory ### for root in ['/',submitdir,os.path.dirname(os.path.abspath(__file__))]: if debug: print ('searching for yamlfile in {0}'.format(root)) if os.path.isfile(os.path.join(root,Parameters['yamlfile'])): Parameters['yamlfile'] = os.path.join(root,Parameters['yamlfile']) break ### ### Find the meshes location ### Try absolute path then submission directory, then script directory ### if 'meshdir' in Parameters.keys(): for root in ['/',submitdir,os.path.dirname(os.path.abspath(__file__))]: if debug: print ('searching for meshdir in {0}'.format(root)) if os.path.isdir(os.path.join(root,Parameters['meshdir'])): Parameters['meshdir'] = os.path.join(root,Parameters['meshdir']) break if not os.path.isdir(Parameters['meshdir']): os.makedirs(Parameters['meshdir']) sys.exit(-1) Parameters['MEF90_DIR'] = os.getenv("MEF90_DIR") Parameters['PETSC_DIR'] = os.getenv("PETSC_DIR") Parameters['PETSC_ARCH'] = os.getenv("PETSC_ARCH") Parameters['scriptdir'] = os.path.dirname(os.path.abspath(__file__)) return Parameters ``` #### File: python/pymef90/parse.py ```python import yaml import argparse def parse(parser,key=None): args = parser.parse_args() if key: arg_dict = args.__dict__ if arg_dict[key]: print('WARNING: reading options from YAML file. Duplicate and positional command line options will be ignored. \n') data = yaml.load(arg_dict[key],Loader=yaml.FullLoader) # replace the file object with its name arg_dict[key] = arg_dict[key].name # optional and positional arguments for group in parser._action_groups: if group.title in ['optional arguments', 'positional arguments']: for key, value in data.items(): if not isinstance(value, dict): arg_dict[key] = value # groups for group in parser._action_groups: if group.title in data.keys(): for key, value in data[group.title].items(): if isinstance(value, list): for v in value: arg_dict[key].append(v) else: arg_dict[key] = value return args def parseGroup(parser,args,groupName): for group in parser._action_groups: if group.title == groupName: return argparse.Namespace(**{a.dest:getattr(args,a.dest,None) for a in group._group_actions}) return argparse.Namespace() ``` #### File: jeanmichelscherer/mef90/vDefTempBC.py ```python import sys def parse(args=None): import argparse ### Get options from the command line parser = argparse.ArgumentParser(description='Compute boundary displacement for a surfing computation') parser.add_argument('-i','--inputfile',help='input file',default=None) parser.add_argument('-o','--outputfile',help='output file',default=None) parser.add_argument("--time_min",type=float,help="first time step",default=0.) parser.add_argument("--time_max",type=float,help="last time step",default=1.) parser.add_argument("--time_numstep",type=int,help="number of time step",default=11) parser.add_argument("--tmin",type=float,help="Min. Temp.",default=20.) parser.add_argument("--tmax",type=float,help="Max. Temp.",default=60.) parser.add_argument("--lc",type=float,help="Characteristic width",default=.1) return parser.parse_args() def exoformat(e): global_variable_name = ["Elastic Energy","Work","Surface Energy","Total Energy"] if e.num_dimensions() == 2: node_variable_name = ["Temperature","Damage","Displacement_X","Displacement_Y"] element_variable_name = ["External_Temperature","Heat_Flux","Pressure_Force", "Force_X","Force_Y", "Stress_XX","Stress_YY","Stress_XY"] else: node_variable_name = ["Temperature","Damage","Displacement_X","Displacement_Y","Displacement_Z"] element_variable_name = ["External_Temperature","Heat_Flux","Pressure_Force", "Force_X","Force_Y","Force_Z", "Stress_XX","Stress_YY","Stress_ZZ","Stress_YZ","Stress_XZ","Stress_XY"] e.set_global_variable_number(0) e.set_node_variable_number(len(node_variable_name)) for i in range(len(node_variable_name)): e.put_node_variable_name(node_variable_name[i],i+1) e.set_element_variable_number(len(element_variable_name)) for i in range(len(element_variable_name)): e.put_element_variable_name(element_variable_name[i],i+1) e.set_element_variable_truth_table([True] * e.numElemBlk.value * len(element_variable_name)) return(0) def cart2polar(x, y): import numpy as np r = np.sqrt(x**2 + y**2) theta = np.arctan2(y, x) return r, theta def surfingBC(e,t,Xc,cslist,vslist,E,nu,ampl): import exodus as exo import numpy as np kappa = (3.0-nu)/(1.0+nu) mu = E / (1. + nu) * .5 dim = e.num_dimensions() X,Y,Z=e.get_coords() U = np.zeros([3,len(X)],dtype=exo.c_double) csoffset = [e.elem_blk_info(set)[1] for set in cslist] for set in get_elem_blk_ids: connect = e.get_elem_connectivity(set) for cid in range(connect[1]): vertices = [connect[0][cid*connect[2]+c] for c in range(connect[2])] for v in vertices: r,theta = cart2polar(X[v-1]-Xc[0]-t,Y[v-1]-Xc[1]) z = Z[v-1]-Xc[2] U[0,v-1] = ampl * np.sqrt(r / np.pi * .5) / mu * .5 * np.cos(theta * .5) * (kappa - np.cos(theta)) U[1,v-1] = ampl * np.sqrt(r / np.pi * .5) / mu * .5 * np.sin(theta * .5) * (kappa - np.cos(theta)) U[2,v-1] = 0.0 for set in vslist: for v in e.get_node_set_nodes(set): r,theta = cart2polar(X[v-1]-xc-t,Y[v-1]-yc) z = Z[v-1] U[0,v-1] = ampl * np.sqrt(r / np.pi * .5) / mu * .5 * np.cos(theta * .5) * (kappa - np.cos(theta)) U[1,v-1] = ampl * np.sqrt(r / np.pi * .5) / mu * .5 * np.sin(theta * .5) * (kappa - np.cos(theta)) U[2,v-1] = 0.0 return U def temperature(e,time,Tmin,Tmax,lc): import exodus as exo import numpy as np dim = e.num_dimensions() X,Y,Z=e.get_coords() T = np.zeros([len(X)],dtype=exo.c_double) for set in e.get_elem_blk_ids(): connect = e.get_elem_connectivity(set) for cid in range(connect[1]): vertices = [connect[0][cid*connect[2]+c] for c in range(connect[2])] for v in vertices: x = np.abs(X[v-1]) if x > lc: T[v-1] = Tmin else: T[v-1] = Tmin + (time*(Tmax - Tmin)) * (lc-x) / lc return T def main(): import exodus as exo import numpy as np options = parse() print options.inputfile exoin = exo.exodus(options.inputfile,mode='r') exoout = exoin.copy(options.outputfile) exoin.close() exoformat(exoout) dim = exoout.num_dimensions() step = 0 for t in np.linspace(options.time_min,options.time_max,options.time_numstep): print "writing step",step+1,t exoout.put_time(step+1,t) T = temperature(exoout,t,options.tmin,options.tmax,options.lc) X,Y,Z=exoout.get_coords() exoout.put_node_variable_values("Temperature",step+1,T) step += 1 exoout.close() ### ### compute boundary displacement at vertex sets ### if __name__ == "__main__": sys.exit(main()) ```
{ "source": "jeanmidevacc/french-presidential-election-2022-data-collecter", "score": 2 }
#### File: jeanmidevacc/french-presidential-election-2022-data-collecter/google_trends_collecter.py ```python import json from datetime import datetime from time import sleep import pandas as pd import argparse import boto3 import os from pytrends.request import TrendReq def set_job(): parser = argparse.ArgumentParser(description='Collect tweets') parser.add_argument('--configuration', type=str, help='Configuration file for the job', default="./configuration.json") parser.add_argument('--candidates', type=str, help='Configuration file for the job', default="./candidates.json") parser.add_argument('--area', type=str, help='area for study', default="fr") parser.add_argument('--period', type=str, help='time period', default="hourly") args = parser.parse_args() with open(args.configuration) as f: configuration = json.load(f) with open(args.candidates) as f: candidates = json.load(f) return configuration, candidates, args.area, args.period file_extension = ".csv.gz" if __name__ == '__main__': configuration, candidates, area, period = set_job() date_collect = datetime.utcnow().strftime("%Y%m%d_%H%M") partition = datetime.utcnow().strftime('%Y%m%d') timeframe = "now 1-H" prefix = "" wait_time = 5 if period == "daily": timeframe = "now 1-d" prefix = "daily_" wait_time = 60 elif period == "weekly": timeframe = "now 7-d" prefix = "weekly_" wait_time = 60 s3_client = boto3.client('s3', aws_access_key_id=configuration["aws"]["key"], aws_secret_access_key=configuration["aws"]["secret"]) if area == "fr": pytrends = TrendReq(hl='fr-FR', tz=360, timeout=(5,10)) else: pytrends = TrendReq(tz=360, timeout=(5,10)) for key, item in candidates.items(): print(key, item["name"]) kw_list = [item["name"]] file_name = f"{key}_{date_collect}{file_extension}" if area == "fr": pytrends.build_payload(kw_list, cat=0, timeframe=timeframe, geo='FR') else: pytrends.build_payload(kw_list, cat=0, timeframe=timeframe) # Get the interest over time dfp_iot = pytrends.interest_over_time() if len(dfp_iot) > 0: dfp_iot.columns = ["interest", "is_partial"] dfp_iot.reset_index(inplace=True) dfp_iot["candidate"] = key dfp_iot["date_collect"] = date_collect dfp_iot.to_csv("tmp_iot.csv.gz", index=None) # Upload the file to s3 response = s3_client.upload_file("tmp_iot.csv.gz", configuration["aws"]["bucket"], f'data/raw/google_trends/{area}/{prefix}interest_over_time/{partition}/{file_name}') # Get the interest on region dfp_ibr = pytrends.interest_by_region(resolution='COUNTRY', inc_low_vol=True, inc_geo_code=False) if len(dfp_ibr) > 0: dfp_ibr.columns = ["interest"] dfp_ibr.reset_index(inplace=True) dfp_ibr["candidate"] = key dfp_ibr["date_collect"] = date_collect dfp_ibr.to_csv("tmp_ibr.csv.gz", index=None) # Upload the file to s3 response = s3_client.upload_file("tmp_ibr.csv.gz", configuration["aws"]["bucket"], f'data/raw/google_trends/{area}/{prefix}interest_by_region/{partition}/{file_name}') dict_related_topics = pytrends.related_topics() for key_rt, dfp_rt in dict_related_topics[kw_list[0]].items(): if isinstance(dfp_rt, pd.DataFrame): dfp_rt["candidate"] = key dfp_rt["date_collect"] = date_collect dfp_rt.to_csv("tmp_rt.csv.gz", index=None) # Upload the file to s3 response = s3_client.upload_file("tmp_rt.csv.gz", configuration["aws"]["bucket"], f'data/raw/google_trends/{area}/{prefix}related_topics_{key_rt}/{partition}/{file_name}') dict_related_queries = pytrends.related_queries() for key_rq, dfp_rq in dict_related_queries[kw_list[0]].items(): if isinstance(dfp_rq, pd.DataFrame): dfp_rq["candidate"] = key dfp_rq["date_collect"] = date_collect dfp_rq.to_csv("tmp_rq.csv.gz", index=None) # Upload the file to s3 response = s3_client.upload_file("tmp_rq.csv.gz", configuration["aws"]["bucket"], f'data/raw/google_trends/{area}/{prefix}related_queries_{key_rq}/{partition}/{file_name}') sleep(wait_time) # break ```
{ "source": "jeanmira/Trabalho-sobre-metodos-numericos", "score": 3 }
#### File: jeanmira/Trabalho-sobre-metodos-numericos/main.py ```python import matplotlib.pyplot as plt import biblioteca as bib import numpy as np # -----------------------------------------------------------------------------# def f(s, a): fi, r, z = a bo = 0.4 if(s != 0): return np.array([2-bo*z-np.sin(fi)/r, np.cos(fi), np.sin(fi)]) else: return np.array([2-bo*z, np.cos(fi), np.sin(fi)]) # Método numérico de Euler se, re = bib.edoEuler(f, (0, 0, 0), 0, 400, 0.01) # Método numérico de Heun sh, rh = bib.edoHeun(f, (0, 0, 0), 0, 400, 0.01) # Método numérico de Runge-Kutta sr, rr = bib.edoRungeKutta(f, (0, 0, 0), 0, 400, 0.01) # Método numérico de Runge-Kutta-Fehlberg sf, rf = bib.edoRungeKuttaFehlberg( f, (0, 0, 0), 0, 52, 0.01, 10 ** -3, 4, 0.1) # bib.planilha(400, se, re, sh, rh, sr, rr, sf, rf) bib.grafico(se, re, sh, rh, sr, rr, sf, rf) # bib.gota(re, rh, rr, rf) ```
{ "source": "jeanmonet/html_form_to_dict", "score": 3 }
#### File: html_form_to_dict/tests/test_html_form_to_dict.py ```python import pytest from html_form_to_dict import html_form_to_dict def test_html_form_to_dict__empty(): html = ''' <form> <input type="text" name="my-input"> <textarea name="my-textarea">\n</textarea> </form>''' assert html_form_to_dict(html) == {'my-input': '', 'my-textarea': ''} def test_html_form_to_dict__with_value(): html = ''' <form> <input type="text" name="my-input" value="my-input-value"> <textarea name="my-textarea">\nmy-textarea-value</textarea> <input type="checkbox" name="my-checkbox" value="my-checkbox-value" checked> </form>''' assert html_form_to_dict(html) == {'my-input': 'my-input-value', 'my-textarea': 'my-textarea-value', 'my-checkbox': 'my-checkbox-value', } def test_html_form_to_dict__checkboxes_checked(): html = ''' <form> <input type="checkbox" name="my-checkbox" value="v1" checked> <input type="checkbox" name="my-checkbox" value="v2" checked> </form>''' assert html_form_to_dict(html) == { 'my-checkbox': ['v1', 'v2'], } def test_html_form_to_dict__checkboxes_unchecked(): html = ''' <form> <input type="checkbox" name="my-checkbox" value="v1"> <input type="checkbox" name="my-checkbox" value="v2"> </form>''' assert html_form_to_dict(html) == {'my-checkbox': []} def test_html_form_to_dict__unknown_key(): html = ''' <form> <input type="checkbox" name="name" value="value"> </form>''' data = html_form_to_dict(html) with pytest.raises(KeyError): data['typo'] def test_html_form_to_dict__select_single(): html = ''' <form> <select name="cars" id="cars"> <option value="volvo">Volvo</option> <option value="saab" selected>Saab</option> <option value="mercedes">Mercedes</option> </select> <form> ''' assert html_form_to_dict(html) == {'cars': 'saab'} def test_html_form_to_dict__select_multiple(): html = ''' <form> <select name="cars" id="cars" multiple> <option value="volvo" selected>Volvo</option> <option value="saab">Saab</option> <option value="mercedes" selected>Mercedes</option> </select> <form> ''' assert html_form_to_dict(html) == {'cars': ['volvo', 'mercedes']} def test_form_by_index_name_or_id(): html = ''' <form name="one" id="id1"> <input type="text" name="my_input" value="some value"> </form> <form name="two" id="id2"> <input type="text" name="my_input" value="some other value"> </form> ''' # by name assert html_form_to_dict(html, name="one") == {'my_input': 'some value'} assert html_form_to_dict(html, name="two") == {'my_input': 'some other value'} with pytest.raises(ValueError) as excinfo: html_form_to_dict(html, name='unknown') assert str(excinfo.value) == '''No form with name="unknown" found. Found forms with these names: ['one', 'two']''' # by id assert html_form_to_dict(html, id="id1") == {'my_input': 'some value'} assert html_form_to_dict(html, id="id2") == {'my_input': 'some other value'} with pytest.raises(ValueError) as excinfo: html_form_to_dict(html, id='unknown') assert str(excinfo.value) == '''No form with id="unknown" found. Found forms with these ids: ['id1', 'id2']''' # by index assert html_form_to_dict(html, 1) == {'my_input': 'some other value'} with pytest.raises(IndexError): html_form_to_dict(html, 2) class DummyClient: def __init__(self): self.calls = [] def get(self, url, data): self.calls.append(('get', url, data)) def post(self, url, data): self.calls.append(('post', url, data)) def test_form_data__submit(): html = ''' <form action="my-url"> <input type="text" name="my_input" value="some value"> </form>''' data = html_form_to_dict(html) client = DummyClient() data.submit(client) assert client.calls == [('get', 'my-url', {'my_input': 'some value'})] html = ''' <form action="my-url" method=POST> <input type="text" name="my_input" value="some value"> </form>''' data = html_form_to_dict(html) client = DummyClient() data.submit(client) assert client.calls == [('post', 'my-url', {'my_input': 'some value'})] html = ''' <form hx-get="my-url"> <input type="text" name="my_input" value="some value"> </form>''' data = html_form_to_dict(html) client = DummyClient() data.submit(client) assert client.calls == [('get', 'my-url', {'my_input': 'some value'})] html = ''' <form hx-post="my-url"> <input type="text" name="my_input" value="some value"> </form>''' data = html_form_to_dict(html) client = DummyClient() data.submit(client) assert client.calls == [('post', 'my-url', {'my_input': 'some value'})] ```
{ "source": "jeanmonet/jupyterlab-git", "score": 2 }
#### File: jupyterlab_git/tests/test_ignore.py ```python import pytest from jupyterlab_git.git import Git from .testutils import FakeContentManager, maybe_future @pytest.mark.parametrize("ignore_content", [None, "dummy", "dummy\n"]) @pytest.mark.asyncio async def test_ensure_gitignore(tmp_path, ignore_content): # Given ignore_file = tmp_path / ".gitignore" if ignore_content is not None: ignore_file.write_text(ignore_content) # When actual_response = await Git(FakeContentManager("/bin")).ensure_gitignore( str(tmp_path) ) # Then assert {"code": 0} == actual_response content = ignore_file.read_text() assert len(content) == 0 or content.endswith("\n") @pytest.mark.asyncio async def test_ensure_gitignore_failure(tmp_path): # Given ignore_file = tmp_path / ".gitignore" ignore_file.write_text("dummy") ignore_file.chmod(200) # Set read only to generate an error # When response = await Git(FakeContentManager("/bin")).ensure_gitignore(str(tmp_path)) # Then assert response["code"] == -1 @pytest.mark.asyncio async def test_ignore(tmp_path): # Given ignore_file = tmp_path / ".gitignore" ignore_file.write_text("dummy") file_ignore = "to_ignore.txt" # When response = await Git(FakeContentManager("/bin")).ignore(str(tmp_path), file_ignore) # Then assert {"code": 0} == response content = ignore_file.read_text() content.endswith("{}\n".format(file_ignore)) @pytest.mark.asyncio async def test_ignore_failure(tmp_path): # Given ignore_file = tmp_path / ".gitignore" ignore_file.write_text("dummy") ignore_file.chmod(200) # Set read only to generate an error # When response = await Git(FakeContentManager("/bin")).ignore( str(tmp_path), "to_ignore.txt" ) # Then assert response["code"] == -1 ```
{ "source": "jeanmonet/twisted", "score": 2 }
#### File: conch/ssh/_keys_pynacl.py ```python from cryptography.exceptions import InvalidSignature from cryptography.hazmat.primitives import serialization from cryptography.hazmat.primitives.asymmetric import ed25519 from nacl.exceptions import BadSignatureError from nacl.signing import SigningKey, VerifyKey class Ed25519PublicKey(ed25519.Ed25519PublicKey): def __init__(self, data: bytes): self._key = VerifyKey(data) def __bytes__(self) -> bytes: return bytes(self._key) def __hash__(self) -> int: return hash(bytes(self)) def __eq__(self, other: object) -> bool: if not isinstance(other, self.__class__): return False return self._key == other._key def __ne__(self, other: object) -> bool: return not (self == other) @classmethod def from_public_bytes(cls, data: bytes) -> ed25519.Ed25519PublicKey: return cls(data) def public_bytes( self, encoding: serialization.Encoding, format: serialization.PublicFormat, ) -> bytes: if ( encoding is not serialization.Encoding.Raw or format is not serialization.PublicFormat.Raw ): raise ValueError("Both encoding and format must be Raw") return bytes(self) def verify(self, signature: bytes, data: bytes) -> None: try: self._key.verify(data, signature) except BadSignatureError as e: raise InvalidSignature(str(e)) class Ed25519PrivateKey(ed25519.Ed25519PrivateKey): def __init__(self, data: bytes): self._key = SigningKey(data) def __bytes__(self) -> bytes: return bytes(self._key) def __hash__(self) -> int: return hash(bytes(self)) def __eq__(self, other: object) -> bool: if not isinstance(other, self.__class__): return False return self._key == other._key def __ne__(self, other: object) -> bool: return not (self == other) @classmethod def generate(cls) -> ed25519.Ed25519PrivateKey: return cls(bytes(SigningKey.generate())) @classmethod def from_private_bytes(cls, data: bytes) -> ed25519.Ed25519PrivateKey: return cls(data) def public_key(self) -> ed25519.Ed25519PublicKey: return Ed25519PublicKey(bytes(self._key.verify_key)) def private_bytes( self, encoding: serialization.Encoding, format: serialization.PrivateFormat, encryption_algorithm: serialization.KeySerializationEncryption, ) -> bytes: if ( encoding is not serialization.Encoding.Raw or format is not serialization.PrivateFormat.Raw or not isinstance(encryption_algorithm, serialization.NoEncryption) ): raise ValueError( "Encoding and format must be Raw and " "encryption_algorithm must be NoEncryption" ) return bytes(self) def sign(self, data: bytes) -> bytes: return self._key.sign(data).signature ```
{ "source": "jeanmonod/taxi", "score": 2 }
#### File: taxi/taxi/commands.py ```python from ConfigParser import NoOptionError import calendar import datetime from taxi import remote from taxi.exceptions import CancelException, UsageError from taxi.projects import Project from taxi.timesheet import ( NoActivityInProgressError, Timesheet, TimesheetCollection, TimesheetFile ) from taxi.timesheet.entry import TimesheetEntry, EntriesCollection from taxi.timesheet.parser import ParseError from taxi.settings import Settings from taxi.utils import file from taxi.utils.structures import OrderedSet class BaseCommand(object): def __init__(self, app_container): self.options = app_container.options self.arguments = app_container.arguments self.view = app_container.view self.projects_db = app_container.projects_db self.settings = app_container.settings def setup(self): pass def validate(self): pass def run(self): pass class BaseTimesheetCommand(BaseCommand): def get_timesheet_collection(self, skip_cache=False): timesheet_collection = getattr(self, '_current_timesheet_collection', None) if timesheet_collection is not None and not skip_cache: return timesheet_collection timesheet_collection = TimesheetCollection() timesheet_files = self.get_files( self.options['unparsed_file'], int(self.settings.get('nb_previous_files')) ) self.alias_mappings = self.settings.get_aliases() for file_path in timesheet_files: timesheet_file = TimesheetFile(file_path) try: timesheet_contents = timesheet_file.read() except IOError: timesheet_contents = '' t = Timesheet( EntriesCollection( timesheet_contents, self.settings.get('date_format') ), self.alias_mappings, timesheet_file ) # Force new entries direction if necessary if (self.settings.get('auto_add') in [ Settings.AUTO_ADD_OPTIONS['TOP'], Settings.AUTO_ADD_OPTIONS['BOTTOM']]): t.entries.add_date_to_bottom = ( self.settings.get('auto_add') == Settings.AUTO_ADD_OPTIONS['BOTTOM'] ) timesheet_collection.timesheets.append(t) # Fix `add_date_to_bottom` attribute of timesheet entries based on # previous timesheets. When a new timesheet is started it won't have # any direction defined, so we take the one from the previous # timesheet, if any previous_timesheet = None for timesheet in reversed(timesheet_collection.timesheets): if (timesheet.entries.add_date_to_bottom is None and previous_timesheet and previous_timesheet.entries.add_date_to_bottom is not None): timesheet.entries.add_date_to_bottom = ( previous_timesheet.entries.add_date_to_bottom ) previous_timesheet = timesheet setattr(self, '_current_timesheet_collection', timesheet_collection) return timesheet_collection def get_files(self, filename, nb_previous_files): date_units = ['m', 'Y'] smallest_unit = None for date in date_units: if '%%%s' % date in filename: smallest_unit = date break if smallest_unit is None: return OrderedSet([filename]) files = OrderedSet() file_date = datetime.date.today() for i in xrange(0, nb_previous_files + 1): files.add(file.expand_filename(filename, file_date)) if smallest_unit == 'm': if file_date.month == 1: file_date = file_date.replace(day=1, month=12, year=file_date.year - 1) else: file_date = file_date.replace(day=1, month=file_date.month - 1) elif smallest_unit == 'Y': file_date = file_date.replace(day=1, year=file_date.year - 1) return files class AddCommand(BaseCommand): """ Usage: add search_string Searches and prompts for project, activity and alias and adds that as a new entry to .tksrc. """ def validate(self): if len(self.arguments) < 1: raise UsageError() def run(self): search = self.arguments projects = self.projects_db.search(search, active_only=True) projects = sorted(projects, key=lambda project: project.name) if len(projects) == 0: self.view.msg( u"No active project matches your search string '%s'" % ''.join(search) ) return self.view.projects_list(projects, True) try: number = self.view.select_project(projects) except CancelException: return project = projects[number] mappings = self.settings.get_reversed_aliases() self.view.project_with_activities(project, mappings, numbered_activities=True) try: number = self.view.select_activity(project.activities) except CancelException: return retry = True while retry: try: alias = self.view.select_alias() except CancelException: return if self.settings.activity_exists(alias): mapping = self.settings.get_aliases()[alias] overwrite = self.view.overwrite_alias(alias, mapping) if not overwrite: return elif overwrite: retry = False # User chose "retry" else: retry = True else: retry = False activity = project.activities[number] self.settings.add_alias(alias, project.id, activity.id) self.settings.write_config() self.view.alias_added(alias, (project.id, activity.id)) class AliasCommand(BaseCommand): """ Usage: alias [alias] alias [project_id] alias [project_id/activity_id] alias [alias] [project_id/activity_id] - The first form will display the mappings whose aliases start with the search string you entered - The second form will display the mapping(s) you've defined for this project and all of its activities - The third form will display the mapping you've defined for this exact project/activity tuple - The last form will add a new alias in your configuration file You can also run this command without any argument to view all your mappings. """ MODE_SHOW_MAPPING = 0 MODE_ADD_ALIAS = 1 MODE_LIST_ALIASES = 2 def validate(self): if len(self.arguments) > 2: raise UsageError() def setup(self): if len(self.arguments) == 2: self.alias = self.arguments[0] self.mapping = self.arguments[1] self.mode = self.MODE_ADD_ALIAS elif len(self.arguments) == 1: self.alias = self.arguments[0] self.mode = self.MODE_SHOW_MAPPING else: self.alias = None self.mode = self.MODE_LIST_ALIASES def run(self): # 2 arguments, add a new alias if self.mode == self.MODE_ADD_ALIAS: self._add_alias(self.alias, self.mapping) # 1 argument, display the alias or the project id/activity id tuple elif self.mode == self.MODE_SHOW_MAPPING: mapping = Project.str_to_tuple(self.alias) if mapping is not None: for m in self.settings.search_aliases(mapping): self.view.mapping_detail(m, self.projects_db.get(m[1][0])) else: self.mode = self.MODE_LIST_ALIASES # No argument, display the mappings if self.mode == self.MODE_LIST_ALIASES: for m in self.settings.search_mappings(self.alias): self.view.alias_detail( m, self.projects_db.get(m[1][0]) if m[1] is not None else None ) def _add_alias(self, alias_name, mapping): project_activity = Project.str_to_tuple(mapping) if project_activity is None: raise UsageError("The mapping must be in the format xxxx/yyyy") if self.settings.activity_exists(alias_name): existing_mapping = self.settings.get_aliases()[alias_name] confirm = self.view.overwrite_alias(alias_name, existing_mapping, False) if not confirm: return self.settings.add_alias(alias_name, project_activity[0], project_activity[1]) self.settings.write_config() self.view.alias_added(alias_name, project_activity) class AutofillCommand(BaseTimesheetCommand): """ Usage: autofill Fills your timesheet up to today, for the defined auto_fill_days. """ def run(self): auto_fill_days = self.settings.get_auto_fill_days() if auto_fill_days: today = datetime.date.today() last_day = calendar.monthrange(today.year, today.month) last_date = datetime.date(today.year, today.month, last_day[1]) timesheet_collection = self.get_timesheet_collection() t = timesheet_collection.timesheets[0] t.prefill(auto_fill_days, last_date) t.file.write(t.entries) self.view.msg(u"Your entries file has been filled.") else: self.view.err(u"The parameter `auto_fill_days` must be set to " "use this command.") class KittyCommand(BaseCommand): """ |\ _,,,---,,_ /,`.-'`' -. ;-;;,_ |,4- ) )-,_..;\ ( `'-' '---''(_/--' `-'\_) Soft kitty, warm kitty Little ball of fur Happy kitty, sleepy kitty Purr, purr, purr """ def run(self): self.view.msg(self.__doc__) class CleanAliasesCommand(BaseCommand): """ Usage: clean-aliases Removes aliases from your config file that point to inactive projects. """ def run(self): aliases = self.settings.get_aliases() inactive_aliases = [] for (alias, mapping) in aliases.iteritems(): # Ignore local aliases if mapping is None: continue project = self.projects_db.get(mapping[0]) if (project is None or not project.is_active() or (mapping[1] is not None and project.get_activity(mapping[1]) is None)): inactive_aliases.append(((alias, mapping), project)) if not inactive_aliases: self.view.msg(u"No inactive aliases found.") return if not self.options.get('force_yes'): confirm = self.view.clean_inactive_aliases(inactive_aliases) if self.options.get('force_yes') or confirm: self.settings.remove_aliases( [item[0][0] for item in inactive_aliases] ) self.settings.write_config() self.view.msg(u"%d inactive aliases have been successfully" " cleaned." % len(inactive_aliases)) class CommitCommand(BaseTimesheetCommand): """ Usage: commit Commits your work to the server. """ def run(self): timesheet_collection = self.get_timesheet_collection() if (self.options.get('date', None) is None and not self.options.get('ignore_date_error', False)): non_workday_entries = ( timesheet_collection.get_non_current_workday_entries() ) if non_workday_entries: self.view.non_working_dates_commit_error( non_workday_entries.keys() ) return self.view.pushing_entries() r = remote.ZebraRemote(self.settings.get('site'), self.settings.get('username'), self.settings.get('password')) all_pushed_entries = [] all_failed_entries = [] for timesheet in timesheet_collection.timesheets: entries_to_push = timesheet.get_entries( self.options.get('date', None), exclude_ignored=True, exclude_local=True, exclude_unmapped=True, regroup=True ) (pushed_entries, failed_entries) = r.send_entries( entries_to_push, self.alias_mappings, self._entry_pushed ) local_entries = timesheet.get_local_entries( self.options.get('date', None) ) local_entries_list = [] for (date, entries) in local_entries.iteritems(): local_entries_list.extend(entries) for entry in local_entries_list + pushed_entries: entry.commented = True for (entry, _) in failed_entries: entry.fix_start_time() # Also fix start time for ignored entries. Since they won't get # pushed, there's a chance their previous sibling gets commented for (date, entries) in timesheet.get_ignored_entries().items(): for entry in entries: entry.fix_start_time() timesheet.file.write(timesheet.entries) all_pushed_entries.extend(pushed_entries) all_failed_entries.extend(failed_entries) ignored_entries = timesheet_collection.get_ignored_entries( self.options.get('date', None) ) ignored_entries_list = [] for (date, entries) in ignored_entries.iteritems(): ignored_entries_list.extend(entries) self.view.pushed_entries_summary(all_pushed_entries, all_failed_entries, ignored_entries_list) def _entry_pushed(self, entry, error): self.view.pushed_entry(entry, error, self.alias_mappings) class EditCommand(BaseTimesheetCommand): """ Usage: edit Opens your zebra file in your favourite editor. """ def run(self): timesheet_collection = None try: timesheet_collection = self.get_timesheet_collection() except ParseError: pass if timesheet_collection: t = timesheet_collection.timesheets[0] if (self.settings.get('auto_add') != Settings.AUTO_ADD_OPTIONS['NO'] and not self.options.get('forced_file')): auto_fill_days = self.settings.get_auto_fill_days() if auto_fill_days: t.prefill(auto_fill_days, limit=None) t.file.write(t.entries) try: editor = self.settings.get('editor') except NoOptionError: editor = None file.spawn_editor(self.options['file'], editor) try: timesheet_collection = self.get_timesheet_collection(True) except ParseError as e: self.view.err(e) else: self.view.show_status( timesheet_collection.get_entries(regroup=True), self.alias_mappings, self.settings ) class HelpCommand(BaseCommand): """ YO DAWG you asked for help for the help command. Try to search Google in Google instead. """ def __init__(self, application_container): super(HelpCommand, self).__init__(application_container) self.commands_mapping = application_container.commands_mapping def setup(self): if len(self.arguments) == 0: raise UsageError() else: self.command = self.arguments[0] def run(self): if self.command == 'help': self.view.command_usage(self) else: if self.command in self.commands_mapping: self.view.command_usage(self.commands_mapping[self.command]) else: self.view.err(u"Command %s doesn't exist." % self.command) class SearchCommand(BaseCommand): """ Usage: search search_string Searches for a project by its name. The letter in the first column indicates the status of the project: [N]ot started, [A]ctive, [F]inished, [C]ancelled. """ def validate(self): if len(self.arguments) < 1: raise UsageError() def run(self): projects = self.projects_db.search(self.arguments) projects = sorted(projects, key=lambda project: project.name.lower()) self.view.search_results(projects) class ShowCommand(BaseCommand): """ Usage: show project_id Shows the details of the given project_id (you can find it with the search command). """ def validate(self): if len(self.arguments) < 1: raise UsageError() try: int(self.arguments[0]) except ValueError: raise UsageError("The project id must be a number") def setup(self): self.project_id = int(self.arguments[0]) def run(self): try: project = self.projects_db.get(self.project_id) except IOError: raise Exception("Error: the projects database file doesn't exist. " "Please run `taxi update` to create it") if project is None: self.view.err( u"The project `%s` doesn't exist" % (self.project_id) ) else: mappings = self.settings.get_reversed_aliases() self.view.project_with_activities(project, mappings) class StartCommand(BaseTimesheetCommand): """ Usage: start project_name Use it when you start working on the project project_name. This will add the project name and the current time to your entries file. When you're finished, use the stop command. """ def validate(self): if len(self.arguments) != 1: raise UsageError() def setup(self): self.project_name = self.arguments[0] def run(self): today = datetime.date.today() try: timesheet_collection = self.get_timesheet_collection() except ParseError as e: self.view.err(e) return t = timesheet_collection.timesheets[0] # If there's a previous entry on the same date, check if we can use its # end time as a start time for the newly started entry today_entries = t.get_entries(today) if(today in today_entries and today_entries[today] and isinstance(today_entries[today][-1].duration, tuple) and today_entries[today][-1].duration[1] is not None): new_entry_start_time = today_entries[today][-1].duration[1] else: new_entry_start_time = datetime.datetime.now() duration = (new_entry_start_time, None) e = TimesheetEntry(self.project_name, duration, '?') t.entries[today].append(e) t.file.write(t.entries) class StatusCommand(BaseTimesheetCommand): """ Usage: status Shows the summary of what's going to be committed to the server. """ def setup(self): self.date = self.options.get('date', None) def run(self): try: timesheet_collection = self.get_timesheet_collection() except ParseError as e: self.view.err(e) else: self.view.show_status( timesheet_collection.get_entries(self.date, regroup=True), self.alias_mappings, self.settings ) class StopCommand(BaseTimesheetCommand): """ Usage: stop [description] Use it when you stop working on the current task. You can add a description to what you've done. """ def setup(self): if len(self.arguments) == 0: self.description = None else: self.description = ' '.join(self.arguments) def run(self): try: timesheet_collection = self.get_timesheet_collection() current_timesheet = timesheet_collection.timesheets[0] current_timesheet.continue_entry( datetime.date.today(), datetime.datetime.now().time(), self.description ) except ParseError as e: self.view.err(e) except NoActivityInProgressError: self.view.err(u"You don't have any activity in progress for today") else: current_timesheet.file.write(current_timesheet.entries) class UpdateCommand(BaseCommand): """ Usage: update Synchronizes your project database with the server and updates the shared aliases. """ def setup(self): self.site = self.settings.get('site') self.username = self.settings.get('username') self.password = self.settings.get('password') def run(self): self.view.updating_projects_database() aliases_before_update = self.settings.get_aliases() local_aliases = self.settings.get_aliases(include_shared=False) r = remote.ZebraRemote(self.site, self.username, self.password) projects = r.get_projects() self.projects_db.update(projects) # Put the shared aliases in the config file shared_aliases = {} for project in projects: if project.is_active(): for alias, activity_id in project.aliases.iteritems(): self.settings.add_shared_alias(alias, project.id, activity_id) shared_aliases[alias] = (project.id, activity_id) aliases_after_update = self.settings.get_aliases() self.settings.write_config() self.view.projects_database_update_success(aliases_before_update, aliases_after_update, local_aliases, shared_aliases, self.projects_db) ``` #### File: tests/commands/test_edit.py ```python import os import tempfile from freezegun import freeze_time from taxi.utils.file import expand_filename from . import CommandTestCase class EditCommandTestCase(CommandTestCase): @freeze_time('2014-01-21') def test_autofill_with_specified_file(self): """ Edit with specified date should not autofill it. """ config = self.default_config.copy() options = self.default_options.copy() config['default']['auto_fill_days'] = '0,1,2,3,4,5,6' options['file'] = self.entries_file self.run_command('edit', options=options) with open(self.entries_file, 'r') as f: self.assertEqual(f.read(), '') @freeze_time('2014-01-21') def test_edit_utf8_file(self): """ Editing a file that contains accents should not crash. """ self.write_entries("""20/01/2014 alias_1 2 préparation du café pour l'évènement """) self.run_command('edit') def test_edit_status(self): config = self.default_config.copy() tmp_entries_dir = tempfile.mkdtemp() os.remove(self.entries_file) self.entries_file = os.path.join(tmp_entries_dir, '%m_%Y.txt') config['default']['file'] = self.entries_file with freeze_time('2014-01-21'): self.write_entries("""20/01/2014 alias_1 2 hello world """) with freeze_time('2014-02-21'): self.write_entries("""20/02/2014 alias_1 2 hello world """) stdout = self.run_command('edit', config_options=config) self.assertIn('Monday 20 january', stdout) def test_prefill_entries_add_to_bottom(self): config = self.default_config.copy() tmp_entries_dir = tempfile.mkdtemp() os.remove(self.entries_file) self.entries_file = os.path.join(tmp_entries_dir, '%m_%Y.txt') config['default']['file'] = self.entries_file with freeze_time('2014-01-21'): self.write_entries("""20/01/2014 alias_1 2 hello world 21/01/2014 alias_1 1 foo bar """) with freeze_time('2014-02-21'): self.write_entries("""20/02/2014 alias_1 2 hello world """) self.run_command('edit', config_options=config) with open(expand_filename(self.entries_file), 'r') as f: lines = f.readlines() self.assertEqual('20/02/2014\n', lines[0]) self.assertEqual('21/02/2014\n', lines[3]) ```
{ "source": "jean-moorman/mjrl", "score": 2 }
#### File: algos/model_accel/model_accel_npg.py ```python import numpy as np import copy import torch import torch.nn as nn import pickle import mjrl.envs import os import time as timer from torch.autograd import Variable from mjrl.utils.gym_env import GymEnv from mjrl.algos.model_accel.nn_dynamics import WorldModel import mjrl.samplers.core as trajectory_sampler # utility functions import mjrl.utils.process_samples as process_samples from mjrl.utils.logger import DataLog from mjrl.algos.model_accel.sampling import policy_rollout # Import NPG from mjrl.algos.npg_cg import NPG class ModelAccelNPG(NPG): def __init__(self, learned_model=None, refine=False, kappa=5.0, plan_horizon=10, plan_paths=100, reward_function=None, termination_function=None, **kwargs): super(ModelAccelNPG, self).__init__(**kwargs) if learned_model is None: print("Algorithm requires a (list of) learned dynamics model") quit() elif isinstance(learned_model, WorldModel): self.learned_model = [learned_model] else: self.learned_model = learned_model self.refine, self.kappa, self.plan_horizon, self.plan_paths = refine, kappa, plan_horizon, plan_paths self.reward_function, self.termination_function = reward_function, termination_function def to(self, device): # Convert all the networks (except policy network which is clamped to CPU) # to the specified device for model in self.learned_model: model.to(device) try: self.baseline.model.to(device) except: pass def is_cuda(self): # Check if any of the networks are on GPU model_cuda = [model.is_cuda() for model in self.learned_model] model_cuda = any(model_cuda) baseline_cuda = next(self.baseline.model.parameters()).is_cuda return any([model_cuda, baseline_cuda]) def train_step(self, N, env=None, sample_mode='trajectories', horizon=1e6, gamma=0.995, gae_lambda=0.97, num_cpu='max', env_kwargs=None, init_states=None, reward_function=None, termination_function=None, truncate_lim=None, truncate_reward=0.0, **kwargs, ): ts = timer.time() # get the correct env behavior if env is None: env = self.env elif type(env) == str: env = GymEnv(env) elif isinstance(env, GymEnv): env = env elif callable(env): env = env(**env_kwargs) else: print("Unsupported environment format") raise AttributeError # get correct behavior for reward and termination reward_function = self.reward_function if reward_function is None else reward_function termination_function = self.termination_function if termination_function is None else termination_function if reward_function: assert callable(reward_function) if termination_function: assert callable(termination_function) # simulate trajectories with the learned model(s) # we want to use the same task instances (e.g. goal locations) for each model in ensemble paths = [] # NOTE: We can optionally specify a set of initial states to perform the rollouts from # This is useful for starting rollouts from the states in the replay buffer init_states = np.array([env.reset() for _ in range(N)]) if init_states is None else init_states assert type(init_states) == list assert len(init_states) == N for model in self.learned_model: # dont set seed explicitly -- this will make rollouts follow tne global seed rollouts = policy_rollout(num_traj=N, env=env, policy=self.policy, learned_model=model, eval_mode=False, horizon=horizon, init_state=init_states, seed=None) # use learned reward function if available if model.learn_reward: model.compute_path_rewards(rollouts) else: rollouts = reward_function(rollouts) num_traj, horizon, state_dim = rollouts['observations'].shape for i in range(num_traj): path = dict() obs = rollouts['observations'][i, :, :] act = rollouts['actions'][i, :, :] rew = rollouts['rewards'][i, :] path['observations'] = obs path['actions'] = act path['rewards'] = rew path['terminated'] = False paths.append(path) # NOTE: If tasks have termination condition, we will assume that the env has # a function that can terminate paths appropriately. # Otherwise, termination is not considered. if callable(termination_function): paths = termination_function(paths) # remove paths that are too short paths = [path for path in paths if path['observations'].shape[0] >= 5] # additional truncation based on error in the ensembles if truncate_lim is not None and len(self.learned_model) > 1: for path in paths: pred_err = np.zeros(path['observations'].shape[0] - 1) for model in self.learned_model: s = path['observations'][:-1] a = path['actions'][:-1] s_next = path['observations'][1:] pred = model.predict(s, a) model_err = np.mean((s_next - pred)**2, axis=-1) pred_err = np.maximum(pred_err, model_err) violations = np.where(pred_err > truncate_lim)[0] truncated = (not len(violations) == 0) T = violations[0] + 1 if truncated else obs.shape[0] T = max(4, T) # we don't want corner cases of very short truncation path["observations"] = path["observations"][:T] path["actions"] = path["actions"][:T] path["rewards"] = path["rewards"][:T] if truncated: path["rewards"][-1] += truncate_reward path["terminated"] = False if T == obs.shape[0] else True if self.save_logs: self.logger.log_kv('time_sampling', timer.time() - ts) self.seed = self.seed + N if self.seed is not None else self.seed # compute returns process_samples.compute_returns(paths, gamma) # compute advantages process_samples.compute_advantages(paths, self.baseline, gamma, gae_lambda) # train from paths eval_statistics = self.train_from_paths(paths) eval_statistics.append(N) # log number of samples if self.save_logs: num_samples = np.sum([p["rewards"].shape[0] for p in paths]) self.logger.log_kv('num_samples', num_samples) # fit baseline if self.save_logs: ts = timer.time() error_before, error_after = self.baseline.fit(paths, return_errors=True) self.logger.log_kv('time_VF', timer.time()-ts) self.logger.log_kv('VF_error_before', error_before) self.logger.log_kv('VF_error_after', error_after) else: self.baseline.fit(paths) return eval_statistics def get_action(self, observation): if self.refine is False: return self.policy.get_action(observation) else: return self.get_refined_action(observation) def get_refined_action(self, observation): # TODO(Aravind): Implemenet this # This function should rollout many trajectories according to the learned # dynamics model and the policy, and should refine around the policy by # incorporating reward based refinement raise NotImplementedError ``` #### File: run_experiments/utils/visualize_trajectories.py ```python import pickle import click import json import numpy as np import torch import mjrl.envs import trajopt.envs import mj_envs import mjrl.utils.tensor_utils as tensor_utils from mjrl.utils.gym_env import GymEnv from mjrl.algos.model_accel.sampling import evaluate_policy DESC = ''' Helper script to visualize optimized trajectories (list of trajectories in trajopt format).\n USAGE:\n $ python viz_trajectories.py --file path_to_file.pickle\n ''' @click.command(help=DESC) @click.option('--file', type=str, help='pickle file with trajectories', required= True) @click.option('--seed', type=int, default=123) @click.option('--noise_level', type=float, default=0.0) @click.option('--num_episodes', type=int, help='number of times to play trajectories', default=5) @click.option('--config', type=str, help='if provided MPC params from here will be used.', default=None) @click.option('--device_path', type=str, default=None) def main(file, seed, noise_level, num_episodes, config, device_path): exp_data = pickle.load(open(file, 'rb')) policy = exp_data['policy'] model = exp_data['fitted_model'] model = model[-1] if type(model) == list else model env_id = policy.env.env_id render = True # TODO(Aravind): Map to hardware if device_path is specified env = GymEnv(env_id) policy.env = env env.set_seed(seed) np.random.seed(seed) torch.manual_seed(seed) if config is not None: try: with open(config, 'r') as f: config = eval(f.read()) except: with open(config, 'r') as f: config = json.load(f) policy.plan_horizon = config['plan_horizon'] policy.num_traj = config['plan_paths'] policy.kappa = config['kappa'] policy.filter_coefs = [config['filter_coefs'][k] for k in ['f1', 'f2', 'f3', 'f4']] policy.omega = config['omega'] if 'omega' in config.keys() else 0.0 # TODO(Aravind): Implement capability to set predicted state for rendering purposes # evaluate_policy(env, policy, model, noise_level, real_step=False, num_episodes=num_episodes, visualize=render) evaluate_policy(env, policy, model, noise_level, real_step=True, num_episodes=num_episodes, visualize=render) # final close out env.reset() if __name__ == '__main__': main() ``` #### File: mjrl/envs/swimmer.py ```python import numpy as np from gym import utils from mjrl.envs import mujoco_env from mujoco_py import MjViewer class SwimmerEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self): mujoco_env.MujocoEnv.__init__(self, 'swimmer.xml', 5) utils.EzPickle.__init__(self) def step(self, a): xposbefore = self.data.qpos[0] self.do_simulation(a, self.frame_skip) xposafter = self.data.qpos[0] delta = (xposafter - xposbefore) # make agent move in the negative x direction reward = -10.0 * delta done = False ob = self.get_obs() return ob, reward, done, self.get_env_infos() def get_obs(self): return np.concatenate([ self.data.qpos.flat[2:], self.data.qvel.flat, ]) def reset_model(self): qpos_init = self.init_qpos.copy() qpos_init[2] = self.np_random.uniform(low=-np.pi, high=np.pi) self.set_state(qpos_init, self.init_qvel) self.sim.forward() return self.get_obs() # -------------------------------- # get and set states # -------------------------------- def get_env_state(self): return dict(qp=self.data.qpos.copy(), qv=self.data.qvel.copy()) def set_env_state(self, state): self.sim.reset() qp = state['qp'].copy() qv = state['qv'].copy() self.set_state(qp, qv) self.sim.forward() # -------------------------------- # utility functions # -------------------------------- def get_env_infos(self): return dict(state=self.get_env_state()) def mj_viewer_setup(self): self.viewer = MjViewer(self.sim) self.viewer.cam.trackbodyid = 1 self.viewer.cam.type = 1 self.sim.forward() self.viewer.cam.distance = self.model.stat.extent*1.2 ``` #### File: mjrl/policies/mpc_actor.py ```python import numpy as np from trajopt.utils import gather_paths_parallel class MPCActor(object): def __init__(self, env, H, paths_per_cpu, num_cpu=1, kappa=1.0, gamma=1.0, mean=None, filter_coefs=None, seed=123, ): self.env, self.seed = env, seed self.n, self.m = env.observation_dim, env.action_dim self.H, self.paths_per_cpu, self.num_cpu = H, paths_per_cpu, num_cpu self.mean, self.filter_coefs, self.kappa, self.gamma = mean, filter_coefs, kappa, gamma if mean is None: self.mean = np.zeros(self.m) if filter_coefs is None: self.filter_coefs = [np.ones(self.m), 1.0, 0.0, 0.0] self.env.reset() self.env.set_seed(seed) self.env.reset(seed=seed) self.act_sequence = np.ones((self.H, self.m)) * self.mean self.ctr = 1 def score_trajectory(self, paths): scores = np.zeros(len(paths)) for i in range(len(paths)): scores[i] = 0.0 for t in range(paths[i]["rewards"].shape[0]): scores[i] += (self.gamma**t)*paths[i]["rewards"][t] return scores def get_action(self, env_state): # Set to env_state # Shoot trajectories # Return optimal action seed = self.seed + self.ctr * 1000 paths = gather_paths_parallel(self.env.env_id, env_state, self.act_sequence, self.filter_coefs, seed, self.paths_per_cpu, self.num_cpu, ) num_traj = len(paths) R = self.score_trajectory(paths) S = np.exp(self.kappa*(R-np.max(R))) act = np.sum([paths[i]["actions"][0] * S[i] for i in range(num_traj)], axis=0) act = act / (np.sum(S) + 1e-6) return act ``` #### File: tests/hydra/hydra_policy_opt_job_script.py ```python from mjrl.utils.gym_env import GymEnv from mjrl.policies.gaussian_mlp import MLP from mjrl.baselines.quadratic_baseline import QuadraticBaseline from mjrl.baselines.mlp_baseline import MLPBaseline from mjrl.algos.npg_cg import NPG from mjrl.algos.batch_reinforce import BatchREINFORCE from mjrl.algos.ppo_clip import PPO from mjrl.utils.train_agent import train_agent import os import json import gym import mjrl.envs # import mj_envs import time as timer import pickle import hydra from omegaconf import DictConfig, OmegaConf # =============================================================================== # Process Inputs # =============================================================================== def preprocess(job_data): if not os.path.exists(job_data.job_name): os.mkdir(job_data.job_name) assert 'algorithm' in job_data.keys() assert any([job_data.algorithm == a for a in ['NPG', 'NVPG', 'VPG', 'PPO']]) assert 'sample_mode' in job_data.keys() job_data.alg_hyper_params = dict() if 'alg_hyper_params' not in job_data.keys() else job_data.alg_hyper_params EXP_FILE = job_data.job_name + '/job_config.json' with open(EXP_FILE, 'w') as fp: # json.dump(job_data, f, indent=4) OmegaConf.save(config=job_data, f=fp.name) if job_data.sample_mode == 'trajectories': assert 'rl_num_traj' in job_data.keys() job_data.rl_num_samples = 0 # will be ignored elif job_data.sample_mode == 'samples': assert 'rl_num_samples' in job_data.keys() job_data.rl_num_traj = 0 # will be ignored else: print("Unknown sampling mode. Choose either trajectories or samples") exit() # =============================================================================== # Train Loop # =============================================================================== @hydra.main(config_name="hydra_npg_config", config_path="config") def train_loop(job_data: DictConfig) -> None: print("========================================") print("Job Configuration") print("========================================") preprocess(job_data) print(OmegaConf.to_yaml(job_data)) e = GymEnv(job_data.env) policy_size = tuple(eval(job_data.policy_size)) vf_hidden_size = tuple(eval(job_data.vf_hidden_size)) policy = MLP(e.spec, hidden_sizes=policy_size, seed=job_data.seed, init_log_std=job_data.init_log_std) baseline = MLPBaseline(e.spec, reg_coef=1e-3, batch_size=job_data.vf_batch_size, hidden_sizes=vf_hidden_size, epochs=job_data.vf_epochs, learn_rate=job_data.vf_learn_rate) # Construct the algorithm if job_data.algorithm == 'NPG': # Other hyperparameters (like number of CG steps) can be specified in config for pass through # or default hyperparameters will be used agent = NPG(e, policy, baseline, normalized_step_size=job_data.rl_step_size, seed=job_data.seed, save_logs=True, **job_data.alg_hyper_params) elif job_data.algorithm == 'VPG': agent = BatchREINFORCE(e, policy, baseline, learn_rate=job_data.rl_step_size, seed=job_data.seed, save_logs=True, **job_data.alg_hyper_params) elif job_data.algorithm == 'NVPG': agent = BatchREINFORCE(e, policy, baseline, desired_kl=job_data.rl_step_size, seed=job_data.seed, save_logs=True, **job_data.alg_hyper_params) elif job_data.algorithm == 'PPO': # There are many hyperparameters for PPO. They can be specified in config for pass through # or defaults in the PPO algorithm will be used agent = PPO(e, policy, baseline, save_logs=True, **job_data.alg_hyper_params) else: NotImplementedError("Algorithm not found") print("========================================") print("Starting policy learning") print("========================================") ts = timer.time() train_agent(job_name=job_data.job_name, agent=agent, seed=job_data.seed, niter=job_data.rl_num_iter, gamma=job_data.rl_gamma, gae_lambda=job_data.rl_gae, num_cpu=job_data.num_cpu, sample_mode=job_data.sample_mode, num_traj=job_data.rl_num_traj, num_samples=job_data.rl_num_samples, save_freq=job_data.save_freq, evaluation_rollouts=job_data.eval_rollouts) print("========================================") print("Job Finished. Time taken = %f" % (timer.time()-ts)) print("========================================") if __name__ == "__main__": train_loop() ```
{ "source": "JEanne1305/group24-flood-system", "score": 4 }
#### File: group24-flood-system/floodsystem/flood.py ```python from floodsystem.station import MonitoringStation def stations_level_over_threshold(stations, tol): # create an empty list for station with level over threshold list_of_stations_over_threshold=[] for station in stations: # check the consistency of water level if station.latest_level!=None: if MonitoringStation.typical_range_consistent(station) is True: # if the range data is validated if station.latest_level>tol: station_tuple=(station.name, MonitoringStation.relative_water_level(station)) # create the tuple for individual stations list_of_stations_over_threshold.append(station_tuple) return list_of_stations_over_threshold #Task 2C Jeanne def stations_highest_rel_level(stations, N): station_level={} n=0 for i in range(len(stations)): name=stations[i].name typ_range=stations[i].typical_range if typ_range == None: break else: station_level[name]=typ_range[1] a_tuple=station_level.items() a_list=list(a_tuple) #print(a_list) #sort the list of tuple by the highest level sorted_level = sorted(a_list, key=lambda tup: tup[1], reverse=True) #create a list that contains N stations with highest relative level outcome1 =sorted_level[:N] outcome2=[] print(outcome1[1]) for i in range(len(outcome1)): for name in outcome1[i]: #print(name) for station in stations: #print('222') if station.name==name : outcome2.append(station) outcome = sorted(outcome2, key=lambda x: x.typical_range[1],reverse=True) return outcome ``` #### File: group24-flood-system/floodsystem/geo.py ```python from floodsystem.utils import sorted_by_key # noqa from haversine import haversine def stations_by_distance(stations, p): station_list=[] #create an empty list to store the output for station in stations: distance=haversine(station.coord, p) # in kilometers station_tuple=(station.name, distance) # create the tuple for individual stations station_list.append(station_tuple) # sort stations by distance return sorted_by_key(station_list, 1) # Task 1D # <NAME> (yx357) def rivers_with_station(stations): # return a set of names of rivers that have at least one monitoring station rivers_set=set() for station in stations: rivers_set.add(station.river) return rivers_set def stations_by_river(stations): # returns a dictionary of rivers (key: river, value: array of station names) rivers_dict={} for station in stations: if station.river in rivers_dict: rivers_dict[station.river].append(station.name) rivers_dict[station.river].sort() else: rivers_dict[station.river]=[station.name] # create a list of station names return rivers_dict #Task 1C #Jeanne def stations_within_radius(stations,centre,r): required=[] for i in stations: distance=haversine(i.coord,centre) #calculate the distance #between the station and the centre if distance<=r: required.append(i.name)#if within the range, add it to the list return sorted(required) #Task 1E #Jeanne - lab group 24 river def rivers_by_station_number(stations, N): print("hello") a=0 required={} for station in stations: #a+=1 #if a>40: # break river=station.river if river in required: required[river]+=1 else: required[river]=1 print(required) a_tuple=required.items() a_list=list(a_tuple) #print(a_list) #sort the list of tuple by the number of station final_version = sorted(a_list, key=lambda tup: tup[1], reverse=True) #create a list that contains N rivers with largest no. of stations outcome=final_version[:N] #see if any rivers after the 'Nth' river has the same no. of stations, #if so, add it to the outcome list M=N-1 while final_version[M][1]==final_version[M+1][1] and M<=(len(final_version)-1): outcome.append(final_version[M+1]) M+=1 return outcome ``` #### File: JEanne1305/group24-flood-system/Task1B.py ```python from floodsystem.stationdata import build_station_list from floodsystem.geo import stations_by_distance def run(): stations=build_station_list() cambridge=(52.2053, 0.1218) x=stations_by_distance(stations, cambridge) print("The closest 10 entries:", x[:10]) print("The furthest 10 entries:", x[-10:]) if __name__ == "__main__": print("*** Task 1B: CUED Part IA Flood Warning System ***") run() ```
{ "source": "jeanne-ber/vicreg", "score": 2 }
#### File: jeanne-ber/vicreg/distributed.py ```python import torch import os import torch.distributed as dist def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop('force', False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) elif 'SLURM_PROCID' in os.environ: args.rank = int(os.environ['SLURM_PROCID']) args.gpu = args.rank % torch.cuda.device_count() os.environ['RANK'] = str(args.rank) os.environ['LOCAL_RANK'] = str(args.gpu) os.environ['WORLD_SIZE'] = str(args.world_size) else: print('Not using distributed mode') return torch.cuda.set_device(args.gpu) args.dist_backend = 'nccl' print('| distributed init (rank {}): {}, gpu {}'.format( args.rank, args.dist_url, args.gpu), flush=True) torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) torch.distributed.barrier() setup_for_distributed(args.rank == 0) ```
{ "source": "jeannechaverot/CovidForecasting", "score": 3 }
#### File: jeannechaverot/CovidForecasting/funcs.py ```python import numpy as np from functools import reduce import operator as op import matplotlib.pyplot as plt from matplotlib.pyplot import * #SMOOTHING# def gauss_filter(x, K, parity='even'): # constant A = 2*K #upper bound of sum B = K if parity == 'odd': A += 1 B += 1 const = 1/(2**A) x_filtered = [] # x elements that will see their value change r_x = np.arange(K, len(x)-K) # range of k r_k = np.arange(-K,B+1) for i in range(len(x)): if i not in r_x: x_filtered.append(x[i]) else: # list on which we will save values to be summed to yield new x_tilde_t ls = [] for k in r_k: #x_{t-k} comb = ncr(A, K+k) #print('i: ',i,'k: ',k) x_tk = x[i-k] #print(comb, x_tk, comb*x_tk) #print(ls) ls.append(int(comb*x_tk*const)) #print(ls) x_filtered.append(np.sum(ls)) return x_filtered def ncr(n, r): r = min(r, n-r) numer = reduce(op.mul, range(n, n-r, -1), 1) denom = reduce(op.mul, range(1, r+1), 1) return numer / denom def find_best_K(X, y, parity, with_validation=True, model='quadratic'): """Returns optimal K such that MAPE error is minimized for the gaussian smoothing""" X_new = np.zeros(X.shape) N = X.shape[1] Ks = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] mapes = [] pct_80 = int(np.ceil(80*len(X)/100)) for K in Ks: for j in range(X.shape[1]): #print(j) X_new[:,j]= gauss_filter(X[:,j], K, parity) X_train, X_test = X_new[:pct_80], X_new[pct_80:] y_train, y_test =y[:pct_80], y[pct_80:] if model == 'quadratic': # if we want to find the smallest MAPE error based on advancement validation if with_validation: mapes.append(advancement_val(X_new, y)[1]) # if we want to find the smallest MAPE error based on last 20% testing else: index = find_best_index(X_train, X_test, y_train, y_test, 'mape',X.shape[1]) P, q, G, h = generate_params(X_train, y_train, index,N) gamma = cvxopt_solve_qp(P, q, G, h) y_pred = X_test@gamma mapes.append(mape(y_test, y_pred)) # baseline model, we do not do any validation, only select on last 20% else: k = find_optimum_k(X_train, X_test, y_train, y_test)[3][0] y_pred = baseline_model_k(X_train, X_test, y_train, y_test, k)[1] mapes.append(mape(y_test, y_pred)) return Ks[np.argmin(mapes)], min(mapes) # ----- BASELINE ----- # def baseline_model_k(X_train, X_test, y_train, y_test, k): """k is such that y_pred[i] = y_train[i-k]""" y_acc = list(y_train) y_pred = [] for i in range(len(y_test)): y_pred.append(y_acc[-k]) y_acc.append(y_acc[-k]) #y_pred = y_train[-k:-k-len(y_test):-1] return y_acc, y_pred def plot_baseline(X_train, X_test, y_train, y_test, y, k, pct, country): y_pred_full = baseline_model_k(X_train, X_test, y_train, y_test,k)[0] plt.plot(y_pred_full, 'g', y, 'b') plt.xlabel('Day') plt.ylabel('Number of Daily Recovered') plt.legend(['Predicted value','True value']) plt.title('Prediction of the number of deaths in ' + country + ' using baseline model with k=' + str(k)+'\n with a MAPE of ' + str(mape(y_test,baseline_model_k(X_train, X_test, y_train, y_test,k)[1]))[:5] + ' on the last 20% of testing data') plt.axvline(x=pct-1) def baseline_error(X_train, X_test, y_train, y_test, k): y_pred = baseline_model_k(X_train, X_test, y_train, y_test, k)[1] loss = mape(y_test, y_pred) return loss def find_optimum_k(X_train, X_test, y_train, y_test): K = 30 maes = {} mapes = {} for k in range(1,K): y_pred = baseline_model_k(X_train, X_test, y_train, y_test, k)[1] mapes[k] = baseline_error(X_train, X_test, y_train, y_test, k) maes[k] = mae(y_test, y_pred) return maes, sorted(maes, key=maes.get), mapes, sorted(mapes, key=mapes.get) def simple_exponential_smoothing(x, alpha): result = [x[0]] # first value is same as series for n in range(1, len(x)): result.append(alpha * x[n] + (1 - alpha) * x[n-1]) return result def exponential_smoothing(x, rho, K): const = (1-rho)/(1-rho**(K+1)) new_x = [] # range of x r_x = np.arange(K, len(x)-K) # range of k r_k = np.arange(0,K) for i in range(len(x)): if i not in r_x: new_x.append(x[i]) else: ls = [] for k in r_k: ls.append(int(const*rho**k*x[i-k])) new_x.append(np.sum(ls)) return new_x def find_best_alpha(X, y, N, model='simple',K=0, with_validation=True): """Returns optimal alpha such that MAPE error is minimized,along with the MAPE index error in question, and its value""" X_new = np.zeros(X.shape) alphas = [round(0.05*i, 2) for i in range(20)] mapes = [] pct_80 = int(np.ceil(80*len(X)/100)) if model=='simple': for alpha in alphas: for j in range(X.shape[1]): X_new[:,j]= simple_exponential_smoothing(X[:,j], alpha) if with_validation: mapes.append(advancement_val(X_new, y)[1]) else: X_train, X_test = X_new[:pct_80], X_new[pct_80:] y_train, y_test =y[:pct_80], y[pct_80:] index = find_best_index(X_train, X_test, y_train, y_test, 'mape', N) P, q, G, h = generate_params(X_train, y_train, index,N) gamma = cvxopt_solve_qp(P, q, G, h) y_pred = X_test@gamma mapes.append(mape(y_test,y_pred)) else: for alpha in alphas: for j in range(X.shape[1]): X_new[:,j]= exponential_smoothing(X[:,j], alpha,K) if with_validation: mapes.append(advancement_val(X_new, y)[1]) else: X_train, X_test = X_new[:pct_80], X_new[pct_80:] y_train, y_test =y[:pct_80], y[pct_80:] index = find_best_index(X_train, X_test, y_train, y_test, 'mape', N) P, q, G, h = generate_params(X_train, y_train, index,N) gamma = cvxopt_solve_qp(P, q, G, h) y_pred = X_test@gamma mapes.append(mape(y_test, y_pred)) return alphas[np.argmin(mapes)], min(mapes) def advancement_val(X, y): # We want our train set to be of size 40, and then we shift of 10 data points at each new iteration. # the size of our test set is the rest of the dataset points splits = int(np.floor((X.shape[0] - 40)/10)) #print('number of splits for validation:', splits) N = X.shape[1] mapes = [] y_vals = [] y_preds = [] for i in range(splits): begin = 10*i end = 40 + 10*i X_tr = X[begin:end,:] y_tr = y[begin:end] X_te = X[end:,:] y_te = y[end:] index = find_best_index(X_tr, X_te, y_tr, y_te, 'mape', N) P, q, G, h = generate_params(X_tr, y_tr, index, N, 10e-5) gamma = cvxopt_solve_qp(P, q, G, h) y_pred = X_te@gamma y_vals.append(y_te) y_preds.append(y_pred) mapes.append(mape(y_te, y_pred)) y_vals = [item for sublist in y_vals for item in sublist] y_preds =[item for sublist in y_preds for item in sublist] return mapes, np.mean(mapes) def apply_smoothing(X, K, parity): new_X = np.zeros(X.shape) for j in range(X.shape[1]): new_X[:,j] = gauss_filter(X[:,j], K, parity=parity) return new_X # ----------------------------# # LOSS FUNCTIONS # ----------------------------# def mape(y_test, y_pred): return np.mean(np.abs((y_pred-y_test)/y_test)) def mspe(y_test, y_pred): return np.mean(np.square((y_pred-y_test)/y_test)) def maape(y_test, y_pred): return np.mean(np.arctan(np.abs((y_pred-y_test)/y_test))) def mae(y_test, y_pred): return np.mean(np.abs(y_test - y_pred)) # ----------------------------------# # QUADRATIC OPTIMIZATION # ----------------------------------# import cvxopt def create_M(N): M = np.zeros((N,N)) for i in range(N): for j in range(N): if i==0: if j == 0: M[i,j]=1 else: M[i,j]=0 elif (i==j): M[i,j]=1 elif (j == (i-1)): M[i,j] = -1 else: M[i,j]=0 return M def generate_G(index,N): """index: represents k^*, gamma_{k^*} is such that gamma_0 <= gamma_1 <= ...<= gamma_{k^*} >= ... >= gamma_N This function generates a matrix G such that either gamma_index or gamma_{index+1} is the maximum """ #this constraint verifies the gaussian-like distribution of the gamma G = np.zeros((N,N)) for i in range(0, index): for j in range(N): if (i==j): G[i,j] = 1 elif (j == i+1): G[i,j] = -1 for i in range(index, N): for j in range(N): if (i==j): G[i,j] = -1 elif (j == i+1): G[i,j] = 1 # we do not put any condition on idx_th element, and use this line to verify that all gammas are superior or # equal to zero #G[index,:] = 0 #G[index, 0] = -1 #this constraint verifies that -gamma_i <= 0 <=> gamma_i >= 0 forall i # for i in range(N, 2*N): # for j in range(N): # if (i==N+j): # G[i,j]=-1 return G def generate_params(X_train, y_train,k,N,lambda_=10e-15): M = create_M(N) M_tilde = M.T @ M X_tilde = X_train.T @ X_train P = X_tilde + lambda_*(M_tilde) q = -X_train.T@y_train G = generate_G(k,N) h = np.zeros((N,1)) for i in range(len(h)): h[i] = -0.0000001 return P, q, G, h def find_best_index(X_train, X_test, y_train, y_test, loss,N): """Returns index of maximum gamma that minimizes the mae loss""" loss = {} for k in range(N): P, q, G, h = generate_params(X_train, y_train, k, N, lambda_=10e-5) gammas = cvxopt_solve_qp(P,q, G, h) if not (gammas is None): y_pred = X_test@gammas loss[k] = mape(y_test,y_pred) # in case optimal solution is not found else: loss[k] = 999999999 return min(loss, key=loss.get) def cvxopt_solve_qp(P, q, G=None, h=None, A=None, b=None): cvxopt.solvers.options['show_progress'] = False P = .5 * (P + P.T) # make sure P is symmetric args = [cvxopt.matrix(P), cvxopt.matrix(q)] if G is not None: args.extend([cvxopt.matrix(G), cvxopt.matrix(h)]) if A is not None: args.extend([cvxopt.matrix(A), cvxopt.matrix(b)]) sol = cvxopt.solvers.qp(*args) if 'optimal' not in sol['status']: return None return np.array(sol['x']).reshape((P.shape[1],)) ```
{ "source": "Jeanne-Chris/DXCPythonBootcamp", "score": 3 }
#### File: Jeanne-Chris/DXCPythonBootcamp/testing.py ```python import mathfuncs #import pytest def test_add(): assert mathfuncs.add(7, 3) == 10 assert mathfuncs.add(7) == 9 def test_multiply(): assert mathfuncs.multiply(7, 3) == 21 assert mathfuncs.multiply(7, 2) == 14 ```
{ "source": "jeannefukumaru/multilingual-bert-as-service", "score": 3 }
#### File: multilingual-bert-as-service/mbert_client/utils.py ```python import zmq import numpy import torch import json def send_array_and_str(socket, A, sentence, flags=0, copy=True, track=False): """send a numpy array with metadata""" md = dict(dtype = str(A.dtype),shape = A.shape) socket.send_string(sentence, flags|zmq.SNDMORE) socket.send_json(md, flags|zmq.SNDMORE) return socket.send(A, flags, copy=copy, track=track) def recv_array_and_str(socket, flags=0, copy=True, track=False): """recv a numpy array and sentence""" sentence = socket.recv_string(flags=flags) md = socket.recv_json(flags=flags) msg = socket.recv(flags=flags, copy=copy, track=track) buf = memoryview(msg) A = numpy.frombuffer(buf, dtype=md['dtype']) return sentence, A.reshape(md['shape']) def preprocess(text, tokenizer): '''tokenize text into subwords and convert to indices :param text str: text to be preprocessed :param tokenizer: BertTokenizer object :output: torch tensor of vocab ids ''' tokenized_text = tokenizer.tokenize(text) indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text) tokens_tensor = torch.tensor([indexed_tokens]).numpy() return tokens_tensor ``` #### File: multilingual-bert-as-service/req-rep-architecture/resp_server.py ```python from absl import logging import numpy as np import time import zmq import torch from transformers import BertTokenizer, BertModel from ..utils import send_array, recv_array from argparse import ArgumentParser context = zmq.Context() socket = context.socket(zmq.REP) socket.bind("tcp://*:5555") tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased') model = BertModel.from_pretrained('bert-base-multilingual-cased') model.eval() def preprocess(text, tokenizer): '''tokenize text into subwords and convert to indices :param text str: text to be preprocessed :param tokenizer: BertTokenizer object :output: torch tensor of vocab ids ''' tokenized_text = tokenizer.tokenize(text) indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text) tokens_tensor = torch.tensor([indexed_tokens]) return tokens_tensor if __name__=="__main__": # parser = ArgumentParser('setup bert-multilingual for serving') # parser.add_argument("model-dir", help="model where pretrained model is stored") # args = parser.parse_args() while True: message = socket.recv_json() print('received request: %s' % message) # add generator prefetch option tokens_tensor = preprocess(message, tokenizer) # Predict hidden states features for each layer with torch.no_grad(): # See the models docstrings for the detail of the inputs outputs = model(tokens_tensor) # Transformers models always output tuples. # See the models docstrings for the detail of all the outputs # In our case, the first element is the hidden state of the last layer of the Bert model encoded_layers = outputs[0].numpy() send_array(socket, encoded_layers) ```
{ "source": "JeanneGasser/basic_cypting", "score": 4 }
#### File: JeanneGasser/basic_cypting/beta_version.py ```python from nltk import RegexpTokenizer toknizer = RegexpTokenizer(r'''\w'|\w+|[^\w\s]''') from string import punctuation import unidecode #Class construction class EncryptDecrypt: """ For each letter return the numerical position in alphabet Or for each number return the corresponding letter """ def encrypt(self, text): #Remove accent, caps and excess white space text = unidecode.unidecode(text.lower().strip()) token = toknizer.tokenize(text) #ord return ascii code of the letter. In order to have the alphabet position : -96 return " ".join( ["-".join([str(ord(l)-96) for l in word if l.isalpha()]) for word in token if word not in punctuation]) def decrypt(self, text): #chr gives the char attached to an ascii code. Since we're using letter position, need to add +96 #Encrypted word given in format xx-xx-xx, hence the split. to_decrypt = [word.split("-") for word in text.split(" ")] return " ".join( [("".join([chr(int(l)+96) for l in word])) for word in to_decrypt]) #User input and class output print("Bienvenue, avec ce programme vous allez pouvoir chiffrer ou déchiffrer du texte. \n \ Chiffrement : lettres = position numérique dans l'alphabet") textfile = input("Veuillez entrer votre texte ou un nom de fichier texte avec le chemin \n") if ".txt" in textfile: txt = open(textfile,"r").read() what_to_do = input("Voulez vous décrypter ou encrypter \n \n") if unidecode.unidecode(what_to_do.lower().strip())=="encrypter": open(textfile.split(".")[0] + "_crypted.txt","w").write(EncryptDecrypt().encrypt(txt)) print("Fichier encrypté et enregistré") elif unidecode.unidecode(what_to_do.lower().strip())=="decrypter": open(textfile.split(".")[0] + "_decrypted.txt","w").write(EncryptDecrypt().decrypt(txt)) print("Fichier décrypté et enregistré") else: print("Veuillez entrer une commande valide: Encrypter ou Decrypter") else: what_to_do = input("Voulez vous décrypter ou encrypter \n \n") if what_to_do.lower().strip()=="encrypter": print(EncryptDecrypt().encrypt(textfile)) elif unidecode.unidecode(what_to_do.lower().strip())=="decrypter": print(EncryptDecrypt().decrypt(textfile)) else: print("Veuillez entrer une commande valide: Encrypter ou Decrypter") ```
{ "source": "JeannieDaniel/twitterati", "score": 3 }
#### File: src/twitterati/query_params.py ```python import datetime import pytz def get_conversation_query_params(conversation_id, max_result=100): return {'query': 'conversation_id:{}'.format(conversation_id), 'tweet.fields': 'author_id,conversation_id,created_at,in_reply_to_user_id,lang,referenced_tweets', 'user.fields': 'id,created_at,username,name,description,location,public_metrics,url,verified,entities', 'expansions': 'author_id,in_reply_to_user_id,referenced_tweets.id', 'max_results': max_result } def get_tweet_query_params(): return { 'tweet.fields': 'author_id,conversation_id,created_at,in_reply_to_user_id,lang,referenced_tweets', 'user.fields': 'id,created_at,username,name,description,location,public_metrics,url,verified,entities', 'expansions': 'author_id,in_reply_to_user_id,referenced_tweets.id', } def get_followers_query_params(max_results = 100): return {'user.fields': 'id,created_at,username,name,description,location,public_metrics,url,verified,entities', 'max_results':100} def get_user_query_params(): return {'user.fields':'id,created_at,username,name,description,location,public_metrics,url,verified,entities'} def get_recent_search_query_params(search_query, period, max_results=100): # Calculate startdate if period is provided if period is not None: d = datetime.datetime.utcnow() + datetime.timedelta(days=-period) start_time = d.replace(tzinfo=pytz.UTC).isoformat() query_params = { 'query': search_query, 'user.fields': 'id,created_at,username,name,description,location,public_metrics,url,verified,entities', 'tweet.fields': 'author_id,in_reply_to_user_id,created_at,conversation_id,public_metrics,lang,geo,referenced_tweets,entities', 'expansions': 'author_id', 'max_results': max_results, 'start_time' : start_time, } return query_params else: query_params = { 'query': search_query, 'user.fields': 'id,created_at,username,name,description,location,public_metrics,url,verified,entities', 'tweet.fields': 'author_id,in_reply_to_user_id,created_at,conversation_id,public_metrics,lang,geo,referenced_tweets,entities', 'expansions': 'author_id', 'max_results': max_results } return query_params ```
{ "source": "jeanniesarah/gann-square", "score": 4 }
#### File: gann-square/gann/core.py ```python __author__ = '<NAME>' __copyright__ = 'Copyright 2015, <NAME>' import datetime def f(x): """ Helper function to determine number on a Gann square at coords: x, 0. If x = 0 -> 1 If x < 0 -> f(-x) - 4 * (-x) Else -> f(x-1) + 8 * x - 3 :param x: x position :return: value """ return 1 if x == 0 else (f(-x) - 4 * (-x) if x < 0 else f(x-1) + 8 * x - 3) def get_number_by_pos(x, y): """ Function to determine number on a Gann square at coordinates: x, y. Assuming Gann square coordinates system is: ____ ____ ____ |-1 1|0 1|1 1| |-1 0|0 0|1 0| |-1-1|0 -1|1 -1| (0, 0) = 1 ToDo: simplify, refactor :param x: x position :param y: y position :return: value """ if x >= 0: # x >= 0 if y <= x: # y <= x if y >= 0: # y >= 0 val = f(x) - y else: if abs(y) <= x: # |y| <= x val = f(x) + abs(y) else: val = f(abs(y)) + 2 * abs(y) - x else: val = f(y) - 2 * y + x else: if y >= 0: # y >= 0 if y <= abs(x): # y <= |x| val = f(x) + y else: val = f(y) - 2 * y + x else: # x < 0, y < 0 if abs(y) < abs(x): # |y| < |x| val = f(x) + y elif abs(y) == abs(x): # |y| == |x| val = (abs(y) * 2 + 1) ** 2 else: val = (abs(y) * 2 + 1) ** 2 - (abs(y) - abs(x)) return val def get_date_from_pos(x, y, base): """ Function to determine date on a Gann square at coordinates: x, y with base date 'base' Assuming Gann square coordinates system is: ____ ____ ____ |-1 1|0 1|1 1| |-1 0|0 0|1 0| |-1-1|0 -1|1 -1| :param x: x position :param y: y position :param base: base date at position (0, 0) :return: date for (x, y) """ days = get_number_by_pos(x, y) d = base + datetime.timedelta(days=days-1) # -1 because origin is 1 return d ```
{ "source": "jeanoliveira92/metaheuristicas-mosp", "score": 3 }
#### File: metaheuristicas-mosp/HeuristicaPopulacional/grasp.py ```python import random import numpy as np import globals as g import math from HeuristicaRefinamento import heuristicaRefinamento as hr from HeuristicaConstrutiva import heuristicaConstrutiva as hc # CONSTRUTIVA GRASP def gerarMatrizOrdenada(): # COPIA DA MATRIZ ORIGINAL matrixOriginal = g.matPaPe # SOMA O PESO TOTAL DE CADA LINHA somaLinhas = np.sum(matrixOriginal, axis=1) # CRIA UM VETOR DE INDICES indices = list(range(0, g.nrows)) # ADICIONA O VETOR DE INDICE AO VETOR DE PESOS/LINHA matrixOrdenada = np.c_[indices, somaLinhas] # REALIZA A ORDENAÇÃO DECRESCENTE DOS VALORES matrixOrdenada = matrixOrdenada[matrixOrdenada[:,1].argsort()[::-1]] # REMOVE O VETOR DE PESOS E DEIXA APENAS O DE INDICES #matrixOrdenada = matrixOrdenada[::,0] # GERA A NOVA MATRIX ORDENADA return matrixOrdenada def construtivaGrasp(matrixOrdenada): ALPHA = random.uniform(0.0, 1.0) # REMOVE O VETOR DE PESOS E DEIXA APENAS O DE INDICES. ENCONTRA A ULTIMA POSICAO DO ELEMENTO CE NO VETOR PARA CORTAR tempMat = matrixOrdenada[::, 1] # GERA OS VALORES DE CORTE SUPERIOR E INFERIOR cMin = np.min(matrixOrdenada[::1], axis=0)[1] cMax = np.max(matrixOrdenada[::1], axis=0)[1] ce = math.floor(cMin + ( ALPHA * (cMax - cMin))) while(not np.any(tempMat == ce)): cMax = cMax-1 ce = math.floor(cMin + (ALPHA * (cMax - cMin))) limiteSuperior = list(tempMat)[::1].index(ce) # VETOR DE INDICE DOS ELEMENTOS PARTICIONADOS indicesDasAmostras = matrixOrdenada[limiteSuperior:][::1] # REMOVE RCL DA MATRIZ ORIGINAL matrixOrdenada = matrixOrdenada[:limiteSuperior] # EMBARALHA OS ELEMENTOS SELECIONADOS DA MATRIZ indicesDasAmostras = random.sample(list(indicesDasAmostras), len(indicesDasAmostras)) # REMOVE OS PESOS DOS INDECES indicesDasAmostras = np.array(indicesDasAmostras)[::, 0] matrixOrdenada = matrixOrdenada[::, 0] # EMBARALHA OS RESTANTES DA RCL random.shuffle(matrixOrdenada) # CONCATENA O RCL COM O RESTANTE INICAL E REMOVE A COLUNA DOS PESOS # FICANDO APENAS OS INDICES DA MATRIX ORIGINAL ordemPecaPadrao = np.concatenate(( indicesDasAmostras, matrixOrdenada )) return ordemPecaPadrao # HEURISTICA POPULACIONAL GRASP - FIRST IMPROVEMEMENT def graspFim(ordemDasPilhas): resultadoBom = np.max(hc.PilhasAbertas(ordemDasPilhas)) # ORDENA A MATRIZ DE FORMA CRESCENTE matOrd = gerarMatrizOrdenada() i = 0 while i < 150: ordemDasPilhasAtual = construtivaGrasp(matOrd) ordemDasPilhasAtual = hr.FirstImprovementMethod(ordemDasPilhasAtual) resultadoMelhor = np.max(hc.PilhasAbertas(ordemDasPilhasAtual)) if resultadoMelhor < resultadoBom : ordemDasPilhas = ordemDasPilhasAtual resultadoBom = resultadoMelhor i = -1 i = i+1 return ordemDasPilhas # HEURISTICA POPULACIONAL GRASP - <NAME> def graspRum(ordemDasPilhas): resultadoBom = np.max(hc.PilhasAbertas(ordemDasPilhas)) # ORDENA A MATRIZ DE FORMA CRESCENTE matOrd = gerarMatrizOrdenada() for counter in range(100): ordemDasPilhasAtual = construtivaGrasp(matOrd) ordemDasPilhasAtual = hr.RandonUpHillMethod(list(ordemDasPilhasAtual), 100) resultadoMelhor = np.max(hc.PilhasAbertas(ordemDasPilhasAtual)) if resultadoMelhor < resultadoBom : ordemDasPilhas = ordemDasPilhasAtual resultadoBom = resultadoMelhor return ordemDasPilhas ```
{ "source": "jeanollion/dataset_iterator", "score": 3 }
#### File: dataset_iterator/datasetIO/atomic_file_handler.py ```python import os # code from aparamon: https://github.com/h5py/h5py/issues/934 class AtomicFileHandler: def __init__(self, path): self.fd = os.open(path, os.O_RDONLY) self.pos = 0 def seek(self, pos, whence=0): if whence == 0: self.pos = pos elif whence == 1: self.pos += pos else: self.pos = os.lseek(self.fd, pos, whence) return self.pos def tell(self): return self.pos def read(self, size): b = os.pread(self.fd, size, self.pos) self.pos += len(b) return b ``` #### File: dataset_iterator/dataset_iterator/tile_utils.py ```python import itertools from math import ceil, floor import numpy as np from numpy.random import randint, random from .utils import ensure_multiplicity from scipy.ndimage import zoom OVERLAP_MODE = ["NO_OVERLAP", "ALLOW", "FORCE"] def extract_tile_function(tile_shape, perform_augmentation=True, overlap_mode=OVERLAP_MODE[1], min_overlap=1, n_tiles=None, random_stride=False, augmentation_rotate=True): def func(batch, is_mask): tiles = extract_tiles(batch, tile_shape=tile_shape, overlap_mode=overlap_mode, min_overlap=min_overlap, n_tiles=n_tiles, random_stride=random_stride, return_coords=False) if perform_augmentation: tiles = augment_tiles_inplace(tiles, rotate = augmentation_rotate and all([s==tile_shape[0] for s in tile_shape]), n_dims=len(tile_shape)) return tiles return func def extract_tiles(batch, tile_shape, overlap_mode=OVERLAP_MODE[1], min_overlap=1, n_tiles=None, random_stride=False, return_coords=False): """Extract tiles. Parameters ---------- batch : numpy array dimensions BYXC or BZYXC (B = batch) tile_shape : tuple tile shape, dimensions YX or ZYX. Z,Y,X,must be inferior or equal to batch dimensions overlap_mode : string one of ["NO_OVERLAP", "ALLOW", "FORCE"] "NO_OVERLAP" maximum number of tiles so that they do not overlap "ALLOW" maximum number of tiles that fit in the image, allowing overlap "FORCE" maximum number of tiles that fit in the image while enforcing a minimum overlap defined by min_overlap. If min_overlap is less than zero, it enforces a distance between tiles min_overlap : integer or tuple min overlap along each spatial dimension. only used in mode "FORCE" n_tiles : int if provided overlap_mode and min_overlap are ignored random_stride : bool whether tile coordinates should be randomized, within the gap / overlap zone return_coords : bool whether tile coodinates should be returned Returns ------- numpy array, ([numpy array]) tiles concatenated along first axis, (tiles coordinates) """ image_shape = batch[0].shape[1:-1] if isinstance(batch, (list, tuple)) else batch.shape[1:-1] tile_shape = ensure_multiplicity(len(image_shape), tile_shape) if n_tiles is None: tile_coords = _get_tile_coords_overlap(image_shape, tile_shape, overlap_mode, min_overlap, random_stride) else: assert len(image_shape)==2, "only 2d images supported when specifying n_tiles" _, n_tiles_yx = get_stride_2d(image_shape, tile_shape, n_tiles) tile_coords = _get_tile_coords(image_shape, tile_shape, n_tiles_yx, random_stride) if len(image_shape)==2: tile_fun = lambda b : np.concatenate([b[:, tile_coords[0][i]:tile_coords[0][i] + tile_shape[0], tile_coords[1][i]:tile_coords[1][i] + tile_shape[1]] for i in range(len(tile_coords[0]))]) else: tile_fun = lambda b : np.concatenate([b[:, tile_coords[0][i]:tile_coords[0][i] + tile_shape[0], tile_coords[1][i]:tile_coords[1][i] + tile_shape[1], tile_coords[2][i]:tile_coords[2][i] + tile_shape[2]] for i in range(len(tile_coords[0]))]) if isinstance(batch, (list, tuple)): return [tile_fun(b) for b in batch] else: return tile_fun(batch) if return_coords: return tiles, tile_coords else: return tiles def extract_tile_random_zoom_function(tile_shape, perform_augmentation=True, overlap_mode=OVERLAP_MODE[1], min_overlap=1, n_tiles=None, random_stride=False, augmentation_rotate=True, zoom_range=[0.6, 1.6], aspect_ratio_range=[0.6, 1.6], interpolation_order=1): def func(batch, is_mask): if isinstance(batch, (list, tuple)): is_mask = ensure_multiplicity(len(batch), is_mask) order = [0 if m else interpolation_order for m in is_mask] tiles = extract_tiles_random_zoom(batch, tile_shape=tile_shape, overlap_mode=overlap_mode, min_overlap=min_overlap, n_tiles=n_tiles, random_stride=random_stride, zoom_range=zoom_range, aspect_ratio_range=aspect_ratio_range, interpolation_order=order) if perform_augmentation: tiles = augment_tiles_inplace(tiles, rotate = augmentation_rotate and all([s==tile_shape[0] for s in tile_shape]), n_dims=len(tile_shape)) return tiles return func def extract_tiles_random_zoom(batch, tile_shape, overlap_mode=OVERLAP_MODE[1], min_overlap=1, n_tiles=None, random_stride=False, zoom_range=[0.6, 1.6], aspect_ratio_range=[0.6, 1.6], interpolation_order=1): """Extract tiles with random zoom. Parameters ---------- batch : numpy array dimensions BYXC or BZYXC (B = batch) tile_shape : tuple tile shape, dimensions YX or ZYX. Z,Y,X,must be inferior or equal to batch dimensions overlap_mode : string one of ["NO_OVERLAP", "ALLOW", "FORCE"] "NO_OVERLAP" maximum number of tiles so that they do not overlap "ALLOW" maximum number of tiles that fit in the image, allowing overlap "FORCE" maximum number of tiles that fit in the image while enforcing a minimum overlap defined by min_overlap. If min_overlap is less than zero, it enforces a distance between tiles min_overlap : integer or tuple min overlap along each spatial dimension. only used in mode "FORCE" n_tiles : int if provided overlap_mode and min_overlap are ignored random_stride : bool whether tile coordinates should be randomized, within the gap / overlap zone zoom_range : list [min zoom ratio, max zoom ratio] aspect_ratio_range : list aspect ratio relative to the first axis. [min aspect ratio, max aspect ratio] interpolation_order : int The order of the spline interpolation passed to scipy.ndimage.zoom Returns ------- numpy array tiles concatenated along first axis """ image_shape = batch[0].shape[1:-1] if isinstance(batch, (list, tuple)) else batch.shape[1:-1] rank = len(image_shape) assert rank in [2, 3], "only 2D or 3D images are supported" aspect_ratio_range = ensure_multiplicity(2, aspect_ratio_range) assert aspect_ratio_range[0]<=aspect_ratio_range[1], "invalid aspect_ratio_range" aspect_ratio_range = [1./aspect_ratio_range[1], 1./aspect_ratio_range[0]] zoom_range = ensure_multiplicity(2, zoom_range) assert zoom_range[0]<=zoom_range[1], "invalid zoom range" tile_shape = ensure_multiplicity(len(image_shape), tile_shape) if n_tiles is None: tile_coords = _get_tile_coords_overlap(image_shape, tile_shape, overlap_mode, min_overlap, random_stride) else: assert len(image_shape)==2, "only 2d images supported when specifying n_tiles" _, n_tiles_yx = get_stride_2d(image_shape, tile_shape, n_tiles) tile_coords = _get_tile_coords(image_shape, tile_shape, n_tiles_yx, random_stride) zoom = random(tile_coords[0].shape[0]) * (zoom_range[1] - zoom_range[0]) + zoom_range[0] aspect_ratio = [random(tile_coords[0].shape[0]) * (aspect_ratio_range[1] - aspect_ratio_range[0]) + aspect_ratio_range[0] for ax in range(1, len(image_shape)) ] tile_size_fun = lambda ax : np.rint(zoom * tile_shape[ax]).astype(int) if ax==0 else np.rint(zoom * aspect_ratio[ax-1] * tile_shape[ax]).astype(int) r_tile_shape = [tile_size_fun(ax) for ax in range(len(image_shape))] if rank==2: tile_fun = lambda b,o : np.concatenate([_zoom(b[:, tile_coords[0][i]:tile_coords[0][i] + r_tile_shape[0][i], tile_coords[1][i]:tile_coords[1][i] + r_tile_shape[1][i]], tile_shape, o) for i in range(len(tile_coords[0]))]) else: tile_fun = lambda b,o : np.concatenate([_zoom(b[:, tile_coords[0][i]:tile_coords[0][i] + r_tile_shape[0][i], tile_coords[1][i]:tile_coords[1][i] + r_tile_shape[1][i], tile_coords[2][i]:tile_coords[2][i] + r_tile_shape[2][i]], tile_shape, o) for i in range(len(tile_coords[0]))]) if isinstance(batch, (list, tuple)): # multi-channel case interpolation_order= ensure_multiplicity(len(batch), interpolation_order) return [tile_fun(b, interpolation_order[i]) for i, b in enumerate(batch)] else: return tile_fun(batch, interpolation_order) def _zoom(batch, target_shape, order): ratio = [i / j for i, j in zip(target_shape, batch.shape[1:-1])] return zoom(batch, zoom = [1] + ratio + [1], order=order) def get_stride_2d(image_shape, tile_shape, n_tiles): if n_tiles == 1: return (image_shape[0], image_shape[1]), (1, 1) assert len(image_shape)==2, "only available for 2d images" tile_shape = ensure_multiplicity(2, tile_shape) Sy = image_shape[0] - tile_shape[0] Sx = image_shape[1] - tile_shape[1] assert Sy>=0, "tile size is too high on first axis" assert Sx>=0, "tile size is too high on second axis" a = - n_tiles + 1 b = Sy + Sx c = Sx*Sy d = b**2 - 4*a*c d = np.sqrt(d) r1 = (-b+d)/(2*a) r2 = (-b-d)/(2*a) stride = r1 if r1>r2 else r2 n_tiles_x = (Sx / stride) + 1 n_tiles_y = (Sy / stride) + 1 n_tiles_x_i = round(n_tiles_x) n_tiles_y_i = round(n_tiles_y) if abs(n_tiles_x_i-n_tiles_x)<abs(n_tiles_y_i-n_tiles_y): n_tiles_x = n_tiles_x_i n_tiles_y = n_tiles // n_tiles_x else: n_tiles_y = n_tiles_y_i n_tiles_x = n_tiles // n_tiles_y stride_x = Sx // (n_tiles_x - 1) if n_tiles_x > 1 else image_shape[1] stride_y = Sy // (n_tiles_y - 1) if n_tiles_y > 1 else image_shape[0] return (stride_y, stride_x), (n_tiles_y, n_tiles_x) def _get_tile_coords(image_shape, tile_shape, n_tiles, random_stride=False): n_dims = len(image_shape) assert n_dims == len(tile_shape), "tile rank should be equal to image rank" assert n_dims == len(n_tiles), "n_tiles should have same rank as image" tile_coords_by_axis = [_get_tile_coords_axis(image_shape[i], tile_shape[i], n_tiles[i], random_stride=random_stride) for i in range(n_dims)] return [a.flatten() for a in np.meshgrid(*tile_coords_by_axis, sparse=False, indexing='ij')] def _get_tile_coords_overlap(image_shape, tile_shape, overlap_mode=OVERLAP_MODE[1], min_overlap=1, random_stride=False): n_dims = len(image_shape) min_overlap = ensure_multiplicity(n_dims, min_overlap) assert n_dims == len(tile_shape), "tile shape should be equal to image shape" tile_coords_by_axis = [_get_tile_coords_axis_overlap(image_shape[i], tile_shape[i], overlap_mode, min_overlap[i], random_stride) for i in range(n_dims)] return [a.flatten() for a in np.meshgrid(*tile_coords_by_axis, sparse=False, indexing='ij')] def _get_tile_coords_axis_overlap(size, tile_size, overlap_mode=OVERLAP_MODE[1], min_overlap=1, random_stride=False): if tile_size==size: return [0] assert tile_size<size, "tile size must be inferior or equal to size" o_mode = OVERLAP_MODE.index(overlap_mode) assert o_mode>=0 and o_mode<=2, "invalid overlap mode" if o_mode==0: n_tiles = int(size/tile_size) elif o_mode==1: n_tiles = ceil(size/tile_size) elif o_mode==2: assert min_overlap<tile_size, "invalid min_overlap: value: {} should be <{}".format(min_overlap, tile_size) if min_overlap>=0: n_tiles = 1 + ceil((size - tile_size)/(tile_size - min_overlap)) # size = tile_size + (n-1) * (tile_size - min_overlap) else: n_tiles = floor((size - min_overlap)/(tile_size - min_overlap)) # n-1 gaps and n tiles: size = n * tile_size + (n-1)*-min_overlap return _get_tile_coords_axis(size, tile_size, n_tiles, random_stride) def _get_tile_coords_axis(size, tile_size, n_tiles, random_stride=False): if n_tiles==1: coords = [(size - tile_size)//2] if random_stride and coords[0]>0: coords += randint(-coords[0], size-(coords[0]+tile_size), size=1) return coords if n_tiles==2: coords = [0, size-tile_size] if random_stride: gap = size - 2 * tile_size if gap>1: delta = randint(0, gap//2, size=2) coords[0] += delta[0] coords[1] -= delta[1] return coords sum_stride = np.abs(n_tiles * tile_size - size) stride = np.array([0]+[sum_stride//(n_tiles-1)]*(n_tiles-1), dtype=int) remains = sum_stride%(n_tiles-1) stride[1:remains+1] += 1 if np.sign(n_tiles * tile_size - size)>0: stride=-stride stride = np.cumsum(stride) coords = np.array([tile_size*idx + stride[idx] for idx in range(n_tiles)]) # print("before random: n_tiles: {}, tile_size: {} size: {}, stride: {}, coords: {}".format(n_tiles, tile_size, size, stride, coords)) if random_stride: spacing = (size-tile_size)//(n_tiles-1) if spacing >= tile_size: # no overlap half_mean_gap = floor(0.5 * (spacing-tile_size) ) else: # overlap half_mean_gap = ceil(0.5 * spacing ) coords += randint(-half_mean_gap, half_mean_gap+1, size=n_tiles) coords[0] = max(coords[0], 0) coords[-1] = min(coords[-1], size-tile_size) # print("after random: spacing: {}, gap: {}, coords: {}".format(spacing, half_mean_gap, coords)) return coords def augment_tiles(tiles, rotate, n_dims=2): flip_axis = [1, 2, (1,2)] if n_dims==2 else [2, 3, (2,3)] flips = [np.flip(tiles, axis=ax) for ax in flip_axis] augmented = np.concatenate([tiles]+flips, axis=0) if rotate: rot_axis = (1, 2) if n_dims==2 else (2, 3) augmented = np.concatenate((augmented, np.rot90(augmented, k=1, axes=rot_axis))) return augmented AUG_FUN_2D = [ lambda img : img, lambda img : np.flip(img, axis=0), lambda img : np.flip(img, axis=1), lambda img : np.flip(img, axis=(0, 1)), lambda img : np.rot90(img, k=1, axes=(0,1)), lambda img : np.rot90(img, k=3, axes=(0,1)), # rot + flip0 lambda img : np.rot90(np.flip(img, axis=1), k=1, axes=(0,1)), lambda img : np.rot90(np.flip(img, axis=(0, 1)), k=1, axes=(0,1)) ] AUG_FUN_3D = [ lambda img : img, lambda img : np.flip(img, axis=1), lambda img : np.flip(img, axis=2), lambda img : np.flip(img, axis=(1, 2)), lambda img : np.rot90(img, k=1, axes=(1,2)), lambda img : np.rot90(img, k=3, axes=(1,2)), # rot + flip0 lambda img : np.rot90(np.flip(img, axis=2), k=1, axes=(1,2)), lambda img : np.rot90(np.flip(img, axis=(1, 2)), k=1, axes=(1,2)) ] def augment_tiles_inplace(tiles, rotate, n_dims=2): aug_fun = AUG_FUN_2D if n_dims==2 else AUG_FUN_3D n_tiles = tiles[0].shape[0] if isinstance(tiles, (tuple, list)) else tiles.shape[0] aug = randint(0, len(aug_fun) if rotate else len(aug_fun)/2, size=n_tiles) if isinstance(tiles, (tuple, list)): for bidx in range(len(tiles)): for b in range(n_tiles): if aug[b]>0: # 0 is identity tiles[bidx][b] = aug_fun[aug[b]](tiles[bidx][b]) else: for b in range(n_tiles): if aug[b]>0: # 0 is identity tiles[b] = aug_fun[aug[b]](tiles[b]) return tiles ```
{ "source": "jeanollion/dlutils", "score": 3 }
#### File: distnet/keras_models/intensity_transformer.py ```python from tensorflow.keras import backend as K from tensorflow.keras.layers import Dense, Conv2D, Input, Flatten, LeakyReLU from tensorflow.keras.models import Model def get_intensity_transformer(input_size=64, n_down=2, n_filters=4, n_filters_max=16, batch_mean=True, name="intensity_transformer", dtype="float32"): input = Input(shape = (input_size, input_size, 1), name="{}_input".format(name), dtype=dtype) conv = input filters = n_filters for l in range(n_down): conv = Conv2D(filters, kernel_size = (3,3), strides=2, padding='valid', activation=LeakyReLU(alpha=0.5), name="{}_conv_{}".format(name, l))(conv) filters *=2 if n_filters_max>0: filters = min(filters, n_filters_max) conv_flat = Flatten()(conv) offset = Dense(1, name = "{}_offset".format(name))(conv_flat) scale = Dense(1, activation = "relu", name = "{}_scale".format(name))(conv_flat) if batch_mean: offset = K.mean(offset, axis=0) scale = K.mean(scale, axis=0) return Model(input, [offset, scale]) def plug_intensity_transformer(model, intensity_transformer_model, shared_input=True): if not shared_input: input = Input(shape = model.input.shape[1:], name="input_to_transform_"+model.name) thumb_input = intensity_transformer_model.input offset, scale = intensity_transformer_model.outputs scaled_input = ( input - offset ) * scale output = model(scaled_input) scaled_output = output / scale + offset return Model([input, thumb_input], scaled_output) else: input = Input(shape = intensity_transformer_model.input.shape[1:], name="input_to_transform_"+model.name) offset, scale = intensity_transformer_model(input) scaled_input = ( input - offset ) * scale output = model(scaled_input) scaled_output = output / scale + offset return Model(input, scaled_output) ``` #### File: distnet/keras_models/layers.py ```python from tensorflow import pad from tensorflow.keras.layers import Layer, GlobalAveragePooling2D, Reshape, Conv2D, Multiply, Conv3D from ..utils.helpers import ensure_multiplicity, get_nd_gaussian_kernel from tensorflow.python.keras.engine.input_spec import InputSpec import tensorflow as tf import numpy as np class ReflectionPadding2D(Layer): def __init__(self, paddingYX=(1, 1), **kwargs): paddingYX = ensure_multiplicity(2, paddingYX) self.padding = tuple(paddingYX) super().__init__(**kwargs) def compute_output_shape(self, input_shape): return (input_shape[0], input_shape[1] + 2 * self.padding[0], input_shape[2] + 2 * self.padding[1], input_shape[3]) def call(self, input_tensor, mask=None): padding_height, padding_width = self.padding return pad(input_tensor, [[0,0], [padding_height, padding_height], [padding_width, padding_width], [0,0] ], 'REFLECT') def get_config(self): config = super().get_config().copy() config.update({"padding": self.padding}) return config class ConstantConvolution2D(Layer): def __init__(self, kernelYX, reflection_padding=False, **kwargs): assert len(kernelYX.shape)==2 for ax in [0, 1]: assert kernelYX.shape[ax]>=1 and kernelYX.shape[ax]%2==1, "invalid kernel size along axis: {}".format(ax) self.kernelYX = kernelYX[...,np.newaxis, np.newaxis] self.reflection_padding=reflection_padding self.padL = ReflectionPadding2D([(dim-1)//2 for dim in self.kernelYX.shape[:-2]] ) if self.reflection_padding else None self.n_chan = kwargs.pop("n_chan", None) super().__init__(**kwargs) def build(self, input_shape): n_chan = input_shape[-1] if input_shape[-1] is not None else self.n_chan if n_chan is None: self.kernel=None return kernel = tf.constant(self.kernelYX, dtype=tf.float32) if n_chan>1: self.kernel = tf.tile(kernel, [1, 1, n_chan, 1]) else: self.kernel = kernel self.pointwise_filter = tf.eye(n_chan, batch_shape=[1, 1]) def compute_output_shape(self, input_shape): if self.reflection_padding: return input_shape radY = (self.kernelYX.shape[0] - 1) // 2 radX = (self.kernelYX.shape[1] - 1) // 2 return (input_shape[0], input_shape[1] - radY * 2, input_shape[2] - radX * 2, input_shape[3]) def call(self, input_tensor, mask=None): if self.kernel is None: #build was initiated with None shape return input_tensor if self.padL is not None: input_tensor = self.padL(input_tensor) return tf.nn.separable_conv2d(input_tensor, self.kernel, self.pointwise_filter, strides=[1, 1, 1, 1], padding='VALID') def get_config(self): config = super().get_config().copy() config.update({"kernelYX": self.kernelYX, "reflection_padding":reflection_padding}) return config class Gaussian2D(ConstantConvolution2D): def __init__(self, radius=1, **kwargs): gauss_ker = get_nd_gaussian_kernel(radius=self.radius, ndim=2)[...,np.newaxis, np.newaxis] super().__init__(kernelYX = gauss_ker, **kwargs) def channel_attention(n_filters, activation='relu'): # TODO TEST + make layer or model + set name to layers def ca_fun(input): gap = GlobalAveragePooling2D()(input) gap = Reshape((1, 1, n_filters))(gap) # or use dense layers and reshape afterwards conv1 = Conv2D(kernel_size=1, filters = n_filters, activation=activation)(gap) key = Conv2D(kernel_size=1, filters = n_filters, activation='sigmoid')(conv1) return Multiply()([key, input]) return ca_fun ############## TEST ##################### from tensorflow.python.framework import tensor_shape class SplitContextCenterConv2D(Layer): def __init__(self, filters, kernelYX, padding="same", **kwargs): #REFLECT kernelYX=ensure_multiplicity(2, kernelYX) for k in kernelYX: assert k%2==1, "kernel size must be uneven on all spatial axis" if padding=="same": padding = "CONSTANT" name = kwargs.pop('name', None) self.padding_constant_value = kwargs.pop('constant_values', 0) self.convL = Conv3D(filters=filters, kernel_size = (kernelYX[0], kernelYX[1], 2), padding="valid", name = name+"conv" if name is not None else None, **kwargs) self.input_spec = InputSpec(ndim=4) self.padding = padding self.ker_center = [(k-1)//2 for k in kernelYX] super().__init__(name) def compute_output_shape(self, input_shape): if self.padding=="valid": return (input_shape[0], input_shape[1] - self.convL.kernel_size[0] + 1 , input_shape[2] - self.convL.kernel_size[1] + 1, self.filters) else: return (input_shape[0], input_shape[1], input_shape[2], self.filters) def build(self, input_shape): super().build(input_shape) input_shape = tensor_shape.TensorShape(input_shape) self.n_channels = int(input_shape[-1])//2 conv_input_shape = input_shape[:-1] + (2, self.n_channels) self.convL.build(conv_input_shape) kernel_mask = np.ones(shape=(self.convL.kernel_size)+( self.n_channels, self.convL.filters )) # broadcasting kernel_mask[self.ker_center[0],self.ker_center[1],0]=0 kernel_mask[:,:self.ker_center[1],1]=0 kernel_mask[:,(self.ker_center[1]+1):,1]=0 kernel_mask[:self.ker_center[0],self.ker_center[1],1]=0 kernel_mask[(self.ker_center[0]+1):,self.ker_center[1],1]=0 self.kernel_mask = tf.convert_to_tensor(kernel_mask, dtype=tf.bool) def call(self, input_tensor, mask=None): if self.padding!="valid": # we set explicitely the padding because convolution is performed with valid padding padding_height, padding_width = self.ker_center input_tensor = pad(input_tensor, [[0,0], [padding_height, padding_height], [padding_width, padding_width], [0,0] ], mode = self.padding, constant_values=self.padding_constant_value, name = self.name+"pad" if self.name is not None else None) # convert to 5D tensor -> split in channel dimension to create a new spatial dimension. assumes channel last # in : BYX[2xC], out: BYX2C if self.n_channels==1: conv_in = input_tensor[...,tf.newaxis] else: context, center = tf.split(input_tensor, 2, axis=-1) conv_in = tf.concat([context[...,tf.newaxis, :], center[...,tf.newaxis, :]], axis=-2) self.convL.kernel.assign(tf.where(self.kernel_mask, self.convL.kernel, tf.zeros_like(self.convL.kernel))) # set explicitely the unused weights to zero conv = self.convL(conv_in) # BYX1F (valid padding on last conv axis -> size 1) return conv[:, :, :, 0, :] # TODO add periodic padding so that each color has access to the 2 other ones. test to perform the whole net in 4D. see https://stackoverflow.com/questions/39088489/tensorflow-periodic-padding class Conv3DYXC(Layer): def __init__(self, filters, kernelYX, padding="same", **kwargs): #padding can also be REFLECT self.kernelYX=tuple(ensure_multiplicity(2, kernelYX)) for k in kernelYX: assert k%2==1, "kernel size must be uneven on all spatial axis" self.ker_center = [(k-1)//2 for k in kernelYX] if padding=="same": padding = "CONSTANT" self._name = kwargs.pop('name', "Conv3DYXC") self.padding_constant_value = kwargs.pop('constant_values', 0) self.input_spec = InputSpec(ndim=4) self.padding = padding self.filters=filters self.conv_args = kwargs super().__init__(self._name) def compute_output_shape(self, input_shape): if self.padding=="valid": return (input_shape[0], input_shape[1] - self.convL.kernel_size[0] + 1 , input_shape[2] - self.convL.kernel_size[1] + 1, self.filters) else: return (input_shape[0], input_shape[1], input_shape[2], self.filters) def build(self, input_shape): super().build(input_shape) input_shape = tensor_shape.TensorShape(input_shape) n_channels = int(input_shape[-1]) self.convL = Conv3D(filters=self.filters, kernel_size = self.kernelYX + (n_channels,), padding="valid", name = self._name+"conv" if self._name is not None else None, **self.conv_args) conv_input_shape = input_shape + (1,) self.convL.build(conv_input_shape) def call(self, input_tensor, mask=None): if self.padding!="valid": # we set explicitely the padding because convolution is performed with valid padding padding_height, padding_width = self.ker_center input_tensor = pad(input_tensor, [[0,0], [padding_height, padding_height], [padding_width, padding_width], [0,0] ], mode = self.padding, constant_values=self.padding_constant_value, name = self.name+"pad" if self.name is not None else None) conv_in = input_tensor[...,tf.newaxis] #BYXC1 (convert to 5D tensor) conv = self.convL(conv_in) # BYX1F (valid padding on last conv axis -> size 1) return conv[:, :, :, 0, :] # BYXF ``` #### File: distnet/keras_models/self_attention.py ```python import tensorflow as tf from tensorflow.keras.layers import Layer, Dense, Reshape, Embedding, Concatenate, Conv2D from tensorflow.keras.models import Model import numpy as np class SelfAttention(Model): def __init__(self, d_model, spatial_dims, positional_encoding=True, name="self_attention"): ''' d_model : number of output channels spatial_dim : spatial dimensions of input tensor (x , y) if positional_encoding: depth must correspond to input channel number adapted from: https://www.tensorflow.org/tutorials/text/transformer ''' super().__init__(name=name) self.d_model = d_model self.spatial_dims=spatial_dims self.spatial_dim = np.prod(spatial_dims) self.wq = Dense(self.d_model, name=name+"_q") self.wk = Dense(self.d_model, name=name+"_k") self.wv = Dense(self.d_model, name=name+"_w") self.positional_encoding=positional_encoding if positional_encoding: self.pos_embedding = Embedding(self.spatial_dim, d_model, name=name+"pos_enc") # TODO test other positional encoding. in particular that encodes X and Y def call(self, x): ''' x : tensor with shape (batch_size, y, x, channels) ''' shape = tf.shape(x) batch_size = shape[0] #spatial_dims = shape[1:-1] #spatial_dim = tf.reduce_prod(spatial_dims) depth_dim = shape[3] if self.positional_encoding: x_index = tf.range(self.spatial_dim, dtype=tf.int32) pos_emb = self.pos_embedding(x_index) # (spa_dim, d_model) pos_emb = tf.reshape(pos_emb, (self.spatial_dims[0], self.spatial_dims[1], self.d_model)) #for broadcasting purpose x = x + pos_emb # broadcast q = self.wq(x) # (batch_size, *spa_dims, d_model) k = self.wk(x) # (batch_size, *spa_dims, d_model) v = self.wv(x) # (batch_size, *spa_dims, d_model) q = tf.reshape(q, (batch_size, -1, depth_dim)) # (batch_size, spa_dim, d_model) k = tf.reshape(k, (batch_size, -1, depth_dim)) v = tf.reshape(v, (batch_size, -1, depth_dim)) # scaled_attention.shape == (batch_size, spa_dims, depth) # attention_weights.shape == (batch_size, spa_dims, spa_dims) scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v) output = tf.reshape(scaled_attention, (batch_size, self.spatial_dims[0], self.spatial_dims[1], self.d_model)) tf.identity(attention_weights, name=self.name+"_attention_weights") return output, attention_weights def compute_output_shape(self, input_shape): return input_shape[:-1]+(self.d_model,), (input_shape[0],self.spatial_dim,self.spatial_dim) def scaled_dot_product_attention(q, k, v): """Calculate the attention weights. q, k, v must have matching leading dimensions. k, v must have matching penultimate dimension, i.e.: seq_len_k = seq_len_v. The mask has different shapes depending on its type(padding or look ahead) but it must be broadcastable for addition. Args: q: query shape == (..., seq_len_q, depth) k: key shape == (..., seq_len_k, depth) v: value shape == (..., seq_len_v, depth_v) Returns: output, attention_weights from : https://www.tensorflow.org/tutorials/text/transformer """ matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k) # scale matmul_qk dk = tf.cast(tf.shape(k)[-1], tf.float32) scaled_attention_logits = matmul_qk / tf.math.sqrt(dk) # softmax is normalized on the last axis (seq_len_k) so that the scores # add up to 1. attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (..., seq_len_q, seq_len_k) output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v) return output, attention_weights ```
{ "source": "jeanollion/n2v_dataset_iterator", "score": 2 }
#### File: n2v_dataset_iterator/n2v_dataset_iterator/value_manipulators.py ```python import numpy as np # MOST CODE FROM NOISE TO VOID: https://github.com/juglab/n2v/blob/master/n2v/utils/n2v_utils.py def pm_cst(value = 0): def cst_fun(patch, coords, dims): return [value] * len(coords[0]) return cst_fun def pm_min(): def min_fun(patch, coords, dims): vmin = patch.min() return [vmin] * len(coords[0]) return min_fun def pm_normal_withoutCP(): def normal_withoutCP(patch, coords, dims): vals = [] for coord in zip(*coords): rand_coords = random_neighbor(patch.shape, coord) vals.append(patch[tuple(rand_coords)]) return vals return normal_withoutCP def pm_uniform_withCP(local_sub_patch_radius): def random_neighbor_withCP_uniform(patch, coords, dims): vals = [] for coord in zip(*coords): sub_patch = get_subpatch(patch, coord,local_sub_patch_radius) rand_coords = [np.random.randint(0, s) for s in sub_patch.shape[0:dims]] vals.append(sub_patch[tuple(rand_coords)]) return vals return random_neighbor_withCP_uniform def pm_normal_additive(pixel_gauss_sigma): def pixel_gauss(patch, coords, dims): vals = [] for coord in zip(*coords): vals.append(np.random.normal(patch[tuple(coord)], pixel_gauss_sigma)) return vals return pixel_gauss def pm_normal_fitted(local_sub_patch_radius): def local_gaussian(patch, coords, dims): vals = [] for coord in zip(*coords): sub_patch = get_subpatch(patch, coord, local_sub_patch_radius) axis = tuple(range(dims)) vals.append(np.random.normal(np.mean(sub_patch, axis=axis), np.std(sub_patch, axis=axis))) return vals return local_gaussian def pm_identity(local_sub_patch_radius): def identity(patch, coords, dims): vals = [] for coord in zip(*coords): vals.append(patch[coord]) return vals return identity def random_neighbor(shape, coord): rand_coords = sample_coords(shape, coord) while np.any(rand_coords == coord): rand_coords = sample_coords(shape, coord) return rand_coords def sample_coords(shape, coord, sigma=4): return [normal_int(c, sigma, s) for c, s in zip(coord, shape)] def normal_int(mean, sigma, w): return int(np.clip(np.round(np.random.normal(mean, sigma)), 0, w - 1)) def get_subpatch(patch, coord, local_sub_patch_radius): start = np.maximum(0, np.array(coord) - local_sub_patch_radius) end = start + local_sub_patch_radius*2 + 1 shift = np.minimum(0, patch.shape - end) start += shift end += shift slices = [ slice(s, e) for s, e in zip(start, end)] return patch[tuple(slices)] ```
{ "source": "jeanollion/TaLiSSman", "score": 2 }
#### File: talissman/training/training.py ```python import edt import numpy as np import h5py from dataset_iterator import MultiChannelIterator from tensorflow.keras.optimizers import Adam from tensorflow.keras.losses import mean_squared_error as mse from dataset_iterator.tile_utils import extract_tile_random_zoom_function from .data_augmentation import * from ..model import get_unet def get_train_test_iterators(dataset, center_range:list, scale_range:list, group_keyword:list = None, group_proportion:list = None, batch_size:int = 4, n_z:int=5, z_step=2, tile_params:dict = dict(tile_shape=(256, 256), n_tiles=9, zoom_range=[0.6, 1.6], aspect_ratio_range=[0.75, 1.5] ), elasticdeform_parameters:dict = {}, noise_intensity:float = 0.035, raw_feature_name:str="/raw", label_feature_name:str="/regionLabels", training_selection_name:str="train/", validation_selection_name:str="eval/" ): """Generates image iterators for training/validation. Perform data augmentation: pick random slices, random zoom / random flip / rotate90, add radnom iid gaussian noise / gaussian blur, elastic deformation, random normalization Parameters ---------- dataset : datasetIO or path to dataset (str) dataset if group_keyword are provided, dataset must be a .h5 file. group_keyword is expected in the path of the datasets, after validation_selection_name or training_selection_name. center_range : list [min center, max center] for normalization in data augmentation. When several groups are defined, one array per group should be given. scale_range : list [min scale, max scale] for normalization in data augmentation. When several groups are defined, one array per group should be given. group_keyword : list list of keywords that define distinct groups (optional, can be None): usually a dataset name. group_proportion : list list of proportion for each group in each mini batch (statistically) (optional, can be None) batch_size : int size of mini batch n_z : int number of z-slices that will be picked from the dataset. z_step : type step between picked z-slices tile_params : dict parameter for tiling: tile_shape: shape (Y,X) of returned tiles n_tiles: number of tiles per image zoom_range: random zoom applied at cropping to Y, X aspect_ratio_range: limits the aspect ratio distortion generated by the random zoom elasticdeform_parameters : dict None for no elastic deformation OR parameters for elasticdeform augmentation: order: interpolation order mode: out-of-bound strategy points : number of reference points sigma : intensity of deformation noise_intensity : float intensity of added iid gaussian noise raw_feature_name : str input images dataset name label_feature_name : str labeled images dataset name training_selection_name : str name of the training selection validation_selection_name : str name of the validation selection Returns ------- data iterator tensor shape: batch_size * n_tiles, tile_shape[0], tile_shape[1], n_z """ extract_tile_function = extract_tile_random_zoom_function(**tile_params) if tile_params is not None else None def random_channel_slice(nchan): # random offset on chosen slices to simulate focus variations noff=nchan-1-(n_z-1)*z_step + 1 off = np.random.randint(noff) idx = [off + z_step*i for i in range(n_z)] return idx if group_keyword is not None and isinstance(group_keyword, (list, tuple)): assert len(center_range)==len(group_keyword) and len(scale_range)==len(group_keyword), "when several groups are provided, as many center_range / center_range arrays should be provided" for i in range(len(group_keyword)): assert len(center_range[i])==2 and len(scale_range[i])==2, "invalid scale_range / center_range" assert group_proportion is None or len(group_proportion)==len(group_keyword) scale_fun = [[get_normalization_fun(center_range[i], scale_range[i]), None] for i in range(len(group_keyword))] validation_grp = [_join_grp_kw(validation_selection_name, kw) for kw in group_keyword] training_grp = [_join_grp_kw(training_selection_name, kw) for kw in group_keyword] else: scale_fun = [[get_normalization_fun(center_range, scale_range), None]] if group_keyword is None: validation_grp = validation_selection_name training_grp = training_selection_name else: validation_grp = _join_grp_kw(validation_selection_name, group_keyword) training_grp = _join_grp_kw(training_selection_name, group_keyword) params = dict(dataset=dataset, group_scaling = scale_fun, group_proportion=group_proportion, channel_keywords=[raw_feature_name, label_feature_name], # channel keyword must correspond to the name of the extracted features output_channels= [1], mask_channels = [1], channel_slicing_channels = {0:random_channel_slice}, elasticdeform_parameters = elasticdeform_parameters, extract_tile_function = extract_tile_function, channels_postprocessing_function = _channels_postpprocessing(get_illumination_aug_fun(None, noise_intensity), _get_edt_fun()), batch_size=batch_size, perform_data_augmentation=True, shuffle=True) train_it = MultiChannelIterator(group_keyword=training_grp, **params) test_it = MultiChannelIterator(group_keyword=validation_grp, **params) return train_it, test_it def _get_edt_fun(): return lambda labels : np.stack([edt.edt(labels[i,...,0], black_border=False)[...,np.newaxis] for i in range(labels.shape[0])]) def _channels_postpprocessing(raw_fun, label_fun): def fun(batch_by_channel): batch_by_channel[0] = raw_fun(batch_by_channel[0]) batch_by_channel[1] = label_fun(batch_by_channel[1]) return fun def _join_grp_kw(kw1, kw2): if kw1 is None or len(kw1)==0: return kw2 elif kw2 is None or len(kw2)==0: return kw1 else: return kw1 + '.*' + kw2 # TODO : only works with h5py datasets def get_model(model_params:dict=dict(), learning_rate:float = 2e-4, saved_weights_file:str=None): """Initialize model. Parameters ---------- model_params : dict parameters for ..unet.get_unet learning_rate : float initial learning rate saved_weights_file : str path to saved weight Returns ------- compiled model """ model = get_unet(**model_params) if saved_weights_file is not None: model.load_weights(saved_weights_file) model.compile(optimizer=Adam(learning_rate), loss=mse) return model ```
{ "source": "Jeanot-Zubler/clock-out-timer", "score": 3 }
#### File: Jeanot-Zubler/clock-out-timer/time_left.py ```python import re import datetime as dt file_name = "ReportExport.rtf" def get_lines_from_file(f): matches = [] regex_string = r"\s(\d{2}.\d{2})((?:\s{1,2}\d{4})+)" for line in f: match = re.search(regex_string, line) if match != None: matches.append(match.groups()) return matches def match_to_times(match): year = dt.datetime.now().year day, month = match[0].split(".") times = match[1].split() datetimes = [dt.datetime(year, int(month), int(day), int( time[:2]), int(time[2:])) for time in times] return datetimes def calculate_leaving_time(datetimes, target_time="8:30"): h, m = target_time.split(":") target_time = dt.timedelta(hours=int(h), minutes=int(m)) worked = dt.timedelta(0) now = dt.datetime.now().replace(second=0, microsecond=0) i = 1 while i < len(datetimes): worked += datetimes[i] - datetimes[i-1] i += 2 if len(datetimes) % 2 == 0: print( f"You have worked {worked} so far and are currently off the clock.") else: worked += now - datetimes[-1] print( f"You have worked {worked} so far and are currently on the clock.") if worked < target_time: print( f"You will be finished at {now+target_time-worked}.") else: print(f"You made {worked-target_time} of overtime so far.") def main(file_name="ReportExport.rtf", target_time="8:30"): with open(file_name, "r") as f: matches = get_lines_from_file(f) calculate_leaving_time(match_to_times(matches[-1]), target_time) if __name__ == "__main__": main() ```
{ "source": "jeanpaulrsoucy/archivist", "score": 2 }
#### File: archivist/utils/common.py ```python from datetime import datetime import pytz # import classes from archivist.classes.Archivist import Archivist as a # define functions def get_datetime(): tz = a.config["project"]["tz"] t = datetime.now(pytz.timezone(tz)) return t ```
{ "source": "jean-philippe-martin/semantic-notes", "score": 3 }
#### File: jean-philippe-martin/semantic-notes/kb.py ```python from typing import List, Iterable, Dict, Set, Union, Any from collections import defaultdict # Check the type annotations like this: # mypy --py2 graph.py # The type that goes into a KB, and what a KB # still mostly feels like (modulo the few added features). KBDict = Dict[str, Dict[str, List[Any]]] class KB(dict): """A very simple "knowledge base". It's organized in pages. Each page has a name and a set of key/value pairs. The keys are called "attributes" of the page. Each value is a list (possibly with a single element). The KB can be used like a normal dict, but it offers a few convenience features and includes the idea that pages may have multiple names. To set an alternate name for a page, set its 'aka' property (see tests). Page lookup is also case-insensitive: if you have pages 'aaa' and 'AAA' then a lookup for 'AAA' will return the latter, but a lookup for 'aAA' will return the former. Two names refer to the same page if and only if normalize_page returns the same value for both. Examples: >>> ppl={'John':{'eye_color': ['blue']}} >>> k=KB(ppl) >>> k['john']['eye_color'] ['blue'] >>> ppl['Bob']={'aka': ['Bobby tables'], 'eye_color': ['brown']} >>> k=KB(ppl) >>> k['bobby tables']['eye_color'] ['brown'] >>> k.get_attribute('bobby tables', 'eye_color') ['brown'] """ def __init__(self, dict_of_dict): # type: (KBDict) -> None self.aka = {} # type: Dict[str, str] self.update(dict_of_dict) self._fill_aka() def __getitem__(self, key): # type: (str) -> Dict[str, List[Any]] return dict.__getitem__(self,self.normalize_page(key)) def get(self, key, default=None): # type: (str, Any) -> Dict[str, List[Any]] return dict.get(self,self.normalize_page(key), default) def has_key(self, page): # type: (str) -> bool return dict.has_key(self, self.normalize_page(page)) def normalize_page(self, key): # type: (str) -> str """page name or alias -> page name""" if self.aka.has_key(key): return self.aka[key] if dict.has_key(self, key): return key # If the page name has capitals, and we do too but in different places, # should still find the page name. # If the page doesn't exist, return the name unmodified. return self.aka.get(key.lower(), key) def is_same_page(self, a, b): # type: (str, str) -> bool """true if a,b are names of the same page, even if aliases.""" return self.normalize_page(a) == self.normalize_page(b) def get_attribute(self, key, attribute, default=None): # type: (str, str, List[Any]) -> List[Any] """kb[key][attribute], or None if either's missing.""" page = self.get(key, None) if not page: return default return page.get(attribute, default) def get_unique_attribute(self, key, attribute, default=None): # type: (str, str, List[Any]) -> Any """kb[key][attribute][0], or None if either's missing.""" return unique(self.get_attribute(key,attribute,default)) def _fill_aka(self): # type: () -> None for k,v in dict.items(self): a = v.get("aka", []) for b in a: if self.aka.get(b)!=None: print(str(b)+" is defined twice: as "+self.aka[b] + " and "+k) continue self.aka[b]=k # put in 'baby' as an aka for the 'Baby' page, *unless* 'baby' is already # a registered aka for something else. for k in dict.keys(self): if not self.aka.has_key(k.lower()): self.aka[k.lower()] = k a = self.get(k).get("aka", []) for b in a: if not self.aka.has_key(b.lower()): self.aka[b.lower()] = k KB_or_Dict = Union[KB, KBDict] def merge(kblist): # type: (List[KBDict]) -> KBDict """Merges the dicts together into a single one by appending all the keys. Example: >>> a = {'mars': {'isa': ['planet']}} >>> b = {'mars': {'color': ['red']}} >>> sorted(merge([a,b])['mars'].keys()) ['color', 'isa'] """ ret = {} # type: KBDict for kb in kblist: for k, v in kb.items(): if k not in ret: ret[k] = defaultdict(list) for attrib, values in v.items(): ret[k][attrib] += values return ret def unique(value): """Check that there is only one value in the list, and return it. >>> kb = KB({'John':{'eye_color': ['blue']}}) >>> unique(kb.get_attribute('John', 'eye_color')) 'blue' This is handy in the context of KB, where everything's a list but it's common to expect that there's only one value. """ if not value: return None if len(value)!=1: raise ValueError('Expected a single value, got multiple (%s)' % len(value)) return value[0] def unlist(value_or_list): x=value_or_list if isinstance(x, str) or isinstance(x, unicode): return x try: if len(x)==1: return x[0] except: pass return x ``` #### File: jean-philippe-martin/semantic-notes/split.py ```python from typing import List, Iterable, Dict, Set, Union, Tuple def strings(lines): # type: (Iterable[str]) -> Iterable[Tuple[str, List[str]]] """splits the lines into (title, lines) sections.""" ret=[] # type: List[str] title='' ready=False for l in lines: if len(l)>2 and l[0]=='[' and (l[-1]==']' or l.endswith(']\n')): if ready: yield (title, ret) title=l.strip()[1:-1] ret=[] ready=True else: ret.append(l) if ready: yield (title, ret) def file(filename): # type: (str) -> Iterable[Tuple[str, List[str]]] """File name -> (title, lines) sections.""" with open(filename, 'rt') as f: # we force evaluation while the file is still open return list(strings(f)) ``` #### File: jean-philippe-martin/semantic-notes/test_interpret.py ```python import doctest import interpret from parse import units import unittest import graph from kb import unique from parse import unit_perhaps class TestPlanets(unittest.TestCase): "Tests for parse.py." def test_planets(self): # shorthand kg = units.kg # load the data pages, kb = interpret.file('testdata/planets.txt') # The KB holds the quantities with units, so we can combine them # meaningfully even though one is in kg and the other in "earth_mass". got = unique(kb['the earth']['mass']) + unique(kb['mars']['mass']) self.assertTrue(6E24*kg < got < 7E24*kg) def test_sum(self): # shorthand kg = units.kg # load the data pages, kb = interpret.file('testdata/planets.txt') # grab everything that's a planet planets = graph.ancestors(kb, 'isa', 'planet') # sum their mass total_mass = sum(unique(kb[x]['mass']) for x in planets) # we don't have all the planets in the sample... once we do, # we'll have to update this test! self.assertTrue(6E24*kg < total_mass < 8E24*kg) def test_split(self): foo=['abc', 12, 'd\ne', 13] b,a = interpret.split_contents(foo, '\n') self.assertEquals(b, ['abc', 12, 'd']) self.assertEquals(a, ['e', 13]) foo=['abc', 12, 'de'] b,a = interpret.split_contents(foo, '\n') self.assertEquals(b, foo) self.assertEquals(a, []) foo=['abc', 12, '\n'] b,a = interpret.split_contents(foo, '\n') self.assertEquals(b, ['abc',12,'']) self.assertEquals(a, ['']) def test_split_all_one(self): foo=['abc', 12, 'd\ne', 13] ret = interpret.split_all(foo, '\n') b=ret[0] a=ret[1] self.assertEquals(b, ['abc', 12, 'd']) self.assertEquals(a, ['e', 13]) foo=['abc', 12, 'de'] ret = interpret.split_all(foo, '\n') b=ret[0] self.assertEquals(b, foo) self.assertEquals(len(ret), 1) foo=['abc', 12, '\n'] ret = interpret.split_all(foo, '\n') b=ret[0] a=ret[1] self.assertEquals(b, ['abc', 12, '']) self.assertEquals(a, ['']) def test_split_all_multi(self): foo=['abc', 12, 'd\ne', 13, '\n', 14] parts = interpret.split_all(foo, '\n') self.assertEquals(parts[0], ['abc', 12, 'd']) self.assertEquals(parts[1], ['e', 13, '']) self.assertEquals(parts[2], ['', 14]) self.assertEquals(len(parts), 3) foo=['', 'name,parent,parent'] parts = interpret.split_all(foo, ',') self.assertEquals(parts, [['', 'name'], ['parent'], ['parent']]) def test_table(self): p,kb=interpret.file('testdata/table.txt') html = p['table demo'].html() self.assertTrue('<td>' in html) self.assertTrue('<th>' in html) self.assertTrue('<table' in html) def test_image(self): p,kb=interpret.file('testdata/img.txt') html = p['basic image'].html() self.assertTrue('<img' in html) self.assertTrue('src="foo.jpg"' in html) html = p['image with width'].html() self.assertTrue('<img' in html) self.assertTrue('width="50%"' in html) self.assertTrue('src="foo.jpg"' in html) def test_instance_table(self): p,kb=interpret.file('testdata/instancetable.txt') html = p['Planet'].html() self.assertTrue('<td>' in html) self.assertTrue('<th>' in html) self.assertTrue('<table' in html) self.assertTrue('earth' in kb) self.assertTrue('aka' in kb['planet']) # "Planet" is not a planet (it's a category). self.assertFalse(kb.get_unique_attribute('Planet', 'isa')) self.assertTrue(kb.get_unique_attribute('earth', 'isa') == 'Planet') # units are parsed correctly self.assertTrue(unit_perhaps('12000 km') < kb['earth']['diameter'][0] < unit_perhaps('13000 km')) self.assertTrue(kb.get_unique_attribute('earth', 'color') == 'blue') # the info is merged with that section's self.assertTrue(kb.get_unique_attribute('earth', 'mostly') == 'water') if __name__ == '__main__': unittest.main() ``` #### File: jean-philippe-martin/semantic-notes/test_kb.py ```python import doctest import kb import unittest class TestKB(unittest.TestCase): "Tests for kb.py." def test_get(self): d={'a': {'b': 'c'}} x = kb.KB(d) self.assertEqual(x['a']['b'], 'c') self.assertEqual(x.get('a', 'default')['b'], 'c') self.assertEqual(x.get('z', {'b': 'x'})['b'], 'x') def test_is_same_page(self): d={'a': {'b': 'c'}} x = kb.KB(d) self.assertEqual(x.is_same_page('a', 'a'), True) self.assertEqual(x.is_same_page('a', 'z'), False) def test_get_attribute(self): d={'a': {'b': 'c'}} x = kb.KB(d) self.assertEqual(x.get_attribute('a', 'b'), 'c') self.assertEqual(x.get_attribute('a', 'z'), None) self.assertEqual(x.get_attribute('z', 'z'), None) def test_keys(self): d={'a': {'b': 'c'}, 'x': {'y': 'z'}} x = kb.KB(d) self.assertEqual(sorted(list(x.keys())), ['a','x']) def test_aka(self): d={'a': {'b': 'c', 'aka': ['alpha']}} x = kb.KB(d) self.assertEqual(x.get_attribute('alpha','b'), 'c') self.assertEqual(x['alpha']['b'], 'c') def test_has_key(self): d={'a': {'b': 'c', 'aka': ['alpha']}} x = kb.KB(d) self.assertEqual(x.has_key('a'), True) self.assertEqual(x.has_key('alpha'), True) def test_case_insensitive(self): d={'bob': {'w': 'guy'}, 'BOB': {'w': 'abbreviation'}, 'Bobby': {'w': 'name'}, 'Ace': {'w': '1'}, 'aCe': {'w': '2'}, 'acE': {'w': '3'}} x = kb.KB(d) self.assertEqual(x.get_attribute('bob','w'), 'guy') self.assertEqual(x.get_attribute('BOB','w'), 'abbreviation') self.assertEqual(x.get_attribute('Bob','w'), 'guy') self.assertEqual(x['bobby']['w'], 'name') self.assertEqual(x['BOBby']['w'], 'name') self.assertEqual(x.is_same_page('bobby', 'BobbY'), True) self.assertEqual(x.is_same_page('bob', 'BOB'), False) self.assertEqual(x.get_attribute('Ace','w'), '1') self.assertEqual(x.get_attribute('aCe','w'), '2') self.assertEqual(x.get_attribute('acE','w'), '3') self.assertEqual(x.is_same_page('Ace', 'acE'), False) def test_case_insensitive_and_aka(self): d={'bob': {'w': 'guy', 'aka': ['Bobby', 'foo', 'roar']}, 'BOB': {'w': 'abbreviation'}, 'bobbY': {'w': 'other guy'}, 'foO': {'w': 'Mr.T'}} x = kb.KB(d) self.assertEqual(x.is_same_page('bob', 'Bobby'), True) self.assertEqual(x.is_same_page('bob', 'ROAR'), True) self.assertEqual(x.is_same_page('bob', 'foo'), True) self.assertEqual(x.is_same_page('bob', 'foO'), False) # 'FOO' could be redirected to either bob or foO, spec doesn't say class TestDocs(unittest.TestCase): def test_docs(self): doctest.testmod(kb) if __name__ == '__main__': unittest.main() ``` #### File: jean-philippe-martin/semantic-notes/test_parse.py ```python import doctest import parse from parse import Tagged import unittest class TestParse(unittest.TestCase): "Tests for parse.py." def test_no_crash(self): x = parse.string('hi') y = parse.string('hi `b(world)') z = parse.string('hi `b(`i(small) world)') z = parse.string('`very(`very `deep(thoughts) `/)') def test_backtick_legal_in_tag(self): x = parse.string('`big`hello(world)') self.assertEqual(len(x.contents), 1) self.assertEqual(x.contents[0].tag, 'big`hello') self.assertEqual(str(x),'`big`hello(world)') def test_strings_together(self): x = parse.string('hi') self.assertEqual(len(x.contents), 1) x = parse.string('hi world') self.assertEqual(len(x.contents), 1) x = parse.string('hi\nbig\nworld') self.assertEqual(len(x.contents), 1) x = parse.string('TITLE\n\nsome text\nblabla\nfinal line\n') self.assertEqual(len(x.contents), 1) def test_first_tag_empty(self): x = parse.string('hello\nthere') self.assertEqual(x.tag, '') def test_paren_tag(self): x = parse.string('hello `b(world)') self.assertEqual(len(x.contents), 2) self.assertEqual(x.contents[0], 'hello ') self.assertEqual(x.contents[1].tag, 'b') self.assertEqual(x.contents[1].contents[0], 'world') def test_block_tag(self): for s in [ 'hello `b(world)', 'hello `b world`/', 'hello `b world`/ ', 'hello `b world`/\n', 'hello `b\nworld`/']: x = parse.string(s) self.assertEqual(len(x.contents), 2) self.assertEqual(x.contents[0], 'hello ') self.assertEqual(x.contents[1].tag, 'b') self.assertEqual(x.contents[1].contents[0], 'world') def test_strings(self): ss=['hello', '\b(world)'] x=parse.strings(ss) self.assertEqual(len(x.contents), 2) ss=('hello', '\b(world)') x=parse.strings(ss) self.assertEqual(len(x.contents), 2) ss=[x for x in ('hello', '\b(world)')] x=parse.strings(ss) self.assertEqual(len(x.contents), 2) class TestDocs(unittest.TestCase): def test_docs(self): doctest.testmod(parse, globs={'parse':parse}) if __name__ == '__main__': unittest.main() ``` #### File: jean-philippe-martin/semantic-notes/transform.py ```python from collections import namedtuple from kb import KB from kb import KB_or_Dict from typing import List, Iterable, Dict, Set, Union, Any, Tuple, Callable, NamedTuple def addvalue(kb, page, attribute, newvalue): # type: (KB_or_Dict, str, str, Any) -> None if not kb.has_key(page): kb[page]={} if not kb[page].has_key(attribute): kb[page][attribute]=[] if not newvalue in kb[page][attribute]: kb[page][attribute] += [newvalue] def addsymmetricalrelation(kb, page1, page2, attribute): # type: (KB_or_Dict, str, str, str) -> None addvalue(kb, page1, attribute, page2) addvalue(kb, page2, attribute, page1) def getvalues(kb, page, attribute): # type: (KB_or_Dict, str, str) -> List[Any] if not kb.has_key(page): return [] if not kb[page].has_key(attribute): return [] return kb[page][attribute] ## Page selectors: given the kb and a source and target pages, ## return True or False. PageSelector = Callable[[KB_or_Dict, str, str], bool] def ofa(whatitmustbe): # type: (Any) -> PageSelector """Page selector that picks sources that 'isa' the argument.""" return lambda kb, src, tgt: whatitmustbe in getvalues(kb, src, 'isa') def whoisa(whatitmustbe): # type: (Any) -> PageSelector """Page selector that picks targets that 'isa' the argument.""" return lambda kb, src, tgt: whatitmustbe in getvalues(kb, tgt, 'isa') ## Page rules: given the kb and a page (source). ## Return the list of matching pages (targets). PageRule = Callable[[KB_or_Dict, str], List[Any]] def the(attribute, pageselector=lambda kb, src, tgt: True): # type: (str, PageSelector) -> PageRule """a rule that returns the value of that attribute, if any. if pageselector is set then only return values for pages that match it.""" return lambda kb, k: [p for p in kb[k].get(attribute, []) if pageselector(kb, k, p)] def chain_inner(kb, k, attributes): "from a page, return the set of pages obtained by following the attributes, in order." candidates = set([k]) for at in attributes: next = [] for src in candidates: next += kb[src].get(at,[]) candidates = set(next) return candidates def chain(attributes, pageselector=lambda kb, src, tgt: True): # type: (List[str], PageSelector) -> PageRule """a rule that returns the pages that we arrive to after following the chain.""" return lambda kb, k: [p for p in chain_inner(kb, k, attributes) if pageselector(kb, k, p)] def hasa(attribute): # type: (str) -> PageRule """A rule that picks everyone who has that attribute.""" return lambda kb, k: [k] if getvalues(kb, k, attribute) else [] ## Page actions: given the kb, a source page and the page being acted on. ## Returns nothing, but updates the kb. PageAction = Callable[[KB_or_Dict, str, str], None] def isa(whatitbecomes): # type: (Any) -> PageAction """an action that adds an (isa,whatitbecomes) relationship.""" return lambda kb, src, tgt: addvalue(kb, tgt, 'isa', whatitbecomes) def imtheir(relation): # type: (str) -> PageAction """an action that adds relation(src) to the target.""" return lambda kb, src, tgt: addvalue(kb, tgt, relation, src) def isalsomy(relation): # type: (str) -> PageAction """an action that adds relation(tgt) to the source.""" return lambda kb, src, tgt: addvalue(kb, src, relation, tgt) Rule = namedtuple('Rule', ['pagerule', 'pageactions']) # type: Tuple[PageRule, List[PageAction]] def apply_rules(kb, rules): # type: (KB_or_Dict, List[Rule]) -> None """Modify the kb by applying all the provided rules.""" for src in kb.keys(): for rule in rules: targets = rule.pagerule(kb, src) if not targets: continue for action in rule.pageactions: for tgt in targets: action(kb, src, str(tgt)) ```
{ "source": "jeanphilippemercier/microquake", "score": 3 }
#### File: core/data/write_ot.py ```python import os import numpy as np from obspy.core.inventory.response import InstrumentSensitivity, PolesZerosResponseStage from obspy.core.inventory.util import Frequency import instResp from instResp.libInst import get_corner_freq_from_pole, getResponse from instResp.libNom import RC, WA, Accelerometer from instResp.plotResp import plotResponse from loguru import logger from microquake.core.data.inventory import ( Inventory, load_inventory_from_excel, test_print_OT_xml_summary ) from microquake.core.data.response_utils import read_cable_file, read_sensor_types_file ns_tag = 'mq' ns = 'MICROQUAKE' def get_sensitivity(resistance): if resistance == 0: # print(" This is a most likely an Accelerometer!") sensitivity = 1.0 elif resistance % 3500 == 0: # print(" This is a high-gain geophone --> Use 80 V/m/s") sensitivity = resistance/3500 * 80 elif resistance % 375 == 0: # print(" This is a low-gain geophone --> Use 28.8 V/m/s") sensitivity = resistance/375 * 28.8 else: # print(" Unknown resistance [%s] --> use default sensitivity=1.0" % resistance) sensitivity = 1.0 return sensitivity def fix_OT_responses(inventory): ''' Replace the generic (placeholder) channel responses in inventory with calculated responses. Response calculations are made using values in the station extras dict like damping, coil_resistance, etc. ''' for station in inventory.stations(): logger.info("sta:{}".format(station.code)) extras = station.extra resistance = extras.coil_resistance.value f0 = extras.resonance_frequency.value damp = extras.damping.value cable_cap = extras.cable_capacitance_pF_per_meter.value cable_len = extras.cable_length.value sensitivity = get_sensitivity(resistance) extras['calculated_pz_sensitivity'] = {'namespace': ns, 'value': sensitivity} logger.info("resistance:%f sensitivity:%f cable_cap:%f len:%f" % (resistance, sensitivity, cable_cap, cable_len)) pz_generator = WA input_units = "M/S" if station.motion == "ACCELERATION": pz_generator = Accelerometer input_units = "M/S**2" pzs = pz_generator(per=1/f0, damp=damp, gain=1.0, normalize=True, normalize_freq=100.) # MTH: JP wants sensitivity set to 1.0 since OT data already scaled to velocity/accel: pzs.sensitivity = 1.0 pzs.sensitivity_f = 100. freqs = np.logspace(-5, 4., num=2000) # pzs.name = station.sensor_id pzs.name = extras.model.value pzs.unitsIn = input_units pzs.unitsOut = "V" if cable_cap == 0 or cable_len == 0: logger.info("Cable capacity or cable length set to 0 --> ignoring") else: # Cable capacity in pF (=10^-12 Farads): cable_capacity = cable_cap * 1e-12 * cable_len tau = resistance * cable_capacity f_rc = 1./tau # print("cap_per_m:%s x len:%f = %f x R=%f --> tau=%f fc=1/tau=%g" % \ # (cable_cap, cable_len, cable_capacity, resistance, tau, f_rc)) pz_rc = RC(tau=tau) pzs.append_pole(pz_rc.poles[0]) pzs.normalize_to_a0(norm_freq=100) resp = getResponse(pzs, freqs, removeZero=False, useSensitivity=False) title = 'sta:%s f0=%.0f Hz h=%.2f sensitivity=%.2f' % \ (station.code, f0, damp, sensitivity) logger.info("Corner freq:%f" % get_corner_freq_from_pole(pzs.poles[0])) fc_low = -999. if station.motion == "VELOCITY": fc_low = get_corner_freq_from_pole(pzs.poles[0]) # elif station.motion == "ACCELERATION": fc_high = 1e6 if pzs.poles.size == 3: logger.info("** High-f Corner freq:%f" % get_corner_freq_from_pole(pzs.poles[2])) fc_high = get_corner_freq_from_pole(pzs.poles[2]) extras['min_frequency'] = {'namespace': ns, 'value': float(fc_low)} extras['max_frequency'] = {'namespace': ns, 'value': float(fc_high)} # if station.code == '2': # if 1: # plotResponse(resp, freqs, title=title, xmin=1, xmax=10000., ymin=.01, ymax=6, title_font_size=8) # exit() response = station.channels[0].response instrument_sensitivity = response.instrument_sensitivity instrument_sensitivity.value = 1. instrument_sensitivity.frequency = 100. stages = response.response_stages # Insert OT geophone or accelerometer response in first stage of response: stages[0] = convert_pz_to_obspy(pzs) # Use generic digitizer for stage 2 with output sample rate = 6KHz stages[2].name = "Generic Digitizer = Placeholder for IMS Digitizer" stages[2].stage_gain = 1 stages[2].decimation_input_sample_rate = Frequency(12000.) stages[2].decimation_factor = 2 response.response_stages = stages[0:3] for channel in station.channels: channel.response = response return 1 def write_OT_xml(sensor_file, sensor_type_file, cable_file, xml_outfile='OT.xml'): ''' Deprecated - used when network metadata was spread over individual csv files ''' # This import will fail as load_inventory not anymore here from microquake.core.data.inventory import load_inventory # <MV 190905> print("write_OT_xml: xml_outfile=%s" % xml_outfile) cables = read_cable_file(cable_file) sensor_types = read_sensor_types_file(sensor_type_file) inventory = load_inventory(sensor_file) for cable in cables: logger.info("cable:%s --> %s" % (cable, cables[cable])) for sensor in sensor_types: logger.info("sensor:%s --> %s" % (sensor, sensor_types[sensor])) for station in inventory.stations(): logger.info("sta:%s sensor_id:%s" % (station.code, station.sensor_id)) logger.info(sensor_types) sensor_type = sensor_types[station.sensor_id] cable_cap = cables[station.cable_type] extras = station.extra extras['output_resistance_ohm'] = {'namespace': ns, 'value': float(sensor_type['output resistance (ohm)'])} extras['resonance_frequency'] = {'namespace': ns, 'value': sensor_type['resonance frequency (Hz)']} extras['damping'] = {'namespace': ns, 'value': float(sensor_type['damping'])} extras['cable_pF_capacitance_per_m'] = {'namespace': ns, 'value': float(cable_cap)} resistance = float(sensor_type['output resistance (ohm)']) if resistance == 0: # print(" This is a most likely an Accelerometer!") sensitivity = 1.0 elif resistance % 3500 == 0: # print(" This is a high-gain geophone --> Use 80 V/m/s") sensitivity = resistance/3500 * 80 elif resistance % 375 == 0: # print(" This is a low-gain geophone --> Use 28.8 V/m/s") sensitivity = resistance/375 * 28.8 else: # print(" Unknown resistance [%s] --> use default sensitivity=1.0" % resistance) sensitivity = 1.0 pz_generator = WA input_units = "M/S" if station.motion == "ACCELERATION": pz_generator = Accelerometer input_units = "M/S**2" f0 = float(sensor_type['resonance frequency (Hz)']) damp = float(sensor_type['damping']) pzs = pz_generator(per=1/f0, damp=damp, gain=1.0, normalize=True, normalize_freq=100.) # MTH: JP wants sensitivity set to 1.0 since OT data already scaled to velocity/accel: pzs.sensitivity = 1.0 pzs.sensitivity_f = 100. extras['calculated_pz_sensitivity'] = {'namespace': ns, 'value': float(sensitivity)} freqs = np.logspace(-5, 4., num=2000) pzs.name = station.sensor_id pzs.unitsIn = input_units pzs.unitsOut = "V" if cable_cap == "0": # print("No cable cap set --> Skip!") # print(pzs) pass else: cable_len = float(station.cable_length) # Cable capacity in pF (=10-12 Farads): cable_capacity = float(cable_cap) * 1e-12 * cable_len tau = resistance * cable_capacity f_rc = 1./tau # print("cap_per_m:%s x len:%f = %f x R=%f --> tau=%f fc=1/tau=%g" % \ # (cable_cap, cable_len, cable_capacity, resistance, tau, f_rc)) pz_rc = RC(tau=tau) pzs.append_pole(pz_rc.poles[0]) pzs.normalize_to_a0(norm_freq=100) resp = getResponse(pzs, freqs, removeZero=False, useSensitivity=False) title = 'sta:%s sensor_type:%s f0=%.0f Hz h=%.2f sensitivity=%.2f' % \ (station.code, station.sensor_id, f0, damp, sensitivity) logger.info("Corner freq:%f" % get_corner_freq_from_pole(pzs.poles[0])) fc_low = -999. if station.motion == "VELOCITY": fc_low = get_corner_freq_from_pole(pzs.poles[0]) # elif station.motion == "ACCELERATION": fc_high = 1e6 if pzs.poles.size == 3: logger.info("** High-f Corner freq:%f" % get_corner_freq_from_pole(pzs.poles[2])) fc_high = get_corner_freq_from_pole(pzs.poles[2]) extras['min_frequency'] = {'namespace': ns, 'value': float(fc_low)} extras['max_frequency'] = {'namespace': ns, 'value': float(fc_high)} # if station.code == '2': # if 1: # plotResponse(resp, freqs, title=title, xmin=1, xmax=10000., ymin=.01, ymax=6, title_font_size=8) # exit() from obspy.core.inventory.response import InstrumentSensitivity from obspy.core.inventory.util import Frequency """ :type instrument_sensitivity: :class:`~obspy.core.inventory.response.InstrumentSensitivity` :param instrument_sensitivity: The total sensitivity for the given channel, representing the complete acquisition system expressed as a scalar. def __init__(self, value, frequency, input_units, output_units, input_units_description=None, output_units_description=None, frequency_range_start=None, frequency_range_end=None, frequency_range_db_variation=None): """ response = station.channels[0].response instrument_sensitivity = response.instrument_sensitivity instrument_sensitivity.value = 1. instrument_sensitivity.frequency = 100. stages = response.response_stages # Insert OT geophone or accelerometer response in first stage of response: stages[0] = convert_pz_to_obspy(pzs) # Use generic digitizer for stage 2 with output sample rate = 6KHz stages[2].name = "Generic Digitizer = Placeholder for IMS Digitizer" stages[2].stage_gain = 1 stages[2].decimation_input_sample_rate = Frequency(12000.) stages[2].decimation_factor = 2 response.response_stages = stages[0:3] for channel in station.channels: channel.response = response inventory.write(xml_outfile, format='STATIONXML', nsmap={ns_tag: ns}) return 1 def convert_pz_to_obspy(pz: instResp.polezero.polezero) -> PolesZerosResponseStage: ''' Convert internal polezero object to obspy PolesZeroResponseStage ''' stage_sequence_number = 1 stage_gain = pz.sensitivity stage_gain_frequency = pz.sensitivity_f normalization_factor = pz.a0 normalization_frequency = pz.sensitivity_f zeros = pz.zeros poles = pz.poles if zeros is None: logger.debug("Inside convert_pz: zeros = None") zeros = [] if pz.type == 'A': pz_transfer_function_type = "LAPLACE (RADIANS/SECOND)" elif pz.type == 'B': pz_transfer_function_type = "LAPLACE (HERTZ)" else: pz_transfer_function_type = "DIGITAL (Z-TRANSFORM)" input_units = pz.unitsIn output_units = pz.unitsOut pz_stage = PolesZerosResponseStage(stage_sequence_number, stage_gain, stage_gain_frequency, input_units, output_units, pz_transfer_function_type, normalization_frequency, zeros, poles, normalization_factor=normalization_factor, name=pz.name, ) return pz_stage def test_read_xml(xmlfile): inventory = Inventory.load_from_xml('OT.xml') for station in inventory.networks[0].stations: print(station.code, station.loc, station.sensor_id, station.extra.damping) for channel in station.channels: # channel.plot(min_freq=1., output=output) print(channel.code, channel.dip, channel.azimuth) return def main(): if 'SPP_COMMON' not in os.environ: logger.error("Set your SPP envs!") exit(2) path = os.environ['SPP_COMMON'] xls_file = os.path.join(path, 'inventory_snapshot.xlsx') inventory = load_inventory_from_excel(xls_file) success = fix_OT_responses(inventory) xml_out = os.path.join(path, 'OT.xml') inventory.write(xml_out, format='STATIONXML', nsmap={ns_tag: ns}) exit() sensor_file = os.path.join(path, 'sensors.csv') sensor_types_file = os.path.join(path, 'sensor_types.csv') cables_file = os.path.join(path, 'cables.csv') success = write_OT_xml(sensor_file, sensor_types_file, cables_file, xml_outfile=xml_out) assert success == 1 exit() # test_read_xml('OT.xml') test_print_OT_xml_summary(xml_out) exit() test_read_stationxml('resources/ANMO.xml', 'ANMO2.xml') test_read_stationxml('resources/OT.xml', 'OT2.xml') test_read_csv_write_stationxml(sensor_csv, 'OT_new.xml') test_print_OT_xml_summary('OT_new.xml') return if __name__ == "__main__": main() ``` #### File: core/helpers/grid.py ```python import os import numpy as np from loguru import logger from numpy.linalg import norm from obspy.core import UTCDateTime from obspy.core.event import WaveformStreamID from obspy.realtime.signal import kurtosis from scipy.interpolate import interp1d from microquake.core.stream import Trace from microquake.core.data.grid import read_grid from microquake.core.event import Arrival, Pick from microquake.core.helpers.velocity import get_current_velocity_model_id from microquake.core.settings import settings from microquake.core.simul.eik import ray_tracer def get_grid(station_code, phase, grid_type='time'): """ get a travel time grid for a given station and a given phase :param station_code: station code :param phase: Phase ('P' or 'S') :param grid_type: type of grid ('time', 'take_off', 'azimuth') :return: """ nll_dir = settings.nll_base f_tt = os.path.join(nll_dir, 'time', 'OT.%s.%s.%s.buf' % (phase.upper(), station_code, grid_type)) tt_grid = read_grid(f_tt, format='NLLOC') return tt_grid def get_grid_point(station_code, phase, location, grid_coordinates=False, grid_type='time'): """ get value on a grid at a given point inside the grid :param station_code: Station code :param phase: Phase ('P' or 'S') :param location: point where the value is interpolated :param grid_coordinates: whether the location is expressed in grid coordinates or in model coordinates (default True) :param grid_type: type of grid ('time', 'take_off', 'azimuth') :return: """ tt = get_grid(station_code, phase, grid_type=grid_type) return tt.interpolate(location, grid_coordinate=grid_coordinates)[0] def get_ray(station_code, phase, location, grid_coordinate=False, max_iter=100): """ return a ray for a given location - station pair for a given phase :param station_code: station code :param phase: phase ('P', 'S') :param location: start of the ray :param grid_coordinate: whether start is expressed in grid (Default=True) :param max_iter: maximum number of iteration (Default=100) coordinates or model coordinates (default False) :return: """ travel_time = get_grid(station_code, phase, grid_type='time') return ray_tracer(travel_time, location, grid_coordinates=grid_coordinate, max_iter=max_iter) def create_arrivals_from_picks(picks, event_location, origin_time): """ create a set of arrivals from a list of picks :param picks: list of microquake.core.event.Pick :param event_location: event location list, tuple or numpy array :param origin_time: event origin_time :return: list of microquake.core.event.Arrival """ arrivals = [] for pick in picks: station_code = pick.waveform_id.station_code arrival = Arrival() arrival.phase = pick.phase_hint phase = pick.phase_hint ray = get_ray(station_code, phase, event_location) arrival.distance = ray.length # for node in ray.nodes: # print(node) # xoff = ray.nodes[-2][0] - ray.nodes[-1][0] # yoff = ray.nodes[-2][1] - ray.nodes[-1][1] # zoff = ray.nodes[-2][2] - ray.nodes[-1][2] # baz = np.arctan2(xoff,yoff) # if baz < 0: # baz += 2.*np.pi # pick.backazimuth = baz*180./np.pi predicted_tt = get_grid_point(station_code, phase, event_location) predicted_at = origin_time + predicted_tt arrival.time_residual = pick.time - predicted_at # print("create_arrivals: sta:%3s pha:%s pick.time:%s arrival.takeoff_angle = get_grid_point(station_code, phase, event_location, grid_type='take_off') arrival.azimuth = get_grid_point(station_code, phase, event_location, grid_type='azimuth') # MTH: arrival azimuth/takeoff should be in degrees - I'm pretty # sure the grids store them in radians (?) arrival.azimuth *= 180. / np.pi if arrival.azimuth < 0: arrival.azimuth += 360. arrival.takeoff_angle *= 180. / np.pi arrival.pick_id = pick.resource_id.id arrival.earth_model_id = get_current_velocity_model_id(phase) arrivals.append(arrival) return arrivals def estimate_origin_time(stream, event_location): """ estimate the origin time given an estimate of the event location and a set of traces :param stream: a microquake.core.Stream object containing a series of traces :param event_location: event location (list, tuple or numpy array) :return: estimate of the origin time """ # import matplotlib.pyplot as plt start_times = [] end_times = [] sampling_rates = [] stream = stream.detrend('demean') for trace in stream: start_times.append(trace.stats.starttime.datetime) end_times.append(trace.stats.endtime.datetime) sampling_rates.append(trace.stats.sampling_rate) min_starttime = UTCDateTime(np.min(start_times)) - 1.0 max_endtime = UTCDateTime(np.max(end_times)) max_sampling_rate = np.max(sampling_rates) shifted_traces = [] npts = np.int((max_endtime - min_starttime) * max_sampling_rate) t_i = np.arange(0, npts) / max_sampling_rate for phase in ['P', 'S']: for trace in stream.composite(): station = trace.stats.station tt = get_grid_point(station, phase, event_location) trace.stats.starttime = trace.stats.starttime - tt data = np.nan_to_num(trace.data) # dividing by the signal std yield stronger signal then # dividing by the max. Dividing by the max amplifies the # noisy traces as signal is more homogeneous on these traces data /= np.std(data) # data /= np.max(np.abs(data)) sr = trace.stats.sampling_rate start_samp = int((trace.stats.starttime - min_starttime) * trace.stats.sampling_rate) end_samp = start_samp + trace.stats.npts t = np.arange(start_samp, end_samp) / sr try: f = interp1d(t, data, bounds_error=False, fill_value=0) except: continue shifted_traces.append(np.nan_to_num(f(t_i))) shifted_traces = np.array(shifted_traces) w_len_sec = 50e-3 w_len_samp = int(w_len_sec * max_sampling_rate) stacked_trace = np.sum(np.array(shifted_traces) ** 2, axis=0) stacked_trace /= np.max(np.abs(stacked_trace)) # i_max = np.argmax(np.sum(np.array(shifted_traces) ** 2, axis=0)) if i_max - w_len_samp < 0: pass stacked_tr = Trace() stacked_tr.data = stacked_trace stacked_tr.stats.starttime = min_starttime stacked_tr.stats.sampling_rate = max_sampling_rate o_i = np.argmax(stacked_tr) # k = kurtosis(stacked_tr, win=30e-3) # diff_k = np.diff(k) # o_i = np.argmax(np.abs(diff_k[i_max - w_len_samp: i_max + w_len_samp])) \ # + i_max - w_len_samp origin_time = min_starttime + o_i / max_sampling_rate # Tracer()() return origin_time def fix_arr_takeoff_and_azimuth(cat, vp_grid, vs_grid): """ Currently NLLoc is *not* calculating the takeoff angles at the source. These default to -1 so that when microquake.nlloc reads last.hyp it returns -1 for these values. Here we re-create the arrivals from the picks & the NLLoc location so that it populates the takeoff and azimuth angles. Also, we add the relevant angles at the receiver (backazimuth and incidence) to the arrivals. """ for event in cat: origin = event.preferred_origin() ev_loc = origin.loc vp = vp_grid.interpolate(ev_loc)[0] vs = vs_grid.interpolate(ev_loc)[0] picks = [] for arr in origin.arrivals: picks.append(arr.pick_id.get_referred_object()) # MTH: create_arrivals_from_picks will create an entirely new set of # arrivals (new resource_ids) # it will set arr.distance (looks exactly same as nlloc's # arr.distance) # it will set arr.time_residual *** DIFFERS *** from # arr.time_residual nlloc calcs/reads from last.hypo # it will fix the missing azim/theta that nlloc set to -1 # it will drop nlloc arr.time_weight field arrivals = create_arrivals_from_picks(picks, ev_loc, origin.time) # Now set the receiver angles (backazimuth and incidence angle) for arr in arrivals: pk = arr.pick_id.get_referred_object() sta = pk.waveform_id.station_code pha = arr.phase st_loc = settings.inventory.get_station(sta).loc xoff = ev_loc[0] - st_loc[0] yoff = ev_loc[1] - st_loc[1] zoff = np.abs(ev_loc[2] - st_loc[2]) H = np.sqrt(xoff * xoff + yoff * yoff) alpha = np.arctan2(zoff, H) beta = np.pi / 2. - alpha takeoff_straight = alpha * 180. / np.pi + 90. inc_straight = beta * 180. / np.pi if pha == 'P': v = vp v_grid = vp_grid elif pha == 'S': v = vs v_grid = vs_grid p = np.sin(arr.takeoff_angle * np.pi / 180.) / v v_sta = v_grid.interpolate(st_loc)[0] inc_p = np.arcsin(p * v_sta) * 180. / np.pi # I have the incidence angle now, need backazimuth so rotate to # P,SV,SH back_azimuth = np.arctan2(xoff, yoff) * 180. / np.pi if back_azimuth < 0: back_azimuth += 360. arr.backazimuth = back_azimuth arr.inc_angle = inc_p origin.arrivals = arrivals return def synthetic_arrival_times(event_location, origin_time, stations=[]): """ calculate synthetic arrival time for all the station and returns a list of microquake.core.event.Pick object :param event_location: event location :param origin_time: event origin time :param stations: list of stations :return: list of microquake.core.event.Pick """ picks = [] stations = settings.inventory.stations() for phase in ['P', 'S']: for station in stations: # station = station.code # st_loc = site.select(station=station).stations()[0].loc st_loc = station.loc dist = norm(st_loc - event_location) # if (phase == 'S') and (dist < 100): # continue try: at = origin_time + get_grid_point(station.code, phase, event_location, grid_coordinates=False) # Catching error when grid file do not exist except OSError as exc: logger.warning( f'Cannot read grid for station {station.code}' f' ({station.site.name}), phase {phase}: {exc}') continue except ValueError as exc: logger.warning( f'Error reading grid for station {station.code}' f' ({station.site.name}), phase {phase}: {exc}') continue wf_id = WaveformStreamID( network_code=settings.get('project_code'), station_code=station.code) # station_code=station) pk = Pick(time=at, method='predicted', phase_hint=phase, evaluation_mode='automatic', evaluation_status='preliminary', waveform_id=wf_id) picks.append(pk) return picks ``` #### File: core/simul/eik.py ```python def angles(travel_time): """ This function calculate the take off angle and azimuth for every grid point given a travel time grid calculated using an Eikonal solver :param travel_time: travel_time grid :type travel_time: ~microquake.core.data.grid.GridData with seed property (travel_time.seed). :rparam: azimuth and takeoff angles grids .. Note: The convention for the takeoff angle is that 0 degree is down. """ import numpy as np gds_tmp = np.gradient(travel_time.data) gds = [-gd for gd in gds_tmp] tmp = np.arctan2(gds[0], gds[1]) # azimuth is zero northwards azimuth = travel_time.copy() azimuth.type = 'ANGLE' azimuth.data = tmp if len(travel_time.shape) == 3: hor = np.sqrt(gds[0] ** 2 + gds[1] ** 2) tmp = np.arctan2(hor, -gds[2]) # takeoff is zero pointing down takeoff = travel_time.copy() takeoff.type = 'ANGLE' takeoff.data = tmp return azimuth, takeoff else: return azimuth def ray_tracer(travel_time, start, grid_coordinates=False, max_iter=1000): """ This function calculates the ray between a starting point (start) and an end point, which should be the seed of the travel_time grid, using the gradient descent method. :param travel_time: travel time grid with a seed defined :type travel_time: ~microquake.core.data.grid.GridData with an additional seed property(travel_time.seed). Note that seed is automatically added to the travel time grid by the Eikonal solver or when read from NLLOC grid file. :param start: the starting point (usually event location) :type start: tuple, list or numpy.array :param grid_coordinates: if true grid coordinates (indices, not necessarily integer are used, else real world coordinates are used (x, y, z) (Default value False) :param max_iter: maximum number of iteration :rtype: numpy.array """ import numpy as np from microquake.core import GridData from microquake.core.event import Ray if grid_coordinates: start = np.array(start) start = travel_time.transform_from(start) origin = travel_time.origin spacing = travel_time.spacing end = np.array(travel_time.seed) start = np.array(start) # calculating the gradient in every dimension at every grid points gds_tmp = np.gradient(travel_time.data) gds = [GridData(gd, origin=origin, spacing=spacing,) for gd in gds_tmp] dist = np.linalg.norm(start - end) cloc = start # initializing cloc "current location" to start gamma = spacing / 2 # gamma is set to half the grid spacing. This # should be # sufficient. Note that gamma is fixed to reduce # processing time. nodes = [start] iter_number = 0 while dist > spacing / 2: if iter_number > max_iter: break if dist < spacing * 4: gamma = spacing / 4 gvect = np.array([gd.interpolate(cloc, grid_coordinate=False, order=1)[0] for gd in gds]) cloc = cloc - gamma * gvect / np.linalg.norm(gvect) nodes.append(cloc) dist = np.linalg.norm(cloc - end) iter_number += 1 nodes.append(end) ray = Ray(nodes=nodes) return ray def eikonal_solver(velocity, seed, seed_label, *args, **kwargs): """ Eikonal solver based of scikit fast marching solver interfaced for microquake :param velocity: velocity grid :type velocity: ~microquake.core.data.grid.GridData :param seed: numpy array location of the seed or origin of seismic wave in model coordinates (usually location of a station or an event) :type seed: numpy array :param seed_label: seed label (name of station) :type seed_label: basestring """ import skfmm import numpy as np seed = np.array(seed) phi = -1*np.ones_like(velocity.data) seed_coord = velocity.transform_to(seed) phi[tuple(seed_coord.astype(int))] = 1 tt = skfmm.travel_time(phi, velocity.data, dx=velocity.spacing, *args, **kwargs) tt_grid = velocity.copy() tt_grid.data = tt tt_grid.seed = seed tt_grid.seed_label = seed_label return tt_grid def sensitivity_location(velocity, seed, location, perturbation=0.1, h=1): """ Calculate the sensitivity kernel for location in seed :param velocity: a velocity grid :type velocity: microquake.core.data.GridData :param seed: seed for traveltime grid :type seed: numpy.array :param location: location at which the sensitivity is evaluated :type location: numpy.array :param perturbation: perturbation to the location in the same using as loc (m, km etc) :type perturbation: float :param h: :rparam: location sensitivity at the provided location :rtype: numpy.array """ # creating a buffer around velocity in all dimensions # works only in 3D ... import numpy as np from scipy.ndimage.interpolation import map_coordinates buf = 2 x = np.arange(-buf, velocity.data.shape[0] + buf) y = np.arange(-buf, velocity.data.shape[1] + buf) z = np.arange(-buf, velocity.data.shape[2] + buf) Y, X, Z = np.meshgrid(y, x, z) X1 = X.ravel() Y1 = Y.ravel() Z1 = Z.ravel() coords = np.vstack((X1, Y1, Z1)) vel = velocity.copy() vel.data = map_coordinates(velocity.data, coords, mode='nearest').reshape(X.shape) traveltime = eikonal_solver(vel, seed) h = float(h) spc = traveltime.spacing shape = np.array(traveltime.shape) frechet = [] end = traveltime.transform_to(location) + buf for j in range(len(seed)): new_end1 = end.copy() new_end1[(end[:, j] + perturbation < shape[j]) & (end[:, j] + perturbation > 0), j] += perturbation new_end2 = end.copy() new_end2[(end[:, j] - perturbation < shape[j]) & (end[:, j] - perturbation > 0), j] -= perturbation perturbated_tt1 = map_coordinates(traveltime.data, new_end1.T, order=1, mode='nearest') perturbated_tt2 = map_coordinates(traveltime.data, new_end2.T, order=1, mode='nearest') f = (perturbated_tt1 - perturbated_tt2) / ((new_end1[:, j] - new_end2[:, j]) * spc) frechet.append(f) frechet = np.array(frechet) return frechet.T # TODO: sensitivity_velocity is broken, travel_time undefined def sensitivity_velocity(velocity, seed, start_points, perturbation=0.1, h=1): """ Calculate the sensitivity kernel (Frechet derivative, dt/dV) for every velocity element (v_i) The sensitivity is calculated as follows for all velocity element i: dt/dv_i = l_i * (v_i+ - v_i-) / (2 * perturbation), where l_i = T_i / v_i, v_i+ and v_i- are is v_i +/- perturbation, respectively. T represents the travel time grid calculated using the eikonal_solver :param velocity: velocity grid :type velocity: microquake.core.data.GridData :param seed: seed for traveltime grid (usually sensor location) :type seed: numpy.array :param start_points: start points for the ray tracing, usually event location :type start_points: numpy.array coordinates :param time: time grid :type time: microquake.core.data.GridData :param perturbation: velocity perturbation :param h: :return: sensitivity kernel for velocity """ import numpy as np from scipy.ndimage.interpolation import map_coordinates from scipy.sparse import csr_matrix # initiating the frechet derivative matrix n_node = np.prod(velocity.shape) n_measurement = len(start_points) F = csr_matrix((n_measurement, n_node), dtype=np.float32) # adding buffer to the velocity buf = 2 # related to the use of cubic spline with csr_matrix x = [] for dim in range(len(velocity.data.shape)): x.append(np.arange(-buf, velocity.data.shape[0] + buf)) if len(velocity.data.shape) == 3: X, Y, Z = np.meshgrid(x[0], x[1], x[2]) X1 = X.ravel() Y1 = Y.ravel() Z1 = Z.ravel() coords = np.vstack((X1, Y1, Z1)) else: X, Y = np.meshgrid(x[0], x[1], x[2]) X1 = X.ravel() Y1 = Y.ravel() coords = np.vstack((X1, Y1)) vel = velocity.copy() vel.data = map_coordinates(velocity.data, coords, mode='nearest').reshape(X.shape) # travel_time = EikonalSolver(vel, seed) for start in start_points: ray = ray_tracer(travel_time, start) for segment in ray: pass ``` #### File: core/util/borehole.py ```python import pandas as pd import numpy as np import vtk from dxfwrite import DXFEngine as dxf from io import BytesIO class Borehole: def __init__(self, depth=None, x=None, y=None, z=None, collar=None, toe=None, magnetic_declination=0): """ :param depth: depth vector :param x: x coordinate :param y: y coordinate :param z: z coordinate :param collar: collar location vector (x, y, z) :param toe: toe location vector (x, y, z) :param magnetic_declination: magnetic declination in degree from true north """ self.depth = depth self.x = x self.y = y self.z = z self.collar = collar self.toe = toe self.magnetic_declination = magnetic_declination pass @classmethod def from_gyro_file(cls, gyro_file, collar, magnetic_declination=0, resolution=1, **kwargs): gyro_df = read_gyro_file(gyro_file, **kwargs) collar = np.array(collar) magnetic_declination = magnetic_declination trace_df = gyro_to_borehole_trace(gyro_df, collar, magnetic_declination, dl=resolution) x = trace_df['x'].values y = trace_df['y'].values z = trace_df['z'].values toe = np.array([x[-1], y[-1], z[-1]]) depth = np.array(trace_df.index) return cls(depth=depth, x=x, y=y, z=z, collar=collar, toe=toe, magnetic_declination=magnetic_declination) @property def trace(self): """ return a dictionary containing the trace of the borehole :return: borehole trace """ dict_out = {'depth': self.depth, 'x': self.x, 'y': self.y, 'z': self.z} return dict_out @property def length(self): return np.max(self.depth) @property def dip_azimuth(self): h = np.sqrt(x ** 2 + y ** 2) dip = np.arctan2(h, z) azimuth = np.arctan2(y, x) return {'depth': self.depth, 'dip': dip, 'azimuth': azimuth} def resample(self, resolution=1): dict_data = {'depth': self.depth, 'x': self.x, 'y': self.y, 'z': self.z} df = pd.DataFrame(dict_data) df.set_index('depth') df = df.reindex(np.arange(np.min(np.array(df.index)), np.max(np.array(df.index)) + resolution, resolution)) df = df.apply(pd.Series.interpolate) x = df['x'].values y = df['y'].values z = df['z'].values depth = np.array(df.index) return {'depth': depth, 'x': x, 'y': y, 'z': z} def interpolate(self, depth): """ :param depth: depth along the borehole :return: x, y, z at a specific depth along the borehole """ x_i = np.interp(depth, self.depth, self.x) y_i = np.interp(depth, self.depth, self.y) z_i = np.interp(depth, self.depth, self.z) return x_i, y_i, z_i def orientation(self, depth, collar_to_toe=True): """ returns the unit vector representing the orientation of a sensor aligned along the borehole axis. :param depth: depth or distance along the borhole :param collar_to_toe: True if pointing towards the collar. False if pointing towards the toe. :return: a unit vector representing the orientation """ l1 = self.interpolate(depth + 1) # towards toe l2 = self.interpolate(depth - 1) # towards collar if collar_to_toe: orientation = l1 - l2 else: orientation = l2 - l1 orientation /= np.linalg.norm(orientation) return orientation def to_vtk_poly_data(self): """ :return: a vtk polydata object """ points = vtk.vtkPoints() lines = vtk.vtkCellArray() line_vtk = vtk.vtkLine() for k in range(0, len(self.x) - 1): x0 = self.x[k] y0 = self.y[k] z0 = self.z[k] x1 = self.x[k+1] y1 = self.y[k+1] z1 = self.z[k+1] id1 = points.InsertNextPoint((x0, y0, z0)) line_vtk.GetPointIds().SetId(0, id1) id2 = points.InsertNextPoint((x1, y1, z1)) line_vtk.GetPointIds().SetId(1, id2) lines.InsertNextCell(line_vtk) poly_data = vtk.vtkPolyData() poly_data.SetPoints(points) poly_data.SetLines(lines) return poly_data def write_to_vtp(self, vtp_file_path): """ write the borehole trace to a VTP file :param vtp_file_path: :return: """ vtk_poly_data = self.to_vtk_poly_data() writer = vtk.vtkXMLPolyDataWriter() writer.SetFileName(vtp_file_path) writer.SetInputData(vtk_poly_data) return writer.Write() def write_to_dxf(self, dxf_file_path): drawing = dxf.drawing(dxf_file_path) for k in range(0, len(self.x) - 1): x0 = self.x[k] y0 = self.y[k] z0 = self.z[k] x1 = self.x[k+1] y1 = self.y[k+1] z1 = self.z[k+1] drawing.add(dxf.line((x0, y0, z0), (x1, y1, z1), color=7)) drawing.save() return def read_gyro_file(gyro_file, header=7): """ read a gyro survey file. The gyro survey file must contain three columns (DEPTH, DIP, AZI (MAG)) :param gyro_file: full path to the gyro file :param header: the number of header lines :return: pandas dataframe contining two column """ df = pd.read_excel(gyro_file, 'Sheet1', header=7) gyro_df = pd.DataFrame() gyro_df['depth'] = df['DEPTH'] gyro_df['azimuth (mag)'] = df['AZI (MAG)'] gyro_df['dip'] = df['DIP'] gyro_df = gyro_df.set_index('depth') return gyro_df def gyro_to_borehole_trace(gyro_df, collar, magnetic_declination, dl=1): """ convert gyro survey data expressed in dip and azimuth to the x, y and z trace :param gyro_df: a dataframe containing containing the depth, dip and azimuth :param collar: list or array containing the borehole collar coordinates :param magnetic_declination: magnetic declination in degrees from north :return: a dataframe sampled at a resolution of dl containing the depth, azimuth, dip, x, y an z along the borehole """ gyro = gyro_df[gyro_df['dip'].notnull()] gyro['azimuth'] = gyro['azimuth (mag)'] - magnetic_declination gyro['azimuth'] = gyro['azimuth'] / 180 * np.pi gyro['dip'] = gyro['dip'] / 180 * np.pi gyro['azimuth (mag)'] = gyro['azimuth (mag)'] / 180 * np.pi gyro = gyro.reindex(np.arange(np.min(np.array(gyro.index)), np.max(np.array(gyro.index)) + dl, dl)) gyro = gyro.apply(pd.Series.interpolate) x = np.zeros(len(gyro)) x[0] = collar[0] y = np.zeros(len(gyro)) y[0] = collar[1] z = np.zeros(len(gyro)) z[0] = collar[2] dip = gyro['dip'] azimuth = gyro['azimuth'] for k in range(0, len(gyro.index) - 1): dy_x = dl * np.cos(gyro.iloc[k]['dip']) dy = dy_x * np.cos(gyro.iloc[k]['azimuth']) dx = dy_x * np.sin(gyro.iloc[k]['azimuth']) dz = dl * np.sin(gyro.iloc[k]['dip']) x[k + 1] = x[k] + dx y[k + 1] = y[k] + dy z[k + 1] = z[k] - dz gyro['x'] = x gyro['y'] = y gyro['z'] = z return gyro def borehole_collar_toe_to_trace(collar, toe, dl=1): """ Return the borehole trace assuming a straight line between the borehole collar and toe :param collar: borehole collar coordinates :param toe: borehole toe coordinates :param dl: resolution of the output trace :return: """ df = pd.DataFrame() max_depth = np.linalg.norm(toe - collar) depth = np.arange(0, max_depth, dl) x_borehole = np.linspace(collar[0], toe[0], len(depth)) y_borehole = np.linspace(collar[1], toe[1], len(depth)) z_borehole = np.linspace(collar[2], toe[2], len(depth)) h_borehole = np.sqrt(x_borehole ** 2 + y_borehole ** 2) dip = np.arctan2(h_borehole, z_borehole) azimuth = np.arctan2(y_borehole, x_borehole) df['x'] = x_borehole df['y'] = y_borehole df['z'] = z_borehole df['dip'] = dip df['azimuth'] = azimuth df['depth'] = depth df = df.set_index('depth') return df ``` #### File: core/util/serializer.py ```python def encode_pickle(obj): """Encodes any python object as a :py:mod:`base64` string. """ import pickle import bz2 buf = pickle.dumps(obj) comp_ser_obj = bz2.compress(buf) return comp_ser_obj def decode_pickle(compressed_obj): """Decodes a :py:mod:`base64` string into a :py:class:`obspy.core.stream.Stream`. """ import pickle import bz2 ser_obj = bz2.decompress(compressed_obj) obj = pickle.loads(ser_obj) return obj def encode_base64(buffered_object): """ Encode an event for storage in the database :param event: a microquake.core.event object :return: encoded event object in compressed (bz2) format """ from bz2 import compress from base64 import b64encode return b64encode(compress(buffered_object)) def decode_base64(encoded_object): """ decode an event stored in the database :param encoded_event: compressed serialized object stored in the DB :return: microquake.core.event.event """ from bz2 import decompress from base64 import b64decode return decompress(b64decode(encoded_object)) ``` #### File: db/models/redis.py ```python from io import BytesIO from microquake.core import read, read_events from microquake.db.connectors import connect_redis def set_event(event_id, catalogue=None, fixed_length=None, context=None, variable_length=None, attempt_number=0, ttl=10800): redis_connector = connect_redis() event = redis_connector.Hash(event_id) if catalogue is not None: file_out = BytesIO() catalogue.write(file_out, format='quakeml') event.update(catalogue=file_out.getvalue()) if fixed_length is not None: file_out = BytesIO() fixed_length.write(file_out, format='mseed') event.update(fixed_length=file_out.getvalue()) if context is not None: file_out = BytesIO() context.write(file_out, format='mseed') event.update(context=file_out.getvalue()) if variable_length is not None: file_out = BytesIO() variable_length.write(file_out, format='mseed') event.update(variable_length=file_out.getvalue()) event.expire(ttl) return event def get_event(event_id): redis_connector = connect_redis() event = redis_connector.Hash(event_id) dict_in = {} if b'catalogue' in event.keys(): bytes = event[b'catalogue'] dict_in['catalogue'] = read_events(BytesIO(bytes), format='quakeml') if b'fixed_length' in event.keys(): bytes = event[b'fixed_length'] dict_in['fixed_length'] = read(BytesIO(bytes), format='mseed') if b'context' in event.keys(): bytes = event[b'context'] dict_in['context'] = read(BytesIO(bytes), format='mseed') if b'variable_length' in event.keys(): bytes = event[b'variable_length'] dict_in['variable_length'] = read(BytesIO(bytes), format='mseed') if b'attempt_number' in event.keys(): dict_in['attempt_number'] = int(event[b'attempt_number']) else: dict_in['attempt_number'] = 0 return dict_in ``` #### File: microquake/imaging/plot.py ```python import numpy as np import matplotlib.pyplot as plt from matplotlib.text import Text from matplotlib.transforms import offset_copy from microquake.core import event from microquake.core import logger def guttenberg_richter(magnitudes, dates, bin_size=0.05, b_range=[-2.0, -0.5], magnitude_type='Moment magnitude', xlim=[-2.0, 1.0], **kwargs): """ produce a Guttenberg Richter plot from a list of magnitudes :param magnitudes: List of magnitudes :type magnitudes: list of float :param times: list of event time associated with the magnitude :type time: list of microquake.core.UTCDateTime :param bin_size: the width of bins :type bin_size: float :param b_range: range over which the b value is calculated an fit ([min, max]) :type b_range: list containing two floats :param magnitude_type: Type of magnitude :type magnitude_type: str :param xlim: limits of the x axis :type xlim: list containing two floats """ mag = np.array(magnitudes) wdt = 15 num_years = (np.max(dates) - np.min(dates)) / (24 * 3600 * 365.25) bins = np.arange(xlim[0], xlim[1], bin_size) hist = np.histogram(mag, bins=bins) hist = hist[0][::-1] bins = bins[::-1] bins = bins[1::] cum_hist = hist.cumsum() cum_hist = np.array([float(nb) for nb in cum_hist]) cum_hist /= float(num_years) new_cum_yearly_rate = [] for i in cum_hist: new_cum_yearly_rate.append(i) log_cum_sum = np.log10(new_cum_yearly_rate) cum = np.zeros(bins.shape) min_mag = b_range[0] max_mag = b_range[1] indices = np.nonzero((bins >= min_mag) & (bins <= max_mag))[0] b, a = np.polyfit(bins[indices], log_cum_sum[indices], 1) mg = np.arange(min_mag, max_mag, 0.1) fitmg = b * mg + a # Tracer()() plt.semilogy(bins, new_cum_yearly_rate, 'k.', **kwargs) plt.semilogy(mg, 10 ** fitmg, 'k--', label='best fit ($%0.1f\,M_w + %0.1f$)' % (b, a), **kwargs) plt.xlabel('%s' % magnitude_type) plt.ylabel('Number of events/year') plt.xlim(xlim) plt.legend() # ylim = plt.ylim() # plt.ylim([0, 10**0]) # plt.show() class Plot(object): def __init__(self, data=None, picks=None, site=None): self.data = data self.picks = picks self.extraData = None self.style = "all" self.onlyIfHasPicks = True self.maxNumPlots = 999 self.dataDirty = True self._plotData = None self.numPlots = 0 self.numTraces = 0 self.extraCaption = "" def close(self): # need to check that a plot has been created plt.close() def setData(self, data): for curTr, tr in enumerate(data): if curTr == 0: xmin = tr.stats.starttime xmax = tr.stats.endtime else: if tr.stats.starttime < xmin: xmin = tr.stats.starttime if tr.stats.starttime > xmax: xmax = tr.stats.endtime data.trim(starttime=xmin, endtime=xmax, pad=True, fill_value=0) self.data = data self.dataDirty = True def setPicks(self, picks): self.picks = picks self.dataDirty = True def _prepare_data(self): if not isinstance(self.picks, list): self.picks = [self.picks] self.data.detrend('demean') stations = np.unique([tr.stats.station for tr in self.data]) self._plotData = [] self.numTraces = 0 for station in stations: curPicks = [] # loop on picking stages for cat2 in self.picks: curStagePicks = [] if isinstance(cat2, event.Event): evts = cat2 elif isinstance(cat2, event.Catalog): if not cat2.events: continue evts = cat2.events else: continue if not isinstance(evts, list): evts = [evts] for evt in evts: if not evt['picks']: continue prevPicks = evt['picks'] # find the existing P and S picks for the current station for pick in prevPicks: if pick['waveform_id'].station_code != station: continue curStagePicks.append(pick) curPicks.append(curStagePicks) if self.onlyIfHasPicks: numPicks = np.sum([len(a) for a in curPicks]) if numPicks == 0: continue trs = self.data.select(station=station) # if len(trs) == 3: # trs = trs.rotate_P_S() self._plotData.append({'traces': trs, 'picks': curPicks}) self.numTraces += len(trs) self.numPlots = 0 if self.style == "all": self.numPlots = self.numTraces if self.numPlots > self.maxNumPlots: self.numPlots = self.maxNumPlots self.dataDirty = False def _make_plot(self, ax, plt_data, max_val, curPicks, starttime, cur_starttime, sr, transOffset, caption=None): npts = len(plt_data) t = np.array([(starttime + tmp).datetime for tmp in np.arange(0, npts) / sr]) ax.plot(t, plt_data / max_val) plt.ylim([-1, 1]) if caption: ax.text(.95, .9, caption, transform=ax.transAxes, va='top', ha='right', fontsize=10, backgroundcolor='white') for curStage, pickStage in enumerate(curPicks): for pick in pickStage: pick_sample = pick.time.datetime col = 'red' if pick['phase_hint'] == 'P' else 'black' # col = 'red' ax.axvline(pick_sample, c=col) snr = None for c in pick.comments: if 'SNR=' not in c.text: continue snr = c.text.split('=')[1] displayText = '%s%s' % (pick.phase_hint, curStage) if snr: displayText = '%s - %s' % (displayText, snr) label = Text(pick_sample, ax.get_ylim()[1] * .7, displayText, color=col, backgroundcolor='white', size=10, alpha=.8, transform=transOffset) ax.add_artist(label) if hasattr(pick, 'tt_residual'): pick_sample = (pick.time - pick.tt_residual).datetime ax.axvline(pick_sample, c='green') # This function supports plotting several stages of picking on the same graph. # Simply pass in an array of catalogs to see the pick progression from one stage to the other. def plot(self): if self.dataDirty: self._prepare_data() if (self.style == "all" and self.numPlots == 0) \ or not self._plotData: logger.warning('No data to plot!') return fig = None if self.style == "all": if self.extraData: self.numPlots += 1 fig = plt.figure(figsize=(10, 2 * self.numPlots), dpi=100) plotOffset = 0 for curSt, t in enumerate(self._plotData): trs = t['traces'] curPicks = t['picks'] if self.style == "per_station": self.numPlots = len(trs) if self.extraData: self.numPlots += 1 fig = plt.figure(figsize=(10, 5 * self.numPlots), dpi=100) starttime = trs[0].stats.starttime sr = trs[0].stats.sampling_rate cur_starttime = starttime transOffset = None curTr = 0 for curTr, tr in enumerate(trs): curPlot = plotOffset + curTr if curPlot >= self.maxNumPlots: # finished return ax = plt.subplot(self.numPlots, 1, curPlot + 1) caption = '%s - %s' % (tr.stats.station, tr.stats.channel) if self.extraCaption: caption = '%s - %s' % (caption, self.extraCaption[curSt]) transOffset = offset_copy(ax.transData, fig=fig, x=5, y=0, units='points') max_val = np.max(np.abs(tr.data)) if max_val == 0: continue cur_starttime = tr.stats.starttime self._make_plot(ax, tr.data, max_val, curPicks, starttime, cur_starttime, sr, transOffset, caption=caption) plt.title('station %s' % tr.stats.station) if self.style == "per_station": if self.extraData: ax = plt.subplot(self.numPlots, 1, self.numPlots) max_val = np.max(np.abs(self.extraData[curSt])) self._make_plot(ax, self.extraData[curSt], max_val, curPicks, starttime, cur_starttime, sr, transOffset) self.show() else: plotOffset += curTr + 1 def show(self): plt.show() def saveFig(self, outFile=""): plt.tight_layout() plt.savefig(outFile, dpi=100, bbox_inches='tight') ``` #### File: io/msgpack/core.py ```python from io import BytesIO import msgpack from microquake.core.event import Catalog from microquake.core import Stream, read, read_events from microquake.core.event import Event EXTYPES = {'mseed': 0, 'quakeml': 1} def pack(data): return msgpack.packb(data, default=_encode_one, use_bin_type=True) def unpack(pack): return msgpack.unpackb(pack, ext_hook=_decode_one, raw=False) def _encode_one(obj): if isinstance(obj, Stream): buf = BytesIO() obj.write(buf, format='mseed') return msgpack.ExtType(EXTYPES['mseed'], buf.getvalue()) if isinstance(obj, Event) or isinstance(obj, Catalog): buf = BytesIO() obj.write(buf, format='quakeml') return msgpack.ExtType(EXTYPES['quakeml'], buf.getvalue()) raise TypeError("Unknown type: %r" % (obj,)) def _decode_one(code, data): if code == EXTYPES['mseed']: return read(BytesIO(data)) if code == EXTYPES['quakeml']: return read_events(BytesIO(data)) return msgpack.ExtType(code, data) ``` #### File: plugin/site/core.py ```python from microquake.core import logger def read_csv(filename, site_code='', has_header=True, **kwargs): """ read a csv file containing sensor information The first line of the csv file should contain the site name The expected file structure is as follows and should contain one header line <network>, <sensor name>, <sensor type>, <no component>, x, y, z where x, y and z represents the location of the sensors expressed in a local coordinate system. Note that the <sensor name> is limited to four character because of NonLinLoc limitations. example of file strucuture 1. <Network>, <sensor long name>, <sensor code>, <sensor type>, <gain>, <sensitivity>, <sx>, <sy>, <sz>, <channel 1 code>, <azimuth>, <dip>, <channel 2 code>, <azimuth>, <dip>, <channel 3 code>, <azimuth>, <dip> :param filename: path to a csv file :type filename: string :param site_code: site code :type site_code: string :param has_header: whether or not the input file has an header :type has_header: bool :rparam: site object :rtype: ~microquake.core.station.Site """ from microquake.core.data.station import Site, Network, Station, Channel with open(filename) as ifile: networks = [] stations = [] for i, line in enumerate(ifile.readlines()): if has_header and (i == 0): continue tmp = line.split(',') nc = tmp[0] long_name = tmp[1] sc = tmp[2] st = tmp[3] smt = tmp[4] gain = tmp[5] sensitivity = tmp[6] sx = float(tmp[7]) sy = float(tmp[8]) sz = float(tmp[9]) channels = [] for c in range(0, 3): cc = tmp[4 * c + 10] if not cc: continue x = float(tmp[4 * c + 10 + 1]) y = float(tmp[4 * c + 10 + 2]) z = float(tmp[4 * c + 10 + 3]) # az = float(tmp[3 * c + 10 + 1]) # dip = float(tmp[3 * c + 10 + 2]) channel = Channel(code=cc) channel.orientation = [x, y, z] # channel.dip_azimuth = (dip, az) channels.append(channel) station = Station(long_name=long_name, code=sc, sensor_type=st, motion_type=smt, gain=gain, sensitivity=sensitivity, loc=[sx, sy, sz], channels=channels) index = None for j, net in enumerate(networks): if net.code == nc: index = j if index == None: network = Network(code=nc, stations=[]) networks.append(network) index = -1 networks[index].stations.append(station) site = Site(code=site_code, networks=networks) return site def read_pickle(filename, **kwargs): """ read site saved pickle format :param filename: :return: """ from microquake.core.data.station import Site import pickle as pickle try: site = pickle.load(open(filename)) except: logger.error('Not able to read %s' % filename) return None if not isinstance(site, Site): logger.error( "The pickle file does not contain and microquake.core.station.Site object") return None return site def write_csv(site, filename, **kwargs): """ write a Site object to disk in csv format :param filename: full path to file with extension :type filename: str :param site: site object to be saved :type site: ~microquake.core.data.station.Site :param protocol: pickling protocol level see pickle.dump documentation for more information :type protocol: int :rtype: None """ # TODO write a function to save the site object in csv format pass def write_pickle(site, filename, protocol=-1, **kwargs): """ write a Site object to disk in pickle (.pickle or .npy extension) format using the pickle module :param filename: full path to file with extension :type filename: str :param site: site object to be saved :type site: ~microquake.core.data.station.Site :param protocol: pickling protocol level see pickle.dump documentation for more information :type protocol: int """ import pickle as pickle with open(filename, 'w') as of: pickle.dump(site, of, protocol=protocol) def write_vtk(site, filename, **kwargs): """ write a Site object to disk in vtk format for viewing in Paraview for example :param filename: full path to file with extension :type filename: str :param site: site object to be saved :type site: ~microquake.core.data.station.Site :param protocol: pickling protocol level see pickle.dump documentation for more information :type protocol: int """ # TODO write a function to save the site object in vtk format for viewing # in paraview pass ``` #### File: microquake/processors/clean_data.py ```python from microquake.processors.processing_unit import ProcessingUnit from microquake.core.stream import Stream from loguru import logger import numpy as np from microquake.core.settings import settings class Processor(ProcessingUnit): @property def module_name(self): return "clean_data" def process(self, **kwargs): """ Process event and returns its classification. """ waveform = kwargs["waveform"] black_list = settings.get('sensors').black_list starttime = waveform[0].stats.starttime endtime = waveform[0].stats.endtime inventory = self.settings.inventory for tr in waveform: if tr.stats.starttime < starttime: starttime = tr.stats.starttime if tr.stats.endtime > endtime: endtime = tr.stats.endtime waveform.trim(starttime, endtime, pad=True, fill_value=0) trs = [] for i, tr in enumerate(waveform): if inventory.select(tr.stats.station) is None: continue if tr.stats.station not in black_list: if np.any(np.isnan(tr.data)): continue if np.sum(tr.data ** 2) > 0: trs.append(tr) logger.info('The seismograms have been cleaned, %d trace remaining' % len(trs)) return Stream(traces=trs) # def legacy_pipeline_handler(self, msg_in, res): # """ # legacy pipeline handler # """ # cat, waveform = self.app.deserialise_message(msg_in) # cat = self.output_catalog(cat) # return cat, waveform ``` #### File: microquake/processors/magnitude_extractor.py ```python from loguru import logger import numpy as np from microquake.processors.processing_unit import ProcessingUnit from microquake.processors import quick_magnitude from microquake.waveform.mag_utils import calc_static_stress_drop class Processor(ProcessingUnit): @property def module_name(self): return "extract_magnitude" def process( self, **kwargs ): logger.info("pipeline: measure_amplitudes") cat = kwargs["cat"].copy() stream = kwargs["stream"] dict_out = {} dict_keys = ['energy_joule', 'energy_p_joule', 'energy_p_std', 'energy_s_joule', 'energy_s_std', 'corner_frequency_hz', 'corner_frequency_p_hz', 'corner_frequency_s_hz', 'time_domain_moment_magnitude', 'frequency_domain_moment_magnitude', 'moment_magnitude', 'moment_magnitude_uncertainty', 'seismic_moment', 'potency_m3', 'source_volume_m3', 'apparent_stress', 'static_stress_drop_mpa'] for key in dict_keys: dict_out[key] = None mu = 29.5e9 # rigidity in Pa (shear-wave modulus) # finding the index for magnitude object that contains the energy td_magnitude = None fd_magnitude = None energy = None cf = None for magnitude in reversed(cat[0].magnitudes): if magnitude.magnitude_type == 'E': energy = magnitude.mag dict_out['energy_joule'] = energy energy_p_dict = eval(magnitude.comments[1].text) dict_out['energy_p_joule'] = energy_p_dict['Ep'] dict_out['energy_p_std'] = energy_p_dict['std_Ep'] energy_s_dict = eval(magnitude.comments[2].text) dict_out['energy_s_joule'] = energy_s_dict['Es'] dict_out['energy_s_std'] = energy_s_dict['std_Es'] break for magnitude in reversed(cat[0].magnitudes): if len(magnitude.comments) == 0: continue if 'time-domain' in magnitude.comments[0].text: td_magnitude = magnitude.mag dict_out['time_domain_moment_magnitude'] = td_magnitude break for magnitude in reversed(cat[0].magnitudes): if len(magnitude.comments) == 0: continue if 'frequency-domain' in magnitude.comments[0].text: fd_magnitude = magnitude.mag dict_out['frequency_domain_moment_magnitude'] = fd_magnitude break cfs = [] for comment in cat[0].preferred_origin().comments: if ('corner_frequency_p' in comment.text.lower()) or \ ('corner_frequency_s' in comment.text.lower()): cf_string = comment.text cf = float(cf_string.split('=')[1].split(' ')[0]) if 'corner_frequency_p' in comment.text.lower(): dict_out['corner_frequency_p_hz'] = cf elif 'corner_frequency_s' in comment.text.lower(): dict_out['corner_frequency_s_hz'] = cf cfs.append(cf) cfs = [cf for cf in cfs if not np.isnan(cf)] if cfs: cf = np.mean(cfs) dict_out['corner_frequency_hz'] = cf if (td_magnitude is not None) and (fd_magnitude is not None): mw = np.mean([td_magnitude, fd_magnitude]) mw_uncertainty = np.abs(td_magnitude - fd_magnitude) elif (td_magnitude is None) and (fd_magnitude is None): mw, mw_uncertainty = quick_magnitude.Processor( ).process(cat=cat, stream=stream) elif td_magnitude is None: mw = fd_magnitude mw_uncertainty = None elif fd_magnitude is None: mw = td_magnitude mw_uncertainty = None dict_out['moment_magnitude'] = mw dict_out['moment_magnitude_uncertainty'] = mw_uncertainty if mw is not None: sm = 10 ** (3 / 2 * (mw + 6.02)) dict_out['seismic_moment'] = sm potency = sm / mu dict_out['potency_m3'] = potency dict_out['source_volume_m3'] = potency if energy is not None: dict_out['apparent_stress'] = 2 * energy / potency else: dict_out['apparent_stress'] = None if cf is not None: ssd = calc_static_stress_drop(mw, cf) dict_out['static_stress_drop_mpa'] = ssd return dict_out ``` #### File: microquake/processors/magnitude.py ```python import numpy as np from loguru import logger from microquake.waveform.mag import (calc_magnitudes_from_lambda, set_new_event_mag) from microquake.core.helpers.velocity import get_velocities from microquake.processors.processing_unit import ProcessingUnit class Processor(ProcessingUnit): @property def module_name(self): return "magnitude" def initializer(self): self.vp_grid, self.vs_grid = get_velocities() def process( self, **kwargs ): """ process(catalog) Calculates the Magnitude in Frequency or Time domain - various measures - requires the arrivals Parameters ---------- catalog: str Returns ------- catalog: str few parameters related to the magitude list of magnitudes for each stations """ logger.info("pipeline: magnitude") cat = kwargs["cat"].copy() density = self.params.density min_dist = self.params.min_dist use_sdr_rad = self.params.use_sdr_rad use_free_surface_correction = self.params.use_free_surface_correction make_preferred = self.params.make_preferred phase_list = self.params.phase_list use_smom = self.params.use_smom if not isinstance(phase_list, list): phase_list = [phase_list] if use_sdr_rad and cat.preferred_focal_mechanism() is None: logger.warning("use_sdr_rad=True but preferred focal mech = None" "--> Setting use_sdr_rad=False") use_sdr_rad = False for i, event in enumerate(cat): ev_loc = event.preferred_origin().loc vp = self.vp_grid.interpolate(ev_loc)[0] vs = self.vs_grid.interpolate(ev_loc)[0] sdr = None if use_sdr_rad: focal_mech = event.preferred_focal_mechanism() if focal_mech is not None: nodal_plane = focal_mech.nodal_planes.nodal_plane_1 strike = nodal_plane.strike dip = nodal_plane.dip rake = nodal_plane.rake sdr = (strike, dip, rake) logger.info("use_sdr_rad=True (s,d,r)=(%.1f,%.1f,%.1f)" % (strike, dip, rake)) Mws = [] station_mags = [] for phase in phase_list: Mw, sta_mags = calc_magnitudes_from_lambda( [event], vp=vp, vs=vs, density=density, P_or_S=phase, use_smom=use_smom, use_sdr_rad=use_sdr_rad, use_free_surface_correction=use_free_surface_correction, sdr=sdr, min_dist=min_dist) Mws.append(Mw) station_mags.extend(sta_mags) logger.info("Mw_%s=%.1f len(station_mags)=%d" % (phase, Mws[-1], len(station_mags))) if self.module_type == "frequency": Mw = np.nanmean(Mws) comment = "frequency-domain" else: Mw = np.mean(Mws) comment = "time-domain" comment = f"Average of {comment} station moment magnitudes" if use_sdr_rad and sdr is not None: comment += " Use_sdr_rad: sdr=(%.1f,%.1f,%.1f)" % (sdr[0], sdr[1], sdr[2]) if np.isnan(Mw): logger.warning("Mw is nan, cannot set on event") continue set_new_event_mag(event, station_mags, Mw, comment, make_preferred=make_preferred) return cat.copy() def legacy_pipeline_handler( self, msg_in, res ): _, stream = self.app.deserialise_message(msg_in) return res['cat'], stream ``` #### File: microquake/waveform/parseval_utils.py ```python import numpy as np from scipy.fftpack import fft, fftfreq, rfft, rfftfreq import matplotlib.pyplot as plt """ mag_utils - a collection of routines to assist in the moment magnitude calculation """ def parsevals(data, dt, nfft): """ Proper scaling to satisfy Parsevals: Scale a 2-sided fft by dt Scale a 1-sided rft by dt x sqrt(2) The 2-sided nfft-point fft returns nfft Complex values (+ve and -ve freqs) The 1-sided nfft-point fft returns nfft/2 + 1 Complex values (+ve freqs + DC + Nyq) >>>parsevals(tr.data, tr.stats.sampling_rate, npow2(tr.data.size)) Parseval's: [time] ndata=11750 dt=6000.000000 sum=0.0001237450569 [time] Parseval's: [freq] nfft=65536 df=2.54313e-09 sum=0.0001237450441 [2-sided] Parseval's: [freq] nfft=65536 df=2.54313e-09 sum=0.0001237450441 [1-sided] """ tsum = np.sum(np.square(data))*dt print("Parseval's: [time] ndata=%7d dt=%12.6f sum=%12.10g [time]" % (data.size, dt, tsum)) # 2-sided (+ve & -ve freqs) FFT: X=fft(data,nfft)*dt df = 1./(dt * float(X.size)) # X.size = nfft #fsum = np.sum(X*np.conj(X))*df # Do it this way so it doesn't spit a ComplexWarning about throwing away imag part fsum = np.sum(np.abs(X)*np.abs(X))*df print("Parseval's: [freq] nfft=%7d df=%12.6g sum=%12.10g [2-sided]" % (X.size, df, fsum)) # 1-sided: N/2 -1 +ve freqs + [DC + Nyq] = N/2 + 1 values: df = 1./(dt * float(nfft)) # df is same as for 2-sided case Y,freqs = unpack_rfft(rfft(data, n=nfft), df) Y *= dt ''' Note: We only have the +ve freq half, so we need to double all the power at each frequency *except* for DC & Nyquist, which are purely real and don't have a -ve freq. So either scale the fsum by 2, or scale Y (minus DC/Nyq) by sqrt(2) here ''' Y[1:-1] *= np.sqrt(2.) fsum = np.sum(np.abs(Y)*np.abs(Y))*df print("Parseval's: [freq] nfft=%7d df=%12.6g sum=%12.10g [1-sided]" % (nfft, df, fsum)) return def unpack_rfft(rfft, df): n = rfft.size if n % 2 == 0: n2 = int(n/2) else: print("n is odd!!") exit() #print("n2=%d" % n2) c_arr = np.array( np.zeros(n2+1,), dtype=np.complex_) freqs = np.array( np.zeros(n2+1,), dtype=np.float_) c_arr[0] = rfft[0] c_arr[n2] = rfft[n-1] freqs[0] = 0. freqs[n2] = float(n2)*df for i in range(1, n2): freqs[i] = float(i)*df c_arr[i] = np.complex(rfft[2*i - 1], rfft[2*i]) return c_arr, freqs def npow2(n: int) -> int: """ return power of 2 >= n """ if n <= 0: return 0 nfft = 2 while (nfft < n): nfft = (nfft << 1) return nfft if __name__ == '__main__': main() ```
{ "source": "jeanphilippemercier/uquake", "score": 2 }
#### File: uquake/core/stream.py ```python from abc import ABC from io import BytesIO import numpy as np import obspy.core.stream as obsstream from pkg_resources import load_entry_point from .trace import Trace from .util import ENTRY_POINTS, tools from .logging import logger from pathlib import Path class Stream(obsstream.Stream, ABC): __doc__ = obsstream.Stream.__doc__.replace('obspy', 'uquake') def __init__(self, stream=None, **kwargs): super(Stream, self).__init__(**kwargs) if stream: traces = [] for tr in stream.traces: traces.append(Trace(trace=tr)) self.traces = traces def composite(self): """ returns a new stream object containing composite trace for all station. The amplitude of the composite traces are the norm of the amplitude of the trace of all component and the phase of the trace (sign) is the sign of the first components of a given station. :param st: a stream object :type st: ~uquake.core.stream.Stream :rtype: ~uquake.core.stream.Stream """ return composite_traces(self) def select(self, **kwargs): if 'site' in kwargs.keys(): trs = [tr for tr in self.traces if tr.stats.site == kwargs['site']] else: return super().select(**kwargs) st_tmp = Stream(traces=trs) kwargs_tmp = {} for key in kwargs.keys(): if key == 'site': continue kwargs_tmp[key] = kwargs[key] return st_tmp.select(**kwargs_tmp) def as_array(self, wlen_sec=None, taplen=0.05): t0 = np.min([tr.stats.starttime for tr in self]) sr = self[0].stats.sampling_rate if wlen_sec is not None: npts_fix = int(wlen_sec * sr) else: npts_fix = int(np.max([len(tr.data) for tr in self])) return tools.stream_to_array(self, t0, npts_fix, taplen=taplen), sr, t0 def chan_groups(self): chanmap = self.channel_map() groups = [np.where(sk == chanmap)[0] for sk in np.unique(chanmap)] return groups def channel_map(self): stations = np.array([tr.stats.station for tr in self]) unique = np.unique(stations) unique_dict = dict(zip(unique, np.arange(len(unique)))) chanmap = np.array([unique_dict[chan] for chan in stations], dtype=int) return chanmap def write(self, filename, format='MSEED', **kwargs): from six import string_types f = filename if isinstance(filename, string_types): if filename.endswith('gz'): import gzip f = gzip.open(filename, 'w') elif filename.endswith('bz2'): import bz2 f = bz2.BZ2File(filename, 'w') elif filename.endswith('zip'): print('Zip protocol is not supported') st_out = self.copy() return obsstream.Stream.write(st_out, f, format, **kwargs) write.__doc__ = obsstream.Stream.write.__doc__.replace('obspy', 'uquake') def write_bytes(self): buf = BytesIO() self.write(buf, format='MSEED') return buf.getvalue() def valid(self, **kwargs): return is_valid(self, return_stream=True) def concat(self, comp_st): c = (comp_st is not None) if c: for i, (t1, t2) in enumerate(zip(comp_st.traces, self.traces)): self.detrend_norm(t2) comp_st.traces[i] = t1.__add__(t2, method=1, fill_value=0) else: for t in self: self.detrend_norm(t) comp_st = self return comp_st @property def unique_stations(self): return np.sort(np.unique([tr.stats.station for tr in self])) @property def unique_sites(self): return np.sort(np.unique([tr.stats.site for tr in self])) @property def stations(self): return self.unique_stations @property def sites(self): return self.unique_sites def zpad_names(self): for tr in self.traces: tr.stats.station = tr.stats.station.zfill(3) self.sort() def zstrip_names(self): for tr in self.traces: tr.stats.station = tr.stats.station.lstrip('0') def distance_time_plot(self, event, site, scale=20, freq_min=100, freq_max=1000): """ plot traces that have :param event: event object :param site: site object :param scale: vertical size of pick markers and waveform :return: plot handler """ st = self.copy() st.detrend('demean') st.taper(max_percentage=0.01) st.filter('bandpass', freqmin=freq_min, freqmax=freq_max) import matplotlib.pyplot as plt import numpy as np # initializing the plot ax = plt.subplot(111) if event.preferred_origin(): origin = event.preferred_origin() elif event.origins: origin = event.origins[0] else: return event_location = origin.loc # find the earliest start time and latest end time start_time = None end_time = None for tr in st: if not start_time: start_time = tr.stats.starttime end_time = tr.stats.endtime if tr.stats.starttime < start_time: start_time = tr.stats.starttime if tr.stats.endtime > end_time: end_time = tr.stats.endtime for tr in st: station_code = tr.stats.station # search for arrival station = site.select(station_code).stations()[0] station_location = station.loc distance = np.linalg.norm(event_location - station_location) p_pick = None s_pick = None data = (tr.data / np.max(np.abs(tr.data))) * scale time_delta = tr.stats.starttime - start_time time = np.arange(0, len(data)) / tr.stats.sampling_rate + \ time_delta for arrival in origin.arrivals: if arrival.get_pick().waveform_id.station_code == station_code: distance = arrival.distance if arrival.phase == 'P': p_pick = arrival.get_pick().time - start_time elif arrival.phase == 'S': s_pick = arrival.get_pick().time - start_time ax.plot(time, data + distance, 'k') if p_pick: ax.vlines(p_pick, distance - scale, distance + scale, 'r') if s_pick: ax.vlines(s_pick, distance - scale, distance + scale, 'b') plt.xlabel('relative time (s)') plt.ylabel('distance from event (m)') @staticmethod def create_from_json_traces(traces_json_list): traces = [] # for tr_json in traces_json_list: for i, tr_json in enumerate(traces_json_list): stats = tr_json['stats'] tr = Trace.create_from_json(tr_json) traces.append(tr) return Stream(traces=traces) def to_traces_json(self): traces = [] for tr in self: trout = tr.to_json() traces.append(trout) return traces def plot(self, *args, **kwargs): """ see Obspy stream.plot() """ from ..imaging.waveform import WaveformPlotting waveform = WaveformPlotting(stream=self, *args, **kwargs) return waveform.plotWaveform(*args, **kwargs) # from uquake.core import read, read_events # from spp.utils import application # app = application.Application() # site = app.get_stations() # st = read('2018-11-08T10:21:49.898496Z.mseed', format='mseed') # cat = read_events('test.xml') # evt = cat[0] # st = st.composite() def is_valid(st_in, return_stream=False, STA=0.005, LTA=0.1, min_num_valid=5): """ Determine if an event is valid or return valid traces in a stream :param st_in: stream :type st_in: uquake.core.stream.Stream :param return_stream: return stream of valid traces if true else return true if the event is valid :type return_stream: bool :param STA: short term average used to determine if an event is valid :type STA: float :param LTA: long term average :type LTA: float :param min_num_valid: minimum number of valid traces to declare the event valid :type min_num_valid: int :rtype: bool or uquake.core.stream.Stream """ from scipy.ndimage.filters import gaussian_filter1d from obspy.signal.trigger import recursive_sta_lta st = st_in.copy() st.detrend('demean').detrend('linear') trstd = [] trmax = [] trs_out = [] st_comp = composite_traces(st) for tr in st_comp: if not np.any(tr.data): continue sampling_rate = tr.stats.sampling_rate trstd.append(np.std(tr.data)) trmax.append(np.max(np.abs(tr.data))) nsta = int(STA * sampling_rate) nlta = int(LTA * sampling_rate) cft = recursive_sta_lta(np.array(tr.data), nsta, nlta) sfreq = tr.stats['sampling_rate'] sigma = sfreq / (2 * np.pi * 100) cft = gaussian_filter1d(cft, sigma=sigma, mode='reflect') try: mx = np.r_[True, cft[1:] > cft[:-1]] & \ np.r_[cft[:-1] > cft[1:], True] except Exception as e: logger.error(e) continue i1 = np.nonzero(mx)[0] i2 = i1[cft[i1] > np.max(cft) / 2] tspan = (np.max(i2) - np.min(i2)) / sampling_rate ratio = np.max(np.abs(tr.data)) / np.std(tr.data) accept = True if len(i2) < 3: if ratio < 4: accept = False elif len(i2) >= 4: accept = False # else: # if ratio < 4: # accept = False if tspan > 0.1: accept = False if (len(i2) == 2) and (tspan > 0.01) and (tspan < 0.1): if ratio > 5: accept = True if accept: for tr_accepted in st_in.select(station=tr.stats.station): trs_out.append(tr_accepted) st_out = Stream(traces=trs_out) if return_stream: return st_out else: if len(st.unique_stations()) >= min_num_valid: return True else: return False def check_for_dead_trace(tr): eps = 1e-6 data = tr.data.copy() mean = np.mean(data) max = np.max(data) - mean min = np.min(data) - mean # print('%s: mean:%f max:%f min:%f' % (tr.get_id(), mean, max, min)) if max < eps and np.abs(min) < eps: return 1 else: return 0 def composite_traces(st_in): """ Requires length and sampling_rates equal for all traces returns a new stream object containing composite trace for all station. The amplitude of the composite traces are the norm of the amplitude of the trace of all component and the phase of the trace (sign) is the sign of the first components of a given station. :param st_in: a stream object :type st_in: ~uquake.core.stream.Stream :rtype: ~uquake.core.stream.Stream """ trsout = [] st = st_in.copy() st.detrend('demean') for site in st.unique_sites: trs = st.select(site=site) if len(trs) == 1: trsout.append(trs[0].copy()) continue npts = len(trs[0].data) buf = np.zeros(npts, dtype=trs[0].data.dtype) for tr in trs: dat = tr.data buf += (dat - np.mean(dat)) ** 2 buf = np.sign(trs[0].data) * np.sqrt(buf) stats = trs[0].stats.copy() ch = st_in.traces[0].stats.channel if len(ch) > 1: prefix = ch[:-1] stats.channel = f'{prefix}C' trsout.append(Trace(data=buf.copy(), header=stats)) return Stream(traces=trsout) def read(filename, format='MSEED', **kwargs): if isinstance(filename, Path): filename = str(filename) if format in ENTRY_POINTS['waveform'].keys(): format_ep = ENTRY_POINTS['waveform'][format] read_format = load_entry_point(format_ep.dist.key, 'obspy.plugin.waveform.%s' % format_ep.name, 'readFormat') st = Stream(stream=read_format(filename, **kwargs)) # making sure the channel names are upper case trs = [] for tr in st: tr.stats.channel = tr.stats.channel.upper() trs.append(tr.copy()) st.traces = trs return st else: return Stream(stream=obsstream.read(filename, format=format, **kwargs)) read.__doc__ = obsstream.read.__doc__.replace('obspy', 'uquake') ``` #### File: core/util/base.py ```python from subprocess import call from obspy.core.util.base import ENTRY_POINTS, _get_entry_points # appending elements to the obspy ENTRY_POINTS ENTRY_POINTS['grid'] = _get_entry_points('uquake.io.grid', 'readFormat') ENTRY_POINTS['grid_write'] = _get_entry_points('uquake.io.grid', 'writeFormat') gfr_entry_points = _get_entry_points('uquake.io.waveform', 'readFormat') gfw_entry_points = _get_entry_points('uquake.io.waveform', 'writeformat') wf_entry_points = _get_entry_points('uquake.io.waveform', 'readFormat') for key in wf_entry_points.keys(): ENTRY_POINTS['waveform'][key] = wf_entry_points[key] wfw_entry_points = _get_entry_points('uquake.io.waveform', 'writeFormat') for key in wfw_entry_points.keys(): ENTRY_POINTS['waveform_write'][key] = wfw_entry_points[key] evt_entry_points = _get_entry_points('uquake.io.event', 'readFormat') for key in evt_entry_points.keys(): ENTRY_POINTS['event'][key] = evt_entry_points[key] def proc(cmd, cwd='.', silent=True): from ..logging import logger try: if silent: cmd = '%s > /dev/null 2>&1' % cmd retcode = call(cmd, shell=True, cwd=cwd) if retcode < 0: logger.error('Child was terminated by signal %d' % (retcode,)) # else: # print >>sys.stderr, "Child returned", retcode except OSError as e: logger.error('Execution failed: %s' % (e,)) def align_decimal(number, left_pad=7, precision=2): """Format a number in a way that will align decimal points.""" outer = '{0:>%i}.{1:<%i}' % (left_pad, precision) inner = '{:.%if}' % (precision,) return outer.format(*(inner.format(number).split('.'))) def pretty_print_array(arr): return '(%s)' % ''.join([align_decimal(a) for a in arr]) def np_array(arr): new_arr = np.empty(shape=(len(arr),), dtype=object) for i, el in enumerate(arr): new_arr[i] = el return new_arr def _read_from_plugin(plugin_type, filename, format=None, **kwargs): """ Reads a single file from a plug-in's readFormat function. """ eps = ENTRY_POINTS[plugin_type] # get format entry point format_ep = None if not format: # auto detect format - go through all known formats in given sort order for format_ep in eps.values(): # search isFormat for given entry point is_format = load_entry_point( format_ep.dist.key, 'obspy.plugin.%s.%s' % (plugin_type, format_ep.name), 'isFormat') # If it is a file-like object, store the position and restore it # later to avoid that the isFormat() functions move the file # pointer. if hasattr(filename, "tell") and hasattr(filename, "seek"): position = filename.tell() else: position = None # check format is_format = is_format(filename) if position is not None: filename.seek(0, 0) if is_format: break else: raise TypeError('Unknown format for file %s' % filename) else: # format given via argument format = format.upper() try: format_ep = eps[format] except (KeyError, IndexError): msg = "Format \"%s\" is not supported. Supported types: %s" raise TypeError(msg % (format, ', '.join(eps))) # file format should be known by now try: # search readFormat for given entry point read_format = load_entry_point( format_ep.dist.key, 'obspy.plugin.%s.%s' % (plugin_type, format_ep.name), 'readFormat') except ImportError: msg = "Format \"%s\" is not supported. Supported types: %s" raise TypeError(msg % (format_ep.name, ', '.join(eps))) # read list_obj = read_format(filename, **kwargs) return list_obj, format_ep.name ``` #### File: uquake/grid/base.py ```python import numpy as np from uuid import uuid4 from ..core.logging import logger from pkg_resources import load_entry_point from ..core.util import ENTRY_POINTS from pathlib import Path from scipy.ndimage.interpolation import map_coordinates from ..core.event import WaveformStreamID import matplotlib.pyplot as plt def read_grid(filename, format='PICKLE', **kwargs): format = format.upper() if format not in ENTRY_POINTS['grid'].keys(): raise TypeError(f'format {format} is currently not supported ' f'for Grid objects') format_ep = ENTRY_POINTS['grid'][format] read_format = load_entry_point(format_ep.dist.key, f'uquake.io.grid.{format_ep.name}', 'readFormat') return read_format(filename, **kwargs) class Grid: """ Object containing a regular grid """ def __init__(self, data_or_dims, spacing=None, origin=None, resource_id=None, value=0): """ can hold both 2 and 3 dimensional grid :param data_or_dims: either a numpy array or a tuple/list with the grid dimensions. If grid dimensions are specified, the grid is initialized with value :param spacing: Spacing :type spacing: typle :param origin: tuple, list or array containing the origin of the grid :type origin: tuple :param resource_id: unique identifier for the grid, if set to None, :param value: value to fill the grid should dims be specified :type value: uuid4 is used to define a unique identifier. :type uuid4: str """ data_or_dims = np.array(data_or_dims) if data_or_dims.ndim == 1: self.data = np.ones(data_or_dims) * value else: self.data = data_or_dims if resource_id is None: self.resource_id = str(uuid4()) else: self.resource_id = resource_id if origin is None: self.origin = np.zeros(len(self.data.shape)) else: origin = np.array(origin) if origin.shape[0] == len(self.data.shape): self.origin = origin else: logger.error(f'origin shape should be {len(self.data.shape)}') raise ValueError if spacing is None: self.spacing = np.ones(len(self.data.shape)) else: spacing = np.array(spacing) if spacing.shape[0] == len(self.data.shape): self.spacing = spacing else: logger.error(f'spacing shape should be {len(self.data.shape)}') raise ValueError def __hash__(self): return hash((tuple(self.data.ravel()), tuple(self.spacing), tuple(self.shape), tuple(self.origin))) def __eq__(self, other): self.hash == other.hash @property def hash(self): return self.__hash__() @classmethod def from_ods(cls, origin, dimensions, spacing, val=0): """ create a grid from origin, dimensions and spacing :param origin: grid origin :type origin: tuple :param dimensions: grid dimension :type dimensions: tuple :param spacing: spacing between the grid nodes :type spacing: float :param val: constant value with which to fill the grid """ data = np.ones(tuple(dimensions)) * val cls.grid = cls.__init__(data, spacing=spacing, origin=origin) @classmethod def from_ocs(cls, origin, corner, spacing, val=0): """ create a grid from origin, corner and spacing :param origin: grid origin (e.g., lower left corner for 2D grid) :type origin: tuple or list or numpy.array :param corner: grid upper (e.g., upper right corner for 2D grid) :type corner: tuple or list or numpy.array :param spacing: spacing between the grid nodes :type spacing: float :param val: constant value with which to fill the grid :param buf: buffer around the grid in fraction of grid size """ origin2 = origin corner2 = corner gshape = tuple([int(np.ceil((c - o) / spacing)) for o, c in zip(origin2, corner2)]) data = np.ones(gshape) * val cls.__init__(data, spacing=spacing, origin=origin) cls.fill_homogeneous(val) return cls @classmethod def from_ocd(cls, origin, corner, dimensions, val=0): """ create a grid from origin, corner and dimensions :param origin: grid origin (e.g., lower left corner for 2D grid) :param corner: grid upper (e.g., upper right corner for 2D grid) :param dimensions: grid dimensions :param val: constant value with which to fill the grid :return: """ data = np.ones(dimensions) * val spacing = (corner - origin) / (dimensions - 1) cls.__init__(data, spacing, spacing=spacing, origin=origin) return cls def __repr__(self): repr_str = """ spacing: %s origin : %s shape : %s """ % (self.spacing, self.origin, self.shape) return repr_str def __str__(self): return self.__repr__() def __eq__(self, other): return np.all((self.shape == other.shape) & (self.spacing == other.spacing) & np.all(self.origin == other.origin)) def __mul__(self, other): if isinstance(other, Grid): if self.check_compatibility(self, other): mul_data = self.data * other.data return Grid(mul_data, spacing=self.spacing, origin=self.origin) else: raise ValueError else: raise TypeError def __abs__(self): return np.abs(self.data) def transform_to(self, values): """ transform model space coordinates into grid space coordinates :param values: tuple of model space coordinates :type values: tuple :rtype: tuple """ coords = (values - self.origin) / self.spacing return coords def transform_to_grid(self, values): """ transform model space coordinates into grid space coordinates :param values: tuple of model space coordinates :type values: tuple :rtype: tuple """ return self.transform_to(values) def transform_from(self, values): """ transform grid space coordinates into model space coordinates :param values: tuple of grid space coordinates :type values: tuple :rtype: tuple """ return values * self.spacing + self.origin def transform_from_grid(self, values): """ transform grid space coordinates into model space coordinates :param values: tuple of grid space coordinates :type values: tuple :rtype: tuple """ return self.transform_from(values) def check_compatibility(self, other): """ check if two grids are compatible, i.e., have the same shape, spacing and origin """ return (np.all(self.shape == other.shape) and np.all(self.spacing == other.spacing) and np.all(self.origin == other.origin)) def __get_shape__(self): """ return the shape of the object """ return self.data.shape shape = property(__get_shape__) def copy(self): """ copy the object using copy.deepcopy """ import copy cp = copy.deepcopy(self) return cp def in_grid(self, point): """ Check if a point is inside the grid :param point: the point to check in absolute coordinate (model) :type point: tuple, list or numpy array :returns: True if point is inside the grid :rtype: bool """ corner1 = self.origin corner2 = self.origin + self.spacing * np.array(self.shape) return np.all((point >= corner1) & (point <= corner2)) def fill_homogeneous(self, value): """ fill the data with a constant value :param value: the value with which to fill the array """ self.data.fill(value) def generate_points(self, pt_spacing=None): """ Generate points within the grid """ # if pt_spacing is None: ev_spacing = self.spacing dimensions = np.array(self.shape) * self.spacing / ev_spacing xe = np.arange(0, dimensions[0]) * ev_spacing + self.origin[0] ye = np.arange(0, dimensions[1]) * ev_spacing + self.origin[1] ze = np.arange(0, dimensions[2]) * ev_spacing + self.origin[2] Xe, Ye, Ze = np.meshgrid(xe, ye, ze) Xe = Xe.reshape(np.prod(Xe.shape)) Ye = Ye.reshape(np.prod(Ye.shape)) Ze = Ze.reshape(np.prod(Ze.shape)) return Xe, Ye, Ze def generate_random_points_in_grid(self, n_points=1, grid_space=False): """ Generate a random set of points within the grid :param n_points: number of points to generate (default=1) :type n_points: int :param grid_space: whether the output is expressed in grid coordinates (True) or model coordinates (False) (default: False) :type grid_space: bool :return: an array of triplet """ points = np.random.rand(n_points, len(self.data.shape)) for i in range(n_points): points[i] = points[i] * self.dimensions if not grid_space: return self.transform_from_grid(points) return points def write(self, filename, format='PICKLE', **kwargs): """ write the grid to disk :param filename: full path to the file to be written :type filename: str :param format: output file format :type format: str """ format = format.upper() if format not in ENTRY_POINTS['grid'].keys(): logger.error('format %s is not currently supported for Grid ' 'objects' % format) return format_ep = ENTRY_POINTS['grid'][format] write_format = load_entry_point(format_ep.dist.key, 'uquake.plugin.grid.%s' % format_ep.name, 'writeFormat') write_format(self, filename, **kwargs) def interpolate(self, coord, grid_space=True, mode='nearest', order=1, **kwargs): """ This function interpolate the values at a given point expressed either in grid or absolute coordinates :param coord: Coordinate of the point(s) at which to interpolate either in grid or absolute coordinates :type coord: list, tuple, numpy.array :param grid_space: true if the coordinates are expressed in grid space (indices can be float) as opposed to model space :param mode: {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional The `mode` parameter determines how the input array is extended beyond its boundaries. Default is 'constant'. Behavior for each valid value is as follows: 'reflect' (`d c b a | a b c d | d c b a`) The input is extended by reflecting about the edge of the last pixel. 'constant' (`k k k k | a b c d | k k k k`) The input is extended by filling all values beyond the edge with the same constant value, defined by the `cval` parameter. 'nearest' (`a a a a | a b c d | d d d d`) The input is extended by replicating the last pixel. 'mirror' (`d c b | a b c d | c b a`) The input is extended by reflecting about the center of the last pixel. 'wrap' (`a b c d | a b c d | a b c d`) The input is extended by wrapping around to the opposite edge. :param order: int, optional The order of the spline interpolation, default is 3. The order has to be in the range 0-5. :type order: int :type grid_space: bool :rtype: numpy.array """ coord = np.array(coord) if not grid_space: coord = self.transform_to(coord) if len(coord.shape) < 2: coord = coord[:, np.newaxis] try: return map_coordinates(self.data, coord, mode=mode, order=order, **kwargs) except Exception as e: # logger.warning(e) # logger.info('transposing the coordinate array') return map_coordinates(self.data, coord.T, mode=mode, order=order, **kwargs) def fill_from_z_gradient(self, vals, zvals): data = self.data origin = self.origin zinds = [int(self.transform_to([origin[0], origin[1], z_])[2]) for z_ in zvals] # print(zinds, origin) data[:, :, zinds[0]:] = vals[0] data[:, :, :zinds[-1]] = vals[-1] for i in range(len(zinds) - 1): # print(i) fill = np.linspace(vals[i + 1], vals[i], zinds[i] - zinds[i + 1]) data[:, :, zinds[i + 1]:zinds[i]] = fill def get_grid_point_coordinates(self, mesh_grid=True): """ """ x = [] for i, (dimension, spacing) in \ enumerate(zip(self.data.shape, self.spacing)): v = np.arange(0, dimension) * spacing + self.origin[0] x.append(v) if not mesh_grid: return tuple(x) if len(x) == 2: return tuple(np.meshgrid(x[0], x[1])) if len(x) == 3: return tuple(np.meshgrid(x[0], x[1], x[2])) def write(self, filename, format='PICKLE', **kwargs): """ write the grid to disk :param filename: full path to the file to be written :type filename: str :param format: output file format :type format: str """ format = format.upper() Path(filename).parent.mkdirs(parent=True, exist_ok=True) if format not in ENTRY_POINTS['grid'].keys(): raise TypeError(f'format {format} is currently not supported ' f'for Grid objects') format_ep = ENTRY_POINTS['grid'][format] write_format = load_entry_point(format_ep.dist.key, f'uquake.io.grid.{format_ep.name}', 'writeFormat') return write_format(self, filename, **kwargs) def plot_1D(self, x, y, z_resolution, grid_space=False, inventory=None, reverse_y=True): """ :param x: x location :param y: y location :param z_resolution_m: z resolution in grid units :param grid_space: :return: """ if not grid_space: x, y, z = self.transform_from([x, y, 0]) zs = np.arange(self.origin[2], self.corner[2], z_resolution) coords = [] for z in zs: coords.append(np.array([x, y, z])) values = self.interpolate(coords, grid_space=grid_space) plt.plot(values, zs) if reverse_y: plt.gca().invert_yaxis() if (inventory): z_stas = [] for network in inventory: for station in network: loc = station.loc z_stas.append(loc[2]) plt.plot([np.mean(values)] * len(z_stas), z_stas, 'kv') plt.plot() plt.plot() plt.show() @property def ndim(self): return self.data.ndim @property def shape(self): return list(self.data.shape) @property def dims(self): return self.shape @property def dimensions(self): return self.shape @property def corner(self): return np.array(self.origin) + np.array(self.shape) * \ np.array(self.spacing) def angles(travel_time_grid): """ This function calculate the take off angle and azimuth for every grid point given a travel time grid calculated using an Eikonal solver :param travel_time_grid: travel_time grid :type travel_time_grid: ~uquake.core.grid.Grid. :rparam: azimuth and takeoff angles grids .. Note: The convention for the takeoff angle is that 0 degree is down. """ gds_tmp = np.gradient(travel_time_grid.data) gds = [-gd for gd in gds_tmp] tmp = np.arctan2(gds[0], gds[1]) # azimuth is zero northwards azimuth = travel_time_grid.copy() azimuth.type = 'ANGLE' azimuth.data = tmp hor = np.sqrt(gds[0] ** 2 + gds[1] ** 2) tmp = np.arctan2(hor, -gds[2]) # takeoff is zero pointing down takeoff = travel_time_grid.copy() takeoff.type = 'ANGLE' takeoff.data = tmp return azimuth, takeoff def ray_tracer(travel_time_grid, start, grid_space=False, max_iter=1000, arrival_id=None, earth_model_id=None, network: str=None): """ This function calculates the ray between a starting point (start) and an end point, which should be the seed of the travel_time grid, using the gradient descent method. :param travel_time_grid: a travel time grid :type travel_time_grid: TTGrid :param start: the starting point (usually event location) :type start: tuple, list or numpy.array :param grid_space: true if the coordinates are expressed in grid space (indices can be fractional) as opposed to model space (x, y, z) :param max_iter: maximum number of iteration :param arrival_id: id of the arrival associated to the ray if applicable :type arrival_id: uquake.core.event.ResourceIdentifier :param earth_model_id: velocity/earth model id. :type earth_model_id: uquake.core.event.ResourceIdentifier :param network: network information :type network: str :rtype: numpy.array """ from uquake.core.event import Ray if grid_space: start = np.array(start) start = travel_time_grid.transform_from(start) origin = travel_time_grid.origin spacing = travel_time_grid.spacing end = np.array(travel_time_grid.seed) start = np.array(start) # calculating the gradient in every dimension at every grid points gds = [Grid(gd, origin=origin, spacing=spacing) for gd in np.gradient(travel_time_grid.data)] dist = np.linalg.norm(start - end) cloc = start # initializing cloc "current location" to start gamma = spacing / 2 # gamma is set to half the grid spacing. This # should be # sufficient. Note that gamma is fixed to reduce # processing time. nodes = [start] iter_number = 0 while np.all(dist > spacing / 2): if iter_number > max_iter: break if np.all(dist < spacing * 4): gamma = np.min(spacing) / 4 gvect = np.array([gd.interpolate(cloc, grid_space=False, order=1)[0] for gd in gds]) cloc = cloc - gamma * gvect / (np.linalg.norm(gvect) + 1e-8) nodes.append(cloc) dist = np.linalg.norm(cloc - end) iter_number += 1 nodes.append(end) tt = travel_time_grid.interpolate(start, grid_space=False, order=1)[0] az = travel_time_grid.to_azimuth_point(start, grid_space=False, order=1) toa = travel_time_grid.to_takeoff_point(start, grid_space=False, order=1) ray = Ray(nodes=nodes, site_code=travel_time_grid.seed_label, arrival_id=arrival_id, phase=travel_time_grid.phase, azimuth=az, takeoff_angle=toa, travel_time=tt, earth_model_id=earth_model_id, network=network) return ray ``` #### File: uquake/grid/hdf5.py ```python import os from glob import glob import numpy as np import h5py class H5TTable(object): """docstring for H5TTable""" def __init__(self, path, dset_key=None): self.path = path self.hf = h5py.File(path, 'r') self.keys = list(self.hf.keys()) self.dset = None if dset_key is not None: self.set_dataset(dset_key) self.sites = self.hf['sites'][:].astype('U6') self.stations = self.hf['stations'][:].astype('U4') self.station_locations = self.hf['station_locations'].astype('U2') self._sitedict = dict(zip(self.sites, np.arange(len(self.sites)))) self.locations = self.hf['locations'][:] self.coords = self.hf['grid_locs'][:] def __delete__(self): sefl.hf.close() def set_dataset(self, key): if key in self.keys: self.dset = self.hf[key] else: raise KeyError('dataset %s does not exist' % key) @property def shape(self): return self.hf.attrs['shape'] @property def origin(self): return self.hf.attrs['origin'] @property def spacing(self): return self.hf.attrs['spacing'] def index_sites(self, sites): if isinstance(sites, (list, np.ndarray)): return np.array([self._sitedict[site] for site in sites]) else: return self._sitedict[site] def icol_to_xyz(self, index): nx, ny, nz = self.shape iz = index % nz iy = ((index - iz) // nz) % ny ix = index // (nz * ny) loc = np.array([ix, iy, iz], dtype=float) * self.spacing + self.origin return loc def xyz_to_icol(self, loc): x, y, z = loc ix, iy, iz = ((loc - self.origin) / self.spacing).astype(int) nx, ny, nz = self.shape # return (iz * nx * ny) + (iy * nx) + ix; return int((ix * ny * nz) + (iy * nz) + iz) def close(self): self.hf.close() def gdef_to_points(shape, origin, spacing): maxes = origin + shape * spacing x = np.arange(origin[0], maxes[0], spacing[0]).astype(np.float32) y = np.arange(origin[1], maxes[1], spacing[1]).astype(np.float32) z = np.arange(origin[2], maxes[2], spacing[2]).astype(np.float32) points = np.zeros((np.product(shape), 3), dtype=np.float32) ix = 0 for xv in x: for yv in y: for zv in z: points[ix] = [xv, yv, zv] ix += 1 return points def array_from_travel_time_ensemble(tt_grids): data = {'P': [], 'S': []} sites = [] slocs = [] shape = tt_grids[0].shape origin = tt_grids[0].origin spacing = tt_grids[0].spacing for tt_grid in tt_grids: sites.append(tt_grid.seed_label) slocs.append(tt_grid.seed) sites = np.array(sites) slocs = np.array(slocs) nsites = len(sites) ngrid = np.product(shape) tts = np.zeros((nsites, ngrid), dtype=np.float32) for i in range(nsites): tts[i] = tt_grids[i].data.reshape(ngrid).astype(np.float32) data[phase] = dict(ttable=tts, locations=slocs, shape=shape, origin=origin, spacing=spacing, sites=sites) return data def write_hdf5(fname, tt_grids): hf = h5py.File(fname, 'w') shape = tt_grids.shape spacing = tt_grids.spacing origin = tt_grids.origin hf.attrs['shape'] = shape hf.attrs['spacing'] = spacing hf.attrs['origin'] = origin sites = tt_grids.seed_labels locations = tt_grids.seeds hf.create_dataset('locations', data=locations.astype(np.float32)) gridlocs = gdef_to_points(shape, origin, spacing) hf.create_dataset('grid_locs', data=gridlocs.astype(np.float32)) gdef = np.concatenate((shape, origin, spacing)).astype(np.int32) hf.create_dataset('grid_def', data=gdef) hf.create_dataset('sites', data=sites.astype('S6')) stations = np.array([site[0:4] for site in sites]) station_locations = np.array([site[4:] for site in sites]) hf.create_dataset('stations', data=stations.astype('S4')) hf.create_dataset('station_locations', data=station_locations.astype('S2')) nsites = len(sites) ngrid = np.product(shape) tts = {'P': np.zeros((nsites, ngrid), dtype=np.float32), 'S': np.zeros((nsites, ngrid), dtype=np.float32)} for i, site in enumerate(sites): for phase in ['P', 'S']: tt_grid = tt_grids.select(phase=phase, seed_labels=site)[0] tts[phase][i] = tt_grid.data.reshape(ngrid).astype(np.float32) hf.create_dataset('ttp', data=tts['P']) hf.create_dataset('tts', data=tts['S']) hf.close() ``` #### File: uquake/grid/nlloc.py ```python import numpy as np import scipy.ndimage from .base import Grid from pathlib import Path from uuid import uuid4 import matplotlib.pyplot as plt from loguru import logger import skfmm from multiprocessing import Pool, cpu_count from functools import partial from typing import Optional import h5py from .base import ray_tracer import shutil from uquake.grid import read_grid from .hdf5 import H5TTable, write_hdf5 from scipy.interpolate import interp1d __cpu_count__ = cpu_count() valid_phases = ('P', 'S') valid_grid_types = ( 'VELOCITY', 'VELOCITY_METERS', 'SLOWNESS', 'VEL2', 'SLOW2', 'SLOW2_METERS', 'SLOW_LEN', 'STACK', 'TIME', 'TIME2D', 'PROB_DENSITY', 'MISFIT', 'ANGLE', 'ANGLE2D' ) valid_float_types = { # NLL_type: numpy_type 'FLOAT': 'float32', 'DOUBLE': 'float64' } valid_grid_units = ( 'METER', 'KILOMETER', ) __velocity_grid_location__ = Path('model') __time_grid_location__ = Path('time') __default_grid_units__ = 'METER' __default_float_type__ = 'FLOAT' def validate_phase(phase): if phase not in valid_phases: msg = f'phase should be one of the following valid phases:\n' for valid_phase in valid_phases: msg += f'{valid_phase}\n' raise ValueError(msg) return True def validate_grid_type(grid_type): if grid_type.upper() not in valid_grid_types: msg = f'grid_type = {grid_type} is not valid\n' \ f'grid_type should be one of the following valid grid ' \ f'types:\n' for valid_grid_type in valid_grid_types: msg += f'{valid_grid_type}\n' raise ValueError(msg) return True def validate_grid_units(grid_units): if grid_units.upper() not in valid_grid_units: msg = f'grid_units = {grid_units} is not valid\n' \ f'grid_units should be one of the following valid grid ' \ f'units:\n' for valid_grid_unit in valid_grid_units: msg += f'{valid_grid_unit}\n' raise ValueError(msg) return True def validate_float_type(float_type): if float_type.upper() not in valid_float_types.keys(): msg = f'float_type = {float_type} is not valid\n' \ f'float_type should be one of the following valid float ' \ f'types:\n' for valid_float_type in valid_float_types: msg += f'{valid_float_type}\n' raise ValueError(msg) return True def validate(value, choices): if value not in choices: msg = f'value should be one of the following choices\n:' for choice in choices: msg += f'{choice}\n' raise ValueError(msg) return True class Seeds: __valid_measurement_units__ = ['METERS', 'KILOMETERS'] def __init__(self, sites=[], units='METERS'): """ specifies a series of source location from an inventory object :param sites: a list of sites containing at least the location, and site label :type sites: list of dictionary :Example: >>> site = {'label': 'test', 'x': 1000, 'y': 1000, 'z': 1000, 'elev': 0.0} >>> sites = [site] >>> seeds = Seeds(sites) """ validate(units, self.__valid_measurement_units__) self.units = units self.sites = sites @classmethod def from_inventory(cls, inventory): """ create from an inventory object :param inventory: :type inventory: uquake.core.inventory.Inventory """ srces = [] for site in inventory.sites: srce = {'label': site.code, 'x': site.x, 'y': site.y, 'z': site.z, 'elev': 0} srces.append(srce) return cls(srces) @classmethod def from_json(cls, json): pass def add(self, label, x, y, z, elev=0, units='METERS'): """ Add a single site to the source list :param label: site label :type label: str :param x: x location relative to geographic origin expressed in the units of measurements for site/source :type x: float :param y: y location relative to geographic origin expressed in the units of measurements for site/source :type y: float :param z: z location relative to geographic origin expressed in the units of measurements for site/source :type z: float :param elev: elevation above z grid position (positive UP) in kilometers for site (Default = 0) :type elev: float :param units: units of measurement used to express x, y, and z ( 'METERS' or 'KILOMETERS') """ validate(units.upper(), self.__valid_measurement_units__) self.sites.append({'label': label, 'x': x, 'y': y, 'z': z, 'elev': elev}) self.units = units.upper() @classmethod def generate_random_seeds_in_grid(cls, grid, n_seeds=1): """ generate n_seeds random seeds inside the grid provided. This function is mainly used for testing purposes :param grid: a grid :type grid: uquake.grid.base.Grid or an object inheriting from Grid :param n_seeds: number of seeds to generate :return: a list of seeds >>> from uquake.grid.base import Grid >>> from uquake.grid.nlloc import Seeds >>> grid_dimensions = [10, 10, 10] >>> grid_spacing = [1, 1, 1] >>> grid_origin = [0, 0, 0] >>> grid = Grid(grid_dimensions, grid_spacing, grid_origin, value=1) >>> seeds = Seeds.generate_random_seeds_in_grid(grid, n_seeds=10) """ seeds = cls.__init__() label_root = 'seed' for i, point in enumerate(grid.generate_random_points_in_grid( n_points=n_seeds)): label = f'{label_root}_{i}' seeds.add(label, point[0], point[1], point[2]) return seeds def __repr__(self): line = "" for site in self.sites: # test if site name is shorter than 6 characters line += f'GTSRCE {site["label"]} XYZ ' \ f'{site["x"] / 1000:>15.6f} ' \ f'{site["y"] / 1000:>15.6f} ' \ f'{site["z"] / 1000:>15.6f} ' \ f'0.00\n' return line @property def locs(self): seeds = [] for site in self.sites: seeds.append([site['x'], site['y'], site['z']]) return np.array(seeds) @property def labels(self): seed_labels = [] for site in self.sites: seed_labels.append(site['label']) return np.array(seed_labels) # class Srces(Seeds): # def __init__(self, sites=[], units='METERS'): # super().__init__(sites=sites, units=units) class NLLocGrid(Grid): """ base 3D rectilinear grid object """ def __init__(self, data_or_dims, origin, spacing, phase, value=0, grid_type='VELOCITY_METERS', grid_units=__default_grid_units__, float_type="FLOAT", model_id=None): """ :param data_or_dims: data or data dimensions. If dimensions are provided the a homogeneous gris is created with value=value :param origin: origin of the grid :type origin: list :param spacing: the spacing between grid nodes :type spacing: list :param phase: the uquake phase (value 'P' or 'S') :type phase: str :param value: :type value: float :param grid_type: :type grid_type: str :param grid_units: :type grid_units: str :param float_type: :type float_type: str :param model_id: :type model_id: str """ super().__init__(data_or_dims, spacing=spacing, origin=origin, value=value, resource_id=model_id) if validate_phase(phase): self.phase = phase.upper() if validate_grid_type(grid_type): self.grid_type = grid_type.upper() self.extensions = ['.buf', '.mid', '.hdr'] if validate_grid_units(grid_units): self.grid_units = grid_units.upper() if validate_float_type(float_type): self.float_type = float_type.upper() def _write_grid_data(self, base_name, path='.'): Path(path).mkdir(parents=True, exist_ok=True) with open(Path(path) / (base_name + '.buf'), 'wb') \ as out_file: if self.float_type == 'FLOAT': out_file.write(self.data.astype(np.float32).tobytes()) elif self.float_type == 'DOUBLE': out_file.write(self.data.astype(np.float64).tobytes()) def _write_grid_header(self, base_name, path='.', seed_label=None, seed=None, seed_units=None): # convert 'METER' to 'KILOMETER' if self.grid_units == 'METER': origin = self.origin / 1000 spacing = self.spacing / 1000 else: origin = self.origin spacing = self.spacing line1 = f'{self.shape[0]:d} {self.shape[1]:d} {self.shape[2]:d} ' \ f'{origin[0]:f} {origin[1]:f} {origin[2]:f} ' \ f'{spacing[0]:f} {spacing[1]:f} {spacing[2]:f} ' \ f'{self.grid_type}\n' with open(Path(path) / (base_name + '.hdr'), 'w') as out_file: out_file.write(line1) if self.grid_type in ['TIME', 'ANGLE']: if seed_units is None: logger.warning(f'seed_units are not defined. ' f'Assuming same units as grid (' f'{self.grid_units}') if self.grid_units == 'METER': seed = seed / 1000 line2 = u"%s %f %f %f\n" % (seed_label, seed[0], seed[1], seed[2]) out_file.write(line2) out_file.write(u'TRANSFORM NONE\n') return True def _write_grid_model_id(self, base_name, path='.'): with open(Path(path) / (base_name + '.mid'), 'w') as out_file: out_file.write(f'{self.model_id}') return True def write(self, base_name, path='.'): self._write_grid_data(base_name, path=path) self._write_grid_header(base_name, path=path) self._write_grid_model_id(base_name, path=path) return True def mv(self, base_name, origin, destination): """ move a NLLoc grid with a certain base_name from an origin to a destination :param NLLocGridObject: :type NLLocGridObject: uquake.grid.nlloc.NLLocGrid :param base_name: :type base_name: str :param origin: :type origin: str :param destination: :type destination: str :return: """ self.write(base_name, destination) for ext in self.extensions: shutil.move(f'{origin}/{base_name}.{ext}', f'{destination}/{base_name}.{ext}') @property def model_id(self): return self.resource_id class ModelLayer: """ 1D model varying in Z """ def __init__(self, z_top, value_top): """ :param z_top: Top of the layer z coordinates :param value_top: Value at the top of the layer """ self.z_top = z_top self.value_top = value_top def __repr__(self): return f'top - {self.z_top:5d} | value - {self.value_top:5d}\n' class LayeredVelocityModel(object): def __init__(self, model_id=None, velocity_model_layers=None, phase='P', grid_units='METER', float_type=__default_float_type__, gradient=False): """ Initialize :param model_id: model id, if not set the model ID is set using UUID :type model_id: str :param velocity_model_layers: a list of VelocityModelLayer :type velocity_model_layers: list :param phase: Phase either 'P' or 'S' :type phase: str """ if velocity_model_layers is None: self.velocity_model_layers = [] if validate_phase(phase): self.phase = phase.upper() if validate_grid_units(grid_units): self.grid_units = grid_units.upper() if validate_float_type(float_type): self.float_type = float_type.upper() self.grid_type = 'VELOCITY' if model_id is None: model_id = str(uuid4()) self.model_id = model_id self.gradient = gradient def __repr__(self): output = '' for i, layer in enumerate(self.velocity_model_layers): output += f'layer {i + 1:4d} | {layer}' return output def add_layer(self, layer): """ Add a layer to the model. The layers must be added in sequence from the top to the bottom :param layer: a LayeredModel object """ if not (type(layer) is ModelLayer): raise TypeError('layer must be a VelocityModelLayer object') if self.velocity_model_layers is None: self.velocity_model_layers = [layer] else: self.velocity_model_layers.append(layer) def gen_1d_model(self, z_min, z_max, spacing): # sort the layers to ensure the layers are properly ordered z = [] v = [] for layer in self.velocity_model_layers: z.append(layer.z_top) v.append(layer.value_top) if np.max(z) < z_max: i_z_max = np.argmax(z) v_z_max = v[i_z_max] z.append(z_max) v.append(v_z_max) if np.min(z) > z_min: i_z_min = np.argmin(z) v_z_min = v[i_z_min] z.append(z_min) v.append(v_z_min) i_sort = np.argsort(z) z = np.array(z) v = np.array(v) z = z[i_sort] v = v[i_sort] z_interp = np.arange(z_min, z_max, spacing[2]) kind = 'previous' if self.gradient: kind = 'linear' f_interp = interp1d(z, v, kind=kind) v_interp = f_interp(z_interp) return z_interp, v_interp def gen_3d_grid(self, network_code, dims, origin, spacing): model_grid_3d = VelocityGrid3D.from_layered_model(self, network_code, dims, origin, spacing) return model_grid_3d def plot(self, z_min, z_max, spacing, *args, **kwargs): """ Plot the 1D velocity model :param z_min: lower limit of the model :param z_max: upper limit of the model :param spacing: plotting resolution in z :return: matplotlib axis """ z_interp, v_interp = self.gen_1d_model(z_min, z_max, spacing) x_label = None if self.phase == 'P': x_label = 'P-wave velocity' elif self.phase == 'S': x_label = 's-wave velocity' if self.grid_units == 'METER': units = 'm' else: units = 'km' y_label = f'z [{units}]' ax = plt.axes() ax.plot(v_interp, z_interp, *args, **kwargs) plt.xlabel(x_label) plt.ylabel(y_label) ax.set_aspect(2) plt.tight_layout() return ax class VelocityGrid3D(NLLocGrid): def __init__(self, network_code, data_or_dims, origin, spacing, phase='P', value=0, float_type=__default_float_type__, model_id=None, **kwargs): self.network_code = network_code if (type(spacing) is int) | (type(spacing) is float): spacing = [spacing, spacing, spacing] super().__init__(data_or_dims, origin, spacing, phase, value=value, grid_type='VELOCITY_METERS', grid_units='METER', float_type=float_type, model_id=model_id) @staticmethod def get_base_name(network_code, phase): """ return the base name given a network code and a phase :param network_code: Code of the network :type network_code: str :param phase: Phase, either P or S :type phase: str either 'P' or 'S' :return: the base name """ validate_phase(phase) return f'{network_code.upper()}.{phase.upper()}.mod' @classmethod def from_ocd(cls, origin, corner, dimensions, val=0): pass @classmethod def from_ocs(cls, origin, corner, spacing, val=0): pass @classmethod def from_ocd(cls, origin, dimensions, spacing, val=0): pass @classmethod def from_layered_model(cls, layered_model, network_code, dims, origin, spacing, **kwargs): """ Generating a 3D grid model from :param network_code: :param layered_model: :param dims: :param origin: :param spacing: :param kwargs: :return: """ z_min = origin[-1] z_max = z_min + spacing[-1] * dims[-1] z_interp, v_interp = layered_model.gen_1d_model(z_min, z_max, spacing) data = np.zeros(dims) for i, v in enumerate(v_interp): data[:, :, i] = v_interp[i] return cls(network_code, data, origin, spacing, phase=layered_model.phase, float_type=layered_model.float_type, model_id=layered_model.model_id, **kwargs) def to_slow_lens(self): data = self.spacing[0] / self.data return NLLocGrid(data, self.origin, self.spacing, self.phase, grid_type='SLOW_LEN', grid_units=self.grid_units, float_type=self.float_type, model_id=self.model_id) @classmethod def from_slow_len(cls, grid: NLLocGrid, network_code: str): data = np.mean(grid.spacing) / grid.data return cls(network_code, data, grid.origin, grid.spacing, phase=grid.phase, float_type=grid.float_type, model_id=grid.model_id) def to_time(self, seed, seed_label, sub_grid_resolution=0.1, *args, **kwargs): """ Eikonal solver based on scikit fast marching solver :param seed: numpy array location of the seed or origin of useis wave in model coordinates (usually location of a station or an event) :type seed: numpy.array or list :param seed_label: seed label (name of station) :type seed_label: basestring :param sub_grid_resolution: resolution of the grid around the seed. Propagating the wavefront on a denser grid around the seed, significantly improves the travel time accuracy. The value represents a fraction of the grid resolution. For instance, assuming a grid with spacing of 10m, if the sub_grid_resolution is set to 0.1, the resolution around the grid will be 1m. :rtype: TTGrid """ if isinstance(seed, list): seed = np.array(seed) if not self.in_grid(seed): logger.warning(f'{seed_label} is outside the grid. ' f'The travel time grid will not be calculated') return origin = self.origin shape = self.shape spacing = self.spacing sub_grid_spacing = spacing * sub_grid_resolution # extent = ((4 * sub_grid_spacing) * 1.2 + sub_grid_spacing) n_pts_inner_grid = (4 * spacing / sub_grid_spacing * 1.2).astype(int) for i in range(0, len(n_pts_inner_grid)): if n_pts_inner_grid[i] % 2: n_pts_inner_grid[i] += 1 x_i = np.arange(0, n_pts_inner_grid[0]) * sub_grid_spacing[0] y_i = np.arange(0, n_pts_inner_grid[1]) * sub_grid_spacing[1] z_i = np.arange(0, n_pts_inner_grid[2]) * sub_grid_spacing[2] x_i = x_i - np.mean(x_i) + seed[0] y_i = y_i - np.mean(y_i) + seed[1] z_i = z_i - np.mean(z_i) + seed[2] X_i, Y_i, Z_i = np.meshgrid(x_i, y_i, z_i, indexing='ij') coords = np.array([X_i.ravel(), Y_i.ravel(), Z_i.ravel()]).T vel = self.interpolate(coords, grid_space=False).reshape( X_i.shape) phi = np.ones_like(X_i) phi[int(np.floor(len(x_i) / 2)), int(np.floor(len(y_i) / 2)), int(np.floor(len(z_i) / 2))] = 0 tt_tmp = skfmm.travel_time(phi, vel, dx=sub_grid_spacing) tt_tmp_grid = TTGrid(self.network_code, tt_tmp, [x_i[0], y_i[0], z_i[0]], sub_grid_spacing, seed, seed_label, phase=self.phase, float_type=self.float_type, model_id=self.model_id, grid_units=self.grid_units) data = self.data xe = origin[0] + np.arange(0, shape[0], 1) * spacing[0] ye = origin[1] + np.arange(0, shape[1], 1) * spacing[1] ze = origin[2] + np.arange(0, shape[2], 1) * spacing[2] Xe, Ye, Ze = np.meshgrid(xe, ye, ze, indexing='ij') coords = np.array([Xe.ravel(), Ye.ravel(), Ze.ravel()]) corner1 = np.array([np.min(x_i), np.min(y_i), np.min(z_i)]) corner2 = np.array([np.max(x_i), np.max(y_i), np.max(z_i)]) test = ((coords[0, :] >= corner1[0]) & (coords[0, :] <= corner2[0]) & (coords[1, :] >= corner1[1]) & (coords[1, :] <= corner2[1]) & (coords[2, :] >= corner1[2]) & (coords[2, :] <= corner2[2])) Xe_grid = Xe.ravel()[test] Ye_grid = Ye.ravel()[test] Ze_grid = Ze.ravel()[test] X = np.array([Xe_grid, Ye_grid, Ze_grid]).T tt_interp = tt_tmp_grid.interpolate(X, grid_space=False, order=3)[0] bias = np.max(tt_interp) phi_out = np.ones_like(Xe).ravel() phi_out[test] = tt_interp - bias phi_out = phi_out.reshape(Xe.shape) tt_out = skfmm.travel_time(phi_out, data, dx=spacing) # tt_out = tt_out.ravel() + bias tt_out = tt_out.ravel() + bias tt_out[test] = tt_interp tt_out = tt_out.reshape(Xe.shape) tt_out_grid = TTGrid(self.network_code, tt_out, self.origin, self.spacing, seed, seed_label, phase=self.phase, float_type=self.float_type, model_id=self.model_id, grid_units=self.grid_units) tt_out_grid.data -= tt_out_grid.interpolate(seed.T, grid_space=False, order=3)[0] return tt_out_grid def to_time_multi_threaded(self, seeds, seed_labels, cpu_utilisation=0.9, *args, **kwargs): """ Multi-threaded version of the Eikonal solver based on scikit fast marching solver :param seeds: array of seed :type seeds: np.array :param seed_labels: array of seed_labels :type seed_labels: np.array :param cpu_utilisation: fraction of the cpu core to be used for the processing task (between 0 and 1) :type cpu_utilisation: float between 0 and 1 :param args: arguments to be passed directly to skfmm.travel_time function :param kwargs: keyword arguments to be passed directly to skfmm.travel_time function :return: a travel time grid ensemble :rtype: TravelTimeEnsemble """ num_threads = int(np.ceil(cpu_utilisation * __cpu_count__)) # ensuring that the number of threads is comprised between 1 and # __cpu_count__ num_threads = np.max([np.min([num_threads, __cpu_count__]), 1]) data = [] for seed, seed_label in zip(seeds, seed_labels): if not self.in_grid(seed): logger.warning(f'{seed_label} is outside the grid. ' f'The travel time grid will not be calculated') continue data.append((seed, seed_label)) with Pool(num_threads) as pool: results = pool.starmap(self.to_time, data) tt_grid_ensemble = TravelTimeEnsemble(results) return tt_grid_ensemble def write(self, path='.'): base_name = self.base_name super().write(base_name, path=path) def mv(self, origin, destination): """ move a the velocity grid files from {origin} to {destination} :param origin: origin :param destination: :return: """ super().mv(self, self.base_name, origin, destination) @property def base_name(self): return self.get_base_name(self.network_code, self.phase) class VelocityGridEnsemble: def __init__(self, p_velocity_grid, s_velocity_grid): """ :param p_velocity_grid: p-wave 3D velocity grid :type p_velocity_grid: VelocityGrid3D :param s_velocity_grid: s-wave 3D velocity grid :type s_velocity_grid: VelocityGrid3D """ self.p_velocity_grid = p_velocity_grid self.s_velocity_grid = s_velocity_grid self.__i__ = 0 def __getitem__(self, item): if item.upper() == 'P': return self.p_velocity_grid elif item.upper() == 'S': return self.s_velocity_grid else: raise ValueError(f'{item} is not a valid key. ' f'The key value must either be "P" or "S"') def __iter__(self): self.__i__ = 0 return self def __next__(self): if self.__i__ < 2: if self.__i__ == '0': return self.p_velocity_grid elif self.__i__ == '1': return self.s_velocity_grid else: raise StopIteration # @property # def keys(self): # return ['P', 'S'] def keys(self): return ['P', 'S'] def write(self, path='.'): for key in self.keys(): self[key].write(path=path) def to_time_multi_threaded(self, seeds, seed_labels, cpu_utilisation=0.9, *args, **kwargs): tt_grid_ensemble = TravelTimeEnsemble([]) for key in self.keys(): tt_grids = self[key].to_time_multi_threaded(seeds, seed_labels, cpu_utilisation= cpu_utilisation, *args, **kwargs) tt_grid_ensemble += tt_grids return tt_grid_ensemble def to_time(self, seeds, seed_labels, multi_threaded=False, sub_grid_resolution=0.1, *args, **kwargs): """ Convert the velocity grids to travel-time :param seeds: a list of seeds usually represents site location :type seeds: numpy.array :param seed_labels: a list of seed labels, usually represents site codes :type seed_labels: list :param multi_threaded: if true, the travel-time grid will used multithreading :param sub_grid_resolution: sub grid resolution for near source solution in fraction of grid resolution :param args: :param kwargs: :return: Travel time grid ensemble :rtype: ~uquake.grid.nlloc.TTGridEnsemble """ if multi_threaded: return self.to_time_multi_threaded(seeds, seed_labels, sub_grid_resolution= sub_grid_resolution, *args, **kwargs) travel_time_grids = [] for seed, seed_label in zip(seeds, seed_labels): for key in self.keys(): tg = self[key].to_time(seed, seed_label, sub_grid_resolution =sub_grid_resolution, *args, **kwargs) travel_time_grids.append(tg) return TravelTimeEnsemble(travel_time_grids) class SeededGrid(NLLocGrid): """ container for seeded grids (e.g., travel time, azimuth and take off angle) """ __valid_grid_type__ = ['TIME', 'TIME2D', 'ANGLE', 'ANGLE2D'] def __init__(self, network_code, data_or_dims, origin, spacing, seed, seed_label, phase='P', value=0, grid_units=__default_grid_units__, grid_type='TIME', float_type="FLOAT", model_id=None): self.seed = seed self.seed_label = seed_label self.network_code = network_code if grid_type not in self.__valid_grid_type__: raise ValueError() self.grid_type = grid_type super().__init__(data_or_dims, origin, spacing, phase=phase, value=value, grid_type='TIME', grid_units=grid_units, float_type=float_type, model_id=model_id) def __repr__(self): line = f'Travel Time Grid\n' \ f' origin : {self.origin}\n' \ f' spacing : {self.spacing}\n' \ f' dimensions : {self.shape}\n' \ f' seed label : {self.seed_label}\n' \ f' seed location : {self.seed}' return line @classmethod def get_base_name(cls, network_code, phase, seed_label, grid_type): validate_phase(phase) if grid_type not in cls.__valid_grid_type__: raise ValueError(f'{grid_type} is not a valid grid type') base_name = f'{network_code}.{phase}.{seed_label}.' \ f'{grid_type.lower()}' return base_name @property def base_name(self): base_name = self.get_base_name(self.network_code, self.phase, self.seed_label, self.grid_type) return base_name def write(self, path='.'): base_name = self.base_name self._write_grid_data(base_name, path=path) self._write_grid_header(base_name, path=path, seed=self.seed, seed_label=self.seed_label, seed_units=self.grid_units) self._write_grid_model_id(base_name, path=path) class TTGrid(SeededGrid): def __init__(self, network_code, data_or_dims, origin, spacing, seed, seed_label, phase='P', value=0, float_type="FLOAT", model_id=None, grid_units='METER'): super().__init__(network_code, data_or_dims, origin, spacing, seed, seed_label, phase=phase, value=value, grid_type='TIME', float_type=float_type, model_id=model_id, grid_units=grid_units) def to_azimuth(self): """ This function calculate the take off angle and azimuth for every grid point given a travel time grid calculated using an Eikonal solver :return: azimuth and takeoff angles grids .. Note: The convention for the takeoff angle is that 0 degree is down. """ gds_tmp = np.gradient(self.data) gds = [-gd for gd in gds_tmp] azimuth = np.arctan2(gds[0], gds[1]) * 180 / np.pi # azimuth is zero northwards return AngleGrid(self.network_code, azimuth, self.origin, self.spacing, self.seed, self.seed_label, 'AZIMUTH', phase=self.phase, float_type=self.float_type, model_id=self.model_id, grid_units=self.grid_units) def to_takeoff(self): gds_tmp = np.gradient(self.data) gds = [-gd for gd in gds_tmp] hor = np.sqrt(gds[0] ** 2 + gds[1] ** 2) takeoff = np.arctan2(hor, -gds[2]) * 180 / np.pi # takeoff is zero pointing down return AngleGrid(self.network_code, takeoff, self.origin, self.spacing, self.seed, self.seed_label, 'TAKEOFF', phase=self.phase, float_type=self.float_type, model_id=self.model_id, grid_units=self.grid_units) def to_azimuth_point(self, coord, grid_space=False, mode='nearest', order=1, **kwargs): """ calculate the azimuth angle at a particular point on the grid for a given seed location :param coord: coordinates at which to calculate the takeoff angle :param grid_space: true if the coordinates are expressed in grid space (indices can be fractional) as opposed to model space (x, y, z) :param mode: interpolation mode :param order: interpolation order :return: takeoff angle at the location coord """ return self.to_azimuth().interpolate(coord, grid_space=grid_space, mode=mode, order=order, **kwargs)[0] def to_takeoff_point(self, coord, grid_space=False, mode='nearest', order=1, **kwargs): """ calculate the takeoff angle at a particular point on the grid for a given seed location :param coord: coordinates at which to calculate the takeoff angle :param grid_space: true if the coordinates are expressed in grid space (indices can be fractional) as opposed to model space (x, y, z) :param mode: interpolation mode :param order: interpolation order :return: takeoff angle at the location coord """ return self.to_takeoff().interpolate(coord, grid_space=grid_space, mode=mode, order=order, **kwargs)[0] def ray_tracer(self, start, grid_space=False, max_iter=1000, arrival_id=None): """ This function calculates the ray between a starting point (start) and an end point, which should be the seed of the travel_time grid, using the gradient descent method. :param start: the starting point (usually event location) :type start: tuple, list or numpy.array :param grid_space: true if the coordinates are expressed in grid space (indices can be fractional) as opposed to model space (x, y, z) :param max_iter: maximum number of iteration :param arrival_id: id of the arrival associated to the ray if applicable :rtype: numpy.array """ return ray_tracer(self, start, grid_space=grid_space, max_iter=max_iter, arrival_id=arrival_id, earth_model_id=self.model_id, network=self.network_code) @classmethod def from_velocity(cls, seed, seed_label, velocity_grid): return velocity_grid.to_time(seed, seed_label) def write(self, path='.'): return super().write(path=path) @property def site(self): return self.seed_label class TravelTimeEnsemble: def __init__(self, travel_time_grids): """ Combine a list of travel time grids together providing meta functionality (multi-threaded ray tracing, sorting, travel-time calculation for a specific location etc.). It is assumed that all grids are compatible, i.e., that all the grids have the same origin, spacing and dimensions. :param travel_time_grids: a list of TTGrid objects """ self.travel_time_grids = travel_time_grids self.__i__ = 0 for tt_grid in self.travel_time_grids: try: assert tt_grid.check_compatibility(travel_time_grids[0]) except: raise AssertionError('grids are not all compatible') def __len__(self): return len(self.travel_time_grids) def __add__(self, other): for travel_time_grid in other.travel_time_grids: self.travel_time_grids.append(travel_time_grid) return TravelTimeEnsemble(self.travel_time_grids) def __iter__(self): self.__i__ = 0 return self def __next__(self): if self.__i__ < len(self): result = self.travel_time_grids[self.__i__] self.__i__ += 1 return result else: raise StopIteration def __getitem__(self, item): if isinstance(item, int): return self.travel_time_grids[item] if isinstance(item, str): tt_grid_out = None for travel_time_grid in self.travel_time_grids: if travel_time_grid.seed_label == item: return travel_time_grid raise KeyError(f'{item} not found') def __repr__(self): line = f'Number of travel time grids: {len(self)}' return line @classmethod def from_files(cls, path): """ create a travel time ensemble from files located in a directory :param path: the base path to the directory containing the travel time files. :return: """ tt_grids = [] for fle in Path(path).glob('*time*.hdr'): path = fle.parent base_name = '.'.join(fle.name.split('.')[:-1]) fname = str(Path(path) / base_name) tt_grid = read_grid(fname, format='NLLOC', float_type=__default_float_type__) tt_grids.append(tt_grid) return cls(tt_grids) def select(self, seed_labels: Optional[list] = None, phase: Optional[list] = None): """ return the a list of grid corresponding to seed_labels. :param seed_labels: seed labels of the travel time grids to return :param phase: the phase {'P' or 'S'}, both if None. :return: a list of travel time grids :rtype: TravelTimeEnsemble """ if (seed_labels is None) and (phase is None): return self tmp = [] if seed_labels is None: seed_labels = np.unique(self.seed_labels) if phase is None: phase = ['P', 'S'] returned_grids = [] for travel_time_grid in self.travel_time_grids: if travel_time_grid.seed_label in seed_labels: if travel_time_grid.phase in phase: returned_grids.append(travel_time_grid) return TravelTimeEnsemble(returned_grids) def sort(self, ascending:bool = True): """ sorting the travel time grid by seed_label :param ascending: if true the grids are sorted in ascending order :param ascending: bool :return: sorted travel time grids. :rtype: TravelTimeEnsemble """ i = np.sort(self.seed_labels) if not ascending: i = i[-1::-1] sorted_tt_grids = np.array(self.travel_time_grids)[i] return TravelTimeEnsemble(sorted_tt_grids) def travel_time(self, seed, grid_space: bool = False, seed_labels: Optional[list] = None, phase: Optional[list] = None): """ calculate the travel time at a specific point for a series of site ids :param seed: travel time seed :param grid_space: true if the coordinates are expressed in grid space (indices can be fractional) as opposed to model space (x, y, z) :param seed_labels: a list of sites from which to calculate the travel time. :param phase: a list of phases for which the travel time need to be calculated :return: a list of dictionary containing the travel time and site id """ if isinstance(seed, list): seed = np.array(seed) if grid_space: seed = self.travel_time_grids[0].transform_from(seed) if not self.travel_time_grids[0].in_grid(seed): raise ValueError('seed is outside the grid') tt_grids = self.select(seed_labels=seed_labels, phase=phase) tts = [] labels = [] phases = [] for tt_grid in tt_grids: labels.append(tt_grid.seed_label) tts.append(tt_grid.interpolate(seed.T, grid_space=False)[0]) phases.append(tt_grid.phase) tts_dict = {} for phase in np.unique(phases): tts_dict[phase] = {} for label, tt, phase in zip(labels, tts, phases): tts_dict[phase][label] = tt return tts_dict def angles(self, seed, grid_space: bool = False, seed_labels: Optional[list] = None, phase: Optional[list] = None, **kwargs): """ calculate the azimuth at a specific point for a series of site ids :param seed: travel time seed :param grid_space: true if the coordinates are expressed in grid space (indices can be fractional) as opposed to model space (x, y, z) :param seed_labels: a list of sites from which to calculate the travel time. :param phase: a list of phases for which the travel time need to be calculated :return: a list of dictionary containing the azimuth and site id """ if isinstance(seed, list): seed = np.array(seed) if grid_space: seed = self.travel_time_grids[0].transform_from(seed) if not self.travel_time_grids[0].in_grid(seed): raise ValueError('seed is outside the grid') tt_grids = self.select(seed_labels=seed_labels, phase=phase) azimuths = [] takeoffs = [] labels = [] phases = [] for tt_grid in tt_grids: labels.append(tt_grid.seed_label) azimuths.append(tt_grid.to_azimuth_point(seed.T, grid_space=False, **kwargs)) takeoffs.append(tt_grid.to_takeoff_point(seed.T, grid_space=False, **kwargs)) phases.append(tt_grid.phase) azimuth_dict = {} takeoff_dict = {} for phase in np.unique(phases): azimuth_dict[phase] = {} takeoff_dict[phase] = {} for label, azimuth, takeoff, phase in zip(labels, azimuths, takeoffs, phases): takeoff_dict[phase][label] = takeoff azimuth_dict[phase][label] = azimuth angle_dict = {} angle_dict['takeoff'] = takeoff_dict angle_dict['azimuth'] = azimuth_dict return angle_dict def ray_tracer(self, start, seed_labels=None, multithreading=False, cpu_utilisation=0.9, grid_space=False, max_iter=1000): """ :param start: origin of the ray, usually the location of an event :param seed_labels: a list of seed labels :param grid_space: true if the coordinates are expressed in grid space (indices can be fractional) as opposed to model space (x, y, z) :param multithreading: if True use multithreading :param max_iter: maximum number of iteration :param cpu_utilisation: fraction of core to use, between 0 and 1. The number of core to be use is bound between 1 and the total number of cores :return: a list of ray :rtype: list """ travel_time_grids = self.select(seed_labels=seed_labels) kwargs = {'grid_space': grid_space, 'max_iter': max_iter} if multithreading: ray_tracer_func = partial(ray_tracer, **kwargs) num_threads = int(np.ceil(cpu_utilisation * __cpu_count__)) # ensuring that the number of threads is comprised between 1 and # __cpu_count__ num_threads = np.max([np.min([num_threads, __cpu_count__]), 1]) data = [] for travel_time_grid in travel_time_grids: data.append((travel_time_grid, start)) with Pool(num_threads) as pool: results = pool.starmap(ray_tracer_func, data) for result in results: result.network = self.travel_time_grids[0].network_code else: results = [] for travel_time_grid in travel_time_grids: results.append(travel_time_grid.ray_tracer(start, **kwargs)) return results @property def seeds(self): seeds = [] for seed_label in self.seed_labels: seeds.append(self.select(seed_labels=seed_label)[0].seed) return np.array(seeds) @property def seed_labels(self): seed_labels = [] for grid in self.travel_time_grids: seed_labels.append(grid.seed_label) return np.unique(np.array(seed_labels)) @property def shape(self): return self.travel_time_grids[0].shape @property def origin(self): return self.travel_time_grids[0].origin @property def spacing(self): return self.travel_time_grids[0].spacing def write(self, path='.'): for travel_time_grid in self.travel_time_grids: travel_time_grid.write(path=path) def write_hdf5(self, file_name): write_hdf5(file_name, self) def to_hdf5(self, file_name): self.write_hdf5(file_name) return H5TTable(file_name) class AngleGrid(SeededGrid): def __init__(self, network_code, data_or_dims, origin, spacing, seed, seed_label, angle_type, phase='P', value=0, float_type="FLOAT", model_id=None, grid_units='degrees'): self.angle_type = angle_type super().__init__(network_code, data_or_dims, origin, spacing, seed, seed_label, phase=phase, value=value, grid_type='ANGLE', float_type=float_type, model_id=model_id, grid_units=grid_units) def write(self, path='.'): pass ``` #### File: uquake/nlloc/nlloc.py ```python from datetime import datetime from struct import unpack import numpy as np from obspy import UTCDateTime from ..core.inventory import Inventory from ..core.logging import logger from ..core.event import (Catalog) from uuid import uuid4 from pathlib import Path import json test_station_code = 'STN' def validate(value, choices): if value not in choices: msg = f'value should be one of the following choices\n:' for choice in choices: msg += f'{choice}\n' raise ValueError(msg) return True def validate_type(obj, expected_type): if type(obj) is not expected_type: raise TypeError('object is not the right type') __valid_geographic_transformation__ = ['GLOBAL', 'SIMPLE', 'NONE', 'SDC', 'LAMBERT'] __valid_reference_ellipsoid__ = ['WGS-84', 'GRS-80', 'WGS-72', 'Australian', 'Krasovsky', 'International', 'Hayford-1909' 'Clarke-1880', 'Clarke-1866', 'Airy Bessel', 'Hayford-1830', 'Sphere'] __valid_units__ = ['METER', 'KILOMETER'] class Grid2Time: # def __init__(self, srces, grid_transform, base_directory, base_name, # verbosity=1, random_seed=1000, p_wave=True, s_wave=True, # calculate_angles=True, model_directory='models', # grid_directory='grids'): def __init__(self, inventory, base_directory, base_name, verbosity=1, random_seed=1000, p_wave=True, s_wave=True, calculate_angles=True, model_directory='models', grid_directory='grids'): """ Build the control file and run the Grid2Time program. Note that at this time the class does not support any geographic transformation :param inventory: inventory data :type inventory: uquake.core.inventory.Inventory :param base_directory: the base directory of the project :type base_directory: str :param base_name: the network code :type base_name: str :param verbosity: sets the verbosity level for messages printed to the terminal ( -1 = completely silent, 0 = error messages only, 1 = 0 + higher-level warning and progress messages, 2 and higher = 1 + lower-level warning and progress messages + information messages, ...) default: 1 :type verbosity: int :param random_seed: integer seed value for generating random number sequences (used by program NLLoc to generate Metropolis samples and by program Time2EQ to generate noisy time picks) :param p_wave: if True calculate the grids for the P-wave :type p_wave: bool :param s_wave: if True calculate the grids for the S-wave :type s_wave: bool :param calculate_angles: if true calculate the azimuth and the take-off angles :type calculate_angles: bool :param model_directory: location of the model directory relative to the base_directory :type model_directory: str :param grid_directory: location of the grid directory relative to the base_directory """ self.verbosity = verbosity self.random_seed = random_seed self.base_name = base_name self.base_directory = Path(base_directory) self.velocity_model_path = self.base_directory / f'{model_directory}' self.grid_path = self.base_directory / f'{grid_directory}' # create the velocity_model_path and the grid_path if they do not exist self.grid_path.mkdir(parents=True, exist_ok=True) self.velocity_model_path.mkdir(parents=True, exist_ok=True) self.calculate_p_wave = p_wave self.calculate_s_wave = s_wave self.calculate_angles = calculate_angles if isinstance(inventory, Inventory): raise TypeError('inventory must be ' '"uquake.core.inventory.Inventory" type') self.inventory = inventory def run(self): if self.calculate_p_wave: self.__write_control_file__('P') # run if self.calculate_s_wave: self.__write_control_file__('S') def __write_control_file__(self, phase): ctrl_dir = f'{self.base_directory}/run/' Path(ctrl_dir).mkdir(parents=True, exist_ok=True) # create the directory if the directory does not exist ctrl_file = ctrl_dir + f'{str(uuid4())}.ctl' with open(ctrl_file, 'w') as ctrl: # writing the control section ctrl.write(f'CONTROL {self.verbosity} {self.random_seed}\n') # writing the geographic transformation section ctrl.write('TRANS NONE\n') # writing the Grid2Time section out_line = f'GTFILES ' \ f'{self.velocity_model_path}/{self.base_name} ' \ f'{self.grid_path}/{self.base_name} ' \ f'{phase} 0\n' ctrl.write(out_line) if self.calculate_angles: angle_mode = 'ANGLES_YES' else: angle_mode = 'ANGLE_NO' ctrl.write(f'GTMODE GRID3D {angle_mode}\n') for site in self.inventory.sites: # test if site name is shorter than 6 characters out_line = f'GTSRCE {site.code} XYZ ' \ f'{site.x / 1000:>10.6f} ' \ f'{site.y / 1000 :>10.6f} ' \ f'{site.z / 1000 :>10.6f} ' \ f'0.00\n' ctrl.write(out_line) ctrl.write(f'GT_PLFD 1.0e-4 {self.verbosity + 1}\n') class Control: def __init__(self, message_flag=-1, random_seed=1000): """ Control section :param message_flag: (integer, min:-1, default:1) sets the verbosity level for messages printed to the terminal ( -1 = completely silent, 0 = error messages only, 1 = 0 + higher-level warning and progress messages, 2 and higher = 1 + lower-level warning and progress messages + information messages, ...) :param random_seed:(integer) integer seed value for generating random number sequences (used by program NLLoc to generate Metropolis samples and by program Time2EQ to generate noisy time picks) """ try: self.message_flag = int(message_flag) except Exception as e: raise e try: self.random_seed = int(random_seed) except Exception as e: raise e def __repr__(self): return f'CONTROL {self.message_flag} {self.random_seed}' class GeographicTransformation: type = 'GeographicTransformation' def __init__(self, transformation='NONE'): validate(transformation, __valid_geographic_transformation__) self.transformation = transformation def __repr__(self): line = f'TRANS {self.transformation}' return line class SimpleSDCGeographicTransformation(GeographicTransformation): def __init__(self, latitude_origin, longitude_origin, rotation_angle, simple=True): """ The SIMPLE or SDC transformation only corrects longitudinal distances as a function of latitude Algorithm: >> x = (long - longOrig) * 111.111 * cos(lat_radians); >> y = (lat - latOrig) * 111.111; >> lat = latOrig + y / 111.111; >> long = longOrig + x / (111.111 * cos(lat_radians)); :param latitude_origin: (float, min:-90.0, max:90.0) latitude in decimal degrees of the rectangular coordinates origin :param longitude_origin: (float, min:-180.0, max:180.0) longitude in decimal degrees of the rectangular coordinates origin :param rotation_angle: (float, min:-360.0, max:360.0) rotation angle of geographic north in degrees clockwise relative to the rectangular coordinates system Y-axis :param simple: Transformation is set to SIMPLE if simple is True. Transformation is set to SDC if simple is set to False """ if -90 > latitude_origin > 90: raise ValueError('latitude_origin must be comprised between ' '-90 and 90 degrees') if -180 > longitude_origin > 180: raise ValueError('longitude_origin must be comprised between ' '-180 and 180 degrees') if -360 > rotation_angle > 360: raise ValueError('the rotation angle must be comprised between ' '-360 and 360 degrees') self.latitude_origin = latitude_origin self.longitude_origin = longitude_origin self.rotation_angle = rotation_angle if simple: transformation = 'SIMPLE' else: transformation = 'SDC' super.__init__(transformation=transformation) def __setattr__(self, key, value): if key in self.__dict__.keys(): self.__dict__[key] = value def __repr__(self): line = f'TRANS {self.transformation} {self.latitude_origin} ' \ f'{self.longitude_origin} {self.rotation_angle}' return line class LambertGeographicTransformation(GeographicTransformation): def __init__(self, reference_ellipsoid, latitude_origin, longitude_origin, first_standard_parallax, second_standard_parallax, rotation_angle): """ Define a Lambert coordinates system for transformation from Lambert geographic coordinates to a cartesian/rectangular system. :param reference_ellipsoid: (choice: WGS-84 GRS-80 WGS-72 Australian Krasovsky International Hayford-1909 Clarke-1880 Clarke-1866 Airy Bessel Hayford-1830 Sphere) reference ellipsoid name :param latitude_origin: (float, min:-90.0, max:90.0) latitude in decimal degrees of the rectangular coordinates origin :param longitude_origin: (float, min:-180.0, max:180.0) longitude in decimal degrees of the rectangular coordinates origin :param first_standard_parallax: (float, min:-90.0, max:90.0) first standard parallels (meridians) in decimal degrees :param second_standard_parallax: (float, min:-90.0, max:90.0) second standard parallels (meridians) in decimal degrees :param rotation_angle: (float, min:-360.0, max:360.0) rotation angle of geographic north in degrees clockwise relative to the rectangular coordinates system Y-axis """ validate(reference_ellipsoid, __valid_reference_ellipsoid__) self.reference_ellipsoid = reference_ellipsoid if -90 > latitude_origin > 90: raise ValueError('latitude_origin must be comprised between ' '-90 and 90 degrees') if -180 > longitude_origin > 180: raise ValueError('longitude_origin must be comprised between ' '-180 and 180 degrees') if -360 > rotation_angle > 360: raise ValueError('the rotation angle must be comprised between ' '-360 and 360 degrees') if -90 > first_standard_parallax > 90: raise ValueError('first_standard_parallax must be comprised ' 'between -90 and 90 degrees') if -90 > second_standard_parallax > 90: raise ValueError('second_standard_parallax must be comprised ' 'between -90 and 90 degrees') self.latitude_origin = latitude_origin self.longitude_origin = longitude_origin self.rotation_angle = rotation_angle self.first_standard_parallax = first_standard_parallax self.second_standard_parallax = second_standard_parallax def __repr__(self): line = f'TRANS LAMBERT {self.reference_ellipsoid} ' \ f'{self.latitude_origin} {self.longitude_origin} ' \ f'{self.first_standard_parallax} ' \ f'{self.second_standard_parallax} {self.rotation_angle}' class LocSearchGrid: def __init__(self, num_sample_draw=1000): """ :param num_sample_draw: specifies the number of scatter samples to draw from each saved PDF grid ( i.e. grid with gridType = PROB_DENSITY and saveFlag = SAVE ) No samples are drawn if saveFlag < 0. :type num_sample_draw: int """ self.num_sample_draw = num_sample_draw def __repr__(self): return f'GRID {self.num_sample_draw}\n' @property def type(self): return 'LOCSEARCH' class LocSearchMetropolis: def __init__(self, num_samples, num_learn, num_equil, num_begin_save, num_skip, step_init, step_min, prob_min, step_fact=8.): """ Container for the Metropolis Location algorithm parameters The Metropolis-Gibbs algorithm performs a directed random walk within a spatial, x,y,z volume to obtain a set of samples that follow the 3D PDF for the earthquake location. The samples give and estimate of the optimal hypocenter and an image of the posterior probability density function (PDF) for hypocenter location. Advantages: 1. Does not require partial derivatives, thus can be used with complicated, 3D velocity structures 2. Accurate recovery of moderately irregular (non-ellipsoidal) PDF's with a single minimum 3. Only only moderately slower (about 10 times slower) than linearised, iterative location techniques, and is much faster (about 100 times faster) than the grid-search 4. Results can be used to obtain confidence contours Drawbacks: 1. Stochastic coverage of search region - may miss important features 2. Inconsistent recovery of very irregular (non-ellipsoidal) PDF's with multiple minima 3. Requires careful selection of sampling parameters 4. Attempts to read full 3D travel-time grid files into memory, thus may run very slowly with large number of observations and large 3D travel-time grids :param num_samples: total number of accepted samples to obtain (min:0) :type num_samples: int :param num_learn: number of accepted samples for learning stage of search (min:0) :type num_learn: int :param num_equil: number of accepted samples for equilibration stage of search (min:0) :type num_equil: int :param num_begin_save: number of accepted samples after which to begin saving stage of search, denotes end of equilibration stage (min:0) :type num_begin_save: int :param num_skip: number of accepted samples to skip between saves (numSkip = 1 saves every accepted sample, min:1) :type num_skip: int :param step_init: initial step size in km for the learning stage (stepInit < 0.0 gives automatic step size selection. If the search takes too long, the initial step size may be too large; this may be the case if the search region is very large relative to the volume of the high confidence region for the locations.) :type step_init: float :param step_min: minimum step size allowed during any search stage (This parameter should not be critical, set it to a low value. min:0) :type step_min: float :param prob_min: minimum value of the maximum probability (likelihood) that must be found by the end of learning stage, if this value is not reached the search is aborted (This parameters allows the filtering of locations outside of the search grid and locations with large residuals.) :type prob_min: float :param step_fact: step factor for scaling step size during equilibration stage (Try a value of 8.0 to start.) Default=8. :type step_fact: float """ self.num_samples = num_samples self.num_learn = num_learn self.num_equil = num_equil self.num_begin_save = num_begin_save self.num_skip = num_skip self.step_init = step_init self.step_min = step_min self.prob_min = prob_min self.step_fact = step_fact def __repr__(self): line = f'LOCSEARCH MET {self.num_samples} {self.num_learn} ' \ f'{self.num_equil} {self.num_begin_save} {self.num_skip} ' \ f'{self.step_min} {self.step_min} {self.step_fact} ' \ f'{self.prob_min}\n' return line @classmethod def init_with_default(cls): pass @property def type(self): return 'LOCSEARCH' class LocSearchOctTree: def __init__(self, init_num_cell_x, init_num_cell_y, init_num_cell_z, min_node_size, max_num_nodes, num_scatter, use_station_density=False, stop_on_min_node_size=True): """ Container for the Octree Location algorithm parameters Documenation: http://alomax.free.fr/nlloc/octtree/OctTree.html Developed in collaboration with <NAME>; Schlumberger Cambridge Research, Cambridge CB3 0EL, England; <EMAIL> The oct-tree importance sampling algorithm gives accurate, efficient and complete mapping of earthquake location PDFs in 3D space (x-y-z). Advantages: 1. Much faster than grid-search (factor 1/100) 2. More global and complete than Metropolis-simulated annealing 3. Simple, with very few parameters (initial grid size, number of samples) Drawbacks: 1. Results are weakly dependant on initial grid size - the method may not identify narrow, local maxima in the PDF. 2. Attempts to read full 3D travel-time grid files into memory, thus may run very slowly with large number of observations and large 3D travel-time grids :param init_num_cell_x: initial number of octtree cells in the x direction :type init_num_cell_x: int :param init_num_cell_y: initial number of octtree cells in the y direction :type init_num_cell_y: int :param init_num_cell_z: initial number of octtree cells in the z direction :type init_num_cell_z: int :param min_node_size: smallest octtree node side length to process, the octree search is terminated after a node with a side smaller than this length is generated :type min_node_size: float :param max_num_nodes: total number of nodes to process :type max_num_nodes: int :param num_scatter: the number of scatter samples to draw from the octtree results :type num_scatter: int :param use_station_density: flag, if True weights oct-tree cell probability values used for subdivide decision in proportion to number of stations in oct-tree cell; gives higher search priority to cells containing stations, stablises convergence to local events when global search used with dense cluster of local stations (default:False) :type use_station_density: bool :param stop_on_min_node_size: flag, if True, stop search when first min_node_size reached, if False stop subdividing a given cell when min_node_size reached (default:True) :type stop_on_min_node_size: bool """ self.init_num_cell_x = init_num_cell_x self.init_num_cell_y = init_num_cell_y self.init_num_cell_z = init_num_cell_z self.min_node_size = min_node_size self.max_num_nodes = max_num_nodes self.num_scatter = num_scatter self.use_station_density = use_station_density self.stop_on_min_node_size = stop_on_min_node_size @classmethod def init_default(cls): init_num_cell_x = 5 init_num_cell_y = 5 init_num_cell_z = 5 min_node_size = 1E-6 max_num_nodes = 5000 num_scatter = 500 use_station_density = False stop_on_min_node_size = True return cls(init_num_cell_x, init_num_cell_y, init_num_cell_z, min_node_size, max_num_nodes, num_scatter, use_station_density, stop_on_min_node_size) def __repr__(self): line = f'LOCSEARCH OCT {self.init_num_cell_x} ' \ f'{self.init_num_cell_y} {self.init_num_cell_z} ' \ f'{self.min_node_size} {self.max_num_nodes} ' \ f'{self.num_scatter} {self.use_station_density:d} ' \ f'{self.stop_on_min_node_size:d}\n' return line @property def type(self): return 'LOCSEARCH' class GaussianModelErrors: def __init__(self, sigma_time, correlation_length): """ container for Gaussian Error Model :param sigma_time: typical error in seconds for travel-time to one station due to model errors :type sigma_time: float :param correlation_length: correlation length that controls covariance between stations ( i.e. may be related to a characteristic scale length of the medium if variations on this scale are not included in the velocity model) :type correlation_length: float """ self.sigma_time = sigma_time self.correlation_length = correlation_length @classmethod def init_default(cls): sigma_time = 1E-3 correlation_length = 1E-3 return cls(sigma_time, correlation_length) def __repr__(self): return f'LOCGAU {self.sigma_time} {self.correlation_length}\n' __valid_location_methods__ = ['GAU_ANALYTIC', 'EDT', 'EDT_OT_WT', 'EDT_OT_WT_ML'] class LocationMethod: def __init__(self, method, max_dist_sta_grid, min_number_phases, max_number_phases, min_number_s_phases, vp_vs_ratio, max_number_3d_grid_memory, min_dist_sta_grid): """ container for location method :param method: location method/algorithm ( GAU_ANALYTIC = the inversion approach of Tarantola and Valette (1982) with L2-RMS likelihood function. EDT = Equal Differential Time likelihood function cast into the inversion approach of Tarantola and Valette (1982) EDT_OT_WT = Weights EDT-sum probabilities by the variance of origin-time estimates over all pairs of readings. This reduces the probability (PDF values) at points with inconsistent OT estimates, and leads to more compact location PDF's. EDT_OT_WT_ML = version of EDT_OT_WT with EDT origin-time weighting applied using a grid-search, maximum-likelihood estimate of the origin time. Less efficient than EDT_OT_WT which uses simple statistical estimate of the origin time.) :param max_dist_sta_grid: maximum distance in km between a station and the center of the initial search grid; phases from stations beyond this distance will not be used for event location :param min_number_phases: minimum number of phases that must be accepted before event will be located :param max_number_phases: maximum number of accepted phases that will be used for event location; only the first maxNumberPhases read from the phase/observations file are used for location :param min_number_s_phases: minimum number of S phases that must be accepted before event will be located :param vp_vs_ratio: P velocity to S velocity ratio. If VpVsRatio > 0.0 then only P phase travel-times grids are read and VpVsRatio is used to calculate S phase travel-times. If VpVsRatio < 0.0 then S phase travel-times grids are used. :param max_number_3d_grid_memory: maximum number of 3D travel-time grids to attempt to read into memory for Metropolis-Gibbs search. This helps to avoid time-consuming memory swapping that occurs if the total size of grids read exceeds the real memory of the computer. 3D grids not in memory are read directly from disk. If maxNum3DGridMemory < 0 then NLLoc attempts to read all grids into memory. :param min_dist_sta_grid: minimum distance in km between a station and the center of the initial search grid; phases from stations closer than this distance will not be used for event location """ validate(method, __valid_location_methods__) self.method = method self.max_dist_sta_grid = max_dist_sta_grid self.min_number_phases = min_number_phases self.max_number_phases = max_number_phases self.min_number_s_phases = min_number_s_phases self.vp_vs_ratio = vp_vs_ratio self.max_number_3d_grid_memory = max_number_3d_grid_memory self.min_dist_sta_grid = min_dist_sta_grid @classmethod def init_default(cls): method = 'EDT_OT_WT' max_dist_sta_grid = 9999. min_number_phases = 6 max_number_phases = -1 min_number_s_phases = -1 vp_vs_ratio = -1 max_number_3d_grid_memory = 0 min_dist_sta_grid = 0 return cls(method, max_dist_sta_grid, min_number_phases, max_number_phases, min_number_s_phases, vp_vs_ratio, max_number_3d_grid_memory, min_dist_sta_grid) def __repr__(self): line = f'LOCMETH {self.method} {self.max_dist_sta_grid:.1f} ' \ f'{self.min_number_phases} {self.max_number_phases} ' \ f'{self.min_number_s_phases} {self.vp_vs_ratio} ' \ f'{self.max_number_3d_grid_memory}\n' return line class SimpleArrival: def __init__(self, time: UTCDateTime, site: str, phase: str, polarity: str): pass class Observations: def __init__(self, picks, p_pick_error=1e-3, s_pick_error=1e-3): """ :param picks: a list of Pick object :type picks: list of uquake.core.event.Pick :param p_pick_error: p-wave picking error in second :param s_pick_error: s-wave picking error in second """ self.picks = picks self.p_pick_error = p_pick_error self.s_pick_error = s_pick_error @classmethod def from_event(cls, event, p_pick_error=1e-3, s_pick_error=1e-3, origin_index=None): if type(event) is Catalog: event = event[0] logger.warning('An object type Catalog was provided. Taking the ' 'first event of the catalog. This may lead to ' 'unwanted behaviour') if origin_index is None: if event.preferred_origin() is None: logger.warning('The preferred origin is not defined. The last' 'inserted origin will be use. This may lead ' 'to unwanted behaviour') origin = event.origins[-1] else: origin = event.preferred_origin() else: origin = event.origins[origin_index] picks = [arrival.get_pick() for arrival in origin.arrivals] return cls(picks, p_pick_error=p_pick_error, s_pick_error=s_pick_error) @classmethod def generate_observations_event_location(cls, tt_grids, e_loc=None): """ :param tt_grids: a velocity grid :param tt_grids: ~uquake.grid.nlloc.TravelTimeEnsemble :param e_loc: event location (default None), if not provided, a :type """ from uquake.core.event import Pick, WaveformStreamID if e_loc is None: e_loc = tt_grids[0].generate_random_points_in_grid() travel_times = tt_grids.travel_time(e_loc) picks = [] location_code = 0 for phase in travel_times.keys(): for site in travel_times[phase].keys(): time = UTCDateTime.now() + travel_times[phase][site] waveform_id = WaveformStreamID(station_code=site[:-2], location_code=site[-2:], channel_code='BHZ') pk = Pick(time=time, phase_hint=phase, waveform_id=waveform_id, onset='impulsive', evaluation_mode='automatic', evaluation_status='preliminary') picks.append(pk) location_code += 1 return cls(picks) def __repr__(self): lines = '' for pick in self.picks: if pick.evaluation_status == 'rejected': continue site = pick.site instrument_identification = pick.waveform_id.channel_code[0:2] component = pick.waveform_id.channel_code[-1] phase_onset = 'e' if pick.onset in ['emergent', 'questionable'] \ else 'i' phase_descriptor = pick.phase_hint.upper() if pick.polarity is None: first_motion = '?' else: first_motion = 'U' if pick.polarity.lower() == 'positive' \ else 'D' datetime_str = pick.time.strftime('%Y%m%d %H%M %S.%f') error_type = 'GAU' if pick.phase_hint.upper() == 'P': pick_error = f'{self.p_pick_error:0.2e}' else: pick_error = f'{self.s_pick_error:0.2e}' # not implemented coda_duration = -1 amplitude = -1 period = -1 phase_weight = 1 line = f'{site:<6s} {instrument_identification:<4s} ' \ f'{component:<4s} {phase_onset:1s} ' \ f'{phase_descriptor:<6s} {first_motion:1s} ' \ f'{datetime_str} {error_type} {pick_error} ' \ f'{coda_duration:.2e} {amplitude:.2e} {period:.2e} ' \ f'{phase_weight:d}\n' lines += line return lines def write(self, file_name, path='.'): with open(Path(path) / file_name, 'w') as file_out: file_out.write(str(self)) class LocFiles: def __init__(self, velocity_file_path, travel_time_file_path, p_wave=True, swap_bytes_on_input=False): """ Specifies the directory path and file root name (no extension), and the wave type identifier for the input velocity grid and output time grids. :param velocity_file_path: full or relative path and file root name (no extension) for input velocity grid (generated by program Vel2Grid) :type velocity_file_path: str :param travel_time_file_path: full or relative path and file root name (no extension) for output travel-time and take-off angle grids :type travel_time_file_path: str :param p_wave: p-wave if True, s-wave if False :type p_wave: bool :param swap_bytes_on_input: flag to indicate if hi and low bytes of input velocity grid file should be swapped :type swap_bytes_on_input: bool """ self.velocity_file_path = velocity_file_path self.travel_time_file_path = travel_time_file_path if p_wave: self.phase = 'P' else: self.phase = 'S' self.swap_bytes_on_input = int(swap_bytes_on_input) def __repr__(self): return f'GTFILES {self.velocity_file_path} ' \ f'{self.travel_time_file_path} {self.phase} ' \ f'{self.swap_bytes_on_input}' class GridTimeMode: def __init__(self, grid_3d=True, calculate_angles=True): """ Specifies several program run modes. :param grid_3d: if True 3D grid if False 2D grid :type grid_3d: bool :param calculate_angles: if True calculate angles and not if False :type calculate_angles: bool """ if grid_3d: self.grid_mode = 'GRID3D' else: self.grid_mode = 'GRID2D' if calculate_angles: self.angle_mode = 'ANGLES_YES' else: self.angle_mode = 'ANGLES_NO' def __repr__(self): return f'GTMODE {self.grid_mode} {self.angle_mode}' class Site: def __init__(self, label, x, y, z, elev=None): self.label = label self.x = x self.y = y self.z = z self.elev = elev if elev is None: self.elev = z class Srces: __valid_measurement_units__ = ['METERS', 'KILOMETERS'] def __init__(self, sites=[], units='METERS'): """ specifies a series of source location from an inventory object :param sites: a list of sites containing at least the location, and site label :type sites: list of dictionary :Example: >>> site = Site(label='test', x=1000, y=1000, z=1000, elev=0.0) >>> sites = [site] >>> srces = Srces(srces) """ validate(units, self.__valid_measurement_units__) self.units = units self.sites = sites @classmethod def from_inventory(cls, inventory): """ create from an inventory object :param inventory: :type inventory: uquake.core.inventory.Inventory """ sites = [] for site in inventory.sites: sites.append(Site(site.code, site.x, site.y, site.z)) return cls(sites) @classmethod def generate_random_srces_in_grid(cls, gd, n_srces=1): """ generate n_srces random srces inside the grid provided. This function is mainly used for testing purposes :param gd: a grid :type gd: uquake.grid.base.Grid or an object inheriting from Grid :param n_srces: number of Srces to generate :return: a list of srces >>> from uquake.grid.base import Grid >>> from uquake.nlloc.nlloc import Srces >>> grid_dimensions = [10, 10, 10] >>> grid_spacing = [1, 1, 1] >>> grid_origin = [0, 0, 0] >>> grid = Grid(grid_dimensions, grid_spacing, grid_origin, value=1) >>> srces = Srces.generate_random_srces_in_grid(grid, nb_seeds=10) """ srces = [] label_root = test_station_code for i, point in enumerate(gd.generate_random_points_in_grid( n_points=n_srces)): label = f'{label_root}{i:02d}' site = Site(label, point[0], point[1], point[2]) srces.append(site) return cls(srces) def add_site(self, label, x, y, z, elev=None, units='METERS'): """ Add a single site to the source list :param label: site label :type label: str :param x: x location relative to geographic origin expressed in the units of measurements for site/source :type x: float :param y: y location relative to geographic origin expressed in the units of measurements for site/source :type y: float :param z: z location relative to geographic origin expressed in the units of measurements for site/source :type z: float :param elev: elevation above z grid position (positive UP) in kilometers for site (Default = None) :type elev: float :param units: units of measurement used to express x, y, and z ( 'METERS' or 'KILOMETERS') """ validate(units.upper(), self.__valid_measurement_units__) self.sites.append(Site(label, x, y, z, elev=elev)) self.units = units.upper() def __repr__(self): line = "" for site in self.sites: # test if site name is shorter than 6 characters line += f'GTSRCE {site.label} XYZ ' \ f'{site.x / 1000:>15.6f} ' \ f'{site.y / 1000:>15.6f} ' \ f'{site.z / 1000:>15.6f} ' \ f'0.00\n' return line @property def json(self): dict_out = vars(self) for i, site in enumerate(dict_out['sites']): dict_out['sites'][i] = vars(dict_out['sites'][i]) return json.dumps(dict_out) @classmethod def from_json(cls, json_obj): obj = json.loads(json_obj) sites = [] for key in obj.keys(): if key == 'sites': for site_dict in obj[key]: sites.append(Site(**site_dict)) obj['sites'] = sites cls.__init__(**obj) @property def locs(self): seeds = [] for site in self.sites: seeds.append([site.x, site.y, site.z]) return np.array(seeds) @property def labels(self): seed_labels = [] for site in self.sites: seed_labels.append(site.label) return np.array(seed_labels) __valid_search_grid_type__ = ['MISFIT', 'PROB_DENSITY'] class LocGrid(object): def __init__(self, dim_x, dim_y, dim_z, origin_x, origin_y, origin_z, spacing_x, spacing_y, spacing_z, grid_type='PROB_DENSITY', save=False, units='METERS'): """ Specifies the size and other parameters of an initial or nested 3D search grid. The order of LOCGRID statements is critical (see Notes). repeatable :param dim_x: number of grid nodes in the x direction :param dim_y: number of grid nodes in the y direction :param dim_z: number of grid nodes in the z direction :param origin_x: x location of the grid origin in km relative to the geographic origin. Use a large, negative value ( i.e. -1.0e30 ) to indicate automatic positioning of grid along corresponding direction (valid for nested grids only, may not be used for initial grid). :param origin_y: y location of the grid origin in km relative to the geographic origin. :param origin_z: z location of the grid origin in km relative to the geographic origin. :param spacing_x: grid node spacing in kilometers along the x axis :param spacing_y: grid node spacing in kilometers along the y axis :param spacing_z: grid node spacing in kilometers along the z axis :param grid_type: (choice: MISFIT PROB_DENSITY) statistical quantity to calculate on grid :param save: specifies if the results of the search over this grid should be saved to disk (Default: False) :type save: bool :param units: (choice: 'METERS', 'KILOMETERS') grid units (Default 'METERS') """ self.dim_x = dim_x self.dim_y = dim_y self.dim_z = dim_z self.origin_x = origin_x self.origin_y = origin_y self.origin_z = origin_z self.spacing_x = spacing_x self.spacing_y = spacing_y self.spacing_z = spacing_z validate(grid_type, __valid_search_grid_type__) self.grid_type = grid_type self.save = save self.units = units @classmethod def init_from_grid(cls, input_grid, grid_type='PROB_DENSITY', save=True): """ :param input_grid: :type input_grid: nlloc.grid.NLLocGrid :param grid_type: (choice: MISFIT PROB_DENSITY) statistical quantity to calculate on grid :param save: specifies if the results of the search over this grid should be saved to disk (Default: True) :return: """ dims = input_grid.dims origin = input_grid.origin spacing = input_grid.spacing units = input_grid.grid_units return cls(dims[0], dims[1], dims[2], origin[0], origin[1], origin[2], spacing[0], spacing[1], spacing[2], units=units, grid_type=grid_type, save=save) def __repr__(self): div = 1 if self.units == 'METER': div = 1000 if self.save: save_flag = 'SAVE' else: save_flag = 'NO_SAVE' repr = f'LOCGRID {self.dim_x} {self.dim_y} {self.dim_z} ' \ f'{self.origin_x / div:0.6f} {self.origin_y / div:0.6f} ' \ f'{self.origin_z / div:0.6f} ' \ f'{self.spacing_x / div:0.6f} {self.spacing_y / div:0.6f} ' \ f'{self.spacing_z / div:0.6f} {self.grid_type} {save_flag}\n' return repr class LocQual2Err(object): def __init__(self, *args): self.args = args def __repr__(self): line = 'LOCQUAL2ERR' for arg in self.args: line += f' {arg}' return line + '\n' __observation_file_types__ = ['NLLOC_OBS', 'HYPO71', 'HYPOELLIPSE', 'NEIC', 'CSEM_ALERT', 'SIMULPS', 'HYPOCENTER', 'HYPODD', 'SEISAN', 'NORDIC', 'NCSN_Y2K_5', 'NCEDC_UCB', 'ETH_LOC', 'RENASS_WWW', 'RENASS_DEP', 'INGV_BOLL', 'INGV_BOLL_LOCAL', 'INGV_ARCH'] class NllocInputFiles: def __init__(self, observation_files, travel_time_file_root, output_file_root, observation_file_type='NLLOC_OBS', i_swap_bytes=False, create_missing_folders=True): """ Specifies the directory path and filename for the phase/observation files, and the file root names (no extension) for the input time grids and the output files. the path where the files are to be located is :param observation_files: full or relative path and name for phase/observations files, mulitple files may be specified with standard UNIX "wild-card" characters ( * and ? ) :type observation_files: str :param observation_file_type: (choice: NLLOC_OBS HYPO71 HYPOELLIPSE NEIC CSEM_ALERT SIMULPS HYPOCENTER HYPODD SEISAN NORDIC NCSN_Y2K_5 NCEDC_UCB ETH_LOC RENASS_WWW RENASS_DEP INGV_BOLL INGV_BOLL_LOCAL INGV_ARCH) format type for phase/observations files (see Phase File Formats) - DEFAULT NLLOC_OBS :type observation_file_type: str :param travel_time_file_root: full or relative path and file root name (no extension) for input time grids. :type travel_time_file_root: str :param output_file_root: full or relative path and file root name (no extension) for output files :type output_file_root: str :param i_swap_bytes: flag to indicate if hi and low bytes of input time grid files should be swapped. Allows reading of travel-time grids from different computer architecture platforms during TRANS GLOBAL mode location. DEFAULT=False :type i_swap_bytes: bool :param create_missing_folders: if True missing folder will be created """ # validate if the path exist if the path does not exist the path # should be created observation_files = Path(observation_files) if not observation_files.parent.exists(): if create_missing_folders: logger.warning(f'the path <{observation_files.parent}> does ' f'not exist. missing folders will be created') observation_files.parent.mkdir(parents=True, exist_ok=True) else: raise IOError(f'path <{observation_files.parent}> does not ' f'exist') self.observation_files = observation_files travel_time_file_root = Path(travel_time_file_root) if not travel_time_file_root.parent.exists(): if create_missing_folders: logger.warning(f'the path <{travel_time_file_root.parent}> ' f'does not exist. missing folders will ' f'be created') travel_time_file_root.parent.mkdir(parents=True, exist_ok=True) else: raise IOError(f'path <{travel_time_file_root.parent}> does ' f'not exist') self.travel_time_file_root = travel_time_file_root output_file_root = Path(output_file_root) if not output_file_root.parent.exists(): if create_missing_folders: logger.warning(f'the path <{output_file_root.parent}> ' f'does not exist. missing folders will ' f'be created') output_file_root.parent.mkdir(parents=True, exist_ok=True) else: raise IOError(f'path <{output_file_root.parent}> does ' f'not exist') self.output_file_root = output_file_root validate(observation_file_type, __observation_file_types__) self.observation_file_type = observation_file_type self.i_swap_bytes = i_swap_bytes def __repr__(self): line = f'LOCFILES {self.observation_files} ' \ f'{self.observation_file_type} {self.travel_time_file_root} ' \ f'{self.output_file_root} {int(self.i_swap_bytes)}\n' return line def read_hypocenter_file(filename, units='METER'): validate(units, __valid_units__) with open(filename, 'r') as hyp_file: all_lines = hyp_file.readlines() hyp = [line.split() for line in all_lines if 'HYPOCENTER' in line][0] geo = [line.split() for line in all_lines if 'GEOGRAPHIC' in line][0] s = int(np.floor(float(geo[7]))) us = int((float(geo[7]) - s) * 1e6) if s < 0: s = 0 if us < 0: us = 0 tme = datetime(int(geo[2]), int(geo[3]), int(geo[4]), int(geo[5]), int(geo[6]), s, us) tme = UTCDateTime(tme) hyp_x = float(hyp[2]) * 1000 hyp_y = float(hyp[4]) * 1000 hyp_z = float(hyp[6]) * 1000 return tme, hyp_x, hyp_y, hyp_z def read_scatter_file(filename): """ :param filename: name of the scatter file to read :return: a numpy array of the points in the scatter file """ with open(filename, 'rb') as f: n_samples = unpack('i', f.read(4))[0] unpack('f', f.read(4)) unpack('f', f.read(4)) unpack('f', f.read(4)) points = [] for k in range(0, n_samples): x = unpack('f', f.read(4))[0] * 1000 y = unpack('f', f.read(4))[0] * 1000 z = unpack('f', f.read(4))[0] * 1000 pdf = unpack('f', f.read(4))[0] points.append([x, y, z, pdf]) return np.array(points) ``` #### File: uquake/waveform/transforms.py ```python import numpy as np from uquake.helpers.logging import logger """ Place to keep trace transforms - mainly rotations to ENZ, PSVSH, etc. """ def rotate_to_P_SV_SH(st, cat, debug=False): fname = 'rotate_to_P_SV_SH' st_new = st.copy() event = cat[0] for arr in event.preferred_origin().arrivals: if arr.phase == 'S': continue pk = arr.pick_id.get_referred_object() sta = pk.waveform_id.station_code baz = arr.backazimuth az = arr.azimuth takeoff = arr.takeoff_angle inc_angle = arr.inc_angle if inc_angle is None: baz, inc_angle = event.preferred_origin( ).get_incidence_baz_angles(sta, arr.phase) inc_angle *= 180 / np.pi if inc_angle is None: logger.warning("%s: sta:%s [%s] has inc_angle=None --> skip " "rotation!" % (fname, sta, arr.phase)) continue trs = st_new.select(station=sta) if len(trs) == 3: cos_i = np.cos(inc_angle * np.pi / 180.) sin_i = np.sin(inc_angle * np.pi / 180.) cos_baz = np.cos(baz * np.pi / 180.) sin_baz = np.sin(baz * np.pi / 180.) col1 = np.array([cos_i, sin_i, 0.]) col2 = np.array([-sin_i * sin_baz, cos_i * sin_baz, -cos_baz]) col3 = np.array([-sin_i * cos_baz, cos_i * cos_baz, sin_baz]) A = np.column_stack((col1, col2, col3)) if debug: print("sta:%s az:%.1f baz:%.1f takeoff:%.1f inc:%.1f" % ( sta, az, baz, takeoff, inc_angle)) E = trs[0].data N = trs[1].data Z = trs[2].data D = np.row_stack((Z, E, N)) foo = A @ D # if sta in ['59', '87']: # trs.plot() trs[0].data = foo[0, :] trs[1].data = foo[1, :] trs[2].data = foo[2, :] trs[0].stats.channel = 'P' trs[1].stats.channel = 'SV' trs[2].stats.channel = 'SH' ''' P = trs[0].copy().trim(starttime = pk.time -.02, endtime=pk.time +.02) SV = trs[1].copy().trim(starttime = pk.time -.02, endtime=pk.time +.02) SH = trs[2].copy().trim(starttime = pk.time -.02, endtime=pk.time +.02) S = np.sqrt(SV.data**2 + SH.data**2) print(type(S)) print(S) PtoS = np.var(P.data)/np.var(S) print(type(PtoS)) print(PtoS) print("P_max:%g SV_max:%g SH_max:%g P/S:%f" % (np.max(np.abs(P.data)), np.max(np.abs(SV.data)), \ np.max(np.abs(SH.data), PtoS))) #if sta in ['59', '87']: #trs.plot() #exit() ''' else: print("sta:%s --> only has n=%d traces --> can't rotate" % ( sta, len(trs))) return st_new def rotate_to_ENZ(st, inventory): st_new = st.copy() for sta in st_new.unique_stations(): trs = st_new.select(station=sta) if not inventory.select(sta): logger.warning(f'missing station "{sta}" in inventory') continue # catching edge case when a uniaxial sensors contains three traces # with two traces containing only NaN. if len(trs) == 3: if np.any([np.all(np.isnan(trs[0].data)), np.all(np.isnan(trs[1].data)), np.all(np.isnan(trs[2].data))]): continue if len(trs) == 3 and len(inventory.select(sta).channels) == 3: try: col1 = inventory.get_channel(sta=sta, cha='X').cosines col2 = inventory.get_channel(sta=sta, cha='Y').cosines col3 = inventory.get_channel(sta=sta, cha='Z').cosines except AttributeError as err: logger.error(err) continue A = np.column_stack((col1, col2, col3)) At = A.transpose() x = trs[0].data y = trs[1].data z = trs[2].data D = np.row_stack((x, y, z)) foo = At @ D trs[0].data = foo[0, :] trs[1].data = foo[1, :] trs[2].data = foo[2, :] trs[0].stats.channel = 'E' trs[1].stats.channel = 'N' trs[2].stats.channel = 'Z' return st_new ```
{ "source": "jeanphilippemercier/uquake-useis", "score": 2 }
#### File: tests/deprecated/nlloc.py ```python from useis.processors import nlloc from importlib import reload from pathlib import Path from uquake.grid.nlloc import (ModelLayer, LayeredVelocityModel, VelocityGridEnsemble) from uquake.core import read_events, read_inventory from uquake.nlloc import Observations import numpy as np reload(nlloc) project_path = Path('/data_2/projects') project_name = 'test_nlloc' network = 'test_nlloc' nlloc = nlloc.NLLOC(project_path, project_name, network) settings = nlloc.settings test_artifact_path = Path(nlloc.settings.TEST_ARTIFACTS) inventory = read_inventory(str(test_artifact_path / 'inventory.xml')) def get_catalog(): event_file = test_artifact_path / 'event_file.xml' cat = read_events(str(event_file)) for i, pick in enumerate(cat[0].picks): for site in inventory.sites: if site.alternate_code == pick.waveform_id.station_code: cat[0].picks[i].waveform_id.network_code = inventory[0].code cat[0].picks[i].waveform_id.station_code = site.station.code cat[0].picks[i].waveform_id.location_code = \ site.location_code cat[0].picks[i].waveform_id.channel_code = \ site.channels[0].code break return cat event = get_catalog() def make_layered_model(): # The origin is the lower left corner project_code = project_name network_code = network origin = np.array(settings.default.grids.origin) dimensions = np.array(settings.default.grids.dimensions) spacing = np.array(settings.default.grids.spacing) z = [1168, 459, -300, -500] vp_z = [4533, 5337, 5836, 5836] vs_z = [2306, 2885, 3524, 3524] p_layered_model = LayeredVelocityModel(project_code) s_layered_model = LayeredVelocityModel(project_code, phase='S') for (z_, vp, vs) in zip(z, vp_z, vs_z): layer = ModelLayer(z_, vp) p_layered_model.add_layer(layer) layer = ModelLayer(z_, vs) s_layered_model.add_layer(layer) vp_grid_3d = p_layered_model.gen_3d_grid(network_code, dimensions, origin, spacing) vs_grid_3d = s_layered_model.gen_3d_grid(network_code, dimensions, origin, spacing) velocities = VelocityGridEnsemble(vp_grid_3d, vs_grid_3d) return velocities vels = make_layered_model() nlloc.add_inventory(inventory, initialize_travel_time=False) nlloc.add_velocities(vels, initialize_travel_times=False) observations = Observations.from_event(event) loc = nlloc.run_location(calculate_rays=True, event=event) ``` #### File: uquake-useis/tests/nlloc.py ```python import shutil import unittest from uquake.grid.nlloc import VelocityGrid3D, VelocityGridEnsemble from loguru import logger import numpy as np root_dir = 'projects' test_project = 'test_project' test_network = 'TN' grid_dim = [10, 10, 10] grid_spacing = [1, 1, 1] grid_origin = [0, 0, 0] class NLLOC(unittest.TestCase): def test_locate_event(self): from uquake.nlloc.nlloc import Srces, Observations from useis.processors.nlloc import NLLOC nll = NLLOC('projects', 'test', 'TN') p_velocity_grid = VelocityGrid3D(test_network, grid_dim, grid_origin, grid_spacing, phase='P', value=5000) s_velocity_grid = VelocityGrid3D(test_network, grid_dim, grid_origin, grid_spacing, phase='S', value=3000) velocity_grids = VelocityGridEnsemble(p_velocity_grid, s_velocity_grid) nll.add_velocities(velocity_grids, initialize_travel_times=False) srces = Srces.generate_random_srces_in_grid(p_velocity_grid, n_srces=20) nll.add_srces(srces, initialize_travel_time=False) nll.init_travel_time_grids(multi_threaded=True) e_loc = nll.p_velocity.generate_random_points_in_grid() observations = Observations.generate_observations_event_location( nll.travel_times, e_loc=e_loc) result = nll.run_location(observations=observations) distance = np.linalg.norm(result.loc - e_loc) logger.info(f'\n{distance:0.1f} m - error\n' f'{result.uncertainty * 2:0.1f} m - uncertainty (2 std) ') shutil.rmtree(root_dir) self.assertTrue(distance < 3 * result.uncertainty) if __name__ == '__main__': unittest.main() shutil.rmtree(root_dir) ``` #### File: useis/processors/classifier.py ```python from ..core.project_manager import ProjectManager import pickle from pathlib import Path from ..ai.model import EventClassifier import uquake class Classifier(ProjectManager): def __init__(self, base_projects_path: Path, project_name: str, network_code: str, use_srces: bool=False): """ Object to control the classification :param base_projects_path: :param project_name: :param network_code: :param use_srces: """ self.event_classifier = None super().__init__(base_projects_path, project_name, network_code, use_srces=use_srces) if self.files.classification_model.is_file(): self.event_classifier = EventClassifier.read( self.files.classification_model) def add_model(self, model: EventClassifier): self.event_classifier = model model.write(self.files.classification_model) def add_model_from_file(self, filename: str): ec = EventClassifier.from_pretrained_model_file(filename) self.event_classifier = ec ec.write(self.files.classification_model) def predict(self, st: uquake.core.stream.Stream): """ :param st: the waveforms :type st: uquake.core.stream.Stream :return: """ return self.event_classifier.predict(st) ``` #### File: sandbox/demo_kafka/consumer.py ```python from confluent_kafka import Consumer import sys conf = {'bootstrap.servers': "localhost:29092", 'group.id': 'test', 'auto.offset.reset': 'smallest'} c = Consumer(conf) running = True def basic_consume_loop(consumer, topics): try: consumer.subscribe(topics) while running: msg = consumer.poll(timeout=1.0) if msg is None: continue if msg.error(): print('error') # if msg.error().code() == #KafkaError._PARTITION_EOF: # # End of partition event # sys.stderr.write('%% %s [%d] reached end at offset %d\n' % # (msg.topic(), msg.partition(), msg.offset())) # elif msg.error(): # print(msg.error()) # # raise KafkaException(msg.error()) else: print(msg) finally: # Close down consumer to commit final offsets. consumer.close() def shutdown(): running = False basic_consume_loop(c, ['test']) ``` #### File: services/file_server/database.py ```python from sqlalchemy import create_engine from sqlalchemy.orm import declarative_base, sessionmaker from sqlalchemy import Column, Integer, String, DateTime from uquake.core.stream import Trace Base = declarative_base() class Database(object): def __init__(self, url, port, username, password, db): self.connection_string=f'postgresql://{username}:{password}' \ f'@{url}:{port}/db' self.engine = create_engine(self.connection_string) Base.metadata.create_all(self.engine) self.db_session = sessionmaker(bind=self.engine) self.session = self.db_session() def index_trace(self, tr: Trace, file_path): csd = ContinuousSeismicData(network=tr.stats.network, station=tr.stats.station, location=tr.stats.location, channel=tr.stats.channel, start_time=tr.stats.starttime.datetime, end_time=tr.stats.endtime.datetime, filepath=file_path) self.session.add(csd) self.session.commit() class ContinuousSeismicData(Base): __tablename__ = "continuous_seismic_data" id = Column(Integer, primary_key=True, index=True) network = Column(String, index=True) station = Column(String, index=True) location = Column(String, index=True) channel = Column(String, index=True) start_time = Column(DateTime, index=True) end_time = Column(DateTime, index=True) filepath = Column(String) ``` #### File: services/models/nlloc.py ```python from .event import SimpleArrival from pydantic import BaseModel from typing import Optional, List from uquake.nlloc import nlloc from enum import Enum from datetime import datetime import numpy as np from uquake.core import UTCDateTime from .base import Coordinates3D from .event import Ray import useis from uquake.core.event import Event class FloatType(str, Enum): FLOAT = "FLOAT" DOUBLE = "DOUBLE" class Site(BaseModel): label: str location: Coordinates3D class Srces(BaseModel): sites: List[Site] class Observations(BaseModel): picks: List[SimpleArrival] p_pick_error: Optional[float] = 1e-3 s_pick_error: Optional[float] = 1e-3 class Config: orm_mode = True @classmethod def from_uquake(cls, observations: nlloc.Observations): simple_arrivals = [] for pick in observations.picks: simple_arrivals.append(SimpleArrival.from_uquake_pick(pick)) return cls(picks=simple_arrivals, p_pick_error=observations.p_pick_error, s_pick_error=observations.s_pick_error) def to_uquake(self): picks = [] for pick in self.picks: picks.append(pick.to_uquake_pick()) return nlloc.Observations(picks=picks, p_pick_error=self.p_pick_error, s_pick_error=self.s_pick_error) def to_dict(self): picks = [] for pick in self.picks: picks.append(pick.__dict__) observations_dict = self.__dict__ observations_dict['picks'] = picks return observations_dict class NLLOCResults(BaseModel): hypocenter: Coordinates3D event_time: datetime scatter_cloud: List[Coordinates3D] rays: List[Ray] observations: Observations uncertainty: float hypocenter_file: str @classmethod def from_nlloc_results(cls, nlloc_results: useis.procesors.NLLocResults): hypocenter = Coordinates3D.from_array(nlloc_results.hypocenter) scatter_cloud = [] for scatter in nlloc_results.scatter_cloud: scatter_cloud.append(Coordinates3D.from_array(scatter)) rays = [] for ray in nlloc_results.rays: rays.append(Ray.from_uquake(ray)) observations = Observations.from_uquake(nlloc_results.observations) return cls(hypocenter=hypocenter, event_time=nlloc_results.event_time, scatter_cloud=scatter_cloud, rays=rays, observations=observations, uncertainty=nlloc_results.uncertainty, hypocenter_file=nlloc_results.hypocenter_file) ``` #### File: useis/tomography/data.py ```python __doc__ = \ """ TODO : BIG DESCRIPTION OF EXCHANGE DATA """ import numpy as np import pickle import copy from functools import wraps def memoize(fct): """ This is a decorator which cache the result of a function based on the given parameter. """ return_dict = {} @wraps(fct) def wrapper(*args, **kwargs): if args not in return_dict: return_dict[args] = fct(*args, **kwargs) return return_dict[args] return wrapper # This is the data description for the input array describing the event # ev_dtype = [('name', 'str'), ('id', 'int'), ('position', 'float', (3,)), ('delta_t', 'float')] st_dtype = ev_dtype tt_dtype = [('id', 'int'), ('event_id', 'int'), ('traveltime', 'float')] class EKTTTable(object): """ This object represent a :param data: u :param staid: u :param evnfile: u :param stafile: u """ dtype = tt_dtype def __init__(self, data, staid, evnfile=None, stafile=None): try: for tname, ttype in tt_dtype: data[tname] import sys sys.stderr.write(str(data.size)) sys.stderr.flush() data = np.array(data.__getitem__([tname for tname, ttype in tt_dtype]), dtype = self.dtype) except ValueError as e: data = np.asarray(data, dtype = self.dtype) self.data = data self.data.dtype = self.dtype self.station_id = staid self.__evn_file__ = evnfile self.__sta_file__ = stafile def __get_event_rows__(self): return self.event_table.data[self.data['event_id']] event_rows = property(__get_event_rows__) @memoize def __get_event_table__(self): return pickle.load(open(self.__evn_file__)) event_table = property(__get_event_table__) def __get_station_row__(self): return self.station_table.data[self.station_id] station_row = property(__get_station_row__) @memoize def __get_station_table__(self): return pickle.load(open(self.__sta_file__)) station_table = property(__get_station_table__) class EKPunctualData(object): dtype = None def __init__(self, data, origin=None, scale=1): try: for tname, ttype in self.dtype: data[tname] self.data = data except ValueError as e: self.data = np.asarray(data, dtype=self.dtype) self.origin = tuple([0] * data['position'].shape[-1]) \ if origin is None else origin self.scale = scale def __get_position_zyx__(self): return self.data['position'] def __set_position_zyx__(self, pos): self.data['position'] = pos position_zyx = property(__get_position_zyx__, __set_position_zyx__) def __get_position_xyz__(self): position_zyx = self.data['position'] position_xyz = np.empty_like(position_zyx) for i in range(position_zyx.shape[1]): position_xyz[:, i] = position_zyx[:, -(i + 1)] return position_xyz position_xyz = property(__get_position_xyz__) def __get_size__(self): return self.data.size size = property(__get_size__) def add_gaussian_noise(self, position=0, time=0): pass class EKEventTable(EKPunctualData): dtype = ev_dtype class EKStationTable(EKPunctualData): dtype = st_dtype class EKImageData(object): """ This object represent a geometric structure that representing a regular array of points positionned in space. :param shape_or_data: The numpy array or the shape of the underlying data :param spacing: The spacing of the grid :param origin: A Tuple representing the position of the lower left corner \ of the grid """ def __init__(self, shape_or_data, spacing = 1, origin = None): if isinstance(shape_or_data, np.ndarray): self.data = shape_or_data else: self.data = np.zeros(shape_or_data) self.origin = tuple([0] * self.data.ndim) if origin is None else origin self.spacing = spacing def transform_to(self, values): return (values - self.origin) / self.spacing def transform_from(self, values): return (values + self.origin) * self.spacing def check_compatibility(self, other): return (self.shape == other.shape) and \ (self.spacing == other.spacing) and \ (self.origin == other.origin) def __get_shape__(self): return self.data.shape shape = property(__get_shape__) def homogenous_like(self, value): data = np.empty_like(self.data) data.fill(value) return EKImageData(data, self.spacing, origin=self.origin) def copy(self): cp = copy.deepcopy(self) return cp def SaveNLL(self): pass def LoadNLL(self): pass ### ADDING method to save and load on data from/to NLL ```
{ "source": "Jean-Pierre-Richa/C3D-with-OpenPose-in-Tensorflow", "score": 3 }
#### File: Jean-Pierre-Richa/C3D-with-OpenPose-in-Tensorflow/pose_list.py ```python import json import os # Collects all the json files from the folder and assign a # unique ID for each one def generate_activity_list(json_dir='json/'): files = os.listdir(json_dir) activities_list = [] for f in files: with open(json_dir + f) as file: Json_dict = json.load(file) for video in list(Json_dict.keys()): for activity in list(Json_dict[video]): if (activity['label'] not in activities_list): activities_list.append(activity['label']) activities_ids = dict(map(reversed, enumerate(activities_list))) # print('Activity list size: ', len(activities_list)) # print('Activities IDs: ', activities_ids) return activities_ids ``` #### File: Jean-Pierre-Richa/C3D-with-OpenPose-in-Tensorflow/tf_records.py ```python import glob import os import activities import tensorflow as tf import sys import cv2 import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt import matplotlib.image as mpimg shuffle_data = True DATASET_DIR_TRAIN = 'images/train/' DATASET_DIR_TEST = 'images/test/' TFR_DIR = 'tfrecords/' # Read addresses and labels from the 'train' folder def create_tfRecords(DATASET_DIR, phase): labels = [] labels = activities.activities_tfrecords train_filename = TFR_DIR + phase + '.tfrecords' if not os.path.exists(TFR_DIR): os.makedirs(TFR_DIR) if phase == 'train': # addrs = glob.glob(DATASET_DIR_TRAIN) addrs = DATASET_DIR_TRAIN else: # addrs = glob.glob(DATASET_DIR_TEST) addrs = DATASET_DIR_TEST # phase_addrs = phase + '_addrs' # phase_labels = phase + '_labels' phase_addrs = [] phase_labels = [] for classes in os.listdir(DATASET_DIR): final_class = classes for j, k in labels.items(): if final_class.split('.')[0] in j: phase_addrs.append(final_class) phase_labels.append(k) # print(final_class) # print(phase_addrs) # print(phase_labels) # Open the tfrecords file writer = tf.python_io.TFRecordWriter(train_filename) for i in tqdm(range(len(phase_addrs))): # print how many images are saved every 1000 images # if not i%1000: # print(phase + ' data: {}/{}'.format(i, len(phase_addrs))) # sys.stdout.flush() img = load_image(addrs+phase_addrs[i]) lbl = phase_labels[i] print(addrs+phase_addrs[i]) print(lbl) # print ('label: ', lbl) # create a feature feature = {'label': _int64_feature(lbl), 'image': _bytes_feature(tf.compat.as_bytes(img.tostring()))} # create an example protocol buffer example = tf.train.Example(features=tf.train.Features(feature=feature)) # Serialize to string and write on the file writer.write(example.SerializeToString()) # img1=mpimg.imread(addrs+phase_addrs[i]) # imgplot = plt.imshow(img1) # plt.show() writer.close() sys.stdout.flush() def load_image(addr): # Read an image and resize to (im_size, im_size) # cv2 load image as BGR, convert it to RGB # print (addr) img = cv2.imread(addr) img = cv2.resize(img, (activities.im_size, activities.im_size), interpolation = cv2.INTER_CUBIC) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = img.astype(np.float32) # print (type(img)) return img def _int64_feature(value): return tf.train.Feature(int64_list = tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list = tf.train.BytesList(value=[value])) create_tfRecords('images/train/', 'train') ```
{ "source": "jeanpierrethach/Design-Patterns", "score": 4 }
#### File: patterns/bridge/bridge.py ```python from abc import ABC, abstractmethod class Implementor(ABC): @abstractmethod def action(self): pass class ConcreteImplementorA(Implementor): def action(self): print("Concrete Implementor A.") class ConcreteImplementorB(Implementor): def action(self): print("Concrete Implementor B.") class Abstraction(ABC): def __init__(self, impl): self._implementor = impl @abstractmethod def operation(self): pass class RefinedAbstraction(Abstraction): def __init__(self, impl): super().__init__(impl) def operation(self): self._implementor.action() if __name__ == '__main__': abstracts = [ RefinedAbstraction(ConcreteImplementorA()), RefinedAbstraction(ConcreteImplementorB()) ] for abstract in abstracts: abstract.operation() ``` #### File: patterns/builder/builder.py ```python from abc import ABC, abstractmethod class Product(object): def __init__(self): self._part_a = None self._part_b = None def make_a(self, part): self._part_a = part def make_b(self, part): self._part_b = part def __str__(self): return "%s %s" % (self._part_a, self._part_b) class Builder(ABC): @abstractmethod def build_part_a(self): pass @abstractmethod def build_part_b(self): pass @abstractmethod def get_result(self): pass class ConcreteBuilder(Builder): def __init__(self): self._product = Product() def build_part_a(self): self._product.make_a("Part A built.") def build_part_b(self): self._product.make_b("Part B built.") def get_result(self): return self._product class Director(object): def __init__(self, builder): self._builder = builder def set(self, builder): self._builder = builder def construct(self): self._builder.build_part_a() self._builder.build_part_b() if __name__ == '__main__': builder = ConcreteBuilder() director = Director(builder) director.construct() product1 = builder.get_result() print(product1) ``` #### File: patterns/facade/facade.py ```python class SubsystemA(object): def operation_a1(self): print("Operation a1") def operation_a2(self): print("Operation a2") class SubsystemB(object): def operation_b1(self): print("Operation b1") def operation_b2(self): print("Operation b2") class SubsystemC(object): def operation_c1(self): print("Operation c1") def operation_c2(self): print("Operation c2") class Facade(object): def __init__(self): self.subsystem_a = SubsystemA() self.subsystem_b = SubsystemB() self.subsystem_c = SubsystemC() def operation1(self): self.subsystem_a.operation_a1() self.subsystem_b.operation_b1() self.subsystem_c.operation_c1() def operation2(self): self.subsystem_a.operation_a2() self.subsystem_b.operation_b2() self.subsystem_c.operation_c2() if __name__ == '__main__': facade = Facade() facade.operation1() facade.operation2() ```
{ "source": "jean-plank/rpy2html", "score": 3 }
#### File: rpy2json/project/fonts.py ```python from os import path from utils import remove_invalid_chars, guiattr DEFAULT_FONT = 'DejaVuSans.ttf' DEFAULT_FONT_NAME = remove_invalid_chars(DEFAULT_FONT).lower() def parse(GAME_BASE_DIR, RENPY_BASE_DIR, gui): ''' Parse fonts. ''' res = { 'definitions': { # 'font_family': { # 'src': str, # 'bold': bool # }, # ... }, 'usages': { # 'dialog': 'font_family' # ... } } # add default font definition file = find_font(GAME_BASE_DIR, RENPY_BASE_DIR, DEFAULT_FONT) if file: if not DEFAULT_FONT_NAME in res['definitions']: res['definitions'][DEFAULT_FONT_NAME] = { 'src': file, 'bold': True } else: print('Couldn\'t find default font') add_font = partial_add_font(GAME_BASE_DIR, RENPY_BASE_DIR, gui) add_font('dialog', 'text_font', res) add_font('choicebtn', 'choice_button_text_font', res) add_font('mmenu', 'interface_text_font', res) add_font('guibtn', 'button_text_font', res) add_font('namebox', 'name_text_font', res) return res def partial_add_font(GAME_BASE_DIR, RENPY_BASE_DIR, gui): def res(usage, gui_attr, fonts): fpath = guiattr(gui, gui_attr, DEFAULT_FONT) full_fpath = find_font(GAME_BASE_DIR, RENPY_BASE_DIR, fpath) if full_fpath: fname = remove_invalid_chars(fpath).lower() if fname in fonts['definitions']: # definition already exists fonts['usages'][usage] = fname else: fonts['definitions'][fname] = { 'src': full_fpath, 'bold': False } fonts['usages'][usage] = fname else: ('[WARNING] couldn\'t find font \'%s\', replacing with default font' % fpath) fonts['usages'][usage] = DEFAULT_FONT_NAME return res def find_font(GAME_BASE_DIR, RENPY_BASE_DIR, file): ''' :returns: file's full path if it exists in GAME_BASE_DIR or RENPY_BASE_DIR/common ''' res = path.join(GAME_BASE_DIR, file) if path.isfile(res): return res else: res = path.join(RENPY_BASE_DIR, 'common', file) if path.isfile(res): return res ```
{ "source": "jeanpommier/ker51", "score": 2 }
#### File: app/hivernants/views.py ```python from django.http import HttpResponse from django.shortcuts import get_object_or_404, render from django.http import Http404 from django.template import loader import json from django.views import generic from django_tables2 import SingleTableView from django.contrib.auth.mixins import LoginRequiredMixin from django.core.serializers import serialize from django.views.generic.base import TemplateView from .models import Hivernant, Person from .tables import HivernantTable # # def index(request): # persons = Person.objects.order_by('names') # context = { # 'persons': persons, # } # return render(request, 'map/index.html', context) # def detail(request, person_id): # person = get_object_or_404(Person, pk=person_id) # return render(request, 'map/detail.html', {'person': person}) class HomeView(TemplateView): template_name = 'hivernants/index.html' class ListView(LoginRequiredMixin, SingleTableView): model = Hivernant table_class = HivernantTable # context_object_name = 'persons' template_name = 'hivernants/liste.html' # def get_queryset(self): # return Person.objects.order_by('names') class DetailView(LoginRequiredMixin, generic.DetailView): model = Hivernant template_name = 'hivernants/detail.html' class MapView(LoginRequiredMixin, generic.TemplateView): model = Hivernant template_name = 'hivernants/map.html' def get_context_data(self, **kwargs): """Return the view context data.""" context = super().get_context_data(**kwargs) context["markers"] = json.loads( serialize("geojson", Person.objects.all(), geometry_field='location', fields=('names', 'fulladdress', 'picture') ) ) return context ```
{ "source": "jeanpommier/ldap2pg", "score": 3 }
#### File: ldap2pg/ldap2pg/format.py ```python import itertools from copy import deepcopy from string import Formatter from .utils import unicode class FormatSpec(object): # A format string to generate e.g. role names. def __init__(self, spec): self.spec = spec self._fields = None def __repr__(self): return "%s(%r)" % (self.__class__.__name__, self.spec) @property def fields(self): if self._fields is None: self._fields = [] formatter = Formatter() for _, field, _, _ in formatter.parse(self.spec): if field is None: continue path = [ f for f in field.split('.') # Exclude method call. if '(' not in f and ')' not in f ] self._fields.append( FormatField(path[0], '.'.join(path[1:])) ) return self._fields @property def static(self): return 0 == len(self.fields) @property def attributes_map(self): # Aggregate attributes map of all fields. map_ = AttributesMap() for field in self.fields: map_.update(field.attributes_map) return map_ def iter_combinations(self, vars_): # Here is the core logic for combination of attributes. # # vars_ has the same schema as attributes_map. Top level keys define # the entry name (either __self__ or a join name). Top level values are # list of either string (regular value) or dict (for DN components). # # First, combine entries, and then, in each entry, combine attributes. objcombinations = {} map_ = self.attributes_map.intersection( getattr(vars_, 'attributes_map', None) or AttributesMap.from_dict(vars_) ) for objname, objattrs in map_.items(): objcombinations[objname] = [] objattrs = list(set(["dn"]) | objattrs) for entry in vars_[objname]: subset = dict([ (k, v) for k, v in entry.items() if k in objattrs ]) objcombinations[objname].extend([ dict(zip(subset.keys(), combination)) for combination in itertools.product(*subset.values()) ]) for combinations in itertools.product(*objcombinations.values()): out = dict() for objname, attrs in zip(objcombinations.keys(), combinations): attrs = dict([ (k, ( FormatEntry(_str=v['dn'], **v) if isinstance(v, dict) else v )) for k, v in attrs.items() ]) if '__self__' == objname: out.update(attrs) else: out[objname] = FormatEntry( _str=unicode(attrs['dn']), **attrs) yield out def expand(self, vars_): for combination in self.iter_combinations(vars_): yield self.spec.format(**combination) class AttributesMap(dict): # Mapping for format variables dict. # # It's a dictionnary with variable name as key and a set of attributes as # value. The variable name are __self__ for accessing LDAPEntry attributes # or join attribute name for children entries access. # # Each FormatSpec is meant to *request* attributes from LDAPEntry or # children of it. The fusion of map from all specs of a RoleRule generates # the schema of the final big variables dict holding all values for # formatting. # # The schema of two specs on the same entry may have a conflict when using # both {member} and {member.cn} in the same role or grant rule. {member} is # considered attribute member of __self__ entry while {member.cn} is # cn attribute of child member. # # This will conflict when feeding str.format with member value. Should it # be the list of __self__.member or all member objects? The code choose to # always use member entry instead of member attribute. # # When spreading the conflict in different FormatSpec, we can be aware of # the conflict by always passing map_ with vars_. @classmethod def from_dict(cls, dct): return cls([ (k, set(v[0].keys())) for k, v in dct.items() ]) @classmethod def gather(cls, *maps): self = cls() for map_ in maps: self.update(map_) return self def __add__(self, other): res = self.__class__() res.update(self) res.update(other) return res def intersection(self, other): i = deepcopy(self) for name in list(i.get("__self__", [])): if name in other: i["__self__"].remove(name) i[name] = set(["dn"]) for name, attrs in list(i.items()): if name in other.get("__self__", []): i[name] = set(["dn"]) elif name in other: i[name] &= other[name] else: del i[name] return i def update(self, other): # Merge objects and their attributes for objname, attrset in other.items(): myset = self.setdefault(objname, set()) myset.update(attrset) # Remove joined attribute from self. if "__self__" not in self: return for name in set(self.keys()): if name not in self["__self__"]: continue self["__self__"].remove(name) self[name].add("dn") class FormatField(object): # A single {} field from a FormatSpec. def __init__(self, var, attribute=None): self.var = var self.attribute = attribute or None def __eq__(self, other): return self.as_tuple() == other.as_tuple() def __hash__(self): return hash(self.as_tuple()) def __repr__(self): return '%s(%r, %r)' % ( self.__class__.__name__, self.var, self.attribute, ) def __str__(self): return '%s%s' % ( self.var, '.%s' % self.attribute if self.attribute else '', ) def as_tuple(self): return self.var, self.attribute @property def attributes_map(self): # Determine to which object the value should be fetched : parent entry # (__self__) or a named join entry. if self.var == 'dn': # {dn.cn} -> __self__."dn.cn" object_ = '__self__' attribute = str(self) elif self.attribute: # {member.mail} -> member."mail" object_ = self.var attribute = self.attribute else: # {member} -> __self__."member" object_ = "__self__" attribute = self.var return AttributesMap({object_: set([attribute])}) class FormatList(list): # A list of format specs @classmethod def factory(cls, format_list): self = cls() for format_ in format_list: self.append(FormatSpec(format_)) return self def __repr__(self): return '[%s]' % (', '.join(self.formats),) @property def attributes_map(self): map_ = AttributesMap() for spec in self: map_.update(spec.attributes_map) return map_ def expand(self, vars_): for spec in self: for string in spec.expand(vars_): yield string @property def formats(self): """List plain formats as fed in factory.""" return [spec.spec for spec in self] @property def fields(self): """Gather all reference fields in all formats.""" return [ field for spec in self for field in spec.fields ] @property def has_static(self): return bool([x for x in self if x.static]) def collect_fields(*field_lists): return set(itertools.chain(*[ list_.fields for list_ in field_lists ])) class FormatVars(dict): # A dictionnary of values from LDAP, grouped for combination, and # associated with an Attributes map. def __init__(self, map_, *a, **kw): self.attributes_map = map_ super(FormatVars, self).__init__(*a, **kw) class FormatEntry(object): # Object for dot access of attributes in format, like {member.cn}. Allows # to render {member} and {member.cn} in the same string. def __init__(self, **kw): self._str = "**unset**" self.update(kw) def __repr__(self): return '<%s %s>' % ( self.__class__.__name__, ' '.join(['%s=%s' % i for i in self.__dict__.items()]) ) def __str__(self): return self._str def update(self, kw): self.__dict__.update(kw) class FormatValue(object): def __init__(self, value): self.value = value def __str__(self): return self.value def __repr__(self): return 'FormatValue(%r)' % (self.value) def __eq__(self, other): return self.value == str(other) def __getattr__(self, name): if name in ['lower()', 'upper()']: return getattr(self.value, name[:-2])() else: raise AttributeError(name) ```
{ "source": "jeanpva/pythonbirds", "score": 4 }
#### File: pythonbirds/oo/pessoa.py ```python class Pessoa: def __init__(self, *filhos, nome = None, idade = 57): self.idade = idade self.nome = nome self.filhos = list(filhos) def cumprimentar(self): return f'olá {id(self)}' if __name__ == '__main__': jean = Pessoa(nome='Jeam') luciana = Pessoa(jean, nome='Luciana') print(Pessoa.cumprimentar(luciana)) print (id(luciana)) print (luciana.cumprimentar()) print (luciana.nome) print (luciana.idade) for filho in luciana.filhos: print(filho.nome) print(luciana.filhos) ```
{ "source": "jeanqasaur/jeeves", "score": 2 }
#### File: conf/conf/forms.py ```python from django.forms import Form, ModelForm, CharField, FileField, Textarea, ModelForm, HiddenInput, MultipleChoiceField, CheckboxSelectMultiple, BooleanField, ChoiceField from models import Paper, PaperVersion, UserProfile, Review, ReviewAssignment, Comment, UserPCConflict from django.contrib.auth.models import User import random from django.forms.formsets import formset_factory class SubmitForm(Form): coauthor1 = CharField(required=False) coauthor2 = CharField(required=False) coauthor3 = CharField(required=False) title = CharField(1024, required=True) contents = FileField(required=True) abstract = CharField(widget=Textarea, required=True) def __init__(self, possible_reviewers, default_conflict_reviewers, *args, **kwargs): super(SubmitForm, self).__init__(*args, **kwargs) choices = [] for r in possible_reviewers: choices.append((r.username, r)) self.fields['conflicts'] = MultipleChoiceField(widget=CheckboxSelectMultiple(), required=False, choices=choices, initial=list(default_conflict_reviewers)) def is_valid(self): if not super(SubmitForm, self).is_valid(): return False try: coauthors = [] for coauthor_id in ['coauthor1', 'coauthor2', 'coauthor3']: if coauthor_id in self.cleaned_data and self.cleaned_data[coauthor_id]: coauthor = User.objects.filter(username=self.cleaned_data[coauthor_id]).get() coauthors.append(coauthor) except User.DoesNotExist: return False self.cleaned_data['coauthors'] = coauthors return True def save(self, user): d = self.cleaned_data authors = [user] if 'coauthor1' in d: authors.append(d['coauthor1']) if 'coauthor2' in d: authors.append(d['coauthor2']) if 'coauthor3' in d: authors.append(d['coauthor3']) paper = Paper() paper.save() paper.authors.add(user) for coauthor in d['coauthors']: paper.authors.add(coauthor) paper.save() d['contents'].name = '%030x' % random.randrange(16**30) + ".pdf" paper_version = PaperVersion( paper = paper, title = d['title'], abstract = d['abstract'], contents = d['contents'], ) paper_version.save() # need to save paper twice since paper and paper_version point to each other... paper.latest_version = paper_version paper.save() for conflict_username in d['conflicts']: ra = ReviewAssignment() ra.user = User.objects.get(username=conflict_username) ra.paper = paper ra.type = 'conflict' ra.save() return paper class SubmitReviewForm(ModelForm): class Meta: model = Review fields = ['contents', 'score_novelty', 'score_presentation', 'score_technical', 'score_confidence'] class SubmitCommentForm(ModelForm): class Meta: model = Comment fields = ['contents'] class ReviewAssignmentForm(ModelForm): class Meta: model = ReviewAssignment fields = ['assign_type', 'user', 'paper'] widgets = { 'user' : HiddenInput(), 'paper' : HiddenInput(), } ReviewAssignmentFormset = formset_factory(ReviewAssignmentForm, extra=0) class SearchForm(Form): # should only show accepted papers filter_accepted = BooleanField(required=False) # should only show papers accepted by a reviewer # filter_reviewer (defined in __init__ below) # should only show papers by the given author # filter_author (defined in __init__ below) filter_title_contains = CharField(required=False) sort_by = ChoiceField(required=True, choices=(('---', None), ('title', 'title'), ('score_technical', 'score_technical'), )) def __init__(self, *args, **kwargs): reviewers = kwargs['reviewers'] authors = kwargs['authors'] del kwargs['reviewers'] del kwargs['authors'] super(SearchForm, self).__init__(*args, **kwargs) self.fields['filter_reviewer'] = ChoiceField(required=False, choices=[('', '---')] + [(r.username, r) for r in reviewers]) self.fields['filter_author'] = ChoiceField(required=False, choices=[('', '---')] + [(r.username, r) for r in authors]) def get_results(self): d = self.cleaned_data query = Paper.objects # TODO enable support for accepting papers and then enable this #if d['filter_accepted']: # query = query.filter( if d.get('filter_reviewer', ''): query = query.filter(authors__username=d['filter_reviewer']) if d.get('filter_author', ''): query = query.filter(reviewers__username=d['filter_author']) if d.get('filter_title_contains', ''): query = query.filter(latest_version__title__contains=d['filter_title_contains']) if d.get('sort_by','') == 'title': query = query.order_by('latest_version__title') elif d.get('sort_by','') == 'score_technical': query = query.order_by('latest_version__score_technical') print query.query.__str__() results = list(query.all()) return list(results) ``` #### File: demo/courseManager/submission.py ```python from datetime import * import sys sys.path.append("../../..") import JeevesLib from smt.Z3 import * import macropy.activate from users import * from assignment import * class Submission(): def __init__(self, submissionId, title, assignmentId, submitterId, fileRef): self.submissionId = submissionId self.title = title self.assignmentId = assignmentId self.submitterId = submitterId self.fileRef = fileRef self.submittedOn = "" self.grade = None self.submittedOn = datetime.now() JeevesLib.init() ## Policies ## def _isUser(context): return isinstance(context, User) def _isSubmitter(context): return context.userId == self.submitterId def _isInstructor(context): return isinstance(context, Instructor) ## Labels ## self._viewerL = JeevesLib.mkLabel() self._editorL = JeevesLib.mkLabel() self._adminL = JeevesLib.mkLabel() ## Restrict Labels ## JeevesLib.restrict(self._viewerL, lambda oc: JeevesLib.jor(lambda :_isSubmitter(oc), lambda : _isInstructor(oc) ) ) JeevesLib.restrict(self._editorL, lambda oc: _isSubmitter(oc) ) JeevesLib.restrict(self._adminL, lambda oc: _isInstructor(oc) ) ## Getter, Setters, and Show-ers ## #Grade def getGrade(self): score = JeevesLib.mkSensitive(_viewerL, self.grade, -1) return score def setGrade(self,score): # Would it be better to store score as a concretized value? # It wouldn't work as well for a database, but possibly in simple examples self.grade = score def showGrade(self, context): faceted_value = self.getGrade() return JeevesLib.concretize(context, faceted_value) #Submission Details (fileRef) def getSubmissionDetails(self): details = JeevesLib.mkSensitive(self._viewerL, self.fileRef, "N/A") return details def setSubmissionDetails(self, text): self.fileRef = text def showSubmissionDetails(self, context): return JeevesLib.concretize(context, self.getSubmissionDetails()) #Submission Title def getTitle(self): details = JeevesLib.mkSensitive(self._viewerL, self.title, "N/A") return details def setTitle(self, title): self.title = title def showTitle(self, context): return JeevesLib.concretize(context, self.getTitle()) ## Magic Methods ## def __repr__(self): #Is there a way to integrate contexts with representation? #Would there be a point? return "Submisison(%d, %s, %s)" % (self.submissionId, self.title, self.fileRef) def __eq__(self, other): if isinstance(other, self.__class__): return self.submissionId == other.submissionId and self.title == other.title else: return False def __ne__(self, other): return not self.__eq__(other) ``` #### File: demo/hipaa/tests.py ```python from datetime import date from django.contrib.auth.models import User from django.db import models from django.utils import unittest from django.test import TestCase import JeevesLib from jeevesdb import JeevesModel from jelf.models import Address, CoveredEntity, HospitalVisit, Individual, \ Treatment, UserProfile import nose.tools as nt class TestHealthModels(TestCase): def setUp(self): JeevesLib.init() self.arielsHouse=Address.objects.create( City="Cambridge", State="MA", Street="5 Y St.", ZipCode="14830") self.house1=Address.objects.create( City="Boston", State="MA", Street="625 Frost Ln.", ZipCode="14830") self.jean=Individual.objects.create( FirstName="Jean" , LastName="Yang" , Email="<EMAIL>" , Sex="Female" , BirthDate=date(1900,01,01) , Address=self.house1) self.ariel=Individual.objects.create( FirstName="Ariel", LastName="Jacobs", Email="<EMAIL>", Sex="Male", BirthDate=date(1993,03,21), Address=self.arielsHouse) self.jeanyang=User.objects.create_user( username="jeanyang" , password="hi") self.jeanyangProfile=UserProfile.objects.create( profiletype=1 , username="jeanyang" , email="<EMAIL>" , name="<NAME>" , individual=self.jean) self.arielj=User.objects.create_user( username="arielj321" , email="<EMAIL>" , password="<PASSWORD>") self.arielProfile=UserProfile.objects.create( profiletype=1 , username="arielj321" , email="<EMAIL>" , name="<NAME>" , individual=self.ariel) self.vision = CoveredEntity.objects.create(ein = "01GBS253DV" , name = "Vision National") self.visionProfile=UserProfile.objects.create( profiletype=2 , username="vision" , email="<EMAIL>" , name="Vision National" , entity=self.vision) self.health = CoveredEntity.objects.create(ein = "0424D3294N" , name = "Covered Health") self.healthProfile=UserProfile.objects.create( profiletype=2 , username="health" , email="<EMAIL>" , name="Covered Health" , entity=self.health) def test_get_sample_data(self): jeanyang = UserProfile.objects.get(username="jeanyang") self.assertEqual(JeevesLib.concretize(self.jeanyangProfile, jeanyang) , self.jeanyangProfile) def test_see_Address(self): self.assertEqual( JeevesLib.concretize(self.jeanyangProfile, self.jean.Address) , self.house1) self.assertEqual( JeevesLib.concretize(self.arielProfile, self.jean.Address.Street) , None) self.assertEqual( JeevesLib.concretize(self.arielProfile, self.jean.Address.ZipCode) , "14800") def test_hospital_visit_visibility(self): actual_visit_location = "Third room on the left" visit = HospitalVisit.objects.create(patient=self.ariel, date_admitted=date(2003,4,1), date_released=date(2003,9,13), condition="Good", location=actual_visit_location, hospital=self.vision) self.assertEqual( JeevesLib.concretize(self.jeanyangProfile, visit.location) , HospitalVisit.UNDISCLOSED_LOCATION) self.assertEqual( JeevesLib.concretize(self.arielProfile, visit.location) , actual_visit_location) self.assertEqual( JeevesLib.concretize(self.visionProfile, visit.location) , actual_visit_location) def test_treatment(self): treatment = Treatment.objects.create(patient=self.ariel, date_performed=date(2014,1,1), performing_entity = self.health, prescribing_entity = self.health, service = "W4-491") self.assertEqual( JeevesLib.concretize(self.arielProfile, treatment.patient) , self.ariel) self.assertEqual( JeevesLib.concretize(self.jeanyangProfile, treatment.patient) , None) self.assertEqual( JeevesLib.concretize(self.healthProfile, treatment.patient) , self.ariel) self.assertEqual( JeevesLib.concretize(self.visionProfile, treatment.patient) , None) ``` #### File: demo/jelf-skeleton/tests.py ```python from datetime import datetime from django.db import models from django.utils import unittest from django.test import TestCase import JeevesLib from jelf.models import UserProfile from jeevesdb import JeevesModel import nose.tools as nt class TestJelf(TestCase): def setUp(self): JeevesLib.init() self.alice = UserProfile.objects.create( username="alice", email="<EMAIL>") self.bob = UserProfile.objects.create( username="bob", email="<EMAIL>") def test_email_view(self): self.assertEqual(JeevesLib.concretize(self.alice, self.alice.email) , "<EMAIL>") self.assertEqual(JeevesLib.concretize(self.bob, self.alice.email) , "[redacted]") self.assertEqual( JeevesLib.concretize(self.alice , UserProfile.objects.get(email="<EMAIL>")) , self.alice) self.assertEqual( JeevesLib.concretize(self.bob , UserProfile.objects.get(email="<EMAIL>")) , None) ``` #### File: openmrs/openmrs/BaseClasses.py ```python from OpenmrsClasses import * class BaseOpenmrsObject(OpenmrsObject): def __init__(self): self.uuid = str(uuid4()) #generates a random uuid def getUuid(self): return self.uuid def setUuid(self, uuid): self.uuid = uuid def hashCode(self): if self.getUuid() == None: return hash(object) #im not sure if this serves the same purpose as "return super.hashCode();" in the JAVA code return hash(self.getUuid()) def equals(self, obj): if self is obj: return True if not(isinstance(obj, BaseOpenmrsObject)): return False other = obj if self.getUuid() == None: return False return self.getUuid() == (other.getUuid()) def __str__(self): return "ClassName{hashCode= " + str(self.hashCode()) + "," + "uuid=" + str(self.uuid) + "}" class BaseOpenmrsData(BaseOpenmrsObject, OpenmrsData): def __init(self,creator=None,dateCreated=None, changedBy=None, dateChanged=None, \ voided=False,dateVoided=None, voidedBy=None, voidReason=None): self.creator = creator self.dateCreated = dateCreated self.changedBy = changedBy self.dateChanged = dateChanged self.voided = voided self.dateVoided = dateVoided self.voidedBy = voidedBy self.voidReason = voidReason def getCreator(self): return self.creator def setCreator(self, creator): self.creator = creator def getDateCreated(self): return self.dateCreated def setDateCreated(self, dateCreated): self.dateCreated = dateCreated def getChangedBy(self): return self.changedBy def setChangedBy(self, changedBy): self.changedBy = changedBy def getDateChanged(self): return self.dateChanged def setDateChanged(self, dateChanged): self.dateChanged = dateChanged def isVoided(self): return self.voided def getVoided(self): return self.isVoided() def setVoided(self, voided): self.voided = voided def getDateVoided(self): return self.dateVoided def setDateVoided(self, dateVoided): self.dateVoided = dateVoided def getVoidedBy(self): return self.voidedBy def setVoidedBy(self, voidedBy): self.voidedBy = voidedBy def getVoidReason(self): return self.voidReason def setVoidReason(self, voidReason): self.voidReason = voidReason class BaseOpenmrsMetadata(BaseOpenmrsObject, OpenmrsMetadata): def __init__(self,name=None, description=None, creator=None, dateCreated=None, \ changedBy=None, retired=False, retiredBy = None): self.name = name self.description = description self.creator = creator self.dateCreated = dateCreated self.changedBy = changedBy self.dateChanged = dateChanged self.retired = retired self.dateRetired = dateRetired self.retiredBy = retiredBy self.retireReason = retireReason ``` #### File: openmrs/openmrs/Obs.py ```python from BaseClasses import * import sets import logging class Node: def __init__(self, cargo, nextNode, previousNode): self.cargo = cargo self.next = nextNode self.previous = previousNode def __str__(self): print str(self.cargo) class ordered_set(set): def __init__(self, *args, **kwargs): set.__init__(self, *args, **kwargs) self.elements = [] for i in self: self.elements.append(i) self._order = self.elements #NOT SURE IF ORDERED IN ORDER ELTS WERE ADDED def add(self, elt): set.add(self, elt) if elt in self._order: self._order.remove(elt) self._order.append(elt) def remove(self, elt): set.remove(self, elt) self._order.remove(elt) def order(self): return self._order[:] def ordered_items(self): return [(elt) for elt in self._order] o = ordered_set(set([3, 2, 5, 4, 10])) print o class Obs(BaseOpenmrsData): #needs to implement Serializable serialVersionUID = 112342333L #log = LogFactory.getLog(Obs) #haven't defined a LogFactory yet def __init__(self, obsId=None,question=None, obsDatetime=None, accessionNumber=None,\ obsGroup = None, groupMembers=set(), valueCoded=None, valueCodedName=None,\ valueDrug=None, valueGroupId=None,valueDatetime=None, valueNumeric=None,\ valueModifier=None, valueText=None, valueComplex=None,complexData = None,\ comment=None, personId=None,person=None, order=None, location=None,encounter=None,\ previousVersion=None, voided=None, creator = None, dateCreated=None, voidedBy= None,\ dateVoided=None, voidReason = None): self.obsId = obsId self.concept = question self.obsDatetime = obsDatetime self.accessionNumber = accessionNumber self.obsGroup = obsGroup self.groupMembers = groupMembers #set self.valueCoded = valueCoded #Concept obj self.valueCodedName = valueCodedName #ConceptName obj self.valueDrug = valueDrug #Drug obj self.valueGroupId = valueGroupId self.valueDatetime = valueDatetime self.valueNumeric = valueNumeric self.valueModifier = valueModifier self.valueText = valueText self.valueComplex = valueComplex self.complexData = complexData #transient: can't be serialized self.comment = comment self.person = person if person != None: self.personId = person.getPersonId() #transient self.order = order self.location = location self.encounter = encounter self.previousVersion = previousVersion self.voided = voided self.creator = creator self.dateCreated = dateCreated self.voidedBy = voidedBy self.dateVoided = dateVoided self.voidReason = voidReason def newInstance(self, obsToCopy): newObs = Obs(obsToCopy.getPerson(), obsToCopy.getConcept(), obsToCopy.getObsDatetime(),\ obsToCopy.getLocation()) newObs.setObsGroup(obsToCopy.getObsGroup()) newObs.setAccessionNumber(obsToCopy.getAccessionNumber()) newObs.setValueCoded(obsToCopy.getValueCoded()) newObs.setValueDrug(obsToCopy.getValueDrug()) newObs.setValueGroupId(obsToCopy.getValueGroupId()) newObs.setValueDatetime(obsToCopy.getValueDatetime()) newObs.setValueNumeric(obsToCopy.getValueNumeric()) newObs.setValueModifier(obsToCopy.getValueModifier()) newObs.setValueText(obsToCopy.getValueText()) newObs.setComment(obsToCopy.getComment()) newObs.setOrder(obsToCopy.getOrder()) newObs.setEncounter(obsToCopy.getEncounter()) newObs.setCreator(obsToCopy.getCreator()) newObs.setDateCreated(obsToCopy.getDateCreated()) newObs.setVoided(obsToCopy.getVoided()) newObs.setVoidedBy(obsToCopy.getVoidedBy()) newObs.setDateVoided(obsToCopy.getDateVoided()) newObs.setVoidReason(obsToCopy.getVoidReason()) newObs.setValueComplex(obsToCopy.getValueComplex()) newObs.setComplexData(obsToCopy.getComplexData()) if obsToCopy.hasGroupMembers(True): for member in obsToCopy.getGroupMembers(True): if member.getObsId() == None: newObs.addGroupMember(member) else: newObs.addGroupMember(Obs.newInstance(member)) return newObs def getComment(self): return self.comment def setComment(self, comment): self.comment = comment def getConcept(self): return self.concept def setConcept(self, concept): self.concept = concept def getConceptDescription(self): if self.getConcept() == None: return None return self.concept.getDescription() def getEncounter(self): return self.encounter def setEncounter(self, encounter): self.encounter = encounter def getLocation(self): return self.location def setLocation(self, location): self.location = location def getObsDatetime(self): return self.obsDatetime def setObsDatetime(self, obsDatetime): self.obsDatetime = obsDatetime def getObsGroup(self): return self.obsGroup def setObsGroup(self,obsGroup): self.obsGroup = obsGroup def hasGroupMembers(self, includeVoided=False): #uses springFramework library pass def isObsGrouping(self): return self.hasGroupMembers(True) def getGroupMembers(self, includeVoided=False): if includeVoided: return self.groupMembers if self.groupMembers == None: return None nonVoided = ordered_set(self.groupMembers) for obs in nonVoided: if obs.isVoided(): nonVoided.remove(obs) #not sure if this is what's required return nonVoided def setGroupMembers(self, groupMembers): self.groupMembers = groupMembers def addGroupMember(self, member): if member == None: return None if self.getGroupMembers() == None: self.groupMembers = sets.ImmutableSet() #Same as HashSet? ## if member == self: ## raise APIException("An obsGroup cannot have itself as a mentor. obsGroup: " + self \ ## + " obsMember attempting to add: " + member) #I think APIException is defined in another JAVA class file; not sure if Python has this member.setObsGroup(self) self.groupMembers.add(member) def removeGroupMember(self, member): if (member == None) or self.getGroupMembers() == None: return None if self.groupMembers.remove(member): member.setObsGroup(None) def getRelatedObservations(self): ret = sets.Set() #Supposed to be ImmutableSet but we can't add elts to that; Set isnt hashed if self.isObsGrouping(): for i in self.getGroupMembers(): ret.add(i) parentObs = self while parentObs.getObsGroup() != None : for obsSibling in parentObs.getObsGroup().getGroupMembers(): if not(obsSibling.isObsGrouping()): ret.add(obsSibling) parentObs = parentObs.getObsGroup() elif self.getObsGroup() != None: for obsSibling in self.getObsGroup().getGroupMembers(): if not(obsSibling.isObsGrouping()): ret.add(obsSibling) return ret def getObsId(self): return self.obsId def setObsId(self,obsId): self.obsId = obsId def getOrder(self): return self.order def setOrder(self, order): self.order = order def getPersonId(self): return self.personId def setPersonId(self, personId): self.personId = personId def getPerson(self): return self.person def setPerson(self, person): self.person = person if person != None: self.personId = person.getPersonId() def setValueBoolean(self, valueBoolean): if (valueBoolean != None) and (self.getConcept() != None) and self.getConcept().getDatatype().isBoolean(): if valueBoolean.booleanValue(): self.setValueCoded(Context().getConceptService().getTrueConcept()) else: self.setValueCoded(Context().getConceptService().getFalseConcept()) #Context is from api directory elif valueBoolean == None: self.setValueCoded(None) def getValueAsBoolean(self): if self.getValueCoded() != None: if self.getValueCoded() == Context().getConceptService().getTrueConcept(): return True elif self.getValueCoded() == Context().getConceptService().getFalseConcept(): return False elif self.getValueNumeric() != None: if self.getValueNumeric() == 1: return True elif self.getValueNumeric() == 0: return False return None def getValueBoolean(self): if (self.getConcept() != None) and (self.valueCoded != None) and (self.getConcept().getDatatype().isBoolean()): trueConcept = Context.getConceptService().getTrueConcept() return (trueConcept != None) and (self.valueCoded.getId() == trueConcept.getId()) return None def getValueCoded(self): return self.valueCoded def setValueCoded(self, valueCoded): self.valueCoded = valueCoded def getValueCodedName(self): return self.valueCodedName def setValueCodedName(self, valueCodedName): self.valueCodedName = valueCodedName def getValueDrug(self): return self.valueDrug def setValueDrug(self, valueDrug): self.valueDrug = valueDrug def getValueDatetime(self): return self.valueDatetime def setValueDatetime(self, valueDatetime): self.valueDatetime = valueDatetime def getValueDate(self): return self.valueDatetime def setValueDate(self, valueDate): self.valueDatetime = valueDate def getValueTime(self): return self.valueDatetime def setValueTime(self, valueTime): self.valueDatetime = valueTime def getValueGroupId(self): return self.valueGroupId def setValueGroupId(self, valueGroupId): self.valueGroupId = valueGroupId def getValueModifier(self): return self.valueModifier def setValueModifier(self, valueModifier): self.valueModifier = valueModifier def getValueNumeric(self): return self.valueNumeric def setValueNumeric(self, valueNumeric): self.valueNumeric = valueNumeric def getValueText(self): return self.valueText def setValueText(self, valueText): self.valueText = valueText def isComplex(self): if self.getConcept() != None: return self.getConcept().isComplex() return False def getValueComplex(self): return self.valueComplex def setValueComplex(self, valueComplex): self.valueComplex = valueComplex def setComplexData(self, complexData): self.complexData = complexData def getComplexData(self): return self.complexData def getAccessionNumber(self): return self.accessionNumber def setAccessionNumber(self, accessionNumber): self.accessionNumber = accessionNumber def getValueAsString(self, locale): #Needs NumberFormat and other built in functions pass def setValueAsString(self, s): #logging.Logger.debug("self.getConcept() == " + str(self.getConcept())) if (self.getConcept() != None): #and (isBlank(s)): #isBlank(s) checks if s is whitespace, null, or empty. Need to find Python equivalent. abbrev = self.getConcept().getDatatype().getHl7Abbreviation() if abbrev == "BIT": self.setValueBoolean(s) #s might be lowercase true, not True. Solve this. elif abbrev == "CWE": raise RuntimeException("Not Yet Implemented") elif (abbrev == "NM") or (abbrev == "SN"): self.setValueNumeric(s) elif abbrev == "DT": self.setValueDatetime(s) #dateFormat.parse(s) in JAVA. must be in da specific date format elif abbrev == "TM": self.setValueDatetime(s) #timeFormat.parse(s) in JAVA too elif abbrev == "TS": self.setValueDatetime(s) #datetimeFormat.parse(s) elif abbrev == "ST": self.setValueText(s) ## else: ## raise RuntimeException("Don't know how to handle " + str(abbrev)) ## else: ## raise RuntimeException("concept is None for " + str(self)) def __str__(self): if self.obsId == None: return "obs id is None" return "Obs #" + str(self.obsId) def getId(self): return self.getObsId def setId(self,Id): self.setObsId(Id) def getPreviousVersion(self): return self.previousVersion def setPreviousVersion(self, previousVersion): self.previousVersion = previousVersion def hasPreviousVersion(self): return self.getPreviousVersion() != None ``` #### File: openmrs/openmrs/OpenmrsClasses.py ```python from abc import ABCMeta, abstractmethod import uuid #import org.python.google.common.base.objects as objects #not sure if this is the same as com.google.common.base.Objects in JAVA code from datetime import datetime, date import pickle #Interfaces class OpenmrsObject: """This is the base interface for all OpenMRS-defined classes""" __metaclass__ = ABCMeta @abstractmethod def getId(self): #return id - The unique Identifier for the object pass def setId(self, Id): #param id - The unique Identifier for the object pass def getUuid(self): #return the universally unique id for this object pass def setUuid(self, uuid): #param uuid a universally unique id for this object pass class OpenmrsData(Auditable, Voidable): __metaclass__ = ABCMeta class OpenmrsMetadata(Auditable, Retireable): __metaclass__ = ABCMeta def getName(self): pass def setName(self, name): pass def getDescription(self): pass def setDescription(self, description): pass ``` #### File: simpleRule/jelf/views.py ```python from django.contrib.auth.forms import UserCreationForm from django.contrib.auth import login, authenticate from django.template import RequestContext from django.contrib.auth.decorators import login_required from django.shortcuts import render_to_response from django.http import HttpResponseRedirect from django.contrib.auth.models import User from models import UserProfile, individual from sourcetrans.macro_module import macros, jeeves import JeevesLib # "Glue method". Right now you just write a method like `index` below. # It returns a (faceted) tuple either of the form (template_name, template_ctxt) # or ("redirect", redirect_url). # # SUPER HACKY, obviously. Ideally we would have a full object similar to the django # HttpResponse that can be faceted. Such an object would need to support Jeeves, # of course. And the concretized rendering should be moved to a library function # (like render_to_response). @jeeves def add_to_context(context_dict, request, template_name, profile, concretize): template_name = concretize(template_name) context_dict['concretize'] = concretize context_dict['is_admin'] = profile != None and profile.level == "chair" context_dict['profile'] = profile context_dict['is_logged_in'] = (request.user and request.user.is_authenticated() and (not request.user.is_anonymous())) def request_wrapper(view_fn): def real_view_fn(request, *args, **kwargs): try: profile = UserProfile.objects.get(username=request.user.username) ans = view_fn(request, profile, *args, **kwargs) template_name = ans[0] context_dict = ans[1] if template_name == "redirect": path = context_dict return HttpResponseRedirect(JeevesLib.concretize(profile, path)) concretizeState = JeevesLib.jeevesState.policyenv.getNewSolverState(profile) def concretize(val): return concretizeState.concretizeExp(val, JeevesLib.jeevesState.pathenv.getEnv()) add_to_context(context_dict, request, template_name, profile, concretize) return render_to_response(template_name, RequestContext(request, context_dict)) except Exception: import traceback traceback.print_exc() raise real_view_fn.__name__ = view_fn.__name__ return real_view_fn @login_required @request_wrapper @jeeves def profile_view(request, user_profile): profile = UserProfile.objects.get(username=request.user.username) if profile == None: profile = UserProfile(username=request.user.username) if request.method == 'POST': profile.email = request.POST.get('email', '') profile.save() return ("profile.html", { "email": profile.email, "which_page": "profile", }) # An example of a really simple view. # The argument `user_profile` is a UserProfile object (defined in models.py). # Use this instead of `request.user` (which is the ordinary django User model). # You can access request.POST and request.GET as normal. @login_required @request_wrapper @jeeves def index(request, user_profile): return ( "index.html" , { 'name' : user_profile.email } ) @login_required @request_wrapper @jeeves def patients(request, user_profile, patient): p=individual.objects.get(pk=patient) print p.ssn dataset={"Address":p.address} return ( "patient.html" , { 'patient' : p } ) def register_account(request): if request.user.is_authenticated(): return HttpResponseRedirect("index") if request.method == 'POST': form = UserCreationForm(request.POST) if form.is_valid(): user = form.save() user.save() UserProfile.objects.create( username=user.username, email=request.POST.get('email', ''), ) user = authenticate(username=request.POST['username'], password=request.POST['<PASSWORD>']) login(request, user) return HttpResponseRedirect("index") else: form = UserCreationForm() return render_to_response("registration/account.html", RequestContext(request, { 'form' : form, 'which_page' : "register" })) ``` #### File: jeeves/env/PathVars.py ```python import JeevesLib import fast.AST class VarSetting: def __init__(self, var, val): self.var = var self.val = val def __eq__(self, other): return self.var is other.var and self.val == other.val def __str__(self): return "(%s, %s)" % (self.var.name, self.val) # TODO: Define your path variable environment, as well as manipulations, here. class PathVars: def __init__(self): self.conditions = [] def push(self, var, value): assert type(var) == fast.AST.Var assert type(value) == bool if VarSetting(var, not value) in self.conditions: raise Exception("Path condition for '%s' already set to '%s'" % (var, not value)) self.conditions.append(VarSetting(var, value)) def pop(self): self.conditions.pop() def hasPosVar(self, var): return VarSetting(var, True) in self.conditions def hasNegVar(self, var): return VarSetting(var, False) in self.conditions def getPathFormula(self): c2 = [(vs.var if vs.val else fast.AST.Not(vs.var)) for vs in self.conditions] return reduce(fast.AST.And, c2, fast.AST.Constant(True)) def getEnv(self): return {vs.var.name : vs.val for vs in self.conditions} ``` #### File: jeeves/jeevesdb/JeevesModel.py ```python from django.db import models from django.db.models.query import QuerySet from django.db.models import Manager from django.db.models import CharField from django.apps import apps import django.db.models.fields.related import JeevesLib from JeevesLib import fexpr_cast from fast.AST import Facet, FObject, Unassigned, FExpr, FNull import JeevesModelUtils class JeevesQuerySet(QuerySet): """The Jeeves version of Django's QuerySet. """ @JeevesLib.supports_jeeves def get_jiter(self): """Creates an iterator for the QuerySet. Returns a list (object, conditions) of rows and their conditions. """ self._fetch_all() def acquire_label_by_name(app_label, label_name, obj=None): """Gets a label by name. """ if JeevesLib.doesLabelExist(label_name): return JeevesLib.getLabel(label_name) else: label = JeevesLib.mkLabel(label_name, uniquify=False) model_name, field_name, jeeves_id = label_name.split('__') # Get the model that corresponds to the application label and # model name. # TODO: Make get_model faster? model = apps.get_model(app_label, model_name) # Gets the current row so we can feed it to the policy. # TODO: Figure out why we need the faceted value here... obj = model.objects.get(use_base_env=True, jeeves_id=jeeves_id) restrictor = getattr(model, 'jeeves_restrict_' + field_name) JeevesLib.restrict(label, lambda ctxt: restrictor(obj, ctxt), True) return label def get_env(obj, fields, env): """Gets the Jeeves variable environment associated with the fields. """ if hasattr(obj, "jeeves_vars"): jeeves_vars = JeevesModelUtils.unserialize_vars(obj.jeeves_vars) else: jeeves_vars = {} for var_name, value in jeeves_vars.iteritems(): # TODO: We only need to do this whole label thing if we don't # know where the value is going. # Loop through the list of variables and their assignments. if var_name in env and env[var_name] != value: # If we already know that this variable doesn't match with # our program counter, we return nothing for this current # variable. return None # Otherwise, we map the variable to the condition value. # TODO: See if the value is consistent. label = acquire_label_by_name(self.model._meta.app_label , var_name) env[var_name] = (label, value) for field, subs in fields.iteritems() if fields else []: # Do the same thing for the fields. if field and get_env(getattr(obj, field), subs, env) is None: return None return env results = [] for obj in self._result_cache: # Get the corresponding labels for our list of conditions. env = get_env(obj, self.query.select_related, {}) if env is not None: results.append((obj, env)) return results def get(self, use_base_env=False, **kwargs): """Fetches a JList of rows that match the conditions. """ matches = self.filter(**kwargs).get_jiter() if len(matches) == 0: return None for (row, _) in matches: if row.jeeves_id != matches[0][0].jeeves_id: raise Exception("wow such error: \ get() found rows for more than one jeeves_id") viewer = JeevesLib.get_viewer() has_viewer = not isinstance(viewer, FNull) pathenv = JeevesLib.jeevesState.pathenv.getEnv() solverstate = JeevesLib.get_solverstate() cur = None for (row, conditions) in matches: old = cur cur = FObject(row) for var_name, (label, val) in conditions.iteritems(): # TODO: Figure out if we need to make obj the faceted value. ''' if has_viewer: if solverstate.assignLabel(label, pathenv): if not val: cur = old else: if val: cur = old else: ''' if val: cur = Facet(label, cur, old) else: cur = Facet(label, old, cur) try: return cur.partialEval({} if use_base_env \ else JeevesLib.jeevesState.pathenv.getEnv()) except TypeError: raise Exception("wow such error: \ could not find a row for every condition") def filter(self, **kwargs): """Jelf implementation of filter. """ related_names = [] for argname, _ in kwargs.iteritems(): related_name = argname.split('__') if len(related_name) > 1: related_names.append("__".join(related_name[:-1])) if len(related_names) > 0: return super( JeevesQuerySet, self).filter( **kwargs).select_related(*related_names) else: return super(JeevesQuerySet, self).filter(**kwargs) @JeevesLib.supports_jeeves def all(self): viewer = JeevesLib.get_viewer() if isinstance(viewer, FNull): # If we don't know who the viewer is, create facets. elements = JeevesLib.JList2([]) env = JeevesLib.jeevesState.pathenv.getEnv() for val, cond in self.get_jiter(): popcount = 0 for vname, (vlabel, vval) in cond.iteritems(): if vname not in env: # vlabel = acquire_label_by_name( # self.model._meta.app_label, vname, obj=val) JeevesLib.jeevesState.pathenv.push(vlabel, vval) popcount += 1 elif env[vname] != vval: break else: elements.append(val) for _ in xrange(popcount): JeevesLib.jeevesState.pathenv.pop() return elements else: # Otherwise concretize early. elements = [] env = JeevesLib.jeevesState.pathenv.getEnv() solverstate = JeevesLib.get_solverstate() for val, cond in self.get_jiter(): # Get a list of (object, condition list). for vname, (vlabel, vval) in cond.iteritems(): # Loop through the list of conditions to see what they # should actually be assigned to. if vname in env: # If we have already assumed the current variable, # then add the element if the assumption matches # the condition. if env[vname] == vval: elements.append(val) else: # If the current label matches with our policy # assumptions, then we add it to the list of results. label = solverstate.assignLabel(vlabel, env) env[vlabel] = label if label == vval: elements.append(val) return elements @JeevesLib.supports_jeeves def delete(self): # can obviously be optimized # TODO write tests for this for val, cond in self.get_jiter(): popcount = 0 for vname, (vlabel, vval) in cond.iteritems(): if vname not in JeevesLib.jeevesState.pathenv.getEnv(): # vlabel = acquire_label_by_name( # self.model._meta.app_label, vname) JeevesLib.jeevesState.pathenv.push(vlabel, vval) popcount += 1 val.delete() for _ in xrange(popcount): JeevesLib.jeevesState.pathenv.pop() @JeevesLib.supports_jeeves def exclude(self, **kwargs): raise NotImplementedError # TODO: methods that return a queryset subclass of the ordinary QuerySet # need to be overridden def values(self, *fields): raise NotImplementedError def values_list(self, *fields, **kwargs): raise NotImplementedError def dates(self, field_name, kind, order='ASC'): raise NotImplementedError def datetimes(self, field_name, kind, order='ASC', tzinfo=None): raise NotImplementedError def none(self): raise NotImplementedError class JeevesManager(Manager): """The Jeeves version of Django's Manager class, which [...] """ @JeevesLib.supports_jeeves def get_queryset(self): return JeevesQuerySet(self.model, using=self._db).order_by('jeeves_id') def all(self): return super(JeevesManager, self).all().all() @JeevesLib.supports_jeeves def create(self, **kw): elt = self.model(**kw) elt.save() return elt def clone(old): """Returns a copy of an object. """ new_kwargs = dict([(fld.name, getattr(old, fld.name)) for fld in old._meta.fields if not isinstance(fld, JeevesForeignKey)]) ans = old.__class__(**new_kwargs) for fld in old._meta.fields: if isinstance(fld, JeevesForeignKey): setattr(ans, fld.attname, getattr(old, fld.attname)) return ans ''' def acquire_label_by_name(app_label, label_name, obj=None): """Gets a label by name. """ if JeevesLib.doesLabelExist(label_name): return JeevesLib.getLabel(label_name) else: label = JeevesLib.mkLabel(label_name, uniquify=False) model_name, field_name, jeeves_id = label_name.split('__') # Get the model that corresponds to the application label and model # name. model = apps.get_model(app_label, model_name) # Gets the current row so we can feed it to the policy. if obj==None: obj = model.objects.get(use_base_env=True, jeeves_id=jeeves_id) # print "RESTRICTING OBJECT ", obj.id, ": ", obj.jeeves_id # print "WITH LABEL ", label restrictor = getattr(model, 'jeeves_restrict_' + field_name) JeevesLib.restrict(label, lambda ctxt: restrictor(obj, ctxt), True) return label ''' def get_one_differing_var(vars1, vars2): """Checks to see if two sets of variables have one differing one?? """ if len(vars1) != len(vars2): return None ans = None for var in vars1: if var in vars2: if vars1[var] != vars2[var]: if ans is None: ans = var else: return None else: return None return ans def label_for(*field_names): """The decorator for associating a label with a field. """ def decorator(field): """Definition of the decorator itself. """ field._jeeves_label_for = field_names return field return decorator #from django.db.models.base import ModelBase #class JeevesModelBase(ModelBase): # def __new__(cls, name, bases, attrs): # obj = super(ModelBase, cls).__new__(cls, name, bases, attrs) # return obj # Make a Jeeves Model that enhances the vanilla Django model with information # about how labels work and that kind of thing. We'll also need to override # some methods so that we can create records and make queries appropriately. class JeevesModel(models.Model): """ Jeeves version of Django's Model class. """ def __init__(self, *args, **kw): self.jeeves_base_env = JeevesLib.jeevesState.pathenv.getEnv() super(JeevesModel, self).__init__(*args, **kw) self._jeeves_labels = {} field_names = [f.name for f in self._meta.concrete_fields] for attr in dir(self.__class__): if attr.startswith('jeeves_restrict_'): value = getattr(self.__class__, attr) label_name = attr[len('jeeves_restrict_'):] assert label_name not in self._jeeves_labels if hasattr(value, '_jeeves_label_for'): self._jeeves_labels[label_name] = value._jeeves_label_for else: assert label_name in field_names self._jeeves_labels[label_name] = (label_name,) def __setattr__(self, name, value): field_names = [field.name for field in self._meta.concrete_fields] \ if hasattr(self, '_meta') else [] if name in field_names and \ name not in ('jeeves_vars', 'jeeves_id', 'id'): if name in self.__dict__: old_val = getattr(self, name) else: old_val = Unassigned("attribute '%s' in %s" % (name, self.__class__.__name__)) models.Model.__setattr__(self, name, JeevesLib.jassign(old_val, value, self.jeeves_base_env)) else: models.Model.__setattr__(self, name, value) objects = JeevesManager() jeeves_id = CharField(max_length=JeevesModelUtils.JEEVES_ID_LEN, null=False) jeeves_vars = CharField(max_length=1024, null=False) @JeevesLib.supports_jeeves def do_delete(self, vars_env): """A helper for delete? """ if len(vars_env) == 0: delete_query = self.__class__._objects_ordinary.filter( jeeves_id=self.jeeves_id) delete_query.delete() else: filter_query = self.__class__._objects_ordinary.filter( jeeves_id=self.jeeves_id) objs = list(filter_query) for obj in objs: eobj = JeevesModelUtils.unserialize_vars(obj.jeeves_vars) if any(var_name in eobj and eobj[var_name] != var_value for var_name, var_value in vars_env.iteritems()): continue if all(var_name in eobj and eobj[var_name] == var_value for var_name, var_value in vars_env.iteritems()): super(JeevesModel, obj).delete() continue addon = "" for var_name, var_value in vars_env.iteritems(): if var_name not in eobj: new_obj = clone(obj) if addon != "": new_obj.id = None # so when we save a new row will be made new_obj.jeeves_vars += addon + '%s=%d;' \ % (var_name, not var_value) addon += '%s=%d;' % (var_name, var_value) super(JeevesModel, new_obj).save() @JeevesLib.supports_jeeves def acquire_label(self, field_name): label_name = '%s__%s__%s' % \ (self.__class__.__name__, field_name, self.jeeves_id) if JeevesLib.doesLabelExist(label_name): return JeevesLib.getLabel(label_name) else: label = JeevesLib.mkLabel(label_name, uniquify=False) restrictor = getattr(self, 'jeeves_restrict_' + field_name) JeevesLib.restrict(label , lambda ctxt: restrictor(self, ctxt), True) return label @JeevesLib.supports_jeeves def save(self, *args, **kw): """Saves elements with the appropriate faceted labels. """ def full_eval(val, env): """Evaluating a value in the context of an environment. """ eval_expr = val.partialEval(env) return eval_expr.v # TODO: OMG why is this so long. if not self.jeeves_id: self.jeeves_id = JeevesModelUtils.get_random_jeeves_id() if kw.get("update_field", None) is not None: raise NotImplementedError("Partial saves not supported.") # Go through fields and do something. TODO: Figure out what. field_names = set() for field in self._meta.concrete_fields: if not field.primary_key and not hasattr(field, 'through'): field_names.add(field.attname) # Go through labels and create facets. for label_name, field_name_list in self._jeeves_labels.iteritems(): label = self.acquire_label(label_name) for field_name in field_name_list: public_field_value = getattr(self, field_name) private_field_value = getattr(self , 'jeeves_get_private_' + \ field_name)(self) faceted_field_value = JeevesLib.mkSensitive(label , public_field_value , private_field_value).partialEval( JeevesLib.jeevesState.pathenv. \ getEnv()) setattr(self, field_name, faceted_field_value) all_vars = [] field_dict = {} env = JeevesLib.jeevesState.pathenv.getEnv() for field_name in field_names: value = getattr(self, field_name) field_val = fexpr_cast(value).partialEval(env) all_vars.extend(v.name for v in field_val.vars()) field_dict[field_name] = field_val all_vars = list(set(all_vars)) for cur_vars in JeevesModelUtils.powerset(all_vars): true_vars = list(cur_vars) false_vars = list(set(all_vars).difference(cur_vars)) env_dict = dict(env) env_dict.update({tv : True for tv in true_vars}) env_dict.update({fv : False for fv in false_vars}) self.do_delete(env_dict) klass = self.__class__ obj_to_save = klass(**{ field_name : full_eval(field_value, env_dict) for field_name, field_value in field_dict.iteritems() }) all_jid_objs = list( klass._objects_ordinary.filter( jeeves_id=obj_to_save.jeeves_id).all()) all_relevant_objs = [obj for obj in all_jid_objs if all(field_name == 'jeeves_vars' or getattr(obj_to_save, field_name) == getattr(obj, field_name) for field_name in field_dict)] # Optimization. # TODO: See how we can refactor this to shorten the function. while True: # check if we can collapse # if we can, repeat; otherwise, exit for i in xrange(len(all_relevant_objs)): other_obj = all_relevant_objs[i] diff_var = get_one_differing_var(env_dict , JeevesModelUtils.unserialize_vars( other_obj.jeeves_vars)) if diff_var is not None: super(JeevesModel, other_obj).delete() del env_dict[diff_var] break else: break obj_to_save.jeeves_vars = JeevesModelUtils.serialize_vars(env_dict) super(JeevesModel, obj_to_save).save(*args, **kw) @JeevesLib.supports_jeeves def delete(self): if self.jeeves_id is None: return field_names = set() for field in self._meta.concrete_fields: if not field.primary_key and not hasattr(field, 'through'): field_names.add(field.attname) all_vars = [] field_dict = {} env = JeevesLib.jeevesState.pathenv.getEnv() for field_name in field_names: value = getattr(self, field_name) field_fexpr = fexpr_cast(value).partialEval(env) all_vars.extend(v.name for v in field_fexpr.vars()) field_dict[field_name] = field_fexpr for var_set in JeevesModelUtils.powerset(all_vars): true_vars = list(var_set) false_vars = list(set(all_vars).difference(var_set)) env_dict = dict(env) env_dict.update({tv : True for tv in true_vars}) env_dict.update({fv : False for fv in false_vars}) self.do_delete(env_dict) class Meta(object): """Abstract class. """ abstract = True _objects_ordinary = Manager() @JeevesLib.supports_jeeves def __eq__(self, other): if isinstance(other, FExpr): return other == self return isinstance(other, self.__class__) and \ self.jeeves_id == other.jeeves_id @JeevesLib.supports_jeeves def __ne__(self, other): if isinstance(other, FExpr): return other != self return not (isinstance(other, self.__class__) and \ self.jeeves_id == other.jeeves_id) from django.contrib.auth.models import User @JeevesLib.supports_jeeves def evil_hack(self, other): """Hack __eq__ that checks equality if we have FExprs and checks object ID equality otherwise. """ if isinstance(other, FExpr): return other == self return isinstance(other, self.__class__) and self.id == other.id User.__eq__ = evil_hack class JeevesRelatedObjectDescriptor(property): """WRITE SOME COMMENTS. """ @JeevesLib.supports_jeeves def __init__(self, field): self.field = field self.cache_name = field.get_cache_name() @JeevesLib.supports_jeeves def get_cache(self, instance): """Gets the... cache? """ cache_attr_name = self.cache_name if hasattr(instance, cache_attr_name): cache = getattr(instance, cache_attr_name) if not isinstance(cache, dict): jid = getattr(instance, self.field.get_attname()) assert not isinstance(jid, FExpr) cache = {jid : cache} setattr(instance, cache_attr_name, cache) else: cache = {} setattr(instance, cache_attr_name, cache) return cache @JeevesLib.supports_jeeves def __get__(self, instance, instance_type): """?? """ if instance is None: return self cache = self.get_cache(instance) def get_obj(jeeves_id): """?? """ if jeeves_id is None: return None if jeeves_id not in cache: cache[jeeves_id] = self.field.to.objects.get( **{self.field.join_field.name:jeeves_id}) return cache[jeeves_id] if instance is None: return self return JeevesLib.facetMapper( fexpr_cast( getattr(instance, self.field.get_attname())), get_obj) @JeevesLib.supports_jeeves def __set__(self, instance, value): cache = self.get_cache(instance) def get_id(obj): """Gets the ID associated with an object. """ if obj is None: return None obj_jid = getattr(obj, self.field.join_field.name) if obj_jid is None: raise Exception("Object must be saved before it can be \ attached via JeevesForeignKey.") cache[obj_jid] = obj return obj_jid ids = JeevesLib.facetMapper(fexpr_cast(value), get_id) setattr(instance, self.field.get_attname(), ids) from django.db.models.fields.related import ForeignObject class JeevesForeignKey(ForeignObject): """Jeeves version of Django's ForeignKey. """ requires_unique_target = False @JeevesLib.supports_jeeves def __init__(self, to, *args, **kwargs): self.to = to if (isinstance(to,basestring)): super(JeevesForeignKey, self).__init__( to, kwargs.pop("on_delete",models.DO_NOTHING), kwargs.pop("from_fields",[]), kwargs.pop("to_fields",[]), *args, **kwargs) else: self.join_field = to._meta.pk for field in to._meta.fields: if field.name == 'jeeves_id': self.join_field = field break else: # support non-Jeeves tables self.join_field = to._meta.pk #raise Exception("Need jeeves_id field") super(JeevesForeignKey, self).__init__( to, models.DO_NOTHING, [self], [self.join_field], *args, **kwargs) self.db_constraint = False @JeevesLib.supports_jeeves def contribute_to_class(self, cls, name, virtual_only=False): super(JeevesForeignKey, self).contribute_to_class( cls, name, virtual_only=virtual_only) setattr(cls, self.name, JeevesRelatedObjectDescriptor(self)) @JeevesLib.supports_jeeves def get_attname(self): return '%s_id' % self.name @JeevesLib.supports_jeeves def get_attname_column(self): attname = self.get_attname() column = self.db_column or attname return attname, column def deconstruct(self): name, path, args, kwargs = super(JeevesForeignKey, self).deconstruct() #kwargs['to'] = self.to kwargs.pop("from_fields",None) kwargs.pop("to_fields",None) kwargs.pop("on_delete",None) return name, path, args, kwargs ''' @JeevesLib.supports_jeeves def db_type(self, connection): return IntegerField().db_type(connection=connection) ''' @JeevesLib.supports_jeeves def get_path_info(self): opts = self.to._meta from_opts = self.model._meta return [django.db.models.fields.related.PathInfo( from_opts, opts, (self.join_field,), self, False, True)] @JeevesLib.supports_jeeves def get_joining_columns(self): return ((self.column, self.join_field.column),) @property def foreign_related_fields(self): return (self.join_field,) @property def local_related_fields(self): return (self,) @property def related_fields(self): return ((self, self.join_field),) @property def reverse_related_fields(self): return ((self.join_field, self),) @JeevesLib.supports_jeeves def get_extra_restriction(self, where_class, alias, related_alias): return None @JeevesLib.supports_jeeves def get_cache_name(self): return '_jfkey_cache_' + self.name def db_type(self, connection): return "VARCHAR(%d)" % JeevesModelUtils.JEEVES_ID_LEN ``` #### File: jeeves/sourcetrans/classes.py ```python from macropy.core.macros import * from macropy.core.quotes import macros, ast, u from ast import * def classes_transform(node, gen_sym): @Walker def transform(tree, **k2): if isinstance(tree, ClassDef): self_name = gen_sym() attr_name = gen_sym() value_name = gen_sym() newfunc = FunctionDef(name='__setattr__', args=arguments(args=[Name(id=self_name, ctx=Param()), Name(id=attr_name, ctx=Param()), Name(id=value_name, ctx=Param())], vararg=None, kwarg=None, defaults=[]), decorator_list=[], body=[Assign([Subscript(value=Attribute(value=Name(id=self_name, ctx=Load()), attr='__dict__', ctx=Load()), slice=Index(Name(id=attr_name, ctx=Load())), ctx=Store())], Call(func=Attribute(value=Name(id='JeevesLib', ctx=Load()), attr='jassign', ctx=Load()), args=[Call(func=Attribute(value=Attribute(value=Name(id=self_name), attr='__dict__', ctx=Load()), attr='get', ctx=Load()), args=[Name(id=attr_name), Call(func=Attribute(value=Name(id='JeevesLib', ctx=Load()), attr='Unassigned', ctx=Load()), args=[BinOp(left=Str(s="attribute '%s'"), op=Mod(), right=Name(id=attr_name))], keywords=[], starargs=None, kwargs=None)], keywords=[], starargs=None, kwargs=None), Name(id=value_name)], keywords=[], starargs=None, kwargs=None))]) return copy_location(ClassDef(name=tree.name, bases=tree.bases, body=([newfunc] + tree.body), decorator_list=tree.decorator_list), tree) return transform.recurse(node) ``` #### File: jeeves/sourcetrans/common.py ```python from macropy.core.macros import * from macropy.core.quotes import macros, ast, u from ast import * @Walker def toParam(tree, **kw): if isinstance(tree, Store): return Param() @Walker def toLoad(tree, **kw): if isinstance(tree, Store): return Load() def storeToParam(node): return toParam.recurse(node) def storeToLoad(node): return toLoad.recurse(node) ``` #### File: jeeves/sourcetrans/namespace.py ```python from macropy.core.macros import * from macropy.core.quotes import macros, ast, u from ast import * import common import copy def get_params_in_arguments(node): @Walker def get_params(tree, collect, **kw): if isinstance(tree, Name): collect(tree.id) (_, p1) = get_params.recurse_collect(node.args) (_, p2) = get_params.recurse_collect(node.vararg) (_, p3) = get_params.recurse_collect(node.kwarg) return ((p1 + p2) + p3) def get_vars_in_scope(node): @Walker def get_vars(tree, collect, stop, **kw): if (isinstance(tree, Name) and isinstance(tree.ctx, Store)): collect(tree.id) if isinstance(tree, ClassDef): stop() if ((tree != node) and isinstance(tree, FunctionDef)): collect(tree.name) stop() if isinstance(tree, arguments): pass @Walker def get_globals(tree, collect, stop, **kw): if isinstance(tree, Global): for name in tree.names: collect(name) if ((tree != node) and (isinstance(tree, ClassDef) or isinstance(tree, FunctionDef))): stop() (_, v) = get_vars.recurse_collect(node) (_, g) = get_globals.recurse_collect(node) p = get_params_in_arguments(node.args) return (list((set(v) - set(g))), p) def replace_local_scopes_with_namespace(node, gen_sym): @Walker def transform(tree, stop, ctx, set_ctx, **kw): if isinstance(tree, FunctionDef): (varNames, paramNames) = get_vars_in_scope(tree) namespaceName = gen_sym() namespaceStmt = Assign(targets=[Name(id=namespaceName, ctx=Store())], value=Call(func=Attribute(value=Name(id='JeevesLib', ctx=Load()), attr='Namespace', ctx=Load()), args=[Dict(keys=[Str(p) for p in paramNames], values=[Name(id=p, ctx=Load()) for p in paramNames]), Str(s=tree.name)], keywords=[], starargs=None, kwargs=None)) scopeMapping = dict(ctx) for name in (varNames + paramNames): scopeMapping[name] = namespaceName name = tree.name args = transform.recurse(tree.args, ctx=ctx) body = transform.recurse(tree.body, ctx=scopeMapping) decorator_list = transform.recurse(tree.decorator_list, ctx=ctx) newtree = copy_location(FunctionDef(name=name, args=args, body=([namespaceStmt] + body), decorator_list=decorator_list), tree) stop() if ((tree.name in ctx) and (ctx[tree.name] != None)): outerAssignStmt = copy_location(Assign(targets=[Attribute(value=Name(id=ctx[tree.name], ctx=Load()), attr=tree.name, ctx=Store())], value=Name(id=tree.name, ctx=Load())), tree) return [newtree, outerAssignStmt] else: return newtree if isinstance(tree, Lambda): paramNames = get_params_in_arguments(tree.args) scopeMapping = dict(ctx) for name in paramNames: scopeMapping[name] = None args = transform.recurse(tree.args, ctx=ctx) body = transform.recurse(tree.body, ctx=scopeMapping) newlambda = copy_location(Lambda(args=args, body=body), tree) stop() return newlambda if (isinstance(tree, Name) and (isinstance(tree.ctx, Load) or isinstance(tree.ctx, Store) or isinstance(tree.ctx, Del))): if ((tree.id in ctx) and (ctx[tree.id] != None)): return Attribute(value=Name(id=ctx[tree.id], ctx=Load()), attr=tree.id, ctx=tree.ctx) if isinstance(tree, For): target = tree.target iter = tree.iter body = tree.body orelse = tree.orelse stop() assignTarget = transform.recurse(copy.deepcopy(target), ctx=ctx) assignValue = common.storeToLoad(copy.deepcopy(target)) assignStmt = Assign([assignTarget], assignValue) iter = transform.recurse(iter, ctx=ctx) body = transform.recurse(body, ctx=ctx) orelse = transform.recurse(orelse, ctx=ctx) return copy_location(For(target=target, iter=iter, body=([assignStmt] + body), orelse=orelse), tree) if isinstance(tree, arguments): stop() return arguments(args=tree.args, vararg=tree.vararg, kwarg=tree.kwarg, defaults=transform.recurse(tree.defaults, ctx=ctx)) return transform.recurse(node, ctx={}) ``` #### File: gallery/authentication/testAuthConfidentiality.py ```python from smt.Z3 import * import unittest from AuthConfidentiality import Authentication, Principal import JeevesLib class TestAuthConfidentiality(unittest.TestCase): def setUp(self): JeevesLib.init() self.alicePwd = "<PASSWORD>" self.bobPwd = "<PASSWORD>" self.aliceUser = Principal.User(1, "Alice", self.alicePwd) self.bobUser = Principal.User(2, "Bob", self.bobPwd) def testUserCanSeeOwnPassword(self): alicePwdToAlice = JeevesLib.concretize( self.aliceUser, self.aliceUser.pwd) self.assertEqual(alicePwdToAlice, self.alicePwd) def testUserCannotSeeOtherPassword(self): bobPwdToAlice = JeevesLib.concretize( self.aliceUser, self.bobUser.pwd) self.assertEqual(bobPwdToAlice, "") def testLogin(self): self.assertEqual( JeevesLib.concretize(self.aliceUser , Authentication.login(self.aliceUser, self.alicePwd)) , self.aliceUser) self.assertEqual( JeevesLib.concretize(self.aliceUser , Authentication.login(self.aliceUser, "otherPwd")) , Principal.NullUser()) def testSensitiveUserPassword(self): # Make a sensitive user that is either Alice or Bob. Make sure it shows the # the right password based on the access level of the user. pass if __name__ == '__main__': unittest.main() ``` #### File: gallery/battleship/Board.py ```python import JeevesLib from Bomb import Bomb from GamePiece import Carrier, Battleship, Cruiser, Destroyer, Submarine, NoShip from sourcetrans.macro_module import macros, jeeves from Square import Square class Board: class OutOfBoundsException(Exception): pass def __init__(self, owner): self.owner = owner self.boardSize = 10 # Initialize the board. self.board = [] for i in range(0, self.boardSize): curCol = [] for j in range(0, self.boardSize): curCol.append(Square(self.owner)) self.board.append(curCol) self.pieces = [ Carrier(owner), Battleship(owner), Cruiser(owner) , Destroyer(owner), Destroyer(owner) , Submarine(owner), Submarine(owner) ] def getSquare(self, x, y): return self.board[x][y] # Places a ship on the board. Looks in the list of current pieces to mark # it as placed. Updates the ship and the board. @jeeves def placeShip(self, ctxt, ship, start, end): for cur in self.pieces: if cur == ship and not cur.isPlaced(): # Update the relevant board pieces. pts = cur.getPiecePoints(start, end) if not (pts == None): for pt in pts: shipUpdated = self.board[pt.x][pt.y].updateShip(ctxt, cur) squareUpdated = cur.addSquare(self.board[pt.x][pt.y]) if not (shipUpdated and squareUpdated): return False return cur.placePiece(ctxt) # If the points didn't fit, then we can't place the ship. else: print "Piece didn't fit: " print ship print "\n" return False print "Don't have piece to play: " print ship print "\n" return False # Places a bomb. Updates the specific square on the board. If there is a # ship at this point, this function also updates the ship with the fact that # it has been bombed. # NOTE: This seems to be a problematic function causing some tests to fail... @jeeves def placeBomb(self, ctxt, x, y): if x < self.boardSize and y < self.boardSize: boardShip = self.board[x][y].getShip() bomb = Bomb(ctxt.user) bombedPoint = self.board[x][y].bomb(ctxt, bomb) succeeded = (bombedPoint if boardShip == NoShip() else boardShip.bombPiece(ctxt) and JeevesLib.jall(map(lambda s: s.bomb(ctxt, bomb), boardShip.getSquares()))) print "succeeded: ", succeeded return boardShip if succeeded else NoShip() else: print "Bomb location outside of board: (" + x + ", " + y + ")" + "\n" raise OutOfBoundsException # Determines if all of a player's pieces have been placed. This variable # should always be concrete. @jeeves def allPlaced(self): return JeevesLib.jall(map(lambda p: p.isPlaced(), self.pieces)) # Determines if all pieces on the board have been bombed. This variable # should always be concrete. @jeeves def hasLost(self): return JeevesLib.jall(map(lambda p: p.isBombed(), self.pieces)) def printBoard(self, ctxt): for j in range(0, 10): for i in range(0, 10): curSquare = self.board[i][j] if JeevesLib.concretize(ctxt, curSquare.hasBomb()): print("X") elif concretize(ctxt, curSquare.hasShip()): print("S") else: print("W") print("\n") def printUnplacedPieces(self): print "Remaining unplaced pieces:\n" for p in self.pieces: if not p.isPlaced(): print p print "\n" def printRemainingPieces(self): print "Remaining pieces:\n" for p in self.pieces: if not p.isBombed(): print p print "\n" ``` #### File: gallery/fitnessprivacy/Fitness.py ```python import datetime import operator import JeevesLib from sourcetrans.macro_module import macros, jeeves class InternalError(Exception): def __init__(self, message): self.message = message # Definitions of locations. @jeeves class User: def __init__(self, userId): self.userId = userId self.activity = {} def addActivity(self, activity): # Confidentiality policy: self.activity[datetime.date] = activity # POLICY: If there are more than k people who have similar profile like Jean, # then uses avgActivityLevelJean as the real value to compute the group # average; else use the existing group average avgActivityLevelinstead. This # means that adding Jean's value avgActivityLevelJean will not change the # group's average and will not be picked out as outliner. def getAverageActivityLevel(self): a = JeevesLib.mkLabel('activity_label') # Compute average activity level. activityValues = self.activity.values() # TODO: We really want this to be the average activity level of the # *output channel* and not the current activity level... genericAverage = 3 averageActivity = reduce(operator.add, activityValues, 0) / len(activityValues) if len(activityValues) > 0 else genericAverage # Can see the average activity level if there are at least 3 with averages # within 0.2. JeevesLib.restrict(a , lambda oc: oc.atLeastKSimilar(averageActivity, 2, 0.2)) activityLevel = JeevesLib.mkSensitive(a, averageActivity, genericAverage) return activityLevel # TODO: Is this just the view context? @jeeves class UserNetwork: def __init__(self, users=[]): self.users = users def getAverageActivityLevel(self): userSum = reduce(lambda acc, u: acc + u.averageActivityLevel(), self.users) return userSum / len(self.users) def atLeastKSimilar(self, avg, k, delta): count = 0 for user in self.users: userAvg = user.getAverageActivityLevel() if (avg - delta) < userAvg and userAvg < (avg + delta): count += 1 return count >= k ``` #### File: gallery/proteinsignal/testChemotaxis.py ```python import JeevesLib from smt.Z3 import * import unittest from RSphaeroides import RSphaeroides import JeevesLib class TestAuction(unittest.TestCase): def setUp(self): JeevesLib.init() def test_something(self): r = RSphaeroides() pass ``` #### File: jeevesdb_perf/testdb/models.py ```python from django.db import models from jeevesdb import JeevesModel class Animal(JeevesModel.JeevesModel): name = models.CharField(max_length=30) sound = models.CharField(max_length=30) @staticmethod def jeeves_get_private_sound(animal): return "" @staticmethod @JeevesModel.label_for('sound') def jeeves_restrict_awplabel(animal, ctxt): return ctxt == animal class Zoo(JeevesModel.JeevesModel): name = models.CharField(max_length=30) inhabitant = JeevesModel.JeevesForeignKey(Animal) ''' class AnimalWithPolicy(JeevesModel.JeevesModel): name = models.CharField(max_length=30) sound = models.CharField(max_length=30) @staticmethod def jeeves_get_private_sound(animal): return "" @staticmethod def jeeves_restrict_sound(animal, ctxt): return ctxt == animal ''' ``` #### File: jeevesdb/testdb/models.py ```python from django.db import models from jeevesdb import JeevesModel class Animal(JeevesModel.JeevesModel): name = models.CharField(max_length=30) sound = models.CharField(max_length=30) def speak(self): return "The %s says \"%s\"" % (self.name, self.sound) class Zoo(JeevesModel.JeevesModel): name = models.CharField(max_length=30) inhabitant = JeevesModel.JeevesForeignKey(Animal) class AnimalWithPolicy(JeevesModel.JeevesModel): name = models.CharField(max_length=30) sound = models.CharField(max_length=30) @staticmethod def jeeves_get_private_sound(animal): return "" @staticmethod def jeeves_restrict_sound(animal, ctxt): return ctxt == animal class AnimalWithPolicy2(JeevesModel.JeevesModel): name = models.CharField(max_length=30) sound = models.CharField(max_length=30) @staticmethod def jeeves_get_private_sound(animal): return "" @staticmethod @JeevesModel.label_for('sound') def jeeves_restrict_awplabel(animal, ctxt): return ctxt == animal ``` #### File: jeeves/test/testCaching.py ```python import unittest import macropy.activate from sourcetrans.macro_module import macros, jeeves import JeevesLib import operator @jeeves class TestClass: def __init__(self, a, b): self.a = a self.b = b @jeeves class TestClassMethod: def __init__(self, a, b): self.a = a self.b = b def add_a_to_b(self): self.b += self.a def return_sum(self): return self.a + self.b @jeeves class TestClass1: def __init__(self, a): self.a = a def __getstate__(self): if hasattr(self.a, '__getstate__'): return "(TestClass1:%s)" % self.a.__getstate__() else: return "(TestClass1:%s)" % repr(self.a) @jeeves class TestClass1Eq: def __init__(self, a): self.a = a def __eq__(self, other): return self.a == other.a def __ne__(self, other): return self.a != other.a def __lt__(self, other): return self.a < other.a def __gt__(self, other): return self.a > other.a def __le__(self, other): return self.a <= other.a def __ge__(self, other): return self.a >= other.a class TestSourceTransform(unittest.TestCase): def setUp(self): # reset the Jeeves state JeevesLib.init() JeevesLib.start_caching() @jeeves def test_restrict_all_permissive(self): JeevesLib.clear_cache() x = JeevesLib.mkLabel('x') JeevesLib.restrict(x, lambda _: True) self.assertTrue(JeevesLib.concretize(None, x)) # Now we test the cache. self.assertTrue(JeevesLib.concretize(None, x)) self.assertEqual(len(JeevesLib.get_cache()), 1) @jeeves def test_restrict_all_restrictive(self): JeevesLib.clear_cache() x = JeevesLib.mkLabel('x') JeevesLib.restrict(x, lambda _: False) self.assertFalse(JeevesLib.concretize(None, x)) self.assertFalse(JeevesLib.concretize(None, x)) @jeeves def test_restrict_with_context(self): JeevesLib.clear_cache() x = JeevesLib.mkLabel('x') JeevesLib.restrict(x, lambda y: y == 2) self.assertTrue(JeevesLib.concretize(2, x)) self.assertTrue(JeevesLib.concretize(2, x)) self.assertFalse(JeevesLib.concretize(3, x)) self.assertFalse(JeevesLib.concretize(3, x)) @jeeves def test_restrict_with_sensitive_value(self): JeevesLib.clear_cache() x = JeevesLib.mkLabel('x') JeevesLib.restrict(x, lambda y: y == 2) value = JeevesLib.mkSensitive(x, 42, 41) self.assertEquals(JeevesLib.concretize(2, value), 42) self.assertEquals(JeevesLib.concretize(2, value), 42) self.assertEquals(JeevesLib.concretize(1, value), 41) self.assertEquals(JeevesLib.concretize(1, value), 41) self.assertEquals(len(JeevesLib.get_cache()), 2) @jeeves def test_restrict_with_cyclic(self): jl = JeevesLib jl.clear_cache() # use the value itself as the context x = jl.mkLabel('x') jl.restrict(x, lambda ctxt : ctxt == 42) value = jl.mkSensitive(x, 42, 20) self.assertEquals(jl.concretize(value, value), 42) self.assertEquals(jl.concretize(value, value), 42) value = jl.mkSensitive(x, 41, 20) self.assertEquals(jl.concretize(value, value), 20) self.assertEquals(jl.concretize(value, value), 20) @jeeves def test_restrict_under_conditional(self): JeevesLib.clear_cache() x = JeevesLib.mkLabel('x') value = JeevesLib.mkSensitive(x, 42, 0) if value == 42: JeevesLib.restrict(x, lambda ctxt : ctxt == 1) self.assertEquals(JeevesLib.concretize(0, value), 0) self.assertEquals(JeevesLib.concretize(0, value), 0) self.assertEquals(JeevesLib.concretize(1, value), 42) self.assertEquals(JeevesLib.concretize(1, value), 42) y = JeevesLib.mkLabel('y') value = JeevesLib.mkSensitive(y, 43, 0) if value == 42: JeevesLib.restrict(y, lambda ctxt : ctxt == 1) self.assertEquals(JeevesLib.concretize(0, value), 43) self.assertEquals(JeevesLib.concretize(0, value), 43) self.assertEquals(JeevesLib.concretize(1, value), 43) self.assertEquals(JeevesLib.concretize(1, value), 43) @jeeves def test_jbool_functions_fexprs(self): jl = JeevesLib jl.clear_cache() x = jl.mkLabel('x') jl.restrict(x, lambda (a,_) : a == 42) for lh in (True, False): for ll in (True, False): for rh in (True, False): for rl in (True, False): l = jl.mkSensitive(x, lh, ll) r = jl.mkSensitive(x, rh, rl) self.assertEquals( jl.concretize((42,0), l and r) , operator.and_(lh, rh)) self.assertEquals( jl.concretize((42,0), l and r) , operator.and_(lh, rh)) self.assertEquals( jl.concretize((10,0), l and r) , operator.and_(ll, rl)) self.assertEquals( jl.concretize((10,0), l and r) , operator.and_(ll, rl)) @jeeves def test_jif_with_assign(self): jl = JeevesLib jl.clear_cache() y = jl.mkLabel('y') jl.restrict(y, lambda ctxt : ctxt == 42) value0 = jl.mkSensitive(y, 0, 1) value2 = jl.mkSensitive(y, 2, 3) value = value0 value = value2 self.assertEquals(jl.concretize(42, value), 2) self.assertEquals(jl.concretize(10, value), 3) self.assertEquals(jl.concretize(42, value), 2) self.assertEquals(jl.concretize(10, value), 3) value = 100 value = value2 self.assertEquals(jl.concretize(42, value), 2) self.assertEquals(jl.concretize(10, value), 3) self.assertEquals(jl.concretize(42, value), 2) self.assertEquals(jl.concretize(10, value), 3) value = value0 value = 200 self.assertEquals(jl.concretize(42, value), 200) self.assertEquals(jl.concretize(10, value), 200) self.assertEquals(jl.concretize(42, value), 200) self.assertEquals(jl.concretize(10, value), 200) value = 100 value = 200 self.assertEquals(jl.concretize(42, value), 200) self.assertEquals(jl.concretize(10, value), 200) self.assertEquals(jl.concretize(42, value), 200) self.assertEquals(jl.concretize(10, value), 200) @jeeves def test_jif_with_assign_with_pathvars(self): jl = JeevesLib jl.clear_cache() x = jl.mkLabel('x') y = jl.mkLabel('y') jl.restrict(x, lambda (a,_) : a) jl.restrict(y, lambda (_,b) : b) value0 = jl.mkSensitive(y, 0, 1) value2 = jl.mkSensitive(y, 2, 3) value = value0 if x: value = value2 self.assertEquals(jl.concretize((True, True), value), 2) self.assertEquals(jl.concretize((True, False), value), 3) self.assertEquals(jl.concretize((False, True), value), 0) self.assertEquals(jl.concretize((False, False), value), 1) self.assertEquals(jl.concretize((True, True), value), 2) self.assertEquals(jl.concretize((True, False), value), 3) self.assertEquals(jl.concretize((False, True), value), 0) self.assertEquals(jl.concretize((False, False), value), 1) value = value0 if not x: value = value2 self.assertEquals(jl.concretize((False, True), value), 2) self.assertEquals(jl.concretize((False, False), value), 3) self.assertEquals(jl.concretize((True, True), value), 0) self.assertEquals(jl.concretize((True, False), value), 1) self.assertEquals(jl.concretize((False, True), value), 2) self.assertEquals(jl.concretize((False, False), value), 3) self.assertEquals(jl.concretize((True, True), value), 0) self.assertEquals(jl.concretize((True, False), value), 1) @jeeves def test_function_facets(self): def add1(a): return a+1 def add2(a): return a+2 jl = JeevesLib jl.clear_cache() x = jl.mkLabel('x') jl.restrict(x, lambda ctxt : ctxt == 42) fun = jl.mkSensitive(x, add1, add2) value = fun(15) self.assertEquals(jl.concretize(42, value), 16) self.assertEquals(jl.concretize(41, value), 17) self.assertEquals(jl.concretize(42, value), 16) self.assertEquals(jl.concretize(41, value), 17) @jeeves def test_objects_faceted(self): jl = JeevesLib jl.clear_cache() x = jl.mkLabel('x') jl.restrict(x, lambda ctxt : ctxt) y = jl.mkSensitive(x, TestClass(1, 2), TestClass(3, 4)) self.assertEquals(jl.concretize(True, y.a), 1) self.assertEquals(jl.concretize(True, y.b), 2) self.assertEquals(jl.concretize(False, y.a), 3) self.assertEquals(jl.concretize(False, y.b), 4) self.assertEquals(jl.concretize(True, y.a), 1) self.assertEquals(jl.concretize(True, y.b), 2) self.assertEquals(jl.concretize(False, y.a), 3) self.assertEquals(jl.concretize(False, y.b), 4) @jeeves def test_objects_mutate(self): jl = JeevesLib jl.clear_cache() x = jl.mkLabel('x') jl.restrict(x, lambda ctxt : ctxt) s = TestClass(1, None) t = TestClass(3, None) y = jl.mkSensitive(x, s, t) if y.a == 1: y.a = y.a + 100 self.assertEquals(jl.concretize(True, y.a), 101) self.assertEquals(jl.concretize(True, s.a), 101) self.assertEquals(jl.concretize(True, t.a), 3) self.assertEquals(jl.concretize(False, y.a), 3) self.assertEquals(jl.concretize(False, s.a), 1) self.assertEquals(jl.concretize(False, t.a), 3) self.assertEquals(jl.concretize(True, y.a), 101) self.assertEquals(jl.concretize(True, s.a), 101) self.assertEquals(jl.concretize(True, t.a), 3) self.assertEquals(jl.concretize(False, y.a), 3) self.assertEquals(jl.concretize(False, s.a), 1) self.assertEquals(jl.concretize(False, t.a), 3) @jeeves def test_context_mutate(self): jl = JeevesLib jl.clear_cache() test_alice = TestClass(1, 1) test_bob = TestClass(2, 2) x = jl.mkLabel('x') jl.restrict(x, lambda ctxt: ctxt.a == 1) y = jl.mkSensitive(x, 42, 0) self.assertEquals(jl.concretize(test_alice, y), 42) self.assertEquals(jl.concretize(test_bob, y), 0) test_alice.a = 2 test_bob.a = 1 self.assertEquals(jl.concretize(test_alice, y), 0) self.assertEquals(jl.concretize(test_bob, y), 42) @jeeves def test_objects_methodcall(self): jl = JeevesLib jl.clear_cache() x = jl.mkLabel('x') jl.restrict(x, lambda ctxt : ctxt) s = TestClassMethod(1, 10) t = TestClassMethod(100, 1000) y = jl.mkSensitive(x, s, t) self.assertEquals(jl.concretize(True, y.return_sum()), 11) self.assertEquals(jl.concretize(False, y.return_sum()), 1100) self.assertEquals(jl.concretize(True, y.return_sum()), 11) self.assertEquals(jl.concretize(False, y.return_sum()), 1100) y.add_a_to_b() self.assertEquals(jl.concretize(True, s.a), 1) self.assertEquals(jl.concretize(True, s.b), 11) self.assertEquals(jl.concretize(True, t.a), 100) self.assertEquals(jl.concretize(True, t.b), 1000) self.assertEquals(jl.concretize(True, y.a), 1) self.assertEquals(jl.concretize(True, y.b), 11) self.assertEquals(jl.concretize(False, s.a), 1) self.assertEquals(jl.concretize(False, s.b), 10) self.assertEquals(jl.concretize(False, t.a), 100) self.assertEquals(jl.concretize(False, t.b), 1100) self.assertEquals(jl.concretize(False, y.a), 100) self.assertEquals(jl.concretize(False, y.b), 1100) self.assertEquals(jl.concretize(True, s.a), 1) self.assertEquals(jl.concretize(True, s.b), 11) self.assertEquals(jl.concretize(True, t.a), 100) self.assertEquals(jl.concretize(True, t.b), 1000) self.assertEquals(jl.concretize(True, y.a), 1) self.assertEquals(jl.concretize(True, y.b), 11) self.assertEquals(jl.concretize(False, s.a), 1) self.assertEquals(jl.concretize(False, s.b), 10) self.assertEquals(jl.concretize(False, t.a), 100) self.assertEquals(jl.concretize(False, t.b), 1100) self.assertEquals(jl.concretize(False, y.a), 100) self.assertEquals(jl.concretize(False, y.b), 1100) @jeeves def test_objects_eq_is(self): jl = JeevesLib jl.clear_cache() x = jl.mkLabel('x') jl.restrict(x, lambda ctxt : ctxt) a = TestClass1(3) b = TestClass1(3) c = TestClass1(2) # Ensure that a < b and b < c (will probably be true anyway, # just making sure) s = sorted((a, b, c)) a = s[0] b = s[1] c = s[2] a.a = 3 b.a = 3 c.a = 2 v1 = jl.mkSensitive(x, a, c) v2 = jl.mkSensitive(x, b, c) v3 = jl.mkSensitive(x, c, a) self.assertEquals(jl.concretize(True, v1 == v1), True) self.assertEquals(jl.concretize(True, v2 == v2), True) self.assertEquals(jl.concretize(True, v3 == v3), True) self.assertEquals(jl.concretize(True, v1 == v2), False) self.assertEquals(jl.concretize(True, v2 == v3), False) self.assertEquals(jl.concretize(True, v3 == v1), False) self.assertEquals(jl.concretize(True, v1 == v1), True) self.assertEquals(jl.concretize(True, v2 == v2), True) self.assertEquals(jl.concretize(True, v3 == v3), True) self.assertEquals(jl.concretize(True, v1 == v2), False) self.assertEquals(jl.concretize(True, v2 == v3), False) self.assertEquals(jl.concretize(True, v3 == v1), False) self.assertEquals(jl.concretize(True, v1 != v1), False) self.assertEquals(jl.concretize(True, v2 != v2), False) self.assertEquals(jl.concretize(True, v3 != v3), False) self.assertEquals(jl.concretize(True, v1 != v2), True) self.assertEquals(jl.concretize(True, v2 != v3), True) self.assertEquals(jl.concretize(True, v3 != v1), True) self.assertEquals(jl.concretize(True, v1 != v1), False) self.assertEquals(jl.concretize(True, v2 != v2), False) self.assertEquals(jl.concretize(True, v3 != v3), False) self.assertEquals(jl.concretize(True, v1 != v2), True) self.assertEquals(jl.concretize(True, v2 != v3), True) self.assertEquals(jl.concretize(True, v3 != v1), True) self.assertEquals(jl.concretize(True, v1 < v1), False) self.assertEquals(jl.concretize(True, v2 < v2), False) self.assertEquals(jl.concretize(True, v3 < v3), False) self.assertEquals(jl.concretize(True, v1 < v2), True) self.assertEquals(jl.concretize(True, v2 < v3), True) self.assertEquals(jl.concretize(True, v3 < v1), False) self.assertEquals(jl.concretize(True, v1 < v1), False) self.assertEquals(jl.concretize(True, v2 < v2), False) self.assertEquals(jl.concretize(True, v3 < v3), False) self.assertEquals(jl.concretize(True, v1 < v2), True) self.assertEquals(jl.concretize(True, v2 < v3), True) self.assertEquals(jl.concretize(True, v3 < v1), False) self.assertEquals(jl.concretize(True, v1 > v1), False) self.assertEquals(jl.concretize(True, v2 > v2), False) self.assertEquals(jl.concretize(True, v3 > v3), False) self.assertEquals(jl.concretize(True, v1 > v2), False) self.assertEquals(jl.concretize(True, v2 > v3), False) self.assertEquals(jl.concretize(True, v3 > v1), True) self.assertEquals(jl.concretize(True, v1 > v1), False) self.assertEquals(jl.concretize(True, v2 > v2), False) self.assertEquals(jl.concretize(True, v3 > v3), False) self.assertEquals(jl.concretize(True, v1 > v2), False) self.assertEquals(jl.concretize(True, v2 > v3), False) self.assertEquals(jl.concretize(True, v3 > v1), True) self.assertEquals(jl.concretize(True, v1 <= v1), True) self.assertEquals(jl.concretize(True, v2 <= v2), True) self.assertEquals(jl.concretize(True, v3 <= v3), True) self.assertEquals(jl.concretize(True, v1 <= v2), True) self.assertEquals(jl.concretize(True, v2 <= v3), True) self.assertEquals(jl.concretize(True, v3 <= v1), False) self.assertEquals(jl.concretize(True, v1 <= v1), True) self.assertEquals(jl.concretize(True, v2 <= v2), True) self.assertEquals(jl.concretize(True, v3 <= v3), True) self.assertEquals(jl.concretize(True, v1 <= v2), True) self.assertEquals(jl.concretize(True, v2 <= v3), True) self.assertEquals(jl.concretize(True, v3 <= v1), False) self.assertEquals(jl.concretize(True, v1 >= v1), True) self.assertEquals(jl.concretize(True, v2 >= v2), True) self.assertEquals(jl.concretize(True, v3 >= v3), True) self.assertEquals(jl.concretize(True, v1 >= v2), False) self.assertEquals(jl.concretize(True, v2 >= v3), False) self.assertEquals(jl.concretize(True, v3 >= v1), True) self.assertEquals(jl.concretize(True, v1 >= v1), True) self.assertEquals(jl.concretize(True, v2 >= v2), True) self.assertEquals(jl.concretize(True, v3 >= v3), True) self.assertEquals(jl.concretize(True, v1 >= v2), False) self.assertEquals(jl.concretize(True, v2 >= v3), False) self.assertEquals(jl.concretize(True, v3 >= v1), True) self.assertEquals(jl.concretize(False, v2 == v3), False) self.assertEquals(jl.concretize(False, v2 != v3), True) self.assertEquals(jl.concretize(False, v2 < v3), False) self.assertEquals(jl.concretize(False, v2 > v3), True) self.assertEquals(jl.concretize(False, v2 <= v3), False) self.assertEquals(jl.concretize(False, v2 >= v3), True) self.assertEquals(jl.concretize(False, v2 == v3), False) self.assertEquals(jl.concretize(False, v2 != v3), True) self.assertEquals(jl.concretize(False, v2 < v3), False) self.assertEquals(jl.concretize(False, v2 > v3), True) self.assertEquals(jl.concretize(False, v2 <= v3), False) self.assertEquals(jl.concretize(False, v2 >= v3), True) a = TestClass1Eq(3) b = TestClass1Eq(3) c = TestClass1Eq(2) v1 = jl.mkSensitive(x, a, c) v2 = jl.mkSensitive(x, b, c) v3 = jl.mkSensitive(x, c, a) self.assertEquals(jl.concretize(True, v1 == v1), True) self.assertEquals(jl.concretize(True, v2 == v2), True) self.assertEquals(jl.concretize(True, v3 == v3), True) self.assertEquals(jl.concretize(True, v1 == v2), True) self.assertEquals(jl.concretize(True, v2 == v3), False) self.assertEquals(jl.concretize(True, v3 == v1), False) self.assertEquals(jl.concretize(True, v1 == v1), True) self.assertEquals(jl.concretize(True, v2 == v2), True) self.assertEquals(jl.concretize(True, v3 == v3), True) self.assertEquals(jl.concretize(True, v1 == v2), True) self.assertEquals(jl.concretize(True, v2 == v3), False) self.assertEquals(jl.concretize(True, v3 == v1), False) self.assertEquals(jl.concretize(True, v1 != v1), False) self.assertEquals(jl.concretize(True, v2 != v2), False) self.assertEquals(jl.concretize(True, v3 != v3), False) self.assertEquals(jl.concretize(True, v1 != v2), False) self.assertEquals(jl.concretize(True, v2 != v3), True) self.assertEquals(jl.concretize(True, v3 != v1), True) self.assertEquals(jl.concretize(True, v1 != v1), False) self.assertEquals(jl.concretize(True, v2 != v2), False) self.assertEquals(jl.concretize(True, v3 != v3), False) self.assertEquals(jl.concretize(True, v1 != v2), False) self.assertEquals(jl.concretize(True, v2 != v3), True) self.assertEquals(jl.concretize(True, v3 != v1), True) self.assertEquals(jl.concretize(True, v1 < v1), False) self.assertEquals(jl.concretize(True, v2 < v2), False) self.assertEquals(jl.concretize(True, v3 < v3), False) self.assertEquals(jl.concretize(True, v1 < v2), False) self.assertEquals(jl.concretize(True, v2 < v3), False) self.assertEquals(jl.concretize(True, v3 < v1), True) self.assertEquals(jl.concretize(True, v1 < v1), False) self.assertEquals(jl.concretize(True, v2 < v2), False) self.assertEquals(jl.concretize(True, v3 < v3), False) self.assertEquals(jl.concretize(True, v1 < v2), False) self.assertEquals(jl.concretize(True, v2 < v3), False) self.assertEquals(jl.concretize(True, v3 < v1), True) self.assertEquals(jl.concretize(True, v1 > v1), False) self.assertEquals(jl.concretize(True, v2 > v2), False) self.assertEquals(jl.concretize(True, v3 > v3), False) self.assertEquals(jl.concretize(True, v1 > v2), False) self.assertEquals(jl.concretize(True, v2 > v3), True) self.assertEquals(jl.concretize(True, v3 > v1), False) self.assertEquals(jl.concretize(True, v1 > v1), False) self.assertEquals(jl.concretize(True, v2 > v2), False) self.assertEquals(jl.concretize(True, v3 > v3), False) self.assertEquals(jl.concretize(True, v1 > v2), False) self.assertEquals(jl.concretize(True, v2 > v3), True) self.assertEquals(jl.concretize(True, v3 > v1), False) self.assertEquals(jl.concretize(True, v1 <= v1), True) self.assertEquals(jl.concretize(True, v2 <= v2), True) self.assertEquals(jl.concretize(True, v3 <= v3), True) self.assertEquals(jl.concretize(True, v1 <= v2), True) self.assertEquals(jl.concretize(True, v2 <= v3), False) self.assertEquals(jl.concretize(True, v3 <= v1), True) self.assertEquals(jl.concretize(True, v1 <= v1), True) self.assertEquals(jl.concretize(True, v2 <= v2), True) self.assertEquals(jl.concretize(True, v3 <= v3), True) self.assertEquals(jl.concretize(True, v1 <= v2), True) self.assertEquals(jl.concretize(True, v2 <= v3), False) self.assertEquals(jl.concretize(True, v3 <= v1), True) self.assertEquals(jl.concretize(True, v1 >= v1), True) self.assertEquals(jl.concretize(True, v2 >= v2), True) self.assertEquals(jl.concretize(True, v3 >= v3), True) self.assertEquals(jl.concretize(True, v1 >= v2), True) self.assertEquals(jl.concretize(True, v2 >= v3), True) self.assertEquals(jl.concretize(True, v3 >= v1), False) self.assertEquals(jl.concretize(True, v1 >= v1), True) self.assertEquals(jl.concretize(True, v2 >= v2), True) self.assertEquals(jl.concretize(True, v3 >= v3), True) self.assertEquals(jl.concretize(True, v1 >= v2), True) self.assertEquals(jl.concretize(True, v2 >= v3), True) self.assertEquals(jl.concretize(True, v3 >= v1), False) self.assertEquals(jl.concretize(False, v2 == v3), False) self.assertEquals(jl.concretize(False, v2 != v3), True) self.assertEquals(jl.concretize(False, v2 < v3), True) self.assertEquals(jl.concretize(False, v2 > v3), False) self.assertEquals(jl.concretize(False, v2 <= v3), True) self.assertEquals(jl.concretize(False, v2 >= v3), False) self.assertEquals(jl.concretize(False, v2 == v3), False) self.assertEquals(jl.concretize(False, v2 != v3), True) self.assertEquals(jl.concretize(False, v2 < v3), True) self.assertEquals(jl.concretize(False, v2 > v3), False) self.assertEquals(jl.concretize(False, v2 <= v3), True) self.assertEquals(jl.concretize(False, v2 >= v3), False) @jeeves def test_jhasElt(self): jl = JeevesLib jl.clear_cache() a = jl.mkLabel () jl.restrict(a, lambda x: x) xS = jl.mkSensitive(a, 42, 1) b = jl.mkLabel () jl.restrict(b, lambda x: x) yS = jl.mkSensitive(b, 43, 3) lst = [xS, 2, yS] self.assertEquals(jl.concretize(True, 42 in lst) , True) self.assertEquals(jl.concretize(False, 42 in lst) , False) self.assertEquals(jl.concretize(True, 1 in lst) , False) self.assertEquals(jl.concretize(False, 1 in lst) , True) self.assertEquals(jl.concretize(True, 43 in lst) , True) self.assertEquals(jl.concretize(False, 43 in lst) , False) self.assertEquals(jl.concretize(True, 3 in lst) , False) self.assertEquals(jl.concretize(False, 3 in lst) , True) self.assertEquals(jl.concretize(True, 42 in lst) , True) self.assertEquals(jl.concretize(False, 42 in lst) , False) self.assertEquals(jl.concretize(True, 1 in lst) , False) self.assertEquals(jl.concretize(False, 1 in lst) , True) self.assertEquals(jl.concretize(True, 43 in lst) , True) self.assertEquals(jl.concretize(False, 43 in lst) , False) self.assertEquals(jl.concretize(True, 3 in lst) , False) self.assertEquals(jl.concretize(False, 3 in lst) , True) @jeeves def test_list(self): jl = JeevesLib jl.clear_cache() x = jl.mkLabel('x') jl.restrict(x, lambda ctxt : ctxt) l = jl.mkSensitive(x, [40,41,42], [0,1,2,3]) self.assertEqual(jl.concretize(True, l[0]), 40) self.assertEqual(jl.concretize(True, l[1]), 41) self.assertEqual(jl.concretize(True, l[2]), 42) self.assertEqual(jl.concretize(False, l[0]), 0) self.assertEqual(jl.concretize(False, l[1]), 1) self.assertEqual(jl.concretize(False, l[2]), 2) self.assertEqual(jl.concretize(False, l[3]), 3) self.assertEqual(jl.concretize(True, l[0]), 40) self.assertEqual(jl.concretize(True, l[1]), 41) self.assertEqual(jl.concretize(True, l[2]), 42) self.assertEqual(jl.concretize(False, l[0]), 0) self.assertEqual(jl.concretize(False, l[1]), 1) self.assertEqual(jl.concretize(False, l[2]), 2) self.assertEqual(jl.concretize(False, l[3]), 3) self.assertEqual(jl.concretize(True, l.__len__()), 3) self.assertEqual(jl.concretize(False, l.__len__()), 4) self.assertEqual(jl.concretize(True, l.__len__()), 3) self.assertEqual(jl.concretize(False, l.__len__()), 4) l[1] = 19 self.assertEqual(jl.concretize(True, l[0]), 40) self.assertEqual(jl.concretize(True, l[1]), 19) self.assertEqual(jl.concretize(True, l[2]), 42) self.assertEqual(jl.concretize(False, l[0]), 0) self.assertEqual(jl.concretize(False, l[1]), 19) self.assertEqual(jl.concretize(False, l[2]), 2) self.assertEqual(jl.concretize(False, l[3]), 3) self.assertEqual(jl.concretize(True, l[0]), 40) self.assertEqual(jl.concretize(True, l[1]), 19) self.assertEqual(jl.concretize(True, l[2]), 42) self.assertEqual(jl.concretize(False, l[0]), 0) self.assertEqual(jl.concretize(False, l[1]), 19) self.assertEqual(jl.concretize(False, l[2]), 2) self.assertEqual(jl.concretize(False, l[3]), 3) @jeeves def test_jmap(self): JeevesLib.clear_cache() x = JeevesLib.mkLabel('x') JeevesLib.restrict(x, lambda ctxt : ctxt) l = JeevesLib.mkSensitive(x, [0,1,2], [3,4,5,6]) m = [x*x for x in l] self.assertEqual(JeevesLib.concretize(True, m[0]), 0) self.assertEqual(JeevesLib.concretize(True, m[1]), 1) self.assertEqual(JeevesLib.concretize(True, m[2]), 4) self.assertEqual(JeevesLib.concretize(False, m[0]), 9) self.assertEqual(JeevesLib.concretize(False, m[1]), 16) self.assertEqual(JeevesLib.concretize(False, m[2]), 25) self.assertEqual(JeevesLib.concretize(False, m[3]), 36) self.assertEqual(JeevesLib.concretize(True, m[0]), 0) self.assertEqual(JeevesLib.concretize(True, m[1]), 1) self.assertEqual(JeevesLib.concretize(True, m[2]), 4) self.assertEqual(JeevesLib.concretize(False, m[0]), 9) self.assertEqual(JeevesLib.concretize(False, m[1]), 16) self.assertEqual(JeevesLib.concretize(False, m[2]), 25) self.assertEqual(JeevesLib.concretize(False, m[3]), 36) @jeeves def test_jmap_for(self): JeevesLib.clear_cache() x = JeevesLib.mkLabel('x') JeevesLib.restrict(x, lambda ctxt : ctxt) l = JeevesLib.mkSensitive(x, [0,1,2], [3,4,5,6]) m = 0 for t in l: m = m + t*t self.assertEqual(JeevesLib.concretize(True, m), 5) self.assertEqual(JeevesLib.concretize(False, m), 86) self.assertEqual(JeevesLib.concretize(True, m), 5) self.assertEqual(JeevesLib.concretize(False, m), 86) @jeeves def test_jlist(self): JeevesLib.clear_cache() x = JeevesLib.mkLabel('x') JeevesLib.restrict(x, lambda ctxt : ctxt) l = JeevesLib.mkSensitive(x, [0,1,2], [3,4,5,6]) if x: l.append(10) else: l.append(11) self.assertEqual(JeevesLib.concretize(True, l[0]), 0) self.assertEqual(JeevesLib.concretize(True, l[1]), 1) self.assertEqual(JeevesLib.concretize(True, l[2]), 2) self.assertEqual(JeevesLib.concretize(True, l[3]), 10) self.assertEqual(JeevesLib.concretize(False, l[0]), 3) self.assertEqual(JeevesLib.concretize(False, l[1]), 4) self.assertEqual(JeevesLib.concretize(False, l[2]), 5) self.assertEqual(JeevesLib.concretize(False, l[3]), 6) self.assertEqual(JeevesLib.concretize(False, l[4]), 11) self.assertEqual(JeevesLib.concretize(True, l[0]), 0) self.assertEqual(JeevesLib.concretize(True, l[1]), 1) self.assertEqual(JeevesLib.concretize(True, l[2]), 2) self.assertEqual(JeevesLib.concretize(True, l[3]), 10) self.assertEqual(JeevesLib.concretize(False, l[0]), 3) self.assertEqual(JeevesLib.concretize(False, l[1]), 4) self.assertEqual(JeevesLib.concretize(False, l[2]), 5) self.assertEqual(JeevesLib.concretize(False, l[3]), 6) self.assertEqual(JeevesLib.concretize(False, l[4]), 11) if x: l[0] = 20 self.assertEqual(JeevesLib.concretize(True, l[0]), 20) self.assertEqual(JeevesLib.concretize(False, l[0]), 3) self.assertEqual(JeevesLib.concretize(True, l[0]), 20) self.assertEqual(JeevesLib.concretize(False, l[0]), 3) @jeeves def test_scope(self): JeevesLib.clear_cache() x = JeevesLib.mkLabel('x') JeevesLib.restrict(x, lambda ctxt : ctxt) y = 5 def awesome_function(): y = 7 if x: return 30 y = 19 return 17 z = awesome_function() self.assertEqual(JeevesLib.concretize(True, y), 5) self.assertEqual(JeevesLib.concretize(False, y), 5) self.assertEqual(JeevesLib.concretize(True, z), 30) self.assertEqual(JeevesLib.concretize(False, z), 17) self.assertEqual(JeevesLib.concretize(True, y), 5) self.assertEqual(JeevesLib.concretize(False, y), 5) self.assertEqual(JeevesLib.concretize(True, z), 30) self.assertEqual(JeevesLib.concretize(False, z), 17) @jeeves def test_jfun(self): JeevesLib.clear_cache() x = JeevesLib.mkLabel('x') JeevesLib.restrict(x, lambda ctxt : ctxt) y = JeevesLib.mkSensitive(x, [1,2,3], [4,5,6,7]) z = [x*x for x in y] self.assertEqual(JeevesLib.concretize(True, z[0]), 1) self.assertEqual(JeevesLib.concretize(True, z[1]), 4) self.assertEqual(JeevesLib.concretize(True, z[2]), 9) self.assertEqual(JeevesLib.concretize(False, z[0]), 16) self.assertEqual(JeevesLib.concretize(False, z[1]), 25) self.assertEqual(JeevesLib.concretize(False, z[2]), 36) self.assertEqual(JeevesLib.concretize(False, z[3]), 49) self.assertEqual(JeevesLib.concretize(True, z[0]), 1) self.assertEqual(JeevesLib.concretize(True, z[1]), 4) self.assertEqual(JeevesLib.concretize(True, z[2]), 9) self.assertEqual(JeevesLib.concretize(False, z[0]), 16) self.assertEqual(JeevesLib.concretize(False, z[1]), 25) self.assertEqual(JeevesLib.concretize(False, z[2]), 36) self.assertEqual(JeevesLib.concretize(False, z[3]), 49) ``` #### File: jeeves/test/testJeevesConfidentiality.py ```python import JeevesLib from smt.Z3 import * import unittest from JeevesLib import PositiveVariable, NegativeVariable class TestJeevesConfidentiality(unittest.TestCase): def setUp(self): self.s = Z3() # reset the Jeeves state JeevesLib.init() def test_restrict_all_permissive(self): x = JeevesLib.mkLabel('x') JeevesLib.restrict(x, lambda _: True) xConcrete = JeevesLib.concretize(None, x) # make sure that concretizing x allows everyone to see self.assertTrue(xConcrete) def test_restrict_all_restrictive(self): x = JeevesLib.mkLabel('x') JeevesLib.restrict(x, lambda _: False) xConcrete = JeevesLib.concretize(None, x) self.assertFalse(xConcrete) def test_restrict_with_context(self): x = JeevesLib.mkLabel('x') JeevesLib.restrict(x, lambda y: y == 2) xConcrete = JeevesLib.concretize(2, x) self.assertTrue(xConcrete) xConcrete = JeevesLib.concretize(3, x) self.assertFalse(xConcrete) def test_restrict_with_sensitivevalue(self): x = JeevesLib.mkLabel('x') JeevesLib.restrict(x, lambda y: y == 2) value = JeevesLib.mkSensitive(x, 42, 41) valueConcrete = JeevesLib.concretize(2, value) self.assertEquals(valueConcrete, 42) valueConcrete = JeevesLib.concretize(1, value) self.assertEquals(valueConcrete, 41) def test_restrict_with_cyclic(self): jl = JeevesLib # use the value itself as the context x = jl.mkLabel('x') jl.restrict(x, lambda ctxt : ctxt == 42) value = jl.mkSensitive(x, 42, 20) self.assertEquals(jl.concretize(value, value), 42) value = jl.mkSensitive(x, 41, 20) self.assertEquals(jl.concretize(value, value), 20) def test_restrict_with_sensitive_policy(self): jl = JeevesLib x = jl.mkLabel() jl.restrict(x, lambda ctxt: ctxt == 42) y = jl.mkLabel() jl.restrict(y, lambda ctxt: x) value = jl.mkSensitive(y, 1, 0) self.assertEquals(jl.concretize(42, value), 1) self.assertEquals(jl.concretize(0, value), 0) def test_jif_with_ints(self): jl = JeevesLib x = jl.mkLabel('x') jl.restrict(x, lambda ctxt : ctxt == 42) a = jl.jif(x, lambda:13, lambda:17 ) self.assertEquals(jl.concretize(42, a), 13) self.assertEquals(jl.concretize(-2, a), 17) b = jl.jif(True, lambda:13, lambda:17) self.assertEquals(jl.concretize(42, b), 13) self.assertEquals(jl.concretize(-2, b), 13) c = jl.jif(False, lambda:13, lambda:17) self.assertEquals(jl.concretize(42, c), 17) self.assertEquals(jl.concretize(-2, c), 17) conditional = jl.mkSensitive(x, True, False) d = jl.jif(conditional, lambda:13, lambda:17) self.assertEquals(jl.concretize(42, d), 13) self.assertEquals(jl.concretize(-2, d), 17) conditional = jl.mkSensitive(x, False, True) d = jl.jif(conditional, lambda:13, lambda:17) self.assertEquals(jl.concretize(42, d), 17) self.assertEquals(jl.concretize(-2, d), 13) y = jl.mkLabel('y') z = jl.mkLabel('z') jl.restrict(y, lambda (a,_) : a) jl.restrict(z, lambda (_,a) : a) faceted_int = jl.mkSensitive(y, 10, 0) conditional = faceted_int > 5 i1 = jl.mkSensitive(z, 101, 102) i2 = jl.mkSensitive(z, 103, 104) f = jl.jif(conditional, lambda:i1, lambda:i2) self.assertEquals(jl.concretize((True, True), f),101) self.assertEquals(jl.concretize((True, False), f), 102) self.assertEquals(jl.concretize((False, True), f), 103) self.assertEquals(jl.concretize((False, False), f), 104) def test_jif_with_objects(self): return NotImplemented def test_restrict_under_conditional(self): jl = JeevesLib x = jl.mkLabel('x') def yes_restrict(): jl.restrict(x, lambda ctxt : ctxt == 1) def no_restrict(): pass value = jl.mkSensitive(x, 42, 0) jl.jif(value == 42, yes_restrict, no_restrict) self.assertEquals(jl.concretize(0, value), 0) self.assertEquals(jl.concretize(1, value), 42) y = jl.mkLabel('y') def yes_restrict(): jl.restrict(y, lambda ctxt : ctxt == 1) def no_restrict(): pass value = jl.mkSensitive(y, 43, 0) jl.jif(value == 42, yes_restrict, no_restrict) self.assertEquals(jl.concretize(0, value), 43) self.assertEquals(jl.concretize(1, value), 43) def test_jbool_functions_constants(self): jl = JeevesLib self.assertEquals(jl.jand(lambda:True, lambda:True), True) self.assertEquals(jl.jand(lambda:True, lambda:False), False) self.assertEquals(jl.jand(lambda:False, lambda:True), False) self.assertEquals(jl.jand(lambda:False, lambda:False), False) self.assertEquals(jl.jor(lambda:True, lambda:True), True) self.assertEquals(jl.jor(lambda:True, lambda:False), True) self.assertEquals(jl.jor(lambda:False, lambda:True), True) self.assertEquals(jl.jor(lambda:False, lambda:False), False) self.assertEquals(jl.jnot(True), False) self.assertEquals(jl.jnot(False), True) def test_jbool_functions_fexprs(self): jl = JeevesLib x = jl.mkLabel('x') jl.restrict(x, lambda (a,_) : a == 42) for lh in (True, False): for ll in (True, False): for rh in (True, False): for rl in (True, False): l = jl.mkSensitive(x, lh, ll) r = jl.mkSensitive(x, rh, rl) self.assertEquals(jl.concretize((42,0), jl.jand(lambda:l, lambda:r)), lh and rh) self.assertEquals(jl.concretize((10,0), jl.jand(lambda:l, lambda:r)), ll and rl) self.assertEquals(jl.concretize((42,0), jl.jor(lambda:l, lambda:r)), lh or rh) self.assertEquals(jl.concretize((10,0), jl.jor(lambda:l, lambda:r)), ll or rl) self.assertEquals(jl.concretize((42,0), jl.jnot(l)), not lh) self.assertEquals(jl.concretize((10,0), jl.jnot(l)), not ll) y = jl.mkLabel('y') jl.restrict(y, lambda (_,b) : b == 42) for lh in (True, False): for ll in (True, False): for rh in (True, False): for rl in (True, False): l = jl.mkSensitive(x, lh, ll) r = jl.mkSensitive(y, rh, rl) self.assertEquals(jl.concretize((42,0), jl.jand(lambda:l, lambda:r)), lh and rl) self.assertEquals(jl.concretize((10,0), jl.jand(lambda:l, lambda:r)), ll and rl) self.assertEquals(jl.concretize((42,42), jl.jand(lambda:l, lambda:r)), lh and rh) self.assertEquals(jl.concretize((10,42), jl.jand(lambda:l, lambda:r)), ll and rh) self.assertEquals(jl.concretize((42,0), jl.jor(lambda:l, lambda:r)), lh or rl) self.assertEquals(jl.concretize((10,0), jl.jor(lambda:l, lambda:r)), ll or rl) self.assertEquals(jl.concretize((42,42), jl.jor(lambda:l, lambda:r)), lh or rh) self.assertEquals(jl.concretize((10,42), jl.jor(lambda:l, lambda:r)), ll or rh) def test_nested_conditionals_no_shared_path(self): return NotImplemented def test_nested_conditionals_shared_path(self): return NotImplemented def test_jif_with_assign(self): jl = JeevesLib y = jl.mkLabel('y') jl.restrict(y, lambda ctxt : ctxt == 42) value0 = jl.mkSensitive(y, 0, 1) value2 = jl.mkSensitive(y, 2, 3) value = value0 value = jl.jassign(value, value2) self.assertEquals(jl.concretize(42, value), 2) self.assertEquals(jl.concretize(10, value), 3) value = 100 value = jl.jassign(value, value2) self.assertEquals(jl.concretize(42, value), 2) self.assertEquals(jl.concretize(10, value), 3) value = value0 value = jl.jassign(value, 200) self.assertEquals(jl.concretize(42, value), 200) self.assertEquals(jl.concretize(10, value), 200) value = 100 value = jl.jassign(value, 200) self.assertEquals(jl.concretize(42, value), 200) self.assertEquals(jl.concretize(10, value), 200) def test_jif_with_assign_with_pathvars(self): jl = JeevesLib x = jl.mkLabel('x') y = jl.mkLabel('y') jl.restrict(x, lambda (a,_) : a) jl.restrict(y, lambda (_,b) : b) value0 = jl.mkSensitive(y, 0, 1) value2 = jl.mkSensitive(y, 2, 3) value = value0 with PositiveVariable(x): value = jl.jassign(value, value2) self.assertEquals(jl.concretize((True, True), value), 2) self.assertEquals(jl.concretize((True, False), value), 3) self.assertEquals(jl.concretize((False, True), value), 0) self.assertEquals(jl.concretize((False, False), value), 1) value = value0 with NegativeVariable(x): value = jl.jassign(value, value2) self.assertEquals(jl.concretize((False, True), value), 2) self.assertEquals(jl.concretize((False, False), value), 3) self.assertEquals(jl.concretize((True, True), value), 0) self.assertEquals(jl.concretize((True, False), value), 1) def test_function_facets(self): def add1(a): return a+1 def add2(a): return a+2 jl = JeevesLib x = jl.mkLabel('x') jl.restrict(x, lambda ctxt : ctxt == 42) fun = jl.mkSensitive(x, add1, add2) value = fun(15) self.assertEquals(jl.concretize(42, value), 16) self.assertEquals(jl.concretize(41, value), 17) def test_objects_faceted(self): class TestClass: def __init__(self, a, b): self.a = a self.b = b jl = JeevesLib x = jl.mkLabel('x') jl.restrict(x, lambda ctxt : ctxt) y = jl.mkSensitive(x, TestClass(1, 2), TestClass(3, 4)) self.assertEquals(jl.concretize(True, y.a), 1) self.assertEquals(jl.concretize(True, y.b), 2) self.assertEquals(jl.concretize(False, y.a), 3) self.assertEquals(jl.concretize(False, y.b), 4) def test_objects_mutate(self): class TestClass: def __init__(self, a, b): self.__dict__['a'] = a self.__dict__['b'] = b def __setattr__(self, attr, val): self.__dict__[attr] = JeevesLib.jassign( self.__dict__[attr], val) jl = JeevesLib x = jl.mkLabel('x') jl.restrict(x, lambda ctxt : ctxt) s = TestClass(1, None) t = TestClass(3, None) y = jl.mkSensitive(x, s, t) def mut(): y.a = y.a + 100 def nonmut(): pass jl.jif(y.a == 1, mut, nonmut) self.assertEquals(jl.concretize(True, y.a), 101) self.assertEquals(jl.concretize(True, s.a), 101) self.assertEquals(jl.concretize(True, t.a), 3) self.assertEquals(jl.concretize(False, y.a), 3) self.assertEquals(jl.concretize(False, s.a), 1) self.assertEquals(jl.concretize(False, t.a), 3) def test_objects_methodcall(self): class TestClassMethod: def __init__(self, a, b): self.a = a self.b = b def add_a_to_b(self): self.b = JeevesLib.jassign(self.b, self.a + self.b) def return_sum(self): return self.a + self.b jl = JeevesLib x = jl.mkLabel('x') jl.restrict(x, lambda ctxt : ctxt) s = TestClassMethod(1, 10) t = TestClassMethod(100, 1000) y = jl.mkSensitive(x, s, t) self.assertEquals(jl.concretize(True, y.return_sum()), 11) self.assertEquals(jl.concretize(False, y.return_sum()), 1100) y.add_a_to_b() self.assertEquals(jl.concretize(True, s.a), 1) self.assertEquals(jl.concretize(True, s.b), 11) self.assertEquals(jl.concretize(True, t.a), 100) self.assertEquals(jl.concretize(True, t.b), 1000) self.assertEquals(jl.concretize(True, y.a), 1) self.assertEquals(jl.concretize(True, y.b), 11) self.assertEquals(jl.concretize(False, s.a), 1) self.assertEquals(jl.concretize(False, s.b), 10) self.assertEquals(jl.concretize(False, t.a), 100) self.assertEquals(jl.concretize(False, t.b), 1100) self.assertEquals(jl.concretize(False, y.a), 100) self.assertEquals(jl.concretize(False, y.b), 1100) def test_objects_eq_is(self): class TestClass: def __init__(self, a): self.a = a class TestClassEq: def __init__(self, a): self.a = a def __eq__(self, other): return self.a == other.a def __ne__(self, other): return self.a != other.a def __lt__(self, other): return self.a < other.a def __gt__(self, other): return self.a > other.a def __le__(self, other): return self.a <= other.a def __ge__(self, other): return self.a >= other.a jl = JeevesLib x = jl.mkLabel('x') jl.restrict(x, lambda ctxt : ctxt) a = TestClass(3) b = TestClass(3) c = TestClass(2) # Ensure that a < b and b < c (will probably be true anyway, # just making sure) a, b, c = sorted((a, b, c)) a.a, b.a, c.a = 3, 3, 2 v1 = jl.mkSensitive(x, a, c) v2 = jl.mkSensitive(x, b, c) v3 = jl.mkSensitive(x, c, a) self.assertEquals(jl.concretize(True, v1 == v1), True) self.assertEquals(jl.concretize(True, v2 == v2), True) self.assertEquals(jl.concretize(True, v3 == v3), True) self.assertEquals(jl.concretize(True, v1 == v2), False) self.assertEquals(jl.concretize(True, v2 == v3), False) self.assertEquals(jl.concretize(True, v3 == v1), False) self.assertEquals(jl.concretize(True, v1 != v1), False) self.assertEquals(jl.concretize(True, v2 != v2), False) self.assertEquals(jl.concretize(True, v3 != v3), False) self.assertEquals(jl.concretize(True, v1 != v2), True) self.assertEquals(jl.concretize(True, v2 != v3), True) self.assertEquals(jl.concretize(True, v3 != v1), True) self.assertEquals(jl.concretize(True, v1 < v1), False) self.assertEquals(jl.concretize(True, v2 < v2), False) self.assertEquals(jl.concretize(True, v3 < v3), False) self.assertEquals(jl.concretize(True, v1 < v2), True) self.assertEquals(jl.concretize(True, v2 < v3), True) self.assertEquals(jl.concretize(True, v3 < v1), False) self.assertEquals(jl.concretize(True, v1 > v1), False) self.assertEquals(jl.concretize(True, v2 > v2), False) self.assertEquals(jl.concretize(True, v3 > v3), False) self.assertEquals(jl.concretize(True, v1 > v2), False) self.assertEquals(jl.concretize(True, v2 > v3), False) self.assertEquals(jl.concretize(True, v3 > v1), True) self.assertEquals(jl.concretize(True, v1 <= v1), True) self.assertEquals(jl.concretize(True, v2 <= v2), True) self.assertEquals(jl.concretize(True, v3 <= v3), True) self.assertEquals(jl.concretize(True, v1 <= v2), True) self.assertEquals(jl.concretize(True, v2 <= v3), True) self.assertEquals(jl.concretize(True, v3 <= v1), False) self.assertEquals(jl.concretize(True, v1 >= v1), True) self.assertEquals(jl.concretize(True, v2 >= v2), True) self.assertEquals(jl.concretize(True, v3 >= v3), True) self.assertEquals(jl.concretize(True, v1 >= v2), False) self.assertEquals(jl.concretize(True, v2 >= v3), False) self.assertEquals(jl.concretize(True, v3 >= v1), True) self.assertEquals(jl.concretize(False, v2 == v3), False) self.assertEquals(jl.concretize(False, v2 != v3), True) self.assertEquals(jl.concretize(False, v2 < v3), False) self.assertEquals(jl.concretize(False, v2 > v3), True) self.assertEquals(jl.concretize(False, v2 <= v3), False) self.assertEquals(jl.concretize(False, v2 >= v3), True) a = TestClassEq(3) b = TestClassEq(3) c = TestClassEq(2) v1 = jl.mkSensitive(x, a, c) v2 = jl.mkSensitive(x, b, c) v3 = jl.mkSensitive(x, c, a) self.assertEquals(jl.concretize(True, v1 == v1), True) self.assertEquals(jl.concretize(True, v2 == v2), True) self.assertEquals(jl.concretize(True, v3 == v3), True) self.assertEquals(jl.concretize(True, v1 == v2), True) self.assertEquals(jl.concretize(True, v2 == v3), False) self.assertEquals(jl.concretize(True, v3 == v1), False) self.assertEquals(jl.concretize(True, v1 != v1), False) self.assertEquals(jl.concretize(True, v2 != v2), False) self.assertEquals(jl.concretize(True, v3 != v3), False) self.assertEquals(jl.concretize(True, v1 != v2), False) self.assertEquals(jl.concretize(True, v2 != v3), True) self.assertEquals(jl.concretize(True, v3 != v1), True) self.assertEquals(jl.concretize(True, v1 < v1), False) self.assertEquals(jl.concretize(True, v2 < v2), False) self.assertEquals(jl.concretize(True, v3 < v3), False) self.assertEquals(jl.concretize(True, v1 < v2), False) self.assertEquals(jl.concretize(True, v2 < v3), False) self.assertEquals(jl.concretize(True, v3 < v1), True) self.assertEquals(jl.concretize(True, v1 > v1), False) self.assertEquals(jl.concretize(True, v2 > v2), False) self.assertEquals(jl.concretize(True, v3 > v3), False) self.assertEquals(jl.concretize(True, v1 > v2), False) self.assertEquals(jl.concretize(True, v2 > v3), True) self.assertEquals(jl.concretize(True, v3 > v1), False) self.assertEquals(jl.concretize(True, v1 <= v1), True) self.assertEquals(jl.concretize(True, v2 <= v2), True) self.assertEquals(jl.concretize(True, v3 <= v3), True) self.assertEquals(jl.concretize(True, v1 <= v2), True) self.assertEquals(jl.concretize(True, v2 <= v3), False) self.assertEquals(jl.concretize(True, v3 <= v1), True) self.assertEquals(jl.concretize(True, v1 >= v1), True) self.assertEquals(jl.concretize(True, v2 >= v2), True) self.assertEquals(jl.concretize(True, v3 >= v3), True) self.assertEquals(jl.concretize(True, v1 >= v2), True) self.assertEquals(jl.concretize(True, v2 >= v3), True) self.assertEquals(jl.concretize(True, v3 >= v1), False) self.assertEquals(jl.concretize(False, v2 == v3), False) self.assertEquals(jl.concretize(False, v2 != v3), True) self.assertEquals(jl.concretize(False, v2 < v3), True) self.assertEquals(jl.concretize(False, v2 > v3), False) self.assertEquals(jl.concretize(False, v2 <= v3), True) self.assertEquals(jl.concretize(False, v2 >= v3), False) def test_objects_operators(self): return NotImplemented def test_objects_delattr(self): return NotImplemented def test_objects_hasattr(self): return NotImplemented def test_objects_callable(self): return NotImplemented def test_functions_operators(self): return NotImplemented def test_accessing_special_attributes(self): return NotImplemented def test_attribute_names(self): return NotImplemented def test_jhasElt(self): jl = JeevesLib a = jl.mkLabel () jl.restrict(a, lambda x: x) xS = jl.mkSensitive(a, 42, 1) b = jl.mkLabel () jl.restrict(b, lambda x: x) yS = jl.mkSensitive(b, 43, 3) lst = [xS, 2, yS] self.assertTrue(jl.concretize(True, jl.jhasElt(lst, lambda x: x == 42))) self.assertFalse(jl.concretize(False, jl.jhasElt(lst, lambda x: x == 42))) self.assertFalse(jl.concretize(True, jl.jhasElt(lst, lambda x: x == 1))) self.assertTrue(jl.concretize(False, jl.jhasElt(lst, lambda x: x == 1))) self.assertTrue(jl.concretize(True, jl.jhasElt(lst, lambda x: x == 43))) self.assertFalse(jl.concretize(False, jl.jhasElt(lst, lambda x: x == 43))) self.assertFalse(jl.concretize(True, jl.jhasElt(lst, lambda x: x == 3))) self.assertTrue(jl.concretize(False, jl.jhasElt(lst, lambda x: x == 3))) def test_jhas_empty(self): jl = JeevesLib lst = [] self.assertFalse(jl.concretize(True, jl.jhas(lst, 2))) def test_jhas_in_policy(self): jl = JeevesLib a = jl.mkLabel () jl.restrict(a, lambda oc: jl.jhas(oc, 3)) self.assertTrue(jl.concretize([1, 2, 3], a)) self.assertTrue(jl.concretize([3], a)) self.assertFalse(jl.concretize([], a)) self.assertFalse(jl.concretize([1, 2], a)) def test_jall(self): jl = JeevesLib a = jl.mkLabel () jl.restrict(a, lambda x: x) xS = jl.mkSensitive(a, True, False) b = jl.mkLabel () jl.restrict(b, lambda x: jl.jnot(x) ) yS = jl.mkSensitive(b, False, True) lst = [xS, True, yS] self.assertTrue(jl.concretize(True, jl.jall(lst))) self.assertFalse(jl.concretize(False, jl.jall(lst))) def test_list(self): jl = JeevesLib x = jl.mkLabel('x') jl.restrict(x, lambda ctxt : ctxt) l = jl.mkSensitive(x, [40,41,42], [0,1,2,3]) self.assertEqual(jl.concretize(True, l[0]), 40) self.assertEqual(jl.concretize(True, l[1]), 41) self.assertEqual(jl.concretize(True, l[2]), 42) self.assertEqual(jl.concretize(False, l[0]), 0) self.assertEqual(jl.concretize(False, l[1]), 1) self.assertEqual(jl.concretize(False, l[2]), 2) self.assertEqual(jl.concretize(False, l[3]), 3) self.assertEqual(jl.concretize(True, l.__len__()), 3) self.assertEqual(jl.concretize(False, l.__len__()), 4) l[1] = 19 self.assertEqual(jl.concretize(True, l[0]), 40) self.assertEqual(jl.concretize(True, l[1]), 19) self.assertEqual(jl.concretize(True, l[2]), 42) self.assertEqual(jl.concretize(False, l[0]), 0) self.assertEqual(jl.concretize(False, l[1]), 19) self.assertEqual(jl.concretize(False, l[2]), 2) self.assertEqual(jl.concretize(False, l[3]), 3) def test_jmap_listcomp(self): x = JeevesLib.mkLabel('x') JeevesLib.restrict(x, lambda ctxt : ctxt) l = JeevesLib.mkSensitive(x, [0,1,2], [3,4,5,6]) m = JeevesLib.jmap(l, lambda x : x*x) self.assertEqual(JeevesLib.concretize(True, m[0]), 0) self.assertEqual(JeevesLib.concretize(True, m[1]), 1) self.assertEqual(JeevesLib.concretize(True, m[2]), 4) self.assertEqual(JeevesLib.concretize(False, m[0]), 9) self.assertEqual(JeevesLib.concretize(False, m[1]), 16) self.assertEqual(JeevesLib.concretize(False, m[2]), 25) self.assertEqual(JeevesLib.concretize(False, m[3]), 36) def test_jlist(self): x = JeevesLib.mkLabel('x') JeevesLib.restrict(x, lambda ctxt : ctxt) l = JeevesLib.mkSensitive(x, JeevesLib.JList([0,1,2]), JeevesLib.JList([3,4,5,6])) def add10(): l.append(10) def add11(): l.append(11) JeevesLib.jif(x, add10, add11) self.assertEqual(JeevesLib.concretize(True, l[0]), 0) self.assertEqual(JeevesLib.concretize(True, l[1]), 1) self.assertEqual(JeevesLib.concretize(True, l[2]), 2) self.assertEqual(JeevesLib.concretize(True, l[3]), 10) self.assertEqual(JeevesLib.concretize(False, l[0]), 3) self.assertEqual(JeevesLib.concretize(False, l[1]), 4) self.assertEqual(JeevesLib.concretize(False, l[2]), 5) self.assertEqual(JeevesLib.concretize(False, l[3]), 6) self.assertEqual(JeevesLib.concretize(False, l[4]), 11) if __name__ == '__main__': unittest.main() ``` #### File: jeeves/test/testZ3.py ```python import macropy.activate from smt.Z3 import * from fast import AST import unittest class TestZ3(unittest.TestCase): def setUp(self): self.s = Z3() def test_sat_ints(self): x = self.s.getIntVar('x') self.s.solverAssert(x > 0) self.s.solverAssert(x < 2) self.assertTrue(self.s.isSatisfiable()) def test_unsat_ints(self): x = self.s.getIntVar('x') self.s.solverAssert(x > 2) self.s.solverAssert(x < 2) self.assertFalse(self.s.isSatisfiable()) def test_multiple_vars(self): x0 = self.s.getIntVar('x') x1 = self.s.getIntVar('x') self.s.solverAssert(x0 > 2) self.s.solverAssert(x1 < 2) self.assertFalse(self.s.isSatisfiable()) def test_multiple_vars2(self): x0 = self.s.getIntVar('x') x1 = self.s.getIntVar('y') self.s.solverAssert(x0 > 2) self.s.solverAssert(x1 < 2) self.assertTrue(self.s.isSatisfiable()) def test_ast(self): b1 = AST.Var('x') b2 = AST.Var('y') t = AST.Facet(b1, 1, 10) + AST.Facet(b2, 100, 1000) self.assertTrue(self.s.isSatisfiable()) self.s.push() self.s.boolExprAssert(t == 101) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(t == 1001) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(t == 110) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(t == 1010) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(t == 11) self.assertFalse(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(t == 1001) self.s.boolExprAssert(t == 1010) self.assertFalse(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(t == 1001) self.s.boolExprAssert(AST.Not(b1)) self.assertFalse(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(t - 1 == 1009) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(t - 1 == 1008) self.assertFalse(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(t * 2 == 2002) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(t * 2 == 2004) self.assertFalse(self.s.isSatisfiable()) self.s.pop() def test_ast_bools(self): b1 = AST.Var() b2 = AST.Var() b3 = AST.Var() b4 = AST.Var() self.s.push() self.s.boolExprAssert(AST.And(b1, b2)) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.And(b1, b2)) self.s.boolExprAssert(AST.Not(b1)) self.assertFalse(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Or(b1, b2)) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Or(b1, b2)) self.s.boolExprAssert(AST.Not(b1)) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Or(b1, b2)) self.s.boolExprAssert(AST.Not(b1)) self.s.boolExprAssert(AST.Not(b2)) self.assertFalse(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Or(b1, b2)) self.s.boolExprAssert(AST.And(AST.Not(b1),AST.Not(b2))) self.assertFalse(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.And(AST.Or(b1, b2),AST.And(AST.Not(b1),AST.Not(b2)))) self.assertFalse(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Implies(b1, b2)) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Implies(b1, b2)) self.s.boolExprAssert(b1) self.s.boolExprAssert(b2) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Implies(b1, b2)) self.s.boolExprAssert(b1) self.s.boolExprAssert(AST.Not(b2)) self.assertFalse(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Implies(b1, b2)) self.s.boolExprAssert(AST.Not(b1)) self.s.boolExprAssert(b2) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Implies(b1, b2)) self.s.boolExprAssert(AST.Not(b1)) self.s.boolExprAssert(AST.Not(b2)) self.assertTrue(self.s.isSatisfiable()) self.s.pop() def test_ast_comparisons(self): b1 = AST.Var() b2 = AST.Var() self.s.push() self.s.boolExprAssert(AST.Facet(b1, 0, 1) != AST.Facet(b1, 1, 2) - 1) self.assertFalse(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Facet(b1, 0, 1) < AST.Facet(b2, 3, 4)) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Facet(b1, 0, 1) <= AST.Facet(b2, 3, 4)) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Facet(b1, 0, 1) < AST.Facet(b2, -1, 0)) self.assertFalse(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Facet(b1, 0, 1) <= AST.Facet(b2, -1,0)) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Facet(b1, 3, 4) > AST.Facet(b2, 0, 1)) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Facet(b1, 3, 4) >= AST.Facet(b2, 0, 1)) self.assertTrue(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Facet(b1, -1, 0) > AST.Facet(b2, 0, 1)) self.assertFalse(self.s.isSatisfiable()) self.s.pop() self.s.push() self.s.boolExprAssert(AST.Facet(b1, -1, 0) >= AST.Facet(b2, 0, 1)) self.assertTrue(self.s.isSatisfiable()) self.s.pop() if __name__ == '__main__': unittest.main() ``` #### File: web/calendar/test_Jcal.py ```python import unittest from random import random from funkload.FunkLoadTestCase import FunkLoadTestCase class Jcal(FunkLoadTestCase): """This test use a configuration file Conf.conf.""" def setUp(self): """Setting up test.""" self.server_url = self.conf_get('main', 'url') def test_simple(self): # The description should be set in the configuration file server_url = self.server_url # begin of test --------------------------------------------- nb_time = self.conf_getInt('test_simple', 'nb_time') for i in range(nb_time): self.get(server_url, description='Get url') # end of test ----------------------------------------------- if __name__ in ('main', '__main__'): unittest.main() ``` #### File: web/coursemanager/test_Jcourse.py ```python import unittest from random import random from funkload.FunkLoadTestCase import FunkLoadTestCase from funkload.utils import extract_token from funkload.utils import xmlrpc_get_credential class Jcourse(FunkLoadTestCase): """This test use a configuration file Conf.conf.""" def setUp(self): """Setting up test.""" self.server_url = self.conf_get('main', 'url') credential_host = self.conf_get('credential', 'host') credential_port = self.conf_getInt('credential', 'port') self.username, self.pwd = xmlrpc_get_credential( credential_host, credential_port, "group1") def login(self, page="/index"): # The description should be set in the configuration file server_url = self.server_url reply = self.get(server_url + "/index", description="Get index") csrftoken = extract_token(self.getBody(), "name='csrfmiddlewaretoken' value='", "' />") self.post(server_url + "/accounts/login/?next=" + page, params=[['csrfmiddlewaretoken', csrftoken], ['redirect_to', page], ['username', self.username], ['password', self.pwd]], description="Post /accounts/login/") def logout(self): self.get(self.server_url + "/accounts/logout/", description="Get /accounts/logout/") def test_show_all_assignments(self): page = "/courses" self.login(page) self.assert_(page == self.getLastUrl(), "Error in login") reply = self.get(self.server_url + page, description="Get assignments") self.logout() if __name__ in ('main', '__main__'): unittest.main() ``` #### File: web/hipaa/test_Hipaa.py ```python import unittest from random import random from funkload.FunkLoadTestCase import FunkLoadTestCase from funkload.Lipsum import Lipsum from funkload.utils import extract_token from funkload.utils import xmlrpc_get_credential class Hipaa(FunkLoadTestCase): """This test use a configuration file Conf.conf.""" def setUp(self): """Setting up test.""" self.server_url = self.conf_get('main', 'url') self.lipsum = Lipsum() def login_as(self, username, password): # The description should be set in the configuration file server_url = self.server_url self.get(server_url + "/", description="Get /") reply = self.get(server_url + "/index", description="Get index") csrftoken = extract_token(self.getBody(), "name='csrfmiddlewaretoken' value='", "' />") self.post(server_url + "/accounts/login/?next=/", params=[['csrfmiddlewaretoken', csrftoken], ['redirect_to', '/index'], ['username', username], ['password', password]], description="Post /accounts/login/") def logout(self): self.get(self.server_url + "/accounts/logout/", description="Get /accounts/logout/") def test_simple(self): # The description should be set in the configuration file server_url = self.server_url # begin of test --------------------------------------------- nb_time = self.conf_getInt('test_simple', 'nb_time') for i in range(nb_time): self.get(server_url, description='Get url') # end of test ----------------------------------------------- def test_login(self): page="/index" self.login_as("admin", "admin") reply = self.get(self.server_url + page, description="Get index") self.logout() """ self.login_as("admin", "admin") self.logout() """ def test_register(self): username = self.lipsum.getUniqWord() password = self.lipsum.getWord() name = self.lipsum.getWord() + " " + self.lipsum.getWord() email = self.lipsum.getWord() + "@example.org" server_url = self.server_url # self.get(server_url + "/register", description='Get url') csrftoken = extract_token(self.getBody(), "name='csrfmiddlewaretoken' value='", "' />") self.post(server_url + "/register", params=[ ['csrfmiddlewaretoken', csrftoken], ['username', username], ['password1', password], ['password2', password], ['name', name], ['email', email], ['profiletype', '1']], description="Post /register") def test_credential(self): credential_host = self.conf_get('credential', 'host') credential_port = self.conf_getInt('credential', 'port') login, pwd = xmlrpc_get_credential(credential_host, credential_port , "group1") self.login_as(login, pwd) self.logout() def test_random_register(self): self.logout() username = self.lipsum.getUniqWord() password = <PASSWORD>() server_url = self.server_url # self.get(server_url + "/register", description='Get url') csrftoken = extract_token(self.getBody(), "name='csrfmiddlewaretoken' value='", "' />") self.post(server_url + "/register", params=[ ['csrfmiddlewaretoken', csrftoken], ['username', username], ['password1', password], ['password2', password], ['name', 'New User'], ['email', '<EMAIL>'], ['profiletype', '1']], description="Post /register") # TODO: Check page after logging in. self.logout() self.login_as(username, password) self.logout() if __name__ in ('main', '__main__'): unittest.main() ```
{ "source": "JeanRibes/ppc-freakout", "score": 3 }
#### File: JeanRibes/ppc-freakout/gui.py ```python import socket import sys from threading import Thread, Event import pygame import pygameMenu from data import * from matchmaking import FindGame def dessiner_carte(screen, couleur, chiffre, font, y, x): if couleur: rgb = (0, 0, 255) else: rgb = (255, 0, 0) card_rect = pygame.Rect(x, y, 40, 60) pygame.draw.rect(screen, rgb, card_rect) text = font.render(("R" if not couleur else "B") + str(chiffre), True, (255, 255, 255)) textrect: pygame.rect.RectType = text.get_rect() textrect.centerx = card_rect.centerx textrect.centery = card_rect.centery screen.blit(text, textrect) def dessiner_main(screen, x0, y0, cartes, font): x = x0 y = y0 for couleur, chiffre in cartes: dessiner_carte(screen, couleur, chiffre, font, y, x) x += 50 def afficher_message(screen, message, font): if message is not None: texte = font.render(message, True, (255, 255, 255)) texte_rect = texte.get_rect() texte_rect.centerx = screen.get_width() // 2 texte_rect.centery = screen.get_height() // 2 screen.blit(texte, texte_rect) def highlight(screen, y, x, selected_highlight): border = 4 pygame.draw.rect(screen, (252, 232, 3) if selected_highlight else (255, 255, 255), pygame.Rect(x - border, y - border, 40 + 2 * border, 60 + 2 * border)) class NetworkReceiver(Thread): hand = [] board: Board = Board() message = None game_finished = False game_ready=False def __init__(self, conn: socket.socket): self.conn = conn super().__init__(daemon=True) def run(self) -> None: while not self.game_finished or True: buf = self.conn.recv(2048) data: ServerMessage = ServerMessage.deserialize(buf) self.message = data.infos print(data) # affiche le type de message reçu if data.type_message in [TYPE_TIMEOUT, TYPE_HAND_CHANGED]: self.hand = [x.to_tuple() for x in data.payload] elif data.type_message == TYPE_BOARD_CHANGED: self.board = data.payload if not self.game_ready: print("debut jeu") self.game_ready = True elif data.type_message in STRING_TYPES: self.message = data.payload print("--->" + data.payload) if data.type_message == TYPE_GAME_END: print("**************************= JEU FINI =*******************************") self.game_finished = True self.message = data.payload # self.conn.close() def send(self, message: ClientMessage): if not self.game_finished: # self.conn.setblocking(False) self.conn.send(message.serialize()) # board = [[(True, 4), (True, 4), (True, 4), (True, 4)],[(True, 5), (True, 5), (True, 5), (True, 5)],[(False, 5), (False, 5), (False, 5), ],[(False, 9), (False, 9), (False, 9), (False, 9), ],[(True, 1), (True, 1), (True, 1)],] def dessiner_board(screen, x0, y0, board, font): x = x0 y = y0 for cartes in board.values(): for carte in cartes: dessiner_carte(screen, carte.color, carte.value, font, x, y) x += 70 y += 50 x = x0 def move_selection(selected_index, i, hand): if len(hand) > 0: return (selected_index + i) % len(hand) else: return -1 screen = pygame.display.set_mode((1500, 500)) x0 = 10 y0 = 10 selected_index = 0 hy = y0 selected_highlight = False police = "Noto Sans" menu_running = True if __name__ == '__main__': server_finder = FindGame(daemon=True) server_finder.start() pygame.init() # initialisation des ressources pygame.display.set_caption("PPC Freak Out!") font = pygame.font.SysFont(police, 20, 5) clock = pygame.time.Clock() # intialisation du timer FPS def bg_func(): screen.fill((128, 0, 128)) # setup du menu main = pygameMenu.Menu(screen, 1000, 500, police, "Freak Out !", True, bgfun=bg_func, menu_height=400, menu_width=900) main._onclose = main.disable main.add_text_input(title="nom d'utilisateur: ", textinput_id='username', default="", input_underline='_', maxchar=15, align=pygameMenu.locals.ALIGN_LEFT) main.add_selector("Joystick", values=[('On', 0), ('Off', 1)], selector_id='joystick', default=1) main.add_option('Jouer', main.disable) main.add_option('Quitter', pygameMenu.events.EXIT) main.mainloop() # 1er affichage du menu main.disable(closelocked=True) username = main.get_input_data()['username'] joystick = main.get_input_data()['joystick'][0] == 'On' print(f"joystick : {joystick}, username={username}, input_date: {main.get_input_data()}") try: if len(sys.argv) > 2: if sys.argv[1] == "-j": joystick = True if joystick: j = pygame.joystick.Joystick(0) j.init() except: j = None # configuration du jeu finie # démarrage du réseau screen.fill((102, 102, 153)) afficher_message(screen, "Connexion au serveur de jeu", font) pygame.display.update() pygame.display.flip() conn = socket.socket() server_finder.join() # attend le timeout de l'écoute du broadcast conn.connect(server_finder.found_server) # écoute le broadast local pour découvrir le serveur server_data = NetworkReceiver(conn) # initialisation de la connexion au serveur de jeu server_data.message = username conn.send(ClientMessage(type_message=TYPE_JOIN, payload=username).serialize()) # # lobby: attente des autres joueurs start_menu = pygameMenu.TextMenu(screen, 700, 400, police, "Lobby", bgfun=bg_func) def im_ready(): print('sending ready') start_menu.disable(closelocked=True) conn.send(ClientMessage(type_message=TYPE_READY).serialize()) start_menu.add_option("Demarrer", im_ready) start_menu.add_option('Quitter', pygameMenu.events.EXIT) # pendant l'attente on initialise le menu 'ESC' du jeu game_menu = pygameMenu.Menu(screen, 800, 400, police, "Freak Out !", True, bgfun=bg_func, menu_height=300, menu_width=700) game_menu._onclose = game_menu.disable game_menu.add_option('Quitter', pygameMenu.events.EXIT) game_menu.add_option('Retour au jeu', game_menu.disable) game_menu.disable() server_data.start() start_menu.mainloop() screen.fill((153, 102, 0)) afficher_message(screen, "Attente des autres joueurs", font) pygame.display.update() pygame.display.flip() print("starting game") #server_data.game_ready_event.wait() while not server_data.game_ready: events=pygame.event.get() game_menu.mainloop(events) screen.fill((153, 102, 0)) afficher_message(screen, "Attente des autres joueurs", font) clock.tick(60) pygame.display.update() pygame.display.flip() if server_data.game_ready: print('start game') while True: # on quitte avec le menu if selected_index >= len(server_data.hand): selected_index -= 1 events = pygame.event.get() game_menu.mainloop(events) # pour que le menu puisse s'afficher si on appuie sur ESC for event in events: if event.type == pygame.QUIT: sys.exit(0) elif event.type == pygame.MOUSEBUTTONDOWN: x,y = pygame.mouse.get_pos() if y >= 10 and y <= 70: clicked_index= (x-10)//50 #print(f"calc:{clicked_index} index: {selected_index}") if clicked_index < len(server_data.hand): selected_index = clicked_index #print(f"x={x} y={y}") elif event.type == pygame.KEYDOWN: if event.key == pygame.K_SPACE: selected_highlight = True elif event.key == pygame.K_ESCAPE: game_menu.enable() elif event.key == pygame.K_LEFT: selected_index = move_selection(selected_index, -1, server_data.hand) elif event.key == pygame.K_RIGHT: selected_index = move_selection(selected_index, +1, server_data.hand) elif event.key == pygame.K_q: sys.exit(0) elif event.key == pygame.K_s: # on lance le jeu server_data.send(ClientMessage(type_message=TYPE_READY)) elif event.key == pygame.K_m: server_data.message = None elif event.type == pygame.JOYHATMOTION: selected_index = move_selection(selected_index, event.value[0], server_data.hand) elif event.type == pygame.JOYAXISMOTION: # print("j{} h{} v{}".format(event.joy, event.axis, event.value)) selected_index = move_selection(selected_index, int(event.value), server_data.hand) break # je voulais avoir moins d'auto-repeat mais en fait ça marche pas elif event.type == pygame.JOYBUTTONDOWN: # print("j{} b{}".format(event.joy, event.button)) if event.button == 5: selected_index = move_selection(selected_index, 1, server_data.hand) elif event.button == 4: selected_index = move_selection(selected_index, -1, server_data.hand) elif event.button == 2 or event.button == 7: if not selected_highlight and len(server_data.hand) > 0: print("séléctionné carte {} index {}".format(server_data.hand[selected_index], selected_index)) selected_highlight = True elif event.button == 8: # select sys.exit(0) elif event.button == 0 and len(server_data.hand) > 0: server_data.hand[selected_index] = ( not server_data.hand[selected_index][0], server_data.hand[selected_index][1]) elif event.button == 1 and len(server_data.hand) > 0: server_data.hand[selected_index] = ( server_data.hand[selected_index][0], server_data.hand[selected_index][1] + 1) elif event.button == 3 and len(server_data.hand) > 0: server_data.hand[selected_index] = ( server_data.hand[selected_index][0], server_data.hand[selected_index][1] - 1) if selected_highlight and not server_data.game_finished and len( # action 'asynchrone' server_data.hand) > 0 and selected_index >= 0: # une carte a été sélectionnée server_data.send(ClientMessage( type_message=TYPE_ACTION, payload=Card.from_tuple(server_data.hand[selected_index]) )) # on envoie notre action au serveur print("sending action") selected_highlight = False if selected_index >= 0 and not server_data.game_finished: highlight(screen, hy, x0 + 50 * selected_index, selected_highlight) dessiner_main(screen, y0, x0, server_data.hand, font) dessiner_board(screen, y0 + 90, x0, server_data.board, font) afficher_message(screen, server_data.message, font) pygame.display.update() pygame.display.flip() # double-buffered clock.tick(60) # on attent pour limiter les FPS à 30 (et pas 100000 et un jeu qui bouf 100% CPU) screen.fill((0, 100, 0)) # on reset pour la frame suivante ``` #### File: JeanRibes/ppc-freakout/logic.py ```python from queue import Queue from data import * from random import random from copy import deepcopy def generate_pile_random(N=20, max_value=9): pile = Pile() for _ in range(N): value = int(random() * max_value) + 1 color = random() > 0.5 pile.append(Card(color, value)) return pile def generate_pile_fixed(max_value): pile = [Card(True, i) for i in range(1, max_value + 1)] pile.extend( [Card(False, i) for i in range(1, max_value + 1)] ) return pile def generate_pile(N, max_value): #return generate_pile_fixed(max_value) pile = generate_pile_random(N, max_value) pile.extend( generate_pile_fixed(max_value)) # toutes les cartes possibles plus un nombre de cartes alatoires return pile def shuffle(pile): indexes = [] inp = deepcopy(pile) for i, _ in enumerate(inp): indexes.append(i) out = [] while len(inp) > 0: out.append(inp.pop(indexes[int(random() * len(inp))])) return out def move_valid(board:Board, card:Card): ret = False for cards in board.values(): for card_on_board in cards: ret = True if card_on_board // card else ret break return ret def broadcast(queues, item): for q in queues: q.put(item, block=False) def flush(queue: Queue): """ merci StackOverflow :param queue: :return: """ while not queue.empty(): queue.get() if __name__ == '__main__': cartes = generate_pile(5, 8) print(List(cartes)) shuffled = List(shuffle(cartes)) print(shuffled) for i in cartes: if i not in shuffled: print('erreur') ```
{ "source": "JeanRochCoulon/riscv-dv", "score": 2 }
#### File: riscv-dv/scripts/verilator_log_to_trace_csv.py ```python import argparse import os import re import sys import logging sys.path.insert(0, os.path.dirname(os.path.realpath(__file__))) from riscv_trace_csv import * from lib import * RD_RE = re.compile(r"(?P<pri>\d) 0x(?P<addr>[a-f0-9]+?) " \ "\((?P<bin>.*?)\) (?P<reg>[xf]\s*\d*?) 0x(?P<val>[a-f0-9]+)") CORE_RE = re.compile(r"core.*0x(?P<addr>[a-f0-9]+?) \(0x(?P<bin>.*?)\) (?P<instr>.*?)$") ILLE_RE = re.compile(r"trap_illegal_instruction") LOGGER = logging.getLogger() def process_instr(trace): if trace.instr == "jal": # Spike jal format jal rd, -0xf -> jal rd, -15 idx = trace.operand.rfind(",") imm = trace.operand[idx+1:] if imm[0] == "-": imm = "-" + str(int(imm[1:], 16)) else: imm = str(int(imm, 16)) trace.operand = trace.operand[0:idx+1] + imm trace.operand = trace.operand.replace("(", ",") trace.operand = trace.operand.replace(")", "") def read_verilator_instr(match, full_trace): '''Unpack a regex match for CORE_RE to a RiscvInstructionTraceEntry If full_trace is true, extract operand data from the disassembled instruction. ''' # Extract the disassembled instruction. disasm = match.group('instr') # Spike's disassembler shows a relative jump as something like "j pc + # 0x123" or "j pc - 0x123". We just want the relative offset. disasm = disasm.replace('pc + ', '').replace('pc - ', '-') instr = RiscvInstructionTraceEntry() instr.pc = match.group('addr') instr.instr_str = disasm instr.binary = match.group('bin') if full_trace: opcode = disasm.split(' ')[0] operand = disasm[len(opcode):].replace(' ', '') instr.instr, instr.operand = \ convert_pseudo_instr(opcode, operand, instr.binary) process_instr(instr) return instr def read_verilator_trace(path, full_trace): '''Read a Spike simulation log at <path>, yielding executed instructions. This assumes that the log was generated with the -l and --log-commits options to Spike. If full_trace is true, extract operands from the disassembled instructions. Since Spike has a strange trampoline that always runs at the start, we skip instructions up to and including the one at PC 0x1010 (the end of the trampoline). At the end of a DV program, there's an ECALL instruction, which we take as a signal to stop checking, so we ditch everything that follows that instruction. This function yields instructions as it parses them as tuples of the form (entry, illegal). entry is a RiscvInstructionTraceEntry. illegal is a boolean, which is true if the instruction caused an illegal instruction trap. ''' # This loop is a simple FSM with states TRAMPOLINE, INSTR, EFFECT. The idea # is that we're in state TRAMPOLINE until we get to the end of Spike's # trampoline, then we switch between INSTR (where we expect to read an # instruction) and EFFECT (where we expect to read commit information). # # We yield a RiscvInstructionTraceEntry object each time we leave EFFECT # (going back to INSTR), we loop back from INSTR to itself, or we get to the # end of the file and have an instruction in hand. # # On entry to the loop body, we are in state TRAMPOLINE if in_trampoline is # true. Otherwise, we are in state EFFECT if instr is not None, otherwise we # are in state INSTR. end_trampoline_re = re.compile('core.*0x0000000080000000 ') in_trampoline = True instr = None with open(path, 'r') as handle: for line in handle: if in_trampoline: # The TRAMPOLINE state if 'core 0: 0x0000000080000000' in line: in_trampoline = False continue if instr is None: # The INSTR state. We expect to see a line matching CORE_RE. We'll # discard any other lines. instr_match = CORE_RE.match(line) if not instr_match: continue instr = read_verilator_instr(instr_match, full_trace) # If instr.instr_str is 'ecall', we should stop. if instr.instr_str == 'ecall': break continue # The EFFECT state. If the line matches CORE_RE, we should have been in # state INSTR, so we yield the instruction we had, read the new # instruction and continue. As above, if the new instruction is 'ecall', # we need to stop immediately. instr_match = CORE_RE.match(line) if instr_match: yield (instr, False) instr = read_verilator_instr(instr_match, full_trace) if instr.instr_str == 'ecall': break continue # The line doesn't match CORE_RE, so we are definitely on a follow-on # line in the log. First, check for illegal instructions if 'trap_illegal_instruction' in line: yield (instr, True) instr = None continue # The instruction seems to have been fine. Do we have commit data (from # the --log-commits Spike option)? commit_match = RD_RE.match(line) if commit_match: instr.gpr.append(gpr_to_abi(commit_match.group('reg') .replace(' ', '')) + ':' + commit_match.group('val')) instr.mode = commit_match.group('pri') # At EOF, we might have an instruction in hand. Yield it if so. if instr is not None: yield (instr, False) def process_verilator_sim_log(verilator_log, csv, full_trace = 0): """Process VERILATOR simulation log. Extract instruction and affected register information from verilator simulation log and write the results to a CSV file at csv. Returns the number of instructions written. """ logging.info("Processing verilator log : %s" % verilator_log) instrs_in = 0 instrs_out = 0 with open(csv, "w") as csv_fd: trace_csv = RiscvInstructionTraceCsv(csv_fd) trace_csv.start_new_trace() for (entry, illegal) in read_verilator_trace(verilator_log, full_trace): instrs_in += 1 if illegal and full_trace: logging.debug("Illegal instruction: {}, opcode:{}" .format(entry.instr_str, entry.binary)) # Instructions that cause no architectural update (which includes illegal # instructions) are ignored if full_trace is false. # # We say that an instruction caused an architectural update if either we # saw a commit line (in which case, entry.gpr will contain a single # entry) or the instruction was 'wfi' or 'ecall'. if not (full_trace or entry.gpr or entry.instr_str in ['wfi', 'ecall']): continue trace_csv.write_trace_entry(entry) instrs_out += 1 logging.info("Processed instruction count : %d" % instrs_in) logging.info("CSV saved to : %s" % csv) return instrs_out def main(): # Parse input arguments parser = argparse.ArgumentParser() parser.add_argument("--log", type=str, help="Input verilator simulation log") parser.add_argument("--csv", type=str, help="Output trace csv_buf file") parser.add_argument("-f", "--full_trace", dest="full_trace", action="store_true", help="Generate the full trace") parser.add_argument("-v", "--verbose", dest="verbose", action="store_true", help="Verbose logging") parser.set_defaults(full_trace=False) parser.set_defaults(verbose=False) args = parser.parse_args() setup_logging(args.verbose) # Process verilator log process_verilator_sim_log(args.log, args.csv, args.full_trace) if __name__ == "__main__": main() ```
{ "source": "jeanrodriguez27/PLProject", "score": 3 }
#### File: jeanrodriguez27/PLProject/CodeGenerator.py ```python code = [] type = "" def set_scripttype(sct): global type type = sct print(type) def initial_simple(speed): block = "using System.Collections;\n" + \ "using System.Collections.Generic;\n" + \ "using UnityEngine;\n" + \ "\n" + \ "public class SimpleMovement : MonoBehaviour {\n" + \ "private float speed;\n" + \ "private float time; \n" + \ "void Start() \n { \n" + \ "speed = " + speed + "f; \n" + \ "time = Time.deltaTime; \n } \n" if code != block: code.append(block) def initial_rigid_body(speed): block = "using System.Collections;\n" \ "using System.Collections.Generic;\n" \ "using UnityEngine;\n" \ "public class RigidMovement: MonoBehaviour \n { \n" \ "float _speed = " + speed + "f;\n" code.append(block) def initial_char_cont(speed, gravity): block = "using System.Collections;\n" \ "using System.Collections.Generic;\n" \ "using UnityEngine;\n" \ "\n" \ "public class PlayerMovement : MonoBehaviour {\n" \ "\n" \ "private float speed = " + speed + "f;\n" \ "private float jump = 1f;\n" \ "private float gravity = " + gravity + "f;\n" \ "float deltaX; \n float deltaZ; \n" \ "private Vector3 movement = Vector3.zero;\n" \ "\n" \ "private CharacterController charCont;\n" \ "\n" \ "// Use this for initialization\n" \ "void Start() {\n" \ "charCont = GetComponent<CharacterController>();\n" \ "\n" \ "if (charCont == null) {\n" \ "Debug.LogError(\"character controller could not be found.\");\n" \ "}\n} \n" \ "\n// FixedUpdate is called for physics calculations\n" \ "void FixedUpdate() { \n" code.append(block) def move(x, y, z): if type == 'RIGIDBODY': block = "string _movementX = \"" + x + "\" ; \n" \ "string _movementZ = \"" + z + "\" ; \n" \ "Rigidbody _rigidBody; \n float _moveX; \n float _moveZ; \n float dist_to_ground = 1f; \n" \ "void Start() \n { \n" \ "_rigidBody = this.GetComponent<Rigidbody>(); \n if (_rigidBody == null) \n { \n " \ "Debug.LogError(\"Rigid body could not be found.\"); \n } \n }" \ "void Update() \n { \n _moveX = Input.GetAxis(_movementX); \n _moveZ = Input.GetAxis(_movementZ); \n " \ "} \n" \ "void FixedUpdate() \n { \n Vector3 moveVector = new Vector3(_moveX,0,_moveZ)*_speed;\n" code.append(block) elif type == 'CHARACTERCONTROLLER': block = "deltaX = Input.GetAxis( \"" + x + "\");\n" \ "deltaZ = Input.GetAxis( \"" + z + "\");\n" \ "\n" \ "movement = new Vector3(deltaX, 0, deltaZ); \n " \ "\n" \ "movement = transform.TransformDirection(movement);\n " \ "\n" \ "movement *= speed;\n" code.append(block) else: block = "void Update() \n { \n" code.append(block) if x == 'NONE': simple_noX(y, z) elif y == 'NONE': simple_noY(x, z) else: simple_noZ(x, y) def addForce(force): block = "_rigidBody.AddForce(moveVector,ForceMode."+force+"); \n" code.append(block) def set_Action(actionList): for i in range(0, len(actionList), 2): if actionList[i] == 'JUMP': jump_action(actionList[i+1]) elif actionList[i] == 'DASH': dash_action(actionList[i+1]) elif actionList[i] == 'WALK': walk_action(actionList[i+1]) else: jetpack_action(actionList[i+1]) def jump_action(key): if type == 'RIGIDBODY': block = "if(Input.GetKey(KeyCode."+key+") && isGrounded()) {\n" \ "jump();\n" \ "}\n" code.append(block) elif type == 'CHARACTERCONTROLLER': block = "if (Input.GetKey(KeyCode."+key+") && charCont.isGrounded) \n { \n" \ "movement.y = jump; \n } \n" code.append(block) def dash_action(key): if type == 'RIGIDBODY': block = "if(Input.GetKey(KeyCode." + key + ")) {\n" \ "dash(moveVector);\n" \ "}\n" code.append(block) if type == 'CHARACTERCONTROLLER': block = "if (Input.GetKey(KeyCode."+key+")) \n { \n" \ "movement *= 2f;\n } \n" code.append(block) def walk_action(key): if type == 'RIGIDBODY': block = "if(Input.GetKey(KeyCode." + key + ")) {\n" \ "_rigidBody.AddForce(moveVector*0.5f, ForceMode.Force);\n" \ "}\n" code.append(block) if type == 'CHARACTERCONTROLLER': block = "if (Input.GetKey(KeyCode."+key+")) \n { \n" \ "movement *= 0.5f;\n } \n" code.append(block) def jetpack_action(key): if type == 'RIGIDBODY': block = "if(Input.GetKey(KeyCode." + key + ")) {\n" \ "jump();\n" \ "}\n" code.append(block) if type == 'CHARACTERCONTROLLER': block = "if (Input.GetKey(KeyCode." + key + ")) \n { \n" \ "movement.y = jump; \n } \n" code.append(block) # Helpers for Simple movement def simple_noY(x, z): block = "transform.Translate(speed * Input.GetAxis(\"" + x + "\") * time, 0f, 0f); \n" \ "transform.Translate(0f, 0f, speed * Input.GetAxis(\"" + z + "\") * time); \n" code.append(block) def simple_noX(y, z): block = "transform.Translate(0f,speed * Input.GetAxis(\"" + y + "\") * time, 0f); \n" \ "transform.Translate(0f, 0f, speed * Input.GetAxis(\"" + z + "\") * time); \n" code.append(block) def simple_noZ(x, y): block = "transform.Translate(speed * Input.GetAxis(\"" + x + "\") * time, 0f, 0f); \n" \ "transform.Translate(0f,speed * Input.GetAxis(\"" + y + "\") * time, 0f); \n" code.append(block) # Script enders def end_rigidbody(): block = "\n" \ "}\n" \ "bool isGrounded() {\n" \ "return Physics.Raycast(transform.position, Vector3.down, dist_to_ground);\n" + "}\n" \ "\n" \ "void jump() {\n" \ "_rigidBody.AddForce(new Vector3(0,1f,0), ForceMode.Impulse);\n" \ "}\n" \ "void dash(Vector3 moveVector) \n { \n " \ "_rigidBody.AddForce(moveVector*2f, ForceMode.Force); \n } \n } \n" code.append(block) def end_char_cont(): block = "\n" \ "movement.y -= gravity;" \ "\n" \ "charCont.Move(movement);\n" \ "}\n" \ "}\n" code.append(block) def end_simple(): block = "\n } \n } \n" code.append(block) def walk_char_cont(): block = "if (Input.GetKey(KeyCode.LeftShift))\n" \ "movement *= .5f;\n" code.append(block) def upload(): final_code = code[0] for block in code: if final_code != block: final_code += block if type == 'RIGIDBODY': file = open("RigidMovement.cs", 'w') elif type == 'CHARACTERCONTROLLER': file = open("PlayerMovement.cs", 'w') else: file = open("SimpleMovement.cs", 'w') file.write(final_code) file.close() ```
{ "source": "Jeans212/codility-dev-training", "score": 4 }
#### File: codility-dev-training/Arrays/cyclic_rotation.py ```python from collections import deque def solution(A, K): # write your code in Python 3.6 deq_A = deque(A) deq_A.rotate(K) return list(deq_A) ``` #### File: codility-dev-training/iterations/binarygap.py ```python def solution(N): # write your code in Python 3.6 # converting the input N to binary number binary = format(N, 'b') temp = [] # case 1: there are no '0's in the binary number e.g. '11111111111' if '0' not in binary: return 0 # case 2a: there are less than two '1's in the binary number e.g. '10000000' if binary.count('1') < 2: return 0 else: # case 2b: if there are 2 or more '1's in the binary number e.g. '1100010000000' if binary[-1] == '1': for each_zeros in binary.split('1'): temp.append(len(each_zeros)) return max(temp) elif binary[0] != '1': for each_zeros in binary.split('1'): temp.append(len(each_zeros)) temp.remove(temp[0]) return max(temp) else: for each_zeros in binary.split('1'): temp.append(len(each_zeros)) temp.remove(temp[-1]) return max(temp) ``` #### File: codility-dev-training/Time Complexity/frog_jump.py ```python import math def solution(X, Y, D): # write your code in Python 3.6 return math.ceil((Y-X) / D) ```
{ "source": "jeansaad/hello_world", "score": 3 }
#### File: hello_world/tests/test_basic.py ```python from hello_world import hello_world from unittest import TestCase class BasicTest(TestCase): def test_basic_hello_world(self): """ Test basic hello world messaging """ self.assertEqual(hello_world(), 'Hello, World!') ```
{ "source": "jeansabety/learning_python", "score": 4 }
#### File: jeansabety/learning_python/mcb185.py ```python def read_fasta(filename): name = None seq = [] with open(filename) as fp: while True: line = fp.readline() if line == '': break elif line.startswith('>'): if len(seq) > 0: # now is the time to return name, seq yield name, ''.join(seq) words = line.split() name = words[0][1:] seq = [] else: line = line.rstrip() seq.append(line) yield name, ''.join(seq) #gc content def gc(dna): g = dna.count('G') c = dna.count('C') return (g + c)/len(dna) #n50 def n50(length): for value in length : running_sum += value if running_sum > total/2 : return value #generate random sequence of specified size and gc content import random def randseq(length, gc) : seq = '' for i in range(length): if random.random() < gc: #has to be based on given gc content seq += random.choice('GC') else : seq += random.choice('AT') return seq #ORF: def orf(seq): #find ATG lengths = [] for i in range(len(seq) -2): #all the starting positions we could possibly see start = None stop = None if seq[i:i+3] == 'ATG': start = i #one you find an ATG, you have to go by triplets for j in range(i, len(seq) -2, 3) : #starting at A, through the rest of the sequence, by 3s codon = seq[j: j+3] #stop codon starts at j if codon == 'TAA' or codon == 'TAG' or codon == 'TGA' : stop = j break if stop != None: lengths.append((stop - start)//3) #only if you find a start,stop pair do you add the orf length to the list | /3 so we get the AA length return lengths #translate dictionary gcode = { 'AAA' : 'K', 'AAC' : 'N', 'AAG' : 'K', 'AAT' : 'N', 'ACA' : 'T', 'ACC' : 'T', 'ACG' : 'T', 'ACT' : 'T', 'AGA' : 'R', 'AGC' : 'S', 'AGG' : 'R', 'AGT' : 'S', 'ATA' : 'I', 'ATC' : 'I', 'ATG' : 'M', 'ATT' : 'I', 'CAA' : 'Q', 'CAC' : 'H', 'CAG' : 'Q', 'CAT' : 'H', 'CCA' : 'P', 'CCC' : 'P', 'CCG' : 'P', 'CCT' : 'P', 'CGA' : 'R', 'CGC' : 'R', 'CGG' : 'R', 'CGT' : 'R', 'CTA' : 'L', 'CTC' : 'L', 'CTG' : 'L', 'CTT' : 'L', 'GAA' : 'E', 'GAC' : 'D', 'GAG' : 'E', 'GAT' : 'D', 'GCA' : 'A', 'GCC' : 'A', 'GCG' : 'A', 'GCT' : 'A', 'GGA' : 'G', 'GGC' : 'G', 'GGG' : 'G', 'GGT' : 'G', 'GTA' : 'V', 'GTC' : 'V', 'GTG' : 'V', 'GTT' : 'V', 'TAA' : '*', 'TAC' : 'Y', 'TAG' : '*', 'TAT' : 'Y', 'TCA' : 'S', 'TCC' : 'S', 'TCG' : 'S', 'TCT' : 'S', 'TGA' : '*', 'TGC' : 'C', 'TGG' : 'W', 'TGT' : 'C', 'TTA' : 'L', 'TTC' : 'F', 'TTG' : 'L', 'TTT' : 'F', } #translate: def translate(seq): seq = seq.upper() #normalize upper and lowercase letters protein = '' for i in range(0, len(seq) -2, 3): #each codon #protein += gcode[seq[i:i+3]] codon = seq[i:i+3] if codon in gcode: protein += gcode[codon] #if codon in dict, use it else : protein += 'X' #any weird codon will become an X return protein #reverse compliment: def rc(seq): rcdna = '' for i in range(len(seq) -1, -1, -1) : nt = seq[i] if nt == 'A' : nt = 'T' elif nt == 'T' : nt = 'A' elif nt == 'C' : nt = 'G' elif nt == 'G' : nt = 'C' else : nt = 'N' rcdna += nt return rcdna #ORF but prints the dna seq rather than the length: def orfseq(seq): #find ATG for i in range(len(seq) -2): #all the starting positions we could possibly see start = None stop = None if seq[i:i+3] == 'ATG': start = i #one you find an ATG, you have to go by triplets for j in range(i, len(seq) -2, 3) : #starting at A, through the rest of the sequence, by 3s codon = seq[j: j+3] #stop codon starts at j if codon == 'TAA' or codon == 'TAG' or codon == 'TGA' : stop = j break if stop != None: yield seq[start:stop] #yield returns one at a time - doesnt create the whole list, does one at a time #entropy import math def entropy(prob): assert(math.isclose(sum(prob), 1.0)) h = 0 for i in range(len(prob)): if prob[i] != 0: h -= prob[i] * math.log2(prob[i]) return(h) ```
{ "source": "jeanschmidt/poc_deeplearning_industrial", "score": 3 }
#### File: poc_deeplearning_industrial/learn/test.py ```python from __future__ import unicode_literals from __future__ import print_function from __future__ import division import time import torch from torch.autograd import Variable def chunks(l): n = 40 for i in range(0, len(l), n): yield l[i:i + n] def print_test_result(set_type, test_loss, correct, test_dataset_len, evaluate_time): print( '\n"{}" set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%) ' 'Evaluate Time: {:.4f}s ({:.2f}ms per test)\n'.format( set_type, test_loss, correct, test_dataset_len, 100. * correct / test_dataset_len, evaluate_time, (evaluate_time / test_dataset_len) * 1000 ) ) def test_data(model, criterion, data, target): start_time = time.time() if torch.cuda.is_available(): data = data.cuda() target = target.cuda() model.eval() test_dataset_len = data.size()[0] output = model(data) test_loss = criterion(output, target).data.sum() pred = output.data.max(1, keepdim=True)[1] target_pred = target.max(1, keepdim=True)[1] correct = pred.eq(target_pred.data).sum() test_loss /= test_dataset_len evaluate_time = time.time() - start_time return { 'test_loss': test_loss, 'correct': correct, 'test_dataset_len': test_dataset_len, 'evaluate_time': evaluate_time, } def _sum_dicts(total, inc): for k in inc.keys(): total[k] = total.get(k, 0.0) + inc.get(k, 0.0) return total def test(test_dataset, model, criterion): data_lst = list(chunks(test_dataset[0])) target_lst = list(chunks(test_dataset[1])) total = {} for idx in xrange(len(data_lst)): ret = test_data( model, criterion, Variable(data_lst[idx], volatile=True), Variable(target_lst[idx]) ) _sum_dicts(total, ret) return total def test_train(train_dataset, model, criterion): total = {} for _, get_data, get_target in train_dataset: ret = test_data( model, criterion, Variable(get_data(), volatile=True), Variable(get_target()) ) _sum_dicts(total, ret) return total def test_print_save(model, criterion, epoch, train_batches, jal): test_result = test(jal.test_dataset, model, criterion) print_test_result('TEST', **test_result) train_result = test_train(train_batches, model, criterion) print_test_result('TRAIN', **train_result) ```
{ "source": "jeanschmidt/python_propertyutils", "score": 3 }
#### File: python_propertyutils/lazyproperty/classproperty.py ```python from __future__ import unicode_literals class ClassPropertyDescriptor(object): """ Thanks StackOverflow =) """ def __init__(self, fget=None, fset=None, fdel=None, doc=None): if fget and not isinstance(fget, (classmethod, staticmethod)): fget = classmethod(fget) if fset and not isinstance(fset, (classmethod, staticmethod)): fset = classmethod(fset) if fdel and not isinstance(fdel, (classmethod, staticmethod)): fdel = classmethod(fdel) if doc is None and fget is not None: doc = fget.__doc__ self.fget = fget self.fset = fset self.fdel = fdel self.__doc__ = doc def __get__(self, obj, klass=None): if self.fget is None: raise AttributeError("can't get attribute") if klass is None: klass = type(obj) return self.fget.__get__(obj, klass)() def __set__(self, obj, value): if self.fset is None: raise AttributeError("can't set attribute") type_ = type(obj) return self.fset.__get__(obj, type_)(value) def __delete__(self, obj): if self.fdel is None: raise AttributeError("can't delete attribute") type_ = type(obj) return self.fdel.__get__(obj, type_)() def getter(self, func): if not isinstance(func, (classmethod, staticmethod)): func = classmethod(func) self.fget = func return self def setter(self, func): if not isinstance(func, (classmethod, staticmethod)): func = classmethod(func) self.fset = func return self def deleter(self, func): if not isinstance(func, (classmethod, staticmethod)): func = classmethod(func) self.fdel = func return self def classproperty(fget, fset=None, fdel=None): return ClassPropertyDescriptor(fget=fget, fset=fset, fdel=fdel) ```
{ "source": "JeanSchnorr/votaluno", "score": 2 }
#### File: votaluno/votacoes/models.py ```python from django.db import models from django.contrib.auth.models import User CHOICES_BIMESTRE=[(1,'1'),(2,'2'),(3,'3'),(4,'4')] class Disciplina(models.Model): nome = models.TextField(max_length=30) def __str__(self): return self.nome class Curso(models.Model): nome = models.TextField(max_length=30) def __str__(self): return self.nome class Turma(models.Model): curso = models.ForeignKey(Curso, on_delete=models.CASCADE) ano = models.IntegerField() sala = models.TextField(max_length=1) def __str__(self): return f'{self.ano}º "{self.sala}" {self.curso}' class OfertaDisciplina(models.Model): professor = models.ForeignKey(User, on_delete=models.CASCADE,related_name="disciplinas_professor") turma = models.ForeignKey(Turma, on_delete=models.CASCADE,related_name="disciplinas_turma") disciplina = models.ForeignKey(Disciplina, on_delete=models.CASCADE) def __str__(self): return f'{self.disciplina} - {self.professor}' class Aluno(models.Model): nome = models.TextField(max_length=50) cpf = models.TextField(max_length=14) foto = models.ImageField(default='default.png',upload_to='alunos/') turma = models.ForeignKey(Turma, on_delete=models.CASCADE,related_name="alunos_turma") def __str__(self): return self.nome class AvaliacaoAluno(models.Model): oferta_disciplina = models.ForeignKey(OfertaDisciplina, on_delete=models.CASCADE,related_name="avaliacoes_aluno_disciplina") aluno = models.ForeignKey("Aluno", on_delete=models.CASCADE,related_name="avaliacoes_aluno") bimestre = models.PositiveIntegerField(choices=CHOICES_BIMESTRE) avaliacao = models.PositiveIntegerField(default=0) outros_avaliacao = models.TextField(max_length=255,blank=True,null=True) ano = models.PositiveIntegerField() status = models.BooleanField(default=True) class Meta: verbose_name = 'Avaliação de aluno' verbose_name_plural = 'Avaliações de alunos' def __str__(self): return f'{self.aluno} - {self.oferta_disciplina}' class AvaliacaoTurma(models.Model): oferta_disciplina = models.ForeignKey(OfertaDisciplina, on_delete=models.CASCADE) bimestre = models.PositiveIntegerField(choices=CHOICES_BIMESTRE) ano = models.PositiveIntegerField() avaliacao = models.PositiveIntegerField(default=0) outros_avaliacao = models.TextField(max_length=255,blank=True,null=True) status = models.BooleanField(default=True) class Meta: verbose_name = 'Avaliação de turma' verbose_name_plural = 'Avaliações de turmas' def __str__(self): return f'{self.oferta_disciplina.turma} - {self.oferta_disciplina} - {self.ano}' class Conselho(models.Model): turma = models.ForeignKey(Turma, on_delete=models.CASCADE) data = models.DateField(auto_now=False) situacao = models.BooleanField(default=False) def __str__(self): if self.situacao: text = 'Iniciada' else: text = 'Fechada' return f'{self.turma} - {text}' class UsuarioConselho(models.Model): usuario = models.ForeignKey(User, on_delete=models.CASCADE,related_name="conselhos_usuario") conselho = models.ForeignKey(Conselho, on_delete=models.CASCADE) def __str__(self): return f'{self.usuario} - {self.conselho}' class Votacao(models.Model): aluno = models.ForeignKey(Aluno, on_delete=models.CASCADE) situacao = models.BooleanField(default=False) conselho = models.ForeignKey(Conselho, on_delete=models.CASCADE,related_name="votacoes_conselho") class Meta: verbose_name = 'Votação' verbose_name_plural = 'Votações' def __str__(self): return f'{self.aluno} - {self.conselho.turma}' class Voto(models.Model): SITUACAO_CHOICES={ ('Aprovar', 'Aprovar'), ('Reprovar', 'Reprovar'), ('Abster', 'Abster') } votacao = models.ForeignKey(Votacao, on_delete=models.CASCADE,related_name="votos_votacao") usuario = models.ForeignKey(User, on_delete=models.CASCADE, related_name="votos_usuario") situacao = models.CharField(max_length=8, choices=SITUACAO_CHOICES, default='Abster') votado = models.BooleanField(default=False) def __str__(self): return f'{self.usuario} para {self.votacao}' ``` #### File: votaluno/votacoes/views.py ```python from django.contrib.auth.decorators import login_required from django.http import HttpResponseRedirect from django.contrib.auth.models import User from .models import Aluno, AvaliacaoTurma, AvaliacaoAluno, Turma, OfertaDisciplina, Conselho,UsuarioConselho, Votacao, Voto from django.shortcuts import render, redirect from datetime import datetime from .avaliacoes import * @login_required def home(request): context = {} conselhos_professor=[] conselhos_abertos = [] conselhos = request.user.conselhos_usuario.all() for conselho in conselhos: conselhos_professor.append(conselho.conselho) for conselho in Conselho.objects.filter(situacao=True): if conselho in conselhos_professor: conselhos_abertos.append(conselho) if request.user.is_superuser: context['conselhos_abertos'] = Conselho.objects.filter(situacao=True) else: context['conselhos_abertos'] = conselhos_abertos return render(request, 'home.html',context) # Views que manipulam as avaliações das turmas @login_required def avaliacoesTurmas(request): context = {} avaliacoes=[] avaliacoes_lancadas=[] ofertas = OfertaDisciplina.objects.filter(professor=request.user) for oferta in ofertas: avs = AvaliacaoTurma.objects.filter(oferta_disciplina=oferta).filter(status=True) avs_lancadas = AvaliacaoTurma.objects.filter(oferta_disciplina=oferta).filter(status=False)[:10] if len(avs_lancadas) > 0: for avaliacoesLancadas in avs_lancadas: avaliacoes_lancadas.append(avaliacoesLancadas) if len(avs) > 0: for avaliacoesDisciplina in avs: avaliacoes.append(avaliacoesDisciplina) context['avaliacoes'] = avaliacoes context['avaliacoes_lancadas'] = avaliacoes_lancadas return render(request,'avaliacoes/avaliacoesTurmas.html',context) @login_required def criarAvaliacaoTurma(request, avaliacao_id): context = {} avaliacao = AvaliacaoTurma.objects.get(id=avaliacao_id) context['avaliacao'] = avaliacao context['opcoes'] = DICT_TURMA return render(request,'avaliacoes/avaliarTurma.html', context) @login_required def lancarAvaliacaoTurma(request, avaliacao_id): soma = 0 selecionadas = request.POST.getlist('checks') for opcao in selecionadas: soma += int(opcao) avaliacao = AvaliacaoTurma.objects.get(pk=avaliacao_id) avaliacao.status = False avaliacao.avaliacao = soma avaliacao.outros_avaliacao = request.POST.get('outros') avaliacao.save() return avaliacoesTurmas(request) @login_required def visualizarAvaliacaoTurma(request, avaliacao_id): context = {} avaliacao = AvaliacaoTurma.objects.get(id=avaliacao_id) context['avaliacao'] = avaliacao context['opcoes'] = get_array_turma(avaliacao.avaliacao) return render(request,'avaliacoes/visualizarAvaliacaoTurma.html', context) #Views que manipulam as avaliações dos alunos @login_required def gerarAvaliacoesTurma(request): turma = Turma.objects.get(id=request.POST.get("turma")) bimestre = request.POST.get("bimestre") alunos = Aluno.objects.filter(turma=turma) ofertaDisciplinas_turma = OfertaDisciplina.objects.filter(turma=turma) for disciplina in ofertaDisciplinas_turma: avaliacaoTurma = AvaliacaoTurma(oferta_disciplina=disciplina,bimestre=bimestre,ano=int(datetime.now().year)) avaliacaoTurma.save() for aluno in alunos: avaliacaoAluno = AvaliacaoAluno(oferta_disciplina=disciplina,aluno=aluno,bimestre=bimestre,ano=int(datetime.now().year)) avaliacaoAluno.save() return administracao(request) @login_required def avaliacoesAlunos(request): context = {} avaliacoes=[] avaliacoes_lancadas=[] ofertas = OfertaDisciplina.objects.filter(professor=request.user) for oferta in ofertas: avs = AvaliacaoAluno.objects.filter(oferta_disciplina=oferta).filter(status=True) avs_lancadas = AvaliacaoAluno.objects.filter(oferta_disciplina=oferta).filter(status=False)[:10] if len(avs_lancadas) > 0: for avaliacoesLancadas in avs_lancadas: avaliacoes_lancadas.append(avaliacoesLancadas) if len(avs) > 0: for avaliacoesDisciplina in avs: avaliacoes.append(avaliacoesDisciplina) context['avaliacoes'] = avaliacoes context['avaliacoes_lancadas'] = avaliacoes_lancadas return render(request,'avaliacoes/avaliacoesAlunos.html',context) @login_required def criarAvaliacaoAluno(request, avaliacao_id): context = {} avaliacao = AvaliacaoAluno.objects.get(id=avaliacao_id) context['avaliacao'] = avaliacao context['opcoes'] = DICT_ALUNO return render(request,'avaliacoes/avaliarAluno.html', context) @login_required def lancarAvaliacaoAluno(request, avaliacao_id): soma = 0 selecionadas = request.POST.getlist('checks') for opcao in selecionadas: soma += int(opcao) avaliacao = AvaliacaoAluno.objects.get(pk=avaliacao_id) avaliacao.status = False avaliacao.avaliacao = soma avaliacao.outros_avaliacao = request.POST.get('outros') avaliacao.save() return avaliacoesAlunos(request) @login_required def visualizarAvaliacaoAluno(request, avaliacao_id): context = {} avaliacao = AvaliacaoAluno.objects.get(id=avaliacao_id) context['avaliacao'] = avaliacao context['opcoes'] = get_array_aluno(avaliacao.avaliacao) return render(request,'avaliacoes/visualizarAvaliacaoAluno.html', context) #Views que manipulam a administração @login_required def administracao(request): context = {} turmas = Turma.objects.all() conselhosFechados = Conselho.objects.filter(situacao=False) conselhosAbertos = Conselho.objects.filter(situacao=True) context['turmas'] = turmas context['conselhosFechados'] = conselhosFechados context['conselhosAbertos'] = conselhosAbertos return render(request,'administracao.html', context) @login_required def admin(request): return HttpResponseRedirect('/admin') #Views para Conselhos @login_required def gerarConselho(request): # Gerar conselho turma = Turma.objects.get(id=request.POST.get("turma")) data = request.POST.get("data") conselho = Conselho.objects.create( turma= turma, data= data, situacao = False, ) conselho.save() #Criar e popular lista de professores que dão aula para essa turma professores = [] for disciplina in turma.disciplinas_turma.all(): if not disciplina.professor in professores: professores.append(disciplina.professor) # Gerar relacionamento UsuarioConselho if professores: print(professores) for professor in professores: usuario_conselho = UsuarioConselho(usuario=professor,conselho=conselho) usuario_conselho.save() # Gerar votacoes dos alunos da turma deste conselho alunos = Aluno.objects.filter(turma=turma) for aluno in alunos: votacao_aluno = Votacao(aluno=aluno,conselho=conselho) votacao_aluno.save() #Gerar votos em branco para os professores deste conselho for professor in professores: voto_branco = Voto(usuario=professor,votacao=votacao_aluno) voto_branco.save() return administracao(request) @login_required def iniciarConselho(request): # Pesquisar e iniciar o conselho conselho_id = request.POST.get("conselho") conselho = Conselho.objects.get(id=conselho_id) conselho.situacao = True conselho.save() # Pesquisar e iniciar as votações dos alunos que pertencem à turma deste conselho alunos = Aluno.objects.filter(turma=conselho.turma) for aluno in alunos: votacao_aluno = Votacao.objects.get(aluno=aluno,conselho=conselho) votacao_aluno.situacao = True votacao_aluno.save() return administracao(request) @login_required def encerrrarConselho(request): # Pesquisar e encerrar o conselho conselho_id = request.POST.get("select") conselho = Conselho.objects.get(id=conselho_id) conselho.situacao = False conselho.save() # Pesquisar e encerrar as votações dos alunos que pertencem à turma deste conselho alunos = Aluno.objects.filter(turma=conselho.turma) for aluno in alunos: votacao_aluno = Votacao.objects.get(aluno=aluno,conselho=conselho) votacao_aluno.situacao = False votacao_aluno.save() return administracao(request) def exibirConselho(request, conselho_id): context = {} conselho = Conselho.objects.get(id = conselho_id) votacoes_conselho = conselho.votacoes_conselho.all() votos_usuario = request.user.votos_usuario.all() votos_conselho = [] for votacao in votacoes_conselho: for voto in votacao.votos_votacao.filter(usuario=request.user).filter(votado=False): votos_conselho.append(voto) if request.user.is_superuser: context['votacoes_conselho'] = votacoes_conselho context['conselho'] = conselho context['votos_conselho'] = votos_conselho return render(request,'votacoes/exibirConselho.html',context) #Views para Votacões def exibirVoto(request,votacao_id): context = {} votacao = Votacao.objects.get(id=votacao_id) if request.user.is_superuser: context['votos_aprovar'] = len(votacao.votos_votacao.filter(votado=True).filter(situacao="Aprovar")) context['votos_reprovar'] = len(votacao.votos_votacao.filter(votado=True).filter(situacao="Reprovar")) context['votos_abster'] = len(votacao.votos_votacao.filter(votado=True).filter(situacao="Abster")) context['votos_usuarios'] = votacao.votos_votacao.filter(votado=True) else: context['voto'] = votacao.votos_votacao.filter(usuario=request.user).filter(votado=False)[0] context['votacao'] = votacao context['conselho'] = votacao.conselho return render(request,'votacoes/voto.html',context) def gerarHistoricoAluno(id_aluno): historico = {} aluno = Aluno.objects.get(id=aluno_id) aluno.avaliacoes_aluno.all() for avaliacao in avaliacoes_aluno: a+b return historico def gerarHistoricoTurma(id_turma): historico = {} return historico def lancarVoto(request,voto_id): context = {} voto = Voto.objects.get(id=voto_id) conselho = voto.votacao.conselho alunos_conselho = conselho.turma.alunos_turma.all() voto.situacao = request.POST.get('botao') voto.votado = True voto.save() return exibirConselho(request, conselho.id) #erros def error404(request,exception): return render(request, '404.html', status=404) def error500(request): return render(request, '500.html', status=500) def faq(request): return render(request, 'faq.html') ```
{ "source": "jeanschuchardt/FGApp", "score": 3 }
#### File: Servidores/inserter/insert.py ```python import pandas as pd from sqlalchemy import create_engine from unidecode import unidecode from datetime import datetime def insert_cadastro(cadastro,remuneracao): chunk = 10000 #le o arquivo csv remuneração remuneracao_result_set = read_csv(remuneracao) #remove caracteres especiais da lingua portuguesa remuneracao_result_set.columns = remove_pt_caracteres(remuneracao_result_set) #remove dolar remuneracao_result_set = remove_coll_dolar(remuneracao_result_set) #remove espaços em branco remove_spaces(remuneracao_result_set) #remove colunas não necessarias remuneracao_result_set = remove_columns_remuneracao(remuneracao_result_set) #cria nova coluna para armazenar o gato total do servidor create_total_column(remuneracao_result_set) # remover no futuro -> existe para test # # keep_col = ['ANO','MES','Id_SERVIDOR_PORTAL','CPF','NOME','total_remuneracao'] #remover valores intermediarios a soma # y = y[keep_col] # # # ## for i, result_set in enumerate((pd.read_csv(cadastro, encoding ="ISO-8859-1", delimiter=';', skipinitialspace=True,error_bad_lines = False, engine='c',chunksize=chunk))): result_set = remove_columns_cadastro(result_set) result_set = remove_last_line(result_set) result_set = define_columns_types(result_set) # merge salva o resultado de inner join da tabala remuneraçao com a tabela cadastro merge = pd.merge(result_set,remuneracao_result_set,how='inner',on=['Id_SERVIDOR_PORTAL','NOME','CPF']) database_insert(merge) # TODO # remover path estatico do codigo # # # merge.to_csv("D:\\Github\\FGApp\\backend\\Servidores\\test\\"+ str(i) + datetime.now().strftime("%d-%m-%Y-%H-%M-%S") +'.csv', index=False) # # TODO # inserir no banco nesse momento # e nao gerar um arquivo csv # # def database_insert(result): try: #TODO # ler isso do config e remover do codigo # # ## eng = create_engine('mysql://admin:example@localhost:3308/datastage') result.to_sql('stg_servidores', eng, if_exists='append', index=False) print('arquivo inserido') except Exception as e: print("insert") print (e) # # define tipos de dados e remove espaços em branco # # def define_columns_types(resul_set): resul_set.CPF = resul_set.CPF.str.replace('\D','') resul_set.MATRICULA = resul_set.MATRICULA.str.replace('\D','') resul_set["Id_SERVIDOR_PORTAL"] = resul_set['Id_SERVIDOR_PORTAL'].astype('int') resul_set["CPF"] = resul_set['CPF'].astype('int') resul_set["MATRICULA"] = resul_set['MATRICULA'].astype('int') return resul_set def remove_last_line(x): x = x[x.SIGLA_FUNCAO != '-1'] return x def remove_columns_cadastro(x): keep_col = ['Id_SERVIDOR_PORTAL','NOME','CPF','MATRICULA','SIGLA_FUNCAO', 'NIVEL_FUNCAO','FUNCAO','UORG_EXERCICIO','DATA_INICIO_AFASTAMENTO', 'DATA_TERMINO_AFASTAMENTO','DATA_INGRESSO_CARGOFUNCAO','UF_EXERCICIO'] x = x[keep_col] return x def create_total_column(remuneracao_result_set): col_list = list(remuneracao_result_set) col_list.remove('ANO') col_list.remove('MES') col_list.remove('Id_SERVIDOR_PORTAL') col_list.remove('CPF') col_list.remove('NOME') define_types(remuneracao_result_set) remuneracao_result_set['total_remuneracao'] = remuneracao_result_set[col_list].sum(axis=1) def define_types(y): y["ANO"] = y['ANO'].astype('int') y["MES"] = y['MES'].astype('int') y["CPF"] = y['CPF'].astype('int') y["Id_SERVIDOR_PORTAL"] = y['Id_SERVIDOR_PORTAL'].astype('int') y["REMUNERACAO_BASICA_BRUTA"] = y['REMUNERACAO_BASICA_BRUTA'].astype('float') y["GRATIFICACAO_NATALINA"] = y['GRATIFICACAO_NATALINA'].astype('float') y["FERIAS"] = y['FERIAS'].astype('float') y["OUTRAS_REMUNERACOES_EVENTUAIS"] = y['OUTRAS_REMUNERACOES_EVENTUAIS'].astype('float') y["TOTAL_DE_VERBAS_INDENIZATORIAS"] = y['TOTAL_DE_VERBAS_INDENIZATORIAS'].astype('float') def remove_columns_remuneracao(y): keep_col = ['ANO', 'MES', 'Id_SERVIDOR_PORTAL', 'CPF', 'NOME', 'REMUNERACAO_BASICA_BRUTA', 'GRATIFICACAO_NATALINA', 'FERIAS', 'OUTRAS_REMUNERACOES_EVENTUAIS', 'TOTAL_DE_VERBAS_INDENIZATORIAS'] y = y[keep_col] y = y[:-1] #remove last row return y def remove_spaces(y): y.columns = y.columns.str.replace('\D(R\$\D)','') y.columns = y.columns.str.replace('\D(\*\D)','') y.columns = y.columns.str.replace('\/^\s+|\s+$','') y.columns = y.columns.str.replace(' ','_') y.CPF = y.CPF.str.replace('\D','') def remove_coll_dolar(y): drop_columns = [] for x in y[:0]: if('U$' in x): y = y.drop(columns=[x]) return y def remove_pt_caracteres(y): new_header = [] for x in y[:0]: new_header.append(unidecode(x)) return new_header def read_csv(remuneracao): y = pd.read_csv(remuneracao, encoding ="ISO-8859-1", delimiter=';', skipinitialspace=True,error_bad_lines = False, engine='c',decimal=",") return y ```
{ "source": "jeanschuchardt/pythonToolBox", "score": 4 }
#### File: TDD/phonebook/test_phonebook.py ```python import unittest from phonebook import PhoneBook class PhoneBookTest(unittest.TestCase): def test_creat_phonebook(self): phonebook = PhoneBook() def test_lookup_phonebook(self): phonebook = PhoneBook() phonebook.add('Jean','992759779') self.assertEqual('992759779', phonebook.lookup('Jean')) def test_missing_entry_raises_keyErrror(self): phonebook = PhoneBook() with self.assertRaises(KeyError): phonebook.lookup("missing") ```
{ "source": "Jeansding/Gather-Tensorflow-Serving", "score": 3 }
#### File: Gather-Tensorflow-Serving/15.text-classification-tornado-gunicorn/app.py ```python from tornado.web import Application, RequestHandler, asynchronous import numpy as np import tensorflow as tf import json def load_graph(frozen_graph_filename): with tf.gfile.GFile(frozen_graph_filename, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) with tf.Graph().as_default() as graph: tf.import_graph_def(graph_def) return graph with open('dictionary-test.json', 'r') as fopen: dic = json.load(fopen) g = load_graph('frozen_model.pb') label = ['negative', 'positive'] X = g.get_tensor_by_name('import/Placeholder:0') Y = g.get_tensor_by_name('import/logits:0') sess = tf.InteractiveSession(graph = g) maxlen = 50 UNK = 3 class MainHandler(RequestHandler): def get(self): self.write('Hello from Tornado') class TextClassification(RequestHandler): def get(self): sentence = self.get_argument('sentence', None) x = np.zeros((1, maxlen)) for no, k in enumerate(sentence.split()[:maxlen][::-1]): val = dic[k] if k in dic else UNK x[0, -1 - no] = val index = np.argmax(sess.run(Y, feed_dict = {X: x})[0]) self.write(json.dumps({'sentiment': label[index]})) app = Application([(r'/', MainHandler), (r'/classifier', TextClassification)]) ``` #### File: Gather-Tensorflow-Serving/16.celery-hadoop-flask-text-classification/app.py ```python from celery import Celery from flask import Flask, request from werkzeug import secure_filename import numpy as np import subprocess import shlex import json import os import logging import sys import random import time import string logging.basicConfig(level = logging.DEBUG) app = Flask(__name__) app.config['UPLOAD_FOLDER'] = os.getcwd() + '/upload' app.config['CELERY_BROKER_URL'] = 'redis://redis:6379/0' app.config['CELERY_RESULT_BACKEND'] = 'redis://redis:6379/0' celery = Celery(app.name, broker = app.config['CELERY_BROKER_URL']) dfs_location = '/user/input_text' celery.conf.update(app.config) def id_generator(size = 6, chars = string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) def get_hadoop_script( input_location, output_location, mapper, hadoop_location = '/opt/hadoop/bin/hadoop', hadoop_streaming = '/opt/hadoop/share/hadoop/tools/lib/hadoop-streaming-3.1.1.jar', files = ['dictionary-test.json', 'frozen_model.pb'], reducer = 'reducer.py', ): files = ' '.join(['-file %s' % (file) for file in files]) reducer = '-file %s -reducer %s' % (reducer, reducer) mapper = '-file %s -mapper %s' % (mapper, mapper) input_location = '-input %s/*' % (input_location) output_location = '-output %s' % (output_location) return '%s jar %s %s %s %s %s %s' % ( hadoop_location, hadoop_streaming, files, mapper, reducer, input_location, output_location, ) @celery.task(bind = True) def classify_text(self): output_dfs_location = '/user/' + id_generator(10) script = get_hadoop_script( dfs_location, output_dfs_location, 'classification.py' ) print(script) p = subprocess.Popen(shlex.split(script), stdout = subprocess.PIPE) for line in p.stdout: self.update_state( state = 'PROGRESS', meta = {'status': line.rstrip().decode('utf-8')} ) subprocess.Popen( shlex.split( '/opt/hadoop/bin/hadoop fs -get %s' % (output_dfs_location) ), stdout = subprocess.PIPE, ) return {'status': 'classification completed!', 'result': 42} @celery.task(bind = True) def upload_files_dfs(self, file_location, split_size): with open(file_location) as fopen: texts = list(filter(None, fopen.read().split('\n'))) splitted_list = np.array_split(texts, split_size) for no, split in enumerate(splitted_list): filename = '%d-%s' % (no, file_location) joined = '\n'.join(split.tolist()) script = '/opt/hadoop/bin/hdfs dfs -put %s %s/%s' % ( filename, dfs_location, filename, ) print('%d: uploading %s/%s' % (no, dfs_location, filename)) print('%d: %s' % (no, script)) with open(filename, 'w') as fopen: fopen.write(joined) process = subprocess.Popen( shlex.split(script), stdout = subprocess.PIPE ) self.update_state( state = 'PROGRESS', meta = {'status': 'uploaded %s/%s' % (dfs_location, filename)}, ) return {'status': 'upload completed!', 'result': 42} @app.route('/upload', methods = ['POST']) def upload(): f = request.files['file'] f.save( os.path.join(app.config['UPLOAD_FOLDER'], secure_filename(f.filename)) ) split_size = int(request.form['split_size']) task = upload_files_dfs.apply_async([f.filename, split_size]) return json.dumps({'id': task.id, 'filename': f.filename}) @app.route('/process', methods = ['GET']) def process(): task = classify_text.apply_async() return json.dumps({'id': task.id}) @app.route('/upload_status/<task_id>') def upload_status(task_id): task = upload_files_dfs.AsyncResult(task_id) if task.state == 'PENDING': response = {'state': task.state, 'status': 'Pending...'} elif task.state != 'FAILURE': response = {'state': task.state, 'status': task.info.get('status', '')} if 'result' in task.info: response['result'] = task.info['result'] else: response = {'state': task.state, 'status': str(task.info)} return json.dumps(response) @app.route('/classify_text_status/<task_id>') def classify_text_status(task_id): task = classify_text.AsyncResult(task_id) if task.state == 'PENDING': response = {'state': task.state, 'status': 'Pending...'} elif task.state != 'FAILURE': response = {'state': task.state, 'status': task.info.get('status', '')} if 'result' in task.info: response['result'] = task.info['result'] else: response = {'state': task.state, 'status': str(task.info)} return json.dumps(response) if __name__ == '__main__': app.run(debug = True, host = '0.0.0.0', port = 5000) ``` #### File: Gather-Tensorflow-Serving/18.luigi-celery-text-classification/function.py ```python import tensorflow as tf import numpy as np from elasticsearch import Elasticsearch from elasticsearch import helpers import luigi import re import json def clearstring(string): string = re.sub('[^A-Za-z0-9 ]+', '', string) string = string.split(' ') string = filter(None, string) string = [y.strip() for y in string] string = ' '.join(string) return string.lower() def load_graph(frozen_graph_filename): with tf.gfile.GFile(frozen_graph_filename, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) with tf.Graph().as_default() as graph: tf.import_graph_def(graph_def) return graph def str_idx(corpus, dic, maxlen, UNK = 3): X = np.zeros((len(corpus), maxlen)) for i in range(len(corpus)): for no, k in enumerate(corpus[i].split()[:maxlen][::-1]): X[i, -1 - no] = dic.get(k, UNK) return X sentiment_label = ['negative', 'positive'] emotion_label = ['anger', 'fear', 'joy', 'love', 'sadness', 'surprise'] def classify_sentiment(text): text = clearstring(text) batch_x = str_idx([text], dict_sentiment['dictionary'], 100) output_sentiment = sess_sentiment.run( logits_sentiment, feed_dict = {x_sentiment: batch_x} ) return [sentiment_label[i] for i in np.argmax(output_sentiment, 1)][0] class Sentiment(luigi.Task): filename = luigi.Parameter() summary = luigi.Parameter() batch_size = luigi.IntParameter(default = 32) def output(self): return luigi.LocalTarget('%s-sentiment.json' % (self.summary)) def run(self): g_sentiment = load_graph('sentiment.pb') x_sentiment = g_sentiment.get_tensor_by_name('import/Placeholder:0') logits_sentiment = g_sentiment.get_tensor_by_name('import/logits:0') sess_sentiment = tf.InteractiveSession(graph = g_sentiment) with open('fast-text-sentiment.json') as fopen: dict_sentiment = json.load(fopen) with open(self.filename) as fopen: texts = list(filter(None, fopen.read().split('\n'))) results = [] for i in range(0, len(texts), self.batch_size): batch_x_text = texts[i : min(i + self.batch_size, len(texts))] batch_x_text = [clearstring(t) for t in batch_x_text] batch_x = str_idx(batch_x_text, dict_sentiment['dictionary'], 100) output_sentiment = sess_sentiment.run( logits_sentiment, feed_dict = {x_sentiment: batch_x} ) labels = [ sentiment_label[l] for l in np.argmax(output_sentiment, 1) ] for no, text in enumerate(batch_x_text): results.append({'text': text, 'sentiment_label': labels[no]}) with self.output().open('w') as fopen: fopen.write(json.dumps(results)) class Emotion(luigi.Task): filename = luigi.Parameter() summary = luigi.Parameter() batch_size = luigi.IntParameter(default = 32) def output(self): return luigi.LocalTarget('%s-emotion.json' % (self.summary)) def requires(self): return { 'Sentiment': Sentiment( filename = self.filename, summary = self.summary, batch_size = self.batch_size, ) } def run(self): g_emotion = load_graph('emotion.pb') x_emotion = g_emotion.get_tensor_by_name('import/Placeholder:0') logits_emotion = g_emotion.get_tensor_by_name('import/logits:0') sess_emotion = tf.InteractiveSession(graph = g_emotion) with open('fast-text-emotion.json') as fopen: dict_emotion = json.load(fopen) with self.input()['Sentiment'].open('r') as fopen: outputs = json.load(fopen) for i in range(0, len(outputs), self.batch_size): batch_x_text = outputs[i : min(i + self.batch_size, len(outputs))] batch_x_text = [t['text'] for t in batch_x_text] batch_x_text = [clearstring(t) for t in batch_x_text] batch_x = str_idx(batch_x_text, dict_emotion['dictionary'], 100) output_emotion = sess_emotion.run( logits_emotion, feed_dict = {x_emotion: batch_x} ) labels = [emotion_label[l] for l in np.argmax(output_emotion, 1)] for no, label in enumerate(labels): outputs[i + no]['emotion_label'] = label with self.output().open('w') as fopen: fopen.write(json.dumps(outputs)) class Save_to_Elastic(luigi.Task): filename = luigi.Parameter() summary = luigi.Parameter() index = luigi.Parameter() batch_size = luigi.IntParameter(default = 32) def requires(self): return { 'Emotion': Emotion( filename = self.filename, summary = self.summary, batch_size = self.batch_size, ) } def run(self): with self.input()['Emotion'].open('r') as fopen: emotions = json.load(fopen) es = Elasticsearch() for i in range(0, len(emotions), self.batch_size): batch = emotions[i : min(i + self.batch_size, len(emotions))] actions = [ { '_index': self.index, '_type': 'text', '_id': '%d-%s' % (i + j, self.summary), '_source': batch[j], } for j in range(len(batch)) ] helpers.bulk(es, actions) ``` #### File: Gather-Tensorflow-Serving/2.object-detection-flasksocketio-opencv/camera.py ```python import cv2 import base64 from socketIO_client import SocketIO, BaseNamespace import numpy as np import time from PIL import Image from threading import Thread, ThreadError import io img_np = None socketIO = SocketIO('localhost', 5000) live_namespace = socketIO.define(BaseNamespace, '/live') def receive_events_thread(): socketIO.wait() def on_camera_response(*args): global img_np img_bytes = base64.b64decode(args[0]['data']) img_np = np.array(Image.open(io.BytesIO(img_bytes))) def run_cam(): global img_np while True: try: cv2.imshow('cam', img_np) if cv2.waitKey(30) & 0xFF == ord('q'): break except: continue live_namespace.on('camera_update', on_camera_response) receive_events_thread = Thread(target = receive_events_thread) receive_cam_thread = Thread(target = run_cam) receive_events_thread.daemon = True receive_events_thread.start() receive_cam_thread.daemon = True receive_cam_thread.start() cap = cv2.VideoCapture(0) while True: ret, img = cap.read() img_b = cv2.imencode('.jpg', cv2.cvtColor(img, cv2.COLOR_BGR2RGB))[ 1 ].tobytes() base64_bytes = base64.b64encode(img_b) base64_string = base64_bytes.decode('utf-8') live_namespace.emit('livevideo', {'data': base64_string}) time.sleep(0.05) ``` #### File: Gather-Tensorflow-Serving/4.classification-flask-gunicorn/api_dynamic.py ```python import os import pickle import tensorflow as tf import time import model import numpy as np from flask import Flask, render_template, request from werkzeug import secure_filename from flask_cors import CORS app = Flask(__name__) CORS(app) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['CUDA_VISIBLE_DEVICES'] = '' maxlen = 50 location = os.getcwd() num_layers = 3 size_layer = 256 learning_rate = 0.0001 output_size = 2 with open('vector-sentiment.p', 'rb') as fopen: vectors = pickle.load(fopen) with open('dictionary-sentiment.p', 'rb') as fopen: dictionary = pickle.load(fopen) sess = tf.InteractiveSession() model = model.Model(num_layers, size_layer, vectors.shape[1], output_size, learning_rate) sess.run(tf.global_variables_initializer()) dimension = vectors.shape[1] saver = tf.train.Saver(tf.global_variables()) saver.restore(sess, os.getcwd() + "/model-rnn-vector-huber.ckpt") @app.route('/dynamic', methods = ['GET']) def get_text(): last_time = time.time() batch_x = np.zeros((1, maxlen, dimension)) tokens = request.args.get('text').split()[:maxlen] for no, text in enumerate(tokens[::-1]): try: batch_x[0, -1 - no, :] += vectors[dictionary[text], :] except Exception as e: pass sess.run(tf.nn.softmax(model.logits), feed_dict = {model.X : batch_x}) return str(time.time()-last_time) if __name__ == '__main__': app.run(host = '0.0.0.0', threaded = True, port = 8033) ``` #### File: Gather-Tensorflow-Serving/6.inception-flasksocketio/camera.py ```python import cv2 import base64 from socketIO_client import SocketIO, BaseNamespace import numpy as np import time from PIL import Image from threading import Thread, ThreadError import io socketIO = SocketIO('localhost', 5000) live_namespace = socketIO.define(BaseNamespace, '/live') def receive_events_thread(): socketIO.wait() def on_camera_response(*args): print(args[0]) live_namespace.on('camera_update', on_camera_response) receive_events_thread = Thread(target = receive_events_thread) receive_events_thread.daemon = True receive_events_thread.start() cap = cv2.VideoCapture(0) count = 0 while True: ret, img = cap.read() img_b = cv2.imencode('.jpg', cv2.cvtColor(img, cv2.COLOR_BGR2RGB))[ 1 ].tobytes() if count % 20 == 0: base64_bytes = base64.b64encode(img_b) base64_string = base64_bytes.decode('utf-8') live_namespace.emit('livevideo', {'data': base64_string}) count = 1 count += 1 ```
{ "source": "Jeansding/Malaya", "score": 2 }
#### File: malaya/_models/_sklearn_model.py ```python import xgboost as xgb import numpy as np from collections import Counter from scipy.sparse import hstack from ..texts._text_functions import ( simple_textcleaning, classification_textcleaning, entities_textcleaning, language_detection_textcleaning, ) from .._utils._parse_dependency import DependencyGraph from ..texts.vectorizer import features_crf, features_crf_dependency def transitions(trans_features): for (label_from, label_to), weight in trans_features: print('%-6s -> %-7s %0.6f' % (label_from, label_to, weight)) def state_features(state_features): for (attr, label), weight in state_features: print('%0.6f %-8s %s' % (weight, label, attr)) class CRF: def __init__(self, model, is_lower = True): self._model = model self._is_lower = is_lower def predict(self, string): """ Tag a string Parameters ---------- string : str Returns ------- string: tagged string """ if not isinstance(string, str): raise ValueError('input must be a string') string = string.lower() if self._is_lower else string string = entities_textcleaning(string) batch_x = [features_crf(string, index) for index in range(len(string))] return [ (string[no], tag) for no, tag in enumerate(self._model.predict_single(batch_x)) ] def print_transitions(self, top_k = 10): """ Print important top-k transitions Parameters ---------- top_k : int """ if not isinstance(top_k, int): raise ValueError('input must be an integer') print('Top-%d likely transitions:' % (top_k)) transitions( Counter(self._model.transition_features_).most_common(top_k) ) print('\nTop-%d unlikely transitions:' % (top_k)) transitions( Counter(self._model.transition_features_).most_common()[-top_k:] ) def print_features(self, top_k = 10): """ Print important top-k features Parameters ---------- top_k : int """ if not isinstance(top_k, int): raise ValueError('input must be an integer') print('Top-%d positive:' % (top_k)) state_features(Counter(self._model.state_features_).most_common(top_k)) print('\nTop-%d negative:' % (top_k)) state_features( Counter(self._model.state_features_).most_common()[-top_k:] ) class DEPENDENCY: def __init__(self, tag, depend): self._tag = tag self._depend = depend def predict(self, string): """ Tag a string Parameters ---------- string : str Returns ------- string: tagged string """ if not isinstance(string, str): raise ValueError('input must be a string') string = entities_textcleaning(string) if len(string) > 120: raise Exception( 'Dependency parsing only able to accept string less than 120 words' ) batch_x = [features_crf(string, index) for index in range(len(string))] tagging = self._tag.predict_single(batch_x) batch_x = [ features_crf_dependency(string, tagging, index) for index in range(len(string)) ] depend = [int(i) for i in self._depend.predict_single(batch_x)] for i in range(len(depend)): if depend[i] == 0 and tagging[i] != 'root': tagging[i] = 'UNK' elif depend[i] != 0 and tagging[i] == 'root': tagging[i] = 'UNK' elif depend[i] > len(tagging): depend[i] = len(tagging) tagging = [(string[i], tagging[i]) for i in range(len(depend))] indexing = [(string[i], depend[i]) for i in range(len(depend))] result = [] for i in range(len(tagging)): result.append( '%d\t%s\t_\t_\t_\t_\t%d\t%s\t_\t_' % (i + 1, tagging[i][0], int(indexing[i][1]), tagging[i][1]) ) d = DependencyGraph('\n'.join(result), top_relation_label = 'root') return d, tagging, indexing def print_features(self, top_k = 10): """ Print important top-k features for tagging dependency Parameters ---------- top_k : int """ if not isinstance(top_k, int): raise ValueError('input must be an integer') print('Top-%d tagging positive:' % (top_k)) state_features(Counter(self._tag.state_features_).most_common(top_k)) print('\nTop-%d tagging negative:' % (top_k)) state_features( Counter(self._tag.state_features_).most_common()[-top_k:] ) def print_transitions_tag(self, top_k = 10): """ Print important top-k transitions for tagging dependency Parameters ---------- top_k : int """ if not isinstance(top_k, int): raise ValueError('input must be an integer') print('Top-%d likely tagging transitions:' % (top_k)) transitions(Counter(self._tag.transition_features_).most_common(top_k)) print('\nTop-%d unlikely tagging transitions:' % (top_k)) transitions( Counter(self._tag.transition_features_).most_common()[-top_k:] ) def print_transitions_index(self, top_k = 10): """ Print important top-k transitions for indexing dependency Parameters ---------- top_k : int """ if not isinstance(top_k, int): raise ValueError('input must be an integer') print('Top-%d likely indexing transitions:' % (top_k)) transitions( Counter(self._depend.transition_features_).most_common(top_k) ) print('\nTop-%d unlikely indexing transitions:' % (top_k)) transitions( Counter(self._depend.transition_features_).most_common()[-top_k:] ) class USER_XGB: def __init__(self, xgb, label, vectorize, cleaning = simple_textcleaning): self.xgb = xgb self.label = label self.vectorize = vectorize self._cleaning = cleaning def predict(self, string, get_proba = False): """ Classify a string Parameters ---------- string : str get_proba: bool, optional (default=False) If True, it will return probability of classes. Returns ------- string: result """ if not isinstance(string, str): raise ValueError('input must be a string') vectors = self.vectorize.transform([self._cleaning(string)]) result = self.xgb.predict( xgb.DMatrix(vectors), ntree_limit = self.xgb.best_ntree_limit )[0] if get_proba: return {self.label[i]: result[i] for i in range(len(result))} else: return self.label[np.argmax(result)] def predict_batch(self, strings, get_proba = False): """ Classify a list of strings Parameters ---------- strings: list get_proba: bool, optional (default=False) If True, it will return probability of classes. Returns ------- string: list of results """ if not isinstance(strings, list): raise ValueError('input must be a list') if not isinstance(strings[0], str): raise ValueError('input must be list of strings') strings = [self._cleaning(string) for string in strings] vectors = self.vectorize.transform(strings) results = self.xgb.predict( xgb.DMatrix(vectors), ntree_limit = self.xgb.best_ntree_limit ) if get_proba: outputs = [] for result in results: outputs.append( {self.label[i]: result[i] for i in range(len(result))} ) return outputs else: return [self.label[i] for i in np.argmax(results, axis = 1)] class USER_BAYES: def __init__( self, multinomial, label, vectorize, cleaning = simple_textcleaning ): self.multinomial = multinomial self.label = label self.vectorize = vectorize self._cleaning = cleaning def predict(self, string, get_proba = False): """ Classify a string Parameters ---------- string : str get_proba: bool, optional (default=False) If True, it will return probability of classes. Returns ------- string: result """ if not isinstance(string, str): raise ValueError('input must be a string') vectors = self.vectorize.transform([self._cleaning(string)]) if get_proba: result = self.multinomial.predict_proba(vectors)[0] return {self.label[i]: result[i] for i in range(len(result))} else: return self.label[self.multinomial.predict(vectors)[0]] def predict_batch(self, strings, get_proba = False): """ Classify a list of strings Parameters ---------- strings: list get_proba: bool, optional (default=False) If True, it will return probability of classes. Returns ------- string: list of results """ if not isinstance(strings, list): raise ValueError('input must be a list') if not isinstance(strings[0], str): raise ValueError('input must be list of strings') strings = [self._cleaning(string) for string in strings] vectors = self.vectorize.transform(strings) if get_proba: results = self.multinomial.predict_proba(vectors) outputs = [] for result in results: outputs.append( {self.label[i]: result[i] for i in range(len(result))} ) return outputs else: return [ self.label[result] for result in self.multinomial.predict(vectors) ] class TOXIC: def __init__(self, models, vectors): self._models = models self._vectors = vectors self._class_names = [ 'toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate', ] def _stack(self, strings): char_features = self._vectors['char'].transform(strings) word_features = self._vectors['word'].transform(strings) return hstack([char_features, word_features]) def predict(self, string, get_proba = False): """ Classify a string Parameters ---------- string : str get_proba: bool, optional (default=False) If True, it will return probability of classes. Returns ------- string: result """ if not isinstance(string, str): raise ValueError('input must be a string') stacked = self._stack([classification_textcleaning(string, True)]) result = {} if get_proba else [] for no, label in enumerate(self._class_names): if get_proba: result[label] = self._models[no].predict_proba(stacked)[0, 1] else: prob = self._models[no].predict(stacked)[0] if prob: result.append(label) return result def predict_batch(self, strings, get_proba = False): """ Classify a list of strings Parameters ---------- strings: list get_proba: bool, optional (default=False) If True, it will return probability of classes. Returns ------- string: list of results """ if not isinstance(strings, list): raise ValueError('input must be a list') if not isinstance(strings[0], str): raise ValueError('input must be list of strings') stacked = self._stack( [classification_textcleaning(i, True) for i in strings] ) result = [] for no in range(len(self._class_names)): if get_proba: probs = self._models[no].predict_proba(stacked)[:, 1] else: probs = self._models[no].predict(stacked) result.append(probs) result = np.array(result).T dicts = [] for row in result: nested = {} if get_proba else [] for no, label in enumerate(self._class_names): if get_proba: nested[label] = row[no] else: if row[no]: nested.append(label) dicts.append(nested) return dicts class LANGUAGE_DETECTION: def __init__(self, model, label, vectorizer, mode = 'sklearn'): self._model = model self._label = label self._vectorizer = vectorizer self._mode = mode def predict(self, string, get_proba = False): """ Classify a string Parameters ---------- string : str get_proba: bool, optional (default=False) If True, it will return probability of classes. Returns ------- string: result """ if not isinstance(string, str): raise ValueError('input must be a string') string = language_detection_textcleaning(string) vectors = self._vectorizer.transform([string]) if self._mode == 'xgb': result = self._model.predict( xgb.DMatrix(vectors), ntree_limit = self._model.best_ntree_limit )[0] if get_proba: return {self._label[i]: result[i] for i in range(len(result))} else: return self._label[np.argmax(result)] else: if get_proba: result = self._model.predict_proba(vectors)[0] return {self._label[i]: result[i] for i in range(len(result))} else: return self._label[self._model.predict(vectors)[0]] def predict_batch(self, strings, get_proba = False): """ Classify a list of strings Parameters ---------- strings: list get_proba: bool, optional (default=False) If True, it will return probability of classes. Returns ------- string: list of results """ if not isinstance(strings, list): raise ValueError('input must be a list') if not isinstance(strings[0], str): raise ValueError('input must be list of strings') strings = [ language_detection_textcleaning(string) for string in strings ] vectors = self._vectorizer.transform(strings) if self._mode == 'xgb': results = self._model.predict( xgb.DMatrix(vectors), ntree_limit = self._model.best_ntree_limit ) if get_proba: outputs = [] for result in results: outputs.append( {self._label[i]: result[i] for i in range(len(result))} ) return outputs else: return [self._label[i] for i in np.argmax(results, axis = 1)] else: if get_proba: results = self._model.predict_proba(vectors) outputs = [] for result in results: outputs.append( {self._label[i]: result[i] for i in range(len(result))} ) return outputs else: return [ self._label[result] for result in self._model.predict(vectors) ] ``` #### File: Malaya/malaya/summarize.py ```python import sys import warnings if not sys.warnoptions: warnings.simplefilter('ignore') import numpy as np import re import random from scipy.linalg import svd from operator import itemgetter from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.utils import shuffle from sklearn.cluster import KMeans from sklearn.metrics import pairwise_distances_argmin_min from sklearn.decomposition import NMF, LatentDirichletAllocation from .texts._text_functions import ( summary_textcleaning, classification_textcleaning, STOPWORDS, split_by_dot, ) from .stem import sastrawi from ._models import _skip_thought from .cluster import cluster_words class _DEEP_SUMMARIZER: def __init__( self, sess, x, logits, attention, dictionary, maxlen, model = None ): self._sess = sess self._X = x self._logits = logits self._attention = attention self.dictionary = dictionary self._maxlen = maxlen self._rev_dictionary = {v: k for k, v in self.dictionary.items()} self._model = model def vectorize(self, corpus): if not isinstance(corpus, list) and not isinstance(corpus, str): raise ValueError('corpus must be a list') if isinstance(corpus, list): if not isinstance(corpus[0], str): raise ValueError('corpus must be list of strings') if isinstance(corpus, str): corpus = corpus.replace('\n', '.') corpus = split_by_dot(corpus) else: corpus = [c + '.' for c in corpus] corpus = ' '.join(corpus) corpus = re.findall('(?=\S)[^.\n]+(?<=\S)', corpus) corpus = [summary_textcleaning(i) for i in corpus] sequences = _skip_thought.batch_sequence( corpus, self.dictionary, maxlen = self._maxlen ) return self._sess.run( self._logits, feed_dict = {self._X: np.array(sequences)} ) def summarize( self, corpus, top_k = 3, important_words = 3, return_cluster = True ): """ Summarize list of strings / corpus Parameters ---------- corpus: str, list top_k: int, (default=3) number of summarized strings important_words: int, (default=3) number of important words Returns ------- string: summarized string """ if not isinstance(top_k, int): raise ValueError('top_k must be an integer') if not isinstance(important_words, int): raise ValueError('important_words must be an integer') if not isinstance(return_cluster, bool): raise ValueError('return_cluster must be a boolean') if not isinstance(corpus, list) and not isinstance(corpus, str): raise ValueError('corpus must be a list') if isinstance(corpus, list): if not isinstance(corpus[0], str): raise ValueError('corpus must be list of strings') if isinstance(corpus, str): corpus = corpus.replace('\n', '.') corpus = split_by_dot(corpus) else: corpus = [c + '.' for c in corpus] corpus = ' '.join(corpus) corpus = re.findall('(?=\S)[^.\n]+(?<=\S)', corpus) corpus = [summary_textcleaning(i) for i in corpus] sequences = _skip_thought.batch_sequence( corpus, self.dictionary, maxlen = self._maxlen ) encoded, attention = self._sess.run( [self._logits, self._attention], feed_dict = {self._X: np.array(sequences)}, ) attention = attention.sum(axis = 0) kmeans = KMeans(n_clusters = top_k, random_state = 0) kmeans = kmeans.fit(encoded) avg = [] for j in range(top_k): idx = np.where(kmeans.labels_ == j)[0] avg.append(np.mean(idx)) closest, _ = pairwise_distances_argmin_min( kmeans.cluster_centers_, encoded ) indices = np.argsort(attention)[::-1] top_words = [self._rev_dictionary[i] for i in indices[:important_words]] ordering = sorted(range(top_k), key = lambda k: avg[k]) summarized = '. '.join([corpus[closest[idx]] for idx in ordering]) if return_cluster: return { 'summary': summarized, 'top-words': top_words, 'cluster-top-words': cluster_words(top_words), } return {'summary': summarized, 'top-words': top_words} def deep_model_news(): """ Load skip-thought summarization deep learning model trained on news dataset. Returns ------- _DEEP_SUMMARIZER: _DEEP_SUMMARIZER class """ sess, x, logits, attention, dictionary, maxlen = ( _skip_thought.news_load_model() ) return _DEEP_SUMMARIZER(sess, x, logits, attention, dictionary, maxlen) def deep_model_wiki(): """ Load residual network with Bahdanau Attention summarization deep learning model trained on wikipedia dataset. Returns ------- _DEEP_SUMMARIZER: _DEEP_SUMMARIZER class """ print( 'WARNING: this model is using convolutional based, Tensorflow-GPU above 1.10 may got a problem. Please downgrade to Tensorflow-GPU v1.8 if got any cuDNN error.' ) sess, x, logits, attention, dictionary, maxlen = ( _skip_thought.wiki_load_model() ) return _DEEP_SUMMARIZER(sess, x, logits, attention, dictionary, maxlen) def train_skip_thought( corpus, epoch = 5, batch_size = 16, embedding_size = 256, maxlen = 50, vocab_size = None, stride = 1, ): """ Train a deep skip-thought network for summarization agent Parameters ---------- corpus: str, list epoch: int, (default=5) iteration numbers batch_size: int, (default=32) batch size for every feed, batch size must <= size of corpus embedding_size: int, (default=256) vector size representation for a word maxlen: int, (default=50) max length of a string to be train vocab_size: int, (default=None) max vocabulary size, None for no limit stride: int, (default=1) stride size, skipping value for sentences Returns ------- _DEEP_SUMMARIZER: malaya.skip_thought._DEEP_SUMMARIZER class """ if not isinstance(epoch, int): raise ValueError('epoch must be an integer') if not isinstance(batch_size, int): raise ValueError('batch_size must be an integer') if not isinstance(embedding_size, int): raise ValueError('embedding_size must be an integer') if not isinstance(maxlen, int): raise ValueError('maxlen must be an integer') if not isinstance(corpus, list) and not isinstance(corpus, str): raise ValueError('corpus must be a list') if isinstance(corpus, list): if not isinstance(corpus[0], str): raise ValueError('corpus must be list of strings') if isinstance(corpus, str): corpus = corpus.replace('\n', '.') corpus = split_by_dot(corpus) else: corpus = [c + '.' for c in corpus] corpus = ' '.join(corpus) corpus = re.findall('(?=\S)[^.\n]+(?<=\S)', corpus) corpus = [summary_textcleaning(i) for i in corpus] t_range = int((len(corpus) - 3) / stride + 1) left, middle, right = [], [], [] for i in range(t_range): slices = corpus[i * stride : i * stride + 3] left.append(slices[0]) middle.append(slices[1]) right.append(slices[2]) if batch_size > len(left): raise ValueError('batch size must smaller with corpus size') left, middle, right = shuffle(left, middle, right) sess, model, dictionary, _ = _skip_thought.train_model( middle, left, right, epoch = epoch, batch_size = batch_size, embedding_size = embedding_size, maxlen = maxlen, vocab_size = vocab_size, ) return _DEEP_SUMMARIZER( sess, model.INPUT, model.get_thought, model.attention, dictionary, maxlen, model = model, ) def lsa( corpus, maintain_original = False, ngram = (1, 3), min_df = 2, top_k = 3, important_words = 3, return_cluster = True, **kwargs ): """ summarize a list of strings using LSA. Parameters ---------- corpus: list maintain_original: bool, (default=False) If False, will apply malaya.text_functions.classification_textcleaning ngram: tuple, (default=(1,3)) n-grams size to train a corpus min_df: int, (default=2) minimum document frequency for a word top_k: int, (default=3) number of summarized strings important_words: int, (default=3) number of important words return_cluster: bool, (default=True) if True, will cluster important_words to similar texts Returns ------- dictionary: result """ if not isinstance(maintain_original, bool): raise ValueError('maintain_original must be a boolean') if not isinstance(top_k, int): raise ValueError('top_k must be an integer') if not isinstance(important_words, int): raise ValueError('important_words must be an integer') if not isinstance(return_cluster, bool): raise ValueError('return_cluster must be a boolean') if not isinstance(ngram, tuple): raise ValueError('ngram must be a tuple') if not len(ngram) == 2: raise ValueError('ngram size must equal to 2') if not isinstance(min_df, int) or isinstance(min_df, float): raise ValueError('min_df must be an integer or a float') if not isinstance(corpus, list) and not isinstance(corpus, str): raise ValueError('corpus must be a list') if isinstance(corpus, list): if not isinstance(corpus[0], str): raise ValueError('corpus must be list of strings') if isinstance(corpus, str): corpus = corpus.replace('\n', '.') corpus = split_by_dot(corpus) else: corpus = [c + '.' for c in corpus] corpus = ' '.join(corpus) corpus = re.findall('(?=\S)[^.\n]+(?<=\S)', corpus) splitted_fullstop = [summary_textcleaning(i) for i in corpus] splitted_fullstop = [ classification_textcleaning(i) if not maintain_original else i for i in splitted_fullstop if len(i) ] stemmed = [sastrawi(i) for i in splitted_fullstop] tfidf = TfidfVectorizer( ngram_range = ngram, min_df = min_df, stop_words = STOPWORDS, **kwargs ).fit(stemmed) U, S, Vt = svd(tfidf.transform(stemmed).todense().T, full_matrices = False) summary = [ (splitted_fullstop[i], np.linalg.norm(np.dot(np.diag(S), Vt[:, b]), 2)) for i in range(len(splitted_fullstop)) for b in range(len(Vt)) ] summary = sorted(summary, key = itemgetter(1)) summary = dict( (v[0], v) for v in sorted(summary, key = lambda summary: summary[1]) ).values() summarized = '. '.join([a for a, b in summary][len(summary) - (top_k) :]) indices = np.argsort(tfidf.idf_)[::-1] features = tfidf.get_feature_names() top_words = [features[i] for i in indices[:important_words]] if return_cluster: return { 'summary': summarized, 'top-words': top_words, 'cluster-top-words': cluster_words(top_words), } return {'summary': summarized, 'top-words': top_words} def nmf( corpus, maintain_original = False, ngram = (1, 3), min_df = 2, top_k = 3, important_words = 3, return_cluster = True, **kwargs ): """ summarize a list of strings using NMF. Parameters ---------- corpus: list maintain_original: bool, (default=False) If False, will apply malaya.text_functions.classification_textcleaning ngram: tuple, (default=(1,3)) n-grams size to train a corpus top_k: int, (default=3) number of summarized strings important_words: int, (default=3) number of important words min_df: int, (default=2) minimum document frequency for a word return_cluster: bool, (default=True) if True, will cluster important_words to similar texts Returns ------- dictionary: result """ if not isinstance(maintain_original, bool): raise ValueError('maintain_original must be a boolean') if not isinstance(top_k, int): raise ValueError('top_k must be an integer') if not isinstance(important_words, int): raise ValueError('important_words must be an integer') if not isinstance(return_cluster, bool): raise ValueError('return_cluster must be a boolean') if not isinstance(ngram, tuple): raise ValueError('ngram must be a tuple') if not len(ngram) == 2: raise ValueError('ngram size must equal to 2') if not isinstance(min_df, int) or isinstance(min_df, float): raise ValueError('min_df must be an integer or a float') if not isinstance(corpus, list) and not isinstance(corpus, str): raise ValueError('corpus must be a list') if isinstance(corpus, list): if not isinstance(corpus[0], str): raise ValueError('corpus must be list of strings') if isinstance(corpus, str): corpus = corpus.replace('\n', '.') corpus = split_by_dot(corpus) else: corpus = [c + '.' for c in corpus] corpus = ' '.join(corpus) corpus = re.findall('(?=\S)[^.\n]+(?<=\S)', corpus) splitted_fullstop = [summary_textcleaning(i) for i in corpus] splitted_fullstop = [ classification_textcleaning(i) if not maintain_original else i for i in splitted_fullstop if len(i) ] stemmed = [sastrawi(i) for i in splitted_fullstop] tfidf = TfidfVectorizer( ngram_range = ngram, min_df = min_df, stop_words = STOPWORDS, **kwargs ).fit(stemmed) densed_tfidf = tfidf.transform(stemmed).todense() nmf = NMF(len(splitted_fullstop)).fit(densed_tfidf) vectors = nmf.transform(densed_tfidf) components = nmf.components_.mean(axis = 1) summary = [ ( splitted_fullstop[i], np.linalg.norm(np.dot(np.diag(components), vectors[:, b]), 2), ) for i in range(len(splitted_fullstop)) for b in range(len(vectors)) ] summary = sorted(summary, key = itemgetter(1)) summary = dict( (v[0], v) for v in sorted(summary, key = lambda summary: summary[1]) ).values() summarized = '. '.join([a for a, b in summary][len(summary) - (top_k) :]) indices = np.argsort(tfidf.idf_)[::-1] features = tfidf.get_feature_names() top_words = [features[i] for i in indices[:important_words]] if return_cluster: return { 'summary': summarized, 'top-words': top_words, 'cluster-top-words': cluster_words(top_words), } return {'summary': summarized, 'top-words': top_words} def lda( corpus, maintain_original = False, ngram = (1, 3), min_df = 2, top_k = 3, important_words = 3, return_cluster = True, **kwargs ): """ summarize a list of strings using LDA. Parameters ---------- corpus: list maintain_original: bool, (default=False) If False, will apply malaya.text_functions.classification_textcleaning ngram: tuple, (default=(1,3)) n-grams size to train a corpus min_df: int, (default=2) minimum document frequency for a word top_k: int, (default=3) number of summarized strings important_words: int, (default=3) number of important words return_cluster: bool, (default=True) if True, will cluster important_words to similar texts Returns ------- dictionary: result """ if not isinstance(maintain_original, bool): raise ValueError('maintain_original must be a boolean') if not isinstance(top_k, int): raise ValueError('top_k must be an integer') if not isinstance(important_words, int): raise ValueError('important_words must be an integer') if not isinstance(return_cluster, bool): raise ValueError('return_cluster must be a boolean') if not isinstance(ngram, tuple): raise ValueError('ngram must be a tuple') if not len(ngram) == 2: raise ValueError('ngram size must equal to 2') if not isinstance(min_df, int) or isinstance(min_df, float): raise ValueError('min_df must be an integer or a float') if not isinstance(corpus, list) and not isinstance(corpus, str): raise ValueError('corpus must be a list') if isinstance(corpus, list): if not isinstance(corpus[0], str): raise ValueError('corpus must be list of strings') if isinstance(corpus, str): corpus = corpus.replace('\n', '.') corpus = split_by_dot(corpus) else: corpus = [c + '.' for c in corpus] corpus = ' '.join(corpus) corpus = re.findall('(?=\S)[^.\n]+(?<=\S)', corpus) splitted_fullstop = [summary_textcleaning(i) for i in corpus] splitted_fullstop = [ classification_textcleaning(i) if not maintain_original else i for i in splitted_fullstop if len(i) ] stemmed = [sastrawi(i) for i in splitted_fullstop] tfidf = TfidfVectorizer( ngram_range = ngram, min_df = min_df, stop_words = STOPWORDS, **kwargs ).fit(stemmed) densed_tfidf = tfidf.transform(stemmed).todense() lda = LatentDirichletAllocation(len(splitted_fullstop)).fit(densed_tfidf) vectors = lda.transform(densed_tfidf) components = lda.components_.mean(axis = 1) summary = [ ( splitted_fullstop[i], np.linalg.norm(np.dot(np.diag(components), vectors[:, b]), 2), ) for i in range(len(splitted_fullstop)) for b in range(len(vectors)) ] summary = sorted(summary, key = itemgetter(1)) summary = dict( (v[0], v) for v in sorted(summary, key = lambda summary: summary[1]) ).values() summarized = '. '.join([a for a, b in summary][len(summary) - (top_k) :]) indices = np.argsort(tfidf.idf_)[::-1] features = tfidf.get_feature_names() top_words = [features[i] for i in indices[:important_words]] if return_cluster: return { 'summary': summarized, 'top-words': top_words, 'cluster-top-words': cluster_words(top_words), } return {'summary': summarized, 'top-words': top_words} ```
{ "source": "Jeansding/PedestrianDetectionSystem", "score": 3 }
#### File: PedestrianDetectionSystem/python/main.py ```python import cv2 import numpy as np import requests from inference import OD import subprocess as sp import threading import time from PIL import Image RTMP_HOST = 'xx.xx.xx.xx' rtmpUrl = 'rtmp://' + RTMP_HOST + ':1935/live/stream' od = OD() use_channel = 1 shared_image = (np.ones((540, 960, 3), dtype=np.uint8) * 255).astype(np.uint8) process_image = (np.ones((540, 960, 3), dtype=np.uint8) * 255).astype(np.uint8) people_count = 0 class SecondThread(threading.Thread): def __init__(self): super(SecondThread, self).__init__() # 注意:一定要显式的调用父类的初始化函数。 # self.arg=arg def run(self): # 定义每个线程要运行的函数 print('second thread is run!') global shared_image while True: camera = cv2.VideoCapture('rtmp://' + RTMP_HOST + '/live/android') if (camera.isOpened()): print ('Open camera 1') break else: print ('Fail to open camera 1!') time.sleep(0.05) camera.set(cv2.CAP_PROP_FRAME_WIDTH, 864) # 2560x1920 2217x2217 2952×1944 1920x1080 camera.set(cv2.CAP_PROP_FRAME_HEIGHT, 480) # camera.set(cv2.CAP_PROP_FPS, 5) size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)), int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT))) sizeStr = str(960) + 'x' + str(540) fps = camera.get(cv2.CAP_PROP_FPS) # 30p/self # fps = int(fps) fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('res_mv.avi', fourcc, fps, size) while True: ret, frame = camera.read() # 逐帧采集视频流 if frame is not None: image = Image.fromarray(frame) image = image.resize((960, 540)) frame = np.array(image) # frame.resize((960, 540)) if use_channel == 1: shared_image = frame class TFThread(threading.Thread): def __init__(self): super(TFThread, self).__init__() # 注意:一定要显式的调用父类的初始化函数。 # self.arg=arg def run(self): # 定义每个线程要运行的函数 print('tensorflow thread is run!') global shared_image global process_image global people_count while True: frame, pc = od.infer(shared_image) process_image = frame people_count = pc time.sleep(0.05) # print(process_image) command = ['ffmpeg', '-y', '-f', 'rawvideo', '-vcodec','rawvideo', '-pix_fmt', 'bgr24', '-s', '960x540', '-r', str(5), '-i', '-', '-c:v', 'libx264', '-pix_fmt', 'yuv420p', '-preset', 'ultrafast', '-f', 'flv', rtmpUrl] global pipe pipe = sp.Popen(command, stdin=sp.PIPE) class PushThread(threading.Thread): def __init__(self): super(PushThread, self).__init__() # 注意:一定要显式的调用父类的初始化函数。 # self.arg=arg def run(self): # 定义每个线程要运行的函数 print('push thread is run!') global process_image url = "http://127.0.0.1:8080/PeopleDetection/people" count = 0 while True: ###########################图片采集 #print(process_image) #print(pipe) #print(pipe.stdin) pipe.stdin.write(process_image.tostring()) # 存入管道 # print('push!') param = {'peopleNum': str(people_count)} count += 1 if count % 25 == 0: try: r = requests.post(url=url, data=param) except: pass time.sleep(0.198) class GetChannelThread(threading.Thread): def __init__(self): super(GetChannelThread, self).__init__() # 注意:一定要显式的调用父类的初始化函数。 # self.arg=arg def run(self): # 定义每个线程要运行的函数 print('get channel thread is run!') global use_channel url = 'http://127.0.0.1:8080/PeopleDetection/get_channel' while True: try: r = requests.get(url=url) use_channel = int(eval(r.content)['data']) print('当前通道:' + str(use_channel)) except: pass time.sleep(5) second_thread = SecondThread() second_thread.start() tf_thread = TFThread() tf_thread.start() push_thread = PushThread() push_thread.start() get_channel_thread = GetChannelThread() #get_channel_thread.start() ```