metadata
dict
text
stringlengths
60
3.49M
{ "source": "38elements/django-simple-jsonschema", "score": 2 }
#### File: django-simple-jsonschema/django_simple_jsonschema/__init__.py ```python from django.conf import settings from django.http import HttpResponse from jsonschema import Draft4Validator import json class SimpleJsonschemaMiddleware(object): def __init__(self): self.set_schemas(settings.SIMPLE_JSONSCHEMA) self.default_encoding = 'utf-8' def get_encoding(self, request): return request.encoding if request.encoding else self.default_encoding def set_schemas(self, simple_jsonschema): self._schemas = {} for key, schema in simple_jsonschema.items(): methods, view_name = key if isinstance(methods, tuple): for method in methods: schema_id = method.upper() + ':' + view_name self._schemas[schema_id] = Draft4Validator(schema) elif isinstance(methods, str): schema_id = methods.upper() + ':' + view_name self._schemas[schema_id] = Draft4Validator(schema) def get_schema(self, request): view_name = request.resolver_match.view_name method = request.method key = method + ':' + view_name return self._schemas[key] def process_view(self, request, view_func, view_args, view_kwargs): try: schema = self.get_schema(request) except KeyError: return None encoding = self.get_encoding(request) json_data = json.loads(request.body.decode(encoding), encoding=encoding) errors = list(schema.iter_errors(json_data)) if len(errors): errors_data = {} errors_data['url'] = request.path errors_data['method'] = request.method errors = [ {'message': e.message, 'path': list(e.path), 'schema_path': list(e.schema_path)} for e in errors ] errors_data['errors'] = errors rv = json.dumps(errors_data) return HttpResponse(rv, content_type='application/json') setattr(request, 'json_data', json_data) return None ``` #### File: management/commands/check_schema.py ```python from django.core.management.base import BaseCommand from django.utils import termcolors from jsonschema import Draft4Validator from jsonschema.exceptions import SchemaError import json class Command(BaseCommand): can_import_settings = True @property def _jsonschema_exist(self): from django.conf import settings if not hasattr(settings, 'SIMPLE_JSONSCHEMA'): return False return True @property def _jsonschema_errors(self): from django.conf import settings errors = [] schemas = settings.SIMPLE_JSONSCHEMA for url, schema in schemas.items(): try: Draft4Validator.check_schema(schema) except SchemaError as e: errors.append({ 'url': url, 'error': e, 'schema': json.dumps(schema, indent=4, sort_keys=True) }) return errors def handle(self, *args, **options): success = termcolors.make_style(fg='green') error = termcolors.make_style(fg='red') if not self._jsonschema_exist: not_exist = '[' + error('ERROR') + '] SIMPLE_JSONSCHEMA is not exist in settings.' self.stdout.write(not_exist) return errors = self._jsonschema_errors if len(errors): for e in errors: title = '\n[' + error('ERROR') + '] schema of ' + str(e['url']) + ' is invalid.' self.stdout.write(title) self.stdout.write('path: ' + str(list(e['error'].path))) self.stdout.write('message: ' + e['error'].message) self.stdout.write('schema:\n' + e['schema'] + '\n') else: self.stdout.write('[' + success('SUCCESS') + '] All jsonschemas are OK.') ```
{ "source": "38elements/feedhoos", "score": 2 }
#### File: folder/models/folder.py ```python import json from django.db import models from feedhoos.reader.models.bookmark import BookmarkModel from feedhoos.reader.models.bookmark import DEFAULT_FOLDER_ID class FolderModel(models.Model): title = models.CharField(max_length=32) rating = models.PositiveSmallIntegerField(default=0) @staticmethod def get_json(folder_models): dicts = map(lambda f: f.dict, folder_models) folder_json = json.dumps( dicts, ensure_ascii=False, skipkeys=True ) return folder_json @staticmethod def delete_and_change_bookmark(folder_id): """フォルダーを消す 。ブックマークのフォルダーidをデフォルトidにする。""" folder_model = FolderModel.objects.get(pk=folder_id) folder_model.delete() BookmarkModel.objects.filter(folder_id=folder_id).update(folder_id=DEFAULT_FOLDER_ID) @property def dict(self): d = { "id": self.id, "title": self.title.encode("utf-8"), "rating": self.rating, "type": "folder" } return d class Meta: app_label = 'folder' ``` #### File: folder/views/delete.py ```python import json from django.http import HttpResponse from feedhoos.folder.models.folder import FolderModel def execute(request): folder_id = request.POST["id"] FolderModel.delete_and_change_bookmark(folder_id) response_json = json.dumps({"msg": "OK"}, ensure_ascii=False, skipkeys=True) return HttpResponse(response_json, content_type='application/json') ``` #### File: reader/models/bookmark.py ```python import json from django.db import models DEFAULT_FOLDER_ID = 0 class BookmarkModel(models.Model): """ しおり """ feed_id = models.IntegerField(unique=True) # このフィードを表示したときのFeedModelのlast_updated # last_updatedまで読んだを記録する last_updated = models.IntegerField(default=0) rating = models.PositiveSmallIntegerField(default=0) folder_id = models.IntegerField(default=DEFAULT_FOLDER_ID, db_index=True) @staticmethod def get_json(bookmark_models): bookmarks_dict = { "0": { "rating": 6, "folder_id": DEFAULT_FOLDER_ID } } for b in bookmark_models: bookmarks_dict[str(b.feed_id)] = { "folder_id": b.folder_id, "rating": b.rating, } bookmark_json = json.dumps( bookmarks_dict, ensure_ascii=False, skipkeys=True ) return bookmark_json class Meta: app_label = 'reader' ``` #### File: reader/views/delete.py ```python import json from django.http import HttpResponse from feedhoos.worker.models.entry import EntryModel from feedhoos.finder.models.feed import FeedModel from feedhoos.reader.models.bookmark import BookmarkModel from django.db import transaction @transaction.commit_on_success def execute(request): feed_id = request.POST["id"] feed_id = int(feed_id) FeedModel.objects.get(pk=feed_id).delete() BookmarkModel.objects.filter(feed_id__exact=feed_id).delete() EntryModel.objects.filter( feed_id__exact=feed_id ).delete() response_json = json.dumps({"msg": "OK"}, ensure_ascii=False, skipkeys=True) return HttpResponse(response_json, content_type='application/json') ``` #### File: reader/views/timeline.py ```python import json from django.http import HttpResponse from feedhoos.worker.models.entry import EntryModel from feedhoos.finder.models.feed import FeedModel def execute(request, feed_id="0", page="1"): feed_id = int(feed_id) feed_dict = {"id": feed_id, "title": "登録されているすべてのFeed"} if feed_id: # FIXME 該当するレコードがない時の処理 feed_model = FeedModel.objects.get(pk=feed_id) feed_dict = feed_model.dict entry_models = EntryModel.get_timeline(feed_id, page) entry_dicts = map(lambda e: e.dict, entry_models) timeline_json = json.dumps( {"entries": entry_dicts, "feed": feed_dict}, ensure_ascii=False, skipkeys=True ) return HttpResponse(timeline_json, content_type='application/json') ``` #### File: worker/models/entry.py ```python from django.db import models import time import datetime MAX_CONTENT_LENGTH = 10240 PER_PAGE = 200 class EntryModel(models.Model): feed_id = models.IntegerField() url = models.URLField(max_length=256) title = models.CharField(max_length=64) updated = models.IntegerField() content = models.TextField() @property def dict(self): d = { "id": self.id, "url": self.url.encode("utf-8"), "feed_id": self.feed_id, "title": self.title.encode("utf-8"), "updated": self.updated_stftime, "content": self.content.encode("utf-8"), } return d @property def updated_stftime(self): datetime_obj = datetime.datetime.fromtimestamp(self.updated) return datetime_obj.strftime('%Y-%m-%d %H:%M') @staticmethod def count(feed_id, min_updated=0): feed_id = int(feed_id) count = EntryModel.objects.all().filter( feed_id=feed_id ).filter( updated__gt=min_updated ).order_by("-updated").count() return count @staticmethod def get_entries(feed_id, page, min_updated=None): """reading""" feed_id = int(feed_id) page = int(page) start_index = (page - 1) * PER_PAGE end_index = (page) * PER_PAGE try: query = EntryModel.objects.all().filter( feed_id=feed_id ) if min_updated: query = query.filter( updated__gt=min_updated ) entries = query.order_by("-updated")[start_index:end_index] except EntryModel.DoesNotExist: entries = [] return entries @staticmethod def get_timeline(feed_id, page): feed_id = int(feed_id) page = int(page) start_index = (page - 1) * PER_PAGE end_index = (page) * PER_PAGE try: query = EntryModel.objects.all() if feed_id: query = query.filter( feed_id=feed_id ) entries = query.order_by("-updated")[start_index:end_index] except EntryModel.DoesNotExist: entries = [] return entries @staticmethod def get_folder(feed_ids, page): page = int(page) start_index = (page - 1) * PER_PAGE end_index = (page) * PER_PAGE try: query = EntryModel.objects.filter( feed_id__in=feed_ids ) entries = query.order_by("-updated")[start_index:end_index] except EntryModel.DoesNotExist: entries = [] return entries @staticmethod def get_content(entry): if ("content" in entry and entry.content and len(entry.content) >= 1 and len(entry.content[0]["value"]) <= MAX_CONTENT_LENGTH): return entry.content[0]["value"] elif "summary" in entry and entry.summary: return entry.summary if len(entry.summary) <= MAX_CONTENT_LENGTH else "" else: return "" @staticmethod def add(feed_id, entry): entry_model = EntryModel( feed_id=feed_id, url=entry.link, title=entry.title, updated=int(time.mktime(entry.updated_parsed)), content=EntryModel.get_content(entry) ) entry_model.save() return entry_model class Meta: app_label = 'worker' index_together = ( ("feed_id", "updated"), ) unique_together = ( ("url", "updated", "feed_id"), ) ```
{ "source": "38/plumber", "score": 2 }
#### File: examples/pyecho/echo.py ```python import pservlet def init(args): return (pservlet.pipe_define("in", pservlet.PIPE_INPUT), pservlet.pipe_define("out", pservlet.PIPE_OUTPUT)) def execute(s): while True: tmp = pservlet.pipe_read(s[0]) if not tmp: if not pservlet.pipe_eof(s[0]): pservlet.pipe_set_flag(s[0], pservlet.PIPE_PERSIST) else: pservlet.pipe_clr_flag(s[0], pservlet.PIPE_PERSIST) return 0 else: pservlet.pipe_write(s[1], tmp) def cleanup(s): return 0 ``` #### File: pyservlet/PyServlet/Log.py ```python from pservlet import LOG_FATAL, LOG_ERROR, LOG_NOTICE, LOG_WARNING, LOG_INFO, LOG_TRACE, LOG_DEBUG, log def error(message): log(LOG_ERROR, message) def warning(message): log(LOG_WARNING, message) def notice(message): log(LOG_NOTICE, message) def info(message): log(LOG_INFO, message) def trace(message): log(LOG_TRACE, message) def debug(message): log(LOG_DEBUG, message) ``` #### File: pyservlet/PyServlet/RLS.py ```python import PyServlet.Type import pservlet class String(PyServlet.Type.ModelBase): token = PyServlet.Type.ScopeToken() def read(self): rls_obj = pservlet.RLS_Object(pservlet.SCOPE_TYPE_STRING, self.token) return pservlet.RLS_String.get_value(rls_obj) def write(self, val): rls_obj = pservlet.RLS_Object(pservlet.SCOPE_TYPE_STRING, -1, val) self.token = rls_obj.get_token() ```
{ "source": "394781865/keras-yolo3", "score": 3 }
#### File: keras-yolo3/new_file/yolo_image.py ```python import sys,os import argparse from yolo import YOLO, detect_video from PIL import Image import cv2 #制作适用于mtcnn的上半身检测数据集 def detect_img(yolo): image_path = '/home/lichen/keras-yolo3/images/' txt_data = open("/home/lichen/keras-yolo3/person.txt","w") for img in os.listdir(image_path): img_path = image_path + img image = Image.open(img_path) print(img_path) try: top, left, bottom, right = yolo.detect_image(image,img_path) except: continue finally: txt_data.write(str(img_path)+" ") txt_data.write(str(left)+" ") txt_data.write(str(top)+" ") txt_data.write(str(abs(right-left))+" ") txt_data.write(str(abs(bottom-top))) txt_data.write("\n") txt_data.close() if __name__ == '__main__': parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS) parser.add_argument( '--model', type=str,default="/home/lichen/keras-yolo3/model_data/yolo.h5", help='path to model weight file, default ' + YOLO.get_defaults("model_path") ) parser.add_argument( '--anchors', type=str,default="/home/lichen/keras-yolo3/model_data/yolo_anchors.txt", help='path to anchor definitions, default ' + YOLO.get_defaults("anchors_path") ) parser.add_argument( '--classes', type=str,default="person", help='path to class definitions, default ' + YOLO.get_defaults("classes_path") ) parser.add_argument( '--gpu_num', type=int,default=0, help='Number of GPU to use, default ' + str(YOLO.get_defaults("gpu_num")) ) parser.add_argument( "--input", nargs='?', type=str,required=False,default='/home/lichen/keras-yolo3/images/', help = "Video input path" ) parser.add_argument( "--output", nargs='?', type=str, default="", help = "[Optional] Video output path" ) FLAGS = parser.parse_args() detect_img(YOLO(**vars(FLAGS))) ```
{ "source": "395299296/liaotian-robot", "score": 2 }
#### File: app/main/forms.py ```python from flask_mongoengine.wtf import model_form from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, BooleanField, TextAreaField, HiddenField, RadioField, FileField, IntegerField from wtforms import widgets, ValidationError from wtforms.validators import Required, Length, Email, Regexp, EqualTo, URL, Optional from . import models class PostForm(FlaskForm): title = StringField('Title', validators=[Required()]) slug = StringField('Slug', validators=[Required()]) raw = TextAreaField('Content') abstract = TextAreaField('Abstract') category = StringField('Category') tags_str = StringField('Tags') post_id = HiddenField('post_id') post_type = HiddenField('post_type') from_draft = HiddenField('from_draft') def validate_slug(self, field): if self.from_draft.data and self.from_draft.data == 'true': posts = models.Draft.objects.filter(slug=field.data) else: posts = models.Post.objects.filter(slug=field.data) if posts.count() > 0: if not self.post_id.data or str(posts[0].id) != self.post_id.data: raise ValidationError('slug already in use') SuPostForm = model_form(models.Post, exclude=['pub_time', 'update_time', 'content_html', 'category', 'tags', 'post_type']) class WidgetForm(FlaskForm): title = StringField('Title', validators=[Required()]) content = TextAreaField('Content', validators=[Required()]) content_type = RadioField('Content Type', choices=[('markdown', 'markdown'), ('html', 'html')], default='html') priority = IntegerField(default=1000000) class CommentForm(FlaskForm): email = StringField('* Email', validators=[Required(), Length(1,128), Email()]) author = StringField('* Name', validators=[Required(), Length(1,128)]) homepage = StringField('Homepage', validators=[URL(), Optional()]) content = TextAreaField('* Comment <small><span class="label label-info">markdown</span></small>', validators=[Required()]) comment_id = HiddenField('comment_id') class SessionCommentForm(FlaskForm): email = HiddenField('* Email') author = HiddenField('* Name') homepage = HiddenField('Homepage') content = TextAreaField('* Comment', validators=[Required()]) comment_id = HiddenField('comment_id') class ImportCommentForm(FlaskForm): content = TextAreaField('Content') json_file = FileField('Json File') import_format = RadioField('Import Format', choices=[('text', 'text'), ('file', 'file')], default='text') ``` #### File: app/main/views.py ```python try: from urlparse import urljoin except ImportError: from urllib.parse import urljoin from datetime import datetime, timedelta from flask import request, redirect, render_template, url_for, abort, flash, g, session from flask import current_app, make_response, send_from_directory from flask.views import MethodView # from flask.ext.login import login_required, current_user from flask_login import login_required, current_user from werkzeug.contrib.atom import AtomFeed from mongoengine.queryset.visitor import Q from . import models, signals, forms from accounts.models import User from accounts.permissions import admin_permission, editor_permission, writer_permission, reader_permission from blog.config import RobotBlogSettings from . import config, reply, receive, chatter from random import randint from imp import reload from urllib.parse import quote, unquote from collections import deque from collections import defaultdict import hashlib import os PER_PAGE = RobotBlogSettings['pagination'].get('per_page', 10) ARCHIVE_PER_PAGE = RobotBlogSettings['pagination'].get('archive_per_page', 10) BACKGROUND = RobotBlogSettings['background_image'] CACHE_CONTENT = defaultdict(deque) def get_base_data(): pages = models.Post.objects.filter(post_type='page', is_draft=False) blog_meta = RobotBlogSettings['blog_meta'] data = { 'blog_meta': blog_meta, 'pages': pages, 'bg_home': BACKGROUND['home'], 'bg_post': BACKGROUND['post'], 'bg_about': BACKGROUND['about'], } return data def get_keywords(): reload(config) keywords = config.Config.keys() return '、'.join(keywords) def get_content(content): reload(config) contentlist = deque() for x in config.Config: if x in content: p = __import__("main.%s"%config.Config[x][0]) # import module m = getattr(p,config.Config[x][0]) reload(m) c = getattr(m,config.Config[x][1]) try: contentlist = CACHE_CONTENT[x] if not contentlist: contentlist = deque(c().getContent(content)) if contentlist: CACHE_CONTENT[x] = contentlist if contentlist: return contentlist.popleft() except Exception as e: print(str(e)) raise e else: content = '' # contentlist = CACHE_CONTENT[content] # if not contentlist: # reload(chatter) # contentlist = deque([chatter.Chatter().getContent(content)]) # if contentlist: # CACHE_CONTENT[content] = contentlist # if contentlist: # return contentlist.popleft() return {'type':'text', 'content':content} def index(): return 'Hello' def blog_index(): posts = models.Post.objects.filter(post_type='post', is_draft=False).order_by('-pub_time') tags = posts.distinct('tags') try: cur_page = int(request.args.get('page', 1)) except ValueError: cur_page = 1 cur_category = request.args.get('category') cur_tag = request.args.get('tag') keywords = request.args.get('keywords') if keywords: # posts = posts.filter(raw__contains=keywords ) posts = posts.filter(Q(raw__contains=keywords) | Q(title__contains=keywords)) if cur_category: posts = posts.filter(category=cur_category) if cur_tag: posts = posts.filter(tags=cur_tag) #group by aggregate category_cursor = models.Post._get_collection().aggregate([ { '$group' : { '_id' : {'category' : '$category' }, 'name' : { '$first' : '$category' }, 'count' : { '$sum' : 1 }, } } ]) widgets = models.Widget.objects(allow_post_types='post') posts = posts.paginate(page=cur_page, per_page=PER_PAGE) data = get_base_data() data['posts'] = posts data['cur_category'] = cur_category data['category_cursor'] = category_cursor data['cur_tag'] = cur_tag data['tags'] = tags data['keywords'] = keywords data['widgets'] = widgets return render_template('main/index.html', **data) def wechat_auth(): data = request.args test = data.get('test','') if test != '': content = get_content(test) return content['content'] signature = data.get('signature','') if signature == '': return 'error' timestamp = data.get('timestamp','') nonce = data.get('nonce','') echostr = data.get('echostr','') s = [timestamp,nonce,config.Token] s.sort() s = ''.join(s).encode('utf8') if (hashlib.sha1(s).hexdigest() != signature): return 'failed' return make_response(echostr) def wechat_inter(): xml_str = request.stream.read() # print('Coming Post', xml_str) recMsg = receive.parse_xml(xml_str) toUser = recMsg.FromUserName fromUser = recMsg.ToUserName replyMsg = reply.Msg(toUser, fromUser) if isinstance(recMsg, receive.TextMsg): content = recMsg.Content response = get_content(content) msgType = response['type'] content = response['content'] if content != None: if msgType == 'text': replyMsg = reply.TextMsg(toUser, fromUser, content) elif msgType == 'news': replyMsg = reply.NewsMsg(toUser, fromUser, response['title'], response['content'], response['pic_url'], response['url']) elif isinstance(recMsg, receive.ImageMsg): pass elif isinstance(recMsg, receive.EventMsg): if recMsg.Event == 'subscribe': content = config.Welcome.format(key=get_keywords()) replyMsg = reply.TextMsg(toUser, fromUser, content) return replyMsg.send() def girl_download(filename): filename = unquote(filename) path = os.path.abspath('girl') if os.path.isfile(os.path.join(path, filename)): return send_from_directory(path, filename) abort(404) def girl_download2(dirname, filename): filename = unquote(filename) dirname = unquote(dirname) path = os.path.abspath('girl') path = os.path.join(path, dirname) if os.path.isfile(os.path.join(path, filename)): return send_from_directory(path, filename) abort(404) def list_posts(): if request.method == 'GET': data = request.args print('Coming Get', data) if not data: return blog_index() else: return wechat_auth() if request.method == 'POST': return wechat_inter() def list_wechats(): posts = models.Post.objects.filter(post_type='wechat', is_draft=False).order_by('-pub_time') tags = posts.distinct('tags') try: cur_page = int(request.args.get('page', 1)) except ValueError: cur_page = 1 cur_tag = request.args.get('tag') keywords = request.args.get('keywords') if keywords: # posts = posts.filter(raw__contains=keywords ) posts = posts.filter(Q(raw__contains=keywords) | Q(title__contains=keywords)) if cur_tag: posts = posts.filter(tags=cur_tag) posts = posts.paginate(page=cur_page, per_page=PER_PAGE) widgets = models.Widget.objects(allow_post_types='wechat') data = get_base_data() data['posts'] = posts data['cur_tag'] = cur_tag data['tags'] = tags data['keywords'] = keywords data['widgets'] = widgets return render_template('main/wechat_list.html', **data) def post_detail(slug, post_type='post', fix=False, is_preview=False): if is_preview: if not g.identity.can(reader_permission): abort(401) post = models.Draft.objects.get_or_404(slug=slug, post_type=post_type) else: post = models.Post.objects.get_or_404(slug=slug, post_type=post_type) if not fix else models.Post.objects.get_or_404(fix_slug=slug, post_type=post_type) # this block is abandoned if post.is_draft and current_user.is_anonymous: abort(404) data = get_base_data() data['post'] = post data['post_type'] = post_type if request.form: form = forms.CommentForm(obj=request.form) else: obj = {'author': session.get('author'), 'email': session.get('email'),'homepage': session.get('homepage'),} form = forms.CommentForm(**obj) # print session.get('email') if request.form.get('robot-comment') and form.validate_on_submit(): robotblog_create_comment(form, post) url = '{0}#comment'.format(url_for('main.post_detail', slug=slug)) msg = 'Succeed to comment, and it will be displayed when the administrator reviews it.' flash(msg, 'success') return redirect(url) data['allow_donate'] = RobotBlogSettings['donation']['allow_donate'] data['donation_msg'] = RobotBlogSettings['donation']['donation_msg'] data['donation_img_url'] = RobotBlogSettings['donation']['donation_img_url'] data['display_wechat'] = RobotBlogSettings['wechat']['display_wechat'] data['wechat_msg'] = RobotBlogSettings['wechat']['wechat_msg'] data['wechat_image_url'] = RobotBlogSettings['wechat']['wechat_image_url'] data['wechat_title'] = RobotBlogSettings['wechat']['wechat_title'] data['display_copyright'] = RobotBlogSettings['copyright']['display_copyright'] data['copyright_msg'] = RobotBlogSettings['copyright']['copyright_msg'] data['allow_comment'] = RobotBlogSettings['blog_comment']['allow_comment'] if data['allow_comment']: comment_type = RobotBlogSettings['blog_comment']['comment_type'] comment_shortname = RobotBlogSettings['blog_comment']['comment_opt'][comment_type] comment_func = get_comment_func(comment_type) data['comment_html'] = comment_func(slug, post.title, request.base_url, comment_shortname, form=form) if comment_func else '' data['allow_share_article'] = RobotBlogSettings['allow_share_article'] # if data['allow_share_article']: # data['share_html'] = jiathis_share() # send signal if not is_preview: signals.post_visited.send(current_app._get_current_object(), post=post) templates = { 'post': 'main/post.html', 'page': 'main/post.html', 'wechat': 'main/wechat_detail.html', } return render_template(templates[post_type], **data) def post_preview(slug, post_type='post'): return post_detail(slug=slug, post_type=post_type, is_preview=True) def post_detail_general(slug, post_type): is_preview = request.args.get('is_preview', 'false') is_preview = True if is_preview.lower()=='true' else False return post_detail(slug=slug, post_type=post_type, is_preview=is_preview) def author_detail(username): author = User.objects.get_or_404(username=username) posts = models.Post.objects.filter(post_type='post', is_draft=False, author=author).order_by('-pub_time') cur_page = request.args.get('page', 1) posts = posts.paginate(page=int(cur_page), per_page=ARCHIVE_PER_PAGE) data = get_base_data() data['user'] = author data['posts'] = posts # data['category_cursor'] = category_cursor # data['cur_tag'] = cur_tag # data['tags'] = tags # data['keywords'] = keywords return render_template('main/author.html', **data) def get_comment_func(comment_type): # if comment_type == 'duoshuo': # return duoshuo_comment # else: # return None comment_func = { 'robotblog': robotblog_comment, 'duoshuo': duoshuo_comment, } return comment_func.get(comment_type) def robotblog_comment(post_id, post_title, post_url, comment_shortname, form=None, *args, **kwargs): template_name = 'main/comments.html' comments = models.Comment.objects(post_slug=post_id, status='approved').order_by('pub_time') # print comments[0].get_gavatar_url() # if not form: # if session.get('author'): # print 'session' # return 'session' # data = {'author': session['author'], 'email': session['email'],'homepage': session['homepage'],} # form = forms.SessionCommentForm(obj=data) # else: # print 'no session' # return 'no session' # form = forms.CommentForm(obj=request.form) data = { 'form': form, 'comments': comments, 'slug': post_id, } return render_template(template_name, **data) def robotblog_create_comment(form, post): comment = models.Comment() comment.author = form.author.data.strip() comment.email = form.email.data.strip() comment.homepage = form.homepage.data.strip() or None comment.post_slug = post.slug comment.post_title = post.title comment.md_content = form.content.data.strip() comment.save() session['author'] = form.author.data.strip() session['email'] = form.email.data.strip() session['homepage'] = form.homepage.data.strip() def duoshuo_comment(post_id, post_title, post_url, duoshuo_shortname, *args, **kwargs): ''' Create duoshuo script by params ''' template_name = 'main/misc/duoshuo.html' data = { 'duoshuo_shortname': duoshuo_shortname, 'post_id': post_id, 'post_title': post_title, 'post_url': post_url, } return render_template(template_name, **data) # def jiathis_share(): # ''' # Create duoshuo script by params # ''' # template_name = 'main/misc/jiathis_share.html' # return render_template(template_name) def archive(): posts = models.Post.objects.filter(post_type='post', is_draft=False).order_by('-pub_time') cur_category = request.args.get('category') cur_tag = request.args.get('tag') cur_page = request.args.get('page', 1) if cur_category: posts = posts.filter(category=cur_category) if cur_tag: posts = posts.filter(tags=cur_tag) posts = posts.paginate(page=int(cur_page), per_page=ARCHIVE_PER_PAGE) data = get_base_data() data['posts'] = posts return render_template('main/archive.html', **data) def make_external(url): return urljoin(request.url_root, url) def get_post_footer(allow_donate=False, donation_msg=None, display_wechat=False, wechat_msg=None, display_copyright=False, copyright_msg=None, *args, **kwargs): template_name = 'main/misc/post_footer.html' data = {} data['allow_donate'] = allow_donate data['donation_msg'] = donation_msg data['display_wechat'] = display_wechat data['wechat_msg'] = wechat_msg data['display_copyright'] = display_copyright data['copyright_msg'] = copyright_msg return render_template(template_name, **data) def recent_feed(): feed_title = RobotBlogSettings['blog_meta']['name'] feed = AtomFeed(feed_title, feed_url=request.url, url=request.url_root) # data = {} # data['allow_donate'] = RobotBlogSettings['donation']['allow_donate'] # data['donation_msg'] = RobotBlogSettings['donation']['donation_msg'] # data['display_wechat'] = RobotBlogSettings['wechat']['display_wechat'] # data['wechat_msg'] = RobotBlogSettings['wechat']['wechat_msg'] # data['display_copyright'] = RobotBlogSettings['copyright']['display_copyright'] # data['copyright_msg'] = RobotBlogSettings['copyright']['copyright_msg'] # post_footer = get_post_footer(**data) posts = models.Post.objects.filter(post_type='post', is_draft=False)[:15] only_abstract_in_feed = RobotBlogSettings['only_abstract_in_feed'] content = 'abstract' if only_abstract_in_feed else 'content_html' for post in posts: # return post.get_absolute_url() feed.add(post.title, # unicode(post.content_html), # post.abstract, getattr(post, content), content_type='html', author=post.author.username, url=post.get_absolute_url(), updated=post.update_time, published=post.pub_time) return feed.get_response() def sitemap(): """Generate sitemap.xml. Makes a list of urls and date modified.""" pages=[] ######################### # static pages ######################### # ten_days_ago=(datetime.now() - timedelta(days=10)).date().isoformat() # for rule in current_app.url_map.iter_rules(): # if "GET" in rule.methods and len(rule.arguments)==0: # pages.append( # [rule.rule,ten_days_ago] # ) ## user model pages # users=User.query.order_by(User.modified_time).all() # for user in users: # url=url_for('user.pub',name=user.name) # modified_time=user.modified_time.date().isoformat() # pages.append([url,modified_time]) ###################### # Post Pages ###################### posts = models.Post.objects.filter(is_draft=False, post_type='post') for post in posts: pages.append((post.get_absolute_url(), post.update_time.date().isoformat(), 'weekly', '0.8')) ###################### # Blog-Page Pages ###################### blog_pages = models.Post.objects.filter(is_draft=False, post_type='page') for page in blog_pages: pages.append((page.get_absolute_url(), page.update_time.date().isoformat(), 'monthly', '0.7')) ###################### # Wechat Pages ###################### posts = models.Post.objects.filter(is_draft=False, post_type='wechat') for post in posts: pages.append((post.get_absolute_url(), post.update_time.date().isoformat(), 'weekly', '0.6')) sitemap_xml = render_template('main/sitemap.xml', pages=pages) response= make_response(sitemap_xml) response.headers["Content-Type"] = "application/xml" return response ``` #### File: liaotian-robot/app/manage.py ```python import os, sys sys.path.append(os.path.abspath(os.path.dirname(__file__))) # from flask.ext.script import Manager, Server from flask_script import Manager, Server # from blog import create_app # app = create_app(os.getenv('config') or 'default') from blog import app manager = Manager(app) # Turn on debugger by default and reloader manager.add_command("runserver", Server( use_debugger = True, use_reloader = True, host = '0.0.0.0', port = 8080) ) @manager.command def test(): import unittest tests = unittest.TestLoader().discover('tests') unittest.TextTestRunner(verbosity=2).run(tests) if __name__ == "__main__": manager.run() ```
{ "source": "398786172/keithley", "score": 3 }
#### File: Application_Specific/Increase_4-Wire_Resistance_Measurement_Capability_with_Common-side_Ohms/KEI3706A_CommonSideOhms_with_Scripting.py ```python import socket import struct import math import time echoCmd = 0 functions_path = "commonside_funcs.tsp" # This file holds the set of TSP (Lua- # based) functions that are called by # the Python script to help minimize the # amount of bytes needed to setup up and # more importantly, extract readings from # the instrument. The file is opened and def instrConnect(mySocket, myAddress, myPort, timeOut, doReset, doIdQuery): mySocket.connect((myAddress, myPort)) # input to connect must be a tuple mySocket.settimeout(timeOut) if doReset == 1: instrSend(mySocket, "reset()") if doIdQuery == 1: tmpId = instrQuery(mySocket, "*IDN?", 100) print(tmpId) return mySocket def instrDisconnect(mySocket): mySocket.close() return def instrSend(mySocket, cmd): if echoCmd == 1: print(cmd) cmd = "{0}\n".format(cmd) mySocket.send(cmd.encode()) return def instrQuery(mySocket, cmd, rcvSize): instrSend(mySocket, cmd) time.sleep(0.1) return mySocket.recv(rcvSize).decode() def Load_Functions(s): # This function opens the functions.lua file in the same directory as # the Python script and trasfers its contents to the DMM7510's internal # memory. All the functions defined in the file are callable by the # controlling program. func_file = open(functions_path, "r") contents = func_file.read() func_file.close() cmd = "loadandrunscript loadfuncs\n{0}\nendscript".format(contents) instrSend(s, cmd) print(s.recv(100).decode()) return ip_address = "192.168.1.37" # Place your instrument's IP address here. # Instrument ID String examples... # LAN -> TCPIP0::134.63.71.209::inst0::INSTR # USB -> USB0::0x05E6::0x2450::01419962::INSTR # GPIB -> GPIB0::16::INSTR # Serial -> ASRL4::INSTR my_port = 5025 myRange = 10.0 myNplc = 1.0 filterCnt = 10 channelStr = "1001:1005" bufferSize = 500 scanCount = 10 s = socket.socket() # Establish a TCP/IP socket object # Open the socket connection instrConnect(s, ip_address, my_port, 20000, 1, 1) Load_Functions(s) t1 = time.time() # Start the timer... instrSend(s, "do_beep(0.5, 4000)") # Configure channels for commonside-ohms... instrSend(s, "csohmsSetup({}, {}, {}, \"{}\")".format(myRange, myNplc, filterCnt, channelStr)) # Define a custom buffer instrSend(s, "setupBuffer({})".format(bufferSize)) # Configure the scan attributes instrSend(s, "scanSetup({}, \"{}\")".format(scanCount, channelStr)) # Start the scan instrSend(s, "initScan()") # The following loop determines if a scan iteration has completed # then outputs the readings and channel numbers. rdgsCnt = 0 extractSize = 5 startIndex = 1 endIndex = 5 while endIndex <= 50: rdgsCnt = int(float(instrQuery(s, "print(mybuffer.n)", 32))) if (rdgsCnt >= endIndex): print(instrQuery(s, "printbuffer({}, {}, mybuffer, mybuffer.channels)".format(startIndex, endIndex), 512)[:-1]) startIndex += extractSize endIndex += extractSize else: time.sleep(0.5) t2 = time.time() # Stop the timer... instrSend(s, "computeStats()") print("\n") print("CH1001 MEAN, PK2PK, MAX, MIN = {}".format(instrQuery(s, "getChanStats(1001)", 128))[:-1]) print("CH1002 MEAN, PK2PK, MAX, MIN = {}".format(instrQuery(s, "getChanStats(1002)", 128))[:-1]) print("CH1003 MEAN, PK2PK, MAX, MIN = {}".format(instrQuery(s, "getChanStats(1003)", 128))[:-1]) print("CH1004 MEAN, PK2PK, MAX, MIN = {}".format(instrQuery(s, "getChanStats(1004)", 128))[:-1]) print("CH1005 MEAN, PK2PK, MAX, MIN = {}".format(instrQuery(s, "getChanStats(1005)", 128))[:-1]) print("\n") # Close the socket connection instrDisconnect(s) # Notify the user of completion and the data streaming rate achieved. print("done") print("Time Elapsed: {0:.3f} s".format(t2-t1)) input("Press Enter to continue...") exit() ``` #### File: DMM6500_DAQ6510/DMM6500_Python_Sockets_Driver/DAQ6510_04_4WResistance_Scan_w_InitialStateWrite.py ```python import socket import struct import math import time import Keithley_DMM6500_Sockets_Driver as kei from ISStreamer.Streamer import Streamer def writeToInitialState(ch107, ch108, ch109): streamer.log("CH107", ch107) streamer.log("CH108", ch108) streamer.log("CH109", ch109) return #===== MAIN PROGRAM STARTS HERE ===== ipAddress1 = "192.168.1.165" port = 5025 timeout = 20.0 myFile = "dmm_functions.tsp" bucketName = time.strftime("DAQ6510_Data_%Y-%m-%d_%H-%M-%S") myAccessKey = "YOUR_ACCESSS_KEY_GOES_HERE" streamer = Streamer(bucket_name=bucketName, access_key=myAccessKey) DAQ6510 = kei.DMM6500() myID = DAQ6510.Connect(ipAddress1, 5025, 20000, 1, 1) DAQ6510.echoCmd = 1 scanCount = 10 scanInterval = 1.0 # for this setup, limit to no less than 5s intervals print(myID) t1 = time.time() DAQ6510.LoadScriptFile(myFile) DAQ6510.SendCmd("do_beep(1.0, 3500)") DAQ6510.Reset() DAQ6510.SetFunction_4W_Resistance("107:109", DAQ6510.OCOMP.ON, DAQ6510.OLeadDetect.ON) DAQ6510.SetMeasure_Range("107:109", DAQ6510.AutoRange.ON) DAQ6510.SetMeasure_NPLC("107:109", 1.0) DAQ6510.SetMeasure_AutoDelay("107:109", DAQ6510.DmmState.ON) DAQ6510.SetMeasure_AutoZero("107:109", DAQ6510.DmmState.ON) DAQ6510.SetMeasure_Count("107:109", 1) DAQ6510.SetScan_BasicAttributes("107:109", scanCount, scanInterval) DAQ6510.Init() startIndex = 1 endIndex = 3 chanCnt = 3 targetCnt = scanCount * chanCnt loopCnt = 1 accumCnt = DAQ6510.QueryCmd("print(defbuffer1.n)", 8) while(endIndex < (targetCnt+1)): myData = DAQ6510.GetScan_Data(chanCnt, startIndex, endIndex) print("Scan {}: {}".format(loopCnt, myData)) myDataList = myData.split(",") writeToInitialState(float(myDataList[0]), float(myDataList[1]), float(myDataList[2])) startIndex += chanCnt endIndex += chanCnt loopCnt += 1 DAQ6510.Disconnect() t2 = time.time() # Notify the user of completion and the test time achieved. print("done") print("{0:.6f} s".format(t2-t1)) input("Press Enter to continue...") exit() exit() ``` #### File: DMM6500_DAQ6510/DMM6500_Python_VISA_Driver_Linux/DMM6500_02_PyVISA_Linux.py ```python import visa import time rm = 0 myDmm = 0 def KEIDMM6500_Connect(rsrcString, getIdStr, timeout, doRst): myDmm = rm.open_resource(rsrcString) #opens desired resource and sets it variable my_instrument myDmm.write_termination = '\n' myDmm.read_termination = '\n' myDmm.send_end = True if getIdStr == 1: print(myDmm.query("*IDN?")) myDmm.timeout = timeout if doRst == 1: myDmm.write('*RST') #time.sleep(0.1) return myDmm def KEIDMM6500_Disconnect(): myDmm.close return def KEIDMM6500_Send(sndBuffer): myDmm.write(sndBuffer) return def KEIDMM6500_Query(sndBuffer): return myDmm.query(sndBuffer) #================================================================================ # MAIN CODE GOES HERE #================================================================================ t1 = time.time() # Capture start time.... #rm = visa.ResourceManager() # Opens the resource manager and sets it to variable rm rm = visa.ResourceManager('@py') myDmm = KEIDMM6500_Connect("TCPIP0::192.168.1.165::inst0::INSTR", 1, 20000, 1) # Instrument ID String examples... # LAN -> TCPIP0::172.16.58.3::inst0::INSTR # GPIB -> GPIB0::16::INSTR # Serial -> ASRL4::INSTR KEIDMM6500_Send("*RST") KEIDMM6500_Send(":SENS:FUNC \"FRES\"") KEIDMM6500_Send(":SENS:FRES:RANG: AUTO ON") KEIDMM6500_Send(":SENS:FRES:OCOM ON") KEIDMM6500_Send(":SENS:FRES:AZER ON") KEIDMM6500_Send(":SENS:FRES:NPLC 1") print(KEIDMM6500_Query("READ?")) KEIDMM6500_Disconnect() rm.close t2 = time.time() # Capture stop time... print("{0:.3f} s".format((t2-t1))) ``` #### File: DMM6500_DAQ6510/DMM6500_Python_VISA_Driver_Linux/DMM6500_VISA_Driver_Linux.py ```python import visa import struct import math import time from enum import Enum # ====================================================================== # DEFINE THE DMM CLASS INSTANCE HERE # ====================================================================== class DMM6500: def __init__(self): self.echoCmd = 1 self.myInstr = 0 # ====================================================================== # DEFINE INSTRUMENT CONNECTION AND COMMUNICATIONS FUNCTIONS HERE # ====================================================================== #def Connect(self, myAddress, myPort, timeOut, doReset, doIdQuery): # self.mySocket.connect((myAddress, myPort)) # input to connect must be a tuple # self.mySocket.settimeout(timeOut) # if doReset == 1: # self.Reset() # self.SendCmd("waitcomplete()") # if doIdQuery == 1: # tmpId = self.IDQuery() # if doIdQuery == 1: # return tmpId # else: # return def Connect(self, rsrcMgr, rsrcString, timeout, doIdQuery, doReset, doClear): self.myInstr = rsrcMgr.open_resource(rsrcString) if doIdQuery == 1: print(self.Query("*IDN?")) if doReset == 1: self.Write("reset()") if doClear == 1: self.myInstr.clear() self.myInstr.timeout = timeout return #def Disconnect(): # self.myInstr.close() # return def Disconnect(self): self.myInstr.close() return #def SendCmd(self, cmd): # if self.echoCmd == 1: # print(cmd) # cmd = "{0}\n".format(cmd) # self.mySocket.send(cmd.encode()) # return def Write(self, cmd): if self.echoCmd == 1: print(cmd) self.myInstr.write(cmd) return #def QueryCmd(self, cmd, rcvSize): # self.SendCmd(cmd) # time.sleep(0.1) # return self.mySocket.recv(rcvSize).decode() def Query(self, cmd): if self.echoCmd == 1: print(cmd) return self.myInstr.query(cmd) # ====================================================================== # DEFINE BASIC FUNCTIONS HERE # ====================================================================== def Reset(self): sndBuffer = "reset()" self.Write(sndBuffer) def IDQuery(self): sndBuffer = "*IDN?" return self.Query(sndBuffer) def LoadScriptFile(self, filePathAndName): # This function opens the functions.lua file in the same directory as # the Python script and trasfers its contents to the DMM7510's internal # memory. All the functions defined in the file are callable by the # controlling program. func_file = open(filePathAndName, "r") contents = func_file.read() func_file.close() cmd = "if loadfuncs ~= nil then script.delete('loadfuncs') end" self.Write(cmd) cmd = "loadscript loadfuncs\n{0}\nendscript".format(contents) self.Write(cmd) print(self.Query("loadfuncs()")) return # ====================================================================== # DEFINE MEASUREMENT FUNCTIONS HERE # ====================================================================== def SetMeasure_Function(self, myFunc): if myFunc == self.MeasFunc.DCV: funcStr = "dmm.FUNC_DC_VOLTAGE" elif myFunc == self.MeasFunc.DCI: funcStr = "dmm.FUNC_DC_CURRENT" sndBuffer = "dmm.measure.func = {}".format(funcStr) self.Write(sndBuffer) return def SetMeasure_Range(self, rng): sndBuffer = "dmm.measure.range = {}".format(rng) self.Write(sndBuffer) return def SetMeasure_NPLC(self, nplc): sndBuffer = "dmm.measure.nplc = {}".format(nplc) self.Write(sndBuffer) return def SetMeasure_InputImpedance(self, myZ): if myZ == self.InputZ.Z_AUTO: funcStr = "dmm.IMPEDANCE_AUTO" elif myZ == self.InputZ.Z_10M: funcStr = "dmm.IMPEDANCE_10M" sndBuffer = "dmm.measure.inputimpedance = {}".format(funcStr) self.Write(sndBuffer) return def SetMeasure_AutoZero(self, myState): if myState == self.DmmState.OFF: funcStr = "dmm.OFF" elif myState == self.DmmState.ON: funcStr = "dmm.ON" sndBuffer = "dmm.measure.autozero.enable = {}".format(funcStr) self.Write(sndBuffer) return def SetMeasure_FilterType(self, myFilter): if myFilter == self.FilterType.REP: funcStr = "dmm.FILTER_REPEAT_AVG" elif myFilter == self.FilterType.MOV: funcStr = "dmm.FILTER_MOVING_AVG" sndBuffer = "dmm.measure.filter.type = {}".format(funcStr) self.Write(sndBuffer) return def SetMeasure_FilterCount(self, count): sndBuffer = "dmm.measure.filter.count = {}".format(count) self.Write(sndBuffer) return def SetMeasure_FilterState(self, myState): if myState == self.DmmState.OFF: funcStr = "dmm.OFF" elif myState == self.DmmState.ON: funcStr = "dmm.ON" sndBuffer = "dmm.measure.filter.enable = {}".format(funcStr) self.Write(sndBuffer) return def Measure(self, count): sndBuffer = "print(dmm.measure.read())" return self.Query(sndBuffer) def SetFunction_Temperature(self, *args): # This function can be used to set up to three different measurement # function attributes, but they are expected to be in a certain # order.... # For simple front/rear terminal measurements: # 1. Transducer (TC/RTD/Thermistor) # 2. Transducer type # For channel scan measurements: # 1. Channel string # 2. Transducer # 3. Transducer type if (len(args) == 0): self.Write("dmm.measure.func = dmm.FUNC_TEMPERATURE") else: if (type(args[0]) != str): self.Write("dmm.measure.func = dmm.FUNC_TEMPERATURE") if(len(args) > 0): xStr = "dmm.measure.transducer" if(args[0] == self.Transducer.TC): xStr2 = "dmm.TRANS_THERMOCOUPLE" elif(args[0] == self.Transducer.RTD4): xStr2 = "dmm.TRANS_FOURRTD" elif(args[0] == self.Transducer.RTD3): xStr2 = "dmm.TRANS_THREERTD" elif(args[0] == self.Transducer.THERM): xStr2 = "dmm.TRANS_THERMISTOR" sndBuffer = "{} = {}".format(xStr, xStr2) self.Write(sndBuffer) if(len(args) > 1): if(args[0] == self.Transducer.TC): xStr = "dmm.measure.thermocouple" if(args[1] == self.TCType.K): xType = "dmm.THERMOCOUPLE_K" elif(args[1] == self.TCType.J): xType = "dmm.THERMOCOUPLE_J" elif(args[1] == self.TCType.N): xType = "dmm.THERMOCOUPLE_N" sndBuffer = "{} = {}".format(xStr, xType) self.Write(sndBuffer) elif((args[0] == self.Transducer.RTD4) or (args[1] == self.Transducer.RTD3)): if(args[0] == self.Transducer.RTD4): xStr = "dmm.measure.fourrtd" if(args[0] == self.Transducer.RTD3): xStr = "dmm.measure.threertd" if(args[1] == self.RTDType.PT100): rtdType = "dmm.RTD_PT100" elif(args[1] == self.RTDType.PT385): rtdType = "dmm.RTD_PT385" elif(args[1] == self.RTDType.PT3916): rtdType = "dmm.RTD_PT3916" elif(args[1] == self.RTDType.D100): rtdType = "dmm.RTD_D100" elif(args[1] == self.RTDType.F100): rtdType = "dmm.RTD_F100" elif(args[1] == self.RTDType.USER): rtdType = "dmm.RTD_USER" sndBuffer = "{} = {}".format(xStr, rtdType) self.Write(sndBuffer) elif(args[0] == self.Transducer.THERM): xStr = "dmm.measure.thermistor" if(args[1] == self.ThermType.TH2252): thrmType = "dmm.THERM_2252" elif(args[1] == self.ThermType.TH5K): thrmType = "dmm.THERM_5000" elif(args[1] == self.ThermType.TH10K): thrmType = "dmm.THERM_10000" sndBuffer = "{} = {}".format(xStr, thrmType) self.Write(sndBuffer) else: setStr = "channel.setdmm(\"{}\", ".format(args[0]) self.Write("{}dmm.ATTR_MEAS_FUNCTION, dmm.FUNC_TEMPERATURE)".format(setStr)) if(len(args) > 1): if(args[1] == self.Transducer.TC): xStr = "dmm.TRANS_THERMOCOUPLE" xStr2 = "dmm.ATTR_MEAS_THERMOCOUPLE" elif(args[1] == self.Transducer.RTD4): xStr = "dmm.TRANS_FOURRTD" xStr2 = "dmm.ATTR_MEAS_FOUR_RTD" elif(args[1] == self.Transducer.RTD3): xStr = "dmm.TRANS_THREERTD" xStr2 = "dmm.ATTR_MEAS_THREE_RTD" elif(args[1] == self.Transducer.THERM): xStr = "dmm.TRANS_THERMISTOR" xStr2 = "dmm.ATTR_MEAS_THERMISTOR" sndBuffer = "{}dmm.ATTR_MEAS_TRANSDUCER, {})".format(setStr, xStr) self.Write(sndBuffer) if(len(args) > 2): if(args[1] == self.Transducer.TC): if(args[2] == self.TCType.K): xType = "dmm.THERMOCOUPLE_K" elif(args[2] == self.TCType.J): xType = "dmm.THERMOCOUPLE_J" elif(args[2] == self.TCType.N): xType = "dmm.THERMOCOUPLE_N" #print("{}dmm.ATTR_MEAS_THERMOCOUPLE, {})".format(setStr, xType)) sndBuffer = "{}dmm.ATTR_MEAS_THERMOCOUPLE, {})".format(setStr, xType) self.Write(sndBuffer) elif((args[1] == self.Transducer.RTD4) or (args[1] == self.Transducer.RTD3)): if(args[2] == self.RTDType.PT100): rtdType = "dmm.RTD_PT100" elif(args[2] == self.RTDType.PT385): rtdType = "dmm.RTD_PT385" elif(args[2] == self.RTDType.PT3916): rtdType = "dmm.RTD_PT3916" elif(args[2] == self.RTDType.D100): rtdType = "dmm.RTD_F100" elif(args[2] == self.RTDType.F100): rtdType = "dmm.RTD_D100" elif(args[2] == self.RTDType.USER): rtdType = "dmm.RTD_USER" sndBuffer = "{}{}, {})".format(setStr, xStr2, rtdType) self.Write(sndBuffer) if(args[1] == self.Transducer.THERM): if(args[2] == self.ThermType.TH2252): thrmType = "dmm.THERM_2252" elif(args[2] == self.ThermType.TH5K): thrmType = "dmm.THERM_5000" elif(args[2] == self.ThermType.TH10K): thrmType = "dmm.THERM_10000" sndBuffer = "{}{}, {})".format(setStr, xStr2, thrmType) self.Write(sndBuffer) return class MeasFunc(Enum): DCV = 0 DCI = 1 class InputZ(Enum): Z_AUTO = 0 Z_10M = 1 class DmmState(Enum): OFF = 0 ON = 1 class FilterType(Enum): REP = 0 MOV = 1 class Transducer(Enum): TC = 0 RTD4 = 1 RTD3 = 2 THERM = 3 class TCType(Enum): K = 0 J = 1 N = 2 class RTDType(Enum): PT100 = 0 PT385 = 1 PT3916 = 2 D100 = 3 F100 = 4 USER = 5 class ThermType(Enum): TH2252 = 0 TH5K = 1 TH10K = 2 def SetScan_BasicAttributes(self, *args): self.Write("scan.create(\"{}\")".format(args[0])) # Set the scan count if(len(args) > 1): self.Write("scan.scancount = {}".format(args[1])) # Set the time between scans if(len(args) > 2): self.Write("scan.scaninterval = {}".format(args[2])) return def Init(self): self.Write("waitcomplete()") self.Write("trigger.model.initiate()") return def GetScan_Status(self): return self.Query("print(trigger.model.state())") def GetScan_Data(self, dataCount, startIndex, endIndex): #charCnt = 24 * dataCount accumCnt = int(self.Query("print(defbuffer1.n)")[0:-1]) while(accumCnt < endIndex): accumCnt = int(self.Query("print(defbuffer1.n)")[0:-1]) rcvBuffer = self.Query("printbuffer({}, {}, defbuffer1)".format(startIndex, endIndex))[0:-1] return rcvBuffer ``` #### File: Drivers/Power_Analyzer/PA3000_Send_Configuration.py ```python import visa import struct import math import time import PowerAnalyzer_VISA_Driver as pa def send_configuration_file(my_file, my_pa): with open(my_file) as fp: line = fp.readline() cnt = 1 while line: print("Line {}: {}".format(cnt, line.strip())) line = fp.readline() my_pa.SendCmd(line) cnt += 1 return #===== MAIN PROGRAM STARTS HERE ===== rm = visa.ResourceManager() # Opens the resource manager and sets it to variable rm pa_instrument_string = "TCPIP0::192.168.1.122::5025::SOCKET" # DAQ_Inst_1 = "TCPIP0::192.168.1.2::inst0::INSTR" # Instrument ID String examples... # LAN -> TCPIP0::172.16.58.3::inst0::INSTR or # TCPIP0::192.168.1.122::5025::SOCKET # USB -> USB0::0x05E6::0x2450::01419962::INSTR # GPIB -> GPIB0::16::INSTR # Serial -> ASRL4::INSTR timeout = 20000 myFile = "CONFIG04EDIT.CFG" PA3000 = pa.PowerAnalyzer() myID = PA3000.Connect(rm, pa_instrument_string, timeout, 1, 1, 1) t1 = time.time() send_configuration_file(myFile, PA3000) PA3000.Disconnect() rm.close() t2 = time.time() # Notify the user of completion and the test time achieved. print("done") print("{0:.6f} s".format(t2-t1)) input("Press Enter to continue...") exit() ``` #### File: PS-2231A/PyVISA/2231A_PyVISA_Examples.py ```python import visa import time rm = 0 my_PS = 0 def KEI2231_Connect(rsrcString, getIdStr, timeout, doRst): my_PS = rm.open_resource(rsrcString, baud_rate = 9600, data_bits = 8) #opens desired resource and sets it variable my_instrument my_PS.write_termination = '\n' my_PS.read_termination = '\n' my_PS.send_end = True my_PS.StopBits = 1 # my_PS.flow_control = # only available in PyVisa 1.9 #my_PS.baud_rate = 9600 if getIdStr == 1: print(my_PS.query("*IDN?")) #time.sleep(0.1) my_PS.write('SYST:REM') #print(my_PS.timeout) my_PS.timeout = timeout #print(my_PS.timeout) if doRst == 1: my_PS.write('*RST') #time.sleep(0.1) return my_PS def KEI2231A_Disconnect(): my_PS.write('SYST:LOC') my_PS.close return def KEI2231A_SelectChannel(myChan): my_PS.write("INST:NSEL %d" % myChan) #time.sleep(0.25) return def KEI2231A_SetVoltage(myV): my_PS.write("VOLT %f" % myV) #time.sleep(0.24) return def KEI2231A_SetCurrent(myI): my_PS.write("CURR %f" % myI) #time.sleep(0.24) return def KEI2231A_OutputState(myState): if myState == 0: my_PS.write("OUTP 0") #time.sleep(0.25) #my_PS.write("OUT:ENAB 0") else: my_PS.write("OUTP 1") #time.sleep(0.25) #my_PS.write("OUT:ENAB 1") #time.sleep(0.25) return def KEI2231_Send(sndBuffer): my_PS.write(sndBuffer) return def KEI2231_Query(sndBuffer): return my_PS.query(sndBuffer) #================================================================================ # MAIN CODE GOES HERE #================================================================================ t1 = time.time() # Capture start time.... rm = visa.ResourceManager() # Opens the resource manager and sets it to variable rm my_PS = KEI2231_Connect("ASRL3::INSTR", 1, 20000, 1) KEI2231A_SelectChannel(1) KEI2231A_SetVoltage(1.0) KEI2231A_SetCurrent(1.0) KEI2231A_OutputState(1) time.sleep(0.25) KEI2231A_OutputState(0) KEI2231A_Disconnect() rm.close t2 = time.time() # Capture stop time... print("{0:.3f} s".format((t2-t1))) ``` #### File: Series_3700A/Series_3700A_Python_Sockets_Driver/Series_3700A_Sockets_Driver.py ```python import socket import struct import math import time from enum import Enum # ====================================================================== # DEFINE THE DMM CLASS INSTANCE HERE # ====================================================================== class KEI3706A: def __init__(self): self.echoCmd = 1 self.mySocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.stubComms = 0 # ====================================================================== # DEFINE INSTRUMENT CONNECTION AND COMMUNICATIONS FUNCTIONS HERE # ====================================================================== def Connect(self, myAddress, myPort, timeOut, doReset, doIdQuery): if (self.stubComms == 0): self.mySocket.connect((myAddress, myPort)) # input to connect must be a tuple self.mySocket.settimeout(timeOut) if doReset == 1: self.Reset() self.SendCmd("waitcomplete()") if doIdQuery == 1: tmpId = self.IDQuery() if doIdQuery == 1: return tmpId else: return def Disconnect(self): if (self.stubComms == 0): self.mySocket.close() return def SendCmd(self, cmd): if self.echoCmd == 1: print(cmd) cmd = "{0}\n".format(cmd) if (self.stubComms == 0): self.mySocket.send(cmd.encode()) return def QueryCmd(self, cmd, rcvSize): self.SendCmd(cmd) time.sleep(0.1) rcvString = "" if (self.stubComms == 0): rcvString = self.mySocket.recv(rcvSize).decode() return rcvString # ====================================================================== # DEFINE BASIC FUNCTIONS HERE # ====================================================================== def Reset(self): sndBuffer = "reset()" self.SendCmd(sndBuffer) def IDQuery(self): sndBuffer = "*IDN?" return self.QueryCmd(sndBuffer, 64) def LoadScriptFile(self, filePathAndName): # This function opens the functions.lua file in the same directory as # the Python script and trasfers its contents to the DMM's internal # memory. All the functions defined in the file are callable by the # controlling program. func_file = open(filePathAndName, "r") contents = func_file.read() func_file.close() #cmd = "if loadfuncs ~= nil then script.delete('loadfuncs') end" #self.SendCmd(cmd) cmd = "loadscript loadfuncs\n{0}\nendscript".format(contents) self.SendCmd(cmd) cmd = "loadfuncs()" print(self.QueryCmd(cmd, 32)) return # ====================================================================== # DEFINE FUNCTIONS HERE # ====================================================================== def Close(self, *args): # first parameter is always a channel list string self.SendCmd("channel.close(\"{}\")".format(args[0])) return def Open(self, *args): # first parameter is always a channel list string self.SendCmd("channel.open(\"{}\")".format(args[0])) return def Set_3761_Switch_Mode(self, mySlot, myMode): sndBuffer = "slot[{}].voltsampsmode = {}".format(mySlot, myMode) self.SendCmd(sndBuffer) return ``` #### File: 2450-SMU/Leakage_Current_and_Insulation_Resistance/Leakage_Current_and_Insulation_Resistance_TSP.py ```python import socket import struct import math import time import sys echo_cmd = 1 """********************************************************************************* Function: instrument_connect(my_socket, ip_address string, my_port int) Purpose: Open an instance of an instrument object for remote communication over LAN/Ethernet. Parameters: my_socket - Instance of a socket object. ip_address (string) - The TCP/IP address string associated with the target instrument. my_port (int) - The instrument connection port. Returns: my_socket - Updated instance of a socket object that includes attributes of a valid connection. Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_connect(my_socket, my_address, my_port, timeout, do_reset, do_id_query): my_socket.connect((my_address, my_port)) # input to connect must be a tuple my_socket.settimeout(timeout) if do_reset == 1: instrument_write(my_socket, "*RST") if do_id_query == 1: tmp_id = instrument_query(my_socket, "*IDN?", 100) print(tmp_id) return my_socket """********************************************************************************* Function: instrument_disconnect(my_socket) Purpose: Break the LAN/Ethernet connection between the controlling computer and the target instrument. Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. Returns: None Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_disconnect(my_socket): my_socket.close() return """********************************************************************************* Function: instrument_write(my_socket, my_command) Purpose: This function issues control commands to the target instrument. Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. my_command (string) - The command issued to the instrument to make it perform some action or service. Returns: None Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_write(my_socket, my_command): if echo_cmd == 1: print(my_command) cmd = "{0}\n".format(my_command) my_socket.send(cmd.encode()) return """********************************************************************************* Function: instrument_read(my_socket, receive_size) Purpose: This function asks the connected instrument to reply with some previously requested information, typically queued up from a call to instrument_write(). Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. receive_size (int) - Size of the data/string to be returned to the caller. Returns: reply_string (string) - The requested information returned from the target instrument. Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_read(my_socket, receive_size): return my_socket.recv(receive_size).decode() """********************************************************************************* Function: instrument_query(my_socket, my_command, receive_size) Purpose: This function issues control commands to the target instrument with the expectation that data will be returned. For this function instance, the returned data is (typically) in string format. Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. my_command (string) - The command issued to the instrument to make it perform some action or service. receive_size (int) - The approximate number of bytes of data the caller expects to be returned in the response from the instrument. Returns: reply_string (string) - The requested information returned from the target instrument. Obtained by way of a caller to instrument_read(). Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_query(my_socket, my_command, receive_size): instrument_write(my_socket, my_command) time.sleep(0.1) return instrument_read(my_socket, receive_size) """********************************************************************************* Function: instrument_query_binary(my_socket, my_command, expected_number_of_readings) Purpose: This function issues control commands to the target instrument with the expectation that data will be returned. For this function instance, the returned data is specifically) expected to be in binary format. Note that this function does not handle directing the target instrument to return its data in binary format - it is the user's responsibility to understand/issue the commands that manage the binary formats. Binary formatting can promote either single or double floating point format of IEEE Std 754. This function assumes the following defaults: * Normal byte order (non-swapped) * Single precision format * Little endian byte order Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. my_command (string) - The command issued to the instrument to make it perform some action or service. expected_number_of_readings (int) - This is number of readings that is being requested to be returned from the instrument to the caller. Returns: reply_string (string) - The requested information returned from the target instrument. Obtained by way of a caller to instrument_read(). Revisions: 2019-08-29 JJB Initial revision. *********************************************************************************""" def instrument_query_binary(my_socket, my_command, expected_number_of_readings): receive_size = expected_number_of_readings * sys.getsizeof(float()) instrument_write(my_socket, my_command) response = my_socket.recv(receive_size) fmtStr = '%df' % expected_number_of_readings altResp = struct.unpack(fmtStr, response[2:-1]) # Note the index offset applied # to the response data. This is # applicable to a majority of # Keithley measurment tools. If # you choose to repurpose this # code for use with equipment from # another vendor return altResp """********************************************************************************* To measure the leakage current or insulation resistance of a device, you need to apply a fixed voltage to the device and measure the resulting current. Depending on the device under test, the measured current is typically very small, usually less than 10 nA. This application consists of two examples that demonstrate: • How to use the Model 2450 to perform leakage current measurements on a capacitor • How to use the Model 2450 to measure insulation resistance between the two conductors of a coaxial cable The only difference between these two application examples is that when you measure leakage current, the results are returned in units of amperes. When you measure insulation resistance, the results are returned in units of ohms. The leakage current application applies the voltage for a specified period because the device needs time to charge. In some cases, the resulting current is measured the entire time the device is biased. In other cases, only one reading is made at the end of the soak period. *********************************************************************************""" ip_address = "192.168.1.25" # Place your instrument's IP address here. my_port = 5025 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Establish a TCP/IP socket object instrument_connect(s, ip_address, my_port, 20000, 0, 1) # Open the socket connection t1 = time.time() # Start the timer... instrument_write(s, "reset()") # Reset the SMU instrument_write(s, "smu.source.func = smu.FUNC_DC_VOLTAGE") # Set to source voltage. instrument_write(s, "smu.source.level = 20") # Set the source voltage to 20 V. instrument_write(s, "smu.source.ilimit.level = 10e-3") # Set the current limit to 10 mA. instrument_write(s, "smu.measure.func = smu.FUNC_DC_CURRENT") # Set the instrument to measure current. instrument_write(s, "smu.measure.terminals = smu.TERMINALS_REAR") # Set to use rear-panel terminals. instrument_write(s, "smu.measure.autorange = smu.ON") # Set the current range to autorange. instrument_write(s, "smu.measure.nplc = 1") # Set the number of power line cycles to 1. instrument_write(s, "trigger.model.load(\"DurationLoop\", 60, 0.2)") # Load the Duration Loop trigger model to run # for 60 s at 200 ms intervals. instrument_write(s, "smu.source.output = smu.ON") # Turn on the output. instrument_write(s, "trigger.model.initiate()") # Initiate readings # instrument_write(s, "waitcomplete()") # Allow time for all measurements to complete. # Calculate the number of readings that will be collected. expected_readings_count = int((run_duration / sample_interval) + 1) j = 1 # Format a column header for the instrument feedback. print("{0:10} | {1:<10} | {2:<10}".format("Rdg.Num.", "Time (s)", "Current (A)")) while j <= expected_readings_count: time.sleep(sample_interval) # Check to make certain readings are in the buffer to extract. end_index = int(instrument_query(s, "print(defbuffer1.n)").rstrip()) if end_index >= j: # Get the reading + relative timestamp pairs out one at a time and print to the display. temp_list = instrument_query(s, "printbuffer({0}, {1}, defbuffer1.relativetimestamps, defbuffer1.readings)". format(j, j),(16*2)).rstrip().split(',') print("{0:10} | {1:0.4f} | {2:0.4E}".format(counter, float(temp_list[0]), float(temp_list[1]))) j += 1 instrument_write(s, "smu.source.level = 0") # Discharge the capacitor to 0 V. instrument_write(s, "smu.source.output = smu.OFF") # Turn off the output. # Close the socket connection instrument_disconnect(s) t2 = time.time() # Notify the user of completion and the data streaming rate achieved. print("done") print("Total Time Elapsed: {0:.3f} s".format(t2-t1)) input("Press Enter to continue...") exit() ``` #### File: DAQ6510/Speed_Scanning_for_Increased_Test_Throughput/DAQ6510_Speed_Scanning_for_Increased_Test_Throughput_TSP.py ```python import socket import struct import math import time import sys echo_cmd = 0 """********************************************************************************* Function: instrument_connect(my_socket, ip_address string, my_port int) Purpose: Open an instance of an instrument object for remote communication over LAN/Ethernet. Parameters: my_socket - Instance of a socket object. ip_address (string) - The TCP/IP address string associated with the target instrument. my_port (int) - The instrument connection port. Returns: my_socket - Updated instance of a socket object that includes attributes of a valid connection. Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_connect(my_socket, my_address, my_port, timeout, do_reset, do_id_query): my_socket.connect((my_address, my_port)) # input to connect must be a tuple my_socket.settimeout(timeout) if do_reset == 1: instrument_write(my_socket, "reset()") if do_id_query == 1: tmp_id = instrument_query(my_socket, "*IDN?", 100) print(tmp_id) return my_socket """********************************************************************************* Function: instrument_disconnect(my_socket) Purpose: Break the LAN/Ethernet connection between the controlling computer and the target instrument. Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. Returns: None Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_disconnect(my_socket): my_socket.close() return """********************************************************************************* Function: instrument_write(my_socket, my_command) This function issues control commands to the target instrument. Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. my_command (string) - The command issued to the instrument to make it perform some action or service. Returns: None Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_write(my_socket, my_command): if echo_cmd == 1: print(my_command) cmd = "{0}\n".format(my_command) my_socket.send(cmd.encode()) return """********************************************************************************* Function: instrument_read(my_socket, receive_size) Purpose: This function asks the connected instrument to reply with some previously requested information, typically queued up from a call to instrument_write(). Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. receive_size (int) - Size of the data/string to be returned to the caller. Returns: reply_string (string) - The requested information returned from the target instrument. Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_read(my_socket, receive_size): return my_socket.recv(receive_size).decode() """********************************************************************************* Function: instrument_query(my_socket, my_command, receive_size) Purpose: This function issues control commands to the target instrument with the expectation that data will be returned. For this function instance, the returned data is (typically) in string format. Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. my_command (string) - The command issued to the instrument to make it perform some action or service. receive_size (int) - The approximate number of bytes of data the caller expects to be returned in the response from the instrument. Returns: reply_string (string) - The requested information returned from the target instrument. Obtained by way of a caller to instrument_read(). Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_query(my_socket, my_command, receive_size): instrument_write(my_socket, my_command) time.sleep(0.1) return instrument_read(my_socket, receive_size) """********************************************************************************* Function: instrument_query_binary(my_socket, my_command, expected_number_of_readings) Purpose: This function issues control commands to the target instrument with the expectation that data will be returned. For this function instance, the returned data is specifically) expected to be in binary format. Note that this function does not handle directing the target instrument to return its data in binary format - it is the user's responsibility to understand/issue the commands that manage the binary formats. Binary formatting can promote either single or double floating point format of IEEE Std 754. This function assumes the following defaults: * Normal byte order (non-swapped) * Single precision format * Little endian byte order Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. my_command (string) - The command issued to the instrument to make it perform some action or service. expected_number_of_readings (int) - This is number of readings that is being requested to be returned from the instrument to the caller. Returns: reply_string (string) - The requested information returned from the target instrument. Obtained by way of a caller to instrument_read(). Revisions: 2019-08-29 JJB Initial revision. *********************************************************************************""" def instrument_query_binary(my_socket, my_command, expected_number_of_readings): receive_size = expected_number_of_readings * sys.getsizeof(float()) instrument_write(my_socket, my_command) response = my_socket.recv(receive_size) fmtStr = '%df' % expected_number_of_readings altResp = struct.unpack(fmtStr, response[2:-1]) return altResp """********************************************************************************* There are three different multiplex modules available for use with the DAQ6510. This application example demonstrates how each of the multiplexer modules can impact productivity by changing test time. The multiplexer modules all share the same basic code base for switching, scanning, and measuring. Any limits on system speed are the result of the relays in the multiplexer that switch the signals from the device under test (DUT) into the instrument. The Model 7700 20-Channel Differential Multiplexer Module uses electromechanical relays which have low contact resistance and contribute only a minor offset potential (<1 Ω through the end of life and < 500 nV, respectively). This results in the most accurate readings of the modules but with a 3 ms relay closure time, the slowest scan time in comparison to other options. The 7703 multiplexer module uses reed relays which have low contact resistance (<1 Ω through the end of life), but a higher contact potential (6 μV max) which contributes more signal offset and slightly less precise readings. The benefit of this module is shorter relay close time (less than 1 ms) which makes it approximately three times faster than the 7700. The 7710 multiplexer module uses solid-state relays which have the highest contact resistance and contact potential of the three options (<5 Ω and <1 μV, respectively) and are therefore the least precise, however the 7710 has the overall speed advantage with a relay close time of less than 0.5 ms, making it twice as fast as the 7703 and at least six times faster than the 7700. *********************************************************************************""" ip_address = "192.168.1.65" # Place your instrument's IP address here. my_port = 5025 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Establish a TCP/IP socket object # Open the socket connection instrument_connect(s, ip_address, my_port, 20000, 0, 1) t1 = time.time() # Start the timer... instrument_write(s, "reset()") # Reset the DAQ6510 scan_count = 1000 instrument_write(s, "channel.setdmm(\"101:120\", dmm.ATTR_MEAS_FUNCTION, dmm.FUNC_DC_VOLTAGE)") # Set function to DCV instrument_write(s, "channel.setdmm(\"101:120\", dmm.ATTR_MEAS_RANGE, 1)") # Set the fixed range at 1 V instrument_write(s, "channel.setdmm(\"101:120\", dmm.ATTR_MEAS_RANGE_AUTO, dmm.OFF)") # Disable auto ranging instrument_write(s, "channel.setdmm(\"101:120\", dmm.ATTR_MEAS_AUTO_ZERO, dmm.OFF)") # Turn off auto zero instrument_write(s, "channel.setdmm(\"101:120\", dmm.ATTR_MEAS_DIGITS, dmm.DIGITS_4_5)") # Front panel shows only four significant digits (when in focus) instrument_write(s, "channel.setdmm(\"101:120\", dmm.ATTR_MEAS_NPLC, 0.0005)") # Set fastest NPLC possible instrument_write(s, "channel.setdmm(\"101:120\", dmm.ATTR_MEAS_APERTURE, 8.33333e-06)") # Set the aperture to the smallest possible value - redundant # to setting the fastest NPLC, but provided here for review instrument_write(s, "channel.setdmm(\"101:120\", dmm.ATTR_MEAS_LINE_SYNC, dmm.OFF)") # Turn off line sync instrument_write(s, "channel.setdmm(\"101:120\", dmm.ATTR_MEAS_LIMIT_ENABLE_1, dmm.OFF)") # Turn off limit 1 & 2 tests instrument_write(s, "channel.setdmm(\"101:120\", dmm.ATTR_MEAS_LIMIT_ENABLE_2, dmm.OFF)") instrument_write(s, "format.data = format.REAL32") # Request that the buffer data be returned in # IEEE Std. 754 single-precision format instrument_write(s, "display.changescreen(display.SCREEN_PROCESSING)") # Switch to the "Processing" UI to ensure processing # resources are focused on measuring, not displaying # readings that are too fast to watch on the screen. instrument_write(s, "scan.create(\"101:120\")") # Set up Scan instrument_write(s, "scan.interval = 0") # Set trigger interval between scans to 0 s channel_count = int(instrument_query(s, "print(scan.stepcount)", 16).rstrip()) # Get the number of channels configured in the scan instrument_write(s, "scan.scancount = {0}".format(scan_count)) # Set the number of times the scan will be executed sample_count = scan_count * channel_count instrument_write(s, "defbuffer1.clear()") # Clear the reading buffer instrument_write(s, "defbuffer1.capacity = {0}".format(sample_count)) # Set the number of points in the reading buffer instrument_write(s, "waitcomplete()") # Allow time for all settings to take effect instrument_write(s, "trigger.model.initiate()") # Initiate the scan # Establish a loop which will iteratively extract the readings from the reading buffer j = 1 chunk_size = 200 # This is the number of readings to extract from the reading buffer per each query start_index = 1 end_index = chunk_size accumulated_readings = 0 while accumulated_readings < sample_count: readings_count = int(instrument_query(s, "print(defbuffer1.n)", 16).rstrip()) if readings_count >= end_index: response = instrument_query_binary(s, "printbuffer({0}, {1}, defbuffer1.readings)".format(start_index, end_index), chunk_size) print(response) start_index += chunk_size end_index += chunk_size accumulated_readings += chunk_size instrument_write(s, "display.changescreen(display.SCREEN_HOME)") # Switch to the HOME UI after scanning and processing # is complete. # Close the socket connection instrument_disconnect(s) t2 = time.time() # Notify the user of completion and the data streaming rate achieved. print("done") print("Total Time Elapsed: {0:.3f} s".format(t2-t1)) input("Press Enter to continue...") exit() ``` #### File: DAQ6510/Using the Model 7701 Multiplexer in a Switching-Only Application/DAQ6510_w_7701_Switch_Only_Example.py ```python import socket import struct import math import time echo_cmd = 0 """********************************************************************************* Function: instrument_connect(my_socket, ip_address string, my_port int, timeout do_reset, do_id_query) Purpose: Open an instance of an instrument object for remote communication over LAN/Ethernet. Parameters: my_socket - Instance of a socket object. ip_address (string) - The TCP/IP address string associated with the target instrument. my_port (int) - The instrument connection port. timeout (int) - The timeout limit for query/communication exchanges. do_reset (int) - Determines whether the instrument is to be reset upon connection to the instrument. Setting to 1 will perform the reset; setting to zero avoids it. do_clear (int) - Determines whether the instrument is to be cleared do_id_query (int) - Determines when the instrument is to echo its identification string after it is initialized. Returns: my_socket - Updated instance of a socket object that includes attributes of a valid connection. Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_connect(my_socket, my_address, my_port, timeout, do_reset, do_clear, do_id_query): my_socket.connect((my_address, my_port)) # input to connect must be a tuple my_socket.settimeout(timeout) if do_reset == 1: instrument_write(my_socket, "*RST") if do_clear == 1: instrument_write(my_socket, "*CLS") if do_id_query == 1: tmp_id = instrument_query(my_socket, "*IDN?", 100) print(tmp_id) return my_socket """********************************************************************************* Function: instrument_disconnect(my_socket) Purpose: Break the LAN/Ethernet connection between the controlling computer and the target instrument. Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. Returns: None Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_disconnect(my_socket): my_socket.close() return """********************************************************************************* Function: instrument_write(my_socket, my_command) Purpose: This function issues control commands to the target instrument. Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. my_command (string) - The command issued to the instrument to make it perform some action or service. Returns: None Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_write(my_socket, my_command): if echo_cmd == 1: print(my_command) cmd = "{0}\n".format(my_command) my_socket.send(cmd.encode()) return """********************************************************************************* Function: instrument_read(my_socket, receive_size) Purpose: This function asks the connected instrument to reply with some previously requested information, typically queued up from a call to instrument_write(). Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. receive_size (int) - Size of the data/string to be returned to the caller. Returns: reply_string (string) - The requested information returned from the target instrument. Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_read(my_socket, receive_size): return my_socket.recv(receive_size).decode() """********************************************************************************* Function: instrument_query(my_socket, my_command, receive_size) Purpose: This function issues control commands to the target instrument with the expectation that data will be returned. For this function instance, the returned data is (typically) in string format. Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. my_command (string) - The command issued to the instrument to make it perform some action or service. receive_size (int) - The approximate number of bytes of data the caller expects to be returned in the response from the instrument. Returns: reply_string (string) - The requested information returned from the target instrument. Obtained by way of a caller to instrument_read(). Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_query(my_socket, my_command, receive_size): instrument_write(my_socket, my_command) return instrument_read(my_socket, receive_size) """********************************************************************************* This example application demonstrates the use of the DAQ6510 in a switching only application. The channel control reflects the use of the Model 7701 multiplexer card. The setup assumes the following: A. A power source is applied to MUX2 and routed to any of three devices connected to channels 117, 118, and 119. B. A measurement device is applied to MUX1 and routed to any of six possible test points connected to channels 101, 102, 103, 104, 105, and 106. C. The jumpers between MUX1 and the DMM Input terminals and those between MUX2 and the DMM Sense terminals have been removed from the Model 7701. However, relays 34 and 35 are forced to their open state to help ensure isolation. D. For each MUX2 source connection to the device, each of the six MUX1 channels will be closed to allow for a measurement to occur then open to allow for subsequent channel measurements. *********************************************************************************""" my_ip_address = "192.168.1.67" # Define your instrument's IP address here. my_port = 5025 # Define your instrument's port number here. do_instr_reset = 1 do_instr_clear = 0 do_instr_id_query = 1 t1 = time.time() # Open the socket connections... my_daq = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Establish a TCP/IP socket object my_daq.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) instrument_connect(my_daq, my_ip_address, my_port, 20000, do_instr_reset, do_instr_clear, do_instr_id_query) source_channel_list = (["117", "118", "119"]) measure_channel_list = (["101", "102", "103", "104", "105", "106"]) # open channels 134 and 135 to supplement isolation from the DAQ6510 # internal input and sense terminals instrument_write(my_daq, "channel.multiple.open(\"134,135\")") # close channel 133 to ensure the disconnect between the MUX1 and MUX2 # multiplexer banks instrument_write(my_daq, "channel.multiple.close(\"133\")") for s_chan in source_channel_list: # close the source channel instrument_write(my_daq, "channel.multiple.close(\"{0}\")".format(s_chan)) for m_chan in measure_channel_list: # close the test point measurement channel instrument_write(my_daq, "channel.multiple.close(\"{0}\")".format(m_chan)) # insert a delay representative of the measurement activity performed # by the external instrument time.sleep(0.5) # open the test point measurement channel instrument_write(my_daq, "channel.multiple.open(\"{0}\")".format(m_chan)) # open the source channel instrument_write(my_daq, "channel.multiple.open(\"{0}\")".format(s_chan)) # add another delay representative of the external source management #commands time.sleep(0.5) instrument_disconnect(my_daq) t2 = time.time() # Stop the timer... # Notify the user of completion and the data streaming rate achieved. print("done") print("Total Time Elapsed: {0:.3f} s".format(t2 - t1)) input("Press Enter to continue...") exit() ``` #### File: DMM6500/Upload_and_Execute_a_Test_Sequence_to_the_Series_2260B_Power_Supply/Upload_and_Execute_Test_Sequence_File_to_2260B_Power_Supply_Rev_B.py ```python import socket import struct import math import time import sys echo_cmd = 0 """********************************************************************************* Function: instrument_connect(my_socket, ip_address string, my_port int, timeout do_reset, do_id_query) Purpose: Open an instance of an instrument object for remote communication over LAN/Ethernet. Parameters: my_socket - Instance of a socket object. ip_address (string) - The TCP/IP address string associated with the target instrument. my_port (int) - The instrument connection port. timeout (int) - The timeout limit for query/communication exchanges. do_reset (int) - Determines whether the instrument is to be reset upon connection to the instrument. Setting to 1 will perform the reset; setting to zero avoids it. do_clear (int) - Determines whether the instrument is to be cleared do_id_query (int) - Deterines when the instrument is to echho its identification string after it is initialized. Returns: my_socket - Updated instance of a socket object that includes attributes of a valid connection. Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_connect(my_socket, my_address, my_port, timeout, do_reset, do_clear, do_id_query): my_socket.connect((my_address, my_port)) # input to connect must be a tuple my_socket.settimeout(timeout) my_socket.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) if do_reset == 1: instrument_write(my_socket, "*RST") if do_clear == 1: instrument_write(my_socket, "*CLS") if do_id_query == 1: tmp_id = instrument_query(my_socket, "*IDN?", 100) print(tmp_id) return my_socket """********************************************************************************* Function: instrument_disconnect(my_socket) Purpose: Break the LAN/Ethernet connection between the controlling computer and the target instrument. Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. Returns: None Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_disconnect(my_socket): my_socket.close() return """********************************************************************************* Function: instrument_write(my_socket, my_command) Purpose: This function issues control commands to the target instrument. Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. my_command (string) - The command issued to the instrument to make it perform some action or service. Returns: None Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_write(my_socket, my_command): if echo_cmd == 1: print(my_command) cmd = "{0}\n".format(my_command) my_socket.send(cmd.encode()) return """********************************************************************************* Function: instrument_read(my_socket, receive_size) Purpose: This function asks the connected instrument to reply with some previously requested information, typically queued up from a call to instrument_write(). Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. receive_size (int) - Size of the data/string to be returned to the caller. Returns: reply_string (string) - The requested information returned from the target instrument. Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_read(my_socket, receive_size): return my_socket.recv(receive_size).decode() """********************************************************************************* Function: instrument_query(my_socket, my_command, receive_size) Purpose: This function issues control commands to the target instrument with the expectation that data will be returned. For this function instance, the returned data is (typically) in string format. Parameters: my_socket - The TCP instrument connection object used for sending and receiving data. my_command (string) - The command issued to the instrument to make it perform some action or service. receive_size (int) - The approximate number of bytes of data the caller expects to be returned in the response from the instrument. Returns: reply_string (string) - The requested information returned from the target instrument. Obtained by way of a caller to instrument_read(). Revisions: 2019-07-30 JJB Initial revision. *********************************************************************************""" def instrument_query(my_socket, my_command, receive_size): instrument_write(my_socket, my_command) return instrument_read(my_socket, receive_size) """********************************************************************************* Function: write_data(output_data_path, data_str) Purpose: This function issues control commands to the target instrument. Parameters: output_data_path (string) - The file name and path of the file to be written to. Note that the file is opened in append mode and no previously existing data will be over- written. data_str (string) - The data to be written to file. It is up to the user to format this data external to this function prior to using it. Returns: None Revisions: 2020-01-03 JJB Initial revision. *********************************************************************************""" def write_data(output_data_path, data_str): # This function writes the floating point data to the # target file. # for f in floats: ofile = open(output_data_path, "a") # append the target data dataStr = "{0}\n".format(data_str) ofile.write(dataStr) ofile.close() # Close the data file. return def upload_test_sequence(instrument_object, file_and_path): with open(file_and_path) as file_in: n = 1 # The first line in the sequence file is the header and not intended to be part of the test sequence for line in file_in: if n != 1: instrument_write(instrument_object, "append_test_to_global_table(\"{0}\")".format(line.rstrip('\r\n'))) n += 1 return """********************************************************************************* This example shows how the user of a Keithley DMM6500 can load a TSP script file and execute embedded functions. This allow the user to customize test operations at the instrument level. In particular, this example shows how a user might create a direct socket connection to the Series 2260B power supply and execute a supply output test sequence that defines voltage/current levels, durations for each defined step, and slew control. This program is dependendent on two additional files: A. The series_2260B_sequence_control.tsp script which.... 1. Promotes the transfer of the test sequence file to a Lua table on the DMM. 2. Initiates the sockets connection to the 2260B 3. Executes the uploaded test sequence. B. A 2260B test sequence in *.csv format. *********************************************************************************""" my_ip_address = "192.168.1.104" # Define your instrument's IP address here. my_port = 5025 # Define your instrument's port number here. do_instr_reset = 1 do_instr_clear = 1 do_instr_id_query = 1 t1 = time.time() # Open the socket connections... my_instr = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Establish a TCP/IP socket object instrument_connect(my_instr, my_ip_address, my_port, 20000, do_instr_reset, do_instr_clear, do_instr_id_query) # Ready the instrument to receive the target TSP file contents file = "series_2260B_sequence_control.tsp" func_file = open(file, "r") contents = func_file.read() func_file.close() instrument_write(my_instr, "if loadfuncs ~= nil then script.delete('loadfuncs') end") # Load the script file in one large chunk then close out the loadfuncs wrapper script. instrument_write(my_instr, "loadscript loadfuncs\n{0}\nendscript\n".format(contents)) # Call loadfuncs to load the contents of the script file into active memory print(instrument_query(my_instr, "loadfuncs()", 32)) # Note that we are echoing a queried function here. # You will note that the final line in the functions.tsp # script file is a print() command that will push its # contents to the output data queue. instrument_write(my_instr, "do_beep(0.250, 1000, 3)") file = "Test_Sequence_06.csv" upload_test_sequence(my_instr, file) ip_address_2260B = "192.168.1.117" instrument_write(my_instr, "connect_to_2260B(\"{0}\")".format(ip_address_2260B)) instrument_write(my_instr, "enable_2260B_output({0}, {1}, {2})".format(0.0, 1.0, "ON")) instrument_write(my_instr, "ps2260_execute_test_sequence()") instrument_write(my_instr, "enable_2260B_output({0}, {1}, {2})".format(0.0, 1.0, "OFF")) instrument_write(my_instr, "disconnect_from_2260B()") instrument_disconnect(my_instr) t2 = time.time() # Stop the timer... # Notify the user of completion and the data streaming rate achieved. print("done") print("Total Time Elapsed: {0:.3f} s".format(t2 - t1)) input("Press Enter to continue...") exit() ```
{ "source": "39biradar/pyTenable", "score": 3 }
#### File: tests/cs/test_uploads.py ```python import pytest from ..checker import single def test_uploads_docker_push_name_typeerror(api): '''test to raise the exception when the parameter passed is not as the expected type''' with pytest.raises(TypeError): api.uploads.docker_push(1) def test_uploads_docker_push_tag_typeerror(api): '''test to raise the exception when the parameter passed is not as the expected type''' with pytest.raises(TypeError): api.uploads.docker_push('example', tag=1) def test_uploads_docker_push_cs_name_typeerror(api): '''test to raise the exception when the parameter passed is not as the expected type''' with pytest.raises(TypeError): api.uploads.docker_push('example', tag='latest', cs_name=1) def test_uploads_docker_push_cs_tag_typeerror(api): '''test to raise the exception when the parameter passed is not as the expected type''' with pytest.raises(TypeError): api.uploads.docker_push('example', tag='latest', cs_tag=1) @pytest.mark.skip(reason="Can't VCR because of docker.") def test_uploads_docker_push(image_id): '''test to check the type of image_id''' single(image_id, str) ``` #### File: tests/sc/test_queries.py ```python import pytest from ..checker import check from tenable.errors import APIError, UnexpectedValueError from tests.pytenable_log_handler import log_exception def test_queries_constructor_sort_field_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(sort_field=1, tool='1', type='1', filters=[('filtername', 'operator', 'value')]) def test_queries_constructor_description_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(description=1, tool='1', type='1') def test_queries_constructor_sort_direction_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(sort_direction=1, tool='1', type='1') def test_queries_constructor_sort_direction_unexpectedvalueerror(sc): with pytest.raises(UnexpectedValueError): sc.queries._constructor(sort_direction='nope', tool='1', type='1') def test_queries_constructor_offset_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(offset='one', tool='1', type='1') def test_queries_constructor_limit_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(limit='one', tool='1', type='1') def test_queries_constructor_owner_id_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(owner_id='one', tool='1', type='1') def test_queries_constructor_context_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(context=1, tool='1', type='1') def test_queries_constructor_browse_cols_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(browse_cols=1, tool='1', type='1') def test_queries_constructor_browse_sort_col_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(browse_sort_col=1, tool='1', type='1') def test_queries_constructor_browse_sort_dir_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(browse_sort_direction=1, tool='1', type='1') def test_queries_constructor_browse_sort_dir_unexpectedvalueerror(sc): with pytest.raises(UnexpectedValueError): sc.queries._constructor(browse_sort_direction='nope', tool='1', type='1') def test_queries_constructor_tags_typeerror(sc): with pytest.raises(TypeError): sc.queries._constructor(tags=1, tool='1', type='ticket', filters=[('filtername', 'operator', [1, 2])]) @pytest.mark.vcr() def test_queries_constructor_success(sc): query = sc.queries._constructor( ('filtername', 'operator', 'value'), ('asset', 'op', 2), tool='vulndetails', type='thistype', tags='tag', sort_field='field1', sort_direction='asc', offset=0, limit=1000, owner_id=1, context='nothing', browse_cols=['something'], browse_sort_col='yes', browse_sort_direction='asc', query_id=1 ) assert isinstance(query, dict) assert query == { 'tool': 'vulndetails', 'type': 'thistype', 'tags': 'tag', 'filters': [{ 'filterName': 'filtername', 'operator': 'operator', 'value': 'value' }, { 'filterName': 'asset', 'operator': 'op', 'value': {'id': '2'} }], 'sortField': 'field1', 'sortDir': 'ASC', 'startOffset': 0, 'query_id': 1, 'endOffset': 1000, 'ownerID': '1', 'context': 'nothing', 'browseColumns': 'something', 'browseSortColumn': 'yes', 'browseSortDirection': 'ASC' } @pytest.fixture def query(request, sc, vcr): with vcr.use_cassette('test_queries_create_success'): query = sc.queries.create('New Query', 'vulndetails', 'vuln', ('pluginID', '=', '19506')) def teardown(): try: with vcr.use_cassette('test_queries_delete_success'): sc.queries.delete(int(query['id'])) except APIError as error: log_exception(error) request.addfinalizer(teardown) return query @pytest.mark.vcr() def test_queries_create_success(sc, query): assert isinstance(query, dict) check(query, 'id', str) check(query, 'name', str) check(query, 'description', str) check(query, 'tool', str) check(query, 'type', str) check(query, 'tags', str) check(query, 'context', str) check(query, 'browseColumns', str) check(query, 'browseSortColumn', str) check(query, 'browseSortDirection', str) check(query, 'createdTime', str) check(query, 'modifiedTime', str) check(query, 'status', str) check(query, 'filters', list) for filter in query['filters']: check(filter, 'filterName', str) check(filter, 'operator', str) check(filter, 'value', str) check(query, 'canManage', str) check(query, 'canUse', str) check(query, 'creator', dict) check(query['creator'], 'id', str) check(query['creator'], 'username', str) check(query['creator'], 'firstname', str) check(query['creator'], 'lastname', str) check(query, 'owner', dict) check(query['owner'], 'id', str) check(query['owner'], 'username', str) check(query['owner'], 'firstname', str) check(query['owner'], 'lastname', str) check(query, 'ownerGroup', dict) check(query['ownerGroup'], 'id', str) check(query['ownerGroup'], 'name', str) check(query['ownerGroup'], 'description', str) check(query, 'targetGroup', dict) check(query['targetGroup'], 'id', int) check(query['targetGroup'], 'name', str) check(query['targetGroup'], 'description', str) @pytest.mark.vcr() def test_queries_delete_success(sc, query): sc.queries.delete(int(query['id'])) @pytest.mark.vcr() def test_queries_details_success(sc, query): query = sc.queries.details(int(query['id'])) assert isinstance(query, dict) check(query, 'id', str) check(query, 'name', str) check(query, 'description', str) check(query, 'tool', str) check(query, 'type', str) check(query, 'tags', str) check(query, 'context', str) check(query, 'browseColumns', str) check(query, 'browseSortColumn', str) check(query, 'browseSortDirection', str) check(query, 'createdTime', str) check(query, 'modifiedTime', str) check(query, 'status', str) check(query, 'filters', list) for filter in query['filters']: check(filter, 'filterName', str) check(filter, 'operator', str) check(filter, 'value', str) check(query, 'canManage', str) check(query, 'canUse', str) check(query, 'creator', dict) check(query['creator'], 'id', str) check(query['creator'], 'username', str) check(query['creator'], 'firstname', str) check(query['creator'], 'lastname', str) check(query, 'owner', dict) check(query['owner'], 'id', str) check(query['owner'], 'username', str) check(query['owner'], 'firstname', str) check(query['owner'], 'lastname', str) check(query, 'ownerGroup', dict) check(query['ownerGroup'], 'id', str) check(query['ownerGroup'], 'name', str) check(query['ownerGroup'], 'description', str) check(query, 'targetGroup', dict) check(query['targetGroup'], 'id', int) check(query['targetGroup'], 'name', str) check(query['targetGroup'], 'description', str) @pytest.mark.vcr() def test_queries_details_success_for_fields(sc, query): q = sc.queries.details(int(query['id']), fields=["id", "name", "description"]) assert isinstance(q, dict) check(q, 'id', str) check(q, 'name', str) check(q, 'description', str) @pytest.mark.vcr() def test_queries_edit_success(sc, query): query = sc.queries.edit(int(query['id']), name='Updated Name') assert isinstance(query, dict) check(query, 'id', str) check(query, 'name', str) check(query, 'description', str) check(query, 'tool', str) check(query, 'type', str) check(query, 'tags', str) check(query, 'context', str) check(query, 'browseColumns', str) check(query, 'browseSortColumn', str) check(query, 'browseSortDirection', str) check(query, 'createdTime', str) check(query, 'modifiedTime', str) check(query, 'filters', list) for filter in query['filters']: check(filter, 'filterName', str) check(filter, 'operator', str) check(filter, 'value', str) check(query, 'canManage', str) check(query, 'canUse', str) check(query, 'creator', dict) check(query['creator'], 'id', str) check(query['creator'], 'username', str) check(query['creator'], 'firstname', str) check(query['creator'], 'lastname', str) check(query, 'owner', dict) check(query['owner'], 'id', str) check(query['owner'], 'username', str) check(query['owner'], 'firstname', str) check(query['owner'], 'lastname', str) check(query, 'ownerGroup', dict) check(query['ownerGroup'], 'id', str) check(query['ownerGroup'], 'name', str) check(query['ownerGroup'], 'description', str) check(query, 'targetGroup', dict) check(query['targetGroup'], 'id', int) check(query['targetGroup'], 'name', str) check(query['targetGroup'], 'description', str) @pytest.mark.vcr() def test_queries_list_success(sc, query): queries = sc.queries.list() assert isinstance(queries, dict) for ltype in ['manageable', 'usable']: for query in queries[ltype]: assert isinstance(query, dict) check(query, 'id', str) check(query, 'name', str) check(query, 'description', str) @pytest.mark.vcr() def test_queries_list_success_for_fields(sc): queries = sc.queries.list(fields=["id", "name"]) assert isinstance(queries, dict) for type in ['manageable', 'usable']: for query in queries[type]: assert isinstance(query, dict) check(query, 'id', str) check(query, 'name', str) @pytest.mark.vcr() def test_queries_tags_success(sc): tags = sc.queries.tags() assert isinstance(tags, list) for tag in tags: assert isinstance(tag, str) @pytest.mark.vcr() def test_queries_share_id_typeerror(sc): with pytest.raises(TypeError): sc.queries.share('one', 1) @pytest.mark.vcr() def test_queries_share_group_id_typeerror(sc): with pytest.raises(TypeError): sc.queries.share(1, 'one') @pytest.mark.vcr() def test_queries_share_success(sc, query, group): query = sc.queries.share(int(query['id']), int(group['id'])) assert isinstance(query, dict) check(query, 'id', str) check(query, 'name', str) check(query, 'description', str) check(query, 'tool', str) check(query, 'type', str) check(query, 'tags', str) check(query, 'context', str) check(query, 'browseColumns', str) check(query, 'browseSortColumn', str) check(query, 'browseSortDirection', str) check(query, 'createdTime', str) check(query, 'modifiedTime', str) check(query, 'status', str) check(query, 'filters', list) for filter in query['filters']: check(filter, 'filterName', str) check(filter, 'operator', str) check(filter, 'value', str) check(query, 'creator', dict) check(query['creator'], 'id', str) check(query['creator'], 'username', str) check(query['creator'], 'firstname', str) check(query['creator'], 'lastname', str) check(query, 'owner', dict) check(query['owner'], 'id', str) check(query['owner'], 'username', str) check(query['owner'], 'firstname', str) check(query['owner'], 'lastname', str) check(query, 'ownerGroup', dict) check(query['ownerGroup'], 'id', str) check(query['ownerGroup'], 'name', str) check(query['ownerGroup'], 'description', str) check(query, 'targetGroup', dict) check(query['targetGroup'], 'id', int) check(query['targetGroup'], 'name', str) check(query['targetGroup'], 'description', str) ```
{ "source": "39xdgy/stock_prodection", "score": 3 }
#### File: stock_prodection/class_file/day_info.py ```python class day_info: def __init__(self, high, low, open, close): self.high = high self.low = low self.open = open self.close = close self.DI = (high + low + (2*close))/4 self.EMA12 = None self.EMA26 = None self.DIF = None self.MACD = None self.OSC = None self.OSCS = None self.RSI6 = None self.RSI12 = None self.RSI_diff = None self.RSV = None self.K = None self.D = None self.J = None def set_EMA12(self, EMA12): self.EMA12 = EMA12 def set_EMA26(self, EMA26): self.EMA26 = EMA26 def set_DIF(self, DIF): self.DIF = DIF def set_MACD(self, MACD): self.MACD = MACD def set_OSC(self, OSC): self.OSC = OSC def set_OSCS(self, OSCS): self.OSCS = OSCS def set_RSI6(self, RSI6): self.RSI6 = RSI6 def set_RSI12(self, RSI12): self.RSI12 = RSI12 def set_RSI_diff(self, RSI_diff): self.RSI_diff = RSI_diff def set_RSV(self, RSV): self.RSV = RSV def set_K(self, K): self.K = K def set_D(self, D): self.D = D def set_J(self, J): self.J = J def get_all_flag(self): return [self.EMA12, self.EMA26, self.DIF, self.MACD, self.OSC, self.OSCS, self.RSI6, self.RSI12, self.RSI_diff, self.RSV, self.K, self.D, self.J] ```
{ "source": "3a1b2c3/nerf_pl", "score": 2 }
#### File: 3a1b2c3/nerf_pl/extract_color_mesh.py ```python import torch import os import numpy as np import cv2 from PIL import Image from collections import defaultdict from tqdm import tqdm import mcubes import open3d as o3d from plyfile import PlyData, PlyElement from argparse import ArgumentParser from models.rendering import * from models.nerf import * from utils import load_ckpt from datasets import dataset_dict torch.backends.cudnn.benchmark = True def get_opts(): parser = ArgumentParser() parser.add_argument('--root_dir', type=str, default='/home/ubuntu/data/nerf_example_data/nerf_synthetic/lego', help='root directory of dataset') parser.add_argument('--dataset_name', type=str, default='blender', choices=['blender', 'llff'], help='which dataset to validate') parser.add_argument('--scene_name', type=str, default='test', help='scene name, used as output ply filename') parser.add_argument('--img_wh', nargs="+", type=int, default=[800, 800], help='resolution (img_w, img_h) of the image') parser.add_argument('--N_samples', type=int, default=64, help='number of samples to infer the acculmulated opacity') parser.add_argument('--chunk', type=int, default=32*1024, help='chunk size to split the input to avoid OOM') parser.add_argument('--ckpt_path', type=str, required=True, help='pretrained checkpoint path to load') parser.add_argument('--N_grid', type=int, default=256, help='size of the grid on 1 side, larger=higher resolution') parser.add_argument('--x_range', nargs="+", type=float, default=[-1.0, 1.0], help='x range of the object') parser.add_argument('--y_range', nargs="+", type=float, default=[-1.0, 1.0], help='x range of the object') parser.add_argument('--z_range', nargs="+", type=float, default=[-1.0, 1.0], help='x range of the object') parser.add_argument('--sigma_threshold', type=float, default=20.0, help='threshold to consider a location is occupied') parser.add_argument('--occ_threshold', type=float, default=0.2, help='''threshold to consider a vertex is occluded. larger=fewer occluded pixels''') #### method using vertex normals #### parser.add_argument('--use_vertex_normal', action="store_true", help='use vertex normals to compute color') parser.add_argument('--N_importance', type=int, default=64, help='number of fine samples to infer the acculmulated opacity') parser.add_argument('--near_t', type=float, default=1.0, help='the near bound factor to start the ray') return parser.parse_args() @torch.no_grad() def f(models, embeddings, rays, N_samples, N_importance, chunk, white_back): """Do batched inference on rays using chunk.""" B = rays.shape[0] results = defaultdict(list) for i in range(0, B, chunk): rendered_ray_chunks = \ render_rays(models, embeddings, rays[i:i+chunk], N_samples, False, 0, 0, N_importance, chunk, white_back, test_time=True) for k, v in rendered_ray_chunks.items(): results[k] += [v] for k, v in results.items(): results[k] = torch.cat(v, 0) return results if __name__ == "__main__": args = get_opts() kwargs = {'root_dir': args.root_dir, 'img_wh': tuple(args.img_wh)} if args.dataset_name == 'llff': kwargs['spheric_poses'] = True kwargs['split'] = 'test' else: kwargs['split'] = 'train' dataset = dataset_dict[args.dataset_name](**kwargs) embedding_xyz = Embedding(3, 10) embedding_dir = Embedding(3, 4) embeddings = {'xyz': embedding_xyz, 'dir': embedding_dir} nerf_fine = NeRF() load_ckpt(nerf_fine, args.ckpt_path, model_name='nerf_fine') nerf_fine.cuda().eval() # define the dense grid for query N = args.N_grid xmin, xmax = args.x_range ymin, ymax = args.y_range zmin, zmax = args.z_range # assert xmax-xmin == ymax-ymin == zmax-zmin, 'the ranges must have the same length!' x = np.linspace(xmin, xmax, N) y = np.linspace(ymin, ymax, N) z = np.linspace(zmin, zmax, N) xyz_ = torch.FloatTensor(np.stack(np.meshgrid(x, y, z), -1).reshape(-1, 3)).cuda() dir_ = torch.zeros_like(xyz_).cuda() # sigma is independent of direction, so any value here will produce the same result # predict sigma (occupancy) for each grid location print('Predicting occupancy ...') with torch.no_grad(): B = xyz_.shape[0] out_chunks = [] for i in tqdm(range(0, B, args.chunk)): xyz_embedded = embedding_xyz(xyz_[i:i+args.chunk]) # (N, embed_xyz_channels) dir_embedded = embedding_dir(dir_[i:i+args.chunk]) # (N, embed_dir_channels) xyzdir_embedded = torch.cat([xyz_embedded, dir_embedded], 1) out_chunks += [nerf_fine(xyzdir_embedded)] rgbsigma = torch.cat(out_chunks, 0) sigma = rgbsigma[:, -1].cpu().numpy() sigma = np.maximum(sigma, 0).reshape(N, N, N) # perform marching cube algorithm to retrieve vertices and triangle mesh print('Extracting mesh ...') vertices, triangles = mcubes.marching_cubes(sigma, args.sigma_threshold) ##### Until mesh extraction here, it is the same as the original repo. ###### vertices_ = (vertices/N).astype(np.float32) ## invert x and y coordinates (WHY? maybe because of the marching cubes algo) x_ = (ymax-ymin) * vertices_[:, 1] + ymin y_ = (xmax-xmin) * vertices_[:, 0] + xmin vertices_[:, 0] = x_ vertices_[:, 1] = y_ vertices_[:, 2] = (zmax-zmin) * vertices_[:, 2] + zmin vertices_.dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4')] face = np.empty(len(triangles), dtype=[('vertex_indices', 'i4', (3,))]) face['vertex_indices'] = triangles PlyData([PlyElement.describe(vertices_[:, 0], 'vertex'), PlyElement.describe(face, 'face')]).write(f'{args.scene_name}.ply') # remove noise in the mesh by keeping only the biggest cluster print('Removing noise ...') mesh = o3d.io.read_triangle_mesh(f"{args.scene_name}.ply") idxs, count, _ = mesh.cluster_connected_triangles() max_cluster_idx = np.argmax(count) triangles_to_remove = [i for i in range(len(face)) if idxs[i] != max_cluster_idx] mesh.remove_triangles_by_index(triangles_to_remove) mesh.remove_unreferenced_vertices() print(f'Mesh has {len(mesh.vertices)/1e6:.2f} M vertices and {len(mesh.triangles)/1e6:.2f} M faces.') vertices_ = np.asarray(mesh.vertices).astype(np.float32) triangles = np.asarray(mesh.triangles) # perform color prediction # Step 0. define constants (image width, height and intrinsics) W, H = args.img_wh K = np.array([[dataset.focal, 0, W/2], [0, dataset.focal, H/2], [0, 0, 1]]).astype(np.float32) # Step 1. transform vertices into world coordinate N_vertices = len(vertices_) vertices_homo = np.concatenate([vertices_, np.ones((N_vertices, 1))], 1) # (N, 4) if args.use_vertex_normal: ## use normal vector method as suggested by the author. ## see https://github.com/bmild/nerf/issues/44 mesh.compute_vertex_normals() rays_d = torch.FloatTensor(np.asarray(mesh.vertex_normals)) near = dataset.bounds.min() * torch.ones_like(rays_d[:, :1]) far = dataset.bounds.max() * torch.ones_like(rays_d[:, :1]) rays_o = torch.FloatTensor(vertices_) - rays_d * near * args.near_t nerf_coarse = NeRF() load_ckpt(nerf_coarse, args.ckpt_path, model_name='nerf_coarse') nerf_coarse.cuda().eval() results = f({'coarse': nerf_coarse, 'fine': nerf_fine}, embeddings, torch.cat([rays_o, rays_d, near, far], 1).cuda(), args.N_samples, args.N_importance, args.chunk, dataset.white_back) else: ## use my color average method. see README_mesh.md ## buffers to store the final averaged color non_occluded_sum = np.zeros((N_vertices, 1)) v_color_sum = np.zeros((N_vertices, 3)) # Step 2. project the vertices onto each training image to infer the color print('Fusing colors ...') for idx in tqdm(range(len(dataset.image_paths))): ## read image of this pose image = Image.open(dataset.image_paths[idx]).convert('RGB') image = image.resize(tuple(args.img_wh), Image.LANCZOS) image = np.array(image) ## read the camera to world relative pose P_c2w = np.concatenate([dataset.poses[idx], np.array([0, 0, 0, 1]).reshape(1, 4)], 0) P_w2c = np.linalg.inv(P_c2w)[:3] # (3, 4) ## project vertices from world coordinate to camera coordinate vertices_cam = (P_w2c @ vertices_homo.T) # (3, N) in "right up back" vertices_cam[1:] *= -1 # (3, N) in "right down forward" ## project vertices from camera coordinate to pixel coordinate vertices_image = (K @ vertices_cam).T # (N, 3) depth = vertices_image[:, -1:]+1e-5 # the depth of the vertices, used as far plane vertices_image = vertices_image[:, :2]/depth vertices_image = vertices_image.astype(np.float32) vertices_image[:, 0] = np.clip(vertices_image[:, 0], 0, W-1) vertices_image[:, 1] = np.clip(vertices_image[:, 1], 0, H-1) ## compute the color on these projected pixel coordinates ## using bilinear interpolation. ## NOTE: opencv's implementation has a size limit of 32768 pixels per side, ## so we split the input into chunks. colors = [] remap_chunk = int(3e4) for i in range(0, N_vertices, remap_chunk): colors += [cv2.remap(image, vertices_image[i:i+remap_chunk, 0], vertices_image[i:i+remap_chunk, 1], interpolation=cv2.INTER_LINEAR)[:, 0]] colors = np.vstack(colors) # (N_vertices, 3) ## predict occlusion of each vertex ## we leverage the concept of NeRF by constructing rays coming out from the camera ## and hitting each vertex; by computing the accumulated opacity along this path, ## we can know if the vertex is occluded or not. ## for vertices that appear to be occluded from every input view, we make the ## assumption that its color is the same as its neighbors that are facing our side. ## (think of a surface with one side facing us: we assume the other side has the same color) ## ray's origin is camera origin rays_o = torch.FloatTensor(dataset.poses[idx][:, -1]).expand(N_vertices, 3) ## ray's direction is the vector pointing from camera origin to the vertices rays_d = torch.FloatTensor(vertices_) - rays_o # (N_vertices, 3) rays_d = rays_d / torch.norm(rays_d, dim=-1, keepdim=True) near = dataset.bounds.min() * torch.ones_like(rays_o[:, :1]) ## the far plane is the depth of the vertices, since what we want is the accumulated ## opacity along the path from camera origin to the vertices far = torch.FloatTensor(depth) * torch.ones_like(rays_o[:, :1]) results = f({'coarse': nerf_fine}, embeddings, torch.cat([rays_o, rays_d, near, far], 1).cuda(), args.N_samples, 0, args.chunk, dataset.white_back) opacity = results['opacity_coarse'].cpu().numpy()[:, np.newaxis] # (N_vertices, 1) opacity = np.nan_to_num(opacity, 1) non_occluded = np.ones_like(non_occluded_sum) * 0.1/depth # weight by inverse depth # near=more confident in color non_occluded += opacity < args.occ_threshold v_color_sum += colors * non_occluded non_occluded_sum += non_occluded # Step 3. combine the output and write to file if args.use_vertex_normal: v_colors = results['rgb_fine'].cpu().numpy() * 255.0 else: ## the combined color is the average color among all views v_colors = v_color_sum/non_occluded_sum v_colors = v_colors.astype(np.uint8) v_colors.dtype = [('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] vertices_.dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4')] vertex_all = np.empty(N_vertices, vertices_.dtype.descr+v_colors.dtype.descr) for prop in vertices_.dtype.names: vertex_all[prop] = vertices_[prop][:, 0] for prop in v_colors.dtype.names: vertex_all[prop] = v_colors[prop][:, 0] face = np.empty(len(triangles), dtype=[('vertex_indices', 'i4', (3,))]) face['vertex_indices'] = triangles PlyData([PlyElement.describe(vertex_all, 'vertex'), PlyElement.describe(face, 'face')]).write(f'{args.scene_name}.ply') print('Done!') ```
{ "source": "3aaaaaamer/traverse-curves", "score": 3 }
#### File: psapy/.ipynb_checkpoints/Vogel-checkpoint.py ```python from __future__ import division import math import psapy.FluidProps as FluidProps import matplotlib.pyplot as plt Pressure=3000.0 Thickness=75.0 GasGrav=0.65 API= 28.0 GOR= 375.0 Temp=150.0 rw=0.328 re=1053.0 s=-1.5 Psat = FluidProps.Pbub(Temp,75,100,GasGrav, API, GOR) def Darcy_IPR(k,h,visc, re,rw, s, P, OilFVF, nPoints): """Function to calculate IPR using Darcy's Equation. It returns a list with a pair of Pressure and rates""" #Q= (k*h/visc)*(P-Pwf)/(141.2*OilFVF*visc*(math.log(re/rw)-0.75+s)) PwfList=[] QList=[] QList.append(0) PwfList.append(P) mStep=P/nPoints i=1 while (i<=nPoints): Pwf=PwfList[i-1]-mStep Q= (k*h/visc)*(P-Pwf)/(141.2*OilFVF*visc*(math.log(re/rw)-0.75+s)) QList.append(Q) PwfList.append(Pwf) i=i+1 DarcyList=[QList,PwfList] return DarcyList def VogelIPR(P, Pb, Pwf, Qo, nPoints): """Function to calculate IPR using Vogel's Equation. It returns a list with a pair of Pressure and rates""" PwfList=[] QList=[] QList.append(0) PwfList.append(P) VogelList=[] mStep=P/nPoints i=1 if Pwf>=Pb: J=Qo/(P-Pwf) else: J=Qo/((P-Pb)+((Pb/1.8)*(1-0.2*(Pwf/Pb)-0.8*(Pwf/Pb)**2))) while (i<=nPoints): Pwfs=PwfList[i-1]-mStep if Pwfs>=Pb: Q=J*(P-Pwfs) else: Qb=J*(P-Pb) Q=Qb+(J*Pb/1.8)*(1-0.2*(Pwfs/Pb)-0.8*(Pwfs/Pb)**2) QList.append(Q) PwfList.append(Pwfs) i=i+1 VogelList=[QList,PwfList] print(VogelList) return VogelList def Vogel_DarcyIPR(P, k,h,visc, re,rw, s, OilFVF,Temp, Pb, nPoints): """Function to calculate IPR using Vogel's Equation. It returns a list with a pair of Pressure and rates""" PwfList=[] QList=[] QList.append(0) PwfList.append(P) VogelList=[] mStep=P/nPoints i=1 J= (k*h/visc)/(141.2*OilFVF*visc*(math.log(re/rw)-0.75+s)) while (i<=nPoints): Pwfs=PwfList[i-1]-mStep print(Pwfs) if Pwfs>=Pb: Q=J*(P-Pwfs) else: Qb=J*(P-Pb) Q=Qb+(J*Pb/1.8)*(1-0.2*(Pwfs/Pb)-0.8*(Pwfs/Pb)**2) QList.append(Q) PwfList.append(Pwfs) i=i+1 VogelList=[QList,PwfList] return VogelList ```
{ "source": "3ach/pharmacap", "score": 2 }
#### File: pharmacap/models/oxycodone.py ```python import math # Come from literature # mandema et al, j clin pharm # characterization and validation of a pharmacokinetic model for controlled-release oxycodone F_rel = 1.02 f_1 = 0.38 k_c1 = 1.11 k_c2 = 0.11 t_lag = 0.206 def plasma_concentration(time): adjusted_time = time - t_lag c1_component = f_1 * k_c1 * math.exp(-k_c1 * adjusted_time) c2_component = (1 - f_1) * k_c2 * math.exp(-k_c2 * adjusted_time) return F_rel * (c1_component + c2_component) def convolve(x, y): total_length = len(y) + len(x) - 1 x_flipped = x[::-1] solution = [] for offset in range(-len(x) + 1, total_length): instance = 0 for n in range(min(len(x), len(y))): try: if n + offset < 0: instance += 0 else: instance += y[n+offset] * x_flipped[n] except: instance += 0 solution.append(instance) return solution times = [x / 2 for x in range(20)] concentrations = [plasma_concentration(time) for time in times] doses = [math.exp(-x) + (math.exp(-(x - 5)) if x >=5 else 0) for x in range(11)] print(doses) c_concs = convolve(doses, concentrations) max_concentration = max(c_concs) norm_concentrations = [12 * (c_conc / max_concentration) for c_conc in c_concs] for time, norm_concentration, concentration in zip(times, norm_concentrations, c_concs): leds = "".join(['*' for _ in range(int(norm_concentration))]) print(f"{time}\t|{leds}\t\t\t\t|{concentration}") ```
{ "source": "3always8/Molugitg", "score": 2 }
#### File: Molugitg/crawling/post_lol_story.py ```python import numpy as np import pandas as pd import io import re import gensim from konlpy.tag import Hannanum, Kkma, Komoran, Mecab, Okt from gensim.models import Word2Vec from ckonlpy.tag import Twitter import os.path FILE_PATHS = ['lol_stories.csv', 'mbti_output.csv'] ADDITIONAL_WORDS_PATHS = ['lol_additional_words.csv', 'mbti_additional_words.csv'] OUTPUT_MODEL_PATH = './../models/lol_model.model' TEXT_INDEXS = ['text', 'text'] EXCLUDE_WORDS = ['앤서니', '레이놀즈', '스크롤', '그', '살펴보기', '스크롤하기', '그녀', '루오', '마이클', '굴딩', '데이나', '루어리', '그레이엄', '맥닐', '제러드', '로슨', '로완', '윌리엄스', '오브라이언', '마커스', '테럴', '스미스' '이안', '마틴', '마이클', '하우겐', '위스크', '매튜', '필립', '바르가스', '로라', '미셋', '대니얼', '코츠', '아만다', '제프리', '아비게일', '하비', '로완', '노엘', '윌리엄스', '케이티', '치로니스', '이차오', '데이비드', '슬래글', '오딘', '오스틴', '샤퍼'] WORD2VEC_WINDOW = 4 WORD2VEC_MIN_COUNT = 2 tokenized_text = pd.DataFrame([]) count = 0 for path in FILE_PATHS: df = pd.read_csv(path, encoding='utf-8') tokenized_text = pd.concat([tokenized_text, df[TEXT_INDEXS[count]]], axis=0, ignore_index=True) count += 1 tokenized_text = tokenized_text[0] # 토큰화 함수 hannanum = Hannanum() # 대상 text 길이 너무 길면 오류나는듯(대략 한글 12800자 정도) kkma = Kkma() komoran = Komoran() twitter = Twitter() # 커스텀 단어 추가 for path in ADDITIONAL_WORDS_PATHS: additional_words = pd.read_csv(path, encoding='cp949', header=None) for index, row in additional_words.iterrows(): twitter.add_dictionary(row[0], row[1]) def tokenizer(row): pos_list = twitter.pos(row) r = [] for word in pos_list: if not word[1] in ["Josa", "Punctuation", "Foreign", "Suffix", "Eomi", "Determiner", "PreEomi", "Adverb", "Conjunction", "Exclamation"]: w = word[0] if w not in EXCLUDE_WORDS: r.append(w) rl = (" ".join(r)).strip() return twitter.morphs(rl, stem=True) tokenized_text = tokenized_text.apply(tokenizer) print(tokenized_text.head()) print("최대 토큰 개수 :", (max(len(i) for i in tokenized_text))) print("최소 토큰 개수 :", (min(len(i) for i in tokenized_text))) print("평균 토큰 개수 :", sum(len(i) for i in tokenized_text)/len(tokenized_text)) new_model = Word2Vec(size = 200, window = WORD2VEC_WINDOW, min_count = WORD2VEC_MIN_COUNT, workers = 4, sg = 1) new_model.build_vocab(tokenized_text) total_examples = len(tokenized_text) new_model.train(tokenized_text, total_examples=total_examples, epochs=new_model.iter) print(new_model.wv.vocab.keys()) print("new vocab count:", len(new_model.wv.vocab.keys())) model_result = new_model.wv.most_similar('빌지워터') print(model_result) new_model.save(OUTPUT_MODEL_PATH) ```
{ "source": "3amon/AnalysisListener", "score": 2 }
#### File: 3amon/AnalysisListener/main.py ```python import os import subprocess import time import shutil WATCH_DIR = "./uploads" PROCESSING_DIR = "./processing" OUTPUT_DIR = "./output" def moveDir(src, dest): w = os.walk(src) for root, dirs, files in os.walk(src): for file in files: shutil.move(os.path.join(src, file), os.path.join(dest, file)) while True: time.sleep(10) print "Looking for new files!" moveDir(WATCH_DIR, PROCESSING_DIR); # python ./pyAudioAnalysis/audioAnalysis.py featureExtractionDir -i ./output -mw 50.0 -ms 25.0 subprocess.Popen( ['python', './pyAudioAnalysis/audioAnalysis.py', 'featureExtractionDir', "-i", PROCESSING_DIR, '-mw', "50.0", "-ms", "25.0"]).wait() moveDir(PROCESSING_DIR, OUTPUT_DIR); ```
{ "source": "3amon/PiPsEyeListener", "score": 3 }
#### File: 3amon/PiPsEyeListener/main.py ```python import pyaudio import struct import math import wave import datetime import array import sys import subprocess import os INITIAL_THRESHOLD = 0.010 FORMAT = pyaudio.paInt16 FRAME_MAX_VALUE = 2 ** 15 - 1 NORMALIZE = (1.0 / FRAME_MAX_VALUE) CHANNELS = 1 RATE = 16000 INPUT_BLOCK_TIME = 0.05 INPUT_FRAMES_PER_BLOCK = int(RATE*INPUT_BLOCK_TIME) # if we get this many noisy blocks in a row, increase the threshold OVERSENSITIVE = 10.0/INPUT_BLOCK_TIME # if we get this many quiet blocks in a row, decrease the threshold UNDERSENSITIVE = 10.0/INPUT_BLOCK_TIME # 1 second of sound is necessary for us to care SOUND_FILTER_LEN = 1.0/INPUT_BLOCK_TIME NORMALIZE_MINUS_ONE_dB = 10 ** (-1.0 / 20) # Our long moving average LONG_AVG_LEN = 60.0 / INPUT_BLOCK_TIME # Our short moving average SHORT_AVG_LEN = 5.0 / INPUT_BLOCK_TIME # Server scp key SERVER_KEY = "server.pem" SERVER_PATH = os.environ['AUDIO_LISTENER_PATH'] def get_rms( block ): # iterate over the block. sum_squares = 0.0 for sample in block: # sample is a signed short in +/- 32768. # normalize it to 1.0 n = sample * NORMALIZE sum_squares += n*n return math.sqrt( sum_squares / len(block) ) class ExpMovAvg(object): def __init__(self, length): self.length = length self.count = 0 self.avg = 0.0 def average(self): if(self.ready()): return self.avg else: raise Exception("Moving average not ready!") def ready(self): return self.count > self.length def add_value(self, point): if(self.ready()): self.avg = (self.avg * (self.length - 1) + point) / self.length else: self.count += 1 self.avg = (self.avg * (self.count - 1) + point) / self.count class AudioLogger(object): def __init__(self): self.pa = pyaudio.PyAudio() self.errorcount = 0 self.buffer = array.array('h') self.short_avg = ExpMovAvg(SHORT_AVG_LEN) self.long_avg = ExpMovAvg(LONG_AVG_LEN) self.start() def start(self): self.stream = self.open_mic_stream() self.recording = False self.lookbackcache = [] def stop(self): self.stream.close() def find_input_device(self): device_index = None for i in range( self.pa.get_device_count() ): devinfo = self.pa.get_device_info_by_index(i) print( "Device %d: %s"%(i,devinfo["name"]) ) for keyword in ["usb"]: if keyword in devinfo["name"].lower(): print( "Found an input: device %d - %s"%(i,devinfo["name"]) ) device_index = i return device_index if device_index == None: print( "No preferred input found; using default input device." ) return device_index def open_mic_stream( self ): device_index = self.find_input_device() stream = self.pa.open(format = FORMAT, channels = CHANNELS, rate = RATE, input = True, input_device_index = device_index, frames_per_buffer = INPUT_FRAMES_PER_BLOCK) return stream def write_file(self, suffix, frames): fmt = '{fname}_%Y-%m-%d-%H-%M-%S.wav' fileName = datetime.datetime.now().strftime(fmt).format(fname=suffix) waveFile = wave.open(fileName, 'wb') waveFile.setnchannels(CHANNELS) waveFile.setsampwidth(self.pa.get_sample_size(FORMAT)) waveFile.setframerate(RATE) data = struct.pack('<' + ('h' * len(frames)), *frames) waveFile.writeframes(data) waveFile.close() print "Wrote :", fileName return fileName def send_file(self, fileName): subprocess.Popen(["scp", "-i", SERVER_KEY, fileName, SERVER_PATH]).wait() def listen(self): try: data_chunk = array.array('h', self.stream.read(INPUT_FRAMES_PER_BLOCK)) if sys.byteorder == 'big': data_chunk.byteswap() except IOError, e: # dammit. self.errorcount += 1 print( "(%d) Error recording: %s"%(self.errorcount,e) ) self.noisycount = 1 self.stop() self.start() return False amplitude = get_rms( data_chunk ) self.long_avg.add_value(amplitude) self.short_avg.add_value(amplitude) self.lookbackcache.append((data_chunk, amplitude)) while len(self.lookbackcache) > SHORT_AVG_LEN: self.lookbackcache.pop(0) if(self.long_avg.ready() and self.short_avg.ready() and len(self.lookbackcache) == SHORT_AVG_LEN): if(self.short_avg.average() > self.long_avg.average() * 1.1): if not self.recording: print "Recording started!" self.recording = True self.buffer = array.array('h') # We need to dump the samples that started getting loud loud_chunk_found = False for (data_chunk, amplitude) in self.lookbackcache: if loud_chunk_found or amplitude > self.long_avg.average() * 1.1: loud_chunk_found = True self.buffer.extend(data_chunk) else: # keep adding sound data while we are still significantly louder than the long avg self.buffer.extend(data_chunk) elif self.recording: # Recording stopped self.stop() self.recording = False fileName = self.write_file("event", self.buffer) self.send_file(fileName) self.start() os.remove(fileName) self.lookbackcache = [] return True if __name__ == "__main__": tt = AudioLogger() while(True): tt.listen() ```
{ "source": "3amon/twitter-robofact", "score": 3 }
#### File: 3amon/twitter-robofact/scrape_wikipedia.py ```python import json, requests, html2text, re, nltk.data, time sent_detector = nltk.data.load('tokenizers/punkt/english.pickle') def MakeTweet(text): sents = sent_detector.tokenize(text.strip().replace('\n', ' ')) result = '' for sent in sents: newres = result + sent if len(newres) > 140: return result result = newres return result def FilterTweet(text): if 'may refer to' in text.lower(): return '' if '##' in text: return '' if not text.endswith('.'): return '' if text.endswith('a.k.a.'): return '' if text.lower().startswith('this is a list'): return '' if len(text) < 75: return '' return text with open('wik-scrape.txt', 'w') as fhandle: while(True): #'https://en.wikipedia.org/w/api.php?action=query&generator=random&grnnamespace=0&prop=extracts&exchars=500&format=json' get_random_pages_query = 'https://en.wikipedia.org/w/api.php?action=query&generator=random&grnnamespace=0&prop=extracts&exchars=500&format=json' r = requests.get(get_random_pages_query) j = r.json() pages = j["query"]["pages"] for page in pages: extract = pages[page]["extract"] text = html2text.html2text(extract) try: res = FilterTweet(MakeTweet(text)) if len(res) > 0: fhandle.write(res) fhandle.write('\n') print res print '' except UnicodeEncodeError: pass time.sleep(0) ```
{ "source": "3anga/brianbot", "score": 2 }
#### File: 3anga/brianbot/discord.py ```python import discord, asyncio, logging, configuration client = discord.Client() @client.event async def on_ready(): print(f'{client.user} подключен к Дискорду') @client.event async def on_member_join(member): await member.create_dm() await member.dm_channel.send( f'Привет {member.name}. Провери #верификация!' ) client.run(configuration.DISCORD_TOKEN) ```
{ "source": "3anga/jdbs2", "score": 3 }
#### File: 3anga/jdbs2/errors.py ```python from json import dumps from uuid import uuid4 def errorResponse(msg="Unknown error", code=500): CONTENT = dumps({ 'statusCode': code, 'message': msg, 'requestId': uuid4().hex }) STATUS_CODE = code HEADERS = { 'status': 'bad', 'Content-Type': 'application/json' } return CONTENT, STATUS_CODE, HEADERS ```
{ "source": "3ANov/salary_predict_trudohack", "score": 3 }
#### File: salary_predict_trudohack/neural_network_model/neural_predict.py ```python import pickle import re from neural_network_model.neural_model import NeuralModel TOKEN_RE = re.compile(r'[\w\d]+') def tokenize_text_simple_regex(txt, min_token_size=4): """ This func tokenize text with TOKEN_RE applied ealier """ txt = txt.lower() all_tokens = TOKEN_RE.findall(txt) return [token for token in all_tokens if len(token) >= min_token_size] def print_prediction(input): loaded_model = pickle.loads(NeuralModel.query.filter_by(file_name='model_one').first().file) return loaded_model.predict([input]) ``` #### File: 3ANov/salary_predict_trudohack/server.py ```python from flask import Flask, render_template from flask_restful import reqparse, Api, Resource from flask_sqlalchemy import SQLAlchemy from config import Config app = Flask(__name__) app.config.from_object(Config) db = SQLAlchemy(app) api = Api(app) parser = reqparse.RequestParser() parser.add_argument('input_vacancy_text', type=str, help='Vacancy text') #from neural_predict import print_prediction import re import sklearn import pickle class NeuralModel(db.Model): file_name = db.Column(db.String, primary_key=True) file = db.Column(db.LargeBinary) TOKEN_RE = re.compile(r'[\w\d]+') def tokenize_text_simple_regex(txt, min_token_size=4): """ This func tokenize text with TOKEN_RE applied ealier """ txt = txt.lower() all_tokens = TOKEN_RE.findall(txt) return [token for token in all_tokens if len(token) >= min_token_size] loaded_model = pickle.loads(NeuralModel.query.filter_by(file_name='model_one').first().file) @app.route('/', methods=['GET']) def main(): return render_template('index.html') class NeuralResult(Resource): def post(self): args = parser.parse_args() print(args) #принимаем строку - возвращаем её длину #как победить кодировку? return {args['input_vacancy_text']: loaded_model.predict([args['input_vacancy_text']]).tolist()[0]}, 200 api.add_resource(NeuralResult, '/') if __name__ == '__main__': app.run(host='0.0.0.0') ```
{ "source": "3arii/UpSpectrum", "score": 3 }
#### File: UpSpectrum/Sound Analysis WeWalk/PyaudioRecorder.py ```python def record_audio(file_src, duration): """ Returns an encoded WAV file. In case of an unicode error give file_src as a linux type path file. add 1 to the duration as it does - 1 for some reason. """ import pyaudio import wave chunk = 1024 # Record in chunks of 1024 Samples sample_format = pyaudio.paInt16 # 16 bits per sample channels = 2 fs = 44100 # This will recod at 44100 samples per second seconds = duration filesrc = file_src p = pyaudio.PyAudio() print("Recording...") stream = p.open(format=sample_format, channels=channels, rate=fs, frames_per_buffer=chunk, input=True) frames = [] # Storing data in chunks for 3 secs for i in range(0, int(fs / chunk * seconds)): data = stream.read(chunk) frames.append(data) # Stops and closes the Stream stream.stop_stream stream.close() print("Finished Recording.") # Save the file as a WAV file. wf = wave.open(filesrc, "wb") wf.setnchannels(channels) wf.setsampwidth(p.get_sample_size(sample_format)) wf.setframerate(fs) wf.writeframes(b"".join(frames)) wf.close() # C:/Users/deniz/OneDrive/Documents/Deniz the Laps/Wewalk/Sound Analysis WeWalk/output.wav ```
{ "source": "3asm/PyDTMC", "score": 2 }
#### File: PyDTMC/pydtmc/computations.py ```python __all__ = [ 'calculate_periods', 'eigenvalues_sorted', 'find_cyclic_classes', 'find_lumping_partitions', 'gth_solve', 'rdl_decomposition', 'slem' ] ########### # IMPORTS # ########### # Standard from itertools import ( chain ) from math import ( gcd ) # Libraries import networkx as nx import numpy as np import numpy.linalg as npl # Internal from .custom_types import ( ofloat, tarray, tgraph, tlist_int, tparts, trdl ) ############# # FUNCTIONS # ############# def _calculate_period(graph: tgraph) -> int: g = 0 for scc in nx.strongly_connected_components(graph): scc = list(scc) levels = {scc: None for scc in scc} vertices = levels.copy() x = scc[0] levels[x] = 0 current_level = [x] previous_level = 1 while current_level: next_level = [] for u in current_level: for v in graph[u]: if v not in vertices: # pragma: no cover continue level = levels[v] if level is not None: g = gcd(g, previous_level - level) if g == 1: return 1 else: next_level.append(v) levels[v] = previous_level current_level = next_level previous_level += 1 return g def calculate_periods(graph: tgraph) -> tlist_int: sccs = list(nx.strongly_connected_components(graph)) classes = [sorted(scc) for scc in sccs] indices = sorted(classes, key=lambda x: (-len(x), x[0])) periods = [0] * len(indices) for scc in sccs: scc_reachable = scc.copy() for c in scc_reachable: spl = nx.shortest_path_length(graph, c).keys() scc_reachable = scc_reachable.union(spl) index = indices.index(sorted(scc)) if (scc_reachable - scc) == set(): periods[index] = _calculate_period(graph.subgraph(scc)) else: periods[index] = 1 return periods def eigenvalues_sorted(m: tarray) -> tarray: ev = npl.eigvals(m) ev = np.sort(np.abs(ev)) return ev def find_cyclic_classes(p: tarray) -> tarray: size = p.shape[0] v = np.zeros(size, dtype=int) v[0] = 1 w = np.array([], dtype=int) t = np.array([0], dtype=int) d = 0 m = 1 while (m > 0) and (d != 1): i = t[0] j = 0 t = np.delete(t, 0) w = np.append(w, i) while j < size: if p[i, j] > 0.0: r = np.append(w, t) k = np.sum(r == j) if k > 0: b = v[i] - v[j] + 1 d = gcd(d, b) else: t = np.append(t, j) v[j] = v[i] + 1 j += 1 m = t.size v = np.remainder(v, d) indices = [] for u in np.unique(v): indices.append(list(chain.from_iterable(np.argwhere(v == u)))) return indices def find_lumping_partitions(p: tarray) -> tparts: size = p.shape[0] if size == 2: return [] k = size - 1 indices = list(range(size)) possible_partitions = [] for i in range(2**k): partition = [] subset = [] for position in range(size): subset.append(indices[position]) if ((1 << position) & i) or position == k: partition.append(subset) subset = [] partition_length = len(partition) if 2 <= partition_length < size: possible_partitions.append(partition) partitions = [] for partition in possible_partitions: r = np.zeros((size, len(partition)), dtype=float) for index, lumping in enumerate(partition): for state in lumping: r[state, index] = 1.0 # noinspection PyBroadException try: k = np.dot(np.linalg.inv(np.dot(np.transpose(r), r)), np.transpose(r)) except Exception: # pragma: no cover continue left = np.dot(np.dot(np.dot(r, k), p), r) right = np.dot(p, r) is_lumpable = np.array_equal(left, right) if is_lumpable: partitions.append(partition) return partitions def gth_solve(p: tarray) -> tarray: a = np.copy(p) n = a.shape[0] for i in range(n - 1): scale = np.sum(a[i, i + 1:n]) if scale <= 0.0: # pragma: no cover n = i + 1 break a[i + 1:n, i] /= scale a[i + 1:n, i + 1:n] += np.dot(a[i + 1:n, i:i + 1], a[i:i + 1, i + 1:n]) x = np.zeros(n, dtype=float) x[n - 1] = 1.0 for i in range(n - 2, -1, -1): x[i] = np.dot(x[i + 1:n], a[i + 1:n, i]) x /= np.sum(x) return x def rdl_decomposition(p: tarray) -> trdl: values, vectors = npl.eig(p) indices = np.argsort(np.abs(values))[::-1] values = values[indices] vectors = vectors[:, indices] r = np.copy(vectors) d = np.diag(values) l = npl.solve(np.transpose(r), np.eye(p.shape[0], dtype=float)) # noqa k = np.sum(l[:, 0]) if not np.isclose(k, 0.0): r[:, 0] *= k l[:, 0] /= k r = np.real(r) d = np.real(d) l = np.transpose(np.real(l)) # noqa return r, d, l def slem(m: tarray) -> ofloat: ev = eigenvalues_sorted(m) value = ev[~np.isclose(ev, 1.0)][-1] if np.isclose(value, 0.0): return None return value ``` #### File: PyDTMC/pydtmc/markov_chain.py ```python __all__ = [ 'MarkovChain' ] ########### # IMPORTS # ########### # Standard from copy import ( deepcopy ) from inspect import ( getmembers, isfunction, stack, trace ) from itertools import ( chain ) from math import ( gcd ) # Libraries import networkx as nx import numpy as np import numpy.linalg as npl # Internal from .base_class import ( BaseClass ) from .computations import ( calculate_periods, eigenvalues_sorted, find_cyclic_classes, find_lumping_partitions, gth_solve, rdl_decomposition, slem ) from .custom_types import ( oarray, ofloat, oint, ointerval, olist_str, onumeric, ostate, ostates, ostatus, otimes_out, owalk, tany, tarray, tbcond, tcache, tgraph, tgraphs, tlist_array, tlist_int, tlist_str, tlists_int, tlists_str, tmc, tmc_dict, tmc_dict_flex, tnumeric, tpart, tparts, trdl, tredists, tstate, tstates, ttfunc, ttimes_in, twalk, tweights ) from .decorators import ( alias, cachedproperty, random_output, aliased ) from .exceptions import ( ValidationError ) from .files_io import ( read_csv, read_json, read_txt, read_xml, write_csv, write_json, write_txt, write_xml ) from .fitting import ( fit_function, fit_walk ) from .generators import ( approximation, birth_death, bounded, canonical, closest_reversible, gamblers_ruin, lazy, lump, random, sub, urn_model ) from .measures import ( absorption_probabilities, committor_probabilities, expected_rewards, expected_transitions, first_passage_reward, first_passage_probabilities, hitting_probabilities, hitting_times, mean_absorption_times, mean_first_passage_times_between, mean_first_passage_times_to, mean_number_visits, mean_recurrence_times, mixing_time, sensitivity, time_correlations, time_relaxations ) from .simulations import ( predict, redistribute, simulate, walk_probability ) from .utilities import ( create_rng, generate_validation_error, get_file_extension ) from .validation import ( validate_boolean, validate_boundary_condition, validate_dictionary, validate_enumerator, validate_file_path, validate_float, validate_graph, validate_hyperparameter, validate_integer, validate_interval, validate_mask, validate_matrix, validate_partitions, validate_rewards, validate_state, validate_state_names, validate_states, validate_status, validate_time_points, validate_transition_function, validate_transition_matrix, validate_vector ) ########### # CLASSES # ########### @aliased class MarkovChain(metaclass=BaseClass): """ Defines a Markov chain with given transition matrix and state names. :param p: the transition matrix. :param states: the name of each state (*if omitted, an increasing sequence of integers starting at 1*). :raises ValidationError: if any input argument is not compliant. """ def __init__(self, p: tnumeric, states: olist_str = None): caller = stack()[1][3] sm = [x[1].__name__ for x in getmembers(MarkovChain, predicate=isfunction) if x[1].__name__[0] != '_' and isinstance(MarkovChain.__dict__.get(x[1].__name__), staticmethod)] if caller not in sm: try: p = validate_transition_matrix(p) states = [str(i) for i in range(1, p.shape[0] + 1)] if states is None else validate_state_names(states, p.shape[0]) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None size = p.shape[0] graph = nx.DiGraph(p) graph = nx.relabel_nodes(graph, dict(zip(range(size), states))) self.__cache: tcache = {} self.__digraph: tgraph = graph self.__p: tarray = p self.__size: int = size self.__states: tlist_str = states def __eq__(self, other) -> bool: if isinstance(other, MarkovChain): return np.array_equal(self.p, other.p) and self.states == other.states return False def __hash__(self) -> int: return hash((self.p.tobytes(), tuple(self.states))) def __repr__(self) -> str: return self.__class__.__name__ # noinspection PyListCreation def __str__(self) -> str: lines = [''] lines.append('DISCRETE-TIME MARKOV CHAIN') lines.append(f' SIZE: {self.size:d}') lines.append(f' RANK: {self.rank:d}') lines.append(f' CLASSES: {len(self.communicating_classes):d}') lines.append(f' > RECURRENT: {len(self.recurrent_classes):d}') lines.append(f' > TRANSIENT: {len(self.transient_classes):d}') lines.append(f' ERGODIC: {("YES" if self.is_ergodic else "NO")}') lines.append(f' > APERIODIC: {("YES" if self.is_aperiodic else "NO (" + str(self.period) + ")")}') lines.append(f' > IRREDUCIBLE: {("YES" if self.is_irreducible else "NO")}') lines.append(f' ABSORBING: {("YES" if self.is_absorbing else "NO")}') lines.append(f' REGULAR: {("YES" if self.is_regular else "NO")}') lines.append(f' REVERSIBLE: {("YES" if self.is_reversible else "NO")}') lines.append(f' SYMMETRIC: {("YES" if self.is_symmetric else "NO")}') lines.append('') value = '\n'.join(lines) return value @cachedproperty def __absorbing_states_indices(self) -> tlist_int: indices = [index for index in range(self.__size) if np.isclose(self.__p[index, index], 1.0)] return indices @cachedproperty def __classes_indices(self) -> tlists_int: indices = [sorted([self.__states.index(c) for c in scc]) for scc in nx.strongly_connected_components(self.__digraph)] return indices @cachedproperty def __communicating_classes_indices(self) -> tlists_int: indices = sorted(self.__classes_indices, key=lambda x: (-len(x), x[0])) return indices @cachedproperty def _cyclic_classes_indices(self) -> tlists_int: if not self.is_irreducible: return [] if self.is_aperiodic: return self.__communicating_classes_indices.copy() indices = find_cyclic_classes(self.__p) indices = sorted(indices, key=lambda x: (-len(x), x[0])) return indices @cachedproperty def __cyclic_states_indices(self) -> tlist_int: indices = sorted(chain.from_iterable(self._cyclic_classes_indices)) return indices @cachedproperty def __eigenvalues_sorted(self) -> tarray: ev = eigenvalues_sorted(self.__p) return ev @cachedproperty def __rdl_decomposition(self) -> trdl: r, d, l = rdl_decomposition(self.__p) # noqa return r, d, l @cachedproperty def __recurrent_classes_indices(self) -> tlists_int: indices = [index for index in self.__classes_indices if index not in self.__transient_classes_indices] indices = sorted(indices, key=lambda x: (-len(x), x[0])) return indices @cachedproperty def __recurrent_states_indices(self) -> tlist_int: indices = sorted(chain.from_iterable(self.__recurrent_classes_indices)) return indices @cachedproperty def __slem(self) -> ofloat: if not self.is_ergodic: value = None else: value = slem(self.__p) return value @cachedproperty def __states_indices(self) -> tlist_int: indices = list(range(self.__size)) return indices @cachedproperty def __transient_classes_indices(self) -> tlists_int: edges = {edge1 for (edge1, edge2) in nx.condensation(self.__digraph).edges} indices = [self.__classes_indices[edge] for edge in edges] indices = sorted(indices, key=lambda x: (-len(x), x[0])) return indices @cachedproperty def __transient_states_indices(self) -> tlist_int: indices = sorted(chain.from_iterable(self.__transient_classes_indices)) return indices @cachedproperty def absorbing_states(self) -> tlists_str: """ A property representing the absorbing states of the Markov chain. """ states = [*map(self.__states.__getitem__, self.__absorbing_states_indices)] return states @cachedproperty def accessibility_matrix(self) -> tarray: """ A property representing the accessibility matrix of the Markov chain. """ a = self.adjacency_matrix i = np.eye(self.__size, dtype=int) am = (i + a)**(self.__size - 1) am = (am > 0).astype(int) return am @cachedproperty def adjacency_matrix(self) -> tarray: """ A property representing the adjacency matrix of the Markov chain. """ am = (self.__p > 0.0).astype(int) return am @cachedproperty def communicating_classes(self) -> tlists_str: """ A property representing the communicating classes of the Markov chain. """ classes = [[*map(self.__states.__getitem__, i)] for i in self.__communicating_classes_indices] return classes @cachedproperty def communication_matrix(self) -> tarray: """ A property representing the communication matrix of the Markov chain. """ cm = np.zeros((self.__size, self.__size), dtype=int) for index in self.__communicating_classes_indices: cm[np.ix_(index, index)] = 1 return cm @cachedproperty def cyclic_classes(self) -> tlists_str: """ A property representing the cyclic classes of the Markov chain. """ classes = [[*map(self.__states.__getitem__, i)] for i in self._cyclic_classes_indices] return classes @cachedproperty def cyclic_states(self) -> tlists_str: """ A property representing the cyclic states of the Markov chain. """ states = [*map(self.__states.__getitem__, self.__cyclic_states_indices)] return states @cachedproperty def determinant(self) -> float: """ A property representing the determinant of the transition matrix of the Markov chain. """ d = npl.det(self.__p) return d @cachedproperty def entropy_rate(self) -> ofloat: """ | A property representing the entropy rate of the Markov chain. | If the Markov chain has multiple stationary distributions, then :py:class:`None` is returned. """ if len(self.pi) > 1: return None pi = self.pi[0] h = 0.0 for i in range(self.__size): for j in range(self.__size): if self.__p[i, j] > 0.0: h += pi[i] * self.__p[i, j] * np.log(self.__p[i, j]) if np.isclose(h, 0.0): return h return -h @cachedproperty def entropy_rate_normalized(self) -> ofloat: """ | A property representing the entropy rate, normalized between 0 and 1, of the Markov chain. | If the Markov chain has multiple stationary distributions, then :py:class:`None` is returned. """ h = self.entropy_rate if h is None: return None if np.isclose(h, 0.0): hn = 0.0 else: ev = eigenvalues_sorted(self.adjacency_matrix) hn = h / np.log(ev[-1]) hn = min(1.0, max(0.0, hn)) return hn @cachedproperty def fundamental_matrix(self) -> oarray: """ | A property representing the fundamental matrix of the Markov chain. | If the Markov chain is not **absorbing** or has no transient states, then :py:class:`None` is returned. """ if not self.is_absorbing or len(self.transient_states) == 0: return None indices = self.__transient_states_indices q = self.__p[np.ix_(indices, indices)] i = np.eye(len(indices), dtype=float) fm = npl.inv(i - q) return fm @cachedproperty def implied_timescales(self) -> oarray: """ | A property representing the implied timescales of the Markov chain. | If the Markov chain is not **ergodic**, then :py:class:`None` is returned. """ if not self.is_ergodic: return None ev = self.__eigenvalues_sorted[::-1] it = np.append(np.inf, -1.0 / np.log(ev[1:])) return it @cachedproperty def is_absorbing(self) -> bool: """ A property indicating whether the Markov chain is absorbing. """ if len(self.absorbing_states) == 0: return False indices = set(self.__states_indices) absorbing_indices = set(self.__absorbing_states_indices) transient_indices = set() progress = True unknown_states = None while progress: unknown_states = indices.copy() - absorbing_indices - transient_indices known_states = absorbing_indices | transient_indices progress = False for i in unknown_states: for j in known_states: if self.__p[i, j] > 0.0: transient_indices.add(i) progress = True break result = len(unknown_states) == 0 return result @cachedproperty def is_aperiodic(self) -> bool: """ A property indicating whether the Markov chain is aperiodic. """ if self.is_irreducible: result = set(self.periods).pop() == 1 elif all(period == 1 for period in self.periods): result = True else: # pragma: no cover result = nx.is_aperiodic(self.__digraph) return result @cachedproperty def is_canonical(self) -> bool: """ A property indicating whether the Markov chain has a canonical form. """ recurrent_indices = self.__recurrent_states_indices transient_indices = self.__transient_states_indices if len(recurrent_indices) == 0 or len(transient_indices) == 0: return True result = max(transient_indices) < min(recurrent_indices) return result @cachedproperty def is_doubly_stochastic(self) -> bool: """ A property indicating whether the Markov chain is doubly stochastic. """ result = np.allclose(np.sum(self.__p, axis=0), 1.0) return result @cachedproperty def is_ergodic(self) -> bool: """ A property indicating whether the Markov chain is ergodic or not. """ result = self.is_irreducible and self.is_aperiodic return result @cachedproperty def is_irreducible(self) -> bool: """ A property indicating whether the Markov chain is irreducible. """ result = len(self.communicating_classes) == 1 return result @cachedproperty def is_regular(self) -> bool: """ A property indicating whether the Markov chain is regular. """ d = np.diagonal(self.__p) nz = np.count_nonzero(d) if nz > 0: k = (2 * self.__size) - nz - 1 else: k = self.__size ** self.__size - (2 * self.__size) + 2 result = np.all(self.__p ** k > 0.0) return result @cachedproperty def is_reversible(self) -> bool: """ A property indicating whether the Markov chain is reversible. """ if len(self.pi) > 1: return False pi = self.pi[0] x = pi[:, np.newaxis] * self.__p result = np.allclose(x, np.transpose(x)) return result @cachedproperty def is_symmetric(self) -> bool: """ A property indicating whether the Markov chain is symmetric. """ result = np.allclose(self.__p, np.transpose(self.__p)) return result @cachedproperty def kemeny_constant(self) -> ofloat: """ | A property representing the Kemeny's constant of the fundamental matrix of the Markov chain. | If the Markov chain is not **absorbing** or has no transient states, then :py:class:`None` is returned. """ fm = self.fundamental_matrix if fm is None: return None if fm.size == 1: kc = fm[0].item() else: kc = np.trace(fm).item() return kc @cachedproperty def lumping_partitions(self) -> tparts: """ A property representing all the partitions of the Markov chain that satisfy the ordinary lumpability criterion. """ lp = find_lumping_partitions(self.__p) return lp @cachedproperty def mixing_rate(self) -> ofloat: """ | A property representing the mixing rate of the Markov chain. | If the Markov chain is not **ergodic** or the **SLEM** (second largest eigenvalue modulus) cannot be computed, then :py:class:`None` is returned. """ if self.__slem is None: mr = None else: mr = -1.0 / np.log(self.__slem) return mr @property def p(self) -> tarray: """ A property representing the transition matrix of the Markov chain. """ return self.__p @cachedproperty def period(self) -> int: """ A property representing the period of the Markov chain. """ if self.is_aperiodic: period = 1 elif self.is_irreducible: period = set(self.periods).pop() else: # pragma: no cover period = 1 for p in [self.periods[self.communicating_classes.index(recurrent_class)] for recurrent_class in self.recurrent_classes]: period = (period * p) // gcd(period, p) return period @cachedproperty def periods(self) -> tlist_int: """ A property representing the period of each communicating class defined by the Markov chain. """ periods = calculate_periods(self.__digraph) return periods @alias('stationary_distributions', 'steady_states') @cachedproperty def pi(self) -> tlist_array: """ | A property representing the stationary distributions of the Markov chain. | **Aliases:** stationary_distributions, steady_states """ if self.is_irreducible: s = np.reshape(gth_solve(self.__p), (1, self.__size)) else: s = np.zeros((len(self.recurrent_classes), self.__size), dtype=float) for index, indices in enumerate(self.__recurrent_classes_indices): pr = self.__p[np.ix_(indices, indices)] s[index, indices] = gth_solve(pr) pi = [] for i in range(s.shape[0]): pi.append(s[i, :]) return pi @cachedproperty def rank(self) -> int: """ A property representing the rank of the transition matrix of the Markov chain. """ r = npl.matrix_rank(self.__p) return r @cachedproperty def recurrent_classes(self) -> tlists_str: """ A property representing the recurrent classes defined by the Markov chain. """ classes = [[*map(self.__states.__getitem__, i)] for i in self.__recurrent_classes_indices] return classes @cachedproperty def recurrent_states(self) -> tlists_str: """ A property representing the recurrent states of the Markov chain. """ states = [*map(self.__states.__getitem__, self.__recurrent_states_indices)] return states @cachedproperty def relaxation_rate(self) -> ofloat: """ | A property representing the relaxation rate of the Markov chain. | If the Markov chain is not **ergodic** or the **SLEM** (second largest eigenvalue modulus) cannot be computed, then :py:class:`None` is returned. """ if self.__slem is None: rr = None else: rr = 1.0 / self.spectral_gap return rr @property def size(self) -> int: """ A property representing the size of the Markov chain. """ return self.__size @cachedproperty def spectral_gap(self) -> ofloat: """ | A property representing the spectral gap of the Markov chain. | If the Markov chain is not **ergodic** or the **SLEM** (second largest eigenvalue modulus) cannot be computed, then :py:class:`None` is returned. """ if self.__slem is None: sg = None else: sg = 1.0 - self.__slem return sg @property def states(self) -> tlist_str: """ A property representing the states of the Markov chain. """ return self.__states @cachedproperty def topological_entropy(self) -> float: """ A property representing the topological entropy of the Markov chain. """ ev = eigenvalues_sorted(self.adjacency_matrix) te = np.log(ev[-1]) return te @cachedproperty def transient_classes(self) -> tlists_str: """ A property representing the transient classes defined by the Markov chain. """ classes = [[*map(self.__states.__getitem__, i)] for i in self.__transient_classes_indices] return classes @cachedproperty def transient_states(self) -> tlists_str: """ A property representing the transient states of the Markov chain. """ states = [*map(self.__states.__getitem__, self.__transient_states_indices)] return states def absorption_probabilities(self) -> oarray: """ The method computes the absorption probabilities of the Markov chain. | **Notes:** - If the Markov chain has no transient states, then :py:class:`None` is returned. """ if 'ap' not in self.__cache: self.__cache['ap'] = absorption_probabilities(self) return self.__cache['ap'] def are_communicating(self, state1: tstate, state2: tstate) -> bool: """ The method verifies whether the given states of the Markov chain are communicating. :param state1: the first state. :param state2: the second state. :raises ValidationError: if any input argument is not compliant. """ try: state1 = validate_state(state1, self.__states) state2 = validate_state(state2, self.__states) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None a1 = self.accessibility_matrix[state1, state2] != 0 a2 = self.accessibility_matrix[state2, state1] != 0 result = a1 and a2 return result def closest_reversible(self, distribution: onumeric = None, weighted: bool = False) -> tmc: """ The method computes the closest reversible of the Markov chain. | **Notes:** - The algorithm is described in `Computing the nearest reversible Markov chain (<NAME>, 2015) <http://doi.org/10.1002/nla.1967>`_. :param distribution: the distribution of the states (*if omitted, the states are assumed to be uniformly distributed*). :param weighted: a boolean indicating whether to use the weighted Frobenius norm. :raises ValidationError: if any input argument is not compliant. :raises ValueError: if the closest reversible could not be computed. """ try: distribution = np.ones(self.__size, dtype=float) / self.__size if distribution is None else validate_vector(distribution, 'stochastic', False, self.__size) weighted = validate_boolean(weighted) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None zeros = len(distribution) - np.count_nonzero(distribution) if weighted and zeros > 0: # pragma: no cover raise ValidationError('If the weighted Frobenius norm is used, the distribution must not contain zero-valued probabilities.') if self.is_reversible: p = np.copy(self.__p) else: p, error_message = closest_reversible(self.__p, distribution, weighted) if error_message is not None: # pragma: no cover raise ValueError(error_message) mc = MarkovChain(p, self.__states) if not mc.is_reversible: # pragma: no cover raise ValueError('The closest reversible could not be computed.') return mc @alias('cp') def committor_probabilities(self, committor_type: str, states1: tstates, states2: tstates) -> oarray: """ The method computes the committor probabilities between the given subsets of the state space defined by the Markov chain. | **Notes:** - If the Markov chain is not **ergodic**, then :py:class:`None` is returned. - The method can be accessed through the following aliases: **cp**. :param committor_type: - **backward** for the backward committor; - **forward** for the forward committor. :param states1: the first subset of the state space. :param states2: the second subset of the state space. :raises ValidationError: if any input argument is not compliant. """ try: committor_type = validate_enumerator(committor_type, ['backward', 'forward']) states1 = validate_states(states1, self.__states, 'subset', True) states2 = validate_states(states2, self.__states, 'subset', True) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None intersection = np.intersect1d(states1, states2) if len(intersection) > 0: # pragma: no cover raise ValidationError(f'The two sets of states must be disjoint. An intersection has been detected: {", ".join([str(i) for i in intersection])}.') value = committor_probabilities(self, committor_type, states1, states2) return value @alias('conditional_distribution') def conditional_probabilities(self, state: tstate) -> tarray: """ The method computes the probabilities, for all the states of the Markov chain, conditioned on the process being at the given state. | **Notes:** - The method can be accessed through the following aliases: **conditional_distribution**. :param state: the current state. :raises ValidationError: if any input argument is not compliant. """ try: state = validate_state(state, self.__states) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = self.__p[state, :] return value @alias('er') def expected_rewards(self, steps: int, rewards: tnumeric) -> tarray: """ The method computes the expected rewards of the Markov chain after **N** steps, given the reward value of each state. | **Notes:** - The method can be accessed through the following aliases: **er**. :param steps: the number of steps. :param rewards: the reward values. :raises ValidationError: if any input argument is not compliant. """ try: steps = validate_integer(steps, lower_limit=(0, True)) rewards = validate_rewards(rewards, self.__size) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = expected_rewards(self.__p, steps, rewards) return value @alias('et') def expected_transitions(self, steps: int, initial_distribution: onumeric = None) -> tarray: """ The method computes the expected number of transitions performed by the Markov chain after *N* steps, given the initial distribution of the states. | **Notes:** - The method can be accessed through the following aliases: **et**. :param steps: the number of steps. :param initial_distribution: the initial distribution of the states (*if omitted, the states are assumed to be uniformly distributed*). :raises ValidationError: if any input argument is not compliant. """ try: steps = validate_integer(steps, lower_limit=(0, True)) initial_distribution = np.ones(self.__size, dtype=float) / self.__size if initial_distribution is None else validate_vector(initial_distribution, 'stochastic', False, self.__size) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = expected_transitions(self.__p, self.__rdl_decomposition, steps, initial_distribution) return value @alias('fpp') def first_passage_probabilities(self, steps: int, initial_state: tstate, first_passage_states: ostates = None) -> tarray: """ The method computes the first passage probabilities of the Markov chain after *N* steps, given the initial state and, optionally, the first passage states. | **Notes:** - The method can be accessed through the following aliases: **fpp**. :param steps: the number of steps. :param initial_state: the initial state. :param first_passage_states: the first passage states. :raises ValidationError: if any input argument is not compliant. """ try: steps = validate_integer(steps, lower_limit=(0, True)) initial_state = validate_state(initial_state, self.__states) first_passage_states = None if first_passage_states is None else validate_states(first_passage_states, self.__states, 'regular', True) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = first_passage_probabilities(self, steps, initial_state, first_passage_states) return value @alias('fpr') def first_passage_reward(self, steps: int, initial_state: tstate, first_passage_states: tstates, rewards: tnumeric) -> float: """ The method computes the first passage reward of the Markov chain after *N* steps, given the reward value of each state, the initial state and the first passage states. | **Notes:** - The method can be accessed through the following aliases: **fpr**. :param steps: the number of steps. :param initial_state: the initial state. :param first_passage_states: the first passage states. :param rewards: the reward values. :raises ValidationError: if any input argument is not compliant. :raises ValueError: if the Markov chain defines only two states. """ try: initial_state = validate_state(initial_state, self.__states) first_passage_states = validate_states(first_passage_states, self.__states, 'subset', True) rewards = validate_rewards(rewards, self.__size) steps = validate_integer(steps, lower_limit=(0, True)) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None if self.__size == 2: # pragma: no cover raise ValueError('The Markov chain defines only two states and the first passage rewards cannot be computed.') if initial_state in first_passage_states: # pragma: no cover raise ValidationError('The first passage states cannot include the initial state.') if len(first_passage_states) == (self.__size - 1): # pragma: no cover raise ValidationError('The first passage states cannot include all the states except the initial one.') value = first_passage_reward(self, steps, initial_state, first_passage_states, rewards) return value @alias('hp') def hitting_probabilities(self, targets: ostates = None) -> tarray: """ The method computes the hitting probability, for the states of the Markov chain, to the given set of states. | **Notes:** - The method can be accessed through the following aliases: **hp**. :param targets: the target states (*if omitted, all the states are targeted*). :raises ValidationError: if any input argument is not compliant. """ try: targets = self.__states_indices.copy() if targets is None else validate_states(targets, self.__states, 'regular', True) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = hitting_probabilities(self, targets) return value @alias('ht') def hitting_times(self, targets: ostates = None) -> tarray: """ The method computes the hitting times, for all the states of the Markov chain, to the given set of states. | **Notes:** - The method can be accessed through the following aliases: **ht**. :param targets: the target states (*if omitted, all the states are targeted*). :raises ValidationError: if any input argument is not compliant. """ try: targets = self.__states_indices.copy() if targets is None else validate_states(targets, self.__states, 'regular', True) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = hitting_times(self, targets) return value def is_absorbing_state(self, state: tstate) -> bool: """ The method verifies whether the given state of the Markov chain is absorbing. :param state: the target state. :raises ValidationError: if any input argument is not compliant. """ try: state = validate_state(state, self.__states) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None result = state in self.__absorbing_states_indices return result def is_accessible(self, state_target: tstate, state_origin: tstate) -> bool: """ The method verifies whether the given target state is reachable from the given origin state. :param state_target: the target state. :param state_origin: the origin state. :raises ValidationError: if any input argument is not compliant. """ try: state_target = validate_state(state_target, self.__states) state_origin = validate_state(state_origin, self.__states) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None result = self.accessibility_matrix[state_origin, state_target] != 0 return result def is_cyclic_state(self, state: tstate) -> bool: """ The method verifies whether the given state is cyclic. :param state: the target state. :raises ValidationError: if any input argument is not compliant. """ try: state = validate_state(state, self.__states) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None result = state in self.__cyclic_states_indices return result def is_recurrent_state(self, state: tstate) -> bool: """ The method verifies whether the given state is recurrent. :param state: the target state. :raises ValidationError: if any input argument is not compliant. """ try: state = validate_state(state, self.__states) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None result = state in self.__recurrent_states_indices return result def is_transient_state(self, state: tstate) -> bool: """ The method verifies whether the given state is transient. :param state: the target state. :raises ValidationError: if any input argument is not compliant. """ try: state = validate_state(state, self.__states) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None result = state in self.__transient_states_indices return result def lump(self, partitions: tpart) -> tmc: """ The method attempts to reduce the state space of the Markov chain with respect to the given partitions following the ordinary lumpability criterion. :param partitions: the partitions of the state space. :raises ValidationError: if any input argument is not compliant. :raises ValueError: if the Markov chain defines only two states or is not lumpable with respect to the given partitions. """ try: partitions = validate_partitions(partitions, self.__states) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None if self.__size == 2: # pragma: no cover raise ValueError('The Markov chain defines only two states and cannot be lumped.') p, states, error_message = lump(self.p, self.states, partitions) if error_message is not None: # pragma: no cover raise ValueError(error_message) mc = MarkovChain(p, states) return mc @alias('mat') def mean_absorption_times(self) -> oarray: """ The method computes the mean absorption times of the Markov chain. | **Notes:** - If the Markov chain is not **absorbing** or has no transient states, then :py:class:`None` is returned. - The method can be accessed through the following aliases: **mat**. """ if 'mat' not in self.__cache: self.__cache['mat'] = mean_absorption_times(self) return self.__cache['mat'] @alias('mfpt_between', 'mfptb') def mean_first_passage_times_between(self, origins: tstates, targets: tstates) -> ofloat: """ The method computes the mean first passage times between the given subsets of the state space. | **Notes:** - If the Markov chain is not **ergodic**, then :py:class:`None` is returned. - The method can be accessed through the following aliases: **mfpt_between**, **mfptb**. :param origins: the origin states. :param targets: the target states. :raises ValidationError: if any input argument is not compliant. """ try: origins = validate_states(origins, self.__states, 'subset', True) targets = validate_states(targets, self.__states, 'subset', True) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = mean_first_passage_times_between(self, origins, targets) return value @alias('mfpt_to', 'mfptt') def mean_first_passage_times_to(self, targets: ostates = None) -> oarray: """ The method computes the mean first passage times, for all the states, to the given set of states. | **Notes:** - If the Markov chain is not **ergodic**, then :py:class:`None` is returned. - The method can be accessed through the following aliases: **mfpt_to**, **mfptt**. :param targets: the target states (*if omitted, all the states are targeted*). :raises ValidationError: if any input argument is not compliant. """ try: targets = None if targets is None else validate_states(targets, self.__states, 'regular', True) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = mean_first_passage_times_to(self, targets) return value @alias('mnv') def mean_number_visits(self) -> oarray: """ The method computes the mean number of visits of the Markov chain. | **Notes:** - The method can be accessed through the following aliases: **mnv**. """ if 'mnv' not in self.__cache: self.__cache['mnv'] = mean_number_visits(self) return self.__cache['mnv'] @alias('mrt') def mean_recurrence_times(self) -> oarray: """ The method computes the mean recurrence times of the Markov chain. | **Notes:** - If the Markov chain is not **ergodic**, then :py:class:`None` is returned. - The method can be accessed through the following aliases: **mrt**. """ if 'mrt' not in self.__cache: self.__cache['mrt'] = mean_recurrence_times(self) return self.__cache['mrt'] @alias('mt') def mixing_time(self, initial_distribution: onumeric = None, jump: int = 1, cutoff_type: str = 'natural') -> oint: """ The method computes the mixing time of the Markov chain, given the initial distribution of the states. | **Notes:** - If the Markov chain is not **ergodic**, then :py:class:`None` is returned. - The method can be accessed through the following aliases: **mt**. :param initial_distribution: the initial distribution of the states (*if omitted, the states are assumed to be uniformly distributed*). :param jump: the number of steps in each iteration. :param cutoff_type: - **natural** for the natural cutoff; - **traditional** for the traditional cutoff. :raises ValidationError: if any input argument is not compliant. """ try: initial_distribution = np.ones(self.__size, dtype=float) / self.__size if initial_distribution is None else validate_vector(initial_distribution, 'stochastic', False, self.__size) jump = validate_integer(jump, lower_limit=(0, True)) cutoff_type = validate_enumerator(cutoff_type, ['natural', 'traditional']) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None if cutoff_type == 'traditional': cutoff = 0.25 else: cutoff = 1.0 / (2.0 * np.exp(1.0)) value = mixing_time(self, initial_distribution, jump, cutoff) return value @alias('next') @random_output() def next_state(self, initial_state: tstate, output_index: bool = False, seed: oint = None) -> tstate: """ The method simulates a single random walk step. | **Notes:** - The method can be accessed through the following aliases: **next**. :param initial_state: the initial state. :param output_index: a boolean indicating whether to output the state index. :param seed: a seed to be used as RNG initializer for reproducibility purposes. :raises ValidationError: if any input argument is not compliant. """ try: rng = create_rng(seed) initial_state = validate_state(initial_state, self.__states) output_index = validate_boolean(output_index) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = simulate(self, 1, initial_state, None, rng)[-1] if not output_index: value = self.__states[value] return value def predict(self, steps: int, initial_state: tstate, output_indices: bool = False) -> owalk: """ The method computes the most probable sequence of states produced by a random walk of *N* steps, given the initial state. | **Notes:** - In presence of probability ties :py:class:`None` is returned. :param steps: the number of steps. :param initial_state: the initial state. :param output_indices: a boolean indicating whether to output the state indices. :raises ValidationError: if any input argument is not compliant. """ try: steps = validate_integer(steps, lower_limit=(0, True)) initial_state = validate_state(initial_state, self.__states) output_indices = validate_boolean(output_indices) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = predict(self, steps, initial_state) if value is not None and not output_indices: value = [*map(self.__states.__getitem__, value)] return value def redistribute(self, steps: int, initial_status: ostatus = None, output_last: bool = True) -> tredists: """ The method simulates a redistribution of states of *N* steps. :param steps: the number of steps. :param initial_status: the initial state or the initial distribution of the states (*if omitted, the states are assumed to be uniformly distributed*). :param output_last: a boolean indicating whether to output only the last distributions. :raises ValidationError: if any input argument is not compliant. """ try: steps = validate_integer(steps, lower_limit=(1, False)) initial_status = np.ones(self.__size, dtype=float) / self.__size if initial_status is None else validate_status(initial_status, self.__states) output_last = validate_boolean(output_last) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = redistribute(self, steps, initial_status, output_last) return value def sensitivity(self, state: tstate) -> oarray: """ The method computes the sensitivity matrix of the stationary distribution with respect to a given state. | **Notes:** - If the Markov chain is not **irreducible**, then :py:class:`None` is returned. :param state: the target state. :raises ValidationError: if any input argument is not compliant. """ try: state = validate_state(state, self.__states) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = sensitivity(self, state) return value @alias('tc') def time_correlations(self, walk1: twalk, walk2: owalk = None, time_points: ttimes_in = 1) -> otimes_out: """ The method computes the time autocorrelations of a single observed sequence of states or the time cross-correlations of two observed sequences of states. | **Notes:** - If the Markov chain has multiple stationary distributions, then :py:class:`None` is returned. - If a single time point is provided, then a :py:class:`float` is returned. - The method can be accessed through the following aliases: **tc**. :param walk1: the first observed sequence of states. :param walk2: the second observed sequence of states. :param time_points: the time point or a list of time points at which the computation is performed. :raises ValidationError: if any input argument is not compliant. """ try: walk1 = validate_states(walk1, self.__states, 'walk', False) walk2 = None if walk2 is None else validate_states(walk2, self.__states, 'walk', False) time_points = validate_time_points(time_points) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = time_correlations(self, self.__rdl_decomposition, walk1, walk2, time_points) return value @alias('tr') def time_relaxations(self, walk: twalk, initial_distribution: onumeric = None, time_points: ttimes_in = 1) -> otimes_out: """ The method computes the time relaxations of an observed sequence of states with respect to the given initial distribution of the states. | **Notes:** - If the Markov chain has multiple stationary distributions, then :py:class:`None` is returned. - If a single time point is provided, then a :py:class:`float` is returned. - The method can be accessed through the following aliases: **tr**. :param walk: the observed sequence of states. :param initial_distribution: the initial distribution of the states (*if omitted, the states are assumed to be uniformly distributed*). :param time_points: the time point or a list of time points at which the computation is performed. :raises ValidationError: if any input argument is not compliant. """ try: walk = validate_states(walk, self.__states, 'walk', False) initial_distribution = np.ones(self.__size, dtype=float) / self.__size if initial_distribution is None else validate_vector(initial_distribution, 'stochastic', False, self.__size) time_points = validate_time_points(time_points) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = time_relaxations(self, self.__rdl_decomposition, walk, initial_distribution, time_points) return value @alias('to_bounded') def to_bounded_chain(self, boundary_condition: tbcond) -> tmc: """ The method returns a bounded Markov chain by adjusting the transition matrix of the original process using the specified boundary condition. | **Notes:** - The method can be accessed through the following aliases: **to_bounded**. :param boundary_condition: - a number representing the first probability of the semi-reflecting condition; - a string representing the boundary condition type (either absorbing or reflecting). :raises ValidationError: if any input argument is not compliant. """ try: boundary_condition = validate_boundary_condition(boundary_condition) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None p, _ = bounded(self.__p, boundary_condition) mc = MarkovChain(p, self.__states) return mc @alias('to_canonical') def to_canonical_form(self) -> tmc: """ The method returns the canonical form of the Markov chain. | **Notes:** - The method can be accessed through the following aliases: **to_canonical**. """ p, _ = canonical(self.__p, self.__recurrent_states_indices, self.__transient_states_indices) states = [*map(self.__states.__getitem__, self.__transient_states_indices + self.__recurrent_states_indices)] mc = MarkovChain(p, states) return mc def to_dictionary(self) -> tmc_dict: """ The method returns a dictionary representing the Markov chain transitions. """ d = {} for i in range(self.__size): for j in range(self.__size): d[(self.__states[i], self.__states[j])] = self.__p[i, j] return d def to_graph(self, multi: bool = False) -> tgraphs: """ The method returns a directed graph representing the Markov chain. :param multi: a boolean indicating whether the graph is allowed to define multiple edges between two nodes. :raises ValidationError: if any input argument is not compliant. """ try: multi = validate_boolean(multi) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None if multi: graph = nx.MultiDiGraph(self.__p) graph = nx.relabel_nodes(graph, dict(zip(range(self.__size), self.__states))) else: graph = deepcopy(self.__digraph) return graph def to_file(self, file_path: str): """ The method writes a Markov chain to the given file. | Only **csv**, **json**, **txt** and **xml** files are supported; data format is inferred from the file extension. | :param file_path: the location of the file in which the Markov chain must be written. :raises OSError: if the file cannot be written. :raises ValidationError: if any input argument is not compliant. """ try: file_path = validate_file_path(file_path, True) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None file_extension = get_file_extension(file_path) if file_extension not in ['.csv', '.json', '.txt', '.xml']: # pragma: no cover raise ValidationError('Only csv, json, xml and plain text files are supported.') d = self.to_dictionary() if file_extension == '.csv': write_csv(d, file_path) elif file_extension == '.json': write_json(d, file_path) elif file_extension == '.txt': write_txt(d, file_path) else: write_xml(d, file_path) @alias('to_lazy') def to_lazy_chain(self, inertial_weights: tweights = 0.5) -> tmc: """ The method returns a lazy Markov chain by adjusting the state inertia of the original process. | **Notes:** - The method can be accessed through the following aliases: **to_lazy**. :param inertial_weights: the inertial weights to apply for the transformation. :raises ValidationError: if any input argument is not compliant. """ try: inertial_weights = validate_vector(inertial_weights, 'unconstrained', True, self.__size) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None p, _ = lazy(self.__p, inertial_weights) mc = MarkovChain(p, self.__states) return mc def to_matrix(self) -> tarray: """ The method returns the transition matrix of the Markov chain. """ m = np.copy(self.__p) return m @alias('to_sub') def to_sub_chain(self, states: tstates) -> tmc: """ The method returns a subchain containing all the given states plus all the states reachable from them. | **Notes:** - The method can be accessed through the following aliases: **to_sub**. :param states: the states to include in the subchain. :raises ValidationError: if any input argument is not compliant. :raises ValueError: if the subchain is not a valid Markov chain. """ try: states = validate_states(states, self.__states, 'subset', True) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None p, states, error_message = sub(self.__p, self.__states, self.adjacency_matrix, states) if error_message is not None: # pragma: no cover raise ValueError(error_message) mc = MarkovChain(p, states) return mc def transition_probability(self, state_target: tstate, state_origin: tstate) -> float: """ The method computes the probability of a given state, conditioned on the process being at a given specific state. :param state_target: the target state. :param state_origin: the origin state. :raises ValidationError: if any input argument is not compliant. """ try: state_target = validate_state(state_target, self.__states) state_origin = validate_state(state_origin, self.__states) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = self.__p[state_origin, state_target] return value @random_output() def walk(self, steps: int, initial_state: ostate = None, final_state: ostate = None, output_indices: bool = False, seed: oint = None) -> twalk: """ The method simulates a random walk of *N* steps. :param steps: the number of steps. :param initial_state: the initial state (*if omitted, it is chosen uniformly at random*). :param final_state: the final state of the walk (*if specified, the simulation stops as soon as it is reached even if not all the steps have been performed*). :param output_indices: a boolean indicating whether to output the state indices. :param seed: a seed to be used as RNG initializer for reproducibility purposes. :raises ValidationError: if any input argument is not compliant. """ try: rng = create_rng(seed) steps = validate_integer(steps, lower_limit=(1, False)) initial_state = rng.randint(0, self.__size) if initial_state is None else validate_state(initial_state, self.__states) final_state = None if final_state is None else validate_state(final_state, self.__states) output_indices = validate_boolean(output_indices) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = simulate(self, steps, initial_state, final_state, rng) if not output_indices: value = [*map(self.__states.__getitem__, value)] return value def walk_probability(self, walk: twalk) -> float: """ The method computes the probability of a given sequence of states. :param walk: the observed sequence of states. :raises ValidationError: if any input argument is not compliant. """ try: walk = validate_states(walk, self.__states, 'walk', False) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None value = walk_probability(self, walk) return value @staticmethod def approximation(size: int, approximation_type: str, alpha: float, sigma: float, rho: float, k: ofloat = None) -> tmc: """ | The method approximates the Markov chain associated with the discretized version of the following first-order autoregressive process: | | :math:`y_t = (1 - \\rho) \\alpha + \\rho y_{t-1} + \\varepsilon_t` | with :math:`\\varepsilon_t \\overset{i.i.d}{\\sim} \\mathcal{N}(0, \\sigma_{\\varepsilon}^{2})` :param size: the size of the Markov chain. :param approximation_type: - **adda-cooper** for the Adda-Cooper approximation; - **rouwenhorst** for the Rouwenhorst approximation; - **tauchen** for the Tauchen approximation; - **tauchen-hussey** for the Tauchen-Hussey approximation. :param alpha: the constant term :math:`\\alpha`, representing the unconditional mean of the process. :param sigma: the standard deviation of the innovation term :math:`\\varepsilon`. :param rho: the autocorrelation coefficient :math:`\\rho`, representing the persistence of the process across periods. :param k: - In the Tauchen approximation, the number of standard deviations to approximate out to (*if omitted, the value is set to 3*). - In the Tauchen-Hussey approximation, the standard deviation used for the gaussian quadrature (*if omitted, the value is set to an optimal default*). :raises ValidationError: if any input argument is not compliant. :raises ValueError: if the gaussian quadrature fails to converge in the Tauchen-Hussey approximation. """ try: size = validate_integer(size, lower_limit=(2, False)) approximation_type = validate_enumerator(approximation_type, ['adda-cooper', 'rouwenhorst', 'tauchen', 'tauchen-hussey']) alpha = validate_float(alpha) sigma = validate_float(sigma, lower_limit=(0.0, True)) rho = validate_float(rho, lower_limit=(-1.0, False), upper_limit=(1.0, False)) if approximation_type == 'tauchen': k = 3.0 if k is None else validate_float(k, lower_limit=(1.0, False)) elif approximation_type == 'tauchen-hussey': k = ((0.5 + (rho / 4.0)) * sigma) + ((1 - (0.5 + (rho / 4.0))) * (sigma / np.sqrt(1.0 - rho**2.0))) if k is None else validate_float(k, lower_limit=(0.0, True)) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None p, states, error_message = approximation(size, approximation_type, alpha, sigma, rho, k) if error_message is not None: # pragma: no cover raise ValueError(error_message) mc = MarkovChain(p, states) return mc @staticmethod def birth_death(p: tarray, q: tarray, states: olist_str = None) -> tmc: """ The method generates a birth-death Markov chain of given size and from given probabilities. :param q: the creation probabilities. :param p: the annihilation probabilities. :param states: the name of each state (*if omitted, an increasing sequence of integers starting at 1*). :raises ValidationError: if any input argument is not compliant. """ try: p = validate_vector(p, 'creation', False) q = validate_vector(q, 'annihilation', False) states = [str(i) for i in range(1, {p.shape[0], q.shape[0]}.pop() + 1)] if states is None else validate_state_names(states, {p.shape[0], q.shape[0]}.pop()) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None if p.shape[0] != q.shape[0]: # pragma: no cover raise ValidationError('The vector of annihilation probabilities and the vector of creation probabilities must have the same size.') if not np.all(q + p <= 1.0): # pragma: no cover raise ValidationError('The sums of annihilation and creation probabilities must be less than or equal to 1.') p, _ = birth_death(p, q) mc = MarkovChain(p, states) return mc @staticmethod def fit_function(possible_states: tlist_str, f: ttfunc, quadrature_type: str, quadrature_interval: ointerval = None) -> tmc: """ The method fits a Markov chain using the given transition function and the given quadrature type for the computation of nodes and weights. | **Notes:** - The transition function takes the four input arguments below and returns a numeric value: - **x_index** an integer value representing the index of the i-th quadrature node; - **x_value** a float value representing the value of the i-th quadrature node; - **y_index** an integer value representing the index of the j-th quadrature node; - **y_value** a float value representing the value of the j-th quadrature node. :param possible_states: the possible states of the process. :param f: the transition function of the process. :param quadrature_type: - **gauss-chebyshev** for the Gauss-Chebyshev quadrature; - **gauss-legendre** for the Gauss-Legendre quadrature; - **niederreiter** for the Niederreiter equidistributed sequence; - **newton-cotes** for the Newton-Cotes quadrature; - **simpson-rule** for the Simpson rule; - **trapezoid-rule** for the Trapezoid rule. :param quadrature_interval: the quadrature interval to use for the computation of nodes and weights (*if omitted, the interval [0, 1] is used*). :raises ValidationError: if any input argument is not compliant. :raises ValueError: if the Gauss-Legendre quadrature fails to converge. """ try: possible_states = validate_state_names(possible_states) f = validate_transition_function(f) quadrature_type = validate_enumerator(quadrature_type, ['gauss-chebyshev', 'gauss-legendre', 'niederreiter', 'newton-cotes', 'simpson-rule', 'trapezoid-rule']) quadrature_interval = (0.0, 1.0) if quadrature_interval is None else validate_interval(quadrature_interval) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None if quadrature_type == 'simpson-rule' and (len(possible_states) % 2) == 0: # pragma: no cover raise ValidationError('The quadrature based on the Simpson rule requires an odd number of possible states.') p, error_message = fit_function(possible_states, f, quadrature_type, quadrature_interval) if error_message is not None: # pragma: no cover raise ValueError(error_message) mc = MarkovChain(p, possible_states) return mc @staticmethod def fit_walk(fitting_type: str, possible_states: tlist_str, walk: twalk, k: tany = None) -> tmc: """ The method fits a Markov chain from an observed sequence of states using the specified fitting approach. :param fitting_type: - **map** for the maximum a posteriori fitting; - **mle** for the maximum likelihood fitting. :param possible_states: the possible states of the process. :param walk: the observed sequence of states. :param k: | - In the maximum a posteriori fitting, the matrix for the a priori distribution (*if omitted, a default value of 1 is assigned to each matrix element*). | - In the maximum likelihood fitting, a boolean indicating whether to apply a Laplace smoothing to compensate for the unseen transition combinations (*if omitted, the value is set to True*). :raises ValidationError: if any input argument is not compliant. """ try: fitting_type = validate_enumerator(fitting_type, ['map', 'mle']) possible_states = validate_state_names(possible_states) walk = validate_states(walk, possible_states, 'walk', False) if fitting_type == 'map': k = np.ones((len(possible_states), len(possible_states)), dtype=float) if k is None else validate_hyperparameter(k, len(possible_states)) else: k = False if k is None else validate_boolean(k) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None p, _ = fit_walk(fitting_type, possible_states, walk, k) mc = MarkovChain(p, possible_states) return mc @staticmethod def from_dictionary(d: tmc_dict_flex) -> tmc: """ The method generates a Markov chain from the given dictionary, whose keys represent state pairs and whose values represent transition probabilities. :param d: the dictionary to transform into the transition matrix. :raises ValueError: if the transition matrix defined by the dictionary is not valid. :raises ValidationError: if any input argument is not compliant. """ try: d = validate_dictionary(d) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None states = [key[0] for key in d.keys() if key[0] == key[1]] size = len(states) if size < 2: # pragma: no cover raise ValueError('The size of the transition matrix defined by the dictionary must be greater than or equal to 2.') p = np.zeros((size, size), dtype=float) for it, ip in d.items(): p[states.index(it[0]), states.index(it[1])] = ip if not np.allclose(np.sum(p, axis=1), np.ones(size, dtype=float)): # pragma: no cover raise ValueError('The rows of the transition matrix defined by the dictionary must sum to 1.') mc = MarkovChain(p, states) return mc @staticmethod def from_graph(graph: tgraphs) -> tmc: """ The method generates a Markov chain from the given directed graph, whose transition matrix is obtained through the normalization of the graph weights. :raises ValidationError: if any input argument is not compliant. """ try: graph = validate_graph(graph) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None states = list(graph.nodes) size = len(states) p = np.zeros((size, size), dtype=float) edges = list(graph.edges(data='weight', default=0.0)) for edge in edges: i = states.index(edge[0]) j = states.index(edge[1]) p[i, j] = float(edge[2]) p_sums = np.sum(p, axis=1) for i in range(size): if np.isclose(p_sums[i], 0.0): # pragma: no cover p[i, :] = np.ones(p.shape[0], dtype=float) / size else: p[i, :] /= p_sums[i] mc = MarkovChain(p, states) return mc @staticmethod def from_file(file_path: str) -> tmc: """ The method reads a Markov chain from the given file. | Only **csv**, **json**, **txt** and **xml** files are supported; data format is inferred from the file extension. | In **csv** files, the header must contain the state names and the following rows must contain the probabilities. | The following format settings are required: - *Delimiter:* **comma** - *Quoting:* **minimal** - *Quote Character:* **double quote** | In **json** files, data must be structured as an array of objects with the following properties: - **state_from** *(string)* - **state_to** *(string)* - **probability** *(float or int)* | In **txt** files, every line of the file must have the following format: - **<state_from> <state_to> <probability>** | In **xml** files, the structure must be defined as follows: - *Root Element:* **MarkovChain** - *Child Elements:* **Transition**\ *, with attributes:* - **state_from** *(string)* - **state_to** *(string)* - **probability** *(float or int)* :param file_path: the location of the file that defines the Markov chain. :raises FileNotFoundError: if the file does not exist. :raises OSError: if the file cannot be read or is empty. :raises ValidationError: if any input argument is not compliant. :raises ValueError: if the file contains invalid data. """ try: file_path = validate_file_path(file_path, False) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None file_extension = get_file_extension(file_path) if file_extension not in ['.csv', '.json', '.xml', '.txt']: # pragma: no cover raise ValidationError('Only csv, json, xml and plain text files are supported.') if file_extension == '.csv': d = read_csv(file_path) elif file_extension == '.json': d = read_json(file_path) elif file_extension == '.txt': d = read_txt(file_path) else: d = read_xml(file_path) states = [key[0] for key in d if key[0] == key[1]] size = len(states) if size < 2: # pragma: no cover raise ValueError('The size of the transition matrix defined by the file must be greater than or equal to 2.') p = np.zeros((size, size), dtype=float) for it, ip in d.items(): p[states.index(it[0]), states.index(it[1])] = ip if not np.allclose(np.sum(p, axis=1), np.ones(size, dtype=float)): # pragma: no cover raise ValueError('The rows of the transition matrix defined by the file must sum to 1.') mc = MarkovChain(p, states) return mc @staticmethod def from_matrix(m: tnumeric, states: olist_str = None) -> tmc: """ The method generates a Markov chain with the given state names, whose transition matrix is obtained through the normalization of the given matrix. :param m: the matrix to transform into the transition matrix. :param states: the name of each state (*if omitted, an increasing sequence of integers starting at 1*). :raises ValidationError: if any input argument is not compliant. """ try: m = validate_matrix(m) states = [str(i) for i in range(1, m.shape[0] + 1)] if states is None else validate_state_names(states, m.shape[0]) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None p = np.copy(m) p_sums = np.sum(p, axis=1) size = p.shape[0] for i in range(size): if np.isclose(p_sums[i], 0.0): # pragma: no cover p[i, :] = np.ones(p.shape[0], dtype=float) / size else: p[i, :] /= p_sums[i] mc = MarkovChain(p, states) return mc @staticmethod def gamblers_ruin(size: int, w: float, states: olist_str = None) -> tmc: """ The method generates a gambler's ruin Markov chain of given size and win probability. :param size: the size of the Markov chain. :param w: the win probability. :param states: the name of each state (*if omitted, an increasing sequence of integers starting at 1*). :raises ValidationError: if any input argument is not compliant. """ try: size = validate_integer(size, lower_limit=(3, False)) w = validate_float(w, lower_limit=(0.0, True), upper_limit=(1.0, True)) states = [str(i) for i in range(1, size + 1)] if states is None else validate_state_names(states, size) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None p, _ = gamblers_ruin(size, w) mc = MarkovChain(p, states) return mc @staticmethod def identity(size: int, states: olist_str = None) -> tmc: """ The method generates a Markov chain of given size based on an identity transition matrix. :param size: the size of the Markov chain. :param states: the name of each state (*if omitted, an increasing sequence of integers starting at 1*). :raises ValidationError: if any input argument is not compliant. """ try: size = validate_integer(size, lower_limit=(2, False)) states = [str(i) for i in range(1, size + 1)] if states is None else validate_state_names(states, size) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None p = np.eye(size, dtype=float) mc = MarkovChain(p, states) return mc @staticmethod def random(size: int, states: olist_str = None, zeros: int = 0, mask: onumeric = None, seed: oint = None) -> tmc: """ The method generates a Markov chain of given size with random transition probabilities. | **Notes:** - In the mask parameter, undefined transition probabilities are represented by **NaN** values. :param size: the size of the Markov chain. :param states: the name of each state (*if omitted, an increasing sequence of integers starting at 1*). :param zeros: the number of zero-valued transition probabilities. :param mask: a matrix representing locations and values of fixed transition probabilities. :param seed: a seed to be used as RNG initializer for reproducibility purposes. :raises ValidationError: if any input argument is not compliant. """ try: rng = create_rng(seed) size = validate_integer(size, lower_limit=(2, False)) states = [str(i) for i in range(1, size + 1)] if states is None else validate_state_names(states, size) zeros = validate_integer(zeros, lower_limit=(0, False)) mask = np.full((size, size), np.nan, dtype=float) if mask is None else validate_mask(mask, size) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None p, error_message = random(rng, size, zeros, mask) if error_message is not None: # pragma: no cover raise ValidationError(error_message) mc = MarkovChain(p, states) return mc @staticmethod def urn_model(n: int, model: str) -> tmc: """ The method generates a Markov chain of size **2N + 1** based on the specified urn model. :param n: the number of elements in each urn. :param model: - **bernoulli-laplace** for the Bernoulli-Laplace urn model; - **ehrenfest** for the Ehrenfest urn model. :raises ValidationError: if any input argument is not compliant. """ try: n = validate_integer(n, lower_limit=(1, False)) model = validate_enumerator(model, ['bernoulli-laplace', 'ehrenfest']) except Exception as e: # pragma: no cover raise generate_validation_error(e, trace()) from None p, states, _ = urn_model(n, model) mc = MarkovChain(p, states) return mc ``` #### File: PyDTMC/pydtmc/simulations.py ```python __all__ = [ 'predict', 'redistribute', 'simulate', 'walk_probability' ] ########### # IMPORTS # ########### # Libraries import numpy as np # Internal from .custom_types import ( oint, olist_int, tarray, tlist_int, tmc, trand, tredists ) ############# # FUNCTIONS # ############# def predict(mc: tmc, steps: int, initial_state: int) -> olist_int: current_state = initial_state value = [initial_state] for _ in range(steps): d = mc.p[current_state, :] d_max = np.argwhere(d == np.max(d)) if d_max.size > 1: return None current_state = d_max.item() value.append(current_state) return value def redistribute(mc: tmc, steps: int, initial_status: tarray, output_last: bool) -> tredists: value = np.zeros((steps + 1, mc.size), dtype=float) value[0, :] = initial_status for i in range(1, steps + 1): value[i, :] = value[i - 1, :].dot(mc.p) value[i, :] /= np.sum(value[i, :]) if output_last: return value[-1] value = [np.ravel(distribution) for distribution in np.split(value, value.shape[0])] return value def simulate(mc: tmc, steps: int, initial_state: int, final_state: oint, rng: trand) -> tlist_int: current_state = initial_state value = [initial_state] for _ in range(steps): w = mc.p[current_state, :] current_state = rng.choice(mc.size, size=1, p=w).item() value.append(current_state) if final_state is not None and current_state == final_state: break return value def walk_probability(mc: tmc, walk: tlist_int) -> float: p = 0.0 for (i, j) in zip(walk[:-1], walk[1:]): if mc.p[i, j] > 0.0: p += np.log(mc.p[i, j]) else: p = -np.inf break value = np.exp(p) return value ``` #### File: PyDTMC/pydtmc/utilities.py ```python __all__ = [ 'create_rng', 'generate_validation_error', 'get_file_extension' ] ########### # IMPORTS # ########### # Standard import pathlib as pl # Libraries import numpy as np import numpy.random as npr import numpy.random.mtrand as nprm # Internal from .custom_types import ( oint, tany, texception, titerable, tmapping, trand ) from .exceptions import ( ValidationError ) ############# # FUNCTIONS # ############# # noinspection PyProtectedMember def create_rng(seed: oint) -> trand: if seed is None: return nprm._rand if isinstance(seed, (int, np.integer)): return npr.RandomState(int(seed)) raise TypeError('The specified seed is not a valid RNG initializer.') def generate_validation_error(e: texception, trace: tany) -> ValidationError: arguments = ''.join(trace[0][4]).split('=', 1)[0].strip() message = str(e).replace('@arg@', arguments) return ValidationError(message) def get_file_extension(file_path: str) -> str: return ''.join(pl.Path(file_path).suffixes).lower() def namedtuple_to_dictionary(obj: tany): if isinstance(obj, tuple) and hasattr(obj, '_fields'): # noinspection PyProtectedMember return dict(zip(obj._fields, map(namedtuple_to_dictionary, obj))) if isinstance(obj, titerable) and not isinstance(obj, str): return type(obj)(map(namedtuple_to_dictionary, obj)) if isinstance(obj, tmapping): return type(obj)(zip(obj.keys(), map(namedtuple_to_dictionary, obj.values()))) return obj ``` #### File: PyDTMC/tests/test_fitting.py ```python import numpy as np import numpy.testing as npt # Internal from pydtmc import ( MarkovChain ) ######### # TESTS # ######### def test_fit_function(possible_states, f, quadrature_type, quadrature_interval, value): f = eval('lambda x_index, x_value, y_index, y_value: ' + f) quadrature_interval = None if quadrature_interval is None else tuple(quadrature_interval) mc = MarkovChain.fit_function(possible_states, f, quadrature_type, quadrature_interval) actual = mc.p expected = np.asarray(value) npt.assert_allclose(actual, expected, rtol=1e-5, atol=1e-8) def test_fit_walk(fitting_type, possible_states, walk, k, value): mc = MarkovChain.fit_walk(fitting_type, possible_states, walk, k) actual = mc.p expected = np.asarray(value) npt.assert_allclose(actual, expected, rtol=1e-5, atol=1e-8) ``` #### File: PyDTMC/tests/test_properties.py ```python import numpy as np import numpy.linalg as npl import numpy.testing as npt from pytest import ( skip ) # Internal from pydtmc import ( MarkovChain ) ######### # TESTS # ######### def test_attributes(p, is_absorbing, is_canonical, is_doubly_stochastic, is_ergodic, is_reversible, is_symmetric): mc = MarkovChain(p) actual = mc.is_absorbing expected = is_absorbing assert actual == expected actual = mc.is_canonical expected = is_canonical assert actual == expected actual = mc.is_doubly_stochastic expected = is_doubly_stochastic assert actual == expected actual = mc.is_ergodic expected = is_ergodic assert actual == expected actual = mc.is_reversible expected = is_reversible assert actual == expected actual = mc.is_symmetric expected = is_symmetric assert actual == expected def test_binary_matrices(p, accessibility_matrix, adjacency_matrix, communication_matrix): mc = MarkovChain(p) actual = mc.accessibility_matrix expected = np.asarray(accessibility_matrix) assert np.array_equal(actual, expected) for i in range(mc.size): for j in range(mc.size): actual = mc.is_accessible(j, i) expected = mc.accessibility_matrix[i, j] != 0 assert actual == expected actual = mc.are_communicating(i, j) expected = mc.accessibility_matrix[i, j] != 0 and mc.accessibility_matrix[j, i] != 0 assert actual == expected actual = mc.adjacency_matrix expected = np.asarray(adjacency_matrix) assert np.array_equal(actual, expected) actual = mc.communication_matrix expected = np.asarray(communication_matrix) assert np.array_equal(actual, expected) def test_entropy(p, entropy_rate, entropy_rate_normalized, topological_entropy): mc = MarkovChain(p) actual = mc.entropy_rate expected = entropy_rate if actual is not None and expected is not None: assert np.isclose(actual, expected) else: assert actual == expected actual = mc.entropy_rate_normalized expected = entropy_rate_normalized if actual is not None and expected is not None: assert np.isclose(actual, expected) else: assert actual == expected actual = mc.topological_entropy expected = topological_entropy assert np.isclose(actual, expected) def test_fundamental_matrix(p, fundamental_matrix, kemeny_constant): mc = MarkovChain(p) actual = mc.fundamental_matrix expected = fundamental_matrix if actual is not None and expected is not None: expected = np.asarray(expected) npt.assert_allclose(actual, expected, rtol=1e-5, atol=1e-8) else: assert actual == expected actual = mc.kemeny_constant expected = kemeny_constant if actual is not None and expected is not None: assert np.isclose(actual, expected) else: assert actual == expected def test_irreducibility(p): mc = MarkovChain(p) if not mc.is_irreducible: skip('Markov chain is not irreducible.') else: actual = mc.states expected = mc.recurrent_states assert actual == expected actual = len(mc.communicating_classes) expected = 1 assert actual == expected cf = mc.to_canonical_form() actual = cf.p expected = mc.p npt.assert_allclose(actual, expected, rtol=1e-5, atol=1e-8) def test_lumping_partitions(p, lumping_partitions): mc = MarkovChain(p) actual = mc.lumping_partitions expected = lumping_partitions assert actual == expected def test_matrix(p, determinant, rank): mc = MarkovChain(p) actual = mc.determinant expected = determinant assert np.isclose(actual, expected) actual = mc.rank expected = rank assert actual == expected def test_periodicity(p, period): mc = MarkovChain(p) actual = mc.period expected = period assert actual == expected actual = mc.is_aperiodic expected = period == 1 assert actual == expected def test_regularity(p): mc = MarkovChain(p) if not mc.is_regular: skip('Markov chain is not regular.') else: actual = mc.is_irreducible expected = True assert actual == expected values = np.sort(np.abs(npl.eigvals(mc.p))) actual = np.sum(np.logical_or(np.isclose(values, 1.0), values > 1.0)) expected = 1 assert actual == expected def test_stationary_distributions(p, stationary_distributions): mc = MarkovChain(p) stationary_distributions = [np.array(stationary_distribution) for stationary_distribution in stationary_distributions] actual = len(mc.pi) expected = len(stationary_distributions) assert actual == expected actual = len(mc.pi) expected = len(mc.recurrent_classes) assert actual == expected ss_matrix = np.vstack(mc.pi) actual = npl.matrix_rank(ss_matrix) expected = min(ss_matrix.shape) assert actual == expected for index, stationary_distribution in enumerate(stationary_distributions): assert np.isclose(np.sum(mc.pi[index]), 1.0) actual = mc.pi[index] expected = stationary_distribution npt.assert_allclose(actual, expected, rtol=1e-5, atol=1e-8) def test_transitions(p): mc = MarkovChain(p) transition_matrix = mc.p states = mc.states for index, state in enumerate(states): actual = mc.conditional_probabilities(state) expected = transition_matrix[index, :] npt.assert_allclose(actual, expected, rtol=1e-5, atol=1e-8) for index1, state1 in enumerate(states): for index2, state2 in enumerate(states): actual = mc.transition_probability(state1, state2) expected = transition_matrix[index2, index1] assert np.isclose(actual, expected) def test_times(p, mixing_rate, relaxation_rate, spectral_gap, implied_timescales): mc = MarkovChain(p) actual = mc.mixing_rate expected = mixing_rate if actual is not None and expected is not None: assert np.isclose(actual, expected) else: assert actual == expected actual = mc.relaxation_rate expected = relaxation_rate if actual is not None and expected is not None: assert np.isclose(actual, expected) else: assert actual == expected actual = mc.spectral_gap expected = spectral_gap if actual is not None and expected is not None: assert np.isclose(actual, expected) else: assert actual == expected actual = mc.implied_timescales expected = implied_timescales if actual is not None and expected is not None: expected = np.asarray(expected) npt.assert_allclose(actual, expected, rtol=1e-5, atol=1e-8) else: assert actual == expected ```
{ "source": "3asyPe/budget-manager", "score": 2 }
#### File: src/app/apis.py ```python from rest_framework.decorators import api_view from rest_framework.response import Response @api_view(["POST"]) def test_api(request): print(request.POST) return Response({"test": "test"}, 200) ```
{ "source": "3bhady/UnFlow", "score": 2 }
#### File: e2eflow/core/supervised.py ```python import tensorflow as tf import tensorflow.contrib.slim as slim import numpy as np from .augment import random_photometric from .flow_util import flow_to_color from .losses import charbonnier_loss from .flownet import flownet from .unsupervised import _track_image, _track_loss, FLOW_SCALE def supervised_loss(batch, params, normalization=None): channel_mean = tf.constant(normalization[0]) / 255.0 im1, im2, flow_gt, mask_gt = batch im1 = im1 / 255.0 im2 = im2 / 255.0 im_shape = tf.shape(im1)[1:3] # ------------------------------------------------------------------------- im1_photo, im2_photo = random_photometric( [im1, im2], noise_stddev=0.04, min_contrast=-0.3, max_contrast=0.3, brightness_stddev=0.02, min_colour=0.9, max_colour=1.1, min_gamma=0.7, max_gamma=1.5) _track_image(im1_photo, 'im1_photo') _track_image(im2_photo, 'im2_photo') _track_image(flow_to_color(flow_gt), 'flow_gt') _track_image(mask_gt, 'mask_gt') # Images for neural network input with mean-zero values in [-1, 1] im1_photo = im1_photo - channel_mean im2_photo = im2_photo - channel_mean flownet_spec = params.get('flownet', 'S') full_resolution = params.get('full_res') train_all = params.get('train_all') # ------------------------------------------------------------------------- # FlowNet flows_fw = flownet(im1_photo, im2_photo, flownet_spec=flownet_spec, full_resolution=full_resolution, train_all=train_all) if not train_all: flows_fw = [flows_fw[-1]] final_loss = 0.0 for i, net_flows in enumerate(reversed(flows_fw)): flow_fw = net_flows[0] if params.get('full_res'): final_flow_fw = flow_fw * FLOW_SCALE * 4 else: final_flow_fw = tf.image.resize_bilinear(flow_fw, im_shape) * FLOW_SCALE * 4 _track_image(flow_to_color(final_flow_fw), 'flow_pred_' + str(i)) net_loss = charbonnier_loss(final_flow_fw - flow_gt, mask_gt) final_loss += net_loss / (2 ** i) regularization_loss = tf.add_n(slim.losses.get_regularization_losses()) final_loss += regularization_loss _track_loss(regularization_loss, 'loss/regularization') _track_loss(final_loss, 'loss/combined') return final_loss ``` #### File: e2eflow/kitti/data.py ```python import os import sys import numpy as np import matplotlib.image as mpimg from . import raw_records from ..core.data import Data from ..util import tryremove from ..core.input import frame_name_to_num def exclude_test_and_train_images(kitti_dir, exclude_lists_dir, exclude_target_dir, remove=False): to_move = [] def exclude_from_seq(day_name, seq_str, image, view, distance=10): # image is the first frame of each frame pair to exclude seq_dir_rel = os.path.join(day_name, seq_str, view, 'data') seq_dir_abs = os.path.join(kitti_dir, seq_dir_rel) target_dir_abs = os.path.join(exclude_target_dir, seq_dir_rel) if not os.path.isdir(seq_dir_abs): print("Not found: {}".format(seq_dir_abs)) return try: os.makedirs(target_dir_abs) except: pass seq_files = sorted(os.listdir(seq_dir_abs)) image_num = frame_name_to_num(image) try: image_index = seq_files.index(image) except ValueError: return # assume that some in-between files may be missing start = max(0, image_index - distance) stop = min(len(seq_files), image_index + distance + 2) start_num = image_num - distance stop_num = image_num + distance + 2 for i in range(start, stop): filename = seq_files[i] num = frame_name_to_num(filename) if num < start_num or num >= stop_num: continue to_move.append((os.path.join(seq_dir_abs, filename), os.path.join(target_dir_abs, filename))) for filename in os.listdir(exclude_lists_dir): exclude_list_path = os.path.join(exclude_lists_dir, filename) with open(exclude_list_path) as f: for line in f: line = line.rstrip('\n') if line.split(' ')[0].endswith('_10'): splits = line.split(' ')[-1].split('\\') image = splits[-1] seq_str = splits[0] day_name, seq_name = seq_str.split('_drive_') seq_name = seq_name.split('_')[0] + '_extract' seq_str = day_name + '_drive_' + seq_name exclude_from_seq(day_name, seq_str, image, 'image_02') exclude_from_seq(day_name, seq_str, image, 'image_03') if remove: print("Collected {} files. Deleting...".format(len(to_move))) else: print("Collected {} files. Moving...".format(len(to_move))) for i, data in enumerate(to_move): try: src, dst = data print("{} / {}: {}".format(i, len(to_move) - 1, src)) if remove: os.remove(src) else: os.rename(src, dst) except: # Some ranges may overlap pass return len(to_move) class KITTIData(Data): KITTI_RAW_URL = 'https://s3.eu-central-1.amazonaws.com/avg-kitti/raw_data/' KITTI_2012_URL = 'https://s3.eu-central-1.amazonaws.com/avg-kitti/data_stereo_flow.zip' KITTI_2015_URL = 'https://s3.eu-central-1.amazonaws.com/avg-kitti/data_scene_flow.zip' dirs = ['data_stereo_flow', 'data_scene_flow', 'kitti_raw'] def __init__(self, data_dir, stat_log_dir=None, development=True, fast_dir=None): super().__init__(data_dir, stat_log_dir, development=development, fast_dir=fast_dir) def _fetch_if_missing(self): self._maybe_get_kitti_raw() self._maybe_get_kitti_2012() self._maybe_get_kitti_2015() def get_raw_dirs(self): top_dir = os.path.join(self.current_dir, 'kitti_raw') dirs = [] dates = os.listdir(top_dir) for date in dates: date_path = os.path.join(top_dir, date) extracts = os.listdir(date_path) for extract in extracts: extract_path = os.path.join(date_path, extract) image_02_folder = os.path.join(extract_path, 'image_02/data') image_03_folder = os.path.join(extract_path, 'image_03/data') dirs.extend([image_02_folder, image_03_folder]) return dirs def _maybe_get_kitti_2012(self): local_path = os.path.join(self.data_dir, 'data_stereo_flow') if not os.path.isdir(local_path): self._download_and_extract(self.KITTI_2012_URL, local_path) def _maybe_get_kitti_2015(self): local_path = os.path.join(self.data_dir, 'data_scene_flow') if not os.path.isdir(local_path): self._download_and_extract(self.KITTI_2015_URL, local_path) def _maybe_get_kitti_raw(self): base_url = self.KITTI_RAW_URL local_dir = os.path.join(self.data_dir, 'kitti_raw') records = raw_records.get_kitti_records(self.development) downloaded_records = False for i, record in enumerate(records): date_str = record.split("_drive_")[0] foldername = record + "_extract" date_folder = os.path.join(local_dir, date_str) if not os.path.isdir(date_folder): os.makedirs(date_folder) local_path = os.path.join(date_folder, foldername) if not os.path.isdir(local_path): url = base_url + record + "/" + foldername + '.zip' print(url) self._download_and_extract(url, local_dir) downloaded_records = True # Remove unused directories tryremove(os.path.join(local_path, 'velodyne_points')) tryremove(os.path.join(local_path, 'oxts')) tryremove(os.path.join(local_path, 'image_00')) tryremove(os.path.join(local_path, 'image_01')) if downloaded_records: print("Downloaded all KITTI raw files.") exclude_target_dir = os.path.join(self.data_dir, 'exclude_target_dir') exclude_lists_dir = '../files/kitti_excludes' excluded = exclude_test_and_train_images(local_dir, exclude_lists_dir, exclude_target_dir, remove=True) ``` #### File: e2eflow/middlebury/data.py ```python import os import sys import numpy as np import matplotlib.image as mpimg from ..core.data import Data from ..util import tryremove class MiddleburyData(Data): MDB_FLOW_URL = 'http://vision.middlebury.edu/flow/data/comp/zip/other-gt-flow.zip' MDB_COLOR_URL = 'http://vision.middlebury.edu/flow/data/comp/zip/other-color-twoframes.zip' MDB_EVAL_URL = 'http://vision.middlebury.edu/flow/data/comp/zip/eval-color-twoframes.zip' dirs = ['middlebury'] def __init__(self, data_dir, stat_log_dir=None, development=True, fast_dir=None): super().__init__(data_dir, stat_log_dir, development=development, fast_dir=fast_dir) def _fetch_if_missing(self): local_path = os.path.join(self.data_dir, 'middlebury') if not os.path.isdir(local_path): self._download_and_extract(self.MDB_FLOW_URL, local_path) self._download_and_extract(self.MDB_COLOR_URL, local_path) self._download_and_extract(self.MDB_EVAL_URL, local_path) for name in ['Beanbags', 'DogDance', 'MiniCooper', 'Walking']: tryremove(os.path.join(local_path, 'other-data', name)) def get_raw_dirs(self): raise NotImplementedError("Can not train on middlebury") ``` #### File: e2eflow/synthia/data.py ```python import os import sys import numpy as np import matplotlib.image as mpimg from ..core.data import Data from ..util import tryremove URL = 'http://synthia-dataset.cvc.uab.cat/SYNTHIA_SEQS/' SEQS = [ # SUMMER and WINTER from sequences `1 - 6` 'SYNTHIA-SEQS-01-SUMMER', 'SYNTHIA-SEQS-01-WINTER', 'SYNTHIA-SEQS-02-SUMMER', 'SYNTHIA-SEQS-02-WINTER', 'SYNTHIA-SEQS-04-SUMMER', 'SYNTHIA-SEQS-04-WINTER', 'SYNTHIA-SEQS-05-SUMMER', 'SYNTHIA-SEQS-05-WINTER', 'SYNTHIA-SEQS-06-SUMMER', 'SYNTHIA-SEQS-06-WINTER' ] DEV_SEQS = ['SYNTHIA-SEQS-01-SUMMER'] class SynthiaData(Data): dirs = ['synthia'] def __init__(self, data_dir, stat_log_dir=None, development=True, fast_dir=None): super().__init__(data_dir, stat_log_dir, development=development, fast_dir=fast_dir) def _fetch_if_missing(self): self._maybe_get_synthia() def get_raw_dirs(self): root_dir = os.path.join(self.current_dir, 'synthia') dirs = [] seqs = os.listdir(root_dir) for seq in seqs: seq_dir = os.path.join(root_dir, seq, seq, 'RGB', 'Stereo_Left') views = os.listdir(seq_dir) for view in views: view_dir = os.path.join(seq_dir, view) dirs.extend([view_dir]) return dirs def _maybe_get_synthia(self): seqs = DEV_SEQS if self.development else SEQS for seq in seqs: root_dir = os.path.join(self.data_dir, 'synthia') url = URL + seq + '.rar' url_dir = os.path.join(root_dir, seq) if not os.path.isdir(url_dir): self._download_and_extract(url, url_dir, 'rar') # Remove unused directories tryremove(os.path.join(url_dir, seq, 'GT')) tryremove(os.path.join(url_dir, seq, 'Depth')) tryremove(os.path.join(url_dir, seq, 'CameraParams')) tryremove(os.path.join(url_dir, 'RGB', 'Stereo_Right')) ``` #### File: e2eflow/test/test_losses.py ```python import numpy as np import tensorflow as tf from ..core.losses import _smoothness_deltas, create_outgoing_mask, \ gradient_loss, compute_losses, ternary_loss from ..core.input import read_png_image class LossesTest(tf.test.TestCase): def test_smoothness_deltas(self): flow = np.ones([1,3,3,2], np.float32) flow[0, :, :, 0] = [[0,0,0], [0,8,3], [0,1,0]] flow[0, :, :, 1] = [[0,0,0], [0,8,3], [0,1,0]] delta_u_, delta_v_, mask_ = _smoothness_deltas(flow) delta_u_ = tf.multiply(delta_u_, mask_) delta_v_ = tf.multiply(delta_v_, mask_) sess = tf.Session() delta_u, delta_v, mask = sess.run([delta_u_, delta_v_, mask_]) self.assertAllEqual(mask[0,:,:,0], [[1,1,0], [1,1,0], [1,1,0]]) self.assertAllEqual(mask[0,:,:,1], [[1,1,1], [1,1,1], [0,0,0]]) self.assertAllEqual(delta_u[0,:,:,0], [[0,0,0], [-8,5,0], [-1,1,0]]) self.assertAllEqual(delta_u[0,:,:,1], [[0,-8,-3], [0,7,3], [0,0,0]]) self.assertAllEqual(delta_v[0,:,:,0], [[0,0,0], [-8,5,0], [-1,1,0]]) self.assertAllEqual(delta_v[0,:,:,1], [[0,-8,-3], [0,7,3], [0,0,0]]) def test_create_outgoing_mask_all_directions(self): flow = np.ones([1,3,3,2], np.float32) flow[0, :, :, 0] = [[0,0,1], [-1,3,0], [0,1,0]] flow[0, :, :, 1] = [[-1,0,0], [0,0,0], [1,-1,0]] sess = tf.Session() mask = sess.run(create_outgoing_mask(flow)) self.assertAllEqual(mask[0,:,:,0], [[0,1,0], [0,0,1], [0,1,1]]) def test_create_outgoing_mask_large_movement(self): flow = np.ones([1,3,3,2], np.float32) flow[0, :, :, 0] = [[3,2,1], [2,1,0], [0,-2,-1]] flow[0, :, :, 1] = [[0,0,0], [0,0,0], [0,0,0]] sess = tf.Session() mask = sess.run(create_outgoing_mask(flow)) self.assertAllEqual(mask[0,:,:,0], [[0,0,0], [1,1,1], [1,0,1]]) # def test_forward_backward_loss(self): # im1 = np.ones([1,3,3,3], np.float32) # im2 = np.ones([1,3,3,3], np.float32) # mask = np.ones([1,3,3,1], np.float32) # mask[0, :, :, 0] = [[1,1,0], # [1,1,0], # [0,0,0]] # # flow_fw = np.ones([1,3,3,2], np.float32) # flow_fw[0, :, :, 0] = [[1,1,1], # [1,1,1], # [1,1,1]] # flow_fw[0, :, :, 1] = [[1,1,1], # [1,1,1], # [1,1,1]] # flow_bw = np.ones([1,3,3,2], np.float32) # flow_bw[0, :, :, 0] = [[-1,-1,-1], # [-1,-1,-1], # [-1,-1,-1]] # flow_bw[0, :, :, 1] = [[-1,-1,-1], # [-1,-1,-1], # [-1,-1,-1]] # # sess = tf.Session() # losses = sess.run(compute_losses(im1, im2, flow_fw, flow_bw, mask)) # self.assertAllClose(losses['fb'], 0.0, atol=1e-2) def test_gradient_loss(self): im1 = np.ones([1,3,3,3], np.float32) im2 = np.ones([1,3,3,3], np.float32) mask = np.ones([1,3,3,1], np.float32) im1[0, :, :, 0] = [[0,1,0], [0,2,0], [0,3,4]] im1[0, :, :, 1] = [[0,1,0], [0,2,0], [0,3,4]] im1[0, :, :, 2] = [[0,1,0], [0,2,0], [0,3,4]] im2[0, :, :, 0] = [[1,2,1], [1,3,1], [1,4,5]] im2[0, :, :, 1] = [[1,2,1], [1,3,1], [1,4,5]] im2[0, :, :, 2] = [[1,2,1], [1,3,1], [1,4,5]] sess = tf.Session() loss = sess.run(gradient_loss(im1, im2, mask)) self.assertAllClose(loss, 0.0, atol=1e-2) def test_ternary_reference(self): def _ternary_reference_test(im1_name, im2_name, expected): with self.test_session(use_gpu=True) as sess: im1 = tf.expand_dims(read_png_image([im1_name]), 0) im2 = tf.expand_dims(read_png_image([im2_name]), 0) _, height, width, _ = tf.unstack(tf.shape(im1)) mask = tf.ones([1, height, width, 1]) sess.run(tf.global_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) scale = tf.cast(height * width, tf.float32) loss_ = ternary_loss(im1, im2, mask, max_distance=3, truncate=22) * scale loss = sess.run(loss_) print(loss) #self.assertAllClose(loss, expected) _ternary_reference_test('../test_data/frame_0011.png', '../test_data/frame_0012.png', 8.86846e+06) _ternary_reference_test('../test_data/frame_0016.png', '../test_data/frame_0017.png', 6.75537e+06) _ternary_reference_test('../test_data/frame_0018.png', '../test_data/frame_0019.png', 8.22283e+06) _ternary_reference_test('../test_data/frame_0028.png', '../test_data/frame_0029.png', 8.05619e+06) ```
{ "source": "3bonbon/numbergame", "score": 3 }
#### File: numbergame/tests/test_is_valid_number.py ```python import pytest from numbergame import Player from numbergame.model import is_valid_number def test_valid_numbers(): assert is_valid_number('0123') assert is_valid_number('9876') assert is_valid_number('4739') assert is_valid_number('1029') def test_invalid_numbers(): assert not is_valid_number('0122') assert not is_valid_number('0000') assert not is_valid_number('123') assert not is_valid_number('12345') assert not is_valid_number('a') assert not is_valid_number('123o') assert not is_valid_number('atoz') assert not is_valid_number('%^$@') assert not is_valid_number('') def test_valid_player_creation(): p = Player('0123') def test_invalid_player_creation(): with pytest.raises(ValueError) as e: p = Player('') ```
{ "source": "3bst0r/magenta", "score": 2 }
#### File: models/my_rnn/my_rnn_simple_train.py ```python import os import argparse # import pydevd import tensorflow.compat.v1 as tf from tensorflow.compat.v1 import keras from magenta.models.my_rnn.my_simple_rnn_model import BASIC_EVENT_DIM from magenta.models.my_rnn.my_simple_rnn_model import get_simple_rnn_model from magenta.common import is_valid_file from magenta.models.my_rnn.my_rnn_generate import melody_seq_to_midi import uuid BATCH_SIZE = 128 NUM_THREADS = 7 tmp_dir = os.environ["TMPDIR"] # tf.disable_eager_execution() print("executing eagerly:") print(tf.executing_eagerly()) # tf.config.experimental_run_functions_eagerly(True) tf.config.threading.set_inter_op_parallelism_threads(NUM_THREADS) tf.config.threading.set_intra_op_parallelism_threads(NUM_THREADS) def get_parse_function_shift(event_dim, label_shape=None): sequence_features = { 'inputs': tf.io.FixedLenSequenceFeature(shape=[event_dim], dtype=tf.float32), 'labels': tf.io.FixedLenSequenceFeature(shape=label_shape or [], dtype=tf.int64)} def shift_melody(example): # one example is one melody _, sequence = tf.parse_single_sequence_example(serialized=example, sequence_features=sequence_features) # return melody from first step as input and melody shifted by one step to the left as label return sequence['inputs'][:-1], sequence['inputs'][1:] return shift_melody class CustomSaver(keras.callbacks.Callback): def __init__(self, model_prefix): self.model_prefix = model_prefix def on_epoch_end(self, epoch, logs=None): if logs is None: logs = {} # if (epoch % 2) == 0: self.model.save(os.path.join(self.model_prefix, "model_{}.tf".format(epoch)), save_format='tf') def main(sequence_example_file_path, model_prefix): print(tf.__version__) # read data ds = tf.data.TFRecordDataset(sequence_example_file_path) #ds = ds.map(get_parse_function_shift(BASIC_EVENT_DIM)) #ds = ds.shuffle(buffer_size=2048) ds = ds.take(int(1E5)) ds = ds.padded_batch(batch_size=BATCH_SIZE, padded_shapes=([None, BASIC_EVENT_DIM], [None, BASIC_EVENT_DIM])) # shape is now [2 : input and label sequences # 128 : batch size # ? : padded sequence length per batch # 38] : event dimensionality saver = CustomSaver(model_prefix) model = get_simple_rnn_model(BASIC_EVENT_DIM, is_Training=True) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() model.fit(ds, epochs=25, callbacks=[saver]) model.save(os.path.join(model_prefix, 'model_final.tf'), save_format='tf') if __name__ == '__main__': parser = argparse.ArgumentParser(description="Train RNN Model") parser.add_argument('--sequence_example_file', dest="filename", required=True, help="File containing sequence examples for training or evaluation", type=lambda x: is_valid_file(parser, x)) parser.add_argument('--prefix', dest="prefix", required=True, help="All model iterations will be saved in $TMP_DIR/prefix/") args = parser.parse_args() main(sequence_example_file_path=args.filename, model_prefix=os.path.join(tmp_dir, args.prefix)) ```
{ "source": "3c1u/HiFiSinger-1", "score": 4 }
#### File: 3c1u/HiFiSinger-1/Arg_Parser.py ```python import argparse def Recursive_Parse(args_Dict): parsed_Dict = {} for key, value in args_Dict.items(): if isinstance(value, dict): value = Recursive_Parse(value) parsed_Dict[key]= value args = argparse.Namespace() args.__dict__ = parsed_Dict return args ```
{ "source": "3c7/common-osint-model", "score": 2 }
#### File: common-osint-model/common_osint_model/certificate.py ```python from cryptography.x509 import load_pem_x509_certificate from cryptography.x509.extensions import SubjectAlternativeName from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.hashes import MD5, SHA1, SHA256 from cryptography.hazmat.backends.openssl.x509 import _Certificate as Certificate from binascii import hexlify from typing import Union from datetime import timezone from common_osint_model.utils import flatten, list_cleanup def from_x509_pem(pem: Union[str, bytes]) -> dict: """ Converts a certificate in PEM format given as bytes or as string to a dictionary. :param pem: PEM certificates as either string or bytes :return: dictionary in common format """ g = {} if isinstance(pem, str): pem = pem.encode("ascii") certificate = load_pem_x509_certificate(pem, default_backend()) g.update(certificate_dn_extraction(certificate)) g.update(certificate_fingerprint_extraction(certificate)) g.update(certificate_validity_extraction(certificate)) g.update(dict(serial_number=certificate.serial_number)) return list_cleanup(g) def from_x509_pem_flattened(pem: Union[str, bytes]) -> dict: """ Wraps from_x509_pem and flattens the output dict :param pem: PEM certificates as either string or bytes :return: flattened dictionary in common format """ return flatten(from_x509_pem(pem)) def certificate_dn_extraction(certificate: Certificate) -> dict: """ Extracts distinguished names of the given certificate :param certificate: object of type cryptography.hazmat.backends.openssl.x509._Certificate :return: dictionary containing issuer and subject DN """ dns = dict(subject={}, issuer={}, subject_dn=None, issuer_dn=None) terms = dict( CN='common_name', C='country', L='locality', ST='province', O='organization', OU='organizational_unit', email='email_address' ) dns["issuer_dn"] = certificate.issuer.rfc4514_string() for term in certificate.issuer.rfc4514_string().split(','): k, v = term.split("=") key = terms[k.strip()] if key in dns["issuer"].keys(): if isinstance(dns["issuer"][key], list): dns["issuer"][key].append(v) else: dns["issuer"][key] = [dns["issuer"][key], v] else: dns["issuer"].update({ terms[k.strip()]: v }) dns["subject_dn"] = certificate.subject.rfc4514_string() for term in certificate.subject.rfc4514_string().split(','): k, v = term.split("=") key = terms[k.strip()] if key in dns["subject"].keys(): if isinstance(dns["subject"][key], list): dns["subject"][key].append(v) else: dns["subject"][key] = [dns["subject"][key], v] else: dns["subject"].update({ terms[k.strip()]: v }) try: subjectAltName = certificate.extensions.get_extension_for_oid(SubjectAlternativeName.oid) except: subjectAltName = None if subjectAltName: dns["subject"]["common_name"] = [dns["subject"]["common_name"]] for v in subjectAltName.value: if v.value not in dns["subject"]["common_name"]: dns["subject"]["common_name"].append(v.value) return dns def certificate_fingerprint_extraction(certificate: Certificate) -> dict: """ Calculates certificate fingerprints as MD5, SHA1 and SHA256 :param certificate: object of type cryptography.hazmat.backends.openssl.x509._Certificate :return: dictionary containing all fingerprints """ return { "fingerprint": { "md5": hexlify(certificate.fingerprint(MD5())).decode("ascii"), "sha1": hexlify(certificate.fingerprint(SHA1())).decode("ascii"), "sha256": hexlify(certificate.fingerprint(SHA256())).decode("ascii"), } } def certificate_validity_extraction(certificate: Certificate) -> dict: """ Extracts validity information of given certificate :param certificate: object of type cryptography.hazmat.backends.openssl.x509._Certificate :return: dictionary containing the validity timestamps """ return { "validity": { "start": int(certificate.not_valid_before.timestamp()), "start_readable": certificate.not_valid_before.replace(tzinfo=timezone.utc, microsecond=0).isoformat(), "end": int(certificate.not_valid_after.timestamp()), "end_readable": certificate.not_valid_after.replace(tzinfo=timezone.utc, microsecond=0).isoformat(), "length": int((certificate.not_valid_after - certificate.not_valid_before).total_seconds()) } } ``` #### File: common_osint_model/models/http.py ```python import base64 from typing import Dict, List, Optional, Union import mmh3 from pydantic import BaseModel from common_osint_model.models import ShodanDataHandler, CensysDataHandler, BinaryEdgeDataHandler, Logger from common_osint_model.utils import hash_all class HTTPComponentContentFavicon(BaseModel, ShodanDataHandler, CensysDataHandler, BinaryEdgeDataHandler, Logger): """Represents the favicon which might be included in HTTP components.""" raw: Optional[str] md5: Optional[str] sha1: Optional[str] sha256: Optional[str] murmur: Optional[str] shodan_murmur: Optional[str] @classmethod def from_shodan(cls, d: Dict): """Creates an instance of this class based on Shodan data given as dictionary.""" if not isinstance(d, Dict): raise TypeError(f"Method HTTPComponentContentFavicon.from_shodan expects parameter d to be a dictionary, " f"but it was {type(d)}.") raw = d["http"]["favicon"]["data"] raw = base64.b64decode(raw) md5, sha1, sha256, murmur = hash_all(raw) shodan_murmur = mmh3.hash(d["http"]["favicon"]["data"]) cls.info("Shodan's favicon hash only hashes the base64 encoded favicon, not the data itself. The hash can be " "found as \"shodan_murmur\" in this instance. \"murmur\" and the other hashes are calculated based on " "the raw data of the favicon.") return HTTPComponentContentFavicon( raw=d["http"]["favicon"]["data"], md5=md5, sha1=sha1, sha256=sha256, murmur=murmur, shodan_murmur=shodan_murmur ) @classmethod def from_censys(cls, d: Dict): """Not supported by Censys right now.""" return None @classmethod def from_binaryedge(cls, d: Union[Dict, List]): favicon = d["result"]["data"]["response"]["favicon"]["content"] favicon_bytes = base64.b64decode(favicon.encode("utf-8")) md5, sha1, sha256, murmur = hash_all(favicon_bytes) shodan_murmur = mmh3.hash(favicon.encode("utf-8")) return HTTPComponentContentFavicon( raw=favicon, md5=md5, sha1=sha1, sha256=sha256, murmur=murmur, shodan_murmur=shodan_murmur ) class HTTPComponentContentRobots(BaseModel, ShodanDataHandler, CensysDataHandler): """Represents the robots.txt file in webroots.""" raw: Optional[str] md5: Optional[str] sha1: Optional[str] sha256: Optional[str] murmur: Optional[str] @classmethod def from_shodan(cls, d: Dict): """Creates an instance of this class based on Shodan data given as dictionary.""" if not isinstance(d, Dict): raise TypeError( f"Method HTTPComponentContentRobots.from_shodan expects parameter d to be a dictionary, " f"but it was {type(d)}.") raw = d["http"]["robots"].encode("utf-8") md5, sha1, sha256, murmur = hash_all(raw) return HTTPComponentContentRobots( raw=raw, md5=md5, sha1=sha1, sha256=sha256, murmur=murmur ) @classmethod def from_censys(cls, d: Dict): """Not supported by Censys right now.""" return None class HTTPComponentContentSecurity(BaseModel, ShodanDataHandler, CensysDataHandler): """Represents the security.txt file in webroots.""" raw: Optional[str] md5: Optional[str] sha1: Optional[str] sha256: Optional[str] murmur: Optional[str] @classmethod def from_shodan(cls, d: Dict): """Creates an instance of this class based on Shodan data given as dictionary.""" if not isinstance(d, Dict): raise TypeError( f"Method HTTPComponentContentRobots.from_shodan expects parameter d to be a dictionary, " f"but it was {type(d)}.") raw = d["http"]["securitytxt"].encode("utf-8") md5, sha1, sha256, murmur = hash_all(raw) return HTTPComponentContentRobots( raw=raw, md5=md5, sha1=sha1, sha256=sha256, murmur=murmur ) @classmethod def from_censys(cls, d: Dict): """Not supported by Censys right now.""" return None class HTTPComponentContent(BaseModel, ShodanDataHandler, CensysDataHandler, BinaryEdgeDataHandler, Logger): """Represents the content (body) of HTTP responses.""" raw: Optional[str] length: Optional[int] md5: Optional[str] sha1: Optional[str] sha256: Optional[str] murmur: Optional[str] favicon: Optional[HTTPComponentContentFavicon] robots_txt: Optional[HTTPComponentContentRobots] security_txt: Optional[HTTPComponentContentSecurity] @classmethod def from_shodan(cls, d: Dict): """Creates an instance of this class based on Shodan data given as dictionary.""" if not isinstance(d, Dict): raise TypeError(f"Method HTTPComponentContent.from_shodan expects parameter d to be a dictionary, " f"but it was {type(d)}.") favicon = None if "favicon" in d["http"]: cls.debug("Favicon key found in Shodan data.") favicon = HTTPComponentContentFavicon.from_shodan(d) security_txt = None if d["http"]["securitytxt"]: cls.debug("Security.txt key found in Shodan data.") security_txt = HTTPComponentContentSecurity.from_shodan(d) robots_txt = None if d["http"]["robots"]: cls.debug("Robots.txt key found in Shodan data.") robots_txt = HTTPComponentContentRobots.from_shodan(d) raw = d["http"]["html"].encode("utf-8") md5, sha1, sha256, murmur = hash_all(raw) return HTTPComponentContent( raw=raw, length=len(raw), md5=md5, sha1=sha1, sha256=sha256, murmur=murmur, favicon=favicon, robots_txt=robots_txt, security_txt=security_txt ) @classmethod def from_censys(cls, d: Dict): """Creates an instance of this class based on Censys (2.0) data given as dictionary.""" http = d["http"]["response"] raw = http["body"] if http["body_size"] > 0 else "" md5, sha1, sha256, murmur = hash_all(raw.encode("utf-8")) return HTTPComponentContent( raw=raw, length=len(raw), md5=md5, sha1=sha1, sha256=sha256, murmur=murmur, favicon=HTTPComponentContentFavicon.from_censys(d), robots_txt=HTTPComponentContentRobots.from_censys(d), security_txt=HTTPComponentContentSecurity.from_censys(d) ) @classmethod def from_binaryedge(cls, d: Union[Dict, List]): """Creates an instance of this class based on BinaryEdge data given as dictionary. Robots and Security.txt are not supported by BinaryEdge.""" http_response = d["result"]["data"]["response"] raw = http_response["body"]["content"] md5, sha1, sha256, murmur = hash_all(raw.encode("utf-8")) return HTTPComponentContent( raw=raw, length=len(raw), md5=md5, sha1=sha1, sha256=sha256, murmur=murmur, favicon=HTTPComponentContentFavicon.from_binaryedge(d) ) class HTTPComponent(BaseModel, ShodanDataHandler, CensysDataHandler, BinaryEdgeDataHandler): """Represents the HTTP component of services.""" headers: Optional[Dict[str, str]] content: Optional[HTTPComponentContent] @classmethod def from_shodan(cls, d: Dict): """Creates an instance of this class based on Shodan data given as dictionary.""" if not isinstance(d, Dict): raise TypeError(f"Method HTTPComponent.from_shodan expects parameter d to be a dictionary, " f"but it was {type(d)}.") content = HTTPComponentContent.from_shodan(d) banner = d["data"] lines = banner.split("\r\n") headers = {} for line in lines: if ":" in line: key, value = line.split(":", maxsplit=1) headers[key.strip()] = value.strip() return HTTPComponent( headers=headers, content=content ) @classmethod def from_censys(cls, d: Dict): http = d["http"]["response"] headers = {} for k, v in http["headers"].items(): if k[0] == "_": continue headers.update({ k.replace("_", "-"): " ".join(v) }) return HTTPComponent( headers=headers, content=HTTPComponentContent.from_censys(d) ) @classmethod def from_binaryedge(cls, d: Union[Dict, List]): http_response = d["result"]["data"]["response"] headers = http_response["headers"]["headers"] return HTTPComponent( headers=headers, content=HTTPComponentContent.from_binaryedge(d) ) ``` #### File: common_osint_model/models/tls.py ```python import binascii from datetime import datetime from typing import Dict, List, Optional, Union import pytz from cryptography.hazmat.primitives.hashes import MD5, SHA1, SHA256 from cryptography.x509 import OID_COMMON_NAME, ExtensionOID, DNSName, ExtensionNotFound from cryptography.x509 import load_pem_x509_certificate from pydantic import BaseModel from common_osint_model.models import ShodanDataHandler, CensysDataHandler, BinaryEdgeDataHandler, Logger class TLSComponentCertificateEntity(BaseModel, ShodanDataHandler, CensysDataHandler, BinaryEdgeDataHandler): """Represents certificate entities, typically issuer and subject.""" dn: Optional[str] country: Optional[str] state: Optional[str] locality: Optional[str] organization: Optional[str] organizational_unit: Optional[str] common_name: Optional[str] email_address: Optional[str] @classmethod def from_shodan(cls, d: Dict): """Creates an instance of this class using a given Shodan data dictionary.""" if all(key not in d for key in ["C", "L", "CN", "O", "ST"]): raise KeyError("The dictionary given to TLSComponentCertificateEntity.from_shodan is missing the typical " "shodan keys.") c = d.get("C", None) st = d.get("ST", None) l = d.get("L", None) o = d.get("O", None) ou = d.get("OU", None) cn = d.get("CN", None) email = d.get("emailAddress", None) dn = "" if c: dn += f"C={c}, " if st: dn += f"ST={st}, " if l: dn += f"L={l}, " if o: dn += f"O={o}, " if ou: dn += f"OU={ou}, " if cn: if not email: dn += f"CN={cn}" else: dn += f"CN={cn}/Email={email}" elif not cn and email: dn += f"Email={email}" if len(dn) > 0: while dn[-1] in [",", " "]: dn = dn[:-1] return TLSComponentCertificateEntity( dn=dn, country=c, state=st, locality=l, organization=o, organizational_unit=ou, common_name=cn, email=email ) @classmethod def from_censys(cls, d: Dict): """Creates an instance of this class based on Censys data given as dictionary.""" if all(key not in d for key in ["common_name", "locality", "organization", "organizational_unit", "province"]): raise KeyError("The dictionary given to TLSComponentCertificateEntity.from_shodan is missing the typical " "shodan keys.") c = d.get("country", []) st = d.get("province", []) l = d.get("locality", []) o = d.get("organization", []) ou = d.get("organizational_unit", []) cn = d.get("common_name", []) email = d.get("email_address", []) dn = "" if c: for item in c: dn += f"C={item}, " if st: for item in st: dn += f"ST={item}, " if l: for item in l: dn += f"L={item}, " if o: for item in o: dn += f"O={item}, " if ou: for item in ou: dn += f"OU={item}, " done = False if email and cn: if len(email) == 1 and len(cn) == 1: dn += f"CN={cn[0]}/Email={email[0]}" done = True else: for item in cn: dn += f"CN={item}, " for item in email: dn += f"Email={item}, " done = True if cn and not done: for item in cn: dn += f"CN={item}, " # This one is probably wrong. if email and not done: for item in email: dn += f"Email={item}, " while dn[-1] in [" ", ","]: dn = dn[:-1] return TLSComponentCertificateEntity( dn=dn, country=", ".join(c), state=", ".join(st), locality=", ".join(l), organization=", ".join(o), organizational_unit=", ".join(ou), common_name=", ".join(cn), email=", ".join(email) ) @classmethod def from_binaryedge(cls, d: Union[Dict, List]): c = d.get("country_name", None) st = d.get("state_or_province_name", None) l = d.get("locality_name", None) o = d.get("organization_name", None) ou = d.get("organizational_unit_name", None) cn = d.get("common_name", None) email = d.get("email_address", None) # Todo: Check if this key is actually correct dn = "" if c: dn += f"C={c}, " if st: dn += f"ST={st}, " if l: dn += f"L={l}, " if o: dn += f"O={o}, " if ou: dn += f"OU={ou}, " if cn: if not email: dn += f"CN={cn}" else: dn += f"CN={cn}/Email={email}" elif not cn and email: dn += f"Email={email}" while dn[-1] in [",", " "]: dn = dn[:-1] return TLSComponentCertificateEntity( dn=dn, country=c, state=st, locality=l, organization=o, organizational_unit=ou, common_name=cn, email=email ) class TLSComponentCertificate(BaseModel, ShodanDataHandler, CensysDataHandler, BinaryEdgeDataHandler, Logger): """Represents certificates.""" issuer: Optional[TLSComponentCertificateEntity] subject: Optional[TLSComponentCertificateEntity] issued: Optional[datetime] expires: Optional[datetime] expired: Optional[bool] # More specifically, this is a certificate extension, but we keep it here because it's easier this way. alternative_names: Optional[List[str]] # The certificate itself pem: Optional[str] md5: Optional[str] sha1: Optional[str] sha256: Optional[str] murmur: Optional[str] @property def domains(self) -> List[str]: domains = [] if self.subject.common_name: domains.append(self.subject.common_name) if self.alternative_names: domains.extend(self.alternative_names) return list(set(domains)) @classmethod def from_shodan(cls, d: Dict): """Creates an instance of this class based on Shodan data given as dictionary.""" if not isinstance(d, Dict): raise TypeError(f"Method TLSComponentCertificate.from_shodan expects parameter d to be a dictionary, " f"but it was {type(d)}.") issuer = TLSComponentCertificateEntity.from_shodan(d["ssl"]["cert"]["issuer"]) subject = TLSComponentCertificateEntity.from_shodan(d["ssl"]["cert"]["subject"]) issued = datetime.strptime(d["ssl"]["cert"]["issued"], "%Y%m%d%H%M%SZ") expires = datetime.strptime(d["ssl"]["cert"]["expires"], "%Y%m%d%H%M%SZ") expired = True if d["ssl"]["cert"]["expired"] in ["true", True] else False altnames = [] pem = None md5, sha1, sha256 = None, None, None for cert_pem in d["ssl"]["chain"]: cert = load_pem_x509_certificate(cert_pem.encode("utf-8")) # Check if this certificate is the leaf certificate by comparing the common name attributes = cert.subject.get_attributes_for_oid(OID_COMMON_NAME) for attribute in attributes: if attribute.value == subject.common_name: pem = cert_pem md5, sha1, sha256 = ( binascii.hexlify(cert.fingerprint(MD5())).decode("utf-8"), binascii.hexlify(cert.fingerprint(SHA1())).decode("utf-8"), binascii.hexlify(cert.fingerprint(SHA256())).decode("utf-8") ) try: ext = cert.extensions.get_extension_for_oid(ExtensionOID.SUBJECT_ALTERNATIVE_NAME) except ExtensionNotFound: continue altnames.extend(ext.value.get_values_for_type(DNSName)) if len(altnames) == 0: altnames = None else: # This removes duplicates altnames = list(set(altnames)) return TLSComponentCertificate( issuer=issuer, subject=subject, issued=issued, expires=expires, expired=expired, alternative_names=altnames, pem=pem, md5=md5, sha1=sha1, sha256=sha256 ) @classmethod def from_censys(cls, d: Dict): """Creates an instance of this class based on Censys data given as dictionary.""" cls.info("Censys does not provide raw certificate data, to hashes must be taken from the data and cannot be " "calculated.") return TLSComponentCertificate( issuer=TLSComponentCertificateEntity.from_censys(d["issuer"]), subject=TLSComponentCertificateEntity.from_censys(d["subject"]), issued=None, expires=None, expired=None, alternative_names=d.get("names", None), sha256=d["fingerprint"] ) @classmethod def from_binaryedge(cls, d: Union[Dict, List]): pem = d["as_pem"] data = d["as_dict"] cert = load_pem_x509_certificate(pem.encode("utf-8")) md5, sha1, sha256 = ( binascii.hexlify(cert.fingerprint(MD5())).decode("utf-8"), binascii.hexlify(cert.fingerprint(SHA1())).decode("utf-8"), binascii.hexlify(cert.fingerprint(SHA256())).decode("utf-8") ) issued = datetime.fromisoformat(data["validity"]["not_before"]).replace(tzinfo=pytz.utc) expires = datetime.fromisoformat(data["validity"]["not_after"]).replace(tzinfo=pytz.utc) expired = datetime.utcnow().replace(tzinfo=pytz.utc) < expires return TLSComponentCertificate( issuer=TLSComponentCertificateEntity.from_binaryedge(data["issuer"]), subject=TLSComponentCertificateEntity.from_binaryedge(data["subject"]), issued=issued, expires=expires, expired=expired, alternative_names=data["extensions"]["subject_alt_name"], pem=pem, md5=md5, sha1=sha1, sha256=sha256 ) class TLSComponent(BaseModel, ShodanDataHandler, CensysDataHandler, BinaryEdgeDataHandler): """Represents the TLS component of services.""" certificate: TLSComponentCertificate # Todo: Add other attributes relevant to TLS such as CipherSuits etc. @classmethod def from_shodan(cls, d: Dict): """Creates an instance of this class based on Shodan data given as dictionary.""" if not isinstance(d, Dict): raise TypeError(f"Method TLSComponent.from_shodan expects parameter d to be a dictionary, " f"but it was {type(d)}.") return TLSComponent( certificate=TLSComponentCertificate.from_shodan(d) ) @classmethod def from_censys(cls, d: Dict): tls = d["tls"] return TLSComponent( certificate=TLSComponentCertificate.from_censys(tls["certificates"]["leaf_data"]) ) @classmethod def from_binaryedge(cls, d: Union[Dict, List]): """Creates an instance of this class based on BinaryEdge data given as dictionary.""" certificate_chain = d["result"]["data"]["cert_info"]["certificate_chain"] return TLSComponent( certificate=TLSComponentCertificate.from_binaryedge(certificate_chain[0]) ) ```
{ "source": "3c7/larva", "score": 2 }
#### File: larva/commands/command.py ```python class Command: def __init__(self): pass def run(self, **kwargs): pass ``` #### File: larva/commands/config.py ```python from .command import Command from ..configurator import Configurator from click import echo import json class ConfigCommand(Command): def run(self, **kwargs): config_type = kwargs.get('type', None) mode_set = kwargs.get('mode_set', False) dump = kwargs.get('dump', False) clear = kwargs.get('clear', False) configurator = Configurator() if dump: echo(json.dumps(configurator.config, indent=4)) return if clear: configurator.config = {} configurator.save() echo('config cleared') return if not mode_set: echo(configurator.get_value(config_type)) return configurator.set_value(config_type, mode_set) configurator.save() echo('{} set'.format(mode_set)) ``` #### File: larva/larva/exceptions.py ```python class LarvaException(Exception): def __repr__(self): return self.message class AuthenticationFailureError(LarvaException): pass class NoUsernameGivenError(LarvaException): pass class NoURLGivenError(LarvaException): pass class CommandNotAvailableError(LarvaException): pass ``` #### File: larva/larva/larva.py ```python import click from .commander import Commander commander = Commander() # LARVA GROUP @click.group() def larva(): """ The commandline client to TheHive. If you find any bugs, please make sure to report them on https://github.com/3c7/larva/issues """ pass @click.command(name='list') def list_cases(**kwargs): """This lists all cases. Some options will get added, soon.""" commander.invoke('list', **kwargs) # CONFIG GROUP @click.group() def config(): """Manage larva configuration""" pass @click.command() @click.option('--set', 'mode_set', type=str, help='Set an username', default=False) def username(mode_set): """Get and set username""" commander.invoke('config', type='username', mode_set=mode_set) @click.command() @click.option('--set', 'mode_set', type=str, help='Set an url', default=False) def url(mode_set): """Get and set url""" commander.invoke('config', type='url', mode_set=mode_set) @click.command(name='get') def get_config(): """Dump the configuration file""" commander.invoke('config', dump=True) @click.command(name='clear') def clear_config(): """Clears the configuration file""" commander.invoke('config', clear=True) # END CONFIG GROUP # END LARVA GROUP larva.add_command(list_cases) larva.add_command(config) config.add_command(username) config.add_command(url) config.add_command(get_config) config.add_command(clear_config) if __name__ == '__main__': larva() ``` #### File: larva/larva/writer.py ```python from click import echo from termcolor import colored class Writer: """This class handles output""" def __init__(self): self.tlps = ['TLP:WHITE', 'TLP:GREEN', 'TLP:AMBER', 'TLP:RED\t'] self.severities = ['LOW', 'MID', 'HIGH'] self.colormap = [self.white, self.green, self.amber, self.red] def write_cases(self, cases): echo('####\tTLP\t\tSev.\tOwner\t\tTitle') echo('----\t---\t\t----\t-----\t\t-----') for case in cases: echo('{}\t{}\t{}\t{}\t\t{}'.format(case.get('caseId'), self.tlp(case.get('tlp')), self.severity(case.get('severity')), case.get('owner'), case.get('title'))) def tlp(self, t_num): return self.colormap[t_num](self.tlps[t_num]) def severity(self, s_num): return self.colormap[s_num](self.severities[s_num-1]) @staticmethod def red(string): return colored(string, 'red') @staticmethod def amber(string): return colored(string, 'yellow') @staticmethod def green(string): return colored(string, 'green') @staticmethod def white(string): return colored(string, 'white') ```
{ "source": "3c7/vt2m", "score": 2 }
#### File: vt2m/lib/lib.py ```python import json import re from datetime import datetime from typing import Generator, Union, List, Optional, Dict from urllib.parse import quote_plus, urlparse import requests from pymisp import MISPEvent, MISPObject from vt import Client as VTClient from vt2m.lib.output import print, print_err def vt_request(api_key: str, url: str): """Use this instead of the VT API client.""" headers = { "Accept": "application/json", "x-apikey": api_key } response = requests.get(url, headers=headers) if response.status_code > 302: print_err("[WARN] Status code received from VT API is > 302.") return response.json() def vt_query(api_key: str, query: str, limit: Optional[int]) -> List: """Queries VT API and yields a list of results.""" if not limit: limit = 100 with VTClient(apikey=api_key) as vt_client: response = vt_client.get(f"/intelligence/search?query={quote_plus(query)}&limit={limit}") results = response.json() return results.get("data", []) def process_results(results: Union[Generator, List], event: MISPEvent, comment: Optional[str], disable_output: bool = False, extract_domains: bool = False) -> List[MISPObject]: """Processes VT results using the specific methods per VT object type.""" created_objects = [] for result in results: if result["type"] == "file": created_objects.append( process_file( file=result["attributes"], event=event, comment=comment, disable_output=disable_output ) ) elif result["type"] == "url": created_objects.append( process_url( url=result["attributes"], event=event, comment=comment, disable_output=disable_output, extract_domain=extract_domains ) ) elif result["type"] == "domain": created_objects.append( process_domain( domain=result, event=event, comment=comment, disable_output=disable_output ) ) elif result["type"] == "ip-address": created_objects.append( process_ip( ip=result, event=event, comment=comment, disable_output=disable_output ) ) else: print_err(f"[ERR] Unknown entity type: {result['type']}") continue return created_objects def process_file(file: Dict, event: MISPEvent, comment: Optional[str] = None, disable_output: bool = False) -> MISPObject: """Adds files to MISP event as MISP objects.""" sha256 = file.get("sha256", None) if not sha256: raise KeyError("VirusTotal file object misses sha256 hash. This should not happen.") if not disable_output: print(f"[FILE] Processing {sha256}...") f_obj = get_object_if_available(event, "file", "sha256", sha256) if f_obj: return f_obj f_obj = event.add_object(name="file", comment=comment if comment else "") f_obj.add_attribute("md5", simple_value=file["md5"]) f_obj.add_attribute("sha1", simple_value=file["sha1"]) f_obj.add_attribute("sha256", simple_value=sha256) names = file.get("names", []) if len(names) > 0: for name in names: f_obj.add_attribute("filename", simple_value=name, to_ids=False) imp = file.get("pe_info", {}).get("imphash", None) if imp: f_obj.add_attribute("imphash", simple_value=imp) vhash = file.get("vhash", None) if vhash: f_obj.add_attribute("vhash", simple_value=vhash) tlsh = file.get("tlsh", None) if tlsh: f_obj.add_attribute("tlsh", simple_value=tlsh) telfhash = file.get("telfhash", None) if telfhash: f_obj.add_attribute("telfhash", simple_value=telfhash) creation_date = file.get("creation_date", None) if creation_date: creation_date = datetime.fromtimestamp(creation_date) f_obj.add_attribute("compilation-timestamp", type="datetime", value=creation_date) return f_obj def process_url(url: Dict, event: MISPEvent, comment: Optional[str] = None, disable_output: bool = False, extract_domain: bool = False) -> MISPObject: """Adds URLs to MISP event as MISP objects.""" url_string = url.get("url", None) if not url_string: raise KeyError("VirusTotal URL object missing the actual URL.") if not disable_output: print(f"[URL] Processing {url_string.replace('http', 'hxxp').replace('.', '[.]')}") _, domain, resource_path, _, query_string, _ = urlparse(url_string) port = None if domain.count(":") == 1: ip, port = domain.split(":") if 0 < int(port, base=10) < 65536: domain = ip u_obj = get_object_if_available(event, "url", "url", url_string) if u_obj: if extract_domain: create_domain_from_url(event, domain, u_obj, disable_output) return u_obj u_obj = event.add_object(name="url", comment=comment if comment else "") u_obj.add_attribute("url", simple_value=url_string) u_obj.add_attribute("domain", simple_value=domain, to_ids=False) if resource_path: u_obj.add_attribute("resource_path", simple_value=resource_path) if query_string: u_obj.add_attribute("query_string", simple_value=query_string) if port: u_obj.add_attribute("port", simple_value=port) u_obj.add_attribute("first-seen", type="datetime", value=datetime.fromtimestamp(url["first_submission_date"])) u_obj.add_attribute("last-seen", type="datetime", value=datetime.fromtimestamp(url["last_submission_date"])) if extract_domain: create_domain_from_url(event, domain, u_obj, disable_output) return u_obj def process_domain(domain: Dict, event: MISPEvent, comment: Optional[str] = None, disable_output: bool = False) -> MISPObject: """Adds a domain object to a MISP event. Instead of the attributes sub-dictionary, this function needs the complete VT object, in order to use the VT id.""" domain_name = domain.get("id", None) if not domain_name: raise KeyError("VirusTotal Domain object missing the ID.") if not disable_output: print(f"[DOMAIN] Processing {domain_name.replace('.', '[.]')}") d_obj = get_object_if_available(event, "domain-ip", "domain", domain_name) if d_obj: return d_obj domain = domain["attributes"] d_obj = event.add_object(name="domain-ip", comment=comment if comment else "") d_obj.add_attribute("domain", simple_value=domain_name) for record in domain.get("last_dns_records", []): t = record.get("type", None) if not t: continue if t == "NS": d_obj.add_attribute("domain", simple_value=record["value"], comment="NS record", to_ids=False) elif t == "A" or t == "AAAA": d_obj.add_attribute("ip", type="ip-dst", value=record["value"]) elif t == "MX": d_obj.add_attribute("domain", simple_value=record["value"], comment="MX record", to_ids=False) return d_obj def process_ip(ip: Dict, event: MISPEvent, comment: Optional[str] = None, disable_output: bool = False) -> MISPObject: """Adds a domain-ip object to the MISP event. Instead of the attributes sub-dictionary, this function needs the complete VT object, in order to use the VT id. """ ip_str = ip.get("id", None) if not ip_str: raise KeyError("VirusTotal IP object missing the ID.") if not disable_output: print(f"[IP] Processing {ip_str.replace('.', '[.]')}.") i_obj = get_object_if_available(event, "domain-ip", "ip", ip_str) if i_obj: return i_obj ip = ip["attributes"] i_obj = event.add_object(name="domain-ip", comment=comment if comment else "") i_obj.add_attribute("ip", type="ip-dst", value=ip_str) i_obj.add_attribute("text", simple_value=f"AS: {ip.get('as_owner', 'not available')}") cert = ip.get("last_https_certificate", None) if cert: cn = cert.get("subject", {}).get("CN", None) if cn: i_obj.add_attribute("domain", type="domain", value=cn, comment="Certificate Subject Common Name") for alt in cert.get("extensions", {}).get("subject_alternative_name", []): i_obj.add_attribute("domain", type="domain", value=alt, comment="Certificate Subject Alternative Name") return i_obj def process_submission(submission: Dict, event: MISPEvent, comment: Optional[str] = None, disable_output: bool = False) -> MISPObject: """Adds a virustotal-submission object to the given MISP event.""" s_id = submission.get("source_key") if not disable_output: print(f"[SUB] Processing submission from submitter {s_id}.") s_obj = get_object_if_available(event, "virustotal-submission", "submitter-id", s_id) if s_obj: return s_obj s_obj = event.add_object(name="virustotal-submission", comment=comment if comment else "") s_obj.add_attribute("submitter-id", type="text", value=s_id) country = submission.get("country", None) if country: s_obj.add_attribute("country", type="text", value=country) city = submission.get("city", None) if city: s_obj.add_attribute("city", type="text", value=city) interface = submission.get("interface", None) if interface: s_obj.add_attribute("interface", type="text", value=interface) upload_date = submission.get("date", None) if upload_date: upload_date = datetime.fromtimestamp(upload_date) s_obj.add_attribute("date", type="datetime", value=upload_date) filename = submission.get("filename", None) if filename: s_obj.add_attribute("filename", type="filename", value=filename) return s_obj def get_object_if_available(event: MISPEvent, object_name: str, attribute_relation: str, value: str) -> Union[MISPObject, None]: """Returns an object if it's already available in the MISP event.""" objects = event.get_objects_by_name(object_name) for obj in objects: attributes = obj.get_attributes_by_relation(attribute_relation) for attribute in attributes: if attribute.value == value: value = value.replace("http", "hxxp").replace(".", "[.]") print_err(f"[{object_name.upper().split('-')[0]}] Object with value {value} already available.") return obj return None def process_relations(api_key: str, objects: List[MISPObject], event: MISPEvent, relations_string: Optional[str], detections: Optional[int], disable_output: bool = False, extract_domains: bool = False, filter=None): """Creates related objects based on given relation string.""" # Todo: Add additional relations if not relations_string or len(relations_string) == 0: return if "," in relations_string: relations = relations_string.split(",") else: relations = [relations_string] file_relations = ["execution_parents", "compressed_parents", "bundled_files", "dropped_files"] url_relations = ["contacted_urls", "embedded_urls", "itw_urls"] domain_relations = ["contacted_domains", "embedded_domains", "itw_domains"] ip_relations = ["contacted_ips", "embedded_ips", "itw_ips"] user_account_relations = ["submissions"] for rel in relations: if rel not in file_relations and rel not in url_relations and rel not in domain_relations and \ rel not in ip_relations and rel not in user_account_relations: print_err(f"[REL] Relation {rel} not implemented (yet).") continue for obj in objects: r_objs = get_related_objects(api_key, obj, rel, disable_output) filtered = False for r_obj_dict in r_objs: if filter: filtered = False json_string = json.dumps(r_obj_dict) for f in filter: if f in json_string: if not disable_output: print(f"[FILTER] Filter {f} matched object {r_obj_dict.get('id', '<ID not given>')}, " f"skipping...") filtered = True break if filtered: continue r_obj_id = r_obj_dict.get("id", "<NO ID GIVEN>").replace(".", "[.]") # Check the detection stats_malicious = r_obj_dict["attributes"].get("last_analysis_stats", {}).get("malicious", 0) if detections and isinstance(detections, int): if not isinstance(stats_malicious, int): print_err("[REL] Detection stats for are not given as integer therefore skipping the " "check.") else: if stats_malicious < detections: if not disable_output: print(f"[REL] Skipping {r_obj_id} because malicious detections are lower than " f"{detections}.") continue if rel in file_relations: try: r_obj = process_file( file=r_obj_dict["attributes"], event=event, comment=f"Added via {rel} relation.", disable_output=True ) except KeyError as e: print_err(f"[ERR] File misses key {e}, skipping...") continue elif rel in url_relations: try: r_obj = process_url( url=r_obj_dict["attributes"], event=event, comment=f"Added via {rel} relation.", disable_output=True, extract_domain=extract_domains ) except KeyError as e: print_err(f"[ERR] URL misses key {e}, skipping...") continue elif rel in domain_relations: try: r_obj = process_domain( domain=r_obj_dict, event=event, comment=f"Added via {rel} relation.", disable_output=True ) except KeyError as e: print_err(f"[ERR] Domain misses key {e}, skipping...") continue elif rel in ip_relations: try: r_obj = process_ip( ip=r_obj_dict, event=event, comment=f"Added via {rel} relation.", disable_output=True ) except KeyError as e: print_err(f"[ERR] IP misses key {e}, skipping...") continue elif rel in user_account_relations: try: r_obj = process_submission( submission=r_obj_dict["attributes"], event=event, comment=f"Added via {rel} relation." ) except KeyError as e: print_err(f"[ERR] Submission misses key {e}, skipping...") continue else: print_err(f"[ERR] Could not process returned object \"{r_obj_id}\".") continue try: if rel == "execution_parents": add_reference(r_obj, obj.uuid, "executes") elif rel == "compressed_parents": add_reference(r_obj, obj.uuid, "contains") elif rel == "bundled_files": add_reference(obj, r_obj.uuid, "contains") elif rel == "dropped_files": add_reference(obj, r_obj.uuid, "drops") elif "embedded_" in rel: add_reference(obj, r_obj.uuid, "contains") elif "contacted_" in rel: add_reference(obj, r_obj.uuid, "connects-to") elif "itw_" in rel: add_reference(obj, r_obj.uuid, "downloaded-from") elif rel == "submissions": add_reference(r_obj, obj.uuid, "submitted") else: print_err(f"[REL] Could not determine relationship between {obj.uuid} and {r_obj.uuid}. " f"Adding as generic \"related-to\".") r_obj.add_reference(obj.uuid, "related-to") except AttributeError as ae: print_err(f"[ERR] Related object {r_obj_id} missing an attribute: {ae}") # If the related object is not none, let's dump it to see what's wrong if r_obj: print_err(f"[ERR] Remote object dump:\n{r_obj.to_json()}") continue def add_reference(obj: MISPObject, to_obj_uuid: str, relationship_type: str): """Adds a reference, if not already available.""" if not reference_available(obj, to_obj_uuid, relationship_type): obj.add_reference(to_obj_uuid, relationship_type) else: print_err(f"[REL] {obj.uuid} --{relationship_type}-> {to_obj_uuid} already available and therefore skipped.") def reference_available(obj: MISPObject, referenced_uuid: str, relationship_type: str) -> bool: """Loops over given relationships and returns true if any relationship references the given uuid and type.""" for ref in obj.references: if ref.referenced_uuid == referenced_uuid and ref.relationship_type == relationship_type: return True return False def get_related_objects(api_key: str, obj: MISPObject, rel: str, disable_output: bool = False) -> List[Dict]: """Gets related objects from VT.""" if obj.name == "file": vt_id = obj.get_attributes_by_relation("sha256")[0].value else: print_err("[REL] Currently only file objects are supported.") return [] if not disable_output: print(f"[REL] Receiving {rel} for {vt_id}...") with VTClient(api_key) as client: res = client.get(f"/files/{vt_id}/{rel}?limit=40").json() if "error" in res: print_err(f"[REL] Error during receiving related objects: {res['error']}.") return [] related_objects = [] for related_object in res.get("data", []): if "error" in related_object: print_err(f"[REL] File {related_object['id']} not available on VT.") else: related_objects.append(related_object) if not disable_output: print(f"[REL] Got {len(related_objects)} {rel} objects.") return related_objects def get_vt_notifications( vt_key: str, filter: Optional[str] = None, limit: int = 10 ) -> List: """Requests notifications from VT API. Applies an optional filter.""" url = f"https://www.virustotal.com/api/v3/intelligence/hunting_notification_files?limit={limit}" if filter: url += f"&filter={quote_plus(filter)}" data = vt_request(api_key=vt_key, url=url) if "error" in data: print_err(f"[ERR] Error occured during receiving notifications: {data['error']}") return [] return data["data"] def create_domain_from_url(event: MISPEvent, domain: str, u_obj: MISPObject, disable_output: bool = False): """Creates domain object from url object and adds a relation.""" if domain and len(domain) > 0: if re.fullmatch(r"[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}", domain): attribute_type = "ip" elif ":" in domain: attribute_type = "ip" else: attribute_type = "domain" d_obj = get_object_if_available(event, "domain-ip", attribute_type, domain) if not d_obj: d_obj = event.add_object(name="domain-ip", comment=f"Extracted {attribute_type}") d_obj.add_attribute(attribute_type, simple_value=domain) add_reference(u_obj, d_obj.uuid, "contains") if not disable_output: print(f"[REL] Extracted {attribute_type} from {object_represent_string(u_obj)}.") def object_represent_string(obj: MISPObject, include_uuid: bool = False) -> str: """Returns a string which represents the object.""" if obj.name == "file": repr = obj.get_attributes_by_relation("sha256").pop() elif obj.name == "domain-ip": repr = obj.get_attributes_by_relation("domain").pop() if not repr: repr = obj.get_attributes_by_relation("ip").pop() elif obj.name == "url": repr = obj.get_attributes_by_relation("url").pop() else: s = f"[ERR] Given object name/type unknown: {obj.name}." print_err(s) raise TypeError(s) if not repr: s = f"[ERR] Given object does not include its representative attribute: {obj.to_json()}" print_err(s) raise KeyError(s) defanged = repr.value.replace("http", "hxxp").replace(".", "[.]") if include_uuid: return defanged + "(" + obj.uuid + ")" return defanged def get_vt_retrohunts(vt_key: str, limit: Optional[int] = 40, filter: Optional[str] = "") -> List[Dict]: """Loads available retrohunts from the VT API.""" url = f"https://www.virustotal.com/api/v3/intelligence/retrohunt_jobs?limit={limit}" if filter: url += f"&filter={quote_plus(filter)}" data = vt_request(api_key=vt_key, url=url) if "error" in data: print_err(f"[ERR] Error occured during receiving notifications: {data['error']}") return [] return data["data"] def get_retrohunt_rules(r: Dict) -> List[str]: """Extracts rules used within a retrohunt.""" rules = [] for line in r.get("attributes", {}).get("rules", "").splitlines(): line = line.strip() if "rule" in line[:4]: line = line.split("{")[0] line = line.split(":")[0] line = line[4:].strip() rules.append(line) return rules def get_vt_retrohunt_files(vt_key: str, r_id: str, limit: Optional[int] = 100): """Retrieve file objects related to a retrohunt from VT.""" url = f"https://www.virustotal.com/api/v3/intelligence/retrohunt_jobs/{r_id}/matching_files?limit={limit}" data = vt_request(api_key=vt_key, url=url) if "error" in data: print_err(f"[ERR] Error occured during receiving notifications: {data['error']}") return [] return data["data"] ``` #### File: vt2m/lib/output.py ```python from datetime import datetime from typing import Dict import typer def print(*args, **kwargs) -> None: """Shadows python print method in order to use typer.echo instead.""" typer.echo(*args, **kwargs) def print_err(s): """Wrapper for printing to stderr.""" if s[:5] == "[ERR]": s = typer.style("[ERR]", fg="red") + s[5:] elif s[:6] == "[WARN]": s = typer.style("[WARN]", fg="yellow") + s[6:] print(s, err=True) def print_file_object(obj: Dict, *attributes: str) -> None: """Print file object with given attributes. Attributes are given in a list of strings which can end with a reserved length passed to the format string, e.g., `attributes.sha256,40`.""" for idx, attrib in enumerate(attributes): tmp = obj keys = attrib.split(".") if "," in keys[-1]: keys[-1], length = keys[-1].split(",", maxsplit=1) else: length = None try: for idx2, key in enumerate(keys): if idx2 == len(keys) - 1 and "date" in key: try: tmp = datetime.fromtimestamp(tmp[key]).isoformat() except: print_err(f"[WARN] Tried to parse {keys} as date, but was not successful.") tmp = [key] else: tmp = tmp[key] except KeyError: tmp = "<Not found>" if idx + 1 < len(attributes) and len(attributes) > 1: if length: print(f"{tmp:<{length}}", nl=False) else: print(tmp + " ", nl=False) else: if length: print(f"{tmp:<{length}}") else: print(tmp) ``` #### File: vt2m/subcommands/notifications.py ```python import os from typing import List import typer from pymisp import PyMISP from vt2m.lib.lib import print, print_err, get_vt_notifications, process_results, process_relations from vt2m.lib.output import print_file_object app = typer.Typer(help="Query and process VT notifications") @app.command("list") def list_notifications( vt_key: str = typer.Option(None, help="VT API Key - can also be set via VT_KEY env"), filter: str = typer.Option("", help="Filter to be used for filtering notifications"), limit: int = typer.Option(10, help="Amount of notifications to grab"), sha256: bool = typer.Option(False, "-s", "--sha256", help="Only show sha256 hashes") ): """List currently available VirusTotal notifications""" if not vt_key: vt_key = os.getenv("VT_KEY") if not all([vt_key]): print_err("[ERR] Not all required parameters were given.") raise typer.Abort() notifications = get_vt_notifications( vt_key=vt_key, filter=filter, limit=limit ) if len(notifications) == 0: print_err("[WARN] No notifications found.") raise typer.Exit(1) if not sha256: print(f"{'Rule':<40}{'Submission Date':<30}SHA256 Hash") for notification in notifications: if sha256: print_file_object(notification, "attributes.sha256") else: print_file_object( notification, "context_attributes.rule_name,40", "attributes.first_submission_date,30", "attributes.sha256" ) @app.command("import") def import_notifications( vt_key: str = typer.Option(None, help="VT API Key - can also be set via VT_KEY env"), filter: str = typer.Option("", help="Filter to be used for filtering notifications"), limit: int = typer.Option(10, help="Amount of notifications to grab"), uuid: str = typer.Option(..., "--uuid", "-u", help="MISP event UUID"), url: str = typer.Option(None, "--url", "-U", help="MISP URL - can be passed via MISP_URL env"), key: str = typer.Option(None, "--key", "-K", help="MISP API Key - can be passed via MISP_KEY env"), comment: str = typer.Option("", "--comment", "-c", help="Comment for new MISP objects"), relations: str = typer.Option("", "--relations", "-r", help="Relations to resolve via VirusTotal"), detections: int = typer.Option(0, "--detections", "-d", help="Amount of detections a related VirusTotal object must at least have"), extract_domains: bool = typer.Option(False, "--extract-domains", "-D", help="Extract domains from URL objects and add them as related object"), relation_filter: List[str] = typer.Option([], "--filter", "-f", help="Filtering related objects by matching this string(s) " "against json dumps of the objects"), quiet: bool = typer.Option(False, "--quiet", "-q", help="Disable output") ): """Import files related to notifications""" if not url: url = os.getenv("MISP_URL", None) if not key: key = os.getenv("MISP_KEY", None) if not vt_key: vt_key = os.getenv("VT_KEY", None) if not url or not key or not vt_key: print_err("[ERR] URL and key must be given either through param or env.") raise typer.Exit(-1) misp = PyMISP(url, key) misp.global_pythonify = True event = misp.get_event(uuid) files = get_vt_notifications( vt_key=vt_key, filter=filter, limit=limit ) created_objects = process_results( results=files, event=event, comment=comment, disable_output=quiet, extract_domains=extract_domains ) process_relations( api_key=vt_key, objects=created_objects, event=event, relations_string=relations, detections=detections, disable_output=quiet, extract_domains=extract_domains, filter=relation_filter ) event.published = False misp.update_event(event) ```
{ "source": "3Cement/MoviesDatabase---Django-REST-Framework", "score": 2 }
#### File: MoviesDatabase---Django-REST-Framework/movieapp/views.py ```python from django.shortcuts import render, redirect, get_object_or_404 from django.views import generic from rest_framework import viewsets, status from rest_framework.views import APIView from rest_framework.response import Response from .models import Movie, Comment from .forms import CommentForm from .serializers import MovieSerializer, CommentSerializer import json class MovieView(viewsets.ModelViewSet): queryset = Movie.objects.all() serializer_class = MovieSerializer class CommentView(viewsets.ModelViewSet): queryset = Comment.objects.all() serializer_class = CommentSerializer class MovieDetailView(generic.DetailView): model = Movie template_name = 'movie_detail.html' def get_context_data(self, **kwargs): context = super(MovieDetailView, self).get_context_data(**kwargs) context['comments_list'] = Comment.objects.all() return context def homepage(request): return render(request, 'home.html') def allmovies(request): movie_list = Movie.objects.all() return render(request, 'movie_list.html', {'movie_list': movie_list}) def allcomments(request): comment_list = Comment.objects.all() return render(request, 'comment_list.html', {'comment_list': comment_list}) def comments_by_movie_id(request, pk): movie=get_object_or_404(Movie, pk = pk) comment_list = Comment.objects.filter(movie=movie).all() return render(request, 'comment_list_by_id.html', {'comment_list': comment_list, 'movie': movie}) def add_comment(request): if request.method == 'POST': form = CommentForm(request.POST or None) if form.is_valid(): form.save() #messages.success(request, ('Comment has been added!')) return redirect('home.html') else: form = CommentForm() #messages.success(request, ('You CommentFOrm is invalid')) return redirect('home.html') else: form = CommentForm() return render(request, 'comment_form.html', { 'form': form, },) def results(request): print('Looking for results') movie = Movie() if request.GET.get('searchTitle') is not None: searchname = request.GET.get('searchTitle') movieData = movie.getOMDBdata(searchname) return render(request, 'home.html', {'movieData': movieData, 'search': True}) else: return render(request, 'home.html') ''' def get_movie(request, title): if request.method =='GET': try: movie = Movie.objects.get(title=title) response = json.dumps([{ 'Movie': movie.title, 'MovieData': movie.movieData }]) except: response = json.dumps([{ 'Error': 'No movie with that title' }]) return HttpResponse(response, content_type='text/json') ''' ```
{ "source": "3ch01c/blinkpy", "score": 3 }
#### File: blinkpy/blinkpy/sync_module.py ```python import logging from requests.structures import CaseInsensitiveDict from blinkpy import api from blinkpy.camera import BlinkCamera from blinkpy.helpers.constants import ONLINE _LOGGER = logging.getLogger(__name__) class BlinkSyncModule(): """Class to initialize sync module.""" def __init__(self, blink, network_name, network_id, camera_list): """ Initialize Blink sync module. :param blink: Blink class instantiation """ self.blink = blink self._auth_header = blink.auth_header self.network_id = network_id self.region = blink.region self.region_id = blink.region_id self.name = network_name self.serial = None self.status = None self.sync_id = None self.host = None self.summary = None self.network_info = None self.events = [] self.cameras = CaseInsensitiveDict({}) self.motion_interval = blink.motion_interval self.motion = {} self.last_record = {} self.camera_list = camera_list @property def attributes(self): """Return sync attributes.""" attr = { 'name': self.name, 'id': self.sync_id, 'network_id': self.network_id, 'serial': self.serial, 'status': self.status, 'region': self.region, 'region_id': self.region_id, } return attr @property def urls(self): """Return device urls.""" return self.blink.urls @property def online(self): """Return boolean system online status.""" return ONLINE[self.status] @property def arm(self): """Return status of sync module: armed/disarmed.""" try: return self.network_info['network']['armed'] except (KeyError, TypeError): return None @arm.setter def arm(self, value): """Arm or disarm system.""" if value: return api.request_system_arm(self.blink, self.network_id) return api.request_system_disarm(self.blink, self.network_id) def start(self): """Initialize the system.""" response = api.request_syncmodule(self.blink, self.network_id) try: self.summary = response['syncmodule'] self.network_id = self.summary['network_id'] except (TypeError, KeyError): _LOGGER.error(("Could not retrieve sync module information " "with response: %s"), response, exc_info=True) return False try: self.sync_id = self.summary['id'] self.serial = self.summary['serial'] self.status = self.summary['status'] except KeyError: _LOGGER.error("Could not extract some sync module info: %s", response, exc_info=True) self.network_info = api.request_network_status(self.blink, self.network_id) self.check_new_videos() try: for camera_config in self.camera_list: if 'name' not in camera_config: break name = camera_config['name'] self.cameras[name] = BlinkCamera(self) self.motion[name] = False camera_info = self.get_camera_info(camera_config['id']) self.cameras[name].update(camera_info, force_cache=True, force=True) except KeyError: _LOGGER.error("Could not create cameras instances for %s", self.name, exc_info=True) return False return True def get_events(self, **kwargs): """Retrieve events from server.""" force = kwargs.pop('force', False) response = api.request_sync_events(self.blink, self.network_id, force=force) try: return response['event'] except (TypeError, KeyError): _LOGGER.error("Could not extract events: %s", response, exc_info=True) return False def get_camera_info(self, camera_id): """Retrieve camera information.""" response = api.request_camera_info(self.blink, self.network_id, camera_id) try: return response['camera'][0] except (TypeError, KeyError): _LOGGER.error("Could not extract camera info: %s", response, exc_info=True) return [] def refresh(self, force_cache=False): """Get all blink cameras and pulls their most recent status.""" self.network_info = api.request_network_status(self.blink, self.network_id) self.check_new_videos() for camera_name in self.cameras.keys(): camera_id = self.cameras[camera_name].camera_id camera_info = self.get_camera_info(camera_id) self.cameras[camera_name].update(camera_info, force_cache=force_cache) def check_new_videos(self): """Check if new videos since last refresh.""" try: interval = self.blink.last_refresh - self.motion_interval*60 except TypeError: # This is the first start, so refresh hasn't happened yet. # No need to check for motion. return False resp = api.request_videos(self.blink, time=interval, page=1) for camera in self.cameras.keys(): self.motion[camera] = False try: info = resp['media'] except (KeyError, TypeError): _LOGGER.warning("Could not check for motion. Response: %s", resp) return False for entry in info: try: name = entry['device_name'] clip = entry['media'] timestamp = entry['created_at'] self.motion[name] = True self.last_record[name] = {'clip': clip, 'time': timestamp} except KeyError: _LOGGER.debug("No new videos since last refresh.") return True ``` #### File: blinkpy/tests/test_cameras.py ```python import unittest from unittest import mock from blinkpy import blinkpy from blinkpy.helpers.util import create_session, BlinkURLHandler from blinkpy.sync_module import BlinkSyncModule from blinkpy.camera import BlinkCamera import tests.mock_responses as mresp USERNAME = 'foobar' PASSWORD = '<PASSWORD>' CAMERA_CFG = { 'camera': [ { 'battery_voltage': 90, 'motion_alert': True, 'wifi_strength': -30, 'temperature': 68 } ] } @mock.patch('blinkpy.helpers.util.Session.send', side_effect=mresp.mocked_session_send) class TestBlinkCameraSetup(unittest.TestCase): """Test the Blink class in blinkpy.""" def setUp(self): """Set up Blink module.""" self.blink = blinkpy.Blink(username=USERNAME, password=PASSWORD) header = { 'Host': 'abc.zxc', 'TOKEN_AUTH': mresp.LOGIN_RESPONSE['authtoken']['authtoken'] } # pylint: disable=protected-access self.blink._auth_header = header self.blink.session = create_session() self.blink.urls = BlinkURLHandler('test') self.blink.sync['test'] = BlinkSyncModule(self.blink, 'test', 1234, []) self.camera = BlinkCamera(self.blink.sync['test']) self.camera.name = 'foobar' self.blink.sync['test'].cameras['foobar'] = self.camera def tearDown(self): """Clean up after test.""" self.blink = None def test_camera_update(self, mock_sess): """Test that we can properly update camera properties.""" config = { 'name': 'new', 'id': 1234, 'network_id': 5678, 'serial': '12345678', 'enabled': False, 'battery_voltage': 90, 'battery_state': 'ok', 'temperature': 68, 'wifi_strength': 4, 'thumbnail': '/thumb', } self.camera.last_record = ['1'] self.camera.sync.last_record = { 'new': { 'clip': '/test.mp4', 'time': '1970-01-01T00:00:00' } } mock_sess.side_effect = [ mresp.MockResponse({'temp': 71}, 200), 'test', 'foobar' ] self.camera.update(config) self.assertEqual(self.camera.name, 'new') self.assertEqual(self.camera.camera_id, '1234') self.assertEqual(self.camera.network_id, '5678') self.assertEqual(self.camera.serial, '12345678') self.assertEqual(self.camera.motion_enabled, False) self.assertEqual(self.camera.battery, 'ok') self.assertEqual(self.camera.temperature, 68) self.assertEqual(self.camera.temperature_c, 20) self.assertEqual(self.camera.temperature_calibrated, 71) self.assertEqual(self.camera.wifi_strength, 4) self.assertEqual(self.camera.thumbnail, 'https://rest-test.immedia-semi.com/thumb.jpg') self.assertEqual(self.camera.clip, 'https://rest-test.immedia-semi.com/test.mp4') self.assertEqual(self.camera.image_from_cache, 'test') self.assertEqual(self.camera.video_from_cache, 'foobar') def test_no_thumbnails(self, mock_sess): """Tests that thumbnail is 'None' if none found.""" mock_sess.return_value = 'foobar' self.camera.last_record = ['1'] config = { 'name': 'new', 'id': 1234, 'network_id': 5678, 'serial': '12345678', 'enabled': False, 'battery_voltage': 90, 'battery_state': 'ok', 'temperature': 68, 'wifi_strength': 4, 'thumbnail': '', } self.camera.sync.homescreen = { 'devices': [] } self.assertEqual(self.camera.temperature_calibrated, None) with self.assertLogs() as logrecord: self.camera.update(config, force=True) self.assertEqual(self.camera.thumbnail, None) self.assertEqual(self.camera.last_record, ['1']) self.assertEqual(self.camera.temperature_calibrated, 68) self.assertEqual( logrecord.output, [("WARNING:blinkpy.camera:Could not retrieve calibrated " "temperature."), ("WARNING:blinkpy.camera:Could not find thumbnail for camera new" "\nNoneType: None")] ) def test_no_video_clips(self, mock_sess): """Tests that we still proceed with camera setup with no videos.""" mock_sess.return_value = 'foobar' config = { 'name': 'new', 'id': 1234, 'network_id': 5678, 'serial': '12345678', 'enabled': False, 'battery_voltage': 90, 'battery_state': 'ok', 'temperature': 68, 'wifi_strength': 4, 'thumbnail': '/foobar', } self.camera.sync.homescreen = { 'devices': [] } self.camera.update(config, force_cache=True) self.assertEqual(self.camera.clip, None) self.assertEqual(self.camera.video_from_cache, None) ``` #### File: blinkpy/tests/test_util.py ```python import unittest from unittest import mock import time from blinkpy.helpers.util import Throttle, BlinkURLHandler class TestUtil(unittest.TestCase): """Test the helpers/util module.""" def setUp(self): """Initialize the blink module.""" def tearDown(self): """Tear down blink module.""" def test_throttle(self): """Test the throttle decorator.""" calls = [] @Throttle(seconds=5) def test_throttle(): calls.append(1) now = int(time.time()) now_plus_four = now + 4 now_plus_six = now + 6 test_throttle() self.assertEqual(1, len(calls)) # Call again, still shouldn't fire test_throttle() self.assertEqual(1, len(calls)) # Call with force test_throttle(force=True) self.assertEqual(2, len(calls)) # Call without throttle, shouldn't fire test_throttle() self.assertEqual(2, len(calls)) # Fake time as 4 seconds from now with mock.patch('time.time', return_value=now_plus_four): test_throttle() self.assertEqual(2, len(calls)) # Fake time as 6 seconds from now with mock.patch('time.time', return_value=now_plus_six): test_throttle() self.assertEqual(3, len(calls)) def test_throttle_per_instance(self): """Test that throttle is done once per instance of class.""" class Tester: """A tester class for throttling.""" def test(self): """Test the throttle.""" return True tester = Tester() throttled = Throttle(seconds=1)(tester.test) self.assertEqual(throttled(), True) self.assertEqual(throttled(), None) def test_throttle_on_two_methods(self): """Test that throttle works for multiple methods.""" class Tester: """A tester class for throttling.""" @Throttle(seconds=3) def test1(self): """Test function for throttle.""" return True @Throttle(seconds=5) def test2(self): """Test function for throttle.""" return True tester = Tester() now = time.time() now_plus_4 = now + 4 now_plus_6 = now + 6 self.assertEqual(tester.test1(), True) self.assertEqual(tester.test2(), True) self.assertEqual(tester.test1(), None) self.assertEqual(tester.test2(), None) with mock.patch('time.time', return_value=now_plus_4): self.assertEqual(tester.test1(), True) self.assertEqual(tester.test2(), None) with mock.patch('time.time', return_value=now_plus_6): self.assertEqual(tester.test1(), None) self.assertEqual(tester.test2(), True) def test_legacy_subdomains(self): """Test that subdomain can be set to legacy mode.""" urls = BlinkURLHandler('test') self.assertEqual(urls.subdomain, 'rest-test') urls = BlinkURLHandler('test', legacy=True) self.assertEqual(urls.subdomain, 'rest.test') ```
{ "source": "3cham/milvus", "score": 2 }
#### File: python_client/testcases/test_query_20.py ```python import pytest import random import numpy as np import pandas as pd from pymilvus import DefaultConfig from base.client_base import TestcaseBase from common.code_mapping import ConnectionErrorMessage as cem from common.code_mapping import CollectionErrorMessage as clem from common import common_func as cf from common import common_type as ct from common.common_type import CaseLabel, CheckTasks from utils.util_log import test_log as log import utils.utils as ut prefix = "query" exp_res = "exp_res" default_term_expr = f'{ct.default_int64_field_name} in [0, 1]' default_index_params = {"index_type": "IVF_SQ8", "metric_type": "L2", "params": {"nlist": 64}} binary_index_params = {"index_type": "BIN_IVF_FLAT", "metric_type": "JACCARD", "params": {"nlist": 64}} default_entities = ut.gen_entities(ut.default_nb, is_normal=True) default_pos = 5 default_int_field_name = "int64" default_float_field_name = "float" class TestQueryBase(TestcaseBase): """ test Query interface query(collection_name, expr, output_fields=None, partition_names=None, timeout=None) """ @pytest.mark.tags(CaseLabel.L0) def test_query(self): """ target: test query method: query with term expr expected: verify query result """ # create collection, insert default_nb, load collection collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2] int_values = vectors[0][ct.default_int64_field_name].values.tolist() pos = 5 term_expr = f'{ct.default_int64_field_name} in {int_values[:pos]}' res = vectors[0].iloc[0:pos, :1].to_dict('records') collection_w.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: res}) @pytest.mark.tags(CaseLabel.L1) def test_query_empty_collection(self): """ target: test query empty collection method: query on a empty collection expected: empty result """ c_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=c_name) collection_w.load() res, _ = collection_w.query(default_term_expr) assert len(res) == 0 @pytest.mark.tags(CaseLabel.L0) def test_query_auto_id_collection(self): """ target: test query with auto_id=True collection method: test query with auto id expected: query result is correct """ self._connect() df = cf.gen_default_dataframe_data(ct.default_nb) df[ct.default_int64_field_name] = None insert_res, _, = self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df, primary_field=ct.default_int64_field_name, auto_id=True) assert self.collection_wrap.num_entities == ct.default_nb ids = insert_res[1].primary_keys pos = 5 res = df.iloc[:pos, :1].to_dict('records') self.collection_wrap.load() # query with all primary keys term_expr_1 = f'{ct.default_int64_field_name} in {ids[:pos]}' for i in range(5): res[i][ct.default_int64_field_name] = ids[i] self.collection_wrap.query(term_expr_1, check_task=CheckTasks.check_query_results, check_items={exp_res: res}) # query with part primary keys term_expr_2 = f'{ct.default_int64_field_name} in {[ids[0], 0]}' self.collection_wrap.query(term_expr_2, check_task=CheckTasks.check_query_results, check_items={exp_res: res[:1]}) @pytest.mark.tags(CaseLabel.L1) def test_query_auto_id_not_existed_primary_values(self): """ target: test query on auto_id true collection method: 1.create auto_id true collection 2.query with not existed primary keys expected: query result is empty """ schema = cf.gen_default_collection_schema(auto_id=True) collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), schema=schema) df = cf.gen_default_dataframe_data(ct.default_nb) df.drop(ct.default_int64_field_name, axis=1, inplace=True) mutation_res, _ = collection_w.insert(data=df) assert collection_w.num_entities == ct.default_nb collection_w.load() term_expr = f'{ct.default_int64_field_name} in [0, 1, 2]' res, _ = collection_w.query(term_expr) assert len(res) == 0 @pytest.mark.tags(CaseLabel.L1) def test_query_expr_none(self): """ target: test query with none expr method: query with expr None expected: raise exception """ collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2] error = {ct.err_code: 0, ct.err_msg: "The type of expr must be string"} collection_w.query(None, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) def test_query_non_string_expr(self): """ target: test query with non-string expr method: query with non-string expr, eg 1, [] .. expected: raise exception """ collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2] exprs = [1, 2., [], {}, ()] error = {ct.err_code: 0, ct.err_msg: "The type of expr must be string"} for expr in exprs: collection_w.query(expr, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) def test_query_expr_invalid_string(self): """ target: test query with invalid expr method: query with invalid string expr expected: raise exception """ collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2] error = {ct.err_code: 1, ct.err_msg: "Invalid expression!"} exprs = ["12-s", "中文", "a", " "] for expr in exprs: collection_w.query(expr, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) @pytest.mark.skip(reason="repeat with test_query, waiting for other expr") def test_query_expr_term(self): """ target: test query with TermExpr method: query with TermExpr expected: query result is correct """ collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2] res = vectors[0].iloc[:2, :1].to_dict('records') collection_w.query(default_term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: res}) @pytest.mark.tags(CaseLabel.L1) def test_query_expr_not_existed_field(self): """ target: test query with not existed field method: query by term expr with fake field expected: raise exception """ collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix)) term_expr = 'field in [1, 2]' error = {ct.err_code: 1, ct.err_msg: "fieldName(field) not found"} collection_w.query(term_expr, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) def test_query_expr_non_primary_fields(self): """ target: test query on non-primary non-vector fields method: query on non-primary non-vector fields expected: verify query result """ self._connect() # construct dataframe and inert data df = pd.DataFrame({ ct.default_int64_field_name: pd.Series(data=[i for i in range(ct.default_nb)]), ct.default_int32_field_name: pd.Series(data=[np.int32(i) for i in range(ct.default_nb)], dtype="int32"), ct.default_int16_field_name: pd.Series(data=[np.int16(i) for i in range(ct.default_nb)], dtype="int16"), ct.default_float_field_name: pd.Series(data=[float(i) for i in range(ct.default_nb)], dtype="float32"), ct.default_double_field_name: pd.Series(data=[np.double(i) for i in range(ct.default_nb)], dtype="double"), ct.default_float_vec_field_name: cf.gen_vectors(ct.default_nb, ct.default_dim) }) self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df, primary_field=ct.default_int64_field_name) assert self.collection_wrap.num_entities == ct.default_nb self.collection_wrap.load() # query by non_primary non_vector scalar field non_primary_field = [ct.default_int32_field_name, ct.default_int16_field_name, ct.default_float_field_name, ct.default_double_field_name] # exp res: first two rows and all fields expect last vec field res = df.iloc[:2, :-1].to_dict('records') for field in non_primary_field: filter_values = df[field].tolist()[:2] term_expr = f'{field} in {filter_values}' self.collection_wrap.query(term_expr, output_fields=["*"], check_task=CheckTasks.check_query_results, check_items={exp_res: res}) @pytest.mark.tags(CaseLabel.L2) @pytest.mark.xfail(reason="issue #7521 #7522") def test_query_expr_by_bool_field(self): """ target: test query by bool field and output binary field method: 1.create and insert with [int64, float, bool, float_vec] fields 2.query by bool field, and output all int64, bool fields expected: verify query result and output fields """ self._connect() df = cf.gen_default_dataframe_data() bool_values = pd.Series(data=[True if i % 2 == 0 else False for i in range(ct.default_nb)], dtype="bool") df.insert(2, ct.default_bool_field_name, bool_values) self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df, primary_field=ct.default_int64_field_name) assert self.collection_wrap.num_entities == ct.default_nb self.collection_wrap.load() term_expr = f'{ct.default_bool_field_name} in [True]' res, _ = self.collection_wrap.query(term_expr, output_fields=[ct.default_bool_field_name]) assert len(res) == ct.default_nb / 2 assert set(res[0].keys()) == set(ct.default_int64_field_name, ct.default_bool_field_name) @pytest.mark.tags(CaseLabel.L2) def test_query_expr_by_int8_field(self): """ target: test query by int8 field method: 1.create and insert with [int64, float, int8, float_vec] fields 2.query by int8 field, and output all scalar fields expected: verify query result """ self._connect() # construct collection from dataFrame according to [int64, float, int8, float_vec] df = cf.gen_default_dataframe_data() int8_values = pd.Series(data=[np.int8(i) for i in range(ct.default_nb)], dtype="int8") df.insert(2, ct.default_int8_field_name, int8_values) self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df, primary_field=ct.default_int64_field_name) assert self.collection_wrap.num_entities == ct.default_nb # query expression term_expr = f'{ct.default_int8_field_name} in {[0]}' # expected query result res = [] # int8 range [-128, 127] so when nb=1200, there are many repeated int8 values equal to 0 for i in range(0, ct.default_nb, 256): res.extend(df.iloc[i:i + 1, :-1].to_dict('records')) self.collection_wrap.load() self.collection_wrap.query(term_expr, output_fields=["*"], check_task=CheckTasks.check_query_results, check_items={exp_res: res}) @pytest.mark.tags(CaseLabel.L1) def test_query_expr_wrong_term_keyword(self): """ target: test query with wrong term expr keyword method: query with wrong keyword term expr expected: raise exception """ collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2] expr_1 = f'{ct.default_int64_field_name} inn [1, 2]' error_1 = {ct.err_code: 1, ct.err_msg: f'unexpected token Identifier("inn")'} collection_w.query(expr_1, check_task=CheckTasks.err_res, check_items=error_1) expr_3 = f'{ct.default_int64_field_name} in not [1, 2]' error_3 = {ct.err_code: 1, ct.err_msg: 'right operand of the InExpr must be array'} collection_w.query(expr_3, check_task=CheckTasks.err_res, check_items=error_3) @pytest.mark.tags(CaseLabel.L1) @pytest.mark.parametrize("field", [ct.default_int64_field_name, ct.default_float_field_name]) def test_query_expr_not_in_term(self, field): """ target: test query with `not in` expr method: query with not in expr expected: verify query result """ self._connect() df = cf.gen_default_dataframe_data() self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df, primary_field=ct.default_int64_field_name) assert self.collection_wrap.num_entities == ct.default_nb self.collection_wrap.load() values = df[field].tolist() pos = 100 term_expr = f'{field} not in {values[pos:]}' res = df.iloc[:pos, :2].to_dict('records') self.collection_wrap.query(term_expr, output_fields=["*"], check_task=CheckTasks.check_query_results, check_items={exp_res: res}) @pytest.mark.tags(CaseLabel.L2) @pytest.mark.parametrize("pos", [0, ct.default_nb]) def test_query_expr_not_in_empty_and_all(self, pos): """ target: test query with `not in` expr method: query with `not in` expr for (non)empty collection expected: verify query result """ self._connect() df = cf.gen_default_dataframe_data() self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df, primary_field=ct.default_int64_field_name) assert self.collection_wrap.num_entities == ct.default_nb self.collection_wrap.load() int64_values = df[ct.default_int64_field_name].tolist() term_expr = f'{ct.default_int64_field_name} not in {int64_values[pos:]}' res = df.iloc[:pos, :1].to_dict('records') self.collection_wrap.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: res}) @pytest.mark.tag(CaseLabel.L1) def test_query_expr_random_values(self): """ target: test query with random filter values method: query with random filter values, like [0, 2, 4, 3] expected: correct query result """ self._connect() df = cf.gen_default_dataframe_data(nb=100) log.debug(df.head(5)) self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df, primary_field=ct.default_int64_field_name) assert self.collection_wrap.num_entities == 100 self.collection_wrap.load() # random_values = [random.randint(0, ct.default_nb) for _ in range(4)] random_values = [0, 2, 4, 3] term_expr = f'{ct.default_int64_field_name} in {random_values}' res = df.iloc[random_values, :1].to_dict('records') self.collection_wrap.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: res}) @pytest.mark.tag(CaseLabel.L1) def test_query_expr_not_in_random(self): """ target: test query with fixed filter values method: query with fixed filter values expected: correct query result """ self._connect() df = cf.gen_default_dataframe_data(nb=50) log.debug(df.head(5)) self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df, primary_field=ct.default_int64_field_name) assert self.collection_wrap.num_entities == 50 self.collection_wrap.load() random_values = [i for i in range(10, 50)] log.debug(f'random values: {random_values}') random.shuffle(random_values) term_expr = f'{ct.default_int64_field_name} not in {random_values}' res = df.iloc[:10, :1].to_dict('records') self.collection_wrap.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: res}) @pytest.mark.tags(CaseLabel.L1) def test_query_expr_non_array_term(self): """ target: test query with non-array term expr method: query with non-array term expr expected: raise exception """ exprs = [f'{ct.default_int64_field_name} in 1', f'{ct.default_int64_field_name} in "in"', f'{ct.default_int64_field_name} in (mn)'] collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2] error = {ct.err_code: 1, ct.err_msg: "right operand of the InExpr must be array"} for expr in exprs: collection_w.query(expr, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) def test_query_expr_empty_term_array(self): """ target: test query with empty array term expr method: query with empty term expr expected: empty result """ term_expr = f'{ct.default_int64_field_name} in []' collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2] res, _ = collection_w.query(term_expr) assert len(res) == 0 @pytest.mark.tags(CaseLabel.L1) def test_query_expr_inconsistent_mix_term_array(self): """ target: test query with term expr that field and array are inconsistent or mix type method: 1.query with int field and float values 2.query with term expr that has int and float type value expected: raise exception """ collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix)) int_values = [[1., 2.], [1, 2.]] error = {ct.err_code: 1, ct.err_msg: "type mismatch"} for values in int_values: term_expr = f'{ct.default_int64_field_name} in {values}' collection_w.query(term_expr, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) def test_query_expr_non_constant_array_term(self): """ target: test query with non-constant array term expr method: query with non-constant array expr expected: raise exception """ collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2] constants = [[1], (), {}] error = {ct.err_code: 1, ct.err_msg: "unsupported leaf node"} for constant in constants: term_expr = f'{ct.default_int64_field_name} in [{constant}]' collection_w.query(term_expr, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) def test_query_output_field_none_or_empty(self): """ target: test query with none and empty output field method: query with output field=None, field=[] expected: return primary field """ collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2] for fields in [None, []]: res, _ = collection_w.query(default_term_expr, output_fields=fields) assert list(res[0].keys()) == [ct.default_int64_field_name] @pytest.mark.tags(CaseLabel.L0) def test_query_output_one_field(self): """ target: test query with output one field method: query with output one field expected: return one field """ collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2] res, _ = collection_w.query(default_term_expr, output_fields=[ct.default_float_field_name]) assert set(res[0].keys()) == set([ct.default_int64_field_name, ct.default_float_field_name]) @pytest.mark.tags(CaseLabel.L1) def test_query_output_all_fields(self): """ target: test query with none output field method: query with output field=None expected: return all fields """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data() collection_w.insert(df) assert collection_w.num_entities == ct.default_nb all_fields = [ct.default_int64_field_name, ct.default_float_field_name, ct.default_float_vec_field_name] res = df.iloc[:2].to_dict('records') collection_w.load() actual_res, _ = collection_w.query(default_term_expr, output_fields=all_fields, check_task=CheckTasks.check_query_results, check_items={exp_res: res, "with_vec": True}) assert set(actual_res[0].keys()) == set(all_fields) @pytest.mark.tags(CaseLabel.L1) def test_query_output_float_vec_field(self): """ target: test query with vec output field method: specify vec field as output field expected: return primary field and vec field """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data() collection_w.insert(df) assert collection_w.num_entities == ct.default_nb fields = [[ct.default_float_vec_field_name], [ct.default_int64_field_name, ct.default_float_vec_field_name]] res = df.loc[:1, [ct.default_int64_field_name, ct.default_float_vec_field_name]].to_dict('records') collection_w.load() for output_fields in fields: collection_w.query(default_term_expr, output_fields=output_fields, check_task=CheckTasks.check_query_results, check_items={exp_res: res, "with_vec": True}) @pytest.mark.tags(CaseLabel.L1) @pytest.mark.parametrize("vec_fields", [[cf.gen_float_vec_field(name="float_vector1")]]) def test_query_output_multi_float_vec_field(self, vec_fields): """ target: test query and output multi float vec fields method: a.specify multi vec field as output b.specify output_fields with wildcard % expected: verify query result """ # init collection with two float vector fields schema = cf.gen_schema_multi_vector_fields(vec_fields) collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), schema=schema) df = cf.gen_dataframe_multi_vec_fields(vec_fields=vec_fields) collection_w.insert(df) assert collection_w.num_entities == ct.default_nb # query with two vec output_fields output_fields = [ct.default_int64_field_name, ct.default_float_vec_field_name] for vec_field in vec_fields: output_fields.append(vec_field.name) res = df.loc[:1, output_fields].to_dict('records') collection_w.load() collection_w.query(default_term_expr, output_fields=output_fields, check_task=CheckTasks.check_query_results, check_items={exp_res: res, "with_vec": True}) @pytest.mark.tags(CaseLabel.L1) @pytest.mark.parametrize("vec_fields", [[cf.gen_binary_vec_field()], [cf.gen_binary_vec_field(), cf.gen_binary_vec_field("binary_vec1")]]) def test_query_output_mix_float_binary_field(self, vec_fields): """ target: test query and output mix float and binary vec fields method: a.specify mix vec field as output b.specify output_fields with wildcard % expected: output binary vector and float vec """ # init collection with two float vector fields schema = cf.gen_schema_multi_vector_fields(vec_fields) collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix), schema=schema) df = cf.gen_dataframe_multi_vec_fields(vec_fields=vec_fields) collection_w.insert(df) assert collection_w.num_entities == ct.default_nb # query with two vec output_fields output_fields = [ct.default_int64_field_name, ct.default_float_vec_field_name] for vec_field in vec_fields: output_fields.append(vec_field.name) res = df.loc[:1, output_fields].to_dict('records') collection_w.load() collection_w.query(default_term_expr, output_fields=output_fields, check_task=CheckTasks.check_query_results, check_items={exp_res: res, "with_vec": True}) # query with wildcard % collection_w.query(default_term_expr, output_fields=["%"], check_task=CheckTasks.check_query_results, check_items={exp_res: res, "with_vec": True}) @pytest.mark.tags(CaseLabel.L1) def test_query_output_binary_vec_field(self): """ target: test query with binary vec output field method: specify binary vec field as output field expected: return primary field and binary vec field """ collection_w, vectors = self.init_collection_general(prefix, insert_data=True, is_binary=True)[0:2] fields = [[ct.default_binary_vec_field_name], [ct.default_int64_field_name, ct.default_binary_vec_field_name]] for output_fields in fields: res, _ = collection_w.query(default_term_expr, output_fields=output_fields) assert list(res[0].keys()) == fields[-1] @pytest.mark.tags(CaseLabel.L1) def test_query_output_primary_field(self): """ target: test query with output field only primary field method: specify int64 primary field as output field expected: return int64 field """ collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2] res, _ = collection_w.query(default_term_expr, output_fields=[ct.default_int64_field_name]) assert list(res[0].keys()) == [ct.default_int64_field_name] @pytest.mark.tags(CaseLabel.L1) def test_query_output_not_existed_field(self): """ target: test query output not existed field method: query with not existed output field expected: raise exception """ collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2] error = {ct.err_code: 1, ct.err_msg: 'Field int not exist'} output_fields = [["int"], [ct.default_int64_field_name, "int"]] for fields in output_fields: collection_w.query(default_term_expr, output_fields=fields, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L2) @pytest.mark.xfail(reason="exception not MilvusException") def test_query_invalid_output_fields(self): """ target: test query with invalid output fields method: query with invalid field fields expected: raise exception """ collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2] output_fields = ["12-s", 1, [1, "2", 3], (1,), {1: 1}] error = {ct.err_code: 0, ct.err_msg: f'Invalid query format. \'output_fields\' must be a list'} for fields in output_fields: collection_w.query(default_term_expr, output_fields=fields, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L0) def test_query_output_fields_simple_wildcard(self): """ target: test query output_fields with simple wildcard (* and %) method: specify output_fields as "*" and "*", "%" expected: output all scale field; output all fields """ # init collection with fields: int64, float, float_vec, float_vector1 collection_w, df = self.init_multi_fields_collection_wrap(cf.gen_unique_str(prefix)) collection_w.load() # query with wildcard scale(*) output_fields = [ct.default_int64_field_name, ct.default_float_field_name] res = df.loc[:1, output_fields].to_dict('records') collection_w.query(default_term_expr, output_fields=["*"], check_task=CheckTasks.check_query_results, check_items={exp_res: res}) # query with wildcard % output_fields2 = [ct.default_int64_field_name, ct.default_float_vec_field_name, ct.another_float_vec_field_name] res2 = df.loc[:1, output_fields2].to_dict('records') collection_w.query(default_term_expr, output_fields=["%"], check_task=CheckTasks.check_query_results, check_items={exp_res: res2, "with_vec": True}) # query with wildcard all fields: vector(%) and scale(*) res3 = df.iloc[:2].to_dict('records') collection_w.query(default_term_expr, output_fields=["*", "%"], check_task=CheckTasks.check_query_results, check_items={exp_res: res3, "with_vec": True}) @pytest.mark.tags(CaseLabel.L1) def test_query_output_fields_part_scale_wildcard(self): """ target: test query output_fields with part wildcard method: specify output_fields as wildcard and part field expected: verify query result """ # init collection with fields: int64, float, float_vec, float_vector1 collection_w, df = self.init_multi_fields_collection_wrap(cf.gen_unique_str(prefix)) # query with output_fields=["*", float_vector) res = df.iloc[:2, :3].to_dict('records') collection_w.load() collection_w.query(default_term_expr, output_fields=["*", ct.default_float_vec_field_name], check_task=CheckTasks.check_query_results, check_items={exp_res: res, "with_vec": True}) # query with output_fields=["*", float) res2 = df.iloc[:2, :2].to_dict('records') collection_w.load() collection_w.query(default_term_expr, output_fields=["*", ct.default_float_field_name], check_task=CheckTasks.check_query_results, check_items={exp_res: res2}) @pytest.mark.tags(CaseLabel.L1) def test_query_output_fields_part_vector_wildcard(self): """ target: test query output_fields with part wildcard method: specify output_fields as wildcard and part field expected: verify query result """ # init collection with fields: int64, float, float_vec, float_vector1 collection_w, df = self.init_multi_fields_collection_wrap(cf.gen_unique_str(prefix)) collection_w.load() # query with output_fields=["%", float), expected: all fields res = df.iloc[:2].to_dict('records') collection_w.query(default_term_expr, output_fields=["%", ct.default_float_field_name], check_task=CheckTasks.check_query_results, check_items={exp_res: res, "with_vec": True}) # query with output_fields=["%", float_vector), expected: int64, float_vector, float_vector1 output_fields = [ct.default_int64_field_name, ct.default_float_vec_field_name, ct.another_float_vec_field_name] res2 = df.loc[:1, output_fields].to_dict('records') collection_w.query(default_term_expr, output_fields=["%", ct.default_float_vec_field_name], check_task=CheckTasks.check_query_results, check_items={exp_res: res2, "with_vec": True}) @pytest.mark.tags(CaseLabel.L1) @pytest.mark.parametrize("output_fields", [["*%"], ["**"], ["*", "@"]]) def test_query_invalid_wildcard(self, output_fields): """ target: test query with invalid output wildcard method: output_fields is invalid output wildcard expected: raise exception """ # init collection with fields: int64, float, float_vec, float_vector1 collection_w, df = self.init_multi_fields_collection_wrap(cf.gen_unique_str(prefix)) collection_w.load() # query with invalid output_fields error = {ct.err_code: 1, ct.err_msg: f"Field {output_fields[-1]} not exist"} collection_w.query(default_term_expr, output_fields=output_fields, check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L0) def test_query_partition(self): """ target: test query on partition method: create a partition and query expected: verify query result """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) partition_w = self.init_partition_wrap(collection_wrap=collection_w) df = cf.gen_default_dataframe_data(ct.default_nb) partition_w.insert(df) assert collection_w.num_entities == ct.default_nb partition_w.load() res = df.iloc[:2, :1].to_dict('records') collection_w.query(default_term_expr, partition_names=[partition_w.name], check_task=CheckTasks.check_query_results, check_items={exp_res: res}) @pytest.mark.tags(CaseLabel.L1) def test_query_partition_without_loading(self): """ target: test query on partition without loading method: query on partition and no loading expected: raise exception """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) partition_w = self.init_partition_wrap(collection_wrap=collection_w) df = cf.gen_default_dataframe_data(ct.default_nb) partition_w.insert(df) assert partition_w.num_entities == ct.default_nb error = {ct.err_code: 1, ct.err_msg: f'collection {collection_w.name} was not loaded into memory'} collection_w.query(default_term_expr, partition_names=[partition_w.name], check_task=CheckTasks.err_res, check_items=error) @pytest.mark.tags(CaseLabel.L1) def test_query_default_partition(self): """ target: test query on default partition method: query on default partition expected: verify query result """ collection_w, vectors = self.init_collection_general(prefix, insert_data=True)[0:2] res = vectors[0].iloc[:2, :1].to_dict('records') collection_w.query(default_term_expr, partition_names=[ct.default_partition_name], check_task=CheckTasks.check_query_results, check_items={exp_res: res}) @pytest.mark.tags(CaseLabel.L1) def test_query_empty_partition(self): """ target: test query on empty partition method: query on a empty collection expected: empty query result """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) partition_w = self.init_partition_wrap(collection_wrap=collection_w) assert partition_w.is_empty partition_w.load() res, _ = collection_w.query(default_term_expr, partition_names=[partition_w.name]) assert len(res) == 0 @pytest.mark.tags(CaseLabel.L1) def test_query_not_existed_partition(self): """ target: test query on a not existed partition method: query on not existed partition expected: raise exception """ collection_w = self.init_collection_wrap(cf.gen_unique_str(prefix)) collection_w.load() partition_names = cf.gen_unique_str() error = {ct.err_code: 1, ct.err_msg: f'PartitonName: {partition_names} not found'} collection_w.query(default_term_expr, partition_names=[partition_names], check_task=CheckTasks.err_res, check_items=error) class TestQueryOperation(TestcaseBase): """ ****************************************************************** The following cases are used to test query interface operations ****************************************************************** """ @pytest.mark.tags(CaseLabel.L2) # @pytest.mark.parametrize("collection_name", [cf.gen_unique_str(prefix)]) def test_query_without_connection(self): """ target: test query without connection method: close connect and query expected: raise exception """ # init a collection with default connection collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) # remove default connection self.connection_wrap.remove_connection(alias=DefaultConfig.DEFAULT_USING) # list connection to check self.connection_wrap.list_connections(check_task=ct.CheckTasks.ccr, check_items={ct.list_content: []}) # query after remove default connection collection_w.query(default_term_expr, check_task=CheckTasks.err_res, check_items={ct.err_code: 0, ct.err_msg: cem.ConnectFirst}) @pytest.mark.tags(CaseLabel.L1) # @pytest.mark.parametrize("collection_name, data", # [(cf.gen_unique_str(prefix), cf.gen_default_list_data(ct.default_nb))]) def test_query_without_loading(self): """ target: test query without loading method: no loading before query expected: raise exception """ # init a collection with default connection collection_name = cf.gen_unique_str(prefix) collection_w = self.init_collection_wrap(name=collection_name) # insert data to collection collection_w.insert(data=cf.gen_default_list_data(ct.default_nb)) # check number of entities and that method calls the flush interface assert collection_w.num_entities == ct.default_nb # query without load collection_w.query(default_term_expr, check_task=CheckTasks.err_res, check_items={ct.err_code: 1, ct.err_msg: clem.CollNotLoaded % collection_name}) @pytest.mark.tags(CaseLabel.L1) @pytest.mark.parametrize("term_expr", [f'{ct.default_int64_field_name} in [0]']) def test_query_expr_single_term_array(self, term_expr): """ target: test query with single array term expr method: query with single array value expected: query result is one entity """ # init a collection and insert data collection_w, vectors, binary_raw_vectors = self.init_collection_general(prefix, insert_data=True)[0:3] # query the first row of data check_vec = vectors[0].iloc[:, [0]][0:1].to_dict('records') collection_w.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: check_vec}) @pytest.mark.tags(CaseLabel.L1) @pytest.mark.parametrize("term_expr", [f'{ct.default_int64_field_name} in [0]']) def test_query_binary_expr_single_term_array(self, term_expr, check_content): """ target: test query with single array term expr method: query with single array value expected: query result is one entity """ # init a collection and insert data collection_w, vectors, binary_raw_vectors = self.init_collection_general(prefix, insert_data=True, is_binary=True)[0:3] # query the first row of data check_vec = vectors[0].iloc[:, [0]][0:1].to_dict('records') collection_w.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: check_vec}) @pytest.mark.tags(CaseLabel.L2) def test_query_expr_all_term_array(self): """ target: test query with all array term expr method: query with all array value expected: verify query result """ # init a collection and insert data collection_w, vectors, binary_raw_vectors = self.init_collection_general(prefix, insert_data=True)[0:3] # data preparation int_values = vectors[0][ct.default_int64_field_name].values.tolist() term_expr = f'{ct.default_int64_field_name} in {int_values}' check_vec = vectors[0].iloc[:, [0]][0:len(int_values)].to_dict('records') # query all array value collection_w.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: check_vec}) @pytest.mark.tags(CaseLabel.L1) def test_query_expr_half_term_array(self): """ target: test query with half array term expr method: query with half array value expected: verify query result """ half = ct.default_nb // 2 collection_w, partition_w, df_partition, df_default = self.insert_entities_into_two_partitions_in_half(half) int_values = df_default[ct.default_int64_field_name].values.tolist() term_expr = f'{ct.default_int64_field_name} in {int_values}' res, _ = collection_w.query(term_expr) assert len(res) == len(int_values) @pytest.mark.tags(CaseLabel.L2) def test_query_expr_repeated_term_array(self): """ target: test query with repeated term array on primary field with unique value method: query with repeated array value expected: return hit entities, no repeated """ collection_w, vectors, binary_raw_vectors = self.init_collection_general(prefix, insert_data=True)[0:3] int_values = [0, 0, 0, 0] term_expr = f'{ct.default_int64_field_name} in {int_values}' res, _ = collection_w.query(term_expr) assert len(res) == 1 assert res[0][ct.default_int64_field_name] == int_values[0] @pytest.mark.tags(CaseLabel.L1) def test_query_dup_ids_dup_term_array(self): """ target: test query on duplicate primary keys with dup term array method: 1.create collection and insert dup primary keys 2.query with dup term array expected: todo """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data(nb=100) df[ct.default_int64_field_name] = 0 mutation_res, _ = collection_w.insert(df) assert mutation_res.primary_keys == df[ct.default_int64_field_name].tolist() collection_w.load() term_expr = f'{ct.default_int64_field_name} in {[0, 0, 0]}' res = df.iloc[:, :2].to_dict('records') collection_w.query(term_expr, output_fields=["*"], check_items=CheckTasks.check_query_results, check_task={exp_res: res}) @pytest.mark.tags(CaseLabel.L0) def test_query_after_index(self): """ target: test query after creating index method: query after index expected: query result is correct """ collection_w, vectors, binary_raw_vectors = self.init_collection_general(prefix, insert_data=True)[0:3] default_field_name = ct.default_float_vec_field_name collection_w.create_index(default_field_name, default_index_params) collection_w.load() int_values = [0] term_expr = f'{ct.default_int64_field_name} in {int_values}' check_vec = vectors[0].iloc[:, [0]][0:len(int_values)].to_dict('records') collection_w.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: check_vec}) @pytest.mark.tags(CaseLabel.L1) def test_query_after_search(self): """ target: test query after search method: query after search expected: query result is correct """ limit = 1000 nb_old = 500 collection_w, vectors, binary_raw_vectors, insert_ids = \ self.init_collection_general(prefix, True, nb_old) # 2. search for original data after load vectors_s = [[random.random() for _ in range(ct.default_dim)] for _ in range(ct.default_nq)] collection_w.search(vectors_s[:ct.default_nq], ct.default_float_vec_field_name, ct.default_search_params, limit, "int64 >= 0", check_task=CheckTasks.check_search_results, check_items={"nq": ct.default_nq, "limit": nb_old, "ids": insert_ids}) # check number of entities and that method calls the flush interface assert collection_w.num_entities == nb_old term_expr = f'{ct.default_int64_field_name} in [0, 1]' check_vec = vectors[0].iloc[:, [0]][0:2].to_dict('records') collection_w.query(term_expr, check_task=CheckTasks.check_query_results, check_items={exp_res: check_vec}) @pytest.mark.tags(CaseLabel.L1) def test_query_output_vec_field_after_index(self): """ target: test query output vec field after index method: create index and specify vec field as output field expected: return primary field and vec field """ collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) df = cf.gen_default_dataframe_data(nb=5000) collection_w.insert(df) assert collection_w.num_entities == 5000 fields = [ct.default_int64_field_name, ct.default_float_vec_field_name] collection_w.create_index(ct.default_float_vec_field_name, default_index_params) assert collection_w.has_index()[0] res = df.loc[:1, [ct.default_int64_field_name, ct.default_float_vec_field_name]].to_dict('records') collection_w.load() collection_w.query(default_term_expr, output_fields=fields, check_task=CheckTasks.check_query_results, check_items={exp_res: res, "with_vec": True}) @pytest.mark.tags(CaseLabel.L2) def test_query_output_binary_vec_field_after_index(self): """ target: test query output vec field after index method: create index and specify vec field as output field expected: return primary field and vec field """ collection_w, vectors = self.init_collection_general(prefix, insert_data=True, is_binary=True)[0:2] fields = [ct.default_int64_field_name, ct.default_binary_vec_field_name] collection_w.create_index(ct.default_binary_vec_field_name, binary_index_params) assert collection_w.has_index()[0] res, _ = collection_w.query(default_term_expr, output_fields=[ct.default_binary_vec_field_name]) assert list(res[0].keys()) == fields @pytest.mark.tags(CaseLabel.L2) def test_query_partition_repeatedly(self): """ target: test query repeatedly on partition method: query on partition twice expected: verify query result """ # create connection self._connect() # init collection collection_w = self.init_collection_wrap(name=cf.gen_unique_str(prefix)) # init partition partition_w = self.init_partition_wrap(collection_wrap=collection_w) # insert data to partition df = cf.gen_default_dataframe_data(ct.default_nb) partition_w.insert(df) # check number of entities and that method calls the flush interface assert collection_w.num_entities == ct.default_nb # load partition partition_w.load() # query twice res_one, _ = collection_w.query(default_term_expr, partition_names=[partition_w.name]) res_two, _ = collection_w.query(default_term_expr, partition_names=[partition_w.name]) assert res_one == res_two @pytest.mark.tags(CaseLabel.L2) def test_query_another_partition(self): """ target: test query another partition method: 1. insert entities into two partitions 2.query on one partition and query result empty expected: query result is empty """ half = ct.default_nb // 2 collection_w, partition_w, _, _ = self.insert_entities_into_two_partitions_in_half(half) term_expr = f'{ct.default_int64_field_name} in [{half}]' # half entity in _default partition rather than partition_w collection_w.query(term_expr, partition_names=[partition_w.name], check_task=CheckTasks.check_query_results, check_items={exp_res: []}) @pytest.mark.tags(CaseLabel.L2) def test_query_multi_partitions_multi_results(self): """ target: test query on multi partitions and get multi results method: 1.insert entities into two partitions 2.query on two partitions and query multi result expected: query results from two partitions """ half = ct.default_nb // 2 collection_w, partition_w, _, _ = self.insert_entities_into_two_partitions_in_half(half) term_expr = f'{ct.default_int64_field_name} in [{half - 1}, {half}]' # half entity in _default, half-1 entity in partition_w res, _ = collection_w.query(term_expr, partition_names=[ct.default_partition_name, partition_w.name]) assert len(res) == 2 @pytest.mark.tags(CaseLabel.L2) def test_query_multi_partitions_single_result(self): """ target: test query on multi partitions and get single result method: 1.insert into two partitions 2.query on two partitions and query single result expected: query from two partitions and get single result """ half = ct.default_nb // 2 collection_w, partition_w, df_partition, df_default = self.insert_entities_into_two_partitions_in_half(half) term_expr = f'{ct.default_int64_field_name} in [{half}]' # half entity in _default res, _ = collection_w.query(term_expr, partition_names=[ct.default_partition_name, partition_w.name]) assert len(res) == 1 assert res[0][ct.default_int64_field_name] == half """ ****************************************************************** The following classes are copied from pymilvus test ****************************************************************** """ def init_data(connect, collection, nb=ut.default_nb, partition_names=None, auto_id=True): """ Generate entities and add it in collection """ if nb == 3000: insert_entities = default_entities else: insert_entities = ut.gen_entities(nb, is_normal=True) if partition_names is None: if auto_id: res = connect.insert(collection, insert_entities) else: res = connect.insert(collection, insert_entities, ids=[i for i in range(nb)]) else: if auto_id: res = connect.insert(collection, insert_entities, partition_name=partition_names) else: res = connect.insert(collection, insert_entities, ids=[i for i in range(nb)], partition_name=partition_names) connect.flush([collection]) ids = res.primary_keys return insert_entities, ids class TestQueryBase: """ test Query interface query(collection_name, expr, output_fields=None, partition_names=None, timeout=None) """ @pytest.fixture( scope="function", params=ut.gen_invalid_strs() ) def get_collection_name(self, request): yield request.param @pytest.mark.tags(CaseLabel.L0) def test_query_invalid(self, connect, collection): """ target: test query method: query with term expr expected: verify query result """ entities, ids = init_data(connect, collection) assert len(ids) == ut.default_nb connect.load_collection(collection) term_expr = f'{default_int_field_name} in {entities[:default_pos]}' with pytest.raises(Exception): connect.query(collection, term_expr) @pytest.mark.tags(CaseLabel.L0) def test_query_valid(self, connect, collection): """ target: test query method: query with term expr expected: verify query result """ entities, ids = init_data(connect, collection) assert len(ids) == ut.default_nb connect.load_collection(collection) term_expr = f'{default_int_field_name} in {ids[:default_pos]}' res = connect.query(collection, term_expr, output_fields=["*", "%"]) assert len(res) == default_pos for _id, index in enumerate(ids[:default_pos]): if res[index][default_int_field_name] == entities[0]["values"][index]: assert res[index][default_float_field_name] == entities[1]["values"][index] res = connect.query(collection, term_expr, output_fields=[ut.default_float_vec_field_name]) assert len(res) == default_pos for _id, index in enumerate(ids[:default_pos]): if res[index][default_int_field_name] == entities[0]["values"][index]: ut.assert_equal_vector(res[index][ut.default_float_vec_field_name], entities[2]["values"][index]) @pytest.mark.tags(CaseLabel.L0) def test_query_collection_not_existed(self, connect): """ target: test query not existed collection method: query not existed collection expected: raise exception """ collection = "not_exist" with pytest.raises(Exception): connect.query(collection, default_term_expr) @pytest.mark.tags(CaseLabel.L0) def test_query_invalid_collection_name(self, connect, get_collection_name): """ target: test query with invalid collection name method: query with invalid collection name expected: raise exception """ collection_name = get_collection_name with pytest.raises(Exception): connect.query(collection_name, default_term_expr) @pytest.mark.tags(CaseLabel.L0) @pytest.mark.parametrize("expr", [1, "1", "12-s", "中文", [], {}, ()]) def test_query_expr_invalid_string(self, connect, collection, expr): """ target: test query with non-string expr method: query with non-string expr, eg 1, [] .. expected: raise exception """ connect.load_collection(collection) with pytest.raises(Exception): connect.query(collection, expr) @pytest.mark.parametrize("fields", ut.gen_invalid_strs()) @pytest.mark.tags(CaseLabel.L0) def test_query_invalid_output_fields(self, connect, collection, fields): """ target: test query with invalid output fields method: query with invalid field fields expected: raise exception """ init_data(connect, collection) connect.load_collection(collection) with pytest.raises(Exception): connect.query(collection, default_term_expr, output_fields=[fields]) ```
{ "source": "3ck0n/ifsort", "score": 3 }
#### File: 3ck0n/ifsort/analyse.py ```python import os import json import pathlib import datetime """ Analyse.py Generate a proposal to refactor a recursive file structure. Idea is to sort a chaotic file structure to a scheme like - Archivename YYYY - MM Month - DD name of series - Original files """ source = pathlib.Path.cwd() / 'sample' # source directory target = pathlib.Path.cwd() / 'target' # target directory filedict = [] # List with files def get_modified_datetime(file: pathlib): """ Returns a datetime with modified date of a given file. """ modified_timestamp = file.stat().st_mtime modified = datetime.datetime.fromtimestamp(modified_timestamp) return modified def gen_folder_name(day, rpath: pathlib): """ Generates a target folder nape for a relative part and a day. Scheme is 'DD relative-path_separated_by_underscore' """ sday = str(day).zfill(2) spath = str(rpath) spath = spath.replace(' ', '-') spath = spath.replace('\\', '_') spath = spath.lower() if spath == '.': spath = 'Day' return f"{sday} {spath}" def gen_relativ_path(modified, folder, file): str = f"Rohdaten {modified.year}\\{modified.strftime('%m %B')}\\{folder}\\{file.name}" return str def analyse(source_directory, target_directory = '.'): """ Analysis a source_directory by creating a folder structure proposal for every file. Sourcefile and moved file are documented in filedict global array to support analysis before start moving them. """ for file in source_directory.rglob('*'): filson = {} print('.', end='') if not file.is_dir(): rpath = file.parent.relative_to(source_directory) modified = get_modified_datetime(file) target_folder_name = gen_folder_name(modified.day, rpath) filson['file'] = str(file) filson['move'] = str(target_directory.joinpath(gen_relativ_path(modified, target_folder_name, file))) filedict.append(filson) print('!') print(f'Analyse {source} recursive') analyse(source, target) print(f'Found {len(filedict)} files.') with open("report.json", "w") as write_file: json.dump(filedict, write_file, indent=4, sort_keys=True,) print('Proposal saved in report.json.') ```
{ "source": "3cL1p5e7/ic", "score": 2 }
#### File: gitlab-ci/config/visualize.py ```python import functools import glob import yaml def process_config(filename): with open(filename) as f: config = yaml.load(f, Loader=yaml.SafeLoader) nodes = [] edges = [] for name, pipeline in config.items(): if name in ( "include", "stages", "default", "variables", "before_script", "after_script", ): continue attributes = {} for attr in ("stage", "needs", "dependencies"): if attr in pipeline and pipeline[attr]: value = pipeline[attr] if isinstance(value, list): value = ",".join(value) attributes[attr] = value nodes.append((name, attributes)) extends = pipeline.get("extends", None) if extends: if not isinstance(extends, list): extends = [extends] for destination in extends: edges.append((name, destination)) return nodes, edges def process_all_configs(directory, out): nodes = [] edges = [] for filename in glob.glob(f"{directory}/*.yml"): n, e = process_config(filename) nodes.extend(n) edges.extend(e) pr = functools.partial(print, end="", file=out) pr('digraph G {\nsize="46,33!"\nratio="fill"\n') for name, attributes in nodes: pr(f'"{name}"') if attributes: pr(" [") sep = "" for attribute, value in attributes.items(): pr(f'{sep}{attribute}="{value}"') sep = ", " pr("]") pr("\n") for name, extends in edges: pr(f'"{name}" -> "{extends}"\n') pr("}\n") if __name__ == "__main__": import sys directory = "." if len(sys.argv) > 1: directory = sys.argv[1] process_all_configs(directory, sys.stdout) ``` #### File: gitlab-ci/src/ci.py ```python import binascii import hashlib import logging import os import pathlib import platform import shlex import subprocess import time from contextlib import contextmanager from os import getenv from os import path from typing import Iterable from typing import List from typing import Literal from typing import Optional from typing import overload from typing import TypeVar import beeline _here = path.realpath(__file__) _top = path.realpath(path.join(_here, "../../..")) @overload def sh(*popenargs, pipe_to: Optional[str] = None, capture: Literal[True], **kwargs) -> str: ... @overload def sh(*popenargs, pipe_to: Optional[str] = None, capture: bool = False, **kwargs): ... def sh( *popenargs, pipe_to: Optional[str] = None, capture: bool = False, **kwargs, ): cmdline = list(popenargs) cmdline_extra = "" native_shell = kwargs.get("shell", False) if capture: assert pipe_to is None, "the `capture` and `pipe_to` arguments are mutually exclusive" if native_shell: assert pipe_to is None, "don't use `pipe_to` when shell=True, just use native pipe" assert len(cmdline) == 1, "don't pass multiple arguments when shell=True, they will not be preserved" if pipe_to is not None: kwargs["stdout"] = open(pipe_to, "w") cmdline_extra = f" > {pipe_to}" if native_shell: logging.info(f"$ {cmdline[0]}") else: logging.info(f"$ {shlex.join(cmdline)}{cmdline_extra}") if capture: return subprocess.run(cmdline, text=True, stdout=subprocess.PIPE, **kwargs).stdout.strip() else: subprocess.run(cmdline, **kwargs).check_returncode() def mkdir_p(dir): logging.info(f"$ mkdir -p {dir}") pathlib.Path(dir).mkdir(parents=True, exist_ok=True) T = TypeVar("T") S = TypeVar("S") def flatten(ls: Iterable[Iterable[T]]) -> List[T]: return [item for sublist in ls for item in sublist] # set up honeycomb API key = getenv("BUILDEVENT_APIKEY", "none") dataset = getenv("BUILDEVENT_DATASET", "local") beeline.init(writekey=key, debug=key == "none", dataset=dataset) def buildevent(name): """Return a beeline context manager which is prefilled with the trace_id and parent_id set by GitLab.""" root_pipeline_id = getenv("PARENT_PIPELINE_ID", "") if root_pipeline_id == "": root_pipeline_id = getenv("CI_PIPELINE_ID") return beeline.tracer(name, trace_id=root_pipeline_id, parent_id=getenv("CI_JOB_ID")) @contextmanager def log_section(header: str, name: Optional[str] = None, collapsed: bool = True): """ Generate a collapsible GitLab CI log section. Only the section header, not the name, is displayed to the user, so a random hex string will be generated and used as the section name unless you want to specify a name yourself. """ ts = int(time.time()) name = binascii.b2a_hex(os.urandom(6)).decode("utf-8") if name is None else name collapse = "[collapsed=true]" if collapsed else "" print(f"\x1b[0Ksection_start:{ts}:{name}{collapse}\r\x1b[0K{header}", flush=True) try: yield finally: print(f"\x1b[0Ksection_end:{ts}:{name}\r\x1b[0K", flush=True) def show_sccache_stats(): wrapper = getenv("RUSTC_WRAPPER") if wrapper is not None: with log_section("Click here to see the sccache stats"): sh(wrapper, "--show-stats") @contextmanager def cwd(dir: str): """ Execute some code with the current working directory of `dir`. * If you pass a relative path as `dir`, it will be interpreted relative to the top level of the source tree. * If you pass an absolute path, it will be used verbatim. Restores the previous working directory when the context ends. """ stored = os.getcwd() logging.info(f"$ pushd {dir}") newpath = dir if path.isabs(dir) else path.join(ENV.top, dir) os.chdir(newpath) try: yield finally: logging.info("$ popd") os.chdir(stored) def sha256(string: str) -> str: return hashlib.sha256(string.encode("utf-8")).hexdigest() class Env: """Stores a bunch of useful globals.""" def __init__(self) -> None: target = getenv("CARGO_BUILD_TARGET") if target is None: sys = platform.system() if sys == "Linux": target = "x86_64-unknown-linux-gnu" elif sys == "Darwin": target = "x86_64-apple-darwin" else: raise Exception("unable to guess rust host triple") self._cargo_build_target = target self._top = _top self._cargo_target_dir = getenv("CARGO_TARGET_DIR", path.join(self._top, "rs/target")) self._is_gitlab = getenv("CI_JOB_ID", "") != "" self._build_id = None @property def build_target(self): return self._cargo_build_target @property def target(self): return self.build_target @property def cargo_target_dir(self): return self._cargo_target_dir @property def target_dir(self): return self._cargo_target_dir @property def platform_target_dir(self): """Equivalent to path.join(target_dir, build_target).""" return path.join(self._cargo_target_dir, self._cargo_build_target) @property def top(self): """The top level directory (where .git is).""" return self._top @property def is_linux(self): return self.build_target == "x86_64-unknown-linux-gnu" @property def is_macos(self): return self.build_target == "x86_64-apple-darwin" @property def is_gitlab(self): return self._is_gitlab @property def is_local(self): return not self._is_gitlab @property def build_id(self): if self._build_id is None: self._build_id = sh("gitlab-ci/src/artifacts/find-build-id.sh", cwd=self._top, capture=True) return self._build_id ENV = Env() ``` #### File: src/gitlab_runners_check/create-gitlab-runner-jobs.py ```python import os import git from gitlab import Gitlab from jinja2 import Template """ Generate a gitlab child pipeline dynamically in order to run a test on all idx runners""" def main(): git_repo = git.Repo(".", search_parent_directories=True) git_root = git_repo.git.rev_parse("--show-toplevel") location = os.path.join(git_root, "gitlab-ci/src/gitlab_runners_check/runners2.j2") template_file = open(location) job_template = template_file.read() template_file.close() if not os.getenv("GITLAB_TOKEN"): print("GITLAB_TOKEN env var not set") os.exit(1) token = os.getenv("GITLAB_TOKEN") gl = Gitlab("https://gitlab.com", private_token=token, per_page=100) # Gather all our runners into a nice list dfinity_runners = [] for page in gl.runners.list(per_page=100, as_list=False, retry_transient_errors=True, scope="active"): dfinity_runners.append(page) idx_runners_list = [] for runner in dfinity_runners: myrunner = gl.runners.get(runner.id) tag_list = myrunner.tag_list # Do not include a non-idx gitlab runner if "dfinity" in tag_list: idx_runners_list.append({"id": runner.id, "description": runner.description, "tags": tag_list}) # Render the template dynamic_template = Template(job_template) x = dynamic_template.render(items=idx_runners_list) # Write the templated yml to our file for use as an artifact runners_file = open("runners.yml", "w") runners_file.write(x) runners_file.close() if __name__ == "__main__": main() ``` #### File: src/job_scripts/guest_os_diskimg.py ```python import logging from os import environ from os import getenv from ci import buildevent from ci import cwd from ci import ENV from ci import sh from ci import sha256 def run(): build_extra_args = getenv("BUILD_EXTRA_ARGS", "") build_extra_suffix = getenv("BUILD_EXTRA_SUFFIX", "") build_out = f"build-out/disk-img{build_extra_suffix}" build_tmp = f"build-tmp{build_extra_suffix}" upload_target = f"guest-os/disk-img{build_extra_suffix}" version = ENV.build_id logging.info(f"Build ID: {version}") with cwd("ic-os/guestos"): # lib/guest-os-diskimg.sh fails if these are not set, which they aren't when running locally offline_defaults = {"BUILD_EXTRA_ARGS": "", "BUILD_EXTRA_SUFFIX": "", "CI_JOB_ID": ""} # override those variables with the already-set ones if there are any script_env = {**offline_defaults, **environ.copy()} sh( "capsule", "--passive", "-v", "-t", sha256(f"{build_extra_args}{build_extra_suffix}\n"), "-t", version, "-o", f"{build_out}/**/*", "--", f"{ENV.top}/gitlab-ci/src/job_scripts/lib/guest-os-diskimg.sh", build_out, build_tmp, upload_target, version, environ.get("CDPRNET", ""), env=script_env, ) if ENV.is_gitlab: with buildevent("rclone"): sh( f"{ENV.top}/gitlab-ci/src/artifacts/rclone_upload.py", f"--version={version}", "--verbose", build_out, upload_target, ) logging.info(f"Build ID (real or fake git revision): {version}") ``` #### File: src/log_metrics/log_metrics.py ```python import datetime import http.client import json import os import random import sys import time import traceback import urllib.request from pathlib import Path from pprint import pprint from typing import Any from typing import Dict from notify_slack import send_message ES_NODES = ["elasticsearch-node-%s.dfinity.systems" % i for i in range(3)] def get_data_from_files(data_dir: str, default_index: str) -> Dict[str, Dict[str, Any]]: """ Load data from files. If a loaded JSON object contains a key called `__index`, the value of that key is used as the index name, and all the data is included directly as-is into the ES document. If the index name does not exist, the data is added to `default_index`, under a key with the same name as the file minus the `.json` extension. """ outdir = Path(data_dir) if not outdir.is_dir(): print("The additional data directory does not exist, skipping...") return {} json_files = [x for x in outdir.iterdir() if x.is_file() and x.name.lower().endswith(".json")] data = {default_index: {}} for json_file in json_files: with json_file.open() as j: try: # Name the key the same as the filename without the extension. file_data = json.load(j) # Just to be on the safe side, if someone tries to send non-dict data if not isinstance(file_data, dict): file_data = {"data": file_data} except Exception as e: print(f"Could not load contents of {json_file.name}, skipping. Reason:\n%s" % e) if "__index" in file_data: # We have an index name. index_name = file_data["__index"] del file_data["__index"] data[index_name] = file_data else: # No index name, use the default. data[default_index][json_file.name[:-5]] = file_data return data def get_env_data() -> Dict[str, str]: """Get relevant metrics data from the environment.""" data = {} for varname in [ "CI", "CI_COMMIT_BEFORE_SHA", "CI_COMMIT_BRANCH", "CI_COMMIT_REF_NAME", "CI_COMMIT_REF_PROTECTED", "CI_COMMIT_SHA", "CI_COMMIT_TAG", "CI_COMMIT_TIMESTAMP", "CI_CONCURRENT_ID", "CI_CONCURRENT_PROJECT_ID", "CI_ENVIRONMENT_NAME", "CI_ENVIRONMENT_SLUG", "CI_EXTERNAL_PULL_REQUEST_IID", "CI_EXTERNAL_PULL_REQUEST_SOURCE_BRANCH_NAME", "CI_EXTERNAL_PULL_REQUEST_SOURCE_BRANCH_SHA", "CI_JOB_ID", "CI_JOB_IMAGE", "CI_JOB_MANUAL", "CI_JOB_NAME", "CI_JOB_STAGE", "CI_JOB_STATUS", "CI_MERGE_REQUEST_ID", "CI_NODE_INDEX", "CI_NODE_TOTAL", "CI_PIPELINE_ID", "CI_PIPELINE_SOURCE", "CI_RUNNER_ID", "GITLAB_USER_ID", "GITLAB_USER_LOGIN", "DISKIMG_BRANCH", ]: if os.environ.get(varname): data[varname] = os.environ[varname] return data def post_data(index_name: str, data: Dict[str, str]) -> http.client: """Post `data` to our ElasticSearch instance at `index_name`.""" # Shuffle the list so our attempts are in random order, instead of hammering # hosts in order. random.shuffle(ES_NODES) exc = None body = None # 5 * 2 seconds = 5 minutes for i in range(5): node = ES_NODES[i % len(ES_NODES)] req = urllib.request.Request( f"http://{node}:9200/{index_name}/_doc/", data=json.dumps(data).encode(), headers={"content-type": "application/json"}, ) try: response = urllib.request.urlopen(req, timeout=30) break except urllib.error.HTTPError as e: body = e.read().decode() exc = e except Exception as e: exc = e print("Request failed, retry in 60 seconds") time.sleep(2) else: job_id = os.environ.get("CI_JOB_ID") job_url = os.environ.get("CI_JOB_URL") print("Max retries exceeded") error_message = ( "ERROR: log-metrics could not send data to ElasticSearch for " f"{job_url}|job {job_id}>. " "Exception details:\n```%s```" % "".join(traceback.format_exception(None, exc, exc.__traceback__)) ) error_message += f"\n\nResponse body:\n```\n{body}\n```" send_message(message=error_message, channel="precious-bots") sys.exit(0) return response def main(): """Program entry main.""" timestamp = datetime.datetime.now().isoformat() args = {"timestamp": timestamp} for arg in sys.argv[1:]: k, v = arg.split("=", 1) k, v = k.strip(), v.strip() try: # If the argument can be converted to an int, do that. v = int(v) except ValueError: try: # If the argument can be converted to a float, do that. v = float(v) except ValueError: pass args[k] = v default_index_name = "gitlab-ci-metrics-%s" % datetime.date.today().year data = {default_index_name: args} env_data = get_env_data() data[default_index_name].update(env_data) data_from_files = get_data_from_files("data_to_upload", default_index=default_index_name) for index_name, value in data_from_files.items(): if index_name in data: # This can really only be the default index, but it felt wrong # to do `if index_name == default_index_name`. data[index_name].update(value) else: data[index_name] = value # We need the env data (and timestamp) to be added to all found indexes # so that we can join this data with other jobs data[index_name].update(env_data) data[index_name]["timestamp"] = timestamp errors = False for index_name, value in data.items(): index_name = index_name.replace(":", "-") print(f"Posting data to {index_name}:") pprint(value, depth=2) response = post_data(index_name, value) if 200 <= response.status < 300: print("Posted successfully.") else: errors = True print(f"There was an error while posting to {index_name}: {response.read()}") if errors: exit("There were some errors.") if __name__ == "__main__": main() ``` #### File: src/notify_slack/notify_slack.py ```python import argparse import http.client import json import logging import os import urllib.request def send_message( message: str, channel: str = "#precious-bots", webhook_url: str = os.environ.get("SLACK_WEBHOOK_URL"), dry_run: bool = None, # If dry_run is not provided, run based on env var CI ) -> http.client: """ Send the `message` to the provided Slack `channel`. When not running on the CI, will instead print the message on the console. """ if not webhook_url: raise ValueError("SLACK_WEBHOOK_URL env var not found") if not channel.startswith("#") and not channel.startswith("@"): channel = "#" + channel if dry_run is None: if os.environ.get("CI"): dry_run = False else: dry_run = True if dry_run: logging.info("Mock Slack send_message to channel '%s': '%s' ", channel, message) else: logging.info("Slack send_message to channel '%s': '%s' ", channel, message) data = { "text": message, "channel": channel, } req = urllib.request.Request( webhook_url, data=json.dumps(data).encode(), headers={"content-type": "application/json"}, ) try: response = urllib.request.urlopen(req, timeout=30) return response except urllib.error.HTTPError as e: body = e.read().decode() logging.error("Slack send_message failed with HTTP response body: %s", body) except Exception: logging.error("Slack send_message could not send the requested message.") def non_empty_string(value: str) -> str: """Ensure that the `value` is not empty.""" if not value: raise argparse.ArgumentTypeError("Cannot proceed with an empty value: '%s'" % value) return value def main(): parser = argparse.ArgumentParser() parser.add_argument( "--webhook-url", help="The Slack Webhook URL \ (default: environment variable SLACK_WEBHOOK_URL)", type=non_empty_string, nargs="?", const=os.environ.get("SLACK_WEBHOOK_URL", ""), default=os.environ.get("SLACK_WEBHOOK_URL", ""), ) parser.add_argument( "--channel", help="The Slack channel name to which to post the message to \ (default: environment variable SLACK_CHANNEL)", type=non_empty_string, nargs="?", const=os.environ.get("SLACK_CHANNEL", "#precious-bots"), default=os.environ.get("SLACK_CHANNEL", "#precious-bots"), ) parser.add_argument( "--dry-run", help="Whether to mock (log) sending Slack messages", action="store_true", ) parser.add_argument("--verbose", "-v", action="store_true", help="Verbose mode") parser.add_argument("message", help="The message to post to Slack") args = parser.parse_args() if args.verbose: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) send_message( message=args.message, channel=args.channel, webhook_url=args.webhook_url, dry_run=args.dry_run, ) if __name__ == "__main__": main() ``` #### File: guestos/scripts/docker_extract.py ```python import io import json import os import shutil import sys import tarfile def read_tar_contents(buffer): """Read tar file as map from filename -> content.""" with tarfile.open(fileobj=buffer, mode="r|*") as tf: filemap = {} for member in tf: buf = member.tobuf() # noqa - no idea why buf is here if member.type == tarfile.REGTYPE: filemap[member.name] = tf.extractfile(member).read() elif (member.type == tarfile.LNKTYPE) or (member.type == tarfile.SYMTYPE): filemap[member.name] = member.linkname[3:] return filemap def get_layer_data(filemap): """Get the docker layer data from the filemap in correct order.""" manifest = json.loads(filemap["manifest.json"]) layers = manifest[0]["Layers"] out = [] for layer in layers: if isinstance(filemap[layer], str): out.append(filemap[filemap[layer]]) else: out.append(filemap[layer]) return tuple(out) target_dir = sys.argv[1] filemap = read_tar_contents(sys.stdin.buffer) layers = get_layer_data(filemap) for layer in layers: tf = tarfile.open(fileobj=io.BytesIO(layer), mode="r") # Process all members in the tarfile. They are either ordinary # dirs/files/symlinks to be extracted, or they are "white-out" files: # These direct to delete certain underlying files from previous layer. for member in tf: basename = os.path.basename(member.path) dirname = os.path.dirname(member.path) if basename.startswith(".wh."): # This is a whiteout. Delete the file / directory. basename_target = basename[4:] target = os.path.join(target_dir, dirname, basename_target) if os.path.isdir(target): shutil.rmtree(target) elif os.path.exists(target): os.unlink(target) else: # Object to be created. Make sure that a previously existing # object is removed. This is important because the python tarfile # "extractall" method fails to overwrite symbolic links with # new links. target = os.path.join(target_dir, member.path) if os.path.lexists(target): if os.path.islink(target): os.unlink(target) else: was_dir = os.path.isdir(target) should_be_dir = member.isdir() if was_dir: if not should_be_dir: shutil.rmtree(target) else: if should_be_dir: os.unlink(target) tf.extract(member, target_dir, numeric_owner=True) os.utime(target, (0, 0), follow_symlinks=False) ``` #### File: guestos/tests/interactive.py ```python import sys import gflags import ictools import vmtools FLAGS = gflags.FLAGS gflags.DEFINE_string("disk_image", None, "Path to disk image to use for VMs") gflags.MarkFlagAsRequired("disk_image") def main(argv): argv = FLAGS(argv) machines = vmtools.pool().request_machines( [ {"name": "node0", "ram": "6G", "disk": "100G", "cores": 1}, ], ) system_image = vmtools.SystemImage.open_local(FLAGS.disk_image) ic_config = ictools.ic_prep( subnets=[[machines[0].get_ipv6()]], version=ictools.get_disk_image_version(system_image), root_subnet=0, ) config_image = ictools.build_ic_prep_inject_config(machines[0], ic_config, 0, ictools.build_ssh_extra_config()) vmtools.start_machine_local(machines[0], system_image, config_image, interactive=True) machines[0].stop() if __name__ == "__main__": main(sys.argv) ``` #### File: ic_p8s_service_discovery/tests/e2e-test.py ```python import json import os import shlex import shutil import subprocess import tempfile import time import unittest import urllib.request from pathlib import Path from shutil import which from subprocess import Popen from unittest import TestCase IC_BINARY_NAME = "ic-p8s-sd" # Don't start scraping mainnet DEFAULT_ARGUMENTS = "--no-poll --listen-addr=[::]:11235" # Seconds to wait for the deamon to start up DAEMON_STARTUP_TIMEOUT_SECONDS = 270 # the following are the targets addresses of the root subnet of mainnet at # registry version 0x6dc1. as we provide --no-poll to the daemon, the registry # is *not* updated during the test and thus the addresses returned by the daemon # do not change. TDB26_TARGET_ADDRS = [ "[fc00:db20:35b:7399::5]", "[2604:7e00:50:0:5000:20ff:fea7:efee]", "[2604:3fc0:3002:0:5000:acff:fe31:12e8]", "[2401:3f00:1000:24:5000:deff:fed6:1d7]", "[2604:3fc0:2001:0:5000:b0ff:fe7b:ff55]", "[2001:920:401a:1708:5000:4fff:fe92:48f1]", "[2001:920:401a:1710:5000:28ff:fe36:512b]", "[2fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b]", "[2a01:138:900a:0:5000:2aff:fef4:c47e]", "[2a0f:cd00:2:1:5000:3fff:fe36:cab8]", "[2a0f:cd00:2:1:5000:87ff:fe58:ceba]", "[2001:920:401a:1710:5000:d7ff:fe6f:fde7]", "[2001:920:401a:1706:5000:87ff:fe11:a9a0]", "[2001:920:401a:1708:5000:5fff:fec1:9ddb]", "[fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b]", "[fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b]", "[fc00:e968:6179::de52:7100]", "[fc00:db20:35b:7399::5]", "[2a00:fb01:400:100:5000:ceff:fea2:bb0]", "[2607:f758:c300:0:5000:72ff:fe35:3797]", "[2607:f758:c300:0:5000:8eff:fe8b:d68]", "[2fc00:db20:35b:7399::5]", "[2600:c02:b002:15:5000:ceff:fecc:d5cd]", "[2fc00:e968:6179::de52:7100]", "[2607:f758:1220:0:5000:3aff:fe16:7aec]", "[2607:f758:c300:0:5000:3eff:fe6d:af08]", "[2607:f758:1220:0:5000:bfff:feb9:6794]", "[fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b]", "[fc00:db20:35b:7399::5]", "[2607:f758:1220:0:5000:12ff:fe0c:8a57]", "[2600:3004:1200:1200:5000:59ff:fe54:4c4b]", "[2600:3006:1400:1500:5000:95ff:fe94:c948]", "[2600:3000:6100:200:5000:c4ff:fe43:3d8a]", "[2607:f1d0:10:1:5000:a7ff:fe91:44e]", "[2a01:138:900a:0:5000:5aff:fece:cf05]", "[2401:3f00:1000:23:5000:80ff:fe84:91ad]", "[2600:2c01:21:0:5000:27ff:fe23:4839]", ] class IcP8sDaemonTest(TestCase): """Tests for ic-titanium-p8s-daemon.""" def setUp(self): """Set up tests.""" self.targets_dir = tempfile.mkdtemp() self.file_sd_dir = tempfile.mkdtemp() self.daemon = start_daemon(Path(self.targets_dir), Path(self.file_sd_dir)) retry_with_timeout(lambda: get_request("replica")) def test_mainnet_targets_expose(self): """test_mainnet_targets_expose.""" def get_tdb26_targets(content: bytes) -> list: resp = json.loads(content) return set( item["targets"][0] for item in filter( lambda item: item["labels"].get("ic_subnet", "").startswith("tdb26"), resp, ) ) def assert_port_matches(targets, port): expected_targets = set("{}:{}".format(item, port) for item in TDB26_TARGET_ADDRS) self.assertEqual(targets, expected_targets) jobs = [("replica", 9090), ("orchestrator", 9091), ("host_node_exporter", 9100), ("node_exporter", 9100)] for src in [get_request, self.read_sd_file]: for job in jobs: assert_port_matches(get_tdb26_targets(src(job[0])), job[1]) def read_sd_file(self, job_name: str): """Read service discovery file.""" with open(os.path.join(self.file_sd_dir, job_name, "ic_p8s_sd.json")) as f: return f.read() def tearDown(self): """Tear down resources.""" self.daemon.kill() self.daemon.wait() shutil.rmtree(self.targets_dir) shutil.rmtree(self.file_sd_dir) def in_ci_env() -> bool: """Return true iff the process is running on CI (based on env variables).""" return "CI_JOB_ID" in os.environ def start_daemon(targets_dir: Path, file_sd_config_dir: Path) -> Popen: """Start the discovery daemon, either by invoking 'cargo run'.""" args = "{} --file-sd-base-path {} --targets-dir {}".format(DEFAULT_ARGUMENTS, file_sd_config_dir, targets_dir) if in_ci_env(): # On CI, we assume that someone else cleanups after us. tmpdir = tempfile.mkdtemp() target_bin = f"{tmpdir}/{IC_BINARY_NAME}" def sh(c): subprocess.run(c, shell=True, check=True) sh(f'gunzip -c -d "${{CI_PROJECT_DIR}}/artifacts/release/ic-p8s-sd.gz" >"{target_bin}"') sh(f"chmod +x {target_bin}") args = "{} {}".format(target_bin, args) else: bin_path = which("cargo") args = "{} run --bin {} -- {}".format(bin_path, IC_BINARY_NAME, args) p = Popen(shlex.split(args)) time.sleep(1) r = p.poll() if r is not None: raise Exception("{} stopped. Return code: {}".format(IC_BINARY_NAME, r)) return p def retry_with_timeout(f): """Retry f with timeout.""" start = time.time() while True: try: res = get_request("replica") print("Succeeded after {} seconds".format(time.time() - start)) return res except Exception as e: if time.time() - start > DAEMON_STARTUP_TIMEOUT_SECONDS: raise Exception("Operation timed out") from e def get_request(path: str) -> bytes: """Get request using given path.""" with urllib.request.urlopen("http://localhost:11235/{}".format(path)) as response: return response.read() if __name__ == "__main__": unittest.main() ``` #### File: scalability/tests/mock.py ```python import sys import unittest from unittest import TestCase from unittest.mock import MagicMock from unittest.mock import Mock import experiment from workload_experiment import WorkloadExperiment class Test_Experiment(TestCase): """Implements a generic experiment with dependencies mocked away.""" def test_verify__mock(self): """Test passes when the experiment runs to end.""" sys.argv = ["mock.py", "--testnet", "abc", "--wg_testnet", "def", "--skip_generate_report", "True"] experiment.parse_command_line_args() exp = ExperimentMock() # Mock functions that won't work without a proper IC deployment exp.get_targets = Mock(return_value=["1.1.1.1", "2.2.2.2"]) exp.get_hostnames = Mock(return_value=["3.3.3.3", "4.4.4.4"]) exp.get_ic_version = MagicMock() exp.get_subnet_for_target = MagicMock() exp.get_subnet_info = Mock(return_value="{}") exp.get_topology = Mock(return_value="{}") exp.store_hardware_info = MagicMock() exp.get_iter_logs_from_targets = MagicMock() exp.install_canister = MagicMock() exp.run_workload_generator = MagicMock() exp.init_metrics = MagicMock() exp.kill_workload_generator = MagicMock() exp.turn_off_replica = MagicMock() exp.check_workload_generator_installed = Mock(return_value=True) exp.get_ic_version = MagicMock(return_value="deadbeef") exp.wait_for_quiet = MagicMock(return_value=None) exp.init() exp.init_experiment() exp.install_canister("some canister") exp.start_experiment() exp.run_experiment({}) exp.subnet_id = "abc" exp.write_summary_file("test", {}, [], "some x value") exp.end_experiment() exp.install_canister.assert_called_once() exp.run_workload_generator.assert_called_once() exp.init_metrics.assert_called_once() class ExperimentMock(WorkloadExperiment): """Logic for experiment 1.""" def __init__(self): """Construct experiment 1.""" super().__init__() def run_experiment_internal(self, config): """Mock similar to experiment 1.""" return self.run_workload_generator( self.machines, self.target_nodes, 200, outdir=self.iter_outdir, duration=60, ) if __name__ == "__main__": unittest.main() ``` #### File: boundary_node/templates/ic_router_control_plane.py ```python import argparse import base64 import datetime import glob import json import os import re import sys from shutil import copyfile BACKUPS_TO_KEEP = 20 def patch_subnet_export(out): """ Fix router table export names. KLUDGE: the ic_router_table.js has export names derived from network names. This export naming scheme runs into issues as network names do not follow JS export naming conventions. Following function named exports of the from export main-net, export dash-board etc to export subnet; This temporary function can be nuked once all boundary nodes are upgraded. Keyword Arguments: ----------------- out -- a list of strings representation of JS code that need to patched """ out[0] = "let subnet_table = {\n" out[len(out) - 1] = "export default subnet_table;\n" def replace_demarcated_section(lines, out, section, prefix): """ Replace section demarcated by magic start and end markers. Keyword Arguments: ----------------- lines -- List of strings that may contain start and end markers. section: Section to be replaced with. out -- Result of the replacement. prefix --custom prefix to be placed before the start end marker. Example Transformation: lines = ["DontReplace", "MAINTAINED BY ic_router_control_plane.py DO NOT EDIT BY HAND" "{OldSection}" "END MAINTAINED BY ic_router_control_plane.py DO NOT EDIT BY HAND" "DontReplace"] is converted to out = ["DontReplace", "MAINTAINED BY ic_router_control_plane.py DO NOT EDIT BY HAND" "{NewSection}" "END MAINTAINED BY ic_router_control_plane.py DO NOT EDIT BY HAND" "DontReplace"] NOTE: start and end are MAGIC strings for now. Changing them will break boundary node upgrades. """ start = prefix + "MAINTAINED BY ic_router_control_plane.py DO NOT EDIT BY HAND" end = prefix + "END MAINTAINED BY ic_router_control_plane.py DO NOT EDIT BY HAND" section.insert(0, start + "\n") section.append(end + "\n") skip = False for line in lines: if line.startswith(start): skip = True out.extend(section) elif line.startswith(end): skip = False continue if not skip: out.append(line) def canister_id_to_hex(id): id = id.replace("-", "") + "=" return base64.b32decode(id, casefold=True)[4:].hex() def str2bool(v): if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("Boolean value expected.") argparser = argparse.ArgumentParser(description="Configure NGINX for IC routing.") argparser.add_argument( "routes_dir", metavar="ROUTE_DIR", type=str, nargs=1, help="a directory containing *.routes JSON files", ) argparser.add_argument("nginx_file", metavar="NGINX_FILE", type=str, nargs=1, help="pathname of nginx.conf") argparser.add_argument( "njs_file", metavar="NJS_FILE", type=str, nargs=1, help="pathname of ic_router.js", ) argparser.add_argument( "trusted_certs_file", metavar="CERTS_FILE", type=str, nargs=1, help="pathname of trusted_certs.pem", ) argparser.add_argument( "--allow_node_socket_addrs", metavar="NODE_ADDR,NODE_ADDR,...", type=str, nargs=1, default=None, help="a list of node socket addrs (e.g. [123:23]:8080) to allow, all others are not allowed", ) argparser.add_argument( "--deny_node_socket_addrs", metavar="NODE_ADDR,NODE_ADDR,...", type=str, nargs=1, default=None, help="a list of socket addrs (e.g. [123:23]:8080) to deny, all others are allowed", ) argparser.add_argument( "--generate_upstream_declarations", metavar="true/false", type=str2bool, nargs=1, default=[True], help="whether or not upstream declarations should be generated (false for rosetta front end)", ) args = argparser.parse_args(sys.argv[1:]) routes_dir = args.routes_dir[0] nginx_conf_file = args.nginx_file[0] ic_router_file = args.njs_file[0] trusted_certs_file = args.trusted_certs_file[0] allow_node_socket_addrs = args.allow_node_socket_addrs if allow_node_socket_addrs: allow_node_socket_addrs = [x for y in allow_node_socket_addrs for x in y.split(",")] deny_node_socket_addrs = args.deny_node_socket_addrs if deny_node_socket_addrs: deny_node_socket_addrs = [x for y in deny_node_socket_addrs for x in y.split(",")] generate_upstream_declarations = args.generate_upstream_declarations[0] def permit_node_addr(node_socket_addr): if allow_node_socket_addrs is not None: return node_socket_addr in allow_node_socket_addrs else: if deny_node_socket_addrs is not None: return node_socket_addr not in deny_node_socket_addrs else: return True # find highest registery version *.routes file routes_file = None routes_files = sorted(os.listdir(routes_dir), reverse=True) for f in routes_files: if re.match("^\\d+.routes$", f): routes_file = f break if not routes_file: print("no *.routes file found") sys.exit(1) print("routes_file", routes_file) with open(os.path.join(sys.argv[1], routes_file)) as f: data = json.load(f) class obj(object): """Class to Convert JSON to objects.""" def __init__(self, d): """Convert JSON to objects.""" for a, b in d.items(): if isinstance(b, (list, tuple)): setattr(self, a, [obj(x) if isinstance(x, dict) else x for x in b]) else: setattr(self, a, obj(b) if isinstance(b, dict) else b) data = obj(data) nginx_out = [] ic_router_out = [] trusted_certs_out = [] nns_node_ids = set([n.node_id for s in data.subnets if s.subnet_id == data.nns_subnet_id for n in s.nodes]) nodes = [n for s in data.subnets for n in s.nodes] upstreams_section = [] for node in nodes: def print_upstream(suffix, max_conns): upstreams_section.append("upstream %s%s {\n" % (node.node_id, suffix)) sockaddrary = node.socket_addr.split(":") port = sockaddrary.pop() if node.socket_addr[0] != "[" and len(sockaddrary) > 1: # add brackets for IPv6 socket_addr = "[%s]:%s" % (":".join(sockaddrary), port) else: socket_addr = node.socket_addr upstreams_section.append(" server %s %s;\n" % (socket_addr, max_conns)) upstreams_section.append("}\n") if generate_upstream_declarations: # The default is rate limited in nginx conf, not by max_conns print_upstream("", "") # Query calls are rate limited by max_conns max_conns = "max_conns=%d" % (50 if (node.node_id in nns_node_ids) else 100) print_upstream("-query", max_conns) trusted_certs_out.append(node.tls_certificate_pem) nginx_lines = [] with open(nginx_conf_file, "r") as default_file: nginx_lines = default_file.readlines() replace_demarcated_section(nginx_lines, nginx_out, upstreams_section, "# ") ic_router_section = [] canister_range_starts = [] canister_range_ends = [] canister_subnets = [] canister_subnet_ids = [] for canister_route in sorted(data.canister_routes, key=lambda r: canister_id_to_hex(r.start_canister_id)): canister_range_starts.append(" '%s',\n" % canister_id_to_hex(canister_route.start_canister_id)) canister_range_ends.append(" '%s',\n" % canister_id_to_hex(canister_route.end_canister_id)) canister_subnets.append(" '%s',\n" % canister_route.subnet_id) canister_subnet_ids.append(canister_route.subnet_id) ic_router_section.append("canister_range_starts: [\n") ic_router_section.extend(canister_range_starts) ic_router_section.append("],\n") ic_router_section.append("canister_range_ends: [\n") ic_router_section.extend(canister_range_ends) ic_router_section.append("],\n") ic_router_section.append("canister_subnets: [\n") ic_router_section.extend(canister_subnets) ic_router_section.append("],\n") nns_subnet_index = canister_subnet_ids.index(data.nns_subnet_id) ic_router_section.append("nns_subnet_index: %s,\n" % nns_subnet_index) subnet_node_ids = [] subnet_nodes = [] for subnet in sorted(data.subnets, key=lambda s: canister_subnet_ids.index(s.subnet_id)): subnet_node_ids.append(" [\n") subnet_nodes.append(" [\n") for node in subnet.nodes: if not permit_node_addr(node.socket_addr): continue subnet_node_ids.append(" '%s',\n" % node.node_id) subnet_nodes.append(" '%s',\n" % node.socket_addr) subnet_node_ids.append(" ],\n") subnet_nodes.append(" ],\n") ic_router_section.append("subnet_node_ids: [\n") ic_router_section.extend(subnet_node_ids) ic_router_section.append("],\n") ic_router_section.append("subnet_nodes: [\n") ic_router_section.extend(subnet_nodes) ic_router_section.append("],\n") ic_router_lines = [] with open(ic_router_file, "r") as default_file: ic_router_lines = default_file.readlines() replace_demarcated_section(ic_router_lines, ic_router_out, ic_router_section, "// ") patch_subnet_export(ic_router_out) backup_time = datetime.datetime.now().strftime("%Y_%m_%d-%H:%M:%S") ic_router_file_backup = ic_router_file + "." + backup_time print("backing up %s to %s" % (ic_router_file, ic_router_file_backup)) copyfile(ic_router_file, ic_router_file_backup) with open(ic_router_file, "w") as f: f.writelines(ic_router_out) # do not create an empty file as this will cause NGINX to fail if trusted_certs_out: trusted_certs_file_backup = trusted_certs_file + "." + backup_time print("backing up %s to %s" % (trusted_certs_file, trusted_certs_file_backup)) if os.path.exists(trusted_certs_file): copyfile(trusted_certs_file, trusted_certs_file_backup) with open(trusted_certs_file, "w") as f: f.writelines(trusted_certs_out) nginx_conf_file_backup = nginx_conf_file + "." + backup_time print("backing up %s to %s" % (nginx_conf_file, nginx_conf_file_backup)) copyfile(nginx_conf_file, nginx_conf_file_backup) with open(nginx_conf_file, "w") as f: f.writelines(nginx_out) # cleanup backups def cleanup_backups(fn): files = sorted(glob.glob(fn + ".*")) # largest (newest) first files.reverse() if len(files) > BACKUPS_TO_KEEP: files = files[BACKUPS_TO_KEEP:] for f in files: os.remove(f) cleanup_backups(ic_router_file) cleanup_backups(nginx_conf_file) if trusted_certs_out: cleanup_backups(trusted_certs_file) ```
{ "source": "3coins/jupyterlab-telemetry", "score": 3 }
#### File: jupyterlab-telemetry/jupyterlab_telemetry/handlers.py ```python import json from jupyter_server.base.handlers import APIHandler from jupyter_server.utils import url_path_join import tornado class TelemetryHandler(APIHandler): """ A handler that receives and stores telemetry data from the client. """ @tornado.web.authenticated def put(self, *args, **kwargs): # Parse the data from the request body raw = self.request.body.strip().decode(u'utf-8') try: decoder = json.JSONDecoder() session_log = decoder.decode(raw) except Exception as e: raise tornado.web.HTTPError(400, str(e)) self.log.info(session_log) self.set_status(204) self.finish() def setup_handlers(web_app): host_pattern = ".*$" base_url = web_app.settings["base_url"] route_pattern = url_path_join(base_url, "telemetry") handlers = [(route_pattern, TelemetryHandler)] web_app.add_handlers(host_pattern, handlers) ```
{ "source": "3con/cointrader", "score": 2 }
#### File: cointrader/cointrader/config.py ```python import sys import os import logging import logging.config if (sys.version_info > (3, 0)): # Python 3 code in this block import configparser else: # Python 2 code in this block import ConfigParser as configparser DEFAULT_CONFIG = ".cointrader.ini" def get_path_to_config(): env = os.getenv("HOME") return os.path.join(env, DEFAULT_CONFIG) class Config(object): def __init__(self, configfile=None): self.verbose = False self.market = "poloniex" self.api_key = None self.api_secret = None if configfile: logging.config.fileConfig(configfile.name) config = configparser.ConfigParser() config.readfp(configfile) exchange = config.get("DEFAULT", "exchange") self.api_key = config.get(exchange, "api_key") self.api_secret = config.get(exchange, "api_secret") @property def api(self): if not self.api_key or not self.api_secret: raise RuntimeError("API not configured") return self.api_key, self.api_secret ``` #### File: cointrader/cointrader/helpers.py ```python import datetime from termcolor import colored from terminaltables import AsciiTable def colorize_value(value): if value < 0: return colored(value, "red") else: return colored(value, "green") # def render_signal_details(signals): # out = [["Indicator", "Signal", "Details"]] # for s in signals: # out.append([s, signals[s].value, signals[s].details]) # table = AsciiTable(out).table # return "\n".join(["\nSignal:", table]) def render_signal_detail(signal): if signal.buy: return colored("BUY", "green") if signal.sell: return colored("SELL", "red") else: return "WAIT" def render_user_options(options): out = [] for o in options: out.append("{}) {}".format(o[0], o[1])) return "\n".join(out) def render_bot_title(bot, market, chart): out = ["\n"] data = chart._data if len(data) > 1: last = data[-2] else: last = data[-1] current = data[-1] values = {} values["date"] = datetime.datetime.utcfromtimestamp(current["date"]) if current["close"] > last["close"]: values["rate"] = colored(current["close"], "green") else: values["rate"] = colored(current["close"], "red") change_percent = (current["close"] - last["close"]) / current["close"] * 100 values["change_percent"] = round(change_percent, 4) values["url"] = market.url values["btc"] = bot.btc values["amount"] = bot.amount values["currency"] = market.currency t = u"{date} [{btc} BTC {amount} {currency}] | {rate} ({change_percent}%) | {url}".format(**values) out.append("=" * len(t)) out.append(t) out.append("=" * len(t)) return "\n".join(out) def render_bot_statistic(stat): out = [["", stat["start"], stat["end"], "CHANGE %"]] out.append(["COINTRADER", stat["trader_start_value"], stat["trader_end_value"], "{}".format(colorize_value(round(stat["profit_cointrader"], 4)))]) out.append(["MARKET", stat["market_start_value"], stat["market_end_value"], "{}".format(colorize_value(round(stat["profit_chart"], 4)))]) table = AsciiTable(out).table return "\n".join(["\nStatistic:", table]) def render_bot_tradelog(trades): out = [["DATE", "TYPE", "RATE", "COINS", "COINS'", "BTC", "BTC'"]] for trade in trades: values = [] values.append(trade.date) values.append(trade.order_type) values.append(trade.rate) if trade.order_type == "BUY": values.append("--") values.append(trade.amount_taxed) values.append(trade.btc) values.append("--") elif trade.order_type == "SELL": values.append(trade.amount) values.append("--") values.append("--") values.append(trade.btc_taxed) else: values.append(trade.amount) values.append("--") values.append(trade.btc) values.append("--") out.append(values) table = AsciiTable(out).table return "\n".join(["\nTradelog:", table]) ``` #### File: cointrader/cointrader/strategy.py ```python import datetime import logging from cointrader.indicators import ( WAIT, BUY, SELL, Signal, macdh_momententum, macdh, double_cross ) log = logging.getLogger(__name__) class Strategy(object): """Docstring for Strategy. """ def __str__(self): return "{}".format(self.__class__) def __init__(self): self.signals = {} """Dictionary with details on the signal(s) {"indicator": {"signal": 1, "details": Foo}}""" def signal(self, chart): """Will return either a BUY, SELL or WAIT signal for the given market""" raise NotImplementedError class NullStrategy(Strategy): """The NullStrategy does nothing than WAIT. It will emit not BUY or SELL signal and is therefor the default strategy when starting cointrader to protect the user from loosing money by accident.""" def signal(self, chart): """Will return either a BUY, SELL or WAIT signal for the given market""" signal = Signal(WAIT, datetime.datetime.utcnow()) self.signals["WAIT"] = signal return signal class Klondike(Strategy): def signal(self, chart): signal = macdh_momententum(chart) self.signals["MACDH_MOMEMENTUM"] = signal if signal.buy: return signal elif signal.sell: return signal return Signal(WAIT, datetime.datetime.utcfromtimestamp(chart.date)) class Followtrend(Strategy): """Simple trend follow strategie.""" def __init__(self): Strategy.__init__(self) self._macd = WAIT def signal(self, chart): # Get current chart closing = chart.values() self._value = closing[-1][1] self._date = datetime.datetime.utcfromtimestamp(closing[-1][0]) # MACDH is an early indicator for trend changes. We are using the # MACDH as a precondition for trading signals here and required # the MACDH signal a change into a bullish/bearish market. This # signal stays true as long as the signal changes. macdh_signal = macdh(chart) if macdh_signal.value == BUY: self._macd = BUY if macdh_signal.value == SELL: self._macd = SELL log.debug("macdh signal: {}".format(self._macd)) # Finally we are using the double_cross signal as confirmation # of the former MACDH signal dc_signal = double_cross(chart) if self._macd == BUY and dc_signal.value == BUY: signal = dc_signal elif self._macd == SELL and dc_signal.value == SELL: signal = dc_signal else: signal = Signal(WAIT, dc_signal.date) log.debug("Final signal @{}: {}".format(signal.date, signal.value)) self.signals["DC"] = signal return signal ```
{ "source": "3cor/spw", "score": 2 }
#### File: 3cor/spw/app.py ```python from PyQt5 import QtCore, QtGui, QtWidgets import modules.passgen as pg import modules.mongodb as mg import modules.xcrypt as xc import hashlib import os class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(800, 722) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.gridLayout = QtWidgets.QGridLayout(self.centralwidget) self.gridLayout.setObjectName("gridLayout") self.stackedWidget = QtWidgets.QStackedWidget(self.centralwidget) self.stackedWidget.setObjectName("stackedWidget") self.pageWC = QtWidgets.QWidget() self.pageWC.setObjectName("pageWC") self.gridLayout_2 = QtWidgets.QGridLayout(self.pageWC) self.gridLayout_2.setObjectName("gridLayout_2") self.wcPushButtonSignin = QtWidgets.QPushButton(self.pageWC) self.wcPushButtonSignin.setObjectName("wcPushButtonSignin") self.gridLayout_2.addWidget(self.wcPushButtonSignin, 10, 0, 1, 1) self.wcLineEditPass = QtWidgets.QLineEdit(self.pageWC) self.wcLineEditPass.setObjectName("wcLineEditPass") self.gridLayout_2.addWidget(self.wcLineEditPass, 9, 0, 1, 1) self.wcLineEditUser = QtWidgets.QLineEdit(self.pageWC) self.wcLineEditUser.setText("") self.wcLineEditUser.setObjectName("wcLineEditUser") self.gridLayout_2.addWidget(self.wcLineEditUser, 8, 0, 1, 1) self.wcPushButtonSignup = QtWidgets.QPushButton(self.pageWC) self.wcPushButtonSignup.setObjectName("wcPushButtonSignup") self.gridLayout_2.addWidget(self.wcPushButtonSignup, 11, 0, 1, 1) self.label_4 = QtWidgets.QLabel(self.pageWC) self.label_4.setWordWrap(True) self.label_4.setObjectName("label_4") self.gridLayout_2.addWidget(self.label_4, 7, 0, 1, 1) self.stackedWidget.addWidget(self.pageWC) self.pageRG = QtWidgets.QWidget() self.pageRG.setObjectName("pageRG") self.verticalLayout = QtWidgets.QVBoxLayout(self.pageRG) self.verticalLayout.setObjectName("verticalLayout") self.label_3 = QtWidgets.QLabel(self.pageRG) font = QtGui.QFont() font.setPointSize(36) self.label_3.setFont(font) self.label_3.setAlignment(QtCore.Qt.AlignCenter) self.label_3.setObjectName("label_3") self.verticalLayout.addWidget(self.label_3) self.rgLineEditUser = QtWidgets.QLineEdit(self.pageRG) self.rgLineEditUser.setObjectName("rgLineEditUser") self.verticalLayout.addWidget(self.rgLineEditUser) self.rgLineEditPass = QtWidgets.QLineEdit(self.pageRG) self.rgLineEditPass.setObjectName("rgLineEditPass") self.verticalLayout.addWidget(self.rgLineEditPass) self.rgLineEditConfirm = QtWidgets.QLineEdit(self.pageRG) self.rgLineEditConfirm.setObjectName("rgLineEditConfirm") self.verticalLayout.addWidget(self.rgLineEditConfirm) self.rgPushButtonSubmit = QtWidgets.QPushButton(self.pageRG) self.rgPushButtonSubmit.setObjectName("rgPushButtonSubmit") self.verticalLayout.addWidget(self.rgPushButtonSubmit) self.rgPushButtonBack = QtWidgets.QPushButton(self.pageRG) self.rgPushButtonBack.setObjectName("rgPushButtonBack") self.verticalLayout.addWidget(self.rgPushButtonBack) self.stackedWidget.addWidget(self.pageRG) self.pageGEN = QtWidgets.QWidget() self.pageGEN.setObjectName("pageGEN") self.gridLayout_5 = QtWidgets.QGridLayout(self.pageGEN) self.gridLayout_5.setObjectName("gridLayout_5") self.label = QtWidgets.QLabel(self.pageGEN) self.label.setWordWrap(True) self.label.setObjectName("label") self.gridLayout_5.addWidget(self.label, 0, 0, 1, 2) self.tabGenerate = QtWidgets.QTabWidget(self.pageGEN) self.tabGenerate.setObjectName("tabGenerate") self.tabPassword = QtWidgets.QWidget() self.tabPassword.setObjectName("tabPassword") self.verticalLayout_2 = QtWidgets.QVBoxLayout(self.tabPassword) self.verticalLayout_2.setObjectName("verticalLayout_2") self.formLayout_2 = QtWidgets.QFormLayout() self.formLayout_2.setFieldGrowthPolicy(QtWidgets.QFormLayout.AllNonFixedFieldsGrow) self.formLayout_2.setObjectName("formLayout_2") self.label_5 = QtWidgets.QLabel(self.tabPassword) self.label_5.setObjectName("label_5") self.formLayout_2.setWidget(2, QtWidgets.QFormLayout.LabelRole, self.label_5) self.label_6 = QtWidgets.QLabel(self.tabPassword) self.label_6.setObjectName("label_6") self.formLayout_2.setWidget(3, QtWidgets.QFormLayout.LabelRole, self.label_6) self.lineEditDG = QtWidgets.QLineEdit(self.tabPassword) self.lineEditDG.setObjectName("lineEditDG") self.formLayout_2.setWidget(3, QtWidgets.QFormLayout.FieldRole, self.lineEditDG) self.checkBoxSymbol = QtWidgets.QCheckBox(self.tabPassword) self.checkBoxSymbol.setChecked(True) self.checkBoxSymbol.setObjectName("checkBoxSymbol") self.formLayout_2.setWidget(4, QtWidgets.QFormLayout.LabelRole, self.checkBoxSymbol) self.lineEditSymbol = QtWidgets.QLineEdit(self.tabPassword) self.lineEditSymbol.setObjectName("lineEditSymbol") self.formLayout_2.setWidget(4, QtWidgets.QFormLayout.FieldRole, self.lineEditSymbol) self.lineEditNC = QtWidgets.QLineEdit(self.tabPassword) self.lineEditNC.setObjectName("lineEditNC") self.formLayout_2.setWidget(2, QtWidgets.QFormLayout.FieldRole, self.lineEditNC) self.verticalLayout_2.addLayout(self.formLayout_2) self.pushButtonGenWord = QtWidgets.QPushButton(self.tabPassword) self.pushButtonGenWord.setObjectName("pushButtonGenWord") self.verticalLayout_2.addWidget(self.pushButtonGenWord) self.textEditPassword = QtWidgets.QPlainTextEdit(self.tabPassword) self.textEditPassword.setObjectName("textEditPassword") self.verticalLayout_2.addWidget(self.textEditPassword) self.tabGenerate.addTab(self.tabPassword, "") self.tabPassphrase = QtWidgets.QWidget() self.tabPassphrase.setObjectName("tabPassphrase") self.verticalLayout_3 = QtWidgets.QVBoxLayout(self.tabPassphrase) self.verticalLayout_3.setObjectName("verticalLayout_3") self.formLayout_3 = QtWidgets.QFormLayout() self.formLayout_3.setObjectName("formLayout_3") self.lineEditNW = QtWidgets.QLineEdit(self.tabPassphrase) self.lineEditNW.setObjectName("lineEditNW") self.formLayout_3.setWidget(1, QtWidgets.QFormLayout.FieldRole, self.lineEditNW) self.label_7 = QtWidgets.QLabel(self.tabPassphrase) self.label_7.setObjectName("label_7") self.formLayout_3.setWidget(1, QtWidgets.QFormLayout.LabelRole, self.label_7) self.verticalLayout_3.addLayout(self.formLayout_3) self.pushButtonGenPhrase = QtWidgets.QPushButton(self.tabPassphrase) self.pushButtonGenPhrase.setObjectName("pushButtonGenPhrase") self.verticalLayout_3.addWidget(self.pushButtonGenPhrase) self.textEditPassphrase = QtWidgets.QPlainTextEdit(self.tabPassphrase) self.textEditPassphrase.setObjectName("textEditPassphrase") self.verticalLayout_3.addWidget(self.textEditPassphrase) self.tabGenerate.addTab(self.tabPassphrase, "") self.gridLayout_5.addWidget(self.tabGenerate, 1, 0, 1, 1) self.pushButtonBackToManager = QtWidgets.QPushButton(self.pageGEN) self.pushButtonBackToManager.setObjectName("pushButtonBackToManager") self.gridLayout_5.addWidget(self.pushButtonBackToManager, 2, 0, 1, 1) self.stackedWidget.addWidget(self.pageGEN) self.pageEntry = QtWidgets.QWidget() self.pageEntry.setObjectName("pageEntry") self.gridLayout_4 = QtWidgets.QGridLayout(self.pageEntry) self.gridLayout_4.setObjectName("gridLayout_4") self.pushButtonGen = QtWidgets.QPushButton(self.pageEntry) self.pushButtonGen.setObjectName("pushButtonGen") self.gridLayout_4.addWidget(self.pushButtonGen, 3, 3, 1, 1) self.pushButtonDelete = QtWidgets.QPushButton(self.pageEntry) self.pushButtonDelete.setObjectName("pushButtonDelete") self.gridLayout_4.addWidget(self.pushButtonDelete, 3, 2, 1, 1) self.pushButtonEdit = QtWidgets.QPushButton(self.pageEntry) self.pushButtonEdit.setObjectName("pushButtonEdit") self.gridLayout_4.addWidget(self.pushButtonEdit, 3, 1, 1, 1) self.pushButtonNew = QtWidgets.QPushButton(self.pageEntry) self.pushButtonNew.setObjectName("pushButtonNew") self.gridLayout_4.addWidget(self.pushButtonNew, 3, 0, 1, 1) self.pushButtonLock = QtWidgets.QPushButton(self.pageEntry) self.pushButtonLock.setObjectName("pushButtonLock") self.gridLayout_4.addWidget(self.pushButtonLock, 3, 4, 1, 1) self.tableEntry = QtWidgets.QTableWidget(self.pageEntry) self.tableEntry.setRowCount(0) self.tableEntry.setColumnCount(0) self.tableEntry.setObjectName("tableEntry") self.gridLayout_4.addWidget(self.tableEntry, 5, 0, 1, 5) self.label_8 = QtWidgets.QLabel(self.pageEntry) self.label_8.setObjectName("label_8") self.gridLayout_4.addWidget(self.label_8, 1, 0, 1, 5) self.stackedWidget.addWidget(self.pageEntry) self.pageEntryCUD = QtWidgets.QWidget() self.pageEntryCUD.setObjectName("pageEntryCUD") self.gridLayout_6 = QtWidgets.QGridLayout(self.pageEntryCUD) self.gridLayout_6.setObjectName("gridLayout_6") self.detLineEditURL = QtWidgets.QLineEdit(self.pageEntryCUD) self.detLineEditURL.setObjectName("detLineEditURL") self.gridLayout_6.addWidget(self.detLineEditURL, 5, 0, 1, 1) self.detOK = QtWidgets.QPushButton(self.pageEntryCUD) self.detOK.setObjectName("detOK") self.gridLayout_6.addWidget(self.detOK, 6, 0, 1, 1) self.detLineEditName = QtWidgets.QLineEdit(self.pageEntryCUD) self.detLineEditName.setObjectName("detLineEditName") self.gridLayout_6.addWidget(self.detLineEditName, 1, 0, 1, 1) self.detCancel = QtWidgets.QPushButton(self.pageEntryCUD) self.detCancel.setObjectName("detCancel") self.gridLayout_6.addWidget(self.detCancel, 7, 0, 1, 1) self.detLineEditUser = QtWidgets.QLineEdit(self.pageEntryCUD) self.detLineEditUser.setObjectName("detLineEditUser") self.gridLayout_6.addWidget(self.detLineEditUser, 2, 0, 1, 1) self.detLineEditConfirm = QtWidgets.QLineEdit(self.pageEntryCUD) self.detLineEditConfirm.setObjectName("detLineEditConfirm") self.gridLayout_6.addWidget(self.detLineEditConfirm, 4, 0, 1, 1) self.detLineEditPass = QtWidgets.QLineEdit(self.pageEntryCUD) self.detLineEditPass.setObjectName("detLineEditPass") self.gridLayout_6.addWidget(self.detLineEditPass, 3, 0, 1, 1) self.detLabelEntry = QtWidgets.QLabel(self.pageEntryCUD) self.detLabelEntry.setObjectName("detLabelEntry") self.gridLayout_6.addWidget(self.detLabelEntry, 0, 0, 1, 1) self.stackedWidget.addWidget(self.pageEntryCUD) self.gridLayout.addWidget(self.stackedWidget, 0, 1, 1, 1) self.labelOutput = QtWidgets.QLabel(self.centralwidget) self.labelOutput.setText("") self.labelOutput.setObjectName("labelOutput") self.gridLayout.addWidget(self.labelOutput, 1, 1, 1, 1) MainWindow.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) self.stackedWidget.setCurrentIndex(0) self.tabGenerate.setCurrentIndex(1) QtCore.QMetaObject.connectSlotsByName(MainWindow) MainWindow.setTabOrder(self.wcLineEditUser, self.wcLineEditPass) MainWindow.setTabOrder(self.wcLineEditPass, self.wcPushButtonSignin) MainWindow.setTabOrder(self.wcPushButtonSignin, self.wcPushButtonSignup) MainWindow.setTabOrder(self.wcPushButtonSignup, self.rgLineEditUser) MainWindow.setTabOrder(self.rgLineEditUser, self.rgLineEditPass) MainWindow.setTabOrder(self.rgLineEditPass, self.rgLineEditConfirm) MainWindow.setTabOrder(self.rgLineEditConfirm, self.rgPushButtonSubmit) MainWindow.setTabOrder(self.rgPushButtonSubmit, self.rgPushButtonBack) MainWindow.setTabOrder(self.rgPushButtonBack, self.tabGenerate) MainWindow.setTabOrder(self.tabGenerate, self.lineEditNC) MainWindow.setTabOrder(self.lineEditNC, self.lineEditDG) MainWindow.setTabOrder(self.lineEditDG, self.lineEditSymbol) MainWindow.setTabOrder(self.lineEditSymbol, self.checkBoxSymbol) MainWindow.setTabOrder(self.checkBoxSymbol, self.pushButtonGenWord) MainWindow.setTabOrder(self.pushButtonGenWord, self.textEditPassword) MainWindow.setTabOrder(self.textEditPassword, self.pushButtonBackToManager) MainWindow.setTabOrder(self.pushButtonBackToManager, self.pushButtonNew) MainWindow.setTabOrder(self.pushButtonNew, self.pushButtonEdit) MainWindow.setTabOrder(self.pushButtonEdit, self.pushButtonDelete) MainWindow.setTabOrder(self.pushButtonDelete, self.pushButtonGen) MainWindow.setTabOrder(self.pushButtonGen, self.pushButtonLock) MainWindow.setTabOrder(self.pushButtonLock, self.tableEntry) MainWindow.setTabOrder(self.tableEntry, self.detLineEditName) MainWindow.setTabOrder(self.detLineEditName, self.detLineEditUser) MainWindow.setTabOrder(self.detLineEditUser, self.lineEditNW) MainWindow.setTabOrder(self.lineEditNW, self.detLineEditPass) MainWindow.setTabOrder(self.detLineEditPass, self.detLineEditConfirm) MainWindow.setTabOrder(self.detLineEditConfirm, self.detLineEditURL) MainWindow.setTabOrder(self.detLineEditURL, self.detOK) MainWindow.setTabOrder(self.detOK, self.detCancel) MainWindow.setTabOrder(self.detCancel, self.textEditPassphrase) MainWindow.setTabOrder(self.textEditPassphrase, self.pushButtonGenPhrase) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.wcPushButtonSignin.setText(_translate("MainWindow", "Sign in")) self.wcLineEditPass.setPlaceholderText(_translate("MainWindow", "Password")) self.wcLineEditUser.setPlaceholderText(_translate("MainWindow", "Username")) self.wcPushButtonSignup.setText(_translate("MainWindow", "Sign up")) self.label_4.setText(_translate("MainWindow", "<html><head/><body><p align=\"center\"><span style=\" font-size:36pt;\">Simple Password Manager</span></p><p align=\"center\"><span style=\" font-size:8pt; font-style:italic;\">Developed by <NAME></span></p><p align=\"center\"><br/></p><p align=\"center\">Welcome to Simple Passsword Manager!</p><p align=\"center\">Simple Password Manager helps you to create your own password database and store it on MongoDB Atlas. </p><p align=\"center\">Please sign in using your registed username or sign up for a new account.</p></body></html>")) self.label_3.setText(_translate("MainWindow", "<html><head/><body><p>Create new account</p><p><span style=\" font-size:11pt;\">Your password will be a master key.</span></p><p><span style=\" font-size:11pt;\">Master key is used to encrypt and decrypt your password database.</span></p><p><span style=\" font-size:11pt;\">If you lose your password, you cannot unlock your database!</span></p></body></html>")) self.rgLineEditUser.setPlaceholderText(_translate("MainWindow", "Username")) self.rgLineEditPass.setPlaceholderText(_translate("MainWindow", "Password")) self.rgLineEditConfirm.setPlaceholderText(_translate("MainWindow", "Confirm Password")) self.rgPushButtonSubmit.setText(_translate("MainWindow", "Submit")) self.rgPushButtonBack.setText(_translate("MainWindow", "Back")) self.label.setText(_translate("MainWindow", "<html><head/><body><p align=\"center\"><span style=\" font-size:36pt;\">Simple Password Generator</span></p><p align=\"center\"><br/></p><p align=\"center\">Simple password generator helps your generate cryptographically strong random password.</p><p align=\"center\"><br/></p><p>Here you have to options:</p><p>1. Generate random password from alphabet characters, numbers, or symbols.</p><p>2. Genrate random passphrase from wordlists. </p><p>This option is easier to remember. However, it is more susceptible to dictionary attack.</p></body></html>")) self.label_5.setText(_translate("MainWindow", "Number of characters")) self.label_6.setText(_translate("MainWindow", "Minimum digits")) self.lineEditDG.setText(_translate("MainWindow", "3")) self.checkBoxSymbol.setText(_translate("MainWindow", "Include symbols")) self.lineEditSymbol.setText(_translate("MainWindow", "{}()[].,:;+-*/&|<>=~$")) self.lineEditNC.setText(_translate("MainWindow", "8")) self.pushButtonGenWord.setText(_translate("MainWindow", "Generate password")) self.tabGenerate.setTabText(self.tabGenerate.indexOf(self.tabPassword), _translate("MainWindow", "Password")) self.lineEditNW.setText(_translate("MainWindow", "8")) self.label_7.setText(_translate("MainWindow", "Number of words")) self.pushButtonGenPhrase.setText(_translate("MainWindow", "Generate passphrase")) self.tabGenerate.setTabText(self.tabGenerate.indexOf(self.tabPassphrase), _translate("MainWindow", "Passphrase")) self.pushButtonBackToManager.setText(_translate("MainWindow", "Back to manager")) self.pushButtonGen.setText(_translate("MainWindow", "Generate Pass")) self.pushButtonDelete.setText(_translate("MainWindow", "Delete entry")) self.pushButtonEdit.setText(_translate("MainWindow", "Edit entry")) self.pushButtonNew.setText(_translate("MainWindow", "New entry")) self.pushButtonLock.setText(_translate("MainWindow", "Lock")) self.label_8.setText(_translate("MainWindow", "<html><head/><body><p align=\"center\"><br/><span style=\" font-size:36pt;\">Password manager</span></p><p align=\"center\"><span style=\" font-size:14pt;\">Manage your password database</span></p><p align=\"center\">All data are encrypted with your masterkey when they are uploaded to the cloud</p><p align=\"center\"><br/></p></body></html>")) self.detLineEditURL.setPlaceholderText(_translate("MainWindow", "URL")) self.detOK.setText(_translate("MainWindow", "OK")) self.detLineEditName.setPlaceholderText(_translate("MainWindow", "Name")) self.detCancel.setText(_translate("MainWindow", "Cancel")) self.detLineEditUser.setPlaceholderText(_translate("MainWindow", "Username")) self.detLineEditConfirm.setPlaceholderText(_translate("MainWindow", "Confirm Password")) self.detLineEditPass.setPlaceholderText(_translate("MainWindow", "Password")) self.detLabelEntry.setText(_translate("MainWindow", "<html><head/><body><p align=\"center\"><span style=\" font-size:36pt;\">ENTRY</span></p></body></html>")) # DO NOT MODIFY GENERATED UI CODE PAST HERE self.config() user = None pwd = None def config(self): # Add signal to buttons self.wcPushButtonSignin.clicked.connect(self.signIn) self.wcPushButtonSignup.clicked.connect(self.signUp) self.rgPushButtonSubmit.clicked.connect(self.rgSubmit) self.rgPushButtonBack.clicked.connect(self.rgBack) self.pushButtonNew.clicked.connect(self.etNew) self.pushButtonEdit.clicked.connect(self.etEdit) self.pushButtonDelete.clicked.connect(self.etDelete) self.pushButtonGen.clicked.connect(self.etGenerate) self.pushButtonLock.clicked.connect(self.etLockDB) self.detOK.clicked.connect(self.detClickOK) self.detCancel.clicked.connect(self.detClickCancel) self.pushButtonGen.clicked.connect(self.goToGen) self.pushButtonGenWord.clicked.connect(self.genPassword) self.pushButtonGenPhrase.clicked.connect(self.genPassphrase) self.pushButtonBackToManager.clicked.connect(self.backToManager) # Config table self.tableEntry.setRowCount(0) self.tableEntry.setColumnCount(4) self.tableEntry.setHorizontalHeaderLabels("Name;Username;Password;URL".split(";")) self.tableEntry.setSelectionBehavior(QtWidgets.QTableView.SelectRows) header = self.tableEntry.horizontalHeader() header.setSectionResizeMode(0, QtWidgets.QHeaderView.Stretch) header.setSectionResizeMode(1, QtWidgets.QHeaderView.Stretch) header.setSectionResizeMode(2, QtWidgets.QHeaderView.Stretch) header.setSectionResizeMode(3, QtWidgets.QHeaderView.Stretch) def output(self, msg): msg = '> ' + msg print(msg) self.labelOutput.setText(msg) def display(self, i): self.stackedWidget.setCurrentIndex(i) def checkUser(self, usr, pwd): pwd = hashlib.md5(pwd.encode('utf-8')).hexdigest() db = mg.connect() result = mg.get_user(db, usr, pwd) print(result) if result > 0: return True else: return False def encrypt(self, msg): result = xc.password_encrypt(msg.encode(), self.pwd).decode('utf-8') print(result) return result def decrypt(self, msg): result = xc.password_decrypt(bytes(msg, 'utf-8'), self.pwd).decode() print(result) return result # pageWC def signIn(self): usr = self.wcLineEditUser.text() pwd = self.wcLineEditPass.text() print('signIn()') print('Username:' + usr) print('Password:' + pwd) if usr.strip() != '' and pwd.strip() != '': if self.checkUser(usr, pwd): # If user is found self.user = usr self.pwd = <PASSWORD> self.syncTable() self.display(3) self.output("Sign in successfully!") else: self.output("Wrong Username/Password") else: self.output("Please enter Username/Password") def signUp(self): print('signUp()') self.output("Signing you up...") self.display(1) # pageRG def rgSubmit(self): usr = self.rgLineEditUser.text() pwd = self.rgLineEditPass.text() cfp = self.rgLineEditConfirm.text() print('rgSubmit()') print('Username:' + usr) print('Password:' + pwd) print('Confirm Password:' + cfp) if usr.strip() != '' and pwd.strip() != '': if pwd == cfp: if not self.checkUser(usr, pwd): # If user is not found self.user = usr self.pwd = <PASSWORD> self.addUser(usr, pwd) self.syncTable() self.display(3) self.output('Sign up succesfully!') self.rgLineEditUser.setText('') self.rgLineEditPass.setText('') self.rgLineEditConfirm.setText('') else: print("Username is already used!") else: self.output("Passwords are not matched!") else: self.output("Please enter Username/Password") def rgBack(self): print('rgBack()') self.display(0) def addUser(self, usr, pwd): pwd = hashlib.md5(pwd.encode('utf-8')).hexdigest() db = mg.connect() mg.add_user(db, usr, pwd) # pageEntry def etNew(self): self.etMode = 'new' self.detLineEditName.setText('') self.detLineEditUser.setText('') self.detLineEditPass.setText('') self.detLineEditConfirm.setText('') self.detLineEditURL.setText('') self.detLabelEntry.setText('Add new entry') self.display(4) self.output('Adding entry...') def etEdit(self): row = self.tableEntry.currentRow() self.etMode = 'edit' self.detLineEditName.setText(self.tableEntry.item(row, 0).text()) self.detLineEditUser.setText(self.tableEntry.item(row, 1).text()) self.detLineEditPass.setText(self.tableEntry.item(row, 2).text()) self.detLineEditConfirm.setText(self.tableEntry.item(row, 2).text()) self.detLineEditURL.setText(self.tableEntry.item(row, 3).text()) self.detLabelEntry.setText('Edit entry') self.display(4) self.output('Editing entry...') def etDelete(self): self.etMode = 'delete' self.deleteEntry() def etGenerate(self): self.display(2) def etLockDB(self): self.user = None self.pwd = None self.wcLineEditUser.setText('') self.wcLineEditPass.setText('') self.display(0) # pageEntryCUD def syncTable(self): self.tableEntry.setRowCount(0) database = mg.connect() result = mg.findall(database, self.user) for r in result: entry = [ r['name'], self.decrypt(r['user']), self.decrypt(r['pass']), self.decrypt(r['url']) ] self.table_appender(self.tableEntry, *entry) # print(r) def detClickOK(self): name = self.detLineEditName.text() usr = self.detLineEditUser.text() pwd = self.detLineEditPass.text() pcf = self.detLineEditConfirm.text() url = self.detLineEditURL.text() print('detOK()') print('Name:' + name) print('Username:' + usr) print('Password:' + pwd) print('Confirm Password:' + pcf) print('URL:' + url) if name.strip() != '' and usr.strip() != '' and pwd.strip() != '' and pcf.strip() != '' and url.strip() != '': if pwd == pcf: # Conditions passed! if self.etMode == 'new': self.addEntry(name, usr, pwd, url) if self.etMode == 'edit': self.editEntry(name, usr, pwd, url) else: self.output("Passwords are not matched!") else: self.output("All field must be filled!") def detClickCancel(self): self.display(3) self.output('You can manage your password here') def addEntry(self, name, usr, pwd, url): entry = { 'owner': self.user, 'name': name, 'user': usr, 'pass': <PASSWORD>, 'url': url } # Encrypt every entry for k, v in entry.items(): if k != 'owner' and k != 'name': entry[k] = self.encrypt(v) db = mg.connect() ret = mg.add_entry(db, self.user, entry) print(ret.inserted_id) self.syncTable() self.display(3) self.output('Entry is added') def editEntry(self, name, usr, pwd, url): curr = self.getCurrentRow() entry = { 'owner': self.user, 'name': name, 'user': usr, 'pass': <PASSWORD>, 'url': url } # Encrypt every entry for k, v in entry.items(): if k != 'owner' and k != 'name': entry[k] = self.encrypt(v) db = mg.connect() mg.edit_entry(db, self.user, curr, entry) self.syncTable() self.display(3) self.output('Entry is edited') def deleteEntry(self): curr = self.getCurrentRow() db = mg.connect() mg.delete_entry(db, self.user, curr) self.syncTable() self.output('Entry is deleted') def getCurrentRow(self): # get selected row row = self.tableEntry.currentRow() selected = (self.tableEntry.item(row, 0).text()) return selected def table_appender(self, widget, *args): def set_columns(len, pos): if pos == len-1: widget.setItem(widget.rowCount()-1, pos, QtWidgets.QTableWidgetItem(args[pos])) else: widget.setItem(widget.rowCount()-1, pos, QtWidgets.QTableWidgetItem(args[pos])) set_columns(len, pos+1) widget.insertRow(widget.rowCount()) set_columns(widget.columnCount(), 0) def goToGen(self): self.display(2) self.output('You can generate secure password or passphrase here') # pageGen def genPassword(self): n = int(self.lineEditNC.text()) digit = int(self.lineEditDG.text()) with_symbol = self.checkBoxSymbol.isChecked() symbols = self.lineEditSymbol.text() result = pg.secure(n, digit, with_symbol, symbols) self.textEditPassword.setPlainText(result) self.output('Password is generated') def genPassphrase(self): n = int(self.lineEditNW.text()) dir_path = os.path.dirname(os.path.realpath(__file__)) filepath = os.path.join(dir_path, 'data/words.txt') print(filepath) result = pg.passphrase(n, filepath) self.textEditPassphrase.setPlainText(result) self.output('Passpharse is generated') def backToManager(self): self.display(3) self.textEditPassword.setPlainText('') self.textEditPassphrase.setPlainText('') self.output('You can manage your password here') if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_()) ```
{ "source": "3CP-Studios/Space-Adventure", "score": 3 }
#### File: game/Game_lib/game.py ```python import pygame UP=1 DOWN=2 LEFT=3 RIGHT=4 class Bullet(pygame.sprite.Sprite): def __init__(self, x, y): pygame.sprite.Sprite.__init__(self) self.image = pygame.Surface((10, 20)) self.image.fill(YELLOW) self.rect = self.image.get_rect() self.rect.bottom = y self.rect.centerx = x self.speedy = -10 def update(self): self.rect.y += self.speedy # kill if it moves off the top of the screen if self.rect.bottom < 0: self.kill() class Game: def __init__(self, screen, display): print("Using Game-lib v1.0") self.sc=screen self.dis=display def shoot(self, start_pos, speed, direction=UP): pass def game(screen, display): return Game(screen, display) if __name__ == '__name__': pass ```
{ "source": "3crabs/class-book", "score": 2 }
#### File: class-book/groups/views.py ```python from django.core.mail import EmailMessage from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render from accounting.models import Attendance, Result from accounting.templatetags import my_tags from class_book import settings from groups.models import Group, Student from subjects.models import Subject import xlwt def groups(request): if request.POST: item = Group(name=request.POST['name']) item.save() object_list = Group.objects.all().order_by("name") return render(request, 'groups/index.html', locals()) def group(request, pk): group = Group.objects.get(id=pk) if 'delete' in request.POST: group.delete() object_list = Group.objects.all().order_by("name") return render(request, 'groups/index.html', locals()) group = Group.objects.get(id=pk) subject_list = Subject.objects.all().order_by("name") return render(request, 'groups/info.html', locals()) def group_students(request, pk): if request.POST: item = Student( name=request.POST['name'], email=request.POST['email'], group_id=pk, ) item.save() group = Group.objects.get(id=pk) subjects = group.subjects.all() for subject in subjects: for lesson in subject.lesson_set.all(): attendance = Attendance() attendance.student = item attendance.lesson = lesson attendance.save() for task in subject.task_set.all(): result = Result() result.student = item result.task = task result.save() group = Group.objects.get(id=pk) return render(request, 'groups/info.html', locals()) def group_student(request, pk, id): student = Student.objects.get(id=id) if 'delete' in request.POST: student.delete() group = Group.objects.get(id=pk) subject_list = Subject.objects.all().order_by("name") return render(request, 'groups/info.html', locals()) def group_subjects(request, pk): if request.POST: group = Group.objects.get(id=pk) subject = Subject.objects.get(id=request.POST['subject']) group.subjects.add(subject) group.save() group = Group.objects.get(id=pk) for student in group.student_set.all(): for lesson in subject.lesson_set.all(): attendance = Attendance() attendance.student = student attendance.lesson = lesson attendance.save() for task in subject.task_set.all(): result = Result() result.student = student result.task = task result.save() group = Group.objects.get(id=pk) subject_list = Subject.objects.all().order_by("name") return render(request, 'groups/info.html', locals()) def group_subject(request, pk, id): subject = Subject.objects.get(id=id) if 'delete' in request.POST: group = Group.objects.get(id=pk) group.subjects.remove(subject) group.save() group = Group.objects.get(id=pk) subject_list = Subject.objects.all().order_by("name") return render(request, 'groups/info.html', locals()) else: group = Group.objects.get(id=pk) itogs = {} for student in group.student_set.all(): itogs[student.id] = student.id + 1 print(itogs) return render(request, 'accouting/index.html', locals()) def create_xls_(group, subject): book = xlwt.Workbook(encoding="utf-8") sheet = book.add_sheet(group.name) sheet.write(0, 0, "Успеваемость группы " + group.name + " по предмету " + subject.name) row = 1 col = 0 sheet.write(row, col, "Посещаемость") row += 1 sheet.write(row, col, "Студент") col += 1 for lesson in subject.lesson_set.all(): sheet.write(row, col, lesson.name) col += 1 sheet.write(row, col, "Посещаемость") row += 1 col = 0 for student in group.student_set.all(): sheet.write(row, col, student.name) col += 1 for attendance in student.attendance_set.filter(lesson__subject_id=subject.id): sheet.write(row, col, attendance.visit) col += 1 sheet.write(row, col, my_tags.lessons(student, subject)) row += 1 col = 0 sheet.write(row, col, "Результаты") row += 1 sheet.write(row, col, "Студент") col += 1 for task in subject.task_set.all(): sheet.write(row, col, task.name) col += 1 sheet.write(row, col, "Успеваемость") row += 1 col = 0 for student in group.student_set.all(): sheet.write(row, col, student.name) col += 1 for result in student.result_set.filter(task__subject_id=subject.id): sheet.write(row, col, result.rating) col += 1 sheet.write(row, col, my_tags.tasks(student, subject)) row += 1 col = 0 path = "groups/static/docs/spreadsheet-" + str(group.id) + "-" + str(subject.id) + ".xlsx" book.save(path) return path def create_xls(request, pk, id): group = Group.objects.get(id=pk) subject = group.subjects.get(id=id) path = create_xls_(group, subject) file = open(path, 'rb') response = HttpResponse(file, content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') response['Content-Disposition'] = 'attachment; filename=table.xlsx' return response def sending(request, pk, id): group = Group.objects.get(id=pk) students = group.student_set.all() emails = [student.email for student in students] email = EmailMessage( 'Результаты', 'Здравствуй, вот ваша успеваемость', settings.EMAIL_HOST_USER, emails ) path = create_xls_(group, Subject.objects.get(id=id)) email.attach_file(path) email.send() return HttpResponseRedirect(request.META.get('HTTP_REFERER')) ``` #### File: class-book/subjects/views.py ```python from django.shortcuts import render from accounting.models import Attendance, Result from groups.models import Group from subjects.models import Subject, Task, Lesson def subjects(request): if request.POST: item = Subject( name=request.POST['name'], level_3=request.POST['level_3'], level_4=request.POST['level_4'], level_5=request.POST['level_5'], ) item.save() object_list = Subject.objects.all().order_by("name") return render(request, 'subjects/index.html', locals()) def subject(request, pk): subject = Subject.objects.get(id=pk) if 'delete' in request.POST: subject.delete() object_list = Subject.objects.all().order_by("name") return render(request, 'subjects/index.html', locals()) subject = Subject.objects.get(id=pk) return render(request, 'subjects/info.html', locals()) def subject_tasks(request, pk): if request.POST: item = Task( name=request.POST['name'], deadline=request.POST['date'], subject_id=pk, ) item.save() groups = Group.objects.all() for group in groups: if item.subject in group.subjects.all(): for student in group.student_set.all(): result = Result() result.student = student result.task = item result.save() subject = Subject.objects.get(id=pk) return render(request, 'subjects/info.html', locals()) def subject_lessons(request, pk): if request.POST: item = Lesson( name=request.POST['name'], date=request.POST['date'], subject_id=pk, ) item.save() groups = Group.objects.all() for group in groups: if item.subject in group.subjects.all(): for student in group.student_set.all(): attendance = Attendance() attendance.student = student attendance.lesson = item attendance.save() subject = Subject.objects.get(id=pk) return render(request, 'subjects/info.html', locals()) def subject_task(request, pk, id): task = Task.objects.get(id=id) if 'delete' in request.POST: task.delete() subject = Subject.objects.get(id=pk) return render(request, 'subjects/info.html', locals()) def subject_lesson(request, pk, id): lesson = Lesson.objects.get(id=id) if 'delete' in request.POST: lesson.delete() subject = Subject.objects.get(id=pk) return render(request, 'subjects/info.html', locals()) ```
{ "source": "3crabs/wallet", "score": 3 }
#### File: 3crabs/wallet/Database.py ```python from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker, Session from models.Base import Base class Database: __instance = None def __init__(self): with open('database_name.txt') as f: database_name = f.readline() self.engine = create_engine(database_name, echo=True) Base.metadata.create_all(self.engine) @classmethod def get_instance(cls): if not cls.__instance: cls.__instance = Database() return cls.__instance @classmethod def new_base(cls): cls.__instance = Database() return cls.__instance def session(self) -> Session: return sessionmaker(bind=self.engine)() ``` #### File: wallet/models/Flow.py ```python from sqlalchemy import Column, Integer, ForeignKey from sqlalchemy.orm import relationship from models.Base import Base class Flow(Base): __tablename__ = 'flows' id = Column(Integer, primary_key=True) money = Column(Integer) category_id = Column(Integer, ForeignKey('categories.id')) category = relationship("Category", backref='flows') def __init__(self, money, category_id: int): self.money = money self.category_id = category_id ```
{ "source": "3CV11-IS-Equipo-4/poda-api", "score": 3 }
#### File: src/usuarios/auth.py ```python import jwt import datetime def encode_auth_token_usuario(usuario_email, SECRET_KEY): """ Genera el token de autenticación para un usuario. """ try: payload = { 'exp' : datetime.datetime.utcnow() + datetime.timedelta(days=1, seconds=0), 'iat' : datetime.datetime.utcnow(), 'sub' : usuario_email } return jwt.encode(payload, SECRET_KEY, algorithm='HS256') except Exception as e: return e def decode_auth_token_usuario(auth_token, SECRET_KEY): """ Decodifica un token de autenticación para un usuario. """ try: payload = jwt.decode(auth_token, SECRET_KEY, algorithms=['HS256']) return payload['sub'] except jwt.ExpiredSignatureError: return -1 except jwt.InvalidTokenError: return -2 ```
{ "source": "3d510/saleor-easyship", "score": 2 }
#### File: checkout/views/__init__.py ```python from django.shortcuts import redirect from django.template.response import TemplateResponse from saleor.checkout.views.utils import shipping_info from saleor.easyship.api import post from saleor.product.models import Product from saleor.shipping.models import ShippingMethod, Shipment from .discount import add_voucher_form, validate_voucher from .shipping import (anonymous_user_shipping_address_view, user_shipping_address_view) from .summary import ( summary_with_shipping_view, anonymous_summary_without_shipping, summary_without_shipping) from .validators import ( validate_cart, validate_shipping_address, validate_shipping_method, validate_is_shipping_required) from ..core import load_checkout from ..forms import ShippingMethodForm from ...account.forms import LoginForm import json @load_checkout @validate_cart @validate_is_shipping_required def index_view(request, checkout): """Redirect to the initial step of checkout.""" return redirect('checkout:shipping-address') @load_checkout @validate_voucher @validate_cart @validate_is_shipping_required @add_voucher_form def shipping_address_view(request, checkout): """Display the correct shipping address step.""" if request.user.is_authenticated: return user_shipping_address_view(request, checkout) return anonymous_user_shipping_address_view(request, checkout) @load_checkout @validate_voucher @validate_cart @validate_is_shipping_required @validate_shipping_address @add_voucher_form def shipping_method_view(request, checkout): """Display the shipping method selection step.""" # print(checkout.__dict__) country_code = checkout.shipping_address.country.code shipping_method_country_ids = checkout.storage['shipping_method_country_ids'] related_products = checkout.storage.get('related_products', []) related_product_objs = [(item[0], Product.objects.get(pk=item[1])) for item in related_products] print(related_product_objs) shipping_method_form = ShippingMethodForm( country_code, request.POST or None, initial={'method': checkout.shipping_method} , shipping_method_country_ids=shipping_method_country_ids ) if shipping_method_form.is_valid(): checkout.shipping_method = shipping_method_form.cleaned_data['method'] selected_courier = shipping_method_form.cleaned_data['method'] # selected_courier_id = ShippingMethod.objects.get(name=selected_courier_name).courier_id ship_info = shipping_info(checkout) ship_info['selected_courier_id'] = selected_courier.shipping_method.courier_id import json print(json.dumps(ship_info, indent=True)) shipment = post("shipment/v1/shipments", ship_info)['shipment'] print(shipment, request.user) # Shipment.objects.create( # easyship_shipment_id=shipment['easyship_shipment_id'], # platform_order_number=shipment['platform_order_number'], # min_delivery_time=shipment['selected_courier']['min_delivery_time'], # max_delivery_time=shipment['selected_courier']['max_delivery_time'], # user=request.user # ) checkout.storage['easyship_shipment_id'] = shipment['easyship_shipment_id'] checkout.storage['platform_order_number'] = shipment['platform_order_number'] checkout.storage['min_delivery_time'] = shipment['selected_courier']['min_delivery_time'] checkout.storage['max_delivery_time'] = shipment['selected_courier']['max_delivery_time'] return redirect('checkout:summary') return TemplateResponse( request, 'checkout/shipping_method.html', context={ 'shipping_method_form': shipping_method_form, 'checkout': checkout, 'related_product_objs': related_product_objs }) @load_checkout @validate_voucher @validate_cart @add_voucher_form def summary_view(request, checkout): """Display the correct order summary.""" if checkout.is_shipping_required: view = validate_shipping_address(summary_with_shipping_view) view = validate_shipping_method(view) return view(request, checkout) if request.user.is_authenticated: return summary_without_shipping(request, checkout) return anonymous_summary_without_shipping(request, checkout) @load_checkout @validate_cart def login(request, checkout): """Allow the user to log in prior to checkout.""" if request.user.is_authenticated: return redirect('checkout:index') form = LoginForm() return TemplateResponse(request, 'checkout/login.html', {'form': form}) ``` #### File: saleor/easyship/api.py ```python import requests import json HOSTING_URL = "https://api.easyship.com/" HEADER = {"Content-Type": "application/json", "Authorization": "Bearer <KEY>} # def get_token(): # return "<KEY> def get(endpoint, payload={}): r = requests.get(HOSTING_URL + endpoint, headers = HEADER, params=payload) return json.loads(r.text) def post(endpoint, data): r = requests.post(HOSTING_URL + endpoint, data=json.dumps(data), headers=HEADER) return json.loads(r.text) ## example # print(get("reference/v1/categories")) # print(post("rate/v1/rates", data={ # "origin_country_alpha2": "SG", # "origin_postal_code": "059405", # "destination_country_alpha2": "US", # "destination_postal_code": 10030, # "taxes_duties_paid_by": "Sender", # "is_insured": False, # "items": [ # { # "actual_weight": 1.2, # "height": 10, # "width": 15, # "length": 20, # "category": "mobiles", # "declared_currency": "SGD", # "declared_customs_value": 100 # } # ] # })["rates"][0]["shipment_charge_total"]) ```
{ "source": "3DAlgoLab/Mastering-Concurrency-in-Python", "score": 3 }
#### File: Mastering-Concurrency-in-Python/Chapter17/example2.py ```python import sys; sys.setswitchinterval(.000001) import threading def foo(): global my_list my_list.append(1) my_list = [] threads = [] for i in range(1000): thread = threading.Thread(target=foo) threads.append(thread) for thread in threads: thread.start() for thread in threads: thread.join() print(f'Final list length: {len(my_list)}.') print('Finished.') ``` #### File: Mastering-Concurrency-in-Python/Chapter18/example4.py ```python def read_data(): for i in range(5): print('Inside the inner for loop...') yield i * 2 result = read_data() for i in range(6): print('Inside the outer for loop...') print(next(result)) print('Finished.') ``` #### File: Mastering-Concurrency-in-Python/Chapter18/example6.py ```python import socket, select, types from collections import namedtuple from operator import mul from functools import reduce ########################################################################### # Reactor Session = namedtuple('Session', ['address', 'file']) sessions = {} # { csocket : Session(address, file)} callback = {} # { csocket : callback(client, line) } generators = {} # { csocket : inline callback generator } # Main event loop def reactor(host, port): sock = socket.socket() sock.bind((host, port)) sock.listen(5) sock.setblocking(0) # Make asynchronous sessions[sock] = None print(f'Server up, running, and waiting for call on {host} {port}') try: while True: # Serve existing clients only if they already have data ready ready_to_read, _, _ = select.select(sessions, [], [], 0.1) for conn in ready_to_read: if conn is sock: conn, cli_address = sock.accept() connect(conn, cli_address) continue line = sessions[conn].file.readline() if line: callback[conn](conn, line.rstrip()) else: disconnect(conn) finally: sock.close() def connect(conn, cli_address): sessions[conn] = Session(cli_address, conn.makefile()) gen = process_request(conn) generators[conn] = gen callback[conn] = gen.send(None) # Start the generator def disconnect(conn): gen = generators.pop(conn) gen.close() sessions[conn].file.close() conn.close() del sessions[conn] del callback[conn] @types.coroutine def readline(conn): def inner(conn, line): gen = generators[conn] try: callback[conn] = gen.send(line) # Continue the generator except StopIteration: disconnect(conn) line = yield inner return line ########################################################################### # User's Business Logic async def process_request(conn): print(f'Received connection from {sessions[conn].address}') mode = 'sum' try: conn.sendall(b'<welcome: starting in sum mode>\n') while True: line = await readline(conn) if line == 'quit': conn.sendall(b'connection closed\r\n') return if line == 'sum': conn.sendall(b'<switching to sum mode>\r\n') mode = 'sum' continue if line == 'product': conn.sendall(b'<switching to product mode>\r\n') mode = 'product' continue print(f'{sessions[conn].address} --> {line}') try: nums = list(map(int, line.split(','))) except ValueError: conn.sendall( b'ERROR. Enter only integers separated by commas\n') continue if mode == 'sum': conn.sendall(b'Sum of input integers: %a\r\n' % str(sum(nums))) else: conn.sendall(b'Product of input integers: %a\r\n' % str(reduce(mul, nums, 1))) finally: print(f'{sessions[conn].address} quit') if __name__ == '__main__': reactor('localhost', 8080) ```
{ "source": "3DAlgoLab/pyqtgraph", "score": 3 }
#### File: pyqtgraph/graphicsItems/DateAxisItem.py ```python import sys import numpy as np import time from datetime import datetime, timedelta from .AxisItem import AxisItem from collections import OrderedDict __all__ = ['DateAxisItem'] MS_SPACING = 1/1000.0 SECOND_SPACING = 1 MINUTE_SPACING = 60 HOUR_SPACING = 3600 DAY_SPACING = 24 * HOUR_SPACING WEEK_SPACING = 7 * DAY_SPACING MONTH_SPACING = 30 * DAY_SPACING YEAR_SPACING = 365 * DAY_SPACING if sys.platform == 'win32': _epoch = datetime.utcfromtimestamp(0) def utcfromtimestamp(timestamp): return _epoch + timedelta(seconds=timestamp) else: utcfromtimestamp = datetime.utcfromtimestamp MIN_REGULAR_TIMESTAMP = (datetime(1, 1, 1) - datetime(1970,1,1)).total_seconds() MAX_REGULAR_TIMESTAMP = (datetime(9999, 1, 1) - datetime(1970,1,1)).total_seconds() SEC_PER_YEAR = 365.25*24*3600 def makeMSStepper(stepSize): def stepper(val, n): if val < MIN_REGULAR_TIMESTAMP or val > MAX_REGULAR_TIMESTAMP: return np.inf val *= 1000 f = stepSize * 1000 return (val // (n*f) + 1) * (n*f) / 1000.0 return stepper def makeSStepper(stepSize): def stepper(val, n): if val < MIN_REGULAR_TIMESTAMP or val > MAX_REGULAR_TIMESTAMP: return np.inf return (val // (n*stepSize) + 1) * (n*stepSize) return stepper def makeMStepper(stepSize): def stepper(val, n): if val < MIN_REGULAR_TIMESTAMP or val > MAX_REGULAR_TIMESTAMP: return np.inf d = utcfromtimestamp(val) base0m = (d.month + n*stepSize - 1) d = datetime(d.year + base0m // 12, base0m % 12 + 1, 1) return (d - datetime(1970, 1, 1)).total_seconds() return stepper def makeYStepper(stepSize): def stepper(val, n): if val < MIN_REGULAR_TIMESTAMP or val > MAX_REGULAR_TIMESTAMP: return np.inf d = utcfromtimestamp(val) next_year = (d.year // (n*stepSize) + 1) * (n*stepSize) if next_year > 9999: return np.inf next_date = datetime(next_year, 1, 1) return (next_date - datetime(1970, 1, 1)).total_seconds() return stepper class TickSpec: """ Specifies the properties for a set of date ticks and computes ticks within a given utc timestamp range """ def __init__(self, spacing, stepper, format, autoSkip=None): """ ============= ========================================================== Arguments spacing approximate (average) tick spacing stepper a stepper function that takes a utc time stamp and a step steps number n to compute the start of the next unit. You can use the make_X_stepper functions to create common steppers. format a strftime compatible format string which will be used to convert tick locations to date/time strings autoSkip list of step size multipliers to be applied when the tick density becomes too high. The tick spec automatically applies additional powers of 10 (10, 100, ...) to the list if necessary. Set to None to switch autoSkip off ============= ========================================================== """ self.spacing = spacing self.step = stepper self.format = format self.autoSkip = autoSkip def makeTicks(self, minVal, maxVal, minSpc): ticks = [] n = self.skipFactor(minSpc) x = self.step(minVal, n) while x <= maxVal: ticks.append(x) x = self.step(x, n) return (np.array(ticks), n) def skipFactor(self, minSpc): if self.autoSkip is None or minSpc < self.spacing: return 1 factors = np.array(self.autoSkip, dtype=np.float64) while True: for f in factors: spc = self.spacing * f if spc > minSpc: return int(f) factors *= 10 class ZoomLevel: """ Generates the ticks which appear in a specific zoom level """ def __init__(self, tickSpecs, exampleText): """ ============= ========================================================== tickSpecs a list of one or more TickSpec objects with decreasing coarseness ============= ========================================================== """ self.tickSpecs = tickSpecs self.utcOffset = 0 self.exampleText = exampleText def tickValues(self, minVal, maxVal, minSpc): # return tick values for this format in the range minVal, maxVal # the return value is a list of tuples (<avg spacing>, [tick positions]) # minSpc indicates the minimum spacing (in seconds) between two ticks # to fullfill the maxTicksPerPt constraint of the DateAxisItem at the # current zoom level. This is used for auto skipping ticks. allTicks = [] valueSpecs = [] # back-project (minVal maxVal) to UTC, compute ticks then offset to # back to local time again utcMin = minVal - self.utcOffset utcMax = maxVal - self.utcOffset for spec in self.tickSpecs: ticks, skipFactor = spec.makeTicks(utcMin, utcMax, minSpc) # reposition tick labels to local time coordinates ticks += self.utcOffset # remove any ticks that were present in higher levels tick_list = [x for x in ticks.tolist() if x not in allTicks] allTicks.extend(tick_list) valueSpecs.append((spec.spacing, tick_list)) # if we're skipping ticks on the current level there's no point in # producing lower level ticks if skipFactor > 1: break return valueSpecs YEAR_MONTH_ZOOM_LEVEL = ZoomLevel([ TickSpec(YEAR_SPACING, makeYStepper(1), '%Y', autoSkip=[1, 5, 10, 25]), TickSpec(MONTH_SPACING, makeMStepper(1), '%b') ], "YYYY") MONTH_DAY_ZOOM_LEVEL = ZoomLevel([ TickSpec(MONTH_SPACING, makeMStepper(1), '%b'), TickSpec(DAY_SPACING, makeSStepper(DAY_SPACING), '%d', autoSkip=[1, 5]) ], "MMM") DAY_HOUR_ZOOM_LEVEL = ZoomLevel([ TickSpec(DAY_SPACING, makeSStepper(DAY_SPACING), '%a %d'), TickSpec(HOUR_SPACING, makeSStepper(HOUR_SPACING), '%H:%M', autoSkip=[1, 6]) ], "MMM 00") HOUR_MINUTE_ZOOM_LEVEL = ZoomLevel([ TickSpec(DAY_SPACING, makeSStepper(DAY_SPACING), '%a %d'), TickSpec(MINUTE_SPACING, makeSStepper(MINUTE_SPACING), '%H:%M', autoSkip=[1, 5, 15]) ], "MMM 00") HMS_ZOOM_LEVEL = ZoomLevel([ TickSpec(SECOND_SPACING, makeSStepper(SECOND_SPACING), '%H:%M:%S', autoSkip=[1, 5, 15, 30]) ], "99:99:99") MS_ZOOM_LEVEL = ZoomLevel([ TickSpec(MINUTE_SPACING, makeSStepper(MINUTE_SPACING), '%H:%M:%S'), TickSpec(MS_SPACING, makeMSStepper(MS_SPACING), '%S.%f', autoSkip=[1, 5, 10, 25]) ], "99:99:99") def getOffsetFromUtc(): """Retrieve the utc offset respecting the daylight saving time""" ts = time.localtime() if ts.tm_isdst: utc_offset = time.altzone else: utc_offset = time.timezone return utc_offset class DateAxisItem(AxisItem): """ **Bases:** :class:`AxisItem <pyqtgraph.AxisItem>` An AxisItem that displays dates from unix timestamps. The display format is adjusted automatically depending on the current time density (seconds/point) on the axis. For more details on changing this behaviour, see :func:`setZoomLevelForDensity() <pyqtgraph.DateAxisItem.setZoomLevelForDensity>`. Can be added to an existing plot e.g. via :func:`setAxisItems({'bottom':axis}) <pyqtgraph.PlotItem.setAxisItems>`. """ def __init__(self, orientation='bottom', utcOffset=None, **kwargs): """ Create a new DateAxisItem. For `orientation` and `**kwargs`, see :func:`AxisItem.__init__ <pyqtgraph.AxisItem.__init__>`. """ super(DateAxisItem, self).__init__(orientation, **kwargs) # Set the zoom level to use depending on the time density on the axis if utcOffset is None: utcOffset = getOffsetFromUtc() self.utcOffset = utcOffset self.zoomLevels = OrderedDict([ (np.inf, YEAR_MONTH_ZOOM_LEVEL), (5 * 3600*24, MONTH_DAY_ZOOM_LEVEL), (6 * 3600, DAY_HOUR_ZOOM_LEVEL), (15 * 60, HOUR_MINUTE_ZOOM_LEVEL), (30, HMS_ZOOM_LEVEL), (1, MS_ZOOM_LEVEL), ]) self.autoSIPrefix = False def tickStrings(self, values, scale, spacing): tickSpecs = self.zoomLevel.tickSpecs tickSpec = next((s for s in tickSpecs if s.spacing == spacing), None) try: dates = [utcfromtimestamp(v - self.utcOffset) for v in values] except (OverflowError, ValueError, OSError): # should not normally happen return ['%g' % ((v-self.utcOffset)//SEC_PER_YEAR + 1970) for v in values] formatStrings = [] for x in dates: try: s = x.strftime(tickSpec.format) if '%f' in tickSpec.format: # we only support ms precision s = s[:-3] elif '%Y' in tickSpec.format: s = s.lstrip('0') formatStrings.append(s) except ValueError: # Windows can't handle dates before 1970 formatStrings.append('') return formatStrings def tickValues(self, minVal, maxVal, size): density = (maxVal - minVal) / size self.setZoomLevelForDensity(density) values = self.zoomLevel.tickValues(minVal, maxVal, minSpc=self.minSpacing) return values def setZoomLevelForDensity(self, density): """ Setting `zoomLevel` and `minSpacing` based on given density of seconds per pixel The display format is adjusted automatically depending on the current time density (seconds/point) on the axis. You can customize the behaviour by overriding this function or setting a different set of zoom levels than the default one. The `zoomLevels` variable is a dictionary with the maximal distance of ticks in seconds which are allowed for each zoom level before the axis switches to the next coarser level. To customize the zoom level selection, override this function. """ padding = 10 # Size in pixels a specific tick label will take if self.orientation in ['bottom', 'top']: def sizeOf(text): return self.fontMetrics.boundingRect(text).width() + padding else: def sizeOf(text): return self.fontMetrics.boundingRect(text).height() + padding # Fallback zoom level: Years/Months self.zoomLevel = YEAR_MONTH_ZOOM_LEVEL for maximalSpacing, zoomLevel in self.zoomLevels.items(): size = sizeOf(zoomLevel.exampleText) # Test if zoom level is too fine grained if maximalSpacing/size < density: break self.zoomLevel = zoomLevel # Set up zoomLevel self.zoomLevel.utcOffset = self.utcOffset # Calculate minimal spacing of items on the axis size = sizeOf(self.zoomLevel.exampleText) self.minSpacing = density*size def linkToView(self, view): super(DateAxisItem, self).linkToView(view) # Set default limits _min = MIN_REGULAR_TIMESTAMP _max = MAX_REGULAR_TIMESTAMP if self.orientation in ['right', 'left']: view.setLimits(yMin=_min, yMax=_max) else: view.setLimits(xMin=_min, xMax=_max) def generateDrawSpecs(self, p): # Get font metrics from QPainter # Not happening in "paint", as the QPainter p there is a different one from the one here, # so changing that font could cause unwanted side effects if self.style['tickFont'] is not None: p.setFont(self.style['tickFont']) self.fontMetrics = p.fontMetrics() # Get font scale factor by current window resolution return super(DateAxisItem, self).generateDrawSpecs(p) ``` #### File: pyqtgraph/graphicsItems/NonUniformImage.py ```python from ..Qt import QtGui, QtCore import math import numpy as np from ..colormap import ColorMap from .GraphicsObject import GraphicsObject from .. import mkBrush, mkPen from .. import functions as fn class NonUniformImage(GraphicsObject): """ **Bases:** :class:`GraphicsObject <pyqtgraph.GraphicsObject>` GraphicsObject displaying an image with non-uniform sample points. It's commonly used to display 2-d or slices of higher dimensional data that have a regular but non-uniform grid e.g. measurements or simulation results. """ def __init__(self, x, y, z, border=None): GraphicsObject.__init__(self) # convert to numpy arrays x = np.asarray(x, dtype=np.float64) y = np.asarray(y, dtype=np.float64) z = np.asarray(z, dtype=np.float64) if x.ndim != 1 or y.ndim != 1: raise Exception("x and y must be 1-d arrays.") if np.any(np.diff(x) < 0) or np.any(np.diff(y) < 0): raise Exception("The values in x and y must be monotonically increasing.") if len(z.shape) != 2 or z.shape != (x.size, y.size): raise Exception("The length of x and y must match the shape of z.") # default colormap (black - white) self.cmap = ColorMap(pos=[0.0, 1.0], color=[(0.0, 0.0, 0.0, 1.0), (1.0, 1.0, 1.0, 1.0)]) self.data = (x, y, z) self.lut = None self.border = border self.generatePicture() def setLookupTable(self, lut, autoLevel=False): lut.sigLevelsChanged.connect(self.generatePicture) lut.gradient.sigGradientChanged.connect(self.generatePicture) self.lut = lut if autoLevel: _, _, z = self.data f = z[np.isfinite(z)] lut.setLevels(f.min(), f.max()) self.generatePicture() def setColorMap(self, cmap): self.cmap = cmap self.generatePicture() def getHistogram(self, **kwds): """Returns x and y arrays containing the histogram values for the current image. For an explanation of the return format, see numpy.histogram(). """ z = self.data[2] z = z[np.isfinite(z)] hist = np.histogram(z, **kwds) return hist[1][:-1], hist[0] def generatePicture(self): x, y, z = self.data self.picture = QtGui.QPicture() p = QtGui.QPainter(self.picture) p.setPen(mkPen(None)) # normalize if self.lut is not None: mn, mx = self.lut.getLevels() else: f = z[np.isfinite(z)] mn = f.min() mx = f.max() # draw the tiles for i in range(x.size): for j in range(y.size): value = z[i, j] if np.isneginf(value): value = 0.0 elif np.isposinf(value): value = 1.0 elif math.isnan(value): continue # ignore NaN else: value = (value - mn) / (mx - mn) # normalize if self.lut: color = self.lut.gradient.getColor(value) else: color = self.cmap.mapToQColor(value) p.setBrush(mkBrush(color)) # left, right, bottom, top l = x[0] if i == 0 else (x[i - 1] + x[i]) / 2 r = (x[i] + x[i + 1]) / 2 if i < x.size - 1 else x[-1] b = y[0] if j == 0 else (y[j - 1] + y[j]) / 2 t = (y[j] + y[j + 1]) / 2 if j < y.size - 1 else y[-1] p.drawRect(QtCore.QRectF(l, t, r - l, b - t)) if self.border is not None: p.setPen(self.border) p.setBrush(fn.mkBrush(None)) p.drawRect(self.boundingRect()) p.end() self.update() def paint(self, p, *args): p.drawPicture(0, 0, self.picture) def boundingRect(self): return QtCore.QRectF(self.picture.boundingRect()) ``` #### File: parametertree/tests/test_Parameter.py ```python import pytest from pyqtgraph.parametertree import Parameter def test_parameter_hasdefault(): opts = {'name': 'param', 'type': int, 'value': 1} # default unspecified p = Parameter(**opts) assert p.hasDefault() assert p.defaultValue() == opts["value"] p.setDefault(2) assert p.hasDefault() assert p.defaultValue() == 2 # default specified p = Parameter(default=0, **opts) assert p.hasDefault() assert p.defaultValue() == 0 # default specified as None p = Parameter(default=None, **opts) assert not p.hasDefault() def test_unpack_parameter(): # test that **unpacking correctly returns child name/value maps params = [ dict(name='a', type='int', value=1), dict(name='b', type='str', value='2'), dict(name='c', type='float', value=3.0), ] p = Parameter.create(name='params', type='group', children=params) result = dict(**p) assert 'a' in result assert result['a'] == 1 assert 'b' in result assert result['b'] == '2' assert 'c' in result assert result['c'] == 3.0 ``` #### File: pyqtgraph/widgets/DiffTreeWidget.py ```python from ..Qt import QtGui, QtCore from collections import OrderedDict from .DataTreeWidget import DataTreeWidget from .. import functions as fn import types, traceback import numpy as np __all__ = ['DiffTreeWidget'] class DiffTreeWidget(QtGui.QWidget): """ Widget for displaying differences between hierarchical python data structures (eg, nested dicts, lists, and arrays) """ def __init__(self, parent=None, a=None, b=None): QtGui.QWidget.__init__(self, parent) self.layout = QtGui.QHBoxLayout() self.setLayout(self.layout) self.trees = [DataTreeWidget(self), DataTreeWidget(self)] for t in self.trees: self.layout.addWidget(t) if a is not None: self.setData(a, b) def setData(self, a, b): """ Set the data to be compared in this widget. """ self.data = (a, b) self.trees[0].setData(a) self.trees[1].setData(b) return self.compare(a, b) def compare(self, a, b, path=()): """ Compare data structure *a* to structure *b*. Return True if the objects match completely. Otherwise, return a structure that describes the differences: { 'type': bool 'len': bool, 'str': bool, 'shape': bool, 'dtype': bool, 'mask': array, } """ bad = (255, 200, 200) diff = [] # generate typestr, desc, childs for each object typeA, descA, childsA, _ = self.trees[0].parse(a) typeB, descB, childsB, _ = self.trees[1].parse(b) if typeA != typeB: self.setColor(path, 1, bad) if descA != descB: self.setColor(path, 2, bad) if isinstance(a, dict) and isinstance(b, dict): keysA = set(a.keys()) keysB = set(b.keys()) for key in keysA - keysB: self.setColor(path+(key,), 0, bad, tree=0) for key in keysB - keysA: self.setColor(path+(key,), 0, bad, tree=1) for key in keysA & keysB: self.compare(a[key], b[key], path+(key,)) elif isinstance(a, (list, tuple)) and isinstance(b, (list, tuple)): for i in range(max(len(a), len(b))): if len(a) <= i: self.setColor(path+(i,), 0, bad, tree=1) elif len(b) <= i: self.setColor(path+(i,), 0, bad, tree=0) else: self.compare(a[i], b[i], path+(i,)) elif isinstance(a, np.ndarray) and isinstance(b, np.ndarray) and a.shape == b.shape: tableNodes = [tree.nodes[path].child(0) for tree in self.trees] if a.dtype.fields is None and b.dtype.fields is None: eq = self.compareArrays(a, b) if not np.all(eq): for n in tableNodes: n.setBackground(0, fn.mkBrush(bad)) #for i in np.argwhere(~eq): else: if a.dtype == b.dtype: for i,k in enumerate(a.dtype.fields.keys()): eq = self.compareArrays(a[k], b[k]) if not np.all(eq): for n in tableNodes: n.setBackground(0, fn.mkBrush(bad)) #for j in np.argwhere(~eq): # dict: compare keys, then values where keys match # list: # array: compare elementwise for same shape def compareArrays(self, a, b): intnan = -9223372036854775808 # happens when np.nan is cast to int anans = np.isnan(a) | (a == intnan) bnans = np.isnan(b) | (b == intnan) eq = anans == bnans mask = ~anans eq[mask] = np.allclose(a[mask], b[mask]) return eq def setColor(self, path, column, color, tree=None): brush = fn.mkBrush(color) # Color only one tree if specified. if tree is None: trees = self.trees else: trees = [self.trees[tree]] for tree in trees: item = tree.nodes[path] item.setBackground(column, brush) def _compare(self, a, b): """ Compare data structure *a* to structure *b*. """ # Check test structures are the same assert type(info) is type(expect) if hasattr(info, '__len__'): assert len(info) == len(expect) if isinstance(info, dict): for k in info: assert k in expect for k in expect: assert k in info self.compare_results(info[k], expect[k]) elif isinstance(info, list): for i in range(len(info)): self.compare_results(info[i], expect[i]) elif isinstance(info, np.ndarray): assert info.shape == expect.shape assert info.dtype == expect.dtype if info.dtype.fields is None: intnan = -9223372036854775808 # happens when np.nan is cast to int inans = np.isnan(info) | (info == intnan) enans = np.isnan(expect) | (expect == intnan) assert np.all(inans == enans) mask = ~inans assert np.allclose(info[mask], expect[mask]) else: for k in info.dtype.fields.keys(): self.compare_results(info[k], expect[k]) else: try: assert info == expect except Exception: raise NotImplementedError("Cannot compare objects of type %s" % type(info)) ``` #### File: pyqtgraph/widgets/HistogramLUTWidget.py ```python from ..Qt import QtGui, QtCore from .GraphicsView import GraphicsView from ..graphicsItems.HistogramLUTItem import HistogramLUTItem __all__ = ['HistogramLUTWidget'] class HistogramLUTWidget(GraphicsView): """QWidget wrapper for :class:`~pyqtgraph.HistogramLUTItem`. All parameters are passed along in creating the HistogramLUTItem. """ def __init__(self, parent=None, *args, **kargs): background = kargs.pop('background', 'default') GraphicsView.__init__(self, parent, useOpenGL=False, background=background) self.item = HistogramLUTItem(*args, **kargs) self.setCentralItem(self.item) self.orientation = kargs.get('orientation', 'vertical') if self.orientation == 'vertical': self.setSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Expanding) self.setMinimumWidth(95) else: self.setSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Preferred) self.setMinimumHeight(95) def sizeHint(self): if self.orientation == 'vertical': return QtCore.QSize(115, 200) else: return QtCore.QSize(200, 115) def __getattr__(self, attr): return getattr(self.item, attr) ```
{ "source": "3DAlgoLab/spinningup", "score": 2 }
#### File: spinningup/experiment1/my_pg1.py ```python import torch import torch.nn as nn from torch.distributions.categorical import Categorical from torch.optim import Adam import gym import numpy as np def mlp(sizes, activation=nn.ReLU6, output_activation=nn.Identity): layers = [] for j in range(len(sizes) - 1): act = activation if j < len(sizes) - 2 else output_activation layers += [nn.Linear(sizes[j], sizes[j + 1], act())] return nn.Sequential(*layers) def list_to_tensor(list_arr, dtype=torch.float32): return torch.tensor(np.array(list_arr), dtype=dtype) def train(env_name, hidden_sizes=[32], lr=1e-2, epochs=50, batch_size=5000, render=False): assert env_name env = gym.make(env_name) obs_dim = env.observation_space.shape[0] n_acts = env.action_space.n logits_net = mlp(sizes=[obs_dim] + hidden_sizes + [n_acts]) # action distribution def get_policy(obs): logits = logits_net(obs) return Categorical(logits=logits) def get_action(obs): return get_policy(obs).sample().item() def compute_loss(obs, act, weights): logp = get_policy(obs).log_prob(act) return -(logp * weights).mean() optimizer = Adam(logits_net.parameters(), lr=lr) def train_one_epoch(): batch_obs = [] batch_acts = [] batch_weights = [] batch_rets = [] batch_lens = [] # reset episode-specific variables obs = env.reset() done = False ep_rews = [] # list for rewards accrued throughout ep. finished_rending_this_epoch = False while True: if not finished_rending_this_epoch and render: env.render() # save obs batch_obs.append(obs.copy()) # act act = get_action(torch.as_tensor(obs, dtype=torch.float32)) obs, rew, done, _ = env.step(act) # save action, reward batch_acts.append(act) ep_rews.append(rew) if done: ep_ret, ep_len = sum(ep_rews), len(ep_rews) batch_rets.append(ep_ret) batch_lens.append(ep_len) # the weight for each logprob(a|s) is R(tau) batch_weights += [ep_ret] * ep_len # reset episode-specific variables obs, done, ep_rews = env.reset(), False, [] finished_rending_this_epoch = True if len(batch_obs) > batch_size: break optimizer.zero_grad() if i == 5: # TODO: remove after check breakpoint() batch_loss = compute_loss(obs=list_to_tensor(batch_obs), act=list_to_tensor(batch_acts, dtype=torch.int32), weights=list_to_tensor(batch_weights)) batch_loss.backward() optimizer.step() return batch_loss, batch_rets, batch_lens # training loop for i in range(epochs): batch_loss, batch_rets, batch_lens = train_one_epoch() print(f"epoch: {i:3d}\t loss:{batch_loss:.3f}\t" f"return: {np.mean(batch_rets):.3f}\t ep_len: {np.mean(batch_lens):.3f}\t") if __name__ == "__main__": # Test # m = Categorical(torch.tensor([1., 1, 1, 1, 1])) # for i in range(10): # r = m.sample() # print(r) import argparse parser = argparse.ArgumentParser() parser.add_argument('--env_name', '--env', type=str, default='CartPole-v0') parser.add_argument('--render', action='store_true') parser.add_argument('--lr', type=float, default=1e-2) args = parser.parse_args() print("\nSimplest PG") train(env_name=args.env_name, render=args.render, lr=args.lr) ```
{ "source": "3DAlgoLab/vispy", "score": 2 }
#### File: basics/visuals/line_prototype.py ```python import sys import numpy as np from vispy import app, gloo, visuals from vispy.visuals.filters import Clipper, ColorFilter from vispy.visuals.shaders import MultiProgram from vispy.visuals.collections import PointCollection from vispy.visuals.transforms import STTransform from vispy.scene import SceneCanvas from vispy.scene.visuals import create_visual_node class LineVisual(visuals.Visual): """Example of a very simple GL-line visual. This shows the minimal set of methods that need to be reimplemented to make a new visual class. """ def __init__(self, pos=None, color=(1, 1, 1, 1)): vcode = """ attribute vec2 a_pos; void main() { gl_Position = $transform(vec4(a_pos, 0., 1.)); gl_PointSize = 10.; } """ fcode = """ void main() { gl_FragColor = $color; } """ visuals.Visual.__init__(self, vcode=vcode, fcode=fcode) self.pos_buf = gloo.VertexBuffer() # The Visual superclass contains a MultiProgram, which is an object # that behaves like a normal shader program (you can assign shader # code, upload values, set template variables, etc.) but internally # manages multiple ModularProgram instances, one per view. # The MultiProgram is accessed via the `shared_program` property, so # the following modifications to the program will be applied to all # views: self.shared_program['a_pos'] = self.pos_buf self.shared_program.frag['color'] = color self._need_upload = False # Visual keeps track of draw mode, index buffer, and GL state. These # are shared between all views. self._draw_mode = 'line_strip' self.set_gl_state('translucent', depth_test=False) if pos is not None: self.set_data(pos) def set_data(self, pos): self._pos = pos self._need_upload = True def _prepare_transforms(self, view=None): view.view_program.vert['transform'] = view.transforms.get_transform() def _prepare_draw(self, view=None): """This method is called immediately before each draw. The *view* argument indicates which view is about to be drawn. """ if self._need_upload: # Note that pos_buf is shared between all views, so we have no need # to use the *view* argument in this example. This will be true # for most visuals. self.pos_buf.set_data(self._pos) self._need_upload = False class PointVisual(LineVisual): """Another simple visual class. Due to the simplicity of these example classes, it was only necessary to subclass from LineVisual and set the draw mode to 'points'. A more fully-featured PointVisual class might not follow this approach. """ def __init__(self, pos=None, color=(1, 1, 1, 1)): LineVisual.__init__(self, pos, color) self._draw_mode = 'points' class PlotLineVisual(visuals.CompoundVisual): """An example compound visual that draws lines and points. To the user, the compound visual behaves exactly like a normal visual--it has a transform system, draw() and bounds() methods, etc. Internally, the compound visual automatically manages proxying these transforms and methods to its sub-visuals. """ def __init__(self, pos=None, line_color=(1, 1, 1, 1), point_color=(1, 1, 1, 1)): self._line = LineVisual(pos, color=line_color) self._point = PointVisual(pos, color=point_color) visuals.CompoundVisual.__init__(self, [self._line, self._point]) class PointCollectionVisual(visuals.Visual): """Thin wrapper around a point collection. Note: This is currently broken! """ def __init__(self): prog = MultiProgram(vcode='', fcode='') self.points = PointCollection("agg", color="shared", program=prog) visuals.Visual.__init__(self, program=prog) def _prepare_draw(self, view): if self.points._need_update: self.points._update() self._draw_mode = self.points._mode self._index_buffer = self.points._indices_buffer def append(self, *args, **kwargs): self.points.append(*args, **kwargs) def _prepare_transforms(self, view=None): pass @property def color(self): return self.points['color'] @color.setter def color(self, c): self.points['color'] = c class PanZoomTransform(STTransform): def __init__(self, canvas=None, aspect=None, **kwargs): self._aspect = aspect self.attach(canvas) STTransform.__init__(self, **kwargs) def attach(self, canvas): """ Attach this tranform to a canvas """ self._canvas = canvas canvas.events.mouse_wheel.connect(self.on_mouse_wheel) canvas.events.mouse_move.connect(self.on_mouse_move) def on_mouse_move(self, event): if event.is_dragging: dxy = event.pos - event.last_event.pos button = event.press_event.button if button == 1: self.move(dxy) elif button == 2: center = event.press_event.pos if self._aspect is None: self.zoom(np.exp(dxy * (0.01, -0.01)), center) else: s = dxy[1] * -0.01 self.zoom(np.exp(np.array([s, s])), center) def on_mouse_wheel(self, event): self.zoom(np.exp(event.delta * (0.01, -0.01)), event.pos) canvas = app.Canvas(keys='interactive', size=(900, 600), show=True, title="Visual Canvas") pos = np.random.normal(size=(1000, 2), loc=0, scale=50).astype('float32') pos[0] = [0, 0] # Make a line visual line = LineVisual(pos=pos) line.transforms.canvas = canvas line.transform = STTransform(scale=(2, 1), translate=(20, 20)) panzoom = PanZoomTransform(canvas) line.transforms.scene_transform = panzoom panzoom.changed.connect(lambda ev: canvas.update()) # Attach color filter to all views (current and future) of the visual line.attach(ColorFilter((1, 1, 0.5, 0.7))) # Attach a clipper just to this view. The Clipper filter requires a # transform that maps from the framebuffer coordinate system to the # clipping coordinates. tr = line.transforms.get_transform('framebuffer', 'canvas') line.attach(Clipper((20, 20, 260, 260), transform=tr), view=line) # Make a view of the line that will draw its shadow shadow = line.view() shadow.transforms.canvas = canvas shadow.transform = STTransform(scale=(2, 1), translate=(25, 25)) shadow.transforms.scene_transform = panzoom shadow.attach(ColorFilter((0, 0, 0, 0.6)), view=shadow) tr = shadow.transforms.get_transform('framebuffer', 'canvas') shadow.attach(Clipper((20, 20, 260, 260), transform=tr), view=shadow) # And make a second view of the line with different clipping bounds view = line.view() view.transforms.canvas = canvas view.transform = STTransform(scale=(2, 0.5), translate=(450, 150)) tr = view.transforms.get_transform('framebuffer', 'canvas') view.attach(Clipper((320, 20, 260, 260), transform=tr), view=view) # Make a compound visual plot = PlotLineVisual(pos, (0.5, 1, 0.5, 0.2), (0.5, 1, 1, 0.3)) plot.transforms.canvas = canvas plot.transform = STTransform(translate=(80, 450), scale=(1.5, 1)) tr = plot.transforms.get_transform('framebuffer', 'canvas') plot.attach(Clipper((20, 320, 260, 260), transform=tr), view=plot) # And make a view on the compound view2 = plot.view() view2.transforms.canvas = canvas view2.transform = STTransform(scale=(1.5, 1), translate=(450, 400)) tr = view2.transforms.get_transform('framebuffer', 'canvas') view2.attach(Clipper((320, 320, 260, 260), transform=tr), view=view2) # And a shadow for the view shadow2 = plot.view() shadow2.transforms.canvas = canvas shadow2.transform = STTransform(scale=(1.5, 1), translate=(455, 405)) shadow2.attach(ColorFilter((0, 0, 0, 0.6)), view=shadow2) tr = shadow2.transforms.get_transform('framebuffer', 'canvas') shadow2.attach(Clipper((320, 320, 260, 260), transform=tr), view=shadow2) # Example of a collection visual collection = PointCollectionVisual() collection.transforms.canvas = canvas collection.transform = STTransform(translate=(750, 150)) collection.append(np.random.normal(loc=0, scale=20, size=(10000, 3)), itemsize=5000) collection.color = (1, 0.5, 0.5, 1), (0.5, 0.5, 1, 1) shadow3 = collection.view() shadow3.transforms.canvas = canvas shadow3.transform = STTransform(scale=(1, 1), translate=(752, 152)) shadow3.attach(ColorFilter((0, 0, 0, 0.6)), view=shadow3) # tr = shadow3.transforms.get_transform('framebuffer', 'canvas') # shadow3.attach(Clipper((320, 320, 260, 260), transform=tr), view=shadow2) order = [shadow, line, view, plot, shadow2, view2, shadow3, collection] @canvas.connect def on_draw(event): canvas.context.clear((0.3, 0.3, 0.3, 1.0)) for v in order: v.draw() def on_resize(event): # Set canvas viewport and reconfigure visual transforms to match. vp = (0, 0, canvas.physical_size[0], canvas.physical_size[1]) canvas.context.set_viewport(*vp) for v in order: v.transforms.configure(canvas=canvas, viewport=vp) canvas.events.resize.connect(on_resize) on_resize(None) Line = create_visual_node(LineVisual) canvas2 = SceneCanvas(keys='interactive', title='Scene Canvas', show=True) v = canvas2.central_widget.add_view(margin=10) v.border_color = (1, 1, 1, 1) v.bgcolor = (0.3, 0.3, 0.3, 1) v.camera = 'panzoom' line2 = Line(pos, parent=v.scene) def mouse(ev): print(ev) v.events.mouse_press.connect(mouse) if __name__ == '__main__': if sys.flags.interactive != 1: app.run() ``` #### File: basics/visuals/networkx_layout.py ```python from vispy import scene from vispy.visuals.graphs import layouts import networkx as nx g = nx.erdos_renyi_graph(100, .2) layout = layouts.get_layout("networkx_layout", graph=g, layout="spring") # create canvas canvas = scene.SceneCanvas(title='Simple NetworkX Graph', size=( 600, 600), bgcolor='black', show=True) view = canvas.central_widget.add_view('panzoom') visual = scene.visuals.Graph( layout.adj, layout=layout, line_color=(1, 1, 1, .5), arrow_type="stealth", arrow_size=30, node_symbol="disc", node_size=20, face_color=(1, 0, 0, 1), border_width=0.0, animate=False, directed=False, parent=view.scene) @canvas.events.draw.connect def on_draw(event): if not visual.animate_layout(): canvas.update() canvas.show() ``` #### File: vispy/app/qt.py ```python from .backends import qt_lib if qt_lib is None: raise RuntimeError("Module backends._qt should not be imported directly.") elif qt_lib in 'pyqt4': from PyQt4 import QtGui QWidget, QGridLayout = QtGui.QWidget, QtGui.QGridLayout # Compat elif qt_lib == 'pyside': from PySide import QtGui QWidget, QGridLayout = QtGui.QWidget, QtGui.QGridLayout # Compat elif qt_lib == 'pyqt5': from PyQt5 import QtWidgets QWidget, QGridLayout = QtWidgets.QWidget, QtWidgets.QGridLayout # Compat elif qt_lib == 'pyside2': from PySide2 import QtWidgets QWidget, QGridLayout = QtWidgets.QWidget, QtWidgets.QGridLayout # Compat elif qt_lib == 'pyside6': from PySide6 import QtWidgets QWidget, QGridLayout = QtWidgets.QWidget, QtWidgets.QGridLayout # Compat elif qt_lib: raise RuntimeError("Invalid value for qt_lib %r." % qt_lib) else: raise RuntimeError("Module backends._qt should not be imported directly.") class QtCanvas(QWidget): """Qt widget containing a vispy Canvas. This is a convenience class that allows a vispy canvas to be embedded directly into a Qt application. All methods and properties of the Canvas are wrapped by this class. Parameters ---------- parent : QWidget or None The Qt parent to assign to this widget. canvas : instance or subclass of Canvas The vispy Canvas to display inside this widget, or a Canvas subclass to instantiate using any remaining keyword arguments. """ def __init__(self, parent=None, canvas=None, **kwargs): from .canvas import Canvas if canvas is None: canvas = Canvas if issubclass(canvas, Canvas): canvas = canvas(**kwargs) elif len(**kwargs) > 0: raise TypeError('Invalid keyword arguments: %s' % list(kwargs.keys())) if not isinstance(canvas, Canvas): raise TypeError('canvas argument must be an instance or subclass ' 'of Canvas.') QWidget.__init__(self, parent) self.layout = QGridLayout() self.setLayout(self.layout) self.layout.setContentsMargins(0, 0, 0, 0) self._canvas = canvas self.layout.addWidget(canvas.native) self.setSizePolicy(canvas.native.sizePolicy()) def __getattr__(self, attr): if hasattr(self._canvas, attr): return getattr(self._canvas, attr) else: raise AttributeError(attr) def update(self): """Call update() on both this widget and the internal canvas.""" QWidget.update(self) self._canvas.update() class QtSceneCanvas(QtCanvas): """Convenience class embedding a vispy SceneCanvas inside a QWidget. See QtCanvas. """ def __init__(self, parent=None, **kwargs): from ..scene.canvas import SceneCanvas QtCanvas.__init__(self, parent, canvas=SceneCanvas, **kwargs) ``` #### File: vispy/geometry/parametric.py ```python import numpy as np from .normals import normals def surface(func, umin=0, umax=2 * np.pi, ucount=64, urepeat=1.0, vmin=0, vmax=2 * np.pi, vcount=64, vrepeat=1.0): """ Computes the parameterization of a parametric surface func: function(u,v) Parametric function used to build the surface """ vtype = [('position', np.float32, 3), ('texcoord', np.float32, 2), ('normal', np.float32, 3)] itype = np.uint32 # umin, umax, ucount = 0, 2*np.pi, 64 # vmin, vmax, vcount = 0, 2*np.pi, 64 vcount += 1 ucount += 1 n = vcount * ucount Un = np.repeat(np.linspace(0, 1, ucount, endpoint=True), vcount) Vn = np.tile(np.linspace(0, 1, vcount, endpoint=True), ucount) U = umin + Un * (umax - umin) V = vmin + Vn * (vmax - vmin) vertices = np.zeros(n, dtype=vtype) for i, (u, v) in enumerate(zip(U, V)): vertices["position"][i] = func(u, v) vertices["texcoord"][:, 0] = Un * urepeat vertices["texcoord"][:, 1] = Vn * vrepeat indices = [] for i in range(ucount - 1): for j in range(vcount - 1): indices.append(i * (vcount) + j) indices.append(i * (vcount) + j + 1) indices.append(i * (vcount) + j + vcount + 1) indices.append(i * (vcount) + j + vcount) indices.append(i * (vcount) + j + vcount + 1) indices.append(i * (vcount) + j) indices = np.array(indices, dtype=itype) vertices["normal"] = normals(vertices["position"], indices.reshape(len(indices)//3, 3)) return vertices, indices ``` #### File: gloo/gl/dummy.py ```python from . import BaseGLProxy, _copy_gl_functions from ._constants import * # noqa class DummyProxy(BaseGLProxy): """A dummy backend that can be activated when the GL is not processed in this process. Each GL function call will raise an error. """ def __call__(self, funcname, returns, *args): raise RuntimeError('Cannot call %r (or any other GL function), ' 'since GL is disabled.' % funcname) # Instantiate proxy and inject functions _proxy = DummyProxy() _copy_gl_functions(_proxy, globals()) ``` #### File: gloo/tests/test_buffer.py ```python import unittest import numpy as np from vispy.testing import run_tests_if_main from vispy.gloo.buffer import (Buffer, DataBuffer, DataBufferView, VertexBuffer, IndexBuffer) # ----------------------------------------------------------------------------- class BufferTest(unittest.TestCase): # Default init # ------------ def test_init_default(self): """Test buffer init""" # No data B = Buffer() assert B.nbytes == 0 glir_cmd = B._glir.clear()[-1] assert glir_cmd[0] == 'CREATE' # With data data = np.zeros(100) B = Buffer(data=data) assert B.nbytes == data.nbytes glir_cmd = B._glir.clear()[-1] assert glir_cmd[0] == 'DATA' # With nbytes B = Buffer(nbytes=100) assert B.nbytes == 100 glir_cmd = B._glir.clear()[-1] assert glir_cmd[0] == 'SIZE' # Wrong data self.assertRaises(ValueError, Buffer, data, 4) self.assertRaises(ValueError, Buffer, data, data.nbytes) # Check setting the whole buffer clear pending operations # ------------------------------------------------------- def test_set_whole_data(self): data = np.zeros(100) B = Buffer(data=data) B._glir.clear() B.set_data(data=data) glir_cmds = B._glir.clear() assert len(glir_cmds) == 2 assert glir_cmds[0][0] == 'SIZE' assert glir_cmds[1][0] == 'DATA' # And sub data B.set_subdata(data[:50], 20) glir_cmds = B._glir.clear() assert len(glir_cmds) == 1 assert glir_cmds[0][0] == 'DATA' assert glir_cmds[0][2] == 20 # offset # And sub data B.set_subdata(data) glir_cmds = B._glir.clear() assert glir_cmds[-1][0] == 'DATA' # Wrong ways to set subdata self.assertRaises(ValueError, B.set_subdata, data[:50], -1) # neg self.assertRaises(ValueError, B.set_subdata, data, 10) # no fit # Check stored data is data # ------------------------- def test_data_storage(self): data = np.zeros(100) B = Buffer(data=data) B.set_data(data=data[:50], copy=False) glir_cmd = B._glir.clear()[-1] assert glir_cmd[-1].base is data # Check setting oversized data # ---------------------------- def test_oversized_data(self): data = np.zeros(10) B = Buffer(data=data) # with self.assertRaises(ValueError): # B.set_data(np.ones(20)) self.assertRaises(ValueError, B.set_subdata, np.ones(20), offset=0) # Check negative offset # --------------------- def test_negative_offset(self): data = np.zeros(10) B = Buffer(data=data) # with self.assertRaises(ValueError): # B.set_data(np.ones(1), offset=-1) self.assertRaises(ValueError, B.set_subdata, np.ones(1), offset=-1) # Check offlimit offset # --------------------- def test_offlimit_offset(self): data = np.zeros(10) B = Buffer(data=data) # with self.assertRaises(ValueError): # B.set_data(np.ones(1), offset=10 * data.dtype.itemsize) self.assertRaises(ValueError, B.set_subdata, np.ones(1), offset=10 * data.dtype.itemsize) # Buffer size # ----------- def test_buffer_size(self): data = np.zeros(10) B = Buffer(data=data) assert B.nbytes == data.nbytes # Resize # ------ def test_buffer_resize(self): data = np.zeros(10) B = Buffer(data=data) data = np.zeros(20) B.set_data(data) assert B.nbytes == data.nbytes # ----------------------------------------------------------------------------- class DataBufferTest(unittest.TestCase): # Default init # ------------ def test_default_init(self): # Check default storage and copy flags data = np.ones(100) B = DataBuffer(data) assert B.nbytes == data.nbytes assert B.offset == 0 assert B.size == 100 assert B.itemsize == data.itemsize assert B.stride == data.itemsize assert B.dtype == data.dtype # Given data must be actual numeric data self.assertRaises(TypeError, DataBuffer, 'this is not nice data') # Default init with structured data # --------------------------------- def test_structured_init(self): # Check structured type dtype = np.dtype([('position', np.float32, 3), ('texcoord', np.float32, 2), ('color', np.float32, 4)]) data = np.zeros(10, dtype=dtype) B = DataBuffer(data) assert B.nbytes == data.nbytes assert B.offset == 0 assert B.size == 10 assert B.itemsize == data.itemsize assert B.stride == data.itemsize assert B.dtype == data.dtype # No CPU storage # -------------- def test_no_storage_copy(self): data = np.ones(100, np.float32) B = DataBuffer(data) assert B.stride == 4 # Wrong storage # ------------- def test_non_contiguous_storage(self): # Ask to have CPU storage and to use data as storage # Not possible since data[::2] is not contiguous data = np.ones(100, np.float32) data_given = data[::2] B = DataBuffer(data_given) assert B.stride == 4*2 # Get buffer field # ---------------- def test_getitem_field(self): dtype = np.dtype([('position', np.float32, 3), ('texcoord', np.float32, 2), ('color', np.float32, 4)]) data = np.zeros(10, dtype=dtype) B = DataBuffer(data) Z = B["position"] assert Z.nbytes == 10 * 3 * np.dtype(np.float32).itemsize assert Z.offset == 0 assert Z.size == 10 assert Z.itemsize == 3 * np.dtype(np.float32).itemsize assert Z.stride == (3 + 2 + 4) * np.dtype(np.float32).itemsize assert Z.dtype == (np.float32, 3) Z = B["texcoord"] assert Z.nbytes == 10 * 2 * np.dtype(np.float32).itemsize assert Z.offset == 3 * np.dtype(np.float32).itemsize assert Z.size == 10 assert Z.itemsize == 2 * np.dtype(np.float32).itemsize assert Z.stride == (3 + 2 + 4) * np.dtype(np.float32).itemsize assert Z.dtype == (np.float32, 2) Z = B["color"] assert Z.nbytes == 10 * 4 * np.dtype(np.float32).itemsize assert Z.offset == (2 + 3) * np.dtype(np.float32).itemsize assert Z.size == 10 assert Z.itemsize == 4 * np.dtype(np.float32).itemsize assert Z.stride == (3 + 2 + 4) * np.dtype(np.float32).itemsize assert Z.dtype == (np.float32, 4) # Get view via index # ------------------ def test_getitem_index(self): dtype = np.dtype([('position', np.float32, 3), ('texcoord', np.float32, 2), ('color', np.float32, 4)]) data = np.zeros(10, dtype=dtype) B = DataBuffer(data) Z = B[0:1] assert Z.base == B assert Z.id == B.id assert Z.nbytes == 1 * (3 + 2 + 4) * np.dtype(np.float32).itemsize assert Z.offset == 0 assert Z.size == 1 assert Z.itemsize == (3 + 2 + 4) * np.dtype(np.float32).itemsize assert Z.stride == (3 + 2 + 4) * np.dtype(np.float32).itemsize assert Z.dtype == B.dtype assert 'DataBufferView' in repr(Z) # There's a few things we cannot do with a view self.assertRaises(RuntimeError, Z.set_data, data) self.assertRaises(RuntimeError, Z.set_subdata, data) self.assertRaises(RuntimeError, Z.resize_bytes, 20) self.assertRaises(RuntimeError, Z.__getitem__, 3) self.assertRaises(RuntimeError, Z.__setitem__, 3, data) # View get invalidated when base is resized # ----------------------------------------- def test_invalid_view_after_resize(self): dtype = np.dtype([('position', np.float32, 3), ('texcoord', np.float32, 2), ('color', np.float32, 4)]) data = np.zeros(10, dtype=dtype) B = DataBuffer(data) Y = B['position'] Z = B[5:] B.resize_bytes(5) assert Y._valid is False assert Z._valid is False # View get invalidated after setting oversized data # ------------------------------------------------- def test_invalid_view_after_set_data(self): dtype = np.dtype([('position', np.float32, 3), ('texcoord', np.float32, 2), ('color', np.float32, 4)]) data = np.zeros(10, dtype=dtype) B = DataBuffer(data) Z = B[5:] B.set_data(np.zeros(15, dtype=dtype)) assert Z._valid is False # Set data on base buffer : ok # ---------------------------- def test_set_data_base(self): dtype = np.dtype([('position', np.float32, 3), ('texcoord', np.float32, 2), ('color', np.float32, 4)]) data = np.zeros(10, dtype=dtype) B = DataBuffer(data) B.set_data(data) last_cmd = B._glir.clear()[-1] assert last_cmd[0] == 'DATA' # Extra kwargs are caught self.assertRaises(TypeError, B.set_data, data, foo=4) # Check set_data using offset in data buffer # ------------------------------------------ def test_set_data_offset(self): data = np.zeros(100, np.float32) subdata = data[:10] B = DataBuffer(data) B.set_subdata(subdata, offset=10) last_cmd = B._glir.clear()[-1] offset = last_cmd[2] assert offset == 10*4 def test_getitem(self): dtype = np.dtype([('position', np.float32, 3), ('texcoord', np.float32, 2), ('color', np.float32, 4)]) data = np.zeros(10, dtype=dtype) B = DataBuffer(data) assert B[1].dtype == dtype assert B[1].size == 1 assert B[-1].dtype == dtype assert B[-1].size == 1 self.assertRaises(IndexError, B.__getitem__, +999) self.assertRaises(IndexError, B.__getitem__, -999) def test_setitem(self): dtype = np.dtype([('position', np.float32, 3), ('texcoord', np.float32, 2), ('color', np.float32, 4)]) data = np.zeros(10, dtype=dtype) B = DataBuffer(data) B[1] = data[0] B[-1] = data[0] B[:5] = data[:5] B[5:0] = data[:5] # Weird, but we apparently support this # the below is no longer supported starting with NumPy 1.14.0 # this used to be converted to a single element array of the above # dtype filled with 0s. This is no longer supported. # B[1] = b'' # Gets converted into array of dtype. Lists do not work # the below doesn't work on all systems (I guess?) # B[1] = 0 B[1] = ([0, 0, 0], [0, 0], [0, 0, 0, 0],) self.assertRaises(IndexError, B.__setitem__, +999, data[0]) self.assertRaises(IndexError, B.__setitem__, -999, data[0]) self.assertRaises(TypeError, B.__setitem__, [], data[0]) # Setitem + broadcast # ------------------------------------------------------ def test_setitem_broadcast(self): dtype = np.dtype([('position', np.float32, 3), ('texcoord', np.float32, 2), ('color', np.float32, 4)]) data = np.zeros(10, dtype=dtype) B = DataBuffer(data) self.assertRaises(ValueError, B.__setitem__, 'position', (1, 2, 3)) # Set every 2 item # ------------------------------------------------------ def test_setitem_strided(self): dtype = np.dtype([('position', np.float32, 3), ('texcoord', np.float32, 2), ('color', np.float32, 4)]) data1 = np.zeros(10, dtype=dtype) data2 = np.ones(10, dtype=dtype) B = DataBuffer(data1) s = slice(None, None, 2) self.assertRaises(ValueError, B.__setitem__, s, data2[::2]) # Set half the array # ------------------------------------------------------ def test_setitem_half(self): dtype = np.dtype([('position', np.float32, 3), ('texcoord', np.float32, 2), ('color', np.float32, 4)]) data1 = np.zeros(10, dtype=dtype) data2 = np.ones(10, dtype=dtype) B = DataBuffer(data1) B._glir.clear() B[:5] = data2[:5] glir_cmds = B._glir.clear() assert len(glir_cmds) == 1 set_data = glir_cmds[0][-1] assert np.allclose(set_data['position'], data2['position'][:5]) assert np.allclose(set_data['texcoord'][:5], data2['texcoord'][:5]) assert np.allclose(set_data['color'][:5], data2['color'][:5]) # Set field without storage: error # -------------------------------- def test_setitem_field_no_storage(self): dtype = np.dtype([('position', np.float32, 3), ('texcoord', np.float32, 2), ('color', np.float32, 4)]) data = np.zeros(10, dtype=dtype) B = DataBuffer(data) self.assertRaises(ValueError, B.__setitem__, 'position', (1, 2, 3)) # Set every 2 item without storage: error # ---------------------------------------- def test_every_two_item_no_storage(self): dtype = np.dtype([('position', np.float32, 3), ('texcoord', np.float32, 2), ('color', np.float32, 4)]) data = np.zeros(10, dtype=dtype) B = DataBuffer(data) # with self.assertRaises(ValueError): # B[::2] = data[::2] s = slice(None, None, 2) self.assertRaises(ValueError, B.__setitem__, s, data[::2]) # Resize # ------ def test_resize(self): data = np.zeros(10) B = DataBuffer(data=data) data = np.zeros(20) B.set_data(data) assert B.nbytes == data.nbytes # Resize now allowed using ellipsis # ----------------------------- def test_no_resize_ellipsis(self): data = np.zeros(10) B = DataBuffer(data=data) data = np.zeros(30) self.assertRaises(ValueError, B.__setitem__, Ellipsis, data) # Broadcast when using ellipses def test_broadcast_ellipsis(self): data = np.zeros(10) B = DataBuffer(data=data) data = np.zeros(5) B[Ellipsis] = data glir_cmd = B._glir.clear()[-1] assert glir_cmd[-1].shape == (10,) class DataBufferViewTest(unittest.TestCase): def test_init_view(self): data = np.zeros(10) B = DataBuffer(data=data) V = DataBufferView(B, 1) assert V.size == 1 V = DataBufferView(B, slice(0, 5)) assert V.size == 5 V = DataBufferView(B, slice(5, 0)) assert V.size == 5 V = DataBufferView(B, Ellipsis) assert V.size == 10 self.assertRaises(TypeError, DataBufferView, B, []) self.assertRaises(ValueError, DataBufferView, B, slice(0, 10, 2)) # ----------------------------------------------------------------------------- class VertexBufferTest(unittest.TestCase): # VertexBuffer allowed base types # ------------------------------- def test_init_allowed_dtype(self): for dtype in (np.uint8, np.int8, np.uint16, np.int16, np.float32): V = VertexBuffer(np.zeros((10, 3), dtype=dtype)) names = V.dtype.names assert V.dtype[names[0]].base == dtype assert V.dtype[names[0]].shape == (3,) for dtype in (np.float64, np.int64): self.assertRaises(TypeError, VertexBuffer, np.zeros((10, 3), dtype=dtype)) # Tuple/list is also allowed V = VertexBuffer([1, 2, 3]) assert V.size == 3 assert V.itemsize == 4 # V = VertexBuffer([[1, 2], [3, 4], [5, 6]]) assert V.size == 3 assert V.itemsize == 2 * 4 # Convert data = np.zeros((10,), 'uint8') B = VertexBuffer(data) assert B.dtype[0].base == np.uint8 assert B.dtype[0].itemsize == 1 # data = np.zeros((10, 2), 'uint8') B = VertexBuffer(data) assert B.dtype[0].base == np.uint8 assert B.dtype[0].itemsize == 2 B.set_data(data, convert=True) assert B.dtype[0].base == np.float32 assert B.dtype[0].itemsize == 8 B = VertexBuffer(data[::2].copy()) # This is converted to 1D B = VertexBuffer([[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]) assert B.size == 10 # Not allowed self.assertRaises(TypeError, VertexBuffer, dtype=np.float64) # self.assertRaises(TypeError, VertexBuffer, [[1,2,3,4,5],[1,2,3,4,5]]) # VertexBuffer not allowed base types # ----------------------------------- def test_init_not_allowed_dtype(self): for dtype in (np.uint32, np.int32, np.float64): # with self.assertRaises(TypeError): # V = VertexBuffer(dtype=dtype) self.assertRaises(TypeError, VertexBuffer, dtype=dtype) def test_glsl_type(self): data = np.zeros((10,), np.float32) B = VertexBuffer(data) C = B[1:] assert B.glsl_type == ('attribute', 'float') assert C.glsl_type == ('attribute', 'float') data = np.zeros((10, 2), np.float32) B = VertexBuffer(data) C = B[1:] assert B.glsl_type == ('attribute', 'vec2') assert C.glsl_type == ('attribute', 'vec2') data = np.zeros((10, 4), np.float32) B = VertexBuffer(data) C = B[1:] assert B.glsl_type == ('attribute', 'vec4') assert C.glsl_type == ('attribute', 'vec4') # ----------------------------------------------------------------------------- class IndexBufferTest(unittest.TestCase): # IndexBuffer allowed base types # ------------------------------ def test_init_allowed_dtype(self): # allowed dtypes for dtype in (np.uint8, np.uint16, np.uint32): b = IndexBuffer(np.zeros(10, dtype=dtype)) b.dtype == dtype # no data => no dtype V = IndexBuffer() V.dtype is None # Not allowed dtypes for dtype in (np.int8, np.int16, np.int32, np.float16, np.float32, np.float64): # with self.assertRaises(TypeError): # V = IndexBuffer(dtype=dtype) data = np.zeros(10, dtype=dtype) self.assertRaises(TypeError, IndexBuffer, data) # Prepare some data dtype = np.dtype([('position', np.float32, 3), ('texcoord', np.float32, 2), ]) sdata = np.zeros(10, dtype=dtype) # Normal data is data = np.zeros([1, 2, 3], np.uint8) B = IndexBuffer(data) assert B.dtype == np.uint8 # We can also convert B.set_data(data, convert=True) assert B.dtype == np.uint32 # Structured data not allowed self.assertRaises(TypeError, IndexBuffer, dtype=dtype) self.assertRaises(TypeError, B.set_data, sdata) run_tests_if_main() ``` #### File: gloo/tests/test_globject.py ```python from vispy.testing import run_tests_if_main from vispy.gloo.globject import GLObject def test_globject(): """Test gl object uinique id and GLIR CREATE command""" objects = [GLObject() for i in range(10)] ids = [ob.id for ob in objects] # Verify that each id is unique (test should not care how) assert len(set(ids)) == len(objects) # Verify that glir commands have been created commands = [] for ob in objects: commands.extend(ob._glir.clear()) assert len(commands) == len(objects) for cmd in commands: assert cmd[0] == 'CREATE' # Delete ob = objects[-1] q = ob._glir # get it now, because its gone after we delete it ob.delete() cmd = q.clear()[-1] assert cmd[0] == 'DELETE' run_tests_if_main() ``` #### File: widgets/tests/test_colorbar.py ```python from vispy.scene.widgets import ColorBarWidget from vispy.testing import (requires_application, TestingCanvas, run_tests_if_main) from vispy.testing.image_tester import assert_image_approved def create_colorbar(pos, orientation, label='label string here'): colorbar = ColorBarWidget(pos=pos, orientation=orientation, label=label, cmap='autumn', border_color='white', border_width=2) colorbar.label.color = 'white' colorbar.label.font_size = 5 colorbar.ticks[0].color = 'white' colorbar.ticks[0].font_size = 5 colorbar.ticks[1].color = 'white' colorbar.ticks[1].font_size = 5 return colorbar @requires_application() def test_colorbar_widget(): with TestingCanvas() as c: colorbar_top = create_colorbar(pos=(50, 50), label="my label", orientation='top') c.draw_visual(colorbar_top) assert_image_approved(c.render(), 'visuals/colorbar/top.png') assert colorbar_top.label.text == "my label" run_tests_if_main() ``` #### File: vispy/util/eq.py ```python from numpy import ndarray, bool_ def eq(a, b): """The great missing equivalence function: Guaranteed evaluation to a single bool value. """ if a is b: return True if a is None or b is None: return True if a is None and b is None else False try: e = a == b except ValueError: return False except AttributeError: return False except Exception: print("a:", str(type(a)), str(a)) print("b:", str(type(b)), str(b)) raise t = type(e) if t is bool: return e elif t is bool_: return bool(e) elif isinstance(e, ndarray): try: # disaster: if a is empty and b is not, then e.all() is True if a.shape != b.shape: return False except Exception: return False if (hasattr(e, 'implements') and e.implements('MetaArray')): return e.asarray().all() else: return e.all() else: raise Exception("== operator returned type %s" % str(type(e))) ``` #### File: vispy/util/logs.py ```python import base64 import logging import sys import inspect import re import traceback import json from functools import partial import numpy as np ############################################################################### # LOGGING (some adapted from mne-python) def _get_vispy_caller(): """Helper to get vispy calling function from the stack""" records = inspect.stack() # first few records are vispy-based logging calls for record in records[5:]: module = record[0].f_globals['__name__'] if module.startswith('vispy'): line = str(record[0].f_lineno) func = record[3] cls = record[0].f_locals.get('self', None) clsname = "" if cls is None else cls.__class__.__name__ + '.' caller = "{0}:{1}{2}({3}): ".format(module, clsname, func, line) return caller return 'unknown' # class _WrapStdOut(object): # """Class to work around how doctest captures stdout""" # def __getattr__(self, name): # # Even more ridiculous than this class, this must be sys.stdout (not # # just stdout) in order for this to work (tested on OSX and Linux) # return getattr(sys.stdout, name) class _VispyFormatter(logging.Formatter): """Formatter that optionally prepends caller""" def __init__(self): logging.Formatter.__init__(self, '%(levelname)s: %(message)s') self._vispy_prepend_caller = False def _vispy_set_prepend(self, prepend): self._vispy_prepend_caller = prepend def format(self, record): out = logging.Formatter.format(self, record) if self._vispy_prepend_caller: out = _get_vispy_caller() + out return out class _VispyStreamHandler(logging.StreamHandler): """Stream handler allowing matching and recording This handler has two useful optional additions: 1. Recording emitted messages. 2. Performing regexp substring matching. Prepending of traceback information is done in _VispyFormatter. """ def __init__(self): logging.StreamHandler.__init__(self, sys.stderr) self._vispy_formatter = _lf self.setFormatter(self._vispy_formatter) self._vispy_match = None self._vispy_emit_list = list() self._vispy_set_emit_record(False) self._vispy_set_match(None) self._vispy_print_msg = True def _vispy_emit_match_andor_record(self, record): """Log message emitter that optionally matches and/or records""" test = record.getMessage() match = self._vispy_match if (match is None or re.search(match, test) or re.search(match, _get_vispy_caller())): if self._vispy_emit_record: fmt_rec = self._vispy_formatter.format(record) self._vispy_emit_list.append(fmt_rec) if self._vispy_print_msg: return logging.StreamHandler.emit(self, record) else: return def _vispy_set_match(self, match): old_match = self._vispy_match self._vispy_match = match # Triage here to avoid a bunch of if's later (more efficient) if match is not None or self._vispy_emit_record: self.emit = self._vispy_emit_match_andor_record else: self.emit = partial(logging.StreamHandler.emit, self) return old_match def _vispy_set_emit_record(self, record): self._vispy_emit_record = record match = self._vispy_match # Triage here to avoid a bunch of if's later (more efficient) if match is not None or self._vispy_emit_record: self.emit = self._vispy_emit_match_andor_record else: self.emit = partial(logging.StreamHandler.emit, self) def _vispy_reset_list(self): self._vispy_emit_list = list() logger = logging.getLogger('vispy') _lf = _VispyFormatter() _lh = _VispyStreamHandler() # needs _lf to exist logger.addHandler(_lh) logging_types = dict(debug=logging.DEBUG, info=logging.INFO, warning=logging.WARNING, error=logging.ERROR, critical=logging.CRITICAL) def set_log_level(verbose, match=None, return_old=False): """Convenience function for setting the logging level Parameters ---------- verbose : bool, str, int, or None The verbosity of messages to print. If a str, it can be either DEBUG, INFO, WARNING, ERROR, or CRITICAL. Note that these are for convenience and are equivalent to passing in logging.DEBUG, etc. For bool, True is the same as 'INFO', False is the same as 'WARNING'. match : str | None String to match. Only those messages that both contain a substring that regexp matches ``'match'`` (and the ``verbose`` level) will be displayed. return_old : bool If True, return the old verbosity level and old match. Notes ----- If ``verbose=='debug'``, then the ``vispy`` method emitting the log message will be prepended to each log message, which is useful for debugging. If ``verbose=='debug'`` or ``match is not None``, then a small performance overhead is added. Thus it is suggested to only use these options when performance is not crucial. See also -------- vispy.util.use_log_level """ # This method is responsible for setting properties of the handler and # formatter such that proper messages (possibly with the vispy caller # prepended) are displayed. Storing log messages is only available # via the context handler (use_log_level), so that configuration is # done by the context handler itself. if isinstance(verbose, bool): verbose = 'info' if verbose else 'warning' if isinstance(verbose, str): verbose = verbose.lower() if verbose not in logging_types: raise ValueError('Invalid argument "%s"' % verbose) verbose = logging_types[verbose] else: raise TypeError('verbose must be a bool or string') logger = logging.getLogger('vispy') old_verbose = logger.level old_match = _lh._vispy_set_match(match) logger.setLevel(verbose) if verbose <= logging.DEBUG: _lf._vispy_set_prepend(True) else: _lf._vispy_set_prepend(False) out = None if return_old: out = (old_verbose, old_match) return out class use_log_level(object): """Context manager that temporarily sets logging level Parameters ---------- level : str See ``set_log_level`` for options. match : str | None The string to match. record : bool If True, the context manager will keep a record of the logging messages generated by vispy. Otherwise, an empty list will be returned. print_msg : bool If False, printing of (all) messages will be suppressed. This is mainly useful in testing. False only works in `record=True` mode, if not recording messages, consider setting `level` appropriately. Returns ------- records : list As a context manager, an empty list or the list of logging messages will be returned (depending on the input ``record``). """ # This method mostly wraps to set_log_level, but also takes # care of enabling/disabling message recording in the formatter. def __init__(self, level, match=None, record=False, print_msg=True): self._new_level = level self._new_match = match self._print_msg = print_msg self._record = record if match is not None and not isinstance(match, str): raise TypeError('match must be None or str') def __enter__(self): # set the log level old_level, old_match = set_log_level(self._new_level, self._new_match, return_old=True) for key, value in logging_types.items(): if value == old_level: old_level = key self._old_level = old_level self._old_match = old_match if not self._print_msg: _lh._vispy_print_msg = False # set handler to record, if appropriate _lh._vispy_reset_list() if self._record: _lh._vispy_set_emit_record(True) return _lh._vispy_emit_list else: return list() def __exit__(self, type, value, traceback): # reset log level set_log_level(self._old_level, self._old_match) # reset handler if self._record: _lh._vispy_set_emit_record(False) if not self._print_msg: _lh._vispy_print_msg = True # set it back def log_exception(level='warning', tb_skip=2): """ Send an exception and traceback to the logger. This function is used in cases where an exception is handled safely but nevertheless should generate a descriptive error message. An extra line is inserted into the stack trace indicating where the exception was caught. Parameters ---------- level : str See ``set_log_level`` for options. tb_skip : int The number of traceback entries to ignore, prior to the point where the exception was caught. The default is 2. """ stack = "".join(traceback.format_stack()[:-tb_skip]) tb = traceback.format_exception(*sys.exc_info()) msg = tb[0] # "Traceback (most recent call last):" msg += stack msg += " << caught exception here: >>\n" msg += "".join(tb[1:]).rstrip() logger.log(logging_types[level], msg) logger.log_exception = log_exception # make this easier to reach def _handle_exception(ignore_callback_errors, print_callback_errors, obj, cb_event=None, node=None): """Helper for prining errors in callbacks See EventEmitter._invoke_callback for a use example. """ if not hasattr(obj, '_vispy_err_registry'): obj._vispy_err_registry = {} registry = obj._vispy_err_registry if cb_event is not None: cb, event = cb_event exp_type = 'callback' else: exp_type = 'node' type_, value, tb = sys.exc_info() tb = tb.tb_next # Skip *this* frame sys.last_type = type_ sys.last_value = value sys.last_traceback = tb del tb # Get rid of it in this namespace # Handle if not ignore_callback_errors: raise if print_callback_errors != "never": this_print = 'full' if print_callback_errors in ('first', 'reminders'): # need to check to see if we've hit this yet if exp_type == 'callback': key = repr(cb) + repr(event) else: key = repr(node) if key in registry: registry[key] += 1 if print_callback_errors == 'first': this_print = None else: # reminders ii = registry[key] # Use logarithmic selection # (1, 2, ..., 10, 20, ..., 100, 200, ...) if ii == (2 ** int(np.log2(ii))): this_print = ii else: this_print = None else: registry[key] = 1 if this_print == 'full': logger.log_exception() if exp_type == 'callback': logger.error("Invoking %s for %s" % (cb, event)) else: # == 'node': logger.error("Drawing node %s" % node) elif this_print is not None: if exp_type == 'callback': logger.error("Invoking %s repeat %s" % (cb, this_print)) else: # == 'node': logger.error("Drawing node %s repeat %s" % (node, this_print)) def _serialize_buffer(buffer, array_serialization=None): """Serialize a NumPy array.""" if array_serialization == 'binary': return buffer.ravel().tobytes() elif array_serialization == 'base64': return {'storage_type': 'base64', 'buffer': base64.b64encode(buffer).decode('ascii') } raise ValueError("The array serialization method should be 'binary' or " "'base64'.") class NumPyJSONEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.ndarray): return _serialize_buffer(obj, array_serialization='base64') elif isinstance(obj, np.generic): return obj.item() return json.JSONEncoder.default(self, obj) ``` #### File: util/svg/transformable.py ```python from . element import Element from . transform import Transform class Transformable(Element): """Transformable SVG element""" def __init__(self, content=None, parent=None): Element.__init__(self, content, parent) if isinstance(content, str): self._transform = Transform() self._computed_transform = self._transform else: self._transform = Transform(content.get("transform", None)) self._computed_transform = self._transform if parent: self._computed_transform = self._transform + \ self.parent.transform @property def transform(self): return self._computed_transform ``` #### File: graphs/layouts/circular.py ```python import numpy as np from ..util import _straight_line_vertices, issparse def circular(adjacency_mat, directed=False): """Places all nodes on a single circle. Parameters ---------- adjacency_mat : matrix or sparse The graph adjacency matrix directed : bool Whether the graph is directed. If this is True, is will also generate the vertices for arrows, which can be passed to an ArrowVisual. Yields ------ (node_vertices, line_vertices, arrow_vertices) : tuple Yields the node and line vertices in a tuple. This layout only yields a single time, and has no builtin animation """ if issparse(adjacency_mat): adjacency_mat = adjacency_mat.tocoo() num_nodes = adjacency_mat.shape[0] t = np.linspace(0, 2 * np.pi, num_nodes, endpoint=False) # Visual coordinate system is between 0 and 1, so generate a circle with # radius 0.5 and center it at the point (0.5, 0.5). node_coords = (0.5 * np.array([np.cos(t), np.sin(t)]) + 0.5).T node_coords = node_coords.astype(np.float32) line_vertices, arrows = _straight_line_vertices(adjacency_mat, node_coords, directed) yield node_coords, line_vertices, arrows ``` #### File: graphs/layouts/force_directed.py ```python import numpy as np try: from scipy.sparse import issparse except ImportError: def issparse(*args, **kwargs): return False from ..util import _straight_line_vertices, _rescale_layout class fruchterman_reingold(object): r"""Fruchterman-Reingold implementation adapted from NetworkX. In the Fruchterman-Reingold algorithm, the whole graph is modelled as a collection of particles, it runs a simplified particle simulation to find a nice layout for the graph. Paramters --------- optimal : number Optimal distance between nodes. Defaults to :math:`1/\\sqrt{N}` where N is the number of nodes. iterations : int Number of iterations to perform for layout calculation. pos : array Initial positions of the nodes Notes ----- The algorithm is explained in more detail in the original paper [1]_. .. [1] Fruchterman, <NAME>, and <NAME>. "Graph drawing by force-directed placement." Softw., Pract. Exper. 21.11 (1991), 1129-1164. """ def __init__(self, optimal=None, iterations=50, pos=None): self.dim = 2 self.optimal = optimal self.iterations = iterations self.num_nodes = None self.pos = pos def __call__(self, adjacency_mat, directed=False): """ Starts the calculation of the graph layout. This is a generator, and after each iteration it yields the new positions for the nodes, together with the vertices for the edges and the arrows. There are two solvers here: one specially adapted for SciPy sparse matrices, and the other for larger networks. Parameters ---------- adjacency_mat : array The graph adjacency matrix. directed : bool Wether the graph is directed or not. If this is True, it will draw arrows for directed edges. Yields ------ layout : tuple For each iteration of the layout calculation it yields a tuple containing (node_vertices, line_vertices, arrow_vertices). These vertices can be passed to the `MarkersVisual` and `ArrowVisual`. """ if adjacency_mat.shape[0] != adjacency_mat.shape[1]: raise ValueError("Adjacency matrix should be square.") self.num_nodes = adjacency_mat.shape[0] if issparse(adjacency_mat): # Use the sparse solver solver = self._sparse_fruchterman_reingold else: solver = self._fruchterman_reingold for result in solver(adjacency_mat, directed): yield result def _fruchterman_reingold(self, adjacency_mat, directed=False): if self.optimal is None: self.optimal = 1 / np.sqrt(self.num_nodes) if self.pos is None: # Random initial positions pos = np.asarray( np.random.random((self.num_nodes, self.dim)), dtype=np.float32 ) else: pos = self.pos.astype(np.float32) # Yield initial positions line_vertices, arrows = _straight_line_vertices(adjacency_mat, pos, directed) yield pos, line_vertices, arrows # The initial "temperature" is about .1 of domain area (=1x1) # this is the largest step allowed in the dynamics. t = 0.1 # Simple cooling scheme. # Linearly step down by dt on each iteration so last iteration is # size dt. dt = t / float(self.iterations+1) # The inscrutable (but fast) version # This is still O(V^2) # Could use multilevel methods to speed this up significantly for iteration in range(self.iterations): delta_pos = _calculate_delta_pos(adjacency_mat, pos, t, self.optimal) pos += delta_pos _rescale_layout(pos) # cool temperature t -= dt # Calculate edge vertices and arrows line_vertices, arrows = _straight_line_vertices(adjacency_mat, pos, directed) yield pos, line_vertices, arrows def _sparse_fruchterman_reingold(self, adjacency_mat, directed=False): # Optimal distance between nodes if self.optimal is None: self.optimal = 1 / np.sqrt(self.num_nodes) # Change to list of list format # Also construct the matrix in COO format for easy edge construction adjacency_arr = adjacency_mat.toarray() adjacency_coo = adjacency_mat.tocoo() if self.pos is None: # Random initial positions pos = np.asarray( np.random.random((self.num_nodes, self.dim)), dtype=np.float32 ) else: pos = self.pos.astype(np.float32) # Yield initial positions line_vertices, arrows = _straight_line_vertices(adjacency_coo, pos, directed) yield pos, line_vertices, arrows # The initial "temperature" is about .1 of domain area (=1x1) # This is the largest step allowed in the dynamics. t = 0.1 # Simple cooling scheme. # Linearly step down by dt on each iteration so last iteration is # size dt. dt = t / float(self.iterations+1) for iteration in range(self.iterations): delta_pos = _calculate_delta_pos(adjacency_arr, pos, t, self.optimal) pos += delta_pos _rescale_layout(pos) # Cool temperature t -= dt # Calculate line vertices line_vertices, arrows = _straight_line_vertices(adjacency_coo, pos, directed) yield pos, line_vertices, arrows def _calculate_delta_pos(adjacency_arr, pos, t, optimal): """Helper to calculate the delta position""" # XXX eventually this should be refactored for the sparse case to only # do the necessary pairwise distances delta = pos[:, np.newaxis, :] - pos # Distance between points distance2 = (delta*delta).sum(axis=-1) # Enforce minimum distance of 0.01 distance2 = np.where(distance2 < 0.0001, 0.0001, distance2) distance = np.sqrt(distance2) # Displacement "force" displacement = np.zeros((len(delta), 2)) for ii in range(2): displacement[:, ii] = ( delta[:, :, ii] * ((optimal * optimal) / (distance*distance) - (adjacency_arr * distance) / optimal)).sum(axis=1) length = np.sqrt((displacement**2).sum(axis=1)) length = np.where(length < 0.01, 0.1, length) delta_pos = displacement * t / length[:, np.newaxis] return delta_pos ``` #### File: vispy/visuals/gridmesh.py ```python from .mesh import MeshVisual from ..geometry import create_grid_mesh, MeshData class GridMeshVisual(MeshVisual): """Displays a mesh in a Cartesian grid about x,y,z coordinates. This makes it simple to generate a mesh from e.g. the output of numpy.meshgrid. All arguments are optional, though they can be changed individually later with the set_data method. Parameters ---------- xs : ndarray A 2d array of x coordinates for the vertices of the mesh. Must have the same dimensions as ys and zs. ys : ndarray A 2d array of y coordinates for the vertices of the mesh. Must have the same dimensions as xs and zs. zs : ndarray A 2d array of z coordinates for the vertices of the mesh. Must have the same dimensions as xs and ys. colors : ndarray | None The colors of the points of the mesh. Should be either a (width, height, 4) array of rgba colors at each grid point or a (width, height, 3) array of rgb colors at each grid point. Defaults to None, in which case the default color of a MeshVisual is used. shading : str | None Same as for the `MeshVisual` class. Defaults to 'smooth'. **kwargs : Other arguments are passed directly to MeshVisual. """ def __init__(self, xs, ys, zs, colors=None, shading='smooth', **kwargs): if xs is None or ys is None or zs is None: raise ValueError('All of xs, ys and zs must be initialised ' 'with arrays.') self._xs = None self._ys = None self._zs = None self.__vertices = None self.__meshdata = MeshData() MeshVisual.__init__(self, shading=shading, **kwargs) self.set_data(xs, ys, zs, colors) def set_data(self, xs=None, ys=None, zs=None, colors=None): """Update the mesh data. Parameters ---------- xs : ndarray | None A 2d array of x coordinates for the vertices of the mesh. ys : ndarray | None A 2d array of y coordinates for the vertices of the mesh. zs : ndarray | None A 2d array of z coordinates for the vertices of the mesh. colors : ndarray | None The color at each point of the mesh. Must have shape (width, height, 4) or (width, height, 3) for rgba or rgb color definitions respectively. """ if xs is None: xs = self._xs self.__vertices = None if ys is None: ys = self._ys self.__vertices = None if zs is None: zs = self._zs self.__vertices = None if self.__vertices is None: vertices, indices = create_grid_mesh(xs, ys, zs) self._xs = xs self._ys = ys self._zs = zs if self.__vertices is None: vertices, indices = create_grid_mesh(self._xs, self._ys, self._zs) self.__meshdata.set_vertices(vertices) self.__meshdata.set_faces(indices) if colors is not None: self.__meshdata.set_vertex_colors(colors.reshape( colors.shape[0] * colors.shape[1], colors.shape[2])) MeshVisual.set_data(self, meshdata=self.__meshdata) ``` #### File: vispy/visuals/rectangle.py ```python from __future__ import division import numpy as np from ..color import Color from .polygon import PolygonVisual class RectangleVisual(PolygonVisual): """ Displays a 2D rectangle with optional rounded corners Parameters ---------- center : array Center of the rectangle color : instance of Color The fill color to use. border_color : instance of Color The border color to use. border_width : int Border width in pixels. Line widths > 1px are only guaranteed to work when using `border_method='agg'` method. height : float Length of the rectangle along y-axis Defaults to 1.0 width : float Length of the rectangle along x-axis Defaults to 1.0 radius : float | array Radii of curvatures of corners in clockwise order from top-left Defaults to 0. **kwargs : dict Keyword arguments to pass to `PolygonVisual`. """ def __init__(self, center=None, color='black', border_color=None, border_width=1, height=1.0, width=1.0, radius=[0., 0., 0., 0.], **kwargs): self._height = height self._width = width self._color = Color(color) self._border_color = Color(border_color) self._border_width = border_width self._radius = radius self._center = center # triangulation can be very slow kwargs.setdefault('triangulate', False) PolygonVisual.__init__(self, pos=None, color=color, border_color=border_color, border_width=border_width, **kwargs) self._mesh.mode = 'triangle_fan' self._regen_pos() self._update() @staticmethod def _generate_vertices(center, radius, height, width): half_height = height / 2. half_width = width / 2. hw = min(half_height, half_width) if isinstance(radius, (list, tuple)): if len(radius) != 4: raise ValueError("radius must be float or 4 value tuple/list" " (got %s of length %d)" % (type(radius), len(radius))) if (radius > np.ones(4) * hw).all(): raise ValueError('Radius of curvature cannot be greater than\ half of min(width, height)') radius = np.array(radius, dtype=np.float32) else: if radius > hw: raise ValueError('Radius of curvature cannot be greater than\ half of min(width, height)') radius = np.ones(4) * radius num_segments = (radius / hw * 500.).astype(int) bias1 = np.ones(4) * half_width - radius bias2 = np.ones(4) * half_height - radius corner1 = np.empty([num_segments[0]+1, 3], dtype=np.float32) corner2 = np.empty([num_segments[1]+1, 3], dtype=np.float32) corner3 = np.empty([num_segments[2]+1, 3], dtype=np.float32) corner4 = np.empty([num_segments[3]+1, 3], dtype=np.float32) start_angle = 0. end_angle = np.pi / 2. theta = np.linspace(end_angle, start_angle, num_segments[0]+1) corner1[:, 0] = center[0] - bias1[0] - radius[0] * np.sin(theta) corner1[:, 1] = center[1] - bias2[0] - radius[0] * np.cos(theta) corner1[:, 2] = 0 theta = np.linspace(start_angle, end_angle, num_segments[1]+1) corner2[:, 0] = center[0] + bias1[1] + radius[1] * np.sin(theta) corner2[:, 1] = center[1] - bias2[1] - radius[1] * np.cos(theta) corner2[:, 2] = 0 theta = np.linspace(end_angle, start_angle, num_segments[2]+1) corner3[:, 0] = center[0] + bias1[2] + radius[2] * np.sin(theta) corner3[:, 1] = center[1] + bias2[2] + radius[2] * np.cos(theta) corner3[:, 2] = 0 theta = np.linspace(start_angle, end_angle, num_segments[3]+1) corner4[:, 0] = center[0] - bias1[3] - radius[3] * np.sin(theta) corner4[:, 1] = center[1] + bias2[3] + radius[3] * np.cos(theta) corner4[:, 2] = 0 output = np.concatenate(([[center[0], center[1], 0.]], [[center[0] - half_width, center[1], 0.]], corner1, [[center[0], center[1] - half_height, 0.]], corner2, [[center[0] + half_width, center[1], 0.]], corner3, [[center[0], center[1] + half_height, 0.]], corner4, [[center[0] - half_width, center[1], 0.]])) vertices = np.array(output, dtype=np.float32) return vertices @property def center(self): """The center of the ellipse""" return self._center @center.setter def center(self, center): """The center of the ellipse""" self._center = center self._regen_pos() self._update() @property def height(self): """The height of the rectangle.""" return self._height @height.setter def height(self, height): if height <= 0.: raise ValueError('Height must be positive') self._height = height self._regen_pos() self._update() @property def width(self): """The width of the rectangle.""" return self._width @width.setter def width(self, width): if width <= 0.: raise ValueError('Width must be positive') self._width = width self._regen_pos() self._update() @property def radius(self): """The radius of curvature of rounded corners.""" return self._radius @radius.setter def radius(self, radius): self._radius = radius self._regen_pos() self._update() def _regen_pos(self): vertices = self._generate_vertices(center=self._center, radius=self._radius, height=self._height, width=self._width) # don't use the center point and only use X/Y coordinates vertices = vertices[1:, ..., :2] self._pos = vertices ```
{ "source": "3dani33/ePaper_polaroid", "score": 3 }
#### File: ePaper_polaroid/src/display.py ```python from waveshare_epd import epd1in54_V2 from PIL import Image # two functions for cropping images to square # from: https://note.nkmk.me/en/python-pillow-square-circle-thumbnail/ def crop_center(img, crop_width, crop_height): img_width, img_height = img.size return img.crop(((img_width - crop_width) // 2, (img_height - crop_height) // 2, (img_width + crop_width) // 2, (img_height + crop_height) // 2)) def crop_max_square(img): return crop_center(img, min(img.size), min(img.size)) def setup(): global epd epd = epd1in54_V2.EPD() epd.init(0) epd.sleep() def display_image(path): im = Image.open(path) # im.show() # for debugging im_cropped = crop_max_square(im) # im_cropped.show() # for debugging im_resized = im_cropped.resize((200, 200)) # im_resized.show() # for debugging im_bw = im_resized.convert('1') # im_bw.show() for debugging global epd epd.init(0) epd.display(epd.getbuffer(im_bw)) epd.sleep() if __name__ == '__main__': setup() display_image('temp.jpg') ```
{ "source": "3dani33/Kamerabasierte_Anwendungen", "score": 3 }
#### File: 3dani33/Kamerabasierte_Anwendungen/run_algorithm.py ```python import plac import numpy as np import cv2 import os from algorithm import motion_detection, get_algorithm_version import file_handler from evaluate_algorithm import update_frame_count RED = (0, 0, 255) WHITE = (255, 255, 255) def load_video(file): video = cv2.VideoCapture(file) framerate = video.get(cv2.CAP_PROP_FPS) frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) print('framerate: {}, frame count: {}'.format(framerate, frame_count)) return (video, framerate, frame_count) @plac.pos('file', 'The video file path to run the algorithm on.') @plac.flg('show', 'Show the algorithm output live') def run_algorithm(file: str, show: bool=False) -> None: filename = os.path.basename(file) print('Run algorithm on file: {}'.format(filename)) # load video video, framerate, frame_count = load_video(file) # try to find reference file reference_available, reference = file_handler.load_reference_data(filename) reference = update_frame_count(frame_count, reference) # processing loop result = np.zeros(frame_count ,dtype=bool) intensity = np.zeros(frame_count) for n in range(frame_count): _, frame = video.read() # error in frame count if frame is None: print('End of video! frame {} of {}'.format(n, frame_count)) print('Slicing result list to match new frame count: {}'.format(n)) result = result[:n] frame_count = n break # pass image to run_algorithm and save the result result[n], intensity[n], img_back_sub = motion_detection(frame) if show: # add indicator for reference if reference_available: col = RED if reference['reference'][n] else WHITE cv2.circle(frame, center=(10, 10), radius=10, color=col, thickness=-1) cv2.circle(img_back_sub, center=(10, 10), radius=10, color=col, thickness=-1) # grab a few frames with motion # if col == RED and n < 50: # cv2.imwrite('img/filter_noise_{}.png'.format(n), img_back_sub) # add indicator for algorithm col = RED if result[n] else WHITE cv2.circle(frame, center=(20, 10), radius=10, color=col, thickness=-1) cv2.circle(img_back_sub, center=(20, 10), radius=10, color=col, thickness=-1) # add frame number font = cv2.FONT_HERSHEY_SIMPLEX string = '{}/{}'.format(n,frame_count) cv2.putText(frame, string, (100,15), font, 0.5,(255,255,255), 1, cv2.LINE_AA) cv2.putText(img_back_sub, string, (100,15), font, 0.5,(255,255,255), 1, cv2.LINE_AA) # show image cv2.imshow('Doggy Cam: Standard View', frame) cv2.imshow('Doggy Cam: Background Substraction', img_back_sub) key = cv2.waitKey(1) if key & 0xFF == ord('q'): # allow quitting by pressing q print('Quitting...') exit() # 2-D array with intensity and the annotated values for # clean up, if wrong frame_count can be fixed temp = np.vstack((reference['reference'],intensity)) temp = temp.T # export temp to csv file_handler.save_csv(filename, get_algorithm_version(), temp) # save result with framerate and frame count in pickle file file_handler.save_algorithm_result(filename, framerate, frame_count, result, get_algorithm_version()) if __name__ == '__main__': plac.call(run_algorithm) ```
{ "source": "3darkman/faction-builder-api", "score": 3 }
#### File: core/models/ability.py ```python from django.db import models class Ability(models.Model): """Ability to be choosed to creating a faction""" name = models.CharField(max_length=255,) description = models.TextField(blank=True) def __str__(self): return self.name ``` #### File: core/models/faction_type.py ```python from django.contrib.contenttypes.fields import GenericRelation from django.db import models from core.models import Domain, CategorySlot, StartingProfile class FactionType(models.Model): name = models.CharField(max_length=250) is_default = models.BooleanField() domain = models.ForeignKey(Domain, on_delete=models.CASCADE) age = models.SmallIntegerField() slots = GenericRelation(CategorySlot) starting_profile = GenericRelation(StartingProfile) def __str__(self): return self.name ```
{ "source": "3db/3db", "score": 3 }
#### File: controls/blender/background.py ```python from typing import Any, Dict from colorsys import hsv_to_rgb import torch as ch from ...try_bpy import bpy from ..base_control import PostProcessControl class BackgroundControl(PostProcessControl): """Control that replace the transparent background of a render (i.e., the alpha channel) with a given color specified in HSV by the control parameters. Continuous parameters: - ``H``, ``S`` and ``V``: the hue, saturation, and value of the color to fill the background with. (default range: ``[0, 1]``) .. admonition:: Example images .. thumbnail:: /_static/logs/background/images/image_1.png :width: 100 :group: background .. thumbnail:: /_static/logs/background/images/image_2.png :width: 100 :group: background .. thumbnail:: /_static/logs/background/images/image_3.png :width: 100 :group: background .. thumbnail:: /_static/logs/background/images/image_4.png :width: 100 :group: background .. thumbnail:: /_static/logs/background/images/image_5.png :width: 100 :group: background Varying all parameters across their ranges. """ def __init__(self, root_folder: str): continuous_dims = { 'H': (0., 1.), 'S': (0., 1.), 'V': (0., 1.), } super().__init__(root_folder, continuous_dims=continuous_dims) def apply(self, render: ch.Tensor, control_args: Dict[str, Any]) -> ch.Tensor: check_result = self.check_arguments(control_args) assert check_result[0], check_result[1] bpy.context.scene.render.film_transparent = True rgb_color = hsv_to_rgb(control_args['H'], control_args['S'], control_args['V']) rgb_color = ch.tensor(rgb_color)[:, None, None].float() alpha = render[3:, :, :] img = render[:3, :, :] * alpha + (1 - alpha) * rgb_color return img Control = BackgroundControl ``` #### File: threedb/policies/grid_search.py ```python import numpy as np from itertools import product def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n] class GridSearchPolicy: def __init__(self, continuous_dim, discrete_sizes, samples_per_dim): self.continuous_dim = continuous_dim self.discrete_sizes = discrete_sizes self.samples_per_dim = samples_per_dim def hint_scheduler(self): total_queries = self.samples_per_dim ** self.continuous_dim total_queries *= np.prod(self.discrete_sizes) return 1, int(total_queries) def run(self, render_and_send): continuous_values = np.linspace(0, 1, self.samples_per_dim) discrete_spaces = [] for n in self.discrete_sizes: discrete_spaces.append(np.arange(n)) result = [] for continuous_instance in product(*([continuous_values] * self.continuous_dim)): for discrete_instance in product(*discrete_spaces): result.append((continuous_instance, discrete_instance)) for r in chunks(result, 1000): render_and_send(r) Policy = GridSearchPolicy ``` #### File: threedb/rendering/base_renderer.py ```python import torch as ch from abc import ABC, abstractmethod from typing import List, Dict, Any, Optional, Tuple from threedb.rendering.utils import ControlsApplier from typing import List class RenderEnv(ABC): pass class RenderObject(ABC): pass class BaseRenderer(ABC): NAME: str = 'BaseRenderer' KEYS: List[str] = ['rgb'] def __init__(self, root_dir: str, render_settings: Dict[str, Any], env_extensions: List[str] = []) -> None: self.root_dir = root_dir self.env_extensions = env_extensions self.args = render_settings @staticmethod @abstractmethod def enumerate_models(search_dir: str) -> List[str]: """ Given a root folder, returns all valid .blend files (according to a per-renderer convention). """ raise NotImplementedError @staticmethod @abstractmethod def enumerate_environments(search_dir: str) -> List[str]: """ Given a root folder, returns all files in root/blender_environments/ which have extensions in ENV_EXTENSIONS above. """ raise NotImplementedError @abstractmethod def declare_outputs(self) -> Dict[str, Tuple[List[int], str]]: """ This function declares what the output of render() will be, based on the renderer settings. Returns a dictionary mapping keys to (dtype, size) tuples---the output of render() is string-to-tensor dictionary whose tensors will be checked against the return value of this function for both size and type. A basic implementation which suffices for most applications is provided in the abstract class :class:`threedb.rendering.base_renderer.BaseRenderer`. """ raise NotImplementedError @abstractmethod def load_model(self, model: str) -> RenderObject: """ Given a root directory and a model id, loads the model into the renderer and returns the corresponding object. """ raise NotImplementedError @abstractmethod def get_model_uid(self, model: RenderObject) -> str: """ Given an 3D model, return its UID as assigned by the renderer. """ @abstractmethod def load_env(self, env: str) -> Optional[RenderEnv]: """ Given a root folder and environment ID, load the environment into the renderer. If needed, returns an environment object, to be passed back to the render() function. """ raise NotImplementedError @abstractmethod def setup_render(self, model: Optional[RenderObject], env: Optional[RenderEnv]) -> None: """ Perform setup operations for rendering. Called only when the model or environment being rendered changes---otherwise, only render() will be called. No return value. """ raise NotImplementedError @abstractmethod def get_context_dict(self, model_uid: str, object_class: int) -> Dict[str, Any]: """Returns, for a given model id, a "context" dictionary; this context will be passed to the controls (see :class::class:`threedb.controls.base_control.PreProcessControl` for more info). Parameters ---------- model_uid : str The ID of the model being rendered. object_class : int The class label for the model. Returns ------- Dict[str, Any] A context dictionary """ @abstractmethod def render(self, model_uid: str, loaded_model: RenderObject, loaded_env: RenderEnv) -> Dict[str, ch.Tensor]: """[summary] Parameters ---------- model_uid : str Render a model and environment. You can assume that setup_render() has been called with the relevant model and object in context. This function should also handle applying the pre and post-processing controls. loaded_model : RenderObject The model that was most recently loaded and passed to setup_render. loaded_env : RenderEnv the environment that was most recently loaded and passed to setup_render. Returns ------- Dict[str, ch.Tensor] A dictionary mapping result keys (e.g., 'rgb', 'segmentation', etc.) to PyTorch tensor outputs. """ raise NotImplementedError ``` #### File: threedb/rendering/render_blender.py ```python import re from glob import glob from multiprocessing import cpu_count from os import path from tempfile import TemporaryDirectory from typing import Tuple, Dict, Optional, Iterable, List, Any from ..try_bpy import bpy import cv2 import numpy as np import torch as ch from .base_renderer import BaseRenderer, RenderEnv, RenderObject from .utils import ControlsApplier IMAGE_FORMAT = 'png' ENV_EXTENSIONS = ['blend', 'exr', 'hdr'] """ Utility functions """ def _get_model_path(root_folder: str, model: str) -> str: return path.join(root_folder, 'blender_models', model) def _get_env_path(root_folder: str, env: str) -> str: return path.join(root_folder, 'blender_environments', env) def _setup_nice_PNG(input_node: Any) -> None: input_node.use_node_format = False input_node.format.file_format = "PNG" input_node.format.compression = 0 input_node.format.color_depth = "16" class Blender(BaseRenderer): NAME: str = 'Blender' KEYS: List[str] = ['rgb', 'segmentation', 'uv', 'depth'] def __init__(self, root_dir: str, render_settings: Dict[str, Any], _ = None) -> None: super().__init__(root_dir, render_settings, ENV_EXTENSIONS) self.main_nodes = [] self.post_process_nodes = [] @staticmethod def enumerate_models(search_dir: str) -> List[str]: """ Given a root folder, returns all .blend files in root/blender_models/ """ return [path.basename(x) for x in glob(_get_model_path(search_dir, '*.blend'))] @staticmethod def enumerate_environments(search_dir: str) -> List[str]: all_files = map(lambda x: path.basename(x), glob(_get_env_path(search_dir, '*.*'))) return list(filter(lambda x: x.split('.')[-1] in ENV_EXTENSIONS, all_files)) def declare_outputs(self) -> Dict[str, Tuple[List[int], str]]: imsize = [self.args['resolution'], self.args['resolution']] output_channels: Dict[str, Tuple[List[int], str]] = {'rgb': ([3, *imsize], 'float32')} if self.args['with_uv']: output_channels['uv'] = ([4, *imsize], 'float32') if self.args['with_depth']: output_channels['depth'] = ([4, *imsize], 'float32') if self.args['with_segmentation']: output_channels['segmentation'] = ([1, *imsize], 'int32') return output_channels def load_model(self, model: str) -> RenderObject: basename, filename = path.split(_get_model_path(self.root_dir, model)) uid = filename.replace('.blend', '') blendfile = path.join(basename, uid + '.blend') section = "\\Object\\" object = uid filepath = uid + '.blend' directory = blendfile + section filename = object bpy.ops.wm.append( filepath=filepath, filename=filename, directory=directory) return bpy.data.objects[uid] def get_model_uid(self, loaded_model): return loaded_model.name def load_env(self, env: str) -> Optional[RenderEnv]: full_env_path = _get_env_path(self.root_dir, env) if env.endswith('.blend'): # full blender file bpy.ops.wm.open_mainfile(filepath=full_env_path) else: # HDRI env bpy.ops.wm.read_homefile() bpy.data.objects.remove(bpy.data.objects["Cube"], do_unlink=True) bpy.data.objects.remove(bpy.data.objects["Light"], do_unlink=True) bpy.context.scene.render.film_transparent = False world = bpy.context.scene.world node_tree = world.node_tree output_node = world.node_tree.get_output_node('CYCLES') [node_tree.links.remove(x) for x in output_node.inputs[0].links] background_node = node_tree.nodes.new(type="ShaderNodeBackground") node_tree.links.new(background_node.outputs[0], output_node.inputs[0]) img = bpy.data.images.load(full_env_path) env_texture_node = node_tree.nodes.new(type="ShaderNodeTexEnvironment") env_texture_node.image = img node_tree.links.new(env_texture_node.outputs[0], background_node.inputs[0]) def _before_render(self) -> None: """ Private utility function to be called from render() """ # COLOR settings for render bpy.context.scene.display_settings.display_device = 'None' bpy.context.scene.sequencer_colorspace_settings.name = 'Raw' bpy.context.view_layer.update() bpy.context.scene.view_settings.view_transform = 'Standard' bpy.context.scene.view_settings.look = 'None' for node in self.main_nodes: node.mute = False for node in self.post_process_nodes: node.mute = True def _before_preprocess(self) -> None: # COLOR SETTINGS for RGB output bpy.context.scene.display_settings.display_device = 'sRGB' bpy.context.scene.sequencer_colorspace_settings.name = 'sRGB' bpy.context.view_layer.update() bpy.context.scene.view_settings.view_transform = 'Filmic' bpy.context.scene.view_settings.look = 'None' for node in self.main_nodes: node.mute = True for node in self.post_process_nodes: node.mute = False def _setup_render_device(self, scene: Any, prefs: Any): gpu_id: int = self.args['gpu_id'] cpu_cores: Optional[int] = self.args['cpu_cores'] cprefs = prefs.addons['cycles'].preferences cprefs.get_devices() # important to update the list of devices for device in cprefs.devices: device.use = False if cpu_cores: scene.render.threads_mode = 'FIXED' cores_available = cpu_count() assert cpu_cores <= cores_available, f'Your machine has only {cpu_cores} cores.' scene.render.threads = max(1, cpu_cores) if gpu_id == -1: scene.cycles.device = 'CPU' cpu_devices = [x for x in cprefs.devices if x.type == 'CPU'] cpu_devices[0].use = True else: scene.cycles.device = 'GPU' gpu_devices = [x for x in cprefs.devices if x.type == 'CUDA'] if len(gpu_devices) != 0: gpu_devices[gpu_id].use = True else: raise ValueError('No GPUs found.') for d in cprefs.devices: print(f'Device {d.name} ({d.type}) used? {d.use}') def setup_render(self, model: Optional[RenderObject], env: Optional[RenderEnv]) -> None: while self.main_nodes: self.main_nodes.pop() while self.post_process_nodes: self.post_process_nodes.pop() scene = bpy.context.scene bpy.context.scene.render.engine = 'CYCLES' prefs = bpy.context.preferences self._setup_render_device(scene, prefs) bpy.context.scene.cycles.samples = self.args['samples'] bpy.context.scene.render.tile_x = self.args['tile_size'] bpy.context.scene.render.tile_y = self.args['tile_size'] bpy.context.scene.render.resolution_x = self.args['resolution'] bpy.context.scene.render.resolution_y = self.args['resolution'] bpy.context.scene.render.use_persistent_data = True scene.use_nodes = True nodes = scene.node_tree.nodes links = scene.node_tree.links scene.view_layers["View Layer"].use_pass_uv = self.args['with_uv'] bpy.context.scene.view_layers["View Layer"].use_pass_z = self.args['with_depth'] bpy.context.scene.view_layers["View Layer"].use_pass_object_index = self.args['with_segmentation'] scene.use_nodes = True scene.name = 'main_scene' for node in list(nodes): nodes.remove(node) layers_node = nodes.new(type="CompositorNodeRLayers") self.main_nodes.append(layers_node) file_output_node = nodes.new(type="CompositorNodeOutputFile") file_output_node.name = 'exr_output' self.main_nodes.append(file_output_node) file_output_node.format.file_format = "OPEN_EXR" file_output_node.format.exr_codec = 'NONE' output_slots = file_output_node.file_slots output_slots.remove(file_output_node.inputs[0]) output_slots.new("render_exr") links.new(layers_node.outputs[0], file_output_node.inputs[0]) if self.args['with_depth']: output_slots.new("depth") _setup_nice_PNG(file_output_node.file_slots["depth"]) math_node = nodes.new(type="CompositorNodeMath") self.main_nodes.append(math_node) links.new(layers_node.outputs["Depth"], math_node.inputs[0]) math_node.operation = "DIVIDE" math_node.inputs[1].default_value = self.args['max_depth'] links.new(math_node.outputs[0], file_output_node.inputs["depth"]) if self.args['with_uv']: output_slots.new("uv") _setup_nice_PNG(file_output_node.file_slots["uv"]) links.new(layers_node.outputs["UV"], file_output_node.inputs["uv"]) if self.args['with_segmentation']: output_slots.new("segmentation") _setup_nice_PNG(file_output_node.file_slots["segmentation"]) file_output_node.file_slots["segmentation"].format.color_mode = "BW" math_node = nodes.new(type="CompositorNodeMath") self.main_nodes.append(math_node) links.new(layers_node.outputs["IndexOB"], math_node.inputs[0]) math_node.operation = "DIVIDE" math_node.inputs[1].default_value = 65535.0 links.new(math_node.outputs[0], file_output_node.inputs["segmentation"]) input_image = nodes.new(type="CompositorNodeImage") self.post_process_nodes.append(input_image) input_image.name = "input_image" file_output_node = nodes.new(type="CompositorNodeOutputFile") file_output_node.name = "rgb_output" self.post_process_nodes.append(file_output_node) output_slots = file_output_node.file_slots output_slots.remove(file_output_node.inputs[0]) output_slots.new("rgb") file_output_node.format.file_format = "PNG" file_output_node.format.compression = 0 file_output_node.format.color_depth = "8" links.new(input_image.outputs["Image"], file_output_node.inputs["rgb"]) def get_context_dict(self, model_uid: str, object_class: int) -> Dict[str, Any]: obj = bpy.context.scene.objects[model_uid] # 0 is background so we shift everything by 1 obj.pass_index = object_class + 1 return {'object': obj} def render(self, model_uid: str, loaded_model: RenderObject, loaded_env: RenderEnv) -> Dict[str, ch.Tensor]: output = {} with TemporaryDirectory() as temp_folder: scene = bpy.context.scene scene.node_tree.nodes['exr_output'].base_path = temp_folder self._before_render() bpy.ops.render.render(use_viewport=False, write_still=False) self._before_preprocess() written_file = glob(path.join(temp_folder, '*.exr')) blender_loaded_image = bpy.data.images.load(written_file[0]) scene.node_tree.nodes["input_image"].image = blender_loaded_image scene.node_tree.nodes["rgb_output"].format.file_format = IMAGE_FORMAT.upper() scene.node_tree.nodes['rgb_output'].base_path = temp_folder bpy.ops.render.render(use_viewport=False, write_still=False) all_files = glob(path.join(temp_folder, "*.png")) for full_filename in all_files: name = re.sub(r'[0-9]+.png', '', path.basename(full_filename)) img = cv2.imread(full_filename, cv2.IMREAD_UNCHANGED) if name == 'segmentation': img = img[:, :, None] # Add extra dimension for the channel img = img.astype('int32') - 1 # Go back from the 1 index to the 0 index # We needed 1 index for the classes because we can only read images with # positive integers elif img.dtype is np.dtype(np.uint16): img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGBA) img = img.astype('float32') / (2**16 - 1) else: img = cv2.cvtColor(img, cv2.COLOR_BGRA2RGBA) img = img.astype('float32') / (2**8 - 1) output[name] = ch.from_numpy(img).permute(2, 0, 1) # Avoid memory leak by keeping all EXR rendered so far in memory bpy.data.images.remove(blender_loaded_image) return output Renderer = Blender ``` #### File: threedb/result_logging/json_logger.py ```python import copy import importlib import shutil from os import path from typing import Any, Dict, Iterable, Tuple import numpy as np import orjson as json import torch as ch from threedb.result_logging.base_logger import BaseLogger from threedb.utils import CyclicBuffer def clean_key(k: Iterable[str]) -> str: """ Utility function for formatting keys. This is a no-op if the input is a string, otherwise expects an iterable of strings, which it joins with a period. """ return k if isinstance(k, str) else '.'.join(k) def clean_value(val: Any): """ Utility function for formatting tensors. Converts torch tensors to numpy, is a no-op for all other types. """ return val.numpy() if ch.is_tensor(val) else val def json_default(obj: np.ndarray) -> str: """ Another utility function; turns floats into strings, otherwise (if the input does not have type ``np.float64`` raises a ``TypeError``. """ if isinstance(obj, np.ndarray): return str(obj) raise TypeError def clean_log(log_d: dict, key_blacklist: Tuple[str, str] = ('image', 'result_ix')) -> dict: """ Cleans a dictionary for log-writing. In particular, all keys (expected to be either strings or iterables of strings) are converted to strings, and all torch tensors are converted to numpy arrays. """ cleaned = {} for k, val in log_d.items(): if k in key_blacklist: continue clean_v = clean_log(val) if isinstance(val, dict) else clean_value(val) cleaned[clean_key(k)] = clean_v return cleaned class JSONLogger(BaseLogger): def __init__(self, root_dir: str, result_buffer: CyclicBuffer, config: Dict[str, Dict[str, Any]]) -> None: """ A logger that logs all an experiments meta-data and results into a JSON file. """ super().__init__(root_dir, result_buffer, config) fname = path.join(root_dir, 'details.log') self.handle = open(fname, 'ab+') self.regid = self.buffer.register() self.evaluator = importlib.import_module(self.config['evaluation']['module']).Evaluator if 'label_map' in config['inference']: classmap_fname = path.join(root_dir, 'class_maps.json') print(f"==> [Saving class maps to {classmap_fname}]") shutil.copyfile(config['inference']['label_map'], classmap_fname) print(f'==> [Logging to the JSON file {fname} with regid {self.regid}]') def log(self, item: Dict[str, Any]) -> None: """Concrete implementation of :meth:`threedb.result_logging.base_logger.BaseLogger.log`. Parameters ---------- item : Dict[str, Any] The item to be logged. """ item = copy.deepcopy(item) rix = item['result_ix'] buffer_data = self.buffer[rix] result = {k: v for (k, v) in buffer_data.items() if k in self.evaluator.KEYS} for k in ['id', 'environment', 'model', 'render_args']: result[k] = item[k] result['output_type'] = self.evaluator.output_type cleaned = clean_log(result) encoded = json.dumps(cleaned, default=json_default, option=json.OPT_SERIALIZE_NUMPY | json.OPT_APPEND_NEWLINE) self.buffer.free(rix, self.regid) self.handle.write(encoded) def end(self): """Concrete implementation of :meth:`threedb.result_logging.base_logger.BaseLogger.end`. Closes the necessary file handle. """ self.handle.close() Logger = JSONLogger ```
{ "source": "3D-Beacons/3d-beacons-hub-api", "score": 3 }
#### File: 3d-beacons-hub-api/tests/utils.py ```python import json async def request_get_stub(url: str, stub_for: str, status_code: int = 200): """Returns an object with stub response. Args: url (str): A request URL. stub_for (str): Type of stub required. Returns: StubResponse: A StubResponse object. """ return StubResponse(stub_for=stub_for, status_code=status_code) class StubResponse: """A Stub response class to return a response from JSON.""" def __init__(self, status_code: int, stub_for: str) -> None: self.status_code = status_code self.prefix = "tests/stubs/" self.data = {} with open(f"{self.prefix}/{stub_for}.json") as f: self.data = json.load(f) def json(self): return self.data ```
{ "source": "3dcauldron/repo-to-rename", "score": 3 }
#### File: repo-to-rename/vendingmachine/database.py ```python from pymongo import MongoClient from bson.objectid import ObjectId import gridfs from datetime import datetime import mimetypes from pprint import pprint class Database(object): def __init__(self,config=None): self.databaseUrl = '' self.dbname = '' self.dbuser = '' self.dbpass = '' #get database info from file or parameters if config is None: self.configFile = 'vendingmachine/config.txt' self.loadConfig() else: self.databaseUrl = config['dburl'] self.dbname = config['dbname'] #initialize database client uri = 'mongodb://%s:%s@%s/%s?authMechanism=SCRAM-SHA-1'%(self.dbuser,self.dbpass,self.databaseUrl,self.dbname) self.dbclient = MongoClient(uri) #defind the database name self.db = self.dbclient[self.dbname] #define the db file system name self.fs = gridfs.GridFS(self.db) #define the collection names self.config = self.db.config self.things = self.db.things def loadConfig(self): print("loading config") with open(self.configFile) as config: for line in config: line = line.replace('\n','') line = line.split('::') if line[0].upper() == 'DBURL': self.databaseUrl = line[1] elif line[0].upper() == 'DBNAME': self.dbname = line[1] elif line[0].upper() == 'DBUSER': self.dbuser = line[1] elif line[0].upper() == 'DBPASS': self.dbpass = line[1] def cleanSku(self,sku): sku = sku.upper() sku = sku.replace(' ','') sku = sku.replace('\n','') sku = sku.replace('\t','') return sku def getSettings(self): return self.config.find_one({"_id":"settings"}) def getLocationsData(self, ins): return self.db['locations'].find(ins) def insertLocation(self,location): self.db.locations.insert_one(location.to_dict()) def deleteLocation(self,locationID): locationID = ObjectId(locationID) self.db.locations.delete_one({'_id':locationID}) def getLocationById(self,locationID): locationID = ObjectId(locationID) return self.db.locations.find_one({'_id':locationID}) def updateLocation(self,locationID,location): locationID = ObjectId(locationID) l = location.to_dict() self.db.locations.find_one_and_update({'_id':locationID}, {"$set": { "name": l['name'], "address": l['address'], "contact_number": l['contact_number'], "GPS": l['GPS'], "machine": l['machine'], "history": l['history'], "notes": l['notes'], "contract": l['contract'] }}) if __name__ == "__main__": db = Database() print(db.getSettings()) input() ```
{ "source": "3DCdsc/Introduction_to_Programming", "score": 3 }
#### File: docs/Day_4/main.py ```python from flask import Flask import pyrebase import json app = Flask(__name__) config = { "apiKey": "API KEY", "authDomain": "AUTH DOMAIN", "databaseURL": "DATABASE_URL" } @app.route('/') def hello_world(): return 'Hello, World!' @app.route('/books', methods=["GET"]) def get_books(): """ This endpoint returns all books from firebase If specified, available filters: - title - category """ return 'These are all my books' @app.route('/upload-books', methods=["POST"]) def upload_book(): """ This endpoint takes in a book via FormData and writes it to firebase. Returns the Book object """ return if __name__ == "__main__": app.run(debug=True) ```
{ "source": "3ddelano/graph-visualizer-python", "score": 3 }
#### File: graph_gui/graph_data/edge.py ```python class Edge: _id = 0 def __init__(self, *args): if len(args) <= 3: # args = [nodeA, nodeB, weigth?] # Give a unique id self.id = Edge._id Edge._id += 1 self.nodeA = args[0] self.nodeB = args[1] if len(args) >= 3: self.weight = float(args[2]) else: self.weight = 1.0 else: # args = [id, nodeA, nodeB, weight] self.id = args[0] self.nodeA = args[1] self.nodeB = args[2] Edge._id = self.id + 1 # For the next edge self.weight = args[3] ``` #### File: graph_gui/graph_data/graph.py ```python import os import heapq from .interfaces.graph_interface import GraphInterface from .node import Node from .edge import Edge class Graph(GraphInterface): def __init__(self): self.nodes = [] self.edges = [] # ---------- # Node Methods # ---------- def add_node(self, node): self.nodes.append(node) def delete_node(self, node_or_id): node = self.resolve_node(node_or_id) if node: self.nodes.remove(node) def get_adjacent_nodes(self, node_or_id): node = self.resolve_node(node_or_id) if not node: return [] connected_nodes = [] for edge in self.edges: if edge.nodeA == node: connected_nodes.append(edge.nodeB) elif edge.nodeB == node: connected_nodes.append(edge.nodeA) return connected_nodes def get_node_by_id(self, node_id): for node in self.nodes: if node.id == node_id: return node return None # ---------- # Edge Methods # ---------- def add_edge(self, edge): self.edges.append(edge) def update_edge_weight(self, edge_or_id, weight): edge = self.resolve_edge(edge_or_id) if edge: edge.weight = weight def delete_edge(self, edge_or_id): edge = self.resolve_edge(edge_or_id) self.edges.remove(edge) def get_adjacent_edges(self, node_or_id): node = self.resolve_node(node_or_id) if not node: return [] connected_edges = [] for edge in self.edges: if edge.nodeA == node or edge.nodeB == node: connected_edges.append(edge) return connected_edges def get_edge_by_id(self, edge_id): for edge in self.edges: if edge.id == edge_id: return edge return None def get_edge_between_nodes(self, nodeA_or_id, nodeB_or_id): nodeA = self.resolve_node(nodeA_or_id) nodeB = self.resolve_node(nodeB_or_id) if not nodeA or not nodeB: return None for edge in self.edges: if (edge.nodeA == nodeA and edge.nodeB == nodeB) or ( edge.nodeA == nodeB and edge.nodeB == nodeA ): return edge return None # ---------- # Pathfinding Methods # ---------- def find_shortest_path(self, algorithm, start_node_or_id, end_node_or_id): found_path = self._get_shortest_path( algorithm, start_node_or_id, end_node_or_id ) if found_path: return found_path["final_path"] def animate_shortest_path(self, algorithm, start_node_or_id, end_node_or_id): return self._get_shortest_path(algorithm, start_node_or_id, end_node_or_id) def _get_shortest_path(self, algorithm, start_node_or_id, end_node_or_id): start_node = self.resolve_node(start_node_or_id) end_node = self.resolve_node(end_node_or_id) if not start_node or not end_node: print("Invalid start or end node to find shortest path") return None if algorithm == "dijkstra": return self.dijkstra(start_node, end_node) elif algorithm == "astar": return self.astar(start_node, end_node) elif algorithm == "bfs": return self.bfs(start_node, end_node) elif algorithm == "dfs": return self.dfs(start_node, end_node) else: print("Invalid algorithm to find shortest path") return None def get_euclidean_distance(self, nodeA, nodeB): x1 = nodeA.pos[0] y1 = nodeA.pos[1] x2 = nodeB.pos[0] y2 = nodeB.pos[1] return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5 def get_manhattan_distance(self, nodeA, nodeB): x1 = nodeA.pos[0] y1 = nodeA.pos[1] x2 = nodeB.pos[0] y2 = nodeB.pos[1] return abs(x1 - x2) + abs(y1 - y2) def dijkstra(self, start_node, end_node): dist = {} # Initialize distances to infinity for node in self.nodes: dist[node.id] = 1e7 dist[start_node.id] = 0 cur_node = start_node path = {} path[start_node.id] = None cur_node = start_node visited_nodes = [] visited_edges = [] while cur_node: visited_nodes.append(cur_node.id) for adj_node in self.get_adjacent_nodes(cur_node): if adj_node.id in visited_nodes: continue edge = self.get_edge_between_nodes(cur_node, adj_node) visited_edges.append([cur_node.id, adj_node.id, edge]) edge_cost = edge.weight # Relaxation if dist[cur_node.id] + edge_cost < dist[adj_node.id]: dist[adj_node.id] = dist[cur_node.id] + edge_cost path[adj_node.id] = cur_node.id else: path[adj_node.id] = edge_cost # Find the next node to visit (the one with least cost from the starting node) dist_list = [] for node_id, d in dist.items(): if not node_id in visited_nodes: dist_list.append([node_id, d]) dist_list = sorted(dist_list, key=lambda x: x[1]) if len(dist_list) == 0: cur_node = None else: cur_node_id = dist_list[0][0] cur_node = self.get_node_by_id(cur_node_id) return { "final_path": self.build_path(path, start_node, end_node), "visited_nodes": visited_nodes, "visited_edges": visited_edges, } def astar(self, start_node, end_node, heu_func="euclidean"): path = {} g_scores = {node.id: float("inf") for node in self.nodes} # g_score g_scores[start_node.id] = 0 # Straight line distance from any node to the end node heu = {} # h_score if heu_func == "euclidean": heu = { node.id: self.get_euclidean_distance(node, end_node) for node in self.nodes } elif heu_func == "manhattan": heu = { node.id: self.get_manhattan_distance(node, end_node) for node in self.nodes } else: print("Invalid heuristic function in A*") raise Exception("Invalid heuristic function in A*") f_scores = {} f_scores[start_node.id] = g_scores[start_node.id] + heu[start_node.id] openset = [] # f_score stored in a min heap heapq.heappush(openset, (heu[start_node.id], start_node)) visited_nodes = [] visited_edges = [] while len(openset) > 0: _f_score, current_node = heapq.heappop(openset) if current_node == end_node: # Reached the goal print("Reached the goal node in A*") return { "final_path": self.build_path(path, start_node, end_node), "visited_nodes": visited_nodes, "visited_edges": visited_edges, } # Visiting the node with id=current_node.id visited_nodes.append(current_node.id) for node in self.get_adjacent_nodes(current_node.id): # Get the edge between cur_noed and each neighbour edge = self.get_edge_between_nodes(current_node.id, node.id) temp_g_score = g_scores[current_node.id] + edge.weight temp_f_score = temp_g_score + heu[node.id] visited_edges.append([current_node.id, node.id, edge]) if node.id in visited_nodes and temp_f_score >= g_scores[node.id]: continue if not node.id in visited_nodes or temp_f_score < f_scores[node.id]: g_scores[node.id] = temp_g_score f_scores[node.id] = temp_f_score path[node.id] = current_node.id if not (f_scores[node.id], node) in openset: heapq.heappush(openset, (f_scores[node.id], node)) # No path found print("No path found in A*") return { "final_path": [], "visited_nodes": visited_nodes, "visited_edges": visited_edges, } def bfs(self, start_node, end_node): visited_nodes = [] visited_edges = [] queue = [] queue.append(start_node) path = {} while queue: cur_node = queue.pop(0) visited_nodes.append(cur_node.id) if cur_node == end_node: # Reached end node break for adj_node in self.get_adjacent_nodes(cur_node): if adj_node.id in visited_nodes: continue edge = self.get_edge_between_nodes(cur_node, adj_node) visited_edges.append([cur_node.id, adj_node.id, edge]) path[adj_node.id] = cur_node.id if adj_node == end_node: queue = [] break queue.append(adj_node) return { "final_path": self.build_path(path, start_node, end_node), "visited_nodes": visited_nodes, "visited_edges": visited_edges, } def dfs(self, start_node, end_node): visited_nodes = [] visited_edges = [] stack = [] stack.append(start_node) path = {} while stack: cur_node = stack[-1] stack.pop() if not cur_node.id in visited_nodes: for visited_node_id in visited_nodes: edge = self.get_edge_between_nodes( cur_node, self.get_node_by_id(visited_node_id) ) if edge: visited_edges.append([visited_node_id, cur_node.id, edge]) path[cur_node.id] = visited_node_id visited_nodes.append(cur_node.id) if cur_node.id == end_node.id: stack = [] break for adj_node in self.get_adjacent_nodes(cur_node): if adj_node.id in visited_nodes: continue stack.append(adj_node) print("Visited nodes: ", [str(node_id) for node_id in visited_nodes]) return { "final_path": self.build_path(path, start_node, end_node), "visited_nodes": visited_nodes, "visited_edges": visited_edges, } def build_path(self, path, start_node, end_node): current_node = end_node path_list = [] current_node_id = current_node.id start_node_id = start_node.id while current_node_id and current_node_id != start_node_id: path_list.append(current_node_id) current_node_id = path[current_node_id] path_list.append(start_node_id) path_list.reverse() edge_path = [] if len(path_list) < 2: return None # Find the edge between every 2 adjacent nodes in path_list for i in range(len(path_list) - 1): edge = self.get_edge_between_nodes(path_list[i], path_list[i + 1]) edge_path.append(edge) ret = [] for i in range(len(path_list)): if i == 0: ret.append([path_list[i], None]) else: ret.append([path_list[i], edge_path[i - 1]]) return ret # ---------- # Misc Methods # ---------- def save_to_files(self, nodelist_path, edgelist_path): # Save the list of nodes to a csv file print(f"Saving graph to {nodelist_path} and {edgelist_path}") try: with open(nodelist_path, "w") as file: for i, node in enumerate(self.nodes): # id,x,y line = f"{node.id},{node.pos[0]},{node.pos[1]}" if i != len(self.nodes) - 1: line += "\n" file.write(line) with open(edgelist_path, "w") as file: for i, edge in enumerate(self.edges): # id,nodeA_id,nodeB_id,weight line = f"{edge.id},{edge.nodeA.id},{edge.nodeB.id},{edge.weight}" if i != len(self.edges) - 1: line += "\n" file.write(line) return True except Exception as e: return False def load_from_files(self, nodelist_path, edgelist_path): # Load nodes and edges from nodelist_path and edgelist_path if not os.path.exists(nodelist_path) or not os.path.exists(edgelist_path): print( f"Load Graph Error: No {nodelist_path} and {edgelist_path} files found" ) return print(f"Loading graph from {nodelist_path} and {edgelist_path}") self.nodes = [] self.edges = [] with open(nodelist_path, "r") as file: for line in file: # id,x,y line = line.strip().split(",") node = Node(int(line[0]), float(line[1]), float(line[2])) self.add_node(node) with open(edgelist_path, "r") as file: for line in file: # id,nodeA_id,nodeB_id,weight? line = line.strip().split(",") nodeA = self.get_node_by_id(int(line[1])) nodeB = self.get_node_by_id(int(line[2])) weight = 1.0 if len(line) >= 4: weight = float(line[3]) edge = Edge(int(line[0]), nodeA, nodeB, weight) self.add_edge(edge) def resolve_node(self, node_or_id): node = None if isinstance(node_or_id, int): node = self.get_node_by_id(node_or_id) if isinstance(node_or_id, float): node = self.get_node_by_id(int(node_or_id)) elif isinstance(node_or_id, Node): node = node_or_id return node def resolve_edge(self, edge_or_id): edge = None if isinstance(edge_or_id, int): edge = self.get_edge_by_id(edge_or_id) elif isinstance(edge_or_id, Edge): edge = edge_or_id return edge ``` #### File: src/graph_gui/graphgui.py ```python import os from time import time, sleep import tkinter.filedialog as filedialog import tkinter as tk from .graph_data.graph import Graph from .constants import START_NODE_COLOR, END_NODE_COLOR, SCREEN_BG_COLOR from .animations.path_animation import PathAnimation from .animations.bfs_animation import BFSAnimation from .animations.dfs_animation import DFSAnimation from .interfaces.drawable import Drawable from .edgegui import EdgeGUI from .nodegui import NodeGUI VERSION = "v.1.2" DOUBLE_CLICK_TIME = 0.3 NODELIST_FILEPATH = "nodelist.csv" EDGELIST_FILEPATH = "edgelist.csv" ANIMATION_FRAME_DURATION = 9 class GraphGUI(Graph, Drawable): def __init__(self, canvas): # Selected node self.selected_node = None self.dragging_node = None # Selected edge self.selected_edge = None self.dragging_edge = None # [nodeA_pos_x, nodeA_pos_y, nodeB_pos_x, nodeB_pos_y, drag_start_x, drag_start_y] self.dragging_edge_offsets = [0, 0, 0, 0, 0, 0] # Double click time self.last_leftclick_time = time() self.last_rightclick_time = time() self.animation = None self.frames = 0 self.help_visible = False self.node_id_visible = False # Path finding UI self.path_algorithm_name = tk.StringVar(value="dijkstra") self.start_node = None self.goal_node = None self.path = [] super().__init__() self.init_ui(canvas) def deselect_nodes(self): if self.selected_node: self.selected_node.is_selected = False self.selected_node = None if self.dragging_node: self.dragging_node.is_dragging = False self.dragging_node = None def deselect_edges(self): if self.selected_edge: self.selected_edge.is_selected = False self.selected_edge = None if self.dragging_edge: self.dragging_edge.is_dragging = False self.dragging_edge = None def deselect_path(self): for i in range(len(self.path)): node = self.get_node_by_id(self.path[i][0]) edge = self.path[i][1] node.is_selected = False if edge: edge.is_selected = False edge.nodeA.is_selected = False edge.nodeB.is_selected = False if self.start_node and self.goal_node: self.start_node = None self.goal_node = None self.path = [] def get_clicked_node(self, x, y): for node in self.nodes: if node.is_clicked(x, y): return node return None def get_clicked_edge(self, x, y): for edge in self.edges: if edge.is_clicked(x, y): return edge return None def on_right_click(self, x, y): self.deselect_path() clicked_edge = self.get_clicked_edge(x, y) if not clicked_edge: # Empty area was right clicked self.deselect_edges() self.last_rightclick_time = time() return # Got a right click on an edge self.deselect_nodes() is_double_click = False time_since_last_rightclick = time() - self.last_rightclick_time if time_since_last_rightclick <= DOUBLE_CLICK_TIME: # Got a double click on an edge is_double_click = True if is_double_click: # It was a double click # If a edge was previously selected deselect it if self.selected_edge: self.selected_edge.is_selected = False self.selected_edge = None # Start dragging this edge clicked_edge.is_dragging = True self.dragging_edge = clicked_edge self.dragging_edge_offsets = [ clicked_edge.nodeA.pos[0], clicked_edge.nodeA.pos[1], clicked_edge.nodeB.pos[0], clicked_edge.nodeB.pos[1], x, y, ] else: # It was a single right click if self.dragging_edge: # An edge was being dragged stop the drag self.dragging_edge.is_dragging = False self.dragging_edge = None elif self.selected_edge: # There was already a selected edge if clicked_edge == self.selected_edge: # The same edge was selected again # Deselect it self.selected_edge.is_selected = False self.selected_edge = None else: # A different edge was selected # Deselect the selected edge and select the clicked edge self.selected_edge.is_selected = False self.selected_edge = clicked_edge self.selected_edge.is_selected = True else: # There was no selected node # Store the node as selected node self.selected_edge = clicked_edge clicked_edge.is_selected = True self.last_rightclick_time = time() def on_left_click(self, x, y): self.deselect_path() clicked_node = self.get_clicked_node(x, y) self.deselect_edges() if clicked_node: # A node was left clicked time_since_last_leftclick = time() - self.last_leftclick_time if time_since_last_leftclick <= DOUBLE_CLICK_TIME: # Got a double left click # Start dragging this node clicked_node.is_dragging = True self.dragging_node = clicked_node # If a node was selected deselect it if self.selected_node: self.selected_node.is_selected = False self.selected_node = None else: # It was a single click if self.dragging_node: # A node was being dragged stop the drag and select that node self.dragging_node.is_dragging = False self.dragging_node = None elif self.selected_node: # There was already a selected node if clicked_node == self.selected_node: # The same node was clicked again # Deselect it self.selected_node.is_selected = False self.selected_node = None else: # A different node was clicked # Create an edge between the two nodes if there isnt one edge_exists = self.get_edge_between_nodes( self.selected_node, clicked_node ) if not edge_exists: edge = EdgeGUI(self.selected_node, clicked_node) self.add_edge(edge) # Deselect the selected node and select the clicked node self.selected_node.is_selected = False self.selected_node = clicked_node self.selected_node.is_selected = True else: # There was no selected node # Store the node as selected node self.selected_node = clicked_node clicked_node.is_selected = True else: # Empty area was clicked node = NodeGUI(x, y) self.add_node(node) if self.selected_node: # A node is already selected # Draw an edge from selected node to new clicked node edge = EdgeGUI(self.selected_node, node) self.add_edge(edge) # Deselect the selected node self.selected_node.is_selected = False # Select the new node self.selected_node = node self.selected_node.is_selected = True else: # There was no selected node # Mark the new node as the selected one node.is_selected = True self.selected_node = node self.last_leftclick_time = time() def ondrag(self, x, y): if self.dragging_node: # Node is being dragged self.dragging_node.pos[0] = x self.dragging_node.pos[1] = y elif self.dragging_edge: # Edge is being dragged nodeA = self.dragging_edge.nodeA nodeB = self.dragging_edge.nodeB offsets = self.dragging_edge_offsets nodeA.pos[0] = offsets[0] + x - offsets[4] nodeA.pos[1] = offsets[1] + y - offsets[5] nodeB.pos[0] = offsets[2] + x - offsets[4] nodeB.pos[1] = offsets[3] + y - offsets[5] def on_delete(self): if self.selected_node: # Delete the node node = self.selected_node node.is_selected = False self.delete_node(node) # Delete connected edges connected_edges = self.get_adjacent_edges(node) for edge in connected_edges: self.delete_edge(edge) self.selected_node = None elif self.selected_edge: # Delete the edge edge = self.selected_edge edge.is_selected = False self.delete_edge(edge) self.selected_edge = None def draw(self, tur, canvas): # Check if animation ended if self.animation and self.animation.is_ended(): self.animation = None self.deselect_path() sleep(1) # Animate the animation if any animation_nodes = [] animation_edges = [] if self.animation: if self.frames % ANIMATION_FRAME_DURATION == 0: # Take a animation step self.animation.one_step() # Get the drawn nodes and edges from animation animation_nodes = self.animation.get_drawn_nodes() animation_edges = self.animation.get_drawn_edges() # Draw all edges for edge in self.edges: if not isinstance(edge, EdgeGUI): continue animation_drew_edge = False for edge_data in animation_edges: if edge == edge_data["edge"]: edge.draw(tur, color=edge_data["color"]) animation_drew_edge = True break if not animation_drew_edge: edge.draw(tur) edge.draw_weight(canvas) # Draw all nodes for node in self.nodes: if not isinstance(node, NodeGUI): continue animation_drew_node = False for node_data in animation_nodes: if node == node_data["node"]: node.draw(tur, color=node_data["color"]) animation_drew_node = True break if not animation_drew_node: if node == self.start_node: node.draw(tur, color=START_NODE_COLOR) elif node == self.goal_node: node.draw(tur, color=END_NODE_COLOR) else: node.draw(tur) if self.node_id_visible: node.draw_id(canvas) self.frames += 1 # Show help text self.draw_help(canvas) def draw_help(self, canvas): main_lines = ["H key - Toggle help text"] lines = [ "Single Left Click - Add node / Select Node", "Single Right Click - Select Edge", "Double Left Click - Move Node", "Double Right Click - Move Edge", "", "D key - Delete Node/Edge", "W key - Update Edge Weight", "S key - Save Data", "L key - Load Data", "B key - Start BFS at selected node", "N key - Start DFS at selected node", "F key - Toggle node Id visibility", "", "github.com/3ddelano/graph-visualizer-python", ] font_size = 10 font = f"Arial {font_size} normal" draw_y = 50 for line in main_lines: # Draw the text canvas.create_text( 0, draw_y, text=line, font=font, fill="white", anchor="w" ) draw_y += font_size + 10 if not self.help_visible: return for line in lines: # Draw the text canvas.create_text( 0, draw_y, text=line, font=font, fill="white", anchor="w" ) draw_y += font_size + 10 def on_bfs_start(self): # Check if a node is selected if not self.selected_node: print("No node is selected for BFS") tk.messagebox.showerror("Error", "No node is selected for BFS") return # Start bfs from the selected node print("Starting BFS at node id=", self.selected_node.id) self.animation = BFSAnimation(self) self.animation.set_start_node(self.selected_node) self.deselect_nodes() tk.messagebox.showinfo("BFS result", self.animation.get_result_string()) def on_dfs_start(self): # Check if a node is selected if not self.selected_node: print("No node is selected for DFS") tk.messagebox.showerror("Error", "No node is selected for DFS") return # Start dfs from the selected node print("Starting DFS at node id=", self.selected_node.id) self.animation = DFSAnimation(self) self.animation.set_start_node(self.selected_node) self.deselect_nodes() tk.messagebox.showinfo("DFS result", self.animation.get_result_string()) def on_help_toggle(self): self.help_visible = not self.help_visible def on_nodeid_toggle(self): self.node_id_visible = not self.node_id_visible def on_update_weight(self): if not self.selected_edge: print("No edge is selected to set weight") tk.messagebox.showerror( "Set Weight Error", "No edge is selected to set weight" ) return default_weight = round( self.get_euclidean_distance( self.selected_edge.nodeA, self.selected_edge.nodeB ), 2, ) new_weight = tk.simpledialog.askstring( title="Set Edge Weight", prompt="Enter the new weight for the edge", initialvalue=str(default_weight), ) if new_weight is None: return try: new_weight = float(new_weight) self.update_edge_weight(self.selected_edge, new_weight) except Exception as e: print("Invalid weight provided to update edge weight") tk.messagebox.showerror( "Update Weight Error", "Invalid weight. Weight should be a valid number.", ) return def on_save(self): save_folder = filedialog.askdirectory(mustexist=True) if save_folder == "": # User cancelled the save return success = self.save_to_files( os.path.join(save_folder, NODELIST_FILEPATH), os.path.join(save_folder, EDGELIST_FILEPATH), ) if success: tk.messagebox.showinfo( "Saving Graph", "Graph saved to nodelist.csv and edgelist.csv" ) def on_load(self): load_folder = filedialog.askdirectory(mustexist=True) if load_folder == "": # User cancelled the laod return node_path = os.path.join(load_folder, NODELIST_FILEPATH) edge_path = os.path.join(load_folder, EDGELIST_FILEPATH) if not os.path.exists(node_path): tk.messagebox.showerror( "Loading Graph Error", "nodelist.csv file not found" ) return if not os.path.exists(edge_path): tk.messagebox.showerror( "Loading Graph Error", "edgelist.csv file not found" ) return self.deselect_nodes() self.deselect_edges() self.deselect_path() self.load_from_files(node_path, edge_path) self.convert_graph_to_gui() def on_set_start_node( self, ): if not self.selected_node: print("No node is selected") tk.messagebox.showerror("Set Start Node Error", "No node is selected") return self.start_node = self.selected_node self.deselect_nodes() tk.messagebox.showinfo("Set Start Node", "Start node set successfully") def on_set_end_node( self, ): if not self.selected_node: print("No node is selected") tk.messagebox.showerror("Set Goal Node Error", "No node is selected") return self.goal_node = self.selected_node self.deselect_nodes() tk.messagebox.showinfo("Set Goal Node", "Goal node set successfully") def on_find_path(self): if self.animation: self.animation = None # Ensure that start and goal nodes are set if not self.start_node: tk.messagebox.showerror("Find Path Error", "Start node not set") return if not self.goal_node: tk.messagebox.showerror("Find Path Error", "Goal node not set") return temp_start_node = self.start_node temp_end_node = self.goal_node self.deselect_path() self.start_node = temp_start_node self.goal_node = temp_end_node # Array of node ids to be used for the path self.path = [] self.path = self.find_shortest_path( self.path_algorithm_name.get(), self.start_node, self.goal_node ) if len(self.path) < 2: tk.messagebox.showerror("Find Path Error", "No path found") return for i in range(len(self.path)): node = self.get_node_by_id(self.path[i][0]) edge = self.path[i][1] node.is_selected = True if edge: edge.is_selected = True def on_anim_find_path(self): # Ensure that start and goal nodes are set if not self.start_node: tk.messagebox.showerror("Find Path Error", "Start node not set") return if not self.goal_node: tk.messagebox.showerror("Find Path Error", "Goal node not set") return temp_start_node = self.start_node temp_end_node = self.goal_node self.deselect_path() self.start_node = temp_start_node self.goal_node = temp_end_node animate_data = self.animate_shortest_path( self.path_algorithm_name.get(), self.start_node, self.goal_node ) path = animate_data["final_path"] if not path or (path and len(path) < 2): tk.messagebox.showerror("Animate Path Error", "No path found") return edges = animate_data["visited_edges"] print(f"Starting {self.path_algorithm_name.get()} path animation") tk.messagebox.showinfo( "Path Finding Statistics", f"Number of nodes visited: {len(animate_data['visited_nodes'])}", ) self.animation = PathAnimation( self, self.start_node, self.goal_node, path, edges ) def convert_graph_to_gui(self): self.nodes = [NodeGUI(node.id, node.pos[0], node.pos[1]) for node in self.nodes] self.edges = [ EdgeGUI( edge.id, self.get_node_by_id(edge.nodeA.id), self.get_node_by_id(edge.nodeB.id), edge.weight, ) for edge in self.edges ] def init_ui(self, canvas): frame = tk.Frame(canvas.master.master) frame.config(bg=SCREEN_BG_COLOR) frame.place(x=10, y=10) pad_x = 1 tk.Button(frame, text="Help Text", command=self.on_help_toggle).pack( padx=pad_x, side=tk.LEFT ) tk.Button(frame, text="Node Id", command=self.on_nodeid_toggle).pack( padx=pad_x, side=tk.LEFT ) tk.Button(frame, text="Load", command=self.on_load).pack( padx=pad_x, side=tk.LEFT ) tk.Button(frame, text="Save", command=self.on_save).pack( padx=pad_x, side=tk.LEFT ) tk.Button(frame, text="Delete", command=self.on_delete).pack( padx=pad_x, side=tk.LEFT ) tk.Button(frame, text="Set Weight", command=self.on_update_weight).pack( padx=pad_x, side=tk.LEFT ) tk.Button(frame, text="BFS Anim", command=self.on_bfs_start).pack( padx=pad_x, side=tk.LEFT ) tk.Button(frame, text="DFS Anim", command=self.on_dfs_start).pack( padx=pad_x, side=tk.LEFT ) tk.Button(frame, text="Set Start Node", command=self.on_set_start_node).pack( padx=pad_x, side=tk.LEFT ) tk.Button(frame, text="Set Goal Node", command=self.on_set_end_node).pack( padx=pad_x, side=tk.LEFT ) tk.Button(frame, text="Find Path", command=self.on_find_path).pack( padx=pad_x, side=tk.LEFT ) tk.Button(frame, text="Anim Find Path", command=self.on_anim_find_path).pack( padx=pad_x, side=tk.LEFT ) # Create radio buttons tk.Radiobutton( frame, text="BFS", variable=self.path_algorithm_name, value="bfs", ).pack(side=tk.LEFT, padx=(5, 0)) tk.Radiobutton( frame, text="DFS", variable=self.path_algorithm_name, value="dfs", ).pack(side=tk.LEFT) tk.Radiobutton( frame, text="Dijkstra", variable=self.path_algorithm_name, value="dijkstra", ).pack(side=tk.LEFT) tk.Radiobutton( frame, text="A*", variable=self.path_algorithm_name, value="astar", ).pack(side=tk.LEFT) ``` #### File: graph_gui/interfaces/animation_interface.py ```python import abc class AnimationInterface(abc.ABC): @abc.abstractmethod def one_step(self): pass @abc.abstractmethod def is_ended(self): pass @abc.abstractmethod def get_drawn_nodes(self): pass @abc.abstractmethod def get_drawn_edges(self): pass ``` #### File: graph_gui/interfaces/drawable.py ```python import abc class Drawable(abc.ABC): @abc.abstractmethod def draw(self, tur, *args): pass ```
{ "source": "3ddelano/mongo-driver-godot", "score": 3 }
#### File: src/gdscript_docs_maker/convert_to_markdown.py ```python import re import json from argparse import Namespace from typing import List from gdscript_docs_maker.gdscript.enumeration import Enumeration from .command_line import OutputFormats from .config import LOGGER from .gdscript_objects import GDScriptClasses from .gdscript.member import Member from .gdscript.function import Function from .gdscript.gdscript_class import GDScriptClass, BUILTIN_CLASSES from .gdscript.project_info import ProjectInfo from .mkdocs import MkDocsFrontMatter from .make_markdown import ( MarkdownDocument, MarkdownSection, make_bold, make_code_block, make_comment, make_heading, make_link, make_list, make_table_header, make_table_row, surround_with_html, ) GODOT_DOCS_URL = "https://docs.godotengine.org/en/stable/classes/class_{}.html" def convert_to_markdown( classes: GDScriptClasses, arguments: Namespace, info: ProjectInfo ) -> List[MarkdownDocument]: """ Takes a list of dictionaries that each represent one GDScript class to convert to markdown and returns a list of markdown documents. """ markdown: List[MarkdownDocument] = [] # if arguments.make_index: # markdown.append(_write_index_page(classes, info)) for entry in classes: markdown.append(_as_markdown(classes, entry, arguments)) return markdown def _as_markdown( classes: GDScriptClasses, gdscript: GDScriptClass, arguments: Namespace ) -> MarkdownDocument: """ Converts the data for a GDScript class to a markdown document, using the command line options. """ content: List[str] = [] output_format: OutputFormats = arguments.format name: str = gdscript.name if "abstract" in gdscript.metadata: name += " " + surround_with_html("(abstract)", "small") if output_format == OutputFormats.MKDOCS: front_matter: MkDocsFrontMatter = MkDocsFrontMatter.from_data( gdscript, arguments ) content += front_matter.as_string_list() content += [ make_comment( "Auto-generated from JSON by GDScript docs maker. " "Do not edit this document directly." ) + "\n" ] # ----- # ----- Title content += [*make_heading(name, 1)] if gdscript.extends: extends_list: List[str] = gdscript.get_extends_tree(classes) # Get the links to each extend in the extends_tree extends_links = [] for entry in extends_list: link = make_link(entry, "../" + entry) if entry.lower() in BUILTIN_CLASSES: # Built-in reference link = make_link(entry, GODOT_DOCS_URL.format(entry.lower())) extends_links.append(link) content += [make_bold("Extends:") + " " + " < ".join(extends_links)] # ----- # ----- Description description = _replace_references(classes, gdscript, gdscript.description) if description != "": content += [*MarkdownSection("Description", 2, [description]).as_text()] quick_links = [] if gdscript.signals: quick_links.append(make_link("Signals", "#signals")) if gdscript.enums: quick_links.append(make_link("Enumerations", "#enumerations")) if gdscript.constants: quick_links.append(make_link("Constants", "#constants-descriptions")) if gdscript.members: quick_links.append(make_link("Properties", "#property-descriptions")) if gdscript.functions: quick_links.append(make_link("Methods", "#method-descriptions")) if gdscript.sub_classes: quick_links.append(make_link("Sub-classes", "#sub-classes")) if len(quick_links) > 0: content += [""] + make_list(quick_links) if gdscript.signals: content += MarkdownSection( "Signals", 2, _write_signals(classes, gdscript, output_format) ).as_text() content += _write_class(classes, gdscript, output_format) sub_documents: List[MarkdownDocument] = [] if gdscript.sub_classes: content += MarkdownSection( "Sub-classes", 2, make_list( [ make_link(sub_class.name, "./sub_classes/" + sub_class.name) for sub_class in gdscript.sub_classes ] ), ).as_text() for cls in gdscript.sub_classes: sub_documents.append(_as_markdown(classes, cls, arguments)) # content += make_heading("Sub-classes", 2) # content.append("") # for cls in gdscript.sub_classes: # content += _write_class(classes, cls, output_format, 3, True) return MarkdownDocument(gdscript.name, content, sub_documents) def _write_class( classes: GDScriptClasses, gdscript: GDScriptClass, output_format: OutputFormats, heading_level=2, ) -> List[str]: markdown: List[str] = [] # if is_inner_class: # markdown += make_heading(gdscript.name, heading_level) for attribute, title in [ ("enums", "Enumerations"), ("constants", "Constants Descriptions"), ("members", "Property Descriptions"), ("functions", "Method Descriptions"), ]: if not getattr(gdscript, attribute): continue markdown += MarkdownSection( title, heading_level, _write(attribute, classes, gdscript, output_format), ).as_text() return markdown def _write_summary(gdscript: GDScriptClass, key: str) -> List[str]: element_list = getattr(gdscript, key) if not element_list: return [] markdown: List[str] = make_table_header(["Type", "Name"]) return markdown + [make_table_row(item.summarize()) for item in element_list] def _write( attribute: str, classes: GDScriptClasses, gdscript: GDScriptClass, output_format: OutputFormats, heading_level: int = 3, ) -> List[str]: assert hasattr(gdscript, attribute) markdown: List[str] = [] for element in getattr(gdscript, attribute): # assert element is Element # ----- # ----- Heading heading = element.get_heading_as_string() if isinstance(element, Member): if element.is_exported: heading += " " + surround_with_html("(export)", "small") markdown.extend(make_heading(heading, heading_level)) # ----- # ----- Signature if isinstance(element, Enumeration): markdown.extend( [ make_code_block( f"enum {element.name} {json.dumps(element.values, indent = 4)}\n" ), "", ] ) else: markdown.extend( [ make_code_block(element.signature), "", ] ) # ----- # ----- Description description_first = False if isinstance(element, Function): description_first = True unique_attributes = element.get_unique_attributes_as_markdown() unique_attributes = [ _replace_references(classes, gdscript, x) for x in unique_attributes ] description: str = _replace_references(classes, gdscript, element.description) if description_first: markdown.append(description) markdown.append("") markdown.extend(unique_attributes) else: markdown.extend(unique_attributes) markdown.append("") markdown.append(description) return markdown def _write_signals( classes: GDScriptClasses, gdscript: GDScriptClass, output_format: OutputFormats ) -> List[str]: ret_signals = [] for s in gdscript.signals: signal = "{}\n{}\n{}".format( "".join(make_heading(s.name, 3)), make_code_block(s.signature), _replace_references(classes, gdscript, s.description), ) ret_signals.append(signal) return ret_signals # def _write_index_page(classes: GDScriptClasses, info: ProjectInfo) -> MarkdownDocument: # title: str = "{} ({})".format(info.name, surround_with_html(info.version, "small")) # content: List[str] = [ # *MarkdownSection(title, 1, info.description).as_text(), # *MarkdownSection("Contents", 2, _write_table_of_contents(classes)).as_text(), # ] # return MarkdownDocument("index", content) # def _write_table_of_contents(classes: GDScriptClasses) -> List[str]: # toc: List[str] = [] # by_category = classes.get_grouped_by_category() # for group in by_category: # indent: str = "" # first_class: GDScriptClass = group[0] # category: str = first_class.category # if category: # toc.append("- {}".format(make_bold(category))) # indent = " " # for gdscript_class in group: # link: str = ( # indent + "- " + make_link(gdscript_class.name, gdscript_class.name) # ) # toc.append(link) # return toc def _replace_references( classes: GDScriptClasses, gdscript: GDScriptClass, description: str ) -> str: """Finds and replaces references to other classes or methods in the `description`.""" ERROR_MESSAGES = { "class": "Class {} not found in the class index.", "member": "Symbol {} not found in {}. The name might be incorrect.", } ERROR_TAIL = "The name might be incorrect." references: list = re.findall(r"\[.+\]", description) for reference in references: # Matches [ClassName], [symbol], and [ClassName.symbol] match: re.Match | None = re.match( r"\[([A-Z][a-zA-Z0-9]*)?\.?([a-z0-9_]+)?\]", reference ) if not match: continue class_name, member = match[1], match[2] is_builtin_class = False if class_name and class_name not in classes.class_index: if class_name.lower() in BUILTIN_CLASSES: is_builtin_class = True else: LOGGER.warning(ERROR_MESSAGES["class"].format(class_name) + ERROR_TAIL) continue if member and class_name: if member not in classes.class_index[class_name]: LOGGER.warning( ERROR_MESSAGES["member"].format(member, class_name) + ERROR_TAIL ) continue elif member and member not in classes.class_index[gdscript.name]: LOGGER.warning( ERROR_MESSAGES["member"].format(member, gdscript.name) + ERROR_TAIL ) continue display_text, path = "", "../" if class_name: display_text, path = class_name, class_name if class_name and member: display_text += "." path += "/" if member: display_text += member path += "#" + member.replace("_", "-") if is_builtin_class: display_text = class_name path = GODOT_DOCS_URL.format(class_name.lower()) link: str = make_link(display_text, path) description = description.replace(reference, link, 1) return description ``` #### File: src/gdscript_docs_maker/gdscript_objects.py ```python import itertools import operator from typing import List from .gdscript.gdscript_class import GDScriptClass class GDScriptClasses(list): """ Container for a list of GDScriptClass objects Provides methods for filtering and grouping GDScript classes """ def __init__(self, *args): super(GDScriptClasses, self).__init__(args[0]) self.class_index = { gdscript_class.name: gdscript_class.symbols for gdscript_class in self } def _get_grouped_by(self, attribute: str) -> List[List[GDScriptClass]]: if not self or attribute not in self[0].__dict__: return [] groups = [] get_attribute = operator.attrgetter(attribute) data = sorted(self, key=get_attribute) for key, group in itertools.groupby(data, get_attribute): groups.append(list(group)) return groups def get_grouped_by_category(self) -> List[List[GDScriptClass]]: """ Returns a list of lists of GDScriptClass objects, grouped by their `category` attribute """ return self._get_grouped_by("category") @staticmethod def from_dict_list(data: List[dict]): ret_gdscript_classes = [] for entry in data: if "name" not in entry: continue ret_gdscript_class = GDScriptClass.from_dict(entry) if ret_gdscript_class.hidden: continue ret_gdscript_classes.append(ret_gdscript_class) return GDScriptClasses(ret_gdscript_classes) ``` #### File: gdscript_docs_maker/gdscript/project_info.py ```python from dataclasses import dataclass @dataclass class ProjectInfo: name: str description: str version: str @staticmethod def from_dict(data: dict): return ProjectInfo(data["name"], data["description"], data["version"]) ``` #### File: tests/unit/test_enumeration.py ```python from gdscript_docs_maker.gdscript.enumeration import Enumeration enumeration_data = { "name": "ReturnDocument", "value": {"BEFORE": 0, "AFTER": 1}, "data_type": "Dictionary", "signature": 'const ReturnDocument: Dictionary = {"AFTER":1,"BEFORE":0}', "description": " Docs for ReturnDocument\n", } def test_from_dict(): enumeration_data["description"] = " Wrapper\n" e: Enumeration = Enumeration.from_dict(enumeration_data) assert e.name == "ReturnDocument" assert e.values == {"AFTER": 1, "BEFORE": 0} def test_from_dict_parses_hidden(): enumeration_data["description"] = " hey\n @hidden\n" e: Enumeration = Enumeration.from_dict(enumeration_data) assert e.hidden is True ```
{ "source": "3D-e-Chem/python-modified-tanimoto", "score": 3 }
#### File: python-modified-tanimoto/kripodb/canned.py ```python from __future__ import absolute_import import numpy as np import pandas as pd from requests import HTTPError from .db import FragmentsDb from .pairs import similar, open_similarity_matrix from .pharmacophores import PharmacophoresDb, as_phar from .webservice.client import WebserviceClient, IncompleteFragments, IncompletePharmacophores class IncompleteHits(Exception): def __init__(self, absent_identifiers, hits): """List of hits and list of identifiers for which no information could be found Args: absent_identifiers (List[str]): List of identifiers for which no information could be found hits (pandas.DataFrame): Data frame with query_fragment_id, hit_frag_id and score columns """ message = 'Some query fragment identifiers could not be found' super(IncompleteHits, self).__init__(message) self.absent_identifiers = absent_identifiers self.hits = hits def similarities(queries, similarity_matrix_filename_or_url, cutoff, limit=1000): """Find similar fragments to queries based on similarity matrix. Args: queries (List[str]): Query fragment identifiers similarity_matrix_filename_or_url (str): Filename of similarity matrix file or base url of kripodb webservice cutoff (float): Cutoff, similarity scores below cutoff are discarded. limit (int): Maximum number of hits for each query. Default is 1000. Use is None for no limit. Examples: Fragments similar to '3j7u_NDP_frag24' fragment. >>> import pandas as pd >>> from kripodb.canned import similarities >>> queries = pd.Series(['3j7u_NDP_frag24']) >>> hits = similarities(queries, 'data/similaritys.h5', 0.55) >>> len(hits) 11 Retrieved from web service instead of local similarity matrix file. Make sure the web service is running, for example by `kripodb serve data/similarities.h5 data/fragments.sqlite data/pharmacophores.h5`. >>> hits = similarities(queries, 'http://localhost:8084/kripo', 0.55) >>> len(hits) 11 Returns: pandas.DataFrame: Data frame with query_fragment_id, hit_frag_id and score columns Raises: IncompleteHits: When one or more of the identifiers could not be found. """ hits = [] absent_identifiers = [] if similarity_matrix_filename_or_url.startswith('http'): client = WebserviceClient(similarity_matrix_filename_or_url) for query in queries: try: qhits = client.similar_fragments(query, cutoff, limit) hits.extend(qhits) except HTTPError as e: if e.response.status_code == 404: absent_identifiers.append(query) else: similarity_matrix = open_similarity_matrix(similarity_matrix_filename_or_url) for query in queries: try: for query_id, hit_id, score in similar(query, similarity_matrix, cutoff, limit): hit = {'query_frag_id': query_id, 'hit_frag_id': hit_id, 'score': score, } hits.append(hit) except KeyError: absent_identifiers.append(query) similarity_matrix.close() if absent_identifiers: if len(hits) > 0: df = pd.DataFrame(hits, columns=['query_frag_id', 'hit_frag_id', 'score']) else: # empty hits array will give dataframe without columns df = pd.DataFrame({'query_frag_id': pd.Series(dtype=str), 'hit_frag_id': pd.Series(dtype=str), 'score': pd.Series(dtype=np.double) }, columns=['query_frag_id', 'hit_frag_id', 'score']) raise IncompleteHits(absent_identifiers, df) return pd.DataFrame(hits, columns=['query_frag_id', 'hit_frag_id', 'score']) def fragments_by_pdb_codes(pdb_codes, fragments_db_filename_or_url, prefix=''): """Retrieve fragments based on PDB codes. See http://www.rcsb.org/pdb/ for PDB structures. Args: pdb_codes (List[str]): List of PDB codes fragments_db_filename_or_url (str): Filename of fragments db or base url of kripodb webservice prefix (str): Prefix for output columns Examples: Fetch fragments of '2n2k' PDB code >>> from kripodb.canned import fragments_by_pdb_codes >>> pdb_codes = pd.Series(['2n2k']) >>> fragments = fragments_by_pdb_codes(pdb_codes, 'data/fragments.sqlite') >>> len(fragments) 3 Retrieved from web service instead of local fragments db file. Make sure the web service is running, for example by `kripodb serve data/similarities.h5 data/fragments.sqlite data/pharmacophores.h5`. >>> fragments = fragments_by_pdb_codes(pdb_codes, 'http://localhost:8084/kripo') >>> len(fragments) 3 Returns: pandas.DataFrame: Data frame with fragment information Raises: IncompleteFragments: When one or more of the identifiers could not be found. """ if fragments_db_filename_or_url.startswith('http'): client = WebserviceClient(fragments_db_filename_or_url) try: fragments = client.fragments_by_pdb_codes(pdb_codes) except IncompleteFragments as e: df = pd.DataFrame(e.fragments) df.rename(columns=lambda x: prefix + x, inplace=True) raise IncompleteFragments(e.absent_identifiers, df) else: fragmentsdb = FragmentsDb(fragments_db_filename_or_url) fragments = [] absent_identifiers = [] for pdb_code in pdb_codes: try: for fragment in fragmentsdb.by_pdb_code(pdb_code): fragments.append(fragment) except LookupError as e: absent_identifiers.append(pdb_code) if absent_identifiers: df = pd.DataFrame(fragments) df.rename(columns=lambda x: prefix + x, inplace=True) raise IncompleteFragments(absent_identifiers, df) df = pd.DataFrame(fragments) df.rename(columns=lambda x: prefix + x, inplace=True) return df def fragments_by_id(fragment_ids, fragments_db_filename_or_url, prefix=''): """Retrieve fragments based on fragment identifier. Args: fragment_ids (List[str]): List of fragment identifiers fragments_db_filename_or_url (str): Filename of fragments db or base url of kripodb webservice prefix (str): Prefix for output columns Examples: Fetch fragments of '2n2k_MTN_frag1' fragment identifier >>> from kripodb.canned import fragments_by_id >>> fragment_ids = pd.Series(['2n2k_MTN_frag1']) >>> fragments = fragments_by_id(fragment_ids, 'data/fragments.sqlite') >>> len(fragments) 1 Retrieved from web service instead of local fragments db file. Make sure the web service is running, for example by `kripodb serve data/similarities.h5 data/fragments.sqlite data/pharmacophores.h5`. >>> fragments = fragments_by_id(fragment_ids,, 'http://localhost:8084/kripo') >>> len(fragments) 1 Returns: pandas.DataFrame: Data frame with fragment information Raises: IncompleteFragments: When one or more of the identifiers could not be found. """ if fragments_db_filename_or_url.startswith('http'): client = WebserviceClient(fragments_db_filename_or_url) try: fragments = client.fragments_by_id(fragment_ids) except IncompleteFragments as e: df = pd.DataFrame(e.fragments) df.rename(columns=lambda x: prefix + x, inplace=True) raise IncompleteFragments(e.absent_identifiers, df) else: fragmentsdb = FragmentsDb(fragments_db_filename_or_url) fragments = [] absent_identifiers = [] for frag_id in fragment_ids: try: fragments.append(fragmentsdb[frag_id]) except KeyError: absent_identifiers.append(frag_id) if absent_identifiers: df = pd.DataFrame(fragments) df.rename(columns=lambda x: prefix + x, inplace=True) raise IncompleteFragments(absent_identifiers, df) df = pd.DataFrame(fragments) df.rename(columns=lambda x: prefix + x, inplace=True) return df def pharmacophores_by_id(fragment_ids, pharmacophores_db_filename_or_url): """Fetch pharmacophore points by fragment identifiers Args: fragment_ids (pd.Series): List of fragment identifiers pharmacophores_db_filename_or_url: Filename of pharmacophores db or base url of kripodb webservice Returns: pandas.Series: Pandas series with pharmacophores as string in phar format. Fragment without pharmacophore will return None Examples: Fragments similar to '3j7u_NDP_frag24' fragment. >>> from kripodb.canned import pharmacophores_by_id >>> fragment_ids = pd.Series(['2n2k_MTN_frag1'], ['Row0']) >>> pharmacophores = pharmacophores_by_id(fragment_ids, 'data/pharmacophores.h5') >>> len(pharmacophores) 1 Retrieved from web service instead of local pharmacophores db file. Make sure the web service is running, for example by `kripodb serve data/similarities.h5 data/fragments.sqlite data/pharmacophores.h5`. >>> pharmacophores = pharmacophores_by_id(fragment_ids, 'http://localhost:8084/kripo') >>> len(pharmacophores) 1 """ pphors = pd.Series([], dtype=str) if pharmacophores_db_filename_or_url.startswith('http'): client = WebserviceClient(pharmacophores_db_filename_or_url) try: pphorsarray = client.pharmacophores(fragment_ids) pphors = pd.Series(pphorsarray, fragment_ids.index, dtype=str) except IncompletePharmacophores as e: pphors = pd.Series(e.pharmacophores, fragment_ids.index, dtype=str) raise IncompletePharmacophores(e.absent_identifiers, pphors) else: with PharmacophoresDb(pharmacophores_db_filename_or_url) as pharmacophoresdb: absent_identifiers = [] for row_id, frag_id in fragment_ids.iteritems(): try: phar = as_phar(frag_id, pharmacophoresdb[frag_id]) pphors[row_id] = phar except KeyError: pphors[row_id] = None absent_identifiers.append(frag_id) if absent_identifiers: raise IncompletePharmacophores(absent_identifiers, pphors) return pphors ``` #### File: kripodb/script/__init__.py ```python from __future__ import absolute_import import argparse import sys from .fingerprints import make_fingerprints_parser from .fragments import make_fragments_parser from .similarities import make_similarities_parser from .dive import make_dive_parsers from ..webservice.server import serve_app from .pharmacophores import make_pharmacophores_parser from ..version import __version__ def make_parser(): """Creates a parser with sub commands Returns: argparse.ArgumentParser: parser with sub commands """ parser = argparse.ArgumentParser() parser.add_argument('--version', action='version', version=__version__) subparsers = parser.add_subparsers(dest='subcommand') make_fingerprints_parser(subparsers) make_fragments_parser(subparsers) make_similarities_parser(subparsers) make_dive_parsers(subparsers) serve_sc(subparsers) make_pharmacophores_parser(subparsers) return parser def serve_sc(subparsers): sc = subparsers.add_parser('serve', help='Serve similarity matrix, fragments db and pharmacophores db as webservice') sc.add_argument('similarities', type=str, help='Filename of similarity matrix hdf5 file') sc.add_argument('fragments', type=str, help='Filename of fragments sqlite database file') sc.add_argument('pharmacophores', type=str, help='Filename of pharmacophores hdf5 file') sc.add_argument('--internal_port', type=int, default=8084, help='TCP port on which to listen (default: %(default)s)') sc.add_argument('--external_url', type=str, default='http://localhost:8084/kripo', help='URL which should be used in Swagger spec (default: %(default)s)') sc.set_defaults(func=serve_app) def main(argv=sys.argv[1:]): """Main script function. Calls run method of selected sub commandos. Args: argv (list[str]): List of command line arguments """ parser = make_parser() args = parser.parse_args(argv) fargs = vars(args) if 'func' in fargs: func = args.func del(fargs['subcommand']) del(fargs['func']) func(**fargs) else: if 'subcommand' in args: parser.parse_args([args.subcommand, '--help']) else: parser.print_help() ``` #### File: kripodb/script/pharmacophores.py ```python import argparse from ..db import FragmentsDb from ..pharmacophores import PharmacophoresDb, read_pphore_sdfile, as_phar def dir2db_run(startdir, pharmacophoresdb, nrrows): with PharmacophoresDb(pharmacophoresdb, 'a', expectedrows=nrrows) as db: db.add_dir(startdir) def add_sc(sc): parser = sc.add_parser('add', help='Add pharmacophores from directory to database') parser.add_argument('startdir', help='Directory to start finding *.pphores.sd.gz and *.pphores.txt files in') parser.add_argument('pharmacophoresdb', help='Name of pharmacophore db file') parser.add_argument('--nrrows', type=int, default=2 ** 16, help='''Number of expected pharmacophores, only used when database is created (default: %(default)s)''') parser.set_defaults(func=dir2db_run) def get_run(pharmacophoresdb, query, output): with PharmacophoresDb(pharmacophoresdb) as db: db.write_phar(output, query) def get_sc(sc): parser = sc.add_parser('get', help='Retrieve pharmacophore of a fragment') parser.add_argument('pharmacophoresdb', help='Name of pharmacophore db file') parser.add_argument('--query', type=str, help='Query fragment identifier', default=None) parser.add_argument('--output', type=argparse.FileType('w'), default='-', help="Phar formatted text file") parser.set_defaults(func=get_run) def filter_run(inputfn, fragmentsdb, outputfn): frags = FragmentsDb(fragmentsdb) fragids2keep = set([f.encode() for f in frags.id2label().values()]) with PharmacophoresDb(inputfn) as dbin: expectedrows = len(dbin.points) with PharmacophoresDb(outputfn, 'w', expectedrows=expectedrows) as dbout: col_names = [colName for colName in dbin.points.table.colpathnames] rowout = dbout.points.table.row for rowin in dbin.points.table.iterrows(): if rowin['frag_id'] in fragids2keep: for col_name in col_names: rowout[col_name] = rowin[col_name] rowout.append() dbout.points.table.flush() def filter_sc(sc): parser = sc.add_parser('filter', help='Filter pharmacophores') parser.add_argument('inputfn', help='Name of input pharmacophore db file') parser.add_argument('--fragmentsdb', default='fragments.db', help='Name of fragments db file, fragments present in db are passed ' '(default: %(default)s)') parser.add_argument('outputfn', help='Name of output pharmacophore db file') parser.set_defaults(func=filter_run) def merge_sc(sc): parser = sc.add_parser('merge', help='Merge pharmacophore database files into new one') parser.add_argument('ins', nargs='+', help='Input pharmacophore database files') parser.add_argument('out', help='Output pharmacophore database file') parser.set_defaults(func=merge_pharmacophore_dbs) def merge_pharmacophore_dbs(ins, out): nr_rows = 0 for in_fn in ins: with PharmacophoresDb(in_fn) as in_db: nr_rows += len(in_db) with PharmacophoresDb(out, 'a', expectedrows=nr_rows) as db: for in_fn in ins: with PharmacophoresDb(in_fn) as in_db: db.append(in_db) def phar2db_sc(sc): parser = sc.add_parser('import', help='Convert phar formatted file to pharmacophore database file') parser.add_argument('infile', type=argparse.FileType('r'), help='Input phar formatted file') parser.add_argument('outfile', help='Output pharmacophore database file') parser.add_argument('--nrrows', type=int, default=2 ** 16, help='''Number of expected pharmacophores, only used when database is created (default: %(default)s)''') parser.set_defaults(func=phar2db) def phar2db(infile, outfile, nrrows): with PharmacophoresDb(outfile, 'a', expectedrows=nrrows) as out_db: out_db.read_phar(infile) def sd2phar_sc(sc): parser = sc.add_parser('sd2phar', help='Convert sd formatted pharmacophore file to phar formatted file') parser.add_argument('infile', type=argparse.FileType('rb'), help='Input sd formatted file') parser.add_argument('outfile', type=argparse.FileType('w'), help='Output phar formatted file') parser.add_argument('--frag_id', type=str, help='Fragment identifier', default='frag') parser.set_defaults(func=sd2phar) def sd2phar(infile, outfile, frag_id): points = read_pphore_sdfile(infile) phar = as_phar(frag_id, points) outfile.write(phar) def make_pharmacophores_parser(subparsers): """Creates a parser for pharmacophores sub commands Args: subparsers (argparse.ArgumentParser): Parser to which sub commands are added """ sc = subparsers.add_parser('pharmacophores', help='Pharmacophores').add_subparsers() add_sc(sc) get_sc(sc) filter_sc(sc) merge_sc(sc) phar2db_sc(sc) sd2phar_sc(sc) ``` #### File: kripodb/webservice/client.py ```python from __future__ import absolute_import import requests from rdkit.Chem.AllChem import MolFromMolBlock from requests import HTTPError class Incomplete(Exception): def __init__(self, message, absent_identifiers): super(Incomplete, self).__init__(message) self.absent_identifiers = absent_identifiers class IncompleteFragments(Incomplete): def __init__(self, absent_identifiers, fragments): """List of fragments and list of identifiers for which no information could be found Args: absent_identifiers (List[str]): List of identifiers for which no information could be found fragments (List[dict]): List of fragment information that could be retrieved """ message = 'Some identifiers could not be found' super(IncompleteFragments, self).__init__(message, absent_identifiers) self.fragments = fragments class IncompletePharmacophores(Incomplete): def __init__(self, absent_identifiers, pharmacophores): """List of fragments and list of identifiers for which no information could be found Args: absent_identifiers (List[str]): List of identifiers for which no information could be found pharmacophores (List[dict]): List of pharmacophores that could be retrieved """ message = 'Some identifiers could not be found' super(IncompletePharmacophores, self).__init__(message, absent_identifiers) self.pharmacophores = pharmacophores class WebserviceClient(object): """Client for kripo web service Example: >>> client = WebserviceClient('http://localhost:8084/kripo') >>> client.similar_fragments('3j7u_NDP_frag24', 0.85) [{'query_frag_id': '3j7u_NDP_frag24', 'hit_frag_id': '3j7u_NDP_frag23', 'score': 0.8991}] Args: base_url (str): Base url of web service. e.g. http://localhost:8084/kripo """ def __init__(self, base_url): self.base_url = base_url def similar_fragments(self, fragment_id, cutoff, limit=1000): """Find similar fragments to query. Args: fragment_id (str): Query fragment identifier cutoff (float): Cutoff, similarity scores below cutoff are discarded. limit (int): Maximum number of hits. Default is None for no limit. Returns: list[dict]: Query fragment identifier, hit fragment identifier and similarity score Raises: request.HTTPError: When fragment_id could not be found """ url = self.base_url + '/fragments/{fragment_id}/similar'.format(fragment_id=fragment_id) params = {'cutoff': cutoff, 'limit': limit} response = requests.get(url, params) response.raise_for_status() return response.json() def fragments_by_pdb_codes(self, pdb_codes, chunk_size=450): """Retrieve fragments by their PDB code Args: pdb_codes (List[str]): List of PDB codes chunk_size (int): Number of PDB codes to retrieve in a single http request Returns: list[dict]: List of fragment information Raises: requests.HTTPError: When one of the PDB codes could not be found. """ return self._fetch_chunked_fragments('pdb_codes', pdb_codes, chunk_size) def fragments_by_id(self, fragment_ids, chunk_size=100): """Retrieve fragments by their identifier Args: fragment_ids (List[str]): List of fragment identifiers chunk_size (int): Number of fragment to retrieve in a single http request Returns: list[dict]: List of fragment information Raises: IncompleteFragments: When one or more of the identifiers could not be found. """ return self._fetch_chunked_fragments('fragment_ids', fragment_ids, chunk_size) def _fetch_chunked_fragments(self, idtype, ids, chunk_size): fragments = [] absent_identifiers = [] for start in range(0, len(ids), chunk_size): stop = chunk_size + start (chunk_fragments, chunk_absent_identifiers) = self._fetch_fragments(idtype, ids[start:stop]) fragments += chunk_fragments absent_identifiers += chunk_absent_identifiers if chunk_absent_identifiers: raise IncompleteFragments(absent_identifiers, fragments) return fragments def _fetch_fragments(self, idtype, ids): url = self.base_url + '/fragments?{idtype}={ids}'.format(idtype=idtype, ids=','.join(ids)) absent_identifiers = [] try: response = requests.get(url) response.raise_for_status() fragments = response.json() except HTTPError as e: if e.response.status_code == 404: body = e.response.json() fragments = body['fragments'] absent_identifiers = body['absent_identifiers'] else: raise e # Convert molblock string to RDKit Mol object for fragment in fragments: if fragment['mol'] is not None: fragment['mol'] = MolFromMolBlock(fragment['mol']) return fragments, absent_identifiers def pharmacophores(self, fragment_ids): absent_identifiers = [] pharmacophores = [] for fragment_id in fragment_ids: url = self.base_url + '/fragments/{0}.phar'.format(fragment_id) try: response = requests.get(url) response.raise_for_status() pharmacophore = response.text pharmacophores.append(pharmacophore) except HTTPError as e: if e.response.status_code == 404: pharmacophores.append(None) absent_identifiers.append(fragment_id) else: raise e if absent_identifiers: raise IncompletePharmacophores(absent_identifiers, pharmacophores) return pharmacophores ``` #### File: tests/script/test_fingerprints.py ```python from __future__ import absolute_import from six import StringIO import kripodb.script as script import kripodb.script.fingerprints def test_pairs_subcommand_defaults(): parser = script.make_parser() args = parser.parse_args(['fingerprints', 'similarities', '--fragmentsdbfn', 'fragdb', 'fp1', 'fp2', 'outfn']) assert args.func == kripodb.script.fingerprints.pairs_run fargs = vars(args) del(fargs['func']) expected = { 'subcommand': 'fingerprints', 'out_format': 'hdf5', 'cutoff': 0.45, 'out_file': 'outfn', 'fragmentsdbfn': 'fragdb', 'mean_onbit_density': 0.01, 'nomemory': False, 'fingerprintsfn2': 'fp2', 'fingerprintsfn1': 'fp1', 'ignore_upper_triangle': False, } assert fargs == expected def test_meanbitdensity(): out = StringIO() kripodb.script.fingerprints.meanbitdensity_run('data/fingerprints.sqlite', out) assert out.getvalue() == '0.0077683\n' ``` #### File: tests/script/test_pharmacophores.py ```python from six import StringIO from kripodb.script.pharmacophores import get_run, sd2phar def test_get__onefrag(): out_file = StringIO() get_run('data/pharmacophores.h5', '3wsj_MK1_frag1', out_file) result = out_file.getvalue() nr_lines = len(result.split('\n')) assert '3wsj_MK1_frag1' in result and \ 'LIPO' in result and \ '$$$$' in result and \ nr_lines == 50 def test_get__all(): out_file = StringIO() get_run('data/pharmacophores.h5', None, out_file) result = out_file.getvalue() nr_lines = len(result.split('\n')) assert '3wsj_MK1_frag1' in result and \ 'LIPO' in result and \ '$$$$' in result and \ nr_lines == 17611 def test_sd2phar(example1_sdfile, example1_pharblock): out_file = StringIO() frag_id = 'some_frag_id' sd2phar(example1_sdfile, out_file, frag_id) assert out_file.getvalue() == example1_pharblock ``` #### File: python-modified-tanimoto/tests/test_db.py ```python from __future__ import absolute_import import sqlite3 from sys import version_info from pyroaring import BitMap import blosc from mock import call, Mock import pytest from rdkit.Chem import MolFromSmiles, MolToSmiles import six import kripodb.db as db @pytest.mark.skipif(version_info < (3,), reason="requires python3") def test_adapt_BitMap(): bs = BitMap([1, 3, 5, 8]) result = db.adapt_BitMap(bs) expected = blosc.compress(bs.serialize(), cname='zstd') assert result == expected def test_convert_BitMap(): bs = BitMap([1, 3, 5, 8]) result = db.convert_BitMap(blosc.compress(bs.serialize(), cname='zstd')) assert result == bs class TestFastInserter(object): @pytest.fixture def cursor(self): return Mock() @pytest.fixture def fast_inserter(self, cursor): return db.FastInserter(cursor) def test_with(self, cursor, fast_inserter): with fast_inserter: cursor.execute.assert_has_calls([call('PRAGMA journal_mode=WAL'), call('PRAGMA synchronous=OFF')]) cursor.execute.assert_has_calls([call('PRAGMA journal_mode=DELETE'), call('PRAGMA synchronous=FULL')]) @pytest.fixture def fragmentsdb(): return db.FragmentsDb(':memory:') class TestFragmentsDBEmpty(object): def test_id2label(self, fragmentsdb): assert fragmentsdb.id2label() == {} def test_label2id(self, fragmentsdb): assert fragmentsdb.label2id() == {} def test_getitem_keyerror(self, fragmentsdb): key = 'id1' with pytest.raises(KeyError): fragmentsdb[key] def test_by_pdb_code(self, fragmentsdb): pdb_code = '1kvm' with pytest.raises(LookupError): fragmentsdb.by_pdb_code(pdb_code) def test_add_fragments_from_shelve_weirdid(self, fragmentsdb): result = fragmentsdb.add_fragment_from_shelve('1muu-GDX', {}) assert result is None def test_add_fragments_from_shelve_weirdid2(self, fragmentsdb): result = fragmentsdb.add_fragment_from_shelve('1muu-GDX-B', {}) assert result is None def test_len(self, fragmentsdb): assert len(fragmentsdb) == 0 def test_add_fragment(self, fragmentsdb): fragmentsdb.add_fragment( nr_r_groups=1, pdb_code='1muu', atom_codes='C5D,O5D,PA,O1A,O2A,O3A,PB,O2B,O3B,O1B,C1*,O5*,C5*,C6*,O6A,O6B,C2*,O2*,C3*,O3*,C4*,O4*', het_code='GDX', hash_code='0d6ced7ce686f4da', frag_nr=7, frag_id='1muu_GDX_frag7', het_seq_nr=1005, het_chain='B', prot_chain='A', ) expected = { 'nr_r_groups': 1, 'smiles': None, 'mol': None, 'pdb_code': '1muu', 'atom_codes': 'C5D,O5D,PA,O1A,O2A,O3A,PB,O2B,O3B,O1B,C1*,O5*,C5*,C6*,O6A,O6B,C2*,O2*,C3*,O3*,C4*,O4*', 'het_code': 'GDX', 'hash_code': '0d6ced7ce686f4da', 'frag_nr': 7, 'frag_id': '1muu_GDX_frag7', 'rowid': 1, 'het_seq_nr': 1005, 'het_chain': 'B', 'prot_chain': 'A', 'pdb_title': None, 'prot_name': None, 'ec_number': None, 'uniprot_acc': None, 'uniprot_name': None, } frag = fragmentsdb['1muu_GDX_frag7'] assert frag == expected @pytest.fixture def myshelve(): return { '1muu-GDX-frag7': { 'atomCodes': 'C5D,O5D,PA,O1A,O2A,O3A,PB,O2B,O3B,O1B,C1*,O5*,C5*,C6*,O6A,O6B,C2*,O2*,C3*,O3*,C4*,O4*', 'hashcode': '0d6ced7ce686f4da', 'ligID': '1muu-A-GDX-1005-B', 'numRgroups': '1' } } @pytest.fixture def filled_fragmentsdb(fragmentsdb, myshelve): fragmentsdb.add_fragments_from_shelve(myshelve) mol = MolFromSmiles('[*]COP(=O)([O-])OP(=O)([O-])OC1OC(C(=O)[O-])C(O)C(O)C1O') mol.SetProp('_Name', '1muu_GDX_frag7') fragmentsdb.add_molecule(mol) pdbs = [{ 'chainId': 'A', 'structureId': '1muu', 'structureTitle': '2.0 A crystal structure of GDP-mannose dehydrogenase', 'ecNo': '1.1.1.132', 'uniprotAcc': 'P11759', 'compound': 'GDP-mannose 6-dehydrogenase', 'uniprotRecommendedName': 'GDP-mannose 6-dehydrogenase', }, { # pdbs which has no fragment should be skipped 'chainId': 'A', 'structureId': '2n2k', 'structureTitle': 'Ensemble structure of the closed state of Lys63-linked diubiquitin in the absence of a ligand', 'ecNo': None, 'uniprotAcc': 'P0CG48', 'compound': 'ubiquitin', 'uniprotRecommendedName': 'Polyubiquitin-C', }] fragmentsdb.add_pdbs(pdbs) return fragmentsdb @pytest.fixture def expected_fragment(): return { 'nr_r_groups': 1, 'smiles': '[*]COP(=O)([O-])OP(=O)([O-])OC1OC(C(=O)[O-])C(O)C(O)C1O', 'pdb_code': '1muu', 'atom_codes': 'C5D,O5D,PA,O1A,O2A,O3A,PB,O2B,O3B,O1B,C1*,O5*,C5*,C6*,O6A,O6B,C2*,O2*,C3*,O3*,C4*,O4*', 'het_code': 'GDX', 'hash_code': '0d6ced7ce686f4da', 'frag_nr': 7, 'frag_id': '1muu_GDX_frag7', 'rowid': 1, 'het_seq_nr': 1005, 'het_chain': 'B', 'prot_chain': 'A', 'pdb_title': '2.0 A crystal structure of GDP-mannose dehydrogenase', 'prot_name': 'GDP-mannose 6-dehydrogenase', 'ec_number': '1.1.1.132', 'uniprot_acc': 'P11759', 'uniprot_name': 'GDP-mannose 6-dehydrogenase', } class TestFragmentsDBFilled(object): def test_getitem(self, filled_fragmentsdb, expected_fragment): fragment = filled_fragmentsdb['1muu_GDX_frag7'] assert MolToSmiles(fragment['mol']) == '[*]COP(=O)([O-])OP(=O)([O-])OC1OC(C(=O)[O-])C(O)C(O)C1O' del fragment['mol'] assert fragment == expected_fragment def test_id2label(self, filled_fragmentsdb): assert filled_fragmentsdb.id2label() == {1: '1muu_GDX_frag7'} def test_label2id(self, filled_fragmentsdb): assert filled_fragmentsdb.label2id() == {'1muu_GDX_frag7': 1} def test_by_pdb_code(self, filled_fragmentsdb, expected_fragment): pdb_code = '1muu' fragments = filled_fragmentsdb.by_pdb_code(pdb_code) del fragments[0]['mol'] assert fragments == [expected_fragment] def test_by_uppercase_pdb_code(self, filled_fragmentsdb, expected_fragment): pdb_code = '1MUU' fragments = filled_fragmentsdb.by_pdb_code(pdb_code) del fragments[0]['mol'] assert fragments == [expected_fragment] def test_len(self, filled_fragmentsdb): assert len(filled_fragmentsdb) == 1 def test_duplicate(self, filled_fragmentsdb, myshelve): with pytest.raises(sqlite3.IntegrityError): filled_fragmentsdb.add_fragments_from_shelve(myshelve) def test_iterate(self, filled_fragmentsdb, expected_fragment): fragments = [f for f in filled_fragmentsdb] del fragments[0]['mol'] assert fragments == [expected_fragment] def test_is_ligand_stored_exists_true(self, filled_fragmentsdb): assert filled_fragmentsdb.is_ligand_stored('1muu', 'GDX') def test_is_ligand_stored_absent_false(self, filled_fragmentsdb): assert not filled_fragmentsdb.is_ligand_stored('1muu', '111') class TestHetSeqNr(object): def test_isnumber(self, filled_fragmentsdb): fragment = filled_fragmentsdb['1muu_GDX_frag7'] assert fragment['het_seq_nr'] == 1005 def test_nan(self, fragmentsdb): myshelve = { '1hoo-GNP-frag1': { 'atomCodes': 'PG,O1G,O2G,O3G,N3B,PB,O1B,O2B,O3A,PA,O1A,O2A,O5*,C5*,C4*,O4*,C3*,O3*,C2*,O2*,C1*,N9,C8,N7,C5,C6,O6,N1,C2,N2,N3,C4', 'hashcode': 'be4ce041f2a35721', 'ligID': '1hoo-A-GNP-432B-A', 'numRgroups': '0' } } fragmentsdb.add_fragments_from_shelve(myshelve) fragmentsdb.add_pdbs([{ 'chainId': 'A', 'structureId': '1hoo', 'structureTitle': 'STRUCTURE OF GUANINE NUCLEOTIDE (GPPCP) COMPLEX OF ADENYLOSUCCINATE SYNTHETASE FROM E. COLI AT PH 6.5 AND 25 DEGREES CELSIUS', 'ecNo': '6.3.4.4', 'uniprotAcc': 'P0A7D4', 'uniprotRecommendedName': 'Adenylosuccinate synthetase', 'compound': 'ADENYLOSUCCINATE SYNTHETAS', }]) fragment = fragmentsdb['1hoo_GNP_frag1'] assert fragment['het_seq_nr'] == 432 @pytest.fixture def fingerprintsdb(): fdb = db.FingerprintsDb(':memory:') yield fdb fdb.close() @pytest.fixture def bitsets(fingerprintsdb): return fingerprintsdb.as_dict(100) class TestBitMapDictEmpty(object): def test_default_number_of_bits(self, fingerprintsdb): bitsets = db.IntbitsetDict(fingerprintsdb) assert bitsets.number_of_bits is None def test_get_number_of_bits(self, bitsets): assert bitsets.number_of_bits == 100 def test_set_number_of_bits(self, bitsets): bitsets.number_of_bits = 200 assert bitsets.number_of_bits == 200 def test_delete_number_of_bits(self, bitsets): del bitsets.number_of_bits assert bitsets.number_of_bits is None def test_len_empty(self, bitsets): assert len(bitsets) == 0 def test_contains_false(self, bitsets): assert 'id1' not in bitsets def test_update(self, bitsets): bs = BitMap([1, 3, 5, 8]) other = {'id1': bs} bitsets.update(other) result = {k: v for k, v in six.iteritems(bitsets)} assert result == other def test_getitem_keyerror(self, bitsets): with pytest.raises(KeyError) as e: bitsets['id1'] assert e.value.args == ('id1',) @pytest.fixture def sample_BitMap(): return BitMap([1, 3, 5, 8]) @pytest.fixture def filled_bitsets(bitsets, sample_BitMap): bid = 'id1' bitsets[bid] = sample_BitMap return bitsets class TestBitMapDictFilled(object): def test_getitem(self, filled_bitsets, sample_BitMap): result = filled_bitsets['id1'] assert result == sample_BitMap def test_len_filled(self, filled_bitsets): assert len(filled_bitsets) == 1 def test_contains_true(self, filled_bitsets): assert 'id1' in filled_bitsets def test_del(self, filled_bitsets): del filled_bitsets['id1'] assert len(filled_bitsets) == 0 def test_keys(self, filled_bitsets): result = list(filled_bitsets.keys()) expected = ['id1'] assert result == expected def test_iteritems(self, filled_bitsets, sample_BitMap): result = {k: v for k, v in six.iteritems(filled_bitsets)} expected = {'id1': sample_BitMap} assert result == expected def test_iteritems_startswith(self, filled_bitsets, sample_BitMap): filled_bitsets['someid'] = sample_BitMap result = {k: v for k, v in filled_bitsets.iteritems_startswith('id')} expected = {'id1': sample_BitMap} assert result == expected assert 'someid' not in result def test_itervalues(self, filled_bitsets, sample_BitMap): result = [v for v in six.itervalues(filled_bitsets)] expected = [sample_BitMap] assert result == expected def test_materialize(self, filled_bitsets, sample_BitMap): result = filled_bitsets.materialize() expected = {'id1': sample_BitMap} assert result == expected ``` #### File: python-modified-tanimoto/tests/test_hdf5.py ```python from __future__ import absolute_import import pytest from numpy.testing import assert_array_almost_equal, assert_almost_equal from kripodb.hdf5 import SimilarityMatrix from .utils import SimilarityMatrixInMemory @pytest.fixture def matrix(): sim_matrix = SimilarityMatrix('data/similarities.h5') yield sim_matrix sim_matrix.close(); @pytest.fixture def empty_matrix(): with SimilarityMatrixInMemory() as sim_matrix: yield sim_matrix @pytest.fixture def example_matrix(): with SimilarityMatrixInMemory() as sim_matrix: labels = {'a': 0, 'b': 1, 'c': 2, 'd': 3} similarities = [ ('a', 'b', 0.9), ('a', 'c', 0.6), ('b', 'c', 0.6), ('d', 'c', 0.7) ] sim_matrix.update(similarities, labels) yield sim_matrix class TestSimilarityMatrix(object): def test_find_1(self, matrix): result = list(matrix.find('2n6i_4FU_frag1', 0.98)) expected = [('2n6i_4FU_frag2', 1.0), ('2n6i_4FU_frag6', 1.0)] assert_array_almost_equal([r[1] for r in result], [r[1] for r in expected], 3) assert [r[0] for r in result] == [r[0] for r in result] def test_iter_first2(self, matrix): myiter = iter(matrix) result = [next(myiter), next(myiter)] expected = [('2mlm_2W7_frag1', '2mlm_2W7_frag2', 0.5877), ('2mlm_2W7_frag2', '3wvm_STE_frag1', 0.4633)] assert_array_almost_equal([r[2] for r in result], [r[2] for r in expected], 3) assert [(r[0], r[1],) for r in result] == [(r[0], r[1],) for r in result] def test_iter_last(self, matrix): myiter = iter(matrix) result = None for row in myiter: result = row expected = ('3wyl_3KB_frag20', '3wyl_3KB_frag21', 0.999496452277409) assert_almost_equal(result[2], expected[2], 5) assert result[:2] == expected[:2] def test_keep(self, example_matrix, empty_matrix): in_matrix = example_matrix out_matrix = empty_matrix frags2keep = {'a', 'b'} in_matrix.keep(out_matrix, frags2keep) expected_labels = {'a', 'b', 'c'} assert set(out_matrix.labels.label2ids().keys()) == expected_labels expected_similarities = { ('a', 'b', 0.9), ('a', 'c', 0.6), ('b', 'c', 0.6) } assert set(out_matrix) == expected_similarities def test_skip(self, example_matrix, empty_matrix): in_matrix = example_matrix out_matrix = empty_matrix frags2skip = {'b'} in_matrix.skip(out_matrix, frags2skip) expected_labels = {'a', 'c', 'd'} assert set(out_matrix.labels.label2ids().keys()) == expected_labels expected_similarities = { ('a', 'c', 0.6), ('d', 'c', 0.7), } assert set(out_matrix) == expected_similarities class TestPairsTable(object): def test_count(self, example_matrix): counts = list(example_matrix.count(100000)) expected = [(0.6, 2), (0.7, 1), (0.9, 1)] assert_array_almost_equal(counts, expected, 6) def test_count_rawscore(self, example_matrix): counts = list(example_matrix.count(100000, True)) expected = [(39321, 2), (45874, 1), (58981, 1)] assert_array_almost_equal(counts, expected, 6) def test_count_multiframe(self, example_matrix): counts = list(example_matrix.count(2)) expected = [(0.6, 2), (0.7, 1), (0.9, 1)] assert_array_almost_equal(counts, expected, 6) ``` #### File: python-modified-tanimoto/tests/test_modifiedtanimoto.py ```python from __future__ import absolute_import import pytest from pyroaring import BitMap from kripodb import modifiedtanimoto def assert_similarities(result, expected): result = sorted(result) expected = sorted(expected) assert len(result) == len(expected) for i, r in enumerate(result): assert r[0] == expected[i][0] assert r[1] == expected[i][1] pytest.approx(r[2], expected[i][2]) class TestAlgorithm(object): number_of_bits = None corr_st = None corr_sto = None def setup(self): self.number_of_bits = 100 self.corr_st = 0.663333333333 self.corr_sto = 0.336666666667 def test_calc_mean_onbit_density(self): bitsets = { 'a': BitMap([1, 2, 3]), 'b': BitMap([1, 2, 4, 5, 8]), 'c': BitMap([1, 2, 4, 8]) } result = modifiedtanimoto.calc_mean_onbit_density(bitsets.values(), self.number_of_bits) expected = 0.04 assert result == expected def test_corrections(self): corr_st, corr_sto = modifiedtanimoto.corrections(0.01) pytest.approx(corr_st, 0.663333333333) pytest.approx(corr_sto, 0.336666666667) def test_similarity(self): bitset1 = BitMap([1, 2, 3]) bitset2 = BitMap([1, 2, 4, 8]) result = modifiedtanimoto.similarity(bitset1, bitset2, self.number_of_bits, self.corr_st, self.corr_sto) expected = 0.5779523809525572 pytest.approx(result, expected) def test_similarities_ignore_upper_triangle(self): bitsets = { 'a': BitMap([1, 2, 3]), 'b': BitMap([1, 2, 4, 5, 8]), 'c': BitMap([1, 2, 4, 8]) } iterator = modifiedtanimoto.similarities(bitsets, bitsets, self.number_of_bits, self.corr_st, self.corr_sto, 0.55, True) result = [r for r in iterator] expected = [ ('a', 'c', 0.5779523809525572), ('b', 'c', 0.8357708333333689)] # pair a-c is below cutoff with similarity of 0.53 assert_similarities(result, expected) def test_similarities(self): bitsets = { 'a': BitMap([1, 2, 3]), 'b': BitMap([1, 2, 4, 5, 8]), 'c': BitMap([1, 2, 4, 8]) } iterator = modifiedtanimoto.similarities(bitsets, bitsets, self.number_of_bits, self.corr_st, self.corr_sto, 0.55, False) result = [r for r in iterator] expected = [ ('a', 'c', 0.5779523809525572), ('c', 'a', 0.5779523809525572), ('c', 'b', 0.8357708333333689), ('b', 'c', 0.8357708333333689)] # pair a-c is below cutoff with similarity of 0.53 assert_similarities(result, expected) @pytest.mark.parametrize("bitset2,expected_score", ( (BitMap((1, 2, 3, 4)), 1.0), (BitMap((5, 6, 7, 8)), 0.33), (BitMap((3, 4, 5, 6)), 0.55), (BitMap((1, 2, 5, 6)), 0.55), (BitMap((2, 3, 4, 5)), 0.73), (BitMap((1, 5, 6, 7)), 0.424), (BitMap((1, 2, 3, 4, 5)), 0.86), (BitMap((1, 2, 3)), 0.83), )) def test_similarity_numberofbits400(bitset2, expected_score): number_of_bits = 400 corr_st, corr_sto = modifiedtanimoto.corrections(0.01) bitset1 = BitMap([1, 2, 3, 4]) result = modifiedtanimoto.similarity(bitset1, bitset2, number_of_bits, corr_st, corr_sto) assert result == pytest.approx(expected_score, rel=1e-2) ``` #### File: python-modified-tanimoto/tests/test_pdb.py ```python from __future__ import absolute_import from six import StringIO, BytesIO from mock import patch import pytest from kripodb.pdb import PdbReport @pytest.fixture def mock_fetch_response(): mresponse = BytesIO() mresponse.write(b'structureId,chainId,structureTitle,compound,ecNo,uniprotAcc,uniprotRecommendedName\n') mresponse.write( b'"104L","B","HOW AMINO-ACID INSERTIONS ARE ALLOWED IN AN ALPHA-HELIX OF T4 LYSOZYME","T4 LYSOZYME","3.2.1.17","P00720","Endolysin"\n') mresponse.write(b'"12E8","H","2E8 FAB FRAGMENT","IGG1-KAPPA 2E8 FAB (HEAVY CHAIN)","","",""\n') mresponse.seek(0) return mresponse class TestPdbReport(object): def test_url_default(self): pdb_report = PdbReport() url = pdb_report.url expected = 'http://www.rcsb.org/pdb/rest/customReport?' \ 'pdbids=*&' \ 'customReportColumns=structureTitle,compound,ecNo,uniprotAcc,uniprotRecommendedName&' \ 'format=csv&service=wsfile' assert url == expected def test_url_custom(self): pdbids = ['1kvm', '2mbs'] fields = ['resolution'] pdb_report = PdbReport(pdbids, fields) url = pdb_report.url expected = 'http://www.rcsb.org/pdb/rest/customReport?' \ 'pdbids=1kvm,2mbs&' \ 'customReportColumns=resolution&' \ 'format=csv&service=wsfile' assert url == expected @patch('kripodb.pdb.urlopen') def test_fetch(self, mocked_urlopen, mock_fetch_response): mocked_urlopen.return_value = mock_fetch_response pdb_report = PdbReport(['104L', '12E8']) pdbs = list(pdb_report.fetch()) expected = [{ 'chainId': 'B', 'structureId': '104L', 'structureTitle': 'HOW AMINO-ACID INSERTIONS ARE ALLOWED IN AN ALPHA-HELIX OF T4 LYSOZYME', 'ecNo': '3.2.1.17', 'uniprotAcc': 'P00720', 'compound': 'T4 LYSOZYME', 'uniprotRecommendedName': 'Endolysin' }, { 'chainId': 'H', 'structureId': '12E8', 'structureTitle': '2E8 FAB FRAGMENT', 'ecNo': None, 'uniprotAcc': None, 'compound': 'IGG1-KAPPA 2E8 FAB (HEAVY CHAIN)', 'uniprotRecommendedName': None }] assert pdbs == expected ```
{ "source": "3demax/elfie_remote_control", "score": 3 }
#### File: elfie_remote_control/tests/test_drone.py ```python import unittest import nose2 from unittest import expectedFailure from mock import Mock, MagicMock import drone class DroneProtocolMathTestCase(unittest.TestCase): def test_denormalization(self): denorm = drone._denormalize_ self.assertEqual(denorm(-1), 0) self.assertEqual(denorm(-0.5), 64) self.assertEqual(denorm(0), 128) self.assertEqual(denorm(0.5), 191) self.assertEqual(denorm(1), 255) class AtGroundDroneProtocolTestCase(unittest.TestCase): # @expectedFailure def test_idle(self): expected_command = '6680800080008099'.decode('hex') command = drone.get_command_string( roll=0.0, pitch=0.0, throttle=0.0, yaw=0.0, command=None, altitude_hold=False ) self.assertEqual(command, expected_command) def test_idle_altitude_hold(self): expected_command = '6680808080000099'.decode('hex') command = drone.get_command_string( roll=0.0, pitch=0.0, throttle=0.0, yaw=0.0, command=None, ) self.assertEqual(command, expected_command) def test_spin_up_altitude_hold(self): expected_command = '6680808080010199'.decode('hex') command = drone.get_command_string( roll=0.0, pitch=0.0, throttle=0.0, yaw=0.0, command='spin_up', ) self.assertEqual(command, expected_command) def test_shut_engines_altitude_hold(self): expected_command = '6680808080040499'.decode('hex') command = drone.get_command_string( roll=0.0, pitch=0.0, throttle=0.0, yaw=0.0, command='shut_off', ) self.assertEqual(command, expected_command) @expectedFailure def test_land_altitude_hold(self): expected_command = '00'.decode('hex') command = drone.get_command_string( roll=0.0, pitch=0.0, throttle=0.0, yaw=0.0, command='land', ) self.assertEqual(command, expected_command) class InFlightDroneProtocolTestCase(unittest.TestCase): """ these values are from adria's post: https://hackaday.io/project/19680-controlling-a-jjrc-h37-elfie-quad-from-a-pc/log/\ 53557-a-basic-script-to-monitor-the-controller-input-sent-to-the-quadcopter-by-udp """ def test_flight(self): # 66807f0180007e99 roll:128 pitch:127 throttle:1 yaw:128 commands:00000000 err:7e expected_command = '66807f0180007e99' command = drone.get_command_string( roll=0.0, pitch=-0.004, throttle=0.004, yaw=0.0, command=None, altitude_hold=False ).encode('hex') self.assertEqual(command, expected_command) # 666b840080006f99 roll:107 pitch:132 throttle:0 yaw:128 commands:00000000 err:6f expected_command = '666b840080006f99' command = drone.get_command_string( roll=-0.16, pitch=0.035, throttle=0.0, yaw=0.0, command=None, altitude_hold=False ).encode('hex') self.assertEqual(command, expected_command) ```
{ "source": "3DExtended/RaptorBot", "score": 3 }
#### File: core/data/TradeData.py ```python from dataclasses import dataclass @dataclass class TradeData: eventTime: int symbol: str tradeId: int price: str quantity: str buyerOrderId: int sellerOrderId: int tradeTime: int isBuyerMarketMaker: bool # If isBuyerMarketMaker is true then that means a seller fulfilled a buy order. The buyer created the order and waited for someone to fulfill it. ignore: bool def __init__(self, data: dict, sourceBinance: bool): if (sourceBinance == True): # If this assertion fails, this means that the binance api updated. # Please update this mapping to the newest API version. assert(len(data.keys()) - 1 == 10) self.eventTime = data["E"] self.symbol = data["s"] self.tradeId = data["t"] self.price = data["p"] self.quantity = data["q"] self.buyerOrderId = data["b"] self.sellerOrderId = data["a"] self.tradeTime = data["T"] self.isBuyerMarketMaker = data["m"] self.ignore = data["M"] ```
{ "source": "3D-Face/3DDFA_V2", "score": 2 }
#### File: 3DDFA_V2/utils/tddfa_util.py ```python __author__ = 'cleardusk' import sys sys.path.append('..') import argparse import numpy as np import torch from bfm import bfm # use global for accelerating u_base, w_shp_base, w_exp_base = bfm.u_base, bfm.w_shp_base, bfm.w_exp_base u, w_shp, w_exp = bfm.u, bfm.w_shp, bfm.w_exp def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected') def load_model(model, checkpoint_fp): checkpoint = torch.load(checkpoint_fp, map_location=lambda storage, loc: storage)['state_dict'] model_dict = model.state_dict() # because the model is trained by multiple gpus, prefix module should be removed for k in checkpoint.keys(): kc = k.replace('module.', '') if kc in model_dict.keys(): model_dict[kc] = checkpoint[k] if kc in ['fc_param.bias', 'fc_param.weight']: model_dict[kc.replace('_param', '')] = checkpoint[k] model.load_state_dict(model_dict) return model class ToTensorGjz(object): def __call__(self, pic): if isinstance(pic, np.ndarray): img = torch.from_numpy(pic.transpose((2, 0, 1))) return img.float() def __repr__(self): return self.__class__.__name__ + '()' class NormalizeGjz(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor): tensor.sub_(self.mean).div_(self.std) return tensor def similar_transform(pts3d, roi_box, size): pts3d[0, :] -= 1 # for Python compatibility pts3d[2, :] -= 1 pts3d[1, :] = size - pts3d[1, :] sx, sy, ex, ey = roi_box scale_x = (ex - sx) / size scale_y = (ey - sy) / size pts3d[0, :] = pts3d[0, :] * scale_x + sx pts3d[1, :] = pts3d[1, :] * scale_y + sy s = (scale_x + scale_y) / 2 pts3d[2, :] *= s pts3d[2, :] -= np.min(pts3d[2, :]) return np.array(pts3d, dtype=np.float32) def _parse_param(param): """matrix pose form param: shape=(62,), 62 = 12 + 40 + 10 scale may lie in R or alpha_shp + alpha_exp? """ R_ = param[:12].reshape(3, -1) R = R_[:, :3] offset = R_[:, -1].reshape(3, 1) alpha_shp = param[12:52].reshape(-1, 1) alpha_exp = param[52:].reshape(-1, 1) return R, offset, alpha_shp, alpha_exp def recon_sparse(param, roi_box, size): """68 3d landmarks reconstruction from 62: matrix pose form""" R, offset, alpha_shp, alpha_exp = _parse_param(param) pts3d = R @ (u_base + w_shp_base @ alpha_shp + w_exp_base @ alpha_exp).reshape(3, -1, order='F') + offset pts3d = similar_transform(pts3d, roi_box, size) return pts3d def recon_dense(param, roi_box, size): """Dense points reconstruction: 53215 points""" R, offset, alpha_shp, alpha_exp = _parse_param(param) pts3d = R @ (u + w_shp @ alpha_shp + w_exp @ alpha_exp).reshape(3, -1, order='F') + offset pts3d = similar_transform(pts3d, roi_box, size) return pts3d ```
{ "source": "3D-FRONT-FUTURE/ObjectDrawer-ToolBox", "score": 2 }
#### File: ObjectDrawer-ToolBox/utils/processer.py ```python import os # from tools.oss_util import upload_dir import logging from datetime import datetime from collections import OrderedDict import cv2 import numpy as np import shutil import zipfile from .capture_frame import capture_frame # from .segmentation_infer.infer import segmentation_infer def process(video_path): PIPELINE = OrderedDict([ ("VIDEO", video_proc), ("SELECT", select_proc), ("ZIP", zip_proc), ]) video_dir = os.path.dirname(video_path) case_id = os.path.basename(video_path).split('.')[0] for _k, _func in PIPELINE.items(): # input config _config_in = {} _config_in['video_path'] = video_path _config_in['root_dir'] = video_dir _config_in['case_id'] = case_id # case config setting _config_in['images_ori_dir'] = os.path.join( video_dir, case_id, "images_ori") _config_in['ground_images_dir'] = os.path.join( video_dir, case_id, "ground_images") is_success = _func(_config_in) if not is_success: print(_k, " Failed.") return True def video_proc(config): capture_frame(config['video_path'], config['images_ori_dir'], sample_rate=4, static_time=0, scale='1/1', img_max_size=1280) return True def select_proc(config): filenames = os.listdir(config['images_ori_dir']) filenames = [x for x in filenames if "png" in x] filenames.sort() # select 3 images to annotate ground nums_ground = 3 if 'nums_ground' in config.keys(): nums_ground = config['nums_ground'] print("[INFO] Select 3 images.") if not os.path.exists(config['ground_images_dir']): os.mkdir(config['ground_images_dir']) interval_ = len(filenames) / nums_ground idx_list = [int(x) for x in list(np.arange(0, len(filenames), interval_))] for i in idx_list: image_name = filenames[i] shutil.copy(os.path.join(config['images_ori_dir'], image_name), os.path.join( config['ground_images_dir'], image_name)) return True, None def zipdir(path, ziph): # ziph is zipfile handle for root, dirs, files in os.walk(path): for file in files: ziph.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.join(path, '..'))) def zip_proc(config): zipf = zipfile.ZipFile(os.path.join( config['root_dir'], config['case_id'] + ".zip"), 'w', zipfile.ZIP_DEFLATED) zipdir(config['ground_images_dir'], zipf) zipf.close() return True, None ``` #### File: ObjectDrawer-ToolBox/utils/visualize.py ```python import os import cv2 import numpy as np def vis_arrangeed_images(current_dir_path, selected_image_names, rows, cols, scale = 4): h, w = 0, 0 scaled_h, scaled_w = 0, 0 padding = 10 images = [] for image_name in selected_image_names: image = cv2.imread(os.path.join(current_dir_path, image_name), 1) h, w, c = image.shape scaled_h, scaled_w = h // scale, w // scale image = cv2.resize(image, (scaled_w, scaled_h)) image = cv2.copyMakeBorder( image, padding, padding, padding, padding, cv2.BORDER_CONSTANT, value=[255, 255, 255]) images.append(image) scaled_h, scaled_w, c = images[0].shape vis_image = np.zeros((scaled_h * rows, scaled_w * cols, 3), dtype=np.uint8) for i in range(rows * cols): row = i // cols col = i % cols vis_image[row * scaled_h: row * scaled_h + scaled_h, col * scaled_w: col * scaled_w + scaled_w] = images[i] return vis_image, scaled_h, scaled_w ```
{ "source": "3dgiordano/taurus", "score": 2 }
#### File: taurus/bzt/cli.py ```python import copy import logging import os import platform import shutil import signal import sys import tempfile import traceback from logging import Formatter from optparse import OptionParser, Option import optparse import textwrap from tempfile import NamedTemporaryFile import yaml from colorlog import ColoredFormatter import bzt from bzt import ManualShutdown, NormalShutdown, RCProvider, AutomatedShutdown from bzt import TaurusException, ToolError from bzt import TaurusInternalException, TaurusConfigError, TaurusNetworkError from bzt.engine import Engine, Configuration, ScenarioExecutor from bzt.engine import SETTINGS from bzt.commands import Commands from bzt.linter import ConfigurationLinter from bzt.six import HTTPError, string_types, get_stacktrace from bzt.utils import run_once, is_int, BetterDict, get_full_path, is_url class CLI(object): """ 'cli' means 'tool' in hebrew, did you know that? :param options: OptionParser parsed parameters """ console_handler = logging.StreamHandler(sys.stdout) CLI_SETTINGS = "cli" def __init__(self, options, from_command=False): self.signal_count = 0 self.options = options self.setup_logging(options, from_command=from_command) self.log = logging.getLogger('') if not from_command: self.log.info("Taurus CLI Tool v%s", bzt.VERSION) self.log.debug("Command-line options: %s", self.options) self.log.debug("Python: %s %s", platform.python_implementation(), platform.python_version()) self.log.debug("OS: %s", platform.uname()) self.engine = Engine(self.log) self.exit_code = 0 @staticmethod @run_once def setup_logging(options, from_command=False): """ Setting up console and file logging, colored if possible :param options: OptionParser parsed options :param from_command: When the invocation is from command """ colors = { 'WARNING': 'yellow', 'ERROR': 'red', 'CRITICAL': 'bold_red', } fmt_file = Formatter("[%(asctime)s %(levelname)s %(name)s] %(message)s") if from_command: fmt_verbose = Formatter("%(message)s") fmt_regular = Formatter("%(message)s") else: if sys.stdout.isatty(): fmt_verbose = ColoredFormatter("%(log_color)s[%(asctime)s %(levelname)s %(name)s] %(message)s", log_colors=colors) fmt_regular = ColoredFormatter("%(log_color)s%(asctime)s %(levelname)s: %(message)s", "%H:%M:%S", log_colors=colors) else: fmt_verbose = Formatter("[%(asctime)s %(levelname)s %(name)s] %(message)s") fmt_regular = Formatter("%(asctime)s %(levelname)s: %(message)s", "%H:%M:%S") logger = logging.getLogger('') logger.setLevel(logging.DEBUG) # log everything to file if options.log is None: tf = tempfile.NamedTemporaryFile(prefix="bzt_", suffix=".log", delete=False) tf.close() os.chmod(tf.name, 0o644) options.log = tf.name if options.log: file_handler = logging.FileHandler(options.log) file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(fmt_file) logger.addHandler(file_handler) # log something to console if options.verbose: CLI.console_handler.setLevel(logging.DEBUG) CLI.console_handler.setFormatter(fmt_verbose) elif options.quiet: CLI.console_handler.setLevel(logging.WARNING) CLI.console_handler.setFormatter(fmt_regular) else: CLI.console_handler.setLevel(logging.INFO) CLI.console_handler.setFormatter(fmt_regular) logger.addHandler(CLI.console_handler) logging.getLogger("requests").setLevel(logging.WARNING) # misplaced? def __close_log(self): """ Close log handlers :return: """ if self.options.log: # need to finalize the logger before finishing for handler in self.log.handlers: if issubclass(handler.__class__, logging.FileHandler): self.log.debug("Closing log handler: %s", handler.baseFilename) handler.close() self.log.handlers.remove(handler) def __move_log_to_artifacts(self): """ Close log handlers, copy log to artifacts dir, recreate file handlers :return: """ if self.options.log: for handler in self.log.handlers: if issubclass(handler.__class__, logging.FileHandler): self.log.debug("Closing log handler: %s", handler.baseFilename) handler.close() self.log.handlers.remove(handler) if os.path.exists(self.options.log): self.engine.existing_artifact(self.options.log, move=True, target_filename="bzt.log") self.options.log = os.path.join(self.engine.artifacts_dir, "bzt.log") file_handler = logging.FileHandler(self.options.log) file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(Formatter("[%(asctime)s %(levelname)s %(name)s] %(message)s")) self.log.addHandler(file_handler) self.log.debug("Switched writing logs to %s", self.options.log) def __configure(self, configs): self.log.info("Starting with configs: %s", configs) if self.options.no_system_configs is None: self.options.no_system_configs = False bzt_rc = os.path.expanduser(os.path.join('~', ".bzt-rc")) if os.path.exists(bzt_rc): self.log.debug("Using personal config: %s" % bzt_rc) else: self.log.debug("Adding personal config: %s", bzt_rc) self.log.info("No personal config found, creating one at %s", bzt_rc) shutil.copy(os.path.join(get_full_path(__file__, step_up=1), 'resources', 'base-bzt-rc.yml'), bzt_rc) merged_config = self.engine.configure([bzt_rc] + configs, not self.options.no_system_configs) # apply aliases for alias in self.options.aliases: cli_aliases = self.engine.config.get('cli-aliases') keys = sorted(cli_aliases.keys()) err = TaurusConfigError("'%s' not found in aliases. Available aliases are: %s" % (alias, ", ".join(keys))) self.engine.config.merge(cli_aliases.get(alias, err)) if self.options.option: overrider = ConfigOverrider(self.log) overrider.apply_overrides(self.options.option, self.engine.config) settings = self.engine.config.get(SETTINGS) settings.get('verbose', bool(self.options.verbose)) # respect value from config if self.options.verbose: # force verbosity if cmdline asked for it settings['verbose'] = True if settings.get('verbose'): CLI.console_handler.setLevel(logging.DEBUG) self.engine.create_artifacts_dir(configs, merged_config) self.engine.default_cwd = os.getcwd() self.engine.eval_env() # yacky, I don't like having it here, but how to apply it after aliases and artif dir? def __lint_config(self): settings = self.engine.config.get(CLI.CLI_SETTINGS).get("linter") self.log.debug("Linting config") self.warn_on_unfamiliar_fields = settings.get("warn-on-unfamiliar-fields", True) config_copy = copy.deepcopy(self.engine.config) ignored_warnings = settings.get("ignored-warnings", []) self.linter = ConfigurationLinter(config_copy, ignored_warnings, self.log) self.linter.register_checkers() self.linter.lint() warnings = self.linter.get_warnings() for warning in warnings: self.log.warning(str(warning)) if settings.get("lint-and-exit", False): if warnings: raise TaurusConfigError("Errors were found in the configuration") else: raise NormalShutdown("Linting has finished, no errors were found") def _level_down_logging(self): self.log.debug("Leveling down log file verbosity, use -v option to have DEBUG messages enabled") for handler in self.log.handlers: if issubclass(handler.__class__, logging.FileHandler): handler.setLevel(logging.INFO) def _level_up_logging(self): for handler in self.log.handlers: if issubclass(handler.__class__, logging.FileHandler): handler.setLevel(logging.DEBUG) self.log.debug("Leveled up log file verbosity") def perform(self, configs, sub_args=None, extra_args=None): """ Run the tool :type configs: list :return: integer exit code """ if isinstance(configs, SubCmdOptionParser): self.evaluate_command(configs, sub_args, extra_args) else: url_shorthands = [] jmx_shorthands = [] try: url_shorthands = self.__get_url_shorthands(configs) configs.extend(url_shorthands) jmx_shorthands = self.__get_jmx_shorthands(configs) configs.extend(jmx_shorthands) if not self.engine.config.get(SETTINGS).get('verbose', False): self.engine.logging_level_down = self._level_down_logging self.engine.logging_level_up = self._level_up_logging self.__configure(configs) self.__move_log_to_artifacts() self.__lint_config() self.engine.prepare() self.engine.run() except BaseException as exc: self.handle_exception(exc) finally: try: for fname in url_shorthands + jmx_shorthands: os.remove(fname) self.engine.post_process() except BaseException as exc: self.handle_exception(exc) self.log.info("Artifacts dir: %s", self.engine.artifacts_dir) if self.engine.artifacts_dir is None: self.log.info("Log file: %s", self.options.log) if self.exit_code: self.log.warning("Done performing with code: %s", self.exit_code) else: self.log.info("Done performing with code: %s", self.exit_code) self.__close_log() return self.exit_code def evaluate_command(self, configs, sub_args, extra_args): commands = Commands(self.log) if configs.name == "remote": if isinstance(sub_args, SubCmdOptionParser): if sub_args.name == "on": commands.remote_on() elif sub_args.name == "off": commands.remote_off() elif sub_args.name == "catalog": commands.remote_catalog() elif sub_args.name == "attach": if len(extra_args) == 0: self.log.error("Specify service_id argument, one or more separated by space") self.exit_code = 1 else: service_ids = extra_args commands.remote_attach(service_ids) elif sub_args.name == "detach": if len(extra_args) == 0: self.log.error("Specify service_id argument, one or more " + "separated by space or use the keyword '*all'") self.exit_code = 1 else: attach_ids = extra_args commands.remote_detach(attach_ids) elif sub_args.name == "inspect": if len(extra_args) == 0: self.log.error("Specify service_id argument, one or more separated by space") self.exit_code = 1 else: attach_ids = extra_args commands.remote_detach(attach_ids) elif sub_args.name == "list": commands.remote_list() else: self.log.info("Unparsed sub-command:%s" % sub_args.name) else: self.log.info("Unknown Sub Args type") else: self.log.info("Unparsed command:%s" % configs.name) def handle_exception(self, exc): log_level = {'info': logging.DEBUG, 'http': logging.DEBUG, 'default': logging.DEBUG} if not self.exit_code: # only fist exception goes to the screen log_level['info'] = logging.WARNING log_level['http'] = logging.ERROR log_level['default'] = logging.ERROR if isinstance(exc, RCProvider): self.exit_code = exc.get_rc() else: self.exit_code = 1 if isinstance(exc, KeyboardInterrupt): self.__handle_keyboard_interrupt(exc, log_level) log_level['default'] = logging.DEBUG elif isinstance(exc, TaurusException): self.__handle_taurus_exception(exc, log_level['default']) log_level['default'] = logging.DEBUG elif isinstance(exc, HTTPError): msg = "Response from %s: [%s] %s %s" % (exc.geturl(), exc.code, exc.reason, exc.read()) self.log.log(log_level['http'], msg) log_level['default'] = logging.DEBUG self.log.log(log_level['default'], "%s: %s\n%s", type(exc).__name__, exc, get_stacktrace(exc)) def __handle_keyboard_interrupt(self, exc, log_level): if isinstance(exc, ManualShutdown): self.log.log(log_level['info'], "Interrupted by user") elif isinstance(exc, AutomatedShutdown): self.log.log(log_level['info'], "Automated shutdown") elif isinstance(exc, NormalShutdown): self.log.log(logging.DEBUG, "Shutting down by request from code") elif isinstance(exc, KeyboardInterrupt): self.log.log(log_level['info'], "Keyboard interrupt") else: msg = "Non-KeyboardInterrupt exception %s: %s\n%s" raise ValueError(msg % (type(exc), exc, get_stacktrace(exc))) def __handle_taurus_exception(self, exc, log_level): if isinstance(exc, TaurusConfigError): self.log.log(log_level, "Config Error: %s", exc) elif isinstance(exc, TaurusInternalException): self.log.log(log_level, "Internal Error: %s", exc) elif isinstance(exc, ToolError): self.log.log(log_level, "Child Process Error: %s", exc) if exc.diagnostics is not None: for line in exc.diagnostics: self.log.log(log_level, line) elif isinstance(exc, TaurusNetworkError): self.log.log(log_level, "Network Error: %s", exc) else: self.log.log(log_level, "Generic Taurus Error: %s", exc) def __get_jmx_shorthands(self, configs): """ Generate json file with execution, executor and scenario settings :type configs: list :return: list """ jmxes = [] for filename in configs[:]: if filename.lower().endswith(".jmx"): jmxes.append(filename) configs.remove(filename) if jmxes: self.log.debug("Adding JMX shorthand config for: %s", jmxes) fds = NamedTemporaryFile(prefix="jmx_", suffix=".json") fname = fds.name fds.close() config = Configuration() for jmx_file in jmxes: config.get(ScenarioExecutor.EXEC, []).append({"executor": "jmeter", "scenario": {"script": jmx_file}}) config.dump(fname, Configuration.JSON) return [fname] else: return [] def __get_url_shorthands(self, configs): """ :type configs: list :return: list """ urls = [] for candidate in configs[:]: if is_url(candidate): urls.append(candidate) configs.remove(candidate) if urls: self.log.debug("Adding HTTP shorthand config for: %s", urls) config_fds = NamedTemporaryFile(prefix="http_", suffix=".yml") fname = config_fds.name config_fds.close() config = Configuration() config.merge({ "execution": [{ "concurrency": "${__tstFeedback(Throughput_Limiter,1,${__P(concurrencyCap,1)},2)}", "hold-for": "2m", "throughput": "${__P(throughput,600)}", "scenario": "linear-growth", }], "scenarios": { "linear-growth": { "retrieve-resources": False, "timeout": "5s", "keepalive": False, "requests": [{ "action": "pause", "pause-duration": 0, "jsr223": [{ "language": "javascript", "execute": "before", "script-text": """ var startTime = parseInt(props.get("startTime")); if (!startTime) { startTime = Math.floor((new Date()).getTime() / 1000); props.put("startTime", startTime); } else { var now = Math.floor((new Date()).getTime() / 1000); var offset = now - startTime; if (offset < 60) { var targetOffset = Math.max(offset * 10, 10); props.put("throughput", targetOffset.toString()); } }""" }] }] + urls, } }, "modules": { "jmeter": { "properties": { "throughput": 1, "concurrencyCap": 500, }, } } }) config.dump(fname, Configuration.JSON) return [fname] else: return [] class ConfigOverrider(object): def __init__(self, logger): """ :type logger: logging.Logger """ super(ConfigOverrider, self).__init__() self.log = logger.getChild(self.__class__.__name__) def apply_overrides(self, options, dest): """ Apply overrides :type options: list[str] :type dest: BetterDict """ for option in options: name = option[:option.index('=')] value = option[option.index('=') + 1:] try: self.__apply_single_override(dest, name, value) except: self.log.debug("Failed override: %s", traceback.format_exc()) self.log.error("Failed to apply override %s=%s", name, value) raise dest.dump() def __apply_single_override(self, dest, name, value): """ Apply single override :type name: str :type value: str """ self.log.debug("Applying %s=%s", name, value) parts = [(int(x) if is_int(x) else x) for x in name.split(".")] pointer = dest for index, part in enumerate(parts[:-1]): self.__ensure_list_capacity(pointer, part, parts[index + 1]) if isinstance(part, int): if part < 0: if isinstance(parts[index + 1], int): pointer.append([]) else: pointer.append(BetterDict()) pointer = pointer[-1] else: pointer = pointer[part] elif isinstance(parts[index + 1], int) and isinstance(pointer, dict): pointer = pointer.get(part, []) else: pointer = pointer.get(part) self.__ensure_list_capacity(pointer, parts[-1]) self.log.debug("Applying: [%s]=%s", parts[-1], value) if isinstance(parts[-1], string_types) and parts[-1][0] == '^': item = parts[-1][1:] if isinstance(pointer, list): item = int(item) if -len(pointer) <= item < len(pointer): del pointer[item] else: self.log.debug("No value to delete: %s", item) elif isinstance(pointer, dict): if item in pointer: del pointer[item] else: self.log.debug("No value to delete: %s", item) else: raise ValueError("Cannot handle override %s in non-iterable type %s" % (item, pointer)) else: parsed_value = self.__parse_override_value(value) self.log.debug("Parsed override value: %r -> %r (%s)", value, parsed_value, type(parsed_value)) if isinstance(parsed_value, dict): dict_value = BetterDict() dict_value.merge(parsed_value) parsed_value = dict_value if isinstance(pointer, list) and parts[-1] < 0: pointer.append(parsed_value) else: pointer[parts[-1]] = parsed_value @staticmethod def __parse_override_value(override): try: return yaml.load(override) except BaseException: return override def __ensure_list_capacity(self, pointer, part, next_part=None): """ Extend pointer list to hold additional item :type pointer: list :type part: int """ if isinstance(pointer, list) and isinstance(part, int): while len(pointer) <= part: self.log.debug("Len %s less than %s", len(pointer), part) if isinstance(next_part, int): pointer.append([]) else: pointer.append(BetterDict()) class OptionParserWithAliases(OptionParser, object): """ Decorator that processes short opts as aliases """ def __init__(self, usage=None, option_list=None, option_class=Option, version=None, conflict_handler="error", description=None, formatter=None, add_help_option=True, prog=None, epilog=None): super(OptionParserWithAliases, self).__init__( usage=usage, option_list=option_list, option_class=option_class, version=version, conflict_handler=conflict_handler, description=description, formatter=formatter, add_help_option=add_help_option, prog=prog, epilog=epilog) self.aliases = [] def _process_short_opts(self, rargs, values): if rargs[0].startswith('-') and len(rargs[0]) > 2: self.aliases.append(rargs.pop(0)[1:]) else: return OptionParser._process_short_opts(self, rargs, values) def parse_args(self, args=None, values=None): res = OptionParser.parse_args(self, args, values) res[0].aliases = self.aliases return res class SubCmdOptionParser(object): """A subcommand of a root command-line application that may be invoked by a SubcommandOptionParser. """ def __init__(self, name, parser=None, help="", aliases=()): """Creates a new subcommand. name is the primary way to invoke the subcommand; aliases are alternate names. parser is an OptionParser responsible for parsing the subcommand's options. help is a short description of the command. If no parser is given, it defaults to a new, empty OptionParser. """ super(SubCmdOptionParser, self).__init__() self.name = name self.parser = parser or OptionParserWithAliases() self.aliases = aliases self.help_hint = help class SubCmdsOptionParser(OptionParserWithAliases): """A variant of OptionParser that parses subcommands and their arguments. """ # A singleton command used to give help on other subcommands. _HelpSubcommand = SubCmdOptionParser('help', optparse.OptionParser(), help='Give detailed help on a specific command', ) def __init__(self, *args, **kwargs): """Create a new subcommand-aware option parser. All of the options to OptionParser.__init__ are supported in addition to subcommands, a sequence of Subcommand objects. """ super(SubCmdsOptionParser, self).__init__() # The sub_command array, with the help command included. self.sub_commands = list(kwargs.pop('sub_commands', [])) self.sub_commands.append(self._HelpSubcommand) # A more helpful default usage. if 'usage' not in kwargs: kwargs['usage'] = """ %prog COMMAND [ARGS...] %prog help COMMAND""" # Super constructor. OptionParserWithAliases.__init__(self, *args, **kwargs) # Adjust the help-visible name of each subcommand. for sub_command in self.sub_commands: sub_command.parser.prog = '%s %s' % \ (self.get_prog_name(), sub_command.name) # Our root parser needs to stop on the first unrecognized argument. self.disable_interspersed_args() def add_sub_command(self, cmd): """Adds a Subcommand object to the parser's list of commands. """ self.sub_commands.append(cmd) # Add the list of subcommands to the help message. def format_help(self, formatter=None): # Get the original help message, to which we will append. out = optparse.OptionParser.format_help(self, formatter) if formatter is None: formatter = self.formatter # Subcommands header. result = [] if len(self.sub_commands) > 1: result.append(formatter.format_heading('Commands')) formatter.indent() # Generate the display names (including aliases). # Also determine the help position. disp_names = [] help_position = 0 for sub_command in self.sub_commands: if sub_command.name == "help" and len(self.sub_commands) == 1: continue name = sub_command.name if sub_command.aliases: name += ' (%s)' % ', '.join(sub_command.aliases) disp_names.append(name) # Set the help position based on the max width. proposed_help_position = len(name) + formatter.current_indent + 2 if proposed_help_position <= formatter.max_help_position: help_position = max(help_position, proposed_help_position) # Add each subcommand to the output. for sub_command, name in zip(self.sub_commands, disp_names): # Lifted directly from optparse.py. name_width = help_position - formatter.current_indent - 2 if len(name) > name_width: name = "%*s%s\n" % (formatter.current_indent, "", name) indent_first = help_position else: name = "%*s%-*s " % (formatter.current_indent, "", name_width, name) indent_first = 0 result.append(name) help_width = formatter.width - help_position help_lines = textwrap.wrap(sub_command.help_hint, help_width) result.append("%*s%s\n" % (indent_first, "", help_lines[0])) result.extend(["%*s%s\n" % (help_position, "", line) for line in help_lines[1:]]) formatter.dedent() # Concatenate the original help message with the subcommand # list. return out + "".join(result) def _sub_command_for_name(self, name): """Return the subcommand in self.subcommands matching the given name. The name may either be the name of a subcommand or an alias. If no subcommand matches, returns None. """ for sub_command in self.sub_commands: if name == sub_command.name or \ name in sub_command.aliases: return sub_command return None def parse_args(self, args=None, values=None): """Like OptionParser.parse_args, but returns these four items: - options: the options passed to the root parser - subcommand: the Subcommand object that was invoked - suboptions: the options passed to the subcommand parser - subargs: the positional arguments passed to the subcommand """ options, args = super(SubCmdsOptionParser, self).parse_args(args, values) sub_command = None sub_options = None sub_args = None sub_sub_args = None if not args: return options, args, None, None, None if args: cmd_name = args[0] sub_command = self._sub_command_for_name(cmd_name) if not sub_command: return options, args, None, None, None if isinstance(sub_command.parser, SubCmdsOptionParser): sub_options, sub_args, sub_sub_options, sub_sub_args, extra_sub_args = \ sub_command.parser.parse_args(args[1:]) else: sub_options, sub_args = sub_command.parser.parse_args(args[1:]) sub_sub_options = None sub_sub_args = None extra_sub_args = None if extra_sub_args: # Remove the warnig from Codacy pass if sub_command is self._HelpSubcommand: if sub_args: cmd_name = sub_args[0] help_command = self._sub_command_for_name(cmd_name) if help_command: help_command.parser.print_help() self.exit() else: self.error('Unknown command ' + cmd_name) else: self.print_help() self.exit() else: if len(sub_command.parser.sub_commands) > 1: if not sub_sub_options: sub_command.parser.print_help() self.exit() return options, sub_command, sub_options, sub_args, sub_sub_args def get_option_parser(): usage = "Usage: bzt [options] [configs] [-aliases]" dsc = "BlazeMeter Taurus Tool v%s, the configuration-driven test running engine" % bzt.VERSION sub_commands = list() # sub_commands.append(SubCmdOptionParser('on', # SubCmdsOptionParser( # usage="bzt remote on", # description="Turn on the remote provisioning mode", # add_help_option=False # ), # help='Turn ON the remote provisioning mode', # ) # ) # sub_commands.append(SubCmdOptionParser('off', # SubCmdsOptionParser( # usage="bzt remote off", # description="Turn off provisioning mode and release reserved resources", # add_help_option=False # ), # help='Turn OFF the remote provisioning mode', # ) # ) sub_commands.append(SubCmdOptionParser('catalog', SubCmdsOptionParser( usage="bzt remote catalog", description="List the available services to be attached", add_help_option=False ), help='List the available services to be attached', ) ) sub_commands.append(SubCmdOptionParser('attach', SubCmdsOptionParser( usage="bzt remote attach service_id | service_id1 service_id2 ...", description="Attach a service to Taurus", add_help_option=False ), help='Attach a service to Taurus', ) ) sub_commands.append(SubCmdOptionParser('detach', SubCmdsOptionParser( usage="bzt remote detach attach_id | attach_id1 attach_id2 ... | *all", description="Detach an attached service", add_help_option=False ), help='Detach an attached service', ) ) sub_commands.append(SubCmdOptionParser('list', SubCmdsOptionParser( usage="bzt remote list", description="List services attached to Taurus", add_help_option=False ), help='List services attached to Taurus', ) ) sub_commands.append(SubCmdOptionParser('inspect', SubCmdsOptionParser( usage="bzt remote inspect attach_id", description="Inspect attached service, display detailed information", add_help_option=False ), help='Inspect attached service', ) ) remote_opts = SubCmdsOptionParser( usage="bzt remote [command] [options]", description="Provisioning through Remote Services for Selenium and Appium", sub_commands=sub_commands, add_help_option=False ) remote_cmd = SubCmdOptionParser('remote', remote_opts, help='Provisioning through Remote Services for Selenium and Appium', ) parser = SubCmdsOptionParser(usage=usage, description=dsc, prog="bzt", sub_commands=(remote_cmd,)) # parser = OptionParserWithAliases(usage=usage, description=dsc, prog="bzt") parser.add_option('-l', '--log', action='store', default=None, help="Log file location") parser.add_option('-o', '--option', action='append', help="Override option in config") parser.add_option('-q', '--quiet', action='store_true', help="Only errors and warnings printed to console") parser.add_option('-v', '--verbose', action='store_true', help="Prints all logging messages to console") parser.add_option('-n', '--no-system-configs', action='store_true', help="Skip system and user config files") return parser def signal_handler(sig, frame): """ required for non-tty python runs to interrupt :param frame: :param sig: """ del sig, frame raise ManualShutdown() def main(): """ This function is used as entrypoint by setuptools """ parser = get_option_parser() parsed_options, parsed_configs, parsed_suboptions, parsed_subargs, parsed_extra_args = parser.parse_args() if parsed_suboptions: # Remove the warnig from Codacy pass from_command = False if isinstance(parsed_configs, SubCmdOptionParser): from_command = True executor = CLI(parsed_options, from_command=from_command) try: code = executor.perform(parsed_configs, parsed_subargs, parsed_extra_args) except BaseException as exc_top: logging.error("%s: %s", type(exc_top).__name__, exc_top) logging.debug("Exception: %s", traceback.format_exc()) code = 1 exit(code) if __name__ == "__main__": signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTERM, signal_handler) main() ``` #### File: bzt/jmx/tools.py ```python import json import os import traceback from distutils.version import LooseVersion from bzt import TaurusInternalException, TaurusConfigError from bzt.engine import Scenario from bzt.jmx import JMX from bzt.requests_model import RequestVisitor, has_variable_pattern from bzt.six import etree, iteritems, numeric_types from bzt.utils import BetterDict, dehumanize_time, ensure_is_dict, get_host_ips, get_full_path, guess_csv_dialect class RequestCompiler(RequestVisitor): def __init__(self, jmx_builder): super(RequestCompiler, self).__init__() self.jmx_builder = jmx_builder def visit_hierarchichttprequest(self, request): return self.jmx_builder.compile_http_request(request) def visit_ifblock(self, block): return self.jmx_builder.compile_if_block(block) def visit_loopblock(self, block): return self.jmx_builder.compile_loop_block(block) def visit_whileblock(self, block): return self.jmx_builder.compile_while_block(block) def visit_foreachblock(self, block): return self.jmx_builder.compile_foreach_block(block) def visit_transactionblock(self, block): return self.jmx_builder.compile_transaction_block(block) def visit_includescenarioblock(self, block): scenario_name = block.scenario_name if scenario_name in self.path: msg = "Mutual recursion detected in include-scenario blocks (scenario %s)" raise TaurusConfigError(msg % scenario_name) self.record_path(scenario_name) return self.jmx_builder.compile_include_scenario_block(block) def visit_actionblock(self, block): return self.jmx_builder.compile_action_block(block) def visit_setvariables(self, block): return self.jmx_builder.compile_set_variables_block(block) class AbstractThreadGroup(object): XPATH = None RAMP_UP_SEL = None CONCURRENCY_SEL = None def __init__(self, element, logger): self.element = element self.gtype = self.__class__.__name__ self.log = logger.getChild(self.gtype) def get_testname(self): return self.element.get('testname') def set_concurrency(self, concurrency=None): self.log.warning('Setting of concurrency for %s not implemented', self.gtype) def set_ramp_up(self, ramp_up=None): self.log.warning('Setting of ramp-up for %s not implemented', self.gtype) def get_duration(self): """ task duration or None if getting isn't possible (skipped, timeless, jmeter variables, etc.) """ self.log.warning('Getting of duration for %s not implemented', self.gtype) def get_rate(self, pure=False): self.log.warning('Getting of rate for %s not implemented', self.gtype) def get_iterations(self): """ iterations number or None if getting isn't possible (skipped, unsupported, jmeter variables, etc.) Note: ConcurrencyThreadGroup and ArrivalsThreadGroup aren't stopped by iterations limit """ self.log.warning('Getting of iterations for %s not implemented', self.gtype) def get_ramp_up(self, pure=False): if not self.RAMP_UP_SEL: self.log.warning('Getting of ramp-up for %s not implemented', self.gtype) return 1 return self._get_val(self.RAMP_UP_SEL, name='ramp-up', default=0, pure=pure) def get_concurrency(self, pure=False): if not self.CONCURRENCY_SEL: self.log.warning('Getting of concurrency for %s not implemented', self.gtype) return 1 return self._get_val(self.CONCURRENCY_SEL, name='concurrency', default=1, pure=pure) def _get_val(self, selector, name='', default=None, convertor=int, pure=False): element = self.element.find(selector) if element is None: string_val = None else: string_val = element.text if pure: return string_val try: return convertor(string_val) except (ValueError, TypeError): if default: msg = "Parsing {param} '{val}' in group '{gtype}' failed, choose {default}" self.log.warning(msg.format(param=name, val=string_val, gtype=self.gtype, default=default)) return default def get_on_error(self): action = self.element.find(".//stringProp[@name='ThreadGroup.on_sample_error']") if action is not None: return action.text class ThreadGroup(AbstractThreadGroup): XPATH = 'jmeterTestPlan>hashTree>hashTree>ThreadGroup' CONCURRENCY_SEL = ".//*[@name='ThreadGroup.num_threads']" def get_duration(self): sched_sel = ".//*[@name='ThreadGroup.scheduler']" scheduler = self._get_val(sched_sel, "scheduler", pure=True) if scheduler == 'true': duration_sel = ".//*[@name='ThreadGroup.duration']" return self._get_val(duration_sel, "duration") elif scheduler == 'false': ramp_sel = ".//*[@name='ThreadGroup.ramp_time']" return self._get_val(ramp_sel, "ramp-up") else: msg = 'Getting of ramp-up for %s is impossible due to scheduler: %s' self.log.warning(msg, (self.gtype, scheduler)) def get_iterations(self): loop_control_sel = ".//*[@name='LoopController.continue_forever']" loop_controller = self._get_val(loop_control_sel, name="loop controller", pure=True) if loop_controller == "false": loop_sel = ".//*[@name='LoopController.loops']" return self._get_val(loop_sel, name="loops") else: msg = 'Getting of ramp-up for %s is impossible due to loop_controller: %s' self.log.warning(msg, (self.gtype, loop_controller)) class SteppingThreadGroup(AbstractThreadGroup): XPATH = r'jmeterTestPlan>hashTree>hashTree>kg\.apc\.jmeter\.threads\.SteppingThreadGroup' CONCURRENCY_SEL = ".//*[@name='ThreadGroup.num_threads']" class UltimateThreadGroup(AbstractThreadGroup): XPATH = r'jmeterTestPlan>hashTree>hashTree>kg\.apc\.jmeter\.threads\.UltimateThreadGroup' # parent of ConcurrencyThreadGroup and ArrivalThreadGroup class AbstractDynamicThreadGroup(AbstractThreadGroup): RAMP_UP_SEL = ".//*[@name='RampUp']" def _get_time_unit(self): unit_sel = ".//*[@name='Unit']" return self._get_val(unit_sel, name="unit", pure=True) def set_ramp_up(self, ramp_up=None): ramp_up_element = self.element.find(self.RAMP_UP_SEL) ramp_up_element.text = str(ramp_up) def get_duration(self): hold_sel = ".//*[@name='Hold']" hold = self._get_val(hold_sel, name="hold") ramp_up = self.get_ramp_up() # 'empty' means 0 sec, let's detect that p_hold = self._get_val(hold_sel, name="hold", pure=True) p_ramp_up = self.get_ramp_up(pure=True) if hold is None and not p_hold: hold = 0 if ramp_up is None and not p_ramp_up: ramp_up = 0 if hold is not None and ramp_up is not None: result = hold + ramp_up if self._get_time_unit() == 'M': result *= 60 return result def get_iterations(self): iter_sel = ".//*[@name='Iterations']" return self._get_val(iter_sel, name="iterations") class ConcurrencyThreadGroup(AbstractDynamicThreadGroup): XPATH = r'jmeterTestPlan>hashTree>hashTree>com\.blazemeter\.jmeter\.threads\.concurrency\.ConcurrencyThreadGroup' CONCURRENCY_SEL = ".//*[@name='TargetLevel']" def set_concurrency(self, concurrency=None): concurrency_prop = self.element.find(self.CONCURRENCY_SEL) concurrency_prop.text = str(concurrency) class ArrivalsThreadGroup(AbstractDynamicThreadGroup): XPATH = r'jmeterTestPlan>hashTree>hashTree>com\.blazemeter\.jmeter\.threads\.arrivals\.ArrivalsThreadGroup' RATE_SEL = ".//*[@name='TargetLevel']" def get_rate(self, pure=False): return self._get_val(self.RATE_SEL, name='rate', default=1, pure=pure) def set_rate(self, rate=None): rate_prop = self.element.find(self.RATE_SEL) rate_prop.text = str(rate) class ThreadGroupHandler(object): CLASSES = [ThreadGroup, SteppingThreadGroup, UltimateThreadGroup, ConcurrencyThreadGroup, ArrivalsThreadGroup] def __init__(self, logger): self.log = logger.getChild(self.__class__.__name__) def groups(self, jmx): """ Get wrappers for thread groups that are enabled """ for _class in self.CLASSES: for group in jmx.get(_class.XPATH): if group.get("enabled") != "false": yield _class(group, self.log) def convert(self, group, target, load, concurrency): """ Convert a thread group to ThreadGroup/ConcurrencyThreadGroup for applying of load """ msg = "Converting %s (%s) to %s and apply load parameters" self.log.debug(msg, group.gtype, group.get_testname(), target) on_error = group.get_on_error() if target == ThreadGroup.__name__: new_group_element = JMX.get_thread_group( concurrency=concurrency, rampup=load.ramp_up, hold=load.hold, iterations=load.iterations, testname=group.get_testname(), on_error=on_error) elif target == ConcurrencyThreadGroup.__name__: new_group_element = JMX.get_concurrency_thread_group( concurrency=concurrency, rampup=load.ramp_up, hold=load.hold, steps=load.steps, testname=group.get_testname(), on_error=on_error) else: self.log.warning('Unsupported preferred thread group: %s', target) return group.element.getparent().replace(group.element, new_group_element) class LoadSettingsProcessor(object): TG = ThreadGroup.__name__ CTG = ConcurrencyThreadGroup.__name__ def __init__(self, executor): self.log = executor.log.getChild(self.__class__.__name__) self.load = executor.get_specific_load() self.tg = self._detect_thread_group(executor) self.tg_handler = ThreadGroupHandler(self.log) def _detect_thread_group(self, executor): """ Detect preferred thread group :param executor: :return: """ tg = self.TG if not executor.settings.get('force-ctg', True): return tg msg = 'Thread group detection: %s, regular ThreadGroup will be used' if not self.load.duration: self.log.debug(msg, 'duration not found') elif self.load.iterations: self.log.debug(msg, 'iterations are found') elif not executor.tool: msg = 'You must set executor tool (%s) for choosing of ConcurrencyThreadGroup' raise TaurusInternalException(msg % executor.tool_name) elif not executor.tool.ctg_plugin_installed(): self.log.warning(msg % 'plugin for ConcurrentThreadGroup not found') else: tg = self.CTG return tg def modify(self, jmx): if not (self.load.iterations or self.load.concurrency or self.load.duration): self.log.debug('No iterations/concurrency/duration found, thread group modification is skipped') return # IMPORTANT: fix groups order as changing of element type changes order of getting of groups groups = list(self.tg_handler.groups(jmx)) if self.load.concurrency and not isinstance(self.load.concurrency, numeric_types): # property found for group in groups: self.tg_handler.convert(group=group, target=self.tg, load=self.load, concurrency=self.load.concurrency) else: target_list = zip(groups, self._get_concurrencies(groups)) for group, concurrency in target_list: self.tg_handler.convert(group=group, target=self.tg, load=self.load, concurrency=concurrency) if self.load.throughput: self._add_shaper(jmx) if self.load.steps and self.tg == self.TG: self.log.warning("Stepping ramp-up isn't supported for regular ThreadGroup") def _get_concurrencies(self, groups): """ Collect concurrency values and calculate target concurrency for every thread group """ concurrency_list = [] for group in groups: concurrency_list.append(group.get_concurrency()) if concurrency_list and self.load.concurrency: total_old_concurrency = sum(concurrency_list) # t_o_c != 0 because of logic of group.get_concurrency() for idx, concurrency in enumerate(concurrency_list): part_of_load = 1.0 * self.load.concurrency * concurrency / total_old_concurrency if part_of_load < 1: concurrency_list[idx] = 1 else: concurrency_list[idx] = int(round(part_of_load)) total_new_concurrency = sum(concurrency_list) leftover = self.load.concurrency - total_new_concurrency if leftover < 0: msg = "Had to add %s more threads to maintain thread group proportion" self.log.warning(msg, -leftover) elif leftover > 0: msg = "%s threads left undistributed due to thread group proportion" self.log.warning(msg, leftover) return concurrency_list def _add_shaper(self, jmx): """ Add shaper :param jmx: JMX :return: """ if not self.load.duration: self.log.warning("You must set 'ramp-up' and/or 'hold-for' when using 'throughput' option") return etree_shaper = jmx.get_rps_shaper() if self.load.ramp_up: jmx.add_rps_shaper_schedule(etree_shaper, 1, self.load.throughput, self.load.ramp_up) if self.load.hold: jmx.add_rps_shaper_schedule(etree_shaper, self.load.throughput, self.load.throughput, self.load.hold) jmx.append(JMeterScenarioBuilder.TEST_PLAN_SEL, etree_shaper) jmx.append(JMeterScenarioBuilder.TEST_PLAN_SEL, etree.Element("hashTree")) class JMeterScenarioBuilder(JMX): """ Helper to build JMeter test plan from Scenario :param executor: ScenarioExecutor :param original: inherited from JMX """ def __init__(self, executor, original=None): super(JMeterScenarioBuilder, self).__init__(original) self.executor = executor self.scenario = executor.get_scenario() self.engine = executor.engine self.system_props = BetterDict() self.request_compiler = None def __gen_managers(self, scenario): elements = [] if scenario.get("store-cache", True): elements.append(self._get_cache_mgr()) elements.append(etree.Element("hashTree")) if scenario.get("store-cookie", True): elements.append(self._get_cookie_mgr(scenario)) elements.append(etree.Element("hashTree")) if scenario.get("use-dns-cache-mgr", True): elements.append(self.get_dns_cache_mgr()) elements.append(etree.Element("hashTree")) self.system_props.merge({"system-properties": {"sun.net.inetaddr.ttl": 0}}) return elements @staticmethod def smart_time(any_time): # FIXME: bad name for the function, does not reflect what it does try: smart_time = int(1000 * dehumanize_time(any_time)) except TaurusInternalException: smart_time = any_time return smart_time def __gen_defaults(self, scenario): default_address = scenario.get("default-address", None) retrieve_resources = scenario.get("retrieve-resources", True) resources_regex = scenario.get("retrieve-resources-regex", None) concurrent_pool_size = scenario.get("concurrent-pool-size", 4) content_encoding = scenario.get("content-encoding", None) timeout = scenario.get("timeout", None) timeout = self.smart_time(timeout) elements = [self._get_http_defaults(default_address, timeout, retrieve_resources, concurrent_pool_size, content_encoding, resources_regex), etree.Element("hashTree")] return elements def __add_think_time(self, children, req): think_time = req.priority_option('think-time') if think_time is not None: children.append(JMX._get_constant_timer(self.smart_time(think_time))) children.append(etree.Element("hashTree")) def __add_extractors(self, children, req): self.__add_regexp_ext(children, req) self.__add_json_ext(children, req) self.__add_jquery_ext(children, req) self.__add_xpath_ext(children, req) def __add_regexp_ext(self, children, req): extractors = req.config.get("extract-regexp", BetterDict()) for varname in extractors: cfg = ensure_is_dict(extractors, varname, "regexp") extractor = JMX._get_extractor(varname, cfg.get('subject', 'body'), cfg['regexp'], cfg.get('template', 1), cfg.get('match-no', 1), cfg.get('default', 'NOT_FOUND')) children.append(extractor) children.append(etree.Element("hashTree")) def __add_json_ext(self, children, req): jextractors = req.config.get("extract-jsonpath", BetterDict()) for varname in jextractors: cfg = ensure_is_dict(jextractors, varname, "jsonpath") if LooseVersion(str(self.executor.settings["version"])) < LooseVersion("3.0"): extractor = JMX._get_json_extractor(varname, cfg["jsonpath"], cfg.get("default", "NOT_FOUND"), cfg.get("from-variable", None)) else: extractor = JMX._get_internal_json_extractor(varname, cfg["jsonpath"], cfg.get("default", "NOT_FOUND"), cfg.get("scope", None), cfg.get("from-variable", None), cfg.get("match-no", "-1"), cfg.get("concat", False)) children.append(extractor) children.append(etree.Element("hashTree")) def __add_jquery_ext(self, children, req): css_jquery_extors = req.config.get("extract-css-jquery", BetterDict()) for varname in css_jquery_extors: cfg = ensure_is_dict(css_jquery_extors, varname, "expression") extractor = self._get_jquerycss_extractor(varname, cfg['expression'], cfg.get('attribute', ""), cfg.get('match-no', 0), cfg.get('default', 'NOT_FOUND')) children.append(extractor) children.append(etree.Element("hashTree")) def __add_xpath_ext(self, children, req): xpath_extractors = req.config.get("extract-xpath", BetterDict()) for varname in xpath_extractors: cfg = ensure_is_dict(xpath_extractors, varname, "xpath") children.append(JMX._get_xpath_extractor(varname, cfg['xpath'], cfg.get('default', 'NOT_FOUND'), cfg.get('validate-xml', False), cfg.get('ignore-whitespace', True), cfg.get('use-tolerant-parser', False))) children.append(etree.Element("hashTree")) @staticmethod def __add_assertions(children, req): assertions = req.config.get("assert", []) for idx, assertion in enumerate(assertions): assertion = ensure_is_dict(assertions, idx, "contains") if not isinstance(assertion['contains'], list): assertion['contains'] = [assertion['contains']] children.append(JMX._get_resp_assertion(assertion.get("subject", Scenario.FIELD_BODY), assertion['contains'], assertion.get('regexp', True), assertion.get('not', False), assertion.get('assume-success', False))) children.append(etree.Element("hashTree")) jpath_assertions = req.config.get("assert-jsonpath", []) for idx, assertion in enumerate(jpath_assertions): assertion = ensure_is_dict(jpath_assertions, idx, "jsonpath") exc = TaurusConfigError('JSON Path not found in assertion: %s' % assertion) component = JMX._get_json_path_assertion(assertion.get('jsonpath', exc), assertion.get('expected-value', ''), assertion.get('validate', False), assertion.get('expect-null', False), assertion.get('invert', False), assertion.get('regexp', True)) children.append(component) children.append(etree.Element("hashTree")) xpath_assertions = req.config.get("assert-xpath", []) for idx, assertion in enumerate(xpath_assertions): assertion = ensure_is_dict(xpath_assertions, idx, "xpath") exc = TaurusConfigError('XPath not found in assertion: %s' % assertion) component = JMX._get_xpath_assertion(assertion.get('xpath', exc), assertion.get('validate-xml', False), assertion.get('ignore-whitespace', True), assertion.get('use-tolerant-parser', False), assertion.get('invert', False)) children.append(component) children.append(etree.Element("hashTree")) @staticmethod def __add_jsr_elements(children, req): """ :type children: etree.Element :type req: Request """ jsrs = req.config.get("jsr223", []) if not isinstance(jsrs, list): jsrs = [jsrs] for idx, _ in enumerate(jsrs): jsr = ensure_is_dict(jsrs, idx, default_key='script-text') lang = jsr.get("language", "groovy") script_file = jsr.get("script-file", None) script_text = jsr.get("script-text", None) if not script_file and not script_text: raise TaurusConfigError("jsr223 element must specify one of 'script-file' or 'script-text'") parameters = jsr.get("parameters", "") execute = jsr.get("execute", "after") children.append(JMX._get_jsr223_element(lang, script_file, parameters, execute, script_text)) children.append(etree.Element("hashTree")) def _get_merged_ci_headers(self, req, header): def dic_lower(dic): return {k.lower(): dic[k].lower() for k in dic} ci_scenario_headers = dic_lower(self.scenario.get_headers()) ci_request_headers = dic_lower(req.headers) headers = BetterDict() headers.merge(ci_scenario_headers) headers.merge(ci_request_headers) if header.lower() in headers: return headers[header] else: return None def __gen_requests(self, scenario): requests = scenario.get_requests() elements = [] for compiled in self.compile_requests(requests): elements.extend(compiled) return elements def compile_scenario(self, scenario): elements = [] elements.extend(self.__gen_managers(scenario)) elements.extend(self.__gen_defaults(scenario)) elements.extend(self.__gen_datasources(scenario)) elements.extend(self.__gen_requests(scenario)) return elements def compile_http_request(self, request): """ :type request: HierarchicHTTPRequest :return: """ timeout = request.priority_option('timeout') if timeout is not None: timeout = self.smart_time(timeout) content_type = self._get_merged_ci_headers(request, 'content-type') if content_type == 'application/json' and isinstance(request.body, (dict, list)): body = json.dumps(request.body) else: body = request.body use_random_host_ip = request.priority_option('random-source-ip', default=False) host_ips = get_host_ips(filter_loopbacks=True) if use_random_host_ip else [] http = JMX._get_http_request(request.url, request.label, request.method, timeout, body, request.priority_option('keepalive', default=True), request.upload_files, request.content_encoding, request.priority_option('follow-redirects', default=True), use_random_host_ip, host_ips) children = etree.Element("hashTree") if request.headers: children.append(JMX._get_header_mgr(request.headers)) children.append(etree.Element("hashTree")) self.__add_think_time(children, request) self.__add_assertions(children, request) if timeout is not None: children.append(JMX._get_dur_assertion(timeout)) children.append(etree.Element("hashTree")) self.__add_extractors(children, request) self.__add_jsr_elements(children, request) return [http, children] def compile_if_block(self, block): elements = [] # TODO: pass jmeter IfController options if_controller = JMX._get_if_controller(block.condition) then_children = etree.Element("hashTree") for compiled in self.compile_requests(block.then_clause): for element in compiled: then_children.append(element) elements.extend([if_controller, then_children]) if block.else_clause: inverted_condition = "!(" + block.condition + ")" else_controller = JMX._get_if_controller(inverted_condition) else_children = etree.Element("hashTree") for compiled in self.compile_requests(block.else_clause): for element in compiled: else_children.append(element) elements.extend([else_controller, else_children]) return elements def compile_loop_block(self, block): elements = [] loop_controller = JMX._get_loop_controller(block.loops) children = etree.Element("hashTree") for compiled in self.compile_requests(block.requests): for element in compiled: children.append(element) elements.extend([loop_controller, children]) return elements def compile_while_block(self, block): elements = [] controller = JMX._get_while_controller(block.condition) children = etree.Element("hashTree") for compiled in self.compile_requests(block.requests): for element in compiled: children.append(element) elements.extend([controller, children]) return elements def compile_foreach_block(self, block): """ :type block: ForEachBlock """ elements = [] controller = JMX._get_foreach_controller(block.input_var, block.loop_var) children = etree.Element("hashTree") for compiled in self.compile_requests(block.requests): for element in compiled: children.append(element) elements.extend([controller, children]) return elements def compile_transaction_block(self, block): elements = [] controller = JMX._get_transaction_controller(block.name, block.priority_option('force-parent-sample', True)) children = etree.Element("hashTree") for compiled in self.compile_requests(block.requests): for element in compiled: children.append(element) elements.extend([controller, children]) return elements def compile_include_scenario_block(self, block): elements = [] controller = JMX._get_simple_controller(block.scenario_name) children = etree.Element("hashTree") scenario = self.executor.get_scenario(name=block.scenario_name) for element in self.compile_scenario(scenario): children.append(element) elements.extend([controller, children]) return elements def compile_action_block(self, block): """ :type block: ActionBlock :return: """ actions = { 'stop': 0, 'pause': 1, 'stop-now': 2, 'continue': 3, } targets = {'current-thread': 0, 'all-threads': 2} action = actions[block.action] target = targets[block.target] duration = 0 if block.duration is not None: duration = int(block.duration * 1000) test_action = JMX._get_action_block(action, target, duration) children = etree.Element("hashTree") self.__add_jsr_elements(children, block) return [test_action, children] def compile_set_variables_block(self, block): # pause current thread for 0s test_action = JMX._get_action_block(action_index=1, target_index=0, duration_ms=0) children = etree.Element("hashTree") fmt = "vars.put('%s', %r);" block.config["jsr223"] = [{ "language": "groovy", "execute": "before", "script-text": "\n".join(fmt % (var, expr) for var, expr in iteritems(block.mapping)) }] self.__add_jsr_elements(children, block) return [test_action, children] def compile_requests(self, requests): if self.request_compiler is None: self.request_compiler = RequestCompiler(self) compiled = [] for request in requests: compiled.append(self.request_compiler.visit(request)) self.request_compiler.clear_path_cache() return compiled def __generate(self): """ Generate the test plan """ thread_group = JMX.get_thread_group(testname=self.executor.label) thread_group_ht = etree.Element("hashTree", type="tg") # NOTE: set realistic dns-cache and JVM prop by default? self.request_compiler = RequestCompiler(self) for element in self.compile_scenario(self.scenario): thread_group_ht.append(element) results_tree = self._get_results_tree() results_tree_ht = etree.Element("hashTree") self.append(self.TEST_PLAN_SEL, thread_group) self.append(self.TEST_PLAN_SEL, thread_group_ht) self.append(self.TEST_PLAN_SEL, results_tree) self.append(self.TEST_PLAN_SEL, results_tree_ht) def save(self, filename): """ Generate test plan and save :type filename: str """ # NOTE: bad design, as repetitive save will duplicate stuff self.__generate() super(JMeterScenarioBuilder, self).save(filename) def __gen_datasources(self, scenario): sources = scenario.get("data-sources", []) if not sources: return [] if not isinstance(sources, list): raise TaurusConfigError("data-sources '%s' is not a list" % sources) elements = [] for idx, source in enumerate(sources): source = ensure_is_dict(sources, idx, "path") source_path = source["path"] delimiter = source.get('delimiter', None) if has_variable_pattern(source_path): msg = "Path to CSV contains JMeter variable/function, can't check for file existence: %s" self.log.warning(msg, source_path) if not delimiter: delimiter = ',' self.log.warning("Can't detect CSV dialect, default delimiter will be '%s'", delimiter) else: modified_path = self.executor.engine.find_file(source_path) if not os.path.isfile(modified_path): raise TaurusConfigError("data-sources path not found: %s" % modified_path) if not delimiter: delimiter = self.__guess_delimiter(modified_path) source_path = get_full_path(modified_path) config = JMX._get_csv_config(source_path, delimiter, source.get("quoted", False), source.get("loop", True), source.get("variable-names", "")) elements.append(config) elements.append(etree.Element("hashTree")) return elements def __guess_delimiter(self, path): with open(path) as fhd: header = fhd.read(4096) # 4KB is enough for header try: delimiter = guess_csv_dialect(header).delimiter except BaseException as exc: self.log.debug(traceback.format_exc()) self.log.warning('CSV dialect detection failed (%s), default delimiter selected (",")', exc) delimiter = "," # default value return delimiter ``` #### File: bzt/modules/java.py ```python import json import os import shutil import subprocess import time from os import listdir from os.path import join from bzt import ToolError, TaurusConfigError from bzt.engine import HavingInstallableTools, Scenario from bzt.modules import SubprocessedExecutor from bzt.utils import get_full_path, shell_exec, TclLibrary, JavaVM, RequiredTool, MirrorsManager SELENIUM_DOWNLOAD_LINK = "http://selenium-release.storage.googleapis.com/3.6/" \ "selenium-server-standalone-3.6.0.jar" SELENIUM_VERSION = "3.6" # FIXME: unused, remove it JUNIT_DOWNLOAD_LINK = "http://search.maven.org/remotecontent?filepath=junit/junit/" \ "{version}/junit-{version}.jar" JUNIT_VERSION = "4.12" JUNIT_MIRRORS_SOURCE = "http://search.maven.org/solrsearch/select?q=g%3A%22junit%22%20AND%20a%3A%22" \ "junit%22%20AND%20v%3A%22{version}%22&rows=20&wt=json".format(version=JUNIT_VERSION) TESTNG_VERSION = "6.8.5" TESTNG_DOWNLOAD_LINK = "http://search.maven.org/remotecontent?filepath=org/testng/testng/" \ "{version}/testng-{version}.jar".format(version=TESTNG_VERSION) HAMCREST_DOWNLOAD_LINK = "http://search.maven.org/remotecontent?filepath=org/hamcrest/hamcrest-core" \ "/1.3/hamcrest-core-1.3.jar" JSON_JAR_DOWNLOAD_LINK = "http://search.maven.org/remotecontent?filepath=org/json/json/20160810/json-20160810.jar" class JavaTestRunner(SubprocessedExecutor, HavingInstallableTools): """ Allows to test java and jar files :type script: str """ def __init__(self): super(JavaTestRunner, self).__init__() self.working_dir = os.getcwd() self.target_java = "1.8" self.props_file = None self.base_class_path = [] def path_lambda(self, x): return os.path.abspath(self.engine.find_file(x)) def install_required_tools(self): self.hamcrest_path = self.path_lambda(self.settings.get("hamcrest-core", "~/.bzt/selenium-taurus/tools/junit/hamcrest-core.jar")) self.json_jar_path = self.path_lambda( self.settings.get("json-jar", "~/.bzt/selenium-taurus/tools/junit/json.jar")) self.selenium_server_jar_path = self.path_lambda(self.settings.get("selenium-server", "~/.bzt/selenium-taurus/selenium-server.jar")) def prepare(self): """ make jar. """ self.script = self.get_scenario().get(Scenario.SCRIPT, TaurusConfigError("Script not passed to runner %s" % self)) self.script = self.engine.find_file(self.script) self.install_required_tools() self.working_dir = self.engine.create_artifact(self.settings.get("working-dir", "classes"), "") self.target_java = str(self.settings.get("compile-target-java", self.target_java)) self.base_class_path.extend(self.settings.get("additional-classpath", [])) self.base_class_path.extend(self.get_scenario().get("additional-classpath", [])) self.base_class_path.extend([self.hamcrest_path, self.json_jar_path, self.selenium_server_jar_path]) self.props_file = self.engine.create_artifact("runner", ".properties") if not os.path.exists(self.working_dir): os.makedirs(self.working_dir) self.reporting_setup(suffix=".ldjson") def resource_files(self): resources = super(JavaTestRunner, self).resource_files() resources.extend(self.get_scenario().get("additional-classpath", [])) global_additional_classpath = self.settings.get("additional-classpath", []) execution_files = self.execution.get('files', []) # later we need to fix path for sending into cloud execution_files.extend(global_additional_classpath) return resources def _collect_script_files(self, extensions): file_list = [] if self.script is not None and os.path.isdir(self.script): for root, _, files in os.walk(self.script): for test_file in files: if os.path.splitext(test_file)[1].lower() in extensions: path = get_full_path(join(root, test_file)) file_list.append(path) else: if os.path.splitext(self.script)[1].lower() in extensions: file_list.append(get_full_path(self.script)) return file_list def compile_scripts(self): """ Compile .java files """ self.log.debug("Compiling .java files started") jar_path = join(self.engine.artifacts_dir, self.working_dir, self.settings.get("jar-name", "compiled.jar")) if os.path.exists(jar_path): self.log.debug(".java files are already compiled, skipping") return compile_cl = ["javac", "-source", self.target_java, "-target", self.target_java, "-d", self.working_dir, ] compile_cl.extend(["-cp", os.pathsep.join(self.base_class_path)]) compile_cl.extend(self._collect_script_files({".java"})) with open(self.engine.create_artifact("javac", ".out"), 'ab') as javac_out: with open(self.engine.create_artifact("javac", ".err"), 'ab') as javac_err: self.log.debug("running javac: %s", compile_cl) self.process = shell_exec(compile_cl, stdout=javac_out, stderr=javac_err) ret_code = self.process.poll() while ret_code is None: self.log.debug("Compiling .java files...") time.sleep(1) ret_code = self.process.poll() if ret_code != 0: self.log.debug("javac exit code: %s", ret_code) with open(javac_err.name) as err_file: out = err_file.read() raise ToolError("Javac exited with code: %s\n %s" % (ret_code, out.strip())) self.log.info("Compiling .java files completed") self.make_jar() def make_jar(self): """ move all .class files to compiled.jar """ self.log.debug("Making .jar started") with open(join(self.engine.artifacts_dir, "jar.out"), 'ab') as jar_out: with open(join(self.engine.artifacts_dir, "jar.err"), 'ab') as jar_err: class_files = [java_file for java_file in listdir(self.working_dir) if java_file.endswith(".class")] jar_name = self.settings.get("jar-name", "compiled.jar") if class_files: compile_jar_cl = ["jar", "-cf", jar_name] compile_jar_cl.extend(class_files) else: compile_jar_cl = ["jar", "-cf", jar_name, "."] self.process = shell_exec(compile_jar_cl, cwd=self.working_dir, stdout=jar_out, stderr=jar_err) ret_code = self.process.poll() while ret_code is None: self.log.debug("Making jar file...") time.sleep(1) ret_code = self.process.poll() if ret_code != 0: with open(jar_err.name) as err_file: out = err_file.read() raise ToolError("Jar exited with code %s\n%s" % (ret_code, out.strip())) self.log.info("Making .jar file completed") class JUnitTester(JavaTestRunner, HavingInstallableTools): """ Allows to test java and jar files """ def __init__(self): super(JUnitTester, self).__init__() self.junit_path = None self.junit_listener_path = None def prepare(self): super(JUnitTester, self).prepare() self.install_required_tools() self.base_class_path += [self.junit_path, self.junit_listener_path] self.base_class_path = [self.path_lambda(x) for x in self.base_class_path] if any(self._collect_script_files({'.java'})): self.compile_scripts() def install_required_tools(self): super(JUnitTester, self).install_required_tools() self.junit_path = self.path_lambda(self.settings.get("path", "~/.bzt/selenium-taurus/tools/junit/junit.jar")) self.junit_listener_path = join(get_full_path(__file__, step_up=2), "resources", "taurus-junit-1.0.jar") tools = [] # only check javac if we need to compile. if we have JAR as script - we don't need javac if self.script and any(self._collect_script_files({'.java'})): tools.append(JavaC(self.log)) tools.append(TclLibrary(self.log)) tools.append(JavaVM(self.log)) link = SELENIUM_DOWNLOAD_LINK.format(version=SELENIUM_VERSION) tools.append(SeleniumServerJar(self.selenium_server_jar_path, link, self.log)) tools.append(JUnitJar(self.junit_path, self.log, JUNIT_VERSION)) tools.append(HamcrestJar(self.hamcrest_path, HAMCREST_DOWNLOAD_LINK)) tools.append(JsonJar(self.json_jar_path, JSON_JAR_DOWNLOAD_LINK)) tools.append(JUnitListenerJar(self.junit_listener_path, "")) self._check_tools(tools) def startup(self): # java -cp junit.jar:selenium-test-small.jar: # selenium-2.46.0/selenium-java-2.46.0.jar:./../selenium-server.jar # taurusjunit.CustomRunner runner.properties jar_list = [join(self.working_dir, jar) for jar in listdir(self.working_dir) if jar.endswith(".jar")] jar_list.extend(self._collect_script_files({".jar"})) self.base_class_path.extend(jar_list) with open(self.props_file, 'wt') as props: props.write("report_file=%s\n" % self.report_file) load = self.get_load() if load.iterations: props.write("iterations=%s\n" % load.iterations) if load.hold: props.write("hold_for=%s\n" % load.hold) for index, item in enumerate(jar_list): props.write("target_%s=%s\n" % (index, item.replace(os.path.sep, '/'))) class_path = os.pathsep.join(self.base_class_path) junit_cmd_line = ["java", "-cp", class_path, "-Djna.nosys=true", "taurusjunit.CustomRunner", self.props_file] self._start_subprocess(junit_cmd_line) class TestNGTester(JavaTestRunner, HavingInstallableTools): """ Allows to test java and jar files with TestNG """ __test__ = False # Hello, nosetests discovery mechanism def __init__(self): super(TestNGTester, self).__init__() self.testng_path = None self.testng_plugin_path = None def prepare(self): super(TestNGTester, self).prepare() self.install_required_tools() self.base_class_path += [self.testng_path, self.testng_plugin_path] if any(self._collect_script_files({'.java'})): self.compile_scripts() def detected_testng_xml(self): script_path = self.get_script_path() if script_path and self.settings.get("autodetect-xml", True): script_dir = get_full_path(script_path, step_up=1) testng_xml = os.path.join(script_dir, 'testng.xml') if os.path.exists(testng_xml): return testng_xml return None def resource_files(self): resources = super(TestNGTester, self).resource_files() testng_xml = self.execution.get('testng-xml', None) if not testng_xml: testng_xml = self.detected_testng_xml() if testng_xml: self.log.info("Detected testng.xml file at %s", testng_xml) self.execution['testng-xml'] = testng_xml if testng_xml: resources.append(testng_xml) return resources def install_required_tools(self): super(TestNGTester, self).install_required_tools() self.testng_path = self.path_lambda(self.settings.get("path", "~/.bzt/selenium-taurus/tools/testng/testng.jar")) self.testng_plugin_path = join(get_full_path(__file__, step_up=2), "resources", "taurus-testng-1.0.jar") tools = [] if self.script and any(self._collect_script_files({'.java'})): tools.append(JavaC(self.log)) tools.append(TclLibrary(self.log)) tools.append(JavaVM(self.log)) link = SELENIUM_DOWNLOAD_LINK.format(version=SELENIUM_VERSION) tools.append(SeleniumServerJar(self.selenium_server_jar_path, link, self.log)) tools.append(TestNGJar(self.testng_path, TESTNG_DOWNLOAD_LINK)) tools.append(HamcrestJar(self.hamcrest_path, HAMCREST_DOWNLOAD_LINK)) tools.append(JsonJar(self.json_jar_path, JSON_JAR_DOWNLOAD_LINK)) tools.append(TestNGPluginJar(self.testng_plugin_path, "")) self._check_tools(tools) def startup(self): # java -classpath # testng.jar:selenium-server.jar:taurus-testng-1.0.jar:json.jar:compiled.jar # taurustestng.TestNGRunner runner.properties jar_list = [join(self.working_dir, jar) for jar in listdir(self.working_dir) if jar.endswith(".jar")] jar_list.extend(self._collect_script_files({".jar"})) self.base_class_path.extend(jar_list) with open(self.props_file, 'wt') as props: props.write("report_file=%s\n" % self.report_file) load = self.get_load() if load.iterations: props.write("iterations=%s\n" % load.iterations) if load.hold: props.write("hold_for=%s\n" % load.hold) for index, item in enumerate(jar_list): props.write("target_%s=%s\n" % (index, item.replace(os.path.sep, '/'))) testng_xml = self.execution.get('testng-xml', None) or self.detected_testng_xml() if testng_xml: props.write('testng_config=%s\n' % testng_xml.replace(os.path.sep, '/')) cmdline = ["java", "-cp", os.pathsep.join(self.base_class_path), "taurustestng.TestNGRunner", self.props_file] self._start_subprocess(cmdline) class TestNGJar(RequiredTool): def __init__(self, tool_path, download_link): super(TestNGJar, self).__init__("TestNG", tool_path, download_link) class HamcrestJar(RequiredTool): def __init__(self, tool_path, download_link): super(HamcrestJar, self).__init__("HamcrestJar", tool_path, download_link) class JsonJar(RequiredTool): def __init__(self, tool_path, download_link): super(JsonJar, self).__init__("JsonJar", tool_path, download_link) class JavaC(RequiredTool): def __init__(self, parent_logger, tool_path='javac', download_link=''): super(JavaC, self).__init__("JavaC", tool_path, download_link) self.log = parent_logger.getChild(self.__class__.__name__) def check_if_installed(self): try: output = subprocess.check_output([self.tool_path, '-version'], stderr=subprocess.STDOUT) self.log.debug("%s output: %s", self.tool_name, output) return True except (subprocess.CalledProcessError, OSError): return False def install(self): raise ToolError("The %s is not operable or not available. Consider installing it" % self.tool_name) class SeleniumServerJar(RequiredTool): def __init__(self, tool_path, download_link, parent_logger): super(SeleniumServerJar, self).__init__("Selenium server", tool_path, download_link) self.log = parent_logger.getChild(self.__class__.__name__) def check_if_installed(self): self.log.debug("%s path: %s", self.tool_name, self.tool_path) selenium_launch_command = ["java", "-jar", self.tool_path, "-help"] selenium_subproc = shell_exec(selenium_launch_command, stderr=subprocess.STDOUT) output = selenium_subproc.communicate() self.log.debug("%s output: %s", self.tool_name, output) if selenium_subproc.returncode == 0: self.already_installed = True return True else: return False class JUnitJar(RequiredTool): def __init__(self, tool_path, parent_logger, junit_version): super(JUnitJar, self).__init__("JUnit", tool_path) self.log = parent_logger.getChild(self.__class__.__name__) self.version = junit_version self.mirror_manager = JUnitMirrorsManager(self.log, self.version) def install(self): dest = get_full_path(self.tool_path, step_up=1) self.log.info("Will install %s into %s", self.tool_name, dest) junit_dist = self._download(suffix=".jar") if not os.path.exists(dest): os.makedirs(dest) shutil.move(junit_dist, self.tool_path) self.log.info("Installed JUnit successfully") if not self.check_if_installed(): raise ToolError("Unable to run %s after installation!" % self.tool_name) class JUnitListenerJar(RequiredTool): def __init__(self, tool_path, download_link): super(JUnitListenerJar, self).__init__("JUnitListener", tool_path, download_link) def install(self): raise ToolError("Automatic installation of JUnitListener isn't implemented") class TestNGPluginJar(RequiredTool): def __init__(self, tool_path, download_link): super(TestNGPluginJar, self).__init__("TestNGPlugin", tool_path, download_link) def install(self): raise ToolError("TestNG plugin should be bundled with Taurus distribution") class JUnitMirrorsManager(MirrorsManager): def __init__(self, parent_logger, junit_version): self.junit_version = junit_version super(JUnitMirrorsManager, self).__init__(JUNIT_MIRRORS_SOURCE, parent_logger) def _parse_mirrors(self): links = [] if self.page_source is not None: self.log.debug('Parsing mirrors...') try: resp = json.loads(self.page_source) objects = resp.get("response", {}).get("docs", []) if objects: obj = objects[0] group = obj.get("g") artifact = obj.get("a") version = obj.get("v") ext = obj.get("p") link_template = "http://search.maven.org/remotecontent?filepath={group}/{artifact}/" \ "{version}/{artifact}-{version}.{ext}" link = link_template.format(group=group, artifact=artifact, version=version, ext=ext) links.append(link) except BaseException as exc: self.log.error("Error while parsing mirrors %s", exc) default_link = JUNIT_DOWNLOAD_LINK.format(version=self.junit_version) if default_link not in links: links.append(default_link) self.log.debug('Total mirrors: %d', len(links)) return links ``` #### File: bzt/six/py2.py ```python import cookielib import types import traceback import urllib import urllib2 import urlparse import operator import ConfigParser import UserDict import StringIO import BaseHTTPServer import SocketServer as socketserver string_types = basestring, integer_types = (int, long) numeric_types = (int, long, float, complex) class_types = (type, types.ClassType) text_type = unicode binary_type = str file_type = file configparser = ConfigParser UserDict = UserDict.UserDict BytesIO = StringIO.StringIO StringIO = StringIO.StringIO cookielib=cookielib parse = urlparse request = urllib urlopen = urllib2.urlopen urlencode = urllib.urlencode build_opener = urllib2.build_opener install_opener = urllib2.install_opener ProxyHandler = urllib2.ProxyHandler Request = urllib2.Request HTTPError = urllib2.HTTPError URLError = urllib2.URLError BaseHTTPServer = BaseHTTPServer socketserver = socketserver SimpleHTTPRequestHandler = BaseHTTPServer.BaseHTTPRequestHandler viewvalues = operator.methodcaller("viewvalues") r_input = raw_input def iteritems(dictionary, **kw): return iter(dictionary.iteritems(**kw)) def b(string): return string def u(string): if not isinstance(string, text_type): return unicode(string.replace('\\', '\\\\'), "unicode_escape") else: return string def get_stacktrace(exc): return traceback.format_exc(exc).rstrip() def reraise(exc_info): raise exc_info[0], exc_info[1], exc_info[2] def stream_decode(string): return string def unicode_decode(string): if not isinstance(string, text_type): return string.decode('utf-8') else: return string def communicate(proc): return proc.communicate() ``` #### File: modules/jmeter/__init__.py ```python import logging from tests.mocks import EngineEmul from bzt.modules.jmeter import JMeter, JMeterExecutor from bzt.utils import get_full_path class MockJMeter(JMeter): def __init__(self, has_ctg=None, reaction=None): jmeter_version = JMeterExecutor.JMETER_VER jmeter_path = "~/.bzt/jmeter-taurus/{version}/" jmeter_path = get_full_path(jmeter_path) super(MockJMeter, self).__init__(tool_path=jmeter_path, parent_logger=logging.getLogger(''), jmeter_version=jmeter_version, jmeter_download_link=None, plugins=[], proxy={}) self.has_ctg = has_ctg self.reaction = reaction if reaction else [] def ctg_plugin_installed(self): return self.has_ctg def _pmgr_call(self, params): # replaces real pmgr call reaction = self.reaction.pop(0) if 'raise' in reaction: raise reaction['raise'] return reaction['output'] class MockJMeterExecutor(JMeterExecutor): def __init__(self, load=None, settings=None, has_ctg=None): super(MockJMeterExecutor, self).__init__() self.mock_install = True self.version = None if load is None: load = {} if settings is None: settings = {} if has_ctg is None: has_ctg = True self.engine = EngineEmul() self.env = self.engine.env self.execution.merge(load) self.settings.merge({"detect-plugins": False}) self.settings.merge(settings) self.tool = MockJMeter(has_ctg) def install_required_tools(self): if self.mock_install: self.version = self.settings.get('version') self.tool = MockJMeter() else: super(MockJMeterExecutor, self).install_required_tools() ``` #### File: modules/selenium/test_python.py ```python import json import os import time from bzt import TaurusConfigError from bzt.engine import ScenarioExecutor from bzt.modules.functional import FuncSamplesReader, LoadSamplesReader, FunctionalAggregator from bzt.modules.python import ApiritifNoseExecutor, PyTestExecutor, RobotExecutor, ApiritifLoadReader, \ ApiritifFuncReader from tests import BZTestCase, RESOURCES_DIR from tests.mocks import EngineEmul from tests.modules.selenium import SeleniumTestCase class TestSeleniumNoseRunner(SeleniumTestCase): def test_selenium_prepare_python_single(self): """ Check if script exists in working dir :return: """ self.obj.execution.merge({"scenario": { "script": RESOURCES_DIR + "selenium/python/test_blazemeter_fail.py" }}) self.obj.prepare() def test_selenium_prepare_python_folder(self): """ Check if scripts exist in working dir :return: """ self.obj.execution.merge({"scenario": {"script": RESOURCES_DIR + "selenium/python/"}}) self.obj.prepare() def test_selenium_startup_shutdown_python_single(self): """ run tests from .py file :return: """ self.configure({ 'execution': { "iterations": 1, 'scenario': {'script': RESOURCES_DIR + 'selenium/python/'}, 'executor': 'selenium' }, 'reporting': [{'module': 'junit-xml'}] }) self.obj.execution.merge({"scenario": { "script": RESOURCES_DIR + "selenium/python/test_blazemeter_fail.py" }}) self.obj.prepare() self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) self.obj.shutdown() self.assertTrue(os.path.exists(os.path.join(self.obj.engine.artifacts_dir, "apiritif-0.csv"))) def test_selenium_startup_shutdown_python_folder(self): """ run tests from .py files :return: """ self.configure({ 'execution': { 'iterations': 1, 'scenario': {'script': RESOURCES_DIR + 'selenium/python/'}, 'executor': 'selenium' }, 'reporting': [{'module': 'junit-xml'}] }) self.obj.prepare() self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) self.obj.shutdown() self.assertTrue(os.path.exists(os.path.join(self.obj.engine.artifacts_dir, "apiritif-0.csv"))) def test_runner_fail_no_test_found(self): """ Check that Python Nose runner fails if no tests were found :return: """ self.configure({ ScenarioExecutor.EXEC: { "iterations": 1, "executor": "selenium", "scenario": {"script": RESOURCES_DIR + "selenium/invalid/dummy.py"} } }) self.obj.prepare() self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) self.obj.shutdown() diagnostics = "\n".join(self.obj.get_error_diagnostics()) self.assertIn("Nothing to test.", diagnostics) def test_resource_files_collection_remote_nose(self): self.obj.execution.merge({"scenario": {"script": RESOURCES_DIR + "selenium/python/"}}) self.assertEqual(len(self.obj.resource_files()), 1) def test_setup_exception(self): """ Do not crash when test's setUp/setUpClass fails :return: """ self.obj.execution.merge({"scenario": { "script": RESOURCES_DIR + "selenium/python/test_setup_exception.py" }}) self.obj.engine.aggregator = FunctionalAggregator() self.obj.prepare() self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) diagnostics = "\n".join(self.obj.get_error_diagnostics()) self.assertIn("Nothing to test", diagnostics) def test_long_iterations_value(self): self.obj.execution.merge({ "iterations": 2 ** 64, "scenario": { "requests": [ "http://blazedemo.com/", ], } }) self.obj.prepare() try: self.obj.startup() for _ in range(3): self.assertFalse(self.obj.check()) time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() class TestNoseRunner(BZTestCase): def setUp(self): super(TestNoseRunner, self).setUp() self.obj = ApiritifNoseExecutor() self.obj.engine = EngineEmul() self.obj.env = self.obj.engine.env def configure(self, config): self.obj.engine.config.merge(config) self.obj.execution = self.obj.engine.config["execution"][0] def test_full_single_script(self): self.obj.engine.check_interval = 0.1 self.obj.execution.merge({ "iterations": 1, "ramp-up": "10s", "hold-for": "10s", "steps": 5, "scenario": { "script": RESOURCES_DIR + "apiritif/test_codegen.py"}}) self.obj.prepare() self.obj.get_widget() try: self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() self.obj.post_process() self.assertFalse(self.obj.has_results()) self.assertNotEquals(self.obj.process, None) def test_apiritif_generated_requests(self): self.configure({ "execution": [{ "test-mode": "apiritif", "iterations": 1, "scenario": { "default-address": "http://blazedemo.com", "requests": [ "/", "/reserve.php"]}}]}) self.obj.prepare() self.assertTrue(os.path.exists(os.path.join(self.obj.engine.artifacts_dir, "test_requests.py"))) try: self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() self.obj.post_process() self.assertNotEquals(self.obj.process, None) def test_apiritif_transactions(self): self.configure({ "execution": [{ "test-mode": "apiritif", "iterations": 1, "scenario": { "script": RESOURCES_DIR + "apiritif/test_transactions.py" } }] }) self.obj.prepare() try: self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() self.obj.post_process() self.assertNotEquals(self.obj.process, None) def test_report_reading(self): reader = FuncSamplesReader(RESOURCES_DIR + "apiritif/transactions.ldjson", self.obj.engine, self.obj.log) items = list(reader.read(last_pass=True)) self.assertEqual(len(items), 6) self.assertEqual(items[0].test_case, "test_1_single_request") self.assertEqual(items[1].test_case, "test_2_multiple_requests") self.assertEqual(items[2].test_case, "Transaction") self.assertEqual(items[3].test_case, "Transaction") self.assertEqual(items[4].test_case, "Transaction 1") self.assertEqual(items[5].test_case, "Transaction 2") def test_report_transactions_as_failed(self): self.configure({ "execution": [{ "test-mode": "apiritif", "iterations": 1, "scenario": { "default-address": "http://httpbin.org", "requests": [{ "label": "failure by 404", "url": "/status/404", }] } }] }) self.obj.engine.aggregator = FunctionalAggregator() self.obj.prepare() try: self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() self.obj.post_process() self.assertNotEquals(self.obj.process, None) reader = LoadSamplesReader(os.path.join(self.obj.engine.artifacts_dir, "apiritif-0.ldjson"), self.obj.log) samples = list(reader._read(last_pass=True)) self.assertEqual(len(samples), 1) tstmp, label, concur, rtm, cnn, ltc, rcd, error, trname, byte_count = samples[0] self.assertIsNotNone(error) def test_status_skipped(self): self.configure({ "execution": [{ "iterations": 1, "scenario": { "script": RESOURCES_DIR + "functional/test_all.py" } }] }) self.obj.engine.aggregator = FunctionalAggregator() self.obj.prepare() try: self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() self.obj.post_process() reader = FuncSamplesReader(os.path.join(self.obj.engine.artifacts_dir, "apiritif-0.ldjson"), self.obj.engine, self.obj.log) samples = list(reader.read(last_pass=True)) self.assertEqual(len(samples), 4) self.assertIsNotNone(samples[-1].status) class TestSeleniumScriptBuilder(SeleniumTestCase): def test_build_script(self): self.configure({ "execution": [{ "executor": "selenium", "hold-for": "4m", "ramp-up": "3m", "scenario": "loc_sc"}], "scenarios": { "loc_sc": { "default-address": "http://blazedemo.com", "timeout": "3.5s", "requests": [{ "url": "/", "assert": [{ "contains": ['contained_text'], "not": True }], "actions": [ {"waitByName('toPort')": "visible"}, {"keysByName(\"toPort\")": "B"}, "clickByXPath(//div[3]/form/select[1]//option[3])", "clickByXPath(//div[3]/form/select[2]//option[6])", "clickByXPath(//input[@type='submit'])", "pauseFor(3s)", "clearCookies()", "clickByLinkText(destination of the week! The Beach!)" ], }, { "label": "empty"}]}}}) self.obj.prepare() with open(self.obj.script) as generated: gen_contents = generated.readlines() with open(RESOURCES_DIR + "selenium/generated_from_requests.py") as sample: sample_contents = sample.readlines() # strip line terminator and exclude specific build path gen_contents = [line.rstrip() for line in gen_contents if 'webdriver' not in line] sample_contents = [line.rstrip() for line in sample_contents if 'webdriver' not in line] self.assertEqual(gen_contents, sample_contents) class TestApiritifScriptGenerator(BZTestCase): def setUp(self): super(TestApiritifScriptGenerator, self).setUp() self.obj = ApiritifNoseExecutor() self.obj.engine = EngineEmul() def configure(self, config): self.obj.engine.config.merge(config) self.obj.execution = self.obj.engine.config["execution"][0] def test_keepalive_default(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "requests": [ "/", ] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("target.keep_alive(True)", test_script) def test_keepalive(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "keepalive": False, "requests": [ "/", ] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("target.keep_alive(False)", test_script) def test_timeout_default(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "requests": [ "/", ] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertNotIn("timeout=30.0", test_script) def test_timeout(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "timeout": "10s", "default-address": "http://blazedemo.com", "requests": [ "/?tag=1", { "url": "/?tag=2", "timeout": "2s", } ] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("target.timeout(10.0)", test_script) self.assertNotIn("get('/?tag=1', timeout=10.0", test_script) self.assertIn("get('/?tag=2', timeout=2.0", test_script) def test_think_time(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "requests": [ { "url": "/?tag=2", "think-time": "1s500ms", } ] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("time.sleep(1.5)", test_script) def test_methods(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "requests": [ {"url": "/?tag=get", "method": "GET"}, {"url": "/?tag=post", "method": "POST"}, {"url": "/?tag=put", "method": "PUT"}, {"url": "/?tag=patch", "method": "PATCH"}, {"url": "/?tag=head", "method": "HEAD"}, {"url": "/?tag=delete", "method": "DELETE"}, ] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("get('/?tag=get'", test_script) self.assertIn("post('/?tag=post'", test_script) self.assertIn("put('/?tag=put'", test_script) self.assertIn("patch('/?tag=patch'", test_script) self.assertIn("head('/?tag=head'", test_script) self.assertIn("delete('/?tag=delete'", test_script) def test_default_address_path_prefix(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "https://a.blazemeter.com", "base-path": "/api/latest", "requests": [ "/user", ] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("target('https://a.blazemeter.com')", test_script) self.assertIn("target.base_path('/api/latest')", test_script) def test_headers(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "headers": {"X-Foo": "foo"}, "requests": [{ "url": "/", "headers": {"X-Bar": "bar"} }] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("'X-Foo': 'foo'", test_script) self.assertIn("'X-Bar': 'bar'", test_script) def test_follow_redirects_default(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "requests": [{ "url": "/", }] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("target.allow_redirects(True)", test_script) self.assertNotIn("allow_redirects=True", test_script) def test_follow_redirects(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "requests": [{ "url": "/", "follow-redirects": False, }] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("allow_redirects=False", test_script) def test_body_params(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "requests": [{ "url": "/", "body": { "foo": "bar", }, }] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("params={'foo': 'bar'}", test_script) def test_body_json(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "requests": [{ "url": "/", "headers": { "Content-Type": "application/json", }, "body": { "foo": "bar", }, }] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("json={'foo': 'bar'}", test_script) def test_body_string(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "requests": [{ "url": "/", "body": "MY PERFECT BODY" }] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("data='MY PERFECT BODY'", test_script) def test_body_unknown(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "requests": [{ "url": "/", "body": 123 }] } }] }) self.assertRaises(TaurusConfigError, self.obj.prepare) def test_plain_assertions(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "requests": [{ "url": "/", "assert": [ "Welcome", "Simple Travel Agency" ] }] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("response.assert_regex_in_body('Welcome')", test_script) self.assertIn("response.assert_regex_in_body('Simple Travel Agency')", test_script) def test_plain_assertion_kinds(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "requests": [{ "url": "/", "assert": [ {"contains": ["1"], "regexp": False, "not": False}, {"contains": ["2"], "regexp": False, "not": True}, {"contains": ["3"], "regexp": True, "not": False}, {"contains": ["4"], "regexp": True, "not": True}, {"contains": ["5"], "regexp": False, "not": False, "subject": "headers"}, {"contains": ["6"], "regexp": False, "not": True, "subject": "headers"}, {"contains": ["7"], "regexp": True, "not": False, "subject": "headers"}, {"contains": ["8"], "regexp": True, "not": True, "subject": "headers"}, {"contains": ["8"], "regexp": True, "not": True, "subject": "headers"}, {"contains": ["9"], "not": False, "subject": "http-code"}, {"contains": ["10"], "not": True, "subject": "http-code"}, ] }] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("assert_in_body('1')", test_script) self.assertIn("assert_not_in_body('2')", test_script) self.assertIn("assert_regex_in_body('3')", test_script) self.assertIn("assert_regex_not_in_body('4')", test_script) self.assertIn("assert_in_headers('5')", test_script) self.assertIn("assert_not_in_headers('6')", test_script) self.assertIn("assert_regex_in_headers('7')", test_script) self.assertIn("assert_regex_not_in_headers('8')", test_script) self.assertIn("assert_status_code('9')", test_script) self.assertIn("assert_not_status_code('10')", test_script) def test_jsonpath_assertions(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "https://api.github.com", "requests": [{ "url": "/", "assert-jsonpath": [ "$.foo.bar" ] }] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("assert_jsonpath('$.foo.bar', expected_value=None)", test_script) def test_jsonpath_assertions_kinds(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "https://api.github.com", "requests": [{ "url": "/", "assert-jsonpath": [ {"jsonpath": "$.1", "invert": False}, {"jsonpath": "$.2", "invert": True}, {"jsonpath": "$.3", "expected-value": "value"}, ] }] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("assert_jsonpath('$.1', expected_value=None)", test_script) self.assertIn("assert_not_jsonpath('$.2', expected_value=None)", test_script) self.assertIn("assert_jsonpath('$.3', expected_value='value')", test_script) def test_xpath_assertions(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "https://api.github.com", "requests": [{ "url": "/", "assert-xpath": [ "//head/title" ] }] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("assert_xpath('//head/title', parser_type='html', validate=False)", test_script) def test_xpath_assertions_kinds(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "https://api.github.com", "requests": [{ "url": "/", "assert-xpath": [ {"xpath": "//1", "invert": False}, {"xpath": "//2", "invert": True}, {"xpath": "//3", "validate-xml": True}, {"xpath": "//4", "validate-xml": False, "use-tolerant-parser": False}, ] }] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.assertIn("assert_xpath('//1', parser_type='html', validate=False)", test_script) self.assertIn("assert_not_xpath('//2', parser_type='html', validate=False)", test_script) self.assertIn("assert_xpath('//3', parser_type='html', validate=True)", test_script) self.assertIn("assert_xpath('//4', parser_type='xml', validate=False)", test_script) def test_complex_codegen(self): """ This test serves code review purposes, to make changes more visible """ self.obj.engine.config.load([RESOURCES_DIR + 'apiritif/test_codegen.yml']) self.configure(self.obj.engine.config['execution'][0]) self.obj.settings['verbose'] = True self.obj.prepare() exp_file = RESOURCES_DIR + 'apiritif/test_codegen.py' # import shutil; shutil.copy2(self.obj.script, exp_file) # keep this comment to ease updates self.assertFilesEqual(exp_file, self.obj.script) def test_jmeter_functions_time(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "requests": [ "/?time=${__time()}", "/?time=${__time(MM/dd/yy)}", ] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.obj.log.info(test_script) self.assertIn("'/?time={}'.format(apiritif.format_date())", test_script) self.assertIn("'/?time={}'.format(apiritif.format_date('MM/dd/yy'))", test_script) def test_jmeter_functions_random(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "requests": [ "/?random=${__Random(1, 10)}", ] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.obj.log.info(test_script) self.assertIn("'/?random={}'.format(apiritif.random_uniform(1, 10))", test_script) def test_jmeter_functions_random_string(self): self.configure({ "execution": [{ "test-mode": "apiritif", "scenario": { "default-address": "http://blazedemo.com", "requests": [ "/?rs=${__RandomString(3)}", "/?rs=${__RandomString(4,abcdef)}", ] } }] }) self.obj.prepare() with open(self.obj.script) as fds: test_script = fds.read() self.obj.log.info(test_script) self.assertIn("'/?rs={}'.format(apiritif.random_string(3))", test_script) self.assertIn("'/?rs={}'.format(apiritif.random_string(4, 'abcdef'))", test_script) def test_load_reader(self): reader = ApiritifLoadReader(self.obj.log) items = list(reader._read()) self.assertEqual(len(items), 0) reader.register_file(RESOURCES_DIR + "jmeter/jtl/tranctl.jtl") items = list(reader._read()) self.assertEqual(len(items), 2) reader.register_file(RESOURCES_DIR + "jmeter/jtl/tranctl.jtl") reader.register_file(RESOURCES_DIR + "jmeter/jtl/tranctl.jtl") items = list(reader._read()) self.assertEqual(len(items), 4) def test_func_reader(self): reader = ApiritifFuncReader(self.obj.engine, self.obj.log) items = list(reader.read()) self.assertEqual(len(items), 0) reader.register_file(RESOURCES_DIR + "apiritif/transactions.ldjson") reader.register_file(RESOURCES_DIR + "apiritif/transactions.ldjson") items = list(reader.read()) self.assertEqual(len(items), 12) class TestPyTestExecutor(BZTestCase): def setUp(self): super(TestPyTestExecutor, self).setUp() self.obj = PyTestExecutor() self.obj.engine = EngineEmul() self.obj.env = self.obj.engine.env def configure(self, config): self.obj.engine.config.merge(config) self.obj.execution = self.obj.engine.config["execution"][0] def test_full_single_script(self): self.obj.execution.merge({ "iterations": 1, "scenario": { "script": RESOURCES_DIR + "selenium/pytest/test_statuses.py" } }) self.obj.prepare() try: self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() self.obj.post_process() self.assertFalse(self.obj.has_results()) self.assertNotEquals(self.obj.process, None) def test_statuses(self): self.obj.execution.merge({ "scenario": { "script": RESOURCES_DIR + "selenium/pytest/test_statuses.py" } }) self.obj.prepare() try: self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() self.obj.post_process() with open(self.obj.report_file) as fds: report = [json.loads(line) for line in fds.readlines() if line] self.assertEqual(4, len(report)) self.assertEqual(["PASSED", "FAILED", "FAILED", "SKIPPED"], [item["status"] for item in report]) def test_iterations(self): self.obj.execution.merge({ "iterations": 10, "scenario": { "script": RESOURCES_DIR + "selenium/pytest/test_single.py" } }) self.obj.prepare() try: self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() self.obj.post_process() with open(self.obj.report_file) as fds: report = [json.loads(line) for line in fds.readlines() if line] self.assertEqual(10, len(report)) self.assertTrue(all(item["status"] == "PASSED" for item in report)) def test_hold(self): self.obj.execution.merge({ "hold-for": "3s", "scenario": { "script": RESOURCES_DIR + "selenium/pytest/test_single.py" } }) self.obj.prepare() try: start_time = time.time() self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() end_time = time.time() self.obj.post_process() duration = end_time - start_time self.assertGreaterEqual(duration, 3.0) def test_blazedemo(self): self.obj.engine.check_interval = 0.1 self.obj.execution.merge({ "scenario": { "script": RESOURCES_DIR + "selenium/pytest/test_blazedemo.py" } }) self.obj.prepare() try: self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() self.obj.post_process() with open(self.obj.report_file) as fds: report = [json.loads(line) for line in fds.readlines() if line] self.assertEqual(2, len(report)) def test_package(self): self.obj.engine.check_interval = 0.1 self.obj.execution.merge({ "scenario": { "script": RESOURCES_DIR + "selenium/pytest/" } }) self.obj.prepare() try: self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() self.obj.post_process() with open(self.obj.report_file) as fds: report = [json.loads(line) for line in fds.readlines() if line] self.assertEqual(7, len(report)) def test_additional_args(self): ADDITIONAL_ARGS = "--foo --bar" self.obj.execution.merge({ "scenario": { "additional-args": ADDITIONAL_ARGS, "script": RESOURCES_DIR + "selenium/pytest/test_single.py" } }) self.obj.runner_path = RESOURCES_DIR + "selenium/pytest/bin/runner.py" self.obj.prepare() try: self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() with open(self.obj.stdout_file) as fds: stdout = fds.read() self.assertIn(ADDITIONAL_ARGS, stdout) class TestRobotExecutor(BZTestCase): def setUp(self): super(TestRobotExecutor, self).setUp() self.obj = RobotExecutor() self.obj.engine = EngineEmul() self.obj.env = self.obj.engine.env def configure(self, config): self.obj.engine.config.merge(config) self.obj.execution = self.obj.engine.config["execution"][0] def test_full_single_script(self): self.configure({ "execution": [{ "scenario": { "script": RESOURCES_DIR + "selenium/robot/simple/test.robot" } }] }) self.obj.prepare() try: self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() self.obj.post_process() self.assertFalse(self.obj.has_results()) self.assertNotEquals(self.obj.process, None) lines = open(self.obj.report_file).readlines() self.assertEqual(5, len(lines)) def test_hold(self): self.configure({ "execution": [{ "hold-for": "5s", "scenario": { "script": RESOURCES_DIR + "selenium/robot/simple/test.robot" } }] }) self.obj.prepare() try: start_time = time.time() self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() self.obj.post_process() self.assertTrue(os.path.exists(self.obj.report_file)) duration = time.time() - start_time self.assertGreater(duration, 5) def test_iterations(self): self.configure({ "execution": [{ "iterations": 3, "scenario": { "script": RESOURCES_DIR + "selenium/robot/simple/test.robot" } }] }) self.obj.prepare() try: self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() self.obj.post_process() self.assertFalse(self.obj.has_results()) self.assertNotEquals(self.obj.process, None) lines = open(self.obj.report_file).readlines() self.assertEqual(3 * 5, len(lines)) def test_variables(self): self.configure({ "execution": [{ "iterations": 1, "scenario": { "variables": { "USERNAME": "janedoe", }, "script": RESOURCES_DIR + "selenium/robot/simple/test_novar.robot", } }] }) self.obj.prepare() try: self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() self.obj.post_process() self.assertFalse(self.obj.has_results()) self.assertNotEquals(self.obj.process, None) samples = [json.loads(line) for line in open(self.obj.report_file).readlines() if line] self.obj.log.info(samples) self.assertEqual(5, len(samples)) self.assertTrue(all(sample["status"] == "PASSED" for sample in samples)) def test_variables_file(self): self.configure({ "execution": [{ "iterations": 1, "scenario": { "variables": RESOURCES_DIR + "selenium/robot/simple/vars.yaml", "script": RESOURCES_DIR + "selenium/robot/simple/test_novar.robot", } }] }) self.obj.prepare() try: self.obj.startup() while not self.obj.check(): time.sleep(self.obj.engine.check_interval) finally: self.obj.shutdown() self.obj.post_process() self.assertFalse(self.obj.has_results()) self.assertNotEquals(self.obj.process, None) samples = [json.loads(line) for line in open(self.obj.report_file).readlines() if line] self.obj.log.info(samples) self.assertEqual(5, len(samples)) self.assertTrue(all(sample["status"] == "PASSED" for sample in samples)) ``` #### File: tests/modules/test_blazeMeterUploader.py ```python import json import logging import math import os import shutil import time from io import BytesIO from bzt import TaurusException from bzt.bza import Master, Session from bzt.modules.aggregator import DataPoint, KPISet from bzt.modules.blazemeter import BlazeMeterUploader, ResultsFromBZA from bzt.modules.blazemeter import MonitoringBuffer from bzt.six import HTTPError from bzt.six import iteritems, viewvalues from tests import BZTestCase, random_datapoint, RESOURCES_DIR from tests.mocks import EngineEmul, BZMock class TestBlazeMeterUploader(BZTestCase): def test_some_errors(self): mock = BZMock() mock.mock_get.update({ 'https://a.blazemeter.com/api/v4/tests?projectId=1&name=Taurus+Test': {"result": []}, 'https://a.blazemeter.com/api/v4/sessions/1': {"result": {'id': 1, "note": "somenote"}}, 'https://a.blazemeter.com/api/v4/masters/1': {"result": {'id': 1, "note": "somenote"}}, }) mock.mock_post.update({ 'https://a.blazemeter.com/api/v4/projects': {"result": {'id': 1}}, 'https://a.blazemeter.com/api/v4/tests': {"result": {'id': 1}}, 'https://a.blazemeter.com/api/v4/tests/1/start-external': {"result": { "session": {'id': 1, "testId": 1, "userId": 1}, "master": {'id': 1}, "signature": "sign" }}, 'https://data.blazemeter.com/api/v4/image/1/files?signature=sign': {"result": True}, 'https://data.blazemeter.com/submit.php?session_id=1&signature=sign&test_id=1&user_id=1' + '&pq=0&target=labels_bulk&update=1': {}, 'https://a.blazemeter.com/api/v4/sessions/1/stop': {"result": True}, 'https://data.blazemeter.com/submit.php?session_id=1&signature=sign&test_id=1&user_id=1&pq=0&target=engine_health&update=1': {'result': {'session': {}}} }) mock.mock_patch.update({ 'https://a.blazemeter.com/api/v4/sessions/1': {"result": {"id": 1, "note": "somenote"}}, 'https://a.blazemeter.com/api/v4/masters/1': {"result": {"id": 1, "note": "somenote"}}, }) obj = BlazeMeterUploader() mock.apply(obj._user) obj.parameters['project'] = 'Proj name' obj.settings['token'] = '<PASSWORD>' obj.settings['browser-open'] = 'none' obj.engine = EngineEmul() obj.prepare() obj.startup() obj.engine.stopping_reason = ValueError('wrong value') obj.aggregated_second(random_datapoint(10)) obj.kpi_buffer[-1][DataPoint.CUMULATIVE][''][KPISet.ERRORS] = [ {'msg': 'Forbidden', 'cnt': 10, 'type': KPISet.ERRTYPE_ASSERT, 'urls': [], KPISet.RESP_CODES: '111'}, {'msg': 'Allowed', 'cnt': 20, 'type': KPISet.ERRTYPE_ERROR, 'urls': [], KPISet.RESP_CODES: '222'}] obj.post_process() obj.log.info("Requests: %s", mock.requests) # check for note appending in _postproc_phase3() reqs = mock.requests[-4:] self.assertIn('api/v4/sessions/1', reqs[0]['url']) self.assertIn('api/v4/sessions/1', reqs[1]['url']) self.assertIn('api/v4/masters/1', reqs[2]['url']) self.assertIn('api/v4/masters/1', reqs[3]['url']) self.assertIn('ValueError: wrong value', str(reqs[1]['data'])) self.assertIn('ValueError: wrong value', str(reqs[3]['data'])) labels = mock.requests[8]['data'] if not isinstance(labels, str): labels = labels.decode("utf-8") obj.log.info("Labels: %s", labels) data = json.loads(str(labels)) self.assertEqual(1, len(data['labels'])) total_item = data['labels'][0] self.assertEqual('ALL', total_item['name']) self.assertEqual(total_item['assertions'], [{'failureMessage': 'Forbidden', 'failures': 10, 'name': 'All Assertions'}]) self.assertEqual(total_item['errors'], [{'m': 'Allowed', 'count': 20, 'rc': '222'}]) def test_no_notes_for_public_reporting(self): mock = BZMock() mock.mock_post.update({ 'https://a.blazemeter.com/api/v4/sessions/1/terminate-external': {}, 'https://data.blazemeter.com/submit.php?session_id=1&signature=None&test_id=1&user_id=1&pq=0&target=labels_bulk&update=1': {}, }) obj = BlazeMeterUploader() obj.parameters['project'] = 'Proj name' obj.settings['token'] = '' # public reporting obj.settings['browser-open'] = 'none' obj.engine = EngineEmul() mock.apply(obj._user) obj.prepare() obj._session = Session(obj._user, {'id': 1, 'testId': 1, 'userId': 1}) obj._master = Master(obj._user, {'id': 1}) obj.engine.stopping_reason = ValueError('wrong value') obj.aggregated_second(random_datapoint(10)) obj.kpi_buffer[-1][DataPoint.CUMULATIVE][''][KPISet.ERRORS] = [ {'msg': 'Forbidden', 'cnt': 10, 'type': KPISet.ERRTYPE_ASSERT, 'urls': [], KPISet.RESP_CODES: '111'}, {'msg': 'Allowed', 'cnt': 20, 'type': KPISet.ERRTYPE_ERROR, 'urls': [], KPISet.RESP_CODES: '222'}] obj.send_monitoring = False obj.post_process() # TODO: looks like this whole block of checks is useless # check for note appending in _postproc_phase3() reqs = [{'url': '', 'data': ''} for _ in range(4)] # add template for minimal size reqs = (reqs + mock.requests)[-4:] self.assertNotIn('api/v4/sessions/1', reqs[0]['url']) self.assertNotIn('api/v4/sessions/1', reqs[1]['url']) self.assertNotIn('api/v4/masters/1', reqs[2]['url']) self.assertNotIn('api/v4/masters/1', reqs[3]['url']) if reqs[1]['data']: self.assertNotIn('ValueError: wrong value', reqs[1]['data']) if reqs[3]['data']: self.assertNotIn('ValueError: wrong value', reqs[3]['data']) def test_check(self): mock = BZMock() mock.mock_get.update({ 'https://a.blazemeter.com/api/v4/tests?workspaceId=1&name=Taurus+Test': {"result": []}, 'https://a.blazemeter.com/api/v4/tests?projectId=1&name=Taurus+Test': {"result": []} }) mock.mock_post.update({ 'https://a.blazemeter.com/api/v4/projects': {"result": { "id": 1, "name": "boo", "userId": 2, "description": None, "created": time.time(), "updated": time.time(), "organizationId": None }}, 'https://a.blazemeter.com/api/v4/tests': {"result": {'id': 1}}, 'https://a.blazemeter.com/api/v4/tests/1/start-external': {"result": { 'session': {'id': 1, 'userId': 1, 'testId': 1}, 'master': {'id': 1, 'userId': 1}, 'signature': 'sign'}}, 'https://data.blazemeter.com/submit.php?session_id=1&signature=sign&test_id=1&user_id=1&pq=0&target=labels_bulk&update=1': [ {}, {"result": {'session': {"statusCode": 140, 'status': 'ENDED'}}}, {}, ], 'https://data.blazemeter.com/api/v4/image/1/files?signature=sign': [ IOError("monitoring push expected fail"), {"result": True}, {"result": True}, {"result": True}, {"result": True}, {"result": True}, {"result": True}, {"result": True}, {"result": True}, ], 'https://a.blazemeter.com/api/v4/sessions/1/stop': {}, 'https://data.blazemeter.com/submit.php?session_id=1&signature=sign&test_id=1&user_id=1&pq=0&target=engine_health&update=1': {"result": {'session': {}}} }) obj = BlazeMeterUploader() obj.parameters['project'] = 'Proj name' obj.settings['token'] = '123' obj.settings['browser-open'] = 'none' obj.engine = EngineEmul() shutil.copy(__file__, os.path.join(obj.engine.artifacts_dir, os.path.basename(__file__))) mock.apply(obj._user) obj._user.timeout = 0.1 obj.prepare() obj.startup() for x in range(0, 31): obj.aggregated_second(random_datapoint(x)) mon = [{"ts": 1, "source": "local", "cpu": 1, "mem": 2, "bytes-recv": 100, "other": 0}] obj.monitoring_data(mon) obj.check() for x in range(32, 65): obj.aggregated_second(random_datapoint(x)) obj.last_dispatch = time.time() - 2 * obj.send_interval self.assertRaises(KeyboardInterrupt, obj.check) obj.aggregated_second(random_datapoint(10)) obj.shutdown() log_file = obj.engine.create_artifact('log', '.tmp') handler = logging.FileHandler(log_file) obj.engine.log.parent.addHandler(handler) obj.engine.config.get('modules').get('shellexec').get('env')['TAURUS_INDEX_ALL'] = 1 obj.post_process() self.assertEqual(20, len(mock.requests)) obj.engine.log.parent.removeHandler(handler) def test_monitoring_buffer_limit_option(self): obj = BlazeMeterUploader() obj.engine = EngineEmul() mock = BZMock(obj._user) obj.settings["monitoring-buffer-limit"] = 100 obj.prepare() for i in range(1000): mon = [{"ts": i, "source": "local", "cpu": float(i) / 1000 * 100, "mem": 2, "bytes-recv": 100, "other": 0}] obj.monitoring_data(mon) for source, buffer in iteritems(obj.monitoring_buffer.data): self.assertLessEqual(len(buffer), 100) self.assertEqual(1, len(mock.requests)) def test_direct_feeding(self): obj = BlazeMeterUploader() self.sniff_log(obj.log) obj.engine = EngineEmul() mock = BZMock(obj._user) mock.mock_post.update({ 'https://data.blazemeter.com/submit.php?session_id=direct&signature=sign&test_id=None&user_id=None&pq=0&target=labels_bulk&update=1': {}, 'https://data.blazemeter.com/api/v4/image/direct/files?signature=sign': {"result": True}, 'https://a.blazemeter.com/api/v4/sessions/direct/stop': {"result": True}, 'https://data.blazemeter.com/submit.php?session_id=direct&signature=sign&test_id=None&user_id=None&pq=0&target=engine_health&update=1': {'result': {'session': {}}} }) mock.mock_get.update({ 'https://a.blazemeter.com/api/v4/sessions/direct': {"result": {}} }) mock.mock_patch.update({ 'https://a.blazemeter.com/api/v4/sessions/direct': {"result": {}} }) obj.parameters['session-id'] = 'direct' obj.parameters['signature'] = 'sign' obj.settings['token'] = '<PASSWORD>' obj.prepare() obj.startup() obj.check() obj.shutdown() obj.engine.stopping_reason = TaurusException("To cover") obj.post_process() self.assertNotIn("Failed to finish online", self.log_recorder.warn_buff.getvalue()) self.assertEquals('direct', obj._session['id']) self.assertEqual(9, len(mock.requests), "Requests were: %s" % mock.requests) def test_anonymous_feeding(self): obj = BlazeMeterUploader() obj.engine = EngineEmul() obj.browser_open = False mock = BZMock(obj._user) mock.mock_post.update({ 'https://a.blazemeter.com/api/v4/sessions': {"result": { "signature": "sign", "publicTokenUrl": "publicUrl", "session": {"id": 1, "testId": 1, "userId": 1}, "master": {"id": 1}, }}, 'https://data.blazemeter.com/submit.php?session_id=1&signature=sign&test_id=1&user_id=1&pq=0&target=labels_bulk&update=1': {}, 'https://data.blazemeter.com/api/v4/image/1/files?signature=sign': {"result": True}, 'https://data.blazemeter.com/submit.php?session_id=1&signature=sign&test_id=1&user_id=1&pq=0&target=engine_health&update=1': {'result': {'session': {}}}, }) obj.prepare() obj.startup() obj.check() obj.shutdown() obj.post_process() self.assertEquals(1, obj._session['id']) self.assertEqual(6, len(mock.requests), "Requests were: %s" % mock.requests) def test_401(self): obj = BlazeMeterUploader() obj.engine = EngineEmul() mock = BZMock(obj._user) mock.mock_get.update({ 'https://a.blazemeter.com/api/v4/web/version': HTTPError(None, None, None, None, None, ), }) self.assertRaises(HTTPError, obj.prepare) def test_multiple_reporters_one_monitoring(self): obj1 = BlazeMeterUploader() obj1.engine = EngineEmul() BZMock(obj1._user) obj2 = BlazeMeterUploader() obj2.engine = EngineEmul() BZMock(obj2._user) obj1.prepare() obj2.prepare() for i in range(10): mon = [{"ts": i, "source": "local", "cpu": float(i) / 1000 * 100, "mem": 2, "bytes-recv": 100, "other": 0}] obj1.monitoring_data(mon) obj2.monitoring_data(mon) def test_public_report(self): mock = BZMock() mock.mock_get.update({ 'https://a.blazemeter.com/api/v4/tests?workspaceId=1&name=Taurus+Test': {"result": []} }) mock.mock_post.update({ 'https://a.blazemeter.com/api/v4/projects': {"result": {'id': 1}}, 'https://a.blazemeter.com/api/v4/tests': {'result': {'id': 'unittest1'}}, 'https://a.blazemeter.com/api/v4/tests/unittest1/start-external': {"result": { 'session': {'id': 'sess1', 'userId': 1, 'testId': 1}, 'master': {'id': 'master1', 'userId': 1}, 'signature': '' }}, 'https://a.blazemeter.com/api/v4/masters/master1/public-token': {'result': {'publicToken': '<PASSWORD>Token'}}, 'https://data.blazemeter.com/submit.php?session_id=sess1&signature=&test_id=1&user_id=1&pq=0&target=labels_bulk&update=1': { "result": {'session': {}}}, 'https://data.blazemeter.com/api/v4/image/sess1/files?signature=': {'result': True}, }) obj = BlazeMeterUploader() obj.settings['token'] = '<PASSWORD>' obj.settings['browser-open'] = 'none' obj.settings['public-report'] = True obj.settings['send-monitoring'] = False obj.engine = EngineEmul() mock.apply(obj._user) self.sniff_log(obj.log) obj.prepare() obj.startup() obj.aggregated_second(random_datapoint(10)) obj.check() obj.shutdown() obj.post_process() log_buff = self.log_recorder.info_buff.getvalue() log_line = "Public report link: https://a.blazemeter.com/app/?public-token=publicToken#/masters/master1/summary" self.assertIn(log_line, log_buff) logging.warning("\n".join([x['url'] for x in mock.requests])) self.assertEqual(14, len(mock.requests)) def test_new_project_existing_test(self): obj = BlazeMeterUploader() mock = BZMock(obj._user) mock.mock_get.update({ 'https://a.blazemeter.com/api/v4/tests?workspaceId=1&name=Taurus+Test': {'result': [ {'id': 1, 'name': '<NAME>', 'configuration': {"type": 'external'}} ]}, 'https://a.blazemeter.com/api/v4/tests?projectId=1&name=Taurus+Test': {'result': []} }) mock.mock_post.update({ 'https://a.blazemeter.com/api/v4/projects': {"result": {"id": 1}}, 'https://a.blazemeter.com/api/v4/tests': {"result": {"id": 1}}, }) obj.parameters['project'] = 'Proj name' obj.settings['token'] = '<PASSWORD>' obj.settings['browser-open'] = 'none' obj.engine = EngineEmul() obj.prepare() self.assertEquals('https://a.blazemeter.com/api/v4/projects', mock.requests[4]['url']) self.assertEquals('POST', mock.requests[4]['method']) self.assertEquals('https://a.blazemeter.com/api/v4/tests', mock.requests[6]['url']) self.assertEquals('POST', mock.requests[6]['method']) def test_new_project_new_test(self): obj = BlazeMeterUploader() mock = BZMock(obj._user) mock.mock_get.update({ 'https://a.blazemeter.com/api/v4/tests?workspaceId=1&name=Taurus+Test': {'result': []}, 'https://a.blazemeter.com/api/v4/projects?workspaceId=1': {'result': []} }) mock.mock_post.update({ 'https://a.blazemeter.com/api/v4/projects': {"result": {"id": 1}}, 'https://a.blazemeter.com/api/v4/tests': {"result": {"id": 1}}, }) obj.settings['token'] = '<PASSWORD>' obj.settings['browser-open'] = 'none' obj.engine = EngineEmul() obj.prepare() self.assertEquals('https://a.blazemeter.com/api/v4/projects', mock.requests[6]['url']) self.assertEquals('POST', mock.requests[6]['method']) self.assertEquals('https://a.blazemeter.com/api/v4/tests', mock.requests[7]['url']) self.assertEquals('POST', mock.requests[7]['method']) def test_existing_project_new_test(self): obj = BlazeMeterUploader() mock = BZMock(obj._user) mock.mock_get.update({ 'https://a.blazemeter.com/api/v4/tests?projectId=1&name=Taurus+Test': {'result': []}, 'https://a.blazemeter.com/api/v4/projects?workspaceId=1': {'result': [ {'id': 1, 'name': 'Proj name'} ]} }) mock.mock_post.update({ 'https://a.blazemeter.com/api/v4/projects': {"result": {"id": 1}}, 'https://a.blazemeter.com/api/v4/tests': {"result": {"id": 1}}, }) obj.parameters['project'] = 'Proj name' obj.settings['token'] = '<PASSWORD>' obj.settings['browser-open'] = 'none' obj.engine = EngineEmul() obj.prepare() self.assertEquals('https://a.blazemeter.com/api/v4/tests', mock.requests[6]['url']) self.assertEquals('POST', mock.requests[6]['method']) class TestBlazeMeterClientUnicode(BZTestCase): def test_unicode_request(self): """ test UnicodeDecodeError in BlazeMeterClient._request() """ session = Session(data={'id': 1}) mock = BZMock(session) mock.mock_post['https://data.blazemeter.com/api/v4/image/1/files?signature=None'] = {"result": 1} session.upload_file(RESOURCES_DIR + "jmeter/unicode_file") def test_binary_unicode_error(self): session = Session(data={'id': 1}) mock = BZMock(session) mock.mock_post['https://data.blazemeter.com/api/v4/image/1/files?signature=None'] = {"result": 1} with open(RESOURCES_DIR + "jmeter/jmeter-dist-2.13.zip", 'rb') as fds: zip_content = fds.read() session.upload_file("jtls_and_more.zip", zip_content) class DummyHttpResponse(object): def __init__(self): self.fake_socket = BytesIO() self.fake_socket.write(open(RESOURCES_DIR + "unicode_file", 'rb').read()) def read(self): self.fake_socket.seek(0) return self.fake_socket.read(1024) def dummy_urlopen(*args, **kwargs): del args, kwargs return DummyHttpResponse() class TestResultsFromBZA(BZTestCase): @staticmethod def convert_kpi_errors(errors): result = {} for error in errors: result[error['msg']] = {'count': error['cnt'], 'rc': error['rc']} return result @staticmethod def get_errors_mock(errors, assertions=None): # return mock of server response for errors specified in internal format (see __get_errors_from_BZA()) result = [] if not assertions: assertions = {} for _id in list(set(list(errors.keys()) + list(assertions.keys()))): # unique keys from both dictionaries errors_list = [] if errors.get(_id): for msg in errors[_id]: errors_list.append({ "m": msg, "count": errors[_id][msg]["count"], "rc": errors[_id][msg]["rc"]}) assertions_list = [] if assertions.get(_id): for msg in assertions[_id]: assertions_list.append({ "failureMessage": msg, "failures": assertions[_id][msg]["count"], "name": "All Assertions"}) result.append({ "_id": _id, "name": _id, "assertions": assertions_list, "samplesNotCounted": 0, "assertionsNotCounted": 0, "otherErrorsCount": 0, "errors": errors_list}) return { "https://a.blazemeter.com/api/v4/masters/1/reports/errorsreport/data?noDataError=false": { "api_version": 4, "error": None, "result": result}} def test_get_errors(self): mock = BZMock() mock.mock_get.update({ 'https://a.blazemeter.com/api/v4/data/labels?master_id=1': { "api_version": 4, "error": None, "result": [{ "sessions": ["r-t-5746a8e38569a"], "id": "ALL", "name": "ALL" }, { "sessions": ["r-t-5746a8e38569a"], "id": "e843ff89a5737891a10251cbb0db08e5", "name": "http://blazedemo.com/"}]}, 'https://a.blazemeter.com/api/v4/data/kpis?interval=1&from=0&master_ids%5B%5D=1&kpis%5B%5D=t&kpis%5B%5D=lt&kpis%5B%5D=by&kpis%5B%5D=n&kpis%5B%5D=ec&kpis%5B%5D=ts&kpis%5B%5D=na&labels%5B%5D=ALL&labels%5B%5D=e843ff89a5737891a10251cbb0db08e5': { "api_version": 4, "error": None, "result": [{ "labelId": "ALL", "labelName": "ALL", "label": "ALL", "kpis": [{ "n": 1, "na": 1, "ec": 0, "p90": 0, "t_avg": 817, "lt_avg": 82, "by_avg": 0, "n_avg": 1, "ec_avg": 0, "ts": 1464248743 }, {"n": 1, "na": 1, "ec": 0, "p90": 0, "t_avg": 817, "lt_avg": 82, "by_avg": 0, "n_avg": 1, "ec_avg": 0, "ts": 1464248744}]}]}, 'https://a.blazemeter.com/api/v4/masters/1/reports/aggregatereport/data': { "api_version": 4, "error": None, "result": [{ "labelName": "ALL", "99line": 1050, "90line": 836, "95line": 912}, { "labelName": "http://blazedemo.com", "99line": 1050, "90line": 836, "95line": 912}]}, 'https://a.blazemeter.com/api/v4/data/kpis?interval=1&from=1464248744&master_ids%5B%5D=1&kpis%5B%5D=t&kpis%5B%5D=lt&kpis%5B%5D=by&kpis%5B%5D=n&kpis%5B%5D=ec&kpis%5B%5D=ts&kpis%5B%5D=na&labels%5B%5D=ALL&labels%5B%5D=e843ff89a5737891a10251cbb0db08e5': { "api_version": 4, "error": None, "result": [{ "labelId": "ALL", "labelName": "ALL", "label": "ALL", "kpis": [{ "n": 1, "na": 1, "ec": 0, "p90": 0, "t_avg": 817, "lt_avg": 82, "by_avg": 0, "n_avg": 1, "ec_avg": 0, "ts": 1464248744 }, {"n": 1, "na": 1, "ec": 0, "p90": 0, "t_avg": 817, "lt_avg": 82, "by_avg": 0, "n_avg": 1, "ec_avg": 0, "ts": 1464248745}]}]}, 'https://a.blazemeter.com/api/v4/data/kpis?interval=1&from=1464248745&master_ids%5B%5D=1&kpis%5B%5D=t&kpis%5B%5D=lt&kpis%5B%5D=by&kpis%5B%5D=n&kpis%5B%5D=ec&kpis%5B%5D=ts&kpis%5B%5D=na&labels%5B%5D=ALL&labels%5B%5D=e843ff89a5737891a10251cbb0db08e5': { "api_version": 4, "error": None, "result": [{ "labelId": "ALL", "labelName": "ALL", "label": "ALL", "kpis": [{ "n": 1, "na": 1, "ec": 0, "p90": 0, "t_avg": 817, "lt_avg": 82, "by_avg": 0, "n_avg": 1, "ec_avg": 0, "ts": 1464248745}]}]}}) obj = ResultsFromBZA() obj.master = Master(data={"id": 1}) mock.apply(obj.master) # set cumulative errors from BM mock.mock_get.update(self.get_errors_mock({'ALL': {"Not found": {"count": 10, "rc": "404"}}})) # frame [0, 1464248744) res1 = list(obj.datapoints(False)) self.assertEqual(1, len(res1)) cumul = res1[0][DataPoint.CUMULATIVE] cur = res1[0][DataPoint.CURRENT] self.assertEqual(1, len(cumul.keys())) self.assertEqual(1, len(cur.keys())) errors_1 = {'Not found': {'count': 10, 'rc': u'404'}} self.assertEqual(self.convert_kpi_errors(cumul[""]["errors"]), errors_1) # all error data is written self.assertEqual(self.convert_kpi_errors(cur[""]["errors"]), errors_1) # to 'current' and 'cumulative' # frame [1464248744, 1464248745) res2 = list(obj.datapoints(False)) self.assertEqual(1, len(res2)) cumul = res2[0][DataPoint.CUMULATIVE] cur = res2[0][DataPoint.CURRENT] self.assertEqual(1, len(cumul.keys())) self.assertEqual(1, len(cur.keys())) self.assertEqual(self.convert_kpi_errors(cumul[""]["errors"]), errors_1) # the same errors, self.assertEqual(cur[""]["errors"], []) # new errors not found mock.mock_get.update(self.get_errors_mock({ "ALL": { "Not found": { "count": 11, "rc": "404"}, # one more error "Found": { "count": 2, "rc": "200"}}, # new error message (error ID) "label1": { "Strange behaviour": { "count": 666, "rc": "666"}}}, { # new error label "ALL": {"assertion_example": {"count": 33}}})) res3 = list(obj.datapoints(True)) # let's add the last timestamp [1464248745] self.assertEqual(1, len(res3)) cumul = res3[0][DataPoint.CUMULATIVE] cur = res3[0][DataPoint.CURRENT] errors_all_full = { 'Not found': {'count': 11, 'rc': '404'}, 'Found': {'count': 2, 'rc': '200'}, 'assertion_example': {'count': 33, 'rc': 'All Assertions'}} errors_all_update = { 'Not found': {'count': 1, 'rc': '404'}, 'Found': {'count': 2, 'rc': '200'}, 'assertion_example': {'count': 33, 'rc': 'All Assertions'}} errors_label1 = {'Strange behaviour': {'count': 666, 'rc': '666'}} self.assertEqual(errors_label1, self.convert_kpi_errors(cumul["label1"]["errors"])) self.assertEqual(errors_all_full, self.convert_kpi_errors(cumul[""]["errors"])) self.assertEqual(errors_label1, self.convert_kpi_errors(cur["label1"]["errors"])) self.assertEqual(errors_all_update, self.convert_kpi_errors(cur[""]["errors"])) def test_datapoint(self): mock = BZMock() mock.mock_get.update({ 'https://a.blazemeter.com/api/v4/data/labels?master_id=1': { "api_version": 2, "error": None, "result": [{ "sessions": ["r-t-5746a8e38569a"], "id": "ALL", "name": "ALL" }, { "sessions": ["r-t-5746a8e38569a"], "id": "<KEY>", "name": "http://blazedemo.com/"}]}, 'https://a.blazemeter.com/api/v4/data/kpis?interval=1&from=0&master_ids%5B%5D=1&kpis%5B%5D=t&kpis%5B%5D=lt&kpis%5B%5D=by&kpis%5B%5D=n&kpis%5B%5D=ec&kpis%5B%5D=ts&kpis%5B%5D=na&labels%5B%5D=ALL&labels%5B%5D=<KEY>': { "api_version": 2, "error": None, "result": [{ "labelId": "ALL", "labelName": "ALL", "label": "ALL", "kpis": [{ "n": 1, "na": 1, "ec": 0, "p90": 0, "t_avg": 817, "lt_avg": 82, "by_avg": 0, "n_avg": 1, "ec_avg": 0, "ts": 1464248743}]}]}, 'https://a.blazemeter.com/api/v4/masters/1/reports/aggregatereport/data': { "api_version": 2, "error": None, "result": [{ "labelId": "ALL", "labelName": "ALL", "samples": 152, "avgResponseTime": 786, "90line": 836, "95line": 912, "99line": 1050, "minResponseTime": 531, "maxResponseTime": 1148, "avgLatency": 81, "geoMeanResponseTime": None, "stDev": 108, "duration": 119, "avgBytes": 0, "avgThroughput": 1.2773109243697, "medianResponseTime": 0, "errorsCount": 0, "errorsRate": 0, "hasLabelPassedThresholds": None }, { "labelId": "e843ff89a5737891a10251cbb0db08e5", "labelName": "http://blazedemo.com/", "samples": 152, "avgResponseTime": 786, "90line": 836, "95line": 912, "99line": 1050, "minResponseTime": 531, "maxResponseTime": 1148, "avgLatency": 81, "geoMeanResponseTime": None, "stDev": 108, "duration": 119, "avgBytes": 0, "avgThroughput": 1.2773109243697, "medianResponseTime": 0, "errorsCount": 0, "errorsRate": 0, "hasLabelPassedThresholds": None}]}}) mock.mock_get.update(self.get_errors_mock({"ALL": {}})) obj = ResultsFromBZA() obj.master = Master(data={"id": 1}) mock.apply(obj.master) res = list(obj.datapoints(True)) cumulative_ = res[0][DataPoint.CUMULATIVE] total = cumulative_[''] percentiles_ = total[KPISet.PERCENTILES] self.assertEquals(1.05, percentiles_['99.0']) def test_no_kpis_on_cloud_crash(self): mock = BZMock() mock.mock_get.update({ 'https://a.blazemeter.com/api/v4/data/labels?master_id=0': { "api_version": 2, "error": None, "result": [ { "sessions": [ "r-t-5746a8e38569a" ], "id": "ALL", "name": "ALL" }, { "sessions": [ "r-t-5746a8e38569a" ], "id": "e843ff89a5737891a10251cbb0db08e5", "name": "http://blazedemo.com/" } ] }, 'https://a.blazemeter.com/api/v4/data/kpis?interval=1&from=0&master_ids%5B%5D=0&kpis%5B%5D=t&kpis%5B%5D=lt&kpis%5B%5D=by&kpis%5B%5D=n&kpis%5B%5D=ec&kpis%5B%5D=ts&kpis%5B%5D=na&labels%5B%5D=ALL&labels%5B%5D=e843ff89a5737891a10251cbb0db08e5': { "api_version": 2, "error": None, "result": [ { "labelId": "ALL", "labelName": "ALL", } ] }, 'https://a.blazemeter.com/api/v4/masters/0/reports/aggregatereport/data': { "api_version": 2, "error": None, "result": [ { "labelId": "ALL", "labelName": "ALL", "samples": 152, "avgResponseTime": 786, "90line": 836, "95line": 912, "99line": 1050, "minResponseTime": 531, "maxResponseTime": 1148, "avgLatency": 81, "geoMeanResponseTime": None, "stDev": 108, "duration": 119, "avgBytes": 0, "avgThroughput": 1.2773109243697, "medianResponseTime": 0, "errorsCount": 0, "errorsRate": 0, "hasLabelPassedThresholds": None }, { "labelId": "e843ff89a5737891a10251cbb0db08e5", "labelName": "http://blazedemo.com/", "samples": 152, "avgResponseTime": 786, "90line": 836, "95line": 912, "99line": 1050, "minResponseTime": 531, "maxResponseTime": 1148, "avgLatency": 81, "geoMeanResponseTime": None, "stDev": 108, "duration": 119, "avgBytes": 0, "avgThroughput": 1.2773109243697, "medianResponseTime": 0, "errorsCount": 0, "errorsRate": 0, "hasLabelPassedThresholds": None } ] } }) obj = ResultsFromBZA(Master(data={'id': 0})) mock.apply(obj.master) res = list(obj.datapoints(True)) self.assertEqual(res, []) class TestMonitoringBuffer(BZTestCase): def to_rad(self, deg): return deg * math.pi / 180 def test_harmonic(self): iterations = 50 size_limit = 10 mon_buffer = MonitoringBuffer(size_limit, logging.getLogger('')) for i in range(iterations): cpu = math.sin(self.to_rad(float(i) / iterations * 180)) mon = [{"ts": i, "source": "local", "cpu": cpu}] mon_buffer.record_data(mon) self.assertLessEqual(len(mon_buffer.data['local']), size_limit) def test_downsample_theorem(self): # Theorem: average interval size in monitoring buffer will always # be less or equal than ITERATIONS / BUFFER_LIMIT mon_buffer = MonitoringBuffer(100, logging.getLogger('')) for i in range(5000): mon = [{"ts": i, "source": "local", "cpu": 1, "mem": 2, "bytes-recv": 100, "other": 0}] mon_buffer.record_data(mon) for source, buffer in iteritems(mon_buffer.data): self.assertLessEqual(len(buffer), 100) sizes = [item['interval'] for item in viewvalues(buffer)] avg_size = float(sum(sizes)) / len(sizes) expected_size = 5000 / 100 self.assertLessEqual(avg_size, expected_size * 1.20) def test_sources(self): mon_buffer = MonitoringBuffer(10, logging.getLogger('')) for i in range(100): mon = [ {"ts": i, "source": "local", "cpu": 1, "mem": 2, "bytes-recv": 100}, {"ts": i, "source": "server-agent", "cpu": 10, "mem": 20}, ] mon_buffer.record_data(mon) for source, buffer in iteritems(mon_buffer.data): self.assertLessEqual(len(buffer), 10) def test_unpack(self): ITERATIONS = 200 SIZE_LIMIT = 10 mon_buffer = MonitoringBuffer(SIZE_LIMIT, logging.getLogger('')) for i in range(ITERATIONS): mon = [{"ts": i, "source": "local", "cpu": 1}] mon_buffer.record_data(mon) unpacked = sum(item['interval'] for item in viewvalues(mon_buffer.data['local'])) self.assertEqual(unpacked, ITERATIONS) ```
{ "source": "3dgiordano/TrackingR", "score": 3 }
#### File: python/construct_dataset/construct_dataset.py ```python import os import sys sys.path.append(os.path.abspath(os.path.dirname(__file__) + '/' + '../..')) import numpy as np import pandas as pd from python.tools import ( clean_folder ) def construct_dataset(file_name, var_name): """Convenience function for constructing a clean Pandas dataframe from the CSV files provided by JH CSSE on their Github repo Args: file_name (str): File name / URL of CSV file var_name (name): Variable name Returns: df: Dataframe """ df = pd.read_csv(file_name) del df['Lat'], df['Long'] # Melt to long format df = pd.melt(df, id_vars = ['Province/State', 'Country/Region'], value_vars = list(df.columns.values[2:])) df.rename(columns = {'variable': 'Date', 'value': var_name}, inplace = True) # For some countries, data are reported # by regions / states; aggregate to country level return df.groupby(['Country/Region', 'Date']).sum().reset_index() ################ ## Parameters ## ################ input_folder = './construct_dataset/input' output_folder = './construct_dataset/output' min_cases = 100 days_infectious_list = [5, 6, 7, 8, 9, 10] # Values of (1 / gamma) used in constructing # time series of infected individuals end_date = '2020-05-06' # End of sample restrict_end_sample = False ####################### ## Construct dataset ## ####################### clean_folder(output_folder) # Read in data on total cases df = construct_dataset(file_name = '{}/time_series_covid19_confirmed_global.csv'.format(input_folder), var_name = 'total_cases') # Merge in recovered cases and deaths for file_name, var_name in zip(['{}/time_series_covid19_recovered_global.csv'.format(input_folder), '{}/time_series_covid19_deaths_global.csv'.format(input_folder)], ['total_recovered', 'total_deaths']): df_temp = construct_dataset(file_name = file_name, var_name = var_name) df = pd.merge(df, df_temp, on = ['Country/Region', 'Date'], how = 'left') # Only consider days after a minimum # number of total cases has been reached mask = (df['total_cases'] >= min_cases) df = df.loc[mask, ] # Calculate world aggregates df_temp = df.groupby('Date').sum().reset_index() df_temp['Country/Region'] = 'World' df = pd.concat([df_temp, df]) # Clean up the dataframe df['Date'] = pd.to_datetime(df['Date']) df.reset_index(inplace = True) del df['index'] # Remove "Diamond Princess" from the data mask = df['Country/Region'] != 'Diamond Princess' df = df.loc[mask, ] # Fix a few country names df['Country/Region'] = df['Country/Region'].apply(lambda x: 'Taiwan' if x == 'Taiwan*' else x) df['Country/Region'] = df['Country/Region'].apply(lambda x: 'South Korea' if x == 'Korea, South' else x) # Sort by date df.sort_values(by = ['Country/Region', 'Date'], ascending = True, inplace = True) # Construct derived flow variables (new cases / # recoveries / deaths) for var_name in ['cases', 'recovered', 'deaths']: df['new_{}'.format(var_name)] = (df['total_{}'.format(var_name)] - df.groupby('Country/Region').shift()['total_{}'.format(var_name)]) # Replace flow variables with 7-day moving averages #for var_name in ['cases', 'recovered', 'deaths']: # df['new_{}'.format(var_name)] = df.groupby('Country/Region')['new_{}'.format(var_name)].transform(lambda x: x.rolling(7).mean()) # Construct number of infected for days_infectious in days_infectious_list: df['infected_{}'.format(days_infectious)] = np.nan for country in df['Country/Region'].unique(): mask = df['Country/Region'] == country df_country = df.loc[mask, ].copy().reset_index() T = df_country.shape[0] # Initialize number of infected infected = np.zeros(T) * np.nan infected[0] = df_country['total_cases'][0] # Main loop for tt in range(1, T): gamma = 1 / float(days_infectious) # Calculate number of infected recursively; # In the JH CSSE dataset, there are some # data problems whereby new cases are occasionally # reported to be negative; in these case, take zero # when constructing time series for # of invected, # and then change values to NaN's later on infected[tt] = ((1 - gamma) * infected[tt - 1] + np.maximum(df_country['new_cases'][tt], 0.0)) df.loc[mask, 'infected_{}'.format(days_infectious)] = infected # In the original JH CSSE dataset, there are # some inconsistencies in the data # Replace with NaN's in these cases mask = df['new_cases'] < 0 df.loc[mask, 'new_cases'] = np.nan print(' Inconsistent observations in new_cases in JH CSSE dataset: {:}'.format(mask.sum())) for days_infectious in days_infectious_list: df.loc[mask, 'infected_{}'.format(days_infectious)] = np.nan # Calculate growth rate of infected for days_infectious in days_infectious_list: df['gr_infected_{}'.format(days_infectious)] = ((df['infected_{}'.format(days_infectious)] / df.groupby('Country/Region').shift(1)['infected_{}'.format(days_infectious)]) - 1) mask = df.groupby('Country/Region').shift(1)['infected_{}'.format(days_infectious)] == 0.0 df.loc[mask, 'gr_infected_{}'.format(days_infectious)] = np.nan # Deal with potential consecutive zeros in the number of infected for days_infectious in days_infectious_list: mask = (df['infected_{}'.format(days_infectious)] == 0.0) & (df.groupby('Country/Region').shift(1)['infected_{}'.format(days_infectious)] == 0.0) df.loc[mask, 'gr_infected_{}'.format(days_infectious)] = - (1 / days_infectious) if mask.sum() > 0: print(' Number of observations with zero infected (with {} infectious days) over two consecutive days: {:}'.format(days_infectious, mask.sum())) # Set to NaN observations with very small # number of cases but very high growth rates # to avoid these observations acting as # large outliers for days_infectious in days_infectious_list: gamma = 1 / float(days_infectious) mask = (df['new_cases'] <= 25) & (df['gr_infected_{}'.format(days_infectious)] >= gamma * (5 - 1)) # Implicit upper bound on R df.loc[mask, ['infected_{}'.format(days_infectious), 'gr_infected_{}'.format(days_infectious)]] = np.nan # Set to NaN observations implausibly # high growth rates that are likely # due to data issues for days_infectious in days_infectious_list: gamma = 1 / float(days_infectious) mask = (df['gr_infected_{}'.format(days_infectious)] >= gamma * (10 - 1)) # Implicit upper bound on R df.loc[mask, ['infected_{}'.format(days_infectious), 'gr_infected_{}'.format(days_infectious)]] = np.nan # Remove initial NaN values for growth rates for country in df['Country/Region'].unique(): mask = df['Country/Region'] == country T = df.loc[mask, ].shape[0] df.loc[mask, 'days_since_min_cases'] = range(T) mask = df['days_since_min_cases'] >= 1 df = df.loc[mask, ] del df['days_since_min_cases'] # If requested, restrict sample period if restrict_end_sample: mask = df['Date'] <= end_date df = df.loc[mask, ] # Save final dataset df.to_csv('{}/dataset.csv'.format(output_folder), index = False) ``` #### File: python/estimate_R/estimate_R_KF.py ```python import os import sys sys.path.append(os.path.abspath(os.path.dirname(__file__) + '/' + '../..')) import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm import statsmodels.formula.api as smf import scipy import warnings from python.tools import ( clean_folder ) def estimate_R(y, gamma, n_start_values_grid = 0, maxiter = 200): """Estimate basic reproduction number using Kalman filtering techniques Args: y (np array): Time series of growth rate in infections gamma (double): Rate of recoveries (gamma) n_start_values_grid (int, optional): Number of starting values used in the optimization; the effective number of starting values is (n_start_values_grid ** 2) maxiter (int, optional): Maximum number of iterations Returns: dict: Dictionary containing the results R (np array): Estimated series for R se_R (np array): Estimated standard error for R flag (int): Optimization flag (0 if successful) sigma2_irregular (float): Estimated variance of the irregular component sigma2_level (float): Estimated variance of the level component gamma (float): Value of gamma used in the estimation """ assert isinstance(n_start_values_grid, int), \ "n_start_values_grid must be an integer" assert isinstance(maxiter, int), \ "maxiter must be an integer" assert n_start_values_grid >= 0 and maxiter > 0, \ "n_start_values_grid and max_iter must be positive" assert isinstance(y, np.ndarray), \ "y must be a numpy array" assert y.ndim == 1, \ "y must be a vector" # Setup model instance mod_ll = sm.tsa.UnobservedComponents(y, 'local level') # Estimate model if n_start_values_grid > 0: # If requested, use multiple starting # values for more robust optimization results start_vals_grid = np.linspace(0.01, 2.0, n_start_values_grid) * pd.Series(y).var() opt_res = [] for start_val_1 in start_vals_grid: for start_val_2 in start_vals_grid: res_ll = mod_ll.fit(start_params = np.array([start_val_1, start_val_2]), disp = False, maxiter = maxiter) opt_res.append({'obj_value': res_ll.mle_retvals['fopt'], 'start_val_1': start_val_1, 'start_val_2': start_val_2, 'flag': res_ll.mle_retvals['warnflag']}) # The optimizer minimizes the negative of # the likelihood, so find the minimum value opt_res = pd.DataFrame(opt_res) opt_res.sort_values(by = 'obj_value', ascending = True, inplace = True) res_ll = mod_ll.fit(start_params = np.array([opt_res['start_val_1'][0], opt_res['start_val_2'][0]]), maxiter = maxiter, disp = False) else: res_ll = mod_ll.fit(maxiter = maxiter, disp = False) R = 1 + 1 / (gamma) * res_ll.smoothed_state[0] se_R = (1 / gamma * (res_ll.smoothed_state_cov[0] ** 0.5))[0] return {'R': R, 'se_R': se_R, 'flag': res_ll.mle_retvals['warnflag'], 'sigma2_irregular': res_ll.params[0], 'sigma2_level': res_ll.params[1], 'signal_to_noise': res_ll.params[1] / res_ll.params[0], 'gamma': gamma} ################ ## Parameters ## ################ output_folder = './estimate_R/output/estimate_R_KF/' input_folder = './estimate_R/input/estimate_R_KF/' min_T = 20 gamma = 1 / 7.0 min_signal_to_noise = 0.01 max_signal_to_noise = 0.25 days_infectious = 7 # Baseline for of duration of infectiousness ############### ## Load data ## ############### clean_folder(output_folder) df = pd.read_csv('{}/dataset.csv'.format(input_folder)) df['Date'] = pd.to_datetime(df['Date']) # Impose minimum time-series observations df_temp = df.groupby('Country/Region').count()['gr_infected_{}'.format(days_infectious)].reset_index() df_temp.rename(columns = {'gr_infected_{}'.format(days_infectious): 'no_obs'}, inplace = True) df = pd.merge(df, df_temp, how = 'left') mask = df['no_obs'] >= min_T df = df.loc[mask, ] ################ ## Estimate R ## ################ df['R'] = np.nan df['se_R'] = np.nan df_optim_res = [] with warnings.catch_warnings(): # Ignore warnings from statsmodels # Instead, check later warnings.filterwarnings("ignore", message = "Maximum Likelihood optimization failed to converge. Check mle_retvals") for country in df['Country/Region'].unique(): mask = df['Country/Region'] == country df_temp = df.loc[mask, ].copy() y = df_temp['gr_infected_{}'.format(days_infectious)].values res = estimate_R(y, gamma = gamma) df.loc[mask, 'R'] = res['R'] df.loc[mask, 'se_R'] = res['se_R'] df_optim_res.append({'Country/Region': country, 'flag': res['flag'], 'sigma2_irregular': res['sigma2_irregular'], 'sigma2_level': res['sigma2_level'], 'signal_to_noise': res['signal_to_noise']}) df_optim_res = pd.DataFrame(df_optim_res) # Merge in optimization results df = pd.merge(df, df_optim_res, how = 'left') ################################### ## Filter out unreliable results ## ################################### # Unsuccessful optimization mask = df['flag'] != 0 df = df.loc[~mask, ] # Filter out implausible signal-to-noise ratios mask = (df['signal_to_noise'] <= min_signal_to_noise) | (df['signal_to_noise'] >= max_signal_to_noise) df = df.loc[~mask, ] # Collect optimization results df_optim_res = df.groupby('Country/Region').first()[['flag', 'sigma2_irregular', 'sigma2_level', 'signal_to_noise']].reset_index() df_optim_res.to_csv('{}/optim_res.csv'.format(output_folder), index = False) #################### ## Export results ## #################### df = df[['Country/Region', 'Date', 'R', 'se_R']].copy() df.reset_index(inplace = True) del df['index'] df['days_infectious'] = 1 / gamma # Calculate confidence intervals alpha = [0.05, 0.35] names = ['95', '65'] for aa, name in zip(alpha, names): t_crit = scipy.stats.norm.ppf(1 - aa / 2) df['ci_{}_u'.format(name)] = df['R'] + t_crit * df['se_R'] df['ci_{}_l'.format(name)] = df['R'] - t_crit * df['se_R'] # Save estimates df.to_csv('{}/estimated_R.csv'.format(output_folder), index = False) ``` #### File: python/stargazer/stargazer.py ```python from __future__ import print_function from statsmodels.regression.linear_model import RegressionResultsWrapper from numpy import round, sqrt class Stargazer: """ Class that is constructed with one or more trained OLS models from the statsmodels package. The user then can change the rendering options by chaining different methods to the Stargazer object and then render the results in either HTML or LaTeX. """ def __init__(self, models): self.models = models self.num_models = len(models) self.extract_data() self.reset_params() def validate_input(self): """ Check inputs to see if they are going to cause any problems further down the line. Any future checking will be added here. """ targets = [] for m in self.models: if not isinstance(m, RegressionResultsWrapper): raise ValueError('Please use trained OLS models as inputs') targets.append(m.model.endog_names) # if targets.count(targets[0]) != len(targets): # raise ValueError('Please make sure OLS targets are identical') self.dependent_variable = targets[0] def reset_params(self): """ Set all of the rendering parameters to their default settings. Run upon initialization but also allows the user to reset if they have made several changes and want to start fresh. Does not effect any of the underlying model data. """ self.title_text = None # self.show_header = True self.header = True # self.dep_var_name = 'Dependent variable:' self.dep_var_name = '' self.column_labels = None self.column_separators = None self.show_model_nums = True self.original_cov_names = None self.cov_map = None self.show_precision = True self.show_sig = True self.sig_levels = [0.1, 0.05, 0.01] self.sig_digits = 3 self.confidence_intervals = False self.show_footer = True self.custom_footer_text = [] self.show_n = True self.show_r2 = True self.show_adj_r2 = True self.show_residual_std_err = True self.show_f_statistic = True self.show_dof = True self.show_notes = True self.notes_label = 'Note:' self.notes_append = True self.custom_notes = [] def extract_data(self): """ Extract the values we need from the models and store for use or modification. They should not be able to be modified by any rendering parameters. """ self.validate_input() self.model_data = [] for m in self.models: self.model_data.append(self.extract_model_data(m)) covs = [] for md in self.model_data: covs = covs + list(md['cov_names']) self.cov_names = sorted(set(covs)) def extract_model_data(self, model): data = {} data['cov_names'] = model.params.index.values data['cov_values'] = model.params data['p_values'] = model.pvalues data['cov_std_err'] = model.bse data['conf_int_low_values'] = model.conf_int()[0] data['conf_int_high_values'] = model.conf_int()[1] data['r2'] = model.rsquared data['r2_adj'] = model.rsquared_adj data['resid_std_err'] = sqrt(model.scale) # data['f_statistic'] = model.fvalue # data['f_p_value'] = model.f_pvalue data['degree_freedom'] = model.df_model data['degree_freedom_resid'] = model.df_resid data['n_obs'] = model.nobs return data # Begin render option functions def title(self, title): self.title_text = title def show_header(self, show): assert type(show) == bool, 'Please input True/False' self.header = show def show_model_numbers(self, show): assert type(show) == bool, 'Please input True/False' self.show_model_nums = show def custom_columns(self, labels, separators=None): if separators is not None: assert type(labels) == list, 'Please input a list of labels or a single label string' assert type(separators) == list, 'Please input a list of column separators' assert len(labels) == len(separators), 'Number of labels must match number of columns' assert sum([int(type(s) != int) for s in separators]) == 0, 'Columns must be ints' assert sum(separators) == self.num_models, 'Please set number of columns to number of models' else: assert type(labels) == str, 'Please input a single string label if no columns specified' self.column_labels = labels self.column_separators = separators def significance_levels(self, levels): assert len(levels) == 3, 'Please input 3 significance levels' assert sum([int(type(l) != float) for l in levels]) == 0, 'Please input floating point values as significance levels' self.sig_levels = sorted(levels, reverse=True) def significant_digits(self, digits): assert type(digits) == int, 'The number of significant digits must be an int' assert digits < 10, 'Whoa hold on there bud, maybe use fewer digits' self.sig_digits = digits def show_confidence_intervals(self, show): assert type(show) == bool, 'Please input True/False' self.confidence_intervals = show def dependent_variable_name(self, name): assert type(name) == str, 'Please input a string to use as the depedent variable name' self.dep_var_name = name def covariate_order(self, cov_names): missing = set(cov_names).difference(set(self.cov_names)) assert not missing, ('Covariate order must contain subset of existing ' 'covariates: {} are not.'.format(missing)) self.original_cov_names = self.cov_names self.cov_names = cov_names def rename_covariates(self, cov_map): assert isinstance(cov_map, dict), 'Please input a dictionary with covariate names as keys' self.cov_map = cov_map def reset_covariate_order(self): if self.original_cov_names is not None: self.cov_names = self.original_cov_names def show_degrees_of_freedom(self, show): assert type(show) == bool, 'Please input True/False' self.show_dof = show def custom_note_label(self, notes_label): assert type(notes_label) == str, 'Please input a string to use as the note label' self.notes_label = notes_label def add_custom_notes(self, notes): assert sum([int(type(n) != str) for n in notes]) == 0, 'Notes must be strings' self.custom_notes = notes def append_notes(self, append): assert type(append) == bool, 'Please input True/False' self.notes_append = append def add_checkmarks(self, checkmarks): assert type(checkmarks) == list, 'Please input a list' for item in checkmarks: assert len(item['values']) == self.num_models, 'Please set number of checkmarks to number of models' assert type(item) == dict, 'Please input a dictionary for checkmarks' self.checkmarks = checkmarks # Begin HTML render functions def render_html(self): html = '' html += self.generate_header_html() html += self.generate_body_html() html += self.generate_footer_html() return html def generate_header_html(self): header = '' if not self.show_header: return header if self.title_text is not None: header += self.title_text + '<br>' header += '<table style="text-align:center"><tr><td colspan="' header += str(self.num_models + 1) + '" style="border-bottom: 1px solid black"></td></tr>' if self.dep_var_name is not None: header += '<tr><td style="text-align:left"></td><td colspan="' + str(self.num_models) header += '"><em>' + self.dep_var_name + '</em></td></tr>' header += '<tr><td style="text-align:left"></td>' if self.column_labels is not None: if type(self.column_labels) == str: header += '<td colspan="' + str(self.num_models) + '">' header += self.column_labels + "</td></tr>" else: # The first table column holds the covariates names: header += '<tr><td></td>' for i, label in enumerate(self.column_labels): sep = self.column_separators[i] header += '<td colspan="{}">{}</td>'.format(sep, label) header += '</tr>' if self.show_model_nums: header += '<tr><td style="text-align:left"></td>' for num in range(1, self.num_models + 1): header += '<td>(' + str(num) + ')</td>' header += '</tr>' header += '<tr><td colspan="' + str(self.num_models + 1) header += '" style="border-bottom: 1px solid black"></td></tr>' return header def generate_body_html(self): """ Generate the body of the results where the covariate reporting is. """ body = '' for cov_name in self.cov_names: body += self.generate_cov_rows_html(cov_name) return body def generate_cov_rows_html(self, cov_name): cov_text = '' cov_text += self.generate_cov_main_html(cov_name) if self.show_precision: cov_text += self.generate_cov_precision_html(cov_name) else: cov_text += '<tr></tr>' return cov_text def generate_cov_main_html(self, cov_name): cov_print_name = cov_name if self.cov_map is not None: cov_print_name = self.cov_map.get(cov_print_name, cov_name) cov_text = '<tr><td style="text-align:left">' + cov_print_name + '</td>' for md in self.model_data: if cov_name in md['cov_names']: cov_text += '<td>' cov_text += str(round(md['cov_values'][cov_name], self.sig_digits)) if self.show_sig: cov_text += '<sup>' + str(self.get_sig_icon(md['p_values'][cov_name])) + '</sup>' cov_text += '</td>' else: cov_text += '<td></td>' cov_text += '</tr>' return cov_text def generate_cov_precision_html(self, cov_name): cov_text = '<tr><td style="text-align:left"></td>' for md in self.model_data: if cov_name in md['cov_names']: cov_text += '<td>(' if self.confidence_intervals: cov_text += str(round(md['conf_int_low_values'][cov_name], self.sig_digits)) + ' , ' cov_text += str(round(md['conf_int_high_values'][cov_name], self.sig_digits)) else: cov_text += str(round(md['cov_std_err'][cov_name], self.sig_digits)) cov_text += ')</td>' else: cov_text += '<td></td>' cov_text += '</tr>' return cov_text def get_sig_icon(self, p_value, sig_char='*'): if p_value >= self.sig_levels[0]: return '' elif p_value >= self.sig_levels[1]: return sig_char elif p_value >= self.sig_levels[2]: return sig_char * 2 else: return sig_char * 3 def generate_footer_html(self): """ Generate the footer of the table where model summary section is. """ footer = '<td colspan="' + str(self.num_models + 1) + '" style="border-bottom: 1px solid black"></td></tr>' if not self.show_footer: return footer footer += self.generate_observations_html() footer += self.generate_r2_html() footer += self.generate_r2_adj_html() if self.show_residual_std_err: footer += self.generate_resid_std_err_html() if self.show_f_statistic: footer += self.generate_f_statistic_html() footer += '<tr><td colspan="' + str(self.num_models + 1) + '" style="border-bottom: 1px solid black"></td></tr>' footer += self.generate_notes_html() footer += '</table>' return footer def generate_observations_html(self): obs_text = '' if not self.show_n: return obs_text obs_text += '<tr><td style="text-align: left">Observations</td>' for md in self.model_data: obs_text += '<td>' + str(md['degree_freedom'] + md['degree_freedom_resid'] + 1) + '</td>' obs_text += '</tr>' return obs_text def generate_r2_html(self): r2_text = '' if not self.show_r2: return r2_text r2_text += '<tr><td style="text-align: left">R<sup>2</sup></td>' for md in self.model_data: r2_text += '<td>' + str(round(md['r2'], self.sig_digits)) + '</td>' r2_text += '</tr>' return r2_text def generate_r2_adj_html(self): r2_text = '' if not self.show_r2: return r2_text r2_text += '<tr><td style="text-align: left">Adjusted R<sup>2</sup></td>' for md in self.model_data: r2_text += '<td>' + str(round(md['r2_adj'], self.sig_digits)) + '</td>' r2_text += '</tr>' return r2_text def generate_resid_std_err_html(self): rse_text = '' if not self.show_r2: return rse_text rse_text += '<tr><td style="text-align: left">Residual Std. Error</td>' for md in self.model_data: rse_text += '<td>' + str(round(md['resid_std_err'], self.sig_digits)) if self.show_dof: rse_text += '(df = ' + str(round(md['degree_freedom_resid'])) + ')' rse_text += '</td>' rse_text += '</tr>' return rse_text def generate_f_statistic_html(self): f_text = '' if not self.show_r2: return f_text f_text += '<tr><td style="text-align: left">F Statistic</td>' for md in self.model_data: f_text += '<td>' + str(round(md['f_statistic'], self.sig_digits)) f_text += '<sup>' + self.get_sig_icon(md['f_p_value']) + '</sup>' if self.show_dof: f_text += '(df = ' + str(md['degree_freedom']) + '; ' + str(md['degree_freedom_resid']) + ')' f_text += '</td>' f_text += '</tr>' return f_text def generate_notes_html(self): notes_text = '' if not self.show_notes: return notes_text notes_text += '<tr><td style="text-align: left">' + self.notes_label + '</td>' if self.notes_append: notes_text += self.generate_p_value_section_html() notes_text += '</tr>' notes_text += self.generate_additional_notes_html() return notes_text def generate_p_value_section_html(self): notes_text = """ <td colspan="{}" style="text-align: right"> <sup>*</sup>p&lt;{}; <sup>**</sup>p&lt;{}; <sup>***</sup>p&lt;{} </td>""".format(self.num_models, *self.sig_levels) return notes_text def generate_additional_notes_html(self): notes_text = '' if len(self.custom_notes) == 0: return notes_text i = 0 for i, note in enumerate(self.custom_notes): if (i != 0) | (self.notes_append): notes_text += '<tr>' notes_text += '<td></td><td colspan="' + str(self.num_models) + '" style="text-align: right">' + note + '</td></tr>' return notes_text # Begin LaTeX render functions def render_latex(self, only_tabular=False): latex = '' latex += self.generate_header_latex(only_tabular=only_tabular) latex += self.generate_body_latex() latex += self.generate_footer_latex(only_tabular=only_tabular) return latex # def generate_header_latex(self, only_tabular=False): # header = '' # if not only_tabular: # header += '\\begin{table}[!htbp] \\centering\n' # if not self.show_header: # return header # if self.title_text is not None: # header += ' \\caption{' + self.title_text + '}\n' # header += ' \\label{}\n' # header += '\\begin{tabular}{@{\\extracolsep{5pt}}lcc}\n' # header += '\\\\[-1.8ex]\\hline\n' # header += '\\hline \\\\[-1.8ex]\n' # if self.dep_var_name is not None: # header += '& \\multicolumn{' + str(self.num_models) + '}{c}' # header += '{\\textit{' + self.dep_var_name + '}} \\\n' # header += '\\cr \\cline{' + str(self.num_models) + '-' + str(self.num_models + 1) + '}\n' # if self.column_labels is not None: # if type(self.column_labels) == str: # header += '\\\\[-1.8ex] & \\multicolumn{' + str(self.num_models) + '}{c}{' + self.column_labels + '} \\\\' # else: # header += '\\\\[-1.8ex] ' # for i, label in enumerate(self.column_labels): # header += '& \\multicolumn{' + str(self.column_separators[i]) # header += '}{c}{' + label + '} ' # header += ' \\\\\n' # if self.show_model_nums: # header += '\\\\[-1.8ex] ' # for num in range(1, self.num_models + 1): # header += '& (' + str(num) + ') ' # header += '\\\\\n' # header += '\\hline \\\\[-1.8ex]\n' # return header def generate_header_latex(self, only_tabular=False): header = '\\begin{table}[!htbp] \\centering\n' if self.title_text is not None: header += ' \\caption{' + self.title_text + '}\n' header += ' \\label{}\n\\begin{tabular}{@{\\extracolsep{5pt}}' header += 'l{}}}\n'.format('c' * self.num_models) header += '\\toprule' # header += '\\\\[-1.8ex]\\hline\n' # header += '\\hline ' if self.dep_var_name != '': # header += '\\\\[-1.8ex]\n' header += '& \\multicolumn{' + str(self.num_models) + '}{c}' header += '{\\textit{' + self.dep_var_name + '}} \\\n' header += '\\cr \\cmidrule{' + str(2) + '-' + str(self.num_models + 1) + '}\n' else: header += '\n' if self.column_labels is not None: if type(self.column_labels) == str: # header += '\\\\[-1.8ex] & \\multicolumn{' + str(self.num_models) + '}{c}{' + self.column_labels + '} \\\\' header += '\\\\ & \\multicolumn{' + str(self.num_models) + '}{c}{' + self.column_labels + '} \\\\' else: # header += '\\\\[-1.8ex] ' header += '\\\\ ' for i, label in enumerate(self.column_labels): header += '& \\multicolumn{' + str(self.column_separators[i]) header += '}{c}{' + label + '} ' header += ' \\\\\n' if self.show_model_nums: # header += '\\\\[-1.8ex] ' for num in range(1, self.num_models + 1): header += '& (' + str(num) + ') ' header += '\\\\\n' # header += '\\hline \\\\[-1.8ex]\n' header += '\\midrule \n' return header def generate_body_latex(self): """ Generate the body of the results where the covariate reporting is. """ body = '' for cov_name in self.cov_names: body += self.generate_cov_rows_latex(cov_name) body += ' ' for _ in range(self.num_models): body += '& ' body += '\\\\\n' return body def generate_cov_rows_latex(self, cov_name): cov_text = '' cov_text += self.generate_cov_main_latex(cov_name) if self.show_precision: cov_text += self.generate_cov_precision_latex(cov_name) else: cov_text += '& ' return cov_text def generate_cov_main_latex(self, cov_name): cov_print_name = cov_name if self.cov_map is not None: if cov_name in self.cov_map: cov_print_name = self.cov_map[cov_name] cov_text = ' ' + cov_print_name + ' ' for md in self.model_data: if cov_name in md['cov_names']: cov_text += '& ' + str(round(md['cov_values'][cov_name], self.sig_digits)) if self.show_sig: cov_text += '$^{' + str(self.get_sig_icon(md['p_values'][cov_name])) + '}$' cov_text += ' ' else: cov_text += '& ' cov_text += '\\\\\n' return cov_text def generate_cov_precision_latex(self, cov_name): cov_text = ' ' for md in self.model_data: if cov_name in md['cov_names']: cov_text += '& (' if self.confidence_intervals: cov_text += str(round(md['conf_int_low_values'][cov_name], self.sig_digits)) + ' , ' cov_text += str(round(md['conf_int_high_values'][cov_name], self.sig_digits)) else: cov_text += str(round(md['cov_std_err'][cov_name], self.sig_digits)) cov_text += ') ' else: cov_text += '& ' cov_text += '\\\\\n' return cov_text # def generate_footer_latex(self, only_tabular=False): # """ # Generate the footer of the table where # model summary section is. # """ # footer = '\\hline \\\\[-1.8ex]\n' # if not self.show_footer: # return footer # footer += self.generate_observations_latex() # footer += self.generate_r2_latex() # footer += self.generate_r2_adj_latex() # if self.show_residual_std_err: # footer += self.generate_resid_std_err_latex() # # if self.show_f_statistic: # # footer += self.generate_f_statistic_latex() # footer += '\\hline\n\\hline \\\\[-1.8ex]\n' # footer += self.generate_notes_latex() # footer += '\\end{tabular}' # if not only_tabular: # footer += '\n\\end{table}' # return footer def generate_footer_latex(self, only_tabular=False): """ Generate the footer of the table where model summary section is. """ footer = '\\hline \\\\[-1.8ex]\n' if not self.show_footer: return footer footer += self.generate_observations_latex() footer += self.generate_r2_latex() # footer += self.generate_r2_adj_latex() footer += self.generate_checkmarks_latex() # footer += self.generate_resid_std_err_latex() # footer += self.generate_f_statistic_latex() # footer += '\\hline\n\\hline \\\\[-1.8ex]\n' footer += '\\bottomrule\n' footer += '\\\\[-1.8ex]' footer += self.generate_notes_latex() footer += '\\end{tabular}\n\\end{table}' return footer # def generate_observations_latex(self): # obs_text = '' # if not self.show_n: # return obs_text # obs_text += ' Observations ' # for md in self.model_data: # obs_text += '& ' + str(md['degree_freedom'] + md['degree_freedom_resid'] + 1) + ' ' # obs_text += '\\\\\n' # return obs_text def generate_observations_latex(self): obs_text = '' if not self.show_n: return obs_text obs_text += ' $N$ ' for md in self.model_data: obs_text += '& ' + '{:,}'.format(int(md['n_obs'])) + ' ' obs_text += '\\\\\n' return obs_text def generate_r2_latex(self): r2_text = '' if not self.show_r2: return r2_text r2_text += ' $R^{2}$ ' for md in self.model_data: r2_text += '& ' + str(round(md['r2'], self.sig_digits)) + ' ' r2_text += '\\\\\n' return r2_text def generate_r2_adj_latex(self): r2_text = '' if not self.show_r2: return r2_text r2_text += ' Adjusted R${2}$ ' for md in self.model_data: r2_text += '& ' + str(round(md['r2_adj'], self.sig_digits)) + ' ' r2_text += '\\\\\n' return r2_text def generate_checkmarks_latex(self): checkmarks_text = '' if not self.checkmarks: return checkmarks_text for item in self.checkmarks: checkmarks_text += ' {} '.format(item['label']) for ii in range(self.num_models): if item['values'][ii] == True: mark = '\\checkmark' else: mark = '' checkmarks_text += '& {} '.format(mark) if ii == (self.num_models - 1): checkmarks_text += '\\\\\n' return checkmarks_text def generate_resid_std_err_latex(self): rse_text = '' if not self.show_r2: return rse_text rse_text += ' Residual Std. Error ' for md in self.model_data: rse_text += '& ' + str(round(md['resid_std_err'], self.sig_digits)) if self.show_dof: rse_text += '(df = ' + str(round(md['degree_freedom_resid'])) + ')' rse_text += ' ' rse_text += ' \\\\\n' return rse_text def generate_f_statistic_latex(self): f_text = '' if not self.show_r2: return f_text f_text += ' F Statistic ' for md in self.model_data: f_text += '& ' + str(round(md['f_statistic'], self.sig_digits)) f_text += '$^{' + self.get_sig_icon(md['f_p_value']) + '}$ ' if self.show_dof: f_text += '(df = ' + str(md['degree_freedom']) + '; ' + str(md['degree_freedom_resid']) + ')' f_text += ' ' f_text += '\\\\\n' return f_text def generate_notes_latex(self): notes_text = '' if not self.show_notes: return notes_text notes_text += '\\textit{' + self.notes_label + '}' if self.notes_append: notes_text += self.generate_p_value_section_latex() notes_text += self.generate_additional_notes_latex() return notes_text # def generate_p_value_section_latex(self): # notes_text = '' # notes_text += ' & \\multicolumn{' + str(self.num_models) + '}{r}{$^{' + self.get_sig_icon(self.sig_levels[0] - 0.001) + '}$p$<$' + str(self.sig_levels[0]) + '; ' # notes_text += '$^{' + self.get_sig_icon(self.sig_levels[1] - 0.001) + '}$p$<$' + str(self.sig_levels[1]) + '; ' # notes_text += '$^{' + self.get_sig_icon(self.sig_levels[2] - 0.001) + '}$p$<$' + str(self.sig_levels[2]) + '} \\\\\n' # return notes_text def generate_p_value_section_latex(self): notes_text = '' notes_text += ' & \\multicolumn{' + str(self.num_models) + '}{r}{$^{' + self.get_sig_icon(self.sig_levels[0] - 0.001) + '}p<$' + str(self.sig_levels[0]) + '; ' notes_text += '$^{' + self.get_sig_icon(self.sig_levels[1] - 0.001) + '}p<$' + str(self.sig_levels[1]) + '; ' notes_text += '$^{' + self.get_sig_icon(self.sig_levels[2] - 0.001) + '}p<$' + str(self.sig_levels[2]) + '} \\\\\n' return notes_text def generate_additional_notes_latex(self): notes_text = '' # if len(self.custom_notes) == 0: # return notes_text for note in self.custom_notes: # if (i != 0) | (self.notes_append): # notes_text += '\\multicolumn{' + str(self.num_models) + '}{r}\\textit{' + note + '} \\\\\n' # else: # notes_text += ' & \\multicolumn{' + str(self.num_models) + '}{r}\\textit{' + note + '} \\\\\n' notes_text += ' & \\multicolumn{' + str(self.num_models) + '}{r}\\textit{' + note + '} \\\\\n' return notes_text # Begin Markdown render functions # def render_markdown(self): # print("sorry haven't made this yet :/") # Begin ASCII render functions # def render_ascii(self): # print("sorry haven't made this yet :/") ``` #### File: code/python/tools.py ```python import os import shutil import numpy as np import pandas as pd import scipy.integrate, scipy.stats, scipy.optimize, scipy.signal from scipy.stats import mannwhitneyu import statsmodels.formula.api as smf import pystan def clean_folder(folder): """Create a new folder, or if the folder already exists, delete all containing files Args: folder (string): Path to folder """ if os.path.isdir(folder): shutil.rmtree(folder) try: os.makedirs(folder) except OSError as e: if e.errno != errno.EEXIST: raise def get_data_for_stan(y): """Convenience function for collecting data for STAN estimation Args: y (np vector): Data series for Bayesian filtering Returns: dict: Data for Stan estimation """ assert y.ndim == 1, \ "y must be a vector" assert len(y) > 0, \ "y must have positive length" assert isinstance(y, np.ndarray), \ "y must be a numpy array" N_obs = len(pd.Series(y).dropna()) N_mis = np.sum(np.isnan(y)) ii_obs = list(range(1, N_obs + N_mis + 1)) ii_mis = [] if N_mis > 0: for ii in np.argwhere(np.isnan(y)): ii_mis.append(ii[0] + 1) ii_obs.remove(ii[0] + 1) return {'N_obs': N_obs, 'N_mis': N_mis, 'ii_obs': ii_obs, 'ii_mis': ii_mis, 'y_obs': pd.Series(y).dropna()} def estimate_R(y, gamma, stm_missing, stm_no_missing, num_iter, num_chains, num_warmup, rng, sig_levels, full_output = False): """Estimate R using Bayesian Kalman smoothing Args: y (np array): Data series for the growth rate of infected individuals gamma (double): Inverse of average infectiousness duration stm_missing (pickle): Stan model (for case with missing data) stm_no_missing (pickle): Stan model (for case without missing data) num_iter (int): Number of iterations num_chains (int): Number of MCMC chains num_warmup (int): Number of warmup periods rng (obj): Numpy random state sig_levels (list): List of significance levels for credible bounds full_output (bool, optional): If True, return full output from Stan Returns: TYPE: Description """ assert y.ndim == 1, \ "y must be a vector" assert len(y) > 0, \ "y must have positive length" assert isinstance(y, np.ndarray), \ "y must be a numpy array" assert isinstance(num_chains, int) and isinstance(num_iter, int) and isinstance(num_warmup, int), \ "num_chains, num_iter, and num_warmup must be integers" assert num_chains > 0 and num_iter > 0 and num_warmup > 0, \ "num_chains, num_iter, and num_warmup must be positive" assert len(sig_levels) >= 1 and all(isinstance(x, int) for x in sig_levels), \ "sig_levels must be a list with only integers" # Get data in Stan format s_data = get_data_for_stan(y) # Estimate model if np.sum(np.isnan(y)) > 0: fit = stm_missing.sampling(data = s_data, iter = num_iter, chains = num_chains, warmup = num_warmup, verbose = False, seed = rng) else: fit = stm_no_missing.sampling(data = s_data, iter = num_iter, chains = num_chains, warmup = num_warmup, verbose = False, seed = rng) fit_res = fit.extract(permuted = True) # Collect results res = {} res['R'] = 1 + 1 / gamma * fit_res['mu'].mean(axis = 0) for aa in sig_levels: ub = 1 + 1 / gamma * np.percentile(fit_res['mu'], axis = 0, q = 100 - aa / 2.0) lb = np.maximum(1 + 1 / gamma * np.percentile(fit_res['mu'], axis = 0, q = aa / 2.0), 0.0) res['ub_{}'.format(100 - aa)] = ub res['lb_{}'.format(100 - aa)] = lb res['signal_to_noise'] = fit_res['signal_to_noise'].mean() res['var_irregular'] = (1 / fit_res['precision_irregular']).mean() # Extract convergence statistics fit_summary = fit.summary() df_conv_stats = pd.DataFrame(fit_summary['summary']) df_conv_stats.columns = fit_summary['summary_colnames'] df_conv_stats['var_name'] = fit_summary['summary_rownames'] mask = df_conv_stats['var_name'].apply(lambda x: 'mu' in x) df_conv_stats = df_conv_stats.loc[mask, ] res['n_eff_pct'] = df_conv_stats['n_eff'].min() / float(num_chains * (num_iter - num_warmup)) res['Rhat_diff'] = (df_conv_stats['Rhat'] - 1).abs().max() # If requested, extract full Stan fit if full_output: res['stan_fit'] = fit return res def mean_se(x, robust = True): """Aggregation function for pandas to calculate standard errors for the mean Args: x (series): pandas Series robust (bool, optional): if True, calculate heteroskedasticity-robust standard errors Returns: float: standard error """ x = pd.DataFrame(x) x.columns = ['x'] if robust: mod = smf.ols('x ~ 1', data = x).fit(cov_type = 'HC2') else: mod = smf.ols('x ~ 1', data = x).fit() return mod.bse['Intercept'] def simulate_AR1(rho, sigma, T, shocks = None): """Simulate a time series for an AR(1) process with x_{t + 1} = rho x_t + eps_{t+1} where eps_{t + 1} ~ N(0, sigma ^ 2). Initial condition is x_0 ~ N(0, sigma ^ 2 / (1 - rho ^ 2)) Persistence parameter must lie in (-1, 1) for an AR(1) to be simulated. Args: rho (float): AR(1) persistence parameter sigma (float): Standard deviation of shocks T (int): Length of simulated time series shocks (array, optional): If provided, use the time series in shocks for the disturbances (eps) Returns: dict: Dictionary, contains: shocks (float): Simulated shocks (eps) x (float): Simulated time series """ assert rho > - 1 and rho < 1, \ 'Persistence parameter should be in (-1, 1).' if shocks is None: shocks = np.random.randn(1, T).flatten() * sigma shocks[0] = np.random.randn(1, 1) * sigma / np.sqrt(1 - rho ** 2) return {'shocks': shocks, 'x': scipy.signal.lfilter([1] ,[1, -rho], shocks)} ```
{ "source": "3D-Hack/team10_backend", "score": 3 }
#### File: 3D-Hack/team10_backend/main.py ```python import os import requests import datetime import json def get_average_kilometerage(vrm, average=10000): headers = { "x-api-key": os.getenv('MOT_API_KEY'), "Content-Type": "application/json", } response = requests.get( os.getenv('MOT_API_URL'), params={"registration": vrm}, headers=headers ) if response.status_code != 200: raise Exception("OMG. Not 200.") response_json = response.json()[0] if "motTests" not in response_json: return average year = datetime.datetime.today().year lasttest = response_json["motTests"][0] distance = int(lasttest["odometerValue"]) if lasttest["odometerUnit"] == "mi": distance = distance / 0.62137119 regyear = datetime.datetime.strptime( response_json["registrationDate"], "%Y.%m.%d" ).year apart = year - regyear return distance / apart # Press ⌃R to execute it or replace it with your code. # Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings. def get_vehicle_info(vrm): headers = { "x-api-key": os.getenv('DVLA_API_KEY'), "Content-Type": "application/json", } response = requests.post( os.getenv('DVLA_API_URL'), json={"registrationNumber": vrm}, headers=headers, ) if response.status_code != 200: raise Exception("OMG. Not 200.") motStatus = response.json()["motStatus"] in ("Valid", "Not valid") average = 10000 if motStatus: average = get_average_kilometerage(vrm) convert_co2_result = convert_co2(response.json()["co2Emissions"], average) removed = convert_co2_result.popitem() return { "co2": response.json()["co2Emissions"], "make": response.json()["make"], "colour": response.json()["colour"], "averageKilometersYear": round(average), "convertCo2": convert_co2_result, "text_string": removed[1] } def format_reponse_string(num_item, item): """ Hackathon level string formating. """ return ( str(int(num_item)) + (" " + item + "s" if num_item > 1 else " " + item) if num_item > 0 else "" ) def convert_co2(co2, mileage): """ Convert emmissions to some other stats co2 in g/km mileage in km """ co2_target = 90 # gCO2/km target from the eu. total_co2 = (co2 - co2_target) * mileage # set some co2 grams equivalent trees, steaks, cheese, avocado = 9999, 4000, 3000, 200 num_trees, rem = divmod(total_co2, trees) num_steak, rem = divmod(rem, steaks) num_cheese, rem = divmod(rem, cheese) num_avocado, rem = divmod(rem, avocado) # 100*long_haul_flight*passengers rocket_equivalents = round(100 * 2000000 * 4 / total_co2) # Dont judge me! i think it works tree_string = format_reponse_string(num_trees, "tree") steak_string = format_reponse_string(num_steak, "steak") avo_string = format_reponse_string(num_avocado, "avo") cheese_string = format_reponse_string(num_cheese, "cheesey kilo") msg = ( f"Your car is producing {total_co2/1000:.1f} kg CO2 per year over the EU target (90 g/km). " + f"You can offset that by planting or saving {tree_string} and " + f"avoiding {steak_string}, {cheese_string}, {avo_string}." + f" Or we could forgo 1 of Branson/Bezos rocket trips and drive for {rocket_equivalents} years." ) msg = msg.replace(" , ", " ").replace(", ,", ",").replace(", .", ".") if msg.count(",") > 1: msg = ".".join(msg.rsplit(",", 1)) if msg.count(",") > 0: msg = " and".join(msg.rsplit(",", 1)) msg = msg.replace(" ", " ") return { "trees": num_trees, "avocado": num_avocado, "steaks": num_steak, "cheese": num_cheese, "text_string": msg, } def lambda_function(event, context): vrm = event["queryStringParameters"]["vrm"] print(event) myvar = get_vehicle_info(vrm) response = { "statusCode": 200, "body": json.dumps(myvar), "headers": {"Access-Control-Allow-Origin": "*"}, } return response # Press the green button in the gutter to run the script. if __name__ == "__main__": print(get_vehicle_info(input('Enter VRM: '))) ```
{ "source": "3dh-de/pishower", "score": 3 }
#### File: 3dh-de/pishower/iocontrol.py ```python import time from pishowerutils import logger try: import RPi.GPIO as GPIO except RuntimeError: logger.error('Error importing RPi.GPIO! Superuser privileges needed!') quit(-1) class RelayControl: """ Easy GPIO control to toggle relais """ invertedLevels = True _state_on = GPIO.LOW _state_off = GPIO.HIGH _registered_outs = [] def __init__(self, outports=[], inverted=True): """ Init GPIO interface """ self.invertedLevels = inverted if not inverted: self._state_on, self._state_off = self._state_off, self._state_on self._states = {self._state_on: 'ON', self._state_off: 'OFF'} GPIO.setmode(GPIO.BCM) # BCM-numbering (GPIO 17) instead of pin (11) for port in outports: GPIO.setup(port, GPIO.OUT, initial=self._state_off) self._registered_outs.append(port) logger.debug('init GPIO {} as output'.format(port)) time.sleep(0.5) def __del__(self): """ Clear GPIO interface """ GPIO.cleanup() def toggle_output(self, port, value=-1): if port not in self._registered_outs: logger.warning('Cannot toggle unregistered GPIO {0}!'.format(port)) return if value is -1: value = GPIO.input(port) logger.debug('toggle GPIO {0} from {1} to {2}'.format(port, self._states[value], self._states[not value])) value = not value elif self.invertedLevels: value = not value state = GPIO.HIGH if value > 0 else GPIO.LOW GPIO.output(port, state) logger.debug('set GPIO {0} to {1}'.format(port, self._states[state])) time.sleep(0.01) # command line execution if __name__ == '__main__': relay1 = 17 # GPIO 17 / Pin 11 auf Ausgang setzen relay2 = 27 # GPIO 27 / Pin 13 auf Ausgang setzen try: control = RelayControl([relay1, relay2]) time.sleep(2.0) logger.debug('Testing invalid port...') control.toggle_output(4, True) logger.debug('Switching relais to ON...') control.toggle_output(relay1, True) control.toggle_output(relay2, True) time.sleep(2.0) logger.debug('Toggling relais...') control.toggle_output(relay1) time.sleep(2.0) control.toggle_output(relay2) time.sleep(2.0) logger.debug('Switching relais2 to OFF...') control.toggle_output(relay2, False) time.sleep(2.0) logger.debug('Switching relais2 to ON...') control.toggle_output(relay2, True) time.sleep(2.0) except KeyboardInterrupt: logger.debug('Key pressed - finishing now...') except: logger.error('Unknown error received. Reading aborted!') ``` #### File: 3dh-de/pishower/ledthermometer.py ```python import time import Adafruit_DHT import max7219.led as led from max7219.font import proportional, SINCLAIR_FONT, TINY_FONT, CP437_FONT # create matrix device device = led.matrix(cascaded=4) device.orientation(90) # Parse command line parameters. sensor_args = {'11': Adafruit_DHT.DHT11, '22': Adafruit_DHT.DHT22, '2302': Adafruit_DHT.AM2302} # sensor = sensor_args['11'] # sensor_gpio_pin = 27 sensor = sensor_args['2302'] sensor_gpio_pin = 17 sensor_correction = 0.0 def fadeMessage(msg, seconds=2.5, f=TINY_FONT): """ display given message string by fading in and out the brightness """ device.brightness(0) device.show_message(msg, font=f, always_scroll=False) for intensity in range(8): device.brightness(intensity) time.sleep(0.050) time.sleep(2.50) for intensity in range(8): device.brightness(7 - intensity) time.sleep(0.050) return try: device.clear() while True: msg = u'{0}'.format(time.strftime('%H:%M')) fadeMessage(msg, 2.5, TINY_FONT) time.sleep(0.5) humidity, temperature = Adafruit_DHT.read_retry(sensor, sensor_gpio_pin) # temperature += sensor_correction if humidity is not None and temperature is not None: msg = u'{0:0.1f}c {1:0.0f}'.format(temperature, humidity) fadeMessage(msg, 2.5, TINY_FONT) time.sleep(0.5) # Abbruch durch Taste Strg-C except KeyboardInterrupt: device.clear() ``` #### File: 3dh-de/pishower/pishowermain.py ```python import time from threading import Thread from rfidreader import UsbRfidReader from iocontroltimer import IOControlTimer from iocontrol import RelayControl from lcdcontrol import LcdControl from pishowerutils import logger class PiShowerMain(Thread): """ Main control of PiShower system Controls the I/O devices and logic to switch the magnet valves for the shower cabin water. There are separate valves for cold (GPIO 17, blue cable) and warm (GPIO 27, yellow cable) water, switched by relays connected to GPIO 17+27. An I2C LCD 16x2 display shows the current state and messages for the user. By an attached USB Mifare RFID/NFC reader the users authenticate and start the shower for a predefined time. After the time is expired, all valves are closed by an timeout event. """ shower_time = 420 shower_id = 1 _gpio_cold_water = 17 _gpio_warm_water = 27 _cardReader = None _showerTimer = None _relays = None _display = None __running = False def __init__(self, shower_id=1, shower_seconds=420): """ Init card reader, display and I/O controls """ Thread.__init__(self) try: if shower_seconds < 30: logger.error('invalid shower time given! time must be > 30s') raise AttributeError() self.shower_id = shower_id self.shower_time = shower_seconds self._cardReader = UsbRfidReader() self._showerTimer = IOControlTimer(self.shower_time) self._relays = RelayControl([self._gpio_cold_water, self._gpio_warm_water]) self._display = LcdControl() self.__running = False time.sleep(1.0) logger.debug('shower control ready') except Exception as error: logger.error('Error during init of main control! {0}'.format(error)) def __del__(self): """ Close all devices and stop timers """ try: self.stop() except Exception as error: logger.error('Error in destructor of main control! {0}'.format(error)) def start(self): """ Init timers, reader and display user message """ self.__running = True Thread.start(self) try: logger.debug('starting shower control...') time.sleep(1.0) except Exception as error: logger.error('Error during starting main control! {0}'.format(error)) def stop(self): """ Close all valves (relays), stop timers and display warning """ try: logger.warning('stopping and locking shower control...') self.__running = False if self._showerTimer: self._showerTimer.stop() if self._relays: self._relays.toggle_output(self._gpio_cold_water, False) self._relays.toggle_output(self._gpio_warm_water, False) if self._display: self.show_message_error() except Exception as error: logger.error('Error during stopping main control! {0}'.format(error)) def run(self): """ Handle card reader events and logic for shower control """ if self._cardReader is None: logger.error('No card reader available! Aborting!') self.stop() return if self._relays is None: logger.error('No I/O control for relays available! Aborting!') self.stop() return try: logger.debug('running main control loop...') self.show_message_ready() shower_active = False start_time = None while self.__running: code = self._cardReader.readline() # codes must be read to be cleared from buffer if shower_active: # a shower process was started code = None minutes_left = 0 # TODO: add minutes left calc here if self._showerTimer is None: logger.warning('No timer found! Stopped shower process!') shower_active = False self.show_message_ready() else: if not self._showerTimer.is_finished(): self.show_message_processing(minutes_left) else: logger.debug('stopped shower process on timeout') shower_active = False self.show_message_stop() if self._relays: self._relays.toggle_output(self._gpio_cold_water, False) self._relays.toggle_output(self._gpio_warm_water, False) time.sleep(6.0) self.show_message_ready() elif code is not None: # wait for request to start new shower process logger.debug('found a code: \'{0}\''.format(code)) # TODO: add validator here self.show_message_processing(self.shower_time//60) shower_active = True if self._relays: self._relays.toggle_output(self._gpio_cold_water, True) self._relays.toggle_output(self._gpio_warm_water, True) if self._showerTimer: self._showerTimer.start() time.sleep(0.2) logger.debug('stopping main control loop...') except Exception as error: logger.error('Error in main control loop! {0}'.format(error)) def show_message_ready(self): if self._display: self._display.show('Dusche {0} FREI'.format(self.shower_id), 1) self._display.show('>>> Karte ?? <<<', 2) def show_message_processing(self, shower_time): if self._display: self._display.show('Duschzeit {0:3d}min'.format(shower_time), 1) self._display.show('>>> Karte OK <<<', 2) def show_message_error(self): if self._display: self._display.show('Dusche {0} AUS'.format(self.shower_id), 1) self._display.show('>>> STOERUNG <<<', 2) def show_message_stop(self): if self._display: self._display.show('Dusche {0} BELEGT'.format(self.shower_id), 1) self._display.show('>>> GESPERRT <<<', 2) # exec tests if __name__ == "__main__": try: main = PiShowerMain(1, 40) main.start() while main.is_alive(): time.sleep(0.2) except KeyboardInterrupt: logger.debug('Key pressed - finishing now...') except Exception as error: logger.error('Error in main control! {0}'.format(error)) finally: main.stop() ```
{ "source": "3d-hub/3d-hub-connector", "score": 2 }
#### File: 3d-hub-connector/tests/test_announcements.py ```python import datetime import json import unittest import unittest.mock as mock import pytest from fdm_connector import FdmConnectorPlugin from fdm_connector.constants import Errors, State from tests.utils import mock_settings_get, mock_settings_global_get, mock_settings_custom, create_fake_at, \ mocked_host_intercepted class TestPluginAnnouncing(unittest.TestCase): @classmethod def setUp(cls): cls.settings = mock.MagicMock() # Replace or refine with set/get cls.logger = mock.MagicMock() cls.plugin = FdmConnectorPlugin() cls.plugin._settings = cls.settings cls.plugin._settings.get = mock_settings_get cls.plugin._settings.get = mock_settings_global_get cls.plugin._write_persisted_data = lambda *args: None cls.plugin._logger = cls.logger cls.plugin._logger.info = print cls.plugin._logger.error = print # Nice way to test persisted data cls.plugin._data_folder = "test_data/announcements" def assert_state(self, state): assert self.plugin._state is state def test_call_mocked_announcement_improperly(self): """Call the query announcement, make sure it validates 'access_token'""" self.assert_state(State.BOOT) with pytest.raises(Exception) as e: self.plugin._query_announcement("asd", "asd") assert e.value.args[0] == Errors.access_token_too_short self.assert_state(State.CRASHED) def test_announcement_without_baseurl(self): """Call the query announcement, make sure it doesnt crash""" fake_token = create_fake_at() self.assert_state(State.BOOT) with pytest.raises(Exception) as e: self.plugin._query_announcement(None, access_token=fake_token) assert e.value.args[0] == Errors.base_url_not_provided self.assert_state(State.CRASHED) # This method will be used by the mock to replace requests.get def mocked_requests_post(*args, **kwargs): class MockResponse: def __init__(self, status_code, text): self.status_code = status_code self.text = text if f"{mocked_host_intercepted}:443" in args[0]: fake_token = create_fake_at() return MockResponse(200, json.dumps({"access_token": fake_token, "expires_in": 100})) return MockResponse(404, "{}") @mock.patch('requests.post', side_effect=mocked_requests_post) def test_announcement_with_proper_data(self, mock_post): """Call the query announcement properly""" fake_token = create_fake_at() url = "testwrong_url" self.assert_state(State.BOOT) # TODO wrong url is not prevented self.plugin._query_announcement(url, fake_token) # assert e.value.args[0] == Errors.base_url_not_provided self.assert_state(State.SLEEP) def test_check_fdm(self): with pytest.raises(Exception) as e: self.plugin._check_fdmmonster() assert e.value.args[0] == Errors.config_openid_missing self.assert_state(State.CRASHED) def test_check_fdmmonster_unreachable_settings(self): self.plugin._settings.get = mock_settings_custom self.assert_state(State.BOOT) self.plugin._check_fdmmonster() # TODO We are crashed with a connection error being caught. Save the reason self.assert_state(State.CRASHED) @mock.patch('requests.post', side_effect=mocked_requests_post) def test_check_fdmmonster_reachable_settings(self, mock_request): self.plugin._settings.get = mock_settings_custom self.assert_state(State.BOOT) self.plugin._check_fdmmonster() self.assert_state(State.SLEEP) @mock.patch('requests.post', side_effect=mocked_requests_post) def test_check_fdmmonster_reachable_settings_expired(self, mock_request): self.plugin._settings.get = mock_settings_custom self.plugin._persisted_data["requested_at"] = datetime.datetime.utcnow().timestamp() self.plugin._persisted_data["expires"] = -100 self.assert_state(State.BOOT) self.plugin._check_fdmmonster() self.assert_state(State.SLEEP) @mock.patch('requests.post', side_effect=mocked_requests_post) def test_check_fdmmonster_reachable_settings_unexpired(self, mock_request): self.plugin._settings.get = mock_settings_custom self.plugin._persisted_data["requested_at"] = datetime.datetime.utcnow().timestamp() self.plugin._persisted_data["expires"] = 10000000 self.plugin._persisted_data["access_token"] = create_fake_at() self.assert_state(State.BOOT) self.plugin._check_fdmmonster() # We skip querying the access_token self.assert_state(State.SLEEP) ```
{ "source": "3DHubs/localflavor", "score": 3 }
#### File: localflavor/ar/forms.py ```python from __future__ import unicode_literals from localflavor.exceptions import ValidationError from localflavor.base import RegexValidator, Select from localflavor.stub import _ from .ar_provinces import PROVINCE_CHOICES class ARProvinceSelect(Select): """A Select widget that uses a list of Argentinean provinces/autonomous cities as its choices.""" def __init__(self, attrs=None): super(ARProvinceSelect, self).__init__(attrs, choices=PROVINCE_CHOICES) class ARPostalCodeField(RegexValidator): """ Accepts a 'classic' NNNN Postal Code or a CPA. See: * http://www.correoargentino.com.ar/cpa/que_es * http://www.correoargentino.com.ar/cpa/como_escribirlo """ default_error_messages = { 'invalid': _('Enter a valid postal code in the format NNNN or ANNNNAAA.'), } def __init__(self, max_length=8, min_length=4, *args, **kwargs): super(ARPostalCodeField, self).__init__( r'^\d{4}$|^[A-HJ-NP-Za-hj-np-z]\d{4}\D{3}$', max_length=max_length, min_length=min_length, *args, **kwargs ) def clean(self, value): value = super(ARPostalCodeField, self).clean(value) if value in self.empty_values: return self.empty_value if len(value) not in (4, 8): raise ValidationError(self.error_messages['invalid']) if len(value) == 8: return '%s%s%s' % (value[0].upper(), value[1:5], value[5:].upper()) return value ``` #### File: localflavor/localflavor/base.py ```python import re from .exceptions import ValidationError class CharValidator(object): """Validates and cleans a given string value of given min/max length.""" default_error_messages = { 'invalid': 'Invalid value.' } empty_values = (None, '') empty_value = None validators = [] default_validators = [] choices = None def __init__(self, min_length=None, max_length=None, choices=None, **kwargs): self.min_length = min_length self.max_length = max_length self.choices = choices if choices else self.choices self.choices = [str(_[0]) for _ in self.choices] if self.choices else self.choices self.error_messages = self.default_error_messages if 'message' in kwargs: self.error_messages = {'invalid': kwargs.pop('message')} self.error_messages = kwargs.pop('error_messages', self.error_messages) def _is_valid(self, value): if not isinstance(value, str): return False if self.min_length and len(value) < self.min_length: return False if self.max_length and len(value) > self.max_length: return False if self.choices and str(value) not in self.choices: return False for validator in self.validators + self.default_validators: if not validator(value): return False return True def __call__(self, value): if not self._is_valid(value): raise ValidationError(self.error_messages['invalid']) def clean(self, value): value = value.strip() if value in self.empty_values: return self.empty_value if not self._is_valid(value): raise ValidationError(self.error_messages['invalid']) return value class RegexValidator(CharValidator): """Validates and cleans a given value with a given regex.""" regex = None def __init__(self, regex, message=None, *args, **kwargs): if message: kwargs['message'] = message super(RegexValidator, self).__init__(*args, **kwargs) self.regex = re.compile(regex) def _is_valid(self, value): if not super(RegexValidator, self)._is_valid(value): return False if not self.regex.search(value): return False return True def clean(self, value): value = super(RegexValidator, self).clean(value) if not self._is_valid(value): raise ValidationError(self.error_messages['invalid']) return value class ChoiceField(CharValidator): """A stub choice field.""" pass class Select(object): """A stub select class.""" def __init__(self, choices=None): self.choices = choices ``` #### File: localflavor/cn/forms.py ```python from __future__ import unicode_literals from localflavor.base import RegexValidator, Select from localflavor.stub import _ from .cn_provinces import PROVINCE_CHOICES __all__ = ( 'CNProvinceSelect', 'CNPostalCodeField', ) ID_CARD_RE = r'^\d{15}(\d{2}[0-9xX])?$' POST_CODE_RE = r'^\d{6}$' # Valid location code used in id card checking algorithm CN_LOCATION_CODES = ( 11, # Beijing 12, # Tianjin 13, # Hebei 14, # Shanxi 15, # Nei Mongol 21, # Liaoning 22, # Jilin 23, # Heilongjiang 31, # Shanghai 32, # Jiangsu 33, # Zhejiang 34, # Anhui 35, # Fujian 36, # Jiangxi 37, # Shandong 41, # Henan 42, # Hubei 43, # Hunan 44, # Guangdong 45, # Guangxi 46, # Hainan 50, # Chongqing 51, # Sichuan 52, # Guizhou 53, # Yunnan 54, # Xizang 61, # Shaanxi 62, # Gansu 63, # Qinghai 64, # Ningxia 65, # Xinjiang 71, # Taiwan 81, # Hong Kong 91, # Macao ) class CNProvinceSelect(Select): """A select widget providing the list of provinces and districts in People's Republic of China as choices.""" def __init__(self, attrs=None): super(CNProvinceSelect, self).__init__(attrs, choices=PROVINCE_CHOICES) class CNPostalCodeField(RegexValidator): """ A form field that validates input as postal codes in mainland China. Valid codes are in the format of XXXXXX where X is a digit. """ default_error_messages = { 'invalid': _('Enter a valid postal code in the format XXXXXX.'), } def __init__(self, *args, **kwargs): super(CNPostalCodeField, self).__init__(POST_CODE_RE, *args, **kwargs) ``` #### File: localflavor/cu/forms.py ```python from __future__ import unicode_literals from localflavor.exceptions import ValidationError from localflavor.base import CharValidator, RegexValidator, Select from localflavor.stub import _ from .choices import PROVINCE_CHOICES, PROVINCE_NORMALIZED, REGION_CHOICES, REGION_NORMALIZED class CURegionField(CharValidator): """ A form field for a Cuban region. The input is validated against a dictionary which includes names and abbreviations. It normalizes the input to the standard abbreviation for the given region. .. versionadded:: 1.6 """ default_error_messages = { 'invalid': _('Enter a Cuban region.'), } description = _("Cuban regions (three uppercase letters)") def __init__(self, *args, **kwargs): kwargs['choices'] = REGION_CHOICES kwargs['max_length'] = 3 super(CURegionField, self).__init__(*args, **kwargs) def clean(self, value): super(CURegionField, self).clean(value) if value in self.empty_values: return self.empty_value try: return REGION_NORMALIZED[value.strip().lower()] except KeyError: pass raise ValidationError(self.error_messages['invalid']) class CURegionSelect(Select): """ A Select widget that uses a list of Cuban regions as its choices. .. versionadded:: 1.6 """ def __init__(self, attrs=None): super(CURegionSelect, self).__init__(attrs, choices=REGION_CHOICES) class CUProvinceField(CharValidator): """ A form field for a Cuban province. The input is validated against a dictionary which includes names and abbreviations. It normalizes the input to the standard abbreviation for the given province. .. versionadded:: 1.6 """ default_error_messages = { 'invalid': _('Enter a Cuban province.'), } description = _("Cuban provinces (three uppercase letters)") def __init__(self, *args, **kwargs): kwargs['choices'] = PROVINCE_CHOICES kwargs['max_length'] = 3 super(CUProvinceField, self).__init__(*args, **kwargs) def clean(self, value): super(CUProvinceField, self).clean(value) if value in self.empty_values: return self.empty_value try: return PROVINCE_NORMALIZED[value.strip().lower()] except KeyError: pass raise ValidationError(self.error_messages['invalid']) class CUProvinceSelect(Select): """ A Select widget that uses a list of Cuban provinces as its choices. .. versionadded:: 1.6 """ def __init__(self, attrs=None): super(CUProvinceSelect, self).__init__(attrs, choices=PROVINCE_CHOICES) class CUPostalCodeField(RegexValidator): """ A form field for a Cuban postal Code. Taken from : http://mapanet.eu/Postal_Codes/?C=CU The Cuban postal code is a combination of 5 digits non begin with 0. .. versionadded:: 1.6 """ default_error_messages = { 'invalid': _('Enter a valid postal code in the format XXXXX.'), } description = _("Cuban postal code") def __init__(self, *args, **kwargs): kwargs['max_length'] = 5 super(CUPostalCodeField, self).__init__(r'^[1-9]\d{4}$', *args, **kwargs) ``` #### File: localflavor/generic/forms.py ```python from __future__ import unicode_literals from localflavor.base import CharValidator from .validators import IBAN_COUNTRY_CODE_LENGTH, BICValidator, IBANValidator DEFAULT_DATE_INPUT_FORMATS = ( '%Y-%m-%d', '%d/%m/%Y', '%d/%m/%y', # '2006-10-25', '25/10/2006', '25/10/06' '%b %d %Y', '%b %d, %Y', # 'Oct 25 2006', 'Oct 25, 2006' '%d %b %Y', '%d %b, %Y', # '25 Oct 2006', '25 Oct, 2006' '%B %d %Y', '%B %d, %Y', # 'October 25 2006', 'October 25, 2006' '%d %B %Y', '%d %B, %Y', # '25 October 2006', '25 October, 2006' ) DEFAULT_DATETIME_INPUT_FORMATS = ( '%Y-%m-%d %H:%M:%S', # '2006-10-25 14:30:59' '%Y-%m-%d %H:%M', # '2006-10-25 14:30' '%Y-%m-%d', # '2006-10-25' '%d/%m/%Y %H:%M:%S', # '25/10/2006 14:30:59' '%d/%m/%Y %H:%M', # '25/10/2006 14:30' '%d/%m/%Y', # '25/10/2006' '%d/%m/%y %H:%M:%S', # '25/10/06 14:30:59' '%d/%m/%y %H:%M', # '25/10/06 14:30' '%d/%m/%y', # '25/10/06' ) IBAN_MIN_LENGTH = min(IBAN_COUNTRY_CODE_LENGTH.values()) class IBANFormField(CharValidator): """ An IBAN consists of up to 34 alphanumeric characters. To limit validation to specific countries, set the 'include_countries' argument with a tuple or list of ISO 3166-1 alpha-2 codes. For example, `include_countries=('NL', 'BE, 'LU')`. A list of countries that use IBANs as part of SEPA is included for convenience. To use this feature, set `include_countries=IBAN_SEPA_COUNTRIES` as an argument to the field. In addition to validating official IBANs, this field can optionally validate unofficial IBANs that have been catalogued by Nordea by setting the `use_nordea_extensions` argument to True. https://en.wikipedia.org/wiki/International_Bank_Account_Number .. versionadded:: 1.1 """ def __init__(self, use_nordea_extensions=False, include_countries=None, *args, **kwargs): kwargs.setdefault('min_length', IBAN_MIN_LENGTH) kwargs.setdefault('max_length', 34) self.default_validators = [IBANValidator(use_nordea_extensions, include_countries)] super(IBANFormField, self).__init__(*args, **kwargs) class BICFormField(CharValidator): """ A BIC consists of 8 (BIC8) or 11 (BIC11) alphanumeric characters. BICs are also known as SWIFT-BIC, BIC code, SWIFT ID, SWIFT code or ISO 9362. https://en.wikipedia.org/wiki/ISO_9362 .. versionadded:: 1.1 """ default_validators = [BICValidator()] def __init__(self, *args, **kwargs): kwargs.setdefault('max_length', 11) super(BICFormField, self).__init__(*args, **kwargs) def clean(self, value): # BIC is always written in upper case. # https://www2.swift.com/uhbonline/books/public/en_uk/bic_policy/bic_policy.pdf value = super(BICFormField, self).clean(value) if value in self.empty_values: return self.empty_value return value.upper() ``` #### File: localflavor/id_/forms.py ```python from __future__ import unicode_literals import re from localflavor.stub import EMPTY_VALUES from localflavor.exceptions import ValidationError from localflavor.base import CharValidator, Select from localflavor.stub import _ postcode_re = re.compile(r'^[1-9]\d{4}$') class IDPostalCodeField(CharValidator): """ An Indonesian post code field. http://id.wikipedia.org/wiki/Kode_pos """ default_error_messages = { 'invalid': _('Enter a valid 5 digit postal code.'), } def clean(self, value): super(IDPostalCodeField, self).clean(value) if value in EMPTY_VALUES: return self.empty_value value = value.strip() if not postcode_re.search(value): raise ValidationError(self.error_messages['invalid']) if int(value) < 10110: raise ValidationError(self.error_messages['invalid']) # 1xxx0 if value[0] == '1' and value[4] != '0': raise ValidationError(self.error_messages['invalid']) return '%s' % (value, ) class IDProvinceSelect(Select): """A Select widget that uses a list of provinces of Indonesia as its choices.""" def __init__(self, attrs=None): # Load data in memory only when it is required, see also #17275 from .id_choices import PROVINCE_CHOICES super(IDProvinceSelect, self).__init__(attrs, choices=PROVINCE_CHOICES) ``` #### File: localflavor/il/forms.py ```python from __future__ import unicode_literals from localflavor.base import RegexValidator from localflavor.stub import _ class ILPostalCodeField(RegexValidator): """ A form field that validates its input as an Israeli postal code. Valid form is XXXXX where X represents integer. """ default_error_messages = { 'invalid': _('Enter a valid postal code in the format XXXXXXX or XXXXX, digits only.'), } def __init__(self, *args, **kwargs): super(ILPostalCodeField, self).__init__(r'^\d{5}$|^\d{7}$', *args, **kwargs) def clean(self, value): if value not in self.empty_values: value = value.replace(' ', '') return super(ILPostalCodeField, self).clean(value) ``` #### File: localflavor/si/forms.py ```python from __future__ import unicode_literals from localflavor.base import ChoiceField, Select from localflavor.stub import _ from .si_postalcodes import SI_POSTALCODES_CHOICES class SIPostalCodeField(ChoiceField): """Slovenian post codes field.""" default_error_messages = { 'invalid': _('Enter a valid postal code in the format XXXX.'), } def __init__(self, *args, **kwargs): kwargs.setdefault('choices', SI_POSTALCODES_CHOICES) super(SIPostalCodeField, self).__init__(*args, **kwargs) class SIPostalCodeSelect(Select): """A Select widget that uses Slovenian postal codes as its choices.""" def __init__(self, attrs=None): super(SIPostalCodeSelect, self).__init__(attrs, choices=SI_POSTALCODES_CHOICES) ``` #### File: 3DHubs/localflavor/setup.py ```python import os import re import codecs from setuptools import setup, find_packages def read(*parts): filename = os.path.join(os.path.dirname(__file__), *parts) with codecs.open(filename, encoding='utf-8') as fp: return fp.read() def find_version(*file_paths): version_file = read(*file_paths) version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") # Provided as an attribute, so you can append to these instead # of replicating them: standard_exclude = ('*.py', '*.pyc', '*$py.class', '*~', '.*', '*.bak') standard_exclude_directories = ('.*', 'CVS', '_darcs', './build', './dist', 'EGG-INFO', '*.egg-info') setup( name="localflavor", version=find_version("localflavor", "__init__.py"), url='https://github.com/anka-sirota/localflavor', license='BSD', description="Country-specific validation helpers, ported from Django Localflavor", long_description=read('README.rst'), author='<NAME>', author_email='<EMAIL>', packages=find_packages(exclude=['tests', 'tests.*']), install_requires=[ 'six>=1.11.0', ], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.6', 'Topic :: Internet :: WWW/HTTP', ], ) ```
{ "source": "3digitdev/theta", "score": 3 }
#### File: modules/Date/Date.py ```python import datetime from modules.Module import Module class Date(Module): def __init__(self, pipe): super().__init__(self, pipe) def run(self, command: str, regex) -> str: try: now = datetime.datetime.now() day = self._parse_day(now) self.say('It is {0:%A} {0:%B} {1}, {0:%Y}'.format(now, day)) except Exception as e: self.log_exception(e) def _parse_day(self, now: datetime.date) -> str: day = f'{now:%d}'.lstrip('0') if day.endswith('1'): day = f'{day}st' elif day.endswith('2'): day = f'{day}nd' elif day.endswith('3'): day = f'{day}rd' else: day = f'{day}th' return day ``` #### File: modules/PhilipsHue/HueController.py ```python import requests import json # REFERENCE: https://developers.meethue.com/develop/get-started-2/ class HueController(object): def __init__(self): self.user = '<KEY>' self.api_base = f'http://192.168.1.4/api/{self.user}' self.group_map = {} self.light_map = {} self.group_aliases = { 'Lamp': [ 'living room', 'livingroom', 'lamp' ], 'Bedroom': [ 'bed room', 'bedroom', 'master bedroom', 'master bed room' ], 'Craft Room': [ 'office', 'craftroom', 'craft room' ] } self._init_states() def _init_states(self): groups = self.get_groups() if groups.status_code != 200: print(f'Cannot reach Hue bridge at {self._build_url(["groups"])}') exit(1) for id, group in groups.json().items(): self.group_map[group['name']] = id lights = self.get_lights() if lights.status_code != 200: print(f'Cannot reach Hue bridge at {self._build_url(["lights"])}') exit(1) for id, light in lights.json().items(): self.light_map[light['name']] = id def _build_url(self, parts: list) -> str: return '/'.join([self.api_base, *parts]) def _clamp_brightness(self, bright: int) -> int: return max(0, min(int(254 * (bright / 100)), 254)) def get_lights(self) -> requests.Response: return requests.get( url=self._build_url(['lights']) ) def _get_light_id(self, name: str) -> str: if name not in self.light_map.keys(): print(f'ERROR: Cannot find Light named {name}') exit(1) return str(self.light_map[name]) def get_light_by_name(self, name: str) -> requests.Response: return requests.get( url=self._build_url(['lights', self._get_light_id(name)]) ) def turn_on_light(self, id: str, bright: int = None) -> requests.Response: body = {'on': True} if bright is not None: body['bri': self._clamp_brightness(bright)] return requests.put( url=self._build_url(['lights', id, 'state']), data=json.dumps(body) ) def turn_off_light(self, id: str) -> requests.Response: return requests.put( url=self._build_url(['lights', id, 'state']), data=json.dumps({'on': False}) ) def _set_light_bright(self, id: str, bright: int) -> requests.Response: return requests.put( url=self._build_url(['lights', id, 'state']), data=json.dumps({'bri': bright}) ) def get_groups(self) -> requests.Response: return requests.get( url=self._build_url(['groups']) ) def get_group_names(self) -> list: resp = self.get_groups() if resp.status_code != 200: print('Cannot reach Hue bridge to get Groups!') exit(1) return [group['name'] for group in resp.json().values()] def _get_group_id(self, name: str) -> str: group_name = self._group_name_from_alias(name) if group_name == '': print(f'ERROR: Cannot find Group named {name}') exit(1) return str(self.group_map[group_name]) def _group_name_from_alias(self, alias: str) -> str: for group, aliases in self.group_aliases.items(): if alias == group.lower() or alias in aliases: return group return '' def get_group_by_name(self, name: str) -> requests.Response: return requests.get( url=self._build_url(['groups', self._get_group_id(name)]) ) def turn_on_group(self, name: str, bright=None) -> requests.Response: # If we are setting the brightness, we should set all the lights # before turning them on, otherwise use previous brightness if bright is not None: bright = self._clamp_brightness(bright) else: bright = self._clamp_brightness(100) group = self.get_group_by_name(name).json() if not group['state']['all_on']: body = {'on': True, 'bri': self._clamp_brightness(bright)} requests.put( url=self._build_url( ['groups', self._get_group_id(name), 'action'] ), data=json.dumps(body) ) for light_id in group['lights']: resp = self._set_light_bright(light_id, bright) if resp.status_code != 200: print(f'ERROR: Could not access Light {light_id}') def turn_off_group(self, name: str) -> requests.Response: return requests.put( url=self._build_url( ['groups', self._get_group_id(name), 'action'] ), data=json.dumps({'on': False}) ) ``` #### File: modules/UnitConversion/UnitConversion.py ```python import re from pint import UnitRegistry from pint.errors import \ UndefinedUnitError, OffsetUnitCalculusError, DimensionalityError from modules.Module import Module from utils.mod_utils import get_params class UnitConversion(Module): def __init__(self, pipe): super().__init__(self, pipe) self.unit_reg = UnitRegistry() def run(self, command: str, regex) -> str: error = None result = None try: params = get_params(command, regex, self.regexes.keys()) if any([p is None for p in params.values()]) or \ params.keys() == []: return # one useful thing for temperature before_unit = self._strip_degrees(params['before_unit']) after_unit = self._strip_degrees(params['after_unit']) try: before = self.unit_reg(before_unit) after = self.unit_reg(after_unit) if params['after_count'] != '': result = self._convert( after, before, params['after_count'] ) elif params['before_count'] != '': result = self._convert( before, after, params['before_count'] ) except OffsetUnitCalculusError as err: error = f'Conversion Error: {err}' except UndefinedUnitError as err: error = f'Undefined unit: {err}' except DimensionalityError as err: error = f'Conversion Error: {err}' if error is not None: self.send_error(error) elif result is not None: self.say(result) except Exception as e: self.log_exception(e) def _strip_degrees(self, units): reg = re.compile(r'degree(?:s? |_)(?P<unit>.*)') match = re.match(reg, units) return units if match is None else match.group('unit') def _split_degrees(self, units, plural): if re.match(f'degree_.*', units): parts = units.split('_') if plural: return f'{parts[0]}s {parts[1]}' return ' '.join(parts) return units def _convert(self, first, second, value): value = value.replace(',', '') if re.match(r'^an?$', value): value = 1 first._magnitude = float(value) try: result = first.to(second) result._magnitude = self._string_to_num(result.magnitude) return self._format_response(first, result, value) except DimensionalityError: raise def _format_response(self, first, result, value): value = self._string_to_num(value) f_unit = self._split_degrees(str(first.units), value != 1) if 'degrees' not in f_unit and value != 1: f_unit += 's' r_unit = self._split_degrees(str(result.units), result.magnitude != 1) if 'degrees' not in r_unit and result.magnitude: r_unit += 's' return f'{value} {f_unit} is {result.magnitude} {r_unit}' def _string_to_num(self, s): chopped = float(f'{float(s):.4f}') if chopped.is_integer(): return int(chopped) return chopped ``` #### File: theta/iota/Speech2Text.py ```python import os import snowboydecoder try: import azure.cognitiveservices.speech as speechsdk except ImportError: print( "Importing the Speech SDK for Python failed." "Refer to" "https://docs.microsoft.com/azure/cognitive-services/speech-service/quickstart-python" "for installation instructions." ) import sys sys.exit(1) from modules.Module import Module import utils.mod_utils as Utils interrupted = False def signal_handler(signal, frame): global interrupted interrupted = True def interrupt_callback(): global interrupted return interrupted class PhraseResult(object): __slots__ = ['succeeded', 'error_msg', 'phrase'] def __init__(self): self.succeeded = False self.error_msg = None self.phrase = '' def store_phrase(self, phrase): self.succeeded = True self.phrase = phrase def error(self, error): self.succeeded = False self.error_msg = error class Speech2Text(Module): def __init__(self): self.detector = snowboydecoder.HotwordDetector( decoder_model=os.path.join('iota', 'resources', 'Iota.pmdl'), sensitivity=0.3 ) self._setup_mq() def listen(self): print('Listening...') # main loop self.detector.start( # Function to call when we detect the wake word detected_callback=self.detected_wake_word, # Function to call that interrupts the loop interrupt_check=interrupt_callback, # Time to sleep between loops in seconds sleep_time=0.03, # Amount of silence that's needed to stop recording phrase silent_count_threshold=7, # Maximum seconds it will listen after wake word is heard recording_timeout=10 ) self.detector.terminate() def detected_wake_word(self): self.send_response( type='WakeWord', response='' ) '''performs one-shot speech recognition from the default microphone''' # Creates a speech recognizer using microphone as audio input. # The default language is "en-us". speech_recognizer = speechsdk.SpeechRecognizer( speech_config=Utils.SPEECH_CONFIG ) # Listen for a phrase from the microphone result = speech_recognizer.recognize_once() # Check the result if result.reason == speechsdk.ResultReason.RecognizedSpeech: print(f'I heard: "{result.text}"') self.send_response( type='VoiceCommand', response=result.text ) elif result.reason == speechsdk.ResultReason.NoMatch: self.send_error('No speech could be recognized') elif result.reason == speechsdk.ResultReason.Canceled: error = result.cancellation_details if error.reason == speechsdk.CancellationReason.Error: self.send_error(f'Cancelled. Error: {error.error_details}') else: self.send_error(f'Cancelled: {error.reason}') ``` #### File: iota/utils/rpn.py ```python import re class RPNCalculator(object): def __init__(self, operands_reg='\\d+'): self.ors_reg = re.compile(r'(?:times|x|\*|divided by|\/|mod(?:ul(?:o|us))?|\%|plus|\+|minus|\-|to the power of|\^)') self.ands_reg = re.compile(operands_reg) def _get_operator(self, op: str): op_map = { '+': { 'others': ['plus'], 'fn': lambda x, y: x + y }, '-': { 'others': ['minus'], 'fn': lambda x, y: x - y }, '*': { 'others': ['times', 'x'], 'fn': lambda x, y: x * y }, '/': { 'others': ['divided by'], 'fn': lambda x, y: x / y }, '%': { 'others': ['mod', 'modulo'], 'fn': lambda x, y: x % y }, '^': { 'others': ['**', 'to the power of'], 'fn': lambda x, y: x ** y } } for k, v in op_map.items(): if op == k or op in v['others']: return v['fn'] return None def _pemdas(self, op: str) -> int: add = ['plus', '+'] sub = ['minus', '-'] mult = ['times', 'x', '*'] div = ['divided by', '/'] mod = ['mod', 'modulo', '%'] exp = ['to the power of', '^'] if op in [*add, *sub]: return 1 elif op in [*mult, *div, *mod]: return 2 elif op in exp: return 3 return 0 def _peek(self, stack: list) -> str: return stack[-1] if stack else None def _in_to_post(self, expression: str) -> list: operators = re.findall(self.ors_reg, expression) operands = re.findall(self.ands_reg, expression) postfix = [] stack = ['#'] for i, operand in enumerate(operands): postfix.append(operand) if i == len(operators): break op = operators[i] if self._pemdas(op) > self._pemdas(self._peek(stack)): stack.append(op) else: while self._peek(stack) != '#' and \ (self._pemdas(op) <= self._pemdas(self._peek(stack))): postfix.append(stack.pop()) stack.append(op) while self._peek(stack) != '#': postfix.append(stack.pop()) return postfix def calculate(self, expression, fn=lambda n: n): postfix = self._in_to_post(expression) stack = [] for token in postfix: if self.ors_reg.match(token): # Pull out a function to be called based on operator operator = self._get_operator(token) if operator is None: break operand_2 = stack.pop() operand_1 = stack.pop() # execute the operator, but put the result back as a string stack.append( str( operator(float(operand_1), float(operand_2)) ) ) else: stack.append(fn(token)) return stack[0] ``` #### File: theta/tools/voice_tests.py ```python import os try: import azure.cognitiveservices.speech as speechsdk except ImportError: print(''' Importing the Speech SDK for Python failed. Refer to https://docs.microsoft.com/azure/cognitive-services/speech-service/quickstart-text-to-speech-python for installation instructions. ''') import sys sys.exit(1) # Set up the subscription info for the Speech Service: # Replace with your own subscription key and service region (e.g., "westus"). speech_key = os.environ['AZURE_KEY'] service_region = os.environ['AZURE_REGION'] def speech_synthesis_to_speaker(): '''performs speech synthesis to the default speaker''' # Creates an instance of a speech config with # specified subscription key and service region. speech_config = speechsdk.SpeechConfig( subscription=speech_key, region=service_region ) # speech_config.speech_synthesis_voice_name = \ # "Microsoft Server Speech Text to Speech Voice (en-US, AriaRUS)" speech_config.speech_synthesis_voice_name = \ 'Microsoft Server Speech Text to Speech Voice (en-US, AriaNeural)' # Creates a speech synthesizer using the default speaker as audio output. # The default spoken language is "en-us". speech_synthesizer = speechsdk.SpeechSynthesizer( speech_config=speech_config ) # Receives a text from console input and synthesizes it to speaker. while True: print('Enter some text that you want to speak') try: text = input() except EOFError: break result = speech_synthesizer.speak_text_async(text).get() # Check result if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted: print('Speech synthesized to speaker for text [{}]'.format(text)) elif result.reason == speechsdk.ResultReason.Canceled: cancellation_details = result.cancellation_details print( f'Speech synthesis canceled: {cancellation_details.reason}') if cancellation_details.reason == speechsdk.CancellationReason.Error: print(f'Error details: {cancellation_details.error_details}') speech_synthesis_to_speaker() ```
{ "source": "3dik/kik-bot-api-unofficial", "score": 2 }
#### File: examples/legacy/cmdline_legacy.py ```python import sys import time from argparse import ArgumentParser from kik_unofficial.client_legacy import KikClient def execute(cmd=sys.argv[1:]): parser = ArgumentParser(description="Unofficial Kik api") parser.add_argument('-u', '--username', help="Kik username", required=True) parser.add_argument('-p', '--password', help="<PASSWORD>", required=True) args = parser.parse_args(cmd) kik = KikClient(args.username, args.password) CmdLine(kik).run() class CmdLine: def __init__(self, kik): self.kik = kik self.partners = {} def run(self): self.partners = self.kik.get_chat_partners() self.list_chats() while True: try: info = self.kik.get_next_event() if not info: print("[-] failed to parse info") elif 'type' not in info: print("[-] type not in info") print(info) elif info["type"] == "message_read": self.message_read(info) elif info["type"] == "is_typing": self.is_typing(info) elif info["type"] == "message": self.message(info) elif info['type'] == 'group_message': self.group_message(info) elif info['type'] == 'group_typing': self.group_typing(info) elif info['type'] == 'group_content': self.group_content(info) elif info['type'] == 'group_sticker': self.group_sticker(info) elif info['type'] == 'group_gallery': self.group_gallery(info) elif info['type'] == 'group_camera': self.group_camera(info) elif info['type'] == 'group_gif': self.group_gif(info) elif info['type'] == 'group_card': self.group_card(info) elif info['type'] == 'message': self.message(info) elif info['type'] == 'content': self.content(info) elif info['type'] == 'sticker': self.sticker(info) elif info['type'] == 'gallery': self.gallery(info) elif info['type'] == 'camera': self.camera(info) elif info['type'] == 'gif': self.gif(info) elif info['type'] == 'card': self.card(info) elif info['type'] == 'qos' or info['type'] == 'acknowledgement': pass elif info["type"] == "end": print("[!] Server ended communication.") break else: print("[-] Unknown message: {}".format(info)) except TypeError as e: print(e) def content(self, info): print("[+] Unknown content received of type {}".format(info["app_id"])) def sticker(self, info): print("[+] Sticker received in pack {}: {}".format(info["sticker_pack_id"], info["sticker_url"])) def gallery(self, info): print("[+] Gallery image received '{}': {}".format(info['file_name'], info['file_url'])) def camera(self, info): print("[+] Camera image received '{}': {}".format(info['file_name'], info['file_url'])) def gif(self, info): print("[+] Gif received: {}".format(info['uris'])) def card(self, info): if 'jsonData' in info: print("[+] Card received: {}: {}".format(info['app_name'], info['jsonData'])) elif info['app_name'] == 'ScribbleChat': print("[+] Card received: {}: {}".format(info['app_name'], info['video_url'])) elif 'url' in info: print("[+] Card received: '{}': {}".format(info['app_name'], info['url'])) else: print("[-] Unknown card received: {}".format(info['app_name'])) def group_content(self, info): print("[+] Unknown content received of type {}".format(info["app_id"])) def group_sticker(self, info): print("[+] Sticker received in pack {}: {}".format(info["sticker_pack_id"], info["sticker_url"])) def group_gallery(self, info): print("[+] Gallery image received '{}': {}".format(info['file_name'], info['file_url'])) def group_camera(self, info): print("[+] Camera image received '{}': {}".format(info['file_name'], info['file_url'])) def group_gif(self, info): print("[+] Gif received: {}".format(info['uris'])) def group_card(self, info): if 'jsonData' in info: print("[+] Card received: {}: {}".format(info['app_name'], info['jsonData'])) elif info['app_name'] == 'ScribbleChat': print("[+] Card received: {}: {}".format(info['app_name'], info['video_url'])) elif 'url' in info: print("[+] Card received: '{}': {}".format(info['app_name'], info['url'])) else: print("[-] Unknown card received: {}".format(info['app_name'])) def list_chats(self): print("[+] Chats\n{}".format("\n".join([self.full_name(peer['jid']) for peer in self.partners.values()]))) def display_name(self, name): if name not in self.partners: peer_info = self.kik.get_info_for_node(name) print(peer_info) self.partners[peer_info['jid']] = peer_info peer = self.partners[name] return peer['display_name'].strip() def full_name(self, name): peer = self.partners[name] if peer['type'] == 'group': if peer['public']: return "{} ({})".format(peer['display_name'], peer['code']) else: return "{}".format(peer['display_name']) else: return "{} ({})".format(peer['display_name'], peer['username']) def message_read(self, info): print("[+] <{0}> message read: {1}".format(self.display_name(info['from']), info["message_id"])) def is_typing(self, info): if info["is_typing"]: print("[+] <{}> typing...".format(self.display_name(info['from']))) else: print("[+] <{}> stopped typing...".format(self.display_name(info['from']))) def message(self, info): partner = info['from'] print("[+] <{0}> {1}".format(partner, info['body'])) self.kik.send_read_confirmation(partner, info["message_id"]) reply = "You said '{}'!".format(info['body']) self.kik.send_is_typing(partner, "true") time.sleep(0.2 * len(reply)) self.kik.send_is_typing(partner, "false") self.kik.send_message(partner, reply) def group_message(self, info): group = info['group_id'] print("[+] <{0}> {1}: {2}".format(self.display_name(info['group_id']), self.display_name(info['from']), info['body'])) if 'ping' in info['body'].lower(): self.kik.send_message(group, 'pong', groupchat=True) return def group_typing(self, info): if info['is_typing']: print("[+] <{0}> {1} is typing...".format(self.display_name(info['group_id']), self.display_name(info['from']))) else: print("[+] <{0}> {1} stopped typing...".format(self.display_name(info['group_id']), self.display_name(info['from']))) ``` #### File: examples/legacy/echo_bot_legacy.py ```python import sys import time import logging from kik_unofficial.client import KikClient def main(): username, password = "sh<PASSWORD>", "<PASSWORD>" kik_client = KikClient(username, password) print("[+] Listening for incoming events.") # main events loop while True: info = kik_client.get_next_event() if "type" not in info: continue if info["type"] == "message_read": print("[+] Human has read the message (user " + info["from"] + ", message id: " + info["message_id"] + ")") elif info["type"] == "is_typing": if info["is_typing"]: print("[+] Human is typing (user " + info["from"] + ")") else: print("[+] Human is not typing (user " + info["from"] + ")") elif info["type"] == "message": partner = info["from"] print("[+] Human says: \"" + info["body"] + "\" (user " + partner + ")") kik_client.send_read_confirmation(partner, info["message_id"]) replay = "You said '" + info["body"] + "'!" kik_client.send_is_typing(partner, "true") time.sleep(0.2 * len(replay)) kik_client.send_is_typing(partner, "false") kik_client.send_message(partner, replay) elif info["type"] == "end": print("[!] Server ended communication.") break print("[+] Done!") kik_client.close() if __name__ == '__main__': if sys.version_info[0] < 3: raise Exception("Must be using Python 3!!") try: main() except KeyboardInterrupt: print("[!] User stopped execution.") ``` #### File: kik-bot-api-unofficial/examples/register_client.py ```python import logging from kik_unofficial.client import KikClient from kik_unofficial.callbacks import KikClientCallback from kik_unofficial.datatypes.xmpp.errors import SignUpError from kik_unofficial.datatypes.xmpp.roster import FetchRosterResponse from kik_unofficial.datatypes.xmpp.login import LoginResponse from kik_unofficial.datatypes.xmpp.sign_up import RegisterResponse class RegisterClient(KikClientCallback): def on_sign_up_ended(self, response: RegisterResponse): print("Registered on node {}.".format(response.kik_node)) def on_authenticated(self): print("Authorized connection initiated.") client.request_roster() def on_login_ended(self, response: LoginResponse): print("Logged in as {}.".format(response.username)) def on_register_error(self, response: SignUpError): if "captcha_url" in dir(response): print(response.captcha_url) result = input("Captcha result:") client.register(email, username, password, first, last, birthday, result) else: print("Unable to register! error information:\r\n{}".format(response)) def on_roster_received(self, response: FetchRosterResponse): print("Friends: {}".format(response.peers)) if __name__ == '__main__': username = input('Username: ') password = input('Password: ') first = input('First name: ') last = input('Last name: ') email = input('Email: ') birthday = input('Birthday: (like 01-01-1990): ') client = KikClient(callback=RegisterClient(), log_level=logging.DEBUG) client.register(email, username, password, first, last, birthday) ``` #### File: datatypes/xmpp/xiphias.py ```python import base64 from builtins import NotImplementedError from typing import List from bs4 import BeautifulSoup from google.protobuf import message from kik_unofficial.datatypes.xmpp.base_elements import XMPPElement, XMPPResponse from kik_unofficial.protobuf.entity.v1.entity_service_pb2 import GetUsersRequest, GetUsersResponse, GetUsersByAliasRequest, RequestedJid, \ GetUsersByAliasResponse class XiphiasRequest(XMPPElement): def __init__(self, method): super().__init__() self.method = method def get_protobuf_payload(self) -> message.Message: raise NotImplementedError def serialize(self): payload = self.get_protobuf_payload() protobuf_data = base64.b64encode(payload.SerializeToString()).decode() data = ('<iq type="set" id="{}">' '<query xmlns="kik:iq:xiphias:bridge" service="mobile.entity.v1.Entity" method="{}">' '<body>{}</body>' '</query>' '</iq>').format(self.message_id, self.method, protobuf_data) return data.encode() class UsersRequest(XiphiasRequest): def __init__(self, peer_jids): super().__init__('GetUsers') if isinstance(peer_jids, List): self.peer_jids = peer_jids else: self.peer_jids = [peer_jids] def get_protobuf_payload(self): request = GetUsersRequest() for peer_jid in self.peer_jids: jid = request.ids.add() jid.local_part = peer_jid.split('@')[0] return request class UsersResponseUser: """ Normal jids (used with client.xiphias_get_users): Includes user data such as profile creation date and background picture URL. Alias jids provided in public groups (used with client.xiphias_get_users_by_alias): Includes all the private profile data (username, display_name, etc) of a user if you're chatting with them, else it'll get the local jid and the creation date. """ username = None jid = None alias_jid = None display_name = None creation_date_seconds = None creation_date_nanos = None bio = None background_pic_full_sized = None background_pic_thumbnail = None background_pic_updated_seconds = None interests = None kin_user_id = None def __init__(self, user): if hasattr(user, 'private_profile'): self.username = user.private_profile.username.username if user.private_profile.id.local_part: # The attribute seems to exist with an empty string self.jid = user.private_profile.id.local_part + "@talk.kik.com" if user.id: if hasattr(user.id, 'local_part'): if user.id.local_part: self.jid = user.id.local_part + "@talk.kik.com" if hasattr(user.id, 'alias_jid'): if user.id.alias_jid.local_part: self.alias_jid = user.id.alias_jid.local_part + "@talk.kik.com" if hasattr(user, 'public_group_member_profile'): # The attrs below are found in the member's profile user = user.public_group_member_profile if user.registration_element: self.creation_date_seconds = user.registration_element.creation_date.seconds self.creation_date_nanos = user.registration_element.creation_date.nanos if hasattr(user, 'display_name'): self.display_name = user.display_name.display_name if hasattr(user, 'bio_element'): self.bio = user.bio_element.bio if hasattr(user, 'background_profile_pic_extension'): pic = user.background_profile_pic_extension.extension_detail.pic self.background_pic_full_sized = pic.full_sized_url self.background_pic_thumbnail = pic.thumbnail_url self.background_pic_updated_seconds = pic.last_updated_timestamp.seconds if hasattr(user, 'interests_element'): self.interests = [element.localized_verbiage for element in user.interests_element.interests_element] if hasattr(user, 'kin_user_id_element'): self.kin_user_id = user.kin_user_id_element.kin_user_id.id class UsersResponse(XMPPResponse): def __init__(self, data: BeautifulSoup): super().__init__(data) text = base64.urlsafe_b64decode(data.query.body.text.encode()) response = GetUsersResponse() response.ParseFromString(text) self.users = [UsersResponseUser(user) for user in response.users] class UsersByAliasRequest(XiphiasRequest): def __init__(self, alias_jids): super().__init__('GetUsersByAlias') if isinstance(alias_jids, List): self.alias_jids = alias_jids else: self.alias_jids = [alias_jids] def get_protobuf_payload(self): request = GetUsersByAliasRequest() for peer_jid in self.alias_jids: jid = request.ids.add() # type: RequestedJid jid.alias_jid.local_part = peer_jid.split('@')[0] return request class UsersByAliasResponse(XMPPResponse): def __init__(self, data: BeautifulSoup): super().__init__(data) text = base64.urlsafe_b64decode(data.query.body.text.encode()) response = GetUsersByAliasResponse() response.ParseFromString(text) self.users = [UsersResponseUser(payload) for payload in response.payloads] ```
{ "source": "3dimaging/DeepLearningCamelyon_II", "score": 2 }
#### File: dldp/heatmap_pred/copy_makeup_files.py ```python import numpy as np import pandas as pd import sys import os import os.path as osp from shutil import copyfile class copy_makeup_files(object): """ :note: the makeup_path and destination_path have the same directory structure. """ def __init__(self, makeup_path, destination_path): """ for class initialization :param makeup_path: the folder storing the makeup results :type makeup_path: string :param destination_path: the folder storing all the results :type destination_path: string """ self.makeup_path = makeup_path self.destination_path = destination_path def copy_file(self): dir = os.listdir(self.makeup_path) # list taskid in each folder makeup_file_list = [] # full_predicted_taskid = [] for folder in dir: file_list = os.listdir(osp.join(self.makeup_path, folder)) for file in file_list: full_path_file = osp.join(self.makeup_path, folder, file) print(full_path_file) copyfile(full_path_file, osp.join(self.destination_path, folder, file)) makeup_file_list.append(full_path_file) return makeup_file_list if __name__ == "__main__": makeup_path = '/scratch/weizhe.li/Pred_Storage/makeup_normal_Macenko' destination_path = '/scratch/weizhe.li/Pred_Storage/Macenko/normal_Macenko' makeup_copy = copy_makeup_files(makeup_path, destination_path) makeup_copy.copy_file() ``` #### File: dldp/image_process/color_normalization.py ```python import dldp.utils.fileman as fm import numpy as np from datetime import datetime from tqdm import tqdm from imageio import imwrite as saveim import staintools from skimage import io import os import os.path as osp import stainNorm_Reinhard import stainNorm_Macenko import sys sys.path.append('/home/wli/Stain_Normalization-master') # from scipy.misc import imsave as saveim # import the modules from dldp package def color_normalization(template_image_path, color_norm_method): """ The function put all the color normalization methods together. :param template_image_path: the template image for normalization :type template_image_path: string :param color_norm_method: the method for color normalization :type color_norm_method: string :return: color_normalizer. It is the initialized object for the actual normalization. :rtype: object """ template_image = staintools.read_image(template_image_path) standardizer = staintools.LuminosityStandardizer.standardize( template_image) if color_norm_method == 'Reinhard': color_normalizer = stainNorm_Reinhard.Normalizer() color_normalizer.fit(standardizer) elif color_norm_method == 'Macenko': color_normalizer = stainNorm_Macenko.Normalizer() color_normalizer.fit(standardizer) elif color_norm_method == 'Vahadane': color_normalizer = staintools.StainNormalizer(method='vahadane') color_normalizer.fit(standardizer) return color_normalizer def color_norm(image_patch, fit, log_file=False): """ To normalize images based on color_normalizer from function color_nor malization. :param image_patch: the image to be normalized. It can be a path of the image or image itself :type image_patch: array :param fit: the object of color_normalizer. :type fit: object :param log_file: the file to record the failed tasks. :type log_file: str :return: img_norm, the normalized images. :rtype: array """ if isinstance(image_patch, str) and osp.isfile(image_patch): img = io.imread(image_patch) elif isinstance(image_patch, np.ndarray): img = image_patch img = img[:, :, :3] img_norm = [] try: img_standard = staintools.LuminosityStandardizer.standardize(img) img_norm = fit.transform(img_standard) except Exception as e: log_file.write(str(image_patch) + ';' + str(e)) # print(img_norm) return img_norm def save_color_norm_patches(dest_path, source_path, image_patch, img_norm, color_norm_method): """ The normalized image patches will be saved in the same folder structure as the original image patches. :param dest_path: the place to store the normalized image patches. :type dest_path:string :param source_path: the folder to store the original image patches. :type source_path: string :param file: the full path of the original image patch. :type file: string :param img_norm: the normalized image patch. :type img_norm: array :param color_norm_method: the method used for color normalization :type color_norm_method: string :return: None """ file_full_path = osp.dirname(image_patch) relative_path = osp.relpath(file_full_path, source_path) path_to_create = osp.join(dest_path, relative_path) try: os.makedirs(path_to_create) except Exception: pass # print(image_patch) try: saveim('%s/%s_%s.png' % (path_to_create, osp.splitext(osp.basename(image_patch))[0], color_norm_method), img_norm) except Exception: pass return None if __name__ == "__main__": template_image_path = '/raidb/wli/tumor_st.png' # The template image is also included in the package # template_image_path = '.../dldp/data/tumor_st.png' source_path = '/home/wli/Documents/original_256_patches' # source_path = '/raidb/wli/256_patches_to_be_normalized/original # _256_patches' dest_path_1 = '/raidb/wli/testing_1219/color_norm/Reinhard' dest_path_2 = '/raidb/wli/testing_1219/color_norm/Macenko' log_path = '/home/wli/log_files' ########################################################################### patches_for_color_norm = fm.list_file_in_dir_II( source_path, file_ext='png') print(len(patches_for_color_norm)) for color_norm_method in ['Reinhard', 'Macenko']: current_time = datetime.now().strftime("%d-%m-%Y_%I-%M-%S_%p") log_file = open('%s/%s_%s.txt' % (log_path, color_norm_method, current_time), 'w') fit = color_normalization(template_image_path, color_norm_method) if color_norm_method == 'Reinhard': dest_path = dest_path_1 elif color_norm_method == 'Macenko': dest_path = dest_path_2 for image_patch in tqdm(patches_for_color_norm): img_norm = color_norm(image_patch, fit, log_file) save_color_norm_patches( dest_path, source_path, image_patch, img_norm, color_norm_method) ``` #### File: dldp/image_process/patch_aug.py ```python import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import os.path as osp import glob import cv2 from imageio import imwrite as saveim # for 224 images def random_crop2(image, mask, size_origin, crop_size): """ To get randomly cropped images from original image :param image: original image :type image: array :param mask: the corresponding mask image from ground truth :type mask: array :param size_origin: the size of original image. :param crop_size: the size of image to be cropped. :return: cropped image, cropped mask, position information :rtype: tuple """ # width, height = slide.level_dimensions[4] dy, dx = crop_size x = np.random.randint(0, size_origin - dx + 1) y = np.random.randint(0, size_origin - dy + 1) index = [x, y] # cropped_img = (image[x:(x+dx), y:(y+dy),:], rgb_binary[x:(x+dx), y:(y+dy)], mask[x:(x+dx), y:(y+dy)]) cropped_img = image[x:(x+dx), y:(y+dy), :] # cropped_binary = rgb_binary[x:(x+dx), y:(y+dy)] cropped_mask = mask[x:(x+dx), y:(y+dy)] return (cropped_img, cropped_mask, index) def patch_aug_flip_rotate_crop(image, crop_size, image_name, folder_to_save=False): """ the function generates 224 patches from 256 patches :param image: the original image patch :type image: array :param crop_size: the sized of new image :type crop_size: list :param image_name: the name of the original image :type image_name: string :param folder_to_save: the folder to save the new images :type folder_to_save: string :return: cropped image :rtype: array """ random_number = np.random.randint(0, 4) if random_number == 0: image_rotated = np.fliplr(image) elif random_number == 1: image_rotated = np.rot90(image, 1) elif random_number == 2: image_rotated = np.rot90(image, 2) elif random_number == 3: image_rotated = np.rot90(image, 3) else: image_rotated = image # maskset = [imgmask, maskroted1, maskroted2, maskroted3, maskroted4] # imageset = [img_norm, imageroted1, imageroted2, imageroted3, imageroted4] dy, dx = crop_size if image.shape[0] > dx: x = np.random.randint(0, 256 - dx + 1) y = np.random.randint(0, 256 - dy + 1) # index = [x, y] # cropped_img = (image[x:(x+dx),y:(y+dy),:],rgb_binary[x:(x+dx),y:(y+dy)], # mask[x:(x+dx), y:(y+dy)]) cropped_img = image_rotated[x:(x + dx), y:(y + dy), :] # cropped_binary = rgb_binary[x:(x+dx), y:(y+dy)] # cropped_mask = mask[x:(x + dx), y:(y + dy)] cropped_img = image_rotated if folder_to_save: saveim('%s/%s_aug.png' % (folder_to_save, image_name), cropped_img) return cropped_img def color_noise_hsv_to_blue(image, max=20): """ adding color noise to the direction of blue based on HSV color space :param image: the image to be modified :type image: array :param max: the range of color noise :type max: int :return: img_noise_rgb, a RGB image with color noise :rtype: array """ img_hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) img_colornoise = img_hsv + np.random.uniform(0, max, size=(1, 3)) img_colornoise[img_colornoise > 255] = 255 img_colornoise[:, :, 0][img_colornoise[:, :, 0] > 179] = 179 img_noise = img_colornoise.astype('uint8') img_noise_rgb = cv2.cvtColor(img_noise, cv2.COLOR_HSV2BGR) return img_noise_rgb def color_noise_hsv_to_red(image, max=20): """ This function is used to add color noise to the direction of red based on HSV color space. :param image: the original image :type image: array :param max: the range of color noise :type max: int :return: m_rgb, a RGB image with color noise :rtype: array """ m_hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) m_colornoise = m_hsv + np.random.uniform(0, max, size=(1, 3)) # using 'unit8' transformation is dangerous, there are lots of values go # beyong 255 after adding random number, the transformation will # automatically minus it by 255. So here we set the range for S, V, if > # 255, then it is 255; for H, if > 179, then it is 179 m_colornoise[m_colornoise > 255] = 255 m_colornoise[:, :, 0][m_colornoise[:, :, 0] > 179] = 179 # now we can transform the value to unit8 safely m_int = m_colornoise.astype('uint8') m_rgb = cv2.cvtColor(m_int, cv2.COLOR_HSV2RGB) return m_rgb # this is based on the description of liu yun's paper,"Detecting Cancer Metastases on Gigapixel Pathology Images". # use the random functions from tensorflow def color_perturb(image): """ adding color noise and changing the constrast. :param image: image to be modified :type image: array :returns: image with color perturbation :rtype: array """ image = tf.image.random_brightness(image, max_delta=64. / 255.) image = tf.image.random_saturation(image, lower=0.75, upper=1.25) image = tf.image.random_hue(image, max_delta=0.04) image = tf.image.random_contrast(image, lower=0.25, upper=1.75) return image ``` #### File: dldp/utils/xml_to_mask.py ```python import math import glob import pandas as pd import xml.etree.ElementTree as et from pandas import DataFrame import openslide import numpy as np import cv2 import matplotlib.pyplot as plt import logging import os.path as osp import sys sys.path.append('/home/weizhe.li/dldp/utils/logman') sys.path.append('/home/weizhe.li/dldp/utils') # setup_logging import fileman as fm import logger_management from logger_management import log_with_template from logger_management import StreamToLogger from logger_management import setup_logging # import multiresolutionimageinterface as mir # reader = mir.MultiResolutionImageReader() # mr_image = reader.open('/home/wli/Downloads/tumor_036.tif') # Ximageorg, Yimageorg = mr_image.getDimensions() # dims = mr_image.getLevelDimensions(4) # Ximage = (Ximage+240//2)//240 # Ximage = 4000 # Yimage = (Yimage+240//2)//240 # Yimage = 2000 class mask_generator(object): """ The class is used to generate a single mask file (not pyramid) based on xml file. """ def __init__(self, xml_file, level, dims): """ variables initialization :param xml_file: :param level: :param dims: :param result_folder: """ self.xml_file = xml_file self.level = level self.dims = dims self.result_folder = result_folder def convert_xml_df(self): """ To convert a xml file to a series of dataframes in a tuple. :return: df_xml: x, y coordinates :rtype: dataframe """ down_sample = 2**self.level parseXML = et.parse(self.xml_file) root = parseXML.getroot() dfcols = ['Name', 'Order', 'X', 'Y'] df_xml = pd.DataFrame(columns=dfcols) for child in root.iter('Annotation'): for coordinate in child.iter('Coordinate'): Name = child.attrib.get('Name') Order = coordinate.attrib.get('Order') X_coord = float(coordinate.attrib.get('X')) X_coord = X_coord//down_sample #X_coord = X_coord/down_sample Y_coord = float(coordinate.attrib.get('Y')) Y_coord = Y_coord//down_sample #Y_coord = Y_coord/down_sample df_xml = df_xml.append(pd.Series( [Name, Order, X_coord, Y_coord], index=dfcols), ignore_index=True) # type: DataFrame df_xml = pd.DataFrame(df_xml) print('redundent xml:', df_xml.shape) return df_xml # x_values = list(annotations['X'].get_values()) # y_values = list(annotations['Y'].get_values()) # xy = list(zip(x_values,y_values)) def points_collection(self, annotations): """ remove the duplicated coordinates due to the down_sampling :param duplicate: :return: list with no duplicates :rtype: list """ final_name_list = list(annotations['Name'].unique()) coxy = [[] for x in range(len(final_name_list))] for index, n in enumerate(final_name_list): newx = annotations[annotations['Name'] == n]['X'] newy = annotations[annotations['Name'] == n]['Y'] newxy = list(zip(newx, newy)) coxy[index] = np.array(newxy, dtype=np.int32) return (coxy, final_name_list) def mask_gen(self, coxy, result_folder): """ generate a binary mask file :param final_list: the down-sampled annotation :type final_list: list :param result_folder: :type result_folder:str :return: mask file :rtype: tif file """ # image = cv2.imread('/home/wli/Downloads/tumor_036.xml', -1) canvas = np.zeros((int(self.dims[1]//2**self.level), int(self.dims[0]//2**self.level)), np.uint8) # canvas = np.zeros((int(dims[1]/32), int(dims[0]/32)), np.uint8) # tile =mr_image.getUCharPatch(0, 0, dims[0], dims[1], 4) # canvas = np.zeros((Ximage, Yimage, 3), np.uint8) # fix the division # coords = np.array([xy], dtype=np.int32) # cv2.drawContours(canvas, [coords],-1, (0,255,0), -1) # cv2.drawContours(canvas, coxy, -1, (255, 255, 255), 10) # cv2.drawContours(canvas, coxy, -1, (255, 255, 255), CV_FILLED) cv2.fillPoly(canvas, pts=coxy, color=(255, 255, 255)) # cv2.polylines(canvas, coxy, isClosed=True, color=(255,255,255), # thickness=5) cv2.imwrite('%s/%s.png' % (result_folder, osp.splitext(osp.basename(self.xml_file))[0]), canvas) # cv2.imshow("tile", tile);cv2.waitKey();cv2.destroyAllWindows() # cv2.fillConvexPoly(mask, coords,1) # mask = mask.astype(np.bool) # output = np.zeros_like(image) # output[mask] = image[mask] # cv2.imshow('image',output) # cv2.waitKey(0) # cv2.destroyAllWindows() class lesion_count(mask_generator): def __init__(self): super().__init__ def gen_lesion_table(self, coxy, final_name_list): lesion_total = [] for coord, lesion_name in list(zip(coxy, contour_names)): M = cv2.moments(coord) cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) lesion_total.append([lesion_name, (cX, cY), cv2.contourArea(coord)]) return lesion_total if __name__ == '__main__': # setup_logging module_name = sys.modules['__main__'].__file__ log_template_path = '/home/weizhe.li/dldp/utils/logman/logging_config.yaml' # The log template is also inculded in this package. # log_template_path = '.../dldp/utils/logman/logging_config.yaml' logger = log_with_template(log_template_path, module_name) # xml_folder = '/home/wzli/Downloads/CAMELYON16/testing/ # lesion_annotations/' # xml_folder = '/home/wzli/Downloads/CAMELYON16/training/ # lesion_annotations_training/' xml_folder = '/projects01/wxc4/wli/CAMELYON16/lesion_annotations' xml_paths = fm.list_file_in_dir_II(xml_folder, 'xml') logger.debug('the fist xml file is %s' % xml_paths[0]) # xml_paths = glob.glob(osp.join(xml_folder, '*.xml')) # xml_paths.sort() # slide_folder = '/home/wzli/Downloads/CAMELYON16/testing/images/' slide_folder = '/projects01/wxc4/CAMELYON16-training/tumor' result_folder = '/projects01/wxc4/wli/CAMELYON16/lesion_counts' created_folder = fm.creat_folder('', result_folder) # slide_paths = glob.glob(osp.join(slide_folder, '*.tif')) level = 5 ############################lesion count####################################### lesion_total = [] col_names = ['slide_name', 'lesion_name', 'centroid', 'area'] for xml_file in xml_paths: slide_name = osp.basename(xml_file.replace('.xml', '.tif')) slide_path = osp.join(slide_folder, slide_name) wsi_image = openslide.open_slide(slide_path) dims = wsi_image.dimensions mask_gen = mask_generator(xml_file, level, dims) annotations = mask_gen.convert_xml_df() final_annotations, _ = mask_gen.points_collection(annotations) # mask_gen.mask_gen(final_annotations, reult_folder) lesion_stat = lesion_count(xml_file, level, dims) annotations = lesion_stat.convert_xml_df() final_annotations, lesion_names = lesion_stat.points_collection(annotations) slide_lesions = lesion_stat.gen_lesion_table(final_annotations, lesion_names) lesion_total.append(slide_lesions) df_lesion_stat = pd.DataFrame(lesion_total, columns=col_names) df_lesion_stat.to_csv(result_folder) ``` #### File: dldp/wsi_visu/WSI_viewer_new.py ```python import os.path as osp import openslide from pathlib import Path import numpy as np import matplotlib.pyplot as plt import cv2 from pandas import DataFrame import xml.etree.ElementTree as et import pandas as pd from skimage.filters import threshold_otsu import math import glob import re import sys class WSI_viewer_new(object): ''' The wsi_viewer class is used to display the wsi image, ground truth, predicted heatmap and their overlays Input: paths for WSI image, xml file for ground truth, heatmap WSI_path : the path of a WSI image; Xml_path : the path of a xml file, the ground truth (outline the tumor regions) of a WSI image; Dimension_path : the path of npy file I generated to store the dimensions of WSI image and tissue region; Mask_truth_path : the path of generated binary mask files from xml files; Heatmap_path : the path of predicted heatmap showing the scores of possible tumor region. Output: contours of tissue region, tumor region (from ground truth), and heatmap on WSI image How to Use: Step 1: create an instance of the object for example, viewer = WSI_viewer() Step 2: display the combined contours of tissue region and tumor region viewer.combined_contour_on_wsi() Step 3: display heatmap over contours of tumor region viewer.display_heatmap() Step 4: generate binary mask flies: viewer.mask_generation() Author: <NAME> Data: 05-08-19 ''' # Class Attribute slide_level = 5 PPI = 150 threshold = 0.6 # Initializer / Instance Attributes def __init__(self, WSI_path, Xml_path, Dimension_path, Mask_truth_path='', Heatmap_path=''): self.WSI_path = WSI_path self.Xml_path = Xml_path self.Mask_truth_path = Mask_truth_path self.Heatmap_path = Heatmap_path self.Dimension_path = Dimension_path # load in the files self.wsi_image = openslide.open_slide(WSI_path) self.dims = self.wsi_image.dimensions # ground_truth = openslide.open_slide(ground_truth_dir) if Mask_truth_path: try: self.mask_truth = cv2.imread(Mask_truth_path) self.mask_truth = self.mask_truth[:, :, 0].astype('uint8') except: self.wsi_truth = openslide.open_slide(Mask_truth_path) self.mask_truth_asap = self.wsi_truth.read_region((0, 0), self.slide_level, ( int(self.dims[0] / math.pow(2, self.slide_level)), int(self.dims[1] / math.pow(2, self.slide_level)))) if Heatmap_path: self.heat_map = np.load(Heatmap_path) self.bbox = np.load(Dimension_path) # read in the wsi image at level 4, downsampled by 16 # dims = wsi_image.level_dimensions[4] self.wsi_image_thumbnail = np.array(self.wsi_image.read_region((0, 0), self.slide_level, ( int(self.dims[0] / math.pow(2, self.slide_level)), int(self.dims[1] / math.pow(2, self.slide_level))))) self.wsi_image_thumbnail = self.wsi_image_thumbnail[:, :, :3].astype( 'uint8') self.wsi_image_thumbnail_copy = self.wsi_image_thumbnail.copy() self.wsi_image_thumbnail_copy_2 = self.wsi_image_thumbnail.copy() # read in the ground_truth # ground_truth_image = np.array(ground_truth.get_thumbnail((dims[0]/16, dims[1]/16))) def tissue_contour_on_wsi(self): # read the WSI file, do not use get_thumbnail function. It has bug # wsi_image = openslide.open_slide(WSI_path) # dims = wsi_image.dimensions # thumbnail = wsi_image.read_region((0,0), slide_level,(int(dims[0]/32), int(dims[1]/32))) # thumbnail = np.array(thumbnail) # thumbnail = thumbnail[:,:,:3] # thumbnail = thumbnail.astype('uint8') # drawcontours for tissue regions only hsv_image = cv2.cvtColor(self.wsi_image_thumbnail, cv2.COLOR_RGB2HSV) h, s, v = cv2.split(hsv_image) hthresh = threshold_otsu(h) sthresh = threshold_otsu(s) # vthresh = threshold_otsu(v) # be min value for v can be changed later minhsv = np.array([hthresh, sthresh, 0], np.uint8) maxhsv = np.array([180, 255, 255], np.uint8) thresh = [minhsv, maxhsv] # extraction the countor for tissue rgbbinary = cv2.inRange(hsv_image, thresh[0], thresh[1]) # plt.imshow(rgbbinary) rgbbinary = rgbbinary.astype("uint8") kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (20, 20)) rgbbinary_close = cv2.morphologyEx(rgbbinary, cv2.MORPH_CLOSE, kernel) rgbbinary_open = cv2.morphologyEx( rgbbinary_close, cv2.MORPH_OPEN, kernel) _, contours, _ = cv2.findContours( rgbbinary_open, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) contours_on_wsi = cv2.drawContours( self.wsi_image_thumbnail_copy, contours, -1, (0, 255, 0), 20) cv2.imwrite("tissue_contour_%s.png" % osp.splitext( osp.basename(self.WSI_path))[0], contours_on_wsi) return contours # reader = mir.MultiResolutionImageReader() # mr_image = reader.open('/home/wli/Downloads/tumor_036.tif') # Ximageorg, Yimageorg = mr_image.getDimensions() # dims = mr_image.getLevelDimensions(4) # Ximage = (Ximage+240//2)//240 # Ximage = 4000 # Yimage = (Yimage+240//2)//240 # Yimage = 2000 # this is a private method used for mask generation def _convert_xml_df(self): parseXML = et.parse(self.Xml_path) root = parseXML.getroot() dfcols = ['Name', 'Order', 'X', 'Y'] df_xml = pd.DataFrame(columns=dfcols) for child in root.iter('Annotation'): for coordinate in child.iter('Coordinate'): Name = child.attrib.get('Name') Order = coordinate.attrib.get('Order') X_coord = float(coordinate.attrib.get('X')) # X_coord = X_coord - 30000 # X_coord = ((X_coord)*dims[0])/Ximageorg X_coord = X_coord / math.pow(2, self.slide_level) Y_coord = float(coordinate.attrib.get('Y')) # Y_coord = Y_coord - 155000 # Y_coord = ((Y_coord)*dims[1])/Yimageorg Y_coord = Y_coord / math.pow(2, self.slide_level) df_xml = df_xml.append(pd.Series([Name, Order, X_coord, Y_coord], index=dfcols), ignore_index=True) # type: DataFrame df_xml = pd.DataFrame(df_xml) return (df_xml) # x_values = list(annotations['X'].get_values()) # y_values = list(annotations['Y'].get_values()) # xy = list(zip(x_values,y_values)) # this is a private method used for mask generation def _Remove(self, duplicate): final_list = [] for num in duplicate: if num not in final_list: final_list.append(num) return final_list def mask_generation(self): # mask or ground truth generation annotations = self._convert_xml_df() final_list = self._Remove(annotations['Name']) # the list coxy store the x,y coordinates coxy = [[] for x in range(len(final_list))] i = 0 for n in final_list: newx = annotations[annotations['Name'] == n]['X'] newy = annotations[annotations['Name'] == n]['Y'] print(n) print(newx, newy) newxy = list(zip(newx, newy)) coxy[i] = np.array(newxy, dtype=np.int32) # note: i is different from n. i = i + 1 # image = cv2.imread('/home/wli/Downloads/tumor_036.xml', -1) # int(self.dims[0]/math.pow(2, self.slide_level)), int(self.dims[1]/math.pow(2, self.slide_level) canvas = np.zeros( (int(self.dims[1] / math.pow(2, self.slide_level)), int(self.dims[0] / math.pow(2, self.slide_level))), np.uint8) # tile =mr_image.getUCharPatch(0, 0, dims[0], dims[1], 4) # canvas = np.zeros((Ximage, Yimage, 3), np.uint8) # fix the division # coords = np.array([xy], dtype=np.int32) # cv2.drawContours(canvas, [coords],-1, (0,255,0), -1) # cv2.drawContours(canvas, coxy, -1, (255, 255, 255), 10) # cv2.drawContours(canvas, coxy, -1, (255, 255, 255), CV_FILLED) cv2.fillPoly(canvas, pts=coxy, color=(255, 255, 255)) # cv2.polylines(canvas, coxy, isClosed=True, color=(255,255,255), thickness=5) cv2.imwrite('home_made_mask_%s.tif' % osp.splitext( osp.basename(self.Xml_path))[0], canvas) return canvas def truth_contour_on_wsi(self): # read mask file if self.Mask_truth_path: try: mask = self.mask_truth mask_binary = mask.clip(max=1) except: mask = self.mask_truth_asap mask_binary = np.array(mask.convert('L')) else: mask = self.mask_generation() mask_binary = mask.clip(max=1) _, contours_mask, _ = cv2.findContours( mask_binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) truth_contours_wsi = cv2.drawContours( self.wsi_image_thumbnail, contours_mask, -1, (0, 0, 255), 20) cv2.imwrite("truth_contours_wsi_%s.png" % osp.basename( osp.splitext(self.WSI_path)[0]), truth_contours_wsi) return truth_contours_wsi def combined_contour_on_wsi(self): # draw contours for tissue regions and mask at the same pic wsi_image_thumbnail = self.wsi_image_thumbnail contours_tissue = self.tissue_contour_on_wsi() contours_mask = self.truth_contour_on_wsi().copy() # cv2.drawContours(wsi_image_thumbnail, contours_mask, -1, (0, 255, 0), 20) segmentation_mask = cv2.drawContours( contours_mask, contours_tissue, -1, (0, 255, 0), 20) plt.imshow(segmentation_mask) cv2.imwrite("tissue_truth_contour_%s.png" % osp.basename( osp.splitext(self.WSI_path)[0]), segmentation_mask) def display_heatmap(self): ''' This function is used to display the heat_map over WSI image input: directory of WSI image, directory of heat_map, directory of dimensions, threshhold output: orginal WSI image, heat_map, heat_map over WSI image, ''' # thumbnail_test_002 = np.array(slide.get_thumbnail(dims)) # change to grayscale image to avoid the color confusion with heat_map. # wsi_image_thumbnail_grayscale = cv2.cvtColor(wsi_image_thumbnail, code=cv2.COLOR_RGB2GRAY) # make a heat_map with the same size as the downsampled wsi image # heatmap_final_final = np.zeros((dimension_002[0]*14, dimension_002[1]*14), pred_test_002.dtype) heatmap_final_final = np.zeros((self.wsi_image_thumbnail.shape[0], self.wsi_image_thumbnail.shape[1]), self.heat_map.dtype) heatmap_final_final[self.bbox[5] * 14:(self.bbox[6] + 1) * 14, self.bbox[3] * 14:(self.bbox[4] + 1) * 14] = self.heat_map # select the heat_map pixels above the threshhold heatmap_final_final_bin = ( heatmap_final_final > self.threshold) * heatmap_final_final heatmap_final_final_bin[heatmap_final_final_bin == 0] = np.nan truth_contour_wsi = self.truth_contour_on_wsi() # display the overlay image plt.figure(figsize=(80, 40)) ax1 = plt.subplot(1, 4, 1) ax1.imshow(self.wsi_image_thumbnail_copy_2) ax2 = plt.subplot(1, 4, 2) try: ax2.imshow(self.mask_truth, cmap='gray') except: ax2.imshow(self.mask_truth_asap, cmap='gray') ax3 = plt.subplot(1, 4, 3) ax3.imshow(heatmap_final_final, cmap='jet') ax4 = plt.subplot(1, 4, 4) truth_contour_wsi = self.truth_contour_on_wsi() ax4.imshow(truth_contour_wsi) ax4.imshow(heatmap_final_final_bin, cmap='jet', interpolation='none', alpha=1.0, vmin=0.0, vmax=1.0) plt.show() plt.savefig('overlay_%s.png' % osp.splitext( osp.basename(self.WSI_path))[0], dpi=self.PPI) # the function for heatmap construction if __name__ == "__main__": # Xml_dir = '/raida/wjc/CAMELYON16/testing/lesion_annotations' #Xml_path = '/Users/liw17/Documents/WSI/lesion_annotations/tumor_026.xml' # Xml_paths = glob.glob(osp.join(Xml_dir, '*.xml')) # Xml_paths.sort() # WSI_dir = '/raida/wjc/CAMELYON16/testing/images' #WSI_path = osp.join(WSI_dir, 'tumor_026.tif') # WSI_paths = glob.glob(osp.join(WSI_dir, '*.tif')) # WSI_paths.sort() # Mask_truth_dir = '/raidb/wli/Final_Results/Display/home_made_mask_files_32xdownsample' # Mask_truth_path = osp.join(Mask_truth_dir, 'test_002_truth_16.tif') #Mask_truth_path = '/Users/liw17/Documents/WSI/mask_asap/tumor_026_mask.tif' # Mask_truth_paths = glob.glob(osp.join(Mask_truth_dir, '*.tif')) # Mask_truth_paths.sort() # Heatmap_dir = '/raidb/wli/Final_Results/Heat_map/Method_II/color_noise_color_normalization/Method_II_Model_I_norm/test_0506' # Heatmap_path = osp.join(Heatmap_dir, 'test_002.npy') #Heatmap_path = '/Volumes/ExFAT-wzl/heat_map/tumor/tumor_026.npy' # Heatmap_paths = glob.glob(osp.join(Heatmap_dir, '*.npy')) # Heatmap_paths.sort() # Dimension_dir = '/raidb/wli/Final_Results/Display/pred_dim_0314/testing/' #Dimension_path = osp.join(Dimension_dir, 'dimensions_test_002.npy') #Dimension_path = '/Users/liw17/Documents/pred_dim_0314/training-updated/tumor/dimensions/tumor_026.npy' # Dimension_paths = glob.glob(osp.join(Dimension_dir, '*.npy')) # Dimension_paths.sort() Xml_dir = '/raida/wjc/CAMELYON16/testing/lesion_annotations' Xml_path = '/raida/wjc/CAMELYON16/testing/lesion_annotations/tumor_026.xml' Xml_paths = glob.glob(osp.join(Xml_dir, '*.xml')) WSI_dir = '/raida/wjc/CAMELYON16/training/tumor' WSI_path = osp.join(WSI_dir, 'tumor_026.tif') WSI_paths = glob.glob(osp.join(WSI_dir, '*.tif')) #Mask_truth_dir = '/Users/liw17/Documents/WSI/' #Mask_truth_path = osp.join(Mask_truth_dir, 'test_002_truth_16.tif') Mask_truth_path = '/raida/wjc/CAMELYON16/training/masking/tumor_026_mask.tif' #Mask_truth_paths = glob.glob(osp.join(Mask_truth_dir, '*.tif')) #Heatmap_dir = '/Volumes/ExFAT-wzl/heat_map/test' #Heatmap_path = osp.join(Heatmap_dir, 'test_002.npy') Heatmap_path = '/raidb/wli/Final_Results/Heat_map/Method_II/color_noise_color_normalization/Method_II_Model_I_norm/tumor_0506/tumor_026.npy' #Heatmap_paths = glob.glob(osp.join(Heatmap_dir, '*.npy')) Dimension_dir = '/raidb/wli/Final_Results/Display/pred_dim_0314/testing/pred_dim_0314/testing/' #Dimension_path = osp.join(Dimension_dir, 'dimensions_test_002.npy') Dimension_path = '/raidb/wli/Final_Results/Display/pred_dim_0314/training-updated/tumor/dimensions/tumor_026.npy' #Dimension_paths = glob.glob(osp.join(Dimension_dir, '*.npy')) # for wsi_image_path in WSI_paths: # print(wsi_image_path) # Xml_path_new = [x for x in Xml_paths if re.search( # osp.splitext(osp.basename(wsi_image_path))[0], x)] # Xml_path = Xml_path_new[0] # Dimension_path_new = [x for x in Dimension_paths if re.search( # osp.splitext(osp.basename(wsi_image_path))[0], x)] # Dimension_path = Dimension_path_new[0] # Mask_truth_path_new = [x for x in Mask_truth_paths if # re.search(osp.splitext(osp.basename(wsi_image_path))[0], x)] # Mask_truth_path = Mask_truth_path_new[0] # Heatmap_path_new = [x for x in Heatmap_paths if re.search( # osp.splitext(osp.basename(wsi_image_path))[0], x)] # Heatmap_path = Heatmap_path_new[0] # viewer = WSI_viewer_new(wsi_image_path, Xml_path, # Dimension_path, Mask_truth_path, Heatmap_path) # viewer.slide_level = 5 # viewer.PPI = 150 # viewer.display_heatmap() viewer = WSI_viewer_new( WSI_path, Xml_path, Dimension_path, Mask_truth_path, Heatmap_path) viewer.display_heatmap() ```
{ "source": "3dimaging/FLL2021", "score": 4 }
#### File: FLL2021/Week-23/ball_sprite.py ```python import pygame, sys pygame.init() screen = pygame.display.set_mode([640,480]) screen.fill([255, 255, 255]) class Ball(pygame.sprite.Sprite): def __init__(self, image, location, speed): pygame.sprite.Sprite.__init__(self) self.image = pygame.image.load(image) self.rect = self.image.get_rect() self.rect.left, self.rect.top = location self.speed = speed def move(self): self.rect = self.rect.move(self.speed) if self.rect.left < 0 or self.rect.right > 640: self.speed[0] = -self.speed[0] if self.rect.top < 0 or self.rect.bottom > 480: self.speed[1] = -self.speed[1] img_file = "wackyball.bmp" ball = Ball(img_file, [200, 200], [3, 3]) # Adds each ball to the list as it’s created running = True while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False pygame.time.delay(20) # Redraws the screen screen.fill([255, 255, 255]) ball.move() screen.blit(ball.image, ball.rect) pygame.display.flip() pygame.quit() ```
{ "source": "3Dit-GmbH/Govie-Tools", "score": 2 }
#### File: 3Dit-GmbH/Govie-Tools/functions.py ```python import bpy import subprocess import atexit server_process = None O = bpy.ops def select_object(obj): C = bpy.context O.object.select_all(action='DESELECT') C.view_layer.objects.active = obj obj.select_set(True) def start_server(server_path,file_path): global server_process if server_process is not None: stop_server() server_process = subprocess.Popen([bpy.app.binary_path_python, server_path, file_path]) def stop_server(): global server_process if server_process is not None: print("Closed process " + str(server_process.pid)) server_process.kill() atexit.register(stop_server) ```
{ "source": "3djake/mirrorcast", "score": 3 }
#### File: opt/mirrorcast/hosts.py ```python import logging, os, csv, logging.handlers mirror_logger = logging.getLogger() mirror_logger.setLevel(logging.DEBUG) handler = logging.handlers.SysLogHandler(address = '/dev/log') formatter = logging.Formatter(' mirrorcast - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) mirror_logger.addHandler(handler) #logging.basicConfig(filename='/opt/mirrorcast/mirrorcast.log',level=logging.DEBUG,format='%(asctime)s %(message)s', datefmt='%d/%m/%Y %I:%M:%S %p') class Hosts(): def __init__(self): self.receivers = [] self.receiver = "None" #load list of receivers from file try: with open(os.path.dirname(os.path.abspath(__file__)) + "/receivers") as csvfile: file = csv.DictReader(csvfile) for line in file: self.receivers.append(line) except: mirror_logger.error("Failed to load host names") exit(0) csvfile.close() self.aspect = self.receivers[0]['aspect'] #set receiver to the one picked by the user def set_receiver(self, but, name): self.receiver = str(but.get_label()) for i in self.receivers: if i['host'] == self.receiver and but.get_active(): self.aspect = i['aspect'] mirror_logger.info("Receiver set to: " + i['host'] + " Receivers aspect: " + self.aspect) return if but.get_active(): self.receiver = "None" self.aspect = "16:9" mirror_logger.info("Receiver set to: " + self.receiver) ``` #### File: opt/mirrorcast/media.py ```python from tkinter import * import socket class Media(object): def __init__(self,master): self.value="" self.receiver="None" top=self.top=master topframe = Frame(top) topframe.pack() self.l=Label(topframe,text="These are controls for the Receiving Device") self.l.pack() self.l3=Label(topframe,text="__________________________________________") self.l3.pack() self.l2=Label(topframe,text="Note: It may take up to 15 seconds to start your media on the receiver") self.l2.pack() self.l4=Label(topframe,text="This feature is experimental, if you file does not play please close this window and try again.") self.l4.pack() controls = Frame(top) controls.pack(side=BOTTOM) self.state=Label(controls,textvariable="") self.backb=Button(controls,text='Rewind',command=self.back) self.playb=Button(controls,text='Play/Pause',command=self.play) self.forwardb=Button(controls,text='Fast-Forward',command=self.forward) self.stopb=Button(controls,text='Stop',command=self.stop) self.volb = Scale(controls, from_=-2500, to=400, orient=HORIZONTAL, label="Volume", showvalue=0, command=self.vol) self.state.pack(side=LEFT) self.backb.pack(side=LEFT) self.playb.pack(side=LEFT) self.forwardb.pack(side=LEFT) self.audiobackb=Button(controls,text='Audio Track Back',command=self.audioback) self.audioforwb=Button(controls,text='Audio Track Up',command=self.audioforw) self.audioforwb.pack(side=LEFT) self.audiobackb.pack(side=LEFT) self.volb.pack() def vol(self, vol): cmd = "tube-vol," self.send_cmd(cmd) return def audioforw(self): cmd = "tube-track-up," self.send_cmd(cmd) return def audioback(self): cmd = "tube-track-down," self.send_cmd(cmd) return def play(self): cmd = "tube-pause," self.send_cmd(cmd) return def back(self): cmd = "tube-back," self.send_cmd(cmd) return def forward(self): cmd = "tube-forward," self.send_cmd(cmd) return def stop(self): cmd = "tube-stop," self.send_cmd(cmd) return def send_cmd(self, cmd): if cmd == "tube-vol,": command = cmd + socket.gethostname() + "," + str(self.volb.get()) else: command = cmd + socket.gethostname() try: print(cmd) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(5) sock.connect((self.receiver, 8092)) sock.settimeout(30) sock.send(command.encode('ascii')) sock.close() except: return False def on_closing(self): cmd = "tube-stop," self.send_cmd(cmd) ``` #### File: opt/mirrorcast/mirrorcast-client.py ```python import socket, gi, subprocess, time, os, threading, logging, dbus,logging.handlers from hosts import Hosts as hosts from displays import Displays from audio import Audio from tube import Tube from media import Media from dvd import Dvd from tkinter import * from tkinter.filedialog import askopenfilename gi.require_version('AppIndicator3', '0.1') gi.require_version('Gtk', '3.0') gi.require_version('Gtk', '3.0') gi.require_version('Notify', '0.7') from gi.repository import Gtk as gtk from gi.repository import AppIndicator3 as appindicator from gi.repository import Notify as notify from gi.repository import GObject as gobject from dbus.mainloop.glib import DBusGMainLoop mirror_logger = logging.getLogger() mirror_logger.setLevel(logging.DEBUG) handler = logging.handlers.SysLogHandler(address = '/dev/log') formatter = logging.Formatter(' mirrorcast - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) mirror_logger.addHandler(handler) class TrayMenu: def __init__(self): mirror_logger.info("Started Mirrorcast") self.indicator = appindicator.Indicator.new("mirrorMenu", os.path.abspath('/opt/mirrorcast/mirrorcast_tray.png'), appindicator.IndicatorCategory.SYSTEM_SERVICES) self.indicator.set_status(appindicator.IndicatorStatus.ACTIVE) #A string so we know what the user is doing self.state = "stopped" self.menu = gtk.Menu() #Set up menu item_start= gtk.MenuItem('Start Mirroring') item_start.connect('activate', self.start) self.menu.append(item_start) #Media Sub Menu self.media_sub = gtk.Menu() item_media= gtk.MenuItem('Play Media (Experimental)') item_media.set_submenu(self.media_sub) item_file = gtk.MenuItem('Media File') item_file.connect('activate', self.file) self.media_sub.append(item_file) item_dvd = gtk.MenuItem('Play DVD') item_dvd.connect('activate', self.dvd) self.media_sub.append(item_dvd) item_youtube = gtk.MenuItem('Youtube URL') item_youtube.connect('activate', self.youtube) self.media_sub.append(item_youtube) self.menu.append(item_media) item_freeze = gtk.MenuItem('Freeze') item_freeze.connect('activate', self.freeze) self.menu.append(item_freeze) item_update = gtk.MenuItem('Update Mirrorcast') item_update.connect('activate', self.update) #Update feature is disabled for now #self.menu.append(item_update) item_quit = gtk.MenuItem('Quit') item_quit.connect('activate', self.quit) self.menu.append(item_quit) sep = gtk.SeparatorMenuItem() self.menu.append(sep) self.outputSub = gtk.Menu() output = gtk.MenuItem("Cast To") output.set_submenu(self.outputSub) '''Recievers/Hosts Menu''' self.hosts = hosts() #Varaibles for sorting receivers into sub-menus self.list_receivers = [] self.sortedMenu = [] sortSub = [] subitems = [] sortInd = 0 sortInd2 = 0 #Add receivers to menu self.list_receivers.append(gtk.RadioMenuItem('None')) for ind, i in enumerate(self.hosts.receivers): #aAlow user to sort their receivers into organised sublists if i['aspect'] == "sub": self.sortedMenu.append(gtk.Menu()) sortSub.append(gtk.MenuItem(i['host'])) sortSub[sortInd].set_submenu(self.sortedMenu[sortInd]) self.outputSub.append(sortSub[sortInd]) sortInd = sortInd + 1 elif sortInd > 0: try: subitems.append(gtk.RadioMenuItem(str(i['host']),group=self.subitems[sortInd2-1])) except: subitems.append(gtk.RadioMenuItem(str(i['host']),group=self.list_receivers[0])) subitems[sortInd2].connect('toggled', self.hosts.set_receiver, subitems[sortInd2].get_label()) self.sortedMenu[sortInd-1].append(subitems[sortInd2]) sortInd2 = sortInd2 + 1 else: self.list_receivers.append(gtk.RadioMenuItem(str(i['host']),group=self.list_receivers[ind-1])) for i in self.list_receivers: self.outputSub.append(i) i.connect('toggled', self.hosts.set_receiver, i.get_label()) self.list_receivers[0].set_active(True) self.Display = Displays() self.displaysSub = gtk.Menu() displays = gtk.MenuItem("Select Display to Mirror") displays.set_submenu(self.displaysSub) self.list_displays = [] #Add displays/monitors to menu for ind, i in enumerate(self.Display.monitors): if ind != 0: self.list_displays.append(gtk.RadioMenuItem(str(i[0]),group=self.list_displays[ind-1])) else: self.list_displays.append(gtk.RadioMenuItem(self.Display.monitors[0][0])) for i in self.list_displays: self.displaysSub.append(i) i.connect('toggled', self.Display.set_display, i.get_label()) self.list_displays[0].set_active(True) self.menu.append(output) self.menu.append(displays) self.menu.show_all() self.indicator.set_menu(self.menu) self.sound = Audio() self.ffmpeg = None self.srt = None self.vlc = None self.sleep = dbus_listen(item_start, self) def close_stream(self): if self.ffmpeg is not None: if self.ffmpeg.poll() is None: self.ffmpeg.terminate() self.ffmpeg.wait() if self.srt is not None: if self.srt.poll() is None: self.srt.terminate() self.srt.wait() #the following function is run when the user clicks "Start/Stop Mirroring" def start(self, w): notify.init("mirrorMenu") mirror_logger.info("Detected Audio Device: " + str(self.sound.audioDev)) if w.get_label() == 'Start Mirroring': #If the user did not select a receiver if self.hosts.receiver == "None": notify.init("mirrorMenu") notify.Notification.new("Error", "You did not select a receiver", None).show() return notify.Notification.new("Connecting to Receiver", "Attempting to establish connection to " + self.hosts.receiver, None).show() mirror_logger.info("User is trying to connect to " + self.hosts.receiver) #If we cannot connect to the receiver try: if self.connect("play-srt,") == False: notify.init("mirrorMenu") notify.Notification.new("Connection Error", "Could not connect to" + self.hosts.receiver + ". please try again and if problem persists then please contact your system administrator.", None).show() mirror_logger.warning("Failed to connect to " + self.hosts.receiver) return except: notify.Notification.new("Connection Error", "Could not connect to" + self.hosts.receiver + ". please try again and if problem persists then please contact your system administrator.", None).show() #Create and start loop that checks if receiver can still be reached mirror_logger.info("User connected to " + self.hosts.receiver) w.set_label("Stop Mirroring") self.start_casting() #Start a loop that will keep checking if the client can still reach the server connection=threading.Thread(target=self.alive,args=[w]) connection.start() elif w.get_label() == 'Stop Mirroring': self.state = "stopped" self.sound.audio(False) self.Display.display(False, self.hosts.aspect) self.close_stream() w.set_label('Start Mirroring') return def start_casting(self): res = self.Display.resolution self.sleep.sleep = False #If receiver is set to display 4:3 and the client is 16:9 then change screen resoltion to 1024x768 if (self.hosts.aspect == "wide" or self.hosts.aspect == "16:9" or self.hosts.aspect == "16:10") and self.Display.get_ratio(res) == "16:9": self.hosts.aspect = "16:9" else: self.hosts.aspect = "4:3" if self.Display.get_ratio(self.Display.resolution) != "4:3": res = "1024x768" try: subprocess.call("xrandr --output " + self.Display.type + " --mode 1024x768", shell=True) except: mirror_logger.warning("Could now change screen resolution to 4:3") notify.Notification.new("Resolution Error", "Failed to change screen resolution to match receiver.", None).show() return self.sound.audio(True) #Start encoding and sending the stream to the receiver self.state = "casting" time.sleep(1) display = os.environ['DISPLAY']#get display of current user self.ffmpeg = subprocess.Popen(["ffmpeg", "-loglevel", "warning", "-f", "pulse", "-ac", "2", "-i", "default", "-async", "1", "-f", "x11grab", "-r", "25", "-s", str(res), "-i", str(display) + "+" + str(int(self.Display.xoffset)) + "," + str(self.Display.yoffset), "-aspect", self.hosts.aspect, "-vcodec", "libx264", "-pix_fmt", "yuv420p", "-tune", "zerolatency", "-preset", "ultrafast", "-vf", "scale=" + str(res).replace('x', ':'), "-x264opts", "vbv-maxrate=7700:vbv-bufsize=1000:intra-refresh=1:slice-max-size=500:keyint=10:ref=1", "-f", "mpegts", "-"], stdout=subprocess.PIPE) self.srt = subprocess.Popen(["stransmit", "file://con", "srt://{}:8090?mode=client&pbkeylen=0".format(self.hosts.receiver)], stdin=self.ffmpeg.stdout, stdout=subprocess.PIPE) self.sound.monitor_audio() notify.Notification.new("Connection Established", "Connection to " + self.hosts.receiver + " established.", None).show() def alive(self, w): mirror_logger.info("Sending Alive Packets") timestamp = time.localtime() timeout = 10 retries = 1 i=0 command = "active," + socket.gethostname() while True: try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(5) sock.connect((self.hosts.receiver, 8092)) sock.settimeout(None) #If the user's computer is going to sleep if self.state == "stopped" or self.sleep.sleep == True: mirror_logger.info("User stopped casting") command = "stop," + socket.gethostname() sock.send(command.encode('ascii')) sock.close() return if self.state == "freeze": logging.info("User freezed their screen") notify.Notification.new("Freezing", "Your screen will freeze in 10 seconds.", None).show() command = "freezee," + socket.gethostname() time.sleep(10) sock.send(command.encode('ascii')) status = sock.recv(1024) if status.decode('ascii') == "paused": self.close_stream() w.set_label('Start Mirroring') notify.init("mirrorMenu") notify.Notification.new("Freezed", "You have frozen your current desktop, click Start Mirroring to resume", None).show() self.state = "stopped" time.sleep(1) self.sound.audio(False) self.Display.display(False, self.hosts.aspect) sock.close() return sock.send(command.encode('ascii')) status = sock.recv(1024) if status.decode('ascii') == "ok": timestamp = time.localtime() sock.close() except: #time.sleep(1) if (time.mktime(time.localtime()) - time.mktime(timestamp)) >= timeout and self.state != "stopped" and self.sleep.sleep != True: i = i + 1 if i == 1: mirror_logger.warning("Attempting to reconnect to " + self.hosts.receiver) self.close_stream() notify.Notification.new("Reconnecting", "Connection to " + self.hosts.receiver + " has been lost. Attempting to reconnect.", None).show() time.sleep(2) if self.connect("play,") == True: mirror_logger.info("Reconnected to " + self.hosts.receiver) self.start_casting() i = 0 if i == retries: self.state = "stopped" w.set_label('Start Mirroring') notify.init("mirrorMenu") notify.Notification.new("Connection Lost", "Connection to " + self.hosts.receiver + " timed out.", None).show() mirror_logger.warning("Connection Lost: Connection to " + self.hosts.receiver + " timed out.") return def quit(self, w): self.sound.audio(False) self.state = "stopped" self.Display.display(False, self.hosts.aspect) #kill ffmpeg incase user forgot to click "stop" self.close_stream() gtk.main_quit() def freeze(self, w): if self.state == "stopped": notify.init("mirrorMenu") notify.Notification.new("Not Mirroring", "To freeze your screen you need to Start Mirroring.", None).show() return self.state = "freeze" return def update(self, w): if self.state == "casting": notify.init("mirrorMenu") notify.Notification.new("Cannot Update", "Please stop mirroring before you try to update", None).show() return subprocess.call("/opt/mirrorcast/mirrorcast-autoupdater.sh", shell=True) gtk.main_quit() return def file(self, w): if self.state == "casting": notify.init("mirrorMenu") notify.Notification.new("Error", "Please stop mirroring before you try to use this feature", None).show() else: if self.hosts.receiver == "None": notify.init("mirrorMenu") notify.Notification.new("Error", "Please select a receiving device", None).show() return if self.connect("media,") == False: notify.init("mirrorMenu") notify.Notification.new("Connection Error", "Could not connect to" + self.hosts.receiver + ". please try again and if problem persists then please contact your system administrator.", None).show() mirror_logger.warning("Failed to connect to " + self.hosts.receiver) return mirror_logger.info("User connected to " + self.hosts.receiver + " to play media file") select = Tk() select.withdraw() types= [("Video Files", ("*.mp4","*.avi","*.mov","*.mkv","*.flv","*.mpeg","*.mpg","*.wmv", "*.webm", "*.ogg", "*.ogv")), ("All files", "*.*")] file = askopenfilename(filetypes=types) select.destroy() if file == () or file == None or file == "": return newpath = r'/tmp/media' if not os.path.exists(newpath): os.makedirs(newpath) if os.path.isfile(file): if not os.path.isfile(newpath + '/' + os.path.basename(file)): os.symlink(str(file), "/tmp/media/" + os.path.basename(file)) self.ffmpeg = subprocess.Popen(["http-server", "/tmp/media", "-p", "8090"], stdout=subprocess.PIPE) time.sleep(2) self.send_cmd("media-start," + os.path.basename(file) + ",") mediaui(self.hosts.receiver) self.close_stream() def dvd(self, w): if self.state == "casting": notify.init("mirrorMenu") notify.Notification.new("Error", "Please stop mirroring before you try to use this feature", None).show() else: if self.hosts.receiver == "None": notify.init("mirrorMenu") notify.Notification.new("Error", "Please select a receiving device", None).show() return if self.connect("media,") == False: notify.init("mirrorMenu") notify.Notification.new("Connection Error", "Could not connect to" + self.hosts.receiver + ". please try again and if problem persists then please contact your system administrator.", None).show() mirror_logger.warning("Failed to connect to " + self.hosts.receiver) return mirror_logger.info("User connected to " + self.hosts.receiver + " to stream DVD") #Use lsdvd to retreive keys for encrypted dvd's, requires libdvd-pkg and lsdvd try: subprocess.check_output("lsdvd", shell=True) except: notify.init("mirrorMenu") notify.Notification.new("Error", "Please insert a DVD first or wait for DVD to load.", None).show() return self.send_cmd("dvd-start,") ui = dvdui(self.hosts.receiver) def youtube(self, w): if self.state == "casting": notify.init("mirrorMenu") notify.Notification.new("Error", "Please stop mirroring before you try to use this feature", None).show() else: if self.hosts.receiver == "None": notify.init("mirrorMenu") notify.Notification.new("Error", "Please select a receiving device", None).show() if self.connect("tu-media,") == False: notify.init("mirrorMenu") notify.Notification.new("Connection Error", "Could not connect to" + self.hosts.receiver + ". please try again and if problem persists then please contact your system administrator.", None).show() mirror_logger.warning("Failed to connect to " + self.hosts.receiver) return ui = tubeui(self.hosts.receiver) def connect(self, cmd): command = cmd + socket.gethostname() try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(5) sock.connect((self.hosts.receiver, 8092)) sock.settimeout(30) sock.send(command.encode('ascii')) while True: status = sock.recv(8024) #if server returns busy then some one else is already using this receiver if status.decode('ascii') == "busy": notify.init("mirrorMenu") mirror_logger.info("User attempted to connect to " + self.hosts.receiver + " but receiver was busy") notify.Notification.new("Error", "Sorry some one else is already connected to this receiver, please try again later.", None).show() sock.close() return False #If client succeeds in connecting to receiver elif status.decode('ascii') == "ready": mirror_logger.info("Server is ready") break sock.close() except: return False if cmd == "play,": self.state = "casting" return True def send_cmd(self, cmd): command = cmd + socket.gethostname() try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(5) sock.connect((self.hosts.receiver, 8092)) sock.settimeout(None) sock.send(command.encode('ascii')) sock.close() except: return False class tubeui(): def __init__(self, receiver): self.root=Tk() self.m=Tube(self.root) self.m.receiver=receiver self.root.title("Play Youtube URL") self.root.protocol("WM_DELETE_WINDOW", self.on_exit) self.root.mainloop() def on_exit(self): self.m.on_closing() self.root.destroy() class mediaui(): def __init__(self, receiver): self.root=Tk() self.m=Media(self.root) self.m.receiver=receiver self.root.title("Receiver Controls") self.root.protocol("WM_DELETE_WINDOW", self.on_exit) self.root.mainloop() def on_exit(self): self.m.on_closing() self.root.destroy() #reactor.stop() class dvdui(): def __init__(self, receiver): self.root=Tk() self.m=Dvd(self.root) self.m.receiver=receiver self.root.title("Receiver Controls") self.root.protocol("WM_DELETE_WINDOW", self.on_exit) self.root.mainloop() def on_exit(self): self.m.on_closing() self.root.destroy() #reactor.stop() class dbus_listen(): def handle_sleep(self, *args): self.w.set_label('Start Mirroring') mirror_logger.info("User computer is going to sleep, killing ffmpeg") self.tray.close_stream() self.sleep = True def __init__(self, w, tray): self.sleep = False self.w = w self.tray = tray DBusGMainLoop(set_as_default=True) # integrate into gobject main loop bus = dbus.SystemBus() # connect to system wide dbus bus.add_signal_receiver( # define the signal to listen to self.handle_sleep, # callback function 'PrepareForSleep', # signal name 'org.freedesktop.login1.Manager', # interface 'org.freedesktop.login1', # bus name ) def main(): gtk.main() return 0 if __name__ == "__main__": indicator = TrayMenu() main() ``` #### File: opt/mirrorcast/tube.py ```python from tkinter import * import socket class Tube(object): def __init__(self,master): self.receiver="None" top=self.top=master topframe = Frame(top) topframe.pack() self.l=Label(topframe,text="This will play videos from both youtube and dailymotion") self.l.pack() self.l2=Label(topframe,text="Copy(ctrl+c) and Paste(Ctrl+v) the Youtube URL into the text box and then click 'load'") self.l2.pack() self.l3=Label(topframe,text="While the video is loading, the 'load' button will remain greyed out, this may take a few seconds.") self.l3.pack() self.e=Entry(topframe, width=80) self.e.pack(side=LEFT) self.loadb=Button(topframe,text='load',command=self.load) self.loadb.pack(side=LEFT) controls = Frame(top) controls.pack(side=BOTTOM) self.state=Label(controls,textvariable="") self.backb=Button(controls,text='Rewind',command=self.back) self.playb=Button(controls,text='Play/Pause',command=self.play) self.forwardb=Button(controls,text='Fast-Forward',command=self.forward) self.stopb=Button(controls,text='Stop',command=self.stop) self.volb = Scale(controls, from_=-2500, to=400, orient=HORIZONTAL, label="Volume", showvalue=0, command=self.vol) self.state.pack(side=LEFT) self.backb.pack(side=LEFT) self.playb.pack(side=LEFT) self.forwardb.pack(side=LEFT) self.volb.set(0) self.volb.pack(side=LEFT) self.stopb.pack(side=LEFT) def load(self): cmd = "tube-load," self.value=self.e.get() self.send_cmd(cmd, self.value) return def play(self): cmd = "tube-pause," self.value=self.e.get() self.send_cmd(cmd, self.value) return def back(self): cmd = "tube-back," self.send_cmd(cmd, self.value) return def forward(self): cmd = "tube-forward," self.send_cmd(cmd, self.value) return def stop(self): cmd = "tube-stop," self.value="" self.send_cmd(cmd, self.value) self.set_state("") return def vol(self, vol): cmd = "tube-vol," self.send_cmd(cmd, self.volb.get()) return def send_cmd(self, cmd, url): if cmd == "tube-vol,": command = cmd + socket.gethostname() + "," + str(self.volb.get()) else: command = cmd + socket.gethostname() + "," + url try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(5) sock.connect((self.receiver, 8092)) sock.settimeout(None) sock.send(command.encode('ascii')) if cmd == "tube-load,": status = sock.recv(8024) if status.decode('ascii') == "ready": self.set_state("Playing") elif status.decode('ascii') == "error": self.set_state("Invalid URL: Please check URL is valid") sock.close() except: self.set_state("Failed, Please make sure you copied the URL correctly") return False def set_state(self, state): self.state.configure(text=state) return def on_closing(self): cmd = "tube-stop," self.value="" self.send_cmd(cmd, self.value) self.set_state("") ```
{ "source": "3DLables/3DLabeler", "score": 4 }
#### File: 3DLabeler/ThreeDLabeler/images.py ```python import numpy as np from scipy import ndimage import matplotlib.pyplot as plt class Image: """ Processor class for annotating 3D scans. Arguments: voxels: a 3D numpy array voxel_size: a tuple/list of three numbers indicating the voxel size in mm, cm etc point_position: the position in 3D of each point of interest. See tag_parser for more info """ def __init__(self, voxels, point_position, voxel_size=(1, 1, 1)): self.voxels = voxels self.voxel_size = voxel_size self.point_position = point_position / voxel_size def cube(self): """Returns a cube image with all dimensions equal to the longest.""" dims = self.voxels.shape max_dim = max(dims) x_target = (max_dim - dims[0]) / 2 y_target = (max_dim - dims[1]) / 2 z_target = (max_dim - dims[2]) / 2 self.voxels = np.pad(self.voxels, ((int(np.ceil(x_target)), int(np.floor(x_target))), (int(np.ceil(y_target)), int(np.floor(y_target))), (int(np.ceil(z_target)), int(np.floor(z_target)))), 'constant', constant_values=(0)) self.point_position = self.point_position + [np.ceil(z_target), np.ceil(y_target), np.ceil(x_target)] return(self) def scale(self, size=128): """Scales a 3D Numpy array to the desired dimensions Keyword Arguments: size {int} -- The number of pixels that should be scaled too. It uses the numpy.ndimage scale function. (default: {128}) """ scale_factor = size / max(self.voxels.shape) self.voxels = ndimage.zoom(self.voxels, scale_factor) self.point_position = self.point_position * scale_factor self.voxel_size = False # To ignore this return(self) def plot(self, vcol=1): """ Graphs an points. pt_cols is used to set the cols to iterate over (different views) """ img = self.voxels points = self.point_position ax = [] fig = plt.figure(figsize=(9, 8)) # TODO make this setable in the function call columns = 3 rows = 2 for i in range(points.shape[0]): im_slice = int(np.round(points[i, vcol])) if vcol == 0: im = img[im_slice, :, :] elif vcol == 1: im = img[:, im_slice, :] else: im = img[:, :, im_slice] plot_cols = np.array([0, 1, 2]) plot_cols = plot_cols[plot_cols != vcol] ax.append(fig.add_subplot(rows, columns, i+1)) # set title ax[-1].set_title("Image depth: " + str(im_slice) + '\n x-axis' + str(np.round(points[i, min(plot_cols)])) + '\n y-axis' + str(np.round(points[i, max(plot_cols)]))) plt.imshow(im) plt.plot(points[i, min(plot_cols)], points[i, max(plot_cols)], 'ro') # TODO Fix bug where points don't plot properly # BUG plt.show() def _cube_points(self): """Cubes two dimensional array of key points for rotation Returns: numpy array -- A 3D Numpy array with point 1-n shown in 3D Space """ cubedims = self.voxels.shape points = self.point_position points = np.rint(points).astype('int') # sets to int for indexing arr = np.zeros((cubedims), dtype=int) # creates empty array for i in range(self.point_position.shape[0]): arr[points[i, 0], points[i, 1], points[i, 2]] = i+1 # +1 Avoide zeros return arr def _square_points(self, arr): """Takes a cubed point array and return a 2D version of it with key points Arguments: arr {3D Numpy Array} -- The 3D array with key points in it Returns: 2D Numpy Array -- The x, y, z coordinates of each key point Yields: numpy array -- when used as an iterator. This may be a bug """ flatpoints = np.zeros((self.point_position.shape), dtype=int) # double (()) to make it a tuple npoints = flatpoints.shape[0] for i in range(npoints): flatpoints[i, :] = np.where(arr == i+1) return flatpoints def img_transformer(self, number_rot=24): """Generates 24 projections of a 3D image along with the key points Returns: ThreeDLabeler.Image -- The voxels and key points for a projection of the image """ voxels = [] points = [] if number_rot == 24: rot_fun = rotations24 elif number_rot == 4: rot_fun = rotations4 elif number_rot == 2: rot_fun = rotations2 else: raise ValueError("Incorrect number or rotations, try 4, 24") for i in rot_fun(self.voxels): voxels.append(i) for j in rot_fun(self._cube_points()): points.append(self._square_points(j)) imgs = [] for i in range(number_rot): imgs.append(Image(voxels[i], points[i])) return imgs # TODO Add possibility to not just cube an image # TODO Add Storeage/writing functionality def rotations24(polycube): """https://stackoverflow.com/ questions/33190042/how-to-calculate-all-24-rotations-of-3d-array""" # imagine shape is pointing in axis 0 (up) # 4 rotations about axis 0 yield from rotations_flip4(polycube, 0) # rotate 180 about axis 1, now shape is pointing down in axis 0 # 4 rotations about axis 0 yield from rotations_flip4(rot90(polycube, 2, axis=1), 0) # rotate 90 or 270 about axis 1, now shape is pointing in axis 2 # 8 rotations about axis 2 yield from rotations_flip4(rot90(polycube, axis=1), 2) yield from rotations_flip4(rot90(polycube, -1, axis=1), 2) # rotate about axis 2, now shape is pointing in axis 1 # 8 rotations about axis 1 yield from rotations_flip4(rot90(polycube, axis=2), 1) yield from rotations_flip4(rot90(polycube, -1, axis=2), 1) def rotations4(polycube): yield polycube # Unit yeld yield polycube[::-1, :, :] yield polycube[:, ::-1, :] yield polycube[..., ::-1] def rotations2(polycube): yield polycube # Unit yeld yield polycube[::-1, :, :] # yield polycube[:, ::-1, :] # yield polycube[..., ::-1] def rotations_flip4(polycube, axis): """List the four rotations of the given cube about the given axis.""" for i in range(4): yield rot90(polycube, i, axis) def rot90(m, k=1, axis=2): """Rotate an array k*90 degrees in the counter-clockwise direction around the given axis This differs from np's rot90 because it's 3D """ m = np.swapaxes(m, 2, axis) m = np.rot90(m, k) m = np.swapaxes(m, 2, axis) return m ``` #### File: 3DLabeler/ThreeDLabeler/plotting.py ```python import matplotlib.pyplot as plt import numpy as np def mri_plot(img, points, vcol=1, figsize=(9, 8)): """Graphs an points. pt_cols is used to set the cols to iterate over (different views) """ ax = [] fig = plt.figure(figsize=figsize) columns = 3 rows = 2 for i in range(points.shape[0]): im_slice = int(np.round(points[i, vcol])) if vcol == 0: im = img[:, :, im_slice] elif vcol == 1: im = img[:, im_slice, :] else: im = img[im_slice, :, :] ax.append(fig.add_subplot(rows, columns, i+1)) ax[-1].set_title("Image depth: "+str(im_slice)) # set title plt.imshow(im) plot_cols = np.array([0, 1, 2]) plot_cols = plot_cols[plot_cols != vcol] plt.plot(points[i, min(plot_cols)], points[i, max(plot_cols)], 'ro') plt.show() ```
{ "source": "3dlg-hcvc/ANCSH-pytorch", "score": 2 }
#### File: ANCSH_lib/data/dataset.py ```python import h5py import numpy as np import torch from torch.utils.data import Dataset class ANCSHDataset(Dataset): def __init__(self, data_path, num_points): self.f_data = h5py.File(data_path) self.instances = sorted(self.f_data) self.num_points = num_points def __len__(self): return len(self.instances) def __getitem__(self, index): id = self.instances[index] ins = self.f_data[id] # Get the points index used to sample points input_points = ins['camcs_per_point'][:] input_points_num = input_points.shape[0] perm = np.random.permutation(input_points_num)[:self.num_points] if self.num_points > input_points_num: additional = np.random.choice(input_points_num, self.num_points - input_points_num, replace=True) perm = np.concatenate((perm, additional)) assert perm.shape[0] == self.num_points, f'{perm.shape[0]}, {self.num_points}, {input_points_num}' # Get the camcs_per_point camcs_per_point = torch.tensor(input_points, dtype=torch.float32)[perm] # Get all other items gt_dict = {} for k, v in ins.items(): if k == "camcs_per_point": continue elif "per_point" in k: gt_dict[k] = torch.tensor(v[:], dtype=torch.float32)[perm] else: gt_dict[k] = torch.tensor(v[:], dtype=torch.float32) return camcs_per_point, gt_dict, id ``` #### File: 3dlg-hcvc/ANCSH-pytorch/evaluate.py ```python import logging from time import time import hydra from hydra.utils import get_original_cwd from omegaconf import DictConfig, OmegaConf from ANCSH_lib import ANCSHEvaluator, utils from tools.utils import io log = logging.getLogger('evaluate') @hydra.main(config_path="configs", config_name="evaluate") def main(cfg: DictConfig): OmegaConf.update(cfg, "paths.result_dir", io.to_abs_path(cfg.paths.result_dir, get_original_cwd())) combined_result_path = cfg.optimization_result_path num_parts = cfg.num_parts log.info(f'Instances in dataset have {num_parts} parts') evaluator = ANCSHEvaluator(cfg, combined_result_path, num_parts=num_parts) evaluator.process_ANCSH(do_eval=True) if __name__ == "__main__": start = time() main() stop = time() print(str(stop - start) + " seconds") ``` #### File: ANCSH-pytorch/preprocess/proc_stage1.py ```python import os import h5py import yaml import logging import numpy as np from PIL import Image from scipy.spatial.transform import Rotation as R from progress.bar import Bar from multiprocessing import Pool, cpu_count from omegaconf import OmegaConf from tools.utils import io # from tools.visualization import Viewer from utils import DataLoader, URDFReader, DatasetName log = logging.getLogger('proc_stage1') class ProcStage1Impl: def __init__(self, cfg): self.output_path = cfg.output_path self.tmp_dir = cfg.tmp_dir self.render_cfg = cfg.render_cfg self.rest_state_data_filename = cfg.rest_state_data_filename self.width = self.render_cfg.width self.height = self.render_cfg.height self.dataset_name = cfg.dataset_name def get_metadata(self, metadata_path, frame_index, num_parts): metadata = {} if DatasetName[self.dataset_name] == DatasetName.SAPIEN or \ DatasetName[self.dataset_name] == DatasetName.SHAPE2MOTION: with open(metadata_path, "r") as meta_file: metadata_all = yaml.load(meta_file, Loader=yaml.Loader) frame_metadata = metadata_all[f'frame_{frame_index}'] metadata = { 'projMat': np.reshape(frame_metadata['projMat'], (4, 4), order='F'), 'viewMat': np.reshape(frame_metadata['viewMat'], (4, 4), order='F'), 'linkAbsPoses': [] } num_links = len(frame_metadata['obj']) if num_links < num_parts: metadata['linkAbsPoses'].append(np.eye(4)) for link_idx in range(num_links): position = frame_metadata['obj'][link_idx][4] # x,y,z,w quaternion = frame_metadata['obj'][link_idx][5] orientation = R.from_quat(quaternion).as_matrix() pose = np.eye(4) pose[:3, :3] = orientation pose[:3, 3] = position metadata['linkAbsPoses'].append(pose) return metadata def __call__(self, idx, input_data): output_filepath = os.path.splitext(self.output_path)[0] + f'_{idx}' + os.path.splitext(self.output_path)[-1] h5file = h5py.File(output_filepath, 'w') bar = Bar(f'Stage1 Processing chunk {idx}', max=len(input_data)) for index, input_each in input_data.iterrows(): depth_frame_path = os.path.join(self.render_cfg.render_dir, input_each['objectCat'], input_each['objectId'], input_each['articulationId'], self.render_cfg.depth_folder, input_each['depthFrame']) mask_frame_path = os.path.join(self.render_cfg.render_dir, input_each['objectCat'], input_each['objectId'], input_each['articulationId'], self.render_cfg.mask_folder, input_each['maskFrame']) metadata_path = os.path.join(self.render_cfg.render_dir, input_each['objectCat'], input_each['objectId'], input_each['articulationId'], input_each['metadata']) tmp_data_dir = os.path.join(self.tmp_dir, input_each['objectCat'], input_each['objectId']) rest_state_data_path = os.path.join(tmp_data_dir, self.rest_state_data_filename) frame_index = int(input_each['depthFrame'].split(self.render_cfg.depth_ext)[0]) # float32 depth buffer, range from 0 to 1 depth_data = np.array(h5py.File(depth_frame_path, "r")["data"]).flatten() # uint8 mask, invalid value is 255 mask_frame = np.asarray(Image.open(mask_frame_path)) rest_data_data = io.read_json(rest_state_data_path) num_parts = len([link for link in rest_data_data['links'] if link if not link['virtual']]) assert depth_data.size == mask_frame.size metadata = self.get_metadata(metadata_path, frame_index, num_parts) x_range = np.linspace(-1, 1, self.width) y_range = np.linspace(1, -1, self.height) x, y = np.meshgrid(x_range, y_range) x = x.flatten() y = y.flatten() z = 2.0 * depth_data - 1.0 # shape nx4 points_tmp = np.column_stack((x, y, z, np.ones(self.height * self.width))) mask_tmp = mask_frame.flatten() # points in clip space points_clip = points_tmp[mask_tmp < 255] link_mask = mask_tmp[mask_tmp < 255] # check if unique value in mask match num parts assert points_clip.shape[0] == link_mask.shape[0] proj_mat = metadata['projMat'] view_mat = metadata['viewMat'] # transform points from clip space to camera space # shape 4xn points_camera = np.dot(np.linalg.inv(proj_mat), points_clip.transpose()) # homogeneous normalization points_camera = points_camera / points_camera[-1, :] # shape 4xn points_world = np.dot(np.linalg.inv(view_mat), points_camera) # transform links to rest state points_rest_state = np.empty_like(points_world) parts_camera2rest_state = [] for link_idx, link in enumerate(rest_data_data['links']): if link['virtual']: continue link_points_world = points_world[:, link_mask == link_idx] # virtual link link_index is -1 current_part_pose = metadata['linkAbsPoses'][link['part_index']] rest_state_pose = np.reshape(link['abs_pose'], (4, 4), order='F') transform2rest_state = np.dot(rest_state_pose, np.linalg.inv(current_part_pose)) link_points_rest_state = np.dot(transform2rest_state, link_points_world) points_rest_state[:, link_mask == link_idx] = link_points_rest_state # points in camera space to rest state camera2rest_state = np.dot(transform2rest_state, np.linalg.inv(view_mat)) # shape num parts x 16 parts_camera2rest_state.append(camera2rest_state.flatten('F')) parts_camera2rest_state = np.asarray(parts_camera2rest_state) # shape nx3 points_camera_p3 = points_camera.transpose()[:, :3] points_world_p3 = points_world.transpose()[:, :3] points_rest_state_p3 = points_rest_state.transpose()[:, :3] camera2base_matrix = np.linalg.inv(view_mat).flatten('F') instance_name = f'{input_each["objectCat"]}_{input_each["objectId"]}_{input_each["articulationId"]}_{str(frame_index)}' h5frame = h5file.require_group(instance_name) h5frame.create_dataset("mask", shape=link_mask.shape, data=link_mask, compression="gzip") h5frame.create_dataset("points_camera", shape=points_camera_p3.shape, data=points_camera_p3, compression="gzip") h5frame.create_dataset("points_rest_state", shape=points_rest_state_p3.shape, data=points_rest_state_p3, compression="gzip") h5frame.create_dataset("parts_transformation", shape=parts_camera2rest_state.shape, data=parts_camera2rest_state, compression="gzip") h5frame.create_dataset("base_transformation", shape=camera2base_matrix.shape, data=camera2base_matrix, compression="gzip") bar.next() bar.finish() h5file.close() return output_filepath class ProcStage1: def __init__(self, cfg): self.cfg = cfg self.data_loader = DataLoader(cfg) self.data_loader.parse_input() self.input_cfg = self.cfg.paths.preprocess.stage1.input self.tmp_output = self.cfg.paths.preprocess.stage1.tmp_output self.output_cfg = self.cfg.paths.preprocess.stage1.output self.height = self.cfg.dataset.param.height self.width = self.cfg.dataset.param.width self.debug = self.cfg.debug def preprocess_motion_data(self, motion_data_df): bar = Bar('Stage1 Parse Motion Data', max=len(motion_data_df)) for index, motion_data in motion_data_df.iterrows(): motion_file_path = os.path.join(self.data_loader.motion_dir, motion_data['objectCat'], motion_data['objectId'], motion_data['motion']) assert io.file_exist(motion_file_path), f'Can not found Motion file {motion_file_path}!' if DatasetName[self.cfg.dataset.name] == DatasetName.SAPIEN or \ DatasetName[self.cfg.dataset.name] == DatasetName.SHAPE2MOTION: urdf_reader = URDFReader(motion_file_path) tmp_data_dir = os.path.join(self.cfg.paths.preprocess.tmp_dir, self.tmp_output.folder_name, motion_data['objectCat'], motion_data['objectId']) urdf_reader.export( result_data_path=tmp_data_dir, rest_state_data_filename=self.tmp_output.rest_state_data, rest_state_mesh_filename=self.tmp_output.rest_state_mesh ) bar.next() bar.finish() def process(self): input_data = self.data_loader.data_info io.ensure_dir_exists(self.cfg.paths.preprocess.tmp_dir) input_data.to_csv(os.path.join(self.cfg.paths.preprocess.tmp_dir, self.tmp_output.input_files)) motion_data_df = input_data.drop_duplicates(subset=['objectCat', 'objectId', 'motion']) self.preprocess_motion_data(motion_data_df) io.ensure_dir_exists(self.cfg.paths.preprocess.output_dir) num_processes = min(cpu_count(), self.cfg.num_workers) # calculate the chunk size chunk_size = max(1, int(input_data.shape[0] / num_processes)) chunks = [input_data.iloc[input_data.index[i:i + chunk_size]] for i in range(0, input_data.shape[0], chunk_size)] log.info(f'Stage1 Processing Start with {num_processes} workers and {len(chunks)} chunks') config = OmegaConf.create() config.output_path = os.path.join(self.cfg.paths.preprocess.tmp_dir, self.tmp_output.folder_name, self.output_cfg.pcd_data) config.tmp_dir = os.path.join(self.cfg.paths.preprocess.tmp_dir, self.tmp_output.folder_name) render_cfg = OmegaConf.create() render_cfg.width = self.width render_cfg.height = self.height render_cfg.render_dir = self.data_loader.render_dir render_cfg.depth_ext = self.input_cfg.render.depth_ext render_cfg.mask_ext = self.input_cfg.render.mask_ext render_cfg.depth_folder = self.input_cfg.render.depth_folder render_cfg.mask_folder = self.input_cfg.render.mask_folder config.render_cfg = render_cfg config.rest_state_data_filename = self.tmp_output.rest_state_data config.dataset_name = self.cfg.dataset.name with Pool(processes=num_processes) as pool: proc_impl = ProcStage1Impl(config) output_filepath_list = pool.starmap(proc_impl, enumerate(chunks)) output_file_path = os.path.join(self.cfg.paths.preprocess.output_dir, self.output_cfg.pcd_data) h5file = h5py.File(output_file_path, 'w') for filepath in output_filepath_list: with h5py.File(filepath, 'r') as h5f: for key in h5f.keys(): h5f.copy(key, h5file) h5file.close() # if self.debug: # tmp_dir = os.path.join(self.cfg.paths.preprocess.tmp_dir, self.tmp_output.folder_name) # with h5py.File(output_file_path, 'r') as h5file: # bar = Bar('Stage1 Visualization', max=len(h5file.keys())) # for key in h5file.keys(): # h5group = h5file[key] # folder_names = key.split('_') # viz_output_dir = os.path.join(tmp_dir, folder_names[0], folder_names[1], folder_names[2]) # viz_output_filename = key # viz_output_path = os.path.join(viz_output_dir, viz_output_filename) # viewer = Viewer(h5group['points_camera'][:], mask=h5group['mask'][:]) # if self.cfg.show: # viewer.show(window_name=viz_output_filename + '_points_camera') # else: # viewer.render(fig_path=viz_output_path + '_points_camera.jpg') # if self.cfg.export: # viewer.export(mesh_path=viz_output_path + '_points_camera.ply') # viewer.reset() # viewer.add_geometry(h5group['points_rest_state'][:], mask=h5group['mask'][:]) # if self.cfg.show: # viewer.show(window_name=viz_output_filename + '_points_rest_state') # else: # viewer.render(fig_path=viz_output_path + '_points_rest_state.jpg') # if self.cfg.export: # viewer.export(mesh_path=viz_output_path + '_points_rest_state.ply') # del viewer # bar.next() # bar.finish() ``` #### File: tools/visualization/ancsh_visualizer.py ```python import os import logging import h5py import numpy as np import trimesh.base from matplotlib import cm from progress.bar import Bar import hydra from hydra.utils import get_original_cwd from omegaconf import DictConfig, OmegaConf from tools.utils import io from tools.visualization.viewer import Viewer from ANCSH_lib.utils import NetworkType, get_prediction_vertices log = logging.getLogger('ANCSH visualizer') class ANCSHVisualizer: def __init__(self, data: h5py.File, network_type, gt=False, sampling=1): self.data = data self.gt = gt self.prefix = 'gt_' if gt else 'pred_' self.export_dir = None self.items = [] self.show_flag = False self.render_flag = False self.export_flag = False self.network_type = network_type self.sampling = sampling self.arrow_sampling = 4 self.width = 1024 self.height = 768 self.point_size = 10 self.fig_ext = '.jpg' self.mesh_ext = '.ply' self.draw_offset_arrows = True self.additional_mesh = None def parse_items(self): visit_groups = lambda name, node: self.items.append(name) if isinstance(node, h5py.Group) else None self.data.visititems(visit_groups) def add_trimesh(self, mesh: trimesh.base.Trimesh): self.additional_mesh = mesh def render_options(self, viewer, name, suffix=''): if self.additional_mesh is not None: viewer.add_trimesh(self.additional_mesh) filename = name + suffix + '_' + self.network_type.value folder_names = name.split('_') viz_output_dir = os.path.join(self.export_dir, folder_names[0], folder_names[1], folder_names[2]) viewer.point_size = self.point_size if self.show_flag: viewer.show(window_size=[self.width, self.height], window_name=name) if self.render_flag and self.export_dir: viewer.render(fig_path=os.path.join(viz_output_dir, filename + self.fig_ext), fig_size=[self.width, self.height]) if self.export_flag and self.export_dir: viewer.export(mesh_path=os.path.join(viz_output_dir, filename + self.mesh_ext)) def viz_segmentation(self, data_group, data_name): suffix = '_segmentation' segmentations = data_group[f'{self.prefix}seg_per_point'][:][::self.sampling] points_camera = data_group['camcs_per_point'][:][::self.sampling] viewer = Viewer(points_camera, mask=segmentations) self.render_options(viewer, data_name, suffix) del viewer def viz_npcs(self, data_group, data_name): suffix = '_npcs' segmentations = data_group[f'{self.prefix}seg_per_point'][:][::self.sampling] npcs_points = data_group[f'{self.prefix}npcs_per_point'][:][::self.sampling] viewer = Viewer(npcs_points, mask=segmentations) self.render_options(viewer, data_name, suffix) del viewer def viz_naocs(self, data_group, data_name): suffix = '_naocs' segmentations = data_group[f'{self.prefix}seg_per_point'][:][::self.sampling] naocs_points = data_group[f'{self.prefix}naocs_per_point'][:][::self.sampling] viewer = Viewer(naocs_points, mask=segmentations) self.render_options(viewer, data_name, suffix) del viewer def viz_joint_association(self, data_group, data_name): suffix = '_joint_association' joint_associations = data_group[f'{self.prefix}joint_cls_per_point'][:][::self.sampling] joint_axes = data_group[f'{self.prefix}axis_per_point'][:][::self.sampling] naocs_points = data_group[f'{self.prefix}naocs_per_point'][:][::self.sampling] colors = Viewer.colors_from_mask(joint_associations, empty_first=True) viewer = Viewer(naocs_points, colors=colors) arrow_sample_indices = joint_associations != 0 viewer.add_arrows(naocs_points[arrow_sample_indices][::self.arrow_sampling], joint_axes[arrow_sample_indices][::self.arrow_sampling], color=[0, 0, 0, 0.6], radius=0.002, length=0.04) self.render_options(viewer, data_name, suffix) del viewer def viz_point2joint_offset(self, data_group, data_name): suffix = '_point2joint_offset' joint_associations = data_group[f'{self.prefix}joint_cls_per_point'][:][::self.sampling] point_heatmaps = data_group[f'{self.prefix}heatmap_per_point'][:][::self.sampling] unit_vectors = data_group[f'{self.prefix}unitvec_per_point'][:][::self.sampling] naocs_points = data_group[f'{self.prefix}naocs_per_point'][:][::self.sampling] invalid_heatmap_mask = joint_associations == 0 max_val = np.amax(point_heatmaps) cmap = cm.get_cmap('jet') colors = cmap(point_heatmaps / max_val) colors[invalid_heatmap_mask] = np.array([0.5, 0.5, 0.5, 0.5]) viewer = Viewer(naocs_points, colors=colors) arrow_sample_indices = ~invalid_heatmap_mask arrow_length = (1 - point_heatmaps) * 0.2 + 10e-8 if self.draw_offset_arrows: viewer.add_trimesh_arrows(naocs_points[arrow_sample_indices][::self.arrow_sampling], unit_vectors[arrow_sample_indices][::self.arrow_sampling], color=[0, 0, 0, 0.6], radius=0.002, length=arrow_length[arrow_sample_indices][::self.arrow_sampling]) else: viewer.add_arrows(naocs_points[arrow_sample_indices][::self.arrow_sampling], unit_vectors[arrow_sample_indices][::self.arrow_sampling], color=[0, 0, 0, 0.6], radius=0.002, length=0.04) self.render_options(viewer, data_name, suffix) self.render_options(viewer, data_name, suffix) del viewer def render(self, show=False, export=None, export_mesh=False): self.show_flag = show if self.show_flag: self.render_flag = False else: self.render_flag = True self.export_flag = export_mesh self.export_dir = export self.parse_items() bar = Bar(f'Rendering {len(self.items)} instances', max=len(self.items)) for i, item_name in enumerate(self.items): data_group = self.data[item_name] log.debug(f'Render {item_name}') log.debug(data_group.keys()) log.debug(data_group.attrs) self.viz_segmentation(data_group, item_name) self.viz_npcs(data_group, item_name) if self.network_type == NetworkType.ANCSH: self.viz_naocs(data_group, item_name) self.viz_joint_association(data_group, item_name) self.viz_point2joint_offset(data_group, item_name) bar.next() bar.finish() class OptimizerVisualizer: def __init__(self, data: h5py.File): self.data = data self.export_dir = None self.items = [] self.show_flag = False self.render_flag = False self.export_flag = False self.width = 1024 self.height = 768 self.fig_ext = '.jpg' self.mesh_ext = '.ply' def parse_items(self): visit_groups = lambda name, node: self.items.append(name) if isinstance(node, h5py.Group) else None self.data.visititems(visit_groups) def render_options(self, viewer, name, suffix): filename = name + suffix + '_optimization' folder_names = name.split('_') viz_output_dir = os.path.join(self.export_dir, folder_names[0], folder_names[1], folder_names[2]) if self.show_flag: viewer.show(window_size=[self.width, self.height], window_name=name) if self.render_flag and self.export_dir: viewer.render(fig_path=os.path.join(viz_output_dir, filename + self.fig_ext), fig_size=[self.width, self.height]) if self.export_flag and self.export_dir: viewer.export(mesh_path=os.path.join(viz_output_dir, filename + self.mesh_ext)) def viz_npcs2cam(self, data_group, data_name): segmentations = data_group['pred_seg_per_point'][:] npcs_points = data_group['pred_npcs_per_point'][:] npcs2cam_rt = data_group['pred_npcs2cam_rt'][:] npcs2cam_scale = data_group['pred_npcs2cam_scale'][:] camera_points = data_group['camcs_per_point'][:] npcs2cam_points = np.empty_like(npcs_points) for k in range(npcs2cam_rt.shape[0]): rt = npcs2cam_rt[k].reshape((4, 4), order='F') scale = npcs2cam_scale[k] npcs2cam_points_part = npcs_points[segmentations == k] * scale npcs2cam_points_part_p4 = np.hstack((npcs2cam_points_part, np.ones((npcs2cam_points_part.shape[0], 1)))) npcs2cam_points_part = np.dot(npcs2cam_points_part_p4, rt.T)[:, :3] npcs2cam_points[segmentations == k] = npcs2cam_points_part distance = np.linalg.norm(npcs2cam_points - camera_points, axis=1) max_val = np.amax(distance) cmap = cm.get_cmap('jet') colors = cmap(distance / max_val) viewer = Viewer(npcs2cam_points, mask=segmentations) self.render_options(viewer, data_name, '_npcs2cam') viewer.reset() viewer.add_geometry(npcs2cam_points, colors=colors) self.render_options(viewer, data_name, '_difference') del viewer def render(self, show=False, export=None, export_mesh=False): self.show_flag = show if self.show_flag: self.render_flag = False else: self.render_flag = True self.export_flag = export_mesh self.export_dir = export self.parse_items() bar = Bar(f'Rendering {len(self.items)} instances', max=len(self.items)) for i, item_name in enumerate(self.items): data_group = self.data[item_name] log.debug(f'Render {item_name}') log.debug(data_group.keys()) log.debug(data_group.attrs) self.viz_npcs2cam(data_group, item_name) bar.next() bar.finish() @hydra.main(config_path="../../configs", config_name="preprocess") def main(cfg: DictConfig): prediction = True ancsh_path = '/home/sam/Development/Research/ancsh/ANCSH-pytorch/results/network/test/ANCSH_2022-01-07_00-33-40/ANCSH_inference_result.h5' npcs_path = '/home/sam/Development/Research/ancsh/ANCSH-pytorch/results/network/test/NPCS_2022-01-07_00-34-24/NPCS_inference_result.h5' optimize_path = '/home/sam/Development/Research/ancsh/ANCSH-pytorch/results/optimization_result.h5' if prediction: export_dir = '/home/sam/Development/Research/ancsh/ANCSH-pytorch/results/visualization/pred' else: export_dir = '/home/sam/Development/Research/ancsh/ANCSH-pytorch/results/visualization/gt' ancsh_input_h5 = h5py.File(ancsh_path, 'r') npcs_input_h5 = h5py.File(npcs_path, 'r') optimize_input_h5 = h5py.File(optimize_path, 'r') visualizer = OptimizerVisualizer(optimize_input_h5) visualizer.render(show=False, export=export_dir) # visualizer = ANCSHVisualizer(npcs_input_h5, NetworkType.NPCS, gt=not prediction) # visualizer.render(show=True, export=export_dir) # visualizer = ANCSHVisualizer(ancsh_input_h5, NetworkType.ANCSH, gt=not prediction) # visualizer.render(show=True, export=export_dir) if __name__ == "__main__": main() ``` #### File: 3dlg-hcvc/ANCSH-pytorch/train.py ```python import os import h5py import logging import torch from time import time import hydra from hydra.utils import get_original_cwd from omegaconf import DictConfig, OmegaConf from ANCSH_lib import ANCSHTrainer, utils from ANCSH_lib.utils import NetworkType from tools.utils import io log = logging.getLogger('train') @hydra.main(config_path="configs", config_name="network") def main(cfg: DictConfig): OmegaConf.update(cfg, "paths.result_dir", io.to_abs_path(cfg.paths.result_dir, get_original_cwd())) train_path = cfg.train.input_data if io.file_exist(cfg.train.input_data) else cfg.paths.preprocess.output.train test_path = cfg.paths.preprocess.output.val if cfg.test.split == 'val' else cfg.paths.preprocess.output.test test_path = cfg.test.input_data if io.file_exist(cfg.test.input_data) else test_path data_path = {"train": train_path, "test": test_path} num_parts = utils.get_num_parts(train_path) # test_num_parts = utils.get_num_parts(test_path) # assert num_parts == test_num_parts log.info(f'Instances in dataset have {num_parts} parts') network_type = NetworkType[cfg.network.network_type] utils.set_random_seed(cfg.random_seed) torch.set_deterministic(True) torch.backends.cudnn.deterministic = True os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" trainer = ANCSHTrainer( cfg=cfg, data_path=data_path, network_type=network_type, num_parts=num_parts, ) if not cfg.eval_only: log.info(f'Train on {train_path}, validate on {test_path}') if not cfg.train.continuous: trainer.train() else: trainer.resume_train(cfg.train.input_model) trainer.test() else: log.info(f'Test on {test_path} with inference model {cfg.test.inference_model}') trainer.test(inference_model=cfg.test.inference_model) if __name__ == "__main__": start = time() main() stop = time() duration_time = utils.duration_in_hours(stop - start) log.info(f'Total time duration: {duration_time}') ```
{ "source": "3dlg-hcvc/multion-challenge", "score": 3 }
#### File: 3dlg-hcvc/multion-challenge/evaluate.py ```python import sys sys.path.insert(0, "") import argparse import os import random import numpy as np import habitat from habitat.core.challenge import Challenge class RandomWalker(habitat.Agent): def __init__(self): self._POSSIBLE_ACTIONS = np.array([0,1,2,3]) def reset(self): pass def act(self, observations, not_done_masks): return [np.random.choice(self._POSSIBLE_ACTIONS) for i in range(len(observations))] def main(): agent = RandomWalker() challenge = Challenge() challenge.submit(agent) if __name__ == "__main__": main() ```
{ "source": "3dlg-hcvc/plan2scene-mask-extraction", "score": 2 }
#### File: code/src/module_loader.py ```python import sys def load_plane_predictor(planar_reconstruction_path): sys.path.append(planar_reconstruction_path) from surface_mask_extraction.plane_prediction import PlanePredictor module = PlanePredictor sys.path.remove(planar_reconstruction_path) # Unload modules that conflict with semantic-segmentation-pytorch del sys.modules["models"] del sys.modules["utils"] return module def load_surface_segmenter(semantic_segmentation_project_path): sys.path.append(semantic_segmentation_project_path) from surface_mask_extraction.surface_segmentation import SurfaceSegmenter module = SurfaceSegmenter # Unload modules that conflict with PlanarReconstruction del sys.modules["models"] del sys.modules["utils"] return module ```
{ "source": "3dlg-hcvc/r2v-to-plan2scene", "score": 3 }
#### File: code/src/config_parser.py ```python import json import os.path as osp import logging class Config: """ Configuration item. """ def __init__(self, config_dict: dict): """ Initialize configuration item using a dictionary. :param d: """ self.config_dict = config_dict for k, v in config_dict.items(): if isinstance(v, dict): v = Config(v) self.__dict__[k] = v def as_dict(self): return self.config_dict def __getitem__(self, key): return self.__dict__[key] def parse_config(config_path: str): """ Parses a json config file into a Config object. :param config_path: Path to the json config file. """ if not osp.exists(config_path): logging.warning(f"Config file not found: {config_path}") return None with open(config_path, "r") as f: config_dict = json.loads(f.read()) if isinstance(config_dict, dict): return Config(config_dict) else: return config_dict ``` #### File: src/r2vstk/json_util.py ```python import json import logging import copy from r2vstk.config_manager import ConfigManager from r2vstk.floorplan import Wall from r2vstk.id_gen import generate_wall_id import math log = logging.getLogger(__name__) def generate_wall_json(conf: ConfigManager, wall: Wall, room_id: str, multiplication_factor: float, should_swap_wall_endpoints: bool, is_short_walled: bool = False) -> dict: """ Generate a json describing a wall. :param conf: ConfigManager :param wall: Described wall :param room_id: Room id :param room_wall_ids: Dictionary mapping from room_id -> wall -> wall_id :param multiplication_factor: Scale factor to real world units :param should_swap_wall_endpoints: Should the endpoints of the wall swap. :param is_short_walled: Specify true to make the wall short. :return: Wall json """ hole_jsons = [] old_wall_width = math.sqrt((wall.p2.pos[1] - wall.p1.pos[1]) ** 2 + (wall.p2.pos[0] - wall.p1.pos[0]) ** 2) new_wall_width = math.sqrt(((wall.p2.pos[1] * multiplication_factor) - (wall.p1.pos[1] * multiplication_factor)) ** 2 + ((wall.p2.pos[0] * multiplication_factor) - (wall.p1.pos[0] * multiplication_factor)) ** 2) wall_p1 = wall.p1 wall_p2 = wall.p2 if should_swap_wall_endpoints: wall_p1, wall_p2 = wall_p2, wall_p1 for hole in wall.holes: hole_minx = hole.min_x hole_maxx = hole.max_x if should_swap_wall_endpoints: hole_minx, hole_maxx = old_wall_width - hole_maxx, old_wall_width - hole_minx hole_type = None # Load defaults since we do not have a model min_y = conf.arch_defaults.door_min_y max_y = conf.arch_defaults.door_max_y if hole.type == "door": hole_type = "Door" min_y = conf.arch_defaults.door_min_y max_y = conf.arch_defaults.door_max_y elif hole.type == "window": hole_type = "Window" min_y = conf.arch_defaults.window_min_y max_y = conf.arch_defaults.window_max_y hole_json = { "id": hole.id, # Node id of object creating hole in the wall "type": hole_type, # hole type (`Door` or `Window`) "box": { # cutout of hole as box on the wall "min": [(hole_minx / old_wall_width * new_wall_width), min_y], # minimum point # x is distance from points[0] (toward points[1]) # y is height from wall bottom (goes from 0 to wall height) "max": [(hole_maxx / old_wall_width * new_wall_width), max_y] # maximum point } } hole_jsons.append(hole_json) wall_json = { "roomId": [room_id], "id": generate_wall_id(room_id, wall), "type": "Wall", "points": [[(wall_p1.pos[0] * multiplication_factor), 0.0, (wall_p1.pos[1] * multiplication_factor)], [(wall_p2.pos[0] * multiplication_factor), 0.0, (wall_p2.pos[1] * multiplication_factor)]], "holes": hole_jsons, "height": conf.arch_defaults.wall_height if not is_short_walled else conf.arch_defaults.short_wall_height, "materials": copy.deepcopy(conf.arch_defaults.wall_materials), "depth": conf.arch_defaults.wall_depth, "extra_height": conf.arch_defaults.wall_extra_height } return wall_json def generate_ceiling_json(conf: ConfigManager, polyline, room_id: str, multiplication_factor: float) -> dict: """ Generate a json describing a ceiling. :param conf: ConfigManager :param polyline: Outline of the room :param room_id: id of the room :param multiplication_factor: Scale factor to real-world :return: Json description of the ceiling """ r = { "id": room_id + "_c", "roomId": room_id, "points": [[[(p[0] * multiplication_factor), 0.0, (p[1] * multiplication_factor)] for p in polyline]], "type": "Ceiling", "materials": conf.arch_defaults.ceiling_materials[:], "offset": [0.0, conf.arch_defaults.wall_height, 0.0], "depth": conf.arch_defaults.ceiling_depth } return r def generate_floor_json(conf: ConfigManager, polyline, room_id:str, multiplication_factor:float): """ Generate a json describing the floor surface :param conf: ConfigManager :param polyline: Outline of the room :param room_id: id of the room :param multiplication_factor: Scale factor to real-world :return: Json description of the floor. """ r = { "id": room_id + "_f", "roomId": room_id, "points": [[[(p[0] * multiplication_factor), 0.0, (p[1] * multiplication_factor)] for p in polyline]], "type": "Floor", "materials": conf.arch_defaults.floor_materials[:], "depth": conf.arch_defaults.floor_depth } return r ```
{ "source": "3dlg-hcvc/tricolo", "score": 2 }
#### File: 3dlg-hcvc/tricolo/run_retrieval_val.py ```python import os import sys import yaml import json import random import argparse import numpy as np import torch from tricolo.trainers.SimCLR import SimCLR from tricolo.dataloader.dataloader import ClrDataLoader parser = argparse.ArgumentParser() parser.add_argument("--exp", type=str, default="None", help="Exp to evaluate") parser.add_argument("--split", type=str, help="Dataset split to evaluate on (valid or test)") parser.add_argument('--clip', action='store_true', help='Use pretrained CLIP to evaluate') args = parser.parse_args() def main(load_dir): if not args.clip: with open(load_dir + '/checkpoints/config.json', 'r') as f: config = json.load(f) config['train'] = False config['log_dir'] = load_dir else: "Dummy config file" config = yaml.load(open('./tricolo/configs/clip.yaml', "r"), Loader=yaml.FullLoader) config['train'] = False config['log_dir'] = './logs/retrieval/clip' dataset = ClrDataLoader(config['dset'], config['batch_size'], config['sparse_model'], **config['dataset']) simclr = SimCLR(dataset, config) pr_at_k = simclr.test(config['log_dir'], clip=args.clip, eval_loader=args.split) precision = pr_at_k['precision'] recall = pr_at_k['recall'] recall_rate = pr_at_k['recall_rate'] ndcg = pr_at_k['ndcg'] # r_rank = pr_at_k['r_rank'] rr_1 = recall_rate[0] rr_5 = recall_rate[4] ndcg_5 = ndcg[4] return rr_1, rr_5, ndcg_5 if __name__ == "__main__": torch.multiprocessing.set_sharing_strategy('file_system') path = './logs/retrieval/' + args.exp load_dirs = [path] rr_1 = [] rr_5 = [] ndcg_5 = [] print(load_dirs) for load_dir in load_dirs: _rr_1, _rr_5, _ndcg_5 = main(load_dir) torch.cuda.empty_cache() rr_1.append(_rr_1) rr_5.append(_rr_5) ndcg_5.append(_ndcg_5) # Report back numbers as percentages rr_1 = np.array(rr_1) * 100 rr_5 = np.array(rr_5) * 100 ndcg_5 = np.array(ndcg_5) * 100 print(np.mean(rr_1), np.mean(rr_5), np.mean(ndcg_5)) ``` #### File: tricolo/dataloader/dataloader.py ```python import torch from torch.utils.data import DataLoader from torch.utils.data._utils.collate import default_collate from tricolo.dataloader.dataset import ClrDataset, ClrDatasetPrimitives def collate_fn(batch): default_collate_items = ['model_id', 'category', 'text', 'tokens', 'images'] locs = [] feats = [] data = [] for i, item in enumerate(batch): _locs = batch[i]['voxels']['locs'] locs.append(torch.cat([_locs, torch.LongTensor(_locs.shape[0],1).fill_(i)],1)) feats.append(batch[i]['voxels']['feats']) data.append({k:item[k] for k in default_collate_items}) locs = torch.cat(locs) feats = torch.cat(feats) data = default_collate(data) data['voxels'] = {'locs': locs, 'feats': feats} return data class ClrDataLoader(object): def __init__(self, dset, batch_size, sparse_model, num_workers, train_json_file, val_json_file, test_json_file, image_size, voxel_size, root_npz_file='./datasets/all_npz/'): self.batch_size = batch_size self.num_workers = num_workers self.train_json_file = train_json_file self.val_json_file = val_json_file self.test_json_file = test_json_file self.image_size = image_size self.voxel_size = voxel_size self.sparse_model = sparse_model self.root_npz_file = root_npz_file self.dset = dset def get_data_loaders(self): if self.dset == 'shapenet': print('Using Shapenet Dataset') train_dataset = ClrDataset(json_file=self.train_json_file, sparse_model=self.sparse_model, image_size=self.image_size, voxel_size=self.voxel_size, root_npz_file=self.root_npz_file) valid_dataset = ClrDataset(json_file=self.val_json_file, sparse_model=self.sparse_model, image_size=self.image_size, voxel_size=self.voxel_size, root_npz_file=self.root_npz_file) test_dataset = ClrDataset(json_file=self.test_json_file, sparse_model=self.sparse_model, image_size=self.image_size, voxel_size=self.voxel_size, root_npz_file=self.root_npz_file) elif self.dset == 'primitives': print('Using Primitives Dataset') train_dataset = ClrDatasetPrimitives(json_file=self.train_json_file, voxel_root_dir=self.root_npz_file) valid_dataset = ClrDatasetPrimitives(json_file=self.val_json_file, voxel_root_dir=self.root_npz_file) test_dataset = ClrDatasetPrimitives(json_file=self.test_json_file, voxel_root_dir=self.root_npz_file) else: raise('Implement Other Dataset') if self.sparse_model: train_loader = DataLoader(train_dataset, collate_fn=collate_fn, batch_size=self.batch_size, num_workers=self.num_workers, drop_last=True, shuffle=True) valid_loader = DataLoader(valid_dataset, collate_fn=collate_fn, batch_size=self.batch_size, num_workers=self.num_workers, drop_last=True, shuffle=True) test_loader = DataLoader(test_dataset, collate_fn=collate_fn, batch_size=self.batch_size, num_workers=self.num_workers, drop_last=False, shuffle=True) else: train_loader = DataLoader(train_dataset, batch_size=self.batch_size, num_workers=self.num_workers, drop_last=True, shuffle=True) valid_loader = DataLoader(valid_dataset, batch_size=self.batch_size, num_workers=self.num_workers, drop_last=True, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=self.batch_size, num_workers=self.num_workers, drop_last=False, shuffle=True) print('Training file: {}, Size: {}'.format(self.train_json_file, len(train_loader.dataset))) print('Val file: {}, Size: {}'.format(self.val_json_file, len(valid_loader.dataset))) print('Test file: {}, Size: {}'.format(self.test_json_file, len(test_loader.dataset))) return train_loader, valid_loader, test_loader ``` #### File: tricolo/models/retrieval_model.py ```python import torch import torch.nn as nn import torch.nn.functional as F from tricolo.models.models import cnn_encoder, cnn_encoder32, cnn_encoder_sparse, SVCNN, MVCNN class ModelCLR(nn.Module): def __init__(self, dset, voxel_size, sparse_model, out_dim, use_voxel, tri_modal, num_images, image_cnn, pretraining, vocab_size): super(ModelCLR, self).__init__() self.dset = dset self.ef_dim = 32 self.z_dim = 512 self.out_dim = out_dim self.cnn_name = image_cnn self.use_voxel = use_voxel self.tri_modal = tri_modal self.voxel_size = voxel_size self.num_images = num_images self.pretraining = pretraining self.sparse_model = sparse_model self.text_model, self.text_fc = self._get_text_encoder() self.embedding_layer = nn.Embedding(vocab_size, 256, padding_idx=0) self.voxel_model, self.voxel_fc, self.image_model, self.image_fc = self._get_res_encoder() def _get_text_encoder(self): print("Text feature extractor: BiGRU") text_model = nn.GRU(input_size=256, hidden_size=128, num_layers=1, bidirectional=True) text_fc = nn.Linear(256, self.out_dim) return text_model, text_fc def _get_res_encoder(self): voxel_model = None voxel_fc = None image_model = None image_fc = None if self.dset == 'shapenet': if self.tri_modal: print('Training Tri-Modal Model') if self.sparse_model: voxel_model = cnn_encoder_sparse(self.voxel_size, self.ef_dim, self.z_dim) else: voxel_model = cnn_encoder(self.voxel_size, self.ef_dim, self.z_dim) voxel_fc = nn.Sequential(nn.Linear(self.z_dim,self.out_dim),nn.ReLU(),nn.Linear(self.out_dim,self.out_dim)) svcnn = SVCNN(self.z_dim, pretraining=self.pretraining, cnn_name=self.cnn_name) image_model = MVCNN(self.z_dim, svcnn, cnn_name=self.cnn_name, num_views=self.num_images) image_fc = nn.Sequential(nn.Linear(self.z_dim,self.out_dim),nn.ReLU(),nn.Linear(self.out_dim,self.out_dim)) elif self.use_voxel: print('Training Bi-Modal Model') if self.sparse_model: voxel_model = cnn_encoder_sparse(self.voxel_size, self.ef_dim, self.z_dim) else: voxel_model = cnn_encoder(self.voxel_size, self.ef_dim, self.z_dim) voxel_fc = nn.Sequential(nn.Linear(self.z_dim,self.out_dim),nn.ReLU(),nn.Linear(self.out_dim,self.out_dim)) else: print('Training Bi-Modal Model') svcnn = SVCNN(self.z_dim, pretraining=self.pretraining, cnn_name=self.cnn_name) image_model = MVCNN(self.z_dim, svcnn, cnn_name=self.cnn_name, num_views=self.num_images) image_fc = nn.Sequential(nn.Linear(self.z_dim,self.out_dim),nn.ReLU(),nn.Linear(self.out_dim,self.out_dim)) elif self.dset == 'primitives': print('Training Primitives') if self.tri_modal: raise('Implement Other Dataset') elif self.use_voxel: voxel_model = cnn_encoder32(self.ef_dim, self.z_dim) voxel_fc = nn.Sequential(nn.Linear(self.z_dim,self.out_dim),nn.ReLU(),nn.Linear(self.out_dim,self.out_dim)) print('Bi-Modal Voxel, Text') else: raise('Implement Other Dataset') else: raise('Implement Other Dataset') return voxel_model, voxel_fc, image_model, image_fc def voxel_encoder(self, xis): h = self.voxel_model(xis) h.squeeze() x = self.voxel_fc(h) return x def image_encoder(self, xis): h = self.image_model(xis) h.squeeze() x = self.image_fc(h) return x def text_encoder(self, encoded_inputs): embed_inputs = self.embedding_layer(encoded_inputs) embed_inputs = torch.transpose(embed_inputs, 0, 1) N = embed_inputs.shape[1] h0 = torch.zeros(2, N, 128).cuda() output, hidden = self.text_model(embed_inputs, h0) out_emb = torch.tanh(self.text_fc(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1))) return out_emb def forward(self, voxels, images, encoded_inputs): z_voxels = None z_images = None if self.tri_modal: images = images.reshape(-1, images.shape[2], images.shape[3], images.shape[4]) z_voxels = self.voxel_encoder(voxels) z_images = self.image_encoder(images) elif self.use_voxel: z_voxels = self.voxel_encoder(voxels) else: images = images.reshape(-1, images.shape[2], images.shape[3], images.shape[4]) z_images = self.image_encoder(images) zls = self.text_encoder(encoded_inputs) return z_voxels, z_images, zls ```
{ "source": "3dlook-me/cvat", "score": 2 }
#### File: tests/rest_api/test_0100_jobs.py ```python from http import HTTPStatus from deepdiff import DeepDiff import pytest from .utils.config import get_method def get_job_staff(job, tasks, projects): job_staff = [] job_staff.append(job['assignee']) tid = job['task_id'] job_staff.append(tasks[tid]['owner']) job_staff.append(tasks[tid]['assignee']) pid = job['project_id'] if pid: job_staff.append(projects[pid]['owner']) job_staff.append(projects[pid]['assignee']) job_staff = set(u['id'] for u in job_staff if u is not None) return job_staff def get_org_staff(org_id, memberships): if org_id in ['', None]: return set() else: return set(m['user']['id'] for m in memberships if m['role'] in ['maintainer', 'owner'] and m['user'] != None and m['organization'] == org_id) def filter_jobs(jobs, tasks, org): if org is None: kwargs = {} jobs = jobs.raw elif org == '': kwargs = {'org': ''} jobs = [job for job in jobs if tasks[job['task_id']]['organization'] is None] else: kwargs = {'org_id': org} jobs = [job for job in jobs if tasks[job['task_id']]['organization'] == org] return jobs, kwargs def is_org_member(memberships, user, org_id): if org_id in ['', None]: return True else: return user['id'] in set(m['user']['id'] for m in memberships if m['user'] != None and m['organization'] == org_id) class TestGetJobs: def _test_get_job_200(self, user, jid, data, **kwargs): response = get_method(user, f'jobs/{jid}', **kwargs) assert response.status_code == HTTPStatus.OK assert DeepDiff(data, response.json()) == {} def _test_get_job_403(self, user, jid, **kwargs): response = get_method(user, f'jobs/{jid}', **kwargs) assert response.status_code == HTTPStatus.FORBIDDEN @pytest.mark.parametrize('org', [None, '', 1, 2]) def test_admin_get_job(self, jobs, tasks, org): jobs, kwargs = filter_jobs(jobs, tasks, org) # keep only the reasonable amount of jobs for job in jobs[:8]: self._test_get_job_200('admin2', job['id'], job, **kwargs) @pytest.mark.parametrize('org_id', ['', None, 1, 2]) @pytest.mark.parametrize('groups', [['business'], ['user'], ['worker'], []]) def test_non_admin_get_job(self, org_id, groups, users, jobs, tasks, projects, memberships): # keep the reasonable amount of users and jobs users = [u for u in users if u['groups'] == groups][:4] jobs, kwargs = filter_jobs(jobs, tasks, org_id) org_staff = get_org_staff(org_id, memberships) for job in jobs[:8]: job_staff = get_job_staff(job, tasks, projects) # check if the specific user in job_staff to see the job for user in users: if user['id'] in job_staff | org_staff: self._test_get_job_200(user['username'], job['id'], job, **kwargs) else: self._test_get_job_403(user['username'], job['id'], **kwargs) class TestListJobs: def _test_list_jobs_200(self, user, data, **kwargs): response = get_method(user, 'jobs', **kwargs, page_size=all) assert response.status_code == HTTPStatus.OK assert DeepDiff(data, response.json()['results']) == {} def _test_list_jobs_403(self, user, **kwargs): response = get_method(user, 'jobs', **kwargs) assert response.status_code == HTTPStatus.FORBIDDEN @pytest.mark.parametrize('org', [None, '', 1, 2]) def test_admin_list_jobs(self, jobs, tasks, org): jobs, kwargs = filter_jobs(jobs, tasks, org) self._test_list_jobs_200('admin1', jobs, **kwargs) @pytest.mark.parametrize('org_id', ['', None, 1, 2]) @pytest.mark.parametrize('groups', [['business'], ['user'], ['worker'], []]) def test_non_admin_list_jobs(self, org_id, groups, users, jobs, tasks, projects, memberships): # keep the reasonable amount of users and jobs users = [u for u in users if u['groups'] == groups][:2] jobs, kwargs = filter_jobs(jobs, tasks, org_id) org_staff = get_org_staff(org_id, memberships) for user in users: user_jobs = [] for job in jobs: job_staff = get_job_staff(job, tasks, projects) if user['id'] in job_staff | org_staff: user_jobs.append(job) if is_org_member(memberships, user, org_id): self._test_list_jobs_200(user['username'], user_jobs, **kwargs) else: self._test_list_jobs_403(user['username'], **kwargs) class TestGetAnnotations: def _test_get_job_annotations_200(self, user, jid, data, **kwargs): response = get_method(user, f'jobs/{jid}/annotations', **kwargs) assert response.status_code == HTTPStatus.OK assert DeepDiff(data, response.json()) == {} def _test_get_job_annotations_403(self, user, jid, **kwargs): response = get_method(user, f'jobs/{jid}/annotations', **kwargs) assert response.status_code == HTTPStatus.FORBIDDEN @pytest.mark.parametrize('org', [None, '', 1, 2]) def test_admin_get_job_annotations(self, jobs, tasks, annotations, org): jobs, kwargs = filter_jobs(jobs, tasks, org) # keep only the reasonable amount of jobs for job in jobs[:8]: jid = str(job['id']) self._test_get_job_annotations_200('admin2', jid, annotations['job'][jid], **kwargs) @pytest.mark.parametrize('org_id', ['', None]) @pytest.mark.parametrize('groups', [['business'], ['user'], ['worker'], []]) def test_non_admin_get_job_annotations(self, org_id, groups, users, jobs, tasks, projects, annotations, memberships): users = [u for u in users if u['groups'] == groups][:4] jobs, kwargs = filter_jobs(jobs, tasks, org_id) org_staff = get_org_staff(org_id, memberships) # keep only the reasonable amount of jobs for job in jobs[:8]: job_staff = get_job_staff(job, tasks, projects) jid = str(job['id']) for user in users: if user['id'] in job_staff | org_staff: self._test_get_job_annotations_200(user['username'], jid, annotations['job'][jid], **kwargs) else: self._test_get_job_annotations_403(user['username'], jid, **kwargs) ```
{ "source": "3Dmaps/mapcreator", "score": 3 }
#### File: mapcreator/mapcreator/cli_util.py ```python import click import sys, traceback from mapcreator import building from mapcreator import persistence from mapcreator import echoes from mapcreator.state import FileAddResult """ The x_or_error functions return a falsy value if an error was thrown. If everything went OK, they return either True or resulting state, depending on the function. """ def init_or_error(): try: state = persistence.init_state() except Exception as e: echoes.error('Unable to initialize project: {}'.format(e)) return None else: return state def load_or_error(): try: state = persistence.load_state() except Exception as e: echoes.error('Unable to load or initialize the project: {}'.format(e)) return None else: return state def save_or_error(state): try: persistence.save_state(state) except Exception as e: echoes.error('Unable to save changes to the project! No changes done!') echoes.error('What went wrong: {}'.format(e)) return None else: return state def clear_or_error(): try: persistence.clear_state() except Exception as e: echoes.error('Unable to reset project: {}'.format(e)) return False else: return True def build_init_or_error(): try: building.init_build() except Exception as e: echoes.error('Unable to initialize build: {}'.format(e)) return False else: return True def build_clean_or_error(): try: building.cleanup() except Exception as e: echoes.error('Unable to clean temporary build files: {}'.format(e)) return False else: return True def add_files(files, add_method_name): state = load_or_error() if not state: return echoes.info('Adding files to project...') count = 0 for fpath in files: result = getattr(state, add_method_name)(fpath) # Call method whose name is add_method_name if result == FileAddResult.DOESNT_EXIST: echoes.error('File "{}" doesn\'t exist!'.format(fpath)) elif result == FileAddResult.ALREADY_ADDED: echoes.warn('{} has already been added to this project'.format(fpath)) elif result == FileAddResult.SUCCESS: echoes.info('"{}" added'.format(fpath)) count += 1 else: echoes.error('Unrecognized FileAddResult {} when trying to add {}!'.format(result, fpath)) if count > 0: if not save_or_error(state): return if count == len(files): echoes.success("{} files added to the project successfully!".format(len(files))) else: echoes.warn("{} files (out of {}) added to the project successfully".format(count, len(files))) else: echoes.warn('No files were added.') def clear_files(clear_method_name, files_type): state = load_or_error() if not state: return echoes.info('Clearing {} files...'.format(files_type)) getattr(state, clear_method_name)() # Call method whose name is clear_method_name if save_or_error(state): echoes.success('All {} files cleared successfully!'.format(files_type)) def parse_color(line, debug = False): PARSER = [str, int, int, int] parts = line.split(' ') if len(parts) != len(PARSER): echoes.error("Invalid number of arguments on a line!") echoes.error("(Should be {}, was {})".format(len(PARSER), len(parts))) if debug: echoes.info("Line was: {}".format(line)) return None try: for i, func in enumerate(PARSER): parts[i] = func(parts[i]) except ValueError as e: echoes.error("Invalid color format!") echoes.error("({})".format(e)) if debug: echoes.info("Line was: {}".format(line)) return None return parts def validate_color(r, g, b): for value in (r, g, b): if value < 0 or value > 255: echoes.error("Invalid color value {}!".format(value)) echoes.info("(Should be between 0 and 255)") return False return True def validate_resolution(reso, lower, upper): if reso < lower or reso > upper: echoes.error("Invalid resolution {}!".format(reso)) echoes.info("(Should be between {} and {})".format(lower, upper)) return False return True def do_build(files, statusclass, actions, state, debug = False): has_errors = False outfiles = [] echoes.info('Processing...') buildstatus = statusclass(0, files, state) errors = [] with click.progressbar(actions, bar_template=echoes.PROGRESS_BAR_TEMPLATE, show_eta=False) as bar: for action in bar: try: action(buildstatus, debug) except Exception as e: errors.append(e) if debug: e_type, e_value, e_traceback = sys.exc_info() errors.extend(traceback.format_tb(e_traceback)) has_errors = True if errors: echoes.error('Exceptions caught:') for e in errors: echoes.error(e) for line in str(buildstatus).split('\n'): echoes.info(line) outfiles.extend(buildstatus.get_result_files()) return (outfiles, has_errors) ``` #### File: mapcreator/mapcreator/osm.py ```python from xml.etree import ElementTree class OSMData: TAG_ROOT = 'osm' TAG_NODE = 'node' TAG_WAY = 'way' TAG_WAY_NODE = 'nd' TAG_TAG = 'tag' ATTRIB_ID = 'id' ATTRIB_REF = 'ref' ATTRIB_KEY = 'k' ATTRIB_VALUE = 'v' ATTRIB_LAT = 'lat' ATTRIB_LON = 'lon' KEY_LANDUSE = 'landuse' ACCEPTED_LANDUSES = ['meadow'] KEY_HIGHWAY = 'highway' ACCEPTED_HIGHWAYS = ['footway', 'path'] def __init__(self): self.node_filters = [] self.way_filters = [] @classmethod def load(cls, path): data = OSMData() data.tree = ElementTree.parse(path) data.preprocess() return data @classmethod def get_elem_id(cls, elem): return int(elem.get(OSMData.ATTRIB_ID)) @classmethod def get_tag(cls, elem, key): for tagElement in elem.findall(OSMData.TAG_TAG): if tagElement.get(OSMData.ATTRIB_KEY) == key: return tagElement.get(OSMData.ATTRIB_VALUE) return None def preprocess(self): self.nodes = {} self.included_nodes = set() self.ways = {} self.included_ways = set() root = self.tree.getroot() if root.tag != OSMData.TAG_ROOT: raise ValueError('Invalid OSM XML Data - the root node\'s tag was not "osm"!') for child in root: if child.tag == OSMData.TAG_NODE: nodeid = OSMData.get_elem_id(child) self.nodes[nodeid] = child self.included_nodes.add(nodeid) elif child.tag == OSMData.TAG_WAY: wayid = OSMData.get_elem_id(child) self.ways[wayid] = child self.included_ways.add(wayid) def add_node_filter(self, *filters): """ Adds filters. Filters are functions that take a ElementTree element and this OSMData instance as arguments and returns a truthful value if said element should be kept. Filters given in the same method call are joined with "and", while filters given in subsequent calls are joined with "or". For example data = OSMData() data.add_node_filter(f1, f2, f3) data.add_node_filter(f4) will result in elements for which (f1(element) and f2(element) and f3(element)) or f4(element) is False getting filtered out and elements for which that is True being kept """ OSMData.add_filter(self.node_filters, *filters) def add_way_filter(self, *filters): """ Adds filters. Filters are functions that take a ElementTree element and this OSMData instance as arguments and returns a truthful value if said element should be kept. Filters given in the same method call are joined with "and", while filters given in subsequent calls are joined with "or". For example data = OSMData() data.add_way_filter(f1, f2, f3) data.add_way_filter(f4) will result in elements for which (f1(element) and f2(element) and f3(element)) or f4(element) is False getting filtered out and elements for which that is True being kept """ OSMData.add_filter(self.way_filters, *filters) @classmethod def add_filter(cls, filterlist, *filters): filterlist.append(filters) def do_filter(self): self.filter(self.included_nodes, self.nodes, self.node_filters) self.filter(self.included_ways, self.ways, self.way_filters) def filter(self, idset, elemdict, filterlist): filterset = set() for elemid in idset: elem = elemdict[elemid] ok = False for filt in filterlist: current_ok = True for f in filt: if not f(elem, self): current_ok = False break if current_ok: ok = True break if not ok: filterset.add(elemid) idset -= filterset def prepare_for_save(self): root = self.tree.getroot() for way in self.ways.values(): wayid = OSMData.get_elem_id(way) # Remove dropped ways if wayid not in self.included_ways: root.remove(way) else: for child in way: # Add nodes that belong to the way even if they were dropped by some other filter if child.tag == OSMData.TAG_WAY_NODE: self.included_nodes.add(int(child.get(OSMData.ATTRIB_REF))) for node in self.nodes.values(): nodeid = OSMData.get_elem_id(node) # Remove dropped nodes if nodeid not in self.included_nodes: root.remove(node) def save(self, path): self.tree.write(path, encoding='utf-8', xml_declaration=True) def areaFilter(elem, osmdata): """ Currently filters in only areas with "landuse" in the accepted landuses list. """ return OSMData.get_tag(elem, OSMData.KEY_LANDUSE) in OSMData.ACCEPTED_LANDUSES def trailFilter(elem, osmdata): """ Currently filters in all trails with "highway" in the accepted highways list. """ return OSMData.get_tag(elem, OSMData.KEY_HIGHWAY) in OSMData.ACCEPTED_HIGHWAYS class WayCoordinateFilter: def __init__(self, minx, maxx, miny, maxy): self.minx = minx self.miny = miny self.maxx = maxx self.maxy = maxy def filter(self, elem, osmdata): for ref in elem.iter(OSMData.TAG_WAY_NODE): try: node = osmdata.nodes[int(ref.get(OSMData.ATTRIB_REF))] x = float(node.get(OSMData.ATTRIB_LON)) y = float(node.get(OSMData.ATTRIB_LAT)) except ValueError: continue # Just skip any dirty data if self.minx <= x and x <= self.maxx and self.miny <= y and y <= self.maxy: return True return False def merge(osm_datas): """ Merges several OSMdatas into one. Takes a list of OSMdatas as a parameter. Returns a combined OSMdata. Entity doubles are not checked or removed, so the combined XML may combine doubles. The combined XML tree is the attribute tree of the OSMdata that is returned. """ trees = [] for osm_data in osm_datas: trees.append(osm_data.tree) result_xml_element_tree = None for osm_tree in trees: if result_xml_element_tree is None: result_xml_element_tree = osm_tree else: for child in osm_tree.getroot().iterfind('.'): result_xml_element_tree.getroot().extend(child) if result_xml_element_tree is not None: resultOSMdata = OSMData() resultOSMdata.tree = result_xml_element_tree return resultOSMdata ``` #### File: mapcreator/tests/test_cli_util.py ```python import mapcreator from mock import patch from imp import reload from mapcreator import cli_util from mapcreator.state import State, FileAddResult @patch('mapcreator.cli_util.echoes') class TestCliUtil: def x_or_error_shows_error(self, function, mock_persistence_func, mock_echoes, call_contents): assert not function() mock_persistence_func.assert_called_once() mock_error = mock_echoes.error mock_error.assert_called() total_output = '' for call in mock_error.call_args_list: args, kwargs = call assert 0 == len(kwargs) assert 1 == len(args) total_output += ' ' + args[0] for piece in call_contents: assert piece in total_output def x_or_error_no_error(self, function, mock_persistence_func, mock_echoes, return_value): assert function() == return_value mock_persistence_func.assert_called_once() mock_error = mock_echoes.error mock_error.assert_not_called() @patch('mapcreator.persistence.init_state', side_effect=OSError('Whoops!')) def test_init_or_error_shows_error_when_unsuccessful(self, mock_init, mock_echoes): self.x_or_error_shows_error( cli_util.init_or_error, mock_init, mock_echoes, ['Unable to initialize project', str(OSError('Whoops!'))] ) @patch('mapcreator.persistence.init_state', return_value = 'Success :-)') def test_init_or_error_doesnt_show_error_when_successful(self, mock_init, mock_echoes): self.x_or_error_no_error(cli_util.init_or_error, mock_init, mock_echoes, 'Success :-)') @patch('mapcreator.persistence.load_state', side_effect=OSError('Whoops!')) def test_load_or_error_shows_error_when_unsuccessful(self, mock_load, mock_echoes): self.x_or_error_shows_error( cli_util.load_or_error, mock_load, mock_echoes, ['Unable to load or initialize the project', str(OSError('Whoops!'))] ) @patch('mapcreator.persistence.load_state', return_value = 'Success :-)') def test_load_or_error_doesnt_show_error_when_successful(self, mock_load, mock_echoes): self.x_or_error_no_error(cli_util.load_or_error, mock_load, mock_echoes, 'Success :-)') @patch('mapcreator.persistence.save_state', side_effect=OSError('Whoops!')) def test_save_or_error_shows_error_when_unsuccessful(self, mock_save, mock_echoes): self.x_or_error_shows_error( lambda: cli_util.save_or_error('asd'), mock_save, mock_echoes, ['Unable to save changes', 'No changes done', 'What went wrong', str(OSError('Whoops!'))] ) @patch('mapcreator.persistence.save_state', return_value = True) def test_save_or_error_doesnt_show_error_when_successful(self, mock_save, mock_echoes): self.x_or_error_no_error(lambda: cli_util.save_or_error('Success :-)'), mock_save, mock_echoes, 'Success :-)') @patch('mapcreator.persistence.clear_state', side_effect=OSError('Whoops!')) def test_clear_or_error_shows_error_when_unsuccessful(self, mock_clear, mock_echoes): self.x_or_error_shows_error( cli_util.clear_or_error, mock_clear, mock_echoes, ['Unable to reset project', str(OSError('Whoops!'))] ) @patch('mapcreator.persistence.clear_state', return_value = True) def test_clear_or_error_doesnt_show_error_when_successful(self, mock_clear, mock_echoes): self.x_or_error_no_error(cli_util.clear_or_error, mock_clear, mock_echoes, True) @patch('mapcreator.building.init_build', side_effect=OSError('Whoops!')) def test_build_init_or_error_shows_error_when_unsuccessful(self, mock_init, mock_echoes): self.x_or_error_shows_error( cli_util.build_init_or_error, mock_init, mock_echoes, ['Unable to initialize build', str(OSError('Whoops!'))] ) @patch('mapcreator.building.init_build') def test_build_init_or_error_doesnt_show_error_when_successful(self, mock_init, mock_echoes): self.x_or_error_no_error(cli_util.build_init_or_error, mock_init, mock_echoes, True) @patch('mapcreator.building.cleanup', side_effect=OSError('Whoops!')) def test_build_clean_or_error_shows_error_when_unsuccessful(self, mock_clean, mock_echoes): self.x_or_error_shows_error( cli_util.build_clean_or_error, mock_clean, mock_echoes, ['Unable to clean', str(OSError('Whoops!'))] ) @patch('mapcreator.building.cleanup') def test_build_clean_or_error_doesnt_show_error_when_successful(self, mock_clean, mock_echoes): self.x_or_error_no_error(cli_util.build_clean_or_error, mock_clean, mock_echoes, True) @patch('mapcreator.persistence.load_state', lambda: State()) @patch.object(mapcreator.state.State, 'add_height_file') @patch('mapcreator.persistence.save_state', side_effect = lambda state: state) #Returns state, so save was successful def test_add_files(self, mock_save, mock_state, mock_echoes): mock_state.return_value = FileAddResult.SUCCESS cli_util.add_files(('test1.txt', 'test2.txt'), 'add_height_file') mock_state.assert_any_call('test1.txt') mock_state.assert_any_call('test2.txt') assert mock_state.call_count == 2 assert mock_save.call_count == 1 mock_echoes.success.assert_called() @patch('mapcreator.persistence.load_state', lambda: State()) @patch.object(mapcreator.state.State, 'add_osm_file') @patch('mapcreator.persistence.save_state') def test_add_files_no_files_exist(self, mock_save, mock_state, mock_echoes): mock_state.return_value = FileAddResult.DOESNT_EXIST cli_util.add_files(('test1.txt','test2.txt','test3.txt'), 'add_osm_file') mock_state.assert_any_call('test1.txt') mock_state.assert_any_call('test2.txt') mock_state.assert_any_call('test3.txt') assert mock_state.call_count == 3 assert mock_save.call_count == 0 # Don't save if there's no changes for i in range(1,3): mock_echoes.error.assert_any_call('File "test{}.txt" doesn\'t exist!'.format(i)) @patch('mapcreator.persistence.load_state', lambda: State()) @patch.object(mapcreator.state.State, 'add_height_file') @patch('mapcreator.persistence.save_state') def test_add_files_all_already_added(self, mock_save, mock_state, mock_echoes): mock_state.return_value = FileAddResult.ALREADY_ADDED cli_util.add_files(('test3.txt',), 'add_height_file') mock_state.assert_called_once_with('test3.txt') assert mock_save.call_count == 0 mock_echoes.warn.assert_any_call('test3.txt has already been added to this project') @patch('mapcreator.persistence.load_state', lambda: State()) @patch.object(mapcreator.state.State, 'add_osm_file') @patch('mapcreator.persistence.save_state') def test_add_files_some_files_ok(self, mock_save, mock_state, mock_echoes): def add_side_effect(filename): if filename in ('1', '11', '21'): return FileAddResult.SUCCESS else: return (FileAddResult.ALREADY_ADDED, FileAddResult.DOESNT_EXIST)[int(filename) % 2] mock_state.side_effect = add_side_effect files = [str(i) for i in range(25)] cli_util.add_files(files, 'add_osm_file') assert mock_state.call_count == len(files) assert mock_save.call_count == 1 mock_echoes.warn.assert_called_with('3 files (out of 25) added to the project successfully') @patch('mapcreator.persistence.load_state', lambda: State()) @patch.object(mapcreator.state.State, 'clear_osm_files') @patch('mapcreator.persistence.save_state') def test_clear_files(self, mock_save, mock_state, mock_echoes): cli_util.clear_files('clear_osm_files', 'open street map') assert mock_state.call_count == 1 assert mock_save.call_count == 1 mock_echoes.success.assert_called_with('All open street map files cleared successfully!') def test_parse_color_wrong_number_of_args(self, mock_echoes): mock_error = mock_echoes.error assert not cli_util.parse_color("tag 123 221 9 77") mock_error.assert_called() def test_parse_color_invalid_number_format(self, mock_echoes): mock_error = mock_echoes.error assert not cli_util.parse_color("terrain 7 8 cheese") mock_error.assert_called() def test_parse_color(self, mock_echoes): mock_error = mock_echoes.error assert ["hello", 7, 88, 3] == cli_util.parse_color("hello 7 88 3") mock_error.assert_not_called() def test_validate_color_inivalid_color(self, mock_echoes): mock_error = mock_echoes.error assert not cli_util.validate_color(-11, 255, 13) mock_error.assert_called() mock_error.reset_mock() assert not cli_util.validate_color(0, 256, 13) mock_error.assert_called() mock_error.reset_mock() assert not cli_util.validate_color(6, 7, 999) mock_error.assert_called() def test_validate_color_valid_color(self, mock_echoes): mock_error = mock_echoes.error assert cli_util.validate_color(0, 255, 127) assert cli_util.validate_color(255, 44, 0) assert cli_util.validate_color(31, 0, 255) assert cli_util.validate_color(123, 221, 99) mock_error.assert_not_called() def test_validate_resolution_valid_reso(self, mock_echoes): mock_error = mock_echoes.error assert cli_util.validate_resolution(1, 0.5, 1000) assert cli_util.validate_resolution(0.05, 0.01, 0.05) assert cli_util.validate_resolution(700, 300, 800) mock_error.assert_not_called() def test_validate_resolution_invalid_reso(self, mock_echoes): mock_error = mock_echoes.error assert not cli_util.validate_resolution(1, 2, 1000) mock_error.assert_called() mock_error.reset_mock() assert not cli_util.validate_resolution(1000, 50, 999) mock_error.assert_called() mock_error.reset_mock() assert not cli_util.validate_resolution(0.05, 0.1, 0.5) mock_error.assert_called() ```
{ "source": "3D-measurement/Hformer", "score": 3 }
#### File: models/layers/involution.py ```python import paddle.nn as nn class involution(nn.Layer): def __init__(self, channels, kernel_size, stride): super(involution, self).__init__() self.kernel_size = kernel_size self.stride = stride self.channels = channels reduction_ratio = 4 self.group_channels = 16 self.groups = self.channels // self.group_channels self.conv1 = nn.Sequential( ('conv', nn.Conv2D( in_channels=channels, out_channels=channels // reduction_ratio, kernel_size=1, bias_attr=False )), ('bn', nn.BatchNorm2D(channels // reduction_ratio)), ('activate', nn.ReLU()) ) self.conv2 = nn.Sequential( ('conv', nn.Conv2D( in_channels=channels // reduction_ratio, out_channels=kernel_size**2 * self.groups, kernel_size=1, stride=1)) ) if stride > 1: self.avgpool = nn.AvgPool2D(stride, stride) def forward(self, x): weight = self.conv2(self.conv1( x if self.stride == 1 else self.avgpool(x))) b, c, h, w = weight.shape weight = weight.reshape(( b, self.groups, self.kernel_size**2, h, w)).unsqueeze(2) out = nn.functional.unfold( x, self.kernel_size, strides=self.stride, paddings=(self.kernel_size-1)//2, dilations=1) out = out.reshape( (b, self.groups, self.group_channels, self.kernel_size**2, h, w)) out = (weight * out).sum(axis=3).reshape((b, self.channels, h, w)) return out ```
{ "source": "3DMiller/metashape-scripts", "score": 2 }
#### File: metashape-scripts/src/automatic_masking.py ```python import pathlib import Metashape # Checking compatibility compatible_major_version = "1.7" found_major_version = ".".join(Metashape.app.version.split('.')[:2]) if found_major_version != compatible_major_version: raise Exception("Incompatible Metashape version: {} != {}".format(found_major_version, compatible_major_version)) def generate_automatic_background_masks_with_rembg(): try: import rembg import rembg.bg import scipy import numpy as np import io from PIL import Image except ImportError: print("Please ensure that you installed torch and rembg - see instructions in the script") raise print("Script started...") doc = Metashape.app.document chunk = doc.chunk cameras = chunk.cameras nmasks_exists = 0 for c in cameras: if c.mask is not None: nmasks_exists += 1 print("Camera {} already has mask".format(c.label)) if nmasks_exists > 0: raise Exception("There are already {} masks, please remove them and try again".format(nmasks_exists)) masks_dirs_created = set() cameras_by_masks_dir = {} for i, c in enumerate(cameras): input_image_path = c.photo.path print("{}/{} processing: {}".format(i + 1, len(cameras), input_image_path)) image_mask_dir = pathlib.Path(input_image_path).parent / 'masks' if image_mask_dir.exists() and str(image_mask_dir) not in masks_dirs_created: attempt = 2 image_mask_dir_attempt = pathlib.Path(str(image_mask_dir) + "_{}".format(attempt)) while image_mask_dir_attempt.exists() and str(image_mask_dir_attempt) not in masks_dirs_created: attempt += 1 image_mask_dir_attempt = pathlib.Path(str(image_mask_dir) + "_{}".format(attempt)) image_mask_dir = image_mask_dir_attempt if image_mask_dir.exists(): assert str(image_mask_dir) in masks_dirs_created else: image_mask_dir.mkdir(parents=False, exist_ok=False) masks_dirs_created.add(str(image_mask_dir)) cameras_by_masks_dir[str(image_mask_dir)] = list() image_mask_name = pathlib.Path(input_image_path).name.split(".") if len(image_mask_name) > 1: image_mask_name = image_mask_name[:-1] image_mask_name = ".".join(image_mask_name) image_mask_path = str(image_mask_dir / image_mask_name) + "_mask.png" # image_bytes = np.fromfile(input_image_path) # img_no_background_bytes = rembg.bg.remove(image_bytes) # img = np.array(Image.open(io.BytesIO(image_bytes)).convert("RGBA")) # img_no_background = np.array(Image.open(io.BytesIO(img_no_background_bytes)).convert("RGBA")) # mask = (img_no_background[:, :, 3] > 0) # mask = scipy.ndimage.morphology.binary_dilation(mask, iterations=8) # mask = scipy.ndimage.morphology.binary_erosion(mask, iterations=12) # mask = mask.astype(np.uint8) * 255 # mask = np.dstack([mask, mask, mask]) photo_image = c.photo.image() img = np.frombuffer(photo_image.tostring(), dtype={'U8': np.uint8, 'U16': np.uint16}[photo_image.data_type]).reshape(photo_image.height, photo_image.width, photo_image.cn)[:, :, :3] model_name = "u2net" model = rembg.bg.get_model(model_name) mask = rembg.u2net.detect.predict(model, img).convert("L") mask = np.array(mask.resize((photo_image.width, photo_image.height))) mask = (mask > 10) mask = scipy.ndimage.morphology.binary_dilation(mask, iterations=3) mask = scipy.ndimage.morphology.binary_erosion(mask, iterations=3) mask = mask.astype(np.uint8) * 255 mask = np.dstack([mask, mask, mask]) # Image.fromarray(img).save(str(image_mask_dir / image_mask_name) + "_1.jpg") # Image.fromarray(img_no_background).save(str(image_mask_dir / image_mask_name) + "_2.jpg") Image.fromarray(mask).save(image_mask_path) Metashape.app.update() cameras_by_masks_dir[str(image_mask_dir)].append(c) print("{} masks generated in {} directories:".format(len(cameras), len(masks_dirs_created))) for mask_dir in sorted(masks_dirs_created): print(mask_dir) print("Importing masks into project...") for masks_dir, cameras in cameras_by_masks_dir.items(): chunk.generateMasks(path=masks_dir + "/{filename}_mask.png", masking_mode=Metashape.MaskingMode.MaskingModeFile, cameras=cameras) print("Script finished.") label = "Custom Menu/Automatic background masking" Metashape.app.addMenuItem(label, generate_automatic_background_masks_with_rembg) print("To execute this script press {}".format(label)) ```
{ "source": "3dnygm4/titanium", "score": 2 }
#### File: titanium/app/views.py ```python from app import app, db from flask import flash, redirect, render_template, request, \ session, url_for from functools import wraps #decorator function to control login def login_required(test): @wraps(test) def wrap(*args, **kwargs): if 'logged_in' in session: return test(*args, **kwargs) else: flash('You need to login first.') return redirect(url_for('users.login')) return wrap #display error messages on template def flash_errors(form): for field, errors in form.errors.items(): for error in errors: flash (u"Error in the %s field - %s"%( getattr(form,field).label.text, error),'error') #errorhandler @app.errorhandler(500) def internal_error(error): db.session.rollback() return render_template('500.html'),500 @app.errorhandler(404) def internal_error(error): return render_template('404.html'),404 @app.route('/',defaults={'page':'index'}) def index(page): return (redirect(url_for('tasks.tasks'))) ```
{ "source": "3dperceptionlab/tactile-gcn", "score": 2 }
#### File: 3dperceptionlab/tactile-gcn/evaluate.py ```python __author__ = "<NAME> and <NAME>" __copyright__ = "Copyright 2018, 3D Perception Lab" __credits__ = ["<NAME>", "<NAME>"] __license__ = "MIT" __version__ = "1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" import argparse import datetime import logging import os import sys import time from timeit import default_timer as timer import torch import torch.nn.functional as F import torch.utils.data.dataloader from torch.utils.data.sampler import SubsetRandomSampler from torch_geometric.data import Data from torch_geometric.data import DataLoader import loader.biotacsp_loader import dataset.biotacsp import network.utils import utils.evaluation log = logging.getLogger(__name__) def evaluate (args): dataset_ = dataset.biotacsp.BioTacSp(root='data/biotacsp', k=args.graph_k, split=args.split, normalize=args.normalize) log.info(dataset_) log.info("Evaluating network over {0} split...".format(args.split)) eval_loader_ = DataLoader(dataset_, batch_size=args.batch_size, shuffle=False, num_workers=1) ## Select CUDA device device_ = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') log.info(device_) log.info(torch.cuda.get_device_name(0)) ## Build model model_ = network.utils.get_network(args.network, dataset_.data.num_features, dataset_.data.num_classes).to(device_) log.info(model_) # Load checkpoint if specified if args.checkpoint is not None: if os.path.isfile(args.checkpoint): log.info('Loading checkpoint {}'.format(args.checkpoint)) checkpoint_ = torch.load(args.checkpoint) model_.load_state_dict(checkpoint_['model_state']) log.info('Loaded network...') else: log.info('The checkpoint file at {} was not found'.format(args.checkpoint)) utils.evaluation.eval(model_, device_, eval_loader_) if __name__ == "__main__": parser_ = argparse.ArgumentParser(description="Parameters") parser_.add_argument("--log_path", nargs="?", default="logs", help="Logging path") parser_.add_argument("--split", nargs="?", default="test", help="Dataset split to evaluate") parser_.add_argument("--checkpoint", nargs="?", required=True, help="Path to save checkpoints") parser_.add_argument("--normalize", nargs="?", type=bool, default=True, help="Normalize dataset using feature scaling") parser_.add_argument("--graph_k", nargs="?", type=int, default=0, help="K-Neighbours for graph connections, use 0 for manual connections") parser_.add_argument("--batch_size", nargs="?", type=int, default=1, help="Batch Size") parser_.add_argument("--network", nargs="?", default="GCN_test", help="The network model to train") args_ = parser_.parse_args() logging.basicConfig(stream=sys.stdout, level=logging.INFO) # Experiment name (and log filename) follows the format network-normalization-graph_k-datetime experiment_str_ = "eval-{0}-{1}-{2}-{3}-{4}".format( args_.split, args_.network, args_.normalize, args_.graph_k, datetime.datetime.now().strftime('%b%d_%H-%M-%S')) # Add file handler to logging system to simultaneously log information to console and file log_formatter_ = logging.Formatter("%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s") file_handler_ = logging.FileHandler("{0}/{1}.log".format(args_.log_path, experiment_str_)) file_handler_.setFormatter(log_formatter_) log.addHandler(file_handler_) evaluate(args_) ``` #### File: tactile-gcn/transforms/tograph.py ```python import logging import torch from torch_geometric.data import Data import numpy as np import scipy.spatial log = logging.getLogger(__name__) class ToGraph(object): def __init__(self, k): assert(k >= 0), 'graph_k must be equal or greater than 0' # Actually, this would be X self.m_taxels_y = [0.386434851,0.318945051,0.08737268,0.083895199,-0.018624877,-0.091886816,-0.1366595,-0.223451775,-0.320752549,-0.396931929,0.386434851,0.318945051,0.08737268,0.083895199,-0.018624877,-0.091886816,-0.1366595,-0.223451775,-0.320752549,-0.396931929,0.25875305,0.170153841,0.170153841,0.075325086] # Actually, this would be Y self.m_taxels_z = [-0.108966104,-0.205042252,-0.128562247,-0.235924865,-0.30011705,-0.12043608,-0.237549685,-0.270674659,-0.199498368,-0.100043884,-0.108966104,-0.205042252,-0.128562247,-0.235924865,-0.30011705,-0.12043608,-0.237549685,-0.270674659,-0.199498368,-0.100043884,-0.252337663,-0.274427927,-0.274427927,-0.298071391] # Actually, this would be Z self.m_taxels_x = [0.156871012,0.12070609,0.281981384,0.201566857,0.094918748,0.284956139,0.187122746,0.071536904,0.127771244,0.151565706,-0.156871012,-0.12070609,-0.281981384,-0.201566857,-0.094918748,-0.284956139,-0.187122746,-0.071536904,-0.127771244,-0.151565706,0,0.072909607,-0.072909607,0] if k == 0: ## Use manual connections self.m_edge_origins = [0, 1, 1, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 10, 11, 11, 12, 13, 13, 13, 14, 14, 14, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23] self.m_edge_ends = [1, 0, 20, 3, 2, 4, 21, 23, 3, 6, 7, 23, 6, 5, 4, 7, 8, 4, 6, 8, 17, 6, 7, 9, 8, 11, 10, 20, 13, 12, 23, 14, 13, 16, 17, 16, 15, 14, 17, 18, 14, 16, 18, 7, 17, 16, 19, 18, 1, 11, 21, 22, 3, 20, 22, 23, 13, 20, 21, 23, 21, 22, 3, 13, 4, 14] else: points_ = np.transpose(np.vstack((self.m_taxels_x, self.m_taxels_y)), (1, 0)) tree_ = scipy.spatial.KDTree(points_) _, idxs_ = tree_.query(points_, k=k + 1) # Closest point will be the point itself, so k + 1 idxs_ = idxs_[:, 1:] # Remove closest point, which is the point itself self.m_edge_origins = np.repeat(np.arange(len(points_)), k) self.m_edge_ends = np.reshape(idxs_, (-1)) def __call__(self, sample): # Index finger graph_x_ = torch.tensor(np.vstack((sample['data_index'], sample['data_middle'], sample['data_thumb'])), dtype=torch.float).transpose(0, 1) graph_edge_index_ = torch.tensor([self.m_edge_origins, self.m_edge_ends], dtype=torch.long) graph_pos_ = torch.tensor(np.vstack((self.m_taxels_x, self.m_taxels_y, self.m_taxels_z)), dtype=torch.float).transpose(0, 1) graph_y_ = torch.tensor([sample['slipped']], dtype=torch.long) data_ = Data(x = graph_x_, edge_index = graph_edge_index_, pos = graph_pos_, y = graph_y_) return data_ def __repr__(self): return "{}".format(self.__class__.__name__) ```
{ "source": "3d-pli/fastpli", "score": 3 }
#### File: model/sandbox/seeds.py ```python import numpy as np def triangular_grid(width, height, spacing, center=False, sort=True, endpoint=True): """ Generated 2d triangular grid of seed points inside [0,width]x[0,height]. Parameters ---------- width, height : float length and height of grid [0,width]x[0,height] spacing : float distance between seed points center : bool, optional If false, the seed points will be inside [0,width]x[0,height], beginning at (0,0). If true, the grid will be inside [-width/2,width/2]x[-height/2,height/2] with widths eed point at (0,0). sort : bool, optional If true, the returning seed points are lexsorted along x,y. endpoint : bool, optional If false, [0,width)x[0,height) or [-width/2,width/2)x[-height/2,height/2). If true, [0,width]x[0,height] or [-width/2,width/2]x[-height/2,height/2]. Returns ------- res : (nx2)-array seed points """ x0 = 0 y0 = 0 dx = spacing / 2 # np.sin(np.deg2rad(30)) dy = spacing * np.sqrt(3) / 2 # np.cos(np.deg2rad(30)) if center: width = width / 2 height = height / 2 if endpoint: if width % spacing == 0 or (width + dx) % spacing == 0: width += dx / 2 if height % spacing == 0 or (height + dy) % spacing == 0: height += dy / 2 grid_0 = np.mgrid[x0:width:spacing, y0:height:2 * dy].reshape(2, -1) grid_1 = np.mgrid[x0 + dx:width:spacing, y0 + dy:height:2 * dy].reshape(2, -1) grid = np.concatenate((grid_0, grid_1), axis=1) if center: # mirror x axis grid_mirror = grid[:, grid[1, :] != 0] grid_mirror[1, :] *= -1 grid = np.concatenate((grid, grid_mirror), axis=1) # mirror y axis grid_mirror = grid[:, grid[0, :] != 0] grid_mirror[0, :] *= -1 grid = np.concatenate((grid, grid_mirror), axis=1) if sort: idx = np.lexsort((grid[0, :], grid[1, :])) grid = grid[:, idx] return np.ascontiguousarray(grid.T) def triangular_circle(radius, spacing, center=(0, 0), radii=0): """ Generated 2d triangular grid inside a circle. Parameters ---------- radius : float radius of circle spacing : float distance between seed points center : (2,)-array_like center of circle radii : float or (n,)-array_like, optional seed points will be iterpreted as cricles with a global or individual radii Returns ------- res : (nx2)-array seed points """ seeds = triangular_grid(2 * (radius + spacing), 2 * (radius + spacing), spacing, True) + center return crop_circle(radius, seeds, center, radii) def crop_rectangle(a, b, seeds, radii=0): """ Crops a sequence of 2-dim points inside a rectangle. Parameters ---------- a, b : float cropping between [0,a]x[0,b] a, b : (2,)-array_like cropping between [a[0],b[0]]x[a[1],b[1]] seeds : (n,2)-array_like to be cropped seed points radii : float or (n,)-array_like, optional seed points will be iterpreted as cricles with a global or individual radii Returns ------- res : (nx2)-array cropped seed points """ seeds = np.array(seeds, ndmin=2, copy=False) radii = np.array(radii, ndmin=2, copy=False) if isinstance(a, (int, float)) and isinstance(b, (int, float)): a, b = [0, 0], [a, b] if seeds.ndim != 2 or seeds.shape[1] != 2: raise TypeError('seeds : (nx2)-array') return seeds[np.logical_and(np.all(seeds - radii.T >= a, 1), np.all(seeds + radii.T <= b, 1))] def crop_circle(radius, seeds, center=(0, 0), radii=0): """ Crops a sequence of 2-dim points inside a circle. Parameters ---------- radius : float radius of circle area seeds : (n,2)-array_like to be cropped seed points center : (2,)-array_like center of circle radii : float or (n,)-array_like, optional seed points will be iterpreted as cricles with a global or individual radii Returns ------- res : (nx2)-array cropped seed points """ seeds = np.array(seeds, ndmin=2, copy=False) radii = np.array(radii, ndmin=1, copy=False) if seeds.ndim != 2 or seeds.shape[1] != 2: raise TypeError('seeds : (nx2)-array') return seeds[(np.sum((seeds - center)**2, 1)) <= (radius - radii.T)**2] ``` #### File: fastpli/objects/fibers.py ```python import copy import numpy as np import numba from .layers import Layers """ -------------------------------------------------------------------------------- --------------------------------------FIBER------------------------------------- -------------------------------------------------------------------------------- """ def _convert_to_fiber(data, dtype): """ converts data into (n,4)-np.array""" if data is None: return np.empty((), dtype) if isinstance(data, Fiber): return data data = np.atleast_2d(np.array(data, dtype=dtype, copy=True)) if data.ndim != 2: raise TypeError('Wrong shape: expected (n,4)') if data.shape[1] != 4: raise TypeError('Wrong shape: expected (n,4)') if not np.issubdtype(data.dtype, np.floating): raise TypeError('Wrong type: has to be floating') return data class Fiber: __is_frozen = False def __setattr__(self, key, value): if self.__is_frozen and not hasattr(self, key): raise TypeError('%r is a frozen class' % self) object.__setattr__(self, key, value) def __freeze(self): self.__is_frozen = True def __init__(self, data, dtype=float): self._data = _convert_to_fiber(data, dtype) self.__freeze() def __getitem__(self, item): return self._data[item] def __setitem__(self, item, value): self._data[item] = value def __str__(self): return self._data.__str__() def __repr__(self): return self._data.__repr__() def copy(self): """ deep copy of class """ return copy.deepcopy(self) def __iter__(self): return self._data.__iter__() def __next__(self): return self._data.__next__() def __len__(self): return self._data.shape[-1] @property def shape(self): """ returns shape of data """ return self._data.shape @property def dtype(self): """ returns np.dtype of data """ return self._data.dtype def as_array(self): """ Returns copy data as np.array Returns ------- res : (n,4)-array fiber as np.array """ return self._data.copy() def cast(self, dtype): """ Changes datatype to new type Parameters ---------- dtype : type numpy types are fully supported Returns ------- res : Fiber casted fiber """ return Fiber(self, dtype) @property def points(self): """ Returns xyz data as np.array Returns ------- res : (n,3)-array fiber points as numpy array """ return self._data[:, :-1] @points.setter def points(self, value): self._data[:, :-1] = value @property def radii(self): """ Returns radii data as np.array Returns ------- res : (n,1)-array fiber radii as numpy array """ return self._data[:, -1] @radii.setter def radii(self, value): self._data[:, -1] = value def scale(self, scale, mode='all'): """ Scales fiber Parameters ---------- scale : float scale factor mode : str, optional 'all', 'points' or 'radii' will be scaled Returns ------- res : Fiber scaled Fiber """ data = self._data.copy() if mode == 'all': data[:] *= scale elif mode == 'points': data[:, :3] *= scale elif mode == 'radii': data[:, -1] *= scale else: raise ValueError('mode = [all, points, radii]') return Fiber(data) def rotate(self, rot, offset=None): """ Rotates fiber around offset Parameters ---------- rot : (3,3)-array_like rotation matrix offset : 3d-array-array_like, optional offset for rotation center Returns ------- res : Fiber rotated fiber """ data = self._data.copy() rot = np.array(rot, copy=False) if offset is None: data[:, :3] = np.dot(rot, data[:, :3].T).T else: offset = np.array(offset, copy=False) data[:, :3] = np.dot(rot, (data[:, :3] - offset).T).T + offset return Fiber(data) def translate(self, offset): """ Translates fiber Parameters ---------- offset : 3d-array-array_like offset to translate Returns ------- res : Fiber translated fiber """ data = self._data.copy() offset = np.array(offset, copy=False) data[:, :3] += offset return Fiber(data) def apply(self, fun): """ Applies function to fiber Parameters ---------- fun : function Returns ------- res : Fiber fun(fiber) """ fiber = self.copy() fiber[:] = fun(fiber[:]) return fiber def apply_to_points(self, fun): """ Applies function to fiber positions Parameters ---------- fun : function Returns ------- res : Fiber fun(fiber) """ fiber = self.copy() fiber[:, :-1] = fun(fiber[:, :-1]) return fiber def apply_to_radii(self, fun): """ Applies function to fiber radii Parameters ---------- fun : function Returns ------- res : Fiber fun(fiber) """ fiber = self.copy() fiber[:, -1] = fun(fiber[:, -1]) return fiber def cut(self, voi): """ Cut fiber into voi. The cutting process can create multiple fibers. It checks every fiber_segment_aabb if it overlapps with the voi. Parameters ---------- voi : [xmin, ymin, zmin],[xmax,ymax,zmax] Volume of interest of which fibers to include. E.g. same as in Simulation Returns ------- res : FiberBundle cutted fiber into fiber_bundle """ fibers = [] start = 0 voi = np.array(voi) for i in range(self._data.shape[0] - 1): if not _fiber_segment_aabb_in_aabb( self._data[i, :], self._data[i + 1, :], voi[0], voi[1]): if start != i: fibers.append(self._data[start:i + 1]) start = i + 1 if start != i + 1: fibers.append(self._data[start:]) return FiberBundle(fibers) def cut_sphere(self, radius, center=(0, 0, 0)): """ Cut fiber into sphere. The cutting process can create multiple fibers. It checks every fiber_segment_aabb if it overlapps with the sphere. Parameters ---------- radius : float radius of cutting sphere center : 3d-array center of cutting sphere Returns ------- res : FiberBundle cutted fiber_bundle """ center = np.array(center, copy=False) fibers = [] start = 0 for i in range(self._data.shape[0] - 1): if not _fiber_segment_aabb_in_sphere( self._data[i, :], self._data[i + 1, :], radius, center): if start != i: fibers.append(self._data[start:i + 1]) start = i + 1 if start != i + 1: fibers.append(self._data[start:]) return FiberBundle(fibers) @numba.njit(cache=True) def _fiber_segment_aabb_in_aabb(c0, c1, vmin, vmax): c_min = np.array([ min(c0[0] - c0[-1], c1[0] - c1[-1]), min(c0[1] - c0[-1], c1[1] - c1[-1]), min(c0[2] - c0[-1], c1[2] - c1[-1]) ]) c_max = np.array([ max(c0[0] + c0[-1], c1[0] + c1[-1]), max(c0[1] + c0[-1], c1[1] + c1[-1]), max(c0[2] + c0[-1], c1[2] + c1[-1]) ]) for i in range(3): if c_min[i] > vmax[i] or c_max[i] < vmin[i]: return False return True @numba.njit(cache=True) def _fiber_segment_aabb_in_sphere(c0, c1, r, center): c_min = np.array([ min(c0[0] - c0[-1], c1[0] - c1[-1]), min(c0[1] - c0[-1], c1[1] - c1[-1]), min(c0[2] - c0[-1], c1[2] - c1[-1]) ]) c_max = np.array([ max(c0[0] + c0[-1], c1[0] + c1[-1]), max(c0[1] + c0[-1], c1[1] + c1[-1]), max(c0[2] + c0[-1], c1[2] + c1[-1]) ]) dmin = 0 for i in range(3): if center[i] < c_min[i]: dmin += (center[i] - c_min[i])**2 elif center[i] > c_max[i]: dmin += (center[i] - c_max[i])**2 return dmin <= r**2 """ -------------------------------------------------------------------------------- -----------------------------------FIBERBUNDLE---------------------------------- -------------------------------------------------------------------------------- """ def _convert_to_fiber_bundle(data, layers, dtype): """ converts data into FiberBundle""" if data is None: return [], None if isinstance(data, Fiber): return [data], Layers(layers) if isinstance(data, FiberBundle): return data[:], Layers(layers) if not isinstance(data, (list, tuple)): raise TypeError(f'data is not a list: {type(data)}') fiber_bundle = [] for fiber in data: fiber_bundle.append(Fiber(fiber)) return fiber_bundle, Layers(layers) class FiberBundle: __is_frozen = False def __setattr__(self, key, value): if self.__is_frozen and not hasattr(self, key): raise TypeError('%r is a frozen class' % self) object.__setattr__(self, key, value) def __freeze(self): self.__is_frozen = True def __init__(self, data=None, layers=None, dtype=None): self._data, self._layers = _convert_to_fiber_bundle(data, layers, dtype) self.__freeze() def __getitem__(self, item): return self._data[item] def __setitem__(self, item, value): self._data[item] = Fiber(value) def __delitem__(self, item): del self._data[item] def __str__(self): return self._data.__str__() def __repr__(self): return self._data.__repr__() def copy(self): """ deep copy of class """ return copy.deepcopy(self) def __iter__(self): return iter(self._data) def __next__(self): return next(self._data) def __len__(self): return len(self._data) @property def dtype(self): """ dtype of containing Fibers """ if len(self) > 1: return self._data[0].dtype else: return None def as_array(self): """ Returns copy data as list(np.array) Returns ------- res : [(n,4)-array] fiber bundle as list(np.array) """ return [f.as_array() for f in self] @property def layers(self): """ Returns layer properties of fiber_bundle Returns ------- res : Layers Layers class containing [Layer]. """ return self._layers @layers.setter def layers(self, value): self._layers = Layers(value) def append(self, fiber): """ appends Fiber to FiberBundle """ self._data.append(Fiber(fiber)) def extend(self, fibers): """ extends Fiber to FiberBundle """ for fiber in fibers: self._data.append(Fiber(fiber)) def cast(self, dtype): """ Cast objects into new type Parameters ---------- dtype : type Returns ------- res : fiber_bundle casted fiber_bundle """ fiber_bundle = FiberBundle() for fiber in self: fiber_bundle.append(fiber.cast(dtype)) return fiber_bundle def scale(self, scale, mode='all'): """ Rescales fiber_bundle Parameters ---------- scale : float scale factor mode : str, optional 'all', 'points' or 'radii' will be scaled Returns ------- res : FiberBundle scaled fiber_bundle """ fiber_bundle = FiberBundle() for fiber in self: fiber_bundle.append(fiber.scale(scale, mode)) return fiber_bundle def rotate(self, rot, offset=None): """ Rotates fiber_bundle around offset Parameters ---------- rot : (3,3)-array_like rotation matrix offset : 3d-array-array_like, optional offset for rotation center Returns ------- res : FiberBundle rotated fiber_bundle """ rot = np.array(rot, copy=False) if offset is not None: offset = np.array(offset, copy=False) fiber_bundle = FiberBundle() for fiber in self: fiber_bundle.append(fiber.rotate(rot, offset)) return fiber_bundle def translate(self, offset): """ Translates fiber_bundle Parameters ---------- offset : 3d-array-array_like offset to translate Returns ------- res : FiberBundle translated fiber_bundle """ offset = np.array(offset, copy=False) fiber_bundle = FiberBundle() for fiber in self: fiber_bundle.append(fiber.translate(offset)) return fiber_bundle def apply(self, fun): """ Applies function to fibers Parameters ---------- fun : function Returns ------- res : FiberBundle fun(fiber_bundle) """ fiber_bundle = FiberBundle() for fiber in self: fiber_bundle.append(fiber.apply(fun)) return fiber_bundle def apply_to_points(self, fun): """ Applies function to fibers positions Parameters ---------- fun : function Returns ------- res : FiberBundle fun(fiber_bundle.points) """ fiber_bundle = FiberBundle() for fiber in self: fiber_bundle.append(fiber.apply_to_points(fun)) return fiber_bundle def apply_to_radii(self, fun): """ Applies function to fibers radii Parameters ---------- fun : function Returns ------- res : FiberBundle fun(fiber_bundle.radii) """ fiber_bundle = FiberBundle() for fiber in self: fiber_bundle.append(fiber.apply_to_radii(fun)) return fiber_bundle def cut(self, voi): """ Cut fiber into voi. The cutting process can create multiple fibers. It checks every fiber_segment_aabb if it overlapps with the voi. Parameters ---------- voi : [xmin, ymin, zmin],[xmax,ymax,zmax] Volume of interest of which fibers to include. E.g. same as in Simulation Returns ------- res : FiberBundle cutted fiber_bundle """ fiber_bundle = FiberBundle() for fiber in self: fiber_bundle.extend(fiber.cut(voi)) return fiber_bundle def cut_sphere(self, radius, center=(0, 0, 0)): """ Cut fiber into sphere. The cutting process can create multiple fibers. It checks every fiber_segment_aabb if it overlapps with the sphere. Parameters ---------- radius : float radius of cutting sphere center : 3d-array center of cutting sphere Returns ------- res : FiberBundle cutted fiber_bundle """ fiber_bundle = FiberBundle() for fiber in self: fiber_bundle.extend(fiber.cut_sphere(radius, center)) return fiber_bundle """ -------------------------------------------------------------------------------- ----------------------------------FIBERBUNDLES---------------------------------- -------------------------------------------------------------------------------- """ def _convert_to_fiber_bundles(data, layers, dtype): """ converts data into FiberBundle""" if data is None: return [] if isinstance(data, Fiber): return [FiberBundle(data, layers)] if isinstance(data, FiberBundle): return [data] if isinstance(data, FiberBundles): return data[:] if not isinstance(data, (list, tuple)): raise TypeError('data is not a list') if layers is not None: if len(data) != len(layers): raise TypeError('[FiberBundle] and [Layers] differ in length') else: layers = [None] * len(data) fiber_bundles = [] for fiber_bundle, lys in zip(data, layers): fiber_bundles.append(FiberBundle(fiber_bundle, lys)) return fiber_bundles class FiberBundles(): __is_frozen = False def __setattr__(self, key, value): if self.__is_frozen and not hasattr(self, key): raise TypeError('%r is a frozen class' % self) object.__setattr__(self, key, value) def __freeze(self): self.__is_frozen = True def __init__(self, data=None, layers=None, dtype=None): self._data = _convert_to_fiber_bundles(data, layers, dtype) self.__freeze() def __getitem__(self, item): return self._data[item] def __setitem__(self, item, value): self._data[item] = FiberBundle(value) def __delitem__(self, item): del self._data[item] def __str__(self): return self._data.__str__() def __repr__(self): return self._data.__repr__() def copy(self): """ deep copy of class """ return copy.deepcopy(self) def __iter__(self): return iter(self._data) def __next__(self): return next(self._data) def __len__(self): return len(self._data) @property def dtype(self): if len(self) > 1: return self[0].dtype else: return None def as_array(self): """ Returns copy data as list(list(np.array)) Returns ------- res : [[(n,4)-array]] fiber bundle as list(list(np.array)) """ return [fb.as_array() for fb in self] @property def layers(self): """ Returns layer properties of fiber_bundles Returns ------- res : [Layers] [Layers] class containing [Layer]. The element position corresponds to FiberBundle index """ return [fb.layers for fb in self] @layers.setter def layers(self, value): if len(value) != len(self): raise ValueError('Wrong number of [layers]') for fb, lys in zip(self, value): fb.layers = lys def append(self, fiber_bundle): """ Appends FiberBundle """ self._data.append(FiberBundle(fiber_bundle)) def extend(self, fiber_bundles): """ Extends FiberBundle """ for fiber_bundle in fiber_bundles: self._data.append(FiberBundle(fiber_bundle)) def cast(self, dtype): """ Cast objects into new type Parameters ---------- dtype : type Returns ------- res : FiberBundles fiber_bundles """ fiber_bundles = FiberBundles() for fb in self: fiber_bundles.append(fb.cast(dtype)) return fiber_bundles def scale(self, scale, mode='all'): """ Rescales fiber_bundles Parameters ---------- scale : float scale factor mode : str, optional 'all', 'points' or 'radii' will be scaled Returns ------- res : FiberBundles scaled fiber_bundles """ fiber_bundles = FiberBundles() for fb in self: fiber_bundles.append(fb.scale(scale, mode)) return fiber_bundles def rotate(self, rot, offset=None): """ Rotates fiber_bundles around offset Parameters ---------- fiber_bundles : [[(,4)-array, ...]] list of fibers rot : (3,3)-array_like rotation matrix offset : 3d-array-array_like, optional offset for rotation center Returns ------- res : FiberBundles rotated fiber_bundles """ rot = np.array(rot, copy=False) if offset is not None: offset = np.array(offset, copy=False) fiber_bundles = FiberBundles() for fb in self: fiber_bundles.append(fb.rotate(rot, offset)) return fiber_bundles def translate(self, offset): """ Translates fiber_bundles Parameters ---------- offset : 3d-array-array_like offset to translate Returns ------- res : FiberBundles translated fiber_bundles """ offset = np.array(offset, copy=False) fiber_bundles = FiberBundles() for fb in self: fiber_bundles.append(fb.translate(offset)) return fiber_bundles def apply(self, fun): """ Applies function to fibers Parameters ---------- fun : function Returns ------- res : FiberBundles fun(fiber_bundles) """ fiber_bundles = FiberBundles() for fb in self: fiber_bundles.append(fb.apply(fun)) return fiber_bundles def apply_to_points(self, fun): """ Applies function to fibers positions Parameters ---------- fun : function Returns ------- res : FiberBundles fun(fiber_bundles[...].points) """ fiber_bundles = FiberBundles() for fb in self: fiber_bundles.append(fb.apply_to_points(fun)) return fiber_bundles def apply_to_radii(self, fun): """ Applies function to fibers radii Parameters ---------- fun : function Returns ------- res : FiberBundles fun(fiber_bundles[...].radii) """ fiber_bundles = FiberBundles() for fb in self: fiber_bundles.append(fb.apply_to_radii(fun)) return fiber_bundles def cut(self, voi): """ Cut fiber into voi. The cutting process can create multiple fibers. It checks every fiber_segment_aabb if it overlapps with the voi. Parameters ---------- voi : [xmin, ymin, zmin],[xmax,ymax,zmax] Volume of interest of which fibers to include. E.g. same as in Simulation Returns ------- res : FiberBundles cutted fiber_bundles """ fiber_bundles = FiberBundles() for fb in self: fiber_bundles.append(fb.cut(voi)) return fiber_bundles def cut_sphere(self, radius, center=(0, 0, 0)): """ Cut fiber into voi. The cutting process can create multiple fibers. It checks every fiber_segment_aabb if it overlapps with the voi. Parameters ---------- radius : float radius of cutting sphere center : 3d-array center of cutting sphere Returns ------- res : FiberBundles cutted fiber_bundles """ center = np.array(center, copy=False) fiber_bundles = FiberBundles() for fb in self: fiber_bundles.append(fb.cut_sphere(radius, center)) return fiber_bundles ``` #### File: tests/analysis/orientation_test.py ```python import unittest import numpy as np import fastpli.io import fastpli.analysis np.random.seed(42) class MainTest(unittest.TestCase): def test_remap_direction(self): phi = np.linspace(-42 * np.pi, 42 * np.pi, 1000) phi = fastpli.analysis.orientation.remap_direction(phi) self.assertTrue(np.all(phi >= 0) or np.all(phi < np.pi)) def test_remap_orientation(self): phi, theta = np.mgrid[-42 * np.pi:42 * np.pi:100j, -42 * np.pi:42 * np.pi:100j] phi = phi.ravel() theta = theta.ravel() phi, theta = fastpli.analysis.orientation.remap_orientation(phi, theta) x = np.multiply(np.cos(phi), np.sin(theta)) y = np.multiply(np.sin(phi), np.sin(theta)) z = np.cos(theta) x[z < 0] = -x[z < 0] y[z < 0] = -y[z < 0] z[z < 0] = -z[z < 0] phi_ = np.arctan2(y, x) theta_ = np.arccos(z) phi_[phi_ < 0] += 2 * np.pi self.assertTrue(np.allclose(phi, phi_)) self.assertTrue(np.allclose(theta, theta_)) def test_remap_spherical(self): phi, theta = np.mgrid[-42 * np.pi:42 * np.pi:100j, -42 * np.pi:42 * np.pi:100j] phi = phi.ravel() theta = theta.ravel() phi, theta = fastpli.analysis.orientation.remap_spherical(phi, theta) x = np.multiply(np.cos(phi), np.sin(theta)) y = np.multiply(np.sin(phi), np.sin(theta)) z = np.cos(theta) phi_ = np.arctan2(y, x) theta_ = np.arccos(z) phi_[phi_ < 0] += 2 * np.pi self.assertTrue(np.allclose(phi, phi_)) self.assertTrue(np.allclose(theta, theta_)) def test_fiber_bundles(self): fastpli.analysis.orientation.fiber_bundles( fastpli.io.fiber_bundles.load('tests/cube.dat')) def test_histogram(self): phi = np.random.normal(np.pi / 3, 0.5, 1000) theta = np.random.normal(np.deg2rad(45), 0.5, 1000) fastpli.analysis.orientation.histogram(phi, theta, n_phi=60, n_theta=30, weight_area=True) fastpli.analysis.orientation.histogram(phi, theta, n_phi=60, n_theta=30, weight_area=False) ``` #### File: tests/objects/fibers_test.py ```python import unittest import numpy as np import fastpli.objects import fastpli.tools class MainTest(unittest.TestCase): def setUp(self): self.fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [1, 1, 1, 2]]) self.fiber_bundle = fastpli.objects.FiberBundle(self.fiber.copy()) self.fiber_bundles = fastpli.objects.FiberBundles(self.fiber.copy()) def test_init(self): fastpli.objects.FiberBundle() fastpli.objects.FiberBundles() a = np.array([0, 0, 0, 0]) _ = fastpli.objects.Fiber([[0, 0, 0, 1], [0, 0, 1, 2]]) f = fastpli.objects.Fiber(a) self.assertTrue(isinstance(f, fastpli.objects.Fiber)) f = fastpli.objects.Fiber(f) self.assertTrue(isinstance(f, fastpli.objects.Fiber)) fb = fastpli.objects.FiberBundle([a]) self.assertTrue(isinstance(fb, fastpli.objects.FiberBundle)) fb = fastpli.objects.FiberBundle(f) self.assertTrue(isinstance(fb, fastpli.objects.FiberBundle)) fb = fastpli.objects.FiberBundle(fb) self.assertTrue(isinstance(fb, fastpli.objects.FiberBundle)) fbs = fastpli.objects.FiberBundles([[a]]) self.assertTrue(isinstance(fbs, fastpli.objects.FiberBundles)) fbs = fastpli.objects.FiberBundles(f) self.assertTrue(isinstance(fbs, fastpli.objects.FiberBundles)) fbs = fastpli.objects.FiberBundles([f, f]) self.assertTrue(isinstance(fbs, fastpli.objects.FiberBundles)) fbs = fastpli.objects.FiberBundles(fbs) self.assertTrue(isinstance(fbs, fastpli.objects.FiberBundles)) fb = fastpli.objects.FiberBundle([[[0, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]], [[1, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]]]) for f in fb: self.assertTrue(isinstance(f, fastpli.objects.Fiber)) self.assertTrue(isinstance(f._data, np.ndarray)) fbs = fastpli.objects.FiberBundles([[[[0, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]], [[1, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]]], [[[0, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]], [[1, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]], [[1, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]]]]) for fb in fbs: self.assertTrue(isinstance(fb, fastpli.objects.FiberBundle)) for f in fb: self.assertTrue(isinstance(f, fastpli.objects.Fiber)) self.assertTrue(isinstance(f._data, np.ndarray)) def test_type(self): self.assertTrue(isinstance(self.fiber[:], np.ndarray)) self.assertTrue(self.fiber[:].dtype == float) self.assertTrue( fastpli.objects.Fiber([[1, 1, 1, 1]], np.float32).dtype == np.float32) def test_layers(self): fastpli.objects.FiberBundle(self.fiber_bundle, [(0.333, -0.004, 10, 'p'), (0.666, 0, 5, 'b'), (1.0, 0.004, 1, 'r')]) fastpli.objects.FiberBundles(self.fiber_bundles, [[(0.333, -0.004, 10, 'p'), (0.666, 0, 5, 'b'), (1.0, 0.004, 1, 'r')]]) fb = fastpli.objects.FiberBundle([[[0, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]], [[1, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]]]) fb = fastpli.objects.FiberBundle(fb, [(0.333, -0.004, 10, 'p'), (0.666, 0, 5, 'b'), (1.0, 0.004, 1, 'r')]) fbs = [[[[0, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]], [[1, 0, 0, 1], [1, 1, 1, 1], [2, 2, 2, 1]]], [[[0, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]], [[1, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]], [[1, 1, 2, 3], [1, 2, 3, 4], [2, 4, 5, 5]]]] fbs = fastpli.objects.FiberBundles(fbs, [[(0.333, -0.004, 10, 'p'), (0.666, 0, 5, 'b'), (1.0, 0.004, 1, 'r')]] * len(fbs)) def test_resize(self): fiber = self.fiber.scale(10) self.assertTrue(np.array_equal(fiber[:], self.fiber[:] * 10)) fb = self.fiber_bundle.scale(10) for f in fb: self.assertTrue(np.array_equal(f[:], self.fiber[:] * 10)) fbs = self.fiber_bundles.scale(10) for fb in fbs: for f in fb: self.assertTrue(np.array_equal(f[:], self.fiber[:] * 10)) fiber = self.fiber.scale(10, mode='points') self.assertTrue(np.array_equal(fiber[:, :-2], self.fiber[:, :-2] * 10)) self.assertTrue(np.array_equal(fiber[:, -1], self.fiber[:, -1])) fiber = self.fiber.scale(10, mode='radii') self.assertTrue(np.array_equal(fiber[:, :-2], self.fiber[:, :-2])) self.assertTrue(np.array_equal(fiber[:, -1], self.fiber[:, -1] * 10)) def test_rotation(self): fiber = self.fiber.rotate(fastpli.tools.rotation.x(0)) self.assertTrue(np.array_equal(self.fiber[:], fiber[:])) fiber = self.fiber.rotate(fastpli.tools.rotation.x(np.deg2rad(90))) self.assertTrue( np.allclose(fiber[:], np.array([[0, 0, 0, 1], [1, -1, 1, 2]]))) fiber = self.fiber.rotate(fastpli.tools.rotation.x(np.deg2rad(90)), [1, 1, 1]) self.assertTrue( np.allclose(fiber[:], np.array([[0, 2, 0, 1], [1, 1, 1, 2]]))) fiber_bundle = self.fiber_bundle.rotate( fastpli.tools.rotation.x(np.deg2rad(90)), [1, 1, 1]) self.assertTrue(len(fiber_bundle) == len(self.fiber_bundle)) for f in fiber_bundle: self.assertTrue( np.allclose(f[:], np.array([[0, 2, 0, 1], [1, 1, 1, 2]]))) for fb in self.fiber_bundles: for f in fb: fiber = f.rotate(fastpli.tools.rotation.x(np.deg2rad(90)), [1, 1, 1]) self.assertTrue( np.allclose(fiber[:], np.array([[0, 2, 0, 1], [1, 1, 1, 2]]))) def test_translate(self): fiber = self.fiber.translate([1, 1, 1]) self.assertTrue( np.array_equal(fiber[:, :3], self.fiber[:, :3] + np.array([1, 1, 1]))) self.assertTrue(np.array_equal(fiber[:, -1], self.fiber[:, -1])) fiber_bundle = self.fiber_bundle.translate([1, 1, 1]) self.assertTrue(len(fiber_bundle) == len(self.fiber_bundle)) for f in fiber_bundle: self.assertTrue( np.array_equal(fiber[:, :3], self.fiber[:, :3] + np.array([1, 1, 1]))) self.assertTrue(np.array_equal(f[:, -1], self.fiber[:, -1])) for fb in self.fiber_bundles: for f in fb: fiber = f.translate([1, 1, 1]) self.assertTrue( np.array_equal(fiber[:, :3], self.fiber[:, :3] + np.array([1, 1, 1]))) self.assertTrue(np.array_equal(f[:, -1], self.fiber[:, -1])) def test_apply(self): # Fiber fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [1, 1, 1, 2]], dtype=float) fiber_ = fiber.apply(lambda x: x + 1) self.assertTrue(isinstance(fiber_, fastpli.objects.Fiber)) self.assertTrue(np.array_equal(fiber[:] + 1, fiber_[:])) fiber_ = fiber.apply_to_points(lambda x: x + 1) self.assertTrue(isinstance(fiber_, fastpli.objects.Fiber)) self.assertTrue(np.array_equal(fiber[:, :-1] + 1, fiber_[:, :-1])) self.assertTrue(np.array_equal(fiber[:, -1], fiber_[:, -1])) fiber_ = fiber.apply_to_radii(lambda x: x + 1) self.assertTrue(isinstance(fiber_, fastpli.objects.Fiber)) self.assertTrue(np.array_equal(fiber[:, :-1], fiber_[:, :-1])) self.assertTrue(np.array_equal(fiber[:, -1] + 1, fiber_[:, -1])) # FiberBundle fb = fastpli.objects.FiberBundle([[0, 0, 0, 1], [1, 1, 1, 2]], dtype=float) fb_ = fb.apply(lambda x: x + 1) self.assertTrue(isinstance(fb_, fastpli.objects.FiberBundle)) self.assertTrue(np.array_equal(fb[0][:] + 1, fb_[0][:])) fb_ = fb.apply_to_points(lambda x: x + 1) self.assertTrue(isinstance(fb_, fastpli.objects.FiberBundle)) self.assertTrue(np.array_equal(fb[0][:, :-1] + 1, fb_[0][:, :-1])) self.assertTrue(np.array_equal(fb[0][:, -1], fb_[0][:, -1])) fb_ = fb.apply_to_radii(lambda x: x + 1) self.assertTrue(isinstance(fb_, fastpli.objects.FiberBundle)) self.assertTrue(np.array_equal(fb[0][:, :-1], fb_[0][:, :-1])) self.assertTrue(np.array_equal(fb[0][:, -1] + 1, fb_[0][:, -1])) # FiberBundles fbs = fastpli.objects.FiberBundles([[[0, 0, 0, 1], [1, 1, 1, 2]]], dtype=float) fbs_ = fbs.apply(lambda x: x + 1) self.assertTrue(isinstance(fbs_, fastpli.objects.FiberBundles)) self.assertTrue(np.array_equal(fbs[0][0][:] + 1, fbs_[0][0][:])) fbs_ = fbs.apply_to_points(lambda x: x + 1) self.assertTrue(isinstance(fbs_, fastpli.objects.FiberBundles)) self.assertTrue( np.array_equal(fbs[0][0][::, :-1] + 1, fbs_[0][0][:, :-1])) self.assertTrue(np.array_equal(fbs[0][0][:, -1], fbs_[0][0][:, -1])) fbs_ = fbs.apply_to_radii(lambda x: x + 1) self.assertTrue(isinstance(fbs_, fastpli.objects.FiberBundles)) self.assertTrue(np.array_equal(fbs[0][0][:, :-1], fbs_[0][0][:, :-1])) self.assertTrue(np.array_equal(fbs[0][0][:, -1] + 1, fbs_[0][0][:, -1])) def test_cut(self): fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [1, 1, 1, 2]], dtype=float) fibers = fiber.cut([[-10] * 3, [10] * 3]) self.assertTrue(len(fibers) == 1) self.assertTrue(np.array_equal(fibers[0][:], fiber[:])) fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [10, 10, 10, 2]]) fibers = fiber.cut([[-5] * 3, [5] * 3]) self.assertTrue(len(fibers) == 1) self.assertTrue(np.array_equal(fibers[0][:], fiber[:])) fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [10, 10, 10, 2], [100, 100, 100, 2]]) fibers = fiber.cut([[-5] * 3, [5] * 3]) self.assertTrue(len(fibers) == 1) self.assertTrue(fibers[0].shape[0] == 2) self.assertTrue(not np.array_equal(fibers[0][:], fiber[:])) fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [10, 10, 10, 2], [100, 100, 100, 2], [10, 10, 10, 2], [0, 0, 0, 1]]) fibers = fiber.cut([[-5] * 3, [5] * 3]) self.assertTrue(len(fibers) == 2) self.assertTrue(fibers[0].shape[0] == 2) self.assertTrue(fibers[1].shape[0] == 2) self.assertTrue(not np.array_equal(fibers[0][:], fiber[:])) self.assertTrue(not np.array_equal(fibers[1][:], fiber[:])) fiber_bundle = fastpli.objects.FiberBundle(fiber) cut_fb = fiber_bundle.cut([[-5] * 3, [5] * 3]) fibers = cut_fb self.assertTrue(len(fibers) == 2) self.assertTrue(fibers[0].shape[0] == 2) self.assertTrue(fibers[1].shape[0] == 2) self.assertTrue(not np.array_equal(fibers[0][:], fiber[:])) self.assertTrue(not np.array_equal(fibers[1][:], fiber[:])) fiber_bundles = fastpli.objects.FiberBundles(fiber) cut_fbs = fiber_bundles.cut([[-5] * 3, [5] * 3]) fibers = cut_fbs[0] self.assertTrue(len(cut_fbs) == 1) self.assertTrue(len(fibers) == 2) self.assertTrue(fibers[0].shape[0] == 2) self.assertTrue(fibers[1].shape[0] == 2) self.assertTrue(not np.array_equal(fibers[0][:], fiber[:])) self.assertTrue(not np.array_equal(fibers[1][:], fiber[:])) fiber = fastpli.objects.Fiber([[0, 0, 0, 1], [10, 10, 10, 2]]) fibers = fiber.cut([[5] * 3, [6] * 3]) self.assertTrue(np.array_equal(fibers[0][:], fiber[:])) if __name__ == '__main__': unittest.main() ```
{ "source": "3d-pli/QtSLIX", "score": 2 }
#### File: QtSLIX/ThreadWorkers/ParameterGenerator.py ```python import numpy import os from PyQt5.QtCore import QThread, QObject, pyqtSignal import SLIX if SLIX.toolbox.gpu_available: import cupy __all__ = ['ParameterGeneratorWorker'] class ParameterGeneratorWorker(QObject): """ Worker class for the parameter generator. This class gets called from the ParameterGeneratorWidget when the user clicks the "Generate" button. """ # Signal to inform the ParameterGeneratorWidget that the worker has finished finishedWork = pyqtSignal() # Signal to inform the ParameterGeneratorWidget what step the worker is currently working on currentStep = pyqtSignal(str) # Error message errorMessage = pyqtSignal(str) def __init__(self, filename: str, image: numpy.array, output_folder: str, filtering: str, filtering_parm_1: float, filtering_parm_2: float, use_gpu: bool, detailed: bool, min: bool, max: bool, avg: bool, direction: bool, nc_direction: bool, peaks: bool, peak_width: bool, peak_distance: bool, peak_prominence: bool, dir_correction: float): """ Initialize the worker. Args: filename: Filename of the measurement image image: NumPy array of the measurement image output_folder: Folder to save the generated images filtering: Filtering method to use filtering_parm_1: Parameter 1 of the filtering method filtering_parm_2: Parameter 2 of the filtering method use_gpu: Use GPU for calculations detailed: Use detailed mode min: Generate minima image max: Generate maxima image avg: Generate average image direction: Generate direction image nc_direction: Generate non crossing direction image peaks: Generate peaks image peak_width: Generate peak width image peak_distance: Generate peak distance image peak_prominence: Generate peak prominence image dir_correction: Direction correction in degree """ super().__init__() self.filename = filename self.image = image self.output_folder = output_folder self.gpu = use_gpu self.detailed = detailed self.min = min self.max = max self.avg = avg self.direction = direction self.nc_direction = nc_direction self.peaks = peaks self.peak_width = peak_width self.peak_distance = peak_distance self.peak_prominence = peak_prominence self.filtering = filtering self.filtering_parameter_1 = filtering_parm_1 self.filtering_parameter_2 = filtering_parm_2 self.dir_correction = dir_correction self.output_path_name = "" self.output_data_type = ".tiff" def get_output_path_name(self) -> str: # Get the filename without the extension to determine the output file names if os.path.isdir(self.filename): filename_without_extension = SLIX._cmd.ParameterGenerator.get_file_pattern(self.filename) else: filename_without_extension = \ os.path.splitext(os.path.basename(self.filename))[0] output_path_name = f'{self.output_folder}/{filename_without_extension}' # Create the output folder if it does not exist return output_path_name def apply_filtering(self) -> None: # If the thread is stopped, return if QThread.currentThread().isInterruptionRequested(): self.finishedWork.emit() return # Apply filtering if self.filtering != "None": self.currentStep.emit(f"Filtering: {self.filtering} " f"{self.filtering_parameter_1} " f"{self.filtering_parameter_2}") if self.filtering == "Fourier": self.image = SLIX.preparation.low_pass_fourier_smoothing(self.image, self.filtering_parameter_1, self.filtering_parameter_2) elif self.filtering == "Savitzky-Golay": self.image = SLIX.preparation.savitzky_golay_smoothing(self.image, self.filtering_parameter_1, self.filtering_parameter_2) def generate_minima(self) -> None: if QThread.currentThread().isInterruptionRequested(): self.finishedWork.emit() return # Generate minima image if self.min: self.currentStep.emit("Generating minima...") min_img = numpy.min(self.image, axis=-1) SLIX.io.imwrite(f'{self.output_path_name}_min' f'{self.output_data_type}', min_img) def generate_maxima(self) -> None: if QThread.currentThread().isInterruptionRequested(): self.finishedWork.emit() return # Generate maxima image if self.max: self.currentStep.emit("Generating maxima...") max_img = numpy.max(self.image, axis=-1) SLIX.io.imwrite(f'{self.output_path_name}_max' f'{self.output_data_type}', max_img) def generate_average(self) -> None: if QThread.currentThread().isInterruptionRequested(): self.finishedWork.emit() return # Generate average image if self.avg: self.currentStep.emit("Generating average...") avg_img = numpy.mean(self.image, axis=-1) SLIX.io.imwrite(f'{self.output_path_name}_avg' f'{self.output_data_type}', avg_img) def generate_peaks(self, peaks: numpy.ndarray, detailed: bool, gpu: bool) -> None: if QThread.currentThread().isInterruptionRequested(): self.finishedWork.emit() return # Generate all peaks to write low and high prominence peaks if self.peaks: self.currentStep.emit("Generating all peaks...") all_peaks = SLIX.toolbox.peaks(self.image, use_gpu=gpu, return_numpy=True) if not detailed: SLIX.io.imwrite(f'{self.output_path_name}_high_prominence_peaks' f'{self.output_data_type}', numpy.sum(peaks, axis=-1, dtype=numpy.uint16)) SLIX.io.imwrite(f'{self.output_path_name}_low_prominence_peaks' f'{self.output_data_type}', numpy.sum(all_peaks, axis=-1, dtype=numpy.uint16) - numpy.sum(peaks, axis=-1, dtype=numpy.uint16)) else: SLIX.io.imwrite(f'{self.output_path_name}_all_peaks_detailed' f'{self.output_data_type}', all_peaks) SLIX.io.imwrite( f'{self.output_path_name}_high_prominence_peaks_detailed' f'{self.output_data_type}', peaks ) def generate_direction(self, peaks: numpy.ndarray, centroids: numpy.ndarray, gpu: bool) -> None: if QThread.currentThread().isInterruptionRequested(): self.finishedWork.emit() return # Generate the direction images if self.direction: self.currentStep.emit("Generating direction...") direction = SLIX.toolbox.direction(peaks, centroids, use_gpu=gpu, number_of_directions=3, correction_angle=self.dir_correction, return_numpy=True) for dim in range(direction.shape[-1]): SLIX.io.imwrite(f'{self.output_path_name}_dir_{dim + 1}' f'{self.output_data_type}', direction[:, :, dim]) del direction def generate_non_crossing_direction(self, peaks: numpy.ndarray, centroids: numpy.ndarray, gpu: bool) -> None: if QThread.currentThread().isInterruptionRequested(): self.finishedWork.emit() return # Generate the non-crossing direction images if self.nc_direction: self.currentStep.emit("Generating non crossing direction...") nc_direction = SLIX.toolbox.direction(peaks, centroids, use_gpu=gpu, number_of_directions=1, return_numpy=True) SLIX.io.imwrite(f'{self.output_path_name}_dir' f'{self.output_data_type}', nc_direction[:, :]) del nc_direction def generate_peak_distance(self, peaks: numpy.ndarray, centroids: numpy.ndarray, detailed: bool, gpu: bool) -> None: detailed_str = "_detailed" if detailed else "" if QThread.currentThread().isInterruptionRequested(): self.finishedWork.emit() return # Generate the peak distance if self.peak_distance: self.currentStep.emit("Generating peak distance...") if detailed: peak_distance = SLIX.toolbox.peak_distance(peaks, centroids, use_gpu=gpu, return_numpy=True) else: peak_distance = SLIX.toolbox.mean_peak_distance(peaks, centroids, use_gpu=gpu, return_numpy=True) SLIX.io.imwrite(f'{self.output_path_name}_peakdistance{detailed_str}' f'{self.output_data_type}', peak_distance) del peak_distance def generate_peak_width(self, peaks: numpy.ndarray, detailed: bool, gpu: bool) -> None: detailed_str = "_detailed" if detailed else "" if QThread.currentThread().isInterruptionRequested(): self.finishedWork.emit() return # Generate the peak width if self.peak_width: self.currentStep.emit("Generating peak width...") if detailed: peak_width = SLIX.toolbox.peak_width(self.image, peaks, use_gpu=gpu, return_numpy=True) else: peak_width = SLIX.toolbox.mean_peak_width(self.image, peaks, use_gpu=gpu) SLIX.io.imwrite(f'{self.output_path_name}_peakwidth{detailed_str}' f'{self.output_data_type}', peak_width) del peak_width def generate_peak_prominence(self, peaks: numpy.ndarray, detailed: bool, gpu: bool) -> None: detailed_str = "_detailed" if detailed else "" if QThread.currentThread().isInterruptionRequested(): self.finishedWork.emit() return # Generate the peak prominence if self.peak_prominence: self.currentStep.emit("Generating peak prominence...") if detailed: prominence = SLIX.toolbox.peak_prominence(self.image, peaks, use_gpu=gpu, return_numpy=True) else: prominence = SLIX.toolbox.mean_peak_prominence(self.image, peaks, use_gpu=gpu, return_numpy=True) SLIX.io.imwrite(f'{self.output_path_name}_peakprominence{detailed_str}' f'{self.output_data_type}', prominence) del prominence def process(self) -> None: """ Process the image. This method is called from the ParameterGeneratorWidget. Returns: None """ self.output_path_name = self.get_output_path_name() if os.path.isdir(self.filename): SLIX.io.imwrite(f'{self.output_path_name}_Stack{self.output_data_type}', self.image) gpu = self.gpu detailed = self.detailed try: self.apply_filtering() self.generate_minima() self.generate_maxima() self.generate_average() if QThread.currentThread().isInterruptionRequested(): self.finishedWork.emit() return # The following steps require the significant peaks of the measurement ... self.currentStep.emit("Generating significant peaks...") peaks = SLIX.toolbox.significant_peaks(self.image, use_gpu=gpu, return_numpy=True) if QThread.currentThread().isInterruptionRequested(): self.finishedWork.emit() return # ... as well as the centroids self.currentStep.emit("Generating centroids...") centroids = SLIX.toolbox.centroid_correction(self.image, peaks, use_gpu=gpu, return_numpy=True) self.generate_peaks(peaks, detailed, gpu) self.generate_direction(peaks, centroids, gpu) self.generate_non_crossing_direction(peaks, centroids, gpu) self.generate_peak_distance(peaks, centroids, detailed, gpu) self.generate_peak_width(peaks, detailed, gpu) self.generate_peak_prominence(peaks, detailed, gpu) except cupy.cuda.memory.OutOfMemoryError as e: self.errorMessage.emit("cupy.cuda.memory.OutOfMemoryError: Ran out of memory during computation. " "Please disable the GPU option.") if self.gpu: mempool = cupy.get_default_memory_pool() mempool.free_all_blocks() # Tell connected components that we are done self.finishedWork.emit() ```
{ "source": "3d-pli/SLIX", "score": 3 }
#### File: SLIX/CPU/toolbox.py ```python import numpy import SLIX from SLIX.CPU._toolbox import _direction, _prominence, _peakwidth, \ _peakdistance, _centroid, _centroid_correction_bases, _peaks __all__ = ['TARGET_PROMINENCE', 'peaks', 'peak_width', 'peak_prominence', 'peak_distance', 'mean_peak_distance', 'background_mask', 'mean_peak_width', 'direction', 'num_peaks', 'mean_peak_prominence', 'unit_vectors', 'centroid_correction', 'normalize'] TARGET_PROMINENCE = 0.08 def background_mask(image): """ Creates a background mask by setting all image pixels with low scattering signals to zero. As all background pixels are near zero for all images in the SLI image stack, this method should remove most of the background allowing for better approximations using the available features. It is advised to use this function. Args: image: Complete SLI measurement image stack as a 2D/3D Numpy array threshold: Threshhold for mask creation (default: 10) Returns: numpy.array: 1D/2D-image which masks the background as True and foreground as False """ avg_image = numpy.average(image, axis=-1) # Set histogram to a range of 0 to 1 ignoring any outliers. hist_avg_image = avg_image / numpy.percentile(avg_image, 99) # Generate histogram in range of 0 to 1 to ignore outliers again. We search for values at the beginning anyway. avg_hist, avg_bins = numpy.histogram(hist_avg_image, bins=256, range=(0, 1)) # Use SLIX to search for significant peaks in the histogram avg_hist = avg_hist[numpy.newaxis, numpy.newaxis, ...] peaks = SLIX.toolbox.significant_peaks(image=avg_hist).flatten() # Reverse the histogram to search for minimal values with SLIX (again) avg_hist = -avg_hist reversed_peaks = SLIX.toolbox.significant_peaks(image=avg_hist).flatten() # We can now calculate the index of our background threshold using the reversed_peaks index = numpy.argmax(peaks) + numpy.argmax(reversed_peaks[numpy.argmax(peaks):]) # Reverse from 0 to 1 to original image scale and calculate the threshold position threshold = avg_bins[index] * numpy.percentile(avg_image, 99) # Return a mask with the calculated background image return avg_image < threshold def peaks(image): """ Detect all peaks from a full SLI measurement. Peaks will not be filtered in any way. To detect only significant peaks, filter the peaks by using the prominence as a threshold. Args: image: Complete SLI measurement image stack as a 2D/3D Numpy array Returns: 2D/3D boolean image containing masking the peaks with `True` """ image = numpy.array(image, dtype=numpy.float32) reshape = False if len(image.shape) == 3: reshape = True [image_x, image_y, image_z] = image.shape image = image.reshape(image_x * image_y, image_z) resulting_image = _peaks(image) if reshape: image = image.reshape(image_x, image_y, image_z) resulting_image = resulting_image.reshape(image_x, image_y, image_z) return resulting_image.astype('bool') def num_peaks(image=None, peak_image=None): """ Calculate the number of peaks from each line profile in an SLI image series by detecting all peaks and applying thresholds to remove unwanted peaks. Args: image: Full SLI measurement (series of images) which is prepared for the pipeline using the SLIX toolbox methods. peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack Returns: Array where each entry corresponds to the number of detected peaks within the first dimension of the SLI image series. """ if peak_image is None and image is not None: peak_image = peaks(image) elif peak_image is not None: peak_image = numpy.array(peak_image) else: raise ValueError('Either image or peak_image has to be defined.') return numpy.count_nonzero(peak_image, axis=-1).astype(numpy.uint16) def normalize(image, kind_of_normalization=0): """ Normalize given line profile by using a normalization technique based on the kind_of_normalization parameter. 0 : Scale line profile to be between 0 and 1 1 : Divide line profile through its mean value Arguments: image: Full SLI measurement (series of images) which is prepared for the pipeline using the SLIX toolbox methods. kind_of_normalization: Normalization technique which will be used for the calculation Returns: numpy.array -- Image where each pixel is normalized by the last axis of the image """ image = numpy.array(image, dtype=numpy.float32) if kind_of_normalization == 0: image = (image - image.min(axis=-1)[..., None]) \ / numpy.maximum(1e-15, image.max(axis=-1)[..., None] - image.min(axis=-1)[..., None]) else: image = image / \ numpy.maximum(1e-15, numpy.mean(image, axis=-1)[..., None]) return image def peak_prominence(image, peak_image=None, kind_of_normalization=0): """ Calculate the peak prominence of all given peak positions within a line profile. The line profile will be normalized by dividing the line profile through its mean value. Therefore, values above 1 are possible. Args: image: Original line profile used to detect all peaks. This array will be further analyzed to better determine the peak positions. peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack kind_of_normalization: Normalize given line profile by using a normalization technique based on the kind_of_normalization parameter. 0 : Scale line profile to be between 0 and 1 1 : Divide line profile through its mean value Returns: Floating point value containing the mean peak prominence of the line profile in degrees. the mean peak prominence of the line profile in degrees. """ image = numpy.array(image, dtype=numpy.float32) if peak_image is None: peak_image = peaks(image).astype('uint8') else: peak_image = numpy.array(peak_image).astype('uint8') image = normalize(image, kind_of_normalization) [image_x, image_y, image_z] = image.shape image = image.reshape(image_x * image_y, image_z) peak_image = peak_image.reshape(image_x * image_y, image_z).astype('uint8') result_img = _prominence(image, peak_image) result_img = result_img.reshape((image_x, image_y, image_z)) return result_img def mean_peak_prominence(image, peak_image=None, kind_of_normalization=0): """ Calculate the mean peak prominence of all given peak positions within a line profile. The line profile will be normalized by dividing the line profile through its mean value. Therefore, values above 1 are possible. Args: image: Original line profile used to detect all peaks. This array will be further analyzed to better determine the peak positions. peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack kind_of_normalization: Normalize given line profile by using a normalization technique based on the kind_of_normalization parameter. 0 : Scale line profile to be between 0 and 1 1 : Divide line profile through its mean value Returns: Floating point value containing the mean peak prominence of the line profile in degrees. """ if peak_image is not None: peak_image = numpy.array(peak_image).astype('uint8') else: peak_image = peaks(image).astype('uint8') result_img = peak_prominence(image, peak_image, kind_of_normalization) result_img = numpy.sum(result_img, axis=-1) / \ numpy.maximum(1, numpy.count_nonzero(peak_image, axis=-1)) return result_img.astype('float32') def peak_width(image, peak_image=None, target_height=0.5): """ Calculate the peak width of all given peak positions within a line profile. Args: image: Original line profile used to detect all peaks. This array will be further analyzed to better determine the peak positions. peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack target_height: Relative peak height in relation to the prominence of the given peak. Returns: NumPy array where each entry corresponds to the peak width of the line profile. The values are in degree. """ image = numpy.array(image, dtype='float32') if peak_image is not None: peak_image = numpy.array(peak_image).astype('uint8') else: peak_image = peaks(image).astype('uint8') [image_x, image_y, image_z] = image.shape image = image.reshape(image_x * image_y, image_z) peak_image = peak_image.reshape(image_x * image_y, image_z).astype('uint8') prominence = _prominence(image, peak_image) result_image = _peakwidth(image, peak_image, prominence, target_height) result_image = result_image.reshape((image_x, image_y, image_z)) result_image = result_image * 360.0 / image_z return result_image def mean_peak_width(image, peak_image=None, target_height=0.5): """ Calculate the mean peak width of all given peak positions within a line profile. Args: image: Original line profile used to detect all peaks. This array will be further analyzed to better determine the peak positions. peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack target_height: Relative peak height in relation to the prominence of the given peak. Returns: NumPy array where each entry corresponds to the mean peak width of the line profile. The values are in degree. """ if peak_image is not None: peak_image = numpy.array(peak_image).astype('uint8') else: peak_image = peaks(image).astype('uint8') result_img = peak_width(image, peak_image, target_height) result_img = numpy.sum(result_img, axis=-1) / \ numpy.maximum(1, numpy.count_nonzero(peak_image, axis=-1)) return result_img def peak_distance(peak_image, centroids): """ Calculate the mean peak distance in degrees between two corresponding peaks for each line profile in an SLI image series. Args: peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack centroids: Use centroid calculation to better determine the peak position regardless of the number of measurements / illumination angles used. Returns: NumPy array of floating point values containing the peak distance of the line profiles in degrees in their respective peak position. The first peak of each peak pair will show the distance between peak_1 and peak_2 while the second peak will show 360 - (peak_2 - peak_1). """ peak_image = numpy.array(peak_image).astype('uint8') [image_x, image_y, image_z] = peak_image.shape peak_image = peak_image.reshape(image_x * image_y, image_z).astype('uint8') number_of_peaks = numpy.count_nonzero(peak_image, axis=-1).astype('uint8') centroids = centroids.reshape(image_x * image_y, image_z).astype('float32') result_img = _peakdistance(peak_image, centroids, number_of_peaks) result_img = result_img.reshape((image_x, image_y, image_z)) return result_img def mean_peak_distance(peak_image, centroids): """ Calculate the mean peak distance in degrees between two corresponding peaks for each line profile in an SLI image series. Args: peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack centroids: Use centroid calculation to better determine the peak position regardless of the number of measurements / illumination angles used. Returns: NumPy array of floating point values containing the mean peak distance of the line profiles in degrees. """ result_image = peak_distance(peak_image, centroids) result_image[result_image > 180] = 0 result_image = numpy.sum(result_image, axis=-1) / \ numpy.maximum(1, numpy.count_nonzero(result_image, axis=-1)) return result_image def direction(peak_image, centroids, correction_angle=0, number_of_directions=3): """ Calculate up to `number_of_directions` direction angles based on the given peak positions. If more than `number_of_directions*2` peaks are present, no direction angle will be calculated to avoid errors. This will result in a direction angle of BACKGROUND_COLOR. The peak positions are determined by the position of the corresponding peak pairs (i.e. 6 peaks: 1+4, 2+5, 3+6). If two peaks are too far away or too near (outside of 180°±35°), the direction angle will be considered as invalid, resulting in a direction angle of BACKGROUND_COLOR. Args: correction_angle: Correct the resulting direction angle by the value. This is useful when the stack or camera was rotated. peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack centroids: Centroids resulting from `centroid_correction` for more accurate results number_of_directions: Number of directions which shall be generated. Returns: NumPy array with the shape (x, y, `number_of_directions`) containing up to `number_of_directions` direction angles. x equals the number of pixels of the SLI image series. If a direction angle is invalid or missing, the array entry will be BACKGROUND_COLOR instead. """ peak_image = numpy.array(peak_image).astype('uint8') [image_x, image_y, image_z] = peak_image.shape peak_image = peak_image.reshape(image_x * image_y, image_z).astype('uint8') centroids = centroids.reshape(image_x * image_y, image_z).astype('float32') number_of_peaks = numpy.count_nonzero(peak_image, axis=-1).astype('uint8') result_img = _direction(peak_image, centroids, number_of_peaks, number_of_directions, correction_angle) result_img = result_img.reshape((image_x, image_y, number_of_directions)) return result_img def centroid_correction(image, peak_image, low_prominence=TARGET_PROMINENCE, high_prominence=None): """ Correct peak positions from a line profile by looking at only the peak with a given threshold using a centroid calculation. If a minimum is found in the considered interval, this minimum will be used as the limit instead. The range for the peak correction is limited by MAX_DISTANCE_FOR_CENTROID_ESTIMATION. Args: image: Original line profile used to detect all peaks. This array will be further analyzed to better determine the peak positions. peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack low_prominence: Lower prominence bound for detecting a peak. high_prominence: Higher prominence bound for detecting a peak. Returns: NumPy array with the positions of all detected peak positions corrected with the centroid calculation. """ if peak_image is None: peak_image = peaks(image).astype('uint8') if low_prominence is None: low_prominence = -numpy.inf if high_prominence is None: high_prominence = -numpy.inf [image_x, image_y, image_z] = image.shape image = normalize(image) image = image.reshape(image_x * image_y, image_z).astype('float32') peak_image = peak_image.reshape(image_x * image_y, image_z).astype('uint8') reverse_image = -1 * image reverse_peaks = peaks(reverse_image.reshape((image_x, image_y, image_z))) \ .astype('uint8') \ .reshape(image_x * image_y, image_z) reverse_prominence = _prominence(reverse_image, reverse_peaks) reverse_peaks[reverse_prominence < low_prominence] = False reverse_peaks[reverse_prominence > high_prominence] = False left_bases, right_bases = _centroid_correction_bases(image, peak_image, reverse_peaks) # Centroid calculation based on left_bases and right_bases centroid_peaks = _centroid(image, peak_image, left_bases, right_bases) centroid_peaks = centroid_peaks.reshape((image_x, image_y, image_z)) return centroid_peaks def unit_vectors(direction): """ Calculate the unit vectors (UnitX, UnitY) from a given direction angle. Args: direction: 3D NumPy array - direction angles in degrees Returns: UnitX, UnitY: 3D NumPy array, 3D NumPy array x- and y-vector component in arrays """ directions_rad = numpy.deg2rad(direction) UnitX = -numpy.sin(0.5 * numpy.pi) * numpy.cos(directions_rad) UnitY = numpy.sin(0.5 * numpy.pi) * numpy.sin(directions_rad) UnitX[numpy.isclose(direction, -1)] = 0 UnitY[numpy.isclose(direction, -1)] = 0 return UnitX, UnitY ``` #### File: SLIX/SLIX/io.py ```python from PIL import Image import numpy import tifffile import nibabel import h5py import sys import re import os import glob import datetime import SLIX from .attributemanager import AttributeHandler __all__ = ['H5FileReader', 'H5FileWriter', 'imread', 'imwrite', 'imwrite_rgb'] nibabel.openers.Opener.default_compresslevel = 9 _fileregex = r'.*_+p[0-9]+_?.*\.(tif{1,2}|jpe*g|nii|h5|png)' class H5FileReader: """ This class allows to read HDF5 files from your file system. It supports reading datasets but not reading attributes. """ def __init__(self): self.path = None self.file = None self.content = None def open(self, path): """ Args: path: Path on the filesystem to the HDF5 file which will be read Returns: None """ if not path == self.path: self.close() self.path = path self.file = h5py.File(path, 'r') def close(self): """ Close the currently opened file, if any is open. Returns: None """ if self.file is not None: self.file.close() self.file = None self.path = None self.content = None def read(self, dataset): """ Read a dataset from the currently opened file, if any is open. The content of the dataset will be stored for future use. Args: dataset: Path to the dataset within the HDF5 Returns: The opened dataset. """ if self.content is None: self.content = {} if dataset not in self.content.keys(): self.content[dataset] = numpy.squeeze(self.file[dataset][:]) return self.content[dataset] class H5FileWriter: """ This class allows to write HDF5 files to your file system. It supports writing datasets and writing attributes. """ def __init__(self): self.path = None self.file = None def add_symlink(self, dataset, symlink_path): """ Adds a symbolic link from one dataset to another path. Args: dataset: Dataset path within the HDF5 symlink_path: Path to the symlink. Returns: None """ if self.file is None: return self.file[symlink_path] = self.file[dataset] self.file.flush() def add_plim_attributes(self, stack_path, dataset='/Image'): """ PLIM is a package used in the 3D-PLI group to read and write multiple attributes from/to a HDF5 file. The basic functionality is added in attributemanager.py. Calling this method will write many attributes to the HDF5 file at the given dataset. This includes: A unique ID, the creator, software parameters, creation time, software_revision, image_modality and all attributes from the original stack, if it was a HDF5 Args: stack_path: Path of the stack that was used to calculate the content which will be written to the HDF5 file. dataset: Dataset where the attributes shall be written to. Returns: None """ if self.path is None or self.file is None: return if dataset not in self.file: self.file.create_dataset(dataset) output_handler = AttributeHandler(self.file[dataset]) if stack_path[:-3] == ".h5": original_file = h5py.File(stack_path, 'r') original_dataset = original_file[dataset] original_handler = AttributeHandler(original_dataset) original_handler.copy_all_attributes_to(output_handler) original_file.close() output_handler.add_creator() output_handler.set_attribute('software', sys.argv[0]) output_handler.set_attribute('software_revision', SLIX.__version__) output_handler.set_attribute('creation_time', datetime.datetime.now() .strftime('%Y-%m-%d %H:%M:%S')) output_handler.set_attribute('software_parameters', ' '.join(sys.argv[1:])) output_handler.set_attribute('image_modality', "Placeholder") output_handler.add_id() self.file.flush() def write_attribute(self, dataset, attr_name, value): """ Write a single attribute to a dataset. Args: dataset: Path to the dataset within the HDF5 attr_name: Name of the attribute which shall be written. value: Value of the attribute that shall be written. Returns: None """ if self.file is None: return if dataset not in self.file: self.file.create_dataset(dataset) output_handler = AttributeHandler(self.file[dataset]) output_handler.set_attribute(attr_name, value) self.file.flush() def write_dataset(self, dataset, content): """ Write a dataset to the currently opened HDF5 file, if any is open. If no HDF5 file is open, this method will return without writing. Args: dataset: Path to the dataset within the HDF5 file. content: Content which shall be written. Returns: None """ if self.file is None: return if dataset not in self.file: # Change compression algorithm for large files as it can take # very long for the compression to finish if len(content.shape) == 3: self.file.create_dataset(dataset, content.shape, dtype=content.dtype, data=content, compression='lzf', shuffle=True) else: self.file.create_dataset(dataset, content.shape, dtype=content.dtype, data=content, compression='gzip', compression_opts=9, shuffle=True) else: self.file[dataset] = content self.file.flush() def close(self): """ Close the currently opened file. Returns: None """ if self.file is None: return self.file.flush() self.file.close() self.path = None self.file = None def open(self, path): """ Open a new HDF5 file with the given path. If another file was opened, it will be closed first. Args: path: Path to the HDF5 file. Returns: None """ if self.path != path: self.close() self.path = path self.file = h5py.File(path, mode='w') def read_folder(filepath): """ Reads multiple image files from a folder and returns the resulting stack. To find the images in the right order, a regex is used which will search for files with the following pattern: [prefix]_p[Nr][suffix]. The start number doesn't need to be 0. The files are sorted with a natural sort, meaning that files like 0002, 1, 004, 3 will be sorted as 1, 0002, 3, 004. The follwing regex is used to find the measurements: ".*_+p[0-9]+_?.*\.(tif{1,2}|jpe*g|nii|h5|png)" Supported file formats for the image file equal the supported formats of SLIX.imread. Args: filepath: Path to folder Returns: numpy.array: Image with shape [x, y, z] where [x, y] is the size of a single image and z specifies the number of measurements """ files_in_folder = glob.glob(filepath + '/*') matching_files = [] for file in files_in_folder: if re.match(_fileregex, file) is not None: matching_files.append(file) matching_files.sort(key=__natural_sort_filenames_key) image = None # Check if files contain the needed regex for our measurements for file in matching_files: measurement_image = imread(file) if image is None: image = measurement_image elif len(image.shape) == 2: image = numpy.stack((image, measurement_image), axis=-1) else: image = numpy.concatenate((image, measurement_image [:, :, numpy.newaxis]), axis=-1) return image def __natural_sort_filenames_key(string, regex=re.compile('([0-9]+)')): return [int(text) if text.isdigit() else text.lower() for text in regex.split(string)] def imread(filepath, dataset="/Image"): """ Reads image file and returns it. Supported file formats: HDF5, NIfTI, Tiff. Args: filepath: Path to image dataset: When reading a HDF5 file, a dataset is required. Default: '/Image' Returns: numpy.array: Image with shape [x, y, z] where [x, y] is the size of a single image and z specifies the number of measurements """ if os.path.isdir(filepath): data = read_folder(filepath) # Load NIfTI dataset elif filepath.endswith('.nii') or filepath.endswith('.nii.gz'): data = nibabel.load(filepath).get_fdata() data = numpy.squeeze(numpy.swapaxes(data, 0, 1)) elif filepath.endswith('.tiff') or filepath.endswith('.tif'): data = tifffile.imread(filepath) if len(data.shape) == 3: data = numpy.squeeze(numpy.moveaxis(data, 0, -1)) elif filepath.endswith('.h5'): reader = H5FileReader() reader.open(filepath) data = reader.read(dataset) if len(data.shape) == 3: data = numpy.squeeze(numpy.moveaxis(data, 0, -1)) reader.close() return data else: data = numpy.array(Image.open(filepath)) return data def imwrite(filepath, data, dataset='/Image', original_stack_path=""): """ Write generated image to given filepath. Supported file formats: HDF5, NIfTI, Tiff. Other file formats are only indirectly supported and might result in errors. Args: filepath: Path to image data: Data which will be written to the disk dataset: When writing a HDF5 file, a dataset is required. Default: '/Image' original_stack_path: Path to the original image stack used to create this content. Only required when a HDF5 file is written. Returns: None """ save_data = data.copy() if save_data.dtype == bool: save_data = save_data.astype(numpy.uint8) elif save_data.dtype == numpy.float64: save_data = save_data.astype(numpy.float32) elif save_data.dtype == numpy.int64: save_data = save_data.astype(numpy.int32) elif save_data.dtype == numpy.uint64: save_data = save_data.astype(numpy.uint32) if filepath.endswith('.nii') or filepath.endswith('.nii.gz'): save_data = numpy.swapaxes(save_data, 0, 1) nibabel.save(nibabel.Nifti1Image(save_data, numpy.eye(4)), filepath) elif filepath.endswith('.tiff') or filepath.endswith('.tif'): if len(save_data.shape) == 3: save_data = numpy.moveaxis(save_data, -1, 0) tifffile_version_date = datetime.datetime.strptime( tifffile.__version__, '%Y.%m.%d') tifffile_comparison_date = datetime.datetime.strptime( '2020.10.02', '%Y.%m.%d') if tifffile_version_date > tifffile_comparison_date: tifffile.imwrite(filepath, save_data, compression=8) else: tifffile.imwrite(filepath, save_data, compress=9) elif filepath.endswith('.h5'): if len(save_data.shape) == 3: save_data = numpy.moveaxis(save_data, -1, 0) writer = H5FileWriter() writer.open(filepath) writer.write_dataset(dataset, save_data) writer.add_plim_attributes(original_stack_path, dataset) writer.add_symlink(dataset, '/pyramid/00') writer.close() else: Image.fromarray(save_data).save(filepath) def imwrite_rgb(filepath, data, dataset='/Image', original_stack_path=""): """ Write generated RGB image to given filepath. Supported file formats: HDF5, Tiff. Other file formats are only indirectly supported and might result in errors. Args: filepath: Path to image data: Data which will be written to the disk dataset: When reading a HDF5 file, a dataset is required. Default: '/Image' original_stack_path: Path to the original image stack used to create this content. Only required when a HDF5 file is written. Returns: None """ save_data = data.copy() axis = numpy.argwhere(numpy.array(save_data.shape) == 3).flatten() if len(axis) == 0: print('Cannot create RGB image as no dimension has a depth of 3.') return if filepath.endswith('.tiff') or filepath.endswith('.tif'): save_data = numpy.moveaxis(save_data, axis[0], 0) tifffile.imwrite(filepath, save_data, photometric='rgb', compression=8) elif filepath.endswith('.h5'): writer = H5FileWriter() writer.open(filepath) writer.write_dataset(dataset, save_data) writer.add_plim_attributes(original_stack_path, dataset) writer.add_symlink(dataset, '/pyramid/00') writer.close() else: print("File type is not supported. " "Supported file types are .h5, .tif(f)") ``` #### File: SLIX/SLIX/_preparation.py ```python import numba import numpy _multiprocessing_worker_fourier_var_dict = {} def _init_worker_fourier_smoothing(X, X_shape): _multiprocessing_worker_fourier_var_dict['X'] = X _multiprocessing_worker_fourier_var_dict['X_shape'] = X_shape def _worker_function_fourier_smoothing(i, threshold, window): x = i % _multiprocessing_worker_fourier_var_dict['X_shape'][0] y = i // _multiprocessing_worker_fourier_var_dict['X_shape'][0] image = numpy.frombuffer(_multiprocessing_worker_fourier_var_dict['X'])\ .reshape(_multiprocessing_worker_fourier_var_dict['X_shape']) image[x, y, :] = _fourier_smoothing(image[x, y, :], threshold, window) def _fourier_smoothing(image, threshold, window): fft = numpy.fft.fft(image, axis=-1) frequencies = numpy.fft.fftfreq(fft.shape[-1]) frequencies = frequencies / frequencies.max() multiplier = 1 - (0.5 + 0.5 * numpy.tanh( (numpy.abs(frequencies) - threshold) / window)) fft = numpy.multiply(fft, multiplier[numpy.newaxis, numpy.newaxis, ...]) return numpy.real(numpy.fft.ifft(fft)).astype(image.dtype) @numba.jit(nopython=True) def _thin_out_plain(image, factor): return image[::factor, ::factor, :] @numba.jit(nopython=True, parallel=True) def _thin_out_average(image, factor): nx = int(numpy.ceil(image.shape[0] / factor)) ny = int(numpy.ceil(image.shape[1] / factor)) result_image = numpy.empty((nx, ny, image.shape[2]), dtype=numpy.float64) for i in numba.prange(0, nx): for j in numba.prange(0, ny): for k in numba.prange(0, image.shape[2]): roi = image[i * factor:(i+1) * factor, j * factor:(j+1) * factor, k] result_image[i, j, k] = numpy.mean(roi) return result_image @numba.jit(nopython=True, parallel=True) def _thin_out_median(image, factor): nx = int(numpy.ceil(image.shape[0] / factor)) ny = int(numpy.ceil(image.shape[1] / factor)) result_image = numpy.empty((nx, ny, image.shape[2]), dtype=numpy.float64) for i in numba.prange(0, nx): for j in numba.prange(0, ny): for k in numba.prange(0, image.shape[2]): roi = image[i * factor:(i+1) * factor, j * factor:(j+1) * factor, k] result_image[i, j, k] = numpy.median(roi) return result_image ``` #### File: SLIX/SLIX/toolbox.py ```python try: try: import cupy from numba import cuda cupy.empty((0), dtype=float) from SLIX.GPU import toolbox as gpu_toolbox gpu_available = True except cupy.cuda.runtime.CUDARuntimeError: print('[WARNING] CuPy is installed but an error was thrown by the ' 'runtime. SLIX will fall back to the CPU variant.') gpu_available = False except (cuda.cudadrv.driver.CudaAPIError, cuda.cudadrv.driver.LinkerError): print("[WARNING] Numba CUDA couldn't be initialized. " "Please check if there are problems with your CUDA / Numba " "version. SLIX will fall back to the CPU variant.") gpu_available = False except (ModuleNotFoundError, NameError): gpu_available = False print('[WARNING] CuPy is not installed. The toolbox will use the CPU ' 'variant instead. If you want to use the GPU variant, please run ' '`pip install cupy`.') from SLIX.CPU import toolbox as cpu_toolbox import numpy __all__ = ['background_mask', 'centroid_correction', 'direction', 'unit_vectors', 'num_peaks', 'mean_peak_prominence', 'peaks', 'peak_prominence', 'peak_width', 'mean_peak_distance', 'peak_distance', 'mean_peak_width', 'significant_peaks'] def background_mask(image, use_gpu=gpu_available, return_numpy=True): """ Creates a background mask by setting all image pixels with low scattering signals to zero. As all background pixels are near zero for all images in the SLI image stack, this method should remove most of the background allowing for better approximations using the available features. It is advised to use this function. Args: image: Complete SLI measurement image stack as a 2D/3D NumPy array threshold: Threshhold for mask creation (default: 10) use_gpu: If available use the GPU for calculation return_numpy: Necessary if using `use_gpu`. Specifies if a CuPy or NumPy array will be returned. Returns: numpy.array: 1D/2D-image which masks the background as True and foreground as False """ if use_gpu: return gpu_toolbox.background_mask(image, return_numpy) else: return cpu_toolbox.background_mask(image) def peaks(image, use_gpu=gpu_available, return_numpy=True): """ Detect all peaks from a full SLI measurement. Peaks will not be filtered in any way. To detect only significant peaks, filter the peaks by using the prominence as a threshold. Args: image: Complete SLI measurement image stack as a 2D/3D NumPy array use_gpu: If available use the GPU for calculation return_numpy: Necessary if using `use_gpu`. Specifies if a CuPy or NumPy array will be returned. Returns: 2D/3D boolean image containing masking the peaks with `True` """ if use_gpu: return gpu_toolbox.peaks(image, return_numpy) else: return cpu_toolbox.peaks(image) def significant_peaks(image, low_prominence=cpu_toolbox.TARGET_PROMINENCE, high_prominence=numpy.inf, use_gpu=gpu_available, return_numpy=True): """ Detect all peaks from a full SLI measurement and filter them by passing thresholds. Args: image: Complete SLI measurement image stack as a 2D/3D NumPy array low_prominence: Minimum prominence needed by peak to count as a peak. Peaks below this threshold will not be considered as a peak. high_prominence: Maximum prominence needed by peak to count as a peak. Peaks below this threshold will not be considered as a peak. use_gpu: If available use the GPU for calculation return_numpy: Necessary if using `use_gpu`. Specifies if a CuPy or NumPy array will be returned. Returns: 2D/3D boolean image containing masking the peaks with `True` """ if use_gpu: peaks = gpu_toolbox.peaks(image, return_numpy=return_numpy) prominences = gpu_toolbox.peak_prominence(image, peaks, return_numpy=return_numpy) peaks[prominences < low_prominence] = False peaks[prominences > high_prominence] = False else: peaks = cpu_toolbox.peaks(image) prominences = cpu_toolbox.peak_prominence(image, peaks) peaks[prominences < low_prominence] = False peaks[prominences > high_prominence] = False return peaks def num_peaks(image, low_prominence=cpu_toolbox.TARGET_PROMINENCE, high_prominence=numpy.inf, use_gpu=gpu_available, return_numpy=True): """ Calculate the number of peaks from each line profile in an SLI image series by detecting all peaks and applying thresholds to remove unwanted peaks. Args: image: Full SLI measurement (series of images) which is prepared for the pipeline using the SLIX toolbox methods. low_prominence: Lower prominence bound for detecting a peak. high_prominence: Higher prominence bound for detecting a peak. use_gpu: If available use the GPU for calculation return_numpy: Necessary if using `use_gpu`. Specifies if a CuPy or NumPy array will be returned. Returns: Array where each entry corresponds to the number of detected peaks within the first dimension of the SLI image series. """ if use_gpu: peaks = significant_peaks(image, low_prominence, high_prominence, return_numpy=False) return gpu_toolbox.num_peaks(peak_image=peaks, return_numpy=return_numpy) else: peaks = significant_peaks(image, low_prominence, high_prominence, use_gpu=False) return cpu_toolbox.num_peaks(peak_image=peaks) def direction(peak_image, centroids, correction_angle=0, number_of_directions=3, use_gpu=gpu_available, return_numpy=True): """ Calculate up to `number_of_directions` direction angles based on the given peak positions. If more than `number_of_directions*2` peaks are present, no direction angle will be calculated to avoid errors. This will result in a direction angle of BACKGROUND_COLOR. The peak positions are determined by the position of the corresponding peak pairs (i.e. 6 peaks: 1+4, 2+5, 3+6). If two peaks are too far away or too near (outside of 180°±35°), the direction angle will be considered as invalid, resulting in a direction angle of BACKGROUND_COLOR. Args: correction_angle: Correct the resulting direction angle by the value. This is useful when the stack or camera was rotated. peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack centroids: Centroids resulting from `centroid_correction` for more accurate results number_of_directions: Number of directions which shall be generated. use_gpu: If available use the GPU for calculation return_numpy: Necessary if using `use_gpu`. Specifies if a CuPy or NumPy array will be returned. Returns: NumPy array with the shape (x, y, `number_of_directions`) containing up to `number_of_directions` direction angles. x equals the number of pixels of the SLI image series. If a direction angle is invalid or missing, the array entry will be BACKGROUND_COLOR instead. """ if use_gpu: return gpu_toolbox.direction(peak_image, centroids, correction_angle, number_of_directions, return_numpy) else: return cpu_toolbox.direction(peak_image, centroids, correction_angle, number_of_directions) def peak_distance(peak_image, centroids, use_gpu=gpu_available, return_numpy=True): """ Calculate the mean peak distance in degrees between two corresponding peaks for each line profile in an SLI image series. Args: peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack centroids: Use centroid calculation to better determine the peak position regardless of the number of measurements / illumination angles used. use_gpu: If available use the GPU for calculation return_numpy: Necessary if using `use_gpu`. Specifies if a CuPy or NumPy array will be returned. Returns: NumPy array of floating point values containing the peak distance of the line profiles in degrees in their respective peak position. The first peak of each peak pair will show the distance between peak_1 and peak_2 while the second peak will show 360 - (peak_2 - peak_1). """ if use_gpu: return gpu_toolbox.peak_distance(peak_image, centroids, return_numpy) else: return cpu_toolbox.peak_distance(peak_image, centroids) def mean_peak_distance(peak_image, centroids, use_gpu=gpu_available, return_numpy=True): """ Calculate the mean peak distance in degrees between two corresponding peaks for each line profile in an SLI image series. Args: peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack centroids: Use centroid calculation to better determine the peak position regardless of the number of measurements / illumination angles used. use_gpu: If available use the GPU for calculation return_numpy: Necessary if using `use_gpu`. Specifies if a CuPy or NumPy array will be returned. Returns: NumPy array of floating point values containing the mean peak distance of the line profiles in degrees. """ if use_gpu: return gpu_toolbox.mean_peak_distance(peak_image, centroids, return_numpy) else: return cpu_toolbox.mean_peak_distance(peak_image, centroids) def peak_prominence(image, peak_image=None, kind_of_normalization=1, use_gpu=gpu_available, return_numpy=True): """ Calculate the peak prominence of all given peak positions within a line profile. The line profile will be normalized by dividing the line profile through its mean value. Therefore, values above 1 are possible. Args: image: Original line profile used to detect all peaks. This array will be further analyzed to better determine the peak positions. peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack kind_of_normalization: Normalize given line profile by using a normalization technique based on the kind_of_normalization parameter. 0 : Scale line profile to be between 0 and 1 1 : Divide line profile through its mean value use_gpu: If available use the GPU for calculation return_numpy: Necessary if using `use_gpu`. Specifies if a CuPy or NumPy array will be returned. Returns: Floating point value containing the mean peak prominence of the line profile in degrees. """ if use_gpu: return gpu_toolbox.peak_prominence(image, peak_image, kind_of_normalization, return_numpy) else: return cpu_toolbox.peak_prominence(image, peak_image, kind_of_normalization) def mean_peak_prominence(image, peak_image=None, kind_of_normalization=1, use_gpu=gpu_available, return_numpy=True): """ Calculate the mean peak prominence of all given peak positions within a line profile. The line profile will be normalized by dividing the line profile through its mean value. Therefore, values above 1 are possible. Args: image: Original line profile used to detect all peaks. This array will be further analyzed to better determine the peak positions. peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack kind_of_normalization: Normalize given line profile by using a normalization technique based on the kind_of_normalization parameter. 0 : Scale line profile to be between 0 and 1 1 : Divide line profile through its mean value use_gpu: If available use the GPU for calculation return_numpy: Necessary if using `use_gpu`. Specifies if a CuPy or NumPy array will be returned. Returns: Floating point value containing the mean peak prominence of the line profile in degrees. """ if use_gpu: return gpu_toolbox.mean_peak_prominence(image, peak_image, kind_of_normalization, return_numpy) else: return cpu_toolbox.mean_peak_prominence(image, peak_image, kind_of_normalization) def peak_width(image, peak_image=None, target_height=0.5, use_gpu=gpu_available, return_numpy=True): """ Calculate the peak width of all given peak positions within a line profile. Args: image: Original line profile used to detect all peaks. This array will be further analyzed to better determine the peak positions. peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack target_height: Relative peak height in relation to the prominence of the given peak. use_gpu: If available use the GPU for calculation return_numpy: Necessary if using `use_gpu`. Specifies if a CuPy or NumPy array will be returned. Returns: NumPy array where each entry corresponds to the peak width of the line profile. The values are in degree. """ if use_gpu: return gpu_toolbox.peak_width(image, peak_image, target_height, return_numpy=return_numpy) else: return cpu_toolbox.peak_width(image, peak_image, target_height) def mean_peak_width(image, peak_image=None, target_height=0.5, use_gpu=gpu_available, return_numpy=True): """ Calculate the mean peak width of all given peak positions within a line profile. Args: image: Original line profile used to detect all peaks. This array will be further analyzed to better determine the peak positions. peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack target_height: Relative peak height in relation to the prominence of the given peak. use_gpu: If available use the GPU for calculation return_numpy: Necessary if using `use_gpu`. Specifies if a CuPy or NumPy array will be returned. Returns: NumPy array where each entry corresponds to the mean peak width of the line profile. The values are in degree. """ if use_gpu: return gpu_toolbox.mean_peak_width(image, peak_image, target_height, return_numpy=return_numpy) else: return cpu_toolbox.mean_peak_width(image, peak_image, target_height) def centroid_correction(image, peak_image, low_prominence=cpu_toolbox.TARGET_PROMINENCE, high_prominence=numpy.inf, use_gpu=gpu_available, return_numpy=True): """ Correct peak positions from a line profile by looking at only the peak with a given threshold using a centroid calculation. If a minimum is found in the considered interval, this minimum will be used as the limit instead. The range for the peak correction is limited by MAX_DISTANCE_FOR_CENTROID_ESTIMATION. Args: image: Original line profile used to detect all peaks. This array will be further analyzed to better determine the peak positions. peak_image: Boolean NumPy array specifying the peak positions in the full SLI stack low_prominence: Lower prominence bound for detecting a peak. high_prominence: Higher prominence bound for detecting a peak. use_gpu: If available use the GPU for calculation return_numpy: Necessary if using `use_gpu`. Specifies if a CuPy or NumPy array will be returned. Returns: _numpy array with the positions of all detected peak positions corrected with the centroid calculation. """ if use_gpu: return gpu_toolbox.centroid_correction(image, peak_image, low_prominence, high_prominence, return_numpy) else: return cpu_toolbox.centroid_correction(image, peak_image, low_prominence, high_prominence) def unit_vectors(direction, use_gpu=gpu_available, return_numpy=True): """ Calculate the unit vectors (UnitX, UnitY) from a given direction angle. Args: direction: 3D NumPy array - direction angles in degrees use_gpu: If available use the GPU for calculation return_numpy: Necessary if using `use_gpu`. Specifies if a CuPy or NumPy array will be returned. Returns: UnitX, UnitY: 3D NumPy array, 3D NumPy array x- and y-vector component in arrays """ if use_gpu: return gpu_toolbox.unit_vectors(direction, return_numpy=return_numpy) else: return cpu_toolbox.unit_vectors(direction) ``` #### File: SLIX/SLIX/_visualization.py ```python import numba import numpy from matplotlib.colors import hsv_to_rgb @numba.njit() def _count_nonzero(image): iterator_image = image.flatten() number_of_pixels = 0 for i in range(len(iterator_image)): if iterator_image[i] != 0: number_of_pixels += 1 return number_of_pixels @numba.jit(parallel=True, nopython=True) def _downsample_2d(image, kernel_size, background_threshold, background_value): nx = int(numpy.ceil(image.shape[0] / kernel_size)) ny = int(numpy.ceil(image.shape[1] / kernel_size)) output_image = numpy.empty((nx, ny)) output_image[:, :] = background_value for i in numba.prange(0, nx): for j in numba.prange(0, ny): roi = image[kernel_size * i:kernel_size * i + kernel_size, kernel_size * j:kernel_size * j + kernel_size] roi = roi.flatten() number_of_valid_vectors = _count_nonzero(roi != background_value) if number_of_valid_vectors >= background_threshold * roi.size: valid_vectors = 0 roi.sort() for idx in range(roi.size): if roi[idx] != background_value: valid_vectors += 1 if valid_vectors == number_of_valid_vectors // 2: if number_of_valid_vectors % 2 == 0: output_image[i, j] = roi[idx] else: output_image[i, j] = (roi[idx+1] + roi[idx]) / 2 return output_image def _downsample(image, kernel_size, background_threshold=0, background_value=0): nx = int(numpy.ceil(image.shape[0] / kernel_size)) ny = int(numpy.ceil(image.shape[1] / kernel_size)) if len(image.shape) < 3: z = 1 else: z = image.shape[2] result_image = numpy.empty((nx, ny, z)) for sub_image in range(z): result_image[:, :, sub_image] = \ _downsample_2d(image[:, :, sub_image], kernel_size, background_threshold, background_value) result_image = numpy.squeeze(result_image) return result_image def _visualize_one_direction(direction, rgb_stack): output_image = rgb_stack output_image[direction == -1] = 0 return output_image.astype('float32') def _visualize_multiple_direction(direction, rgb_stack): output_image = numpy.zeros((direction.shape[0] * 2, direction.shape[1] * 2, 3)) # count valid directions valid_directions = numpy.count_nonzero(direction > -1, axis=-1) r = rgb_stack[..., 0] g = rgb_stack[..., 1] b = rgb_stack[..., 2] # Now we need to place them in the right pixel on our output image for x in range(direction.shape[0]): for y in range(direction.shape[1]): if valid_directions[x, y] == 0: output_image[x * 2:x * 2 + 2, y * 2:y * 2 + 2] = 0 elif valid_directions[x, y] == 1: output_image[x * 2:x * 2 + 2, y * 2:y * 2 + 2, 0] = r[x, y, 0] output_image[x * 2:x * 2 + 2, y * 2:y * 2 + 2, 1] = g[x, y, 0] output_image[x * 2:x * 2 + 2, y * 2:y * 2 + 2, 2] = b[x, y, 0] else: output_image[x * 2, y * 2, 0] = r[x, y, 0] output_image[x * 2, y * 2, 1] = g[x, y, 0] output_image[x * 2, y * 2, 2] = b[x, y, 0] output_image[x * 2 + 1, y * 2, 0] = r[x, y, 1] output_image[x * 2 + 1, y * 2, 1] = g[x, y, 1] output_image[x * 2 + 1, y * 2, 2] = b[x, y, 1] if valid_directions[x, y] == 2: output_image[x * 2, y * 2 + 1, 0] = r[x, y, 1] output_image[x * 2, y * 2 + 1, 1] = g[x, y, 1] output_image[x * 2, y * 2 + 1, 2] = b[x, y, 1] output_image[x * 2 + 1, y * 2 + 1, 0] = r[x, y, 0] output_image[x * 2 + 1, y * 2 + 1, 1] = g[x, y, 0] output_image[x * 2 + 1, y * 2 + 1, 2] = b[x, y, 0] else: output_image[x * 2, y * 2 + 1, 0] = r[x, y, 2] output_image[x * 2, y * 2 + 1, 1] = g[x, y, 2] output_image[x * 2, y * 2 + 1, 2] = b[x, y, 2] if valid_directions[x, y] == 3: output_image[x * 2 + 1, y * 2 + 1, 0] = 0 output_image[x * 2 + 1, y * 2 + 1, 1] = 0 output_image[x * 2 + 1, y * 2 + 1, 2] = 0 if valid_directions[x, y] == 4: output_image[x * 2 + 1, y * 2 + 1, 0] = r[x, y, 3] output_image[x * 2 + 1, y * 2 + 1, 1] = g[x, y, 3] output_image[x * 2 + 1, y * 2 + 1, 2] = b[x, y, 3] return output_image.astype('float32') def _plot_axes_unit_vectors(ax, mesh_x, mesh_y, mesh_u, mesh_v, scale, alpha, vector_width): # Normalize the arrows: mesh_u_normed = mesh_u / numpy.sqrt(numpy.maximum(1e-15, mesh_u ** 2 + mesh_v ** 2)) mesh_v_normed = mesh_v / numpy.sqrt(numpy.maximum(1e-15, mesh_u ** 2 + mesh_v ** 2)) # Convert to RGB colors normed_angle = numpy.abs(numpy.arctan2(mesh_v_normed, -mesh_u_normed)) hsv_stack = numpy.stack((normed_angle / numpy.pi, numpy.ones(normed_angle.shape), numpy.ones(normed_angle.shape))) hsv_stack = numpy.moveaxis(hsv_stack, 0, -1) color_rgb = hsv_to_rgb(hsv_stack) mesh_u_normed[numpy.isclose(mesh_u, 0) & numpy.isclose(mesh_v, 0)] = numpy.nan mesh_v_normed[numpy.isclose(mesh_u, 0) & numpy.isclose(mesh_v, 0)] = numpy.nan # 1/scale to increase vector length for scale > 1 ax.quiver(mesh_x, mesh_y, mesh_u_normed, mesh_v_normed, color=color_rgb, angles='xy', scale_units='xy', scale=1.0 / scale, headwidth=0, headlength=0, headaxislength=0, minlength=0, pivot='mid', alpha=alpha, width=vector_width, units='xy', edgecolors=color_rgb) ``` #### File: SLIX/SLIX/visualization.py ```python import numpy from matplotlib.colors import hsv_to_rgb from matplotlib import pyplot as plt from PIL import Image import copy import tqdm from SLIX._visualization import _downsample, _plot_axes_unit_vectors, \ _visualize_multiple_direction, \ _visualize_one_direction __all__ = ['parameter_map', 'unit_vectors', 'unit_vector_distribution', 'direction'] def parameter_map(parameter_map, fig=None, ax=None, alpha=1, cmap='viridis', vmin=0, vmax=None, colorbar=True): """ This method will create a Matplotlib plot based on imshow to display the given parameter map in different colors. The parameter map is plotted to the current axis and figure. If neither is given, the method will create a new subfigure. To show the results, please use pyplot.show(). Args: parameter_map: 2D parameter map calculated with SLIX.toolbox. fig: Matplotlib figure. If None, a new subfigure will be created for fig and ax. ax: Matplotlib axis. If None, a new subfigure will be created for fig and ax. alpha: Apply alpha to Matplotlib plots to overlay them with some other image like the averaged transmitted light intensity. cmap: Matplotlib color map which is used for displaying the image. vmin: Minimum value in the resulting plot. If any value is below vmin, it will be displayed in black. vmax: Maximum value in the resulting plot. If any value is above vmax, it will be displayed in white. colorbar: Boolean value controlling if a color bar will be displayed in the current subplot. Returns: The current Matplotlib figure and axis. The image can be shown with pyplot.show(). """ if fig is None or ax is None: fig, ax = plt.subplots(1, 1) cmap_mod = copy.copy(plt.get_cmap(cmap)) im = ax.imshow(parameter_map, interpolation='nearest', cmap=cmap_mod, alpha=alpha) im.cmap.set_under(color='k') # Color for values less than vmin im.cmap.set_over(color='w') # Color for values more than vmax im.set_clim(vmin, vmax) ax.axis('off') if colorbar: fig.colorbar(im, ax=ax, fraction=0.046, pad=0.04) return fig, ax def unit_vectors(UnitX, UnitY, ax=None, thinout=20, scale=-1, vector_width=1, alpha=0.8, background_threshold=0.5, background_value=0): """ This method will create a Matplotlib plot based on quiver to represent the given unit vectors as colored lines (vector map). Parameters like thinout can be used to reduce the computing load. If thinout = 1, the resulting vectors might not be visible without zooming in significantly. Here, the vectors will only be plotted to the current axis. To show the results, please use pyplot.show(). Args: UnitX: Unit vector components along the x-axis (3D NumPy array). UnitY: Unit vector components along the y-axis (3D NumPy array). thinout: Downscaling parameter N (defines how many vectors N x N are replaced by one vector). Unit vectors will be thinned out using downscaling and thinning in combination. This will increase the vector size in the resulting image but will also reduce the information density. Please use with caution. scale: Increase the vector length by the given scale. Vectors will be longer and might overlap if the scale is too high. ax: Matplotlib axis. If None, the current context axis will be used. vector_width: When choosing a high scale, the vectors might appear quite thin which results in hard to read images. This option allows to increase the vector thickness to improve visibility. alpha: Apply alpha to Matplotlib plots to overlay them with some other other image like the averaged transmitted light intensity. background_threshold: If the fraction of background pixels (number of pixels without vector within N x N pixels) is below this threshold, the downscaled pixel will not show a vector. background_value: Background value of the parameter map. This is generally 0 in both axes for unit vector maps but can differ if another threshold was set. background_value: Fraction of background pixels in the considered (N x N) area for which the image pixels are set to background_value. If the fraction of background pixels lies above this defined threshold, background pixels will not be considered for computing the median. Returns: The current Matplotlib axis. The image can be shown with pyplot.show(). """ if ax is None: ax = plt.gca() while len(UnitX.shape) < 3: UnitX = UnitX[..., numpy.newaxis] while len(UnitY.shape) < 3: UnitY = UnitY[..., numpy.newaxis] # The default scale is below zero to allow the user to define his own scale # A scale below zero isn't valid for visualization. If the user # defines no scale, we suspect that the user wants an image # where each vector has a scale of one. Therefore we set the scale to # the same as our thinout when we draw the image. if scale < 0: scale = thinout if thinout > 1: downscaled_unit_x = _downsample(UnitX, thinout, background_threshold, background_value) downscaled_unit_y = _downsample(UnitY, thinout, background_threshold, background_value) while len(downscaled_unit_x.shape) < 3: downscaled_unit_x = downscaled_unit_x[numpy.newaxis, ...] while len(downscaled_unit_y.shape) < 3: downscaled_unit_y = downscaled_unit_y[numpy.newaxis, ...] # Rescale images to original dimensions for i in range(UnitX.shape[2]): UnitX[:, :, i] = numpy.array( Image.fromarray(downscaled_unit_x[:, :, i]) .resize(UnitX.shape[:2][::-1], Image.NEAREST) ) UnitY[:, :, i] = numpy.array( Image.fromarray(downscaled_unit_y[:, :, i]) .resize(UnitY.shape[:2][::-1], Image.NEAREST) ) del downscaled_unit_y del downscaled_unit_x for i in range(UnitX.shape[2]): mesh_x, mesh_y = numpy.meshgrid(numpy.arange(thinout // 2, UnitX.shape[1], thinout), numpy.arange(thinout // 2, UnitX.shape[0], thinout)) mesh_u = UnitX[thinout // 2::thinout, thinout // 2::thinout, i] mesh_v = UnitY[thinout // 2::thinout, thinout // 2::thinout, i] _plot_axes_unit_vectors(ax, mesh_x.flatten(), mesh_y.flatten(), mesh_u.flatten(), mesh_v.flatten(), scale, alpha, vector_width) return ax def unit_vector_distribution(UnitX, UnitY, ax=None, thinout=20, scale=-1, vector_width=1, alpha=0.01): """ This method will create a Matplotlib plot based on quiver to represent the given unit vectors as colored lines (vector map). Instead of showing a single vector like in unit_vector, here each vector will be shown in the resulting image. The thinout parameter will determine how many vectors will be overlapping. It is recommended to use a very small alpha value to see which directions in the resulting plot are dominant. Here, the vectors will only be plotted to the current axis. To show the results, please use pyplot.show(). The result might need some time to show depending on the input image size. Args: UnitX: Unit vector components along the x-axis (3D NumPy array). UnitY: Unit vector components along the y-axis (3D NumPy array). thinout: Downscaling parameter N (defines how many vectors N x N are replaced by one vector). Unit vectors will be thinned out using downscaling and thinning in combination. This will increase the vector size in the resulting image but will also reduce the information density. Please use with caution. scale: Increase the vector length by the given scale. Vectors will be longer and might overlap if the scale is too high. ax: Matplotlib axis. If None, the current context axis will be used. vector_width: When choosing a high scale, the vectors might appear quite thin which results in hard to read images. This option allows to increase the vector thickness to improve visibility. alpha: Apply alpha to Matplotlib plots to overlay them with some other other image like the averaged transmitted light intensity. Returns: The current Matplotlib axis. The image can be shown with pyplot.show(). """ if ax is None: ax = plt.gca() while len(UnitX.shape) < 3: UnitX = UnitX[..., numpy.newaxis] while len(UnitY.shape) < 3: UnitY = UnitY[..., numpy.newaxis] # The default scale is below zero to allow the user to define his own scale # A scale below zero isn't valid for visualization. If the user # defines no scale, we suspect that the user wants an image # where each vector has a scale of one. Therefore we set the scale to # the same as our thinout when we draw the image. if scale < 0: scale = thinout mesh_x = numpy.empty(UnitX.size) mesh_y = numpy.empty(UnitX.size) mesh_u = numpy.empty(UnitX.size) mesh_v = numpy.empty(UnitX.size) idx = 0 progress_bar = tqdm.tqdm(total=thinout*thinout, desc='Creating unit vectors.') for offset_x in range(thinout): for offset_y in range(thinout): progress_bar.update(1) for i in range(UnitX.shape[2]): mesh_x_it, mesh_y_it = numpy.meshgrid( numpy.arange(0, UnitX.shape[1] - offset_x, thinout), numpy.arange(0, UnitX.shape[0] - offset_y, thinout) ) mesh_x_it = mesh_x_it.flatten() mesh_y_it = mesh_y_it.flatten() mesh_u_it = UnitX[offset_y::thinout, offset_x::thinout, i]\ .flatten() mesh_v_it = UnitY[offset_y::thinout, offset_x::thinout, i]\ .flatten() mesh_x[idx:idx + len(mesh_x_it)] = mesh_x_it mesh_y[idx:idx + len(mesh_y_it)] = mesh_y_it mesh_u[idx:idx + len(mesh_u_it)] = mesh_u_it mesh_v[idx:idx + len(mesh_v_it)] = mesh_v_it idx = idx + len(mesh_x_it) progress_bar.set_description('Finished. Plotting unit vectors.') _plot_axes_unit_vectors(ax, mesh_x, mesh_y, mesh_u, mesh_v, scale, alpha, vector_width) progress_bar.set_description('Done') progress_bar.close() return ax def direction(direction, saturation=None, value=None): """ Generate a 2D colorized direction image in the HSV color space based on the original direction. Value and saturation of the color will always be one. The hue is determined by the direction. If the direction parameter is only a 2D numpy array, the result will be a simple orientation map where each pixel contains the HSV value corresponding to the direction angle. When a 3D stack with max. three directions is used, the result will be different. The resulting image will have two times the width and height. Each 2x2 square will show the direction angle of up to three directions. Depending on the number of directions, the following pattern is used to show the different direction angles. 1 direction: 1 1 1 1 2 directions: 1 2 2 1 3 directions: 1 2 3 0 Args: direction: 2D or 3D Numpy array containing the direction of the image stack saturation: Weight image by using the saturation value. Use either a 2D image or a 3D image with the same shape as the direction. If no image is used, the saturation for all image pixels will be set to 1 value: Weight image by using the value. Use either a 2D image or a 3D image with the same shape as the direction. If no image is used, the value for all image pixels will be set to 1 Returns: numpy.ndarray: 2D image containing the resulting HSV orientation map """ direction = numpy.array(direction) direction_shape = direction.shape hue = direction # If no saturation is given, create an "empty" saturation image that will be used if saturation is None: saturation = numpy.ones(direction.shape) # Normalize saturation image saturation = saturation / saturation.max() # If we have a saturation image, check if the shape matches (3D) and correct accordingly while len(saturation.shape) < len(direction.shape): saturation = saturation[..., numpy.newaxis] if not saturation.shape[-1] == direction_shape[-1]: saturation = numpy.repeat(saturation, direction_shape[-1], axis=-1) # If no value is given, create an "empty" value image that will be used if value is None: value = numpy.ones(direction.shape) # Normalize value image value = value / value.max() # If we have a value image, check if the shape matches (3D) and correct accordingly while len(value.shape) < len(direction.shape): value = value[..., numpy.newaxis] if not value.shape[-1] == direction_shape[-1]: value = numpy.repeat(value, direction_shape[-1], axis=-1) hsv_stack = numpy.stack((hue / 180.0, saturation, value)) hsv_stack = numpy.moveaxis(hsv_stack, 0, -1) rgb_stack = hsv_to_rgb(hsv_stack) if len(direction_shape) > 2: return _visualize_multiple_direction(direction, rgb_stack) else: return _visualize_one_direction(direction, rgb_stack) ``` #### File: SLIX/tests/test_preparation.py ```python from SLIX import preparation import numpy import pytest class TestPreparation: def test_smoothing(self): pass def test_thinout_plain(self): test_arr = numpy.array([1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] * 11) test_img = test_arr.reshape((11, 11, 1)) thinned = preparation.thin_out(test_img, factor=2, strategy='plain') assert numpy.all(thinned == 1) thinned = preparation.thin_out(test_img, factor=2, strategy='pLaIn') assert numpy.all(thinned == 1) def test_thinout_median(self): test_arr = numpy.array([1, 1, 0] * 4 * 12) test_img = test_arr.reshape((12, 12, 1)) thinned = preparation.thin_out(test_img, factor=3, strategy='median') assert numpy.all(thinned == 1) thinned = preparation.thin_out(test_img, factor=3, strategy='MeDiAn') assert numpy.all(thinned == 1) def test_thinout_average(self): test_arr = numpy.array([1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0] * 12) test_img = test_arr.reshape((12, 12, 1)) thinned = preparation.thin_out(test_img, factor=2, strategy='average') assert numpy.all(thinned == 0.5) thinned = preparation.thin_out(test_img, factor=2, strategy='AVERage') assert numpy.all(thinned == 0.5) def test_thinout_error(self): test_arr = numpy.array([1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] * 11) test_img = test_arr.reshape((11, 11, 1)) with pytest.raises(ValueError): preparation.thin_out(test_img, factor=2, strategy='error') ``` #### File: SLIX/tests/test_visualization.py ```python import numpy from SLIX import toolbox, io, visualization import matplotlib from matplotlib import pyplot as plt import pytest import shutil import os matplotlib.use('agg') class TestVisualization: def test_visualize_unit_vectors(self): example = io.imread('tests/files/demo.nii') peaks = toolbox.significant_peaks(example, use_gpu=False) centroid = toolbox.centroid_correction(example, peaks, use_gpu=False) direction = toolbox.direction(peaks, centroid, use_gpu=False) unit_x, unit_y = toolbox.unit_vectors(direction, use_gpu=False) visualization.unit_vectors(unit_x, unit_y, thinout=10) plt.savefig('tests/output/vis/unit_vectors.tiff', dpi=100, bbox_inches='tight') orig = io.imread('tests/files/vis/unit_vectors.tiff') to_compare = io.imread('tests/output/vis/unit_vectors.tiff') if numpy.all(numpy.isclose(orig - to_compare, 0)): assert True else: io.imwrite('tests/output/vis/unit_vectors-diff.tiff', orig - to_compare) assert False def test_visualize_unit_vector_distribution(self): example = io.imread('tests/files/demo.nii') peaks = toolbox.significant_peaks(example, use_gpu=False) centroid = toolbox.centroid_correction(example, peaks, use_gpu=False) direction = toolbox.direction(peaks, centroid, use_gpu=False) unit_x, unit_y = toolbox.unit_vectors(direction, use_gpu=False) visualization.unit_vector_distribution(unit_x, unit_y, thinout=15, vector_width=5, alpha=0.01) plt.savefig('tests/output/vis/unit_vector_distribution.tiff', dpi=100, bbox_inches='tight') orig = io.imread('tests/files/vis/unit_vector_distribution.tiff') to_compare = io.imread('tests/output/vis/unit_vector_distribution.tiff') if numpy.all(numpy.isclose(orig - to_compare, 0)): assert True else: io.imwrite('tests/output/vis/unit_vector_distribution-diff.tiff', orig - to_compare) assert False def test_visualize_parameter_map(self): example = io.imread('tests/files/demo.nii') prominence = toolbox.mean_peak_prominence(example, kind_of_normalization=1, use_gpu=False) visualization.parameter_map(prominence, colorbar=False) plt.savefig('tests/output/vis/parameter_map.tiff', dpi=100, bbox_inches='tight') orig = io.imread('tests/files/vis/parameter_map.tiff') to_compare = io.imread('tests/output/vis/parameter_map.tiff') assert numpy.all(numpy.isclose(orig - to_compare, 0)) def test_visualize_direction_one_dir(self): image = numpy.arange(0, 180) hsv_image = visualization.direction(image) assert numpy.all(hsv_image[0, :] == [1, 0, 0]) assert numpy.all(hsv_image[30, :] == [1, 1, 0]) assert numpy.all(hsv_image[60, :] == [0, 1, 0]) assert numpy.all(hsv_image[90, :] == [0, 1, 1]) assert numpy.all(hsv_image[120, :] == [0, 0, 1]) assert numpy.all(hsv_image[150, :] == [1, 0, 1]) def test_visualize_direction_multiple_dir(self): first_dir = numpy.arange(0, 180)[..., numpy.newaxis, numpy.newaxis] second_dir = (first_dir + 30) % 180 second_dir[0:45] = -1 third_dir = (first_dir + 60) % 180 third_dir[0:90] = -1 fourth_dir = (first_dir + 90) % 180 fourth_dir[0:135] = -1 stack_direction = numpy.concatenate((first_dir, second_dir, third_dir, fourth_dir), axis=-1) hsv_image = visualization.direction(stack_direction) print(hsv_image) # Check first direction assert numpy.all(hsv_image[0, 0, :] == [1, 0, 0]) assert numpy.all(hsv_image[1, 1, :] == [1, 0, 0]) assert numpy.all(hsv_image[0, 1, :] == [1, 0, 0]) assert numpy.all(hsv_image[1, 0, :] == [1, 0, 0]) assert numpy.all(hsv_image[60, 0, :] == [1, 1, 0]) assert numpy.all(hsv_image[61, 1, :] == [1, 1, 0]) assert numpy.all(hsv_image[60, 1, :] == [1, 1, 0]) assert numpy.all(hsv_image[61, 0, :] == [1, 1, 0]) # Probe check second direction assert numpy.all(hsv_image[120, 0, :] == [0, 1, 0]) assert numpy.all(hsv_image[121, 1, :] == [0, 1, 0]) assert numpy.all(hsv_image[120, 1, :] == [0, 1, 1]) assert numpy.all(hsv_image[121, 0, :] == [0, 1, 1]) # Probe check third direction assert numpy.all(hsv_image[240, 0, :] == [0, 0, 1]) assert numpy.all(hsv_image[240, 1, :] == [1, 0, 0]) assert numpy.all(hsv_image[241, 0, :] == [1, 0, 1]) assert numpy.all(hsv_image[241, 1, :] == [0, 0, 0]) # Probe check fourth direction assert numpy.all(hsv_image[300, 0, :] == [1, 0, 1]) assert numpy.all(hsv_image[300, 1, :] == [1, 1, 0]) assert numpy.all(hsv_image[301, 0, :] == [1, 0, 0]) assert numpy.all(hsv_image[301, 1, :] == [0, 1, 0]) @pytest.fixture(scope="session", autouse=True) def run_around_tests(request): if not os.path.isdir('tests/output/vis'): os.makedirs('tests/output/vis') # A test function will be run at this point yield def remove_test_dir(): if os.path.isdir('tests/output/vis'): # shutil.rmtree('tests/output/vis') pass request.addfinalizer(remove_test_dir) @pytest.fixture(scope="function", autouse=True) def run_around_single_test(request): plt.clf() plt.cla() plt.close() plt.axis('off') # A test function will be run at this point yield ```
{ "source": "3dpose/3D-Multi-Person-Pose", "score": 2 }
#### File: 3D-Multi-Person-Pose/lib/inteutil.py ```python import numpy as np import pickle import glob import random import os class InteDataset(): def __init__(self, bu_path, bu_dep_path, td_path, td_dep_path): self.vid_inst = [] pred_bu = [] for i in range(20): data = pickle.load(open(os.path.join(bu_path, '%d.pkl'%(i+1)), 'rb')) data = np.float32(data) for j in range(data.shape[1]): pred_bu.append(data[:,j]) self.vid_inst.append([i,j]) self.pred_bu = pred_bu pred_bu_dep = [] for i in sorted(glob.glob(os.path.join(bu_dep_path,'*.pkl'))): dep = pickle.load(open(i, 'rb')) pred_bu_dep.append(dep) self.pred_bu_dep = pred_bu_dep pred_td = [] for i in range(20): data = pickle.load(open(os.path.join(td_path,'%d.pkl'%(i+1)), 'rb')) data = np.float32(data) for j in range(data.shape[1]): pred_td.append(data[:,j]) self.pred_td = pred_td pred_td_dep = [] for i in sorted(glob.glob(os.path.join(td_dep_path,'*.pkl'))): data = pickle.load(open(i, 'rb')) pred_td_dep.append(data) self.pred_td_dep = pred_td_dep def __iter__(self): self.pos = 0 return self def __len__(self): return len(self.pred_bu) def __next__(self): if self.pos>=len(self.pred_bu): raise StopIteration pred_bu = self.pred_bu[self.pos] pred_bu_dep = self.pred_bu_dep[self.pos] pred_td = self.pred_td[self.pos] pred_td_dep = self.pred_td_dep[self.pos] pred_bu = np.float32(pred_bu) pred_bu_dep = np.float32(pred_bu_dep) pred_td = np.float32(pred_td) pred_td_dep = np.float32(pred_td_dep) source_pts = np.stack([pred_td, pred_bu], axis=1) source_dep = np.stack([pred_td_dep, pred_bu_dep], axis=1) num_frames = source_pts.shape[0] source_pts = source_pts.reshape([num_frames, -1]) source_dep = source_dep.reshape([num_frames, -1]) source_dep = source_dep / 1000 vid_inst = self.vid_inst[self.pos] self.pos += 1 return source_pts, source_dep, vid_inst ``` #### File: lib/models/networkinte.py ```python import torch import numpy as np import TorchSUL.Model as M class IntegrationNet(M.Model): def initialize(self): self.fc1 = M.Dense(512, activation=M.PARAM_GELU) self.fc2 = M.Dense(512, activation=M.PARAM_GELU) self.fc3 = M.Dense(512, activation=M.PARAM_GELU) self.fc4 = M.Dense(2) def forward(self, pts, depths): x = torch.cat([pts, depths], dim=1) x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) x = self.fc4(x) bsize = pts.shape[0] pts = pts.reshape(bsize, 2, -1) w_pt = x[:,0:1] w_pt = torch.sigmoid(w_pt) pts = w_pt * pts[:,0] + (1 - w_pt) * pts[:,1] # use a weighted-sum term to increase the robustness pts = pts.reshape(bsize, 3, 17) w_dep = x[:,1:2] w_dep = torch.tanh(w_dep) * 2 depths = w_dep * depths[:,0:1] + (1 - w_dep) * depths[:,1:2] return pts, depths ``` #### File: lib/models/transnet.py ```python from torch.nn.parameter import Parameter import torch.nn.init as init from TorchSUL import Model as M import torch class TransNet(M.Model): def initialize(self): self.f3 = M.Dense(3*17) def forward(self, x): x = self.f3(x) return x class LinearModel(M.Model): def initialize(self): self.weight = Parameter(torch.Tensor(3)) self.bias = Parameter(torch.Tensor(3)) init.normal_(self.weight, std=0.001) init.zeros_(self.bias) def forward(self, x): x = self.weight * x x = x + self.bias return x ```
{ "source": "3D-Printing-for-Microfluidics/OpenGL-STL-slicer", "score": 2 }
#### File: OpenGL-STL-slicer/pyopengl/app_pyopengl.py ```python import glfw from OpenGL.GL import * from OpenGL.arrays import vbo import platform import os from stl import mesh import numpy as np from PIL import Image from shader import OurShaderProgram from printer import printer import util EPSILON = 0.0001 SCR_WIDTH = 640 SCR_HEIGHT = int(SCR_WIDTH * printer.height / printer.width) class params: VAO, vertVBO, maskVAO, maskVBO = 0, 0, 0, 0 num_of_verts = 0 bounds = dict() total_thickness = 0. class slice: fbo, tex, buf = 0, 0, 0 def start_slicing_stl(stl_filename, layer_thickness, slice_save_path): glfw.init() glfw.window_hint(glfw.CONTEXT_VERSION_MAJOR, 3) glfw.window_hint(glfw.CONTEXT_VERSION_MINOR, 3) glfw.window_hint(glfw.OPENGL_PROFILE, glfw.OPENGL_CORE_PROFILE) if platform.system() == 'Darwin': # for Mac OS glfw.window_hint(glfw.OPENGL_FORWARD_COMPAT, GL_TRUE) window = glfw.create_window( SCR_WIDTH, SCR_HEIGHT, 'STL Slicer', None, None) glfw.make_context_current(window) glfw.set_framebuffer_size_callback(window, framebuffer_size_callback) glfw.set_input_mode(window, glfw.CURSOR, glfw.CURSOR_NORMAL) loadMesh(stl_filename) glBindVertexArray(params.maskVAO) sliceShader = OurShaderProgram('shaders/slice.vert', 'shaders/slice.frag') prepareSlice() i, height = 0, 0. while not glfw.window_should_close(window): processInput(window) if height >= params.total_thickness - EPSILON: break else: height += layer_thickness i += 1 draw(sliceShader, height-EPSILON) renderSlice(sliceShader, height-EPSILON, os.path.join(slice_save_path, 'out{:04d}.png'.format(i-1))) glfw.swap_buffers(window) glfw.poll_events() glfw.terminate() def framebuffer_size_callback(window, width, height): glViewport(0, 0, width, height) def processInput(window): if glfw.get_key(window, glfw.KEY_ESCAPE) == glfw.PRESS: glfw.set_window_should_close(window, GL_TRUE) def loadMesh(stl): # Get information about our mesh our_mesh = mesh.Mesh.from_file(stl) params.num_of_verts = our_mesh.vectors.shape[0] * 3 params.bounds = { 'xmin': our_mesh.min_[0], 'xmax': our_mesh.max_[0], 'ymin': our_mesh.min_[1], 'ymax': our_mesh.max_[1], 'zmin': our_mesh.min_[2], 'zmax': our_mesh.max_[2] } params.total_thickness = params.bounds['zmax'] - params.bounds['zmin'] # make VAO for drawing our mesh params.VAO = glGenVertexArrays(1) glBindVertexArray(params.VAO) vertVBO = vbo.VBO(data=our_mesh.vectors.astype( GLfloat).tobytes(), usage='GL_STATIC_DRAW', target='GL_ARRAY_BUFFER') vertVBO.bind() vertVBO.copy_data() glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), vertVBO) glEnableVertexAttribArray(0) glBindVertexArray(0) # a mask vertex array for stencil buffer to subtract maskVert = np.array( [[0, 0, 0], [printer.width*printer.pixel, 0, 0], [printer.width*printer.pixel, printer.height*printer.pixel, 0], [0, 0, 0], [printer.width*printer.pixel, printer.height*printer.pixel, 0], [0, printer.height*printer.pixel, 0]], dtype=GLfloat ) # make VAO for drawing mask params.maskVAO = glGenVertexArrays(1) glBindVertexArray(params.maskVAO) maskVBO = vbo.VBO(data=maskVert.tobytes(), usage='GL_STATIC_DRAW', target='GL_ARRAY_BUFFER') maskVBO.bind() maskVBO.copy_data() glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), maskVBO) glEnableVertexAttribArray(0) maskVBO.unbind() glBindVertexArray(0) def draw(shader, height): glEnable(GL_STENCIL_TEST) glClearColor(0., 0., 0., 1.) glClear(GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT) glBindVertexArray(params.VAO) shader.use() proj = util.ortho(0, printer.width*printer.pixel, 0, printer.height*printer.pixel, -params.total_thickness, params.total_thickness, GLfloat) shader.setMat4("proj", proj) model = util.translation([0, 0, params.total_thickness-height], GLfloat) shader.setMat4("model", model) glEnable(GL_CULL_FACE) glCullFace(GL_FRONT) glStencilFunc(GL_ALWAYS, 0, 0xFF) glStencilOp(GL_KEEP, GL_KEEP, GL_INCR) glDrawArrays(GL_TRIANGLES, 0, params.num_of_verts) glCullFace(GL_BACK) glStencilOp(GL_KEEP, GL_KEEP, GL_DECR) glDrawArrays(GL_TRIANGLES, 0, params.num_of_verts) glDisable(GL_CULL_FACE) glClear(GL_COLOR_BUFFER_BIT) glBindVertexArray(params.maskVAO) glStencilFunc(GL_NOTEQUAL, 0, 0xFF) glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP) glDrawArrays(GL_TRIANGLES, 0, 6) glDisable(GL_STENCIL_TEST) def prepareSlice(): slice.fbo = glGenFramebuffers(1) slice.tex = glGenTextures(1) slice.buf = glGenRenderbuffers(1) glBindTexture(GL_TEXTURE_2D, slice.tex) glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, printer.width, printer.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, None) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE) glBindTexture(GL_TEXTURE_2D, 0) def renderSlice(shader, height, filename): glEnable(GL_STENCIL_TEST) glViewport(0, 0, printer.width, printer.height) glBindFramebuffer(GL_FRAMEBUFFER, slice.fbo) glFramebufferTexture2D( GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, slice.tex, 0) glBindRenderbuffer(GL_RENDERBUFFER, slice.buf) glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_STENCIL, printer.width, printer.height) glFramebufferRenderbuffer( GL_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_RENDERBUFFER, slice.buf) glClearColor(0.0, 0.0, 0.0, 1.0) glClear(GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT) glBindVertexArray(params.VAO) shader.use() proj = util.ortho(0, printer.width*printer.pixel, 0, printer.height*printer.pixel, -params.total_thickness, params.total_thickness, GLfloat) shader.setMat4("proj", proj) model = util.translation([0, 0, params.total_thickness-height], GLfloat) shader.setMat4("model", model) glEnable(GL_CULL_FACE) glCullFace(GL_FRONT) glStencilFunc(GL_ALWAYS, 0, 0xFF) glStencilOp(GL_KEEP, GL_KEEP, GL_INCR) glDrawArrays(GL_TRIANGLES, 0, params.num_of_verts) glCullFace(GL_BACK) glStencilOp(GL_KEEP, GL_KEEP, GL_DECR) glDrawArrays(GL_TRIANGLES, 0, params.num_of_verts) glDisable(GL_CULL_FACE) glClear(GL_COLOR_BUFFER_BIT) glBindVertexArray(params.maskVAO) glStencilFunc(GL_NOTEQUAL, 0, 0xFF) glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP) glDrawArrays(GL_TRIANGLES, 0, 6) glDisable(GL_STENCIL_TEST) data = glReadPixels(0, 0, printer.width, printer.height, GL_RED, GL_UNSIGNED_BYTE) image = Image.frombytes('L', (printer.width, printer.height), data, 'raw', 'L', 0, -1) image.save(filename) glBindFramebuffer(GL_FRAMEBUFFER, 0) glDisable(GL_STENCIL_TEST) glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT) def main(): import sys stl_filename = sys.argv[1] layer_thickness = float(sys.argv[2]) temp = os.path.dirname(stl_filename) slice_save_path = os.path.join(temp, 'slices') if not os.path.exists(slice_save_path): os.mkdir(slice_save_path) start_slicing_stl(stl_filename, layer_thickness, slice_save_path) if __name__ == '__main__': main() ``` #### File: OpenGL-STL-slicer/pyopengl/util.py ```python import numpy as np def ortho(left, right, bottom, top, zNear, zFar, dtype): ''' Return the following matrix | 2 -(right+left) | | ---------- 0 0 ------------- | | right-left right-left | | | | 2 -(top+bottom) | | 0 ---------- 0 ------------- | | top-bottom top-bottom | | | | -2 -(zFar+zNear) | | 0 0 ---------- ------------- | | zFar-zNear zFar-zNear | | | | | | 0 0 0 1 | ''' M = np.identity(4, dtype=dtype) M[0,0] = 2 / (right - left) M[1,1] = 2 / (top - bottom) M[2,2] = -2 / (zFar - zNear) M[0,3] = -(right + left) / (right - left) M[1,3] = -(top + bottom) / (top - bottom) M[2,3] = -(zFar + zNear) / (zFar - zNear) return M.T def translation(direction, dtype): """Return matrix to translate by direction vector. If direction is [x, y, z], return the following matrix | 1 0 0 x | | | | 0 1 0 y | | | | 0 0 1 z | | | | 0 0 0 1 | """ M = np.identity(4, dtype=dtype) M[:3, 3] = direction[:3] return M.T ```
{ "source": "3dprintscanner/incubator-singa", "score": 2 }
#### File: test/python/test_operation.py ```python import unittest from builtins import str from singa import tensor from singa import singa_wrap as singa from singa import device from singa import autograd import numpy as np autograd.training = True CTensor = singa.Tensor gpu_dev = device.create_cuda_gpu() cpu_dev = device.get_default_device() dy = CTensor([2, 1, 2, 2]) singa.Gaussian(0.0, 1.0, dy) def _tuple_to_string(t): lt = [str(x) for x in t] return '(' + ', '.join(lt) + ')' def prepare_inputs_targets_for_rnn_test(): x_0 = np.random.random((2, 3)).astype(np.float32) x_1 = np.random.random((2, 3)).astype(np.float32) x_2 = np.random.random((2, 3)).astype(np.float32) h_0 = np.zeros((2, 2)).astype( np.float32) t_0 = np.random.random((2, 2)).astype(np.float32) t_1 = np.random.random((2, 2)).astype(np.float32) t_2 = np.random.random((2, 2)).astype(np.float32) x0 = tensor.Tensor(device=gpu_dev, data=x_0) x1 = tensor.Tensor(device=gpu_dev, data=x_1) x2 = tensor.Tensor(device=gpu_dev, data=x_2) h0 = tensor.Tensor(device=gpu_dev, data=h_0) t0 = tensor.Tensor(device=gpu_dev, data=t_0) t1 = tensor.Tensor(device=gpu_dev, data=t_1) t2 = tensor.Tensor(device=gpu_dev, data=t_2) inputs = [x0, x1, x2] targets = [t0, t1, t2] return inputs, targets, h0 class TestPythonOperation(unittest.TestCase): def check_shape(self, actual, expect): self.assertEqual(actual, expect, 'shape mismatch, actual shape is %s' ' exepcted is %s' % (_tuple_to_string(actual), _tuple_to_string(expect)) ) def test_conv2d_gpu(self): # (in_channels, out_channels, kernel_size) conv_0 = autograd.Conv2d(3, 1, 2) conv_without_bias_0 = autograd.Conv2d(3, 1, 2, bias=False) gpu_input_tensor = tensor.Tensor(shape=(2, 3, 3, 3), device=gpu_dev) gpu_input_tensor.gaussian(0.0, 1.0) y = conv_0(gpu_input_tensor) # PyTensor dx, dW, db = y.creator.backward(dy) # CTensor self.check_shape(y.shape, (2, 1, 2, 2)) self.check_shape(dx.shape(), (2, 3, 3, 3)) self.check_shape(dW.shape(), (1, 3, 2, 2)) self.check_shape(db.shape(), (1,)) # forward without bias y_without_bias = conv_without_bias_0(gpu_input_tensor) self.check_shape(y_without_bias.shape, (2, 1, 2, 2)) def test_conv2d_cpu(self): # (in_channels, out_channels, kernel_size) conv_1 = autograd.Conv2d(3, 1, 2) conv_without_bias_1 = autograd.Conv2d(3, 1, 2, bias=False) cpu_input_tensor = tensor.Tensor(shape=(2, 3, 3, 3), device=cpu_dev) cpu_input_tensor.gaussian(0.0, 1.0) y = conv_1(cpu_input_tensor) # PyTensor dx, dW, db = y.creator.backward(dy) # CTensor self.check_shape(y.shape, (2, 1, 2, 2)) self.check_shape(dx.shape(), (2, 3, 3, 3)) self.check_shape(dW.shape(), (1, 3, 2, 2)) self.check_shape(db.shape(), (1,)) # forward without bias y_without_bias = conv_without_bias_1(cpu_input_tensor) self.check_shape(y_without_bias.shape, (2, 1, 2, 2)) def test_SeparableConv2d_gpu(self): separ_conv=autograd.SeparableConv2d(8, 16, 3, padding=1) x=np.random.random((10,8,28,28)).astype(np.float32) x=tensor.Tensor(device=gpu_dev, data=x) #y = separ_conv(x) y1 = separ_conv.spacial_conv(x) y2 = separ_conv.depth_conv(y1) dy1, dW_depth, _ = y2.creator.backward(y2.data) dx, dW_spacial, _ = y1.creator.backward(dy1) self.check_shape(y2.shape, (10, 16, 28, 28)) self.check_shape(dy1.shape(), (10, 8, 28, 28)) self.check_shape(dW_depth.shape(), (16, 8, 1, 1)) self.check_shape(dx.shape(), (10, 8, 28, 28)) self.check_shape(dW_spacial.shape(), (8, 1, 3, 3)) def test_batchnorm2d_gpu(self): batchnorm_0 = autograd.BatchNorm2d(3) gpu_input_tensor = tensor.Tensor(shape=(2, 3, 3, 3), device=gpu_dev) gpu_input_tensor.gaussian(0.0, 1.0) dy = CTensor([2, 3, 3, 3]) singa.Gaussian(0.0, 1.0, dy) y = batchnorm_0(gpu_input_tensor) dx, ds, db = y.creator.backward(dy) self.check_shape(y.shape, (2, 3, 3, 3)) self.check_shape(dx.shape(), (2, 3, 3, 3)) self.check_shape(ds.shape(), (3,)) self.check_shape(db.shape(), (3,)) def test_vanillaRNN_gpu_tiny_ops_shape_check(self): # gradients shape check. inputs, target, h0 = prepare_inputs_targets_for_rnn_test() rnn = autograd.RNN(3, 2) hs, _ = rnn(inputs, h0) loss = autograd.softmax_cross_entropy(hs[0], target[0]) for i in range(1, len(hs)): l = autograd.softmax_cross_entropy(hs[i], target[i]) loss = autograd.add(loss, l) # d=autograd.infer_dependency(loss.creator) # print(d) for t, dt in autograd.backward(loss): self.check_shape(t.shape, dt.shape) def test_LSTM_gpu_tiny_ops_shape_check(self): # gradients shape check. inputs, target, h0 = prepare_inputs_targets_for_rnn_test() c_0 = np.random.random((2, 1)).astype(np.float32) c0 = tensor.Tensor(device=gpu_dev, data=c_0) rnn = autograd.LSTM(3, 2) hs, _, _ = rnn(inputs, (h0, c0)) loss = autograd.softmax_cross_entropy(hs[0], target[0]) for i in range(1, len(hs)): l = autograd.softmax_cross_entropy(hs[i], target[i]) loss = autograd.add(loss, l) # d=autograd.infer_dependency(loss.creator) # print(d) for t, dt in autograd.backward(loss): self.check_shape(t.shape, dt.shape) def gradients_check(self, func, param, autograds, h=0.0005, df=1): # param: PyTensor # autograds: numpy_tensor p = tensor.to_numpy(param) it = np.nditer(p, flags=['multi_index'], op_flags=['readwrite']) while not it.finished: idx = it.multi_index diff = np.zeros_like(p) diff[idx] += h diff = tensor.from_numpy(diff) diff.to_device(gpu_dev) param += diff pos = func() pos = tensor.to_numpy(pos) param -= diff param -= diff neg = func() neg = tensor.to_numpy(neg) numerical_grad = np.sum((pos - neg) * df) / (2 * h) #print((autograds[idx] - numerical_grad)/numerical_grad) # threshold set as -5% to +5% #self.assertAlmostEqual((autograds[idx] - numerical_grad)/(numerical_grad+0.0000001), 0., places=1) self.assertAlmostEqual( autograds[idx] - numerical_grad, 0., places=2) it.iternext() def test_numerical_gradients_check_for_vallina_rnn(self): inputs, target, h0 = prepare_inputs_targets_for_rnn_test() rnn = autograd.RNN(3, 2) def valinna_rnn_forward(): hs, _ = rnn(inputs, h0) loss = autograd.softmax_cross_entropy(hs[0], target[0]) for i in range(1, len(hs)): l = autograd.softmax_cross_entropy(hs[i], target[i]) loss = autograd.add(loss, l) #grads = autograd.gradients(loss) return loss loss1 = valinna_rnn_forward() auto_grads = autograd.gradients(loss1) for param in rnn.params: auto_grad = tensor.to_numpy(auto_grads[param]) self.gradients_check(valinna_rnn_forward, param, auto_grad) def test_numerical_gradients_check_for_lstm(self): inputs, target, h0 = prepare_inputs_targets_for_rnn_test() c_0 = np.zeros((2, 2)).astype(np.float32) c0 = tensor.Tensor(device=gpu_dev, data=c_0) rnn = autograd.LSTM(3, 2) def lstm_forward(): hs, _, _ = rnn(inputs, (h0, c0)) loss = autograd.softmax_cross_entropy(hs[0], target[0]) for i in range(1, len(hs)): l = autograd.softmax_cross_entropy(hs[i], target[i]) loss = autograd.add(loss, l) return loss loss1 = lstm_forward() auto_grads = autograd.gradients(loss1) for param in rnn.params: auto_grad = tensor.to_numpy(auto_grads[param]) self.gradients_check(lstm_forward, param, auto_grad) def test_MeanSquareError(self): X=np.array([4.3,5.4,3.3,3.6,5.7,6.0]).reshape(3,2).astype(np.float32) T=np.array([4.4,5.3,3.2,3.7,5.4,6.3]).reshape(3,2).astype(np.float32) x=tensor.from_numpy(X) t=tensor.from_numpy(T) x.to_device(gpu_dev) t.to_device(gpu_dev) loss= autograd.mse_loss(x,t) dx=loss.creator.backward()[0] loss_np=tensor.to_numpy(loss) self.assertAlmostEqual(loss_np, 0.0366666, places=4) self.check_shape(dx.shape(), (3, 2)) def test_Abs(self): X=np.array([0.8,-1.2,3.3,-3.6,-0.5,0.5]).reshape(3,2).astype(np.float32) XT=np.array([0.8,1.2,3.3,3.6,0.5,0.5]).reshape(3,2).astype(np.float32) x=tensor.from_numpy(X) x.to_device(gpu_dev) result=autograd.abs(x) Err=XT-result dx=result.creator.backward()[0] for ii in Err.flatten(): self.assertAlmostEquals(ii,0., places=3) self.check_shape(dx.shape(), (3, 2)) def test_Exp(self): X=np.array([0.8,-1.2,3.3,-3.6,-0.5,0.5]).reshape(3,2).astype(np.float32) XT=np.array([2.2255409,0.22313017,27.112638,0.02732372,0.60653067,1.6487212]).reshape(3,2).astype(np.float32) x=tensor.from_numpy(X) x.to_device(gpu_dev) result=autograd.exp(x) Err=XT-result dx=result.creator.backward()[0] for ii in Err.flatten(): self.assertAlmostEquals(ii,0., places=3) self.check_shape(dx.shape(), (3, 2)) def test_LeakyRelu(self): X=np.array([0.8,-1.2,3.3,-3.6,-0.5,0.5]).reshape(3,2).astype(np.float32) XT=np.array([0.8,-0.012,3.3,-0.036,-0.005,0.5]).reshape(3,2).astype(np.float32) x=tensor.from_numpy(X) x.to_device(gpu_dev) result=autograd.LeakyRelu(x) Err=XT-result dx=result.creator.backward()[0] for ii in Err.flatten(): self.assertAlmostEquals(ii,0., places=3) self.check_shape(dx.shape(), (3, 2)) if __name__ == '__main__': unittest.main() ```
{ "source": "3dprogramin/thinkpad-p51-archbang", "score": 3 }
#### File: dock/multihead3/change-wallpaper.py ```python import os from random import choice from time import sleep import sys # pictures root folder PICTURES_FOLDER = '/home/icebox/Pictures/wallpapers' ROTATE_EVERY = 30 # minutes # valid extensions EXTENSIONS = [ 'PNG', 'JPG', 'BMP', 'JPEG' ] # checks if file has a good extension def good_extension(f): f = f.lower() for e in EXTENSIONS: if f.endswith(e.lower()): return True return False # list all files in dir and subdir def files_in_dir(d): l = [] for dirpath, dirnames, filenames in os.walk(d): for filename in [f for f in filenames if good_extension(f)]: f = os.path.join(dirpath, filename) l.append(f) return l def set_random_wallpaper(): files = files_in_dir(PICTURES_FOLDER) if not files: print '[!] no pictures in folder/s' return # if no files, return f = choice(files) # get random file cmd = 'feh --bg-fill {}'.format(f) os.system(cmd) # set wallpaper # main method def main(): while True: set_random_wallpaper() if sys.argv[-1] == 'oneshot': return sleep(60 * ROTATE_EVERY) main() ```
{ "source": "3d-py/data-science-learning", "score": 2 }
#### File: data-science-learning/cellular automata/automata_blender.py ```python import bpy import bmesh from mathutils import Vector import numpy as np import math import itertools # Blender import system clutter import sys from pathlib import Path UTILS_PATH = Path.home() / "Documents/python_workspace/data-science-learning" SRC_PATH = UTILS_PATH / "cellular automata" sys.path.append(str(UTILS_PATH)) sys.path.append(str(SRC_PATH)) import Automaton import automata_blender_utils import importlib importlib.reload(Automaton) importlib.reload(automata_blender_utils) from Automaton import * from ds_utils.blender_utils import init_grease_pencil, draw_square, draw_circle, draw_cube, delete_all, render def random_camera_pos(radius, azimuth, inclination, center=(0, 0, 0)): x = center[0] + radius * math.cos(azimuth) * math.sin(inclination) y = center[1] + radius * math.sin(azimuth) * math.sin(inclination) z = center[2] + radius * math.cos(inclination) camera = bpy.context.scene.objects['Camera'] camera.location = (x, y, z) def random_gp_material(): line_color = np.random.rand(3) fill_color = np.random.rand(3) line_alpha, fill_alpha = [(1, 1), (0, 1)][np.random.randint(2)] # random comb of alpha for line and fill if fill_color.sum() > 1.5: bpy.context.scene.world.color = (1, 1, 1) else: bpy.context.scene.world.color = (0, 0, 0) material = bpy.context.object.active_material.grease_pencil material.color = (line_color[0], line_color[1], line_color[2], line_alpha) material.fill_color = (fill_color[0], fill_color[1], fill_color[2], fill_alpha) ################## # 1-D Automata ################## def animate_1d_automata(rule, nb_frames=10, scale=1., material_index=0): # Init automata automaton_size = nb_frames*2 automaton = Automaton1D(automaton_size, rule=rule) # Set middle cell as the only active one #automaton.grid = np.zeros(automaton_size, dtype=np.uint8) #automaton.grid[automaton_size // 2] = 1 bpy.context.scene.frame_start = 0 bpy.context.scene.frame_end = nb_frames gpencil_obj_name = "GPencil" gp_layer = init_grease_pencil(clear_layer=True, gpencil_obj_name=gpencil_obj_name) gp_frame = gp_layer.frames.new(0) gpencil = bpy.context.view_layer.objects[gpencil_obj_name] # center on middle cell cell_size = 1 translate_vec = np.array([-(automaton_size/2), 0, 0]) for frame in range(nb_frames): gp_frame = gp_layer.frames.copy(gp_frame) for i, cell in enumerate(automaton.grid): # maintain pyramid shape (render only if further from the center at least the current frame number) if cell and ((automaton_size // 2 - frame) <= i <= (automaton_size // 2 + frame)): # render cell centers = [ (i, frame, 0), # normal center #(i, frame - 1, automaton_size // 2 - frame), # center down #(i, frame - 1, -(automaton_size // 2) + frame), # center up ] for center in centers: centers_shifted = np.array(center) + translate_vec draw_square(gp_frame, centers_shifted, cell_size, material_index=material_index) #draw_cube(gp_frame, centers_shifted, cell_size, material_index=material_index) automaton.update() # scale automaton size along the growth axis if scale != 1.: gpencil.scale[0] = scale gpencil.select_set(True) bpy.ops.object.transform_apply(location=False, rotation=False, scale=True) rule_0 = {'111': 1, '110': 1, '101': 1, '100': 1, '011': 1, '010': 1, '001': 1, '000': 0} rule_sierpinski = {'111': 0, '110': 1, '101': 0, '100': 1, '011': 1, '010': 0, '001': 1, '000': 0} rule_x = {'111': 0, '110': 0, '101': 0, '100': 1, '011': 1, '010': 1, '001': 1, '000': 0} rule_106 = {'111': 0, '110': 1, '101': 1, '100': 0, '011': 1, '010': 0, '001': 1, '000': 0} #animate_1d_automata(rule_sierpinski, nb_frames=50) def explore_1d_automata(nb_frames, nb_runs: int, render_dir: Path): nb_simmetry = 4 angle = 360/nb_simmetry scale = angle/90 all_rules_config = list(itertools.product([0, 1], repeat=8)) configs_idxs = np.random.choice(np.arange(len(all_rules_config)), nb_runs) for idx in configs_idxs: print(scale) print("#####") print(f"Rule {idx}") config = all_rules_config[idx] print(config) rule = dict(zip(['111', '110', '101', '100', '011', '010', '001', '000'], config)) animate_1d_automata(rule, nb_frames=nb_frames, scale=scale, material_index=0) bpy.context.scene.frame_set(nb_frames) #random_camera_pos(np.random.randint(5, 200), np.random.randint(360), np.random.randint(360)) random_gp_material() render(str(render_dir / f"rule_{idx}"), animation=False) render(str(render_dir / f"rule_{idx}"), animation=True) #explore_1d_automata(50, nb_runs=20 # render_dir = Path.home() / "Downloads/automaton_1d/symm_4_colors_02") ################## # 2-D Automata ################## rule_gol = {'neighbours_count_born': 3, # count required to make a cell alive 'neighbours_maxcount_survive': 3, # max number (inclusive) of neighbours that a cell can handle before dying 'neighbours_mincount_survive': 2, # min number (inclusive) of neighbours that a cell needs in order to stay alive } # render automata with Grease Pencil def animate_2d_automata(rule, nb_frames: 10, use_grease_pencil=True): nb_rows = 10 nb_cols = 10 gol = Automaton2D(nb_rows, nb_cols, rule, seed=11) FRAMES_SPACING = 1 bpy.context.scene.frame_start = 0 bpy.context.scene.frame_end = nb_frames * FRAMES_SPACING if use_grease_pencil: gp_layer = init_grease_pencil(clear_layer=True) else: obj_size = 0.7 subdivisions = 2 scale_factor = 0.2 init_mat_color = (0.7, 0.1, 0.1) # obj_generator = lambda idx: automata_blender_utils.icosphere_generator(obj_size, subdivisions, idx[0], idx[1], 0) obj_generator = lambda idx: automata_blender_utils.cube_generator(obj_size, idx[0], idx[1], 0) obj_updater = lambda obj, grid, idx: automata_blender_utils.object_updater_hide(obj, grid[idx]) # obj_updater = lambda obj, grid, idx: automata_blender_utils.object_updater_scale(obj, grid[idx], # scale_factor=scale_factor) # obj_updater = lambda obj, grid, idx: automata_blender_utils.object_updater_color_vector( # obj, grid[:, idx[0], idx[1]]) delete_all() obj_grid = automata_blender_utils.create_grid(gol, obj_generator) # automata_blender_utils.init_materials(obj_grid, init_mat_color) gol.update() for frame in range(nb_frames): if use_grease_pencil: gp_frame = gp_layer.frames.new(frame * FRAMES_SPACING) for idx, val in np.ndenumerate(gol.grid): if val: draw_square(gp_frame, (idx[0], idx[1], 0), 1) else: bpy.context.scene.frame_set(frame) automata_blender_utils.update_grid(obj_grid, gol, obj_updater) gol.update() #animate_2d_automata(rule_gol, nb_frames=10, use_grease_pencil=True) def animate_hexagonal_automata(p_freeze, p_melt, nb_frames: 10, nb_rows: int, nb_cols: int, material_index=0): automaton = HexagonalAutomaton(nb_rows=nb_rows, nb_cols=nb_cols, p_melt=p_melt, p_freeze=p_freeze) # Set middle cell as the only active one automaton.grid = np.zeros((nb_rows, nb_cols), dtype=np.uint8) automaton.grid[(nb_rows // 2, nb_cols//2)] = 1 FRAMES_SPACING = 1 bpy.context.scene.frame_start = 0 bpy.context.scene.frame_end = nb_frames * FRAMES_SPACING gp_layer = init_grease_pencil(clear_layer=True) #gp_frame = gp_layer.frames.new(0) z = 0 delete_all() for frame in range(0, nb_frames): if frame % 10 == 0: print("Frame {}".format(frame)) #gp_frame = gp_layer.frames.copy(gp_frame) gp_frame = gp_layer.frames.new(frame * FRAMES_SPACING) # reduce reference size at each new frame size = 1/(frame+1) # Hexagonal shape size for grid adjustment hex_size = size*math.cos(math.pi/6) short_size = size/2 #z += size/2 z = 0 for row in range(nb_rows): for col in range(nb_cols): if automaton.grid[row, col]: # Calculate row and col position for the current cell # taking into account hexagonal shape and shifting by growth row_pos = (row - nb_rows//2) * (2*size - short_size) col_pos = (col - nb_cols//2) * (2*hex_size) - hex_size # shift even rows if row % 2 == 0: col_pos += hex_size # Render cell #automata_blender_utils.cube_generator(size, row_pos, col_pos, z) #draw_cube(gp_frame, (row_pos, col_pos, z), size, material_index=material_index) draw_circle(gp_frame, (row_pos, col_pos, z), size, 6, material_index=material_index) automaton.update() p_freeze = [0, 1, 0., 0., 0, 0., 0., 1., 0, 0., 0., 0., 0., 0] p_melt = [0, 0, 0., 0., 0., 0, 1, 0, 0., 1., 0, 1., 0., 0] #animate_hexagonal_automata(p_freeze, p_melt, 10, nb_rows=120, nb_cols=120) def explore_hexagonal_automata(nb_frames: int, nb_runs: int, nb_rows: int, nb_cols: int): render_dir = Path.home() / f"Downloads/automaton_hexagonal/flat_hexa_logo/{nb_frames}" render_dir.mkdir(exist_ok=True) with open(str(render_dir / "logs.txt"), 'w+') as f: for run in range(nb_runs): p_freeze = np.random.choice([1., 0.], 14) p_melt = np.random.choice([1., 0.], 14) print("#####") print(f"Run {run}") print(f"p_freeze {p_freeze}") print(f"p_melt {p_melt}") animate_hexagonal_automata(p_freeze, p_melt, nb_frames=nb_frames, nb_rows=nb_rows, nb_cols=nb_cols, material_index=0) bpy.context.scene.frame_set(nb_frames) #random_camera_pos(np.random.randint(5, 200), np.random.randint(360), np.random.randint(360)) #andom_gp_material() render(str(render_dir / f"run_{run}"), animation=False) #render(str(render_dir / f"run_{run}"), animation=True) f.write(f"p_freeze:{p_freeze}-") f.write(f"p_melt:{p_melt}\n") #for nb_frames in range(10, 20): # explore_hexagonal_automata(nb_frames, nb_runs=30, nb_rows=120, nb_cols=120) ``` #### File: data-science-learning/ds_utils/plot_utils.py ```python import numpy as np import seaborn as sns from matplotlib import pyplot as plt from matplotlib import animation import numpy as np def plot_sample_imgs(get_imgs_fun, img_shape, plot_side=5, savepath=None, cmap='gray'): """ Generate visual samples and plot on a grid :param get_imgs_fun: function that given a int return a corresponding number of generated samples :param img_shape: shape of image to plot :param plot_side: samples per row (and column). Generated plot_side x plot_side samples :param savepath: if given, save plot to such filepath, otherwise show plot :param cmap: matplotlib specific cmap to use for the plot """ f, axarr = plt.subplots(plot_side, plot_side) samples = get_imgs_fun(plot_side*plot_side) for row in range(plot_side): for col in range(plot_side): axarr[row, col].imshow(samples[plot_side*row+col].reshape(img_shape), cmap=cmap) axarr[row, col].set_title('') axarr[row, col].axis('off') if savepath: f.savefig(savepath) plt.close() else: plt.show() def plot_correlation(df): # Correlation corr = df.corr() print(corr) # Plot masking the upper triangle mask = np.zeros_like(corr, dtype=np.bool) mask[np.triu_indices_from(mask)] = True sns.heatmap(corr, mask=mask) sns.plt.show() """ # Rotate tick labels ax.set_xticklabels(ax.xaxis.get_majorticklabels(), rotation=25) # Save plot sns_plot.savefig("output.png") fig = swarm_plot.get_figure() fig.savefig(...) # Matplotlib to Plotly import plotly.tools as tls plotly_fig = tls.mpl_to_plotly(mpl_fig) py.iplot(plotly_fig """ ############################## # Animation ############################## #%matplotlib notebook # rely on notebook mode as the inline doesn't seem to work in Jupyter from matplotlib import animation plt.rcParams['animation.ffmpeg_path'] = '~/path/to/bin/ffmpeg' def animated_plot(img_width: int, img_height: int, nb_frames: int, outpath: str = None): # Setup plot dpi = 100 if outpath: fig, ax = plt.subplots(dpi=dpi, figsize=(img_width / dpi, img_height / dpi)) else: fig, ax = plt.subplots(dpi=dpi, figsize=(5, 5)) plt.axis('off') #line, = plt.plot([0, 1.0], [init_intercept, 1.0 * init_slope + init_intercept], 'k-') #epoch_text = plt.text(0, 0, "Epoch 0") #im = ax.imshow(np.zeros((28, 28)), cmap='gray') def animate(i, ): pass #current_intercept, current_slope = res[i] #line.set_ydata([current_intercept, 1.0 * current_slope + current_intercept]) #epoch_text.set_text("Epoch {}, cost {:.3f}".format(i, history[i][0])) #return line, # one other option is to set the data like #im.set_data(np.zeros((28, 28))+1) #ax.imshow(system.B, cmap='gray') # Animate ani = animation.FuncAnimation(fig, animate, frames=nb_frames, interval=100, fargs=[]) # be sure to pass the additional args needed for the animation if outpath: ani.save(outpath, animation.FFMpegFileWriter(fps=30)) else: return ani """ Writer = animation.writers['ffmpeg'] writer = Writer(fps=30) animation.writers.list() """ ############################## # Drawing ############################## def draw_template(): from PIL import Image, ImageDraw img_size = 1000 img = Image.new('RGB', (img_size, img_size), (255, 255, 255)) draw = ImageDraw.Draw(img) draw.ellipse((20, 20, 180, 180), fill='blue', outline='blue') ```
{ "source": "3drobotics/flight_review", "score": 3 }
#### File: flight_review/plot_app/db_entry.py ```python from html import escape from pyulog import * from pyulog.px4 import * from helper import get_log_filename, load_ulog_file, get_total_flight_time #pylint: disable=missing-docstring, too-few-public-methods class DBData: """ simple class that contains information from the DB entry of a single log file """ def __init__(self): self.description = '' self.feedback = '' self.type = 'personal' self.wind_speed = -1 self.rating = '' self.video_url = '' self.error_labels = [] self.source = '' super().__init__() def wind_speed_str(self): return self.wind_speed_str_static(self.wind_speed) @staticmethod def wind_speed_str_static(wind_speed): return {0: 'Calm', 5: 'Breeze', 8: 'Gale', 10: 'Storm'}.get(wind_speed, '') def rating_str(self): return self.rating_str_static(self.rating) @staticmethod def rating_str_static(rating): return {'crash_pilot': 'Crashed (Pilot error)', 'crash_sw_hw': 'Crashed (Software or Hardware issue)', 'unsatisfactory': 'Unsatisfactory', 'good': 'Good', 'great': 'Great!'}.get(rating, '') def to_json_dict(self): jsondict = dict() jsondict['description'] = self.description jsondict['feedback'] = self.feedback jsondict['type'] = self.type jsondict['wind_speed'] = self.wind_speed jsondict['rating'] = self.rating jsondict['video_url'] = self.video_url jsondict['error_labels'] = self.error_labels jsondict['source'] = self.source return jsondict class DBDataGenerated: """ information from the generated DB entry """ def __init__(self): self.start_time_utc = 0 self.duration_s = 0 self.mav_type = '' self.estimator = '' self.sys_autostart_id = 0 self.sys_hw = '' self.ver_sw = '' self.ver_sw_release = '' self.num_logged_errors = 0 self.num_logged_warnings = 0 self.flight_modes = set() self.vehicle_uuid = '' self.flight_mode_durations = [] # list of tuples of (mode, duration sec) self.vehicle_flight_time = None super().__init__() def flight_mode_durations_str(self): ret = [] for duration in self.flight_mode_durations: ret.append(str(duration[0])+':'+str(duration[1])) return ','.join(ret) @classmethod def from_log_file(cls, log_id): """ initialize from a log file """ obj = cls() ulog_file_name = get_log_filename(log_id) ulog = load_ulog_file(ulog_file_name) px4_ulog = PX4ULog(ulog) # extract information obj.duration_s = int((ulog.last_timestamp - ulog.start_timestamp)/1e6) obj.mav_type = px4_ulog.get_mav_type() obj.estimator = px4_ulog.get_estimator() obj.sys_autostart_id = ulog.initial_parameters.get('SYS_AUTOSTART', 0) obj.sys_hw = escape(ulog.msg_info_dict.get('ver_hw', '')) obj.ver_sw = escape(ulog.msg_info_dict.get('ver_sw', '')) version_info = ulog.get_version_info() if version_info is not None: obj.ver_sw_release = 'v{}.{}.{} {}'.format(*version_info) obj.num_logged_errors = 0 obj.num_logged_warnings = 0 if 'sys_uuid' in ulog.msg_info_dict: obj.vehicle_uuid = escape(ulog.msg_info_dict['sys_uuid']) for m in ulog.logged_messages: if m.log_level <= ord('3'): obj.num_logged_errors += 1 if m.log_level == ord('4'): obj.num_logged_warnings += 1 try: cur_dataset = ulog.get_dataset('vehicle_status') flight_mode_changes = cur_dataset.list_value_changes('nav_state') obj.flight_modes = {int(x[1]) for x in flight_mode_changes} # get the durations # make sure the first entry matches the start of the logging if len(flight_mode_changes) > 0: flight_mode_changes[0] = (ulog.start_timestamp, flight_mode_changes[0][1]) flight_mode_changes.append((ulog.last_timestamp, -1)) for i in range(len(flight_mode_changes)-1): flight_mode = flight_mode_changes[i][1] flight_mode_duration = int((flight_mode_changes[i+1][0] - flight_mode_changes[i][0]) / 1e6) obj.flight_mode_durations.append((flight_mode, flight_mode_duration)) except (KeyError, IndexError) as error: obj.flight_modes = set() # logging start time & date try: # get the first non-zero timestamp gps_data = ulog.get_dataset('vehicle_gps_position') indices = np.nonzero(gps_data.data['time_utc_usec']) if len(indices[0]) > 0: obj.start_time_utc = int(gps_data.data['time_utc_usec'][indices[0][0]] / 1000000) except: # Ignore. Eg. if topic not found pass obj.vehicle_flight_time = get_total_flight_time(ulog) return obj def to_json_dict(self): jsondict = dict() jsondict['duration_s'] = int(self.duration_s) jsondict['mav_type'] = self.mav_type jsondict['estimator'] = self.estimator jsondict['sys_autostart_id'] = int(self.sys_autostart_id) jsondict['sys_hw'] = self.sys_hw jsondict['ver_sw'] = self.ver_sw jsondict['ver_sw_release'] = self.ver_sw_release jsondict['num_logged_errors'] = self.num_logged_errors jsondict['num_logged_warnings'] = self.num_logged_warnings jsondict['flight_modes'] = list(self.flight_modes) jsondict['vehicle_uuid'] = self.vehicle_uuid jsondict['flight_mode_durations'] = self.flight_mode_durations return jsondict class DBVehicleData: """ simple class that contains information from the DB entry of a vehicle """ def __init__(self): self.uuid = None self.log_id = '' self.name = '' self.flight_time = 0 ```
{ "source": "3DRPP/printer", "score": 3 }
#### File: printer/printer/gpio.py ```python try: import RPi.GPIO as GPIO except RuntimeError: print("Error importing RPi.GPIO! This is probably because you need " "superuser privileges. You can achieve this by using 'sudo' to run " "your script") gpios = [7, 8, 10, 11, 12, 13, 15, 16, 18, 19, 21, 22, 23, 24, 26, 29, 31, 32, 33, 35, 36, 37, 38, 40] class Pin: def __init__(self, number, value): self.number = number self.value = value self.mode = 'out' def set_value(self, value): try: GPIO.output(self.number, GPIO.HIGH if value else GPIO.LOW) except: pass self.value = value def set_mode(self, mode): if mode == 'in' or mode == 'out': self.mode = mode try: if mode == 'in': GPIO.setup(self.number, GPIO.IN) self.value = bool(GPIO.input(self.number)) print("set mode to in (value=" + str(self.value) + ")") return self.value else: GPIO.setup(self.number, GPIO.OUT) self.value = bool(GPIO.input(self.number)) print("set mode to out (value=" + str(self.value) + ")") return self.value except: return self.value def switch_value(self): try: GPIO.output(self.number, GPIO.LOW if self.value else GPIO.HIGH) except: pass self.value = not self.value def switch_mode(self): if self.mode == 'out': return 'in', self.set_mode('in') else: return 'out', self.set_mode('out') class Header: def __init__(self): self.left_pins = [] self.right_pins = [] for x in gpios: if x % 2 == 1: self.left_pins.append(Pin(x, False)) else: self.right_pins.append(Pin(x, False)) def get_value(self, number): for pin in self.left_pins + self.right_pins: if pin.number == number: return pin.value def set_value(self, number, value): for pin in self.left_pins + self.right_pins: if pin.number == number: pin.set_value(value) break def switch_value(self, number): for pin in self.left_pins + self.right_pins: if pin.number == number: pin.switch_value() break def switch_mode(self, number): for pin in self.left_pins + self.right_pins: if pin.number == number: return pin.switch_mode() header = Header() try: GPIO.setmode(GPIO.BOARD) for id in gpios: print('Initializing gpio ' + str(id)) GPIO.setup(id, GPIO.OUT, initial=GPIO.LOW) print('Initialized GPIOs') except: print('Could not set GPIO mode to BOARD.') ``` #### File: printer/printer/models.py ```python import uuid import os from datetime import datetime import time from django.contrib.auth.models import BaseUserManager, AbstractBaseUser from django.db import models import threading class UserManager(BaseUserManager): def create_user(self, name, email, password=None): user = self.model(name=name, email=email) user.set_password(password) user.save(using=self.db) return user def create_superuser(self, name, email, password): user = self.create_user(name=name, email=email) user.set_password(password) user.is_admin = True user.save(using=self.db) return user class User(AbstractBaseUser): objects = UserManager() USERNAME_FIELD = 'name' REQUIRED_FIELDS = [] first_name = models.CharField(max_length=254) last_name = models.CharField(max_length=254) name = models.CharField('user name', max_length=254, unique=True) email = models.EmailField('email address', max_length=254, unique=True) pushbullet_api_key = models.TextField(null=True) send_emails = models.BooleanField(default=False) send_pushbullets = models.BooleanField(default=False) date_joined = models.DateTimeField(default=datetime.now) is_admin = models.BooleanField(default=False) def save(self, *args, **kwargs): if not self.pk: super().save(*args, **kwargs) # Do more things here else: super().save(*args, **kwargs) def switch_emails(self): self.send_emails = not self.send_emails self.save() def switch_pushbullets(self): if self.pushbullet_api_key: self.send_pushbullets = not self.send_pushbullets self.save() def get_file_path(instance, filename): ext = filename.split('.')[-1] filename = "%s.%s" % (uuid.uuid4(), ext) return os.path.join('printables', filename) class Printable(models.Model): name = models.CharField('Object name', max_length=256, unique=True) filename = models.CharField(max_length=256) file = models.FileField(upload_to=get_file_path) date_added = models.DateTimeField(default=datetime.now) date_start = models.DateTimeField(null=True) date_end = models.DateTimeField(null=True) owner = models.ForeignKey(User) comment = models.TextField() class Task(Printable, threading.Thread): def run(self): self.date_start = datetime.now() self.save() print("Printable started to be printed!") time.sleep(100) print("Printable has been printed!") self.date_end = datetime.now() self.save() printer = Printer() printer.state = 'PRTD' printer.current_task = None def is_waiting(self): return self.date_start == None class Printer: STATES = ( ('IDLE', 'Inactive'), ('PRTG', 'Printing'), ('PAUS', 'Pause'), ('INIT', 'Initializing'), ('PRTD', 'Printed') ) __shared_state = {} current_task = None state = 'IDLE' def __init__(self): if self.__shared_state == {}: self.reset_position() self.__dict__ = self.__shared_state def start_task(self, task): if self.current_task is not None: print('Another task is already running.') if not task.is_waiting(): print('This task is already launched or terminated.') return False self.current_task = task self.current_task.setDaemon(True) self.current_task.start() self.state = 'WARM' def reset_position(self): self.state = 'INIT' # Move axes to default position # Check for each switch # while (all switches are not closed): # for stepper in steppers: # if stepper.switch.is_open(): # rotate to start position time.sleep(10) self.state = 'IDLE' def auto_warming(self): # Launch a thread to handle temperature pass def stop_warming(self): # Stop thread if currently running pass def get_nozzle_temperature(self): return 250 def start_ventilation(self): return def stop_ventilation(self): return ```
{ "source": "3D-semantic-Sgmentation/pointnet", "score": 2 }
#### File: pointnet/data/tum_mls_dataset.py ```python import os import open3d import numpy as np import utils.provider as provider from utils.point_cloud_util import load_labels from plyfile import PlyData, PlyElement train_file_prefixes = [ "mls2016_8class_20cm_ascii_area1_1", "mls2016_8class_20cm_ascii_area1_2", ] validation_file_prefixes = [ "mls2016_8class_20cm_ascii_area3b", ] test_file_prefixes = [ ] all_file_prefixes = train_file_prefixes + validation_file_prefixes + test_file_prefixes map_name_to_file_prefixes = { "train": train_file_prefixes, "train_full": train_file_prefixes + validation_file_prefixes, "validation": validation_file_prefixes, "test": test_file_prefixes, "all": all_file_prefixes, } class TUMMLSFileData: def __init__( self, file_path_without_ext, has_label, use_color, box_size_x, box_size_y ): """ Loads file data """ self.file_path_without_ext = file_path_without_ext self.box_size_x = box_size_x self.box_size_y = box_size_y # Load points pcd = open3d.io.read_point_cloud(file_path_without_ext + ".pcd") self.points = np.asarray(pcd.points) # Load label. In pure test set, fill with zeros. if has_label: self.labels = load_labels(file_path_without_ext + ".labels") else: self.labels = np.zeros(len(self.points)).astype(bool) # Load colors. If not use_color, fill with zeros. if use_color: self.colors = np.asarray(pcd.colors) else: self.colors = np.zeros_like(self.points) # Sort according to x to speed up computation of boxes and z-boxes sort_idx = np.argsort(self.points[:, 0]) self.points = self.points[sort_idx] self.labels = self.labels[sort_idx] self.colors = self.colors[sort_idx] def _get_fix_sized_sample_mask(self, points, num_points_per_sample): """ Get down-sample or up-sample mask to sample points to num_points_per_sample """ # TODO: change this to numpy's build-in functions # Shuffling or up-sampling if needed if len(points) - num_points_per_sample > 0: true_array = np.ones(num_points_per_sample, dtype=bool) false_array = np.zeros(len(points) - num_points_per_sample, dtype=bool) sample_mask = np.concatenate((true_array, false_array), axis=0) np.random.shuffle(sample_mask) else: # Not enough points, recopy the data until there are enough points sample_mask = np.arange(len(points)) while len(sample_mask) < num_points_per_sample: sample_mask = np.concatenate((sample_mask, sample_mask), axis=0) sample_mask = sample_mask[:num_points_per_sample] return sample_mask def _center_box(self, points): # Shift the box so that z = 0 is the min and x = 0 and y = 0 is the box center # E.g. if box_size_x == box_size_y == 10, then the new mins are (-5, -5, 0) box_min = np.min(points, axis=0) shift = np.array( [ box_min[0] + self.box_size_x / 2, box_min[1] + self.box_size_y / 2, box_min[2], ] ) points_centered = points - shift return points_centered def _extract_z_box(self, center_point): """ Crop along z axis (vertical) from the center_point. Args: center_point: only x and y coordinates will be used points: points (n * 3) scene_idx: scene index to get the min and max of the whole scene """ # TODO TAKES LOT OF TIME !! THINK OF AN ALTERNATIVE ! scene_z_size = np.max(self.points, axis=0)[2] - np.min(self.points, axis=0)[2] box_min = center_point - [ self.box_size_x / 2, self.box_size_y / 2, scene_z_size, ] box_max = center_point + [ self.box_size_x / 2, self.box_size_y / 2, scene_z_size, ] i_min = np.searchsorted(self.points[:, 0], box_min[0]) i_max = np.searchsorted(self.points[:, 0], box_max[0]) mask = ( np.sum( (self.points[i_min:i_max, :] >= box_min) * (self.points[i_min:i_max, :] <= box_max), axis=1, ) == 3 ) mask = np.hstack( # Stack arrays in sequence horizontally (column wise) ( np.zeros(i_min, dtype=bool), mask, np.zeros(len(self.points) - i_max, dtype=bool), ) ) # mask = np.sum((points>=box_min)*(points<=box_max),axis=1) == 3 assert np.sum(mask) != 0 return mask def sample(self, num_points_per_sample): points = self.points # Pick a point, and crop a z-box around center_point = points[np.random.randint(0, len(points))] scene_extract_mask = self._extract_z_box(center_point) points = points[scene_extract_mask] labels = self.labels[scene_extract_mask] colors = self.colors[scene_extract_mask] sample_mask = self._get_fix_sized_sample_mask(points, num_points_per_sample) points = points[sample_mask] labels = labels[sample_mask] colors = colors[sample_mask] # Shift the points, such that min(z) == 0, and x = 0 and y = 0 is the center # This canonical column is used for both training and inference points_centered = self._center_box(points) return points_centered, points, labels, colors def sample_batch(self, batch_size, num_points_per_sample): """ TODO: change this to stack instead of extend """ batch_points_centered = [] batch_points_raw = [] batch_labels = [] batch_colors = [] for _ in range(batch_size): points_centered, points_raw, gt_labels, colors = self.sample( num_points_per_sample ) batch_points_centered.append(points_centered) batch_points_raw.append(points_raw) batch_labels.append(gt_labels) batch_colors.append(colors) return ( np.array(batch_points_centered), np.array(batch_points_raw), np.array(batch_labels), np.array(batch_colors), ) class TUMMLSDataset: def __init__( self, num_points_per_sample, split, use_color, box_size_x, box_size_y, path ): """Create a dataset holder num_points_per_sample (int): Defaults to 8192. The number of point per sample split (str): Defaults to 'train'. The selected part of the data (train, test, reduced...) color (bool): Defaults to True. Whether to use colors or not box_size_x (int): Defaults to 10. The size of the extracted cube. box_size_y (int): Defaults to 10. The size of the extracted cube. path (float): Defaults to 'dataset/semantic_data/'. """ # Dataset parameters self.num_points_per_sample = num_points_per_sample self.split = split self.use_color = use_color self.box_size_x = box_size_x self.box_size_y = box_size_y self.num_classes = 9 self.path = path self.labels_names = [ "unlabeled", "man-made terrain", "natural terrain", "high vegetation", "low vegetation", "buildings", "hard scape", "scanning artifact", "cars", ] # Get file_prefixes file_prefixes = map_name_to_file_prefixes[self.split] print("Dataset split:", self.split) print("Loading file_prefixes:", file_prefixes) # Load files self.list_file_data = [] for file_prefix in file_prefixes: file_path_without_ext = os.path.join(self.path, file_prefix) file_data = TUMMLSFileData( file_path_without_ext=file_path_without_ext, has_label=self.split != "test", use_color=self.use_color, box_size_x=self.box_size_x, box_size_y=self.box_size_y, ) self.list_file_data.append(file_data) # Pre-compute the probability of picking a scene self.num_scenes = len(self.list_file_data) self.scene_probas = [ len(fd.points) / self.get_total_num_points() for fd in self.list_file_data ] # Pre-compute the points weights if it is a training set if self.split == "train" or self.split == "train_full": # First, compute the histogram of each labels label_weights = np.zeros(9) for labels in [fd.labels for fd in self.list_file_data]: tmp, _ = np.histogram(labels, range(10)) label_weights += tmp # Then, a heuristic gives the weights # 1 / log(1.2 + probability of occurrence) label_weights = label_weights.astype(np.float32) label_weights = label_weights / np.sum(label_weights) self.label_weights = 1 / np.log(1.2 + label_weights) else: self.label_weights = np.zeros(9) def sample_batch_in_all_files(self, batch_size, augment=True): batch_data = [] batch_label = [] batch_weights = [] for _ in range(batch_size): points, labels, colors, weights = self.sample_in_all_files(is_training=True) if self.use_color: batch_data.append(np.hstack((points, colors))) else: batch_data.append(points) batch_label.append(labels) batch_weights.append(weights) batch_data = np.array(batch_data) batch_label = np.array(batch_label) batch_weights = np.array(batch_weights) if augment: if self.use_color: batch_data = provider.rotate_feature_point_cloud(batch_data, 3) else: batch_data = provider.rotate_point_cloud(batch_data) return batch_data, batch_label, batch_weights def sample_in_all_files(self, is_training): """ Returns points and other info within a z - cropped box. """ # Pick a scene, scenes with more points are more likely to be chosen scene_index = np.random.choice( np.arange(0, len(self.list_file_data)), p=self.scene_probas ) # Sample from the selected scene points_centered, points_raw, labels, colors = self.list_file_data[ scene_index ].sample(num_points_per_sample=self.num_points_per_sample) if is_training: weights = self.label_weights[labels] return points_centered, labels, colors, weights else: return scene_index, points_centered, points_raw, labels, colors def get_total_num_points(self): list_num_points = [len(fd.points) for fd in self.list_file_data] return np.sum(list_num_points) def get_num_batches(self, batch_size): return int( self.get_total_num_points() / (batch_size * self.num_points_per_sample) ) def get_file_paths_without_ext(self): return [file_data.file_path_without_ext for file_data in self.list_file_data] ``` #### File: 3D-semantic-Sgmentation/pointnet/newtrain.py ```python import os import sys import json import datetime import numpy as np import tensorflow.compat.v1 as tf import multiprocessing as mp import argparse import time from datetime import datetime import utils.metric as metric from data.tum_mls_dataset import TUMMLSDataset import importlib from models import pointnet_seg # Two global arg collections parser = argparse.ArgumentParser() parser.add_argument("--train_set", default="train", help="train, train_full") parser.add_argument("--config_file", default="semantic_no_color.json", help="config file path") parser.add_argument('--model', default='pointnet_seg', help='Model name: pointnet_cls or pointnet_cls_basic [default: pointnet_cls]') FLAGS = parser.parse_args() PARAMS = json.loads(open(FLAGS.config_file).read()) os.makedirs(PARAMS["logdir"], exist_ok=True) # Import dataset TRAIN_DATASET = TUMMLSDataset( num_points_per_sample=PARAMS["num_point"], split="train", box_size_x=PARAMS["box_size_x"], box_size_y=PARAMS["box_size_y"], use_color=PARAMS["use_color"], path=PARAMS["data_path"], ) VALIDATION_DATASET = TUMMLSDataset( num_points_per_sample=PARAMS["num_point"], split="validation", box_size_x=PARAMS["box_size_x"], box_size_y=PARAMS["box_size_y"], use_color=PARAMS["use_color"], path=PARAMS["data_path"], ) print(TRAIN_DATASET.get_total_num_points()) print(VALIDATION_DATASET.get_total_num_points()) NUM_CLASSES = TRAIN_DATASET.num_classes # Start logging LOG_FOUT = open(os.path.join(PARAMS["logdir"], "log_train.txt"), "w") EPOCH_CNT = 0 MODEL = importlib.import_module(FLAGS.model) # import network module def log_string(out_str): LOG_FOUT.write(out_str + "\n") LOG_FOUT.flush() print(out_str) def update_progress(progress): """ Displays or updates a console progress bar Args: progress: A float between 0 and 1. Any int will be converted to a float. A value under 0 represents a 'halt'. A value at 1 or bigger represents 100% """ barLength = 10 # Modify this to change the length of the progress bar if isinstance(progress, int): progress = round(float(progress), 2) if not isinstance(progress, float): progress = 0 if progress < 0: progress = 0 if progress >= 1: progress = 1 block = int(round(barLength * progress)) text = "\rProgress: [{}] {}%".format( "#" * block + "-" * (barLength - block), progress * 100 ) sys.stdout.write(text) sys.stdout.flush() def get_learning_rate(batch): """Compute the learning rate for a given batch size and global parameters Args: batch (tf.Variable): the batch size Returns: scalar tf.Tensor: the decayed learning rate """ learning_rate = tf.train.exponential_decay( PARAMS["learning_rate"], # Base learning rate. batch * PARAMS["batch_size"], # Current index into the dataset. PARAMS["decay_step"], # Decay step. PARAMS["learning_rate_decay_rate"], # Decay rate. staircase=True, ) learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE! return learning_rate def get_bn_decay(batch): """Compute the batch normalisation exponential decay Args: batch (tf.Variable): the batch size Returns: scalar tf.Tensor: the batch norm decay """ bn_momentum = tf.train.exponential_decay( PARAMS["bn_init_decay"], batch * PARAMS["batch_size"], float(PARAMS["decay_step"]), PARAMS["bn_decay_decay_rate"], staircase=True, ) bn_decay = tf.minimum(PARAMS["bn_decay_clip"], 1 - bn_momentum) return bn_decay def get_batch(split): np.random.seed() if split == "train": return TRAIN_DATASET.sample_batch_in_all_files( PARAMS["batch_size"], augment=True ) else: return VALIDATION_DATASET.sample_batch_in_all_files( PARAMS["batch_size"], augment=False ) def fill_queues( stack_train, stack_validation, num_train_batches, num_validation_batches ): """ Args: stack_train: mp.Queue to be filled asynchronously stack_validation: mp.Queue to be filled asynchronously num_train_batches: total number of training batches num_validation_batches: total number of validationation batches """ pool = mp.Pool(processes=mp.cpu_count()) launched_train = 0 launched_validation = 0 results_train = [] # Temp buffer before filling the stack_train results_validation = [] # Temp buffer before filling the stack_validation # Launch as much as n while True: if stack_train.qsize() + launched_train < num_train_batches: results_train.append(pool.apply_async(get_batch, args=("train",))) launched_train += 1 elif stack_validation.qsize() + launched_validation < num_validation_batches: results_validation.append(pool.apply_async(get_batch, args=("validation",))) launched_validation += 1 for p in results_train: if p.ready(): stack_train.put(p.get()) results_train.remove(p) launched_train -= 1 for p in results_validation: if p.ready(): stack_validation.put(p.get()) results_validation.remove(p) launched_validation -= 1 # Stability time.sleep(0.01) def init_stacking(): """ Returns: stacker: mp.Process object stack_validation: mp.Queue, use stack_validation.get() to read a batch stack_train: mp.Queue, use stack_train.get() to read a batch """ with tf.device("/cpu:0"): # Queues that contain several batches in advance num_train_batches = TRAIN_DATASET.get_num_batches(PARAMS["batch_size"]) num_validation_batches = VALIDATION_DATASET.get_num_batches( PARAMS["batch_size"] ) stack_train = mp.Queue(num_train_batches) stack_validation = mp.Queue(num_validation_batches) stacker = mp.Process( target=fill_queues, args=( stack_train, stack_validation, num_train_batches, num_validation_batches, ), ) stacker.start() return stacker, stack_validation, stack_train def train_one_epoch(sess, ops, train_writer, stack): """Train one epoch Args: sess (tf.Session): the session to evaluate Tensors and ops ops (dict of tf.Operation): contain multiple operation mapped with with strings train_writer (tf.FileSaver): enable to log the training with TensorBoard compute_class_iou (bool): it takes time to compute the iou per class, so you can disable it here """ is_training = True num_batches = TRAIN_DATASET.get_num_batches(PARAMS["batch_size"]) log_string(str(datetime.now())) update_progress(0) # Reset metrics loss_sum = 0 confusion_matrix = metric.ConfusionMatrix(NUM_CLASSES) # Train over num_batches batches for batch_idx in range(num_batches): # Refill more batches if empty progress = float(batch_idx) / float(num_batches) update_progress(round(progress, 2)) batch_data, batch_label, batch_weights = stack.get() # Get predicted labels feed_dict = { ops["pointclouds_pl"]: batch_data, ops["labels_pl"]: batch_label, # ops["smpws_pl"]: batch_weights, ops["is_training_pl"]: is_training, } summary, step, _, loss_val, pred_val, _ = sess.run( [ ops["merged"], ops["step"], ops["train_op"], ops["loss"], ops["pred"], ops["update_iou"], ], feed_dict=feed_dict, ) train_writer.add_summary(summary, step) pred_val = np.argmax(pred_val, 2) # Update metrics for i in range(len(pred_val)): for j in range(len(pred_val[i])): confusion_matrix.increment(batch_label[i][j], pred_val[i][j]) loss_sum += loss_val update_progress(1) log_string("mean loss: %f" % (loss_sum / float(num_batches))) log_string("Overall accuracy : %f" % (confusion_matrix.get_accuracy())) log_string("Average IoU : %f" % (confusion_matrix.get_mean_iou())) iou_per_class = confusion_matrix.get_per_class_ious() iou_per_class = [0] + iou_per_class # label 0 is ignored for i in range(1, NUM_CLASSES): log_string("IoU of %s : %f" % (TRAIN_DATASET.labels_names[i], iou_per_class[i])) def eval_one_epoch(sess, ops, validation_writer, stack): """Evaluate one epoch Args: sess (tf.Session): the session to evaluate tensors and operations ops (tf.Operation): the dict of operations validation_writer (tf.summary.FileWriter): enable to log the evaluation on TensorBoard Returns: float: the overall accuracy computed on the validationation set """ global EPOCH_CNT is_training = False num_batches = VALIDATION_DATASET.get_num_batches(PARAMS["batch_size"]) # Reset metrics loss_sum = 0 confusion_matrix = metric.ConfusionMatrix(NUM_CLASSES) log_string(str(datetime.now())) log_string("---- EPOCH %03d EVALUATION ----" % (EPOCH_CNT)) update_progress(0) for batch_idx in range(num_batches): progress = float(batch_idx) / float(num_batches) update_progress(round(progress, 2)) batch_data, batch_label, batch_weights = stack.get() feed_dict = { ops["pointclouds_pl"]: batch_data, ops["labels_pl"]: batch_label, # ops["smpws_pl"]: batch_weights, ops["is_training_pl"]: is_training, } summary, step, loss_val, pred_val = sess.run( [ops["merged"], ops["step"], ops["loss"], ops["pred"]], feed_dict=feed_dict ) validation_writer.add_summary(summary, step) pred_val = np.argmax(pred_val, 2) # BxN # Update metrics for i in range(len(pred_val)): for j in range(len(pred_val[i])): confusion_matrix.increment(batch_label[i][j], pred_val[i][j]) loss_sum += loss_val update_progress(1) iou_per_class = confusion_matrix.get_per_class_ious() # Display metrics log_string("mean loss: %f" % (loss_sum / float(num_batches))) log_string("Overall accuracy : %f" % (confusion_matrix.get_accuracy())) log_string("Average IoU : %f" % (confusion_matrix.get_mean_iou())) iou_per_class = [0] + iou_per_class # label 0 is ignored for i in range(1, NUM_CLASSES): log_string( "IoU of %s : %f" % (VALIDATION_DATASET.labels_names[i], iou_per_class[i]) ) EPOCH_CNT += 5 return confusion_matrix.get_accuracy() def train(): """Train the model on a single GPU """ with tf.Graph().as_default(): stacker, stack_validation, stack_train = init_stacking() with tf.device("/gpu:" + str(PARAMS["gpu"])): pointclouds_pl, labels_pl = MODEL.placeholder_inputs(PARAMS["batch_size"], PARAMS["num_point"]) is_training_pl = tf.placeholder(tf.bool, shape=()) # Note the global_step=batch parameter to minimize. # That tells the optimizer to helpfully increment the 'batch' parameter for # you every time it trains. batch = tf.Variable(0) bn_decay = get_bn_decay(batch) tf.summary.scalar("bn_decay", bn_decay) print("--- Get model and loss") # Get model and loss pred, end_points = MODEL.get_model(pointclouds_pl, is_training_pl, bn_decay=bn_decay) loss = MODEL.get_loss(pred, labels_pl, end_points) tf.summary.scalar('loss', loss) # Compute accuracy correct = tf.equal(tf.argmax(pred, 2), tf.to_int64(labels_pl)) accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(PARAMS["batch_size"]) tf.summary.scalar('accuracy', accuracy) # Computer mean intersection over union mean_intersection_over_union, update_iou_op = tf.metrics.mean_iou( tf.to_int32(labels_pl), tf.to_int32(tf.argmax(pred, 2)), NUM_CLASSES ) tf.summary.scalar("mIoU", tf.to_float(mean_intersection_over_union)) print("--- Get training operator") # Get training operator learning_rate = get_learning_rate(batch) tf.summary.scalar("learning_rate", learning_rate) if PARAMS["optimizer"] == "momentum": optimizer = tf.train.MomentumOptimizer( learning_rate, momentum=PARAMS["momentum"] ) else: assert PARAMS["optimizer"] == "adam" optimizer = tf.train.AdamOptimizer(learning_rate) train_op = optimizer.minimize(loss, global_step=batch) # Add ops to save and restore all the variables. saver = tf.train.Saver() # Create a session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) # Add summary writers merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter( os.path.join(PARAMS["logdir"], "train"), sess.graph ) validation_writer = tf.summary.FileWriter( os.path.join(PARAMS["logdir"], "validation"), sess.graph ) # Init variables sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) # important for mIoU ops = { "pointclouds_pl": pointclouds_pl, "labels_pl": labels_pl, # "smpws_pl": smpws_pl, "is_training_pl": is_training_pl, "pred": pred, "loss": loss, "train_op": train_op, "merged": merged, "step": batch, "end_points": end_points, "update_iou": update_iou_op, } # Train for hyper_params["max_epoch"] epochs best_acc = 0 for epoch in range(PARAMS["max_epoch"]): print("in epoch", epoch) # print("max_epoch", PARAMS["max_epoch"]) log_string("**** EPOCH %03d ****" % (epoch)) sys.stdout.flush() # Train one epoch train_one_epoch(sess, ops, train_writer, stack_train) # Evaluate, save, and compute the accuracy if epoch % 5 == 0: acc = eval_one_epoch(sess, ops, validation_writer, stack_validation) if acc > best_acc: best_acc = acc save_path = saver.save( sess, os.path.join( PARAMS["logdir"], "best_model_epoch_%03d.ckpt" % (epoch) ), ) log_string("Model saved in file: %s" % save_path) print("Model saved in file: %s" % save_path) # Save the variables to disk. if epoch % 10 == 0: save_path = saver.save( sess, os.path.join(PARAMS["logdir"], "model.ckpt") ) log_string("Model saved in file: %s" % save_path) print("Model saved in file: %s" % save_path) # Kill the process, close the file and exit stacker.terminate() LOG_FOUT.close() sys.exit() if __name__ == "__main__": train() ```
{ "source": "3dsf/librealsense", "score": 3 }
#### File: py/rspy/test.py ```python import os, sys, subprocess, traceback, platform from rspy import log n_assertions = 0 n_failed_assertions = 0 n_tests = 0 n_failed_tests = 0 test_failed = False test_in_progress = False test_info = {} # Dictionary for holding additional information to print in case of a failed check. def set_env_vars( env_vars ): """ We want certain environment variables set when we get here. We assume they're not set. However, it is impossible to change the current running environment to see them. Instead, we rerun ourselves in a child process that inherits the environment we set. To do this, we depend on a specific argument in sys.argv that tells us this is the rerun (meaning child process). When we see it, we assume the variables are set and don't do anything else. For this to work well, the environment variable requirement (set_env_vars call) should appear as one of the first lines of the test. :param env_vars: A dictionary where the keys are the name of the environment variable and the values are the wanted values in string form (environment variables must be strings) """ if sys.argv[-1] != 'rerun': log.d( 'environment variables needed:', env_vars ) for env_var, val in env_vars.items(): os.environ[env_var] = val cmd = [sys.executable] if 'site' not in sys.modules: # -S : don't imply 'import site' on initialization cmd += ["-S"] if sys.flags.verbose: # -v : verbose (trace import statements) cmd += ["-v"] cmd += sys.argv # --debug, or any other args cmd += ["rerun"] log.d( 'running:', cmd ) p = subprocess.run( cmd, stderr=subprocess.PIPE, universal_newlines=True ) sys.exit( p.returncode ) log.d( 'rerun detected' ) sys.argv = sys.argv[:-1] # Remove the rerun def find_first_device_or_exit(): """ :return: the first device that was found, if no device is found the test is skipped. That way we can still run the unit-tests when no device is connected and not fail the tests that check a connected device """ import pyrealsense2 as rs c = rs.context() if not c.devices.size(): # if no device is connected we skip the test print("No device found, skipping test") sys.exit( 0 ) return c.devices[0] def find_devices_by_product_line_or_exit(product_line): """ :param product_line: The product line of the wanted devices :return: A list of devices of specific product line that was found, if no device is found the test is skipped. That way we can still run the unit-tests when no device is connected and not fail the tests that check a connected device """ import pyrealsense2 as rs c = rs.context() devices_list = c.query_devices(product_line) if devices_list.size() == 0: print( "No device of the", product_line, "product line was found; skipping test" ) sys.exit( 0 ) return devices_list def print_stack(): """ Function for printing the current call stack. Used when an assertion fails """ print( 'Traceback (most recent call last):' ) stack = traceback.format_stack() # Avoid stack trace into format_stack(): # File "C:/work/git/lrs\unit-tests\py\rspy\test.py", line 124, in check # print_stack() # File "C:/work/git/lrs\unit-tests\py\rspy\test.py", line 87, in print_stack # stack = traceback.format_stack() stack = stack[:-2] for line in reversed( stack ): print( line, end = '' ) # format_stack() adds \n """ The following functions are for asserting test cases: The check family of functions tests an expression and continues the test whether the assertion succeeded or failed. The require family are equivalent but execution is aborted if the assertion fails. In this module, the require family is used by sending abort=True to check functions """ def check_failed(): """ Function for when a check fails """ global n_failed_assertions, test_failed n_failed_assertions += 1 test_failed = True print_info() def abort(): log.e( "Aborting test" ) sys.exit( 1 ) def check(exp, abort_if_failed = False): """ Basic function for asserting expressions. :param exp: An expression to be asserted, if false the assertion failed :param abort_if_failed: If True and assertion failed the test will be aborted :return: True if assertion passed, False otherwise """ global n_assertions n_assertions += 1 if not exp: print_stack() print("Check failed, received", exp) check_failed() if abort_if_failed: abort() return False reset_info() return True def check_equal(result, expected, abort_if_failed = False): """ Used for asserting a variable has the expected value :param result: The actual value of a variable :param expected: The expected value of the variable :param abort_if_failed: If True and assertion failed the test will be aborted :return: True if assertion passed, False otherwise """ if type(expected) == list: print("check_equal should not be used for lists. Use check_equal_lists instead") if abort_if_failed: abort() return False global n_assertions n_assertions += 1 if result != expected: print_stack() print( "Result was:", result ) print( " expected:", expected ) check_failed() if abort_if_failed: abort() return False reset_info() return True def unreachable( abort_if_failed = False ): """ Used to assert that a certain section of code (exp: an if block) is not reached :param abort_if_failed: If True and this function is reached the test will be aborted """ check(False, abort_if_failed) def unexpected_exception(): """ Used to assert that an except block is not reached. It's different from unreachable because it expects to be in an except block and prints the stack of the error and not the call-stack for this function """ global n_assertions n_assertions += 1 traceback.print_exc( file = sys.stdout ) check_failed() def check_equal_lists(result, expected, abort_if_failed = False): """ Used to assert that 2 lists are identical. python "equality" (using ==) requires same length & elements but not necessarily same ordering. Here we require exactly the same, including ordering. :param result: The actual list :param expected: The expected list :param abort_if_failed: If True and assertion failed the test will be aborted :return: True if assertion passed, False otherwise """ global n_assertions n_assertions += 1 failed = False if len(result) != len(expected): failed = True print("Check equal lists failed due to lists of different sizes:") print("The resulted list has", len(result), "elements, but the expected list has", len(expected), "elements") i = 0 for res, exp in zip(result, expected): if res != exp: failed = True print("Check equal lists failed due to unequal elements:") print("The element of index", i, "in both lists was not equal") i += 1 if failed: print_stack() print("Result list:", result) print("Expected list:", expected) check_failed() if abort_if_failed: abort() return False reset_info() return True def check_exception(exception, expected_type, expected_msg = None, abort_if_failed = False): """ Used to assert a certain type of exception was raised, placed in the except block :param exception: The exception that was raised :param expected_type: The expected type of exception :param expected_msg: The expected message in the exception :param abort_if_failed: If True and assertion failed the test will be aborted :return: True if assertion passed, False otherwise """ failed = False if type(exception) != expected_type: failed = [ "Raised exception was of type", type(exception), "and not of type", expected_type, "as expected" ] if expected_msg and str(exception) != expected_msg: failed = [ "Exception had message:", str(exception), "\nBut we expected:", expected_msg ] if failed: print_stack() print( *failed ) check_failed() if abort_if_failed: abort() return False reset_info() return True def check_frame_drops(frame, previous_frame_number, allowed_drops = 1): """ Used for checking frame drops while streaming :param frame: Current frame being checked :param previous_frame_number: Number of the previous frame :param allowed_drops: Maximum number of frame drops we accept :return: False if dropped too many frames or frames were out of order, True otherwise """ global test_in_progress if not test_in_progress: return True frame_number = frame.get_frame_number() failed = False if previous_frame_number > 0: dropped_frames = frame_number - (previous_frame_number + 1) if dropped_frames > allowed_drops: print( dropped_frames, "frame(s) starting from frame", previous_frame_number + 1, "were dropped" ) failed = True elif dropped_frames < 0: print( "Frames repeated or out of order. Got frame", frame_number, "after frame", previous_frame_number) failed = True if failed: fail() return False reset_info() return True class Information: """ Class representing the information stored in test_info dictionary """ def __init__(self, value, persistent = False): self.value = value self.persistent = persistent def info( name, value, persistent = False ): """ This function is used to store additional information to print in case of a failed test. This information is erased after the next check. The information is stored in the dictionary test_info, Keys are names (strings) and the items are of Information class If information with the given name is already stored it will be replaced :param name: The name of the variable :param value: The value this variable stores :param persistent: If this parameter is True, the information stored will be kept after the following check and will only be erased at the end of the test ( or when reset_info is called with True) """ global test_info test_info[name] = Information(value, persistent) def reset_info(persistent = False): """ erases the stored information :param persistent: If this parameter is True, even the persistent information will be erased """ global test_info if persistent: test_info.clear() else: for name, information in test_info.items(): if not information.persistent: test_info.pop(name) def print_info(): global test_info if not test_info: # No information is stored return print("Printing information") for name, information in test_info.items(): print("Name:", name, " value:", information.value) reset_info() def fail(): """ Function for manually failing a test in case you want a specific test that does not fit any check function """ check_test_in_progress() global n_failed_tests, test_failed if not test_failed: n_failed_tests += 1 test_failed = True def check_test_in_progress( in_progress = True ): global test_in_progress if test_in_progress != in_progress: if test_in_progress: raise RuntimeError( "test case is already running" ) else: raise RuntimeError( "no test case is running" ) def start(*test_name): """ Used at the beginning of each test to reset the global variables :param test_name: Any number of arguments that combined give the name of this test """ print_separator() global n_tests, test_failed, test_in_progress n_tests += 1 test_failed = False test_in_progress = True reset_info( persistent = True ) print( *test_name ) def finish(): """ Used at the end of each test to check if it passed and print the answer """ check_test_in_progress() global test_failed, n_failed_tests, test_in_progress if test_failed: n_failed_tests += 1 print("Test failed") else: print("Test passed") test_in_progress = False def print_separator(): """ For use only in-between test-cases, this will separate them in some visual way so as to be easier to differentiate. """ check_test_in_progress( False ) global n_tests if n_tests: print() print( '___' ) def print_results_and_exit(): """ Used to print the results of the tests in the file. The format has to agree with the expected format in check_log() in run-unit-tests and with the C++ format using Catch """ print_separator() global n_assertions, n_tests, n_failed_assertions, n_failed_tests if n_failed_tests: passed = n_assertions - n_failed_assertions print("test cases:", n_tests, "|" , n_failed_tests, "failed") print("assertions:", n_assertions, "|", passed, "passed |", n_failed_assertions, "failed") sys.exit(1) print("All tests passed (" + str(n_assertions) + " assertions in " + str(n_tests) + " test cases)") sys.exit(0) ```
{ "source": "3DTech-Steven7/3DTech", "score": 3 }
#### File: 3DTech-Steven7/3DTech/maya_dev.py ```python import numpy as np from cython.parallel import prange #import pandas as pd import pymel.core as pm from collections import defaultdict import time def count_time(func): def int_time(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) over_time = time.time() total_time = over_time - start_time print('程序共计耗时%s秒' % total_time) return result return int_time @count_time def target_mean_v0(data): data_shape = len(data) result = dict() value_dict = defaultdict(int) count_dict = defaultdict(int) for i in range(data_shape): data_loc_x = int(data[i][0]) data_loc_y = data[i][1] value_dict[data_loc_x] += data_loc_y count_dict[data_loc_x] += 1 for i in range(data_shape): data_loc_x = int(data[i][0]) data_loc_y = data[i][1] result[i] = (value_dict[data_loc_x] - data_loc_y) / count_dict[data_loc_x] return result @count_time def target_mean_v1(data): data_shape = data.shape[1] result = np.zeros(data.shape[1]) value_dict = defaultdict(int) count_dict = defaultdict(int) for i in range(data_shape): data_loc_x = int(data[0, i]) data_loc_y = data[1, i] value_dict[data_loc_x] += data_loc_y count_dict[data_loc_x] += 1 for i in range(data_shape): data_loc_x = int(data[0, i]) data_loc_y = data[1, i] result[i] = (value_dict[data_loc_x] - data_loc_y) / count_dict[data_loc_x] return result if __name__ == '__main__': joint_list = pm.ls(typ="joint") joint_list = [(i.side.get(), i.radius.get()) for i in joint_list] joint_list*=1000 joint_array = np.array(joint_list).T m=dict() for i,j in enumerate(target_mean_v1(joint_array).tolist()): m[i] = j m == target_mean_v0(joint_list) ```
{ "source": "3DTK/comma", "score": 2 }
#### File: csv/applications/csv_eval.py ```python import sys import os import argparse import numpy as np import re import itertools import ast import comma description = """ evaluate numerical expressions and append computed values to csv stream """ notes_and_examples = """ input fields: 1) slashes are replaced by underscores if --full-xpath is given, otherwise basenames are used 2) for ascii streams, input fields are treated as floating point numbers, unless --format is given output fields: 1) inferred from expressions (by default) or specified by --output-fields 2) appended to possibly modified input 3) treated as floating point numbers, unless --output-format is given examples: # basic ( echo 1; echo 2; echo 3 ) | %(prog)s --fields=x 'y = x**2' # using an intermediate variable ( echo 1; echo 2; echo 3 ) | %(prog)s --fields=x 'n = 2; y = x**n' --output-fields=y # ascii stream with non-default formats ( echo 0,1; echo 1,1 ) | %(prog)s --fields=x,y 'n = x<y' --output-format=ub ( echo 0,1; echo 1,1 ) | %(prog)s --fields=i,j --format=2ub 'n = i==j' --output-format=ub # binary stream ( echo 0.1,2; echo 0.1,3 ) | csv-to-bin d,i | %(prog)s --binary=d,i --fields=x,n 'y = x**n' | csv-from-bin d,i,d # evaluate one of two expressions based on condition ( echo 1,2; echo 2,1 ) | %(prog)s --fields=x,y 'a=where(x<y,x+y,x-y)' # select output based on condition ( echo 1,2 ; echo 1,3; echo 1,4 ) | %(prog)s --fields=a,b --format=2i --select="(a < b - 1) & (b < 4)" # pass through input until condition is met ( echo 1,2 ; echo 1,3; echo 1,4 ) | csv-eval --fields=a,b --format=2i --exit-if="(a < b - 1) & (b < 4)" # update input stream values in place ( echo 1,2 ; echo 3,4 ) | %(prog)s --fields=x,y "x=x+y; y=y-1" # using full xpaths ( echo 1,2 ; echo 3,4 ) | %(prog)s --fields=one/x,two/y "x+=1; y-=1" ( echo 1,2 ; echo 3,4 ) | %(prog)s --fields=one/x,two/y "one_x+=1; two_y-=1" --full-xpath # using default values ( echo 1,2 ; echo 3,4 ) | %(prog)s --fields=,y "a=x+y" --default-values="x=0;y=0" # using init values: calculate triangular numbers seq 0 10 | %(prog)s --fields=v "sum=sum+v" --init-values="sum=0" # using init values: calculate fibonacci numbers seq 0 10 | %(prog)s --fields=v "c=b;b=a+b;a=c" --output-fields a,b --init-values="a=0;b=1" # operating on time (internally represented in microseconds) echo 20171112T224515.5 | %(prog)s --format=t --fields=t1 "t2=t1+1000000" --output-format t echo 20171112T224515.5 | csv-to-bin t | %(prog)s --binary=t --fields=t1 "t2=t1+1000000" --output-format t | csv-from-bin 2t # using numpy min and max (note axis=0 needed due to implementation details) echo 0,1,2,3,4 | %(prog)s --fields=a,b,c,d,e --format=5ui "f=min((a,b,c,d,e),axis=0);g=max((a,b,c,d,e),axis=0)" # format agreement (output format should be considered) echo 5 | csv-to-bin ul | csv-eval --binary=ul --fields=a "b=a" --output-format=ul | csv-from-bin 2ul """ numpy_functions = """ functions: any function documented at http://docs.scipy.org/doc/numpy/reference/routines.html can be used in expressions provided that it is compatible with streaming, that is: - it performs element-wise operations only - it returns an array of the same shape and size as the input some examples are given below math functions: http://docs.scipy.org/doc/numpy/reference/routines.math.html ( echo 1,2; echo 3,4 ) | %(prog)s --fields=x,y --precision=2 'a = 2/(x+y); b = a*sin(x-y)' ( echo 1,2; echo 4,3 ) | %(prog)s --fields=x,y 'm = minimum(x,y)' ( echo 1; echo 2; echo 3; echo 4 ) | %(prog)s --format=ui --fields=id 'c = clip(id,3,inf)' --output-format=ui math constants: pi, e echo pi | %(prog)s --fields name --format=s[2] 'value=pi' --precision=16 --delimiter='=' echo e | %(prog)s --fields name --format=s[2] 'value=e' --precision=16 --delimiter='=' logical functions: http://docs.scipy.org/doc/numpy/reference/routines.logic.html ( echo 0,1; echo 1,2; echo 4,3 ) | %(prog)s --fields=x,y 'flag=logical_and(x<y,y<2)' --output-format=b ( echo 0,1; echo 1,2; echo 4,3 ) | %(prog)s --fields=x,y 'flag=logical_or(x>y,y<2)' --output-format=b ( echo 0; echo 1 ) | %(prog)s --format=b --fields=flag 'a=logical_not(flag)' --output-format=b bitwise functions: http://docs.scipy.org/doc/numpy/reference/routines.bitwise.html ( echo 0; echo 1 ) | %(prog)s --fields i --format=ub 'n = ~i' ( echo 0; echo 1 ) | %(prog)s --fields i --format=ub 'n = ~i.astype(bool)' ( echo 0,0; echo 0,1; echo 1,1 ) | %(prog)s --fields i,j --format=2ub 'm = i & j' ( echo 0,0; echo 0,1; echo 1,1 ) | %(prog)s --fields i,j --format=2ub 'm = i | j' string functions: http://docs.scipy.org/doc/numpy/reference/routines.char.html ( echo 'a'; echo 'a/b' ) | %(prog)s --fields=path --format=s[36] 'n=char.count(path,"/")' --output-format=ui ( echo 'a'; echo 'a/b' ) | %(prog)s --fields=path --format=s[36] 'r=char.replace(path,"/","_")' --output-format=s[36] time arithmetic: http://docs.scipy.org/doc/numpy/reference/arrays.datetime.html#datetime-and-timedelta-arithmetic echo 20150101T000000.000000 | %(prog)s --fields=t --format=t 't1=t+1;t2=t-1' --output-format=2t echo 20151231T000000 | %(prog)s --fields=t --format=t "t += timedelta64(1,'D')" echo 20151231T000000,20160515T120000 | %(prog)s --fields=t1,t2 --format=2t "dt = (t2-t1)/timedelta64(1,'D')" """ class csv_eval_error(Exception): pass def custom_formatwarning(msg, *args): return __name__ + " warning: " + str(msg) + '\n' def add_csv_options(parser): comma.csv.add_options(parser) # comma.csv.add_options(parser, defaults={'fields': 'x,y,z'}) parser.add_argument( '--format', default='', metavar='<format>', help="for ascii stream, format of named input fields (by default, 'd' for each)") parser.add_argument( '--output-fields', '-o', default=None, metavar='<names>', help="do not infer output fields from expressions; use specified fields instead") parser.add_argument( '--output-format', default='', metavar='<format>', help="format of output fields (default: 'd' for each)") # the options defined below are left for compatibility # use --output-fields and --output-format instead parser.add_argument('--append-fields', '-F', help=argparse.SUPPRESS) parser.add_argument('--append-binary', '-B', help=argparse.SUPPRESS) def get_args(): parser = argparse.ArgumentParser( description=description, epilog=notes_and_examples, formatter_class=comma.util.argparse_fmt, add_help=False) parser.add_argument( 'expressions', help='numerical expressions to evaluate (see examples)', nargs='?') parser.add_argument( '--help', '-h', action='store_true', help='show this help message and exit') parser.add_argument( '--verbose', '-v', action='store_true', help='more output to stderr') parser.add_argument( '--permissive', action='store_true', help='leave python builtins in the exec environment (use with care)') add_csv_options(parser) parser.add_argument( '--full-xpath', action='store_true', help='use full xpaths as variable names with / replaced by _ (default: use basenames of xpaths)') parser.add_argument( '--default-values', '--default', default='', metavar='<assignments>', help='default values for variables in expressions but not in input stream') parser.add_argument( '--init-values', '--init', default='', metavar='<assignments>', help='init values, applied only once') parser.add_argument( '--with-error', default='', metavar='<message>', help='if --exit-if, exit with error and a given error message') parser.add_argument( '--exit-if', '--output-until', '--until', default='', metavar='<condition>', help='output all records and exit when the condition is satisfied') parser.add_argument( '--select', '--output-if', '--if', default='', metavar='<condition>', help='select and output records of input stream that satisfy the condition') args = parser.parse_args() if args.help: if args.verbose: parser.epilog += numpy_functions else: parser.epilog += "\nfor more help run '%(prog)s -h -v'" parser.print_help() parser.exit(0) if args.fields is None or args.fields == "": sys.exit( "csv-eval: please specify --fields" ) if args.init_values == '' and args.verbose: print("csv-eval: --init currently reads one record at a time, which may be slow", file=sys.stderr) return args def ingest_deprecated_options(args): if args.append_binary: args.output_format = args.append_binary del args.append_binary if args.verbose: with comma.util.warning(custom_formatwarning) as warn: msg = "--append-binary is deprecated, consider using --output-format" warn(msg) if args.append_fields: args.output_fields = args.append_fields del args.append_fields if args.verbose: with comma.util.warning(custom_formatwarning) as warn: msg = "--append-fields is deprecated, consider using --output-fields" warn(msg) def check_options(args): if not (args.expressions or args.select or args.exit_if): raise csv_eval_error("no expressions are given") if args.binary and args.format: raise csv_eval_error("--binary and --format are mutually exclusive") if args.select or args.exit_if: if args.expressions: msg = "--select <condition> and --exit-if <condition> cannot be used with expressions" raise csv_eval_error(msg) if args.output_fields or args.output_format: msg = "--select and --exit-if cannot be used with --output-fields or --output-format" raise csv_eval_error(msg) if args.with_error: if not args.exit_if: msg = "--with-error is only used with --exit-if" raise csv_eval_error(msg) def format_without_blanks(format, fields=[], unnamed_fields=True): """ >>> from comma.csv.applications.csv_eval import format_without_blanks >>> format_without_blanks('3ui', fields=['a', 'b', 'c']) 'ui,ui,ui' >>> format_without_blanks('ui', fields=['a', 'b', 'c']) 'ui,d,d' >>> format_without_blanks('ui', fields=['a', '', 'c']) 'ui,s[0],d' >>> format_without_blanks('4ui', fields=['a', '', 'c']) 'ui,s[0],ui,s[0]' >>> format_without_blanks('3ui') 's[0],s[0],s[0]' >>> format_without_blanks('') '' >>> format_without_blanks('ui,t', ['a', 'b'], unnamed_fields=False) 'ui,t' >>> format_without_blanks('ui,t', ['a', 'b', 'c'], unnamed_fields=False) 'ui,t,d' >>> format_without_blanks('ui,,t', ['a', 'b', 'c'], unnamed_fields=False) 'ui,d,t' >>> format_without_blanks('ui,t', ['', 'b'], unnamed_fields=False) Traceback (most recent call last): ... ValueError: expected all fields to be named, got ',b' >>> format_without_blanks('ui,t,d', ['a', 'b'], unnamed_fields=False) Traceback (most recent call last): ... ValueError: format 'ui,t,d' is longer than fields 'a,b' """ def comma_type(maybe_type, field, default_type='d', type_of_unnamed_field='s[0]'): return type_of_unnamed_field if not field else maybe_type or default_type if not format and not fields: return '' maybe_types = comma.csv.format.expand(format).split(',') if not unnamed_fields: if '' in fields: msg = "expected all fields to be named, got '{}'".format(','.join(fields)) raise ValueError(msg) if len(maybe_types) > len(fields): msg = "format '{}' is longer than fields '{}'".format(format, ','.join(fields)) raise ValueError(msg) maybe_typed_fields = itertools.zip_longest(maybe_types, fields) types = [comma_type(maybe_type, field) for maybe_type, field in maybe_typed_fields] return ','.join(types) def assignment_variable_names(expressions): """ >>> from comma.csv.applications.csv_eval import assignment_variable_names >>> assignment_variable_names("a = 1; b = x + y; c = 'x = 1; y = 2'; d = (b == z)") ['a', 'b', 'c', 'd'] >>> assignment_variable_names("a, b = 1, 2") ['a', 'b'] >>> assignment_variable_names("a = b = 1") ['a', 'b'] >>> assignment_variable_names("x = 'a = \\"y = 1;a = 2\\"';") ['x'] >>> assignment_variable_names("") [] >>> assignment_variable_names("x=1; x=2; y+=1; y+=2; z=1; z+=2") ['x', 'y', 'z'] """ tree = ast.parse(expressions, '<string>', mode='exec') fields = [] for child in ast.iter_child_nodes(tree): if type(child) == ast.Assign: for target in child.targets: for node in ast.walk(target): if type(node) == ast.Name: if node.id not in fields: fields.append(node.id) elif type(child) == ast.AugAssign: if child.target.id not in fields: fields.append(child.target.id) return fields def split_fields(fields): """ >>> from comma.csv.applications.csv_eval import split_fields >>> split_fields('') [] >>> split_fields('x') ['x'] >>> split_fields('x,y') ['x', 'y'] """ return fields.split(',') if fields else [] def normalise_full_xpath(fields, full_xpath=True): """ >>> from comma.csv.applications.csv_eval import normalise_full_xpath >>> normalise_full_xpath('') [] >>> normalise_full_xpath('a/b') ['a_b'] >>> normalise_full_xpath(',a/b,,c,d/e,') ['', 'a_b', '', 'c', 'd_e', ''] >>> normalise_full_xpath(',a/b,,c,d/e,', full_xpath=False) ['', 'b', '', 'c', 'e', ''] """ full_xpath_fields = split_fields(fields) if full_xpath: return [f.replace('/', '_') for f in full_xpath_fields] return [f.split('/')[-1] for f in full_xpath_fields] def prepare_options(args): ingest_deprecated_options(args) check_options(args) check_fields(assignment_variable_names(args.default_values)) args.fields = normalise_full_xpath(args.fields, args.full_xpath) if args.binary: args.first_line = '' args.format = comma.csv.format.expand(args.binary) args.binary = True elif args.format: args.first_line = '' args.format = format_without_blanks(args.format, args.fields) args.binary = False else: args.first_line = comma.io.readlines_unbuffered(1, sys.stdin) if not args.first_line: raise csv_eval_error("first record is empty - could not guess format") args.format = comma.csv.format.guess_format(args.first_line) args.binary = False if args.verbose: print("{}: guessed format: {}".format(__name__, args.format), file=sys.stderr) if args.select or args.exit_if: return var_names = assignment_variable_names(args.expressions) args.update_fields = [f for f in var_names if f in args.fields] if args.output_fields is None: args.output_fields = [f for f in var_names if f not in args.fields] else: args.output_fields = split_fields(args.output_fields) args.output_format = format_without_blanks(args.output_format, args.output_fields, unnamed_fields=False) def restricted_numpy_env(): d = np.__dict__.copy() d.update(__builtins__={}) d.pop('sys', None) return d def update_buffer(stream, update_array): index = stream.fields.index if stream.binary: fields = stream._input_array.dtype.names for f in update_array.dtype.names: stream._input_array[fields[index(f)]] = update_array[f] else: def updated_lines(): for line, scalars in zip(stream._ascii_buffer, update_array): values = line.split(stream.delimiter) for f, s in zip(update_array.dtype.names, stream._strings(scalars)): values[index(f)] = s yield stream.delimiter.join(values) stream._ascii_buffer = list(updated_lines()) class stream(object): def __init__(self, args): self.args = args self.csv_options = dict( full_xpath=False, binary=self.args.binary, flush=self.args.flush, delimiter=self.args.delimiter, precision=self.args.precision, verbose=self.args.verbose) self.initialize_input() self.initialize_update_and_output() if self.args.verbose: self.print_info() def initialize_input(self): self.nonblank_input_fields = [_f for _f in self.args.fields if _f] if not self.nonblank_input_fields: raise csv_eval_error("please specify input stream fields, e.g. --fields=x,y") check_fields(self.nonblank_input_fields) types = comma.csv.format.to_numpy(self.args.format) self.input_t = comma.csv.struct(','.join(self.args.fields), *types) self.input = comma.csv.stream(self.input_t, **self.csv_options) def initialize_update_and_output(self): if self.args.select or self.args.exit_if: return if self.args.update_fields: all_types = comma.csv.format.to_numpy(self.args.format) index = self.args.fields.index update_types = [all_types[index(f)] for f in self.args.update_fields] update_fields = ','.join(self.args.update_fields) self.update_t = comma.csv.struct(update_fields, *update_types) if self.args.output_fields: check_output_fields(self.args.output_fields, self.nonblank_input_fields) output_types = comma.csv.format.to_numpy(self.args.output_format) output_fields = ','.join(self.args.output_fields) self.output_t = comma.csv.struct(output_fields, *output_types) self.output = comma.csv.stream(self.output_t, tied=self.input, **self.csv_options) def print_info(self, file=sys.stderr): fields = ','.join(self.input_t.nondefault_fields) format = self.input_t.format print("expressions: '{}'".format(self.args.expressions), file=file) print("select: '{}'".format(self.args.select), file=file) print("exit_if: '{}'".format(self.args.exit_if), file=file) print("default values: '{}'".format(self.args.default_values), file=file) print("input fields: '{}'".format(fields), file=file) print("input format: '{}'".format(format), file=file) if self.args.select or self.args.exit_if: return update_fields = ','.join(self.update_t.fields) if self.args.update_fields else '' output_fields = ','.join(self.output_t.fields) if self.args.output_fields else '' output_format = self.output_t.format if self.args.output_fields else '' print("update fields: '{}'".format(update_fields), file=file) print("output fields: '{}'".format(output_fields), file=file) print("output format: '{}'".format(output_format), file=file) def check_fields(fields, allow_numpy_names=True): for field in fields: if not re.match(r'^[a-z_]\w*$', field, re.I): raise csv_eval_error("'{}' is not a valid field name".format(field)) if field in ['_input', '_update', '_output']: raise csv_eval_error("'{}' is a reserved name".format(field)) if not allow_numpy_names and field in np.__dict__: raise csv_eval_error("'{}' is a reserved numpy name".format(field)) def check_output_fields(fields, input_fields): check_fields(fields) invalid_output_fields = set(fields).intersection(input_fields) if invalid_output_fields: msg = "output fields '{}' are present in input fields '{}'" \ .format(','.join(invalid_output_fields), ','.join(input_fields)) raise csv_eval_error(msg) def evaluate(stream): def disperse(var, fields): return '\n'.join("{f} = {v}['{f}']".format(v=var, f=f) for f in fields) def collect(var, fields): return '\n'.join("{v}['{f}'] = {f}".format(v=var, f=f) for f in fields) if stream.args.init_values == '': read_size = None init_code_string = '' else: read_size = 1 init_code_string = '\n'.join([stream.args.default_values, stream.args.init_values, disperse('_input', stream.nonblank_input_fields), collect('_update', stream.args.update_fields), collect('_output', stream.args.output_fields)]) code_string = '\n'.join([stream.args.default_values, disperse('_input', stream.nonblank_input_fields), disperse('_output', stream.args.output_fields), stream.args.expressions, collect('_update', stream.args.update_fields), collect('_output', stream.args.output_fields)]) init_code = compile(init_code_string, '<string>', 'exec') code = compile(code_string, '<string>', 'exec') env = np.__dict__ if stream.args.permissive else restricted_numpy_env() size = None update = None output = None input = None is_shutdown = comma.signal.is_shutdown() if stream.args.first_line: input = stream.input.read_from_line(stream.args.first_line) while not is_shutdown: if input is not None: if size != input.size: size = input.size if stream.args.update_fields: update = stream.update_t(size) if stream.args.output_fields: output = stream.output_t(size) exec(init_code, env, {'_input': input, '_update': update, '_output': output}) exec(code, env, {'_input': input, '_update': update, '_output': output}) if stream.args.update_fields: update_buffer(stream.input, update) if stream.args.output_fields: stream.output.write(output) else: stream.input.dump() input = stream.input.read( read_size ) if input is None: break def select(stream): input = None env = restricted_numpy_env() exec(stream.args.default_values, env) fields = stream.input.fields code = compile(stream.args.select, '<string>', 'eval') is_shutdown = comma.signal.is_shutdown() if stream.args.first_line: input = stream.input.read_from_line(stream.args.first_line) while not is_shutdown: if input is not None: mask = eval(code, env, {f: input[f] for f in fields}) stream.input.dump(mask=mask) input = stream.input.read() if input is None: break def exit_if(stream): input = None env = restricted_numpy_env() exec(stream.args.default_values, env) fields = stream.input.fields code = compile(stream.args.exit_if, '<string>', 'eval') is_shutdown = comma.signal.is_shutdown() if stream.args.first_line: input = stream.input.read_from_line(stream.args.first_line) while not is_shutdown: if input is not None: mask = eval(code, env, {f: input[f] for f in fields}) if mask: if not stream.args.with_error: sys.exit() name = os.path.basename(sys.argv[0]) print("{} error: {}".format(name, stream.args.with_error), file=sys.stderr) sys.exit(1) stream.input.dump() input = stream.input.read() if input is None: break def main(): try: comma.csv.time.zone('UTC') args = get_args() prepare_options(args) if args.select: select(stream(args)) elif args.exit_if: exit_if(stream(args)) else: evaluate(stream(args)) except csv_eval_error as e: name = os.path.basename(sys.argv[0]) print("{} error: {}".format(name, e), file=sys.stderr) sys.exit(1) except Exception as e: import traceback traceback.print_exc(file=sys.stderr) sys.exit(1) if __name__ == '__main__': main() ```
{ "source": "3dvkr/chemiscope", "score": 3 }
#### File: python/chemiscope/adapters.py ```python import numpy as np import warnings try: import ase HAVE_ASE = True except ImportError: HAVE_ASE = False def frames_to_json(frames): """ Convert the given ``frames`` to the JSON structure used by chemiscope. This function is a shim calling specialized implementations for all the supported frame types. Currently only `ase.Atoms` frames are supported. :param frames: iterable over structures (typically a list of frames) """ frames_list = list(frames) if HAVE_ASE and isinstance(frames_list[0], ase.Atoms): return [_ase_to_json(frame) for frame in frames_list] elif HAVE_ASE and isinstance(frames_list[0], ase.Atom): # deal with the user passing a single frame return frames_to_json([frames]) else: raise Exception(f"unknown frame type: '{frames_list[0].__class__.__name__}'") def atom_properties(frames): """ Extract "atom" properties from the given ``frames``, and give them as a dictionary compatible with :py:func:`create_input`. This function is a shim calling specialized implementations for all the supported frame types. Currently only `ase.Atoms` frames are supported. :param frames: iterable over structures (typically a list of frames) """ frames_list = list(frames) if HAVE_ASE and isinstance(frames_list[0], ase.Atoms): return _ase_atom_properties(frames_list) elif HAVE_ASE and isinstance(frames_list[0], ase.Atom): # deal with the user passing a single frame return atom_properties([frames]) else: raise Exception(f"unknown frame type: '{frames_list[0].__class__.__name__}'") def structure_properties(frames): """ Extract "structure" properties from the given ``frames``, and give them as a dictionary compatible with :py:func:`create_input`. This function is a shim calling specialized implementations for all the supported frame types. Currently only `ase.Atoms` frames are supported. :param frames: iterable over structures (typically a list of frames) """ frames_list = list(frames) if HAVE_ASE and isinstance(frames_list[0], ase.Atoms): return _ase_structure_properties(frames_list) elif HAVE_ASE and isinstance(frames_list[0], ase.Atom): # deal with the user passing a single frame return structure_properties([frames]) else: raise Exception(f"unknown frame type: '{frames_list[0].__class__.__name__}'") def _ase_to_json(frame): """Implementation of frame_to_json for ase.Atoms""" data = {} data["size"] = len(frame) data["names"] = list(frame.symbols) data["x"] = [float(value) for value in frame.positions[:, 0]] data["y"] = [float(value) for value in frame.positions[:, 1]] data["z"] = [float(value) for value in frame.positions[:, 2]] if (frame.cell.lengths() != [0.0, 0.0, 0.0]).all(): data["cell"] = list(np.concatenate(frame.cell)) return data def _ase_atom_properties(frames): """Implementation of atom_properties for ase.Atoms""" IGNORED_ASE_ARRAYS = ["positions", "numbers"] # extract the set of common properties between all frames all_names = set() extra = set() for name in frames[0].arrays.keys(): if name in IGNORED_ASE_ARRAYS: continue all_names.add(name) for frame in frames[1:]: for name in frame.arrays.keys(): if name in IGNORED_ASE_ARRAYS: continue if name not in all_names: extra.add(name) remove = [] for name in all_names: if name not in frame.arrays.keys(): remove.append(name) for name in remove: all_names.remove(name) extra.add(name) if len(extra) != 0: warnings.warn( "the following atomic properties properties are only defined " + f"for a subset of frames: {list(sorted(extra))}; they will be ignored" ) # create property in the format expected by create_input properties = { name: {"target": "atom", "values": value} for name, value in frames[0].arrays.items() if name in all_names } for frame in frames[1:]: for name, value in frame.arrays.items(): if name not in all_names: continue properties[name]["values"] = np.concatenate( [properties[name]["values"], value] ) _remove_invalid_properties(properties, "ASE") return properties def _ase_structure_properties(frames): """Implementation of structure_properties for ase.Atoms""" # extract the set of common properties between all frames all_names = set() extra = set() for name in frames[0].info.keys(): all_names.add(name) for frame in frames[1:]: for name in frame.info.keys(): if name not in all_names: extra.add(name) remove = [] for name in all_names: if name not in frame.info.keys(): remove.append(name) for name in remove: all_names.remove(name) extra.add(name) if len(extra) != 0: warnings.warn( "the following structure properties properties are only defined " + f"for a subset of frames: {list(sorted(extra))}; they will be ignored" ) # create property in the format expected by create_input properties = {name: {"target": "structure", "values": []} for name in all_names} for frame in frames: for name, value in frame.info.items(): if name in all_names: properties[name]["values"].append(value) _remove_invalid_properties(properties, "ASE") return properties def _remove_invalid_properties(properties, origin): """ Remove invalid properties from the ``properties`` dictionary. ``origin`` is used in error messages as the property origin """ to_remove = [] for name, property in properties.items(): for value in property["values"]: if not _is_convertible_to_property(value): warnings.warn( f"value '{value}' of type '{type(value)}' for the '{name}' " + f"property from {origin} is not convertible to float or " + "string, this property will be ignored." ) to_remove.append(name) break for name in to_remove: del properties[name] def _is_convertible_to_property(value): """ Check whether a value is convertible to a chemiscope property, i.e. if it is a string or something convertible to float. """ if isinstance(value, (bytes, str)): # string types return True else: # everything convertible to float try: float(value) return True except Exception: return False ```
{ "source": "3e45/minpiler", "score": 3 }
#### File: samples/object/find_player.py ```python from minpiler.std import M, L, use_object def find_player_by_name(name: str): M.unit.bind(M.at.UnitType.gamma) if M.at.const.unit.name != name: M.unit.bind(M.at.UnitType.beta) if M.at.const.unit.name != name: M.unit.bind(M.at.UnitType.alpha) if M.at.const.unit.name != name: return None return M.at.const.unit player = use_object() if player is None: player = find_player_by_name("your_name_here") if player is not None: M.unit.bind(M.at.UnitType.flare) M.unit.move(player.x, player.y) M.unit.target(player.x, player.y, 1) ``` #### File: samples/object/horizon_bomb_2.py ```python from minpiler.std import M, inline, util gamma = util.find_player_by_name("your_name") i = 0 while i < 10: x = gamma.shootX y = gamma.shootY @inline def move(): M.unit.bind(M.at.UnitType.horizon) M.unit.move(x, y) M.unit.targetp(M.at.const.unit, True) move() move() move() move() move() move() move() move() move() move() i += 1 ``` #### File: samples/std/lock.py ```python from minpiler.std import MObject, L, M, inline, Processors, sync class DekkersAlgorithm: """ Seems to be slower than the Peterson's algorithm. https://en.wikipedia.org/wiki/Dekker%27s_algorithm """ @inline @staticmethod def reset(mem: MObject, addr_wants_to_enter_0: int, addr_wants_to_enter_1: int, addr_turn: int) -> None: mem[addr_wants_to_enter_0] = 0 mem[addr_wants_to_enter_1] = 0 mem[addr_turn] = 0 @inline @staticmethod def lock_processor0(mem: MObject, addr_wants_to_enter_0: int, addr_wants_to_enter_1: int, addr_turn: int): mem[addr_wants_to_enter_0] = 1 while mem[addr_wants_to_enter_1]: if mem[addr_turn] != 0: mem[addr_wants_to_enter_0] = 0 while mem[addr_turn] != 0: pass mem[addr_wants_to_enter_0] = 1 @inline @staticmethod def lock_processor1(mem: MObject, addr_wants_to_enter_0: int, addr_wants_to_enter_1: int, addr_turn: int): mem[addr_wants_to_enter_1] = 1 while mem[addr_wants_to_enter_0]: if mem[addr_turn] != 1: mem[addr_wants_to_enter_1] = 0 while mem[addr_turn] != 1: pass mem[addr_wants_to_enter_1] = 1 @inline @staticmethod def unlock_processor0(mem: MObject, addr_wants_to_enter_0: int, addr_wants_to_enter_1: int, addr_turn: int): mem[addr_turn] = 1 mem[addr_wants_to_enter_0] = 0 @inline @staticmethod def unlock_processor1(mem: MObject, addr_wants_to_enter_0: int, addr_wants_to_enter_1: int, addr_turn: int): mem[addr_turn] = 0 mem[addr_wants_to_enter_1] = 0 class PetersonsAlgorithm: """ A mutual exclusion algorithm for two processors. Uses 3 memory addresses. https://en.wikipedia.org/wiki/Peterson%27s_algorithm """ @inline @staticmethod def reset(mem: MObject, addr_wants_to_enter_0: int, addr_wants_to_enter_1: int, addr_turn: int) -> None: mem[addr_wants_to_enter_0] = 0 mem[addr_wants_to_enter_1] = 0 mem[addr_turn] = 0 @inline @staticmethod def lock_processor0(mem: MObject, addr_wants_to_enter_0: int, addr_wants_to_enter_1: int, addr_turn: int): mem[addr_wants_to_enter_0] = 1 mem[addr_turn] = 1 while mem[addr_wants_to_enter_1] and mem[addr_turn] != 0: pass @inline @staticmethod def lock_processor1(mem: MObject, addr_wants_to_enter_0: int, addr_wants_to_enter_1: int, addr_turn: int): mem[addr_wants_to_enter_1] = 1 mem[addr_turn] = 0 while mem[addr_wants_to_enter_0] and mem[addr_turn] != 1: pass @inline @staticmethod def unlock_processor0(mem: MObject, addr_wants_to_enter_0: int, addr_wants_to_enter_1: int, addr_turn: int): mem[addr_wants_to_enter_0] = 0 @inline @staticmethod def unlock_processor1(mem: MObject, addr_wants_to_enter_0: int, addr_wants_to_enter_1: int, addr_turn: int): mem[addr_wants_to_enter_1] = 0 dekker: sync.SharedInt = 0 peterson: sync.SharedInt = 0 no_lock: sync.SharedInt = 0 @Processors.add def dekker1(): global dekker DekkersAlgorithm.lock_processor0(L.cell1, 10, 11, 12) dekker += 1 DekkersAlgorithm.unlock_processor0(L.cell1, 10, 11, 12) @Processors.add def dekker2(): global dekker DekkersAlgorithm.lock_processor1(L.cell1, 10, 11, 12) dekker += 1 DekkersAlgorithm.unlock_processor1(L.cell1, 10, 11, 12) @Processors.add def peterson1(): global peterson PetersonsAlgorithm.lock_processor0(L.cell1, 10, 11, 12) peterson += 1 PetersonsAlgorithm.unlock_processor0(L.cell1, 10, 11, 12) @Processors.add def peterson2(): global peterson PetersonsAlgorithm.lock_processor1(L.cell1, 10, 11, 12) peterson += 1 PetersonsAlgorithm.unlock_processor1(L.cell1, 10, 11, 12) @Processors.add def processor3(): global no_lock no_lock += 1 @Processors.add def processor4(): M.print(f'dekker={dekker}, peterson={peterson}, no_lock={no_lock}') M.print_flush(L.message1) while True: pass ``` #### File: cases/build/class_init5.py ```python from minpiler.std import L, MObject, Processors, inline class C: @inline def __init__(self, mem: MObject, addr: int) -> None: self.mem = mem self.addr = addr def f(): x = C(L.cell1, 10) x.mem[x.addr] = 100 @Processors.add def g(): x = C(L.cell1, 10) x.mem[x.addr] = 100 f() # > # Processor "__main__" # > write 100 cell1 10 # > # > # Processor "g" # > write 100 cell1 10 ``` #### File: cases/build/const2.py ```python from minpiler.std import Const, M, inline class A(Const): a = 1 b = 2 @inline def f(a: int): M.print(a) f(A.a) f(A.b) # > print 1 # > print 2 ``` #### File: cases/build/global.py ```python from minpiler.std import M x = 10 def f(): x = 20 def g(): def h(): global x M.print(x) h() g() f() # > print 10 ``` #### File: cases/build/name_propagation3.py ```python from minpiler.std import L, M, inline @inline def f(x): y = x M.print_flush(y) f(L.message1) # > printflush message1 ``` #### File: cases/run/function4.py ```python from minpiler.std import M, emulator def f(a): return a a = f(10) M.print(a, ";") b = f(11) M.print(a, ";", b) emulator.kill() # > 10;10;11 ``` #### File: cases/run/global1.py ```python from minpiler.std import M, emulator x = 20 def f(): global x x = 10 f() M.print(x) emulator.kill() # > 10 ``` #### File: cases/run/global3.py ```python from minpiler.std import M, emulator a = 0 b = 0 def f(k: int, v: int): global a, b if k == 0: a = v else: b = v f(1, 10) M.print(f'{a},{b}') emulator.kill() # > 0,10 ``` #### File: cases/run/scope3.py ```python from minpiler.std import M, emulator, inline x = 20 @inline def f(): x = 10 M.print(x) f() M.print(";", x) emulator.kill() # > 10;20 ``` #### File: minpiler/tests/test_build.py ```python from pathlib import Path import pytest from minpiler import compiler, optimizer test_names: list[str] = [] cases: list[tuple[str, str, Path]] = [] for f in Path(__file__).parent.glob("cases/build/**/*.py"): if f.name.startswith("_"): continue test_names.append(f.name) input = "" output = "" for line in f.read_text(encoding='utf-8').splitlines(): if line.startswith("# >"): output += line[len("# >"):].strip() + "\n" else: input += line + "\n" cases.append((input, output, f)) @pytest.mark.parametrize('input, output, filepath', cases, ids=test_names) def test_build(input: str, output: str, filepath: Path): assert str(compiler.build(input, filepath, use_emulator_instructions=True, optimize=optimizer.optimize)).strip() == output.strip() ```
{ "source": "3err0/scuploader", "score": 2 }
#### File: 3err0/scuploader/main.py ```python import ScreenCloud import time, requests from PythonQt.QtCore import QFile, QSettings, QUrl from PythonQt.QtGui import QWidget, QDialog, QDesktopServices, QMessageBox from PythonQt.QtUiTools import QUiLoader class SCUploader(): def __init__(self): self.uil = QUiLoader() self.loadSettings() def showSettingsUI(self, parentWidget): self.parentWidget = parentWidget self.settingsDialog = self.uil.load(QFile(workingDir + "/settings.ui"), parentWidget) self.settingsDialog.connect("accepted()", self.saveSettings) self.loadSettings() self.settingsDialog.group_url.input_address.text = self.url_address self.settingsDialog.open() def loadSettings(self): settings = QSettings() settings.beginGroup("uploaders") settings.beginGroup("scuploader") self.url_address = settings.value("url-address", "http://s.876974.ru/upload") settings.endGroup() settings.endGroup() def saveSettings(self): settings = QSettings() settings.beginGroup("uploaders") settings.beginGroup("scuploader") settings.setValue("url-address", self.settingsDialog.group_url.input_address.text) settings.endGroup() settings.endGroup() def isConfigured(self): self.loadSettings() return not(not self.url_address) def getFilename(self): return time.time() def upload(self, screenshot, name): self.loadSettings() url = self.url_address if not url.startswith('http'): ScreenCloud.setError('Invalid url!') return False timestamp = time.time() tmpFilename = QDesktopServices.storageLocation(QDesktopServices.TempLocation) + "/" + ScreenCloud.formatFilename(str(timestamp)) screenshot.save(QFile(tmpFilename), ScreenCloud.getScreenshotFormat()) reply = requests.post(url, files={'image': open(tmpFilename, 'rb')} ).json() try: ScreenCloud.setUrl(reply['href']) except Exception as e: ScreenCloud.setError("Could not upload to: " + self.url_address + "\nError: " + e.message) return False return True ```