metadata
dict
text
stringlengths
60
3.49M
{ "source": "jelu/dsc-datatool", "score": 2 }
#### File: dsc_datatool/generator/client_subnet_country.py ```python import maxminddb import os import logging from dsc_datatool import Generator, Dataset, Dimension, args class client_subnet_country(Generator): reader = None nonstrict = False def __init__(self, opts): Generator.__init__(self, opts) paths = opts.get('path', ['/var/lib/GeoIP', '/usr/share/GeoIP', '/usr/local/share/GeoIP']) if not isinstance(paths, list): paths = [ paths ] filename = opts.get('filename', 'GeoLite2-Country.mmdb') db = opts.get('db', None) if db is None: for path in paths: db = '%s/%s' % (path, filename) if os.path.isfile(db) and os.access(db, os.R_OK): break db = None if db is None: raise Exception('Please specify valid Maxmind database with path=,filename= or db=') logging.info('Using %s' % db) self.reader = maxminddb.open_database(db) if opts.get('nonstrict', False): self.nonstrict = True def process(self, datasets): gen_datasets = [] for dataset in datasets: if dataset.name != 'client_subnet': continue subnets = {} for d1 in dataset.dimensions: for d2 in d1.dimensions: for k, v in d2.values.items(): if k == args.skipped_key: continue elif k == args.skipped_sum_key: continue if k in subnets: subnets[k] += v else: subnets[k] = v cc = {} for subnet in subnets: try: c = self.reader.get(subnet) except Exception as e: if not self.nonstrict: raise e continue if c: iso_code = c.get('country', {}).get('iso_code', '??') if iso_code in cc: cc[iso_code] += subnets[subnet] else: cc[iso_code] = subnets[subnet] if cc: ccd = Dataset() ccd.name = 'client_subnet_country' ccd.start_time = dataset.start_time ccd.stop_time = dataset.stop_time gen_datasets.append(ccd) ccd1 = Dimension('ClientCountry') ccd1.values = cc ccd.dimensions.append(ccd1) return gen_datasets import sys if sys.version_info[0] == 3 and sys.version_info[1] == 5: # pragma: no cover Generator.__init_subclass__(client_subnet_country) ``` #### File: dsc_datatool/input/dat.py ```python import re from dsc_datatool import Input, Dataset, Dimension, process_dataset _dataset1d = [ 'client_subnet_count', 'ipv6_rsn_abusers_count', ] _dataset2d = { 'qtype': 'Qtype', 'rcode': 'Rcode', 'do_bit': 'D0', 'rd_bit': 'RD', 'opcode': 'Opcode', 'dnssec_qtype': 'Qtype', 'edns_version': 'EDNSVersion', 'client_subnet2_count': 'Class', 'client_subnet2_trace': 'Class', 'edns_bufsiz': 'EDNSBufSiz', 'idn_qname': 'IDNQname', 'client_port_range': 'PortRange', 'priming_responses': 'ReplyLen', } _dataset3d = { 'chaos_types_and_names': [ 'Qtype', 'Qname' ], 'certain_qnames_vs_qtype': [ 'CertainQnames', 'Qtype' ], 'direction_vs_ipproto': [ 'Direction', 'IPProto' ], 'pcap_stats': [ 'pcap_stat', 'ifname' ], 'transport_vs_qtype': [ 'Transport', 'Qtype' ], 'dns_ip_version': [ 'IPVersion', 'Qtype' ], 'priming_queries': [ 'Transport', 'EDNSBufSiz' ], 'qr_aa_bits': [ 'Direction', 'QRAABits' ], } class DAT(Input): def process(self, dir): global _dataset1d, _dataset2d, _dataset3d datasets = [] for d in _dataset1d: if process_dataset and not d in process_dataset: continue try: datasets += self.process1d('%s/%s.dat' % (dir, d), d) except FileNotFoundError: pass for k, v in _dataset2d.items(): if process_dataset and not k in process_dataset: continue try: datasets += self.process2d('%s/%s.dat' % (dir, k), k, v) except FileNotFoundError: pass for k, v in _dataset3d.items(): if process_dataset and not k in process_dataset: continue try: datasets += self.process3d('%s/%s.dat' % (dir, k), k, v[0], v[1]) except FileNotFoundError: pass return datasets def process1d(self, file, name): datasets = [] with open(file, 'r') as f: for l in f.readlines(): if re.match(r'^#', l): continue l = re.sub(r'[\r\n]+$', '', l) dat = re.split(r'\s+', l) if len(dat) != 2: raise Exception('DAT %r dataset %r: invalid number of elements for a 1d dataset' % (file, name)) dataset = Dataset() dataset.name = name dataset.start_time = int(dat.pop(0)) dataset.stop_time = dataset.start_time + 60 d1 = Dimension('All') d1.values = { 'ALL': int(dat[0]) } dataset.dimensions.append(d1) datasets.append(dataset) return datasets def process2d(self, file, name, field): datasets = [] with open(file, 'r') as f: for l in f.readlines(): if re.match(r'^#', l): continue l = re.sub(r'[\r\n]+$', '', l) dat = re.split(r'\s+', l) dataset = Dataset() dataset.name = name dataset.start_time = int(dat.pop(0)) dataset.stop_time = dataset.start_time + 60 d1 = Dimension('All') d1.value = 'ALL' dataset.dimensions.append(d1) d2 = Dimension(field) while dat: if len(dat) < 2: raise Exception('DAT %r dataset %r: invalid number of elements for a 2d dataset' % (file, name)) k = dat.pop(0) v = dat.pop(0) d2.values[k] = int(v) d1.dimensions.append(d2) datasets.append(dataset) return datasets def process3d(self, file, name, first, second): datasets = [] with open(file, 'r') as f: for l in f.readlines(): if re.match(r'^#', l): continue l = re.sub(r'[\r\n]+$', '', l) dat = re.split(r'\s+', l) dataset = Dataset() dataset.name = name dataset.start_time = int(dat.pop(0)) dataset.stop_time = dataset.start_time + 60 while dat: if len(dat) < 2: raise Exception('DAT %r dataset %r: invalid number of elements for a 2d dataset' % (file, name)) k = dat.pop(0) v = dat.pop(0) d1 = Dimension(first) d1.value = k dataset.dimensions.append(d1) d2 = Dimension(second) dat2 = v.split(':') while dat2: if len(dat2) < 2: raise Exception('DAT %r dataset %r: invalid number of elements for a 2d dataset' % (file, name)) k2 = dat2.pop(0) v2 = dat2.pop(0) d2.values[k2] = int(v2) d1.dimensions.append(d2) datasets.append(dataset) return datasets import sys if sys.version_info[0] == 3 and sys.version_info[1] == 5: # pragma: no cover Input.__init_subclass__(DAT) ``` #### File: dsc_datatool/output/influxdb.py ```python import re import sys import atexit from dsc_datatool import Output,args _re = re.compile(r'([,=\s])') def _key(key): return re.sub(_re, r'\\\1', key) def _val(val): ret = re.sub(_re, r'\\\1', val) if ret == '': return '""' return ret def _process(tags, timestamp, dimension, fh): if dimension.dimensions is None: return if len(dimension.dimensions) > 0: if not (dimension.name == 'All' and dimension.value == 'ALL'): tags += ',%s=%s' % (_key(dimension.name.lower()), _val(dimension.value)) for d2 in dimension.dimensions: _process(tags, timestamp, d2, fh) return if dimension.values is None: return if len(dimension.values) > 0: tags += ',%s=' % _key(dimension.name.lower()) for k, v in dimension.values.items(): print('%s%s value=%s %s' % (tags, _val(k), v, timestamp), file=fh) class InfluxDB(Output): start_timestamp = True fh = None def __init__(self, opts): Output.__init__(self, opts) timestamp = opts.get('timestamp', 'start') if timestamp == 'start': pass elif timestamp == 'stop': self.timestamp = False else: raise Exception('timestamp option invalid') file = opts.get('file', None) append = opts.get('append', False) if file: if append: self.fh = open(file, 'a') else: self.fh = open(file, 'w') atexit.register(self.close) else: self.fh = sys.stdout if opts.get('dml', False): print('# DML', file=self.fh) database = opts.get('database', None) if database: print('# CONTEXT-DATABASE: %s' % database, file=self.fh) def close(self): if self.fh: self.fh.close() self.fh = None def process(self, datasets): for dataset in datasets: tags = '%s,server=%s,node=%s' % (_key(dataset.name.lower()), args.server, args.node) if self.start_timestamp: timestamp = dataset.start_time * 1000000000 else: timestamp = dataset.end_time * 1000000000 for d in dataset.dimensions: _process(tags, timestamp, d, self.fh) if sys.version_info[0] == 3 and sys.version_info[1] == 5: # pragma: no cover Output.__init_subclass__(InfluxDB) ``` #### File: dsc_datatool/transformer/re_ranger.py ```python import re from dsc_datatool import Transformer, args _key_re = re.compile(r'^(?:(\d+)|(\d+)-(\d+))$') class ReRanger(Transformer): key = None func = None allow_invalid_keys = None range = None split_by = None def __init__(self, opts): Transformer.__init__(self, opts) self.key = opts.get('key', 'mid') self.func = opts.get('func', 'sum') self.allow_invalid_keys = opts.get('allow_invalid_keys', False) self.range = opts.get('range', None) if self.allow_invalid_keys != False: self.allow_invalid_keys = True if self.range is None: raise Exception('range must be given') m = re.match(r'^/(\d+)$', self.range) if m is None: raise Exception('invalid range') self.split_by = int(m.group(1)) if self.key != 'low' and self.key != 'mid' and self.key != 'high': raise Exception('invalid key %r' % self.key) if self.func != 'sum': raise Exception('invalid func %r' % self.func) def _process(self, dimension): global _key_re if not dimension.values: for d2 in dimension.dimensions: self._process(d2) return values = dimension.values dimension.values = {} skipped = None for k, v in values.items(): low = None high = None m = _key_re.match(k) if m: low, low2, high = m.group(1, 2, 3) if high is None: low = int(low) high = low else: low = int(low2) high = int(high) elif k == args.skipped_key: continue elif k == args.skipped_sum_key: if skipped is None: skipped = v else: skipped += v continue elif self.allow_invalid_keys: dimension.values[k] = v continue else: raise Exception('invalid key %r' % k) if self.key == 'low': nkey = low elif self.key == 'mid': nkey = int(low + ( (high - low) / 2 )) else: nkey = high nkey = int(nkey / self.split_by) * self.split_by low = nkey high = nkey + self.split_by - 1 if self.func == 'sum': if low != high: nkey = '%d-%d' % (low, high) else: nkey = str(nkey) if nkey in dimension.values: dimension.values[nkey] += v else: dimension.values[nkey] = v if skipped: dimension.values['skipped'] = skipped def process(self, datasets): for dataset in datasets: for dimension in dataset.dimensions: self._process(dimension) import sys if sys.version_info[0] == 3 and sys.version_info[1] == 5: # pragma: no cover Transformer.__init_subclass__(ReRanger) ```
{ "source": "jelumpp/mplcursors", "score": 2 }
#### File: jelumpp/mplcursors/setupext.py ```python from distutils.version import LooseVersion from functools import partial import inspect import re from pathlib import Path import setuptools from setuptools import Extension, find_namespace_packages, find_packages from setuptools.command.develop import develop from setuptools.command.install_lib import install_lib if LooseVersion(setuptools.__version__) < "40.1": # find_namespace_packages raise ImportError("setuptools>=40.1 is required") __all__ = ["Extension", "find_namespace_packages", "find_packages", "setup"] _pth_hooks = [] class pth_hook_mixin: def run(self): super().run() for fname, name, source in _pth_hooks: with Path(self.install_dir, fname).open("w") as file: file.write("import os; exec({!r}); {}()" .format(source, name)) def get_outputs(self): return (super().get_outputs() + [str(Path(self.install_dir, fname)) for fname, _, _ in _pth_hooks]) def setup(**kwargs): cmdclass = kwargs.setdefault("cmdclass", {}) cmdclass["develop"] = type( "develop_with_pth_hook", (pth_hook_mixin, cmdclass.get("develop", develop)), {}) cmdclass["install_lib"] = type( "install_lib_with_pth_hook", (pth_hook_mixin, cmdclass.get("install_lib", install_lib)), {}) setuptools.setup(**kwargs) def register_pth_hook(fname, func=None): if func is None: return partial(register_pth_hook, fname) source = inspect.getsource(func) if not re.match(r"\A@setup\.register_pth_hook.*\ndef ", source): raise SyntaxError("register_pth_hook must be used as a toplevel " "decorator to a function") _, source = source.split("\n", 1) d = {} exec(source, {}, d) if set(d) != {func.__name__}: raise SyntaxError( "register_pth_hook should define a single function") _pth_hooks.append((fname, func.__name__, source)) setup.register_pth_hook = register_pth_hook ```
{ "source": "jemand2001/knausj_talon", "score": 2 }
#### File: knausj_talon/code/mouse.py ```python import os import pathlib import subprocess from talon import (Context, Module, actions, app, cron, ctrl, imgui, noise, settings, ui) from talon_plugins import eye_mouse, eye_zoom_mouse, speech from talon_plugins.eye_mouse import (config, toggle_camera_overlay, toggle_control) key = actions.key self = actions.self scroll_amount = 0 click_job = None scroll_job = None gaze_job = None cancel_scroll_on_pop = True default_cursor = { "AppStarting": r"%SystemRoot%\Cursors\aero_working.ani", "Arrow": r"%SystemRoot%\Cursors\aero_arrow.cur", "Hand": r"%SystemRoot%\Cursors\aero_link.cur", "Help": r"%SystemRoot%\Cursors\aero_helpsel.cur", "No": r"%SystemRoot%\Cursors\aero_unavail.cur", "NWPen": r"%SystemRoot%\Cursors\aero_pen.cur", "Person": r"%SystemRoot%\Cursors\aero_person.cur", "Pin": r"%SystemRoot%\Cursors\aero_pin.cur", "SizeAll": r"%SystemRoot%\Cursors\aero_move.cur", "SizeNESW": r"%SystemRoot%\Cursors\aero_nesw.cur", "SizeNS": r"%SystemRoot%\Cursors\aero_ns.cur", "SizeNWSE": r"%SystemRoot%\Cursors\aero_nwse.cur", "SizeWE": r"%SystemRoot%\Cursors\aero_ew.cur", "UpArrow": r"%SystemRoot%\Cursors\aero_up.cur", "Wait": r"%SystemRoot%\Cursors\aero_busy.ani", "Crosshair": "", "IBeam": "", } # todo figure out why notepad++ still shows the cursor sometimes. hidden_cursor = os.path.join( os.path.dirname(os.path.realpath(__file__)), r"Resources\HiddenCursor.cur" ) mod = Module() mod.list( "mouse_button", desc="List of mouse button words to mouse_click index parameter" ) setting_mouse_enable_pop_click = mod.setting( "mouse_enable_pop_click", type=int, default=0, desc="Enable pop to click when control mouse is enabled.", ) setting_mouse_enable_pop_stops_scroll = mod.setting( "mouse_enable_pop_stops_scroll", type=int, default=0, desc="When enabled, pop stops continuous scroll modes (wheel upper/downer/gaze)", ) setting_mouse_wake_hides_cursor = mod.setting( "mouse_wake_hides_cursor", type=int, default=0, desc="When enabled, mouse wake will hide the cursor. mouse_wake enables zoom mouse.", ) setting_mouse_hide_mouse_gui = mod.setting( "mouse_hide_mouse_gui", type=int, default=0, desc="When enabled, the 'Scroll Mouse' GUI will not be shown.", ) setting_mouse_continuous_scroll_amount = mod.setting( "mouse_continuous_scroll_amount", type=int, default=80, desc="The default amount used when scrolling continuously", ) setting_mouse_wheel_down_amount = mod.setting( "mouse_wheel_down_amount", type=int, default=120, desc="The amount to scroll up/down (equivalent to mouse wheel on Windows by default)", ) continuous_scoll_mode = "" @imgui.open(x=700, y=0, software=False) def gui_wheel(gui: imgui.GUI): gui.text("Scroll mode: {}".format(continuous_scoll_mode)) gui.line() if gui.button("Wheel Stop [stop scrolling]"): actions.user.mouse_scroll_stop() @mod.action_class class Actions: def mouse_show_cursor(): """Shows the cursor""" show_cursor_helper(True) def mouse_hide_cursor(): """Hides the cursor""" show_cursor_helper(False) def mouse_wake(): """Enable control mouse, zoom mouse, and disables cursor""" eye_zoom_mouse.toggle_zoom_mouse(True) # eye_mouse.control_mouse.enable() if setting_mouse_wake_hides_cursor.get() >= 1: show_cursor_helper(False) def mouse_calibrate(): """Start calibration""" eye_mouse.calib_start() def mouse_toggle_control_mouse(): """Toggles control mouse""" toggle_control(not config.control_mouse) def mouse_toggle_camera_overlay(): """Toggles camera overlay""" toggle_camera_overlay(not config.show_camera) def mouse_toggle_zoom_mouse(): """Toggles zoom mouse""" eye_zoom_mouse.toggle_zoom_mouse(not eye_zoom_mouse.zoom_mouse.enabled) def mouse_cancel_zoom_mouse(): """Cancel zoom mouse if pending""" if ( eye_zoom_mouse.zoom_mouse.enabled and eye_zoom_mouse.zoom_mouse.state != eye_zoom_mouse.STATE_IDLE ): eye_zoom_mouse.zoom_mouse.cancel() def mouse_drag(): """(TEMPORARY) Press and hold/release button 0 depending on state for dragging""" if 1 not in ctrl.mouse_buttons_down(): # print("start drag...") ctrl.mouse_click(button=0, down=True) # app.notify("drag started") else: # print("end drag...") ctrl.mouse_click(button=0, up=True) # app.notify("drag stopped") def mouse_sleep(): """Disables control mouse, zoom mouse, and re-enables cursor""" eye_zoom_mouse.toggle_zoom_mouse(False) toggle_control(False) show_cursor_helper(True) stop_scroll() if 1 in ctrl.mouse_buttons_down(): actions.user.mouse_drag() def mouse_scroll_down(): """Scrolls down""" mouse_scroll(setting_mouse_wheel_down_amount.get())() def mouse_scroll_down_continuous(): """Scrolls down continuously""" global continuous_scoll_mode continuous_scoll_mode = "scroll down continuous" mouse_scroll(setting_mouse_continuous_scroll_amount.get())() if scroll_job is None: start_scroll() gui_wheel.show() def mouse_scroll_up(): """Scrolls up""" mouse_scroll(-setting_mouse_wheel_down_amount.get())() def mouse_scroll_up_continuous(): """Scrolls up continuously""" global continuous_scoll_mode continuous_scoll_mode = "scroll up continuous" mouse_scroll(-setting_mouse_continuous_scroll_amount.get())() if scroll_job is None: start_scroll() if setting_mouse_hide_mouse_gui.get() == 0: gui_wheel.show() def mouse_scroll_stop(): """Stops scrolling""" stop_scroll() def mouse_gaze_scroll(): """Starts gaze scroll""" global continuous_scoll_mode continuous_scoll_mode = "gaze scroll" start_cursor_scrolling() if setting_mouse_hide_mouse_gui.get() == 0: gui_wheel.show() def copy_mouse_position(): """Copy the current mouse position coordinates""" position = ctrl.mouse_pos() clip.set(repr(position)) def mouse_move_center_active_window(): """move the mouse cursor to the center of the currently active window""" rect = ui.active_window().rect ctrl.mouse_move(rect.left + (rect.width / 2), rect.top + (rect.height / 2)) def show_cursor_helper(show): """Show/hide the cursor""" if app.platform == "windows": import ctypes import winreg import win32con try: Registrykey = winreg.OpenKey( winreg.HKEY_CURRENT_USER, r"Control Panel\Cursors", 0, winreg.KEY_WRITE ) for value_name, value in default_cursor.items(): if show: winreg.SetValueEx( Registrykey, value_name, 0, winreg.REG_EXPAND_SZ, value ) else: winreg.SetValueEx( Registrykey, value_name, 0, winreg.REG_EXPAND_SZ, hidden_cursor ) winreg.CloseKey(Registrykey) ctypes.windll.user32.SystemParametersInfoA( win32con.SPI_SETCURSORS, 0, None, 0 ) except WindowsError: print("Unable to show_cursor({})".format(str(show))) else: ctrl.cursor_visible(show) def on_pop(active): if gaze_job or scroll_job: if setting_mouse_enable_pop_stops_scroll.get() >= 1: stop_scroll() elif ( not eye_zoom_mouse.zoom_mouse.enabled and eye_mouse.mouse.attached_tracker is not None ): if setting_mouse_enable_pop_click.get() >= 1: ctrl.mouse_click(button=0, hold=16000) noise.register("pop", on_pop) def mouse_scroll(amount): def scroll(): global scroll_amount if (scroll_amount >= 0) == (amount >= 0): scroll_amount += amount else: scroll_amount = amount actions.mouse_scroll(y=int(amount)) return scroll def scroll_continuous_helper(): global scroll_amount # print("scroll_continuous_helper") if scroll_amount and ( eye_zoom_mouse.zoom_mouse.state == eye_zoom_mouse.STATE_IDLE ): # or eye_zoom_mouse.zoom_mouse.state == eye_zoom_mouse.STATE_SLEEP): actions.mouse_scroll(by_lines=False, y=int(scroll_amount / 10)) def start_scroll(): global scroll_job scroll_job = cron.interval("60ms", scroll_continuous_helper) # if eye_zoom_mouse.zoom_mouse.enabled and eye_mouse.mouse.attached_tracker is not None: # eye_zoom_mouse.zoom_mouse.sleep(True) def gaze_scroll(): # print("gaze_scroll") if ( eye_zoom_mouse.zoom_mouse.state == eye_zoom_mouse.STATE_IDLE ): # or eye_zoom_mouse.zoom_mouse.state == eye_zoom_mouse.STATE_SLEEP: x, y = ctrl.mouse_pos() # the rect for the window containing the mouse rect = None # on windows, check the active_window first since ui.windows() is not z-ordered if app.platform == "windows" and ui.active_window().rect.contains(x, y): rect = ui.active_window().rect else: windows = ui.windows() for w in windows: if w.rect.contains(x, y): rect = w.rect break if rect is None: # print("no window found!") return midpoint = rect.y + rect.height / 2 amount = int(((y - midpoint) / (rect.height / 10)) ** 3) actions.mouse_scroll(by_lines=False, y=amount) # print(f"gaze_scroll: {midpoint} {rect.height} {amount}") def stop_scroll(): global scroll_amount, scroll_job, gaze_job scroll_amount = 0 if scroll_job: cron.cancel(scroll_job) if gaze_job: cron.cancel(gaze_job) scroll_job = None gaze_job = None gui_wheel.hide() # if eye_zoom_mouse.zoom_mouse.enabled and eye_mouse.mouse.attached_tracker is not None: # eye_zoom_mouse.zoom_mouse.sleep(False) def start_cursor_scrolling(): global scroll_job, gaze_job stop_scroll() gaze_job = cron.interval("60ms", gaze_scroll) # if eye_zoom_mouse.zoom_mouse.enabled and eye_mouse.mouse.attached_tracker is not None: # eye_zoom_mouse.zoom_mouse.sleep(True) ```
{ "source": "jemand2001/python-utils", "score": 3 }
#### File: utils/decorators/template.py ```python from typing import Type, TypeVar, Callable from functools import lru_cache __all__ = ['template'] T = TypeVar('T') def template(*args: str): """A template decorator. This decorator is supposed to act similarly to C++'s `template` keyword for classes. Example: ```py @template('test') class Example: def f(self): return self.test example = Example(test=12)() print(example.f()) # prints 12 ``` """ def decorator(cls: Type) -> Callable[..., type]: @lru_cache(None) def wrapper(**kwargs): masked = {k: v for k, v in kwargs.items() if k in args} name = f'{cls.__qualname__}(' + ', '.join(f'{k}={v}' for k, v in masked.items()) + ')' meta = type(cls) actual = meta(name, tuple(cls.mro())[1:], cls.__dict__ | masked) return actual return wrapper return decorator ``` #### File: utils/types_/__init__.py ```python __all__ = ['NaturalNumber', 'StrictNaturalNumber'] class NaturalNumberMeta(type): """metaclass""" def __instancecheck__(self, instance): return isinstance(instance, int) and instance >= 0 class StrictNaturalNumberMeta(type): """metaclass""" def __instancecheck__(self, instance): return isinstance(instance, int) and instance >= 1 class NaturalNumber(metaclass=NaturalNumberMeta): """A natural number is any non-negative integer""" pass class StrictNaturalNumber(metaclass=StrictNaturalNumberMeta): """A strict natural number is any integer bigger than 0""" pass ```
{ "source": "jemarulanda/microservicioMapeo", "score": 2 }
#### File: microservicioMapeo/app/app.py ```python import json import os from rabbitmq import RabbitMQ from pika import exceptions from parameter import Parameter from send_grid import SendGrid from traceability import Traceability from transform import Transform import uuid class App: '''class Application''' @classmethod def __init__(cls): '''Method init''' cls.accountName = os.getenv('ACCOUNT_NAME') print('cls.accountName ',cls.accountName) #cls.accountKey = os.getenv('ACCOUNT_KEY') print('cls.accountKey ', cls.accountKey ) cls.config = Parameter(cls.accountName, cls.accountKey).get_parameters() @classmethod def callback(cls, channel, method, properties, body): '''Receive message ''' try: del properties transaction_id = str(uuid.uuid4()) businessKey = cls.config['traceability']['businessKey'] data = json.loads(body.decode('utf-8')) #print(data) #ibmmq(**cls.config['traceability']).send_json('message') #Traceability(**cls.config['traceability']).save( # businessKey,transaction_id,"Desencolar topico", # "Subscriber-Callback", "IN", str(data), # "OK", "Mensaje recibido") print('Transform.transformacion(data)', Transform.transformacion(data)) except Exception as error: print(error) SendGrid().create_message( cls.config['sendGrid']['apiKey'], cls.config['sendGrid']['fromEmail'], cls.config['sendGrid']['toEmail'], str(error)) #Traceability(**cls.config['traceability']).save( # businessKey,transaction_id,"Error en la calidad del mensaje enviado", # "Subscriber", "IN", str(body), # "ERROR", "Lectura Fallida, "+str(error)) finally: channel.basic_ack(delivery_tag=method.delivery_tag) @classmethod def main(cls): while True: try: objqueue = RabbitMQ(**cls.config['source']) objqueue.connect() objqueue.channel.basic_consume( queue=cls.config['source']['queue'], on_message_callback=cls.callback, auto_ack=False ) #cls.traceability = Traceability(**cls.config['traceability']) try: objqueue.channel.start_consuming() except KeyboardInterrupt: objqueue.disconnect() objqueue.channel.stop_consuming() break except (exceptions.ConnectionClosedByBroker,exceptions.AMQPChannelError,exceptions.AMQPConnectionError) as error_connection: print('Conexion cerrada con a RabbitMQ', error_connection) continue if __name__ == '__main__': App().main() ``` #### File: microservicioMapeo/app/send_grid.py ```python from sendgrid import SendGridAPIClient from sendgrid.helpers.mail import Mail class SendGrid(object): @classmethod def create_message(cls, api_key:str, from_email:str, emails:list ,message:str): for email in emails: message_send = Mail( from_email=from_email, to_emails=email['email'], subject='Integración WMSOrdenesCompra Publish', html_content=f"<strong>El sistema presenta la siguiente novedad:</strong></br><p>{message}</p>" ) cls.send_message(api_key, message_send) @classmethod def send_message(cls, api_key:str, message:str): try: sg = SendGridAPIClient(api_key) sg.send(message) except Exception as e: print(str(e)) ``` #### File: microservicioMapeo/app/transform.py ```python from json import loads import json class Transform: '''Clase principal''' @classmethod def toIon(cls, source): data_header = source.get('IMI','') data_detail = source.get('ID','') new_data = '<PurchaseOrder>\n'+ \ ' <PurchaseOrderHeader>\n'+ \ ' <DocumentID>\n'+ \ ' <ID accountingEntity="WHSE1">'+data_header.get('eaoid_ordersce','').strip()+'</ID>\n'+ \ ' </DocumentID>\n'+ \ ' <Note>'+data_header.get('eaoim_comme01','').strip()+data_header.get('eaoim_comme02','').strip()+ \ data_header.get('eaoim_comme03','').strip()+data_header.get('eaoim_comme04','').strip()+ \ data_header.get('eaoim_comme05','').strip()+'</Note>\n'+ \ ' <DocumentDateTime>'+data_header.get('eaoim_dtorder','').strip()+'</DocumentDateTime>\n'+ \ ' <ExpectedrReceiptDate>'+data_header.get('eaoim_dtreq','').strip()+'</ExpectedrReceiptDate>\n'+ \ ' <Status>\n'+ \ ' <Code>Open</Code>\n'+ \ ' <ArchiveIndicator>false</ArchiveIndicator>\n'+ \ ' </Status>\n'+ \ ' <SupplierParty>\n'+ \ ' <PartyIDs>\n'+ \ ' <ID>'+data_header.get('eaoim_owner','').strip()+'</ID>\n'+ \ ' </PartyIDs>\n'+ \ ' </SupplierParty>\n'+ \ ' <ShipToParty>\n'+ \ ' <Location type="Warehouse">\n'+ \ ' <ID accountingEntity="">'+data_header.get('eaoim_dummy6401','').strip()+'</ID>\n'+ \ ' </Location>\n'+ \ ' </ShipToParty>\n'+ \ ' <SUSR1>'+data_header.get('eaoim_ordtyp','').strip()+'</SUSR1>\n'+ \ ' <SUSR2>'+data_header.get('eaoim_grpcod1','').strip()+'</SUSR2>\n'+ \ ' <SUSR3>'+data_header.get('eaoim_grpcod2','').strip()+'</SUSR3>\n'+ \ ' <SUSR4>'+data_header.get('eaoim_grpcod3','').strip()+'</SUSR4>\n'+ \ ' <TOTALORDERLINES>'+data_header.get('eaoim_totalid','').strip()+'</TOTALORDERLINES>\n'+ \ ' </PurchaseOrderHeader>\n' for detail in data_detail: new_data = new_data + ' <PurchaseOrderLine>\n'+ \ ' <LineNumber>'+detail.get('eaoid_lineitm','').strip()+'</LineNumber>\n'+ \ ' <Note>'+detail.get('eaoid_comme01','').strip()+detail.get('eaoid_comme02','').strip()+ \ detail.get('eaoid_comme03','').strip()+detail.get('eaoid_comme04','').strip()+ \ detail.get('eaoid_comme05','').strip()+'</Note>\n'+ \ ' <Status>\n'+ \ ' <Code>Open</Code>\n'+ \ ' <ArchiveIndicator>false</ArchiveIndicator>\n'+ \ ' </Status>\n'+ \ ' <Item>\n'+ \ ' <ItemID>\n'+ \ ' <ID accountingEntity="EXITO">'+detail.get('eaoid_part','').strip()+'</ID>\n'+ \ ' </ItemID>\n'+ \ ' <ServiceIndicator>false</ServiceIndicator>\n'+ \ ' </Item>\n'+ \ ' <Quantity unitCode="pza">'+detail.get('eaoid_ordqty','').strip()+'</Quantity>\n'+ \ ' <BaseUOMQuantity unitCode="pza">'+detail.get('eaoid_ordqty','').strip()+'</BaseUOMQuantity>\n'+ \ ' <ShipToParty>\n'+ \ ' <Location type="Warehouse">\n'+ \ ' <ID accountingEntity="">'+detail.get('eaoid_wareh','').strip()+'</ID>\n'+ \ ' </Location>\n'+ \ ' </ShipToParty>\n'+ \ ' <SUSR1>'+detail.get('eaoid_vuser1','').strip()+'</SUSR1>\n'+ \ ' <SUSR2>'+detail.get('eaoid_vuser3','').strip()+'</SUSR2>\n'+ \ ' <SUSR3>'+detail.get('eaoid_dummy6403','').strip()+'</SUSR3>\n'+ \ ' </PurchaseOrderLine>\n' new_data = new_data + '</PurchaseOrder>' return new_data @classmethod def transformacion(cls, source): response = cls.toIon(source) return response ```
{ "source": "jeMATHfischer/OECD_Scrapper_Selenium", "score": 3 }
#### File: jeMATHfischer/OECD_Scrapper_Selenium/simple_scraper.py ```python from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.firefox.options import Options from selenium.webdriver.common.action_chains import ActionChains import time file_path = '/home/jens/Documents_Ubuntu/' options = Options() options.add_argument('--headless') #remove comment to let it run in the background profile = webdriver.FirefoxProfile() profile.set_preference('browser.download.folderList', 2) profile.set_preference('browser.download.manager.showWhenStarting', False) profile.set_preference('browser.download.dir', file_path) profile.set_preference('browser.helperApps.neverAsk.saveToDisk', 'text/csv') driver = webdriver.Firefox(firefox_profile=profile, options=options) driver.get("https://stats.oecd.org/") begin = driver.find_element_by_id("browsethemes") begin = begin.text.split('\n') def tree_disolver(highest_level_names = begin): ''' -> This function runs through the whole tree starting from a highest given level. -> Highest given level has to be visible after driver loards page. -> Highest_level_names has to contain elements in begin. Has to be given as a single list. ''' if len(highest_level_names) != 0: for name in highest_level_names: # replace html formating to python interpretable. name = name.replace("&nbsp;", "\u00a0") single_path_closed = '//li[contains(@class ,"t closed") and span[text()="{}"]]'.format(name) single_path_opened = '//li[contains(@class ,"t opened") and span[text()="{}"]]'.format(name) parent_click = driver.find_elements_by_xpath(single_path_closed) if len(parent_click) == 1: parent_click = parent_click[0] parent_click.click() else: for item in parent_click: if item.is_displayed(): item.click() increase_depth = driver.find_elements_by_xpath(single_path_opened + '/ul/li/span') if name in [e.get_attribute("innerHTML") for e in increase_depth]: # Difficulties arise if parent has child with same name parent_name. # The branch parent_name - parent_name has to be evaluated taking two steps. parent_click = driver.find_elements_by_xpath(single_path_closed) double_path = '//li[contains(@class ,"t closed") and span[text()="{}"]]/ul/li/span[text()="{}"]'.format(name, name) double_increase_depth = driver.find_elements_by_xpath(double_path + '/ul/li/span') tree_disolver([e.get_attribute("innerHTML") for e in double_increase_depth]) if len(parent_click) == 1: parent_click = parent_click[0] parent_click.click() else: for item in parent_click: if item.isDisplayed(): item.click() else: tree_disolver([e.get_attribute("innerHTML") for e in increase_depth]) def download_clicker(download_section): ''' -> Navigates through open tree sections to the download dialog window. -> Applies to all full data sets in the given download section. ->The download_section has to be visible and all sublevels need to be unfolded. -> Use only after tree_disolver. ''' ds_xpath = '//li[span[text() = "{}"]]//a[contains(@class ,"ds")]'.format(download_section) ds_elements = driver.find_elements_by_xpath(ds_xpath) for e_ds in ds_elements: e_ds.click() try: Export_Button = WebDriverWait(driver, 40).until(EC.element_to_be_clickable((By.ID, 'export-icon'))) Export_Button.click() except: print('Timeout while determining position of export button.') try: csv_button = WebDriverWait(driver, 20).until(EC.element_to_be_clickable((By.XPATH, "//a[span[@id='export-csv-icon']]"))) csv_button.click() csv_button.click() except: print('Timeout while determining position of csv category.') try: iframe_choice = WebDriverWait(driver, 20).until(EC.element_to_be_clickable((By.XPATH, '//iframe[@id="DialogFrame"]'))) driver.switch_to.frame(iframe_choice) download = WebDriverWait(driver, 20).until(EC.element_to_be_clickable((By.XPATH, '//input[@id = "_ctl12_btnExportCSV"]'))) ActionChains(driver).click(download).perform() driver.switch_to.default_content() except: print('Timeout while determining position of download button.') try: close = WebDriverWait(driver, 20).until(EC.element_to_be_clickable((By.XPATH, '//span[contains(@class,"ui-icon ui-icon-closethick")]'))) close.click() except: print('Timeout while determining position of exit button.') tree_disolver(['Labour', 'Globalisation']) #download_clicker('Africapolis') time.sleep(10) driver.quit() ```
{ "source": "jemaw/klvdata", "score": 2 }
#### File: klvdata/klvdata/setparser.py ```python from pprint import pformat from abc import ABCMeta from abc import abstractmethod from collections import OrderedDict from klvdata.element import Element from klvdata.element import UnknownElement from klvdata.klvparser import KLVParser class SetParser(Element, metaclass=ABCMeta): """Parsable Element. Not intended to be used directly. Always as super class.""" _unknown_element = UnknownElement def __init__(self, value, key_length=1): """All parser needs is the value, no other information""" super().__init__(self.key, value) self.key_length = key_length self.items = OrderedDict() self.parse() def __getitem__(self, key): """Return element provided bytes key. For consistency of this collection of modules, __getitem__ does not attempt to add convenience of being able to index by the int equivalent. Instead, the user should pass keys with method bytes. """ return self.items[bytes(key)] def parse(self): """Parse the parent into items. Called on init and modification of parent value. If a known parser is not available for key, parse as generic KLV element. """ for key, value in KLVParser(self.value, self.key_length): try: self.items[key] = self.parsers[key](value) except (KeyError, ValueError, TypeError): self.items[key] = self._unknown_element(key, value) @classmethod def add_parser(cls, obj): """Decorator method used to register a parser to the class parsing repertoire. obj is required to implement key attribute supporting bytes as returned by KLVParser key. """ # If sublcass of ElementParser does not implement key, dict accepts key of # type property object. bytes(obj.key) will raise TypeError. ElementParser # requires key as abstract property but no raise until instantiation which # does not occur because the value is never recalled and instantiated from # parsers. cls.parsers[bytes(obj.key)] = obj return obj @property @classmethod @abstractmethod def parsers(cls): # Property must define __getitem__ pass @parsers.setter @classmethod @abstractmethod def parsers(cls): # Property must define __setitem__ pass def __repr__(self): return pformat(self.items, indent=1) def __str__(self): return str_dict(self.items) def MetadataList(self): ''' Return metadata dictionary''' metadata = {} def repeat(items, indent=1): for item in items: try: metadata[item.TAG] = (item.LDSName, item.ESDName, item.UDSName, str(item.value.value)) except: None if hasattr(item, 'items'): repeat(item.items.values(), indent + 1) repeat(self.items.values()) return OrderedDict(metadata) def structure(self): print(str(type(self))) def repeat(items, indent=1): for item in items: print(indent * "\t" + str(type(item))) if hasattr(item, 'items'): repeat(item.items.values(), indent+1) repeat(self.items.values()) def str_dict(values): out = [] def per_item(value, indent=0): for item in value: if isinstance(item): out.append(indent * "\t" + str(item)) else: out.append(indent * "\t" + str(item)) per_item(values) return '\n'.join(out) ```
{ "source": "jemay/where-in-the-world", "score": 3 }
#### File: jemay/where-in-the-world/server.py ```python from flask import Flask, render_template, request import psycopg2 import psycopg2.extras import sys reload(sys) sys.setdefaultencoding("UTF8") app = Flask(__name__) def connectToDB(): connectionString = 'dbname=world user=searcher password=<PASSWORD>clo host=localhost' try: return psycopg2.connect(connectionString) except: print("Can't connect to database.") @app.route('/', methods=['GET', 'POST']) def mainIndex(): #Show the main page if request.method == 'GET': return render_template('index.html', selectedMenu='Home') #Show the search page elif request.method == 'POST': conn=connectToDB() cur=conn.cursor() try: query = {'place': request.form['worldSearch']} print("Query found") cur.execute("SELECT name, code, continent FROM Country WHERE name = %(place)s OR Code = %(place)s OR Continent = %(place)s;", query) headers = ['Country', 'Code', 'Continent'] if cur.rowcount == 0: headers = ['City', 'District', 'Country'] cur.execute("SELECT name, district, countryCode FROM City WHERE name = %(place)s OR district = %(place)s;", query) except: print("ERROR executing SELECT") try: searchResults = cur.fetchall() except: return render_template('index.html', selectedMenu='Nothing') if cur.rowcount == 0: return render_template('index.html', selectedMenu='Nothing') return render_template('index.html', selectedMenu='Find', results=searchResults, headers=headers) """ @app.route('/find', methods=['POST']) def find(): return render_template('find.html') """ if __name__ == '__main__': app.debug=True app.run(host='0.0.0.0', port=8080) ```
{ "source": "Jembe/jembe-demo", "score": 2 }
#### File: jembe-demo/jembe_demo/__init__.py ```python import os from flask import Flask from . import jmb, db, commands def create_app(config=None): from . import models, views, pages app = Flask(__name__, instance_relative_config=True) # app.config.from_mapping({SECRET_KEY="dev",}) if config is not None: if isinstance(config, dict): app.config.from_mapping(config) elif config.endswith(".py"): app.config.from_pyfile(config) else: app.config.from_pyfile("config.py", silent=True) try: os.makedirs(app.instance_path) except OSError: pass jmb.init_jembe(app) db.init_db(app) views.init_views(app) commands.init_commands(app) return app ``` #### File: jembe_demo/pages/demo_upload.py ```python from typing import TYPE_CHECKING, Optional, Union, List, Any from jembe import Component, File, listener from wtforms import Form, BooleanField, FileField, validators from jembe_demo.jmb import jmb # from wtforms import Form, FileField if TYPE_CHECKING: from flask import Response from jembe import Event, ComponentConfig class DemoUploadSimple(Component): """ Uploades files to public or private storage and redisplays itself showing uploaded file """ def __init__(self, photo: Optional[File] = None, upload_to_public: bool = False): if photo is not None and photo.in_temp_storage(): # TODO check if photo is acctual photo if upload_to_public: photo.move_to_public() else: photo.move_to_private() photo.grant_access() if photo and photo.in_temp_storage(): self.state.photo = None super().__init__() class MultiUploadSimple(Component): """ Uploades multipe files to public or private storage and redisplays itself showing uploaded file """ def __init__( self, photos: Optional[List[File]] = None, upload_to_public: bool = True ): if photos is not None: for photo in photos: if photo.in_temp_storage(): # TODO check if photo is acctual photo if upload_to_public: photo.move_to_public() else: photo.move_to_private() photo.grant_access() else: self.state.photos = list() super().__init__() class PhotoForm(Form): photo = FileField("Photo", [validators.regexp("^[^/\\]\.[jpg|png]$")]) upload_to_public = BooleanField( "Upload to public storage", [validators.input_required()], default=True ) class DemoUploadWtForm(Component): """Uses wtForm and simulates saving to database by processing photo in save() action""" def __init__(self, form: Optional[PhotoForm] = None): if form is None: form = PhotoForm() if ( form.photo.data is not None and form.photo.data.in_temp_storage() ): if form.upload_to_public.data: form.photo.data.move_to_public() else: form.photo.data.move_to_private() form.photo.data.grant_access() self.state.form = form super().__init__() @classmethod def dump_init_param(cls, name: str, value: Any) -> Any: if name == "form": result = value.data.copy() if value is not None else dict() if "photo" in result and result["photo"] is not None: result ["photo"] = File.dump_init_param(result ["photo"]) return result return super().dump_init_param(name, value) # type:ignore @classmethod def load_init_param(cls, config: "ComponentConfig", name: str, value: Any) -> Any: if name == "form": if "photo" in value and value["photo"] is not None: value["photo"] = File.load_init_param(value["photo"]) return PhotoForm(data=value) return super().load_init_param(config, name, value) # type:ignore @jmb.page( "demo_upload", Component.Config( components=dict( simple=DemoUploadSimple, wtform=DemoUploadWtForm, multi=MultiUploadSimple ) ), ) class DemoUploadPage(Component): def __init__(self, display_mode: str = "simple"): if display_mode not in self._config.components_configs.keys(): self.state.display_mode = list(self._config.components_configs.keys())[0] super().__init__() @listener(event="_display", source="./*") def on_child_display(self, event: "Event"): self.state.display_mode = event.source_name def display(self) -> Union[str, "Response"]: return self.render_template_string( """ <html> <head> <link rel="stylesheet" href="{{ url_for('static', filename='css/jembe_demo.css') }}"> <link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300italic,700,700italic"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.1/normalize.css"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/milligram/1.4.1/milligram.css"> </head> <body> <div class="container"> {% include "global_nav.html" %} <nav> <a href="{{component('simple').url}}" jmb-on:click.stop.prevent="{{component().jrl}}">Simple Upload</a> <a href="{{component('multi').url}}" jmb-on:click.stop.prevent="{{component().jrl}}">Multiple Upload</a> <a href="{{component('wtform').url}}" jmb-on:click.stop.prevent="{{component().jrl}}">WTForm Upload</a> </nav> {{component(display_mode)}} </div> <script src="{{ url_for('jembe.static', filename='js/jembe.js') }}"></script> </body><html>""" ) ```
{ "source": "jemberton/haccuweather", "score": 2 }
#### File: jemberton/haccuweather/__init__.py ```python from . import weather DOMAIN = 'haccuweather' def setup(hass, config): def call_api(call): weather._LOGGER.info("Haccuweather is calling API manually/forcefully ...") weather.haccuweather_entity.call_api() hass.services.register(DOMAIN, 'call_api', call_api) return True ```
{ "source": "jembrown/revbayes_kernel", "score": 2 }
#### File: revbayes_kernel/revbayes_kernel/install.py ```python import json import os import sys try: from jupyter_client.kernelspec import install_kernel_spec except ImportError: from IPython.kernel.kernelspec import install_kernel_spec from IPython.utils.tempdir import TemporaryDirectory kernel_json = { "argv": [sys.executable, "-m", "revbayes_kernel", "-f", "{connection_file}"], "display_name": "RevBayes", "language": "bash", "mimetype": "text/x-rsrc", "codemirror_mode": "R", "name": "revbayes_kernel", } def install_my_kernel_spec(user=True): user = '--user' in sys.argv or not _is_root() with TemporaryDirectory() as td: os.chmod(td, 0o755) # Starts off as 700, not user readable with open(os.path.join(td, 'kernel.json'), 'w') as f: json.dump(kernel_json, f, sort_keys=True) kernel_name = kernel_json['name'] try: install_kernel_spec(td, kernel_name, user=user, replace=True) except: install_kernel_spec(td, kernel_name, user=not user, replace=True) def _is_root(): try: return os.geteuid() == 0 except AttributeError: return False # assume not an admin on non-Unix platforms def main(argv=[]): user = '--user' in argv or not _is_root() install_my_kernel_spec(user=user) if __name__ == '__main__': main(argv=sys.argv) ``` #### File: revbayes_kernel/revbayes_kernel/kernel.py ```python from __future__ import print_function import codecs import glob import os import re import shutil import subprocess import sys import tempfile import uuid from xml.dom import minidom from metakernel import MetaKernel, ProcessMetaKernel, REPLWrapper, u from metakernel.pexpect import which from . import __version__ STDIN_PROMPT = '> ' STDIN_PROMPT_REGEX = re.compile(r'%s' % STDIN_PROMPT) HELP_LINKS = [ { 'text': "RevBayes", 'url': "https://revbayes.org", }, { 'text': "RevBayes Kernel", 'url': "https://github.com/sdwfrost/revbayes_kernel", }, ] + MetaKernel.help_links class RevBayesKernel(ProcessMetaKernel): implementation = 'RevBayes Kernel' implementation_version = __version__, language = 'Rev' help_links = HELP_LINKS _revbayes_engine = None @property def language_info(self): return {'mimetype': 'text/x-rsrc', 'name': 'RevBayes', 'file_extension': '.Rev', 'help_links': HELP_LINKS, 'pygments_lexer': 'R', 'codemirror_mode': {'name': 'r' }} @property def banner(self): msg = 'RevBayes Kernel v%s' return msg % (__version__) @property def revbayes_engine(self): if self._revbayes_engine: return self._revbayes_engine self._revbayes_engine = RevBayesEngine(error_handler=self.Error, stdin_handler=self.raw_input, stream_handler=self.Print, logger=self.log) return self._revbayes_engine def makeWrapper(self): """Start an RevBayes process and return a :class:`REPLWrapper` object. """ return self.revbayes_engine.repl def do_execute_direct(self, code, silent=False): if code.strip() in ['q()', 'quit()']: self._revbayes_engine = None self.do_shutdown(True) return val = ProcessMetaKernel.do_execute_direct(self, code, silent=silent) return val def get_kernel_help_on(self, info, level=0, none_on_fail=False): obj = info.get('help_obj', '') if not obj or len(obj.split()) > 1: if none_on_fail: return None else: return "" return self.revbayes_engine.eval('?%s' % obj, silent=True) def Print(self, *args, **kwargs): # Ignore standalone input hook displays. out = [] for arg in args: if arg.strip() == STDIN_PROMPT: return if arg.strip().startswith(STDIN_PROMPT): arg = arg.replace(STDIN_PROMPT, '') out.append(arg) super(RevBayesKernel, self).Print(*out, **kwargs) def raw_input(self, text): # Remove the stdin prompt to restore the original prompt. text = text.replace(STDIN_PROMPT, '') return super(RevBayesKernel, self).raw_input(text) class RevBayesEngine(object): def __init__(self, error_handler=None, stream_handler=None, stdin_handler=None, logger=None): self.logger = logger self.executable = self._get_executable() self.repl = self._create_repl() self.error_handler = error_handler self.stream_handler = stream_handler self.stdin_handler = stdin_handler self._startup() def eval(self, code, timeout=None, silent=False): """Evaluate code using the engine. """ stream_handler = None if silent else self.stream_handler if self.logger: self.logger.debug('RevBayes eval:') self.logger.debug(code) try: resp = self.repl.run_command(code.rstrip(), timeout=timeout, stream_handler=stream_handler, stdin_handler=self.stdin_handler) resp = resp.replace(STDIN_PROMPT, '') if self.logger and resp: self.logger.debug(resp) return resp except KeyboardInterrupt: return self._interrupt(True) except Exception as e: if self.error_handler: self.error_handler(e) else: raise e def _startup(self): here = os.path.realpath(os.path.dirname(__file__)) self.eval('setwd("%s")' % here.replace(os.path.sep, '/')) def _create_repl(self): cmd = self.executable # Interactive mode prevents crashing on Windows on syntax errors. # Delay sourcing the "~/.octaverc" file in case it displays a pager. repl = REPLWrapper(cmd_or_spawn=cmd, prompt_regex=r'[>+] $', prompt_change_cmd=None) if os.name == 'nt': repl.child.crlf = '\n' repl.interrupt = self._interrupt # Remove the default 50ms delay before sending lines. repl.child.delaybeforesend = None return repl def _interrupt(self, silent=False): if (os.name == 'nt'): msg = '** Warning: Cannot interrupt RevBayes on Windows' if self.stream_handler: self.stream_handler(msg) elif self.logger: self.logger.warn(msg) return self._interrupt_expect(silent) return REPLWrapper.interrupt(self.repl) def _interrupt_expect(self, silent): repl = self.repl child = repl.child expects = [repl.prompt_regex, child.linesep] expected = uuid.uuid4().hex repl.sendline('print("%s");' % expected) if repl.prompt_emit_cmd: repl.sendline(repl.prompt_emit_cmd) lines = [] while True: # Prevent a keyboard interrupt from breaking this up. while True: try: pos = child.expect(expects) break except KeyboardInterrupt: pass if pos == 1: # End of line received line = child.before if silent: lines.append(line) else: self.stream_handler(line) else: line = child.before if line.strip() == expected: break if len(line) != 0: # prompt received, but partial line precedes it if silent: lines.append(line) else: self.stream_handler(line) return '\n'.join(lines) def _get_executable(self): """Find the best RevBayes executable. """ executable = os.environ.get('REVBAYES_JUPYTER_EXECUTABLE', None) if not executable or not which(executable): if which('rb-jupyter'): executable = 'rb-jupyter' else: msg = ('RevBayes Executable not found, please add to path or set', '\"REVBAYES_JUPYTER_EXECUTABLE\" environment variable.', 'See README.md for instructions to build rb-jupyter.') raise OSError(msg) executable = executable.replace(os.path.sep, '/') return executable ```
{ "source": "jemcghee3/60001", "score": 4 }
#### File: jemcghee3/60001/ch10fe4.py ```python import datetime class Person(object): def __init__(self, name): """Assumes name a string. Create a person""" self._name = name try: last_blank = name.rindex(' ') self._last_name = name[last_blank+1:] except: self._last_name = name self._birthday = None # Error in book code excludes _ def get_name(self): """Returns self's full name""" return self._name def get_last_name(self): """Returns self's last name""" return self._last_name def set_birthday(self, birthdate): """Assumes birthdate is of type datetime.date Sets self's birthday to birthdate""" self._birthday = birthdate def get_age(self): """Returns self's current age in days""" if self._birthday == None: raise ValueError return (datetime.date.today() - self._birthday).days def __lt__(self, other): """Assume other a Person Returns True if self precedes other in alphabetical order, and False otherwise. Comparison is based on last names, but if these are the same full names are compared.""" if self._last_name == other._last_name: return self._name < other._name return self._last_name < other._last_name def __str__(self): """Returns self's name""" return self._name class MIT_Person(Person): _next_id_num = 0 #identification number def __init__(self, name): super().__init__(name) self._id_num = MIT_Person._next_id_num MIT_Person._next_id_num += 1 def get_id_num(self): return self._id_num def __lt__(self, other): return self._id_num < other._id_num class Student(MIT_Person): pass class UG(Student): def __init__(self, name, class_year): super().__init__(name) self._year = class_year def get_class(self): return self._year class Grad(Student): pass class Grades(object): def __init__(self): """Create empty grade book""" self._students = [] self._grades = {} self._is_sorted = True def add_student(self, student): """Assumes: student is of type Student Add student to the grade book""" if student in self._students: raise ValueError('Duplicate student') self._students.append(student) self._grades[student.get_id_num()] = [] self._is_sorted = False def add_grade(self, student, grade): """Assumes: grade is a float Add grade to the list of grades for student""" try: self._grades[student.get_id_num()].append(grade) except: raise ValueError('Student not in mapping') def get_grades(self, student): """Return a list of grades for student""" try: return self._grades[student.get_id_num()][:] except: raise ValueError('Student not in mapping') def get_students(self): """Return a sorted list of the students in the grade book""" if not self._is_sorted: self._students.sort() self._is_sorted = True for s in self._students: yield s # Finger exercise: Add to Grades a generator that meets the #specification def get_students_above(self, grade): """Return the students a mean grade > g one at a time""" for s in self.get_students(): if sum(self.get_grades(s))/len(self.get_grades(s)) > grade: yield s book = Grades() j = Grad('Julie') l = Grad('Lisa') k = Grad('Katherine') book.add_student(j) book.add_student(l) book.add_student(k) book.add_grade(j, 100) book.add_grade(j, 10) book.add_grade(j, 0) book.add_grade(l, 20) book.add_grade(l, 10) book.add_grade(l, 1) book.add_grade(k, 0) book.add_grade(k, 1) book.add_grade(k, 19) for s in book.get_students(): print(s) print('') for s in book.get_students_above(10): print(s) ``` #### File: jemcghee3/60001/ch5fe3.py ```python def f(L1, L2): """L1, L2 lists of same length of numbers returns the sum of raising each element in L1 to the power of the element in the same index in L2 For example, f([1,2], [2,3]) returns 9""" return sum(n for n in map(lambda x, y: x ** y, L1, L2)) list1 = [2, 6, 4] list2 = [1, 2, 3] print(f(list1, list2)) ``` #### File: jemcghee3/60001/ch7fe1.py ```python import calendar def shopping_days(year): """year a number >= 1941 returns the number of days between U.S. Thanksgiving and Christmas in year""" # calculate the date of Thanksgiving each year turkey_day = find_thanksgiving(year) # calculate how many more days are after Thanksgiving in November nov_shopping_days = november_days_left(turkey_day) # add the 24 day in December before christmas dec_shopping_days = 24 # return the sum return nov_shopping_days + dec_shopping_days def find_thanksgiving(year): """code given in book year a number >= 1941 returns the date in November for Thanksgiving that year""" month = calendar.monthcalendar(year, 11) if month[0][calendar.THURSDAY] != 0: thanksgiving = month[3][calendar.THURSDAY] else: thanksgiving = month[4][calendar.THURSDAY] return thanksgiving def find_thanksgiving_checker(): for i in range(1941,2022): print(f'In {i}, Thanksgiving was on November {find_thanksgiving(i)}') # find_thanksgiving_checker() def november_days_left(d): """d is an integer representing the date in November for Thanksgiving returns the remaining days in November""" return 30 - d def shopping_days_checker(): for i in range(1941,2022): print(f'In {i}, there were {shopping_days(i)} shopping days between Thanksgiving and Christmas.') shopping_days_checker() ``` #### File: jemcghee3/60001/ch7fe2.py ```python import calendar def shopping_days(year): """year a number > 1957 returns the number of days between Canadian Thanksgiving and Christmas in year""" # calculate the date of Canadian Thanksgiving each year turkey_day = find_canadian_thanksgiving(year) # do Canadians eat turkey for Thanksgiving? # calculate how many more days are after Thanksgiving in October oct_shopping_days = october_days_left(turkey_day) # add the 30 days in November nov_shopping_days = 30 # add the 24 day in December before christmas dec_shopping_days = 24 # return the sum return oct_shopping_days + nov_shopping_days + dec_shopping_days def find_canadian_thanksgiving(year): """code given in book for November, modified for October year a number >= 1941 returns the date in October for Canadian Thanksgiving that year""" month = calendar.monthcalendar(year, 10) if month[0][calendar.MONDAY] != 0: thanksgiving = month[1][calendar.MONDAY] else: thanksgiving = month[2][calendar.MONDAY] return thanksgiving def find_canadian_thanksgiving_checker(): for i in range(1958,2022): print(f'In {i}, Thanksgiving was on October {find_canadian_thanksgiving(i)}') # find_canadian_thanksgiving_checker() def october_days_left(d): """d is an integer representing the date in October for Canadian Thanksgiving returns the remaining days in October""" return 31 - d def shopping_days_checker(): for i in range(1958,2022): print(f'In {i}, there were {shopping_days(i)} shopping days between Canadian Thanksgiving and Christmas.') shopping_days_checker() ``` #### File: jemcghee3/60001/ch7fe3.py ```python def fib(n): """Assumes n int >= 0 Returns Fibonacci of n""" if n == 0 or n == 1: return 1 else: return fib(n-1) + fib(n-2) with open('fib_file.txt', 'w') as fib_handle: for i in range(10): fib_handle.write(str(fib(i)) + '\n') with open('fib_file.txt', 'r') as fib_handle: for line in fib_handle: print(line) ```
{ "source": "jemcmahan13/pygll", "score": 3 }
#### File: jemcmahan13/pygll/emitter.py ```python from stock import GOBJ import re from itertools import count log = False class GrammarTerm(object): def __init__(self): self.endOf = set() # productions this term ends (for follow set) # Keep track of which Terminals and Nonterminals follow this one; # used to compute the follow set self.followers = set() def findfollows(self): follow = set() for x in self.endOf: if x != self: self.followers.update(x.follow) for x in self.followers: follow.update(set(y for y in x.first if y)) return follow class Terminal(GrammarTerm): def __init__(self, name, pattern): super().__init__() self.name = name self.pattern = re.compile(pattern) self._follow = None self.compiled = True @property def first(self): return set((self,)) # the terminal is a first token @property def follow(self): if self._follow: return self._follow follow = self.findfollows() self._follow = follow return self._follow def compile(self, caller=None): return def __call__(self, token): # See if the given token matches this terminal if log: print("Checking token ", token, "against ", self.name) return self.name == token def __str__(self): return "{}".format(self.name) def __repr__(self): return "{}:{}".format(self.name, self.pattern.pattern) class Nonterminal(GrammarTerm): def __init__(self, name): super().__init__() self.name = name self.productions = [] self._first = set() self._follow = set() self.compiled = False self.top = False self.rules = [] # will eventually hold tuples of (first-set, production) for parsing def addProduction(self, prod): self.productions.append(prod) @property def first(self): if self._first: return self._first first = set() if isinstance(self, Set): for prod in self.productions: for p in prod.prod: first.update(p.first) else: for prod in self.productions: first.update(prod.first) self._first = first return first @property def follow(self): if self._follow: return self._follow if self.top: self._follow.add(Terminal('EOF', r'\Z')) # end of input terminal if log: print("Follow of ", self, self._follow) self._follow.update(self.findfollows()) if self in self.followers: self.followers.remove(self) for f in self.followers: if log: print("Getting first set of {}: {}".format(f, f.first)) self._follow.update(set(x for x in f.first if x)) if log: print(self._follow, '\n') return self._follow def root(self): # This nonterminal is the top level (start) symbol # Add EOF to its follow set # print("Root called on ", self) try: self.compile() self.top = True except RecursionError as e: print("RecursionError: Are you sure your grammar has no left-recursion?") sys.exit(1) def compile(self, caller=None): if self.compiled: return self.compiled = True for prod in self.productions: if prod != caller: prod.compile() def __str__(self): return "{}".format(self.name) def __repr__(self): return "{}: {}".format(self.name, ' | '.join([str(x) for x in self.productions])) class Production(object): ''' A Production is an ordered list of terms (Terminals and Nonterminals). All terms should already exist before declaring Productions. Once all Productions exist, one can compute first then follow sets. ''' def __init__(self, head, *args): # head is the LHS (deriving Nonterminal) # args should be a sequence of Nonterminals and Terminals # Null production represents epsilon self.prod = args self._first = None self._follow = set() self.head = head self.head.addProduction(self) self.compiled = False self.pclass = None #print(head, type(head), args, [type(x) for x in args]) # Note which terms follow which for i,arg in enumerate(args): if i < len(args)-1: arg.followers.add(args[i+1]) # Still might have other terms at end of this if last -> epsilon, # but we can't check for that until we have the first sets. # Do that in function updateEnds() @property def first(self): if self._first: return self._first # otherwise, compute first set if not self.prod[0]: # epsilon return set((None,)) first = set() for term in self.prod: fs = term.first if None not in fs: # we can stop here first.update(fs) self._first = first return first else: # nonterminal could be epsilon, so keep going first.update(set(x for x in fs if x)) # add everything but epsilon self._first = first return first def updateEnds(self): # Call this function after firsts are done, but before follows if not self.prod[0]: return # epsilon self.prod[-1].endOf.add(self.head) # tell terms when they end productions last = 0 finding = True # find term that reflects productions follow set for i, arg in enumerate(reversed(self.prod)): if None in arg.first and i < len(self.prod)-1: # if a term can go to epsilon, then the one before it gets its follow set term = self.prod[i+1] term.followers.update(arg.followers) term.endOf.update(arg.endOf) if finding: last += 1 else: finding = False self.last = len(self.prod) - last def compile(self): # Do some booking needed before follow sets can be computed, and build # a map of terminal_list -> production if self.compiled: return self.compiled = True self.head.rules.append((self.first, self)) if not self.prod[0]: return # epsilon self.updateEnds() for t in self.prod: t.compile(self) @property def follow(self): # Call only after grammar is finished and all followers have been added if self._follow: return self._follow term = self.prod[self.last] self._follow = term.follow def __str__(self): return "{} => {}".format(self.head, ' '.join(map(str, self.prod))) class Operator(Nonterminal): def __init__(self, name, *args): super().__init__(name) self.args = args self.name = name class Repeat(Operator): def __init__(self, *args): super().__init__(*args) self.optype = "Repeat" class Set(Operator): def __init__(self, *args): super().__init__(*args) self.optype = "Set" class Optional(Operator): def __init__(self, *args): super().__init__(*args) self.optype = "Optional" class Emitter(object): def __init__(self, tree):#, grammar): self.tree = tree # parse tree made of lists self.start = None # name of root grammar rule self.parser = '' # build up parser classes/functions here self.objs = GOBJ # put named class definitions here self.tokenmap = {} # maps string to Terminal object self.namemap = {} # maps string to Nonterminal object self.operators = [] # maps string name to Operator object self.lexmap = [] # (name, regex) pairs for lexer self.itercount = count(0) # need unique number for anonymous variables def count(self): return next(self.itercount) def findterms(self, root): # Find the terminals, nonterminals, and productions in the grammar # Requires root grammar nonterminal nonterms = [] prods = [] terms = [] stack = [root, ] seen = set() while stack: term = stack.pop(0) if term in seen: continue seen.add(term) nonterms.append(term) for prod in term.productions: prods.append(prod) for item in prod.prod: if isinstance(item, Nonterminal): stack.append(item) elif isinstance(item, Terminal): terms.append(item) self.nonterminals = nonterms #self.productions = prods #self.terminals = terms def emit(self): #print("emit", self.tree) tree = self.tree rootdecl = tree[0] toktree = tree[1] grammars = tree[2] assert(rootdecl[0] == "%root") assert(toktree[0] == "%tokens") assert(grammars[0] == "%grammar") root = rootdecl[1] self.gettokens(toktree) tree = grammars[1] self.start = tree.decl.dname # save root rule for parsing prods = [] while tree: prods += self.emitdecl(tree.decl) tree = tree.rest # prods += self.operators for op in self.operators: prods.append(op) if op[0] in self.namemap and isinstance(self.namemap[op[0]], Optional): prods.append((op[0], [None,], op[2])) # Now that all terminal and nonterminals seen and created, instantiate productions allmap = self.namemap.copy() allmap.update(self.tokenmap) allmap[None] = None # for epsilon terms #print('\n'.join(map(str,prods))) for name, args, binding in prods: # print("Generating production for", name, "with", args) # print(self.namemap) # for i, term in enumerate(args): # if isinstance(term, Operator): # nt = Nonterminal("anonymousNonterminal{}_{}".format(self.count()) # self.namemap[nt.name] = nt # self.allmap[nt.name] = nt # p = Production(self.namemap[term.arg[0]], *[allmap[x] for x in term.args[1:]]) x = Production(self.namemap[name], *[allmap[x] for x in args]) if binding: s = '' s += "class {}(GrammarObj):\n".format(binding[0]) s += " def __init__(self, *args):\n" s += " super().__init__(*args)\n" s += " self.name = \"{}\"\n".format(binding[0]) # for i,b in enumerate(binding[1:]): # s += " self.{} = args[{}]\n".format(b, i) self.objs += s + '\n' x.pclass = binding else: x.pclass = None # Emit lexer map self.objs += "LEXMAP = {}\n\n".format(self.lexmap).replace('\\\\','\\') # Find all the nonterminals and make a parse function for each root = self.namemap[self.start] root.compile() self.findterms(self.namemap[self.start]) for nt in self.nonterminals: self.emitfunc(nt) s = '' s += " def _parseRoot(self):\n" s += " return self.parse{}()\n\n".format(root) self.parser += s def emitdecl(self, decl): name = decl.dname alt = decl.alt alts = decl.alts if any([x(name) for x in self.tokenmap.values()]): # see if name is token pass elif name not in self.namemap: # otherwise, it's a nonterminal self.namemap[name] = Nonterminal(name) #print(name, alt) prods = [self.emitalt(name, alt),] while alts: prods.append(self.emitalt(name, alts.alt)) alts = alts.alts return prods def emitalt(self, name, alt): if not alt: # epsilon binding = None exp = None else: exp = alt.exp exps = alt.exps binding = alt.bind if binding: bnames = self.getbinding(binding) else: bnames = None #print (name, term) if not exp: return (name, [None,], bnames) args = [self.emitexp(exp),] + self.emitexps(exps) return (name, args, bnames) def emitexps(self, exps): ret = [] while exps: ret.append(self.emitexp(exps.exp)) exps = exps.exps return ret def emitexp(self, exp): if exp.name == "exprepeat": exps = self.emitexps(exp.exps) name = "_anon_{}{}".format("Repeat", self.count()) res = name self.namemap[name] = Repeat(name, *exps) self.operators.append((name, exps, None)) # self.operators[res.name] = res # track that this nonterminal is a special operator elif exp.name == "expset": exps = self.emitexps(exp.exps) name = "_anon_{}{}".format("Set", self.count()) res = name self.namemap[name] = Set(name, *exps) self.operators.append((name, exps, None)) # self.operators[res.name] = Set(name, exps) elif exp.name == "eopt": exps = self.emitexps(exp.exps) name = "_anon_{}{}".format("Optional", self.count()) res = name self.namemap[name] = Optional(name, *exps) self.operators.append((name, exps, None)) # self.operators[res.name] = Optional(name, exps) else: # expression was just a term res = self.emitterm(exp) self.register((res,)) return res def register(self, args): # generate Terminals and Nonterminals for strings we haven't seen yet for arg in args: # print("Argument: ", arg) if arg[0] in ("'", "\""): val = arg[1:-1] # print(arg, val) if any([x(val) for x in self.tokenmap.values()]): continue else: self.tokenmap[val] = Terminal(val, val) self.tokenmap[arg] = Terminal(val, val) self.lexmap.append((val, val)) else: # name if any([x(arg) for x in self.tokenmap.values()]): # see if name is token continue if arg not in self.namemap: # otherwise, it's a nonterminal self.namemap[arg] = Nonterminal(arg) def emitterm(self, term): obj = term.val return obj def getbinding(self, binding): name = binding.bname if binding.names: names = self.getnames(binding.names) else: names = [] return [name, ] + names def getnames(self, names): if not names: return [] name = names.termname names = names.names if names: return [name,] + self.getnames(names) else: return [name, ] def gettokens(self, toktree): pairs = toktree[1] while pairs: name = pairs[0] regex = pairs[1] pairs = pairs[2] regex = regex.strip()[1:-1] self.tokenmap[name] = Terminal(name, regex) self.lexmap.append((name, regex)) # print("Regex: ", name, regex) # def emitoperator(self, op): # print(op, op.rules, type(op)) # print([type(arg) for arg in op.args[0]]) # if isinstance(op, Repeat): # s = '' # for arg in op.args: # if isinstance(arg, Nonterminal): # s += " var{}_{} = self.{}()\n".format(i, cleanname, fname(cleanname)) # else: # s += " var{}_{} = self.consume(\"{}\")\n".format(i, cleanname, term.name) # elif isinstance(op, Optional): # pass # elif isinstance(op, Set): # pass def emitfunc(self, nonterm): s = '' s += " def {}(self):\n".format(fname(nonterm.name)) s += " if self.log:\n" s += " print(\"{}\")\n".format(nonterm.name) epsilon = False alltoks = set() # if isinstance(nonterm, Operator): # self.parser += self.emitoperator(nonterm) # return if len(nonterm.rules) == 0: raise Exception("No definition for nonterminal {}".format(nonterm)) for rule in nonterm.rules: epsilon |= None in rule[0] firsts = rule[0].difference(set((None,))) tokset = "(\"{}\",)".format('\", \"'.join([tok.name for tok in firsts])) alltoks.update(firsts) # get all tokens together for error case production = rule[1] variables = [] if not production.prod[0]: continue if isinstance(nonterm, Set): return self.emitset(s, nonterm) else: s += " if self.next() in {}:\n".format(tokset) if isinstance(nonterm, Repeat): if len(production.prod) > 1: raise Exception("Repeat operator can only be applied to a single terminal or nonterminal") term = production.prod[0] cleanname = sanitize(term.name) variables.append("var{}_{}".format(0, cleanname)) s += " var0_{} = []\n".format(cleanname) s += " while self.next() in {}:\n".format(tokset) if isinstance(term, Nonterminal): s += " var0_{}.append(self.{}())\n".format(cleanname, fname(cleanname)) else: s += " var0_{}.append(self.consume(\"{}\"))\n".format(cleanname, term.name) epsilon = True # repeats can be taken 0 times; equivalent to an episilon production else: for i,term in enumerate(production.prod): cleanname = sanitize(term.name) variables.append("var{}_{}".format(i, cleanname)) if isinstance(term, Nonterminal): s += " var{}_{} = self.{}()\n".format(i, cleanname, fname(cleanname)) else: s += " var{}_{} = self.consume(\"{}\")\n".format(i, cleanname, term.name) # print(production, dir(production)) if production.pclass: binding = production.pclass if binding[0] == "_": # suppress this production s += " return # production suppressed\n" continue attrs = zip(binding[1:], variables) sargs = '' for name, variable in attrs: sargs += "('{}', {}),".format(name, variable) s += " return {}({})\n".format(production.pclass[0], sargs) else: s += " return {}\n".format(', '.join(variables)) if epsilon: s += " return # epsilon case\n\n" else: # error case # if isinstance(nonterm, Optional): # s += " return # this production declared as optional\n\n" # else: alltokset = "(\"{}\",)".format('\", \"'.join([tok.name for tok in alltoks])) s += " self.parsefail({}, self.next())\n\n".format(alltokset) self.parser += s def emitset(self, s, nonterm): alltoks = set() for term in nonterm.args: if term in self.tokenmap: term = self.tokenmap[term] else: term = self.namemap[term] firsts = term.first tokset = "(\"{}\",)".format('\", \"'.join([tok.name for tok in firsts])) alltoks.update(firsts) s += " if self.next() in {}:\n".format(tokset) if isinstance(term, Nonterminal): s += " return self.{}()\n".format(fname(sanitize(term.name))) else: s += " return self.consume(\"{}\")\n".format(term.name) alltokset = "(\"{}\",)".format('\", \"'.join([tok.name for tok in alltoks])) s += " self.parsefail({}, self.next())\n\n".format(alltokset) self.parser += s return def sanitize(name): return re.sub('[^0-9a-zA-Z_]', '', name) def fname(name): return "parse{}".format(name) ``` #### File: jemcmahan13/pygll/pygll.py ```python from stock import PCLASS, MAIN import re, sys from emitter import Emitter class GrammarObj(object): def __str__(self): return self.name def __repr__(self): s = self.name + '[' for k,v in self.attrs: s += "{}:{}, ".format(k,v) s += ']' return s def __init__(self, *args): i = 0 for k,v in args: if k == "_": setattr(self, "_anon{{}}".format(i), v) i += 1 else: setattr(self, k, v) self.attrs = args class Declarations(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "Declarations" class Declaration(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "Declaration" class Alternative(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "Alternative" class _(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "_" class Alternatives(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "Alternatives" class exprepeat(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "exprepeat" class expset(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "expset" class eopt(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "eopt" class Expr(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "Expr" class Name(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "Name" class String(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "String" class Terms(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "Terms" class Binding(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "Binding" class Names(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "Names" LEXMAP = [('pound', '#'), ('bar', '\|'), ('epsilon', '\$'), ('lrepeat', '\['), ('rrepeat', '\]'), ('lset', '{'), ('rset', '}'), ('lopt', '<'), ('ropt', '>'), ('string', '(\\\'|\\").*?[^\\\\]\\1'), ('name', '\w+'), ('%root', '%root'), ('%tokens', '%tokens'), ('%grammar', '%grammar'), (':=', ':='), (';', ';')] class Parser(object): class ScanError(Exception): pass class ParseError(Exception): pass def parsefail(self, expected, found, val=None): raise Parser.ParseError("Parse Error, line {}: Expected token {}, but found token {}:{}".format(self.line, expected, found, val)) def scanfail(self): raise Parser.ScanError("Lexer Error, line {}: No matching token found. Remaining input: {} ....".format(self.line, self.remaining[:50])) def __init__(self): lex = [('whitespace', '\s+'),] + [ x for x in LEXMAP ] rules = [ (regex, self.makeHandler(tokenName)) for tokenName, regex in lex ] self.scanner = re.Scanner(rules) self.line = 1 self.log = False def parse(self, s): self.toks, self.remaining = self.scanner.scan(s) self.trim() return self._parseRoot() def makeHandler(self, token): return lambda scanner, string : (token, string) def trim(self): if self.toks: token, match = self.toks[0] if token == "whitespace": self.line += match.count('\n') self.toks.pop(0) self.trim() def next(self): if self.toks: token,match = self.toks[0] return token elif self.remaining: self.scanfail() def consume(self, tok): if not self.toks and self.remaining: self.scanfail() if len(self.toks) == 0: self.parsefail(tok, 'EOF') token,match = self.toks.pop(0) if self.log: print("consuming {}:{}".format(tok, match)) if tok != token: self.parsefail(tok, token, match) self.trim() return match def pop(self): return self.consume(self.next()) def parseSpec(self): if self.next() in ("%root",): var0_RootDecl = self.parseRootDecl() var1_TokenDecl = self.parseTokenDecl() var2_GrammarDecl = self.parseGrammarDecl() return var0_RootDecl, var1_TokenDecl, var2_GrammarDecl self.parsefail(['("%root",)'], self.next()) def parseRootDecl(self): if self.next() in ("%root",): var0_root = self.consume("%root") var1_name = self.consume("name") return var0_root, var1_name self.parsefail(['("%root",)'], self.next()) def parseTokenDecl(self): if self.next() in ("%tokens",): var0_tokens = self.consume("%tokens") var1_TokenPairs = self.parseTokenPairs() return var0_tokens, var1_TokenPairs self.parsefail(['("%tokens",)'], self.next()) def parseGrammarDecl(self): if self.next() in ("%grammar",): var0_grammar = self.consume("%grammar") var1_Decls = self.parseDecls() return var0_grammar, var1_Decls self.parsefail(['("%grammar",)'], self.next()) def parseTokenPairs(self): if self.next() in ("name",): var0_name = self.consume("name") var1_string = self.consume("string") var2_TokenPairs = self.parseTokenPairs() return var0_name, var1_string, var2_TokenPairs return # epsilon case def parseDecls(self): if self.next() in ("name",): var0_Decl = self.parseDecl() var1_Decls = self.parseDecls() return Declarations(('decl', var0_Decl),('rest', var1_Decls),) return # epsilon case def parseDecl(self): if self.next() in ("name",): var0_name = self.consume("name") var1_ = self.consume(":=") var2_Alt = self.parseAlt() var3_Alts = self.parseAlts() var4_ = self.consume(";") return Declaration(('dname', var0_name),('_', var1_),('alt', var2_Alt),('alts', var3_Alts),('_', var4_),) self.parsefail(['("name",)'], self.next()) def parseAlt(self): if self.next() in ("string", "lopt", "lrepeat", "lset", "name",): var0_Exp = self.parseExp() var1_Exps = self.parseExps() var2_Binding = self.parseBinding() return Alternative(('exp', var0_Exp),('exps', var1_Exps),('bind', var2_Binding),) if self.next() in ("epsilon",): var0_epsilon = self.consume("epsilon") return # production suppressed self.parsefail(['("string", "lopt", "lrepeat", "lset", "name",)', '("epsilon",)'], self.next()) def parseAlts(self): if self.next() in ("bar",): var0_bar = self.consume("bar") var1_Alt = self.parseAlt() var2_Alts = self.parseAlts() return Alternatives(('_', var0_bar),('alt', var1_Alt),('alts', var2_Alts),) return # epsilon case def parseExp(self): if self.next() in ("lrepeat",): var0_lrepeat = self.consume("lrepeat") var1_Exps = self.parseExps() var2_rrepeat = self.consume("rrepeat") return exprepeat(('_', var0_lrepeat),('exps', var1_Exps),('_', var2_rrepeat),) if self.next() in ("lset",): var0_lset = self.consume("lset") var1_Exps = self.parseExps() var2_rset = self.consume("rset") return expset(('_', var0_lset),('exps', var1_Exps),('_', var2_rset),) if self.next() in ("lopt",): var0_lopt = self.consume("lopt") var1_Exps = self.parseExps() var2_ropt = self.consume("ropt") return eopt(('_', var0_lopt),('exps', var1_Exps),('_', var2_ropt),) if self.next() in ("string", "name",): var0_Term = self.parseTerm() return var0_Term self.parsefail(['("lrepeat",)', '("lset",)', '("lopt",)', '("string", "name",)'], self.next()) def parseExps(self): if self.next() in ("string", "lopt", "lrepeat", "lset", "name",): var0_Exp = self.parseExp() var1_Exps = self.parseExps() return Expr(('exp', var0_Exp),('exps', var1_Exps),) return # epsilon case def parseBinding(self): if self.next() in ("pound",): var0_pound = self.consume("pound") var1_name = self.consume("name") var2_Names = self.parseNames() return Binding(('_', var0_pound),('bname', var1_name),('names', var2_Names),) return # epsilon case def parseTerm(self): if self.next() in ("name",): var0_name = self.consume("name") return Name(('val', var0_name),) if self.next() in ("string",): var0_string = self.consume("string") return String(('val', var0_string),) self.parsefail(['("name",)', '("string",)'], self.next()) def parseNames(self): if self.next() in ("name",): var0_name = self.consume("name") var1_Names = self.parseNames() return Names(('termname', var0_name),('names', var1_Names),) return # epsilon case def _parseRoot(self): return self.parseSpec() def main(): with open(sys.argv[1]) as f: s = f.read() p = Parser() ast = p.parse(s) e = Emitter(ast) e.emit() text = e.objs + PCLASS + e.parser + MAIN print(text) if __name__ == "__main__": main() ``` #### File: tests/simplemath/math.py ```python class GrammarObj(object): def __str__(self): return self.name def __repr__(self): s = self.name + '[' for k,v in self.attrs: s += "{}:{}, ".format(k,v) s += ']' return s def __init__(self, *args): i = 0 for k,v in args: if k == "_": setattr(self, "_anon{{}}".format(i), v) i += 1 else: setattr(self, k, v) self.attrs = args class Exp(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "Exp" class Plus(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "Plus" class Term(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "Term" class Mult(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "Mult" class Paren(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "Paren" class Num(GrammarObj): def __init__(self, *args): super().__init__(*args) self.name = "Num" LEXMAP = [('plus', '\\+'), ('mult', '\\*'), ('lparen', '\\('), ('rparen', '\\)'), ('num', '[0-9]+'), ('name', '\\w+')] import sys, re log = False class Parser(object): class ScanError(Exception): pass class ParseError(Exception): pass def parsefail(self, expected, found, val=None): raise Parser.ParseError("Parse Error, line {}: Expected token {}, but found token {}:{}".format(self.line, expected, found, val)) def scanfail(self): raise Parser.ScanError("Lexer Error, line {}: No matching token found. Remaining input: {} ....".format(self.line, self.remaining[:50])) def __init__(self): lex = [('whitespace', '\s+'),] + [ x for x in LEXMAP ] rules = [ (regex, self.makeHandler(tokenName)) for tokenName, regex in lex ] self.scanner = re.Scanner(rules) self.line = 1 self.log = log def parse(self, s): self.toks, self.remaining = self.scanner.scan(s) self.trim() return self._parseRoot() def makeHandler(self, token): return lambda scanner, string : (token, string) def trim(self): if self.toks: token, match = self.toks[0] if token == "whitespace": self.line += match.count('\n') self.toks.pop(0) self.trim() # else: # if log: # print("next token is ", token) def next(self): if self.toks: token,match = self.toks[0] return token elif self.remaining: self.scanfail() def consume(self, tok): if not self.toks and self.remaining: self.scanfail() token,match = self.toks.pop(0) if self.log: print("consuming {}:{}".format(tok, match)) if tok != token: self.parsefail(tok, token, match) self.trim() return match def pop(self): return self.consume(self.next()) def parseE(self): if self.next() in ("lparen", "num",): var0_T = self.parseT() var1_Ep = self.parseEp() return Exp(('op', var0_T),('rhs', var1_Ep),) self.parsefail(['("lparen", "num",)'], self.next()) def parseT(self): if self.next() in ("lparen", "num",): var0_F = self.parseF() var1_Tp = self.parseTp() return Term(('op', var0_F),('rhs', var1_Tp),) self.parsefail(['("lparen", "num",)'], self.next()) def parseEp(self): if self.next() in ("plus",): var0_plus = self.consume("plus") var1_T = self.parseT() var2_Ep = self.parseEp() return Plus(('_', var0_plus),('op', var1_T),('rest', var2_Ep),) return # epsilon case def parseF(self): if self.next() in ("lparen",): var0_lparen = self.consume("lparen") var1_E = self.parseE() var2_rparen = self.consume("rparen") return Paren(('_', var0_lparen),('exp', var1_E),('_', var2_rparen),) if self.next() in ("num",): var0_num = self.consume("num") return Num(('val', var0_num),) self.parsefail(['("lparen",)', '("num",)'], self.next()) def parseTp(self): if self.next() in ("mult",): var0_mult = self.consume("mult") var1_F = self.parseF() var2_Tp = self.parseTp() return Mult(('_', var0_mult),('op', var1_F),('rest', var2_Tp),) return # epsilon case def _parseRoot(self): return self.parseE() def main(): with open(sys.argv[1]) as f: s = f.read() p = Parser() ast = p.parse(s) print(repr(ast)) if __name__ == "__main__": main() ```
{ "source": "jemc/zproto", "score": 2 }
#### File: python/zproto/ZprotoExample.py ```python import struct import uuid import zmq import logging logger = logging.getLogger(__name__) ZFrame = zmq.Frame class ZprotoExample(object): ZPROTO_EXAMPLE_VERSION = 1 LOG = 1 STRUCTURES = 2 BINARY = 3 TYPES = 4 FLAGS_SIZE = 4 def __init__(self, id=None, *args, **kwargs): # Structure of our class self.routingId = None # Routing_id from ROUTER, if any self._id = id # ZprotoExample message ID self._needle = 0 # Read/write pointer for serialization self.struct_data = b'' # holds the binary data self._sequence = 0 self._version = 0 self._level = 0 self._event = 0 self._node = 0 self._peer = 0 self._time = 0 self._host = "" self._data = "" self._aliases = [] self._headers = {} self._flags = b'' self._public_key = b'' self._identifier = uuid.uuid4() self._address = None # ZTypes are not implemented #self._address = ZFrame() self._content = None # ZTypes are not implemented #self._content = ZMsg() self._client_forename = "" self._client_surname = "" self._client_mobile = "" self._client_email = "" self._supplier_forename = "" self._supplier_surname = "" self._supplier_mobile = "" self._supplier_email = "" # -------------------------------------------------------------------------- # Network data encoding macros # Put a 1-byte number to the frame def _put_number1(self, nr): d = struct.pack('>b', nr) self.struct_data += d print(self.struct_data) # Get a 1-byte number to the frame # then make it unsigned def _get_number1(self): num = struct.unpack_from('>b', self.struct_data, offset=self._needle) self._needle += struct.calcsize('>b') return num[0] # Put a 2-byte number to the frame def _put_number2(self, nr): d = struct.pack('>H', nr) self.struct_data += d print(self.struct_data) # Get a 2-byte number from the frame def _get_number2(self): num = struct.unpack_from('>H', self.struct_data, offset=self._needle) self._needle += struct.calcsize('>H') return num[0] # Put a 4-byte number to the frame def _put_number4(self, nr): d = struct.pack('>I', nr) self.struct_data += d print(self.struct_data) # Get a 4-byte number to the frame def _get_number4(self): num = struct.unpack_from('>I', self.struct_data, offset=self._needle) self._needle += struct.calcsize('>I') return num[0] # Put a 8-byte number to the frame def _put_number8(self, nr): d = struct.pack('>Q', nr) self.struct_data += d print(self.struct_data) # Get a 8-byte number to the frame def _get_number8(self): num = struct.unpack_from('>Q', self.struct_data, offset=self._needle) self._needle += struct.calcsize('>Q') return num[0] # Put a string to the frame def _put_string(self, s): self._put_number1(len(s)) d = struct.pack('%is' % len(s), s.encode('UTF-8')) self.struct_data += d print(self.struct_data) # Get a string from the frame def _get_string(self): s_len = self._get_number1() s = struct.unpack_from(str(s_len) + 's', self.struct_data, offset=self._needle) self._needle += struct.calcsize('s' * s_len) return s[0].decode('UTF-8') # Put a long string to the frame def _put_long_string(self, s): self._put_number4(len(s)) d = struct.pack('%is' % len(s), s.encode('UTF-8')) self.struct_data += d print(self.struct_data) # Get a long string from the frame def _get_long_string(self): s_len = self._get_number4() s = struct.unpack_from(str(s_len) + 's', self.struct_data, offset=self._needle) self._needle += struct.calcsize('s' * s_len) return s[0].decode('UTF-8') # Put bytes to the frame def _put_bytes(self, b): self.struct_data += b print(self.struct_data) # Get bytes from the frame def _get_bytes(self, size): s = self.struct_data[self._needle:self._needle+size] self._needle += size return s # Skipped recv from zmsg # Skipped senf to zmsg # -------------------------------------------------------------------------- # Receive a ZprotoExample from the socket. Returns new object or # null if error. Will block if there's no message waiting. def recv (self, insocket): frames = insocket.recv_multipart() if insocket.type == zmq.ROUTER: self.routing_id = frames.pop(0) self.struct_data = frames.pop(0) logger.debug("recv data: {0}".format(self.struct_data)) if not self.struct_data: logger.debug("Malformed msg") return # Get and check protocol signature self._needle = 0 self._ceiling = len(self.struct_data) # TODO what is zdigest? signature = self._get_number2() if signature != (0xAAA0 | 0): logger.debug("Invalid signature {0}".format(signature)) return self._id = self._get_number1() if self._id == ZprotoExample.LOG: self._sequence = self._get_number2() self._version = self._get_number2() if self._version != 3: logger.debug("Value {0} != {1}".format(self._version, 3)) self._level = self._get_number1() self._event = self._get_number1() self._node = self._get_number2() self._peer = self._get_number2() self._time = self._get_number8() self._host = self._get_string() self._data = self._get_long_string() elif self._id == ZprotoExample.STRUCTURES: self._sequence = self._get_number2() list_size = self._get_number4() self._aliases = [] for x in range(list_size): self._aliases.append(self._get_long_string()); hash_size = self._get_number4() self._headers = {} for x in range(hash_size): key = self._get_string() val = self._get_long_string() self._headers.update({key: val}) elif self._id == ZprotoExample.BINARY: self._sequence = self._get_number2() self._flags = self._get_bytes(4) self._public_key = self._get_bytes(self.getNumber4()); uuid_bytes = self._get_bytes(16) self._identifier = uuid.UUID(bytes=uuid_bytes) if not len(frames): self._address = b'' logger.warn("no more frames in message while retrieving self._address") else: self._address = frames.pop(0) logger.warn("Zmsg requested but we have no support for Zmsg types") if not len(frames): self._content = b'' logger.warn("no more frames in message while retrieving self._content") else: self._content = frames.pop(0) elif self._id == ZprotoExample.TYPES: self._sequence = self._get_number2() self._client_forename = self._get_string() self._client_surname = self._get_string() self._client_mobile = self._get_string() self._client_email = self._get_string() self._supplier_forename = self._get_string() self._supplier_surname = self._get_string() self._supplier_mobile = self._get_string() self._supplier_email = self._get_string() else: logger.debug("bad message ID") # -------------------------------------------------------------------------- # Send the ZprotoExample to the socket, and destroy it def send(self, outsocket): if outsocket.socket_type == zmq.ROUTER: outsocket.send(self.routing_id, zmq.SNDMORE) # TDOD: We could generalize to a ZMsg class? ZMsg msg = new ZMsg(); self.struct_data = b'' self._needle = 0 nbr_frames = 0 # Total number of extra frames # add signature self._put_number2(0xAAA0 | 0) self._put_number1(self._id) if self._id == ZprotoExample.LOG: # sequence is a 2-byte integer self._put_number2(self._sequence) # version is a 2-byte integer self._put_number2(3) # level is a 1-byte integer self._put_number1(self._level) # event is a 1-byte integer self._put_number1(self._event) # node is a 2-byte integer self._put_number2(self._node) # peer is a 2-byte integer self._put_number2(self._peer) # time is a 8-byte integer self._put_number8(self._time) if self._host != None: self._put_string(self._host) else: self._put_number1(0) # Empty string if self._data != None: self._put_long_string(self._data) else: self._put_number4(0) # Empty string elif self._id == ZprotoExample.STRUCTURES: # sequence is a 2-byte integer self._put_number2(self._sequence) if self._aliases != None: self._put_number4(len(self._aliases)) for val in self._aliases: self._put_long_string(val) else: self._put_number4(0); # Empty string array if self._headers != None: self._put_number4(len(self._headers)) for key, val in self._headers.items(): self._put_string(key) self._put_long_string(val) else: self._put_number4(0) # Empty hash elif self._id == ZprotoExample.BINARY: # sequence is a 2-byte integer self._put_number2(self._sequence) self._put_bytes(self._flags) if self._public_key != None: self._put_number4(len(self._public_key)) self._put_bytes(self._public_key) else: self._put_number4(0) if self._identifier != None: self._put_bytes(self._identifier.bytes) else: self._put_chunk(b'0'*16) # Empty Chunk nbr_frames += 1 # TODO msg elif self._id == ZprotoExample.TYPES: # sequence is a 2-byte integer self._put_number2(self._sequence) if self._client_forename != None: self._put_string(self._client_forename) else: self._put_number1(0) # Empty string if self._client_surname != None: self._put_string(self._client_surname) else: self._put_number1(0) # Empty string if self._client_mobile != None: self._put_string(self._client_mobile) else: self._put_number1(0) # Empty string if self._client_email != None: self._put_string(self._client_email) else: self._put_number1(0) # Empty string if self._supplier_forename != None: self._put_string(self._supplier_forename) else: self._put_number1(0) # Empty string if self._supplier_surname != None: self._put_string(self._supplier_surname) else: self._put_number1(0) # Empty string if self._supplier_mobile != None: self._put_string(self._supplier_mobile) else: self._put_number1(0) # Empty string if self._supplier_email != None: self._put_string(self._supplier_email) else: self._put_number1(0) # Empty string # Now send the data frame if nbr_frames: outsocket.send(self.struct_data, zmq.SNDMORE) else: outsocket.send(self.struct_data) # no more frames so return return if self._id == ZprotoExample.BINARY: opt = zmq.SNDMORE nbr_frames -= 1 if nbr_frames == 0: opt = 0 outsocket.send(self._address, opt) # -------------------------------------------------------------------------- # Print contents of message to stdout def dump(self): if self.id == Zprotoexample.LOG: logger.info("LOG:") logger.info(" sequence=%d" %sequence) logger.info(" version=3") logger.info(" level=%d" %level) logger.info(" event=%d" %event) logger.info(" node=%d" %node) logger.info(" peer=%d" %peer) logger.info(" time=%d" %time) if self._host != None: logger.info(" host='%s'\n" %self._host) else: logger.info(" host=") if self._data != None: logger.info(" data='%s'\n" %self._data) else: logger.info(" data=") else: logger.info("(NULL)") if self.id == Zprotoexample.STRUCTURES: logger.info("STRUCTURES:") logger.info(" sequence=%d" %sequence) logger.info(" aliases={0}".format(self._aliases)) logger.info(" headers={0}".format(self._headers)) else: logger.info("(NULL)") if self.id == Zprotoexample.BINARY: logger.info("BINARY:") logger.info(" sequence=%d" %sequence) logger.info(" flags={0}".format(self._flags)) logger.info(" public_key={0}".format(self._public_key)) logger.info(" identifier={0}".format(self._identifier)) logger.info(" address={0}".format(self._address)) logger.info(" content={0}".format(self._content)) else: logger.info("(NULL)") if self.id == Zprotoexample.TYPES: logger.info("TYPES:") logger.info(" sequence=%d" %sequence) if self._client_forename != None: logger.info(" client_forename='%s'\n" %self._client_forename) else: logger.info(" client_forename=") if self._client_surname != None: logger.info(" client_surname='%s'\n" %self._client_surname) else: logger.info(" client_surname=") if self._client_mobile != None: logger.info(" client_mobile='%s'\n" %self._client_mobile) else: logger.info(" client_mobile=") if self._client_email != None: logger.info(" client_email='%s'\n" %self._client_email) else: logger.info(" client_email=") if self._supplier_forename != None: logger.info(" supplier_forename='%s'\n" %self._supplier_forename) else: logger.info(" supplier_forename=") if self._supplier_surname != None: logger.info(" supplier_surname='%s'\n" %self._supplier_surname) else: logger.info(" supplier_surname=") if self._supplier_mobile != None: logger.info(" supplier_mobile='%s'\n" %self._supplier_mobile) else: logger.info(" supplier_mobile=") if self._supplier_email != None: logger.info(" supplier_email='%s'\n" %self._supplier_email) else: logger.info(" supplier_email=") else: logger.info("(NULL)") # -------------------------------------------------------------------------- # Get/set the message routing id def routing_id(self): return self._routing_id def set_routing_id(self, routing_id): self._routing_id = routing_id # -------------------------------------------------------------------------- # Get/set the zproto_example id def id(): return self._id def set_id(self, id): self._id = id # -------------------------------------------------------------------------- # Return a printable command string def command(self): if self._id == ZprotoExample.LOG: return "LOG" if self._id == ZprotoExample.STRUCTURES: return "STRUCTURES" if self._id == ZprotoExample.BINARY: return "BINARY" if self._id == ZprotoExample.TYPES: return "TYPES" return "?"; # -------------------------------------------------------------------------- # Get/set the sequence field def sequence(self): return self._sequence; def set_sequence(self, sequence): self._sequence = sequence # -------------------------------------------------------------------------- # Get/set the level field def level(self): return self._level; def set_level(self, level): self._level = level # -------------------------------------------------------------------------- # Get/set the event field def event(self): return self._event; def set_event(self, event): self._event = event # -------------------------------------------------------------------------- # Get/set the node field def node(self): return self._node; def set_node(self, node): self._node = node # -------------------------------------------------------------------------- # Get/set the peer field def peer(self): return self._peer; def set_peer(self, peer): self._peer = peer # -------------------------------------------------------------------------- # Get/set the time field def time(self): return self._time; def set_time(self, time): self._time = time # -------------------------------------------------------------------------- # Get/set the host field def host(self): return self._host; def set_host(self, host): self._host = host # -------------------------------------------------------------------------- # Get/set the data field def data(self): return self._data; def set_data(self, data): self._data = data # -------------------------------------------------------------------------- # Get the aliases field def aliases(self): return self._aliases def get_aliases(self): return self._aliases def set_aliases(self, aliases): self._aliases = aliases # -------------------------------------------------------------------------- # Get the headers field def headers(self): return self._headers def get_headers(self): return self._headers def set_headers(self, headers): self._headers = headers # -------------------------------------------------------------------------- # Get/set the flags field def flags(self): return self._flags; def set_flags(self, flags): self._flags = flags # -------------------------------------------------------------------------- # Get the public_key field def public_key(self): return self._public_key def get_public_key(self): return self._public_key def set_public_key(self, public_key): self._public_key = public_key # -------------------------------------------------------------------------- # Get the identifier field def identifier(self): return self._identifier def get_identifier(self): return self._identifier def set_identifier(self, identifier): self._identifier = identifier # -------------------------------------------------------------------------- # Get the address field def address(self): return self._address def get_address(self): return self._address def set_address(self, address): self._address = address # -------------------------------------------------------------------------- # Get the content field def content(self): return self._content def get_content(self): return self._content def set_content(self, content): self._content = content # -------------------------------------------------------------------------- # Get/set the client_forename field def client_forename(self): return self._client_forename; def set_client_forename(self, client_forename): self._client_forename = client_forename # -------------------------------------------------------------------------- # Get/set the client_surname field def client_surname(self): return self._client_surname; def set_client_surname(self, client_surname): self._client_surname = client_surname # -------------------------------------------------------------------------- # Get/set the client_mobile field def client_mobile(self): return self._client_mobile; def set_client_mobile(self, client_mobile): self._client_mobile = client_mobile # -------------------------------------------------------------------------- # Get/set the client_email field def client_email(self): return self._client_email; def set_client_email(self, client_email): self._client_email = client_email # -------------------------------------------------------------------------- # Get/set the supplier_forename field def supplier_forename(self): return self._supplier_forename; def set_supplier_forename(self, supplier_forename): self._supplier_forename = supplier_forename # -------------------------------------------------------------------------- # Get/set the supplier_surname field def supplier_surname(self): return self._supplier_surname; def set_supplier_surname(self, supplier_surname): self._supplier_surname = supplier_surname # -------------------------------------------------------------------------- # Get/set the supplier_mobile field def supplier_mobile(self): return self._supplier_mobile; def set_supplier_mobile(self, supplier_mobile): self._supplier_mobile = supplier_mobile # -------------------------------------------------------------------------- # Get/set the supplier_email field def supplier_email(self): return self._supplier_email; def set_supplier_email(self, supplier_email): self._supplier_email = supplier_email ```
{ "source": "jemd15/k-means-taller2-md-bd", "score": 3 }
#### File: jemd15/k-means-taller2-md-bd/calculate_clusters.py ```python import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans # Constant DATASET1 = "./cars.csv" LOOPS = 20 MAX_ITERATIONS = 10 INITIALIZE_CLUSTERS = 'k-means++' CONVERGENCE_TOLERANCE = 0.001 NUM_THREADS = 8 def dataset_to_list_points(dir_dataset): """ Read a txt file with a set of points and return a list of objects Point :param dir_dataset: """ points = list() with open(dir_dataset, 'rt') as reader: for point in reader: a = int(np.asarray(point.split(",")[0])) b = int(np.asarray(point.split(",")[10])) c = [a,b] points.append(c) return points def plot_results(inertials): x, y = zip(*[inertia for inertia in inertials]) plt.plot(x, y, 'ro-', markersize=8, lw=2) plt.grid(True) plt.xlabel('Num Clusters') plt.ylabel('Inertia') plt.show() def select_clusters(dataset, loops, max_iterations, init_cluster, tolerance, num_threads): # Read data set points = dataset_to_list_points(dataset) inertia_clusters = list() for i in range(1, loops + 1, 1): # Object KMeans kmeans = KMeans(n_clusters=i, max_iter=max_iterations, init=init_cluster, tol=tolerance, n_jobs=num_threads) # Calculate Kmeans kmeans.fit(points) # Obtain inertia inertia_clusters.append([i, kmeans.inertia_]) plot_results(inertia_clusters) select_clusters(DATASET1, LOOPS, MAX_ITERATIONS, INITIALIZE_CLUSTERS, CONVERGENCE_TOLERANCE, NUM_THREADS) ```
{ "source": "jemdwood/cs234_proj", "score": 2 }
#### File: jemdwood/cs234_proj/kurin_dataflow_old_unbatched.py ```python import os import glob import numpy as np from tensorpack import RNGDataFlow from record_breakout import Recorder import glob from scipy import misc import gym from cv2 import resize FRAME_HISTORY = 4 GAMMA = 0.99 TRAIN_TEST_SPLIT = 0.8 # Timon will pass me the key GAME_NAMES = { 'MontezumaRevenge-v0': 'revenge', 'MsPacman-v0': 'mspacman', 'SpaceInvaders-v0': 'spaceinvaders' } class Kurin_Reader(): def __init__(self, record_folder, gym_game_name, data_frac=1.0): self.record_folder = record_folder self.gym_game_name = gym_game_name self.kurin_to_gym = self.get_kurin_to_gym_action_map() self.data_frac = data_frac def read_eps(self): eps_numbers = glob.glob(os.path.join(self.record_folder, GAME_NAMES[self.gym_game_name], 'screens', GAME_NAMES[self.gym_game_name], '*')) eps_numbers = [x.split('/')[-1] for x in eps_numbers] eps_numbers = eps_numbers[:int(self.data_frac*len(eps_numbers))] for eps_num in eps_numbers: full_eps_dict = {} # needs to have 'obs', 'act', 'rew' full_eps_dict['obs'] = self.read_obs(eps_num) full_eps_dict['act'], full_eps_dict['rew'] = self.read_act_reward(eps_num) #print np.prod(full_eps_dict['obs'].shape) #print full_eps_dict['obs'].dtype yield full_eps_dict def read_obs(self, eps_num): # [?, 84, 84, 3] obs = None num_screens = len(glob.glob(os.path.join(self.record_folder, GAME_NAMES[self.gym_game_name], 'screens', GAME_NAMES[self.gym_game_name], str(eps_num), '*png'))) screens = [] # list of screens for i in range(1, num_screens+1): # not 0 image = misc.imread(os.path.join(self.record_folder, GAME_NAMES[self.gym_game_name], 'screens', GAME_NAMES[self.gym_game_name], str(eps_num), str(i)+'.png')) image = resize(image, dsize = (84, 84)) screens.append(np.expand_dims(image, axis=0)) return np.concatenate(screens, axis=0) def read_act_reward(self, eps_num): # [[?, actions], [?, rewards]] acts, rewards = [[], []] with open(os.path.join(self.record_folder, GAME_NAMES[self.gym_game_name], 'trajectories', GAME_NAMES[self.gym_game_name], str(eps_num)+'.txt'), 'r') as f: f.readline() # ignoring headers f.readline() # ignoring headers f.readline() # ignoring headers for line in f: line = line.strip().split(',') # [frame,reward,score,terminal, action] line = [x.strip() for x in line] rewards.append(float(line[1])) acts.append(float(line[4])) acts.append(self.kurin_to_gym[int(line[4])]) return np.asarray(acts), np.asarray(rewards) def get_kurin_to_gym_action_map(self): kurin_to_gym = {} # keys are action numbers in Kurin. Values are action numbers in OpenAI Gym. This is Game Specific! # list of action meanings in Kurin kurin_action_meanings = ['NOOP', 'FIRE','UP','RIGHT','LEFT','DOWN','UPRIGHT','UPLEFT', 'DOWNRIGHT','DOWNLEFT','UPFIRE','RIGHTFIRE','LEFTFIRE','DOWNFIRE', 'UPRIGHTFIRE','UPLEFTFIRE','DOWNRIGHTFIRE','DOWNLEFTFIRE'] # list of action meanings for given game in Gym env = gym.make(self.gym_game_name) gym_action_meanings = env.unwrapped.get_action_meanings() for i in range(len(kurin_action_meanings)): try: ind = gym_action_meanings.index(kurin_action_meanings[i]) kurin_to_gym[i] = ind except ValueError: kurin_to_gym[i] = gym_action_meanings.index('NOOP') # NOOP in gym return kurin_to_gym class KurinDataFlow(RNGDataFlow): """ Produces [state, action, reward] of human demonstrations, state is 84x84x12 in the range [0,255], action is an int. """ def __init__(self, mode, record_folder=None, gym_game_name=None, data_frac=1.0): """ Args: train_or_test (str): either 'train' or 'test' shuffle (bool): shuffle the dataset """ if record_folder is None: record_folder = '/Users/kalpit/Desktop/CS234/cs234_proj/spaceinvaders' if gym_game_name is None: gym_game_name = 'spaceinvaders' assert mode in ['train', 'test', 'all'] self.mode = mode self.shuffle = mode in ['train', 'all'] states = [] actions = [] rewards = [] scores = [] rec = Kurin_Reader(record_folder=record_folder, gym_game_name=gym_game_name, data_frac=data_frac) eps_counter = 0 for eps in rec.read_eps(): s = eps['obs'] a = eps['act'] r = eps['rew'] # process states s = np.pad(s, ((FRAME_HISTORY-1,FRAME_HISTORY), (0,0), (0,0), (0,0)), 'constant') s = np.concatenate([s[i:-(FRAME_HISTORY-i)] for i in range(FRAME_HISTORY)], axis=-1) s = s[:-(FRAME_HISTORY-1)] states.append(s) # actions actions.append(a) # human score scores.append(np.sum(r)) # process rewards just like in tensorpack R = 0 r = np.sign(r) for idx in range(len(r)): R = r[idx] + GAMMA * R r[idx] = R rewards.append(r) eps_counter += 1 print('eps_counter: %d' % eps_counter) self.avg_human_score = np.mean(scores) self.num_episodes = eps_counter self.states = np.concatenate(states, axis=0) self.actions = np.concatenate(actions, axis=0) self.rewards = np.concatenate(rewards, axis=0) num = self.size() if mode != 'all': idxs = list(range(self.size())) # shuffle the same way every time np.random.seed(1) np.random.shuffle(idxs) self.states = self.states[idxs] self.actions = self.actions[idxs] self.rewards = self.rewards[idxs] if mode == 'train': self.states = self.states[:int(TRAIN_TEST_SPLIT*num)] self.actions = self.actions[:int(TRAIN_TEST_SPLIT*num)] self.rewards = self.rewards[:int(TRAIN_TEST_SPLIT*num)] elif mode == 'test': self.states = self.states[int(TRAIN_TEST_SPLIT*num):] self.actions = self.actions[int(TRAIN_TEST_SPLIT*num):] self.rewards = self.rewards[int(TRAIN_TEST_SPLIT*num):] def size(self): return self.states.shape[0] def get_data(self): idxs = list(range(self.size())) if self.shuffle: self.rng.shuffle(idxs) for k in idxs: state = self.states[k] action = self.actions[k] reward = self.rewards[k] yield [state, action, reward] if __name__=='__main__': gym_game_name = 'SpaceInvaders-v0' data_frac = 1.0 ##def KurinDataFlow(mode, record_folder=None, game_name=None, read_from_npy=True) #rdf = KurinDataFlow('train', 9, record_folder='/Users/kalpit/Desktop/CS234/cs234_proj/mspacman', game_name='mspacman') rdf = KurinDataFlow('train', gym_game_name=gym_game_name, data_frac=data_frac) ```
{ "source": "jemejones/django-movies", "score": 3 }
#### File: django-movies/movies_app/models.py ```python from django.db import models from django.urls import reverse # Create your models here. class Person(models.Model): first_name = models.CharField(max_length=50) last_name = models.CharField(max_length=50) slug = models.SlugField(max_length=50) birthday = models.DateField() class Meta: abstract = True def __str__(self): return '{} {}'.format(self.first_name, self.last_name) class Actor(Person): def get_absolute_url(self): return reverse('actor-detail', kwargs={'pk': self.pk}) class Director(Person): def get_absolute_url(self): return reverse('director-detail', kwargs={'pk': self.pk}) class Movie(models.Model): name = models.CharField(max_length=250) year = models.IntegerField() RATINGS = [ ('G', 'G - General Audiences'), ('PG', 'PG - Parental Guidance Suggested'), ('PG-13', 'PG-13 - Parents Strongly Cautioned'), ('R', 'R - Restricted'), ('NC-17', 'NC-17 - No One Under 17 Admitted'), ] rating = models.CharField(max_length=7, choices=RATINGS) director = models.ForeignKey(Director, related_name='movies') actors = models.ManyToManyField(Actor, related_name='movies') def __str__(self): return '{} ({})'.format(self.name, self.year) def get_absolute_url(self): return reverse('movie-detail', kwargs={'pk': self.pk}) ```
{ "source": "jemejones/super-waffle", "score": 4 }
#### File: super-waffle/001_sum/run_001_sum.py ```python def calculate_sum(number_list): """return the calculated sum of a list of numbers Arguments: number_list -- a list of numbers (ints, floats) """ return 0 ```
{ "source": "jemenake/LogicProjectTools", "score": 3 }
#### File: jemenake/LogicProjectTools/folderpolicy.py ```python import os import os.path import re import fnmatch import time POLICYFILE_NAME = ".folderpolicy" POLICY_REGEXP = "^(DENY|ACCEPT) +(.*)$" policy_matcher = re.compile(POLICY_REGEXP) # How many seconds to wait before doing the next folder THROTTLING = 0.03 violations = list() def read_policy(policyfile_path): policy = list() with open(policyfile_path, "rt") as f: for line in f.readlines(): line = line.rstrip() if policy_matcher.match(line) is not None: policy.append(line) return policy def meets_policy(pathname, policy): basename = os.path.basename(pathname) for policy_item in policy: m = policy_matcher.match(policy_item) if m is not None: action = m.group(1) wildcard = m.group(2) if fnmatch.fnmatch(basename, wildcard): # We found a matching line if action == "DENY": return False if action == "ACCEPT": return True else: print("Unknown action: {0}".format(action)) return True def walk_folder(folder, policy=[]): time.sleep(THROTTLING) print("Trying {0}".format(folder)) policyfile_path = os.path.join(folder, POLICYFILE_NAME) if os.path.isfile(policyfile_path): policy = read_policy(policyfile_path) try: for name in os.listdir(folder): fullpath = os.path.join(folder, name) if os.path.islink(fullpath): next if not meets_policy(fullpath, policy): violations.append("{0} is not allowed in {1}".format(name, folder)) continue # If we made it this far, it meets the policy. If it is a folder, go into it. if os.path.isdir(fullpath): walk_folder(fullpath, policy) except OSError as e: # Probably a permission problem pass SENDER = "<EMAIL>" ### Mail-sending stuff def send_report_to(recipient): # Import smtplib for the actual sending function import smtplib # Import the email modules we'll need from email.mime.text import MIMEText msg = MIMEText("\n".join(violations)) # me == the sender's email address # you == the recipient's email address msg['Subject'] = "You have some files in places they shouldn't be" msg['From'] =SENDER msg['To'] = recipient s = smtplib.SMTP('localhost') s.sendmail(SENDER, [recipient], msg.as_string()) s.quit() walk_folder("/Users/jonanderson") for line in violations: print line ``` #### File: jemenake/LogicProjectTools/LogicProjectMonitor.py ```python from os import walk import os.path import notify # For notifying the user (email, log file, etc...) TARGET_FOLDERS = '/Users/jemenake', IGNORE_FOLDERS = '/Users/jemenake/Music/GarageBand', "/Users/jemenake/all_hashed_audio" #TARGET_FOLDERS = ('/Users', '/Volumes/Old Macintosh HD', '/Volumes/Iomega HDD', '/Volumes/Logic Project Archives') LOGIC9_TARGET_EXT = ".logic" LOGICX_TARGET_EXT = ".logicx" AUDIO_FOLDER = "Audio Files" AUDIO_FILE_PREFIXES = "KURZ", "MOTIF", "VOICE", "YAMAHA", "KORG", "CASIO", "AUDIO", "TRACK" # Should we look through the .logic/.logicx project files to find out what audio files they expect to see? INSPECT_LOGIC_FILES = False logic9_projects = list() logicx_projects = list() logic_projects = list() audio_folders = list() audio_files = list() # # Scans a .logic project for all of the audio files it references # # Takes: full pathname to a "*.logic" project folder # Returns: list of full pathnames to audio files def get_linked_logic9_audio_filenames(project_path): pathnames = list() data_pathname = project_path + "/" + "LgDoc" + "/documentData" # print "Opening " + data_pathname try: with open(data_pathname, "r") as myfile: data = myfile.read() offset = 0 while True: offset = data.find("LFUA", offset) if offset == -1: break filename_start = offset + 10 filename_end = data.find("\0", filename_start) path_start = offset + 138 path_end = data.find("\0", path_start) filename = data[filename_start:filename_end] path = data[path_start:path_end] pathname = path + "/" + filename pathnames.append(pathname) offset = path_end except: pass # print "Problem reading " + data_pathname return pathnames ########################################## ########################################## # Scan all target folders, finding all .logic and .logicx folders and save what you find in global vars # def scan_target_folders(folders): for folder in folders: # print "Searching for intact Logic projects in " + folder # print for (dirpath, dirnames, filenames) in walk(folder): for ignore_folder in IGNORE_FOLDERS: if dirpath[:len(ignore_folder)] == ignore_folder: # print "Ignoring " + dirpath break else: logic9_projects.extend([dirpath + "/" + a for a in dirnames if a[-len(LOGIC9_TARGET_EXT):] == LOGIC9_TARGET_EXT]) logicx_projects.extend([dirpath + "/" + a for a in dirnames if a[-len(LOGICX_TARGET_EXT):] == LOGICX_TARGET_EXT]) audio_folders.extend([dirpath + "/" + a for a in dirnames if a == AUDIO_FOLDER]) audio_files.extend([dirpath + "/" + a for a in filenames if os.path.basename(a).upper().startswith(AUDIO_FILE_PREFIXES) and a.lower().endswith(".aif")]) logic_projects.extend(logic9_projects) logic_projects.extend(logicx_projects) return # candidate_folders = sorted(candidate_folders, key=lambda x: len(x), reverse=True) # # found_folders = dict() # # while len(candidate_folders) > 0: # candidate = candidate_folders[0] # # Remove the candidate from the list # candidate_folders = candidate_folders[1:] # # # Is this a "*.logic" folder # if candidate[-len(LOGIC9_TARGET_EXT):] == LOGIC9_TARGET_EXT: # parent_path = os.path.dirname(candidate) # parent_name = os.path.basename(parent_path) # candidate_without_ext = os.path.basename(candidate)[:-len(LOGIC9_TARGET_EXT)] # # # Remove any other projects whose parent folders also hold this # candidate_folders = [a for a in candidate_folders if not parent_path.startswith(os.path.dirname(a))] # # # Are there any other "*.logic" folders in the same folder we're in? # other_folders = [a for a in candidate_folders if a.startswith(parent_path) and a != parent_path and a[-len(LOGIC9_TARGET_EXT):] == LOGIC9_TARGET_EXT] # if len(other_folders) == 0: # # Is the folder named the same thing as we are? # if parent_name == candidate_without_ext: # # Is there an "Audio Files" folder in here? # if os.path.isdir(parent_path + "/Audio Files"): # found_folders[candidate] = pathsize(parent_path) # print "0:FOUND:" + candidate # else: # print "1:NOAUDIOFILES:" + candidate # else: # print "2:MISMATCHEDPARENT" + candidate # # else: # # There are other .logic folders in here. Remove all of them from candidates (but don't remove the *parent*, itself) # candidate_folders = [ a for a in candidate_folders if not a.startswith(parent_path) and a != parent_path] # # # print # for name in [ a for a in sorted(found_folders.keys(), key=lambda x: found_folders[x], reverse=True) ]: # print str(found_folders[name]) + ":" + name ########################################## ########################################## def pathsize(path): size = 0 for (dirpath, dirnames, filenames) in walk(path): for filename in filenames: size += + os.lstat(dirpath + "/" + filename).st_size return size ######################################### ######################################### def run_checks(): problems = [] from collections import Counter # Check to see if a .logic project has other .logic projects in the same folder project_counts = Counter([os.path.dirname(a) for a in logic_projects]) for k in project_counts.keys(): if project_counts[k] != 1: problems.append(k + " has " + str(project_counts[k]) + " logic projects in it") # Check to see if any audio files aren't in Audio Files folders folders_with_audio_files = set([os.path.dirname(a) for a in audio_files]) for foldername in folders_with_audio_files: if not foldername in audio_folders: problems.append(foldername + " contains audio files, but it's not an Audio Files folder") # Check to see that all Audio Files folders are in a folder with ONE .logic project for parent_foldername in [os.path.dirname(a) for a in audio_folders]: if parent_foldername in project_counts.keys(): if project_counts[parent_foldername] != 1: problems.append(parent_foldername + " has an Audio Files folder, and MULTIPLE Logic projects") else: # There were ZERO Logic projects with this folder problems.append(parent_foldername + " has an Audio Files folder, but no Logic project") if INSPECT_LOGIC_FILES: # Check to make sure that all linked audio files exist for project in logic_projects: missing_audio = list() project_audio_files = get_linked_logic9_audio_filenames(project) for audio_file in project_audio_files: if not os.path.isfile(audio_file): missing_audio.append(audio_file) if(len(missing_audio) > 0): problems.append(project + " is missing the following audio files:") for a in missing_audio: problems.append(" " + a) # Check to make sure that all linked audio files are in their assigned "Audio Files" folder for project in logic_projects: wayward_audio = list() project_audio_files = get_linked_logic9_audio_filenames(project) for audio_file in project_audio_files: if os.path.dirname(project) + "/Audio Files" != os.path.dirname(audio_file): wayward_audio.append(audio_file) if(len(wayward_audio) > 0): problems.append(project + " references a wayward audio file:") for a in wayward_audio: problems.append(" " + a) # Check for any audio in Audio Files that isn't referenced in the project pass return problems ######################################### ######################################### def main(): scan_target_folders(TARGET_FOLDERS) problems = run_checks() if len(problems) > 0: # We found some problems notify.notify("\n".join(problems)) if __name__ == "__main__": main() ```
{ "source": "Jemeni11/Fic-Retriever", "score": 3 }
#### File: Fic-Retriever/embed_messages/SH_Embed.py ```python from discord import Embed from scrapers.scribblehub import ScribbleHub import re from dateutil import tz from datetime import datetime now = datetime.now(tz=tz.tzlocal()) def ScribbleHubEmbed(URL: str): SHinstance = ScribbleHub(URL) try: if re.search(r"(^https://www\.scribblehub\.com/(series|read))/\d+", URL, re.IGNORECASE): SHReply = SHinstance.SHWork() # Create the initial embed object # # Description has a limit of 4096, but I'm setting this to 350 characters. DESCRIPTION = SHReply['SYNOPSIS'] if len(SHReply['SYNOPSIS']) < 350 else f"{SHReply['SYNOPSIS'][:345]} ..." embed = Embed( title=SHReply['STORY_TITLE'], url=URL, description=DESCRIPTION, color=0xE09319) # Add author, thumbnail, fields, and footer to the embed embed.set_author( name=SHReply['AUTHOR'], url=SHReply['AUTHOR_PROFILE_LINK'], icon_url=SHReply['AUTHOR_AVATAR_LINK'] ) embed.set_thumbnail(url=SHReply['COVER_IMAGE']) if SHReply['FANDOM'] != 'N/A': embed.add_field(name="Fandom", value=SHReply['FANDOM'], inline=False) if SHReply['CONTENT_WARNING'] != 'N/A': embed.add_field(name="Content Warning", value=SHReply['CONTENT_WARNING'], inline=False) embed.add_field( name="Stats", value= f"""{SHReply['VIEWS']} • {SHReply['FAVOURITES']} • {SHReply['CHAPTER_COUNT']} • {SHReply['READERS']}""", inline=False) embed.add_field(name="Genres", value=SHReply['GENRES'], inline=False) embed.set_footer(text=f"Info retrieved by Summarium on {now.strftime('%a %-d at %X')}") return embed elif re.search(r"(^https://www\.scribblehub\.com/profile)/\d+/(\w+)*", URL, re.IGNORECASE): SHReply = SHinstance.SHProfile() # Create the initial embed object # # Description has a limit of 4096, but I'm setting this to 500 characters. embed = Embed( title="ScribbleHub Profile", url=URL, description='', color=0xE09319 ) # Add author, thumbnail, fields, and footer to the embed embed.set_author( name=SHReply['AUTHOR_NAME'], url=URL, icon_url=SHReply['PROFILE_PHOTO'] ) embed.set_thumbnail(url=SHReply['PROFILE_PHOTO']) if SHReply['ABOUT'] != '': embed.add_field(name="About", value=SHReply['ABOUT'], inline=False) if SHReply['HOME_PAGE'] != 'N/A': embed.add_field(name="Home Page", value=SHReply['HOME_PAGE'], inline=False) embed.add_field(name="Last Active", value=SHReply['LAST_ACTIVE'], inline=True) embed.add_field(name="Followers", value=SHReply['FOLLOWERS'], inline=True) embed.add_field(name="Following", value=SHReply['FOLLOWING'], inline=True) embed.add_field( name="Stats", value= f""" Joined: {SHReply['JOINED']} • Readers: {SHReply['READERS']} • Series: {SHReply['NUMBER_OF_SERIES']} """, inline=False) embed.set_footer(text=f"Info retrieved by Summarium on {now.strftime('%a %-d at %X')}") return embed except: embed = Embed( title="Summarium Error", url=URL, description=f"Can not get scribblehub URL {URL}", color=0x6A0DAD ) return embed ``` #### File: Jemeni11/Fic-Retriever/main.py ```python import re import os import discord from discord.ext import commands from embed_messages.SH_Embed import ScribbleHubEmbed from embed_messages.AO3_Embed import ArchiveOfOurOwnEmbed from embed_messages.FF_Embed import FanFictionDotNetEmbed from embed_messages.FL_Embed import FictionDotLiveEmbed from dotenv import load_dotenv load_dotenv() BOT_TOKEN = os.getenv('TOKEN') description = """An example bot to showcase the discord.ext.commands extension module. There are a number of utility commands being showcased here.""" intents = discord.Intents.default() intents.members = True # intents.message_content = True """ This worked perfectly about an hour ago and now it throws the following error: (virtualenv) nonso@HPEnvy:~/Documents/Code/Projects/Summarium$ python3 main.py Traceback (most recent call last): File "main.py", line 25, in <module> intents.message_content = True AttributeError: 'Intents' object has no attribute 'message_content' (virtualenv) nonso@HPEnvy:~/Documents/Code/Projects/Summarium$ So I commented that line out and ran my code again and it worked somehow even though it shouldn't. Putting this comment here incase it causes chaos later on. """ bot = commands.Bot(command_prefix="?", description=description, intents=intents) @bot.event async def on_ready(): print(f"Logged in as {bot.user} (ID: {bot.user.id})") print("____________________________________________") @bot.event async def on_message(message): if message.author.id == bot.user.id: return if message.author.bot: return # Do not reply to other bots # Pulling out all URLs URLs = re.findall( r""" \b((?:https?://)?(?:(?:www\.)?(?:[\da-z\.-]+)\.(?:[a-z]{2,6}) |(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5] |2[0-4][0-9]|[01]?[0-9][0-9]?)|(?:(?:[0-9a-fA-F]{1,4}:){7,7} [0-9a-fA-F]{1,4}|(?:[0-9a-fA-F]{1,4}:){1,7}:|(?:[0-9a-fA-F] {1,4}:){1,6}:[0-9a-fA-F]{1,4}|(?:[0-9a-fA-F]{1,4}:){1,5}(?:: [0-9a-fA-F]{1,4}){1,2}|(?:[0-9a-fA-F]{1,4}:){1,4}(?::[0-9a-fA-F] {1,4}){1,3}|(?:[0-9a-fA-F]{1,4}:){1,3}(?::[0-9a-fA-F]{1,4}){1,4} |(?:[0-9a-fA-F]{1,4}:){1,2}(?::[0-9a-fA-F]{1,4}){1,5}|[0-9a-fA-F] {1,4}:(?:(?::[0-9a-fA-F]{1,4}){1,6})|:(?:(?::[0-9a-fA-F]{1,4}){1,7}|:) |fe80:(?::[0-9a-fA-F]{0,4}){0,4}%[0-9a-zA-Z]{1,}|::(?:ffff(?::0{1,4}) {0,1}:){0,1}(?:(?:25[0-5]|(?:2[0-4]|1{0,1}[0-9]){0,1}[0-9])\.){3,3} (?:25[0-5]|(?:2[0-4]|1{0,1}[0-9]){0,1}[0-9])|(?:[0-9a-fA-F]{1,4}:) {1,4}:(?:(?:25[0-5]|(?:2[0-4]|1{0,1}[0-9]){0,1}[0-9])\.){3,3}(?:25 [0-5]|(?:2[0-4]|1{0,1}[0-9]){0,1}[0-9])))(?::[0-9]{1,4}|[1-5][0-9] {4}|6[0-4][0-9]{3}|65[0-4][0-9]{2}|655[0-2][0-9]|6553[0-5])? (?:/[\w\.-]*)*/?)\b """, message.content, re.VERBOSE) for i in URLs: if re.search(r"(^https://www\.scribblehub\.com/(series|read|profile))/\d+", i, re.IGNORECASE): await message.reply(embed=ScribbleHubEmbed(i)) elif re.search(r"^https://archiveofourown\.org/(\bseries\b|\bworks\b|\bcollections\b)/", i, re.IGNORECASE): await message.reply(embed=ArchiveOfOurOwnEmbed(i)) elif re.search(r"^https://(www|m)\.(\bfanfiction\b\.\bnet\b)/s/\d+/\d+/\w*", i, re.IGNORECASE): await message.reply(file=FanFictionDotNetEmbed(i)[0], embed=FanFictionDotNetEmbed(i)[1]) elif re.search(r'^https?://fiction\.live/(?:stories|Sci-fi)/[^\/]+/([0-9a-zA-Z\-]+)/?.*', i, re.IGNORECASE): await message.reply(embed=FictionDotLiveEmbed(i)) bot.run(BOT_TOKEN) ``` #### File: Fic-Retriever/scrapers/fictionlive.py ```python import requests from bs4 import BeautifulSoup from datetime import datetime def fictiondotlive(url: str): STORY_ID = url.split("/")[5] response = requests.get(f'https://fiction.live/api/node/{STORY_ID}').json() TITLE = response['t'][:-4] if '<br>' == response['t'][-4:] else response['t'] AUTHOR = response['u'][0]['n'] if not 'a' in response['u'][0].keys(): AUTHOR_IMAGE = 'https://ddx5i92cqts4o.cloudfront.net/images/1e1nvq5tm_fllogo.png' else: AUTHOR_IMAGE = response['u'][0]['a'] AUTHOR_LINK = f"https://fiction.live/user/{AUTHOR}" STORY_STATUS = None if 'storyStatus' not in response.keys() else response['storyStatus'] CONTENT_RATING = None if 'contentRating' not in response.keys() else response['contentRating'] if CONTENT_RATING == 'nsfw': CONTENT_RATING = 'NSFW' if 'i' not in response.keys(): COVER_IMAGE = 'https://ddx5i92cqts4o.cloudfront.net/images/1e1nvq5tm_fllogo.png' else: COVER_IMAGE = response['i'][0] AUTHOR_NOTE = ' ' if 'd' not in response.keys() else response['d'] AUTHOR_NOTEVar = str(AUTHOR_NOTE).replace('<br>', '\r\n') AUTHOR_NOTEVar2 = str(AUTHOR_NOTEVar).replace('</p><p>', '</p><p>\r\n</p><p>') AUTHOR_NOTE = BeautifulSoup(AUTHOR_NOTEVar2, 'lxml').get_text() DESCRIPTION = ' ' if 'b' not in response.keys() else response['b'] DESCRIPTIONVar = str(DESCRIPTION).replace('<br>', '\r\n') DESCRIPTIONVar2 = str(DESCRIPTIONVar).replace('</p><p>', '</p><p>\r\n</p><p>') DESCRIPTION = BeautifulSoup(DESCRIPTIONVar2, 'lxml').get_text() TAGS = ' ' if 'ta' not in response.keys() else response['ta'] NOS_OF_CHAPTERS = ' ' if 'bm' not in response.keys() else f"{len(response['bm']):,}" NOS_OF_WORDS = ' ' if 'w' not in response.keys() else f"{response['w']:,}" if 'cht' not in response.keys(): UPDATED = ' ' else: UPDATED = str(datetime.fromtimestamp(response['cht'] / 1000.0, None))[:10] if 'rt' not in response.keys(): PUBLISHED = ' ' else: PUBLISHED = str(datetime.fromtimestamp(response['rt'] / 1000.0, None))[:10] return { 'TITLE': TITLE, 'AUTHOR': AUTHOR, 'AUTHOR_IMAGE': AUTHOR_IMAGE, 'AUTHOR_LINK': AUTHOR_LINK, 'STORY_STATUS': STORY_STATUS, 'CONTENT_RATING': CONTENT_RATING, 'COVER_IMAGE': COVER_IMAGE, 'AUTHOR_NOTE': AUTHOR_NOTE, 'DESCRIPTION': DESCRIPTION, 'TAGS': TAGS, 'NOS_OF_CHAPTERS': NOS_OF_CHAPTERS, 'NOS_OF_WORDS': NOS_OF_WORDS, 'UPDATED': UPDATED, 'PUBLISHED': PUBLISHED } ```
{ "source": "Jemeni11/Lyric-Translator_", "score": 4 }
#### File: Jemeni11/Lyric-Translator_/Caller.py ```python from translathor import translator from apicalls import * def caller(): intention = input( "To get songs by an artist use (F)\nTo get music lyrics use(G)\nUse (H) to get lyrics and translate -->") if intention.lower() not in ['f', 'g', 'h'] : exit("Lmao, get serious abeg") elif intention.lower() == "g": for text in get_lyrics(): print(text) elif intention.lower() == "f": get_songsby() else: print(translator(get_lyrics())) if __name__ == "__main__": print(caller()) ```
{ "source": "Jemesson/nlp-conceptual-model", "score": 3 }
#### File: Jemesson/nlp-conceptual-model/Api.py ```python import json from ModelGenerationApi import ModelGenerationApi from flask import Flask, request, Response, jsonify app = Flask(__name__) OPTION_USER_STORIES = 'user-stories' OPTION_ONTOLOGY = 'ontology' OPTION_PROLOG = 'prolog' @app.route('/') def index(): return 'Hello =]. Use the endpoint: user-stories please.' @app.route('/user-stories', methods=['POST']) def api_user_stories(): if not request.files or not request.files['stories']: return Response(json.dumps({'error': 'Upload a user story.'}), status=409, mimetype='application/json') stream = request.files['stories'].stream if request.files['stories'].content_type == 'text/csv': messages = stream.read().decode("UTF8").split('\r\n') else: messages = stream.read().decode('UTF-8').split('\n') weights = [1, 1, 1, 0.7, 0.5, 0.66] conceptual_model = ModelGenerationApi('system-name', 1, 1, weights, messages) result = conceptual_model.gen_concept_model() option = None if request.args.get('option'): option = request.args.get('option') if option is None or option == OPTION_USER_STORIES: user_stories_json = [str(us.toJSON()) for us in result['stories']] return "\n".join(user_stories_json) elif option == OPTION_ONTOLOGY: return result['ontology'] elif option == OPTION_PROLOG: return result['prolog'] else: return Response(json.dumps({'error': 'Invalid option.'}), status=409, mimetype='application/json') if __name__ == '__main__': app.run() ``` #### File: nlp-conceptual-model/libs/NLPLoader.py ```python import spacy class NLPLoader: """ Loads NLP Library """ def __init__(self, message, language): self.message = message self.language = language self.nlp = spacy.load(self.language) def __str__(self): return f'Message: {self.message} Language: {self.language}' @property def nlp_tool(self): return self.nlp ```
{ "source": "jemfinch/finitd", "score": 2 }
#### File: finitd/test/test_conf.py ```python import grp from finitd import conf from finitd.test import * from hieropt.test.test_hieropt import assert_write_then_read_equivalence def test_Uid(): uid = conf.Uid('uid') uid.setFromString('root') assert_equals(uid(), 0) assert_equals(str(uid), 'root') def test_Gid(): gid = conf.Gid('gid') # Can't test for 'root' here because BSD doesn't have a root group. gid.setFromString('daemon') assert_equals(gid(), grp.getgrnam('daemon').gr_gid) assert_equals(str(gid), 'daemon') def test_Signal(): sig = conf.Signal('sig') sig.setFromString('SIGKILL') assert_equals(sig(), 9) assert_equals(str(sig), 'SIGKILL') sig.setFromString('SIGTERM') assert_equals(sig(), 15) assert_equals(str(sig), 'SIGTERM') def test_conf_config(): assert_write_then_read_equivalence(conf.config) def test_watcher_pidfile(): assert_equals(conf.config.options.pidfile(), None) assert_equals(conf.config.watcher.pidfile(), None) conf.config.options.pidfile.set('pid') assert_equals(conf.config.watcher.pidfile(), 'pid.watcher') ```
{ "source": "jemfinch/hieropt", "score": 2 }
#### File: hieropt/hieropt/__init__.py ```python import os import re import textwrap from OrderedDict import OrderedDict from optparse import OptionParser, OptionValueError class InvalidSyntax(Exception): def __init__(self, lineno, msg): self.lineno = lineno self.msg = msg def __str__(self): return '%s (on line %s)' % (self.msg, self.lineno) class MissingName(InvalidSyntax): def __init__(self, lineno): InvalidSyntax.__init__(self, lineno, 'Could not find variable name') class UnregisteredName(InvalidSyntax): def __init__(self, lineno, name): InvalidSyntax.__init__(self, lineno, 'Unregistered name: %r' % name) class GroupExpectsNoValue(Exception): def __init__(self, name): self.name = name def __str__(self): return 'Group expects no value: %r' % self.name def wrap(comment): return textwrap.wrap(' '.join(comment.split())) def writeComment(fp, comment): for line in wrap(comment): fp.write('# %s\n' % line) def OptparseCallback(option, optString, valueString, parser, Value): try: Value.setFromString(valueString) except ValueError, e: raise OptionValueError('%s option expected %s, received %r (%s)' % (optString, Value.type(), valueString, e)) class IgnoreValue(object): """Used non-strict Groups to ignore the value in readfp.""" def expectsValue(self): return True def setFromString(self, s): return class Group(object): """All configuration variables are groups, that is, all configuration variables can have other groups and variables registered under them. Experience (from the very similar configuration in Supybot) has shown that making non-group variables is simply not worth the trouble and inconsistency.""" def __init__(self, name, comment=None, Child=None, strict=True): """ @param name: The name for this group. An argument could be made for making the group itself name-agnostic and only giving it a name upon registration with another group, but that would cripple unregistered groups. @param comment: A helpful comment indicating the usage/meaning of a particular group. This comment will be written to configuration files and used as the help text of the optparse OptionParser the group can generate. @param Child: A callable (usually a class) which, if not None, will be used in the get() method to create a requested child rather than raising KeyError. """ # All of these are prefixed with underscores so they won't conflict with # registered children. if name.startswith('_'): raise ValueError('Names beginning with an underscore are forbidden: %r'%name) self._name = name self._parent = None self._Child = Child self._strict = strict self._comment = comment self._children = OrderedDict() def get(self, name): """Returns the child variable with the given name. If no such variable exists and the Child argument was given to __init__, a new variable will be created and returned. @param name: The name of the child to retrieve. """ try: return self._children[name] except KeyError: if self._Child is not None: child = self._Child(name) self.register(child) return child else: raise def __getattr__(self, name): if name.startswith('_'): return object.__getattr__(self, name) try: return self.get(name) except KeyError: raise AttributeError(name) def __call__(self): # Having this here offers a better exception/error message than __getattr__'s # AttributeError. raise GroupExpectsNoValue(self._fullname()) def register(self, child): """Registers the given child with this group. Any previously-registered children with the same name are replaced. @param child: The child to register. """ self._children[child._name] = child child._parent = self return child def _fullname(self, parentName=None, childName=None): if childName is None: childName = self._name if parentName is None and self._parent is not None: parentName = self._parent._fullname() if not parentName: return childName else: return '%s.%s' % (parentName, childName) def writefp(self, fp, annotate=True, parentName=None): """Writes this configuration group and its children in their current state to the given file(-like) object. @param fp: The file(-like) object to write. @param annotate: Flag determining whether to write comments to the given file object. Default values are still written, but commented out. @param parentName: The name of the parent to prefix to this group's own name and the name of its children. """ if self._comment and annotate: writeComment(fp, self._comment) fp.write('\n') myname = self._fullname(parentName) for child in self.children(): child.writefp(fp, annotate=annotate, parentName=myname) _sepRe = re.compile(r'\s*[:=]\s*') def readfp(self, fp): """Reads the given file object, setting the state of this configuration group and its children appropriately. Comment lines and blank lines are ignored; comment lines are those which begin (apart from leading whitespace) with a '#' character. Comments cannot be initiated part way through a line: e.g., a line 'foo: bar # baz' gives the 'foo' configuration variable the literal value 'bar # baz'. Non-comment lines consist of a configuration variable name followed by optional whitespace, a separator of ':' or '=', more optional whitespace, and finally the value of that variable in string form.""" lineno = 0 for line in fp: lineno += 1 line = line.strip() if not line or line.startswith('#'): continue try: (name, value) = self._sepRe.split(line, 1) except ValueError: raise MissingName(lineno) value = value.strip() parts = name.split('.') if parts.pop(0) != self._name: if not self._strict: continue # Just ignore other names. raise UnregisteredName(lineno, name) group = self for part in parts: try: group = group.get(part) except KeyError: if not self._strict: group = IgnoreValue() raise UnregisteredName(lineno, name) if not group.expectsValue(): raise InvalidSyntax(lineno, '%s expects no value' % name) group.setFromString(value) def read(self, filename): """Calls readfp with a file object opened with the given name.""" fp = open(filename) try: self.readfp(fp) finally: fp.close() def readenv(self, environ=None): """Reads the given environment dictionary, setting the state of this configuration group and its children appropriately. Unrecognized env variable names are ignored. Environment variables are expected to be capitalized, parts separated by underscores. For instance, if you would access the configuration variable via 'foo.bar.baz' in Python, the environment variable expected would be FOO_BAR_BAZ. @param environ: The environment dictionary. Defaults to os.environ. @type environ: dict """ if environ is None: environ = os.environ for (name, variable) in self: if not variable.expectsValue(): continue envName = name.replace('.', '_').upper() try: variable.setFromString(environ[envName]) except KeyError: continue except ValueError, e: raise ValueError('Invalid environment variable %s: %s' % (envName, e)) def __iter__(self): """Generates a series of (fullname, configuration variable) pairs for this Group and its children.""" yield (self._name, self) for child in self.children(): for (childname, grandchild) in child: yield (self._fullname(self._name, childname), grandchild) def toOptionParser(self, parser=None, **kwargs): """Modifies or produces an optparse.OptionParser which will set the appropriate variables in this configuration tree when certain options are given. Options are converted to lowercase and separated by dashes, in accordance with the common practice for long options in *nix. For instance, if you would access the configuration variable via 'foo.bar.baz' in Python, the command line option associated with that variable would be --foo-bar-baz.""" if parser is None: parser = OptionParser(**kwargs) for (name, variable) in self: if not variable.expectsValue(): continue optionName = name.replace('.', '-').lower() parser.add_option('', '--' + optionName, action="callback", type="string", callback=OptparseCallback, metavar=variable.type().upper(), help=variable._comment, callback_args=(variable,)) return parser def children(self): return self._children.values() def expectsValue(self): return False parent = object() class Value(Group): def __init__(self, name, default=None, **kwargs): Group.__init__(self, name, **kwargs) self._value = None self._default = default @property def default(self): if callable(self._default): return self._default() elif self._default is parent: return self._parent() else: return self._default def __call__(self): if self._value is None: return self.default else: return self._value @classmethod def type(cls): if cls is Value: return 'string' else: return cls.__name__.lower() def set(self, v): self._value = v def setFromString(self, s): self.set(self.fromString(s)) def fromString(self, s): return s def toString(self, v): return str(v) def __str__(self): return self.toString(self()) def writefp(self, fp, annotate=True, parentName=None): myname = self._fullname(parentName) if self._comment is not None and annotate: writeComment(fp, self._comment) if self._value is None: fp.write('# ') # Document the default value, but comment it out. if self() is None: stringValue = '(no default)' else: stringValue = str(self) fp.write('%s: %s\n' % (myname, stringValue)) if annotate: fp.write('\n') # Extra newline makes comments more easily distinguishable. for child in self.children(): child.writefp(fp, annotate=annotate, parentName=myname) def expectsValue(self): return True def isSet(self): return self._value is not None or self.default is not None def isDefault(self): return self._value is None def reset(self): self._value = None class Bool(Value): def fromString(self, s): if s.lower() in ['true', 'on', '1', 'yes']: return True elif s.lower() in ['false', 'off', '0', 'no']: return False else: raise ValueError('%r cannot be converted to bool' % s) class Int(Value): def fromString(self, s): if s.startswith('0x'): return int(s[2:], 16) elif s.startswith('0'): return int(s, 8) else: return int(s) class Float(Value): fromString = float ```
{ "source": "Jemgoss/pychromecast", "score": 3 }
#### File: pychromecast/pychromecast/config.py ```python import json from urllib.request import urlopen APP_BACKDROP = "E8C28D3C" APP_YOUTUBE = "233637DE" APP_MEDIA_RECEIVER = "CC1AD845" APP_PLEX = "06ee44ee-e7e3-4249-83b6-f5d0b6f07f34_1" APP_DASHCAST = "84912283" APP_HOMEASSISTANT_LOVELACE = "A078F6B0" APP_HOMEASSISTANT_MEDIA = "B45F4572" APP_SUPLA = "A41B766D" APP_YLEAREENA = "A9BCCB7C" APP_BUBBLEUPNP = "3927FA74" APP_BBCSOUNDS = "03977A48" APP_BBCIPLAYER = "5E81F6DB" def get_possible_app_ids(): """Returns all possible app ids.""" try: with urlopen("https://clients3.google.com/cast/chromecast/device/baseconfig") as response: response.read(4) data = json.load(response) return [app["app_id"] for app in data["applications"]] + data["enabled_app_ids"] except ValueError: # If json fails to parse return [] def get_app_config(app_id): """Get specific configuration for 'app_id'.""" try: with urlopen(f"https://clients3.google.com/cast/chromecast/device/app?a={app_id}") as response: if response.status == 200: response.read(4) data = json.load(response) else: data = {} return data except ValueError: # If json fails to parse return {} ```
{ "source": "Jemhunter/Invoke", "score": 4 }
#### File: Invoke/invokeReactive/invokeInterpreter.py ```python import random #all the characters that are considered valid validChars = ["Q", "W", "E", "R", "I", ">", "<", "V", "^"] def convertToValid (fileInput): '''Convert file data to array of valid characters only''' #convert to upper case fileInput = fileInput.upper() #create array to hold data in data = [] #split into lines lines = fileInput.split("\n") #to store the max length maxLength = -1 #iterate lines for line in lines: #if this line is longer than the current maximum if len(line) > maxLength: #update the maximum maxLength = len(line) #iterate lines for line in lines: #create list to hold the data for this line lineData = [] #iteracte characters for char in line: #if it is a valid character if char in validChars: #add it to the list lineData.append(char) else: #add a blank lineData.append("") #iterate for extra items that are needed for i in range(maxLength - len(lineData)): #add blanks to fill to square lineData.append("") #add line to data data.append(lineData) #return the array return data def getFile (): '''Get all the data from the file given''' #get the path from the user path = input("Enter path to Invoke file:") #initialize data as none - if no file can be obtained it won't proceed fileData = None #check for correct extension if path.endswith(".inv"): try: #attempt to open and read the file invokeFile = open(path, "r") #store data in variable fileData = invokeFile.read() #close the file invokeFile.close() except: #if something went wrong the file wasn't found print("File not found or invalid, please ensure you typed the path correctly") else: #if it wasn't a .inv file print("The file must be in the format filename.inv") #return the data return fileData def whichCommand (parts): '''Determine which command is being executed from the 3 parts''' #list of valid parts validParts = ["Q", "W", "E"] #if there aren't 3 if len(parts) < 3: #return no command return -1 #if all are valid if parts[0] in validParts and parts[1] in validParts and parts[2] in validParts: #1st is Q if parts[0] == "Q": #2nd is Q if parts[1] == "Q": #3rd is Q if parts[2] == "Q": #QQQ return 6 #3rd is W elif parts[2] == "W": #QQW return 3 #3rd is E else: #QQE return 2 #2nd is W elif parts[1] == "W": #3rd is Q if parts[2] == "Q": #QQW return 3 #3rd is W elif parts[2] == "W": #WWQ return 1 #3rd is E else: #QWE return 9 #2nd is E else: #3rd is Q if parts[2] == "Q": #QQE return 2 #3rd is W elif parts[2] == "W": #QWE return 9 #3rd is E else: #EEQ return 5 #1st is W elif parts[0] == "W": #2nd is Q if parts[1] == "Q": #3rd is Q if parts[2] == "Q": #QQW return 3 #3rd is W elif parts[2] == "W": #WWQ return 1 #3rd is E else: #QWE return 9 #2nd is W elif parts[1] == "W": #3rd is Q if parts[2] == "Q": #WWQ return 1 #3rd is W elif parts[2] == "W": #WWW return 7 #3rd is E else: #WWE return 0 #2nd is E else: #3rd is Q if parts[2] == "Q": #QWE return 9 #3rd is W elif parts[2] == "W": #WWE return 0 #3rd is E else: #EEW return 4 #1st is E else: #2nd is Q if parts[1] == "Q": #3rd is Q if parts[2] == "Q": #QQE return 2 #3rd is W elif parts[2] == "W": #QWE return 9 #3rd is E else: #EEQ return 5 #2nd is W elif parts[1] == "W": #3rd is Q if parts[2] == "Q": #QWE return 9 #3rd is W elif parts[2] == "W": #WWE return 0 #3rd is E else: #EEW return 4 #2nd is E else: #3rd is Q if parts[2] == "Q": #EEQ return 5 #3rd is W elif parts[2] == "W": #EEW return 4 #3rd is E else: #EEE return 8 #if no other command was found return -1 def addMana (pots, amount, addPosition, startDir): '''Add mana to a specific pot - with overflow''' #if addPosition is within pots if addPosition < len(pots) and addPosition > -1: #get the current pot amount currentPotAmount = pots[addPosition] #if there will not be overflow if currentPotAmount + amount <= 255: #add to the pot pots[addPosition] = pots[addPosition] + amount else: #there is overflow #fill the current pot pots[addPosition] = 255 #remove amount added from amount that needs to be added amount = amount - (255 - currentPotAmount) #split evenly into left and right overflow rightPart = amount // 2 leftPart = amount // 2 #if it was an odd number if amount % 2 != 0: #if right first if startDir == 0: #add excess to right rightPart = rightPart + 1 else: #add excess to left leftPart = leftPart + 1 #for the pot on the left of the current to 0 for i in range(addPosition - 1, -1, -1): #if there is still mana to add on the left if leftPart > 0: #if the current pot is not full if pots[i] < 255: #get the amount in the pot potAmount = pots[i] #if there will not be further overflow if potAmount + leftPart < 255: #add left part remaining to the pot pots[i] = pots[i] + leftPart #no left part remaining leftPart = 0 else: #fill the pot pots[i] = 255 #remove the amount added from the left part leftPart = leftPart - (255 - potAmount) #if there is still a left part if leftPart > 0: #add it to the right part (it bounced off the left wall) rightPart = rightPart + leftPart #start position is one right of the add position currentPot = addPosition + 1 #until the right part runs out while rightPart > 0: #if there is not a current pot if currentPot >= len(pots): #add a new empty pot pots.append(0) #if the pot is not full if pots[currentPot] < 255: #if there will not be overflow if rightPart <= (255 - pots[currentPot]): #add remaining amount to the pot pots[currentPot] = pots[currentPot] + rightPart #no right part remaining rightPart = 0 else: #get the pot amount potAmount = pots[currentPot] #fill the pot pots[currentPot] = 255 #reduce the right part by the amount added rightPart = rightPart - (255 - potAmount) #move to the next pot currentPot = currentPot + 1 #return the updated pots return pots def outputChar(number): '''Print a single character with no return character''' print(chr(number), end="") def outputNumber(number, needLine): '''Print a number with a leading new line if needed''' #if a new line is needed if needLine: #print the number with new line print("\n" + str(number)) else: #print just the number print(number) def getInput (): '''Get user input''' #get input inp = input(">") try: #attempt convert to int inp = int(inp) #return number (if positive) if inp >=0: return inp except: #if it isn't a number #if it has a length of 1 if len(inp) == 1: #return the unicode value for it (mod 256, so it is in ascii range) return (ord(inp) % 256) #if a number or single character was not entered return 0 def runProgram (code, debug): '''Run a program, code is the program code and debug is if the debug prints are on''' #create mana pots manaPots = [0] #create empty phial manaPhial = 0 #the currently selected pot currentPot = 0 #the parts of a command currently in use parts = ["", "", ""] #where to replace the part next partToReplace = 0 #if the program is running running = True #current instruction pointers pointerY = 0 pointerX = 0 #how to change the pointers after each instruction (x,y) pointerChange = [1, 0] #what the current direction of overflow is direction = random.randint(0,1) #if a new line is needed (has a character been printed most recently) needLine = False #valid code parts validParts = ["Q", "W", "E"] #single command characters otherCommands = [">", "<", "V", "^", "I", "R"] #until the program stops while running: #wrap the pointer if it goes off the right side if pointerX >= len(code[0]): pointerX = 0 #wrap the pointer if it goes off the left side if pointerX < 0: pointerX = len(code[0]) - 1 #wrap the pointer if it goes off the bottom if pointerY >= len(code): pointerY = 0 #wrap the pointer if it goes off the top if pointerY < 0: pointerY = len(code) - 1 #the amount the pointer is being boosted by (jumps) pointerBoost = [0,0] #the currently selected character/instruction currentChar = code[pointerY][pointerX] #if in debug mode if debug: #output the character print(currentChar) #if it is a command or code character if currentChar in validParts or currentChar in otherCommands: #if the character is the invoke command if currentChar == "I": #get which command the code makes up command = whichCommand(parts) #if debug is on if debug: #print the command id print(command) if command == 0: #right 1 pot #increase selected pot currentPot = currentPot + 1 #if this exceeds where there are currently pots if currentPot >= len(manaPots): #add a new empty pot manaPots.append(0) #get a new random direction direction = random.randint(0,1) elif command == 1: #left 1 pot #if not on the left wall if currentPot != 0: #get new random direction direction = random.randint(0,1) #move to the left currentPot = currentPot - 1 #if at the left wall if currentPot < 0: #stay on first pot currentPot = 0 elif command == 2: #add 1 to current pot #call for 1 mana to be added to the current pot manaPots = addMana(manaPots, 1, currentPot, direction) #invert the direction if direction == 0: direction = 1 else: direction = 0 elif command == 3: #remove 1 from current pot #if there is mana in the pot if manaPots[currentPot] > 0: #take 1 mana from the pot manaPots[currentPot] = manaPots[currentPot] - 1 elif command == 4: #output value of current pot #output the number outputNumber(manaPots[currentPot], needLine) #a new line is no longer needed needLine = False elif command == 5: #output character of current pot #output character outputChar(manaPots[currentPot]) #a new line is needed when a number is printed needLine = True elif command == 6: #Input and add to current pot #get amount to add toAdd = getInput() #call for it to be added to the pot manaPots = addMana(manaPots, toAdd, currentPot, direction) #if the amount added was odd if toAdd % 2 != 0: #invert the direction if direction == 0: direction = 1 else: direction = 0 elif command == 7: #draw as much as possible to fill phial #get the maximum amount that can be taken maximum = 511 - manaPhial #if the maximum is greater than or equal to the amount in the current pot if maximum >= manaPots[currentPot]: #take all into phial manaPhial = manaPhial + manaPots[currentPot] #set pot to empty manaPots[currentPot] = 0 else: #fill phial manaPhial = 511 #remove maximum from current pot manaPots[currentPot] = manaPots[currentPot] - maximum elif command == 8: #pour all from phial into pot #add the amount in the phial to the current pot manaPots = addMana(manaPots, manaPhial, currentPot, direction) #if it was an odd amount if manaPhial % 2 != 0: #invert direction if direction == 0: direction = 1 else: direction = 0 #empty phial manaPhial = 0 elif command == 9: #stop running = False elif currentChar == "R": #revoke - jump if empty pot #if the current pot is empty if manaPots[currentPot] == 0: #move the pointer 1 further in it's current direction pointerBoost[0] = pointerChange[0] pointerBoost[1] = pointerChange[1] elif currentChar == ">": #switch to move right pointerChange = [1, 0] elif currentChar == "<": #switch to move left pointerChange = [-1, 0] elif currentChar == "V": #switch to move down pointerChange = [0, 1] elif currentChar == "^": #switch to move up pointerChange = [0, -1] elif currentChar in validParts: #it is Q,W or E #replace the next part to replace whith this character parts[partToReplace] = currentChar #move to replace on one partToReplace = partToReplace + 1 #if it is beyond the end if partToReplace > 2: #move back to start partToReplace = 0 #adjust instruction pointer pointerX = pointerX + pointerChange[0] + pointerBoost[0] pointerY = pointerY + pointerChange[1] + pointerBoost[1] #if debug is on if debug: #prtint the mana pots, the current pot position, the phial and current parts print(manaPots) print("Current:" + str(currentPot)) print("Phial:" + str(manaPhial)) print(parts) #if a line is needed if needLine: #print complete message with leading new line print("\nExecution Complete") else: #print complete message print("Execution Complete") def execute(debug): '''Get the code and run it''' #get file data fileData = getFile() #if there was some data if fileData != None: #convert to valid data = convertToValid(fileData) #if there is code in y axis (at least 1 row) if len(data) > 0: #if there is code in x axis (at least 1 column) if len (data[0]) > 0: #run the program runProgram(data, debug) else: #no columns print("No code found") else: #no rows print("No code found") #Main Program #run the program execute(False) #hold the terminal open until enter is pressed input() ``` #### File: Invoke/invokeUnreactive/invokeDebugger.pyw ```python import tkinter import time from tkinter import N, E, S, W, HORIZONTAL, END, LEFT, RIGHT, INSERT, BOTTOM, TOP, Y, X, BOTH, WORD from tkinter import scrolledtext import random import ToolTips class manaScroll (tkinter.Frame): '''Class to hold pots scroll window and manage numbers/sprites''' def __init__ (self, parent): '''Constructor''' #list of buttons - each one is a pot self.buttons = [] #initialize the frame for this object tkinter.Frame.__init__(self, parent) #create canvas to hold scrolling frame self.canvas = tkinter.Canvas(parent, height=75, borderwidth=0) #create frame to hold buttons self.frame = tkinter.Frame(self.canvas) #create scroll bar self.scrollBar = tkinter.Scrollbar(parent, orient="horizontal", command=self.canvas.xview) #attach scroll bar to canvas self.canvas.configure(xscrollcommand=self.scrollBar.set) #place scroll bar and canvas self.scrollBar.grid(row=1, column=0, sticky=(N,E,S,W)) self.canvas.grid(row=0, column=0, sticky=(N,E,S,W)) #create a window to display the frame widget self.canvas.create_window((0,0), window = self.frame, anchor="nw", tags="self.frame") #bind reconfiguring size to call for configure self.frame.bind("<Configure>", self.onFrameConfigure) #get all pot images from files self.potImages = [tkinter.PhotoImage(file="resources/beakerEmpty.png"), tkinter.PhotoImage(file="resources/beakerLevel1.png"), tkinter.PhotoImage(file="resources/beakerLevel2.png"), tkinter.PhotoImage(file="resources/beakerLevel3.png"), tkinter.PhotoImage(file="resources/beakerLevel4.png"), tkinter.PhotoImage(file="resources/beakerLevel5.png")] #colour for active buttons self.buttonActive = "#f49fef" #add a starting pot self.addPot() #get default button colour self.buttonDefault = self.buttons[0].cget("background") #activate first button self.buttons[0].configure(relief="sunken", bg=self.buttonActive) #set the first as selected self.selected = 0 def addPot(self): '''Add a pot to the list''' #create a label string for the button label = str(len(self.buttons)) + " : 0" #create the button button = tkinter.Button(self.frame,bd=5,disabledforeground="#000000",image=self.potImages[0],text=label,height=60,width=60,state="disabled",compound="bottom") #add to list of buttons self.buttons.append(button) #pack the button button.pack(side=LEFT) def onFrameConfigure(self, event): '''When the frame is resized - reconfigure the scroll area''' self.canvas.configure(scrollregion=self.canvas.bbox("all")) def changeSelected(self, toSelect): '''Change which pot is currently selected''' #if there is a selected pot and it is in range if self.selected > -1 and self.selected < len(self.buttons): #deselect that pot self.buttons[self.selected].config(relief="raised", bg=self.buttonDefault) #if to select exists if toSelect > -1 and toSelect < len(self.buttons): #set selected self.selected = toSelect #select that pot self.buttons[self.selected].configure(relief="sunken", bg=self.buttonActive) #get the position to move the scroll to pos = (toSelect - 3.5)/len(self.buttons) #if it is less than 0 set it to 0 if pos < 0: pos = 0 #scroll the canvas to focus on the selected pot self.canvas.xview_moveto(pos) else: #no selected pot self.selected = -1 def changeValue(self, which, amount): '''Change the value of a specific pot. which - index of pot to change, amount - what to set it to''' #if the pot exists in the list of pots if which >= 0 and which < len(self.buttons): #create the label text labelText = str(which) + " : " + str(amount) #set the buttons text self.buttons[which].config(text=labelText) #set to correct sprite if amount == 0: self.buttons[which].config(image=self.potImages[0]) elif amount <= 50: self.buttons[which].config(image=self.potImages[1]) elif amount <= 100: self.buttons[which].config(image=self.potImages[2]) elif amount <= 150: self.buttons[which].config(image=self.potImages[3]) elif amount <= 200: self.buttons[which].config(image=self.potImages[4]) else: self.buttons[which].config(image=self.potImages[5]) class codeGrid (tkinter.Frame): '''Grid object to hold all the code inside of''' def __init__ (self, parent, code): '''Constructor''' #create frame tkinter.Frame.__init__(self, parent) #create canvas to hold grid, that will scroll self.canvas = tkinter.Canvas(parent, borderwidth=0) #create frame to hold characters self.frame = tkinter.Frame(self.canvas, bg="#000000") #create scroll bars self.scrollBarH = tkinter.Scrollbar(parent, orient="horizontal", command=self.canvas.xview) self.scrollBarV = tkinter.Scrollbar(parent, orient="vertical", command=self.canvas.yview) self.canvas.configure(xscrollcommand=self.scrollBarH.set, yscrollcommand=self.scrollBarV.set) #locate items self.scrollBarH.grid(row=1, column=0, sticky=(N,E,S,W)) self.scrollBarV.grid(row=0, column=1, sticky=(N,E,S,W)) self.canvas.grid(row=0, column=0, sticky=(N,E,S,W)) #create window to display frame self.canvas.create_window((0,0), window = self.frame, anchor="nw", tags="self.frame") #bind the window configure to recalculating the bounds self.frame.bind("<Configure>", self.onFrameConfigure) #nothing selected yet self.selectedX = -1 self.selectedY = -1 #2d array for each code element self.codeParts = [] #iterate for rows for i in range(0, len(code)): #add row self.frame.grid_rowconfigure(i, weight=1) #iterate for columns for i in range(0, len(code[0])): #add column self.frame.grid_columnconfigure(i, weight=1) #current row variable r = 0 #for each of the lines for line in code: #current column variable c = 0 #list of code elements codes = [] #iterate for each character for item in line: #create a label with that character l = tkinter.Label(self.frame, text = item, bg="#000000", fg="#ffffff", bd=3, font="TKFixedFont") #locate in grid l.grid(row=r, column=c, sticky=(N,E,S,W)) #bind clicking on the label to code clicked function l.bind("<Button-1>", self.codeClicked) #add label to list codes.append(l) #increment column c = c + 1 #add row to list self.codeParts.append(codes) #increment row r = r + 1 #select first character self.changeSelection(0, 0) def codeClicked (self, event): '''When a code letter is clicked - set as breakpoint''' #get the character's colour colour = event.widget.cget("foreground") #if there is text in the label if event.widget.cget("text") != " ": #if it is white (no break) if colour == "#ffffff": #set to cyan - break point on event.widget.config(fg="#00ffff") else: #set to white - break point off event.widget.config(fg="#ffffff") def checkBreakPoint (self, x, y): '''Check if there is a break point on a certain character''' #if both x and y are valid list elements for the code if x > -1 and x < len(self.codeParts[0]) and y > -1 and y < len(self.codeParts): #if the colour of the text is cyan if self.codeParts[y][x].cget("foreground") == "#00ffff": #break point is present return True #no break point return False def onFrameConfigure(self, event): '''When the frame resizes, recalculate the scroll region''' self.canvas.configure(scrollregion=self.canvas.bbox("all")) def changeSelection(self, x, y): '''Change which character is selected''' #if there is a selected character and it is in the code range if self.selectedX > -1 and self.selectedX < len(self.codeParts[0]) and self.selectedY > -1 and self.selectedY < len(self.codeParts): #change background colour back to black (unselected) self.codeParts[self.selectedY][self.selectedX].config(bg="#000000") #none currently selected (reset both to -1) self.selectedX = -1 self.selectedY = -1 #if the given values for selection are in the code range if x > -1 and x < len(self.codeParts[0]) and y > -1 and y < len(self.codeParts): #set selection values self.selectedX = x self.selectedY = y #highlight the character (magenta colour) self.codeParts[self.selectedY][self.selectedX].config(bg="#ff00ff") class codeWindow (tkinter.Toplevel): '''Class to hold the code window''' def __init__(self, code, *args, **kwargs): '''Constructor''' tkinter.Toplevel.__init__(self, *args, **kwargs) #set the title and default geometry self.title("Invoke Unreactive: Code") self.geometry("500x500") #set the icon self.iconbitmap(r"resources\icon.ico") #configure rows and columns for grid and scroll bars self.grid_rowconfigure(0,weight=10) self.grid_rowconfigure(1,minsize=20) self.grid_columnconfigure(0,weight=10) self.grid_columnconfigure(1,minsize=20) #create code grid self.gridCode = codeGrid(self, code) class program (): '''Class to hold and process the instructions and related data''' def __init__(self, code, manaWindow, outputWindow, partsOutput, phialOutput, inputEntry, inputButton, codeWindow, partsFrame, runButton, pauseButton, textOutputDebug): '''Constructor - passes all tkinter UI parts needed and creates program data in default state''' self.code = code self.manaOutput = manaWindow self.textOutput = outputWindow self.partsOutput = partsOutput self.phialOutput = phialOutput self.inputEntry = inputEntry self.inputButton = inputButton self.codeWindow = codeWindow self.partsFrame = partsFrame self.textOutputDebug = textOutputDebug #move default output to top self.textOutput.tkraise() #assign buttons self.runButton = runButton self.pauseButton = pauseButton #debug output variables self.debug = False self.currentColour = 0 self.currentColourDebug = 0 #if the program is about to restart (after this pass) self.needToRestart = False #create mana pots self.manaPots = [0] #create empty phial self.manaPhial = 0 #the currently selected pot self.currentPot = 0 #the parts of a command currently in use self.parts = ["", "", ""] #where to replace the part next self.partToReplace = 0 #if the program is running self.running = True #current instruction pointers self.pointerY = 0 self.pointerX = 0 #how to change the pointers after each instruction (x,y) self.pointerChange = [1, 0] #if a new line is needed (has a character been printed most recently) self.needLine = False self.needLineDebug = False #default button colour self.defaultColour = self.inputButton.cget("background") #if the program is running self.running = False #if a single step should execute self.step = False #if input is needed self.inputNeeded = False #if the program is finished self.programComplete = False #initialize state of the run and pause buttons self.runButton.config(state = "normal") self.pauseButton.config(state = "disabled") #default tooltip for the command self.tip = ToolTips.ToolTips([self.partsFrame], ["No Command"]) def runPressed (self): '''When run is pressed toggle into run mode''' self.running = True self.step = False def pausePressed (self): '''When pause is pressed toggle into paused mode''' self.running = False self.step = False def stepPressed (self): '''When step is pressed, set variable stating a single step is needed''' self.step = True def whichCommand (self, parts): '''Determine which command is being executed from the 3 parts''' #list of valid parts validParts = ["Q", "W", "E"] #if there aren't 3 if len(parts) < 3: #return no command return -1 #if all are valid if parts[0] in validParts and parts[1] in validParts and parts[2] in validParts: #1st is Q if parts[0] == "Q": #2nd is Q if parts[1] == "Q": #3rd is Q if parts[2] == "Q": #QQQ return 6 #3rd is W elif parts[2] == "W": #QQW return 3 #3rd is E else: #QQE return 2 #2nd is W elif parts[1] == "W": #3rd is Q if parts[2] == "Q": #QQW return 3 #3rd is W elif parts[2] == "W": #WWQ return 1 #3rd is E else: #QWE return 9 #2nd is E else: #3rd is Q if parts[2] == "Q": #QQE return 2 #3rd is W elif parts[2] == "W": #QWE return 9 #3rd is E else: #EEQ return 5 #1st is W elif parts[0] == "W": #2nd is Q if parts[1] == "Q": #3rd is Q if parts[2] == "Q": #QQW return 3 #3rd is W elif parts[2] == "W": #WWQ return 1 #3rd is E else: #QWE return 9 #2nd is W elif parts[1] == "W": #3rd is Q if parts[2] == "Q": #WWQ return 1 #3rd is W elif parts[2] == "W": #WWW return 7 #3rd is E else: #WWE return 0 #2nd is E else: #3rd is Q if parts[2] == "Q": #QWE return 9 #3rd is W elif parts[2] == "W": #WWE return 0 #3rd is E else: #EEW return 4 #1st is E else: #2nd is Q if parts[1] == "Q": #3rd is Q if parts[2] == "Q": #QQE return 2 #3rd is W elif parts[2] == "W": #QWE return 9 #3rd is E else: #EEQ return 5 #2nd is W elif parts[1] == "W": #3rd is Q if parts[2] == "Q": #QWE return 9 #3rd is W elif parts[2] == "W": #WWE return 0 #3rd is E else: #EEW return 4 #2nd is E else: #3rd is Q if parts[2] == "Q": #EEQ return 5 #3rd is W elif parts[2] == "W": #EEW return 4 #3rd is E else: #EEE return 8 #if no other command was found return -1 def addMana (self, pots, amount, addPosition): '''Add mana to a specific pot - with overflow''' #if addPosition is within pots if addPosition < len(pots) and addPosition > -1: #get the current pot amount currentPotAmount = pots[addPosition] #if there will not be overflow if currentPotAmount + amount <= 255: #add to the pot pots[addPosition] = pots[addPosition] + amount else: #fill the current pot #excess is lost pots[addPosition] = 255 #return the updated pots return pots def writeToText (self, data, colour): '''Write text to the default output''' #create the tag name tag = "colour" + str(self.currentColour) #configure tag self.textOutput.tag_configure(tag, foreground = colour) #increment colour counter self.currentColour = self.currentColour + 1 #activate text output self.textOutput.config(state="normal") #write line in tagged colour self.textOutput.insert(END, data, tag) #deactivate text output - prevents user typing self.textOutput.config(state="disabled") #move to bottom of output self.textOutput.yview_moveto(1) def writeToTextDebug (self, data, colour): '''Write text to debug output window''' #create debug tag name tag = "colour" + str(self.currentColourDebug) #configure tag self.textOutputDebug.tag_configure(tag, foreground = colour) #increment debug colour counter self.currentColourDebug = self.currentColourDebug + 1 #activate debug output self.textOutputDebug.config(state="normal") #write line in tagged colour self.textOutputDebug.insert(END, data, tag) #deactivate debug output - prevents user typing self.textOutputDebug.config(state="disabled") #move to bottom of debug output self.textOutputDebug.yview_moveto(1) def outputInt(self, value): '''Output an integer to the console''' #create message message = str(value) + "\n" #if a new line is needed (after char output) if self.needLine: #add new line to front of message message = "\n" + message #a new line is not needed next self.needLine = False #write the message self.writeToText(message, "#000000") #duplication of above but for debug output (prevents extra new lines where not necessary) message = str(value) + "\n" if self.needLineDebug: message = "\n" + message self.needLineDebug = False self.writeToTextDebug(message, "#000000") def outputChar(self, value): '''Output a single character to both outputs''' self.writeToText(str(chr(value)), "#000000") self.writeToTextDebug(str(chr(value)), "#000000") def outputDebug(self, message): '''Output a string to the debug output only (in debug colour too)''' #create message message = str(message) + "\n" #if a new line is needed if self.needLineDebug: #add new line message = "\n" + message #another line is not yet needed (for next time) self.needLineDebug = False #write the message to the debug output self.writeToTextDebug(message, "#0000ff") def outputInput(self, data, char): '''Output an input event to the outputs''' #create message message = "Input > " + str(data) #if it was a single character if char: #add integer representation to message message = message + " (" + str(ord(data)) + ")" #add new line to end of message message = message + "\n" #if another new line is needed (on the front) if self.needLine: #add new line message = "\n" + message #another new line is not needed next time self.needLine = False #write the message to the output self.writeToText(message, "#00ff00") #duplicate of above but for debug output (prevents excess or missing new lines) message = "Input > " + str(data) if char: message = message + " (" + str(ord(data)) + ")" message = message + "\n" if self.needLineDebug: message = "\n" + message self.needLineDebug self.writeToTextDebug(message, "#00ff00") def endMessage(self): '''Add the message to both outputs that the program has terminated''' #create message message = "Execution complete\n" #if a new line is needed if self.needLine: #add new line message = "\n" + message self.needLine = False #write message to the output self.writeToText(message, "#ff0000") #duplicate of above but for debug output message = "Execution complete\n" if self.needLineDebug: message = "\n" + message self.needLineDebug = False self.writeToTextDebug(message, "#ff0000") def movePointer(self): '''Move the pointer on the code grid''' try: #attempt (in case user closed the grid) #change selected characer self.codeWindow.changeSelection(self.pointerX, self.pointerY) except: #do nothing as code window was closed so no action needed pass def inputGiven (self, value): '''Check if an input is valid and process it''' number = -1 try: #attempt convert to int value = int(value) #if it is a positive number if value >= 0: #use the value number = value #output that an integer was input self.outputInput(number, False) except: #if it isn't a number #if it has a length of 1 if len(value) == 1: #use the unicode value for it (mod 256, so it is in ascii range) number = ord(value) % 256 #output that a character was input self.outputInput(value, True) #if a valid input was given if number >= 0: #disable input button self.inputButton.config(state="disabled") #empty entry box self.inputEntry.delete(0, END) #call for it to be added to the pot self.manaPots = self.addMana(self.manaPots, number, self.currentPot) #move pointer to next position self.pointerX = self.pointerX + self.pointerChange[0] self.pointerY = self.pointerY + self.pointerChange[1] #visually move the pointer self.movePointer() try: #if a break point was reached if self.codeWindow.checkBreakPoint(self.pointerX, self.pointerY): #stop running self.running = False #switch buttons to paused self.pauseButton.config(state = "disabled") self.runButton.config(state = "normal") #debug output self.outputDebug("Breakpoint reached, pausing") except: pass #input is no longer needed self.inputNeeded = False def singleExecute (self): '''Run a single command''' returnValue = 0 #if the program is running or stepping - not awaiting input and not complete if (self.running or self.step) and not self.inputNeeded and not self.programComplete: #if stepping if self.step: #wait for next button press self.step = False #valid code parts validParts = ["Q", "W", "E"] #other commands otherCommands = ["I", "R", ">", "<", "^", "V"] #wrap the pointer if it goes off the right side if self.pointerX >= len(self.code[0]): self.pointerX = 0 #wrap the pointer if it goes off the left side if self.pointerX < 0: self.pointerX = len(self.code[0]) - 1 #wrap the pointer if it goes off the bottom if self.pointerY >= len(self.code): self.pointerY = 0 #wrap the pointer if it goes off the top if self.pointerY < 0: self.pointerY = len(self.code) - 1 #the amount the pointer is being boosted by (jumps) pointerBoost = [0,0] #the currently selected character/instruction currentChar = self.code[self.pointerY][self.pointerX] #if it is a command or code character if currentChar in validParts or currentChar in otherCommands: #if the character is the invoke command if currentChar == "I": #get which command the code makes up command = self.whichCommand(self.parts) if command == 0: #right 1 pot #increase selected pot self.currentPot = self.currentPot + 1 #if this exceeds where there are currently pots if self.currentPot >= len(self.manaPots): #add a new empty pot self.manaPots.append(0) self.manaOutput.addPot() #select the correct pot self.manaOutput.changeSelected(self.currentPot) self.outputDebug("Moving right 1 pot") elif command == 1: #left 1 pot #move to the left self.currentPot = self.currentPot - 1 #if at the left wall if self.currentPot < 0: #stay on first pot self.currentPot = 0 #select the correct pot self.manaOutput.changeSelected(self.currentPot) self.outputDebug("Moving left 1 pot") elif command == 2: #add 1 to current pot #call for 1 mana to be added to the current pot self.manaPots = self.addMana(self.manaPots, 1, self.currentPot) self.outputDebug("Adding 1 to pot " + str(self.currentPot)) elif command == 3: #remove 1 from current pot #if there is mana in the pot if self.manaPots[self.currentPot] > 0: #take 1 mana from the pot self.manaPots[self.currentPot] = self.manaPots[self.currentPot] - 1 self.outputDebug("Taking 1 from pot " + str(self.currentPot)) elif command == 4: #output value of current pot #output the number self.outputDebug("Outputting pot " + str(self.currentPot) + " value") self.outputInt(self.manaPots[self.currentPot]) elif command == 5: #output character of current pot #output character self.outputDebug("Outputting pot " + str(self.currentPot) + " character") self.outputChar(self.manaPots[self.currentPot]) #a new line is needed when a number is printed self.needLine = True self.needLineDebug = True elif command == 6: #Input and add to current pot #get amount to add self.inputNeeded = True self.inputButton.config(state="normal") #focus the input self.inputEntry.focus_set() self.outputDebug("Getting user input (store value or character value in pot " + str(self.currentPot)+ ")") elif command == 7: #draw as much as possible to fill phial #get the maximum amount that can be taken maximum = 511 - self.manaPhial #if the maximum is greater than or equal to the amount in the current pot if maximum >= self.manaPots[self.currentPot]: #take all into phial self.manaPhial = self.manaPhial + self.manaPots[self.currentPot] #set pot to empty self.manaPots[self.currentPot] = 0 else: #fill phial self.manaPhial = 511 #remove maximum from current pot self.manaPots[self.currentPot] = self.manaPots[self.currentPot] - maximum self.outputDebug("Drawing from " + str(self.currentPot) + " to fill phial") elif command == 8: #pour all from phial into pot #add the amount in the phial to the current pot self.manaPots = self.addMana(self.manaPots, self.manaPhial, self.currentPot) #empty phial self.manaPhial = 0 self.outputDebug("Pouring phial into pot " + str(self.currentPot)) elif command == 9: #stop self.programComplete = True self.outputDebug("Program Stop") elif currentChar == "R": #revoke - jump if empty pot #if the current pot is empty if self.manaPots[self.currentPot] == 0: #move the pointer 1 further in it's current direction pointerBoost[0] = self.pointerChange[0] pointerBoost[1] = self.pointerChange[1] self.outputDebug("Pot " + str(self.currentPot) +" is empty, jumping over") else: self.outputDebug("Pot " + str(self.currentPot) +" is not empty ("+ str(self.manaPots[self.currentPot]) +"), no jump") elif currentChar == ">": #switch to move right self.pointerChange = [1, 0] self.outputDebug("Moving right") elif currentChar == "<": #switch to move left self.pointerChange = [-1, 0] self.outputDebug("Moving left") elif currentChar == "V": #switch to move down self.pointerChange = [0, 1] self.outputDebug("Moving down") elif currentChar == "^": #switch to move up self.pointerChange = [0, -1] self.outputDebug("Moving up") elif currentChar in validParts: #it is Q,W or E #replace the next part to replace whith this character self.parts[self.partToReplace] = currentChar #move to replace on one self.partToReplace = self.partToReplace + 1 #if it is beyond the end if self.partToReplace > 2: #move back to start self.partToReplace = 0 else: returnValue = 1 #adjust instruction pointer if not self.inputNeeded and not self.programComplete: self.pointerX = self.pointerX + self.pointerChange[0] + pointerBoost[0] self.pointerY = self.pointerY + self.pointerChange[1] + pointerBoost[1] self.movePointer() #button colours for parts quasColour = "#103be8" wexColour = "#e810ae" exortColour = "#dd8006" colours = [] #fill list with colours based on parts for i in self.parts: if i == "Q": colours.append(quasColour) elif i == "W": colours.append(wexColour) elif i == "E": colours.append(exortColour) else: colours.append(self.defaultColour) #iterate for the parts for i in range(0, 3): #set the colours and text self.partsOutput[i].config(text=self.parts[i], bg=colours[i]) #set the phical output self.phialOutput.config(text=self.manaPhial) #iterate for the pots for i in range(0, len(self.manaPots)): #set the pot values self.manaOutput.changeValue(i, self.manaPots[i]) #get the command for the currently set parts comm = self.whichCommand(self.parts) #set the tooltip to be correct for the command if comm == -1: self.tip self.tip.tooltip_text = ["No Command"] elif comm == 0: self.tip.tooltip_text = ["Move right one pot"] elif comm == 1: self.tip.tooltip_text = ["Move left one pot"] elif comm == 2: self.tip.tooltip_text = ["Add 1 mana to current pot"] elif comm == 3: self.tip.tooltip_text = ["Take 1 mana from current pot"] elif comm == 4: self.tip.tooltip_text = ["Output number in current pot"] elif comm == 5: self.tip.tooltip_text = ["Output character of current pot"] elif comm == 6: self.tip.tooltip_text = ["Input value and add that mana to current pot"] elif comm == 7: self.tip.tooltip_text = ["Draw as much mana as possible from current pot to fill phial"] elif comm == 8: self.tip.tooltip_text = ["Pour all of phial into current pot"] elif comm == 9: self.tip.tooltip_text = ["Stop program"] try: #attempt to check if there is a break point if self.codeWindow.checkBreakPoint(self.pointerX, self.pointerY): #pause if there is self.running = False self.pauseButton.config(state = "disabled") self.runButton.config(state = "normal") #debug output self.outputDebug("Breakpoint reached, pausing") except: #failed - code window is closed - don't do anything pass #if the program finished if self.programComplete: #output the end message self.endMessage() #-1 - means program ended return -1 #return the default return value 0 - normal character, other - blank return returnValue def openMenu (root): '''Create and run the default menu - to input the file path''' #set the title and geometry root.title("Invoke: File Open") root.geometry("300x30") #setup the grid root.grid_rowconfigure(0, minsize=300) root.grid_columnconfigure(0, minsize=30) #add a frame to hold the input mainFrame = tkinter.Frame(root) mainFrame.grid(row=0, column=0, sticky=(N,E,S,W)) #create a stringvar to hold the path path = tkinter.StringVar() def convertToValid (fileInput): '''Convert file data to array of valid characters only''' validChars = ["Q", "W", "E", "R", "I", ">", "<", "V", "^"] #convert to upper case fileInput = fileInput.upper() #create array to hold data in data = [] #split into lines lines = fileInput.split("\n") #to store the max length maxLength = -1 #iterate lines for line in lines: #if this line is longer than the current maximum if len(line) > maxLength: #update the maximum maxLength = len(line) #iterate lines for line in lines: #create list to hold the data for this line lineData = [] #iteracte characters for char in line: #if it is a valid character if char in validChars: #add it to the list lineData.append(char) else: #add a blank lineData.append(" ") #iterate for extra items that are needed for i in range(maxLength - len(lineData)): #add blanks to fill to square lineData.append(" ") #add line to data data.append(lineData) #return the array return data def load (pathString): #initialize data as none - if no file can be obtained it won't proceed fileData = None #check for correct extension if pathString.endswith(".inv"): try: #attempt to open and read the file invokeFile = open(pathString, "r") #store data in variable fileData = invokeFile.read() #close the file invokeFile.close() except: #if something went wrong the file wasn't found return None return fileData def attemptLoad (): '''Load has been pressed so attempt a load''' #get the path pathData = path.get() #load the files data data = load(pathData) #if there is some data if data != None: #convert to valid grid data = convertToValid(data) #if there is data to run if len(data) > 0: if len(data[0]) > 0: #quit the path input menu mainFrame.quit() #open the main program openProgram(root, data) #once the program returns quit the main - prevents hanging root.quit() #setup the frame grid - part for entry, part for button mainFrame.grid_rowconfigure(0, minsize=30) mainFrame.grid_columnconfigure(0, minsize=240) mainFrame.grid_columnconfigure(1, minsize=60) #create entry widget (assing path stringvar) fileInput = tkinter.Entry(mainFrame, bd=5, textvariable=path) #locate the entry in the grid fileInput.grid(row=0, column=0, sticky=(N,E,S,W)) #create button which calls an attempt load when pressed invokeButton = tkinter.Button(mainFrame, bd=5, text="Load", command=attemptLoad) #locate the button in the grid invokeButton.grid(row=0, column=1, sticky=(N,E,S,W)) #move the focus to the entry at the start fileInput.focus_set() #begin the update loop of the UI root.mainloop() def openProgram(root, code): '''Create the interface for the main program''' def quitProgram(): '''End the program completely''' root.destroy() #create window to store the UI in programWindow = tkinter.Frame(root) #locate the program window into the root programWindow.grid(row=0, column=0, sticky=(N,E,S,W)) #set the title and geometry for the window root.title("Invoke Unreactive: Program") root.geometry("600x450") #set up the rows to hold all the UI programWindow.grid_rowconfigure(0,minsize=90) programWindow.grid_rowconfigure(1,minsize=5) programWindow.grid_rowconfigure(2,minsize=60) programWindow.grid_rowconfigure(3,minsize=5) programWindow.grid_rowconfigure(4,minsize=30) programWindow.grid_rowconfigure(5,minsize=5) programWindow.grid_rowconfigure(6,minsize=255) programWindow.grid_columnconfigure(0,minsize=600) #create frame to hold the memory scroll area memoryFrame = tkinter.Frame(programWindow) memoryFrame.grid(row=0, column=0, sticky=(N,E,S,W)) #setup the grid in the memory frame to hold the scroll area and scroll bar memoryFrame.grid_rowconfigure(0,minsize=60) memoryFrame.grid_rowconfigure(1,minsize=15) memoryFrame.grid_columnconfigure(0,minsize=600) #ceate the scroll object memoryScroll = manaScroll(memoryFrame) #frame to hold the information about the phial and parts infoFrame = tkinter.Frame(programWindow) infoFrame.grid(row=2, column=0, sticky=(N,E,S,W)) #setup columns in the info frame infoFrame.grid_rowconfigure(0, minsize=70) infoFrame.grid_columnconfigure(0,minsize=210) infoFrame.grid_columnconfigure(1,minsize=320) infoFrame.grid_columnconfigure(2,minsize=70) #create frame to hold the parts partsFrame = tkinter.Frame(infoFrame) partsFrame.grid(row=0, column=0, sticky=(N,E,S,W)) #setup the columns for each of the parts in the part holder partsFrame.grid_rowconfigure(0, minsize=70) partsFrame.grid_columnconfigure(0, minsize=70) partsFrame.grid_columnconfigure(1, minsize=70) partsFrame.grid_columnconfigure(2, minsize=70) #get the image of the phial phialImage = tkinter.PhotoImage(file="resources/phial.png") #setup the parts and phial outputs part1 = tkinter.Button(partsFrame,bd=5,disabledforeground="#000000",text="",state="disabled") part2 = tkinter.Button(partsFrame,bd=5,disabledforeground="#000000",text="",state="disabled") part3 = tkinter.Button(partsFrame,bd=5,disabledforeground="#000000",text="",state="disabled") phial = tkinter.Button(infoFrame,bd=5,disabledforeground="#000000",image=phialImage,text="0",state="disabled",compound="bottom") #locate parts and phial into the grid part1.grid(row=0, column=0, sticky=(N,E,S,W)) part2.grid(row=0, column=1, sticky=(N,E,S,W)) part3.grid(row=0, column=2, sticky=(N,E,S,W)) phial.grid(row=0, column=2, sticky=(N,E,S,W)) #store the parts in a list partsOutput = [part1, part2, part3] #create frame to hold the inputs infoInput = tkinter.Frame(infoFrame) infoInput.grid(row=0, column=1, sticky=(N,E,S,W)) #configure input grid infoInput.grid_rowconfigure(0,minsize=30) infoInput.grid_rowconfigure(1,minsize=30) infoInput.grid_columnconfigure(0,minsize=210) infoInput.grid_columnconfigure(1,minsize=110) #variables to hold input and debug inputText = tkinter.StringVar() debug = tkinter.IntVar() #create entry, input button and debug check box entryInput = tkinter.Entry(infoInput, bd=5, textvariable=inputText) entryInputButton = tkinter.Button(infoInput, bd=5, text="Input", state="disabled") debugCheck = tkinter.Checkbutton(infoInput, text="Debug Output", variable=debug, offvalue=0, onvalue=1) #locate input elements entryInput.grid(row=0,column=0,sticky=(N,E,S,W)) entryInputButton.grid(row=0,column=1,sticky=(N,E,S,W)) debugCheck.grid(row=1,column=0,sticky=(N,E,S,W)) #create a frame to hold the controls controlsFrame = tkinter.Frame(programWindow) controlsFrame.grid(row=4, column=0, sticky=(N,E,S,W)) #setup controls grid - for each of the buttons controlsFrame.grid_rowconfigure(0,minsize=30) controlsFrame.grid_columnconfigure(0,minsize=120) controlsFrame.grid_columnconfigure(1,minsize=120) controlsFrame.grid_columnconfigure(2,minsize=120) controlsFrame.grid_columnconfigure(3,minsize=120) controlsFrame.grid_columnconfigure(4,minsize=120) #create all the control buttons runButton = tkinter.Button(controlsFrame,text="Run") pauseButton = tkinter.Button(controlsFrame,text="Pause",state="disabled") stepButton = tkinter.Button(controlsFrame,text="Step") restartButton = tkinter.Button(controlsFrame,text="Restart") endButton = tkinter.Button(controlsFrame,text="Exit", command=quitProgram) #locate the control buttons runButton.grid(row=0,column=0,sticky=(N,E,S,W)) pauseButton.grid(row=0,column=1,sticky=(N,E,S,W)) stepButton.grid(row=0,column=2,sticky=(N,E,S,W)) restartButton.grid(row=0,column=3,sticky=(N,E,S,W)) endButton.grid(row=0,column=4,sticky=(N,E,S,W)) #create and locate holder for the output outputFrame = tkinter.Frame(programWindow) outputFrame.grid(row=6, column=0, sticky=(N,E,S,W)) #create grid for output holder outputFrame.grid_rowconfigure(0, minsize=240) outputFrame.grid_columnconfigure(0, minsize=600) #do not allow internal components to change the frames size outputFrame.grid_propagate(False) #create the normal output holder outputNormalHolder = tkinter.Frame(outputFrame) #locate holder outputNormalHolder.grid(row = 0, column = 0, sticky = (N,E,S,W)) #configure grid of holder outputNormalHolder.grid_rowconfigure(0, minsize=240) outputNormalHolder.grid_columnconfigure(0, minsize=600) #create the debug output holder outputDebugHolder = tkinter.Frame(outputFrame) #locate holder outputDebugHolder.grid(row = 0, column = 0, sticky = (N,E,S,W)) #configure grid of holder outputDebugHolder.grid_rowconfigure(0, minsize=240) outputDebugHolder.grid_columnconfigure(0, minsize=600) #create and locate normal scroll text output textOutput = scrolledtext.ScrolledText(outputNormalHolder, wrap=WORD, width=0, height=0, state="disabled") textOutput.grid(row=0, column=0, sticky=(N,E,S,W)) #create and locate debug scroll text output textOutputDebug = scrolledtext.ScrolledText(outputDebugHolder, wrap=WORD, width=0, height=0, state="disabled") textOutputDebug.grid(row=0, column=0, sticky=(N,E,S,W)) #move normal output to the top outputNormalHolder.tkraise() #create the program display window programWindowOutput = codeWindow(code) #create the program controller - passing all necessary components programControl = program(code, memoryScroll, textOutput, partsOutput, phial, entryInput, entryInputButton, programWindowOutput.gridCode, partsFrame, runButton, pauseButton, textOutputDebug) def runButtonPressed (): '''Run the program''' runButton.config(state="disabled") pauseButton.config(state="normal") programControl.runPressed() def pauseButtonPressed (): '''Pause the program''' runButton.config(state="normal") pauseButton.config(state="disabled") programControl.pausePressed() def inputButtonPressed (): '''Attempt input of data from entry widget''' programControl.inputGiven(inputText.get()) def stepButtonPressed (): '''Perform a single step''' programControl.stepPressed() def debugChecked (): '''Invert the debug state''' #if debug is on if debug.get() == 1: #change the variable in the program controller programControl.debug = True #move the debug output to the top outputDebugHolder.tkraise() #scroll to same position in debug as in normal textOutputDebug.yview_moveto(textOutput.yview()[0]) else: #change the variable in the program controller programControl.debug = False #move the normal output to the top outputNormalHolder.tkraise() #scroll to the same position in normal as in debug textOutput.yview_moveto(textOutputDebug.yview()[0]) def restart(programControl, programWindowOutput): '''Reload the program''' #destroy the program controller del programControl #destroy the program windows programWindow.destroy() programWindowOutput.destroy() #recreate the programs openProgram(root, code) def restartPressed(): '''When restart is pressed turn flag on in the program so at the end of next execution it restarts''' programControl.needToRestart = True #if the program is over - restart now if programControl.programComplete: restart(programControl, programWindowOutput) #bind control buttons to associated functions runButton.config(command=runButtonPressed) pauseButton.config(command=pauseButtonPressed) entryInputButton.config(command=inputButtonPressed) stepButton.config(command=stepButtonPressed) debugCheck.config(command=debugChecked) restartButton.config(command=restartPressed) def runningLoop (): '''Repeats while the program is running''' #run the next instruction (if possible) #will check if running or stepping or inputting first value = programControl.singleExecute() #if restart is required if programControl.needToRestart: #restart the program restart(programControl, programWindowOutput) #if the program hasn't ended and doesn't need to restart if value != -1 and not programControl.needToRestart: #normal case if value == 0: #repeat with normal delay root.after(150, runningLoop) #no code executed (blank) else: #repeat with short delay root.after(30, runningLoop) #start the running loop runningLoop() #start the UI update loop root.mainloop() #create the program root root = tkinter.Tk() #set the icon for the window root.iconbitmap(r"resources\icon.ico") #cannot resize the window root.resizable(False, False) #start the program by opening the load menu openMenu(root) ```
{ "source": "Jemie-Wang/ECE5725_Project-Reptile_Monitoring_System", "score": 3 }
#### File: ECE5725_Project-Reptile_Monitoring_System/logSensor/logDHT.py ```python import time import sqlite3 import board import adafruit_dht import RPi.GPIO as GPIO import os dbname='../sensorData.db' sampleFreq = 10 # time in seconds dhtDevice = adafruit_dht.DHT11(board.D6) # get data from DHT sensor def getDHTdata(): # Print the values to the serial port temp=None hum =None try: temp = dhtDevice.temperature hum = dhtDevice.humidity if hum is not None and temp is not None: hum = round(hum) temp = round(temp, 1) print( "Temp: {:.1f} C Humidity: {}% ".format( temp, hum ) ) if temp>25 or hum<5: os.system('python /home/pi/project/logSensor/textMessage/sensorText.py') except RuntimeError as error: # Errors happen fairly often, DHT's are hard to read, just keep going time.sleep(2.0) except Exception as error: dhtDevice.exit() raise error except OverflowError as error: print("meet error"+ str(error)) return temp, hum # log sensor data on database def logData (temp, hum): conn=sqlite3.connect(dbname) curs=conn.cursor() curs.execute("INSERT INTO DHT_data values(datetime('now','localtime'), (?), (?))", (temp, hum)) conn.commit() conn.close() # main function def main(): while True: temp, hum = getDHTdata() if temp is None or hum is None: #print("The DHT failed to work!!!!!!!!!") continue logData (temp, hum) time.sleep(sampleFreq) # ------------ Execute program main() GPIO.cleanup() ```
{ "source": "jemik/tm-v1-api-cookbook", "score": 2 }
#### File: check-incident-details/python/check_incident_details.py ```python import argparse import datetime import json import os import requests # default settings V1_TOKEN = os.environ.get('TMV1_TOKEN', '') V1_URL = os.environ.get('TMV1_URL', 'https://api.xdr.trendmicro.com') def check_datetime_aware(d): return (d.tzinfo is not None) and (d.tzinfo.utcoffset(d) is not None) class TmV1Client: base_url_default = V1_URL WB_STATUS_IN_PROGRESS = 1 def __init__(self, token, base_url=None): if not token: raise ValueError('Authentication token missing') self.token = token self.base_url = base_url or TmV1Client.base_url_default def make_headers(self): return { 'Authorization': 'Bearer ' + self.token, 'Content-Type': 'application/json;charset=utf-8' } def get(self, path, **kwargs): kwargs.setdefault('headers', {}).update(self.make_headers()) r = requests.get(self.base_url + path, **kwargs) if ((200 == r.status_code) and ('application/json' in r.headers.get('Content-Type', ''))): return r.json() raise RuntimeError(f'Request unsuccessful (GET {path}):' f' {r.status_code} {r.text}') def put(self, path, **kwargs): kwargs.setdefault('headers', {}).update(self.make_headers()) r = requests.put(self.base_url + path, **kwargs) if ((200 == r.status_code) and ('application/json' in r.headers.get('Content-Type', ''))): return r.json() raise RuntimeError(f'Request unsuccessful (PUT {path}):' f' {r.status_code} {r.text}') def get_workbench_histories(self, start, end, offset=None, size=None): if not check_datetime_aware(start): start = start.astimezone() if not check_datetime_aware(end): end = end.astimezone() start = start.astimezone(datetime.timezone.utc) end = end.astimezone(datetime.timezone.utc) start = start.isoformat(timespec='milliseconds').replace('+00:00', 'Z') end = end.isoformat(timespec='milliseconds').replace('+00:00', 'Z') # API returns data in the range of [offset, offset+limit) return self.get( '/v2.0/xdr/workbench/workbenchHistories', params=dict([('startTime', start), ('endTime', end), ('sortBy', '-createdTime')] + ([('offset', offset)] if offset is not None else []) + ([('limit', size)] if size is not None else []) ))['data']['workbenchRecords'] def update_workbench(self, workbench_id, status): return self.put( f'/v2.0/xdr/workbench/workbenches/{workbench_id}', json={'investigationStatus': status}) def fetch_workbench_alerts(v1, start, end): """ This function do the loop to get all workbench alerts by changing the parameters of both 'offset' and 'size'. """ offset = 0 size = 100 alerts = [] while True: gotten = v1.get_workbench_histories(start, end, offset, size) if not gotten: break print(f'Workbench alerts ({offset} {offset+size}): {len(gotten)}') alerts.extend(gotten) offset = len(alerts) return alerts def main(start, end, days, v1_token, v1_url): if end is None: end = datetime.datetime.now(datetime.timezone.utc) else: end = datetime.datetime.fromisoformat(end) if start is None: start = end + datetime.timedelta(days=-days) else: start = datetime.datetime.fromisoformat(start) v1 = TmV1Client(v1_token, v1_url) wb_records = fetch_workbench_alerts(v1, start, end) if wb_records: print('') print('Target Workbench alerts:') print(json.dumps([x['workbenchId'] for x in wb_records], indent=2)) print('') records_list = [] for record in wb_records: wb_id = record['workbenchId'] records_list.append(record) if record['investigationStatus'] == 0: v1.update_workbench(wb_id, TmV1Client.WB_STATUS_IN_PROGRESS) print('Details of target Workbench alerts:') print(json.dumps(records_list, indent=2)) else: print('No Workbench alerts found') if __name__ == '__main__': parser = argparse.ArgumentParser( description='Modify alert status after checking alert details', epilog=(f'Example: python {os.path.basename(__file__)} ' '-e 2021-04-12T14:28:00.123456+00:00 -d 5')) parser.add_argument( '-s', '--start', help=('Timestamp in ISO 8601 format that indicates the start of' ' the data retrieval time range')) parser.add_argument( '-e', '--end', help=('Timestamp in ISO 8601 format that indicates the end of the data' ' retrieval time range. The default value is the current time')) parser.add_argument( '-d', '--days', type=int, default=5, help=('Number of days before the end time of the data retrieval' ' time range. The default value is 5.')) parser.add_argument( '-t', '--v1-token', default=V1_TOKEN, help=('Authentication token of your Trend Micro Vision One' ' user account')) parser.add_argument( '-r', '--v1-url', default=TmV1Client.base_url_default, help=('URL of the Trend Micro Vision One server for your region.' f' The default value is "{TmV1Client.base_url_default}"')) main(**vars(parser.parse_args())) ```
{ "source": "jemil-butt/kernel_inference", "score": 3 }
#### File: kernel_inference/Figures/Comparison_table.py ```python import sys sys.path.append("..") import numpy as np import numpy.linalg as lina import matplotlib.pyplot as plt import scipy as sc import scipy.optimize as scopt plt.rcParams.update({'font.size': 6}) K_nondiag_mercer_1=np.load("../Data/K_nondiag_Mercer_1.npy") K_nondiag_mercer_2=np.load("../Data/K_nondiag_Mercer_1.npy") # ii) Auxiliary quantities n=300 n_sample=5 n_simu=1 n_test=1000 t=np.linspace(0,1,n) sample_index=np.round(np.linspace(n/4,3*n/4,n_sample)) t_sample=t[sample_index.astype(int)] np.random.seed(0) tol=10**(-6) """ 2. Create covariance matrices """ # i) Define parameters d_sqexp=0.2 d_exp=0.5 n_exp_Bochner=10 # ii) Create covariance functions def cov_fun_sqexp_true(t1,t2): return np.exp(-(lina.norm(t1-t2)/d_sqexp)**2) def cov_fun_exp_true(t1,t2): return np.exp(-(lina.norm(t1-t2)/d_exp)) def cov_fun_bb_true(t1,t2): return np.min((t1,t2))-t1*t2 # iii) Assemble matrices K_sqexp=np.zeros([n,n]) K_exp=np.zeros([n,n]) K_bb=np.zeros([n,n]) for k in range(n): for l in range(n): K_sqexp[k,l]=cov_fun_sqexp_true(t[k],t[l]) K_exp[k,l]=cov_fun_exp_true(t[k],t[l]) K_bb[k,l]=cov_fun_bb_true(t[k],t[l]) """ 3. Simulation for model training ----------------------------------------- """ # i) Initialization x_simu_sqexp=np.zeros([n,n_simu]) x_simu_exp=np.zeros([n,n_simu]) x_simu_bb=np.zeros([n,n_simu]) x_simu_ndm_1=np.zeros([n,n_simu]) x_simu_ndm_2=np.zeros([n,n_simu]) # ii) Simulate for k in range(n_simu): x_simu_sqexp[:,k]=np.random.multivariate_normal(np.zeros([n]),K_sqexp) x_simu_exp[:,k]=np.random.multivariate_normal(np.zeros([n]),K_exp) x_simu_bb[:,k]=np.random.multivariate_normal(np.zeros([n]),K_bb) x_simu_ndm_1[:,k]=np.random.multivariate_normal(np.zeros([n]),K_nondiag_mercer_1) x_simu_ndm_2[:,k]=np.random.multivariate_normal(np.zeros([n]),K_nondiag_mercer_2) # iii) Empirical covariances K_emp_sqexp=(1/n_simu)*x_simu_sqexp@x_simu_sqexp.T K_emp_exp=(1/n_simu)*x_simu_exp@x_simu_exp.T K_emp_bb=(1/n_simu)*x_simu_bb@x_simu_bb.T K_emp_ndm_1=(1/n_simu)*x_simu_ndm_1@x_simu_ndm_1.T K_emp_ndm_2=(1/n_simu)*x_simu_ndm_2@x_simu_ndm_2.T """ 4. Infer best model parameters: Parametric ------------------------------- """ # i) Create empirical correlogram Dist_mat=np.zeros([n,n]) for k in range(n): for l in range(n): Dist_mat[k,l]=np.abs(t[k]-t[l]) t_diff=1*t n_t_diff=np.zeros([n,1]) correlogram_sqexp=np.zeros([n,1]) correlogram_exp=np.zeros([n,1]) correlogram_bb=np.zeros([n,1]) correlogram_ndm_1=np.zeros([n,1]) correlogram_ndm_2=np.zeros([n,1]) for k in range(n): Ind_mat=np.isclose(Dist_mat,t[k]) n_t_diff[k]=np.sum(Ind_mat) correlogram_sqexp[k]=np.sum(K_emp_sqexp[Ind_mat])/n_t_diff[k] correlogram_exp[k]=np.sum(K_emp_exp[Ind_mat])/n_t_diff[k] correlogram_bb[k]=np.sum(K_emp_bb[Ind_mat])/n_t_diff[k] correlogram_ndm_1[k]=np.sum(K_emp_ndm_1[Ind_mat])/n_t_diff[k] correlogram_ndm_2[k]=np.sum(K_emp_ndm_2[Ind_mat])/n_t_diff[k] # ii) Define model covariances def cov_fun_sqexp_model(t1,t2,sigma,d): return sigma*np.exp(-(lina.norm(t1-t2)/d)**2) def cov_fun_exp_model(t1,t2,sigma,d): return sigma*np.exp(-(lina.norm(t1-t2)/d)) # iii) Define objective functions # First: sqexp dataset def sqexp_sqexp_objective(x): cov_predicted=np.zeros([n,1]) for k in range(n): cov_predicted[k]=cov_fun_sqexp_model(t[0],t[k],x[0],x[1]) RMSE=(1/n)*lina.norm(cov_predicted-correlogram_sqexp) return RMSE def exp_sqexp_objective(x): cov_predicted=np.zeros([n,1]) for k in range(n): cov_predicted[k]=cov_fun_exp_model(t[0],t[k],x[0],x[1]) RMSE=(1/n)*lina.norm(cov_predicted-correlogram_sqexp) return RMSE # Second: exp dataset def sqexp_exp_objective(x): cov_predicted=np.zeros([n,1]) for k in range(n): cov_predicted[k]=cov_fun_sqexp_model(t[0],t[k],x[0],x[1]) RMSE=(1/n)*lina.norm(cov_predicted-correlogram_exp) return RMSE def exp_exp_objective(x): cov_predicted=np.zeros([n,1]) for k in range(n): cov_predicted[k]=cov_fun_exp_model(t[0],t[k],x[0],x[1]) RMSE=(1/n)*lina.norm(cov_predicted-correlogram_exp) return RMSE # Third: bb dataset def sqexp_bb_objective(x): cov_predicted=np.zeros([n,1]) for k in range(n): cov_predicted[k]=cov_fun_sqexp_model(t[0],t[k],x[0],x[1]) RMSE=(1/n)*lina.norm(cov_predicted-correlogram_bb) return RMSE def exp_bb_objective(x): cov_predicted=np.zeros([n,1]) for k in range(n): cov_predicted[k]=cov_fun_exp_model(t[0],t[k],x[0],x[1]) RMSE=(1/n)*lina.norm(cov_predicted-correlogram_bb) return RMSE # Fourth: ndm_1 dataset def sqexp_ndm_1_objective(x): cov_predicted=np.zeros([n,1]) for k in range(n): cov_predicted[k]=cov_fun_sqexp_model(t[0],t[k],x[0],x[1]) RMSE=(1/n)*lina.norm(cov_predicted-correlogram_ndm_1) return RMSE def exp_ndm_1_objective(x): cov_predicted=np.zeros([n,1]) for k in range(n): cov_predicted[k]=cov_fun_exp_model(t[0],t[k],x[0],x[1]) RMSE=(1/n)*lina.norm(cov_predicted-correlogram_ndm_1) return RMSE # Fifth: dnm_2 dataset def sqexp_ndm_2_objective(x): cov_predicted=np.zeros([n,1]) for k in range(n): cov_predicted[k]=cov_fun_sqexp_model(t[0],t[k],x[0],x[1]) RMSE=(1/n)*lina.norm(cov_predicted-correlogram_ndm_2) return RMSE def exp_ndm_2_objective(x): cov_predicted=np.zeros([n,1]) for k in range(n): cov_predicted[k]=cov_fun_exp_model(t[0],t[k],x[0],x[1]) RMSE=(1/n)*lina.norm(cov_predicted-correlogram_ndm_2) return RMSE # iv) Optimize parameters # First sqexp dataset params_optimal_sqexp_sqexp=(scopt.minimize(sqexp_sqexp_objective,[0,1])).x params_optimal_exp_sqexp=(scopt.minimize(exp_sqexp_objective,[0,1])).x # Second exp dataset params_optimal_sqexp_exp=(scopt.minimize(sqexp_exp_objective,[0,1])).x params_optimal_exp_exp=(scopt.minimize(exp_exp_objective,[0,1])).x # Third bb dataset params_optimal_sqexp_bb=(scopt.minimize(sqexp_bb_objective,[0,1])).x params_optimal_exp_bb=(scopt.minimize(exp_bb_objective,[0,1])).x # Fourth ndm_1 dataset params_optimal_sqexp_ndm_1=(scopt.minimize(sqexp_ndm_1_objective,[0,1])).x params_optimal_exp_ndm_1=(scopt.minimize(exp_ndm_1_objective,[0,1])).x # Fifth dnm_2 dataset params_optimal_sqexp_ndm_2=(scopt.minimize(sqexp_ndm_2_objective,[0,1])).x params_optimal_exp_ndm_2=(scopt.minimize(exp_ndm_2_objective,[0,1])).x """ 5. Infer best model parameters: Bochner ---------------------------------- """ # i) Calculate the basis functions n_exp_Bochner=30 omega=np.logspace(-1,1,n_exp_Bochner) def complex_exp(t1,t2,omega): return np.exp(2*np.pi*(1j)*omega*(t1-t2)) basis_vectors=np.zeros([n,n_exp_Bochner])+0j*np.zeros([n,n_exp_Bochner]) for k in range(n): for l in range(n_exp_Bochner): basis_vectors[k,l]=(complex_exp(t[k],0,omega[l])) # ii) Parameter estimation Bochner_Psi_mat=np.zeros([n,n_exp_Bochner]) for k in range(n): for l in range(n_exp_Bochner): Bochner_Psi_mat[k,l]=complex_exp(0,t_diff[k],omega[l]) weight_fun_sqexp=(scopt.nnls(Bochner_Psi_mat,np.reshape(correlogram_sqexp,[n])))[0] weight_fun_exp=(scopt.nnls(Bochner_Psi_mat,np.reshape(correlogram_exp,[n])))[0] weight_fun_bb=(scopt.nnls(Bochner_Psi_mat,np.reshape(correlogram_bb,[n])))[0] weight_fun_ndm_1=(scopt.nnls(Bochner_Psi_mat,np.reshape(correlogram_ndm_1,[n])))[0] weight_fun_ndm_2=(scopt.nnls(Bochner_Psi_mat,np.reshape(correlogram_ndm_2,[n])))[0] # iii) Assemble to covariance function K_Bochner_sqexp=np.real([email protected](weight_fun_sqexp)@basis_vectors.conj().T) K_Bochner_exp=np.real([email protected](weight_fun_exp)@basis_vectors.conj().T) K_Bochner_bb=np.real([email protected](weight_fun_bb)@basis_vectors.conj().T) K_Bochner_ndm_1=np.real([email protected](weight_fun_ndm_1)@basis_vectors.conj().T) K_Bochner_ndm_2=np.real([email protected](weight_fun_ndm_2)@basis_vectors.conj().T) """ 6. Kernel inference ------------------------------------------------------ """ # i) Prepare auxiliary quantities r=2 n_exp=10 d_prior=0.4 def cov_fun_prior(t1,t2): return np.exp(-(lina.norm(t1-t2)/d_prior)**2) K_prior=np.zeros([n,n]) for k in range(n): for l in range(n): K_prior[k,l]=cov_fun_prior(t[k],t[l]) [U_p,Lambda_p,V_p]=lina.svd(K_prior) U_p_cut=U_p[:,:n_exp] Lambda_p_cut=np.diag(Lambda_p[:n_exp]) Psi=U_p_cut # ii) Perform kernel inference import KI beta, mu, gamma_sqexp, C_gamma_sqexp, KI_logfile_sqexp=KI.Kernel_inference_homogeneous(x_simu_sqexp,Lambda_p_cut,Psi,r) beta, mu, gamma_exp, C_gamma_exp, KI_logfile_exp=KI.Kernel_inference_homogeneous(x_simu_exp,Lambda_p_cut,Psi,r) beta, mu, gamma_bb, C_gamma_bb, KI_logfile_bb=KI.Kernel_inference_homogeneous(x_simu_bb,Lambda_p_cut,Psi,r) beta, mu, gamma_ndm_1, C_gamma_ndm_1, KI_logfile_ndm_1=KI.Kernel_inference_homogeneous(x_simu_ndm_1,Lambda_p_cut,Psi,r) beta, mu, gamma_ndm_2, C_gamma_ndm_2, KI_logfile_ndm_2=KI.Kernel_inference_homogeneous(x_simu_ndm_2,Lambda_p_cut,Psi,r) """ 7. Simulation and RMSE --------------------------------------------------- """ # i) Set up Matrices for interpolation # First: sqexp Dataset K_sqexp_sqexp=np.zeros([n,n]) K_exp_sqexp=np.zeros([n,n]) for k in range(n): for l in range(n): K_sqexp_sqexp[k,l]=cov_fun_sqexp_model(t[k],t[l],params_optimal_sqexp_sqexp[0],params_optimal_sqexp_sqexp[1]) K_exp_sqexp[k,l]=cov_fun_exp_model(t[k],t[l],params_optimal_exp_sqexp[0],params_optimal_exp_sqexp[1]) K_KI_sqexp=C_gamma_sqexp K_t_sqexp_sqexp=K_sqexp_sqexp[:,sample_index.astype(int)] K_t_exp_sqexp=K_exp_sqexp[:,sample_index.astype(int)] K_t_Bochner_sqexp=K_Bochner_sqexp[:,sample_index.astype(int)] K_t_KI_sqexp=K_KI_sqexp[:,sample_index.astype(int)] K_ij_sqexp_sqexp=K_sqexp_sqexp[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_exp_sqexp=K_exp_sqexp[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_Bochner_sqexp=K_Bochner_sqexp[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_KI_sqexp=K_KI_sqexp[np.ix_(sample_index.astype(int),sample_index.astype(int))] # Second: exp Dataset K_sqexp_exp=np.zeros([n,n]) K_exp_exp=np.zeros([n,n]) for k in range(n): for l in range(n): K_sqexp_exp[k,l]=cov_fun_sqexp_model(t[k],t[l],params_optimal_sqexp_exp[0],params_optimal_sqexp_exp[1]) K_exp_exp[k,l]=cov_fun_exp_model(t[k],t[l],params_optimal_exp_exp[0],params_optimal_exp_exp[1]) K_KI_exp=C_gamma_exp K_t_sqexp_exp=K_sqexp_exp[:,sample_index.astype(int)] K_t_exp_exp=K_exp_exp[:,sample_index.astype(int)] K_t_Bochner_exp=K_Bochner_exp[:,sample_index.astype(int)] K_t_KI_exp=K_KI_exp[:,sample_index.astype(int)] K_ij_sqexp_exp=K_sqexp_exp[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_exp_exp=K_exp_exp[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_Bochner_exp=K_Bochner_exp[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_KI_exp=K_KI_exp[np.ix_(sample_index.astype(int),sample_index.astype(int))] # Third: bb Dataset K_sqexp_bb=np.zeros([n,n]) K_exp_bb=np.zeros([n,n]) for k in range(n): for l in range(n): K_sqexp_bb[k,l]=cov_fun_sqexp_model(t[k],t[l],params_optimal_sqexp_bb[0],params_optimal_sqexp_bb[1]) K_exp_bb[k,l]=cov_fun_exp_model(t[k],t[l],params_optimal_exp_bb[0],params_optimal_exp_bb[1]) K_KI_bb=C_gamma_bb K_t_sqexp_bb=K_sqexp_bb[:,sample_index.astype(int)] K_t_exp_bb=K_exp_bb[:,sample_index.astype(int)] K_t_Bochner_bb=K_Bochner_bb[:,sample_index.astype(int)] K_t_KI_bb=K_KI_bb[:,sample_index.astype(int)] K_ij_sqexp_bb=K_sqexp_bb[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_exp_bb=K_exp_bb[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_Bochner_bb=K_Bochner_bb[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_KI_bb=K_KI_bb[np.ix_(sample_index.astype(int),sample_index.astype(int))] # Fourth: ndm_1 Dataset K_sqexp_ndm_1=np.zeros([n,n]) K_exp_ndm_1=np.zeros([n,n]) for k in range(n): for l in range(n): K_sqexp_ndm_1[k,l]=cov_fun_sqexp_model(t[k],t[l],params_optimal_sqexp_ndm_1[0],params_optimal_sqexp_ndm_1[1]) K_exp_ndm_1[k,l]=cov_fun_exp_model(t[k],t[l],params_optimal_exp_ndm_1[0],params_optimal_exp_ndm_1[1]) K_KI_ndm_1=C_gamma_ndm_1 K_t_sqexp_ndm_1=K_sqexp_ndm_1[:,sample_index.astype(int)] K_t_exp_ndm_1=K_exp_ndm_1[:,sample_index.astype(int)] K_t_Bochner_ndm_1=K_Bochner_ndm_1[:,sample_index.astype(int)] K_t_KI_ndm_1=K_KI_ndm_1[:,sample_index.astype(int)] K_ij_sqexp_ndm_1=K_sqexp_ndm_1[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_exp_ndm_1=K_exp_ndm_1[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_Bochner_ndm_1=K_Bochner_ndm_1[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_KI_ndm_1=K_KI_ndm_1[np.ix_(sample_index.astype(int),sample_index.astype(int))] # Fifth: ndm_2 Dataset K_sqexp_ndm_2=np.zeros([n,n]) K_exp_ndm_2=np.zeros([n,n]) for k in range(n): for l in range(n): K_sqexp_ndm_2[k,l]=cov_fun_sqexp_model(t[k],t[l],params_optimal_sqexp_ndm_2[0],params_optimal_sqexp_ndm_2[1]) K_exp_ndm_2[k,l]=cov_fun_exp_model(t[k],t[l],params_optimal_exp_ndm_2[0],params_optimal_exp_ndm_2[1]) K_KI_ndm_2=C_gamma_ndm_2 K_t_sqexp_ndm_2=K_sqexp_ndm_2[:,sample_index.astype(int)] K_t_exp_ndm_2=K_exp_ndm_2[:,sample_index.astype(int)] K_t_Bochner_ndm_2=K_Bochner_ndm_2[:,sample_index.astype(int)] K_t_KI_ndm_2=K_KI_ndm_2[:,sample_index.astype(int)] K_ij_sqexp_ndm_2=K_sqexp_ndm_2[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_exp_ndm_2=K_exp_ndm_2[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_Bochner_ndm_2=K_Bochner_ndm_2[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_KI_ndm_2=K_KI_ndm_2[np.ix_(sample_index.astype(int),sample_index.astype(int))] # Sixth: True underlying covariances K_t_true_sqexp=K_sqexp[:,sample_index.astype(int)] K_t_true_exp=K_exp[:,sample_index.astype(int)] K_t_true_bb=K_bb[:,sample_index.astype(int)] K_t_true_ndm_1=K_nondiag_mercer_1[:,sample_index.astype(int)] K_t_true_ndm_2=K_nondiag_mercer_2[:,sample_index.astype(int)] K_ij_true_sqexp=K_sqexp[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_true_exp=K_KI_exp[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_true_bb=K_bb[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_true_ndm_1=K_nondiag_mercer_1[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_ij_true_ndm_2=K_nondiag_mercer_2[np.ix_(sample_index.astype(int),sample_index.astype(int))] # ii) Perform estimation # First: sqexp dataset invtol=10**(-3) sqn=np.sqrt(n) RMSE_sqexp_sqexp=np.zeros([n_test,1]) RMSE_exp_sqexp=np.zeros([n_test,1]) RMSE_Bochner_sqexp=np.zeros([n_test,1]) RMSE_KI_sqexp=np.zeros([n_test,1]) RMSE_true_sqexp=np.zeros([n_test,1]) for k in range(n_test): x_temp_sqexp=np.random.multivariate_normal(np.zeros([n]),K_sqexp) x_temp_meas_sqexp=x_temp_sqexp[sample_index.astype(int)] [email protected](K_ij_sqexp_sqexp,rcond=invtol)@x_temp_meas_sqexp [email protected](K_ij_exp_sqexp,rcond=invtol)@x_temp_meas_sqexp x_temp_Bochner_sqexp=<EMAIL>ch<EMAIL>.pinv(K_ij_Bochner_sqexp,rcond=invtol)@x_temp_meas_sqexp [email protected](K_ij_KI_sqexp,rcond=invtol)@x_temp_meas_sqexp [email protected](K_ij_true_sqexp,rcond=invtol)@x_temp_meas_sqexp RMSE_sqexp_sqexp[k]=lina.norm(x_temp_sqexp-x_temp_sqexp_sqexp) RMSE_exp_sqexp[k]=lina.norm(x_temp_sqexp-x_temp_exp_sqexp) RMSE_Bochner_sqexp[k]=lina.norm(x_temp_sqexp-x_temp_Bochner_sqexp) RMSE_KI_sqexp[k]=lina.norm(x_temp_sqexp-x_temp_KI_sqexp) RMSE_true_sqexp[k]=lina.norm(x_temp_sqexp-x_temp_true_sqexp) RMSE_sqexp_sqexp_mean=np.mean(RMSE_sqexp_sqexp)/sqn RMSE_exp_sqexp_mean=np.mean(RMSE_exp_sqexp)/sqn RMSE_Bochner_sqexp_mean=np.mean(RMSE_Bochner_sqexp)/sqn RMSE_KI_sqexp_mean=np.mean(RMSE_KI_sqexp)/sqn RMSE_true_sqexp_mean=np.mean(RMSE_true_sqexp)/sqn print('Sqexp simulations done!') # Second: exp dataset RMSE_sqexp_exp=np.zeros([n_test,1]) RMSE_exp_exp=np.zeros([n_test,1]) RMSE_Bochner_exp=np.zeros([n_test,1]) RMSE_KI_exp=np.zeros([n_test,1]) RMSE_true_exp=np.zeros([n_test,1]) for k in range(n_test): x_temp_exp=np.random.multivariate_normal(np.zeros([n]),K_exp) x_temp_meas_exp=x_temp_exp[sample_index.astype(int)] [email protected](K_ij_sqexp_exp,rcond=invtol)@x_temp_meas_exp [email protected](K_ij_exp_exp,rcond=invtol)@x_temp_meas_exp [email protected](K_ij_Bochner_exp,rcond=invtol)@x_temp_meas_exp [email protected](K_ij_KI_exp,rcond=invtol)@x_temp_meas_exp [email protected](K_ij_true_exp,rcond=invtol)@x_temp_meas_exp RMSE_sqexp_exp[k]=lina.norm(x_temp_exp-x_temp_sqexp_exp)/sqn RMSE_exp_exp[k]=lina.norm(x_temp_exp-x_temp_exp_exp)/sqn RMSE_Bochner_exp[k]=lina.norm(x_temp_exp-x_temp_Bochner_exp)/sqn RMSE_KI_exp[k]=lina.norm(x_temp_exp-x_temp_KI_exp)/sqn RMSE_true_exp[k]=lina.norm(x_temp_exp-x_temp_true_exp) RMSE_sqexp_exp_mean=np.mean(RMSE_sqexp_exp) RMSE_exp_exp_mean=np.mean(RMSE_exp_exp) RMSE_Bochner_exp_mean=np.mean(RMSE_Bochner_exp) RMSE_KI_exp_mean=np.mean(RMSE_KI_exp) RMSE_true_exp_mean=np.mean(RMSE_true_exp)/sqn print('Exp simulations done!') # Third: bb dataset RMSE_sqexp_bb=np.zeros([n_test,1]) RMSE_exp_bb=np.zeros([n_test,1]) RMSE_Bochner_bb=np.zeros([n_test,1]) RMSE_KI_bb=np.zeros([n_test,1]) RMSE_true_bb=np.zeros([n_test,1]) for k in range(n_test): x_temp_bb=np.random.multivariate_normal(np.zeros([n]),K_bb) x_temp_meas_bb=x_temp_bb[sample_index.astype(int)] [email protected](K_ij_sqexp_bb,rcond=invtol)@x_temp_meas_bb [email protected](K_ij_exp_bb,rcond=invtol)@x_temp_meas_bb [email protected](K_ij_Bochner_bb,rcond=invtol)@x_temp_meas_bb [email protected](K_ij_KI_bb,rcond=invtol)@x_temp_meas_bb [email protected](K_ij_true_bb,rcond=invtol)@x_temp_meas_bb RMSE_sqexp_bb[k]=lina.norm(x_temp_bb-x_temp_sqexp_bb)/sqn RMSE_exp_bb[k]=lina.norm(x_temp_bb-x_temp_exp_bb)/sqn RMSE_Bochner_bb[k]=lina.norm(x_temp_bb-x_temp_Bochner_bb)/sqn RMSE_KI_bb[k]=lina.norm(x_temp_bb-x_temp_KI_bb)/sqn RMSE_true_bb[k]=lina.norm(x_temp_bb-x_temp_true_bb) RMSE_sqexp_bb_mean=np.mean(RMSE_sqexp_bb) RMSE_exp_bb_mean=np.mean(RMSE_exp_bb) RMSE_Bochner_bb_mean=np.mean(RMSE_Bochner_bb) RMSE_KI_bb_mean=np.mean(RMSE_KI_bb) RMSE_true_bb_mean=np.mean(RMSE_true_bb)/sqn print('Brownian bridge simulations done!') # Fourth: ndm_1 dataset RMSE_sqexp_ndm_1=np.zeros([n_test,1]) RMSE_exp_ndm_1=np.zeros([n_test,1]) RMSE_Bochner_ndm_1=np.zeros([n_test,1]) RMSE_KI_ndm_1=np.zeros([n_test,1]) RMSE_true_ndm_1=np.zeros([n_test,1]) for k in range(n_test): x_temp_ndm_1=np.random.multivariate_normal(np.zeros([n]),K_nondiag_mercer_1) x_temp_meas_ndm_1=x_temp_ndm_1[sample_index.astype(int)] [email protected](K_ij_sqexp_ndm_1,rcond=invtol)@x_temp_meas_ndm_1 [email protected](K_ij_exp_ndm_1,rcond=invtol)@x_temp_meas_ndm_1 [email protected](K_ij_Bochner_ndm_1,rcond=invtol)@x_temp_meas_ndm_1 [email protected](K_ij_KI_ndm_1,rcond=invtol)@x_temp_meas_ndm_1 [email protected](K_ij_true_ndm_1,rcond=invtol)@x_temp_meas_ndm_1 RMSE_sqexp_ndm_1[k]=lina.norm(x_temp_ndm_1-x_temp_sqexp_ndm_1)/sqn RMSE_exp_ndm_1[k]=lina.norm(x_temp_ndm_1-x_temp_exp_ndm_1)/sqn RMSE_Bochner_ndm_1[k]=lina.norm(x_temp_ndm_1-x_temp_Bochner_ndm_1)/sqn RMSE_KI_ndm_1[k]=lina.norm(x_temp_ndm_1-x_temp_KI_ndm_1)/sqn RMSE_true_ndm_1[k]=lina.norm(x_temp_ndm_1-x_temp_true_ndm_1) RMSE_sqexp_ndm_1_mean=np.mean(RMSE_sqexp_ndm_1) RMSE_exp_ndm_1_mean=np.mean(RMSE_exp_ndm_1) RMSE_Bochner_ndm_1_mean=np.mean(RMSE_Bochner_ndm_1) RMSE_KI_ndm_1_mean=np.mean(RMSE_KI_ndm_1) RMSE_true_ndm_1_mean=np.mean(RMSE_true_ndm_1)/sqn print('Nondiagonal Mercer simulations done!') # Fifth: ndm_2 dataset RMSE_sqexp_ndm_2=np.zeros([n_test,1]) RMSE_exp_ndm_2=np.zeros([n_test,1]) RMSE_Bochner_ndm_2=np.zeros([n_test,1]) RMSE_KI_ndm_2=np.zeros([n_test,1]) RMSE_true_ndm_2=np.zeros([n_test,1]) for k in range(n_test): x_temp_ndm_2=np.random.multivariate_normal(np.zeros([n]),K_nondiag_mercer_2) x_temp_meas_ndm_2=x_temp_ndm_2[sample_index.astype(int)] [email protected](K_ij_sqexp_ndm_2,rcond=invtol)@x_temp_meas_ndm_2 [email protected](K_ij_exp_ndm_2,rcond=invtol)@x_temp_meas_ndm_2 [email protected](K_ij_Bochner_ndm_2,rcond=invtol)@x_temp_meas_ndm_2 [email protected](K_ij_KI_ndm_2,rcond=invtol)@x_temp_meas_ndm_2 [email protected](K_ij_true_ndm_2,rcond=invtol)@x_temp_meas_ndm_2 RMSE_sqexp_ndm_2[k]=lina.norm(x_temp_ndm_2-x_temp_sqexp_ndm_2)/sqn RMSE_exp_ndm_2[k]=lina.norm(x_temp_ndm_2-x_temp_exp_ndm_2)/sqn RMSE_Bochner_ndm_2[k]=lina.norm(x_temp_ndm_2-x_temp_Bochner_ndm_2)/sqn RMSE_KI_ndm_2[k]=lina.norm(x_temp_ndm_2-x_temp_KI_ndm_2)/sqn RMSE_true_ndm_2[k]=lina.norm(x_temp_ndm_2-x_temp_true_ndm_2) RMSE_sqexp_ndm_2_mean=np.mean(RMSE_sqexp_ndm_2) RMSE_exp_ndm_2_mean=np.mean(RMSE_exp_ndm_2) RMSE_Bochner_ndm_2_mean=np.mean(RMSE_Bochner_ndm_2) RMSE_KI_ndm_2_mean=np.mean(RMSE_KI_ndm_2) RMSE_true_ndm_2_mean=np.mean(RMSE_true_ndm_2)/sqn print('Nondiagonal Mercer simulations done!') """ 8. Plots and illustrations ----------------------------------------------- """ # i) Example interpolations circle_size=200 zero_line=np.zeros([n,1]) zero_line_illu=np.zeros([n,1]) # First row : Sqexp covariance w,h=plt.figaspect(0.3) fig1 = plt.figure(dpi=400,constrained_layout=True,figsize=(w,h)) gs1 = fig1.add_gridspec(1, 5) f1_ax1 = fig1.add_subplot(gs1[0,0]) f1_ax1.plot(t,x_temp_sqexp,linestyle='dashed',color='0.7', label='Ground truth') f1_ax1.plot(t,x_temp_sqexp_sqexp,linestyle='solid',color='0.0',label='Estimation') f1_ax1.scatter(t_sample,x_temp_meas_sqexp,facecolors='none',edgecolors='0',label='Observations',s=circle_size) f1_ax1.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f1_ax1.set_title('Sqexp cov for sqexp process') f1_ax1.legend(loc='upper left') f1_ax2 = fig1.add_subplot(gs1[0,1]) f1_ax2.plot(t,x_temp_exp,linestyle='dashed',color='0.7') f1_ax2.plot(t,x_temp_sqexp_exp,linestyle='solid',color='0.0') f1_ax2.scatter(t_sample,x_temp_meas_exp,facecolors='none',edgecolors='0',label='Noise',s=circle_size) f1_ax2.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f1_ax2.set_title('Sqexp cov for exp process') f1_ax3 = fig1.add_subplot(gs1[0,2]) f1_ax3.plot(t,x_temp_bb,linestyle='dashed',color='0.7') f1_ax3.plot(t,x_temp_sqexp_bb,linestyle='solid',color='0.0') f1_ax3.scatter(t_sample,x_temp_meas_bb,facecolors='none',edgecolors='0',label='Noise',s=circle_size) f1_ax3.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f1_ax3.set_title('Sqexp cov for Brownian bridge process') f1_ax4 = fig1.add_subplot(gs1[0,3]) f1_ax4.plot(t,x_temp_ndm_1,linestyle='dashed',color='0.7') f1_ax4.plot(t,x_temp_sqexp_ndm_1,linestyle='solid',color='0.0') f1_ax4.scatter(t_sample,x_temp_meas_ndm_1,facecolors='none',edgecolors='0',label='Noise',s=circle_size) f1_ax4.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f1_ax4.set_title('Sqexp cov for random cov process 1') f1_ax5 = fig1.add_subplot(gs1[0,4]) f1_ax5.plot(t,x_temp_ndm_2,linestyle='dashed',color='0.7') f1_ax5.plot(t,x_temp_sqexp_ndm_2,linestyle='solid',color='0.0') f1_ax5.scatter(t_sample,x_temp_meas_ndm_2,facecolors='none',edgecolors='0',label='Noise',s=circle_size) f1_ax5.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f1_ax5.set_title('Sqexp cov for random cov process 2') # Second row : Exp covariance w,h=plt.figaspect(0.3) fig2 = plt.figure(dpi=400,constrained_layout=True,figsize=(w,h)) gs2 = fig2.add_gridspec(1, 5) f2_ax6 = fig2.add_subplot(gs2[0,0]) f2_ax6.plot(t,x_temp_sqexp,linestyle='dashed',color='0.7', label='Ground truth') f2_ax6.plot(t,x_temp_exp_sqexp,linestyle='solid',color='0.0', label='Estimation') f2_ax6.scatter(t_sample,x_temp_meas_sqexp,facecolors='none',edgecolors='0',label='Observations',s=circle_size) f2_ax6.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f2_ax6.set_title('Exp cov for sqexp process') f2_ax6.legend(loc='upper left') f2_ax7 = fig2.add_subplot(gs2[0,1]) f2_ax7.plot(t,x_temp_exp,linestyle='dashed',color='0.7') f2_ax7.plot(t,x_temp_exp_exp,linestyle='solid',color='0.0') f2_ax7.scatter(t_sample,x_temp_meas_exp,facecolors='none',edgecolors='0',label='Noise',s=circle_size) f2_ax7.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f2_ax7.set_title('Exp cov for exp process') f2_ax8 = fig2.add_subplot(gs2[0,2]) f2_ax8.plot(t,x_temp_bb,linestyle='dashed',color='0.7') f2_ax8.plot(t,x_temp_exp_bb,linestyle='solid',color='0.0') f2_ax8.scatter(t_sample,x_temp_meas_bb,facecolors='none',edgecolors='0',label='Noise',s=circle_size) f2_ax8.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f2_ax8.set_title('Exp cov for Brownian bridge process') f2_ax9 = fig2.add_subplot(gs2[0,3]) f2_ax9.plot(t,x_temp_ndm_1,linestyle='dashed',color='0.7') f2_ax9.plot(t,x_temp_exp_ndm_1,linestyle='solid',color='0.0') f2_ax9.scatter(t_sample,x_temp_meas_ndm_1,facecolors='none',edgecolors='0',label='Noise',s=circle_size) f2_ax9.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f2_ax9.set_title('Exp cov for random cov process 1') f2_ax10 = fig2.add_subplot(gs2[0,4]) f2_ax10.plot(t,x_temp_ndm_2,linestyle='dashed',color='0.7') f2_ax10.plot(t,x_temp_exp_ndm_2,linestyle='solid',color='0.0') f2_ax10.scatter(t_sample,x_temp_meas_ndm_2,facecolors='none',edgecolors='0',label='Noise',s=circle_size) f2_ax10.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f2_ax10.set_title('Exp cov for random cov process 2') # Third row : Bochner covariance w,h=plt.figaspect(0.3) fig3 = plt.figure(dpi=400,constrained_layout=True,figsize=(w,h)) gs3 = fig3.add_gridspec(1, 5) f3_ax11 = fig3.add_subplot(gs3[0,0]) f3_ax11.plot(t,x_temp_sqexp,linestyle='dashed',color='0.7', label='Ground truth') f3_ax11.plot(t,x_temp_Bochner_sqexp,linestyle='solid',color='0.0', label='Estimation') f3_ax11.scatter(t_sample,x_temp_meas_sqexp,facecolors='none',edgecolors='0',label='Observations',s=circle_size) f3_ax11.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f3_ax11.set_title('Bochner cov for sqexp process') f3_ax11.legend(loc='upper left') f3_ax12 = fig3.add_subplot(gs3[0,1]) f3_ax12.plot(t,x_temp_exp,linestyle='dashed',color='0.7') f3_ax12.plot(t,x_temp_Bochner_exp,linestyle='solid',color='0.0') f3_ax12.scatter(t_sample,x_temp_meas_exp,facecolors='none',edgecolors='0',label='Noise',s=circle_size) f3_ax12.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f3_ax12.set_title('Bochner cov for exp process') f3_ax13 = fig3.add_subplot(gs3[0,2]) f3_ax13.plot(t,x_temp_bb,linestyle='dashed',color='0.7') f3_ax13.plot(t,x_temp_Bochner_bb,linestyle='solid',color='0.0') f3_ax13.scatter(t_sample,x_temp_meas_bb,facecolors='none',edgecolors='0',label='Noise',s=circle_size) f3_ax13.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f3_ax13.set_title('Bochner cov for Brownian bridge process') f3_ax14 = fig3.add_subplot(gs3[0,3]) f3_ax14.plot(t,x_temp_ndm_1,linestyle='dashed',color='0.7') f3_ax14.plot(t,x_temp_Bochner_ndm_1,linestyle='solid',color='0.0') f3_ax14.scatter(t_sample,x_temp_meas_ndm_1,facecolors='none',edgecolors='0',label='Noise',s=circle_size) f3_ax14.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f3_ax14.set_title('Bochner cov for random cov process 1') f3_ax15 = fig3.add_subplot(gs3[0,4]) f3_ax15.plot(t,x_temp_ndm_2,linestyle='dashed',color='0.7') f3_ax15.plot(t,x_temp_Bochner_ndm_2,linestyle='solid',color='0.0') f3_ax15.scatter(t_sample,x_temp_meas_ndm_2,facecolors='none',edgecolors='0',label='Noise',s=circle_size) f3_ax15.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f3_ax15.set_title('Bochner cov for random cov process 2') # Fourth row : KI covariance w,h=plt.figaspect(0.3) fig4 = plt.figure(dpi=400,constrained_layout=True,figsize=(w,h)) gs4 = fig4.add_gridspec(1, 5) f4_ax16 = fig4.add_subplot(gs4[0,0]) f4_ax16.plot(t,x_temp_sqexp,linestyle='dashed',color='0.7',label='Ground truth') f4_ax16.plot(t,x_temp_KI_sqexp,linestyle='solid',color='0.0', label='Estimation') f4_ax16.scatter(t_sample,x_temp_meas_sqexp,facecolors='none',edgecolors='0',label='Observations',s=circle_size) f4_ax16.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f4_ax16.set_title('KI cov for sqexp process') f4_ax16.legend(loc='upper left') f4_ax17 = fig4.add_subplot(gs4[0,1]) f4_ax17.plot(t,x_temp_exp,linestyle='dashed',color='0.7') f4_ax17.plot(t,x_temp_KI_exp,linestyle='solid',color='0.0') f4_ax17.scatter(t_sample,x_temp_meas_exp,facecolors='none',edgecolors='0',label='Noise',s=circle_size) f4_ax17.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f4_ax17.set_title('KI cov for exp process') f4_ax18 = fig4.add_subplot(gs4[0,2]) f4_ax18.plot(t,x_temp_bb,linestyle='dashed',color='0.7') f4_ax18.plot(t,x_temp_KI_bb,linestyle='solid',color='0.0') f4_ax18.scatter(t_sample,x_temp_meas_bb,facecolors='none',edgecolors='0',label='Noise',s=circle_size) f4_ax18.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f4_ax18.set_title('KI cov for Brownian bridge process') f4_ax19 = fig4.add_subplot(gs4[0,3]) f4_ax19.plot(t,x_temp_ndm_1,linestyle='dashed',color='0.7') f4_ax19.plot(t,x_temp_KI_ndm_1,linestyle='solid',color='0.0') f4_ax19.scatter(t_sample,x_temp_meas_ndm_1,facecolors='none',edgecolors='0',label='Noise',s=circle_size) f4_ax19.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f4_ax19.set_title('KI cov for random cov process 1') f4_ax20 = fig4.add_subplot(gs4[0,4]) f4_ax20.plot(t,x_temp_ndm_2,linestyle='dashed',color='0.7') f4_ax20.plot(t,x_temp_KI_ndm_2,linestyle='solid',color='0.0') f4_ax20.scatter(t_sample,x_temp_meas_ndm_2,facecolors='none',edgecolors='0',label='Noise',s=circle_size) f4_ax20.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f4_ax20.set_title('KI cov for random cov process 2') # ii) Example covariance fits # Calculations for ground truth circle_size=100 cov_true_sqexp=np.zeros([n]) cov_true_exp=np.zeros([n]) cov_true_bb=np.zeros([n]) for k in range(n): cov_true_sqexp[k]=cov_fun_sqexp_true(0, t[k]) cov_true_exp[k]=cov_fun_exp_true(0, t[k]) cov_true_bb[k]=cov_fun_bb_true(0, t[k]) cov_sqexp_sqexp=np.zeros([n]) cov_sqexp_exp=np.zeros([n]) cov_sqexp_bb=np.zeros([n]) cov_sqexp_ndm_1=np.zeros([n]) cov_sqexp_ndm_2=np.zeros([n]) cov_exp_sqexp=np.zeros([n]) cov_exp_exp=np.zeros([n]) cov_exp_bb=np.zeros([n]) cov_exp_ndm_1=np.zeros([n]) cov_exp_ndm_2=np.zeros([n]) cov_Bochner_sqexp=np.zeros([n]) cov_Bochner_exp=np.zeros([n]) cov_Bochner_bb=np.zeros([n]) cov_Bochner_ndm_1=np.zeros([n]) cov_Bochner_ndm_2=np.zeros([n]) for k in range(n): cov_sqexp_sqexp[k]=cov_fun_sqexp_model(t[k],0,params_optimal_sqexp_exp[0],params_optimal_sqexp_sqexp[1]) cov_sqexp_exp[k]=cov_fun_sqexp_model(t[k],0,params_optimal_sqexp_exp[0],params_optimal_sqexp_exp[1]) cov_sqexp_bb[k]=cov_fun_sqexp_model(t[k],0,params_optimal_sqexp_bb[0],params_optimal_sqexp_bb[1]) cov_sqexp_ndm_1[k]=cov_fun_sqexp_model(t[k],0,params_optimal_sqexp_ndm_1[0],params_optimal_sqexp_ndm_1[1]) cov_sqexp_ndm_2[k]=cov_fun_sqexp_model(t[k],0,params_optimal_sqexp_ndm_2[0],params_optimal_sqexp_ndm_2[1]) cov_exp_sqexp[k]=cov_fun_exp_model(t[k],0,params_optimal_exp_sqexp[0],params_optimal_exp_sqexp[1]) cov_exp_exp[k]=cov_fun_exp_model(t[k],0,params_optimal_exp_exp[0],params_optimal_exp_exp[1]) cov_exp_bb[k]=cov_fun_exp_model(t[k],0,params_optimal_exp_bb[0],params_optimal_exp_bb[1]) cov_exp_ndm_1[k]=cov_fun_exp_model(t[k],0,params_optimal_exp_ndm_1[0],params_optimal_exp_ndm_1[1]) cov_exp_ndm_2[k]=cov_fun_exp_model(t[k],0,params_optimal_exp_ndm_2[0],params_optimal_exp_ndm_2[1]) cov_Bochner_sqexp=K_Bochner_sqexp[:,0] cov_Bochner_exp=K_Bochner_exp[:,0] cov_Bochner_bb=K_Bochner_bb[:,0] cov_Bochner_ndm_1=K_Bochner_ndm_1[:,0] cov_Bochner_ndm_2=K_Bochner_ndm_2[:,0] # First row : Sqexp covariance w,h=plt.figaspect(0.3) fig1 = plt.figure(dpi=400,constrained_layout=True,figsize=(w,h)) gs1 = fig1.add_gridspec(1, 3) f1_ax1 = fig1.add_subplot(gs1[0,0]) f1_ax1.plot(t,cov_true_sqexp,linestyle='dashed',color='0.7', label='True covariance') f1_ax1.plot(t,cov_sqexp_sqexp,linestyle='solid',color='0.0',label='Estimation') f1_ax1.plot(t,correlogram_sqexp,linestyle='dotted',color='0.0',label='Correlogram') f1_ax1.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f1_ax1.set_title('Sqexp cov fun for sqexp process') f1_ax1.legend(loc='upper left') f1_ax2 = fig1.add_subplot(gs1[0,1]) f1_ax2.plot(t,cov_true_exp,linestyle='dashed',color='0.7', label='True covariance') f1_ax2.plot(t,cov_sqexp_exp,linestyle='solid',color='0.0',label='Estimation') f1_ax2.plot(t,correlogram_exp,linestyle='dotted',color='0.0',label='Correlogram') f1_ax2.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f1_ax2.set_title('Sqexp cov fun for exp process') f1_ax3 = fig1.add_subplot(gs1[0,2]) #f1_ax3.plot(t,cov_true_bb,linestyle='dashed',color='0.7', label='True covariance') f1_ax3.plot(t,cov_sqexp_bb,linestyle='solid',color='0.0',label='Estimation') f1_ax3.plot(t,correlogram_bb,linestyle='dotted',color='0.0',label='Correlogram') f1_ax3.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f1_ax3.set_title('Sqexp cov fun for Brownian bridge process') # Second row : Exp covariance w,h=plt.figaspect(0.3) fig2 = plt.figure(dpi=400,constrained_layout=True,figsize=(w,h)) gs2 = fig2.add_gridspec(1, 3) f2_ax1 = fig2.add_subplot(gs2[0,0]) f2_ax1.plot(t,cov_true_sqexp,linestyle='dashed',color='0.7', label='True covariance') f2_ax1.plot(t,cov_exp_sqexp,linestyle='solid',color='0.0',label='Estimation') f2_ax1.plot(t,correlogram_sqexp,linestyle='dotted',color='0.0',label='Correlogram') f2_ax1.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f2_ax1.set_title('Exp cov fun for sqexp process') f2_ax1.legend(loc='upper left') f2_ax2 = fig2.add_subplot(gs2[0,1]) f2_ax2.plot(t,cov_true_exp,linestyle='dashed',color='0.7', label='True covariance') f2_ax2.plot(t,cov_exp_exp,linestyle='solid',color='0.0',label='Estimation') f2_ax2.plot(t,correlogram_exp,linestyle='dotted',color='0.0',label='Correlogram') f2_ax2.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f2_ax2.set_title('Exp cov fun for exp process') f2_ax3 = fig2.add_subplot(gs2[0,2]) #f2_ax3.plot(t,cov_true_bb,linestyle='dashed',color='0.7', label='True covariance') f2_ax3.plot(t,cov_exp_bb,linestyle='solid',color='0.0',label='Estimation') f2_ax3.plot(t,correlogram_bb,linestyle='dotted',color='0.0',label='Correlogram') f2_ax3.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f2_ax3.set_title('Exp cov fun for Brownian bridge process') # Third row : Bochner covariance w,h=plt.figaspect(0.3) fig3 = plt.figure(dpi=400,constrained_layout=True,figsize=(w,h)) gs3 = fig3.add_gridspec(1, 3) f3_ax1 = fig3.add_subplot(gs3[0,0]) f3_ax1.plot(t,cov_true_sqexp,linestyle='dashed',color='0.7', label='True covariance') f3_ax1.plot(t,cov_Bochner_sqexp,linestyle='solid',color='0.0',label='Estimation') f3_ax1.plot(t,correlogram_sqexp,linestyle='dotted',color='0.0',label='Correlogram') f3_ax1.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f3_ax1.set_title('Bochner cov fun for sqexp process') f3_ax1.legend(loc='upper left') f3_ax2 = fig3.add_subplot(gs3[0,1]) f3_ax2.plot(t,cov_true_exp,linestyle='dashed',color='0.7', label='True covariance') f3_ax2.plot(t,cov_Bochner_exp,linestyle='solid',color='0.0',label='Estimation') f3_ax2.plot(t,correlogram_exp,linestyle='dotted',color='0.0',label='Correlogram') f3_ax2.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f3_ax2.set_title('Bochner cov fun for exp process') f3_ax3 = fig3.add_subplot(gs3[0,2]) #f3_ax3.plot(t,cov_true_bb,linestyle='dashed',color='0.7', label='True covariance') f3_ax3.plot(t,cov_Bochner_bb,linestyle='solid',color='0.0',label='Estimation') f3_ax3.plot(t,correlogram_bb,linestyle='dotted',color='0.0',label='Correlogram') f3_ax3.plot(t,zero_line,linestyle='dotted',color='0.75') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f3_ax3.set_title('Bochner cov fun for Brownian bridge process') ``` #### File: kernel_inference/Figures/Special_case_4_trajectories.py ```python """ 1. Imports and definitions ----------------------------------------------- """ # i) Imports import numpy as np import numpy.linalg as lina import scipy.linalg as spla import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 12}) # ii) Definition of auxiliary quantities n=100 n_sample=20 n_simu=100 t=np.linspace(0,1,n) sample_index=np.round(np.linspace(0,n-1,n_sample)) t_sample=t[sample_index.astype(int)] np.random.seed(0) tol=10**(-4) """ 2. Create covariance matrices -------------------------------------------- """ # i) Define covariance functions d_x=0.1 d_y=0.05 def cov_fun_x(t1,t2): return 1*np.exp(-(lina.norm(t1-t2)/d_x)**2) def cov_fun_y(t1,t2): return 1.5*np.exp(-(lina.norm(t1-t2)/d_y)**2) # ii) Create covariance matrices K_x=np.zeros([n,n]) K_y=np.zeros([n,n]) for k in range(n): for l in range(n): K_x[k,l]=cov_fun_x(t[k],t[l]) K_y[k,l]=cov_fun_y(t[k],t[l]) # iii) Introduce constrained behavior # weight_mat=np.ones([n,n]) # for k in range(n): # for l in range(n): # if np.min([k,l])/(np.round(n/3))<=1: # weight_mat[k,l]=np.min([k,l])/(np.round(n/3)) # K_x=weight_mat*K_x # K_y=weight_mat*K_y Nabla=np.delete(np.eye(n)-np.roll(np.eye(n),1,1),n-1,0) L=np.zeros([1,n]) L[0,0]=1; A_constraints=np.vstack((Nabla,L)) K_x_mod=np.delete(K_x,[n-1],0) K_x_mod=np.delete(K_x_mod,[n-1],1) K_x_constrained=spla.block_diag(K_x_mod,np.zeros([1,1])) K_y_mod=np.delete(K_y,[n-1],0) K_y_mod=np.delete(K_y_mod,[n-1],1) K_y_constrained=spla.block_diag(K_y_mod,np.zeros([1,1])) # iv) Solve A_c K_x A_c.T=K_c K_x=lina.pinv(A_constraints)@[email protected](A_constraints).T K_y=lina.pinv(A_constraints)@[email protected](A_constraints).T """ 3. Simulation of autocorrelated data ------------------------------------- """ # i) Draw from a distribution with covariance matrix K_x x_simu=np.zeros([n,n_simu]) y_simu=np.zeros([n,n_simu]) for k in range(n_simu): x_simu[:,k]=np.random.multivariate_normal(np.zeros([n]),K_x) y_simu[:,k]=np.random.multivariate_normal(np.zeros([n]),K_y) x_measured=x_simu[sample_index.astype(int),:] y_measured=y_simu[sample_index.astype(int),:] S_emp_x=(1/n_simu)*(x_simu@x_simu.T) S_emp_measured_x=(1/n_simu)*(x_measured@x_measured.T) S_emp_y=(1/n_simu)*(y_simu@y_simu.T) S_emp_measured_y=(1/n_simu)*(y_measured@y_measured.T) """ 4. Kernel inference ------------------------------------------------------ """ # i) Preparation r=2 n_exp=10 d_sqexp=0.3 def cov_fun_exp(t1,t2): return (1/n**2)*np.exp(-(lina.norm(t1-t2)/d_sqexp)**1) K_exp=np.zeros([n,n]) for k in range(n): for l in range(n): K_exp[k,l]=cov_fun_exp(t[k],t[l]) [U_p,Lambda_p,V_p]=lina.svd(K_exp,hermitian=True) U_p_cut=U_p[:,:n_exp] Psi=U_p_cut[sample_index.astype(int),:] Lambda_p_cut=np.diag(Lambda_p[:n_exp]) # ii) Execute inference import sys sys.path.append("..") import KI beta_x, mu_x, gamma_x, C_gamma_x, KI_logfile_x = KI.Kernel_inference_homogeneous(x_measured,Lambda_p_cut,Psi,r,max_iter=300) beta_y, mu_y, gamma_y, C_gamma_y, KI_logfile_y = KI.Kernel_inference_homogeneous(y_measured,Lambda_p_cut,Psi,r, max_iter=300) """ 5. Optimal estimation --------------------------------------------------- """ # i) Auxiliary quantities n_datapoints= 10 datapoint_index=np.sort(np.random.choice(range(n),size=n_datapoints)) t_datapoints=t[datapoint_index.astype(int)] x_datapoints=x_simu[datapoint_index.astype(int),:] y_datapoints=y_simu[datapoint_index.astype(int),:] # ii) Interpolate x using inferred kernel K_gamma_x=U_p_cut@gamma_x@U_p_cut.T K_gamma_x_sample=K_gamma_x[np.ix_(datapoint_index.astype(int),datapoint_index.astype(int))] K_gamma_x_subset=K_gamma_x[:,datapoint_index.astype(int)] [email protected](K_gamma_x_sample,rcond=tol,hermitian=True)@x_datapoints # iii) Interpolate y using inferred kernel K_gamma_y=U_p_cut@gamma_y@U_p_cut.T K_gamma_y_sample=K_gamma_y[np.ix_(datapoint_index.astype(int),datapoint_index.astype(int))] K_gamma_y_subset=K_gamma_y[:,datapoint_index.astype(int)] [email protected](K_gamma_y_sample,rcond=tol,hermitian=True)@y_datapoints # iv) Interpolate using true kernel K_x_true_sample=K_x[np.ix_(datapoint_index.astype(int),datapoint_index.astype(int))] K_x_true_subset=K_x[:,datapoint_index.astype(int)] [email protected](K_x_true_sample,rcond=tol,hermitian=True)@x_datapoints K_y_true_sample=K_y[np.ix_(datapoint_index.astype(int),datapoint_index.astype(int))] K_y_true_subset=K_y[:,datapoint_index.astype(int)] [email protected](K_y_true_sample,rcond=tol,hermitian=True)@y_datapoints # v) Interpolate using generic squared exponential K_exp_sample=K_exp[np.ix_(datapoint_index.astype(int),datapoint_index.astype(int))] K_exp_subset=K_exp[:,datapoint_index.astype(int)] [email protected](K_exp_sample,rcond=tol,hermitian=True)@x_datapoints [email protected](K_exp_sample,rcond=tol,hermitian=True)@y_datapoints """ 6. Plots and illustrations ----------------------------------------------- """ # i) Auxiliary definitions zero_line=np.zeros([n,1]) K=spla.block_diag(K_x,K_y) K_gamma=spla.block_diag(K_gamma_x,K_gamma_y) S_emp=spla.block_diag(S_emp_x,S_emp_y) K_gamma_x_sample=K_gamma_x[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_gamma_y_sample=K_gamma_y[np.ix_(sample_index.astype(int),sample_index.astype(int))] K_gamma_sample=spla.block_diag(K_gamma_x_sample,K_gamma_y_sample ) S_emp_measured=spla.block_diag(S_emp_measured_x,S_emp_measured_y) gamma=spla.block_diag(gamma_x,gamma_y) # ii) Invoke figure 1 n_plot=2 w,h=plt.figaspect(0.3) fig1 = plt.figure(dpi=400,constrained_layout=True,figsize=(w,h)) gs1 = fig1.add_gridspec(1, 3) # Location 1,1 Underlying covariance function f1_ax1 = fig1.add_subplot(gs1[0,0]) f1_ax1.imshow(K) plt.ylabel('Locations x,y') plt.xlabel('Locations x,y') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f1_ax1.set_title('Covariance function') # Location 1,2 Example realizations f1_ax2 = fig1.add_subplot(gs1[0,1]) f1_ax2.plot(x_simu[:,1:n_plot],y_simu[:,1:n_plot],linestyle='solid',color='0') y_min,y_max=plt.ylim() plt.ylabel('Function value y(t)') plt.xlabel('Function value x(t)') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f1_ax2.set_title('Example realizations') # Location 1,3 Plot of the empirical covariance matrix f1_ax3 = fig1.add_subplot(gs1[0,2]) f1_ax3.imshow(S_emp) plt.ylabel('Locations x,y') plt.xlabel('Locations x,y') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f1_ax3.set_title('Empirical covariance') # Save the figure # plt.savefig('Special_case_4a_trajectories',dpi=400) # iii) Invoke figure 2 n_plot=2 n_illu=1 w,h=plt.figaspect(0.35) fig2 = plt.figure(dpi=400,constrained_layout=True,figsize=(w,h)) gs2 = fig2.add_gridspec(4, 6) f2_ax1 = fig2.add_subplot(gs2[0:2, 0:2]) f2_ax1.imshow(K) f2_ax1.set_title('True covariance function') f2_ax1.axis('off') f2_ax2 = fig2.add_subplot(gs2[0:2, 4:6]) f2_ax2.imshow(K_gamma) f2_ax2.set_title('Estimated covariance function') f2_ax2.axis('off') f2_ax3 = fig2.add_subplot(gs2[0, 2]) f2_ax3.imshow(S_emp_measured) f2_ax3.set_title('Empirical covariance') f2_ax3.axis('off') f2_ax4 = fig2.add_subplot(gs2[0, 3]) f2_ax4.imshow(K_gamma_sample) f2_ax4.set_title('Estimated covariance') f2_ax4.axis('off') f2_ax5 = fig2.add_subplot(gs2[1, 2]) f2_ax5.imshow(spla.block_diag(Lambda_p_cut,Lambda_p_cut)) f2_ax5.set_title('Prior gamma') f2_ax5.axis('off') f2_ax6 = fig2.add_subplot(gs2[1, 3]) f2_ax6.imshow(gamma) f2_ax6.set_title('Inferred gamma') f2_ax6.axis('off') # Save the figure # plt.savefig('Special_case_4b_trajectories',dpi=400) # iii) Invoke figure 3 w,h=plt.figaspect(0.25) fig3 = plt.figure(dpi=400,constrained_layout=True,figsize=(w,h)) gs3 = fig3.add_gridspec(1, 3) # Location 1.2 Estimations using squared exponential covariance f3_ax1 = fig3.add_subplot(gs3[0,1]) f3_ax1.scatter(x_datapoints[:,0],y_datapoints[:,0],facecolors='none',edgecolors='0',label='Data points') for k in range(n_illu-1): f3_ax1.scatter(x_datapoints[:,k+1],y_datapoints[:,k+1],facecolors='none',edgecolors='0') exp_est = f3_ax1.plot(x_est_K_exp[:,:n_illu] ,y_est_K_exp[:,:n_illu],linestyle='solid',color='0',label='Estimate sqexp cov') plt.setp(exp_est[1:], label="_") true_est = f3_ax1.plot(x_est_K_x_true[:,:n_illu],y_est_K_y_true[:,:n_illu],linestyle='dotted',color='0.65',label='Estimate true cov') plt.setp(true_est[1:], label="_") f3_ax1.plot(t,zero_line,linestyle='dotted',color='0.5') f3_ax1.plot(zero_line,t,linestyle='dotted',color='0.5') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) plt.xlabel('Locations x,y') f3_ax1.set_title('Estimations using exp. covariance') f3_ax1.legend(loc='lower right') # Location 1.3 Estimations using inferred covariance f3_ax2 = fig3.add_subplot(gs3[0,2]) f3_ax2.scatter(x_datapoints[:,0],y_datapoints[:,0],facecolors='none',edgecolors='0',label='Data points') for k in range(n_illu-1): f3_ax2.scatter(x_datapoints[:,k+1],y_datapoints[:,k+1],facecolors='none',edgecolors='0') KI_est = f3_ax2.plot(x_est_K_gamma_x[:,:n_illu] ,y_est_K_gamma_y[:,:n_illu],linestyle='solid',color='0',label='Estimate KI cov') plt.setp(KI_est[1:], label="_") true_est = f3_ax2.plot(x_est_K_x_true[:,:n_illu],y_est_K_y_true[:,:n_illu],linestyle='dotted',color='0.65',label='Estimate true cov') plt.setp(true_est[1:], label="_") f3_ax2.plot(t,zero_line,linestyle='dotted',color='0.5') f3_ax2.plot(zero_line,t,linestyle='dotted',color='0.5') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) plt.xlabel('Locations x,y') f3_ax2.set_title('Estimations using inferred covariance') f3_ax2.legend(loc='lower right') # Location 1.1 Example realizations f3_ax3 = fig3.add_subplot(gs3[0,0]) f3_ax3.plot(x_simu[:,1:n_plot],y_simu[:,1:n_plot],linestyle='solid',color='0',label='Estimate sqexp') y_min,y_max=plt.ylim() plt.ylabel('Locations x,y') plt.xlabel('Locations x,y') plt.tick_params(axis='y', which='both', left=False,right=False,labelleft=False) plt.tick_params(axis='x', which='both', top=False,bottom=False,labelbottom=False) f3_ax3.set_title('Example realizations') # Save the figure # plt.savefig('Special_case_4c_trajectories',dpi=400) ```
{ "source": "jemil-butt/Optimal_Discretization_RL", "score": 3 }
#### File: jemil-butt/Optimal_Discretization_RL/benchmark_beam_bending.py ```python import numpy as np import time from scipy.optimize import basinhopping import class_beam_bending_env as beam # ii) Import stable baselines from stable_baselines3 import TD3 from stable_baselines3.common.env_checker import check_env # iii) Initialize and check np.random.seed(0) beam_env=beam.Env() beam_env.reset() check_env(beam_env) """ 2. Train with stable baselines """ # i) Train a TD3 Model # start_time=time.time() # model = TD3("MlpPolicy", beam_env,verbose=1,seed=0) # model.learn(total_timesteps=100000) # end_time=time.time() # model.save('./Saved_models/trained_benchmark_beam_bending') model=TD3.load('./Saved_models/trained_benchmark_beam_bending') """ 3. Apply alternative methods """ # Note: All actions are in [-1,1] and get mapped to [0,1] by to the environment # translating input actions from the symmetric box space [-1,1] to indices # i) Grid based sampling def grid_based_sampling(environment): action_index=environment.round_to_index(environment.epoch/(environment.max_epoch-1)-1) action=np.array(2*environment.x[action_index]-1) return action # ii) Pseudo random sampling def pseudo_random_sampling(environment): Halton_sequence=np.array([1/2, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8])*2-np.ones([7]) action=Halton_sequence[environment.epoch] return action # iii) Random sampling def random_sampling(environment): action=np.random.uniform(-1,1,[1]) return action # iv) Numerical integration def quadrature_sampling(environment): Gauss_points=np.array([-0.861, -0.34, 0.34, 0.861]) action=Gauss_points[environment.epoch] return action # v) Experiment design based sampling n_average=10000 fun_table=np.zeros([n_average,beam_env.n_disc_x]) for k in range(n_average): beam_env.reset() fun_table[k,:]=beam_env.def_fun def loss_fun(x_vec): index_vec=np.zeros(beam_env.n_meas) for k in range(beam_env.n_meas): index_vec[k]=beam_env.round_to_index(x_vec[k]*0.5+0.5) f_max=np.max(fun_table,axis=1) f_obs_mat=fun_table[:,index_vec.astype(int)] f_obs_max=np.max(f_obs_mat,axis=1) loss_vec=np.abs(f_obs_max-f_max) loss_val=np.mean(loss_vec) return loss_val x_0 = np.array([-0.7,-0.3,0.3,0.7]) x_design = basinhopping(loss_fun, x_0, disp=True) def experiment_design_sampling(environment): action=x_design.x[environment.epoch] return action """ 4. Summarize and plot results """ # i) Summarize results in table n_episodes_table=1000 table=np.zeros([n_episodes_table,6]) # Grid based sampling results for k in range(n_episodes_table): done=False obs = beam_env.reset() while done ==False: action = grid_based_sampling(beam_env) obs, reward, done, info = beam_env.step(action) if done: table[k,0]=reward break # Pseudo random sampling results for k in range(n_episodes_table): done=False obs = beam_env.reset() while done ==False: action = pseudo_random_sampling(beam_env) obs, reward, done, info = beam_env.step(action) if done: table[k,1]=reward break # Random sampling results for k in range(n_episodes_table): done=False obs = beam_env.reset() while done ==False: action = random_sampling(beam_env) obs, reward, done, info = beam_env.step(action) if done: table[k,2]=reward break # Numerical integration sampling results for k in range(n_episodes_table): done=False obs = beam_env.reset() while done ==False: action = quadrature_sampling(beam_env) obs, reward, done, info = beam_env.step(action) if done: table[k,3]=reward break # Experiment design sampling results for k in range(n_episodes_table): done=False obs = beam_env.reset() while done ==False: action = experiment_design_sampling(beam_env) obs, reward, done, info = beam_env.step(action) if done: table[k,4]=reward break # RL sampling results for k in range(n_episodes_table): done=False obs = beam_env.reset() while done ==False: action, _states = model.predict(obs, deterministic=True) obs, reward, done, info = beam_env.step(action) if done: table[k,5]=reward break # ii) Illustrate results n_episodes=3 for k in range(n_episodes): done=False obs = beam_env.reset() while done ==False: action, _states = model.predict(obs, deterministic=True) obs, reward, done, info = beam_env.step(action) if done: beam_env.render(reward) # time.sleep(0.5) break mean_summary=np.mean(table,axis=0) std_summary=np.std(table,axis=0) print(' Reward means of different methods') print(mean_summary) print(' Reward standard_deviations of different methods') print(std_summary) # print('Time for RL procedure = ', end_time-start_time ,'sec') ```
{ "source": "jemilc/shap", "score": 2 }
#### File: shap/benchmark/plots.py ```python import numpy as np from .experiments import run_experiments from ..plots import colors from . import models from . import methods import sklearn import io import base64 try: import matplotlib.pyplot as pl except ImportError: pass labels = { "consistency_guarantees": { "title": "Consistency Guarantees" }, "local_accuracy": { "title": "Local Accuracy" }, "runtime": { "title": "Runtime" }, "remove_positive": { "title": "Remove Positive", "xlabel": "Max fraction of features removed", "ylabel": "Negative mean model output" }, "mask_remove_positive": { "title": "Mask Remove Positive", "xlabel": "Max fraction of features removed", "ylabel": "Negative mean model output" }, "remove_negative": { "title": "Remove Negative", "xlabel": "Max fraction of features removed", "ylabel": "Mean model output" }, "mask_remove_negative": { "title": "Mask Remove Negative", "xlabel": "Max fraction of features removed", "ylabel": "Mean model output" }, "keep_positive": { "title": "Keep Positive", "xlabel": "Max fraction of features kept", "ylabel": "Mean model output" }, "mask_keep_positive": { "title": "Mask Keep Positive", "xlabel": "Max fraction of features kept", "ylabel": "Mean model output" }, "keep_negative": { "title": "Keep Negative", "xlabel": "Max fraction of features kept", "ylabel": "Negative mean model output" }, "mask_keep_negative": { "title": "Mask Keep Negative", "xlabel": "Max fraction of features kept", "ylabel": "Negative mean model output" }, "batch_remove_absolute__r2": { "title": "Batch Remove Absolute", "xlabel": "Fraction of features removed", "ylabel": "1 - R^2" }, "batch_keep_absolute__r2": { "title": "Batch Keep Absolute", "xlabel": "Fraction of features kept", "ylabel": "R^2" }, "batch_remove_absolute__roc_auc": { "title": "Batch Remove Absolute", "xlabel": "Fraction of features removed", "ylabel": "1 - ROC AUC" }, "batch_keep_absolute__roc_auc": { "title": "Batch Keep Absolute", "xlabel": "Fraction of features kept", "ylabel": "ROC AUC" }, "linear_shap_corr": { "title": "Linear SHAP (corr)" }, "linear_shap_ind": { "title": "Linear SHAP (ind)" }, "coef": { "title": "Coefficents" }, "random": { "title": "Random" }, "kernel_shap_1000_meanref": { "title": "Kernel SHAP 1000 mean ref." }, "sampling_shap_1000": { "title": "Sampling SHAP 1000" }, "tree_shap": { "title": "Tree SHAP" }, "saabas": { "title": "Saabas" }, "tree_gain": { "title": "Gain/Gini Importance" }, "mean_abs_tree_shap": { "title": "mean(|Tree SHAP|)" }, "lasso_regression": { "title": "Lasso Regression" }, "ridge_regression": { "title": "Ridge Regression" }, "gbm_regression": { "title": "Gradient Boosting Regression" } } benchmark_color_map = { "tree_shap": "#1E88E5", "deep_shap": "#1E88E5", "linear_shap_corr": "#1E88E5", "linear_shap_ind": "#ff0d57", "coef": "#13B755", "random": "#999999", "const_random": "#666666", "kernel_shap_1000_meanref": "#7C52FF" } negated_metrics = [ "runtime", "remove_positive", "mask_remove_positive", "keep_negative", "mask_keep_negative" ] one_minus_metrics = [ "batch_remove_absolute__r2", "batch_remove_absolute__roc_auc" ] def plot_curve(dataset, model, metric, cmap=benchmark_color_map): experiments = run_experiments(dataset=dataset, model=model, metric=metric) pl.figure() method_arr = [] for (name,(fcounts,scores)) in experiments: _,_,method,_ = name if metric in negated_metrics: scores = -scores elif metric in one_minus_metrics: scores = 1 - scores auc = sklearn.metrics.auc(fcounts, scores) / fcounts[-1] method_arr.append((auc, method, scores)) for (auc,method,scores) in sorted(method_arr): method_title = getattr(methods, method).__doc__.split("\n")[0].strip() l = "{:6.3f} - ".format(auc) + method_title pl.plot(fcounts / fcounts[-1], scores, label=l, color=cmap.get(method, "#000000"), linewidth=2) pl.xlabel(labels[metric]["xlabel"]) pl.ylabel(labels[metric]["ylabel"]) pl.title(labels[metric]["title"]) pl.gca().xaxis.set_ticks_position('bottom') pl.gca().yaxis.set_ticks_position('left') pl.gca().spines['right'].set_visible(False) pl.gca().spines['top'].set_visible(False) ahandles, alabels = pl.gca().get_legend_handles_labels() pl.legend(reversed(ahandles), reversed(alabels)) return pl.gcf() def make_grid(scores, dataset, model): color_vals = {} for (_,_,method,metric),(fcounts,score) in filter(lambda x: x[0][0] == dataset and x[0][1] == model, scores): if metric not in color_vals: color_vals[metric] = {} if metric in negated_metrics: score = -score elif metric in one_minus_metrics: score = 1 - score if fcounts is None: color_vals[metric][method] = score else: auc = sklearn.metrics.auc(fcounts, score) / fcounts[-1] color_vals[metric][method] = auc col_keys = list(color_vals.keys()) row_keys = list(set([v for k in col_keys for v in color_vals[k].keys()])) data = -28567 * np.ones((len(row_keys), len(col_keys))) for i in range(len(row_keys)): for j in range(len(col_keys)): data[i,j] = color_vals[col_keys[j]][row_keys[i]] assert np.sum(data == -28567) == 0, "There are missing data values!" data = (data - data.min(0)) / (data.max(0) - data.min(0)) # sort by performans inds = np.argsort(-data.mean(1)) row_keys = [row_keys[i] for i in inds] data = data[inds,:] return row_keys, col_keys, data from matplotlib.colors import LinearSegmentedColormap red_blue_solid = LinearSegmentedColormap('red_blue_solid', { 'red': ((0.0, 198./255, 198./255), (1.0, 5./255, 5./255)), 'green': ((0.0, 34./255, 34./255), (1.0, 198./255, 198./255)), 'blue': ((0.0, 5./255, 5./255), (1.0, 24./255, 24./255)), 'alpha': ((0.0, 1, 1), (1.0, 1, 1)) }) from IPython.core.display import HTML def plot_grids(dataset, model_names): scores = [] for model in model_names: scores.extend(run_experiments(dataset=dataset, model=model)) prefix = "" out = "" # background: rgb(30, 136, 229) out += "<div style='font-weight: regular; font-size: 24px; text-align: center; background: #f8f8f8; color: #000; padding: 20px;'>SHAP Benchmark</div>" out += "<div style='height: 1px; background: #ddd;'></div>" #out += "<div style='height: 7px; background-image: linear-gradient(to right, rgb(30, 136, 229), rgb(255, 13, 87));'></div>" out += "<table style='border-width: 1px; font-size: 14px; margin-left: 40px'>" for ind,model in enumerate(model_names): row_keys, col_keys, data = make_grid(scores, dataset, model) # print(data) # print(colors.red_blue_solid(0.)) # print(colors.red_blue_solid(1.)) # return for metric in col_keys: if metric not in ["local_accuracy", "runtime", "consistency_guarantees"]: plot_curve(dataset, model, metric) buf = io.BytesIO() pl.savefig(buf, format = 'png') pl.close() buf.seek(0) data_uri = base64.b64encode(buf.read()).decode('utf-8').replace('\n', '') plot_id = "plot__"+dataset+"__"+model+"__"+metric prefix += "<div onclick='document.getElementById(\"%s\").style.display = \"none\"' style='display: none; position: fixed; z-index: 10000; left: 0px; right: 0px; top: 0px; bottom: 0px; background: rgba(255,255,255,0.5);' id='%s'>" % (plot_id, plot_id) prefix += "<img style='margin-left: auto; margin-right: auto; margin-top: 200px;' src='data:image/png;base64,%s'>" % data_uri prefix += "</div>" model_title = getattr(models, dataset+"__"+model).__doc__.split("\n")[0].strip() if ind == 0: out += "<tr><td style='background: #fff'></td></td>" for j in range(data.shape[1]): metric_title = labels[col_keys[j]]["title"] out += "<td style='width: 40px; background: #fff'><div style='margin-bottom: -5px; white-space: nowrap; transform: rotate(-45deg); transform-origin: left top 0; width: 1.5em; margin-top: 8em'>" + metric_title + "</div></td>" out += "</tr>" out += "<tr><td style='background: #fff'></td><td colspan='%d' style='background: #fff; font-weight: bold; text-align: center'>%s</td></tr>" % (data.shape[1], model_title) for i in range(data.shape[0]): out += "<tr>" # if i == 0: # out += "<td rowspan='%d' style='background: #fff; text-align: center; white-space: nowrap; vertical-align: middle; '><div style='font-weight: bold; transform: rotate(-90deg); transform-origin: left top 0; width: 1.5em; margin-top: 8em'>%s</div></td>" % (data.shape[0], model_name) method_title = getattr(methods, row_keys[i]).__doc__.split("\n")[0].strip() out += "<td style='background: #ffffff' title='shap.LinearExplainer(model)'>" + method_title + "</td>" for j in range(data.shape[1]): plot_id = "plot__"+dataset+"__"+model+"__"+col_keys[j] out += "<td onclick='document.getElementById(\"%s\").style.display = \"block\"' style='padding: 0px; padding-left: 0px; padding-right: 0px; border-left: 0px solid #999; width: 42px; height: 34px; background-color: #fff'>" % plot_id #out += "<div style='opacity: "+str(2*(max(1-data[i,j], data[i,j])-0.5))+"; background-color: rgb" + str(tuple(v*255 for v in colors.red_blue_solid(0. if data[i,j] < 0.5 else 1.)[:-1])) + "; height: "+str((30*max(1-data[i,j], data[i,j])))+"px; margin-left: auto; margin-right: auto; width:"+str((30*max(1-data[i,j], data[i,j])))+"px'></div>" out += "<div style='opacity: "+str(1)+"; background-color: rgb" + str(tuple(v*255 for v in colors.red_blue_solid(2*(data[i,j]-0.5))[:-1])) + "; height: "+str((30*data[i,j]))+"px; margin-left: auto; margin-right: auto; width:"+str((30*data[i,j]))+"px'></div>" #out += "<div style='float: left; background-color: #eee; height: 10px; width: "+str((40*(1-data[i,j])))+"px'></div>" out += "</td>" out += "</tr>" # out += "<tr><td colspan='%d' style='background: #fff'></td>" % (data.shape[1] + 1) out += "</table>" return HTML(prefix + out) ```
{ "source": "JemisaR/Current-Weather", "score": 3 }
#### File: Current-Weather/weather/models.py ```python from django.db import models from django.contrib.auth.models import User class City(models.Model): name = models.CharField(max_length=85) country = models.CharField(max_length=85, blank=True) country_code = models.CharField(max_length=2, blank=True) latitude = models.DecimalField(max_digits=6, decimal_places=4, default=0) longitude = models.DecimalField(max_digits=7, decimal_places=4, default=0) zip_code = models.PositiveIntegerField(default=0) user = models.ManyToManyField(User, related_name="my_cities", blank=True) def _str_(self): # show the actual city name on the dashboard return self.name def save(self, *args, **kwargs): self.name = self.name.capitalize() self.country = self.country.capitalize() self.country_code = self.country_code.lower() return super(City, self).save(*args, **kwargs) class Meta: verbose_name_plural = "cities" unique_together = ("name", "country_code") ``` #### File: Current-Weather/weather/views.py ```python from django.db import IntegrityError from rest_framework import status from django.shortcuts import render from rest_framework.response import Response from rest_framework.generics import ListCreateAPIView, RetrieveUpdateDestroyAPIView, ListAPIView from rest_framework.views import APIView from rest_framework.permissions import IsAuthenticated from .open_weather_map import OpenWeatherMap from .serializers import CitySerializer, CityWeatherSerializer from .models import City class CityWeather(APIView): permission_classes = (IsAuthenticated,) queryset = City.objects.all() def post(self, request): api = OpenWeatherMap() print("Request", request, request.data) city = request.data["city"] country = request.data["country"] unit = request.data["unit"] if country != "": location = city + "," + country else: location = city weather_data = api.current_weather(location, unit) weather_data["city"] = city.capitalize() results = CityWeatherSerializer(weather_data, many=False).data return Response(results) class CitiesWeather(APIView): queryset = City.objects.all() # serializer_class = CitySerializer def get(self, request): api = OpenWeatherMap() weather_data = [] cities = City.objects.all().order_by("name") for city in cities: weather = api.current_weather(city.name, unit="c") weather["city"] = city.name # print("City weather", weather) weather_data.append(weather) results = CityWeatherSerializer(weather_data, many=True).data return Response(results) class CityRetrieveUpdateDestroyAPIView(RetrieveUpdateDestroyAPIView): """ View cities. """ permission_classes = (IsAuthenticated, ) queryset = City.objects.all() serializer_class = CitySerializer class CityListAPIView(ListAPIView): """ View cities. """ permission_classes = (IsAuthenticated, ) queryset = City.objects.all().order_by("name") serializer_class = CitySerializer class CityListCreate(ListCreateAPIView): """ View and create cities. """ permission_classes = (IsAuthenticated, ) queryset = City.objects.all() serializer_class = CitySerializer def create(self, request, *args, **kwargs): try: return super(ListCreateAPIView, self).create(request, *args, **kwargs) except IntegrityError: # This is due to case sensitivity in the City model. return Response( data={ "error": "This city is already saved." }, status=status.HTTP_400_BAD_REQUEST ) class MyCities(APIView): """ Allow user to view his/her favorite cities. """ # permission_classes = [permissions.IsAuthenticated, ] queryset = City.objects.all() serializer_class = CitySerializer def get_queryset(self): """ This view should return a list of all the purchases for the currently authenticated user. """ user = self.request.user return City.objects.filter(user=user) ```
{ "source": "jemisjoky/Continuous-uMPS", "score": 2 }
#### File: Continuous-uMPS/continuous-umps/utils.py ```python def null(*args, **kwargs): pass class FakeLogger: __init__ = null log_metric = null log_metrics = null end = null ```
{ "source": "jemisjoky/TorchMPS", "score": 2 }
#### File: TorchMPS/torchmps/embeddings.py ```python from math import sqrt, pi from functools import partial from typing import Union, Optional, Callable import torch from .utils2 import einsum class DataDomain: r""" Defines a domain for input data to a probabilistic model DataDomain supports both continuous and discrete domains, with the latter always associated with indices of the form `0, 1, ..., max_val-1`. For continuous domains, real intervals of the form `[min_val, max_val]` can be defined. Args: continuous (bool): Whether data domain is continuous or discrete max_val (int or float): For discrete domains, this is the number of indices to use, with the maximum index being max_val - 1. For continuous domains, this is the endpoint of the real interval. min_val (float): Only used for continuous domains, this is the startpoint of the real interval. """ def __init__( self, continuous: bool, max_val: Union[int, float], min_val: Optional[float] = None, ): # Check defining input for correctness if continuous: assert max_val > min_val self.min_val = min_val else: assert max_val >= 0 self.max_val = max_val self.continuous = continuous class FixedEmbedding: r""" Framework for fixed embedding function converting data to vectors Args: emb_fun (function): Function taking arbitrary tensors of values and returning tensor of embedded vectors, which has one additional axis in the last position. These values must be either integers, for discrete data domains, or reals, for continuous data domains. data_domain (DataDomain): Object which specifies the domain on which the data fed to the embedding function is defined. """ def __init__(self, emb_fun: Callable, data_domain: DataDomain): assert hasattr(emb_fun, "__call__") # Save defining data, compute lambda matrix self.domain = data_domain self.emb_fun = emb_fun self.make_lambda() # Initialize parameters to be set later self.num_points = None self.special_case = None def make_lambda(self, num_points: int = 1000): """ Compute the lambda matrix used for normalization """ # Compute the raw lambda matrix, computing number of points if needed if self.domain.continuous: points = torch.linspace( self.domain.min_val, self.domain.max_val, steps=num_points ) self.num_points = num_points emb_vecs = self.emb_fun(points) assert emb_vecs.ndim == 2 self.emb_dim = emb_vecs.shape[1] assert emb_vecs.shape[0] == num_points # Get rank-1 matrices for each point, then numerically integrate emb_mats = einsum("bi,bj->bij", emb_vecs, emb_vecs.conj()) lamb_mat = torch.trapz(emb_mats, points, dim=0) else: points = torch.arange(self.domain.max_val).long() emb_vecs = self.emb_fun(points) assert emb_vecs.ndim == 2 self.emb_dim = emb_vecs.shape[1] assert emb_vecs.shape[0] == self.domain.max_val # Get rank-1 matrices for each point, then sum together emb_mats = einsum("bi,bj->bij", emb_vecs, emb_vecs.conj()) lamb_mat = torch.sum(emb_mats, dim=0) assert lamb_mat.ndim == 2 assert lamb_mat.shape[0] == lamb_mat.shape[1] self.lamb_mat = lamb_mat # Check if the computed matrix is diagonal or multiple of the identity if torch.allclose(lamb_mat.diag().diag(), lamb_mat): lamb_mat = lamb_mat.diag() if torch.allclose(lamb_mat.mean(), lamb_mat): self.lamb_mat = lamb_mat.mean() else: self.lamb_mat = lamb_mat def embed(self, input_data): """ Embed input data via the user-specified embedding function """ return self.emb_fun(input_data) unit_interval = DataDomain(continuous=True, max_val=1, min_val=0) def onehot_embed(tensor, emb_dim): """ Function giving trivial one-hot embedding of categorical data """ shape = tensor.shape + (emb_dim,) output = torch.zeros(*shape) output.scatter_(-1, tensor[..., None], 1) return output def trig_embed(data, emb_dim=2): r""" Function giving embedding from powers of sine and cosine Based on Equation B4 of <NAME> and <NAME>, "Supervised Learning With Quantum-Inspired Tensor Networks", NIPS 2016, which maps an input x in the unit interval to a d-dim vector whose j'th component (where j = 0, 1, ..., d-1) is: .. math:: \phi(x)_j = \sqrt{d-1 \choose j} \cos(\frac{pi}{2}x)^{d-j-1} \sin(\frac{pi}{2}x)^{j} Written by <NAME>on """ from scipy.special import binom emb_data = [] for s in range(emb_dim): comp = ( torch.cos(data * pi / 2) ** (emb_dim - s - 1) * torch.sin(data * pi / 2) ** s ) comp *= sqrt(binom(emb_dim - 1, s)) emb_data.append(comp) emb_data = torch.stack(emb_data, dim=-1) assert emb_data.shape == data.shape + (emb_dim,) return emb_data sincos_embed = partial(trig_embed, emb_dim=2) ``` #### File: TorchMPS/torchmps/utils.py ```python import numpy as np import torch def svd_flex(tensor, svd_string, max_D=None, cutoff=1e-10, sv_right=True, sv_vec=None): """ Split an input tensor into two pieces using a SVD across some partition Args: tensor (Tensor): Pytorch tensor with at least two indices svd_string (str): String of the form 'init_str->left_str,right_str', where init_str describes the indices of tensor, and left_str/right_str describe those of the left and right output tensors. The characters of left_str and right_str form a partition of the characters in init_str, but each contain one additional character representing the new bond which comes from the SVD Reversing the terms in svd_string to the left and right of '->' gives an ein_string which can be used to multiply both output tensors to give a (low rank approximation) of the input tensor cutoff (float): A truncation threshold which eliminates any singular values which are strictly less than cutoff max_D (int): A maximum allowed value for the new bond. If max_D is specified, the returned tensors sv_right (bool): The SVD gives two orthogonal matrices and a matrix of singular values. sv_right=True merges the SV matrix with the right output, while sv_right=False merges it with the left output sv_vec (Tensor): Pytorch vector with length max_D, which is modified in place to return the vector of singular values Returns: left_tensor (Tensor), right_tensor (Tensor): Tensors whose indices are described by the left_str and right_str parts of svd_string bond_dim: The dimension of the new bond appearing from the cutoff in our SVD. Note that this generally won't match the dimension of left_/right_tensor at this mode, which is padded with zeros whenever max_D is specified """ def prod(int_list): output = 1 for num in int_list: output *= num return output with torch.no_grad(): # Parse svd_string into init_str, left_str, and right_str svd_string = svd_string.replace(" ", "") init_str, post_str = svd_string.split("->") left_str, right_str = post_str.split(",") # Check formatting of init_str, left_str, and right_str assert all([c.islower() for c in init_str + left_str + right_str]) assert len(set(init_str + left_str + right_str)) == len(init_str) + 1 assert len(set(init_str)) + len(set(left_str)) + len(set(right_str)) == len( init_str ) + len(left_str) + len(right_str) # Get the special character representing our SVD-truncated bond bond_char = set(left_str).intersection(set(right_str)).pop() left_part = left_str.replace(bond_char, "") right_part = right_str.replace(bond_char, "") # Permute our tensor into something that can be viewed as a matrix ein_str = f"{init_str}->{left_part+right_part}" tensor = torch.einsum(ein_str, [tensor]).contiguous() left_shape = list(tensor.shape[: len(left_part)]) right_shape = list(tensor.shape[len(left_part) :]) left_dim, right_dim = prod(left_shape), prod(right_shape) tensor = tensor.view([left_dim, right_dim]) # Get SVD and format so that left_mat * diag(svs) * right_mat = tensor left_mat, svs, right_mat = torch.svd(tensor) svs, _ = torch.sort(svs, descending=True) right_mat = torch.t(right_mat) # Decrease or increase our tensor sizes in the presence of max_D if max_D and len(svs) > max_D: svs = svs[:max_D] left_mat = left_mat[:, :max_D] right_mat = right_mat[:max_D] elif max_D and len(svs) < max_D: copy_svs = torch.zeros([max_D]) copy_svs[: len(svs)] = svs copy_left = torch.zeros([left_mat.size(0), max_D]) copy_left[:, : left_mat.size(1)] = left_mat copy_right = torch.zeros([max_D, right_mat.size(1)]) copy_right[: right_mat.size(0)] = right_mat svs, left_mat, right_mat = copy_svs, copy_left, copy_right # If given as input, copy singular values into sv_vec if sv_vec is not None and svs.shape == sv_vec.shape: sv_vec[:] = svs elif sv_vec is not None and svs.shape != sv_vec.shape: raise TypeError( f"sv_vec.shape must be {list(svs.shape)}, but is " f"currently {list(sv_vec.shape)}" ) # Find the truncation point relative to our singular value cutoff truncation = 0 for s in svs: if s < cutoff: break truncation += 1 if truncation == 0: raise RuntimeError( "SVD cutoff too large, attempted to truncate " "tensor to bond dimension 0" ) # Perform the actual truncation if max_D: svs[truncation:] = 0 left_mat[:, truncation:] = 0 right_mat[truncation:] = 0 else: # If max_D wasn't given, set it to the truncation index max_D = truncation svs = svs[:truncation] left_mat = left_mat[:, :truncation] right_mat = right_mat[:truncation] # Merge the singular values into the appropriate matrix if sv_right: right_mat = torch.einsum("l,lr->lr", [svs, right_mat]) else: left_mat = torch.einsum("lr,r->lr", [left_mat, svs]) # Reshape the matrices to make them proper tensors left_tensor = left_mat.view(left_shape + [max_D]) right_tensor = right_mat.view([max_D] + right_shape) # Finally, permute the indices into the desired order if left_str != left_part + bond_char: left_tensor = torch.einsum( f"{left_part+bond_char}->{left_str}", [left_tensor] ) if right_str != bond_char + right_part: right_tensor = torch.einsum( f"{bond_char+right_part}->{right_str}", [right_tensor] ) return left_tensor, right_tensor, truncation def init_tensor(shape, bond_str, init_method): """ Initialize a tensor with a given shape Args: shape: The shape of our output parameter tensor. bond_str: The bond string describing our output parameter tensor, which is used in 'random_eye' initialization method. The characters 'l' and 'r' are used to refer to the left or right virtual indices of our tensor, and are both required to be present for the random_eye and min_random_eye initialization methods. init_method: The method used to initialize the entries of our tensor. This can be either a string, or else a tuple whose first entry is an initialization method and whose remaining entries are specific to that method. In each case, std will always refer to a standard deviation for a random normal random component of each entry of the tensor. Allowed options are: * ('random_eye', std): Initialize each tensor input slice close to the identity * ('random_zero', std): Initialize each tensor input slice close to the zero matrix * ('min_random_eye', std, init_dim): Initialize each tensor input slice close to a truncated identity matrix, whose truncation leaves init_dim unit entries on the diagonal. If init_dim is larger than either of the bond dimensions, then init_dim is capped at the smaller bond dimension. """ # Unpack init_method if it is a tuple if not isinstance(init_method, str): init_str = init_method[0] std = init_method[1] if init_str == "min_random_eye": init_dim = init_method[2] init_method = init_str else: std = 1e-9 # Check that bond_str is properly sized and doesn't have repeat indices assert len(shape) == len(bond_str) assert len(set(bond_str)) == len(bond_str) if init_method not in ["random_eye", "min_random_eye", "random_zero"]: raise ValueError(f"Unknown initialization method: {init_method}") if init_method in ["random_eye", "min_random_eye"]: bond_chars = ["l", "r"] assert all([c in bond_str for c in bond_chars]) # Initialize our tensor slices as identity matrices which each fill # some or all of the initially allocated bond space if init_method == "min_random_eye": # The dimensions for our initial identity matrix. These will each # be init_dim, unless init_dim exceeds one of the bond dimensions bond_dims = [shape[bond_str.index(c)] for c in bond_chars] if all([init_dim <= full_dim for full_dim in bond_dims]): bond_dims = [init_dim, init_dim] else: init_dim = min(bond_dims) eye_shape = [init_dim if c in bond_chars else 1 for c in bond_str] expand_shape = [ init_dim if c in bond_chars else shape[i] for i, c in enumerate(bond_str) ] elif init_method == "random_eye": eye_shape = [ shape[i] if c in bond_chars else 1 for i, c in enumerate(bond_str) ] expand_shape = shape bond_dims = [shape[bond_str.index(c)] for c in bond_chars] eye_tensor = torch.eye(bond_dims[0], bond_dims[1]).view(eye_shape) eye_tensor = eye_tensor.expand(expand_shape) tensor = torch.zeros(shape) tensor[[slice(dim) for dim in expand_shape]] = eye_tensor # Add on a bit of random noise tensor += std * torch.randn(shape) elif init_method == "random_zero": tensor = std * torch.randn(shape) return tensor ### OLDER MISCELLANEOUS FUNCTIONS ### # noqa: E266 def onehot(labels, max_value): """ Convert a batch of labels from the set {0, 1,..., num_value-1} into their onehot encoded counterparts """ label_vecs = torch.zeros([len(labels), max_value]) for i, label in enumerate(labels): label_vecs[i, label] = 1.0 return label_vecs def joint_shuffle(input_data, input_labels): """ Shuffle input data and labels in a joint manner, so each label points to its corresponding datum. Works for both regular and CUDA tensors """ assert input_data.is_cuda == input_labels.is_cuda use_gpu = input_data.is_cuda if use_gpu: input_data, input_labels = input_data.cpu(), input_labels.cpu() data, labels = input_data.numpy(), input_labels.numpy() # Shuffle relative to the same seed np.random.seed(0) np.random.shuffle(data) np.random.seed(0) np.random.shuffle(labels) data, labels = torch.from_numpy(data), torch.from_numpy(labels) if use_gpu: data, labels = data.cuda(), labels.cuda() return data, labels def load_HV_data(length): """ Output a toy "horizontal/vertical" data set of black and white images with size length x length. Each image contains a single horizontal or vertical stripe, set against a background of the opposite color. The labels associated with these images are either 0 (horizontal stripe) or 1 (vertical stripe). In its current version, this returns two data sets, a training set with 75% of the images and a test set with 25% of the images. """ num_images = 4 * (2 ** (length - 1) - 1) num_patterns = num_images // 2 split = num_images // 4 if length > 14: print( "load_HV_data will generate {} images, " "this could take a while...".format(num_images) ) images = np.empty([num_images, length, length], dtype=np.float32) labels = np.empty(num_images, dtype=np.int) # Used to generate the stripe pattern from integer i below template = "{:0" + str(length) + "b}" for i in range(1, num_patterns + 1): pattern = template.format(i) pattern = [int(s) for s in pattern] for j, val in enumerate(pattern): # Horizontal stripe pattern images[2 * i - 2, j, :] = val # Vertical stripe pattern images[2 * i - 1, :, j] = val labels[2 * i - 2] = 0 labels[2 * i - 1] = 1 # Shuffle and partition into training and test sets np.random.seed(0) np.random.shuffle(images) np.random.seed(0) np.random.shuffle(labels) train_images, train_labels = images[split:], labels[split:] test_images, test_labels = images[:split], labels[:split] return ( torch.from_numpy(train_images), torch.from_numpy(train_labels), torch.from_numpy(test_images), torch.from_numpy(test_labels), ) ```
{ "source": "jemisjoky/UnsupGenModbyMPS", "score": 3 }
#### File: UnsupGenModbyMPS/BStest/BS_main.py ```python import sys sys.path.append("../") from MPScumulant import MPS_c import numpy as np from numpy.random import randint, rand import os def state2ind(state): """binary configuration -> int""" return np.int(state.dot(2 ** np.arange(len(state)))) def remember(mps, steps, nsam): """Inference with Metropolis approach nsam: number of walkers = number of samples steps: number of steps they walk Their final states are returned """ nsize = mps.mps_len print("n_sample=%d" % nsam) current = randint(2, size=(nsam, nsize)) for n in range(1, steps + 1): if n % (steps // 10) == 0: print(".", end="") flipper = randint(2, size=(nsam, nsize)) new = current ^ flipper for x in range(nsam): prob = mps.Give_probab(current[x]) prob_ = mps.Give_probab(new[x]) if prob_ > prob or rand() < prob_ / prob: current[x] = new[x] return current def remember_zipper(mps, nsam): """Zipper sampling nsam: number of samples """ mps.left_cano() print("n_sample=%d" % nsam) sam = np.asarray([mps.generate_sample() for _ in range(nsam)]) return sam def statistic(current): """Categorize and count the samples Return an numpy.record whose dtype=[('x',int),('f',int)]""" samprob = {} for x in current: xind = state2ind(x) if xind in samprob: samprob[xind] += 1 else: samprob[xind] = 1 memory = [(x, samprob[x]) for x in samprob] memory = np.asarray(memory, dtype=[("x", int), ("f", int)]) return np.sort(memory, order="f") if __name__ == "__main__": dataset = np.load("BSdata.npy").reshape(-1, 16) """The binary number form of BS is stored in BSind.npy, with the identical order with BSdata.npy""" m = MPS_c(16) m.left_cano() m.designate_data(dataset) m.cutoff = 5e-5 m.descent_step_length = 0.05 m.nbatch = 10 m.train(2) m.saveMPS("BS-", True) sam_zip = remember_zipper(m, 1000) # os.chdir('BS-MPS') np.save("sam_zip.npy", sam_zip) np.save("memo_zip.npy", statistic(sam_zip)) sam_met = remember(m, 5000, 1000) np.save("sam_met.npy", sam_met) np.save("memo_met.npy", statistic(sam_met)) ``` #### File: jemisjoky/UnsupGenModbyMPS/datasets.py ```python import os from math import floor import numpy as np import torch @torch.no_grad() def bin_data(input, num_bins=None): """ Discretize greyscale values into a finite number of bins """ if num_bins is None: return input assert num_bins > 0 # Set each of the corresponding bin indices out_data = torch.full_like(input, -1) for i in range(num_bins): bin_inds = (i / num_bins <= input) * (input <= (i + 1) / num_bins) out_data[bin_inds] = i assert out_data.max() >= 0 return out_data.long() def load_genz(genz_num: int, slice_len=None): """ Load a dataset of time series with dynamics set by various Genz functions Separate train, validation, and test datasets are returned, containing data from 8000, 1000, and 1000 time series. The length of each time series depends on `slice_len`, and is 100 by default (`slice_len=None`). For positive integer values of `slice_len`, these time series are split into contiguous chunks of length equal to `slice_len`. Args: genz_num: Integer between 1 and 6 setting choice of Genz function Returns: train, val, test: Three arrays with respective shape (8000, 100, 1), (1000, 100, 1), and (1000, 100, 1). """ # Length between startpoints of output sliced series stride = 2 assert 1 <= genz_num <= 6 assert slice_len is None or 1 < slice_len <= 100 if slice_len is None: slice_suffix = "" slice_len = 100 else: assert isinstance(slice_len, int) slice_suffix = f"_l{slice_len}_s{stride}" # Number of slices per time series s_per_ts = (100 - slice_len) // stride + 1 # Return saved dataset if we have already generated this previously save_file = f"datasets/genz/genz{genz_num}{slice_suffix}.npz" if os.path.isfile(save_file): out = np.load(save_file) train, val, test = out["train"], out["val"], out["test"] assert val.shape == test.shape == (1000 * s_per_ts, slice_len) assert train.shape == (8000 * s_per_ts, slice_len) return train, val, test # Definitions of each of the Genz functions which drive the time series gfun = genz_funs[genz_num] # Initialize random starting values and update using Genz update function rng = np.random.default_rng(genz_num) x = rng.permutation(np.linspace(0.0, 1.0, num=10000)) long_series = np.empty((10000, 100)) for i in range(100): x = gfun(x) long_series[:, i] = x # Normalize the time series values to lie in range [0, 1] min_val, max_val = long_series.min(), long_series.max() long_series = (long_series - min_val) / (max_val - min_val) # Split into train, validation, and test sets base_series = (long_series[:8000], long_series[8000:9000], long_series[9000:]) # Cut up the full time series into shorter sliced time series all_series = [] for split in base_series: num_series = split.shape[0] s_split = np.empty((num_series * s_per_ts, slice_len)) for i in range(s_per_ts): j = i * stride s_split[i * num_series : (i + 1) * num_series] = split[ :, j : (j + slice_len) ] all_series.append(s_split) # Shuffle individual time series, save everything to disk train, val, test = [rng.permutation(ts) for ts in all_series] np.savez_compressed(save_file, train=train, val=val, test=test) return train, val, test def bars_and_stripes(width=10, max_size=12000, seed=0): """ Generate images from bars and stripes dataset Note that *all* images are generated before a subset are selected, so choosing height/width too large will lead to a long runtime Args: width (int): Width (and height) of square B&S images max_size (int): Maximum number of images in all returned splits seed (int): Random seed for reproducibility Returns: bs_data (Tensor): Flattened integer-valued bars and stripes data, with shape (num_output, width**2) """ width = int(width) num_total = 2 ** (width + 1) - 2 num_output = min(num_total, max_size) # Create bit masks which will be used to define bar/stripe patterns patterns = np.arange(2 ** width) filters = np.arange(width) bit_masks = (((patterns[:, np.newaxis] & (1 << filters))) > 0).astype(int) # Generate all 2**(width + 1) - 2 images using above bit masks bs_data = np.zeros((num_total, width, width)) bs_data[: num_total // 2] = bit_masks[:-1, :, np.newaxis] # Bars bs_data[num_total // 2 :] = bit_masks[1:, np.newaxis, :] # Stripes # Shuffle dataset and determine size to output bs_data = np.random.RandomState(seed).permutation(bs_data) # Split dataset into train, val, and test bs_data = bs_data[:num_output].reshape((num_output, -1)).astype("float32") lrg, sml = floor(num_output * 10 / 12), floor(num_output * 1 / 12) train, val, test = bs_data[:lrg], bs_data[lrg:lrg+sml], bs_data[lrg+sml:lrg+2*sml] return train, val, test w = 0.5 c = 1.0 # I'm using the fact that c=1.0 to set c**2 = c**-2 = c genz_funs = [ None, # Placeholder to give 1-based indexing lambda x: np.cos(2 * np.pi * w + c * x), lambda x: (c + (x + w)) ** -1, lambda x: (1 + c * x) ** -2, lambda x: np.exp(-c * np.pi * (x - w) ** 2), lambda x: np.exp(-c * np.pi * np.abs(x - w)), lambda x: np.where(x > w, 0, np.exp(c * x)), ] ```
{ "source": "jemisonf/bombman-cs-362", "score": 2 }
#### File: jemisonf/bombman-cs-362/bombman.py ```python import sys import pygame import os import math import copy import random import re import time from collections import defaultdict from playerClass import * DEBUG_PROFILING = False DEBUG_FPS = False DEBUG_VERBOSE = False #------------------------------------------------------------------------------ def debug_log(message): if DEBUG_VERBOSE: print(message) #============================================================================== class Profiler(object): SHOW_LAST = 10 #---------------------------------------------------------------------------- def __init__(self): self.sections = {} #---------------------------------------------------------------------------- def measure_start(self, section_name): if not DEBUG_PROFILING: return if not (section_name in self.sections): self.sections[section_name] = [0.0 for i in xrange(Profiler.SHOW_LAST)] section_values = self.sections[section_name] section_values[0] -= pygame.time.get_ticks() #---------------------------------------------------------------------------- def measure_stop(self, section_name): if not DEBUG_PROFILING: return if not section_name in self.sections: return section_values = self.sections[section_name] section_values[0] += pygame.time.get_ticks() #---------------------------------------------------------------------------- def end_of_frame(self): for section_name in self.sections: section_values = self.sections[section_name] section_values.pop() section_values.insert(0,0) #---------------------------------------------------------------------------- def get_profile_string(self): result = "PROFILING INFO:" section_names = list(self.sections.keys()) section_names.sort() for section_name in section_names: result += "\n" + section_name.ljust(25) + ": " section_values = self.sections[section_name] for i in xrange(len(section_values)): result += str(section_values[i]).ljust(5) result += " AVG: " + str(sum(section_values) / float(len(section_values))) return result #============================================================================== ## Something that has a float position on the map. class Positionable(object): #---------------------------------------------------------------------------- def __init__(self): self.position = (0.0,0.0) #---------------------------------------------------------------------------- def set_position(self,position): self.position = position #---------------------------------------------------------------------------- def get_position(self): return self.position #---------------------------------------------------------------------------- def get_neighbour_tile_coordinates(self): tile_coordinates = self.get_tile_position() top = (tile_coordinates[0],tile_coordinates[1] - 1) right = (tile_coordinates[0] + 1,tile_coordinates[1]) down = (tile_coordinates[0],tile_coordinates[1] + 1) left = (tile_coordinates[0] - 1,tile_coordinates[1]) return (top,right,down,left) #---------------------------------------------------------------------------- def get_tile_position(self): return Positionable.position_to_tile(self.position) #---------------------------------------------------------------------------- ## Moves the object to center of tile (if not specified, objects current tile is used). def move_to_tile_center(self, tile_coordinates=None): if tile_coordinates != None: self.position = tile_coordinates self.position = (math.floor(self.position[0]) + 0.5,math.floor(self.position[1]) + 0.5) #---------------------------------------------------------------------------- ## Converts float position to integer tile position. @staticmethod def position_to_tile(position): return (int(math.floor(position[0])),int(math.floor(position[1]))) #---------------------------------------------------------------------------- def is_near_tile_center(self): position_within_tile = (self.position[0] % 1,self.position[1] % 1) limit = 0.2 limit2 = 1.0 - limit return (limit < position_within_tile[0] < limit2) and (limit < position_within_tile[1] < limit2) #============================================================================== ## Info about a bomb's flight (when boxed or thrown). class BombFlightInfo(object): #---------------------------------------------------------------------------- def __init__(self): self.total_distance_to_travel = 0 ##< in tiles self.distance_travelled = 0 ##< in tiles self.direction = (0,0) ##< in which direction the bomb is flying, 0, 1 or -1 #============================================================================== class Bomb(Positionable): ROLLING_SPEED = 4 FLYING_SPEED = 5 BOMB_ROLLING_UP = 0 BOMB_ROLLING_RIGHT = 1 BOMB_ROLLING_DOWN = 2 BOMB_ROLLING_LEFT = 3 BOMB_FLYING = 4 BOMB_NO_MOVEMENT = 5 DETONATOR_EXPIRATION_TIME = 20000 BOMB_EXPLODES_IN = 3000 EXPLODES_IN_QUICK = 800 ##< for when the player has quick explosion disease #---------------------------------------------------------------------------- def __init__(self, player): super(Bomb,self).__init__() self.time_of_existence = 0 ##< for how long (in ms) the bomb has existed self.flame_length = player.get_flame_length() ##< how far the flame will go self.player = player ##< to which player the bomb belongs self.explodes_in = Bomb.BOMB_EXPLODES_IN ##< time in ms in which the bomb explodes from the time it was created (detonator_time must expire before this starts counting down) self.detonator_time = 0 ##< if > 0, the bomb has a detonator on it, after expiring it becomes a regular bomb self.set_position(player.get_position()) self.move_to_tile_center() self.has_spring = player.bombs_have_spring() self.movement = Bomb.BOMB_NO_MOVEMENT self.has_exploded = False self.flight_info = BombFlightInfo() #---------------------------------------------------------------------------- ## Sends the bomb flying from its currents position to given tile (can be outside the map boundaries, will fly over the border from the other side). def send_flying(self, destination_tile_coords): self.movement = Bomb.BOMB_FLYING current_tile = self.get_tile_position() self.flight_info.distance_travelled = 0 axis = 1 if current_tile[0] == destination_tile_coords[0] else 0 self.flight_info.total_distance_to_travel = abs(current_tile[axis] - destination_tile_coords[axis]) self.flight_info.direction = [0,0] self.flight_info.direction[axis] = -1 if current_tile[axis] > destination_tile_coords[axis] else 1 self.flight_info.direction = tuple(self.flight_info.direction) destination_tile_coords = (destination_tile_coords[0] % GameMap.MAP_WIDTH,destination_tile_coords[1] % GameMap.MAP_HEIGHT) self.move_to_tile_center(destination_tile_coords) #---------------------------------------------------------------------------- def has_detonator(self): return self.detonator_time > 0 and self.time_of_existence < Bomb.DETONATOR_EXPIRATION_TIME #---------------------------------------------------------------------------- ## Returns a time until the bomb explodes by itself. def time_until_explosion(self): return self.explodes_in + self.detonator_time - self.time_of_existence #---------------------------------------------------------------------------- def explodes(self): if not self.has_exploded: self.player.bomb_exploded() self.has_exploded = True #============================================================================== ## Represents a flame coming off of an exploding bomb. class Flame(object): #---------------------------------------------------------------------------- def __init__(self): self.player = None ##< reference to player to which the exploding bomb belonged self.time_to_burnout = 1000 ##< time in ms till the flame disappears self.direction = "all" ##< string representation of the flame direction #============================================================================== class MapTile(object): TILE_FLOOR = 0 ##< walkable map tile TILE_BLOCK = 1 ##< non-walkable but destroyable map tile TILE_WALL = 2 ##< non-walkable and non-destroyable map tile SPECIAL_OBJECT_TRAMPOLINE = 0 SPECIAL_OBJECT_TELEPORT_A = 1 SPECIAL_OBJECT_TELEPORT_B = 2 SPECIAL_OBJECT_ARROW_UP = 3 SPECIAL_OBJECT_ARROW_RIGHT = 4 SPECIAL_OBJECT_ARROW_DOWN = 5 SPECIAL_OBJECT_ARROW_LEFT = 6 SPECIAL_OBJECT_LAVA = 7 #---------------------------------------------------------------------------- def __init__(self, coordinates): self.kind = MapTile.TILE_FLOOR self.flames = [] self.coordinates = coordinates self.to_be_destroyed = False ##< Flag that marks the tile to be destroyed after the flames go out. self.item = None ##< Item that's present on the file self.special_object = None ##< special object present on the tile, like trampoline or teleport self.destination_teleport = None ##< in case of special_object equal to SPECIAL_OBJECT_TELEPORT_A or SPECIAL_OBJECT_TELEPORT_B holds the destionation teleport tile coordinates def shouldnt_walk(self): return self.kind in [MapTile.TILE_WALL,MapTile.TILE_BLOCK] or len(self.flames) >= 1 or self.special_object == MapTile.SPECIAL_OBJECT_LAVA #============================================================================== ## Holds and manipulates the map data including the players, bombs etc. class GameMap(object): MAP_WIDTH = 15 MAP_HEIGHT = 11 WALL_MARGIN_HORIZONTAL = 0.2 WALL_MARGIN_VERTICAL = 0.4 COLLISION_BORDER_UP = 0 ##< position is inside upper border with non-walkable tile COLLISION_BORDER_RIGHT = 1 ##< position is inside right border with non-walkable tile COLLISION_BORDER_DOWN = 2 ##< position is inside bottom border with non-walkable tile COLLISION_BORDER_LEFT = 3 ##< position is inside left border with non-walkable tile COLLISION_TOTAL = 4 ##< position is inside non-walkable tile COLLISION_NONE = 5 ##< no collision ITEM_BOMB = 0 ITEM_FLAME = 1 ITEM_SUPERFLAME = 2 ITEM_SPEEDUP = 3 ITEM_DISEASE = 4 ITEM_RANDOM = 5 ITEM_SPRING = 6 ITEM_SHOE = 7 ITEM_MULTIBOMB = 8 ITEM_BOXING_GLOVE = 9 ITEM_DETONATOR = 10 ITEM_THROWING_GLOVE = 11 SAFE_DANGER_VALUE = 5000 ##< time in ms, used in danger map to indicate safe tile GIVE_AWAY_DELAY = 3000 ##< after how many ms the items of dead players will be given away START_GAME_AFTER = 2500 ##< delay in ms before the game begins STATE_WAITING_TO_PLAY = 0 ##< players can't do anything yet STATE_PLAYING = 1 ##< game is being played STATE_FINISHING = 2 ##< game is over but the map is still being updated for a while after STATE_GAME_OVER = 3 ##< the game is definitely over and should no longer be updated EARTHQUAKE_DURATION = 10000 #---------------------------------------------------------------------------- ## Initialises a new map from map_data (string) and a PlaySetup object. def __init__(self, map_data, play_setup, game_number, max_games, all_items_cheat=False): # make the tiles array: self.danger_map_is_up_to_date = False # to regenerate danger map only when needed self.tiles = [] self.starting_positions = [(0.0,0.0) for i in xrange(10)] # starting position for each player map_data = map_data.replace(" ","").replace("\n","") # get rid of white characters string_split = map_data.split(";") self.environment_name = string_split[0] self.end_game_at = -1 ##< time at which the map should go to STATE_GAME_OVER state self.start_game_at = GameMap.START_GAME_AFTER self.win_announced = False self.announce_win_at = -1 self.state = GameMap.STATE_WAITING_TO_PLAY self.winner_team = -1 ##< if map state is GameMap.STATE_GAME_OVER, this holds the winning team (-1 = draw) self.game_number = game_number self.max_games = max_games self.earthquake_time_left = 0 self.time_from_start = 0 ##< time in ms from the start of the map, the time increases with each update (so time spent in game menu is excluded) block_tiles = [] line = -1 column = 0 # function call to translate map data on tiles into MapTile objects self.tile_translator(string_split[3], block_tiles) # place items under the block tiles: for i in xrange(len(string_split[2])): random_tile = random.choice(block_tiles) random_tile.item = self.letter_to_item(string_split[2][i]) block_tiles.remove(random_tile) # init danger map: self.danger_map = [[GameMap.SAFE_DANGER_VALUE for i in xrange(GameMap.MAP_WIDTH)] for j in xrange(GameMap.MAP_HEIGHT)] ##< 2D array of times in ms for each square that # initialise players: self.players = [] ##< list of players in the game self.players_by_numbers = {} ##< mapping of numbers to players self.players_by_numbers[-1] = None player_slots = play_setup.get_slots() for i in xrange(len(player_slots)): if player_slots[i] != None: new_player = Player() new_player.set_number(i) new_player.set_team_number(player_slots[i][1]) new_player.move_to_tile_center(self.starting_positions[i]) self.players.append(new_player) self.players_by_numbers[i] = new_player else: self.players_by_numbers[i] = None # give players starting items: start_items_string = string_split[1] if not all_items_cheat else "bbbbbFkxtsssssmp" self.player_starting_items = [] for i in xrange(len(start_items_string)): for player in self.players: item_to_give = self.letter_to_item(start_items_string[i]) player.give_item(item_to_give) self.player_starting_items.append(item_to_give) self.bombs = [] ##< bombs on the map self.sound_events = [] ##< list of currently happening sound event (see SoundPlayer class) self.animation_events = [] ##< list of animation events, tuples in format (animation_event, coordinates) self.items_to_give_away = [] ##< list of tuples in format (time_of_giveaway, list_of_items) self.create_disease_cloud_at = 0 ##< at what time (in ms) the disease clouds should be released #---------------------------------------------------------------------------- def tile_translator(self, tileData, block_tiles): teleport_a_tile = None # helper variables used to pair teleports teleport_b_tile = None self.number_of_blocks = 0 ##< says how many block tiles there are currently on the map column = 0 line = -1 for i in xrange(len(tileData)): tile_character = tileData[i] if i % GameMap.MAP_WIDTH == 0: # add new row line += 1 column = 0 self.tiles.append([]) tile = MapTile((column,line)) if tile_character == "x": tile.kind = MapTile.TILE_BLOCK block_tiles.append(tile) elif tile_character == "#": tile.kind = MapTile.TILE_WALL elif tile_character in ("u","r","d","l","U","R","D","L"): if tile_character.islower(): tile.kind = MapTile.TILE_FLOOR else: tile.kind = MapTile.TILE_BLOCK tile_character = tile_character.lower() if tile_character == "u": tile.special_object = MapTile.SPECIAL_OBJECT_ARROW_UP elif tile_character == "r": tile.special_object = MapTile.SPECIAL_OBJECT_ARROW_RIGHT elif tile_character == "d": tile.special_object = MapTile.SPECIAL_OBJECT_ARROW_DOWN else: tile.special_object = MapTile.SPECIAL_OBJECT_ARROW_LEFT else: tile.kind = MapTile.TILE_FLOOR if tile_character == "A": tile.special_object = MapTile.SPECIAL_OBJECT_TELEPORT_A if teleport_a_tile == None: teleport_a_tile = tile else: tile.destination_teleport = teleport_a_tile.coordinates teleport_a_tile.destination_teleport = tile.coordinates elif tile_character == "B": tile.special_object = MapTile.SPECIAL_OBJECT_TELEPORT_A if teleport_b_tile == None: teleport_b_tile = tile else: tile.destination_teleport = teleport_b_tile.coordinates teleport_b_tile.destination_teleport = tile.coordinates elif tile_character == "T": tile.special_object = MapTile.SPECIAL_OBJECT_TRAMPOLINE elif tile_character == "V": tile.special_object = MapTile.SPECIAL_OBJECT_LAVA if tile.kind == MapTile.TILE_BLOCK: self.number_of_blocks += 1 self.tiles[-1].append(tile) if tile_character.isdigit(): self.starting_positions[int(tile_character)] = (float(column),float(line)) column += 1 #---------------------------------------------------------------------------- def get_starting_items(self): return self.player_starting_items #---------------------------------------------------------------------------- def get_starting_positions(self): return self.starting_positions #---------------------------------------------------------------------------- ## Returns a tuple (game number, max games). def get_game_number_info(self): return (self.game_number,self.max_games) #---------------------------------------------------------------------------- def start_earthquake(self): self.earthquake_time_left = GameMap.EARTHQUAKE_DURATION #---------------------------------------------------------------------------- def earthquake_is_active(self): return self.earthquake_time_left > 0 #---------------------------------------------------------------------------- def get_number_of_block_tiles(self): return self.number_of_blocks #---------------------------------------------------------------------------- ## Efficiently (lazily) gets a danger value of given tile. Danger value says # how much time in ms has will pass until there will be a fire at the tile. def get_danger_value(self, tile_coordinates): if not self.danger_map_is_up_to_date: self.update_danger_map() self.danger_map_is_up_to_date = True if not self.tile_is_withing_map(tile_coordinates): return 0 # never walk outside map return self.danger_map[tile_coordinates[1]][tile_coordinates[0]] #---------------------------------------------------------------------------- def tile_has_lava(self, tile_coordinates): if not self.tile_is_withing_map(tile_coordinates): return False return self.tiles[tile_coordinates[1]][tile_coordinates[0]].special_object == MapTile.SPECIAL_OBJECT_LAVA #---------------------------------------------------------------------------- ## Gives away a set of given items (typically after a player dies). The items # are spread randomly on the map floor tiles after a while. def give_away_items(self, items): self.items_to_give_away.append((pygame.time.get_ticks() + GameMap.GIVE_AWAY_DELAY,items)) #---------------------------------------------------------------------------- def update_danger_map(self): # reset the map: self.danger_map = [map(lambda tile: 0 if tile.shouldnt_walk() else GameMap.SAFE_DANGER_VALUE, tile_row) for tile_row in self.tiles] for bomb in self.bombs: bomb_tile = bomb.get_tile_position() time_until_explosion = bomb.time_until_explosion() if bomb.has_detonator(): # detonator = bad time_until_explosion = 100 self.danger_map[bomb_tile[1]][bomb_tile[0]] = min(self.danger_map[bomb_tile[1]][bomb_tile[0]],time_until_explosion) # up right down left position = [[bomb_tile[0],bomb_tile[1] - 1], [bomb_tile[0] + 1,bomb_tile[1]], [bomb_tile[0],bomb_tile[1] + 1], [bomb_tile[0] - 1,bomb_tile[1]]] flame_stop = [False, False, False, False] tile_increment = [(0,-1), (1,0), (0,1), (-1,0)] for i in xrange(bomb.flame_length): for direction in (0,1,2,3): if flame_stop[direction]: continue if not self.tile_is_walkable(position[direction]) or not self.tile_is_withing_map(position[direction]): flame_stop[direction] = True continue current_tile = position[direction] self.danger_map[current_tile[1]][current_tile[0]] = min(self.danger_map[current_tile[1]][current_tile[0]],time_until_explosion) position[direction][0] += tile_increment[direction][0] position[direction][1] += tile_increment[direction][1] #---------------------------------------------------------------------------- def add_sound_event(self, sound_event): self.sound_events.append(sound_event) #---------------------------------------------------------------------------- def add_animation_event(self, animation_event, coordinates): self.animation_events.append((animation_event,coordinates)) #---------------------------------------------------------------------------- def get_tile_at(self, tile_coordinates): if self.tile_is_withing_map(tile_coordinates): return self.tiles[tile_coordinates[1]][tile_coordinates[0]] return None #---------------------------------------------------------------------------- def get_and_clear_sound_events(self): result = self.sound_events[:] # copy of the list self.sound_events = [] return result #---------------------------------------------------------------------------- def get_and_clear_animation_events(self): result = self.animation_events[:] # copy of the list self.animation_events = [] return result #---------------------------------------------------------------------------- ## Converts given letter (as in map encoding string) to item code (see class constants). def letter_to_item(self, letter): mapping = { "f": GameMap.ITEM_FLAME, "F": GameMap.ITEM_SUPERFLAME, "b": GameMap.ITEM_BOMB, "k": GameMap.ITEM_SHOE, "s": GameMap.ITEM_SPEEDUP, "p": GameMap.ITEM_SPRING, "m": GameMap.ITEM_MULTIBOMB, "d": GameMap.ITEM_DISEASE, "r": GameMap.ITEM_RANDOM, "x": GameMap.ITEM_BOXING_GLOVE, "e": GameMap.ITEM_DETONATOR, "t": GameMap.ITEM_THROWING_GLOVE } return mapping[letter] if letter in mapping else -1 #---------------------------------------------------------------------------- def tile_has_flame(self, tile_coordinates): if not self.tile_is_withing_map(tile_coordinates): return False # coordinates outside the map return len(self.tiles[tile_coordinates[1]][tile_coordinates[0]].flames) >= 1 #---------------------------------------------------------------------------- def tile_has_teleport(self, tile_coordinates): tile_coordinates = Positionable.position_to_tile(tile_coordinates) if not self.tile_is_withing_map(tile_coordinates): return False # coordinates outside the map return self.tiles[tile_coordinates[1]][tile_coordinates[0]].special_object in (MapTile.SPECIAL_OBJECT_TELEPORT_A,MapTile.SPECIAL_OBJECT_TELEPORT_B) #---------------------------------------------------------------------------- def bomb_on_tile(self, tile_coordinates): bombs = self.bombs_on_tile(tile_coordinates) if len(bombs) > 0: return bombs[0] return None #---------------------------------------------------------------------------- ## Checks if there is a bomb at given tile (coordinates may be float or int). def tile_has_bomb(self, tile_coordinates): return self.bomb_on_tile(tile_coordinates) != None #---------------------------------------------------------------------------- def get_players_at_tile(self, tile_coordinates): result = [] for player in self.players: player_tile_position = player.get_tile_position() if not player.is_dead() and not player.is_in_air() and player_tile_position[0] == tile_coordinates[0] and player_tile_position[1] == tile_coordinates[1]: result.append(player) return result #---------------------------------------------------------------------------- def tile_has_player(self, tile_coordinates): return len(self.get_players_at_tile(tile_coordinates)) #---------------------------------------------------------------------------- ## Checks if given tile coordinates are within the map boundaries. def tile_is_withing_map(self, tile_coordinates): return tile_coordinates[0] >= 0 and tile_coordinates[1] >= 0 and tile_coordinates[0] <= GameMap.MAP_WIDTH - 1 and tile_coordinates[1] <= GameMap.MAP_HEIGHT - 1 #---------------------------------------------------------------------------- def tile_is_walkable(self, tile_coordinates): if not self.tile_is_withing_map(tile_coordinates): return False tile = self.tiles[tile_coordinates[1]][tile_coordinates[0]] return self.tile_is_withing_map(tile_coordinates) and (self.tiles[tile_coordinates[1]][tile_coordinates[0]].kind == MapTile.TILE_FLOOR or tile.to_be_destroyed) and not self.tile_has_bomb(tile_coordinates) #---------------------------------------------------------------------------- ## Gets a collision type (see class constants) for given float position. def get_position_collision_type(self, position): tile_coordinates = Positionable.position_to_tile(position) if not self.tile_is_walkable(tile_coordinates): return GameMap.COLLISION_TOTAL position_within_tile = (position[0] % 1,position[1] % 1) if position_within_tile[1] < GameMap.WALL_MARGIN_HORIZONTAL: if not self.tile_is_walkable((tile_coordinates[0],tile_coordinates[1] - 1)): return GameMap.COLLISION_BORDER_UP elif position_within_tile[1] > 1.0 - GameMap.WALL_MARGIN_HORIZONTAL: if not self.tile_is_walkable((tile_coordinates[0],tile_coordinates[1] + 1)): return GameMap.COLLISION_BORDER_DOWN if position_within_tile[0] < GameMap.WALL_MARGIN_VERTICAL: if not self.tile_is_walkable((tile_coordinates[0] - 1,tile_coordinates[1])): return GameMap.COLLISION_BORDER_LEFT elif position_within_tile[0] > 1.0 - GameMap.WALL_MARGIN_VERTICAL: if not self.tile_is_walkable((tile_coordinates[0] + 1,tile_coordinates[1])): return GameMap.COLLISION_BORDER_RIGHT return GameMap.COLLISION_NONE #---------------------------------------------------------------------------- def bombs_on_tile(self, tile_coordinates): result = [] tile_coordinates = Positionable.position_to_tile(tile_coordinates) for bomb in self.bombs: bomb_tile_position = bomb.get_tile_position() if bomb.movement != Bomb.BOMB_FLYING and bomb_tile_position[0] == tile_coordinates[0] and bomb_tile_position[1] == tile_coordinates[1]: result.append(bomb) return result #---------------------------------------------------------------------------- ## Gets time in ms spent in actual game from the start of the map. def get_map_time(self): return self.time_from_start #---------------------------------------------------------------------------- ## Tells the map that given bomb is exploding, the map then creates # flames from the bomb, the bomb is destroyed and players are informed. def bomb_explodes(self, bomb): self.add_sound_event(SoundPlayer.SOUND_EVENT_EXPLOSION) bomb_position = bomb.get_tile_position() new_flame = Flame() new_flame.player = bomb.player new_flame.direction = "all" self.tiles[bomb_position[1]][bomb_position[0]].flames.append(new_flame) # information relevant to flame spreading in each direction: # up right down left axis_position = [bomb_position[1] - 1,bomb_position[0] + 1,bomb_position[1] + 1,bomb_position[0] - 1] flame_stop = [False, False, False, False] map_limit = [0, GameMap.MAP_WIDTH - 1, GameMap.MAP_HEIGHT - 1, 0] increment = [-1, 1, 1, -1] goes_horizontaly = [False, True, False, True] previous_flame = [None, None, None, None] # spread the flame in all 4 directions: for i in xrange(bomb.flame_length + 1): if i >= bomb.flame_length: flame_stop = [True, True, True, True] for direction in (0,1,2,3): # for each direction if flame_stop[direction]: if previous_flame[direction] != None: # flame stopped in previous iteration previous_flame[direction].direction = {0: "up", 1: "right", 2: "down", 3: "left"}[direction] previous_flame[direction] = None else: if ((increment[direction] == -1 and axis_position[direction] >= map_limit[direction]) or (increment[direction] == 1 and axis_position[direction] <= map_limit[direction])): # flame is inside the map here if goes_horizontaly[direction]: tile_for_flame = self.tiles[bomb_position[1]][axis_position[direction]] else: tile_for_flame = self.tiles[axis_position[direction]][bomb_position[0]] if tile_for_flame.kind == MapTile.TILE_WALL: flame_stop[direction] = True else: new_flame2 = copy.copy(new_flame) new_flame2.direction = "horizontal" if goes_horizontaly[direction] else "vertical" tile_for_flame.flames.append(new_flame2) previous_flame[direction] = new_flame2 if tile_for_flame.kind == MapTile.TILE_BLOCK: flame_stop[direction] = True else: flame_stop[direction] = True axis_position[direction] += increment[direction] bomb.explodes() if bomb in self.bombs: self.bombs.remove(bomb) #---------------------------------------------------------------------------- def spread_items(self, items): possible_tiles = [] for y in xrange(GameMap.MAP_HEIGHT): for x in xrange(GameMap.MAP_WIDTH): tile = self.tiles[y][x] if tile.kind == MapTile.TILE_FLOOR and tile.special_object == None and tile.item == None and not self.tile_has_player((x,y)): possible_tiles.append(tile) for item in items: if len(possible_tiles) == 0: break # no more tiles to place items on => end tile = random.choice(possible_tiles) tile.item = item possible_tiles.remove(tile) #---------------------------------------------------------------------------- def __update_bombs(self, dt): i = 0 while i < len(self.bombs): # update all bombs bomb = self.bombs[i] if bomb.has_exploded: # just in case self.bombs.remove(bomb) continue bomb.time_of_existence += dt bomb_position = bomb.get_position() bomb_tile = bomb.get_tile_position() if bomb.movement != Bomb.BOMB_FLYING and bomb.time_of_existence > bomb.explodes_in + bomb.detonator_time: # bomb explodes self.bomb_explodes(bomb) continue elif bomb.movement != Bomb.BOMB_FLYING and self.tiles[bomb_tile[1]][bomb_tile[0]].special_object == MapTile.SPECIAL_OBJECT_LAVA and bomb.is_near_tile_center(): self.bomb_explodes(bomb) continue else: i += 1 if bomb.movement != Bomb.BOMB_NO_MOVEMENT: if bomb.movement == Bomb.BOMB_FLYING: distance_to_travel = dt / 1000.0 * Bomb.FLYING_SPEED bomb.flight_info.distance_travelled += distance_to_travel if bomb.flight_info.distance_travelled >= bomb.flight_info.total_distance_to_travel: bomb_tile = bomb.get_tile_position() self.add_sound_event(SoundPlayer.SOUND_EVENT_BOMB_PUT) if not self.tile_is_walkable(bomb_tile) or self.tile_has_player(bomb_tile) or self.tile_has_teleport(bomb_tile): destination_tile = (bomb_tile[0] + bomb.flight_info.direction[0],bomb_tile[1] + bomb.flight_info.direction[1]) bomb.send_flying(destination_tile) else: # bomb lands bomb.movement = Bomb.BOMB_NO_MOVEMENT self.get_tile_at(bomb_tile).item = None else: # bomb rolling if bomb.is_near_tile_center(): object_at_tile = self.tiles[bomb_tile[1]][bomb_tile[0]].special_object redirected = False if object_at_tile == MapTile.SPECIAL_OBJECT_ARROW_UP and bomb.movement != Bomb.BOMB_ROLLING_UP: bomb.movement = Bomb.BOMB_ROLLING_UP bomb.set_position((bomb_tile[0] + 0.5,bomb_tile[1])) # aline with x axis redirected = True elif object_at_tile == MapTile.SPECIAL_OBJECT_ARROW_RIGHT and bomb.movement != Bomb.BOMB_ROLLING_RIGHT: bomb.movement = Bomb.BOMB_ROLLING_RIGHT bomb.set_position((bomb_position[0],bomb_tile[1] + 0.5)) redirected = True elif object_at_tile == MapTile.SPECIAL_OBJECT_ARROW_DOWN and bomb.movement != Bomb.BOMB_ROLLING_DOWN: bomb.movement = Bomb.BOMB_ROLLING_DOWN bomb.set_position((bomb_tile[0] + 0.5,bomb_position[1])) redirected = True elif object_at_tile == MapTile.SPECIAL_OBJECT_ARROW_LEFT and bomb.movement != Bomb.BOMB_ROLLING_LEFT: bomb.movement = Bomb.BOMB_ROLLING_LEFT bomb.set_position((bomb_position[0],bomb_tile[1] + 0.5)) redirected = True if redirected: bomb_position = bomb.get_position() if self.tiles[bomb_tile[1]][bomb_tile[0]].item != None: # rolling bomb destroys items self.tiles[bomb_tile[1]][bomb_tile[0]].item = None bomb_position_within_tile = (bomb_position[0] % 1,bomb_position[1] % 1) check_collision = False forward_tile = None distance_to_travel = dt / 1000.0 * Bomb.ROLLING_SPEED helper_boundaries = (0.5,0.9) helper_boundaries2 = (1 - helper_boundaries[1],1 - helper_boundaries[0]) opposite_direction = Bomb.BOMB_NO_MOVEMENT if bomb.movement == Bomb.BOMB_ROLLING_UP: bomb.set_position((bomb_position[0],bomb_position[1] - distance_to_travel)) opposite_direction = Bomb.BOMB_ROLLING_DOWN if helper_boundaries2[0] < bomb_position_within_tile[1] < helper_boundaries2[1]: check_collision = True forward_tile = (bomb_tile[0],bomb_tile[1] - 1) elif bomb.movement == Bomb.BOMB_ROLLING_RIGHT: bomb.set_position((bomb_position[0] + distance_to_travel,bomb_position[1])) opposite_direction = Bomb.BOMB_ROLLING_LEFT if helper_boundaries[0] < bomb_position_within_tile[0] < helper_boundaries[1]: check_collision = True forward_tile = (bomb_tile[0] + 1,bomb_tile[1]) elif bomb.movement == Bomb.BOMB_ROLLING_DOWN: bomb.set_position((bomb_position[0],bomb_position[1] + distance_to_travel)) opposite_direction = Bomb.BOMB_ROLLING_UP if helper_boundaries[0] < bomb_position_within_tile[1] < helper_boundaries[1]: check_collision = True forward_tile = (bomb_tile[0],bomb_tile[1] + 1) elif bomb.movement == Bomb.BOMB_ROLLING_LEFT: bomb.set_position((bomb_position[0] - distance_to_travel,bomb_position[1])) opposite_direction = Bomb.BOMB_ROLLING_RIGHT if helper_boundaries2[0] < bomb_position_within_tile[0] < helper_boundaries2[1]: check_collision = True forward_tile = (bomb_tile[0] - 1,bomb_tile[1]) if check_collision and (not self.tile_is_walkable(forward_tile) or self.tile_has_player(forward_tile) or self.tile_has_teleport(forward_tile)): bomb.move_to_tile_center() if bomb.has_spring: bomb.movement = opposite_direction self.add_sound_event(SoundPlayer.SOUND_EVENT_SPRING) else: bomb.movement = Bomb.BOMB_NO_MOVEMENT self.add_sound_event(SoundPlayer.SOUND_EVENT_KICK) #---------------------------------------------------------------------------- def __update_players(self, dt, immortal_player_numbers): time_now = pygame.time.get_ticks() release_disease_cloud = False if time_now > self.create_disease_cloud_at: self.create_disease_cloud_at = time_now + 200 # release the cloud every 200 ms release_disease_cloud = True for player in self.players: if player.is_dead(): continue if release_disease_cloud and player.get_disease() != Player.DISEASE_NONE: self.add_animation_event(Renderer.ANIMATION_EVENT_DISEASE_CLOUD,Renderer.map_position_to_pixel_position(player.get_position(),(0,0))) if self.winning_color == -1: self.winning_color = player.get_team_number() elif self.winning_color != player.get_team_number(): self.game_is_over = False player_tile_position = player.get_tile_position() player_tile = self.tiles[player_tile_position[1]][player_tile_position[0]] if player.get_state() != Player.STATE_IN_AIR and player.get_state != Player.STATE_TELEPORTING and (self.tile_has_flame(player_tile.coordinates) or self.tile_has_lava(player_tile.coordinates)): # if player immortality cheat isn't activated if not (player.get_number() in immortal_player_numbers): flames = self.get_tile_at(player_tile.coordinates).flames # assign kill counts for flame in flames: increase_kills_by = 1 if flame.player != player else -1 # self kill decreases the kill count flame.player.set_kills(flame.player.get_kills() + increase_kills_by) player.kill(self) continue if player_tile.item != None: player.give_item(player_tile.item,self) player_tile.item = None if player.is_in_air(): if player.get_state_time() > Player.JUMP_DURATION / 2: # jump to destination tile in the middle of the flight player.move_to_tile_center(player.get_jump_destination()) elif player.is_teleporting(): if player.get_state_time() > Player.TELEPORT_DURATION / 2: player.move_to_tile_center(player.get_teleport_destination()) elif player_tile.special_object == MapTile.SPECIAL_OBJECT_TRAMPOLINE and player.is_near_tile_center(): player.send_to_air(self) elif (player_tile.special_object == MapTile.SPECIAL_OBJECT_TELEPORT_A or player_tile.special_object == MapTile.SPECIAL_OBJECT_TELEPORT_B) and player.is_near_tile_center(): player.teleport(self) elif player.get_disease() != Player.DISEASE_NONE: players_at_tile = self.get_players_at_tile(player_tile_position) transmitted = False for player_at_tile in players_at_tile: if player_at_tile.get_disease() == Player.DISEASE_NONE: transmitted = True player_at_tile.set_disease(player.get_disease(),player.get_disease_time()) # transmit disease #---------------------------------------------------------------------------- ## Updates some things on the map that change with time. def update(self, dt, immortal_player_numbers=[]): self.time_from_start += dt self.danger_map_is_up_to_date = False # reset this each frame i = 0 self.earthquake_time_left = max(0,self.earthquake_time_left - dt) while i < len(self.items_to_give_away): # giving away items of dead players item = self.items_to_give_away[i] if self.time_from_start >= item[0]: self.spread_items(item[1]) self.items_to_give_away.remove(item) debug_log("giving away items") i += 1 self.__update_bombs(dt) for line in self.tiles: for tile in line: if tile.to_be_destroyed and tile.kind == MapTile.TILE_BLOCK and not self.tile_has_flame(tile.coordinates): tile.kind = MapTile.TILE_FLOOR self.number_of_blocks -= 1 tile.to_be_destroyed = False i = 0 while True: if i >= len(tile.flames): break if tile.kind == MapTile.TILE_BLOCK: # flame on a block tile -> destroy the block tile.to_be_destroyed = True elif tile.kind == MapTile.TILE_FLOOR and tile.item != None: tile.item = None # flame destroys the item bombs_inside_flame = self.bombs_on_tile(tile.coordinates) for bomb in bombs_inside_flame: # bomb inside flame -> detonate it self.bomb_explodes(bomb) flame = tile.flames[i] flame.time_to_burnout -= dt if flame.time_to_burnout < 0: tile.flames.remove(flame) i += 1 self.game_is_over = True self.winning_color = -1 self.__update_players(dt,immortal_player_numbers) if self.state == GameMap.STATE_WAITING_TO_PLAY: if self.time_from_start >= self.start_game_at: self.state = GameMap.STATE_PLAYING self.add_sound_event(SoundPlayer.SOUND_EVENT_GO) if self.state == GameMap.STATE_FINISHING: if self.time_from_start >= self.end_game_at: self.state = GameMap.STATE_GAME_OVER elif not self.win_announced: if self.time_from_start >= self.announce_win_at: self.add_sound_event(SoundPlayer.SOUND_EVENT_WIN_0 + self.winner_team) self.win_announced = True elif self.state != GameMap.STATE_GAME_OVER and self.game_is_over: self.end_game_at = self.time_from_start + 5000 self.state = GameMap.STATE_FINISHING self.winner_team = self.winning_color self.announce_win_at = self.time_from_start + 2000 #---------------------------------------------------------------------------- def get_winner_team(self): return self.winner_team #---------------------------------------------------------------------------- def get_state(self): return self.state #---------------------------------------------------------------------------- def add_bomb(self, bomb): self.bombs.append(bomb) #---------------------------------------------------------------------------- def get_bombs(self): return self.bombs #---------------------------------------------------------------------------- def get_environment_name(self): return self.environment_name #---------------------------------------------------------------------------- def get_players(self): return self.players #---------------------------------------------------------------------------- ## Gets a dict that maps numbers to players (with Nones if player with given number doesn't exist). def get_players_by_numbers(self): return self.players_by_numbers #---------------------------------------------------------------------------- def get_tiles(self): return self.tiles #---------------------------------------------------------------------------- def __str__(self): result = "" for line in self.tiles: for tile in line: if tile.kind == MapTile.TILE_FLOOR: result += " " elif tile.kind == MapTile.TILE_BLOCK: result += "x" else: result += "#" result += "\n" return result #============================================================================== ## Defines how a game is set up, i.e. how many players # there are, what are the teams etc. Setup does not include # the selected map. class PlaySetup(object): MAX_GAMES = 20 #---------------------------------------------------------------------------- def __init__(self): self.player_slots = [None for i in xrange(10)] ##< player slots: (player_number, team_color), # negative player_number = AI, slot index ~ player color index self.number_of_games = 10 # default setup, player 0 vs 3 AI players: self.player_slots[0] = (0,0) self.player_slots[1] = (-1,1) self.player_slots[2] = (-1,2) self.player_slots[3] = (-1,3) #---------------------------------------------------------------------------- def get_slots(self): return self.player_slots #---------------------------------------------------------------------------- def get_number_of_games(self): return self.number_of_games #---------------------------------------------------------------------------- def set_number_of_games(self, number_of_games): self.number_of_games = number_of_games #---------------------------------------------------------------------------- def increase_number_of_games(self): self.number_of_games = self.number_of_games % PlaySetup.MAX_GAMES + 1 #---------------------------------------------------------------------------- def decrease_number_of_games(self): self.number_of_games = (self.number_of_games - 2) % PlaySetup.MAX_GAMES + 1 #============================================================================== ## Something that can be saved/loaded to/from string. class StringSerializable(object): #---------------------------------------------------------------------------- def save_to_string(self): return "" #---------------------------------------------------------------------------- def load_from_string(self, input_string): return #---------------------------------------------------------------------------- def save_to_file(self, filename): text_file = open(filename,"w") text_file.write(self.save_to_string()) text_file.close() #---------------------------------------------------------------------------- def load_from_file(self, filename): with open(filename,"r") as text_file: self.load_from_string(text_file.read()) #============================================================================== ## Handles conversion of keyboard events to actions of players, plus general # actions (such as menu, ...). Also managed some more complex input processing. class PlayerKeyMaps(StringSerializable): ACTION_UP = 0 ACTION_RIGHT = 1 ACTION_DOWN = 2 ACTION_LEFT = 3 ACTION_BOMB = 4 ACTION_SPECIAL = 5 ACTION_MENU = 6 ##< brings up the main menu ACTION_BOMB_DOUBLE = 7 MOUSE_CONTROL_UP = -1 MOUSE_CONTROL_RIGHT = -2 MOUSE_CONTROL_DOWN = -3 MOUSE_CONTROL_LEFT = -4 MOUSE_CONTROL_BUTTON_L = -5 MOUSE_CONTROL_BUTTON_M = -6 MOUSE_CONTROL_BUTTON_R = -7 MOUSE_CONTROL_BIAS = 2 ##< mouse movement bias in pixels TYPED_STRING_BUFFER_LENGTH = 15 ACTION_NAMES = { ACTION_UP : "up", ACTION_RIGHT : "right", ACTION_DOWN : "down", ACTION_LEFT : "left", ACTION_BOMB : "bomb", ACTION_SPECIAL : "special", ACTION_MENU : "menu", ACTION_BOMB_DOUBLE : "bomb double" } MOUSE_ACTION_NAMES = { MOUSE_CONTROL_UP : "m up", MOUSE_CONTROL_RIGHT : "m right", MOUSE_CONTROL_DOWN : "m down", MOUSE_CONTROL_LEFT : "m left", MOUSE_CONTROL_BUTTON_L : "m L", MOUSE_CONTROL_BUTTON_M : "m M", MOUSE_CONTROL_BUTTON_R : "m R" } MOUSE_CONTROL_SMOOTH_OUT_TIME = 50 #---------------------------------------------------------------------------- def __init__(self): self.key_maps = {} ##< maps keys to tuples of a format: (player_number, action), for general actions player_number will be -1 self.bomb_key_last_pressed_time = [0 for i in xrange(10)] ##< for bomb double press detection self.bomb_key_previous_state = [False for i in xrange(10)] ##< for bomb double press detection self.allow_mouse_control = False ##< if true, player movement by mouse is allowed, otherwise not mouse_control_constants = [ PlayerKeyMaps.MOUSE_CONTROL_UP, PlayerKeyMaps.MOUSE_CONTROL_RIGHT, PlayerKeyMaps.MOUSE_CONTROL_DOWN, PlayerKeyMaps.MOUSE_CONTROL_LEFT, PlayerKeyMaps.MOUSE_CONTROL_BUTTON_L, PlayerKeyMaps.MOUSE_CONTROL_BUTTON_M, PlayerKeyMaps.MOUSE_CONTROL_BUTTON_R] self.mouse_control_states = {} self.mouse_control_keep_until = {} ##< time in which specified control was activated, # helps keeping them active for a certain amount of time to smooth them out mouse_control_states = { PlayerKeyMaps.MOUSE_CONTROL_UP : False, PlayerKeyMaps.MOUSE_CONTROL_RIGHT : False, PlayerKeyMaps.MOUSE_CONTROL_DOWN : False, PlayerKeyMaps.MOUSE_CONTROL_LEFT : False, PlayerKeyMaps.MOUSE_CONTROL_BUTTON_L : False, PlayerKeyMaps.MOUSE_CONTROL_BUTTON_M : False, PlayerKeyMaps.MOUSE_CONTROL_BUTTON_R : False } for item in mouse_control_constants: self.mouse_control_states[item] = False self.mouse_control_keep_until[item] = 0 self.mouse_button_states = [False,False,False,False,False] ##< (left, right, middle, wheel up, wheel down) self.previous_mouse_button_states = [False,False,False,False,False] self.last_mouse_update_frame = -1 self.name_code_mapping = {} # holds a mapping of key names to pygame key codes, since pygame itself offers no such functionality keys_pressed = pygame.key.get_pressed() for key_code in xrange(len(keys_pressed)): self.name_code_mapping[pygame.key.name(key_code)] = key_code self.typed_string_buffer = [" " for i in xrange(PlayerKeyMaps.TYPED_STRING_BUFFER_LENGTH)] self.reset() #---------------------------------------------------------------------------- def pygame_name_to_key_code(self, pygame_name): try: return self.name_code_mapping[pygame_name] except KeyError: return -1 #---------------------------------------------------------------------------- ## Returns a state of mouse buttons including mouse wheel (unlike pygame.mouse.get_pressed) as # a tuple (left, right, middle, wheel up, wheel down). def get_mouse_button_states(self): return self.mouse_button_states #---------------------------------------------------------------------------- ## Returns a tuple corresponding to mouse buttons (same as get_mouse_button_states) where each # item says if the button has been pressed since the last frame. def get_mouse_button_events(self): result = [] for i in xrange(5): result.append(self.mouse_button_states[i] and not self.previous_mouse_button_states[i]) return result #---------------------------------------------------------------------------- ## This informs the object abour pygame events so it can keep track of some input states. def process_pygame_events(self, pygame_events, frame_number): if frame_number != self.last_mouse_update_frame: # first time calling this function this frame => reset states for i in xrange(5): # for each of 5 buttons self.previous_mouse_button_states[i] = self.mouse_button_states[i] button_states = pygame.mouse.get_pressed() self.mouse_button_states[0] = button_states[0] self.mouse_button_states[1] = button_states[2] self.mouse_button_states[2] = button_states[1] self.mouse_button_states[3] = False self.mouse_button_states[4] = False self.last_mouse_update_frame = frame_number for pygame_event in pygame_events: if pygame_event.type == pygame.MOUSEBUTTONDOWN: if pygame_event.button == 4: self.mouse_button_states[3] = True elif pygame_event.button == 5: self.mouse_button_states[4] = True elif pygame_event.type == pygame.KEYDOWN: try: self.typed_string_buffer = self.typed_string_buffer[1:] self.typed_string_buffer.append(chr(pygame_event.key)) except Exception: debug_log("couldn't append typed character to the buffer") #---------------------------------------------------------------------------- def clear_typing_buffer(self): self.typed_string_buffer = [" " for i in xrange(PlayerKeyMaps.TYPED_STRING_BUFFER_LENGTH)] #---------------------------------------------------------------------------- def string_was_typed(self, string): return str.find("".join(self.typed_string_buffer),string) >= 0 #---------------------------------------------------------------------------- def reset(self): self.allow_control_by_mouse(False) self.set_player_key_map(0,pygame.K_w,pygame.K_d,pygame.K_s,pygame.K_a,pygame.K_c,pygame.K_v) self.set_player_key_map(1,pygame.K_UP,pygame.K_RIGHT,pygame.K_DOWN,pygame.K_LEFT,pygame.K_RETURN,pygame.K_RSHIFT) self.set_player_key_map(2,pygame.K_u,pygame.K_k,pygame.K_j,pygame.K_h,pygame.K_o,pygame.K_p) self.set_player_key_map(3,PlayerKeyMaps.MOUSE_CONTROL_UP,PlayerKeyMaps.MOUSE_CONTROL_RIGHT,PlayerKeyMaps.MOUSE_CONTROL_DOWN,PlayerKeyMaps.MOUSE_CONTROL_LEFT,PlayerKeyMaps.MOUSE_CONTROL_BUTTON_L,PlayerKeyMaps.MOUSE_CONTROL_BUTTON_R) self.set_special_key_map(pygame.K_ESCAPE) #---------------------------------------------------------------------------- ##< Gets a direction of given action (0 - up, 1 - right, 2 - down, 3 - left). @staticmethod def get_action_direction_number(action): if action == PlayerKeyMaps.ACTION_UP: return 0 elif action == PlayerKeyMaps.ACTION_RIGHT: return 1 elif action == PlayerKeyMaps.ACTION_DOWN: return 2 elif action == PlayerKeyMaps.ACTION_LEFT: return 3 return 0 #---------------------------------------------------------------------------- @staticmethod def get_opposite_action(action): if action == PlayerKeyMaps.ACTION_UP: return PlayerKeyMaps.ACTION_DOWN elif action == PlayerKeyMaps.ACTION_RIGHT: return PlayerKeyMaps.ACTION_LEFT elif action == PlayerKeyMaps.ACTION_DOWN: return PlayerKeyMaps.ACTION_UP elif action == PlayerKeyMaps.ACTION_LEFT: return PlayerKeyMaps.ACTION_RIGHT return action #---------------------------------------------------------------------------- @staticmethod def key_to_string(key): if key == None: return "none" if key in PlayerKeyMaps.MOUSE_ACTION_NAMES: result = PlayerKeyMaps.MOUSE_ACTION_NAMES[key] else: result = pygame.key.name(key) if result == "unknown key": result = str(key) return result #---------------------------------------------------------------------------- def set_one_key_map(self, key, player_number, action): if key != None: self.key_maps[key] = (player_number,action) to_be_deleted = [] for item in self.key_maps: # get rid of possible collissions if item != key and self.key_maps[item] == (player_number,action): to_be_deleted.append(item) for item in to_be_deleted: del self.key_maps[item] #---------------------------------------------------------------------------- ## Sets a key mapping for a player of specified (non-negative) number. def set_player_key_map(self, player_number, key_up, key_right, key_down, key_left, key_bomb, key_special): self.set_one_key_map(key_up,player_number,PlayerKeyMaps.ACTION_UP) self.set_one_key_map(key_right,player_number,PlayerKeyMaps.ACTION_RIGHT) self.set_one_key_map(key_down,player_number,PlayerKeyMaps.ACTION_DOWN) self.set_one_key_map(key_left,player_number,PlayerKeyMaps.ACTION_LEFT) self.set_one_key_map(key_bomb,player_number,PlayerKeyMaps.ACTION_BOMB) self.set_one_key_map(key_special,player_number,PlayerKeyMaps.ACTION_SPECIAL) #---------------------------------------------------------------------------- ## Gets a dict that says how keys are mapped for a specific player. Format: {action_code : key_code, ...}, the # dict will contain all actions and possibly None values for unmapped actions. def get_players_key_mapping(self, player_number): result = {action : None for action in ( PlayerKeyMaps.ACTION_UP, PlayerKeyMaps.ACTION_RIGHT, PlayerKeyMaps.ACTION_DOWN, PlayerKeyMaps.ACTION_LEFT, PlayerKeyMaps.ACTION_BOMB, PlayerKeyMaps.ACTION_SPECIAL)} for key in self.key_maps: if self.key_maps[key][0] == player_number: result[self.key_maps[key][1]] = key return result #---------------------------------------------------------------------------- def allow_control_by_mouse(self, allow=True): self.allow_mouse_control = allow #---------------------------------------------------------------------------- def set_special_key_map(self, key_menu): self.set_one_key_map(key_menu,-1,PlayerKeyMaps.ACTION_MENU) #---------------------------------------------------------------------------- ## Makes a human-readable string that represents the current key-mapping. def save_to_string(self): result = "" for i in xrange(Game.NUMBER_OF_CONTROLLED_PLAYERS): # 4 players mapping = self.get_players_key_mapping(i) for action in mapping: result += str(i + 1) + " " + PlayerKeyMaps.ACTION_NAMES[action] + ": " + str(mapping[action]) + "\n" result += PlayerKeyMaps.ACTION_NAMES[PlayerKeyMaps.ACTION_MENU] + ": " + str(self.get_menu_key_map()) return result #---------------------------------------------------------------------------- ## Loads the mapping from string produced by save_to_string(...). def load_from_string(self, input_string): self.key_maps = {} lines = input_string.split("\n") for line in lines: line = line.lstrip().rstrip() try: key = int(line[line.find(":") + 1:]) except Exception as e: key = None if line.find(PlayerKeyMaps.ACTION_NAMES[PlayerKeyMaps.ACTION_MENU]) == 0: self.set_one_key_map(key,-1,PlayerKeyMaps.ACTION_MENU) else: player_number = int(line[0]) - 1 action_name = line[2:line.find(":")] action = None for helper_action in PlayerKeyMaps.ACTION_NAMES: if PlayerKeyMaps.ACTION_NAMES[helper_action] == action_name: action = helper_action break self.set_one_key_map(key,player_number,action) #---------------------------------------------------------------------------- def get_menu_key_map(self): for key in self.key_maps: if self.key_maps[key][0] == -1: return key return None #---------------------------------------------------------------------------- ## Returns a list of mouse control actions currently being performed (if mouse # control is not allowed, the list will always be empty) def get_current_mouse_control_states(self): result = [] if not self.allow_mouse_control: return result for mouse_action in self.mouse_control_states: if self.mouse_control_states[mouse_action]: result.append(mouse_action) return result #---------------------------------------------------------------------------- ## From currently pressed keys makes a list of actions being currently performed and # returns it, format: (player_number, action). def get_current_actions(self): keys_pressed = pygame.key.get_pressed() result = [] reset_bomb_key_previous_state = [True for i in xrange(10)] # check mouse control: if self.allow_mouse_control: screen_center = (Renderer.get_screen_size()[0] / 2,Renderer.get_screen_size()[1] / 2) mouse_position = pygame.mouse.get_pos(screen_center) pressed = pygame.mouse.get_pressed() current_time = pygame.time.get_ticks() for item in self.mouse_control_states: # reset if current_time > self.mouse_control_keep_until[item]: self.mouse_control_states[item] = False dx = abs(mouse_position[0] - screen_center[0]) dy = abs(mouse_position[1] - screen_center[1]) if dx > dy: # choose the prevelant axis d_value = dx axis = 0 axis_forward = PlayerKeyMaps.MOUSE_CONTROL_RIGHT axis_back = PlayerKeyMaps.MOUSE_CONTROL_LEFT else: axis = 1 axis_forward = PlayerKeyMaps.MOUSE_CONTROL_DOWN axis_back = PlayerKeyMaps.MOUSE_CONTROL_UP d_value = dy if d_value > PlayerKeyMaps.MOUSE_CONTROL_BIAS: forward = mouse_position[axis] > screen_center[axis] self.mouse_control_states[axis_forward] = forward self.mouse_control_states[axis_back] = not forward self.mouse_control_keep_until[axis_forward if forward else axis_back] = current_time + PlayerKeyMaps.MOUSE_CONTROL_SMOOTH_OUT_TIME helper_buttons = (PlayerKeyMaps.MOUSE_CONTROL_BUTTON_L, PlayerKeyMaps.MOUSE_CONTROL_BUTTON_M, PlayerKeyMaps.MOUSE_CONTROL_BUTTON_R) for i in xrange(3): if pressed[i]: self.mouse_control_states[helper_buttons[i]] = True self.mouse_control_keep_until[helper_buttons[i]] = current_time pygame.mouse.set_pos(screen_center) for key_code in self.key_maps: try: key_is_active = self.mouse_control_states[key_code] if key_code < 0 else keys_pressed[key_code] except IndexError as e: key_is_active = False if key_is_active: action_tuple = self.key_maps[key_code] result.append(action_tuple) if action_tuple[1] == PlayerKeyMaps.ACTION_BOMB: player_number = action_tuple[0] if self.bomb_key_previous_state[player_number] == False and pygame.time.get_ticks() - self.bomb_key_last_pressed_time[player_number] < 200: result.append((player_number,PlayerKeyMaps.ACTION_BOMB_DOUBLE)) self.bomb_key_last_pressed_time[player_number] = pygame.time.get_ticks() self.bomb_key_previous_state[player_number] = True reset_bomb_key_previous_state[player_number] = False for i in xrange(10): if reset_bomb_key_previous_state[i]: self.bomb_key_previous_state[i] = False return result #============================================================================== class SoundPlayer(object): # sound events used by other classes to tell soundplayer what to play SOUND_EVENT_EXPLOSION = 0 SOUND_EVENT_BOMB_PUT = 1 SOUND_EVENT_WALK = 2 SOUND_EVENT_KICK = 3 SOUND_EVENT_DIARRHEA = 4 SOUND_EVENT_SPRING = 5 SOUND_EVENT_SLOW = 6 SOUND_EVENT_DISEASE = 7 SOUND_EVENT_CLICK = 8 SOUND_EVENT_THROW = 9 SOUND_EVENT_TRAMPOLINE = 10 SOUND_EVENT_TELEPORT = 11 SOUND_EVENT_DEATH = 12 SOUND_EVENT_WIN_0 = 13 SOUND_EVENT_WIN_1 = 14 SOUND_EVENT_WIN_2 = 15 SOUND_EVENT_WIN_3 = 16 SOUND_EVENT_WIN_4 = 17 SOUND_EVENT_WIN_5 = 18 SOUND_EVENT_WIN_6 = 19 SOUND_EVENT_WIN_7 = 20 SOUND_EVENT_WIN_8 = 21 SOUND_EVENT_WIN_9 = 22 SOUND_EVENT_GO_AWAY = 23 SOUND_EVENT_GO = 24 SOUND_EVENT_EARTHQUAKE = 25 SOUND_EVENT_CONFIRM = 26 #---------------------------------------------------------------------------- def __init__(self): self.sound_volume = 0.5 self.music_volume = 0.5 self.sounds = {} self.sounds[SoundPlayer.SOUND_EVENT_EXPLOSION] = pygame.mixer.Sound(os.path.join(Game.RESOURCE_PATH,"explosion.wav")) self.sounds[SoundPlayer.SOUND_EVENT_BOMB_PUT] = pygame.mixer.Sound(os.path.join(Game.RESOURCE_PATH,"bomb.wav")) self.sounds[SoundPlayer.SOUND_EVENT_WALK] = pygame.mixer.Sound(os.path.join(Game.RESOURCE_PATH,"footsteps.wav")) self.sounds[SoundPlayer.SOUND_EVENT_KICK] = pygame.mixer.Sound(os.path.join(Game.RESOURCE_PATH,"kick.wav")) self.sounds[SoundPlayer.SOUND_EVENT_SPRING] = pygame.mixer.Sound(os.path.join(Game.RESOURCE_PATH,"spring.wav")) self.sounds[SoundPlayer.SOUND_EVENT_DIARRHEA] = pygame.mixer.Sound(os.path.join(Game.RESOURCE_PATH,"fart.wav")) self.sounds[SoundPlayer.SOUND_EVENT_SLOW] = pygame.mixer.Sound(os.path.join(Game.RESOURCE_PATH,"slow.wav")) self.sounds[SoundPlayer.SOUND_EVENT_DISEASE] = pygame.mixer.Sound(os.path.join(Game.RESOURCE_PATH,"disease.wav")) self.sounds[SoundPlayer.SOUND_EVENT_CLICK] = pygame.mixer.Sound(os.path.join(Game.RESOURCE_PATH,"click.wav")) self.sounds[SoundPlayer.SOUND_EVENT_THROW] = pygame.mixer.Sound(os.path.join(Game.RESOURCE_PATH,"throw.wav")) self.sounds[SoundPlayer.SOUND_EVENT_TRAMPOLINE] = pygame.mixer.Sound(os.path.join(Game.RESOURCE_PATH,"trampoline.wav")) self.sounds[SoundPlayer.SOUND_EVENT_TELEPORT] = pygame.mixer.Sound(os.path.join(Game.RESOURCE_PATH,"teleport.wav")) self.sounds[SoundPlayer.SOUND_EVENT_DEATH] = pygame.mixer.Sound(os.path.join(Game.RESOURCE_PATH,"death.wav")) self.sounds[SoundPlayer.SOUND_EVENT_GO] = pygame.mixer.Sound(os.path.join(Game.RESOURCE_PATH,"go.wav")) self.sounds[SoundPlayer.SOUND_EVENT_EARTHQUAKE] = pygame.mixer.Sound(os.path.join(Game.RESOURCE_PATH,"earthquake.wav")) self.sounds[SoundPlayer.SOUND_EVENT_CONFIRM] = pygame.mixer.Sound(os.path.join(Game.RESOURCE_PATH,"confirm.wav")) self.music_filenames = [ "music_loyalty_freak_slow_pogo.wav", "music_anonymous420_start_to_play.wav", "music_anonymous420_first_step_for_your_tech.wav", "music_anonymous420_echo_blues_effect.wav", "music_loyalty_freak_music_enby.wav" ] self.current_music_index = -1 self.playing_walk = False self.kick_last_played_time = 0 #---------------------------------------------------------------------------- def play_once(self, filename): sound = pygame.mixer.Sound(filename) sound.set_volume(self.sound_volume) sound.play() #---------------------------------------------------------------------------- def set_music_volume(self, new_volume): self.music_volume = new_volume if new_volume > Settings.SOUND_VOLUME_THRESHOLD else 0 debug_log("changing music volume to " + str(self.music_volume)) if new_volume > Settings.SOUND_VOLUME_THRESHOLD: if not pygame.mixer.music.get_busy(): pygame.mixer.music.play() pygame.mixer.music.set_volume(new_volume) else: pygame.mixer.music.stop() #---------------------------------------------------------------------------- def set_sound_volume(self, new_volume): self.sound_volume = new_volume if new_volume > Settings.SOUND_VOLUME_THRESHOLD else 0 debug_log("changing sound volume to " + str(self.sound_volume)) for sound in self.sounds: self.sounds[sound].set_volume(self.sound_volume) #---------------------------------------------------------------------------- def change_music(self): while True: new_music_index = random.randint(0,len(self.music_filenames) - 1) if new_music_index == self.current_music_index: continue break self.current_music_index = new_music_index music_name = self.music_filenames[self.current_music_index] debug_log("changing music to \"" + music_name + "\"") pygame.mixer.music.stop() pygame.mixer.music.load(os.path.join(Game.RESOURCE_PATH,music_name)) pygame.mixer.music.set_volume(self.music_volume) pygame.mixer.music.play(-1) #---------------------------------------------------------------------------- def play_sound_event(self,sound_event): self.process_events([sound_event]) #---------------------------------------------------------------------------- ## Processes a list of sound events (see class constants) by playing # appropriate sounds. def process_events(self, sound_event_list): stop_playing_walk = True for sound_event in sound_event_list: if sound_event in ( # simple sound play SoundPlayer.SOUND_EVENT_EXPLOSION, SoundPlayer.SOUND_EVENT_CLICK, SoundPlayer.SOUND_EVENT_BOMB_PUT, SoundPlayer.SOUND_EVENT_SPRING, SoundPlayer.SOUND_EVENT_DIARRHEA, SoundPlayer.SOUND_EVENT_SLOW, SoundPlayer.SOUND_EVENT_DISEASE, SoundPlayer.SOUND_EVENT_THROW, SoundPlayer.SOUND_EVENT_TRAMPOLINE, SoundPlayer.SOUND_EVENT_TELEPORT, SoundPlayer.SOUND_EVENT_DEATH, SoundPlayer.SOUND_EVENT_GO, SoundPlayer.SOUND_EVENT_EARTHQUAKE, SoundPlayer.SOUND_EVENT_CONFIRM ): self.sounds[sound_event].play() elif sound_event == SoundPlayer.SOUND_EVENT_WALK: if not self.playing_walk: self.sounds[SoundPlayer.SOUND_EVENT_WALK].play(loops=-1) self.playing_walk = True stop_playing_walk = False elif sound_event == SoundPlayer.SOUND_EVENT_KICK: time_now = pygame.time.get_ticks() if time_now > self.kick_last_played_time + 200: # wait 200 ms before playing kick sound again self.sounds[SoundPlayer.SOUND_EVENT_KICK].play() self.kick_last_played_time = time_now elif SoundPlayer.SOUND_EVENT_WIN_0 <= sound_event <= SoundPlayer.SOUND_EVENT_WIN_9: self.play_once(os.path.join(Game.RESOURCE_PATH,"win" + str(sound_event - SoundPlayer.SOUND_EVENT_WIN_0) + ".wav")) if self.playing_walk and stop_playing_walk: self.sounds[SoundPlayer.SOUND_EVENT_WALK].stop() self.playing_walk = False # if not self.playing_walk = False #============================================================================== class Animation(object): #---------------------------------------------------------------------------- def __init__(self, filename_prefix, start_number, end_number, filename_postfix, framerate = 10): self.framerate = framerate self.frame_time = 1000 / self.framerate self.frame_images = [] for i in xrange(start_number,end_number + 1): self.frame_images.append(pygame.image.load(filename_prefix + str(i) + filename_postfix)) self.playing_instances = [] ##< A set of playing animations, it is a list of tuples in # a format: (pixel_coordinates, started_playing). #---------------------------------------------------------------------------- def play(self, coordinates): # convert center coordinates to top left coordinates: top_left = (coordinates[0] - self.frame_images[0].get_size()[0] / 2,coordinates[1] - self.frame_images[0].get_size()[1] / 2) self.playing_instances.append((top_left,pygame.time.get_ticks())) #---------------------------------------------------------------------------- def draw(self, surface): i = 0 time_now = pygame.time.get_ticks() while True: if i >= len(self.playing_instances): break playing_instance = self.playing_instances[i] frame = int((time_now - playing_instance[1]) / self.frame_time) if frame >= len(self.frame_images): self.playing_instances.remove(playing_instance) continue surface.blit(self.frame_images[frame],playing_instance[0]) i += 1 #============================================================================== ## Abstract class representing a game menu. Menu item strings can contain formatting characters: # # ^htmlcolorcode - sets the text color (HTML #rrggbb format,e.g. ^#2E44BF) from here to end of line or another formatting character class Menu(object): MENU_STATE_SELECTING = 0 ##< still selecting an item MENU_STATE_CONFIRM = 1 ##< menu has been confirmed MENU_STATE_CANCEL = 2 ##< menu has been cancelled MENU_STATE_CONFIRM_PROMPT = 3 ##< prompting an action MENU_MAX_ITEMS_VISIBLE = 11 #---------------------------------------------------------------------------- def __init__(self,sound_player): self.text = "" self.selected_item = (0,0) ##< row, column self.items = [] ##< list (rows) of lists (column) self.menu_left = False self.confirm_prompt_result = None ##< True, False or None self.scroll_position = 0 ##< index of the first visible row self.sound_player = sound_player self.action_keys_previous_state = { PlayerKeyMaps.ACTION_UP : True, PlayerKeyMaps.ACTION_RIGHT : True, PlayerKeyMaps.ACTION_DOWN : True, PlayerKeyMaps.ACTION_LEFT : True, PlayerKeyMaps.ACTION_BOMB : True, PlayerKeyMaps.ACTION_SPECIAL : True, PlayerKeyMaps.ACTION_BOMB_DOUBLE: True, PlayerKeyMaps.ACTION_MENU : True} ##< to detect single key presses, the values have to be True in order not to rect immediatelly upon entering the menu self.state = Menu.MENU_STATE_SELECTING pass #---------------------------------------------------------------------------- def get_scroll_position(self): return self.scroll_position #---------------------------------------------------------------------------- def get_state(self): return self.state #---------------------------------------------------------------------------- def prompt_action_confirm(self): self.confirm_prompt_result = None self.state = Menu.MENU_STATE_CONFIRM_PROMPT #---------------------------------------------------------------------------- def get_text(self): return self.text #---------------------------------------------------------------------------- ## Returns menu items in format: ( (column 1 row 1 text), (column 1 row 2 text), ...), ((column 2 row 1 text), ...) ). def get_items(self): return self.items #---------------------------------------------------------------------------- ## Returns a selected menu item in format (row, column). def get_selected_item(self): return self.selected_item #---------------------------------------------------------------------------- def process_inputs(self, input_list): if self.menu_left: self.menu_left = False self.state = Menu.MENU_STATE_SELECTING for action_code in self.action_keys_previous_state: self.action_keys_previous_state[action_code] = True return actions_processed = [] actions_pressed = [] for action in input_list: action_code = action[1] if not self.action_keys_previous_state[action_code]: # the following condition disallows ACTION_BOMB and ACTION_BOMB_DOUBLE to be in the list at the same time => causes trouble if (not (action_code in actions_pressed) and not( (action_code == PlayerKeyMaps.ACTION_BOMB and PlayerKeyMaps.ACTION_BOMB_DOUBLE in actions_pressed) or (action_code == PlayerKeyMaps.ACTION_BOMB_DOUBLE and PlayerKeyMaps.ACTION_BOMB in actions_pressed) )): actions_pressed.append(action_code) actions_processed.append(action_code) for action_code in self.action_keys_previous_state: self.action_keys_previous_state[action_code] = False for action_code in actions_processed: self.action_keys_previous_state[action_code] = True for action in actions_pressed: self.action_pressed(action) #---------------------------------------------------------------------------- def mouse_went_over_item(self, item_coordinates): self.selected_item = item_coordinates #---------------------------------------------------------------------------- ## Handles mouse button events in the menu. def mouse_button_pressed(self, button_number): if button_number == 0: # left self.action_pressed(PlayerKeyMaps.ACTION_BOMB) elif button_number == 1: # right self.action_pressed(PlayerKeyMaps.ACTION_SPECIAL) elif button_number == 3: # up self.scroll(True) elif button_number == 4: # down self.scroll(False) #---------------------------------------------------------------------------- def scroll(self, up): if up: if self.scroll_position > 0: self.scroll_position -= 1 self.action_pressed(PlayerKeyMaps.ACTION_UP) else: # down rows = len(self.items[self.selected_item[1]]) maximum_row = rows - Menu.MENU_MAX_ITEMS_VISIBLE if self.scroll_position < maximum_row: self.scroll_position += 1 self.action_pressed(PlayerKeyMaps.ACTION_DOWN) #---------------------------------------------------------------------------- ## Should be called when the menu is being left. def leaving(self): self.menu_left = True self.confirm_prompt_result = None self.sound_player.play_sound_event(SoundPlayer.SOUND_EVENT_CONFIRM) #---------------------------------------------------------------------------- ## Prompts confirmation of given menu item if it has been selected. def prompt_if_needed(self, menu_item_coordinates): if self.state == Menu.MENU_STATE_CONFIRM and (self.confirm_prompt_result == None or self.confirm_prompt_result == False) and self.selected_item == menu_item_coordinates: self.prompt_action_confirm() #---------------------------------------------------------------------------- ## Is called once for every action key press (not each frame, which is # not good for menus). This can be overridden. def action_pressed(self, action): old_selected_item = self.selected_item if self.state == Menu.MENU_STATE_CONFIRM_PROMPT: if action == PlayerKeyMaps.ACTION_BOMB or action == PlayerKeyMaps.ACTION_BOMB_DOUBLE: self.confirm_prompt_result = True self.state = Menu.MENU_STATE_CONFIRM else: self.confirm_prompt_result = False self.state = Menu.MENU_STATE_SELECTING else: if action == PlayerKeyMaps.ACTION_UP: self.selected_item = (max(0,self.selected_item[0] - 1),self.selected_item[1]) elif action == PlayerKeyMaps.ACTION_DOWN: self.selected_item = (min(len(self.items[self.selected_item[1]]) - 1,self.selected_item[0] + 1),self.selected_item[1]) elif action == PlayerKeyMaps.ACTION_LEFT: new_column = max(0,self.selected_item[1] - 1) self.selected_item = (min(len(self.items[new_column]) - 1,self.selected_item[0]),new_column) elif action == PlayerKeyMaps.ACTION_RIGHT: new_column = min(len(self.items) - 1,self.selected_item[1] + 1) self.selected_item = (min(len(self.items[new_column]) - 1,self.selected_item[0]),new_column) elif action == PlayerKeyMaps.ACTION_BOMB or action == PlayerKeyMaps.ACTION_BOMB_DOUBLE: self.state = Menu.MENU_STATE_CONFIRM elif action == PlayerKeyMaps.ACTION_SPECIAL: self.state = Menu.MENU_STATE_CANCEL if self.selected_item[0] >= self.scroll_position + Menu.MENU_MAX_ITEMS_VISIBLE: self.scroll_position += 1 elif self.selected_item[0] < self.scroll_position: self.scroll_position -= 1 if self.selected_item != old_selected_item: self.sound_player.play_sound_event(SoundPlayer.SOUND_EVENT_CLICK) #============================================================================== class MainMenu(Menu): #---------------------------------------------------------------------------- def __init__(self, sound_player): super(MainMenu,self).__init__(sound_player) self.items = [( "let's play!", "tweak some stuff", "what's this about", "run away!")] #---------------------------------------------------------------------------- def action_pressed(self, action): super(MainMenu,self).action_pressed(action) self.prompt_if_needed((3,0)) #============================================================================== class ResultMenu(Menu): SEPARATOR = "__________________________________________________" #---------------------------------------------------------------------------- def __init__(self, sound_player): super(ResultMenu,self).__init__(sound_player) self.items = [["I get it"]] #---------------------------------------------------------------------------- def _format_player_cel(self, player): return ( Renderer.colored_color_name(player.get_number()) + " (" + Renderer.colored_text(player.get_team_number(),str(player.get_team_number() + 1)) + "): " + str(player.get_kills()) + "/" + str(player.get_wins()) ) #---------------------------------------------------------------------------- def _format_winning_teams(self, players): announcement_text ="" win_maximum = 0 winner_team_numbers = [] teams = defaultdict(int) # { team_number : number_of_wins } for player in players: teams[player.get_team_number()] += 1 for team_number, team_wins in teams.items(): if team_wins == win_maximum: winner_team_numbers.append(team_number) elif team_wins > win_maximum: win_maximum = team_wins winner_team_numbers = [team_number] if len(winner_team_numbers) == 1: announcement_text = "Winner team is " + Renderer.colored_color_name(winner_team_numbers[0]) + "!" else: announcement_text = "Winners teams are: " announcement_text += ", ".join(map(lambda team_no: Renderer.colored_color_name(team_no), winner_team_numbers)) announcement_text += "!" return announcement_text #---------------------------------------------------------------------------- def _format_player_stats(self, players): announcement_text = "" row = 0 column = 0 # decide how many columns for different numbers of players will the table have columns_by_player_count = (1,2,3,2,3,3,4,4,3,5) table_columns = columns_by_player_count[len(players) - 1] for player in players: announcement_text += self._format_player_cel(player) column += 1 if column >= table_columns: column = 0 row += 1 announcement_text += "\n" else: announcement_text += " " return announcement_text #---------------------------------------------------------------------------- def set_results(self, players): self.text = self._format_winning_teams(players) self.text += "\n" + ResultMenu.SEPARATOR + "\n" self.text += self._format_player_stats(players) self.text += "\n" + ResultMenu.SEPARATOR #============================================================================== class PlayMenu(Menu): #---------------------------------------------------------------------------- def __init__(self,sound_player): super(PlayMenu,self).__init__(sound_player) self.items = [("resume","to main menu")] #---------------------------------------------------------------------------- def action_pressed(self, action): super(PlayMenu,self).action_pressed(action) self.prompt_if_needed((1,0)) #============================================================================== class SettingsMenu(Menu): COLOR_ON = "^#1DF53A" COLOR_OFF = "^#F51111" #---------------------------------------------------------------------------- def __init__(self, sound_player, settings, game): super(SettingsMenu,self).__init__(sound_player) self.settings = settings self.game = game self.update_items() #---------------------------------------------------------------------------- def bool_to_str(self, bool_value): return SettingsMenu.COLOR_ON + "on" if bool_value else SettingsMenu.COLOR_OFF + "off" #---------------------------------------------------------------------------- def update_items(self): self.items = [( "sound volume: " + (SettingsMenu.COLOR_ON if self.settings.sound_is_on() else SettingsMenu.COLOR_OFF) + str(int(self.settings.sound_volume * 10) * 10) + " %", "music volume: " + (SettingsMenu.COLOR_ON if self.settings.music_is_on() > 0.0 else SettingsMenu.COLOR_OFF) + str(int(self.settings.music_volume * 10) * 10) + " %", "screen resolution: " + str(self.settings.screen_resolution[0]) + " x " + str(self.settings.screen_resolution[1]), "fullscreen: " + self.bool_to_str(self.settings.fullscreen), "allow control by mouse: " + self.bool_to_str(self.settings.control_by_mouse), "configure controls", "complete reset", "back" )] #---------------------------------------------------------------------------- def action_pressed(self, action): super(SettingsMenu,self).action_pressed(action) self.prompt_if_needed((6,0)) mouse_control_selected = False fullscreen_selected = False if self.state == Menu.MENU_STATE_SELECTING: if action == PlayerKeyMaps.ACTION_RIGHT: if self.selected_item == (0,0): self.settings.sound_volume = min(1.0,self.settings.sound_volume + 0.1) self.game.apply_sound_settings() self.game.save_settings() elif self.selected_item == (1,0): self.settings.music_volume = min(1.0,self.settings.music_volume + 0.1) self.game.apply_sound_settings() self.game.save_settings() elif self.selected_item == (2,0): self.settings.screen_resolution = Settings.POSSIBLE_SCREEN_RESOLUTIONS[(self.settings.current_resolution_index() + 1) % len(Settings.POSSIBLE_SCREEN_RESOLUTIONS)] self.game.apply_screen_settings() self.game.save_settings() elif action == PlayerKeyMaps.ACTION_LEFT: if self.selected_item == (0,0): self.settings.sound_volume = max(0.0,self.settings.sound_volume - 0.1) self.game.apply_sound_settings() self.game.save_settings() elif self.selected_item == (1,0): self.settings.music_volume = max(0.0,self.settings.music_volume - 0.1) self.game.apply_sound_settings() self.game.save_settings() elif self.selected_item == (2,0): self.settings.screen_resolution = Settings.POSSIBLE_SCREEN_RESOLUTIONS[(self.settings.current_resolution_index() - 1) % len(Settings.POSSIBLE_SCREEN_RESOLUTIONS)] self.game.apply_screen_settings() self.game.save_settings() elif self.state == Menu.MENU_STATE_CONFIRM: if self.selected_item == (6,0): debug_log("resetting settings") self.settings.reset() self.game.save_settings() self.game.apply_sound_settings() self.game.apply_screen_settings() self.game.apply_other_settings() self.confirm_prompt_result = None self.state = Menu.MENU_STATE_SELECTING elif self.selected_item == (3,0): fullscreen_selected = True self.state = Menu.MENU_STATE_SELECTING elif self.selected_item == (4,0): mouse_control_selected = True self.state = Menu.MENU_STATE_SELECTING elif self.selected_item != (7,0) and self.selected_item != (5,0): self.state = Menu.MENU_STATE_SELECTING if mouse_control_selected: self.settings.control_by_mouse = not self.settings.control_by_mouse self.game.apply_other_settings() self.game.save_settings() self.state = Menu.MENU_STATE_SELECTING if fullscreen_selected: self.settings.fullscreen = not self.settings.fullscreen self.game.apply_screen_settings() self.game.save_settings() self.state = Menu.MENU_STATE_SELECTING self.update_items() #============================================================================== class ControlsMenu(Menu): #---------------------------------------------------------------------------- def __init__(self, sound_player, player_key_maps, game): super(ControlsMenu,self).__init__(sound_player) self.player_key_maps = player_key_maps self.game = game self.waiting_for_key = None # if not None, this contains a tuple (player number, action) of action that is currently being remapped self.wait_for_release = False # used to wait for keys release before new key map is captured self.update_items() #---------------------------------------------------------------------------- def color_key_string(self, key_string): return <KEY>" + key_string if key_string != "none" else "^#E83535" + key_string #---------------------------------------------------------------------------- def update_items(self): self.items = [["go back"]] prompt_string = "press some key" for i in xrange(Game.NUMBER_OF_CONTROLLED_PLAYERS): player_string = "p " + str(i + 1) player_maps = self.player_key_maps.get_players_key_mapping(i) for action in player_maps: item_string = player_string + " " + PlayerKeyMaps.ACTION_NAMES[action] + ": " if self.waiting_for_key == (i,action): item_string += prompt_string else: item_string += self.color_key_string(PlayerKeyMaps.key_to_string(player_maps[action])) self.items[0] += [item_string] # add menu item item_string = "open menu: " if self.waiting_for_key != None and self.waiting_for_key[1] == PlayerKeyMaps.ACTION_MENU: item_string += prompt_string else: item_string += self.color_key_string(PlayerKeyMaps.key_to_string(self.player_key_maps.get_menu_key_map())) self.items[0] += [item_string] #---------------------------------------------------------------------------- ## This should be called periodically when the menu is active. It will # take care of catching pressed keys if waiting for key remap. def update(self, player_key_maps): if self.waiting_for_key != None: keys_pressed = list(pygame.key.get_pressed()) key_pressed = None mouse_actions = player_key_maps.get_current_mouse_control_states() if len(mouse_actions) > 0: key_pressed = mouse_actions[0] for i in xrange(len(keys_pressed)): # find pressed key if not (i in (pygame.K_NUMLOCK,pygame.K_CAPSLOCK,pygame.K_SCROLLOCK,322)) and keys_pressed[i]: key_pressed = i break if self.wait_for_release: if key_pressed == None: self.wait_for_release = False else: if key_pressed != None: debug_log("new key mapping") self.player_key_maps.set_one_key_map(key_pressed,self.waiting_for_key[0],self.waiting_for_key[1]) self.waiting_for_key = None self.state = Menu.MENU_STATE_SELECTING self.game.save_settings() for item in self.action_keys_previous_state: self.action_keys_previous_state[item] = True self.update_items() #---------------------------------------------------------------------------- def action_pressed(self, action): super(ControlsMenu,self).action_pressed(action) if self.waiting_for_key != None: self.waiting_for_key = None self.state = Menu.MENU_STATE_SELECTING elif action == PlayerKeyMaps.ACTION_BOMB and self.selected_item[0] > 0: # new key map will be captured helper_index = self.selected_item[0] - 1 if helper_index == Game.NUMBER_OF_CONTROLLED_PLAYERS * 6: # 6 controls for each player, then menu item follows self.waiting_for_key = (-1,PlayerKeyMaps.ACTION_MENU) else: action_index = helper_index % 6 helper_array = (PlayerKeyMaps.ACTION_UP,PlayerKeyMaps.ACTION_RIGHT,PlayerKeyMaps.ACTION_DOWN,PlayerKeyMaps.ACTION_LEFT,PlayerKeyMaps.ACTION_BOMB,PlayerKeyMaps.ACTION_SPECIAL) helper_action = helper_array[action_index] self.waiting_for_key = (helper_index / 6,helper_action) self.wait_for_release = True self.state = Menu.MENU_STATE_SELECTING self.update_items() #============================================================================== class AboutMenu(Menu): #---------------------------------------------------------------------------- def __init__(self,sound_player): super(AboutMenu,self).__init__(sound_player) self.text = ("^#2E44BFBombman^#FFFFFF - free Bomberman clone, ^#4EF259version " + Game.VERSION_STR + "\n" "Miloslav \"tastyfish\" Ciz, 2016\n\n" "This game is free software, published under CC0 1.0.\n") self.items = [["ok, nice, back"]] #============================================================================== class MapSelectMenu(Menu): #---------------------------------------------------------------------------- def __init__(self,sound_player): super(MapSelectMenu,self).__init__(sound_player) self.text = "Now select a map." self.map_filenames = [] self.update_items() #---------------------------------------------------------------------------- def update_items(self): self.map_filenames = sorted([filename for filename in os.listdir(Game.MAP_PATH) if os.path.isfile(os.path.join(Game.MAP_PATH,filename))]) special_color = (100,100,255) self.items = [["^" + Renderer.rgb_to_html_notation(special_color) + "pick random","^" + Renderer.rgb_to_html_notation(special_color) + "each game random"]] for filename in self.map_filenames: self.items[0].append(filename) #---------------------------------------------------------------------------- def random_was_selected(self): return self.selected_item[0] == 1 #---------------------------------------------------------------------------- def show_map_preview(self): return self.selected_item[0] != 0 and self.selected_item[0] != 1 #---------------------------------------------------------------------------- def get_random_map_name(self): return random.choice(self.map_filenames) #---------------------------------------------------------------------------- def get_selected_map_name(self): if self.selected_item[0] == 0: # pick random return random.choice(self.map_filenames) try: index = self.selected_item[0] - 2 if index < 0: return "" return self.map_filenames[index] except IndexError: return "" #============================================================================== class PlaySetupMenu(Menu): #---------------------------------------------------------------------------- def __init__(self, sound_player, play_setup): super(PlaySetupMenu,self).__init__(sound_player) self.selected_item = (0,1) self.play_setup = play_setup self.update_items() #---------------------------------------------------------------------------- def update_items(self): self.items = [[],[],["games: " + str(self.play_setup.get_number_of_games())]] dark_grey = (50,50,50) self.items[0].append("back") self.items[1].append("next") for i in xrange(10): slot_color = Renderer.COLOR_RGB_VALUES[i] if i != Game.COLOR_BLACK else dark_grey # black with black border not visible, use dark grey self.items[0].append(Renderer.colored_text(i,str(i + 1)) + ": ") slot = self.play_setup.get_slots()[i] if slot == None: self.items[0][-1] += "-" self.items[1].append("-") else: team_color = Renderer.COLOR_RGB_VALUES[slot[1]] if slot[1] != Game.COLOR_BLACK else dark_grey self.items[0][-1] += ("player " + str(slot[0] + 1)) if slot[0] >= 0 else "AI" self.items[1].append(Renderer.colored_text(slot[1],str(slot[1] + 1))) # team number #---------------------------------------------------------------------------- def action_pressed(self, action): super(PlaySetupMenu,self).action_pressed(action) if action == PlayerKeyMaps.ACTION_UP: if self.selected_item == (0,2): self.play_setup.increase_number_of_games() self.state = Menu.MENU_STATE_SELECTING elif action == PlayerKeyMaps.ACTION_DOWN: if self.selected_item == (0,2): self.play_setup.decrease_number_of_games() self.state = Menu.MENU_STATE_SELECTING elif self.state == Menu.MENU_STATE_CONFIRM: if self.selected_item == (0,2): self.play_setup.increase_number_of_games() self.state = Menu.MENU_STATE_SELECTING if self.selected_item[0] > 0: # override behaviour for confirm button slots = self.play_setup.get_slots() slot = slots[self.selected_item[0] - 1] if self.selected_item[1] == 0: # changing players if slot == None: new_value = -1 else: new_value = slot[0] + 1 slots[self.selected_item[0] - 1] = (new_value,slot[1] if slot != None else self.selected_item[0] - 1) if new_value <= 3 else None else: # changing teams if slot != None: slots[self.selected_item[0] - 1] = (slot[0],(slot[1] + 1) % 10) self.state = Menu.MENU_STATE_SELECTING self.update_items() #============================================================================== class Renderer(object): COLOR_RGB_VALUES = [ (210,210,210), # white (10,10,10), # black (255,0,0), # red (0,0,255), # blue (0,255,0), # green (52,237,250), # cyan (255,255,69), # yellow (255,192,74), # orange (168,127,56), # brown (209,117,206) # purple ] MAP_TILE_WIDTH = 50 ##< tile width in pixels MAP_TILE_HEIGHT = 45 ##< tile height in pixels MAP_TILE_HALF_WIDTH = MAP_TILE_WIDTH / 2 MAP_TILE_HALF_HEIGHT = MAP_TILE_HEIGHT / 2 PLAYER_SPRITE_CENTER = (30,80) ##< player's feet (not geometrical) center of the sprite in pixels BOMB_SPRITE_CENTER = (22,33) SHADOW_SPRITE_CENTER = (25,22) MAP_BORDER_WIDTH = 37 ANIMATION_EVENT_EXPLOSION = 0 ANIMATION_EVENT_RIP = 1 ANIMATION_EVENT_SKELETION = 2 ANIMATION_EVENT_DISEASE_CLOUD = 3 ANIMATION_EVENT_DIE = 4 FONT_SMALL_SIZE = 12 FONT_NORMAL_SIZE = 25 MENU_LINE_SPACING = 10 MENU_FONT_COLOR = (255,255,255) SCROLLBAR_RELATIVE_POSITION = (-200,-50) SCROLLBAR_HEIGHT = 300 MENU_DESCRIPTION_Y_OFFSET = -80 #---------------------------------------------------------------------------- def __init__(self): self.update_screen_info() self.environment_images = {} self.preview_map_name = "" self.preview_map_image = None self.font_small = pygame.font.Font(os.path.join(Game.RESOURCE_PATH,"LibertySans.ttf"),Renderer.FONT_SMALL_SIZE) self.font_normal = pygame.font.Font(os.path.join(Game.RESOURCE_PATH,"LibertySans.ttf"),Renderer.FONT_NORMAL_SIZE) self.previous_mouse_coordinates = (-1,-1) pygame.mouse.set_visible(False) # hide mouse cursor environment_names = ["env1","env2","env3","env4","env5","env6","env7"] for environment_name in environment_names: filename_floor = os.path.join(Game.RESOURCE_PATH,"tile_" + environment_name + "_floor.png") filename_block = os.path.join(Game.RESOURCE_PATH,"tile_" + environment_name + "_block.png") filename_wall = os.path.join(Game.RESOURCE_PATH,"tile_" + environment_name + "_wall.png") self.environment_images[environment_name] = (pygame.image.load(filename_floor),pygame.image.load(filename_block),pygame.image.load(filename_wall)) self.prerendered_map = None # keeps a reference to a map for which some parts have been prerendered self.prerendered_map_background = pygame.Surface((GameMap.MAP_WIDTH * Renderer.MAP_TILE_WIDTH + 2 * Renderer.MAP_BORDER_WIDTH,GameMap.MAP_HEIGHT * Renderer.MAP_TILE_HEIGHT + 2 * Renderer.MAP_BORDER_WIDTH)) self.player_images = [] ##< player images in format [color index]["sprite name"] and [color index]["sprite name"][frame] for i in xrange(10): self.player_images.append({}) for helper_string in ["up","right","down","left"]: self.player_images[-1][helper_string] = self.color_surface(pygame.image.load(os.path.join(Game.RESOURCE_PATH,"player_" + helper_string + ".png")),i) string_index = "walk " + helper_string self.player_images[-1][string_index] = [] self.player_images[-1][string_index].append(self.color_surface(pygame.image.load(os.path.join(Game.RESOURCE_PATH,"player_" + helper_string + "_walk1.png")),i)) if helper_string == "up" or helper_string == "down": self.player_images[-1][string_index].append(self.color_surface(pygame.image.load(os.path.join(Game.RESOURCE_PATH,"player_" + helper_string + "_walk2.png")),i)) else: self.player_images[-1][string_index].append(self.player_images[-1][helper_string]) self.player_images[-1][string_index].append(self.color_surface(pygame.image.load(os.path.join(Game.RESOURCE_PATH,"player_" + helper_string + "_walk3.png")),i)) self.player_images[-1][string_index].append(self.player_images[-1][string_index][0]) string_index = "box " + helper_string self.player_images[-1][string_index] = self.color_surface(pygame.image.load(os.path.join(Game.RESOURCE_PATH,"player_" + helper_string + "_box.png")),i) self.bomb_images = [] self.bomb_images.append(pygame.image.load(os.path.join(Game.RESOURCE_PATH,"bomb1.png"))) self.bomb_images.append(pygame.image.load(os.path.join(Game.RESOURCE_PATH,"bomb2.png"))) self.bomb_images.append(pygame.image.load(os.path.join(Game.RESOURCE_PATH,"bomb3.png"))) self.bomb_images.append(self.bomb_images[0]) # load flame images self.flame_images = [] for i in [1,2]: helper_string = "flame" + str(i) self.flame_images.append({}) self.flame_images[-1]["all"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,helper_string + ".png")) self.flame_images[-1]["horizontal"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,helper_string + "_horizontal.png")) self.flame_images[-1]["vertical"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,helper_string + "_vertical.png")) self.flame_images[-1]["left"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,helper_string + "_left.png")) self.flame_images[-1]["right"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,helper_string + "_right.png")) self.flame_images[-1]["up"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,helper_string + "_up.png")) self.flame_images[-1]["down"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,helper_string + "_down.png")) # load item images self.item_images = {} self.item_images[GameMap.ITEM_BOMB] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"item_bomb.png")) self.item_images[GameMap.ITEM_FLAME] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"item_flame.png")) self.item_images[GameMap.ITEM_SUPERFLAME] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"item_superflame.png")) self.item_images[GameMap.ITEM_SPEEDUP] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"item_speedup.png")) self.item_images[GameMap.ITEM_DISEASE] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"item_disease.png")) self.item_images[GameMap.ITEM_RANDOM] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"item_random.png")) self.item_images[GameMap.ITEM_SPRING] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"item_spring.png")) self.item_images[GameMap.ITEM_SHOE] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"item_shoe.png")) self.item_images[GameMap.ITEM_MULTIBOMB] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"item_multibomb.png")) self.item_images[GameMap.ITEM_RANDOM] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"item_random.png")) self.item_images[GameMap.ITEM_BOXING_GLOVE] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"item_boxing_glove.png")) self.item_images[GameMap.ITEM_DETONATOR] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"item_detonator.png")) self.item_images[GameMap.ITEM_THROWING_GLOVE] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"item_throwing_glove.png")) # load/make gui images self.gui_images = {} self.gui_images["info board"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"gui_info_board.png")) self.gui_images["arrow up"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"gui_arrow_up.png")) self.gui_images["arrow down"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"gui_arrow_down.png")) self.gui_images["seeker"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"gui_seeker.png")) self.gui_images["cursor"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"gui_cursor.png")) self.gui_images["prompt"] = self.render_text(self.font_normal,"You sure?",(255,255,255)) self.gui_images["version"] = self.render_text(self.font_small,"v " + Game.VERSION_STR,(0,100,0)) self.player_info_board_images = [None for i in xrange(10)] # up to date infoboard image for each player self.gui_images["out"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"gui_out.png")) self.gui_images["countdown"] = {} self.gui_images["countdown"][1] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"gui_countdown_1.png")) self.gui_images["countdown"][2] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"gui_countdown_2.png")) self.gui_images["countdown"][3] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"gui_countdown_3.png")) self.menu_background_image = None ##< only loaded when in menu self.menu_item_images = None ##< images of menu items, only loaded when in menu # load other images self.other_images = {} self.other_images["shadow"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"other_shadow.png")) self.other_images["spring"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"other_spring.png")) self.other_images["antena"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"other_antena.png")) self.other_images["disease"] = [] self.other_images["disease"].append(pygame.image.load(os.path.join(Game.RESOURCE_PATH,"other_disease1.png"))) self.other_images["disease"].append(pygame.image.load(os.path.join(Game.RESOURCE_PATH,"other_disease2.png"))) # load icon images self.icon_images = {} self.icon_images[GameMap.ITEM_BOMB] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"icon_bomb.png")) self.icon_images[GameMap.ITEM_FLAME] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"icon_flame.png")) self.icon_images[GameMap.ITEM_SPEEDUP] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"icon_speedup.png")) self.icon_images[GameMap.ITEM_SHOE] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"icon_kicking_shoe.png")) self.icon_images[GameMap.ITEM_BOXING_GLOVE] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"icon_boxing_glove.png")) self.icon_images[GameMap.ITEM_THROWING_GLOVE] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"icon_throwing_glove.png")) self.icon_images[GameMap.ITEM_SPRING] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"icon_spring.png")) self.icon_images[GameMap.ITEM_MULTIBOMB] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"icon_multibomb.png")) self.icon_images[GameMap.ITEM_DISEASE] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"icon_disease.png")) self.icon_images[GameMap.ITEM_DETONATOR] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"icon_detonator.png")) self.icon_images["etc"] = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"icon_etc.png")) # load animations self.animations = {} self.animations[Renderer.ANIMATION_EVENT_EXPLOSION] = Animation(os.path.join(Game.RESOURCE_PATH,"animation_explosion"),1,10,".png",7) self.animations[Renderer.ANIMATION_EVENT_RIP] = Animation(os.path.join(Game.RESOURCE_PATH,"animation_rip"),1,1,".png",0.3) self.animations[Renderer.ANIMATION_EVENT_SKELETION] = Animation(os.path.join(Game.RESOURCE_PATH,"animation_skeleton"),1,10,".png",7) self.animations[Renderer.ANIMATION_EVENT_DISEASE_CLOUD] = Animation(os.path.join(Game.RESOURCE_PATH,"animation_disease"),1,6,".png",5) self.animations[Renderer.ANIMATION_EVENT_DIE] = Animation(os.path.join(Game.RESOURCE_PATH,"animation_die"),1,7,".png",7) self.party_circles = [] ##< holds info about party cheat circles, list of tuples in format (coords,radius,color,phase,speed) self.party_circles.append(((-180,110),40,(255,100,50),0.0,1.0)) self.party_circles.append(((160,70),32,(100,200,150),1.4,1.5)) self.party_circles.append(((40,-150),65,(150,100,170),2.0,0.7)) self.party_circles.append(((-170,-92),80,(200,200,32),3.2,1.3)) self.party_circles.append(((50,110),63,(10,180,230),0.1,1.8)) self.party_circles.append(((205,-130),72,(180,150,190),0.5,2.0)) self.party_players = [] ##< holds info about party cheat players, list of tuples in format (coords,color index,millisecond delay, rotate right) self.party_players.append(((-230,80),0,0,True)) self.party_players.append(((180,10),2,220,False)) self.party_players.append(((90,-150),4,880,True)) self.party_players.append(((-190,-95),6,320,False)) self.party_players.append(((-40,110),8,50,True)) self.party_bombs = [] ##< holds info about party bombs, list of lists in format [x,y,increment x,increment y] self.party_bombs.append([10,30,1,1]) self.party_bombs.append([700,200,1,-1]) self.party_bombs.append([512,512,-1,1]) self.party_bombs.append([1024,20,-1,-1]) self.party_bombs.append([900,300,1,1]) self.party_bombs.append([30,700,1,1]) self.party_bombs.append([405,530,1,-1]) self.party_bombs.append([250,130,-1,-1]) #---------------------------------------------------------------------------- def update_screen_info(self): self.screen_resolution = Renderer.get_screen_size() self.screen_center = (self.screen_resolution[0] / 2,self.screen_resolution[1] / 2) self.map_render_location = Renderer.get_map_render_position() #---------------------------------------------------------------------------- ## Converts (r,g,b) tuple to html #rrggbb notation. @staticmethod def rgb_to_html_notation(rgb_color): return "#" + hex(rgb_color[0])[2:].zfill(2) + hex(rgb_color[1])[2:].zfill(2) + hex(rgb_color[2])[2:].zfill(2) #---------------------------------------------------------------------------- @staticmethod def colored_text(color_index, text, end_with_white=True): return "^" + Renderer.rgb_to_html_notation(Renderer.lighten_color(Renderer.COLOR_RGB_VALUES[color_index],75)) + text + "^#FFFFFF" #---------------------------------------------------------------------------- @staticmethod def colored_color_name(color_index, end_with_white=True): return Renderer.colored_text(color_index,Game.COLOR_NAMES[color_index]) #---------------------------------------------------------------------------- ## Returns colored image from another image (replaces red color with given color). This method is slow. Color is (r,g,b) tuple of 0 - 1 floats. def color_surface(self, surface, color_number): result = surface.copy() # change all red pixels to specified color for j in xrange(result.get_size()[1]): for i in xrange(result.get_size()[0]): pixel_color = result.get_at((i,j)) if pixel_color.r == 255 and pixel_color.g == 0 and pixel_color.b == 0: pixel_color.r = Renderer.COLOR_RGB_VALUES[color_number][0] pixel_color.g = Renderer.COLOR_RGB_VALUES[color_number][1] pixel_color.b = Renderer.COLOR_RGB_VALUES[color_number][2] result.set_at((i,j),pixel_color) return result #---------------------------------------------------------------------------- def tile_position_to_pixel_position(self, tile_position,center=(0,0)): return (int(float(tile_position[0]) * Renderer.MAP_TILE_WIDTH) - center[0],int(float(tile_position[1]) * Renderer.MAP_TILE_HEIGHT) - center[1]) #---------------------------------------------------------------------------- @staticmethod def get_screen_size(): display = pygame.display.get_surface() return display.get_size() if display != None else (0,0) #---------------------------------------------------------------------------- @staticmethod def get_map_render_position(): screen_size = Renderer.get_screen_size() return ((screen_size[0] - Renderer.MAP_BORDER_WIDTH * 2 - Renderer.MAP_TILE_WIDTH * GameMap.MAP_WIDTH) / 2,(screen_size[1] - Renderer.MAP_BORDER_WIDTH * 2 - Renderer.MAP_TILE_HEIGHT * GameMap.MAP_HEIGHT - 50) / 2) #---------------------------------------------------------------------------- @staticmethod def map_position_to_pixel_position(map_position, offset = (0,0)): map_render_location = Renderer.get_map_render_position() return (map_render_location[0] + int(map_position[0] * Renderer.MAP_TILE_WIDTH) + Renderer.MAP_BORDER_WIDTH + offset[0],map_render_location[1] + int(map_position[1] * Renderer.MAP_TILE_HEIGHT) + Renderer.MAP_BORDER_WIDTH + offset[1]) def set_resolution(self, new_resolution): self.screen_resolution = new_resolution #---------------------------------------------------------------------------- @staticmethod def darken_color(color, by_how_may): r = max(color[0] - by_how_may,0) g = max(color[1] - by_how_may,0) b = max(color[2] - by_how_may,0) return (r,g,b) #---------------------------------------------------------------------------- @staticmethod def lighten_color(color, by_how_may): r = min(color[0] + by_how_may,255) g = min(color[1] + by_how_may,255) b = min(color[2] + by_how_may,255) return (r,g,b) #---------------------------------------------------------------------------- def __render_info_board_item_row(self, x, y, limit, item_type, player, board_image): item_count = 20 if item_type == GameMap.ITEM_FLAME and player.get_item_count(GameMap.ITEM_SUPERFLAME) >= 1 else player.get_item_count(item_type) for i in xrange(item_count): if i > limit: break image_to_draw = self.icon_images[item_type] if i == limit and player.get_item_count(item_type) > limit + 1: image_to_draw = self.icon_images["etc"] board_image.blit(image_to_draw,(x,y)) x += self.icon_images[item_type].get_size()[0] #---------------------------------------------------------------------------- ## Updates info board images in self.player_info_board_images. This should be called each frame, as # rerendering is done only when needed. def update_info_boards(self, players): for i in xrange(10): # for each player number update_needed = False if self.player_info_board_images[i] == None: self.player_info_board_images[i] = self.gui_images["info board"].copy() update_needed = True player = None for one_player in players: if one_player.get_number() == i: player = one_player break if player == None: continue if player.info_board_needs_update(): update_needed = True if not update_needed or player == None: continue # rerendering needed here debug_log("updating info board " + str(i)) board_image = self.player_info_board_images[i] board_image.blit(self.gui_images["info board"],(0,0)) board_image.blit(self.font_small.render(str(player.get_kills()),True,(0,0,0)),(45,0)) board_image.blit(self.font_small.render(str(player.get_wins()),True,(0,0,0)),(65,0)) board_image.blit(self.font_small.render(Game.COLOR_NAMES[i],True,Renderer.darken_color(Renderer.COLOR_RGB_VALUES[i],100)),(4,2)) if player.is_dead(): board_image.blit(self.gui_images["out"],(15,34)) continue # render items x = 5 dy = 12 self.__render_info_board_item_row(x,20,5,GameMap.ITEM_BOMB,player,board_image) self.__render_info_board_item_row(x,20 + dy,5,GameMap.ITEM_FLAME,player,board_image) self.__render_info_board_item_row(x,20 + 2 * dy,9,GameMap.ITEM_SPEEDUP,player,board_image) y = 20 + 3 * dy items_to_check = [ GameMap.ITEM_SHOE, GameMap.ITEM_BOXING_GLOVE, GameMap.ITEM_THROWING_GLOVE, GameMap.ITEM_SPRING, GameMap.ITEM_MULTIBOMB, GameMap.ITEM_DETONATOR, GameMap.ITEM_DISEASE] for item in items_to_check: if player.get_item_count(item) or item == GameMap.ITEM_DISEASE and player.get_disease() != Player.DISEASE_NONE: board_image.blit(self.icon_images[item],(x,y)) x += self.icon_images[item].get_size()[0] + 1 #---------------------------------------------------------------------------- def process_animation_events(self, animation_event_list): for animation_event in animation_event_list: self.animations[animation_event[0]].play(animation_event[1]) #---------------------------------------------------------------------------- ## Renders text with outline, line breaks, formatting, etc. def render_text(self, font, text_to_render, color, outline_color = (0,0,0), center = False): text_lines = text_to_render.split("\n") rendered_lines = [] width = height = 0 first_line = True for text_line in text_lines: line = text_line.lstrip().rstrip() if len(line) == 0: continue line_without_format = re.sub(r"\^.......","",line) # remove all the markup in format ^#dddddd new_rendered_line = pygame.Surface(font.size(line_without_format),flags=pygame.SRCALPHA) x = 0 first = True starts_with_format = line[0] == "^" for subline in line.split("^"): if len(subline) == 0: continue has_format = starts_with_format if first else True first = False text_color = color if has_format: text_color = pygame.Color(subline[:7]) subline = subline[7:] new_rendered_subline = font.render(subline,True,outline_color) # create text with outline new_rendered_subline.blit(new_rendered_subline,(0,2)) new_rendered_subline.blit(new_rendered_subline,(1,0)) new_rendered_subline.blit(new_rendered_subline,(-1,0)) new_rendered_subline.blit(font.render(subline,True,text_color),(0,1)) new_rendered_line.blit(new_rendered_subline,(x,0)) x += new_rendered_subline.get_size()[0] rendered_lines.append(new_rendered_line) if not first_line: height += Renderer.MENU_LINE_SPACING first_line = False height += rendered_lines[-1].get_size()[1] width = max(width,rendered_lines[-1].get_size()[0]) result = pygame.Surface((width,height),flags=pygame.SRCALPHA) y_step = font.get_height() + Renderer.MENU_LINE_SPACING for i in xrange(len(rendered_lines)): result.blit(rendered_lines[i],(0 if not center else (width - rendered_lines[i].get_size()[0]) / 2,i * y_step)) return result #---------------------------------------------------------------------------- ## Updates images in self.menu_item_images (only if needed). def update_menu_item_images(self, menu): if self.menu_item_images == None: self.menu_item_images = {} # format: (row, column) : (item text, image) items = menu.get_items() item_coordinates = [] for j in xrange(len(items)): for i in xrange(len(items[j])): item_coordinates.append((j,i)) if len(menu.get_text()) != 0: item_coordinates.append(0) # this is the menu description text for menu_coordinates in item_coordinates: update_needed = False if not (menu_coordinates in self.menu_item_images): update_needed = True if menu_coordinates == 0: item_text = menu.get_text() center_text = True else: item_text = items[menu_coordinates[0]][menu_coordinates[1]] center_text = False if not update_needed and item_text != self.menu_item_images[menu_coordinates][0]: update_needed = True if update_needed: debug_log("updating menu item " + str(menu_coordinates)) new_image = self.render_text(self.font_normal,item_text,Renderer.MENU_FONT_COLOR,center = center_text) # text itself new_image.blit(new_image,(0,1)) self.menu_item_images[menu_coordinates] = (item_text,new_image) #---------------------------------------------------------------------------- def render_menu(self, menu_to_render, game): result = pygame.Surface(self.screen_resolution) if self.menu_background_image == None: self.menu_background_image = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"gui_menu_background.png")) background_position = (self.screen_center[0] - self.menu_background_image.get_size()[0] / 2,self.screen_center[1] - self.menu_background_image.get_size()[1] / 2) profiler.measure_start("menu rend. backg.") result.blit(self.menu_background_image,background_position) profiler.measure_stop("menu rend. backg.") profiler.measure_start("menu rend. party") if game.cheat_is_active(Game.CHEAT_PARTY): for circle_info in self.party_circles: # draw circles circle_coords = (self.screen_center[0] + circle_info[0][0],self.screen_center[1] + circle_info[0][1]) radius_coefficient = (math.sin(pygame.time.get_ticks() * circle_info[4] / 100.0 + circle_info[3]) + 1) / 2.0 circle_radius = int(circle_info[1] * radius_coefficient) pygame.draw.circle(result,circle_info[2],circle_coords,circle_radius) for player_info in self.party_players: # draw players player_coords = (self.screen_center[0] + player_info[0][0],self.screen_center[1] + player_info[0][1]) player_direction = (int((pygame.time.get_ticks() + player_info[2]) / 150)) % 4 if not player_info[3]: player_direction = 3 - player_direction direction_string = ("up","right","down","left")[player_direction] if int(pygame.time.get_ticks() / 500) % 2 == 0: direction_string = "box " + direction_string result.blit(self.player_images[player_info[1]][direction_string],player_coords) for bomb_info in self.party_bombs: result.blit(self.bomb_images[0],(bomb_info[0],bomb_info[1])) bomb_info[0] += bomb_info[2] bomb_info[1] += bomb_info[3] if bomb_info[0] < 0: # border collision, change direction bomb_info[2] = 1 elif bomb_info[0] > self.screen_resolution[0] - 50: bomb_info[2] = -1 if bomb_info[1] < 0: # border collision, change direction bomb_info[3] = 1 elif bomb_info[1] > self.screen_resolution[1] - 50: bomb_info[3] = -1 profiler.measure_stop("menu rend. party") version_position = (3,1) result.blit(self.gui_images["version"],version_position) profiler.measure_start("menu rend. item update") self.update_menu_item_images(menu_to_render) # render menu description text y = self.screen_center[1] + Renderer.MENU_DESCRIPTION_Y_OFFSET if len(menu_to_render.get_text()) != 0: result.blit(self.menu_item_images[0][1],(self.screen_center[0] - self.menu_item_images[0][1].get_size()[0] / 2,y)) # menu description text image is at index 0 y += self.menu_item_images[0][1].get_size()[1] + Renderer.MENU_LINE_SPACING * 2 menu_items = menu_to_render.get_items() columns = len(menu_items) # how many columns there are column_x_space = 150 if columns % 2 == 0: xs = [self.screen_center[0] + i * column_x_space - ((columns - 1) * column_x_space / 2) for i in xrange(columns)] # even number of columns else: xs = [self.screen_center[0] + (i - columns / 2) * column_x_space for i in xrange(columns)] selected_coordinates = menu_to_render.get_selected_item() items_y = y profiler.measure_stop("menu rend. item update") # render scrollbar if needed rows = 0 for column in menu_items: rows = max(rows,len(column)) if rows > Menu.MENU_MAX_ITEMS_VISIBLE: x = xs[0] + Renderer.SCROLLBAR_RELATIVE_POSITION[0] result.blit(self.gui_images["arrow up"],(x,items_y)) result.blit(self.gui_images["arrow down"],(x,items_y + Renderer.SCROLLBAR_HEIGHT)) scrollbar_position = int(items_y + selected_coordinates[0] / float(rows) * Renderer.SCROLLBAR_HEIGHT) result.blit(self.gui_images["seeker"],(x,scrollbar_position)) mouse_coordinates = pygame.mouse.get_pos() # render items profiler.measure_start("menu rend. items") for j in xrange(len(menu_items)): y = items_y for i in xrange(min(Menu.MENU_MAX_ITEMS_VISIBLE,len(menu_items[j]) - menu_to_render.get_scroll_position())): item_image = self.menu_item_images[(j,i + menu_to_render.get_scroll_position())][1] x = xs[j] - item_image.get_size()[0] / 2 if (i + menu_to_render.get_scroll_position(),j) == selected_coordinates: # item is selected scale = (8 + math.sin(pygame.time.get_ticks() / 40.0)) / 7.0 # make the pulsating effect item_image = pygame.transform.scale(item_image,(int(scale * item_image.get_size()[0]),int(scale * item_image.get_size()[1]))) x = xs[j] - item_image.get_size()[0] / 2 pygame.draw.rect(result,(255,0,0),pygame.Rect(x - 4,y - 2,item_image.get_size()[0] + 8,item_image.get_size()[1] + 4)) result.blit(item_image,(x,y)) # did mouse go over the item? if (not game.get_settings().control_by_mouse) and (self.previous_mouse_coordinates != mouse_coordinates) and (x <= mouse_coordinates[0] <= x + item_image.get_size()[0]) and (y <= mouse_coordinates[1] <= y + item_image.get_size()[1]): item_coordinates = (i + menu_to_render.get_scroll_position(),j) menu_to_render.mouse_went_over_item(item_coordinates) y += Renderer.FONT_NORMAL_SIZE + Renderer.MENU_LINE_SPACING profiler.measure_stop("menu rend. items") mouse_events = game.get_player_key_maps().get_mouse_button_events() for i in xrange(len(mouse_events)): if mouse_events[i]: menu_to_render.mouse_button_pressed(i) self.previous_mouse_coordinates = mouse_coordinates # render confirm dialog if prompting if menu_to_render.get_state() == Menu.MENU_STATE_CONFIRM_PROMPT: width = 120 height = 80 x = self.screen_center[0] - width / 2 y = self.screen_center[1] - height / 2 pygame.draw.rect(result,(0,0,0),pygame.Rect(x,y,width,height)) pygame.draw.rect(result,(255,255,255),pygame.Rect(x,y,width,height),1) text_image = pygame.transform.rotate(self.gui_images["prompt"],math.sin(pygame.time.get_ticks() / 100) * 5) x = self.screen_center[0] - text_image.get_size()[0] / 2 y = self.screen_center[1] - text_image.get_size()[1] / 2 result.blit(text_image,(x,y)) # map preview profiler.measure_start("menu rend. preview") if isinstance(menu_to_render,MapSelectMenu): # also not too nice if menu_to_render.show_map_preview(): self.update_map_preview_image(menu_to_render.get_selected_map_name()) result.blit(self.preview_map_image,(self.screen_center[0] + 180,items_y)) profiler.measure_stop("menu rend. preview") # draw cursor only if control by mouse is not allowed - wouldn't make sense if not game.get_settings().control_by_mouse: result.blit(self.gui_images["cursor"],pygame.mouse.get_pos()) return result #---------------------------------------------------------------------------- def update_map_preview_image(self, map_filename): if map_filename == "": self.preview_map_name = "" self.preview_map_image = None return if self.preview_map_name != map_filename: debug_log("updating map preview of " + map_filename) self.preview_map_name = map_filename tile_size = 7 tile_half_size = tile_size / 2 map_info_border_size = 5 self.preview_map_image = pygame.Surface((tile_size * GameMap.MAP_WIDTH,tile_size * GameMap.MAP_HEIGHT + map_info_border_size + Renderer.MAP_TILE_HEIGHT)) with open(os.path.join(Game.MAP_PATH,map_filename)) as map_file: map_data = map_file.read() temp_map = GameMap(map_data,PlaySetup(),0,0) for y in xrange(GameMap.MAP_HEIGHT): for x in xrange(GameMap.MAP_WIDTH): tile = temp_map.get_tile_at((x,y)) tile_kind = tile.kind pos_x = x * tile_size pos_y = y * tile_size tile_special_object = tile.special_object if tile_special_object == None: if tile_kind == MapTile.TILE_BLOCK: tile_color = (120,120,120) elif tile_kind == MapTile.TILE_WALL: tile_color = (60,60,60) else: # floor tile_color = (230,230,230) else: if tile_special_object == MapTile.SPECIAL_OBJECT_LAVA: tile_color = (200,0,0) elif tile_special_object == MapTile.SPECIAL_OBJECT_TELEPORT_A or tile_special_object == MapTile.SPECIAL_OBJECT_TELEPORT_B: tile_color = (0,0,200) elif tile_special_object == MapTile.SPECIAL_OBJECT_TRAMPOLINE: tile_color = (0,200,0) elif tile_kind == MapTile.TILE_FLOOR: # arrow tile_color = (200,200,0) else: tile_color = (230,230,230) pygame.draw.rect(self.preview_map_image,tile_color,pygame.Rect(pos_x,pos_y,tile_size,tile_size)) starting_positions = temp_map.get_starting_positions() for player_index in xrange(len(starting_positions)): draw_position = (int(starting_positions[player_index][0]) * tile_size + tile_half_size,int(starting_positions[player_index][1]) * tile_size + tile_half_size) pygame.draw.rect(self.preview_map_image,tile_color,pygame.Rect(pos_x,pos_y,tile_size,tile_size)) pygame.draw.circle(self.preview_map_image,Renderer.COLOR_RGB_VALUES[player_index],draw_position,tile_half_size) y = tile_size * GameMap.MAP_HEIGHT + map_info_border_size column = 0 self.preview_map_image.blit(self.environment_images[temp_map.get_environment_name()][0],(0,y)) # draw starting item icons starting_x = Renderer.MAP_TILE_WIDTH + 5 x = starting_x pygame.draw.rect(self.preview_map_image,(255,255,255),pygame.Rect(x,y,Renderer.MAP_TILE_WIDTH,Renderer.MAP_TILE_HEIGHT)) starting_items = temp_map.get_starting_items() for i in xrange(len(starting_items)): item = starting_items[i] if item in self.icon_images: item_image = self.icon_images[item] self.preview_map_image.blit(item_image,(x + 1,y + 1)) x += item_image.get_size()[0] + 1 column += 1 if column > 2: column = 0 x = starting_x y += 12 #---------------------------------------------------------------------------- def __prerender_map(self, map_to_render): self.animation_events = [] # clear previous animation debug_log("prerendering map...") # following images are only needed here, so we dont store them to self image_trampoline = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"other_trampoline.png")) image_teleport = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"other_teleport.png")) image_arrow_up = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"other_arrow_up.png")) image_arrow_right = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"other_arrow_right.png")) image_arrow_down = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"other_arrow_down.png")) image_arrow_left = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"other_arrow_left.png")) image_lava = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"other_lava.png")) image_background = pygame.image.load(os.path.join(Game.RESOURCE_PATH,"other_map_background.png")) self.prerendered_map_background.blit(image_background,(0,0)) for j in xrange(GameMap.MAP_HEIGHT): for i in xrange(GameMap.MAP_WIDTH): render_position = (i * Renderer.MAP_TILE_WIDTH + Renderer.MAP_BORDER_WIDTH,j * Renderer.MAP_TILE_HEIGHT + + Renderer.MAP_BORDER_WIDTH) self.prerendered_map_background.blit(self.environment_images[map_to_render.get_environment_name()][0],render_position) tile = map_to_render.get_tile_at((i,j)) helper_mapping = { MapTile.SPECIAL_OBJECT_TELEPORT_A: image_teleport, MapTile.SPECIAL_OBJECT_TELEPORT_B: image_teleport, MapTile.SPECIAL_OBJECT_TRAMPOLINE: image_trampoline, MapTile.SPECIAL_OBJECT_ARROW_UP: image_arrow_up, MapTile.SPECIAL_OBJECT_ARROW_RIGHT: image_arrow_right, MapTile.SPECIAL_OBJECT_ARROW_DOWN: image_arrow_down, MapTile.SPECIAL_OBJECT_ARROW_LEFT: image_arrow_left, MapTile.SPECIAL_OBJECT_LAVA: image_lava } if tile.special_object in helper_mapping: self.prerendered_map_background.blit(helper_mapping[tile.special_object],render_position) game_info = map_to_render.get_game_number_info() game_info_text = self.render_text(self.font_small,"game " + str(game_info[0]) + " of " + str(game_info[1]),(255,255,255)) self.prerendered_map_background.blit(game_info_text,((self.prerendered_map_background.get_size()[0] - game_info_text.get_size()[0]) / 2,self.prerendered_map_background.get_size()[1] - game_info_text.get_size()[1])) self.prerendered_map = map_to_render #---------------------------------------------------------------------------- ##< Gets an info about how given player whould be rendered in format (image to render, sprite center, relative pixel offset, draw_shadow, overlay images). def __get_player_render_info(self, player, game_map): profiler.measure_start("map rend. player") draw_shadow = True relative_offset = [0,0] overlay_images = [] if player.is_dead(): profiler.measure_stop("map rend. player") return (None, (0,0), (0,0), False, []) sprite_center = Renderer.PLAYER_SPRITE_CENTER animation_frame = (player.get_state_time() / 100) % 4 color_index = player.get_number() if game_map.get_state() == GameMap.STATE_WAITING_TO_PLAY else player.get_team_number() if player.is_in_air(): if player.get_state_time() < Player.JUMP_DURATION / 2: quotient = abs(player.get_state_time() / float(Player.JUMP_DURATION / 2)) else: quotient = 2.0 - abs(player.get_state_time() / float(Player.JUMP_DURATION / 2)) scale = (1 + 0.5 * quotient) player_image = self.player_images[color_index]["down"] image_to_render = pygame.transform.scale(player_image,(int(scale * player_image.get_size()[0]),int(scale * player_image.get_size()[1]))) draw_shadow = False relative_offset[0] = -1 * (image_to_render.get_size()[0] / 2 - Renderer.PLAYER_SPRITE_CENTER[0]) # offset caused by scale relative_offset[1] = -1 * int(math.sin(quotient * math.pi / 2.0) * Renderer.MAP_TILE_HEIGHT * GameMap.MAP_HEIGHT) # height offset elif player.is_teleporting(): image_to_render = self.player_images[color_index][("up","right","down","left")[animation_frame]] elif player.is_boxing() or player.is_throwing(): if not player.is_throwing() and animation_frame == 0: helper_string = "" else: helper_string = "box " helper_string += ("up","right","down","left")[player.get_direction_number()] image_to_render = self.player_images[color_index][helper_string] else: helper_string = ("up","right","down","left")[player.get_direction_number()] if player.is_walking(): image_to_render = self.player_images[color_index]["walk " + helper_string][animation_frame] else: image_to_render = self.player_images[color_index][helper_string] if player.get_disease() != Player.DISEASE_NONE: overlay_images.append(self.other_images["disease"][animation_frame % 2]) profiler.measure_stop("map rend. player") return (image_to_render,sprite_center,relative_offset,draw_shadow,overlay_images) #---------------------------------------------------------------------------- ##< Same as __get_player_render_info, but for bombs. def __get_bomb_render_info(self, bomb, game_map): profiler.measure_start("map rend. bomb") sprite_center = Renderer.BOMB_SPRITE_CENTER animation_frame = (bomb.time_of_existence / 100) % 4 relative_offset = [0,0] overlay_images = [] if bomb.has_detonator(): overlay_images.append(self.other_images["antena"]) if bomb.time_of_existence < Bomb.DETONATOR_EXPIRATION_TIME: animation_frame = 0 # bomb won't pulse if within detonator expiration time if bomb.movement == Bomb.BOMB_FLYING: normalised_distance_travelled = bomb.flight_info.distance_travelled / float(bomb.flight_info.total_distance_to_travel) helper_offset = -1 * bomb.flight_info.total_distance_to_travel + bomb.flight_info.distance_travelled relative_offset = [ int(bomb.flight_info.direction[0] * helper_offset * Renderer.MAP_TILE_WIDTH), int(bomb.flight_info.direction[1] * helper_offset * Renderer.MAP_TILE_HALF_HEIGHT)] relative_offset[1] -= int(math.sin(normalised_distance_travelled * math.pi) * bomb.flight_info.total_distance_to_travel * Renderer.MAP_TILE_HEIGHT / 2) # height in air image_to_render = self.bomb_images[animation_frame] if bomb.has_spring: overlay_images.append(self.other_images["spring"]) profiler.measure_stop("map rend. bomb") return (image_to_render,sprite_center,relative_offset,True,overlay_images) #---------------------------------------------------------------------------- def render_map(self, map_to_render): result = pygame.Surface(self.screen_resolution) self.menu_background_image = None # unload unneccessarry images self.menu_item_images = None self.preview_map_name = "" self.preview_map_image = None self.update_info_boards(map_to_render.get_players()) if map_to_render != self.prerendered_map: # first time rendering this map, prerender some stuff self.__prerender_map(map_to_render) profiler.measure_start("map rend. backg.") result.blit(self.prerendered_map_background,self.map_render_location) profiler.measure_stop("map rend. backg.") # order the players and bombs by their y position so that they are drawn correctly profiler.measure_start("map rend. sort") ordered_objects_to_render = [] ordered_objects_to_render.extend(map_to_render.get_players()) ordered_objects_to_render.extend(map_to_render.get_bombs()) ordered_objects_to_render.sort(key = lambda what: 1000 if (isinstance(what,Bomb) and what.movement == Bomb.BOMB_FLYING) else what.get_position()[1]) # flying bombs are rendered above everything else profiler.measure_stop("map rend. sort") # render the map by lines: tiles = map_to_render.get_tiles() environment_images = self.environment_images[map_to_render.get_environment_name()] y = Renderer.MAP_BORDER_WIDTH + self.map_render_location[1] y_offset_block = Renderer.MAP_TILE_HEIGHT - environment_images[1].get_size()[1] y_offset_wall = Renderer.MAP_TILE_HEIGHT - environment_images[2].get_size()[1] line_number = 0 object_to_render_index = 0 flame_animation_frame = (pygame.time.get_ticks() / 100) % 2 for line in tiles: x = (GameMap.MAP_WIDTH - 1) * Renderer.MAP_TILE_WIDTH + Renderer.MAP_BORDER_WIDTH + self.map_render_location[0] while True: # render players and bombs in the current line if object_to_render_index >= len(ordered_objects_to_render): break object_to_render = ordered_objects_to_render[object_to_render_index] if object_to_render.get_position()[1] > line_number + 1: break if isinstance(object_to_render,Player): image_to_render, sprite_center, relative_offset, draw_shadow, overlay_images = self.__get_player_render_info(object_to_render, map_to_render) else: # bomb image_to_render, sprite_center, relative_offset, draw_shadow, overlay_images = self.__get_bomb_render_info(object_to_render, map_to_render) if image_to_render == None: object_to_render_index += 1 continue if draw_shadow: render_position = self.tile_position_to_pixel_position(object_to_render.get_position(),Renderer.SHADOW_SPRITE_CENTER) render_position = ( (render_position[0] + Renderer.MAP_BORDER_WIDTH + relative_offset[0]) % self.prerendered_map_background.get_size()[0] + self.map_render_location[0], render_position[1] + Renderer.MAP_BORDER_WIDTH + self.map_render_location[1]) result.blit(self.other_images["shadow"],render_position) render_position = self.tile_position_to_pixel_position(object_to_render.get_position(),sprite_center) render_position = ((render_position[0] + Renderer.MAP_BORDER_WIDTH + relative_offset[0]) % self.prerendered_map_background.get_size()[0] + self.map_render_location[0],render_position[1] + Renderer.MAP_BORDER_WIDTH + relative_offset[1] + self.map_render_location[1]) result.blit(image_to_render,render_position) for additional_image in overlay_images: result.blit(additional_image,render_position) object_to_render_index += 1 for tile in reversed(line): # render tiles in the current line profiler.measure_start("map rend. tiles") if not tile.to_be_destroyed: # don't render a tile that is being destroyed if tile.kind == MapTile.TILE_BLOCK: result.blit(environment_images[1],(x,y + y_offset_block)) elif tile.kind == MapTile.TILE_WALL: result.blit(environment_images[2],(x,y + y_offset_wall)) elif tile.item != None: result.blit(self.item_images[tile.item],(x,y)) if len(tile.flames) != 0: # if there is at least one flame, draw it sprite_name = tile.flames[0].direction result.blit(self.flame_images[flame_animation_frame][sprite_name],(x,y)) # for debug: uncomment this to see danger values on the map # pygame.draw.rect(result,(int((1 - map_to_render.get_danger_value(tile.coordinates) / float(GameMap.SAFE_DANGER_VALUE)) * 255.0),0,0),pygame.Rect(x + 10,y + 10,30,30)) x -= Renderer.MAP_TILE_WIDTH profiler.measure_stop("map rend. tiles") x = (GameMap.MAP_WIDTH - 1) * Renderer.MAP_TILE_WIDTH + Renderer.MAP_BORDER_WIDTH + self.map_render_location[0] y += Renderer.MAP_TILE_HEIGHT line_number += 1 # update animations profiler.measure_start("map rend. anim") for animation_index in self.animations: self.animations[animation_index].draw(result) profiler.measure_stop("map rend. anim") # draw info boards profiler.measure_start("map rend. boards") players_by_numbers = map_to_render.get_players_by_numbers() x = self.map_render_location[0] + 12 y = self.map_render_location[1] + self.prerendered_map_background.get_size()[1] + 20 for i in players_by_numbers: if players_by_numbers[i] == None or self.player_info_board_images[i] == None: continue if players_by_numbers[i].is_dead(): movement_offset = (0,0) else: movement_offset = (int(math.sin(pygame.time.get_ticks() / 64.0 + i) * 2),int(4 * math.sin(pygame.time.get_ticks() / 128.0 - i))) result.blit(self.player_info_board_images[i],(x + movement_offset[0],y + movement_offset[1])) x += self.gui_images["info board"].get_size()[0] - 2 profiler.measure_stop("map rend. boards") profiler.measure_start("map rend. earthquake") if map_to_render.earthquake_is_active(): # shaking effect random_scale = random.uniform(0.99,1.01) result = pygame.transform.rotate(result,random.uniform(-4,4)) profiler.measure_stop("map rend. earthquake") if map_to_render.get_state() == GameMap.STATE_WAITING_TO_PLAY: third = GameMap.START_GAME_AFTER / 3 countdown_image_index = max(3 - map_to_render.get_map_time() / third,1) countdown_image = self.gui_images["countdown"][countdown_image_index] countdown_position = (self.screen_center[0] - countdown_image.get_size()[0] / 2,self.screen_center[1] - countdown_image.get_size()[1] / 2) result.blit(countdown_image,countdown_position) return result #============================================================================== class AI(object): REPEAT_ACTIONS = (100,300) ##< In order not to compute actions with every single call to # play(), actions will be stored in self.outputs and repeated # for next random(REPEAT_ACTIONS[0],REPEAT_ACTIONS[1]) ms - saves # CPU time and prevents jerky AI movement. #---------------------------------------------------------------------------- def __init__(self, player, game_map): self.player = player self.game_map = game_map self.outputs = [] ##< holds currently active outputs self.recompute_compute_actions_on = 0 self.do_nothing = False ##< this can turn AI off for debugging purposes self.didnt_move_since = 0 #---------------------------------------------------------------------------- def tile_is_escapable(self, tile_coordinates): if not self.game_map.tile_is_walkable(tile_coordinates) or self.game_map.tile_has_flame(tile_coordinates): return False tile = self.game_map.get_tile_at(tile_coordinates) if tile.special_object == MapTile.SPECIAL_OBJECT_LAVA: return False return True #---------------------------------------------------------------------------- ## Returns a two-number tuple of x, y coordinates, where x and y are # either -1, 0 or 1, indicating a rough general direction in which to # move in order to prevent AI from walking in nonsensical direction (towards # outside of the map etc.). def decide_general_direction(self): players = self.game_map.get_players() enemy_players = filter(lambda p: p.is_enemy(self.player) and not p.is_dead(), players) enemy_player = enemy_players[0] if len(enemy_players) > 0 else self.player my_tile_position = self.player.get_tile_position() another_player_tile_position = enemy_player.get_tile_position() dx = another_player_tile_position[0] - my_tile_position[0] dy = another_player_tile_position[1] - my_tile_position[1] dx = min(max(-1,dx),1) dy = min(max(-1,dy),1) return (dx,dy) #---------------------------------------------------------------------------- ## Rates all 4 directions from a specified tile (up, right, down, left) with a number # that says how many possible safe tiles are there accesible in that direction in # case a bomb is present on the specified tile. A tuple of four integers is returned # with numbers for each direction - the higher number, the better it is to run to # safety in that direction. 0 means there is no escape and running in that direction # means death. def rate_bomb_escape_directions(self, tile_coordinates): # up right down left axis_directions = ((0,-1), (1,0), (0,1), (-1,0)) perpendicular_directions = ((1,0), (0,1), (1,0), (0,1)) result = [0,0,0,0] for direction in (0,1,2,3): for i in xrange(1,self.player.get_flame_length() + 2): axis_tile = (tile_coordinates[0] + i * axis_directions[direction][0],tile_coordinates[1] + i * axis_directions[direction][1]) if not self.tile_is_escapable(axis_tile): break perpendicular_tile1 = (axis_tile[0] + perpendicular_directions[direction][0],axis_tile[1] + perpendicular_directions[direction][1]) perpendicular_tile2 = (axis_tile[0] - perpendicular_directions[direction][0],axis_tile[1] - perpendicular_directions[direction][1]) if i > self.player.get_flame_length() and self.game_map.get_danger_value(axis_tile) >= GameMap.SAFE_DANGER_VALUE: result[direction] += 1 if self.tile_is_escapable(perpendicular_tile1) and self.game_map.get_danger_value(perpendicular_tile1) >= GameMap.SAFE_DANGER_VALUE: result[direction] += 1 if self.tile_is_escapable(perpendicular_tile2) and self.game_map.get_danger_value(perpendicular_tile2) >= GameMap.SAFE_DANGER_VALUE: result[direction] += 1 return tuple(result) #---------------------------------------------------------------------------- ## Returns an integer score in range 0 - 100 for given file (100 = good, 0 = bad). def rate_tile(self, tile_coordinates): danger = self.game_map.get_danger_value(tile_coordinates) if danger == 0: return 0 score = 0 if danger < 1000: score = 20 elif danger < 2500: score = 40 else: score = 60 tile_item = self.game_map.get_tile_at(tile_coordinates).item if tile_item != None: if tile_item != GameMap.ITEM_DISEASE: score += 20 else: score -= 10 top = (tile_coordinates[0],tile_coordinates[1] - 1) right = (tile_coordinates[0] + 1,tile_coordinates[1]) down = (tile_coordinates[0],tile_coordinates[1] + 1) left = (tile_coordinates[0] - 1,tile_coordinates[1]) if self.game_map.tile_has_lava(top) or self.game_map.tile_has_lava(right) or self.game_map.tile_has_lava(down) or self.game_map.tile_has_lava(left): score -= 5 # don't go near lava if self.game_map.tile_has_bomb(tile_coordinates): if not self.player.can_box(): score -= 5 return score #---------------------------------------------------------------------------- def is_trapped(self): neighbour_tiles = self.player.get_neighbour_tile_coordinates() trapped = True for tile_coordinates in neighbour_tiles: if self.game_map.tile_is_walkable(tile_coordinates): trapped = False break return trapped #---------------------------------------------------------------------------- def number_of_blocks_next_to_tile(self, tile_coordinates): count = 0 for tile_offset in ((0,-1),(1,0),(0,1),(-1,0)): # for each neigbour file helper_tile = self.game_map.get_tile_at((tile_coordinates[0] + tile_offset[0],tile_coordinates[1] + tile_offset[1])) if helper_tile != None and helper_tile.kind == MapTile.TILE_BLOCK: count += 1 return count #---------------------------------------------------------------------------- ## Returns a tuple in format: (nearby_enemies, nearby allies). def players_nearby(self): current_position = self.player.get_tile_position() allies = 0 enemies = 0 for player in self.game_map.get_players(): if player.is_dead() or player == self.player: continue player_position = player.get_tile_position() if abs(current_position[0] - player_position[0]) <= 1 and abs(current_position[1] - player_position[1]) <= 1: if player.is_enemy(self.player): enemies += 1 else: allies += 1 return (enemies,allies) #---------------------------------------------------------------------------- ## Decides what moves to make and returns a list of event in the same # format as PlayerKeyMaps.get_current_actions(). def play(self): if self.do_nothing or self.player.is_dead(): return [] current_time = self.game_map.get_map_time() if current_time < self.recompute_compute_actions_on or self.player.get_state() == Player.STATE_IN_AIR or self.player.get_state() == Player.STATE_TELEPORTING: return self.outputs # only repeat actions # start decisions here: # moevement decisions: self.outputs = [] current_tile = self.player.get_tile_position() trapped = self.is_trapped() escape_direction_ratings = self.rate_bomb_escape_directions(current_tile) # consider possible actions and find the one with biggest score: if trapped: # in case the player is trapped spin randomly and press box in hope to free itself chosen_movement_action = random.choice((PlayerKeyMaps.ACTION_UP,PlayerKeyMaps.ACTION_RIGHT,PlayerKeyMaps.ACTION_DOWN,PlayerKeyMaps.ACTION_LEFT)) elif self.game_map.tile_has_bomb(current_tile): # standing on a bomb, find a way to escape # find maximum best_rating = escape_direction_ratings[0] best_action = PlayerKeyMaps.ACTION_UP if escape_direction_ratings[1] > best_rating: best_rating = escape_direction_ratings[1] best_action = PlayerKeyMaps.ACTION_RIGHT if escape_direction_ratings[2] > best_rating: best_rating = escape_direction_ratings[2] best_action = PlayerKeyMaps.ACTION_DOWN if escape_direction_ratings[3] > best_rating: best_rating = escape_direction_ratings[3] best_action = PlayerKeyMaps.ACTION_LEFT chosen_movement_action = best_action else: # not standing on a bomb # should I not move? maximum_score = self.rate_tile(current_tile) best_direction_actions = [None] general_direction = self.decide_general_direction() # up # right # down # left tile_increment = ((0,-1), (1,0), (0,1), (-1,0)) action = (PlayerKeyMaps.ACTION_UP, PlayerKeyMaps.ACTION_RIGHT, PlayerKeyMaps.ACTION_DOWN, PlayerKeyMaps.ACTION_LEFT) # should I move up, right, down or left? for direction in (0,1,2,3): score = self.rate_tile((current_tile[0] + tile_increment[direction][0],current_tile[1] + tile_increment[direction][1])) # count in the general direction extra_score = 0 if tile_increment[direction][0] == general_direction[0]: extra_score += 2 if tile_increment[direction][1] == general_direction[1]: extra_score += 2 score += extra_score if score > maximum_score: maximum_score = score best_direction_actions = [action[direction]] elif score == maximum_score: best_direction_actions.append(action[direction]) chosen_movement_action = random.choice(best_direction_actions) if chosen_movement_action != None: if self.player.get_disease() == Player.DISEASE_REVERSE_CONTROLS: chosen_movement_action = PlayerKeyMaps.get_opposite_action(chosen_movement_action) self.outputs.append((self.player.get_number(),chosen_movement_action)) self.didnt_move_since = self.game_map.get_map_time() if self.game_map.get_map_time() - self.didnt_move_since > 10000: # didn't move for 10 seconds or more => force move chosen_movement_action = random.choice((PlayerKeyMaps.ACTION_UP,PlayerKeyMaps.ACTION_RIGHT,PlayerKeyMaps.ACTION_DOWN,PlayerKeyMaps.ACTION_LEFT)) self.outputs.append((self.player.get_number(),chosen_movement_action)) # bomb decisions bomb_laid = False if self.game_map.tile_has_bomb(current_tile): # should I throw? if self.player.can_throw() and max(escape_direction_ratings) == 0: self.outputs.append((self.player.get_number(),PlayerKeyMaps.ACTION_BOMB_DOUBLE)) elif self.player.get_bombs_left() > 0 and (self.player.can_throw() or self.game_map.get_danger_value(current_tile) > 2000 and max(escape_direction_ratings) > 0): # should I lay bomb? chance_to_put_bomb = 100 # one in how many players_near = self.players_nearby() if players_near[0] > 0 and players_near[1] == 0: # enemy nearby and no ally nearby chance_to_put_bomb = 5 else: block_tile_ratio = self.game_map.get_number_of_block_tiles() / float(GameMap.MAP_WIDTH * GameMap.MAP_HEIGHT) if block_tile_ratio < 0.4: # if there is not many tiles left, put bombs more often chance_to_put_bomb = 80 elif block_tile_ratio < 0.2: chance_to_put_bomb = 20 number_of_block_neighbours = self.number_of_blocks_next_to_tile(current_tile) if number_of_block_neighbours == 1: chance_to_put_bomb = 3 elif number_of_block_neighbours == 2 or number_of_block_neighbours == 3: chance_to_put_bomb = 2 do_lay_bomb = random.randint(0,chance_to_put_bomb) == 0 if do_lay_bomb: bomb_laid = True if random.randint(0,2) == 0 and self.should_lay_multibomb(chosen_movement_action): # lay a single bomb or multibomb? self.outputs.append((self.player.get_number(),PlayerKeyMaps.ACTION_BOMB_DOUBLE)) else: self.outputs.append((self.player.get_number(),PlayerKeyMaps.ACTION_BOMB)) # should I box? if self.player.can_box() and not self.player.detonator_is_active(): if trapped or self.game_map.tile_has_bomb(self.player.get_forward_tile_position()): self.outputs.append((self.player.get_number(),PlayerKeyMaps.ACTION_SPECIAL)) if bomb_laid: # if bomb was laid, the outputs must be recomputed fast in order to prevent laying bombs to other tiles self.recompute_compute_actions_on = current_time + 10 else: self.recompute_compute_actions_on = current_time + random.randint(AI.REPEAT_ACTIONS[0],AI.REPEAT_ACTIONS[1]) # should I detonate the detonator? if self.player.detonator_is_active(): if random.randint(0,2) == 0 and self.game_map.get_danger_value(current_tile) >= GameMap.SAFE_DANGER_VALUE: self.outputs.append((self.player.get_number(),PlayerKeyMaps.ACTION_SPECIAL)) return self.outputs #---------------------------------------------------------------------------- def should_lay_multibomb(self, movement_action): if self.player.can_throw(): # multibomb not possible with throwing glove return False multibomb_count = self.player.get_multibomb_count() if multibomb_count > 1: # multibomb possible current_tile = self.player.get_tile_position() player_direction = movement_action if movement_action != None else self.player.get_direction_number() # by laying multibomb one of the escape routes will be cut off, let's check # if there would be any escape routes left escape_direction_ratings = list(self.rate_bomb_escape_directions(current_tile)) escape_direction_ratings[player_direction] = 0 if max(escape_direction_ratings) == 0: return False direction_vector = self.player.get_direction_vector() multibomb_safe = True for i in xrange(multibomb_count): if not self.game_map.tile_is_walkable(current_tile) or not self.game_map.tile_is_withing_map(current_tile): break if self.game_map.get_danger_value(current_tile) < 3000 or self.game_map.tile_has_lava(current_tile): multibomb_safe = False break current_tile = (current_tile[0] + direction_vector[0],current_tile[1] + direction_vector[1]) if multibomb_safe: return True return False #============================================================================== class Settings(StringSerializable): POSSIBLE_SCREEN_RESOLUTIONS = ( (960,720), (1024,768), (1280,720), (1280,1024), (1366,768), (1680,1050), (1920,1080) ) SOUND_VOLUME_THRESHOLD = 0.01 CONTROL_MAPPING_DELIMITER = "CONTROL MAPPING" #---------------------------------------------------------------------------- def __init__(self, player_key_maps): self.player_key_maps = player_key_maps self.reset() #---------------------------------------------------------------------------- def reset(self): self.sound_volume = 0.7 self.music_volume = 0.2 self.screen_resolution = Settings.POSSIBLE_SCREEN_RESOLUTIONS[0] self.fullscreen = False self.control_by_mouse = False self.player_key_maps.reset() #---------------------------------------------------------------------------- def save_to_string(self): result = "" result += "sound volume: " + str(self.sound_volume) + "\n" result += "music volume: " + str(self.music_volume) + "\n" result += "screen resolution: " + str(self.screen_resolution[0]) + "x" + str(self.screen_resolution[1]) + "\n" result += "fullscreen: " + str(self.fullscreen) + "\n" result += "control by mouse: " + str(self.control_by_mouse) + "\n" result += Settings.CONTROL_MAPPING_DELIMITER + "\n" result += self.player_key_maps.save_to_string() + "\n" result += Settings.CONTROL_MAPPING_DELIMITER + "\n" return result #---------------------------------------------------------------------------- def load_from_string(self, input_string): self.reset() helper_position = input_string.find(Settings.CONTROL_MAPPING_DELIMITER) if helper_position >= 0: helper_position1 = helper_position + len(Settings.CONTROL_MAPPING_DELIMITER) helper_position2 = input_string.find(Settings.CONTROL_MAPPING_DELIMITER,helper_position1) debug_log("loading control mapping") settings_string = input_string[helper_position1:helper_position2].lstrip().rstrip() self.player_key_maps.load_from_string(settings_string) input_string = input_string[:helper_position] + input_string[helper_position2 + len(Settings.CONTROL_MAPPING_DELIMITER):] lines = input_string.split("\n") for line in lines: helper_position = line.find(":") if helper_position < 0: continue key_string = line[:helper_position] value_string = line[helper_position + 1:].lstrip().rstrip() if key_string == "sound volume": self.sound_volume = float(value_string) elif key_string == "music volume": self.music_volume = float(value_string) elif key_string == "screen resolution": helper_tuple = value_string.split("x") self.screen_resolution = (int(helper_tuple[0]),int(helper_tuple[1])) elif key_string == "fullscreen": self.fullscreen = True if value_string == "True" else False elif key_string == "control by mouse": self.control_by_mouse = True if value_string == "True" else False #---------------------------------------------------------------------------- def sound_is_on(self): return self.sound_volume > Settings.SOUND_VOLUME_THRESHOLD #---------------------------------------------------------------------------- def music_is_on(self): return self.music_volume > Settings.SOUND_VOLUME_THRESHOLD #---------------------------------------------------------------------------- def current_resolution_index(self): return next((i for i in xrange(len(Settings.POSSIBLE_SCREEN_RESOLUTIONS)) if self.screen_resolution == Settings.POSSIBLE_SCREEN_RESOLUTIONS[i]),0) #============================================================================== class Game(object): # colors used for players and teams COLOR_WHITE = 0 COLOR_BLACK = 1 COLOR_RED = 2 COLOR_BLUE = 3 COLOR_GREEN = 4 COLOR_CYAN = 5 COLOR_YELLOW = 6 COLOR_ORANGE = 7 COLOR_BROWN = 8 COLOR_PURPLE = 9 COLOR_NAMES = [ "white", "black", "red", "blue", "green", "cyan", "yellow", "orange", "brown", "purple" ] STATE_PLAYING = 0 STATE_EXIT = 1 STATE_MENU_MAIN = 2 STATE_MENU_SETTINGS = 3 STATE_MENU_ABOUT = 4 STATE_MENU_PLAY_SETUP = 5 STATE_MENU_MAP_SELECT = 6 STATE_MENU_CONTROL_SETTINGS = 7 STATE_MENU_PLAY = 8 STATE_MENU_RESULTS = 9 STATE_GAME_STARTED = 10 CHEAT_PARTY = 0 CHEAT_ALL_ITEMS = 1 CHEAT_PLAYER_IMMORTAL = 2 VERSION_STR = "0.95" NUMBER_OF_CONTROLLED_PLAYERS = 4 ##< maximum number of non-AI players on one PC RESOURCE_PATH = "resources" MAP_PATH = "maps" SETTINGS_FILE_PATH = "settings.txt" #---------------------------------------------------------------------------- def __init__(self): pygame.mixer.pre_init(22050,-16,2,512) # set smaller audio buffer size to prevent audio lag pygame.init() pygame.font.init() pygame.mixer.init() self.frame_number = 0 self.player_key_maps = PlayerKeyMaps() self.settings = Settings(self.player_key_maps) self.game_number = 0 if os.path.isfile(Game.SETTINGS_FILE_PATH): debug_log("loading settings from file " + Game.SETTINGS_FILE_PATH) self.settings.load_from_file(Game.SETTINGS_FILE_PATH) self.settings.save_to_file(Game.SETTINGS_FILE_PATH) # save the reformatted settings file (or create a new one) pygame.display.set_caption("Bombman") self.renderer = Renderer() self.apply_screen_settings() self.sound_player = SoundPlayer() self.sound_player.change_music() self.apply_sound_settings() self.apply_other_settings() self.map_name = "" self.random_map_selection = False self.game_map = None self.play_setup = PlaySetup() self.menu_main = MainMenu(self.sound_player) self.menu_settings = SettingsMenu(self.sound_player,self.settings,self) self.menu_about = AboutMenu(self.sound_player) self.menu_play_setup = PlaySetupMenu(self.sound_player,self.play_setup) self.menu_map_select = MapSelectMenu(self.sound_player) self.menu_play = PlayMenu(self.sound_player) self.menu_controls = ControlsMenu(self.sound_player,self.player_key_maps,self) self.menu_results = ResultMenu(self.sound_player) self.ais = [] self.state = Game.STATE_MENU_MAIN self.immortal_players_numbers = [] self.active_cheats = set() #---------------------------------------------------------------------------- def deactivate_all_cheats(self): self.active_cheats = set() debug_log("all cheats deactivated") #---------------------------------------------------------------------------- def activate_cheat(self, what_cheat): self.active_cheats.add(what_cheat) debug_log("cheat activated") #---------------------------------------------------------------------------- def deactivate_cheat(self, what_cheat): if what_cheat in self.active_cheats: self.active_cheats.remove(what_cheat) #---------------------------------------------------------------------------- def cheat_is_active(self, what_cheat): return what_cheat in self.active_cheats #---------------------------------------------------------------------------- def get_player_key_maps(self): return self.player_key_maps #---------------------------------------------------------------------------- def get_settings(self): return self.settings #---------------------------------------------------------------------------- def apply_screen_settings(self): display_flags = 0 if self.settings.fullscreen: display_flags += pygame.FULLSCREEN self.screen = pygame.display.set_mode(self.settings.screen_resolution,display_flags) screen_center = (Renderer.get_screen_size()[0] / 2,Renderer.get_screen_size()[1] / 2) pygame.mouse.set_pos(screen_center) self.renderer.update_screen_info() #---------------------------------------------------------------------------- def apply_sound_settings(self): self.sound_player.set_music_volume(self.settings.music_volume) self.sound_player.set_sound_volume(self.settings.sound_volume) #---------------------------------------------------------------------------- def apply_other_settings(self): self.player_key_maps.allow_control_by_mouse(self.settings.control_by_mouse) #---------------------------------------------------------------------------- def save_settings(self): self.settings.save_to_file(Game.SETTINGS_FILE_PATH) #---------------------------------------------------------------------------- def __check_cheat(self, cheat_string, cheat = None): if self.player_key_maps.string_was_typed(cheat_string): if cheat != None: self.activate_cheat(cheat) else: self.deactivate_all_cheats() self.player_key_maps.clear_typing_buffer() #---------------------------------------------------------------------------- ## Manages the menu actions and sets self.active_menu. def manage_menus(self): new_state = self.state prevent_input_processing = False # cheack if any cheat was typed: self.__check_cheat("party",game.CHEAT_PARTY) self.__check_cheat("herecomedatboi",game.CHEAT_ALL_ITEMS) self.__check_cheat("leeeroy",game.CHEAT_PLAYER_IMMORTAL) self.__check_cheat("revert") self.player_key_maps.get_current_actions() # this has to be called in order for player_key_maps to update mouse controls properly # ================ MAIN MENU ================= if self.state == Game.STATE_MENU_MAIN: self.active_menu = self.menu_main if self.active_menu.get_state() == Menu.MENU_STATE_CONFIRM: new_state = [ Game.STATE_MENU_PLAY_SETUP, Game.STATE_MENU_SETTINGS, Game.STATE_MENU_ABOUT, Game.STATE_EXIT ] [self.active_menu.get_selected_item()[0]] # ================ PLAY MENU ================= elif self.state == Game.STATE_MENU_PLAY: self.active_menu = self.menu_play if self.active_menu.get_state() == Menu.MENU_STATE_CANCEL: new_state = Game.STATE_PLAYING elif self.active_menu.get_state() == Menu.MENU_STATE_CONFIRM: if self.active_menu.get_selected_item() == (0,0): new_state = Game.STATE_PLAYING for player in self.game_map.get_players(): player.wait_for_bomb_action_release() elif self.active_menu.get_selected_item() == (1,0): new_state = Game.STATE_MENU_MAIN self.sound_player.change_music() self.deactivate_all_cheats() # ============== SETTINGS MENU =============== elif self.state == Game.STATE_MENU_SETTINGS: self.active_menu = self.menu_settings if self.active_menu.get_state() == Menu.MENU_STATE_CANCEL: new_state = Game.STATE_MENU_MAIN elif self.active_menu.get_state() == Menu.MENU_STATE_CONFIRM: if self.active_menu.get_selected_item() == (5,0): new_state = Game.STATE_MENU_CONTROL_SETTINGS elif self.active_menu.get_selected_item() == (7,0): new_state = Game.STATE_MENU_MAIN # ========== CONTROL SETTINGS MENU =========== elif self.state == Game.STATE_MENU_CONTROL_SETTINGS: self.active_menu = self.menu_controls self.active_menu.update(self.player_key_maps) # needs to be called to scan for pressed keys if self.active_menu.get_state() == Menu.MENU_STATE_CANCEL: new_state = Game.STATE_MENU_SETTINGS elif self.active_menu.get_state() == Menu.MENU_STATE_CONFIRM: if self.active_menu.get_selected_item() == (0,0): new_state = Game.STATE_MENU_SETTINGS # ================ ABOUT MENU ================= elif self.state == Game.STATE_MENU_ABOUT: self.active_menu = self.menu_about if self.active_menu.get_state() in (Menu.MENU_STATE_CONFIRM,Menu.MENU_STATE_CANCEL): new_state = Game.STATE_MENU_MAIN # ============== PLAY SETUP MENU ============== elif self.state == Game.STATE_MENU_PLAY_SETUP: self.active_menu = self.menu_play_setup if self.active_menu.get_state() == Menu.MENU_STATE_CANCEL: new_state = Game.STATE_MENU_MAIN elif self.active_menu.get_state() == Menu.MENU_STATE_CONFIRM: if self.active_menu.get_selected_item() == (0,1): new_state = Game.STATE_MENU_MAP_SELECT elif self.active_menu.get_selected_item() == (0,0): new_state = Game.STATE_MENU_MAIN # ============== MAP SELECT MENU ============== elif self.state == Game.STATE_MENU_MAP_SELECT: self.active_menu = self.menu_map_select if self.active_menu.get_state() == Menu.MENU_STATE_CANCEL: new_state = Game.STATE_MENU_PLAY_SETUP elif self.active_menu.get_state() == Menu.MENU_STATE_CONFIRM: self.map_name = self.active_menu.get_selected_map_name() self.random_map_selection = self.active_menu.random_was_selected() self.game_number = 1 # first game new_state = Game.STATE_GAME_STARTED self.deactivate_cheat(Game.CHEAT_PARTY) # ================ RESULT MENU ================ elif self.state == Game.STATE_MENU_RESULTS: self.active_menu = self.menu_results if self.active_menu.get_state() in (Menu.MENU_STATE_CONFIRM,Menu.MENU_STATE_CANCEL): new_state = Game.STATE_MENU_MAIN if new_state != self.state: # going to new state self.state = new_state self.active_menu.leaving() self.active_menu.process_inputs(self.player_key_maps.get_current_actions()) #---------------------------------------------------------------------------- def acknowledge_wins(self, winner_team_number, players): for player in players: if player.get_team_number() == winner_team_number: player.set_wins(player.get_wins() + 1) #---------------------------------------------------------------------------- def run(self): time_before = pygame.time.get_ticks() show_fps_in = 0 pygame_clock = pygame.time.Clock() while True: # main loop profiler.measure_start("main loop") dt = min(pygame.time.get_ticks() - time_before,100) time_before = pygame.time.get_ticks() pygame_events = [] for event in pygame.event.get(): if event.type == pygame.QUIT: self.state = Game.STATE_EXIT pygame_events.append(event) self.player_key_maps.process_pygame_events(pygame_events,self.frame_number) if self.state == Game.STATE_PLAYING: self.renderer.process_animation_events(self.game_map.get_and_clear_animation_events()) # play animations self.sound_player.process_events(self.game_map.get_and_clear_sound_events()) # play sounds profiler.measure_start("map rend.") self.screen.blit(self.renderer.render_map(self.game_map),(0,0)) profiler.measure_stop("map rend.") profiler.measure_start("sim.") self.simulation_step(dt) profiler.measure_stop("sim.") if self.game_map.get_state() == GameMap.STATE_GAME_OVER: self.game_number += 1 if self.game_number > self.play_setup.get_number_of_games(): previous_winner = self.game_map.get_winner_team() self.acknowledge_wins(previous_winner,self.game_map.get_players()) self.menu_results.set_results(self.game_map.get_players()) self.game_map = None self.state = Game.STATE_MENU_RESULTS # show final results self.deactivate_all_cheats() else: self.state = Game.STATE_GAME_STARTED # new game elif self.state == Game.STATE_GAME_STARTED: debug_log("starting game " + str(self.game_number)) previous_winner = -1 if self.game_number != 1: previous_winner = self.game_map.get_winner_team() kill_counts = [0 for i in xrange(10)] win_counts = [0 for i in xrange(10)] if self.game_map != None: for player in self.game_map.get_players(): kill_counts[player.get_number()] = player.get_kills() win_counts[player.get_number()] = player.get_wins() map_name_to_load = self.map_name if not self.random_map_selection else self.menu_map_select.get_random_map_name() with open(os.path.join(Game.MAP_PATH,map_name_to_load)) as map_file: map_data = map_file.read() self.game_map = GameMap(map_data,self.play_setup,self.game_number,self.play_setup.get_number_of_games(),self.cheat_is_active(Game.CHEAT_ALL_ITEMS)) player_slots = self.play_setup.get_slots() if self.cheat_is_active(Game.CHEAT_PLAYER_IMMORTAL): self.immortal_players_numbers = [] for i in xrange(len(player_slots)): if player_slots[i] != None and player_slots[i][0] >= 0: # cheat: if not AI self.immortal_players_numbers.append(i) # make the player immortal self.ais = [] for i in xrange(len(player_slots)): if player_slots[i] != None and player_slots[i][0] < 0: # indicates AI self.ais.append(AI(self.game_map.get_players_by_numbers()[i],self.game_map)) for player in self.game_map.get_players(): player.set_kills(kill_counts[player.get_number()]) player.set_wins(win_counts[player.get_number()]) self.acknowledge_wins(previous_winner,self.game_map.get_players()) # add win counts self.sound_player.change_music() self.state = Game.STATE_PLAYING elif self.state == Game.STATE_EXIT: break else: # in menu self.manage_menus() profiler.measure_start("menu rend.") self.screen.blit(self.renderer.render_menu(self.active_menu,self),(0,0)) profiler.measure_stop("menu rend.") pygame.display.flip() pygame_clock.tick() if show_fps_in <= 0: if DEBUG_FPS: debug_log("fps: " + str(pygame_clock.get_fps())) show_fps_in = 255 else: show_fps_in -= 1 self.frame_number += 1 profiler.measure_stop("main loop") if DEBUG_PROFILING: debug_log(profiler.get_profile_string()) profiler.end_of_frame() #---------------------------------------------------------------------------- ## Filters a list of performed actions so that there are no actions of # human players that are not participating in the game. def filter_out_disallowed_actions(self, actions): player_slots = self.play_setup.get_slots() result = filter(lambda a: (player_slots[a[0]] != None and player_slots[a[0]] >=0) or (a[1] == PlayerKeyMaps.ACTION_MENU), actions) return result #---------------------------------------------------------------------------- def simulation_step(self, dt): actions_being_performed = self.filter_out_disallowed_actions(self.player_key_maps.get_current_actions()) for action in actions_being_performed: if action[0] == -1: # menu key pressed self.state = Game.STATE_MENU_PLAY return profiler.measure_start("sim. AIs") for i in xrange(len(self.ais)): actions_being_performed = actions_being_performed + self.ais[i].play() profiler.measure_stop("sim. AIs") players = self.game_map.get_players() profiler.measure_start("sim. inputs") for player in players: player.react_to_inputs(actions_being_performed,dt,self.game_map) profiler.measure_stop("sim. inputs") profiler.measure_start("sim. map update") self.game_map.update(dt,self.immortal_players_numbers) profiler.measure_stop("sim. map update") #---------------------------------------------------------------------------- ## Sets up a test game for debugging, so that the menus can be avoided. def setup_test_game(self, setup_number = 0): if setup_number == 0: self.map_name = "classic" self.random_map_selection = False self.game_number = 1 self.state = Game.STATE_GAME_STARTED elif setup_number == 1: self.play_setup.player_slots = [(-1,i) for i in xrange(10)] self.random_map_selection = True self.game_number = 1 self.state = Game.STATE_GAME_STARTED else: self.play_setup.player_slots = [((i,i) if i < 4 else None) for i in xrange(10)] self.map_name = "classic" self.game_number = 1 self.state = Game.STATE_GAME_STARTED #============================================================================== if __name__ == "__main__": profiler = Profiler() # profiler object is global, for simple access game = Game() if len(sys.argv) > 1: if "--test" in sys.argv: # allows to quickly init a game game.setup_test_game(0) elif "--test2" in sys.argv: game.setup_test_game(1) elif "--test3" in sys.argv: game.setup_test_game(2) game.run() ``` #### File: jemisonf/bombman-cs-362/menu_test.py ```python from bombman import Menu from stub_sound_player import StubSoundPlayer import unittest class MenuTestCase(unittest.TestCase): def setUp(self): self.sound_player = StubSoundPlayer() self.menu = Menu(self.sound_player) self.menu.items = [("one", "two")] def testLeaving(self): """ Test if the leaving function sets the menu_left flag """ menu = self.menu menu.leaving() assert menu.menu_left def testPromptIfNeeded(self): """ Test if the user is prompted when prompt if needed is called """ menu = self.menu menu.state = Menu.MENU_STATE_CONFIRM menu.confirm_prompt_result = None self.assertEqual(menu.get_selected_item(), (0,0)) menu.prompt_if_needed((0,0)) self.assertEqual(menu.get_state(), Menu.MENU_STATE_CONFIRM_PROMPT) def testPromptIfNeededWithConditionsNotMet(self): """ Test if the user is not prompted when the right conditions are not met """ menu = self.menu menu.state = Menu.MENU_STATE_CONFIRM menu.confirm_prompt_result = True self.assertEqual(menu.get_selected_item(), (0,0)) menu.prompt_if_needed((0,0)) self.assertNotEqual(menu.get_state(), Menu.MENU_STATE_CONFIRM_PROMPT) # TODO this appears to be an actual bug def testScrollDown(self): """ Test scrolling down from initial state """ menu = self.menu menu.scroll(False) # scroll down scroll_pos_down = menu.get_scroll_position() self.assertEqual(scroll_pos_down, 1) def testScrollUp(self): """ Test scrolling up from modified state """ menu = self.menu menu.scroll_position = 1 menu.scroll(True) self.assertEqual(menu.get_scroll_position(), 0) if __name__ == "__main__": unittest.main() ``` #### File: jemisonf/bombman-cs-362/player_test.py ```python from playerClass import Player, Positionable import unittest print "Running Player class tests" class PlayerTestCase(unittest.TestCase): def setUp(self): testPlayer = Player() def testNumber(self): """ tests to see if a player's number is correctly updated """ numTestP = Player() numTestP.number = 0 assert(numTestP.number == 0), "player number was not correctly set!" def testKillCount(self): """ tests to see if set_kills and get_kills is correctly updated """ killTestP = Player() killTestP.set_kills(3) assert(killTestP.get_kills() == 3), "player kills not successfully updated" def testWinCount(self): """ tests to see if set_wins and get_wins is correctly updated """ winTestP = Player() winTestP.set_wins(7) assert(winTestP.get_wins() == 7), "Player wins not successfully updated" def testWalk(self): """ tests to see if walking is correctly updated """ walker = Player() walker.state = 4 # walking upwards assert(walker.is_walking() == True) walker.state = 5 # walking right assert(walker.is_walking() == True) walker.state = 6 # walking downwards assert(walker.is_walking() == True) walker.state = 7 # walking left assert(walker.is_walking() == True) # what if we are idle walker.state = 2 # idle down state assert(walker.is_walking() == False) def testEnemyDetection(self): """ tests to see if the function is_enemy correctly checks this """ guineaPig = Player() testCaseP = Player() guineaPig.team_number = 1 testCaseP.team_number = 2 assert(guineaPig.is_enemy(testCaseP) == True) guineaPig.team_number = 2 assert(guineaPig.is_enemy(testCaseP) != True) def testDeath(self): """ tests to see if death is properly reported by is_dead """ redshirt = Player() redshirt.state = 10 # the state for the player being assert(redshirt.is_dead() == True) ``` #### File: jemisonf/bombman-cs-362/stub_sound_player.py ```python class StubSoundPlayer: def __init__(self): pass def play_once(self, filename): pass def set_music_volume(self, new_volume): pass def change_music(self): pass def play_sound_event(self, sound_event): pass def process_events(self, sound_event_list): pass ```
{ "source": "jemisonf/ingredient-phrase-tagger", "score": 2 }
#### File: jemisonf/ingredient-phrase-tagger/server.py ```python import json import os from ingredient_phrase_tagger.training import parse_ingredients from flask import Flask, request model_path = os.getenv("MODEL_PATH", "") app = Flask(__name__) @app.route("/ingredients", methods=["POST"]) def ingredients(): if request.method == "POST": body = request.get_json() crf_output = parse_ingredients._exec_crf_test(body["data"], model_path) results = json.loads(parse_ingredients._convert_crf_output_to_json(crf_output.rstrip().split("\n"))) return {"data": results} ```
{ "source": "JEMIX-LTD/label-studio", "score": 2 }
#### File: tests/data_manager/test_api_actions.py ```python import pytest import json from ..utils import make_task, make_annotation, make_prediction, project_id from projects.models import Project @pytest.mark.parametrize( "tasks_count, annotations_count, predictions_count", [ [10, 2, 2], ], ) @pytest.mark.django_db def test_action_delete_all_tasks(tasks_count, annotations_count, predictions_count, business_client, project_id): # create payload = dict(project=project_id, data={"test": 1}) response = business_client.post( "/api/dm/views/", data=json.dumps(payload), content_type="application/json", ) assert response.status_code == 201, response.content view_id = response.json()["id"] project = Project.objects.get(pk=project_id) for _ in range(0, tasks_count): task_id = make_task({"data": {}}, project).id print('TASK_ID: %s' % task_id) for _ in range(0, annotations_count): print('COMPLETION') make_annotation({"result": []}, task_id) for _ in range(0, predictions_count): make_prediction({"result": []}, task_id) business_client.post(f"/api/dm/actions?project={project_id}&id=delete_tasks", json={'selectedItems': {"all": True, "excluded": []}}) assert project.tasks.count() == 0 @pytest.mark.parametrize( "tasks_count, annotations_count, predictions_count", [ [10, 2, 2], ], ) @pytest.mark.django_db def test_action_delete_all_annotations(tasks_count, annotations_count, predictions_count, business_client, project_id): # create payload = dict(project=project_id, data={"test": 1}) response = business_client.post( "/api/dm/views/", data=json.dumps(payload), content_type="application/json", ) assert response.status_code == 201, response.content view_id = response.json()["id"] project = Project.objects.get(pk=project_id) for _ in range(0, tasks_count): task_id = make_task({"data": {}}, project).id print('TASK_ID: %s' % task_id) for _ in range(0, annotations_count): print('COMPLETION') make_annotation({"result": []}, task_id) for _ in range(0, predictions_count): make_prediction({"result": []}, task_id) # get next task - should be 0 status = business_client.post(f"/api/dm/actions?project={project_id}&id=next_task", json={'selectedItems': {"all": True, "excluded": []}}) assert status.status_code == 404 business_client.post(f"/api/dm/actions?project={project_id}&id=delete_tasks_annotations", json={'selectedItems': {"all": True, "excluded": []}}) # get next task - should be 1 status = business_client.post(f"/api/dm/actions?project={project_id}&id=next_task", json={'selectedItems': {"all": True, "excluded": []}}) assert status.status_code == 200 ```
{ "source": "jemjemejeremy/ha-lta", "score": 3 }
#### File: custom_components/ha-lta/sensor.py ```python from datetime import datetime, timedelta, timezone import logging import async_timeout from dateutil import parser, tz from ltapysg import get_bus_arrival import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import TIME_MINUTES import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity from homeassistant.helpers.update_coordinator import DataUpdateCoordinator _LOGGER = logging.getLogger(__name__) SCAN_INTERVAL = timedelta(minutes=1) CONF_API_KEY = "api_key" CONF_BUS_STOP_CODE = "bus_stop_code" BUS_ARRIVING = "ARR" BUS_UNAVAILABLE = "NA" PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( {vol.Required(CONF_API_KEY): cv.string, vol.Required(CONF_BUS_STOP_CODE): cv.string} ) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Setup sensor and initialize platform with configuration values""" hass.data["lta"] = {"buses": []} def create_bus_sensor( bus_number, bus_order, bus_latitude, bus_longitude, bus_timing ): def convert_datetime(bustime): """Convert UTC 8+ datetime to the number of minutes before bus arrive""" if bustime: time_bus = parser.parse(bustime).astimezone(tz.UTC) time_now = datetime.now(tz=timezone.utc) time_diff = time_bus - time_now time_diff_formatted = round(time_diff.total_seconds() / 60) if time_diff_formatted <= 1: return BUS_ARRIVING else: return time_diff_formatted else: return BUS_UNAVAILABLE bus_dict = { "unique_id": f"{config.get(CONF_BUS_STOP_CODE)}_{bus_number}_{bus_order}", "attributes": {} if (bus_latitude == "0" and bus_longitude == "0") or (bus_latitude == "" and bus_longitude == "") else { "latitude": bus_latitude, "longitude": bus_longitude }, "state": convert_datetime(bus_timing), } return bus_dict async def async_update_data(): """Poll API and update data to sensors""" async with async_timeout.timeout(20): sensors = [] buses = [] try: data = await get_bus_arrival( config.get(CONF_API_KEY), config.get(CONF_BUS_STOP_CODE) ) for bus in data: buses.append(bus["ServiceNo"]) if not hass.data["lta"]["buses"]: hass.data["lta"]["buses"] = list(buses) else: if len(buses) > len(hass.data["lta"]["buses"]): hass.data["lta"]["buses"] = list(buses) for bus in hass.data["lta"]["buses"]: test = next( (x for x in data if x["ServiceNo"] == bus), {"ServiceNo": ""} ) sensors.append( create_bus_sensor( bus, "1", test["NextBus"]["Latitude"], test["NextBus"]["Longitude"], test["NextBus"]["EstimatedArrival"], ) ) sensors.append( create_bus_sensor( bus, "2", test["NextBus2"]["Latitude"], test["NextBus2"]["Longitude"], test["NextBus2"]["EstimatedArrival"], ) ) sensors.append( create_bus_sensor( bus, "3", test["NextBus3"]["Latitude"], test["NextBus3"]["Longitude"], test["NextBus3"]["EstimatedArrival"], ) ) except Exception as e: print(e) # _LOGGER.error( # e # # "Unable to interact with Datamall, ensure you have an internet connection and a proper bus stop code" # ) for bus in hass.data["lta"]["buses"]: sensors.append(create_bus_sensor(bus, "1", "", "", "",)) sensors.append(create_bus_sensor(bus, "2", "", "", "",)) sensors.append(create_bus_sensor(bus, "3", "", "", "",)) return sensors coordinator = DataUpdateCoordinator( hass, _LOGGER, name="sensor", update_method=async_update_data, update_interval=SCAN_INTERVAL, ) await coordinator.async_refresh() async_add_entities( LandTransportSensor(coordinator, idx) for idx, ent in enumerate(coordinator.data) ) class LandTransportSensor(Entity): """ Sensor that reads bus arrival data from LTA's Datamall. The Datamall provides transport related data. """ def __init__(self, coordinator, idx): """Initialize the sensor.""" self.coordinator = coordinator self.idx = idx self._attributes = coordinator.data[idx]["attributes"] self._unique_id = coordinator.data[idx]["unique_id"] self._state = coordinator.data[idx]["state"] @property def unique_id(self): """Return the unique id of the sensor.""" return self.coordinator.data[self.idx]["unique_id"] @property def icon(self): """Return the icon of the sensor.""" if(self.coordinator.last_update_success): return "mdi:bus-clock" else: return "mdi:bus-alert" @property def device_state_attributes(self): """Return the attributes of the sensor""" return self.coordinator.data[self.idx]["attributes"] @property def state(self): """Return the state of the sensor.""" return self.coordinator.data[self.idx]["state"] @property def should_poll(self): return False @property def unit_of_measurement(self): """Return the unit of measurement.""" return TIME_MINUTES @property def available(self): """Return the availability of sensor""" return self.coordinator.last_update_success async def async_added_to_hass(self): self.async_on_remove( self.coordinator.async_add_listener(self.async_write_ha_state) ) async def async_update(self): """Update sensor data""" await self.coordinator.async_request_refresh() ```
{ "source": "jeml-lang/jeml-py", "score": 2 }
#### File: jeml-py/jeml/decoder.py ```python import sys from antlr4 import * from jeml.engine.jemlLexer import jemlLexer from jeml.engine.jemlParser import jemlParser from jeml.engine.jemlListener import jemlListener from jeml.engine.jemlErrorHandler import ErrorHandler def parse(input, filename=None): lexer = jemlLexer(input) stream = CommonTokenStream(lexer) parser = jemlParser(stream) lexer.removeErrorListeners() parser.removeErrorListeners() lexer.addErrorListener(ErrorHandler(filename)) parser.addErrorListener(ErrorHandler(filename)) AST = parser.document() listener = jemlListener() walker = ParseTreeWalker() walker.walk(listener, AST) return listener.jeml def from_string(string): input = InputStream(string) return parse(input) def from_file(file): input = FileStream(file) return parse(input, file) ``` #### File: jeml-py/tests/to_string.py ```python import os import unittest from jeml import from_string, from_file, to_string class JEMLParsing(unittest.TestCase): def setUp(self): if "tests" not in os.getcwd(): os.chdir(os.getcwd() + "/tests/") def test_dict_basic(self): basic_dict = {'_val1': {'_val1-1': 1, '_val1-2': '_val1 string'}} basic_string = to_string(basic_dict) self.assertEqual(basic_string, """_val1 { _val1-1 1 _val1-2 "_val1 string" }""".strip()) def test_dict_nested_maps(self): basic_dict_nested_maps = {'_val1': {'_val1-1': {'_val1-1-1': True},'_val1-2': {'_val1-2-1': {},'_val1-2-2': {}}}} basic_dict_nested_string = to_string(basic_dict_nested_maps) self.assertEqual(basic_dict_nested_string, """ _val1 { _val1-1 { _val1-1-1 true } _val1-2 { _val1-2-1 {} _val1-2-2 {} } }""".strip()) def test_dict_nested_list(self): basic_dict_nested_lists = {'_val1': { '_val1-1': [[], [], [], [], []], '_val1-2': [[[[]]]] } } basic_dict_nested_lists_string = to_string(basic_dict_nested_lists) self.assertEqual(basic_dict_nested_lists_string, """ _val1 { _val1-1 [[] [] [] [] []] _val1-2 [[[[]]]] } """.strip()) if __name__ == '__main__': unittest.main(verbosity=2) ```
{ "source": "JemLukeBingham/used_car_scraper", "score": 3 }
#### File: JemLukeBingham/used_car_scraper/automart_spider.py ```python import scrapy from text_formatting import format_mileage, format_year, format_price class AutomartSpider(scrapy.Spider): name = 'automart' start_urls = [ 'https://www.automart.co.za/used-cars/', ] def parse(self, response): for result in response.xpath("//div[@class='search-results']"): car = {} make_model = result.xpath('div/div/p/em/text()').getall() # require data has exact form [make, model] if len(make_model) == 2: car['make'] = make_model[0] car['model'] = make_model[1] else: self.logger.warning("Received incorrect data: %r" % make_model) car['dealer_phone'] = result.css("a#phnum::text").get() car['mileage'] = format_mileage(result.xpath("div/div/div/i[@class='mi']/em/text()").get()) car['year'] = format_year(result.xpath("div/div/div/i[@class='ye']/em/em/text()").get()) car['price'] = format_price(result.xpath("div/div/span/em/text()").get()) car['link'] = response.url + result.xpath("div/div/a/@href").get() car['province'] = result.xpath("div/div/div/i[@class='re']/em/em/text()").get() car['description'] = result.xpath("div/div/h3/a/em/text()").get() car['long_description'] = result.xpath("div/div/span/text()").get() yield car next_page = response.xpath("//nav/ul/li/a[@aria-label='Next']/@href").get() if next_page is not None: yield response.follow(next_page, self.parse) ``` #### File: JemLukeBingham/used_car_scraper/gumtree_spider.py ```python import scrapy from urllib.parse import urljoin from text_formatting import format_mileage, format_year, format_price class GumtreeSpider(scrapy.Spider): name = 'gumtree' base_url = 'https://www.gumtree.co.za/' start_urls = [ urljoin(base_url, 's-cars-bakkies/v1c9077p1'), ] def parse(self, response): for result in response.xpath("//div[@class='view']/\ div[@id='srpAds']/\ div[@class='related-items']/\ div[@class='related-content']/\ div/div[@class='related-ad-content']"): car = {} price = result.xpath("div[@class='price']/span/span[@class='ad-price']/text()").get() car['price'] = format_price(price) car['description'] = result.xpath("div[@class='description-content']/\ span[@class='related-ad-description']/\ span[@class='description-text']/text()").get() yield car next_page = response.xpath("//div[@class='pagination-content']/span/a[@class=' icon-pagination-right']/@href").get() if next_page is not None: yield response.follow(urljoin(self.base_url, next_page), self.parse) ```
{ "source": "jemmypotter/Python", "score": 3 }
#### File: jemmypotter/Python/ENGR 102.py ```python critics={'<NAME>': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5, 'The Night Listener': 3.0}, '<NAME>': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, 'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 3.5}, '<NAME>': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0, 'Superman Returns': 3.5, 'The Night Listener': 4.0}, '<NAME>': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'The Night Listener': 4.5, 'Superman Returns': 4.0, 'You, Me and Dupree': 2.5}, '<NAME>': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 2.0}, '<NAME>': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5}, 'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}} # a dictionary for movie critics and their ratings print (critics['<NAME>'])#output is {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'Superman Returns': 3.5, 'The Night Listener': 3.0, 'You, Me and Dupree': 2.5} print (critics['<NAME>']['Lady in the Water']) #output is 2.5 from math import sqrt #returns a distance based similarity score for person1 and person2 def sim_distance(prefs,person1,person2): si={} #get the list of shared items for item in prefs[person1]: if item in prefs[person2]: si[item]=1 #this means their ratings are identical if len(si)==0: return 0 #if they are no ratings than it will be count as 0 #sum_of_squares=sum([pow(prefs[person1][item]-prefs[person2][item],2) def distance(dict,per1,per2): shared_items={} for item in dict[per1]: #an item is in the dict of person 1 if item in dict[per2]: #if same item is in the dict of person 2 shared_items[item]=1 #the value will be 1 if len(shared_items)==0: return 0 inital_dis=sum([pow(dict[per1][item]-dict[per2][item],2) for item in dict[per1] if item in dict[per2] ]) all_sum=sqrt(inital_dis) return 1/(1+all_sum) print (distance(critics,'<NAME>','Toby')) print (distance(critics, '<NAME>', '<NAME>')) # Perason correlation score def sim_pearson(dict,pers1,pers2): si={} for item in dict[pers1]:#an item is in the dict for person 1 if item in dict[pers2]: #the item is also is in the dict for person 2 si[item]=1 #the value will be 1 n=len(si) if n==0: #if there is no commen item than the value will be 0 return 0 #adding all the preferences sum1=sum([dict[pers1][item] for item in si]) sum2=sum([dict[pers2][item] for item in si]) sum1sq=sum([pow(dict[pers1][item],2) for item in si]) sum2sq=sum([pow(dict[pers2][item],2) for item in si]) All_Sum=sum([dict[pers1][item]*dict[pers2][item] for item in si]) num=All_Sum-(sum1*sum2/n) den=sqrt((sum1sq-pow(sum1,2)/n)*(sum2sq-pow(sum2,2)/n)) if den==0: return 0 r= num/den return r print (sim_pearson(critics,'<NAME>','Toby')) #returns the best matches for person from the critics dict #number of results and similarity function are optinal params ``` #### File: jemmypotter/Python/engr_102.py ```python import re #from clusters import * from tkinter import * from tkinter.ttk import Combobox import tkinter.filedialog as tkFileDialog from PIL import Image from PIL import ImageTk # Declare district start line DISTRICT_START = 'Kaynak: YSK' # Declare constants for the view class DENDROGRAM_FILE_NAME = 'clusters.jpg' DISTRICT_BUTTON = 0 POLITICAL_PARTY_BUTTON = 1 # GUI class class View: # Constructor def __init__(self, data_center): # This variable keeps track of the previously pressed button. If the cluster districts button is # pressed previously, refine analysis button will call cluster_districts method of the data center class. # If the cluster political parties button is pressed previously, refine analysis button will call # cluster_political_parties method from the data center class. self.last_button_pressed = 0 # Save the data center instance to self self.data_center = data_center # Set the root view self.root = Tk() # Declare instance variables # Window height width for the resolution 1366x768 self.window_width = 900.0 self.window_height = 650.0 # Declare the GUI components that should be accessible from different methods inside this class # Declare row_3 and row_4 frames self.row_3 = None self.row_4 = None # Declare districts listbox self.districts_listbox = None # Declare canvas to show the dendrogram image self.canvas = None # Declare the image to be displayed in canvas self.dendrogram_image = None # Declare threshold combobox self.threshold_combobox = None # Declare input file name self.input_filename = "" # Define the GUI self.define_gui() # Shows the view def show(self): # Set the window title self.root.title("Clustering") # Hide the root window self.root.withdraw() self.root.update_idletasks() # Calculate width and height of the window # The GUI is designed on a system where the resolution is 1366x768, # for this program to scale properly in other resolutions, default width and height of the system is multiplied # by the following ratios width = self.root.winfo_screenwidth() * (self.window_width / 1366) height = self.root.winfo_screenheight() * (self.window_height / 768) # Calculate the position of the window in order to center it x = (self.root.winfo_screenwidth() / 2.0) - (width / 2.0) y = (self.root.winfo_screenheight() / 2.0) - (height / 2.0) # Apply the calculated geometry self.root.geometry("%dx%d+%d+%d" % (width, height, x, y)) # Show the root window self.root.deiconify() # Show window Tk.mainloop(self.root) # Defines how the user interface will look like def define_gui(self): # Create and place the label label = Label(text='Election Data Analysis Tool v. 1.0', font=("Helvetica", 12, 'bold'), bg='red', fg='white') label.grid(row=0, column=0, sticky=EW) # Expand the label along the row Grid.columnconfigure(self.root, 0, weight=1) # Create and place the load data button load_election_data_button = Button(text='Load Election Data', height=2, width=40, command=self.load_election_data_button_pressed) load_election_data_button.grid(row=1, column=0, padx=10, pady=10) # Create a frame in row 2 so pack() can be used inside of it row_2 = Frame(self.root) row_2.grid(row=2) # Create cluster district button in the frame cluster_district_button = Button(row_2, text='Cluster Districts', height=3, width=40, command=self.cluster_districts_button_pressed) # Place the button to the side left of the frame cluster_district_button.pack(side=LEFT) # Create cluster parties button in the frame cluster_parties_button = Button(row_2, text='Cluster Political Parties', height=3, width=40, command=self.cluster_parties_button_pressed) # Place the button to the side right of the frame cluster_parties_button.pack(side=RIGHT) # Create a frame in row 3 so pack() can be used inside of it self.row_3 = row_3 = Frame(self.root) # Create and place the X scrollbar of the canvas canvas_x_scrollbar = Scrollbar(row_3, orient=HORIZONTAL) canvas_x_scrollbar.pack(side=BOTTOM, fill=X) # Create and place the Y scrollbar of the canvas canvas_y_scrollbar = Scrollbar(row_3, orient=VERTICAL) canvas_y_scrollbar.pack(side=RIGHT, fill=Y) # Create the canvas which will display the dendrogram image self.canvas = canvas = Canvas(row_3, xscrollcommand=canvas_x_scrollbar.set, yscrollcommand=canvas_y_scrollbar.set, width=770, height=300) # Place the canvas inside the frame canvas.pack(fill=BOTH, expand=YES) # Set up the x and y scrollbars for the canvas canvas_x_scrollbar.config(command=canvas.xview) canvas_y_scrollbar.config(command=canvas.yview) # Create a frame in row 4 so pack() can be used inside of it self.row_4 = row_4 = Frame(self.root) # Create the districts label districts_label = Label(row_4, text='Districts:') districts_label.pack(side=LEFT) # Create a scrollbar for the districts listbox districts_scrollbar = Scrollbar(row_4) # Create and place the listbox for districts districts_listbox = Listbox(row_4, yscrollcommand=districts_scrollbar.set, height=9, selectmode=EXTENDED) districts_listbox.pack(side=LEFT) # Save the listbox to the instance variable self.districts_listbox = districts_listbox # Configure the listbox in order to keep the selected item after the user clicks on elsewhere districts_listbox.configure(exportselection=False) # Place and set the scrollbar for the districts listbox districts_scrollbar.pack(side=LEFT, fill=Y) districts_scrollbar.config(command=districts_listbox.yview) # Create and place the threshold label threshold_label = Label(row_4, text='Threshold:') threshold_label.pack(side=LEFT) # Create and place the threshold combobox threshold_combobox = Combobox(row_4, values=['0%', '1%', '10%', '20%', '30%', '40%', '50%'], width=6, state="readonly") threshold_combobox.pack(side=LEFT) # Save the combobox to the instance variable self.threshold_combobox = threshold_combobox # Set the current element in the combobox as the first element threshold_combobox.current(0) # Create and place the refine analysis button refine_analysis_button = Button(row_4, text='Refine Analysis', height=2, width=40, command=self.refine_analysis_button_pressed) refine_analysis_button.pack(side=LEFT) # Method to handle presses to the load election data button def load_election_data_button_pressed(self): # Get the selected file name from the tkDialog self.input_filename = tkFileDialog.askopenfilename(initialdir='/', title='Select file', filetypes=(('text files', '*.txt'), ('all files', '*.*'))) # If the user has selected a file name if self.input_filename != '': # Parse the file self.data_center.parse_input(self.input_filename) # Add the parsed districts obtained from the data center to the districts listbox for district_name in self.data_center.district_names: self.districts_listbox.insert(END, district_name) # Method to handle presses to the cluster districts button def cluster_districts_button_pressed(self): # Set the previously pressed button self.last_button_pressed = DISTRICT_BUTTON # Clear the selection of the districts listbox self.districts_listbox.selection_clear(0, END) # Check if there is an input file if self.input_filename != '': # Try to create a dendrogram try: # Command the data center to create a dendrogram image of the clustered districts with # the selected districts and the threshold self.data_center.cluster_districts([], threshold=int(self.threshold_combobox.get()[:-1])) # Open the dendrogram image using PIL dendrogram_image = Image.open(DENDROGRAM_FILE_NAME) # Convert image to the Tkinter loadable format using PhotoImage and save its instance to the view class # in order to prevent it from getting garbage collected self.dendrogram_image = ImageTk.PhotoImage(dendrogram_image) # Load image into the canvas self.canvas.create_image(0, 0, image=self.dendrogram_image, anchor='nw') # If the selection is not suitable for a dendrogram except (ZeroDivisionError, IndexError): # Clear the canvas self.canvas.delete("all") finally: # Set up the canvas' scroll region self.canvas.config(scrollregion=self.canvas.bbox(ALL)) # Place analysis components to the root grid self.place_analysis_on_grid() # Method to handle presses to the cluster parties button def cluster_parties_button_pressed(self): # Set the previously pressed button self.last_button_pressed = POLITICAL_PARTY_BUTTON # Clear the selection of the districts listbox self.districts_listbox.selection_clear(0, END) # Check if there is an input file if self.input_filename != '': # Try to create a dendrogram try: # Command the data center to create a dendrogram image of the clustered political parties with # the selected districts and the threshold self.data_center.cluster_political_parties([], threshold=int(self.threshold_combobox.get()[:-1])) # Open the dendrogram image using PIL dendrogram_image = Image.open(DENDROGRAM_FILE_NAME) # Convert image to the Tkinter loadable format using PhotoImage and save its instance to the view class # in order to prevent it from getting garbage collected self.dendrogram_image = ImageTk.PhotoImage(dendrogram_image) # Load image into the canvas self.canvas.create_image(0, 0, image=self.dendrogram_image, anchor='nw') # If the selection is not suitable for a dendrogram except (ZeroDivisionError, IndexError): # Clear the canvas self.canvas.delete("all") finally: # Set up the canvas' scroll region self.canvas.config(scrollregion=self.canvas.bbox(ALL)) # Place analysis components to the root grid self.place_analysis_on_grid() # Method to handle presses to the refine analysis button def refine_analysis_button_pressed(self): # Get selected districts from the districts listbox selected_districts = [self.data_center.district_names[index] for index in self.districts_listbox.curselection()] # Try to create a dendrogram try: # If the last pressed button is cluster districts if self.last_button_pressed == DISTRICT_BUTTON: # Command the data center to create a dendrogram image of clustered districts with # the selected districts and the threshold self.data_center.cluster_districts(selected_districts, int(self.threshold_combobox.get()[:-1])) # If the last pressed button is cluster political parties else: # Command the data center to create a dendrogram image of the clustered political parties with # the selected districts and the threshold self.data_center.cluster_political_parties(selected_districts, int(self.threshold_combobox.get()[:-1])) # Open the dendrogram image using PIL dendrogram_image = Image.open(DENDROGRAM_FILE_NAME) # Convert image to the Tkinter loadable format using PhotoImage and save its instance to the view class # in order to prevent it from getting garbage collected self.dendrogram_image = ImageTk.PhotoImage(dendrogram_image) # Load image into the canvas self.canvas.create_image(0, 0, image=self.dendrogram_image, anchor='nw') # If the selection is not suitable for a dendrogram except (ZeroDivisionError, IndexError): # Clear the canvas self.canvas.delete("all") finally: # Set up the canvas' scroll region self.canvas.config(scrollregion=self.canvas.bbox(ALL)) # Method to add row_3 and row_4 frames to the root grid def place_analysis_on_grid(self): self.row_3.grid(row=3) self.row_4.grid(row=4) # District class which holds data about a district class District: # Constructor def __init__(self, name): # Declare instance variables self.name = name self._election_results = {} # Method to add a political party acronym and vote percentage to the district def add_political_party(self, acronym, vote_percentage): # Add given values to the election results dictionary self._election_results[acronym] = vote_percentage # Returns the given political party's vote percentage in this district def get_political_party_percentage(self, acronym): # Try to get vote percentage of the given political party from the election results of self try: return self._election_results[acronym] # If there is no vote percentage for the given party in this district, return 0 except KeyError: return 0.0 # Political party class which holds data about a political party class PoliticalParty: # Constructor def __init__(self, acronym): # Declare instance variables self.acronym = acronym self._election_results = {} self.vote_count = 0 # Method to add a district name and vote percentage to the political party def add_district(self, name, vote_percentage, count): # Add given values to the election results dictionary self._election_results[name] = vote_percentage self.vote_count += count # Returns the vote percentage of self for the given district def get_district_percentage(self, district_name): # Try to get vote percentage of the given district from the election results of self try: return self._election_results[district_name] # If there is no vote percentage for the given district in this political party, return 0 except KeyError: return 0.0 # Class to be used as data center for the whole project class DataCenter: # Constructor def __init__(self): # Declare instance variables self.districts = {} self.political_parties = {} self.district_names = [] self.political_party_names = [] self.total_vote_count = 0 self.political_party_vote_percentages = {} # Parses the input file using the given name and populates necessary data in self def parse_input(self, txt_filename): # While the file is open with open(txt_filename, 'r') as txt_file: # Get a list of lines excluding line terminators lines = [line.rstrip('\n') for line in txt_file] # Regular expression to match lines starting with two capital letters political_party_expression = re.compile(r'(^[A-Z][A-Z].*)') # Declare district name variable district_name = '' # For each line in the input file for i in range(len(lines)): # If the line corresponds to a district start if DISTRICT_START in lines[i]: # Get the district name district_name = lines[i+1] # Instantiate a district object with the parsed district name and save it to the districts dictionary self.districts[district_name] = District(district_name) # If the line contains a vote percentage of a political party and the party is not BGMSZ elif political_party_expression.search(lines[i]) and 'BGMSZ' not in lines[i]: # Split the line by tab character split_list = lines[i].split('\t') # Get acronym and the percentage and vote count acronym = split_list[0] percentage = float(split_list[-1][1:]) count = int(split_list[-2].replace('.', '')) # Try to add a district to an instance of a political party stored in the dictionary try: self.political_parties[acronym].add_district(district_name, percentage, count) # If the political party does not exist in the dictionary except KeyError: # Instantiate a political party object with the parsed acronym and save it to the dictionary self.political_parties[acronym] = PoliticalParty(acronym) # Add the parsed district to the created political party object self.political_parties[acronym].add_district(district_name, percentage, count) # Add the parsed political party acronym and the vote percentage to the previously parsed district self.districts[district_name].add_political_party(acronym, percentage) # Add total vote count in the district to total count in self elif 'Toplam\t' in lines[i]: self.total_vote_count += int(lines[i].split('\t')[-1].replace('.', '')) # Create political party names and district names from the dictionary keys self.political_party_names = list(self.political_parties.keys()) self.district_names = sorted(list(self.districts.keys())) # For each political party for political_party_name in self.political_party_names: # Calculate its total vote percentage self.political_party_vote_percentages[political_party_name] = \ (self.political_parties[political_party_name].vote_count / float(self.total_vote_count)) * 100.0 # Method that clusters districts using the given district list and threshold. This method creates a # dendrogram image file to be read into the canvas in view. Throws ZeroDivisionError def cluster_districts(self, selected_districts, threshold=0): # Assert that dictionaries are filled assert self.districts != {} and self.political_parties != {} # If no district is selected by the user, cluster all districts if not selected_districts: selected_districts = self.district_names # Filter out political party names using their total vote percentages and the given threshold value political_party_names = [political_party for political_party in self.political_party_names if self.political_party_vote_percentages[political_party] >= threshold] # Initialize the matrix to be clustered. Rows correspond to districts, columns correspond to political parties cluster_matrix = [[0.0]*len(political_party_names) for i in range(len(selected_districts))] # For each row for i in range(len(selected_districts)): # For each column for j in range(len(political_party_names)): # Each cell gets filled by the vote percentage of the party j in the district i cluster_matrix[i][j] = self.districts[selected_districts[i]]\ .get_political_party_percentage(political_party_names[j]) # Create a hierarchical cluster using euclidean distance cluster = hcluster(cluster_matrix, distance=sim_distance) # Create the dendrogram image drawdendrogram(cluster, selected_districts) # Method that clusters political parties using the given district list and threshold. This method creates a # dendrogram image file to be read into the canvas in view. Throws ZeroDivisionError def cluster_political_parties(self, selected_districts, threshold=0): # Assert that dictionaries are filled assert self.districts != {} and self.political_parties != {} # If no district is selected by the user, cluster all districts if not selected_districts: selected_districts = self.district_names # Filter out political party names using their total vote percentages and the given threshold value political_party_names = [political_party for political_party in self.political_party_names if self.political_party_vote_percentages[political_party] >= threshold] # Initialize the matrix to be clustered. Rows correspond to political parties, columns correspond to districts. cluster_matrix = [[0.0] * len(selected_districts) for i in range(len(political_party_names))] # For each row for i in range(len(political_party_names)): # For each column for j in range(len(selected_districts)): # Each cell gets filled by the vote percentage of the party i in the district j cluster_matrix[i][j] = self.political_parties[political_party_names[i]] \ .get_district_percentage(selected_districts[j]) # Create a hierarchical cluster using euclidean distance cluster = hcluster(cluster_matrix, distance=sim_distance) # Create the dendrogram image drawdendrogram(cluster, political_party_names) # Main method def main(): # Initialize the data center data_center = DataCenter() # Initialize and show the GUI gui = View(data_center) gui.show() # Execute the main method if __name__ == "__main__": main() ``` #### File: jemmypotter/Python/Followers.py ```python import xlrd from tkinter.filedialog import askopenfilename def path(): p=askopenfilename() return p def part(): p=path() workbook=xlrd.open_workbook(p) worksheet=workbook.sheet_by_index(0) parts=[] for i in range(9, 21): party = worksheet.cell_value(10, i) parts.append(party) return parts def dists(): path1=path() wb=xlrd.open_workbook(path1) ws=wb.sheet_by_index(0) di=[] for i in range(11, 50): district = ws.cell_value(i, 2) di.append(district) return di print(dists()) def check(): path1=path() parties=part() districts=dists() whole={} workbook=xlrd.open_workbook(path1) worksheet=workbook.sheet_by_index(0) vote1 = [] vote2 = [] vote3 = [] vote4 = [] vote5 = [] vote6 = [] vote7 = [] vote8 = [] vote9 = [] vote10 = [] vote11 = [] vote12 = [] for i in range(11,50): vote_saadet=worksheet.cell_value(i,9) vote_btp=worksheet.cell_value(i,10) vote_tkp=worksheet.cell_value(i,11) vote_vatan=worksheet.cell_value(i,12) vote_bbp=worksheet.cell_value(i,13) vote_chp=worksheet.cell_value(i,14) vote_ak=worksheet.cell_value(i,15) vote_dp=worksheet.cell_value(i,16) vote_mhp=worksheet.cell_value(i,17) vote_iyi=worksheet.cell_value(i,18) vote_hdp=worksheet.cell_value(i,19) vote_dsp=worksheet.cell_value(i,20) vote1.append(vote_saadet) vote2.append(vote_btp) vote3.append(vote_tkp) vote4.append(vote_vatan) vote5.append(vote_bbp) vote6.append(vote_chp) vote7.append(vote_ak) vote8.append(vote_dp) vote9.append(vote_mhp) vote10.append(vote_iyi) vote11.append(vote_hdp) vote12.append(vote_dsp) whole[parties[0]] = vote1 whole[parties[1]] = vote2 whole[parties[2]] = vote3 whole[parties[3]] = vote4 whole[parties[4]] = vote5 whole[parties[5]] = vote6 whole[parties[6]] = vote7 whole[parties[7]] = vote8 whole[parties[8]] = vote9 whole[parties[9]] = vote10 whole[parties[10]] = vote11 whole[parties[11]] = vote12 return whole #print(check()) def check2(): path1=path() parties=part() districts=dists() workbook=xlrd.open_workbook(path1) worksheet=workbook.sheet_by_index(0) whole={} vote1 = [] vote2 = [] vote3 = [] vote4 = [] vote5 = [] vote6 = [] vote7 = [] vote8 = [] vote9 = [] vote10 = [] vote11 = [] vote12 = [] for i in range(11,50): vote_saadet=worksheet.cell_value(i,9) vote_btp=worksheet.cell_value(i,10) vote_tkp=worksheet.cell_value(i,11) vote_vatan=worksheet.cell_value(i,12) vote_bbp=worksheet.cell_value(i,13) vote_chp=worksheet.cell_value(i,14) vote_ak=worksheet.cell_value(i,15) vote_dp=worksheet.cell_value(i,16) vote_mhp=worksheet.cell_value(i,17) vote_iyi=worksheet.cell_value(i,18) vote_hdp=worksheet.cell_value(i,19) vote_dsp=worksheet.cell_value(i,20) vote1.append(vote_saadet) vote2.append(vote_btp) vote3.append(vote_tkp) vote4.append(vote_vatan) vote5.append(vote_bbp) vote6.append(vote_chp) vote7.append(vote_ak) vote8.append(vote_dp) vote9.append(vote_mhp) vote10.append(vote_iyi) vote11.append(vote_hdp) vote12.append(vote_dsp) vote=[vote1,vote2,vote3,vote4,vote5,vote6,vote7,vote8,vote9,vote10,vote11,vote12] whole[parties[0]] = vote1 whole[parties[1]] = vote2 whole[parties[2]] = vote3 whole[parties[3]] = vote4 whole[parties[4]] = vote5 whole[parties[5]] = vote6 whole[parties[6]] = vote7 whole[parties[7]] = vote8 whole[parties[8]] = vote9 whole[parties[9]] = vote10 whole[parties[10]] = vote11 whole[parties[11]] = vote12 for k in parties: for val in range(0,39): whole[k][val]=districts[val] print(whole) check2() ``` #### File: jemmypotter/Python/Hafsa_Ulusal.py ```python user_account=0 UserName='' Password=0 def log_in(): global UserName global Password usernames=['Ahmet','Zeynep'] passwords=['<PASSWORD>','<PASSWORD>'] username = input('Username:') while username not in usernames: print('Username typed is not correct. Please try again') username=input('Username:') while username in usernames: if username==usernames[0]: UserName=username password=input('Password:') if password==passwords[0]: Password=password print('Welcome Ahmet !') break else: print('Password you typoed is not correct. Please try again') log_in() break elif username==usernames[1]: UserName=username password=input('Password:') if password==passwords[1]: Password=password print('Welcome <PASSWORD> !') break else: print('Password you typed is not correct please try again') log_in() break else: print('Username you typed is not correct please try again.') log_in() def first_menu(): print('--- Welcome to SEHIR Bank V.0.1 --- ') print('1.Login\n2.exit') first_choice=int(input('Please choose what you want to do:')) if first_choice==1: log_in() elif first_choice==2: print('You are about to exit...') print('You have exitted') exit() first_menu() def main_menu(): global UserName global Password global user_account print('1.Withdraw Money\n2.Deposit Money\n3.Transfer Money\n4.My Account Information\n5.Logout') second_choice=int(input('Please enter the number of the service:')) while second_choice<6 and second_choice>0: if second_choice==1: withdraw_amount=int(input('Please enter the amount you want to withdraw:')) if withdraw_amount>user_account: print("You don't have " + str(withdraw_amount) + ' TL in your account') main_menu() elif withdraw_amount<=user_account: print(str(withdraw_amount) + ' TL withdrawn from your account\nGoing back to the main menu...') user_account=user_account-withdraw_amount main_menu() break elif second_choice==2: deposit_amount=int(input('Please enter the amount you want to drop:')) user_account=user_account+deposit_amount print(str(deposit_amount) + 'TL added to your account') print('Going back to the main menu') main_menu() break if second_choice==3: transfer_amount=int(input('Please enter the amount you want to transfer:')) if transfer_amount>user_account: print("Sorry you don't have enough money to complete this transaction:") print('1.Go back to the main menu\n2.Transfer again') mini_menu=int(input('>>>')) if mini_menu==1: main_menu() elif main_menu==2: continue elif transfer_amount<=user_account: print('You have succesfully tranfered') user_account=user_account-transfer_amount main_menu() elif second_choice==4: print('------- SEHIR Bank ------- ') print('Current date do it later\n---------------------------- ') print('Your name:' + UserName) print('Your password:' + Password) print('Your amount(TL):' + str(user_account)) break if second_choice==5: first_menu() break else: print('Invalid service number, Please try again.') main_menu() main_menu() ``` #### File: jemmypotter/Python/mp3.py ```python from tkinter import * from tkinter.filedialog import askopenfilename import xlrd import pandas as pd from tkinter.ttk import Combobox from PIL import Image,ImageTk import clusters1 dendogram_file_name='clusters.jpg' class PoliCluster: def __init__(self,data_center): self.data_center=data_center self.root=Tk() self.frame1=None self.frame2=None self.Frame3=None self.canvas=None self.initUI() def interface(self): self.root.title('Clustering') self.root.geometry('730x600+420+70') self.root.deiconify() Tk.mainloop(self.root) def initUI(self): self.frame1=Frame(self.root) self.frame2=Frame(self.root) self.frame3=Frame(self.root) self.frame1.pack(fill=BOTH) self.main_label = Label(self.frame1, text='Election Data Analysis Tool v.1.0', bg='red', fg='white',font=('Times', 14, 'bold')) self.loadDataB = Button(self.frame1, text='Load Election Data', height=2, width=27,command=self.load_data_button) self.clusDisB = Button(self.frame1, text='Cluster Districts', height=4, width=16,command=self.cluster_distrcits_but) self.clusPolB = Button(self.frame1, text='Cluster Political Parties', height=4, width=18) self.frame2.pack(expand=True,fill=BOTH) self.x_scroll=Scrollbar(self.frame2,orient=HORIZONTAL) self.y_scroll=Scrollbar(self.frame2,orient=VERTICAL) self.canvas=Canvas(self.frame2,xscrollcommand=self.x_scroll.set,yscrollcommand=self.y_scroll.set) self.frame3.pack(expand=True) self.dist_lab=Label(self.frame3,text='Districts') self.dist_scroll=Scrollbar(self.frame3) self.dist_listb=Listbox(self.frame3,yscrollcommand=self.dist_scroll.set,height=10,selectmode=EXTENDED) self.combox_label=Label(self.frame3,text='Threshold') self.combox = Combobox(self.frame3,values=['0%', '1%', '10%', '20%', '30%', '40%', '50%'], width=6, state="readonly") self.refine_but=Button(self.frame3,text='Refine Analysis') self.main_label.pack(fill=X, expand=True, anchor=N) self.loadDataB.pack(expand=True, anchor=N) self.clusDisB.pack(side=LEFT, expand=True, anchor=NE) self.clusPolB.pack(side=LEFT, expand=True, anchor=NW) self.x_scroll.pack(side=BOTTOM, fill=X) self.y_scroll.pack(side=RIGHT, fill=Y) self.canvas.pack(fill=BOTH, expand=True) self.x_scroll.configure(command=self.canvas.xview) self.y_scroll.configure(command=self.canvas.yview) self.dist_lab.pack(side=LEFT) self.dist_listb.pack(side=LEFT) self.dist_scroll.pack(side=LEFT,fill=Y) self.dist_scroll.configure(command=self.dist_listb.yview) self.combox_label.pack(side=LEFT) self.combox.pack(side=LEFT) self.combox.current(0) self.refine_but.pack(side=LEFT) def load_data_button(self): self.file_path = askopenfilename(initialdir='/', title='Select file',filetypes=(('excel files', '*.xlsx'), ('all files', '*.*'))) if self.file_path != '': self.data_center.parse_data(self.file_path) for name in self.data_center.districts: self.dist_listb.insert(END, name) def cluster_distrcits_but(self): self.dist_listb.selection_clear(0,END) if self.file_path != '': try: self.data_center.cluster_dists([],threshold=int(self.combox.get()[:-1])) dendrogram_image = Image.open(DENDROGRAM_FILE_NAME) self.dendrogram_image = ImageTk.PhotoImage(dendrogram_image) self.canvas.create_image(0, 0, image=self.dendrogram_image, anchor='nw') except (ZeroDivisionError, IndexError): self.canvas.delete("all") finally: self.canvas.config(scrollregion=self.canvas.bbox(ALL)) self.place_analysis_on_grid() class Data_Center: def __init__(self): self.whole={} self.districts=[] self.parties=[] self.political_party_vote_percentages={} vote=0 def parse_data(self,file_path): workbook = xlrd.open_workbook(file_path) worksheet = workbook.sheet_by_index(0) try: for i in range(9, 21): party = worksheet.cell_value(10, i) self.parties.append(party) for i in range(11,50): district=worksheet.cell_value(i,2) self.districts.append(district) for i in range(11,50): vote=worksheet.cell_value(i,9) vote+=vote self.political_party_vote_percentages['SAADET']=float((8569494/vote))*100.0 for i in range(11, 50): vote = worksheet.cell_value(i, 10) vote += vote self.political_party_vote_percentages['BTP'] = float((8569494 / vote)) * 100.0 for i in range(11, 50): vote = worksheet.cell_value(i, 11) vote += vote self.political_party_vote_percentages['TKP'] = float((8569494 / vote)) * 100.0 for i in range(11, 50): vote = worksheet.cell_value(i, 12) vote += vote self.political_party_vote_percentages['VATAN'] = float((8569494 / vote)) * 100.0 for i in range(11, 50): vote = worksheet.cell_value(i, 13) vote += vote self.political_party_vote_percentages['BBP'] = float((8569494 / vote)) * 100.0 for i in range(11, 50): vote = worksheet.cell_value(i, 14) vote += vote self.political_party_vote_percentages['AK PARTİ'] = float((8569494 / vote)) * 100.0 for i in range(11, 50): vote = worksheet.cell_value(i, 15) vote += vote self.political_party_vote_percentages['CHP'] = float((8569494 / vote)) * 100.0 for i in range(11, 50): vote = worksheet.cell_value(i, 16) vote += vote self.political_party_vote_percentages['DP'] = float((8569494 / vote)) * 100.0 for i in range(11, 50): vote = worksheet.cell_value(i, 17) vote += vote self.political_party_vote_percentages['MHP'] = float((8569494 / vote)) * 100.0 for i in range(11, 50): vote = worksheet.cell_value(i, 18) vote += vote self.political_party_vote_percentages['İYİ PARTİ'] = float((8569494 / vote))* 100.0 for i in range(11, 50): vote = worksheet.cell_value(i, 19) vote += vote self.political_party_vote_percentages['HDP'] = float((8569494 / vote)) * 100.0 for i in range(11, 50): vote = worksheet.cell_value(i, 20) vote += vote self.political_party_vote_percentages['DSP'] = float((8569494 / vote)) * 100.0 except ZeroDivisionError: vote=0.0 saadet = pd.read_excel(file_path, usecols=[9], skiprows=10) btp = pd.read_excel(file_path, usecols=[10], skiprows=10) tkp = pd.read_excel(file_path, usecols=[11], skiprows=10) vatan = pd.read_excel(file_path, usecols=[12], skiprows=10) bbp = pd.read_excel(file_path, usecols=[13], skiprows=10) chp = pd.read_excel(file_path, usecols=[14], skiprows=10) ak = pd.read_excel(file_path, usecols=[15], skiprows=10) dp = pd.read_excel(file_path, usecols=[16], skiprows=10) mhp = pd.read_excel(file_path, usecols=[17], skiprows=10) iyi = pd.read_excel(file_path, usecols=[18], skiprows=10) hdp = pd.read_excel(file_path, usecols=[19], skiprows=10) dsp = pd.read_excel(file_path, usecols=[20], skiprows=10) saadet_dict = saadet.to_dict() btp_dict = btp.to_dict() tkp_dict = tkp.to_dict() vatan_dict = vatan.to_dict() bbp_dict = bbp.to_dict() chp_dict = chp.to_dict() ak_dict = ak.to_dict() dp_dict = dp.to_dict() mhp_dict = mhp.to_dict() iyi_dict = iyi.to_dict() hdp_dict = hdp.to_dict() dsp_dict = dsp.to_dict() self.whole = ( saadet_dict, btp_dict, tkp_dict, vatan_dict, bbp_dict, chp_dict, ak_dict, dp_dict, mhp_dict, iyi_dict, hdp_dict, dsp_dict) def cluster_dists(self,selected_districts, threshold=0): assert self.whole != {} if not selected_districts: selected_districts = self.districts political_party_names=[political_party for political_party in self.parties if self.political_party_vote_percentages[political_party] >= threshold] cluster_matrix = [[0.0] * len(political_party_names) for i in range(len(selected_districts))] for i in range(len(selected_districts)): for j in range(len(political_party_names)): cluster_matrix[i][j] = self.districts[selected_districts[i]] \ .get_political_party_percentage(political_party_names[j]), cluster = hcluster(cluster_matrix, distance=sim_distance) drawdendrogram(cluster, selected_districts) def main(): data_center=Data_Center() g=PoliCluster(data_center) g.interface() main() #di['CHP']['Adalar']=43 ``` #### File: jemmypotter/Python/python.py ```python # i= i + 1 #for i in range(1,5): # print i #for i in range(5): # print i #def sum_numbers(a,b): #result=0 #for in rage(a,b+1) # result + = i # #print result #from swampy.TurtleWorld import * #world= TurtleWorld() #regina= Turtle() #print regina #def warmup(speed,lap): # regina.set_delay(speed) # for i in range(2*lap): # fd(regina,100) # lt(regina,90) # fd(regina,70) # lt(regina,90) #warmup(0.07,4) #def countDU(n): # for j in range(n,0,-1): # print j # for i in range(n+1): # print i #countDU(10) #length=5 #angle=3 #regina.set_delay(0.01) #while i: # lt(regina,1) # def pattern(): # for i in range(30): # fd(regina,length) # lt(regina,angle) # def angler(): # lt(regina,120) # for i in range(30): # fd(regina,length) # lt(regina,angle) #pattern() #angler() #def right_justify(s): # print '' '' * len(5)*10 + s #right_justify('engr 101') #def summation(): # sum = 0 #for i in range(10): # # sum +=i # print sum #summation() #def divide_by(a,b,c,d): # (str(a)+str(b)+str(c)+str(d))/c # #divide_by(1,2,3,5) #from swampy.TurtleWorld import * #world= TurtleWorld() #jerennaz= Turtle() #print jerennaz #fd(jerennaz,100) #lt(jerennaz,30) #fd(jerennaz,70) #lt(jerennaz,45) #wait_for_user() #weather = 'rainy' # activity = '?' # # # if weather == 'rainy': # activity = 'reading' # # # if weather != 'rainy': # activity = 'walking' # # # # # print activity # # # import antigravity # def f1(n): # if n==1: # print True # elif n==0: # print False # else: # print 'Wrong input' # # x= raw_input('Enter a number:') # x= int(x) # # # f1(x) # def aycatria(x,y,z): # if x==y or x==z or y==z: # print 'this is an isoscales triangle' # aycatria(4,5,5) # # # # def is_isoscles(): # x= int(raw_input('enter 1st num:')) # y= int(raw_input('enter 2nd num:')) # z= int(raw_input('enter 3rd num:')) # if x==y or x==z or y==z: # print 'true' # else: # print 'false' # is_isoscles() # thing1=20 # if thing1>10: # print 'this is first' # if thing1<25: # print 'this is second' # else: # print 'this is third' # def compare(a,b): # if a>b: # print str(a) + ' is greater than ' + str(b) # elif a<b: # print str(a) + ' is less than ' + str(b) # else: # print str(a) + ' is equal to ' + str(b) # # compare(7,7) # def data_type(a): # if type(a) == int: # print str(a) + ' is an integer ' # elif type(a) == str: # print a + ' is a string ' # elif type(n) == int: # print str(n) + ' is a string ' # elif type(n) == bool: # print str(n) + ' is a boolean' #data_type(True) # # def add_even_numbers(a,b): # sum =0 # for i in range (a,b): # if i%2 == 0: # sum = sum + i # print sum # # add_even_numbers(5,12) #import antigravity # import math # def circle_area(radius): # area = math.pi * radius**2 # return area # # a = circle_area(4) # print a # def void_function(): # print 2 # # # def fruitful_function(): # return 2 # # my_variable = void_function() # print my_variable # # my_variable = fruitful_function() # print my_variable # def square(x): # result=x*x # return result # # # print square(5)*square(5) # # def division(a,b): # result = a/b # return result # print division(10,3) # # def remainder(x,y): # result = x%y # return result # print remainder(10,3) # def another_func(c,d): # print remainder(10,3) # if # else: # print 'the number cannot be divided without remainder' # print another_func(10,3) # def fahrenheit(): # T_in_fahrenheit=(T_in_celsius*9/5)+32 # # fahrenheit(20) # # import math # def area(radius): # A=math.pi*radius**2 # return A # # def distance_and_area(x1,y1,x2,y2): # radius = ((x1-x2)**2 + (y1-y2)**2)**1/2 # print area(radius) # return radius # # print distance_and_area(8,7,4,4) # # # def world_hist(word): # # x= len(word) # # print x*'*' # # world_hist('the' # # # print 'a' + 'b' # # print 'a'*3 # # def my_function(): # # A=10 # p=0.25 # n=1.25 # s=0.75 # # print int(A - (5*p + 2*n)) / s # # # my_function() # def aritseq(a1,d ,n): # an= a1 + (n-1)*d # print an # aritseq(3,2,99) # # # def favourites(x,y,z): # print "I like " + x # print "I like " + y # print "I like " + z # favourites("orange","berry","kiwi") # def time(h,t,s): # # m=h*60 # t=m*60 # # print m+t+s # # time(h,t,s) # # gizemsays = raw_input('esrarinda etkisiyle isiklar parlar:') # if gizemsays == 'cekilir nefesler' : # print 'karanlikta yolum yonum yildizlar ve sesler' # gizemsays = raw_input('ay gunesten daha guzel:') # if gizemsays == 'geceler geceler' : # print 'kafamin pesindeyken yasarim neyim neysem' # def right_justify(s): # print (' '* (70-len(s))+s) # # right_justify('allen') # fruit = 'banana' # letter = fruit[0] # print letter # # # # vegetable = 'tomato' # letter = vegetable[1] # print letter # count = 0 # while (count < 9): # print 'the count is:' , count # count = count + 1 # print 'bye bitch!' # # for i in range(3,6): # print i # ntainsLetter(word,letter): # return letter in word # containsLetter('apple','p') # def co ``` #### File: jemmypotter/Python/slides.py ```python def quest(str_1,str_2): for char in str_1 and str_2: if char not in str_2: print char return True if char not in str_1: return False print char quest('hello','world') ```
{ "source": "JemmyYu/DataMining-CRF", "score": 2 }
#### File: JemmyYu/DataMining-CRF/crf_data.py ```python import re import numpy as np # Loss rather than supplement def norm(seq, x2id, max_len=None): ids = [x2id.get(x, 0) for x in seq] if max_len is None: return ids if len(ids) >= max_len: ids = ids[: max_len] return ids ids.extend([0] * (max_len - len(ids))) return ids # Log softmax def log_softmax(vec): max_val = np.max(vec) log_sum_exp = np.log(np.sum(np.exp(vec - max_val))) for i in range(np.size(vec)): vec[i] -= log_sum_exp + max_val return vec class CrfData(object): def __init__(self, train, test=None, testr=None): self.train = train self.data = [] self.tag = [] self.word2id = None self.id2word = None self.tag2id = {'': 0, 'B_ns': 1, 'I_ns': 2, 'B_nr': 3, 'I_nr': 4, 'B_nt': 5, 'I_nt': 6, 'o': 7} self.id2tag = {v: k for k, v in self.tag2id.items()} self.read_train_data() self.map_word_id() def read_train_data(self): i = 0 with open(self.train, "r", encoding="utf-8-sig") as file: for line in file.readlines(): if i >= 1000: break else: i += 1 line = line.strip().split() seq = '' if len(line) != 0: for word in line: word = word.split('/') if word[1] == 'o': seq += ''.join([char + "/o " for char in word[0]]) else: seq += ''.join([word[0][0] + "/B_" + word[1] + ' '] + [char + "/I_" + word[1] + ' ' for char in word[0][1:]]) line = re.split('[,。;!:?、‘’”“]/[o]', seq.strip()) for subSeq in line: subSeq = subSeq.strip().split() if len(subSeq): subData = [] subtag = [] noEntity = True for word in subSeq: word = word.split('/') subData.append(word[0]) subtag.append(word[1]) noEntity &= (word[1] == 'o') if not noEntity: self.data.append(subData) self.tag.append(subtag) def map_word_id(self): wordbag = sum(self.data, []) wordset = set(wordbag) wordict = {k: 0 for k in wordset} for k in wordbag: wordict[k] += 1 wordlst = sorted(wordict.items(), key=lambda x: x[1], reverse=True) wordset = [x for x, _ in wordlst] idset = range(1, len(wordset) + 1) self.word2id = {k: v for k, v in zip(wordset, idset)} self.id2word = {k: v for k, v in zip(idset, wordset)} def get_train_data(self, max_len): train_x = [] train_y = [] for data, tag in zip(self.data, self.tag): train_x.append(norm(data, self.word2id, max_len)) train_y.append(norm(tag, self.tag2id, max_len)) return list(filter(None, train_x)), list(filter(None, train_y)) def log_likelihood(self): row = len(self.word2id) + 1 col = len(self.tag2id) loglikelihoods = np.zeros((row, col), dtype="float32") wordbag = norm(sum(self.data, []), self.word2id) tagbag = norm(sum(self.tag, []), self.tag2id) for word, tag in zip(wordbag, tagbag): loglikelihoods[word, tag] += 1 for j in range(col): log_softmax(loglikelihoods[:, j]) return loglikelihoods ```
{ "source": "Jemoka/gregarious", "score": 2 }
#### File: backend_old/embedding/engines.py ```python import tensorflow as tf import numpy as np import keras from keras.utils import to_categorical from keras.models import Model from keras.layers import Input, Dense, Embedding, Flatten, Add, LSTM, Masking, Concatenate, Conv1D, MaxPooling1D from keras.optimizers import RMSprop, Adam, SGD, Adagrad from keras import backend as K class SemanticEmbedEngine(object): def __init__(self): self.trainer = None self.embedder_a = None self.embedder_b = None @classmethod def create(cls, embedSize, vocabSize, paddedSentSize, recurrentSize=None): if not recurrentSize: recurrentSize = embedSize sentenceAInput = Input(shape=(paddedSentSize, vocabSize)) # maskA = Masking(mask_value=0.0)(sentenceAInput) sentenceBInput = Input(shape=(paddedSentSize, vocabSize)) # maskB = Masking(mask_value=0.0)(sentenceBInput) normal = keras.initializers.glorot_normal() conv_A_a = Conv1D(recurrentSize, 5) conv_A_a_built = conv_A_a(sentenceAInput) conv_A_b = Conv1D(recurrentSize, 5) conv_A_b_built = conv_A_b(conv_A_a_built) conv_A_c = Conv1D(recurrentSize, 5) conv_A_c_built = conv_A_c(MaxPooling1D()(conv_A_b_built)) # conv_A_flat = Flatten()(conv_A_c_built) dense_A_a = Dense(embedSize, kernel_initializer=normal, activation="relu") dense_A_a_built = dense_A_a(conv_A_c_built) dense_A_b = Dense(embedSize, kernel_initializer=normal, activation="relu") dense_A_b_built = dense_A_b(dense_A_a_built) sentenceAEmbedded = Dense(embedSize, kernel_initializer=normal, activation="relu") sentenceAEmbedded_built = sentenceAEmbedded(dense_A_b_built) conv_B_a = Conv1D(recurrentSize, 5) conv_B_a_built = conv_B_a(sentenceBInput) conv_B_b = Conv1D(recurrentSize, 5) conv_B_b_built = conv_B_b(conv_B_a_built) conv_B_c = Conv1D(recurrentSize, 5) conv_B_c_built = conv_B_c(conv_B_b_built) # conv_B_flat = Flatten()(conv_B_c_built) dense_B_a = Dense(embedSize, kernel_initializer=normal, activation="relu") dense_B_a_built = dense_B_a(conv_B_c_built) dense_B_b = Dense(embedSize, kernel_initializer=normal, activation="relu") dense_B_b_built = dense_B_b(dense_B_a_built) sentenceBEmbedded = Dense(embedSize, kernel_initializer=normal, activation="relu") sentenceBEmbedded_built = sentenceBEmbedded(dense_B_b_built) # Combining/Output adder = Concatenate(axis=1) added = adder([sentenceAEmbedded_built, sentenceBEmbedded_built]) recurrentA = LSTM(recurrentSize*2, return_sequences=True) recurrentA_built = recurrentA(added) recurrentB = LSTM(recurrentSize*2) recurrentB_built = recurrentB(recurrentA_built) combineEmbedded = Dense(embedSize, kernel_initializer=normal, activation="relu") combineEmbedded_built = combineEmbedded(recurrentB_built) score = Dense(1, kernel_initializer=normal, activation="relu") score_built = score(combineEmbedded_built) trainer = Model(inputs=[sentenceAInput, sentenceBInput], outputs=score_built) optimizer = Adam(lr=4e-4) trainer.compile(optimizer, 'mae') sentenceAEmbedder = Model(inputs=sentenceAInput, outputs=sentenceAEmbedded_built) sentenceBEmbedder = Model(inputs=sentenceBInput, outputs=sentenceBEmbedded_built) engine = cls() engine.trainer = trainer engine.embedder_a = sentenceAEmbedder engine.embedder_b = sentenceBEmbedder return engine def fit(self, sentenceVectors_a, sentenceVectors_b, similarities, batch_size=10, epochs=10, validation_split=0.0): self.trainer.fit(x=[sentenceVectors_a, sentenceVectors_b], y=[similarities], batch_size=batch_size, epochs=epochs, validation_split=validation_split) def predict_diff(self, sentenceVectors_a, sentenceVectors_b): return self.trainer.predict([sentenceVectors_a, sentenceVectors_b]) def encode(self, sentenceVector, flavor="a"): if flavor == "a": return self.embedder_a.predict([sentenceVector]) elif flavor == "b": return self.embedder_b.predict([sentenceVector]) else: raise Exception(str(flavor)+" is not a valid flavor. Choose between a or b.") ```
{ "source": "Jemoka/Sort", "score": 4 }
#### File: sort/sorters/shell.py ```python from .sorter import Sorter class ShellSorter(Sorter): """ (factor of 3) Shell Sort -=-=-=-=-=-=-= A much much much much much much faster algorithm that not only takes the advantage of insertion sort, but actually augments its advantage. It pre-sorts the data into bigger chunks, then fine-tuning it. Implemented in Java @pg 259 as Algorithm 2.2. Publicly Callable Methods ================ load(data:list)->list Loads an array into the sorter's memory sort()->list Sorts and returns loaded data, empties the sorter's memory Class Callable (Unexposed) Methods ================ _swap(indxA, indxB) -> None Swaps two indexes of the array loaded _check() -> bool Checks if array in memory is sorted """ def sort(self) -> list: """Sorts loaded data from least to most, and return sorted array""" super().sort() h = 1 while h < len(self.data)/3: h = int(3*h) # This code is not implemented correctly. # Although it sorts, it does not do so in # the expected speed. # Please do not use this as your reference! # If you know how to fix it, pull request'em. while h >= 1: for pointerIndx in range(1, len(self.data), h): for checkIndx in reversed(range(0, pointerIndx, h)): try: if self.data[checkIndx] > self.data[checkIndx+h]: self._swap(checkIndx, checkIndx+h) elif self.data[checkIndx] <= self.data[checkIndx+h]: break except IndexError: break h = int(h/3) # Check the sorting assert self._check(), "This algorithm has done goof!" # Return sort return self.data ```
{ "source": "JEmonet67/objmpp-organoid-classification", "score": 3 }
#### File: lib/objects/ObjetMpp.py ```python class ObjetMpp: def __init__(self,center,major_axis): self.center = center self.major_axis = int(round(major_axis)) def create_window(self,img,distmap): bord_gauche = self.center.x - self.major_axis bord_droit = self.center.x + self.major_axis bord_haut = self.center.y - self.major_axis bord_bas = self.center.y + self.major_axis if bord_gauche < 0: bord_gauche = 0 if bord_haut < 0: bord_haut = 0 if bord_droit > distmap.shape[0]-1: bord_droit = distmap.shape[0]-1 if bord_bas > distmap.shape[1]-1: bord_bas = distmap.shape[1]-1 self.coordinates = [bord_gauche,bord_droit,bord_haut,bord_bas] self.local_distmap = distmap[self.coordinates[2]:self.coordinates[3], self.coordinates[0]:self.coordinates[1]] self.local_img = img.matrix_img[self.coordinates[2]:self.coordinates[3], self.coordinates[0]:self.coordinates[1]] ``` #### File: lib/segmentation/traitements_objet.py ```python import numpy as np import imageio as io import matplotlib.pyplot as plt import pandas as pd import cv2 as cv #Code pour binariser, éroder et fusionner les map des distances des objets. def Erode_ellipses(list_distmap,path_file=False): dim = list_distmap[0].shape All_ell_erod = np.zeros([dim[0],dim[1]]) for distmap_ell in list_distmap: distmap_ell_norm = cv.normalize(distmap_ell, np.zeros(distmap_ell.shape),0,1,cv.NORM_MINMAX) distmap_ell_norm[distmap_ell_norm < 0.7] = 0 distmap_ell_norm[distmap_ell_norm != 0] = 1 All_ell_erod += distmap_ell_norm if path_file != False: All_ell_erod_norm = cv.normalize(All_ell_erod, np.zeros(All_ell_erod.shape),0, 255, cv.NORM_MINMAX) io.imwrite(f"{path_file}/All_Ellipses_érodées.png",np.uint8(All_ell_erod_norm)) return All_ell_erod # path_file_t = "/home/jerome/Stage_Classif_Organoid/Result_MPP/Organoïd/Images_KO/local_map_UBTD1-03_w24-DAPI_TIF_2020y06m09d14h48m55s317l" # Erode_ellipses(path_file_t) #Code pour binariser une image des régions. def Binaryze_ellipses(path_regions): All_ell = np.copy(plt.imread(path_regions)) All_ell[All_ell != 0] = 1 #io.imwrite(f"{path_output}/All_Ellipses.png",img_as_ubyte(reg)) return All_ell def Dilate_ellipses(list_ells_sep): dim = list_ells_sep[0].shape all_ells_dilated = np.zeros([dim[0],dim[1]]) kernel = np.ones((5,5), np.uint8) for ells in list_ells_sep: all_ells_dilated = all_ells_dilated + cv.dilate(ells,kernel, iterations=4) all_ells_dilated[all_ells_dilated!=0] = 255 all_ells_dilated = cv.normalize(all_ells_dilated, np.zeros(all_ells_dilated.shape),0, 1, cv.NORM_MINMAX) all_ells_dilated = np.float32(all_ells_dilated) return all_ells_dilated #Code pour séparer chaque ellipses à partir d'une image des régions. def Separate_ellipses(img_all_regions): list_region_sep = [] list_objects = [objets for objets in np.unique(img_all_regions) if objets!=0] for value_obj in list_objects: img_region = np.copy(img_all_regions) img_region[img_region != value_obj] = 0 img_region[img_region == value_obj] = 255 list_region_sep += [img_region] # io.imwrite(f"{path_output}/Ellipse_{n_ell}.png", img_region) # np.save(f"{path_output}/Ellipse_{n_ell}.npy", img_region) return list_region_sep def Separate_ells_watershed(img,regions, path_csv,path_output=False): df_marks = pd.read_csv(path_csv) list_center_y = df_marks["Center Col"] list_center_x = df_marks["Center Row"] for n_ell in range(1,len(list_center_x)+1): reg = np.copy(regions) center_y = list_center_y[n_ell-1] center_x = list_center_x[n_ell-1] value_center = reg[(center_x,center_y)] reg[reg != value_center] = 0 reg[reg == value_center] = 255 img.list_reg_watersh += [reg] if path_output!=False: io.imwrite(f"{path_output}/Ellipse_{n_ell}.png", reg) np.save(f"{path_output}/Ellipse_{n_ell}.npy", reg) return img # path_output_t = "/home/jerome/Stage_Classif_Organoid/Result_MPP/Organoïd/Images_KO/local_map_UBTD1-03_w24-DAPI_TIF_2020y06m09d14h48m55s317l/Test_Results/Img_marker_watershed_segmentation" # path_csv_t = "/home/jerome/Stage_Classif_Organoid/Result_MPP/Organoïd/Images_KO/UBTD1-03_w24-DAPI_TIF-marks-2020y06m09d14h48m55s317l.csv" # path_regions_t = "/home/jerome/Stage_Classif_Organoid/Result_MPP/Organoïd/Images_KO/local_map_UBTD1-03_w24-DAPI_TIF_2020y06m09d14h48m55s317l/Test_Results/Labels_méthode_2.png" # Separate_ellipses(path_output_t,path_regions_t,path_csv_t) #Code pour créer une map de distance à partir d'un objet. def Distance_map(list_obj,path_file=False): n_obj = 1 list_distmap = [] for obj in list_obj: obj_norm = cv.normalize(obj, np.zeros(obj.shape),0, 255, cv.NORM_MINMAX) obj_int8 = np.uint8(obj_norm) dm_obj = cv.distanceTransform(obj_int8, cv.DIST_L2, 3) dm_obj_norm = cv.normalize(dm_obj, np.zeros(dm_obj.shape),0, 255, cv.NORM_MINMAX) dm_obj_int8 = np.uint8(dm_obj_norm) list_distmap += [dm_obj_int8] if path_file != False: io.imwrite(f"{path_file}/local_map_watersh_{n_obj}.png",dm_obj_int8) np.save(f"{path_file}/local_map_watersh_{n_obj}.npy",dm_obj_int8) n_obj += 1 return list_distmap ```
{ "source": "jemorgan1000/ML_Final_Project", "score": 3 }
#### File: jemorgan1000/ML_Final_Project/preprocessing.py ```python import geopandas as gpd import os.path as osp import os import pandas as pd def get_stops(stop_path): """ Loads all the stops :param stop_path: path to the shape file :return: return gpd.GeoDataFrame """ stops = pd.read_csv(stop_path) stops = gpd.GeoDataFrame(stops,geometry=gpd.points_from_xy(stops.stop_lon,stops.stop_lat)) return stops def get_blocks(shape_path): """ This function loads the shape file containing the shapes :param shape_path: path to the shape file :return: gpd.GeoDataFrame """ blocks = gpd.read_file(shape_path) return blocks def get_trips(trips_path): """ Loads and cleans the file containing all of the rider files. :param trips_path: path to the trips file """ trips = pd.read_csv(trips_path) return trips def add_commute_time(trips_df): """ Adds commute times to each of the trips :param trips_df: pd.DataFrame :return: returns Dataframe """ trips_df.loc[:,'start_time'] = pd.to_datetime(trips_df.start_time) trips_df.loc[:,'end_time'] = pd.to_datetime(trips_df.end_time) trips_df.insert(len(trips_df.columns), "MORNING", ((trips_df.start_time.dt.hour >= 5) & (trips_df.start_time.dt.hour <= 10)) * 1) trips_df.insert(len(trips_df.columns), 'AFTERNOON', ((trips_df.start_time.dt.hour >= 16) & (trips_df.start_time.dt.hour < 20)) * 1) return trips_df def create_UID(combined): """ :param combined: pd.DataFrame with combined data :return: new data_frame with a UID for each Block """ UID = combined.apply(lambda x: (x.COUNTYFP10, x.TRACTCE10,x.BLOCKCE10),axis=1) combined.insert(len(combined.columns),'UID',UID) return combined def preprocess_combo(combined): """ The number of stops :param combined: gpd.GeoDataFrame like object :return: the number of stops within a given census block """ stops_rides = combined.groupby("UID")['stop_id'].size() stops_rides = stops_rides.reset_index() stops_rides.rename({0:"STOPS"},axis=1,inplace=True) rail_rides = combined.groupby("UID")["RAIL_STOP"].sum() rail_rides = rail_rides.reset_index() rail_rides.rename({0:"STOPS"},axis=1,inplace=True) trips = combined.groupby("UID")['TRIPS'].sum() trips = trips.reset_index() stops_rides = stops_rides.merge(trips,on='UID') stops_rides = stops_rides.merge(rail_rides,on='UID') return stops_rides def join_stops(blocks, stops): """ This function takes all of the blocks and :param blocks: gpd.GeoDataFrame object containing all the shape files :param stops: gpd.GeoDataFrame object containing all the stops files """ combined = gpd.sjoin(blocks,stops) return combined def join_trips(combined, trips): """ This function combines the whole thing an """ return combined.merge(trips,on='stop_id') def preprocess_trips(trips): """ This function filters trips for our desired ones, without errors and in the morning :param trips: pd.DataFrame :return: data """ trips = trips[trips.error_bool == 0] trips = add_commute_time(trips) trips = trips[trips.MORNING == 1] num_rides = trips.groupby('start_stop')['trip_id'].size() stop_morn_rides = num_rides.reset_index() stop_morn_rides.rename(columns = {'start_stop':'stop_id','trip_id':'TRIPS'},inplace=True) return stop_morn_rides def output_data(path, df): """ This file removes unwanted columns and outputs the final dataset :param path: :param df: :return: """ df.to_csv(path,index=False) def get_duration(path): """ loads the duration file :param path: osp.path object :return: pd.DataFrame containing travel times """ dur_df = pd.read_csv(path) return dur_df def make_dur_nums(dur_df): """ :param dur_df: :return: """ pass def main(): # setting up the path information dir_path = os.getcwd() data_path = osp.abspath(osp.join(dir_path,"Data/")) stop_path = osp.join(data_path, "stops.csv") shape_path = osp.join(data_path,'census.dbf') trips_path = osp.join(data_path,'odx/trips.csv') out_path = osp.join(data_path,'preprocessed_data2.csv') # stops = get_stops(stop_path) blocks = get_blocks(shape_path) combined = join_stops(blocks,stops) trips = get_trips(trips_path) num_rides = preprocess_trips(trips) combined = join_trips(combined,num_rides) combined = create_UID(combined) final_df = preprocess_combo(combined) #print(final_df.head()) output_data(out_path, final_df) if __name__ == '__main__': main() ```
{ "source": "jemorrison/jwst_reffiles", "score": 3 }
#### File: jwst_reffiles/bad_pixel_mask/mkref_bad_pixel_mask.py ```python import argparse import copy import os import re import sys import types from jwst_reffiles.plugin_wrapper import mkrefclass_template from jwst_reffiles.bad_pixel_mask import bad_pixel_mask as bpm from jwst_reffiles.utils.constants import RATE_FILE_SUFFIXES from jwst_reffiles.utils.definitions import PIPE_STEPS class mkrefclass(mkrefclass_template): def __init__(self, *args, **kwargs): mkrefclass_template.__init__(self, *args, **kwargs) # Set the reflabel as the name of the imported module self.reflabel = 'bad_pixel_mask' # Set the reftype self.reftype = 'bpm' def extra_optional_arguments(self, parser): """Any arguments added here will give the option of overriding the default argument values present in the config file. To override, call these arguments from the command line in the call to mkrefs.py """ parser.add_argument('--dead_search', help='Whether or not to search for DEAD pixels') parser.add_argument('--low_qe_and_open_search', help=('Whether or not to search for LOW_QE, OPEN, ' 'and ADJ_OPEN pixels')) parser.add_argument('--dead_search_type', help=('Type of search to use when looking for dead pixels. ' 'Options are: sigma_rate, absolute_rate, and ' 'zero_signal')) parser.add_argument('--flat_mean_sigma_threshold', help=('Number of standard deviations to use when sigma-' 'clipping to calculate the mean slope image or the mean ' 'across the detector')) parser.add_argument('--flat_mean_normalization_method', help=('Specify how the mean image is normalized prior ' 'to searching for bad pixels.')) parser.add_argument('--smoothing_box_width', help=('Width in pixels of the box kernel to use to ' 'compute the smoothed mean image')) parser.add_argument('--smoothing_type', help='Type of smoothing to do ``Box2D `` or ``median`` filtering') parser.add_argument('--dead_sigma_threshold', help=('Number of standard deviations below the mean at ' 'which a pixel is considered dead.')) parser.add_argument('--max_dead_norm_signal', help=('Maximum normalized signal rate of a pixel that is ' 'considered dead')) parser.add_argument('--run_dead_flux_check', help=('Whether or not to check for dead pixels using an absolute flux value')) parser.add_argument('--dead_flux_check_files', nargs='+', help=('List of ramp (uncalibrated) files to use to check the ' 'flux of average of last 4 groups. If None then the ' 'ramp files are not read in and no flux_check is done.')) parser.add_argument('--flux_check', type=int, help=('Tolerance on average signal in last 4 groups. If dead_flux_check is ' 'a list of uncalibrated files, then the average of the last four groups ' 'for all the integrations is determined. If this average > flux_check ' 'then this pixel is not a dead pixel.')) parser.add_argument('--max_low_qe_norm_signal', help=('The maximum normalized signal a pixel can have ' 'and be considered low QE.')) parser.add_argument('--max_open_adj_norm_signal', help=('The maximum normalized signal a pixel ' 'adjacent to a low QE pixel can have in order ' 'for the low QE pixel to be reclassified as ' 'OPEN')) parser.add_argument('--manual_flag_file', help=(('Name of file containing list of pixels to be added manually'))) parser.add_argument('--flat_do_not_use', help=('List of bad pixel types where the DO_NOT_USE flag should ' 'also be applied (e.g. "["DEAD", "LOW_QE"]")')) parser.add_argument('--dark_stdev_clipping_sigma', help=('Number of sigma to use when sigma-clipping the 2D array of ' 'standard deviation values.')) parser.add_argument('--dark_max_clipping_iters', type=int, help=('Maximum number of iterations to use when sigma ' 'clipping to find the mean and standard deviation ' 'values used when locating noisy pixels.')) parser.add_argument('--dark_noisy_threshold', help=('Number of sigma above the mean noise (associated with the slope) ' 'to use as a threshold for identifying noisy pixels.')) parser.add_argument('--max_saturated_fraction', help=('Fraction of integrations within which a pixel must be fully ' 'saturated before flagging it as HOT.')) parser.add_argument('--max_jump_limit', type=int, help=('Maximum number of jumps a pixel can have in an integration ' 'before it is flagged as a ``high jump`` pixel (which may be ' 'flagged as noisy later).')) parser.add_argument('--jump_ratio_threshold', help=('Cutoff for the ratio of jumps early in the ramp to jumps later in ' 'the ramp. Pixels with a ratio greater than this value (and which ' 'also have a high total number of jumps) will be flagged as potential ' '(I)RC pixels.')) parser.add_argument('--early_cutoff_fraction', help=('Fraction of the integration to use when comparing the jump rate ' 'early in the integration to that across the entire integration. ' 'Must be <= 0.5')) parser.add_argument('--pedestal_sigma_threshold', help=('Used when searching for RC pixels via the pedestal image. Pixels ' 'with pedestal values more than ``pedestal_sigma_threshold`` above ' 'the mean are flagged as potential RC pixels.')) parser.add_argument('--rc_fraction_threshold', help=('Fraction of input files within which the pixel must be identified as ' 'an RC pixel before it will be flagged as a permanent RC pixel.')) parser.add_argument('--low_pedestal_fraction', help=('Fraction of input files within which a pixel must be identified as ' 'a low pedestal pixel before it will be flagged as a permanent low ' 'pedestal pixel.')) parser.add_argument('--high_cr_fraction', help=('Fraction of input files within which a pixel must be flagged as having a ' 'high number of jumps before it will be flagged as permanently noisy.')) parser.add_argument('--flag_values', help=('Dictionary mapping the types of bad pixels searched for to the flag mnemonics ' 'to use when creating the bad pixel file. Keys are the types of bad pixels searched ' 'for, and values are lists that include mnemonics recognized by the jwst calibration ' 'pipeline e.g. {"hot": ["HOT"], "rc": ["RC"], "low_pedestal": ["OTHER_BAD_PIXEL"], "high_cr": ["TELEGRAPH"]}')) parser.add_argument('--dark_do_not_use', help=('List of bad pixel types to be flagged as DO_NOT_USE e.g. ["hot", "rc", "low_pedestal", "high_cr"]')) parser.add_argument('--plot', help=('If True, produce and save intermediate results from noisy pixel search')) parser.add_argument('--output_file', help=('Name of the CRDS-formatted bad pixel reference file to save the final bad pixel map into')) parser.add_argument('--author', help=('CRDS-required name of the reference file author, to be placed ' 'in the referece file header')) parser.add_argument('--description', help=('CRDS-required description of the reference file, to be ' 'placed in the reference file header')) parser.add_argument('--pedigree', help=('CRDS-required pedigree of the data used to create the ' 'reference file')) parser.add_argument('--useafter', help=('CRDS-required date of earliest data with which this reference ' 'file should be used. (e.g. "2019-04-01 00:00:00"')) parser.add_argument('--history', help='Text to be placed in the HISTORY keyword of the output reference file') parser.add_argument('--quality_check', help=("If True, the pipeline is run using the output reference " "file to be sure the pipeline doens't crash")) return(0) def callalgorithm(self): """Call the bpm algorithm. The only requirement is that the output reference file is saved as self.args.outputreffilename mkrefs.py will supply the input files in self.inputimages['output_name']. This will be a list containing the filenames to use as input. The file types (e.g. dark, flat) associated with each filename are contained in self.inputimages['imtype']. From this, you can specify the appropriate file names in the call to your module. """ # Organize the input files into a group of darks and a group of # flats flatfiles = [] darkfiles = [] for row in self.inputimagestable: if row['imlabel'] == 'D': darkfiles.append(row['fitsfile']) elif row['imlabel'] == 'F': flatfiles.append(row['fitsfile']) # Since this module is called after calib_prep, all of the requested # outputs from the various pipeline steps should be present in the # output directory. Create lists of these files. The files listed in # self.inputimagestable['fitsfile'] should all be the same in terms # of their calibration state. So we should only have to check one in # order to know what state all of them are. dark_slope_files = [] dark_uncal_files = [] dark_jump_files = [] dark_fitopt_files = [] directory, filename = os.path.split(darkfiles[0]) # Get the suffix of the input file so we know the calibration state suffix = None for ramp_suffix in RATE_FILE_SUFFIXES: if ramp_suffix in filename: dark_slope_files = copy.deepcopy(darkfiles) suffix = ramp_suffix if suffix is None: suffix = filename.split('_')[-1] suffix = suffix.replace('.fits', '') if suffix == 'uncal': dark_uncal_files = copy.deepcopy(darkfiles) elif suffix == 'jump': dark_jump_files = copy.deepcopy(darkfiles) else: raise ValueError('Unexpected suffixes for input dark files.') # Create lists of the needed calibration state files if len(dark_slope_files) > 0: dark_uncal_files = [elem.replace(suffix, '_uncal') for elem in dark_slope_files] dark_jump_files = [elem.replace(suffix, '_jump') for elem in dark_slope_files] dark_fitopt_files = [elem.replace(suffix, '_fitopt') for elem in dark_slope_files] elif len(dark_uncal_files) > 0: dark_slope_files = [elem.replace(suffix, '_1_ramp_fit') for elem in dark_uncal_files] dark_jump_files = [elem.replace(suffix, '_jump') for elem in dark_uncal_files] dark_fitopt_files = [elem.replace(suffix, '_fitopt') for elem in dark_uncal_files] elif len(dark_jump_files) > 0: dark_uncal_files = [elem.replace(suffix, '_uncal') for elem in dark_jump_files] dark_slope_files = [elem.replace(suffix, '_1_ramp_fit') for elem in dark_jump_files] dark_fitopt_files = [elem.replace(suffix, '_fitopt') for elem in dark_jump_files] # Repeat for flat field files flat_slope_files = [] flat_uncal_files = [] directory, filename = os.path.split(flatfiles[0]) # Get the suffix of the input file so we know the calibration state suffix = None for ramp_suffix in RATE_FILE_SUFFIXES: if ramp_suffix in filename: flat_slope_files = copy.deepcopy(flatfiles) suffix = ramp_suffix if suffix is None: suffix = filename.split('_')[-1] suffix = suffix.replace('.fits', '') if suffix == 'uncal': flat_uncal_files = copy.deepcopy(flatfiles) else: raise ValueError('Unexpected suffixes for input flat field files.') # Create lists of the needed calibration state files if len(flat_slope_files) > 0: flat_uncal_files = [elem.replace(suffix, '_uncal') for elem in flat_slope_files] elif len(flat_uncal_files) > 0: flat_slope_files = [elem.replace(suffix, '_1_ramp_fit') for elem in flat_uncal_files] # The bad pixel mask module needs to use the file with the individual # slopes (_1_ramp_fit.fits), rather than the mean slope (_0_ramp_fit.fits), # for exposures with more than one integration per exposure. But for # exposures with only one integration, only the _0_ramp_fit file will be # produced. So go through the lists of slope files and check to see # which versions are present, and adjust the lists accordingly. # Call the wrapped module and provide the proper arguments from the # self.parameters dictionary. bpm.bad_pixels(flat_slope_files=flat_slope_files, dead_search=self.parameters['dead_search'], low_qe_and_open_search=self.parameters['low_qe_and_open_search'], dead_search_type=self.parameters['dead_search_type'], flat_mean_sigma_threshold=self.parameters['flat_mean_sigma_threshold'], flat_mean_normalization_method=self.parameters['flat_mean_normalization_method'], smoothing_box_width=self.parameters['smoothing_box_width'], smoothing_type=self.parameters['smoothing_type'], dead_sigma_threshold=self.parameters['dead_sigma_threshold'], max_dead_norm_signal=self.parameters['max_dead_norm_signal'], run_dead_flux_check=self.parameters['run_dead_flux_check'], dead_flux_check_files=flat_uncal_files, flux_check=self.parameters['flux_check'], max_low_qe_norm_signal=self.parameters['max_low_qe_norm_signal'], max_open_adj_norm_signal=self.parameters['max_open_adj_norm_signal'], manual_flag_file=self.parameters['manual_flag_file'], flat_do_not_use=self.parameters['flat_do_not_use'], dark_slope_files=dark_slope_files, dark_uncal_files=dark_uncal_files, dark_jump_files=dark_jump_files, dark_fitopt_files=dark_fitopt_files, dark_stdev_clipping_sigma=self.parameters['dark_stdev_clipping_sigma'], dark_max_clipping_iters=self.parameters['dark_max_clipping_iters'], dark_noisy_threshold=self.parameters['dark_noisy_threshold'], max_saturated_fraction=self.parameters['max_saturated_fraction'], max_jump_limit=self.parameters['max_jump_limit'], jump_ratio_threshold=self.parameters['jump_ratio_threshold'], early_cutoff_fraction=self.parameters['early_cutoff_fraction'], pedestal_sigma_threshold=self.parameters['pedestal_sigma_threshold'], rc_fraction_threshold=self.parameters['rc_fraction_threshold'], low_pedestal_fraction=self.parameters['low_pedestal_fraction'], high_cr_fraction=self.parameters['high_cr_fraction'], flag_values=self.parameters['flag_values'], dark_do_not_use=self.parameters['dark_do_not_use'], plot=self.parameters['plot'], output_file=self.args.outputreffilename, author=self.parameters['author'], description=self.parameters['description'], pedigree=self.parameters['pedigree'], useafter=self.parameters['useafter'], history=self.parameters['history'], quality_check=self.parameters['quality_check']) return(0) if __name__ == '__main__': """This should not need to be changed. This will read in the config files, import the script, generate the self.parameters dictionary, and run the argument parser above. """ mkref = mkrefclass() mkref.make_reference_file() ```
{ "source": "jemorrison/prospector", "score": 2 }
#### File: prospect/io/write_results.py ```python import os, time, warnings import pickle, json, base64 import numpy as np try: import h5py _has_h5py_ = True except(ImportError): _has_h5py_ = False __all__ = ["githash", "write_pickles", "write_hdf5", "chain_to_struct"] unserial = json.dumps('Unserializable') def pick(obj): """create a serialized object that can go into hdf5 in py2 and py3, and can be read by both """ return np.void(pickle.dumps(obj, 0)) #def run_command(cmd): # """Open a child process, and return its exit status and stdout. # """ # import subprocess # child = subprocess.Popen(cmd, shell=True, stderr=subprocess.PIPE, # stdin=subprocess.PIPE, stdout=subprocess.PIPE) # out = [s for s in child.stdout] # w = child.wait() # return os.WEXITSTATUS(w), out def githash(**extras): """Pull out the git hash history for Prospector here. """ try: from .._version import __version__, __githash__ bgh = __version__, __githash__ except(ImportError): warnings.warn("Could not obtain prospector version info", RuntimeWarning) bgh = "Can't get version number." return bgh def paramfile_string(param_file=None, **extras): try: with open(param_file, "r") as pfile: pstr = pfile.read() except: warnings.warn("Could not store paramfile text", RuntimeWarning) pstr = '' return pstr def write_hdf5(hfile, run_params, model, obs, sampler, optimize_result_list, tsample=0.0, toptimize=0.0, sampling_initial_center=[], **extras): """Write output and information to an HDF5 file object (or group). """ try: # If ``hfile`` is not a file object, assume it is a filename and open hf = h5py.File(hfile, "a") except(AttributeError,TypeError): hf = hfile except(NameError): warnings.warn("HDF5 file could not be opened, as h5py could not be imported.") return # ---------------------- # Sampling info try: # emcee a = sampler.acceptance_fraction write_emcee_h5(hf, sampler, model, sampling_initial_center, tsample) except(AttributeError): # dynesty or nestle if sampler is None: sdat = hf.create_group('sampling') elif 'eff' in sampler: write_dynesty_h5(hf, sampler, model, tsample) else: write_nestle_h5(hf, sampler, model, tsample) # ----------------- # Optimizer info if optimize_result_list is not None: out = optresultlist_to_ndarray(optimize_result_list) mdat = hf.create_dataset('optimization', data=out) # ---------------------- # High level parameter and version info write_h5_header(hf, run_params, model) hf.attrs['optimizer_duration'] = json.dumps(toptimize) hf.flush() # ---------------------- # Observational data write_obs_to_h5(hf, obs) # Store the githash last after flushing since getting it might cause an # uncatchable crash bgh = githash(**run_params) hf.attrs['prospector_version'] = json.dumps(bgh) hf.close() def write_emcee_h5(hf, sampler, model, sampling_initial_center, tsample): """Write emcee information to the provided HDF5 file in the `sampling` group. """ try: sdat = hf['sampling'] except(KeyError): sdat = hf.create_group('sampling') if 'chain' not in sdat: sdat.create_dataset('chain', data=sampler.chain) lnp = sampler.lnprobability if ((lnp.shape[0] != lnp.shape[1]) & (lnp.T.shape == sampler.chain.shape[:-1])): # hack to deal with emcee3rc lnprob transposition lnp = lnp.T sdat.create_dataset('lnprobability', data=lnp) sdat.create_dataset('acceptance', data=sampler.acceptance_fraction) sdat.create_dataset('sampling_initial_center', data=sampling_initial_center) sdat.create_dataset('initial_theta', data=model.initial_theta.copy()) # JSON Attrs sdat.attrs['rstate'] = pick(sampler.random_state) sdat.attrs['sampling_duration'] = json.dumps(tsample) sdat.attrs['theta_labels'] = json.dumps(list(model.theta_labels())) hf.flush() def write_nestle_h5(hf, nestle_out, model, tsample): """Write nestle results to the provided HDF5 file in the `sampling` group. """ try: sdat = hf['sampling'] except(KeyError): sdat = hf.create_group('sampling') sdat.create_dataset('chain', data=nestle_out['samples']) sdat.create_dataset('weights', data=nestle_out['weights']) sdat.create_dataset('lnlikelihood', data=nestle_out['logl']) sdat.create_dataset('lnprobability', data=(nestle_out['logl'] + model.prior_product(nestle_out['samples']))) sdat.create_dataset('logvol', data=nestle_out['logvol']) sdat.create_dataset('logz', data=np.atleast_1d(nestle_out['logz'])) sdat.create_dataset('logzerr', data=np.atleast_1d(nestle_out['logzerr'])) sdat.create_dataset('h_information', data=np.atleast_1d(nestle_out['h'])) # JSON Attrs for p in ['niter', 'ncall']: sdat.attrs[p] = json.dumps(nestle_out[p]) sdat.attrs['theta_labels'] = json.dumps(list(model.theta_labels())) sdat.attrs['sampling_duration'] = json.dumps(tsample) hf.flush() def write_dynesty_h5(hf, dynesty_out, model, tsample): """Write nestle results to the provided HDF5 file in the `sampling` group. """ try: sdat = hf['sampling'] except(KeyError): sdat = hf.create_group('sampling') sdat.create_dataset('chain', data=dynesty_out['samples']) sdat.create_dataset('weights', data=np.exp(dynesty_out['logwt']-dynesty_out['logz'][-1])) sdat.create_dataset('logvol', data=dynesty_out['logvol']) sdat.create_dataset('logz', data=np.atleast_1d(dynesty_out['logz'])) sdat.create_dataset('logzerr', data=np.atleast_1d(dynesty_out['logzerr'])) sdat.create_dataset('information', data=np.atleast_1d(dynesty_out['information'])) sdat.create_dataset('lnlikelihood', data=dynesty_out['logl']) sdat.create_dataset('lnprobability', data=(dynesty_out['logl'] + model.prior_product(dynesty_out['samples']))) sdat.create_dataset('efficiency', data=np.atleast_1d(dynesty_out['eff'])) sdat.create_dataset('niter', data=np.atleast_1d(dynesty_out['niter'])) sdat.create_dataset('samples_id', data=np.atleast_1d(dynesty_out['samples_id'])) # JSON Attrs sdat.attrs['ncall'] = json.dumps(dynesty_out['ncall'].tolist()) sdat.attrs['theta_labels'] = json.dumps(list(model.theta_labels())) sdat.attrs['sampling_duration'] = json.dumps(tsample) hf.flush() def write_h5_header(hf, run_params, model): """Write header information about the run. """ serialize = {'run_params': run_params, 'model_params': [functions_to_names(p.copy()) for p in model.config_list], 'paramfile_text': paramfile_string(**run_params)} for k, v in list(serialize.items()): try: hf.attrs[k] = json.dumps(v) #, cls=NumpyEncoder) except(TypeError): # Should this fall back to pickle.dumps? hf.attrs[k] = pick(v) warnings.warn("Could not JSON serialize {}, pickled instead".format(k), RuntimeWarning) except: hf.attrs[k] = unserial warnings.warn("Could not serialize {}".format(k), RuntimeWarning) hf.flush() def write_obs_to_h5(hf, obs): """Write observational data to the hdf5 file """ try: odat = hf.create_group('obs') except(ValueError): # We already have an 'obs' group return for k, v in list(obs.items()): if k == 'filters': try: v = [f.name for f in v] except: pass if isinstance(v, np.ndarray): odat.create_dataset(k, data=v) else: try: odat.attrs[k] = json.dumps(v) #, cls=NumpyEncoder) except(TypeError): # Should this fall back to pickle.dumps? odat.attrs[k] = pick(v) warnings.warn("Could not JSON serialize {}, pickled instead".format(k)) except: odat.attrs[k] = unserial warnings.warn("Could not serialize {}".format(k)) hf.flush() def optresultlist_to_ndarray(results): npar, nout = len(results[0].x), len(results[0].fun) dt = [("success", np.bool), ("message", "S50"), ("nfev", np.int), ("x", (np.float, npar)), ("fun", (np.float, nout))] out = np.zeros(len(results), dtype=np.dtype(dt)) for i, r in enumerate(results): for f in out.dtype.names: out[i][f] = r[f] return out def chain_to_struct(chain, model=None, names=None): """Given a (flat)chain (or parameter dictionary) and a model, convert the chain to a structured array :param chain: A chain, ndarry of shape (nsamples, ndim) or a dictionary of parameters, values of which are numpy datatypes. :param model: A ProspectorParams instance :returns struct: A structured ndarray of parameter values. """ indict = type(chain) == dict if indict: return dict_to_struct(chain) else: n = np.prod(chain.shape[:-1]) assert model.ndim == chain.shape[-1] if model is not None: model.set_parameters(chain[0]) names = model.free_params dt = [(p, model.params[p].dtype, model.params[p].shape) for p in names] else: dt = [(str(p), "<f8", (1,)) for p in names] struct = np.zeros(n, dtype=np.dtype(dt)) for i, p in enumerate(names): if model is not None: inds = model.theta_index[p] else: inds = slice(i, i+1, None) struct[p] = chain[..., inds].reshape(-1, len(inds)) return struct def dict_to_struct(indict): dt = [(p, indict[p].dtype, indict[p].shape) for p in indict.keys()] struct = np.zeros(1, dtype=np.dtype(dt)) for i, p in enumerate(indict.keys()): struct[p] = chain[p] return struct[p] def write_pickles(run_params, model, obs, sampler, powell_results, outroot=None, tsample=None, toptimize=None, post_burnin_center=None, post_burnin_prob=None, sampling_initial_center=None, simpleout=False, **extras): """Write results to two different pickle files. One (``*_mcmc``) contains only lists, dictionaries, and numpy arrays and is therefore robust to changes in object definitions. The other (``*_model``) contains the actual model object (and minimization result objects) and is therefore more fragile. """ if outroot is None: tt = int(time.time()) outroot = '{1}_{0}'.format(tt, run_params['outfile']) bgh = githash(**run_params) paramfile_text = paramfile_string(**run_params) write_model_pickle(outroot + '_model', model, bgh=bgh, powell=powell_results, paramfile_text=paramfile_text) if simpleout and _has_h5py_: return # write out a simple chain as a pickle. This isn't really necessary since # the hd5 usually works results = {} # Useful global info and parameters results['run_params'] = run_params results['obs'] = obs results['model_params'] = [functions_to_names(p.copy()) for p in model.config_list] results['theta_labels'] = list(model.theta_labels()) # Parameter value at variopus phases results['initial_theta'] = model.initial_theta results['sampling_initial_center'] = sampling_initial_center results['post_burnin_center'] = post_burnin_center results['post_burnin_prob'] = post_burnin_prob # Chain and ancillary sampling info results['chain'] = sampler.chain results['lnprobability'] = sampler.lnprobability results['acceptance'] = sampler.acceptance_fraction results['rstate'] = sampler.random_state results['sampling_duration'] = tsample results['optimizer_duration'] = toptimize results['prospector_version'] = bgh results['paramfile_text'] = paramfile_text with open(outroot + '_mcmc', "wb") as out: pickle.dump(results, out) def write_model_pickle(outname, model, bgh=None, powell=None, **kwargs): model_store = {} model_store['powell'] = powell model_store['model'] = model model_store['prospector_version'] = bgh for k, v in kwargs.items(): try: model_store[k] = v except: pass with open(outname, "wb") as out: pickle.dump(model_store, out) def functions_to_names(p): """Replace prior and dust functions (or objects) with the names of those functions (or pickles). """ for k, v in list(p.items()): if callable(v): try: p[k] = [v.__name__, v.__module__] except(AttributeError): p[k] = pickle.dumps(v, protocol=2) return p ``` #### File: prospect/models/priors.py ```python import numpy as np import scipy.stats __all__ = ["Prior", "TopHat", "Normal", "ClippedNormal", "LogNormal", "LogUniform", "Beta", "StudentT", "SkewNormal"] class Prior(object): """Encapsulate the priors in an object. Each prior should have a distribution name and optional parameters specifying scale and location (e.g. min/max or mean/sigma). These can be aliased at instantiation using the ``parnames`` keyword. When called, the argument should be a variable and the object should return the ln-prior-probability of that value. .. code-block:: python ln_prior_prob = Prior()(value) Should be able to sample from the prior, and to get the gradient of the prior at any variable value. Methods should also be avilable to give a useful plotting range and, if there are bounds, to return them. :param parnames: A list of names of the parameters, used to alias the intrinsic parameter names. This way different instances of the same Prior can have different parameter names, in case they are being fit for.... """ def __init__(self, parnames=[], name='', **kwargs): """Constructor. :param parnames: A list of names of the parameters, used to alias the intrinsic parameter names. This way different instances of the same Prior can have different parameter names, in case they are being fit for.... """ if len(parnames) == 0: parnames = self.prior_params assert len(parnames) == len(self.prior_params) self.alias = dict(zip(self.prior_params, parnames)) self.params = {} self.name = name self.update(**kwargs) def __repr__(self): argstring = ['{}={}'.format(k, v) for k, v in list(self.params.items())] return '{}({})'.format(self.__class__, ",".join(argstring)) def update(self, **kwargs): """Update `params` values using alias. """ for k in self.prior_params: try: self.params[k] = kwargs[self.alias[k]] except(KeyError): pass # FIXME: Should add a check for unexpected kwargs. def __len__(self): """The length is set by the maximum size of any of the prior_params. Note that the prior params must therefore be scalar of same length as the maximum size of any of the parameters. This is not checked. """ return max([np.size(self.params.get(k, 1)) for k in self.prior_params]) def __call__(self, x, **kwargs): """Compute the value of the probability desnity function at x and return the ln of that. :param x: Value of the parameter, scalar or iterable of same length as the Prior object. :param kwargs: optional All extra keyword arguments are sued to update the `prior_params`. :returns lnp: The natural log of the prior probability at x, scalar or ndarray of same length as the prior object. """ if len(kwargs) > 0: self.update(**kwargs) pdf = self.distribution.pdf try: p = pdf(x, *self.args, loc=self.loc, scale=self.scale) except(ValueError): # Deal with `x` vectors of shape (nsamples, len(prior)) # for pdfs that don't broadcast nicely. p = [pdf(_x, *self.args, loc=self.loc, scale=self.scale) for _x in x] p = np.array(p) with np.errstate(invalid='ignore'): lnp = np.log(p) return lnp def sample(self, nsample=None, **kwargs): """Draw a sample from the prior distribution. :param nsample: (optional) Unused """ if len(kwargs) > 0: self.update(**kwargs) return self.distribution.rvs(*self.args, size=len(self), loc=self.loc, scale=self.scale) def unit_transform(self, x, **kwargs): """Go from a value of the CDF (between 0 and 1) to the corresponding parameter value. :param x: A scalar or vector of same length as the Prior with values between zero and one corresponding to the value of the CDF. :returns theta: The parameter value corresponding to the value of the CDF given by `x`. """ if len(kwargs) > 0: self.update(**kwargs) return self.distribution.ppf(x, *self.args, loc=self.loc, scale=self.scale) def inverse_unit_transform(self, x, **kwargs): """Go from the parameter value to the unit coordinate using the cdf. """ if len(kwargs) > 0: self.update(**kwargs) return self.distribution.cdf(x, *self.args, loc=self.loc, scale=self.scale) def gradient(self, theta): raise(NotImplementedError) @property def loc(self): """This should be overridden. """ return 0 @property def scale(self): """This should be overridden. """ return 1 @property def args(self): return [] @property def range(self): raise(NotImplementedError) @property def bounds(self): raise(NotImplementedError) def serialize(self): raise(NotImplementedError) class TopHat(Prior): """A simple uniform prior, described by two parameters :param mini: Minimum of the distribution :param maxi: Maximum of the distribution """ prior_params = ['mini', 'maxi'] distribution = scipy.stats.uniform @property def scale(self): return self.params['maxi'] - self.params['mini'] @property def loc(self): return self.params['mini'] @property def range(self): return (self.params['mini'], self.params['maxi']) def bounds(self, **kwargs): if len(kwargs) > 0: self.update(**kwargs) return self.range class Normal(Prior): """A simple gaussian prior. :param mean: Mean of the distribution :param sigma: Standard deviation of the distribution """ prior_params = ['mean', 'sigma'] distribution = scipy.stats.norm @property def scale(self): return self.params['sigma'] @property def loc(self): return self.params['mean'] @property def range(self): nsig = 4 return (self.params['mean'] - nsig * self.params['sigma'], self.params['mean'] + self.params['sigma']) def bounds(self, **kwargs): #if len(kwargs) > 0: # self.update(**kwargs) return (-np.inf, np.inf) class ClippedNormal(Prior): """A Gaussian prior clipped to some range. :param mean: Mean of the normal distribution :param sigma: Standard deviation of the normal distribution :param mini: Minimum of the distribution :param maxi: Maximum of the distribution """ prior_params = ['mean', 'sigma', 'mini', 'maxi'] distribution = scipy.stats.truncnorm @property def scale(self): return self.params['sigma'] @property def loc(self): return self.params['mean'] @property def range(self): return (self.params['mini'], self.params['maxi']) @property def args(self): a = (self.params['mini'] - self.params['mean']) / self.params['sigma'] b = (self.params['maxi'] - self.params['mean']) / self.params['sigma'] return [a, b] def bounds(self, **kwargs): if len(kwargs) > 0: self.update(**kwargs) return self.range class LogUniform(Prior): """Like log-normal, but the distribution of natural log of the variable is distributed uniformly instead of normally. :param mini: Minimum of the distribution :param maxi: Maximum of the distribution """ prior_params = ['mini', 'maxi'] distribution = scipy.stats.reciprocal @property def args(self): a = self.params['mini'] b = self.params['maxi'] return [a, b] @property def range(self): return (self.params['mini'], self.params['maxi']) def bounds(self, **kwargs): if len(kwargs) > 0: self.update(**kwargs) return self.range class Beta(Prior): """A Beta distribution. :param mini: Minimum of the distribution :param maxi: Maximum of the distribution :param alpha: :param beta: """ prior_params = ['mini', 'maxi', 'alpha', 'beta'] distribution = scipy.stats.beta @property def scale(self): return self.params.get('maxi', 1) - self.params.get('mini', 0) @property def loc(self): return self.params.get('mini', 0) @property def args(self): a = self.params['alpha'] b = self.params['beta'] return [a, b] @property def range(self): return (self.params.get('mini',0), self.params.get('maxi',1)) def bounds(self, **kwargs): if len(kwargs) > 0: self.update(**kwargs) return self.range class LogNormal(Prior): """A log-normal prior, where the natural log of the variable is distributed normally. Useful for parameters that cannot be less than zero. Note that ``LogNormal(np.exp(mode) / f) == LogNormal(np.exp(mode) * f)`` and ``f = np.exp(sigma)`` corresponds to "one sigma" from the peak. :param mode: Natural log of the variable value at which the probability density is highest. :param sigma: Standard deviation of the distribution of the natural log of the variable. """ prior_params = ['mode', 'sigma'] distribution = scipy.stats.lognorm @property def args(self): return [self.params["sigma"]] @property def scale(self): return np.exp(self.params["mode"] + self.params["sigma"]**2) @property def loc(self): return 0 @property def range(self): nsig = 4 return (np.exp(self.params['mode'] + (nsig * self.params['sigma'])), np.exp(self.params['mode'] - (nsig * self.params['sigma']))) def bounds(self, **kwargs): return (0, np.inf) class LogNormalLinpar(Prior): """A log-normal prior, where the natural log of the variable is distributed normally. Useful for parameters that cannot be less than zero. LogNormal(mode=x, sigma=y) is equivalent to LogNormalLinpar(mode=np.exp(x), sigma_factor=np.exp(y)) :param mode: The (linear) value of the variable where the probability density is highest. Must be > 0. :param sigma_factor: The (linear) factor describing the dispersion of the log of the variable. Must be > 0 """ prior_params = ['mode', 'sigma_factor'] distribution = scipy.stats.lognorm @property def args(self): return [np.log(self.params["sigma_factor"])] @property def scale(self): k = self.params["sigma_factor"]**np.log(self.params["sigma_factor"]) return self.params["mode"] * k @property def loc(self): return 0 @property def range(self): nsig = 4 return (self.params['mode'] * (nsig * self.params['sigma_factor']), self.params['mode'] / (nsig * self.params['sigma_factor'])) def bounds(self, **kwargs): return (0, np.inf) class SkewNormal(Prior): """A normal distribution including a skew parameter :param location: Center (*not* mean, mode, or median) of the distribution. The center will approach the mean as skew approaches zero. :param sigma: Standard deviation of the distribution :param skew: Skewness of the distribution """ prior_params = ['location', 'sigma', 'skew'] distribution = scipy.stats.skewnorm @property def args(self): return [self.params['skew']] @property def scale(self): return self.params['sigma'] @property def loc(self): return self.params['location'] @property def range(self): nsig = 4 return (self.params['location'] - nsig * self.params['sigma'], self.params['location'] + nsig * self.params['sigma']) def bounds(self, **kwargs): return (-np.inf, np.inf) class StudentT(Prior): """A Student's T distribution :param mean: Mean of the distribution :param scale: Size of the distribution, analogous to the standard deviation :param df: Number of degrees of freedom """ prior_params = ['mean', 'scale', 'df'] distribution = scipy.stats.t @property def args(self): return [self.params['df']] @property def scale(self): return self.params['scale'] @property def loc(self): return self.params['mean'] @property def range(self): nsig = 4 return (self.params['location'] - nsig * self.params['scale'], self.params['location'] + nsig * self.params['scale']) def bounds(self, **kwargs): return (-np.inf, np.inf) ```
{ "source": "jemrobinson/capital-gains-calculator", "score": 3 }
#### File: capital-gains-calculator/capital_gains_calculator/disposal.py ```python from .transaction import Transaction from .utils import as_money, abs_divide class Disposal(Transaction): """A combined purchase and sale""" def __init__( self, date_time, currency, units, purchase_total, purchase_fees, purchase_taxes, sale_total, sale_fees, sale_taxes, ): super().__init__(date_time=date_time, currency=currency, units=units) self.purchase_total = as_money(purchase_total, currency) self.purchase_fees = as_money(purchase_fees, currency) self.purchase_taxes = as_money(purchase_taxes, currency) self.sale_total = as_money(sale_total, currency) self.sale_fees = as_money(sale_fees, currency) self.sale_taxes = as_money(sale_taxes, currency) self.type = "DISPOSAL" @property def subtotal(self): """Subtotal is not a valid property for this class""" raise NotImplementedError( "Subtotal is not a valid property for the Disposal class" ) # return Money(-1, self.currency) @property def unit_price_sold(self): """The unit price at which the units were sold""" return abs_divide(self.sale_total, self.units) @property def unit_price_bought(self): """The unit price at which the units were bought""" return abs_divide(self.purchase_total, self.units) @property def gain(self): """The capital gain made upon sale""" return self.sale_total - self.purchase_total @property def is_null(self): """Whether this is a null transaction""" return (self.sale_total == self.currency.zero) and ( self.purchase_total == self.currency.zero ) def __str__(self): return f"Transaction: {self.type:8s} date = {self.date}, units = {self.units}, purchase_total = {self.purchase_total}, sale_total = {self.sale_total}, gain = {self.gain}" class BedAndBreakfast(Disposal): """A disposal where the buying/selling are within 30 days""" def __init__(self, disposal): super().__init__( disposal.datetime, disposal.currency, disposal.units, disposal.purchase_total, disposal.purchase_fees, disposal.purchase_taxes, disposal.sale_total, disposal.sale_fees, disposal.sale_taxes, ) @property def subtotal(self): """Subtotal is not a valid property for this class""" raise NotImplementedError( "Subtotal is not a valid property for the BedAndBreakfast class" ) ``` #### File: capital-gains-calculator/capital_gains_calculator/excess_reportable_income.py ```python from .purchase import Purchase class ExcessReportableIncome(Purchase): """Excess reportable income from accumulation shares treated as a purchase of 0 additional shares""" def __init__(self, date_time, currency, amount, **kwargs): super().__init__( date_time=date_time, currency=currency, subtotal=amount, units=0, fees=0, taxes=0, **kwargs ) self.type = "ERI" ``` #### File: capital-gains-calculator/capital_gains_calculator/pooled_purchase.py ```python from .disposal import Disposal, BedAndBreakfast from .purchase import Purchase class PooledPurchase(Purchase): """Combination of several transactions""" def __init__(self, currency, **kwargs): kwargs["date_time"] = kwargs.get("date_time", "0001-01-01") super().__init__(currency=currency, **kwargs) self.type = "POOL" @classmethod def from_purchase(cls, purchase, currency): """Create a PooledPurchase from a Purchase""" if not purchase: return cls(currency) return cls( date_time=purchase.datetime, currency=currency, units=purchase.units, subtotal=purchase.subtotal, fees=purchase.fees, taxes=purchase.taxes, ) def add_purchase(self, purchase): """Add a purchase to the pool""" if not isinstance(purchase, Purchase): raise ValueError(f"{purchase} is not a valid Purchase!") self.datetime = max([self.datetime, purchase.datetime]) self.units = self.units + purchase.units self.subtotal_ = self.subtotal + purchase.subtotal self.fees = self.fees + purchase.fees self.taxes = self.taxes + purchase.taxes def add_disposal(self, disposal): """Add a disposal to the pool""" if not isinstance(disposal, Disposal): raise ValueError(f"{disposal} is not a valid Purchase!") self.datetime = max([self.datetime, disposal.datetime]) self.units = self.units - disposal.units self.subtotal_ = self.subtotal - disposal.purchase_total self.fees = self.fees + disposal.fees self.taxes = self.taxes + disposal.taxes def add_bed_and_breakfast(self, bed_and_breakfast): """Add a bed-and-breakfast to the pool""" if not isinstance(bed_and_breakfast, BedAndBreakfast): raise ValueError(f"{bed_and_breakfast} is not a valid BedAndBreakfast!") self.datetime = max([self.datetime, bed_and_breakfast.datetime]) self.subtotal_ = self.subtotal + bed_and_breakfast.gain ``` #### File: capital-gains-calculator/capital_gains_calculator/purchase.py ```python from .transaction import Transaction class Purchase(Transaction): """Transaction where a security is bought""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.type = "BOUGHT" @property def subtotal(self): return self.subtotal_ ``` #### File: capital-gains-calculator/capital_gains_calculator/transaction.py ```python from decimal import Decimal # Local imports from .utils import as_money, as_datetime, abs_divide class Transaction: """Transaction where money is exchanged for a security""" def __init__( self, date_time, currency, units=0, subtotal=0, fees=0, taxes=0, note="" ): self.datetime = as_datetime(date_time) self.currency = currency self.units = Decimal(units) self.subtotal_ = as_money(subtotal, currency) self.fees = as_money(fees, currency) self.taxes = as_money(taxes, currency) self.note = str(note) self.type = None @property def date(self): """Date of transaction""" return self.datetime.date() @property def unit_price(self): """Base price paid per unit in this transaction""" return abs_divide(self.subtotal, self.units) @property def unit_fees(self): """Fees paid per unit in this transaction""" return abs_divide(self.fees, self.units) @property def unit_taxes(self): """Taxes paid per unit in this transaction""" return abs_divide(self.taxes, self.units) @property def unit_price_inc(self): """Total price paid per unit in this transaction""" return abs_divide(self.total, self.units) @property def charges(self): """Total charges paid in this transaction""" return self.fees + self.taxes @property def subtotal(self): """Subtotal must be implemented by child classes""" raise NotImplementedError @property def total(self): """Total paid in this transaction""" return self.charges + self.subtotal @property def is_null(self): """Whether this is a null transaction""" return self.total == self.currency.zero def __str__(self): return f"Transaction: {self.type:8s} date = {self.date}, units = {self.units}, unit_price = {self.unit_price}, subtotal = {self.subtotal}, fees = {self.fees}, taxes = {self.taxes}, total = {self.total}" ```
{ "source": "jemrobinson/shifl", "score": 3 }
#### File: shui/classes/fileinfo.py ```python from tqdm import tqdm import requests class FileInfo: """Class to relate local and remote information about a Spark/Hadoop file""" def __init__(self, remote_url, local_path): self.url = remote_url self.path = local_path @property def name(self): """Get the name of the local file""" return self.path.name @property def is_hashfile(self): """Boolean indicating whether this is a hashfile""" return self.path.suffix == ".sha512" def download(self): """Download this Spark/Hadoop version from a remote URL to a local path""" response = requests.get(self.url, stream=True, allow_redirects=True) total_size = int(response.headers.get("content-length")) with open(self.path, "wb") as output_file: with tqdm(total=total_size, unit="B", unit_scale=True) as progress_bar: for chunk in response.iter_content(chunk_size=1024): if chunk: output_file.write(chunk) progress_bar.update(len(chunk)) def is_hash_for(self, other): """Boolean indicating whether this is the hashfile corresponding to another file""" return self.is_hashfile and self.path.stem == other.path.name def remove(self): """Remove the local file""" if self.path.is_file(): self.path.unlink() ``` #### File: shui/classes/file_with_hash.py ```python import hashlib class FileWithHash: """Class to contain file information for a file and its associated hash file""" def __init__(self, file_, hashfile): if not hashfile.is_hashfile: raise ValueError(f"{hashfile.name} is not a hashfile!") if not hashfile.is_hash_for(file_): raise ValueError( f"{hashfile.name} is not the correct hashfile for {file_.name}!" ) self.file = file_ self.hashfile = hashfile def __iter__(self): yield self.file yield self.hashfile def remove(self): """Remove tarball and SHA512 hash""" for fileinfo in self: fileinfo.remove() def verify(self): """Verify that a file matches its SHA512 hash""" # Get the file hash file_hash = hashlib.sha512() buffer_size = 524288 # read in chunks of 512kb with self.file.path.open("rb") as input_file: input_bytes = True while input_bytes: input_bytes = input_file.read(buffer_size) file_hash.update(input_bytes) calculated_hash = file_hash.hexdigest().lower() # Read the reference hash with self.hashfile.path.open("r") as input_hash: reference_hash = ( "".join(input_hash.readlines()) .replace("\n", " ") .replace(" ", "") .split(":")[1] .strip() .lower() ) return calculated_hash == reference_hash ``` #### File: shui/commands/versions_command.py ```python from cleo import Command from shui.functions import get_versions class VersionsCommand(Command): """ Get available Spark and Hadoop versions versions {--latest : Show only the latest available version} """ def handle(self): versions = get_versions() if self.option("latest"): versions = [sorted(versions)[-1]] for version in versions: self.line(f"Available version: {version}") ```
{ "source": "jemrobinson/Stormspotter", "score": 2 }
#### File: assets/aad/aadserviceprincipal.py ```python from dataclasses import dataclass, field from typing import List from .aadobject import AADObject from stormspotter.ingestor.utils.resources import * @dataclass class AADServicePrincipal(AADObject): resource = "servicePrincipals" node_label: str = AADSPN_NODE_LABEL query_parameters: List = field(default_factory= lambda: []) api_version: str = "1.6-internal" def parse(self, tenant_id, value, context): if not value["microsoftFirstParty"]: owners = self.expand(tenant_id, value["objectId"], "owners", context) owner_ids = [owner['objectId'] for owner in owners["value"]] value["owners"] = owner_ids else: value["owners"] = [] return value #context.neo4j.insert_asset(obj, AADOBJECT_NODE_LABEL, obj["objectid"], [AADSPN_NODE_LABEL]) #if obj["owners"]: # for owner in value["owners"]: # context.neo4j.create_relationship(owner["objectId"], # AADOBJECT_NODE_LABEL, obj["objectid"], # AADSPN_NODE_LABEL, AAD_TO_ASSET) ``` #### File: ingestor/utils/cloud.py ```python import configparser from msrestazure.azure_cloud import Cloud, CloudEndpoints, CloudSuffixes, AZURE_PUBLIC_CLOUD, AZURE_GERMAN_CLOUD, AZURE_CHINA_CLOUD, AZURE_US_GOV_CLOUD class CloudContext: """ Specifies which endpoints based on cloud instance for authentication purposes """ def __init__(self, cloud, config=None): configuration = configparser.ConfigParser() if config: # read config file and make Cloud object configuration.read(config) name = configuration['NAME']['Cloud'] self.cloud = Cloud( name, endpoints=CloudEndpoints( management=configuration['ENDPOINTS']['Management'], resource_manager=configuration['ENDPOINTS']['Resource_Manager'], sql_management=configuration['ENDPOINTS']['SQL_Management'], batch_resource_id=configuration['ENDPOINTS']['Batch_ResourceId'], gallery=configuration['ENDPOINTS']['Gallery'], active_directory=configuration['ENDPOINTS']['AD'], active_directory_resource_id=configuration['ENDPOINTS']['AD_ResourceId'], active_directory_graph_resource_id=configuration['ENDPOINTS']['AD_Graph_ResourceId'] ), suffixes=CloudSuffixes( storage_endpoint=configuration['SUFFIXES']['Storage_Endpoint'], keyvault_dns=configuration['SUFFIXES']['Keyvault_DNS'], sql_server_hostname=configuration['SUFFIXES']['SQLServer_Hostname'], ) ) else: if cloud == 'GERMANY': self.cloud = AZURE_GERMAN_CLOUD elif cloud == 'CHINA': self.cloud = AZURE_CHINA_CLOUD elif cloud == 'USGOV': self.cloud = AZURE_US_GOV_CLOUD elif cloud == 'PUBLIC': self.cloud = AZURE_PUBLIC_CLOUD ```
{ "source": "jemsbhai/battlenotes", "score": 3 }
#### File: jemsbhai/battlenotes/note_recognition.py ```python from pydub import AudioSegment import pydub.scipy_effects import numpy as np import scipy import matplotlib.pyplot as plt from solo_generation_esac import * from utils import frequency_spectrum, \ calculate_distance, \ classify_note_attempt_1, \ classify_note_attempt_2, \ classify_note_attempt_3 def main(file, note_arr=None, plot_starts=False, plot_fft_indices=[]): actual_notes = [] if note_arr: actual_notes = note_arr song = AudioSegment.from_file(file) #song = song.high_pass_filter(80, order=4) starts = predict_note_starts(song, plot_starts) predicted_notes = predict_notes(song, starts, plot_fft_indices) print("") if actual_notes: print("Actual Notes") print(actual_notes) print("Predicted Notes") print(predicted_notes) if actual_notes: lev_distance = calculate_distance(predicted_notes, actual_notes) score = abs(len(actual_notes) - lev_distance)/len(actual_notes) print("Levenshtein distance: {}/{}".format(lev_distance, len(actual_notes))) return score # Very simple implementation, just requires a minimum volume and looks for left edges by # comparing with the prior sample, also requires a minimum distance between starts # Future improvements could include smoothing and/or comparing multiple samples # # song: pydub.AudioSegment # plot: bool, whether to show a plot of start times # actual_starts: []float, time into song of each actual note start (seconds) # # Returns perdicted starts in ms def predict_note_starts(song, plot): # Size of segments to break song into for volume calculations SEGMENT_MS = 50 # Minimum volume necessary to be considered a note VOLUME_THRESHOLD = -27.8 # The increase from one sample to the next required to be considered a note EDGE_THRESHOLD = 0.09 # Throw out any additional notes found in this window MIN_MS_BETWEEN = 100 # Filter out lower frequencies to reduce noise #song = song.high_pass_filter(80, order=4) # dBFS is decibels relative to the maximum possible loudness volume = [segment.dBFS for segment in song[::SEGMENT_MS]] predicted_starts = [] for i in range(1, len(volume)): if volume[i] > VOLUME_THRESHOLD and volume[i] - volume[i - 1] > EDGE_THRESHOLD: ms = i * SEGMENT_MS # Ignore any too close together if len(predicted_starts) == 0 or ms - predicted_starts[-1] >= MIN_MS_BETWEEN: predicted_starts.append(ms) #predicted_starts.append(ms) #for i in range(len(predicted_starts)-2): # if predicted_starts[i+1] - predicted_starts[i] <= MIN_MS_BETWEEN: # predicted_starts.remove(predicted_starts[i]) # Plot the volume over time (sec) if plot: x_axis = np.arange(len(volume)) * (SEGMENT_MS / 1000) plt.plot(x_axis, volume) # Add vertical lines for predicted note starts and actual note starts for ms in predicted_starts: plt.axvline(x=(ms / 1000), color="g", linewidth=0.5, linestyle=":") plt.show() return predicted_starts def predict_notes(song, starts, plot_fft_indices): predicted_notes = [] for i, start in enumerate(starts): sample_from = start + 50 sample_to = start + 200 if i < len(starts) - 1: sample_to = min(starts[i + 1], sample_to) segment = song[sample_from:sample_to] freqs, freq_magnitudes = frequency_spectrum(segment) predicted = classify_note_attempt_2(freqs, freq_magnitudes) predicted_notes.append(predicted or "U") # Print general info print("") print("Note: {}".format(i)) print("Predicted start: {}".format(start)) length = sample_to - sample_from print("Sampled from {} to {} ({} ms)".format(sample_from, sample_to, length)) print("Frequency sample period: {}hz".format(freqs[1])) # Print peak info peak_indicies, props = scipy.signal.find_peaks(freq_magnitudes, height=0.015) print("Peaks of more than 1.5 percent of total frequency contribution:") for j, peak in enumerate(peak_indicies): freq = freqs[peak] magnitude = props["peak_heights"][j] print("{:.1f}hz with magnitude {:.3f}".format(freq, magnitude)) if i in plot_fft_indices: plt.plot(freqs, freq_magnitudes, "b") plt.xlabel("Freq (Hz)") plt.ylabel("|X(freq)|") plt.show() return predicted_notes if __name__ == "__main__": main("untitled.wav", note_arr=["C", "D", "E", "F", "G", "A"], plot_starts=True) ``` #### File: jemsbhai/battlenotes/solo_generation_esac.py ```python import pandas as pd import sqlite3 from music21 import * from music21.converter.subConverters import ConverterMidi, ConverterMusicXML import random import os import re def get_solo_melody(difficulty): con = sqlite3.connect("esac.db") solo_info = "esac_info2" # Load the solo data into a DataFrame solo_info_df = pd.read_sql_query(f"SELECT * from {solo_info}", con) # Get random solo with appropriate difficulty #solo = solo_info_df[abs(solo_info_df['avg_events_per_bar'] - difficulty) < 1].sample(1) solo = solo_info_df[abs(solo_info_df['notes_per_melody'] - difficulty*10) < 10].sample(1) #solo_id = 'A0128A' solo_id = solo.iloc[0]['esacid'] mel_id = solo.iloc[0]['melid'] print(solo_id) return solo_id, mel_id def get_abc_file(esacid): user_input = 'esac' directory = os.listdir(user_input) searchstring = f'N: {esacid}\n' file = '' for fname in directory: if os.path.isfile(user_input + os.sep + fname): # Full path f = open(user_input + os.sep + fname, 'r', errors='ignore') if searchstring in f.read(): file = fname print(file) f.close() break f.close() nextbreak = 0 # find line number of esacid with open(user_input + os.sep + file, 'r', errors='ignore') as myFile: for num, line in enumerate(myFile, 1): if searchstring in line and nextbreak==0: print('found at line:', num) linenum = num nextbreak = 1 elif '\n' == line and nextbreak == 1: nextbreak = num print('next break:', nextbreak) with open(user_input + os.sep + file, 'r', errors='ignore') as myFile: opusnum = myFile.readlines()[linenum-3][2:-1] print('opus', opusnum) with open(user_input + os.sep + file, 'r', errors='ignore') as myFile: musictext = myFile.readlines()[linenum+6:nextbreak-1] print('music text', musictext) return file, opusnum def display_music(file, opusnum): s = converter.parse(f'esac/{file}', number=opusnum) s.metadata.title = '' us = environment.UserSettings() us['autoDownload'] = 'allow' us['lilypondPath'] = 'C:/Program Files (x86)/LilyPond/usr/bin/lilypond.exe' us['musescoreDirectPNGPath'] = 'C:/Program Files/MuseScore 3/bin/MuseScore3.exe' us['musicxmlPath'] = 'C:/Program Files/MuseScore 3/bin/MuseScore3.exe' filepath = r'output' conv_musicxml = ConverterMusicXML() out_filepath = conv_musicxml.write(s, 'musicxml', fp=filepath, subformats=['png']) # importing PIL #from PIL import Image #img = Image.open(filepath + '-1.png') #img.show() s.show() def get_correct_notes(mel_id): con = sqlite3.connect("esac.db") melody_df = pd.read_sql_query(f"SELECT * from melody WHERE melid = {mel_id}", con) melody_list = list(melody_df['pitch']) return melody_list if __name__ == "__main__": solo_id, mel_id = get_solo_melody(4) file, opusnum = get_abc_file(solo_id) get_correct_notes(mel_id) display_music(file, opusnum) ```
{ "source": "jemsbhai/hackillinois2021", "score": 3 }
#### File: hackillinois2021/restaurant_app/basebackendrouter.py ```python import os import pymongo import json import random # import psycopg2 import hashlib import time from hashlib import sha256 def dummy(request): """Responds to any HTTP request. Args: request (flask.Request): HTTP request object. Returns: The response text or any set of values that can be turned into a Response object using `make_response <http://flask.pocoo.org/docs/1.0/api/#flask.Flask.make_response>`. """ if request.method == 'OPTIONS': # Allows GET requests from origin https://mydomain.com with # Authorization header headers = { 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Methods': 'POST', 'Access-Control-Allow-Headers': '*', 'Access-Control-Max-Age': '3600', 'Access-Control-Allow-Credentials': 'true' } return ('', 204, headers) # Set CORS headers for main requests headers = { 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Credentials': 'true' } request_json = request.get_json() mongostr = os.environ.get('MONGOSTR') client = pymongo.MongoClient(mongostr) db = client["merrydining"] retjson = {} action = request_json['action'] if action == "getsingletabledata": col = db.tabledata for x in col.find(): if int(x['id']) == int(request_json['id']): status = x['status'] diet = x['diet'] allergy = x['allergy'] retjson = {} # retjson['dish'] = userid retjson['status'] = "success" retjson['occupancy'] = status retjson['diet'] = diet retjson['allergy'] = allergy return json.dumps(retjson) retjson = {} # retjson['dish'] = userid retjson['status'] = "fail" retjson['id'] = "-1" return json.dumps(retjson) if action == "updatesingletable": col = db.tabledata for x in col.find(): if int(x['id']) == int(request_json['id']): if 'status' in request_json: col.update_one({"id": x['id']}, {"$set":{"status":request_json['status']}}) if 'diet' in request_json: col.update_one({"id": x['id']}, {"$set":{"diet":request_json['diet']}}) if 'allergy' in request_json: col.update_one({"id": x['id']}, {"$set":{"allergy":request_json['allergy']}}) status = x['status'] diet = x['diet'] allergy = x['allergy'] retjson = {} # retjson['dish'] = userid retjson['responsestatus'] = "success" retjson['status'] = status retjson['diet'] = diet retjson['allergy'] = allergy return json.dumps(retjson) retjson = {} # retjson['dish'] = userid retjson['status'] = "fail" retjson['id'] = "-1" return json.dumps(retjson) if action == "getalltabledata": col = db.tabledata tables = [] for x in col.find(): table = {} table['tableid'] = x['id'] table['status'] = x['status'] table['diet'] = x['diet'] table['allergy'] = x['allergy'] tables.append(table) retjson = {} # retjson['dish'] = userid retjson['status'] = "success" retjson['tables'] = tables return json.dumps(retjson) retjson = {} # retjson['dish'] = userid retjson['status'] = "fail" retjson['id'] = "-1" return json.dumps(retjson) if action == "addscore" : maxid = 1 col = db.scores for x in col.find(): id = x["id"] maxid +=1 id = str(maxid+1) payload = {} uid = id payload["id"] = id # payload["uid"] = request_json['uid'] # payload["name"] = request_json['name'] payload["userid"] = request_json['userid'] payload["score"] = request_json['score'] result=col.insert_one(payload) retjson = {} # retjson['dish'] = userid retjson['status'] = "successfully added" retjson['id'] = id return json.dumps(retjson) if action == "getmyscore": col = db.scores for x in col.find(): if x['userid'] == request_json['userid']: score = x['score'] retjson = {} # retjson['dish'] = userid retjson['status'] = "success" retjson['score'] = score return json.dumps(retjson) retjson = {} # retjson['dish'] = userid retjson['status'] = "fail" retjson['id'] = "-1" return json.dumps(retjson) if action == "getallitems": col = db.items scores = [] for x in col.find(): entry = {} entry['userid'] = x['userid'] entry['item'] = x['item'] scores.append(entry) # retjson['dish'] = userid retjson['status'] = "success" retjson['scores'] = scores return json.dumps(retjson) retjson = {} if action == "attempt": col = db.tables uid = request_json['uid'] sid = request_json['sid'] uline = request_json['line'] for x in col.find(): if x['id'] == sid: line = x['line'] num = len(line) # score = num - editDistance(line, uline, len(line), len(uline)) score = num - edit_distance(line, uline) if score < 0: score = 0 retjson = {} # retjson['dish'] = userid retjson['score'] = score retjson['id'] = "-1" return json.dumps(retjson) if action == "getrandomtable": col = db.tables maxid = 0 for x in col.find(): maxid = int(x["id"]) index = random.randint(1, maxid) for x in col.find(): if x['id'] == str(index): sid = x['id'] url = x['url'] retjson = {} # retjson['dish'] = userid retjson['url'] = url retjson['id'] = sid return json.dumps(retjson) retjson = {} # retjson['dish'] = userid retjson['status'] = "fail" retjson['id'] = "-1" return json.dumps(retjson) retstr = "action not done" if request.args and 'message' in request.args: return request.args.get('message') elif request_json and 'message' in request_json: return request_json['message'] else: return retstr ```
{ "source": "jemsbhai/safesmart", "score": 3 }
#### File: safesmart/backend/gcpuploader.py ```python from google.cloud import storage import os import sys def uploadtobucket(filename, bucketname): from google.cloud import storage # Explicitly use service account credentials by specifying the private key # file. storage_client = storage.Client.from_service_account_json('googlecreds.json') # Make an authenticated API request ## buckets = list(storage_client.list_buckets()) ## print(buckets) bucket = storage_client.get_bucket(bucketname) destination_blob_name = filename source_file_name = filename blob = bucket.blob(destination_blob_name) blob.cache_control = "no-cache" blob.upload_from_filename(source_file_name) # blob.make_public() blob.cache_control = "no-cache" print('File {} uploaded to {}.'.format(source_file_name, destination_blob_name)) filename = sys.argv[1] bucketname = sys.argv[2] uploadtobucket(filename, bucketname) ```
{ "source": "jemsbhai/safewalk", "score": 3 }
#### File: safewalk/backend/wayfinder.py ```python import requests import json def getsafety(lat, lng): url = "https://api.crimeometer.com/v1/incidents/raw-data" querystring = {"lat":str(lat),"lon":str(lng),"distance":"500ft","datetime_ini":"%202020-03-01%27T%2700:%2000:%2000.0","datetime_end":"%202021-03-25%27T%2700:%2000:%2000.0"} payload = "" headers = { 'Content-Type': "application/json", 'x-api-key': "REDACTEDKEY", 'cache-control': "no-cache", 'Postman-Token': "<PASSWORD>" } response = requests.request("GET", url, data=payload, headers=headers, params=querystring) print(response.text) js = json.loads(response.text) t = js['total_incidents'] return t def getpoints(rj, n): r = rj['routes'][n] # if not r: # return [] legs = [] for l in r['legs']: steps = l['steps'] for s in steps: lat = s['start_location']['lat'] lon = s['start_location']['lng'] point = {} point['lat'] = lat point['lon'] = lon ##test safety sf = getsafety(lat, lon) if sf > 3: return getpoints(rj, n+1) legs.append(point) lat = s['end_location']['lat'] lon = s['end_location']['lng'] point = {} point['lat'] = lat point['lon'] = lon ##test safety sf = getsafety(lat, lon) if sf > 3: return getpoints(rj, n+1) legs.append(point) print(legs) return legs def getpath(lat, lng, lat2, lng2): url = "https://maps.googleapis.com/maps/api/directions/json" deststr = str(lat2) + "," + str(lng2) originstr = str(lat) + "," + str(lng) querystring = {"destination":deststr,"key":"KEYREDACTEDFORSAFETY","mode":"walking","origin":originstr} payload = "" headers = { 'cache-control': "no-cache", 'Postman-Token': "<PASSWORD>" } response = requests.request("GET", url, data=payload, headers=headers, params=querystring) print(response.text) rj = json.loads(response.text) legs = getpoints(rj, 0) return legs ```
{ "source": "jemsgit/zero-btc-screen", "score": 2 }
#### File: jemsgit/zero-btc-screen/main.py ```python import json import random import time import threading from datetime import datetime, timezone, timedelta from urllib.error import HTTPError, URLError from urllib.request import Request, urlopen from config.builder import Builder from config.config import config from config.currency_config import currencyConfig from logs import logger from presentation.observer import Observable from alarm.alarm_manager import alarmManager as alarmManager from settings_server.server import initSettingsServer import RPi.GPIO as GPIO BUTTON_CURRENCY_CHANNEL = 4 BUTTON_INTERVAL_CHANNEL = 18 API_INTERVALS = ['m', 'h', 'd', 'w', 'M'] GPIO.setmode(GPIO.BCM) GPIO.setup(BUTTON_CURRENCY_CHANNEL, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) GPIO.setup(BUTTON_INTERVAL_CHANNEL, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) API_URL = 'https://api.binance.com/api/v3/ticker/price?symbol=%sUSDT' API_URL_CANDLE = 'https://api.binance.com/api/v3/klines?symbol=%sUSDT&interval=1%s&limit=21' currencyList = currencyConfig.currencyList or ['BTC'] currency_index = 0 currency_interval_index = 1 def data_mapper_to_old(item): data = item[0:5] return [float(i) for i in data] def updateCurrencyList(): global currencyList global currency_index currentCurrency = currencyList[currency_index] currencyList = currencyConfig.currencyList currency_index = currencyList.index(currentCurrency) if currentCurrency in currencyList else -1 currencyConfig.subscribeToUpdates(updateCurrencyList) def get_dummy_data(): logger.info('Generating dummy data') def applyButtonCallback(channel, shortCb, longCb, event): start_time = time.time() while GPIO.input(channel) == 1: # Wait for the button up pass buttonTime = time.time() - start_time # How long was the button down? if buttonTime >= 1: print("long button") longCb(event) return if buttonTime >= .1: print("short button") shortCb(event) def switch_currency(event): if(stopAlarm()): return applyButtonCallback(BUTTON_CURRENCY_CHANNEL, switch_currency_forward, switch_currency_back, event) def switch_currency_forward(event): global currency_index currency_index +=1 if(currency_index >= len(currencyList)): currency_index = 0 def switch_currency_back(event): global currency_index currency_index -=1 if(currency_index < 0): currency_index = len(currencyList) - 1 def switch_interval(event): if(stopAlarm()): return applyButtonCallback(BUTTON_INTERVAL_CHANNEL, switch_interval_forward, switch_interval_back, event) def switch_interval_forward(event): global currency_interval_index currency_interval_index +=1 if(currency_interval_index >= len(API_INTERVALS)): currency_interval_index = 0 def switch_interval_back(event): global currency_interval_index currency_interval_index -=1 if(currency_interval_index < 0): currency_interval_index = len(API_INTERVALS) - 1 def stopAlarm(): if(alarmManager.isAlarm == True): alarmManager.stopAlarm() return True else: return False def get_currency(): return currencyList[currency_index] def get_period(): return API_INTERVALS[currency_interval_index] def fetch_currency_data(currency, interval): prices = None current_price = None try: CURRENCY_API_URL = API_URL % currency logger.info('Fetching prices') req = Request(CURRENCY_API_URL) data = urlopen(req).read() external_data = json.loads(data) current_price = float(external_data['price']) CURRENCY_API_URL = API_URL_CANDLE % (currency, interval) logger.info('Fetching prices2') req = Request(CURRENCY_API_URL) data = urlopen(req).read() external_data = json.loads(data) prices = map(data_mapper_to_old, external_data) prices = [entry[1:] for entry in prices] except: print('currency error') switch_currency_forward(None) return (prices, current_price) def fetch_prices(): currency = get_currency() interval = get_period() return fetch_currency_data(currency, interval) def alarm_callback(cur): print("alarm") def main(): logger.info('Initialize') try: initSettingsServer() except: print('bluetooth error') data_sink = Observable() builder = Builder(config) builder.bind(data_sink) currency = get_currency() interval = get_period() GPIO.add_event_detect(BUTTON_CURRENCY_CHANNEL, GPIO.RISING, callback=switch_currency, bouncetime=400) GPIO.add_event_detect(BUTTON_INTERVAL_CHANNEL, GPIO.RISING, callback=switch_interval, bouncetime=400) try: while True: try: prices = [entry[1:] for entry in get_dummy_data()] if config.dummy_data else fetch_prices() data_sink.update_observers(prices[0], prices[1], currency) time_left = config.refresh_interval new_currency = currency new_interval = interval while time_left > 0 and currency == new_currency and interval == new_interval: time.sleep(0.5) time_left -= 0.5 new_currency = get_currency() new_interval = get_period() alarmManager.checkAlarms(currency, prices[1], alarm_callback) if(currency != new_currency or interval != new_interval): data_sink.update_observers(None, None, new_currency) currency = new_currency interval = new_interval except (HTTPError, URLError) as e: logger.error(str(e)) time.sleep(5) except IOError as e: logger.error(str(e)) except KeyboardInterrupt: logger.info('Exit') data_sink.close() exit() if __name__ == "__main__": main() ```
{ "source": "jemshad/tremor-www", "score": 2 }
#### File: tremor-www/python_scripts/include_stdlib.py ```python from yaml import load, dump try: from yaml import CLoader as Loader, CDumper as Dumper except ImportError: from yaml import Loader, Dumper from pathlib import Path def main(): p = Path("docs/tremor-script/stdlib") template = Path("mkdocs.yml.in") output = Path("mkdocs.yml") # load mkdocs.yml template with template.open() as mkdocs_yaml_in: data = load(mkdocs_yaml_in, Loader=Loader) function_reference = [] for nav_entry in data["nav"]: if "Tremor Script" in nav_entry: for script_nav_entry in nav_entry["Tremor Script"]: fr = script_nav_entry.get("Function Reference") if fr is not None: function_reference = fr # clean function_reference function_reference.pop() # including files in nav files = list(p.glob('**/*.md')) for f in files: print(f"Adding file: {f}") f_rel = f.relative_to(p) pparts = list(f_rel.parent.parts) pparts.append(f_rel.stem) name = "::".join(pparts) filename = f.relative_to("docs") function_reference.append({ name: str(filename) }) # write out mkdocs.yml with output.open("w") as mkdocs_yaml: mkdocs_yaml.write(dump(data, Dumper=Dumper)) if __name__ == "__main__": main() ```
{ "source": "jems-lee/bayesian-personalized-ranking", "score": 2 }
#### File: src/bayesian_personalized_ranking/bpr_sklearn.py ```python import numpy as np import pandas as pd from sklearn.base import BaseEstimator from sklearn.utils.validation import ( check_X_y, check_array, check_is_fitted, check_random_state, ) from bpr_numba import fit_bpr from utils import ( create_user_map_table, create_item_map_table, create_user_map, create_item_map, create_data_triplets_index_only, ) class BPR(BaseEstimator): def __init__( self, n_factors=10, n_epochs=1, batch_size=1, init_mean=0, init_std_dev=0.1, lr_all=0.005, reg_all=0.02, lr_bi=None, lr_pu=None, lr_qi=None, reg_bi=None, reg_pu=None, reg_qi=None, random_state=None, eps=1e-5, ): self.n_factors = n_factors self.n_epochs = n_epochs self.batch_size = batch_size self.init_mean = init_mean self.init_std_dev = init_std_dev self.lr_all = lr_all self.reg_all = reg_all self.lr_bi = lr_bi self.lr_pu = lr_pu self.lr_qi = lr_qi self.reg_bi = reg_bi self.reg_pu = reg_pu self.reg_qi = reg_qi self.random_state = random_state self.user_factors = None self.item_factors = None self.item_biases = None self.known_users = None self.known_items = None self.user_map = None self.item_map = None self.residuals = None self.eps = eps def fit(self, X, y): """Fit the model using stochastic gradient descent. Parameters ---------- X : ndarray shape ( m, 2 ) Columns are [ user_id, item_id ] y : ndarray shape ( m, ) Array of 1 : relevent and 0 if not Returns ------- """ X, y = check_X_y(X, y) n_users = len(np.unique(X[:, 0])) n_items = len(np.unique(X[:, 1])) df = pd.DataFrame({"user_id": X[:, 0], "item_id": X[:, 1], "relevance": y}) user_map_table = create_user_map_table(df) item_map_table = create_item_map_table(df) self.user_map = create_user_map(df) self.item_map = create_item_map(df) data_triplets = create_data_triplets_index_only( df, user_map_table, item_map_table ) print("Data triplets created") m = data_triplets.shape[0] self.is_fitted_ = True self.random_state_ = check_random_state(self.random_state) self.lr_bi = self.lr_bi if self.lr_bi is not None else self.lr_all self.lr_pu = self.lr_pu if self.lr_pu is not None else self.lr_all self.lr_qi = self.lr_qi if self.lr_qi is not None else self.lr_all self.reg_bi = self.reg_bi if self.reg_bi is not None else self.reg_all self.reg_pu = self.reg_pu if self.reg_pu is not None else self.reg_all self.reg_qi = self.reg_qi if self.reg_qi is not None else self.reg_all self.batch_size = self.batch_size if self.batch_size is not None else 1 self.residuals = np.zeros(self.n_epochs) self.known_users = set(X[:, 0]) self.known_items = set(X[:, 1]) self.user_factors = self.random_state_.normal( loc=self.init_mean, scale=self.init_std_dev, size=(n_users, self.n_factors), ) self.item_factors = self.random_state_.normal( loc=self.init_mean, scale=self.init_std_dev, size=(n_items, self.n_factors), ) self.user_biases = self.random_state_.normal( loc=self.init_mean, scale=self.init_std_dev, size=n_users ) self.item_biases = self.random_state_.normal( loc=self.init_mean, scale=self.init_std_dev, size=n_items ) ( self.user_factors, self.item_factors, self.item_biases, self.residuals, ) = fit_bpr( data_triplets=data_triplets, initial_user_factors=self.user_factors, initial_item_factors=self.item_factors, initial_item_biases=self.item_biases, lr_bi=self.lr_bi, lr_pu=self.lr_pu, lr_qi=self.lr_qi, reg_bi=self.reg_bi, reg_pu=self.reg_pu, reg_qi=self.reg_qi, verbose=False, n_epochs=self.n_epochs, batch_size=self.batch_size, eps=self.eps, ) if len(self.residuals) < self.n_epochs: print(f"Converged") return self def predict(self, X: np.ndarray): """ Parameters ---------- X : array-like Columns [ user_id, item_id ] Returns ------- scores : ndarray """ check_is_fitted(self, "is_fitted_") X = check_array(X) m = X.shape[0] scores = np.zeros(m) for i in np.arange(m): user_id = X[i, 0] item_id = X[i, 1] if user_id in self.user_map and item_id in self.item_map: u_idx = self.user_map[user_id] i_idx = self.item_map[item_id] scores[i] = ( np.dot(self.user_factors[u_idx, :], self.item_factors[i_idx, :]) + self.item_biases[i_idx] ) elif item_id in self.item_map: i_idx = self.item_map[item_id] scores[i] = self.item_biases[i_idx] else: # item not in training set scores[i] = -np.inf return scores ```
{ "source": "jemtech/Tca9548A", "score": 3 }
#### File: jemtech/Tca9548A/Tca9548A.py ```python import smbus2 from threading import Lock class Tca9548A(object): ''' handles communication and setup of a TCA9548A ''' def __init__(self, i2cBus = None, address = 0x70): ''' Constructor ''' self.address = address if i2cBus is None: self.bus = smbus2.SMBus(1) else: self.bus = i2cBus def getChannel(self, channel): ''' returns the Tca9548AChannel for communication ''' return Tca9548AChannel(self,channel) def disable(self): ''' disables the chip output to prevent collisions with other bus clients ''' self.bus.write_byte(self.address, 0) def openChannel(self, channel): ''' activates the selected output 0 to 8 is possible ''' self.bus.write_byte(self.address, channel) class Tca9548AChannel(object): ''' use like smbus2 thread safe i2c bus wrapper caring about opening and closing the channels of the TCA9548A preventing collisions ''' def __init__(self, tca9548A, channel): ''' Constructor ''' #2 power channel number because it is the register bit self.channel = 2**channel self.tca9548A = tca9548A def __transaction(self, method, *args, **kwargs): lock.acquire() try: self.tca9548A.openChannel(self.channel) result = method(*args, **kwargs) self.tca9548A.disable() finally: lock.release() return result def read_word_data(self, *args, **kwargs): return self.__transaction(self.tca9548A.bus.read_word_data, *args, **kwargs) def read_byte_data(self, *args, **kwargs): return self.__transaction(self.tca9548A.bus.read_byte_data, *args, **kwargs) def process_call(self, *args, **kwargs): return self.__transaction(self.tca9548A.bus.process_call, *args, **kwargs) def block_process_call(self, *args, **kwargs): return self.__transaction(self.tca9548A.bus.block_process_call, *args, **kwargs) def read_block_data(self, *args, **kwargs): return self.__transaction(self.tca9548A.bus.read_block_data, *args, **kwargs) def read_byte(self, *args, **kwargs): return self.__transaction(self.tca9548A.bus.read_byte, *args, **kwargs) def read_i2c_block_data(self, *args, **kwargs): return self.__transaction(self.tca9548A.bus.read_i2c_block_data, *args, **kwargs) def write_block_data(self, *args, **kwargs): return self.__transaction(self.tca9548A.bus.write_block_data, *args, **kwargs) def write_byte(self, *args, **kwargs): return self.__transaction(self.tca9548A.bus.write_byte, *args, **kwargs) def write_byte_data(self, *args, **kwargs): return self.__transaction(self.tca9548A.bus.write_byte_data, *args, **kwargs) def write_i2c_block_data(self, *args, **kwargs): return self.__transaction(self.tca9548A.bus.write_i2c_block_data, *args, **kwargs) def write_quick(self, *args, **kwargs): return self.__transaction(self.tca9548A.bus.write_quick, *args, **kwargs) def write_word_data(self, *args, **kwargs): return self.__transaction(self.tca9548A.bus.write_word_data, *args, **kwargs) class Pipe(object): def __init__(self, bus, address, force = None): self.bus = bus self.address = address self.force = force def read_word_data(self, register): return self.bus.read_word_data(i2c_addr = self.address, register = register, force = self.force) def read_byte_data(self, register): return self.bus.read_byte_data(i2c_addr = self.address, register = register, force = self.force) def process_call(self, register, value): return self.bus.process_call(i2c_addr = self.address, register = register, value = value, force = self.force) def block_process_call(self, register, data): return self.bus.block_process_call(i2c_addr = self.address, register = register, data = data, force = self.force) def read_block_data(self, register): return self.tca9548A.bus.read_block_data(i2c_addr = self.address, register = register, force = self.force) def read_byte(self): return self.tca9548A.bus.read_byte(i2c_addr = self.address, force = self.force) def read_i2c_block_data(self, register, length): return self.bus.read_i2c_block_data(i2c_addr = self.address, register = register, length = length, force = self.force) def write_block_data(self, register, data): return self.bus.write_block_data(i2c_addr = self.address, register = register, data = data, force = self.force) def write_byte(self, value): return self.bus.write_byte(i2c_addr = self.address, value = value, force = self.force) def write_byte_data(self, register, value): return self.tca9548A.bus.write_byte_data(i2c_addr = self.address, register = register, value = value, force = self.force) def write_i2c_block_data(self, register, data): return self.bus.write_i2c_block_data(i2c_addr = self.address, register = register, data = data, force = self.force) def write_quick(self): return self.bus.write_quick(i2c_addr = self.address, force = self.force) def write_word_data(self, register, value): return self.bus.write_word_data(i2c_addr = self.address, register = register, value = value, force = self.force) lock = Lock() ```
{ "source": "jemten/drop", "score": 2 }
#### File: drop/config/ExportCounts.py ```python from snakemake.io import expand from drop import utils class ExportCounts: COUNT_TYPE_MAP = { "geneCounts": "aberrantExpression", "splitCounts": "aberrantSplicing", "spliceSiteOverlapCounts": "aberrantSplicing" } def __init__(self, dict_, outputRoot, sampleAnnotation, geneAnnotations, genomeAssembly, aberrantExpression, aberrantSplicing): """ :param dict_: config dictionary for count export :param sampleAnnotation: parsed sample annotation :param geneAnnotations: list of gene annotation names :param aberrantExpression: AberrantExpression object :param aberrantSplicing: AberrantSplicing object """ self.CONFIG_KEYS = ["geneAnnotations", "excludeGroups"] self.config_dict = self.setDefaults(dict_, geneAnnotations) self.outputRoot = outputRoot self.sa = sampleAnnotation self.genomeAssembly = genomeAssembly self.modules = { "aberrantExpression": aberrantExpression, "aberrantSplicing": aberrantSplicing } self.pattern = self.outputRoot / "exported_counts" / "{dataset}--{genomeAssembly}--{annotation}" def setDefaults(self, config_dict, gene_annotations): utils.setKey(config_dict, None, "geneAnnotations", gene_annotations) utils.setKey(config_dict, None, "excludeGroups", list()) # check consistency of gene annotations anno_incomp = set(config_dict["geneAnnotations"]) - set(gene_annotations) if len(anno_incomp) > 0: message = f"{anno_incomp} are not valid annotation version in 'geneAnnotation'" message += "but required in 'exportCounts'.\n Please make sure they match." raise ValueError(message) return config_dict def get(self, key): if key not in self.CONFIG_KEYS: raise KeyError(f"{key} not defined for count export") return self.config_dict[key] def getFilePattern(self, str_=True): return utils.returnPath(self.pattern, str_=str_) def getExportGroups(self, modules=None): """ Determine from which DROP groups counts should be exported :param modules: 'aberrantExpression' for gene counts, 'aberrantSplicing' for splicing counts export :return: DROP groups from which to export counts """ if modules is None: modules = self.modules.keys() elif isinstance(modules, str): modules = [modules] groups = [] # get all active groups for module in modules: groups.extend(self.modules[module].groups) export_groups = set(groups) - set(self.get("excludeGroups")) return export_groups def getExportCountFiles(self, prefix): """ Determine export count files. :param prefix: name of file :return: list of files to """ if prefix not in self.COUNT_TYPE_MAP.keys(): raise ValueError(f"{prefix} not a valid file type for exported counts") datasets = self.getExportGroups([self.COUNT_TYPE_MAP[prefix]]) file_pattern = str(self.pattern / f"{prefix}.tsv.gz") count_files = expand(file_pattern, annotation=self.get("geneAnnotations"), dataset=datasets, genomeAssembly=self.genomeAssembly) return count_files ```
{ "source": "jemten/trailblazer", "score": 2 }
#### File: jemten/trailblazer/setup.py ```python import codecs import os # Always prefer setuptools over distutils from setuptools import setup, find_packages from setuptools.command.test import test as TestCommand import sys # Shortcut for building/publishing to Pypi if sys.argv[-1] == 'publish': os.system('python setup.py sdist bdist_wheel upload') sys.exit() def parse_reqs(req_path='./requirements.txt'): """Recursively parse requirements from nested pip files.""" install_requires = [] with codecs.open(req_path, 'r') as handle: # remove comments and empty lines lines = (line.strip() for line in handle if line.strip() and not line.startswith('#')) for line in lines: # check for nested requirements files if line.startswith('-r'): # recursively call this function install_requires += parse_reqs(req_path=line[3:]) else: # add the line as a new requirement install_requires.append(line) return install_requires # This is a plug-in for setuptools that will invoke py.test # when you run python setup.py test class PyTest(TestCommand): """Set up the py.test test runner.""" def finalize_options(self): """Set options for the command line.""" TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): """Execute the test runner command.""" # Import here, because outside the required eggs aren't loaded yet import pytest sys.exit(pytest.main(self.test_args)) setup( name='trailblazer', # Versions should comply with PEP440. For a discussion on # single-sourcing the version across setup.py and the project code, # see http://packaging.python.org/en/latest/tutorial.html#version version='3.1.0', description=('Track MIP analyses.'), long_description=__doc__, # What does your project relate to? Separate with spaces. keywords='analysis development', author='<NAME>', author_email='<EMAIL>', license='MIT', # The project's main homepage url='https://github.com/Clinical-Genomics/analysis', packages=find_packages(exclude=('tests*', 'docs', 'examples')), # If there are data files included in your packages that need to be # installed, specify them here. include_package_data=True, # package_data={ # 'taboo': [ # 'server/genotype/templates/genotype/*.html', # ] # }, zip_safe=False, # Although 'package_data' is the preferred approach, in some case you # may need to place data files outside of your packages. # In this case, 'data_file' will be installed into: # '<sys.prefix>/my_data' # data_files=[('my_data', ['data/data_file'])], # Install requirements loaded from ``requirements.txt`` install_requires=parse_reqs(), tests_require=[ 'pytest', ], cmdclass=dict( test=PyTest, ), # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and # allow pip to create the appropriate form of executable for the # target platform. entry_points={ 'console_scripts': [ 'trailblazer = trailblazer.cli:base', ] }, # See: http://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Environment :: Console', ], ) ``` #### File: tests/mip/conftest.py ```python import pytest from trailblazer.mip import sacct from trailblazer.mip import start @pytest.fixture(scope='session') def failed_sacct_jobs(): with open('tests/fixtures/sacct/failed.log.status') as stream: sacct_jobs = sacct.parse_sacct(stream) return sacct_jobs @pytest.fixture(scope='session') def mip_cli(): _mip_cli = start.MipCli(script='test/fake_mip.pl') return _mip_cli ``` #### File: trailblazer/cli/check.py ```python import logging from pathlib import Path import click import ruamel.yaml from tabulate import tabulate from trailblazer.mip import files LOG = logging.getLogger(__name__) @click.command() @click.argument('family') @click.pass_context def check(context: click.Context, family: str): """Delete an analysis log from the database.""" analysis_obj = context.obj['store'].analyses(family=family).first() if analysis_obj is None: LOG.error('no analysis found') context.abort() config_path = Path(analysis_obj.config_path) if not config_path.exists(): LOG.error(f"analysis config not found: {config_path}") context.abort() config_raw = ruamel.yaml.safe_load(config_path.open()) config_data = files.parse_config(config_raw) sampleinfo_raw = ruamel.yaml.safe_load(Path(config_data['sampleinfo_path']).open()) sampleinfo_data = files.parse_sampleinfo(sampleinfo_raw) qcmetrics_path = Path(sampleinfo_data['qcmetrics_path']) if not qcmetrics_path.exists(): LOG.error(f"qc metrics not found: {str(qcmetrics_path)}") context.abort() qcmetrics_raw = ruamel.yaml.safe_load(qcmetrics_path.open()) qcmetrics_data = files.parse_qcmetrics(qcmetrics_raw) samples = { 'sample': [], 'type': [], 'ped': [], 'chanjo': [], 'peddy': [], 'plink': [], 'duplicates': [], } for sample_data in config_data['samples']: LOG.debug(f"{sample_data['id']}: parse analysis config") samples['sample'].append(sample_data['id']) samples['type'].append(sample_data['type']) for sample_data in sampleinfo_data['samples']: LOG.debug(f"{sample_data['id']}: parse sample info") samples['ped'].append(sample_data['sex']) with Path(sample_data['chanjo_sexcheck']).open() as chanjo_handle: sexcheck_data = files.parse_chanjo_sexcheck(chanjo_handle) predicted_sex = sexcheck_data['predicted_sex'] xy_ratio = sexcheck_data['y_coverage'] / sexcheck_data['x_coverage'] samples['chanjo'].append(f"{predicted_sex} ({xy_ratio:.3f})") for sample_data in qcmetrics_data['samples']: LOG.debug(f"{sample_data['id']}: parse qc metrics") samples['plink'].append(sample_data['plink_sex']) duplicates_percent = sample_data['duplicates'] * 100 samples['duplicates'].append(f"{duplicates_percent:.3f}%") peddy_path = Path(sampleinfo_data['peddy']['sex_check']) if peddy_path.exists(): with peddy_path.open() as sexcheck_handle: peddy_data = files.parse_peddy_sexcheck(sexcheck_handle) for sample_id in samples['sample']: LOG.debug(f"{sample_id}: parse peddy") predicted_sex = peddy_data[sample_id]['predicted_sex'] het_ratio = peddy_data[sample_id]['het_ratio'] samples['peddy'].append(f"{predicted_sex} ({het_ratio})") else: LOG.warning(f"missing peddy output: {peddy_path}") print(tabulate(samples, headers='keys', tablefmt='psql')) ``` #### File: trailblazer/trailblazer/exc.py ```python class TrailblazerError(Exception): def __init__(self, message): self.message = message class MissingFileError(TrailblazerError): pass class MipStartError(TrailblazerError): pass class ConfigError(TrailblazerError): def __init__(self, message, errors=None): self.message = message self.errors = errors ``` #### File: trailblazer/server/api.py ```python from flask import abort, g, Blueprint, jsonify, make_response, request from google.auth import jwt from trailblazer.server.ext import store blueprint = Blueprint('api', __name__, url_prefix='/api/v1') @blueprint.before_request def before_request(): if request.method == 'OPTIONS': return make_response(jsonify(ok=True), 204) auth_header = request.headers.get('Authorization') if auth_header: jwt_token = auth_header.split('Bearer ')[-1] else: return abort(403, 'no JWT token found on request') user_data = jwt.decode(jwt_token, verify=False) user_obj = store.user(user_data['email']) if user_obj is None: return abort(403, f"{user_data['email']} doesn't have access") g.current_user = user_obj @blueprint.route('/analyses') def analyses(): """Display analyses.""" per_page = int(request.args.get('per_page', 50)) page = int(request.args.get('page', 1)) query = store.analyses(status=request.args.get('status'), query=request.args.get('query'), is_visible=request.args.get('is_visible') == 'true' or None) query_page = query.paginate(page, per_page=per_page) data = [] for analysis_obj in query_page.items: analysis_data = analysis_obj.to_dict() analysis_data['user'] = analysis_obj.user.to_dict() if analysis_obj.user else None analysis_data['failed_jobs'] = [job_obj.to_dict() for job_obj in analysis_obj.failed_jobs] data.append(analysis_data) return jsonify(analyses=data) @blueprint.route('/analyses/<int:analysis_id>', methods=['GET', 'PUT']) def analysis(analysis_id): """Display a single analysis.""" analysis_obj = store.analysis(analysis_id) if analysis_obj is None: return abort(404) if request.method == 'PUT': analysis_obj.update(request.json) store.commit() data = analysis_obj.to_dict() data['failed_jobs'] = [job_obj.to_dict() for job_obj in analysis_obj.failed_jobs] data['user'] = analysis_obj.user.to_dict() if analysis_obj.user else None return jsonify(**data) @blueprint.route('/info') def info(): """Display meta data about database.""" metadata_obj = store.info() return jsonify(**metadata_obj.to_dict()) @blueprint.route('/me') def me(): """Return information about a logged in user.""" return jsonify(**g.current_user.to_dict()) @blueprint.route('/aggregate/jobs') def aggregate_jobs(): """Return stats about jobs.""" data = store.aggregate_failed() return jsonify(jobs=data) ```
{ "source": "jemvega/vocabulary-flashcard-app", "score": 4 }
#### File: jemvega/vocabulary-flashcard-app/vocabulary-flash-card-app.py ```python import os import sys import random import pandas as pd from pandas import Series, DataFrame q1 = "Would you like to continue? " def rename_file(file_name): if not ".csv" in file_name: file_rename = file_name + ".csv" return file_rename def check_file(file_name): try: if os.path.isfile(file_rename) == True: print(f"\nVocabulary word list uploaded: {file_name}") else: print("\nI'm sorry. The file name you provided is not in the same directory.\n") except: print("\nError. Please try again.\n") def yes_or_no(question): while True: user_input = input(question + " Y or N? ").lower().strip() if user_input == 'y': print("User Input = y") return True elif user_input == 'n': print("User Input = n") return False break else: print("I'm sorry. That is an invalid input. Y or N?") continue def choose_card_range(): q2= ''' Would you like to choose the list of words to study? Press Y to indicate the range of cards you want to study. Press N to study all of the cards.''' while True: user_input = yes_or_no(q2) if user_input == True: start_index = input("Please type in the starting index number: ") stop_index = input("Please type in the ending index number: ") print(f"Your starting value is: {start_index}") print(f"Your ending value is: {stop_index}") if (start_index.isdigit() and stop_index.isdigit() and int(start_index) < int(stop_index)): print("Your word set has been selected.") range_input = [start_index, stop_index] return card_range.extend(range_input) break elif user_input == False: return card_range.extend([0, len(vocab_list)]) break else: print("""I'm sorry. That is an invalid input. Please provide two integer values where the second integer is larger than the first integer.""") continue def choose_shuffle(): q3 = "Would you like to randomize the cards?" while True: user_input = yes_or_no(q3) if user_input == True: return game.shuffle() elif user_input == False: break else: print("I'm sorry. That is an invalid input. Y or N?") continue def quit_game(): print("Keep studying the following saved words:\n") unknown_display = "" for i,j in game.saved: unknown_display = f"\n{i.strip()}: {j}" print(unknown_display) print("\nGoodbye!") # In[ ]: class VocabCardSet(): def __init__(self): self.index = 0 self.vocab_cardset = vocab_active self.saved = [] def __str__(self): image_deck = " " for i in self.vocab_cardset: image_deck += f"\n{i[0].strip()}: {i[1]}\n" return image_deck def __iter__(self): return self def __len__(self): return len(self.vocab_cardset) def __next__(self): # Special method to cycle through the list when reaching the end of the index. flashcard = " " try: if self.index == len(self.vocab_cardset) - 1: self.index = 0 result = self.vocab_cardset[self.index] return f"\n{result[0].strip()}: {result[1]}\n" elif 0 <= self.index < len(self.vocab_cardset): self.index += 1 result = self.vocab_cardset[self.index] return f"\n{result[0].strip()}: {result[1]}\n" except: print("There are no more vocabulary words!") print("Please restart the app study your vocabulary words again.") print("error in next") return quit_game() def previous(self): # A function that returns the previous word in the list. try: if self.index == 0: self.index = len(self.vocab_cardset) - 1 result = self.vocab_cardset[self.index] return f"\n{result[0].strip()}: {result[1]}\n" elif self.index > 0: self.index -= 1 result = self.vocab_cardset[self.index] return f"\n{result[0].strip()}: {result[1]}\n" except: print("There are no more vocabulary words!") print("Please restart the app to study your vocabulary words again.") print("Error in previous") return quit_game() def shuffle(self): random.shuffle(self.vocab_cardset) def save_unknown(self): # A function that saves an unknown vocab word to another list. try: if self.index == len(self.vocab_cardset): self.index = 0 unknown = self.vocab_cardset.pop(self.index) self.saved.append(unknown) print(f"""\nThe following word was saved:\n {unknown[0].strip()}: {unknown[1].strip()}\n""") elif self.index < len(self.vocab_cardset): unknown = self.vocab_cardset.pop(self.index) self.saved.append(unknown) print(f"""\nThe following word was saved:\n {unknown[0].strip()}: {unknown[1].strip()}\n""") except: print("There are no more vocabulary words!") print("Please restart the app to study your vocabulary words again.") print("Error in save unknown") return quit_game() def print_unknown(self): saved_deck = "" for i in self.saved: saved_deck += f"{i[0]}: {i[1]}" return saved_deck # In[ ]: # Game play: Ask user to input vocab list file name and to continue print("""Welcome to the Vocabulary Flash Card Study App!\n This app was intended to be used for studying vocabulary words. It does not keep score of correct or wrong answers. Instead, it allows users to cycle through the vocabulary flash card set quickly for studying and personally assessing one's own performance.\n\n""") print("""How the Vocabulary Flash Card App Works: The user will be prompted to input the file name of the .csv file he or she would like to study. Please have a .csv file saved in the same directory as this program. The user will get to choose certain user settings before starting the app, like choosing a subset of words from the entire vocabulary list or randomizing the words in the list. The user will also be given a menu to allow the user to navigate through the vocabulary list. The menu will allow the user to skip the word (S) or to go back to the previous word (P). The user can also save words in an unknown word pile for the user to review at the end (U). The user can also quit the App (Q) at any point during the game.""") file_name = str(input("What is the name of the vocabulary list file you wish to study?")) file_rename = rename_file(file_name) check_file(file_rename) data = pd.read_csv(file_rename, encoding = 'latin-1') col_headers = list(data) words_list = data[col_headers[0]].values.tolist() definitions_list = data[col_headers[1]].values.tolist() vocab_dict = dict(zip(words_list, definitions_list)) vocab_list = list(vocab_dict.items()) # Game play: Ask user to choose to study a specified set of cards or all cards in vocab list card_range = [] choose_card_range() vocab_active = vocab_list[int(card_range[0]): int(card_range[1])] vocab_active_dc = dict(vocab_active) game = VocabCardSet() # Game play: asks user if he or she wants to randomize cards choose_shuffle() # Game play: Start studying! while True: if len(game.vocab_cardset) > 0: selection = input("""\nWhat would you like to do? Skip to the next word? Press S. Go back to previous word? Press P. Mark word as unknown? Press U. To quit flash card generator. Press Q.\n""").lower() if selection == 's': #print("Skip") print(next(game)) elif selection == 'p': #print("Previous") print(game.previous()) elif selection == 'u': print("Unknown") game.save_unknown() elif selection == 'q': quit_game() break else: print("I'm sorry. That's an invalid input.") continue else: print("There are no more vocabulary words!") print("Please restart the app to study your vocabulary words again.") print("error at end of game") quit_game() break ```
{ "source": "Jemy2019/Wifi-Attendance-Tracker", "score": 3 }
#### File: Wifi-Attendance-Tracker/Server/script.py ```python import os,time import datetime def main(): # load database DB = open('data.txt', 'r') ipsMap = {} for i in DB: l = [] l = i.split("=>") ipsMap[l[0]] = l[1] print l[0],l[1] # get initialize state for routers os.system('nmap -sP 192.168.43.0/24|grep "192"|cut -d " " -f 6 >ipsSaved.txt') # check the router state while(True): attendance=open('attendance.txt','a') leaving=open('leaving.txt','a') time.sleep(10) # get new state of router os.system('nmap -sP 192.168.43.0/24|grep "192"|cut -d " " -f 6|sort >ipsNew.txt') # check for attendance cpFlag = 0 if 0 == os.system('grep -v -x -f ipsSaved.txt ipsNew.txt > newConnectors.txt'): # record the attendance of all employees newConnectors=open('newConnectors.txt','r') for i in newConnectors: attendance.write(str(ipsMap[i[:-1]][:-1]) + "\t" + str(datetime.datetime.now())+"\n") #print str(ipsMap[i[:-2]]) + str(datetime.datetime.now()) cpFlag = 1 print "connectors\n" # check for leaving if 0 == os.system('grep -v -x -f ipsNew.txt ipsSaved.txt > DisConnectors.txt'): # record the attendance of all employees DisConnectors=open('DisConnectors.txt','r') for i in DisConnectors: leaving.write(str(ipsMap[i[:-1]][:-1]) + "\t" + str(datetime.datetime.now())+"\n") #print str(ipsMap[i]) + "\t" + str(datetime.datetime.now()) print "disconnectors\n" cpFlag = 1 # update current state if cpFlag == 1: os.system('cp ipsNew.txt ipsSaved.txt') print "checking..." if __name__=="__main__": main() ```
{ "source": "jen20/pulumi-aws", "score": 2 }
#### File: pulumi_aws/apigatewayv2/integration_response.py ```python import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities, _tables __all__ = ['IntegrationResponseArgs', 'IntegrationResponse'] @pulumi.input_type class IntegrationResponseArgs: def __init__(__self__, *, api_id: pulumi.Input[str], integration_id: pulumi.Input[str], integration_response_key: pulumi.Input[str], content_handling_strategy: Optional[pulumi.Input[str]] = None, response_templates: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, template_selection_expression: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a IntegrationResponse resource. :param pulumi.Input[str] api_id: The API identifier. :param pulumi.Input[str] integration_id: The identifier of the `apigatewayv2.Integration`. :param pulumi.Input[str] integration_response_key: The integration response key. :param pulumi.Input[str] content_handling_strategy: How to handle response payload content type conversions. Valid values: `CONVERT_TO_BINARY`, `CONVERT_TO_TEXT`. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] response_templates: A map of Velocity templates that are applied on the request payload based on the value of the Content-Type header sent by the client. :param pulumi.Input[str] template_selection_expression: The [template selection expression](https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api-selection-expressions.html#apigateway-websocket-api-template-selection-expressions) for the integration response. """ pulumi.set(__self__, "api_id", api_id) pulumi.set(__self__, "integration_id", integration_id) pulumi.set(__self__, "integration_response_key", integration_response_key) if content_handling_strategy is not None: pulumi.set(__self__, "content_handling_strategy", content_handling_strategy) if response_templates is not None: pulumi.set(__self__, "response_templates", response_templates) if template_selection_expression is not None: pulumi.set(__self__, "template_selection_expression", template_selection_expression) @property @pulumi.getter(name="apiId") def api_id(self) -> pulumi.Input[str]: """ The API identifier. """ return pulumi.get(self, "api_id") @api_id.setter def api_id(self, value: pulumi.Input[str]): pulumi.set(self, "api_id", value) @property @pulumi.getter(name="integrationId") def integration_id(self) -> pulumi.Input[str]: """ The identifier of the `apigatewayv2.Integration`. """ return pulumi.get(self, "integration_id") @integration_id.setter def integration_id(self, value: pulumi.Input[str]): pulumi.set(self, "integration_id", value) @property @pulumi.getter(name="integrationResponseKey") def integration_response_key(self) -> pulumi.Input[str]: """ The integration response key. """ return pulumi.get(self, "integration_response_key") @integration_response_key.setter def integration_response_key(self, value: pulumi.Input[str]): pulumi.set(self, "integration_response_key", value) @property @pulumi.getter(name="contentHandlingStrategy") def content_handling_strategy(self) -> Optional[pulumi.Input[str]]: """ How to handle response payload content type conversions. Valid values: `CONVERT_TO_BINARY`, `CONVERT_TO_TEXT`. """ return pulumi.get(self, "content_handling_strategy") @content_handling_strategy.setter def content_handling_strategy(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "content_handling_strategy", value) @property @pulumi.getter(name="responseTemplates") def response_templates(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A map of Velocity templates that are applied on the request payload based on the value of the Content-Type header sent by the client. """ return pulumi.get(self, "response_templates") @response_templates.setter def response_templates(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "response_templates", value) @property @pulumi.getter(name="templateSelectionExpression") def template_selection_expression(self) -> Optional[pulumi.Input[str]]: """ The [template selection expression](https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api-selection-expressions.html#apigateway-websocket-api-template-selection-expressions) for the integration response. """ return pulumi.get(self, "template_selection_expression") @template_selection_expression.setter def template_selection_expression(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "template_selection_expression", value) class IntegrationResponse(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, api_id: Optional[pulumi.Input[str]] = None, content_handling_strategy: Optional[pulumi.Input[str]] = None, integration_id: Optional[pulumi.Input[str]] = None, integration_response_key: Optional[pulumi.Input[str]] = None, response_templates: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, template_selection_expression: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Manages an Amazon API Gateway Version 2 integration response. More information can be found in the [Amazon API Gateway Developer Guide](https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api.html). ## Example Usage ### Basic ```python import pulumi import pulumi_aws as aws example = aws.apigatewayv2.IntegrationResponse("example", api_id=aws_apigatewayv2_api["example"]["id"], integration_id=aws_apigatewayv2_integration["example"]["id"], integration_response_key="/200/") ``` ## Import `aws_apigatewayv2_integration_response` can be imported by using the API identifier, integration identifier and integration response identifier, e.g. ```sh $ pulumi import aws:apigatewayv2/integrationResponse:IntegrationResponse example aabbccddee/1122334/998877 ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] api_id: The API identifier. :param pulumi.Input[str] content_handling_strategy: How to handle response payload content type conversions. Valid values: `CONVERT_TO_BINARY`, `CONVERT_TO_TEXT`. :param pulumi.Input[str] integration_id: The identifier of the `apigatewayv2.Integration`. :param pulumi.Input[str] integration_response_key: The integration response key. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] response_templates: A map of Velocity templates that are applied on the request payload based on the value of the Content-Type header sent by the client. :param pulumi.Input[str] template_selection_expression: The [template selection expression](https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api-selection-expressions.html#apigateway-websocket-api-template-selection-expressions) for the integration response. """ ... @overload def __init__(__self__, resource_name: str, args: IntegrationResponseArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Manages an Amazon API Gateway Version 2 integration response. More information can be found in the [Amazon API Gateway Developer Guide](https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api.html). ## Example Usage ### Basic ```python import pulumi import pulumi_aws as aws example = aws.apigatewayv2.IntegrationResponse("example", api_id=aws_apigatewayv2_api["example"]["id"], integration_id=aws_apigatewayv2_integration["example"]["id"], integration_response_key="/200/") ``` ## Import `aws_apigatewayv2_integration_response` can be imported by using the API identifier, integration identifier and integration response identifier, e.g. ```sh $ pulumi import aws:apigatewayv2/integrationResponse:IntegrationResponse example aabbccddee/1122334/998877 ``` :param str resource_name: The name of the resource. :param IntegrationResponseArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(IntegrationResponseArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, api_id: Optional[pulumi.Input[str]] = None, content_handling_strategy: Optional[pulumi.Input[str]] = None, integration_id: Optional[pulumi.Input[str]] = None, integration_response_key: Optional[pulumi.Input[str]] = None, response_templates: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, template_selection_expression: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if api_id is None and not opts.urn: raise TypeError("Missing required property 'api_id'") __props__['api_id'] = api_id __props__['content_handling_strategy'] = content_handling_strategy if integration_id is None and not opts.urn: raise TypeError("Missing required property 'integration_id'") __props__['integration_id'] = integration_id if integration_response_key is None and not opts.urn: raise TypeError("Missing required property 'integration_response_key'") __props__['integration_response_key'] = integration_response_key __props__['response_templates'] = response_templates __props__['template_selection_expression'] = template_selection_expression super(IntegrationResponse, __self__).__init__( 'aws:apigatewayv2/integrationResponse:IntegrationResponse', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, api_id: Optional[pulumi.Input[str]] = None, content_handling_strategy: Optional[pulumi.Input[str]] = None, integration_id: Optional[pulumi.Input[str]] = None, integration_response_key: Optional[pulumi.Input[str]] = None, response_templates: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, template_selection_expression: Optional[pulumi.Input[str]] = None) -> 'IntegrationResponse': """ Get an existing IntegrationResponse resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] api_id: The API identifier. :param pulumi.Input[str] content_handling_strategy: How to handle response payload content type conversions. Valid values: `CONVERT_TO_BINARY`, `CONVERT_TO_TEXT`. :param pulumi.Input[str] integration_id: The identifier of the `apigatewayv2.Integration`. :param pulumi.Input[str] integration_response_key: The integration response key. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] response_templates: A map of Velocity templates that are applied on the request payload based on the value of the Content-Type header sent by the client. :param pulumi.Input[str] template_selection_expression: The [template selection expression](https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api-selection-expressions.html#apigateway-websocket-api-template-selection-expressions) for the integration response. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["api_id"] = api_id __props__["content_handling_strategy"] = content_handling_strategy __props__["integration_id"] = integration_id __props__["integration_response_key"] = integration_response_key __props__["response_templates"] = response_templates __props__["template_selection_expression"] = template_selection_expression return IntegrationResponse(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="apiId") def api_id(self) -> pulumi.Output[str]: """ The API identifier. """ return pulumi.get(self, "api_id") @property @pulumi.getter(name="contentHandlingStrategy") def content_handling_strategy(self) -> pulumi.Output[Optional[str]]: """ How to handle response payload content type conversions. Valid values: `CONVERT_TO_BINARY`, `CONVERT_TO_TEXT`. """ return pulumi.get(self, "content_handling_strategy") @property @pulumi.getter(name="integrationId") def integration_id(self) -> pulumi.Output[str]: """ The identifier of the `apigatewayv2.Integration`. """ return pulumi.get(self, "integration_id") @property @pulumi.getter(name="integrationResponseKey") def integration_response_key(self) -> pulumi.Output[str]: """ The integration response key. """ return pulumi.get(self, "integration_response_key") @property @pulumi.getter(name="responseTemplates") def response_templates(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ A map of Velocity templates that are applied on the request payload based on the value of the Content-Type header sent by the client. """ return pulumi.get(self, "response_templates") @property @pulumi.getter(name="templateSelectionExpression") def template_selection_expression(self) -> pulumi.Output[Optional[str]]: """ The [template selection expression](https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api-selection-expressions.html#apigateway-websocket-api-template-selection-expressions) for the integration response. """ return pulumi.get(self, "template_selection_expression") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_aws/budgets/outputs.py ```python import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities, _tables __all__ = [ 'BudgetCostTypes', 'BudgetNotification', ] @pulumi.output_type class BudgetCostTypes(dict): def __init__(__self__, *, include_credit: Optional[bool] = None, include_discount: Optional[bool] = None, include_other_subscription: Optional[bool] = None, include_recurring: Optional[bool] = None, include_refund: Optional[bool] = None, include_subscription: Optional[bool] = None, include_support: Optional[bool] = None, include_tax: Optional[bool] = None, include_upfront: Optional[bool] = None, use_amortized: Optional[bool] = None, use_blended: Optional[bool] = None): """ :param bool include_credit: A boolean value whether to include credits in the cost budget. Defaults to `true` :param bool include_discount: Specifies whether a budget includes discounts. Defaults to `true` :param bool include_other_subscription: A boolean value whether to include other subscription costs in the cost budget. Defaults to `true` :param bool include_recurring: A boolean value whether to include recurring costs in the cost budget. Defaults to `true` :param bool include_refund: A boolean value whether to include refunds in the cost budget. Defaults to `true` :param bool include_subscription: A boolean value whether to include subscriptions in the cost budget. Defaults to `true` :param bool include_support: A boolean value whether to include support costs in the cost budget. Defaults to `true` :param bool include_tax: A boolean value whether to include tax in the cost budget. Defaults to `true` :param bool include_upfront: A boolean value whether to include upfront costs in the cost budget. Defaults to `true` :param bool use_amortized: Specifies whether a budget uses the amortized rate. Defaults to `false` :param bool use_blended: A boolean value whether to use blended costs in the cost budget. Defaults to `false` """ if include_credit is not None: pulumi.set(__self__, "include_credit", include_credit) if include_discount is not None: pulumi.set(__self__, "include_discount", include_discount) if include_other_subscription is not None: pulumi.set(__self__, "include_other_subscription", include_other_subscription) if include_recurring is not None: pulumi.set(__self__, "include_recurring", include_recurring) if include_refund is not None: pulumi.set(__self__, "include_refund", include_refund) if include_subscription is not None: pulumi.set(__self__, "include_subscription", include_subscription) if include_support is not None: pulumi.set(__self__, "include_support", include_support) if include_tax is not None: pulumi.set(__self__, "include_tax", include_tax) if include_upfront is not None: pulumi.set(__self__, "include_upfront", include_upfront) if use_amortized is not None: pulumi.set(__self__, "use_amortized", use_amortized) if use_blended is not None: pulumi.set(__self__, "use_blended", use_blended) @property @pulumi.getter(name="includeCredit") def include_credit(self) -> Optional[bool]: """ A boolean value whether to include credits in the cost budget. Defaults to `true` """ return pulumi.get(self, "include_credit") @property @pulumi.getter(name="includeDiscount") def include_discount(self) -> Optional[bool]: """ Specifies whether a budget includes discounts. Defaults to `true` """ return pulumi.get(self, "include_discount") @property @pulumi.getter(name="includeOtherSubscription") def include_other_subscription(self) -> Optional[bool]: """ A boolean value whether to include other subscription costs in the cost budget. Defaults to `true` """ return pulumi.get(self, "include_other_subscription") @property @pulumi.getter(name="includeRecurring") def include_recurring(self) -> Optional[bool]: """ A boolean value whether to include recurring costs in the cost budget. Defaults to `true` """ return pulumi.get(self, "include_recurring") @property @pulumi.getter(name="includeRefund") def include_refund(self) -> Optional[bool]: """ A boolean value whether to include refunds in the cost budget. Defaults to `true` """ return pulumi.get(self, "include_refund") @property @pulumi.getter(name="includeSubscription") def include_subscription(self) -> Optional[bool]: """ A boolean value whether to include subscriptions in the cost budget. Defaults to `true` """ return pulumi.get(self, "include_subscription") @property @pulumi.getter(name="includeSupport") def include_support(self) -> Optional[bool]: """ A boolean value whether to include support costs in the cost budget. Defaults to `true` """ return pulumi.get(self, "include_support") @property @pulumi.getter(name="includeTax") def include_tax(self) -> Optional[bool]: """ A boolean value whether to include tax in the cost budget. Defaults to `true` """ return pulumi.get(self, "include_tax") @property @pulumi.getter(name="includeUpfront") def include_upfront(self) -> Optional[bool]: """ A boolean value whether to include upfront costs in the cost budget. Defaults to `true` """ return pulumi.get(self, "include_upfront") @property @pulumi.getter(name="useAmortized") def use_amortized(self) -> Optional[bool]: """ Specifies whether a budget uses the amortized rate. Defaults to `false` """ return pulumi.get(self, "use_amortized") @property @pulumi.getter(name="useBlended") def use_blended(self) -> Optional[bool]: """ A boolean value whether to use blended costs in the cost budget. Defaults to `false` """ return pulumi.get(self, "use_blended") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class BudgetNotification(dict): def __init__(__self__, *, comparison_operator: str, notification_type: str, threshold: float, threshold_type: str, subscriber_email_addresses: Optional[Sequence[str]] = None, subscriber_sns_topic_arns: Optional[Sequence[str]] = None): """ :param str comparison_operator: (Required) Comparison operator to use to evaluate the condition. Can be `LESS_THAN`, `EQUAL_TO` or `GREATER_THAN`. :param str notification_type: (Required) What kind of budget value to notify on. Can be `ACTUAL` or `FORECASTED` :param float threshold: (Required) Threshold when the notification should be sent. :param str threshold_type: (Required) What kind of threshold is defined. Can be `PERCENTAGE` OR `ABSOLUTE_VALUE`. :param Sequence[str] subscriber_email_addresses: (Optional) E-Mail addresses to notify. Either this or `subscriber_sns_topic_arns` is required. :param Sequence[str] subscriber_sns_topic_arns: (Optional) SNS topics to notify. Either this or `subscriber_email_addresses` is required. """ pulumi.set(__self__, "comparison_operator", comparison_operator) pulumi.set(__self__, "notification_type", notification_type) pulumi.set(__self__, "threshold", threshold) pulumi.set(__self__, "threshold_type", threshold_type) if subscriber_email_addresses is not None: pulumi.set(__self__, "subscriber_email_addresses", subscriber_email_addresses) if subscriber_sns_topic_arns is not None: pulumi.set(__self__, "subscriber_sns_topic_arns", subscriber_sns_topic_arns) @property @pulumi.getter(name="comparisonOperator") def comparison_operator(self) -> str: """ (Required) Comparison operator to use to evaluate the condition. Can be `LESS_THAN`, `EQUAL_TO` or `GREATER_THAN`. """ return pulumi.get(self, "comparison_operator") @property @pulumi.getter(name="notificationType") def notification_type(self) -> str: """ (Required) What kind of budget value to notify on. Can be `ACTUAL` or `FORECASTED` """ return pulumi.get(self, "notification_type") @property @pulumi.getter def threshold(self) -> float: """ (Required) Threshold when the notification should be sent. """ return pulumi.get(self, "threshold") @property @pulumi.getter(name="thresholdType") def threshold_type(self) -> str: """ (Required) What kind of threshold is defined. Can be `PERCENTAGE` OR `ABSOLUTE_VALUE`. """ return pulumi.get(self, "threshold_type") @property @pulumi.getter(name="subscriberEmailAddresses") def subscriber_email_addresses(self) -> Optional[Sequence[str]]: """ (Optional) E-Mail addresses to notify. Either this or `subscriber_sns_topic_arns` is required. """ return pulumi.get(self, "subscriber_email_addresses") @property @pulumi.getter(name="subscriberSnsTopicArns") def subscriber_sns_topic_arns(self) -> Optional[Sequence[str]]: """ (Optional) SNS topics to notify. Either this or `subscriber_email_addresses` is required. """ return pulumi.get(self, "subscriber_sns_topic_arns") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_aws/cloudtrail/outputs.py ```python import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities, _tables from . import outputs __all__ = [ 'TrailEventSelector', 'TrailEventSelectorDataResource', 'TrailInsightSelector', ] @pulumi.output_type class TrailEventSelector(dict): def __init__(__self__, *, data_resources: Optional[Sequence['outputs.TrailEventSelectorDataResource']] = None, include_management_events: Optional[bool] = None, read_write_type: Optional[str] = None): """ :param Sequence['TrailEventSelectorDataResourceArgs'] data_resources: Specifies logging data events. Fields documented below. :param bool include_management_events: Specify if you want your event selector to include management events for your trail. :param str read_write_type: Specify if you want your trail to log read-only events, write-only events, or all. By default, the value is All. You can specify only the following value: "ReadOnly", "WriteOnly", "All". Defaults to `All`. """ if data_resources is not None: pulumi.set(__self__, "data_resources", data_resources) if include_management_events is not None: pulumi.set(__self__, "include_management_events", include_management_events) if read_write_type is not None: pulumi.set(__self__, "read_write_type", read_write_type) @property @pulumi.getter(name="dataResources") def data_resources(self) -> Optional[Sequence['outputs.TrailEventSelectorDataResource']]: """ Specifies logging data events. Fields documented below. """ return pulumi.get(self, "data_resources") @property @pulumi.getter(name="includeManagementEvents") def include_management_events(self) -> Optional[bool]: """ Specify if you want your event selector to include management events for your trail. """ return pulumi.get(self, "include_management_events") @property @pulumi.getter(name="readWriteType") def read_write_type(self) -> Optional[str]: """ Specify if you want your trail to log read-only events, write-only events, or all. By default, the value is All. You can specify only the following value: "ReadOnly", "WriteOnly", "All". Defaults to `All`. """ return pulumi.get(self, "read_write_type") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class TrailEventSelectorDataResource(dict): def __init__(__self__, *, type: str, values: Sequence[str]): """ :param str type: The resource type in which you want to log data events. You can specify only the following value: "AWS::S3::Object", "AWS::Lambda::Function" :param Sequence[str] values: A list of ARN for the specified S3 buckets and object prefixes.. """ pulumi.set(__self__, "type", type) pulumi.set(__self__, "values", values) @property @pulumi.getter def type(self) -> str: """ The resource type in which you want to log data events. You can specify only the following value: "AWS::S3::Object", "AWS::Lambda::Function" """ return pulumi.get(self, "type") @property @pulumi.getter def values(self) -> Sequence[str]: """ A list of ARN for the specified S3 buckets and object prefixes.. """ return pulumi.get(self, "values") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class TrailInsightSelector(dict): def __init__(__self__, *, insight_type: str): """ :param str insight_type: The type of insights to log on a trail. In this release, only `ApiCallRateInsight` is supported as an insight type. """ pulumi.set(__self__, "insight_type", insight_type) @property @pulumi.getter(name="insightType") def insight_type(self) -> str: """ The type of insights to log on a trail. In this release, only `ApiCallRateInsight` is supported as an insight type. """ return pulumi.get(self, "insight_type") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_aws/ec2clientvpn/outputs.py ```python import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities, _tables __all__ = [ 'EndpointAuthenticationOption', 'EndpointConnectionLogOptions', ] @pulumi.output_type class EndpointAuthenticationOption(dict): def __init__(__self__, *, type: str, active_directory_id: Optional[str] = None, root_certificate_chain_arn: Optional[str] = None, saml_provider_arn: Optional[str] = None): """ :param str type: The type of client authentication to be used. Specify `certificate-authentication` to use certificate-based authentication, `directory-service-authentication` to use Active Directory authentication, or `federated-authentication` to use Federated Authentication via SAML 2.0. :param str active_directory_id: The ID of the Active Directory to be used for authentication if type is `directory-service-authentication`. :param str root_certificate_chain_arn: The ARN of the client certificate. The certificate must be signed by a certificate authority (CA) and it must be provisioned in AWS Certificate Manager (ACM). Only necessary when type is set to `certificate-authentication`. :param str saml_provider_arn: The ARN of the IAM SAML identity provider if type is `federated-authentication`. """ pulumi.set(__self__, "type", type) if active_directory_id is not None: pulumi.set(__self__, "active_directory_id", active_directory_id) if root_certificate_chain_arn is not None: pulumi.set(__self__, "root_certificate_chain_arn", root_certificate_chain_arn) if saml_provider_arn is not None: pulumi.set(__self__, "saml_provider_arn", saml_provider_arn) @property @pulumi.getter def type(self) -> str: """ The type of client authentication to be used. Specify `certificate-authentication` to use certificate-based authentication, `directory-service-authentication` to use Active Directory authentication, or `federated-authentication` to use Federated Authentication via SAML 2.0. """ return pulumi.get(self, "type") @property @pulumi.getter(name="activeDirectoryId") def active_directory_id(self) -> Optional[str]: """ The ID of the Active Directory to be used for authentication if type is `directory-service-authentication`. """ return pulumi.get(self, "active_directory_id") @property @pulumi.getter(name="rootCertificateChainArn") def root_certificate_chain_arn(self) -> Optional[str]: """ The ARN of the client certificate. The certificate must be signed by a certificate authority (CA) and it must be provisioned in AWS Certificate Manager (ACM). Only necessary when type is set to `certificate-authentication`. """ return pulumi.get(self, "root_certificate_chain_arn") @property @pulumi.getter(name="samlProviderArn") def saml_provider_arn(self) -> Optional[str]: """ The ARN of the IAM SAML identity provider if type is `federated-authentication`. """ return pulumi.get(self, "saml_provider_arn") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class EndpointConnectionLogOptions(dict): def __init__(__self__, *, enabled: bool, cloudwatch_log_group: Optional[str] = None, cloudwatch_log_stream: Optional[str] = None): """ :param bool enabled: Indicates whether connection logging is enabled. :param str cloudwatch_log_group: The name of the CloudWatch Logs log group. :param str cloudwatch_log_stream: The name of the CloudWatch Logs log stream to which the connection data is published. """ pulumi.set(__self__, "enabled", enabled) if cloudwatch_log_group is not None: pulumi.set(__self__, "cloudwatch_log_group", cloudwatch_log_group) if cloudwatch_log_stream is not None: pulumi.set(__self__, "cloudwatch_log_stream", cloudwatch_log_stream) @property @pulumi.getter def enabled(self) -> bool: """ Indicates whether connection logging is enabled. """ return pulumi.get(self, "enabled") @property @pulumi.getter(name="cloudwatchLogGroup") def cloudwatch_log_group(self) -> Optional[str]: """ The name of the CloudWatch Logs log group. """ return pulumi.get(self, "cloudwatch_log_group") @property @pulumi.getter(name="cloudwatchLogStream") def cloudwatch_log_stream(self) -> Optional[str]: """ The name of the CloudWatch Logs log stream to which the connection data is published. """ return pulumi.get(self, "cloudwatch_log_stream") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_aws/ec2/managed_prefix_list.py ```python import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities, _tables from . import outputs from ._inputs import * __all__ = ['ManagedPrefixListArgs', 'ManagedPrefixList'] @pulumi.input_type class ManagedPrefixListArgs: def __init__(__self__, *, address_family: pulumi.Input[str], max_entries: pulumi.Input[int], entries: Optional[pulumi.Input[Sequence[pulumi.Input['ManagedPrefixListEntryArgs']]]] = None, name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a ManagedPrefixList resource. :param pulumi.Input[str] address_family: The address family (`IPv4` or `IPv6`) of this prefix list. :param pulumi.Input[int] max_entries: The maximum number of entries that this prefix list can contain. :param pulumi.Input[Sequence[pulumi.Input['ManagedPrefixListEntryArgs']]] entries: Can be specified multiple times for each prefix list entry. Each entry block supports fields documented below. Different entries may have overlapping CIDR blocks, but a particular CIDR should not be duplicated. :param pulumi.Input[str] name: The name of this resource. The name must not start with `com.amazonaws`. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to this resource. """ pulumi.set(__self__, "address_family", address_family) pulumi.set(__self__, "max_entries", max_entries) if entries is not None: pulumi.set(__self__, "entries", entries) if name is not None: pulumi.set(__self__, "name", name) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="addressFamily") def address_family(self) -> pulumi.Input[str]: """ The address family (`IPv4` or `IPv6`) of this prefix list. """ return pulumi.get(self, "address_family") @address_family.setter def address_family(self, value: pulumi.Input[str]): pulumi.set(self, "address_family", value) @property @pulumi.getter(name="maxEntries") def max_entries(self) -> pulumi.Input[int]: """ The maximum number of entries that this prefix list can contain. """ return pulumi.get(self, "max_entries") @max_entries.setter def max_entries(self, value: pulumi.Input[int]): pulumi.set(self, "max_entries", value) @property @pulumi.getter def entries(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['ManagedPrefixListEntryArgs']]]]: """ Can be specified multiple times for each prefix list entry. Each entry block supports fields documented below. Different entries may have overlapping CIDR blocks, but a particular CIDR should not be duplicated. """ return pulumi.get(self, "entries") @entries.setter def entries(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['ManagedPrefixListEntryArgs']]]]): pulumi.set(self, "entries", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of this resource. The name must not start with `com.amazonaws`. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A map of tags to assign to this resource. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) class ManagedPrefixList(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, address_family: Optional[pulumi.Input[str]] = None, entries: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ManagedPrefixListEntryArgs']]]]] = None, max_entries: Optional[pulumi.Input[int]] = None, name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ Provides a managed prefix list resource. > **NOTE on `max_entries`:** When you reference a Prefix List in a resource, the maximum number of entries for the prefix lists counts as the same number of rules or entries for the resource. For example, if you create a prefix list with a maximum of 20 entries and you reference that prefix list in a security group rule, this counts as 20 rules for the security group. ## Example Usage Basic usage ```python import pulumi import pulumi_aws as aws example = aws.ec2.ManagedPrefixList("example", address_family="IPv4", max_entries=5, entries=[ aws.ec2.ManagedPrefixListEntryArgs( cidr=aws_vpc["example"]["cidr_block"], description="Primary", ), aws.ec2.ManagedPrefixListEntryArgs( cidr=aws_vpc_ipv4_cidr_block_association["example"]["cidr_block"], description="Secondary", ), ], tags={ "Env": "live", }) ``` ## Import Prefix Lists can be imported using the `id`, e.g. ```sh $ pulumi import aws:ec2/managedPrefixList:ManagedPrefixList default pl-0570a1d2d725c16be ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] address_family: The address family (`IPv4` or `IPv6`) of this prefix list. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ManagedPrefixListEntryArgs']]]] entries: Can be specified multiple times for each prefix list entry. Each entry block supports fields documented below. Different entries may have overlapping CIDR blocks, but a particular CIDR should not be duplicated. :param pulumi.Input[int] max_entries: The maximum number of entries that this prefix list can contain. :param pulumi.Input[str] name: The name of this resource. The name must not start with `com.amazonaws`. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to this resource. """ ... @overload def __init__(__self__, resource_name: str, args: ManagedPrefixListArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Provides a managed prefix list resource. > **NOTE on `max_entries`:** When you reference a Prefix List in a resource, the maximum number of entries for the prefix lists counts as the same number of rules or entries for the resource. For example, if you create a prefix list with a maximum of 20 entries and you reference that prefix list in a security group rule, this counts as 20 rules for the security group. ## Example Usage Basic usage ```python import pulumi import pulumi_aws as aws example = aws.ec2.ManagedPrefixList("example", address_family="IPv4", max_entries=5, entries=[ aws.ec2.ManagedPrefixListEntryArgs( cidr=aws_vpc["example"]["cidr_block"], description="Primary", ), aws.ec2.ManagedPrefixListEntryArgs( cidr=aws_vpc_ipv4_cidr_block_association["example"]["cidr_block"], description="Secondary", ), ], tags={ "Env": "live", }) ``` ## Import Prefix Lists can be imported using the `id`, e.g. ```sh $ pulumi import aws:ec2/managedPrefixList:ManagedPrefixList default pl-0570a1d2d725c16be ``` :param str resource_name: The name of the resource. :param ManagedPrefixListArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(ManagedPrefixListArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, address_family: Optional[pulumi.Input[str]] = None, entries: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ManagedPrefixListEntryArgs']]]]] = None, max_entries: Optional[pulumi.Input[int]] = None, name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if address_family is None and not opts.urn: raise TypeError("Missing required property 'address_family'") __props__['address_family'] = address_family __props__['entries'] = entries if max_entries is None and not opts.urn: raise TypeError("Missing required property 'max_entries'") __props__['max_entries'] = max_entries __props__['name'] = name __props__['tags'] = tags __props__['arn'] = None __props__['owner_id'] = None __props__['version'] = None super(ManagedPrefixList, __self__).__init__( 'aws:ec2/managedPrefixList:ManagedPrefixList', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, address_family: Optional[pulumi.Input[str]] = None, arn: Optional[pulumi.Input[str]] = None, entries: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ManagedPrefixListEntryArgs']]]]] = None, max_entries: Optional[pulumi.Input[int]] = None, name: Optional[pulumi.Input[str]] = None, owner_id: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, version: Optional[pulumi.Input[int]] = None) -> 'ManagedPrefixList': """ Get an existing ManagedPrefixList resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] address_family: The address family (`IPv4` or `IPv6`) of this prefix list. :param pulumi.Input[str] arn: The ARN of the prefix list. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['ManagedPrefixListEntryArgs']]]] entries: Can be specified multiple times for each prefix list entry. Each entry block supports fields documented below. Different entries may have overlapping CIDR blocks, but a particular CIDR should not be duplicated. :param pulumi.Input[int] max_entries: The maximum number of entries that this prefix list can contain. :param pulumi.Input[str] name: The name of this resource. The name must not start with `com.amazonaws`. :param pulumi.Input[str] owner_id: The ID of the AWS account that owns this prefix list. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to this resource. :param pulumi.Input[int] version: The latest version of this prefix list. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["address_family"] = address_family __props__["arn"] = arn __props__["entries"] = entries __props__["max_entries"] = max_entries __props__["name"] = name __props__["owner_id"] = owner_id __props__["tags"] = tags __props__["version"] = version return ManagedPrefixList(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="addressFamily") def address_family(self) -> pulumi.Output[str]: """ The address family (`IPv4` or `IPv6`) of this prefix list. """ return pulumi.get(self, "address_family") @property @pulumi.getter def arn(self) -> pulumi.Output[str]: """ The ARN of the prefix list. """ return pulumi.get(self, "arn") @property @pulumi.getter def entries(self) -> pulumi.Output[Optional[Sequence['outputs.ManagedPrefixListEntry']]]: """ Can be specified multiple times for each prefix list entry. Each entry block supports fields documented below. Different entries may have overlapping CIDR blocks, but a particular CIDR should not be duplicated. """ return pulumi.get(self, "entries") @property @pulumi.getter(name="maxEntries") def max_entries(self) -> pulumi.Output[int]: """ The maximum number of entries that this prefix list can contain. """ return pulumi.get(self, "max_entries") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of this resource. The name must not start with `com.amazonaws`. """ return pulumi.get(self, "name") @property @pulumi.getter(name="ownerId") def owner_id(self) -> pulumi.Output[str]: """ The ID of the AWS account that owns this prefix list. """ return pulumi.get(self, "owner_id") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ A map of tags to assign to this resource. """ return pulumi.get(self, "tags") @property @pulumi.getter def version(self) -> pulumi.Output[int]: """ The latest version of this prefix list. """ return pulumi.get(self, "version") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_aws/elasticbeanstalk/outputs.py ```python import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities, _tables __all__ = [ 'ApplicationAppversionLifecycle', 'ConfigurationTemplateSetting', 'EnvironmentAllSetting', 'EnvironmentSetting', 'GetApplicationAppversionLifecycleResult', ] @pulumi.output_type class ApplicationAppversionLifecycle(dict): def __init__(__self__, *, service_role: str, delete_source_from_s3: Optional[bool] = None, max_age_in_days: Optional[int] = None, max_count: Optional[int] = None): """ :param str service_role: The ARN of an IAM service role under which the application version is deleted. Elastic Beanstalk must have permission to assume this role. :param bool delete_source_from_s3: Set to `true` to delete a version's source bundle from S3 when the application version is deleted. :param int max_age_in_days: The number of days to retain an application version ('max_age_in_days' and 'max_count' cannot be enabled simultaneously.). :param int max_count: The maximum number of application versions to retain ('max_age_in_days' and 'max_count' cannot be enabled simultaneously.). """ pulumi.set(__self__, "service_role", service_role) if delete_source_from_s3 is not None: pulumi.set(__self__, "delete_source_from_s3", delete_source_from_s3) if max_age_in_days is not None: pulumi.set(__self__, "max_age_in_days", max_age_in_days) if max_count is not None: pulumi.set(__self__, "max_count", max_count) @property @pulumi.getter(name="serviceRole") def service_role(self) -> str: """ The ARN of an IAM service role under which the application version is deleted. Elastic Beanstalk must have permission to assume this role. """ return pulumi.get(self, "service_role") @property @pulumi.getter(name="deleteSourceFromS3") def delete_source_from_s3(self) -> Optional[bool]: """ Set to `true` to delete a version's source bundle from S3 when the application version is deleted. """ return pulumi.get(self, "delete_source_from_s3") @property @pulumi.getter(name="maxAgeInDays") def max_age_in_days(self) -> Optional[int]: """ The number of days to retain an application version ('max_age_in_days' and 'max_count' cannot be enabled simultaneously.). """ return pulumi.get(self, "max_age_in_days") @property @pulumi.getter(name="maxCount") def max_count(self) -> Optional[int]: """ The maximum number of application versions to retain ('max_age_in_days' and 'max_count' cannot be enabled simultaneously.). """ return pulumi.get(self, "max_count") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class ConfigurationTemplateSetting(dict): def __init__(__self__, *, name: str, namespace: str, value: str, resource: Optional[str] = None): """ :param str name: A unique name for this Template. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "namespace", namespace) pulumi.set(__self__, "value", value) if resource is not None: pulumi.set(__self__, "resource", resource) @property @pulumi.getter def name(self) -> str: """ A unique name for this Template. """ return pulumi.get(self, "name") @property @pulumi.getter def namespace(self) -> str: return pulumi.get(self, "namespace") @property @pulumi.getter def value(self) -> str: return pulumi.get(self, "value") @property @pulumi.getter def resource(self) -> Optional[str]: return pulumi.get(self, "resource") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class EnvironmentAllSetting(dict): def __init__(__self__, *, name: str, namespace: str, value: str, resource: Optional[str] = None): """ :param str name: A unique name for this Environment. This name is used in the application URL """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "namespace", namespace) pulumi.set(__self__, "value", value) if resource is not None: pulumi.set(__self__, "resource", resource) @property @pulumi.getter def name(self) -> str: """ A unique name for this Environment. This name is used in the application URL """ return pulumi.get(self, "name") @property @pulumi.getter def namespace(self) -> str: return pulumi.get(self, "namespace") @property @pulumi.getter def value(self) -> str: return pulumi.get(self, "value") @property @pulumi.getter def resource(self) -> Optional[str]: return pulumi.get(self, "resource") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class EnvironmentSetting(dict): def __init__(__self__, *, name: str, namespace: str, value: str, resource: Optional[str] = None): """ :param str name: A unique name for this Environment. This name is used in the application URL """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "namespace", namespace) pulumi.set(__self__, "value", value) if resource is not None: pulumi.set(__self__, "resource", resource) @property @pulumi.getter def name(self) -> str: """ A unique name for this Environment. This name is used in the application URL """ return pulumi.get(self, "name") @property @pulumi.getter def namespace(self) -> str: return pulumi.get(self, "namespace") @property @pulumi.getter def value(self) -> str: return pulumi.get(self, "value") @property @pulumi.getter def resource(self) -> Optional[str]: return pulumi.get(self, "resource") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class GetApplicationAppversionLifecycleResult(dict): def __init__(__self__, *, delete_source_from_s3: bool, max_age_in_days: int, max_count: int, service_role: str): """ :param bool delete_source_from_s3: Specifies whether delete a version's source bundle from S3 when the application version is deleted. :param int max_age_in_days: The number of days to retain an application version. :param int max_count: The maximum number of application versions to retain. :param str service_role: The ARN of an IAM service role under which the application version is deleted. Elastic Beanstalk must have permission to assume this role. """ pulumi.set(__self__, "delete_source_from_s3", delete_source_from_s3) pulumi.set(__self__, "max_age_in_days", max_age_in_days) pulumi.set(__self__, "max_count", max_count) pulumi.set(__self__, "service_role", service_role) @property @pulumi.getter(name="deleteSourceFromS3") def delete_source_from_s3(self) -> bool: """ Specifies whether delete a version's source bundle from S3 when the application version is deleted. """ return pulumi.get(self, "delete_source_from_s3") @property @pulumi.getter(name="maxAgeInDays") def max_age_in_days(self) -> int: """ The number of days to retain an application version. """ return pulumi.get(self, "max_age_in_days") @property @pulumi.getter(name="maxCount") def max_count(self) -> int: """ The maximum number of application versions to retain. """ return pulumi.get(self, "max_count") @property @pulumi.getter(name="serviceRole") def service_role(self) -> str: """ The ARN of an IAM service role under which the application version is deleted. Elastic Beanstalk must have permission to assume this role. """ return pulumi.get(self, "service_role") ``` #### File: python/pulumi_aws/get_autoscaling_groups.py ```python import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities, _tables from . import outputs from ._inputs import * __all__ = [ 'GetAutoscalingGroupsResult', 'AwaitableGetAutoscalingGroupsResult', 'get_autoscaling_groups', ] warnings.warn("""aws.getAutoscalingGroups has been deprecated in favor of aws.autoscaling.getAmiIds""", DeprecationWarning) @pulumi.output_type class GetAutoscalingGroupsResult: """ A collection of values returned by getAutoscalingGroups. """ def __init__(__self__, arns=None, filters=None, id=None, names=None): if arns and not isinstance(arns, list): raise TypeError("Expected argument 'arns' to be a list") pulumi.set(__self__, "arns", arns) if filters and not isinstance(filters, list): raise TypeError("Expected argument 'filters' to be a list") pulumi.set(__self__, "filters", filters) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if names and not isinstance(names, list): raise TypeError("Expected argument 'names' to be a list") pulumi.set(__self__, "names", names) @property @pulumi.getter def arns(self) -> Sequence[str]: """ A list of the Autoscaling Groups Arns in the current region. """ return pulumi.get(self, "arns") @property @pulumi.getter def filters(self) -> Optional[Sequence['outputs.GetAutoscalingGroupsFilterResult']]: return pulumi.get(self, "filters") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter def names(self) -> Sequence[str]: """ A list of the Autoscaling Groups in the current region. """ return pulumi.get(self, "names") class AwaitableGetAutoscalingGroupsResult(GetAutoscalingGroupsResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetAutoscalingGroupsResult( arns=self.arns, filters=self.filters, id=self.id, names=self.names) def get_autoscaling_groups(filters: Optional[Sequence[pulumi.InputType['GetAutoscalingGroupsFilterArgs']]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetAutoscalingGroupsResult: """ The Autoscaling Groups data source allows access to the list of AWS ASGs within a specific region. This will allow you to pass a list of AutoScaling Groups to other resources. :param Sequence[pulumi.InputType['GetAutoscalingGroupsFilterArgs']] filters: A filter used to scope the list e.g. by tags. See [related docs](http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_Filter.html). """ pulumi.log.warn("""get_autoscaling_groups is deprecated: aws.getAutoscalingGroups has been deprecated in favor of aws.autoscaling.getAmiIds""") __args__ = dict() __args__['filters'] = filters if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:index/getAutoscalingGroups:getAutoscalingGroups', __args__, opts=opts, typ=GetAutoscalingGroupsResult).value return AwaitableGetAutoscalingGroupsResult( arns=__ret__.arns, filters=__ret__.filters, id=__ret__.id, names=__ret__.names) ``` #### File: pulumi_aws/identitystore/_inputs.py ```python import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities, _tables __all__ = [ 'GetGroupFilterArgs', 'GetUserFilterArgs', ] @pulumi.input_type class GetGroupFilterArgs: def __init__(__self__, *, attribute_path: str, attribute_value: str): """ :param str attribute_path: The attribute path that is used to specify which attribute name to search. Currently, `DisplayName` is the only valid attribute path. :param str attribute_value: The value for an attribute. """ pulumi.set(__self__, "attribute_path", attribute_path) pulumi.set(__self__, "attribute_value", attribute_value) @property @pulumi.getter(name="attributePath") def attribute_path(self) -> str: """ The attribute path that is used to specify which attribute name to search. Currently, `DisplayName` is the only valid attribute path. """ return pulumi.get(self, "attribute_path") @attribute_path.setter def attribute_path(self, value: str): pulumi.set(self, "attribute_path", value) @property @pulumi.getter(name="attributeValue") def attribute_value(self) -> str: """ The value for an attribute. """ return pulumi.get(self, "attribute_value") @attribute_value.setter def attribute_value(self, value: str): pulumi.set(self, "attribute_value", value) @pulumi.input_type class GetUserFilterArgs: def __init__(__self__, *, attribute_path: str, attribute_value: str): """ :param str attribute_path: The attribute path that is used to specify which attribute name to search. Currently, `UserName` is the only valid attribute path. :param str attribute_value: The value for an attribute. """ pulumi.set(__self__, "attribute_path", attribute_path) pulumi.set(__self__, "attribute_value", attribute_value) @property @pulumi.getter(name="attributePath") def attribute_path(self) -> str: """ The attribute path that is used to specify which attribute name to search. Currently, `UserName` is the only valid attribute path. """ return pulumi.get(self, "attribute_path") @attribute_path.setter def attribute_path(self, value: str): pulumi.set(self, "attribute_path", value) @property @pulumi.getter(name="attributeValue") def attribute_value(self) -> str: """ The value for an attribute. """ return pulumi.get(self, "attribute_value") @attribute_value.setter def attribute_value(self, value: str): pulumi.set(self, "attribute_value", value) ``` #### File: pulumi_aws/kinesis/stream.py ```python import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities, _tables __all__ = ['StreamArgs', 'Stream'] @pulumi.input_type class StreamArgs: def __init__(__self__, *, shard_count: pulumi.Input[int], arn: Optional[pulumi.Input[str]] = None, encryption_type: Optional[pulumi.Input[str]] = None, enforce_consumer_deletion: Optional[pulumi.Input[bool]] = None, kms_key_id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, retention_period: Optional[pulumi.Input[int]] = None, shard_level_metrics: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a Stream resource. :param pulumi.Input[int] shard_count: The number of shards that the stream will use. Amazon has guidelines for specifying the Stream size that should be referenced when creating a Kinesis stream. See [Amazon Kinesis Streams](https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html) for more. :param pulumi.Input[str] arn: The Amazon Resource Name (ARN) specifying the Stream (same as `id`) :param pulumi.Input[str] encryption_type: The encryption type to use. The only acceptable values are `NONE` or `KMS`. The default value is `NONE`. :param pulumi.Input[bool] enforce_consumer_deletion: A boolean that indicates all registered consumers should be deregistered from the stream so that the stream can be destroyed without error. The default value is `false`. :param pulumi.Input[str] kms_key_id: The GUID for the customer-managed KMS key to use for encryption. You can also use a Kinesis-owned master key by specifying the alias `alias/aws/kinesis`. :param pulumi.Input[str] name: A name to identify the stream. This is unique to the AWS account and region the Stream is created in. :param pulumi.Input[int] retention_period: Length of time data records are accessible after they are added to the stream. The maximum value of a stream's retention period is 8760 hours. Minimum value is 24. Default is 24. :param pulumi.Input[Sequence[pulumi.Input[str]]] shard_level_metrics: A list of shard-level CloudWatch metrics which can be enabled for the stream. See [Monitoring with CloudWatch](https://docs.aws.amazon.com/streams/latest/dev/monitoring-with-cloudwatch.html) for more. Note that the value ALL should not be used; instead you should provide an explicit list of metrics you wish to enable. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. """ pulumi.set(__self__, "shard_count", shard_count) if arn is not None: pulumi.set(__self__, "arn", arn) if encryption_type is not None: pulumi.set(__self__, "encryption_type", encryption_type) if enforce_consumer_deletion is not None: pulumi.set(__self__, "enforce_consumer_deletion", enforce_consumer_deletion) if kms_key_id is not None: pulumi.set(__self__, "kms_key_id", kms_key_id) if name is not None: pulumi.set(__self__, "name", name) if retention_period is not None: pulumi.set(__self__, "retention_period", retention_period) if shard_level_metrics is not None: pulumi.set(__self__, "shard_level_metrics", shard_level_metrics) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="shardCount") def shard_count(self) -> pulumi.Input[int]: """ The number of shards that the stream will use. Amazon has guidelines for specifying the Stream size that should be referenced when creating a Kinesis stream. See [Amazon Kinesis Streams](https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html) for more. """ return pulumi.get(self, "shard_count") @shard_count.setter def shard_count(self, value: pulumi.Input[int]): pulumi.set(self, "shard_count", value) @property @pulumi.getter def arn(self) -> Optional[pulumi.Input[str]]: """ The Amazon Resource Name (ARN) specifying the Stream (same as `id`) """ return pulumi.get(self, "arn") @arn.setter def arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "arn", value) @property @pulumi.getter(name="encryptionType") def encryption_type(self) -> Optional[pulumi.Input[str]]: """ The encryption type to use. The only acceptable values are `NONE` or `KMS`. The default value is `NONE`. """ return pulumi.get(self, "encryption_type") @encryption_type.setter def encryption_type(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "encryption_type", value) @property @pulumi.getter(name="enforceConsumerDeletion") def enforce_consumer_deletion(self) -> Optional[pulumi.Input[bool]]: """ A boolean that indicates all registered consumers should be deregistered from the stream so that the stream can be destroyed without error. The default value is `false`. """ return pulumi.get(self, "enforce_consumer_deletion") @enforce_consumer_deletion.setter def enforce_consumer_deletion(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enforce_consumer_deletion", value) @property @pulumi.getter(name="kmsKeyId") def kms_key_id(self) -> Optional[pulumi.Input[str]]: """ The GUID for the customer-managed KMS key to use for encryption. You can also use a Kinesis-owned master key by specifying the alias `alias/aws/kinesis`. """ return pulumi.get(self, "kms_key_id") @kms_key_id.setter def kms_key_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "kms_key_id", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ A name to identify the stream. This is unique to the AWS account and region the Stream is created in. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="retentionPeriod") def retention_period(self) -> Optional[pulumi.Input[int]]: """ Length of time data records are accessible after they are added to the stream. The maximum value of a stream's retention period is 8760 hours. Minimum value is 24. Default is 24. """ return pulumi.get(self, "retention_period") @retention_period.setter def retention_period(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "retention_period", value) @property @pulumi.getter(name="shardLevelMetrics") def shard_level_metrics(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ A list of shard-level CloudWatch metrics which can be enabled for the stream. See [Monitoring with CloudWatch](https://docs.aws.amazon.com/streams/latest/dev/monitoring-with-cloudwatch.html) for more. Note that the value ALL should not be used; instead you should provide an explicit list of metrics you wish to enable. """ return pulumi.get(self, "shard_level_metrics") @shard_level_metrics.setter def shard_level_metrics(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "shard_level_metrics", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A map of tags to assign to the resource. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) class Stream(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, arn: Optional[pulumi.Input[str]] = None, encryption_type: Optional[pulumi.Input[str]] = None, enforce_consumer_deletion: Optional[pulumi.Input[bool]] = None, kms_key_id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, retention_period: Optional[pulumi.Input[int]] = None, shard_count: Optional[pulumi.Input[int]] = None, shard_level_metrics: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ Provides a Kinesis Stream resource. Amazon Kinesis is a managed service that scales elastically for real-time processing of streaming big data. For more details, see the [Amazon Kinesis Documentation](https://aws.amazon.com/documentation/kinesis/). ## Example Usage ```python import pulumi import pulumi_aws as aws test_stream = aws.kinesis.Stream("testStream", retention_period=48, shard_count=1, shard_level_metrics=[ "IncomingBytes", "OutgoingBytes", ], tags={ "Environment": "test", }) ``` ## Import Kinesis Streams can be imported using the `name`, e.g. ```sh $ pulumi import aws:kinesis/stream:Stream test_stream kinesis-test ``` [1]https://aws.amazon.com/documentation/kinesis/ [2]https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html [3]https://docs.aws.amazon.com/streams/latest/dev/monitoring-with-cloudwatch.html :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] arn: The Amazon Resource Name (ARN) specifying the Stream (same as `id`) :param pulumi.Input[str] encryption_type: The encryption type to use. The only acceptable values are `NONE` or `KMS`. The default value is `NONE`. :param pulumi.Input[bool] enforce_consumer_deletion: A boolean that indicates all registered consumers should be deregistered from the stream so that the stream can be destroyed without error. The default value is `false`. :param pulumi.Input[str] kms_key_id: The GUID for the customer-managed KMS key to use for encryption. You can also use a Kinesis-owned master key by specifying the alias `alias/aws/kinesis`. :param pulumi.Input[str] name: A name to identify the stream. This is unique to the AWS account and region the Stream is created in. :param pulumi.Input[int] retention_period: Length of time data records are accessible after they are added to the stream. The maximum value of a stream's retention period is 8760 hours. Minimum value is 24. Default is 24. :param pulumi.Input[int] shard_count: The number of shards that the stream will use. Amazon has guidelines for specifying the Stream size that should be referenced when creating a Kinesis stream. See [Amazon Kinesis Streams](https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html) for more. :param pulumi.Input[Sequence[pulumi.Input[str]]] shard_level_metrics: A list of shard-level CloudWatch metrics which can be enabled for the stream. See [Monitoring with CloudWatch](https://docs.aws.amazon.com/streams/latest/dev/monitoring-with-cloudwatch.html) for more. Note that the value ALL should not be used; instead you should provide an explicit list of metrics you wish to enable. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. """ ... @overload def __init__(__self__, resource_name: str, args: StreamArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Provides a Kinesis Stream resource. Amazon Kinesis is a managed service that scales elastically for real-time processing of streaming big data. For more details, see the [Amazon Kinesis Documentation](https://aws.amazon.com/documentation/kinesis/). ## Example Usage ```python import pulumi import pulumi_aws as aws test_stream = aws.kinesis.Stream("testStream", retention_period=48, shard_count=1, shard_level_metrics=[ "IncomingBytes", "OutgoingBytes", ], tags={ "Environment": "test", }) ``` ## Import Kinesis Streams can be imported using the `name`, e.g. ```sh $ pulumi import aws:kinesis/stream:Stream test_stream kinesis-test ``` [1]https://aws.amazon.com/documentation/kinesis/ [2]https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html [3]https://docs.aws.amazon.com/streams/latest/dev/monitoring-with-cloudwatch.html :param str resource_name: The name of the resource. :param StreamArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(StreamArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, arn: Optional[pulumi.Input[str]] = None, encryption_type: Optional[pulumi.Input[str]] = None, enforce_consumer_deletion: Optional[pulumi.Input[bool]] = None, kms_key_id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, retention_period: Optional[pulumi.Input[int]] = None, shard_count: Optional[pulumi.Input[int]] = None, shard_level_metrics: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['arn'] = arn __props__['encryption_type'] = encryption_type __props__['enforce_consumer_deletion'] = enforce_consumer_deletion __props__['kms_key_id'] = kms_key_id __props__['name'] = name __props__['retention_period'] = retention_period if shard_count is None and not opts.urn: raise TypeError("Missing required property 'shard_count'") __props__['shard_count'] = shard_count __props__['shard_level_metrics'] = shard_level_metrics __props__['tags'] = tags super(Stream, __self__).__init__( 'aws:kinesis/stream:Stream', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, arn: Optional[pulumi.Input[str]] = None, encryption_type: Optional[pulumi.Input[str]] = None, enforce_consumer_deletion: Optional[pulumi.Input[bool]] = None, kms_key_id: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, retention_period: Optional[pulumi.Input[int]] = None, shard_count: Optional[pulumi.Input[int]] = None, shard_level_metrics: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None) -> 'Stream': """ Get an existing Stream resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] arn: The Amazon Resource Name (ARN) specifying the Stream (same as `id`) :param pulumi.Input[str] encryption_type: The encryption type to use. The only acceptable values are `NONE` or `KMS`. The default value is `NONE`. :param pulumi.Input[bool] enforce_consumer_deletion: A boolean that indicates all registered consumers should be deregistered from the stream so that the stream can be destroyed without error. The default value is `false`. :param pulumi.Input[str] kms_key_id: The GUID for the customer-managed KMS key to use for encryption. You can also use a Kinesis-owned master key by specifying the alias `alias/aws/kinesis`. :param pulumi.Input[str] name: A name to identify the stream. This is unique to the AWS account and region the Stream is created in. :param pulumi.Input[int] retention_period: Length of time data records are accessible after they are added to the stream. The maximum value of a stream's retention period is 8760 hours. Minimum value is 24. Default is 24. :param pulumi.Input[int] shard_count: The number of shards that the stream will use. Amazon has guidelines for specifying the Stream size that should be referenced when creating a Kinesis stream. See [Amazon Kinesis Streams](https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html) for more. :param pulumi.Input[Sequence[pulumi.Input[str]]] shard_level_metrics: A list of shard-level CloudWatch metrics which can be enabled for the stream. See [Monitoring with CloudWatch](https://docs.aws.amazon.com/streams/latest/dev/monitoring-with-cloudwatch.html) for more. Note that the value ALL should not be used; instead you should provide an explicit list of metrics you wish to enable. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A map of tags to assign to the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["arn"] = arn __props__["encryption_type"] = encryption_type __props__["enforce_consumer_deletion"] = enforce_consumer_deletion __props__["kms_key_id"] = kms_key_id __props__["name"] = name __props__["retention_period"] = retention_period __props__["shard_count"] = shard_count __props__["shard_level_metrics"] = shard_level_metrics __props__["tags"] = tags return Stream(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def arn(self) -> pulumi.Output[str]: """ The Amazon Resource Name (ARN) specifying the Stream (same as `id`) """ return pulumi.get(self, "arn") @property @pulumi.getter(name="encryptionType") def encryption_type(self) -> pulumi.Output[Optional[str]]: """ The encryption type to use. The only acceptable values are `NONE` or `KMS`. The default value is `NONE`. """ return pulumi.get(self, "encryption_type") @property @pulumi.getter(name="enforceConsumerDeletion") def enforce_consumer_deletion(self) -> pulumi.Output[Optional[bool]]: """ A boolean that indicates all registered consumers should be deregistered from the stream so that the stream can be destroyed without error. The default value is `false`. """ return pulumi.get(self, "enforce_consumer_deletion") @property @pulumi.getter(name="kmsKeyId") def kms_key_id(self) -> pulumi.Output[Optional[str]]: """ The GUID for the customer-managed KMS key to use for encryption. You can also use a Kinesis-owned master key by specifying the alias `alias/aws/kinesis`. """ return pulumi.get(self, "kms_key_id") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ A name to identify the stream. This is unique to the AWS account and region the Stream is created in. """ return pulumi.get(self, "name") @property @pulumi.getter(name="retentionPeriod") def retention_period(self) -> pulumi.Output[Optional[int]]: """ Length of time data records are accessible after they are added to the stream. The maximum value of a stream's retention period is 8760 hours. Minimum value is 24. Default is 24. """ return pulumi.get(self, "retention_period") @property @pulumi.getter(name="shardCount") def shard_count(self) -> pulumi.Output[int]: """ The number of shards that the stream will use. Amazon has guidelines for specifying the Stream size that should be referenced when creating a Kinesis stream. See [Amazon Kinesis Streams](https://docs.aws.amazon.com/kinesis/latest/dev/amazon-kinesis-streams.html) for more. """ return pulumi.get(self, "shard_count") @property @pulumi.getter(name="shardLevelMetrics") def shard_level_metrics(self) -> pulumi.Output[Optional[Sequence[str]]]: """ A list of shard-level CloudWatch metrics which can be enabled for the stream. See [Monitoring with CloudWatch](https://docs.aws.amazon.com/streams/latest/dev/monitoring-with-cloudwatch.html) for more. Note that the value ALL should not be used; instead you should provide an explicit list of metrics you wish to enable. """ return pulumi.get(self, "shard_level_metrics") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ A map of tags to assign to the resource. """ return pulumi.get(self, "tags") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_aws/lightsail/key_pair.py ```python import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities, _tables __all__ = ['KeyPairArgs', 'KeyPair'] @pulumi.input_type class KeyPairArgs: def __init__(__self__, *, name: Optional[pulumi.Input[str]] = None, name_prefix: Optional[pulumi.Input[str]] = None, pgp_key: Optional[pulumi.Input[str]] = None, public_key: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a KeyPair resource. :param pulumi.Input[str] name: The name of the Lightsail Key Pair. If omitted, a unique name will be generated by this provider :param pulumi.Input[str] pgp_key: An optional PGP key to encrypt the resulting private key material. Only used when creating a new key pair :param pulumi.Input[str] public_key: The public key material. This public key will be imported into Lightsail """ if name is not None: pulumi.set(__self__, "name", name) if name_prefix is not None: pulumi.set(__self__, "name_prefix", name_prefix) if pgp_key is not None: pulumi.set(__self__, "pgp_key", pgp_key) if public_key is not None: pulumi.set(__self__, "public_key", public_key) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the Lightsail Key Pair. If omitted, a unique name will be generated by this provider """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="namePrefix") def name_prefix(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "name_prefix") @name_prefix.setter def name_prefix(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name_prefix", value) @property @pulumi.getter(name="pgpKey") def pgp_key(self) -> Optional[pulumi.Input[str]]: """ An optional PGP key to encrypt the resulting private key material. Only used when creating a new key pair """ return pulumi.get(self, "pgp_key") @pgp_key.setter def pgp_key(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "pgp_key", value) @property @pulumi.getter(name="publicKey") def public_key(self) -> Optional[pulumi.Input[str]]: """ The public key material. This public key will be imported into Lightsail """ return pulumi.get(self, "public_key") @public_key.setter def public_key(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "public_key", value) class KeyPair(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, name: Optional[pulumi.Input[str]] = None, name_prefix: Optional[pulumi.Input[str]] = None, pgp_key: Optional[pulumi.Input[str]] = None, public_key: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Provides a Lightsail Key Pair, for use with Lightsail Instances. These key pairs are separate from EC2 Key Pairs, and must be created or imported for use with Lightsail. > **Note:** Lightsail is currently only supported in a limited number of AWS Regions, please see ["Regions and Availability Zones in Amazon Lightsail"](https://lightsail.aws.amazon.com/ls/docs/overview/article/understanding-regions-and-availability-zones-in-amazon-lightsail) for more details ## Example Usage ### Create New Key Pair ```python import pulumi import pulumi_aws as aws # Create a new Lightsail Key Pair lg_key_pair = aws.lightsail.KeyPair("lgKeyPair") ``` ### Create New Key Pair with PGP Encrypted Private Key ```python import pulumi import pulumi_aws as aws lg_key_pair = aws.lightsail.KeyPair("lgKeyPair", pgp_key="keybase:keybaseusername") ``` ### Existing Public Key Import ```python import pulumi import pulumi_aws as aws lg_key_pair = aws.lightsail.KeyPair("lgKeyPair", public_key=(lambda path: open(path).read())("~/.ssh/id_rsa.pub")) ``` ## Import Lightsail Key Pairs cannot be imported, because the private and public key are only available on initial creation. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] name: The name of the Lightsail Key Pair. If omitted, a unique name will be generated by this provider :param pulumi.Input[str] pgp_key: An optional PGP key to encrypt the resulting private key material. Only used when creating a new key pair :param pulumi.Input[str] public_key: The public key material. This public key will be imported into Lightsail """ ... @overload def __init__(__self__, resource_name: str, args: Optional[KeyPairArgs] = None, opts: Optional[pulumi.ResourceOptions] = None): """ Provides a Lightsail Key Pair, for use with Lightsail Instances. These key pairs are separate from EC2 Key Pairs, and must be created or imported for use with Lightsail. > **Note:** Lightsail is currently only supported in a limited number of AWS Regions, please see ["Regions and Availability Zones in Amazon Lightsail"](https://lightsail.aws.amazon.com/ls/docs/overview/article/understanding-regions-and-availability-zones-in-amazon-lightsail) for more details ## Example Usage ### Create New Key Pair ```python import pulumi import pulumi_aws as aws # Create a new Lightsail Key Pair lg_key_pair = aws.lightsail.KeyPair("lgKeyPair") ``` ### Create New Key Pair with PGP Encrypted Private Key ```python import pulumi import pulumi_aws as aws lg_key_pair = aws.lightsail.KeyPair("lgKeyPair", pgp_key="keybase:keybaseusername") ``` ### Existing Public Key Import ```python import pulumi import pulumi_aws as aws lg_key_pair = aws.lightsail.KeyPair("lgKeyPair", public_key=(lambda path: open(path).read())("~/.ssh/id_rsa.pub")) ``` ## Import Lightsail Key Pairs cannot be imported, because the private and public key are only available on initial creation. :param str resource_name: The name of the resource. :param KeyPairArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(KeyPairArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, name: Optional[pulumi.Input[str]] = None, name_prefix: Optional[pulumi.Input[str]] = None, pgp_key: Optional[pulumi.Input[str]] = None, public_key: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['name'] = name __props__['name_prefix'] = name_prefix __props__['pgp_key'] = pgp_key __props__['public_key'] = public_key __props__['arn'] = None __props__['encrypted_fingerprint'] = None __props__['encrypted_private_key'] = None __props__['fingerprint'] = None __props__['private_key'] = None super(KeyPair, __self__).__init__( 'aws:lightsail/keyPair:KeyPair', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, arn: Optional[pulumi.Input[str]] = None, encrypted_fingerprint: Optional[pulumi.Input[str]] = None, encrypted_private_key: Optional[pulumi.Input[str]] = None, fingerprint: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, name_prefix: Optional[pulumi.Input[str]] = None, pgp_key: Optional[pulumi.Input[str]] = None, private_key: Optional[pulumi.Input[str]] = None, public_key: Optional[pulumi.Input[str]] = None) -> 'KeyPair': """ Get an existing KeyPair resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] arn: The ARN of the Lightsail key pair :param pulumi.Input[str] encrypted_fingerprint: The MD5 public key fingerprint for the encrypted private key :param pulumi.Input[str] encrypted_private_key: the private key material, base 64 encoded and encrypted with the given `pgp_key`. This is only populated when creating a new key and `pgp_key` is supplied :param pulumi.Input[str] fingerprint: The MD5 public key fingerprint as specified in section 4 of RFC 4716. :param pulumi.Input[str] name: The name of the Lightsail Key Pair. If omitted, a unique name will be generated by this provider :param pulumi.Input[str] pgp_key: An optional PGP key to encrypt the resulting private key material. Only used when creating a new key pair :param pulumi.Input[str] private_key: the private key, base64 encoded. This is only populated when creating a new key, and when no `pgp_key` is provided :param pulumi.Input[str] public_key: The public key material. This public key will be imported into Lightsail """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["arn"] = arn __props__["encrypted_fingerprint"] = encrypted_fingerprint __props__["encrypted_private_key"] = encrypted_private_key __props__["fingerprint"] = fingerprint __props__["name"] = name __props__["name_prefix"] = name_prefix __props__["pgp_key"] = pgp_key __props__["private_key"] = private_key __props__["public_key"] = public_key return KeyPair(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def arn(self) -> pulumi.Output[str]: """ The ARN of the Lightsail key pair """ return pulumi.get(self, "arn") @property @pulumi.getter(name="encryptedFingerprint") def encrypted_fingerprint(self) -> pulumi.Output[str]: """ The MD5 public key fingerprint for the encrypted private key """ return pulumi.get(self, "encrypted_fingerprint") @property @pulumi.getter(name="encryptedPrivateKey") def encrypted_private_key(self) -> pulumi.Output[str]: """ the private key material, base 64 encoded and encrypted with the given `pgp_key`. This is only populated when creating a new key and `pgp_key` is supplied """ return pulumi.get(self, "encrypted_private_key") @property @pulumi.getter def fingerprint(self) -> pulumi.Output[str]: """ The MD5 public key fingerprint as specified in section 4 of RFC 4716. """ return pulumi.get(self, "fingerprint") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the Lightsail Key Pair. If omitted, a unique name will be generated by this provider """ return pulumi.get(self, "name") @property @pulumi.getter(name="namePrefix") def name_prefix(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "name_prefix") @property @pulumi.getter(name="pgpKey") def pgp_key(self) -> pulumi.Output[Optional[str]]: """ An optional PGP key to encrypt the resulting private key material. Only used when creating a new key pair """ return pulumi.get(self, "pgp_key") @property @pulumi.getter(name="privateKey") def private_key(self) -> pulumi.Output[str]: """ the private key, base64 encoded. This is only populated when creating a new key, and when no `pgp_key` is provided """ return pulumi.get(self, "private_key") @property @pulumi.getter(name="publicKey") def public_key(self) -> pulumi.Output[str]: """ The public key material. This public key will be imported into Lightsail """ return pulumi.get(self, "public_key") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_aws/neptune/_inputs.py ```python import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities, _tables __all__ = [ 'ClusterParameterGroupParameterArgs', 'ParameterGroupParameterArgs', ] @pulumi.input_type class ClusterParameterGroupParameterArgs: def __init__(__self__, *, name: pulumi.Input[str], value: pulumi.Input[str], apply_method: Optional[pulumi.Input[str]] = None): """ :param pulumi.Input[str] name: The name of the neptune parameter. :param pulumi.Input[str] value: The value of the neptune parameter. :param pulumi.Input[str] apply_method: Valid values are `immediate` and `pending-reboot`. Defaults to `pending-reboot`. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "value", value) if apply_method is not None: pulumi.set(__self__, "apply_method", apply_method) @property @pulumi.getter def name(self) -> pulumi.Input[str]: """ The name of the neptune parameter. """ return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @property @pulumi.getter def value(self) -> pulumi.Input[str]: """ The value of the neptune parameter. """ return pulumi.get(self, "value") @value.setter def value(self, value: pulumi.Input[str]): pulumi.set(self, "value", value) @property @pulumi.getter(name="applyMethod") def apply_method(self) -> Optional[pulumi.Input[str]]: """ Valid values are `immediate` and `pending-reboot`. Defaults to `pending-reboot`. """ return pulumi.get(self, "apply_method") @apply_method.setter def apply_method(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "apply_method", value) @pulumi.input_type class ParameterGroupParameterArgs: def __init__(__self__, *, name: pulumi.Input[str], value: pulumi.Input[str], apply_method: Optional[pulumi.Input[str]] = None): """ :param pulumi.Input[str] name: The name of the Neptune parameter. :param pulumi.Input[str] value: The value of the Neptune parameter. :param pulumi.Input[str] apply_method: The apply method of the Neptune parameter. Valid values are `immediate` and `pending-reboot`. Defaults to `pending-reboot`. """ pulumi.set(__self__, "name", name) pulumi.set(__self__, "value", value) if apply_method is not None: pulumi.set(__self__, "apply_method", apply_method) @property @pulumi.getter def name(self) -> pulumi.Input[str]: """ The name of the Neptune parameter. """ return pulumi.get(self, "name") @name.setter def name(self, value: pulumi.Input[str]): pulumi.set(self, "name", value) @property @pulumi.getter def value(self) -> pulumi.Input[str]: """ The value of the Neptune parameter. """ return pulumi.get(self, "value") @value.setter def value(self, value: pulumi.Input[str]): pulumi.set(self, "value", value) @property @pulumi.getter(name="applyMethod") def apply_method(self) -> Optional[pulumi.Input[str]]: """ The apply method of the Neptune parameter. Valid values are `immediate` and `pending-reboot`. Defaults to `pending-reboot`. """ return pulumi.get(self, "apply_method") @apply_method.setter def apply_method(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "apply_method", value) ``` #### File: pulumi_aws/rds/cluster_endpoint.py ```python import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities, _tables __all__ = ['ClusterEndpointArgs', 'ClusterEndpoint'] @pulumi.input_type class ClusterEndpointArgs: def __init__(__self__, *, cluster_endpoint_identifier: pulumi.Input[str], cluster_identifier: pulumi.Input[str], custom_endpoint_type: pulumi.Input[str], excluded_members: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, static_members: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None): """ The set of arguments for constructing a ClusterEndpoint resource. :param pulumi.Input[str] cluster_endpoint_identifier: The identifier to use for the new endpoint. This parameter is stored as a lowercase string. :param pulumi.Input[str] cluster_identifier: The cluster identifier. :param pulumi.Input[str] custom_endpoint_type: The type of the endpoint. One of: READER , ANY . :param pulumi.Input[Sequence[pulumi.Input[str]]] excluded_members: List of DB instance identifiers that aren't part of the custom endpoint group. All other eligible instances are reachable through the custom endpoint. Only relevant if the list of static members is empty. Conflicts with `static_members`. :param pulumi.Input[Sequence[pulumi.Input[str]]] static_members: List of DB instance identifiers that are part of the custom endpoint group. Conflicts with `excluded_members`. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Key-value map of resource tags """ pulumi.set(__self__, "cluster_endpoint_identifier", cluster_endpoint_identifier) pulumi.set(__self__, "cluster_identifier", cluster_identifier) pulumi.set(__self__, "custom_endpoint_type", custom_endpoint_type) if excluded_members is not None: pulumi.set(__self__, "excluded_members", excluded_members) if static_members is not None: pulumi.set(__self__, "static_members", static_members) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="clusterEndpointIdentifier") def cluster_endpoint_identifier(self) -> pulumi.Input[str]: """ The identifier to use for the new endpoint. This parameter is stored as a lowercase string. """ return pulumi.get(self, "cluster_endpoint_identifier") @cluster_endpoint_identifier.setter def cluster_endpoint_identifier(self, value: pulumi.Input[str]): pulumi.set(self, "cluster_endpoint_identifier", value) @property @pulumi.getter(name="clusterIdentifier") def cluster_identifier(self) -> pulumi.Input[str]: """ The cluster identifier. """ return pulumi.get(self, "cluster_identifier") @cluster_identifier.setter def cluster_identifier(self, value: pulumi.Input[str]): pulumi.set(self, "cluster_identifier", value) @property @pulumi.getter(name="customEndpointType") def custom_endpoint_type(self) -> pulumi.Input[str]: """ The type of the endpoint. One of: READER , ANY . """ return pulumi.get(self, "custom_endpoint_type") @custom_endpoint_type.setter def custom_endpoint_type(self, value: pulumi.Input[str]): pulumi.set(self, "custom_endpoint_type", value) @property @pulumi.getter(name="excludedMembers") def excluded_members(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ List of DB instance identifiers that aren't part of the custom endpoint group. All other eligible instances are reachable through the custom endpoint. Only relevant if the list of static members is empty. Conflicts with `static_members`. """ return pulumi.get(self, "excluded_members") @excluded_members.setter def excluded_members(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "excluded_members", value) @property @pulumi.getter(name="staticMembers") def static_members(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ List of DB instance identifiers that are part of the custom endpoint group. Conflicts with `excluded_members`. """ return pulumi.get(self, "static_members") @static_members.setter def static_members(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "static_members", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Key-value map of resource tags """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) class ClusterEndpoint(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, cluster_endpoint_identifier: Optional[pulumi.Input[str]] = None, cluster_identifier: Optional[pulumi.Input[str]] = None, custom_endpoint_type: Optional[pulumi.Input[str]] = None, excluded_members: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, static_members: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ Manages an RDS Aurora Cluster Endpoint. You can refer to the [User Guide](https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.Endpoints.html#Aurora.Endpoints.Cluster). ## Example Usage ```python import pulumi import pulumi_aws as aws default = aws.rds.Cluster("default", cluster_identifier="aurora-cluster-demo", availability_zones=[ "us-west-2a", "us-west-2b", "us-west-2c", ], database_name="mydb", master_username="foo", master_password="<PASSWORD>", backup_retention_period=5, preferred_backup_window="07:00-09:00") test1 = aws.rds.ClusterInstance("test1", apply_immediately=True, cluster_identifier=default.id, identifier="test1", instance_class="db.t2.small", engine=default.engine, engine_version=default.engine_version) test2 = aws.rds.ClusterInstance("test2", apply_immediately=True, cluster_identifier=default.id, identifier="test2", instance_class="db.t2.small", engine=default.engine, engine_version=default.engine_version) test3 = aws.rds.ClusterInstance("test3", apply_immediately=True, cluster_identifier=default.id, identifier="test3", instance_class="db.t2.small", engine=default.engine, engine_version=default.engine_version) eligible = aws.rds.ClusterEndpoint("eligible", cluster_identifier=default.id, cluster_endpoint_identifier="reader", custom_endpoint_type="READER", excluded_members=[ test1.id, test2.id, ]) static = aws.rds.ClusterEndpoint("static", cluster_identifier=default.id, cluster_endpoint_identifier="static", custom_endpoint_type="READER", static_members=[ test1.id, test3.id, ]) ``` ## Import RDS Clusters Endpoint can be imported using the `cluster_endpoint_identifier`, e.g. ```sh $ pulumi import aws:rds/clusterEndpoint:ClusterEndpoint custom_reader aurora-prod-cluster-custom-reader ``` [1]https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.Endpoints.html#Aurora.Endpoints.Cluster :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] cluster_endpoint_identifier: The identifier to use for the new endpoint. This parameter is stored as a lowercase string. :param pulumi.Input[str] cluster_identifier: The cluster identifier. :param pulumi.Input[str] custom_endpoint_type: The type of the endpoint. One of: READER , ANY . :param pulumi.Input[Sequence[pulumi.Input[str]]] excluded_members: List of DB instance identifiers that aren't part of the custom endpoint group. All other eligible instances are reachable through the custom endpoint. Only relevant if the list of static members is empty. Conflicts with `static_members`. :param pulumi.Input[Sequence[pulumi.Input[str]]] static_members: List of DB instance identifiers that are part of the custom endpoint group. Conflicts with `excluded_members`. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Key-value map of resource tags """ ... @overload def __init__(__self__, resource_name: str, args: ClusterEndpointArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Manages an RDS Aurora Cluster Endpoint. You can refer to the [User Guide](https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.Endpoints.html#Aurora.Endpoints.Cluster). ## Example Usage ```python import pulumi import pulumi_aws as aws default = aws.rds.Cluster("default", cluster_identifier="aurora-cluster-demo", availability_zones=[ "us-west-2a", "us-west-2b", "us-west-2c", ], database_name="mydb", master_username="foo", master_password="<PASSWORD>", backup_retention_period=5, preferred_backup_window="07:00-09:00") test1 = aws.rds.ClusterInstance("test1", apply_immediately=True, cluster_identifier=default.id, identifier="test1", instance_class="db.t2.small", engine=default.engine, engine_version=default.engine_version) test2 = aws.rds.ClusterInstance("test2", apply_immediately=True, cluster_identifier=default.id, identifier="test2", instance_class="db.t2.small", engine=default.engine, engine_version=default.engine_version) test3 = aws.rds.ClusterInstance("test3", apply_immediately=True, cluster_identifier=default.id, identifier="test3", instance_class="db.t2.small", engine=default.engine, engine_version=default.engine_version) eligible = aws.rds.ClusterEndpoint("eligible", cluster_identifier=default.id, cluster_endpoint_identifier="reader", custom_endpoint_type="READER", excluded_members=[ test1.id, test2.id, ]) static = aws.rds.ClusterEndpoint("static", cluster_identifier=default.id, cluster_endpoint_identifier="static", custom_endpoint_type="READER", static_members=[ test1.id, test3.id, ]) ``` ## Import RDS Clusters Endpoint can be imported using the `cluster_endpoint_identifier`, e.g. ```sh $ pulumi import aws:rds/clusterEndpoint:ClusterEndpoint custom_reader aurora-prod-cluster-custom-reader ``` [1]https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.Endpoints.html#Aurora.Endpoints.Cluster :param str resource_name: The name of the resource. :param ClusterEndpointArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(ClusterEndpointArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, cluster_endpoint_identifier: Optional[pulumi.Input[str]] = None, cluster_identifier: Optional[pulumi.Input[str]] = None, custom_endpoint_type: Optional[pulumi.Input[str]] = None, excluded_members: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, static_members: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if cluster_endpoint_identifier is None and not opts.urn: raise TypeError("Missing required property 'cluster_endpoint_identifier'") __props__['cluster_endpoint_identifier'] = cluster_endpoint_identifier if cluster_identifier is None and not opts.urn: raise TypeError("Missing required property 'cluster_identifier'") __props__['cluster_identifier'] = cluster_identifier if custom_endpoint_type is None and not opts.urn: raise TypeError("Missing required property 'custom_endpoint_type'") __props__['custom_endpoint_type'] = custom_endpoint_type __props__['excluded_members'] = excluded_members __props__['static_members'] = static_members __props__['tags'] = tags __props__['arn'] = None __props__['endpoint'] = None super(ClusterEndpoint, __self__).__init__( 'aws:rds/clusterEndpoint:ClusterEndpoint', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, arn: Optional[pulumi.Input[str]] = None, cluster_endpoint_identifier: Optional[pulumi.Input[str]] = None, cluster_identifier: Optional[pulumi.Input[str]] = None, custom_endpoint_type: Optional[pulumi.Input[str]] = None, endpoint: Optional[pulumi.Input[str]] = None, excluded_members: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, static_members: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None) -> 'ClusterEndpoint': """ Get an existing ClusterEndpoint resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] arn: Amazon Resource Name (ARN) of cluster :param pulumi.Input[str] cluster_endpoint_identifier: The identifier to use for the new endpoint. This parameter is stored as a lowercase string. :param pulumi.Input[str] cluster_identifier: The cluster identifier. :param pulumi.Input[str] custom_endpoint_type: The type of the endpoint. One of: READER , ANY . :param pulumi.Input[str] endpoint: A custom endpoint for the Aurora cluster :param pulumi.Input[Sequence[pulumi.Input[str]]] excluded_members: List of DB instance identifiers that aren't part of the custom endpoint group. All other eligible instances are reachable through the custom endpoint. Only relevant if the list of static members is empty. Conflicts with `static_members`. :param pulumi.Input[Sequence[pulumi.Input[str]]] static_members: List of DB instance identifiers that are part of the custom endpoint group. Conflicts with `excluded_members`. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Key-value map of resource tags """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["arn"] = arn __props__["cluster_endpoint_identifier"] = cluster_endpoint_identifier __props__["cluster_identifier"] = cluster_identifier __props__["custom_endpoint_type"] = custom_endpoint_type __props__["endpoint"] = endpoint __props__["excluded_members"] = excluded_members __props__["static_members"] = static_members __props__["tags"] = tags return ClusterEndpoint(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def arn(self) -> pulumi.Output[str]: """ Amazon Resource Name (ARN) of cluster """ return pulumi.get(self, "arn") @property @pulumi.getter(name="clusterEndpointIdentifier") def cluster_endpoint_identifier(self) -> pulumi.Output[str]: """ The identifier to use for the new endpoint. This parameter is stored as a lowercase string. """ return pulumi.get(self, "cluster_endpoint_identifier") @property @pulumi.getter(name="clusterIdentifier") def cluster_identifier(self) -> pulumi.Output[str]: """ The cluster identifier. """ return pulumi.get(self, "cluster_identifier") @property @pulumi.getter(name="customEndpointType") def custom_endpoint_type(self) -> pulumi.Output[str]: """ The type of the endpoint. One of: READER , ANY . """ return pulumi.get(self, "custom_endpoint_type") @property @pulumi.getter def endpoint(self) -> pulumi.Output[str]: """ A custom endpoint for the Aurora cluster """ return pulumi.get(self, "endpoint") @property @pulumi.getter(name="excludedMembers") def excluded_members(self) -> pulumi.Output[Optional[Sequence[str]]]: """ List of DB instance identifiers that aren't part of the custom endpoint group. All other eligible instances are reachable through the custom endpoint. Only relevant if the list of static members is empty. Conflicts with `static_members`. """ return pulumi.get(self, "excluded_members") @property @pulumi.getter(name="staticMembers") def static_members(self) -> pulumi.Output[Optional[Sequence[str]]]: """ List of DB instance identifiers that are part of the custom endpoint group. Conflicts with `excluded_members`. """ return pulumi.get(self, "static_members") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Key-value map of resource tags """ return pulumi.get(self, "tags") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop ``` #### File: pulumi_aws/signer/get_signing_profile.py ```python import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities, _tables from . import outputs __all__ = [ 'GetSigningProfileResult', 'AwaitableGetSigningProfileResult', 'get_signing_profile', ] @pulumi.output_type class GetSigningProfileResult: """ A collection of values returned by getSigningProfile. """ def __init__(__self__, arn=None, id=None, name=None, platform_display_name=None, platform_id=None, revocation_records=None, signature_validity_periods=None, status=None, tags=None, version=None, version_arn=None): if arn and not isinstance(arn, str): raise TypeError("Expected argument 'arn' to be a str") pulumi.set(__self__, "arn", arn) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if platform_display_name and not isinstance(platform_display_name, str): raise TypeError("Expected argument 'platform_display_name' to be a str") pulumi.set(__self__, "platform_display_name", platform_display_name) if platform_id and not isinstance(platform_id, str): raise TypeError("Expected argument 'platform_id' to be a str") pulumi.set(__self__, "platform_id", platform_id) if revocation_records and not isinstance(revocation_records, list): raise TypeError("Expected argument 'revocation_records' to be a list") pulumi.set(__self__, "revocation_records", revocation_records) if signature_validity_periods and not isinstance(signature_validity_periods, list): raise TypeError("Expected argument 'signature_validity_periods' to be a list") pulumi.set(__self__, "signature_validity_periods", signature_validity_periods) if status and not isinstance(status, str): raise TypeError("Expected argument 'status' to be a str") pulumi.set(__self__, "status", status) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if version and not isinstance(version, str): raise TypeError("Expected argument 'version' to be a str") pulumi.set(__self__, "version", version) if version_arn and not isinstance(version_arn, str): raise TypeError("Expected argument 'version_arn' to be a str") pulumi.set(__self__, "version_arn", version_arn) @property @pulumi.getter def arn(self) -> str: """ The Amazon Resource Name (ARN) for the signing profile. """ return pulumi.get(self, "arn") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter def name(self) -> str: return pulumi.get(self, "name") @property @pulumi.getter(name="platformDisplayName") def platform_display_name(self) -> str: """ A human-readable name for the signing platform associated with the signing profile. """ return pulumi.get(self, "platform_display_name") @property @pulumi.getter(name="platformId") def platform_id(self) -> str: """ The ID of the platform that is used by the target signing profile. """ return pulumi.get(self, "platform_id") @property @pulumi.getter(name="revocationRecords") def revocation_records(self) -> Sequence['outputs.GetSigningProfileRevocationRecordResult']: """ Revocation information for a signing profile. """ return pulumi.get(self, "revocation_records") @property @pulumi.getter(name="signatureValidityPeriods") def signature_validity_periods(self) -> Sequence['outputs.GetSigningProfileSignatureValidityPeriodResult']: """ The validity period for a signing job. """ return pulumi.get(self, "signature_validity_periods") @property @pulumi.getter def status(self) -> str: """ The status of the target signing profile. """ return pulumi.get(self, "status") @property @pulumi.getter def tags(self) -> Mapping[str, str]: """ A list of tags associated with the signing profile. """ return pulumi.get(self, "tags") @property @pulumi.getter def version(self) -> str: """ The current version of the signing profile. """ return pulumi.get(self, "version") @property @pulumi.getter(name="versionArn") def version_arn(self) -> str: """ The signing profile ARN, including the profile version. """ return pulumi.get(self, "version_arn") class AwaitableGetSigningProfileResult(GetSigningProfileResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetSigningProfileResult( arn=self.arn, id=self.id, name=self.name, platform_display_name=self.platform_display_name, platform_id=self.platform_id, revocation_records=self.revocation_records, signature_validity_periods=self.signature_validity_periods, status=self.status, tags=self.tags, version=self.version, version_arn=self.version_arn) def get_signing_profile(name: Optional[str] = None, tags: Optional[Mapping[str, str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetSigningProfileResult: """ Provides information about a Signer Signing Profile. ## Example Usage ```python import pulumi import pulumi_aws as aws production_signing_profile = aws.signer.get_signing_profile(name="prod_profile_DdW3Mk1foYL88fajut4mTVFGpuwfd4ACO6ANL0D1uIj7lrn8adK") ``` :param str name: The name of the target signing profile. :param Mapping[str, str] tags: A list of tags associated with the signing profile. """ __args__ = dict() __args__['name'] = name __args__['tags'] = tags if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:signer/getSigningProfile:getSigningProfile', __args__, opts=opts, typ=GetSigningProfileResult).value return AwaitableGetSigningProfileResult( arn=__ret__.arn, id=__ret__.id, name=__ret__.name, platform_display_name=__ret__.platform_display_name, platform_id=__ret__.platform_id, revocation_records=__ret__.revocation_records, signature_validity_periods=__ret__.signature_validity_periods, status=__ret__.status, tags=__ret__.tags, version=__ret__.version, version_arn=__ret__.version_arn) ``` #### File: pulumi_aws/signer/outputs.py ```python import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities, _tables from . import outputs __all__ = [ 'SigningJobDestination', 'SigningJobDestinationS3', 'SigningJobRevocationRecord', 'SigningJobSignedObject', 'SigningJobSignedObjectS3', 'SigningJobSource', 'SigningJobSourceS3', 'SigningProfileRevocationRecord', 'SigningProfileSignatureValidityPeriod', 'GetSigningJobRevocationRecordResult', 'GetSigningJobSignedObjectResult', 'GetSigningJobSignedObjectS3Result', 'GetSigningJobSourceResult', 'GetSigningJobSourceS3Result', 'GetSigningProfileRevocationRecordResult', 'GetSigningProfileSignatureValidityPeriodResult', ] @pulumi.output_type class SigningJobDestination(dict): def __init__(__self__, *, s3: 'outputs.SigningJobDestinationS3'): """ :param 'SigningJobDestinationS3Args' s3: A configuration block describing the S3 Destination object: See S3 Destination below for details. """ pulumi.set(__self__, "s3", s3) @property @pulumi.getter def s3(self) -> 'outputs.SigningJobDestinationS3': """ A configuration block describing the S3 Destination object: See S3 Destination below for details. """ return pulumi.get(self, "s3") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class SigningJobDestinationS3(dict): def __init__(__self__, *, bucket: str, prefix: Optional[str] = None): """ :param str bucket: Name of the S3 bucket. :param str prefix: An Amazon S3 object key prefix that you can use to limit signed objects keys to begin with the specified prefix. """ pulumi.set(__self__, "bucket", bucket) if prefix is not None: pulumi.set(__self__, "prefix", prefix) @property @pulumi.getter def bucket(self) -> str: """ Name of the S3 bucket. """ return pulumi.get(self, "bucket") @property @pulumi.getter def prefix(self) -> Optional[str]: """ An Amazon S3 object key prefix that you can use to limit signed objects keys to begin with the specified prefix. """ return pulumi.get(self, "prefix") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class SigningJobRevocationRecord(dict): def __init__(__self__, *, reason: Optional[str] = None, revoked_at: Optional[str] = None, revoked_by: Optional[str] = None): if reason is not None: pulumi.set(__self__, "reason", reason) if revoked_at is not None: pulumi.set(__self__, "revoked_at", revoked_at) if revoked_by is not None: pulumi.set(__self__, "revoked_by", revoked_by) @property @pulumi.getter def reason(self) -> Optional[str]: return pulumi.get(self, "reason") @property @pulumi.getter(name="revokedAt") def revoked_at(self) -> Optional[str]: return pulumi.get(self, "revoked_at") @property @pulumi.getter(name="revokedBy") def revoked_by(self) -> Optional[str]: return pulumi.get(self, "revoked_by") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class SigningJobSignedObject(dict): def __init__(__self__, *, s3s: Optional[Sequence['outputs.SigningJobSignedObjectS3']] = None): """ :param Sequence['SigningJobSignedObjectS3Args'] s3s: A configuration block describing the S3 Destination object: See S3 Destination below for details. """ if s3s is not None: pulumi.set(__self__, "s3s", s3s) @property @pulumi.getter def s3s(self) -> Optional[Sequence['outputs.SigningJobSignedObjectS3']]: """ A configuration block describing the S3 Destination object: See S3 Destination below for details. """ return pulumi.get(self, "s3s") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class SigningJobSignedObjectS3(dict): def __init__(__self__, *, bucket: Optional[str] = None, key: Optional[str] = None): """ :param str bucket: Name of the S3 bucket. :param str key: Key name of the bucket object that contains your unsigned code. """ if bucket is not None: pulumi.set(__self__, "bucket", bucket) if key is not None: pulumi.set(__self__, "key", key) @property @pulumi.getter def bucket(self) -> Optional[str]: """ Name of the S3 bucket. """ return pulumi.get(self, "bucket") @property @pulumi.getter def key(self) -> Optional[str]: """ Key name of the bucket object that contains your unsigned code. """ return pulumi.get(self, "key") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class SigningJobSource(dict): def __init__(__self__, *, s3: 'outputs.SigningJobSourceS3'): """ :param 'SigningJobSourceS3Args' s3: A configuration block describing the S3 Destination object: See S3 Destination below for details. """ pulumi.set(__self__, "s3", s3) @property @pulumi.getter def s3(self) -> 'outputs.SigningJobSourceS3': """ A configuration block describing the S3 Destination object: See S3 Destination below for details. """ return pulumi.get(self, "s3") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class SigningJobSourceS3(dict): def __init__(__self__, *, bucket: str, key: str, version: str): """ :param str bucket: Name of the S3 bucket. :param str key: Key name of the bucket object that contains your unsigned code. :param str version: Version of your source image in your version enabled S3 bucket. """ pulumi.set(__self__, "bucket", bucket) pulumi.set(__self__, "key", key) pulumi.set(__self__, "version", version) @property @pulumi.getter def bucket(self) -> str: """ Name of the S3 bucket. """ return pulumi.get(self, "bucket") @property @pulumi.getter def key(self) -> str: """ Key name of the bucket object that contains your unsigned code. """ return pulumi.get(self, "key") @property @pulumi.getter def version(self) -> str: """ Version of your source image in your version enabled S3 bucket. """ return pulumi.get(self, "version") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class SigningProfileRevocationRecord(dict): def __init__(__self__, *, revocation_effective_from: Optional[str] = None, revoked_at: Optional[str] = None, revoked_by: Optional[str] = None): if revocation_effective_from is not None: pulumi.set(__self__, "revocation_effective_from", revocation_effective_from) if revoked_at is not None: pulumi.set(__self__, "revoked_at", revoked_at) if revoked_by is not None: pulumi.set(__self__, "revoked_by", revoked_by) @property @pulumi.getter(name="revocationEffectiveFrom") def revocation_effective_from(self) -> Optional[str]: return pulumi.get(self, "revocation_effective_from") @property @pulumi.getter(name="revokedAt") def revoked_at(self) -> Optional[str]: return pulumi.get(self, "revoked_at") @property @pulumi.getter(name="revokedBy") def revoked_by(self) -> Optional[str]: return pulumi.get(self, "revoked_by") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class SigningProfileSignatureValidityPeriod(dict): def __init__(__self__, *, type: str, value: int): pulumi.set(__self__, "type", type) pulumi.set(__self__, "value", value) @property @pulumi.getter def type(self) -> str: return pulumi.get(self, "type") @property @pulumi.getter def value(self) -> int: return pulumi.get(self, "value") def _translate_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop @pulumi.output_type class GetSigningJobRevocationRecordResult(dict): def __init__(__self__, *, reason: str, revoked_at: str, revoked_by: str): pulumi.set(__self__, "reason", reason) pulumi.set(__self__, "revoked_at", revoked_at) pulumi.set(__self__, "revoked_by", revoked_by) @property @pulumi.getter def reason(self) -> str: return pulumi.get(self, "reason") @property @pulumi.getter(name="revokedAt") def revoked_at(self) -> str: return pulumi.get(self, "revoked_at") @property @pulumi.getter(name="revokedBy") def revoked_by(self) -> str: return pulumi.get(self, "revoked_by") @pulumi.output_type class GetSigningJobSignedObjectResult(dict): def __init__(__self__, *, s3s: Sequence['outputs.GetSigningJobSignedObjectS3Result']): pulumi.set(__self__, "s3s", s3s) @property @pulumi.getter def s3s(self) -> Sequence['outputs.GetSigningJobSignedObjectS3Result']: return pulumi.get(self, "s3s") @pulumi.output_type class GetSigningJobSignedObjectS3Result(dict): def __init__(__self__, *, bucket: str, key: str): pulumi.set(__self__, "bucket", bucket) pulumi.set(__self__, "key", key) @property @pulumi.getter def bucket(self) -> str: return pulumi.get(self, "bucket") @property @pulumi.getter def key(self) -> str: return pulumi.get(self, "key") @pulumi.output_type class GetSigningJobSourceResult(dict): def __init__(__self__, *, s3s: Sequence['outputs.GetSigningJobSourceS3Result']): pulumi.set(__self__, "s3s", s3s) @property @pulumi.getter def s3s(self) -> Sequence['outputs.GetSigningJobSourceS3Result']: return pulumi.get(self, "s3s") @pulumi.output_type class GetSigningJobSourceS3Result(dict): def __init__(__self__, *, bucket: str, key: str, version: str): pulumi.set(__self__, "bucket", bucket) pulumi.set(__self__, "key", key) pulumi.set(__self__, "version", version) @property @pulumi.getter def bucket(self) -> str: return pulumi.get(self, "bucket") @property @pulumi.getter def key(self) -> str: return pulumi.get(self, "key") @property @pulumi.getter def version(self) -> str: return pulumi.get(self, "version") @pulumi.output_type class GetSigningProfileRevocationRecordResult(dict): def __init__(__self__, *, revocation_effective_from: str, revoked_at: str, revoked_by: str): pulumi.set(__self__, "revocation_effective_from", revocation_effective_from) pulumi.set(__self__, "revoked_at", revoked_at) pulumi.set(__self__, "revoked_by", revoked_by) @property @pulumi.getter(name="revocationEffectiveFrom") def revocation_effective_from(self) -> str: return pulumi.get(self, "revocation_effective_from") @property @pulumi.getter(name="revokedAt") def revoked_at(self) -> str: return pulumi.get(self, "revoked_at") @property @pulumi.getter(name="revokedBy") def revoked_by(self) -> str: return pulumi.get(self, "revoked_by") @pulumi.output_type class GetSigningProfileSignatureValidityPeriodResult(dict): def __init__(__self__, *, type: str, value: int): pulumi.set(__self__, "type", type) pulumi.set(__self__, "value", value) @property @pulumi.getter def type(self) -> str: return pulumi.get(self, "type") @property @pulumi.getter def value(self) -> int: return pulumi.get(self, "value") ``` #### File: pulumi_aws/workspaces/get_workspace.py ```python import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities, _tables from . import outputs __all__ = [ 'GetWorkspaceResult', 'AwaitableGetWorkspaceResult', 'get_workspace', ] @pulumi.output_type class GetWorkspaceResult: """ A collection of values returned by getWorkspace. """ def __init__(__self__, bundle_id=None, computer_name=None, directory_id=None, id=None, ip_address=None, root_volume_encryption_enabled=None, state=None, tags=None, user_name=None, user_volume_encryption_enabled=None, volume_encryption_key=None, workspace_id=None, workspace_properties=None): if bundle_id and not isinstance(bundle_id, str): raise TypeError("Expected argument 'bundle_id' to be a str") pulumi.set(__self__, "bundle_id", bundle_id) if computer_name and not isinstance(computer_name, str): raise TypeError("Expected argument 'computer_name' to be a str") pulumi.set(__self__, "computer_name", computer_name) if directory_id and not isinstance(directory_id, str): raise TypeError("Expected argument 'directory_id' to be a str") pulumi.set(__self__, "directory_id", directory_id) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if ip_address and not isinstance(ip_address, str): raise TypeError("Expected argument 'ip_address' to be a str") pulumi.set(__self__, "ip_address", ip_address) if root_volume_encryption_enabled and not isinstance(root_volume_encryption_enabled, bool): raise TypeError("Expected argument 'root_volume_encryption_enabled' to be a bool") pulumi.set(__self__, "root_volume_encryption_enabled", root_volume_encryption_enabled) if state and not isinstance(state, str): raise TypeError("Expected argument 'state' to be a str") pulumi.set(__self__, "state", state) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if user_name and not isinstance(user_name, str): raise TypeError("Expected argument 'user_name' to be a str") pulumi.set(__self__, "user_name", user_name) if user_volume_encryption_enabled and not isinstance(user_volume_encryption_enabled, bool): raise TypeError("Expected argument 'user_volume_encryption_enabled' to be a bool") pulumi.set(__self__, "user_volume_encryption_enabled", user_volume_encryption_enabled) if volume_encryption_key and not isinstance(volume_encryption_key, str): raise TypeError("Expected argument 'volume_encryption_key' to be a str") pulumi.set(__self__, "volume_encryption_key", volume_encryption_key) if workspace_id and not isinstance(workspace_id, str): raise TypeError("Expected argument 'workspace_id' to be a str") pulumi.set(__self__, "workspace_id", workspace_id) if workspace_properties and not isinstance(workspace_properties, list): raise TypeError("Expected argument 'workspace_properties' to be a list") pulumi.set(__self__, "workspace_properties", workspace_properties) @property @pulumi.getter(name="bundleId") def bundle_id(self) -> str: return pulumi.get(self, "bundle_id") @property @pulumi.getter(name="computerName") def computer_name(self) -> str: """ The name of the WorkSpace, as seen by the operating system. """ return pulumi.get(self, "computer_name") @property @pulumi.getter(name="directoryId") def directory_id(self) -> str: return pulumi.get(self, "directory_id") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter(name="ipAddress") def ip_address(self) -> str: """ The IP address of the WorkSpace. """ return pulumi.get(self, "ip_address") @property @pulumi.getter(name="rootVolumeEncryptionEnabled") def root_volume_encryption_enabled(self) -> bool: return pulumi.get(self, "root_volume_encryption_enabled") @property @pulumi.getter def state(self) -> str: """ The operational state of the WorkSpace. """ return pulumi.get(self, "state") @property @pulumi.getter def tags(self) -> Mapping[str, str]: return pulumi.get(self, "tags") @property @pulumi.getter(name="userName") def user_name(self) -> str: return pulumi.get(self, "user_name") @property @pulumi.getter(name="userVolumeEncryptionEnabled") def user_volume_encryption_enabled(self) -> bool: return pulumi.get(self, "user_volume_encryption_enabled") @property @pulumi.getter(name="volumeEncryptionKey") def volume_encryption_key(self) -> str: return pulumi.get(self, "volume_encryption_key") @property @pulumi.getter(name="workspaceId") def workspace_id(self) -> str: return pulumi.get(self, "workspace_id") @property @pulumi.getter(name="workspaceProperties") def workspace_properties(self) -> Sequence['outputs.GetWorkspaceWorkspacePropertyResult']: return pulumi.get(self, "workspace_properties") class AwaitableGetWorkspaceResult(GetWorkspaceResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetWorkspaceResult( bundle_id=self.bundle_id, computer_name=self.computer_name, directory_id=self.directory_id, id=self.id, ip_address=self.ip_address, root_volume_encryption_enabled=self.root_volume_encryption_enabled, state=self.state, tags=self.tags, user_name=self.user_name, user_volume_encryption_enabled=self.user_volume_encryption_enabled, volume_encryption_key=self.volume_encryption_key, workspace_id=self.workspace_id, workspace_properties=self.workspace_properties) def get_workspace(directory_id: Optional[str] = None, tags: Optional[Mapping[str, str]] = None, user_name: Optional[str] = None, workspace_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetWorkspaceResult: """ Use this data source to get information about a workspace in [AWS Workspaces](https://docs.aws.amazon.com/workspaces/latest/adminguide/amazon-workspaces.html) Service. ## Example Usage ### Filter By Workspace ID ```python import pulumi import pulumi_aws as aws example = aws.workspaces.get_workspace(workspace_id="ws-cj5xcxsz5") ``` ### Filter By Directory ID & User Name ```python import pulumi import pulumi_aws as aws example = aws.workspaces.get_workspace(directory_id="d-9967252f57", user_name="Example") ``` :param str directory_id: The ID of the directory for the WorkSpace. You have to specify `user_name` along with `directory_id`. You cannot combine this parameter with `workspace_id`. :param Mapping[str, str] tags: The tags for the WorkSpace. :param str user_name: The user name of the user for the WorkSpace. This user name must exist in the directory for the WorkSpace. You cannot combine this parameter with `workspace_id`. :param str workspace_id: The ID of the WorkSpace. You cannot combine this parameter with `directory_id`. """ __args__ = dict() __args__['directoryId'] = directory_id __args__['tags'] = tags __args__['userName'] = user_name __args__['workspaceId'] = workspace_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:workspaces/getWorkspace:getWorkspace', __args__, opts=opts, typ=GetWorkspaceResult).value return AwaitableGetWorkspaceResult( bundle_id=__ret__.bundle_id, computer_name=__ret__.computer_name, directory_id=__ret__.directory_id, id=__ret__.id, ip_address=__ret__.ip_address, root_volume_encryption_enabled=__ret__.root_volume_encryption_enabled, state=__ret__.state, tags=__ret__.tags, user_name=__ret__.user_name, user_volume_encryption_enabled=__ret__.user_volume_encryption_enabled, volume_encryption_key=__ret__.volume_encryption_key, workspace_id=__ret__.workspace_id, workspace_properties=__ret__.workspace_properties) ```
{ "source": "jen6/consoleme", "score": 2 }
#### File: cdk/consoleme_ecs_service/consoleme_spoke_accounts_stack.py ```python from aws_cdk import aws_iam as iam from aws_cdk import core as cdk from constants import MAIN_ACCOUNT_ID, SPOKE_BASE_NAME class ConsolemeSpokeAccountsStack(cdk.Stack): """ Spoke accounts stack for running ConsoleMe on ECS Granting the necessary permissions for ConsoleMe main account role """ def __init__(self, scope: cdk.Construct, id: str, **kwargs) -> None: super().__init__(scope, id, **kwargs) trusted_role_arn = "arn:aws:iam::" + MAIN_ACCOUNT_ID + ":role/ConsoleMeTaskRole" spoke_role = iam.Role( self, f"{SPOKE_BASE_NAME}TrustRole", role_name="ConsoleMeTrustRole", assumed_by=iam.ArnPrincipal(arn=trusted_role_arn), ) spoke_role.add_to_policy( iam.PolicyStatement( effect=iam.Effect.ALLOW, actions=[ "autoscaling:Describe*", "cloudwatch:Get*", "cloudwatch:List*", "config:BatchGet*", "config:List*", "config:Select*", "ec2:describeregions", "ec2:DescribeSubnets", "ec2:describevpcendpoints", "ec2:DescribeVpcs", "iam:*", "s3:GetBucketPolicy", "s3:GetBucketTagging", "s3:ListAllMyBuckets", "s3:ListBucket", "s3:PutBucketPolicy", "s3:PutBucketTagging", "sns:GetTopicAttributes", "sns:ListTagsForResource", "sns:ListTopics", "sns:SetTopicAttributes", "sns:TagResource", "sns:UnTagResource", "sqs:GetQueueAttributes", "sqs:GetQueueUrl", "sqs:ListQueues", "sqs:ListQueueTags", "sqs:SetQueueAttributes", "sqs:TagQueue", "sqs:UntagQueue", ], resources=["*"], ) ) ```
{ "source": "Jenaer/FeatDepth", "score": 2 }
#### File: core/evaluation/eval_hooks.py ```python import os import os.path as osp import cv2 import matplotlib.pyplot as plt import mmcv import torch import torch.distributed as dist from mmcv.runner import Hook from mmcv.parallel import scatter, collate from torch.utils.data import Dataset from .pixel_error import * MIN_DEPTH = 1e-3 MAX_DEPTH = 80 def change_input_variable(data): for k, v in data.items(): data[k] = torch.as_tensor(v).float() return data def unsqueeze_input_variable(data): for k, v in data.items(): data[k] = torch.unsqueeze(v, dim=0) return data class NonDistEvalHook(Hook): def __init__(self, dataset, cfg): assert isinstance(dataset, Dataset) self.dataset = dataset self.interval = cfg.get('interval', 1) self.out_path = cfg.get('work_dir', './') self.cfg = cfg def after_train_epoch(self, runner): print('evaluation..............................................') abs_rel = AverageMeter() sq_rel = AverageMeter() rmse = AverageMeter() rmse_log = AverageMeter() a1 = AverageMeter() a2 = AverageMeter() a3 = AverageMeter() if not self.every_n_epochs(runner, self.interval): return runner.model.eval() for idx in range(self.dataset.__len__()): data = self.dataset[idx] data = change_input_variable(data) data = unsqueeze_input_variable(data) with torch.no_grad(): result = runner.model(data) disp = result[("disp", 0, 0)] pred_disp, _ = disp_to_depth(disp) pred_disp = pred_disp.cpu()[0, 0].numpy() gt_depth = data['gt_depth'].cpu()[0].numpy() gt_height, gt_width = gt_depth.shape[:2] pred_disp = cv2.resize(pred_disp, (gt_width, gt_height)) pred_depth = 1 / pred_disp mask = np.logical_and(gt_depth > MIN_DEPTH, gt_depth < MAX_DEPTH) crop = np.array([0.40810811 * gt_height, 0.99189189 * gt_height, 0.03594771 * gt_width, 0.96405229 * gt_width]).astype(np.int32) crop_mask = np.zeros(mask.shape) crop_mask[crop[0]:crop[1], crop[2]:crop[3]] = 1 mask = np.logical_and(mask, crop_mask) pred_depth = pred_depth[mask] gt_depth = gt_depth[mask] ratio = np.median(gt_depth) / np.median(pred_depth) pred_depth *= ratio pred_depth[pred_depth < MIN_DEPTH] = MIN_DEPTH pred_depth[pred_depth > MAX_DEPTH] = MAX_DEPTH abs_rel_, sq_rel_, rmse_, rmse_log_, a1_, a2_, a3_ = compute_errors(gt_depth, pred_depth) abs_rel.update(abs_rel_) sq_rel.update(sq_rel_) rmse.update(rmse_) rmse_log.update(rmse_log_) a1.update(a1_) a2.update(a2_) a3.update(a3_) print('a1_ is ', a1_) print('a1 is ', a1.avg) class DistEvalHook(Hook): def __init__(self, dataset, interval=1, cfg=None): assert isinstance(dataset, Dataset) self.dataset = dataset self.interval = interval self.cfg = cfg def after_train_epoch(self, runner): print('evaluation..............................................') if not self.every_n_epochs(runner, self.interval): return runner.model.eval() results = [None for _ in range(len(self.dataset))] if runner.rank == 0: prog_bar = mmcv.ProgressBar(len(self.dataset)) t = 0 for idx in range(runner.rank, len(self.dataset), runner.world_size): data = self.dataset[idx] data = change_input_variable(data) data_gpu = scatter(collate([data], samples_per_gpu=1), [torch.cuda.current_device()])[0] # compute output with torch.no_grad(): t1 = cv2.getTickCount() result = runner.model(data_gpu) t2 = cv2.getTickCount() t += cv2.getTickFrequency() / (t2-t1) disp = result[("disp", 0, 0)] pred_disp, _ = disp_to_depth(disp) pred_disp = pred_disp.cpu()[0, 0].numpy() gt_depth = data['gt_depth'].cpu().numpy() gt_height, gt_width = gt_depth.shape[:2] pred_disp = cv2.resize(pred_disp, (gt_width, gt_height)) pred_depth = 1 / pred_disp mask = np.logical_and(gt_depth > MIN_DEPTH, gt_depth < MAX_DEPTH) crop = np.array([0.40810811 * gt_height, 0.99189189 * gt_height, 0.03594771 * gt_width, 0.96405229 * gt_width]).astype(np.int32) crop_mask = np.zeros(mask.shape) crop_mask[crop[0]:crop[1], crop[2]:crop[3]] = 1 mask = np.logical_and(mask, crop_mask) pred_depth = pred_depth[mask] gt_depth = gt_depth[mask] ratio = np.median(gt_depth) / np.median(pred_depth) if self.cfg.data['stereo_scale']: pred_depth *= 36 else: pred_depth *= ratio pred_depth[pred_depth < MIN_DEPTH] = MIN_DEPTH pred_depth[pred_depth > MAX_DEPTH] = MAX_DEPTH abs_rel_, sq_rel_, rmse_, rmse_log_, a1_, a2_, a3_ = compute_errors(gt_depth, pred_depth) # if runner.rank == 0: # if idx % 5 == 0: # img_path = os.path.join(self.cfg.work_dir, 'visual_{:0>4d}.png'.format(idx)) # vmax = np.percentile(pred_disp, 95) # plt.imsave(img_path, pred_disp, cmap='magma', vmax=vmax) result = {} result['abs_rel'] = abs_rel_ result['sq_rel'] = sq_rel_ result['rmse'] = rmse_ result['rmse_log'] = rmse_log_ result['a1'] = a1_ result['a2'] = a2_ result['a3'] = a3_ result['scale'] = ratio results[idx] = result batch_size = runner.world_size if runner.rank == 0: for _ in range(batch_size): prog_bar.update() if runner.rank == 0: print('\n') print('FPS:', t/len(self.dataset)) print('\n') dist.barrier() for i in range(1, runner.world_size): tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(i)) tmp_results = mmcv.load(tmp_file) for idx in range(i, len(results), runner.world_size): results[idx] = tmp_results[idx] os.remove(tmp_file) self.evaluate(runner, results) else: tmp_file = osp.join(runner.work_dir, 'temp_{}.pkl'.format(runner.rank)) mmcv.dump(results, tmp_file) dist.barrier() dist.barrier() def evaluate(self, runner, results): raise NotImplementedError class DistEvalMonoHook(DistEvalHook): def evaluate(self, runner, results): if mmcv.is_str(results): assert results.endswith('.pkl') results = mmcv.load(results) elif not isinstance(results, list): raise TypeError('results must be a list of numpy arrays or a filename, not {}'.format(type(results))) abs_rel = AverageMeter() sq_rel = AverageMeter() rmse = AverageMeter() rmse_log = AverageMeter() a1 = AverageMeter() a2 = AverageMeter() a3 = AverageMeter() scale = AverageMeter() print('results len is ', results.__len__()) ratio = [] for result in results: abs_rel.update(result['abs_rel']) sq_rel.update(result['sq_rel']) rmse.update(result['rmse']) rmse_log.update(result['rmse_log']) a1.update(result['a1']) a2.update(result['a2']) a3.update(result['a3']) scale.update(result['scale']) ratio.append(result['scale']) runner.log_buffer.output['abs_rel'] = abs_rel.avg runner.log_buffer.output['sq_rel'] = sq_rel.avg runner.log_buffer.output['rmse'] = rmse.avg runner.log_buffer.output['rmse_log'] = rmse_log.avg runner.log_buffer.output['a1'] = a1.avg runner.log_buffer.output['a2'] = a2.avg runner.log_buffer.output['a3'] = a3.avg runner.log_buffer.output['scale mean'] = scale.avg runner.log_buffer.output['scale std'] = np.std(ratio) runner.log_buffer.ready = True ``` #### File: model/mono_autoencoder/layers.py ```python from __future__ import absolute_import, division, print_function import torch import torch.nn as nn import torch.nn.functional as F class SSIM(nn.Module): def __init__(self): super(SSIM, self).__init__() self.mu_x_pool = nn.AvgPool2d(3, 1) self.mu_y_pool = nn.AvgPool2d(3, 1) self.sig_x_pool = nn.AvgPool2d(3, 1) self.sig_y_pool = nn.AvgPool2d(3, 1) self.sig_xy_pool = nn.AvgPool2d(3, 1) self.refl = nn.ReflectionPad2d(1) self.C1 = 0.01 ** 2 self.C2 = 0.03 ** 2 def forward(self, x, y): x = self.refl(x) y = self.refl(y) mu_x = self.mu_x_pool(x) mu_y = self.mu_y_pool(y) sigma_x = self.sig_x_pool(x ** 2) - mu_x ** 2 sigma_y = self.sig_y_pool(y ** 2) - mu_y ** 2 sigma_xy = self.sig_xy_pool(x * y) - mu_x * mu_y SSIM_n = (2 * mu_x * mu_y + self.C1) * (2 * sigma_xy + self.C2) SSIM_d = (mu_x ** 2 + mu_y ** 2 + self.C1) * (sigma_x + sigma_y + self.C2) return torch.clamp((1 - SSIM_n / SSIM_d) / 2, 0, 1) def upsample(x): return F.interpolate(x, scale_factor=2, mode="nearest") class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels): super(ConvBlock, self).__init__() self.conv = Conv3x3(in_channels, out_channels) self.nonlin = nn.ELU(inplace=True) def forward(self, x): out = self.conv(x) out = self.nonlin(out) return out class Conv1x1(nn.Module): def __init__(self, in_channels, out_channels, bias=False): super(Conv1x1, self).__init__() self.conv = nn.Conv2d(int(in_channels), int(out_channels), kernel_size=1, stride=1, bias=bias) def forward(self, x): out = self.conv(x) return out class Conv3x3(nn.Module): def __init__(self, in_channels, out_channels, use_refl=True): super(Conv3x3, self).__init__() if use_refl: self.pad = nn.ReflectionPad2d(1) else: self.pad = nn.ZeroPad2d(1) self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3) def forward(self, x): out = self.pad(x) out = self.conv(out) return out class Conv5x5(nn.Module): def __init__(self, in_channels, out_channels, use_refl=True): super(Conv5x5, self).__init__() if use_refl: self.pad = nn.ReflectionPad2d(2) else: self.pad = nn.ZeroPad2d(2) self.conv = nn.Conv2d(int(in_channels), int(out_channels), 5) def forward(self, x): out = self.pad(x) out = self.conv(out) return out class CRPBlock(nn.Module): def __init__(self, in_planes, out_planes, n_stages): super(CRPBlock, self).__init__() for i in range(n_stages): setattr(self, '{}_{}'.format(i + 1, 'pointwise'), Conv1x1(in_planes if (i == 0) else out_planes, out_planes, False)) self.stride = 1 self.n_stages = n_stages self.maxpool = nn.MaxPool2d(kernel_size=5, stride=1, padding=2) def forward(self, x): top = x for i in range(self.n_stages): top = self.maxpool(top) top = getattr(self, '{}_{}'.format(i + 1, 'pointwise'))(top) x = top + x return x def compute_depth_errors(gt, pred): thresh = torch.max((gt / pred), (pred / gt)) a1 = (thresh < 1.25 ).float().mean() a2 = (thresh < 1.25 ** 2).float().mean() a3 = (thresh < 1.25 ** 3).float().mean() rmse = (gt - pred) ** 2 rmse = torch.sqrt(rmse.mean()) rmse_log = (torch.log(gt) - torch.log(pred)) ** 2 rmse_log = torch.sqrt(rmse_log.mean()) abs_rel = torch.mean(torch.abs(gt - pred) / gt) sq_rel = torch.mean((gt - pred) ** 2 / gt) return abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3 ``` #### File: model/mono_fm_joint/encoder.py ```python from __future__ import absolute_import, division, print_function import numpy as np import torch import torch.nn as nn from .resnet import resnet18, resnet34, resnet50, resnet101 class Encoder(nn.Module): def __init__(self, num_layers, pretrained_path=None): super(Encoder, self).__init__() self.num_ch_enc = np.array([64, 64, 128, 256, 512]) resnets = {18: resnet18, 34: resnet34, 50: resnet50, 101: resnet101,} if num_layers not in resnets: raise ValueError("{} is not a valid number of resnet layers".format(num_layers)) self.encoder = resnets[num_layers]() if pretrained_path is not None: checkpoint = torch.load(pretrained_path) self.encoder.load_state_dict(checkpoint) if num_layers > 34: self.num_ch_enc[1:] *= 4 # for name, param in self.encoder.named_parameters(): # if 'bn' in name: # param.requires_grad = False def forward(self, input_image): self.features = [] self.features.append(self.encoder.relu(self.encoder.bn1(self.encoder.conv1(input_image)))) self.features.append(self.encoder.layer1(self.encoder.maxpool(self.features[-1]))) self.features.append(self.encoder.layer2(self.features[-1])) self.features.append(self.encoder.layer3(self.features[-1])) self.features.append(self.encoder.layer4(self.features[-1])) return self.features ```
{ "source": "Jenaf37/CMSim", "score": 3 }
#### File: Jenaf37/CMSim/sim.py ```python from cmDistribution import * from timeit import default_timer as timer class TestTimeout(Exception): pass class SimMigrate: def __init__(self,addSelect,deSelect,startDist): self.addSelect = addSelect self.deSelect = deSelect self.startDist = startDist def run(self,time):#returns when nothing to delevel startTime = timer() results=[] while (timer() - startTime < time): x=self.startDist() costs = 0 while True : if not x.delevelWithSelector(self.deSelect): break costs +=1 while not x.addCMwithSelector(self.addSelect): costs +=1 results.append(costs) return results def test(self,timeout): startTime = timer() x=self.startDist() costs = 0 while True : if timer()-startTime > timeout: raise TestTimeout("Timeout in outer loop") if not x.delevelWithSelector(self.deSelect): break costs +=1 while not x.addCMwithSelector(self.addSelect): if timer()-startTime > timeout: raise TestTimeout("timeout in inner loop") costs +=1 return [costs,x] class SimRespec: def __init__(self,addSelect,totalCM): self.addSelect = addSelect self.totalCM = totalCM def run(self,time):#returns when totalCM have been spent startTime=timer() results=[] while(timer()-startTime < time): x= cmDistribution() costs = 5 CMspent = 0 while (CMspent < self.totalCM): if x.addCMwithSelector(self.addSelect): CMspent +=1 else : costs +=1 results.append(costs) return results def test(self,timeout): startTime = timer() x= cmDistribution() costs = 5 CMspent = 0 while (CMspent < self.totalCM): if timer()-startTime > timeout: raise TestTimeout("timeout") if x.addCMwithSelector(self.addSelect): CMspent +=1 else : costs +=1 return [costs,x] class SimReMig: def __init__(self,addSelectLoose,deSelect,addSelectStrict,totalCM): self.addSelectLoose = addSelectLoose self.deSelect = deSelect self.addSelectStrict = addSelectStrict self.totalCM = totalCM def run (self,time): startTime=timer() results=[] while(timer()-startTime < time): x= cmDistribution() costs = 5 # respec without reroll CMspent=0 while (CMspent < self.totalCM): if not x.addCMwithSelector(self.addSelectLoose): raise RuntimeError('Loose selector must always choose an option') CMspent += 1 #migrate the result to the desired ouput while True : if not x.delevelWithSelector(self.deSelect): break costs +=1 while not x.addCMwithSelector(self.addSelectStrict): costs +=1 results.append(costs) return results def test(self,timeout): startTime=timer() x= cmDistribution() costs = 5 # respec without reroll CMspent=0 while (CMspent < self.totalCM): if timer()-startTime > timeout: raise TestTimeout("timeout in respec phase") if not x.addCMwithSelector(self.addSelectLoose): raise RuntimeError('Loose selector must always choose an option') CMspent += 1 #migrate the result to the desired ouput while True : if timer()-startTime > timeout: raise TestTimeout("timeout in outer loop of migrate") if not x.delevelWithSelector(self.deSelect): break costs +=1 while not x.addCMwithSelector(self.addSelectStrict): if timer()-startTime > timeout: raise TestTimeout("timeout in inner loop of migrate") costs +=1 return [costs,x] ```
{ "source": "jenapidev/DjangoREST", "score": 3 }
#### File: circles/models/invitations.py ```python from django.db import models #Utilities from cride.utils.models import CRideModel #Managers from cride.circles.managers import InvitationManager class Invitation(CRideModel): """Circle Unique invitations are created by using this model""" code = models.CharField(max_length=50, unique=True) issued_by = models.ForeignKey( 'users.User', on_delete=models.CASCADE, help_text='Circle member that is providing the invitation', related_name='issued_by' ) used_by = models.ForeignKey( 'users.User', on_delete=models.CASCADE, null=True, help_text='User that used the code to enter the circle' ) circle = models.ForeignKey('circles.Circle', on_delete=models.CASCADE) used = models.BooleanField(default=False) used_at = models.DateTimeField(blank=True, null=True) #Managers objects = InvitationManager() def __str__(self): """Return code and circle""" return '#{}: #{}'.format(self.circle.slug_name, self.code) ``` #### File: rides/permissions/rides.py ```python from rest_framework.permissions import BasePermission class IsRideOwner(BasePermission): """Verify if requesting users has owner account permissions""" def has_object_permission(self, request, view, obj): """Verify if requesting users is the creator of the object to modify""" return request.user == obj.offered_by class IsNotRideOwner(BasePermission): """Verify if requesting user is owner""" def has_object_permission(self, request, view, obj): """Verify if requesting users is the creator of the object""" return not request.user == obj.offered_by ``` #### File: cride/users/permissions.py ```python from rest_framework.permissions import BasePermission class IsAccountOwner(BasePermission): """Allow acces to objects only to owners""" def has_object_permission(self, request, view, obj): """Check object and user""" return request.user == obj ```
{ "source": "JenardKin/django-react-boilerplate", "score": 2 }
#### File: wopr/models/energy.py ```python from django.db import models class TEnergydata(models.Model): siteid = models.ForeignKey('TSites', models.DO_NOTHING, db_column='siteID') # Field name made lowercase. id = models.ForeignKey('TSiteconfig', models.DO_NOTHING, db_column='id') ts = models.DateTimeField() periodid = models.BigIntegerField(db_column='periodID', primary_key=True, db_index=True) # Field name made lowercase. nws = models.FloatField(blank=True, null=True) kw_net = models.FloatField(blank=True, null=True) kw_exp = models.FloatField(blank=True, null=True) validfrom = models.DateTimeField(db_column='validFrom') # Field name made lowercase. validto = models.DateTimeField(db_column='validTo') # Field name made lowercase. kw_min_exp = models.FloatField(db_column='kW_min_exp', blank=True, null=True) # Field name made lowercase. curtailed = models.SmallIntegerField() edited = models.SmallIntegerField(blank=True, null=True) class Meta: db_table = 't_EnergyData' unique_together = (('siteid', 'id', 'periodid'),) def __str__(self): return str(self.siteid) + ' ' + str(self.id) + ', ' + str(self.periodid) ``` #### File: wopr/models/site.py ```python from django.db import models class TSites(models.Model): siteid = models.IntegerField(db_column='SiteID', primary_key=True) # Field name made lowercase. description = models.CharField(db_column='Description', max_length=100) # Field name made lowercase. doimportflow = models.IntegerField(db_column='doImportFlow') # Field name made lowercase. dsnid = models.IntegerField(db_column='DSNID', blank=True, null=True) # Field name made lowercase. strwstagname = models.CharField(db_column='strWSTagName', max_length=100, blank=True, null=True) # Field name made lowercase. strkwtagname = models.CharField(db_column='strkWTagName', max_length=100, blank=True, null=True) # Field name made lowercase. streventtagname = models.CharField(db_column='strEventTagName', max_length=100, blank=True, null=True) # Field name made lowercase. strdsn = models.CharField(db_column='strDSN', max_length=100, blank=True, null=True) # Field name made lowercase. tz_offsetfromhistorian_h = models.IntegerField(db_column='tz_offsetFromHistorian_h') # Field name made lowercase. eventmod1000 = models.SmallIntegerField(db_column='EventMod1000') # Field name made lowercase. strstatustagname = models.CharField(db_column='strStatusTagName', max_length=100, blank=True, null=True) # Field name made lowercase. nnsite1 = models.IntegerField(db_column='nnSite1', blank=True, null=True) # Field name made lowercase. nnsite2 = models.IntegerField(db_column='nnSite2', blank=True, null=True) # Field name made lowercase. albertasmp = models.SmallIntegerField(db_column='AlbertaSMP', blank=True, null=True) # Field name made lowercase. greencreditstart = models.DateTimeField(db_column='GreenCreditStart', blank=True, null=True) # Field name made lowercase. greencreditend = models.DateTimeField(db_column='GreenCreditEnd', blank=True, null=True) # Field name made lowercase. greencredit_cd = models.FloatField(db_column='GreenCredit_cd', blank=True, null=True) # Field name made lowercase. ppaescalation = models.CharField(db_column='PPAEscalation', max_length=200, blank=True, null=True) # Field name made lowercase. greencreditstartperiod = models.BigIntegerField(db_column='GreenCreditStartPeriod', blank=True, null=True) # Field name made lowercase. greencreditendperiod = models.BigIntegerField(db_column='GreenCreditEndPeriod', blank=True, null=True) # Field name made lowercase. power_in_mw = models.SmallIntegerField(db_column='Power_in_MW', blank=True, null=True) # Field name made lowercase. importtimeoffset_h = models.IntegerField(db_column='importTimeOffset_h', blank=True, null=True) # Field name made lowercase. capacity_mw = models.FloatField(db_column='Capacity_MW', blank=True, null=True) # Field name made lowercase. jvrate = models.FloatField(db_column='JVRate', blank=True, null=True) # Field name made lowercase. financereportordering = models.IntegerField(db_column='FinanceReportOrdering', blank=True, null=True) # Field name made lowercase. class Meta: db_table = 't_sites' def getSiteDescription(self): return self.description def __str__(self): return str(self.siteid) + " - " + self.description class TSiteconfig(models.Model): siteid = models.ForeignKey('TSites', models.DO_NOTHING, db_column='siteID') # Field name made lowercase. id = models.IntegerField(db_column='ID', primary_key=True) # Field name made lowercase. turbine = models.CharField(db_column='Turbine', max_length=255) # Field name made lowercase. kksname = models.CharField(db_column='KKSName', max_length=255) # Field name made lowercase. turbtypeid = models.IntegerField(db_column='turbTypeID') # Field name made lowercase. pad = models.IntegerField(db_column='Pad', blank=True, null=True) # Field name made lowercase. gearboxfrom = models.DateTimeField(db_column='GearboxFrom', blank=True, null=True) # Field name made lowercase. gearbox_make = models.CharField(db_column='Gearbox Make', max_length=255, blank=True, null=True) # Field name made lowercase. Field renamed to remove unsuitable characters. gearbox_model = models.CharField(db_column='Gearbox Model', max_length=255, blank=True, null=True) # Field name made lowercase. Field renamed to remove unsuitable characters. generatorfrom = models.DateTimeField(db_column='GeneratorFrom', blank=True, null=True) # Field name made lowercase. generator_make = models.CharField(db_column='Generator Make', max_length=255, blank=True, null=True) # Field name made lowercase. Field renamed to remove unsuitable characters. generator_model = models.CharField(db_column='Generator Model', max_length=255, blank=True, null=True) # Field name made lowercase. Field renamed to remove unsuitable characters. nn1 = models.IntegerField(blank=True, null=True) nn2 = models.IntegerField(blank=True, null=True) includeinsitetotals = models.SmallIntegerField(db_column='IncludeInSiteTotals') # Field name made lowercase. mw = models.DecimalField(db_column='MW', max_digits=18, decimal_places=3, blank=True, null=True) # Field name made lowercase. class Meta: db_table = 't_SiteConfig' unique_together = (('siteid', 'id'),) ``` #### File: server/wopr/utils.py ```python import json from datetime import timedelta, datetime, date import pytz from django.db import connection from .models import * def isNum(data): try: int(data) return True except ValueError: return False # Function that json.dumps() uses which converts datetime object to JSON string with format "2012-03-09 01:50:00" (gets rid of T) def dateConverter(o): if isinstance(o, datetime): return o.__str__() return o # code that makes a dict from a raw sql query def dictfetchall(cursor): "Return all rows from a cursor as a dict" columns = [col[0] for col in cursor.description] return [ dict(zip(columns, row)) for row in cursor.fetchall() ] # used for quality report to make the dictionary into the format: # {editID:{ts_edit,description,Turbine,period_from,period_to,ts_editstart,ts_editend,username,comment}} def idPairDict(d): retdict = {} for each in d: subdict = {'ts_edit':each['ts_edit'],'description':each['description'],'turbine':each['Turbine'],'period_from':each['period_from'],'period_to':each['period_to'],'ts_editstart':['ts_EditStart'],'ts_editend':each['ts_EditEnd'],'username':each['username'],'comment':['comment']} retdict[each['editID']] = subdict return retdict # Return an array that contains the colors for each state def getStateColors(): return [ { 'state': 'CTH', 'description': 'Contact Turbine-Hours', 'code': 0, 'color': '#FFFFFF' }, { 'state': 'RSTH', 'description': 'Reserve Shutdown Turbine-Hours', 'code': 1, 'color': '#cedcff' }, { 'state': 'FTH', 'description': 'Forced Turbine-Hours', 'code': 2, 'color': '#ffa500' }, { 'state': 'MTH', 'description': 'Maintenance Turbine-Hours', 'code': 3, 'color': '#ffff00' }, { 'state': 'PTH', 'description': 'Planned Turbine-Hours', 'code': 4, 'color': '#3eb503' }, { 'state': 'oFTH', 'description': 'Out of Management Control Forced Turbine-Hours', 'code': 5, 'color': '#089ad9' }, { 'state': 'oMTH', 'description': 'Out of Management Control Maintenance Turbine-Hours', 'code': 6, 'color': '#05668f' }, { 'state': 'oPTH', 'description': 'Out of Management Control Planned Turbine-Hours', 'code': 7, 'color': '#808080' }, { 'state': 'RUTH', 'description': 'Resource Unavailable Turbine-Hours', 'code': 8, 'color': '#FFFFFF' }, { 'state': 'IRTH', 'description': 'Inactive Reserve Turbine-Hours', 'code': 9, 'color': '#800080' }, { 'state': 'MBTH', 'description': 'Mothballed Turbine-Hours', 'code': 10, 'color': '#800000' }, { 'state': 'RTH', 'description': 'Retired Unit Turbine-Hours', 'code': 11, 'color': '#008080' }, { 'state': 'DTH', 'description': 'Derated Turbine-Hours', 'code': 12, 'color': '#45f29f' }, { 'state': 'oDTH', 'description': 'Out of Management Control Derated Turbine-Hours', 'code': 13, 'color': '#FF69B4' }, { 'state': 'FDXTH - Env', 'description': 'Forced Delay Turbine Hours - Environment', 'code': 14, 'color': '#f59d67' }, # Skips code no. 15 here for some reason accoding to WOPRLegend { 'state': 'FDXTH - Eq', 'description': 'Forced Delay Turbine Hours - Equipment', 'code': 16, 'color': '#f59d67' }, { 'state': 'FDXTH - Lab', 'description': 'Forced Delay Turbine Hours - Labour', 'code': 17, 'color': '#f59d67' }, { 'state': 'FDXTH - Mat', 'description': 'Forced Delay Turbine Hours - Material', 'code': 18, 'color': '#f59d67' }, { 'state': 'MDXTH - Env', 'description': 'Maintenance Delay Turbine Hours - Environment', 'code': 19, 'color': '#f7d023' }, # Skips code no# 20 here according to WOPRLegend { 'state': 'MDXTH - Eq', 'description': 'Maintenance Delay Turbine Hours - Equipment', 'code': 21, 'color': '#f7d023' }, { 'state': 'MDXTH - Lab', 'description': 'Maintenance Delay Turbine Hours - Labour', 'code': 22, 'color': '#f7d023' }, { 'state': 'MDXTH - Mat', 'description': 'Maintenance Delay Turbine Hours - Material', 'code': 23, 'color': '#f7d023' }, { 'state': 'PDXTH - Env', 'description': 'Planned Delay Turbine Hours - Environment', 'code': 24, 'color': '#808000' }, # Skips code# 25 here according to WOPRLegend { 'state': 'PDXTH - Eq', 'description': 'Maintenance Delay Turbine Hours - Equipment', 'code': 26, 'color': '#808000' }, { 'state': 'PDXTH - Lab', 'description': 'Maintenance Delay Turbine Hours - Labour', 'code': 27, 'color': '#808000' }, { 'state': 'PDXTH - Mat', 'description': 'Contact Turbine-Hours', 'code': 28, 'color': '#808000' }, { 'state': 'No Data', 'description': 'No Data available from SCADA', 'code': '', 'color': '#FFFFFF' } ] # Return an array that contains the colors for each system def getSystemColors(): return [ { 'system': 'BOP', 'color': '#f47742' }, { 'system': 'Brake', 'color': '#f4b241' }, { 'system': 'CS', 'color': '#f1f441' }, { 'system': 'DT', 'color': '#92d330' }, { 'system': 'Elec', 'color': '#3ba5e2' }, { 'system': 'Ext', 'color': '#a8b6bf' }, { 'system': 'GB', 'color': '#a8b6bf' }, { 'system': 'Gen', 'color': '#d1c0d8' }, { 'system': 'Hyd', 'color': '#53196b' }, { 'system': 'Pitch', 'color': '#db9d76' }, { 'system': 'Rotor', 'color': '#7bb5c4' }, { 'system': 'Struct', 'color': '#97e5bd' }, { 'system': 'Yaw', 'color': '#d17fcd' }, { 'system': 'Wind Turbine', 'color': '#b5a97c' }, { 'system': 'CTH', 'color': '#FFFFFF' }, { 'system': 'PM', 'color': '#f1f441' }, { 'system': 'Underperformance', 'color': '#FFFFFF', 'border': '#f73333' }, { 'system': 'No Production', 'color': '#FFFFFF', 'border': '#4d4bea' }, { 'system': 'Ext - Ice (OMC)', 'color': '#7abbcc' }, { 'system': 'None', 'color': '#FFFFFF' }, ] def makeChoicesList_EditsQualityCheck(): # could have got this with the orm siteNames = TSites.objects.distinct().values_list( 'siteid', 'description' ) siteList = [] for siteid, description in siteNames: tup = ('siteid', 'description') siteList.append(tup) return siteList def makeSiteList(): # could have got this with the orm siteNames = TSites.objects.distinct().values_list( 'siteid', 'description' ) siteList = [ ( ' ', ' ' ) ] print( siteNames ) for siteid, description in siteNames: tup = (siteid, description + ', ' + str(siteid)) siteList.append(tup) return siteList def makeTurbineList(site, id_from=0, id_till=500): query_set = TSiteconfig.objects.filter(siteid=site, id__range=[id_from, id_till]).order_by('id').values('id', 'kksname') if(len(query_set) > 0): return [(q['id'], 'Turbine ' + str(q['id']) + ', ' + q['kksname']) for q in query_set] else: # return return [(-1,'There are no turbines available for this site.')] # datetime objects returned as list. # Note: inputs must be date objects. def getDateDeltaList(dateStart, dateEnd): delta = dateEnd - dateStart #print('getDateDeltaList #days:',delta.days) dateObjectDeltaList = [] for i in range(delta.days +1): dateObjectDeltaList.append(dateStart + timedelta(i)) return dateObjectDeltaList # gets the occurrence data for the table in quality checks report def getOccurrenceTableData(site_id, start_time, end_time): # first get the date list. first convert datetimes to date. dateObjectList = getDateDeltaList(start_time.date(), end_time.date()) #print('getOccurrenceTableData dateObjectList:',dateObjectList) data = [] # then use those dates to get data from the database to sum up the values. for day in dateObjectList: numberOfCthEdits_column = occurrenceTable_getEditedCTH_columnValue(site_id, day) noData_column = occurrenceTable_getNoData_columnValue(site_id, day) stateChangesMidEvent = occurrenceTable_getStateChangesMidEvent(site_id, day) systemChangesMidEvent = occurrenceTable_getSystemChangesMidEvent(site_id, day) #Note: site red and blue boxes and site boxes will just be 'not input' for now till i know what they are and how to calculate them. BlueRedBoxesNotMarked = 'not input' SiteBoxesNotMarked = 'not input' listToAppend = [day, numberOfCthEdits_column, noData_column, stateChangesMidEvent, systemChangesMidEvent, BlueRedBoxesNotMarked, SiteBoxesNotMarked] data.append(listToAppend) #print("PRINTING THIS DATA", data) return data # this method checks if a state change was made while the event did not change. # A potential problem with this method is if an event starts at ~24:50 on the previous day and state changes at ~00:00 the next day, it may not be detected. def occurrenceTable_getStateChangesMidEvent(site_id, day): start_date = day end_date = day + timedelta(days=1) sum = 0 # get the events, stateid, from the t_eventdata table events = TEventdata.objects.values('eventid','stateid').filter(siteid__exact=str(site_id)).filter(ts_start__range=(start_date,end_date)).order_by('ts_start') if not events: return sum # if nothing in the querryset just return 0. else: # if the STATE changes during an event sum it currentEventID = events.values('eventid')[0]['eventid'] currentStateID = events.values('stateid')[0]['stateid'] #print(day,'FIRSTEVENTID',currentEventID, 'FIRSTSTATEID',currentStateID) for row in events: eventID = row['eventid'] stateID = row['stateid'] if eventID != currentEventID: currentEventID = eventID currentStateID = stateID elif stateID != currentStateID: sum = sum +1 currentStateID = stateID return sum # this method checks if a system change was made while the event did not change. # A potential problem with this method is if an event starts at ~24:50 on the previous day and system changes at ~00:00 the next day, it may not be detected. def occurrenceTable_getSystemChangesMidEvent(site_id, day): start_date = day end_date = day + timedelta(days=1) sum = 0 # get the events, systemid, from the t_eventdata table events = TEventdata.objects.values('eventid','systemid').filter(siteid__exact=str(site_id)).filter(ts_start__range=(start_date,end_date)).order_by('ts_start') if not events: return sum # if nothing in the querryset just return 0. else: # if the STATE changes during an event sum it currentEventID = events.values('eventid')[0]['eventid'] currentSystemID = events.values('systemid')[0]['systemid'] #print(day,'FIRSTEVENTID',currentEventID, 'FIRSTSYSTEMID',currentSystemID) for row in events: eventID = row['eventid'] systemID = row['systemid'] if eventID != currentEventID: currentEventID = eventID currentSystemID = systemID elif systemID != currentSystemID: sum = sum +1 currentSystemID = systemID return sum # this gets the integer value of the number of times that the system was set to CTH by an edit form the t_edits table def occurrenceTable_getEditedCTH_columnValue(site_id, day): start_date = day #print(site_id,day,'START_DATE',start_date) end_date = day + timedelta(days=1) #end_date = dayEnd(day) #print(site_id,day,'END_DATE',end_date) # ORM stuff events = TEdits.objects.values('comment', 'newval').filter(siteid__exact=str(site_id)).filter(ts_edit__range=(start_date,end_date)).order_by('editid') #print(site_id,day,events.values('comment', 'newval')) # get the sum of the system changes to CTH from this day. sum = 0 for row in events: #if the newval == 0 and the comment is: "Set System = CTH", then sum it up #print("THIS IS ROW NEWVAL:",row['newval']) if row['newval'] == 0: if checkSystemIsCth(row) == True: sum = sum +1 return sum # this function os for the occurrences table in the edits quality check report. # this function checks if the system comment is set to CTH: "Set System = CTH" def checkSystemIsCth(rowFromEvents): ret = False commentString = rowFromEvents['comment'] sp = commentString.split('=') if 'Set System' in sp[0] and 'CTH' in sp[1]: #print("FOUND A SYSTEM SET") ret = True return ret # this is a stub function for this for now. Need to find out what its meaning is. # might be if state code and or system code is null... def occurrenceTable_getNoData_columnValue(site_id, day): return 0 def dayStart(day): return day.replace(hour=0, minute=0, second=0) def dayEnd(day): return day.replace(hour=23, minute=59, second=59) ```
{ "source": "jenaroaaugusto/RedesClienteServidor", "score": 3 }
#### File: jenaroaaugusto/RedesClienteServidor/navegador.py ```python import requisicao as ende import re import copy # http://127.0.0.1:5000 def main(): url=input("URL do Website:") if re.search(r'[http:]+[//]+[//]', url, re.IGNORECASE): busca(url) else: print("Endereço Invalido") main() url='' def busca(url): padrao,link=url.split("//") print(padrao,"E",link) if ":"in link: linkcompleto,porta=link.split(":") print("Aqui",linkcompleto,"e",porta) else: linkcompleto=copy.copy(link) porta='80' # validacao=linkcompleto[0:4] # print(linkcompleto[0:4]) if "127."in linkcompleto[0:4]: print(linkcompleto) if '/' in linkcompleto: local=linkcompleto.index('/') host=copy.copy(linkcompleto[0:local]) path=copy.copy(linkcompleto[local:len(linkcompleto)]) else: host=copy.copy(linkcompleto) path='' print("Funciona",host,"e",path) ende.servidorconect(host,path,porta) elif "/" in linkcompleto: local=linkcompleto.index('/') host=copy.copy(linkcompleto[0:local]) if "www."not in host: host="www."+host path=copy.copy(linkcompleto[local:len(linkcompleto)]) ende.requisicaohost(host,path,porta) # print(host ,"e",path) elif "/" not in linkcompleto: path="" host=copy.copy(linkcompleto) if "www."not in host: host="www."+host ende.requisicaohost(host,path,porta) if __name__ == "__main__": while(1): main() ```
{ "source": "JenathanHoo/DoF-Hands", "score": 2 }
#### File: JenathanHoo/DoF-Hands/dof_gpu.py ```python import numpy as np import tensorflow as tf import os import json import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import scipy.misc def Bone_Transformation_Matrix(df,length,const_joint): """ df : N 1 25 length : N 1 15 const_joint : N 1 15 return : RT N 16 4 4 """ RT_all = tf.constant([1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1],shape = [1,1,4,4],dtype=tf.float32) RT_all = tf.tile(RT_all,[df.shape[0],1,1,1]) sin_df = tf.sin(df) cos_df = tf.cos(df) #N 1 77 sc_df = tf.concat([tf.constant([0],shape=[df.shape[0],df.shape[1],1],dtype=tf.float32), tf.constant([1],shape=[df.shape[0],df.shape[1],1],dtype=tf.float32), sin_df,cos_df,-sin_df, ],-1) sc_df =tf.transpose(sc_df,[2,1,0]) #77 1 N sc_t = tf.concat([tf.constant([0],shape=[df.shape[0],df.shape[1],1],dtype=tf.float32), tf.constant([1],shape=[df.shape[0],df.shape[1],1],dtype=tf.float32), const_joint,length, ],-1) sc_t = tf.transpose(sc_t,[2,1,0]) # 32 1 N for i in range(5): #coord = tf.constant([0,0,0,1],shape=[1,1,4,1]) #coord = tf.tile(coord,[df.shape[0],1,1,1]) J_1_mat_x_ind = tf.constant([[1],[0],[0],[0], [0],[2+i*5+25],[2+i*5+50],[0], [0],[2+i*5],[2+i*5+25],[0], [0],[0],[0],[1]],dtype=tf.int32) J_1_mat_y_ind = tf.constant([[2+i*5+1+25],[0],[2+i*5+1+0],[0], [0],[1],[0],[0], [2+i*5+1+50],[0],[2+i*5+1+25],[0], [0],[0],[0],[1]],dtype=tf.int32) J_1_mat_z_ind = tf.constant([[2+i*5+2+25],[2+i*5+2+50],[0],[0], [2+i*5+2],[2+i*5+2+25],[0],[0], [0],[0],[1],[0], [0],[0],[0],[1]],dtype=tf.int32) J_2_mat_x_ind = tf.constant([[1],[0],[0],[0], [0],[2+i*5+3+25],[2+i*5+3+50],[0], [0],[2+i*5+3],[2+i*5+3+25],[0], [0],[0],[0],[1]],dtype=tf.int32) J_3_mat_x_ind = tf.constant([[1],[0],[0],[0], [0],[2+i*5+4+25],[2+i*5+4+50],[0], [0],[2+i*5+4],[2+i*5+4+25],[0], [0],[0],[0],[1]],dtype=tf.int32) R_1_mat_x = tf.transpose(tf.gather_nd(sc_df,J_1_mat_x_ind),[2,1,0]) #N 1 16 R_1_mat_y = tf.transpose(tf.gather_nd(sc_df,J_1_mat_y_ind),[2,1,0]) R_1_mat_z = tf.transpose(tf.gather_nd(sc_df,J_1_mat_z_ind),[2,1,0]) R_2_mat = tf.transpose(tf.gather_nd(sc_df,J_2_mat_x_ind),[2,1,0]) R_3_mat = tf.transpose(tf.gather_nd(sc_df,J_3_mat_x_ind),[2,1,0]) R_1_mat_x = tf.reshape(R_1_mat_x,[-1,1,4,4]) #N 1 4 4 R_1_mat_y = tf.reshape(R_1_mat_y,[-1,1,4,4]) R_1_mat_z = tf.reshape(R_1_mat_z,[-1,1,4,4]) R_2_mat = tf.reshape(R_2_mat,[-1,1,4,4]) R_3_mat = tf.reshape(R_3_mat,[-1,1,4,4]) R_1_mat = tf.matmul(R_1_mat_z,tf.matmul(R_1_mat_y,R_1_mat_x)) #mask = tf.constant([1,-1,1,1, -1,1,-1,1, 1,-1,1,1, 1,1,1,1],shape=[1,1,4,4],dtype=tf.float32) #mask = tf.tile(mask, [df.shape[0],1,1,1]) #N 1 4 4 #transpose #R_1_mat = tf.multiply(R_1_mat,mask) # N 1 4 4 #R_2_mat = tf.multiply(R_2_mat,mask) #R_3_mat = tf.multiply(R_3_mat,mask) # R_1_mat = tf.transpose(R_1_mat,[0,1,3,2]) # R_2_mat = tf.transpose(R_2_mat,[0,1,3,2]) # R_3_mat = tf.transpose(R_3_mat,[0,1,3,2]) J_0_mat_ind = tf.constant([[1],[0],[0],[2+i*3], [0],[1],[0],[2+i*3+1], [0],[0],[1],[2+i*3+2], [0],[0],[0],[1]],dtype=tf.int32) J_1_mat_ind = tf.constant([[1],[0],[0],[0], [0],[1],[0],[2+i*3+15], [0],[0],[1],[0], [0],[0],[0],[1]],dtype=tf.int32) J_2_mat_ind = tf.constant([[1],[0],[0],[0], [0],[1],[0],[2+i*3+16], [0],[0],[1],[0], [0],[0],[0],[1]],dtype=tf.int32) J_3_mat_ind = tf.constant([[1],[0],[0],[0], [0],[1],[0],[2+i*3+17], [0],[0],[1],[0], [0],[0],[0],[1]],dtype=tf.int32) T_0_mat = tf.transpose(tf.gather_nd(sc_t,J_0_mat_ind),[2,1,0]) # N 1 16 T_1_mat = tf.transpose(tf.gather_nd(sc_t,J_1_mat_ind),[2,1,0]) T_2_mat = tf.transpose(tf.gather_nd(sc_t,J_2_mat_ind),[2,1,0]) T_3_mat = tf.transpose(tf.gather_nd(sc_t,J_3_mat_ind),[2,1,0]) T_0_mat = tf.reshape(T_0_mat,[-1,1,4,4]) T_1_mat = tf.reshape(T_1_mat,[-1,1,4,4]) T_2_mat = tf.reshape(T_2_mat,[-1,1,4,4]) T_3_mat = tf.reshape(T_3_mat,[-1,1,4,4]) #RT_all = tf.concat([RT_all,T_0_mat],1) #push back the first joint of finger RT_1 = tf.matmul(T_0_mat,R_1_mat) RT_all = tf.concat([RT_all,RT_1],1) RT_2 = tf.matmul(T_0_mat,tf.matmul(R_1_mat,tf.matmul(T_1_mat,R_2_mat))) RT_all = tf.concat([RT_all,RT_2],1) RT_3 = tf.matmul(T_0_mat,tf.matmul(R_1_mat,tf.matmul(T_1_mat,tf.matmul(R_2_mat,tf.matmul(T_2_mat,R_3_mat))))) RT_all = tf.concat([RT_all,RT_3],1) #transfer to blender format (x,-z,y) # mask_blender = tf.constant([1,0,0,0, 0,0,-1,0, 0,1,0,0, 0,0,0,1],shape=[1,1,4,4],dtype=tf.float32) # mask_blender = tf.tile(mask_blender,[df.shape[0],16,1,1]) #RT_all = tf.matmul(mask_blender,RT_all) return RT_all def load_weight(): weights_dict = json.load(open("skin_weight.json")) weights =np.zeros((4406,16)) for vId in weights_dict.keys(): for infID in weights_dict[vId].keys(): i=int(vId) j=int(infID) weights[i][j]=weights_dict[vId][infID] return weights if __name__ == '__main__': W_input = tf.placeholder(tf.float32,shape=(1,4406,16)) restpose_input = tf.placeholder(tf.float32,shape=(1,4406,4)) dof_input = tf.placeholder(tf.float32,shape=(1,1,25)) R_input = tf.placeholder(tf.float32,shape=(1,3,4)) # init_dof = tf.constant([-1.688597, 2.153835, -0.753169, 0.252418, 0.000000, 0.061404, -0.000000, 0.164297, 0.000000, 0.000000, 0.039628, 0.000000, 0.014808, 0.000000, 0.000000, 0.060280, 0.000000, -0.194745, 0.000000, 0.000000, 0.080853, -0.000000, -0.522267, 0.000000, 0.000000],shape=[1,1,25]) f_length = tf.constant([-2.707528, -2.002970, -2.583603, -2.784939, -2.037804, -2.252724, -3.580668, -2.254245, -2.568150, -3.141463, -2.228459, -2.254165, -2.698370, -1.875399, -1.893391],shape=[1,1,15]) # c_joint = tf.constant([2.415248, -0.771598, -0.232259, 2.848633, -5.351968, -0.052151, 0.844809, -5.531802, 0.253453, -1.070637, -5.270669, 0.270341, -2.574195, -4.721943, 0.158358],shape=[1,1,15]) K = tf.constant([280.000000, 0.000000, 128.000000, 0.000000, 280.000000, 128.000000, 0.000000, 0.000000, 1.000000 ],shape=[1,3,3]) T_restpose = Bone_Transformation_Matrix(init_dof,f_length,c_joint) T_ = Bone_Transformation_Matrix(dof_input,f_length,c_joint) T = tf.matmul(T_,tf.matrix_inverse(T_restpose)) # N 16 4 4 #print(T) W = tf.reshape(W_input,(W_input.shape[0],W_input.shape[1],W_input.shape[2],1,1)) W = tf.tile(W,(1,1,1,4,4)) # N 4406 16 4 4 T_all = tf.tile(tf.expand_dims(T,axis=1),(1,4406,1,1,1)) # N 4406 16 4 4 weighted_T = tf.reduce_sum(tf.multiply(W,T_all),axis=2) # N 4406 4 4 restpose = tf.expand_dims(restpose_input,axis=-1) # N 4406 4 1 curpose = tf.matmul(weighted_T,restpose) # N 4406 4 1 #mask_blender = tf.constant([1,0,0,0, 0,0,-1,0, 0,1,0,0, 0,0,0,1],shape=[1,1,4,4],dtype=tf.float32) #curpose = tf.matmul(tf.tile(mask_blender,(1,4406,1,1)),curpose) #curpose = tf.matmul(tf.tile(tf.expand_dims(R_input,axis=1),(1,4406,1,1)),curpose) # N 4406 3 1 proj_img = curpose #proj_img = tf.matmul(tf.tile(tf.expand_dims(K,axis=1),(1,4406,1,1)),curpose) # N 4406 3 1 uv pcl = [] with open('PCL.txt','r') as f: lines = f.readlines() for line in lines: pcl.append(np.asarray([line.split(" ")[1],line.split(" ")[2],line.split(" ")[3],1.0],dtype=np.float32)) pcl = np.asarray(pcl) # 4406 4 mesh_data = {} vertices = [] normals = [] faces = [] with open('000091.txt','r') as f: lines = f.readlines() for line in lines: content = line.split(" ") if content[0] == 'v': vertices.append(np.asarray([content[1],-1*float(content[3]),content[2]],dtype=np.float32)) elif content[0] == 'vn': normals.append(np.asarray([content[1],-1*float(content[3]),content[2]],dtype=np.float32)) elif content[0] =='f': faces.append(np.asarray([content[1].split("/")[0],content[2].split("/")[0],content[3].split("/")[0], content[1].split("/")[2],content[2].split("/")[2],content[3].split("/")[2]],dtype=np.int)) vertices = np.asarray(vertices) normals = np.asarray(normals) faces = np.asarray(faces) print(vertices.shape) faces -= 1 triangles = faces[:,:3] vertex_faces_norm = {} for idx in range(triangles.shape[0]): v_key = str(triangles[idx][0]) if vertex_faces_norm.has_key(v_key): prev_ = vertex_faces_norm[v_key] prev_.append(faces[idx][3]) vertex_faces_norm[v_key] = prev_ else: vertex_faces_norm[v_key] = [faces[idx][3]] v_key = str(triangles[idx][1]) if vertex_faces_norm.has_key(v_key): prev_ = vertex_faces_norm[v_key] prev_.append(faces[idx][4]) vertex_faces_norm[v_key] = prev_ else: vertex_faces_norm[v_key] =[faces[idx][4]] v_key = str(triangles[idx][2]) if vertex_faces_norm.has_key(v_key): prev_ = vertex_faces_norm[v_key] prev_.append(faces[idx][5]) vertex_faces_norm[v_key] = prev_ else: vertex_faces_norm[v_key] =[faces[idx][5]] vertex_norms = np.zeros_like(vertices) for idx in range(vertex_norms.shape[0]): vfns = vertex_faces_norm[str(idx)] norm_sum=np.array([0.,0.,0.]) for vfn in vfns: norm_sum +=normals[vfn] vertex_norms[idx] = norm_sum/len(vfns) color_ =np.asarray([[0.,0.,0.],[0.15,0.15,0.15],[0.15,0.15,0.15],[0.15,0.15,0.15],[0.3,0.3,0.3],[0.3,0.3,0.3], [0.3,0.3,0.3],[0.45,0.45,0.45],[0.45,0.45,0.45],[0.45,0.45,0.45],[0.6,0.6,0.6], [0.6,0.6,0.6],[0.6,0.6,0.6],[0.75,0.75,0.75],[0.75,0.75,0.75],[0.75,0.75,0.75]]) weights_dict = json.load(open("skin_weight.json")) weights =np.zeros((4406,16),dtype=np.float32) for vId in weights_dict.keys(): for infID in weights_dict[vId].keys(): i=int(vId) j=int(infID) weights[i][j]=weights_dict[vId][infID] weights_max = np.argmax(weights,axis=1) vertex_diffuse_colors = np.zeros((4406,3)) for idx in range(weights_max.shape[0]): vertex_diffuse_colors[idx]=color_[weights_max[idx]] mesh_data = {} mesh_data['vertices'] = vertices mesh_data['normals'] = vertex_norms mesh_data['triangles'] = triangles mesh_data['diffuse_clors'] = vertex_diffuse_colors np.save("hand_mesh/vertices_90.npy",vertices) np.save("hand_mesh/normals_90.npy",vertex_norms) np.save("hand_mesh/triangles_90.npy",triangles) np.save("hand_mesh/diffuse_clors_90.npy",vertex_diffuse_colors) np.save("hand_mesh/weights_90.npy",weights) mesh_data = np.asarray(mesh_data) np.save("restpose.npy",mesh_data) weights_dict = json.load(open("skin_weight.json")) weights =np.zeros((4406,16)) for vId in weights_dict.keys(): for infID in weights_dict[vId].keys(): i=int(vId) j=int(infID) weights[i][j]=weights_dict[vId][infID] np.savetxt("weight.txt",weights, delimiter=" ", fmt="%.9f") pcl = np.expand_dims(pcl,axis=0) weights = np.expand_dims(weights,axis=0) cur_dof = np.array([1.680591, 1.327397, 2.464877, 0.549834, 0.000000, 1.353887, -1.021418, 0.520186, 0.708544, 0.000000, 0.772618, 0.000000, 0.014808, 0.720134, 0.000000, 1.118698, 0.000000, -0.194745, 0.794283, 0.409671, 0.299145, -0.000000, -0.522267, 1.579156, 0.658056 ]) cur_dof = cur_dof.reshape((1,1,25)) R = np.array([0.420242, 0.871705, -0.252046, -2.955272, -0.434390, 0.437127, 0.787544, 1.915788, 0.796682, -0.221473, 0.562359, 19.687462]) R = R.reshape((1,3,4)) with tf.Session() as sess: pred_pcl = sess.run([proj_img],feed_dict={W_input:weights,restpose_input:pcl,dof_input:cur_dof,R_input:R}) pred_pcl = np.asarray(pred_pcl) pred_pcl = pred_pcl.reshape((-1,3)) ax = plt.gca(projection='3d') for point in pred_pcl: ax.scatter(point[0],point[1],point[2],color='green') flat_obj = open("flat.obj","r") lines = flat_obj.readlines() # v:4---4406 f = open('tmppp.obj','w') for i in range(len(lines)): if i<=2 or i>=2+4407: f.write(lines[i]) else: f.write('v %.6f %.6f %.6f\n'%(pred_pcl[i-3][0], pred_pcl[i-3][1], pred_pcl[i-3][2])) # for point in pred_pcl: # f.write('v %.6f %.6f %.6f\n'%(point[0], point[1], point[2])) f.close() #plt.show() #plt.savefig('df1.png') ```
{ "source": "Jenazads/goAlg", "score": 3 }
#### File: sort/toCode/librarysort.py ```python def library_sort(l): # Initialization d = len(l) k = [None]*(d<<1) m = d.bit_length() # floor(log2(n) + 1) for i in range(d): k[2*i+1] = l[i] # main loop a,b = 1,2 for i in range(m): # Because multiplication by 2 occurs at the beginning of the loop, # the first element will not be sorted at first pass, wich is wanted # (because a single element does not need to be sorted) a <<= 1 b <<= 1 for j in range(a,min(b,d+1)): p = 2*j-1 s = k[p] # Binary search x, y = 0, p while y-x > 1: c = (x+y)>>1 if k[c] != None: if k[c] < s: x = c else: y = c else: e,f = c-1,c+1 while k[e] == None: e -= 1 while k[f] == None: f += 1 if k[e] > s: y = e elif k[f] < s: x = f else: x, y = e, f break if y-x > 1: k[ (x+y)>>1 ] = s else: if k[x] != None: if k[x] > s: y = x # case may occur for [2,1,0] while s != None: k[y], s = s, k[y] y += 1 else: k[x] = s k[p] = None if b > d: break if i < m-1: s = p while s >= 0: if k[s] != None: # In the following line, the order is very important # because s and p may be equal in which case we want # k[s] (which is k[p]) to remain unchanged k[s], k[p] = None, k[s] p -= 2 s -= 1 return [ x for x in k if x != None ] arr = [10, 6, 8, 8, 3, 2, 7, 4,8, 8, 3, 2, 7, 4, 6, 8, 8, 3, 2, 7, 4,9, 11, 10, 9, 6, 10, 3, 5, 8, 8, 3, 2, 7, 4,8, 8, 3, 2, 7, 4, 6, 8, 8, 3, 2, 7, 4,9, 11, 10, 9, 6, 8, 8, 3, 5, 5, 7, 8, 15, 49, 65, 2] mm = library_sort(arr) print arr print mm ```
{ "source": "JenBanks8585/cityspire-ds-h", "score": 3 }
#### File: cityspire-ds-h/app/external.py ```python import os import requests import json import sqlalchemy import pandas as pd from dotenv import load_dotenv from fastapi import APIRouter, Depends from pydantic import BaseModel, SecretStr from walkscore import WalkScoreAPI from app import config from app.helper import * load_dotenv() router = APIRouter() headers={'x-rapidapi-key': os.getenv('api_key'), 'x-rapidapi-host': os.getenv('host')} @router.get('/streamlined_rent_list') async def streamlined_rent_list(api_key=config.settings.api_key, city: str="New York City", state: str="NY", prop_type: str="condo", limit: int=4): """ Parameters: api_key city: str state: str Two-letter abbreviation prop_type: str ('condo', 'single_family', 'multi_family') limit: int number of results to populate Returns: dict Chosen information of the requested parameters such as addresses, state, ciy, lat, lon, photos, walk score, pollution info """ url=os.getenv('url_list_for_rent') querystring={"city": city, "state_code": state, "limit": limit, "offset": "0", "sort":"relevance", "prop_type": prop_type} response_for_rent=requests.request("GET", url, params=querystring, headers=headers,) response = response_for_rent.json()['properties'] pollution_res = pollution(city) rental_list=[] for i in range(limit): line=response[i]['address']['line'] city=response[i]['address']['city'] state=response[i]['address']['state'] lat=response[i]['address']['lat'] lon=response[i]['address']['lon'] photos=response[i]['photos'] element={ 'lat': lat, 'lon': lon, 'city':city, 'state':state, 'photos': photos, 'pollution': pollution_res} rental_list.append(element) return rental_list @router.get('/for_rent_list') async def for_rent_list(api_key=config.settings.api_key, city: str="New York City", state: str="NY", prop_type: str="condo", limit: int=4): """ Parameters: api_key city: str state: str prop_type: str ('condo', 'single_family', 'multi_family') limit: int number of results to populate Returns: dict Expanded information about the city """ url=os.getenv('url_list_for_rent') querystring={"city": city, "state_code": state, "limit": limit, "offset": "0", "sort":"relevance", "prop_type": prop_type} response_for_rent=requests.request("GET", url, params=querystring, headers=headers) return response_for_rent.json()['properties'] @router.get('/for_rent_list/{property_id}') async def property_detail(property_id: str="O3599084026"): """ Parameters: property_id Returns: dict detailed information about the property """ url=os.getenv('url_property_detail') querystring={"property_id":property_id} response_prop_detail=requests.request("GET", url, headers=headers, params=querystring) return response_prop_detail.json()['properties'] @router.get('/for_sale_list') async def for_sale_list(api_key=config.settings.api_key, city="New York City", state="NY", limit=4): """ Parameters: city: str state: str limit: int number of results to populate Returns: dict detailed information about the property """ url=os.getenv('url_list_for_sale') querystring={"city": city , "limit": limit, "offset":"0", "state_code": state, "sort":"relevance"} response_for_sale=requests.request("GET", url, headers=headers, params=querystring) return response_for_sale.json()['properties'] @router.get('/walk_score') async def get_walk_score(city:str, state: str): """ Parameters: city: string state: 2-letter state Abbreviation Returns: dict Returns walkscore, description, transit score and bike score """ response = just_walk_score(city, state) return response @router.get('/pollution') async def get_pollution(city:str, state: str): """ Input: City, 2 letter abbreviation for state Returns a list containing WalkScore, BusScore, and BikeScore in that order """ response = pollution(city) return response ```
{ "source": "JenBanks8585/Labs_CitySpireDS", "score": 3 }
#### File: Labs_CitySpireDS/app/realtybasemodel.py ```python import os import requests from dotenv import load_dotenv from fastapi import APIRouter, Depends import sqlalchemy from pydantic import BaseModel, SecretStr from app import config router = APIRouter() headers = {'x-rapidapi-key': os.getenv('api_key'), 'x-rapidapi-host': os.getenv('host') } class RentalList(BaseModel): api_key: SecretStr = config.settings.api_key city: str = "New York" state: str = "NY" prop_type: str = "condo" limit: int = 5 @router.get('/for_rent_list_base') async def for_rent_list_base(rentallist: RentalList): """ Parameters: api_key city: str state: str prop_type: str ('condo', 'single_family', 'multi_family') limit: int number of results to populate Returns: information about properties for rent """ url = os.getenv('url_list_for_rent') querystring = {"city": rentallist.city, "state_code": rentallist.state, "limit": rentallist.limit, "offset": "0", "sort":"relevance", "prop_type": rentallist.prop_type} response_for_rent = requests.request("GET", url, params = querystring, headers = headers,) return response_for_rent.json() ``` #### File: Labs_CitySpireDS/app/realty.py ```python import os import requests from dotenv import load_dotenv from fastapi import APIRouter, Depends import sqlalchemy from pydantic import BaseModel, SecretStr from app import config from app.walk_score import * load_dotenv() router = APIRouter() headers = {'x-rapidapi-key': os.getenv('api_key'), 'x-rapidapi-host': os.getenv('host') } @router.get('/streamlined_rent_list') async def streamlined_rent_list(api_key = config.settings.api_key, city: str = "New York City", state: str= "NY", prop_type: str = "condo", limit: int = 4): """ Parameters: api_key city: str state: str prop_type: str ('condo', 'single_family', 'multi_family') limit: int number of results to populate Returns: information about properties for rent """ url = os.getenv('url_list_for_rent') querystring = {"city": city, "state_code": state, "limit": limit, "offset": "0", "sort":"relevance", "prop_type": prop_type} response_for_rent = requests.request("GET", url, params = querystring, headers = headers,) response = response_for_rent.json()['properties'] rental_list = [] for i in range(limit): line = response[i]['address']['line'] city = response[i]['address']['city'] state = response[i]['address']['state'] lat = response[i]['address']['lat'] lon = response[i]['address']['lon'] photos = response[i]['photos'] address = line +" "+ city + " "+ state walk_score = just_walk_score(address, lat, lon) element = {'address': address, 'lat': lat, 'lon': lon, 'city':city, 'state':state, 'photos': photos, 'walk_score': walk_score} rental_list.append(element) return rental_list @router.get('/for_rent_list') async def for_rent_list(api_key = config.settings.api_key, city: str = "New York City", state: str= "NY", prop_type: str = "condo", limit: int = 4): """ Parameters: api_key city: str state: str prop_type: str ('condo', 'single_family', 'multi_family') limit: int number of results to populate Returns: information about properties for rent """ url = os.getenv('url_list_for_rent') querystring = {"city": city, "state_code": state, "limit": limit, "offset": "0", "sort":"relevance", "prop_type": prop_type} response_for_rent = requests.request("GET", url, params = querystring, headers = headers,) return response_for_rent.json()['properties'] @router.get('/for_rent_list/{property_id}') async def property_detail(property_id: str = "O3599084026"): """ Parameters: property_id Returns: detailed information about the property """ url = os.getenv('url_property_detail') querystring = {"property_id":property_id} response_prop_detail = requests.request("GET", url, headers=headers, params=querystring) return response_prop_detail.json()['properties'] @router.get('/for_sale_list') async def for_sale_list(api_key = config.settings.api_key, city = "New York City", state= "NY", limit = 4): url = os.getenv('url_list_for_sale') querystring = {"city": city ,"limit": limit,"offset":"0","state_code": state,"sort":"relevance"} response_for_sale = requests.request("GET", url, headers=headers, params=querystring) return response_for_sale.json()['properties'] ```
{ "source": "JenBanks8585/lambdata-JenBanks", "score": 3 }
#### File: lambdata-JenBanks/lambdata_jbanks/mod.py ```python def enlarge(n): return n*100 x= int(input("enter an integer")) print(enlarge(x)) ```
{ "source": "JenBanks8585/Spotmefy", "score": 2 }
#### File: Spotmefy/app/__init__.py ```python import os from flask import Flask from app.model import model from app.appli import appli def create_app(): app = Flask(__name__) app.register_blueprint(model) app.register_blueprint(appli) return app if __name__ == '__main__': my_app = create_app() my_app.run(debug=True) ```
{ "source": "JenBanks8585/twitoff_Banks", "score": 3 }
#### File: flask_app/routes/home_routes.py ```python from flask import Blueprint, render_template home_routes = Blueprint("home_routes", __name__) # add def index(): @home_routes.route('/') def hello_world(): print("You visited the homepage") #return 'Hello, World!' return render_template("prediction_form.html") @home_routes.route('/about') def about(): print("You visited the About-Me page") return "<h2 style = 'color:red'> About Me (TODO)</h2>" ```
{ "source": "JenBanks8585/weather_wqu", "score": 3 }
#### File: weather_wqu/wqu_app/app.py ```python import os from flask import Flask, request, render_template from message import * #import pandas as pd import json app = Flask(__name__) DEPLOY = os.getenv('DEPLOY') @app.route('/') def main(): if DEPLOY == 'heroku': ip_address = request.headers['X-Forwarded-For'] else: ip_address = retrieve_local_ip_address() return render_template('index.html', message= str(greet(ip_address))) @app.route('/weather') def weather(): if DEPLOY == 'heroku': ip_address = request.headers['X-Forwarded-For'] else: ip_address = retrieve_local_ip_address() return render_template('weather.html', message = str(weather_data(ip_address))) @app.route('/myweather', methods = ["GET","POST"]) def myweather(): if request.method =="POST": latitude = request.form["lat"] longitude = request.form["lon"] url = 'https://api.met.no/weatherapi/locationforecast/2.0/compact' headers = { "Connection": "keep-alive", "Upgrade-Insecure-Requests": "1", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "Sec-Fetch-Site": "same-origin", "Sec-Fetch-Mode": "navigate", "Sec-Fetch-User": "?1", "Sec-Fetch-Dest": "document", "Referer": "https://www.google.com/", "Accept-Encoding": "gzip, deflate, br", "Accept-Language": "en-US,en;q=0.9"} params = {'lat': latitude, 'lon': longitude} response = requests.get(url, params=params, headers = headers) data = response.json() dat = data['properties']['timeseries'][0]['data']['instant']['details'] #data_df= pd.DataFrame.from_dict(dat, orient = 'index') #data_df dat_pretty = json.dumps(dat, indent = 4) return render_template('myweather.html', message = str(dat)) else: return render_template('myweather.html') if __name__ =='__main__': app.run(debug =True) ```
{ "source": "JenBanks8585/wqu_project1", "score": 3 }
#### File: wqu_project1/prescription_drug_analysis/drug_data_analysis.py ```python import pandas as pd def load_and_clean_data(): ''' Returns the cleaned scripts, practices and chem data sets''' scripts = pd.read_csv('~/datacourse/data-wrangling/miniprojects/dw-data/201701scripts_sample.csv.gz') col_names = ['code', 'name', 'addr_1', 'addr_2', 'borough', 'village', 'post_code'] practices = pd.read_csv('~/datacourse/data-wrangling/miniprojects/dw-data/practices.csv.gz', names = col_names) # Need to drop duplicate CHEM SUB rows chem = pd.read_csv('~/datacourse/data-wrangling/miniprojects/dw-data/chem.csv.gz') chem = chem.sort_values('CHEM SUB').drop_duplicates(subset = 'CHEM SUB', keep='first') return scripts, practices, chem def flag_opioids(chem): '''Add column to dataframe flagging prescription if it is an opioid''' cheme= chem.copy() opioids = ['morphine', 'oxycodone', 'methadone', 'fentanyl', 'pethidine', 'buprenorphine', 'propoxyphene', 'codeine'] chem['is_opioids']= chem['NAME'].str.lower().str.contains(r'|'.join(opioids)) return chem def calculate_z_score(scripts, chem): '''Returns a Series of Z-scores of each practice''' scripts_with_chem = (scripts .merge(chem[['CHEM SUB', 'is_opioids']], left_on = 'bnf_code', right_on = 'CHEM SUB', how = 'left') .fillna(False)) # Calculate z-score for each practice opioids_per_practice = scripts_with_chem.groupby('practice')['is_opioids'].mean() relative_opioids_per_practice = opioids_per_practice-scripts_with_chem['is_opioids'].mean() std_eror_per_practice = scripts_with_chem['is_opioids'].std()/(scripts_with_chem['practice'].value_counts())**.5 opioid_scores = relative_opioids_per_practice/std_eror_per_practice return opioid_scores def dump_data(results): '''Dumps pandas dataframe of the results to disk''' results.to_csv('practices_flagged.csv', index = False) def flag_anomalous_practices(practices, scripts, opioid_scores, z_score_cutoff = 2, raw_count_cutoff = 50): '''Returns practices that have z-score and raw count greater than cutoff''' unique_practices = practices.sort_values('name').drop_duplicates(subset = 'code', keep = 'first') unique_practices = unique_practices.set_index('code') unique_practices['z_scores'] = opioid_scores unique_practices['count']= scripts['practice'].value_counts() results = unique_practices.sort_values('z_scores', ascending = False).head(100) return results.query('z_scores > @z_score_cutoff and count > @raw_count_cutoff') if __name__ == '__main__': #import sys #print(f"Running {sys.argv[0]}") #z_score_cutoff = int(sys.argv[1]) #raw_count_cutoff = int(sys.argv[2]) import argparse parser = argparse.ArgumentParser() parser.add_argument('--z_score_cutoff', default = 3, type = int, help = 'The Z- score cutoff for flagging practices') parser.add_argument('--raw_count_cutoff', default = 50, type = int, help = 'The raw count cutoff for flagging practices') args = parser.parse_args() print(args) scripts, practices, chem = load_and_clean_data() chem = flag_opioids(chem) opioid_scores = calculate_z_score(scripts, chem) anomalous_practices = flag_anomalous_practices(practices, scripts, opioid_scores, z_score_cutoff = args.z_score_cutoff, raw_count_cutoff = args.raw_count_cutoff) dump_data(anomalous_practices) ```
{ "source": "jenboyleibm/qpylib", "score": 2 }
#### File: qpylib/test/test_util.py ```python import os import pytest from qpylib import util_qpylib @pytest.fixture(scope='function') def set_env_vars(): os.environ['QRADAR_APPFW_SDK'] = 'true' yield del os.environ['QRADAR_APPFW_SDK'] def test_is_sdk_with_env_not_set(): assert not util_qpylib.is_sdk() def test_is_sdk_with_env_set(set_env_vars): assert util_qpylib.is_sdk() ```
{ "source": "jenca-adam/ratcave", "score": 2 }
#### File: ratcave/examples/collision.py ```python import pyglet import ratcave as rc import numpy as np np.set_printoptions(suppress=True, precision=4) window = pyglet.window.Window() cube = rc.Mesh.from_primitive('Cube') cube.position.z = -3 cube.scale.xyz = .3, .3, .3 # cube.visible = False cube.collider = rc.ColliderCylinder(visible=True, ignore_axis=1) sphere = rc.Mesh.from_primitive('Sphere', position=(0.99, 0, 0)) sphere.scale.xyz = 1.00, 1, 4 sphere.parent = cube sphere.collider = rc.ColliderSphere(visible=True, position=(0, 0, 0)) tt = 0. def update(dt): global tt tt += dt sphere.position.x = np.sin(1.5 * tt) * 5 sphere.rotation.y += 210 * dt cube.rotation.y += 60 * dt sphere.uniforms['diffuse'] = (0., 1., 0.) if sphere.collider.collides_with(cube) else (0., 0., 1.) cube.uniforms['diffuse'] = (0., 1., 0.) if cube.collider.collides_with(sphere) else (0., 0., 1.) print(sphere.position.xyz) # print(sphere.collider.collides_with(cube), cube.collider.collides_with(sphere)) pyglet.clock.schedule(update) @window.event def on_draw(): window.clear() with rc.default_shader, rc.default_states, rc.default_camera: for mesh in cube: mesh.draw() pyglet.app.run() ``` #### File: ratcave/examples/gen_texture_from_array.py ```python import numpy as np import pyglet import ratcave as rc window = pyglet.window.Window() cube = rc.Mesh.from_primitive('Cube', position=(0, 0, -3), rotation=(45, 45, 0)) arr = np.random.randint(0, 255, size=(128, 128, 4)) arr = np.zeros_like(arr)# + 255 arr[:, :, 0] = 255 tex2 = rc.Texture(values=arr) tex2.values = np.random.randint(0, 255, size=(128, 128, 4)) cube.textures.append(tex2) @window.event def on_draw(): window.clear() with rc.default_shader, rc.default_camera, rc.default_states: cube.draw() def randomize_texture(dt): tex2.values = np.random.randint(0, 255, size=(128, 128, 4)) pyglet.clock.schedule(randomize_texture) pyglet.app.run() ``` #### File: ratcave/ratcave/materials.py ```python class Material: def __init__(self, diffuse=[.8, .8, .8], spec_weight=0., specular=[0., 0., 0.], ambient=[0., 0., 0.], opacity=1., flat_shading=False, texture_file=None): self.diffuse = diffuse self.spec_weight = spec_weight self.specular = specular self.ambient = ambient self.opacity = opacity self.flat_shading = flat_shading self.texture_file = texture_file ``` #### File: ratcave/ratcave/wavefront.py ```python from .mesh import Mesh from wavefront_reader import read_wavefront from . import Texture class WavefrontReader: material_property_map = {'Kd': 'diffuse', 'Ka': 'ambient', 'Ke': 'emission', 'Ks': 'specular', 'Ni': 'Ni', 'Ns': 'spec_weight', 'd': 'd', 'illum': 'illum', 'map_Kd': 'map_Kd', } def __init__(self, file_name): """ Reads Wavefront (.obj) files created in Blender to build ratcave.graphics Mesh objects. :param file_name: .obj file to read (assumes an accompanying .mtl file has the same base file name.) :type file_name: str :return: :rtype: WavefrontReader """ self.file_name = file_name self.bodies = read_wavefront(file_name) self.textures = {} def get_mesh(self, body_name, **kwargs): """Builds Mesh from geom name in the wavefront file. Takes all keyword arguments that Mesh takes.""" body = self.bodies[body_name] vertices = body['v'] normals = body['vn'] if 'vn' in body else None texcoords = body['vt'] if 'vt' in body else None mesh = Mesh.from_incomplete_data(vertices=vertices, normals=normals, texcoords=texcoords, **kwargs) uniforms = kwargs['uniforms'] if 'uniforms' in kwargs else {} if 'material' in body: material_props = {self.material_property_map[key]: value for key, value in body['material'].items()} for key, value in material_props.items(): if isinstance(value, str): if key == 'map_Kd': if not value in self.textures: self.textures[value] = Texture.from_image(value) mesh.textures.append(self.textures[value]) else: setattr(mesh, key, value) elif hasattr(value, '__len__'): # iterable materials mesh.uniforms[key] = value elif key in ['d', 'illum']: # integer materials mesh.uniforms[key] = value elif key in ['spec_weight', 'Ni']: # float materials: should be specially converted to float if not already done. mesh.uniforms[key] = float(value) else: print('Warning: Not applying uniform {}: {}'.format(key, value)) return mesh ```
{ "source": "jenca-adam/timeago", "score": 3 }
#### File: timeago/locales/sk.py ```python base = [ ["práve teraz", "pred chvíľou"], ["pred %s sekundami", "o %s sekúnd","o %s sekundy"], ["pred minútou", "o minútu"], ["pred %s minútami", "o %s minút","o %s minúty"], ["pred hodinou", "o hodinu"], ["pred %s hodinami", "o %s hodín","o %s hodiny"], ["pred dňom", "o deň"], ["pred %s dňami", "o %s dni"], ["pred týždňom", "o týždeň"], ["pred %s týždňami", "o %s týždňov","o %s týždne"], ["pred mesiacom", "o mesiac"], ["pred %s mesiacmi", "o %s mesiacov","o %s mesiace"], ["pred rokom", "o rok"], ["pred %s rokmi", "o %s rokov","o %s roky"], ] def generate(row,y): def formatting(time): if y==1 and time<5: try: return base[row][y+1] except IndexError: pass return base[row][y] return formatting LOCALE=generate ```
{ "source": "jenca-adam/weather", "score": 3 }
#### File: src/old/day.py ```python import json class Day: def __init__(self,dayname,highest,lowest,desc): self.dayname=dayname self.highest=highest self.lowest=lowest self.desc=desc def __repr__(self): return repr(self.__dict__) ``` #### File: src/old/parse.py ```python from bs4 import BeautifulSoup as bs from .forecast import Forecast from .day import Day def parsetemp(t): return int(t.find(class_="wob_t").text) def parseday(d): s=bs(str(d),'html.parser') dayname=s.find(class_="QrNVmd Z1VzSb")['aria-label'] desc=s.find(class_="DxhUm").img['alt'] tmps=bs(str(s.find(class_="wNE31c")),'html.parser') highest=parsetemp(tmps.find(class_="vk_gy gNCp2e")) lowest=parsetemp(tmps.find(class_="QrNVmd ZXCv8e")) return Day(dayname,highest,lowest,desc) def parsefcast(d,temp): soup=bs(d,'html.parser') g=soup.find_all(class_="wob_df") g=[parseday(i) for i in g] first=g[0] nxt=g[1:] return Forecast(temp,first,nxt) ``` #### File: weather/src/weather.py ```python if __name__=='__main__': print('Importing module, please wait...\r',end='') import json import urllib3 from bs4 import BeautifulSoup as bs from httplib2 import Http import httplib2 import random import time from geopy.geocoders import Nominatim from selenium import webdriver from selenium.webdriver import * import warnings import os import re import platform import subprocess from pathlib import Path import selenium import colorama import inspect import sys import importlib import difflib from unitconvert.temperatureunits import TemperatureUnit as tu from lxml import etree import locale import langdetect import argparse import termcolor import tabulate import calendar import datetime import termutils import getchlib '''Python library for getting weather from different sources. Example: >>> import weather #Get temperature in Chicago tommorow at midnight ( Returns temperature in Fahrenheits ) >>> weather.forecast("Chicago").tomorrow["0:00"].temp #Get temperature in current location today at noon >>> weather.forecast().today["12:00"].temp #Get precipitation amount after two days in Seoul at 4 o'clock >>> weather.forecast('Seoul').day(2)["16:00"].precip ''' termcolor.COLORS={key:value+60 for key,value in termcolor.COLORS.items()} #__OWM_TOKEN="<PASSWORD>" DEBUG=False locator=Nominatim(user_agent="Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.128 Safari/537.36") _h=Http('.cache') CELSIUS=0 UNIT=CELSIUS FAHRENHEIT=1 _DONTCHECK=-1 '''Google chrome headers, used in BetaChrome''' _HDR={"User-Agent":"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.128 Safari/537.36"} _URL="https://translate.googleapis.com/translate_a/single?client=gtx&ie={pe}&oe={pe}dt=bd&dt=ex&dt=ld&dt=md&dt=rw&dt=rm&dt=ss&dt=t&dt=at&dt=qc&sl={sl}&tl={tl}&hl={tl}&q={string}" def dateadd1(date): date=[date.year,date.month,date.day] if date[-1]==calendar.monthrange(2021,date[1])[1]: date[-1]=1 if date[1]==12: date[1]=1 date[0]+=1 else: date[1]+=1 else: date[-1]+=1 return datetime.date(*date) def foc2t(foc): u=makeunit(foc.today.weather_as_list[0].unit) date=datetime.date.today() dayc=0 table=[] while True: begintime=datetime.datetime.now().hour if not dayc else 1 try: day=foc.day(dayc) except IndexError: break for h in range(begintime,24): weah=day[f'{h}:00'] table.append([str(date),f'{h}:00',str(weah.temp)+"°"+u,weah.precip,weah.humid,weah.wind.direction.direction,weah.wind.speed]) dayc+=1 date=dateadd1(date) return tabulate.tabulate(table,['Date','Time',"Temperature",'Precipitation','Humidity','Wind direction','Wind speed'],tablefmt='fancy_grid') class TooManyRequestsError(ValueError):pass class Translator: def __init__(self,sl,tl): self._pe=locale.getpreferredencoding() self._h=httplib2.Http('.cache') self.sl=sl self.tl=tl def translate(self,string): if self.sl is None: self.sl=langdetect.detect(string) u=_URL.format(pe=self._pe,sl=self.sl,tl=self.tl,string=string) resp,c=self._h.request(u) if resp.status==419: raise TooManyRequestsError('server replied 419. Try again later') return json.loads(c.decode(self._pe))[0][0][0] def translate(string,sl=None,tl='en'): t=Translator(sl,tl) return t.translate(string) class _debugger: class BadStatus(Exception):pass def debug(self,text,status="INFO"): if not DEBUG: return colors={"INFO":colorama.Fore.LIGHTBLUE_EX,"ERROR":colorama.Fore.LIGHTRED_EX,"DEBUG":colorama.Fore.LIGHTMAGENTA_EX,"WARNING":colorama.Fore.LIGHTYELLOW_EX} if status not in colors: raise self.BadStatus("BAD STATUS") previous_frame = inspect.currentframe().f_back (filename, lineno, function_name, lines, index) = inspect.getframeinfo(previous_frame) sys.stdout.write( f'{colorama.Fore.CYAN}{filename}:{lineno}:{function_name} {colorama.Fore.RESET}-> {colors[status]}{status}{colorama.Style.RESET_ALL}:{colors[status]}{text}{colorama.Style.RESET_ALL}\n') debugger=_debugger() class Browser: '''Metaclass of BetaChrome used to bypass Google bot detection''' def request(self,url,headers={}): '''Request url and set USER-AGENT headers''' debugger.debug('requested url') hdr=self.HEADERS hdr.update(headers) return _h.request(url,headers=hdr) class BetaChrome(Browser): '''Used to bypass Google bot detection''' HEADERS=_HDR class DriverWarning(Warning): '''Metaclass of NoHeadlessWarning''' class WeatherWarning(Warning): '''Metaclass of SVGWarning''' class SVGWarning(WeatherWarning): '''User is warned when SVG passed to analyzesvg() is already analyzed. For debugging''' class NoHeadlessWarning(DriverWarning): '''User is warned when no headless driver is not avaliable''' class WeatherError(BaseException): '''Metaclass of most errors defined here''' class NoSuchCityError(WeatherError): '''Raised when city was not found using Nominatim''' class DriverError(Exception): '''Raised when no driver is avaliable''' h=httplib2.Http('.cache') class IpError(ValueError): '''Metaclass of Fail''' class Fail(IpError): '''Metaclass of InvalidQuery and ReservedRange''' class InvalidQuery(Fail): '''Raised when user entered non-existing IP to track()''' class ReservedRange(Fail): '''Raised when user entered localhost or 127.0.0.1 or 0.0.0.0 to track()''' class SetupError(WeatherError): ''' Raised when setup.setup() was called but Chrome neither Firefox are installed ''' class ReadonlyError(Exception): ''' Raised when user want to change Forecast, Day or SearchResult's attributes''' class UnknownServiceError(WeatherError): ''' Raised when user tried to use service that does not exist. Should be served along with some " Did you mean <>?" suggestions ''' class PropertyError(WeatherError): ''' Metaclass of WindError ''' class WindError(PropertyError): ''' Raised when invalid wind properties are given ''' class DirectionError(WindError): ''' Raised when direction is not "N","NE","E","SE","S","SW","W" or "NW"(if it is a string) or higher than 360(if it is a integer) ''' class _fastener: def __init__(self): os.makedirs('.cache/weather/',exist_ok=True) if not os.path.exists('.cache/weather/citycountry.json'): self.file=open('.cache/weather/citycountry.json','w') self.file.write('{}') self.file.close() self.file=open('.cache/weather/citycountry.json') self.data=json.load(self.file) def dump(self): c=open('.cache/weather/citycountry.json','w') json.dump(self.data,c) c.close() def isrg(self,city): return city in self.data def register(self,city,country): self.data[city]=country self.dump() def getcountry(self,city): if self.isrg(city): return self.data[city] else: country=_getcountry(city) self.register(city,country) return country def makeunit(u): if u==CELSIUS: return 'C' elif u==FAHRENHEIT: return "F" return u def searchurl(query): '''Returns Google Search URL according to query''' return f'https://google.com/search?q={query}' def _getcountry(city): '''Return country that city is located in''' a=locator.geocode(city).address.split(',')[-1].strip() return translate(a) def _rq(h,u): '''Handles IpApi ConnectionResetError''' try: return h.request(u) except ConnectionResetError: return _rq(h,u) def _track(ip): '''Requests IpApi and returns result as dict''' r,c=_rq(h,f'http://ip-api.com/json/{ip}') return json.loads(c) def _checkresp(msg,stat): '''Raises error according to message and status returned by track()''' if stat=='success':return if stat=='fail': if msg=='reserved range': raise ReservedRange(msg) elif msg=='invalid query': raise InvalidQuery(msg) raise Fail(msg) raise IpError(msg) def checkresp(resp,ip=''): '''Calls _checkresp with resp''' if 'message' not in resp:return _checkresp(resp['message'],resp['status']) def track(ip=''): '''Tracks according to IP. Used to detect location (when is called with no arguments, returns data for current IP)''' resp=_track(ip) checkresp(resp,ip) return resp class Direction: __ANGLEDICT={0:'N',45:'NE',90:'E',135:'SE',180:'S',225:'SW',270:'W',315:'NW',360:'N'} __rvang={value:key for key,value in __ANGLEDICT.items()} def __init__(self,ang): if isinstance(ang,bool): raise TypeError( f"angle must be 'str' or 'int', not {ang.__class__.__name__!r}" ) if ang is None: self.direction='UNKNOWN' self.angle=None return if isinstance(ang,(int,float)): ang=int(ang) if ang>360: raise DirectionError("wind angle is more than 360") self.direction=self.__ANGLEDICT[min(self.__ANGLEDICT, key=lambda x:abs(x-ang))] self.angle=ang elif isinstance(ang,str): if ang.upper() not in self.__rvang: raise DirectionError( f"invalid wind direction : {ang!r} ( valid are {','.join(self.__ANGLEDICT.values())} )" ) self.direction=ang.upper() self.angle=self.__rvang[ang.upper()] else: raise TypeError( f"angle must be 'str' or 'int', not {ang.__class__.__name__!r}" ) def __repr__(self): return self.direction class Location: '''Implementation of location''' def __init__(self,lat,lon,country,country_code,region_code,region,city,zipcode,tzone): self.lat=lat self.lon=lon self.country=country self.country_code=country_code self.region=region self.region_code=region_code self.city=city self.zipcode=zipcode self.tzone=tzone class Wind(): def __init__(self,speed=None,direction=None): self.direction=Direction(direction) self.speed=speed def _parse_loc(resp): '''Returns Location object from data returned by track''' return Location( resp['lat'], resp['lon'], resp['country'], resp['countryCode'], resp['region'], resp['regionName'], resp['city'], resp['zip'], resp['timezone'], ) def iploc(ip): '''Gets location according to IP''' return _parse_loc(track(ip)) def curloc(): '''Gets current location''' return iploc('') _br=BetaChrome() request=_br.request def search(query): '''Return search results from query''' return request(searchurl(query))[1] ### Set global variables according to current location LOCATION=curloc() CITY=LOCATION.city COUNTRY=LOCATION.country ### Set temperature unit to Fahrenheit if user is in US if COUNTRY=='United States': UNIT=FAHRENHEIT def refresh(ip=''): '''Gets city and country from current location(or IP location)''' if not ip: city=curloc().city country=curloc().country else: city=iploc(ip).city country=iploc(ip).country return city,country class _fcdumper: def dump(self,forecast,file): debugger.debug(f'Dumping data into {file!r}') if isinstance(forecast,_WeatherChannel.Forecast): source='google' elif isinstance(forecast,_YR_NORI.Forecast): source='yrno' elif isinstance(forecast,_7Timer.Forecast): source='7timer' else: raise TypeError("bad forecast type") froot=etree.Element('forecast') debugger.debug('Created root element') forelem=etree.SubElement(froot,'location') cityelem=etree.SubElement(forelem,'city') countryelem=etree.SubElement(forelem,'country') countryelem.text=forecast.country unt=forecast.today.weather_as_list[0].unit untel=etree.SubElement(froot,'unit') untel.text='C' if unt==CELSIUS else 'F' cityelem.text=forecast.city srcel=etree.SubElement(froot,'source') srcel.text=source root=etree.SubElement(froot,'days') dind=0 debugger.debug('iterating days') for d in forecast.days: delem=etree.SubElement(root,'day',index=str(dind)) debugger.debug(f'iterating weather for day {dind}') for w in d.weather_as_dict: recelem=etree.SubElement(delem,'record') wa=d.weather_as_dict[w] timelem=etree.SubElement(recelem,'time') timelem.text=w weather=etree.SubElement(recelem,'weather') telem=etree.SubElement(weather,'temp') telem.text=str(wa.temp) pelem=etree.SubElement(weather,'precip') pelem.text='0.0' if not wa.precip else str(float(wa.precip)) welem=etree.SubElement(weather,'wind') wspeed=etree.SubElement(welem,'speed') wdir=etree.SubElement(welem,'direction') wang=etree.SubElement(wdir,'angle') wcomp=etree.SubElement(wdir,'compass') wspeed.text=str(wa.wind.speed) wang.text=str(wa.wind.direction.angle) wcomp.text=wa.wind.direction.direction helem=etree.SubElement(weather,'humid') helem.text="0" if not wa.humid else str(wa.humid) dind+=1 with open(file,'w') as f: debugger.debug('saving file') f.write(etree.tounicode(froot,pretty_print=True)) def load(self,xmlfile): debugger.debug('loading weather from cache') t=etree.parse(open(xmlfile)) unit=t.find('.//unit').text city=t.find('.//city').text src=t.find('.//source').text srcsvc=SERVICES[src] country=t.find('.//country').text times=t.findall('.//time') temps=t.findall('.//temp') precps=t.findall('.//precip') humids=t.findall('.//humid') wspeeds=t.findall('.//speed') wangs=t.findall('.//angle') wcomps=t.findall('.//compass') records=len(times) cdix=0 weather_as_dict={} forecast=[] debugger.debug(f'{records} records found') for wi in range(records): tm=times[wi].text temp=float(temps[wi].text) precip=float(precps[wi].text) humid=float(humids[wi].text) wind=float(wspeeds[wi].text) wdirct=float(wangs[wi].text) dix=int(temps[wi].getparent().getparent().getparent().attrib['index']) if dix>cdix: forecast.append(srcsvc.__class__.Day(list(weather_as_dict.values()),weather_as_dict)) weather_as_dict={} weather_as_dict[tm]=srcsvc.__class__.Weather(Wind(wind,wdirct),precip,temp,humid,unit) cdix=dix return srcsvc.__class__.Forecast(forecast,city,country) class _cacher: def __init__(self): os.makedirs('.cache/weather/fc/xml',exist_ok=True) def iscached(self,cityname,ctr): pt=f'.cache/weather/fc/xml/{ctr}/{cityname}/' return os.path.exists(pt) and os.listdir(pt) def getcached(self,city,ctr): if not self.iscached(city,ctr): return [] pt=f'.cache/weather/fc/xml/{ctr}/{city}/' t=time.time() ress=[] for file in os.listdir(pt): rt=int(file) if -1<t-rt<3600: ress.append(os.path.join(pt,file)) return ress def cache(self,forecast): pt=f'.cache/weather/fc/xml/{forecast.country}/{forecast.city}/' os.makedirs(pt,exist_ok=True) dumper.dump(forecast,os.path.join(pt,str(int(time.time())))) class _WeatherChannel: '''weather.google type''' def __init__(self): '''Set driver to None for fututre forecast requests will be faster''' self.driver=None class Weather: '''Implementation of weather''' def __init__(self,wind,precip,temp,humid=None,unit=CELSIUS): self.temp=temp self.precip=precip/10 self.wind=wind self.humid=humid self.unit=unit class Day: '''Implementation of day''' def __init__(self,weatherlist,wdict): ''' self.highest=max( max(i.temp for i in weatherlist) ) self.lowest=min( min(i.temp for i in weatherlist) )''' self.weather_as_list=weatherlist self.weather_as_dict=wdict def __getitem__(self,i): '''Return weather at time''' return self.gettemp(i) def splittime(self,time,after=int): '''Splits time to hours and minutes and calling to result after''' try: return tuple(after(i) for i in time.split(':')) except ValueError: raise ValueError( f"invalid value for 'splittime':{time}" ) def fillin(self,time): '''Fills the time in. E.g.:fillin("8:00")="08:00"''' return self.jointime(self.formatsec(i) for i in self.splittime(time,after=str)) def formatsec(self,time): '''Formats seconds E.g:formatsec("8")="08"''' if len(str(time))>2: raise ValueError('not 2-digit or 1-digit time') if not time: return "00" if len(str(time))<2: return "0"+time return time def jointime(self,time): '''Gets analog time according to hours and minutes''' return ':'.join(str(i) for i in time) def gettemp(self,time): '''Returns weather at time''' if isinstance(time,str): time=self.splittime(time) return self.weather_as_dict[self.fillin(self.repairtime(self.jointime(time)))] def timetoint(self,time): '''Converts time to integer''' if isinstance(time,str): return self.splittime(time)[1]+self.splittime(time)[0]*60 return time[1]+time[0]*60 def inttotime(self,i): '''Converts integer to time. Reverse function to timetoint''' return (i//60,i%60) def repairtime(self,time): '''Gets closest time that is in weather list''' closest=lambda num,collection:min(collection,key=lambda x:abs((x-num)+1)) dy=self.weather_as_dict dy=[self.timetoint(time) for time in dy] qr=self.timetoint(self.roundtime(time)) return self.jointime(self.inttotime(closest(qr,dy))) def roundtime(self,time): '''Rounds time; e.g. roundtime("8:10")="08:00"''' mins=int(time.split(':')[-1]) if mins==0: return time hrs=int(time.split(':')[0]) if mins<30: return f'{self.formatsec(hrs)}:00' return f'{self.formatsec(hrs+1)}:00' def convert(self,d): ''' Converts dictionary to JSON serializable form''' l={} for a in d: i=d[a] m=i if isinstance(i,self.Day): m=i.__dict__ if isinstance(i,list): m=self.convlist(self,i) l[a]=m return l def convlist(self,d): '''Converts list to JSON serializable form''' l=[] for i in d: m=i if isinstance(i,self.Day): m=i.__dict__ l.append(m) return l class Forecast: '''Implemantation of weather forecast''' def __init__(self,days,city,ctr): self.city=city self.country=ctr debugger.debug("created forecast") e=None self.temp=days[0].weather_as_list[0].temp self.today=days[0] self.days=days self.tomorrow=days[1] '''if not isinstance(self.today,_WeatherChannel.Day): raise TypeError( f"'today' argument must be weather._WeatherChannel.Day, not {today.__class__.__name__}'") try: iter(nxt) except: e=TypeError("'nxt' argument is not iterable") if e is not None: raise e for i in nxt: if not isinstance(i,_WeatherChannel.Day): raise TypeError( f"all members of 'nxt' argument must be \"_WeatherChannel.Day\", not {i.__class__.__name__}'")''' def day(self,num): '''Returns weather at day n''' return self.days[num] def splittime(self,time,after=int): try: return tuple(after(i) for i in time.split(':')) except ValueError: raise ValueError( f"invalid value for 'splittime':{time}" ) def fillin(self,time): return self.jointime(self.formatsec(i) for i in self.splittime(time,after=str)) def formatsec(self,time): if len(time)>2: raise ValueError('not 2-digit or 1-digit time') if len(time)<2: return "0"+time return time def jointime(self,time): return ':'.join(str(i) for i in time) def gettemp(self,daynum,time): if isinstance(time,str): time=self.splittime(time) return self.days[daynum][self.fillin(self.repairtime(self.jointime(time),daynum))] def timetoint(self,time): if isinstance(time,str): return self.splittime(time)[1]+self.splittime(time)[0]*60 return time[1]+time[0]*60 def inttotime(self,i): return (i//60,i%60) def repairtime(self,time,day): closest=lambda num,collection:min(collection,key=lambda x:abs((x-num)+1)) dy=self.days[day] dy=[self.timetoint(time) for time in dy] qr=self.timetoint(self.roundtime(time)) return self.jointime(self.inttotime(closest(qr,dy))) def roundtime(self,time): mins=int(time.split(':')[-1]) if mins==0: return time hrs=int(time.split(':')[0]) if mins<50: return f'{self.formatsec(hrs)}:00' return f'{self.formatsec(hrs+1)}:00' def splittime(self,time,after=int): try: return tuple(after(i) for i in time.split(':')) except ValueError: raise ValueError( f"invalid value for 'splittime':{time}" ) def parsetemp(self,t,unit=UNIT): '''Parses temperature HTML''' return int(t.find_all(class_="wob_t")[unit].text) def parseday(self,d,unit=UNIT): '''Parses one day''' s=bs(str(d),'html.parser') dayname=s.find(class_="QrNVmd Z1VzSb")['aria-label'] desc=s.find(class_="DxhUm").img['alt'] tmps=bs(str(s.find(class_="wNE31c")),'html.parser') highest=self.parsetemp(tmps.find(class_="vk_gy gNCp2e"),unit=unit) lowest=self.parsetemp(tmps.find(class_="QrNVmd ZXCv8e"),unit=unit) return self.Day(dayname,highest,lowest,desc) def getsvg(self,ch,unit): debugger.debug("Getting temperature") '''Gets SVG with temperature''' try: ch.find_elements_by_class_name("jyfHyd")[1].click() except:pass #wait until forecast loads time.sleep(0.7) svg=ch.find_element_by_id('wob_gsvg') svg=svg.get_attribute('outerHTML') return self.analyzesvg(svg,unit) def getprecip(self,ch): '''Gets precipitation data''' debugger.debug("Analyzing precipitation") precip_html_element=ch.find_element_by_id('wob_pg') precip_html=precip_html_element.get_attribute('outerHTML') precip_soup=bs(precip_html, 'html.parser') columns=precip_soup.findAll(class_="wob_hw") days=[] graph={} lastTime=0 for col in columns: time=col.div['aria-label'].split(' ')[-1] perc=int( col.div['aria-label']. split(' ')[0]. replace('%','')) if self.splittime(time)[0]<lastTime: days.append(graph) graph={} graph[time]=perc lastTime=self.splittime(time)[0] return days def getwind(self,ch): '''Gets wind data''' debugger.debug("Analyzing wind") wind_html_element=ch.find_element_by_id('wob_wg') wind_html=wind_html_element.get_attribute('outerHTML') wind_soup=bs(wind_html, 'html.parser') spds=wind_soup.findAll(class_="wob_hw") days=[] graph={} lastTime=0 for selem in spds: time=selem.div.span['aria-label'].split(' ')[-1] spd=selem.div.span.text.split(' ')[0] if self.splittime(time)[0]<lastTime: days.append(graph) graph={} graph[time]=int(spd) lastTime=self.splittime(time)[0] return days def getgraph(self,ch,unit): '''Gets full data and formats them into Forecast object''' debugger.debug("Parser has started!") svg=self.getsvg(ch,unit) precip=self.getprecip(ch) wind=self.getwind(ch) svglist=[list(a.keys()) for a in svg] preciplist=[list(a.keys()) for a in precip] windlist=[list(a.keys()) for a in wind] wthrs=[] wthrs_inner=[] ind=0 debugger.debug("Formating weather data into forecast") for a in wind: inner=0 wthrs_inner=[] for j in a: t=a[j] wthrs_inner.append( self.Weather( Wind(t*3.6666667,0), precip[ind][j], svg[ind][j], unit=unit ) ) inner+=1 ind+=1 wthrs.append(wthrs_inner) wtdct=[] wtdc_inner={} ind=0 for s in wind: inner=0 wtdc_inner={} for j in s: t=a[j] wtdc_inner[j]=self.Weather( Wind(t,0), precip[ind][j], svg[ind][j] ) inner+=1 ind+=1 wtdct.append(wtdc_inner) days=[] yndex=0 for day in wtdct: days.append( self.Day( wthrs[yndex], wtdct[yndex], ) ) yndex+=1 return days def analyzesvg(self,svg,unit): '''Changes svg to dict of temperatures''' debugger.debug("Analyzing temperature") if isinstance(svg,list) : warnings.warn( SVGWarning( '''Looks like temperature SVG file is already analyzed, but check it twice!''' ) ) return svg soup=bs(svg,'html.parser') labels=soup.findAll('text') days=[] graph={} curcels=not unit lastTime=0 for l in labels: if curcels: time=l['aria-label'].split(' ')[-1] tu=self._prstmpstr(l['aria-label']) if self.splittime(time)[0]<lastTime: days.append(graph) graph={} graph[time]=tu lastTime=self.splittime(time)[0] curcels=not curcels return days def parsefcast(self,days,temp,unit,city,ctr): '''Parses forecast''' return self.Forecast(days,city,ctr) def forecast(self,cityname=CITY,countryname='',unit=None,driver=None): '''Gets forecast''' err=None self.driver=driver if self.driver is None: driver=_driverSearch() self.driver=driver.best() wd=self.driver if not countryname: try: countryname=getcountry(cityname) except AttributeError: err=NoSuchCityError(f"no such city: '{cityname}'") if err: raise err if cityname==CITY and not countryname: countryname=COUNTRY if unit is None: if countryname.lower()=='united states': unit=FAHRENHEIT else: unit=CELSIUS ca=cacher.getcached(cityname,countryname) for caf in ca: foc=dumper.load(caf) if isinstance(foc,self.__class__.Forecast): return foc if countryname==_DONTCHECK: query=f'weather {cityname}' else: query=f'weather {cityname} {countryname}' c=search(query) soup=bs(c,'html.parser') wd.get(searchurl(query)) try: svg=self.getgraph(wd,unit) tempnow=int(soup.body.find_all('span',class_="wob_t")[unit].text) fli=soup.body.find('div',id="wob_dp") foc=self.parsefcast(svg,tempnow,unit,cityname,countryname) cacher.cache(foc) return foc except Exception as e: debugger.debug(f"could not load forecast for {cityname}, trying without country; ({str(e)} throwed)","ERROR") err=WeatherError(f"could not get forecast for city {cityname}({str(e)} throwed)") if countryname==_DONTCHECK: raise err return self.forecast(cityname,_DONTCHECK,unit) def ipforecast(self,ip): return self.forecast(*refresh(ip)) def _prstmpstr(self,string): pattern=re.compile(r'^([0-9\-]+)°') match=pattern.search(string) if not match: raise ValueError( 'Could not parse temperature string') return int(match.group(0).replace('°','')) class _YR_NORI: '''yr.no source''' def __init__(self): self.driver=None self.ForecastParser=self._ForecastParser() class SearchResults: '''Implementation of search results''' def __init__(self,l): self.res=l self.first=l[0] def __getitem__(self,item): return self.result(item) def __setitem__(self,item,what): raise ReadonlyError('read-only') def result(self,i): return self.res[i] def __repr__(self): return repr(self.res) class Day: '''Implementation of one day''' def __init__(self,wlst,wdict): self.weather_as_list=wlst self.weather_as_dict=wdict def __getitem__(self,i): return self.gettemp(i.split(':')[0]) def splittime(self,time,after=int): try: return tuple(after(i) for i in time.split(':')) except ValueError: raise ValueError( f"invalid value for 'splittime':{time}" ) def fillin(self,time): return self.jointime(self.formatsec(i) for i in self.splittime(time,after=str)) def formatsec(self,time): if len(str(time))>2: raise ValueError('not 2-digit or 1-digit time') if not time: return "" if len(str(time))<2: return "0"+str(time) return time def jointime(self,time): return ':'.join(str(i) for i in time) def gettemp(self,time): if isinstance(time,str): time=self.splittime(time) return self.weather_as_dict[self.fillin(self.repairtime(self.jointime(time)))] def timetoint(self,time): if isinstance(time,str): return self.splittime(time)[1]+self.splittime(time)[0]*60 return time[1]+time[0]*60 def inttotime(self,i): return (i//60,i%60) def repairtime(self,time): closest=lambda num,collection:min(collection,key=lambda x:abs((x-num)+1)) dy=self.weather_as_dict dy=[self.timetoint(time) for time in dy] qr=self.timetoint(self.roundtime(time)) return self.jointime(self.inttotime(closest(qr,dy))) def roundtime(self,time): mins=int(time.split(':')[-1]) if mins==0: return time hrs=int(time.split(':')[0]) if mins<50: return f'{self.formatsec(hrs)}:00' return f'{self.formatsec(hrs+1)}:00' class Forecast: '''implementation of weather forecast''' def __init__(self,days,city,country,*args,**kwargs): self.today=days[0] self.tomorrow=days[1] self.days=days self.city=city self.country=country def __getitem__(self,i): return self.day(i) def __setitem__(self,item,what): raise ReadonlyError('read-only') def day(self,daynum): return self.days[daynum] class Weather: '''Implementation of weather''' def __init__(self,wind,precip,temp,humid=None,unit=CELSIUS): self.temp=temp self.precip=precip self.wind=wind self.humid=humid self.unit=unit class _ForecastParser: '''Parses forecast''' def parse(self,content,unit,ci,co): content=json.loads(content) timeseries=content["properties"]["timeseries"] weather_as_dict={} fcast=[] lastday=None for wr in timeseries: war=wr["data"] tm=self.parsetime(wr["time"]) dy=self.parseday(wr["time"]) instant=war["instant"]["details"] temp=instant["air_temperature"] wind=instant["wind_speed"] wdirct=instant["wind_from_direction"] precip=war["next_1_hours"]["details"]["precipitation_amount"] if "next_1_hours" in war else 0.0 humid=instant["relative_humidity"] weather_as_dict[tm]=_YR_NORI.Weather(Wind(wind,wdirct),precip,temp,humid,unit) if lastday is not None: if dy!=lastday: fcast.append(_YR_NORI.Day(list(weather_as_dict.values()),weather_as_dict)) weather_as_dict={} lastday=dy foc= _YR_NORI.Forecast(fcast,ci,co) cacher.cache(foc) return foc def close_ad(self,driver): '''Closes "We have a new graph" pop-up''' try: driver.find_elements_by_class_name("feature-promo-modal-meteogram__link")[0].click() except:pass def parsetime(self,time): pattern=re.compile('(\d{2}\:\d{2})\:\d{2}') return pattern.search(time).group(1) def parseday(self,time): pattern=re.compile('\d{4}-\d{2}-(\d{2})') return pattern.search(time).group(1) def searchurl(self,q): '''Returns yr.no search URL''' return f'https://www.yr.no/en/search?q={q}' def expandhref(self,href): '''Expands href''' return f'https://www.yr.no{href}' def search(self,q): '''Searches yr.no''' self.driver=_driverSearch().best() self.driver.get( self.searchurl(q) ) results=bs(self.driver.find_elements_by_class_name('search-results-list')[0].get_attribute('outerHTML'), 'html.parser') results=results.findAll('li') results=[self.expandhref(result.a['href']) for result in results] return self.SearchResults(results) def forecast(self,cityname=CITY,countryname=None,unit=None): '''Gets forecast''' err=None if not countryname: if cityname==CITY: countryname=COUNTRY try: countryname=getcountry(cityname) except AttributeError: err=NoSuchCityError(f"no such city: '{cityname}'") if err: raise err if cityname==CITY and not countryname: countryname=COUNTRY ca=cacher.getcached(cityname,countryname) for caf in ca: foc=dumper.load(caf) if isinstance(foc,self.__class__.Forecast): return foc if cityname==CITY and countryname==COUNTRY: lat,lon=LOCATION.lat,LOCATION.lon else: loct=locator.geocode(f'{cityname},{countryname}') lat,lon=loct.latitude,loct.longitude if unit is None: if countryname.lower()=='united states': unit=FAHRENHEIT else: unit=CELSIUS apiurl=f'https://api.met.no/weatherapi/locationforecast/2.0/compact?lat={lat}&lon={lon}' return self.ForecastParser.parse(BetaChrome().request(apiurl)[1],unit,cityname,countryname) class _7Timer: '''7timer.info source''' def __init__(self): self.driver=None self.ForecastParser=self._ForecastParser() class Day: '''Implementation of one day''' def __init__(self,wlst,wdict): self.weather_as_list=wlst self.weather_as_dict=wdict def __getitem__(self,i): return self.gettemp(i.split(':')[0]) def splittime(self,time,after=int): try: return tuple(after(i) for i in time.split(':')) except ValueError: raise ValueError( f"invalid value for 'splittime':{time}" ) def fillin(self,time): return self.jointime(self.formatsec(i) for i in self.splittime(time,after=str)) def formatsec(self,time): if len(str(time))>2: raise ValueError('not 2-digit or 1-digit time') if not time: return "" if len(str(time))<2: return "0"+str(time) return time def jointime(self,time): return ':'.join(str(i) for i in time) def gettemp(self,time): if isinstance(time,str): time=self.splittime(time) return self.weather_as_dict[self.fillin(self.repairtime(self.jointime(time)))] def timetoint(self,time): if isinstance(time,str): return (self.splittime(time)[1]+self.splittime(time)[0]*60)%1440 return (time[1]+time[0]*60)%1440 def inttotime(self,i): return (i//60,i%60) def repairtime(self,time): closest=lambda num,collection:min(collection,key=lambda x:abs((x-num)+1)) dy=self.weather_as_dict dy=[self.timetoint(time) for time in dy] qr=self.timetoint(self.roundtime(time)) return self.jointime(self.inttotime(closest(qr,dy))) def roundtime(self,time): mins=int(time.split(':')[-1]) if mins==0: return time hrs=int(time.split(':')[0]) if mins<50: return f'{self.formatsec(hrs)}:00' return f'{self.formatsec(hrs+1)}:00' class Forecast: '''implementation of weather forecast''' def __init__(self,days,ci,co): self.days=days self.today=days[0] self.tomorrow=days[1] self.city=ci self.country=co def __getitem__(self,i): return self.day(i) def __setitem__(self,item,what): raise ReadonlyError('read-only') def day(self,daynum): return self.days[daynum] class Weather: '''Implementation of weather''' def __init__(self,wind,precip,temp,humid=None,unit=CELSIUS): self.temp=temp self.precip=precip self.wind=wind self.humid=humid self.unit=unit class _ForecastParser: '''Parses forecast''' def parse(self,content,unit,ci,co): content=json.loads(content) lit=content['dataseries'] weather_as_dict={} fcast=[] dnum=1 for qeqeq in lit: tm=self.mktime( self.inttotime( self.timetoint( str( qeqeq['timepoint'] )+':00' )+self.timetoint( self.roundtime( self.parsetime( time.ctime( time.time() ) ) ) ) ) ) tmp=self.c2f(qeqeq['temp2m'],unit) humd=None precip=False if qeqeq['prec_type']=='none' else True wind=qeqeq['wind10m']['speed'] windir=qeqeq['wind10m']['direction'] weather_as_dict[tm]=_7Timer.Weather(Wind(wind,windir),precip,tmp,humd,unit) if qeqeq['timepoint']>=dnum*24: fcast.append(_7Timer.Day(list(weather_as_dict.values()),weather_as_dict)) weather_as_dict={} dnum+=1 ltime=self.timetoint(tm) foc= _7Timer.Forecast(fcast,ci,co) cacher.cache(foc) return foc def splittime(self,time,after=int): try: return tuple(after(i) for i in time.split(':')) except ValueError: raise ValueError( f"invalid value for 'splittime':{time}" ) def fillin(self,time): return self.jointime(self.formatsec(i) for i in self.splittime(time,after=str)) def formatsec(self,time): if len(str(time))>2: raise ValueError('not 2-digit or 1-digit time') if not time: return "" if len(str(time))<2: return "0"+str(time) return time def jointime(self,time): return ':'.join(str(i) for i in time) def gettemp(self,time): if isinstance(time,str): time=self.splittime(time) return self.weather_as_dict[self.fillin(self.repairtime(self.jointime(time)))] def timetoint(self,time): if isinstance(time,str): return (self.splittime(time)[1]+self.splittime(time)[0]*60)%1440 return (time[1]+time[0]*60)%1440 def inttotime(self,i): return (i//60,i%60) def repairtime(self,time): closest=lambda num,collection:min(collection,key=lambda x:abs((x-num)+1)) dy=self.weather_as_dict dy=[self.timetoint(time) for time in dy] qr=self.timetoint(self.roundtime(time)) return self.jointime(self.inttotime(closest(qr,dy))) def roundtime(self,time): mins=int(time.split(':')[-1]) if mins==0: return time hrs=int(time.split(':')[0]) if mins<50: return f'{self.formatsec(hrs)}:00' return f'{self.formatsec(hrs+1)}:00' def mktime(self,time): return self.fillin(self.jointime(self.inttotime(self.timetoint(time)))) def parsetime(self,time): pattern=re.compile('(\d{2}\:\d{2})\:\d{2}') return pattern.search(time).group(1) def parseday(self,time): pattern=re.compile('\d{4}-\d{2}-(\d{2})') return pattern.search(time).group(1) def c2f(self,fah,unit=CELSIUS): if unit==FAHRENHEIT: return tu(fah,'C','F').doconnvert() return fah def forecast(self,cityname=CITY,countryname=COUNTRY,unit=None): '''Gets forecast''' err=None if not countryname: try: countryname=getcountry(cityname) except AttributeError: err=NoSuchCityError(f"no such city: '{cityname}'") if err: raise err if cityname==CITY and not countryname: countryname=COUNTRY if unit is None: if countryname.lower()=='united states': unit=FAHRENHEIT else: unit=CELSIUS if cityname==CITY and countryname==COUNTRY: lat,lon=LOCATION.lat,LOCATION.lon else: loct=locator.geocode(f'{cityname},{countryname}') lat,lon=loct.latitude,loct.longitude ca=cacher.getcached(cityname,countryname) for caf in ca: foc=dumper.load(caf) if isinstance(foc,self.__class__.Forecast): return foc apiurl=f'https://www.7timer.info/bin/astro.php?lon={lon}&lat={lat}&ac=0&lang=en&unit=metric&output=json&tzshift=0' return self.ForecastParser.parse(BetaChrome().request(apiurl)[1],unit,cityname,countryname) ForecastParser=_ForecastParser() class _driverSearch: '''Search drivers''' def __init__(self,throw=False): if throw: debugger.debug("Lost connection to the driver,attempting reconnect...","ERROR") debugger.debug("initialized driver search") self.browsers=[Chrome,Firefox,Safari,Ie,Edge] self.reprs={repr(i):i for i in self.browsers} '''If it is possible, initiate in headless mode''' _CHOPT=chrome.options _FFXOPT=firefox.options _IEXOPT=ie.options opt=[_CHOPT, _FFXOPT, _IEXOPT,] opt=[i.Options() for i in opt] headlessopt=opt[:] hopt=[] for br in headlessopt: br.headless=True hopt.append(br) headlessopt=hopt self.headlessopt=[[Chrome,headlessopt[0]],[Firefox,headlessopt[1]],[Ie,headlessopt[2]]] del hopt if ('.cache/weather')not in os.listdir(): os.makedirs('.cache/weather',exist_ok=True) debugger.debug("Getting browser avaliability data") if ('aval') not in os.listdir('.cache/weather'): debugger.debug("Avaliability data not in cache!","WARNING") chrome_aval=False firefox_aval=False safari_aval=False ie_aval=False pjs_aval=False try: c=Chrome() c.quit() chrome_aval=True except: try: f=Firefox() f.quit() firefox_aval=True except: try: s=Safari() s.quit() safari_aval=True except: try: i=Ie() i.quit() ie_aval=True self.aval=[[Chrome,chrome_aval],[Firefox,firefox_aval],[Safari,safari_aval],[Ie,ie_aval]] with open('.cache/weather/aval','w')as f: res=[] for i,j in self.aval: res.append([repr(i),j]) debugger.debug("Json dumping data") json.dump(res,f) else: debugger.debug("Loading data from cache") with open('.cache/weather/aval')as f: try: self.aval=json.load(f) except: raise WeatherError( 'Could not get browser avaliability data because file .cache/weather/aval is malformed, maybe try to delete it?' ) result=[] for i in self.aval: if i[0] in self.reprs: result.append([self.reprs[i[0]],i[1]]) else: result.append(i) self.aval=result if all([not i for i in [a[1] for a in self.aval]]): raise DriverError( '''None of web drivers installed. Check https://jenca-adam.github.io/projects/weather/docs.html#special_requirements . Alternatively, you can use weather.yrno instead of weather.google . ''') def _checkin(self,a,b,index=0): for i in a: if b==i[index]: return True return False def _isaval(self,dr): for i in self.aval: if i[0]==dr and i[1]: return True return False def _gethopt(self,dr): for i in self.headlessopt: if i[0]==dr: return i[1] def best(self,reload=False): debugger.debug("Getting best driver") '''Get best driver''' if '.cache/weather' not in os.listdir() or reload: if '.cache/weather' not in os.listdir(): debugger.debug("Could not load data from cache, parsing manually","WARNING") os.makedirs('.cache/weather',exist_ok=True) hdlsxst=False for b in self.browsers: if self._checkin(self.headlessopt,b): hdlsxst=True if not hdlsxst: warnings.warn( NoHeadlessWarning( ''' No headless web driver, browser will open while searching for forecast. Headless web drivers are: chromedriver (Chrome),geckodriver (Mozilla Firefox),IEDriverServer.exe(Internet Explorer). Check https://jenca-adam.github.io/projects/weather/docs.html#headless_drivers''' ) ) for b in self.browsers: if self._isaval(b): with open('.cache/weather/browser','w') as f: f.write(repr(b)) if self._checkin(self.headlessopt,b): return b(options=self._gethopt(b)) return b() elif 'browser' not in os.listdir('.cache/weather'): debugger.debug("Could not load data from cache, parsing manually","WARNING") hdlsxst=False for b in self.browsers: if self._checkin(self.headlessopt,b): hdlsxst=True if not hdlsxst: warnings.warn( NoHeadlessWarning( ''' No headless web driver, browser will open while searching for forecast. Headless web drivers are: chromedriver (Chrome),geckodriver (Mozilla Firefox),IEDriverServer.exe(Internet Explorer). Check https://jenca-adam.github.io/projects/weather/docs.html#headless_drivers''' ) ) for b in self.browsers: if self._isaval(b): with open('.weather/browser','w') as f: f.write(repr(b)) if self._checkin(self.headlessopt,b): return b(options=self._gethopt(b)) return b() else: debugger.debug("loading data from cache") cont=open('.weather/browser').read() b=self.reprs[cont] if self._checkin(self.headlessopt,b): return b(options=self._gethopt(b)) return b() class _SetterUp: '''Sets up chromedriver and geckodriver''' SYSTEM=platform.system() if SYSTEM=='Windows': CHROMEDRIVER_URL="https://github.com/jenca-adam/jenca-adam.github.io/raw/master/projects/weather/extras/bin/win/chromedriver.exe" GECKODRIVER_URL="https://github.com/jenca-adam/jenca-adam.github.io/raw/master/projects/weather/extras/bin/win/geckodriver.exe" elif SYSTEM == 'Linux': CHROMEDRIVER_URL="https://github.com/jenca-adam/jenca-adam.github.io/raw/master/projects/weather/extras/bin/linux/chromedriver" GECKODRIVER_URL="https://github.com/jenca-adam/jenca-adam.github.io/raw/master/projects/weather/extras/bin/linux/geckodriver" else: CHROMEDRIVER_URL="https://github.com/jenca-adam/jenca-adam.github.io/raw/master/projects/weather/extras/bin/mac/chromedriver" GECKODRIVER_URL="https://github.com/jenca-adam/jenca-adam.github.io/raw/master/projects/weather/extras/bin/mac/geckodriver" HOME=str(Path.home()) INSTALL_DIR=os.path.join(HOME,'.local/bin') if '.local' not in os.listdir(HOME): p=os.getcwd() os.chdir(HOME) os.makedirs('.local/bin') os.chdir(p) elif 'bin' not in os.listdir(os.path.join(HOME,'.local')): p=os.getcwd() os.chdir(HOME) os.makedirs('.local/bin') os.chdir(p) if INSTALL_DIR not in os.environ["PATH"].split(os.pathsep): os.environ["PATH"]+=os.pathsep+INSTALL_DIR CHROMEDRIVER_INSTALL=os.path.join(INSTALL_DIR,CHROMEDRIVER_URL.split('/')[-1]) GECKODRIVER_INSTALL=os.path.join(INSTALL_DIR,GECKODRIVER_URL.split('/')[-1]) def install_cdr(self): debugger.debug("Installing chromedriver") h=Http() debugger.debug("Downloading chromedriver") r,content=h.request(self.CHROMEDRIVER_URL) with open(self.CHROMEDRIVER_INSTALL,'wb')as f: f.write(content) os.chmod(self.CHROMEDRIVER_INSTALL,0o777) def install_gecko(self): debugger.debug("Installing geckodriver") h=Http() r,content=h.request(self.GECKODRIVER_URL) with open(self.GECKODRIVER_INSTALL,'wb')as f: f.write(content) os.chmod(self.GECKODRIVER_INSTALL,0o777) def setup(self,drivers=['chromedriver','geckodriver']): debugger.debug("setting up") if not drivers: raise SetupError('please specify at least one driver') chopt=chrome.options.Options() ffxopt=firefox.options.Options() chopt.headless=True ffxopt.headless=True if 'chromedriver' in drivers: try: Chrome(options=chopt) except: self._setup(drivers=['chromedriver']) if 'geckodriver' in drivers: try: Firefox(options=ffxopt) except: self._setup(drivers=['geckodriver']) def _setup(self,drivers): if not drivers: raise SetupError('please specify at least one driver') if 'chromedriver' in drivers: self.install_cdr() if 'geckodriver' in drivers: self.install_gecko() chopt=chrome.options.Options() ffxopt=firefox.options.Options() chopt.headless=True ffxopt.headless=True try: Chrome(options=chopt) except: try: Firefox(options=ffxopt) except: raise SetupError(''' Please note that weather.setup() works only for Firefox and Chrome for now. You have 2 options: 1.Install Firefox or Chrome 2.Don't call weather.setup on initializing and install one of the drivers manually. ''') class _cukor: '''Advanced list comprehension''' def cukor(a,b,c,d,e): result=[] exec( f'''for {b} in {c}: if {d}: result.append({a}) else: result.append({e})''' ,{ 'result':result}) return result class parser: '''Parses temperature and time strings''' class ParsingError(ValueError):pass def detectint(self,st): p=re.compile(r"(\-?\d+)") match=p.search(st) if not match: raise self.ParsingError( "no int detected" ) return int(match.group(0)) def is_inaccurate(self,st): i=self.detectint(st) return '-' in st def parse_inaccurate(self,t): if not self.is_inaccurate(t): try: return int(t) except ValueError: raise self.ParsingError("not a valid time") else: f,l=t.split('-') try: f=int(f) l=int(l) except ValueError: raise self.ParsingError("not a valid time") d=(l-f)//2 if d<0: raise self.ParsingError( "not a valid time -- second int is larger than first") return f+d class _Avg: '''get best forecast result''' SVC=['yrno','google'] def forecast(self,*a,**k): ress=[] for service in self.SVC: debugger.debug(f"running service \"{service}\"") try: ress.append( SERVICES[service].forecast(*a,**k)) except KeyboardInterrupt: raise SetupError("lost connection to service") except urllib3.exceptions.MaxRetryError: try: debugger.debug("Lost connection to the driver,attempting reconnect...","ERROR") importlib.reload(selenium) ress.append(SERVICES[service].forecast(*a,**k)) except urllib3.exceptions.MaxRetryError: raise DriverError( """Because of unknown error in Selenium was lost connection to driver. Consider restarting your script/module""" ) except WeatherError as e: if e==NoSuchCityError: raise debugger.debug(f'service \"{service}\" does not recognise place',"ERROR") except selenium.common.exceptions.WebDriverException: raise DriverError( """Could not set up the driver, probably keyboard interrupt?""" ) except Exception as e: if e==KeyboardInterrupt: raise KeyboardInterrupt("interrupted while searching for forecast") raise if not ress: raise WeatherError("could not find service matching your search") fcast=[] city=ress[0].city country=ress[0].country for i in ress: dayc=0 for day in i.days: if len(fcast)<dayc+1: wdict={} else: wdict=fcast[dayc].weather_as_dict for time,weather in day.weather_as_dict.items(): if time not in wdict: wdict[time]=weather else: olw=wdict[time] olw.temp=(olw.temp+weather.temp)//2 if weather.humid is not None: olw.humid=(olw.humid+weather.humid)//2 olw.wind.speed=(olw.wind.speed+weather.wind.speed)/2 olw.wind.direction=Direction((olw.wind.direction.angle+weather.wind.direction.angle)//2) if type(weather.precip) in [int,float]: olw.precip=(weather.precip+olw.precip)/2 wdict[time]=olw fcast.append(yrno.Day(list(wdict.values()),wdict)) return yrno.Forecast(fcast,city,country) parser=parser() google=_WeatherChannel() yrno=_YR_NORI() setup=_SetterUp() average=_Avg() debugger=_debugger() f7timer=_7Timer() dumper=_fcdumper() DEBUG=False debugger.debug=debugger.debug cacher=_cacher() fastener=_fastener() getcountry=fastener.getcountry SERVICES={'google':google,'yrno':yrno,'metno':yrno,'7timer':f7timer,'average':average} def fix(svc): fxd = difflib.get_close_matches(svc,SERVICES.keys(),n=1,cutoff=0.7) if len(fxd)>0: return fxd[0] else: return svc def forecast(cityname=CITY,countryname=None,unit=None,service=average,debug=False): global DEBUG,selenium DEBUG=debug if isinstance(service,str): try: service=SERVICES[service] except KeyError: afms="" excm="!" if fix(service)!=service: excm="?" afms=f", did you mean {fix(service)!r}" raise UnknownServiceError(f'unknown service : {service!r}{afms}{excm}') debugger.debug("Debugger has started","INFO") if service==average: return service.forecast(cityname,countryname,unit) else: try: return service.forecast(cityname,countryname,unit) except KeyboardInterrupt: raise SetupError("lost connection to service") except urllib3.exceptions.MaxRetryError: debugger.debug("Lost connection to the driver,attempting reconnect...","ERROR") try: return service.forecast(cityname,countryname,unit,driver=_driverSearch(throw=True).best()) except urllib3.exceptions.MaxRetryError: raise DriverError( """Because of unknown error in Selenium was lost connection to driver. Consider restarting your script/module""" ) except WeatherError as e: if e==NoSuchCityError: raise debugger.debug(f'service \"{service}\" does not recognise place ;{e} raised',"ERROR") except selenium.common.exceptions.WebDriverException: raise DriverError( """Could not set up the driver, probably keyboard interrupt?""" ) except Exception as e: if e==KeyboardInterrupt: raise KeyboardInterrupt("interrupted while searching for forecast") raise class More(object): def __init__(self, num_lines,debug=False): self.num_lines = num_lines self.debug=debug def __ror__(self, other): s = str(other).split("\n") print(*s[:self.num_lines], sep="\n") for i in range( self.num_lines,len(s)): print("--MORE--\r",end="") key=getchlib.getkey() if key.lower()=='q' : if not self.debug: termutils.clear() quit() if key in ['\x1b[B','\x1b[6~',' ','\n']: print(s[i]) time.sleep(0.1) class CLI: def main(self): parser=argparse.ArgumentParser(description='Python app for getting weather forecast') parser.add_argument('--city',type=str,help='City for forecast (if not passed, using current location)',nargs=1) parser.add_argument('--country',type=str,help='Country for forecast (see above)',nargs=1) parser.add_argument('-d','--debug',action='store_true',help='Debug') parser.add_argument('-s','--service',type=str,help='Service to use (e.g. "yrno","7timer","google"). Implied with "average"(try to optimise the service)') args=parser.parse_args() if not args.city: args.city=[CITY] if not args.country: args.country=[None] if not args.service: args.service="average" if not args.debug: termutils.clear() print('Loading ...') foc=forecast(args.city[0],args.country[0],service=args.service,debug=args.debug) if foc is None: raise NoSuchCityError(f'no such city :{args.city[0]!r}') if not args.debug: termutils.clear() termcolor.cprint('Weather forecast for',end=' ',color='cyan') termcolor.cprint(','.join([foc.city,foc.country]),color='yellow') if isinstance(foc,yrno.Forecast): source='Yr.no' elif isinstance(foc,google.Forecast): source='Google' elif isinstance(foc,f7timer.Forecast): source='7timer!' else: source=None lac=2 if source: print('Source : '+source) lac+=1 foc2t(foc)|More(num_lines=os.get_terminal_size().lines-lac,debug=args.debug) cli=CLI() main=cli.main if __name__=='__main__': main() ```
{ "source": "jenchen1398/artistic-music-style-transfer", "score": 3 }
#### File: artistic-music-style-transfer/pytorch/domain_confusion.py ```python import torch import numpy as np from torch.nn import functional as F class DomainCNN(torch.nn.Module): # input is vector in R^64 def __init__(self, domains): super(DomainCNN, self).__init__() # 3 1D convolution layers self.conv1 = torch.nn.Conv1d(1, 32, kernel_size=5) self.pool1 = torch.nn.MaxPool1d(kernel_size=2) self.conv2 = torch.nn.Conv1d(32, 16, kernel_size=5, stride=2) self.pool2 = torch.nn.MaxPool1d(kernel_size=2, stride=2) self.conv3 = torch.nn.Conv1d(16, 8, kernel_size=2, stride=2) self.pool3 = torch.nn.MaxPool1d(kernel_size=2, stride=1) # last layer projects vectors to dimension k # average the vectors to obtain a single vector of dim k self.fc1 = torch.nn.Linear(8*2, domains) def forward(self, x): x = F.elu(self.conv1(x)) x = self.pool1(x) x = F.elu(self.conv2(x)) x = self.pool2(x) x = F.elu(self.conv3(x)) x = self.pool3(x) # reshape x = x.view(-1, 8*2) m = torch.nn.Softmax(1) x = m(self.fc1(x)) return x class DomainLoss(torch.nn.Module): def __init__(self, num_classes): super(DomainLoss, self).__init__() self.num_classes = num_classes def forward(self, outputs, targets): """param outputs: k dimension outputs from confusion network """ # TODO FIX THIS HAHA loss = torch.nn.CrossEntropyLoss(outputs, targets) loss = loss.sum / loss.shape[1] ```
{ "source": "jenchen1398/ccigan", "score": 3 }
#### File: ccigan/code/ds.py ```python import torch from torch.utils.data import Dataset import torchvision.transforms as transforms class MIBIDataset(Dataset): def __init__(self, data, transform=None): """ Parameters: data is of shape(n_cells, img_h, img_w, n_channels) """ self.data = data self.transform = transforms.Compose([transforms.ToTensor()]) def __len__(self): return len(self.data) def __getitem__(self, idx): seg = self.data[idx][0] real = self.data[idx][1] seg = self.transform(seg) real = self.transform(real) return seg, real ```
{ "source": "jencmart/mff-statisticky-strojovy-preklad", "score": 2 }
#### File: jencmart/mff-statisticky-strojovy-preklad/apply.py ```python from __future__ import print_function from __future__ import unicode_literals import logging import os import re import subprocess import tempfile from collections import defaultdict class G2PModelTester(): """G2P Model training wrapper class. Phonetisaurus G2P modeling training wrapper class. This wraps the alignment, joint n-gram training, and ARPA to WFST conversion steps into one command. """ def __init__(self, model, **kwargs): self.model = model self.lexicon_file = kwargs.get("lexicon", None) self.nbest = kwargs.get("nbest", 1) self.thresh = kwargs.get("thresh", 99) self.beam = kwargs.get("beam", 10000) self.greedy = kwargs.get("greedy", False) self.accumulate = kwargs.get("accumulate", False) self.pmass = kwargs.get("pmass", 0.0) self.probs = kwargs.get("probs", False) self.verbose = kwargs.get("verbose", False) self.logger = self.setupLogger() self.gsep = kwargs.get("gsep", "") def setupLogger(self): """Setup the logger and logging level. Setup the logger and logging level. We only support verbose and non-verbose mode. Args: verbose (bool): Verbose mode, or not. Returns: Logger: A configured logger instance. """ level = logging.DEBUG if self.verbose else logging.INFO logging.basicConfig( level=level, format="\033[94m%(levelname)s:%(name)s:" \ "%(asctime)s\033[0m: %(message)s", datefmt="%Y-%m-%d %H:%M:%S" ) return logging.getLogger("phonetisaurus-apply") def _loadLexicon(self): """Load the lexicon from a file. Load the reference lexicon from a file, and store it in a defaultdict (list). """ _lexicon = defaultdict(list) if not self.lexicon_file: return _lexicon self.logger.debug("Loading lexicon from file...") with open(self.lexicon_file, "r") as ifp: for line in ifp: # py2py3 compatbility, if sys.version_info[0] < 3: line = line.decode("utf8").strip() else: line = line.strip() word, pron = re.split(r"\t", line, 1) _lexicon[word].append(pron) return _lexicon def checkPhonetisaurusConfig(self): """Run some basic checks before training. Run some basic checks regarding the $PATH, environment, and provided data before starting training. Raises: EnvironmentError: raised if binaries are not found. """ self.logger.debug("Checking command configuration...") for program in ["phonetisaurus-g2pfst"]: if not self.which(program): raise EnvironmentError("Phonetisaurus command, '{0}', " \ "not found in path.".format(program)) if self.lexicon_file and not os.path.exists(self.lexicon_file): self.logger.error("Could not find provided lexicon file.") sys.exit(1) for key, val in sorted(vars(self).items()): self.logger.debug(u"{0}: {1}".format(key, val)) self.lexicon = self._loadLexicon() return def which(self, program): """Basic 'which' implementation for python. Basic 'which' implementation for python from stackoverflow: * https://stackoverflow.com/a/377028/6739158 Args: program (str): The program name to search the $PATH for. Returns: path/None: The path to the executable, or None. """ def is_exe(fpath): return os.path.isfile(fpath) and os.access(fpath, os.X_OK) fpath, fname = os.path.split(program) if fpath: if is_exe(program): return program else: for path in os.environ["PATH"].split(os.pathsep): path = path.strip('"') exe_file = os.path.join(path, program) if is_exe(exe_file): return exe_file return None def makeG2PCommand(self, word_list): """Build the G2P command. Build the G2P command from the provided arguments. Returns: list: The command in subprocess list format. """ command = [ u"phonetisaurus-g2pfst", u"--model={0}".format(self.model), u"--nbest={0}".format(self.nbest), u"--beam={0}".format(self.beam), u"--thresh={0}".format(self.thresh), u"--accumulate={0}".format(str(self.accumulate).lower()), u"--pmass={0}".format(self.pmass), u"--nlog_probs={0}".format(str(not self.probs).lower()), u"--wordlist={0}".format(word_list), u"--gsep={0}".format(self.gsep), ] self.logger.debug(u" ".join(command)) return command def runG2PCommand(self, word_list_file): """Generate and run the actual G2P command. Generate and run the actual G2P command. Each synthesized entry will be yielded back on-the-fly via the subprocess stdout readline method. Args: word_list_file (str): The input word list. """ g2p_command = self.makeG2PCommand(word_list_file) self.logger.debug("Applying G2P model...") with open(os.devnull, "w") as devnull: proc = subprocess.Popen( g2p_command, stdout=subprocess.PIPE, stderr=devnull if not self.verbose else None ) for line in proc.stdout: parts = re.split(r"\t", line.decode("utf8").strip()) if not len(parts) == 3: self.logger.warning( u"No pronunciation for word: '{0}'".format(parts[0]) ) continue yield parts return def applyG2POnly(self, word_list_file): self.checkPhonetisaurusConfig() if not os.path.exists(word_list_file) \ or not os.path.isfile(word_list_file): raise IOError("Word list file not found.") results = [] for word, score, pron in self.runG2PCommand(word_list_file): results.append((word, float(score), pron)) return results def applyG2PWithLexicon(self, word_list_file): """Apply the G2P model to a word list, combined with lexicon. Apply the G2P model to a word list, but combine this with a reference lexicon. Words for which a reference entry exists will not be sent to the G2P, unless the additional '--greedy' flag is set to True. Args: word_list_file (str): The input word list. """ target_lexicon = defaultdict(list) tmpwordlist = tempfile.NamedTemporaryFile(mode='w', delete=False) # First, find any words in the target_meta list for which we already # have a canonical pronunciation in the reference lexicon. with open(word_list_file, "r") as ifp: for word in ifp: # py2py3 compatbility, if sys.version_info[0] < 3: word = word.decode("utf8").strip() else: word = word.strip() # already in 'utf8'. if word in self.lexicon: target_lexicon[word] = [(0.0, pron) for pron in self.lexicon[word]] # In greedy mode we still send words to the G2P, even # if we have canonical entries in the reference lexicon. if self.greedy: print(word.encode("utf8"), file=tmpwordlist) else: # py2py3 compatbility, if sys.version_info[0] < 3: print(word.encode("utf8"), file=tmpwordlist) else: print(word, file=tmpwordlist) tmpwordlist.close() # Second, iterate through the G2P output, and filter against # any possible duplicates previously found in the reference lexicon. for word, score, pron in self.runG2PCommand(tmpwordlist.name): prons = set([p for s, p in target_lexicon[word]]) if pron in prons: continue target_lexicon[word].append((score, pron)) # Finally, sort everything that is left and print it. for word in sorted(target_lexicon.keys()): for score, pron in target_lexicon[word]: line = u"" if self.verbose: line = u"{0}\t{1:.2f}\t{2}".format( word, float(score), pron ) else: line = u"{0}\t{1}".format(word, pron) # py2py3 compatbility, if sys.version_info[0] < 3: print(line.encode("utf8")) else: print(line) os.unlink(tmpwordlist.name) return def ApplyG2PModel(self, word_list_file): self.checkPhonetisaurusConfig() if not os.path.exists(word_list_file) \ or not os.path.isfile(word_list_file): raise IOError("Word list file not found.") if len(self.lexicon) == 0: return self.applyG2POnly(word_list_file) else: self.applyG2PWithLexicon(word_list_file) return if __name__ == "__main__": import sys, argparse example = "{0} --model train/model.fst --word test".format(sys.argv[0]) parser = argparse.ArgumentParser(description=example) parser.add_argument("--model", "-m", help="Phonetisaurus G2P fst model.", required=True) parser.add_argument("--lexicon", "-l", help="Optional reference lexicon.", required=False) parser.add_argument("--nbest", "-n", help="Maximum number of hypotheses to produce. Overridden if --pmass is set.", default=1, type=int) parser.add_argument("--beam", "-b", help="Search 'beam'.", default=10000, type=int) parser.add_argument("--thresh", "-t", help="Pruning threshold for n-best.", default=99.0, type=float) parser.add_argument("--greedy", "-g", help="Use the G2P even if a reference lexicon has been provided.", default=False, action="store_true") parser.add_argument("--accumulate", "-a", help="Accumulate probabilities across unique pronunciations.", default=False, action="store_true") parser.add_argument("--pmass", "-p", help="Select the maximum number of hypotheses summing to P total mass for a word.", default=0.0, type=float) parser.add_argument("--probs", "-pr", help="Print exp(-val) instead of default -log values.", default=False, action="store_true") parser.add_argument("--word_list", "-wl", help="Input word or word list to apply ""G2P model to.", type=str) parser.add_argument("--verbose", "-v", help="Verbose mode.", default=False, action="store_true") parser.add_argument("--gsep", help="separator of 'graphemes', default: ''") args = parser.parse_args() tester = G2PModelTester( args.model, **{key: val for key, val in args.__dict__.items() if not key in ["model", "word_list"]} ) tester.ApplyG2PModel(args.word_list) ``` #### File: mff-statisticky-strojovy-preklad/generators/factory.py ```python from generators.base_generator import SentenceGenerator class GeneratorFactory: @staticmethod def get_generator_class(name, *argv): generators_names = [cls.__name__ for cls in SentenceGenerator.__subclasses__()] generator_classes = SentenceGenerator.__subclasses__() assert name in generators_names, "Generator '{}' not found. Available: {}".format(name, generators_names) i = generators_names.index(name) return generator_classes[i](*argv) ``` #### File: jencmart/mff-statisticky-strojovy-preklad/sentence_graph.py ```python import logging import math import random import re import nltk from nltk.tokenize import word_tokenize import logger from noise.noise_phoneme import NoiseFromP2G from utils import choice class SamplingGraph: def __init__(self, noise_generator, error_prob, max_M, sampling_M, sampling_N, sampling_error_samples): self.logger = logging.getLogger(logger.BasicLogger.logger_name) self.noise_generator = noise_generator try: nltk.data.find('tokenizers/punkt') except: self.logger.warning('downloading nltk tokenizer punkt...') nltk.download('punkt') assert 0 < error_prob < 1, "error prob must be in (0,1)" assert max_M >= 1, "1:N errors are smallest possible option" assert sampling_M in ['weighted', 'uniform'], "Sampling M must be 'weighted' or 'uniform'" assert sampling_N in ['weighted', 'uniform'], "Sampling N must be 'weighted' or 'uniform'" # Parameters for the sampling of the errors self.max_M = max_M self.sampling_M = sampling_M self.sampling_N = sampling_N self.error_prob = error_prob self.sampling_error_samples = sampling_error_samples def tokenize_sentence(self, sentence): assert isinstance(sentence, str), "sentence must be non-empty string" assert len(sentence) > 0, "sentence must be non-empty string" # replace typographic stuff sentence = sentence.replace("’", "'") sentence = sentence.replace('“', '"') sentence = sentence.replace('”', '"') sentence = sentence.replace('“', '"') # tokenize sentence and extract alpha words + their position in the sentence words = word_tokenize(sentence) self.original_words = words self.words_alpha_pos = list([]) for i, word in enumerate(words): if word.isalpha(): self.words_alpha_pos.append((word.lower(), "", i)) # if we use phoneme model, we must generate pronunciation for alpha words if self.noise_generator.get_name() == 'phoneme': pronunciation = self.noise_generator.generate_pronunciation(self.words_alpha_pos) for i, result in enumerate(pronunciation): w, _, idx = self.words_alpha_pos[i] self.words_alpha_pos[i] = (w, result[2], idx) def build_base_graph(self): self.end_node = Node((".", ".", len(self.original_words)), len(self.words_alpha_pos) + 1, from_M=-2) self.start_node = Node(("<eps>", "<eps>", -1), 0, from_M=-1) self.map_start_word_level_id__node = {} for i in range(0, len(self.words_alpha_pos) + 2): self.map_start_word_level_id__node[i] = [] self.map_start_word_level_id__node[0].append(self.start_node) self.map_start_word_level_id__node[self.end_node.level_id].append(self.end_node) def set_sentence(self, sentence): """ Weighted Oriented Acyclic graph is build from the sentence Each node represent one error instance All positions of the errors are considered using window=1 Nodes of errors are connected s.t. only correct sentences are constructed Weights between noedes represents probability of the erro :param sentence: :return: """ # 1. TOKENIZE SENTENCE self.tokenize_sentence(sentence) # 2. BUILD "CORRECT SENTENCE" GRAPH # sentence: Hello, how are you # graph: <eps>:0 --> HELLO:1 --> HOW:2 --> ARE:3, YOU:4 --> '.':5 self.build_base_graph() # 3. BUILD REST OF THE GRAPH self.__build_noise_graph(self.words_alpha_pos) # 4. CREATE ERROR SAMPLES # { node_id : {to_n : [(error, score)] } } error_samples = self.noise_generator.generate_noise(self.list_sampling_nodes) for node_id, errors in error_samples.items(): for to_N, err_score_list in errors.items(): for err_score in err_score_list: error_word, score = err_score self.map_id_sampling_node[node_id].add_sample(to_N, error_word, score) def sample_sentence(self): """ Example of how the final sentence is constructed: 0 1 2 3 4 5 6 7 8 original sentence: Hello THIS , is 123 welcome ??? there ! 0 1 3 5 7 alpha sentence : Hello THIS is welcome there 0 1 3 5 7 synth sentence : [hellish ] [is this] [welcomere] 0 1 2 3 4 5 7 8 final sentecnce : [Hellish] , [is this] 123 [welcomere] ! we can see, that non alpha token '???' at position 6 in the original sentence have to be omitted also the letter casing is forgotten and finally, spacing between alpha and non-alpha characters (like punctuation symbols) will also be different """ current_node = self.start_node debug_sentence = [] synth_sentence = [] while True: if current_node.from_M_variant == -2: # ... '.' # sentence.append(".") break if current_node.from_M_variant == -1: pass # sentence.append("<eps> ") elif current_node.from_M_variant == 0: # original word debug_sentence.append(current_node.word + " ") else: # sampled word ... # sentence.append(">" + current_node.word + "<[{}] ".format(current_node.variant)) # we are sampling now .... to_N_parts = current_node.select_N(self.sampling_N) sampled_word = current_node.sample_word(to_N_parts, self.sampling_error_samples) synth_sentence.append((sampled_word, current_node.sentence_start_idx, current_node.from_M_variant)) debug_sentence.append(">" + sampled_word + "<[{}->{}] ".format(current_node.from_M_variant, to_N_parts)) # current_node.variant # current_node.display() if len(current_node.neighbours) == 1: current_node = current_node.neighbours[0] else: current_node = choice(current_node.neighbours, current_node.weights) final_sentence = [] last_idx_in = -1 for synth_word in synth_sentence: word, start_idx, cnt_words = synth_word word = word.replace(".", "") if start_idx == 0: word = word.capitalize() # fill in missing non-alpha words while 1 + last_idx_in < start_idx: last_idx_in += 1 final_sentence.append(self.original_words[last_idx_in]) # we fill current word assert start_idx == 1 + last_idx_in, "safety check" final_sentence.append(word) # wrong... last_idx_in = last_idx_in + cnt_words # from 1 , from 2 ... # because we can occasionally skip " this && is " => "thisis" ] and we need to check this ... here # ( we actually moved 3 words forward, not 2 ) # we check it against the index in the alpha sentence for final_idx, w_p_idx in enumerate(self.words_alpha_pos): _, _, orig_idx = w_p_idx if orig_idx == start_idx: _, _, true_idx = self.words_alpha_pos[final_idx + cnt_words - 1] last_idx_in = true_idx # synth word: welcomere(5) # words alpha pos: welcome(5) there(7) # last indx in : not 6 # but ... .... 7 break # fill the end of the sentence while last_idx_in + 1 < len(self.original_words): last_idx_in += 1 final_sentence.append(self.original_words[last_idx_in]) final_sentence = " ".join(final_sentence) # fix [ ( { final_sentence = re.sub(r'\s*([(\[{])\s*', r' \1', final_sentence) # "is ( maybe ) good" -> "is (maybe ) good" # fix } ) } final_sentence = re.sub(r'\s*([)\]\}])\s*', r'\1 ', final_sentence) # "is (maybe ) good" -> "is (maybe) good" # fix - @ final_sentence = re.sub(r'\s*([@])\s*', r'\1', final_sentence) # "hello - kitty" -> "hello-kitty" # fix , . ; : ! ? % $ final_sentence = re.sub(r'\s([?,.;!:%$](?:\s|$))', r'\1', final_sentence) # " hello , Peter" -> hello, Peter # fix `` # final_sentence = re.sub(r'\s*(``)\s*', r' \1', final_sentence) final_sentence = re.sub(r"(``)\s", r'"', final_sentence) # fix '' final_sentence = re.sub(r"\s(''(?:\s|$))", r'" ', final_sentence) final_sentence = final_sentence.strip() # def remove_s(final_sentence, sym): # p1 = -1 # for i, s in enumerate(final_sentence): # if s == sym: # if p1 == -1: # if i + 1 < len(final_sentence): # if final_sentence[i + 1] == " ": # if i == 0 or final_sentence[i - 1] == " ": # p1 = i # continue # if p1 != -1: # if final_sentence[i-1] == " " and i-2 != p1: # final_sentence = final_sentence[0:p1+1] + final_sentence[p1+2: i-1] + final_sentence[i:] # else: # final_sentence = final_sentence[0:p1 + 1] + final_sentence[p1 + 2: ] # break # return final_sentence # # cnt = final_sentence.count('"') # for i in range(math.floor(cnt/2)): # final_sentence = remove_s(final_sentence, '"') # 012345678 # A " B " C # 2 6 # [0:3] debug_sentence = "\t".join(debug_sentence) return debug_sentence, final_sentence def __create_arc_weight(self, node, level): if node.from_M_variant == -1: # end node... return 1 elif node.from_M_variant == 0: # 'original word' return 1 - self.error_prob elif len(self.map_start_word_level_id__node[level]) == 1: return 1 else: cnt_on_level = len(self.map_start_word_level_id__node[level]) if self.sampling_M == 'uniform': normed_weight = 1 else: # 1:N -- weight = max_M - 1 + 1 = 3 # 2:N -- weight = max_M - 2 + 1 = 2 # 3:N -- weight = max_M - 2 + 1 = 1 weight = self.max_M - node.from_M_variant + 1 sum = self.max_M * (self.max_M + 1) / 2 normed_weight = weight / sum # error_prob is distributed between different types of errors prob = self.error_prob / (cnt_on_level - 1) * normed_weight # -1 for the original word ... return prob def __build_noise_graph(self, words): """ nodes for errors are build 1:1 ... 1:N 2:1 ... 2:N ... ... ... M:1 ... M:N Edges are build s.t. it creates correct sentence :param words: :return: """ self.map_id_sampling_node = {} self.max_id = 0 self.list_sampling_nodes = [] for i in range(len(words) - 1, -1, -1): # because nodes ends with the same word, they all have same successors # on the other hand, they differ by the "start" level # A. 1:1 error list_new_nodes = [Node(words[i], level_id=i + 1, from_M=0)] # B. All other word 1:x 2:x ... for mapping in range(self.max_M): # mapping is typically 1:x, 2:x if i - mapping < 0: # prevent underflow break tmp_word = "" # 0 .... words[i - 0] , 1 ... words[i-1] words[i - 0] tmp_word_phonemes = "" first_idx = None for j in range(mapping, -1, -1): if j < mapping: tmp_word += " " tmp_word_phonemes += " " w, p, sentence_idx = words[i - j] if first_idx is None: first_idx = sentence_idx tmp_word += w tmp_word_phonemes += p word = (tmp_word, tmp_word_phonemes, first_idx) _new_node = Node(word, level_id=i + 1 - mapping, from_M=1 + mapping, sampling_id=self.max_id) list_new_nodes.append(_new_node) self.map_id_sampling_node[self.max_id] = _new_node self.list_sampling_nodes.append(_new_node) self.max_id += 1 # C. Add all successors to all new nodes for successor in self.map_start_word_level_id__node[i + 2]: for new_node in list_new_nodes: weight = self.__create_arc_weight(successor, level=i + 2) new_node.add_neighbour(successor, weight) # new_node ----weight---> successor # D. Add all new nodes to the map for new_node in list_new_nodes: self.map_start_word_level_id__node[new_node.level_id].append(new_node) # finally, when all nodes are set # add arcs from <eps> to all nodes representing start of the sentence for successor in self.map_start_word_level_id__node[1]: weight = self.__create_arc_weight(successor, level=1) self.start_node.add_neighbour(successor, weight) class Node: def __init__(self, word, level_id, from_M, sampling_id=0): # word(s), already as the list of phonemes # word stuff self.from_M_variant = from_M # -2=end, -1=start, 0=original ; 1=1:N ; 2=2:N 3=3:N ... self.word, self.phonemes, self.sentence_start_idx = word self.target_samples = {} # M to 1: 2: 3: # {1: [("heck", 0.221), ("hrrck", 0.4), ("hrrrr", 0.17)], 2: [("he hr", 0.01)], 3: []} self.cnt_samples = 0 # we start with zero samples .... self.sampling_id = sampling_id # node stuff self.level_id = level_id self.neighbours = [] self.weights = [] self.set_word = set(self.word.split()) self.logger = logging.getLogger(logger.BasicLogger.logger_name) def select_N(self, sampling_N): # select N # we do it weighted.... the higher the N, the lower the probability if len(self.target_samples) == 0: # self.logger.warning("for id:{} word:'{}' empty targets, returning -1".format(self.sampling_id, self.word)) return -1 N_list = list(self.target_samples.keys()) # 1 2 4 ... 7 if sampling_N == 'uniform': i = random.randint(0, len(N_list) - 1) N = N_list[i] else: _sum = sum(N_list) weights = [_sum - v + 1 for v in N_list] N = choice(N_list, weights) return N def sample_word(self, to_N, sampling_error_samples): # empty targets... if to_N == -1: return self.word # print("word: {}".format(self.word)) if to_N in self.target_samples: possibilities = self.target_samples[to_N] if sampling_error_samples == 'uniform': i = random.randint(0, len(possibilities) - 1) return possibilities[i] # sample word by probability .... wrds = [] weights = [] for poss in possibilities: w, p = poss wrds.append(w) weights.append(1 / p) # if self.word not in w.split(): # narrower.append((w, p)) # print(poss) weights = [float(i) / max(weights) for i in weights] selected = choice(wrds, weights) return selected # this won't happen is N i selected by Node function select_N else: self.logger.warning( "for id:{} word:'{}' target_meta to_N[{}] not available".format(self.sampling_id, self.word, to_N)) self.logger.warning("{}".format(self.target_samples)) # Just select randomly some other [available] key... N_list = list(self.target_samples.keys()) i = random.randint(0, len(N_list) - 1) N = N_list[i] return self.sample_word(N, sampling_error_samples) def add_sample(self, to_N, synthetised_word, probability): probability = float(probability) # prevent same if synthetised_word == self.word: return synth_set = set(synthetised_word.split()) if len(self.set_word.intersection(synth_set)): # maybe too restricting ... ? return # print("adding synthetised word to id: {}, word: '{}' , sampled_word: {}".format(self.sampling_id, self.word, synthetised_word)) # add synthetised word if to_N in self.target_samples: self.target_samples[to_N].append((synthetised_word, probability)) else: self.target_samples[to_N] = [(synthetised_word, probability)] # one more sample self.cnt_samples += 1 def add_neighbour(self, node, weight): self.neighbours.append(node) self.weights.append(weight) def display(self): print(self.word) for k in range(len(self.neighbours)): neig = self.neighbours[k] neig_val = self.weights[k] print("\t p:{:.2f}, w: {}".format(neig_val, neig.word)) ``` #### File: mff-statisticky-strojovy-preklad/train_dictionary/train_util.py ```python import os import pickle def pickle_data(obj, target_dir, filename): if not os.path.exists(target_dir): print("Target dir: '{}' not found, creating it...".format(target_dir)) os.makedirs(target_dir) path = os.path.join(target_dir, filename) print("Writing pickle: {}".format(path)) with open(path, 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) def get_list_of_words(source_file): words = [] with open(source_file, 'r') as f: for line in f: word = line.strip().lower() words.append(word) print("All words loaded from {}".format(source_file)) return words ``` #### File: jencmart/mff-statisticky-strojovy-preklad/utils.py ```python import bisect import random def cdf(weights): total = sum(weights) result = [] cumsum = 0 for w in weights: cumsum += w result.append(cumsum / total) return result def choice(population, weights): assert len(population) == len(weights) cdf_vals = cdf(weights) x = random.random() idx = bisect.bisect(cdf_vals, x) return population[idx] ```
{ "source": "jendas1/poly-classifier", "score": 2 }
#### File: poly-classifier/poly_classifier/rooted_poly_decider.py ```python import math import networkx from rooted_tree_classifier.log_decider import isFlexible def get_labels(configurations): labels = set() for conf in configurations: for label in conf: labels.add(label) return labels def trim(labels, configurations): # trim outputs a subset of labels that can label any sufficiently large Δ-regular tree # lemma 5.28 in the paper while True: new_labels = get_new_labels(labels, configurations) assert not (set(new_labels) - set(labels) ) # trimming labels should not introduce any new labels if set(new_labels) == set(labels): break else: labels = new_labels return labels def get_new_labels(old_labels, configurations): new_labels = set() for conf in configurations: pot_label = conf[0] if pot_label not in old_labels: continue ok = True for cont_label in conf[1:]: if cont_label not in old_labels: ok = False break if ok: new_labels.add(pot_label) return new_labels def create_graph(labels, configurations): graph = {label: [] for label in labels} for conf in configurations: head = conf[0] if head in labels: for tail in conf[1:]: if tail in labels: graph[head].append(tail) return graph def flexible_scc_restrictions(labels, configurations): # output: list of all label restrictions # lemma 5.29 in the paper # create automaton M graph = create_graph(labels, configurations) # find all strongly connected component nxgraph = networkx.to_networkx_graph(graph, create_using=networkx.DiGraph) flexible_restrictions = [] for component in networkx.strongly_connected_components(nxgraph): representative = list(component)[0] if isFlexible(graph, representative): flexible_restrictions.append(component) return flexible_restrictions def max_depth(labels, configurations): if not labels: return 0 maximum = 0 for flexible_restriction in flexible_scc_restrictions( labels, configurations): if labels - flexible_restriction: # if we removed something depth = max_depth(trim(flexible_restriction, configurations), configurations) maximum = max(maximum, depth) else: return math.inf return 1 + maximum def rooted_polynomial_classifier(configurations): labels = get_labels(configurations) return max_depth(trim(labels, configurations), configurations) ```
{ "source": "jendas1/rooted-tree-classifier", "score": 3 }
#### File: rooted-tree-classifier/rooted_tree_classifier/constant_decider.py ```python import sys if __name__ == "__main__": from common import powerset from log_star_decider import _is_log_star_solvable else: from .common import powerset from .log_star_decider import _is_log_star_solvable from .constant_synthesizer import find_algorithm VERBOSE = False def is_constant_solvable(constraints): labels = set("".join(constraints)) for reduced_labels in powerset(labels): reduced_constraints = [constraint for constraint in constraints if (constraint[0] in reduced_labels and constraint[1] in reduced_labels and constraint[ 2] in reduced_labels)] for label in reduced_labels: for constraint in reduced_constraints: if constraint.startswith(label + label) or constraint.endswith(label + label): if _is_log_star_solvable(reduced_constraints, list(reduced_labels), label): if VERBOSE: find_algorithm(reduced_constraints) return True return False if __name__ == "__main__": if len(sys.argv) == 2 and (sys.argv[1] == "-v" or sys.argv[1] == "--verbose"): VERBOSE = True constraints = input().split() if is_constant_solvable(constraints): print("O(1)") else: print("ω(1)") ``` #### File: rooted-tree-classifier/tests/tests.py ```python import unittest, subprocess, sys from io import StringIO from unittest.mock import patch from rooted_tree_classifier import decide_complexity class TestE2E(unittest.TestCase): def testDeciderProblem1(self): result = subprocess.run([sys.executable, '-m', 'rooted_tree_classifier'], input=b"111", capture_output=True) lines = str(result.stdout.decode('utf-8')).split('\n') self.assertEqual(len(lines), 2) self.assertEqual(lines[0], "O(1)") self.assertEqual(lines[1], "") def testDeciderProblem2(self): result = subprocess.run([sys.executable, '-m', 'rooted_tree_classifier'], input=b"121 123 212 131 323 454", capture_output=True) lines = str(result.stdout.decode('utf-8')).split('\n') self.assertEqual(len(lines), 2) self.assertEqual(lines[0], "Θ(log*n)") self.assertEqual(lines[1], "") def testDeciderProblem3(self): result = subprocess.run([sys.executable, '-m', 'rooted_tree_classifier'], input=b"454", capture_output=True) lines = str(result.stdout.decode('utf-8')).split('\n') self.assertEqual(len(lines), 2) self.assertEqual(lines[0], "unsolvable") self.assertEqual(lines[1], "") def testDeciderProblem4(self): result = subprocess.run([sys.executable, '-m', 'rooted_tree_classifier'], input=b"1M1 010 M11 M01", capture_output=True) lines = str(result.stdout.decode('utf-8')).split('\n') self.assertEqual(len(lines), 2) self.assertEqual(lines[0], "O(1)") self.assertEqual(lines[1], "") def testDeciderProblem5(self): result = subprocess.run([sys.executable, '-m', 'rooted_tree_classifier'], input=b"121 112 212", capture_output=True) lines = str(result.stdout.decode('utf-8')).split('\n') self.assertEqual(len(lines), 2) self.assertEqual(lines[0], "Θ(log n)") self.assertEqual(lines[1], "") def testDeciderProblem6(self): result = subprocess.run([sys.executable, '-m', 'rooted_tree_classifier'], input=b"212 122 111", capture_output=True) lines = str(result.stdout.decode('utf-8')).split('\n') self.assertEqual(len(lines), 2) self.assertEqual(lines[0], "O(1)") self.assertEqual(lines[1], "") def testDeciderProblem7(self): with patch('sys.stdout', new=StringIO()) as fakeOutput: decide_complexity("212 313 323 131 1x1 xx1".split()) self.assertEqual(fakeOutput.getvalue().strip(), 'Θ(log*n)') # (1:22) # (1:2x) # (1:xx) # (2:11) # (2:1x) # (2:xx) # (x:1a) # (x:2a) # (x:xa) # (x:aa) # (a:bb) # (b:aa) def testDeciderProblem8(self): with patch('sys.stdout', new=StringIO()) as fakeOutput: decide_complexity("212 21x x1x 121 12x x2x 1xa 2xa axa bab aba".split()) self.assertEqual(fakeOutput.getvalue().strip(), 'Θ(n^(1/2))') def testDeciderProblem9(self): with patch('sys.stdout', new=StringIO()) as fakeOutput: decide_complexity("212 121 12x 1xa bab aba".split()) self.assertEqual(fakeOutput.getvalue().strip(), 'Θ(n^(1/2))') def testDecider1(self): result = subprocess.run([sys.executable, '-m', 'rooted_tree_classifier'], input=b"111", capture_output=True) lines = str(result.stdout.decode('utf-8')).split('\n') self.assertEqual(len(lines), 2) self.assertEqual(lines[0], "O(1)") self.assertEqual(lines[1], "") def testDecider2(self): result = subprocess.run([sys.executable, '-m', 'rooted_tree_classifier'], input=b"121 212", capture_output=True) lines = str(result.stdout.decode('utf-8')).split('\n') self.assertEqual(len(lines), 2) self.assertEqual(lines[0], "Θ(n)") self.assertEqual(lines[1], "") ```
{ "source": "jendelel/codenames", "score": 3 }
#### File: codenames/notebooks/environment.py ```python import numpy as np from enum import Enum from itertools import chain, combinations class Team(Enum): BLUE = 1 RED = 2 class State: def __init__(self, blue, red, assasin=set(), neutral=set()): self.blue = blue self.red = red self.assasin = assasin self.neutral = neutral @property def word_sets(self): yield self.blue yield self.red yield self.assasin yield self.neutral @property def words(self): for word_set in self.word_sets: for word in word_set: yield word @property def hidden_str(self): return str(list(self.words)) @property def truth_str(self): return """ Blue:\t\t{}, Red:\t\t{}, Assasin:\t{}, Neutral:\t{} """.format(self.blue, self.red, self.assasin, self.neutral) class Clue: def __init__(self, word, number, words_meant=set()): self.word = word self.number = number self.words_meant = words_meant def __str__(self): return '{} ({}, {})'.format(self.word, self.number, self.words_meant) def __repr__(self): return self.__str__() class DistanceGuesser: def __init__(self, word_vectors, vocab, card_words): self.word_vectors = word_vectors self.vocab = vocab self.card_words = card_words def _distance(self, a, b): return self.word_vectors.distance(a, b) def guess(self, state, clue, iteration, team=Team.BLUE): positive_words = state.blue if team == Team.BLUE else state.red min_word = None min_loss = np.inf for guess_word in state.words: loss = self._distance(clue.word, guess_word) if loss < min_loss: print(" Guess attempt:", guess_word, loss) min_loss = loss min_word = guess_word return min_word class DistanceMaster: def __init__(self, word_vectors, vocab, card_words): self.word_vectors = word_vectors self.vocab = vocab self.card_words = card_words self.mem = {} @staticmethod def _powerset(iterable): """powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)""" s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(len(s) + 1)) def give_clue(self, state, team=Team.BLUE): positive_words = state.blue if team == Team.BLUE else state.red results = [] for subset in DistanceMaster._powerset(positive_words): if len(subset) < 1: continue #words_meant = list(positive_words) words_meant = list(subset) #print(" Words meant:", words_meant) neg_words = set(state.words) - set(words_meant) clue = Clue(word=self._find_clue_word(state, words_meant, team=team), number=len(words_meant), words_meant=words_meant) #loss = self._loss(state, clue.word, team=team) # expected loss loss = self._loss2(words_meant, neg_words, clue.word) results.append((loss, clue)) #print(" Clue chosen:", clue, loss) results = sorted(results, key=lambda x: x[0]) result_clue = results[0][1] return result_clue def _distance(self, a, b): if b < a: a, b = b, a if a not in self.mem: self.mem[a] = {b: self.word_vectors.distance(a, b)} elif b not in self.mem[a]: self.mem[a][b] = self.word_vectors.distance(a, b) return self.mem[a][b] def _loss(self, state, clue_word, team=Team.BLUE, c=2): # 1. loss is minimized # 2. if blue, subtract distance to blue words with weight c, add distance to red words with weight c, add distance to negative words with weight 1, add distance to assasin with weight 10 # 3. if red, invert loss terms for teams blue_loss = 0 red_loss = 0 neutral_loss = 0 assasin_loss = 0 for word in state.blue: blue_loss += self._distance(clue_word, word) for word in state.red: red_loss += self._distance(clue_word, word) for word in state.neutral: neutral_loss += self._distance(clue_word, word) for word in state.assasin: assasin_loss += self._distance(clue_word, word) blue_loss /= len(state.blue) red_loss /= len(state.red) neutral_loss /= len(state.neutral) assasin_loss /= len(state.assasin) if team == team.BLUE: loss = +blue_loss - red_loss elif team == team.RED: loss = -blue_loss + red_loss return loss * c - neutral_loss - assasin_loss * 10 def _loss2(self, positive_words, negative_words, clue_word): pos_loss = 0 neg_loss = 0 for word in positive_words: pos_loss += self._distance(clue_word, word) for word in negative_words: neg_loss += self._distance(clue_word, word) pos_loss /= len(positive_words) neg_loss /= len(negative_words) return (+pos_loss - neg_loss) * len(positive_words) def _find_clue_word(self, state, words_meant, team=Team.BLUE): def filter_word_by_rules(clue_word): for word_set in state.word_sets: for word in word_set: if clue_word in word or word in clue_word: # TODO replace this check by a better one return True return False min_loss = np.inf min_word = None assert team == Team.BLUE pos_words = set(words_meant) neg_words = set(state.words) - pos_words for clue_word in self.vocab: if filter_word_by_rules(clue_word): continue #loss = self._loss(state, clue_word, team=team) # TODO: This should reflect the word subset choice. loss = self._loss2(pos_words, neg_words, clue_word) if loss < min_loss: # print(" Clue attempt:", clue_word, loss) min_loss = loss min_word = clue_word return min_word def reward_function(state, clue, guess, iteration, team=Team.BLUE): if guess in state.assasin: # lose game return -100 elif guess in state.neutral: # lose a turn return -1 elif (guess in state.blue and team == Team.BLUE) or (guess in state.red and team == Team.RED): # get a turn + correct guess return +iteration + 1 else: # incorrect guess and other team gets a point return -iteration - 1 class Configuration: blue = (5, 5) red = (5, 5) assasin = (1, 1) neutral = (5, 5) @staticmethod def _rand(conf_tuple): return np.random.randint(conf_tuple[0], conf_tuple[1] + 1) def instantiate(self): c = Configuration() c.blue = Configuration._rand(self.blue) c.red = Configuration._rand(self.red) c.assasin = Configuration._rand(self.assasin) c.neutral = Configuration._rand(self.neutral) return c class StateGenerator: def __init__(self, word_vectors, vocab, card_words): self.configuration = Configuration() self.word_vectors = word_vectors self.vocab = vocab self.card_words = list(card_words) def generate_state(self): c = self.configuration.instantiate() total = c.blue + c.red + c.assasin + c.neutral chosen_idx = np.random.choice(len(self.card_words), size=total, replace=False) chosen = [self.card_words[idx] for idx in chosen_idx] ts = c.blue + c.red ass = ts + c.assasin return State( blue=set(chosen[:c.blue]), red=set(chosen[c.blue:c.blue + c.red]), assasin=set(chosen[ts:ass]), neutral=set(chosen[ass:])) ```
{ "source": "jendelel/rhl-algs", "score": 2 }
#### File: jendelel/rhl-algs/deep_coach.py ```python from PyQt5 import QtGui, QtCore, QtWidgets from collections import namedtuple import time import random import torch import torch.nn as nn import torch.nn.functional as F from utils import utils HumanFeedback = namedtuple('HumanFeedback', ['feedback_value']) SavedAction = namedtuple('SavedAction', ['state', 'action', 'logprob']) SavedActionsWithFeedback = namedtuple('SavedActionsWithFeedback', ['saved_actions', 'final_feedback']) def parse_args(parser): parser.add_argument('--batch_size', type=int, default=16, help='batch_size (default: 16)') parser.add_argument('--learning_rate', type=float, default=0.001, help='Learning rate (default:0.00025)') parser.add_argument('--eligibility_decay', type=float, default=0.35, help='Learning rate (default:0.01)') parser.add_argument("--coach_window_size", type=int, default=10, help="Number of transitions in a window.") parser.add_argument('--entropy_reg', type=float, default=1.5, help='Entropy regularization beta') parser.add_argument('--feedback_delay_factor', type=int, default=1, help='COACH Feedback delay factor.') parser.add_argument( '--ppo_eps', type=float, default=0.2, help='PPO-like clipping of the loss. Negative value turns the ppo clipping off.') parser.add_argument('--no_cuda', action='store_true', default=True, help='disables CUDA training') class DeepCoach(): def __init__(self, window, args, env): self.window = window self.args = args self.env = env torch.manual_seed(args.seed) self.device = torch.device("cuda" if not args.no_cuda else "cpu") if window is not None: self.setup_ui(window) PolicyNet = CategoricalPolicyNet if hasattr(self.env.action_space, 'n') else GaussianPolicyNet self.policy_net = PolicyNet(env.observation_space.shape[0], env.action_space).to(device=self.device) self.optimizer = torch.optim.RMSprop(self.policy_net.parameters(), lr=args.learning_rate) self.feedback = None def setup_ui(self, window): @QtCore.pyqtSlot(QtGui.QKeyEvent) def keyPressed(event): numpad_mod = int(event.modifiers()) & QtCore.Qt.KeypadModifier if (event.key() == QtCore.Qt.Key_Minus and numpad_mod) or event.key() == QtCore.Qt.Key_M: self.buttonClicked(-1) elif (event.key() == QtCore.Qt.Key_Plus and numpad_mod) or event.key() == QtCore.Qt.Key_P: self.buttonClicked(1) else: print("ERROR: Unknown key: ", event) hor = QtWidgets.QHBoxLayout() for i in range(-1, 2): if i == 0: continue but = QtWidgets.QPushButton() but.setText(str(i)) but.clicked.connect(lambda bla, def_arg=i: self.buttonClicked(def_arg)) hor.addWidget(but) window.feedback_widget.setLayout(hor) window.keyPressedSignal.connect(keyPressed) def buttonClicked(self, value): self.feedback = HumanFeedback(feedback_value=value) def to_tensor(self, value): return torch.tensor(value).float().to(device=self.device) def select_action(self, state): state = torch.from_numpy(state).to(device=self.device).float() action, logprob, entropy = self.policy_net(state) return logprob, action.detach().cpu().numpy(), entropy def update_net(self, savedActionsWithFeedback, current_entropy): if not savedActionsWithFeedback: return print("training") e_losses = [] for saf in savedActionsWithFeedback: final_feedback = saf.final_feedback for n, sa in enumerate(saf.saved_actions[::-1]): log_p_old = torch.tensor(sa.logprob).to(self.device) log_prob, _, _ = self.select_action(sa.state) probs_ratio = (log_prob - log_p_old).exp() if self.args.ppo_eps > 0: surr1 = final_feedback * probs_ratio surr2 = torch.clamp(probs_ratio, 1.0 - self.args.ppo_eps, 1.0 + self.args.ppo_eps) * final_feedback loss_term = torch.min(surr1, surr2) else: loss_term = probs_ratio * final_feedback e_loss = (self.args.eligibility_decay**(n)) * loss_term e_loss = torch.sum(e_loss, dim=0) # Sum the loss across all actions. e_losses.append(e_loss) loss = -(self.to_tensor(1 / (len(savedActionsWithFeedback))) * torch.stack(e_losses).to(device=self.device).sum() + torch.sum(self.args.entropy_reg * current_entropy, dim=0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def processFeedback(self, savedActions, buffer): feedback = self.feedback.feedback_value if feedback is not None and len(savedActions) > 0: print("Feedback: ", feedback) if feedback > 0: self.window.viewer.num_pos_feedback += 1 elif feedback < 0: self.window.viewer.num_neg_feedback += 1 window_size = min(len(savedActions), self.args.coach_window_size) del savedActions[:-(window_size + self.args.feedback_delay_factor)] window = savedActions[:-self.args.feedback_delay_factor] # Copy the list savedActionsWithFeedback = SavedActionsWithFeedback(saved_actions=window, final_feedback=feedback) buffer.append(savedActionsWithFeedback) self.feedback = None def train(self): buffer = [] running_reward = 10 for i_episode in range(1, 10000): state, ep_reward = self.env.reset(), 0 savedActions = [] for t in range(1, 10000): # Don't infinite loop while learning logprob, action, entropy = self.select_action(state) old_state = state state, reward, done, _ = self.env.step(action) ep_reward += reward savedActions.append(SavedAction(state=state, action=action, logprob=logprob.detach().cpu().numpy())) self.window.render(self.env) if not self.window.isVisible(): break if self.feedback: self.processFeedback(savedActions, buffer) if len(buffer[-1].saved_actions) > 0 and self.window.trainCheck.isChecked(): self.update_net([buffer[-1]], self.select_action(old_state)[2]) time.sleep(self.window.renderSpin.value()) if len(buffer) > 50: del buffer[:10] if len(buffer) >= self.args.batch_size and self.window.trainCheck.isChecked(): indicies = random.sample(range(len(buffer)), self.args.batch_size) mini_batch = [buffer[i] for i in indicies] self.update_net(mini_batch, entropy) print("Action: {}, Reward: {:.2f}, ep_reward: {:.2f}".format(action, reward, ep_reward)) if done: break if not self.window.isVisible(): break running_reward = 0.05 * ep_reward + (1 - 0.05) * running_reward print("Running reward %d" % running_reward) def start(window, args, env): alg = DeepCoach(window, args, env) print("Number of trainable parameters:", utils.count_parameters(alg.policy_net)) alg.train() env.close() class CategoricalPolicyNet(nn.Module): def __init__(self, observation_space_shape, action_space): super(CategoricalPolicyNet, self).__init__() action_dim = action_space.n self.hidden1 = nn.Linear(observation_space_shape, 16) # self.hidden2 = nn.Linear(30, 30) self.action_probs = nn.Linear(16, action_dim) def forward(self, x): x = F.tanh(self.hidden1(x)) # x = F.relu(self.hidden2(x)) logits = self.action_probs(x) action = torch.argmax(logits, dim=-1) distribution = torch.distributions.Categorical(logits=logits) return action, distribution.log_prob(action), distribution.entropy() class GaussianPolicyNet(nn.Module): def __init__(self, observation_space_shape, action_space): super(GaussianPolicyNet, self).__init__() action_dim = action_space.shape[-1] self.hidden1 = nn.Linear(observation_space_shape, 16) # self.hidden2 = nn.Linear(30, 30) self.mu_head = nn.Linear(16, action_dim) self.log_std = torch.nn.parameter.Parameter(-0.5 * torch.ones(action_dim)) def forward(self, x): x = F.tanh(self.hidden1(x)) # x = F.relu(self.hidden2(x)) mean = self.mu_head(x) std = self.log_std.expand_as(mean).exp() distribution = torch.distributions.Normal(mean, std) action = torch.normal(mean, std) return action, distribution.log_prob(action), distribution.entropy() ``` #### File: jendelel/rhl-algs/main.py ```python import argparse import functools from ui import MainWindow, create_app import time from gym_utils import make_env, toggle_recording running = False def startRl(window): global running if running: return running = True parser = argparse.ArgumentParser(description='Reinforcement human learning') parser.add_argument('--alg', type=str, default="random_alg", help='Name of RL algorithm.') parser.add_argument('--env', type=str, default="CartPole-v0", help='Name of Gym environment.') parser.add_argument('--seed', type=int, default=543, help='random seed (default: 543)') alg, args = window.loadAlg(parser) env = make_env(args.env, window.viewer, alg_name=args.alg, record=window.recordCheck.isChecked()) window.recordCheck.stateChanged.connect(functools.partial(toggle_recording, env_object=env)) print(args) env.seed(args.seed) window.viewer.start_time = time.time() alg.start(window, args, env) running = True def main(): app = create_app() window = MainWindow() window.startBut.clicked.connect(functools.partial(startRl, window=window)) window.show() app.exec_() if __name__ == "__main__": main() ``` #### File: jendelel/rhl-algs/manual.py ```python from PyQt5 import QtGui, QtCore import time import numpy as np # Dummy function because random alg does need parameters def parse_args(parser): pass class ManualControl(): def __init__(self, window, args, env): self.window = window self.args = args self.env = env if window is not None: self.setup_ui(window) self.last_action = 0 def setup_ui(self, window): @QtCore.pyqtSlot(QtGui.QKeyEvent) def keyPressed(event): if event.key() == QtCore.Qt.Key_0: self.last_action = 0 elif event.key() == QtCore.Qt.Key_1: self.last_action = 1 elif event.key() == QtCore.Qt.Key_2: self.last_action = 2 elif event.key() == QtCore.Qt.Key_3: self.last_action = 3 elif event.key() == QtCore.Qt.Key_4: self.last_action = 4 elif event.key() == QtCore.Qt.Key_5: self.last_action = 5 else: print("ERROR: Unknown key: ", event) window.keyPressedSignal.connect(keyPressed) def train(self): for i_episode in range(1, 10000): state, ep_reward = self.env.reset(), 0 for t in range(1, 10000): # Don't infinite loop while learning action = np.clip(self.last_action, 0, int(self.env.action_space.n) - 1) state, reward, done, _ = self.env.step(action) ep_reward += reward self.window.render(self.env) if not self.window.isVisible(): break time.sleep(self.window.renderSpin.value()) print("State: {}, Action: {}, Reward: {}, ep_reward: {}".format(state, action, reward, ep_reward)) if done: break if not self.window.isVisible(): break def start(window, args, env): alg = ManualControl(window, args, env) alg.train() env.close() ``` #### File: jendelel/rhl-algs/random_alg.py ```python import time # Dummy function because random alg does need parameters def parse_args(parser): pass def start(window, args, env): def select_action(state): return env.action_space.sample() for i_episode in range(1, 10): state, ep_reward = env.reset(), 0 for t in range(1, 10000): # Don't infinite loop while learning action = select_action(state) state, reward, done, _ = env.step(action) window.render(env) time.sleep(window.renderSpin.value()) if not window.isVisible(): break ep_reward += reward print("Action: {}, Reward: {}, ep_reward: {}".format(action, reward, ep_reward)) if done: break if not window.isVisible(): break env.close() ``` #### File: jendelel/rhl-algs/rcppo.py ```python from PyQt5 import QtGui, QtCore, QtWidgets import time import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Categorical, Normal import numpy as np import scipy.signal from utils import utils, logx def parse_args(parser): parser.add_argument( '--epochs', type=int, default=400, help='Number of epochs of interaction (equivalent to' 'number of policy updates) to perform. default:400') parser.add_argument( '--eval_epochs', type=int, default=10, help='Number of epochs to render for evaluation. default:200') parser.add_argument( '--batch_size', type=int, default=10, help='Batch size (how many episodes per batch). default: 10') parser.add_argument( '--lr_pi', type=float, default=3e-4, help='Learning rate for policy optimizer. (default:0.002)') parser.add_argument( '--lr_V', type=float, default=1.5e-4, help='Learning rate for value function optimizer. (default:0.0024)') parser.add_argument( '--lr_lambda', type=float, default=5e-7, help='Learning rate for value function optimizer. (default:0.0024)') parser.add_argument( '--train_v_iters', type=int, default=70, help='Number of gradient descent steps to take on value function per epoch.(default:70)') parser.add_argument( "--gae_lambda", type=float, default=0.95, help="Lambda for GAE-Lambda. (Always between 0 and 1, close to 1., default: 0.95)") parser.add_argument( "--gae_gamma", type=float, default=0.999, help="Discount factor. (Always between 0 and 1., default: 0.999") parser.add_argument( "--rcppo_alpha", type=float, default=0.5, help="Constraint bound. (Always between 0 and 1., default: 0.5") parser.add_argument( "--clip_param", type=float, default=0.2, help="Hyperparameter for clipping in the policy objective." "Roughly: how far can the new policy go from the old policy while" "still profiting (improving the objective function)? The new policy" "can still go farther than the clip_ratio says, but it doesn't help" "on the objective anymore. (Usually small, 0.1 to 0.3.) default:0.2") parser.add_argument( "--target_kl", type=float, default=0.2, help="Roughly what KL divergence we think is appropriate" "between new and old policies after an update. This will get used" "for early stopping. (Usually small, 0.01 or 0.05.) default:0.01") parser.add_argument( '--train_pi_iters', type=int, default=70, help="Maximum number of gradient descent steps to take" "on policy loss per epoch. (Early stopping may cause optimizer" "to take fewer than this.) Default: 70") parser.add_argument( '--max_episode_len', type=int, default=1000, help='Maximum length of trajectory / episode / rollout. default: 1000') parser.add_argument( '--save_freq', type=int, default=10, help='How often (in terms of gap between epochs) to save the current policy and value function. default: 10' ) parser.add_argument('--no_cuda', action='store_true', default=False, help='disables CUDA training') class RCPPO(): def __init__(self, window, args, env): self.window = window self.args = args self.env = env torch.manual_seed(args.seed) np.random.seed(args.seed) self.device = torch.device("cuda" if not args.no_cuda else "cpu") self.render_enabled = True self.renderSpin = None self.logger = logx.EpochLogger(output_dir=utils.get_log_dir(args)) self.const_lambda = torch.zeros([], requires_grad=True, device=self.device) if window is not None: self.setup_ui(window) self.actor_critic = ActorCritic( observation_space_shape=self.env.unwrapped.observation_space.shape[0], action_space=self.env.unwrapped.action_space).to(device=self.device) self.optimizer_pi = torch.optim.Adam(self.actor_critic.policy.parameters(), lr=args.lr_pi) self.optimizer_lambda = torch.optim.Adam([self.const_lambda], lr=args.lr_lambda) self.optimizer_V = torch.optim.Adam(self.actor_critic.value_function.parameters(), lr=args.lr_V) def setup_ui(self, window): @QtCore.pyqtSlot(QtGui.QKeyEvent) def keyPressed(event): print("ERROR: Unknown key: ", event) @QtCore.pyqtSlot(int) def checkedChanged(state): print("State: ", state) self.render_enabled = state > 0 hor = QtWidgets.QHBoxLayout() self.renderSpin = QtWidgets.QSpinBox() self.renderSpin.setRange(1, 1000) self.renderSpin.setSingleStep(5) self.renderSpin.setValue(100) renderCheck = QtWidgets.QCheckBox() renderCheck.setChecked(True) renderCheck.stateChanged.connect(checkedChanged) hor.addWidget(self.renderSpin) hor.addWidget(renderCheck) window.feedback_widget.setLayout(hor) window.keyPressedSignal.connect(keyPressed) def select_action(self, obs, action_taken=None): action, logp, logp_pi = self.actor_critic.policy(obs, action_taken) return action, logp, logp_pi def update_net(self, buffer_minibatch): obs, act, adv, ret, logp_old, constraints = [torch.Tensor(x).to(self.device) for x in buffer_minibatch] _, logp, _ = self.select_action(obs, action_taken=act) def ppo_loss(logp, logp_old, adv, clipped_info=False): ratio = (logp - logp_old).exp() surr1 = ratio * adv surr2 = torch.clamp(ratio, 1.0 - self.args.clip_param, 1.0 + self.args.clip_param) * adv if clipped_info: clipped = (ratio > (1 + self.args.clip_param)) | (ratio < (1 - self.args.clip_param)) cf = (clipped.float()).mean() return -torch.min(surr1, surr2).mean(), cf return -torch.min(surr1, surr2).mean() pi_loss_old = ppo_loss(logp, logp_old, adv) # Estimate the entropy E[-logp] entropy_est = (-logp).mean() # Policy gradient steps for i in range(self.args.train_pi_iters): _, logp, _ = self.select_action(obs, action_taken=act) pi_loss = ppo_loss(logp, logp_old, adv) self.optimizer_pi.zero_grad() pi_loss.backward() self.optimizer_pi.step() _, logp, _ = self.select_action(obs, action_taken=act) kl = (logp_old - logp).mean() if kl > 1.5 * self.args.target_kl: self.logger.log('Early stopping at step %d due to reaching max kl.' % i) break self.logger.store(train_StopIter=i) # Value function learning # MSE of the value function and the returns v = self.actor_critic.value_function(obs) v_loss_old = F.mse_loss(v, ret) for _ in range(self.args.train_v_iters): v = self.actor_critic.value_function(obs) v_loss = F.mse_loss(v, ret) # V function gradient step self.optimizer_V.zero_grad() v_loss.backward() self.optimizer_V.step() self.optimizer_lambda.zero_grad() print(self.const_lambda.grad) print(-(constraints.mean() - self.args.rcppo_alpha).detach()) print(self.const_lambda.size(), (-(constraints.mean() - self.args.rcppo_alpha).detach()).size()) self.const_lambda.grad = -(constraints.mean() - self.args.rcppo_alpha).detach() self.optimizer_lambda.step() self.const_lambda = torch.max(torch.zeros_like(self.const_lambda), self.const_lambda) _, logp, _, v = self.actor_critic(obs, act) pi_loss_new, clipped_info = ppo_loss(logp, logp_old, adv, clipped_info=True) v_loss_new = F.mse_loss(v, ret) kl = (logp_old - logp).mean() self.logger.store( loss_LossPi=pi_loss_new, loss_LossV=v_loss_old, metrics_KL=kl, metrics_Entropy=entropy_est, train_ClipFrac=clipped_info, loss_DeltaLossPi=(pi_loss_new - pi_loss_old), loss_DeltaLossV=(v_loss_new - v_loss_old)) def train(self): self.logger.save_config({"args:": self.args}) buffer = RCPPOBuffer( obs_dim=self.env.unwrapped.observation_space.shape, act_dim=self.env.unwrapped.action_space.shape, size=(self.args.batch_size + 1) * self.args.max_episode_len, gamma=self.args.gae_gamma, lam=self.args.gae_lambda) tot_steps = 0 var_counts = tuple( utils.count_parameters(module) for module in [self.actor_critic.policy, self.actor_critic.value_function]) self.logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts) start_time = time.time() obs, reward, done, episode_ret, episode_len = self.env.reset(), 0, False, 0, 0 for epoch in range(0, self.args.epochs): # Set the network in eval mode (e.g. Dropout, BatchNorm etc.) self.actor_critic.eval() for t in range(self.args.max_episode_len): action, _, logp_t, v_t = self.actor_critic(torch.Tensor(obs).unsqueeze(dim=0).to(self.device)) # Save and log assert self.args.env.startswith("Lunar") constraint = np.abs(obs[4]) buffer.store(obs, action.detach().cpu().numpy(), reward, v_t.item(), logp_t.detach().cpu().numpy(), constraint) self.logger.store(vals_VVals=v_t) obs, reward, done, _ = self.env.step(action.detach().cpu().numpy()[0]) episode_ret += reward episode_len += 1 tot_steps += 1 self.window.processEvents() if self.render_enabled and epoch % self.renderSpin.value() == 0: self.window.render(self.env) time.sleep(self.window.renderSpin.value()) if not self.window.isVisible(): return terminal = done or (episode_len == self.args.max_episode_len) if terminal: if not terminal: print('Warning: trajectory cut off by epoch at %d steps.' % episode_len) last_val = reward if done else self.actor_critic.value_function( torch.Tensor(obs).to(self.device).unsqueeze(dim=0)).item() assert self.args.env.startswith("Lunar") last_constraint = np.abs(obs[4]) buffer.finish_path(last_val=last_val, last_const=last_constraint, const_lambda=self.const_lambda.item()) if epoch % self.args.batch_size == 0: self.actor_critic.train() # Switch module to training mode self.update_net(buffer.get()) self.actor_critic.eval() if terminal: self.logger.store(train_EpRet=episode_ret, train_EpLen=episode_len) obs, reward, done, episode_ret, episode_len = self.env.reset(), 0, False, 0, 0 break if (epoch % self.args.save_freq == 0) or (epoch == self.args.epochs - 1): self.logger.save_state({'env': self.env.unwrapped}, self.actor_critic, None) pass # Log info about epoch self.logger.log_tabular(tot_steps, 'train/Epoch', epoch) self.logger.log_tabular(tot_steps, 'train/EpRet', with_min_and_max=True) self.logger.log_tabular(tot_steps, 'train/EpLen', average_only=True) self.logger.log_tabular(tot_steps, 'vals/VVals', with_min_and_max=True) self.logger.log_tabular(tot_steps, 'TotalEnvInteracts', tot_steps) if epoch % self.args.batch_size == 0: self.logger.log_tabular(tot_steps, 'loss/LossPi', average_only=True) self.logger.log_tabular(tot_steps, 'loss/LossV', average_only=True) self.logger.log_tabular(tot_steps, 'loss/DeltaLossPi', average_only=True) self.logger.log_tabular(tot_steps, 'loss/DeltaLossV', average_only=True) self.logger.log_tabular(tot_steps, 'metrics/Entropy', average_only=True) self.logger.log_tabular(tot_steps, 'metrics/KL', average_only=True) self.logger.log_tabular(tot_steps, 'train/ClipFrac', average_only=True) self.logger.log_tabular(tot_steps, 'train/StopIter', average_only=True) self.logger.log_tabular(tot_steps, 'train/Time', time.time() - start_time) self.logger.dump_tabular() def eval(self): # Final evaluation print("Eval") episode_reward = 0 for t in range(self.args.eval_epochs): state, done = self.env.reset(), False while not done: action = self.actor_critic.policy.eval(torch.Tensor(state).to(self.device)).detach().cpu().numpy() # Choose greedy action this time state, reward, done, _ = self.env.step(action) episode_reward += reward if self.render_enabled: self.window.render(self.env) time.sleep(self.window.renderSpin.value()) if not self.window.isVisible(): return def start(window, args, env): alg = RCPPO(window, args, env) print("Number of trainable parameters:", utils.count_parameters(alg.actor_critic)) alg.train() alg.eval() print("Done") env.close() class RCPPOBuffer: """ A buffer for storing trajectories experienced by a PPO agent interacting with the environment, and using Generalized Advantage Estimation (GAE-Lambda) for calculating the advantages of state-action pairs. """ def __init__(self, obs_dim, act_dim, size, gamma=0.99, lam=0.95): self.obs_buf = np.zeros(self._combined_shape(size, obs_dim), dtype=np.float32) self.act_buf = np.zeros(self._combined_shape(size, act_dim), dtype=np.float32) self.adv_buf = np.zeros(size, dtype=np.float32) self.rew_buf = np.zeros(size, dtype=np.float32) self.const_buf = np.zeros(size, dtype=np.float32) self.ret_buf = np.zeros(size, dtype=np.float32) self.val_buf = np.zeros(size, dtype=np.float32) self.logp_buf = np.zeros(size, dtype=np.float32) self.gamma, self.lam = gamma, lam self.ptr, self.path_start_idx, self.max_size = 0, 0, size def store(self, obs, act, rew, val, logp, constraint): """ Append one timestep of agent-environment interaction to the buffer. """ assert self.ptr < self.max_size # buffer has to have room so you can store self.obs_buf[self.ptr] = obs self.act_buf[self.ptr] = act self.rew_buf[self.ptr] = rew self.val_buf[self.ptr] = val self.const_buf[self.ptr] = constraint self.logp_buf[self.ptr] = logp self.ptr += 1 def finish_path(self, last_val=0, last_const=0, const_lambda=0): """ Call this at the end of a trajectory, or when one gets cut off by an epoch ending. This looks back in the buffer to where the trajectory started, and uses rewards and value estimates from the whole trajectory to compute advantage estimates with GAE-Lambda, as well as compute the rewards-to-go for each state, to use as the targets for the value function. The "last_val" argument should be 0 if the trajectory ended because the agent reached a terminal state (died), and otherwise should be V(s_T), the value function estimated for the last state. This allows us to bootstrap the reward-to-go calculation to account for timesteps beyond the arbitrary episode horizon (or epoch cutoff). """ path_slice = slice(self.path_start_idx, self.ptr) rews = np.append(self.rew_buf[path_slice], last_val) vals = np.append(self.val_buf[path_slice], last_val) constraints = np.append(self.val_buf[path_slice], last_const) # the next two lines implement GAE-Lambda advantage calculation # \delta_t = - V(s_t) + r_t + \gamma * V_(s_{t+1}) deltas = rews[:-1] + self.gamma * vals[1:] - vals[:-1] # GAE_advantage = \Sum_l (\lambda * \gamma)^l * delta_{t+1} self.adv_buf[path_slice] = self._discount_cumsum(deltas, self.gamma * self.lam) # the next line computes rewards-to-go, to be targets for the value function self.ret_buf[path_slice] = self._discount_cumsum(rews - const_lambda * constraints, self.gamma)[:-1] self.path_start_idx = self.ptr def get(self): """ Call this at the end of an epoch to get all of the data from the buffer, with advantages appropriately normalized (shifted to have mean zero and std one). Also, resets some pointers in the buffer. """ # assert self.ptr == self.max_size # buffer has to be full before you can get buffer_slice = slice(0, self.ptr) self.ptr, self.path_start_idx = 0, 0 # the next two lines implement the advantage normalization trick # adv_mean, adv_std = mpi_statistics_scalar(self.adv_buf) adv_mean, adv_std = np.mean(self.adv_buf[buffer_slice]), np.std(self.adv_buf[buffer_slice]) self.adv_buf[buffer_slice] = (self.adv_buf[buffer_slice] - adv_mean) / (adv_std + 1e-5) # TODO: Consider returning a dictionary. return [ self.obs_buf[buffer_slice], self.act_buf[buffer_slice], self.adv_buf[buffer_slice], self.ret_buf[buffer_slice], self.logp_buf[buffer_slice], self.const_buf[buffer_slice] ] def _combined_shape(self, length, shape=None): if shape is None: return (length,) return (length, shape) if np.isscalar(shape) else (length, *shape) def _discount_cumsum(self, x, discount): """ magic from rllab for computing discounted cumulative sums of vectors. input: vector x, [x0, x1, x2] output: [x0 + discount * x1 + discount^2 * x2, x1 + discount * x2, x2] """ return scipy.signal.lfilter([1], [1, float(-discount)], x[::-1], axis=0)[::-1] class MLP(nn.Module): def __init__(self, layers, activation=torch.tanh, output_activation=None, output_squeeze=False): super(MLP, self).__init__() self.layers = nn.ModuleList() self.activation = activation self.output_activation = output_activation self.output_squeeze = output_squeeze for i, layer in enumerate(layers[1:]): self.layers.append(nn.Linear(layers[i], layer)) nn.init.zeros_(self.layers[i].bias) def forward(self, input): x = input for layer in self.layers[:-1]: x = self.activation(layer(x)) if self.output_activation is None: x = self.layers[-1](x) else: x = self.output_activation(self.layers[-1](x)) return x.squeeze() if self.output_squeeze else x class CategoricalPolicyNet(nn.Module): def __init__(self, observation_space_shape, hidden_sizes, activation, output_activation, action_dim): super(CategoricalPolicyNet, self).__init__() self.logits = MLP(layers=[observation_space_shape] + list(hidden_sizes) + [action_dim], activation=activation) def forward(self, x, action_taken=None): logits = self.logits(x) policy = Categorical(logits=logits) # Sample the action. pi = policy.sample() logp_pi = policy.log_prob(pi).squeeze() if action_taken is not None: logp = policy.log_prob(action_taken).squeeze() else: logp = None return pi, logp, logp_pi def eval(self, x): logits = self.logits(x) return torch.argmax(logits, dim=-1) class GaussianPolicyNet(nn.Module): def __init__(self, observation_space_shape, hidden_sizes, activation, output_activation, action_dim): super(GaussianPolicyNet, self).__init__() self.mu = MLP( layers=[observation_space_shape] + list(hidden_sizes) + [action_dim], activation=activation, output_activation=output_activation) self.log_std = nn.Parameter(-0.5 * torch.ones(action_dim)) def forward(self, x, action_taken): policy = Normal(self.mu(x), self.log_std.exp()) # Sample the action from the policy. pi = policy.sample() # Sum over the actions. logp_pi = policy.log_prob(pi).sum(dim=1) if action_taken is not None: logp = policy.log_prob(action_taken).sum(dim=1) else: logp = None return pi, logp, logp_pi def eval(self, x): return self.mu(x) class ActorCritic(nn.Module): def __init__(self, observation_space_shape, action_space, hidden_sizes=[64, 64], activation=torch.tanh, output_activation=None, policy=None): super(ActorCritic, self).__init__() if policy is None and hasattr(action_space, 'n'): self.policy = CategoricalPolicyNet( observation_space_shape, hidden_sizes, activation, output_activation, action_dim=action_space.n) elif policy is None: self.policy = GaussianPolicyNet( observation_space_shape, hidden_sizes, activation, output_activation, action_dim=action_space.shape[0]) else: self.policy = policy( observation_space_shape, hidden_sizes, activation, output_activation, action_dim=action_space.shape[0]) self.value_function = MLP( layers=[observation_space_shape] + list(hidden_sizes) + [1], activation=activation, output_squeeze=True) def forward(self, x, action_taken=None): pi, logp, logp_pi = self.policy(x, action_taken) v = self.value_function(x) return pi, logp, logp_pi, v ```
{ "source": "jenders97/unitpy", "score": 2 }
#### File: units/combined_units/volume.py ```python from measurement.base import MeasureBase __all__ = [ 'Volume', ] class Volume(MeasureBase): STANDARD_UNIT = 'cubic_meter' UNITS = { 'us_g': 0.00378541, 'us_qt': 0.000946353, 'us_pint': 0.000473176, 'us_cup': 0.000236588, 'us_oz': 2.9574e-5, 'us_tbsp': 1.4787e-5, 'us_tsp': 4.9289e-6, 'cubic_millimeter': 0.000000001, 'cubic_centimeter': 0.000001, 'cubic_decimeter': 0.001, 'cubic_meter': 1.0, 'l': 0.001, 'cubic_foot': 0.0283168, 'cubic_inch': 1.6387e-5, 'imperial_g': 0.00454609, 'imperial_qt': 0.00113652, 'imperial_pint': 0.000568261, 'imperial_oz': 2.8413e-5, 'imperial_tbsp': 1.7758e-5, 'imperial_tsp': 5.9194e-6, 'tonnage': 2.83168, } ALIAS = { 'US Gallon': 'us_g', 'gallon': 'us_g', 'gal': 'us_g', 'US Quart': 'us_qt', 'quart': 'us_qt', 'qt': 'us_qt', 'US Pint': 'us_pint', 'US Cup': 'us_cup', 'cup': 'us_cup', 'US Ounce': 'us_oz', 'oz': 'us_oz', 'US Fluid Ounce': 'us_oz', 'US Tablespoon': 'us_tbsp', 'tbsp': 'us_tbsp', 'US Teaspoon': 'us_tsp', 'tsp': 'us_tsp', 'cubic millimeter': 'cubic_millimeter', 'mm3': 'cubic_millimeter', 'cubic centimeter': 'cubic_centimeter', 'cm3': 'cubic_centimeter', 'ml': 'cubic_centimeter', 'cubic decimeter': 'cubic_decimeter', 'dm3': 'cubic_decimeter', 'cubic meter': 'cubic_meter', 'm3': 'cubic_meter', 'liter': 'l', 'litre': 'l', 'cubic foot': 'cubic_foot', 'ft3': 'cubic_foot', 'cubic inch': 'cubic_inch', 'in3': 'cubic_inch', 'Imperial Gram': 'imperial_g', 'imp_g': 'imperial_g', 'Imperial Quart': 'imperial_qt', 'imp_qt': 'imperial_qt', 'Imperial Pint': 'imperial_pint', 'imp_pint': 'imperial_pint', 'Imperial Ounce': 'imperial_oz', 'imp_oz': 'imperial_oz', 'Imperial Tablespoon': 'imperial_tbsp', 'imp_tbsp': 'imperial_tbsp', 'Imperial Teaspoon': 'imperial_tsp', 'imp_tsp': 'imperial_tsp', 'tnge': 'tonnage' } SI_UNITS = ['l'] def __init__(self, *args, **kwargs): super(Volume, self).__init__(*args, **kwargs) ```
{ "source": "jendis/blockapi", "score": 3 }
#### File: blockapi/api/btc.py ```python from blockapi.services import BlockchainAPI class BtcAPI(BlockchainAPI): """ coins: bitcoin-cash API docs: https://bch.btc.com/api-doc#API Explorer: https://btc.com """ active = True symbol = 'BCH' base_url = 'https://bch-chain.api.btc.com/v3' rate_limit = 0 coef = 1e-8 max_items_per_page = None page_offset_step = None confirmed_num = None supported_requests = { 'get_balance': '/address/{address}', } def get_balance(self): response = self.request('get_balance', address=self.address) if response is None: return None if response['data'] is None: return None try: retval = response['data']['banlance'] * self.coef except KeyError: return None return [{'symbol': self.symbol, 'amount': retval}] ``` #### File: blockapi/api/ontology.py ```python from datetime import datetime import pytz from blockapi.services import BlockchainAPI class OntioAPI(BlockchainAPI): """ coins: ontology API docs: https://dev-docs.ont.io/#/docs-en/API/02-restful_api https://github.com/ontio/ontology-explorer/tree /master/back-end-projects/Explorer/src/main/java/com /github/ontio/controller Explorer: https://explorer.ont.io """ active = True symbol = 'ONT' base_url = 'https://explorer.ont.io' rate_limit = 0 coef = 1 max_items_per_page = 20 page_offset_step = None confirmed_num = None supported_requests = { 'get_balance': '/api/v1/explorer/address/{address}/0/1', 'get_txs': '/api/v1/explorer/address/{address}/{limit}/{page}' } def get_balance(self): response = self.request('get_balance', address=self.address) if not response: return None return [{ "symbol": item['AssetName'].upper(), "amount": item['Balance'] } for item in response['Result']['AssetBalance']] def get_txs(self, offset=None, limit=None, unconfirmed=False): if limit is None: limit = self.max_items_per_page if offset is None: offset = 1 response = self.request('get_txs', address=self.address, limit=limit, page=offset) txs = response['Result']['TxnList'] txs_result = [] for tx in txs: for tx_transfer in tx['TransferList']: txs_result.append({ 'date': datetime.fromtimestamp(tx['TxnTime'], pytz.utc), 'from_address': tx_transfer['FromAddress'], 'to_address': tx_transfer['ToAddress'], 'amount': tx_transfer['Amount'] * self.coef, 'fee': tx['Fee'] * self.coef, 'hash': tx['TxnHash'], 'confirmed': None, 'is_error': False, 'type': 'normal', 'kind': 'transaction', 'direction': 'outgoing' if tx_transfer['FromAddress'] == self.address else 'incoming', 'status': 'confirmed' if tx['ConfirmFlag'] == 1 else 'unconfirmed', 'raw': tx }) return txs_result ``` #### File: test/api/test_tronscan.py ```python from pytest import mark from blockapi.api.tronscan import TronscanAPI from blockapi.test_init import test_addresses class TestTronscanAPI: ADDRESS = test_addresses['TRX'][0] @mark.vcr() def test_get_balance(self): api = TronscanAPI(address=self.ADDRESS) result = api.get_balance() assert next((r["amount"] for r in result if r["symbol"] == "TRX")) ==\ 0.588285 assert len(result) == 45 ``` #### File: test/api/test_tzscan.py ```python from pytest import mark from blockapi.api.tzscan import TzscanAPI from blockapi.test_init import test_addresses class TestTzscanAPI: ADDRESS = test_addresses["XTZ"][0] REWARD_ADDRESS = test_addresses["XTZ"][1] def test_init(self): api = TzscanAPI(address=self.ADDRESS) assert api @mark.vcr() def test_get_balance(self): api = TzscanAPI(address=self.ADDRESS) result = api.get_balance() assert result == [{'symbol': 'XTZ', 'amount': 2068856.4582429999}] @mark.vcr() def test_get_rewards(self): api = TzscanAPI(address=self.ADDRESS) result = api.get_rewards() assert isinstance(result, list) # TODO: find better address, this one returns empty list @mark.vcr() def test_get_txs(self): api = TzscanAPI(address=self.ADDRESS) result = api.get_txs() assert isinstance(result, list) assert len(result) == 3 @mark.vcr() def test_get_endorsements(self): api = TzscanAPI(address=self.ADDRESS) result = api.get_endorsements() assert isinstance(result, list) # TODO: find better address, this one returns empty list ```
{ "source": "JEndler/hearthstoneAI", "score": 3 }
#### File: JEndler/hearthstoneAI/LogWatcher.py ```python from hearthstone import deckstrings from _thread import start_new_thread import pyperclip from HSCard import HSCard import Card from Gamestate import Gamestate from Move import Move import HearthSimulation import json import time class LogWatcher(): def __init__(self, MyDeckFile = None): self.LogPath = "D:\\Hearthstone\\Hearthstone_Data\\output_log.txt" self.gamestate = Gamestate() self.hero = [None,None,None] # Hunter, Rogue, Mage, Warlock, Paladin, Warrior, Priest, Druid, Shaman self.heroID = [None,None,None] # ID of the Hero Card self.lastFromPowerLog = None self.listOfHeroNames = ["<NAME>", "Rexxar", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "Thrall", "Gul'dan", "<NAME>", "<NAME>", "Khadgar", "Medivh", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>", "<NAME>"] start_new_thread(self.update,()) self.watch() def watch(self): print("Watching") with open(self.LogPath, 'r', encoding="utf-8") as file: line = file.readline() print("in file") while True: nameOfCard = self.getName(line) idOfCard = self.getID(line) line = file.readline() if "entityName=UNKNOWN ENTITY" in line: continue elif "BLOCK_START BlockType=POWER" in line: if "UNKNOWN ENTITY" not in line: if "Target=0" not in line: # Spell has a Target s = line.split("Target=") spell = self.getName(s[0]) target = self.getName(s[1]) idofSpell = self.getID(s[0]) idofTarget = self.getID(s[1]) SpellCard = HSCard(spell, idofSpell) if SpellCard.getType() is "SPELL": move = Move("playtargetedspell", actioncard=self.CheckCard(SpellCard), targetcard= self.CheckCard(self.getCardByID(idofTarget))) elif SpellCard.getType() is "MINION": move = Move("playtargetedminion", actioncard=self.CheckCard(SpellCard), targetcard= self.CheckCard(self.getCardByID(idofTarget))) result = spell + " has been played with target : " + target if self.lastFromPowerLog != result: HearthSimulation.simTurn(self.gamestate, move) self.lastFromPowerLog = result print(result) else: # Spell has no Target s = line.split("Target=") spell = self.getName(s[0]) idofSpell = self.getID(s[0]) SpellCard = self.getCardByID(idofSpell) if SpellCard != None: if SpellCard.getType() is "SPELL": move = Move("playspell", actioncard=self.CheckCard(SpellCard)) elif SpellCard.getType() is "MINION": move = Move("play", actioncard=self.CheckCard(SpellCard)) result = spell + " has been played without target." if self.lastFromPowerLog != result: HearthSimulation.simTurn(self.gamestate, move) print(result) self.lastFromPowerLog = result elif "GameState.DebugPrintEntitiesChosen()" in line: print("Choice for Mulligan: " + self.getName(line)) elif "to FRIENDLY HAND" in line: cardDrawn = HSCard(nameOfCard,idOfCard) cardDrawn.ID = idOfCard self.gamestate.addCardHand(cardDrawn, 1) print("to HAND:" + nameOfCard + "*** ID = " + idOfCard) elif "to FRIENDLY DECK" in line: cardToDeck = self.getCardByID(idOfCard) newCard = HSCard(cardToDeck.getName(), idOfCard) self.gamestate.destroy(cardToDeck) self.gamestate.addCardDeck(newCard,1) def update(self): while True: time.sleep(3) self.printStatus() def getID(self, line): indexID = line.find(" id=") indexEndOfID = line.find("zone=") ID = line[indexID + 4:indexEndOfID - 1] return ID def getName(self, line): indexName = line.find("entityName=") indexEndOfName = line.find("id=") name = line[indexName + 11:indexEndOfName - 1] return name def getCardByID(self, ID): for player in [1, -1]: for card in self.gamestate.Board[player]: if card.ID == ID: return card for card in self.gamestate.Hand[player]: if card.ID == ID: return card for card in self.gamestate.Deck[player]: if card.ID == ID: return card print("ERROR : Card with ID:" + str(ID) + " not in play atm.") return None def delete(self, list, name): for card in list: if name == card.getName(): list.remove(card) def printStatus(self): print("*********STATUS***********") print("Cards in Hand:" + str([card.getName() for card in self.gamestate.Hand[1] if card is not None])) print("Cards on Board" + str([card.getName() for card in self.gamestate.Board[1] if card is not None])) print("Cards on EnemyBoard" + str([card.getName() for card in self.gamestate.Board[-1] if card is not None])) def CheckCard(self,card): if card is None: return if card.getName() == self.hero[1] and card.ID == self.heroID[1]: return 1 elif card.getName() == self.hero[-1] and card.ID == self.heroID[-1]: return -1 elif card.getName() == self.gamestate.HeroPower[1]: print("Friendly Heropower was played") return None elif card.getName() == self.gamestate.HeroPower[-1]: print("Enemy Heropower was played") return None return card Thiele = LogWatcher() ``` #### File: JEndler/hearthstoneAI/PredictionHandler.py ```python import operator PATH_TO_DECKS = "D:\\Projects\\Hearthbot_Old\\Decks\\" #PATH_TO_DECKS = "C:\\Users\\User\\PycharmProjects\\HearthstoneAI\\hearthstoneai\\Decks\\" PATHS_BY_CLASS = {} for classname in ["Gul'dan;_WARLOCK","Druid;_DRUID","Mage;_MAGE","Hunter;_HUNTER","Uther Lightbringer;_PALADIN","Rogue;_ROGUE","Garrosh Hellscream;_WARRIOR","Priest;_PRIEST","Shaman;_SHAMAN"]: Pathlist = classname.split(";") PATHS_BY_CLASS[Pathlist[0]] = Pathlist[1] + "\decks.txt" # The PATH_TO_DECKS and PATHS_BY_CLASS Variables are supposed to be Static. # They depict the Path to a Textfile with the Downloaded Decks for the Class # It's supposed to be used like this: PathToFile = PATH_TO_DECKS + PATHS_BY_CLASS[ClassName] class Ngram: content = [] # This contains two cards def __init__(self, cards): self.content = cards def getCards(self): return self.content def setCards(self, cards): if cards is not None: self.content = cards def __str__(self): String = "" + str(self.content) return String # Self has to be a Bigram here! <-- IMPORTANT def compare(self,Trigram): # Compares two NGrams and returns the Intersection if exactly two cards overlap overlap = True for card in self.getCards(): if card not in Trigram.getCards(): overlap = False if overlap: s = set(self.getCards()) return s.symmetric_difference(Trigram.getCards()).pop() # This returns the Difference between the Bigram and the Trigram if 2 Cards overlap return None class PredictionHandler: CardsPlayedByOpponent = [] # These are all the cards wich have been played by the Opponent. DeckListsForClass = [] # This contains a List of Decklists for the Enemies Class. Class = "" def __init__(self, cardsplayed, className): self.CardsPlayedByOpponent = cardsplayed self.DeckListsForClass = self.getDecksByClass(className) self.Class = className # The Parameter mode changes wether the Ngrams are created for the OpponentsDeck or for the Prediction def makeNgrams(self, mode): # NEED TO DO IF CLAUSE FOR CLASS DECKLIST AND CARDSBYOPPONENT res = [] # This will be a List of Ngrams if mode == "Prediction": for Deck in self.DeckListsForClass: for card in Deck: for secondCard in Deck: if card != secondCard: res.append(Ngram([card, secondCard])) elif mode == "Opponent": for card in self.CardsPlayedByOpponent: res.append(Ngram([card])) return res def predict(self): if self.CardsPlayedByOpponent == []: if self.Class == "Warlock": self.CardsPlayedByOpponent = ["Kobold Librarian"] elif self.Class == "Druid": self.CardsPlayedByOpponent = ["Wild Growth"] elif self.Class == "Hunter": self.CardsPlayedByOpponent = ["Animal Companion"] elif self.Class == "Uther Lightbringer": self.CardsPlayedByOpponent = ["Righteous Protector"] elif self.Class == "Rogue": self.CardsPlayedByOpponent = ["Backstab"] elif self.Class == "Garrosh Hellscream": self.CardsPlayedByOpponent = ["Shield Block"] elif self.Class == "Priest": self.CardsPlayedByOpponent = ["Northshire Cleric"] elif self.Class == "Shaman": self.CardsPlayedByOpponent = ["Jade Claws"] elif self.Class == "Mage": self.CardsPlayedByOpponent = ["Fireball"] if self.CardsPlayedByOpponent == [] and self.DeckListsForClass == []: print("Lists are empty!") return res = {} # This Dict will contain all Cards and how often they appeared BigramsForOpponent = self.makeNgrams("Opponent") TrigramsFromDeck = self.makeNgrams("Prediction") #print(len(BigramsForOpponent)) #print(len(TrigramsFromDeck)) print(self.CardsPlayedByOpponent) for bigram in BigramsForOpponent: for trigram in TrigramsFromDeck: #print("blae") compare = bigram.compare(trigram) if compare != None: if compare in res: res[compare] += 1 elif compare not in res: res[compare] = 1 print("blae") sorted_res = sorted(res.items(), key=operator.itemgetter(1)) sortedcards = [x[0] for x in sorted_res]# This returns a List of Tuples with the Key and Value of the Dict, sorted by the Value if sortedcards == []: sortedcards = ["Chillwind Yeti","Shieldbearer","Worgen Greaser","Stormwatcher","Ravenholdt Assassin","Ravenholdt Assassin","Wisp","Wisp","Murloc Raider","Murloc Raider","Bloodfen Raptor","Bloodfen Raptor","Stormwind Champion","Stormwind Champion","Argent Squire","Argent Squire","Goldshire Footman","Goldshire Footman","River Crocolisk","River Crocolisk","Oasis Snapjaw","Oasis Snapjaw","Angry Chicken","Angry Chicken","Grotesque Dragonhawk""Grotesque Dragonhawk","Am'gam Rager","Am'gam Rager","Duskboar","Duskboar"] return sortedcards def getDecksByClass(self, className): print("className") print(className) res = [] Path = PATH_TO_DECKS + PATHS_BY_CLASS[className] with open(Path, "r") as file: for line in file.readlines(): # Each line is a different Deck deck = line.split("|") deck.pop() # Remove the Last item from the List because it is always "\n" res.append(deck) return res ```
{ "source": "JenDobson/greenbutton", "score": 3 }
#### File: greenbutton/tests/test_greenbutton.py ```python import unittest from unittest.mock import patch import greenbutton.greenbutton as gb import pandas as pd import numpy as np import datetime import os THISDIR = os.path.dirname(os.path.abspath(__file__)) class TestStringMethods(unittest.TestCase): def test_has_sample_data(self): self.assertTrue(isinstance(gb.SAMPLE_DATA,pd.DataFrame)) def test_create_box_plot_of_use_by_hour(self): ax = gb.boxplot_use_by_hour(gb.SAMPLE_DATA) self.assertIsNotNone(ax) self.assertNotIn('Start Hour',gb.SAMPLE_DATA.columns) self.assertEqual(168,len(ax.lines)) def test_filter_by_time_of_day(self): test_df = gb.SAMPLE_DATA.copy() filtered_df = gb.filter_by_time_of_day(test_df,datetime.time(8,0,0),datetime.time(9,0,0)) unique_filtered_df = filtered_df['Start Time'].dt.time.unique() self.assertTrue(np.isin(datetime.time(8,0),unique_filtered_df)) self.assertTrue(np.isin(datetime.time(9,0),unique_filtered_df)) self.assertTrue(2,len(unique_filtered_df)) def test_can_load_data_from_file(self): # Check that loaded data is not just from hardcoded XMLFILE datafile = os.path.join(THISDIR,'data','testdata.xml') df = gb.dataframe_from_xml(datafile) self.assertEqual(pd.Timestamp(2019,10,1,0),df.loc[0]['Start Time']) def test_aggregate_use_by_day(self): pass def test_sample_data_is_immutable(self): # see: https://stackoverflow.com/questions/24928306/pandas-immutable-dataframe pass if __name__ == '__main__': unittest.main() ```
{ "source": "Jendoliver/cookiecutter_project_upgrader", "score": 2 }
#### File: cookiecutter_project_upgrader/dev-util/initial.py ```python import subprocess import xml.etree.ElementTree as ElementTree from dataclasses import dataclass from pathlib import Path from typing import cast, Dict try: import yaml except ImportError as error: print("Attempting to install pyyaml") subprocess.run(["pip", "install", "pyyaml"]) try: import yaml except ImportError as error: raise Exception( "Could not install pyyaml automatically successfully, please install it manually first") from error def _get_project_name(): return cast(Path, Path.cwd()).parent.name @dataclass class _XmlElementData: tag: str attributes: Dict[str, str] identifying_attribute: str class PyCharmConfigUpdater: def __init__(self): self.updated = False def update_pycharm_config(self, update_testrunner_to_pytest: bool, exclude_cache_and_build_directories: bool): project_name = _get_project_name() idea_project_config_file = Path("../.idea", f"{project_name}.iml") if idea_project_config_file.exists(): tree = ElementTree.parse(idea_project_config_file) if update_testrunner_to_pytest: self._update_testrunner_to_pytest(tree) if exclude_cache_and_build_directories: self._exclude_cache_and_build_directories(tree) if self.updated: tree.write(idea_project_config_file, encoding="UTF-8", xml_declaration=True) print(f"Updated PyCharm config file {idea_project_config_file}") else: print(f"PyCharm config file {idea_project_config_file} was already correct.") else: print("No PyCharm project configuration file found.") def _update_testrunner_to_pytest(self, tree: ElementTree.ElementTree): root = tree.getroot() test_runner_element = self._create_or_update_element_if_necessary(root, _XmlElementData( tag="component", attributes={"name": "TestRunnerService"}, identifying_attribute="name" )) self._create_or_update_element_if_necessary(test_runner_element, _XmlElementData( tag="option", attributes={"name": "projectConfiguration", "value": "pytest"}, identifying_attribute="name" )) self._create_or_update_element_if_necessary(test_runner_element, _XmlElementData( tag="option", attributes={"name": "PROJECT_TEST_RUNNER", "value": "pytest"}, identifying_attribute="name" )) def _exclude_cache_and_build_directories(self, tree: ElementTree.ElementTree): root = tree.getroot() module_root_manager_element = self._create_or_update_element_if_necessary(root, _XmlElementData( tag="component", attributes={"name": "NewModuleRootManager"}, identifying_attribute="name" )) content_element = self._create_or_update_element_if_necessary(module_root_manager_element, _XmlElementData( tag="content", attributes={"url": "file://$MODULE_DIR$"}, identifying_attribute="url" )) excluded_folders = [ "file://$MODULE_DIR$/.dev", f"file://$MODULE_DIR$/{_get_project_name()}.egg-info", ] for excluded_folder in excluded_folders: self._create_or_update_element_if_necessary(content_element, _XmlElementData( tag="excludeFolder", attributes={"url": excluded_folder}, identifying_attribute="url" )) def _create_or_update_element_if_necessary(self, parent: ElementTree.ElementTree, desired_xml_element: _XmlElementData) -> ElementTree.ElementTree: """ Makes sure the parent has an sub element as described. :param parent: :param desired_xml_element: :return: relevant real XML element which may have been created or updated """ identifying_attribute_value = desired_xml_element.attributes.get(desired_xml_element.identifying_attribute) searched_element = next( (element for element in parent.findall(desired_xml_element.tag) if element.get(desired_xml_element.identifying_attribute) == identifying_attribute_value), None) if searched_element is not None: for key, value in desired_xml_element.attributes.items(): if searched_element.get(key) != value: searched_element.set(key, value) self.updated = True return searched_element else: new_element = ElementTree.SubElement(parent, desired_xml_element.tag, desired_xml_element.attributes) self.updated = True return new_element PyCharmConfigUpdater().update_pycharm_config( update_testrunner_to_pytest=True, exclude_cache_and_build_directories=True ) ```
{ "source": "jendrikjoe/flask-dynamo", "score": 3 }
#### File: flask-dynamo/flask_dynamo/manager.py ```python from os import environ from boto3.session import Session from flask import current_app from .errors import ConfigurationError class DynamoLazyTables(object): """Manages access to Dynamo Tables.""" def __init__(self, connection, table_config): self._table_config = table_config self._connection = connection def __getitem__(self, name): """Get the connection for a table by name.""" return self._connection.Table(name) def keys(self): """The table names in our config.""" return [t['TableName'] for t in self._table_config] def len(self): """The number of tables we are configured for.""" return len(self.keys()) def items(self): """The table tuples (name, connection.Table()).""" for table_name in self.keys(): yield (table_name, self[table_name]) def _wait(self, table_name, type_waiter): waiter = self._connection.meta.client.get_waiter(type_waiter) waiter.wait(TableName=table_name) def scan(self, name): """Scan a table by name.""" scan = self.connection.Table(name).scan() return scan def wait_exists(self, table_name): self._wait(table_name, 'table_exists') def wait_not_exists(self, table_name): self._wait(table_name, 'table_not_exists') def create_all(self, wait=False): tables_name_list = [table.name for table in self._connection.tables.all()] for table in self._table_config: if table['TableName'] not in tables_name_list: self._connection.create_table(**table) if wait: for table in self._table_config: if table['TableName'] not in tables_name_list: self.wait_exists(table['TableName']) def destroy_all(self, wait=False): for table in self._table_config: table = self._connection.Table(table['TableName']) table.delete() if wait: for table in self._table_config: self.wait_not_exists(table['TableName']) class Dynamo(object): """DynamoDB engine manager.""" DEFAULT_REGION = 'us-east-1' def __init__(self, app=None): """ Initialize this extension. :param obj app: The Flask application (optional). """ self.app = app if app is not None: self.init_app(app) def init_app(self, app): """ Initialize this extension. :param obj app: The Flask application. """ self._init_settings(app) self._check_settings(app) app.extensions['dynamo'] = self conn = self._connection(app=app) self.tables = DynamoLazyTables(conn, app.config['DYNAMO_TABLES']) @staticmethod def _init_settings(app): """Initialize all of the extension settings.""" app.config.setdefault('DYNAMO_SESSION', None) app.config.setdefault('DYNAMO_TABLES', []) app.config.setdefault('DYNAMO_ENABLE_LOCAL', environ.get('DYNAMO_ENABLE_LOCAL', False)) app.config.setdefault('DYNAMO_LOCAL_HOST', environ.get('DYNAMO_LOCAL_HOST', None)) app.config.setdefault('DYNAMO_LOCAL_PORT', environ.get('DYNAMO_LOCAL_PORT', None)) app.config.setdefault('AWS_ACCESS_KEY_ID', environ.get('AWS_ACCESS_KEY_ID', None)) app.config.setdefault('AWS_SECRET_ACCESS_KEY', environ.get('AWS_SECRET_ACCESS_KEY', None)) app.config.setdefault('AWS_SESSION_TOKEN', environ.get('AWS_SESSION_TOKEN', None)) app.config.setdefault('AWS_REGION', environ.get('AWS_REGION', Dynamo.DEFAULT_REGION)) @staticmethod def _check_settings(app): """ Check all user-specified settings to ensure they're correct. We'll raise an error if something isn't configured properly. :raises: ConfigurationError """ if app.config['AWS_ACCESS_KEY_ID'] and not app.config['AWS_SECRET_ACCESS_KEY']: raise ConfigurationError('You must specify AWS_SECRET_ACCESS_KEY if you are specifying AWS_ACCESS_KEY_ID.') if app.config['AWS_SECRET_ACCESS_KEY'] and not app.config['AWS_ACCESS_KEY_ID']: raise ConfigurationError('You must specify AWS_ACCESS_KEY_ID if you are specifying AWS_SECRET_ACCESS_KEY.') if app.config['DYNAMO_ENABLE_LOCAL'] and not (app.config['DYNAMO_LOCAL_HOST'] and app.config['DYNAMO_LOCAL_PORT']): raise ConfigurationError('If you have enabled Dynamo local, you must specify the host and port.') def _get_app(self): """ Helper method that implements the logic to look up an application. pass """ if current_app: return current_app if self.app is not None: return self.app raise RuntimeError( 'application not registered on dynamo instance and no application' 'bound to current context' ) @staticmethod def _get_ctx(app): """ Gets the dyanmo app context state. """ try: return app.extensions['dynamo'] except KeyError: raise RuntimeError( 'flask-dynamo extension not registered on flask app' ) @staticmethod def _init_session(app): session_kwargs = {} # Only apply if manually specified: otherwise, we'll let boto # figure it out (boto will sniff for ec2 instance profile # credentials). if app.config['AWS_ACCESS_KEY_ID']: session_kwargs['aws_access_key_id'] = app.config['AWS_ACCESS_KEY_ID'] if app.config['AWS_SECRET_ACCESS_KEY']: session_kwargs['aws_secret_access_key'] = app.config['AWS_SECRET_ACCESS_KEY'] if app.config['AWS_SESSION_TOKEN']: session_kwargs['aws_session_token'] = app.config['AWS_SESSION_TOKEN'] if app.config['AWS_REGION']: session_kwargs['region_name'] = app.config['AWS_REGION'] return Session(**session_kwargs) def _session(self, app=None): if not app: app = self._get_app() ctx = self._get_ctx(app) try: return ctx._session_instance except AttributeError: ctx._session_instance = app.config['DYNAMO_SESSION'] or self._init_session(app) return ctx._session_instance @property def session(self): """ Our DynamoDB session. This will be lazily created if this is the first time this is being accessed. This session is reused for performance. """ return self._session() def _connection(self, app=None): if not app: app = self._get_app() ctx = self._get_ctx(app) try: return ctx._connection_instance except AttributeError: client_kwargs = {} local = True if app.config['DYNAMO_ENABLE_LOCAL'] else False if local: client_kwargs['endpoint_url'] = 'http://{}:{}'.format( app.config['DYNAMO_LOCAL_HOST'], app.config['DYNAMO_LOCAL_PORT'], ) ctx._connection_instance = self._session(app=app).resource('dynamodb', **client_kwargs) return ctx._connection_instance @property def connection(self): """ Our DynamoDB connection. This will be lazily created if this is the first time this is being accessed. This connection is reused for performance. """ return self._connection() def get_table(self, table_name): return self.tables[table_name] def create_all(self, wait=False): """ Create all user-specified DynamoDB tables. We'll ignore table(s) that already exists. We'll error out if the tables can't be created for some reason. """ self.tables.create_all(wait=wait) def destroy_all(self, wait=False): """ Destroy all user-specified DynamoDB tables. We'll error out if the tables can't be destroyed for some reason. """ self.tables.destroy_all(wait=wait) ```
{ "source": "jendrikjoe/vscode-importmagic", "score": 2 }
#### File: pythonFiles/src/extended_isort.py ```python import os import locale from difflib import unified_diff, SequenceMatcher # from pathlib import Path try: from pathlib import Path except ImportError: # Python 2 backport from pathlib2 import Path from isort import settings from isort.isort import _SortImports from isort.compat import get_settings_path, resolve, \ determine_file_encoding, read_file_contents class SortImportsException(Exception): pass class ExtendedSortImports(object): def __init__(self, file_path, settings_path): self._file_path = file_path self._settings_path = settings_path self._import_candidates = [] self.output = None def add_import(self, from_, module_=None): self._import_candidates.append('from %s import %s' % (from_, module_) \ if module_ is not None else 'import %s' % from_) def get_diff(self, **setting_overrides): # Follow code is a modified part of isort.compat.SortImports run_path='' check_skip=True if not self._file_path: return [] file_path = Path(self._file_path) settings_path = None if self._settings_path is None else \ Path(self._settings_path) self.config = settings.prepare_config( get_settings_path(settings_path, file_path), **setting_overrides) # Add custom import self.config['add_imports'] = self.config['add_imports'] or [] for c in self._import_candidates: self.config['add_imports'].append(c) absolute_file_path = resolve(file_path) file_name = None if check_skip: if run_path and run_path in absolute_file_path.parents: file_name = os.path.relpath(absolute_file_path, run_path) else: file_name = str(absolute_file_path) run_path = '' if settings.file_should_be_skipped(file_name, self.config, run_path): raise SortImportsException( "%s was skipped as it's listed in 'skip' setting or " "matches a glob in 'skip_glob' setting" % \ absolute_file_path) preferred_encoding = determine_file_encoding(absolute_file_path) fallback_encoding = locale.getpreferredencoding(False) file_contents, used_encoding = read_file_contents( absolute_file_path, encoding=preferred_encoding, fallback_encoding=fallback_encoding) if used_encoding is None: raise SortImportsException( "%s was skipped as it couldn't be opened with the given " "%s encoding or %s fallback encoding" % ( str(absolute_file_path), preferred_encoding, fallback_encoding)) if file_contents is None or ("isort:" + "skip_file") in file_contents: return [] extension = file_name.split('.')[-1] if file_name else "py" self.sorted_imports = _SortImports(file_contents=file_contents, config=self.config, extension=extension) self.output = self.sorted_imports.output # END. compare file_contents vs self.output return self._show_diff(file_contents) def _show_diff(self, file_contents): diff_commands = [] s1 = file_contents.splitlines(1) s2 = self.output.splitlines(1) if s2[-1].endswith('\n') and not s1[-1].endswith('\n'): s1[-1] += '\n' # Parse our diff matcher = SequenceMatcher(None, s1, s2) for tag, i1, i2, j1, j2 in reversed(matcher.get_opcodes()): if tag == 'delete': diff_commands.append({ 'action': 'delete', 'start': i1, 'end': i2, 'text': None }) elif tag == 'insert': diff_commands.append({ 'action': 'insert', 'start': i1, 'end': i2, 'text': ''.join(s2[j1:j2]) }) elif tag == 'replace': diff_commands.append({ 'action': 'replace', 'start': i1, 'end': i2, 'text': ''.join(s2[j1:j2]) }) return diff_commands ``` #### File: pythonFiles/src/extension.py ```python import os import importmagic from isort.settings import WrapModes from src import WarningException from src.extended_isort import ExtendedSortImports from src.index_manager import IndexManager from src.indexer import DirIndexer, FileIndexer class Extension(object): def __init__(self): self._inited = False self._style_multiline = None self._style_max_columns = None self._style_indent_with_tabs = None self._workspace_path = None # .isort.cfg could be placed there self._paths = [] self._skip_tests = True self._temp_path = None self._index_manager = None @property def style_multiline(self): return self._style_multiline @style_multiline.setter def style_multiline(self, value): if value in (None, 'backslash', 'parentheses'): self._style_multiline = value @property def style_max_columns(self): return self._style_max_columns @style_max_columns.setter def style_max_columns(self, value): if value is None or isinstance(value, int): self._style_max_columns = value elif isinstance(value, str) and value.isnumeric(): self._style_max_columns = int(value) @property def style_indent_with_tabs(self): return self._style_indent_with_tabs @style_indent_with_tabs.setter def style_indent_with_tabs(self, value): if value is None or isinstance(value, bool): self._style_indent_with_tabs = value @property def paths(self): return self._paths @paths.setter def paths(self, value): if not isinstance(value, list): raise TypeError('Paths must be list') self._paths = value @property def workspace_path(self): return self._workspace_path @workspace_path.setter def workspace_path(self, value): self._workspace_path = value @property def skip_tests(self): return self._skip_tests @skip_tests.setter def skip_tests(self, value): self._skip_tests = bool(value) @property def temp_path(self): return self._temp_path @temp_path.setter def temp_path(self, value): self._temp_path = value def notify_progress(self, text): self._success_response(progress=text) def _cmd_configure(self, **kwargs): if self._inited: raise Exception('Restart to reconfigure it') self.paths = kwargs.get('paths', []) self.skip_tests = bool(kwargs.get('skipTest', True)) self.temp_path = kwargs.get('tempPath') self.workspace_path = kwargs.get('workspacePath') style_settings = kwargs.get('style', {}) self.style_multiline = style_settings.get('multiline') self.style_max_columns = style_settings.get('maxColumns') self.style_indent_with_tabs = style_settings.get('indentWithTabs') if not self.temp_path: raise ValueError('Empty temp_path') if not self.paths and os.path.exists(self.workspace_path): self.paths.append(self.workspace_path) self._inited = True self.notify_progress('Index checking in progress...') self._index_manager = IndexManager( self, kwargs.get('workspaceName', 'default')) if not self._index_manager.open(): self._cmd_rebuild_index() def _report_scan_progress(self, value): self.notify_progress('Scan files... %i' % value) def _cmd_change_files(self, files, **kwargs): #pylint: disable=unused-argument if not self._inited: raise Exception('Run configure() at first') # When __init__.py was changed we should rescan the all packages # which placed under it. We will be use pathes as target prefixes prefiexes = [] for f in list(files): prefiexes.append(f) basename = os.path.basename(f) if basename == '__init__.py': parts = f.split(os.path.sep) if len(parts) > 1: package_path = os.path.sep.join(parts[:-1]) prefiexes.append(package_path) idx = FileIndexer(self.paths, prefiexes, self.skip_tests) idx.build(self._report_scan_progress) self._index_manager.remove_from_index(idx) self._index_manager.append_index(idx) self._index_manager.commit(idx.total_files) all_docs_count = self._index_manager.get_documents_count() return dict(success=True, docs_count=all_docs_count) def _cmd_rebuild_index(self, **kwargs): #pylint: disable=unused-argument if not self._inited: raise Exception('Run configure() at first') self.notify_progress('Rebuild index...') self._index_manager.recreate_index() idx = DirIndexer(self.paths, self.skip_tests) idx.build(self._report_scan_progress) total_items = idx.get_power() or 1 def report_listener2(value): v = value * 100 / total_items self.notify_progress('Indexing... %i%%' % int(v)) self._index_manager.append_index(idx, report_listener2) self.notify_progress('Save index file...') self._index_manager.commit(idx.total_files) all_docs_count = self._index_manager.get_documents_count() return dict(success=True, docs_count=all_docs_count) def _cmd_get_symbols(self, text, **kwargs): #pylint: disable=unused-argument if not self._inited: raise Exception('Run configure() at first') if len(text) < 2: raise WarningException('You should find at least 2-symbols text') results = [] for f in self._index_manager.search(text): results.append(dict( symbol=f['symbol'], module=f['module'], kind=f['kind'] )) return dict(items=results) def _cmd_insert_import(self, **kwargs): if not self._inited: raise Exception('Run configure() at first') source_file = kwargs.get('sourceFile') module = kwargs.get('module') symbol = kwargs.get('symbol') # Always present if not source_file: raise WarningException('Empty sourceFile') isort = ExtendedSortImports(source_file, self.workspace_path) if not module: isort.add_import(symbol) else: isort.add_import(module, symbol) params = {'verbose': False} if self.style_max_columns is not None: params['line_length'] = self.style_max_columns if self.style_multiline == 'backslash': params['use_parentheses'] = False params['multi_line_output'] = WrapModes.HANGING_INDENT if self.style_multiline == 'parentheses': params['use_parentheses'] = True params['multi_line_output'] = WrapModes.GRID if self.style_indent_with_tabs is not None: params['indent'] = '\t' if self.style_indent_with_tabs else ' '*4 diff = isort.get_diff(**params) return dict(diff=diff) def _cmd_import_suggestions(self, **kwargs): if not self._inited: raise Exception('Run configure() at first') source_file = kwargs.get('sourceFile') unresolved_name = kwargs.get('unresolvedName') if len(unresolved_name) < 2: raise WarningException('You should find at least 2-symbols text') if not source_file: raise WarningException('Empty sourceFile') if not unresolved_name: raise WarningException('Empty unresolvedName') with open(source_file, 'r') as fd: python_source = fd.read() scope = importmagic.Scope.from_source(python_source) _unresolved, _unreferenced = \ scope.find_unresolved_and_unreferenced_symbols() # Sometimes unresolved may contain "sys.path". # Split this cases for find "sys.path", "sys" and "path" unresolved = set() for item1 in _unresolved: for item2 in item1.split('.'): unresolved.add(item2) if unresolved_name not in unresolved: return dict(items=[]) results = [] for f in self._index_manager.search(unresolved_name): results.append(dict( symbol=f['symbol'], module=f['module'], kind=f['kind'] )) return dict(items=results) _COMMANDS = { 'configure': _cmd_configure, 'changeFiles': _cmd_change_files, 'rebuildIndex': _cmd_rebuild_index, 'getSymbols': _cmd_get_symbols, 'insertImport': _cmd_insert_import, 'importSuggestions': _cmd_import_suggestions } ``` #### File: pythonFiles/src/schema.py ```python from whoosh.analysis import Filter, LowercaseFilter, StandardAnalyzer, \ NgramFilter from whoosh.analysis.tokenizers import IDTokenizer from whoosh.fields import NUMERIC, STORED, SchemaClass, TEXT class LodashFilter(Filter): def __call__(self, tokens): for t in tokens: t.text = t.text.replace('_', '') yield t simple_ana = IDTokenizer() | LowercaseFilter() | LodashFilter() custom_ana = StandardAnalyzer(stoplist=None) | LodashFilter() # | NgramFilter(minsize=2, maxsize=5, at='start') # The sort problems with NgramFilter: less relevant artefacts will be first class IndexSchema(SchemaClass): filename = TEXT(stored=True, analyzer=simple_ana) symbol = TEXT(stored=True, analyzer=custom_ana) module = TEXT(stored=True, analyzer=simple_ana) location = STORED() kind = STORED() sort = NUMERIC(sortable=True) ``` #### File: pythonFiles/src/symbol_index.py ```python import os from contextlib import contextmanager from importmagic import SymbolIndex class SymbolIndexAccelerator(object): def path(self): if not hasattr(self, '_cached_path'): path = [] node = self while node and node._name: path.append(node._name) node = node._parent setattr(self, '_cached_path', '.'.join(reversed(path))) return getattr(self, '_cached_path') def depth(self): if not hasattr(self, '_cached_depth'): depth = 0 node = self while node._parent: depth += 1 node = node._parent setattr(self, '_cached_depth', depth) return getattr(self, '_cached_depth') class ExtendedSymbolIndex(SymbolIndex, SymbolIndexAccelerator): """ Extend base class for keep a filename """ def __init__(self, name=None, parent=None, score=1.0, location='L', blacklist_re=None, locations=None, filename=None, manager=None): self.filename = filename self.manager = manager super().__init__(name, parent, score, location, blacklist_re, locations) def get_power(self): items_count = 0 for subscope in list(self._tree.values()): items_count += 1 if type(subscope) is not float: items_count += subscope.get_power() return items_count def build_index(self): super().build_index(self.manager.paths) def index_file(self, module, filename): location = self._determine_location_for(filename) self.manager.total_files += 1 if self.manager.blacklist_re.search(filename): return if self.manager.target_prefixes is not None: ok = False for test_file in self.manager.target_prefixes: if filename.startswith(test_file): ok = True break if not ok: return self.manager.affected_files.add(filename) # logger.debug('parsing Python module %s for indexing', filename) with open(filename, 'rb') as fd: source = fd.read() with self.enter(module, location=location, # self._determine_location_for(filename), filename=filename) as subtree: success = subtree.index_source(filename, source) if not success: self._tree.pop(module, None) def _index_package(self, root, location): root_filename = os.path.join(root, '__init__.py') basename = os.path.basename(root) with self.enter(basename, location=location, filename=root_filename) as subtree: for filename in os.listdir(root): subtree.index_path(os.path.join(root, filename)) @contextmanager def enter(self, name, location='L', score=1.0, filename=None): if name is None: tree = self else: tree = self._tree.get(name) if not isinstance(tree, SymbolIndex): tree = self._tree[name] = ExtendedSymbolIndex(name, self, score=score, location=location, filename=filename, manager=self.manager) if tree.path() in SymbolIndex._PACKAGE_ALIASES: alias_path, _ = SymbolIndex._PACKAGE_ALIASES[tree.path()] alias = self.find(alias_path) alias._tree = tree._tree yield tree if tree._exports is not None: # Delete unexported variables. But keeps submodules for key in set(tree._tree) - set(tree._exports): value = tree._tree.get(key) if value is None or type(value) is float: del tree._tree[key] ```
{ "source": "jendrusk/osm_report_addr", "score": 2 }
#### File: jendrusk/osm_report_addr/webpage.py ```python from flask import Flask, render_template, request import locdb import config app = Flask(__name__) def create_josm_list(rep): res_lst = list() for feat in rep: if feat["type"] == "node": obj = "n"+str(feat["osm_id"]) elif feat["type"] == "way": obj = "w"+str(feat["osm_id"]) elif feat["type"] == "relation": obj = "r"+str(feat["osm_id"]) res_lst.append(obj) return ",".join(res_lst) @app.route('/') def main_list(): htdata = locdb.select_all(limit=100) header = "Ostatnie 100 changesetów z uszkodzonymi adresami" colnames = ["osm_id", "osm_user", "osm_changeset", "visits", "reason", "checks"] rows = htdata return render_template("main.html", header = header, colnames = colnames, rows =rows, reason_dict=config.reason_dict) @app.route('/changeset/<chgs_id>') def changeset_report(chgs_id): referer = request.headers.get("Referer") locdb.add_visit(chgs_id,referer) visits = locdb.select_visits_grouped(chgs_id) htdata = locdb.select_changeset(chgs_id) colnames = ["osm_id", "reason", "checks"] all_obj = create_josm_list(htdata) return render_template("changeset.html", rows=htdata, colnames=colnames, reason_dict=config.reason_dict, all_obj=all_obj, visits=visits) if __name__ == "__main__": app.run(host="127.0.0.1", port="5000") ```
{ "source": "jene4ekjene4ek/my_mlflow", "score": 3 }
#### File: examples/multistep_workflow/etl_data.py ```python import tempfile import os import pyspark import mlflow import click @click.command(help="Given a CSV file (see load_raw_data), transforms it into Parquet " "in an mlflow artifact called 'ratings-parquet-dir'") @click.option("--ratings-csv") @click.option("--max-row-limit", default=10000, help="Limit the data size to run comfortably on a laptop.") def etl_data(ratings_csv, max_row_limit): with mlflow.start_run() as mlrun: tmpdir = tempfile.mkdtemp() ratings_parquet_dir = os.path.join(tmpdir, 'ratings-parquet') spark = pyspark.sql.SparkSession.builder.getOrCreate() print("Converting ratings CSV %s to Parquet %s" % (ratings_csv, ratings_parquet_dir)) ratings_df = spark.read \ .option("header", "true") \ .option("inferSchema", "true") \ .csv(ratings_csv) \ .drop("timestamp") # Drop unused column ratings_df.show() if max_row_limit != -1: ratings_df = ratings_df.limit(max_row_limit) ratings_df.write.parquet(ratings_parquet_dir) print("Uploading Parquet ratings: %s" % ratings_parquet_dir) mlflow.log_artifacts(ratings_parquet_dir, "ratings-parquet-dir") if __name__ == '__main__': etl_data() ``` #### File: examples/multistep_workflow/load_raw_data.py ```python import requests import tempfile import os import zipfile import pyspark import mlflow import click @click.command(help="Downloads the MovieLens dataset and saves it as an mlflow artifact " " called 'ratings-csv-dir'.") @click.option("--url", default="http://files.grouplens.org/datasets/movielens/ml-20m.zip") def load_raw_data(url): with mlflow.start_run() as mlrun: local_dir = tempfile.mkdtemp() local_filename = os.path.join(local_dir, "ml-20m.zip") print("Downloading %s to %s" % (url, local_filename)) r = requests.get(url, stream=True) with open(local_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks f.write(chunk) extracted_dir = os.path.join(local_dir, 'ml-20m') print("Extracting %s into %s" % (local_filename, extracted_dir)) with zipfile.ZipFile(local_filename, 'r') as zip_ref: zip_ref.extractall(local_dir) ratings_file = os.path.join(extracted_dir, 'ratings.csv') print("Uploading ratings: %s" % ratings_file) mlflow.log_artifact(ratings_file, "ratings-csv-dir") if __name__ == '__main__': load_raw_data() ``` #### File: mlflow/deployments/plugin_manager.py ```python import abc import inspect import entrypoints from mlflow.exceptions import MlflowException from mlflow.protos.databricks_pb2 import RESOURCE_DOES_NOT_EXIST, INTERNAL_ERROR from mlflow.deployments.base import BaseDeploymentClient from mlflow.deployments.utils import parse_target_uri # TODO: refactor to have a common base class for all the plugin implementation in MLFlow # mlflow/tracking/context/registry.py # mlflow/tracking/registry # mlflow/store/artifact/artifact_repository_registry.py class PluginManager(abc.ABC): """ Abstract class defining a entrypoint based plugin registration. This class allows the registration of a function or class to provide an implementation for a given key/name. Implementations declared though the entrypoints can be automatically registered through the `register_entrypoints` method. """ @abc.abstractmethod def __init__(self, group_name): self._registry = {} self.group_name = group_name self._has_registered = None @abc.abstractmethod def __getitem__(self, item): # Letting the child class create this function so that the child # can raise custom exceptions if it needs to pass @property def registry(self): """ Registry stores the registered plugin as a key value pair where key is the name of the plugin and value is the plugin object """ return self._registry @property def has_registered(self): """ Returns bool representing whether the "register_entrypoints" has run or not. This doesn't return True if `register` method is called outside of `register_entrypoints` to register plugins """ return self._has_registered def register_entrypoints(self): """ Runs through all the packages that has the `group_name` defined as the entrypoint and register that into the registry """ for entrypoint in entrypoints.get_group_all(self.group_name): self.registry[entrypoint.name] = entrypoint self._has_registered = True class DeploymentPlugins(PluginManager): def __init__(self): super().__init__('mlflow.deployments') self.register_entrypoints() def __getitem__(self, item): """Override __getitem__ so that we can directly look up plugins via dict-like syntax""" try: target_name = parse_target_uri(item) plugin_like = self.registry[target_name] except KeyError: msg = 'No plugin found for managing model deployments to "{target}". ' \ 'In order to deploy models to "{target}", find and install an appropriate ' \ 'plugin from ' \ 'https://mlflow.org/docs/latest/plugins.html#community-plugins using ' \ 'your package manager (pip, conda etc).'.format(target=item) raise MlflowException(msg, error_code=RESOURCE_DOES_NOT_EXIST) if isinstance(plugin_like, entrypoints.EntryPoint): try: plugin_obj = plugin_like.load() except (AttributeError, ImportError) as exc: raise RuntimeError( 'Failed to load the plugin "{}": {}'.format(item, str(exc))) self.registry[item] = plugin_obj else: plugin_obj = plugin_like # Testing whether the plugin is valid or not expected = {'target_help', 'run_local'} deployment_classes = [] for name, obj in inspect.getmembers(plugin_obj): if name in expected: expected.remove(name) elif inspect.isclass(obj) and \ issubclass(obj, BaseDeploymentClient) and \ not obj == BaseDeploymentClient: deployment_classes.append(name) if len(expected) > 0: raise MlflowException("Plugin registered for the target {} does not has all " "the required interfaces. Raise an issue with the " "plugin developers.\n" "Missing interfaces: {}".format(item, expected), error_code=INTERNAL_ERROR) if len(deployment_classes) > 1: raise MlflowException("Plugin registered for the target {} has more than one " "child class of BaseDeploymentClient. Raise an issue with" " the plugin developers. " "Classes found are {}".format(item, deployment_classes)) elif len(deployment_classes) == 0: raise MlflowException("Plugin registered for the target {} has no child class" " of BaseDeploymentClient. Raise an issue with the " "plugin developers".format(item)) return plugin_obj ``` #### File: db_migrations/versions/2b4d017a5e9b_add_model_registry_tables_to_db.py ```python import time import logging from alembic import op import sqlalchemy as sa from alembic import op from sqlalchemy import orm, func, distinct, and_ from sqlalchemy import ( Column, String, ForeignKey, Float, Integer, BigInteger, PrimaryKeyConstraint, Boolean) from mlflow.entities.model_registry.model_version_stages import STAGE_NONE from mlflow.entities.model_registry.model_version_status import ModelVersionStatus from mlflow.store.model_registry.dbmodels.models import SqlRegisteredModel, SqlModelVersion _logger = logging.getLogger(__name__) _logger.setLevel(logging.INFO) # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '89d4b8295536' branch_labels = None depends_on = None def upgrade(): bind = op.get_bind() session = orm.Session(bind=bind) _logger.info("Adding registered_models and model_versions tables to database.") op.create_table(SqlRegisteredModel.__tablename__, Column('name', String(256), unique=True, nullable=False), Column('creation_time', BigInteger, default=lambda: int(time.time() * 1000)), Column('last_updated_time', BigInteger, nullable=True, default=None), Column('description', String(5000), nullable=True), PrimaryKeyConstraint('name', name='registered_model_pk') ) op.create_table(SqlModelVersion.__tablename__, Column('name', String(256), ForeignKey('registered_models.name', onupdate='cascade')), Column('version', Integer, nullable=False), Column('creation_time', BigInteger, default=lambda: int(time.time() * 1000)), Column('last_updated_time', BigInteger, nullable=True, default=None), Column('description', String(5000), nullable=True), Column('user_id', String(256), nullable=True, default=None), Column('current_stage', String(20), default=STAGE_NONE), Column('source', String(500), nullable=True, default=None), Column('run_id', String(32), nullable=False), Column('status', String(20), default=ModelVersionStatus.to_string(ModelVersionStatus.READY)), Column('status_message', String(500), nullable=True, default=None), PrimaryKeyConstraint('name', 'version', name='model_version_pk') ) session.commit() _logger.info("Migration complete!") def downgrade(): op.drop_table(SqlRegisteredModel.__tablename__) op.drop_table(SqlModelVersion.__tablename__) ``` #### File: mlflow/types/utils.py ```python from typing import Any import numpy as np import pandas as pd from mlflow.exceptions import MlflowException from mlflow.types import DataType from mlflow.types.schema import Schema, ColSpec class TensorsNotSupportedException(MlflowException): def __init__(self, msg): super().__init__("Multidimensional arrays (aka tensors) are not supported. " "{}".format(msg)) def _infer_schema(data: Any) -> Schema: """ Infer an MLflow schema from a dataset. This method captures the column names and data types from the user data. The signature represents model input and output as data frames with (optionally) named columns and data type specified as one of types defined in :py:class:`DataType`. This method will raise an exception if the user data contains incompatible types or is not passed in one of the supported formats (containers). The input should be one of these: - pandas.DataFrame or pandas.Series - dictionary of { name -> numpy.ndarray} - numpy.ndarray - pyspark.sql.DataFrame The element types should be mappable to one of :py:class:`mlflow.models.signature.DataType`. NOTE: Multidimensional (>2d) arrays (aka tensors) are not supported at this time. :param data: Dataset to infer from. :return: Schema """ if isinstance(data, dict): res = [] for col in data.keys(): ary = data[col] if not isinstance(ary, np.ndarray): raise TypeError("Data in the dictionary must be of type numpy.ndarray") dims = len(ary.shape) if dims == 1: res.append(ColSpec(type=_infer_numpy_array(ary), name=col)) else: raise TensorsNotSupportedException("Data in the dictionary must be 1-dimensional, " "got shape {}".format(ary.shape)) return Schema(res) elif isinstance(data, pd.Series): return Schema([ColSpec(type=_infer_numpy_array(data.values))]) elif isinstance(data, pd.DataFrame): return Schema([ColSpec(type=_infer_numpy_array(data[col].values), name=col) for col in data.columns]) elif isinstance(data, np.ndarray): if len(data.shape) > 2: raise TensorsNotSupportedException("Attempting to infer schema from numpy array with " "shape {}".format(data.shape)) if data.dtype == np.object: data = pd.DataFrame(data).infer_objects() return Schema([ColSpec(type=_infer_numpy_array(data[col].values)) for col in data.columns]) if len(data.shape) == 1: return Schema([ColSpec(type=_infer_numpy_dtype(data.dtype))]) elif len(data.shape) == 2: return Schema([ColSpec(type=_infer_numpy_dtype(data.dtype))] * data.shape[1]) elif _is_spark_df(data): return Schema([ColSpec(type=_infer_spark_type(field.dataType), name=field.name) for field in data.schema.fields]) raise TypeError("Expected one of (pandas.DataFrame, numpy array, " "dictionary of (name -> numpy.ndarray), pyspark.sql.DataFrame) " "but got '{}'".format(type(data))) def _infer_numpy_dtype(dtype: np.dtype) -> DataType: if not isinstance(dtype, np.dtype): raise TypeError("Expected numpy.dtype, got '{}'.".format(type(dtype))) if dtype.kind == "b": return DataType.boolean elif dtype.kind == "i" or dtype.kind == "u": if dtype.itemsize < 4 or (dtype.kind == "i" and dtype.itemsize == 4): return DataType.integer elif dtype.itemsize < 8 or (dtype.kind == "i" and dtype.itemsize == 8): return DataType.long elif dtype.kind == "f": if dtype.itemsize <= 4: return DataType.float elif dtype.itemsize <= 8: return DataType.double elif dtype.kind == "U": return DataType.string elif dtype.kind == "S": return DataType.binary elif dtype.kind == "O": raise Exception("Can not infer np.object without looking at the values, call " "_map_numpy_array instead.") raise MlflowException("Unsupported numpy data type '{0}', kind '{1}'".format( dtype, dtype.kind)) def _infer_numpy_array(col: np.ndarray) -> DataType: if not isinstance(col, np.ndarray): raise TypeError("Expected numpy.ndarray, got '{}'.".format(type(col))) if len(col.shape) > 1: raise MlflowException("Expected 1d array, got array with shape {}".format(col.shape)) class IsInstanceOrNone(object): def __init__(self, *args): self.classes = args self.seen_instances = 0 def __call__(self, x): if x is None: return True elif any(map(lambda c: isinstance(x, c), self.classes)): self.seen_instances += 1 return True else: return False if col.dtype.kind == "O": is_binary_test = IsInstanceOrNone(bytes, bytearray) if all(map(is_binary_test, col)) and is_binary_test.seen_instances > 0: return DataType.binary is_string_test = IsInstanceOrNone(str) if all(map(is_string_test, col)) and is_string_test.seen_instances > 0: return DataType.string # NB: bool is also instance of int => boolean test must precede integer test. is_boolean_test = IsInstanceOrNone(bool) if all(map(is_boolean_test, col)) and is_boolean_test.seen_instances > 0: return DataType.boolean is_long_test = IsInstanceOrNone(int) if all(map(is_long_test, col)) and is_long_test.seen_instances > 0: return DataType.long is_double_test = IsInstanceOrNone(float) if all(map(is_double_test, col)) and is_double_test.seen_instances > 0: return DataType.double else: raise MlflowException("Unable to map 'np.object' type to MLflow DataType. np.object can" "be mapped iff all values have identical data type which is one " "of (string, (bytes or byterray), int, float).") else: return _infer_numpy_dtype(col.dtype) def _infer_spark_type(x) -> DataType: import pyspark.sql.types if isinstance(x, pyspark.sql.types.NumericType): if isinstance(x, pyspark.sql.types.IntegralType): if isinstance(x, pyspark.sql.types.LongType): return DataType.long else: return DataType.integer elif isinstance(x, pyspark.sql.types.FloatType): return DataType.float elif isinstance(x, pyspark.sql.types.DoubleType): return DataType.double elif isinstance(x, pyspark.sql.types.BooleanType): return DataType.boolean elif isinstance(x, pyspark.sql.types.StringType): return DataType.string elif isinstance(x, pyspark.sql.types.BinaryType): return DataType.binary else: raise Exception("Unsupported Spark Type '{}', MLflow schema is only supported for scalar " "Spark types.".format(type(x))) def _is_spark_df(x) -> bool: try: import pyspark.sql.dataframe return isinstance(x, pyspark.sql.dataframe.DataFrame) except ImportError: return False ``` #### File: tests/models/test_model_input_examples.py ```python import json import math import numpy as np import pandas as pd import pytest from mlflow.models.signature import infer_signature from mlflow.models.utils import _Example from mlflow.types.utils import TensorsNotSupportedException from mlflow.utils.file_utils import TempDir from mlflow.utils.proto_json_utils import _dataframe_from_json @pytest.fixture def pandas_df_with_all_types(): return pd.DataFrame({ "boolean": [True, False, True], "integer": np.array([1, 2, 3], np.int32), "long": np.array([1, 2, 3], np.int64), "float": np.array([math.pi, 2 * math.pi, 3 * math.pi], np.float32), "double": [math.pi, 2 * math.pi, 3 * math.pi], "binary": [bytes([1, 2, 3]), bytes([4, 5, 6]), bytes([7, 8, 9])], "string": ["a", "b", 'c'], }) def test_input_examples(pandas_df_with_all_types): sig = infer_signature(pandas_df_with_all_types) # test setting example with data frame with all supported data types with TempDir() as tmp: example = _Example(pandas_df_with_all_types) example.save(tmp.path()) filename = example.info["artifact_path"] with open(tmp.path(filename), "r") as f: data = json.load(f) assert set(data.keys()) == set(("columns", "data")) parsed_df = _dataframe_from_json(tmp.path(filename), schema=sig.inputs) assert (pandas_df_with_all_types == parsed_df).all().all() # the frame read without schema should match except for the binary values assert (parsed_df.drop(columns=["binary"]) == _dataframe_from_json(tmp.path(filename)) .drop(columns=["binary"])).all().all() # pass the input as dictionary instead with TempDir() as tmp: d = {name: pandas_df_with_all_types[name].values for name in pandas_df_with_all_types.columns} example = _Example(d) example.save(tmp.path()) filename = example.info["artifact_path"] parsed_df = _dataframe_from_json(tmp.path(filename), sig.inputs) assert (pandas_df_with_all_types == parsed_df).all().all() # input passed as numpy array sig = infer_signature(pandas_df_with_all_types.values) with TempDir() as tmp: example = _Example(pandas_df_with_all_types.values) example.save(tmp.path()) filename = example.info["artifact_path"] with open(tmp.path(filename), "r") as f: data = json.load(f) assert set(data.keys()) == set(("data",)) parsed_ary = _dataframe_from_json(tmp.path(filename), schema=sig.inputs).values assert (pandas_df_with_all_types.values == parsed_ary).all().all() # pass multidimensional array with TempDir() as tmp: example = np.array([[[1, 2, 3]]]) with pytest.raises(TensorsNotSupportedException): _Example(example) # pass multidimensional array with TempDir() as tmp: example = np.array([[1, 2, 3]]) with pytest.raises(TensorsNotSupportedException): _Example({"x": example, "y": example}) # pass dict with scalars with TempDir() as tmp: example = {"a": 1, "b": "abc"} x = _Example(example) x.save(tmp.path()) filename = x.info["artifact_path"] parsed_df = _dataframe_from_json(tmp.path(filename)) assert example == parsed_df.to_dict(orient="records")[0] ``` #### File: store/artifact/test_runs_artifact_repo.py ```python import pytest from mock import Mock import mlflow from mlflow.exceptions import MlflowException from mlflow.store.artifact.runs_artifact_repo import RunsArtifactRepository from mlflow.store.artifact.s3_artifact_repo import S3ArtifactRepository @pytest.mark.parametrize("uri, expected_run_id, expected_artifact_path", [ ('runs:/1234abcdf1394asdfwer33/path/to/model', '1234abcdf1394asdfwer33', 'path/to/model'), ('runs:/1234abcdf1394asdfwer33/path/to/model/', '1234abcdf1394asdfwer33', 'path/to/model/'), ('runs:/1234abcdf1394asdfwer33', '1234abcdf1394asdfwer33', None), ('runs:/1234abcdf1394asdfwer33/', '1234abcdf1394asdfwer33', None), ('runs:///1234abcdf1394asdfwer33/', '1234abcdf1394asdfwer33', None), ]) def test_parse_runs_uri_valid_input(uri, expected_run_id, expected_artifact_path): (run_id, artifact_path) = RunsArtifactRepository.parse_runs_uri(uri) assert run_id == expected_run_id assert artifact_path == expected_artifact_path @pytest.mark.parametrize("uri", [ 'notruns:/1234abcdf1394asdfwer33/', # wrong scheme 'runs:/', # no run id 'runs:1234abcdf1394asdfwer33/', # missing slash 'runs://1234abcdf1394asdfwer33/', # hostnames are not yet supported ]) def test_parse_runs_uri_invalid_input(uri): with pytest.raises(MlflowException): RunsArtifactRepository.parse_runs_uri(uri) def test_runs_artifact_repo_init(): artifact_location = "s3://blah_bucket/" experiment_id = mlflow.create_experiment("expr_abc", artifact_location) with mlflow.start_run(experiment_id=experiment_id): run_id = mlflow.active_run().info.run_id runs_uri = "runs:/%s/path/to/model" % run_id runs_repo = RunsArtifactRepository(runs_uri) assert runs_repo.artifact_uri == runs_uri assert isinstance(runs_repo.repo, S3ArtifactRepository) expected_absolute_uri = "%s%s/artifacts/path/to/model" % (artifact_location, run_id) assert runs_repo.repo.artifact_uri == expected_absolute_uri def test_runs_artifact_repo_uses_repo_download_artifacts(): """ The RunsArtifactRepo should delegate `download_artifacts` to it's self.repo.download_artifacts function """ artifact_location = "s3://blah_bucket/" experiment_id = mlflow.create_experiment("expr_abcd", artifact_location) with mlflow.start_run(experiment_id=experiment_id): run_id = mlflow.active_run().info.run_id runs_repo = RunsArtifactRepository('runs:/{}'.format(run_id)) runs_repo.repo = Mock() runs_repo.download_artifacts('artifact_path', 'dst_path') runs_repo.repo.download_artifacts.assert_called_once() ```