metadata
dict
text
stringlengths
60
3.49M
{ "source": "Jeremy-Alekai/DigiPay-App-in-Python", "score": 3 }
#### File: DigiPay-App-in-Python/application/algod.py ```python from algosdk import account, mnemonic from algosdk.constants import microalgos_to_algos_ratio from algosdk.future.transaction import PaymentTxn, AssetConfigTxn from algosdk.v2client import algod def algod_client(): """Initialise and return an algod client""" algod_address = "https://testnet-algorand.api.purestake.io/ps2" # FIXME: Put your API key in algod_token = "YOUR API KEY GOES HERE" headers = { "X-API-Key": algod_token, } return algod.AlgodClient(algod_token, algod_address, headers) def create_account(): """Create account and return its mnemonic""" private_key, address = account.generate_account() return mnemonic.from_private_key(private_key) def get_balance(address): """Returns the given address balance in algos converted from microalgos""" account_info = algod_client().account_info(address) balance = account_info.get('amount') / microalgos_to_algos_ratio return balance def send_txn(sender, quantity, receiver, note, sk): """Create and sign a transaction. Quantity is assumed to be in algorands, not microalgos""" quantity = int(quantity * microalgos_to_algos_ratio) params = algod_client().suggested_params() note = note.encode() try: unsigned_txn = PaymentTxn(sender, params, receiver, quantity, None, note) except Exception as err: print(err) return False signed_txn = unsigned_txn.sign(sk) try: txid = algod_client().send_transaction(signed_txn) except Exception as err: print(err) return False # wait for confirmation try: wait_for_confirmation(txid, 4) return True except Exception as err: print(err) return False # utility for waiting on a transaction confirmation def wait_for_confirmation(transaction_id, timeout): """ Wait until the transaction is confirmed or rejected, or until 'timeout' number of rounds have passed. Args: transaction_id (str): the transaction to wait for timeout (int): maximum number of rounds to wait Returns: dict: pending transaction information, or throws an error if the transaction is not confirmed or rejected in the next timeout rounds """ start_round = algod_client().status()["last-round"] + 1 current_round = start_round while current_round < start_round + timeout: try: pending_txn = algod_client().pending_transaction_info(transaction_id) except Exception as err: print(err) return if pending_txn.get("confirmed-round", 0) > 0: return pending_txn elif pending_txn["pool-error"]: raise Exception( 'pool error: {}'.format(pending_txn["pool-error"])) algod_client().status_after_block(current_round) current_round += 1 raise Exception( 'pending tx not found in timeout rounds, timeout value = : {}'.format(timeout)) def create_asset( creator, asset_name, unit_name, total, decimals, default_frozen, url, sk ): """Creates an asset, returns the newly created asset ID""" params = algod_client().suggested_params() txn = AssetConfigTxn( sender=creator, sp=params, total=total, default_frozen=default_frozen, unit_name=unit_name, asset_name=asset_name, manager=creator, reserve=creator, freeze=creator, clawback=creator, url=url, decimals=decimals) # Sign with secret key of creator stxn = txn.sign(sk) # Send the transaction to the network and retrieve the txid. txid = algod_client().send_transaction(stxn) try: wait_for_confirmation(txid, 4) except Exception as err: print(err) return None try: ptx = algod_client().pending_transaction_info(txid) asset_id = ptx["asset-index"] return asset_id except Exception as err: print(err) return None ``` #### File: DigiPay-App-in-Python/application/indexer.py ```python from algosdk.constants import microalgos_to_algos_ratio from algosdk.v2client import indexer def myindexer(): """Initialise and return an indexer""" algod_address = "https://testnet-algorand.api.purestake.io/idx2" # FIXME: Put your API key in algod_token = "YOUR API KEY GOES HERE" headers = { "X-API-Key": algod_token, } return indexer.IndexerClient("", algod_address, headers) def get_transactions(address, substring): """Returns a list of transactions related to the given address""" response = myindexer().search_transactions(address=address, txn_type="pay") txns = [] for txn in response["transactions"]: sender = txn["sender"] fee = txn["fee"] amount = txn["payment-transaction"]["amount"] if sender == address: # if the current account is the sender, add fee and display transaction as negative amount += fee amount *= -1 other_address = txn["payment-transaction"]["receiver"] else: other_address = sender amount /= microalgos_to_algos_ratio # check for searched address if substring not in other_address: continue txns.append({"amount": amount, "address": other_address}) return txns def get_assets(address, name): """Returns a list of assets that have been created by the given address""" response = myindexer().search_assets(creator=address, name=name) assets = response["assets"] return assets ``` #### File: DigiPay-App-in-Python/application/__init__.py ```python from flask import Flask from . import auth from . import views def create_app(): app = Flask(__name__) app.config["SECRET_KEY"] = "put any long random string here" auth.login_manager.init_app(app) app.register_blueprint(views.main_bp) app.register_blueprint(auth.auth_bp) return app ``` #### File: DigiPay-App-in-Python/application/models.py ```python from algosdk import mnemonic from flask_login import UserMixin from .algod import get_balance, send_txn, create_asset from .indexer import get_transactions, get_assets class User(UserMixin): """User account model""" def __init__(self, passphrase): """Creates a user using the 25-word mnemonic""" self.passphrase = passphrase @property def id(self): """Returns private key from mnemonic""" return mnemonic.to_private_key(self.passphrase) @property def public_key(self): """Returns public key from mnemonic. This is the same as the user's address""" return mnemonic.to_public_key(self.passphrase) def get_balance(self): """Returns user balance, in algos""" return get_balance(self.public_key) def send(self, quantity, receiver, note): """Returns True for a succesful transaction. Quantity is given in algos""" return send_txn(self.public_key, quantity, receiver, note, self.id) def create( self, asset_name, unit_name, total, decimals, default_frozen, url ): """Creates an asset, with the user as the creator""" return create_asset( self.public_key, asset_name, unit_name, total, decimals, default_frozen, url, self.id ) def get_transactions(self, substring): """Returns a list of the user's transactions""" return get_transactions(self.public_key, substring) def get_assets(self, name): """Returns a list of the user's assets""" return get_assets(self.public_key, name) ```
{ "source": "JeremyAndress/cobnut", "score": 3 }
#### File: cobnut/tests/test_exceptions.py ```python from unittest import TestCase from arsene import Arsene from arsene.exceptions import ValidationBroker class arseneTestCase(TestCase): def test_without_broker(self): with self.assertRaises(ValidationBroker) as context: Arsene() self.assertTrue('Need a broker to use Arsene' in context.exception) ```
{ "source": "JeremyAndress/fastapi-auth2", "score": 2 }
#### File: alembic/versions/c0b790895c18_add_user_and_role_models.py ```python from alembic import op import sqlalchemy as sa from core.role import ROLE # revision identifiers, used by Alembic. revision = 'c0b790895c18' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### role_table = op.create_table( 'rol', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=30), nullable=True), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('name') ) op.create_table( 'user', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=25), nullable=True), sa.Column('email', sa.String(length=255), nullable=False), sa.Column('password', sa.String(length=255), nullable=True), sa.Column('rol_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['rol_id'], ['rol.id'], onupdate='CASCADE', ondelete='RESTRICT'), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_user_email'), 'user', ['email'], unique=True) op.create_index(op.f('ix_user_username'), 'user', ['username'], unique=True) op.bulk_insert( role_table, [ {'id': 1, 'name': ROLE.ADMIN.value}, {'id': 2, 'name': ROLE.BASIC.value} ] ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_user_username'), table_name='user') op.drop_index(op.f('ix_user_email'), table_name='user') op.drop_table('user') op.drop_table('rol') # ### end Alembic commands ### ``` #### File: api_v1/role/role.py ```python from fastapi import APIRouter, Depends, HTTPException from sqlalchemy.orm import Session from schemas.user import UserCreate from db.session import get_db from api.deps import get_admin_user from schemas.rol import ListRol, RolBase, Rol from .service import role_service router = APIRouter() # Document @router.get('/role/{id}', response_model=Rol) def get_rol( id: int, db: Session = Depends(get_db), current_user: UserCreate = Depends(get_admin_user) ): return role_service.get(db, id) @router.post('/role', response_model=Rol, status_code=201) def create_role( rol: RolBase, db: Session = Depends(get_db), current_user: UserCreate = Depends(get_admin_user) ): try: return role_service.create(db, obj_in=rol) except Exception as e: raise HTTPException(status_code=400, detail=f'{e}') @router.put('/role', response_model=Rol) def update_role( rol: Rol, db: Session = Depends(get_db), current_user: UserCreate = Depends(get_admin_user) ): try: return role_service.update(db, obj_in=rol) except Exception as e: raise HTTPException(status_code=400, detail=f'{e}') @router.delete('/role/{id}') def delete_role( id: int, db: Session = Depends(get_db), current_user: UserCreate = Depends(get_admin_user) ): try: return role_service.remove(db, id=id) except Exception as e: raise HTTPException(status_code=400, detail=f'{e}') @router.get('/roles', response_model=ListRol) def get_all_roles( page: int, db: Session = Depends(get_db), current_user: UserCreate = Depends(get_admin_user) ): return role_service.get_paginate(db, page=page) ``` #### File: tests/api/test_rol.py ```python def test_create_role(client, super_user_token): data = { 'name': 'new_role' } response = client.post( '/api/v1/role', json=data, headers={ 'token': super_user_token } ) assert response.status_code == 201, response.text response_json = response.json() expected_data = {'name': 'new_role', 'id': 3} assert response_json == expected_data def test_get_role(client, super_user_token): response = client.get( '/api/v1/role/1', headers={ 'token': super_user_token } ) assert response.status_code == 200, response.text response_json = response.json() expected_data = {'name': 'ADMINISTRATOR', 'id': 1} assert response_json == expected_data def test_get_roles(client, super_user_token): response = client.get( '/api/v1/roles?page=1', headers={ 'token': super_user_token } ) assert response.status_code == 200, response.text response_json = response.json() expected_data = { 'previous_page': None, 'next_page': None, 'total': 2, 'pages': 1, 'data': [ {'name': 'ADMINISTRATOR', 'id': 1}, {'name': 'BASIC', 'id': 2} ] } assert response_json == expected_data def test_update_role(client, super_user_token): data = {'name': 'new_name', 'id': 2} response = client.put( '/api/v1/role', json=data, headers={ 'token': super_user_token } ) assert response.status_code == 200, response.text response_json = response.json() assert response_json == data def test_delete_role(client, super_user_token): response = client.delete( '/api/v1/role/2', headers={ 'token': <PASSWORD> } ) assert response.status_code == 200, response.text response_json = response.json() expected_data = {'name': 'BASIC', 'id': 2} assert response_json == expected_data ``` #### File: tests/api/test_user.py ```python def test_create_user(client, create_roles): data = { 'username': 'test_user', 'password': '<PASSWORD>', 'email': '<EMAIL>', 'rol_id': 1 } response = client.post( '/api/v1/user', json=data ) assert response.status_code == 201, response.text response_json = response.json() expected_data = { 'username': 'test_user', 'rol_id': 1, 'email': '<EMAIL>', 'id': 1 } assert response_json == expected_data def test_get_user(client, super_user_token): response = client.get( '/api/v1/user/1', headers={ 'token': super_user_token } ) assert response.status_code == 200, response.text response_json = response.json() expected_data = { 'username': 'test_super_user', 'rol_id': 1, 'email': '<EMAIL>', 'id': 1 } assert response_json == expected_data def test_get_users(client, super_user_token): response = client.get( '/api/v1/users?page=1', headers={ 'token': super_user_token } ) assert response.status_code == 200, response.text response_json = response.json() expected_data = { 'previous_page': None, 'next_page': None, 'total': 1, 'pages': 1, 'data': [ { 'username': 'test_super_user', 'rol_id': 1, 'email': '<EMAIL>', 'id': 1 } ] } assert response_json == expected_data def test_update_user(client, super_user_token, create_basic_user): data = { 'username': 'test_user', 'password': '<PASSWORD>', 'email': 'test<EMAIL>', 'rol_id': 1, 'id': 2 } response = client.put( '/api/v1/user', json=data, headers={ 'token': super_user_token } ) assert response.status_code == 200, response.text response_json = response.json() del data['password'] assert response_json == data def test_delete_user(client, super_user_token, create_basic_user): response = client.delete( '/api/v1/user/2', headers={ 'token': super_user_token } ) assert response.status_code == 200, response.text response_json = response.json() expected_data = { 'username': 'test_user', 'rol_id': 2, 'email': '<EMAIL>', 'id': 2 } assert response_json == expected_data ```
{ "source": "JeremyAndress/Flask-Celery", "score": 2 }
#### File: src/app/routes.py ```python from flask import Blueprint from flask import request from datetime import datetime from utils.logging import logger task_bp = Blueprint('task_bp', __name__) @task_bp.route('/', methods=['GET']) def index(): return 'Flask Celery Template!!!' ``` #### File: src/app/task.py ```python from app import create_celery from utils.logging import logger celery_app = create_celery() @celery_app.task(max_retries=3,time_limit=7200) def periodic(): print('Hi! from periodic_task') ``` #### File: src/utils/logging.py ```python import os import uuid import logging from logging.handlers import RotatingFileHandler BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) LOG_FILENAME_INFO = BASE_DIR+'/logs/info.log' logging.basicConfig( handlers=[ logging.StreamHandler(), RotatingFileHandler(LOG_FILENAME_INFO, maxBytes=20000, backupCount=10) ], level=logging.INFO, format= '[%(asctime)s] [%(pathname)s:%(lineno)d] [%(levelname)s] - %(message)s', datefmt='%d/%m/%Y %H:%M:%S' ) logger = logging.getLogger("launchpad") def gene_extra(ms): return { 'id':str(uuid.uuid4()), 'msisdn': ms } ```
{ "source": "jeremyandrews/netgrasp", "score": 2 }
#### File: netgrasp/utils/cli.py ```python from netgrasp import netgrasp from netgrasp.database import database from netgrasp.utils import pretty def start(ng): import os pid = ng.is_running() if pid: ng.debugger.critical("Netgrasp is already running with pid %d.", (pid,)) ng.debugger.warning("Starting netgrasp...") if os.getuid() != 0: ng.debugger.critical("netgrasp must be run as root (currently running as %s), exiting", (ng.debugger.whoami())) netgrasp.netgrasp_instance = ng # @TODO: use pcap to set and test interface if not ng.listen["interface"]: ng.debugger.critical("Required [Listen] 'interface' not defined in configuration file, exiting.") if not ng.database["filename"]: ng.debugger.critical("Required [Database] 'filename' not defined in configuration file, exiting.") # Start netgrasp. if ng.daemonize: # Test that we can write to the log. try: with open(ng.logging["filename"], "w"): ng.debugger.info("successfully opened logfile for writing") except Exception as e: ng.debugger.dump_exception("start() exception") ng.debugger.critical("failed to open logfile '%s' for writing: %s", (ng.logging["filename"], e)) import daemonize # Test that we can write to the pidfile. try: with open(ng.logging["pidfile"], "w"): ng.debugger.info("successfully opened pidfile for writing") except IOError as e: ng.debugger.critical("failed to open pidfile '%s' for writing: %s", (ng.logging["pidfile"], e)) ng.debugger.info("daemonizing app=netgrasp, pidfile=%s, user=%s, group=%s, verbose=True", (ng.logging["pidfile"], ng.security["user"], ng.security["group"])) ng.debugger.warning("daemonizing, output redirected to log file: %s", (ng.logging["filename"],)) try: ng.debugger.logToFile() daemon = daemonize.Daemonize(app="netgrasp", pid=ng.logging["pidfile"], privileged_action=netgrasp.get_pcap, user=ng.security["user"], group=ng.security["group"], action=netgrasp.main, keep_fds=[ng.debugger.handler.stream.fileno()], logger=ng.logger, verbose=True) daemon.start() except Exception as e: ng.debugger.critical("Failed to daemonize: %s, exiting", (e,)) else: netgrasp.main() def stop(ng, must_be_running=True): import os import signal import errno pid = ng.is_running() if not pid: if must_be_running: ng.debugger.critical("Netgrasp is not running.") else: ng.debugger.info("Netgrasp is not running.") else: ng.debugger.warning("Stopping netgrasp...") try: os.kill(pid, signal.SIGTERM) except OSError as e: if e.errno == errno.EPERM: ng.debugger.critical("Failed (perhaps try with sudo): %s", (e,)) else: ng.debugger.critical("Failed: %s", (e,)) def restart(ng): import time stop(ng, False) running = ng.is_running() loops = 0 while running: loops += 1 if loops > 15: ng.debugger.critical("Failed to stop netgrasp.") time.sleep(0.2) running = ng.is_running() start(ng) def status(ng): pid = ng.is_running() if pid: ng.debugger.warning("Netgrasp is running with pid %d", (pid,)) else: ng.debugger.warning("Netgrasp is not running.") def update(ng): from netgrasp.update import update netgrasp.netgrasp_instance = ng try: ng.db = database.Database() except Exception as e: ng.debugger.error("error: %s", (e,)) ng.debugger.critical("Failed to open or create database file %s (as user %s), exiting.", (ng.database["filename"], ng.debugger.whoami())) ng.db.cursor = ng.db.connection.cursor() query = database.SelectQueryBuilder("state") query.db_select("{%BASE}.value") query.db_where("{%BASE}.key = 'schema_version'") ng.db.cursor.execute(query.db_query(), query.db_args()) schema_version = ng.db.cursor.fetchone() if schema_version: version = schema_version[0] else: version = 0 updates = update.needed(version) if updates: ng.debugger.warning("schema updates required: %s", (updates,)) else: ng.debugger.critical("no schema updates are required.") pid = ng.is_running() if pid: ng.debugger.critical("Netgrasp must be stopped before running updates.") netgrasp.netgrasp_instance = ng netgrasp.email.email_instance = None netgrasp.notify.notify_instance = None update.run_updates(version) def list(ng): import datetime netgrasp.netgrasp_instance = ng pid = ng.is_running() if not pid: ng.debugger.critical("Netgrasp is not running.") try: ng.db = database.Database() except Exception as e: ng.debugger.error("error: %s", (e,)) ng.debugger.critical("Failed to open or create database file %s (as user %s), exiting.", (ng.database["filename"], ng.debugger.whoami())) ng.debugger.info("Opened %s as user %s", (ng.database["filename"], ng.debugger.whoami())) ng.db.cursor = ng.db.connection.cursor() if ng.args.type == "device": # List devices. query = database.SelectQueryBuilder("activity") query.db_select("{%BASE}.did") query.db_select("mac.address") query.db_select("ip.address") query.db_select("{%BASE}.updated") if ng.args.all: description = "All devices" else: description = "Active devices" query.db_where("{%BASE}.active = ?", 1) query.db_where("{%BASE}.updated IS NOT NULL") if not ng.args.all or ng.args.all == 1: query.db_group("{%BASE}.did") query.db_order("{%BASE}.updated DESC") rowfmt = "{:>16}{:>34}{:>22}" header = ["IP", "Name", "Last seen"] elif ng.args.type == 'event': # List events. query = database.SelectQueryBuilder("event") query.db_select("{%BASE}.did") query.db_select("mac.address") query.db_select("ip.address") query.db_select("{%BASE}.timestamp") query.db_select("{%BASE}.type") if ng.args.all: description = "All alerts" # @TODO: this is a bogus WHERE, get rid of altogether query.db_where("{%BASE}.timestamp >= ?", 1) else: description = "Recent alerts" recent = datetime.datetime.now() - datetime.timedelta(seconds=ng.listen["active_timeout"]) query.db_where("{%BASE}.timestamp >= ?", recent) if not ng.args.all or ng.args.all == 1: query.db_group("{%BASE}.did") query.db_group("{%BASE}.type") query.db_order("{%BASE}.timestamp DESC") rowfmt = "{:>16}{:>24}{:>21}{:>18}" header = ["IP", "Name", "Event", "Last seen"] query.db_leftjoin("device", "{%BASE}.did = device.did") query.db_leftjoin("ip", "{%BASE}.iid = ip.iid") query.db_leftjoin("mac", "device.mid = mac.mid") if ng.args.mac: query.db_where("mac.address LIKE ?", "%"+ng.args.mac+"%") if ng.args.ip: query.db_where("ip.address LIKE ?", "%"+ng.args.ip+"%") if ng.args.vendor: query.db_leftjoin("vendor", "device.vid = vendor.vid") query.db_where("vendor.name LIKE ?", "%"+ng.args.vendor+"%") if ng.args.hostname or ng.args.custom: query.db_leftjoin("host", "device.hid = host.hid") if ng.args.hostname: query.db_where("host.name LIKE ?", "%"+ng.args.hostname+"%") else: query.db_where("host.custom_name LIKE ?", "%"+ng.args.custom+"%") ng.db.cursor.execute(query.db_query(), query.db_args()) rows = ng.db.cursor.fetchall() if rows: print """ %s:""" % description print rowfmt.format(*header) for row in rows: if ng.args.type == 'device': print rowfmt.format(pretty.truncate_string(row[2], 15), pretty.truncate_string(pretty.name_did(row[0]), 32), pretty.truncate_string(pretty.time_ago(row[3], False), 20)) else: print rowfmt.format(pretty.truncate_string(row[2], 15), pretty.truncate_string(pretty.name_did(row[0]), 22), pretty.truncate_string(row[4], 19), pretty.truncate_string(pretty.time_ago(row[3], False), 16)) def identify(ng): from netgrasp.utils import exclusive_lock netgrasp.netgrasp_instance = ng pid = ng.is_running() if not pid: ng.debugger.critical("Netgrasp is not running.") try: ng.db = database.Database() except Exception as e: ng.debugger.error("%s", (e,)) ng.debugger.critical("Failed to open or create database file %s (as user %s), exiting.", (ng.database["filename"], ng.debugger.whoami())) ng.debugger.info("Opened %s as user %s", (ng.database["filename"], ng.debugger.whoami())) ng.db.cursor = ng.db.connection.cursor() if not ng.args.set: description = "Use --set ID 'CUSTOM NAME' to set a custom name on a device" header = ["ID", "IP", "Name", "Last seen"] rowfmt = "{:>7}{:>16}{:>34}{:>22}" query = database.SelectQueryBuilder("host") query.db_select("{%BASE}.hid") query.db_leftjoin("ip", "{%BASE}.iid = ip.iid") query.db_leftjoin("mac", "ip.mid = mac.mid") query.db_leftjoin("activity", "{%BASE}.iid = activity.iid") query.db_select("activity.did") query.db_select("mac.address") query.db_select("ip.address") query.db_select("activity.updated") query.db_group("activity.did") query.db_order("activity.updated DESC") if not ng.args.all and not ng.args.custom: query.db_where("{%BASE}.custom_name IS NULL") if ng.args.mac: query.db_where("mac.address LIKE ?", "%"+ng.args.mac+"%") if ng.args.ip: query.db_where("ip.address LIKE ?", "%"+ng.args.ip+"%") if ng.args.vendor: query.db_leftjoin("vendor", "mac.vid = vendor.vid") query.db_where("vendor.name LIKE ?", "%"+ng.args.vendor+"%") if ng.args.hostname: query.db_where("host.name LIKE ?", "%"+ng.args.hostname+"%") if ng.args.custom: query.db_where("host.custom_name LIKE ?", "%"+ng.args.custom+"%") ng.db.cursor.execute(query.db_query(), query.db_args()) rows = ng.db.cursor.fetchall() if rows: print """ %s:""" % description print rowfmt.format(*header) for row in rows: # @TODO handle IP changes print rowfmt.format(row[0], pretty.truncate_string(row[3], 15), pretty.truncate_string(pretty.name_did(row[1]), 32), pretty.truncate_string(pretty.time_ago(row[4], False), 20)) else: if ng.args.verbose > 1: print "id:", ng.args.set[0], "| custom name:", ng.args.set[1] ng.db.cursor.execute("SELECT vendor.vid FROM vendor LEFT JOIN mac ON vendor.vid = mac.vid LEFT JOIN host ON mac.mid = host.hid WHERE host.hid = ?", (ng.args.set[0],)) with exclusive_lock.ExclusiveFileLock(ng, 5, "failed to set custom name, please try again"): db_args = [ng.args.set[1]] db_args.append(ng.args.set[0]) ng.db.cursor.execute("UPDATE host SET custom_name = ? WHERE hid = ?", db_args) ng.db.connection.commit() def template(ng): import pkg_resources if ng.args.alert or ng.args.type == 'alert': template_file = "mail_templates/template." + ng.args.alert + ".json" if ng.args.alert: if not pkg_resources.resource_exists("netgrasp", template_file): tmpl = pkg_resources.resource_string("netgrasp", "mail_templates/template.default.json") else: tmpl = pkg_resources.resource_string("netgrasp", "mail_templates/template." + ng.args.alert + ".json") print tmpl elif ng.args.type == "config": tmpl = pkg_resources.resource_string("netgrasp", "template.netgrasp.cfg") print tmpl ```
{ "source": "jeremyandrews/sucklesync", "score": 2 }
#### File: sucklesync/config/config.py ```python from sucklesync.utils import debug import ConfigParser import sys config_instance = None class Config: def __init__(self, debugger): from sucklesync import sucklesync self.parser = ConfigParser.ConfigParser() self.debugger = debugger self.found = self.parser.read(sucklesync.DEFAULT_CONFIG) def _GetValue(self, section, option, value, default, required, secret): if not value and default: value = default if required and not value and value != False: self.debugger.critical("Required [%s] '%s' not defined in configuration file, exiting.", (section, option)) if value != None: if secret: self.debugger.info2("configuration [%s] '%s' set", (section, option)) else: self.debugger.info2("configuration [%s] '%s' set to '%s'", (section, option, value)) else: if value: if secret: self.debugger.info2("configuration [%s] '%s' set to default", (section, option)) else: if default: if secret: self.debugger.info2("configuration [%s] '%s' set to default", (section, option)) else: self.debugger.info2("configuration [%s] '%s' set to default of '%s'", (section, option, value)) return value def GetText(self, section, option, default = None, required = True, secret = False): try: if (self.parser.has_section(section) and self.parser.has_option(section, option)): value = self.parser.get(section, option) else: value = None return self._GetValue(section, option, value, default, required, secret) except Exception as e: self.debugger.dump_exception("GetText() exception while reading configuration") def GetInt(self, section, option, default = None, required = True, secret = False): try: if (self.parser.has_section(section) and self.parser.has_option(section, option)): value = self.parser.getint(section, option) else: value = None return self._GetValue(section, option, value, default, required, secret) except Exception as e: self.debugger.dump_exception("GetInt() exception while reading configuration") def GetBoolean(self, section, option, default = None, required = True, secret = False): try: if (self.parser.has_section(section) and self.parser.has_option(section, option)): value = self.parser.getboolean(section, option) else: value = None return self._GetValue(section, option, value, default, required, secret) except Exception as e: self.debugger.dump_exception("GetBoolean() exception while reading configuration") def GetTextList(self, section, option, default = None, required = True, secret = False, quiet = False): try: if (self.parser.has_section(section) and self.parser.has_option(section, option)): text = self.parser.get(section, option) values = text.split(',') textlist = [] for value in values: textlist.append(value.strip()) else: textlist = None if quiet: return textlist else: return self._GetValue(section, option, textlist, default, required, secret) except Exception as e: self.debugger.dump_exception("GetTextList() exception while reading configuration") def GetEmailList(self, section, option, default = None, required = True, secret = False): try: emails = self.GetTextList(section, option, default, required, secret, True) addresses = [] if emails: for email in emails: pieces = email.split('|') if len(pieces) == 2: name, address = pieces if valid_email_address(address): addresses.append((name.strip(), address.strip())) else: self.debugger.error('ignoring invalid email address (%s)', (address,)) elif len(pieces) == 1: if valid_email_address(email): addresses.append(email) else: self.debugger.error('ignoring invalid email address (%s)', (email,)) else: self.debugger.error('ignoring invalid email address (%s)', (email,)) return self._GetValue(section, option, addresses, default, required, secret) except Exception as e: self.debugger.dump_exception("GetEmailList() exception while reading configuration") def GetItemPairs(self, section, keys): import re try: pairs = {} valid = True if (self.parser.has_section(section)): temp = [] items = self.parser.items(section) for key, value in items: match = re.match(r"([a-z]+)([0-9]+)", key, re.I) if match: groups = match.groups() if groups: keytype = groups[0] keyvalue = groups[1] if keytype in keys: temp.append((keytype, keyvalue, value)) temp.sort() for keytype, keyvalue, value in temp: if keytype in pairs: pairs[keytype].append((keyvalue, value)) else: pairs[keytype] = [(keyvalue, value)] previous_size = -1 for key in keys: ordered = [] try: pairs[key].sort previous_id = -1 for id, value in pairs[key]: if previous_id >= 0 and previous_id + 1 != int(id): valid = False self.debugger.error("[%s] '%s' missing key %d", (section, key, previous_id + 1)) print "[%s] '%s' missing key %d" % (section, key, previous_id + 1) ordered.append(value) previous_id = int(id) pairs[key] = ordered size = len(pairs[key]) if previous_size >= 0 and previous_size != size: valid = False self.debugger.error("[%s] '%s' has mismatched number of keys", (section, key,)) print "[%s] '%s' has mismatched number of keys" % (section, key,) previous_size = size except: valid = False self.debugger.error("one or more '%s' keys missing from configuration", (key,)) for key in keys: try: size = len(pairs[key]) except: valid = False if valid: return pairs else: return {} else: pairs = None return pairs except Exception as e: self.debugger.dump_exception("GetItems() exception while reading configuration") # Perform simplistic email address validation. def valid_email_address(address): try: from email.utils import parseaddr if not '@' in parseaddr(address)[1]: return False else: return True except Exception as e: self.debugger.dump_exception("valid_email_address() exception while reading configuration") ``` #### File: sucklesync/sucklesync/sucklesync.py ```python import logging from easyprocess import EasyProcess import sucklesync from utils import debug from utils import email from config import config sucklesync_instance = None DEFAULT_CONFIG = ["/etc/sucklesync.cfg", "/usr/local/etc/sucklesync.cfg", "~/.sucklesync.cfg", "./sucklesync.cfg"] DEFAULT_LOGLEVEL = logging.WARNING DEFAULT_LOGFILE = "/var/log/sucklesync/sucklesync.log" DEFAULT_LOGFORMAT = "%(asctime)s [%(levelname)s/%(processName)s] %(message)s" DEFAULT_PIDFILE = "/var/run/sucklesync.pid" class SuckleSync: def __init__(self, config): self.config = config self.local = {} self.remote = {} self.paths = [] self.logging = {} self.frequency = {} self.mail = {} def _load_debugger(self): import logging.handlers try: self.logger = logging.getLogger(__name__) self.debugger = debug.Debugger(self.verbose, self.logger, debug.PRINT) # start by logging to stdout self.debugger.handler = logging.StreamHandler() formatter = logging.Formatter(DEFAULT_LOGFORMAT) self.debugger.handler.setFormatter(formatter) self.logger.addHandler(self.debugger.handler) except Exception as e: self.debugger.dump_exception("_load_debugger() exception") def _enable_debugger(self): import logging.handlers try: if self.daemonize: self.debugger.handler = logging.FileHandler(self.logging["filename"]) else: self.debugger.handler = logging.StreamHandler() formatter = logging.Formatter(DEFAULT_LOGFORMAT) self.debugger.handler.setFormatter(formatter) self.logger.addHandler(self.debugger.handler) self.logger.setLevel(self.logging["level"]) except Exception as e: self.debugger.dump_exception("_enable_debugger() exception") def _load_configuration(self): try: from shlex import quote as cmd_quote except ImportError: from pipes import quote as cmd_quote self.configuration = config.Config(self.debugger) # load binary paths and associated flags self.local["rsync"] = cmd_quote(self.configuration.GetText("Local", "rsync", "/usr/bin/rsync")) self.local["rsync_flags"] = self.configuration.GetText("Local", "rsync_flags", "-aP") self.local["ssh"] = cmd_quote(self.configuration.GetText("Local", "ssh", "/usr/bin/ssh")) self.local["ssh_flags"] = self.configuration.GetText("Local", "ssh_flags", "-C") self.local["delete"] = self.configuration.GetBoolean("Local", "delete") self.remote["find"] = cmd_quote(self.configuration.GetText("Remote", "find", "/usr/bin/find")) self.remote["find_flags"] = cmd_quote(self.configuration.GetText("Remote", "find_flags", "-mmin -10 -print")) # load SSH configuration self.remote["hostname"] = self.configuration.GetText("Remote", "hostname") self.remote["port"] = self.configuration.GetInt("Remote", "port", 22, False) self.remote["ssh_timeout"] = self.configuration.GetInt("Remote", "ssh_timeout", 5, False) self.remote["username"] = self.configuration.GetText("Remote", "username", False, False) # load paths that will be suckle-synced self.paths = self.configuration.GetItemPairs("Sucklepaths", ["source", "destination"]) # load logging preferences self.logging["filename"] = self.configuration.GetText("Logging", "filename", DEFAULT_LOGFILE, False) self.logging["pidfile"] = self.configuration.GetText("Logging", "pidfile", DEFAULT_PIDFILE, False) self.logging["level"] = self.configuration.GetText("Logging", "level", DEFAULT_LOGLEVEL, False) # load frequency preferences self.frequency["minimum_poll_delay"] = self.configuration.GetInt("Frequency", "minimum_poll_delay", 60, False) self.frequency["maximum_poll_delay"] = self.configuration.GetInt("Frequency", "maximum_poll_delay", 60, False) # load email preferences self.mail["enabled"] = self.configuration.GetBoolean("Email", "enabled", False, False) if self.mail["enabled"]: self.mail["to"] = self.configuration.GetEmailList("Email", "to", None) self.mail["from"] = self.configuration.GetEmailList("Email", "from", None) self.mail["hostname"] = self.configuration.GetText("Email", "smtp_hostname", None) self.mail["port"] = self.configuration.GetInt("Email", "smtp_port", 587) self.mail["mode"] = self.configuration.GetText("Email", "smtp_mode", None) self.mail["username"] = self.configuration.GetText("Email", "smtp_username", None) self.mail["password"] = self.configuration.GetText("Email", "smtp_password", None) # Determine if pid in pidfile is a running process. def is_running(self): import os import errno running = False if self.logging["pidfile"]: if os.path.isfile(self.logging["pidfile"]): f = open(self.logging["pidfile"]) pid = int(f.readline()) f.close() if pid > 0: self.debugger.info("Found pidfile %s, contained pid %d", (self.logging["pidfile"], pid)) try: os.kill(pid, 0) except OSError as e: if e.errno == errno.EPERM: running = pid else: running = pid return running def start(ss): ss.debugger.warning("starting sucklesync") sucklesync.sucklesync_instance = ss # test that we can write to the log try: with open(ss.logging["filename"], "w"): ss.debugger.info("successfully writing to logfile") except IOError: ss.debugger.critical("failed to write to logfile: %s", (ss.logging["filename"],)) # test rsync -- run a NOP, only success returns command = ss.local["rsync"] + " -qh" _rsync(command) ss.debugger.info("successfully tested local rsync: %s", (command,)) # test ssh -- run a NOP find, only success returns command = ss.local["ssh"] + " " + ss.remote["hostname"] + " " + ss.local["ssh_flags"] + " " + ss.remote["find"] + " " + ss.remote["find"] + " -type d" _ssh(command, True) ss.debugger.info("successfully tested ssh to remote server: %s", (command,)) if ss.daemonize: try: import daemonize except Exception as e: ss.debugger.error("fatal exception: %s", (e,)) ss.debugger.critical("failed to import daemonize (as user %s), try 'pip install daemonize', exiting", (ss.debugger.whoami())) ss.debugger.info("successfully imported daemonize") # test that we can write to the pidfile try: with open(ss.logging["pidfile"], "w"): ss.debugger.info("successfully writing to pidfile") except IOError: ss.debugger.critical("failed to write to pidfile: %s", (ss.logging["pidfile"],)) ss.debugger.warning("daemonizing, output redirected to log file: %s", (ss.logging["filename"],)) try: ss.debugger.logToFile() daemon = daemonize.Daemonize(app="sucklesync", pid=ss.logging["pidfile"], action=sucklesync, keep_fds=[ss.debugger.handler.stream.fileno()], logger=ss.logger, verbose=True) daemon.start() except Exception as e: ss.debugger.critical("Failed to daemonize: %s, exiting", (e,)) else: sucklesync() def stop(ss, must_be_running = True): import os import signal import errno pid = ss.is_running() if not pid: if must_be_running: ss.debugger.critical("Sucklesync is not running.") else: ss.debugger.info("Sucklesync is not running.") else: ss.debugger.warning("Stopping sucklesync...") try: os.kill(pid, signal.SIGTERM) except OSError as e: if e.errno == errno.EPERM: ss.debugger.critical("Failed (perhaps try with sudo): %s", (e)) else: ss.debugger.critical("Failed: %s", (e,)) def restart(ss): import time stop(ss, False) running = ss.is_running() loops = 0 while running: loops += 1 if (loops > 15): ss.debugger.critical("Failed to stop sucklesync.") time.sleep(0.2) running = ss.is_running() start(ss) def status(ss): pid = ss.is_running() if pid: ss.debugger.warning("Sucklesync is running with pid %d", (pid,)) else: ss.debugger.warning("Sucklesync is not running.") def _ssh(command, fail_on_error = False): ss = sucklesync.sucklesync_instance ss.debugger.debug("_ssh: %s", (command,)) try: output = EasyProcess(command).call(timeout=ss.remote["ssh_timeout"]) if output.timeout_happened: ss.debugger.error("failed to ssh to remote server, took longer than %d seconds. Failed command: %s", (ss.remote["timeout"], command)) elif output.return_code: ss.debugger.error("ssh to remote server returned error code (%d), error (%s). Failed command: %s", (output.return_code, output.stderr, command)) elif output.oserror: ss.debugger.error("failed to ssh to remote server, error (%s). Failed command: %s", (output.oserror, command)) return output.stdout.splitlines() except Exception as e: ss.debugger.error("_ssh exception, failed command: %s", (command,)) ss.debugger.dump_exception("_ssh() exception") def _rsync(command): ss = sucklesync.sucklesync_instance ss.debugger.debug("_rsync: %s", (command,)) try: output = EasyProcess(command).call() if output.return_code: ss.debugger.error("rsync returned error code (%d), error (%s). Failed command: %s", (output.return_code, output.stderr, command)) elif output.oserror: ss.debugger.error("rsync failed, error (%s). Failed command: %s", (output.oserror, command)) return output.stdout.splitlines() except Exception as e: ss.debugger.error("_rsync exception, failed command: %s", (command,)) ss.debugger.dump_exception("_rsync() exception") def _cleanup(source, key): import re ss = sucklesync.sucklesync_instance ss.debugger.debug("_cleanup: %s (%d)", (source, key)) try: deleted = [] if ss.local["delete"]: # Delete files/directories that were deleted on the source. cleanup = ss.local["rsync"] + " --recursive --delete --ignore-existing --existing --prune-empty-dirs --verbose" cleanup += " " + ss.remote["hostname"] + ':"' + source + '/"' cleanup += " " + ss.paths["destination"][key] output = _rsync(cleanup) prefix = True for line in output: if prefix: if re.search("receiving file list", line): prefix = False else: ss.debugger.debug("PREFIX: %s", (line,)) else: try: if re.search("sent (.*) bytes", line): # All done with the information we care about. break ss.debugger.debug(" %s ...", (line,)) deleted.append(line) except: # This shouldn't happen during file deletion. continue else: ss.debugger.debug("local delete disabled") return deleted except Exception as e: ss.debugger.dump_exception("_cleanup() exception") def sucklesync(): from utils import simple_timer import re import time ss = sucklesync.sucklesync_instance run = True timer = None sleep_delay = 0 if ss.mail["enabled"]: ss.mail["email"] = email.Email(ss) try: while run: if timer: # When no files are being transferred, sleep for greater and greater # periods of time, up to a maximum. if (timer.elapsed() < ss.frequency["minimum_poll_delay"]): if sleep_delay < ss.frequency["maximum_poll_delay"]: sleep_delay += ss.frequency["minimum_poll_delay"] if sleep_delay > ss.frequency["maximum_poll_delay"]: sleep_delay = ss.frequency["maximum_poll_delay"] ss.debugger.debug("sleeping %d seconds", (sleep_delay,)) time.sleep(sleep_delay) else: ss.debugger.info("last loop took %d seconds, resetting sleep_delay", (timer.elapsed(),)) sleep_delay = 0 timer = simple_timer.Timer() key = 0 for source in ss.paths["source"]: # Build a list of files to transfer. ss.debugger.info("polling %s ...", (source,)) initial_queue = [] queue = [] transferred = False include_flags = "! " + ss.remote["find_flags"] command = ss.local["ssh"] + " " + ss.remote["hostname"] + " " + ss.local["ssh_flags"] + " " + ss.remote["find"] + " " + source + " " + include_flags include = _ssh(command) command = ss.local["ssh"] + " " + ss.remote["hostname"] + " " + ss.local["ssh_flags"] + " " + ss.remote["find"] + " " + source + " " + ss.remote["find_flags"] exclude = _ssh(command) # We may be having connectivity issues, try again later. if not include: break for line in include: subpath = re.sub(r"^" + re.escape(source), "", line) try: directory = subpath.split("/")[1] if directory[0] == ".": continue elif directory not in initial_queue: ss.debugger.info(" queueing %s ...", (directory,)) initial_queue.append(directory) except: continue if exclude: exclude_from_queue = [] for line in exclude: subpath = re.sub(r"^" + re.escape(source), "", line) try: directory = subpath.split("/")[1] if directory[0] == ".": continue elif directory not in exclude_from_queue: exclude_from_queue.append(directory) except: continue for line in initial_queue: if line in exclude_from_queue: ss.debugger.info(" excluding from queue %s ...", (directory,)) else: queue.append(line) else: queue = initial_queue # Now rsync the list one by one, allowing for useful emails. subkey = 0 for directory in queue: # Sync queued list of directories. sync = ss.local["rsync"] + " " + ss.local["rsync_flags"] sync += " " + ss.remote["hostname"] + ':"' + source + "/" sync += re.escape(directory) + '"' sync += " " + ss.paths["destination"][key] output = _rsync(sync) synced = [] transferred = False mail_text = "Successfully synchronized:\n" mail_html = "<html><title>successfully synchronized</title><body><p>Successfully synchronized:</p><ul>" prefix = True suffix = False for line in output: if prefix: if re.search("receiving(.*)file list", line): prefix = False elif suffix: mail_text += line mail_html += "<br />" + line ss.debugger.debug("stats: %s", (line,)) else: try: if re.search("sent (.*) bytes", line): suffix = True mail_text += "\n" + line mail_html += "</ul><p>" + line continue directory_synced = line.split("/")[0] if directory_synced and directory_synced not in synced: transferred = True mail_text += " - " + directory_synced + "\n" mail_html += "<li>" + directory_synced ss.debugger.debug(" synced %s ...", (directory_synced,)) synced.append(directory_synced) except: # rsync suffix starts with a blank line suffix = True continue if transferred: mail_html += "</p>" # List up to three queued items. in_list = False if len(queue) > subkey + 1: in_list = True mail_text += "Next download:\n - " + queue[subkey + 1] + "\n" mail_html += "<hr /><p>Next download:<ul><li>" + queue[subkey + 1] + "</li>" ss.debugger.debug(" next up %s ... [%d of %d]", (queue[subkey + 1], len(queue), subkey)) if in_list and len(queue) > subkey + 2: mail_text += queue[subkey + 2] + "\n" mail_html += "<li>" + queue[subkey + 2] + "</li>" if in_list and len(queue) > subkey + 3: mail_text += queue[subkey + 3] + "\n" mail_html += "<li>" + queue[subkey + 3] + "</li>" if in_list: mail_html += "</ul></p>" if transferred: mail_html += "</body></html>" ss.mail["email"].MailSend("[sucklesync] file copied", mail_text, mail_html) _cleanup(source, key) subkey += 1 if not transferred: _cleanup(source, key) key += 1 except Exception as e: ss.debugger.dump_exception("sucklesync() exception") ```
{ "source": "jeremyarr/younit", "score": 2 }
#### File: jeremyarr/younit/setup.py ```python from setuptools import setup import os import sys PY_VER = sys.version_info if not PY_VER >= (3, 6): print("PYTHON VERSION WHEN RUNNING YOUNIT SETUP = {}".format(PY_VER)) raise RuntimeError("younit doesn't support Python earlier than 3.6") here = os.path.abspath(os.path.dirname(__file__)) about = {} with open(os.path.join(here, 'younit', '__version__.py'), 'r') as f: exec(f.read(), about) def read(fname): with open(os.path.join(here, fname), 'r') as f: return str(f.read().strip()) setup( name='younit', version=about['__version__'], packages=['younit'], description="a collection of helpers for the unittest module", long_description='\n\n'.join((read('README.rst'), read('CHANGELOG.rst'))), include_package_data=True, install_requires=[ ], zip_safe=False, author="<NAME>", author_email="<EMAIL>", license="MIT", keywords=["asyncio","unittest","mock","testing"], url="https://github.com/jeremyarr/younit", classifiers = [ 'Development Status :: 2 - Pre-Alpha', 'License :: OSI Approved :: MIT License', 'Intended Audience :: Developers', 'Programming Language :: Python :: 3.6', ] ) ``` #### File: younit/test/test_unit.py ```python import sys import unittest from unittest.mock import Mock, patch import asyncio import threading import queue import os import xmlrunner import time import younit from test import common from test import unittest_utils # @unittest.skip("skipped") class TestNameDecorator(unittest.TestCase): def setUp(self): self.original = sys.stdout self.stdout_file = open('redirect.txt', 'w') sys.stdout = self.stdout_file def tearDown(self): sys.stdout = self.original self.stdout_file.close() expected = '\n******** STARTING TEST: test_that_name_decorator_works *********\n' with open('redirect.txt', 'r') as f: actual = f.read() os.remove("redirect.txt") self.assertEqual(expected,actual) @younit.test_name def test_that_name_decorator_works(self): pass # @unittest.skip("skipped") class TestSetClearHanging(unittest.TestCase): @younit.set_test_hang_alarm def setUp(self): pass @younit.clear_test_hang_alarm def tearDown(self): pass # @unittest.skip("skipped") def test_that_test_hangs(self): with self.assertRaises(younit.TestHang): time.sleep(2) # @unittest.skip("skipped") def test_that_test_doesnt_hang(self): time.sleep(0.1) # @unittest.skip("skipped") class TestHanging(unittest.TestCase): # @unittest.skip("skipped") @younit.test_hang_alarm def test_that_test_hangs(self): with self.assertRaises(younit.TestHang): time.sleep(2) # @unittest.skip("skipped") @younit.test_hang_alarm def test_that_test_doesnt_hang(self): time.sleep(0.1) # @unittest.skip("skipped") class TestCloseAllThreads(unittest.TestCase): def setUp(self): self.threads_to_close = [] def tearDown(self): time.sleep(0.01) self.assertEqual(1,threading.active_count()) @younit.close_all_threads def test_that_all_threads_are_closed(self): t = ThreadRunner() self.threads_to_close.append(t) t.start() class AsyncioTestWithMocking(unittest.TestCase): async def async_setUp(self): self.x = younit.AsyncMock() await self.x() async def async_tearDown(self): await self.x() @younit.asyncio_test async def test_runs_mock(self): self.x.mock.assert_called_once() class ThreadRunner(object): def __init__(self): self.q = queue.Queue() def start(self): t = threading.Thread(target=self.worker) t.start() def worker(self): self.q.get() def close(self): self.q.put(None) if __name__ == '__main__': unittest.main( testRunner=xmlrunner.XMLTestRunner(output='test-reports'), # these make sure that some options that are not applicable # remain hidden from the help menu. failfast=False, buffer=False, catchbreak=False) ``` #### File: younit/test/unittest_utils.py ```python import signal import unittest import asyncio from unittest.mock import MagicMock class TestHang(Exception): pass def test_name(func): ''' decorator that prints the test name before starting a test usage: @test_name def test_this(self): pass ''' def inner(*args, **kwargs): print ("\n******** STARTING TEST: %s *********" % func.__name__) return func(*args, **kwargs) return inner def _test_hang_handler(signum, frame): raise TestHang def set_test_hang_alarm(func): ''' decorator that sets an alarm of 1 second before starting any test. If a test takes longer than 1 second a TestHang exception is raised. usage inside a unittest.TestCase: @set_test_hang_alarm def setUp(self): pass ''' def inner(*args,**kwargs): signal.signal(signal.SIGALRM, _test_hang_handler) signal.alarm(1) return func(*args,**kwargs) return inner def clear_test_hang_alarm(func): ''' decorator that resets any test hang alarms after a test is comleted. usage inside a unittest.TestCase: @clear_test_hang_alarm def tearDown(self): pass ''' def inner(*args,**kwargs): signal.alarm(0) return func(*args,**kwargs) return inner def close_all_threads(func): ''' decorator that closes any threads after a test is run. usage inside a unittest.TestCase: add an object with a close method to self.threads_to_close. The close methods instructs the thread to close. @close_all_threads def test_this(self): pass ''' def inner(self): try: return func(self) finally: [x.close() for x in self.threads_to_close] return inner def asyncio_test(func): ''' decorator that runs a test as a coroutine including setup and teardown coroutines. usage inside a unittest.TestCase: async def async_setUp(self): pass async def async_tearDown(self): pass @asyncio_test async def test_this(self): pass ''' def inner(self): async def run(self,*args,**kwargs): await self.async_setUp() try: return await func(self,*args,**kwargs) finally: await self.async_tearDown() self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) self.loop.set_debug(True) try: self.loop.run_until_complete(run(self)) finally: self.loop.close() return inner def AsyncMock(*args, **kwargs): ''' function that mocks a coroutine. mock attribute is a MagicMock object that records mock usage usage: x = AsyncMock() await x() x.mock.assert_called_once() ''' m = MagicMock(*args, **kwargs) async def mock_coro(*args, **kwargs): return m(*args, **kwargs) mock_coro.mock = m return mock_coro ``` #### File: younit/younit/main.py ```python import signal import unittest import asyncio from unittest.mock import MagicMock class TestHang(Exception): pass def test_name(func): ''' A decorator that prints the test name before starting a test. Convenient if you want to separate the output of different tests. Usage:: class MyTestCase(unittest.TestCase): @test_name def test_this(self): print("im testing this") @test_name def test_that(self): print("im testing that") ''' def inner(*args, **kwargs): print("\n******** STARTING TEST: {} *********".format(func.__name__)) return func(*args, **kwargs) return inner def _test_hang_handler(signum, frame): raise TestHang def test_hang_alarm(func): ''' A decorator that sets an alarm of 1 second before starting any test. If a test takes longer than 1 second, a :class:`TestHang` exception is raised. If a test takes less than 1 second, the alarm is cancelled. Usage:: class MyTestCase(unittest.TestCase): @test_hang_alarm def test_this(self): time.sleep(3) ''' def inner(*args, **kwargs): signal.signal(signal.SIGALRM, _test_hang_handler) signal.alarm(1) try: return func(*args, **kwargs) finally: signal.alarm(0) return inner def set_test_hang_alarm(func): ''' A decorator that sets an alarm of 1 second before starting any test. If a test takes longer than 1 second, a :class:`TestHang` exception is raised. Should be used during set up and in conjunction with :func:`clear_test_hang_alarm` during tear down. Usage:: class MyTestCase(unittest.TestCase): @set_test_hang_alarm def setUp(self): pass @clear_test_hang_alarm def tearDown(self): pass ''' def inner(*args, **kwargs): signal.signal(signal.SIGALRM, _test_hang_handler) signal.alarm(1) return func(*args, **kwargs) return inner def clear_test_hang_alarm(func): ''' A decorator that resets an alarm set by :func:`set_test_hang_alarm` Should be used during tear down and in conjunction with :func:`set_test_hang_alarm` during set up. Usage:: class MyTestCase(unittest.TestCase): @set_test_hang_alarm def setUp(self): pass @clear_test_hang_alarm def tearDown(self): pass ''' def inner(*args, **kwargs): try: return func(*args, **kwargs) finally: signal.alarm(0) return inner def close_all_threads(func): ''' A decorator that closes any threads that are created as part of running a test. To use, ensure your threads are able to be closed by invoking a ``close()`` method on an object related to the thread. Then add the object to the ``self.threads_to_close`` list. Usage:: class MyTestCase(unittest.TestCase): def setUp(self): self.threads_to_close = [] x = start_a_new_thread() #x is an object with a close() method #that closes the thread self.threads_to_close.append(x) @close_all_threads def test_this(self): y = start_a_new_thread() self.threads_to_close.append(y) ''' def inner(self): try: return func(self) finally: [x.close() for x in self.threads_to_close] return inner def asyncio_test(func): ''' A decorator that runs a test as a coroutine including any set up and tear down coroutines. Usage:: class MyTestCase(unittest.TestCase): async def async_setUp(self): pass async def async_tearDown(self): pass @asyncio_test async def test_this(self): pass ''' def inner(self): async def run(self, *args, **kwargs): await self.async_setUp() try: return await func(self, *args, **kwargs) finally: await self.async_tearDown() self.loop = asyncio.new_event_loop() asyncio.set_event_loop(self.loop) self.loop.set_debug(True) try: self.loop.run_until_complete(run(self)) finally: self.loop.close() return inner def AsyncMock(*args, **kwargs): ''' A function that can be used to mock a coroutine. Returns a coroutine function with a mock attribute. The mock attribute is a :class:`unittest.mock.MagicMock` object that records usage. Usage:: class MyTestCase(unittest.TestCase): async def async_setUp(self): pass async def async_tearDown(self): pass @asyncio_test async def test_this(self): x = AsyncMock() await x() x.mock.assert_called_once() ''' # thanks to <NAME> for this # https://blog.miguelgrinberg.com/post/unit-testing-asyncio-code m = MagicMock(*args, **kwargs) async def mock_coro(*args, **kwargs): return m(*args, **kwargs) mock_coro.mock = m return mock_coro ```
{ "source": "JeremyARussell/stephanie-va", "score": 3 }
#### File: Stephanie/AudioManager/audio_recognizer.py ```python from Stephanie.configurer import config # noinspection SpellCheckingInspection class AudioRecognizer: def __init__(self, recognizer, UnknownValueError, RequestError): self.UnknownValueError = UnknownValueError self.RequestError = RequestError self.r = recognizer self.c = config def recognize_from_sphinx(self, audio): # recognize speech using Sphinx try: text = self.r.recognize_sphinx(audio) print("Sphinx thinks you said " + text) return text except self.UnknownValueError: print("Sphinx could not understand audio") return False except self.RequestError as e: print("Sphinx error; {0}".format(e)) return False def recognize_from_google(self, audio): try: # for testing purposes, we're just using the default API key # to use another API key, use `r.recognize_google(audio, key="GOOGLE_SPEECH_RECOGNITION_API_KEY")` # instead of `r.recognize_google(audio)` text = self.r.recognize_google(audio) print("Google Speech Recognition thinks you said " + text) return text except KeyError: print("Google Recognition couldn't understand your audio with enough confidence.") except self.UnknownValueError: print("Google Speech Recognition could not understand audio") return False except self.RequestError as e: print("Could not request results from Google Speech Recognition service; {0}".format(e)) return False def recognize_from_google_cloud(self, audio): # recognize speech using Google Cloud Speech try: google_cloud_speech_credentials = self.c.config['STT_KEYS']['google_cloud_speech_api'] except KeyError: print("Api key not found in the config.ini file.") return False try: text = self.r.recognize_google_cloud(audio, credentials_json=google_cloud_speech_credentials) print("Google Cloud Speech thinks you said " + text) return text except self.UnknownValueError: print("Google Cloud Speech could not understand audio") return False except self.RequestError as e: print("Could not request results from Google Cloud Speech service; {0}".format(e)) return False def recognize_from_wit(self, audio): # recognize speech using Wit.ai try: wit_ai_key = self.c.config['STT_KEYS'][ 'wit.ai_speech_api'] # Wit.ai keys are 32-character uppercase alphanumeric strings except KeyError: print("Api key not found in the config.ini file.") return False try: text = self.r.recognize_wit(audio, key=wit_ai_key) print("Wit.ai thinks you said " + text) return text except self.UnknownValueError: print("Wit.ai could not understand audio") return False except self.RequestError as e: print("Could not request results from Wit.ai service; {0}".format(e)) return False def recognize_from_bing(self, audio): # recognize speech using Microsoft Bing Voice Recognition # Microsoft Bing Voice Recognition API keys 32-character lowercase hexadecimal strings try: bing_key = self.c.config['STT_KEYS']['bing_speech_api'] except KeyError: print("Api key not found in the config.ini file.") return False try: text = self.r.recognize_bing(audio, key=bing_key) print("Microsoft Bing Voice Recognition thinks you said " + text) return text except self.UnknownValueError: print("Microsoft Bing Voice Recognition could not understand audio") return False except self.RequestError as e: print("Could not request results from Microsoft Bing Voice Recognition service; {0}".format(e)) return False def recognize_from_houndify(self, audio): # recognize speech using Houndify try: houndify_client_id = self.c.config['STT_KEYS'][ 'houndify_client_id'] # Houndify client IDs are Base64-encoded strings houndify_client_key = self.c.config['STT_KEYS'][ 'houndify_client_key'] # Houndify client keys are Base64-encoded strings except KeyError: print("Api key not found in the config.ini file.") return False try: text = self.r.recognize_houndify(audio, client_id=houndify_client_id, client_key=houndify_client_key) print("Houndify thinks you said " + text) return text except self.UnknownValueError: print("Houndify could not understand audio") return False except self.RequestError as e: print("Could not request results from Houndify service; {0}".format(e)) return False def recognize_from_ibm(self, audio): # recognize speech using IBM Speech to Text try: # IBM Speech to Text usernames are strings of the form XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX ibm_username = self.c.config['STT_KEYS']['ibm_username'] # IBM Speech to Text passwords are mixed-case alphanumeric strings ibm_password = self.c.config['STT_KEYS']['ibm_password'] except KeyError: print("Api key not found in the config.ini file.") return False try: text = self.r.recognize_ibm(audio, username=ibm_username, password=<PASSWORD>) print("IBM Speech to Text thinks you said " + text) return text except self.UnknownValueError: print("IBM Speech to Text could not understand audio") return False except self.RequestError as e: print("Could not request results from IBM Speech to Text service; {0}".format(e)) return False ``` #### File: stephanie-va/Stephanie/configurer.py ```python import os import configparser import json class Configurer: def __init__(self, filename="config.ini", modules_filename="modules.json"): print("initialised") self.abs_filename = self.get_abs_filename(filename) self.abs_mods_filename = self.get_abs_filename(modules_filename) self.config = configparser.ConfigParser() self.config.read(self.abs_filename) self.sections = self.config.sections() self.modules = self.retreive_modules(self.abs_mods_filename) @staticmethod def retreive_modules(abs_mods_filename): print("modules retreived.") try: with open(abs_mods_filename, "r") as file: modules = json.load(file) file.close() except Exception as e: raise Exception("Modules.json file has been not formatted correctly. check the support tab in case you're integrating some 3rd party module.") from e return modules def get_modules(self, filename=None): if filename: abs_mods_filename = self.get_abs_filename(filename) return self.retreive_modules(abs_mods_filename) return self.modules @staticmethod def get_abs_filename(filename): return os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, filename)) config = Configurer() ``` #### File: Stephanie/EventDispatcher/event_dispatcher.py ```python from pydispatch import dispatcher class EventDispatcher: def __init__(self): self.dispatcher = dispatcher self.sleep_status = False self.active_status = False def close(self): return self.sleep_status def sleep(self, sender): self.sleep_status = True print("The virtual assistant is going to sleep by %s method" % sender) return self def quit(self, sender): self.active_status = True print("The virtual assistant is being quit by %s method" % sender) def add(self, handle_name): handle_event = getattr(self, handle_name) self.dispatcher.connect(handle_event, signal=handle_name, sender=self.dispatcher.Any) return self def trigger(self, handle): self.dispatcher.send(signal=handle, sender=handle) ``` #### File: Stephanie/local_libs/numbers_format.py ```python import re class NumberService(object): __small__ = { 'zero': 0, 'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5, 'six': 6, 'seven': 7, 'eight': 8, 'nine': 9, 'ten': 10, 'eleven': 11, 'twelve': 12, 'thirteen': 13, 'fourteen': 14, 'fifteen': 15, 'sixteen': 16, 'seventeen': 17, 'eighteen': 18, 'nineteen': 19, 'twenty': 20, 'thirty': 30, 'forty': 40, 'fifty': 50, 'sixty': 60, 'seventy': 70, 'eighty': 80, 'ninety': 90 } __magnitude__ = { 'thousand': 1000, 'million': 1000000, 'billion': 1000000000, 'trillion': 1000000000000, 'quadrillion': 1000000000000000, 'quintillion': 1000000000000000000, 'sextillion': 1000000000000000000000, 'septillion': 1000000000000000000000000, 'octillion': 1000000000000000000000000000, 'nonillion': 1000000000000000000000000000000, 'decillion': 1000000000000000000000000000000000, } __ordinals__ = { 'first': 'one', 'second': 'two', 'third': 'three', 'fourth': 'four', 'fifth': 'five', 'sixth': 'six', 'seventh': 'seventh', 'eighth': 'eight', 'ninth': 'nine', 'tenth': 'ten', 'eleventh': 'eleven', 'twelth': 'twelve', 'thirteenth': 'thirteen', 'fifteenth': 'fifteen', 'sixteenth': 'sixteen', 'seventeenth': 'seventeen', 'eighteenth': 'eighteen', 'nineteenth': 'nineteen', 'twentieth': 'twenty', 'thirtieth': 'thirty', 'fortieth': 'forty', 'fiftieth': 'fifty', 'sixtieth': 'sixty', 'seventieth': 'seventy', 'eightieth': 'eighty', 'ninetieth': 'ninety', 'hundredth': 'hundred' } __fractions__ = { 'quarter': 'four', 'half': 'two', 'halve': 'two' } class NumberException(Exception): def __init__(self, msg): Exception.__init__(self, msg) def parse(self, words): """A general method for parsing word-representations of numbers. Supports floats and integers. Args: words (str): Description of an arbitrary number. Returns: A double representation of the words. """ def exact(words): """If already represented as float or int, convert.""" try: return float(words) except: return None guess = exact(words) if guess is not None: return guess split = words.split(' ') # Replace final ordinal/fraction with number if split[-1] in self.__fractions__: split[-1] = self.__fractions__[split[-1]] elif split[-1] in self.__ordinals__: split[-1] = self.__ordinals__[split[-1]] parsed_ordinals = ' '.join(split) return self.parseFloat(parsed_ordinals) def parseFloat(self, words): """Convert a floating-point number described in words to a double. Supports two kinds of descriptions: those with a 'point' (e.g., "one point two five") and those with a fraction (e.g., "one and a quarter"). Args: words (str): Description of the floating-point number. Returns: A double representation of the words. """ def pointFloat(words): m = re.search(r'(.*) point (.*)', words) if m: whole = m.group(1) frac = m.group(2) total = 0.0 coeff = 0.10 for digit in frac.split(' '): total += coeff * self.parse(digit) coeff /= 10.0 return self.parseInt(whole) + total return None def fractionFloat(words): m = re.search(r'(.*) and (.*)', words) if m: whole = self.parseInt(m.group(1)) frac = m.group(2) # Replace plurals frac = re.sub(r'(\w+)s(\b)', '\g<1>\g<2>', frac) # Convert 'a' to 'one' (e.g., 'a third' to 'one third') frac = re.sub(r'(\b)a(\b)', '\g<1>one\g<2>', frac) split = frac.split(' ') # Split fraction into num (regular integer), denom (ordinal) num = split[:1] denom = split[1:] while denom: try: # Test for valid num, denom num_value = self.parse(' '.join(num)) denom_value = self.parse(' '.join(denom)) return whole + float(num_value) / denom_value except: # Add another word to num num += denom[:1] denom = denom[1:] return None # Extract "one point two five"-type float result = pointFloat(words) if result: return result # Extract "one and a quarter"-type float result = fractionFloat(words) if result: return result # Parse as integer return self.parseInt(words) def parseInt(self, words): """Parses words to the integer they describe. Args: words (str): Description of the integer. Returns: An integer representation of the words. """ # Remove 'and', case-sensitivity words = words.replace(" and ", " ").lower() # 'a' -> 'one' words = re.sub(r'(\b)a(\b)', '\g<1>one\g<2>', words) def textToNumber(s): """ Converts raw number string to an integer. Based on text2num.py by <NAME>. """ a = re.split(r"[\s-]+", s) n = 0 g = 0 for w in a: x = NumberService.__small__.get(w, None) if x is not None: g += x elif w == "hundred": g *= 100 else: x = NumberService.__magnitude__.get(w, None) if x is not None: n += g * x g = 0 else: raise NumberService.NumberException( "Unknown number: " + w) return n + g return textToNumber(words) def isValid(self, inp): try: self.parse(inp) return True except: return False @staticmethod def parseMagnitude(m): """Parses a number m into a human-ready string representation. For example, crops off floats if they're too accurate. Arguments: m (float): Floating-point number to be cleaned. Returns: Human-ready string description of the number. """ m = NumberService().parse(m) def toDecimalPrecision(n, k): return float("%.*f" % (k, round(n, k))) # Cast to two digits of precision digits = 2 magnitude = toDecimalPrecision(m, digits) # If value is really small, keep going while not magnitude: digits += 1 magnitude = toDecimalPrecision(m, digits) # If item is less than one, go one beyond 'necessary' number of digits if m < 1.0: magnitude = toDecimalPrecision(m, digits + 1) # Ignore decimal accuracy if irrelevant if int(magnitude) == magnitude: magnitude = int(magnitude) # Adjust for scientific notation magString = str(magnitude) magString = re.sub(r'(\d)e-(\d+)', '\g<1> times ten to the negative \g<2>', magString) magString = re.sub(r'(\d)e\+(\d+)', '\g<1> times ten to the \g<2>', magString) magString = re.sub(r'-(\d+)', 'negative \g<1>', magString) magString = re.sub(r'\b0(\d+)', '\g<1>', magString) return magString def longestNumber(self, inp): """Extracts the longest valid numerical description from a string. Not guaranteed to return a result even if some valid numerical description exists (i.e., method is not particularly advanced). Args: inp (str): An arbitrary string, hopefully containing a number. Returns: The number with the longest string description in input, or None if not found. """ split = inp.split(' ') # Assume just a single number numStart = None numEnd = None for i, w in enumerate(split): if self.isValid(w): if numStart is None: numStart = i numEnd = i else: # Check for ordinal, which would signify end w = re.sub(r'(\w+)s(\b)', '\g<1>\g<2>', w) if w in self.__ordinals__: if self.isValid(' '.join(split[numStart:i + 1])): numEnd = i break description = ' '.join(split[numStart:numEnd + 1]) return self.parse(description) ``` #### File: Stephanie/local_libs/search_module.py ```python class SearchModule: def __init__(self): pass def search_for_competition_by_name(self, competitions, query): m, answer = self.search(competitions, attribute_name="caption", query=query) if m == 0: return False return answer def search_for_competition_by_code(self, competitions, query): return self.search_by_code(competitions, attribute_name="league", query=query) def search_for_team_by_name(self, teams, query): m, answer = self.search(teams, attribute_name="name", query=query) if m == 0: return False return answer def search_for_team_by_code(self, teams, query): return self.search_by_code(teams, attribute_name="code", query=query) def search_for_player_by_name(self, players, query): m, answer = self.search(players, attribute_name="name", query=query) if m == 0: return False return answer def search_for_team_from_standing_by_name(self, teams, query): m, answer = self.search(teams, attribute_name="team_name", query=query) if m == 0: return False return answer @staticmethod def search_by_code(dataset, attribute_name, query): search = query.lower() for index, data in enumerate(dataset): code = getattr(data, attribute_name).lower() if code == search: return dataset[index] return False @staticmethod def search(dataset, attribute_name, query): values = [0 for _ in range(0, len(dataset))] search = query.lower().split() upper_threshold = len(search) for index, data in enumerate(dataset): data_name = getattr(data, attribute_name).lower() search_array = data_name.split() for index2, text in enumerate(search_array): if index2 >= upper_threshold: break threshold = len(search[index2]) for i in range(0, len(text)): if i >= threshold - 1: break if text[i] == search[index2][i]: values[index] += 1 max_value = max(values) max_index = values.index(max_value) return max_value, dataset[max_index] ``` #### File: Stephanie/Modules/facebook_module.py ```python import pytz import datetime import requests import facebook from Stephanie.Modules.base_module import BaseModule class FacebookModule(BaseModule): def __init__(self, *args): super(FacebookModule, self).__init__(*args) self.oauth_access_token = self.get_configuration('facebook_oauth_token') self.requests = requests if self.oauth_access_token: self.graph = None self.set_graph() else: status = self.do_init() if not status: return False def do_init(self): app_id = self.get_configuration('facebook_app_id') app_secret = self.get_configuration('facebook_app_secret') app_access_token = self.get_configuration('facebook_access_token') if app_id and app_secret and app_access_token: params = { 'client_id': app_id, 'client_secret': app_secret, 'grant_type': 'fb_exchange_token', 'fb_exchange_token': app_access_token } r = self.requests.get("https://graph.facebook.com/oauth/access_token", params=params) if r.ok: oauth_access_token = r.json()['access_token'] self.oauth_access_token = self.write_configuration('facebook_oauth_token', oauth_access_token) self.graph = facebook.GraphAPI(oauth_access_token) return True return False def set_graph(self, oauth_access_token=None): if oauth_access_token: self.oauth_access_token = oauth_access_token self.graph = facebook.GraphAPI(self.oauth_access_token) def get_birthday_reminders(self): """ Responds to user-input, typically speech text, by listing the user's Facebook friends with birthdays today. Arguments: text -- user-input, typically transcribed speech self.assistant -- used to interact with the user (for both input and output) profile -- contains information related to the user (e.g., phone number) """ try: results = self.graph.request("me/friends", args={'fields': 'id,name,birthday'}) except facebook.GraphAPIError: response = ("I have not been authorized to query your Facebook. If you " + "would like to check birthdays in the future, please visit " + "the Jasper dashboard.") return response except: return "I apologize, there's a problem with that service at the moment." needle = datetime.datetime.now(tz=pytz.utc).strftime("%m/%d") people = [] for person in results['data']: try: if needle in person['birthday']: people.append(person['name']) except: continue if len(people) > 0: if len(people) == 1: output = people[0] + " has a birthday today." else: output = "Your friends with birthdays today are " + \ ", ".join(people[:-1]) + " and " + people[-1] + "." else: output = "None of your friends have birthdays today." return output def get_notifications(self): """ Not working since facebooks new update which doesn't allow notifications to be fetched. :( Responds to user-input, typically speech text, with a summary of the user's Facebook notifications, including a count and details related to each individual notification. Arguments: text -- user-input, typically transcribed speech self.assistant -- used to interact with the user (for both input and output) profile -- contains information related to the user (e.g., phone number) """ try: results = self.graph.request("me/notifications") except facebook.GraphAPIError: response = ("I have not been authorized to query your Facebook. If you " + "would like to check your notifications in the future, " + "please visit the Stephanie facebook module configuraton.") return response except: return "I apologize, there's a problem with that service at the moment." if not len(results['data']): return "You have no Facebook notifications." updates = [] for notification in results['data']: updates.append(notification['title']) count = len(results['data']) response = ("You have " + str(count) + " Facebook notifications. " + " ".join(updates) + ". ") return response def status_update(self): self.assistant.say("What's in your mind?") text = self.assistant.listen().decipher() try: self.graph.put_wall_post(text) self.assistant.say("You have successully put up a wall post.") except facebook.GraphAPIError: response = ("I have not been authorized to query your Facebook. If you " + "would like to check your notifications in the future, " + "please visit the Stephanie facebook module configuraton.") return response except: return "I apologize, there's a problem with that service at the moment." ``` #### File: Stephanie/Modules/football_module.py ```python from Stephanie.Modules.base_module import BaseModule from Stephanie.local_libs.football_manager import FootballManager class FootballModule(BaseModule): modules = ( ("FooballModule@GetAllCompetitions", ("all", "competitions")), ("FooballModule@GetEnglishLeague", ("english", "league")), ("FooballModule@GetEnglishSecondLeague", ("english", "second", "league")), ("FooballModule@GetGermanLeague", ("german", "league")), ("FooballModule@GetGermanSecondLeague", ("german", "second", "league")), ("FooballModule@GetFrenchLeague", ("french", "league")), ("FooballModule@GetFrenchSecondLeague", ("french", "second", "league")), ("FooballModule@GetSpanishLeague", ("spanish", "league")), ("FooballModule@GetSpanishSecondLeague", ("spanish", "second", "league")), ("FooballModule@GetGermanCup", ("german", "cup")), ("FooballModule@GetChampionsLeague", ("champions", "league")), ("FooballModule@GetNetherlandsLeague", ("netherlands", "league")), ("FooballModule@GetPortugueseLeague", ("portuguese", "league")), ("FooballModule@GetItalianLeague", ("italian", "league")), ("FooballModule@TeamHandle", ("team", "information")), ("FooballModule@GetNews", ("latest", "news")), ) def __init__(self, *args): super(FootballModule, self).__init__(*args) self.API_KEY = self.get_configuration("api.football.org.key") self.fm = FootballManager(self.API_KEY) self.team_id = self.get_configuration("favorite_football_team_id") self.team_name = self.get_configuration("favorite_football_team_name") self.competition_name = self.get_configuration("favorite_football_competition_name") def handle(self): self.assistant.say("which competition would you like to know about? or maybe your team information? or perhaps some news?") text = self.assistant.listen().decipher() module_func = self.assistant.understand(self.modules, text) getattr(self, module_func)() def get_all_competitions(self): return self.fm.get_all_competitions() def get_english_league(self): self.get_general_league(426) def get_english_second_league(self): self.get_general_league(427) def get_german_league(self): self.get_general_league(430) def get_german_second_league(self): self.get_general_league(431) def get_spanish_league(self): self.get_general_league(439) def get_spanish_second_league(self): self.get_general_league(437) def get_french_league(self): self.get_general_league(434) def get_french_second_league(self): self.get_general_league(435) def get_netherlands_league(self): self.get_general_league(433) def get_portuguese_league(self): self.get_general_league(436) def get_italian_league(self): self.get_general_league(438) def get_champions_league(self): self.get_general_league(440) def get_general_league(self, competition_id): active = False modules = ( ("FootballModule@LeagueSpecificNews", ("get", "news")), ("FootballModule@LeagueSpecificTable", ("get", "league", "table")), ("FootballModule@LeagueSpecificNext_fixtures", ("get", "next", "fixtures")), ("FootballModule@LeagueSpecificPrevious_fixtures", ("get", "previous", "fixtures")), ) while not active: response = self.fm.get_specific_competition(competition_id) self.assistant.say("%s, would you like to know about it's latest news, league table or " " maybe fixtures?" % response) text = self.assistant.listen().decipher() module_func = self.assistant.understand(modules, text) active = getattr(self, module_func)() return active def league_specific_table(self): response = self.fm.get_league_table() self.assistant.say(response) self.assistant.say("Any other information, you would like to know about? If yes then what would " "it be?") text = self.assistant.listen().decipher() if text.upper() in self.NEGATIVE: self.assistant.say("Alright then blimey.") return "Alright then blimey." return False def league_specific_next_fixtures(self): response = self.fm.get_fixtures() self.assistant.say(response) self.assistant.say("Any other information, you would like to know about? If yes then what would " "it be?") text = self.assistant.listen().decipher() if text.upper() in self.NEGATIVE: self.assistant.say("Alright then blimey.") return "Alright then blimey." return False def league_specific_previous_fixtures(self): response = self.fm.get_fixtures(prev=True) self.assistant.say(response) self.assistant.say("Any other information, you would like to know about? If yes then what would " "it be?") text = self.assistant.listen().decipher() if text.upper() in self.NEGATIVE: self.assistant.say("Alright then blimey.") return "Alright then blimey." return False def team_handle(self): active = False modules = ( ("FooballModule@TeamNews", ("get", "news")), ("FooballModule@TeamInjuryNews", ("get", "injury", "news")), ("FooballModule@TeamTransferTalk", ("get", "transfer", "talk")), ("FooballModule@TeamPlayers", ("get", "players")), ("FooballModule@TeamNextFixtures", ("get", "next", "fixtures")), ("FooballModule@TeamPreviousFixtures", ("get", "previous", "fixtures")), ) while not active: response = self.fm.get_team(self.team_id) self.assistant.say("%s, would you like to know about it's latest news, transfer talks or " " maybe fixtures?" % response) text = self.assistant.listen().decipher() module_func = self.assistant.understand(modules, text) active = getattr(self, module_func)() return active def team_next_fixtures(self): response = self.fm.get_team_fixtures() self.assistant.say(response) self.assistant.say("Any other information, you would like to know about? If yes then what would " "it be?") text = self.assistant.listen().decipher() if text.upper() in self.NEGATIVE: self.assistant.say("Alright then blimey.") return "Alright then blimey." return False def team_previous_fixtures(self): response = self.fm.get_team_fixtures(prev=True) self.assistant.say(response) self.assistant.say("Any other information, you would like to know about? If yes then what would " "it be?") text = self.assistant.listen().decipher() if text.upper() in self.NEGATIVE: self.assistant.say("Alright then blimey.") return "Alright then blimey." return False def league_specific_news(self): response = self.fm.get_competition_news(self.competition_name) self.assistant.say(response) self.assistant.say("For more information, check the sportsmole.co.uk, Any other information, you would like to know about? If yes then what would " "it be?") text = self.assistant.listen().decipher() if text.upper() in self.NEGATIVE: self.assistant.say("Alright then blimey.") return "Alright then blimey." return False def team_specific_news(self): response = self.fm.get_competition_news(self.competition_name) self.assistant.say(response) self.assistant.say("For more information, check the sportsmole.co.uk, Any other information, you would like to know about? If yes then what would " "it be?") text = self.assistant.listen().decipher() if text.upper() in self.NEGATIVE: self.assistant.say("Alright then blimey.") return "Alright then blimey." return False def team_news(self): response = self.fm.get_team_news(self.team_name) self.assistant.say(response) self.assistant.say("For more information, check the sportsmole.co.uk, Any other information, you would like to know about? If yes then what would " "it be?") text = self.assistant.listen().decipher() if text.upper() in self.NEGATIVE: self.assistant.say("Alright then blimey.") return "Alright then blimey." return False def team_injury_news(self): response = self.fm.get_team_injury_news(self.team_name) self.assistant.say(response) self.assistant.say("For more information, check the sportsmole.co.uk, Any other information, you would like to know about? If yes then what would " "it be?") text = self.assistant.listen().decipher() if text.upper() in self.NEGATIVE: self.assistant.say("Alright then blimey.") return "Alright then blimey." return False def team_transfer_talk(self): response = self.fm.get_team_news(self.team_name) self.assistant.say(response) self.assistant.say("For more information, check the sportsmole.co.uk, Any other information, you would like to know about? If yes then what would " "it be?") text = self.assistant.listen().decipher() if text.upper() in self.NEGATIVE: self.assistant.say("Alright then blimey.") return "Alright then blimey." return False def get_news(self): response = self.fm.get_news() self.assistant.say(response) self.assistant.say("For more information, check the sportsmole.co.uk, Any other information, you would like to know about? If yes then what would " "it be?") text = self.assistant.listen().decipher() if text.upper() in self.NEGATIVE: self.assistant.say("Alright then blimey.") return "Alright then blimey." return False ``` #### File: Stephanie/Modules/system_module.py ```python import datetime as dt from Stephanie.Modules.base_module import BaseModule class SystemModule(BaseModule): def __init__(self, *args): super(SystemModule, self).__init__(*args) self.name = self.get_configuration(section="USER", key="name") self.gender = self.get_configuration(section="USER", key="gender") def default(self): return "Repeat back your command!." def meaning_of_life(self): return "42 is the meaning of life." def time_right_now(self): t = dt.datetime.now() return self.time_teller(t) def date_today(self): t = dt.datetime.now() return self.date_teller(t) def wake_up(self): t = dt.datetime.now() if self.gender: gender = self.gender.lower() if gender == "male": return "%s, sir!" % self.phase_of_the_day(t) elif gender == "female": return "%s, sir!" % self.phase_of_the_day(t) else: return "%s, sir!" % self.phase_of_the_day(t) elif self.name: return "%s, %s!" % (self.phase_of_the_day(t), self.name) else: return "%s!" % self.phase_of_the_day(t) # Example to access assistant instance # def wake_up(self): # self.assistant.say("What time is it again?") # text = self.assistant.listen().decipher() # return "Good %s, sir!" % text def go_to_sleep(self): self.assistant.events.add("sleep").trigger("sleep") return "Sleep for the weak!" def quit(self): self.assistant.events.add("quit").trigger("quit") return "I will come back stronger!" def tell_system_status(self): import psutil import platform import datetime os, name, version, _, _, _ = platform.uname() version = version.split('-')[0] cores = psutil.cpu_count() cpu_percent = psutil.cpu_percent() memory_percent = psutil.virtual_memory()[2] disk_percent = psutil.disk_usage('/')[3] boot_time = datetime.datetime.fromtimestamp(psutil.boot_time()) running_since = boot_time.strftime("%A %d. %B %Y") response = "I am currently running on %s version %s. " % (os, version) response += "This system is named %s and has %s CPU cores. " % (name, cores) response += "Current disk_percent is %s percent. " % disk_percent response += "Current CPU utilization is %s percent. " % cpu_percent response += "Current memory utilization is %s percent. " % memory_percent response += "it's running since %s." % running_since return response @staticmethod def time_teller(time): # t = time.strftime('%I %M %H') # phase = time.strftime("%p") t = time.strftime("%I:%M:%p") d = {0: "oh", 1: "one", 2: "two", 3: "three", 4: "four", 5: "five", 6: "six", 7: "seven", 8: "eight", 9: "nine", 10: "ten", 11: "eleven", 12: "twelve", 13: "thirteen", 14: "fourteen", 15: "fifteen", 16: "sixteen", 17: "seventeen", 18: "eighteen", 19: "nineteen", 20: "twenty", 30: "thirty", 40: "forty", 50: "fifty", 60: "sixty"} time_array = t.split(":") hour, minute, phase = int(time_array[0]), int(time_array[1]), time_array[2] # hour = d[hour] # minute = d[minute] return "The time is %s %s %s" % (hour, minute, phase) # # hour = d[int(t[0:2])] if t[0:2] != "00" else d[12] # # suffix = 'a.m.' if d[int(t[7:9])] == hour else 'p.m.' # suffix = phase # # if t[3] == "0": # if t[4] == "0": # minute = "" # else: # minute = d[0] + " " + d[int(t[4])] # else: # minute = d[int(t[3]) * 10] + '-' + d[int(t[4])] # return 'The time is %s %s %s.' % (hour, minute, suffix) @staticmethod def date_teller(date): return date.strftime("It's %A, %d %B %Y today!") @staticmethod def phase_of_the_day(time): hour = time.hour if hour < 12: return 'Good Morning' elif 12 <= hour < 18: return 'Good Afternoon' if hour > 6: return 'Good Evening' ``` #### File: Stephanie/TextProcessor/text_processor.py ```python from Stephanie.TextProcessor.text_sorter import TextSorter from Stephanie.TextProcessor.text_learner import TextLearner from Stephanie.TextProcessor.module_router import ModuleRouter from Stephanie.configurer import config class TextProcessor: def __init__(self, events): self.sorter = TextSorter() self.learner = TextLearner() self.router = ModuleRouter(events) self.c = config def process(self, raw_text): try: explicit = self.c.config.getboolean("SYSTEM", "greet_engine") sub_words, key_words = self.sorter.sort(raw_text, explicit=explicit) module_info = self.learner.learn(key_words) result_speech_text = self.router.inject(module_info, raw_text, sub_words, key_words) except Exception as e: print(e) return None return result_speech_text ``` #### File: Stephanie/TextProcessor/text_sorter.py ```python from difflib import SequenceMatcher as sm from metaphone import doublemetaphone as dm from Stephanie.configurer import config class TextSorter: def __init__(self): self.raw_text_array = [] self.sub_words = [] self.key_words = [] self.reserved_sub_words = self.get_reserved_sub_words() self.c = config def sort(self, raw_text, explicit=True): return self.clean(raw_text, explicit).process() def clean(self, raw_text, explicit): raw_text = raw_text.lower() self.raw_text_array = raw_text.split() if explicit: self.greet_engine() self.key_words = self.raw_text_array.copy() return self def process(self): for index, raw_text in enumerate(self.raw_text_array): if raw_text in self.reserved_sub_words: self.sub_words.append(raw_text) self.key_words.remove(raw_text) return self.sub_words, self.key_words @staticmethod def get_reserved_sub_words(): return { "what", "where", "which", "how", "when", "who", "is", "are", "makes", "made", "make", "did", "do", "to", "the", "of", "from", "against", "and", "or", "you", "me", "we", "us", "your", "my", "mine", 'yours', "could", "would", "may", "might", "let", "possibly", 'tell', "give", "told", "gave", "know", "knew", 'a', 'am', 'an', 'i', 'like', 'has', 'have', 'need', 'will', 'be', "this", 'that', "for" } def greet_engine(self): assistant_name = self.c.config.get('SYSTEM', 'assistant_name') meta_name = dm(assistant_name)[0] for index, raw_text in enumerate(self.raw_text_array): meta_text = dm(raw_text)[0] chances = sm(None, meta_name, meta_text).ratio() if chances > 0.7: self.raw_text_array = self.raw_text_array[index+1:] return ``` #### File: stephanie-va/Stephanie/updater.py ```python import requests from Stephanie.configurer import config class Updater: def __init__(self, speaker): self.speaker = speaker self.c = config self.current_version = self.c.config.get("APPLICATION", "version") self.update_url = "https://raw.githubusercontent.com/SlapBot/va-version-check/master/version.json" self.requests = requests self.data = None def check_for_update(self): try: self.data = self.get_update_information() except Exception: print("Couldn't access stephanie's version update information.") return try: if str(self.current_version) != str(self.data['version']): print("Your virtual assistant's version is %s, while the latest one is %s" % (self.current_version, self.data['version'])) if int(self.data['print_status']): print("Kindly visit the main website of stephanie at www.github.com/slapbot/stephanie-va to update the software to it's latest version.") if int(self.data['speak_status']): self.speaker.speak(self.data['message']) for message in self.data['additional_information']: print(message) if self.data['speak_announcement']: self.speaker.speak(self.data['speak_announcement']) except Exception: print("There's some problem in recieving version update information.") return def get_update_information(self): r = self.requests.get(self.update_url) data = r.json() return data ```
{ "source": "jeremyatia/mini_datathon", "score": 3 }
#### File: jeremyatia/mini_datathon/utils.py ```python import base64 # @st.cache # def load_data(): # df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/secom/secom.data', # sep=' ', header=None) # labels = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/secom/secom_labels.data', # header=None, sep=' ', names=['target', 'time']).iloc[:, 0] # X_train = df.sample(**train_test_sampling) # y_train = labels.loc[X_train.index] # X_test = df.loc[~df.index.isin(X_train.index), :] # y_test = labels.loc[X_test.index] # return X_train, y_train, X_test, y_test # st.markdown(data, unsafe_allow_html=True) # if st.button('Load data'): # X_train, y_train, X_test, y_test = load_data() # st.markdown(get_table_download_link(X_train, filename='X_train.csv'), unsafe_allow_html=True) # st.markdown(get_table_download_link(y_train, filename='y_train.csv'), unsafe_allow_html=True) # st.markdown(get_table_download_link(X_test, filename='X_test.csv'), unsafe_allow_html=True) def get_table_download_link(df, filename): """Generates a link allowing the data in a given panda dataframe to be downloaded in: dataframe out: href string """ csv = df.to_csv(index=False) b64 = base64.b64encode(csv.encode()).decode() # some strings <-> bytes conversions necessary here return f'<a href="data:file/csv;base64,{b64}" download="{filename}">Download {filename}</a>' ```
{ "source": "Jeremyb83/makers-bras-robotique", "score": 3 }
#### File: Jeremyb83/makers-bras-robotique/cinematique.py ```python import itertools import numpy as np import time import math import pypot.dynamixel def degToRad(deg): return math.pi * deg / 180 def radToDeg(rad): return 180 * rad / math.pi #lower_limit = -180 #upper_limit = 180 ports = pypot.dynamixel.get_available_ports() if not ports: raise IOError('no port found!') print('ports found', ports) print('connecting on the second available port:', ports[0]) dxl_io = pypot.dynamixel.DxlIO(ports[0]) found_ids = dxl_io.scan() print('Found ids:', found_ids) ids = found_ids[:5] dxl_io.enable_torque(ids) #dxl_io.set_angle_limit(dict(zip(ids, itertools.repeat((lower_limit, upper_limit))))) print('get angle limit', dxl_io.get_angle_limit(ids)) print('get present position', dxl_io.get_present_position(ids)) xJ = 3 yJ = 0 zJ = 0 l1 = 1 l2 = 1 l3 = 1 l4 = 1 l5 = 1 alpha = degToRad(135) if yJ == 0: theta1 = math.pi / 2 else: tantheta1 = xJ / yJ if tantheta1 >= 1: tantheta1 = 1 elif tantheta1 <= -1: tantheta1 = -1 theta1 = np.arctan2(xJ, yJ) sintheta2 = (yJ - np.cos(alpha - math.pi)*(l3 + l4 + l5)) / l2 if sintheta2 >= 1: sintheta2 = 1 elif sintheta2 <= -1: sintheta2 = -1 theta2 = np.arcsin(sintheta2) if theta2 < 0: theta2 = -theta2 theta3 = alpha - theta2 print("theta1 = {}".format(theta1)) print("theta2 = {}".format(theta2)) print("theta3 = {}".format(theta3)) print("theta1 = {}".format(radToDeg(theta1))) print("theta2 = {}".format(radToDeg(theta2))) print("theta3 = {}".format(radToDeg(theta3))) theta1 = -theta1 theta2 = -theta2 theta3 = -theta3 + math.pi /2 dxl_io.set_goal_position({ids[0]: radToDeg(theta1)}) dxl_io.set_goal_position({ids[1]: radToDeg(theta2)}) dxl_io.set_goal_position({ids[2]: radToDeg(theta3)}) print('get present position', dxl_io.get_present_position(ids)) ``` #### File: Jeremyb83/makers-bras-robotique/cinematique_robotique.py ```python import itertools import numpy as np import time import math import cv2 import cv2.aruco as aruco import yaml import scanner import pypot.dynamixel from picamera import PiCamera from picamera.array import PiRGBArray def degToRad(deg): return math.pi * deg / 180 def radToDeg(rad): return 180 * rad / math.pi def searchObject(i,sens): #startT = time.time() #currentT = time.time() dxl_io.set_goal_position({ids[1]: 20}) dxl_io.set_goal_position({ids[2]: -60}) if sens ==1: dxl_io.set_goal_position({ids[0]: i}) else: dxl_io.set_goal_position({ids[0]: -i-(150-120)}) #time.sleep(0.2) def moveTo(xcam, ycam, zcam): l1 = 44 l2 = 53 l3 = 47 l4 = 43 l5 = 141 lcam = 290 thetaCam = degToRad(45) print("ycam = {}".format((ycam))) print("zcam = {}".format((zcam))) print("thetaCam = {}".format((thetaCam))) print("np.cos(thetaCam) = {}".format((np.cos(thetaCam)))) print("np.sin(thetaCam) = {}".format((np.sin(thetaCam)))) #changement repère camera: xJ = xcam yJ = np.cos(thetaCam)*ycam + np.sin(thetaCam)*zcam zJ = np.cos(thetaCam)*zcam - np.sin(thetaCam)*ycam - lcam print("yJ = {}".format(radToDeg(yJ))) print("zJ = {}".format(radToDeg(zJ))) if yJ == 0: theta1 = math.pi / 2 else: tantheta1 = xJ / yJ if tantheta1 >= 1: tantheta1 = 1 elif tantheta1 <= -1: tantheta1 = -1 theta1 = np.arctan2(xJ, yJ) xC = 0 yC = 0 zC = l1 CJ = np.sqrt(xJ**2 + yJ**2 + (zJ - zC)**2) cosAlpha = (-(l3+l4+l5)**2 + l2**2 + CJ**2)/float(2*l2*CJ) if cosAlpha >= 1: cosAlpha = 1 elif cosAlpha <= -1: cosAlpha = -1 alpha = np.arccos(cosAlpha) sinBeta = (zJ - zC)/float(CJ) if sinBeta >= 1: sinBeta = 1 elif sinBeta <= -1: sinBeta = -1 beta = np.arcsin(sinBeta) print("alpha = {}".format(radToDeg(alpha))) print("beta = {}".format(radToDeg(beta))) theta2 = math.pi - alpha - beta cosTheta3 = (-CJ**2 + (l3+l4+l5)**2 + l2**2)/float(2*(l3+l4+l5)*l2) if cosTheta3 >= 1: cosTheta3 = 1 elif cosTheta3 <= -1: cosTheta3 = -1 theta3 = np.arccos(cosTheta3) print("theta1 = {}".format(theta1)) print("theta2 = {}".format(theta2)) print("theta3 = {}".format(theta3)) print("theta1 = {}".format(radToDeg(theta1))) print("theta2 = {}".format(radToDeg(theta2))) print("theta3 = {}".format(radToDeg(theta3))) theta1 = -theta1 theta2 = -theta2 + math.pi /2 theta3 = theta3 - math.pi /2 print("theta1 = {}".format(radToDeg(theta1))) print("theta2 = {}".format(radToDeg(theta2))) print("theta3 = {}".format(radToDeg(theta3))) #seuil = 10 print('get present position', dxl_io.get_present_position(ids)) #if not ((dxl_io.get_present_position({ids[0]}) > (radToDeg(theta1)-seuil)) and (dxl_io.get_present_position({ids[0]}) < (radToDeg(theta1)+seuil))): #dxl_io.set_goal_position({ids[0]: radToDeg(theta1)}) seuil = 20 if(xcam < 0 - seuil or xcam > 0 + seuil): dxl_io.set_goal_position({ids[0]: radToDeg(theta1)}) print("PASSSSSSSSSSSSSSSSSSSSSSSSSOKKKKKKKKKKK") else: print("okkkkkkkkkkkkkkkkkkkkkkkkk") dxl_io.set_goal_position({ids[1]: radToDeg(theta2)}) dxl_io.set_goal_position({ids[2]: radToDeg(theta3)}) def catch(): dxl_io.set_goal_position({ids[4]: 150}) time.sleep(2) dxl_io.set_goal_position({ids[2]: 0}) dxl_io.set_goal_position({ids[1]: 0}) time.sleep(2) dxl_io.set_goal_position({ids[4]: 100}) #lower_limit = -180 #upper_limit = 180 ports = pypot.dynamixel.get_available_ports() if not ports: raise IOError('no port found!') print('ports found', ports) print('connecting on the second available port:', ports[0]) dxl_io = pypot.dynamixel.DxlIO(ports[0]) found_ids = dxl_io.scan() print('Found ids:', found_ids) ids = found_ids[:5] dxl_io.enable_torque(ids) #dxl_io.set_angle_limit(dict(zip(ids, itertools.repeat((lower_limit, upper_limit))))) print('get angle limit', dxl_io.get_angle_limit(ids)) v = 70 dxl_io.set_moving_speed({ids[0]: v, ids[1]: v, ids[2]: v, ids[3]: v, ids[4]: v}) print('get present position', dxl_io.get_present_position(ids)) xJ = 284 yJ = 0 zJ = 44 resolution = (1280, 720) # initialize the camera and grab a reference to the raw camera capture camera = PiCamera() camera.resolution = resolution camera.framerate = 30 rawCapture = PiRGBArray(camera, size=resolution) # allow the camera to warmup time.sleep(0.1) skip_lines = 6 data = None with open('piCamMatrix.yml') as infile: for i in range(skip_lines): _ = infile.readline() data = yaml.load(infile) mtx, dist = [data[i] for i in ('Camera_Matrix','Distortion_Coefficients')] aruco_dict = aruco.Dictionary_get(aruco.DICT_6X6_250) parameters = aruco.DetectorParameters_create() debut = time.time() i = -150 sens = 1 lost = 30 stable = 0 # capture frames from the camera dxl_io.set_goal_position({ids[4]: 100}) for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True): # grab the raw NumPy array representing the image, then initialize the timestamp # and occupied/unoccupied text image = frame.array coord = scanner.findMarker(image, aruco_dict, parameters, mtx, dist, 0.048, True) duree = time.time() - debut if coord is not None and duree > 0.5 : debut = time.time() moveTo(coord[0]*10**3, coord[1]*10**3, coord[2]*10**3) lost = 0 stable += 1 else: lost+=1 stable = 0 if lost > 30: print("searchObject") if coord is None and i < 120: searchObject(i, sens) i+=5 else: i = -150 sens = (sens+1)%2 if stable == 5: print("catchhhh") catch() rawCapture.truncate(0) if cv2.waitKey(1) & 0xFF == ord('q'): break # clear the stream in preparation for the next frame rawCapture.truncate(0) # When everything done, release the capture #cap.release() cv2.destroyAllWindows() #searchObject() ```
{ "source": "jeremybai/Easylink", "score": 2 }
#### File: qiniu/test/io_test.py ```python import os import unittest import string import random import urllib try: import zlib binascii = zlib except ImportError: zlib = None import binascii import cStringIO from qiniu import conf from qiniu import rs from qiniu import io conf.ACCESS_KEY = os.getenv("QINIU_ACCESS_KEY") conf.SECRET_KEY = os.getenv("QINIU_SECRET_KEY") bucket_name = os.getenv("QINIU_TEST_BUCKET") policy = rs.PutPolicy(bucket_name) extra = io.PutExtra() extra.mime_type = "text/plain" extra.params = {'x:a': 'a'} def r(length): lib = string.ascii_uppercase return ''.join([random.choice(lib) for i in range(0, length)]) class TestUp(unittest.TestCase): def test(self): def test_put(): key = "test_%s" % r(9) # params = "op=3" data = "hello bubby!" extra.check_crc = 2 extra.crc32 = binascii.crc32(data) & 0xFFFFFFFF ret, err = io.put(policy.token(), key, data, extra) assert err is None assert ret['key'] == key def test_put_same_crc(): key = "test_%s" % r(9) data = "hello bubby!" extra.check_crc = 2 ret, err = io.put(policy.token(), key, data, extra) assert err is None assert ret['key'] == key def test_put_no_key(): data = r(100) extra.check_crc = 0 ret, err = io.put(policy.token(), key=None, data=data, extra=extra) assert err is None assert ret['hash'] == ret['key'] def test_put_quote_key(): data = r(100) key = '<KEY>' + r(9) ret, err = io.put(policy.token(), key, data) assert err is None assert ret['key'].encode('utf8') == key data = r(100) key = u'a\\b\\c"你好' + r(9) ret, err = io.put(policy.token(), key, data) assert err is None assert ret['key'] == key def test_put_unicode1(): key = "test_%s" % r(9) + '你好' data = key ret, err = io.put(policy.token(), key, data, extra) assert err is None assert ret[u'key'].endswith(u'你好') def test_put_unicode2(): key = "test_%s" % r(9) + '你好' data = key data = data.decode('utf8') ret, err = io.put(policy.token(), key, data) assert err is None assert ret[u'key'].endswith(u'你好') def test_put_unicode3(): key = "test_%s" % r(9) + '你好' data = key key = key.decode('utf8') ret, err = io.put(policy.token(), key, data) assert err is None assert ret[u'key'].endswith(u'你好') def test_put_unicode4(): key = "test_%s" % r(9) + '你好' data = key key = key.decode('utf8') data = data.decode('utf8') ret, err = io.put(policy.token(), key, data) assert err is None assert ret[u'key'].endswith(u'你好') def test_put_StringIO(): key = "test_%s" % r(9) data = cStringIO.StringIO('hello buddy!') ret, err = io.put(policy.token(), key, data) assert err is None assert ret['key'] == key def test_put_urlopen(): key = "test_%s" % r(9) data = urllib.urlopen('http://pythonsdk.qiniudn.com/hello.jpg') ret, err = io.put(policy.token(), key, data) assert err is None assert ret['key'] == key def test_put_no_length(): class test_reader(object): def __init__(self): self.data = 'abc' self.pos = 0 def read(self, n=None): if n is None or n < 0: newpos = len(self.data) else: newpos = min(self.pos + n, len(self.data)) r = self.data[self.pos: newpos] self.pos = newpos return r key = "test_%s" % r(9) data = test_reader() extra.check_crc = 2 extra.crc32 = binascii.crc32('abc') & 0xFFFFFFFF ret, err = io.put(policy.token(), key, data, extra) assert err is None assert ret['key'] == key test_put() test_put_same_crc() test_put_no_key() test_put_quote_key() test_put_unicode1() test_put_unicode2() test_put_unicode3() test_put_unicode4() test_put_StringIO() test_put_urlopen() test_put_no_length() def test_put_file(self): localfile = "%s" % __file__ key = "test_%s" % r(9) extra.check_crc = 1 ret, err = io.put_file(policy.token(), key, localfile, extra) assert err is None assert ret['key'] == key def test_put_crc_fail(self): key = "test_%s" % r(9) data = "hello bubby!" extra.check_crc = 2 extra.crc32 = "wrong crc32" ret, err = io.put(policy.token(), key, data, extra) assert err is not None def test_put_fail_reqid(self): key = "test_%s" % r(9) data = "hello bubby!" ret, err = io.put("", key, data, extra) assert "reqid" in err class Test_get_file_crc32(unittest.TestCase): def test_get_file_crc32(self): file_path = '%s' % __file__ data = None with open(file_path, 'rb') as f: data = f.read() io._BLOCK_SIZE = 4 assert binascii.crc32( data) & 0xFFFFFFFF == io._get_file_crc32(file_path) if __name__ == "__main__": unittest.main() ```
{ "source": "JeremyBakker/nss-backendCapstone", "score": 3 }
#### File: Prometheus/views/search_view.py ```python from collections import Counter from django.shortcuts import render from django.apps import apps from nltk import word_tokenize from nltk.util import ngrams from statistics import median import datetime import re def search (request): ''' This function renders the natural language data for the corporate transcript selected by the user. ---Arguments--- request: the full HTTP request object ---Return Value--- request: the full HTTP request object template: index.html context: ''' # These regex patterns lists contain the possible renderings of the names # of CEOs and CFOs of the corporations whose transcripts we analyze. The # transcripts lack this data in any reliable pattern to pull when parsing. # Thus, a hard-coded list is necessary for now. Each row correlates to a # company: Apple, Adobe, Amazon, HP, IBM, Microsoft, Oracle, and Samsung. # Within this data set, there are three instances of a single name # appearing in two different roles over time. <NAME> served as an EVP and # COO at Apple before becoming CEO in 2011. I include him in the CEO list # because <NAME> rarely, if ever, spoke on earnings calls. <NAME> # filled that role in practice even before he became CEO. <NAME> # briefly served as interim CEO of HP while maintaining her position as # CFO. I leave her exclusively in the CFO category since she never # abandoned that role. Safra Catz has served as President and CFO, the # the latter role multiple times. I leave her in the CFO category because # Larry Ellison has been CEO during Catz's entire tenure. Samsung is a bit # of an anomaly in this list. The corporation often had an executive vice # president and several senior vice presidents of product lines on the # call. I categorized the EVP as CEO and the SVP as CFOs. Interpreters will # need to consider this when comparing Samsung to other companies. c_exec_o_list = [ '^(Steve)? ?Jobs', '^(Tim)?(othy)? ?Cook', '^(Bruce)? ?Chizen', '^(Shantanu)? ?Narayen', '^(Jeff)?(rey)? ?P?.? ?Bezos', '^(Mark)? ?(V\.)?Hurd', '^(L.o)? ?Apotheker', '^(Sam)(uel)? ?(J\.)? ?Palmisano', '^(Bill)? ?Gates', '^(Lawrence)?(Larry)? ?(J\.)? ?Ellison', '^(Dr.)? ?(Woo)? ?[Ss]+?(ik)? ?Chu' ] c_financ_o_list = [ '^(Peter)? ?Oppenheimer', '^(Luca)? ?Maestri', '^(Murray)? ?Demo', '^(Mark)? ?Garrett', '^Th?(om)?(as)? (J\.)? ?Szkutak', '^(Bob)? ?Wayman', '^(Cath)?(erine)?(ie)? ?Lesjak', '^(Mark)? ?Loughridge', '^(Chris)?(topher)? ?(P\.)? ?Liddell', '^(Pete)(r)? ?Klein', '^(Greg)?(ory)? ?(B\.)? ?Maffei', '^(Safra)? ?(A\.)? ?Catz?', '^(Jeff)?(rey)? ?Epstein', '^(Dr.)? ?(Yeong) ?[Dd]+?(uk)? ?Cho', '^(Dr.)? ?(David)? ?Steel', '(Il)? ?(Ung)? ?Kim', '^(Yeongho)? ?Kang', '^(Sangheung)? ?Shin', '^(Namseong)? ?Cho?', '^(Hyungdo)? ?Kim', '^(Hwan)? ?Kim', '^(Yangkyu)? Kim?', '^(Myung)(kun)?(ho)? ?Kim', '^(Jungryul)? ?Lee', '^(You?ng-?[Hh]ee)? ?Lee', '^(Bongku)? ?Kang', '(Wanhoon)? ?Hong', '^(Dr.)? (Youngcho)? ?Chi', '(Jaeyong)? ?Lee' ] c_exec_o_list_regex = re.compile(r'\b(?:%s)\b' % '|'.join( c_exec_o_list)) c_financ_o_list_regex = re.compile(r'\b(?:%s)\b' % '|'.join( c_financ_o_list)) # Here we pull the transcript name from the select box to get the # relevant data we will use to render the page. transcript = request.GET['transcript'] corporation = transcript.split('-')[0] transcript_date = transcript.split('-')[1] # Transform the date both for the SQL query and for display on the # page. transcript_date = datetime.datetime.strptime( (transcript_date), "%d %B %y") transcript_date_for_db = datetime.datetime.strftime( (transcript_date), "%Y-%m-%d") transcript_date_for_display = datetime.datetime.strftime( (transcript_date), "%B %d, %Y") # Pull the appropriate corporation model according to the string passed # from the transcript select box on index.html. model = apps.get_model('Prometheus', corporation) # Query the Database answers_query_set = model.objects.filter( date_of_call = transcript_date_for_db, question=0).order_by("name") c_exec_o_answer_list = list() c_financ_o_answer_list = list() c_exec_o_answer_length_list = list() c_financ_o_answer_length_list = list() number_of_shared_words = 0 c_exec_o_negative_words = 0 c_financ_o_negative_words = 0 c_exec_o_positive_words = 0 c_financ_o_positive_words = 0 c_exec_o_bigram_refs_to_general_knowledge = 0 c_exec_o_trigram_refs_to_general_knowledge = 0 c_financ_o_bigram_refs_to_general_knowledge = 0 c_financ_o_trigram_refs_to_general_knowledge = 0 c_exec_o_bigram_refs_to_shareholders_value = 0 c_exec_o_trigram_refs_to_shareholders_value = 0 c_financ_o_bigram_refs_to_shareholders_value = 0 c_financ_o_trigram_refs_to_shareholders_value = 0 c_exec_o_bigram_refs_to_value_creation = 0 c_financ_o_bigram_refs_to_value_creation = 0 c_exec_o_number_of_indefinite_instances = 0 c_financ_o_number_of_indefinite_instances = 0 # For each answer, we determine whether it correlates to the CEO or # CFO. Then, after tokenizing the text, removing punctuation, and # capitalizing each word, we split the text into bigrams and trigrams # for searching by phrase. From there, we compare n-grams (1, 2, or 3) # to relevant lectionaries stored as .txt files to determine text # characteristics (positive_words, general_knowledge, etc.). We then # calculate the appropriate proportional number and pass the data to # the context for rendering. for answer in answers_query_set: if c_exec_o_list_regex.search(answer.name): # CEO Answers c_exec_o_filtered_answer = clean_text( answer.question_answer_text) c_exec_o_answer_list.append( c_exec_o_filtered_answer) c_exec_o_answer_length_list.append(len( c_exec_o_filtered_answer)) # CEO Bigrams c_exec_o_bigrams = list(ngrams( c_exec_o_filtered_answer, 2)) c_exec_o_bigrams_strings = ["%s %s" % bigram for bigram in c_exec_o_bigrams] # CEO Trigrams c_exec_o_trigrams = list(ngrams( c_exec_o_filtered_answer, 3)) c_exec_o_trigrams_strings = ["%s %s %s" % trigram for trigram in c_exec_o_trigrams] with open('Prometheus/static/lexicons/negative_words.txt', 'r') as file: lines = [line.strip() for line in file.readlines()] if set(c_exec_o_filtered_answer).intersection(lines): negative_intersection_length = \ find_number_of_shared_words( c_exec_o_filtered_answer, lines, number_of_shared_words) c_exec_o_negative_words += \ negative_intersection_length with open('Prometheus/static/lexicons/positive_words.txt', 'r') as file: lines = [line.strip() for line in file.readlines()] if set(c_exec_o_filtered_answer).intersection(lines): positive_intersection_length = \ find_number_of_shared_words( c_exec_o_filtered_answer, lines, number_of_shared_words) c_exec_o_positive_words += \ positive_intersection_length with open('Prometheus/static/lexicons/general_knowledge.txt', 'r') as file: lines = [line.strip().upper() for line in file.readlines()] if set(c_exec_o_bigrams_strings).intersection(lines): c_exec_o_bigram_refs_to_general_knowledge += 1 if set(c_exec_o_trigrams_strings).intersection( lines): c_exec_o_trigram_refs_to_general_knowledge += 1 with open('Prometheus/static/lexicons/shareholders_value.txt', 'r') as file: lines = [line.strip().upper() for line in file.readlines()] if set(c_exec_o_bigrams_strings).intersection( lines): c_exec_o_bigram_refs_to_shareholders_value += 1 if set(c_exec_o_trigrams_strings).intersection( lines): c_exec_o_trigram_refs_to_shareholders_value += 1 with open('Prometheus/static/lexicons/value_creation.txt', 'r') as file: lines = [line.strip().upper() for line in file.readlines()] if set(c_exec_o_bigrams_strings).intersection(lines): c_exec_o_bigram_refs_to_value_creation += 1 if c_financ_o_list_regex.search(answer.name): # CFO Answers c_financ_o_filtered_answer = clean_text( answer.question_answer_text) c_financ_o_answer_list.append( c_financ_o_filtered_answer) c_financ_o_answer_length_list.append( len(c_financ_o_filtered_answer)) # CFO Bigrams c_financ_o_bigrams = list(ngrams( c_financ_o_filtered_answer, 2)) c_financ_o_bigrams_strings = ["%s %s" % bigram for bigram in c_financ_o_bigrams] # CFO Trigrams c_financ_o_trigrams = list(ngrams( c_financ_o_filtered_answer, 3)) c_financ_o_trigrams_strings = ["%s %s %s" % trigram for trigram in c_financ_o_trigrams] with open('Prometheus/static/lexicons/negative_words.txt', 'r') as file: lines = [line.strip() for line in file.readlines()] if set(c_financ_o_filtered_answer).intersection(lines): negative_intersection_length = \ find_number_of_shared_words( c_financ_o_filtered_answer, lines, number_of_shared_words) c_financ_o_negative_words += \ negative_intersection_length with open('Prometheus/static/lexicons/positive_words.txt', 'r') as file: lines = [line.strip() for line in file.readlines()] if set(c_financ_o_filtered_answer).intersection(lines): positive_intersection_length = \ find_number_of_shared_words( c_financ_o_filtered_answer, lines, number_of_shared_words) c_financ_o_positive_words += \ positive_intersection_length with open('Prometheus/static/lexicons/general_knowledge.txt', 'r') as file: lines = [line.strip().upper() for line in file.readlines()] if set(c_financ_o_bigrams_strings).intersection(lines): c_financ_o_bigram_refs_to_general_knowledge += 1 if set(c_financ_o_trigrams_strings).intersection(lines): c_financ_o_trigram_refs_to_general_knowledge += 1 with open('Prometheus/static/lexicons/shareholders_value.txt', 'r') as file: lines = [line.strip().upper() for line in file.readlines()] if set(c_financ_o_bigrams_strings).intersection(lines): c_financ_o_bigram_refs_to_shareholders_value += 1 if set(c_financ_o_trigrams_strings).intersection(lines): c_financ_o_trigram_refs_to_shareholders_value += 1 with open('Prometheus/static/lexicons/value_creation.txt', 'r') as file: lines = [line.strip().upper() for line in file.readlines()] if set(c_financ_o_bigrams_strings).intersection(lines): c_financ_o_bigram_refs_to_value_creation += 1 c_exec_o_answer_length_sum = sum(c_exec_o_answer_length_list) c_financ_o_answer_length_sum = sum(c_financ_o_answer_length_list) # In the following try/except blocks, I only account for the absence of the # CEO from the transcript. I want to be alerted to the absence of the CFO. # I know of transcripts that lack the CEO speaking. I have not found an # instance in which a CFO does not speak on an earnings call. In fact, I # cannot think of a logical reason for such an absence. The most # reasonable explanation of an error raising due to the lack of data from # a CFO here is that I have not properly formatted the opening regex above # to account for the different spellings of CFOs names (Tom vs. Thomas, for # instance). Thus, I would like the program to throw an error so I can # adjust the preceding code as needed. # Median try: c_exec_o_answer_length_median = median( c_exec_o_answer_length_list) except ValueError: c_exec_o_answer_length_median = 0 c_financ_o_answer_length_median = median(c_financ_o_answer_length_list) # Negative Words try: c_exec_o_negative_proportion = c_exec_o_negative_words / \ c_exec_o_answer_length_sum except ZeroDivisionError: c_exec_o_negative_proportion = 0 c_financ_o_negative_proportion = c_financ_o_negative_words / \ c_financ_o_answer_length_sum # Positive Words try: c_exec_o_positive_proportion = c_exec_o_positive_words / \ c_exec_o_answer_length_sum except ZeroDivisionError: c_exec_o_positive_proportion = 0 c_financ_o_positive_proportion = c_financ_o_positive_words / \ c_financ_o_answer_length_sum # General Knowledge try: c_exec_o_proportion_refs_to_general_knowledge = \ (c_exec_o_bigram_refs_to_general_knowledge + c_exec_o_trigram_refs_to_general_knowledge) / \ len(c_exec_o_answer_list) except ZeroDivisionError: c_exec_o_proportion_refs_to_general_knowledge = 0 c_financ_o_proportion_refs_to_general_knowledge = \ (c_financ_o_bigram_refs_to_general_knowledge + c_financ_o_trigram_refs_to_general_knowledge) / \ len(c_financ_o_answer_list) # Shareholders Value try: c_exec_o_proportion_refs_to_shareholders_value = \ (c_exec_o_bigram_refs_to_shareholders_value + c_exec_o_trigram_refs_to_shareholders_value) / \ len(c_exec_o_answer_list) except ZeroDivisionError: c_exec_o_proportion_refs_to_shareholders_value = 0 c_financ_o_proportion_refs_to_shareholders_value = \ (c_financ_o_bigram_refs_to_shareholders_value + c_financ_o_trigram_refs_to_shareholders_value) / \ len(c_financ_o_answer_list) # Value Creation try: c_exec_o_proportion_refs_to_value_creation = \ c_exec_o_bigram_refs_to_value_creation / \ len(c_exec_o_answer_list) except ZeroDivisionError: c_exec_o_proportion_refs_to_value_creation = 0 c_financ_o_proportion_refs_to_value_creation = \ c_financ_o_bigram_refs_to_value_creation / \ len(c_financ_o_answer_list) # Pronouns c_exec_o_number_of_i_instances = 0 c_financ_o_number_of_i_instances = 0 c_exec_o_number_of_we_instances = 0 c_financ_o_number_of_we_instances = 0 i = re.compile("I[ ']") we = re.compile("WE[ ']") indefinite = re.compile( '([ANY]{3}|[EVERY]{5}|[SOME]{4}|[NO]{2})([BODY]{4}|[ONE]{3}|[THING]{5}) |EACH |N?EITHER') #CEO for answer in c_exec_o_answer_list: string_answer = (' ').join(answer) if i.search(string_answer): c_exec_o_number_of_i_instances += len([m.start() for m in re.finditer(i, string_answer)]) if we.search(string_answer): c_exec_o_number_of_we_instances += len([m.start() for m in re.finditer(we, string_answer)]) if indefinite.search(string_answer): print(string_answer) c_exec_o_number_of_indefinite_instances += len([m.start() for m in re.finditer(indefinite, string_answer)]) print(c_exec_o_number_of_indefinite_instances) try: proportion_c_exec_o_number_of_i_instances = \ round(c_exec_o_number_of_i_instances/c_exec_o_answer_length_sum, 4) except ZeroDivisionError: proportion_c_exec_o_number_of_i_instances = 0 try: proportion_c_exec_o_number_of_we_instances = \ round(c_exec_o_number_of_we_instances/c_exec_o_answer_length_sum, 4) except ZeroDivisionError: proportion_c_exec_o_number_of_we_instances = 0 try: proportion_c_exec_o_number_of_indefinite_instances = \ round(c_exec_o_number_of_indefinite_instances/c_exec_o_answer_length_sum, 4) except ZeroDivisionError: proportion_c_exec_o_number_of_indefinite_instances = 0 #CFO for answer in c_financ_o_answer_list: string_answer = (' ').join(answer) if i.search(string_answer): c_financ_o_number_of_i_instances += len([m.start() for m in re.finditer(i, string_answer)]) if we.search(string_answer): c_financ_o_number_of_we_instances += len([m.start() for m in re.finditer(we, string_answer)]) if indefinite.search(string_answer): c_financ_o_number_of_indefinite_instances += len([m.start() for m in re.finditer(indefinite, string_answer)]) proportion_c_financ_o_number_of_i_instances = \ round(c_financ_o_number_of_i_instances/ c_financ_o_answer_length_sum, 4) proportion_c_financ_o_number_of_we_instances = \ round(c_financ_o_number_of_we_instances/ c_financ_o_answer_length_sum, 4) proportion_c_financ_o_number_of_indefinite_instances = \ round(c_financ_o_number_of_indefinite_instances/ c_financ_o_answer_length_sum, 4) template = 'index.html' context = { "search_view": True, "corporation": corporation, "date": transcript_date_for_display, "cFo_median": c_financ_o_answer_length_median, "cFo_sum": c_financ_o_answer_length_sum, "cEo_median": c_exec_o_answer_length_median, "cEo_sum": c_exec_o_answer_length_sum, "cEo_negative": round(c_exec_o_negative_proportion, 4), "cFo_negative": round(c_financ_o_negative_proportion, 4), "cEo_positive": round(c_exec_o_positive_proportion, 4), "cFo_positive": round(c_financ_o_positive_proportion, 4), "cEo_knowledge": round( c_exec_o_proportion_refs_to_general_knowledge, 4), "cFo_knowledge": round( c_financ_o_proportion_refs_to_general_knowledge, 4), "cEo_shareholders_value": round( c_exec_o_proportion_refs_to_shareholders_value, 4), "cFo_shareholders_value": round( c_financ_o_proportion_refs_to_shareholders_value, 4), "cEo_value_creation": round( c_exec_o_proportion_refs_to_value_creation, 4), "cFo_value_creation": round( c_financ_o_proportion_refs_to_value_creation, 4), "cEo_I": proportion_c_exec_o_number_of_i_instances, "cFo_I": proportion_c_financ_o_number_of_i_instances, "cEo_we": proportion_c_exec_o_number_of_we_instances, "cFo_we": proportion_c_financ_o_number_of_we_instances, "cEo_indef": proportion_c_exec_o_number_of_indefinite_instances, "cFo_indef": proportion_c_financ_o_number_of_indefinite_instances } return render(request, template, context) def clean_text(question_answer_text): tokenized_answer = word_tokenize(question_answer_text) without_punctuation = re.compile('.*[A-Za-z0-9].*') filtered_answer = [word.upper() for word in tokenized_answer if without_punctuation.match(word)] return filtered_answer def find_number_of_shared_words(filtered_answer, lines, number_of_shared_words): shared_words = list() for word in filtered_answer: if word in lines: shared_words.append(word) number_of_shared_words += len(shared_words) return number_of_shared_words ```
{ "source": "jeremyBanks-archive/chii", "score": 3 }
#### File: chii/commands/retard.py ```python from chii import config, command BRAIN = config['retard_brain'] CHATTINESS = 0 WORD_COUNT = 10 WORD_MAX = 1000 SENTENCE_SEPS = ('. ', '! ', '? ', '\n') if BRAIN: import random, re, os from collections import defaultdict class MarkovChain: chain = defaultdict(list) def add_to_brain(self, line, write_to_file=False): if write_to_file: with open(BRAIN, 'a') as f: f.write(line + '\n') w1 = w2 = "\n" for word in line.split(' '): self.chain[(w1, w2)].append(word) w1, w2 = w2, word self.chain[w1, w2].append('\n') def get_key(self, msg=None): if msg and len(msg.split()) > 1: words = msg.split() w1, w2 = words[0:2] for word in words: if self.chain[(w1, w2)] != []: return w1, w2 w1, w2 = w2, word return random.choice(self.chain.keys()) def generate_sentence(self, msg): sentence = '' w1, w2 = self.get_key(msg) for i in xrange(WORD_MAX): try: word = random.choice(self.chain[(w1, w2)]) except IndexError: word = random.choice(self.chain[self.get_key()]) word = word.strip() if not word: break sentence = ' '.join((sentence, word)) w1, w2 = w2, word if len(sentence) < 20: return self.generate_sentence(None) return sentence @command def retard(self, channel, nick, host, *args): msg = ' '.join(args) def clean_sentence(sentence): sentence = sentence.replace('"', '') if sentence[-1] in (',', ';'): sentence = sentence[:-1] if sentence[-1] not in ('!', '.', '?'): sentence += '.' return sentence.upper() prefix = "%s:" % nick markov_chain.add_to_brain(msg, write_to_file=True) return prefix + clean_sentence(markov_chain.generate_sentence(msg)) markov_chain = MarkovChain() if os.path.exists(BRAIN): with open(BRAIN) as f: for line in f.readlines(): markov_chain.add_to_brain(line) print 'Retard Brain Loaded' ``` #### File: chii/events/misc.py ```python from chii import event import random @event('action') def trout(self, channel, nick, host, action): if 'trout' in action: self.me(channel, 'slaps %s around with a large carp' % nick) @event('msg') def the_best(self, channel, nick, host, msg): if (msg.startswith('who is') or msg.startswith('who the')) and (msg.endswith('best?') or msg.endswith('best')): if self.config['owner'] in '!'.join((nick, host)): if msg.startswith('who the'): response = "%s's the best!" % nick else: response = '%s is the %s best!' % (nick, ' '.join(msg.split()[2:-1])) else: response = 'not you' if self.nickname == channel: self.msg(nick, response) else: self.msg(channel, response) @event('msg') def ya(self, channel, nick, host, msg): if msg.strip() == 'ya': self.msg(channel, 'ya') @event('msg') def xaimus(self, channel, nick, host, msg): if 'xaimus' in msg: self.msg(channel, 'huang') @event('msg') def muse(self, channel, nick, host, msg): if 'muse' in msg: self.msg(channel, 'U RANG %s' % nick) @event('msg') def cool(self, channel, nick, host, msg): if msg.strip() == 'cool': self.msg(channel, 'cool') @event('msg') def anders(self, channel, nick, host, msg): ANDERS_IS_GAY = ( 'haha what a fag', 'haha anders', 'what a gay', '...eventually culminating in buttfuckery', 'oh no look anders got penis stuck in his face' ) if 'anders' in msg.lower(): self.msg(channel, random.choice(ANDERS_IS_GAY)) ``` #### File: quoth/quotes/models.py ```python from django.db import models class GetOrNoneManager(models.Manager): """Adds get_or_none method to objects""" def get_or_none(self, **kwargs): try: return self.get(**kwargs) except self.model.DoesNotExist: return None class Quote(models.Model): nick = models.CharField(max_length=50) host = models.CharField(max_length=100) channel = models.CharField(max_length=50) quote = models.TextField() added = models.DateField() objects = GetOrNoneManager() ```
{ "source": "jeremyBanks-archive/kia", "score": 3 }
#### File: src/kia/json_serialization.py ```python from __future__ import division, print_function, unicode_literals import base64 import json class JSONSerializer(object): """Provides JSON serialization for a set of classes.""" default_type_property = "__type" default_indent = None default_separators = (",", ":") def __init__(self, types=None, type_property=None, indent=None, separators=None, ensure_ascii=True, **root_options): if types: self.types = dict(types) else: self.types = None self.root_options = root_options if type_property is None: self.type_property = self.default_type_property if separators is None: separators = self.default_separators if indent is None: indent = self.default_indent self.raw_encoder = json.JSONEncoder( allow_nan=False, sort_keys=True, indent=indent, ensure_ascii=ensure_ascii, separators=separators, default=self.produce_json_equivalent ) self.raw_decoder = json.JSONDecoder( object_hook=self.parse_json_equivalent, parse_constant=self._parse_constant ) def dump(self, o, fp): fp.write(self.dumps(o)) def dumps(self, o): return self.raw_encoder.encode(o) def load(self, fp, req_type=None): return self.loads(fp.read(), req_type) def loads(self, s, req_type=None): result = self.raw_decoder.decode(s) if req_type is not None and not isinstance(result, req_type): raise TypeError("Decoded JSON object does not match required type.") return result _constants = { "true": True, "false": False, "null": None } def _parse_constant(self, name): return self._constants[name] def parse_json_equivalent(self, o): if self.type_property in o and o[self.type_property] in self.types: return (self.types[o[self.type_property]] .from_json_equivalent(o)) else: return o def produce_json_equivalent(self, o, options=None): for type_name, cls in self.types.items(): if isinstance(o, cls): json_type = type_name break else: return o if hasattr(o, "to_dynamic_json_equivalent"): if options is None: options = self.root_options def recur(o, **changes): return self.produce_json_equivalent(o, dict(options, **changes)) result = o.to_dynamic_json_equivalent(recur, **options) elif hasattr(o, "to_json_equivalent"): result = o.to_json_equivalent() else: raise TypeError("{}s can not be JSON-serialized." .format(type(o).__name__)) result[self.type_property] = json_type return result ```
{ "source": "jeremybanks/ChatExchange", "score": 3 }
#### File: stackchat/client/__init__.py ```python import asyncio from contextlib import contextmanager import logging import time import random import aiohttp import sqlalchemy.orm from .. import parse from .._version import __version__ from .._util import async from ..parse.json import events from ..data import models, _seed from . import _request logger = logging.getLogger(__name__) class _HttpClientSession(aiohttp.ClientSession): def __init__(self, *a, **kw): if 'connector' not in kw: kw['connector'] = aiohttp.TCPConnector(limit_per_host=2) super().__init__(*a, **kw) def _request(self, method, url, **kwargs): # see https://stackoverflow.com/a/45590516/1114 logger.debug('%s %r', method, url) return super()._request(method, url, **kwargs) class _SQLSession(sqlalchemy.orm.session.Session): pass class Client: # Defaults used to control caching: max_age_now = float('-inf') max_age_current = 60 # one minute until a datum is no longer "current" max_age_fresh = 60 * 60 * 4 # four hours until a datum is no longer "fresh" max_age_alive = 60 * 60 * 24 * 64 # two months until a datum is no longer "alive" max_age_dead = float('inf') # These should be function options but we'll just set them here for now: desired_max_age = max_age_fresh required_max_age = max_age_dead offline = False def __init__(self, db_path='sqlite:///:memory:', se_email=None, se_password=None): self.sql_engine = sqlalchemy.create_engine(db_path) if db_path.startswith('sqlite:'): self._prepare_sqlite_hacks() self._sql_sessionmaker = sqlalchemy.orm.sessionmaker( bind=self.sql_engine, expire_on_commit=False, class_=_SQLSession) self._init_db() self._web_session = _HttpClientSession( read_timeout=20, raise_for_status=True, headers={'User-Agent': f'stack.chat/{__version__} (+https://stack.chat)'} ) self._request_throttle = async.Throttle(interval=0.5) self._authenticated = asyncio.ensure_future(self._authenticate(se_email, se_password)) async def _authenticate(self, se_email, se_password): so = self.server('so') so_fkey = await _request.StackOverflowFKey.request(self, None) await _request.StackOverflowLogin.request(self, None, email=se_email, password=<PASSWORD>, fkey=so_fkey.fkey) # XXX: SE/MSE auth is currently broken # mse_fkey = await _request.MetaStackExchangeFKey.request(self, None) # await _request.MetaStackExchangeLogin.request(self, None, email=se_email, password=<PASSWORD>, fkey=mse_fkey.fkey) def _init_db(self): models.Base.metadata.create_all(self.sql_engine) with self.sql_session() as sql: for row in _seed.data(): try: sql.add(row) sql.commit() except sqlalchemy.exc.IntegrityError: sql.rollback() continue def _prepare_sqlite_hacks(self): # via http://docs.sqlalchemy.org/en/latest/dialects/sqlite.html @sqlalchemy.event.listens_for(self.sql_engine, 'connect') def do_connect(dbapi_connection, connection_record): # disable pysqlite's emitting of the BEGIN statement entirely. # also stops it from emitting COMMIT before any DDL. dbapi_connection.isolation_level = None # enable foreign key constraint checking # XXX: lol it already breaks us # cursor = dbapi_connection.cursor() # cursor.execute("PRAGMA foreign_keys=ON") # cursor.close() @sqlalchemy.event.listens_for(self.sql_engine, 'begin') def do_begin(conn): # emit our own BEGIN conn.execute('BEGIN') _closed = False def close(self): if self._closed: raise Exception('already closed') self._web_session.close() self._closed = True def __enter__(self): return self def __exit__(self, *exc_details): self.close() @contextmanager def sql_session(self): if self._closed: raise Exception('already closed') session = self._sql_sessionmaker() try: yield session session.commit() except: session.rollback() raise finally: session.close() def server(self, slug_or_host): with self.sql_session() as sql: server = sql.query(Server).filter( (models.Server.slug == slug_or_host) | (models.Server.host == slug_or_host)).one() async def f(): await self._authenticated return await _request.StackChatFKey.request(self, server) server.set( _client=self, _fkey_request=asyncio.ensure_future(f())) return server @property def se(self): return self.server('se') @property def mse(self): return self.server('mse') @property def so(self): return self.server('so') class Server(models.Server): _client = None _fkey_request = None async def me(self): await self._client._authenticated raise NotImplementedError() def _get_or_create_user(self, sql, user_id): assert self.meta_id assert user_id user = sql.query(User).filter( (models.User.server_meta_id == self.meta_id) & (models.User.user_id == user_id) ).one_or_none() if not user: user = User(server_meta_id=self.meta_id, user_id=user_id) sql.add(user) sql.flush() assert user.meta_id user._server = self return user async def user(self, user_id): await self._client._authenticated with self._client.sql_session() as sql: user = self._get_or_create_user(sql, user_id) if user.meta_update_age < self._client.desired_max_age: return user if not self._client.offline: NotImplemented if user.meta_update_age <= self._client.required_max_age: return user logger.warning("%s failed to load user %s, %s > %s", self, user_id, user.meta_update_age, self._client.required_max_age) return None def _get_or_create_room(self, sql, room_id): assert self.meta_id assert room_id room = sql.query(Room).filter( (models.Room.server_meta_id == self.meta_id) & (models.Room.room_id == room_id) ).one_or_none() if not room: room = Room(server_meta_id=self.meta_id, room_id=room_id) sql.add(room) sql.flush() assert room.meta_id room._server = self return room async def room(self, room_id): await self._client._authenticated with self._client.sql_session() as sql: room = self._get_or_create_room(sql, room_id) if room.meta_update_age < self._client.desired_max_age: return room if not self._client.offline: transcript = await _request.TranscriptDay.request(self._client, self, room_id=room_id) room = transcript.room if room.meta_update_age <= self._client.required_max_age: return room logger.warning("%s failed to load room %s, %s > %s", self, room_id, room.meta_update_age, self._client.required_max_age) return None def _get_or_create_message(self, sql, message_id): assert self.meta_id assert message_id message = sql.query(Message).filter( (models.Message.server_meta_id == self.meta_id) & (models.Message.message_id == message_id) ).one_or_none() if not message: message = Message(server_meta_id=self.meta_id, message_id=message_id) sql.add(message) sql.flush() assert message.meta_id message._server = self return message async def message(self, message_id): await self._client._authenticated with self._client.sql_session() as sql: message = self._get_or_create_message(sql, message_id) if message.meta_update_age < self._client.desired_max_age: return message if not self._client.offline: transcript = await _request.TranscriptDay.request(self._client, self, message_id=message_id) message = transcript.messages[message_id] if message.meta_update_age <= self._client.required_max_age: return message logger.warning("%s failed to load message %s, %s > %s", self, message_id, message.meta_update_age, self._client.required_max_age) return None async def rooms(self): await self._client._authenticated logger.warning("Server.rooms() only checks locally for now.") rooms = [] with self._client.sql_session() as sql: query = sql.query(Room) \ .filter(models.Room.server_meta_id == self.meta_id) \ .order_by(models.Room.server_meta_id) for room in query: room._server = self rooms.append(room) return rooms raise NotImplementedError() response = self._client._web_session.get('https://%s/rooms?tab=all&sort=active&nohide=true' % (self.host)) class User(models.User): _server = None @property def server(self): return self._server class Room(models.Room): _server = None @property def server(self): return self._server async def old_messages(self): await self._server._client._authenticated response = await _request.RoomMessages.request( self._server._client, self._server, room_id=self.room_id) while True: if response.messages: messages = list(sorted(response.messages, key=lambda m: -m.message_id)) for message in messages: yield message response = await _request.RoomMessages.request( self._server._client, self._server, room_id=self.room_id, before_message_id=messages[-1].message_id) else: break async def new_messages(self): await self._server._client._authenticated response = await _request.RoomWSAuth.request( self._server._client, self._server, room_id=self.room_id) url = response.data._data['url'] + '?l=0' # not sure what this is logger.info(url) async with self._server._client._web_session.ws_connect(url, headers={'Origin': 'https://chat.stackoverflow.com'}) as socket: async for msg in socket: if msg.type == aiohttp.WSMsgType.TEXT: parsed = parse.WSEvents(msg.data) for event in parsed.events: if isinstance(event, events.MessagePosted): data = event._data if data['room_id'] != self.room_id: continue with self._server._client.sql_session() as sql: message = self._server._get_or_create_message(sql, data['id']) message.mark_updated() message.content_html = data['content'] owner = self._server._get_or_create_user(sql, data['id']) owner.mark_updated() owner.name = data['user_name'] message.owner_meta_id = owner.meta_id yield message async def send_message(self, content_markdown): await self._server._client._authenticated response = await _request.SendMessage.request( self._server._client, self._server, room_id=self.room_id, text=content_markdown ) assert response.id # handle failure for real once we've figured out how to succeed class Message(models.Message): _server = None @property def server(self): return self._server @property def owner(self): if self.owner_meta_id: with self._server._client.sql_session() as sql: user = sql.query(User).filter(models.User.meta_id == self.owner_meta_id).one() user._server = self._server return user else: return None @property def room(self): return self._server.room(self.room_id) async def replies(self): logger.warning("Message.replies() only checks locally for now.") with self._server._client.sql_session() as sql: messages = list( sql.query(Message) .filter(models.Message.parent_message_id == self.message_id) .order_by(models.Message.message_id)) for message in messages: message._server = self._server return messages ``` #### File: stackchat/cli/__init__.py ```python import asyncio import getpass import importlib import inspect import logging import os import docopt import toml from .._version import __version__ from ..client import Client logger = logging.getLogger(__name__) def main(*argv): opts = docopt.docopt( __doc__.replace('stack.chat', argv[0]), argv[1:], True, "stack.chat version %s" % (__version__), True) # docopt() will exit when it handles --version and --help for us. # we also alias them as these psuedo-commands. if opts['COMMAND'] == 'version': return main(argv[0], '--version') if opts['COMMAND'] == 'help': command_arg = opts['ARGS'][:1] return main(argv[0], *command_arg, '--help') if opts['--quiet']: level = logging.ERROR elif opts['--verbose']: level = logging.DEBUG else: level = logging.WARNING logging.basicConfig(format="%(e)32s %(relative)6s ms%(n)s%(levelled_name)32s %(message)s", level=level) for handler in logging.getLogger().handlers: handler.addFilter(Filter()) logger.debug("optparse opts: %s" % opts) subcommand = opts['COMMAND'] subcommand_module = importlib.import_module('.' + subcommand, 'stackchat.cli') no_chat = getattr(subcommand_module, 'NO_CHAT', False) logger.debug('subcommand_module == %r', subcommand_module) se_email, se_password = None, None try: with open(os.path.expanduser('~/.stack.chat.toml')) as f: global_conf = toml.load(f) logger.debug("read global config: %r", global_conf) except IOError: global_conf = {'credentials': {'stack-exchange': {}}} try: with open('./.stack.chat.toml') as f: local_conf = toml.load(f) logger.debug("read local config: %r", local_conf) except IOError: local_conf = {'credentials': {'stack-exchange': {}}} if not se_email: se_email = os.environ.get('STACK_EXCHANGE_EMAIL') if not se_email: se_email = local_conf['credentials']['stack-exchange'].get('email') if not se_email: se_email = global_conf['credentials']['stack-exchange'].get('email') if not se_email: se_email = os.environ.get('ChatExchangeU') if not se_email: se_email = input("stack exchange login email: ") if not se_password: se_password = os.environ.get('STACK_EXCHANGE_PASSWORD') if not se_password: se_password = local_conf['credentials']['stack-exchange'].get('password') if not se_password: se_password = global_conf['credentials']['stack-exchange'].get('password') if not se_password: se_password = os.environ.get('ChatExchangeP') if not se_password: se_password = getpass.getpass("stack exchange password: ") db_path = 'sqlite:///./.stack.chat.sqlite' # re-construct without flags we handle above sub_argv = [argv[0], subcommand, *opts['ARGS']] if getattr(subcommand_module, '__doc__', None): sub_opts = docopt.docopt( doc=subcommand_module.__doc__.replace('stack.chat', argv[0]), argv=sub_argv[1:], help=True, version=None, options_first=False) logger.debug("subcommand optparse opts: %s" % opts) else: sub_opts = None if not no_chat: with Client(db_path, se_email, se_password) as chat: r = subcommand_module.main(chat, sub_opts) else: r = subcommand_module.main(dict(locals()), sub_opts) if inspect.iscoroutinefunction(subcommand_module.main): asyncio.get_event_loop().run_until_complete(r) class Filter(logging.Filter): last = 0 def filter(self, record): # see https://stackoverflow.com/a/43052949/1114 delta = record.relativeCreated - self.last record.relative = '+{0:.0f}'.format(delta) record.e = '' record.n = '\n' record.levelled_name = '%s/%-5s' % (record.name, record.levelname) self.last = record.relativeCreated return True ``` #### File: stackchat/data/models.py ```python import datetime import hashlib import hmac import sqlalchemy import sqlalchemy.ext.declarative from sqlalchemy import (Boolean, Column, DateTime, ForeignKey, Index, Integer, String, UniqueConstraint) import hashids from .._util import obj_dict from ._constants import * _obfuscation_key = 'adbbf3aa342bc82736d0ee71b2a0650e05b2edd21082e1291ae161777550ba0c71002b9ce3ad7aa19c8a4641223f8f4e82bab7ebbf5335d01046cdc5a462bdfe' class Base: __tablename__ = None meta_id = Column(Integer, primary_key=True) meta_created = Column(DateTime, default=datetime.datetime.now) meta_updated = Column(DateTime, default=EPOCH) meta_deleted = Column(DateTime, default=None) __init__ = obj_dict.update set = obj_dict.updated __repr__ = obj_dict.repr def mark_updated(self): self.meta_updated = datetime.datetime.now() def mark_deleted(self): if self.meta_deleted is None: self.meta_deleted = datetime.datetime.now() @property def meta_update_age(self): return (datetime.datetime.now() - self.meta_updated).total_seconds() @property def meta_slug(self): """ Produces a short obfuscated (NOT SECURE!) slug encoding .meta_id. I like to use these so that we have an identifier for these instances that is clearly not their official room/message IDs. """ salt = ''.join(chr(n) for n in hmac.new(_obfuscation_key, self.__tablename__, hashlib.sha512).digest()) min_length = 4 slugger = hashids.Hashids(salt=salt, min_length=min_length) meta_slug ,= slugger.encode(self.meta_id) return meta_slug @classmethod def meta_id_from_meta_slug(cls, meta_slug): salt = ''.join(chr(n) for n in hmac.new(_obfuscation_key, cls.__tablename__, hashlib.sha512).digest()) min_length = 4 slugger = hashids.Hashids(salt=salt, min_length=min_length) meta_id, = slugger.decode(meta_slug) return meta_id Base = sqlalchemy.ext.declarative.declarative_base(cls=Base) class Server(Base): __tablename__ = 'Server' meta_id = Column(Integer, primary_key=True) name = Column(String) host = Column(String, nullable=False) slug = Column(String, nullable=False) _slug_is_unique = UniqueConstraint('slug') class User(Base): __tablename__ = 'User' server_meta_id = Column(Integer, ForeignKey('Server.meta_id')) user_id = Column(Integer, nullable=False) name = Column(String) about = Column(String) is_moderator = Column(Boolean) message_count = Column(Integer) room_count = Column(Integer) reputation = Column(Integer) last_seen = Column(DateTime) last_message = Column(DateTime) __table_args__ = ( Index('ix_server_meta_id_user_id_name', server_meta_id, user_id, name), UniqueConstraint('server_meta_id', 'user_id'), ) class Room(Base): __tablename__ = 'Room' server_meta_id = Column(Integer, ForeignKey('Server.meta_id')) room_id = Column(Integer, nullable=False) name = Column(String) default_access = Column(Integer) ACCESS_PRIVATE = 0b_00000000 ACCESS_GALLERY = 0b_00000001 ACCESS_PUBLIC = 0b_00000011 __table_args__ = ( Index('ix_server_meta_id_room_id_name', server_meta_id, room_id, name), UniqueConstraint('server_meta_id', 'room_id'), ) class Message(Base): __tablename__ = 'Message' server_meta_id = Column(Integer, ForeignKey('Server.meta_id')) room_meta_id = Column(Integer, ForeignKey('Room.meta_id')) owner_meta_id = Column(Integer, ForeignKey('User.meta_id')) message_id = Column(Integer, nullable=False) parent_message_id = Column(Integer, ForeignKey('Message.message_id'), nullable=True) content_html = Column(String) content_text = Column(String) content_markdown = Column(String) __table_args__ = ( Index('ix_server_meta_id_message_id', server_meta_id, message_id), Index('ix_parent_message_id_room_meta_id', parent_message_id, room_meta_id), Index('ix_room_meta_idowner_meta_id_message_id', room_meta_id, owner_meta_id, message_id), Index('ix_owner_meta_id_room_meta_id_message_id', owner_meta_id, room_meta_id, message_id), UniqueConstraint('server_meta_id', 'message_id'), ) ```
{ "source": "jeremybennett/force-riscv", "score": 2 }
#### File: examples/riscv/basic_random_01_force.py ```python from riscv.EnvRISCV import EnvRISCV from riscv.GenThreadRISCV import GenThreadRISCV from base.Sequence import Sequence from base.InstructionMap import InstructionMap from DV.riscv.trees.instruction_tree import * class MainSequence(Sequence): """Generate a sequence of instructions that are randomly selected from the specified subset of RISC-V instructions. 1 specify the number of instructions to be generated by setting instruction_count 2 specify a the desired subset by setting the instruction_group. Some of the predefined instruction subsets are listed below with the statement for all but one commented out. Just uncomment the subset you wish to use, while commenting out the others. For more details on the specific instructions in each subset and a list of the other available predefined subsets, see force/py/DV/riscv/trees/instruction_tree.py. 3 if you want to a specific instruction, set the_instruction2 to the appropriate string and use the_instruction2 in the genInstruction call. """ def generate(self, **kargs): # 1 - set the number of instructions to generate, # can configure via control file with generator option - 'instruction_count' (count_opt, count_opt_valid) = self.getOption("instruction_count") if count_opt_valid: instruction_count = count_opt else: instruction_count = 100 # 2 - Choose the subset of RISCV instruction you wish to use instruction_group = RV_G_instructions # instruction_group = BranchJump_instructions # instruction_group = LDST_All_instructions # instruction_group = ALU_Int_All_instructions # instruction_group = ALU_Float_All_instructions # instruction_group = RV32I_instructions # instruction_group = RV_A_instructions # 3 - If you want to specify a specific instruction, set the_instruction2 to the appropriate string here # and replace the argument in the genInstruction call to the_instruction2. For the string values to # use for a given instruction, search for that instruction in force/py/DV/riscv/trees/instruction_tree.py. # the_instruction2 = "ADD##RISCV" for _ in range(instruction_count): # select a specific instruction from the instruction group the_instruction = self.pickWeighted(instruction_group) # create the instruction record_id = self.genInstruction(the_instruction) ## Points to the MainSequence defined in this file MainSequenceClass = MainSequence ## Using GenThreadRISCV by default, can be overriden with extended classes GenThreadClass = GenThreadRISCV ## Using EnvRISCV by default, can be overriden with extended classes EnvClass = EnvRISCV ``` #### File: examples/riscv/um_sequences_01_force.py ```python from riscv.EnvRISCV import EnvRISCV from riscv.GenThreadRISCV import GenThreadRISCV from base.Sequence import Sequence from DV.riscv.trees.instruction_tree import ALU_Int32_instructions from DV.riscv.trees.instruction_tree import ALU_Float_Double_instructions class MyMainSequence(Sequence): # Main sequence which calls the other sequences. def generate(self, **kwargs): i100_seq = I100Sequence(self.genThread) i100_seq.run() f100_seq = F100Sequence(self.genThread) f100_seq.run() class I100Sequence(Sequence): # generate 100 random integer 32 ALU ops def generate(self, **kargs): for _ in range(100): the_instruction = self.pickWeighted(ALU_Int32_instructions) self.genInstruction(the_instruction) self.notice(">>>>> The instruction: {}".format(the_instruction)) class F100Sequence(Sequence): # Generate 100 random floating point alu ops def generate(self, **kargs): for _ in range(100): the_instruction = self.pickWeighted(ALU_Float_Double_instructions) self.genInstruction(the_instruction) self.notice(">>>>> The instruction: {}".format(the_instruction)) ## Points to the MainSequence defined in this file MainSequenceClass = MyMainSequence ## Using GenThreadRISCV by default, can be overriden with extended classes GenThreadClass = GenThreadRISCV ## Using EnvRISCV by default, can be overriden with extended classes EnvClass = EnvRISCV ``` #### File: py/base/Bitstream.py ```python class Bitstream(object): def __init__(self, bitstream=""): self.bitstream = bitstream def stream(self): if self.bitstream.startswith('0x'): return self.convertHexToBin(); else: return self.convert() def append(self, bitstream): self.bitstream += bitstream return self def prepend(self, bitstream): self.bitstream = bitstream + self.bitstream return self def value(self): val = "" for i in self.bitstream: if i == "1" or i == "0": val += i elif i == "X": val += "0000" elif i == "x": val += "0" return int(val, 2) def mask(self): m = "" for i in self.bitstream: if i == "1" or i == "0": m += "1" elif i == "X": m += "0000" elif i == "x": m += "0" return int(m, 2) def valueMask(self): val = "" m = "" for i in self.bitstream: if i == "1" or i == "0": val += i m += "1" elif i == "X": val += "0000" m += "0000" elif i == "x": val += "0" m += "0" val_str = "0x{0:x}".format(int(val,2)) m_str = "0x{0:x}".format(int(m,2)) return val_str+"/"+m_str def convert(self): stream = "" for i in self.bitstream: if i == "1" or i == "0" or i == "x": stream += i elif i == "X": stream += "xxxx" return stream def bits(self, bits_string): stream = "" for item in bits_string.split(","): if item.find("-") != -1: myList = item.split("-") stream += self.strWithin(int(myList[0]), int(myList[1])) else: stream += self.strAt(int(item)) return stream def strWithin(self, begin, end): stream = self.convert() start = len(stream)-1-begin stop = len(stream)-1-end step = 1 if start > stop: step = -1 stop -= 1 if stop <= -1: stop = None else: stop += 1 return stream[start:stop:step] def strAt(self, pos): stream = self.convert() if pos < len(stream) and pos >= 0: return stream[len(stream)-1-pos] return "" def __getitem__(self, args): if isinstance(args, str): return self.bits(args) #elif isinstance(args, int): # return self.strAt(args) return "" def convertHexToBin(self): stream = "" for i in self.bitstream[2:]: if i == "_": continue stream += "{0:04b}".format(int(i,16)) self.bitstream = stream return stream ``` #### File: base/exception_handlers/ExceptionHandlerAssignmentParser.py ```python import json import os ## This class parses JSON data files that map exception classes to default exception handler # classes. class ExceptionHandlerAssignmentParser(object): ## Parse the specified file and return a map from an exception class name and optional # subexception class name to a tuple consisting of the module name and class name of an # exception handler. Only two levels of exception codes are currently supported; files # specifying more than two levels will not parse correctly. # # @param aAssignmentFilePath The path to the file to parse. def parseHandlerAssignments(self, aAssignmentFilePath): handler_assignments = {} with open(aAssignmentFilePath) as assignment_file: assignments = json.loads(assignment_file.read()) # We skip the first element, which is the license string for assignment in assignments[1:]: if 'ExceptionSubhandlers' in assignment: subassignment_file_path = os.path.join(os.path.dirname(aAssignmentFilePath), assignment['ExceptionSubhandlers']) handler_subassignments = self.parseHandlerAssignments(subassignment_file_path) exception_class_name = assignment['ExceptionCode'] for ((subexception_class_name, _), (handler_module_name, handler_class_name)) in handler_subassignments.items(): handler_assignments[(exception_class_name, subexception_class_name)] = (handler_module_name, handler_class_name) else: exception_class_name = assignment['ExceptionCode'] handler_module_name = assignment['ExceptionHandler']['ExceptionHandlerModule'] handler_class_name = assignment['ExceptionHandler']['ExceptionHandlerClass'] handler_assignments[(exception_class_name, None)] = (handler_module_name, handler_class_name) return handler_assignments ``` #### File: base/exception_handlers/ReusableSequence.py ```python from base.Sequence import Sequence ## This class is intended to serve as a base class for creating sequences that can be generated once # and called as routines and/or branched to from multiple locations. The caller must ensure that the # routine has been generated prior to attempting to call it or branch to it. class ReusableSequence(Sequence): def __init__(self, aGenThread, aFactory, aStack): super().__init__(aGenThread) self.mFactory = aFactory self.mStack = aStack self.mAssemblyHelper = self.mFactory.createAssemblyHelper(self) self._mRoutineStartAddresses = {} ## Generate the specified routine and record its starting address. The routine will only be # generated once, even if this method is called multiple times. If the specified routine is # dependent on any other routines being generated first, this method will also generate those # routines. # # @param aRoutineName The name of the routine to generate. # @param kwargs The arguments to pass to the generate<RoutineName>() method. def generateRoutine(self, aRoutineName, **kwargs): routine_names = [aRoutineName] for routine_name in routine_names: for prereq_routine_name in self.getPrerequisiteRoutineNames(routine_name): if prereq_routine_name not in routine_names: routine_names.append(prereq_routine_name) # Generate with the prerequisite routines first for routine_name in reversed(routine_names): if routine_name not in self._mRoutineStartAddresses: self._generateValidatedRoutine(routine_name, **kwargs) ## Call a routine that has previously been generated. A branch with link instruction will be # generated to jump to the routine. # # @param aRoutineName The name of the routine to call. # @param aSaveRegIndices The indices of any registers that need to be preserved. The link # register will always be preserved, so it should not be specified. def callRoutine(self, aRoutineName, aSaveRegIndices=None): save_reg_indices = [] if aSaveRegIndices: save_reg_indices = aSaveRegIndices routine_start_addr = self._mRoutineStartAddresses.get(aRoutineName) if routine_start_addr is not None: self.mStack.newStackFrame(save_reg_indices) self.mAssemblyHelper.genRelativeBranchWithLinkToAddress(routine_start_addr) self.mStack.freeStackFrame() else: raise ValueError('Routine %s has not been generated' % aRoutineName) ## Jump to a routine that has previously been generated. A branch instruction will be generated # to jump to the routine. # # @param aRoutineName The name of the routine to jump to. def jumpToRoutine(self, aRoutineName): routine_start_addr = self._mRoutineStartAddresses.get(aRoutineName) if routine_start_addr: self.mAssemblyHelper.genRelativeBranchToAddress(routine_start_addr) else: raise ValueError('Routine %s has not been generated' % aRoutineName) ## Return whether the specified routine has been generated # # @param aRoutineName The name of the routine. def hasGeneratedRoutine(self, aRoutineName): return (aRoutineName in self._mRoutineStartAddresses) ## Return whether this object defines the specified routine. # # @param aRoutineName The name of the routine. def hasRoutine(self, aRoutineName): return (hasattr(self, ('generate%s' % aRoutineName))) ## Return the names of all routines that the specified routine directly depends on. This method # is used to determine whether any other routines need to be generated prior to generating the # specified routine. def getPrerequisiteRoutineNames(self, aRoutineName): return tuple() ## Generate the specified routine and record its starting address. This method should only be # called after ensuring the routine has not been previously generated and ensuring all # prerequisite routines have already been generated. # # @param aRoutineName The name of the routine to generate. # @param kwargs The arguments to pass to the generate<RoutineName>() method. def _generateValidatedRoutine(self, aRoutineName, **kwargs): self._mRoutineStartAddresses[aRoutineName] = self.getPEstate('PC') routine_gen_method = self.__getattribute__('generate%s' % aRoutineName) routine_gen_method(**kwargs) ``` #### File: base/exception_handlers/ThreadHandlerSet.py ```python from base.Sequence import Sequence import copy #------------------------------------------------------------------------------------------------------- # ThreadHandlerSet # # this class is responsible for generating specific exception handlers for all # exception-level/exception-vector-offsets/error-codes. # # ASSUME: this is called for each thread (or set of threads, say a pool of handlers) # # process: # # foreach exception level: # pick sync-exceptions exc handler table address # # pick exception-handlers code block address # # exc_handlers = ExceptionHandlers(exc-level, handlers-code-block-addr, 64k, SP_index) # # foreach sync-excep error-code: # NOTE: not generating unique sync exc handler for each vector offset (but we could) # exc handler table[error-code] = exc_handlers.generate(0, err_code) # # NOTE: only one sync-exc dispatcher, for all vector offsets # # generate sync exc dispatch code(exc-level, exc handler table address) # # pick, set vector base address register value # # foreach exc vector offset: # if sync-offset: # branch to dispatcher code; exception handlers already generated # generate-branch-to(vector base address + offset, exc dispatch code) # else: # generate async exc handler here for this exc vector offset # async_handler_address = exc_handlers.generate(offset) # branch directly to the handler # generate-branch-to(vector base address + offset, async_handler_address) #------------------------------------------------------------------------------------------------------- class ThreadHandlerSet(Sequence): def __init__(self, gen_thread, memBankHandlerRegistryRepo, factory, exceptionsStack): super().__init__(gen_thread) self.memBankHandlerRegistryRepo = memBankHandlerRegistryRepo self.factory = factory self.exceptions_stack = exceptionsStack self.vector_offset_tables = {} self.handler_memory = {} self.scratch_registers = None # all generated handlers in set will use the same set of scratch registers self.default_set_name = None # may be 'Fast', 'Comprehensive', etc. self.user_sync_dispatcher = None self.memBankHandlerRegistries = None self.address_table = None self.priv_level_handler_sets = {} for priv_level in self.getPrivilegeLevels(): self.priv_level_handler_sets[priv_level] = self.factory.createPrivilegeLevelHandlerSet(gen_thread, priv_level, memBankHandlerRegistryRepo, exceptionsStack) def generate(self, **kwargs): self.address_table = kwargs['address_table'] # handlers can use address table to get recovery address self.memBankHandlerRegistries = self.memBankHandlerRegistryRepo.getMemoryBankHandlerRegistries() for mem_bank_handler_registry in self.memBankHandlerRegistries: self.debugPrint('MEMORY POOL ADDR: (%s) 0x%x' % (mem_bank_handler_registry.mMemBank, mem_bank_handler_registry.mStartAddr)) self.handler_memory[mem_bank_handler_registry.mMemBank] = mem_bank_handler_registry.mStartAddr self.default_set_name = kwargs['default_set_name'] # default handler set impacts scratch registers, handler generation # generate exception handlers, vector offset branches, etc. for all # exception levels/memory-bank combinations self._genExcepHandlerCombos() # Notify the backend about the generated handlers and their addresses info_set = {} address_pair_format = '%s:%s:%s' for mem_bank_handler_registry in self.memBankHandlerRegistries: handler_boundaries = '' for (handler_name, handler_start_addr, handler_end_addr) in mem_bank_handler_registry.getHandlerBoundaries(): handler_boundaries += address_pair_format % (handler_name, handler_start_addr, handler_end_addr) handler_boundaries += ';' # Trim the last separator handler_boundaries = handler_boundaries.rstrip(';') info_set[('%s_bounds' % mem_bank_handler_registry.mMemBank.name)] = handler_boundaries info_set['Function'] = 'RecordExceptionSpecificAddressBounds' self.exceptionRequest('UpdateHandlerInfo', info_set) # register any custom exception handlers BEFORE generate is called def assignSynchronousExceptionHandler(self, aAssignmentRequest): for priv_level in aAssignmentRequest.mPrivLevels: self.debugPrint('[ThreadHandlerSet:assignSynchronousExceptionHandler] priv_level: %s, exception_class: %s, handler_class_name: %s\n' % (priv_level, aAssignmentRequest.mExcClass, aAssignmentRequest.mHandlerClassName)) self.priv_level_handler_sets[priv_level].assignSynchronousExceptionHandler(aAssignmentRequest) def assignAsynchronousExceptionHandler(self, aHandlerClassName): for priv_level in self.getPrivilegeLevels(): self.priv_level_handler_sets[priv_level].assignAsynchronousExceptionHandler(aHandlerClassName) ## return set of scratch (gpr) registers for a handler set. ## NOTE: call this method after handlers are generated def getScratchRegisterSets(self): raise NotImplementedError def getVectorBaseAddressSets(self): raise NotImplementedError def getVectorBaseAddress(self, privLevel, securityState): return self.vector_offset_tables[(privLevel, securityState)] def savePrivilegeLevel(self): raise NotImplementedError # set privilege level. may affect translation def setPrivilegeLevel(self, newSecurityState): raise NotImplementedError def restorePrivilegeLevel(self): raise NotImplementedError def getPrivilegeLevels(self): raise NotImplementedError def getSupportedSecurityStates(self, aPrivLevel): raise NotImplementedError def getMemoryBanks(self): raise NotImplementedError def getVectorTableSize(self): raise NotImplementedError def getVectorOffsetIncrement(self): raise NotImplementedError def isSynchronousVectorEntry(self, aVectorOffset): raise NotImplementedError def getVectorEntryErrorCode(self): raise NotImplementedError # use this method to lay down a relative branch def genRelativeBranchAtAddr(self, br_address, br_target_address): raise NotImplementedError def genRelativeBranch(self, br_target_address): raise NotImplementedError def fastMode(self): return self.default_set_name == 'Fast' def debugPrint(self, msg): self.debug('DEBUG [ThreadHandlerSet]: %s' % msg) # Generate a minimal number of handler sets: one set for each memory bank. Then map the handler # sets to each privilege level/security state combination. This is done to minimize the amount # of instructions and memory the exception handler sets will take. def _genExcepHandlerCombos(self): self.savePrivilegeLevel() # Reverse the order of privilege levels to start with the highest, so that we can do the # bulk of the generation with full permissions. for priv_level in reversed(self.getPrivilegeLevels()): for security_state in self.getSupportedSecurityStates(priv_level): self.setPrivilegeLevel(security_state) self._genPrivilegeLevelSecurityStateHandlerSet(priv_level, security_state) if self.fastMode(): self._reserveScratchRegisters() self.restorePrivilegeLevel() def _genPrivilegeLevelSecurityStateHandlerSet(self, privLevel, securityState): default_mem_bank = securityState.getDefaultMemoryBank() priv_level_security_state = (privLevel, securityState) # exception vectors and handlers all in same block of memory, to allow PC-relative branches # to be used at each exception vector. vector_base_address = self.getNextVectorBaseAddress(self.handler_memory[default_mem_bank]) self.vector_offset_tables[priv_level_security_state] = vector_base_address self.handler_memory[default_mem_bank] = vector_base_address + self.getVectorTableSize() self.debug('HANDLER MEM(%s): 0x%x' % (priv_level_security_state, self.handler_memory[default_mem_bank])) priv_level_handler_set = self.priv_level_handler_sets[privLevel] priv_level_handler_set.generate(address_table=self.address_table, handler_memory=copy.deepcopy(self.handler_memory), scratch_regs=self.scratch_registers, default_set_name=self.default_set_name) priv_level_handler_set.setupScratchRegisters() self.scratch_registers = priv_level_handler_set.scratchRegisters() priv_level_handler_set.generateHandlerSubroutines(securityState) if self.fastMode(): if self.user_sync_dispatcher is not None: sync_dispatch_addr = priv_level_handler_set.generateUserSyncDispatch(securityState, self.user_sync_dispatcher) else: sync_dispatcher = self.factory.createDefaultFastSynchronousExceptionDispatcher(self.genThread) sync_dispatch_addr = priv_level_handler_set.generateSynchronousHandlers(securityState, sync_dispatcher) else: sync_dispatcher = self.factory.createDefaultSynchronousExceptionDispatcher(self.genThread) sync_dispatch_addr = priv_level_handler_set.generateSynchronousHandlers(securityState, sync_dispatcher) for mem_bank in self.getMemoryBanks(): self.handler_memory[mem_bank] = priv_level_handler_set.getNextCodeAddress(mem_bank) # at each exception vector offset, generate branch to either the synchronous exception # dispatcher, or to an asynchronous exception handler vector_base_addr = self.vector_offset_tables[priv_level_security_state] for vec_offset in range(0, self.getVectorTableSize(), self.getVectorOffsetIncrement()): # for each exception vector offset branch_addr = vector_base_addr + vec_offset if self.isSynchronousVectorEntry(vec_offset): self.notice('EXCEPTION HANDLER: sync vector base 0x%x, offset 0x%x, set %s/%s' % (vector_base_addr, vec_offset, privLevel, securityState)) self.debugPrint('%s VECTOR SYNC OFFSET 0x%x, BR ADDR: 0x%x, DISPATCH ADDR: 0x%x' % (priv_level_security_state, vec_offset, branch_addr, sync_dispatch_addr)) self.genRelativeBranchAtAddr(branch_addr, sync_dispatch_addr) self._recordSpecificHandlerBoundary(default_mem_bank, self.getVectorEntryErrorCode(), branch_addr, branch_addr) else: priv_level_handler_set.generateAsynchronousHandler(securityState) self.notice('EXCEPTION HANDLER: async vector base 0x%x, offset 0x%x, set %s/%s' % (vector_base_addr, vec_offset, privLevel, securityState)) self.debugPrint('%s VECTOR ASYNC OFFSET 0x%x, BR ADDR: 0x%x' % (priv_level_security_state, vec_offset, branch_addr)) save_pc = self.getPEstate('PC') self.setPEstate('PC', branch_addr) priv_level_handler_set.genJumpToAsynchronousHandler(securityState) self.setPEstate('PC', save_pc) self._recordSpecificHandlerBoundary(default_mem_bank, self.getVectorEntryErrorCode(), branch_addr, branch_addr) # TODO(Noah): Try just collecting the handler boundaries for the memory bank corresponding # to memBank after getting this class working correctly. As this method is only # generating handlers for one memory bank, it seems like it should only be necessary to # collect the handler boundaries for one memory bank. # collect the handler boundaries from the PrivilegeLevelHandlerSets. for mem_bank_handler_registry in self.memBankHandlerRegistries: for (handler_name, handler_start_addr, handler_end_addr) in priv_level_handler_set.getHandlerBoundaries(mem_bank_handler_registry.mMemBank): self._recordSpecificHandlerBoundary(mem_bank_handler_registry.mMemBank, handler_name, handler_start_addr, handler_end_addr) # reserve registers (if required) only after all handlers, all modes, have been generated def _reserveScratchRegisters(self): for scratch_reg in self.scratch_registers: self.reserveRegisterByIndex(64, scratch_reg, 'GPR', 'ReadWrite') def _recordSpecificHandlerBoundary(self, memBank, handler_name, start_addr, end_addr): mem_bank_handler_registry = self.memBankHandlerRegistryRepo.getMemoryBankHandlerRegistry(memBank) mem_bank_handler_registry.addHandlerBoundary(handler_name, start_addr, end_addr) ``` #### File: py/base/FunctionWrapper.py ```python from base.SortableObject import SortableObject # # Provide a FunctionWrapper to wrap a non-sortable object # so it can be sortable # class FunctionWrapper(SortableObject): def __init__(self,function): super().__init__() self.function = function self.sortableName = str(function) def returnFunction(self): return self.function def display(self): print ("function name=%s"%self.sortableName) ``` #### File: py/base/GenSemaphore.py ```python from base.Sequence import Sequence class GenSemaphore(Sequence): def __init__(self, aGenThread, aName, aCounter, **kwargs): super().__init__(aGenThread) self.mAddrReg = None # register for address self.mCounterReg = None # register for counter self.mStatusReg = None # register for status self.mSemaVA = None # semaphore virtual address self.mVaAttr = kwargs.get('MemAttrImpl', 'Normal_WBWA') # semaphore va attribute self.mName = aName # semaphore name self.mCounter = aCounter # semaphore initial value self.mBank = kwargs.get('Bank', 0) # which bank to allocate semaphore self.mSize = kwargs.get('Size', 8) # semaphore size self.mSharePA = None # physical address allocated self.mReverseEndian = None # Whether or not Reverse data endian self.setup() def _acquireSemaphore(self): pass def _releaseSemaphore(self): pass def _reloadSemaphore(self): (self.mSharedPA, self.mReverseEndian, valid) = self.genThread.genSemaphore(self.mName, self.mCounter, self.mBank, self.mSize) # Shared PA has been initialized with the counter if not valid: self.error("Thread %d failed to generate semaphore as the PA 0x%x is out of address size" %(self._threadId(), self.mSharePA)) self.mSemaVA = self.genVAforPA(Size=self.mSize, Align=self.mSize, Type="D", PA = self.mSharedPA, Bank=self.mBank, MemAttrImpl=self.mVaAttr, CanAlias=1) if (self.mSemaVA & 0x00ffffffffff0000) == 0: self.error("ERROR VA=%x is invalid"%self.mSemaVA) shared_va_page_info = self.getPageInfo(self.mSemaVA, "VA", self.mBank) if not shared_va_page_info["Page"]["MemoryAttr"] == self.mVaAttr: self.error("ERROR VA=%x is set to %s instead of %s"%(self.mSemaVA,shared_va_page_info["Page"]["MemoryAttr"],self.mVaAttr)) self.notice("Thread %d map va 0x%x to [%d] pa 0x%x" % (self._threadId(), self.mSemaVA, self.mBank, self.mSharedPA)) load_gpr = LoadGPR64(self.genThread) load_gpr.load(self.mAddrReg, self.mSemaVA) def _threadId(self): return self.genThread.genThreadID def _handleLowPower(self): gen_mode = self.getPEstate("GenMode") while gen_mode & (1 << 9): # low power mode restart_pc = self.getPEstate("PC") gen_mode &= ~(1 << 9) self.setPEstate("GenMode", gen_mode) self.genSequence("ReExecution", {"Address" : restart_pc}) gen_mode = self.getPEstate("GenMode") ``` #### File: py/base/ItemMap.py ```python from base.SortableObject import SortableObject ## A thin wrapper around an item dict, so that it can be used as a dict key # class ItemMap(SortableObject): def __init__(self, aName, aItemDict): super().__init__() self._mItemDict = aItemDict self._mSortableName = aName def pick(self, aGenThread): return aGenThread.pickWeighted(self._mItemDict) def getPermutated(self, aGenThread, skip_weight_check=False): return aGenThread.getPermutated(self._mItemDict, skip_weight_check) def __add__(self, aOther): if self.isCompatible(aOther): newDict = {k:v for k, v in self._mItemDict.items()} newDict.update(aOther._mItemDict) return self.__class__ (self._mSortableName + aOther._mSortableName, newDict) else: return NotImplemented def __sub__(self, aOther): if self.isCompatible(aOther): return self.substract(aOther) else: return NotImplemented def itemType(self): return NotImplemented def isCompatible(self, aOther): return isinstance(aOther, ItemMap) ## Return a string description of the ItemMape def __str__(self): return "%sMap(%s)" % (self.itemType(), self._mSortableName) def toSimpleString(self): simple_string = " %s map name: " % self.itemType() + self._mSortableName +"\n" if len(self._mItemDict) == 0: raise Exception("Empty %s map %s", (self.itemType(), self._mSortableName)) for k,v in self._mItemDict.items(): if isinstance(k, str): simple_string += " (key:value) = (%s : %d)" % (k, v) elif isinstance(k, ItemMap): simple_string += k.toSimpleString() else: return NotImplemented return simple_string def substract(self, aOther): self_set = set() self.getItemIdSet(self_set) other_set = set() aOther.getItemIdSet(other_set) sub_set = self_set - other_set if len(sub_set) == 0: return None if (sub_set == self_set): return self return self.clone(sub_set) # get all item IDs and push them to set def getItemIdSet(self, aIdSet): for k, v in self._mItemDict.items(): if isinstance(k, str): aIdSet.add(k) elif isinstance(k, ItemMap): k.getItemIdSet(aIdSet) else: return NotImplemented def clone(self, aIdSet): sort_name = self._mSortableName item_dict = self.deepCopyDict(aIdSet) if len(item_dict) == 0: return None return self.__class__(sort_name, item_dict) def deepCopyDict(self, aIdSet): copy_dict = {} for k, v in self._mItemDict.items(): if isinstance(k, ItemMap): cloned_map = k.clone(aIdSet) if cloned_map: copy_dict[cloned_map] = v elif isinstance(k, str): if k in aIdSet: copy_dict[k] = v else: return NotImplemented return copy_dict def size(self, skip_weight_check=False): size = 0 for k, v in self._mItemDict.items(): if isinstance(k, ItemMap): size += k.size(skip_weight_check) elif isinstance(k, str): if skip_weight_check: size += 1 elif v > 0: size += 1 else: return NotImplemented return size ## A thin wrapper around an instruction dict, so that it can be used as a dict key # class RegisterMap(ItemMap): def __init__(self, aName, aItemDict): super().__init__(aName, aItemDict) def itemType(self): return "Register" def isCompatible(self, aOther): return isinstance(aOther, RegisterMap) ``` #### File: riscv/sequences/BasicSequences.py ```python from riscv.EnvRISCV import EnvRISCV from riscv.GenThreadRISCV import GenThreadRISCV from base.Sequence import Sequence from DV.riscv.trees.instruction_tree import ALU_Int_All_instructions from DV.riscv.trees.instruction_tree import LDST_All_instructions class Bunch_of_ALU_Int(Sequence): def generate(self, **kwargs): self.notice("Generating in 'Bunch_of_ALU_Int'") for _ in range(self.random32(5, 20)): instr = self.pickWeighted(ALU_Int_All_instructions) self.genInstruction(instr) class Bunch_of_LDST(Sequence): def generate(self, **kwargs): self.notice('Generating in "Bunch_of_LDST"') for _ in range(self.random32(5, 20)): instr = self.pickWeighted(LDST_All_instructions) instr_rec_id = self.genInstruction(instr) ``` #### File: riscv/exception_handlers/AsynchronousHandlers.py ```python from base.exception_handlers.ReusableSequence import ReusableSequence #------------------------------------------------------------------------------------------------------- # AsynchronousHandlerRISCV - service asynchronous exceptions, ie, interrupts... #------------------------------------------------------------------------------------------------------- class AsynchronousHandlerRISCV(ReusableSequence): def __init__(self, aGenThread, aFactory, aStack): super().__init__(aGenThread, aFactory, aStack) def generateHandler(self, **kwargs): pass # TODO ``` #### File: riscv/exception_handlers/PrivilegeLevelHandlerSetRISCV.py ```python from base.exception_handlers.PrivilegeLevelHandlerSet import PrivilegeLevelHandlerSet from riscv.SecurityState import SecurityStateRISCV from riscv.exception_handlers.ExceptionClass import ExceptionClassRISCV from riscv.exception_handlers.ExceptionHandlerContext import ExceptionHandlerContext, ComprehensiveExceptionHandlerContext class PrivilegeLevelHandlerSetRISCV(PrivilegeLevelHandlerSet): def __init__(self, gen_thread, privLevel, memBankHandlerRegistryRepo, factory, exceptionsStack): super().__init__(gen_thread, privLevel, memBankHandlerRegistryRepo, factory, exceptionsStack) self.handlersBoundaries = [] #------------------------------------------------------------------------ # pick scratch registers to use in exception handlers #------------------------------------------------------------------------ def setupScratchRegisters(self): if len(self.scratchRegs) > 0: return # Exclude the zero register, implied register operands, the stack pointer and the address # table pointer excluded_regs = '0,1,2,%d' % self.address_table.tableIndex() if not self.fastMode(): excluded_regs = '%d,%s' % (self.exceptions_stack.pointerIndex(), excluded_regs) self.scratchRegs = self.getRandomGPRs(self._scratchRegisterCount(), exclude=excluded_regs) if not self.scratchRegs: raise RuntimeError('Unable to allocate scratch registers required by exception handlers.') def generateHandlerSubroutines(self, aSecurityState): if not self.fastMode(): default_mem_bank = aSecurityState.getDefaultMemoryBank() save_pc = self.getPEstate("PC") start_addr = self.nextCodeAddresses[default_mem_bank] self.setPEstate("PC", start_addr) mem_bank_handler_registry = self.memBankHandlerRegistryRepo.getMemoryBankHandlerRegistry(default_mem_bank) handler_context = self.createExceptionHandlerContext(0, default_mem_bank) mem_bank_handler_registry.mHandlerSubroutineGenerator.generateRoutine('TableWalk', handler_context=handler_context) end_addr = self.getPEstate("PC") self.setPEstate("PC", save_pc) self.nextCodeAddresses[default_mem_bank] = end_addr def getHandlerBoundaries(self, mem_bank): return self.handlersBoundaries def getSecurityStates(self): return tuple(SecurityStateRISCV) def getExceptionCodeClass(self): return ExceptionClassRISCV def recordSpecificHandlerBoundary(self, mem_bank, handler_name, start_addr, end_addr): self.handlersBoundaries.append((handler_name, start_addr, end_addr)) def getAsynchronousHandlerErrorCode(self): return 63 def getDispatchErrorCode(self): return 64 def createExceptionHandlerContext(self, err_code, mem_bank): mem_bank_handler_registry = self.memBankHandlerRegistryRepo.getMemoryBankHandlerRegistry(mem_bank) if self.fastMode(): handler_context = ExceptionHandlerContext(err_code, self.scratchRegs, self.privLevel.name, self.exceptions_stack, self.address_table, mem_bank_handler_registry) else: handler_context = ComprehensiveExceptionHandlerContext(err_code, self.scratchRegs, self.privLevel.name, self.exceptions_stack, self.address_table, mem_bank_handler_registry) return handler_context def getInstructionLength(self): return 4 ``` #### File: riscv/APIs/api_genPA_01_force.py ```python from riscv.EnvRISCV import EnvRISCV from riscv.GenThreadRISCV import GenThreadRISCV from base.Sequence import Sequence class MainSequence(Sequence): """Exercise different combinations of values for the parameters for the genPA instruction. Focus in this test is to try values of the Size, Align and CanAlias parameters. Type is always 'D'; Bank is always '0'. """ def generate(self, **kargs): ldstr_byte_ops = ['LB##RISCV', 'SB##RISCV'] ldstr_half_ops = ['LH##RISCV', 'SH##RISCV'] ldstr_word_ops = ['LW##RISCV', 'SW##RISCV'] ldstr_double_ops = ['LD##RISCV', 'SD##RISCV'] theType = 'D' theBank = 0 theCanAlias = 0 loopCount = 1 set_of_PAs = set() # Iterate through Size and Align values. Force requires Align to be a power of 2. # This 1st block tests smaller values of size - 1 byte to 32 bytes. for theSize in [2 ** x for x in range(0, 5)]: for theAlign in [2 ** x for x in range(0, 16)]: if theAlign < theSize: continue for _ in range(loopCount): rand_PA = self.genPA(Size=theSize, Align=theAlign, Type=theType, Bank=theBank, CanAlias=theCanAlias) if rand_PA in set_of_PAs: self.error(">>>>>>>>> Error -- Received a duplicate PA from self.genPA.") else: set_of_PAs.add(rand_PA) # self.notice(">>>>>> set_of_PAs: {}".format(set_of_PAs)) rand_VA = self.genVAforPA(PA=rand_PA, Bank=theBank, FlatMap=0, Type=theType, Size=theSize) self.notice(">>>>>> Requested Alignment: {:6d} Requested Size: {:6d} PA target= {:16X} VA target= {:16X}".format(theAlign, theSize, rand_PA, rand_VA)) instr_id = self.genInstruction(self.choice(ldstr_byte_ops), {'LSTarget':rand_VA}) # Iterate through Size and Align values. Force requires Align to be a power of 2. # This 2nd block tests larger values of size - 32K to 8M. for theSize in [2 ** x for x in range(15, 18)]: for theAlign in [2 ** x for x in range(15, 25)]: if theAlign < theSize: continue for _ in range(loopCount): rand_PA = self.genPA(Size=theSize, Align=theAlign, Type=theType, Bank=theBank, CanAlias=theCanAlias) rand_VA = self.genVAforPA(PA=rand_PA, Bank=theBank, FlatMap=0, CanAlias=0, ForceNewAddress=1, Type=theType, Size=theSize) self.notice(">>>>>> Requested Alignment: {:6d} Requested Size: {:6d} PA target= {:16X} VA target= {:16X}".format(theAlign, theSize, rand_PA, rand_VA)) instr_id = self.genInstruction(self.choice(ldstr_byte_ops), {'LSTarget':rand_VA}) MainSequenceClass = MainSequence GenThreadClass = GenThreadRISCV EnvClass = EnvRISCV ``` #### File: riscv/masterRun/optionsTest_force.py ```python from riscv.EnvRISCV import EnvRISCV from riscv.GenThreadRISCV import GenThreadRISCV from base.Sequence import Sequence from DV.riscv.trees.instruction_tree import ALU_Int_All_instructions class MyMainSequence(Sequence): def generate(self, **kargs): #option = self.getOption("loopCount") loopCount, valid = self.getOption("loopCount") #self.error(">>>>> Option Retrieved: ".format(option)) if not valid: self.error(">>>>> No 'loopCount' option was specified. Value is {}.".format(loopCount)) else: self.notice(">>>>> Value specified for 'loopCount' option is: {}".format(loopCount)) for _ in range(loopCount): instr = self.pickWeighted(ALU_Int_All_instructions) self.genInstruction(instr) MainSequenceClass = MyMainSequence GenThreadClass = GenThreadRISCV EnvClass = EnvRISCV ``` #### File: riscv/state_transition/state_transition_broad_random_instructions_force.py ```python from riscv.EnvRISCV import EnvRISCV from riscv.GenThreadRISCV import GenThreadRISCV from base.Sequence import Sequence from DV.riscv.instruction_list import instructions import state_transition_test_utils from Enums import EStateElementType from State import State import RandomUtils import StateTransition ## This test verifies that StateTransitions yield the expected State with a wide variety of # interleaved instructions. class MainSequence(Sequence): def __init__(self, aGenThread, aName=None): super().__init__(aGenThread, aName) self._mExpectedStateData = {} def generate(self, **kargs): for _ in range(3): state = self._createState() self._genRandomInstructions() StateTransition.transitionToState(state) state_transition_test_utils.verifyState(self, self._mExpectedStateData) self._genRandomInstructions() ## Generate a random number of a wide variety of instructions. def _genRandomInstructions(self): for _ in range(RandomUtils.random32(100, 200)): instr = self.choice(instructions) # TODO(Noah): Permit instructions that begin with E and F when exception handlers are # implemented. The excluded instructions, EBREAK, ECALL and floating point instructions, # are generally prone to triggering exceptions. if not (instr.startswith('E') or instr.startswith('F')): self.genInstruction(instr) ## Create a random State to test an explicit StateTransition. def _createState(self): state = State() self._mExpectedStateData[EStateElementType.Memory] = state_transition_test_utils.addRandomMemoryStateElements(self, state, RandomUtils.random32(0, 20)) self._mExpectedStateData[EStateElementType.GPR] = state_transition_test_utils.addRandomGprStateElements(self, state, RandomUtils.random32(0, 20)) self._mExpectedStateData[EStateElementType.FloatingPointRegister] = state_transition_test_utils.addRandomFloatingPointRegisterStateElements(self, state, RandomUtils.random32(0, 20)) self._mExpectedStateData[EStateElementType.PC] = state_transition_test_utils.addRandomPcStateElement(self, state) return state MainSequenceClass = MainSequence GenThreadClass = GenThreadRISCV EnvClass = EnvRISCV ``` #### File: riscv/state_transition/state_transition_memory_default_force.py ```python from riscv.EnvRISCV import EnvRISCV from riscv.GenThreadRISCV import GenThreadRISCV from base.Sequence import Sequence import state_transition_test_utils from Enums import EStateElementType from State import State import RandomUtils import StateTransition ## This test verifies that the default MemoryStateElement StateTransitionHandler alters the memory # State as expected. class MainSequence(Sequence): def __init__(self, aGenThread, aName=None): super().__init__(aGenThread, aName) self._mMemBlockStartAddr = None self._mMemBlockEndAddr = None self._mExpectedStateData = {} def generate(self, **kargs): state = self._createState() target_addr_range = '%d-%d' % (self._mMemBlockStartAddr, self._mMemBlockEndAddr) instructions = ('LD##RISCV', 'SD##RISCV') for _ in range(RandomUtils.random32(2, 5)): for _ in range(RandomUtils.random32(50, 100)): self.genInstruction(self.choice(instructions), {'LSTarget': target_addr_range}) StateTransition.transitionToState(state) state_transition_test_utils.verifyState(self, self._mExpectedStateData) ## Create a simple State to test an explicit StateTransition. def _createState(self): state = State() expected_mem_state_data = [] mem_block_size = RandomUtils.random32(0x8, 0x20) * 16 self._mMemBlockStartAddr = self.genVA(Size=mem_block_size, Align=16, Type='D') self._mMemBlockEndAddr = self._mMemBlockStartAddr + mem_block_size - 1 cur_addr = self._mMemBlockStartAddr while cur_addr <= self._mMemBlockEndAddr: mem_val = RandomUtils.random64() state.addMemoryStateElement(cur_addr, 8, mem_val) expected_mem_state_data.append((cur_addr, mem_val)) cur_addr += 8 self._mExpectedStateData[EStateElementType.Memory] = expected_mem_state_data return state MainSequenceClass = MainSequence GenThreadClass = GenThreadRISCV EnvClass = EnvRISCV ``` #### File: riscv/state_transition/state_transition_partial_force.py ```python from riscv.EnvRISCV import EnvRISCV from riscv.GenThreadRISCV import GenThreadRISCV from base.Sequence import Sequence from base.StateTransitionHandler import StateTransitionHandler import state_transition_test_utils from Enums import EStateElementType, EStateTransitionType from State import State import RandomUtils import StateTransition ## A test StateTransitionHandler that defers to the default StateTransitionHandler some of the time. class PartialStateTransitionHandlerTest(StateTransitionHandler): ## Execute the State change represented by the StateElement. Only instances of the StateElement # types for which the StateTransitionHandler has been registered will be passed to this method. # Other StateTransitionHandlers will process the other StateElement types. It is important to # avoid making changes to entities represented by StateElements that have already been # processed. Changes to entities represented by StateElements that will be processed later are # permitted. # # @param aStateElem A StateElement object. def processStateElement(self, aStateElem): processed = False # Randomly decide whether to process the StateElement or defer to the default implementation if RandomUtils.random32(0, 1) == 1: (mem_block_ptr_index,) = self.getArbitraryGprs(1, aExclude=(0,)) self.initializeMemoryBlock(mem_block_ptr_index, (aStateElem,)) self.genInstruction('FLD##RISCV', {'rd': aStateElem.getRegisterIndex(), 'rs1': mem_block_ptr_index, 'simm12': 0, 'NoRestriction': 1}) processed = True return processed ## This test verifies that a StateTransition handler can process some of the StateElements and defer # to the default StateTransitionHandler for the remaining StateElements. class MainSequence(Sequence): def __init__(self, aGenThread, aName=None): super().__init__(aGenThread, aName) self._mExpectedStateData = {} def generate(self, **kargs): state_trans_handler = PartialStateTransitionHandlerTest(self.genThread) StateTransition.registerStateTransitionHandler(state_trans_handler, EStateTransitionType.Explicit, (EStateElementType.FloatingPointRegister,)) state = self._createState() StateTransition.transitionToState(state) state_transition_test_utils.verifyState(self, self._mExpectedStateData) ## Create a simple State to test an explicit StateTransition. def _createState(self): state = State() self._mExpectedStateData[EStateElementType.FloatingPointRegister] = state_transition_test_utils.addRandomFloatingPointRegisterStateElements(self, state, RandomUtils.random32(0, 15)) return state MainSequenceClass = MainSequence GenThreadClass = GenThreadRISCV EnvClass = EnvRISCV ``` #### File: builder/test_builder/base_test_builder.py ```python import sys sys.path.insert(0, '..') class BaseTestBuilder: def __init__(self, archName, groupByNum, groupSize, additionalImport, postMainSeq, debugOutputPath): #input and output paths and filenames self.mInputPath = "input/" self.mOutputPath = "output/" self.mXmlPath = "xml/" self.mTxtPath = "txt/" self.mXmlFiles = [] self.mTxtFiles = [] #architecture name self.mArchName = archName #additional hook strings into template to allow for custom imports/post sequence specifiers (such as gen thread init) self.mAdditionalImport = additionalImport self.mPostMainSeq = postMainSeq #data structures for reading input data, key=filename w/o suffix val=data (either instr file obj/list of strings) self.mInstrFiles = {} #data structures to manage subgrouping inside of instruction files, contains input from txt files self.mUnsupportedInstructions = [] self.mSubgroupInstructions = {} #instruction grouping switches self.mGroupByNum = groupByNum self.mGroupSize = groupSize #if debugOutputPath is defined, messages will be printed to outfile instead of stdout self.fDebugOutput = open(debugOutputPath, 'w') if (debugOutputPath != "") else None def debug(self, s): print('DEBUG: {}'.format(s), file=self.fDebugOutput) def get_xml_input_path(self): return self.mInputPath + self.mXmlPath def get_txt_input_path(self): return self.mInputPath + self.mTxtPath def make_output_test_dir(self, dir_name): import os try: os.makedirs(self.mOutputPath + dir_name) except FileExistsError: pass except OSError: self.debug("Error creating directory {}{}, exiting".format(self.mOutputPath, dir_name)) sys.exit(1) return self.mOutputPath + dir_name + "/" def delete_output_test_dir(self, dir_name): import os try: os.rmdir(dir_name) except OSError: self.debug("Error removing directory {}, exiting".format(dir_name)) sys.exit(1) def read_inputs(self): from shared.instruction_file import InstructionFile from shared.instruction_file_parser import InstructionFileParser for xml_file in self.mXmlFiles: instr_file = InstructionFile() file_parser = InstructionFileParser(instr_file) file_parser.parse(self.get_xml_input_path() + xml_file) self.mInstrFiles[xml_file.rstrip('.xml')] = instr_file for txt_file in self.mTxtFiles: with open(self.get_txt_input_path() + txt_file, "r") as txt_handle: instr_subgroup_name = txt_file.rstrip('.tx') txt_lines = txt_handle.read().splitlines() if instr_subgroup_name == "unsupported": self.mUnsupportedInstructions = txt_lines else: self.mSubgroupInstructions[instr_subgroup_name] = txt_lines def process_instr_group(self, instrFile, instrFileName, testOutputDir, subgroupPrefix, skipInstructions, validInstructions): instr_grp = self.gen_grouped_instr_file(instrFile, testOutputDir, subgroupPrefix, skipInstructions, validInstructions) if instr_grp.has_any_instructions(): with open(testOutputDir + "instruction_grouping.txt", "w") as group_handle: instr_grp.write(group_handle) with open(testOutputDir + instrFileName + ".txt", "w") as test_handle: instr_grp.print_tests(test_handle) return True else: self.delete_output_test_dir(testOutputDir) return False def gen_grouped_instr_file(self, instrFile, testOutputDir, subgroupPrefix, skipInstructions, validInstructions): instr_grp = None if self.mGroupByNum: from shared.instruction_file_grouping import NumGroupedInstructionFile instr_grp = NumGroupedInstructionFile(instrFile, self.mArchName, testOutputDir, self.mGroupSize, self.mAdditionalImport, self.mPostMainSeq, skipInstructions, validInstructions, subgroupPrefix) else: from shared.instruction_file_grouping import FormatGroupedInstructionFile instr_grp = FormatGroupedInstructionFile(instrFile, self.mArchName, testOutputDir, self.mAdditionalImport, self.mPostMainSeq, skipInstructions, validInstructions, subgroupPrefix) return instr_grp def write_tests(self): for instr_file_name, instr_file in self.mInstrFiles.items(): valid_subgroups = [] test_output_dir = self.make_output_test_dir(instr_file_name) import copy default_skip_instrs = copy.deepcopy(self.mUnsupportedInstructions) for subgroup_name, subgroup_instrs in self.mSubgroupInstructions.items(): default_skip_instrs += subgroup_instrs subgroup_output_dir = self.make_output_test_dir(instr_file_name + "/" + subgroup_name) valid_subgroup = self.process_instr_group(instr_file, instr_file_name + "_" + subgroup_name, subgroup_output_dir, subgroup_name + "_", self.mUnsupportedInstructions, subgroup_instrs) if valid_subgroup: valid_subgroups.append(subgroup_name) self.process_instr_group(instr_file, instr_file_name, test_output_dir, "", default_skip_instrs, None) self.write_ctrl_files(valid_subgroups, test_output_dir) def write_ctrl_files(self, subgroupNames, outputDir): from shared.ctrl_file_builder import CtrlFileBuilder ctrl_file_builder = CtrlFileBuilder(self.mArchName.lower(), subgroupNames) ctrl_file_builder.gen_ctrl_files(outputDir) def run(self): self.read_inputs() self.write_tests() ``` #### File: utils/enum_classes/create_enum_files.py ```python import abc import collections import enum_string_hash import importlib import os import string import sys class _EnumFileSpec: def __init__(self, input_file_name, base_output_dir, output_file_name, unit_test_output_dir): self._base_output_dir = base_output_dir self._input_file_name = input_file_name self._output_file_name = output_file_name self._unit_test_output_dir = unit_test_output_dir @property def base_output_dir(self): return self._base_output_dir @property def input_file_name(self): return self._input_file_name @property def output_file_name(self): return self._output_file_name @property def unit_test_output_dir(self): return self._unit_test_output_dir class _EnumSpec: def __init__(self, class_name, raw_type, comments, values): self._class_name = class_name self._raw_type = raw_type self._comments = comments self._values = values @property def class_name(self): return self._class_name @property def raw_type(self): return self._raw_type @property def comments(self): return self._comments @property def values(self): return self._values class _CppHeaderGenerator: def __init__(self, script_path, file_name): self._script_path = script_path self._file_name = file_name self._header_template = _TemplateLoader.load_template('cpp_header.txt') self._declaration_template = _TemplateLoader.get_enum_declaration_template() self._indent = ' '*2 def generate(self, enum_specs): declarations = self._generate_declarations(enum_specs) return self._header_template.substitute(file_name=self._file_name, enum_declarations=declarations, script_path=self._script_path) def _generate_declarations(self, enum_specs): declarations = '' for enum_spec in enum_specs: declarations += self._generate_declaration(enum_spec) return declarations[:-1] def _generate_declaration(self, enum_spec): value_settings = self._generate_value_settings(enum_spec.values) declaration_template_mapping = { 'class_name': enum_spec.class_name, 'raw_type': enum_spec.raw_type, 'comments': enum_spec.comments, 'value_settings': value_settings } return self._declaration_template.substitute(declaration_template_mapping) def _generate_value_settings(self, enum_values): value_settings = '' for enum_value in enum_values: value_settings += self._indent*2 + '%s = %s,\n' % enum_value return value_settings[:-1] class _CppSourceGenerator: def __init__(self, script_path, file_name): self._script_path = script_path self._file_name = file_name self._source_template = _TemplateLoader.load_template('cpp_source.txt') self._definition_template = _TemplateLoader.get_enum_definition_template() self._indent = ' '*2 def generate(self, enum_specs): definitions = self._generate_definitions(enum_specs) return self._source_template.substitute(file_name=self._file_name, enum_definitions=definitions, script_path=self._script_path) def _generate_definitions(self, enum_specs): definitions = '' for enum_spec in enum_specs: definitions += self._generate_definition(enum_spec) return definitions[:-1] def _generate_definition(self, enum_spec): (to_enum_function_body, try_to_enum_function_body) = self._generate_to_enum_function_bodies(enum_spec) to_string_cases = self._generate_to_string_cases(enum_spec) definition_template_mapping = { 'class_name': enum_spec.class_name, 'raw_type': enum_spec.raw_type, 'comments': enum_spec.comments, 'enum_size': len(enum_spec.values), 'to_enum_function_body': to_enum_function_body, 'try_to_enum_function_body': try_to_enum_function_body, 'to_string_cases': to_string_cases, 'default_string_value': enum_spec.values[0][0] } return self._definition_template.substitute(definition_template_mapping) # Combine generation of string_to_<enum_type> and try_string_to_<enum_type> functions into a single method to avoid # the cost of having to generate the nested hash table twice. def _generate_to_enum_function_bodies(self, enum_spec): nested_hash_table = enum_string_hash.find_limited_char_nested_hash(enum_spec.values) to_enum_function_generator = _CppStringToEnumFunctionGenerator(enum_spec, nested_hash_table) to_enum_function_body = to_enum_function_generator.generate_function_body() try_to_enum_function_generator = _CppTryStringToEnumFunctionGenerator(enum_spec, nested_hash_table) try_to_enum_function_body = try_to_enum_function_generator.generate_function_body() return (to_enum_function_body, try_to_enum_function_body) def _generate_to_string_cases(self, enum_spec): to_string_cases = '' for enum_value in enum_spec.values: to_string_cases += self._indent*2 + 'case E%s::%s: return "%s";\n' % ( enum_spec.class_name, enum_value[0], enum_value[0]) return to_string_cases[:-1] class _CppUnitTestGenerator: def __init__(self, script_path, file_name): self._script_path = script_path self._file_name = file_name self._unit_test_template = _TemplateLoader.load_template('cpp_unit_test.txt') self._unit_test_case_template = _TemplateLoader.get_unit_test_case_template() self._indent = ' '*2 def generate(self, enum_specs): unit_test_cases = self._generate_unit_test_cases(enum_specs) return self._unit_test_template.substitute(file_name=self._file_name, unit_test_cases=unit_test_cases, script_path=self._script_path) def _generate_unit_test_cases(self, enum_specs): unit_test_cases = '' for enum_spec in enum_specs: unit_test_cases += self._generate_unit_test_case(enum_spec) return unit_test_cases[:-1] def _generate_unit_test_case(self, enum_spec): to_string_tests = self._generate_to_string_tests(enum_spec) to_enum_tests = self._generate_to_enum_tests(enum_spec) to_enum_fail_tests = self._generate_to_enum_fail_tests(enum_spec) try_to_enum_tests = self._generate_try_to_enum_tests(enum_spec) try_to_enum_fail_tests = self._generate_try_to_enum_fail_tests(enum_spec) unit_test_case_template_mapping = { 'class_name': enum_spec.class_name, 'to_string_tests': to_string_tests, 'to_enum_tests': to_enum_tests, 'to_enum_fail_tests': to_enum_fail_tests, 'try_to_enum_tests': try_to_enum_tests, 'try_to_enum_fail_tests': try_to_enum_fail_tests } return self._unit_test_case_template.substitute(unit_test_case_template_mapping) def _generate_to_string_tests(self, enum_spec): to_string_tests = '' for enum_value in enum_spec.values: to_string_tests += self._indent*3 + 'EXPECT(E%s_to_string(E%s::%s) == "%s");\n' % ( enum_spec.class_name, enum_spec.class_name, enum_value[0], enum_value[0]) return to_string_tests[:-1] def _generate_to_enum_tests(self, enum_spec): to_enum_tests = '' for enum_value in enum_spec.values: to_enum_tests += self._indent*3 + 'EXPECT(string_to_E%s("%s") == E%s::%s);\n' % ( enum_spec.class_name, enum_value[0], enum_spec.class_name, enum_value[0]) return to_enum_tests[:-1] def _generate_to_enum_fail_tests(self, enum_spec): fail_test_string = self._generate_fail_test_string(enum_spec.values[0][0]) to_enum_fail_tests = self._indent*3 + 'EXPECT_THROWS_AS(string_to_E%s("%s"), EnumTypeError);' % ( enum_spec.class_name, fail_test_string) return to_enum_fail_tests def _generate_try_to_enum_tests(self, enum_spec): try_to_enum_tests = '' for enum_value in enum_spec.values: try_to_enum_tests += self._indent*3 + 'EXPECT(try_string_to_E%s("%s", okay) == E%s::%s);\n' % ( enum_spec.class_name, enum_value[0], enum_spec.class_name, enum_value[0]) try_to_enum_tests += self._indent*3 + 'EXPECT(okay);\n' return try_to_enum_tests[:-1] def _generate_try_to_enum_fail_tests(self, enum_spec): fail_test_string = self._generate_fail_test_string(enum_spec.values[0][0]) try_to_enum_fail_tests = self._indent*3 + 'try_string_to_E%s("%s", okay);\n' % ( enum_spec.class_name, fail_test_string) try_to_enum_fail_tests += self._indent*3 + 'EXPECT(!okay);' return try_to_enum_fail_tests # Generate a string that doesn't correspond to any enum value. However, it is intended to be similar enough to a # string that does match an enum value such that in many cases, the generated string will hash to one of the case # values and fail at the full equality check. def _generate_fail_test_string(self, enum_value_name): enum_value_name = enum_value_name if len(enum_value_name) > 1: fail_test_string = enum_value_name[0] + '_' + enum_value_name[2:] else: fail_test_string = '_' + enum_value_name[1:] return fail_test_string class _CppStringToEnumFunctionGeneratorBase(abc.ABC): def __init__(self, enum_spec): self._enum_spec = enum_spec self._indent = ' '*2 @property @abc.abstractmethod def error_statements(self): ... @property def enum_spec(self): return self._enum_spec @property def indent(self): return self._indent @abc.abstractmethod def generate_function_body(self): ... @abc.abstractmethod def generate_validation(self, class_name, string_value, context): ... def generate_nested_function_body(self, nested_hash_table, context): to_enum_function_body = self._generate_hash_computation(nested_hash_table.char_indexes, context) to_enum_function_body += self._indent*( 2 + context.indent_level) + 'switch (hash_value%s) {\n' % context.var_name_suffix for table_entry in nested_hash_table.entries: to_enum_function_body += self._indent*(2 + context.indent_level) + 'case %d:\n' % table_entry.key if table_entry.has_multiple_values(): to_enum_function_body += self._indent*(3 + context.indent_level) + '{\n' nested_context = _CppFunctionGenerationContext(context.indent_level + 2, '_%d' % table_entry.key) to_enum_function_body += self.generate_nested_function_body( table_entry.inner_hash_table, nested_context) to_enum_function_body += self._indent*(3 + context.indent_level) + '}\n' else: # Validate the input string inside the case statement to guard against hash collisions for strings that # don't match any of the enum values. to_enum_function_body += self.generate_validation( self._enum_spec.class_name, table_entry.get_only_value(), context) to_enum_function_body += self._indent*(2 + context.indent_level) + 'default:\n' for error_statement in self.error_statements: to_enum_function_body += self._indent*(3 + context.indent_level) + error_statement to_enum_function_body += self._indent*(2 + context.indent_level) + '}\n' return to_enum_function_body def _generate_hash_computation(self, char_indexes, context): hash_computation = self._generate_string_size_expression(char_indexes, context) hash_computation += self._indent*(2 + context.indent_level) + 'char hash_value%s = ' % context.var_name_suffix hash_computation += self._generate_char_retrieval_expression(char_indexes[0], context) for char_index in char_indexes[1:]: char_retrieval_expression = self._generate_char_retrieval_expression(char_index, context) hash_computation += ' ^ ' + char_retrieval_expression hash_computation += ';\n\n' return hash_computation; def _generate_string_size_expression(self, char_indexes, context): if (len(char_indexes) == 1) and (char_indexes[0] == 0): string_size_expression = '' else: string_size_expression = self._indent*(2 + context.indent_level) + 'size_t size%s = in_str.size();\n' % context.var_name_suffix return string_size_expression def _generate_char_retrieval_expression(self, char_index, context): if char_index == 0: char_retrieval_expression = 'in_str.at(%d)' % char_index else: # Use the modulo operator in case the character index is larger than the string size, but not otherwise, as # it degrades performance. char_retrieval_expression = 'in_str.at(%d < size%s ? %d : %d %% size%s)' % (char_index, context.var_name_suffix, char_index, char_index, context.var_name_suffix) return char_retrieval_expression class _CppStringToEnumFunctionGenerator(_CppStringToEnumFunctionGeneratorBase): def __init__(self, enum_spec, nested_hash_table): super().__init__(enum_spec) self._nested_hash_table = nested_hash_table self._error_statements = ['unknown_enum_name(enum_type_name, in_str);\n'] @property def error_statements(self): return self._error_statements def generate_function_body(self): context = _CppFunctionGenerationContext(0, '') to_enum_function_body = self.generate_nested_function_body(self._nested_hash_table, context) return to_enum_function_body[:-1] def generate_validation(self, class_name, string_value, context): validation = self.indent*(3 + context.indent_level) + 'validate(in_str, "%s", enum_type_name);\n' % ( string_value) validation += self.indent*(3 + context.indent_level) + 'return E%s::%s;\n' % (class_name, string_value) return validation class _CppTryStringToEnumFunctionGenerator(_CppStringToEnumFunctionGeneratorBase): def __init__(self, enum_spec, nested_hash_table): super().__init__(enum_spec) self._nested_hash_table = nested_hash_table self._error_statements = [ 'okay = false;\n', 'return E%s::%s;\n' % (enum_spec.class_name, enum_spec.values[0][0])] @property def error_statements(self): return self._error_statements def generate_function_body(self): try_to_enum_function_body = self.indent*2 + 'okay = true;\n' context = _CppFunctionGenerationContext(0, '') try_to_enum_function_body += self.generate_nested_function_body(self._nested_hash_table, context) return try_to_enum_function_body[:-1] def generate_validation(self, class_name, string_value, context): validation = self.indent*(3 + context.indent_level) + 'okay = (in_str == "%s");\n' % string_value validation += self.indent*(3 + context.indent_level) + 'return E%s::%s;\n' % (class_name, string_value) return validation class _TemplateLoader: @classmethod def load_template(cls, template_file_name): template_dir = 'templates' with open(os.path.join(template_dir, template_file_name)) as template_file: template_file_contents = template_file.read() return string.Template(template_file_contents) @classmethod def get_enum_declaration_template(cls): import templates.cpp_enum_declaration return string.Template(templates.cpp_enum_declaration.template_string) @classmethod def get_enum_definition_template(cls): import templates.cpp_enum_definition return string.Template(templates.cpp_enum_definition.template_string) @classmethod def get_unit_test_case_template(cls): import templates.cpp_unit_test_case return string.Template(templates.cpp_unit_test_case.template_string) class _CppFunctionGenerationContext: def __init__(self, indent_level, var_name_suffix): self._indent_level = indent_level self._var_name_suffix = var_name_suffix @property def indent_level(self): return self._indent_level @property # Used to generate unique names for variables serving similar purposes within the same method. def var_name_suffix(self): return self._var_name_suffix def generate_enum_files(app_name): enum_file_specs = _create_enum_file_specs(app_name) for enum_file_spec in enum_file_specs: _generate_enum_file(enum_file_spec) def _generate_enum_file(enum_file_spec): script_path = os.path.join('utils', 'enum_classes', 'create_enum_files.py') enum_specs = _load_enum_specs(enum_file_spec.input_file_name) cpp_header_generator = _CppHeaderGenerator(script_path, enum_file_spec.output_file_name) cpp_header_contents = cpp_header_generator.generate(enum_specs) cpp_source_generator = _CppSourceGenerator(script_path, enum_file_spec.output_file_name) cpp_source_contents = cpp_source_generator.generate(enum_specs) cpp_unit_test_generator = _CppUnitTestGenerator(script_path, enum_file_spec.output_file_name) cpp_unit_test_contents = cpp_unit_test_generator.generate(enum_specs) cpp_header_path = os.path.join(enum_file_spec.base_output_dir, 'inc', ('%s.h' % enum_file_spec.output_file_name)) _write_enum_file(cpp_header_path, cpp_header_contents) cpp_source_path = os.path.join(enum_file_spec.base_output_dir, 'src', ('%s.cc' % enum_file_spec.output_file_name)) _write_enum_file(cpp_source_path, cpp_source_contents) cpp_unit_test_path = os.path.join(enum_file_spec.unit_test_output_dir, enum_file_spec.output_file_name, ('%s_test.cc' % enum_file_spec.output_file_name)) _write_enum_file(cpp_unit_test_path, cpp_unit_test_contents) def _create_enum_file_specs(app_name): enum_file_specs = [] force_path = os.path.join('..', '..') if app_name == 'Force': base_enum_file_spec = _EnumFileSpec('base_enum_classes', os.path.join(force_path, 'base'), 'Enums', os.path.join(force_path, 'unit_tests', 'tests', 'base')) enum_file_specs.append(base_enum_file_spec) riscv_enum_file_spec = _EnumFileSpec('riscv_enum_classes', os.path.join(force_path, 'riscv'), 'EnumsRISCV', os.path.join(force_path, 'unit_tests', 'tests', 'riscv')) enum_file_specs.append(riscv_enum_file_spec) elif app_name == 'Fpix': base_enum_file_spec = _EnumFileSpec('fpix_base_enum_classes', os.path.join(force_path, 'fpix'), 'EnumsFPIX', os.path.join(force_path, 'unit_tests', 'tests', 'fpix')) enum_file_specs.append(base_enum_file_spec) else: raise ValueError('Unknown application name %s' % app_name) return enum_file_specs def _load_enum_specs(source_file_name): # Import the list used to define the enums source_module = importlib.import_module(source_file_name) enum_specs = [] for class_name, raw_type, comments, values in source_module.enum_classes_details: enum_specs.append(_EnumSpec(class_name, raw_type, comments, values)) return enum_specs def _write_enum_file(file_path, file_contents): with open(file_path, 'w') as enum_file: enum_file.write(file_contents) if __name__ == '__main__': app_name = 'Force' if len(sys.argv) > 1: app_name = sys.argv[1] generate_enum_files(app_name) ``` #### File: applications/compile/CompileInit.py ```python from classes.ApplicationOption import CommandLineOption, ParameterProcessor from common.path_utils import PathUtils from common.sys_utils import SysUtils ## Define additional specific command line parameters # class CompileCmdLineOptions(object): cGroupName = 'Compile related options' cGroupDescription = 'Useful Compile options to control Compile usage' # 'option name' 'number of value arguments' 'help text' # | 'default value' | 'additional arguments' | # | | | | | cOptions = [CommandLineOption(aName='compile', aDefault='', aNumArgs=0, aAdditionalArgs={'action':'store_true'}, aHelpText='- When present, overrides the default (False) and enables compiling'), CommandLineOption(aName='compile.path', aDefault='$PROJ_ROOT/verif/top/sim', aNumArgs=1, aAdditionalArgs={}, aHelpText='- When present, overrides the default path ($PROJ_ROOT/verif/top/sim'), CommandLineOption(aName='compile.options', aDefault='', aNumArgs=1, aAdditionalArgs={'type':str}, aHelpText='- When present, adds the specified option string for compilation'), CommandLineOption(aName='compile.mp', aDefault='', aNumArgs=0, aAdditionalArgs={'action':'store_true'}, aHelpText='- When present, overrides the default (False) and triggers mp specific before and after processes'), ] ## Used to process application specific parameters # class CompileParametersProcessor(ParameterProcessor): def __init__(self, aCmdLineOptions): super().__init__(CompileCmdLineOptions.cOptions, aCmdLineOptions) default_path = '$PROJ_ROOT/verif/top/sim' if self.mAppParameters.parameter('compile') or self.mAppParameters.parameter('compile.options') or self.mAppParameters.parameter('compile.path') != default_path: compile_path = self.mAppParameters.parameter('compile.path') compile_path = PathUtils.expandVars(compile_path) compile_makefile = PathUtils.include_trailing_path_delimiter(compile_path) + 'Makefile' if not PathUtils.check_file(compile_makefile): raise Exception(compile_makefile + ' does not exist.') self.mAppParameters.setParameter('compile.path', compile_path) self.mAppParameters.setParameter('compile.options', PathUtils.expandVars(self.mAppParameters.parameter('compile.options'))) ## Process compile control data # def processCompileControlData(aControlData, aAppParameters): if aAppParameters is None: return # TODO Temporary, to avoid failing in forrest run, to remove. keys = ['compile', 'compile.options'] # Ignore compile.path for now because it has a default value and will always be found, forcing a compile every time master run runs for key in keys: if aAppParameters.parameter(key): aControlData['run'] = True aControlData['path'] = aAppParameters.parameter('compile.path') aControlData['options'] = aAppParameters.parameter('compile.options') aControlData['mp'] = aAppParameters.parameter('compile.mp') return # Check compile.path here to determine if it has been changed and, if so, make sure we run the compile app on that non-default path default_path = '$PROJ_ROOT/verif/top/sim' if aAppParameters.parameter('compile.path') != default_path: aControlData['run'] = True aControlData['path'] = aAppParameters.parameter('compile.path') aControlData['options'] = aAppParameters.parameter('compile.options') aControlData['mp'] = aAppParameters.parameter('compile.mp') ``` #### File: applications/force/ForceInit.py ```python from classes.ApplicationOption import AppPathCmdLineOption, ParameterProcessor from common.path_utils import PathUtils from common.version_ctrl_utils import VersionCtrlUtils from common.msg_utils import Msg ## Define additional FORCE specific command line parameters # class ForceCmdLineOptions(object): cGroupName = "FORCE related options" cGroupDescription = "Useful FORCE options to control FORCE usage" # "number of value arguments" # "option name" | "additional arguments" # | "default value" | | "help text" # | | | | | cOptions = [AppPathCmdLineOption('path', "../../bin/force", 1, None, "- Path to FORCE binary", None, "FORCE_PATH")] ## Used to process application specific parameters # class ForceParametersProcessor(ParameterProcessor): def __init__(self, aCmdLineOptions): super().__init__(ForceCmdLineOptions.cOptions, aCmdLineOptions) force_path = self.mAppParameters.parameter('path') force_bin_dir, _ = PathUtils.split_path(force_path) force_dir = PathUtils.real_path(PathUtils.include_trailing_path_delimiter(force_bin_dir) + '../') if not PathUtils.check_exe(force_path): raise Exception(force_path + " does not exist or is not executable, confirm valid exe") # determine svn revision information and store as a parameter version_data = VersionCtrlUtils.get_scm_revisions(force_dir) version_output = VersionCtrlUtils.get_version_output(version_data) Msg.info("Force Version Data:\n%s" % version_output) self.mAppParameters.setParameter("version", version_data) self.mAppParameters.setParameter("version_dir", force_dir) ## Process force control data # def processForceControlData(aControlData, aAppParameters): """ :param object aControlData: :param object aAppParameters: :return: """ if aAppParameters is None: return # TODO Temporary, to avoid failing in forrest run, to remove. key = 'path' if aAppParameters.parameter(key): aControlData[key] = aAppParameters.parameter(key) ``` #### File: applications/fruntoctrl/FrunToCtrlInit.py ```python from classes.ApplicationOption import CommandLineOption, ParameterProcessor from common.path_utils import PathUtils ## Define additional FRUN_TO_CTRL specific command line parameters # class FrunToCtrlCmdLineOptions(object): cGroupName = "Frun to ctrl related options" cGroupDescription = "Useful FRUN_TO_CTRL options to control FRUN_TO_CTRL usage" # "number of value arguments" # "option name" | "additional arguments" # | "default value" | | "help text" # | | | | | cOptions = [ CommandLineOption('frun-to-ctrl', "", 0, {"action":"store_true"}, "- When present, overrides the default (False), and enables conversion from the frun file to an additional control file\non tests that have an frun file"), ] ## Used to process application specific parameters # class FrunToCtrlParametersProcessor(ParameterProcessor): def __init__(self, aCmdLineOptions): super().__init__(FrunToCtrlCmdLineOptions.cOptions, aCmdLineOptions) if self.mAppParameters.parameter('frun-to-ctrl'): frun_to_ctrl_path = PathUtils.include_trailing_path_delimiter( aCmdLineOptions.mProgramPath ) + "../frun_to_ctrl/frun_to_ctrl.py" if not PathUtils.check_exe( frun_to_ctrl_path ): raise Exception( frun_to_ctrl_path + " does not exist or is not executable, confirm valid exe" ) frun_to_ctrl_path = PathUtils.real_path(frun_to_ctrl_path) self.mAppParameters.setParameter('path', frun_to_ctrl_path) ## Process fruntoctrl control data # def processFrunToCtrlControlData(aControlData, aAppParameters): if aAppParameters is None: return # TODO Temporary, to avoid failing in forrest run, to remove. key = 'frun-to-ctrl' if aAppParameters.parameter(key): aControlData['run'] = aAppParameters.parameter(key) aControlData['path'] = aAppParameters.parameter('path') ``` #### File: regression/classes/ApplicationsInfo.py ```python class ApplicationParameters(object): def __init__(self): self._mParameters = dict() def resolveParameters(self, aAppOptions, aCmdLineOptions): for app_option in aAppOptions: opt_value, opt_specified = app_option.resolveParameter(aCmdLineOptions) self._mParameters[app_option.name()] = opt_value self._mParameters[app_option.name() + " from cmdline"] = opt_specified def parameter(self, aParmName): return self._mParameters[aParmName] def setParameter(self, aParmName, aParmValue): self._mParameters[aParmName] = aParmValue def commandLineSpecified(self, aParmName): return self._mParameters[aParmName + " from cmdline"] ## Configuration information for individual application # class ApplicationConfig(object): def __init__(self, aName, aAppModule): self._mName = aName self._mModule = aAppModule if hasattr(self._mModule, 'Tag'): self._mTag = self._mModule.Tag else: self._mTag = self._mName self.mAppParameters = None ## Return application name # def name(self): return self._mName ## Return application config's tag # def tag(self): return self._mTag ## Return application specific command line options if any. # def getCmdLineOptions(self): return self._mModule.CmdLineOptions ## Return application specific parameters processor if any. # def getParametersProcessorClass(self): return self._mModule.ParametersProcessorClass ## Return certain application parameter value. # def parameter(self, aParmName): return self.mAppParameters.parameter(aParmName) ## Call upon application specific facility to process control data # def processControlData(self, aControlData): self._mModule.ProcessControlData(aControlData, self.mAppParameters) ## Create executor # def createExecutor(self): return self._mModule.ExecutorClass() ## Create reporter # def createReporter(self): return self._mModule.ReporterClass() ## Container of all application components. # class ApplicationsInfo(object): ## Init with LSF info passed in. # def __init__(self, aLsfInfo): self.mLsfInfo = aLsfInfo self.mAllAppsOrder = list() self.mAllAppsOrder.append(self.mLsfInfo) self.mSingleRunApps = list() self.mSequenceApps = list() self.mCmdLineOpts = None self.mTagToApp = dict() self._registerTag(aLsfInfo) self.mMainAppPath = None self.mProcessMax = None self.mTestBaseDir = None self.mToolPath = None self.mMode = None self.mNumTestsCount = 0 self._mNamesWithIndex = dict() self.mTagToReportInfo = dict() self.mConfigPath = None ## Add single run application # def addSingleRunApplication(self, aSingleRunApp): self.mSingleRunApps.append(aSingleRunApp) self._addApplication(aSingleRunApp) ## Add application def _addApplication(self, aApp): self.mAllAppsOrder.append(aApp) self._registerTag(aApp) ## Add sequence application. # def addSequenceApplication(self, aSeqApp): self.mSequenceApps.append(aSeqApp) self._addApplication(aSeqApp) ## Register the applications' tag. def _registerTag(self, aAppCfg): if aAppCfg.tag() in self.mTagToApp.keys(): raise Exception("Registering application %s with tag %s that already exist......" % (aAppCfg.name(), aAppCfg.tag())) self.mTagToApp[aAppCfg.tag()] = aAppCfg ## Look up an application config by using tag. # def getAppConfig(self, aAppTag): return self.mTagToApp[aAppTag] ## Increment the test count for use with count mode # # Note, this is not an atomic add because we stay single threaded in count mode # def incrementTestCount(self): self.mNumTestsCount += 1 ## Mainly used in creating indices for sub-tasks, but somewhat generalized to handle names with index. # def getNextIndex(self, aName): next_index = 0 if aName in self._mNamesWithIndex: next_index = self._mNamesWithIndex[aName] + 1 # update saved index. self._mNamesWithIndex[aName] = next_index return next_index ``` #### File: regression/classes/extractor.py ```python from common.path_utils import PathUtils from common.msg_utils import Msg from common.sys_utils import SysUtils from common.datetime_utils import DateTime from common.errors import * # from classes.control_item import ControlItem, CtrlItmKeys class Extractor( object ): def __init__( self ): super().__init() # laod both the command info and the result info from a specific task def load( self, arg_request, arg_response ): Msg.error_trace() raise AbstractionError( "Abstract Method Error: Extractor::load(...) not implemented in descendent [%s]" % ( str( type( self )))) # publish string that is displayed in scrolling results output def report( self ): Msg.error_trace() raise AbstractionError( "Abstract Method Error: Extractor::report(...) not implemented in descendent [%s]" % ( str( type( self )))) # publish line based on desired output directives def publish( self, arg_sum_lev ): Msg.error_trace() raise AbstractionError( "Abstract Method Error: Extractor::publish(...) not implemented in descendent [%s]" % ( str( type( self )))) # returns true if extractor detects error def has_error( self ): Msg.error_trace() raise AbstractionError( "Abstract Method Error: Extractor::has_error(...) not implemented in descendent [%s]" % ( str( type( self )))) # assembles and returns error line if extractor detects error def error_msg( self ): Msg.error_trace() raise AbstractionError( "Abstract Method Error: Extractor::error_msg(...) not implemented in descendent [%s]" % ( str( type( self )))) # returns tuple # first element: 1 if successful otherwise returns 0 # second element: process message def result( self ): Msg.error_trace() raise AbstractionError( "Abstract Method Error: Extractor::result(...) not implemented in descendent [%s]" % ( str( type( self )))) ``` #### File: regression/classes/performance_summary.py ```python import re from common.path_utils import PathUtils from common.sys_utils import SysUtils from common.msg_utils import Msg from common.datetime_utils import DateTime from classes.summary import Summary, SummaryItem, SummaryGroups, SummaryLevel class PerformanceInstructionType(): Total = 0 Secondary = 1 Default = 2 performance_instruction_type_strs = [ "Total","Secondary","Default"] @classmethod def instruction_type( arg_class, arg_str ): if arg_str == "Total": return PerformanceInstructionType.Total if arg_str == "Secondary": return PerformanceInstructionType.Secondary if arg_str == "Default": return PerformanceInstructionType.Default raise Exception( "Unable to indentify the instruction type" ) class PerformanceSummaryItem( SummaryItem ): def unpack( self, arg_queue_item ): super().unpack( arg_queue_item ) # save the generation results for this task item def commit_generate( self ): self.force_result = SysUtils.ifthen( SysUtils.success( self.force_retcode ), "PASS", "FAIL" ) self.force_level = SummaryLevel.Any if SysUtils.failed( self.force_retcode ): self.force_level = SummaryLevel.Fail Msg.lout( self, "user" , "Performance Summary Item Commit Generate" ) if SysUtils.success( self.force_retcode ): Msg.info( "Instructions: %d, Default: %d, Secondary: %d, Elapsed Time: %0.5f Seconds\n\n" % ( self.total, self.default, self.secondary, self.force_end - self.force_start )) return 1 return 0 class PerformanceSummary( Summary ): def __init__( self, arg_summary_path, arg_keep ): super(). __init__( arg_summary_path, arg_keep ) self.gen_total = 0 self.gen_passed = 0 self.iss_total = 0 self.iss_passed = 0 self.task_total = 0 self.start_time = DateTime.Time() def create_summary_item( self ): return PerformanceSummaryItem( self ) def commit_item( self, arg_item ): self.task_total += 1 if (not arg_item.task_id in self.tasks): self.tasks[arg_item.task_id] = list() self.tasks[ arg_item.task_id ].append( arg_item ) self.groups.add_item( arg_item ) my_results = arg_item.commit() self.gen_total += my_results[0] self.gen_passed += my_results[1] def process_summary( self, sum_level = SummaryLevel.Fail ): my_file_name = "%sperformance_summary.log" % ( PathUtils().include_trailing_path_delimiter( self.summary_dir )) Msg.dbg( "Master Log File: %s" % ( my_file_name )) my_utcdt = DateTime.UTCNow() my_ofile = None try: # First try to open file with open( my_file_name, "w" ) as my_ofile: my_ofile.write( "Date: %s\n" % ( DateTime.DateAsStr( my_utcdt ))) my_ofile.write( "Time: %s\n" % ( DateTime.TimeAsStr( my_utcdt ))) self.process_errors( my_ofile ) my_total_count, my_total_elapsed = self.process_groups( my_ofile ) Msg.blank( "info" ) my_line = "Total Instructions Generated: %3d\n" % ( my_total_count ) my_line += "Total Elapsed Time: %0.3f\n" % ( my_total_elapsed ) my_line += "Overall Instructions per Second: %0.3f\n" % ( SysUtils.ifthen( bool( my_total_elapsed ), my_total_count / my_total_elapsed, 0 )) Msg.info( my_line ) my_ofile.write( my_line ) except Exception as arg_ex: Msg.error_trace() Msg.err( "Error Processing Summary, " + str( arg_ex ) ) finally: my_ofile.close() def process_groups( self, arg_ofile ): my_total_count = 0 my_total_elapsed = 0 my_groups = self.groups.task_groups(); # Msg.trace("PerformanceSummaryItem::process_groups") for my_group, my_items in my_groups.items(): try: my_str = "\nBegin Group: %s\n" % ( my_group ) arg_ofile.write( my_str ) Msg.blank( "info" ) Msg.info( my_str ) my_grp_count, my_grp_elapsed = self.process_group_items( arg_ofile, my_items ) my_total_count += my_grp_count my_total_elapsed += my_grp_elapsed my_line = "\nGroup Instructions: %3d\n" % ( my_grp_count ) my_line += "Group Elapsed Time: %0.3f\n" % ( my_grp_elapsed ) my_line += "Group Instructions per Second: %0.3f\n" % ( SysUtils.ifthen( bool( my_grp_elapsed ), my_grp_count / my_grp_elapsed, 0 )) my_line += "End Group: %s\n" % ( my_group ) Msg.info( my_line ) arg_ofile.write( my_line ) except Exception as arg_ex: Msg.error_trace() Msg.err( "Unable to process, Group: %s, Reason: %s" % ( my_group, type( arg_ex ))) return my_total_count, my_total_elapsed def process_group_items( self, arg_ofile, arg_items ): # Msg.trace("PerformanceSummaryItem::process_group_items") my_grp_count = 0 my_grp_elapsed = 0 try: for my_item in arg_items: my_item_elapsed = my_item.force_end - my_item.force_start my_item_count = my_item.total my_grp_elapsed += my_item_elapsed my_grp_count += my_item_count my_line = "\nTask: %s, Instructions: %d, Elapsed: %0.3f\n" % ( my_item.task_id, my_item_count, my_item_elapsed ) arg_ofile.write( my_line ) # Msg.dbg( my_line ) #end: for my_task in my_group["tasks"]: except Exception as arg_ex: Msg.error_trace() Msg.err( "Error Processing Summary, Reason: %s" % ( str( arg_ex ) )) return my_grp_count, my_grp_elapsed ``` #### File: regression/common/threads.py ```python import threading import sys import threading import sys from threading import Thread from common.sys_utils import SysUtils from common.msg_utils import Msg class HiThread( threading.Thread ): def __init__( self, arg_options ): # the HiThread has two states state 1 has no thread loop thus there is no need for control to be halted # to allow other thread processes to continue, State 2 executes a loop until the shutdown sequence is invoked # which determines whether or not the thread a) has more work to do, or b) will wait for another process to # finished. A Thread will remain in the shutdown sequence until the terminate flag is set. When the terminate # flag is set then the thread will execute the terminate sequence. my_target = SysUtils.ifthen( arg_options.get( "noloop", False ), self.run_once, self.run_loop ) super().__init__( name = arg_options.get( "name", None ), target = my_target ) Msg.dbg( "Created Thread[%s] Processing...." % ( self.name )) # useful Thread events self.on_start = arg_options.get( "on-start" , None ) self.on_execute = arg_options.get( "on-execute" , None ) self.on_done = arg_options.get( "on-done" , None ) self.on_shutdown = arg_options.get( "on-shutdown", None ) self.on_finished = arg_options.get( "on-finished", None ) # thread flags self.shutdown = False # shutdown request has been received self.finished = False # thread has completed all work and has exited # the thread heartbeat is set to write a debug message every 30 seconds if the thread # is waiting. I do not like the term blocking because waiting is a more controlled event. # The waiting thread asks for permission to procees rather than the thread that is busy having # to create a block. Blocks are notorious for causing deadlock requiring less than a graceful # shutdown self.heartbeat_rate = arg_options.get( "heartbeat-rate", 30 ) self.sleep_period = arg_options.get( "sleep-period" , 1000 ) self.current_tick = 0 # not a good idea to use daemons as a blanket rule, makes bad designs seem to function # but there are always underlying issues with these. The daemon attribute exists in the # abstract as does the handler. Setting it here will ensure the thread acts as we expect self.daemon = arg_options.get( "daemon", False ) if arg_options.get( "active", False ): self.start_thread() # perform any remaining initialization outside the thread space # using a callback handler if initialized then starts the thread def start_thread( self ): if self.on_start is not None: self.on_start( ) self.start() # waits for the thread to exit then executes a notify callback if initialized def wait_for( self ): Msg.dbg( "Before Thread[%s] Join" % ( self.name )) self.join() Msg.dbg( "After Thread[%s] Join" % ( self.name )) # thread has finishedd its work, trigger notify thread done if self.on_finished is not None: self.on_finished( ) # general thread loop def run_loop( self ): Msg.info( "Entering HIThread[%s] Loop Processing...." % ( self.name ) ) while not self.terminated(): # initialize iteration for work performed in execute Msg.dbg( "HiThread[%s]::run_loop(1)" % ( self.name ) ) if self.on_execute is not None: Msg.dbg( "HiThread[%s]::run_loop(2)" % ( self.name ) ) self.on_execute( ) # perform the iteration work Msg.dbg( "HiThread[%s]::run_loop(3)" % ( self.name ) ) self.execute() # finish work prior the next iteratation Msg.dbg( "HiThread[%s]::run_loop(4)" % ( self.name ) ) if self.on_done is not None: Msg.dbg( "HiThread[%s]::run_loop(5)" % ( self.name ) ) self.on_done( ) Msg.dbg( "HiThread[%s]::run_loop(6)" % ( self.name ) ) Msg.info( "Leaving HIThread[%s] Loop Processing...." % ( self.name ) ) # general thread execute def run_once( self ): Msg.dbg( "Entering Thread[%s] Processing...." % ( self.name )) # initialize thread for work performed in execute if self.on_execute is not None: self.on_execute( ) # perform the thread work self.execute() # perform any remaining work prior to exit thread space if self.on_done is not None: self.on_done( ) Msg.dbg( "Leaving Thread[%s] Processing...." % ( self.name )) # returns True once Thread has exited def terminated( self ): # Msg.info( "HiThread::terminated() - self.finished: %s, self.is_alive(): %s, returns: [%s]" % (str(self.finished),str(self.is_alive())),str(self.finished or ( not self.is_alive() ))) Msg.info( "HiThread[%s]::terminated() - self.finished: %s, self.is_alive(): %s" % (self.name, str(self.finished),str(self.is_alive())) ) my_retval = self.finished or ( not self.is_alive()) Msg.info( "HiThread[%s]::terminated() - returns: [%s]" % ( self.name, str( my_retval ))) return self.finished or ( not self.is_alive() ) def heartbeat( self ): # increment the heartbeat and when debug messages are enabled then a heartbeat message will be # posted every self.heartbeat-interval ticks. Whenever the heartbeat method is called the current_tick # is updated self.current_tick += 1 if not bool( self.current_tick % self.heartbeat_rate ): Msg.dbg( "HiThread[%s] Still Working" % ( self.name ) ) # the sleep in SysUtils uses milliseconds as does the rest of the computing world instead of # fractions of a second. Thus this will pause this thread for 10 seconds allowing the process # thread some processor time SysUtils.sleep(self.sleep_period) return False def trigger_shutdown( self ): Msg.dbg( "HiThread[%s]::trigger_shutdown() - enter " % ( self.name )) if self.on_shutdown is not None: self.on_shutdown(self) else: self.shutdown = True Msg.dbg( "HiThread[%s]::trigger_shutdown() - exit " % ( self.name )) def execute( self ): raise NotImplementedError( "Thread::execute() must be implemented" ) class HiOldThread( threading.Thread ): def __init__( self, arg_create_active = False ): super().__init__( name = "HiThread-01" ) # Ensure that all threads are killed when master thread is exited for any reason by marking it as a daemon self.daemon = True if arg_create_active: self.start() #pass def run( self ): pass def HeartBeat( self ): # Enable this if it's a good idea to have a periodic printing heartbeat #Msg.dbg("[Thread %s]: Heartbeat" % (self.threadName)) pass class HiEvent( threading.Event ): def __init__( self, arg_options ): super().__init__() # default to return immediately self.timeout = arg_options.get( "timeout" , None ) self.before_signal = arg_options.get( "before-sig" , None ) # use this to perform some action prior to setting event self.after_signal = arg_options.get( "after-sig" , None ) # use this to perform some action after to setting event self.before_unsignal = arg_options.get( "before-unsig" , None ) # use this to perform some action prior to unsetting event self.after_unsignal = arg_options.get( "after-unsig" , None ) # use this to perform some action after to unsetting event def Signal( self, arg_sender = None ): # perform any activities prior to notification, this could include finishing some work # that could make the system unstable. This is a callback that is part of the dictionary # used to initialize if self.before_signal is not None: self.before_signal( arg_stat ) # signal the event self.set() # perform any activities once notification has been dispatched, this can be used to notify the caller the even has # been signaled # This is a callback that is part of the dictionary used to initialize if self.after_signal is not None: self.after_signal( arg_stat ) def Unsignal( self, arg_sender = None ): # perform any activities prior to notification the event has been cleared and will block, this could include initializing to # prevent system instability. This is a callback that is part of the dictionary used to initialize the Event if self.before_unsignal is not None: self.before_unsignal( self ) self.clear( ) if self.after_unsignal is not None: self.after_unsignal( self ) def Signaled( self, arg_sender = None ): return self.isSet() def Reset( self, arg_sender = None ): self.clear() ## {{{{ TTTTTTTT OOOOOO DDDDDD OOOOOO }}}} ## {{ TTTTTTTT OOOOOOOO DDDDDDD OOOOOOOO }} ## {{ TT OO OO DD DDD OO OO }} ## {{ TT OO OO DD DD OO OO }} ## {{ TT OO OO DD DDD OO OO }} ## {{ TT OOOOOOOO DDDDDDD OOOOOOOO }} ## {{{{ TT OOOOOO DDDDDD OOOOOO }}}} ## ## GET RID OF THIS INSANITY, replace with proper thread management # This event is signalled when all the worker threads are completed. workers_done_event = HiEvent({}) # Summary thread signals master thread that it's done summary_done_event = HiEvent({}) class HiSemaphore( threading.Semaphore ): def test( self ): my_lock = threading.Lock() # class HiMutex( threading.Lock ): # def test( self ): # pass # # # class HiCriticalSection( threading.Lock ): # pass # # ``` #### File: regression/executors/generate_executor.py ```python from common.path_utils import PathUtils from common.msg_utils import Msg from common.sys_utils import SysUtils from common.errors import * from classes.control_item import ControlItem from classes.executor import * from executors.app_executor import * # tuple index for information extracted from the generation log file class GenerateResult( ProcessResult ): gen_seed = 0 gen_total = 1 gen_secondary = 2 gen_default = 3 # dictionary keys for the generate result class GenerateKeys( object ): gen_retcode = "retcode" gen_stdout = "stdout" gen_stderr = "stderr" gen_start = "start" gen_end = "end" gen_seed = "seed" gen_total = "total" gen_secondary = "secondary" gen_default = "default" gen_cmd = "command" gen_log = "log" gen_elog = "elog" gen_app = "app" gen_message = "message" # Generate Executor abstract class class GenerateExecutor( AppExecutor ): def __init__( self ): super().__init__() def extract_results( self, arg_result, arg_log, arg_elog ): Msg.user( "Suffix: %s" % ( str( self.ctrl_item.suffix )), "GENERATE") if self.ctrl_item.suffix is not None: self.rename_elfs( self.ctrl_item.suffix ) my_ret_code = int( arg_result[ GenerateResult.process_retcode ]) if SysUtils.success( my_ret_code ): # extract information from the generate log arg_elog = None my_result, my_error = self.query_logs( arg_log, arg_elog ) Msg.user( "Process: %s" % ( str( arg_result )), "GENERATE") Msg.user( "Log[%s]: %s" % ( str( arg_log ), str( my_result )), "GENERATE") self.ctrl_item.seed = my_result[ GenerateResult.gen_seed ] my_process_data = { GenerateKeys.gen_retcode : int(arg_result[ GenerateResult.process_retcode ]) , GenerateKeys.gen_stdout : str(arg_result[ GenerateResult.process_stdout ]) , GenerateKeys.gen_stderr : str(arg_result[ GenerateResult.process_stderr ]) , GenerateKeys.gen_start : str(arg_result[ GenerateResult.process_start ]) , GenerateKeys.gen_end : str(arg_result[ GenerateResult.process_end ]) , GenerateKeys.gen_seed : self.ctrl_item.seed , GenerateKeys.gen_total : my_result[ GenerateResult.gen_total ] , GenerateKeys.gen_secondary : my_result[ GenerateResult.gen_secondary] , GenerateKeys.gen_default : my_result[ GenerateResult.gen_default ] } if my_error is not None: my_process_data[ GenerateKeys.gen_message ] = my_error return my_process_data def rename_elfs( self, arg_suffix ): # before proceeding it is necessary to remove any existing renamed files to eliminate the possibility of causing # a chain and messing up the results for my_mask in ["*.ELF","*.S","*.img"]: my_match_files = PathUtils.list_files( my_mask ) Msg.lout( my_match_files, "user", "Simulate File List" ) for my_src_file in my_match_files: Msg.user( "Match File: %s, Suffix: %s" % ( str( my_src_file ), str( arg_suffix )), "MATCH") if SysUtils.found( my_src_file.find( "_%s_force" % ( str( arg_suffix )))): PathUtils.remove( my_src_file ) continue # Now rename all the files that are found for my_mask in ["*.ELF","*.S","*.img"]: my_match_files = PathUtils.list_files( my_mask ) for my_src_file in my_match_files: my_tgt_file= my_src_file.replace( "_force", "_%s_force" % ( str( arg_suffix ))) PathUtils.rename( my_src_file, my_tgt_file ) # raise Exception("Type %s test case for base test: %s not found." % (arg_extension, arg_test_name)) return True ``` #### File: regression/launchers/std_launcher.py ```python from common.sys_utils import SysUtils from common.path_utils import PathUtils from common.msg_utils import Msg from common.datetime_utils import DateTime from common.errors import * from classes.launcher import Launcher class StdLauncher( Launcher ): def __init__( self, aSequenceRunner ): super().__init__( aSequenceRunner ) self.process = None # def __del__(self): # Msg.user( "Launcher Id 5: %s" % ( str( id( self ))), "STD-LAUNCHER" ) # Msg.trace( ) # Msg.error_trace( ) # def launch( self ): Msg.user( "Timeout: %s" % ( str( self.timeout )), "STD-LAUNCHER" ) self.process_cmd, self.process_log = self.build() Msg.user( "Process Cmd: %s, Process Log: %s" % ( str( self.process_cmd ), str( self.process_log )), "STD-LAUNCHER" ) Msg.user( "Launcher Id 1: %s" % ( str( id( self ))), "STD-LAUNCHER" ) # enable timeout but only trigger shutdown of spawned process allow that process to kill the child processes. self.process_result = SysUtils.exec_process( self.process_cmd, self.process_log, self.process_log, self.timeout, False, self.set_process ) Msg.user( "Launcher Id 2: %s" % ( str( id( self ))), "STD-LAUNCHER" ) Msg.user( "Process Results: %s" % ( str( self.process_result )), "STD-LAUNCHER" ) def validate( self ): pass def set_process( self, arg_process ): Msg.user( "Setting Process: %s" % ( str( arg_process )), "STD-LAUNCHER" ) Msg.user( "Launcher Id 3: %s" % ( str( id( self ))), "STD-LAUNCHER" ) self.process = arg_process Msg.user( "Launcher Id 4: %s" % ( str( id( self ))), "STD-LAUNCHER" ) Msg.user( "Saved Process: %s" % ( str( self.process )), "STD-LAUNCHER" ) def terminate( self ): Msg.user( "Terminating Process: %s" % ( str( self.process )), "STD-LAUNCHER" ) if self.process is not None: self.process.kill() def status( self ): pass ``` #### File: utils/regression/quick_summary.py ```python import os import os.path import sys, traceback import datetime from shared.msg_utils import Msg from shared.path_utils import PathUtils class SummaryLevel: Silent = 0 Fail = 1 Any = 2 class QuickSummary( object ) : def __init__( self, arg_summary_dir, arg_num_instr ): self.summary_dir = arg_summary_dir self.results = {} self.total_count = 0 self.failed_count = 0 self.curr_test_id = None self.curr_test_log = None self.sim_cmd = None self.num_instr = arg_num_instr #self.test_path = arg_summary_path def summary_directory( self ): return self.summary_dir def set_current_test( self, arg_test_id, arg_test_log, arg_sim_cmd ): Msg.dbg( "RegressionSummary:: set_current_test( %s, %s, %s " % ( str( arg_test_id ), str( arg_test_log ), str( arg_sim_cmd))) self.curr_test_id = arg_test_id self.curr_test_log = arg_test_log self.sim_cmd = arg_sim_cmd def add_result( self, arg_ret_code ): my_tup = None self.total_count += 1 Msg.dbg( "Adding Simulation results, \"%s\"" % ( str( self.sim_cmd ))) if arg_ret_code != 0: # only need to create a tuple with the return code Msg.dbg( "Simulation Failed, return code: " + str( arg_ret_code )) self.failed_count += 1 #my_tup = ( 1, arg_ret_code, self.curr_test_log, None, "FAIL", SysUtils.ifthen( self.out_dir is None, self.summary_dir, self.out_dir )) my_tup = ( 1, arg_ret_code, self.curr_test_log, None, "FAIL" ) else: my_lines = None try: Msg.dbg( "Attempting to Open: " + self.curr_test_log ) with open( self.curr_test_log, "r" ) as my_log: Msg.dbg( "File Open: " + self.curr_test_log ) my_lines = my_log.readlines() Msg.dbg( "Line %d: %s" % ( len( my_lines ), my_lines[-1])) my_lastline = my_lines[-1] my_segs = my_lastline.split() my_num_instr = int( my_segs[0] ) if my_num_instr < self.num_instr: # Simulation worked return code = 0 and the instruction limit was not reached Msg.dbg( "Simulation Success, return code = 0 and the instruction limit was not reached" ) # my_tup = ( 0, arg_ret_code, self.curr_test_log, None, "PASS", SysUtils.ifthen( self.out_dir is None, self.summary_dir, self.out_dir ) ) my_tup = ( 0, arg_ret_code, self.curr_test_log, None, "PASS" ) else: # Msg.dbg( "Simulation Failed, Instruction Limit Reached ") self.failed_count += 1 #my_tup = ( 2, arg_ret_code, self.curr_test_log, "Instruction Limit Reached: Failed at " + str( self.num_instr ) + " Instructions ", "FAIL", SysUtils.ifthen( self.out_dir is None, self.summary_dir, self.out_dir ) ) my_tup = ( 2, arg_ret_code, self.curr_test_log, "Instruction Limit Reached: Failed at " + str( self.num_instr ) + " Instructions ", "FAIL" ) except: if Msg._debug(): traceback.print_exc( file=sys.stdout ) my_tup = ( arg_ret_code, "Unsupported", "Unable to Extract Test Failure Information", "FAIL", " " ) finally: my_log.close() self.results[ self.curr_test_id ] = my_tup Msg.dbg( "Results Tuple: " + str( my_tup )) self.curr_test_id = None self.curr_test_log = None #deprocated use view for new work def summarize( self, sum_level = None ): self.view( sum_level ) def view( self, sum_level = SummaryLevel.Fail ): # Instruction Over Flow Failure Count # print( "Regression::view() " ) from datetime import date, time, datetime, timedelta, timezone, tzinfo my_utcdt = datetime.utcnow() my_file_name = PathUtils().include_trailing_path_delimiter( self.summary_dir ) \ + "regression_summary_" \ + str( my_utcdt.year ) \ + str( my_utcdt.month ) \ + str( my_utcdt.day ) \ + "-" \ + str( my_utcdt.hour ) \ + str( my_utcdt.minute ) \ + str( my_utcdt.second ) \ + ".log" print ( my_file_name ) try: my_ofile = None myLines = [] # First try to open file with open( my_file_name, "w" ) as my_ofile: my_ofile.write( "Date: " + str( my_utcdt.date()) + "\n" ) my_ofile.write( "Time: " + str( my_utcdt.time()) + "\n" ) print( "\n\n" ) for my_key, my_val in self.results.items(): # print( str( my_val )) my_line = my_val[4] + " - Test Name: " + my_key + ", Return Code: " + str( my_val[1] ) + ", Log File: " + my_val[2] if my_val[3]: my_line += my_val[3] my_ofile.write( my_line + "\n" ) if sum_level > 2: print( my_line ) elif sum_level == 1 and my_val[0] in [2]: print( my_line ) elif sum_level == 2 and my_val[0] in [1, 2]: print( my_line ) my_ofile.write( "Total Simulations: " + str( self.total_count ) + "\n" ) my_ofile.write( "Total Fails: " + str( self.failed_count ) + "\n" ) if self.total_count > 0: my_ofile.write( "Success Rate: " + "{0:.2f}".format( 100 * ( self.total_count - self.failed_count ) / self.total_count ) + "%\n" ) else: my_ofile.write( "Success Rate: 0.00%\n" ) my_ofile.write( "Test Suite Complete\n" ) print( "Total Simulations: " + str( self.total_count ) + "\n") print( "Total Fails: " + str( self.failed_count )+ "\n") if self.total_count > 0: print( "Success Rate: " + "{0:.2f}".format( 100 * ( self.total_count - self.failed_count ) / self.total_count ) + "%" ) else: print( "Success Rate: 0.00%" ) print( "Test Suite Complete\n" ) except Exception as arg_ex: if Msg._debug(): traceback.print_exception( "Exception", arg_ex, None ) print( "Error Processing Summary, " + str( arg_ex )) finally: pass ``` #### File: tests/smoke_check/test_event.py ```python from unit_test import UnitTest from shared.kernel_objs import HiEvent from shared.path_utils import PathUtils from shared.sys_utils import SysUtils from shared.msg_utils import Msg from shared.errors import * from test_classes import * # "pre-sig" - callback triggered before state is changed to signaled # "post-sig" - callback triggered after state is changed to signaled # "pre-unsig" - callback triggered before state is changed to unsignaled # "post-unsig" - callback triggered after state is changed to unsignaled class EventWrapper( object ): def __init__( self, arg_name ): self.name = arg_name self.timeout = 1000 # milliseconds self.event = HiEvent( { "name" : arg_name , "timeout" : self.timeout , "pre-sig" : self.on_before_signal , "post-sig" : self.on_after_signal , "pre-unsig" : self.on_before_unsignal , "post-unsig": self.on_after_unsignal } ) self.event.Unsignal() # confirm that the event is in an unsignaled stat def on_before_signal( self, arg_sender ): if type( arg_sender ) is not HiEvent: raise EIncompatableTypeError( "Event Notification Contained Incompatable Type" ) Msg.info( "Event[%s] is about to be signaled ... " % ( arg_sender.name )) def on_after_signal( self, arg_sender ): if type( arg_sender ) is not HiEvent: raise EIncompatableTypeError( "Event Notification Contained Incompatable Type" ) Msg.info( "Event[%s] has been signaled ... " % ( arg_sender.name )) def on_before_unsignal( self, arg_sender ): if type( arg_sender ) is not HiEvent: raise EIncompatableTypeError( "Event Notification Contained Incompatable Type" ) Msg.info( "Event[%s] is about to be unsignaled ... " % ( arg_sender.name )) def on_after_unsignal( self, arg_sender ): if type( arg_sender ) is not HiEvent: raise EIncompatableTypeError( "Event Notification Contained Incompatable Type" ) Msg.info( "Event[%s] has been unsignaled ... " % ( arg_sender.name )) # HiEvent methods # Signal() - set the state of the event to signaled # Unsignal() - set the state of the event to unsignaled # Signaled() - check to see if Event is signaled # WaitFor() - Pause thread until this returns. Returns True if Signaled, returns False is a timeout was # specified and the time specified elapsed # # HiEvent event callback procss # "pre-sig" - callback triggered before state is changed to signaled # "post-sig" - callback triggered after state is changed to signaled # "pre-unsig" - callback triggered before state is changed to unsignaled # "post-unsig" - callback triggered after state is changed to unsignaled # # HiEvent default option # self.timeout = arg_options.get( "timeout", None ) class ThreadWrapper( object ): def __init__( self ): self.start_event = EventWrapper( "start-event" ).event self.execute_event = EventWrapper( "execute-event" ).event self.done_event = EventWrapper( "done-event" ).event self.finished_event = EventWrapper( "finished-event" ).event self.init_thread() def init_thread( self ): Msg.info( "HiEvent: Creating Test Thread ..." ) myThreadProcs = { "on-start" : self.thread_start # start thread sequence (outside thread space) , "on-execute" : self.thread_execute # thread termination handler (inside thread space) , "on-done" : self.thread_done # thread terminated handler (outside thread space) , "on-finished": self.thread_finished # thread before finished handler (inside thread space) } self.thread = ThreadFactory( "EventTestThread", True, myThreadProcs ) def run_thread( self ): Msg.info( "UnitTest_HiEvent >> Initializing Thread ... " ) self.thread.start_thread() # wait for thread to terminate self.thread.wait_for() Msg.info( "UnitTest_HiEvent >> Thread Completed ... " ) def thread_start( self ): Msg.info( "UnitTest_NoLoopThread >> Started .... " ) if self.start_event is not None: self.start_event.Signaled() self.start_event.Signal() self.start_event.Signaled( True ) def thread_execute( self ): Msg.info( "UnitTest_NoLoopThread << Executing .... " ) if self.execute_event is not None: self.execute_event.Signaled() self.execute_event.Signal() self.execute_event.Signaled( True ) def thread_done ( self ): Msg.info( "UnitTest_NoLoopThread << Execute Done .... " ) if self.done_event is not None: self.done_event.Signaled() self.done_event.Signal() self.done_event.Signaled( True ) def thread_finished( self ): Msg.info( "UnitTest_NoLoopThread >> Exiting .... " ) if self.finished_event is not None: self.finished_event.Signaled() self.finished_event.Signal() self.finished_event.Signaled( True ) class UnitTest_HiEvent( UnitTest ): # need a seperate def run_test( self ): Msg.info( "HiEvent: Start Unit Test ..." ) my_wrapper = ThreadWrapper() my_wrapper.run_thread() def process_result( self ): Msg.info( "HiThread(NoLoop): Process Test Results... " ) def process_result( self ): Msg.info( "HiEvent: Process Test Result ..." ) ``` #### File: utils/shared/file_controller.py ```python import sys from shared.controller import Controller from shared.task_controller import TaskController from shared.summary_core import SummaryErrorQueueItem from shared.control_item import ControlItem, CtrlItmKeys, ControlItemType from shared.path_utils import PathUtils from shared.sys_utils import SysUtils from shared.msg_utils import Msg # from shared.errors import EInvalidTypeError class FileController(Controller): def __init__( self ): super().__init__( ) # Msg.dbg( "FileController::__init__( )" ) def load(self, arg_ctrl_item ): super().load( arg_ctrl_item ) # Msg.dbg( "FileController::load()" ) self.parent_fctrl = self.ctrl_item.file_path() # Msg.dbg( "File Path: %s" % ( self.parent_fctrl )) #my_content = open( self.parent_fctrl ).read() # Msg.dbg( "\n" + my_content ) try: my_content = open( self.parent_fctrl ).read() except Exception as arg_ex: Msg.err( "Message: %s, Control File Path: %s" % ( str( arg_ex ), self.parent_fctrl )) my_err_queue_item = SummaryErrorQueueItem( { "error" : arg_ex , "message": "Control File Not Found ..." , "path" : self.ctrl_item.file_path() , "type" : str( type( arg_ex )) } ) self.ctrl_item.summary().queue.enqueue( my_err_queue_item ) return False finally: pass try: my_glb, my_loc = SysUtils.exec_content( my_content ) except Exception as arg_ex: my_exc_type, my_exc_val, my_exc_tb = sys.exc_info() my_ex = arg_ex Msg.err( "Message: %s, Control File Path: %s" % ( str( arg_ex ), self.parent_fctrl)) Msg.blank() my_err_queue_item = SummaryErrorQueueItem( { "error" : arg_ex , "message": "Control File not processed..." , "path" : self.ctrl_item.file_path() , "type" : str( my_exc_type ) } ) self.ctrl_item.summary().queue.enqueue( my_err_queue_item ) return False finally: pass self.fcontrol = my_loc["control_items"] return True def process(self): # Msg.dbg( "FileController::process()" ) # Msg.dbg( "FileController Contents: \n\"" + str( self.fcontrol ) + "\n" ) try: # Msg.lout( my_options["work-dir"], MsgLevel.dbg, "Work Director Stack" ) # a control file may iterate through to completion according to the amount set in num_runs for my_ndx in range( self.ctrl_item.iterations ): # my_usr_lbl = Msg.set_label( "user", "FILE-ITERATION" ) # Msg.user( "Executing %d of %d Iterations, Control File: %s" % ( my_ndx + 1, self.ctrl_item.iterations, self.ctrl_item.file_path() )) # Msg.set_label( "user", my_usr_lbl ) try: my_item_ndx = 0 # each item in the control set exists as a dictionary for my_item_dict in self.fcontrol: try: my_item_ndx += 1 my_usr_lbl = Msg.set_label( "user", "CTRL-FILE" ) Msg.blank( "user" ) Msg.user( "Processing Line: %s" % (str( my_item_dict ))) my_ctrl_item = ControlItem() my_ctrl_item.parent_fctrl = self.parent_fctrl my_ctrl_item.fctrl_item = str( my_item_dict ) my_item_dict[CtrlItmKeys.parent_vals], my_parent_data = self.ctrl_item.values() Msg.lout( my_parent_data, "user", "Result Parent Data" ) Msg.lout( my_item_dict , "user", "Result Item Dictionary" ) Msg.set_label( "user", my_usr_lbl ) # Msg.user( "Processing Updated Line: %s" % (str( my_item_dict )), "CTRL-FILE" ) # Msg.user( str( my_parent_data.data() ), "CTRL-FILE" ) my_ctrl_item.load( my_item_dict, my_parent_data ) my_item_type = my_ctrl_item.item_type() my_controller = None if my_item_type == ControlItemType.TaskItem: # Msg.dbg( "\nControl Item is a Control Task ..." ) my_controller = TaskController() elif my_item_type == ControlItemType.FileItem: # Msg.dbg( "\nControl Item is a Control File ..." ) my_controller = FileController() else: raise Exception( "\"" + my_fctrl_name + "\": Unknown Item Type ...\nUnable to Process ... " ) # Whew! everything is set up and ready to rock and roll, let the dogs out # my_controller.load( my_ctrl_item ) # my_controller.process() if my_controller.load( my_ctrl_item ): my_controller.process() # my_controller.load( my_ctrl_item ) # my_controller.process() # Msg.dbg( "%s: Controller Creation Complete" % ( my_ctrl_item.fctrl_name )) except TypeError as arg_ex: Msg.err( str( arg_ex )) my_err_queue_item = SummaryErrorQueueItem( { "error" : "Item #%s Contains an Invalid Type" % ( str( my_item_ndx )) , "message": arg_ex , "path" : self.ctrl_item.file_path() , "type" : str( type( arg_ex )) } ) self.ctrl_item.summary().queue.enqueue( my_err_queue_item ) Msg.blank() except FileNotFoundError as arg_ex: Msg.err( str( arg_ex )) my_err_queue_item = SummaryErrorQueueItem( { "error" : arg_ex , "message": "Control File Not Found ..." , "path" : self.ctrl_item.file_path() , "type" : str( type( arg_ex )) } ) self.ctrl_item.summary().queue.enqueue( my_err_queue_item ) Msg.blank() except Exception as arg_ex: Msg.error_trace( str(arg_ex) ) Msg.err( str(arg_ex)) Msg.blank() finally: my_controller = None my_item_dict = None except Exception as arg_ex: Msg.error_trace( "[ERROR] - " + str(arg_ex) ) Msg.err( str(arg_ex)) finally: pass finally: pass # Msg.dbg() return True ``` #### File: utils/shared/threads.py ```python import threading import sys class HiThread( threading.Thread ): def __init__( self, arg_create_active = False ): super().__init__( name = "HiThread-01" ) # Ensure that all threads are killed when master thread is exited for any reason by marking it as a daemon self.daemon = True if arg_create_active: self.start() #pass def run( self ): pass def HeartBeat( self ): # Enable this if it's a good idea to have a periodic printing heartbeat #Msg.dbg("[Thread %s]: Heartbeat" % (self.threadName)) pass # def do_onsig( ... ): # #do stuff after signales # # def do_beforeunsig( ... ): # #do stuff after signales # # def do_onpreunsig( ... ): # #do stuff before unsignaling # my_event = HiEvent( {"timeout": 5000, "post-sig":do_onsig, "pre-unsig": do_beforeunsig } ) # these can also be created afterwards class HiEvent( threading.Event ): def __init__( self, arg_options ): super().__init__() # default to return immediately self.timeout = arg_options.get( "timeout" , None ) self.pre_signal = arg_options.get( "pre-sig" , None ) self.post_signal = arg_options.get( "post-sig" , None ) self.pre_unsignal = arg_options.get( "pre-unsig" , None ) self.post_unsignal = arg_options.get( "post-unsig", None ) def Signal( self, arg_stat = None ): # perform any activities prior to notification, this could include finishing some work # that could make the system unstable. This is a callback that is part of the dictionary # used to initialize if self.pre_signal is not None: self.pre_signal( arg_stat ) # signal the event self.set() # perform any activities once notification has been dispatched, this can be used to notify the caller the even has # been signaled # This is a callback that is part of the dictionary used to initialize if self.post_signal is not None: self.post_signal( arg_stat ) def Unsignal( self, arg_stat = None ): # perform any activities prior to notification the event has been cleared and will block, this could include initializing to # prevent system instability. This is a callback that is part of the dictionary used to initialize the Event if self.pre_unsignal is not None: self.pre_unsignal( arg_stat ) self.clear( ) if self.post_unsignal is not None: self.post_unsignal( arg_stat ) # This event is signalled when all the worker threads are completed. workers_done_event = HiEvent({}) # Summary thread signals master thread that it's done summary_done_event = HiEvent({}) class HiSemaphore( threading.Semaphore ): def test( self ): my_lock = threading.Lock() # class HiMutex( threading.Lock ): # def test( self ): # pass # # # class HiCriticalSection( threading.Lock ): # pass # # ```
{ "source": "jeremybergen/csci000-astudent", "score": 4 }
#### File: egypt/test/egyptunittest.py ```python import unittest import sys sys.path.append("..") # append parent folder into the system path import egypt class Test(unittest.TestCase): # optional - executes before runing each test function def setUp(self): print('Running unittest on egypt module') self.input1 = [8, 6, 10] self.input2 = [5, 4, 3] self.input3 = [5, 12, 13] self.input4 = [1, 2, 3] self.input5 = [2000, 100, 30000] def testAnswer1(self): expect = "right" result = egypt.answer(self.input1) self.assertEqual(expect, result) def testAnswer2(self): expect = "right" result = egypt.answer(self.input2) self.assertEqual(expect, result) def testAnswer3(self): expect = "right" result = egypt.answer(self.input3) self.assertEqual(expect, result) def testAnswer4(self): expect = "wrong" result = egypt.answer(self.input4) self.assertEqual(expect, result) def testAnswer5(self): expect = "wrong" result = egypt.answer(self.input5) self.assertEqual(expect, result) def tearDown(self): # optional - executes after each test function print('Done running unittest') if __name__ == "__main__": unittest.main() ```
{ "source": "JeremyBernier/airflow", "score": 2 }
#### File: airflow/example_dags/example_papermill_operator.py ```python import os from datetime import timedelta import scrapbook as sb import airflow from airflow.lineage import AUTO from airflow.models import DAG from airflow.operators.papermill_operator import PapermillOperator from airflow.operators.python_operator import PythonOperator def check_notebook(inlets, execution_date): """ Verify the message in the notebook """ notebook = sb.read_notebook(inlets[0].url) message = notebook.scraps['message'] print(f"Message in notebook {message} for {execution_date}") if message.data != f"Ran from Airflow at {execution_date}!": return False return True args = { 'owner': 'airflow', 'start_date': airflow.utils.dates.days_ago(2) } dag = DAG( dag_id='example_papermill_operator', default_args=args, schedule_interval='0 0 * * *', dagrun_timeout=timedelta(minutes=60)) run_this = PapermillOperator( task_id="run_example_notebook", dag=dag, input_nb=os.path.join(os.path.dirname(os.path.realpath(__file__)), "input_notebook.ipynb"), output_nb="/tmp/out-{{ execution_date }}.ipynb", parameters={"msgs": "Ran from Airflow at {{ execution_date }}!"} ) check_output = PythonOperator( task_id='check_out', python_callable=check_notebook, dag=dag, inlets=AUTO) check_output.set_upstream(run_this) if __name__ == "__main__": dag.cli() ```
{ "source": "JeremyBloom/Optimization-Examples", "score": 3 }
#### File: JeremyBloom/Optimization-Examples/Tableau.py ```python __author__ = 'bloomj' from OPLCollector import * from Optimizer import * try: from pyspark import SparkConf, SparkContext from pyspark.sql import SparkSession, Row, functions from pyspark.sql.types import StructType, StructField, StringType, IntegerType, DoubleType except ImportError as e: print ("Error importing Spark Modules", e) sys.exit(1) class Tableau: """ Demonstrates equivalence between OPL and SQL using Spark and the Warehousing example. Demonstrates equivalence between OPL and SQL using Spark and the Warehousing example. The context and theory of this class are presented in an IBM DSX sample notebook entitled Optimization Modeling and Relational Data (which uses the code from this file). """ def controller(self): # Create the warehousing data model networkDataModel = ADMBuilder() \ .addSchema("warehouses", buildSchema( ("location", StringType()), ("fixedCost", DoubleType()), ("capacityCost", DoubleType()))) \ .addSchema("routes", buildSchema( ("location", StringType()), ("store", StringType()), ("shippingCost", DoubleType()))) \ .addSchema("stores", buildSchema( ("storeId", StringType()))) \ .addSchema("mapCoordinates", buildSchema( ("location", StringType()), ("lon", DoubleType()), ("lat", DoubleType()))) \ .build() demandDataModel = ADMBuilder() \ .addSchema("demands", buildSchema( ("store", StringType()), ("scenarioId", StringType()), ("amount", DoubleType()))) \ .addSchema("scenarios", buildSchema( ("id", StringType()), ("totalDemand", DoubleType()), ("periods", DoubleType()))) \ .build() warehousingResultDataModel = ADMBuilder() \ .addSchema("objectives", buildSchema( ("problem", StringType()), ("dExpr", StringType()), ("scenarioId", StringType()), ("iteration", IntegerType()), ("value", DoubleType()))) \ .addSchema("openWarehouses", buildSchema( ("location", StringType()), ("scenarioId", StringType()), ("iteration", IntegerType()), ("open", IntegerType()), ("capacity", DoubleType()))) \ .addSchema("shipments", buildSchema( ("location", StringType()), ("store", StringType()), ("scenarioId", StringType()), ("iteration", IntegerType()), ("amount", DoubleType()))) \ .build() # Note: the "MapCoordinates table and the "scenarioId" and "iteration" fields are not used in this notebook but are included for use in other contexts. URL credentials_1= {} networkDataSource = getFromObjectStorage(credentials_1, filename="Warehousing-data.json") demandDataSource = getFromObjectStorage(credentials_1, filename="Warehousing-sales_data-nominal_scenario.json") warehousingData = OPLCollector("warehousingData", networkDataModel).setJsonSource(networkDataSource).fromJSON() warehousingData.addTables(OPLCollector("demandData", demandDataModel).setJsonSource(demandDataSource).fromJSON()) warehousingData.displayTable("warehouses", sys.stdout) #Create the tableau data model tableauData= OPLCollector("tableauData") tableauADMBuilder= tableauData.buildADM() tableauADMBuilder.addSchema("integerColumns", buildSchema( ("variable", StringType()), ("lower", IntegerType()), ("upper", IntegerType()), ("value", IntegerType()))) tableauADMBuilder.addSchema("booleanColumns", SchemaBuilder()\ .copyFields(tableauADMBuilder.referenceSchema("integerColumns"))\ .buildSchema()) tableauADMBuilder.addSchema("floatColumns", buildSchema( ("variable", StringType()), ("lower", DoubleType()), ("upper", DoubleType()), ("value", DoubleType()))) tableauADMBuilder.addSchema("rows", buildSchema( ("cnstraint", StringType()), ("sense", StringType()), ("rhs", DoubleType()))) tableauADMBuilder.addSchema("entries", buildSchema( ("cnstraint", StringType()), ("variable", StringType()), ("coefficient", DoubleType()))) tableauADMBuilder.addSchema("objectives", buildSchema( ("name", StringType()), ("sense", StringType()), ("value", DoubleType()))) tableauDataModel = tableauADMBuilder.build() # Create the data model to transform the warehousing data into the tableau tableauTransformations = OPLCollector("tableauTransformations") tableauTransformationsADMBuilder = tableauTransformations.buildADM() tableauTransformationsADMBuilder.addSchema("columns_open", SchemaBuilder()\ .copyFields(tableauData.getADM().get("booleanColumns"))\ .addField("location", StringType())\ .buildSchema()) tableauTransformationsADMBuilder.addSchema("columns_capacity", SchemaBuilder()\ .copyFields(tableauData.getADM().get("floatColumns"))\ .addField("location", StringType())\ .buildSchema()) tableauTransformationsADMBuilder.addSchema("columns_ship", SchemaBuilder()\ .copyFields(tableauData.getADM().get("floatColumns")) \ .addField("location", StringType())\ .addField("store", StringType())\ .buildSchema()) tableauTransformationsADMBuilder.addSchema("rows_ctCapacity", SchemaBuilder()\ .copyFields(tableauData.getADM().get("rows"))\ .buildSchema()) tableauTransformationsADMBuilder.addSchema("rows_ctDemand", SchemaBuilder()\ .copyFields(tableauData.getADM().get("rows"))\ .buildSchema()) tableauTransformationsADMBuilder.addSchema("rows_ctSupply", SchemaBuilder()\ .copyFields(tableauData.getADM().get("rows"))\ .buildSchema()) tableauTransformationsADMBuilder.addSchema("rows_dexpr", SchemaBuilder()\ .copyFields(tableauData.getADM().get("rows"))\ .buildSchema()) tableauTransformationsADMBuilder.addSchema("entries_ctCapacity_capacity", SchemaBuilder()\ .copyFields(tableauData.getADM().get("entries"))\ .buildSchema()) tableauTransformationsADMBuilder.addSchema("entries_ctCapacity_ship", SchemaBuilder()\ .copyFields(tableauData.getADM().get("entries"))\ .buildSchema()) tableauTransformationsADMBuilder.addSchema("entries_ctDemand_ship", SchemaBuilder()\ .copyFields(tableauData.getADM().get("entries"))\ .buildSchema()) tableauTransformationsADMBuilder.addSchema("entries_ctSupply_open", SchemaBuilder()\ .copyFields(tableauData.getADM().get("entries"))\ .buildSchema()) tableauTransformationsADMBuilder.addSchema("entries_ctSupply_ship", SchemaBuilder()\ .copyFields(tableauData.getADM().get("entries"))\ .buildSchema()) tableauTransformationsADMBuilder.addSchema("entries_dexpr_open", SchemaBuilder()\ .copyFields(tableauData.getADM().get("entries"))\ .buildSchema()) tableauTransformationsADMBuilder.addSchema("entries_dexpr_capacity", SchemaBuilder()\ .copyFields(tableauData.getADM().get("entries"))\ .buildSchema()) tableauTransformationsADMBuilder.addSchema("entries_dexpr_ship", SchemaBuilder()\ .copyFields(tableauData.getADM().get("entries"))\ .buildSchema()) tableauTransformationsADMBuilder.build() tableauTransformer = tableauTransformations.buildData() # Create input dataframes warehouses = warehousingData.getTable("warehouses") stores = warehousingData.getTable("stores") routes = warehousingData.getTable("routes") demands = warehousingData.getTable("demands") scenarios = warehousingData.getTable("scenarios") scenarioId = scenarios.first()["id"] # Encode the columns tableauTransformer.addTable("columns_open", warehouses.select("location")\ .withColumn("variable", functions.concat(functions.lit("open_"), warehouses["location"]))\ .withColumn("upper", functions.lit(1))\ .withColumn("lower", functions.lit(0))\ .withColumn("value", functions.lit(0))) tableauTransformer.addTable("columns_capacity", warehouses.select("location")\ .withColumn("variable", functions.concat(functions.lit("capacity_"), warehouses["location"]))\ .withColumn("upper", functions.lit(1.0e20))\ .withColumn("lower", functions.lit(0.0))\ .withColumn("value", functions.lit(0.0))) tableauTransformer.addTable("columns_ship", routes.select("location", "store")\ .withColumn("variable", functions.concat(functions.lit("ship_"), routes["location"], functions.lit("_"), routes["store"]))\ .withColumn("upper", functions.lit(1.0))\ .withColumn("lower", functions.lit(0.0))\ .withColumn("value", functions.lit(0.0))) # Encode the Constraints tableauTransformer.addTable("rows_ctCapacity", warehouses.select("location")\ .withColumn("cnstraint", functions.concat(functions.lit("ctCapacity_"), warehouses["location"]))\ .withColumn("sense", functions.lit("GE"))\ .withColumn("rhs", functions.lit(0.0))) tableauTransformer.addTable("rows_ctDemand", stores.select("storeId")\ .withColumn("cnstraint", functions.concat(functions.lit("ctDemand_"), stores["storeId"]))\ .withColumn("sense", functions.lit("GE"))\ .withColumn("rhs", functions.lit(1.0))\ .withColumnRenamed("storeId", "store")) tableauTransformer.addTable("rows_ctSupply", routes.select("location", "store")\ .withColumn("cnstraint", functions.concat(functions.lit("ctSupply_"), routes["location"], functions.lit("_"), routes["store"]))\ .withColumn("sense", functions.lit("GE"))\ .withColumn("rhs", functions.lit(0.0))) tableauTransformer.addTable("rows_dexpr", SPARK_SESSION.createDataFrame( [ Row(cnstraint= "capitalCost", sense= "dexpr", rhs= 0.0), Row(cnstraint= "operatingCost", sense= "dexpr", rhs= 0.0), Row(cnstraint= "totalCost", sense= "dexpr", rhs= 0.0)], tableauTransformations.getADM().get("rows_dexpr"))\ .select("cnstraint", "sense", "rhs")) #orders the columns properly # Reshape the Coefficient Data into the Tableau tableauTransformer.addTable( "entries_ctCapacity_capacity", tableauTransformer.referenceTable("rows_ctCapacity")\ .join(tableauTransformer.referenceTable("columns_capacity"), "location")\ .select("cnstraint", "variable")\ .withColumn("coefficient", functions.lit(1.0))) # demand at the store at the end of each route demandOnRoute = routes.join( demands.where(demands["scenarioId"] == functions.lit(scenarioId)), "store")\ .select("location", "store", "amount").withColumnRenamed("amount", "demand") tableauTransformer.addTable( "entries_ctCapacity_ship", tableauTransformer.referenceTable("rows_ctCapacity")\ .join(tableauTransformer.referenceTable("columns_ship"), "location")\ .join(demandOnRoute, ["location", "store"])\ .withColumn("coefficient", -demandOnRoute["demand"])\ .select("cnstraint", "variable", "coefficient")) tableauTransformer.addTable( "entries_ctDemand_ship", tableauTransformer.referenceTable("rows_ctDemand")\ .join(tableauTransformer.referenceTable("columns_ship"), "store")\ .select("cnstraint", "variable")\ .withColumn("coefficient", functions.lit(1.0))) tableauTransformer.addTable( "entries_ctSupply_open", tableauTransformer.referenceTable("rows_ctSupply")\ .join(tableauTransformer.referenceTable("columns_open"), "location")\ .select("cnstraint", "variable")\ .withColumn("coefficient", functions.lit(1.0))) tableauTransformer.addTable( "entries_ctSupply_ship", tableauTransformer.referenceTable("rows_ctSupply")\ .join(tableauTransformer.referenceTable("columns_ship"), ["location", "store"])\ .select("cnstraint", "variable")\ .withColumn("coefficient", functions.lit(-1.0))) rows_dexpr = tableauTransformer.referenceTable("rows_dexpr") tableauTransformer.addTable( "entries_dexpr_open", (rows_dexpr.where((rows_dexpr["cnstraint"] == functions.lit("capitalCost"))\ | (rows_dexpr["cnstraint"] == functions.lit("totalCost"))))\ .join(tableauTransformer.referenceTable("columns_open")\ .join(warehouses, "location"), how="cross")\ .select("cnstraint", "variable", "fixedCost")\ .withColumnRenamed("fixedCost", "coefficient")) tableauTransformer.addTable( "entries_dexpr_capacity", (rows_dexpr.where((rows_dexpr["cnstraint"] == functions.lit("capitalCost"))\ | (rows_dexpr["cnstraint"] == functions.lit("totalCost"))))\ .join(tableauTransformer.referenceTable("columns_capacity")\ .join(warehouses, "location"), how="cross")\ .select("cnstraint", "variable", "capacityCost")\ .withColumnRenamed("capacityCost", "coefficient")) tableauTransformer.addTable( "entries_dexpr_ship", (rows_dexpr.where((rows_dexpr["cnstraint"] == functions.lit("operatingCost"))\ | (rows_dexpr["cnstraint"] == functions.lit("totalCost"))))\ .join( (tableauTransformer.referenceTable("columns_ship")\ .join((routes.join(demandOnRoute, ["location", "store"])\ .withColumn("coefficient", demandOnRoute["demand"] * routes["shippingCost"])), ["location", "store"])), how="cross")\ .select("cnstraint", "variable", "coefficient")) tableauTransformer.build() # Build the input data for the tableau optimization problem # Drop the instance-specific keys (location and store), which are not supported in the tableau model tableauData.buildData()\ .addTable("booleanColumns", tableauTransformations.getTable("columns_open").drop("location"))\ .addTable("floatColumns", tableauTransformations.getTable("columns_capacity").drop("location")\ .union(tableauTransformations.getTable("columns_ship").drop("location").drop("store")))\ .addEmptyTable("integerColumns")\ .addTable("rows", tableauTransformations.getTable("rows_ctCapacity").drop("location")\ .union(tableauTransformations.getTable("rows_ctDemand").drop("store"))\ .union(tableauTransformations.getTable("rows_ctSupply").drop("location").drop("store"))\ .union(tableauTransformations.getTable("rows_dexpr")))\ .addTable("entries", tableauTransformations.getTable("entries_ctSupply_open")\ .union(tableauTransformations.getTable("entries_ctSupply_ship"))\ .union(tableauTransformations.getTable("entries_ctCapacity_capacity"))\ .union(tableauTransformations.getTable("entries_ctCapacity_ship"))\ .union(tableauTransformations.getTable("entries_ctDemand_ship"))\ .union(tableauTransformations.getTable("entries_dexpr_open"))\ .union(tableauTransformations.getTable("entries_dexpr_capacity"))\ .union(tableauTransformations.getTable("entries_dexpr_ship")))\ .addTable("objectives", SPARK_SESSION.createDataFrame( [Row(name= "totalCost", sense= "minimize", value= 0.0)], tableauData.getADM().get("objectives")) .select("name", "sense", "value"))\ .build() # Replace with actual items TableauDotMod = None url = None key = None tableau_data_model, tableau_inputs, tableau_optimization_problem, tableau_outputs= None tableauProblem = Optimizer("TableauProblem", credentials={"url": url, "key": key})\ .setOPLModel("TableauProblem.mod", modelText=[tableau_data_model, tableau_inputs, tableau_optimization_problem, tableau_outputs])\ .setResultDataModel(ADMBuilder()\ .addSchema("booleanDecisions", tableauData.getSchema("booleanColumns"))\ .addSchema("integerDecisions", tableauData.getSchema("integerColumns"))\ .addSchema("floatDecisions", tableauData.getSchema("floatColumns"))\ .addSchema("optimalObjectives", tableauData.getSchema("objectives"))\ .build()) tableauResult = tableauProblem.solve(tableauData) tableauProblem.getSolveStatus() # Recover the solution warehousingResult = OPLCollector("warehousingResult", warehousingResultDataModel) resultsBuilder = warehousingResult.buildData() resultsBuilder.addTable("objectives", tableauResult.getTable("optimalObjectives").select("name", "value")\ .withColumnRenamed("name", "dExpr")\ .withColumn("problem", functions.lit("warehousing"))\ .withColumn("scenarioId", functions.lit(scenarioId))\ .withColumn("iteration", functions.lit(0))) resultsBuilder.addTable("openWarehouses", (tableauResult.getTable("booleanDecisions").select("variable", "value").withColumnRenamed("value", "open")\ .join(tableauTransformations.getTable("columns_open"), "variable")).drop("variable")\ .join( tableauResult.getTable("floatDecisions").select("variable", "value").withColumnRenamed("value", "capacity")\ .join(tableauTransformations.getTable("columns_capacity"), "variable").drop("variable"), "location") .select("location", "open", "capacity")\ .withColumn("scenarioId", functions.lit(scenarioId))\ .withColumn("iteration", functions.lit(0))) floatDecisions = tableauResult.getTable("floatDecisions").select("variable", "value") resultsBuilder.addTable("shipments", floatDecisions\ .join(tableauTransformations.getTable("columns_ship"), "variable").drop("variable")\ .join(demandOnRoute, ["location", "store"])\ .withColumn("amount", demandOnRoute["demand"]*(floatDecisions["value"]))\ .select("location", "store", "amount")\ .withColumn("scenarioId", functions.lit(scenarioId))\ .withColumn("iteration", functions.lit(0))) resultsBuilder.build() warehousingResult.displayTable("objectives") warehousingResult.displayTable("openWarehouses") # to see the lengthy shipments table, uncomment the next line # warehousingResult.displayTable("shipments") # end controller # end class Tableau ```
{ "source": "JeremyBloom/Optimization-OPLInterface", "score": 3 }
#### File: JeremyBloom/Optimization-OPLInterface/OPLCollector.py ```python __author__ = 'bloomj' ''' Created on Feb 8, 2017 @author: bloomj ''' import sys import os import json import requests try: from pyspark import SparkConf, SparkContext from pyspark.sql import SparkSession, Row, functions from pyspark.sql.types import StructType, StructField, StringType, IntegerType, DoubleType except ImportError as e: print ("Error importing Spark Modules", e) sys.exit(1) SPARK_CONTEXT = SparkContext(conf=SparkConf().setAppName("OPL").setMaster("local[4]")) #SQL_CONTEXT = sqlContext # sqlContext is predefined SPARK_SESSION = SparkSession.builder.config("spark.sql.crossJoin.enabled", "true").getOrCreate() class OPLCollector(object): ''' Represents an OPL data model in Spark. Note: Use of this class does not depend on OPL, and in particular, it can be used with the DOcplex Python API. An application data model (ADM) consists of a set of tables (OPL Tuplesets), each with its own schema. An ADM is represented by a dictionary in which the keys are the table names and the values are the table schemas. A builder is provided to create the ADM. The OPLCollector holds the actual data in Spark Datasets. There are several ways to populate the data. - Spark SQL operations can transform tables into other tables. - A builder is provided when the data is generated programmatically. - JSON deserialization and serialization are provided when data is exchanged with external applications or stores. The design of the OPLCollector class aims to reduce the amount of data that must be manipulated outside of Spark. Where possible, data is streamed among applications without creating auxiliary in-memory structures or files. The design of OPLCollector also aims to minimize the amount of custom coding required to build an application. Collectors are configured by specifying their schemas through builders rather than by extending with subclasses. ''' def __init__(self, collectorName, applicationDataModel={}, sparkData={}): ''' Creates a new OPLCollector instance. :param collectorName: the name of this collector. :type collectorName: String :param applicationDataModel: holds the table schemas for this collector. Each schema is a Spark StructType. Note that each collector has one and only one application data model. :type applicationDataModel: dict<String, StructType> :param sparkData: holds the actual data tables of this collector as a set of Spark datasets. :type sparkData: dict<String, Dataframe> ''' self.name = collectorName self.applicationDataModel = applicationDataModel self.sparkData = sparkData self.size = {name: None for name in applicationDataModel.keys()} self.jsonDestination = None self.jsonSource = None def copy(self, name): """ Creates a new OPLCollector instance with copies of the application data model and Spark datasets of this collector. The ADM copy is immutable. The Spark datasets themselves are immutable, but the copy supports the addTable, addData, and replaceTable methods. Does not copy the JSONSource or JSONDestination fields. :param name of the new collector :param tableNames tables to be copied (all tables in this collector, if absent) :return a new OPLCollector instance """ result = OPLCollector(name, self.applicationDataModel, self.sparkData.copy()) result.size = self.size.copy() return result def copy(self, name, *tables): result = OPLCollector(name) admBuilder = ADMBuilder(result); for table in tables: admBuilder.addSchema(table, self.getSchema(table)) admBuilder.build() dataBuilder = DataBuilder(result.applicationDataModel, collector=result) for table in tables: dataBuilder.addTable(table, self.getTable(table)) result.size[table] = self.size[table] dataBuilder.build(); return result def getName(self): """ Returns the name of this collector. :return collector name as a string """ return self.name def addTables(self, other): """ Adds a set of tables of data from another collector. An individual table can be set only once. :param other: another collector :type other: OPLCollector :raise ValueError: if the other ADM is empty or if a table name duplicates a name already present in this collector. """ if not other.applicationDataModel: # is empty raise ValueError("empty collector") for tableName in other.applicationDataModel.viewkeys(): if tableName in self.applicationDataModel: raise ValueError("table " + tableName + " has already been defined") self.applicationDataModel.update(other.applicationDataModel) self.sparkData.update(other.sparkData) self.size.update(other.size) return self def replaceTable(self, tableName, table, size=None): """ Replaces an individual table of data. :param tableName: :type String :param table: :type Spark Dataframe :param size: number of rows in table (None if omitted) :return: this collector :raise ValueError: if the table is not already defined in the ADM """ if tableName not in self.applicationDataModel: raise ValueError("table " + tableName + "has not been defined") self.sparkData[tableName] = table if size is not None: self.size[tableName] = size else: self.size[tableName] = table.count() return None def addData(self, tableName, table, size=None): """ Adds data to an existing table. Use when a table has several input sources. Does not deduplicate the data (i.e. allows duplicate rows). :param tableName: :type String :param table: :type Spark Dataframe :param size: number of rows in table (None if omitted) :return: this collector :raise ValueError: if the table is not already defined in the ADM """ if tableName in self.applicationDataModel: raise ValueError("table " + tableName + " has already been defined") self.sparkData[tableName] = self.sparkData[tableName].union(table) count = (self.size[tableName] + size) if (self.size[tableName] is not None and size is not None) else None self.size[tableName] = count return self #NEW def getADM(self): """ Exposes the application data model for this OPLCollector. The ADM is represented by a map in which the keys are the table names and the values are the table schemas held in Spark StructType objects. :return: the application data model :rtype: dict<String, StructType> """ return self.applicationDataModel def setADM(self, applicationDataModel): """ Sets the application data model for this OPLCollector. The ADM cannot be changed once set. """ if (self.applicationDataModel): # is not empty or None raise ValueError("ADM has already been defined") self.applicationDataModel = applicationDataModel return self def getTable(self, tableName): return self.sparkData[tableName] def getSchema(self, tableName): return self.applicationDataModel[tableName] def selectSchemas(self, *tableNames): """ Returns a subset of the application data model. """ return {tableName: self.applicationDataModel[tableName] for tableName in tableNames} def selectTables(self, collectorName, *tableNames): """ Creates a new OPLCollector from a subset of the tables in this collector. The tables in the new collector are copies of the tables in the original. """ adm = self.selectSchemas(tableNames) data = {tableName: SPARK_SESSION.createDataFrame(self.sparkData[tableName], self.getSchema(tableName)) for tableName in tableNames} size = {tableName: self.size[tableName] for tableName in tableNames} return OPLCollector(collectorName, adm, data, size) def getSize(self, tableName): """ Returns the number of rows in a table. Note: the Spark data set count method is fairly expensive, so it is used only if there is no other way to count the number of rows. It is best to count the rows as the table is being deserialized, as is done in the fromJSON method. Once counted, the number is stored in the size map for future use. """ if tableName not in self.size: raise ValueError("size not defined for table " + tableName) if self.size[tableName] is None: self.size[tableName] = self.sparkData[tableName].count() return self.size[tableName] def buildADM(self): """ Creates the application data model for this collector """ if (self.applicationDataModel): # is not empty raise ValueError("application data model has already been defined") return ADMBuilder(self) def buildData(self): """ Creates a builder for the data tables for this collector. Uses this collector's application data model. :return: a new DataBuilder instance :raise ValueError: if the application data model has not been defined or if data tables have already been loaded """ if not self.applicationDataModel: # is empty raise ValueError("application data model has not been defined") if self.sparkData: # is not empty raise ValueError("data tables have already been loaded") return DataBuilder(self.applicationDataModel, collector=self) def setJsonSource(self, source): """ Sets the source for the JSON text that populates the collector. There is a one-to-one correspondence between an OPLCollector instance and its JSON representation; that is, the JSON source file must fully include all the data tables to be populated in the collector instance. Thus, it makes no sense to have more than on JSON source for a collector or to change JSON sources. :param source: a file-like object containing the JSON text. :return: this collector instance :raise ValueError: if JSON source has already been set """ if self.jsonSource is not None: raise ValueError("JSON source has already been set") self.jsonSource = source return self #REVISED def fromJSON(self): """ Provides a means to create a collector from JSON. You must first set the destination (an output stream, file, url, or string) where the JSON will be read. Then you call the deserializer fromJSON method. The application data model for the collector must already have been created. There is a one-to-one correspondence between an OPLCollector instance and its JSON representation; that is, the JSON source file must fully include all the data tables to be populated in the collector instance. Methods are provided to merge two collectors with separate JSON sources (addTables), add a data set to a collector (addTable), and to add data from a data set to an existing table in a collector. :return: this collector with its data tables filled :raise ValueError: if the data tables have already been loaded """ if self.sparkData: # is not empty raise ValueError("data tables have already been loaded") # data: dict {tableName_0: [{fieldName_0: fieldValue_0, ...}, ...], ...} data = json.load(self.jsonSource) builder = self.buildData() for tableName, tableData in data.viewitems(): count = len(tableData) tableRows = (Row(**fields) for fields in tableData) builder = builder.addTable(tableName, SPARK_SESSION.createDataFrame(tableRows, self.getADM()[tableName]), count) # would like to count the rows as they are read instead, # but don't see how builder.build() return self def setJsonDestination(self, destination): """ Sets the destination for the JSON serialization. Replaces an existing destination if one has been set previously. :param destination: an output string, stream, file, or URL :return: this collector """ self.jsonDestination = destination return self #REVISED def toJSON(self): """ Provides a means to write the application data as JSON. You must first set the destination (an output stream, file, url, or string) where the JSON will be written. Then you call the serializer toJSON method. """ self.jsonDestination.write("{\n") # start collector object firstTable = True for tableName in self.sparkData: if not firstTable: self.jsonDestination.write(',\n') else: firstTable = False self.jsonDestination.write('"' + tableName + '" : [\n') # start table list firstRow = True for row in self.sparkData[tableName].toJSON().collect():# better to use toLocalIterator() but it gives a timeout error if not firstRow: self.jsonDestination.write(",\n") else: firstRow= False self.jsonDestination.write(row) # write row object self.jsonDestination.write("\n]") # end table list self.jsonDestination.write("\n}") # end collector object #REVISED def displayTable(self, tableName, out=sys.stdout): """ Prints the contents of a table. :param tableName: String :param out: a file or other print destination where the table will be written """ out.write("collector: " + self.getName() + "\n") out.write("table: " + tableName + "\n") self.getTable(tableName).show(self.getSize(tableName), truncate=False) # REVISED def display(self, out=sys.stdout): """ Prints the contents of all tables in this collector. :param out: a file or other print destination where the tables will be written """ for tableName in self.sparkData: self.displayTable(tableName, out=out) # end class OPLCollector def getFromObjectStorage(credentials, container=None, filename=None): """ Returns a stream containing a file's content from Bluemix Object Storage. :param credentials a dict generated by the Insert to Code service of the host Notebook :param container the name of the container as specified in the credentials (defaults to the credentials entry) :param filename the name of the file to be accessed (note: if there is more than one file in the container, you might prefer to enter the names directly; otherwise, defaults to the credentials entry) """ if not container: container = credentials['container'] if not filename: filename = credentials['filename'] url1 = ''.join([credentials['auth_url'], '/v3/auth/tokens']) data = {'auth': {'identity': {'methods': ['password'], 'password': { 'user': {'name': credentials['username'], 'domain': {'id': credentials['domain_id']}, 'password': credentials['password']}}}}} headers1 = {'Content-Type': 'application/json'} resp1 = requests.post(url=url1, data=json.dumps(data), headers=headers1) resp1_body = resp1.json() for e1 in resp1_body['token']['catalog']: if (e1['type'] == 'object-store'): for e2 in e1['endpoints']: if (e2['interface'] == 'public' and e2['region'] == credentials['region']): url2 = ''.join([e2['url'], '/', container, '/', filename]) s_subject_token = resp1.headers['x-subject-token'] headers2 = {'X-Auth-Token': s_subject_token, 'accept': 'application/json'} resp2 = requests.get(url=url2, headers=headers2, stream=True) return resp2.raw class DataBuilder(object): """ Builds the Spark datasets to hold the application data. Used when the data are created programmatically. """ def __init__(self, applicationDataModel, collector=None): """ Creates a builder for loading the Spark datasets. :param applicationDataModel :param collector: if present, loads the data tables and their sizes directly into the collector; if not present or null, the Spark data dict is returned directly :return: a new DataBuilder instance :raise ValueError: if the application data model has not been defined """ if not applicationDataModel: # is empty raise ValueError("application data model has not been defined") self.applicationDataModel = applicationDataModel self.collector = collector self.result = {} self.length = {} def addTable(self, tableName, data, size=None): """ Get the external data and create the corresponding application dataset. Assumes that the schema of this table is already present in the ADM. :param data: a Spark dataset :param size: length number of rows in table (null if omitted) :return this builder instance :raise ValueError: if the table is not included in the ADM or if the table has already been loaded """ if tableName not in self.applicationDataModel: raise ValueError("table " + tableName + " has not been defined") if tableName in self.result: raise ValueError("table " + tableName + " has already been loaded") self.result[tableName] = data self.length[tableName] = size return self def copyTable(self, tableName, data, size=None): return self.addTable(tableName, SPARK_SESSION.createDataFrame(data.rdd()), size); def addEmptyTable(self, tableName): return self.addTable(tableName, SPARK_SESSION.createDataFrame(SPARK_CONTEXT.emptyRDD(), self.applicationDataModel[tableName]), 0) #NEW def referenceTable(self, tableName): """ Enables referring to a table in the collector under construction to create a new table. Can be used in SQL statements. :param tableName: :type tableName: String :return: :rtype: """ if tableName not in self.result: raise ValueError(tableName + " does not exist") return self.result.get(tableName) def build(self): """ Completes building the Spark data. Registers the application data sets as Spark SQL tables. If an OPLCollector has been supplied in the constructor, loads the data tables and their sizes into it. :return a dict of table names to Spark data sets containing the application data :raise ValueError: if a table in the ADM has no associated data or if data tables have already been loaded into the collector """ for tableName in self.applicationDataModel: if tableName not in self.result: raise ValueError("table " + tableName + "has no data") for tableName in self.result: self.result[tableName].createOrReplaceTempView(tableName) if self.collector is not None: if self.collector.sparkData: # is not empty raise ValueError("data tables have already been loaded") self.collector.sparkData = self.result self.collector.size = self.length return self.result def retrieveSize(self): """ :return the size dict created by this builder Note: calling this method before the build method could return an inaccurate result """ return self.length # end class DataBuilder class ADMBuilder(object): """ Builds an Application Data Model that associates a set of Spark Datasets with their schemas. Usage: adm= ADMBuilder()\ .addSchema("warehouse", buildSchema( ("location", StringType()), ("capacity", DoubleType()))\ .addSchema("route", buildSchema( ("from", StringType()), ("to", StringType()), ("capacity", DoubleType()))\ .build(); """ def __init__(self, collector=None): """ Creates a new builder. :param collector if present, loads the application data model directly into the collector; if not present or null, the ADM map is returned directly """ self.collector = collector self.result = {} def addSchema(self, tableName, tupleSchema): """ Adds a new table schema to the ADM. :param tupleSchema can be built with the buildSchema function :return this builder :raise ValueError: if a schema for tableName has already been defined """ if tableName in self.result: raise ValueError("tuple schema " + tableName + " has already been defined") self.result[tableName] = tupleSchema return self #NEW def referenceSchema(self, tableName): """ Enables referring to a schema in the ADM under construction to create a new schema. :param tableName :return the schema """ if tableName not in self.result: raise ValueError("tuple schema " + tableName + " does not exist") return self.result[tableName] def build(self): """ Completes building the application data model. If an OPLCollector has been supplied in the constructor, loads the ADM into it. :return the ADM :raise ValueError: if the ADM for the collector has already been defined """ if self.collector is not None: if self.collector.applicationDataModel: # is not empty raise ValueError("application data model has already been defined") self.collector.applicationDataModel = self.result return self.result # end class ADMBuilder def buildSchema(*fields): """ Creates a schema from a list field tuples The resulting schema is an instance of a Spark StructType. :param fields: :type fields: tuple<String, DataType> :return: :rtype: StructType """ schema = StructType() for fieldName, fieldType in fields: schema = schema.add(fieldName, fieldType, False, None) return schema # end buildSchema #NEW class SchemaBuilder: """ Builds a tuple schema. Strictly speaking, this builder is not needed since the StructType class provides the necessary functionality. However, it is provided as a convenience. Only the following data types are supported in the schema: String, integer, float (represented as Double), and 1-dimensional arrays of integer or float. The array types are supported only for internal use and cannot be serialized to or deserialized from JSON. Note, the fields in the resulting schema are sorted in dictionary order by name to insure correct matching with data elements. Usage: StructType warehouseSchema= (new OPLTuple.SchemaBuilder()).addField("location", DataTypes.StringType).addField("capacity", DataTypes.DoubleType).buildSchema(); The fields of the resulting StructType are not nullable and have no metadata. """ def __init__(self): # fields is a dictionary<String, StructField> self.fields= {} def addField(self, fieldName, fieldType): if self.fields.has_key(fieldName): raise ValueError("field " + fieldName + " has already been set") self.fields[fieldName]= StructField(fieldName, fieldType, False) return self; def addFields(self, *fields): """ Adds fields from a list field tuples :param fields: tuple<String, DataType> :return: StructType """ for field in fields: fieldName, fieldType= field self.addField(fieldName, fieldType) return self def copyField(self, otherSchema, fieldName): """ Copies fields from another schema :param otherSchema: StructType :param fieldName: String :return: StructType """ if self.fields.has_key(fieldName): raise ValueError("field " + fieldName + " has already been set") self.fields[fieldName]= otherSchema[fieldName] return self def copyFields(self, otherSchema): for fieldName in otherSchema.names: self.copyField(otherSchema, fieldName) return self def buildSchema(self): return StructType(self.fields.values()) # end class SchemaBuilder ```
{ "source": "jeremybmerrill/bigappleserialbus", "score": 3 }
#### File: bigappleserialbus/bigappleserialbus/bus.py ```python __author__ = '<NAME>' __email__ = '<EMAIL>' __license__ = 'Apache' __version__ = '0.1' from datetime import datetime, timedelta # import time from trajectory import Trajectory from itertools import tee, izip from collections import OrderedDict from sqlalchemy import Column, ForeignKey, Integer, String, Text from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import orm # from pylab import plot,show from numpy import vstack,array from numpy.random import rand from scipy.cluster.vq import kmeans,vq import kmodes from sklearn.neighbors import NearestNeighbors import logging #magically the same as the one in bigappleserialbus.py default_bus_speed = 4 # m/s ~= 8 miles per hour #sometimes the bus, at the terminal where it starts, reports itself as, e.g. 0.2 meters along the route. #this is used to decide that, yes, it's still at the start of the route. max_gps_error = 20 #meters # any segment longer than this disqualifies the trajectory, since something went wonky here MAX_SEGMENT_TIME = 300 MIN_SEGMENT_TIME = 20 class Bus: def __init__(self, number, journey, route_name, end_stop_id, session): self.number = number self.time_location_pairs = [] self.stop_time_pairs = OrderedDict() #store time along the route self.start_time = None self.stops = [] self.stop_distances = {} self.previous_bus_positions = [] self.db_session = session self.route_name = route_name self.end_stop_id = end_stop_id self.red_light_time = None self.green_light_time = None self.seconds_away = None self.error = None self.first_projected_arrival = datetime.min self.first_projected_arrival_speeds = 0 self.set_trajectory_points(journey) def __repr__(self): seconds_away_str = '' if self.seconds_away : seconds_away_str = " %(sec)i s/a" % { 'sec': self.seconds_away } if self.first_projected_arrival and self.seconds_away: seconds_away_str += ", FP: %(fp)s" % {'fp': str(self.first_projected_arrival)[11:19]} return "<Bus #%(number)s%(full_data)s %(route)s/%(stop)s%(sec)s>" % { 'number': self.number, 'full_data': '' if self.has_full_data else '*', 'route': self.route_name, 'stop': self.end_stop_id, 'sec': seconds_away_str } def add_observed_position(self, journey, recorded_at_str): """tk""" bus_position = { 'recorded_at': datetime.strptime(recorded_at_str[:19], "%Y-%m-%dT%H:%M:%S"), #recorded_at 'next_stop': journey["OnwardCalls"]["OnwardCall"][0]["StopPointRef"], #next_stop_ref 'next_stop_name': journey["OnwardCalls"]["OnwardCall"][0]["StopPointName"], 'distance_along_route': journey["MonitoredCall"]["Extensions"]["Distances"]["CallDistanceAlongRoute"] - journey["MonitoredCall"]["Extensions"]["Distances"]["DistanceFromCall"], 'distance_to_end': journey["MonitoredCall"]["Extensions"]["Distances"]["DistanceFromCall"], #distance_from_call 'distance_to_next_stop': journey["OnwardCalls"]["OnwardCall"][0]["Extensions"]["Distances"]["DistanceFromCall"], 'is_at_stop': journey["OnwardCalls"]["OnwardCall"][0]["Extensions"]["Distances"]["PresentableDistance"] == "at stop", } self._add_observed_position(bus_position) def _add_observed_position(self, bus_position): """From a bus_position, object, update the bus's internal representation of its location and previous trajectory.""" bus_position['is_underway'] = bus_position['next_stop'] in self.stops and self.stops.index(bus_position['next_stop']) >= 0 #legacy crap, for speed stuff if not (self.time_location_pairs and self.time_location_pairs[0][0] == bus_position['recorded_at']): self.time_location_pairs.insert(0, [bus_position['recorded_at'], bus_position['distance_to_end']]) if not bus_position['is_underway']: return; if not self.previous_bus_positions: self.previous_bus_positions.append(bus_position) return previous_bus_position = self.previous_bus_positions[-1] self.previous_bus_positions.append(bus_position) # if this bus_position hasn't been updated since the last check, skip it. if previous_bus_position['recorded_at'] == bus_position['recorded_at']: return # if the bus hasn't moved (i.e. the current next stop has already been visited) if self.stop_time_pairs and self.stop_time_pairs[bus_position['next_stop']]: return # as soon as the bus starts moving away from its start point. # (Don't count as its start_time time it spends going the opposite direction) if not self.start_time and bus_position['is_underway']: self.start_time = bus_position['recorded_at'] #if we've passed the next stop (i.e. the first key with None as its value), interpolate its value #TODO: test this real good. for missed_stop in self.stops[:self.stops.index(bus_position['next_stop'])]: if self.stop_time_pairs[missed_stop] is None: distance_traveled = previous_bus_position['distance_to_end'] - bus_position['distance_to_end'] time_elapsed = bus_position['recorded_at'] - previous_bus_position['recorded_at'] assert time_elapsed.seconds > 0 print("%(bus_name)s add_observed_position interpolated; next stop: %(stop_ref)s, so prev_stop: %(missed)s @ %(missed_dist)s away" % {'bus_name': self.number, 'stop_ref': bus_position['next_stop'], 'missed': missed_stop, 'missed_dist': self.stop_distances[self.stops[-1]] - self.stop_distances[missed_stop]}) # print("distance: prev: %(prev_loc)fm, this: %(this_loc)fm; prev_dist: %(prev_dist)f; curtime: %(currec)s, prev: %(prevrec)s" % # {'prev_loc': previous_bus_position['distance_to_end'], 'this_loc': bus_position['distance_to_end'], # 'prev_dist': previous_bus_position['distance_to_next_stop'], 'prevrec':previous_bus_position['recorded_at'], 'currec': bus_position['recorded_at']}) # explanation of what's going on here # # bust_pos-----S------S-----bus_pos # 0sec 100 sec # 0m 150m 320m 600m # assume a constant speed # 100 sec here is time_elapsed.seconds # 600m is distance_traveled # 150m is (for first stop) self.stop_distances[missed_stop] - previous_bus_position['distance_along_route'] distance_to_missed_stop = int(self.stop_distances[missed_stop] - previous_bus_position['distance_along_route']) if distance_to_missed_stop < 0: print(self.number, missed_stop, bus_position['next_stop'], self.stop_distances[missed_stop], previous_bus_position['distance_along_route']) assert(distance_to_missed_stop >= 0) time_to_missed_stop = int(time_elapsed.seconds * (float(distance_to_missed_stop) / distance_traveled) ) if not time_to_missed_stop >= 0: logging.debug("time_to_missed_stop < 0: " + str(time_to_missed_stop) + " (" + str(time_elapsed.seconds) + " * " + str(distance_to_missed_stop) + " / " + str(distance_traveled) + ")") assert(time_to_missed_stop >= 0) print("prev/curr dist: %(prev_dist)f/%(curr_dist)f, time elapsed: %(time_elapsed)i, time to stop: %(time_to)i" % {'prev_dist': previous_bus_position['distance_to_end'], 'curr_dist': bus_position['distance_to_end'], 'time_elapsed': time_elapsed.seconds, 'time_to': time_to_missed_stop}) interpolated_prev_stop_arrival_time = timedelta(seconds=time_to_missed_stop) + previous_bus_position['recorded_at'] self.stop_time_pairs[missed_stop] = interpolated_prev_stop_arrival_time #if we're at a stop, add it to the stop_time_pairs # (being at_stop and needing to interpolate the previous stop are not mutually exclusive.) if self.stops.index(bus_position['next_stop']) > 0 and bus_position['is_at_stop']: self.stop_time_pairs[bus_position['next_stop']] = bus_position['recorded_at'] # print("%(bus_name)s add_observed_position at stop" % {'bus_name': self.number}) # Buses often lay over at the first stop, so we record the *last* time it as at the stop. first_stop = self.stops[0] if self.stops.index(bus_position['next_stop']) == 1 and self.stop_time_pairs[first_stop] is None: self.stop_time_pairs[first_stop] = previous_bus_position['recorded_at'] # print("%(bus_name)s add_observed_position at stop 1" % {'bus_name': self.number}) print(self.number + str(self.stop_time_pairs)) print(self.number + " stop_time_pairs at " + str(bus_position['next_stop']) + " set to " + str(self.stop_time_pairs[bus_position['next_stop']])) # print the progress so far. # print(self.number + ": ") # print([(stop_ref, self.stop_time_pairs[stop_ref].strftime("%H:%M:%S")) if self.stop_time_pairs[stop_ref] else (stop_ref,) for stop_ref in self.stops ]) # print('') def fill_in_last_stop(self, recorded_at_str): """Fill in the last element in the stop_time_pairs. If the bus doesn't stop at the last stop (i.e. the one the user selected as their "home" stop), (or if the bus stopped, but not when we checked for it), the bus will be ignored and add_observed_position won't be called, and then the final member of stop_time_pairs won't get set. Then we won't be able to save the bus as a trajectory. This method fixes the last element in this circumstance. We don't have a "journey" in that case. """ # if a bus stops appearing the API responses, but never got any values filled in # (e.g. because it ran a route in the other direction than what we're following, then left service) # don't try to "interpolate" its entire trajectory if(False not in [i == None for i in self.stop_time_pairs.values()]): print(self.number + " didn't fill in last stop") return print(self.number + " filling in last stop") bus_position = { 'recorded_at': datetime.strptime(recorded_at_str[:19], "%Y-%m-%dT%H:%M:%S"), #recorded_at 'next_stop': self.stops[-1], 'distance_to_end': 0.0, 'distance_along_route': self.stop_distances[self.stops[-1]], 'distance_to_next_stop': 0.0, 'is_at_stop': True, } self._add_observed_position(bus_position) # # if the only None in stop_time_pairs is at the end (for the last stop) # ordered_times = [self.stop_time_pairs[stop] for stop in self.stops] # if None in ordered_times and ordered_times.index(None) == (len(self.stop_time_pairs)-1): # #if we've passed the final stop stop, fill in its value with now # self.stop_time_pairs[self.stops[-1]] = recorded_at # this just fills in the keys to self.stop_time_pairs and members of self.stops # called only on init. def set_trajectory_points(self, journey): starting_distance_along_route = journey["OnwardCalls"]["OnwardCall"][0]["Extensions"]["Distances"]["CallDistanceAlongRoute"] if starting_distance_along_route < max_gps_error: # print("%(bus_name)s at start: (%(dist)f m away)" % {'bus_name': self.number, 'dist': starting_distance_along_route} ) self.has_full_data = True else: print("%(bus_name)s added mid-route: (%(dist)f m along route)" % {'bus_name': self.number, 'dist': starting_distance_along_route} ) self.has_full_data = False for index, onward_call in enumerate(journey["OnwardCalls"]["OnwardCall"]): stop_ref = onward_call["StopPointRef"] distance_along_route = onward_call["Extensions"]["Distances"]["CallDistanceAlongRoute"] if stop_ref not in self.stops: # i = stop_ref #IntermediateStop(self.route_name, stop_ref, onward_call["StopPointName"]) self.stops.append(stop_ref) self.stop_distances[stop_ref] = distance_along_route self.stop_time_pairs[stop_ref] = None assert index == 0 or distance_along_route >= self.stop_distances[self.stops[index-1]] #distances should increase, ensuring the stops are in order if index == 0: self.stop_time_pairs[stop_ref] = self.start_time if stop_ref == journey["MonitoredCall"]["StopPointRef"]: break # called when we're done with the bus (i.e. it's passed the stop we're interested in) def convert_to_trajectory(self, route_name, stop_id): # print("%(bus_name)s converting to trajectory" % {'bus_name': self.number}) segment_intervals = self.segment_intervals() if None in segment_intervals: # not ready to be converted to trajectory; because a stop doesn't have time data. print("%(bus_name)s trajectory conversion failed 1: %(segs)s " %{'bus_name': self.number, 'segs': segment_intervals}) return None if not self.has_full_data: print("%(bus_name)s trajectory conversion failed 2" % {'bus_name': self.number}) return None # print("%(bus_name)s converted to trajectory with segment_intervals: " % {'bus_name': self.number}) # print(segment_intervals) traj = Trajectory(route_name, stop_id, self.start_time) traj.set_segment_intervals(segment_intervals) traj.green_light_time = self.green_light_time traj.red_light_time = self.red_light_time traj.error = self.error return traj def segment_intervals(self): if not self.stop_time_pairs: return None times = [] segment_intervals = [] for stop in self.stops: times.append(self.stop_time_pairs[stop]) for time1, time2 in pairwise(times): if time1 is not None and time2 is not None: segment_intervals.append((time2 - time1).seconds) else: segment_intervals.append(None) return segment_intervals def find_similar_trajectories(self): trajs = self.db_session.query(Trajectory.start_time, Trajectory.segment0,Trajectory.segment1,Trajectory.segment2,Trajectory.segment3,Trajectory.segment4, Trajectory.segment5,Trajectory.segment6,Trajectory.segment7,Trajectory.segment8,Trajectory.segment9,Trajectory.segment10, Trajectory.segment11,Trajectory.segment12,Trajectory.segment13,Trajectory.segment14,Trajectory.segment15, Trajectory.segment16,Trajectory.segment17,Trajectory.segment18,Trajectory.segment19,Trajectory.segment20, Trajectory.segment21,Trajectory.segment22,Trajectory.segment23,Trajectory.segment24,Trajectory.segment25, Trajectory.segment26,Trajectory.segment27,Trajectory.segment28,Trajectory.segment29,Trajectory.segment30, Trajectory.segment31,Trajectory.segment32,Trajectory.segment33,Trajectory.segment34,Trajectory.segment35, Trajectory.segment36,Trajectory.segment37,Trajectory.segment38,Trajectory.segment39).filter(Trajectory.route_name==self.route_name).filter(Trajectory.end_stop_id == self.end_stop_id) trajs = [traj for traj in trajs if not any(map(lambda x: x != None and (x > MAX_SEGMENT_TIME or x < MIN_SEGMENT_TIME), traj[1:])) ] # TODO: before filtering based on similarity by segments, filter by time. similar_trajectories_by_time = self.filter_by_time(trajs) similar_trajectories_by_time = [traj[1:] for traj in similar_trajectories_by_time] #remove the time item. if not similar_trajectories_by_time: return {'similar': [], 'seconds_away': -1} # this "backup" method was in use until 1/15/15 (Next 19 lines) # backoff: if there's tons of trajectories, make a maximum of N clusters (max_clusters) # if N clusters would make "my" cluster contain M trajectories and M < minimum_similar_trajectories # then try again with N_2 as N_1 / 2 # # How did I compute max_clusters? # count of time_periods * count of weather variables * weekday_types * 4 # time_periods = early-morning-rush, late-morning-rush, late-morning, early-afternoon, mid-afternoon, early-evening-rush, late-evening-rush, late-evening, overnight # weather_variables: hot, cold, rainy, snowy # weekday_types: weekday, weekend # max_clusters = 288 # minimum_similar_trajectories = 5 # similar_trajectories = self.filter_by_segment_intervals(similar_trajectories_by_time, max_clusters) # clusters_cnt = max_clusters # while clusters_cnt > 1 and len(similar_trajectories) < minimum_similar_trajectories and len(similar_trajectories) > 0: # # logging.debug(' '.join(map(str, ["backing off, with cluster count", clusters_cnt, "too few similar trajectories", len(similar_trajectories), "from",len(similar_trajectories_by_time), "total"]))) # clusters_cnt = clusters_cnt / 2 # similar_trajectories = self.filter_by_segment_intervals(similar_trajectories_by_time, clusters_cnt) similar_trajectories = self.filter_by_segment_intervals(similar_trajectories_by_time, 144) if not similar_trajectories: return {'similar': [], 'seconds_away': -1} segment_intervals = self.segment_intervals() last_defined_segment_index = segment_intervals.index(None) if None in segment_intervals else len(segment_intervals) # average time-to-home-stop of the similar trajectories remaining_times_on_similar_trajectories = [sum(traj[last_defined_segment_index:]) for traj in similar_trajectories] # two methods of determining the remaining time from the similar trajectories # average the remaining times seconds_away = sum(remaining_times_on_similar_trajectories) / len(similar_trajectories) # sum the medians for each remaining segment # seconds_away = sum([median(list(x)) for x in zip(*[traj[last_defined_segment_index:] for traj in similar_trajectories])]) # similar_trajectories_time_elapsed = [sum(traj[:last_defined_segment_index]) for traj in similar_trajectories] #for sanity checking only # logging.debug('remaining times ['+str(last_defined_segment_index)+' / '+str(seconds_away)+'] ('+self.previous_bus_positions[-1]["next_stop_name"]+'): ' + ', '.join([str(i) for i in remaining_times_on_similar_trajectories])) # similar_trajectories_time_elapsed = [sum(traj[:last_defined_segment_index]) for traj in similar_trajectories] #for sanity checking only # logging.debug('elapsed times ['+str(last_defined_segment_index)+' / '+str(seconds_away)+'] ('+self.previous_bus_positions[-1]["next_stop_name"]+'): ' + ', '.join([str(i) for i in similar_trajectories_time_elapsed])) self.seconds_away = seconds_away return {'similar': similar_trajectories, 'seconds_away': seconds_away} def filter_by_time(self, trajs): if self.start_time is None: return trajs def to_time_of_day(time): if time.hour in [7,8,9]: return 0 elif time.hour in [17,18,19]: return 1 elif time.hour in [10,11,12,13,14,15,16]: return 2 elif time.hour in [20,21,22,23,0,1,2,3,4,5,6]: return 3 is_a_weekend = self.start_time.weekday() in [5,6] by_day = filter(lambda traj: (traj[0].weekday() in [5,6]) == is_a_weekend , trajs) if not is_a_weekend: time_of_day = to_time_of_day(self.start_time) by_time_of_day = filter(lambda traj: to_time_of_day(traj[0]) == time_of_day, by_day) else: by_time_of_day = by_day return by_time_of_day def filter_by_segment_intervals(self, trajs, number_of_clusters): truncate_trajs_to = trajs[0].index(None) trajs = [traj[:truncate_trajs_to] for traj in trajs] segment_intervals = self.segment_intervals() if segment_intervals is None or all([seg is None for seg in segment_intervals]): return [] #truncate to last defined point of this bus (i.e. where it is now) to find similar trajectories _so far_. # print('%(bus_name)s segment_intervals: ' % {'bus_name': self.number} + ', '.join(map(str, segment_intervals))) last_defined_segment_index = segment_intervals.index(None) if None in segment_intervals else len(segment_intervals) truncated_trajectories_list = [traj[:last_defined_segment_index] for traj in trajs] truncated_trajectories_list = map(preprocess_trajectory, truncated_trajectories_list) truncated_trajectories = array(truncated_trajectories_list) truncated_segment_intervals = preprocess_trajectory(segment_intervals[:last_defined_segment_index]) if False: # knearestneighbors is mostly untested similar_trajectory_indexes = find_similar_by_kmeans(truncated_trajectories, truncated_segment_intervals, number_of_clusters) else: similar_trajectory_indexes = find_similar_by_k_nearest_neighbors(truncated_trajectories, truncated_segment_intervals) similar_trajectories = [trajs[i] for i in similar_trajectory_indexes] return similar_trajectories #called when a bus's lights are turned off, when there's not time to make it to the bus def too_late(self): pass #called when a bus's lights are turned red, when there's just enough time to make it to the bus def imminent(self): self.red_light_time = self.previous_bus_positions[-1]['recorded_at'] #called when a bus's lights are turned green, when it's time to get ready to go to the bus def near(self): self.green_light_time = self.previous_bus_positions[-1]['recorded_at'] #TODO: erase all of this below here (at this indent level) def get_meters_away(self): return self.time_location_pairs[0][1] def get_seconds_away(self): speed = self.get_speed_mps() if speed == 0.0: return 6000 # a big number of seconds return self.get_meters_away() / speed def get_minutes_away(self): return timedelta(seconds=self.get_seconds_away()) def get_speed_mph(self): return (self.get_speed_mps() * (60 * 60)) / 1609.34 def get_speed_mps(self): #meters per second # this is a rolling weighted average over the past distance_to_track time/position values if len(self.time_location_pairs) < 2: return default_bus_speed centroid = 3.0 speed_sum = 0 weight_sum = 0 for i, (time, location) in enumerate(self.time_location_pairs): if i == 0: continue; weight = centroid / (abs(i - centroid) if abs(i - centroid) > 0 else 0.5) weight_sum += weight speed_sum += self.naive_speed(0, i) * weight meters_per_second = speed_sum / weight_sum return meters_per_second # def old_get_speed(self): # if len(self.time_location_pairs) < 2: # return default_bus_speed # long_term = self.naive_speed(0, 9) # medium_term = self.less_naive_speed(0, 4) # mid_to_short_term = self.less_naive_speed(0, 2) # short_term = self.less_naive_speed(0, 1) #ignore this, since it might be stuck at a light # meters_per_second = ( (mid_to_short_term * 2) + (medium_term * 2) + long_term) / 5 # return meters_per_second def naive_speed(self, start_index, end_index): if end_index >= len(self.time_location_pairs): end_index = -1 start = self.time_location_pairs[start_index] end = self.time_location_pairs[end_index] distance = float(abs(start[1] - end[1])) time = abs(start[0] - end[0]) if time.seconds == 0: return 0 return distance / float(time.seconds) def less_naive_speed(self, start_index, end_index): #naive speed, except don't count time the bus spends stopped if end_index >= len(self.time_location_pairs): end_index = -1 start = self.time_location_pairs[start_index] end = self.time_location_pairs[end_index] distance = float(abs(start[1] - end[1])) raw_time = abs(start[0] - end[0]) for (a_time, a_dist), (b_time, b_dist) in pairwise(self.time_location_pairs): if abs(a_dist - b_dist) < 20: raw_time -= abs(a_time - b_time) return distance / float(time.seconds) def preprocess_trajectory(traj): """Transform/preprocess a trajectory somehow for use in the kmeans algo""" new_traj = list(traj) # old = list(traj[0:len(traj)/3]) # medium = list(traj[len(traj)/3:(2*len(traj))/3]) # new = list(traj[(2*len(traj))/3:]) # # # in this, case multiply the trailing intervals to make them have more bearing on the output of the kmeans # # new_traj = old + medium * 2 + new * 3 # new_traj = [(o / 3.0) for o in old] + [(o / 2.0) for o in old] + new new_traj = traj[-8:] # try scaling down the first few return new_traj def find_similar_by_kmeans(truncated_trajectories, truncated_segment_intervals, number_of_clusters=144): print("kmeansing") centroids,_ = kmeans(truncated_trajectories, number_of_clusters) print("vqing") cluster_indices,_ = vq(truncated_trajectories,centroids) print("vqing again") my_cluster_indices, _ = vq(array([truncated_segment_intervals]), centroids) my_cluster_index = my_cluster_indices[0] print("done with ML") logging.debug("clusters: [%(sizes)s]" % {"sizes": ', '.join([str(cluster_indices.tolist().count(idx)) + ("*" if idx == my_cluster_index else "") for idx in set(sorted(cluster_indices))])}) similar_trajectory_indexes = [i for i in range(0, len(cluster_indices)) if cluster_indices[i] == my_cluster_index] # #find the suspiciously-large cluster... that might be the problem # large_cluster_indices = [idx for idx in set(sorted(cluster_indices)) if cluster_indices.tolist().count(idx) > 1000] # for i, traj in enumerate(trajs): # if cluster_indices[i] in large_cluster_indices: # if rand() > 0.995: #5 in 1000 # logging.debug("large cluster member: " + str(traj)) return similar_trajectory_indexes def find_similar_by_k_nearest_neighbors(truncated_trajectories, truncated_segment_intervals, k=None): if not k: #k = int(len(truncated_trajectories)**0.5) k = 10 k = min(k, len(truncated_trajectories)) nbrs = NearestNeighbors(n_neighbors=k, algorithm='ball_tree').fit(truncated_trajectories) distances, indices = nbrs.kneighbors(array(truncated_segment_intervals)) my_nearest_neighbors_indices = indices[0] # indices is, for each point in the argument, a list of the index of its nearest neighbors # in, presumably, what was sent to fit. return my_nearest_neighbors_indices def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." a, b = tee(iterable) next(b, None) return izip(a, b) def median(array): array_len = len(array) if not array_len: return 0 if array_len % 2 == 0: idx = array_len / 2 idx2 = idx-1 return (array[idx] + array[idx2]) /2 else: idx = array_len / 2 return array[idx] ``` #### File: bigappleserialbus/bigappleserialbus/chart_trajectories.py ```python import numpy as np import matplotlib.pyplot as plt import os from trajectory import Trajectory, Base from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base from sklearn.decomposition import PCA from scipy.stats.stats import pearsonr from sklearn.neighbors.kde import KernelDensity sqlite_db_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../buses.db") engine = create_engine('sqlite:///' + sqlite_db_path) #only creates the file if it doesn't exist already Base.metadata.create_all(engine) Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) db_session = DBSession() route_name = "b65" end_stop_id = "MTA_308054" traj_objects = db_session.query(Trajectory.start_time, Trajectory.segment0,Trajectory.segment1,Trajectory.segment2,Trajectory.segment3,Trajectory.segment4, Trajectory.segment5,Trajectory.segment6,Trajectory.segment7,Trajectory.segment8,Trajectory.segment9,Trajectory.segment10, Trajectory.segment11,Trajectory.segment12,Trajectory.segment13,Trajectory.segment14,Trajectory.segment15, Trajectory.segment16,Trajectory.segment17,Trajectory.segment18,Trajectory.segment19,Trajectory.segment20, Trajectory.segment21,Trajectory.segment22,Trajectory.segment23,Trajectory.segment24,Trajectory.segment25, Trajectory.segment26,Trajectory.segment27,Trajectory.segment28,Trajectory.segment29,Trajectory.segment30, Trajectory.segment31,Trajectory.segment32,Trajectory.segment33,Trajectory.segment34,Trajectory.segment35, Trajectory.segment36,Trajectory.segment37,Trajectory.segment38,Trajectory.segment39).filter(Trajectory.route_name==route_name).filter(Trajectory.end_stop_id == end_stop_id) end_index = traj_objects[0].index(None) unfiltered_trajs_with_time = [traj[:end_index] for traj in traj_objects ] # remove start_time item and Nones unfiltered_trajs = [traj[1:] for traj in unfiltered_trajs_with_time] trajs_with_time = [traj for traj in unfiltered_trajs_with_time if not any(map(lambda x: x != None and (x > 300 or x < 20), traj[1:])) ] trajs = [traj for traj in unfiltered_trajs if not any(map(lambda x: x != None and (x > 300 or x < 20), traj)) ] start_times = [traj[0] for traj in traj_objects if not any(map(lambda x: x != None and (x > 300 or x < 20), traj[1:]))] colors = [] def histogram_lengths(): trip_lengths = [sum(traj) for traj in trajs] plt.hist(trip_lengths, bins=50) plt.show() def histogram_segments(): segments = [item for sublist in trajs for item in sublist] plt.hist(segments, bins=50) plt.show() def rs_by_split_point(): for n in xrange(1,10): split_point = n/10.0 x = [sum(traj[:int(len(traj) * split_point)]) for traj in trajs] y = [sum(traj[int(len(traj) * split_point):]) for traj in trajs] print(n, pearsonr(x,y)[0]) def rs_by_previous(n=5): rs = [] for i in xrange(n, len(trajs[0])): x = [sum(traj[i-n:i]) for traj in trajs] y = [sum(traj[i:]) for traj in trajs] #dependent rs.append(pearsonr(x,y)[0]) return rs def rs_by_day_and_time(): # -0.135908180745 correlation between total route time (on b65, downtownbound) and being a weekend # 0.0.20212506141277539 correlation between total route time (on b65, downtownbound) and being rush hour (7,8,9, 17,18,19) on a weekday x = [int(start_time.weekday() in [5,6]) for start_time in start_times] #independent y = [sum(traj) for traj in trajs] #dependent #TODO: how much variation is there weekend to weekday? print( "weekend/day", pearsonr(x,y)[0]) x = [int(start_time.hour in [7,8,9, 17,18,19] and start_time.weekday() not in [5,6]) for start_time in start_times] #independent. rush hour? y = [sum(traj) for traj in trajs] #dependent print( "rush hour (weekdays)", pearsonr(x,y)[0] ) def chart_by_day(): # # On average, trips on the weekend take less time than trips on weekdays # 1337 sec versus 1446 sec # weekend_times = [sum(traj[1:]) for traj in trajs_with_time if traj[0].weekday() in [5,6]] weekday_times = [sum(traj[1:]) for traj in trajs_with_time if traj[0].weekday() not in [5,6]] weekend = sum(weekend_times) / float(len(weekend_times)) weekday = sum(weekday_times) / float(len(weekday_times)) print("weekend: ", weekend, "weekday: ", weekday) x = np.linspace(min(weekend_times + weekday_times), max(weekend_times + weekday_times), 100).reshape(-1, 1) kde_weekend = KernelDensity(bandwidth=100).fit(np.array(weekend_times).reshape(-1, 1)) density_weekend = np.exp(kde_weekend.score_samples(x)) kde_weekday = KernelDensity(bandwidth=100).fit(np.array(weekday_times).reshape(-1, 1)) density_weekday = np.exp(kde_weekday.score_samples(x)) plt.plot(x, density_weekend, 'r') plt.plot(x, density_weekday, 'b') plt.xlabel("Time start to Grand Ave: red: weekend, blue, weekday") plt.ylabel("Density") plt.show() def chart_by_time(): weekday_amrush = [sum(traj[1:]) for traj in trajs_with_time if traj[0].weekday() not in [5,6] and traj[0].hour in [7,8,9]] weekday_pmrush = [sum(traj[1:]) for traj in trajs_with_time if traj[0].weekday() not in [5,6] and traj[0].hour in [17,18,19]] weekday_midday = [sum(traj[1:]) for traj in trajs_with_time if traj[0].weekday() not in [5,6] and traj[0].hour in [10,11,12,13,14,15,16]] weekday_night = [sum(traj[1:]) for traj in trajs_with_time if traj[0].weekday() not in [5,6] and traj[0].hour in [20,21,22,23,0,1,2,3,4,5,6]] weekend = [sum(traj[1:]) for traj in trajs_with_time if traj[0].weekday() in [5,6]] weekday_amrush_avg = sum(weekday_amrush) / float(len(weekday_amrush)) weekday_pmrush_avg = sum(weekday_pmrush) / float(len(weekday_pmrush)) weekday_midday_avg = sum(weekday_midday) / float(len(weekday_midday)) weekday_night_avg = sum(weekday_night) / float(len(weekday_night)) weekend_avg = sum(weekend) / float(len(weekend)) print("weekday_amrush_avg: ", weekday_amrush_avg, "weekday_pmrush_avg: ", weekday_pmrush_avg, "weekday_midday_avg: ", weekday_midday_avg, "weekday_night_avg: ", weekday_night_avg, "weekend_avg: ", weekend_avg) x = np.linspace(min(weekday_amrush+weekday_pmrush+weekday_midday+weekday_night+weekend), max(weekday_amrush+weekday_pmrush+weekday_midday+weekday_night+weekend), 100).reshape(-1, 1) kde_weekday_amrush = KernelDensity(bandwidth=70).fit(np.array(weekday_amrush).reshape(-1, 1)) density_weekday_amrush = np.exp(kde_weekday_amrush.score_samples(x)) kde_weekday_pmrush = KernelDensity(bandwidth=70).fit(np.array(weekday_pmrush).reshape(-1, 1)) density_weekday_pmrush = np.exp(kde_weekday_pmrush.score_samples(x)) kde_weekday_midday = KernelDensity(bandwidth=70).fit(np.array(weekday_midday).reshape(-1, 1)) density_weekday_midday = np.exp(kde_weekday_midday.score_samples(x)) kde_weekday_night = KernelDensity(bandwidth=70).fit(np.array(weekday_night).reshape(-1, 1)) density_weekday_night = np.exp(kde_weekday_night.score_samples(x)) kde_weekend = KernelDensity(bandwidth=70).fit(np.array(weekend).reshape(-1, 1)) density_weekend = np.exp(kde_weekend.score_samples(x)) plt.plot(x, density_weekday_amrush, 'r') plt.plot(x, density_weekday_pmrush, 'y') plt.plot(x, density_weekday_midday, 'g') plt.plot(x, density_weekday_night, 'b') plt.plot(x, density_weekend, 'm') plt.xlabel("Time start to endpoint") plt.ylabel("Density") plt.show() def scatter_halves(): split_point = 8/10.0 x = [sum(traj[:int(len(traj) * split_point)]) for traj in trajs] y = [sum(traj[int(len(traj) * split_point):]) for traj in trajs] # colors = np.random.rand(N) # area = np.pi * (15 * np.random.rand(N))**2 # 0 to 15 point radiuses plt.scatter(x, y, # s=area, # c=colors, alpha=0.5) plt.show() def do_pca(): pca = PCA(n_components=2) pca.fit(np.array(trajs)) reduced_trajs = pca.transform(trajs) print(reduced_trajs) reduced_trajs = reduced_trajs.T.tolist() plt.scatter(reduced_trajs[0], reduced_trajs[1], alpha=0.5) plt.show() def per_segment_length(): avg_segment_times = [sum(segment_vals)/float(len(segment_vals)) for segment_vals in np.array(trajs).T] plt.scatter(list(xrange(0, len(avg_segment_times))), avg_segment_times) plt.plot(list(xrange(0, len(avg_segment_times))), avg_segment_times, 'g') too_long_segments = [sum([1 for n in segment_vals if n > 300]) for segment_vals in np.array(raw_trajs).T] print(too_long_segments) plt.scatter(list(xrange(0, len(too_long_segments))), too_long_segments) plt.plot(list(xrange(0, len(too_long_segments))), too_long_segments, 'r') too_short_segments = [sum([1 for n in segment_vals if n < 20]) for segment_vals in np.array(raw_trajs).T] print(too_short_segments) plt.scatter(list(xrange(0, len(too_short_segments))), too_short_segments) plt.plot(list(xrange(0, len(too_short_segments))), too_short_segments, 'b') plt.show() # print(rs_by_previous()) # per_segment_length() # rs_by_day_and_time() chart_by_time() # for i in xrange(3,9): # rs = rs_by_previous(i) # print(i, sum(rs)/len(rs)) # # histogram_lengths() #TODO: histogram segment times per segment (i.e. Classon to Grand, Franklin to Classon, etc.) ``` #### File: bigappleserialbus/bigappleserialbus/kmodes.py ```python __author__ = '<NAME>' __email__ = '<EMAIL>' __license__ = 'MIT' __version__ = '0.8' import random import numpy as np from collections import defaultdict class KModes(object): def __init__(self, k): """k-modes clustering algorithm for categorical data. See: Huang, Z.: Extensions to the k-modes algorithm for clustering large data sets with categorical values, Data Mining and Knowledge Discovery 2(3), 1998. Inputs: k = number of clusters Attributes: clusters = cluster numbers [no. points] centroids = centroids [k * no. attributes] membership = membership matrix [k * no. points] cost = clustering cost, defined as the sum distance of all points to their respective clusters """ assert k > 1, "Choose at least 2 clusters." self.k = k # generalized form with alpha. alpha > 1 for fuzzy k-modes self.alpha = 1 # init some variables self.membership = self.clusters = self.centroids = self.cost = None def cluster(self, x, pre_runs=10, pre_pctl=20, *args, **kwargs): """Shell around _perform_clustering method that tries to ensure a good clustering result by choosing one that has a relatively low clustering cost compared to the costs of a number of pre-runs. (Huang [1998] states that clustering cost can be used to judge the clustering quality.) """ if pre_runs and 'init_method' in kwargs and kwargs['init_method'] == 'Cao': print("Initialization method and algorithm are deterministic. Disabling preruns...") pre_runs = None if pre_runs: precosts = np.empty(pre_runs) for pr in range(pre_runs): self._perform_clustering(x, *args, verbose=0, **kwargs) precosts[pr] = self.cost print("Prerun {0} / {1}, Cost = {2}".format(pr+1, pre_runs, precosts[pr])) goodcost = np.percentile(precosts, pre_pctl) else: goodcost = np.inf while True: self._perform_clustering(x, *args, verbose=1, **kwargs) if self.cost <= goodcost: break def _perform_clustering(self, x, init_method='Huang', max_iters=100, verbose=1): """Inputs: x = data points [no. points * no. attributes] init_method = initialization method ('Huang' for the one described in Huang [1998], 'Cao' for the one in Cao et al. [2009]) max_iters = maximum no. of iterations verbose = 0 for no and 1 for normal algorithm progress information, 2 for internal algorithm details """ # convert to numpy array, if needed x = np.asanyarray(x) npoints, nattrs = x.shape assert self.k < npoints, "More clusters than data points?" self.initMethod = init_method # ---------------------- # INIT # ---------------------- if verbose: print("Init: initializing centroids") self.init_centroids(x) if verbose: print("Init: initializing clusters") self.membership = np.zeros((self.k, npoints), dtype='int64') # self._clustAttrFreq is a list of lists with dictionaries that contain the # frequencies of values per cluster and attribute self._clustAttrFreq = [[defaultdict(int) for _ in range(nattrs)] for _ in range(self.k)] for ipoint, curpoint in enumerate(x): # initial assigns to clusters cluster = np.argmin(self.get_dissim(self.centroids, curpoint)) self.membership[cluster, ipoint] = 1 # count attribute values per cluster for iattr, curattr in enumerate(curpoint): self._clustAttrFreq[cluster][iattr][curattr] += 1 # perform an initial centroid update for ik in range(self.k): for iattr in range(nattrs): self.centroids[ik, iattr] = self.get_mode(self._clustAttrFreq[ik][iattr]) # ---------------------- # ITERATION # ---------------------- if verbose: print("Starting iterations...") itr = 0 converged = False while itr <= max_iters and not converged: itr += 1 moves = 0 for ipoint, curpoint in enumerate(x): cluster = np.argmin(self.get_dissim(self.centroids, curpoint)) # if necessary: move point, and update old/new cluster frequencies and centroids if not self.membership[cluster, ipoint]: moves += 1 oldcluster = np.argwhere(self.membership[:, ipoint])[0][0] self._add_point_to_cluster(curpoint, ipoint, cluster) self._remove_point_from_cluster(curpoint, ipoint, oldcluster) # update new and old centroids by choosing most likely attribute for iattr, curattr in enumerate(curpoint): for curc in (cluster, oldcluster): self.centroids[curc, iattr] = self.get_mode( self._clustAttrFreq[curc][iattr]) if verbose == 2: print("Move from cluster {0} to {1}".format(oldcluster, cluster)) # in case of an empty cluster, reinitialize with a random point # that is not a centroid if sum(self.membership[oldcluster, :]) == 0: while True: rindx = np.random.randint(npoints) if not np.all(x[rindx] == self.centroids).any(): break self._add_point_to_cluster(x[rindx], rindx, oldcluster) fromcluster = np.argwhere(self.membership[:, rindx])[0][0] self._remove_point_from_cluster(x[rindx], rindx, fromcluster) # all points seen in this iteration converged = (moves == 0) if verbose: print("Iteration: {0}/{1}, moves: {2}".format(itr, max_iters, moves)) self.calculate_clustering_cost(x) self.clusters = np.array([np.argwhere(self.membership[:, pt])[0] for pt in range(npoints)]) def init_centroids(self, x): assert self.initMethod in ('Huang', 'Cao') npoints, nattrs = x.shape self.centroids = np.empty((self.k, nattrs)) if self.initMethod == 'Huang': # determine frequencies of attributes for iattr in range(nattrs): freq = defaultdict(int) for curattr in x[:, iattr]: freq[curattr] += 1 # sample centroids using the probabilities of attributes # (I assume that's what's meant in the Huang [1998] paper; it works, at least) # note: sampling using population in static list with as many choices as # frequency counts this works well since (1) we re-use the list k times here, # and (2) the counts are small integers so memory consumption is low choices = [chc for chc, wght in freq.items() for _ in range(wght)] for ik in range(self.k): self.centroids[ik, iattr] = random.choice(choices) # the previously chosen centroids could result in empty clusters, # so set centroid to closest point in x for ik in range(self.k): ndx = np.argsort(self.get_dissim(x, self.centroids[ik])) # and we want the centroid to be unique while np.all(x[ndx[0]] == self.centroids, axis=1).any(): ndx = np.delete(ndx, 0) self.centroids[ik] = x[ndx[0]] elif self.initMethod == 'Cao': # Note: O(N * at * k**2), so watch out with k # determine densities points dens = np.zeros(npoints) for iattr in range(nattrs): freq = defaultdict(int) for val in x[:, iattr]: freq[val] += 1 for ipoint in range(npoints): dens[ipoint] += freq[x[ipoint, iattr]] / float(nattrs) dens /= npoints # choose centroids based on distance and density self.centroids[0] = x[np.argmax(dens)] dissim = self.get_dissim(x, self.centroids[0]) self.centroids[1] = x[np.argmax(dissim * dens)] # for the reamining centroids, choose max dens * dissim to the (already assigned) # centroid with the lowest dens * dissim for ik in range(2, self.k): dd = np.empty((ik, npoints)) for ikk in range(ik): dd[ikk] = self.get_dissim(x, self.centroids[ikk]) * dens self.centroids[ik] = x[np.argmax(np.min(dd, axis=0))] return def _add_point_to_cluster(self, point, ipoint, cluster): self.membership[cluster, ipoint] = 1 # update frequencies of attributes in cluster for iattr, curattr in enumerate(point): self._clustAttrFreq[cluster][iattr][curattr] += 1 return def _remove_point_from_cluster(self, point, ipoint, cluster): self.membership[cluster, ipoint] = 0 # update frequencies of attributes in cluster for iattr, curattr in enumerate(point): self._clustAttrFreq[cluster][iattr][curattr] -= 1 return @staticmethod def get_dissim(a, b): # simple matching dissimilarity return (a != b).sum(axis=1) @staticmethod def get_mode(dic): # Fast method (supposedly) to get key for maximum value in dict. v = list(dic.values()) k = list(dic.keys()) if len(v) == 0: pass return k[v.index(max(v))] def calculate_clustering_cost(self, x): self.cost = 0 for ipoint, curpoint in enumerate(x): self.cost += np.sum(self.get_dissim(self.centroids, curpoint) * (self.membership[:, ipoint] ** self.alpha)) return class KPrototypes(KModes): def __init__(self, k): """k-protoypes clustering algorithm for mixed numeric and categorical data. <NAME>.: Clustering large data sets with mixed numeric and categorical values, Proceedings of the First Pacific Asia Knowledge Discovery and Data Mining Conference, Singapore, pp. 21-34, 1997. Inputs: k = number of clusters Attributes: clusters = cluster numbers [no. points] centroids = centroids, two lists (num. and cat.) with [k * no. attributes] membership = membership matrix [k * no. points] cost = clustering cost, defined as the sum distance of all points to their respective clusters gamma = weighing factor that determines relative importance of num./cat. attributes (see discussion in Huang [1997]) """ super(KPrototypes, self).__init__(k) self.gamma = None def _perform_clustering(self, x, gamma=None, init_method='Huang', max_iters=100, verbose=1): """Inputs: xnum = numeric data points [no. points * no. numeric attributes] xcat = categorical data points [no. points * no. numeric attributes] gamma = weighing factor that determines relative importance of num./cat. attributes (see discussion in Huang [1997]) initMethod = initialization method ('Huang' for the one described in Huang [1998], 'Cao' for the one in Cao et al. [2009]) max_iters = maximum no. of iterations verbose = 0 for no and 1 for normal algorithm progress information, 2 for internal algorithm details """ # convert to numpy arrays, if needed xnum, xcat = x[0], x[1] xnum = np.asanyarray(xnum) xcat = np.asanyarray(xcat) nnumpoints, nnumattrs = xnum.shape ncatpoints, ncatattrs = xcat.shape assert nnumpoints == ncatpoints, "More numerical points than categorical?" npoints = nnumpoints assert self.k < npoints, "More clusters than data points?" self.initMethod = init_method # estimate a good value for gamma, which determines the weighing of # categorical values in clusters (see Huang [1997]) if gamma is None: gamma = 0.5 * np.std(xnum) self.gamma = gamma # ---------------------- # INIT # ---------------------- if verbose: print("Init: initializing centroids") # list where [0] = numerical part of centroid and [1] = categorical part self.init_centroids(xcat) self.centroids = [np.mean(xnum, axis=0) + np.random.randn(self.k, nnumattrs) * np.std(xnum, axis=0), self.centroids] if verbose: print("Init: initializing clusters") self.membership = np.zeros((self.k, npoints), dtype='int64') # keep track of the sum of attribute values per cluster self._clustAttrSum = np.zeros((self.k, nnumattrs), dtype='float') # self._clustAttrFreq is a list of lists with dictionaries that contain # the frequencies of values per cluster and attribute self._clustAttrFreq = [[defaultdict(int) for _ in range(ncatattrs)] for _ in range(self.k)] for ipoint in range(npoints): # initial assigns to clusters cluster = np.argmin(self.get_dissim_num(self.centroids[0], xnum[ipoint]) + self.gamma * self.get_dissim(self.centroids[1], xcat[ipoint])) self.membership[cluster, ipoint] = 1 # count attribute values per cluster for iattr, curattr in enumerate(xnum[ipoint]): self._clustAttrSum[cluster, iattr] += curattr for iattr, curattr in enumerate(xcat[ipoint]): self._clustAttrFreq[cluster][iattr][curattr] += 1 for ik in range(self.k): # in case of an empty cluster, reinitialize with a random point # that is not a centroid if sum(self.membership[ik, :]) == 0: while True: rindex = np.random.randint(npoints) if not np.all(np.vstack((np.all(xnum[rindex] == self.centroids[0], axis=1), np.all(xcat[rindex] == self.centroids[1], axis=1))), axis=0).any(): break self._add_point_to_cluster(xnum[rindex], xcat[rindex], rindex, ik) fromcluster = np.argwhere(self.membership[:, rindex])[0][0] self._remove_point_from_cluster(xnum[rindex], xcat[rindex], rindex, fromcluster) # perform an initial centroid update for ik in range(self.k): for iattr in range(nnumattrs): # TODO: occasionally "invalid value encountered in double_scalars" in following line self.centroids[0][ik, iattr] = \ self._clustAttrSum[ik, iattr] / sum(self.membership[ik, :]) for iattr in range(ncatattrs): self.centroids[1][ik, iattr] = self.get_mode(self._clustAttrFreq[ik][iattr]) # ---------------------- # ITERATION # ---------------------- if verbose: print("Starting iterations...") itr = 0 converged = False while itr <= max_iters and not converged: itr += 1 moves = 0 for ipoint in range(npoints): cluster = np.argmin(self.get_dissim_num(self.centroids[0], xnum[ipoint]) + self.gamma * self.get_dissim(self.centroids[1], xcat[ipoint])) # if necessary: move point, and update old/new cluster frequencies and centroids if not self.membership[cluster, ipoint]: moves += 1 oldcluster = np.argwhere(self.membership[:, ipoint])[0][0] self._add_point_to_cluster(xnum[ipoint], xcat[ipoint], ipoint, cluster) self._remove_point_from_cluster(xnum[ipoint], xcat[ipoint], ipoint, oldcluster) # update new and old centroids by choosing mean for numerical and # most likely for categorical attributes for iattr in range(len(xnum[ipoint])): for curc in (cluster, oldcluster): if sum(self.membership[curc, :]): self.centroids[0][curc, iattr] = \ self._clustAttrSum[curc, iattr] / sum(self.membership[curc, :]) else: self.centroids[0][curc, iattr] = 0 for iattr in range(len(xcat[ipoint])): for curc in (cluster, oldcluster): self.centroids[1][curc, iattr] = \ self.get_mode(self._clustAttrFreq[curc][iattr]) if verbose == 2: print("Move from cluster {0} to {1}".format(oldcluster, cluster)) # in case of an empty cluster, reinitialize with a random point # that is not a centroid if sum(self.membership[oldcluster, :]) == 0: while True: rindex = np.random.randint(npoints) if not np.all(np.vstack(( np.all(xnum[rindex] == self.centroids[0], axis=1), np.all(xcat[rindex] == self.centroids[1], axis=1))), axis=0).any(): break self._add_point_to_cluster(xnum[rindex], xcat[rindex], rindex, oldcluster) fromcluster = np.argwhere(self.membership[:, rindex])[0][0] self._remove_point_from_cluster( xnum[rindex], xcat[rindex], rindex, fromcluster) # all points seen in this iteration converged = (moves == 0) if verbose: print("Iteration: {0}/{1}, moves: {2}".format(itr, max_iters, moves)) self.calculate_clustering_cost(xnum, xcat) self.clusters = np.array([np.argwhere(self.membership[:, pt])[0] for pt in range(npoints)]) def _add_point_to_cluster(self, point_num, point_cat, ipoint, cluster): self.membership[cluster, ipoint] = 1 # update sums of attributes in cluster for iattr, curattr in enumerate(point_num): self._clustAttrSum[cluster][iattr] += curattr # update frequencies of attributes in cluster for iattr, curattr in enumerate(point_cat): self._clustAttrFreq[cluster][iattr][curattr] += 1 return def _remove_point_from_cluster(self, point_num, point_cat, ipoint, cluster): self.membership[cluster, ipoint] = 0 # update sums of attributes in cluster for iattr, curattr in enumerate(point_num): self._clustAttrSum[cluster][iattr] -= curattr # update frequencies of attributes in cluster for iattr, curattr in enumerate(point_cat): self._clustAttrFreq[cluster][iattr][curattr] -= 1 return @staticmethod def get_dissim_num(anum, b): # Euclidean distance return np.sum((anum - b)**2, axis=1) def calculate_clustering_cost(self, xnum, xcat): ncost = 0 ccost = 0 for ipoint, curpoint in enumerate(xnum): ncost += np.sum(self.get_dissim_num(self.centroids[0], curpoint) * (self.membership[:, ipoint] ** self.alpha)) for ipoint, curpoint in enumerate(xcat): ccost += np.sum(self.get_dissim(self.centroids[1], curpoint) * (self.membership[:, ipoint] ** self.alpha)) self.cost = ncost + self.gamma * ccost if np.isnan(self.cost): pass return class FuzzyKModes(KModes): def __init__(self, k, alpha=1.5): """Fuzzy k-modes clustering algorithm for categorical data. Uses traditional, hard centroids, following <NAME>., <NAME>.: A fuzzy k-modes algorithm for clustering categorical data, IEEE Transactions on Fuzzy Systems 7(4), 1999. Inputs: k = number of clusters alpha = alpha coefficient Attributes: clusters = cluster numbers with max. membership [no. points] membership = membership matrix [k * no. points] centroids = centroids [k * no. attributes] cost = clustering cost """ super(FuzzyKModes, self).__init__(k) assert alpha > 1, "alpha should be > 1 (alpha = 1 equals regular k-modes)." self.alpha = alpha self.omega = None def _perform_clustering(self, x, init_method='Huang', max_iters=200, tol=1e-5, cost_inter=1, verbose=1): """Inputs: x = data points [no. points * no. attributes] initMethod = initialization method ('Huang' for the one described in Huang [1998], 'Cao' for the one in Cao et al. [2009]). max_iters = maximum no. of iterations tol = tolerance for termination criterion cost_inter = frequency with which to check the total cost (for speeding things up, since it is computationally expensive) verbose = 0 for no and 1 for normal algorithm progress information, 2 for internal algorithm details """ # convert to numpy array, if needed x = np.asanyarray(x) npoints, nattrs = x.shape assert self.k < npoints, "More clusters than data points?" self.initMethod = init_method # ---------------------- # INIT # ---------------------- if verbose: print("Init: initializing centroids") self.init_centroids(x) # store for all attributes which points have a certain attribute value self._domAttrPoints = [defaultdict(list) for _ in range(nattrs)] for ipoint, curpoint in enumerate(x): for iattr, curattr in enumerate(curpoint): self._domAttrPoints[iattr][curattr].append(ipoint) # ---------------------- # ITERATION # ---------------------- if verbose: print("Starting iterations...") itr = 0 converged = False lastcost = np.inf while itr <= max_iters and not converged: self.update_membership(x) self.update_centroids() # computationally expensive, only check every N steps if itr % cost_inter == 0: self.calculate_clustering_cost(x) converged = self.cost >= lastcost * (1-tol) lastcost = self.cost if verbose: print("Iteration: {0}/{1}, cost: {2}".format(itr, max_iters, self.cost)) itr += 1 self.clusters = np.array([int(np.argmax(self.membership[:, pt])) for pt in range(npoints)]) def update_membership(self, x, threshold=1e-3): npoints = x.shape[0] self.membership = np.empty((self.k, npoints)) for ipoint, curpoint in enumerate(x): dissim = self.get_dissim(self.centroids, curpoint) if np.any(dissim <= threshold): self.membership[:, ipoint] = np.where(dissim <= threshold, 1, threshold) else: for ik in range(len(self.centroids)): factor = 1. / (self.alpha - 1) self.membership[ik, ipoint] = 1 / np.sum((float(dissim[ik]) / dissim)**factor) return def update_centroids(self): self.centroids = np.empty((self.k, len(self._domAttrPoints))) for ik in range(self.k): for iattr in range(len(self._domAttrPoints)): # return attribute that maximizes the sum of the memberships v = list(self._domAttrPoints[iattr].values()) k = list(self._domAttrPoints[iattr].keys()) memvar = [sum(self.membership[ik, x]**self.alpha) for x in v] self.centroids[ik, iattr] = k[np.argmax(memvar)] return class FuzzyCentroidsKModes(KModes): def __init__(self, k, alpha=1.5): """Fuzzy k-modes clustering algorithm for categorical data. Uses fuzzy centroids, following and <NAME>., <NAME>., <NAME>.: Fuzzy clustering of categorical data using fuzzy centroids, Pattern Recognition Letters 25, 1262-1271, 2004. Inputs: k = number of clusters alpha = alpha coefficient Attributes: clusters = cluster numbers with max. membership [no. points] membership = membership matrix [k * no. points] omega = fuzzy centroids [dicts with element values as keys, element memberships as values, inside lists for attributes inside list for centroids] cost = clustering cost """ super(FuzzyCentroidsKModes, self).__init__(k) assert k > 1, "Choose at least 2 clusters." self.k = k assert alpha > 1, "alpha should be > 1 (alpha = 1 equals regular k-modes)." self.alpha = alpha def _perform_clustering(self, x, max_iters=100, tol=1e-5, cost_inter=1, verbose=1): """Inputs: x = data points [no. points * no. attributes] max_iters = maximum no. of iterations tol = tolerance for termination criterion cost_inter = frequency with which to check the total cost (for speeding things up, since it is computationally expensive) verbose = 0 for no and 1 for normal algorithm progress information, 2 for internal algorithm details """ # convert to numpy array, if needed x = np.asanyarray(x) npoints, nattrs = x.shape assert self.k < npoints, "More clusters than data points?" # ---------------------- # INIT # ---------------------- if verbose: print("Init: initializing centroids") # count all attributes freqattrs = [defaultdict(int) for _ in range(nattrs)] for curpoint in x: for iattr, curattr in enumerate(curpoint): freqattrs[iattr][curattr] += 1 # omega = fuzzy set (as dict) for each attribute per cluster self.omega = [[{} for _ in range(nattrs)] for _ in range(self.k)] for ik in range(self.k): for iattr in range(nattrs): # a bit unclear form the paper, but this is how they do it in their code # give a random attribute 1.0 membership and the rest 0.0 randint = np.random.randint(len(freqattrs[iattr])) for iVal, curVal in enumerate(freqattrs[iattr]): self.omega[ik][iattr][curVal] = float(iVal == randint) # ---------------------- # ITERATION # ---------------------- if verbose: print("Starting iterations...") itr = 0 converged = False lastcost = np.inf while itr <= max_iters and not converged: # O(k*N*at*no. of unique values) self.update_membership(x) # O(k*N*at) self.update_centroids(x) # computationally expensive, only check every N steps if itr % cost_inter == 0: self.calculate_clustering_cost(x) converged = self.cost >= lastcost * (1-tol) lastcost = self.cost if verbose: print("Iteration: {0}/{1}, cost: {2}".format(itr, max_iters, self.cost)) itr += 1 self.clusters = np.array([int(np.argmax(self.membership[:, pt])) for pt in range(npoints)]) def update_membership(self, x, threshold=1e-3): # Eq. 20 from Kim et al. [2004] npoints = x.shape[0] self.membership = np.empty((self.k, npoints)) for ipoint, curpoint in enumerate(x): dissim = self.get_fuzzy_dissim(curpoint) if np.any(dissim <= threshold): self.membership[:, ipoint] = np.where(dissim <= threshold, 1, threshold) else: # NOTE: squaring the distances is not mentioned in the paper, but it is # in the code of Kim et al.; seems to improve performance dissim **= 2 for ik in range(len(self.omega)): factor = 1. / (self.alpha - 1) self.membership[ik, ipoint] = 1 / np.sum((float(dissim[ik]) / dissim)**factor) return def update_centroids(self, x): self.omega = [[defaultdict(float) for _ in range(x.shape[1])] for _ in range(self.k)] for ik in range(self.k): for iattr in range(x.shape[1]): for ipoint, curpoint in enumerate(x[:, iattr]): self.omega[ik][iattr][curpoint] += self.membership[ik, ipoint] ** self.alpha # normalize so that sum omegas is 1, analogous to k-means # (see e.g. Yang et al. [2008] who explain better than the original paper) sumomg = sum(self.omega[ik][iattr].values()) for key in self.omega[ik][iattr].keys(): self.omega[ik][iattr][key] /= sumomg return def get_fuzzy_dissim(self, x): # TODO: slow, could it be faster? # dissimilarity = sums of all omegas for non-matching attributes # see Eqs. 13-15 of Kim et al. [2004] dissim = np.zeros(len(self.omega)) for ik in range(len(self.omega)): for iattr, curattr in enumerate(self.omega[ik]): nonmatch = [v for k, v in curattr.items() if k != x[iattr]] # dissim[ik] += sum(nonmatch) # following the code of Kim et al., seems to work better dissim[ik] += sum(nonmatch) / np.sqrt(np.sum(np.array(list(curattr.values())) ** 2)) return dissim def calculate_clustering_cost(self, x): self.cost = 0 for ipoint, curpoint in enumerate(x): self.cost += np.sum(self.get_fuzzy_dissim(curpoint) * (self.membership[:, ipoint] ** self.alpha)) return def soybean_test(): # reproduce results on small soybean data set x = np.genfromtxt('./soybean.csv', dtype=int, delimiter=',')[:, :-1] y = np.genfromtxt('./soybean.csv', dtype=str, delimiter=',', usecols=35) # drop columns with single value x = x[:, np.std(x, axis=0) > 0.] kmodes_huang = KModes(4) kmodes_huang.cluster(x, init_method='Huang') kmodes_cao = KModes(4) kmodes_cao.cluster(x, init_method='Cao') kproto = KPrototypes(4) kproto.cluster([np.random.randn(x.shape[0], 3), x], init_method='Huang') fkmodes = FuzzyKModes(4, alpha=1.1) fkmodes.cluster(x) ffkmodes = FuzzyCentroidsKModes(4, alpha=1.8) ffkmodes.cluster(x) for result in (kmodes_huang, kmodes_cao, kproto, fkmodes, ffkmodes): classtable = np.zeros((4, 4), dtype=int) for ii, _ in enumerate(y): classtable[int(y[ii][-1])-1, result.clusters[ii]] += 1 print("\n") print(" | Cl. 1 | Cl. 2 | Cl. 3 | Cl. 4 |") print("----|-------|-------|-------|-------|") for ii in range(4): prargs = tuple([ii+1] + list(classtable[ii, :])) print(" D{0} | {1:>2} | {2:>2} | {3:>2} | {4:>2} |".format(*prargs)) if __name__ == "__main__": soybean_test() ``` #### File: bigappleserialbus/bigappleserialbus/ticker.py ```python __author__ = '<NAME>' __email__ = '<EMAIL>' __license__ = 'Apache' __version__ = '0.1' import time class Ticker: def __init__(self, betweenTicks=None): """Returns a ticker. Optionally set the amount of time per tick.""" self.tickers = {} self.ticksSoFar = 0 self.error_callbacks = [] self.betweenTicks = 1 if betweenTicks == None else betweenTicks #time in seconds def __tick__(self): for func, frequency in self.tickers.iteritems(): if frequency == 0 or self.ticksSoFar % frequency == 0: func() def register(self, function, frequency): """Set a function to be executed once per `frequency` ticks""" self.tickers[function] = frequency def start(self): try: while True: start_time = time.time() self.__tick__() duration = time.time() - start_time time.sleep(max(self.betweenTicks - duration, 0)) self.ticksSoFar += 1 except Exception as e: for error_callback in self.error_callbacks: error_callback(e) def global_error(self, func): self.error_callbacks.append(func) ```
{ "source": "JeremyBuchanan/psf-photometry-pipeline", "score": 3 }
#### File: JeremyBuchanan/psf-photometry-pipeline/core.py ```python import astropy.io.fits as fits import copy import numpy as np from astropy import units as u from astropy.modeling.fitting import LevMarLSQFitter from astropy.nddata import NDData, CCDData from astropy.stats import gaussian_sigma_to_fwhm, sigma_clipped_stats from astropy.table import Table from astropy.wcs import WCS from astroquery.astrometry_net import AstrometryNet from ccdproc import Combiner from photutils import aperture_photometry, CircularAperture, EPSFBuilder, CircularAnnulus from photutils.background import MMMBackground from photutils.detection import DAOStarFinder, IRAFStarFinder from photutils.psf import IterativelySubtractedPSFPhotometry, DAOGroup, extract_stars from scipy.optimize import curve_fit def import_images(im_list, p): ''' A function that imports the data from an image file, following a given path to find the image file Paramters --------- im_list: list List containing the names of the image files p: string The pathway the script should follow to find the image files on the computer Returns ------- im_data: list A list of the data arrays containing the pixel data of images in_headers: list A list of all the image headers ''' im_data = [] im_headers = [] for i in im_list: x = str(i) path = p + x hdu = fits.open(path) data = hdu[1].data header = hdu[1].header im_data.append(data) im_headers.append(header) return im_data, im_headers def find_fwhm(image, size=100): ''' Fits a 2D gaussian surface to the brightest, non-saturated star on an image Parameters ---------- image: array-like raw pixel data from the image size: integer radius of the cutout around the star Returns ------- popt: list list of all the best fit values of the gaussians parameters: x0, y0, sig_x, sig_y, Amplitude, offset (background estimate) ''' mean_val, median_val, std_val = sigma_clipped_stats(image, sigma=2.0) search_image = image[100:-100,100:-100] max_peak = np.max(search_image) count = 0 while max_peak >= 0: count += 1 rs, cs = np.where(search_image==max_peak)[0][0], np.where(search_image==max_peak)[1][0] r = rs+100 c = cs+100 if max_peak < 50000: star = image[r-size:r+size,c-size:c+size] x = np.arange(2*size) y = np.arange(2*size) X, Y = np.meshgrid(x, y) def gaussian(M, x0, y0, sig_x, sig_y, A, off): x, y = M return A * np.exp(-((x-x0)**2)/(2*sig_x**2)-((y-y0)**2)/(2*sig_y**2)) + off xdata = np.vstack((X.ravel(), Y.ravel())) ydata = star.ravel() p = [size, size, 3, 3, 10000, median_val] try: popt, pcov = curve_fit(f=gaussian, xdata=xdata, ydata=ydata, p0=p) im_sig = np.mean(popt[2:4]) fwhm = im_sig*gaussian_sigma_to_fwhm except: fwhm = 0 if fwhm > 2: break else: image[r-size:r+size,c-size:c+size] = 0 search_image = image[100:-100,100:-100] max_peak = np.max(search_image) else: image[r-size:r+size,c-size:c+size] = 0 search_image = image[100:-100,100:-100] max_peak = np.max(search_image) if count > 100: fwhm = 0 im_sig = 0 break if max_peak < 1000: fwhm = 0 im_sig = 0 break return fwhm, im_sig def find_stars(image, sigma, peak=100000): ''' Searches data from an image to find objects above a given brightness threshold based off parameters of the ccd chip Parameters ---------- image: array-like Array containing the intensity of light for each pixel on the ccd chip sigma: float sets the size tolerance for detected objects. Usually 5.0, more than 5 is statistically unreasonable peak: int The max number of counts the chip can handle before the image starts to smear. Usual ccd can handle 100,000 counts Returns ------- stars: table A table containing all the found stars and their parameters: id, xcentroid, ycentroid, sharpness, roundness, npix, sky, peak, flux, mag ''' sigma_psf = sigma mean_val, median_val, std_val = sigma_clipped_stats(image, sigma=2.0) bkg = median_val daofind = DAOStarFinder(fwhm=sigma_psf*gaussian_sigma_to_fwhm, threshold=bkg+10*std_val, sky=bkg, peakmax=peak, exclude_border=True) stars = daofind(image) return stars def calculate_shift(stars1, stars2): ''' Calculates the necessary shift of one image in order to be aligned with a second image Parameters ---------- stars1: table The table returned from using find_stars on an image stars2: table Same as stars1, for a different image Returns ------- diff: table Table containing the x, y, and total offset of each star object found between two images ''' diff = np.zeros([stars1['xcentroid'].size, 3])*np.nan for i in range(stars1['xcentroid'].size): dx = stars1['xcentroid'][i] - stars2['xcentroid'] dy = stars1['ycentroid'][i] - stars2['ycentroid'] distances = np.abs(np.sqrt((dx)**2 + (dy)**2)) match = (distances == np.min(distances)) if distances[match] < 20: diff[i, 0] = distances[match] diff[i, 1] = dx[match] diff[i, 2] = dy[match] return diff def roll_image(image, diff, threshold=0.5): ''' Averages the x and y offset of objects on 2 images to the nearest integer, and then rolls the image by that number of pixels along each axis. Good for aligning two images Parameters ---------- image: array-like Array containing the intensity of light for each pixel on the ccd chip diff: table Table containing the x, y, and total offset of each star object found between two images threshold: float The minimum pixel offset between images to allow shifting, usually 0.5 pixels Returns ------- image_shift: array-like The "rolled" version of the same image, now aligned to another reference image ''' offset = np.median(diff[:, 0]) if offset >= threshold: xshift = np.median(diff[:, 1]) yshift = np.median(diff[:, 2]) xshift_int = np.int(np.round(xshift, 0)) yshift_int = np.int(np.round(yshift, 0)) image_shift = np.roll(image, (yshift_int, xshift_int), axis = (0, 1)) return image_shift else: return image def median_combiner(images): ''' Function that takes the median of multiple images containing the same stars objects Parameters ---------- images: list A list of the data arrays containing the pixel data of images Returns ------- median_image: array-like Array containing the median intensity of light for each pixel for a set of images ''' ccd_image_list = [] for image in images: ccd_image = CCDData(image, unit=u.adu) ccd_image_list.append(ccd_image) c = Combiner(ccd_image_list) c.sigma_clipping(func = np.ma.median) median_image = c.median_combine() median_image = np.asarray(median_image) return median_image def image_combiner(im_data, im_sig): ''' Returns a median combination of a list of images Parameters ---------- im_data: list contains all the image data from the image set im_sig: float an image customized size parameter for searching an image for stars Returns ------- median_image: array-like ''' stars = [] for i in im_data: s = find_stars(image=i, sigma=im_sig, peak=100000) stars.append(s) if s is None: median_image = None return median_image else: diffs = [] for s in range(len(stars)): diff = calculate_shift(stars1=stars[0], stars2=stars[s]) diffs.append(diff) images = [] for i in range(len(im_data)): image_shift = roll_image(image=im_data[i], diff=diffs[i], threshold=0.5) images.append(image_shift) median_image = median_combiner(images=images) return median_image def image_mask(image, sources, fwhm, bkg, bkg_std): ''' Masking routine that rejects stars too close to the edge of the image, too close to each other, and the 5 brightest and 5 dimmest stars in the image Parameters ---------- image: array-like raw pixel data from the image sources: Table contains all the data aquired from the star searching routine fwhm: float used for scaling the mask based on how focused the image is Returns ------- stars_tbl: Table condensed form of the sources table, excluding all the masked stars. columns: xcentroid, ycentroid, flux, peak, id ''' size = 100 hsize = (size - 1) / 2 x = sources['xcentroid'] y = sources['ycentroid'] flux = sources['flux'] i = sources['id'] p = sources['peak'] mask = ((x > hsize) & (x < (image.shape[1] - 1 - hsize)) & (y > hsize) & (y < (image.shape[0] - 1 - hsize))) stars_tbl = Table() stars_tbl['x'] = x[mask] stars_tbl['y'] = y[mask] stars_tbl['flux'] = flux[mask] stars_tbl['id'] = i[mask] stars_tbl['peak'] = p[mask] d = [] idxi = 0 for i in stars_tbl['id']: idxj = 0 for j in stars_tbl['id']: if i != j: threshold = 5*fwhm dx = stars_tbl['x'][idxi] - stars_tbl['x'][idxj] dy = stars_tbl['y'][idxi] - stars_tbl['y'][idxj] distance = np.abs(np.sqrt((dx)**2 + (dy)**2)) if distance <= threshold: d.append(idxi) idxj = idxj+1 idxi = idxi + 1 idxp = 0 min_peak = bkg + 10 * bkg_std for i in stars_tbl['peak']: if i <= min_peak: d.append(idxp) idxp += 1 stars_tbl.remove_rows(d) stars_tbl.sort('flux', reverse=True) if len(stars_tbl) > 10: stars_tbl.remove_rows([-5,-4,-3,-2,-1,0,1,2,3,4]) return stars_tbl def bkg_sub(image, stars_tbl, fwhm): ''' Local background subtraction routine for stars on an image Parameters ---------- image: array-like raw pixel data of the image stars_tbl: Table contains positional and flux data for all the stars fwhm: float used for scaling the area to be background subtracted based on how focused the image is Returns ------- image_lbs: array-like a copy of the original image, with regions around each star containing no background flux ''' image_lbs = copy.deepcopy(image) for s in stars_tbl['x','y']: position = [s[0],s[1]] aperture = CircularAperture(position, r=20) annulus = CircularAnnulus(position, r_in=20, r_out=30) annulus_mask = annulus.to_mask(method='center') annulus_data = annulus_mask.multiply(image_lbs) annulus_data_1d = annulus_data[annulus_mask.data > 0] _, median_sigclip, _ = sigma_clipped_stats(annulus_data_1d) bkg_median = median_sigclip pos_pix = [np.int(np.round(position[0], 0)), np.int(np.round(position[1], 0))] size = 5*fwhm for r in range(len(image_lbs)): if (r > pos_pix[1]-(size/2) and r < pos_pix[1]+(size/2)): for c in range(len(image_lbs[r])): if (c > pos_pix[0]-(size/2) and c < pos_pix[0]+(size/2)): image_lbs[r][c] -= bkg_median return image_lbs def build_psf(image, stars_tbl, fwhm): ''' Constructs a poins spread function (psf) from a sample of stars on an image Parameters ---------- image: array-like raw pixel data of the image stars_tbl: Table contains positional and flux data for all the stars fwhm: float used for scaling the size of the star cutouts based on how focused the image is Returns ------- epsf: EPSFModel the effective psf constructed form the stars stars: EPSFStars the star cutouts used to build the psf fitted_stars: EPSFStars the original stars, with updated centers and fluxes derived from fitting the output psf ''' nddata = NDData(data = image) stars = extract_stars(nddata, stars_tbl, size = 5*fwhm) epsf_builder = EPSFBuilder(oversampling=2, maxiters=10, progress_bar=False, smoothing_kernel='quadratic') epsf, fitted_stars = epsf_builder(stars) return epsf, stars, fitted_stars def do_photometry(image, epsf, fwhm): ''' Iterative photometry routine using a point spread function (psf) model Parameters ---------- image: array-like raw pixel data from the image epsf: EPSFModel the psf model for finding stars on the image fwhm: float used for scaling data collection region around each star based on how focused the image is Returns ------- results: Table contains all the photometry data: x_0, x_fit, y_0, y_fit, flux_0, flux_fit, id,group_id, flux_unc, x_0_unc, y_0_unc, iter_detected photometry: the iterative search function for performing photometry ''' mean_val, median_val, std_val = sigma_clipped_stats(image, sigma=2.0) daofind = DAOStarFinder(fwhm=fwhm, threshold=median_val+20*std_val, sky=median_val, peakmax=100000, exclude_border=True) daogroup = DAOGroup(2*fwhm) mmm_bkg = MMMBackground() fitter = LevMarLSQFitter() def round_to_odd(f): return np.ceil(f) // 2 * 2 + 1 size = 5*fwhm fitshape = np.int(round_to_odd(size)) photometry = IterativelySubtractedPSFPhotometry(finder=daofind, group_maker=daogroup, bkg_estimator=mmm_bkg, psf_model=epsf, fitter=fitter, niters=5, fitshape=fitshape, aperture_radius=(size-1)/2) results = photometry(image) return results, photometry def get_residuals(results, photometry, fwhm, image): ''' Generates residual image cutouts from photometry results Parameters ---------- results: Table contains all the photometry data: x_0, x_fit, y_0, y_fit, flux_0, flux_fit, id,group_id, flux_unc, x_0_unc, y_0_unc, iter_detected photometry: the iterative search function for performing photometry Results ------- results_tbl: Table condensed table of the photometry results, with just the positional and flux data residual_stars: EPSFStars cutouts of the residuals of the stars left after photometry is completed ''' results_tbl = Table() results_tbl['x'] = results['x_fit'] results_tbl['y'] = results['y_fit'] results_tbl['flux'] = results['flux_fit'] results_tbl.sort('flux', reverse=True) ndresidual = NDData(data=photometry.get_residual_image()) nddata = NDData(data=image) final_stars = extract_stars(nddata, results_tbl, size=5*fwhm) residual_stars = extract_stars(ndresidual, results_tbl, size=5*fwhm) return results_tbl, final_stars, residual_stars def get_wcs(results_tbl): ''' Queries the website astrometry.net with image data, returning a world coordinate system (wcs) solution, along with a header containing this solution Parameters ---------- results_tbl: Table contains positional and flux data for all stars found in the photometry routine Results ------- sky: Table contains all locations for the stars in results_tbl in RA and DEC instead of pixels wcs_header: Header an image header with the RA and DEC included ''' ast = AstrometryNet() ast.api_key = '<KEY>' try_again = True submission_id = None image_width = 4096 image_height = 4096 while try_again: try: if not submission_id: wcs_header = ast.solve_from_source_list(results_tbl['x'][:30], results_tbl['y'][:30], image_width, image_height, submission_id=submission_id, solve_timeout=600) else: wcs_header = ast.monitor_submission(submission_id, solve_timeout=600) except TimeoutError as e: submission_id = e.args[1] else: try_again = False if wcs_header: w = WCS(wcs_header) sky = w.pixel_to_world(results_tbl['x'], results_tbl['y']) return sky, wcs_header else: return None, wcs_header ``` #### File: JeremyBuchanan/psf-photometry-pipeline/p_io.py ```python import astropy.io.fits as fits import matplotlib import matplotlib.pyplot as plt import numpy as np import obj_data as od import saphires as saph from astropy.time import Time from astropy.visualization import ZScaleInterval, SqrtStretch, ImageNormalize from matplotlib.backends.backend_pdf import PdfPages ra = od.ra dec = od.dec pmra = od.pmra pmdec = od.pmdec plx = od.plx epoch = od.epoch matplotlib.rcParams.update({'font.size': 12}) def write_fits(fn, data, im_headers, wcs_header): ''' Writes a new fits file including the image data and and updated header for the new image Parameters ---------- fn: string The desired file name of the new fits file data: array-like Contains all the image data Returns ------- avg_airmass: float the amount of atmosphere obscuring the target, found in image header. Here the airmass for all images is averaged bjd: float Barycentric Julian Date, found in the image header header: Header ''' for keys in wcs_header: if keys not in ['HISTORY', 'COMMENT']: im_headers[0][keys] = wcs_header[keys] airmass = [] for i in im_headers: airmass.append(i['AIRMASS']) avg_airmass = np.mean(airmass) im_headers[0]['AIRMASS'] = avg_airmass jd_middle = np.zeros(len(im_headers)) for i in range(len(im_headers)): jd_middle[i] = Time(im_headers[i]['DATE-OBS'], format='isot').jd exptime = im_headers[i]['EXPTIME'] jd_middle[i] = jd_middle[i] + (exptime/2.0)/3600.0/24.0 isot_date_obs = Time(np.mean(jd_middle), format='jd').isot tele = im_headers[0]['SITEID'] brv,bjd,bvcorr = saph.utils.brvc(isot_date_obs,0.0,tele,ra=ra,dec=dec,epoch=epoch, pmra=pmra, pmdec=pmdec, px=plx) im_headers[0]['BJD'] = bjd[0] header = im_headers[0] hdu_p = fits.PrimaryHDU(data=data, header=header) hdu = fits.HDUList([hdu_p]) hdu.writeto(fn) return avg_airmass, bjd, header def write_pdf(name, images, model=None, final_stars=None, residual_stars=None, fluxes=None, plot_res=None): pp = PdfPages(name) for i in range(len(images)): fig, ax = plt.subplots(1, figsize=(10, 10)) norm = ImageNormalize(images[i], interval=ZScaleInterval(), stretch=SqrtStretch()) im = ax.imshow(images[i], norm=norm) plt.colorbar(im) plt.tight_layout() pp.savefig() plt.close() if model is not None: fig, ax = plt.subplots(1, figsize=(10, 10)) psf = ax.imshow(model) plt.colorbar(psf) ax.set_title('PSF Model') plt.tight_layout() pp.savefig() plt.close() if final_stars is not None: if plot_res == 'y': nrows = len(final_stars) ncols = 2 fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=(10, 800), squeeze=True) ax = ax.ravel() index = 0 for i in range(0, nrows*ncols, 2): norm = simple_norm(final_stars[index],'log') norm2 = simple_norm(residual_stars[index], 'linear') im = ax[i].imshow(final_stars[index], norm=norm, origin='lower', cmap='viridis', interpolation='none') fig.colorbar(im, ax = ax[i]) ax[i].set_title(np.str(fluxes[index])) im_r = ax[i+1].imshow(residual_stars[index], norm=norm2, origin='lower', cmap='viridis', interpolation='none') fig.colorbar(im_r, ax = ax[i+1]) index = index + 1 plt.tight_layout() pp.savefig() plt.close() pp.close() def write_csv(name, im_name, bjd, filt, airmass, results, sky): f = open(name, 'w') f.write('NAME, ID, BJD, FLUX, FLUX ERROR, MAG, MAG ERROR, FILTER, X POSITION, Y POSITION, AIRMASS, RA, DEC\n') for i in range(sky.size): if results['flux_fit'][i] > 0: star_id = results['id'][i] flux = results['flux_fit'][i] fluxerr = results['flux_unc'][i] mag = -2.5*np.log10(flux) magerr = (1.08574*fluxerr)/(flux) x_pos = results['x_fit'][i] y_pos = results['y_fit'][i] ra = sky[i].ra.degree dec = sky[i].dec.degree f.write(im_name+','+np.str(i)+','+np.str(bjd)+','+np.str(flux)+','+np.str(fluxerr)+','+np.str(mag)+','+np.str(magerr) +','+filt+','+np.str(x_pos)+','+np.str(y_pos)+','+str(airmass)+','+np.str(ra)+','+np.str(dec)+'\n') f.close() def write_txt(name, sources, stars_tbl, fwhm, results=None, t0=None,t1=None,t2=None,t3=None,t4=None,t5=None): ''' Short text file with diagnostic info about each image set, specifically for a successful run of the image set Parameters ---------- name: string name of the saved file sources: Table tabulated info about all the stars found on the image stars_tbl: Table tabulated info about all the stars used to form a psf results: Table tabulated info about all the stars found with the photometry routine ''' f = open(name, 'w') f.write('Number of stars in sources: '+np.str(len(sources))+'\nNumber of stars in stars_tbl: '+np.str(len(stars_tbl)) +'\nNumbers of stars in results: '+np.str(len(results))+'\nMin, Max, Median peaks in sources: ' +np.str(np.min(sources['peak']))+', '+np.str(np.max(sources['peak']))+', '+np.str(np.median(sources['peak'])) +'\nMin, Max, Median fluxes in results: '+np.str(np.min(results['flux_fit']))+', '+np.str(np.max(results['flux_fit']))+', ' +np.str(np.median(results['flux_fit']))+'\nFWHM: '+np.str(fwhm)+'\n') if t5: t_1 = t1-t0 t_2 = t2-t1 t_3 = t3-t2 t_4 = t4-t3 t_5 = t5-t4 t_f = t5-t0 f.write('Time to combine images: '+np.str(t_1)+'\nTime to find stars: '+np.str(t_2)+'\nTime to build psf: ' +np.str(t_3)+'\nTime to run photometry: '+np.str(t_4)+'\nTime to get wcs: '+np.str(t_5)+'\nTotal time: ' +np.str(t_f)+'\n') f.close() ``` #### File: JeremyBuchanan/psf-photometry-pipeline/psf_phot.py ```python import copy as copy import numpy as np import core as c import time as t import p_io from astropy.stats import sigma_clipped_stats from astropy.table import Table def pipeline(fn_path, fits_path, res_path): ''' This is a pipeline for reducing raw imaging data using point spread function photometry Parameters ---------- fn_path: string pathway to the csv containing the names of all image files in one column, and the grouping id of each image in the second column fits_path: string pathway to a folder containing all the FITS files of the imaging im_data res_path: string pathway to a directory for all the output files of the photometry routine Returns ------- N/A Outputs ------- CSV: tabulated data of the photometry results FITS: contains the header as well as the imaging data for the median combined images of each image set PDF: images of all the images in the image set, as well as the constructed PSF and (per input) the residual images of all the stars included in the calculations TXT: text file containing a bunch of diagnostic information about the script ''' filenames, epochid = np.loadtxt(fn_path, unpack=True, delimiter=',', usecols=(0,1), dtype='U100,f') nepochs = np.int(np.max(epochid)) plot_residuals = input('Plot residuals? [y/n] ') for i in range(0, nepochs+1): images = filenames[(epochid == i)] x = str(images[0]) t0 = t.perf_counter() set_name = x[:22] path = fits_path im_data, headers = c.import_images(im_list=images, p=path) im_copy = copy.deepcopy(im_data[0]) fwhm, im_sig = c.find_fwhm(image=im_copy) if im_sig == 0: print('No stars were detected in this image set.') p_io.write_pdf(name=res_path+set_name+'_'+np.str(i)+'.pdf', images=im_data) else: if len(im_data) > 1: median_image = c.image_combiner(im_data=im_data, im_sig=im_sig) if median_image is None: image = im_data[0] print('No stars were detected in this image set.') p_io.write_pdf(name=res_path+set_name+'_'+np.str(i)+'.pdf', images=im_data) continue else: image = median_image mean_val, median_val, std_val = sigma_clipped_stats(image, sigma=2.0) image -= median_val stars_tbl = Table() t1 = t.perf_counter() sources = c.find_stars(image=image, sigma=im_sig) t2 = t.perf_counter() stars_tbl = c.image_mask(image=image, sources=sources, fwhm=fwhm, bkg=median_val, bkg_std=std_val) image_lbs = c.bkg_sub(image=image, stars_tbl=stars_tbl, fwhm=fwhm) epsf, stars, fitted_stars = c.build_psf(image=image_lbs, stars_tbl=stars_tbl, fwhm=fwhm) t3 = t.perf_counter() if len(stars_tbl) <= 10 or fwhm > 30: print('Not enough stars were detected.') results = [] p_io.write_pdf(name=res_path+set_name+'_'+np.str(i)+'.pdf', images=im_data, model=epsf.data) p_io.write_txt(name=res_path+set_name+'_'+np.str(i)+'_diag.txt', sources=sources, stars_tbl=stars_tbl, fwhm=fwhm) else: results, photometry = c.do_photometry(image=image, epsf=epsf, fwhm=fwhm) results_tbl, residual_stars, final_stars = c.get_residuals(results=results, photometry=photometry, fwhm=fwhm, image=image) results.sort('flux_fit', reverse=True) t4 = t.perf_counter() sky, wcs_header = c.get_wcs(results_tbl=results_tbl) if sky: t5 = t.perf_counter() avg_airmass, bjd, header = p_io.write_fits(fn=res_path+set_name+'_'+np.str(i)+'.fits', data=image, im_headers=headers, wcs_header=wcs_header) p_io.write_pdf(name=res_path+set_name+'_'+np.str(i)+'.pdf', images=im_data, model=epsf.data, final_stars=final_stars, residual_stars=residual_stars, fluxes=results_tbl['flux'], plot_res=plot_residuals) p_io.write_txt(name=res_path+set_name+'_'+np.str(i)+'_diag.txt', sources=sources, stars_tbl=stars_tbl, results=results, fwhm=fwhm,t0=t0,t1=t1,t2=t2,t3=t3,t4=t4,t5=t5) p_io.write_csv(name=res_path+set_name+'_'+np.str(i)+'.csv', im_name=set_name, bjd=bjd[0], filt=header['FILTER'], airmass=avg_airmass, results=results, sky=sky) else: print('Failed to retrieve WCS transformation') p_io.write_pdf(name=res_path+set_name+'_'+np.str(i)+'.pdf', images=im_data, model=epsf.data, final_stars=final_stars, residual_stars=residual_stars, fluxes=results_tbl['flux'], plot_res=plot_residuals) p_io.write_txt(name=res_path+set_name+'_'+np.str(i)+'_diag.txt', sources=sources, stars_tbl=stars_tbl, results=results, fwhm=fwhm) ```
{ "source": "jeremybusk/demoflaskpgsqlnginxdocker", "score": 3 }
#### File: portal/portal/cli.py ```python import click from flask_sqlalchemy import SQLAlchemy from portal import app @app.cli.command() @click.argument('name') def example(name): print(name) @app.cli.command() def initdata(): with open('data/demoapp1-uuids.txt', 'r') as f: uuids = f.read().splitlines() db = SQLAlchemy(app) app.config['SESSION_SQLALCHEMY'] = db app.config['SESSION_TYPE'] = 'sqlalchemy' sql = "INSERT INTO products (name) VALUES ('demoapp1')" print(sql) db.engine.execute(sql) for uuid in uuids: sql = f"INSERT INTO licenses (product_id, uuid) VALUES (1, '{uuid}')" print(sql) db.engine.execute(sql) ``` #### File: portal/portal/utils.py ```python from cryptography.hazmat.primitives import serialization \ as crypto_serialization from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.backends import default_backend \ as crypto_default_backend from email.mime.text import MIMEText from cryptography.hazmat.backends import default_backend # from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.asymmetric import ec from cryptography.hazmat.primitives import serialization import random import string import smtplib def gen_random_string(chars=32, lower=False): s = ''.join( random.choice( string.ascii_uppercase + string.ascii_lowercase + string.digits ) for _ in range(chars)) if lower: return s.lower() return s def send_email(recipients, subject, body): email_username = '<EMAIL>' msg = MIMEText(body) msg['Subject'] = subject msg['From'] = f'no-reply <<EMAIL>>' msg['To'] = recipients msg = msg.as_string() session = smtplib.SMTP('smtp.uvoo.io', 587) session.ehlo() session.starttls() session.login(email_username, '$mtpRelayUser123@') session.sendmail(email_username, recipients, msg) session.quit() def create_key_pair(key_cipher='rsa', key_format='openssh'): if key_cipher == 'rsa' and key_format == 'openssh': rsa_key = rsa.generate_private_key( backend=crypto_default_backend(), public_exponent=65537, key_size=4096 ) private_key = rsa_key.private_bytes( crypto_serialization.Encoding.PEM, crypto_serialization.PrivateFormat.PKCS8, crypto_serialization.NoEncryption()) public_key = rsa_key.public_key().public_bytes( crypto_serialization.Encoding.OpenSSH, crypto_serialization.PublicFormat.OpenSSH ) elif key_cipher == 'rsa' and key_format == 'pem': rsa_key = rsa.generate_private_key( backend=crypto_default_backend(), public_exponent=65537, key_size=4096 ) private_key = rsa_key.private_bytes( crypto_serialization.Encoding.PEM, crypto_serialization.PrivateFormat.PKCS8, crypto_serialization.NoEncryption()) public_key = rsa_key.public_key().public_bytes( crypto_serialization.Encoding.PEM, crypto_serialization.PublicFormat.SubjectPublicKeyInfo ) elif key_cipher == 'ec' and key_format == 'pem': # Ciphers: SECP384R1, SECP521R1 ec_key = ec.generate_private_key( ec.SECP521R1(), default_backend() ) private_key = ec_key.private_bytes( crypto_serialization.Encoding.PEM, crypto_serialization.PrivateFormat.PKCS8, crypto_serialization.NoEncryption()) public_key = ec_key.public_key().public_bytes( crypto_serialization.Encoding.PEM, crypto_serialization.PublicFormat.SubjectPublicKeyInfo ) else: s = f"Unsupported key cipher {key_cipher} and/or format {key_format}." print(s) return -1 return {'private_key': private_key.decode('utf-8'), 'public_key': public_key.decode('utf-8'), 'key_cipher': key_cipher, 'key_format': key_format} def load_private_key(filename, file_format='pem'): with open(filename, 'rb') as pem_in: pemlines = pem_in.read() private_key = crypto_serialization.load_pem_private_key( pemlines, None, default_backend()) return private_key def load_key(filename, key_type='private', file_format='pem'): with open(filename, 'rb') as f: key_lines = f.read() if key_type == 'private': private_key = crypto_serialization.load_pem_private_key( key_lines, default_backend(), password=<PASSWORD>) return private_key elif key_type == 'public': public_key = crypto_serialization.load_pem_public_key( key_lines, default_backend()) return public_key else: raise Exception('E: Unsupported key type.') def save_private_key(private_key, filename): pem = private_key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.TraditionalOpenSSL, encryption_algorithm=serialization.NoEncryption() ) with open(filename, 'wb') as pem_out: pem_out.write(pem) def save_public_key(public_key, filename): pem = public_key.public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.OpenSSH ) with open(filename, 'wb') as pem_out: pem_out.write(pem) ``` #### File: migrations/versions/393219824c73_.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '393219824c73' down_revision = '<KEY>' branch_labels = None depends_on = None def upgrade(): pass # keyciphers = postgresql.ENUM('active', 'inactive', 'archive', name='keyciphers') # banner_status.create(op.get_bind()) # # ### commands auto generated by Alembic - please adjust! ### # op.add_column('key', sa.Column('key_cipher', sa.Enum('ed25519', 'rsa', name='keyciphers'), nullable=True)) # op.add_column('key', sa.Column('key_format', sa.Enum('openssh', 'pem', 'pkcs12', name='keyformats'), nullable=True)) # ### end Alembic commands ### def downgrade(): pass # ### commands auto generated by Alembic - please adjust! ### # op.drop_column('key', 'key_format') # op.drop_column('key', 'key_cipher') # ### end Alembic commands ### ``` #### File: migrations/versions/45faee087b6e_.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '45faee087b6e' down_revision = '<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('api_logs', sa.Column('id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('name', sa.String(length=128), nullable=True), sa.Column('ts_created', sa.DateTime(), nullable=True), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.add_column('licenses', sa.Column('token', sa.String(length=128), nullable=True)) op.add_column('licenses', sa.Column('user_id', sa.Integer(), nullable=True)) op.create_foreign_key(None, 'licenses', 'users', ['user_id'], ['id']) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, 'licenses', type_='foreignkey') op.drop_column('licenses', 'user_id') op.drop_column('licenses', 'token') op.drop_table('api_logs') # ### end Alembic commands ### ``` #### File: migrations/versions/4c3eea649e45_.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '4c3eea649e45' down_revision = '5<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('container_port_map', sa.Column('id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('container_id', sa.Integer(), nullable=True), sa.Column('ipv4_address', sa.String(length=128), nullable=True), sa.Column('ipv6_address', sa.String(length=128), nullable=True), sa.Column('transport_protocol', sa.Enum('tcp', 'udp', name='transportprotocol'), nullable=True), sa.Column('port', sa.Integer(), nullable=True), sa.Column('app_protocol', sa.Enum('ssh', 'http', 'https', name='appprotocol'), nullable=True), sa.Column('app_name', sa.Enum('demoapp1', name='appname'), nullable=True), sa.Column('note', sa.String(length=255), nullable=True), sa.ForeignKeyConstraint(['container_id'], ['container.id'], ), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) op.drop_constraint('container_ssh_key_id_fkey', 'container', type_='foreignkey') op.drop_column('container', 'ssh_key_id') op.add_column('ssh_key', sa.Column('add_to_authorized_keys', sa.Boolean(), nullable=True)) op.add_column('ssh_key', sa.Column('key_cipher', sa.String(length=32), nullable=True)) op.add_column('ssh_key', sa.Column('key_format', sa.String(length=32), nullable=True)) op.add_column('ssh_key', sa.Column('private_key', sa.String(length=128), nullable=True)) op.add_column('ssh_key', sa.Column('public_key', sa.String(length=128), nullable=True)) op.drop_column('ssh_key', 'private') op.drop_column('ssh_key', 'public') op.drop_column('ssh_key', 'type') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('ssh_key', sa.Column('type', sa.VARCHAR(length=24), autoincrement=False, nullable=True)) op.add_column('ssh_key', sa.Column('public', sa.VARCHAR(length=128), autoincrement=False, nullable=True)) op.add_column('ssh_key', sa.Column('private', sa.VARCHAR(length=128), autoincrement=False, nullable=True)) op.drop_column('ssh_key', 'public_key') op.drop_column('ssh_key', 'private_key') op.drop_column('ssh_key', 'key_format') op.drop_column('ssh_key', 'key_cipher') op.drop_column('ssh_key', 'add_to_authorized_keys') op.add_column('container', sa.Column('ssh_key_id', sa.INTEGER(), autoincrement=False, nullable=True)) op.create_foreign_key('container_ssh_key_id_fkey', 'container', 'ssh_key', ['ssh_key_id'], ['id']) op.drop_table('container_port_map') # ### end Alembic commands ### ``` #### File: migrations/versions/ab2f1cdac54c_.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '1<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('container_port_map', sa.Column('created', sa.DateTime(), nullable=True)) op.add_column('container_port_map', sa.Column('deleted', sa.DateTime(), nullable=True)) op.add_column('container_port_map', sa.Column('status', sa.Integer(), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('container_port_map', 'status') op.drop_column('container_port_map', 'deleted') op.drop_column('container_port_map', 'created') # ### end Alembic commands ### ```
{ "source": "JeremyButt/GDMC", "score": 3 }
#### File: ChirpVillage/Mocks/Box.py ```python class BoundingBox(object): def __init__(self, minx, miny, minz, maxx, maxy, maxz): self.minx = minx self.miny = miny self.minz = minz self.maxx = maxx self.maxy = maxy self.maxz = maxz ``` #### File: ChirpVillage/Mocks/Level.py ```python from random import randrange class Level(object): def __init__(self, x_min=0, y_min=0, z_min=0, x_max=300, y_max=254, z_max=300): self.RandomSeed = 2523870351887443968 self.x_min = x_min self.y_min = y_min self.z_min = z_min self.x_max = x_max self.y_max = y_max self.z_max = z_max self.world = self.init_world() def init_world(self): """ Initialize the world with stone or air blocks at random height (30->254) :return: initialized 3d world filled with generated data """ world = [] for i in range(self.x_max): j_column = [] for j in range(self.z_max): height = randrange(60, 80) # add river down center if j == self.z_max-self.z_min: j_column.append([0 if h >= height else 8 for h in range(self.y_max)]) # add lava down quarter elif j == (self.z_max -self.z_min)/2: j_column.append([0 if h >= height else 10 for h in range(self.y_max)]) else: j_column.append([0 if h >= height else 1 for h in range(self.y_max)]) world.append(j_column) return world def blockAt(self, x, y, z): """ Fetch the block that is at the coords :param x, y, z: x, y, z coords to the block required :return: block at the x, y, z coords in the 3d world matrix member """ return self.world[x][z][y] ```
{ "source": "JeremyBYU/FastGaussianAccumulator", "score": 2 }
#### File: python/archive/run_normals copy.py ```python import time import sys import argparse import numpy as np import open3d as o3d from fastgac import GaussianAccumulatorS2Beta, MatX3d, convert_normals_to_hilbert, IcoCharts from fastgac.peak_and_cluster import find_peaks_from_accumulator, find_peaks_from_ico_charts from fastgac.o3d_util import get_arrow, get_pc_all_peaks, get_arrow_normals, plot_meshes, assign_vertex_colors, plot_meshes, get_colors, create_open_3d_mesh import matplotlib.pyplot as plt from tests.python.helpers.setup_helper import cluster_normals, sort_by_distance_from_point np.random.seed(1) np.set_printoptions(suppress=True, precision=3) def integrate_normals_and_visualize(to_integrate_normals, ga): to_integrate_normals_mat = MatX3d(to_integrate_normals) t0 = time.perf_counter() neighbors_idx = np.asarray(ga.integrate(to_integrate_normals_mat)) t1 = time.perf_counter() elapsed_time = (t1 - t0) * 1000 normalized_counts = np.asarray(ga.get_normalized_bucket_counts()) color_counts = get_colors(normalized_counts)[:, :3] refined_icosahedron_mesh = create_open_3d_mesh(np.asarray(ga.mesh.triangles), np.asarray(ga.mesh.vertices)) # Colorize normal buckets colored_icosahedron = assign_vertex_colors(refined_icosahedron_mesh, color_counts, None) return colored_icosahedron def example_normals(normals:np.ndarray): LEVEL = 4 kwargs_base = dict(level=LEVEL) kwargs_s2 = dict(**kwargs_base) axis_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(0.5).translate([-2.0, 0, 0]) # Create Gaussian Accumulator ga_cpp_s2 = GaussianAccumulatorS2Beta(**kwargs_s2) # Integrate the normals and get open3d visualization colored_icosahedron = integrate_normals_and_visualize(normals, ga_cpp_s2) o3d.visualization.draw_geometries([colored_icosahedron, axis_frame]) # Create the IcoChart for unwrapping ico_chart_ = IcoCharts(LEVEL) normalized_bucket_counts_by_vertex = ga_cpp_s2.get_normalized_bucket_counts_by_vertex(True) ico_chart_.fill_image(normalized_bucket_counts_by_vertex) average_vertex_normals = np.asarray(ga_cpp_s2.get_average_normals_by_vertex(True)) # 2D Peak Detection find_peaks_kwargs = dict(threshold_abs=20, min_distance=1, exclude_border=False, indices=False) cluster_kwargs = dict(t=0.05, criterion='distance') average_filter = dict(min_total_weight=0.2) # New simplified API for finding peaks res = np.array(ga_cpp_s2.find_peaks(threshold_abs=find_peaks_kwargs['threshold_abs'], cluster_distance=cluster_kwargs['t'], min_cluster_weight=average_filter['min_total_weight'])) print("New Detected Peaks:") res = sort_by_distance_from_point(res) print(res) # Old Way of finding peaks _, _, avg_peaks, _ = find_peaks_from_ico_charts(ico_chart_, np.asarray(normalized_bucket_counts_by_vertex), vertices=average_vertex_normals, find_peaks_kwargs=find_peaks_kwargs, cluster_kwargs=cluster_kwargs) avg_peaks = sort_by_distance_from_point(avg_peaks) print("Detected Peaks:") print(avg_peaks) full_image = np.asarray(ico_chart_.image) plt.imshow(full_image) plt.xticks(np.arange(0, full_image.shape[1], step=1)) plt.yticks(np.arange(0, full_image.shape[0], step=1)) plt.show() # Don't forget to reset the GA ga_cpp_s2.clear_count() def main(): parser = argparse.ArgumentParser(description='Integrate some Normals') parser.add_argument('--path', type=str, help='Specify an optional file') args = parser.parse_args() if args.path is None: clusters, normals = cluster_normals(10, 1000, patch_deg=5) combined =np.concatenate(clusters) else: print("loading data from ", args.path) data = np.load(args.path) combined = data['clusters'] normals = data['normals'] print(sort_by_distance_from_point(normals)) # sys.exit() # normals = np.asarray([ # [0.0, 0.0, 0.95], # [0.0, 0.0, 0.98], # [0.95, 0.0, 0], # [0.98, 0.0, 0] # ]) example_normals(combined) if __name__ == "__main__": main() ``` #### File: python/paper/plot_mesh_beta.py ```python import time from pathlib import Path from collections import namedtuple import numpy as np import open3d as o3d from scipy.spatial.transform import Rotation as R import matplotlib.pyplot as plt from fastgac import GaussianAccumulatorKD, GaussianAccumulatorOpt, GaussianAccumulatorS2, MatX3d, convert_normals_to_hilbert, IcoCharts, GaussianAccumulatorS2Beta from fastgac.peak_and_cluster import find_peaks_from_accumulator, find_peaks_from_ico_charts from fastgac.o3d_util import get_arrow, get_pc_all_peaks, get_arrow_normals from examples.python.run_meshes import visualize_gaussian_integration, plot_meshes from examples.python.util.mesh_util import ALL_MESHES, ALL_MESHES_ROTATIONS def main(): EXAMPLE_INDEX = 1 kwargs_base = dict(level=4) kwargs_s2 = dict(**kwargs_base) kwargs_opt_integrate = dict(num_nbr=12) query_max_phi = 175 # Get an Example Mesh ga_cpp_s2 = GaussianAccumulatorS2Beta(**kwargs_s2) example_mesh = o3d.io.read_triangle_mesh(str(ALL_MESHES[EXAMPLE_INDEX])) r = ALL_MESHES_ROTATIONS[EXAMPLE_INDEX] example_mesh_filtered = example_mesh if r is not None: example_mesh_filtered = example_mesh_filtered.rotate(r.as_matrix()) example_mesh_filtered = example_mesh_filtered.filter_smooth_laplacian(5) example_mesh_filtered.compute_triangle_normals() # np.save('fixtures/normals/basement.npy', np.asarray(example_mesh_filtered.triangle_normals)) colored_icosahedron_s2, normals, neighbors_s2 = visualize_gaussian_integration( ga_cpp_s2, example_mesh_filtered, max_phi=query_max_phi, integrate_kwargs=kwargs_opt_integrate) o3d.visualization.draw_geometries([example_mesh_filtered]) o3d.visualization.draw_geometries([colored_icosahedron_s2]) # Visualize unwrapping ico_chart_ = IcoCharts(kwargs_base['level']) t2 = time.perf_counter() normalized_bucket_counts_by_vertex = ga_cpp_s2.get_normalized_bucket_counts_by_vertex(True) ico_chart_.fill_image(normalized_bucket_counts_by_vertex) average_bucket_normals = np.asarray(ga_cpp_s2.get_bucket_average_normals(True)) pcd = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(average_bucket_normals)) pcd.paint_uniform_color([1, 0, 0]) average_vertex_normals = np.asarray(ga_cpp_s2.get_average_normals_by_vertex(True)) find_peaks_kwargs=dict(threshold_abs=50,min_distance=1, exclude_border=False, indices=False) print(np.asarray(ico_chart_.image).shape) cluster_kwargs=dict(t =0.1,criterion ='distance') _, _, avg_peaks, avg_weights = find_peaks_from_ico_charts(ico_chart_, np.asarray(normalized_bucket_counts_by_vertex), vertices=average_vertex_normals, find_peaks_kwargs=find_peaks_kwargs, cluster_kwargs=cluster_kwargs) t3 = time.perf_counter() print(t3 -t2) print(avg_peaks) # import ipdb; ipdb.set_trace() arrow_avg_peaks = get_arrow_normals(avg_peaks, avg_weights) wireframe = o3d.geometry.LineSet.create_from_triangle_mesh(colored_icosahedron_s2) o3d.visualization.draw_geometries([colored_icosahedron_s2, *arrow_avg_peaks, wireframe]) # o3d.visualization.draw_geometries([colored_icosahedron_s2, *arrow_avg_peaks, pcd]) full_image = np.asarray(ico_chart_.image) plt.imshow(full_image) plt.axis('off') # plt.xticks(np.arange(0, full_image.shape[1], step=1)) # plt.yticks(np.arange(0, full_image.shape[0], step=1)) plt.show() if __name__ == "__main__": main() """Mesh { "class_name" : "ViewTrajectory", "interval" : 29, "is_loop" : false, "trajectory" : [ { "boundingbox_max" : [ 1.8764505760969685, 3.0280973667097442, 3.045776668203259 ], "boundingbox_min" : [ -2.2365574934452548, -3.6804227036671078, 0.51828136237409295 ], "field_of_view" : 60.0, "front" : [ -0.43966986583569911, 0.57136927624194478, 0.69298453030552898 ], "lookat" : [ 0.30001921841467899, -0.99779994278506134, 1.5071575255263165 ], "up" : [ 0.44135525764305411, -0.53453483690843095, 0.72074825333268089 ], "zoom" : 0.31999999999999978 } ], "version_major" : 1, "version_minor" : 0 } """ """ { "class_name" : "ViewTrajectory", "interval" : 29, "is_loop" : false, "trajectory" : [ { "boundingbox_max" : [ 1.1339119391275889, 1.1343327326857235, 1.1998729449684717 ], "boundingbox_min" : [ -1.1353148374296551, -1.0, -1.1999606130137823 ], "field_of_view" : 60.0, "front" : [ -0.59564118276660283, 0.48513744010499366, 0.6401978175538996 ], "lookat" : [ -0.00070144915103309557, 0.067166366342861772, -4.3834022655286908e-05 ], "up" : [ 0.47207151576167344, -0.43341779039025202, 0.76765715197587236 ], "zoom" : 0.69999999999999996 } ], "version_major" : 1, "version_minor" : 0 } """ ``` #### File: examples/python/run_ga.py ```python import numpy as np import time from fastgac import GaussianAccumulatorKD, MatX3d np.set_printoptions(suppress=True, precision=2) def main(): normals = np.array([ [-1, 0, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0], [0, -1, 0] ]) t0 = time.perf_counter() ga = GaussianAccumulatorKD(level=0, max_phi=180) t1 = time.perf_counter() print("Number of Buckets: {}\n".format(len(ga.buckets))) print("Bucket representations:\n {}\n".format(ga.buckets)) print("Bucket Cell Surface Normals: \n {}\n".format(np.asarray(ga.get_bucket_normals()))) normals_mat = MatX3d(normals) # need to convert a format we understand t2 = time.perf_counter() bucket_indexes = ga.integrate(normals_mat) t3 = time.perf_counter() print("These normals: \n {} \n are most similar to these cell normlas: \n {} \n".format(normals, np.asarray(ga.get_bucket_normals())[bucket_indexes,:])) print(np.asarray(bucket_indexes)) print("Building Index Took (ms): {}; Query Took (ms): {}".format((t1-t0) * 1000, (t3 - t2)* 1000)) print("Change the level see a better approximation") if __name__ == "__main__": main() ``` #### File: python/util/mesh_util.py ```python from os import path, listdir import numpy as np import open3d as o3d from scipy.spatial.transform import Rotation as R DIR_NAME = path.dirname(__file__) FIXTURES_DIR = path.join(DIR_NAME, '../../..', 'fixtures') MESHES_DIR = path.join(FIXTURES_DIR, 'meshes') DENSE_MESH = path.join(MESHES_DIR, 'dense_first_floor_map_smoothed.ply') BASEMENT_CHAIR = path.join(MESHES_DIR, 'basement_chair_5cm.ply') ALL_MESHES = [DENSE_MESH, BASEMENT_CHAIR] ALL_MESHES_ROTATIONS = [None, None] def get_mesh_data_iterator(): for i, (mesh_fpath, r) in enumerate(zip(ALL_MESHES, ALL_MESHES_ROTATIONS)): example_mesh = o3d.io.read_triangle_mesh(str(mesh_fpath)) if r is not None: example_mesh = example_mesh.rotate(r.as_matrix()) example_mesh_filtered = example_mesh example_mesh_filtered.compute_triangle_normals() yield example_mesh_filtered def main(): for i, mesh in enumerate(get_mesh_data_iterator()): if i < 1: continue colors = np.asarray(mesh.vertex_colors) colors2 = np.column_stack((colors[:, 2], colors[:, 1], colors[:, 0])) mesh.vertex_colors = o3d.utility.Vector3dVector(colors2) o3d.io.write_triangle_mesh('test.ply', mesh) if __name__ == "__main__": main() ``` #### File: Python/slowga/peak_and_cluster.py ```python import time import numpy as np from scipy.signal import find_peaks from scipy.cluster.hierarchy import linkage, fcluster from .helper import normalized def find_peaks_from_accumulator(gaussian_normals_sorted, accumulator_normalized_sorted, find_peaks_kwargs=dict(height=0.05, threshold=None, distance=4, width=None, prominence=0.07), cluster_kwargs=dict(t=0.15, criterion='distance')): t0 = time.perf_counter() peaks, _ = find_peaks(accumulator_normalized_sorted, **find_peaks_kwargs) t1 = time.perf_counter() gaussian_normal_1d_clusters = gaussian_normals_sorted[peaks,:] Z = linkage(gaussian_normal_1d_clusters, 'single') clusters = fcluster(Z, **cluster_kwargs) t2 = time.perf_counter() weights_1d_clusters = accumulator_normalized_sorted[peaks] average_peaks, average_weights = average_clusters(gaussian_normal_1d_clusters, weights_1d_clusters, clusters) print("Peak Detection - Find Peaks Execution Time (ms): {:.1f}; Hierarchical Clustering Execution Time (ms): {:.1f}".format((t1-t0) * 1000, (t2-t1) * 1000)) return peaks, clusters, average_peaks, average_weights def get_point_clusters(points, point_weights, clusters): point_clusters = [] cluster_groups = np.unique(clusters) for cluster in cluster_groups: temp_mask = clusters == cluster point_clusters.append((points[temp_mask, :], point_weights[temp_mask])) return point_clusters def average_clusters(peaks, peak_weights, clusters, average_filter=dict(min_total_weight=0.2)): cluster_points = get_point_clusters(peaks, peak_weights, clusters) clusters_averaged = [] clusters_total_weight = [] for points, point_weights in cluster_points: total_weight = np.sum(point_weights) avg_point = np.average(points, axis=0, weights=point_weights) if total_weight < average_filter['min_total_weight']: continue clusters_averaged.append(avg_point) clusters_total_weight.append(total_weight) normals = np.array(clusters_averaged) normals, _ = normalized(normals) return normals, np.array(clusters_total_weight) ```
{ "source": "JeremyBYU/img-filter", "score": 3 }
#### File: img-filter/scripts/view_image.py ```python import argparse from PIL import Image, ImageOps import numpy as np def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-f', '--file') args = parser.parse_args() if args.file is None: raise ValueError("Missing File Arguments") return args def scale_depth(image, max_depth=3.0, depth_scale=10000): """Scale Z16 image to Float between 0-1 Arguments: image {PIL.Image} -- Pillow Image Keyword Arguments: max_depth {float} -- Maximum Depth (default: {4.0}) """ data = np.asarray(image) scale_factor = (max_depth / 10.0) * 10000 data1 = ((data / scale_factor) * 255).astype(np.uint8) scaled_image = Image.fromarray(data1, mode='L') color_image = ImageOps.colorize(scaled_image, 'blue', 'red') return color_image def show_image(fpath): with open(fpath, 'rb') as f: image_bytes = f.read() image = Image.frombytes("I;16", (848, 480), image_bytes, 'raw') color_image = scale_depth(image) color_image.show() def main(): args = parse_args() print(args) show_image(args.file) if __name__ == "__main__": main() ```
{ "source": "JeremyBYU/polylidar", "score": 3 }
#### File: examples/python/basic2d.py ```python import time import numpy as np from polylidar import MatrixDouble, Polylidar3D from polylidar.polylidarutil import (generate_test_points, plot_triangles, get_estimated_lmax, plot_triangle_meshes, get_triangles_from_list, get_colored_planar_segments, plot_polygons) import matplotlib.pyplot as plt np.random.seed(1) def main(): kwargs = dict(num_groups=2, group_size=1000, dist=100.0, seed=1) # generate 2 random normally distributed clusters of points, 200 X 2 numpy array. points = generate_test_points(**kwargs) lmax = get_estimated_lmax(**kwargs) polylidar_kwargs = dict(alpha=0.0, lmax=lmax, min_triangles=5) # Convert points to matrix format (no copy) and make Polylidar3D Object points_mat = MatrixDouble(points, copy=False) polylidar = Polylidar3D(**polylidar_kwargs) # Extract the mesh, planes, polygons, and time t1 = time.perf_counter() mesh, planes, polygons = polylidar.extract_planes_and_polygons(points_mat) t2 = time.perf_counter() print("Took {:.2f} milliseconds".format((t2 - t1) * 1000)) # Convert to numpy format, no copy with np.asarray() triangles = np.asarray(mesh.triangles) fig, ax = plt.subplots(figsize=(10, 10), nrows=1, ncols=1) # plot points ax.scatter(points[:, 0], points[:, 1], c='k') # plot all triangles # plt.triplot(points[:,0], points[:,1], triangles) # better alternative plot_triangles(get_triangles_from_list(triangles, points), ax) # plot seperated planar triangular segments triangle_meshes = get_colored_planar_segments(planes, triangles, points) plot_triangle_meshes(triangle_meshes, ax) # plot polygons plot_polygons(polygons, points, ax) plt.axis('equal') plt.show() if __name__ == "__main__": main() ``` #### File: examples/python/bilateral.py ```python import time import logging import warnings import numpy as np from scipy.spatial.transform import Rotation as R import open3d as o3d from examples.python.util.mesh_util import get_mesh_data_iterator from polylidar import bilateral_filter_normals from polylidar.polylidarutil.open3d_util import open_3d_mesh_to_trimesh def main(): for i, mesh in enumerate(get_mesh_data_iterator()): if i < 0: continue mesh.compute_vertex_normals() mesh.compute_triangle_normals() print("Before") o3d.visualization.draw_geometries([mesh]) tri_mesh = open_3d_mesh_to_trimesh(mesh) t1 = time.perf_counter() bilateral_filter_normals(tri_mesh, iterations=20, sigma_length=0.1, sigma_angle=0.1) t2 = time.perf_counter() print(t2-t1) normals_smooth = np.asarray(tri_mesh.triangle_normals) mesh.triangle_normals = o3d.utility.Vector3dVector(normals_smooth) print("After") o3d.visualization.draw_geometries([mesh]) if __name__ == "__main__": main() ``` #### File: python/for_paper/polygon_example_research_statement.py ```python import time import logging import warnings import numpy as np from copy import deepcopy from scipy.spatial.transform import Rotation as R import matplotlib.pyplot as plt warnings.filterwarnings("ignore", message="Optimal rotation is not uniquely or poorly defined ") np.set_printoptions(precision=4, suppress=True) from examples.python.util.realsense_util import (get_realsense_data, get_frame_data, R_Standard_d400, prep_mesh, create_open3d_pc, extract_mesh_planes, COLOR_PALETTE, create_open_3d_mesh) from examples.python.util.mesh_util import get_mesh_data_iterator from examples.python.util.helper_polylidar import extract_all_dominant_plane_normals from polylidar import (Polylidar3D, MatrixDouble, MatrixFloat, MatrixInt, create_tri_mesh_copy, bilateral_filter_normals) from polylidar.polylidarutil.open3d_util import construct_grid, create_lines, flatten from polylidar.polylidarutil.plane_filtering import filter_planes_and_holes from fastga import GaussianAccumulatorS2Beta, MatX3d, IcoCharts from fastga.peak_and_cluster import find_peaks_from_accumulator import open3d as o3d def filter_and_create_open3d_polygons(points, polygons, rm=None, line_radius=0.005): " Apply polygon filtering algorithm, return Open3D Mesh Lines " config_pp = dict(filter=dict(hole_area=dict(min=0.01, max=100.0), hole_vertices=dict(min=4), plane_area=dict(min=0.05)), positive_buffer=0.000, negative_buffer=0.01, simplify=0.01) # config_pp = dict(filter=dict(hole_area=dict(min=0.00, max=100.0), hole_vertices=dict(min=3), plane_area=dict(min=0.05)), # positive_buffer=0.00, negative_buffer=0.0, simplify=0.01) t1 = time.perf_counter() planes, obstacles = filter_planes_and_holes(polygons, points, config_pp, rm=rm) t2 = time.perf_counter() logging.info("Plane Filtering Took (ms): %.2f", (t2 - t1) * 1000) all_poly_lines = create_lines(planes, obstacles, line_radius=line_radius) return all_poly_lines, (t2 - t1) * 1000 def open_3d_mesh_to_trimesh(mesh: o3d.geometry.TriangleMesh): triangles = np.asarray(mesh.triangles) vertices = np.asarray(mesh.vertices) triangles = np.ascontiguousarray(triangles) vertices_mat = MatrixDouble(vertices) triangles_mat = MatrixInt(triangles) tri_mesh = create_tri_mesh_copy(vertices_mat, triangles_mat) return tri_mesh def extract_all_dominant_planes(tri_mesh, vertices, polylidar_kwargs, ds=50, min_samples=10000): ga = GaussianAccumulatorS2Beta(level=4) ico = IcoCharts(level=4) fast_ga_kwargs = dict(find_peaks_kwargs=dict(threshold_abs=15, min_distance=1, exclude_border=False, indices=False), cluster_kwargs=dict(t=0.28, criterion='distance'), average_filter=dict(min_total_weight=0.1)) avg_peaks, _, _, _, alg_timings = extract_all_dominant_plane_normals( tri_mesh, ga_=ga, ico_chart_=ico, **fast_ga_kwargs) logging.info("Dominant Plane Normals") print(avg_peaks) avg_peaks_selected = np.copy(avg_peaks[[0, 1, 2, 3, 4], :]) pl = Polylidar3D(**polylidar_kwargs) avg_peaks_mat = MatrixDouble(avg_peaks_selected) tri_set = pl.extract_tri_set(tri_mesh, avg_peaks_mat) t0 = time.perf_counter() all_planes, all_polygons = pl.extract_planes_and_polygons_optimized(tri_mesh, avg_peaks_mat) t1 = time.perf_counter() polylidar_time = (t1 - t0) * 1000 all_poly_lines = [] for i in range(avg_peaks_selected.shape[0]): avg_peak = avg_peaks[i, :] rm, _ = R.align_vectors([[0, 0, 1]], [avg_peak]) polygons_for_normal = all_polygons[i] # print(polygons_for_normal) if len(polygons_for_normal) > 0: poly_lines, _ = filter_and_create_open3d_polygons(vertices, polygons_for_normal, rm=rm) all_poly_lines.extend(poly_lines) return all_planes, tri_set, all_poly_lines, polylidar_time def split_triangles(mesh): """ Split the mesh in independent triangles """ triangles = np.asarray(mesh.triangles).copy() vertices = np.asarray(mesh.vertices).copy() triangles_3 = np.zeros_like(triangles) vertices_3 = np.zeros((len(triangles) * 3, 3), dtype=vertices.dtype) for index_triangle, t in enumerate(triangles): index_vertex = index_triangle * 3 vertices_3[index_vertex] = vertices[t[0]] vertices_3[index_vertex + 1] = vertices[t[1]] vertices_3[index_vertex + 2] = vertices[t[2]] triangles_3[index_triangle] = np.arange(index_vertex, index_vertex + 3) mesh_return = deepcopy(mesh) mesh_return.triangles = o3d.utility.Vector3iVector(triangles_3) mesh_return.vertices = o3d.utility.Vector3dVector(vertices_3) mesh_return.triangle_normals = mesh.triangle_normals mesh_return.paint_uniform_color([0.5, 0.5, 0.5]) return mesh_return def assign_some_vertex_colors(mesh, triangle_indices, triangle_colors, mask=None): """Assigns vertex colors by given normal colors NOTE: New mesh is returned Arguments: mesh {o3d:TriangleMesh} -- Mesh normal_colors {ndarray} -- Normals Colors Returns: o3d:TriangleMesh -- New Mesh with painted colors """ split_mesh = split_triangles(mesh) vertex_colors = np.asarray(split_mesh.vertex_colors) triangles = np.asarray(split_mesh.triangles) if mask is not None: triangles = triangles[mask, :] if isinstance(triangle_indices, list): for triangle_set, color in zip(triangle_indices, triangle_colors): triangle_set = np.asarray(triangle_set) for i in range(np.asarray(triangle_set).shape[0]): # import ipdb; ipdb.set_trace() t_idx = triangle_set[i] p_idx = triangles[t_idx, :] vertex_colors[p_idx] = color else: for i in range(triangle_indices.shape[0]): # import ipdb; ipdb.set_trace() t_idx = triangle_indices[i] color = triangle_colors[i, :] p_idx = triangles[t_idx, :] vertex_colors[p_idx] = color if not split_mesh.has_triangle_normals(): split_mesh.compute_triangle_normals() split_mesh.compute_vertex_normals() return split_mesh def paint_planes(o3d_mesh, planes): # colors = np.arange(0, 0+ len(planes)) colors = [0, 3] all_colors = plt.cm.get_cmap('tab10')(colors)[:, :3] # planes_list = [np.copy(plane) for plane in planes] # planes_list = np. new_mesh = assign_some_vertex_colors(o3d_mesh, planes, all_colors) return new_mesh def run_test(mesh, callback=None, stride=2): # Create Pseudo 3D Surface Mesh using Delaunay Triangulation and Polylidar polylidar_kwargs = dict(alpha=0.0, lmax=0.15, min_triangles=100, z_thresh=0.20, norm_thresh=0.95, norm_thresh_min=0.90, min_hole_vertices=6) # Create Polylidar TriMesh tri_mesh = open_3d_mesh_to_trimesh(mesh) # bilateral_filter_normals(tri_mesh, 3, 0.1, 0.1) vertices = np.asarray(tri_mesh.vertices) normals_smooth = np.asarray(tri_mesh.triangle_normals) mesh.triangle_normals = o3d.utility.Vector3dVector(normals_smooth) o3d.visualization.draw_geometries([mesh], width=600, height=500) planes, tri_set, all_poly_lines, polylidar_time = extract_all_dominant_planes(tri_mesh, vertices, polylidar_kwargs) time_polylidar3D = polylidar_time polylidar_3d_alg_name = 'Polylidar3D with Provided Mesh' # planes_tri_set = [np.argwhere(np.asarray(tri_set) == i) for i in range(1, 3)] # # import ipdb; ipdb.set_trace() # mesh_tri_set = paint_planes(mesh, planes_tri_set) # callback(polylidar_3d_alg_name, time_polylidar3D, mesh_tri_set) # mesh_segment = paint_planes(mesh, planes) # callback(polylidar_3d_alg_name, time_polylidar3D, mesh_segment) mesh_3d_polylidar = [] mesh_3d_polylidar.extend(flatten([line_mesh.cylinder_segments for line_mesh in all_poly_lines])) mesh_3d_polylidar.append(mesh) callback(polylidar_3d_alg_name, time_polylidar3D, mesh_3d_polylidar) def callback(alg_name, execution_time, mesh=None): axis_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.2) axis_frame.translate([0, 0.8, -0.7]) grid_ls = construct_grid(size=2, n=20, plane_offset=-0.8, translate=[0, 1.0, 0.0]) logging.info("%s took (ms): %.2f", alg_name, execution_time) if mesh: if isinstance(mesh, list): o3d.visualization.draw_geometries( [*mesh, axis_frame], width=600, height=500) else: o3d.visualization.draw_geometries([mesh, axis_frame], width=600, height=500) def main(): axis_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.2) axis_frame.translate([0, 0.8, -1.0]) grid_ls = construct_grid(size=2, n=20, plane_offset=-1.0, translate=[0, 0.0, 0.0]) mesh = o3d.io.read_triangle_mesh('fixtures/meshes/Table_edit.ply') mesh.compute_vertex_normals() run_test(mesh, callback=callback, stride=2) if __name__ == "__main__": main() """ { "class_name" : "ViewTrajectory", "interval" : 29, "is_loop" : false, "trajectory" : [ { "boundingbox_max" : [ 4.0542712211608887, 1.2899999618530273, 2.809999942779541 ], "boundingbox_min" : [ -2.2899999618530273, -1.0299999713897705, -2.5627658367156982 ], "field_of_view" : 60.0, "front" : [ 0.061353428751916628, -0.93672755075531344, 0.34464075852448922 ], "lookat" : [ 0.232231386497287, 0.6505503162493752, 0.45416176227377059 ], "up" : [ -0.006158775652966561, -0.34563996918805912, -0.93834699401774302 ], "zoom" : 0.25999999999999956 } ], "version_major" : 1, "version_minor" : 0 } """ ``` #### File: examples/python/realsense_mesh.py ```python import time import logging import sys import numpy as np from examples.python.util.realsense_util import (get_realsense_data, get_frame_data, R_Standard_d400, prep_mesh, create_open3d_pc, extract_mesh_planes, COLOR_PALETTE) from polylidar import (Polylidar3D, MatrixDouble, MatrixFloat, extract_tri_mesh_from_float_depth, extract_point_cloud_from_float_depth) from polylidar.polylidarutil.open3d_util import construct_grid, create_lines, flatten, create_open_3d_mesh_from_tri_mesh from polylidar.polylidarutil.plane_filtering import filter_planes_and_holes from polylidar.polylidarutil.line_mesh import o3d_major_version import open3d as o3d def filter_and_create_open3d_polygons(points, polygons): " Apply polygon filtering algorithm, return Open3D Mesh Lines " config_pp = dict(filter=dict(hole_area=dict(min=0.025, max=100.0), hole_vertices=dict(min=6), plane_area=dict(min=0.5)), positive_buffer=0.00, negative_buffer=0.02, simplify=0.01) planes, obstacles = filter_planes_and_holes(polygons, points, config_pp) all_poly_lines = create_lines(planes, obstacles, line_radius=0.01) return all_poly_lines def run_test(pcd, rgbd, intrinsics, extrinsics, bp_alg=dict(radii=[0.02, 0.02]), poisson=dict(depth=8), callback=None, stride=2): """Demonstrate Polygon Extraction on both unorganized and organized point cloud Args: pcd (o3d.geometry.PointCloud): Open3D point cloud rgbd (np.ndarray): MXN Numpy array intrinsics (np.ndarray): 3X3 numpy array of camera intrinsics (assume pin hole model) extrinsics (np.ndarray): 4X4 numpy array of extrinsics of camera bp_alg (dict, optional): Arguments to Open3D ball pivot alg. Defaults to dict(radii=[0.02, 0.02]). poisson (dict, optional): Arguments to Open3D Poisson surface reconstruction. Defaults to dict(depth=8). callback (function, optional): Callback function for visualization. Defaults to None. stride (int, optional): Skip rows/columns in rgbd. Defaults to 2. """ points = np.asarray(pcd.points) polylidar_kwargs = dict(alpha=0.0, lmax=0.10, min_triangles=100, z_thresh=0.04, norm_thresh=0.90, norm_thresh_min=0.90, min_hole_vertices=6) pl = Polylidar3D(**polylidar_kwargs) ################################################################################ ##### Treat data as an unorganized point clouds ##### Create Surface Mesh using 2.5 Delaunay Triangulation and extract Polygons ################################################################################ points_mat = MatrixDouble(points) t1 = time.perf_counter() mesh, planes, polygons = pl.extract_planes_and_polygons(points_mat) t2 = time.perf_counter() # Visualization of mesh and polygons all_poly_lines = filter_and_create_open3d_polygons(points, polygons) triangles = np.asarray(mesh.triangles) mesh_2d_polylidar = extract_mesh_planes(points, triangles, planes, mesh.counter_clock_wise, COLOR_PALETTE[0]) mesh_2d_polylidar.extend(flatten([line_mesh.cylinder_segments for line_mesh in all_poly_lines])) time_mesh_2d_polylidar = (t2 - t1) * 1000 polylidar_alg_name = 'Treated as **Unorganized** Point Cloud - 2.5D Delaunay Triangulation with Polygon Extraction' callback(polylidar_alg_name, time_mesh_2d_polylidar, pcd, mesh_2d_polylidar) ################################################################################ ###### Treat data as an **Organized** 3D Point Cloud ######### ###### Creates a true 3D mesh and is much master using organized structure of point cloud ################################################################################ tri_mesh, t_mesh_creation = make_uniform_grid_mesh(np.asarray( rgbd.depth), np.ascontiguousarray(intrinsics.intrinsic_matrix), extrinsics, stride=stride) # Visualization of only the mesh tri_mesh_o3d = create_open_3d_mesh_from_tri_mesh(tri_mesh) uniform_alg_name = 'Treated as **Organized** Point Cloud - Right-Cut Triangulation/Uniform Mesh (Mesh only)' callback(uniform_alg_name, t_mesh_creation, pcd, tri_mesh_o3d) # Exctact Polygons with Polylidar3D using the Uniform Mesh. Dominant Plane normal is 0,0,1. t1 = time.perf_counter() planes, polygons = pl.extract_planes_and_polygons(tri_mesh) t2 = time.perf_counter() # Visualization of mesh and polygons vertices_np = np.asarray(tri_mesh.vertices) triangles_np = np.asarray(tri_mesh.triangles) all_poly_lines = filter_and_create_open3d_polygons(vertices_np, polygons) mesh_3d_polylidar = extract_mesh_planes(vertices_np, triangles_np, planes, tri_mesh.counter_clock_wise) mesh_3d_polylidar.extend(flatten([line_mesh.cylinder_segments for line_mesh in all_poly_lines])) time_polylidar3D = (t2 - t1) * 1000 polylidar_3d_alg_name = 'Polygon Extraction on Uniform Mesh (only one dominant plane normal)' callback(polylidar_3d_alg_name, time_polylidar3D, create_open3d_pc(vertices_np), mesh_3d_polylidar) ##### Uncomment if you are interested in other mesh creation techniques ##### # # Estimate Point Cloud Normals # t3 = time.perf_counter() # pcd.estimate_normals( # search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.10, max_nn=20)) # t4 = time.perf_counter() # time_estimate_point_normals = (t4 - t3) * 1000 # point_normal_alg_name = 'Point Normal Estimation' # callback(point_normal_alg_name, time_estimate_point_normals, pcd, None) # # Create True 3D Surface Mesh using Ball Pivot Algorithm # radii = o3d.utility.DoubleVector(bp_alg['radii']) # t5 = time.perf_counter() # mesh_ball_pivot = o3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting( # pcd, radii) # prep_mesh(mesh_ball_pivot) # t6 = time.perf_counter() # time_mesh_ball_pivot = (t6 - t5) * 1000 # ball_point_alg_name = 'Ball Pivot' # callback(ball_point_alg_name, time_mesh_ball_pivot, pcd, mesh_ball_pivot) # # Create True 3D Surface Mesh using Poisson Reconstruction Algorithm # t7 = time.perf_counter() # mesh_poisson, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson( # pcd, **poisson) # vertices_to_remove = densities < np.quantile(densities, 0.1) # mesh_poisson.remove_vertices_by_mask(vertices_to_remove) # t8 = time.perf_counter() # prep_mesh(mesh_poisson) # time_mesh_poisson = (t8 - t7) * 1000 # poisson_alg_name = 'Poisson' # callback(poisson_alg_name, time_mesh_poisson, pcd, mesh_poisson) # results = [ # dict(alg=polylidar_alg_name, mesh=mesh_2d_polylidar, # execution_time=time_mesh_2d_polylidar), # dict(alg=point_normal_alg_name, mesh=None, # execution_time=time_estimate_point_normals), # dict(alg=ball_point_alg_name, mesh=mesh_ball_pivot, # execution_time=time_mesh_ball_pivot), # dict(alg=poisson_alg_name, mesh=mesh_poisson, # execution_time=time_mesh_poisson) # ] # return results def make_uniform_grid_mesh(im, intrinsics, extrinsics, stride=2, **kwargs): """Create a Unifrom Grid Mesh from an RGBD Image Arguments: img {ndarray} -- MXN Float Depth Image intrinsics {ndarray} -- 3X3 intrinsics matrix extrinsics {ndarray} -- 4X4 matrix Keyword Arguments: stride {int} -- Stride for creating point cloud (default: {2}) Returns: tuple(dict, dict) - Mesh and timings """ t0 = time.perf_counter() tri_mesh = extract_tri_mesh_from_float_depth(MatrixFloat( im), MatrixDouble(intrinsics), MatrixDouble(extrinsics), stride=stride) t1 = time.perf_counter() return tri_mesh, (t1-t0) * 1000 def callback(alg_name, execution_time, pcd, mesh=None): axis_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.2) axis_frame.translate([0, 0.8, -0.7]) grid_ls = construct_grid(size=2, n=20, plane_offset=-1.0, translate=[0, 1.0, 0.0]) logging.info("%s took %.2f milliseconds", alg_name, execution_time) if mesh: if isinstance(mesh, list): o3d.visualization.draw_geometries( [*mesh, pcd, grid_ls, axis_frame]) else: o3d.visualization.draw_geometries([mesh, pcd, grid_ls, axis_frame]) def main(): color_files, depth_files, traj, intrinsics = get_realsense_data() axis_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.2) axis_frame.translate([0, 0.8, -0.7]) grid_ls = construct_grid(size=2, n=20, plane_offset=-0.8, translate=[0, 1.0, 0.0]) for idx in range(len(color_files)): if idx < 2: continue pcd, rgbd, extrinsics = get_frame_data(idx, color_files, depth_files, traj, intrinsics, stride=2) center = pcd.get_center() if o3d_major_version > 9 else True pcd = pcd.rotate(R_Standard_d400[:3, :3], center=center) logging.info("File %r - Point Cloud; Size: %r", idx, np.asarray(pcd.points).shape[0]) o3d.visualization.draw_geometries([pcd, grid_ls, axis_frame]) results = run_test(pcd, rgbd, intrinsics, extrinsics, callback=callback, stride=2) if __name__ == "__main__": main() ``` #### File: python/util/helper_polylidar.py ```python import time import logging from copy import deepcopy import numpy as np from scipy.spatial.transform import Rotation as R import matplotlib.pyplot as plt from polylidar.polylidarutil.plane_filtering import filter_planes_and_holes from polylidar import MatrixDouble, Polylidar3D from polylidar.polylidarutil.open3d_util import create_lines from fastga import GaussianAccumulatorS2, MatX3d, IcoCharts from fastga.peak_and_cluster import find_peaks_from_ico_charts from fastga.o3d_util import get_arrow, get_pc_all_peaks, get_arrow_normals import open3d as o3d def down_sample_normals(triangle_normals, down_sample_fraction=0.12, min_samples=100, flip_normals=False, **kwargs): num_normals = triangle_normals.shape[0] to_sample = int(down_sample_fraction * num_normals) to_sample = max(min([num_normals, min_samples]), to_sample) ds_step = int(num_normals / to_sample) triangle_normals_ds = np.ascontiguousarray(triangle_normals[:num_normals:ds_step, :]) if flip_normals: triangle_normals_ds = triangle_normals_ds * -1.0 return triangle_normals_ds def get_image_peaks(ico_chart, ga, level=2, with_o3d=False, find_peaks_kwargs=dict(threshold_abs=2, min_distance=1, exclude_border=False, indices=False), cluster_kwargs=dict(t=0.10, criterion='distance'), average_filter=dict(min_total_weight=0.01), **kwargs): normalized_bucket_counts_by_vertex = ga.get_normalized_bucket_counts_by_vertex(True) t1 = time.perf_counter() ico_chart.fill_image(normalized_bucket_counts_by_vertex) # this takes microseconds # plt.imshow(np.asarray(ico_chart.image)) # plt.show() average_vertex_normals = np.asarray(ga.get_average_normals_by_vertex( True)) if hasattr(ga, 'get_average_normals_by_vertex') else None peaks, clusters, avg_peaks, avg_weights = find_peaks_from_ico_charts(ico_chart, np.asarray( normalized_bucket_counts_by_vertex), average_vertex_normals, find_peaks_kwargs, cluster_kwargs, average_filter) t2 = time.perf_counter() gaussian_normals_sorted = np.asarray(ico_chart.sphere_mesh.vertices) # Create Open3D structures for visualization if with_o3d: pcd_all_peaks = get_pc_all_peaks(peaks, clusters, gaussian_normals_sorted) arrow_avg_peaks = get_arrow_normals(avg_peaks, avg_weights) else: pcd_all_peaks = None arrow_avg_peaks = None elapsed_time = (t2 - t1) * 1000 timings = dict(t_fastga_peak=elapsed_time) logging.debug("Peak Detection - Took (ms): %.2f", (t2 - t1) * 1000) return avg_peaks, pcd_all_peaks, arrow_avg_peaks, timings def extract_all_dominant_plane_normals(tri_mesh, level=5, with_o3d=False, ga_=None, ico_chart_=None, **kwargs): # Reuse objects if provided if ga_ is not None: ga = ga_ else: ga = GaussianAccumulatorS2(level=level) if ico_chart_ is not None: ico_chart = ico_chart_ else: ico_chart = IcoCharts(level=level) triangle_normals = np.asarray(tri_mesh.triangle_normals) triangle_normals_ds = down_sample_normals(triangle_normals, **kwargs) # np.savetxt('bad_normals.txt', triangle_normals_ds) triangle_normals_ds_mat = MatX3d(triangle_normals_ds) t1 = time.perf_counter() ga.integrate(triangle_normals_ds_mat) t2 = time.perf_counter() logging.debug("Gaussian Accumulator - Normals Sampled: %d; Took (ms): %.2f", triangle_normals_ds.shape[0], (t2 - t1) * 1000) avg_peaks, pcd_all_peaks, arrow_avg_peaks, timings_dict = get_image_peaks( ico_chart, ga, level=level, with_o3d=with_o3d, **kwargs) # Create Open3D structures for visualization if with_o3d: # Visualize the Sphere accumulator_counts = np.asarray(ga.get_normalized_bucket_counts()) refined_icosahedron_mesh = create_open_3d_mesh(np.asarray(ga.mesh.triangles), np.asarray(ga.mesh.vertices)) color_counts = get_colors(accumulator_counts)[:, :3] colored_icosahedron = assign_vertex_colors(refined_icosahedron_mesh, color_counts) else: colored_icosahedron = None elapsed_time_fastga = (t2 - t1) * 1000 elapsed_time_peak = timings_dict['t_fastga_peak'] elapsed_time_total = elapsed_time_fastga + elapsed_time_peak timings = dict(t_fastga_total=elapsed_time_total, t_fastga_integrate=elapsed_time_fastga, t_fastga_peak=elapsed_time_peak) ga.clear_count() return avg_peaks, pcd_all_peaks, arrow_avg_peaks, colored_icosahedron, timings def filter_and_create_polygons(points, polygons, rm=None, line_radius=0.005, postprocess=dict(filter=dict(hole_area=dict(min=0.025, max=100.0), hole_vertices=dict(min=6), plane_area=dict(min=0.05)), positive_buffer=0.00, negative_buffer=0.00, simplify=0.0)): " Apply polygon filtering algorithm, return Open3D Mesh Lines " t1 = time.perf_counter() planes, obstacles = filter_planes_and_holes(polygons, points, postprocess, rm=rm) t2 = time.perf_counter() return planes, obstacles, (t2 - t1) * 1000 def extract_planes_and_polygons_from_mesh(tri_mesh, avg_peaks, polylidar_kwargs=dict(alpha=0.0, lmax=0.1, min_triangles=2000, z_thresh=0.1, norm_thresh=0.95, norm_thresh_min=0.95, min_hole_vertices=50, task_threads=4), filter_polygons=True, pl_=None, optimized=False, postprocess=dict(filter=dict(hole_area=dict(min=0.025, max=100.0), hole_vertices=dict(min=6), plane_area=dict(min=0.05)), positive_buffer=0.00, negative_buffer=0.00, simplify=0.0)): if pl_ is not None: pl = pl_ else: pl = Polylidar3D(**polylidar_kwargs) avg_peaks_mat = MatrixDouble(avg_peaks) t0 = time.perf_counter() if optimized: all_planes, all_polygons = pl.extract_planes_and_polygons_optimized(tri_mesh, avg_peaks_mat) else: all_planes, all_polygons = pl.extract_planes_and_polygons(tri_mesh, avg_peaks_mat) t1 = time.perf_counter() # tri_set = pl.extract_tri_set(tri_mesh, avg_peaks_mat) # planes_tri_set = [np.argwhere(np.asarray(tri_set) == i) for i in range(1, 2)] # o3d_mesh_painted = paint_planes(o3d_mesh, planes_tri_set) polylidar_time = (t1 - t0) * 1000 # logging.info("Polygon Extraction - Took (ms): %.2f", polylidar_time) all_planes_shapely = [] all_obstacles_shapely = [] time_filter = [] # all_poly_lines = [] if filter_polygons: vertices = np.asarray(tri_mesh.vertices) for i in range(avg_peaks.shape[0]): avg_peak = avg_peaks[i, :] rm, _ = R.align_vectors([[0, 0, 1]], [avg_peak]) polygons_for_normal = all_polygons[i] # print(polygons_for_normal) if len(polygons_for_normal) > 0: planes_shapely, obstacles_shapely, filter_time = filter_and_create_polygons( vertices, polygons_for_normal, rm=rm, postprocess=postprocess) all_planes_shapely.extend(planes_shapely) all_obstacles_shapely.extend(obstacles_shapely) time_filter.append(filter_time) # all_poly_lines.extend(poly_lines) timings = dict(t_polylidar_planepoly=polylidar_time, t_polylidar_filter=np.array(time_filter).sum()) # all_planes_shapely, all_obstacles_shapely, all_poly_lines, timings return all_planes_shapely, all_obstacles_shapely, timings def extract_planes_and_polygons_from_classified_mesh(tri_mesh, avg_peaks, polylidar_kwargs=dict(alpha=0.0, lmax=0.1, min_triangles=2000, z_thresh=0.1, norm_thresh=0.95, norm_thresh_min=0.95, min_hole_vertices=50, task_threads=4), filter_polygons=True, pl_=None, optimized=True, postprocess=dict(filter=dict(hole_area=dict(min=0.025, max=100.0), hole_vertices=dict(min=6), plane_area=dict(min=0.05)), positive_buffer=0.00, negative_buffer=0.00, simplify=0.0)): if pl_ is not None: pl = pl_ else: pl = Polylidar3D(**polylidar_kwargs) avg_peaks_mat = MatrixDouble(avg_peaks) t0 = time.perf_counter() all_planes, all_polygons = pl.extract_planes_and_polygons_optimized_classified(tri_mesh, avg_peaks_mat) t1 = time.perf_counter() polylidar_time = (t1 - t0) * 1000 all_planes_shapely = [] all_obstacles_shapely = [] time_filter = [] # all_poly_lines = [] if filter_polygons: vertices = np.asarray(tri_mesh.vertices) for i in range(avg_peaks.shape[0]): avg_peak = avg_peaks[i, :] rm, _ = R.align_vectors([[0, 0, 1]], [avg_peak]) polygons_for_normal = all_polygons[i] # print(polygons_for_normal) if len(polygons_for_normal) > 0: planes_shapely, obstacles_shapely, filter_time = filter_and_create_polygons( vertices, polygons_for_normal, rm=rm, postprocess=postprocess) all_planes_shapely.extend(planes_shapely) all_obstacles_shapely.extend(obstacles_shapely) time_filter.append(filter_time) # all_poly_lines.extend(poly_lines) timings = dict(t_polylidar_planepoly=polylidar_time, t_polylidar_filter=np.array(time_filter).sum()) # all_planes_shapely, all_obstacles_shapely, all_poly_lines, timings return all_planes_shapely, all_obstacles_shapely, timings ``` #### File: python/util/mesh_util.py ```python import time import math import sys from os import path, listdir from os.path import exists, isfile, join, splitext import re import logging import numpy as np from polylidar.polylidarutil import COLOR_PALETTE from polylidar.polylidarutil.line_mesh import o3d_major_version import open3d as o3d from scipy.spatial.transform import Rotation as R DIR_NAME = path.dirname(__file__) FIXTURES_DIR = path.join(DIR_NAME, '../../..', 'fixtures') MESHES_DIR = path.join(FIXTURES_DIR, 'meshes') DENSE_MESH = path.join(MESHES_DIR, 'dense_first_floor_map_smoothed.ply') SPARSE_MESH = path.join(MESHES_DIR, 'sparse_basement.ply') BASEMENT_CHAIR = path.join(MESHES_DIR, 'basement_chair_5cm.ply') ALL_MESHES = [DENSE_MESH, SPARSE_MESH, BASEMENT_CHAIR] # ALL_MESHES_ROTATIONS = [R.from_rotvec(-np.pi / 2 * np.array([1, 0, 0])), # R.from_rotvec(-np.pi / 2 * np.array([1, 0, 0]))] ALL_MESHES_ROTATIONS = [None, None, None] def get_mesh_data_iterator(): for i, (mesh_fpath, r) in enumerate(zip(ALL_MESHES, ALL_MESHES_ROTATIONS)): example_mesh = o3d.io.read_triangle_mesh(str(mesh_fpath)) if r is not None: center = [0, 0, 0] if o3d_major_version > 9 else True example_mesh = example_mesh.rotate(r.as_matrix(), center=center) example_mesh_filtered = example_mesh example_mesh_filtered.compute_triangle_normals() yield example_mesh_filtered def main(): for i, mesh in enumerate(get_mesh_data_iterator()): if i < 1: continue colors = np.asarray(mesh.vertex_colors) colors2 = np.column_stack((colors[:, 2], colors[:, 1], colors[:, 0])) mesh.vertex_colors = o3d.utility.Vector3dVector(colors2) o3d.io.write_triangle_mesh('test.ply', mesh) if __name__ == "__main__": main() ```
{ "source": "JeremyBYU/polylidar-kitti", "score": 3 }
#### File: kittiground/grounddetector/__init__.py ```python import sys import math import time import logging import numpy as np from scipy import spatial import cv2 from shapely.geometry import Polygon, JOIN_STYLE from polylidar import MatrixDouble, Delaunator, bilateral_filter_normals M2TOCM2 = 10000 CMTOM = 0.01 ORANGE = [249, 115, 6] ORANGE_BGR = [6, 115, 249] def axis_angle_rm(axis=np.array([1, 0, 0]), angle=-1.57): """ Create rotation matrix given an axis and angle https://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/ """ c = math.cos(angle) s = math.sin(angle) t = 1 - c x, y, z = axis[0], axis[1], axis[2] rotation_matrix = np.array( [ [t*x*x + c, t*x*y - z*s, t*x*z + y*s], [t*x*y + z*s, t*y*y + c, t*y*z - x*s], [t*x*z - y*s, t*y*z + x*s, t*z*z + c] ]) return rotation_matrix def rotate_points(points, rot): """ Rotate 3D points given a provided rotation matrix """ points_rot = points.transpose() points_rot = rot @ points_rot points_rot = points_rot.transpose() # print(f"Rotation Took {(time.time() - t0) * 1000:.1f} ms") return points_rot def plot_points(image, points, color): """ plot projected velodyne points into camera image """ hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) radius = 1 for i in range(points.shape[1]): pt_2d = (points[0, i], points[1, i]) c = (color[i,:] * 255).astype(dtype=np.uint8).tolist() cv2.circle(hsv_image, pt_2d, radius, c, -1) return cv2.cvtColor(hsv_image, cv2.COLOR_RGB2BGR) def align_vector_to_axis(points, vector=np.array([0, 0, 1]), axis=[0, 0, -1], ): """ Aligns z axis frame to chosen vector """ # Shortcut from computing cross product of -Z axis X vector axis_ = np.cross(vector, np.array(axis)) axis_ = axis_ / np.linalg.norm(axis_) angle = math.acos(-vector[2]) rm = axis_angle_rm(axis_, angle) points_rot = rotate_points(points, rm) return points_rot, rm def get_points(point_idxs, points): return points[point_idxs, :] def create_kd_tree(shell_coords, hole_coords): hole_coords.append(shell_coords) all_vertices = np.vstack(hole_coords) kd_tree = spatial.KDTree(all_vertices, leafsize=100) return kd_tree def add_column(array, z_value): ones = np.ones((array.shape[0], 1)) * z_value stacked = np.column_stack((array, ones)) return stacked def recover_3d(poly, kd_tree, z_value): shell_3D = add_column(np.array(poly.exterior), z_value) # print(shell_3D.shape) d, shell_idx = kd_tree.query(shell_3D) # print(shell_idx.shape) kd_data = kd_tree.data[shell_idx,:] # print(kd_data.shape) shell_3D[:, 2] = kd_data[:, 2] holes_lr = [] for hole in poly.interiors: hole_lr = add_column(np.array(hole), z_value) d, shell_idx = kd_tree.query(hole_lr) kd_data = kd_tree.data[shell_idx,:] hole_lr[:, 2] = kd_data[:, 2] holes_lr.append(hole_lr) poly_3d = Polygon(shell=shell_3D, holes=holes_lr) return poly_3d # print(poly.exterior) # print(poly_3d.exterior) def get_polygon(points3D_cam, polylidar, postprocess_config): """Gets polygons from point cloud Arguments: points3D_cam {ndarray} -- Point cloud in Camera Frame Returns: (ndarray, ndarray, list[Polygons], list[Polygons], tuple(ints)) -- Rotated point cloud, rotation matrix from camera frame to rotated frame list of shapley polygons for planes and obstacles a tuple of execution times """ t0 = time.perf_counter() points3D_rot, rm = align_vector_to_axis( points3D_cam, np.array([0, 1, 0])) points3D_rot_ = np.ascontiguousarray(points3D_rot[:, :3]) logging.debug( "Extracting Polygons from point cloud of size: %d", points3D_rot.shape[0]) t1 = time.perf_counter() points_mat = MatrixDouble(points3D_rot_) # We need to perform these steps manually if we are going to pass a mesh instead of just the points # only necessary because I want the timings of just the frontend mesh = Delaunator(points_mat) mesh.triangulate() mesh.compute_triangle_normals() t1_2 = time.perf_counter() # bilateral_filter_normals(mesh, 5, 0.25, 0.25) t1_3 = time.perf_counter() planes, polygons = polylidar.extract_planes_and_polygons(mesh) t2 = time.perf_counter() planes, obstacles = filter_planes_and_holes2( polygons, points3D_rot_, postprocess_config) logging.debug("Number of Planes: %d; Number of obstacles: %d", len(planes), len(obstacles)) t3 = time.perf_counter() t_rotation = (t1 - t0) * 1000 t_polylidar = (t2 - t1) * 1000 t_polylidar_mesh = (t1_2 - t1) * 1000 t_polylidar_bilateral = (t1_3 - t1_2) * 1000 t_polylidar_planepoly = (t2 - t1_3) * 1000 t_polyfilter = (t3 - t2) * 1000 times = dict(t_rotation=t_rotation, t_polylidar_all=t_polylidar, t_polyfilter=t_polyfilter, t_polylidar_mesh=t_polylidar_mesh, t_polylidar_bilateral=t_polylidar_bilateral, t_polylidar_planepoly=t_polylidar_planepoly) return points3D_rot, rm, planes, obstacles, times def filter_planes_and_holes2(polygons, points, config_pp): """Extracts the plane and obstacles returned from polylidar Will filter polygons according to: number of vertices and size Will also buffer (dilate) and simplify polygons Arguments: polygons {list[Polygons]} -- A list of polygons returned from polylidar points {ndarray} -- MX3 array config_pp {dict} -- Configuration for post processing filtering Returns: tuple -- A list of plane shapely polygons and a list of obstacle polygons """ # filtering configuration post_filter = config_pp['filter'] # will hold the plane(s) and obstacles found planes = [] obstacles = [] for poly in polygons: # shell_coords = [get_point(pi, points) for pi in poly.shell] shell_coords = get_points(poly.shell, points) hole_coords = [get_points(hole, points) for hole in poly.holes] poly_shape = Polygon(shell=shell_coords, holes=hole_coords) area = poly_shape.area # logging.info("Got a plane!") if area < post_filter['plane_area']['min']: # logging.info("Skipping Plane") continue z_value = shell_coords[0][2] if config_pp['simplify']: poly_shape = poly_shape.simplify(tolerance=config_pp['simplify'], preserve_topology=True) # Perform 2D geometric operations if config_pp['buffer'] or config_pp['positive_buffer']: # poly_shape = poly_shape.buffer(-config_pp['buffer'], 1, join_style=JOIN_STYLE.mitre).buffer(config_pp['buffer'], 1, join_style=JOIN_STYLE.mitre) poly_shape = poly_shape.buffer(config_pp['positive_buffer'], join_style=JOIN_STYLE.mitre, resolution=4) poly_shape = poly_shape.buffer(distance=-config_pp['buffer'] * 3, resolution=4) if poly_shape.geom_type == 'MultiPolygon': all_poly_shapes = list(poly_shape.geoms) poly_shape = sorted(all_poly_shapes, key=lambda geom: geom.area, reverse=True)[0] poly_shape = poly_shape.buffer(distance=config_pp['buffer'] * 2, resolution=4) if config_pp['simplify']: poly_shape = poly_shape.simplify(tolerance=config_pp['simplify'], preserve_topology=False) # Its possible that our polygon has no broken into a multipolygon # Check for this situation and handle it all_poly_shapes = [poly_shape] # iteratre through every polygons and check for plane extraction for poly_shape in all_poly_shapes: area = poly_shape.area # logging.info("Plane is big enough still") if area >= post_filter['plane_area']['min']: # logging.info("Plane is big enough still") if config_pp['buffer'] or config_pp['simplify'] or config_pp['positive_buffer']: # convert back to 3D coordinates # create kd tree for vertex lookup after buffering operations kd_tree = create_kd_tree(shell_coords, hole_coords) poly_shape = recover_3d(poly_shape, kd_tree, z_value) # Capture the polygon as well as its z height new_plane_polygon = Polygon(shell=poly_shape.exterior) planes.append((new_plane_polygon, z_value)) for hole_lr in poly_shape.interiors: # Filter by number of obstacle vertices, removes noisy holes if len(hole_lr.coords) > post_filter['hole_vertices']['min']: hole_poly = Polygon(shell=hole_lr) area = hole_poly.area # filter by area if area >= post_filter['hole_area']['min'] and area < post_filter['hole_area']['max']: z_value = hole_lr.coords[0][2] obstacles.append((hole_poly, z_value)) return planes, obstacles def project_points(pts3D_cam_rect, proj_matrix, img_m, img_n): pts2D_cam_rect = proj_matrix @ pts3D_cam_rect # Remove pixels that are outside the image pts2D_cam_rect[0, :] = pts2D_cam_rect[0, :] / pts2D_cam_rect[2, :] pts2D_cam_rect[1, :] = pts2D_cam_rect[1, :] / pts2D_cam_rect[2, :] idx = (pts2D_cam_rect[0, :] >= 0) & (pts2D_cam_rect[0, :] < img_n) & \ (pts2D_cam_rect[1, :] >= 0) & (pts2D_cam_rect[1, :] < img_m) pts2D_cam_rect_filt = np.ascontiguousarray( pts2D_cam_rect[:, idx].astype(np.int)) return pts2D_cam_rect_filt, idx def get_pix_coordinates(pts, proj_mat, w, h): """Get Pixel coordinates of ndarray Arguments: pts {ndarray} -- 3D point clouds 3XN proj_mat {ndarray} -- 4X3 Projection Matrix w {int} -- width h {int} -- height Returns: ndarray -- Pixel coordinates """ points_t = np.ones(shape=(4, pts.shape[1])) points_t[:3, :] = pts pixels, idx = project_points(points_t, proj_mat, h, w) pixels = np.ascontiguousarray(pixels[:2, :]) logging.debug("Pixels Shape %r", pixels.shape) return pixels def plot_opencv_polys(polygons, color_image, proj_mat, rot_mat, w, h, color=(0, 255, 0), thickness=3): for i, (poly, height) in enumerate(polygons): # Get 2D polygons and assign z component the height value of extracted plane pts = np.array(poly.exterior.coords) # NX2 # pts = np.column_stack((pts, np.ones((pts.shape[0])) * height)) # NX3 # Transform polylidar plane coordinate system (z-up) to original cordinate system of camera frame pts = pts.transpose() # 3XN pts = np.linalg.inv(rot_mat) @ pts # Project coordinates to image space pix_coords = get_pix_coordinates(pts, proj_mat, w, h).T pix_coords = pix_coords.reshape((-1, 1, 2)) cv2.polylines(color_image, [pix_coords], True, color, thickness=thickness) return color_image def plot_planes_and_obstacles(planes, obstacles, proj_mat, rot_mat, color_image, width, height, thickness=3): """Plots the planes and obstacles (3D polygons) into the color image Arguments: planes {list(Polygons)} -- List of Shapely Polygon with height tuples obstacles {list[(polygon, height)]} -- List of tuples with polygon with height proj_mat {ndarray} -- Projection Matrix rot_mat {ndarray} -- Rotation Matrix color_image {ndarray} -- Color Image width {int} -- width of image height {int} -- height of image """ color_image = plot_opencv_polys( planes, color_image, proj_mat, rot_mat, width, height, color=(0, 255, 0), thickness=thickness) color_image = plot_opencv_polys( obstacles, color_image, proj_mat, rot_mat, width, height, color=ORANGE_BGR, thickness=thickness) return color_image ```
{ "source": "JeremyBYU/polylidar-plane-benchmark", "score": 2 }
#### File: polylidar_plane_benchmark/scripts/run_param.py ```python from polylidar_plane_benchmark.scripts.train_core import evaluate_with_params_visualize def main(): params = {'fname': 'pc_02.pcd', 'tcomp': 0.80, 'variance': 1, 'kernel_size': 5, 'loops_bilateral': 2, 'loops_laplacian': 4, 'sigma_angle': 0.1, 'norm_thresh_min': 0.95, 'min_triangles': 1000, 'stride':1, 'predict_loops_laplacian': False} evaluate_with_params_visualize(params) if __name__ == "__main__": main() ``` #### File: polylidar_plane_benchmark/scripts/run_test.py ```python from polylidar_plane_benchmark.scripts.train_core import evaluate_with_params # optimal params for stride=1 # params = dict(kernel_size=5, loops_laplacian=2, loops_bilateral=2, sigma_angle=0.1, # min_triangles=1000, norm_thresh_min=0.95, stride=1, predict_loops_laplacian=True) # semi-optimal params for stride=2 # params = dict(kernel_size=3, loops_laplacian=2, loops_bilateral=1, sigma_angle=0.1, # min_triangles=250, norm_thresh_min=0.95, stride=2, predict_loops_laplacian=True) def main(): params = dict(kernel_size=5, loops_laplacian=2, loops_bilateral=2, sigma_angle=0.1, min_triangles=1000, norm_thresh_min=0.95, stride=1, predict_loops_laplacian=True) dataset = 'test' print("Evaluating Variance 1") evaluate_with_params([params], 0, 1, None, dataset) print("Evaluating Variance 2") evaluate_with_params([params], 0, 2, None, dataset) print("Evaluating Variance 3") evaluate_with_params([params], 0, 3, None, dataset) print("Evaluating Variance 4") evaluate_with_params([params], 0, 4, None, dataset) if __name__ == "__main__": main() # Stride 1 # [4 rows x 16 columns] # n_gt 42.491667 # n_ms_all 25.316667 # f_weighted_corr_seg 0.762061 # rmse 0.009151 # f_corr_seg 0.470380 # n_corr_seg 18.308333 # n_over_seg 0.266667 # n_under_seg 0.400000 # n_missed_seg 23.033333 # n_noise_seg 6.058333 # laplacian 1.227258 # bilateral 2.994489 # mesh 8.497396 # fastga_total 6.612652 # polylidar 14.829927 # dtype: float64 # Stride 2 # n_gt 42.491667 # n_ms_all 26.400000 # f_weighted_corr_seg 0.697639 # rmse 0.009437 # f_corr_seg 0.392567 # n_corr_seg 14.658333 # n_over_seg 0.950000 # n_under_seg 0.341667 # n_missed_seg 26.150000 # n_noise_seg 8.908333 # laplacian 0.472313 # bilateral 0.715748 # mesh 1.793931 # fastga_total 2.583590 # polylidar 4.291157 # dtype: float64 # These parameters are not used, but kept for posterity. **IF** you were to split parameters by variance # This split would give good results # var1_params = dict(kernel_size=5, loops_laplacian=2, loops_bilateral=2, sigma_angle=0.1, # min_triangles=1000, norm_thresh_min=0.95, stride=1) # var2_params = dict(kernel_size=5, loops_laplacian=4, loops_bilateral=2, sigma_angle=0.1, # min_triangles=1000, norm_thresh_min=0.95, stride=1) # var3_params = dict(kernel_size=5, loops_laplacian=6, loops_bilateral=2, sigma_angle=0.1, # min_triangles=1000, norm_thresh_min=0.95, stride=1) # var4_params = dict(kernel_size=5, loops_laplacian=8, loops_bilateral=2, sigma_angle=0.1, # min_triangles=1000, norm_thresh_min=0.95, stride=1) ``` #### File: polylidar_plane_benchmark/scripts/visualize.py ```python import json from pathlib import Path import logging import time import numpy as np import matplotlib.pyplot as plt import open3d as o3d import colorcet as cc import pandas as pd import seaborn as sns from polylidar_plane_benchmark import (DEFAULT_PPB_FILE, DEFAULT_PPB_FILE_SECONDARY, logger, SYNPEB_ALL_FNAMES, SYNPEB_DIR, SYNPEB_MESHES_DIR, SYNPEB_DIR_TEST_GT, SYNPEB_DIR_TRAIN_GT, SYNPEB_DIR_TEST_ALL, SYNPEB_DIR_TRAIN_ALL) from polylidar_plane_benchmark.utility.o3d_util import create_open_3d_pcd, plot_meshes, get_arrow, create_open_3d_mesh, flatten, mark_invalid_planes from polylidar_plane_benchmark.utility.helper import (load_pcd_file, convert_planes_to_classified_point_cloud, extract_all_dominant_plane_normals, load_pcd_and_meshes, convert_polygons_to_classified_point_cloud, extract_planes_and_polygons_from_mesh, create_open_3d_pcd, paint_planes) from polylidar_plane_benchmark.utility.evaluate import evaluate import click # Variance 1 - Laplacian Smoothing Loops 4 @click.group() def visualize(): """Visualize Data""" pass @visualize.command() @click.option('-i', '--input-file', type=click.Path(exists=True), default=DEFAULT_PPB_FILE) @click.option('-s', '--stride', type=int, default=2) def pcd(input_file: str, stride): """Visualize PCD File""" pc_raw, pc_image = load_pcd_file(input_file, stride) # pc_raw_filt = pc_raw[pc_raw[:, 3] == 3.0, :] # Get just the points, no intensity pc_points = np.ascontiguousarray(pc_raw[:, :3]) # Create Open3D point cloud cmap = cc.cm.glasbey_bw pcd_raw = create_open_3d_pcd(pc_points[:, :3], pc_raw[:, 3], cmap=cmap) plot_meshes([pcd_raw]) @visualize.command() @click.option('-i', '--input-file', type=click.Path(exists=True), default=DEFAULT_PPB_FILE) @click.option('-s', '--stride', type=int, default=2) @click.option('-l', '--loops', type=int, default=5) @click.option('--llambda', type=float, default=1.0) @click.option('-ks', '--kernel-size', type=int, default=3) @click.option('-lb', '--loops-bilateral', type=int, default=0) def mesh(input_file: str, stride, loops, llambda, kernel_size, loops_bilateral): """Visualize Mesh from PCD File""" pc_raw, pcd_raw, pc_image, tri_mesh, tri_mesh_o3d, _ = load_pcd_and_meshes( input_file, stride, loops, llambda, loops_bilateral, kernel_size=kernel_size) # Write Smoothed Mesh to File, debugging purposes output_file = str(input_file).replace(str(SYNPEB_DIR), str(SYNPEB_MESHES_DIR)) output_file = output_file.replace('.pcd', '_loops={}.ply'.format(loops)) parent_dir = Path(output_file).parent parent_dir.mkdir(parents=True, exist_ok=True) o3d.io.write_triangle_mesh(output_file, tri_mesh_o3d) # import ipdb; ipdb.set_trace() # mask = pc_raw[:, 3] == 3.0 # colors = np.asarray(pcd_raw.colors) # colors[mask] = [0.0,1.0,0] plot_meshes([pcd_raw, tri_mesh_o3d]) @visualize.command() @click.option('-i', '--input-file', type=click.Path(exists=True), default=DEFAULT_PPB_FILE) @click.option('-s', '--stride', type=int, default=2) @click.option('-l', '--loops', type=int, default=5) @click.option('--llambda', type=float, default=1.0) @click.option('-ks', '--kernel-size', type=int, default=3) @click.option('-lb', '--loops-bilateral', type=int, default=0) def ga(input_file, stride, loops, llambda, kernel_size, loops_bilateral): """Visualize Gaussian Accumulator From PCD File""" pc_raw, pcd_raw, pc_image, tri_mesh, tri_mesh_o3d, _ = load_pcd_and_meshes( input_file, stride, loops, llambda, loops_bilateral, kernel_size=kernel_size) avg_peaks, pcd_all_peaks, arrow_avg_peaks, colored_icosahedron, _ = extract_all_dominant_plane_normals(tri_mesh) # arrow = get_arrow(origin=[0,0,0], end=[3, 0, 0], cylinder_radius=0.01) plot_meshes([colored_icosahedron, pcd_all_peaks, *arrow_avg_peaks], [pcd_raw, tri_mesh_o3d]) @visualize.command() @click.option('-i', '--input-file', type=click.Path(exists=True), default=DEFAULT_PPB_FILE) @click.option('-s', '--stride', type=int, default=2) @click.option('-l', '--loops', type=int, default=5) @click.option('--llambda', type=float, default=1.0) @click.option('-ks', '--kernel-size', type=int, default=3) @click.option('-lb', '--loops-bilateral', type=int, default=0) def polygons(input_file, stride, loops, llambda, kernel_size, loops_bilateral): """Visualize Polygon Extraction PCD File""" pc_raw, pcd_raw, pc_image, tri_mesh, tri_mesh_o3d, _ = load_pcd_and_meshes( input_file, stride, loops, llambda, loops_bilateral, kernel_size=kernel_size) avg_peaks, pcd_all_peaks, arrow_avg_peaks, colored_icosahedron, _ = extract_all_dominant_plane_normals(tri_mesh) # use these parameters for visualization. Open3D's visualizer will chug if there are two many vetices in the `LineMesh` for polygons # Note that for the benchmark test there is no visualization or evaluation on polygons; only on planes. config_pp = dict(filter=dict(hole_area=dict(min=0.00, max=100.0), hole_vertices=dict(min=6), plane_area=dict(min=0.0001)), positive_buffer=0.01, negative_buffer=0.01, simplify=0.02) _, _, all_poly_lines, _ = extract_planes_and_polygons_from_mesh(tri_mesh, avg_peaks, config_pp=config_pp) mesh_3d_polylidar = [] mesh_3d_polylidar.extend(flatten([line_mesh.cylinder_segments for line_mesh in all_poly_lines])) plot_meshes([pcd_raw, tri_mesh_o3d, *mesh_3d_polylidar]) def plot_triangle_normals(normals: np.ndarray): colors = ((normals * 0.5 + 0.5) * 255).astype(np.uint8) im = colors.reshape((249, 249, 2, 3)) im = im[:, :, 1, :] plt.imshow(im, origin='upper') plt.show() @visualize.command() @click.option('-i', '--input-file', type=click.Path(exists=True), default=DEFAULT_PPB_FILE) @click.option('-s', '--stride', type=int, default=2) @click.option('-l', '--loops', type=int, default=5) @click.option('--llambda', type=float, default=1.0) @click.option('-ks', '--kernel-size', type=int, default=3) @click.option('-lb', '--loops-bilateral', type=int, default=0) def planes(input_file, stride, loops, llambda, kernel_size, loops_bilateral): """Visualize Plane Extraction from PCD File""" pc_raw, pcd_raw, pc_image, tri_mesh, tri_mesh_o3d, mesh_timings = load_pcd_and_meshes( input_file, stride, loops, llambda, loops_bilateral, kernel_size=kernel_size) avg_peaks, pcd_all_peaks, arrow_avg_peaks, colored_icosahedron, fastga_timings = extract_all_dominant_plane_normals( tri_mesh) # print(avg_peaks) # print((avg_peaks * 0.5 + 0.5) * 255) # tri_mesh_normals = np.asarray(tri_mesh.triangle_normals) # plot_triangle_normals(tri_mesh_normals) all_planes, all_polygons, _, polylidar_timings = extract_planes_and_polygons_from_mesh( tri_mesh, avg_peaks, filter_polygons=False) all_timings = dict(**mesh_timings, **fastga_timings, **polylidar_timings) all_planes_classified = convert_planes_to_classified_point_cloud(all_planes, tri_mesh, avg_peaks) # paint the planes # all_planes_classified.append(dict(triangles=np.array([51032]))) # del all_planes_classified[-1] # can be evaluated by polygons (using downsampled image) or just the planes # for evaluation we need the full point cloud, not downsampled # _, gt_image = load_pcd_file(input_file, stride=1) # all_planes_classified = convert_polygons_to_classified_point_cloud(all_polygons, tri_mesh, avg_peaks, gt_image, stride,) # results, auxiliary = evaluate(gt_image, all_planes_classified) # get results results, auxiliary = evaluate(pc_image, all_planes_classified, tcomp=0.8) tri_mesh_o3d_painted = paint_planes(all_planes_classified, auxiliary, tri_mesh_o3d) # create invalid plane markers, green = gt_label_missed, red=ms_labels_noise, blue=gt_label_over_seg,gray=ms_label_under_seg invalid_plane_markers = mark_invalid_planes(pc_raw, auxiliary, all_planes_classified) # invalid_plane_markers = [] # plot_meshes([tri_mesh_o3d_painted]) plot_meshes([pcd_raw, tri_mesh_o3d_painted, *invalid_plane_markers]) @visualize.command() @click.option('-v', '--variance', type=click.Choice(['0', '1', '2', '3', '4']), default='1') @click.option('-d', '--data', default="train") @click.option('-s', '--stride', type=int, default=2) @click.option('-l', '--loops', type=int, default=5) @click.option('--llambda', type=float, default=1.0) @click.option('-ks', '--kernel-size', type=int, default=3) @click.option('-lb', '--loops-bilateral', type=int, default=0) @click.pass_context def planes_all(ctx, variance, data, stride, loops, llambda, kernel_size, loops_bilateral): """Visualize Plane Extraction from training/testing/gt set""" if int(variance) == 0: base_dir = SYNPEB_DIR_TRAIN_GT if data == "train" else SYNPEB_DIR_TEST_GT else: base_dir = SYNPEB_DIR_TRAIN_ALL[int( variance) - 1] if data == "train" else SYNPEB_DIR_TEST_ALL[int(variance) - 1] all_fnames = SYNPEB_ALL_FNAMES if int(variance) != 0: all_fnames = all_fnames[0:10] for fname in all_fnames: fpath = str(base_dir / fname) logger.info("File: %s; stride=%d, loops=%d", fpath, stride, loops) ctx.invoke(planes, input_file=fpath, stride=stride, loops=loops, llambda=llambda, kernel_size=kernel_size, loops_bilateral=loops_bilateral) @visualize.command() @click.option('-v', '--variance', type=click.Choice(['0', '1', '2', '3', '4']), default='1') @click.option('-d', '--data', default="train") @click.option('-s', '--stride', type=int, default=2) @click.option('-l', '--loops', type=int, default=5) @click.option('--llambda', type=float, default=1.0) @click.pass_context def polygons_all(ctx, variance, data, stride, loops, llambda): """Visualize Polygon Extraction from training/testing/gt set""" if int(variance) == 0: base_dir = SYNPEB_DIR_TRAIN_GT if data == "train" else SYNPEB_DIR_TEST_GT else: base_dir = SYNPEB_DIR_TRAIN_ALL[int( variance) - 1] if data == "train" else SYNPEB_DIR_TEST_ALL[int(variance) - 1] all_fnames = SYNPEB_ALL_FNAMES if int(variance) != 0: all_fnames = all_fnames[0:10] for fname in all_fnames: fpath = str(base_dir / fname) logger.info("File: %s; stride=%d, loops=%d", fpath, stride, loops) ctx.invoke(polygons, input_file=fpath, stride=stride, loops=loops, llambda=llambda) def main(): visualize() if __name__ == "__main__": main() ```
{ "source": "JeremyBYU/pypcd", "score": 2 }
#### File: pypcd/examples/simple_pcd.py ```python from pypcd.pypcd import PointCloud PCD_FILE = "test_data/pc_01.pcd" def main(): a = PointCloud.from_path(PCD_FILE) print(a.pc_data['x']) if __name__ == "__main__": main() ```
{ "source": "JeremyBYU/simplifyline", "score": 2 }
#### File: tests/python/bench_test.py ```python import pytest import numpy as np from simplifyline import MatrixDouble, simplify_line_2d, simplify_line_3d, simplify_radial_dist_2d from simplification.cutil import simplify_coords def test_example1_simplifyline_lowquality(benchmark, example1): mat = MatrixDouble(example1) result = benchmark(simplify_line_2d, mat, 0.1, False) def test_example1_simplifyline_lowquality(benchmark, example1): mat = MatrixDouble(example1) result = benchmark(simplify_line_2d, mat, 0.1, False) def test_example1_simplifyline(benchmark, example1): mat = MatrixDouble(example1) result = benchmark(simplify_line_2d, mat, 0.1, True) def test_example1_simplification(benchmark, example1): result = benchmark(simplify_coords, example1, 0.1) # @pytest.mark.parametrize("max_distance", [0.1, 1.0, 10.0]) # @pytest.mark.parametrize("high_quality", [True, False]) # def test_bench_example1_simplifyline_parmetersweep(benchmark, example1,max_distance, high_quality): # # benchmark something # mat = MatrixDouble(example1) # result = benchmark(simplify_line_2d, mat, max_distance, high_quality) ```
{ "source": "JeremyBYU/UnrealRooftopLanding", "score": 2 }
#### File: airsimcollect/scripts/generatepoi.py ```python import sys import logging from os import path import math from functools import partial import json import numpy as np from shapely.algorithms.polylabel import polylabel from shapely.geometry import Point import click click.option = partial(click.option, show_default=True) from airsimcollect.helper.helper import import_world, plot_collection_points logging.basicConfig(level=logging.INFO, format='%(message)s') logger = logging.getLogger("GeneratePoi") logger.setLevel(logging.INFO) def num_collection_points(yaw_range, yaw_delta, pitch_range, pitch_delta): # Whether to include endpoint of the yaw and pitch range yaw_endpoint = True theta_endpoint = True if yaw_delta < .01: num_yaw = 1 else: num_yaw = int((abs(yaw_range[0] - yaw_range[1])) / yaw_delta) + 1 # Dont sample the last 0 and 360 if int(abs(yaw_range[0] - yaw_range[1])) == 360: num_yaw -= 1 yaw_endpoint = False if pitch_delta is None or pitch_delta < .01: num_phi = 1 else: num_phi = int((abs(pitch_range[0] - pitch_range[1])) / pitch_delta) + 1 return num_yaw, num_phi, num_phi * num_yaw, yaw_endpoint def remove_collision(collection_points, collisions): x = collection_points[:, 0] y = collection_points[:, 1] z = collection_points[:, 2] obstacle_mask = np.zeros_like(x, dtype='bool') for (minx, miny, maxx, maxy), height in collisions: z_m = z < height x_m = (x > minx) & (x < maxx) y_m = (y > miny) & (y < maxy) obstacle_mask = obstacle_mask | (z_m & x_m & y_m) return collection_points[~obstacle_mask] def sample_circle(focus_point, radius, yaw_range, yaw_delta, fixed_phi=np.pi/2): num_yaw, num_phi, _, yaw_endpoint = num_collection_points(yaw_range, yaw_delta, None, None) theta = np.linspace(math.radians( yaw_range[0]), math.radians(yaw_range[1]), num_yaw, endpoint=yaw_endpoint) phi = np.ones_like(theta) * fixed_phi roll = np.zeros_like(theta) x = np.cos(theta) * radius + focus_point[0] y = np.sin(theta) * radius + focus_point[1] z = np.ones_like(phi) * focus_point[2] collection_points = np.stack((x, y, z, phi, roll, theta), axis=1) collection_points = np.append(collection_points,[[*focus_point, fixed_phi, 0, 0]], axis=0) print(fixed_phi) return collection_points def sample_sphere(focus_point, radius, pitch_range, pitch_delta, yaw_range, yaw_delta): num_yaw, num_phi, _, yaw_endpoint = num_collection_points(yaw_range, yaw_delta, pitch_range, pitch_delta) theta = np.linspace(math.radians( yaw_range[0]), math.radians(yaw_range[1]), num_yaw, endpoint=yaw_endpoint) phi = np.linspace(math.radians( pitch_range[0]), math.radians(pitch_range[1]), num_phi) theta = np.repeat(theta, num_phi) phi = np.tile(phi, num_yaw) roll = np.zeros_like(phi) x = np.cos(theta) * np.sin(phi) * radius + focus_point[0] y = np.sin(theta) * np.sin(phi) * radius + focus_point[1] z = np.cos(phi) * radius + focus_point[2] collection_points = np.stack((x, y, z, phi, roll, theta), axis=1) return collection_points def random_points_within(poly, num_points): min_x, min_y, max_x, max_y = poly.bounds points = [] while len(points) < num_points: random_point = Point( [np.random.uniform(min_x, max_x), np.random.uniform(min_y, max_y)]) if (random_point.within(poly)): points.append(random_point) return points def genereate_radii(feature, radius_min=0.0, radius_increase=0.0, num_spheres=1, radius_delta=200.0): """Generates a list of radii for collection spheres Arguments: feature {GeoJSON} -- GeoJSON Feature Keyword Arguments: radius_min {float} -- Minimum Radius. If 0 takes on different defaults (default: {0.0}) num_spheres {int} -- Number of collection spheres (default: {1}) radius_delta {float} -- How much to expand each radi from the previous (default: {200.0}) Returns: list -- list of radi """ radius_min_default_point = 500 geom = feature['geometry'] if geom.geom_type == 'Point' or geom.geom_type == 'LineString': radius_min_ = radius_min_default_point if radius_min == 0.0 else radius_min radius_min_ += radius_increase else: minx, miny, maxx, maxy = geom.bounds radius_geom = min(maxx - minx, maxy - miny) / 2.0 radius_min_ = radius_geom if radius_min == 0.0 else radius_min radius_min_ += radius_increase return [radius_min_ + radius_delta * i for i in range(num_spheres)] def generate_line_points(geom, num_focus_points): sections = len(geom.coords) - 1 point_per_section = max(int(math.floor(num_focus_points / sections)), 1) x_points = [] y_points = [] for i, (x_prev, y_prev) in enumerate(geom.coords[:-1]): x_next, y_next = geom.coords[i + 1] x_points.append(np.linspace(x_prev, x_next, num=point_per_section, endpoint=False)) y_points.append(np.linspace(y_prev, y_next, num=point_per_section, endpoint=False)) # Must add the last point last_point = geom.coords[-1] x_points.append(np.array([last_point[0]])) y_points.append(np.array([last_point[1]])) # Flattten and combine data x = np.concatenate(x_points) y = np.concatenate(y_points) points = np.column_stack((x, y)) return points def generate_focus_points(feature, focus_point, num_focus_points, height_offset=0.0): geom = feature['geometry'] height = feature['properties']['height'] + height_offset # Check if LineString Feature, return early if geom.geom_type == 'LineString': points = generate_line_points(geom, num_focus_points) return [[point[0], point[1], height] for point in points] # Point or Polygon Feature if geom.geom_type == 'Point': points = [geom] else: if focus_point == 'random': points = random_points_within(geom, num_focus_points) elif focus_point == 'centroid': points = [geom.centroid] elif focus_point == 'pia': points = [polylabel(geom)] return [[point.x, point.y, height] for point in points] @click.group() def cli(): """Generates points of interest from geojson file from unreal world""" pass @cli.command() @click.option('-m', '--map-path', type=click.Path(exists=True), required=True, help='GeoJSON map file of points of interests (features) in the UE4 world.') @click.option('-pr', '--pitch-range', nargs=2, type=float, default=[30, 90], help='Range in pitch (phi) on a collection sphere to sample each collection point') @click.option('-pd', '--pitch-delta', type=float, default=15.0, help='Change in pitch angle (degrees) on collection sphere for each collection point') @click.option('-yr', '--yaw-range', nargs=2, type=float, default=[0, 360], help='Range in yaw (theta) on a collection sphere to sample each collection point') @click.option('-yd', '--yaw-delta', type=float, default=15.0, help='Change in yaw angle (degrees) on collection sphere for each collection point') @click.option('-ho', '--height-offset', type=float, default=0.0, help='Add a height offset to each feature') @click.option('-ns', '--num-spheres', type=int, default=1, help='Number of collection spheres to generate and sample from.') @click.option('-rm', '--radius-min', type=float, default=0.0, help="Fixed minimum radius of collection sphere (distance from the focus point). " + "If 0 and map feature is a polygon, will use smallest sized circle to circumscribe polygon. " + "If 0 and map feature is a point, set to 500.") @click.option('-ri', '--radius-increase', type=float, default=0.0, help="Increase (bias) from minimum radius of collection sphere (distance from the focus point). ") @click.option('-rd', '--radius-delta', type=float, default=500.0, help='Change in growing collection sphere radius. Only applicable for -ns > 1.') @click.option('-fp', '--focus-point', type=click.Choice(['pia', 'centroid', 'random']), default='centroid', help='Only applicable to polygon features. Determines what point on a 2D polygon ' + 'should be used as the center of the collection sphere') @click.option('-nf', '--num-focus-points', type=int, default=1, help='Number of focus points to randomly generate on 2D polygon. Only applicable to -fp random.') @click.option('-rfn', '--record-feature-name', type=str, default=None, help='Set to geojson property name if you want to record a label associated to each point') @click.option('-o', '--out', type=click.Path(exists=False), default="collection_points.npy", help="Output numpy array of position and angles") @click.option('-ao', '--append-out', is_flag=True, help="If output file already exists, just append to it") @click.option('--seed', type=int, default=1, help="Random seed") @click.option('-ic', '--ignore-collision', is_flag=True, help="By default this module ensures the collection point does not collide with any known features " + "in the map. Set this flag to ignore this check.") @click.option('-sc', '--sampling-method', type=click.Choice(['sphere', 'circle']), default='sphere', help='Whether we are sampling on a sphere or on a 2D circle at a height offset from the focus point') @click.option('-pp', '--plot-points', is_flag=True, help="Whether to plot points for viewing. Debug only.") @click.option('-d', '--debug', is_flag=True, help="Whether to print debug statements") def generate(map_path, pitch_range, pitch_delta, yaw_range, yaw_delta, height_offset, num_spheres, radius_min, radius_increase, radius_delta, focus_point, num_focus_points, record_feature_name, out, append_out, seed, ignore_collision, sampling_method, plot_points, debug): if debug: logger.setLevel(logging.DEBUG) logger.debug("{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}".format( map_path, pitch_range, pitch_delta, yaw_delta, num_spheres, radius_min, radius_increase, radius_delta, focus_point, num_focus_points, ignore_collision, out, seed, sampling_method, plot_points)) click.secho("Generating collection points...") # generate_collection_points(map_path, pitch_range, pitch_delta, yaw_delta, num_spheres, radius_min, radius_delta, focus_point, ignore_collision) try: features, collisions = import_world(map_path) except Exception as e: click.secho("Error parsing GeoJSON file. Is it valid?", fg='red') logger.exception(e) sys.exit() all_points = [] all_feature_names = [] for feature in features: logger.debug("Inspecting feature: %s", feature) focus_points = generate_focus_points(feature, focus_point, num_focus_points, height_offset=height_offset) radii = genereate_radii(feature, radius_min, radius_increase, num_spheres, radius_delta) for focus_point_ in focus_points: logger.debug("At focus point: %s", focus_point_) for radius in radii: if sampling_method == 'sphere': collection_points = sample_sphere(focus_point_, radius, pitch_range, pitch_delta, yaw_range, yaw_delta) else: fixed_phi = pitch_range[0] print(fixed_phi) collection_points = sample_circle(focus_point_, radius, yaw_range, yaw_delta, fixed_phi=fixed_phi) logger.debug("At radius level: %s", radius) if not ignore_collision: prev_shape = collection_points.shape collection_points = remove_collision(collection_points, collisions) if collection_points.shape != prev_shape: logger.debug("Collisions removed for feature %r", feature['properties']['class_label']) all_points.append(collection_points) if record_feature_name: all_feature_names.extend([feature['properties'][record_feature_name]] * collection_points.shape[0]) if plot_points: plot_collection_points(collection_points, focus_point_, radius, feature, sampling_method) all_points = np.vstack(all_points) click.echo( "Finished generating {:d} collection points for {:d} points of interests!".format( all_points.shape[0], len(features))) if append_out and path.isfile(out): old_data = np.load(out) all_points = np.vstack((old_data, all_points)) np.save(out, all_points) if all_feature_names: out_feature_names = out[:-4] + '.json' with open(out_feature_names, 'w') as f: json.dump(all_feature_names, f, indent=2) ``` #### File: scripts/archive/check_saved_processed.py ```python import time from pathlib import Path import argparse import joblib import os from descartes import PolygonPatch import matplotlib.pyplot as plt import numpy as np from shapely.affinity import affine_transform from scipy.spatial.transform import Rotation as R from airsimcollect.helper.helper_logging import logger from airsimcollect.helper.helper_transforms import get_seg2rgb_map, project_points_img from airsimcollect.helper.helper_mesh import (create_meshes_cuda) from airsimcollect.helper.helper_metrics import load_records, select_building, load_map, compute_metric from airsimcollect.helper.o3d_util import create_frustum from airsimcollect.helper.helper_confidence_maps import (create_fake_confidence_map_seg, create_confidence_map_planarity, create_confidence_map_combined, get_homogenous_projection_matrices) from airsimcollect.helper.helper_polylidar import extract_polygons ROOT_DIR = Path(__file__).parent.parent SAVED_DATA_DIR = ROOT_DIR / 'AirSimCollectData/LidarRoofManualTest' PROCESSED_DATA_DIR = SAVED_DATA_DIR / 'Processed' GEOSON_MAP = ROOT_DIR / Path("assets/maps/roof-lidar-manual.geojson") O3D_VIEW = ROOT_DIR / Path("assets/o3d/o3d_view_default.json") RESULTS_DIR = ROOT_DIR / Path("assets/results") # def plot_polygons(polygons, points, ax, linewidth=2, shell_color='green', hole_color='orange'): # for poly in polygons: # shell_coords = poly.exteror # outline = Polygon(shell=shell_coords) # outlinePatch = PolygonPatch(outline, ec=shell_color, fill=False, linewidth=linewidth) # ax.add_patch(outlinePatch) # for hole_poly in poly.holes: # shell_coords = [get_point(pi, points) for pi in hole_poly] # outline = Polygon(shell=shell_coords) # outlinePatch = PolygonPatch(outline, ec=hole_color, fill=False, linewidth=linewidth) # ax.add_patch(outlinePatch) def transform_points(points, hom_transform): temp = np.ones(shape=(4, points.shape[0])) temp[:3, :] = points.transpose() point_cam_ned = hom_transform.dot(temp) return point_cam_ned def transform_ponts_raw(points, hom_transform): pass def convert_points(points, hom, proj, width, height): cam_poly_points = transform_points(points, hom) pixels, _ = project_points_img(cam_poly_points, proj, width, height, None) return pixels def rot_to_hom(rot, invert=False): rot_ = rot.T if invert else rot ans = np.identity(4) ans[:3,:3] = rot_ return ans def affine_mat(hom): return [hom[0,0], hom[0, 1], hom[0,2], hom[1, 0], hom[1, 1], hom[1,2], hom[2,0], hom[2,1], hom[2, 2], hom[0,3], hom[1, 3], hom[2,3]] # def poly_rotate(rm, ) def main(): records = sorted(os.listdir(PROCESSED_DATA_DIR), key=lambda x: 100 * int(x[:-4].split('-')[0]) + int(x[:-4].split('-')[1]) ) for record_str in records: record = joblib.load(PROCESSED_DATA_DIR / record_str) conf_map_comb = record['conf_map_comb'] hom = record['hom'] proj = record['proj'] poly = record['poly'] poly_normal = record['poly_normal'] rm, _ = R.align_vectors([[0, 0, 1]], poly_normal) rm = rot_to_hom(rm.as_matrix(), invert=True) # poly = affine_transform(poly, affine_mat(rm)) poly_points = np.array(poly.exterior) # if in lidar local frame where xy is not flat new_hom = hom @ rm pixels = convert_points(poly_points, hom, proj, conf_map_comb.shape[0], conf_map_comb.shape[1]) fig, ax = plt.subplots(nrows=1, ncols=2) conf_map_comb[pixels[:, 1], pixels[:, 0]] = 0.5 ax[0].imshow(conf_map_comb) ax[1].add_patch(PolygonPatch(poly, ec='k', alpha=0.5, zorder=2),) ax[1].axis('equal') ax[1].scatter(poly_points[:, 0], poly_points[:, 1]) plt.show() def parse_args(): parser = argparse.ArgumentParser(description="Check LiDAR") parser.add_argument('--gui', dest='gui', action='store_true') args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main() # Check the center, if less than 0.5, then take max of 4 corners, if all 4 corners bad then stop ``` #### File: UnrealRooftopLanding/scripts/check_saved_lidar.py ```python from pathlib import Path from os import listdir from os.path import isfile, join from functools import partial import argparse import time import yaml # import matplotlib.pyplot as plt from rich import print as rprint import numpy as np from shapely.geometry import shape, Polygon import shapely from airsim.types import Vector3r, Quaternionr import cv2 import pandas as pd from airsimcollect.helper.helper_logging import logger from airsimcollect.helper.o3d_util import (update_linemesh, handle_linemeshes, init_vis, create_frustum, update_o3d_colored_point_cloud, create_linemesh_from_shapely, update_frustum, load_view_point, save_view_point, toggle_visibility, BLUE, PURPLE) from airsimcollect.helper.helper_transforms import classify_points, polygon_to_pixel_coords from airsimcollect.helper.helper_metrics import (update_projected_image, BLUE_NORM, GOLD_NORM, PURPLE_NORM, load_map, select_building, load_map, load_records, compute_metric, update_state, get_inscribed_circle_polygon) from airsimcollect.helper.helper_polylidar import extract_polygons from fastga import GaussianAccumulatorS2Beta, IcoCharts from polylidar import MatrixDouble, extract_tri_mesh_from_organized_point_cloud, HalfEdgeTriangulation, Polylidar3D, MatrixUInt8 ROOT_DIR = Path(__file__).parent.parent SAVED_DATA_DIR = ROOT_DIR / 'AirSimCollectData/LidarRoofManualTest' GEOSON_MAP = ROOT_DIR / Path("assets/maps/roof-lidar-manual.geojson") RESULTS_DIR = ROOT_DIR / Path("assets/results") O3D_VIEW = ROOT_DIR / Path("assets/o3d/o3d_view_default.json") FOV = 90 # Nice Pictures UIDs - 31, 34, 38, 39, 42, 45 # Bad Segmentation Drone but still success - 40, 41, def main(save_data_dir: Path, geoson_map, results_fname, gui=True, segmented=False, computer='desktop', save_images=True): records, lidar_paths_dict, scene_paths_dict, segmentation_paths_dict, seg_infer_path_dict, seg_infer_dict = load_records( save_data_dir) output_dir = (save_data_dir / "Output") output_dir.mkdir(parents=False, exist_ok=True) # Load yaml file with open('./assets/config/PolylidarParams.yaml') as file: config = yaml.safe_load(file) start_offset_unreal = np.array(records['start_offset_unreal']) map_features_dict = load_map(geoson_map, start_offset_unreal) airsim_settings = records.get('airsim_settings', dict()) lidar_beams = airsim_settings.get('lidar_beams', 64) range_noise = airsim_settings.get('range_noise', 0.05) # have to turn some json keys into proper objects, quaternions... update_state(airsim_settings, position='lidar_to_camera_pos', rotation='lidar_to_camera_quat') # Create Polylidar Objects pl = Polylidar3D(**config['polylidar']) ga = GaussianAccumulatorS2Beta(level=config['fastga']['level']) ico = IcoCharts(level=config['fastga']['level']) # Initialize 3D Viewer, Map and Misc geometries if gui: vis, geometry_set = init_vis() line_meshes = [feature['line_meshes'] for features in map_features_dict.values() for feature in features] line_meshes = [ line_mesh for line_mesh_set in line_meshes for line_mesh in line_mesh_set] geometry_set['map_polys'].line_meshes = handle_linemeshes( vis, geometry_set['map_polys'].line_meshes, line_meshes) load_view_point(vis, str(O3D_VIEW)) vis.register_key_callback(ord("X"), partial( toggle_visibility, geometry_set, 'pcd')) vis.register_key_callback(ord("C"), partial( toggle_visibility, geometry_set, 'map_polys')) vis.register_key_callback(ord("V"), partial( toggle_visibility, geometry_set, 'pl_polys')) vis.register_key_callback(ord("B"), partial( toggle_visibility, geometry_set, 'frustum')) vis.register_key_callback(ord("N"), partial( toggle_visibility, geometry_set, 'pl_isec')) vis.register_key_callback(ord("M"), partial( toggle_visibility, geometry_set, 'gt_isec')) vis.register_key_callback(ord(","), partial( toggle_visibility, geometry_set, 'circle_polys')) vis.register_key_callback(ord("U"), partial( save_view_point, filename='temp.json')) vis.register_key_callback(ord("Y"), partial( load_view_point, filename='temp.json')) else: geometry_set = dict(pl_polys=None) result_records = [] for record in records['records']: path_key = f"{record['uid']}-{record['sub_uid']}-0" bulding_label = record['label'] # building name if record['uid'] in [5, 6, 25, 26, 27, 28, 29]: logger.warn("Skipping record; UID: %s; SUB-UID: %s; Building Name: %s. Rooftop assets don't match map. Rooftop assets randomness wasn't fixed on this asset!", record['uid'], record['sub_uid'], bulding_label) continue # uid #45 is best segmentation example # if record['uid'] < 8: # continue logger.info("Inspecting record; UID: %s; SUB-UID: %s; Building Name: %s", record['uid'], record['sub_uid'], bulding_label) # Get camera data img_meta = record['sensors'][0] update_state(img_meta) camera_position = img_meta['position'].to_numpy_array() # map feature of the building building_features = map_features_dict[bulding_label] building_feature = select_building(building_features, camera_position) distance_to_camera = building_feature['ned_height'] - camera_position[2] # Load LiDAR Data pc_np = np.load(str(lidar_paths_dict[path_key])) # Load Images img_scene = cv2.imread(str(scene_paths_dict[path_key])) img_seg = cv2.imread(str(segmentation_paths_dict[path_key])) img_seg_infer = cv2.imread(str(seg_infer_path_dict[path_key])) img_meta['data'] = seg_infer_dict[path_key] # Combine all images img = np.concatenate((img_scene, img_seg, img_seg_infer), axis=1) # Update LIDAR Data to use inference from neural network pc_np_infer = np.copy(pc_np) t1 = time.perf_counter() point_classes, mask, pixels = classify_points( img_meta['data'], pc_np[:, :3], img_meta, airsim_settings) t2 = time.perf_counter() t_classify_pointcloud = (t2-t1) * 1000 pc_np_infer[:, 3] = point_classes # Update projected image to have lidar data img_projected = np.copy(img_scene) # Points that define the camera FOV frustum frustum_points = create_frustum( distance_to_camera, camera_position, hfov=FOV, vfov=FOV) # Polygon Extraction of surface # Only Polylidar3D pl_planes, alg_timings, _, _, _ = extract_polygons(pc_np, geometry_set['pl_polys'] if not segmented else None, pl, ga, ico, config, segmented=False, lidar_beams=lidar_beams, drone_pose=camera_position) # Polylidar3D with Perfect (GT) Segmentation pl_planes_seg_gt, alg_timings_seg, _, _, _ = extract_polygons(pc_np, geometry_set['pl_polys'] if segmented else None, pl, ga, ico, config, segmented=True, lidar_beams=lidar_beams, drone_pose=camera_position, prefilter=True) # Polylidar3D with Inferred (NN) Segmentation pl_planes_seg_infer, alg_timings_seg, _, _, _ = extract_polygons(pc_np_infer, geometry_set['pl_polys'] if segmented else None, pl, ga, ico, config, segmented=True, lidar_beams=lidar_beams, drone_pose=camera_position, prefilter=True) alg_timings_seg.update(t_classify_pointcloud=t_classify_pointcloud) if pl_planes and True: base_iou, pl_poly_baseline, gt_poly = compute_metric( building_feature, pl_planes, frustum_points) seg_gt_iou, pl_poly_estimate_seg, _ = compute_metric( building_feature, pl_planes_seg_gt, frustum_points) seg_infer_iou, pl_poly_estimate_seg, _ = compute_metric( building_feature, pl_planes_seg_infer, frustum_points) logger.info("Polylidar3D Base IOU - %.1f; Seg GT IOU - %.1f; Seg Infer IOU - %.1f", base_iou * 100, seg_gt_iou * 100, seg_infer_iou * 100) # Get Largest Inscribed Circle circle_poly, circle = get_inscribed_circle_polygon(pl_poly_estimate_seg, config['polylabel']['precision']) circle_poly_baseline, circle_baseline = get_inscribed_circle_polygon( pl_poly_baseline, config['polylabel']['precision']) alg_timings_seg.update(t_polylabel=circle['t_polylabel']) result_records.append(dict(uid=record['uid'], sub_uid=record['sub_uid'], building=bulding_label, pl_base_iou=base_iou, pl_seg_gt_iou=seg_gt_iou, pl_seg_infer_iou=seg_infer_iou, computer=computer, **alg_timings_seg)) img_projected_baseline = np.copy(img_projected) # img_projected[pixels[:,1], pixels[:, 0]] = [0, 255,0] update_projected_image(img_projected, circle_poly, pl_poly_estimate_seg, gt_poly, pixels, img_meta, airsim_settings) update_projected_image(img_projected_baseline, circle_poly_baseline, pl_poly_baseline, gt_poly, pixels, img_meta, airsim_settings) # Visualize these intersections if gui: # Visualize the polylidar with segmentation results if segmented: pl_poly_baseline = pl_poly_estimate_seg update_linemesh([pl_poly_baseline], geometry_set['pl_isec']) update_linemesh([gt_poly], geometry_set['gt_isec'], color=PURPLE) update_linemesh([circle_poly], geometry_set['circle_polys'], color=BLUE) elif gui: update_linemesh([], geometry_set['pl_isec']) update_linemesh([], geometry_set['gt_isec']) update_linemesh([], geometry_set['circle_polys']) if save_images: baseline_fname = output_dir / "{}-projected-baseline.png".format(path_key) semantic_fname = output_dir / "{}-projected-semantic.png".format(path_key) cv2.imwrite(str(baseline_fname), img_projected_baseline) cv2.imwrite(str(semantic_fname), img_projected) if gui: # Create Frustum update_frustum(vis, distance_to_camera, camera_position, hfov=FOV, vfov=FOV, frustum=geometry_set['frustum']) # Load Lidar Data update_o3d_colored_point_cloud(pc_np_infer, geometry_set['pcd'].geometry) # Update Drone Position geometry_set['drone'].geometry.translate(img_meta['position'].to_numpy_array(), relative=False) # Update Plot Images img = np.concatenate((img, img_projected, img_projected_baseline), axis=1) cv2.imshow('Scene View'.format(record['uid']), img) # Update geometry and view vis.update_geometry(geometry_set['pcd'].geometry) vis.update_geometry(geometry_set['drone'].geometry) vis.update_renderer() while(True): vis.poll_events() vis.update_renderer() res = cv2.waitKey(10) if res != -1: break df = pd.DataFrame.from_records(result_records) print(df) df['iou_diff'] = df['pl_base_iou'] - df['pl_seg_gt_iou'] df.to_csv(RESULTS_DIR / results_fname) print(df.mean()) def parse_args(): parser = argparse.ArgumentParser(description="Check LiDAR") parser.add_argument('--data', type=str, default=SAVED_DATA_DIR) parser.add_argument('--map', type=str, default=GEOSON_MAP) parser.add_argument('--results', type=str, default='results.csv') parser.add_argument('--gui', dest='gui', action='store_true') parser.add_argument('--seg', dest='seg', action='store_true') args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() main(Path(args.data), Path(args.map), args.results, args.gui, args.seg) ``` #### File: UnrealRooftopLanding/scripts/collect_decision_point_data.py ```python import argparse import json import logging import time from os import path import numpy as np from numpy.core.fromnumeric import squeeze from airsim import Vector3r, Pose, to_quaternion, ImageRequest from airsimcollect.helper.helper import update, update_collectors, DEFAULT_CONFIG from airsimcollect import AirSimCollect from airsimcollect.helper.helper_logging import logger def parse_args(): parser = argparse.ArgumentParser(description="Collect Decision Point Data") parser.add_argument('--config', type=str, help='Configuration file for collection', default='./assets/config/collect_lidar_decision_point.json') args = parser.parse_args() return args def setup_airsimcollect(config_file): with open(config_file) as file: config = json.load(file) config = update(DEFAULT_CONFIG, config) config['collectors'] = update_collectors(config['collectors']) asc = AirSimCollect( **config, manual_collect=True) # pylint: disable=E1132, fpath = path.normpath(path.join(asc.save_dir, 'records.json')) if path.exists(fpath): with open(fpath, 'r') as outfile: data = json.load(outfile) try: global_id = data['records'][-1]['uid'] + 1 except: global_id = 0 records = data['records'] else: records = [] global_id = 0 return asc, records, global_id def create_square_pose(altitude=-5, pose=np.array([0, 0, 0]), square_size=4, grid_size=4): half_square = square_size / 2.0 poses = [] delta = square_size / grid_size for x in range(grid_size + 1): half_square_x = half_square - x * delta for y in range(grid_size + 1): half_square_y = half_square - y * delta new_pose = pose + \ np.array([half_square_x, half_square_y, altitude]) poses.append(new_pose.tolist()) return poses def main(config_file): heights = [5, 10, 15, 20, 25, 30] # heights= [5] asc, records, global_id = setup_airsimcollect(config_file) for height in heights: poses = create_square_pose(-height) for sub_id, pose in enumerate(poses): asc.client.simSetVehiclePose( Pose(Vector3r(*pose), to_quaternion(0, 0, 0)), True) time.sleep(asc.min_elapsed_time) extra_data = dict(lidar_beams=asc.airsim_settings['lidar_beams'], range_noise=asc.airsim_settings['range_noise'], horizontal_noise=asc.airsim_settings['horizontal_noise'], height=height) record = None while record is None: try: record = asc.collect_data_at_point( global_id, sub_id, label='Building2_Example3', extra_data=extra_data) records.append(record) except: logger.exception("Error getting data from point, retrying..") time.sleep(asc.min_elapsed_time) global_id += 1 asc.save_records(records) if __name__ == "__main__": args = parse_args() main(args.config) ```
{ "source": "jeremycare/serverless-patterns", "score": 2 }
#### File: cloudfront-lambda-edge-cdk-python/lambda/index.py ```python import datetime # The generated page contains some dynamic data, so we don't want # it to stay in cache for long cache_control_max_age = 3 # in seconds def handler(event, context): today = datetime.datetime.now() date_time = today.strftime("%m/%d/%Y, %H:%M:%S") html = "<html><title>Content generated by Lambda@Edge</title><body><h1>This content is generated by Lambda@Edge.</h1> <h3>Content generated at {}</h3></body></html>".format(date_time) response = { 'status': 200, 'headers' : { "cache-control": [ { "key": "Cache-Control", "value": "max-age={}".format(date_time) }], "content-type": [{ "key": "Content-Type", "value": 'text/html;charset=UTF-8' }] }, 'body': html } return response ``` #### File: tests/unit/test_cloudfront_lambda_edge_cdk_python_stack.py ```python import aws_cdk as core import aws_cdk.assertions as assertions from cloudfront_lambda_edge_cdk_python.cloudfront_lambda_edge_cdk_python_stack import CloudfrontLambdaEdgeCdkPythonStack # example tests. To run these tests, uncomment this file along with the example # resource in cloudfront_lambda_edge_cdk_python/cloudfront_lambda_edge_cdk_python_stack.py def test_sqs_queue_created(): app = core.App() stack = CloudfrontLambdaEdgeCdkPythonStack(app, "cloudfront-lambda-edge-cdk-python") template = assertions.Template.from_stack(stack) # template.has_resource_properties("AWS::SQS::Queue", { # "VisibilityTimeout": 300 # }) ``` #### File: lambda-sns-cdk/src/app.py ```python from aws_cdk import ( aws_lambda as _lambda, aws_logs as logs, aws_sns as sns, core as cdk ) from constructs import Construct class LambdaSnsCdkStack(cdk.Stack): def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None: super().__init__(scope, construct_id, **kwargs) # Create SNS Topic # SNS topic topic = sns.Topic(self, 'sns-to-lambda-topic', display_name='My SNS topic') # Create Lambda function lambdaFn = _lambda.Function(self, "SNSPublisher", runtime=_lambda.Runtime.PYTHON_3_9, code=_lambda.Code.from_asset("lambda"), handler="handler.main", timeout=cdk.Duration.seconds(10)) # Set Lambda Logs Retention and Removal Policy logs.LogGroup( self, 'logs', log_group_name=f"/aws/lambda/{lambdaFn.function_name}", removal_policy=cdk.RemovalPolicy.DESTROY, retention=logs.RetentionDays.ONE_DAY ) # Grant publish to lambda function topic.grant_publish(lambdaFn) cdk.CfnOutput(self, 'snsTopicArn', value=topic.topic_arn, description='The arn of the SNS topic') cdk.CfnOutput(self, 'functionName', value=lambdaFn.function_name, description='The name of the handler function') app = cdk.App() LambdaSnsCdkStack(app, "LambdaSnsCdkStack") app.synth() ``` #### File: sfn-inside-sfn-cdk-python/sfn_inside_sfn_cdk/sfn_inside_sfn_cdk_stack.py ```python from aws_cdk import ( Duration, Stack, CfnOutput, aws_stepfunctions as sfn, aws_stepfunctions_tasks as tasks, ) from constructs import Construct class SfnInsideSfnCdkStack(Stack): def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None: super().__init__(scope, construct_id, **kwargs) innerSfnPassState = sfn.Pass(self, 'PassState'); innerSfn = sfn.StateMachine(self, 'InnerStepFunction', definition = innerSfnPassState, timeout=Duration.minutes(60) ) task1 = tasks.StepFunctionsStartExecution(self, "StepFunction1", state_machine=innerSfn, integration_pattern=sfn.IntegrationPattern.RUN_JOB, input=sfn.TaskInput.from_object({ "input.$": "$.Output.input" }), output_path="$", result_selector = { "Output.$": "$.Output" } ) task2 = tasks.StepFunctionsStartExecution(self, "StepFunction2", state_machine=innerSfn, integration_pattern=sfn.IntegrationPattern.RUN_JOB, input=sfn.TaskInput.from_object({ "input.$": "$.Output.input" }), output_path="$", result_selector = { "Output.$": "$.Output" } ) task3 = tasks.StepFunctionsStartExecution(self, "StepFunction3", state_machine=innerSfn, integration_pattern=sfn.IntegrationPattern.RUN_JOB, input=sfn.TaskInput.from_object({ "input.$": "$.Output.input" }), output_path="$", result_selector = { "Output.$": "$.Output" } ) outer_sfn = sfn.StateMachine(self, "OuterStepFunction", definition=task1.next(task2).next(task3), timeout=Duration.minutes(60) ) CfnOutput(self, "StepFunctionArn", value = outer_sfn.state_machine_arn, export_name = 'OuterStepFunctionArn', description = 'Outer Step Function arn') ``` #### File: sqs-lambda-eb-cdk-python/sqs_lambda_eb_cdk/sqs_lambda_eb_cdk_stack.py ```python from aws_cdk import ( Duration, Stack, CfnOutput, RemovalPolicy, aws_sqs as _sqs, aws_lambda as _lambda, aws_logs as logs, aws_events as events, aws_events_targets as events_target ) from constructs import Construct class SqsLambdaEbCdkStack(Stack): def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None: super().__init__(scope, construct_id, **kwargs) queue = _sqs.Queue( self, "MyQueue", visibility_timeout=Duration.seconds(300) ) # Create the AWS Lambda function to subscribe to Amazon SQS queue # The source code is in './lambda' directory lambda_function = _lambda.Function( self, "MyLambdaFunction", runtime=_lambda.Runtime.PYTHON_3_9, handler="submit_job.handler", code=_lambda.Code.from_asset("lambda"), environment = { 'QUEUE_URL': queue.queue_url } ) # Set Lambda Logs Retention and Removal Policy logs.LogGroup( self, 'logs', log_group_name = f"/aws/lambda/{lambda_function.function_name}", removal_policy = RemovalPolicy.DESTROY, retention = logs.RetentionDays.ONE_DAY ) #Event Bridge rule #Change the rate according to your needs rule = events.Rule(self, 'Rule', description = "Trigger Lambda function every 2 minutes", schedule = events.Schedule.expression('rate(2 minutes)') ) rule.add_target(events_target.LambdaFunction(lambda_function)); #Grant permission to AWS Lambda function to consume messages from the Amazon SQS queue queue.grant_consume_messages(lambda_function) CfnOutput(self, "FunctionName", value = lambda_function.function_name, export_name = 'FunctionName', description = 'Function name') CfnOutput(self, "QueueName", value = queue.queue_name, export_name = 'QueueName', description = 'SQS queue name') CfnOutput(self, "QueueArn", value = queue.queue_arn, export_name = 'QueueArn', description = 'SQS queue ARN') CfnOutput(self, "QueueUrl", value = queue.queue_url, export_name = 'QueueUrl', description = 'SQS queue URL') CfnOutput(self, "RuleName", value = rule.rule_name, export_name = 'RuleName', description = 'EventBridge rule name') ```
{ "source": "JeremyCCHsu/CapsNet-tf", "score": 2 }
#### File: JeremyCCHsu/CapsNet-tf/capsule.py ```python import json import numpy as np import tensorflow as tf from helper import * class CapsuleNet(object): def __init__(self, arch): self.arch = arch self._C = tf.make_template('Recognizer', self._recognize) self._G = tf.make_template('Generator', self._generate) def _get_shape_JDUV(self): J = self.arch['num_class'] # 10 D = self.arch['Primary Capsule']['depth'] # 32 U = self.arch['Primary Capsule']['dim'] # 8 V = self.arch['Digit Capsule']['dim'] # 16 return J, D, U, V def _recognize(self, x): '''`x`: [b, h, w, c] ''' J, D, U, V = self._get_shape_JDUV() net = self.arch['recognizer'] assert D * U == net['output'][-1] self.W = tf.get_variable('W', shape=[J, V, U], dtype=tf.float32) for i, (o, k, s) in enumerate(zip(net['output'], net['kernel'], net['stride'])): if i + 1 == len(net['output']): activation = None else: activation = tf.nn.relu x = tf.layers.conv2d(x, o, k, s, activation=activation) S = tf.shape(x) # [n, h', w', c'] I = S[1] * S[2] * D primary = tf.reshape(x, [-1, S[1], S[2], D, U]) primary = tf.reshape(primary, [-1, I, U]) u = primary # NOTE: iteratively process the previous capsule `u` B = tf.zeros([tf.shape(x)[0], I, J]) # the "attention" matrix for _ in range(self.arch['Digit Capsule']['nRouting']): v, B = self._stack(u, B) return v def _stack(self, u, B): ''' I, J, Nu, Nv = 6*6*32, 10, 8, 16 Input: `u`: [n, I, Nu] `b`: [n, I, J] Return: `V`: [n, J, V] `B`: [n, I, J] ''' with tf.name_scope('Capsule'): # [n, I, U] dot [J, V, U] => [n, I, J, V] uji = tf.tensordot(u, self.W, [[2], [2]]) C = tf.nn.softmax(B, dim=1) # [n, I, J] # [n, I, J, 1] (necessary for broadcasting) C = tf.expand_dims(C, -1) S = tf.reduce_sum(C * uji, 1) # [n, J, V] v_ = squash(S) # [n, J, V] v = tf.expand_dims(v_, 1) # [n, 1, J, V] dB = tf.reduce_sum(uji * v, -1) B = B + dB return v_, B def _generate(self, v, y): ''' Input: `y`: [n,] `v`: Mask. [n, J=10, V=16] Return: `x`: Image [n, h, w, c] ''' J, _, _, V = self._get_shape_JDUV() Y = tf.one_hot(y, J) # [n, J] Y = tf.expand_dims(Y, -1) # [n, J, 1] x = v * Y x = tf.reshape(x, [-1, J * V]) net = self.arch['generator'] for o in net['output']: x = tf.layers.dense(x, o, tf.nn.relu) h, w, c = self.arch['hwc'] x = tf.layers.dense(x, h * w * c, tf.nn.tanh) return tf.reshape(x, [-1, h, w, c]) def _get_loss_parameter(self): return self.arch[''] def loss(self, x, y): ''' `x`: [b, 28, 28, 1] `y`: label [b] ''' v = self._C(x) # [n, J=10, V=16] xh = self._G(v, y) # [n, h, w, c] J, _, _, _ = self._get_shape_JDUV() with tf.name_scope('Loss'): tf.summary.image('x', x, 4) tf.summary.image('xh', xh, 4) tf.summary.image('V', tf.expand_dims(v, -1), 4) hparam = self.arch['loss'] l_reconst = hparam['reconst weight'] * \ tf.reduce_mean(tf.reduce_sum(tf.square(x - xh), [1, 2, 3])) tf.summary.scalar('l_reconst', l_reconst) v_norm = tf.norm(v, axis=-1) # [n, J=10] tf.summary.histogram('v_norm', v_norm) Y = tf.one_hot(y, J) # [n, J=10] loss = Y * tf.square(tf.maximum(0., hparam['m+'] - v_norm)) \ + hparam['lambda'] * (1. - Y) * \ tf.square(tf.maximum(0., v_norm - hparam['m-'])) loss = tf.reduce_mean(tf.reduce_sum(loss, -1)) tf.summary.scalar('loss', loss) loss += l_reconst acc = tf.reduce_mean( tf.cast( tf.equal(y, tf.argmax(v_norm, 1)), tf.float32 )) return {'L': loss, 'acc': acc, 'reconst': l_reconst} def inspect(self, x): with tf.name_scope('Inpector'): J, _, _, V = self._get_shape_JDUV() R = self.arch['valid']['spacing'] m = self.arch['valid']['magnitude'] h, w, c = self.arch['hwc'] v = self._C(x) # 10, J=10, V=16, generated from exemplar images v_eps, y_eps = make_linear_perturbation(J, V, R, m) for i in range(10): vi = tf.expand_dims(v[i], 0) # [1, J=10, V=16] vi = vi + v_eps # [V*21, 10, V] xh = self._G(vi, i * y_eps) xh = tf.reshape(xh, [1, R, V, h, w, c]) xh = tf.transpose(xh, [0, 1, 3, 2, 4, 5]) xh = tf.reshape(xh, [1, R * h, V * w, c]) tf.summary.image('xh{}'.format(i), xh) def train(self, loss, loss_t): global_step = tf.Variable(0) hparam = self.arch['training'] maxIter = hparam['num_epoch'] * 60000 // hparam['batch_size'] learning_rate = tf.train.exponential_decay( 1e-3, global_step, hparam['decay_step'], 0.99, staircase=True) optimizer = tf.train.AdamOptimizer(learning_rate) opt = optimizer.minimize(loss['L'], global_step=global_step) tf.summary.scalar('lr', learning_rate) sv = tf.train.Supervisor( logdir=self.arch['logdir'], # save_summaries_secs=120, global_step=global_step, ) sess_config = tf.ConfigProto( allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True) ) with sv.managed_session(config=sess_config) as sess: for it in range(maxIter): if it % hparam['update_freq'] == 0: a = list() for _ in range(100): a_ = sess.run(loss_t['acc']) a.append(a_) a_t = np.mean(a) l, a, _ = sess.run([loss['L'], loss['acc'], opt]) print( '\rIter {}/{}: loss = {:.4e}, acc={:.2f}%; test acc={:.2f}'.format( it, maxIter, l, a * 100., a_t * 100.), end='' ) else: sess.run(opt) print() class CapsuleMultiMNIST(CapsuleNet): def _pick(self, v, y): ''' v: [b, J, V] `y`: [b,] ''' i = tf.expand_dims(tf.range(tf.shape(v)[0]), -1) y = tf.expand_dims(tf.cast(y, tf.int32), -1) return tf.gather_nd(v, tf.concat([i, y], -1)) def loss(self, x, y, xi, xj): v = self._C(x) # [n, J=10, V=16] tf.summary.image('V', tf.expand_dims(v, -1), 4) xh_ = self._G( tf.concat([v, v], 0), tf.concat([y[:, 0], y[:, 1]], 0) ) # TODO: an exp on rescaling the DigitCaps with tf.name_scope('Experiment'): v_norm = tf.norm(v + 1e-6, axis=-1, keep_dims=True) v_ = v / v_norm xh_exp = self._G( tf.concat([v_, v_], 0), tf.concat([y[:, 0], y[:, 1]], 0) ) xhie, xhje = tf.split(xh_exp, 2) tf.summary.image('xei', xhie, 4) tf.summary.image('xej', xhje, 4) with tf.name_scope('Loss'): with tf.name_scope('Images'): xhi, xhj = tf.split(xh_, 2) # pad by -1 (float) = 0 (uint8) xhx = tf.concat([xhi, xhj, - tf.ones_like(xhi)], -1) tf.summary.image('x', x, 4) tf.summary.image('xhx', xhx, 4) tf.summary.image('xhi', xhi, 4) tf.summary.image('xhj', xhj, 4) tf.summary.image('xi', xi, 4) tf.summary.image('xj', xj, 4) hparam = self.arch['loss'] r = hparam['reconst weight'] x_ = tf.concat([xi, xj], 0) l_reconst = r * \ tf.reduce_mean(tf.reduce_sum(tf.square(xh_ - x_), [1, 2, 3])) tf.summary.scalar('l_reconst', l_reconst) v_norm = tf.norm(v, axis=-1) # [n, J=10] tf.summary.histogram('v_norm', v_norm) J, _, _, _ = self._get_shape_JDUV() Yi = tf.one_hot(y[:, 0], J) Yj = tf.one_hot(y[:, 1], J) # [n, J] Y = Yi + Yj tf.summary.histogram('v_norm_i', self._pick(v_norm, y[:, 0])) tf.summary.histogram('v_norm_j', self._pick(v_norm, y[:, 1])) l, m, M = hparam['lambda'], hparam['m-'], hparam['m+'] with tf.name_scope('Classification'): # <sol 1> According to Sec. 3, this is it. loss = Y * tf.square(tf.maximum(0., M - v_norm)) \ + l * (1. - Y) * tf.square(tf.maximum(0., v_norm - m)) loss = tf.reduce_mean(tf.reduce_sum(loss, -1)) tf.summary.scalar('loss', loss) loss = loss + l_reconst # NOTE: the convergence rate of MNIST is astonishingly fast # (after 1K, the reconst is already pretty good) # TODO: HOW TO CALCULATE THE "ACCURACY" in MultiMNIST? acc = tf.cast(tf.nn.in_top_k(v_norm, y[:, 0], 2), tf.float32) \ + tf.cast(tf.nn.in_top_k(v_norm, y[:, 1], 2), tf.float32) acc = tf.reduce_mean(acc) / 2. tf.summary.scalar('UR', acc) acc = tf.cast(tf.nn.in_top_k(v_norm, y[:, 0], 2), tf.float32) \ * tf.cast(tf.nn.in_top_k(v_norm, y[:, 1], 2), tf.float32) acc = tf.reduce_mean(acc) tf.summary.scalar('EM', acc) return {'L': loss, 'acc': acc, 'reconst': l_reconst} def train(self, loss, loss_t): global_step = tf.Variable(0, name='global_step') hparam = self.arch['training'] maxIter = hparam['num_epoch'] * \ 60000000 // hparam['batch_size'] # TODO learning_rate = tf.train.exponential_decay( 1e-3, global_step, hparam['decay_step'], 0.99, staircase=True) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) opt = optimizer.minimize(loss['L'], global_step=global_step) tf.summary.scalar('lr', learning_rate) sv = tf.train.Supervisor( logdir=self.arch['logdir'], # save_summaries_secs=120, global_step=global_step, ) sess_config = tf.ConfigProto( allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True) ) with sv.managed_session(config=sess_config) as sess: for it in range(maxIter): if it % hparam['update_freq'] == 0: # a = list() # for _ in range(100): # a_ = sess.run(loss_t['acc']) # a.append(a_) # a_t = np.mean(a) l, a, _ = sess.run([loss['L'], loss['acc'], opt]) print( '\rIter {}/{}: loss = {:.4e}, acc={:.2f}%;'.format( it, maxIter, l, a * 100.), # , a_t * 100.), end='' ) else: sess.run(opt) print() ```
{ "source": "JeremyCCHsu/jutil", "score": 3 }
#### File: JeremyCCHsu/jutil/image.py ```python import tensorflow as tf def nchw_to_nhwc(x): return tf.transpose(x, [0, 2, 3, 1]) def nhwc_to_nchw(x): return tf.transpose(x, [0, 3, 1, 2]) def make_png_thumbnail(x, n): ''' Input: `x`: Tensor, value range=[-1, 1), shape=[n*n, h, w, c] `n`: sqrt of the number of images Return: `tf.string` (bytes) of the PNG. (write these binary directly into a file) ''' with tf.name_scope('MakeThumbnail'): _, h, w, c = x.get_shape().as_list() x = tf.reshape(x, [n, n, h, w, c]) x = tf.transpose(x, [0, 2, 1, 3, 4]) x = tf.reshape(x, [n * h, n * w, c]) x = x / 2. + .5 x = tf.image.convert_image_dtype(x, tf.uint8, saturate=True) x = tf.image.encode_png(x) return x ```
{ "source": "JeremyCCHsu/test-debug", "score": 2 }
#### File: src/wavegrad/inference.py ```python import numpy as np import os import torch import torchaudio from argparse import ArgumentParser from wavegrad.params import AttrDict, params as base_params from wavegrad.model import WaveGrad from time import time models = {} # TODO: add `severity=1000` and initial `audio` def predict(spectrogram, model_dir=None, params=None, device=torch.device('cuda'), audio=None, severity=None): # Lazy load model. if not model_dir in models: if os.path.exists(f'{model_dir}/weights.pt'): checkpoint = torch.load(f'{model_dir}/weights.pt') else: checkpoint = torch.load(model_dir) model = WaveGrad(AttrDict(base_params)).to(device) model.load_state_dict(checkpoint['model']) model.eval() models[model_dir] = model model = models[model_dir] model.params.override(params) with torch.no_grad(): beta = np.array(model.params.noise_schedule) alpha = 1 - beta alpha_cum = np.cumprod(alpha) if severity is None: severity = len(model.params.noise_schedule) alpha = alpha[-severity:] alpha_cum = alpha_cum[-severity:] # Expand rank 2 tensors by adding a batch dimension. if len(spectrogram.shape) == 2: spectrogram = spectrogram.unsqueeze(0) spectrogram = spectrogram.to(device) length = model.params.hop_samples * spectrogram.shape[-1] if audio is None: audio = torch.randn(spectrogram.shape[0], length, device=device) else: # TODO FROME HERE: padding or truncation if audio.shape[-1] > length: audio = audio[..., :length] else: audio = audio.to(device) padding = ( torch.zeros([audio.shape[0], length - audio.shape[1]]) .to(device) ) audio = torch.cat([audio, padding], -1) noise_scale = torch.from_numpy(alpha_cum**0.5).float().unsqueeze(1).to(device) ti = time() for n in range(severity - 1, -1, -1): print(f"{n}/{len(alpha)}", end="\r") c1 = 1 / alpha[n]**0.5 c2 = (1 - alpha[n]) / (1 - alpha_cum[n])**0.5 prediction = model(audio, spectrogram, noise_scale[n]).squeeze(1) audio = c1 * (audio - c2 * prediction) if n > 0: noise = torch.randn_like(audio) sigma = ((1.0 - alpha_cum[n-1]) / (1.0 - alpha_cum[n]) * beta[n])**0.5 audio += sigma * noise audio = torch.clamp(audio, -1.0, 1.0) # TODO: J: I disagree with this step print(f"\nFinished {spectrogram.shape} in {time() - ti:.2f} secs.") return audio, model.params.sample_rate def main(args): spectrogram = torch.from_numpy(np.load(args.spectrogram_path)) params = {} if args.noise_schedule: params['noise_schedule'] = torch.from_numpy(np.load(args.noise_schedule)) audio, sr = predict(spectrogram, model_dir=args.model_dir, params=params) torchaudio.save(args.output, audio.cpu(), sample_rate=sr) if __name__ == '__main__': parser = ArgumentParser(description='runs inference on a spectrogram file generated by wavegrad.preprocess') parser.add_argument('model_dir', help='directory containing a trained model (or full path to weights.pt file)') parser.add_argument('spectrogram_path', help='path to a spectrogram file generated by wavegrad.preprocess') parser.add_argument('--noise-schedule', '-n', default=None, help='path to a custom noise schedule file generated by wavegrad.noise_schedule') parser.add_argument('--output', '-o', default='output.wav', help='output file name') main(parser.parse_args()) ``` #### File: src/wavegrad/__main__.py ```python from argparse import ArgumentParser from wavegrad.learner import train from wavegrad.params import params from wavegrad.dataset import from_path as dataset_from_path def main(args): train(dataset_from_path(args.data_dirs, params), args, params) if __name__ == '__main__': parser = ArgumentParser(description='train (or resume training) a WaveGrad model') parser.add_argument('model_dir', help='directory in which to store model checkpoints and training logs') parser.add_argument('data_dirs', nargs='+', help='space separated list of directories from which to read .wav files for training') parser.add_argument('--max_steps', default=None, type=int, help='maximum number of training steps') parser.add_argument('--fp16', action='store_true', default=False, help='use 16-bit floating point operations for training') main(parser.parse_args()) ``` #### File: src/wavegrad/model.py ```python import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from math import log as ln CONTENT_EMB_DIM = 32 SPEAKER_EMB_DIM = 96 N_SPEAKER = 5 class Conv1d(nn.Conv1d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.reset_parameters() def reset_parameters(self): nn.init.orthogonal_(self.weight) nn.init.zeros_(self.bias) class PositionalEncoding(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x, noise_level): """ Arguments: x: (shape: [N,C,T], dtype: float32) noise_level: (shape: [N], dtype: float32) Returns: noise_level: (shape: [N,C,T], dtype: float32) """ N = x.shape[0] T = x.shape[2] return (x + self._build_encoding(noise_level)[:, :, None]) def _build_encoding(self, noise_level): count = self.dim // 2 step = torch.arange(count, dtype=noise_level.dtype, device=noise_level.device) / count encoding = noise_level.unsqueeze(1) * torch.exp(-ln(1e4) * step.unsqueeze(0)) encoding = torch.cat([torch.sin(encoding), torch.cos(encoding)], dim=-1) return encoding class FiLM(nn.Module): def __init__(self, input_size, output_size): super().__init__() self.encoding = PositionalEncoding(input_size) self.input_conv = nn.Conv1d(input_size, input_size, 3, padding=1) self.output_conv = nn.Conv1d(input_size, output_size * 2, 3, padding=1) self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.input_conv.weight) nn.init.xavier_uniform_(self.output_conv.weight) nn.init.zeros_(self.input_conv.bias) nn.init.zeros_(self.output_conv.bias) def forward(self, x, noise_scale): x = self.input_conv(x) x = F.leaky_relu(x, 0.2) x = self.encoding(x, noise_scale) shift, scale = torch.chunk(self.output_conv(x), 2, dim=1) return shift, scale class UBlock(nn.Module): def __init__(self, input_size, hidden_size, factor, dilation): super().__init__() assert isinstance(dilation, (list, tuple)) assert len(dilation) == 4 self.factor = factor self.block1 = Conv1d(input_size, hidden_size, 1) self.block2 = nn.ModuleList([ Conv1d(input_size, hidden_size, 3, dilation=dilation[0], padding=dilation[0]), Conv1d(hidden_size, hidden_size, 3, dilation=dilation[1], padding=dilation[1]) ]) self.block3 = nn.ModuleList([ Conv1d(hidden_size, hidden_size, 3, dilation=dilation[2], padding=dilation[2]), Conv1d(hidden_size, hidden_size, 3, dilation=dilation[3], padding=dilation[3]) ]) def forward(self, x, film_shift, film_scale): block1 = F.interpolate(x, size=x.shape[-1] * self.factor) block1 = self.block1(block1) block2 = F.leaky_relu(x, 0.2) block2 = F.interpolate(block2, size=x.shape[-1] * self.factor) block2 = self.block2[0](block2) block2 = film_shift + film_scale * block2 block2 = F.leaky_relu(block2, 0.2) block2 = self.block2[1](block2) x = block1 + block2 block3 = film_shift + film_scale * x block3 = F.leaky_relu(block3, 0.2) block3 = self.block3[0](block3) block3 = film_shift + film_scale * block3 block3 = F.leaky_relu(block3, 0.2) block3 = self.block3[1](block3) x = x + block3 return x class DBlock(nn.Module): def __init__(self, input_size, hidden_size, factor): super().__init__() self.factor = factor self.residual_dense = Conv1d(input_size, hidden_size, 1) self.conv = nn.ModuleList([ Conv1d(input_size, hidden_size, 3, dilation=1, padding=1), Conv1d(hidden_size, hidden_size, 3, dilation=2, padding=2), Conv1d(hidden_size, hidden_size, 3, dilation=4, padding=4), ]) def forward(self, x): size = x.shape[-1] // self.factor residual = self.residual_dense(x) residual = F.interpolate(residual, size=size) x = F.interpolate(x, size=size) for layer in self.conv: x = F.leaky_relu(x, 0.2) x = layer(x) return x + residual class WaveGrad(nn.Module): def __init__(self, params): super().__init__() self.params = params self.downsample = nn.ModuleList([ Conv1d(1, 32, 5, padding=2), DBlock(32, 128, 2), DBlock(128, 128, 2), DBlock(128, 256, 3), DBlock(256, 512, 5), ]) self.film = nn.ModuleList([ FiLM(32, 128), FiLM(128, 128), FiLM(128, 256), FiLM(256, 512), FiLM(512, 512), ]) self.upsample = nn.ModuleList([ UBlock(768, 512, 5, [1, 2, 1, 2]), UBlock(512, 512, 5, [1, 2, 1, 2]), UBlock(512, 256, 3, [1, 2, 4, 8]), UBlock(256, 128, 2, [1, 2, 4, 8]), UBlock(128, 128, 2, [1, 2, 4, 8]), ]) self.first_conv = Conv1d(128, 768, 3, padding=1) self.last_conv = Conv1d(128, 1, 3, padding=1) def forward(self, audio, spectrogram, noise_scale): # FIXME: EXPERIMENTAL: UNCONDITIONAL =============== spectrogram = 0 * spectrogram # ================================================== x = audio.unsqueeze(1) downsampled = [] for film, layer in zip(self.film, self.downsample): x = layer(x) downsampled.append(film(x, noise_scale)) x = self.first_conv(spectrogram) for layer, (film_shift, film_scale) in zip(self.upsample, reversed(downsampled)): x = layer(x, film_shift, film_scale) x = self.last_conv(x) return x # Jadd ======================================= class SpeakerFiLM(nn.Module): def __init__(self, output_size, n_speakers=N_SPEAKER): super().__init__() self.shift = nn.Embedding(n_speakers, output_size) self.scale = nn.Embedding(n_speakers, output_size) def forward(self, x, index): """ :param x: [B, ] """ shift = self.shift(index).unsqueeze(-1) scale = self.scale(index).unsqueeze(-1) return scale * x + shift class DownCleansingBlock(nn.Module): def __init__(self, input_size, hidden_size, factor): super().__init__() self.factor = factor self.residual_dense = Conv1d(input_size, hidden_size, 1) self.conv = nn.ModuleList([ Conv1d(input_size, hidden_size, 3, dilation=1, padding=1), Conv1d(hidden_size, hidden_size, 3, dilation=2, padding=2), Conv1d(hidden_size, hidden_size, 3, dilation=4, padding=4), ]) self.instance_norm = nn.ModuleList([ nn.InstanceNorm1d(hidden_size, affine=False), nn.InstanceNorm1d(hidden_size, affine=False), nn.InstanceNorm1d(hidden_size, affine=False), ]) def forward(self, x): size = x.shape[-1] // self.factor residual = self.residual_dense(x) residual = F.interpolate(residual, size=size) x = F.interpolate(x, size=size) for layer, normalize in zip(self.conv, self.instance_norm): x = normalize(x) x = F.leaky_relu(x, 0.2) x = layer(x) return x + residual class ContentEncoder(nn.Module): """ Enc(waveform, speaker) --> phone embedding """ def __init__(self): #, params): super().__init__() # self.params = params self.downsample = nn.ModuleList([ Conv1d(1, 32, 5, padding=2), DownCleansingBlock(32, 128, 2), DownCleansingBlock(128, 128, 2), DownCleansingBlock(128, 256, 3), DownCleansingBlock(256, 512, 5), DownCleansingBlock(512, CONTENT_EMB_DIM, 5), ]) self.film = nn.ModuleList([ SpeakerFiLM(32,), SpeakerFiLM(128), SpeakerFiLM(128), SpeakerFiLM(256), SpeakerFiLM(512), SpeakerFiLM(CONTENT_EMB_DIM), ]) # self.first_conv = Conv1d(128, 768, 3, padding=1) # self.last_conv = Conv1d(128, 1, 3, padding=1) def forward(self, audio, speaker): """ :param audio: [B, T] :param speaker: [B,] """ x = audio.unsqueeze(1) # downsampled = [] for film, layer in zip(self.film, self.downsample): x = layer(x) # shift, scale = film(x) # x = shift + scale * x x = film(x, speaker) # downsampled.append(x) # x = self.first_conv(spectrogram) # for layer, (film_shift, film_scale) in zip(self.upsample, reversed(downsampled)): # x = layer(x, film_shift, film_scale) # x = self.last_conv(x) return x class LatentEmbedding(nn.Module): """ Enc(waveform, speaker) --> phone embedding """ def __init__(self): #, params): super().__init__() self.speaker_emb = nn.Embedding(N_SPEAKER, SPEAKER_EMB_DIM) # self.conv = nn.ModuleList([ # nn.Conv1d() # ]) dim = SPEAKER_EMB_DIM + CONTENT_EMB_DIM self.conv = nn.Sequential( nn.Conv1d(dim, 256, 3, padding=1), nn.LeakyReLU(0.2), nn.Conv1d(256, dim, 3, padding=1) ) final_layer = nn.Conv1d(256, dim, 3, padding=1) final_layer.bias.data.fill_(2.) # torch.nn.init.xavier_uniform(conv1.weight) self.gate = nn.Sequential( nn.Conv1d(dim, 256, 3, padding=1), nn.LeakyReLU(0.2), # nn.Conv1d(256, dim, 3, padding=1), final_layer, nn.Sigmoid() ) # augment -> conv -> ReLU -> conv -> linear = conv # \-> conv -> ReLU -> conv -> sigmoid = gate # gate * conv def forward(self, content_emb, speaker): """ :param content_emb: [B, c, L] :param speaker: [B] """ L = content_emb.shape[2] speaker_emb = self.speaker_emb(speaker).unsqueeze(-1).repeat([1, 1, L]) embeddings = torch.cat([content_emb, speaker_emb], 1) conv = self.conv(embeddings) gate = self.gate(embeddings) return gate * conv class WaveVCTraining(nn.Module): def __init__(self, params): super().__init__() self.params = params self.wavegrad = WaveGrad(params) self.fuse_latent = LatentEmbedding() self.encoder = ContentEncoder() def encode(self, audio, source_speakers): """ :param audio: [B, T] :param speaker: [B, (S)] :return pseudospecs: [S, B, c, T] """ if len(source_speakers.shape) == 1: source_speakers = source_speakers.unsqueeze(-1) # target_speakers = target_speakers.unsqueeze(-1) # pseudospecs = [] content_emb = [] n_speaker = source_speakers.shape[1] for i in range(n_speaker): content = self.encoder(audio, source_speakers[:, i]) content_emb.append(content) # pseudospec = self.fuse_latent(content, target_speakers[:, i]) # pseudospecs.append(pseudospec) # return pseudospecs return content_emb def sample(self, content): """ :param content: [b, 2c, T] c for mean and log var, respectively. """ torch.split() def blende(self, content, speaker): # equiv to `fuse_latent` pass def forward(self, audio, speaker, noise_scale): if len(speaker.shape) == 1: speaker = speaker.unsqueeze(-1) embeddings = [] n_speaker = speaker.shape[1] for i in range(n_speaker): content = self.encoder(audio, speaker[:, i]) pseudospec = self.fuse_latent(content, speaker[:, i]) embeddings.append(pseudospec) pseudospec = sum(embeddings) # NOTE: the output is grad log p(x|z, y) output = self.wavegrad(audio, pseudospec, noise_scale) return output class WaveConvert(WaveVCTraining): def __init__(self, params): super().__init__(params) def decode(self, audio, pseudospecs, noise_scale): # speaker, """ :param audio: [B, T] :param pseudospecs: [S, B, c, T] # :param speaker: [B, (S)] :return gradient: [B, c=1, T] """ # if len(speaker.shape) == 1: # speaker = speaker.unsqueeze(-1) # assert speaker.shape[1] == len(pseudospecs) # TODO: maybe change its format pseudospecs = torch.stack(pseudospecs) n_speakers, batch_size, c, n_frames = pseudospecs.shape pseudospecs = pseudospecs.view(-1, c, n_frames) _, time_length = audio.shape audio = audio.unsqueeze(1).repeat(1, n_speakers, 1).view(-1, time_length) # speaker = speaker.repeat(batch_size, 1).view(-1) return self.wavegrad(audio, pseudospecs, noise_scale) # output = [] # n_speaker = speaker.shape[1] # for i in range(n_speaker): # output = self.wavegrad(audio, pseudospecs[i], noise_scale) def encode(self, audio, source_speakers, target_speakers): """ :param audio: [B, T] :param speaker: [B, (S)] :return pseudospecs: [S, B, c, T] """ if len(source_speakers.shape) == 1: source_speakers = source_speakers.unsqueeze(-1) target_speakers = target_speakers.unsqueeze(-1) pseudospecs = [] n_speaker = source_speakers.shape[1] for i in range(n_speaker): content = self.encoder(audio, source_speakers[:, i]) pseudospec = self.fuse_latent(content, target_speakers[:, i]) pseudospecs.append(pseudospec) return pseudospecs ```
{ "source": "jeremycclo/msci_reionisation", "score": 3 }
#### File: msci_reionisation/code2/hk3d.py ```python import numpy as np import numpy.random as npr import matplotlib.pyplot as plt verbose = False def hoshen_kopelman(box): """ Given binary input file in 3D, return labelled points identifying clusters """ mask = box.copy() #list of labels initially set to labels[x] = x i.e. each element in array # has a unique identifier labels = np.arange(mask.size) label = np.zeros(mask.shape) largest_label = 0; for x in range(mask.shape[0]): if verbose: print ("ID clusters: %i of %i" % (x, mask.shape[0]) ) for y in range(mask.shape[1]): for z in range(mask.shape[2]): if mask[x,y,z]: #find value in left and up, being careful about edges #Note that removing the if statements here, should allow #for periodic boundary conditions if x>0: left = mask[x-1, y, z].astype(int) else: left = 0 if y>0: up = mask[x, y-1, z].astype(int) else: up = 0 if z>0: behind = mask[x, y, z-1].astype(int) else: behind = 0 #Check for neighbours #next line counts which of left and up are non-zero check = (not not left) + (not not up) + (not not behind) if check == 0: #No occupied neighbours #Make a new, as-yet-unused cluster label. mask[x,y,z] = make_set(labels) elif check == 1: # One neighbor, either left or up. #use whichever is non-zero mask[x,y,z] = max(max(up, left), behind) elif check == 2: #Two neighbours to be linked together if up and left: mask[x,y,z] = union(left, up, labels) elif up and behind: mask[x,y,z] = union(behind, up, labels) elif left and behind: mask[x,y,z] = union(behind, left, labels) else: raise Exception("Something's gone wrong!") elif check == 3: #Three neighbours to be linked #Link all three via two unions of two #Is ordering of this important? Doesn't seem to be mask[x,y,z] = union(left, up, labels) mask[x,y,z] = union(left, behind, labels) else: raise Exception("Invalid value for check") #Now at the end relabel to ensure consistency i.e. that clusters are #numbered sequentially #In 3D a checker pattern gives the largest number of possible clusters max_labels = mask.size / 2 n_labels = max_labels new_labels = np.zeros(n_labels) for i in range(mask.shape[0]): if verbose: print ("Resequencing: %i of %i" % (i, mask.shape[0]) ) for j in range(mask.shape[1]): for k in range(mask.shape[2]): if mask[i, j, k]: x = find(mask[i, j, k].astype(int), labels) if new_labels[x] == 0: new_labels[0] += 1 new_labels[x] = new_labels[0] mask[i, j, k] = new_labels[x] return mask def find_simple(x, labels): while(labels[x] != x): x = labels[x] return x def union(x, y, labels): #Make two labels equivalent by linking their respective chains of aliases labels[find(x, labels)] = find(y, labels) return find(y, labels) def find(x, labels): """ Better version of find - Much faster """ y = x.copy() z = 0 while (labels[y] != y): y = labels[y] #second part collapses labels while (labels[x] !=x): z = labels[x].copy() labels[x] = y x = z return y def make_set(labels): """ Create a new equivalence class and return its class label """ labels[0] += 1 labels[labels[0]] = labels[0] return labels[0].astype(int) def check_labelling(mask): """ Check identification of clusters i.e. that all neighbours of a pixel have the same label """ for i in range(mask.shape[0]): print ("Checking labels: %i of %i" % (i, mask.shape[0]) ) for j in range(mask.shape[1]): for k in range(mask.shape[2]): if mask[i, j, k]: N = (0 if i == 0 else mask[i-1][j][k]) S = (0 if i == mask.shape[0]-1 else mask[i+1][j][k]) E = (0 if j == mask.shape[1]-1 else mask[i][j+1][k]) W = (0 if j == 0 else mask[i][j-1][k]) U = (0 if k == 0 else mask[i][j][k-1]) D = (0 if k == mask.shape[2]-1 else mask[i][j][k+1]) assert( N==0 or mask[i][j][k]==N ) assert( S==0 or mask[i][j][k]==S ) assert( E==0 or mask[i][j][k]==E ) assert( W==0 or mask[i][j][k]==W ) assert( U==0 or mask[i][j][k]==U ) assert( D==0 or mask[i][j][k]==D ) print ("Labelling checks out") ########################################## # Analysis functions ########################################## def cluster_sizes(clusters): """ Returns number of cells in different size clusters 0 = not occupied 1 - N are cluster labels Output has v_clusters[cluster_index] = number of pixels in that cluster """ v_clusters = np.bincount(clusters.reshape(clusters.size)) return v_clusters def locate_largest_cluster(clusters): """ pick out the largest cluster for easy plotting ignore the 0-index stuff Output labels all clusters as 1 and largest cluster as 2 for easy plotting """ #Find cluster label of largest cluster ignoring 0-index stuff volumes = cluster_sizes(clusters) largest = np.where(volumes[1:] == np.max(volumes[1:]))[0][0] + 1 print ("largest cluster is ", largest) mask = np.zeros(clusters.shape) mask[clusters>0] = 1 mask[clusters == largest] = 2 return mask def find_spanning_cluster(clusters): """ Look for any clusters that have pixels on any two parallel edges Will return 0-index as well as Use set functionality to look for the intersection of points of edge1 and edge 2 to find any clusters that are present at both edges. Since clusters are continguous this must mean those clusters span the space. """ side = clusters.shape[0] * clusters.shape[1] edge1 = set(clusters[:, :, 0].reshape(side)) edge2 = set(clusters[:, :, -1].reshape(side)) spanningz = edge1.intersection(edge2) #print "z: ", spanningz edge1 = set(clusters[:, 0, :].reshape(side)) edge2 = set(clusters[:, -1, :].reshape(side)) spanningx = edge1.intersection(edge2) #print "x: ", spanningx edge1 = set(clusters[0, :, :].reshape(side)) edge2 = set(clusters[-1, :, :].reshape(side)) spanningy = edge1.intersection(edge2) #print "y: ", spanningy #combine for all spanning clusters spanning = spanningx.union(spanningy) spanning = spanning.union(spanningz) #print "spanning cluster is: ", spanning return spanning def summary_statistics(box, clusters): """ box is a binary box clusters is output of HK algorithm containing cluster labels Calculate volume distribution, idenity of spanning cluster and order parameter Order parameter is defined as (no. pixels in spanning cluster) / (no. pixels in all clusters) """ volumes = cluster_sizes(clusters) spanning = find_spanning_cluster(clusters) if max(spanning) > 0: order = volumes[max(spanning)] / float(box.sum()) else: order = 0.0 return volumes, spanning, order def size_distribution(volumes, nbins = 20): """ Standardise construction of size histogram Sizes can become huge so need to assemble this carefully and using log bins """ if len(volumes) == 1: #Handle case that there are no clusters at all return [], [] #linear bins - becomes very slow if have large clusters bins = np.arange(int(np.max(volumes[1:])+3)) #log bins delta = ( np.log(np.max(volumes[1:])) - np.log(1) ) / float(nbins-1) bins = np.exp( np.arange(nbins) * delta ) hist, bin_edges = np.histogram(volumes[1:], bins = bins) return bin_edges[0:-1], hist def summary_clusters(box, clusters): #pretty display p = box.sum() / float(box.size) print ("HK found %i clusters" % (np.max(clusters)) ) MID = box.shape[0]/2 volumes = cluster_sizes(clusters) print ("Largest cluster has size = ", np.max(volumes[1:]) ) spanning = find_spanning_cluster(clusters) if max(spanning) > 0: print ("Spanning cluster exists and has size =", volumes[max(spanning)] ) print ("Number of ionized pixels is =", box.sum() ) print ("Order parameter is ", volumes[max(spanning)] / float(box.sum()) ) #print clusters[:,:,MID] plt.figure(figsize=(6, 2.2)) plt.subplot(121) plt.imshow(box[:,:,MID], cmap=plt.cm.gray) plt.title("Input box f=%0.2f" % (p)) plt.subplot(122) plt.imshow(locate_largest_cluster(clusters)[:,:,MID]) plt.title("Clusters N=%i" %(np.max(clusters))) #size distribution plt.figure() plt.subplot(121) plt.plot(volumes[1:], 'ko-',linewidth=2,drawstyle='steps-mid') plt.ylabel("Size of cluster") plt.xlabel("Cluster label") plt.subplot(122) hist, bin_edges = np.histogram(volumes[1:], bins = np.arange(int(np.max(volumes[1:])+3))) plt.plot(bin_edges[0:-1], hist, 'ko-',linewidth=2,drawstyle='steps-mid') plt.ylim([0.1, max(1, np.max(hist)+1)]) plt.ylabel("Number of clusters") plt.xlabel("Size of cluster") plt.title("Max size=%i" % (np.max(volumes[1:]))) plt.show() plt.close() def main(): """ Test example with random field """ import matplotlib.pyplot as plt reset = True m = n = l = 10 ntrials = 1 box = np.zeros([m, n, l]) for trial in range(ntrials): p = npr.uniform() #create a random matrix thresholded on p if reset: mask = (npr.uniform(size = box.shape) < p) box[mask] = int(1) if reset: filename = "temp.dat" file = open(filename, "wb") file.write(box.astype(int)) file.close() else: filename = "temp.dat" f = open(filename, "rb") dtype = np.int64 data = f.read() f.close() DIM = m _data = np.fromstring(data, dtype) _data.shape = (DIM, DIM, DIM) _data = _data.reshape((DIM, DIM, DIM), order='F') box = _data #print box #run the algorithm clusters = hoshen_kopelman(box) check_labelling(clusters) #print probability and cluster output #print p, clusters print ("prob = %f" % (p) ) summary_clusters(box, clusters) if __name__ == "__main__": main() ``` #### File: msci_reionisation/code2/minkowski.py ```python import subprocess import numpy as np new = True def run_minkowski_frombox(datacube, DIM = 256, nbins = 1, low_threshold = 0.5, high_threshold = 0.5, smoothing = 0): """ """ if new: box = datacube.copy() else: box = np.insert(datacube, 0, datacube.shape) #write the input data file infile = "input_mink.dat" dtype = np.float32 of = open(infile, "wb") of.write(box.astype(dtype)) of.close() outfile = "output_mink.dat" #run the code run_minkowski_new(infile, outfile, DIM, nbins, low_threshold, high_threshold, smoothing) #Read in data data = np.loadtxt(outfile) threshold = data[:, 0] V0 = data[:, 1] V1 = data[:, 2] V2 = data[:, 3] V3 = data[:, 4] return threshold, V0, V1, V2, V3 def run_minkowski(infile, outfile = "output.dat", DIM = 256, nbins = 1, low_threshold = 0.5, high_threshold = 0.5, smoothing = 0): #new = True if new: run_minkowski_new(infile,outfile,DIM,nbins, low_threshold, high_threshold, smoothing) else: run_minkowski_old(infile,outfile,DIM,nbins, low_threshold, high_threshold, smoothing) def run_minkowski_new(infile, outfile = "output.dat", DIM = 256, nbins = 1, low_threshold = 0.5, high_threshold = 0.5, smoothing = 0): """ run ./beyond This is the Minkowski-3 code from Buchert Assumes that infile contains a cubic datacube in binary format Will output nbins values on interval [lo, high] """ #Evaluate Minkowski functional at nbins different thresholds between #low_threshold and high_threshold #nbins = 1 #low_threshold = 0.5 #high_threshold = 0.5 #integer ideally a power of 2 to allow for Gaussian smoothing #smoothing = 2 #oversampling intervals = 2 #Note that beyond calculates thresholds internally on basis of # [lo, high] with nbin+1 values. This is inconsistent with the # Readme, but stems from loops like for(j=0;j<=nbins;j++), which # count nbins+1 values. Hence subtract one from nbins when passing # to beyond to ensure more sensible meaning to nbins. # Done this way output should match np.linspace(lo, high, nbins) and # python conventions for loops #assemble command string cmd = "/Users/jpritcha/Documents/current/projects/Solene/MinkowskiFunctionals/beyond/" cmd = cmd + "beyond -x%d -y%d -z%d -b%i -l%f -h%f -m%i -s%i -i%s -o%s -N -t" % (DIM, DIM, DIM, np.max(nbins-1, 1), low_threshold, high_threshold, intervals, smoothing, infile, outfile) print cmd subprocess.call(cmd, shell=True) def run_minkowski_old(infile, outfile = "output.dat", DIM = 256, nbins = 1, low_threshold = 0.5, high_threshold = 0.5, smoothing = 0): """ run ./Minkowski This makes use of the modified (and I think older) version of the code received from Suman by way of Martina """ #Evaluate Minkowski functional at nbins different thresholds between #low_threshold and high_threshold #nbins = 1 #low_threshold = 0.5 #high_threshold = 0.5 #integer ideally a power of 2 to allow for Gaussian smoothing #smoothing = 0 #Note that there is a slight inconsistency in how minkowski has been #hacked and the threshold values. Internally the thresholds are #calculated on interval [lo, high] with nbins+1 values, but #the output is hacked to output only [lo, high) & exclude the top bin. cmd = "/Users/jpritcha/Documents/current/projects/Solene/MinkowskiFunctionals/Minkowski/" cmd = cmd + "minkowski -x%d -y%d -z%d -b%i -l%f -h%f -m2 -s%i -i%s -o%s -N -f -c -t" % (DIM, DIM, DIM, nbins, low_threshold, high_threshold, smoothing, infile, outfile) print cmd subprocess.call(cmd, shell=True) ######################## # Simple script to make a Gaussian random field and output to a file # in the format required by the Minkowski codes ######################## def make_test_box(DIM = 128): """ Gaussian box to test Minkowski code. Produces a [DIM, DIM, DIM] box with values chosen from a unit Gaussian. First three integrers of the output binary file are the dimensions of the box. """ #Gaussian random field box = npr.normal(size = [DIM, DIM, DIM]) #write out in a form that minkowski can read #Needs dimensions of box as first three ints box = np.insert(box, 0, [DIM, DIM, DIM]) outfilename = "test_gaussian.dat" dtype = np.float32 of = open(outfilename, "wb") of.write(box.astype(dtype)) of.close() ###################### # Theoretical prediction ##################### def gaussian_theory(sigma = 1.0, box = None): """ Evaluate analytic expressions for Gaussian minkowski functionals from Schmalzing and Buchert (1997) and Gleser+ (2006) if box is not None will normalise to a box """ if box is not None: sigma = sqrt(np.var(box)) sigma1 = sqrt(np.var(np.gradient(box))) else: sigma1 = 1.0 #dimensionless threshold threshold = np.linspace(-4.0, 4.0, 40) * sqrt(sigma) u = threshold / sqrt(sigma) #lambda parameter xi = sigma * sigma xipp = sigma1 * sigma1 lam = sqrt(xipp / (6.0 * pi * xi)) #now calculate the Minkowski functionals V0 = 0.5 - 0.5 * erf(u / sqrt(2.0)) V1 = (2.0 / 3.0) * (lam / sqrt(2.0 * pi)) * np.exp(- u * u /2.0) V2 = (2.0 / 3.0) * (lam * lam / sqrt(2.0 * pi)) * u * np.exp(- u * u /2.0) V3 = (2.0 / 3.0) * (lam * lam * lam / sqrt(2.0 * pi)) * (u*u -1.0) * np.exp(- u * u /2.0) return V0, V1, V2, V3 def output_plot(infile, box = None): """ Example plot of Minkowski functionals """ #Theory calculation #if box is not None: # threshold, V0, V1, V2, V3 = gaussian_theory() #Read in data data = np.loadtxt(infile) threshold = data[:, 0] V0 = data[:, 1] V1 = data[:, 2] V2 = data[:, 3] V3 = data[:, 4] plt.figure() plt.subplot(221) plt.plot(threshold, V0) plt.subplot(222) plt.plot(threshold, V1) plt.subplot(223) plt.plot(threshold, V2) plt.subplot(224) plt.plot(threshold, V3) plt.show() ```
{ "source": "jeremycfd/CytoMod", "score": 2 }
#### File: CytoMod/cytomod/example.py ```python import pandas as pd import cytomod as cy import os.path as op import numpy as np import palettable from custom_legends import colorLegend import seaborn as sns from hclusterplot import * sns.set_context('paper') dataFilename = op.join(DATA_PATH, '170615_LEGENDplex_ADAMTS4_DB.csv') """A long df has one analyte measurement per row""" longDf = pd.read_csv(dataFilename) longDf.loc[:,'ptid'] = ['%s-%d-%d' % c for c in zip(longDf.genotype, longDf['sample'], longDf['dpi'])] """Print table of sample count""" print(longDf.loc[longDf.cytokine=='mcp1'].groupby(['genotype', 'dpi'])['ptid'].count()) """Identify primary day for clustering""" df = longDf.set_index(['ptid', 'dpi','cytokine'])['log10_conc'].unstack(['cytokine','dpi']) #plt.plot([0, 3, 6, 9, 12], df['ifng'].values.T, '-o') """A wide df has one sample per row (analyte measurements across the columns)""" # dayDf = longDf.loc[longDf.dpi == 9] dayDf = longDf.loc[longDf.dpi.isin([3, 6, 9])] tmp = dayDf.pivot_table(index='ptid', columns='cytokine', values='log10_conc') noVar = tmp.columns[np.isclose(tmp.std(), 0)].tolist() naCols = tmp.columns[(~tmp.isnull()).sum() < 5].tolist() + ['il21', 'il9'] keepCols = [c for c in tmp.columns if not c in (noVar + naCols)] def _prepCyDf(dayDf, keepCols, K=3, normed=False): dayDf = dayDf.pivot_table(index='ptid', columns='cytokine', values='log10_conc')[keepCols] """By setting normed=True the data our normalized based on correlation with mean analyte concentration""" rcyc = cy.cytomod_class(studyStr='ADAMTS', sampleStr='LUNG', adjusted=normed, rCyDf=dayDf) rcyc.cluster_cytokines(K=K, metric='spearman-signed', minN=0) rcyc.printModules() return rcyc rcyc = _prepCyDf(dayDf, keepCols, normed=True) wt = _prepCyDf(dayDf.loc[dayDf.genotype == 'WT'], keepCols, normed=True) ko = _prepCyDf(dayDf.loc[dayDf.genotype == 'KO'], keepCols, normed=True) """Now you can use attributes in nserum for plots and testing: cyDf, modDf, dmatDf, etc.""" plt.figure(41, figsize=(15.5, 9.5)) colInds = plotHColCluster(rcyc.cyDf, method='complete', metric='pearson-signed', col_labels=rcyc.labels, col_dmat=rcyc.dmatDf, tickSz='large', vRange=(0,1)) plt.figure(43, figsize = (15.5, 9.5)) colInds = cy.plotting.plotHierClust(1 - rcyc.pwrel, rcyc.Z, labels=rcyc.labels, titleStr='Pairwise reliability (%s)' % rcyc.name, vRange=(0, 1), tickSz='large') plt.figure(901, figsize=(13, 9.7)) cy.plotting.plotModuleEmbedding(rcyc.dmatDf, rcyc.labels, method='kpca', txtSize='large') colors = palettable.colorbrewer.get_map('Set1', 'qualitative', len(np.unique(rcyc.labels))).mpl_colors colorLegend(colors, ['%s%1.0f' % (rcyc.sampleStr, i) for i in np.unique(rcyc.labels)], loc='lower left') """df here should have one column per module and the genotype column""" ptidDf = longDf[['ptid', 'sample', 'genotype', 'dpi']].drop_duplicates().set_index('ptid') df = rcyc.modDf.join(ptidDf) ind = df.genotype == 'WT' col = 'SERUM1' stats.ranksums(df[col].loc[ind], df[col].loc[~ind]) ``` #### File: cytomod/otherTools/corrplots.py ```python import matplotlib import numpy as np import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec from scipy import polyfit, polyval, stats import pandas as pd # from mytext import textTL, textTR import statsmodels.api as sm from patsy import dmatrices,ModelDesc,Term,LookupFactor from copy import deepcopy import itertools import warnings import palettable __all__ = ['partialcorr', 'combocorrplot', 'scatterfit', 'heatmap', 'crosscorr', 'pwpartialcorr', 'corrheatmap', 'validPairwiseCounts', 'removeNARC', 'permcorr'] """Red --> Green colormap with 1024 interpolated values""" _cdict = {'green' : ((0, 1, 1), (0.5, 0, 0), (1, 0, 0)), 'red': ((0, 0, 0), (0.5, 0, 0), (1, 1, 1)), 'blue' : ((0, 0, 0), (1, 0, 0))} #_heatCmap = matplotlib.colors.LinearSegmentedColormap('my_colormap', _cdict, 1024) _heatCmap = palettable.colorbrewer.diverging.RdBu_11_r.mpl_colormap def partialcorr(x, y, adjust=[], method='pearson', minN=None): """Finds partial correlation of x with y adjusting for variables in adjust This function is index aware (i.e. uses index of x, y and adjust for joining). Rho and p-value match those from stats.spearmanr, and stats.pearsonr when adjust = []. TODO: (1) Compute CIs (2) Make into its own testable module (3) Include partial_corr gist (4) Include function to compute whole partial correlation matrix (5) Add second method which takes correlation of residuals (should be equivalent, but is nice test) Parameters ---------- x,y : pd.Series Each contains data for assessing correlation. adjust : list of pd.Series objects Correlation is assessed between x and y adjusting for all variables in z (default: []) method : string Method can be 'pearson' (default) or 'spearman', which uses rank-based correlation and adjustment. minN : int Minimum number of non-nan paired observations. If N < minN then returns pc = nan and p = 1 Returns ------- partial_rho : float Partial correlation coefficient between x and y after adjustment. pvalue : float P-value for the partial correlation coefficient.""" if not isinstance(x, pd.Series): x = pd.Series(x, name = 'X') if not isinstance(y, pd.Series): y = pd.Series(y, name = 'Y') assert x.shape[0] == y.shape[0] if x.name == y.name: x.name += '_X' y.name += '_Y' """Make one big DataFrame out of x, y and adjustment variables""" tmpDf = pd.concat((x,y), join='inner', axis=1) for a in adjust: tmpDf = tmpDf.join(a, how='left') tmpDf = tmpDf.dropna(axis=0, how='any') if not minN is None and tmpDf.shape[0] < minN: return np.nan, 1. m = np.zeros((tmpDf.shape[0], 2+len(adjust))) if method == 'spearman': """Convert data to ranks""" m[:,0] = tmpDf[x.name].rank() m[:,1] = tmpDf[y.name].rank() for i,a in enumerate(adjust): m[:,i+2] = tmpDf[a.name].rank() else: m[:,0] = tmpDf[x.name] m[:,1] = tmpDf[y.name] for i,a in enumerate(adjust): m[:,i+2] = tmpDf[a.name] if all(m[:,0] == m[:,1]): """Testing for perfect correlation avoids SingularMatrix exception""" return 1,0.0 """Take the inverse of the covariance matrix including all variables pc = -p_ij / sqrt(p_ii * p_ij) where p is the inverse covariance matrix""" try: icv = np.linalg.inv(np.cov(m,rowvar=0)) pc = -icv[0,1] / np.sqrt(icv[0,0] * icv[1,1]) n = m.shape[0] gn = len(adjust) statistic = pc * np.sqrt((n-2-gn)/(1-pc**2)) #pvalue = 2*stats.norm.cdf(-abs(statistic)) #SAS and pearsonr look the statistic up in a t distribution while R uses the normnal pvalue = 2*stats.t.cdf(-np.abs(statistic),n-2-gn) except: """These were used to check that non-partial rho's and pvalues match those of their scipy equivalents They do! Use them if the other fails and warn the caller""" if method == 'pearson': pc,pvalue = stats.pearsonr(tmpDf[x.name].values,tmpDf[y.name].values) else: pc,pvalue = stats.spearmanr(tmpDf[x.name].values,tmpDf[y.name].values) if len(adjust) > 0: warnings.warn('Error computing %s and %s correlation: using scipy equivalent to return UNADJUSTED results' % (x.name,y.name)) else: warnings.warn('Error computing %s and %s correlation: using scipy equivalent' % (x.name,y.name)) #raise """Below verifies that the p-value for the coefficient in the multivariate model including adjust is the same as the p-value of the partial correlation""" """formula_like=ModelDesc([Term([LookupFactor(y.name)])],[Term([]),Term([LookupFactor(x.name)])]+[Term([LookupFactor(a.name)]) for a in adjust]) Y, X = dmatrices(formula_like, data=tmpDf, return_type='dataframe') model=sm.GLM(Y,X,family=sm.families.Gaussian()) print model.fit().summary()""" return pc, pvalue def combocorrplot(data,method='spearman',axLimits='variable',axTicks=False,axTicklabels=False,valueFlag=True,ms=2, plotLine = False): """Shows correlation scatter plots in combination with a heatmap for small sets of variables. Parameters ---------- data : pd.DataFrame method : string Correlation method, can be 'pearson' or 'spearman' axLimits : string If 'variable' then allows the limits to be different for each pair of variables. axTicks : bool Display axis tick marks on each square? axTicklabels : bool Display axis tick labels on each square? valueFlag : bool Display correlation coefficient in each square? ms : int Scatter plot marker size in points. plotLine : bool Plot fit-line on the subplots?""" border = 0.05 pad = 0.02 cbwidth = 0.1 labels = data.columns """Use pd.DataFrame method to compute the pairwise correlations""" coef = data.corr(method=method) n = coef.shape[0] axh = np.empty((n,n), dtype=object) plth = np.empty((n,n), dtype=object) mx = None mn = None for col in data.columns: if mx==None: mx = data[col].max() mn = data[col].min() mx = max(data[col].max(),mx) mn = min(data[col].min(),mn) plt.clf() fh = plt.gcf() gs = GridSpec(n,n, left=border,bottom=border,right=1.-border-cbwidth,top=1.-border,wspace=pad,hspace=pad) #cbgs=GridSpec(1,1,left=1.-cbwidth,bottom=border,right=1.-border,top=1.-border,wspace=pad,hspace=pad) for r in range(n): for c in range(n): if r == c: axh[r,c] = fh.add_subplot(gs[r,c],yticklabels=[],xticklabels=[],xticks=[],yticks=[])# LIEL axisbg = 'gray') plt.text(0,0,'%s' % (data.columns[r]),ha='center',va='center') plt.axis([-1,1,-1,1]) elif r>c: if axTicks: if axTicklabels: if r < len(labels)-1 and c>0: axh[r,c] = fh.add_subplot(gs[r,c],xticklabels=[],yticklabels=[]) elif r < len(labels)-1 and c==0: axh[r,c] = fh.add_subplot(gs[r,c],xticklabels=[]) elif r == len(labels)-1 and c>0: axh[r,c] = fh.add_subplot(gs[r,c],yticklabels=[]) elif r == len(labels)-1 and c==0: axh[r,c] = fh.add_subplot(gs[r,c]) else: axh[r,c] = fh.add_subplot(gs[r,c],xticklabels=[],yticklabels=[]) else: axh[r,c] = fh.add_subplot(gs[r,c],xticks=[],yticks=[]) plotx = data[labels[r]] ploty = data[labels[c]] validInd = (~np.isnan(plotx)) & (~np.isnan(ploty)) plotx,ploty = plotx[validInd], ploty[validInd] if method == 'pearson' and plotLine: ar,br = polyfit(plotx,ploty,1) xfit = np.array([min(plotx),max(plotx)]) yfit = polyval([ar,br],xfit) plt.plot(xfit,yfit,'-',lw=1,color='gray') plt.plot(plotx, ploty, 'ok', ms = ms) if axLimits == 'variable': rmax,rmin = max(plotx),min(plotx) cmax,cmin = max(ploty),min(ploty) else: rmax,cmax = mx,mx rmin,cmin = mn,mn plt.axis([rmin-0.1*(rmax-rmin), rmax+0.1*(rmax-rmin),cmin-0.1*(cmax-cmin), cmax+0.1*(cmax-cmin)]) elif r < c: axh[r,c] = fh.add_subplot(gs[r,c],yticklabels=[],xticklabels=[],xticks=[],yticks=[]) val = coef[labels[r]][labels[c]] plth[r,c] = plt.pcolor(np.ones((2,2))*val, cmap=_heatCmap, vmin=-1., vmax=1.) plt.axis([0,1,0,1]) if valueFlag: if val<0.5 and val>-0.5: txtcol = 'white' else: txtcol = 'black' plt.text(0.5,0.5,'%1.2f' % (val),ha='center',va='center',family='monospace',color=txtcol) cbax = fh.add_axes([1.-cbwidth-border/2,border,cbwidth-border-0.02,1.-2*border]) cb = plt.colorbar(plth[0,0],cax=cbax) method = method[0].upper() + method[1:] plt.annotate('%s correlation' % (method),[0.98,0.5],xycoords='figure fraction',ha='right',va='center',rotation='vertical') def pwpartialcorr(df, rowVars=None, colVars=None, adjust=[], method='pearson', minN=0, adjMethod='fdr_bh'): """Pairwise partial correlation. Parameters ---------- df : pd.DataFrame [samples, variables] Data for correlation assessment (Nans will be ignored for each column pair) rowVars, colVars : lists List of column names to incude on heatmap axes. adjust : list List of column names that will be adjusted for in the pairwise correlations. method : string Specifies whether a pearson or spearman correlation is performed. (default: 'spearman') minN : int If a correlation has fewer than minN samples after dropping Nans it will be reported as rho = 0, pvalue = 1 and will not be included in the multiplicity adjustment. Returns ------- rho : pd.DataFrame [rowVars, colVars] Correlation coefficients. pvalue : pd.DataFrame [rowVars, colVars] Pvalues for pairwise correlations. qvalue : pd.DataFrame [rowVars, colVars] Multiplicity adjusted q-values for pairwise correlations.""" if rowVars is None: rowVars = df.columns if colVars is None: colVars = df.columns pvalue = np.zeros((len(rowVars),len(colVars))) qvalue = np.nan * np.zeros((len(rowVars),len(colVars))) rho = np.zeros((len(rowVars),len(colVars))) """Store p-values in dict with keys that are unique pairs (so we only adjust across these)""" pairedPvalues = {} paireQPvalues = {} allColumns = df.columns.tolist() for i,rowv in enumerate(rowVars): for j,colv in enumerate(colVars): if not rowv == colv: if not df[[rowv,colv]].dropna().shape[0] < minN: rho[i,j],pvalue[i,j] = partialcorr(df[rowv],df[colv],adjust=[df[a] for a in adjust], method=method) else: """Pvalue = nan excludes these from the multiplicity adjustment""" rho[i,j],pvalue[i,j] = 1,np.nan """Define unique key for the pair by sorting in order they appear in df columns""" key = tuple(sorted([rowv,colv], key = allColumns.index)) pairedPvalues.update({key:pvalue[i,j]}) else: """By setting these pvalues to nan we exclude them from multiplicity adjustment""" rho[i,j],pvalue[i,j] = 1,np.nan """Now only adjust using pvalues in the unique pair dict""" keys = pairedPvalues.keys() qvalueTmp = _pvalueAdjust(np.array([pairedPvalues[k] for k in keys]), method=adjMethod) """Build a unique qvalue dict from teh same unique keys""" pairedQvalues = {k:q for k,q in zip(keys,qvalueTmp)} """Assign the unique qvalues to the correct comparisons""" for i,rowv in enumerate(rowVars): for j,colv in enumerate(colVars): if not rowv == colv: key = tuple(sorted([rowv,colv], key = allColumns.index)) qvalue[i,j] = pairedQvalues[key] else: pvalue[i,j] = 0. qvalue[i,j] = 0. pvalue = pd.DataFrame(pvalue, index=rowVars, columns=colVars) qvalue = pd.DataFrame(qvalue, index=rowVars, columns=colVars) rho = pd.DataFrame(rho, index=rowVars, columns=colVars) return rho, pvalue, qvalue def crosscorr(dfA, dfB, method='pearson', minN=0, adjMethod='fdr_bh'): """Pairwise correlations between A and B after a join, when there are potential column name overlaps. Parameters ---------- dfA,dfB : pd.DataFrame [samples, variables] DataFrames for correlation assessment (Nans will be ignored in pairwise correlations) method : string Specifies whether a pearson or spearman correlation is performed. (default: 'spearman') minN : int If a correlation has fewer than minN samples after dropping Nans it will be reported as rho = 0, pvalue = 1 and will not be included in the multiplicity adjustment. Returns ------- rho : pd.DataFrame [rowVars, colVars] Correlation coefficients. pvalue : pd.DataFrame [rowVars, colVars] Pvalues for pairwise correlations. qvalue : pd.DataFrame [rowVars, colVars] Multiplicity adjusted q-values for pairwise correlations.""" colA = dfA.columns colB = dfB.columns dfA = dfA.rename_axis(lambda s: s + '_A', axis=1) dfB = dfB.rename_axis(lambda s: s + '_B', axis=1) joinedDf = pd.merge(dfA, dfB, left_index=True, right_index=True) rho, pvalue, qvalue = pwpartialcorr(joinedDf, rowVars=dfA.columns, colVars=dfB.columns, method=method, minN=minN, adjMethod=adjMethod) rho.index = colA rho.columns = colB pvalue.index = colA pvalue.columns = colB qvalue.index = colA qvalue.columns = colB return rho, pvalue, qvalue def corrheatmap(df, rowVars=None, colVars=None, adjust=[], annotation=None, cutoff=None, cutoffValue=0.05, method='pearson', labelLookup={}, xtickRotate=True, labelSize='medium', minN=0, adjMethod='fdr_bh'): """Compute pairwise correlations and plot as a heatmap. Parameters ---------- df : pd.DataFrame [samples, variables] Data for correlation assessment (Nans will be ignored for each column pair) rowVars, colVars : lists List of column names to incude on heatmap axes. adjust : list List of column names that will be adjusted for in the pairwise correlations. annotation : string Specify what is annotated in each square of the heatmap (e.g. pvalue, qvalue, rho, rho2) cutoff : str Specify how to apply cutoff (e.g. pvalue, qvalue, rho, rho2) cutoffValue : float Absolute minimum threshold for squares whose color is displayed (color is proportional to rho). method : string Specifies whether a pearson or spearman correlation is performed. (default: 'spearman') labelLookup : dict Used to translate column names into appropriate label strings. xtickRotate : bool Specify whether to rotate the labels along the x-axis labelSize : str or int Size of x- and y-ticklabels by string (e.g. "large") or points minN : int If a correlation has fewer than minN samples after dropping Nans it will be reported as rho = 0, pvalue = 1 and will not be included in the multiplicity adjustment. Returns ------- rho : ndarray [samples, variables] Matrix of correlation coefficients. pvalue : ndarray [samples, variables] Matrix of pvalues for pairwise correlations. qvalue : ndarray [samples, variables] Matrix of multiplicity adjusted q-values for pairwise correlations.""" if rowVars is None: rowVars = df.columns if colVars is None: colVars = df.columns if cutoff is None: cutoff = 'pvalue' rho,pvalue,qvalue = pwpartialcorr(df, rowVars=rowVars, colVars=colVars, adjust=adjust, method=method, minN=minN) plt.clf() fh = plt.gcf() pvalueTxtProp = dict(family='monospace', size='large', weight='bold', color='white', ha='center', va='center') axh = fh.add_subplot(111, yticks = np.arange(len(rowVars))+0.5, xticks = np.arange(len(colVars))+0.5) if xtickRotate: rotation = 'vertical' else: rotation = 'horizontal' _ = axh.set_xticklabels(map(lambda key: labelLookup.get(key,key),colVars),rotation=rotation,size=labelSize) _ = axh.set_yticklabels(map(lambda key: labelLookup.get(key,key),rowVars),size=labelSize) tmprho = rho.copy() if cutoff == 'qvalue': criticalValue = qvalue elif cutoff == 'pvalue': criticalValue = pvalue elif cutoff == 'rho': criticalValue = np.abs(rho) elif cutoff == 'rho2': criticalValue = rho**2 tmprho[~(criticalValue <= cutoffValue)] = 0. plt.pcolor(tmprho, cmap=_heatCmap, vmin=-1., vmax=1.) for i in range(len(rowVars)): for j in range(len(colVars)): if criticalValue.iloc[i,j] <= cutoffValue and not rowVars[i] == colVars[j]: ann = '' if annotation == 'pvalue': if pvalue.iloc[i,j] > 0.001: ann = '%1.3f' % pvalue.iloc[i,j] else: ann = '%1.1e' % pvalue.iloc[i,j] elif annotation == 'rho': ann = '%1.2f' % rho.iloc[i,j] elif annotation == 'rho2': ann = '%1.2f' % (rho.iloc[i,j] ** 2) elif annotation == 'qvalue': if qvalue[i,j]>0.001: ann = '%1.3f' % qvalue.iloc[i,j] else: ann = '%1.1e' % qvalue.iloc[i,j] if not ann == '': plt.text(j+0.5, i+0.5, ann, **pvalueTxtProp) plt.colorbar(fraction=0.05) method = method[0].upper() + method[1:] plt.annotate('%s correlation' % method,[0.98,0.5], xycoords='figure fraction', ha='right', va='center', rotation='vertical') return rho, pvalue, qvalue def scatterfit(x, y, method='pearson', adjustVars=[], labelLookup={}, plotLine=True, annotateFit=True, annotatePoints=False, returnModel=False, lc='gray', **kwargs): """Scatter plot of x vs. y with a fitted line overlaid. Expects x and y as pd.Series but will accept arrays. Prints covariate unadjusted AND adjusted rho/pvalues on the figure. Plots covariate unadjusted data. Parameters ---------- x,y : ndarrays or pd.Series method : string 'pearson' adjustVars : list labelLookup : dict plotLine : bool annotateFit : bool annotatePoints : bool returnModel : bool kwargs : additional keyword arguments Passed to the plot function for the data points. Returns ------- model : statsmodels GLM object Optionally the fitted model, depending on returnModel.""" k = kwargs.keys() if not 'mec' in k: kwargs.update({'mec':'k'}) if not 'mfc' in k: kwargs.update({'mfc':'k'}) if not 'ms' in k: kwargs.update({'ms':5}) """Try to force X and Y into pandas.Series objects""" if not isinstance(x, pd.core.series.Series): x = pd.Series(x, name='X') if not isinstance(y, pd.core.series.Series): y = pd.Series(y, name='Y') xlab = x.name ylab = y.name if xlab == ylab: ylab = 'y_'+ylab xlab = 'x_'+xlab x.name = xlab y.name = ylab tmpDf = pd.concat((x,y,), axis=1, join='inner') for av in adjustVars: tmpDf = pd.concat((tmpDf,pd.DataFrame(av)), axis=1) """Drop any row with a nan in either column""" tmpDf = tmpDf.dropna(axis=0, how='any') plt.gca().set_xmargin(0.2) plt.gca().set_ymargin(0.2) unrho,unp = partialcorr(tmpDf[xlab],tmpDf[ylab],method=method) """Print unadjusted AND adjusted rho/pvalues Plot unadjusted data with fit though...""" if method == 'spearman' and plotLine: #unrho,unp=stats.spearmanr(tmpDf[xlab],tmpDf[ylab]) if unrho > 0: plt.plot(sorted(tmpDf[xlab]),sorted(tmpDf[ylab]),'-',color=lc) else: plt.plot(sorted(tmpDf[xlab]),sorted(tmpDf[ylab],reverse=True),'-',color=lc) elif method == 'pearson' and plotLine: #unrho,unp=stats.pearsonr(tmpDf[xlab],tmpDf[ylab]) formula_like = ModelDesc([Term([LookupFactor(ylab)])],[Term([]),Term([LookupFactor(xlab)])]) Y, X = dmatrices(formula_like, data=tmpDf, return_type='dataframe') model = sm.GLM(Y,X,family=sm.families.Gaussian()) results = model.fit() mnmxi = np.array([tmpDf[xlab].idxmin(),tmpDf[xlab].idxmax()]) plt.plot(tmpDf[xlab][mnmxi],results.fittedvalues[mnmxi],'-',color=lc) plt.plot(tmpDf[xlab],tmpDf[ylab],'o',**kwargs) if annotatePoints: annotationParams = dict(xytext=(0,5), textcoords='offset points', size='medium') for x,y,lab in zip(tmpDf[xlab],tmpDf[ylab],tmpDf.index): plt.annotate(lab, xy=(x, y), **annotationParams) if annotateFit: if unp>0.001: s = 'p = %1.3f\nrho = %1.2f\nn = %d' % (unp, unrho, tmpDf.shape[0]) else: s = 'p = %1.1e\nrho = %1.2f\nn = %d' % (unp, unrho, tmpDf.shape[0]) textTL(plt.gca(),s,color='black') if len(adjustVars) > 0: rho,p = partialcorr(tmpDf[xlab], tmpDf[ylab], adjust = adjustVars, method = method) if p>0.001: s = 'adj-p = %1.3f\nadj-rho = %1.2f\nn = %d' % (p, rho, tmpDf.shape[0]) else: s = 'adj-p = %1.1e\nadj-rho = %1.2f\nn = %d' % (p, rho, tmpDf.shape[0]) textTR(plt.gca(),s,color='red') plt.xlabel(labelLookup.get(xlab,xlab)) plt.ylabel(labelLookup.get(ylab,ylab)) if returnModel: return model def _pvalueAdjust(pvalues, method = 'fdr_bh'): """Convenient function for doing p-value adjustment Accepts any matrix shape and adjusts across the entire matrix Ignores nans appropriately 1) Pvalues can be DataFrame or Series or array 2) Turn it into a one-dimensional vector 3) Qvalues intialized at p to copy nans in the right places 4) Drop the nans, calculate qvalues, copy to qvalues vector 5) Reshape qvalues 6) Return same type as pvalues """ p = np.array(pvalues).flatten() qvalues = deepcopy(p) nanInd = np.isnan(p) dummy,q,dummy,dummy = sm.stats.multipletests(p[~nanInd], alpha=0.2, method=method) qvalues[~nanInd] = q qvalues = qvalues.reshape(pvalues.shape) if type(pvalues) is pd.core.frame.DataFrame: return pd.DataFrame(qvalues,columns=[x+'_q' for x in pvalues.columns],index=pvalues.index) elif type(pvalues) is pd.core.series.Series: return pd.Series(qvalues,name=pvalues.name+'_q',index=pvalues.index) else: return qvalues def validPairwiseCounts(df, cols=None): """Count the number of non-NA data points for all pairs of cols in df, as would be needed for generating a correlation heatmap. Useful for determining a threshold minimum number of data pairs for a valid correlation. Parameters ---------- df : pd.DataFrame cols : list Column names to consider Returns ------- pwCounts : pd.DataFrame DataFrame with columns and index matching cols""" if cols is None: cols = df.columns n = len(cols) pwCounts = pd.DataFrame(np.zeros((n,n)), index=cols, columns=cols) for colA,colB in itertools.product(cols,cols): if colA == colB: pwCounts.loc[colA,colA] = df[colA].dropna().shape[0] elif colA > colB: n = df[[colA,colB]].dropna().shape[0] pwCounts.loc[colA,colB] = n pwCounts.loc[colB,colA] = n return pwCounts def heatmap(df, colLabels=None, rowLabels=None, labelSize='medium', **kwargs): """Heatmap based on values in df Parameters ---------- df : pd.DataFrame All data in df will be included in heatmap colLabels : list Strings to replace df column names as x-tick labels rowLabels : list Strings to replace df index as y-tick labels labelSize : fontsize in points or str (e.g. 'large') kwargs : dict Passed to pcolor()""" if not 'cmap' in kwargs: kwargs['cmap'] = _heatCmap if colLabels is None: colLabels = df.columns if rowLabels is None: rowLabels = df.index plt.clf() axh = plt.subplot(111) nrows,ncols = df.shape plt.pcolor(df.values, **kwargs) axh.xaxis.tick_top() plt.xticks(np.arange(ncols) + 0.5) plt.yticks(np.arange(nrows) + 0.5) xlabelsL = axh.set_xticklabels(colLabels, size=labelSize, rotation=90, fontname='Consolas') ylabelsL = axh.set_yticklabels(rowLabels, size=labelSize, fontname='Consolas') plt.ylim((nrows,0)) plt.xlim((0,ncols)) plt.colorbar(fraction=0.05) plt.tight_layout() def removeNARC(inDf,minRow=1, minCol=1, minFrac=None): """Removes all columns and rows that don't have at least minX non-NA values. Considers columns then rows iteratively until criteria is met or all columns or rows have been removed.""" def _validCols(df,minCol): return [col for col in df.columns if (df.shape[0] - df[col].isnull().sum()) >= minCol] def _validRows(df,minRow): return [row for row in df.index if (df.shape[1] - df.loc[row].isnull().sum()) >= minRow] df = inDf.copy() if not minFrac is None: minRow = np.round(df.shape[1] * minFrac) minCol = np.round(df.shape[0] * minFrac) nRows = df.shape[0] + 1 nCols = df.shape[1] + 1 while (nCols > df.shape[1] or nRows > df.shape[0]) and df.shape[0]>0 and df.shape[1]>0: nRows, nCols = df.shape df = df[_validCols(df,minCol)] df = df.loc[_validRows(df,minRow)] return df def permcorr(a,b,corrFunc, nperms = 10000): """Use shuffled permutations of a and b (np.ndarrays or pd.Series) to estimate the correlation p-value and rho with CIs (TODO) Parameters ---------- a,b : np.ndarray or pd.Series corrFunc : function Parameters are a and b with return value rho, p-value Returns ------- rho : float p : float""" if isinstance(a,pd.Series): a = a.values if isinstance(b,pd.Series): b = b.values rhoShuff = np.zeros(nperms) pShuff = np.zeros(nperms) rho,pvalue = corrFunc(a,b) L = a.shape[0] for permi in np.arange(nperms): rind = np.floor(np.random.rand(L) * L).astype(int) rhoShuff[permi],pShuff[permi] = corrFunc(a,b[rind]) if rho >= 0: p = ((rhoShuff >= rho).sum() + 1)/(nperms + 1) else: p = ((rhoShuff <= rho).sum() + 1)/(nperms + 1) return rho, p ``` #### File: cytomod/otherTools/myboxplot.py ```python import numpy as np import matplotlib.pyplot as plt from numpy.random import permutation,seed import pandas as pd #import seaborn as sns __all__ = ['scatterdots', 'myboxplot', 'manyboxplots'] def scatterdots(data, x, axh=None, width=0.8, returnx=False, rseed=820, **kwargs): """Dots plotted with random x-coordinates and y-coordinates from data array. Parameters ---------- data : ndarray x : float Specifies the center of the dot cloud on the x-axis. axh : matplotlib figure handle If None then use plt.gca() width : float Specifies the range of the dots along the x-axis. returnx : bool If True, return the x-coordinates of the plotted data points. rseed : float Random seed. Defaults to a constant so that regenerated figures of the same data are identical. Returns ------- Optionally returns the x-coordinates as plotted.""" if axh is None: axh = plt.gca() np.random.seed(rseed) if data is None or len(data) == 0: if returnx: return None return if not type(data) == np.ndarray: data = np.array(data) validi = np.arange(len(data)) if any(np.isnan(data)): validi = np.where(np.logical_not(np.isnan(data)))[0] ploty = data[validi] if len(ploty) == 0: if returnx: return None return w = width plotx = np.random.permutation(np.linspace(-w/2., w/2., len(ploty)) + x) axh.scatter(plotx, ploty, **kwargs) if returnx: outx = np.nan * np.ones(data.shape) outx[validi] = plotx return outx def myboxplot(data, x = 1, axh=None, width=0.8, boxcolor='black',scatterwidth=0.6,dotcolor='red',returnx=False,subsetInd=None,altDotcolor='gray',violin=False,**kwargs): """Make a boxplot with scatterdots overlaid. Parameters ---------- data : np.ndarray or pd.Series x : float Position of box along x-axis. axh : matplotlib figure handle If None then use plt.gca() width : float Width of the box. boxcolor : mpl color scatterwidth : float Width of the spread of the data points. dotcolor : mpl color subsetInd : boolean or int index Indicates a subset of the data that should be summarized in the boxplot. However, all data points will be plotted. altDotcolor : mpl color Specify the color of the data points that are not in the subset. returnx : bool Return the x-coordinates of the data points. violin : bool Specify whether the box is a violin plot. Returns ------- outx : np.ndarray Optionall, an array of the x-coordinates as plotted.""" if axh is None: axh = plt.gca() if type(data) is pd.Series: data = data.values if not subsetInd is None: if not (subsetInd.dtype == np.array([0,1], dtype=bool).dtype): tmp = np.zeros(data.shape, dtype=bool) tmp[subsetInd] = True subsetInd = tmp else: subsetInd = np.ones(data.shape, dtype=bool) subsetInd = np.asarray(subsetInd) if not 's' in kwargs: kwargs['s'] = 20 if not 'marker' in kwargs: kwargs['marker'] = 'o' if not 'linewidths' in kwargs: kwargs['linewidths'] = 0.5 """Boxplot with dots overlaid""" outx = np.zeros(data.shape) if subsetInd.sum() > 0: if not boxcolor == 'none' and not boxcolor is None: if violin and False: sns.violinplot(data[subsetInd], color = boxcolor, positions = [x], alpha = 0.5) else: bp = axh.boxplot(data[subsetInd], positions = [x], widths = width, sym = '') for element in bp.keys(): for b in bp[element]: b.set_color(boxcolor) kwargs['c'] = dotcolor subsetx = scatterdots(data[subsetInd], x = x, axh = axh, width = scatterwidth, returnx = True, **kwargs) outx[subsetInd] = subsetx if (~subsetInd).sum() > 0: kwargs['c'] = altDotcolor subsetx = scatterdots(data[~subsetInd], x = x, axh = axh, width = scatterwidth, returnx = True, **kwargs) outx[~subsetInd] = subsetx if returnx: return outx def manyboxplots(df, cols=None, axh=None, colLabels=None,annotation='N',horizontal=False,vRange=None,xRot=0, **kwargs): """Series of boxplots along x-axis (or flipped horizontally along y-axis [NOT IMPLEMENTED]) WORK IN PROGRESS Optionally add annotation for each boxplot with: (1) "N" (2) "pctpos" (response rate, by additionally specifying responders) NOT YET IMPLEMENTED Parameters ---------- df : pd.DataFrame cols : list Column names to be plotted axh : matplotlib figure handle If None then use plt.gca() colLabels : list Column labels (optional) annotation : str or None Specifies what the annotation should be: "N" or "pctpos" horizontal : bool Specifies whether boxplots should be vertical (default, False) or horizontal (True) kwargs : additional arguments Passed to myboxplot function to specify colors etc.""" if axh is None: axh = plt.gca() if cols is None: cols = df.columns if colLabels is None: colLabels = cols elif len(colLabels)<cols: colLabels += cols[len(colLabels):] for x,c in enumerate(cols): myboxplot(df[c].dropna(), x = x, axh = axh, **kwargs) if not vRange is None: plt.ylim(vRange) yl = plt.ylim() annotationKwargs = dict(xytext = (0,-10), textcoords = 'offset points', ha = 'center', va = 'top', size = 'medium') for x,c in enumerate(cols): tmp = df[c].dropna() if annotation == 'N': plt.annotate('%d' % len(tmp), xy = (x, yl[1]), **annotationKwargs) elif annotation == 'pctpos': pass plt.xlim((-1,x+1)) plt.xticks(np.arange(x+1)) xlabelsL = axh.set_xticklabels(colLabels, fontsize = 'large', rotation = xRot, fontname = 'Consolas') ```
{ "source": "jeremychauvet/aws-python-sdk-showroom", "score": 3 }
#### File: kms/get-key-rotation-status/main.py ```python import boto3 import botocore # This function list all KMS keys with no key rotation enable. client = boto3.client("kms", region_name="eu-central-1") def list_keys(): try: return client.list_keys(Limit=100) except: print("[ERROR] Unable to retrive key list.") if __name__ == "__main__": output = list_keys() for row in output["Keys"]: # Check key rotation status. try: response = client.get_key_rotation_status(KeyId=row["KeyId"]) if response["KeyRotationEnabled"] == False: print( "Key : " + row["KeyId"] + " - KeyRotationEnabled : " + str(response["KeyRotationEnabled"]) ) except botocore.exceptions.ClientError as e: print("[ERROR]", e) ```
{ "source": "jeremychauvet/aws-sam-showroom", "score": 2 }
#### File: aws-sam-showroom/cost-forecast/app.py ```python import json import boto3 import datetime def handler(event, context): try: client = boto3.client('ce', region_name='eu-central-1') response = client.get_usage_forecast( TimePeriod={ 'Start': str(datetime.date.today()), 'End': '2020-11-30' }, Metric='USAGE_QUANTITY', Granularity='MONTHLY', Filter={ 'Dimensions': { 'Key': 'USAGE_TYPE', 'Values': [ 'hours', ] } }, ) except client.exceptions.DataUnavailableException as e: # Send some context about this error to Lambda Logs print(e) raise e return { "statusCode": 200, "body": json.dumps({ "response": response.text.replace("\n", "") }), } ```
{ "source": "jeremycheong/kcarhome", "score": 3 }
#### File: jeremycheong/kcarhome/kcarhome.py ```python import os import config as cfg from parserpage import htmlparser, getclasses, getclassbrandurl TEST_URL = 'https://product.360che.com/img/c1_s65_b31_s116.html' def get_brand_name(brand_url): sub_brand_soup = htmlparser(TEST_URL) brand_name_tag_list = sub_brand_soup.find('div', 'map_mal').find_all('a')[-3:] brand_name = '_'.join(list(map(lambda brand_name_tag: brand_name_tag.get_text().replace('图片库', ''), brand_name_tag_list))) print(brand_name) if __name__ == "__main__": get_brand_name(cfg.domain) ```
{ "source": "jeremycheong/MNN", "score": 3 }
#### File: tools/MNNPythonOfflineQuant/mnn_offline_quant.py ```python from __future__ import print_function import time import argparse import numpy as np import tqdm import MNN import yaml from calibration_dataset import calibration_dataset from test_dataset import ImagenetDataset nn = MNN.nn F = MNN.expr def get_mnn_format(format_str): fmt = str.lower(format_str) if fmt == 'nchw': return F.NCHW elif fmt == 'nhwc': return F.NHWC elif fmt == 'nc4hw4': return F.NC4HW4 else: raise ValueError("unknown format:", format_str) def quant_func(net, dataloader, opt): net.train(True) dataloader.reset() t0 = time.time() for i in tqdm.trange(dataloader.iter_number): example = dataloader.next() input_data = example[0] predicts = net.forward(input_data) # fake update opt.step(F.const(0.0, [])) for predict in predicts: predict.read() t1 = time.time() cost = t1 - t0 print("Epoch cost: %.3f s." % cost) def main(): ''' offline quantization using MNN python api. 1. you need to convert your model to mnn model 2. you need to provide a calibration dataset by modifying preprocessing steps in 'calibration_dataset.py' to suit your case. 3. you need to provide a config yaml file in which provide input and output information about your model. ''' parser = argparse.ArgumentParser() parser.add_argument("--mnn_model", type=str, required=True,\ help="original float MNN model file") parser.add_argument("--quant_model", type=str, required=True, \ help="name of quantized model to save") parser.add_argument("--batch_size", type=int, required=False, default=32,\ help="calibration batch size") args = parser.parse_args() mnn_model = args.mnn_model quant_model = args.quant_model batch_size = args.batch_size dataloader = MNN.data.DataLoader(calibration_dataset, batch_size=batch_size, shuffle=True) m = F.load_as_dict(mnn_model) inputs_outputs = F.get_inputs_and_outputs(m) for key in inputs_outputs[0].keys(): print('input names:\t', key) for key in inputs_outputs[1].keys(): print('output names:\t', key) config_file = "config.yaml" f = open(config_file) config = yaml.load(f) # get inputs and outputs inputs = [] for name in config['inputs']['names']: inputs.append(m[name]) outputs = [] for name in config['output_names']: outputs.append(m[name]) input_placeholders = [] for i in range(len(inputs)): shape = config['inputs']['shapes'][i] fmt = config['inputs']['formats'][i] nnn_format = get_mnn_format(fmt) input_placeholders.append(F.placeholder(shape, nnn_format)) net = nn.load_module(inputs, outputs, True) # no use optimizer opt = MNN.optim.SGD(net, 0.01, 0.9, 0.0005) nn.compress.train_quant(net, quant_bits=8) quant_func(net, dataloader, opt) # save model net.train(False) predicts = net.forward(input_placeholders) print("quantized model save to " + quant_model) F.save(predicts, quant_model) if __name__ == "__main__": main() ```
{ "source": "jeremychonggg/Alpaca-Trading-Bot", "score": 3 }
#### File: jeremychonggg/Alpaca-Trading-Bot/backtest2.py ```python import requests import os import json import pandas as pd from bs4 import BeautifulSoup import requests from copy import deepcopy import numpy as np import alpaca_trade_api as tradeapi import time endpoint = "https://data.alpaca.markets/v1" headers = json.loads(open("key.txt", 'r').read()) # Webscrap list of top gainer stocks day_gainers_stock = {} def find_day_gainers_stock(): url = "https://finance.yahoo.com/gainers?count=100&offset=0" page = requests.get(url) page_content = page.content soup = BeautifulSoup(page_content,'html.parser') table = soup.find_all("table", {"class" : "W(100%)"}) for t in table: rows = t.find_all("tr") for row in rows: day_gainers_stock[row.get_text(separator='|').split("|")[0]] = row.get_text(separator='|').split("|")[4] # Webscrap list of top volume stocks most_active_stock = {} def find_most_active_stock(): url = "https://finance.yahoo.com/most-active?count=100&offset=0" page = requests.get(url) page_content = page.content soup = BeautifulSoup(page_content,'html.parser') table = soup.find_all("table", {"class" : "W(100%)"}) for t in table: rows = t.find_all("tr") for row in rows: most_active_stock[row.get_text(separator='|').split("|")[0]] = row.get_text(separator='|').split("|")[5] ########## ENTRY STRATEGY - PREPARE LIST ########## # Sort out 25 Top Gainer Stock from last trading day find_day_gainers_stock() # Call this function on Monday 1 hour before market start # Sort out 25 Highest Volume Stock from last trading day find_most_active_stock() # Call this function on Monday 1 hour before market start ########## ENTRY STRATEGY - PICK TIMING ########## ########## BACKTESTING - PREPARE TOOLS ########## def hist_data(symbols, timeframe="15Min", limit=200, start="", end="", after="", until=""): """ Returns historical bar data for a string of symbols seperated by comma. Symbols should be in a string format separated by comma e.g. symbols = "MSFT,AMZN,GOOG". """ df_data = {} bar_url = endpoint + "/bars/{}".format(timeframe) params = {"symbols" : symbols, "limit" : limit, "start" : start, "end" : end, "after" : after, "until" : until} r = requests.get(bar_url, headers=headers, params=params) json_dump = r.json() for symbol in json_dump: temp = pd.DataFrame(json_dump[symbol]) temp.rename({"t": "time", "o": "open", "h": "high", "l": "low", "c": "close", "v": "volume"}, axis=1, inplace=True) temp["time"] = pd.to_datetime(temp["time"], unit="s") temp.set_index("time", inplace=True) temp.index = temp.index.tz_localize("UTC").tz_convert("America/New_York") temp.between_time("09:31", "16:00") df_data[symbol] = temp return df_data def MACD(df_dict, a=12, b=26, c=9): """ function to calculate MACD typical values: a(fast moving average) = 12; b(slow moving average) = 26; c(signal line ma window) = 9 """ for df in df_dict: df_dict[df]["ma_fast"] = df_dict[df]["close"].ewm(span=a, min_periods=a).mean() df_dict[df]["ma_slow"] = df_dict[df]["close"].ewm(span=b, min_periods=b).mean() df_dict[df]["macd"] = df_dict[df]["ma_fast"] - df_dict[df]["ma_slow"] df_dict[df]["signal"] = df_dict[df]["macd"].ewm(span=c, min_periods=c).mean() df_dict[df].drop(["ma_fast", "ma_slow"], axis=1, inplace=True) def stochastic(df_dict, lookback=14, k=3, d=3): """ function to calculate Stochastic Oscillator lookback = lookback period k and d = moving average window for %K and %D """ for df in df_dict: df_dict[df]["HH"] = df_dict[df]["high"].rolling(lookback).max() df_dict[df]["LL"] = df_dict[df]["low"].rolling(lookback).min() df_dict[df]["%K"] = (100 * (df_dict[df]["close"] - df_dict[df]["LL"]) / (df_dict[df]["HH"] - df_dict[df]["LL"])).rolling(k).mean() df_dict[df]["%D"] = df_dict[df]["%K"].rolling(d).mean() df_dict[df].drop(["HH", "LL"], axis=1, inplace=True) # KPI def CAGR(df_dict, candle_period='1day'): "function to calculate the Cumulative Annual Growth Rate; DF should have return column" absolute_return = (1 + df_dict["return"]).cumprod().iloc[-1] if candle_period == '1day': n = len(df_dict["return"]) / 252 elif candle_period == '1hour': n = len(df_dict["return"]) / (252 * 8) elif candle_period == '30min': n = len(df_dict["return"]) / (252 * 8 * 2) elif candle_period == '15min': n = len(df_dict["return"]) / (252 * 8 * 4) elif candle_period == '5min': n = len(df_dict["return"]) / (252 * 8 * 12) elif candle_period == '3min': n = len(df_dict["return"]) / (252 * 8 * 20) elif candle_period == '1min': n = len(df_dict["return"]) / (252 * 8 * 60) cagr = (absolute_return)**(1/n) - 1 # abs_return = (1 + df_dict["return"]).cumprod().iloc[-1] # n = len(df_dict[df])/252 # cagr[df] = (abs_return)**(1/n) - 1 # for df in df_dict: # abs_return = (1 + df_dict[df]["return"]).cumprod().iloc[-1] # n = len(df_dict[df])/252 # cagr[df] = (abs_return)**(1/n) - 1 return cagr def volatility(df_dict): "function to calculate annualized volatility; DF should have ret column" vol = {} for df in df_dict: vol[df] = df_dict[df]["return"].std() * np.sqrt(252) return vol def sharpe(df_dict, rf_rate): "function to calculate sharpe ratio ; rf is the risk free rate" sharpe = {} cagr = CAGR(df_dict) vol = volatility(df_dict) for df in df_dict: sharpe[df] = (cagr[df] - rf_rate)/vol[df] return sharpe def max_dd(df_dict): "function to calculate max drawdown" max_drawdown = {} for df in df_dict: df_dict[df]["cum_return"] = (1 + df_dict[df]["return"]).cumprod() df_dict[df]["cum_max"] = df_dict[df]["cum_return"].cummax() df_dict[df]["drawdown"] = df_dict[df]["cum_max"] - df_dict[df]["cum_return"] df_dict[df]["drawdown_pct"] = df_dict[df]["drawdown"]/df_dict[df]["cum_max"] max_drawdown[df] = df_dict[df]["drawdown_pct"].max() df_dict[df].drop(["cum_return","cum_max","drawdown","drawdown_pct"], axis=1, inplace=True) return max_drawdown # INTRADAY KPI def winRate(DF): """ function to calculate win rate of intrady trading strategy """ df = DF["return"] pos = df[df>1] neg = df[df<1] return (len(pos) / len(pos + neg)) * 100 def meanReturnPerTrade(DF): df = DF["return"] df_temp = (df - 1).dropna() return df_temp[df_temp != 0].mean() def meanReturnWinRate(DF): df = DF["return"] df_temp = (df - 1).dropna() return df_temp[df_temp > 0].mean() def meanReturnLostRate(DF): df = DF["return"] df_temp = (df - 1).dropna() return df_temp[df_temp < 0].mean() def maxConsecutiveLoss(DF): df = DF["return"] df_temp = df.dropna(axis=0) df_temp2 = np.where(df_temp < 1, 1, 0) count_consecutive = [] seek = 0 for i in range(len(df_temp2)): if df_temp2[i] == 0: seek = 0 else: seek = seek + 1 count_consecutive.append(seek) if len(count_consecutive) > 0: return max(count_consecutive) else: return 0 ########## BACKTESTING - START ########## # Prepare tickers list tickers = "" for ticker in most_active_stock: tickers = tickers + "," + ticker tickers = tickers[8:] # Remove the words ",symbol," # Get Historical Data historicalData = hist_data(tickers, limit=1000) ohlc_dict = deepcopy(historicalData) stoch_signal = {} tickers_signal = {} tickers_return = {} trade_count = {} trade_data = {} high_water_mark = {} # avg_return = 0 # MACD(ohlc_dict) stochastic(ohlc_dict) for ticker in tickers.split(","): ohlc_dict[ticker].dropna(inplace=True) stoch_signal[ticker] = "" tickers_signal[ticker] = "" trade_count[ticker] = 0 high_water_mark[ticker] = 0 tickers_return[ticker] = [0] trade_data[ticker] = {} # Calculate Return of each stock for ticker in tickers.split(","): print("Calculation returns for:", ticker) for i in range(1, len(ohlc_dict[ticker])-1): # Strategy 1: Check Stochastic if ohlc_dict[ticker]["%K"][i] < 20: stoch_signal[ticker] = "oversold" elif ohlc_dict[ticker]["%K"][i] > 80: stoch_signal[ticker] = "overbought" # ENTRY STRATEGY if tickers_signal[ticker] == "": tickers_return[ticker].append(0) # LONG STRATEGY if ( ohlc_dict[ticker]["macd"][i] > ohlc_dict[ticker]["signal"][i] ) and \ ( ohlc_dict[ticker]["macd"][i-1] > ohlc_dict[ticker]["signal"][i-1] ) and \ stoch_signal[ticker] == "oversold": tickers_signal[ticker] = "Buy" trade_count[ticker] += 1 trade_data[ticker][trade_count[ticker]] = [ohlc_dict[ticker]["open"][i+1]] high_water_mark[ticker] = ohlc_dict[ticker]["open"][i+1] # EXIT STRATEGY elif tickers_signal[ticker] == "Buy": # Check if stop loss triggered if ohlc_dict[ticker]["low"][i] < 0.985 * high_water_mark[ticker]: tickers_signal[ticker] = "" trade_data[ticker][trade_count[ticker]].append(0.985*high_water_mark[ticker]) tickers_return[ticker].append( (0.985*high_water_mark[ticker] / ohlc_dict[ticker]["close"][i-1]) - 1 ) trade_count[ticker] += 1 else: high_water_mark[ticker] = max(high_water_mark[ticker], ohlc_dict[ticker]["high"][i]) tickers_return[ticker].append( (ohlc_dict[ticker]["close"][i] / ohlc_dict[ticker]["close"][i-1]) - 1 ) if trade_count[ticker] % 2 != 0: trade_data[ticker][trade_count[ticker]].append(ohlc_dict[ticker]["close"][i+1]) tickers_return[ticker].append(0) ohlc_dict[ticker]["return"] = np.array(tickers_return[ticker]) # print(ohlc_dict[ticker]["return"][-1] * 100) # print(ohlc_dict[ticker]["return"].sum() * 100) # # avg_return = avg_return + (ohlc_dict[ticker]["return"].sum() * 100) # # print(avg_return) # # Calculate Overall Stategy's KPI strategy_df = pd.DataFrame() for ticker in tickers.split(","): strategy_df[ticker] = ohlc_dict[ticker]["return"] strategy_df[ticker].fillna(0, inplace=True) strategy_df["return"] = strategy_df.mean(axis=1) print("CAGR:", CAGR(strategy_df, candle_period='15min')) # sharpe(strategy_df, 0.03) # max_dd(strategy_df) (1 + strategy_df["return"]).cumprod().plot() ``` #### File: jeremychonggg/Alpaca-Trading-Bot/get_stock_data.py ```python import json import requests import pandas as pd import websocket # Get Alpaca API Credential endpoint = "https://data.alpaca.markets/v2" headers = json.loads(open("key.txt", 'r').read()) def hist_data(symbols, start="2021-01-01", timeframe="1Hour", limit=50, end=""): """ returns historical bar data for a string of symbols separated by comma symbols should be in a string format separated by comma e.g. symbols = "MSFT,AMZN,GOOG" """ df_data_tickers = {} for symbol in symbols: bar_url = endpoint + "/stocks/{}/bars".format(symbol) params = {"start":start, "limit" :limit, "timeframe":timeframe} data = {"bars": [], "next_page_token":'', "symbol":symbol} while True: r = requests.get(bar_url, headers = headers, params = params) r = r.json() if r["next_page_token"] == None: data["bars"]+=r["bars"] break else: params["page_token"] = r["next_page_token"] data["bars"]+=r["bars"] data["next_page_token"] = r["next_page_token"] df_data = pd.DataFrame(data["bars"]) df_data.rename({"t":"time","o":"open","h":"high","l":"low","c":"close","v":"volume"},axis=1, inplace=True) df_data["time"] = pd.to_datetime(df_data["time"]) df_data.set_index("time",inplace=True) df_data.index = df_data.index.tz_convert("America/Indiana/Petersburg") df_data_tickers[symbol] = df_data return df_data_tickers def get_historical_data(ticker_list, start_date, end_date=None, limit=10000, timeframe="1Day"): """ returns historical bar data for a string of symbols separated by comma symbols should be in a string format separated by comma e.g. symbols = "MSFT,AMZN,GOOG" * timeframe - Timeframe for the aggregation. Available values are: `1Min`, `1Hour`, `1Day` https://alpaca.markets/docs/api-documentation/api-v2/market-data/alpaca-data-api-v2/historical/#bars """ df_data_tickers = {} for symbol in ticker_list: bar_url = endpoint + "/stocks/{}/bars".format(symbol) params = {"start":start_date, "end": end_date, "limit": limit, "timeframe":timeframe} data = {"bars": [], "next_page_token": '', "symbol": symbol} # r = requests.get(bar_url, headers=headers, params=params) # r = r.json() # data["bars"] += r["bars"] while True: r = requests.get(bar_url, headers=headers, params=params) r = r.json() try: if r["next_page_token"] == None: data["bars"] += r["bars"] break else: params["page_token"] = r["next_page_token"] data["bars"] += r["bars"] data["next_page_token"] = r["next_page_token"] except: break # Create a DataFrame for the data["bars"] of each stock df_data = pd.DataFrame(data["bars"]) df_data.rename({"t":"time","o":"open","h":"high","l":"low","c":"close","v":"volume"},axis=1, inplace=True) try: df_data["time"] = pd.to_datetime(df_data["time"]) df_data.set_index("time",inplace=True) df_data.index = df_data.index.tz_convert("America/New_York") df_data_tickers[symbol] = df_data except: pass print("---- Created for [{}]".format(symbol)) return df_data_tickers ``` #### File: jeremychonggg/Alpaca-Trading-Bot/order.py ```python import requests import os import json import pandas as pd os.chdir("D:\\SynologyDrive\Programming\AlpacaTradingBot") endpoint = "https://paper-api.alpaca.markets" headers = json.loads(open("key.txt", 'r').read()) # https://alpaca.markets/docs/api-documentation/api-v2/orders/ def market_order(symbol, quantity, side="buy", tif="day"): order_url = endpoint + "/v2/orders" params = {"symbol" : symbol, "qty" : quantity, # Number of shares to trade "side" : side, # 'buy' or 'sell' "type" : "market", # 'market', 'limit', 'stop', 'stop_limit', 'trailing_stop' "time_in_force" : tif # 'day', 'gtc', 'opg', 'cls', 'ioc' or 'fok' } r = requests.post(order_url, headers=headers, json=params) return r.json() def limit_order(symbol, quantity, limit_price, side="buy", tif="day"): order_url = endpoint + "/v2/orders" params = {"symbol" : symbol, "qty" : quantity, # Number of shares to trade "side" : side, # 'buy' or 'sell' "type" : "limit", # 'market', 'limit', 'stop', 'stop_limit', 'trailing_stop' "limit_price" : limit_price, # price to go in "time_in_force" : tif # 'day', 'gtc', 'opg', 'cls', 'ioc' or 'fok' } r = requests.post(order_url, headers=headers, json=params) return r.json() def stop_order(symbol, quantity, stop_price, side="buy", tif="day"): order_url = endpoint + "/v2/orders" params = {"symbol" : symbol, "qty" : quantity, # Number of shares to trade "side" : side, # 'buy' or 'sell' "type" : "stop", # 'market', 'limit', 'stop', 'stop_limit', 'trailing_stop' "stop_price" : stop_price, "time_in_force" : tif # 'day', 'gtc', 'opg', 'cls', 'ioc' or 'fok' } r = requests.post(order_url, headers=headers, json=params) return r.json() def stop_limit_order(symbol, quantity, stop_price, limit_price, side="buy", tif="day"): order_url = endpoint + "/v2/orders" params = {"symbol" : symbol, "qty" : quantity, # Number of shares to trade "side" : side, # 'buy' or 'sell' "type" : "stop_limit", # 'market', 'limit', 'stop', 'stop_limit', 'trailing_stop' "stop_price" : stop_price, "limit_price" : limit_price, "time_in_force" : tif # 'day', 'gtc', 'opg', 'cls', 'ioc' or 'fok' } r = requests.post(order_url, headers=headers, json=params) return r.json() def trail_stop_order(symbol, quantity, trail_price, side="buy", tif="day"): order_url = endpoint + "/v2/orders" params = {"symbol" : symbol, "qty" : quantity, # Number of shares to trade "side" : side, # 'buy' or 'sell' "type" : "trailing_stop", # 'market', 'limit', 'stop', 'stop_limit', 'trailing_stop' "trail_price" : trail_price, "time_in_force" : tif # 'day', 'gtc', 'opg', 'cls', 'ioc' or 'fok' } r = requests.post(order_url, headers=headers, json=params) return r.json() def bracket_order(symbol, quantity, tp_limit_price, sl_stop_price, sl_limit_price, side="buy", tif="day"): order_url = endpoint + "/v2/orders" params = {"symbol" : symbol, "qty" : quantity, # Number of shares to trade "side" : side, # 'buy' or 'sell' "type" : "market", # 'market', 'limit', 'stop', 'stop_limit', 'trailing_stop' "time_in_force" : tif, # 'day', 'gtc', 'opg', 'cls', 'ioc' or 'fok' "order_class" : "bracket", "take_profit" : {"limit_price": tp_limit_price}, "stop_loss" : {"stop_price" : sl_stop_price, "limit_price": sl_limit_price } } r = requests.post(order_url, headers=headers, json=params) return r.json() def order_list(status="open", limit=50): """ Retrieves a list of orders for the account, filtered by the supplied query parameters. """ order_list_url = endpoint + "/v2/orders" params = {"status": status} r = requests.get(order_list_url, headers=headers, params=params) data = r.json() return pd.DataFrame(data) def order_cancel(order_id=""): if len(order_id) > 1: # Cancel specific order order_cancel_url = endpoint + "/v2/orders/{}".format(order_id) else: # Cancel all order order_cancel_url = endpoint + "/v2/orders" r = requests.delete(order_cancel_url, headers=headers) return r.json() # order_df = order_list() # order_cancel(order_df[order_df["symbol"]=="CSCO"]["id"].to_list()[0]) def order_replace(order_id, params): order_cancel_url = endpoint + "/v2/orders/{}".format(order_id) r = requests.patch(order_cancel_url, headers=headers, json=params) return r.json() # order_replace(order_df[order_df["symbol"]=="CSCO"]["id"].to_list()[0], # {"qty": 10, "trail": 3}) ``` #### File: jeremychonggg/Alpaca-Trading-Bot/others.py ```python import requests import os import json import pandas as pd os.chdir("D:\\SynologyDrive\Programming\AlpacaTradingBot") endpoint = "https://paper-api.alpaca.markets" headers = json.loads(open("key.txt", 'r').read()) # https://alpaca.markets/docs/api-documentation/api-v2/positions/ def get_position(symbol=""): if len(symbol) > 1: positions_url = endpoint + "/v2/positions/{}".format(symbol) else: positions_url = endpoint + "/v2/positions" r = requests.get(positions_url, headers=headers) return r.json() def close_position(symbol="", qty=0): if len(symbol) > 1: positions_url = endpoint + "/v2/positions/{}".format(symbol) params = {"qty": qty} else: positions_url = endpoint + "/v2/positions" params = {} r = requests.delete(positions_url, headers=headers, json=params) return r.json() # https://alpaca.markets/docs/api-documentation/api-v2/account/ def get_account(): account_url = endpoint + "/v2/account" r = requests.get(account_url, headers=headers) return r.json() ``` #### File: jeremychonggg/Alpaca-Trading-Bot/prepare_ticker_list.py ```python import requests from bs4 import BeautifulSoup # Webscrap list of top gainer stocks day_gainers_stock = {} def find_day_gainers_stock(): url = "https://finance.yahoo.com/gainers?count=100&offset=0" page = requests.get(url) page_content = page.content soup = BeautifulSoup(page_content,'html.parser') table = soup.find_all("table", {"class" : "W(100%)"}) for t in table: rows = t.find_all("tr") for row in rows: day_gainers_stock[row.get_text(separator='|').split("|")[0]] = row.get_text(separator='|').split("|")[4] # Webscrap list of top volume stocks most_active_stock = {} def find_most_active_stock(): url = "https://finance.yahoo.com/most-active?count=100&offset=0" page = requests.get(url) page_content = page.content soup = BeautifulSoup(page_content,'html.parser') table = soup.find_all("table", {"class" : "W(100%)"}) for t in table: rows = t.find_all("tr") for row in rows: most_active_stock[row.get_text(separator='|').split("|")[0]] = row.get_text(separator='|').split("|")[5] # Get Alpaca API Credential import json endpoint = "https://data.alpaca.markets/v2" headers = json.loads(open("key.txt", 'r').read()) def prepare_ticker_list(): find_day_gainers_stock() find_most_active_stock() ticker_list = [] # https://www.invesco.com/us/financial-products/etfs/holdings?audienceType=Investor&ticker=QQQ qqq_list = ['AAPL', 'MSFT', 'AMZN', 'GOOG', 'FB', 'GOOGL', 'NVDA', 'TSLA', 'PYPL', 'ADBE', 'CMCSA', 'NFLX', 'INTC', 'PEP', 'AVGO', 'COST', 'TXN', 'TMUS', 'QCOM', 'HON', 'INTU', 'MRNA', 'CHTR', 'SBUX', 'AMD', 'AMGN', 'AMAT', 'ISRG', 'BKNG', 'MELI', 'GILD', 'ADP', 'LRCX', 'MDLZ', 'MU', 'ZM', 'FISV', 'CSX', 'ADSK', 'REGN', 'ILMN', 'ASML', 'ATVI', 'NXPI', 'JD', 'ADI', 'DOCU', 'IDXX', 'CRWD', 'ALGN', 'KLAC', 'EBAY', 'VRTX', 'BIIB', 'MNST', 'WDAY', 'LULU', 'SNPS', 'DXCM', 'MRVL', 'KDP', 'TEAM', 'EXC', 'CDNS', 'AEP', 'KHC', 'MAR', 'MCHP', 'ROST', 'WBA', 'ORLY', 'PAYX', 'CTAS', 'EA', 'CTSH', 'BIDU', 'XLNX', 'MTCH', 'XEL', 'PDD', 'CPRT', 'OKTA', 'VRSK', 'FAST', 'ANSS', 'SWKS', 'SGEN', 'PCAR', 'PTON', 'NTES', 'CDW', 'SIRI', 'SPLK', 'VRSN', 'CERN', 'DLTR', 'CHKP', 'INCY', 'TCOM', 'FOXA', 'FOX'] # # Prepare Day Gainer # for ticker in day_gainers_stock.keys(): # ticker_list.append(ticker) # ticker_list.remove('Symbol') # Prepare Most Active for ticker in most_active_stock.keys(): ticker_list.append(ticker) ticker_list.remove('Symbol') # Add QQQ List for ticker in qqq_list: ticker_list.append(ticker) # Clear Ticker that are not in ALPACA for ticker in ticker_list: bar_url = endpoint + "/stocks/{}/bars".format(ticker) params = {"start":'2021-01-01', "limit": 3, "timeframe":'1Day'} data = {"bars": [], "next_page_token": '', "symbol": ticker} while True: r = requests.get(bar_url, headers=headers, params=params) r = r.json() try: if r["next_page_token"] == None: data["bars"] += r["bars"] break else: params["page_token"] = r["next_page_token"] data["bars"] += r["bars"] data["next_page_token"] = r["next_page_token"] finally: ticker_list.remove(ticker) break return ticker_list ```
{ "source": "jeremyciak/terraform-aws-control_tower_account_factory", "score": 2 }
#### File: lambda/aft-account-provisioning-framework-account-metadata-ssm/aft_account_provisioning_framework_account_metadata_ssm.py ```python import inspect import json from typing import TYPE_CHECKING, Any, Dict, List, Sequence, Union import aft_common.aft_utils as utils import boto3 from boto3.session import Session if TYPE_CHECKING: from mypy_boto3_ssm import SSMClient from mypy_boto3_sts import STSClient else: SSMClient = object STSClient = object AFT_EXEC_ROLE = "AWSAFTExecution" SSM_PARAMETER_PATH = "/aft/account-request/custom-fields/" logger = utils.get_logger() def get_ssm_parameters_names_by_path(session: Session, path: str) -> List[str]: client = session.client("ssm") response = client.get_parameters_by_path(Path=path, Recursive=True) logger.debug(response) parameter_names = [] for p in response["Parameters"]: parameter_names.append(p["Name"]) return parameter_names def delete_ssm_parameters(session: Session, parameters: Sequence[str]) -> None: if len(parameters) > 0: client = session.client("ssm") response = client.delete_parameters(Names=parameters) logger.info(response) def create_ssm_parameters(session: Session, parameters: Dict[str, str]) -> None: client = session.client("ssm") for key, value in parameters.items(): response = client.put_parameter( Name=SSM_PARAMETER_PATH + key, Value=value, Type="String", Overwrite=True ) logger.info(response) def lambda_handler(event: Dict[str, Any], context: Union[Dict[str, Any], None]) -> None: try: account_request = event["payload"]["account_request"] custom_fields = json.loads(account_request.get("custom_fields", "{}")) target_account_id = event["payload"]["account_info"]["account"]["id"] local_session = boto3.session.Session() aft_session = utils.get_aft_admin_role_session(local_session) target_account_role_arn = utils.build_role_arn( aft_session, AFT_EXEC_ROLE, target_account_id ) # Create the custom field parameters in the AFT home region target_region = aft_session.region_name aft_ssm_session_policy = { "Version": "2012-10-17", "Statement": [ { "Action": [ "ssm:GetParametersByPath", "ssm:PutParameter", "ssm:DeleteParameters", ], "Effect": "Allow", "Resource": f"arn:aws:ssm:{target_region}:{target_account_id}:parameter{SSM_PARAMETER_PATH}*", } ], } target_account_creds = utils.get_assume_role_credentials( session=aft_session, role_arn=target_account_role_arn, session_name="aft_ssm_metadata", session_policy=json.dumps(aft_ssm_session_policy), ) target_account_session = utils.get_boto_session(target_account_creds) params = get_ssm_parameters_names_by_path( target_account_session, SSM_PARAMETER_PATH ) existing_keys = set(params) new_keys = set(custom_fields.keys()) # Delete SSM parameters which do not exist in new custom fields params_to_remove = list(existing_keys.difference(new_keys)) logger.info(message=f"Deleting SSM params: {params_to_remove}") delete_ssm_parameters(target_account_session, params_to_remove) # Update / Add SSM parameters for custom fields provided logger.info(message=f"Adding/Updating SSM params: {custom_fields}") create_ssm_parameters(target_account_session, custom_fields) except Exception as e: message = { "FILE": __file__.split("/")[-1], "METHOD": inspect.stack()[0][3], "EXCEPTION": str(e), } logger.exception(message) raise if __name__ == "__main__": import json import sys from optparse import OptionParser logger.info("Local Execution") parser = OptionParser() parser.add_option( "-f", "--event-file", dest="event_file", help="Event file to be processed" ) (options, args) = parser.parse_args(sys.argv) if options.event_file is not None: with open(options.event_file) as json_data: event = json.load(json_data) lambda_handler(event, None) else: lambda_handler({}, None) ``` #### File: lambda/aft-account-provisioning-framework-persist-metadata/aft_account_provisioning_framework_persist_metadata.py ```python import inspect from typing import Any, Dict, Union import aft_common.aft_utils as utils import boto3 from boto3.session import Session logger = utils.get_logger() def persist_metadata( payload: Dict[str, Any], account_info: Dict[str, str], session: Session ) -> Dict[str, Any]: logger.info("Function Start - persist_metadata") account_tags = payload["account_request"]["account_tags"] account_customizations_name = payload["account_request"][ "account_customizations_name" ] metadata_table_name = utils.get_ssm_parameter_value( session, utils.SSM_PARAM_AFT_DDB_META_TABLE ) item = { "id": account_info["id"], "email": account_info["email"], "account_name": account_info["name"], "account_creation_time": account_info["joined_date"], "account_status": account_info["status"], "account_level_tags": account_tags, "account_customizations_name": account_customizations_name, "parent_ou": account_info["parent_id"], "vcs_information": {}, "terraform_workspace": {}, } logger.info("Writing item to " + metadata_table_name) logger.info(item) response = utils.put_ddb_item(session, metadata_table_name, item) logger.info(response) return response def lambda_handler( event: Dict[str, Any], context: Union[Dict[str, Any], None] ) -> Dict[str, Any]: try: logger.info("AFT Account Provisioning Framework Handler Start") rollback = None try: if event["rollback"]: rollback = True except KeyError: pass payload = event["payload"] action = event["action"] session = boto3.session.Session() if action == "persist_metadata": account_info = payload["account_info"]["account"] update_metadata = persist_metadata(payload, account_info, session) return update_metadata else: raise Exception( "Incorrect Command Passed to Lambda Function. Input: {action}. Expected: 'persist_metadata'" ) except Exception as e: message = { "FILE": __file__.split("/")[-1], "METHOD": inspect.stack()[0][3], "EXCEPTION": str(e), } logger.exception(message) raise if __name__ == "__main__": import json import sys from optparse import OptionParser logger.info("Local Execution") parser = OptionParser() parser.add_option( "-f", "--event-file", dest="event_file", help="Event file to be processed" ) (options, args) = parser.parse_args(sys.argv) if options.event_file is not None: with open(options.event_file) as json_data: event = json.load(json_data) lambda_handler(event, None) else: lambda_handler({}, None) ``` #### File: aft-customizations/tests/test_tf_unitests.py ```python import json import os import boto3 import pytest import workspace_manager @pytest.mark.unit def test_new_resources(plan): with open(os.path.join(".", f"./testdata/expected_resources.json")) as json_file: response_schema = json.load(json_file) result = {} plan_results = plan["plan_analysis"] for key in plan_results.keys(): table = [[r, len(plan_results[key][r])] for r in plan_results[key]] result[key] = table assert json.dumps(response_schema, sort_keys=True) == json.dumps( result, sort_keys=True ) @pytest.mark.unit def test_resource_count_by_modules(plan): with open( os.path.join(".", f"./testdata/expected_resources_by_module.json") ) as json_file: response_schema = json.load(json_file) modules = plan["modules"] result = {} for m in modules: print(f"******: {m} : {len(modules[m]['resources'])}") print(f"******: {m} : {len(modules[m]['child_modules'])}") print([len(modules[m]["child_modules"]), len(modules[m]["resources"])]) result[m] = [len(modules[m]["child_modules"]), len(modules[m]["resources"])] # val = [{ result[m] : [len(modules[m]["child_modules"]),len(modules[m]["resources"])]} for m in modules] # print(json.dumps(result, sort_keeiifccneijdtclbhideckfuhvdetcrjlbnlfeighfdue # ys=True)) # print(json.dumps(response_schema, sort_keys=True)) assert json.dumps(response_schema, sort_keys=True) == json.dumps( result, sort_keys=True ) @pytest.mark.unit def test_pipeline_execution(): session = boto3.Session(profile_name="aft-management", region_name="us-west-2") ssm_client = session.client("ssm") tf_token = ssm_client.get_parameter( Name="/aft/config/tf-token", WithDecryption=True ) workspace_manager.setup_and_run_workspace( "TLZCloud", "dev-tfc-cc-544582079943-global", "arn:aws:iam::544582079943:role/AWSAFTExecution", tf_token["Parameter"]["Value"], ) workspace_manager.delete_workspace( "TLZCloud", "dev-tfc-cc-544582079943-global", "arn:aws:iam::544582079943:role/AWSAFTExecution", tf_token["Parameter"]["Value"], ) return True ``` #### File: aft-lambda-layer/aft_common/datetime_encoder.py ```python import json from datetime import date, datetime class DateTimeEncoder(json.JSONEncoder): def default(self, o: object) -> str: if isinstance(o, (datetime, date)): serial = o.isoformat() return serial raise TypeError("Type %s not serializable" % type(o)) ```
{ "source": "JeremyCJM/Ensemble", "score": 2 }
#### File: JeremyCJM/Ensemble/imagenet_ens_new.py ```python import numpy as np import torch import pdb import torch.nn as nn from torch.autograd import Variable import itertools num_data = 50000 num_classes = 1000 # Temps = [0.001, 0.01, 0.1, 5, 10, 50, 100, 500, 1000, 5000, 10000] # Temps = [1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5] # Temps = np.arange(1.01, 1.2 ,0.02) Temps = [1,2,3,4,5] models = ['vgg19_bn', 'resnet152', 'densenet161', 'densenet121', 'densenet201', 'resnet101', 'densenet169', 'resnet50'] target = torch.load('Ensemble/imagenet/vgg19_bn/Targets of vgg19_bn.pt') data = {} for m in models: data[m] = torch.load('Ensemble/imagenet/{}/Logit Outputs of {}.pt'.format(m, m)) def logit_ensemble(models, data, target): output = torch.zeros(num_data, num_classes).cuda() for m in models: output += data[m] target_exp = target.view(-1, 1).expand(-1, num_classes).cuda() _, pred = output.topk(num_classes, 1, True, True) correct = pred.data.eq(target_exp).t() correct_1 = torch.sum(correct[:1]) correct_5 = torch.sum(correct[:5]) V = torch.Tensor([range(1, num_classes+1)]).t().cuda() gesNum = V * correct.float() zero_map = gesNum == 0 zero_map = zero_map.float() * 999 # pdb.set_trace() gesNum = gesNum + zero_map gesNum, _ = torch.min(gesNum,0) # pdb.set_trace() AverGesNum = torch.mean(gesNum) if AverGesNum > 50: pdb.set_trace() return correct_1 / len(target), correct_5 / len(target), AverGesNum def temperature_ensemble(models, data, target, Temps): softmax = nn.Softmax().cuda() output = Variable(torch.zeros(num_data, num_classes).cuda()) for m,T in zip(models,Temps): output += softmax(Variable(data[m])/T) # pdb.set_trace() target_exp = target.view(-1, 1).expand(-1, num_classes).cuda() _, pred = output.topk(num_classes, 1, True, True) correct = pred.data.eq(target_exp).t() correct_1 = torch.sum(correct[:1]) correct_5 = torch.sum(correct[:5]) V = torch.Tensor([range(1, num_classes+1)]).t().cuda() gesNum = V * correct.float() zero_map = gesNum == 0 zero_map = zero_map.float() * 999 # pdb.set_trace() gesNum = gesNum + zero_map gesNum, _ = torch.min(gesNum,0) # pdb.set_trace() AverGesNum = torch.mean(gesNum) # if AverGesNum > 50: # pdb.set_trace() return correct_1 / len(target), correct_5 / len(target), AverGesNum def geometric_ensemble(models, data, target): softmax = nn.Softmax().cuda() output = Variable(torch.ones(num_data, num_classes).cuda()) for m in models: output *= softmax(Variable(data[m])) target = target.view(-1, 1).expand(-1, 5).cuda() _, pred = output.topk(5, 1, True, True) correct = pred.data.eq(target).t() correct_1 = torch.sum(correct[:1]) correct_5 = torch.sum(correct[:5]) return correct_1 / len(target), correct_5 / len(target) Result = {} compare_top1 = {} compare_top5 = {} # for T in Temps: # print(T) compare_top1 = {} compare_top5 = {} compare_top1['better'], compare_top1['worse'], compare_top1['equal'], compare_top1['improve'], compare_top1['gesNum'] = 0, 0, 0, [], (-1,-1) compare_top1['gNumBetter'], compare_top1['gNumWorse'], compare_top1['gNumEqual'] = 0, 0, 0 compare_top5['better'], compare_top5['worse'], compare_top5['equal'], compare_top5['improve'] = 0, 0, 0, [] ground_gesNum = [] gesNum = [] ## average improvement # for r in range(2, len(models)+1): for submodels in itertools.combinations(models, 5): submodels = list(submodels) A1, A5, Anum = temperature_ensemble(submodels, data, target, [1,1,1,1,1]) C1, C5, Cnum = temperature_ensemble(submodels, data, target, Temps) compare_top1['improve'].append(C1 - A1) compare_top5['improve'].append(C5 - A5) ground_gesNum.append(Anum) gesNum.append(Cnum) # print('T = {}: ({},{})'.format(T, Anum, Cnum)) if C1 > A1: compare_top1['better'] += 1 elif C1 < A1: compare_top1['worse'] += 1 elif C1 == A1: compare_top1['equal'] += 1 if C5 > A5: compare_top5['better'] += 1 elif C5 < A5: compare_top5['worse'] += 1 elif C5 == A5: compare_top5['equal'] += 1 if Cnum < Anum: compare_top1['gNumBetter'] += 1 elif Cnum > Anum: compare_top1['gNumWorse'] += 1 elif Cnum == Anum: compare_top1['gNumEqual'] += 1 compare_top1['improve'] = sum(compare_top1['improve']) / len(compare_top1['improve']) compare_top5['improve'] = sum(compare_top5['improve']) / len(compare_top5['improve']) compare_top1['accBetterRate'] = compare_top1['better'] / (compare_top1['better']+compare_top1['equal']+compare_top1['worse']) compare_top5['accBetterRate'] = compare_top5['better'] / (compare_top5['better']+compare_top5['equal']+compare_top5['worse']) compare_top1['numBetterRate'] = compare_top1['gNumBetter'] / (compare_top1['gNumBetter']+compare_top1['gNumEqual']+compare_top1['gNumWorse']) ground_gesNum = np.mean(ground_gesNum)#sum(ground_gesNum) / len(ground_gesNum) gesNum = np.mean(gesNum)#sum(gesNum) / len(gesNum) compare_top1['gesNum'] = (ground_gesNum, gesNum) # pdb.set_trace() Result['top1'] = compare_top1 Result['top5'] = compare_top5 torch.save(Result, 'Ensemble/ImageNet_Result_new.pt') ```
{ "source": "jeremyclewell/kings-table", "score": 3 }
#### File: jeremyclewell/kings-table/Brandubh.py ```python import numpy as np import pudb from easyAI import TwoPlayersGame, DictTT black_pieces = [[0,3],[1,3],[3,0],[3,1],[3,5],[3,6],[5,3],[6,3]] white_pieces = [[2,3],[3,2],[3,3],[3,4],[4,3]] king = [3,3] throne = np.array([[3,3]]) corners = np.array([[0,0],[0,6],[6,0],[6,6]]) pieces = [black_pieces, white_pieces + [king]] BLACK = 1 WHITE = 2 class Game(TwoPlayersGame): """ """ def __init__(self, players, board_size = (7, 7)): self.players = players self.board_size = board_size self.board = np.zeros(board_size, dtype = int) for piece in black_pieces: self.board[piece[0]][piece[1]] = 1 for piece in white_pieces: self.board[piece[0]][piece[1]] = 2 self.king = np.array([5,5]) self.nplayer = 1 # player 1 starts. def pieceIsKing(piece): return piece == king def validMoveFilter(boardSlice, piece): return corner in boardSlice def possible_moves_for_piece(self, piece): v_moves = [] column = self.board[piece[0]] v_mask = np.ma.masked_where(column != 0, column) v_slices = np.ma.notmasked_contiguous(v_mask) v_slices = [slice for slice in v_slices if slice.stop == piece[1] or piece[1]+1 == slice.start] if len(v_slices) != 0: v_moves = range(np.amin(v_slices).start, np.amax(v_slices).stop) if piece[1] in v_moves: v_moves.remove(piece[1]) v_moves = [[piece[0], val] for val in v_moves] h_moves = [] row = self.board[:, piece[1]] h_mask = np.ma.masked_where(row != 0, row) h_slices = np.ma.notmasked_contiguous(h_mask) h_slices = [slice for slice in h_slices if slice.start == piece[0]+1 or piece[0]-1 == slice.stop] if len(h_slices) != 0: h_moves = range(np.amin(h_slices).start, np.amax(h_slices).stop) if piece[0] in h_moves: h_moves.remove(piece[0]) h_moves = [[val, piece[1]] for val in h_moves] restricted_squares = throne if piece is not king: restricted_squares = np.concatenate((throne, corners), axis=0) moves = [(piece, move) for move in h_moves + v_moves if move not in restricted_squares] return moves def get_piece(self, coord): try: return self.board[coord[0]][coord[1]] except: return None def get_pieces(self, player): pieces = np.where(self.board == player) return np.dstack(pieces)[0] def capture(self, position): directions = [np.array([0,1]),np.array([0,-1]),np.array([1,0]),np.array([-1,0])] for direction in directions: target = direction + position if self.get_piece(target) == self.nopponent: if self.get_piece(direction + target) == self.nplayer or \ any(np.equal(corners, direction + target).all(1)) or \ any(np.equal(throne, direction + target).all(1)): self.board[target[0]][target[1]] = 0 def possible_moves(self): moves = [] pieces = self.get_pieces(self.nplayer) if self.nmove % 3: pieces = pieces[::-1] for piece in pieces: moves.extend(self.possible_moves_for_piece(piece)) if len(moves) == 0: pudb.set_trace() return moves def make_move(self, move): current_pos = move[0] next_pos = move[1] self.board[current_pos[0]][current_pos[1]] = 0 self.board[next_pos[0]][next_pos[1]] = self.nplayer if (self.king == current_pos).all(): self.king = next_pos self.capture(next_pos) def show(self): print('\n' + '\n'.join([' 1 2 3 4 5 6 7'] + ['ABCDEFG'[k] + ' ' + ' '.join([['∙', '⚫️', '⚪️', '👑'][self.board[k, i]] for i in range(self.board_size[0])]) for k in range(self.board_size[1])] + [''])) def lose(self): if self.nplayer == BLACK: self.has_lost = (self.king == corners).any() else: self.has_lost = self.get_pieces(WHITE).size == 0 # if not (self.king == self.get_pieces(WHITE)).any(): # return True return self.has_lost def scoring(self): if not self.has_lost: material = len(self.get_pieces(BLACK))/2./len(self.get_pieces(WHITE)) # king_to_corner = min([np.linalg.norm(np.array(self.king)-corner) for corner in corners]) # attackers_to_king = np.array([np.linalg.norm(np.array(self.king)-piece) for piece in self.get_pieces(BLACK)]).mean() # return king_to_corner + material**10 - attackers_to_king # return -attackers_to_king + king_to_corner return material # return material else: return -100 def is_over(self): return self.lose() def ttentry(self): return "".join([".0X"[i] for i in self.board.flatten()]) if __name__ == "__main__": from easyAI import AI_Player, Negamax #ai_algo = Negamax(3, None , tt = DictTT()) ai_algo = Negamax(5, None) game = Game([AI_Player(ai_algo), AI_Player(ai_algo)]) game.play() print("player %d loses" % (game.nplayer)) ```
{ "source": "jeremyclewell/peacock", "score": 2 }
#### File: peacock/syntax/lexer.py ```python from pygments.token import *; from pygments.lexer import RegexLexer, bygroups; from pygments.token import Token, STANDARD_TYPES; DataType = Token.DataType; class RE: Domain = r'\b(?:[A-Za-z0-9\-\.]+){1,4}\.(?:com|net|org|biz|gov|edu|mil|aero|asia|cat|coop|info|int|jobs|mobi|museum|name|post|pro|tel|travel|xxx|[A-Za-z]{2})\b'; Email = r'[\w\d!#$%&*._0/=?^_`{|}~\-]+@(?:[A-Za-z0-9\-\.]+){1,}\.[A-Za-z\-]{2,6}'; IPv4_CIDR = r'(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})(/)(\d{1,2})'; IPv4_Address = r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}'; Time = r'\d{1,2}:\d{2}(:\d{2})?(\s+(AM|PM))?'; Dates = [ r'((?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct\Nov|Dec)\s+\d{1,2})(\s+\d{2,4})?(\s+)', r'\d{1,2}/\d{1,2}/\d{2,4}', r'\d{4}-\d{1,2}-\d{1,2}', ]; URL = ''; RE.URL = r'(https?|ftp|ssh|git|svn|file)://' + RE.Domain + r'(/\S+)?\b' class DataTypesLexer(RegexLexer): """ Custom formatter for postfix-reject-log by <NAME> """ name = 'DataTypes' aliases = ['DataTypes','datatypes'] filenames = [] mimetypes = ['text/x-datatypes-lexer'] tokens = { 'root': [ (RE.URL, DataType.URL), (RE.Email, DataType.Email), (RE.Domain, DataType.Domain), (RE.IPv4_CIDR, bygroups(DataType.Net.IPv4.CIDR.Address,Operator,DataType.Net.IPv4.CIDR.Mask)), (RE.IPv4_Address, DataType.Net.IPv4.Address), (RE.Time, DataType.Time), (RE.Dates[0], bygroups(DataType.Date, DataType.Date, Literal)), (RE.Dates[1], DataType.Date), (RE.Dates[2], DataType.Date), (r'.', Other), ], } def __init__(self, **options): # print('DataTypesLexer Loaded'); super(DataTypesLexer, self).__init__(**options); # noinspection PyMethodParameters def analyse_text(text): return .3; ```
{ "source": "jeremycline/crochet", "score": 2 }
#### File: jeremycline/crochet/setup.py ```python try: from setuptools import setup except ImportError: from distutils.core import setup import versioneer def read(path): """ Read the contents of a file. """ with open(path) as f: return f.read() setup( classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', ], name='crochet', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), description="Use Twisted anywhere!", install_requires=[ "Twisted>=15.0", "wrapt", ], keywords="twisted threading", license="MIT", packages=["crochet", "crochet.tests"], url="https://github.com/itamarst/crochet", maintainer='<NAME>', maintainer_email='<EMAIL>', long_description=read('README.rst') + '\n' + read('docs/news.rst'), ) ```
{ "source": "jeremycline/python-sdk", "score": 2 }
#### File: python-sdk/deepgram/_utils.py ```python from ._constants import DEFAULT_ENDPOINT from ._types import Options from ._version import __version__ from typing import Any, Union, Optional, IO, Mapping, Tuple, List import aiohttp, urllib.parse, json, re, platform import websockets, websockets.client Payload = Optional[Union[dict, str, bytes, IO]] def _prepare_headers(options: Options, headers: Mapping[str, str] = {}) -> dict: return {**headers, 'Authorization': None if 'api_key' not in options else options.get('auth_method', 'Token') + ' ' + options['api_key'], 'User-Agent': f'deepgram/{__version__} python/{platform.python_version()}' } def _normalize_payload(payload: Payload) -> Optional[Union[bytes, IO]]: if payload is None: return None if isinstance(payload, dict): return json.dumps(payload).encode('utf-8') if isinstance(payload, str): return payload.encode('utf-8') return payload def _make_query_string(params: Mapping[str, Any] = {}) -> str: def elem_decomposer(key: str, value: Any) -> List[Tuple[str, str]]: if value in [None, ""]: return [] if isinstance(value, list): return [elem_decomposer(key, item)[0] for item in value] # break into multiple parameters # just take the first element in the sublist, rather than trying to flatten recursively # passing nested lists as query parameters isn't really well-defined, # nor does anything in our API currently take things like that as of 2021-08-10 # so everything coming through this second pass should be a 1-item list if isinstance(value, bool): return [(key, str(value).lower())] # make sure False and True stay lowercased in accordance with DG convention return [(key, str(value))] unflattened = [elem_decomposer(k, v) for k, v in params.items()] # sublist for each original parameter flattened = sum(unflattened, []) # flatten return ('?' if flattened else '') + urllib.parse.urlencode(flattened) async def _request(path: str, options: Options, method: str = 'GET', payload: Payload = None, headers: Optional[Mapping[str, str]] = {}) -> Optional[dict]: destination = options.get('api_url', DEFAULT_ENDPOINT) + path updated_headers = _prepare_headers(options, headers) try: async with aiohttp.request(method, destination, data=_normalize_payload(payload), headers=updated_headers, raise_for_status=True) as resp: content = (await resp.text()).strip() if not content: return None body = json.loads(content) if body.get('error'): raise Exception(f'DG: {content}') return body except aiohttp.ClientResponseError as e: raise Exception(f'DG: {e}') except aiohttp.ClientError as e: raise e async def _socket_connect(path: str, options: Options, headers: Optional[Mapping[str, str]] = {}) -> websockets.client.WebSocketClientProtocol: destination = re.sub(r'^http', 'ws', options.get('api_url', DEFAULT_ENDPOINT)) + path updated_headers = _prepare_headers(options, headers) try: return await websockets.connect(destination, extra_headers=updated_headers, ping_interval=5) # If we're streaming too much faster than realtime, connection might close without an aggressive ping interval except websockets.exceptions.InvalidHandshake as e: raise Exception(f'DG: {e}') ```
{ "source": "JeremyCodeClan/spentrack_project", "score": 3 }
#### File: spentrack_project/controllers/merchants_controller.py ```python from flask import Blueprint, Flask, render_template, request, redirect from models.merchant import Merchant import repositories.transaction_repository as transaction_repo import repositories.merchant_repository as merchant_repo import repositories.tag_repository as tag_repo merchants_blueprint = Blueprint("merchants", __name__) @merchants_blueprint.route("/jeremy_e51/merchants") def merchants(): merchants = merchant_repo.select_all() return render_template("merchants/index.html", merchants = merchants, login = 1) @merchants_blueprint.route("/jeremy_e51/merchants/new") def new(): merchants = merchant_repo.select_all() return render_template( "merchants/new.html", merchants = merchants, login = 1, new_cancel = 1 ) @merchants_blueprint.route("/jeremy_e51/merchants", methods=['POST']) def add_merchant(): name = request.form['name'] merchant = Merchant(name) merchant_repo.save(merchant) return redirect('/jeremy_e51/merchants') @merchants_blueprint.route("/jeremy_e51/merchants/<id>") def show_merchant(id): one_merchant = merchant_repo.select(id) merchants = merchant_repo.select_all() found_transactions = transaction_repo.select_by_merchant(id) return render_template( "merchants/show.html", one_merchant = one_merchant, merchants = merchants, found_transactions = found_transactions, login = 1, id = int(id) ) @merchants_blueprint.route("/jeremy_e51/merchants/<id>/delete", methods=["POST"]) def delete_merchant(id): found_transactions = transaction_repo.select_by_merchant(id) for transaction in found_transactions: transaction.merchant = None transaction_repo.update(transaction) merchant_repo.delete(id) return redirect("/jeremy_e51/merchants") ``` #### File: spentrack_project/controllers/transactions_controller.py ```python from flask import Blueprint, Flask, render_template, request, redirect from models.transaction import Transaction import repositories.transaction_repository as transaction_repo import repositories.merchant_repository as merchant_repo import repositories.tag_repository as tag_repo transactions_blueprint = Blueprint("transactions", __name__) @transactions_blueprint.route("/jeremy_e51") def transactions(): order = 'order_date_desc' transactions = transaction_repo.select_all() total = transaction_repo.total_amount(transactions) return render_template( "transactions/index.html", transactions = transactions, total = total, login = 1, order = order ) @transactions_blueprint.route("/jeremy_e51/new") def new(): transactions = transaction_repo.select_all() total = transaction_repo.total_amount(transactions) return render_template( "transactions/new.html", transactions = transactions, total = total, login = 1, new_cancel = 1 ) @transactions_blueprint.route("/jeremy_e51/<id>") def transaction_show(id): order = 'order_date_desc' show_one = transaction_repo.select(id) merchant = None tag = None if show_one.merchant: merchant = merchant_repo.select(show_one.merchant) if show_one.tag: tag = tag_repo.select(show_one.tag) transactions = transaction_repo.select_all() total = transaction_repo.total_amount(transactions) return render_template( "transactions/show.html", transactions = transactions, show_one = show_one, merchant = merchant, tag = tag, total = total, login = 1, order = order ) @transactions_blueprint.route("/jeremy_e51", methods=['POST']) def add_transaction(): name = request.form['name'] description = request.form['description'] amount = request.form['amount'] date = request.form['date'] transaction = Transaction(name, description, amount, date) transaction_repo.save(transaction) return redirect('/jeremy_e51') @transactions_blueprint.route("/jeremy_e51/<id>/edit") def edit_transaction(id): transactions = transaction_repo.select_all() total = transaction_repo.total_amount(transactions) merchants = merchant_repo.select_all() tags = tag_repo.select_all() return render_template( 'transactions/edit.html', transactions = transactions, merchants = merchants, tags = tags, id = int(id), total = total, login = 1 ) @transactions_blueprint.route("/jeremy_e51/<id>", methods=['POST']) def update_transaction(id): transaction = transaction_repo.select(id) if "tag_id" in request.form: if request.form["tag_id"] != "None": tag_id = request.form["tag_id"] tag = tag_repo.select(tag_id) transaction.tag = tag if "merchant_id" in request.form: if request.form["merchant_id"] != "None": merchant_id = request.form["merchant_id"] merchant = merchant_repo.select(merchant_id) transaction.merchant = merchant transaction_repo.update(transaction) return redirect('/jeremy_e51') @transactions_blueprint.route("/jeremy_e51/order") def transactions_by_order(): order_date = request.args['order_date'] order_amount = request.args['order_amount'] order_name = request.args['order_name'] if order_date: if order_date == 'desc': order = 'order_date_desc' transactions = transaction_repo.select_all() total = transaction_repo.total_amount(transactions) return render_template( "transactions/index.html", transactions = transactions, total = total, login = 1, order = order ) if order_date == 'asc': order = 'order_date_asc' transactions = transaction_repo.select_all_asc() total = transaction_repo.total_amount(transactions) return render_template( "transactions/index.html", transactions = transactions, total = total, login = 1, order = order ) if order_amount: if order_amount == 'desc': order = 'order_amount_desc' transactions = transaction_repo.order_by_price_desc() total = transaction_repo.total_amount(transactions) return render_template( "transactions/index.html", transactions = transactions, total = total, login = 1, order = order ) if order_amount == 'asc': order = 'order_amount_asc' transactions = transaction_repo.order_by_price_asc() total = transaction_repo.total_amount(transactions) return render_template( "transactions/index.html", transactions = transactions, total = total, login = 1, order = order ) if order_name: if order_name == 'desc': order = 'order_name_desc' transactions = transaction_repo.order_by_name_desc() total = transaction_repo.total_amount(transactions) return render_template( "transactions/index.html", transactions = transactions, total = total, login = 1, order = order ) if order_name == 'asc': order = 'order_name_asc' transactions = transaction_repo.order_by_name_asc() total = transaction_repo.total_amount(transactions) return render_template( "transactions/index.html", transactions = transactions, total = total, login = 1, order = order ) return redirect('/jeremy_e51') ``` #### File: spentrack_project/models/merchant.py ```python class Merchant: def __init__(self, name, total = 0, id = None): self.name = name self.total = total self.id = id ```
{ "source": "jeremycole/structy", "score": 3 }
#### File: py/structy/fix16.py ```python _FIX16_ONE: int = 0x00010000 def _fix16_from_float(x: float) -> int: return int(x * 65536.0 + 0.5 if x >= 0 else x * 65536.0 - 0.5) def _fix16_to_float(x: int) -> float: return float(x) / _FIX16_ONE def _fix16_clamp(x: int) -> int: if x > 2 ** 31 - 1: return 2 ** 31 - 1 elif x < -(2 ** 31): return -(2 ** 31) return x class Fix16: """A Q16.16 fixed-point value. Args: float_value: Creates a Fix16 that approximates the given float. raw_value: Creates a Fix16 from the binary representation. This is useful when deserializing Fix16 values from bytes. """ def __init__(self, float_value=None, raw_value=None): if raw_value is not None: self._value = _fix16_clamp(raw_value) else: self._value = _fix16_clamp(_fix16_from_float(float_value)) def __eq__(self, other): return self._value == other._value def __repr__(self): return f"<Fix16 0x{self._value:08x} {_fix16_to_float(self._value)}>" def __str__(self): return str(_fix16_to_float(self._value)) + "Q16.16" def __add__(self, other): return Fix16(raw_value=self._value + other._value) def __sub__(self, other): return Fix16(raw_value=self._value - other._value) def __mul__(self, other): product = self._value * other._value if product < 0: product -= 1 result = product >> 16 result += (product & 0x8000) >> 15 return Fix16(raw_value=result) def __truediv__(self, other): a = self._value b = other._value remainder = a if a >= 0 else (-a) divider = b if b >= 0 else (-b) quotient = 0 bit_pos = 17 if divider & 0xFFF00000: shifted_div = (divider >> 17) + 1 quotient = remainder // shifted_div remainder -= (quotient * divider) >> 17 while not (divider & 0xF) and bit_pos >= 4: divider >>= 4 bit_pos -= 4 while remainder and bit_pos >= 0: shift = 67 - len(bin(-remainder)) & ~remainder >> 64 if shift > bit_pos: # pragma: no cover shift = bit_pos remainder <<= shift bit_pos -= shift div = remainder // divider remainder = remainder % divider quotient += div << bit_pos remainder <<= 1 bit_pos -= 1 quotient += 1 result = quotient >> 1 if (a ^ b) & 0x80000000: result = -result return Fix16(raw_value=result) def __mod__(self, other): result = self._value % other._value return Fix16(raw_value=result) def __neg__(self): return Fix16(raw_value=-self._value) def __index__(self) -> int: return self._value ``` #### File: tests/py/test_fix16.py ```python from structy import fix16 class TestFix16: def test_basic(self): val = fix16.Fix16(1.0) assert val._value == 65536 val = fix16.Fix16(-1.0) assert val._value == -65536 val = fix16.Fix16(10.0) assert val._value == 655360 val = fix16.Fix16(-10.0) assert val._value == -655360 def test_saturate(self): a = fix16.Fix16(65530.0) b = fix16.Fix16(100.0) assert (a + b) == fix16.Fix16(65535.0) a = fix16.Fix16(-65530.0) assert (a - b) == fix16.Fix16(-65535.0) def test_operations(self): a = fix16.Fix16(10.5) b = fix16.Fix16(5.25) assert (a + b) == fix16.Fix16(15.75) assert (a - b) == fix16.Fix16(5.25) assert (a * b) == fix16.Fix16(55.125) assert (a * -b) == fix16.Fix16(-55.125) assert (a / b) == fix16.Fix16(2) assert (a / -b) == fix16.Fix16(-2) assert (a / fix16.Fix16(raw_value=0xFFFFFFFF)) == fix16.Fix16( raw_value=0x00000015 ) assert (a / fix16.Fix16(raw_value=0x00000015)) == fix16.Fix16( raw_value=0xFFFFFFFF ) assert (a % b) == fix16.Fix16(0) def test_str_repr(self): a = fix16.Fix16(10.5) assert str(a) == "10.5Q16.16" assert repr(a) == "<Fix16 0x000a8000 10.5>" ```
{ "source": "jeremy-compostella/edk2", "score": 2 }
#### File: IntelFsp2Pkg/Tools/GenCfgOpt.py ```python import os import re import sys import struct from datetime import date from functools import reduce # Generated file copyright header __copyright_txt__ = """## @file # # THIS IS AUTO-GENERATED FILE BY BUILD TOOLS AND PLEASE DO NOT MAKE MODIFICATION. # # This file lists all VPD informations for a platform collected by build.exe. # # Copyright (c) %4d, Intel Corporation. All rights reserved.<BR> # This program and the accompanying materials # are licensed and made available under the terms and conditions of the BSD License # which accompanies this distribution. The full text of the license may be found at # http://opensource.org/licenses/bsd-license.php # # THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, # WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. # """ __copyright_bsf__ = """/** @file Boot Setting File for Platform Configuration. Copyright (c) %4d, Intel Corporation. All rights reserved.<BR> This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. This file is automatically generated. Please do NOT modify !!! **/ """ __copyright_h__ = """/** @file Copyright (c) %4d, Intel Corporation. All rights reserved.<BR> Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This file is automatically generated. Please do NOT modify !!! **/ """ BuildOptionPcd = [] class CLogicalExpression: def __init__(self): self.index = 0 self.string = '' def errExit(self, err = ''): print ("ERROR: Express parsing for:") print (" %s" % self.string) print (" %s^" % (' ' * self.index)) if err: print ("INFO : %s" % err) raise SystemExit def getNonNumber (self, n1, n2): if not n1.isdigit(): return n1 if not n2.isdigit(): return n2 return None def getCurr(self, lens = 1): try: if lens == -1: return self.string[self.index :] else: if self.index + lens > len(self.string): lens = len(self.string) - self.index return self.string[self.index : self.index + lens] except Exception: return '' def isLast(self): return self.index == len(self.string) def moveNext(self, len = 1): self.index += len def skipSpace(self): while not self.isLast(): if self.getCurr() in ' \t': self.moveNext() else: return def normNumber (self, val): return True if val else False def getNumber(self, var): var = var.strip() if re.match('^0x[a-fA-F0-9]+$', var): value = int(var, 16) elif re.match('^[+-]?\d+$', var): value = int(var, 10) else: value = None return value def parseValue(self): self.skipSpace() var = '' while not self.isLast(): char = self.getCurr() if re.match('^[\w.]', char): var += char self.moveNext() else: break val = self.getNumber(var) if val is None: value = var else: value = "%d" % val return value def parseSingleOp(self): self.skipSpace() if re.match('^NOT\W', self.getCurr(-1)): self.moveNext(3) op = self.parseBrace() val = self.getNumber (op) if val is None: self.errExit ("'%s' is not a number" % op) return "%d" % (not self.normNumber(int(op))) else: return self.parseValue() def parseBrace(self): self.skipSpace() char = self.getCurr() if char == '(': self.moveNext() value = self.parseExpr() self.skipSpace() if self.getCurr() != ')': self.errExit ("Expecting closing brace or operator") self.moveNext() return value else: value = self.parseSingleOp() return value def parseCompare(self): value = self.parseBrace() while True: self.skipSpace() char = self.getCurr() if char in ['<', '>']: self.moveNext() next = self.getCurr() if next == '=': op = char + next self.moveNext() else: op = char result = self.parseBrace() test = self.getNonNumber(result, value) if test is None: value = "%d" % self.normNumber(eval (value + op + result)) else: self.errExit ("'%s' is not a valid number for comparision" % test) elif char in ['=', '!']: op = self.getCurr(2) if op in ['==', '!=']: self.moveNext(2) result = self.parseBrace() test = self.getNonNumber(result, value) if test is None: value = "%d" % self.normNumber((eval (value + op + result))) else: value = "%d" % self.normNumber(eval ("'" + value + "'" + op + "'" + result + "'")) else: break else: break return value def parseAnd(self): value = self.parseCompare() while True: self.skipSpace() if re.match('^AND\W', self.getCurr(-1)): self.moveNext(3) result = self.parseCompare() test = self.getNonNumber(result, value) if test is None: value = "%d" % self.normNumber(int(value) & int(result)) else: self.errExit ("'%s' is not a valid op number for AND" % test) else: break return value def parseOrXor(self): value = self.parseAnd() op = None while True: self.skipSpace() op = None if re.match('^XOR\W', self.getCurr(-1)): self.moveNext(3) op = '^' elif re.match('^OR\W', self.getCurr(-1)): self.moveNext(2) op = '|' else: break if op: result = self.parseAnd() test = self.getNonNumber(result, value) if test is None: value = "%d" % self.normNumber(eval (value + op + result)) else: self.errExit ("'%s' is not a valid op number for XOR/OR" % test) return value def parseExpr(self): return self.parseOrXor() def getResult(self): value = self.parseExpr() self.skipSpace() if not self.isLast(): self.errExit ("Unexpected character found '%s'" % self.getCurr()) test = self.getNumber(value) if test is None: self.errExit ("Result '%s' is not a number" % value) return int(value) def evaluateExpress (self, Expr): self.index = 0 self.string = Expr if self.getResult(): Result = True else: Result = False return Result class CGenCfgOpt: def __init__(self): self.Debug = False self.Error = '' self._GlobalDataDef = """ GlobalDataDef SKUID = 0, "DEFAULT" EndGlobalData """ self._BuidinOptionTxt = """ List &EN_DIS Selection 0x1 , "Enabled" Selection 0x0 , "Disabled" EndList """ self._BsfKeyList = ['FIND','NAME','HELP','TYPE','PAGE','OPTION','ORDER'] self._HdrKeyList = ['HEADER','STRUCT', 'EMBED', 'COMMENT'] self._BuidinOption = {'$EN_DIS' : 'EN_DIS'} self._MacroDict = {} self._PcdsDict = {} self._CfgBlkDict = {} self._CfgPageDict = {} self._CfgItemList = [] self._DscFile = '' self._FvDir = '' self._MapVer = 0 def ParseMacros (self, MacroDefStr): # ['-DABC=1', '-D', 'CFG_DEBUG=1', '-D', 'CFG_OUTDIR=Build'] self._MacroDict = {} IsExpression = False for Macro in MacroDefStr: if Macro.startswith('-D'): IsExpression = True if len(Macro) > 2: Macro = Macro[2:] else : continue if IsExpression: IsExpression = False Match = re.match("(\w+)=(.+)", Macro) if Match: self._MacroDict[Match.group(1)] = Match.group(2) else: Match = re.match("(\w+)", Macro) if Match: self._MacroDict[Match.group(1)] = '' if len(self._MacroDict) == 0: Error = 1 else: Error = 0 if self.Debug: print ("INFO : Macro dictionary:") for Each in self._MacroDict: print (" $(%s) = [ %s ]" % (Each , self._MacroDict[Each])) return Error def EvaulateIfdef (self, Macro): Result = Macro in self._MacroDict if self.Debug: print ("INFO : Eval Ifdef [%s] : %s" % (Macro, Result)) return Result def ExpandMacros (self, Input): Line = Input Match = re.findall("\$\(\w+\)", Input) if Match: for Each in Match: Variable = Each[2:-1] if Variable in self._MacroDict: Line = Line.replace(Each, self._MacroDict[Variable]) else: if self.Debug: print ("WARN : %s is not defined" % Each) Line = Line.replace(Each, Each[2:-1]) return Line def ExpandPcds (self, Input): Line = Input Match = re.findall("(\w+\.\w+)", Input) if Match: for PcdName in Match: if PcdName in self._PcdsDict: Line = Line.replace(PcdName, self._PcdsDict[PcdName]) else: if self.Debug: print ("WARN : %s is not defined" % PcdName) return Line def EvaluateExpress (self, Expr): ExpExpr = self.ExpandPcds(Expr) ExpExpr = self.ExpandMacros(ExpExpr) LogExpr = CLogicalExpression() Result = LogExpr.evaluateExpress (ExpExpr) if self.Debug: print ("INFO : Eval Express [%s] : %s" % (Expr, Result)) return Result def FormatListValue(self, ConfigDict): Struct = ConfigDict['struct'] if Struct not in ['UINT8','UINT16','UINT32','UINT64']: return dataarray = [] binlist = ConfigDict['value'][1:-1].split(',') for each in binlist: each = each.strip() if each.startswith('0x'): value = int(each, 16) else: value = int(each) dataarray.append(value) unit = int(Struct[4:]) / 8 if int(ConfigDict['length']) != unit * len(dataarray): raise Exception("Array size is not proper for '%s' !" % ConfigDict['cname']) bytearray = [] for each in dataarray: value = each for loop in range(int(unit)): bytearray.append("0x%02X" % (value & 0xFF)) value = value >> 8 newvalue = '{' + ','.join(bytearray) + '}' ConfigDict['value'] = newvalue return "" def ParseDscFile (self, DscFile, FvDir): Hardcode = False AutoAlign = False self._CfgItemList = [] self._CfgPageDict = {} self._CfgBlkDict = {} self._DscFile = DscFile self._FvDir = FvDir IsDefSect = False IsPcdSect = False IsUpdSect = False IsVpdSect = False IfStack = [] ElifStack = [] Error = 0 ConfigDict = {} DscFd = open(DscFile, "r") DscLines = DscFd.readlines() DscFd.close() MaxAlign = 32 #Default align to 32, but if there are 64 bit unit, align to 64 SizeAlign = 0 #record the struct max align Base = 0 #Starting offset of sub-structure. while len(DscLines): DscLine = DscLines.pop(0).strip() Handle = False Match = re.match("^\[(.+)\]", DscLine) if Match is not None: IsDefSect = False IsPcdSect = False IsVpdSect = False IsUpdSect = False if Match.group(1).lower() == "Defines".lower(): IsDefSect = True if (Match.group(1).lower() == "PcdsFeatureFlag".lower() or Match.group(1).lower() == "PcdsFixedAtBuild".lower()): IsPcdSect = True elif Match.group(1).lower() == "PcdsDynamicVpd.Upd".lower(): ConfigDict = {} ConfigDict['header'] = 'ON' ConfigDict['region'] = 'UPD' ConfigDict['order'] = -1 ConfigDict['page'] = '' ConfigDict['name'] = '' ConfigDict['find'] = '' ConfigDict['struct'] = '' ConfigDict['embed'] = '' ConfigDict['comment'] = '' ConfigDict['subreg'] = [] IsUpdSect = True Offset = 0 else: if IsDefSect or IsPcdSect or IsUpdSect or IsVpdSect: if re.match("^!else($|\s+#.+)", DscLine): if IfStack: IfStack[-1] = not IfStack[-1] else: print("ERROR: No paired '!if' found for '!else' for line '%s'" % DscLine) raise SystemExit elif re.match("^!endif($|\s+#.+)", DscLine): if IfStack: IfStack.pop() Level = ElifStack.pop() if Level > 0: del IfStack[-Level:] else: print("ERROR: No paired '!if' found for '!endif' for line '%s'" % DscLine) raise SystemExit else: Result = False Match = re.match("!(ifdef|ifndef)\s+(.+)", DscLine) if Match: Result = self.EvaulateIfdef (Match.group(2)) if Match.group(1) == 'ifndef': Result = not Result IfStack.append(Result) ElifStack.append(0) else: Match = re.match("!(if|elseif)\s+(.+)", DscLine.split("#")[0]) if Match: Result = self.EvaluateExpress(Match.group(2)) if Match.group(1) == "if": ElifStack.append(0) IfStack.append(Result) else: #elseif if IfStack: IfStack[-1] = not IfStack[-1] IfStack.append(Result) ElifStack[-1] = ElifStack[-1] + 1 else: print("ERROR: No paired '!if' found for '!elif' for line '%s'" % DscLine) raise SystemExit else: if IfStack: Handle = reduce(lambda x,y: x and y, IfStack) else: Handle = True if Handle: Match = re.match("!include\s+(.+)", DscLine) if Match: IncludeFilePath = Match.group(1) IncludeFilePath = self.ExpandMacros(IncludeFilePath) PackagesPath = os.getenv("PACKAGES_PATH") if PackagesPath: for PackagePath in PackagesPath.split(os.pathsep): IncludeFilePathAbs = os.path.join(os.path.normpath(PackagePath), os.path.normpath(IncludeFilePath)) if os.path.exists(IncludeFilePathAbs): IncludeDsc = open(IncludeFilePathAbs, "r") break else: IncludeDsc = open(IncludeFilePath, "r") if IncludeDsc == None: print("ERROR: Cannot open file '%s'" % IncludeFilePath) raise SystemExit NewDscLines = IncludeDsc.readlines() IncludeDsc.close() DscLines = NewDscLines + DscLines Offset = 0 else: if DscLine.startswith('!'): print("ERROR: Unrecognized directive for line '%s'" % DscLine) raise SystemExit if not Handle: continue if IsDefSect: #DEFINE UPD_TOOL_GUID = 8C3D856A-9BE6-468E-850A-24F7A8D38E09 #DEFINE FSP_T_UPD_TOOL_GUID = 34686CA3-34F9-4901-B82A-BA630F0714C6 #DEFINE FSP_M_UPD_TOOL_GUID = 39A250DB-E465-4DD1-A2AC-E2BD3C0E2385 #DEFINE FSP_S_UPD_TOOL_GUID = CAE3605B-5B34-4C85-B3D7-27D54273C40F Match = re.match("^\s*(?:DEFINE\s+)*(\w+)\s*=\s*([/$()-.\w]+)", DscLine) if Match: self._MacroDict[Match.group(1)] = self.ExpandMacros(Match.group(2)) if self.Debug: print ("INFO : DEFINE %s = [ %s ]" % (Match.group(1), self.ExpandMacros(Match.group(2)))) elif IsPcdSect: #gSiPkgTokenSpaceGuid.PcdTxtEnable|FALSE #gSiPkgTokenSpaceGuid.PcdOverclockEnable|TRUE Match = re.match("^\s*([\w\.]+)\s*\|\s*(\w+)", DscLine) if Match: self._PcdsDict[Match.group(1)] = Match.group(2) if self.Debug: print ("INFO : PCD %s = [ %s ]" % (Match.group(1), Match.group(2))) i = 0 while i < len(BuildOptionPcd): Match = re.match("\s*([\w\.]+)\s*\=\s*(\w+)", BuildOptionPcd[i]) if Match: self._PcdsDict[Match.group(1)] = Match.group(2) i += 1 else: Match = re.match("^\s*#\s+(!BSF|@Bsf|!HDR)\s+(.+)", DscLine) if Match: Remaining = Match.group(2) if Match.group(1) == '!BSF' or Match.group(1) == '@Bsf': Match = re.match("(?:^|.+\s+)PAGES:{(.+?)}", Remaining) if Match: # !BSF PAGES:{HSW:"Haswell System Agent", LPT:"Lynx Point PCH"} PageList = Match.group(1).split(',') for Page in PageList: Page = Page.strip() Match = re.match("(\w+):\"(.+)\"", Page) self._CfgPageDict[Match.group(1)] = Match.group(2) Match = re.match("(?:^|.+\s+)BLOCK:{NAME:\"(.+)\"\s*,\s*VER:\"(.+)\"\s*}", Remaining) if Match: self._CfgBlkDict['name'] = Match.group(1) self._CfgBlkDict['ver'] = Match.group(2) for Key in self._BsfKeyList: Match = re.match("(?:^|.+\s+)%s:{(.+?)}" % Key, Remaining) if Match: if Key in ['NAME', 'HELP', 'OPTION'] and Match.group(1).startswith('+'): ConfigDict[Key.lower()] += Match.group(1)[1:] else: ConfigDict[Key.lower()] = Match.group(1) else: for Key in self._HdrKeyList: Match = re.match("(?:^|.+\s+)%s:{(.+?)}" % Key, Remaining) if Match: ConfigDict[Key.lower()] = Match.group(1) Match = re.match("^\s*#\s+@Prompt\s+(.+)", DscLine) if Match: ConfigDict['name'] = Match.group(1) Match = re.match("^\s*#\s*@ValidList\s*(.+)\s*\|\s*(.+)\s*\|\s*(.+)\s*", DscLine) if Match: if Match.group(2).strip() in self._BuidinOption: ConfigDict['option'] = Match.group(2).strip() else: OptionValueList = Match.group(2).split(',') OptionStringList = Match.group(3).split(',') Index = 0 for Option in OptionValueList: Option = Option.strip() ConfigDict['option'] = ConfigDict['option'] + str(Option) + ':' + OptionStringList[Index].strip() Index += 1 if Index in range(len(OptionValueList)): ConfigDict['option'] += ', ' ConfigDict['type'] = "Combo" Match = re.match("^\s*#\s*@ValidRange\s*(.+)\s*\|\s*(.+)\s*-\s*(.+)\s*", DscLine) if Match: if "0x" in Match.group(2) or "0x" in Match.group(3): ConfigDict['type'] = "EditNum, HEX, (%s,%s)" % (Match.group(2), Match.group(3)) else: ConfigDict['type'] = "EditNum, DEC, (%s,%s)" % (Match.group(2), Match.group(3)) Match = re.match("^\s*##\s+(.+)", DscLine) if Match: ConfigDict['help'] = Match.group(1) # Check VPD/UPD if IsUpdSect: Match = re.match("^([_a-zA-Z0-9]+).([_a-zA-Z0-9]+)\s*\|\s*(0x[0-9A-F]+|\*)\s*\|\s*(\d+|0x[0-9a-fA-F]+)\s*\|\s*(.+)",DscLine) else: Match = re.match("^([_a-zA-Z0-9]+).([_a-zA-Z0-9]+)\s*\|\s*(0x[0-9A-F]+)(?:\s*\|\s*(.+))?", DscLine) if Match: ConfigDict['space'] = Match.group(1) ConfigDict['cname'] = Match.group(2) if Match.group(3) != '*': Hardcode = True Offset = int (Match.group(3), 16) else: AutoAlign = True if Hardcode and AutoAlign: print("Hardcode and auto-align mixed mode is not supported by GenCfgOpt") raise SystemExit ConfigDict['offset'] = Offset if ConfigDict['order'] == -1: ConfigDict['order'] = ConfigDict['offset'] << 8 else: (Major, Minor) = ConfigDict['order'].split('.') ConfigDict['order'] = (int (Major, 16) << 8 ) + int (Minor, 16) if IsUpdSect: Value = Match.group(5).strip() if Match.group(4).startswith("0x"): Length = int (Match.group(4), 16) else : Length = int (Match.group(4)) Offset += Length else: Value = Match.group(4) if Value is None: Value = '' Value = Value.strip() if '|' in Value: Match = re.match("^.+\s*\|\s*(.+)", Value) if Match: Value = Match.group(1) Length = -1 ConfigDict['length'] = Length Match = re.match("\$\((\w+)\)", Value) if Match: if Match.group(1) in self._MacroDict: Value = self._MacroDict[Match.group(1)] ConfigDict['value'] = Value if (len(Value) > 0) and (Value[0] == '{'): Value = self.FormatListValue(ConfigDict) if ConfigDict['name'] == '': # Clear BSF specific items ConfigDict['bsfname'] = '' ConfigDict['help'] = '' ConfigDict['type'] = '' ConfigDict['option'] = '' if IsUpdSect and AutoAlign: ItemLength = int(ConfigDict['length']) ItemOffset = int(ConfigDict['offset']) ItemStruct = ConfigDict['struct'] Unit = 1 if ItemLength in [1, 2, 4, 8] and not ConfigDict['value'].startswith('{'): Unit = ItemLength # If there are 64 bit unit, align to 64 if Unit == 8: MaxAlign = 64 SizeAlign = 8 if ItemStruct != '': UnitDict = {'UINT8':1, 'UINT16':2, 'UINT32':4, 'UINT64':8} if ItemStruct in ['UINT8', 'UINT16', 'UINT32', 'UINT64']: Unit = UnitDict[ItemStruct] # If there are 64 bit unit, align to 64 if Unit == 8: MaxAlign = 64 SizeAlign = max(SizeAlign, Unit) if (ConfigDict['embed'].find(':START') != -1): Base = ItemOffset SubOffset = ItemOffset - Base SubRemainder = SubOffset % Unit if SubRemainder: Diff = Unit - SubRemainder Offset = Offset + Diff ItemOffset = ItemOffset + Diff if (ConfigDict['embed'].find(':END') != -1): Remainder = Offset % (MaxAlign/8) # MaxAlign is either 32 or 64 if Remainder: Diff = int((MaxAlign/8) - Remainder) Offset = Offset + Diff ItemOffset = ItemOffset + Diff MaxAlign = 32 # Reset to default 32 align when struct end if (ConfigDict['cname'] == 'UpdTerminator'): # ItemLength is the size of UpdTerminator # Itemlength might be 16, 32, or 64 # Struct align to 64 if UpdTerminator # or struct size is 64 bit, else align to 32 Remainder = Offset % max(ItemLength/8, 4, SizeAlign) Offset = Offset + ItemLength if Remainder: Diff = int(max(ItemLength/8, 4, SizeAlign) - Remainder) ItemOffset = ItemOffset + Diff ConfigDict['offset'] = ItemOffset self._CfgItemList.append(ConfigDict.copy()) ConfigDict['name'] = '' ConfigDict['find'] = '' ConfigDict['struct'] = '' ConfigDict['embed'] = '' ConfigDict['comment'] = '' ConfigDict['order'] = -1 ConfigDict['subreg'] = [] ConfigDict['option'] = '' else: # It could be a virtual item as below # !BSF FIELD:{SerialDebugPortAddress0:1} # or # @Bsf FIELD:{SerialDebugPortAddress0:1b} Match = re.match("^\s*#\s+(!BSF|@Bsf)\s+FIELD:{(.+):(\d+)([Bb])?}", DscLine) if Match: SubCfgDict = ConfigDict.copy() if (Match.group(4) == None) or (Match.group(4) == 'B'): UnitBitLen = 8 elif Match.group(4) == 'b': UnitBitLen = 1 else: print("ERROR: Invalide BSF FIELD length for line '%s'" % DscLine) raise SystemExit SubCfgDict['cname'] = Match.group(2) SubCfgDict['bitlength'] = int (Match.group(3)) * UnitBitLen if SubCfgDict['bitlength'] > 0: LastItem = self._CfgItemList[-1] if len(LastItem['subreg']) == 0: SubOffset = 0 else: SubOffset = LastItem['subreg'][-1]['bitoffset'] + LastItem['subreg'][-1]['bitlength'] SubCfgDict['bitoffset'] = SubOffset LastItem['subreg'].append (SubCfgDict.copy()) ConfigDict['name'] = '' return Error def GetBsfBitFields (self, subitem, bytes): start = subitem['bitoffset'] end = start + subitem['bitlength'] bitsvalue = ''.join('{0:08b}'.format(i) for i in bytes[::-1]) bitsvalue = bitsvalue[::-1] bitslen = len(bitsvalue) if start > bitslen or end > bitslen: print ("Invalid bits offset [%d,%d] for %s" % (start, end, subitem['name'])) raise SystemExit return hex(int(bitsvalue[start:end][::-1], 2)) def UpdateSubRegionDefaultValue (self): Error = 0 for Item in self._CfgItemList: if len(Item['subreg']) == 0: continue bytearray = [] if Item['value'][0] == '{': binlist = Item['value'][1:-1].split(',') for each in binlist: each = each.strip() if each.startswith('0x'): value = int(each, 16) else: value = int(each) bytearray.append(value) else: if Item['value'].startswith('0x'): value = int(Item['value'], 16) else: value = int(Item['value']) idx = 0 while idx < Item['length']: bytearray.append(value & 0xFF) value = value >> 8 idx = idx + 1 for SubItem in Item['subreg']: valuestr = self.GetBsfBitFields(SubItem, bytearray) SubItem['value'] = valuestr return Error def CreateSplitUpdTxt (self, UpdTxtFile): GuidList = ['FSP_T_UPD_TOOL_GUID','FSP_M_UPD_TOOL_GUID','FSP_S_UPD_TOOL_GUID'] SignatureList = ['0x545F', '0x4D5F','0x535F'] # _T, _M, and _S signature for FSPT, FSPM, FSPS for Index in range(len(GuidList)): UpdTxtFile = '' FvDir = self._FvDir if GuidList[Index] not in self._MacroDict: self.Error = "%s definition is missing in DSC file" % (GuidList[Index]) return 1 if UpdTxtFile == '': UpdTxtFile = os.path.join(FvDir, self._MacroDict[GuidList[Index]] + '.txt') ReCreate = False if not os.path.exists(UpdTxtFile): ReCreate = True else: DscTime = os.path.getmtime(self._DscFile) TxtTime = os.path.getmtime(UpdTxtFile) if DscTime > TxtTime: ReCreate = True if not ReCreate: # DSC has not been modified yet # So don't have to re-generate other files self.Error = 'No DSC file change, skip to create UPD TXT file' return 256 TxtFd = open(UpdTxtFile, "w") TxtFd.write("%s\n" % (__copyright_txt__ % date.today().year)) NextOffset = 0 SpaceIdx = 0 StartAddr = 0 EndAddr = 0 Default = 'DEFAULT|' InRange = False for Item in self._CfgItemList: if Item['cname'] == 'Signature' and str(Item['value'])[0:6] == SignatureList[Index]: StartAddr = Item['offset'] NextOffset = StartAddr InRange = True if Item['cname'] == 'UpdTerminator' and InRange == True: EndAddr = Item['offset'] InRange = False InRange = False for Item in self._CfgItemList: if Item['cname'] == 'Signature' and str(Item['value'])[0:6] == SignatureList[Index]: InRange = True if InRange != True: continue if Item['cname'] == 'UpdTerminator': InRange = False if Item['region'] != 'UPD': continue Offset = Item['offset'] if StartAddr > Offset or EndAddr < Offset: continue if NextOffset < Offset: # insert one line TxtFd.write("%s.UnusedUpdSpace%d|%s0x%04X|0x%04X|{0}\n" % (Item['space'], SpaceIdx, Default, NextOffset - StartAddr, Offset - NextOffset)) SpaceIdx = SpaceIdx + 1 NextOffset = Offset + Item['length'] TxtFd.write("%s.%s|%s0x%04X|%s|%s\n" % (Item['space'],Item['cname'],Default,Item['offset'] - StartAddr,Item['length'],Item['value'])) TxtFd.close() return 0 def ProcessMultilines (self, String, MaxCharLength): Multilines = '' StringLength = len(String) CurrentStringStart = 0 StringOffset = 0 BreakLineDict = [] if len(String) <= MaxCharLength: while (StringOffset < StringLength): if StringOffset >= 1: if String[StringOffset - 1] == '\\' and String[StringOffset] == 'n': BreakLineDict.append (StringOffset + 1) StringOffset += 1 if BreakLineDict != []: for Each in BreakLineDict: Multilines += " %s\n" % String[CurrentStringStart:Each].lstrip() CurrentStringStart = Each if StringLength - CurrentStringStart > 0: Multilines += " %s\n" % String[CurrentStringStart:].lstrip() else: Multilines = " %s\n" % String else: NewLineStart = 0 NewLineCount = 0 FoundSpaceChar = False while (StringOffset < StringLength): if StringOffset >= 1: if NewLineCount >= MaxCharLength - 1: if String[StringOffset] == ' ' and StringLength - StringOffset > 10: BreakLineDict.append (NewLineStart + NewLineCount) NewLineStart = NewLineStart + NewLineCount NewLineCount = 0 FoundSpaceChar = True elif StringOffset == StringLength - 1 and FoundSpaceChar == False: BreakLineDict.append (0) if String[StringOffset - 1] == '\\' and String[StringOffset] == 'n': BreakLineDict.append (StringOffset + 1) NewLineStart = StringOffset + 1 NewLineCount = 0 StringOffset += 1 NewLineCount += 1 if BreakLineDict != []: BreakLineDict.sort () for Each in BreakLineDict: if Each > 0: Multilines += " %s\n" % String[CurrentStringStart:Each].lstrip() CurrentStringStart = Each if StringLength - CurrentStringStart > 0: Multilines += " %s\n" % String[CurrentStringStart:].lstrip() return Multilines def CreateField (self, Item, Name, Length, Offset, Struct, BsfName, Help, Option): PosName = 28 PosComment = 30 NameLine='' HelpLine='' OptionLine='' IsArray = False if Length in [1,2,4,8]: Type = "UINT%d" % (Length * 8) if Name.startswith("UnusedUpdSpace") and Length != 1: IsArray = True Type = "UINT8" else: IsArray = True Type = "UINT8" if Item and Item['value'].startswith('{'): Type = "UINT8" IsArray = True if Struct != '': Type = Struct if Struct in ['UINT8','UINT16','UINT32','UINT64']: IsArray = True Unit = int(Type[4:]) / 8 Length = Length / Unit else: IsArray = False if IsArray: Name = Name + '[%d]' % Length if len(Type) < PosName: Space1 = PosName - len(Type) else: Space1 = 1 if BsfName != '': NameLine=" - %s\n" % BsfName else: NameLine="\n" if Help != '': HelpLine = self.ProcessMultilines (Help, 80) if Option != '': OptionLine = self.ProcessMultilines (Option, 80) if Offset is None: OffsetStr = '????' else: OffsetStr = '0x%04X' % Offset return "\n/** Offset %s%s%s%s**/\n %s%s%s;\n" % (OffsetStr, NameLine, HelpLine, OptionLine, Type, ' ' * Space1, Name,) def PostProcessBody (self, TextBody): NewTextBody = [] OldTextBody = [] IncludeLine = False StructName = '' VariableName = '' IsUpdHdrDefined = False IsUpdHeader = False for Line in TextBody: SplitToLines = Line.splitlines() MatchComment = re.match("^/\*\sCOMMENT:(\w+):([\w|\W|\s]+)\s\*/\s([\s\S]*)", SplitToLines[0]) if MatchComment: if MatchComment.group(1) == 'FSP_UPD_HEADER': IsUpdHeader = True else: IsUpdHeader = False if IsUpdHdrDefined != True or IsUpdHeader != True: CommentLine = " " + MatchComment.group(2) + "\n" NewTextBody.append("/**" + CommentLine + "**/\n") Line = Line[(len(SplitToLines[0]) + 1):] Match = re.match("^/\*\sEMBED_STRUCT:(\w+):(\w+):(START|END)\s\*/\s([\s\S]*)", Line) if Match: Line = Match.group(4) if Match.group(1) == 'FSP_UPD_HEADER': IsUpdHeader = True else: IsUpdHeader = False if Match and Match.group(3) == 'START': if IsUpdHdrDefined != True or IsUpdHeader != True: NewTextBody.append ('typedef struct {\n') StructName = Match.group(1) VariableName = Match.group(2) MatchOffset = re.search('/\*\*\sOffset\s0x([a-fA-F0-9]+)', Line) if MatchOffset: Offset = int(MatchOffset.group(1), 16) else: Offset = None Line IncludeLine = True OldTextBody.append (self.CreateField (None, VariableName, 0, Offset, StructName, '', '', '')) if IncludeLine: if IsUpdHdrDefined != True or IsUpdHeader != True: NewTextBody.append (Line) else: OldTextBody.append (Line) if Match and Match.group(3) == 'END': if (StructName != Match.group(1)) or (VariableName != Match.group(2)): print ("Unmatched struct name '%s' and '%s' !" % (StructName, Match.group(1))) else: if IsUpdHdrDefined != True or IsUpdHeader != True: NewTextBody.append ('} %s;\n\n' % StructName) IsUpdHdrDefined = True IncludeLine = False NewTextBody.extend(OldTextBody) return NewTextBody def WriteLinesWithoutTailingSpace (self, HeaderFd, Line): TxtBody2 = Line.splitlines(True) for Line2 in TxtBody2: Line2 = Line2.rstrip() Line2 += '\n' HeaderFd.write (Line2) return 0 def CreateHeaderFile (self, InputHeaderFile): FvDir = self._FvDir HeaderFileName = 'FspUpd.h' HeaderFile = os.path.join(FvDir, HeaderFileName) # Check if header needs to be recreated ReCreate = False TxtBody = [] for Item in self._CfgItemList: if str(Item['cname']) == 'Signature' and Item['length'] == 8: Value = int(Item['value'], 16) Chars = [] while Value != 0x0: Chars.append(chr(Value & 0xFF)) Value = Value >> 8 SignatureStr = ''.join(Chars) # Signature will be _T / _M / _S for FSPT / FSPM / FSPS accordingly if '_T' in SignatureStr[6:6+2]: TxtBody.append("#define FSPT_UPD_SIGNATURE %s /* '%s' */\n\n" % (Item['value'], SignatureStr)) elif '_M' in SignatureStr[6:6+2]: TxtBody.append("#define FSPM_UPD_SIGNATURE %s /* '%s' */\n\n" % (Item['value'], SignatureStr)) elif '_S' in SignatureStr[6:6+2]: TxtBody.append("#define FSPS_UPD_SIGNATURE %s /* '%s' */\n\n" % (Item['value'], SignatureStr)) TxtBody.append("\n") for Region in ['UPD']: UpdOffsetTable = [] UpdSignature = ['0x545F', '0x4D5F', '0x535F'] #['_T', '_M', '_S'] signature for FSPT, FSPM, FSPS UpdStructure = ['FSPT_UPD', 'FSPM_UPD', 'FSPS_UPD'] for Item in self._CfgItemList: if Item["cname"] == 'Signature' and Item["value"][0:6] in UpdSignature: UpdOffsetTable.append (Item["offset"]) for UpdIdx in range(len(UpdOffsetTable)): CommentLine = "" for Item in self._CfgItemList: if Item["comment"] != '' and Item["offset"] >= UpdOffsetTable[UpdIdx]: MatchComment = re.match("^(U|V)PD_DATA_REGION:([\w|\W|\s]+)", Item["comment"]) if MatchComment and MatchComment.group(1) == Region[0]: CommentLine = " " + MatchComment.group(2) + "\n" TxtBody.append("/**" + CommentLine + "**/\n") elif Item["offset"] >= UpdOffsetTable[UpdIdx] and Item["comment"] == '': Match = re.match("^FSP([\w|\W|\s])_UPD", UpdStructure[UpdIdx]) if Match: TxtBody.append("/** Fsp " + Match.group(1) + " UPD Configuration\n**/\n") TxtBody.append("typedef struct {\n") NextOffset = 0 SpaceIdx = 0 Offset = 0 LastVisible = True ResvOffset = 0 ResvIdx = 0 LineBuffer = [] InRange = False for Item in self._CfgItemList: if Item['cname'] == 'Signature' and str(Item['value'])[0:6] == UpdSignature[UpdIdx] or Region[0] == 'V': InRange = True if InRange != True: continue if Item['cname'] == 'UpdTerminator': InRange = False if Item['region'] != Region: continue if Item["offset"] < UpdOffsetTable[UpdIdx]: continue NextVisible = LastVisible if LastVisible and (Item['header'] == 'OFF'): NextVisible = False ResvOffset = Item['offset'] elif (not LastVisible) and Item['header'] == 'ON': NextVisible = True Name = "Reserved" + Region[0] + "pdSpace%d" % ResvIdx ResvIdx = ResvIdx + 1 TxtBody.append(self.CreateField (Item, Name, Item["offset"] - ResvOffset, ResvOffset, '', '', '', '')) if Offset < Item["offset"]: if LastVisible: Name = "Unused" + Region[0] + "pdSpace%d" % SpaceIdx LineBuffer.append(self.CreateField (Item, Name, Item["offset"] - Offset, Offset, '', '', '', '')) SpaceIdx = SpaceIdx + 1 Offset = Item["offset"] LastVisible = NextVisible Offset = Offset + Item["length"] if LastVisible: for Each in LineBuffer: TxtBody.append (Each) LineBuffer = [] Comment = Item["comment"] Embed = Item["embed"].upper() if Embed.endswith(':START') or Embed.endswith(':END'): if not Comment == '' and Embed.endswith(':START'): Marker = '/* COMMENT:%s */ \n' % Item["comment"] Marker = Marker + '/* EMBED_STRUCT:%s */ ' % Item["embed"] else: Marker = '/* EMBED_STRUCT:%s */ ' % Item["embed"] else: if Embed == '': Marker = '' else: self.Error = "Invalid embedded structure format '%s'!\n" % Item["embed"] return 4 Line = Marker + self.CreateField (Item, Item["cname"], Item["length"], Item["offset"], Item['struct'], Item['name'], Item['help'], Item['option']) TxtBody.append(Line) if Item['cname'] == 'UpdTerminator': break TxtBody.append("} " + UpdStructure[UpdIdx] + ";\n\n") # Handle the embedded data structure TxtBody = self.PostProcessBody (TxtBody) HeaderTFileName = 'FsptUpd.h' HeaderMFileName = 'FspmUpd.h' HeaderSFileName = 'FspsUpd.h' UpdRegionCheck = ['FSPT', 'FSPM', 'FSPS'] # FSPX_UPD_REGION UpdConfigCheck = ['FSP_T', 'FSP_M', 'FSP_S'] # FSP_X_CONFIG, FSP_X_TEST_CONFIG, FSP_X_RESTRICTED_CONFIG UpdSignatureCheck = ['FSPT_UPD_SIGNATURE', 'FSPM_UPD_SIGNATURE', 'FSPS_UPD_SIGNATURE'] ExcludedSpecificUpd = ['FSPT_ARCH_UPD', 'FSPM_ARCH_UPD', 'FSPS_ARCH_UPD'] IncLines = [] if InputHeaderFile != '': if not os.path.exists(InputHeaderFile): self.Error = "Input header file '%s' does not exist" % InputHeaderFile return 6 InFd = open(InputHeaderFile, "r") IncLines = InFd.readlines() InFd.close() for item in range(len(UpdRegionCheck)): if UpdRegionCheck[item] == 'FSPT': HeaderFd = open(os.path.join(FvDir, HeaderTFileName), "w") FileBase = os.path.basename(os.path.join(FvDir, HeaderTFileName)) elif UpdRegionCheck[item] == 'FSPM': HeaderFd = open(os.path.join(FvDir, HeaderMFileName), "w") FileBase = os.path.basename(os.path.join(FvDir, HeaderMFileName)) elif UpdRegionCheck[item] == 'FSPS': HeaderFd = open(os.path.join(FvDir, HeaderSFileName), "w") FileBase = os.path.basename(os.path.join(FvDir, HeaderSFileName)) FileName = FileBase.replace(".", "_").upper() HeaderFd.write("%s\n" % (__copyright_h__ % date.today().year)) HeaderFd.write("#ifndef __%s__\n" % FileName) HeaderFd.write("#define __%s__\n\n" % FileName) HeaderFd.write("#include <%s>\n\n" % HeaderFileName) HeaderFd.write("#pragma pack(1)\n\n") Export = False for Line in IncLines: Match = re.search ("!EXPORT\s+([A-Z]+)\s+EXTERNAL_BOOTLOADER_STRUCT_(BEGIN|END)\s+", Line) if Match: if Match.group(2) == "BEGIN" and Match.group(1) == UpdRegionCheck[item]: Export = True continue else: Export = False continue if Export: HeaderFd.write(Line) HeaderFd.write("\n") Index = 0 StartIndex = 0 EndIndex = 0 StructStart = [] StructStartWithComment = [] StructEnd = [] for Line in TxtBody: Index += 1 Match = re.match("(typedef struct {)", Line) if Match: StartIndex = Index - 1 Match = re.match("}\s([_A-Z0-9]+);", Line) if Match and (UpdRegionCheck[item] in Match.group(1) or UpdConfigCheck[item] in Match.group(1)) and (ExcludedSpecificUpd[item] not in Match.group(1)): EndIndex = Index StructStart.append(StartIndex) StructEnd.append(EndIndex) Index = 0 for Line in TxtBody: Index += 1 for Item in range(len(StructStart)): if Index == StructStart[Item]: Match = re.match("^(/\*\*\s*)", Line) if Match: StructStartWithComment.append(StructStart[Item]) else: StructStartWithComment.append(StructStart[Item] + 1) Index = 0 for Line in TxtBody: Index += 1 for Item in range(len(StructStart)): if Index >= StructStartWithComment[Item] and Index <= StructEnd[Item]: self.WriteLinesWithoutTailingSpace(HeaderFd, Line) HeaderFd.write("#pragma pack()\n\n") HeaderFd.write("#endif\n") HeaderFd.close() HeaderFd = open(HeaderFile, "w") FileBase = os.path.basename(HeaderFile) FileName = FileBase.replace(".", "_").upper() HeaderFd.write("%s\n" % (__copyright_h__ % date.today().year)) HeaderFd.write("#ifndef __%s__\n" % FileName) HeaderFd.write("#define __%s__\n\n" % FileName) HeaderFd.write("#include <FspEas.h>\n\n") HeaderFd.write("#pragma pack(1)\n\n") for item in range(len(UpdRegionCheck)): Index = 0 StartIndex = 0 EndIndex = 0 StructStart = [] StructStartWithComment = [] StructEnd = [] for Line in TxtBody: Index += 1 Match = re.match("(typedef struct {)", Line) if Match: StartIndex = Index - 1 Match = re.match("#define\s([_A-Z0-9]+)\s*", Line) if Match and (UpdSignatureCheck[item] in Match.group(1) or UpdSignatureCheck[item] in Match.group(1)): StructStart.append(Index - 1) StructEnd.append(Index) Index = 0 for Line in TxtBody: Index += 1 for Item in range(len(StructStart)): if Index == StructStart[Item]: Match = re.match("^(/\*\*\s*)", Line) if Match: StructStartWithComment.append(StructStart[Item]) else: StructStartWithComment.append(StructStart[Item] + 1) Index = 0 for Line in TxtBody: Index += 1 for Item in range(len(StructStart)): if Index >= StructStartWithComment[Item] and Index <= StructEnd[Item]: self.WriteLinesWithoutTailingSpace(HeaderFd, Line) HeaderFd.write("#pragma pack()\n\n") HeaderFd.write("#endif\n") HeaderFd.close() return 0 def WriteBsfStruct (self, BsfFd, Item): LogExpr = CLogicalExpression() if Item['type'] == "None": Space = "gPlatformFspPkgTokenSpaceGuid" else: Space = Item['space'] Line = " $%s_%s" % (Space, Item['cname']) Match = re.match("\s*\{([x0-9a-fA-F,\s]+)\}\s*", Item['value']) if Match: DefaultValue = Match.group(1).strip() else: DefaultValue = Item['value'].strip() if 'bitlength' in Item: BsfFd.write(" %s%s%4d bits $_DEFAULT_ = %s\n" % (Line, ' ' * (64 - len(Line)), Item['bitlength'], DefaultValue)) else: BsfFd.write(" %s%s%4d bytes $_DEFAULT_ = %s\n" % (Line, ' ' * (64 - len(Line)), Item['length'], DefaultValue)) TmpList = [] if Item['type'] == "Combo": if not Item['option'] in self._BuidinOption: OptList = Item['option'].split(',') for Option in OptList: Option = Option.strip() (OpVal, OpStr) = Option.split(':') test = LogExpr.getNumber (OpVal) if test is None: raise Exception("Selection Index '%s' is not a number" % OpVal) TmpList.append((OpVal, OpStr)) return TmpList def WriteBsfOption (self, BsfFd, Item): PcdName = Item['space'] + '_' + Item['cname'] WriteHelp = 0 if Item['type'] == "Combo": if Item['option'] in self._BuidinOption: Options = self._BuidinOption[Item['option']] else: Options = PcdName BsfFd.write(' %s $%s, "%s", &%s,\n' % (Item['type'], PcdName, Item['name'], Options)) WriteHelp = 1 elif Item['type'].startswith("EditNum"): Match = re.match("EditNum\s*,\s*(HEX|DEC)\s*,\s*\((\d+|0x[0-9A-Fa-f]+)\s*,\s*(\d+|0x[0-9A-Fa-f]+)\)", Item['type']) if Match: BsfFd.write(' EditNum $%s, "%s", %s,\n' % (PcdName, Item['name'], Match.group(1))) WriteHelp = 2 elif Item['type'].startswith("EditText"): BsfFd.write(' %s $%s, "%s",\n' % (Item['type'], PcdName, Item['name'])) WriteHelp = 1 elif Item['type'] == "Table": Columns = Item['option'].split(',') if len(Columns) != 0: BsfFd.write(' %s $%s "%s",' % (Item['type'], PcdName, Item['name'])) for Col in Columns: Fmt = Col.split(':') if len(Fmt) != 3: raise Exception("Column format '%s' is invalid !" % Fmt) try: Dtype = int(Fmt[1].strip()) except: raise Exception("Column size '%s' is invalid !" % Fmt[1]) BsfFd.write('\n Column "%s", %d bytes, %s' % (Fmt[0].strip(), Dtype, Fmt[2].strip())) BsfFd.write(',\n') WriteHelp = 1 if WriteHelp > 0: HelpLines = Item['help'].split('\\n\\r') FirstLine = True for HelpLine in HelpLines: if FirstLine: FirstLine = False BsfFd.write(' Help "%s"\n' % (HelpLine)) else: BsfFd.write(' "%s"\n' % (HelpLine)) if WriteHelp == 2: BsfFd.write(' "Valid range: %s ~ %s"\n' % (Match.group(2), Match.group(3))) def GenerateBsfFile (self, BsfFile): if BsfFile == '': self.Error = "BSF output file '%s' is invalid" % BsfFile return 1 Error = 0 OptionDict = {} BsfFd = open(BsfFile, "w") BsfFd.write("%s\n" % (__copyright_bsf__ % date.today().year)) BsfFd.write("%s\n" % self._GlobalDataDef) BsfFd.write("StructDef\n") NextOffset = -1 for Item in self._CfgItemList: if Item['find'] != '': BsfFd.write('\n Find "%s"\n' % Item['find']) NextOffset = Item['offset'] + Item['length'] if Item['name'] != '': if NextOffset != Item['offset']: BsfFd.write(" Skip %d bytes\n" % (Item['offset'] - NextOffset)) if len(Item['subreg']) > 0: NextOffset = Item['offset'] BitsOffset = NextOffset * 8 for SubItem in Item['subreg']: BitsOffset += SubItem['bitlength'] if SubItem['name'] == '': if 'bitlength' in SubItem: BsfFd.write(" Skip %d bits\n" % (SubItem['bitlength'])) else: BsfFd.write(" Skip %d bytes\n" % (SubItem['length'])) else: Options = self.WriteBsfStruct(BsfFd, SubItem) if len(Options) > 0: OptionDict[SubItem['space']+'_'+SubItem['cname']] = Options NextBitsOffset = (Item['offset'] + Item['length']) * 8 if NextBitsOffset > BitsOffset: BitsGap = NextBitsOffset - BitsOffset BitsRemain = BitsGap % 8 if BitsRemain: BsfFd.write(" Skip %d bits\n" % BitsRemain) BitsGap -= BitsRemain BytesRemain = int(BitsGap / 8) if BytesRemain: BsfFd.write(" Skip %d bytes\n" % BytesRemain) NextOffset = Item['offset'] + Item['length'] else: NextOffset = Item['offset'] + Item['length'] Options = self.WriteBsfStruct(BsfFd, Item) if len(Options) > 0: OptionDict[Item['space']+'_'+Item['cname']] = Options BsfFd.write("\nEndStruct\n\n") BsfFd.write("%s" % self._BuidinOptionTxt) for Each in OptionDict: BsfFd.write("List &%s\n" % Each) for Item in OptionDict[Each]: BsfFd.write(' Selection %s , "%s"\n' % (Item[0], Item[1])) BsfFd.write("EndList\n\n") BsfFd.write("BeginInfoBlock\n") BsfFd.write(' PPVer "%s"\n' % (self._CfgBlkDict['ver'])) BsfFd.write(' Description "%s"\n' % (self._CfgBlkDict['name'])) BsfFd.write("EndInfoBlock\n\n") for Each in self._CfgPageDict: BsfFd.write('Page "%s"\n' % self._CfgPageDict[Each]) BsfItems = [] for Item in self._CfgItemList: if Item['name'] != '': if Item['page'] != Each: continue if len(Item['subreg']) > 0: for SubItem in Item['subreg']: if SubItem['name'] != '': BsfItems.append(SubItem) else: BsfItems.append(Item) BsfItems.sort(key=lambda x: x['order']) for Item in BsfItems: self.WriteBsfOption (BsfFd, Item) BsfFd.write("EndPage\n\n") BsfFd.close() return Error def Usage(): print ("GenCfgOpt Version 0.55") print ("Usage:") print (" GenCfgOpt UPDTXT PlatformDscFile BuildFvDir [-D Macros]") print (" GenCfgOpt HEADER PlatformDscFile BuildFvDir InputHFile [-D Macros]") print (" GenCfgOpt GENBSF PlatformDscFile BuildFvDir BsfOutFile [-D Macros]") def Main(): # # Parse the options and args # i = 1 GenCfgOpt = CGenCfgOpt() while i < len(sys.argv): if sys.argv[i].strip().lower() == "--pcd": BuildOptionPcd.append(sys.argv[i+1]) i += 1 i += 1 argc = len(sys.argv) if argc < 4: Usage() return 1 else: DscFile = sys.argv[2] if not os.path.exists(DscFile): print ("ERROR: Cannot open DSC file '%s' !" % DscFile) return 2 OutFile = '' if argc > 4: if sys.argv[4][0] == '-': Start = 4 else: OutFile = sys.argv[4] Start = 5 if argc > Start: if GenCfgOpt.ParseMacros(sys.argv[Start:]) != 0: print ("ERROR: Macro parsing failed !") return 3 FvDir = sys.argv[3] if not os.path.exists(FvDir): os.makedirs(FvDir) if GenCfgOpt.ParseDscFile(DscFile, FvDir) != 0: print ("ERROR: %s !" % GenCfgOpt.Error) return 5 if GenCfgOpt.UpdateSubRegionDefaultValue() != 0: print ("ERROR: %s !" % GenCfgOpt.Error) return 7 if sys.argv[1] == "UPDTXT": Ret = GenCfgOpt.CreateSplitUpdTxt(OutFile) if Ret != 0: # No change is detected if Ret == 256: print ("INFO: %s !" % (GenCfgOpt.Error)) else : print ("ERROR: %s !" % (GenCfgOpt.Error)) return Ret elif sys.argv[1] == "HEADER": if GenCfgOpt.CreateHeaderFile(OutFile) != 0: print ("ERROR: %s !" % GenCfgOpt.Error) return 8 elif sys.argv[1] == "GENBSF": if GenCfgOpt.GenerateBsfFile(OutFile) != 0: print ("ERROR: %s !" % GenCfgOpt.Error) return 9 else: if argc < 5: Usage() return 1 print ("ERROR: Unknown command '%s' !" % sys.argv[1]) Usage() return 1 return 0 return 0 if __name__ == '__main__': sys.exit(Main()) ```
{ "source": "jeremy-compostella/home-manager", "score": 2 }
#### File: home-manager/src/car_charger.py ```python import os import sys from datetime import datetime, timedelta from select import select from time import sleep import Pyro5 import requests from cachetools import TTLCache from wallbox import Wallbox from car_sensor import CarSensorProxy from power_sensor import RecordScale from scheduler import Priority, SchedulerProxy, Task from sensor import SensorReader from tools import NameServer, Settings, debug, init, log_exception from watchdog import WatchdogProxy DEFAULT_SETTINGS = {'power_sensor_key': 'EV', 'min_available_current': 6, 'cycle_length': 15} MODULE_NAME = 'car_charger' class CarCharger(Task): '''Wallbox car charger Task. This task handles a Wallbox car charger and automatically adjusts the charge rate based on produced power availability. ''' FULLY_CHARGED = 'Connected: waiting for car demand' PLUGGED_IN = ['Charging', FULLY_CHARGED, 'Connected: waiting for next schedule', 'Paused by user'] def __init__(self, wallbox: Wallbox, charger_id: int, settings: Settings): Task.__init__(self, Priority.LOW, keys=[settings.power_sensor_key], auto_adjust=True) self.wallbox = wallbox self.charger_id = charger_id self.settings = settings self.cache = TTLCache(1, timedelta(seconds=3), datetime.now) self.state_of_charge = None def __call(self, name, *args): for _ in range(3): try: method = getattr(self.wallbox, name) return method(self.charger_id, *args) except requests.exceptions.HTTPError: log_exception('%s%s failed' % (name, args), *sys.exc_info()) self.wallbox.authenticate() except requests.exceptions.ReadTimeout: log_exception('%s%s failed' % (name, args), *sys.exc_info()) sleep(0.5) raise RuntimeError('%s%s failed too many times' % (name, args)) @property def status(self): '''JSON representation of the charger status.''' try: return self.cache['status'] except KeyError: self.cache['status'] = self.__call('getChargerStatus') return self.cache['status'] @Pyro5.api.expose @Pyro5.api.oneway def start(self): debug('Starting') self.__call('resumeChargingSession') self.cache.clear() @Pyro5.api.expose @Pyro5.api.oneway def stop(self): debug('Stopping') self.__call('pauseChargingSession') self.__call('setMaxChargingCurrent', self.min_available_current) self.cache.clear() @property def status_description(self): '''String describing the charger status.''' return self.status['status_description'] @property def min_available_current(self): '''Minimum current supported by the charger in Ampere.''' return self.settings.min_available_current @property def max_available_current(self): '''Maximal current supported by the charger in Ampere.''' return self.status['config_data']['max_available_current'] @Pyro5.api.expose def is_running(self) -> bool: return self.status_description == 'Charging' @Pyro5.api.expose def is_stoppable(self): return True @Pyro5.api.expose def is_runnable(self): '''True if calling the 'start' function would initiate charging.''' return self.status_description in self.PLUGGED_IN \ and self.status_description != self.FULLY_CHARGED @Pyro5.api.expose def meet_running_criteria(self, ratio, power=0) -> bool: debug('meet_running_criteria(%.3f, %.3f)' % (ratio, power)) if not self.is_runnable(): return False if self.is_running(): return ratio >= 0.8 return ratio >= 1 @property @Pyro5.api.expose def desc(self): description = '%s(%s' % (self.__class__.__name__, self.priority.name) if self.state_of_charge is not None: description += ', %.1f%%' % self.state_of_charge return description + ')' @property @Pyro5.api.expose def power(self): return self.min_available_current * .24 def adjust_priority(self, state_of_charge): '''Update the priority according to the current state of charge''' self.state_of_charge = state_of_charge thresholds = {Priority.URGENT: 50, Priority.HIGH: 65, Priority.MEDIUM: 80, Priority.LOW: 101} for priority in reversed(Priority): if state_of_charge < thresholds[priority]: self.priority = priority break def current_rate_for(self, power): '''Return the appropriate current in Ampere for POWER in KWh.''' rate = max(int(power / .24), self.min_available_current) return min(rate, self.max_available_current) def adjust_charge_rate(self, record): '''Adjust the charging rate according to the instant POWER record.''' available = -(record['net'] - self.usage(record)) current = self.current_rate_for(available) if self.status['config_data']['max_charging_current'] != current: debug('Adjusting to %dA (%.2f KWh)' % (current, available)) self.__call('setMaxChargingCurrent', current) def main(): '''Register and run the car charger task.''' # pylint: disable=too-many-locals base = os.path.splitext(__file__)[0] config = init(base + '.log')['Wallbox'] settings = Settings(base + '.ini', DEFAULT_SETTINGS) wallbox = Wallbox(config['login'], config['password'], requestGetTimeout=5) wallbox.authenticate() device_id = int(config['device_id']) if device_id not in wallbox.getChargersList(): raise RuntimeError('%d charger ID does not exist' % device_id) task = CarCharger(wallbox, device_id, settings) Pyro5.config.COMMTIMEOUT = 5 daemon = Pyro5.api.Daemon() nameserver = NameServer() uri = daemon.register(task) nameserver.register_task(MODULE_NAME, uri) sensor = CarSensorProxy() power_sensor = SensorReader('power') power_simulator = SensorReader('power_simulator') scheduler = SchedulerProxy() watchdog = WatchdogProxy() debug("... is now ready to run") while True: settings.load() watchdog.register(os.getpid(), MODULE_NAME) watchdog.kick(os.getpid()) try: nameserver.register_task(MODULE_NAME, uri) except RuntimeError: log_exception('Failed to register the sensor', *sys.exc_info()) # Self-testing: on basic operation failure unregister from the # scheduler. try: task.status_description # pylint: disable=pointless-statement scheduler.register_task(uri) except RuntimeError: debug('Self-test failed, unregister from the scheduler') scheduler.unregister_task(uri) next_cycle = datetime.now() + timedelta( # pylint: disable=maybe-no-member seconds=settings.cycle_length) while True: timeout = next_cycle - datetime.now() sockets, _, _ = select(daemon.sockets, [], [], timeout.seconds + timeout.microseconds / 1000000) if sockets: daemon.events(sockets) if datetime.now() >= next_cycle: break try: task.adjust_priority(sensor.read()['state of charge']) except RuntimeError: debug('Could not read current state of charge') if not task.is_running(): continue record = power_sensor.read(scale=RecordScale.SECOND) if not record: debug('No new power record, use the simulator') record = power_simulator.read(scale=RecordScale.SECOND) if not record: debug('Failed to get a record from the simulator') if record: try: task.adjust_charge_rate(record) except RuntimeError: log_exception('adjust_charge_rate() failed', *sys.exc_info()) if __name__ == "__main__": main() ``` #### File: home-manager/src/monitor.py ```python import os import sys from select import select import Pyro5.api from sensor import Sensor from tools import NameServer, Settings, debug, init, log_exception DEFAULT_SETTINGS = {'max_loop_duration': 5} MODULE_NAME = 'monitor' class Monitor(Sensor): def __init__(self): self._states = {} @Pyro5.api.expose def track(self, name, state): '''Update or start tracking "name" with current value "state"''' if not isinstance(state, bool): raise TypeError('state must be a boolean') self._states[name] = state @Pyro5.api.expose def read(self, **kwargs): return self._states @Pyro5.api.expose def units(self, **kwargs): return {key:'binary' for key, _ in self._states.items()} class MonitorProxy: '''Helper class for monitor service users. This class is a wrapper with exception handler of the monitor service. It provides convenience for modules using the monitor by suppressing the burden of locating the monitor and handling the various remote object related errors. ''' def __init__(self, max_attempt=2): self._monitor = None self.max_attempt = max_attempt def track(self, *args): for attempt in range(self.max_attempt): if not self._monitor: try: self._monitor = NameServer().locate_service(MODULE_NAME) except Pyro5.errors.NamingError: if attempt == self.max_attempt - 1: log_exception('Failed to locate the monitor', *sys.exc_info()) except Pyro5.errors.CommunicationError: if attempt == self.max_attempt - 1: log_exception('Cannot communicate with the nameserver', *sys.exc_info()) if self._monitor: try: self._monitor.track(*args) except Pyro5.errors.PyroError: if attempt == self.max_attempt - 1: log_exception('Communication failed with the monitor', *sys.exc_info()) self._monitor = None def main(): # pylint: disable=too-many-locals base = os.path.splitext(__file__)[0] init(base + '.log') settings = Settings(base + '.ini', DEFAULT_SETTINGS) Pyro5.config.MAX_RETRIES = 3 daemon = Pyro5.api.Daemon() nameserver = NameServer() uri = daemon.register(Monitor()) nameserver.register_sensor(MODULE_NAME, uri) nameserver.register_service(MODULE_NAME, uri) debug("... is now ready to run") while True: try: nameserver.register_sensor(MODULE_NAME, uri) nameserver.register_service(MODULE_NAME, uri) except RuntimeError: log_exception('Failed to register the watchdog service', *sys.exc_info()) sockets, _, _ = select(daemon.sockets, [], [], # pylint: disable=maybe-no-member settings.max_loop_duration) if sockets: daemon.events(sockets) if __name__ == "__main__": main() ```
{ "source": "jeremycook123/aws-key-disabler-2020", "score": 2 }
#### File: lambda/src/RotateAccessKey.py ```python import boto3 from datetime import datetime import dateutil.tz import json import ast import re import time BUILD_VERSION = '@@buildversion' AWS_REGION = '@@deploymentregion' AWS_ACCOUNT_NAME = '@@awsaccountname' AWS_ACCOUNT_ID = '@@awsaccountid' SKIP_USERNAMES = '@@skipusernames' try: #package.json via iam.skip_usernames SKIP_USERNAMES = ast.literal_eval(SKIP_USERNAMES) except: #commandline via --skipusers parameter SKIP_USERNAMES = SKIP_USERNAMES.split(",") EMAIL_FROM = '@@emailfrom' EMAIL_ADMIN_ENABLED = ast.literal_eval('@@emailadmin') EMAIL_ADMIN_TO = '@@emailadminto' EMAIL_USER_CONFIG = ast.literal_eval('@@emailuser') EMAIL_REGEX = re.compile(r'[^@]+@[^@]+\.[^@]+') # Length of mask over the IAM Access Key MASK_ACCESS_KEY_LENGTH = ast.literal_eval('@@maskaccesskeylength') # First email warning FIRST_WARNING_NUM_DAYS = @@first_warning_num_days FIRST_WARNING_MESSAGE = '@@first_warning_message' # Last email warning LAST_WARNING_NUM_DAYS = @@last_warning_num_days LAST_WARNING_MESSAGE = '@@last_warning_message' # Max AGE days of key after which it is considered EXPIRED (deactivated) KEY_MAX_AGE_IN_DAYS = @@key_max_age_in_days KEY_EXPIRED_MESSAGE = '@@key_expired_message' KEY_YOUNG_MESSAGE = '@@key_young_message' try: THROTTLE = @@throttle THROTTLE = THROTTLE / 1000 except: THROTTLE = 0 # ========================================================== # Character length of an IAM Access Key ACCESS_KEY_LENGTH = 20 KEY_STATE_ACTIVE = "Active" KEY_STATE_INACTIVE = "Inactive" # ========================================================== #check to see if the MASK_ACCESS_KEY_LENGTH has been misconfigured if MASK_ACCESS_KEY_LENGTH > ACCESS_KEY_LENGTH: MASK_ACCESS_KEY_LENGTH = 16 # ========================================================== def tzutc(): return dateutil.tz.tzutc() def key_age(key_created_date): tz_info = key_created_date.tzinfo age = datetime.now(tz_info) - key_created_date key_age_str = str(age) if 'days' not in key_age_str: return 0 days = int(key_age_str.split(',')[0].split(' ')[0]) return days def send_admin_invaliduseremailaddress_email(userlist): subject = f'AWS IAM Access Key Rotation for Account: {AWS_ACCOUNT_NAME} / {AWS_ACCOUNT_ID} - Detected Missing/Invalid Email for Users Report' body = f'The following report contains a list of users who do NOT appear to have a valid email address. Please review username and tags for each user within IAM.\n\n{userlist}' send_admin_email(subject, body) def send_admin_deactivate_email(userlist): subject = f'AWS IAM Access Key Rotation for Account: {AWS_ACCOUNT_NAME} / {AWS_ACCOUNT_ID} - Deactivation of Access Key for Users Report' body = f'The following report contains a list of users who have had their access key automatically deactivated due to it being too old.\n\n{userlist}' send_admin_email(subject, body) def send_admin_completion_email(finished, deactivated_report): user_list = '<table cellspacing="4" cellpadding="4" border="0">' for user in deactivated_report["users"]: if len(user['keys']) > 0: user_list += '<tr>' user_list += '<td valign="top">' user_list += f'User <b>{user["username"]}</b> has keys in the following state:' user_list += '</td>' user_list += '<td valign="top">' user_list += '<table cellspacing="0" cellpadding="0" border="0">' for key in user["keys"]: user_list += '<tr><td>' user_list += f'{key["accesskeyid"]}, age {key["age"]}, {key["state"]}' user_list += '</td></tr>' for key in user["keys"]: user_list += '<tr><td>' user_list += f'{key["accesskeyid"]}, age {key["age"]}, {key["state"]}' user_list += '</td></tr>' for key in user["keys"]: user_list += '<tr><td>' user_list += f'{key["accesskeyid"]}, age {key["age"]}, {key["state"]}' user_list += '</td></tr>' user_list += '</table>' user_list += '</td>' user_list += '</tr>' user_list += '</table>' subject = f'AWS IAM Access Key Rotation for Account: {AWS_ACCOUNT_NAME} / {AWS_ACCOUNT_ID} - Completion Report' body = f"""<html> <head></head> <body> <h1>Deactivation Report</h1> <p>AWS IAM Access Key Rotation Lambda Function (cron job) finished successfully.</p> <hr> {user_list} </body> </html>""" send_admin_email(subject, body) def send_admin_email(subject, body): client = boto3.client('ses', region_name=AWS_REGION) response = client.send_email( Source=EMAIL_FROM, Destination={ 'ToAddresses': [EMAIL_ADMIN_TO] }, Message={ 'Subject': { 'Charset': 'UTF-8', 'Data': subject }, 'Body': { 'Html': { 'Charset': 'UTF-8', 'Data': body } } }) #Will send email containing one of the following messages: #Your AWS IAM Access Key (****************34MI) is due to expire in 1 week (7 days) - please rotate. #Your AWS IAM Access Key (****************34MI) is due to expire in 1 day (tomorrow) - please rotate. #Your AWS IAM Access Key (****************34MI) is now EXPIRED! Changing key to INACTIVE state - please rotate. def send_user_email(email_to, key, message): try: if not email_to or not EMAIL_REGEX.match(email_to): return client = boto3.client('ses', region_name=AWS_REGION) response = client.send_email( Source=EMAIL_FROM, Destination={ 'ToAddresses': [email_to] }, Message={ 'Subject': { 'Data': 'AWS IAM Access Key Rotation' }, 'Body': { 'Html': { 'Data': f'Your AWS IAM Access Key {key} {message}.' } } }) except: pass def mask_access_key(access_key): return access_key[-(ACCESS_KEY_LENGTH-MASK_ACCESS_KEY_LENGTH):].rjust(len(access_key), "*") def lambda_handler(event, context): print('*****************************') print(f'RotateAccessKey v{BUILD_VERSION}: starting...') print("*****************************") # Connect to AWS APIs client = boto3.client('iam') users = {} data = client.list_users() userindex = 0 for user in data['Users']: userid = user['UserId'] username = user['UserName'] usertags = client.list_user_tags(UserName=username) users[userid] = { "username": username, "tags": usertags} users_report = [] users_list_first_warning = [] users_list_last_warning = [] users_list_keys_deactivated = [] users_list_email_tag_invalid = [] email_user_enabled = False try: email_user_enabled = EMAIL_USER_CONFIG["enabled"] except: pass for user in users: userindex += 1 user_keys = [] username = users[user]["username"] usertags = users[user]["tags"] # check to see if the current user is a special service account if username in SKIP_USERNAMES: print(f'detected special username (configured service account etc.) {username}, key rotation skipped for this account...') continue # determine if USER based email address is enabled, # it can be either username based or tag based, # attempt to extract and set email address for later use user_email_address = None if email_user_enabled: try: if EMAIL_USER_CONFIG["emailaddressconfig"]["type"] == "username": if EMAIL_REGEX.match(username): user_email_address = username elif EMAIL_USER_CONFIG["emailaddressconfig"]["type"] == "tag": validuseremailaddress = False for tag in usertags["Tags"]: if tag["Key"] == EMAIL_USER_CONFIG["emailaddressconfig"]["tagname"]: tag_emailaddress = tag["Value"] if EMAIL_REGEX.match(tag_emailaddress): user_email_address = tag_emailaddress validuseremailaddress = True break if not validuseremailaddress: users_list_email_tag_invalid.append(username) except Exception: pass access_keys = client.list_access_keys(UserName=username)['AccessKeyMetadata'] for access_key in access_keys: access_key_id = access_key['AccessKeyId'] masked_access_key_id = mask_access_key(access_key_id) existing_key_status = access_key['Status'] key_created_date = access_key['CreateDate'] age = key_age(key_created_date) # we only need to examine the currently Active and about to expire keys if existing_key_status == "Inactive": key_state = 'key is already in an INACTIVE state' key_info = {'accesskeyid': masked_access_key_id, 'age': age, 'state': key_state, 'changed': False} user_keys.append(key_info) continue key_state = '' key_state_changed = False if age < FIRST_WARNING_NUM_DAYS: key_state = KEY_YOUNG_MESSAGE elif age == FIRST_WARNING_NUM_DAYS: key_state = FIRST_WARNING_MESSAGE users_list_first_warning.append(username) if email_user_enabled and user_email_address: send_user_email(user_email_address, masked_access_key_id, FIRST_WARNING_MESSAGE) elif age == LAST_WARNING_NUM_DAYS: key_state = LAST_WARNING_MESSAGE users_list_last_warning.append(username) if email_user_enabled and user_email_address: send_user_email(user_email_address, masked_access_key_id, LAST_WARNING_MESSAGE) elif age >= KEY_MAX_AGE_IN_DAYS: key_state = KEY_EXPIRED_MESSAGE users_list_keys_deactivated.append(username) client.update_access_key(UserName=username, AccessKeyId=access_key_id, Status=KEY_STATE_INACTIVE) if email_user_enabled and user_email_address: send_user_email(user_email_address, masked_access_key_id, KEY_EXPIRED_MESSAGE) key_state_changed = True key_info = {'accesskeyid': masked_access_key_id, 'age': age, 'state': key_state, 'changed': key_state_changed} user_keys.append(key_info) users_report.append({'userid': userindex, 'username': username, 'keys': user_keys}) if THROTTLE > 0: time.sleep(THROTTLE) finished = str(datetime.now()) deactivated_report = {'reportdate': finished, 'users': users_report} if EMAIL_ADMIN_ENABLED: try: send_admin_completion_email(finished, deactivated_report) if len(users_list_keys_deactivated) > 0: send_admin_deactivate_email(users_list_keys_deactivated) if EMAIL_USER_CONFIG["emailaddressconfig"]["reportmissingtag"] and len(users_list_email_tag_invalid) > 0: send_admin_invaliduseremailaddress_email(users_list_email_tag_invalid) except: pass print(f'List of usernames notified with first warning: {users_list_first_warning}') print(f'List of usernames notified with last warning: {users_list_last_warning}') print(f'List of usernames whose keys were deactivated today: {users_list_keys_deactivated}') print(f'List of usernames who dont have a valid email tag: {users_list_email_tag_invalid}') print('*****************************') print(f'Completed (v{BUILD_VERSION}): {finished}') print('*****************************') return deactivated_report #if __name__ == "__main__": # event = 1 # context = 1 # lambda_handler(event, context) ```
{ "source": "jeremycote/ImageDatabase", "score": 3 }
#### File: ImageDatabase/src/Img2VecResnet18.py ```python import os import numpy as np import pandas as pd from PIL import Image import torch from torchvision import transforms from tqdm import tqdm from torchvision import models from numpy.testing import assert_almost_equal from typing import List from constants import PATH_IMAGES_CNN, PATH_IMAGES_RAW class Img2VecResnet18(): """ Class responsible for image recognition. """ def __init__(self, reload=False): """ Initialize class. Args: reload (bool): recompressed raw images for recognition. """ #: Torch device to run neural network self.device = torch.device("cpu") #: Number of features to extract from images self.numberFeatures = 512 #: Model to use for similarity self.modelName = "resnet-18" self.model, self.featureLayer = self.getFeatureLayer() self.model = self.model.to(self.device) self.model.eval() self.toTensor = transforms.ToTensor() self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.allVectors = {} #: Input Directory for building simularity matrix self.inputDir = PATH_IMAGES_CNN if reload: transformImages() self.updateSimilarityMatrix() def getFeatureLayer(self): """ Gets avgpool layer from `resnet18 <https://pytorch.org/hub/pytorch_vision_resnet/>`_ . """ cnnModel = models.resnet18(pretrained=True) layer = cnnModel._modules.get('avgpool') self.layer_output_size = 512 return cnnModel, layer def getVec(self, img: Image): """ Converts passed image into a numpy vector Args: img (Image): pillow image to convert Returns: Tensor as Numpy array """ image = self.normalize(self.toTensor(img)).unsqueeze(0).to(self.device) embedding = torch.zeros(1, self.numberFeatures, 1, 1) def copyData(m, i, o): embedding.copy_(o.data) h = self.featureLayer.register_forward_hook(copyData) self.model(image) h.remove() return embedding.numpy()[0, :, 0, 0] def getSimilarityMatrix(self, vectors): """ Create pandas DataFrame of simularities using passed vectors Args: vectors (Numpy.Array): Vectors to parse simularities Returns: Pandas.DataFrame """ v = np.array(list(vectors.values())).T sim = np.inner(v.T, v.T) / ((np.linalg.norm(v, axis=0).reshape(-1,1)) * ((np.linalg.norm(v, axis=0).reshape(-1,1)).T)) keys = list(vectors.keys()) matrix = pd.DataFrame(sim, columns = keys, index = keys) return matrix def updateSimilarityMatrix(self, k: int = 10): """ Updates self.SimilarityMatrix, self.similarNames, self.similarValues and self.k using parameter k. Args: k (int): Number of recommendations to present when querrying for simularities """ self.k = k for image in tqdm(os.listdir(self.inputDir)): I = Image.open(os.path.join(self.inputDir, image)) vec = self.getVec(I) self.allVectors[image] = vec I.close() self.similarityMatrix = self.getSimilarityMatrix(self.allVectors) self.similarNames = pd.DataFrame(index = self.similarityMatrix.index, columns = range(self.k)) self.similarValues = pd.DataFrame(index = self.similarityMatrix.index, columns = range(self.k)) for j in tqdm(range(self.similarityMatrix.shape[0])): kSimilar = self.similarityMatrix.iloc[j, :].sort_values(ascending = False).head(self.k) self.similarNames.iloc[j, :] = list(kSimilar.index) self.similarValues.iloc[j, :] = kSimilar.values def getSimilarImages(self, image: str): """ Gets self.k most similar images from self.similarNames. Args: image (str): filename of image for which recommendations are desired """ if image in set(self.similarNames.index): imgs = list(self.similarNames.loc[image, :]) vals = list(self.similarValues.loc[image, :]) # Don't recommend passed image if image in imgs: assert_almost_equal(max(vals), 1, decimal = 5) imgs.remove(image) vals.remove(max(vals)) return imgs, vals else: print("'{}' Unknown image".format(image)) def transformImages(inputDir = PATH_IMAGES_RAW, outputDir = PATH_IMAGES_CNN, filenames: List[str] = None): """ Process Images inside inputDir for use with neural network. Resized images are outputed to the outputDir. *Paths are absolute """ transformationForCNNInput = transforms.Compose([transforms.Resize((224,224))]) if filenames == None: filenames = os.listdir(inputDir) if not os.path.exists(outputDir): os.makedirs(outputDir) for imageName in filenames: imageOutputPath = os.path.join(outputDir, imageName) imagePath = os.path.join(inputDir, imageName) if not os.path.isfile(imageOutputPath): I = Image.open(imagePath) newI = transformationForCNNInput(I) if "exif" in I.info: exif = I.info['exif'] newI.save(imageOutputPath, exif=exif) else: newI.save(imageOutputPath) if __name__ == '__main__': transformImages() ```
{ "source": "jeremy-coulon/conan-package-tools", "score": 2 }
#### File: test/unit/packager_test.py ```python import os import platform import unittest import sys from collections import defaultdict from cpt.builds_generator import BuildConf from cpt.packager import ConanMultiPackager from conans import tools from conans.test.utils.tools import TestBufferConanOutput from conans.model.ref import ConanFileReference from cpt.test.unit.utils import MockConanAPI, MockRunner, MockCIManager def platform_mock_for(so): class PlatformInfoMock(object): def system(self): return so return PlatformInfoMock() class AppTest(unittest.TestCase): def setUp(self): self.runner = MockRunner() self.conan_api = MockConanAPI() self.ci_manager = MockCIManager() self.packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, reference="lib/1.0", ci_manager=self.ci_manager) if "APPVEYOR" in os.environ: del os.environ["APPVEYOR"] if "TRAVIS" in os.environ: del os.environ["TRAVIS"] def _add_build(self, number, compiler=None, version=None): self.packager.add({"os": "os%d" % number, "compiler": compiler or "compiler%d" % number, "compiler.version": version or "4.3"}, {"option%d" % number: "value%d" % number, "option%d" % number: "value%d" % number}) def test_remove_build_if(self): self.packager.add({"arch": "x86", "build_type": "Release", "compiler": "gcc", "compiler.version": "6"}) self.packager.add({"arch": "x86", "build_type": "Debug", "compiler": "gcc", "compiler.version": "6"}) self.packager.add({"arch": "x86", "build_type": "Release", "compiler": "gcc", "compiler.version": "7"}) self.packager.add({"arch": "x86", "build_type": "Debug", "compiler": "gcc", "compiler.version": "7"}) self.packager.remove_build_if(lambda build: build.settings["compiler.version"] == "6") packager_expected = ConanMultiPackager("lasote", "mychannel", runner=self.runner, conan_api=self.conan_api, reference="lib/1.0", ci_manager=self.ci_manager) packager_expected.add({"arch": "x86", "build_type": "Release", "compiler": "gcc", "compiler.version": "7"}) packager_expected.add({"arch": "x86", "build_type": "Debug", "compiler": "gcc", "compiler.version": "7"}) self.assertEqual([tuple(a) for a in self.packager.items], packager_expected.items) def test_update_build_if(self): self.packager.add({"os": "Windows"}) self.packager.add({"os": "Linux"}) self.packager.update_build_if(lambda build: build.settings["os"] == "Windows", new_build_requires={"*": ["7zip_installer/0.1.0@conan/stable"]}) packager_expected = ConanMultiPackager("lasote", "mychannel", runner=self.runner, conan_api=self.conan_api, reference="lib/1.0", ci_manager=self.ci_manager) packager_expected.add({"os": "Windows"}, {}, {}, {"*": ["7zip_installer/0.1.0@conan/stable"]}) packager_expected.add({"os": "Linux"}) self.assertEqual([tuple(a) for a in self.packager.items], packager_expected.items) def test_add_common_builds_update_build_if(self): self.packager.add_common_builds() self.packager.update_build_if(lambda build: build.settings["build_type"] == "Debug", new_options={"foo:bar": True}) self.packager.update_build_if(lambda build: build.settings["build_type"] == "Release", new_options={"foo:qux": False}) for settings, options, _, _, _ in self.packager.items: if settings["build_type"] == "Release": self.assertEqual(options, {"foo:qux": False}) else: self.assertEqual(options, {"foo:bar": True}) def test_full_profile(self): self.packager.add({"os": "Windows", "compiler": "gcc"}, {"option1": "One"}, {"VAR_1": "ONE", "VAR_2": "TWO"}, {"*": ["myreference/1.0@lasote/testing"]}) self.packager.run_builds(1, 1) profile = self.conan_api.get_profile_from_call_index(1) self.assertEquals(profile.settings["os"], "Windows") self.assertEquals(profile.settings["compiler"], "gcc") self.assertEquals(profile.options.as_list(), [("option1", "One")]) self.assertEquals(profile.env_values.data[None]["VAR_1"], "ONE") self.assertEquals(profile.env_values.data[None]["VAR_2"], "TWO") self.assertEquals(profile.build_requires["*"], [ConanFileReference.loads("myreference/1.0@lasote/testing")]) def test_profile_environ(self): self.packager.add({"os": "Windows", "compiler": "gcc"}, {"option1": "One"}, {"VAR_1": "ONE", "VAR_2": "TWO"}, {"*": ["myreference/1.0@lasote/testing"]}) with tools.environment_append({"CONAN_BUILD_REQUIRES": "br1/1.0@conan/testing"}): self.packager.run_builds(1, 1) profile = self.conan_api.get_profile_from_call_index(1) self.assertEquals(profile.build_requires["*"], [ConanFileReference.loads("myreference/1.0@lasote/testing"), ConanFileReference.loads("br1/1.0@conan/testing")]) def test_pages(self): for number in range(10): self._add_build(number) # 10 pages, 1 per build self.packager.run_builds(1, 10) self.conan_api.assert_tests_for([0]) # 2 pages, 5 per build self.conan_api.reset() self.packager.run_builds(1, 2) self.conan_api.assert_tests_for([0, 2, 4, 6, 8]) self.conan_api.reset() self.packager.run_builds(2, 2) self.conan_api.assert_tests_for([1, 3, 5, 7, 9]) # 3 pages, 4 builds in page 1 and 3 in the rest of pages self.conan_api.reset() self.packager.run_builds(1, 3) self.conan_api.assert_tests_for([0, 3, 6, 9]) self.conan_api.reset() self.packager.run_builds(2, 3) self.conan_api.assert_tests_for([1, 4, 7]) self.conan_api.reset() self.packager.run_builds(3, 3) self.conan_api.assert_tests_for([2, 5, 8]) def test_deprecation_gcc(self): with self.assertRaisesRegexp(Exception, "DEPRECATED GCC MINOR VERSIONS!"): ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, gcc_versions=["4.3", "5.4"], use_docker=True, reference="zlib/1.2.11", ci_manager=self.ci_manager) def test_32bits_images(self): packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, use_docker=True, docker_32_images=True, reference="zlib/1.2.11", ci_manager=self.ci_manager) packager.add({"arch": "x86", "compiler": "gcc", "compiler.version": "6"}) packager.run_builds(1, 1) self.assertIn("docker pull conanio/gcc6-x86", self.runner.calls[0]) self.runner.reset() packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, use_docker=True, docker_32_images=False, reference="zlib/1.2.11", ci_manager=self.ci_manager) packager.add({"arch": "x86", "compiler": "gcc", "compiler.version": "6"}) packager.run_builds(1, 1) self.assertNotIn("docker pull conanio/gcc6-i386", self.runner.calls[0]) self.runner.reset() with tools.environment_append({"CONAN_DOCKER_32_IMAGES": "1"}): packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, use_docker=True, reference="zlib/1.2.11", ci_manager=self.ci_manager) packager.add({"arch": "x86", "compiler": "gcc", "compiler.version": "6"}) packager.run_builds(1, 1) self.assertIn("docker pull conanio/gcc6-x86", self.runner.calls[0]) self.runner.reset() # Test the opossite packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, use_docker=True, docker_32_images=False, reference="zlib/1.2.11", ci_manager=self.ci_manager) packager.add({"arch": "x86", "compiler": "gcc", "compiler.version": "6"}) packager.run_builds(1, 1) self.assertIn("docker pull conanio/gcc6", self.runner.calls[0]) def test_docker_gcc(self): self.packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, gcc_versions=["4.3", "5"], use_docker=True, reference="zlib/1.2.11", ci_manager=self.ci_manager) self._add_build(1, "gcc", "4.3") self._add_build(2, "gcc", "4.3") self._add_build(3, "gcc", "4.3") self.packager.run_builds(1, 2) self.assertIn("docker pull conanio/gcc43", self.runner.calls[0]) self.assertIn('docker run ', self.runner.calls[1]) self.assertNotIn('sudo pip', self.runner.calls[1]) self.assertIn('pip install', self.runner.calls[1]) self.assertIn('os=os1', self.runner.calls[4]) self.packager.run_builds(1, 2) self.assertIn("docker pull conanio/gcc43", self.runner.calls[0]) # Next build from 4.3 is cached, not pulls are performed self.assertIn('os=os3', self.runner.calls[5]) for the_bool in ["True", "False"]: self.runner.reset() with tools.environment_append({"CONAN_DOCKER_USE_SUDO": the_bool}): self.packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, gcc_versions=["4.3", "5"], use_docker=True, reference="zlib/1.2.11", ci_manager=self.ci_manager) self._add_build(1, "gcc", "4.3") self.packager.run_builds(1, 2) if the_bool == "True": self.assertIn("sudo -E docker run", self.runner.calls[-1]) else: self.assertNotIn("sudo -E docker run", self.runner.calls[-1]) self.assertIn("docker run", self.runner.calls[-1]) self.runner.reset() with tools.environment_append({"CONAN_PIP_USE_SUDO": the_bool}): self.packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, gcc_versions=["4.3", "5"], use_docker=True, reference="zlib/1.2.11", ci_manager=self.ci_manager) self._add_build(1, "gcc", "4.3") self.packager.run_builds(1, 2) if the_bool == "True": self.assertIn("sudo -E pip", self.runner.calls[1]) else: self.assertNotIn("sudo -E pip", self.runner.calls[1]) self.assertIn("pip", self.runner.calls[1]) def test_docker_clang(self): self.packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, clang_versions=["3.8", "4.0"], use_docker=True, reference="zlib/1.2.11", ci_manager=self.ci_manager) self._add_build(1, "clang", "3.8") self._add_build(2, "clang", "3.8") self._add_build(3, "clang", "3.8") self.packager.run_builds(1, 2) self.assertIn("docker pull conanio/clang38", self.runner.calls[0]) self.assertIn('docker run ', self.runner.calls[1]) self.assertIn('os=os1', self.runner.calls[4]) # Next build from 3.8 is cached, not pulls are performed self.assertIn('os=os3', self.runner.calls[5]) def test_docker_gcc_and_clang(self): self.packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, gcc_versions=["5", "6"], clang_versions=["3.9", "4.0"], use_docker=True, reference="zlib/1.2.11", ci_manager=self.ci_manager) self._add_build(1, "gcc", "5") self._add_build(2, "gcc", "5") self._add_build(3, "gcc", "5") self._add_build(4, "clang", "3.9") self._add_build(5, "clang", "3.9") self._add_build(6, "clang", "3.9") self.packager.run_builds(1, 2) self.assertIn("docker pull conanio/gcc5", self.runner.calls[0]) self.assertIn('docker run ', self.runner.calls[1]) self.assertIn('os=os1', self.runner.calls[4]) self.assertIn('os=os3', self.runner.calls[5]) self.packager.run_builds(2, 2) self.assertIn("docker pull conanio/clang39", self.runner.calls[16]) self.assertIn('docker run ', self.runner.calls[17]) self.assertIn('os=os4', self.runner.calls[20]) self.assertIn('os=os6', self.runner.calls[21]) def test_upload_false(self): packager = ConanMultiPackager(username="lasote", channel="mychannel", upload=False, reference="zlib/1.2.11", ci_manager=self.ci_manager) self.assertFalse(packager._upload_enabled()) def test_docker_env_propagated(self): # test env with tools.environment_append({"CONAN_FAKE_VAR": "32"}): self.packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, gcc_versions=["5", "6"], clang_versions=["3.9", "4.0"], use_docker=True, reference="zlib/1.2.11", ci_manager=self.ci_manager) self._add_build(1, "gcc", "5") self.packager.run_builds(1, 1) self.assertIn('-e CONAN_FAKE_VAR="32"', self.runner.calls[-1]) def test_docker_home_env(self): with tools.environment_append({"CONAN_DOCKER_HOME": "/some/dir"}): self.packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, gcc_versions=["5", "6"], clang_versions=["3.9", "4.0"], use_docker=True, reference="zlib/1.2.11", ci_manager=self.ci_manager) self._add_build(1, "gcc", "5") self.packager.run_builds(1, 1) self.assertIn('-e CONAN_DOCKER_HOME="/some/dir"', self.runner.calls[-1]) self.assertEquals(self.packager.docker_conan_home, "/some/dir") def test_docker_home_opt(self): self.packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, gcc_versions=["5", "6"], clang_versions=["3.9", "4.0"], use_docker=True, docker_conan_home="/some/dir", reference="zlib/1.2.11", ci_manager=self.ci_manager) self._add_build(1, "gcc", "5") self.packager.run_builds(1, 1) self.assertEquals(self.packager.docker_conan_home, "/some/dir") def test_docker_invalid(self): self.packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, use_docker=True, reference="zlib/1.2.11", ci_manager=self.ci_manager) self._add_build(1, "msvc", "10") # Only clang and gcc have docker images self.assertRaises(Exception, self.packager.run_builds) def test_assign_builds_retrocompatibility(self): self.packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, gcc_versions=["4.3", "5"], use_docker=True, reference="lib/1.0", ci_manager=self.ci_manager) self.packager.add_common_builds() self.packager.builds = [({"os": "Windows"}, {"option": "value"})] self.assertEquals(self.packager.items, [BuildConf(settings={'os': 'Windows'}, options={'option': 'value'}, env_vars={}, build_requires={}, reference="lib/1.0@lasote/mychannel")]) def test_only_mingw(self): mingw_configurations = [("4.9", "x86_64", "seh", "posix")] builder = ConanMultiPackager(mingw_configurations=mingw_configurations, visual_versions=[], username="Pepe", platform_info=platform_mock_for("Windows"), reference="lib/1.0", ci_manager=self.ci_manager) with tools.environment_append({"CONAN_SHARED_OPTION_NAME": "zlib:shared"}): builder.add_common_builds(pure_c=True) expected = [({'compiler.exception': 'seh', 'compiler.libcxx': "libstdc++", 'compiler.threads': 'posix', 'compiler.version': '4.9', 'arch': 'x86_64', 'build_type': 'Release', 'compiler': 'gcc'}, {'zlib:shared': True}, {}, {'*': [ConanFileReference.loads("mingw_installer/1.0@conan/stable")]}), ({'compiler.exception': 'seh', 'compiler.libcxx': "libstdc++", 'arch': 'x86_64', 'compiler.threads': 'posix', 'compiler.version': '4.9', 'build_type': 'Debug', 'compiler': 'gcc'}, {'zlib:shared': True}, {}, {'*': [ConanFileReference.loads("mingw_installer/1.0@conan/stable")]}), ({'compiler.exception': 'seh', 'compiler.libcxx': "libstdc++", 'compiler.threads': 'posix', 'compiler.version': '4.9', 'arch': 'x86_64', 'build_type': 'Release', 'compiler': 'gcc'}, {'zlib:shared': False}, {}, {'*': [ConanFileReference.loads("mingw_installer/1.0@conan/stable")]}), ({'compiler.exception': 'seh', 'compiler.libcxx': "libstdc++", 'arch': 'x86_64', 'compiler.threads': 'posix', 'compiler.version': '4.9', 'build_type': 'Debug', 'compiler': 'gcc'}, {'zlib:shared': False}, {}, {'*': [ConanFileReference.loads("mingw_installer/1.0@conan/stable")]})] self.assertEquals([tuple(a) for a in builder.builds], expected) def test_named_pages(self): builder = ConanMultiPackager(username="Pepe", reference="zlib/1.2.11", ci_manager=self.ci_manager) named_builds = defaultdict(list) with tools.environment_append({"CONAN_SHARED_OPTION_NAME": "zlib:shared"}): builder.add_common_builds(pure_c=True) for settings, options, env_vars, build_requires, _ in builder.items: named_builds[settings['arch']].append([settings, options, env_vars, build_requires]) builder.named_builds = named_builds self.assertEquals(builder.builds, []) if platform.system() == "Darwin": # Not default x86 in Macos self.assertEquals(len(builder.named_builds), 1) self.assertFalse("x86" in builder.named_builds) self.assertTrue("x86_64" in builder.named_builds) else: self.assertEquals(len(builder.named_builds), 2) self.assertTrue("x86" in builder.named_builds) self.assertTrue("x86_64" in builder.named_builds) def test_remotes(self): runner = MockRunner() builder = ConanMultiPackager(username="Pepe", remotes=["url1", "url2"], runner=runner, conan_api=self.conan_api, reference="lib/1.0@lasote/mychannel", ci_manager=self.ci_manager) self.assertEquals(self.conan_api.calls[1].args[1], "url1") self.assertEquals(self.conan_api.calls[1].kwargs["insert"], -1) self.assertEquals(self.conan_api.calls[3].args[1], "url2") self.assertEquals(self.conan_api.calls[3].kwargs["insert"], -1) runner = MockRunner() self.conan_api = MockConanAPI() builder = ConanMultiPackager(username="Pepe", remotes="myurl1", runner=runner, conan_api=self.conan_api, reference="lib/1.0@lasote/mychannel", ci_manager=self.ci_manager) self.assertEquals(self.conan_api.calls[1].args[1], "myurl1") self.assertEquals(self.conan_api.calls[1].kwargs["insert"], -1) # Named remotes, with SSL flag runner = MockRunner() self.conan_api = MockConanAPI() remotes = [("u1", True, "my_cool_name1"), ("u2", False, "my_cool_name2")] builder = ConanMultiPackager(username="Pepe", remotes=remotes, runner=runner, conan_api=self.conan_api, reference="lib/1.0@lasote/mychannel", ci_manager=self.ci_manager) self.assertEquals(self.conan_api.calls[1].args[0], "my_cool_name1") self.assertEquals(self.conan_api.calls[1].args[1], "u1") self.assertEquals(self.conan_api.calls[1].kwargs["insert"], -1) self.assertEquals(self.conan_api.calls[1].kwargs["verify_ssl"], True) self.assertEquals(self.conan_api.calls[3].args[0], "my_cool_name2") self.assertEquals(self.conan_api.calls[3].args[1], "u2") self.assertEquals(self.conan_api.calls[3].kwargs["insert"], -1) self.assertEquals(self.conan_api.calls[3].kwargs["verify_ssl"], False) def test_visual_defaults(self): with tools.environment_append({"CONAN_VISUAL_VERSIONS": "10"}): builder = ConanMultiPackager(username="Pepe", platform_info=platform_mock_for("Windows"), reference="lib/1.0@lasote/mychannel", ci_manager=self.ci_manager) builder.add_common_builds() for settings, _, _, _, _ in builder.items: self.assertEquals(settings["compiler"], "Visual Studio") self.assertEquals(settings["compiler.version"], "10") with tools.environment_append({"CONAN_VISUAL_VERSIONS": "10", "MINGW_CONFIGURATIONS": "4.9@x86_64@seh@posix"}): builder = ConanMultiPackager(username="Pepe", platform_info=platform_mock_for("Windows"), reference="lib/1.0@lasote/mychannel", ci_manager=self.ci_manager) builder.add_common_builds() for settings, _, _, _, _ in builder.items: self.assertEquals(settings["compiler"], "gcc") self.assertEquals(settings["compiler.version"], "4.9") def test_multiple_references(self): with tools.environment_append({"CONAN_REFERENCE": "zlib/1.2.8"}): builder = ConanMultiPackager(username="Pepe", ci_manager=self.ci_manager) builder.add_common_builds(reference="lib/1.0@lasote/mychannel") for _, _, _, _, reference in builder.items: self.assertEquals(str(reference), "lib/1.0@lasote/mychannel") builder.add_common_builds(reference="lib/2.0@lasote/mychannel") for _, _, _, _, reference in builder.items: self.assertTrue(str(reference) in ("lib/1.0@lasote/mychannel", "lib/2.0@lasote/mychannel")) def test_select_defaults_test(self): with tools.environment_append({"CONAN_REFERENCE": "zlib/1.2.8"}): builder = ConanMultiPackager(platform_info=platform_mock_for("Linux"), gcc_versions=["4.8", "5"], username="foo", reference="lib/1.0@lasote/mychannel", ci_manager=self.ci_manager) self.assertEquals(builder.build_generator._clang_versions, []) with tools.environment_append({"CONAN_GCC_VERSIONS": "4.8, 5", "CONAN_REFERENCE": "zlib/1.2.8"}): builder = ConanMultiPackager(platform_info=platform_mock_for("Linux"), username="foo", reference="lib/1.0@lasote/mychannel", ci_manager=self.ci_manager) self.assertEquals(builder.build_generator._clang_versions, []) self.assertEquals(builder.build_generator._gcc_versions, ["4.8", "5"]) builder = ConanMultiPackager(platform_info=platform_mock_for("Linux"), clang_versions=["4.8", "5"], username="foo", reference="lib/1.0", ci_manager=self.ci_manager) self.assertEquals(builder.build_generator._gcc_versions, []) with tools.environment_append({"CONAN_CLANG_VERSIONS": "4.8, 5", "CONAN_APPLE_CLANG_VERSIONS": " "}): builder = ConanMultiPackager(platform_info=platform_mock_for("Linux"), username="foo", reference="lib/1.0", ci_manager=self.ci_manager) self.assertEquals(builder.build_generator._gcc_versions, []) self.assertEquals(builder.build_generator._clang_versions, ["4.8", "5"]) self.assertEquals(builder.build_generator._clang_versions, ["4.8", "5"]) self.assertEquals(builder.build_generator._apple_clang_versions, []) def test_upload(self): runner = MockRunner() runner.output = "arepo: myurl" builder = ConanMultiPackager(username="pepe", channel="testing", reference="Hello/0.1", password="password", upload="myurl", visual_versions=[], gcc_versions=[], apple_clang_versions=[], runner=runner, conan_api=self.conan_api, remotes="myurl, otherurl", platform_info=platform_mock_for("Darwin"), ci_manager=self.ci_manager) builder.add_common_builds() builder.run() # Duplicated upload remote puts upload repo first (in the remotes order) self.assertEqual(self.conan_api.calls[1].args[0], 'upload_repo') self.assertEqual(self.conan_api.calls[3].args[0], 'remote1') # Now check that the upload remote order is preserved if we specify it in the remotes runner = MockRunner() self.conan_api = MockConanAPI() builder = ConanMultiPackager(username="pepe", channel="testing", reference="Hello/0.1", password="password", upload="myurl", visual_versions=[], gcc_versions=[], apple_clang_versions=[], runner=runner, conan_api=self.conan_api, remotes="otherurl, myurl, moreurl", platform_info=platform_mock_for("Darwin"), ci_manager=self.ci_manager) builder.add_common_builds() builder.run() self.assertEqual(self.conan_api.calls[1].args[0], 'remote0') self.assertEqual(self.conan_api.calls[3].args[0], 'upload_repo') self.assertEqual(self.conan_api.calls[5].args[0], 'remote2') runner = MockRunner() self.conan_api = MockConanAPI() builder = ConanMultiPackager(username="pepe", channel="testing", reference="Hello/0.1", password="password", upload="myurl", visual_versions=[], gcc_versions=[], apple_clang_versions=[], runner=runner, conan_api=self.conan_api, remotes="otherurl", platform_info=platform_mock_for("Darwin"), ci_manager=self.ci_manager) builder.add_common_builds() builder.run() self.assertEqual(self.conan_api.calls[1].args[0], 'remote0') self.assertEqual(self.conan_api.calls[3].args[0], 'upload_repo') def test_build_policy(self): builder = ConanMultiPackager(username="pepe", channel="testing", reference="Hello/0.1", password="password", visual_versions=[], gcc_versions=[], apple_clang_versions=[], runner=self.runner, conan_api=self.conan_api, remotes="otherurl", platform_info=platform_mock_for("Darwin"), build_policy="outdated", ci_manager=self.ci_manager) builder.add_common_builds() builder.run() self.assertEquals(["outdated"], self.conan_api.calls[-1].kwargs["build_modes"]) for build_policy, expected in [("missing", ["missing"]), ("all",[])]: with tools.environment_append({"CONAN_BUILD_POLICY": build_policy}): self.conan_api = MockConanAPI() builder = ConanMultiPackager(username="pepe", channel="testing", reference="Hello/0.1", password="password", visual_versions=[], gcc_versions=[], apple_clang_versions=[], runner=self.runner, conan_api=self.conan_api, remotes="otherurl", platform_info=platform_mock_for("Darwin"), build_policy=build_policy, ci_manager=self.ci_manager) builder.add_common_builds() builder.run() self.assertEquals(expected, self.conan_api.calls[-1].kwargs["build_modes"]) def test_test_folder(self): builder = ConanMultiPackager(username="pepe", channel="testing", reference="Hello/0.1", password="password", visual_versions=[], gcc_versions=[], apple_clang_versions=[], runner=self.runner, conan_api=self.conan_api, remotes="otherurl", platform_info=platform_mock_for("Darwin"), test_folder="foobar", ci_manager=self.ci_manager) builder.add_common_builds() builder.run() self.assertEquals("foobar", self.conan_api.calls[-1].kwargs["test_folder"]) with tools.environment_append({"CONAN_BUILD_POLICY": "missing"}): self.conan_api = MockConanAPI() builder = ConanMultiPackager(username="pepe", channel="testing", reference="Hello/0.1", password="password", visual_versions=[], gcc_versions=[], apple_clang_versions=[], runner=self.runner, conan_api=self.conan_api, remotes="otherurl", platform_info=platform_mock_for("Darwin"), build_policy=None, ci_manager=self.ci_manager) builder.add_common_builds() builder.run() self.assertEquals(None, self.conan_api.calls[-1].kwargs["test_folder"]) def test_check_credentials(self): builder = ConanMultiPackager(username="pepe", channel="testing", reference="Hello/0.1", password="password", upload="myurl", visual_versions=[], gcc_versions=[], apple_clang_versions=[], runner=self.runner, conan_api=self.conan_api, platform_info=platform_mock_for("Darwin"), ci_manager=self.ci_manager) builder.add_common_builds() builder.run() # When activated, check credentials before to create the profiles self.assertEqual(self.conan_api.calls[2].name, 'authenticate') self.assertEqual(self.conan_api.calls[3].name, 'create_profile') self.conan_api = MockConanAPI() # If we skip the credentials check, the login will be performed just before the upload builder = ConanMultiPackager(username="pepe", channel="testing", reference="Hello/0.1", password="password", upload="myurl", visual_versions=[], gcc_versions=[], apple_clang_versions=[], runner=self.runner, conan_api=self.conan_api, platform_info=platform_mock_for("Darwin"), skip_check_credentials=True, ci_manager=self.ci_manager) builder.add_common_builds() builder.run() self.assertNotEqual(self.conan_api.calls[2].name, 'authenticate') # No upload, no authenticate self.conan_api = MockConanAPI() builder = ConanMultiPackager(username="pepe", channel="testing", reference="Hello/0.1", password="password", upload=None, visual_versions=[], gcc_versions=[], apple_clang_versions=[], runner=self.runner, conan_api=self.conan_api, platform_info=platform_mock_for("Darwin"), skip_check_credentials=True, ci_manager=self.ci_manager) builder.add_common_builds() builder.run() for action in self.conan_api.calls: self.assertNotEqual(action.name, 'authenticate') self.assertNotEqual(action.name, 'upload') def channel_detector_test(self): for branch, expected_channel in [("testing", "a_channel"), ("dummy", "a_channel"), ("stable", "stable"), ("stable/something", "stable"), ("release", "stable"), ("release/something", "stable"), ("master", "stable"), ("master/something", "a_channel")]: builder = ConanMultiPackager(username="pepe", channel="a_channel", reference="lib/1.0", ci_manager=MockCIManager(current_branch=branch)) self.assertEquals(builder.channel, expected_channel, "Not match for branch %s" % branch) def test_pip_conanio_image(self): self.packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, gcc_versions=["4.3", "5"], use_docker=True, docker_image='conanio/gcc43', reference="zlib/1.2.11", ci_manager=self.ci_manager) self._add_build(1, "gcc", "4.3") self.packager.run_builds(1, 2) self.assertNotIn("sudo -E pip", self.runner.calls[1]) self.assertIn("pip", self.runner.calls[1]) self.runner.reset() self.packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, gcc_versions=["4.3", "5"], docker_image='conanio/gcc43', reference="zlib/1.2.11", ci_manager=self.ci_manager) self._add_build(1, "gcc", "4.3") self.packager.run_builds(1, 2) self.assertNotIn("sudo -E pip", self.runner.calls[1]) self.assertIn("pip", self.runner.calls[1]) @unittest.skipIf(sys.platform.startswith("win"), "Requires Linux") def test_pip_docker_sudo(self): self.packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, gcc_versions=["4.3", "5"], docker_image='foobar/gcc43', reference="zlib/1.2.11", ci_manager=self.ci_manager) self._add_build(1, "gcc", "4.3") self.packager.run_builds(1, 2) self.assertIn("sudo -E pip", self.runner.calls[1]) self.runner.reset() with tools.environment_append({"CONAN_PIP_USE_SUDO": "True"}): self.packager = ConanMultiPackager(username="lasote", channel="mychannel", runner=self.runner, conan_api=self.conan_api, gcc_versions=["4.3", "5"], docker_image='conanio/gcc43', reference="zlib/1.2.11", ci_manager=self.ci_manager) self._add_build(1, "gcc", "4.3") self.packager.run_builds(1, 2) self.assertIn("sudo -E pip", self.runner.calls[1]) def test_regular_pip_command(self): """ CPT Should call `pip` when CONAN_PIP_PACKAGE or CONAN_PIP_INSTALL are declared. """ with tools.environment_append({"CONAN_USERNAME": "foobar", "CONAN_PIP_PACKAGE": "conan==1.0.0-dev", "CONAN_PIP_INSTALL": "foobar==0.1.0"}): output = TestBufferConanOutput() self.packager = ConanMultiPackager(username="lasote", channel="mychannel", reference="lib/1.0", ci_manager=self.ci_manager, out=output.write, conan_api=self.conan_api, runner=self.runner, exclude_vcvars_precommand=True) self.packager.add_common_builds() self.packager.run() self.assertIn("[pip_update]", output) self.assertIn(" pip install -q conan==1.0.0-dev", self.runner.calls) self.assertIn(" pip install -q foobar==0.1.0", self.runner.calls) def test_custom_pip_command(self): """ CPT should run custom `pip` path when CONAN_PIP_COMMAND is declared. """ pip = "pip3" if tools.which("pip3") else "pip2" with tools.environment_append({"CONAN_USERNAME": "foobar", "CONAN_PIP_PACKAGE": "conan==0.1.0", "CONAN_PIP_INSTALL": "foobar==0.1.0", "CONAN_PIP_COMMAND": pip}): output = TestBufferConanOutput() self.packager = ConanMultiPackager(username="lasote", channel="mychannel", reference="lib/1.0", ci_manager=self.ci_manager, out=output.write, conan_api=self.conan_api, runner=self.runner, exclude_vcvars_precommand=True) self.packager.add_common_builds() self.packager.run() self.assertIn("[pip_update]", output) self.assertIn(" {} install -q conan==0.1.0".format(pip), self.runner.calls) self.assertIn(" {} install -q foobar==0.1.0".format(pip), self.runner.calls) def test_invalid_pip_command(self): """ CPT should not accept invalid `pip` command when CONAN_PIP_COMMAND is declared. """ with tools.environment_append({"CONAN_USERNAME": "foobar", "CONAN_PIP_PACKAGE": "conan==0.1.0", "CONAN_PIP_COMMAND": "/bin/bash"}): output = TestBufferConanOutput() with self.assertRaises(Exception) as context: self.packager = ConanMultiPackager(username="lasote", channel="mychannel", reference="lib/1.0", ci_manager=self.ci_manager, out=output.write, conan_api=self.conan_api, runner=self.runner, exclude_vcvars_precommand=True) self.packager.add_common_builds() self.packager.run() self.assertTrue("CONAN_PIP_COMMAND: '/bin/bash' is not a valid pip command" in context.exception) self.assertNotIn("[pip_update]", output) def test_skip_recipe_export(self): def _check_create_calls(skip_recipe_export): not_export = "not_export" creates = self.conan_api.get_creates() if skip_recipe_export: # Only first call should export recipe self.assertFalse(self.assertFalse(creates[0].kwargs[not_export])) for call in creates[1:]: self.assertTrue(call.kwargs[not_export]) else: for call in creates: self.assertFalse(call.kwargs[not_export]) output = TestBufferConanOutput() packager = ConanMultiPackager(username="lasote", channel="mychannel", visual_versions=["12"], archs=["x86", "x86_64"], build_types=["Release"], reference="zlib/1.2.11", runner=self.runner, conan_api=self.conan_api, ci_manager=self.ci_manager, out=output.write) packager.add_common_builds() packager.run() _check_create_calls(False) with tools.environment_append({"CONAN_SKIP_RECIPE_EXPORT": "True"}): self.conan_api.reset() packager = ConanMultiPackager(username="lasote", channel="mychannel", visual_versions=["12"], archs=["x86", "x86_64"], build_types=["Release"], reference="zlib/1.2.11", runner=self.runner, conan_api=self.conan_api, ci_manager=self.ci_manager, out=output.write) packager.add_common_builds() packager.run() _check_create_calls(True) self.conan_api.reset() packager = ConanMultiPackager(username="lasote", channel="mychannel", visual_versions=["12"], archs=["x86", "x86_64"], build_types=["Release"], reference="zlib/1.2.11", runner=self.runner, conan_api=self.conan_api, ci_manager=self.ci_manager, skip_recipe_export=True, out=output.write) packager.add_common_builds() packager.run() _check_create_calls(True) def test_skip_recipe_export_docker(self): def _check_run_calls(skip_recipe_export): env_var = '-e CPT_SKIP_RECIPE_EXPORT="True"' run_calls = [call for call in self.runner.calls if "docker run --rm" in call] if skip_recipe_export: # Only first call should export recipe self.assertNotIn(env_var, run_calls[0]) for call in run_calls[1:]: self.assertIn(env_var, call) else: for call in run_calls: self.assertNotIn(env_var, call) output = TestBufferConanOutput() packager = ConanMultiPackager(username="lasote", channel="mychannel", gcc_versions=["9"], archs=["x86", "x86_64"], build_types=["Release"], reference="zlib/1.2.11", use_docker=True, runner=self.runner, conan_api=self.conan_api, ci_manager=self.ci_manager, out=output.write) packager.add_common_builds() packager.run() _check_run_calls(False) with tools.environment_append({"CONAN_SKIP_RECIPE_EXPORT": "True"}): self.runner.reset() packager = ConanMultiPackager(username="lasote", channel="mychannel", gcc_versions=["9"], archs=["x86", "x86_64"], build_types=["Release"], reference="zlib/1.2.11", use_docker=True, runner=self.runner, conan_api=self.conan_api, ci_manager=self.ci_manager, out=output.write) packager.add_common_builds() packager.run() _check_run_calls(True) self.runner.reset() packager = ConanMultiPackager(username="lasote", channel="mychannel", gcc_versions=["9"], archs=["x86", "x86_64"], build_types=["Release"], reference="zlib/1.2.11", use_docker=True, runner=self.runner, conan_api=self.conan_api, ci_manager=self.ci_manager, skip_recipe_export=True, out=output.write) packager.add_common_builds() packager.run() _check_run_calls(True) def test_lockfile(self): builder = ConanMultiPackager(username="pepe", channel="testing", reference="Hello/0.1", password="password", visual_versions=[], gcc_versions=[], apple_clang_versions=[], runner=self.runner, conan_api=self.conan_api, remotes="otherurl", platform_info=platform_mock_for("Darwin"), lockfile="foobar.lock", ci_manager=self.ci_manager) builder.add_common_builds() builder.run() self.assertEquals("foobar.lock", self.conan_api.calls[-1].kwargs["lockfile"]) with tools.environment_append({"CONAN_LOCKFILE": "couse.lock"}): self.conan_api = MockConanAPI() builder = ConanMultiPackager(username="pepe", channel="testing", reference="Hello/0.1", password="password", visual_versions=[], gcc_versions=[], apple_clang_versions=[], runner=self.runner, conan_api=self.conan_api, remotes="otherurl", platform_info=platform_mock_for("Darwin"), build_policy=None, ci_manager=self.ci_manager) builder.add_common_builds() builder.run() self.assertEquals("couse.lock", self.conan_api.calls[-1].kwargs["lockfile"]) ```
{ "source": "jeremycryan/7DRL-2021", "score": 3 }
#### File: jeremycryan/7DRL-2021/cue.py ```python class Cue: def __init__(self): pass def power_to_speed(self, power, ball=None): # Translate a power (0-100) to the ball's velocity. # Ball object passed in in case this depends on ball weight. return power*10 def on_hit(self, ball): # Apply some effect to ball on hit pass class BasicCue(Cue): pass ``` #### File: jeremycryan/7DRL-2021/main_menu_scene.py ```python from scene import Scene import pygame import constants as c from button import Button from level_scene import LevelScene class MainMenuScene(Scene): def __init__(self, game): super().__init__(game) self.background = pygame.image.load(c.image_path("splash.png")) self.background = pygame.transform.scale(self.background, c.WINDOW_SIZE) button_surf = pygame.image.load(c.image_path("start_button.png")) self.button = Button(button_surf, (c.WINDOW_WIDTH//2, c.WINDOW_HEIGHT - 100), "play gaem", self.on_button_click) self.is_over = False self.shade = pygame.Surface(c.WINDOW_SIZE) self.shade.fill(c.BLACK) self.shade.set_alpha(0) self.shade_alpha = 0 self.target_alpha = 0 self.game.player_lives = 3 self.game.player_max_lives = 3 self.game.music_started = None self.game.current_floor = 1 def next_scene(self): return LevelScene(self.game) def on_button_click(self): self.target_alpha = 255 def draw(self, surface, offset=(0, 0)): surface.blit(self.background, (0, 0)) self.button.draw(surface, *offset) self.shade.set_alpha(self.shade_alpha) surface.blit(self.shade, (0, 0)) def update(self, dt, events): self.button.update(dt, events) if self.target_alpha > self.shade_alpha: self.shade_alpha += dt * 800 if self.shade_alpha > self.target_alpha: self.shade_alpha = self.target_alpha self.is_over = True ``` #### File: jeremycryan/7DRL-2021/player.py ```python import math import pygame from ball import Ball from primitives import Pose from cue import Cue, BasicCue import constants as c from copy import copy class Player(Ball): def __init__(self, game, x=0, y=0): super().__init__(game, x, y) self.mass *= 1.05 self.color = (255, 255, 0) self.active_cue = BasicCue() self.is_player = True self.has_collided = False self.collided_with = None self.first_spawn = True self.perfect = pygame.image.load(c.image_path("perfect_room.png")) self.perfect_alpha = 0 def win_perfect(self): self.perfect_alpha = 255 def load_back_surface(self): self.back_surface = pygame.image.load(c.image_path("player_back.png")) def update(self, dt, events): for event in events: if event.type == pygame.MOUSEBUTTONUP: if event.button == 1: mouse_pose = Pose(pygame.mouse.get_pos(), 0) + self.game.current_scene.camera.pose my_pose = self.pose.copy() # TODO once camera movement exists, account for it self.cue_hit(mouse_pose - my_pose) super().update(dt, events) current_room = self.game.current_scene.current_room() #TODO make this check fake player in simulation floor_num = self.game.current_floor self.perfect_alpha -= 50 * dt if self.perfect_alpha < 128: self.perfect_alpha -= 150*dt if self.is_completely_in_room() and not current_room.enemies_have_spawned: self.velocity *= 0.03**dt if not self.game.in_simulation: if self.is_completely_in_room() and not current_room.enemies_have_spawned and self.game.current_scene.all_balls_below_speed() and current_room.doors_are_open: # if(floor_num == 1 and self.first_spawn): # current_room.doors_close() # current_room.spawn_enemies_first_room() # current_room.waves_remaining = 3 if(current_room.is_boss_room and floor_num != 1): current_room.doors_close() current_room.waves_remaining = 1 current_room.spawn_boss() else: current_room.doors_close() current_room.set_difficulty() current_room.spawn_enemies() elif current_room.enemies_have_spawned and not current_room.doors_are_open and self.game.current_scene.no_enemies() and current_room.waves_remaining >0: if (floor_num == 1 and self.first_spawn): current_room.spawn_enemies_first_room() else: current_room.spawn_enemies() elif current_room.enemies_have_spawned and not current_room.doors_are_open and self.game.current_scene.no_enemies(): if(self.first_spawn): self.first_spawn = False current_room.doors_open() def take_turn(self): pass def cue_hit(self, hit_vector): # TODO use self.knock, and account for cue type # self.velocity = hit_vector.copy() hit_vector *= -1 if self.turn_phase != c.BEFORE_HIT or not self.turn_in_progress: return elif self.turn_in_progress: self.turn_phase = c.AFTER_HIT angle = math.atan2(-hit_vector.y, hit_vector.x) * 180/math.pi power = hit_vector.magnitude()*0.55 if power > 110: power = 110 self.velocity *= 0 self.knock(self.active_cue, angle, power) def draw_prediction_line(self, screen, offset=(0, 0)): if self.sunk: return if not self.turn_in_progress or not self.turn_phase == c.BEFORE_HIT: return self.game.in_simulation = True player_copy = copy(self) player_copy.is_simulating = True player_copy.pose = self.pose.copy() player_copy.velocity = self.velocity.copy() player_copy.collide_with_other_ball_2 = player_copy.mock_collision mouse_pose = Pose(pygame.mouse.get_pos(), 0) + self.game.current_scene.camera.pose my_pose = self.pose.copy() player_copy.cue_hit(mouse_pose - my_pose) traveled = 0 positions = [] velocities = [] old = player_copy.pose.copy() final_position = None for i in range(c.SIM_ITERATIONS): new = player_copy.pose.copy() traveled += (new - old).magnitude() old = new if traveled > c.SIM_MAX_DIST: break if(c.VARIABLE_SIM_SPEED): near_wall = False if(c.SIM_NEAR_WALL_STEP_REDUCTION != 1): mapTiles = self.game.current_scene.map.tiles_near(player_copy.pose, player_copy.radius + c.SIM_MOVEMENT); for mapTile in mapTiles: if(mapTile.collidable): near_wall = True break if near_wall and player_copy.velocity.magnitude() >3: sim_update = (c.SIM_MOVEMENT / player_copy.velocity.magnitude() / c.SIM_NEAR_WALL_STEP_REDUCTION) elif player_copy.velocity.magnitude() > 1: sim_update = (c.SIM_MOVEMENT/player_copy.velocity.magnitude()) else: break sim_update = 1 / c.SIM_MIN_FPS if(sim_update> 1/1 / c.SIM_MIN_FPS): sim_update = 1 / c.SIM_MIN_FPS #mapTiles = self.game.current_scene.map.tiles_near(self.pose, self.radius + ); else: sim_update = 1 / c.SIM_FPS player_copy.update(sim_update, []) positions.append(player_copy.pose.copy()) velocities.append(player_copy.velocity.magnitude()) if player_copy.has_collided: final_position = player_copy.pose.copy() break if player_copy.velocity.magnitude() < 1: final_position = player_copy.pose.copy() break if player_copy.sunk: break if len(positions) > 1: final_direction = positions[-1] - positions[-2] else: final_direction = Pose((1, 0), 0) extra = c.SIM_MAX_DIST - traveled surf = pygame.Surface((3, 3)) surf.fill(c.BLACK) pygame.draw.circle(surf, c.WHITE, (surf.get_width()//2, surf.get_width()//2), surf.get_width()//2) alpha = 255 surf.set_colorkey(c.BLACK) i = -1 for pose in positions[::1]: i += 1 circle_diam = max(3, min(7, (velocities[i]/160))) surf = pygame.Surface((circle_diam, circle_diam)) surf.fill(c.BLACK) surf.set_colorkey(c.BLACK) pygame.draw.circle(surf, c.WHITE, (surf.get_width() // 2, surf.get_width() // 2), surf.get_width() // 2) surf.set_alpha(alpha) screen.blit(surf, (pose.x + offset[0] - surf.get_width()//2, pose.y + offset[1] - surf.get_width()//2)) offset_pose = Pose(offset, 0) if player_copy.collided_with: other = player_copy.collided_with to_other = other.pose - player_copy.pose angle = math.degrees(-math.atan2(to_other.y, to_other.x)) pointer = pygame.transform.rotate(self.pointer, angle) pointer_length = 100 start = other.pose - to_other*(1/to_other.magnitude())*other.radius + offset_pose end = start + to_other*(1/to_other.magnitude())*pointer_length pygame.draw.line(screen, c.WHITE, start.get_position(), end.get_position()) screen.blit(pointer, (end.x - pointer.get_width()//2, end.y - pointer.get_height()//2)) if final_position: final_position += offset_pose pygame.draw.circle(screen, c.WHITE, final_position.get_position(), player_copy.radius, 2) elif len(positions) >= 1: final = positions[-1] + offset_pose angle = math.degrees(-math.atan2(final_direction.y, final_direction.x)) pointer = pygame.transform.rotate(self.pointer, angle) end = final + final_direction*(1/(final_direction.magnitude()*extra + 1)) screen.blit(pointer, (end.x - pointer.get_width() // 2, end.y - pointer.get_height() // 2)) self.game.in_simulation = False def draw(self, screen, offset=(0, 0)): super().draw(screen, offset=offset) if self.perfect_alpha > 0: x = self.pose.x + offset[0] - self.perfect.get_width()//2 y = self.pose.y + offset[1] - self.perfect.get_height() - self.radius - 5 self.perfect.set_alpha(self.perfect_alpha) self.perfect.set_colorkey(c.BLACK) screen.blit(self.perfect, (x, y)) def sink_for_real(self): super().sink_for_real() self.game.current_scene.player_just_sunk() def mock_collision(self, other): #ONLY FOR MOCK BALL COLLISIONS if self.has_collided or other.is_player: return self.has_collided = True self.collided_with = other collision_normal = self.pose - other.pose collision_normal_unscaled = collision_normal.copy() #offset_required = (collision_normal.magnitude() - (self.radius + other.radius) ) / 1.95 #collision_normal.scale_to(1) #self.pose -= collision_normal * offset_required #other.pose += collision_normal * offset_required #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! collision_normal.scale_to(1) velocity_vector = self.velocity.copy() velocity_vector.scale_to(1) # self.pose += velocity_vector * (offset_required * math.cos(math.atan2(velocity_vector.y-collision_normal.y, velocity_vector.x-collision_normal.x))) dot_product_self_norm = collision_normal.x * velocity_vector.x + collision_normal.y * velocity_vector.y; if((collision_normal.magnitude() * velocity_vector.magnitude()) != 0): acos_input = dot_product_self_norm / (collision_normal.magnitude() * velocity_vector.magnitude()) if(acos_input>1): acos_input = 1 if(acos_input<-1): acos_input = -1 angle_vel = math.acos(acos_input) else: angle_vel = 1 angle_b = math.asin((math.sin(angle_vel) / (self.radius + other.radius)) * collision_normal_unscaled.magnitude()) angle_c = math.pi - (angle_b + angle_vel) if(math.sin(angle_vel)== 0): angle_vel = 1 interpolated_offset = ((self.radius + other.radius) / math.sin(angle_vel)) * math.sin(angle_c) # print("OFFSET :" + str(interpolated_offset) + " angle C: " + str(math.degrees(angle_c)) + " angle vel: " + str(math.degrees(angle_vel))) if(self.velocity.magnitude() + other.velocity.magnitude()) != 0: self.pose -= velocity_vector * abs(interpolated_offset) * (self.velocity.magnitude()/(self.velocity.magnitude() + other.velocity.magnitude())) #other.pose += velocity_vector * abs(interpolated_offset) * (other.velocity.magnitude()/(self.velocity.magnitude() + other.velocity.magnitude())) ```
{ "source": "jeremycryan/GameOff2020", "score": 3 }
#### File: GameOff2020/src/achievement_row.py ```python import random import pygame from primitives import GameObject, Pose import constants as c class AchievementRow(GameObject): class AchievementPanel(GameObject): def __init__(self, game, container, surface, points, description, requires=None, tags=None): super().__init__(game) self.container = container self.surface = pygame.transform.scale(surface, (c.ACHIEVEMENT_WIDTH, surface.get_height())).convert() self.points = points if c.DOUBLE_POINTS_MOD in self.game.modifications: self.points *= 2 self.description = description self.achieved = False self.tags = [] if tags is None else tags self.requires = {} if requires is None else requires self.blink = self.surface.copy() self.blink.fill(c.WHITE) self.blink.set_alpha(0) self.blink_alpha = 0 def update(self, dt, events): self.blink_alpha -= 300 * dt if self.blink_alpha < 0: self.blink_alpha = 0 pass def ship_can_score(self, ship): if self.requires.get(c.MOON, False): if not ship.has_hit_moon: return False required_nuggets = self.requires.get(c.NUGGET, 0) if len(ship.nuggets) < required_nuggets: return False return True def achieve(self, player): if self.achieved: return self.achieved = True self.game.current_scene.shake(15) base_color = self.surface.get_at((0, 0)) cover_surf = pygame.Surface((self.surface.get_width() - c.ACHIEVEMENT_POINTS_WIDTH, self.surface.get_height() - 3)) cover_surf.fill(base_color) self.surface.blit(cover_surf, (c.ACHIEVEMENT_POINTS_WIDTH, 0)) veil_surf = pygame.Surface((c.ACHIEVEMENT_WIDTH, self.surface.get_height()-3)) veil_surf.fill(c.BLACK) veil_surf.set_alpha(120) self.surface.blit(veil_surf, (0, 0)) veil_surf.fill(player.color) veil_surf.set_alpha(70) self.surface.blit(veil_surf, (0, 0)) font = self.game.small_font if len(player.name) < 15 else self.game.very_small_font font_render = font.render(player.name[:23].upper(), 0, player.color) y = self.surface.get_height()//2 - font_render.get_height()//2 x = (c.ACHIEVEMENT_WIDTH - c.ACHIEVEMENT_POINTS_WIDTH)//2 + c.ACHIEVEMENT_POINTS_WIDTH - font_render.get_width()//2 self.game.temp_scores[player.name] = self.game.temp_scores.get(player.name, 0) + self.points self.surface.blit(font_render, (x, y)) self.blink_alpha = 255 def draw(self, surface, offset=(0, 0)): shake_offset = self.game.current_scene.apply_screenshake((0, 0)) x = self.container.pose.x + offset[0] y = self.container.pose.y + offset[1] surface.blit(self.surface, (x, y)) if self.blink_alpha > 0: self.blink.set_alpha(self.blink_alpha) surface.blit(self.blink, (x, y)) def __init__(self, game, top_left_position=(0, 0)): super().__init__(game) self.pose = Pose(top_left_position, 0) self.achievements = self.default_achievements() self.label = pygame.image.load(c.IMAGE_PATH + "/achievement_box_header.png") self.label = pygame.transform.scale(self.label, (c.ACHIEVEMENT_LABEL_WIDTH, self.label.get_height())) self.body = pygame.image.load(c.IMAGE_PATH + "/achievement_box_body.png") self.body = pygame.transform.scale(self.body, (c.ACHIEVEMENT_LABEL_WIDTH, sum([item.surface.get_height() for item in self.achievements]) + 5 * (len(self.achievements) - 1) + 8)) def default_achievements(self): achievements = [ AchievementRow.AchievementPanel(self.game, self, pygame.image.load(c.IMAGE_PATH + "/achievement_1.png"), 1000, "land on moon", requires={c.MOON:True, c.NUGGET:0}, tags=[c.MOON_ACH]), AchievementRow.AchievementPanel(self.game, self, pygame.image.load(c.IMAGE_PATH + "/achievement_2.png"), 1500, "1 thing and land on moon", requires={c.MOON:True, c.NUGGET:1}, tags=[c.MOON_1_NUGGET_ACH]), AchievementRow.AchievementPanel(self.game, self, pygame.image.load(c.IMAGE_PATH + "/achievement_3.png"), 2500, "2 things and land on moon", requires={c.MOON:True, c.NUGGET:2}, tags=[c.MOON_2_NUGGET_ACH]) ] return achievements def update(self, dt, events): for item in self.achievements: item.update(dt, events) def get_height(self): return self.label.get_height() + self.body.get_height() def draw_box(self, surface, offset=(0, 0)): x = self.pose.x + offset[0] y = self.pose.y + offset[1] surface.blit(self.label, (x, y)) y += self.label.get_height() surface.blit(self.body, (x, y)) return y - self.pose.y def draw(self, surface, offset=(0, 0)): x = self.pose.x + c.SIDE_PANEL_WIDTH//2 - c.ACHIEVEMENT_WIDTH//2 y = self.draw_box(surface, offset) #surface.blit(self.label, (x, y)) for item in self.achievements: item.draw(surface, (x, y)) y += item.surface.get_height() + 5 def score_ship(self, ship): for achievement in self.achievements: if achievement.ship_can_score(ship): achievement.achieve(ship.player) def all_scored(self): return all([item.achieved for item in self.achievements]) ``` #### File: GameOff2020/src/death_particle.py ```python import random import pygame from particle import Particle import constants as c from primitives import Pose class DeathParticle(Particle): def __init__(self, game, ship): super().__init__(game) self.ship = ship self.pose = ship.pose.copy() self.velocity = Pose(((random.random() * 2 - 1) * 160, (random.random() * 2 - 1) * 160), random.random() * 360) + self.ship.velocity * 0.1 self.start_radius = 40 + random.random()*30 self.duration = 0.6 def get_scale(self): return 1 - self.through(loading=2.5) def get_alpha(self): return 255 * (1 - self.through(loading=1)) def update(self, dt, events): super().update(dt, events) self.pose += self.velocity * dt def draw(self, surface, offset=(0, 0)): radius = int(self.start_radius * self.get_scale()) surf = pygame.Surface((radius*2, radius*2)) surf.fill(c.BLACK) surf.set_colorkey(c.BLACK) pygame.draw.circle(surf, self.ship.player.color, (radius, radius), radius) x = self.pose.x - offset[0] - surf.get_width()//2 y = self.pose.y - offset[1] - surf.get_height()//2 surf.set_alpha(self.get_alpha()) surface.blit(surf, (x, y)) ``` #### File: GameOff2020/src/exhaust_particle.py ```python import pygame from particle import Particle from primitives import Pose import constants as c class ExhaustParticle(Particle): def __init__(self, game, ship): super().__init__(game) self.ship = ship size = 18 if c.DOUBLE_THRUST_MOD in self.game.modifications: size *= 1.5 self.surface = pygame.Surface((size, size)) self.surface.fill(c.BLACK) self.surface.set_colorkey(c.BLACK) pygame.draw.circle(self.surface, ship.player.color, (size//2, size//2), size//2) self.position = ship.pose.copy() self.position.add_pose(Pose((-20, 0), 0), 1, self.position) self.thrust = ship.thrust.copy() self.thrust_mag = self.thrust.magnitude() self.thrust.scale_to(-100) self.duration = 0.4 self.intensity = 1 - (1 - self.thrust_mag/100/c.THRUST)**3 def get_alpha(self): return (255 - self.through() * 255)*self.intensity def get_scale(self): return (1 - self.through())*self.intensity def update(self, dt, events): super().update(dt, events) rotated = self.thrust.copy() rotated.rotate_position(self.position.angle) self.position += rotated * dt * 3 * self.intensity self.position += self.ship.velocity * dt def draw(self, surface, offset=(0, 0)): x, y = self.position.x, self.position.y scale = self.get_scale() x += offset[0] - self.surface.get_width() * scale/2 y += offset[1] - self.surface.get_width() * scale/2 w = int(self.surface.get_width()*scale) h = int(self.surface.get_height()*scale) surf_to_blit = pygame.transform.scale(self.surface, (w, h)) surf_to_blit.set_alpha(self.get_alpha()) surface.blit(surf_to_blit, (x, y)) ``` #### File: GameOff2020/src/high_score_scene.py ```python import pygame import constants as c from scene import Scene from level_scene import LevelScene from high_score_table import HighScoreTable from transition_gui import TransitionGui class HighScoreScene(Scene): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) for player in self.game.players: if player not in [item.name for item in self.game.scoreboard.scores]: self.game.scoreboard.add_score(player, 0) self.board_offset = -c.WINDOW_HEIGHT self.table = HighScoreTable(self.game) self.table_all = HighScoreTable(self.game, hours_to_display=10**9) self.table.pose.x = c.WINDOW_WIDTH * 0.3 self.table_all.pose.x = self.table.pose.x self.age = 0 self.shade = pygame.Surface(c.WINDOW_SIZE) self.shade.fill(c.BLACK) self.shade_alpha = 255 self.scene_over = False self.side_gui = TransitionGui(self.game) pygame.mixer.music.set_volume(0.25) def next_scene(self): pygame.mixer.music.set_volume(1.0) return LevelScene(self.game) def update(self, dt, events): self.age += dt if self.age > 25 and self.board_offset < 0: speed = 4 d = abs(self.board_offset) self.board_offset += min(d * dt * speed, c.WINDOW_HEIGHT*dt*2) if self.board_offset > 0: self.board_offset = 0 for event in events: if event.type == pygame.KEYDOWN and event.key == pygame.K_RETURN: self.scene_over = True if self.side_gui.countdown_over(): self.scene_over = True self.table.update(dt, events) self.table_all.update(dt, events) self.side_gui.update(dt, events) for message in self.game.stream.queue_flush(): if message.text.lower() == '!recolor': if message.user in self.game.players: self.game.players[message.user].recolor() self.game.recolor_flag(message.user) elif message.text.lower() == '!score': board = self.game.scoreboard.get_total_by_player(c.SCORE_EXPIRATION) if message.user in board: score = self.game.scoreboard.get_total_by_player(c.SCORE_EXPIRATION)[message.user].score self.game.alertManager.alert("Your score is "+str(score), message.user) else: self.game.alertManager.alert("You have not played in the last " + str(c.SCORE_EXPIRATION) + " hours", message.user) elif message.text.lower()[:5] == "!vote": split = message.text.lower().split() if len(split) != 2: self.game.alertManager.alert("Invalid number of arguments for !vote", message.user) continue player_name = message.user argument = split[1] self.game.current_scene.side_gui.vote(player_name, argument) speed = 800 if self.scene_over: self.shade_alpha += speed*dt else: self.shade_alpha -= speed*dt self.shade_alpha = max(0, min(255, self.shade_alpha)) if self.scene_over and self.shade_alpha == 255: self.is_running = False def draw(self, surface, offset=(0, 0)): surface.fill(c.BLACK) surface.blit(self.table.background_surface, (0, 0)) self.table.draw(surface, (offset[0], offset[1] + self.board_offset + c.WINDOW_HEIGHT)) self.table_all.draw(surface, (offset[0], offset[1] + self.board_offset)) self.side_gui.draw(surface, offset) if self.shade_alpha > 0: self.shade.set_alpha(self.shade_alpha) surface.blit(self.shade, (0, 0)) ``` #### File: GameOff2020/src/scene.py ```python import pygame import constants as c from primitives import GameObject class Scene(GameObject): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.is_running = True def main(self): lag = 0 fps_queue = [] max_ticks_per_render = 5 while self.is_running: dt, events = self.game.update_globals() lag += dt ticks_this_render = 0 while lag > c.TICK_LENGTH: lag -= c.TICK_LENGTH self.update(c.TICK_LENGTH, events) ticks_this_render += 1 if ticks_this_render >= max_ticks_per_render: lag = 0 break self.draw(self.game.screen) fps_queue.append(1/dt) if len(fps_queue) > 20: self.game.fps = fps_queue + self.game.fps[:40] fps_queue = [] self.game.update_screen() def next_scene(self): raise NotImplementedError() ``` #### File: GameOff2020/src/ship.py ```python import random import pygame import constants as c from primitives import PhysicsObject, Pose from player import Player from exhaust_particle import ExhaustParticle from explosion import Explosion from death_particle import DeathParticle from wormhole_explosion import WormholeExplosion class Ship(PhysicsObject): def __init__(self, game, program_string, player, position=(0, 0), angle=90): super().__init__(game, position, angle) self.program_string = program_string self.program, info = self.parse_program(program_string) self.player = player self.age = 0 self.thrust = Pose((0,0), 0) self.commandIndex = 0 self.delay = 0 self.destroyed = False self.surface = self.get_surface() self.since_exhaust = 0 self.radius = 10 self.label = self.game.player_label_font.render(self.player.name, 0, self.player.color) self.label_back = pygame.Surface((self.label.get_width() + 10, self.label.get_height() + 10)) self.label_back.fill(c.BLACK) self.label_back.set_alpha(100) self.label_offset = Pose((0, -35), 0) self.label_pose = self.pose - self.label_offset self.way_surf = pygame.image.load(c.IMAGE_PATH + "/small_waypoint.png").convert() h = self.label_back.get_height() self.way_surf = pygame.transform.scale(self.way_surf, (h-2, h-2)) tint = self.way_surf.copy() tint.fill(self.player.color) self.way_surf.blit(tint, (0, 0), special_flags=pygame.BLEND_MULT) self.way_surf.set_colorkey(self.way_surf.get_at((0, 0))) self.way_back_surf = pygame.Surface((self.way_surf.get_width() + 5,self.label_back.get_height())) self.way_back_surf.fill(c.BLACK) self.way_back_surf.set_alpha(100) self.scale = 0 self.target_scale = 1 self.nuggets = set() self.has_hit_moon = False if self.player.name in self.game.player_flags: self.flag_surf = self.game.player_flags[self.player.name] else: self.flag_surf = pygame.image.load(c.IMAGE_PATH + "/flag.png").convert() tint = pygame.Surface((self.flag_surf.get_width(), self.flag_surf.get_height())) tint.fill(self.player.color) self.flag_surf.blit(tint, (0, 0), special_flags=pygame.BLEND_MULT) self.flag_surf.set_colorkey(self.flag_surf.get_at((0, 0))) self.game.player_flags[self.player.name] = self.flag_surf self.frozen_for = 0 self.last = False def freeze(self, amt): self.frozen_for = amt self.game.current_scene.particles.add(WormholeExplosion(self.game, self)) def is_frozen(self): frozen = self.frozen_for > 0 if not frozen and self.last: self.game.current_scene.particles.add(WormholeExplosion(self.game, self)) self.last = frozen return frozen def get_surface(self): surface = pygame.image.load(c.IMAGE_PATH + "/ship.png").convert() color_surf = pygame.Surface((surface.get_width(), surface.get_height())) color_surf.fill(self.player.color) surface.blit(color_surf, (0, 0), special_flags=pygame.BLEND_MULT) surface.set_colorkey(surface.get_at((surface.get_width()-1, surface.get_height()-1))) return surface def destroy(self): self.destroyed = True self.game.current_scene.particles.add(Explosion(self.game, self)) for i in range(8): self.game.current_scene.particles.add(DeathParticle(self.game, self)) self.game.current_scene.shake(20) self.game.ship_destroy_sound.play() def update(self, dt, events): self.age += dt self.frozen_for -= dt if self.is_frozen(): return super().update(dt, events) self.since_exhaust += dt exhaust_period = 0.05 if self.since_exhaust > exhaust_period: self.since_exhaust -= exhaust_period self.game.current_scene.particles.add(ExhaustParticle(self.game, self)) if self.delay > 0: self.delay = max(0, self.delay-dt) self.runCommands(dt) self.acceleration.clear() if c.SOLAR_WIND in self.game.modifications: if not hasattr(self.game, "solar_wind_direction"): self.game.solar_wind_direction = random.choice((c.UP, c.DOWN, c.LEFT, c.RIGHT)) wind_accel = Pose((self.game.solar_wind_direction), 0) self.acceleration += wind_accel * c.WIND_STRENGTH self.acceleration.add_pose(self.thrust, 1, frame=self.pose) if c.DOUBLE_THRUST_MOD in self.game.modifications: self.acceleration.add_pose(self.thrust, 1, frame=self.pose) for planet in self.game.current_scene.planets: self.acceleration.add_pose(planet.get_acceleration(self)) for nugget in self.game.current_scene.nuggets: nugget.test_collision(self) ds = self.target_scale - self.scale if ds < 0.01: self.scale = self.target_scale self.scale += ds * dt * 5 if self.pose.y < 120: self.label_offset = Pose((0, 35), 0) if self.pose.y > 150: self.label_offset = Pose((0, -35), 0) dl = self.pose - (self.label_pose - self.label_offset) self.label_pose += dl * dt * 12 if self.pose.x < 0 or self.pose.x > c.LEVEL_WIDTH or \ self.pose.y < 0 or self.pose.y > c.LEVEL_HEIGHT: self.destroy() def runCommands(self, dt): while self.delay <= 0 and self.commandIndex < len(self.program): command = self.program[self.commandIndex] if command[0] == 'd': # delay self.delay += command[1]/1000 if command[0] == 't': # thrust self.thrust = Pose((command[1]*c.THRUST, 0), 0) if command[0] == 'r': # rotate self.velocity.set_angle(command[1]) self.commandIndex += 1 def recolor(self): self.surface = self.get_surface() self.label = self.game.player_label_font.render(self.player.name, 0, self.player.color) self.way_surf = pygame.image.load(c.IMAGE_PATH + "/small_waypoint.png").convert() h = self.label_back.get_height() self.way_surf = pygame.transform.scale(self.way_surf, (h-2, h-2)) tint = self.way_surf.copy() tint.fill(self.player.color) self.way_surf.blit(tint, (0, 0), special_flags = pygame.BLEND_MULT) self.way_surf.set_colorkey(self.way_surf.get_at((0, 0))) self.way_back_surf = pygame.Surface((self.way_surf.get_width() + 5,self.label_back.get_height())) self.way_back_surf.fill(c.BLACK) self.way_back_surf.set_alpha(100) def draw(self, surface, offset=(0, 0)): if self.destroyed: return if self.label_pose.x < self.label_back.get_width()//2 + 10: self.label_pose.x = self.label_back.get_width()//2 + 10 if self.label_pose.x > c.LEVEL_WIDTH - self.label_back.get_width()//2 - 10: self.label_pose.x = c.LEVEL_WIDTH - self.label_back.get_width()//2 - 10 x = self.label_pose.x + offset[0] - self.label_back.get_width()//2 - len(self.nuggets) * self.way_back_surf.get_width()//2 y = self.label_pose.y + offset[1] - self.label_back.get_height()//2 if not self.is_frozen(): surface.blit(self.label_back, (x, y)) x += self.label_back.get_width() if not self.is_frozen(): for item in self.nuggets: surface.blit(self.way_back_surf, (x, y)) surface.blit(self.way_surf, (x, y+1)) x += self.way_back_surf.get_width() x = self.label_pose.x + offset[0] - self.label.get_width()//2 - len(self.nuggets) * self.way_back_surf.get_width()//2 y = self.label_pose.y + offset[1] - self.label.get_height()//2 if not self.is_frozen(): surface.blit(self.label, (x, y)) if self.scale == 0: return ship_surf = pygame.transform.scale(self.surface, (int(self.surface.get_width() * self.scale), int(self.surface.get_height() * self.scale))) ship_surf = pygame.transform.rotate(ship_surf, self.pose.angle) x = self.pose.x + offset[0] - ship_surf.get_width()//2 y = self.pose.y + offset[1] - ship_surf.get_height()//2 surface.blit(ship_surf, (x, y)) @staticmethod def parse_program(program_string): program_string = program_string[1:].lower().strip() + 'A' program = [] arguments = [] key = '' number = '' isNumber = False for char in program_string: if char == '.': print("Decimals not permitted") return [], "Decimals not permitted" elif char.isnumeric() or char == '-': isNumber = True number += char elif char.isalnum(): # terminate previous number if (len(number) == 1 or number[1:].isnumeric()) and \ (number[0].isdigit() or number[0] == '-') and \ (number != "-"): arguments.append(int(number)) number = '' elif number != '': print('Invalid number, "' + number + '"') return [], 'Invalid number, "' + number + '"' # terminate previous command if isNumber or char == 'A': if key in c.COMMANDS.values(): command = key elif key in c.COMMANDS: command = c.COMMANDS[key] else: print('Invalid command, "' + key + '"') return [], 'Invalid command, "' + key + '"' if len(arguments) != len(c.COMMANDS_MIN[command]): print("Invalid number of arguments for " + c.COMMANDS_LONG[command]) return [], "Invalid number of arguments for " + c.COMMANDS_LONG[command] for i, arg in enumerate(arguments): if arg < c.COMMANDS_MIN[command][i]: print(c.COMMANDS_LONG[command] + " was smaller than minimum value") return [], c.COMMANDS_LONG[command] + " was smaller than minimum value" if arg > c.COMMANDS_MAX[command][i]: print(c.COMMANDS_LONG[command] + " was greater than maximum value") return [], c.COMMANDS_LONG[command] + " was greater than maximum value" program.append((command, *arguments)) key = '' arguments = [] isNumber = False key += char elif char in " ,;": isNumber = True if number[1:].isnumeric() and \ (number[0].isdigit() or number[0] == '-'): arguments.append(int(number)) number = '' else: print('Invalid character, "' + char + '"') return [], 'Invalid character, "' + char + '"' return program, None if __name__ == '__main__': Ship.parse_program("t100t120 t100") ``` #### File: GameOff2020/src/start_scene.py ```python import pygame from scene import Scene import constants as c class StartScene(Scene): """ Display a black screen with a white circle for two seconds. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.age = 0 def update(self, dt, events): self.age += dt if self.age > 2: self.is_running = False def draw(self, surf, offset=(0, 0)): surf.fill(c.BLACK) pygame.draw.circle(surf, c.WHITE, (c.WINDOW_WIDTH//2, c.WINDOW_HEIGHT//2), c.WINDOW_HEIGHT//4) def next_scene(self): return None ``` #### File: GameOff2020/src/transition_gui.py ```python import math import random import pygame from primitives import GameObject, Pose from planet import Planet import constants as c class AlertBox(GameObject): def __init__(self, game, position, header, message, side_surface=None): super().__init__(game) self.age = 0 self.pose = Pose(position, 0) self.header = header self.message = message self.side_surface = side_surface self.generate_colors() self.load_surfs() self.max_width = self.top_surf.get_width() - c.ALERT_SIDE_PADDING * 2 if self.side_surface is not None: self.max_width -= self.side_surface.get_width() + c.ALERT_SIDE_PADDING self.header_surf = self.get_header_surface() self.message_surface = self.get_message_surface() def generate_colors(self): self.header_color = (255, 200, 200) self.body_color = (190, 160, 160) def get_header_surface(self): render = self.game.alert_header_font.render(self.header, 1, self.header_color) background = pygame.transform.scale(self.middle_surf, (self.middle_surf.get_width(), render.get_height() + 8)).convert() x = background.get_width()//2 - render.get_width()//2 if self.side_surface is not None: x += (self.side_surface.get_width() + c.ALERT_SIDE_PADDING)//2 background.blit(render, (x, 0)) return background def get_message_surface(self): message_surfaces = [] message_lines = self.message.split("\n") for line in message_lines: message_words = line.split() this_line = [] this_width = 0 for word in message_words: surface = self.game.alert_body_font.render(word, 1, self.body_color) if this_width + surface.get_width() > self.max_width: message_surfaces.append(this_line) this_line = [] this_width = 0 this_line.append(surface) this_width += surface.get_width() + c.ALERT_BODY_SPACE message_surfaces.append(this_line) total_height = c.ALERT_LINE_SPACING*(len(message_surfaces)) if self.side_surface is not None and total_height < self.side_surface.get_height() - self.header_surf.get_height(): total_height = self.side_surface.get_height() - self.header_surf.get_height() background = pygame.transform.scale(self.middle_surf, (self.middle_surf.get_width(), total_height)).convert() y = 0 for line in message_surfaces: line_width = sum([item.get_width() + c.ALERT_BODY_SPACE for item in line]) - c.ALERT_BODY_SPACE x = background.get_width()//2 - line_width//2 if self.side_surface is not None: x += self.side_surface.get_width()//2 + c.ALERT_SIDE_PADDING//2 for word in line: background.blit(word, (x, y)) x += word.get_width() + c.ALERT_BODY_SPACE y += c.ALERT_LINE_SPACING return background def load_surfs(self): self.top_surf = pygame.image.load(c.IMAGE_PATH + "/red_alert_box_top.png") self.middle_surf = pygame.image.load(c.IMAGE_PATH + "/red_alert_box_middle.png") self.bottom_surf = pygame.image.load(c.IMAGE_PATH + "/red_alert_box_bottom.png") def draw(self, surface, offset=(0, 0)): surfaces = [self.top_surf, self.header_surf, self.message_surface, self.bottom_surf] x = self.pose.x - self.top_surf.get_width()//2 + offset[0] y = self.pose.y - sum([item.get_height() for item in surfaces])//2 + offset[1] + 4 * math.sin(self.age * 2) y0 = y for piece in surfaces: surface.blit(piece, (x, y)) y += piece.get_height() if self.side_surface is not None: surface.blit(self.side_surface, (x + c.ALERT_SIDE_PADDING, y0 + self.top_surf.get_height() + self.header_surf.get_height()//2 + self.message_surface.get_height()//2 - self.side_surface.get_height()//2)) def update(self, dt, events): self.age += dt class GreenAlertBox(AlertBox): def generate_colors(self): self.header_color = (200, 230, 205) self.body_color = (150, 180, 160) def load_surfs(self): self.top_surf = pygame.image.load(c.IMAGE_PATH + "/green_alert_box_top.png") self.middle_surf = pygame.image.load(c.IMAGE_PATH + "/green_alert_box_middle.png") self.bottom_surf = pygame.image.load(c.IMAGE_PATH + "/green_alert_box_bottom.png") class PlayerMultiplierAlertBox(AlertBox): def __init__(self, game, position, header, message): self.background_color = (68, 35, 48) self.game = game self.generate_colors() side_surface = self.generate_multiplier_surface() super().__init__(game, position, header, message, side_surface=side_surface) self.age += 2 def generate_multiplier_surface(self): text = f"x{self.game.player_multiplier()}" render = self.game.alert_large_font.render(text, 1, self.header_color) surface = pygame.Surface((render.get_width(), 70)) surface.fill(self.background_color) surface.blit(render, (surface.get_width()//2 - render.get_width()//2, surface.get_height()//2 - render.get_height()//2)) return surface class VotingObject(GameObject): def __init__(self, game, parent, position, strings): super().__init__(game) self.parent = parent self.pose = Pose(position, 0) self.option_keys = c.OPTION_A, c.OPTION_B self.option_strings = {self.option_keys[i]: strings[i] for i in range(len(self.option_keys))} self.votes = {option:set() for option in self.option_keys} self.planet_dict = {option:Planet(self.game, (0, 0), radius=75, surf_det_size=50+i) for i, option in enumerate(self.option_keys)} self.color_dict = {c.OPTION_A:(255, 225, 200), c.OPTION_B:(200, 210, 255)} self.label_dict = {option_key:self.get_label_surf(option_key) for option_key in self.option_keys} self.cover = pygame.Surface((150, 150)) self.cover.fill(c.WHITE) pygame.draw.circle(self.cover, c.BLACK, (self.cover.get_width()//2, self.cover.get_height()//2), self.cover.get_width()//2) self.cover.set_colorkey(c.WHITE) self.cover.set_alpha(80) self.not_picked_cover = self.cover.copy() self.not_picked_cover.set_alpha(128) self.picked = None self.since_vote = {option:999 for option in self.option_keys} self.vfam = pygame.image.load(c.IMAGE_PATH + "/vote_for_a_modifier.png") def vote(self, player_name, option): option = option.upper() if option not in self.option_keys: return 0 for vote_option in self.votes: cur_votes = self.votes[vote_option] if player_name in cur_votes: cur_votes.remove(player_name) self.votes[option].add(player_name) self.since_vote[option] = 0 for option in self.label_dict: self.label_dict[option] = self.get_label_surf(option) return 1 def get_label_surf(self, option): text = f"!vote {option}" color = self.color_dict[option] render = self.game.alert_header_font.render(text, 1, color) count_text = str(len(self.votes[option])) count_render = self.game.alert_body_font.render(count_text, 1, color) background = pygame.image.load(c.IMAGE_PATH + "/vote_label_background.png").convert() tint = pygame.Surface((background.get_width(), background.get_height())) tint.fill(color) tint.set_alpha(10) background.blit(tint, (0, 0), special_flags=pygame.BLEND_MULT) background.set_colorkey(background.get_at((0, 0))) background.blit(render, (background.get_width()//2 - render.get_width()//2, background.get_height()//2 - render.get_height())) background.blit(count_render, (background.get_width()//2 - count_render.get_width()//2, background.get_height()//2)) return background def determine_winner(self): option_a_score = len(self.votes[c.OPTION_A]) option_b_score = len(self.votes[c.OPTION_B]) if option_a_score > option_b_score: self.picked = c.OPTION_A elif option_a_score < option_b_score: self.picked = c.OPTION_B else: self.picked = random.choice([c.OPTION_A, c.OPTION_B]) modification = self.option_strings[self.picked] self.game.modifications.append(modification) if modification is c.SOLAR_WIND: self.game.solar_wind_direction = random.choice([c.UP, c.DOWN, c.LEFT, c.RIGHT]) def draw_option(self, option_key, surface, offset=(0, 0)): planet = self.planet_dict[option_key] x = offset[0] y = offset[1] planet.pose.x = x planet.pose.y = y planet.align_graphic_pose() planet.draw(surface) surface.blit(self.cover, (x - self.cover.get_width()//2, y - self.cover.get_height()//2)) texts = [self.game.voting_planet_font.render(text, 0, c.BLACK) for text in self.option_strings[option_key].split()] backs = [pygame.Surface((text.get_width(), text.get_height())) for text in texts] for back in backs: back.fill(c.MAGENTA) for i, text in enumerate(texts): texts[i] = backs[i] texts[i].blit(text, (0, 0)) texts[i].set_colorkey(c.MAGENTA) texts[i].set_alpha(90) white_texts = [self.game.voting_planet_font.render(text, 1, c.WHITE) for text in self.option_strings[option_key].split()] total_height = sum([text.get_height() for text in texts]) y -= total_height//2 for white, black in zip(white_texts, texts): for offset in c.TEXT_BLIT_OFFSETS: surface.blit(black, (x - black.get_width()//2 + offset[0], y + offset[1])) surface.blit(white, (x - white.get_width()//2, y - 1)) y += black.get_height() if self.picked is not None and self.picked is not option_key: surface.blit(self.not_picked_cover, (planet.pose.x - self.cover.get_width()//2, planet.pose.y - self.cover.get_height()//2)) #if self.picked is None: y = planet.pose.y label = self.label_dict[option_key] label_scale = min(1, self.since_vote[option_key]*1.5 + 0.7) if self.picked is not None and self.picked != option_key: label_scale = max(0, 1 + self.time_left()*3) if label_scale != 0: label = pygame.transform.scale(label, (int(label.get_width() * label_scale), int(label.get_height() * label_scale))) surface.blit(label, (x - label.get_width()//2, y + 95 - label.get_height()//2)) def time_left(self): return self.parent.countdown.duration - 5 def draw(self, surface, offset): x = self.pose.x + offset[0] y = self.pose.y + offset[1] dist_apart = 200 self.draw_option(self.option_keys[0], surface, offset=(x-dist_apart//2, y)) self.draw_option(self.option_keys[1], surface, offset=(x+dist_apart//2, y)) surface.blit(self.vfam, (x - self.vfam.get_width()//2, y - c.WINDOW_HEIGHT*0.17)) def update(self, dt, events): for key in self.planet_dict: self.planet_dict[key].update(dt, events) for option in self.since_vote: self.since_vote[option] += dt if self.time_left() <= 0 and self.picked is None: self.determine_winner() class Countdown(GameObject): def __init__(self, game, position): super().__init__(game) self.duration = 50.999 # seconds self.pose = Pose(position, 0) self.color = (100, 110, 135) def update(self, dt, events): self.duration -= dt def over(self): return self.duration < 0 def to_string(self): if self.over(): return "0" else: return f"{int(self.duration)}" def draw(self, surface, offset=(0, 0)): text_surf = self.game.scoreboard_font.render("Next round in ", 1, self.color) surf = self.game.small_timer_font.render(self.to_string(), 1, self.color) width = text_surf.get_width() + surf.get_width() x = self.pose.x + offset[0] - width//2 y = self.pose.y + offset[1] scale = 0.6 + abs(math.sin(self.duration * math.pi)) * 0.4 scale = 1 - (1 - scale)**1.5 if self.duration < 0: scale = max(0, 0.7 + self.duration) scaled_surf = pygame.transform.scale(surf, (int(surf.get_width() * scale), int(surf.get_height() * scale))) surface.blit(scaled_surf, (x + text_surf.get_width() + surf.get_width()//2 - scaled_surf.get_width()//2, y - scaled_surf.get_height()//2)) surface.blit(text_surf, (x, y - text_surf.get_height()//2)) class TransitionGui(GameObject): def __init__(self, game): super().__init__(game) self.age = 0 self.width = c.WINDOW_WIDTH - c.SCORE_TABLE_WIDTH self.height = c.WINDOW_HEIGHT self.pose = Pose((c.SCORE_TABLE_WIDTH + self.width//2, c.WINDOW_HEIGHT//2), 0) self.objects = [] self.background = pygame.image.load(c.IMAGE_PATH + "/trans_gui_back.png") self.background = pygame.transform.scale(self.background, (self.width, self.height)) self.add_tip_box() self.add_player_mult_box() self.objects.append(Countdown(self.game, (0, c.WINDOW_HEIGHT*0.44))) self.countdown = self.objects[-1] mod_options = random.sample(c.MODIFICATIONS, 2) self.voting = VotingObject(self.game, self, (0, 0), mod_options) self.objects.append(self.voting) def countdown_over(self): return self.countdown.over() def add_tip_box(self): position = 0, c.WINDOW_HEIGHT*0.30 header = "Helpful hint" body = random.choice(c.HINTS) #ss = pygame.image.load(c.IMAGE_PATH + "/bang.png") self.objects.append(GreenAlertBox(self.game, position, header, body)) def add_player_mult_box(self): position = 0, -c.WINDOW_HEIGHT * 0.35 header = "Player party multiplier" if self.game.player_multiplier() == 0: choices = c.MULT_0_MESSAGES else: choices = c.MULT_MESSAGES body = random.choice(choices).replace("{num}", str(self.game.number_of_players_last_round())) self.objects.append(PlayerMultiplierAlertBox(self.game, position, header, body)) def vote(self, player, option): if self.voting.picked is None: self.game.vote_sound.play() return self.voting.vote(player, option) def update(self, dt, events): self.age += dt for item in self.objects: item.update(dt, events) def draw(self, surface, offset=(0, 0)): xoff = offset[0] + self.pose.x yoff = offset[1] + self.pose.y surface.blit(self.background, (xoff - self.width//2, yoff - self.height//2)) for item in self.objects: item.draw(surface, (xoff, yoff)) ```
{ "source": "jeremycryan/GGJ2022", "score": 3 }
#### File: jeremycryan/GGJ2022/game.py ```python import pygame import sys import math import constants as c from level_scene import LevelScene from title_scene import TitleScene class Game: def __init__(self): pygame.init() self.music = pygame.mixer.Sound(c.sound_path("birdsong.ogg")) self.music.set_volume(0.7) self.music.play(-1) self.place_bird_sound = pygame.mixer.Sound(c.sound_path("place_bird.wav")) self.place_bird_sound.set_volume(0.1) self.pick_up_bird_sound = pygame.mixer.Sound(c.sound_path("pick_up_bird.wav")) self.pick_up_bird_sound.set_volume(0.13) self.talk_sound = pygame.mixer.Sound(c.sound_path("pigeonhole_talk.wav")) self.talk_sound.set_volume(0.02) self.advance_dialogue_noise = pygame.mixer.Sound(c.sound_path("advance_dialog.wav")) self.advance_dialogue_noise.set_volume(0.1) self.try_again_noise = pygame.mixer.Sound(c.sound_path("try_again.wav")) self.try_again_noise.set_volume(0.1) self.change_bird_type = pygame.mixer.Sound(c.sound_path("change_bird_type.wav")) self.change_bird_type.set_volume(0.04) self.victory_sound = pygame.mixer.Sound(c.sound_path("victory.wav")) self.victory_sound.set_volume(0.2) self.screen = pygame.display.set_mode(c.WINDOW_SIZE) pygame.display.set_caption(c.TITLE) self.clock = pygame.time.Clock() self.since_shake = 0 self.shake_amt = 0 self.seen_rocks = False self.main() def shake(self, amt=15): self.shake_amt = max(amt, self.shake_amt) self.since_shake = 0 def get_shake_offset(self): xoff = math.cos(self.since_shake*40) * self.shake_amt yoff = math.sin(self.since_shake*25) * self.shake_amt return (xoff, yoff) def main(self): self.clock.tick(c.FPS) levels = [ "basic_2x2.yaml", "basic_3x3.yaml", "basic_4x4.yaml", "stairs_4x4.yaml", "circle_4x4.yaml", "hourglass_4x4.yaml", "fish_4x4.yaml", "turtles_3x3.yaml", "turtles_4x4.yaml", "turtles_5x5.yaml", "basic_5x5.yaml", "raven_5x5.yaml", "raven_6x6.yaml", "basic_6x6.yaml", "test_level.yaml", ] self.level = TitleScene(self) while True: dt = self.clock.tick(c.FPS)/1000 dt, events = self.get_events(dt) self.level.update(dt, events) self.level.draw(self.screen, self.get_shake_offset()) if self.level.done: if self.level.level_path == "basic_4x4.yaml": solved = self.level.grid.get_4x4_type() if solved and solved in levels: levels.remove(solved) self.level = LevelScene(self, levels.pop(0)) pygame.display.flip() def get_events(self, dt): events = pygame.event.get() for event in events: if event.type == pygame.QUIT: pygame.quit() sys.exit() self.since_shake += dt self.shake_amt *= 0.005**dt self.shake_amt -= 10*dt self.shake_amt = max(0, self.shake_amt) return dt, events if __name__=="__main__": Game() ``` #### File: jeremycryan/GGJ2022/principal.py ```python import pygame import constants as c class Principal: def __init__(self, lines, game): self.lines = lines self.current_line = 0 self.time_on_current_line = 0 self.game = game self.age = 0 self.gradient = pygame.image.load(c.image_path("gradient_2.png")) self.gradient = pygame.transform.scale(self.gradient, (c.WINDOW_WIDTH, self.gradient.get_height())) self.label = pygame.image.load(c.image_path("pigeonhole_label.png")) self.principal = pygame.image.load(c.image_path("principal_pigeonhole.png")) self.font = pygame.font.Font(c.font_path("micross.ttf"), 20) self.done = False self.since_tweet = 0 self.at = 1 def update(self, dt, events): self.age += dt if self.age < self.at: return self.since_tweet += dt if self.lines and int(self.time_on_current_line * c.CHARS_PER_SECOND) < len(self.lines[self.current_line]): if self. since_tweet > 0.12: self.game.talk_sound.play() self.since_tweet -= 0.12 self.time_on_current_line += dt for event in events: if event.type == pygame.MOUSEBUTTONDOWN: if event.button == 1: if not self.done and self.time_on_current_line * c.CHARS_PER_SECOND > len(self.lines[self.current_line]): self.time_on_current_line = 0 if len(self.lines) > 1: self.since_tweet = 0 self.lines.pop(0) else: self.lines = [] self.done = True self.game.advance_dialogue_noise.play() def draw(self, surface, offset=(0, 0)): yoff = self.done * (self.time_on_current_line**2 * 2500 - self.time_on_current_line * 300) pxoff = (self.time_on_current_line * 400) * self.done pyoff = (self.time_on_current_line**2 * 2400 - self.time_on_current_line * 1200) * self.done pspin = self.done * self.time_on_current_line * 600 if self.age < self.at: youngness = (1 - self.age/self.at) yoff = 300 * youngness**2 pxoff = -300 * youngness**2 pyoff = -300 * youngness**2 pspin = 60 * youngness**2 psurf = self.principal.copy() psurf = pygame.transform.rotate(psurf, pspin) surface.blit(self.gradient, (0, c.WINDOW_HEIGHT - self.gradient.get_height() + 50 + yoff), special_flags=pygame.BLEND_MULT) surface.blit(self.label, (-50 -yoff * 3, c.WINDOW_HEIGHT - 200), special_flags=pygame.BLEND_ADD) surface.blit(psurf, (105 + pxoff - psurf.get_width()//2, c.WINDOW_HEIGHT - 235 + pyoff - psurf.get_height()//2)) chars_to_show = int(self.time_on_current_line * c.CHARS_PER_SECOND) if self.lines: lines = self.lines[self.current_line][:chars_to_show].split("\n") else: lines = [] x = 200 y = c.WINDOW_HEIGHT - 120 for line in lines: surf = self.font.render(line, 0, (200, 160, 220)) surface.blit(surf, (x, y)) y += 24 pass ```
{ "source": "jeremycryan/LD46", "score": 3 }
#### File: jeremycryan/LD46/background.py ```python import pygame import constants as c class Background: def __init__(self, game): self.age = 0 self.game = game def update(self, dt, events): self.age += dt pass def draw(self, surface): pass class Caves(Background): def __init__(self, game): super().__init__(game) self.load_layers() self.upside_down_layers = [pygame.transform.rotate(layer, 180) for layer in self.layers] self.layer_factors = [0.2, 0.5, 0.8] self.speed = -300 self.x = 0 self.alpha = 0 self.target_alpha = 0 self.temp_surf = None self.since_full = 10 self.update_per = 3 def load_layers(self): rel = "cave" self.layer_1 = pygame.image.load(c.image_path(f"{rel}_layer_1.png")) self.layer_2 = pygame.image.load(c.image_path(f"{rel}_layer_2.png")) self.layer_3 = pygame.image.load(c.image_path(f"{rel}_layer_3.png")) self.layers = [self.layer_3, self.layer_2, self.layer_1] def fade_in(self): self.target_alpha = 150 def fade_out(self): self.target_alpha = 0 def update(self, dt, events): super().update(dt, events) self.since_full += 1 self.x += self.speed * dt da = self.target_alpha - self.alpha if da: self.alpha += da/abs(da) * 200 * dt if da > 0: self.alpha = min(self.target_alpha, self.alpha) else: self.alpha = max(self.target_alpha, self.alpha) def draw(self, surface): y = 0 base = pygame.Surface((self.layers[0].get_width(), self.layers[0].get_height()*2)) for i, layer in enumerate(self.layers): x = int((self.x * self.layer_factors[i]) % c.WINDOW_WIDTH) base.blit(layer, (x, y)) base.blit(layer, (x - layer.get_width(), y)) low_y = y + layer.get_height() low_layer = self.upside_down_layers[i] base.blit(low_layer, (x, low_y)) base.blit(low_layer, (x - low_layer.get_width(), low_y)) base.set_alpha(self.alpha) surface.blit(base, (0, 80)) class Ruins(Caves): def fade_in(self): self.target_alpha = 120 def load_layers(self): rel = "ruins" self.layer_1 = pygame.image.load(c.image_path(f"{rel}_layer_1.png")) self.layer_2 = pygame.image.load(c.image_path(f"{rel}_layer_2.png")) self.layer_3 = pygame.image.load(c.image_path(f"{rel}_layer_3.png")) self.layers = [self.layer_3, self.layer_2, self.layer_1] class Dungeon(Caves): def load_layers(self): rel = "dungeon" self.layer_1 = pygame.image.load(c.image_path(f"{rel}_layer_1.png")) self.layer_2 = pygame.image.load(c.image_path(f"{rel}_layer_2.png")) self.layer_3 = pygame.image.load(c.image_path(f"{rel}_layer_3.png")) self.layers = [self.layer_3, self.layer_2, self.layer_1] def draw(self, surface): if self.alpha <= 0: return y = 0 if not self.temp_surf or self.since_full > 1: self.temp_surf = pygame.Surface((self.layers[0].get_width(), self.layers[0].get_height()*2)) self.since_full = 0 for i, layer in enumerate(self.layers): x = int((self.x * self.layer_factors[i]) % c.WINDOW_WIDTH) self.temp_surf.blit(layer, (x, y)) self.temp_surf.blit(layer, (x - layer.get_width(), y)) self.temp_surf.set_alpha(self.alpha) surface.blit(self.temp_surf, (0, 80)) ``` #### File: jeremycryan/LD46/particle.py ```python import pygame import constants as c import random import math class Particle: def __init__(self, game, position): self.x, self.y = position if self.x > c.WINDOW_WIDTH + 200 or self.x < -200 or self.y > c.WINDOW_HEIGHT + 200 or self.y < -200: return game.particles.append(self) self.game = game def update(self, dt, events): pass def draw(self, surface): pass def destroy(self): if self in self.game.particles: self.game.particles.remove(self) class Bit(Particle): surfs = [] def __init__(self, game, position, color=c.WHITE): super().__init__(game, position) self.alpha = 255 self.body_font = pygame.font.Font(c.font_path("Myriad.otf"), 12) char = random.choice(["0", "1"]) self.surf = self.body_font.render(char, 0, color).convert() def update(self, dt, events): self.alpha -= 400 * dt if self.alpha <= 0: self.destroy() if self.x < -200 or self.x > c.WINDOW_WIDTH + 200: self.destroy() if self.y < -200 or self.y > c.WINDOW_HEIGHT + 200: self.destroy() def draw(self, surface): x, y = self.game.xy_transform(self.x, self.y) x -= self.surf.get_width()//2 y -= self.surf.get_height()//2 self.surf.set_alpha(self.alpha) surface.blit(self.surf, (x, y)) class Spark(Particle): def __init__(self, game, position, color=c.WHITE, width=3, speed=100, fade=600): super().__init__(game, position) self.alpha = 255 self.direction = random.random() * 360 self.speed = random.random() * speed self.width = width self.surf = pygame.Surface((width, width)) self.surf.fill(color) self.fade = fade def update(self, dt, events): self.alpha -= self.fade * dt if self.alpha <= 0: self.destroy() self.x += self.speed * dt * math.cos(self.direction * math.pi/180) self.y += -self.speed * dt * math.sin(self.direction * math.pi/180) def draw(self, surface): x, y = self.game.xy_transform(self.x, self.y) x -= self.surf.get_width()//2 y -= self.surf.get_height()//2 self.surf.set_alpha(self.alpha) surface.blit(self.surf, (x, y)) class SpeedyFlash(Particle): def __init__(self, game, direction, duration = 0.2): y = c.WINDOW_HEIGHT//2 x = c.WINDOW_WIDTH//2 if direction == c.LEFT: x = 0 elif direction == c.RIGHT: x = c.WINDOW_WIDTH elif direction == c.UP: y = 0 elif direction == c.DOWN: y = c.WINDOW_HEIGHT super().__init__(game, (x, y)) self.age = 0 self.duration = duration self.radius = 40 self.surf = pygame.Surface((self.radius * 2, self.radius * 2)) pygame.draw.circle(self.surf, c.PURPLE, (self.radius, self.radius), self.radius) self.surf.set_colorkey(c.BLACK) self.surf.set_alpha(255) def update(self, dt, events): super().update(dt, events) self.age += dt if self.age > self.duration: self.destroy() else: prop = (self.duration - self.age)/self.duration self.surf.set_alpha(prop * 150) self.radius = (1 - prop) * 100 + 40 def draw(self, surface): prev_alpha = self.surf.get_alpha() self.surf = pygame.Surface((self.radius * 2, self.radius * 2)) if prev_alpha is not None: lighten = 50 * prev_alpha/255 else: lighten = 100 color = min(255, c.PURPLE[0] + lighten), min(255, c.PURPLE[1] + lighten), min(255, c.PURPLE[2] + lighten) pygame.draw.circle(self.surf, color, (int(self.radius), int(self.radius)), int(self.radius)) self.surf.set_colorkey(c.BLACK) self.surf.set_alpha(prev_alpha) x, y = self.game.xy_transform(self.x, self.y) x -= self.surf.get_width()//2 y -= self.surf.get_height()//2 surface.blit(self.surf, (x, y)) ```
{ "source": "jeremycryan/LD47", "score": 3 }
#### File: jeremycryan/LD47/particle.py ```python import pygame import random from enemy import Enemy from sprite_tools import SpriteSheet, Sprite import constants as c class Particle: def __init__(self, game, surface, duration=None, position=(0, 0), velocity=(0, 0), rotation=0, drag = 0.05): self.game = game self.surf = surface self.duration = duration self.velocity = list(velocity) self.x, self.y = position self.rotation = rotation self.angle = random.random()*360 self.game.particles.add(self) self.drag = drag self.radius = 5 self.age = 0 self._bump_tile = Enemy.bump_tile self._check_tile_collisions = Enemy.check_tile_collisions def update(self, dt, events): self.velocity[0] *= self.drag**dt self.velocity[1] *= self.drag**dt self.x += self.velocity[0] * dt self.y += self.velocity[1] * dt self.angle += self.rotation * dt self.rotation *= 0.5**dt if self.duration is not None: self.duration -= dt if self.duration <= 0: self.destroy() self.age += dt self.check_tile_collisions() def bump_tile(self, *args, **kwargs): self._bump_tile(self, *args, **kwargs) def check_tile_collisions(self): self._check_tile_collisions(self) def destroy(self): self.game.particles.remove(self) def draw(self, surface, offset=(0, 0)): surf = pygame.transform.rotate(self.surf, self.angle) x = self.x - surf.get_width()//2 + offset[0] y = self.y - surf.get_height()//2 + offset[1] surface.blit(surf, (x, y)) class BulletHit(Particle): def __init__(self, game, position=(0, 0)): super().__init__(game, None, position=position) self.sprite = Sprite(16) anim = SpriteSheet(c.image_path("bullet_hit.png"), (8, 1), 8) self.sprite.add_animation({"Default": anim}) self.sprite.start_animation("Default") self.game.top_particles.add(self) surface = pygame.Surface((100, 100)) surface.fill((0, 0, 0)) pygame.draw.circle(surface, (255, 255, 255), (50, 50), 50) self.boom = surface self.boom.set_colorkey((0, 0, 0)) self.boom_alpha = 200 self.boom_size = 40 def update(self, dt, events): self.age += dt self.boom_alpha -= 1600*dt self.boom_size += 600*dt self.sprite.update(dt) if self.age > 0.4: self.destroy() def draw(self, surface, offset=(0, 0)): x = self.x + offset[0] y = self.y + offset[1] self.sprite.set_position((x, y)) self.sprite.draw(surface) boom = pygame.transform.scale(self.boom, (int(self.boom_size), int(self.boom_size))) boom.set_alpha(self.boom_alpha) surface.blit(boom, (x - self.boom_size//2, y - self.boom_size//2)) def destroy(self): super().destroy() self.game.top_particles.remove(self) class TrailBit(Particle): def __init__(self, game, owner, **kwargs): surface = pygame.Surface((24, 24)) surface.fill((0, 0, 0)) self.owner = owner color = (255, 255, 255) pygame.draw.circle(surface, color, (12, 12), 12) surface.set_colorkey((0, 0, 0)) super().__init__(game, surface, **kwargs) self.duration = 1 self.start_alpha = 50 def update(self, dt, events): super().update(dt, events) alpha = (self.duration - self.age)*self.start_alpha self.surf.set_alpha(alpha) if self.age > self.duration: self.destroy() ``` #### File: jeremycryan/LD47/powerup.py ```python import pygame import constants as c import math class Powerup: def __init__(self, game, surface, pos=(0, 0)): self.radius = 24 self.age = 0 self.game = game self.x, self.y = pos self.y_offset = -self.y self.surface = surface self.shadow = pygame.Surface((self.radius*2, self.radius*2)) self.shadow.fill((255, 255, 255)) self.shadow.set_colorkey((255, 255, 255)) self.shadow.set_alpha(40) self.landed = False pygame.draw.circle(self.shadow, (0, 0, 0), (self.radius, self.radius), self.radius) self.glow = self.game.get_static(c.image_path("glow.png")) def update(self, dt, events): self.age += dt if self.landed: self.y_offset = 6 * math.sin(self.age * 6) else: self.y_offset += 600*dt if self.y_offset >= 0: self.y_offset = 0 self.landed = True self.game.current_scene.shake(5) self.game.powerup_land_noise.play() self.check_collisions() def draw(self, surface, offset=(0, 0)): x = self.x + offset[0] - self.glow.get_width()//2 y = self.y + offset[1] - self.glow.get_height()//2 + self.y_offset - 30 surface.blit(self.glow, (x, y), special_flags = pygame.BLEND_RGBA_ADD) width = self.shadow.get_width() width -= 10 if (int(width + self.y_offset/2)) > 0: shadow = pygame.transform.scale(self.shadow, (int(width + self.y_offset/2), int(width + self.y_offset/2))) x = self.x + offset[0] - shadow.get_width()//2 y = self.y + offset[1] - shadow.get_height()//2 surface.blit(shadow, (x, y)) x = self.x + offset[0] - self.surface.get_width()//2 y = self.y + offset[1] - self.surface.get_height()//2 + self.y_offset - 30 surface.blit(self.surface, (x, y)) def check_collisions(self): for player in self.game.current_scene.players: if c.mag(player.x - self.x, player.y - self.y) < player.radius + self.radius and self.landed: self.collected_by(player) break def collected_by(self, player): self.game.powerup_collect_noise.play() self.game.powerups.remove(self) class FastSpinPowerup(Powerup): def __init__(self, game, pos=(0, 0)): surface = game.get_static(c.image_path("spin.png")) super().__init__(game, surface, pos=pos) def collected_by(self, player): super().collected_by(player) FastSpin(player) class SlipperySocksPowerup(Powerup): def __init__(self, game, pos=(0, 0)): surface = game.get_static(c.image_path("socks.png")) super().__init__(game, surface, pos=pos) def collected_by(self, player): super().collected_by(player) SlipperySocks(player) class DoubleShotPowerup(Powerup): def __init__(self, game, pos=(0, 0)): surface = game.get_static(c.image_path("double.png")) super().__init__(game, surface, pos=pos) def collected_by(self, player): super().collected_by(player) DoubleShot(player) class BouncyPowerup(Powerup): def __init__(self, game, pos=(0, 0)): surface = game.get_static(c.image_path("bouncy.png")) super().__init__(game, surface, pos=pos) def collected_by(self, player): super().collected_by(player) Bouncy(player) class FastShootingPowerup(Powerup): def __init__(self, game, pos=(0, 0)): surface = game.get_static(c.image_path("mandible.png")) super().__init__(game, surface, pos=pos) def collected_by(self, player): super().collected_by(player) FastShooting(player) class Effect: def __init__(self, owner): self.age = 0 self.owner = owner found = False for item in self.owner.effects: if item.id == self.id: item.age = 0 found = True break if not found: self.owner.effects.append(self) def update(self, dt, events): self.age += dt if self.age > self.duration: self.end() def end(self): self.owner.effects.remove(self) class FastSpin(Effect): def __init__(self, owner): self.id=c.FAST_SPINNING self.duration = 25 super().__init__(owner) self.name = "Caffeine" self.description = "Spin to win" self.mult = 2 self.icon = pygame.transform.scale2x(self.owner.game.get_static(c.image_path("spin_icon.png"))) class SlipperySocks(Effect): def __init__(self, owner): self.id=c.SLIPPERY_SOCKS self.name = "Slippery Socks" self.description = "There better be a bulk discount" self.duration = 18 super().__init__(owner) self.icon = pygame.transform.scale2x(self.owner.game.get_static(c.image_path("socks_icon.png"))) class DoubleShot(Effect): def __init__(self, owner): self.id=c.DOUBLE_SHOT self.name = "Double Shot" self.description = "For that special someone you really want to shoot twice" self.duration = 18 super().__init__(owner) self.icon = pygame.transform.scale2x(self.owner.game.get_static(c.image_path("double_icon.png"))) class Bouncy(Effect): def __init__(self, owner): self.id=c.BOUNCY self.name = "Bouncy Bullets" self.description = "When the collision code works correctly" self.duration = 18 super().__init__(owner) self.icon = pygame.transform.scale2x(self.owner.game.get_static(c.image_path("bouncy_icon.png"))) class FastShooting(Effect): def __init__(self, owner): self.id=c.FAST_SHOOTING self.name = "<NAME>" self.description = "Improves regurigation efficiency by 80% or more" self.duration = 25 super().__init__(owner) self.icon = pygame.transform.scale2x(self.owner.game.get_static(c.image_path("mandible_icon.png"))) ```
{ "source": "jeremycryan/ScoreSpace8", "score": 3 }
#### File: jeremycryan/ScoreSpace8/enemy.py ```python import constants as c import pygame import math from particle import Particle, Chunk, Fadeout import os import random import time lantern_surf = pygame.image.load(os.path.join(c.ASSETS_PATH, "lantern.png")) lantern_touched_surf = pygame.image.load(os.path.join(c.ASSETS_PATH, "lantern_touched.png")) big_lantern_surf = pygame.image.load(os.path.join(c.ASSETS_PATH, "big_lantern.png")) big_lantern_touched_surf = pygame.image.load(os.path.join(c.ASSETS_PATH, "big_lantern_touched.png")) perfect_surf = pygame.image.load(os.path.join(c.ASSETS_PATH, "perfect.png")) perfect_surf_large = pygame.transform.scale(perfect_surf, (perfect_surf.get_width()*2, perfect_surf.get_height()*2)) good_surf = pygame.image.load(os.path.join(c.ASSETS_PATH, "good.png")) okay_surf = pygame.image.load(os.path.join(c.ASSETS_PATH, "okay.png")) nope_surf = pygame.image.load(os.path.join(c.ASSETS_PATH, "nope.png")) class Enemy: def __init__(self, game, radius = 30, x=c.WINDOW_WIDTH//2, y=c.WINDOW_HEIGHT//2): self.game = game self.radius = radius self.x = x self.y = y self.angle = random.random() * 60 + 15 self.surf = lantern_surf self.draw_surf = pygame.transform.rotate(self.surf, self.angle) self.touched_surf = lantern_touched_surf self.touched_surf = pygame.transform.rotate(self.touched_surf, self.angle) # self.draw_surf.set_colorkey(c.BLACK) # self.touched_surf.set_colorkey(c.BLACK) self.touched = False self.launch_factor=1.0 self.glow = self.generate_glow() self.age = random.random() def generate_glow(self, radius=1.7): glow_radius = int(radius * self.radius) self.glow = pygame.Surface((glow_radius*2, glow_radius*2)) pygame.draw.circle(self.glow, c.WHITE, (glow_radius, glow_radius), glow_radius) self.glow.set_alpha(20) self.glow.set_colorkey(c.BLACK) return self.glow def update(self, dt, events): if self.y < self.game.y_offset - self.radius*3: self.remove() self.age += dt radius = 1.7 + 0.07*math.sin(self.age*25) if self.y < self.game.y_offset + 1.5*c.WINDOW_HEIGHT: self.glow = self.generate_glow(radius) def draw(self, surface): if self.y > self.game.y_offset + c.WINDOW_HEIGHT*2: return x, y = self.game.game_position_to_screen_position((self.x, self.y)) surface.blit(self.glow, (int(x - self.glow.get_width()//2), int(y - self.glow.get_height()//2))) if not self.touched: surface.blit(self.draw_surf, (int(x - self.draw_surf.get_width()/2), int(y - self.draw_surf.get_height()/2))) else: surface.blit(self.touched_surf, (int(x - self.draw_surf.get_width()/2), int(y - self.draw_surf.get_height()/2))) def touch(self): self.touched = True def remove(self): self.game.enemies.remove(self) def destroy(self, cut_prop=0.5): self.remove() angle = self.game.player.get_angle() cutoff = int(cut_prop*self.radius*2) top_offset = self.radius - cutoff//2 bottom_offset = -cutoff//2 angle_rad = -angle/180 * math.pi top_offset = (top_offset * math.sin(angle_rad), top_offset * math.cos(angle_rad)) bottom_offset = (bottom_offset * math.sin(angle_rad), bottom_offset * math.cos(angle_rad)) particle_surf = pygame.Surface((self.radius*2, cutoff)) particle_surf.blit(self.surf, (0, 0)) top_half = Particle(self.game, particle_surf, (self.x + top_offset[0], self.y + top_offset[1]), rotation=120, velocity=(-30, 500), angle=angle) self.game.particles.append(top_half) particle_surf = pygame.Surface((self.radius*2, self.radius*2 - cutoff)) particle_surf.blit(self.surf, (0, -cutoff)) bottom_half = Particle(self.game, particle_surf, (self.x + bottom_offset[0], self.y + bottom_offset[1]), rotation=-40, velocity=(60, 150), angle=angle) self.game.particles.append(bottom_half) self.game.particles.append(Fadeout(self.game, self.glow, (self.x, self.y))) for i in range(30): self.game.particles.append(Chunk(self.game, (self.x, self.y))) if abs(cut_prop - 0.5) < 0.02: self.glow.set_alpha(100) surf = perfect_surf.copy().convert() surf2 = perfect_surf_large.copy().convert() surf2.set_colorkey((255, 0, 255)) surf2.set_alpha(90) self.game.text_particles.append(Fadeout(self.game, surf2, (self.x, self.y), rate=200)) self.game.flare_up(60) self.game.tear_sound() elif abs(cut_prop - 0.5) < 0.25: surf = good_surf.copy().convert() self.game.bad_tear_sound() else: surf = okay_surf.copy().convert() self.game.bad_tear_sound() surf.set_colorkey((255, 0, 255)) surf.set_alpha(255) self.game.text_particles.append(Fadeout(self.game, surf, (self.x, self.y), rate=400)) class BigEnemy(Enemy): def __init__(self, game, x=c.WINDOW_WIDTH//2, y=c.WINDOW_HEIGHT//2): self.game = game self.radius = 40 self.x = x self.y = y self.angle = random.random() * 60 - 30 self.surf = big_lantern_surf self.draw_surf = pygame.transform.rotate(self.surf, self.angle) self.touched_surf = big_lantern_touched_surf self.touched_surf = pygame.transform.rotate(self.touched_surf, self.angle) self.touched = False self.launch_factor = 1.3 self.age = 0 self.glow = self.generate_glow() class TutorialEnemy(BigEnemy): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def draw(self, surface): super().draw(surface) def destroy(self, cut_prop=0.5): if abs(cut_prop - 0.5) < 0.02: super().destroy(cut_prop=cut_prop) else: self.game.nope.play() self.game.shake_effect(15) surf = nope_surf.copy().convert() surf.set_colorkey((255, 0, 255)) surf.set_alpha(255) self.game.text_particles.append(Fadeout(self.game, surf, (self.x, self.y), rate=400)) self.since_hit = 0 class SmallEnemy(Enemy): def __init__(self, game, x=c.WINDOW_WIDTH//2, y=c.WINDOW_HEIGHT//2): self.game = game self.radius = 35 self.x = x self.y = y self.angle = random.random() * 60 + 15 self.surf = pygame.image.load(os.path.join(c.ASSETS_PATH, "small_lantern.png")) self.draw_surf = pygame.transform.rotate(self.surf, self.angle) self.touched_surf = pygame.image.load(os.path.join(c.ASSETS_PATH, "small_lantern_touched.png")) self.touched_surf = pygame.transform.rotate(self.touched_surf, self.angle) self.touched = False self.launch_factor = 1.15 self.age = 0 self.glow = self.generate_glow() ```
{ "source": "jeremyCtown/block-is-hott", "score": 3 }
#### File: hott/hott_api/tests.py ```python from django.test import TestCase # Create your tests here. class BasicAPIViewTests(TestCase): """Class for testing views.""" def test_crime_correct(self): """Test.""" response = self.client.get('/api/v1/crime/') self.assertEqual(response.status_code, 200) def test_entertainment_correct(self): """Test.""" response = self.client.get('/api/v1/entertainment/') self.assertEqual(response.status_code, 200) def test_events_correct(self): """Test.""" response = self.client.get('/api/v1/events/') self.assertEqual(response.status_code, 200) def test_art_correct(self): """Test.""" response = self.client.get('/api/v1/art/') self.assertEqual(response.status_code, 200) def test_dirtiness_correct(self): """Test.""" response = self.client.get('/api/v1/dirtiness/') self.assertEqual(response.status_code, 200) def test_login_correct(self): """Test.""" response = self.client.get('/api/v1/login/') self.assertEqual(response.status_code, 405) def test_user_correct(self): """Test.""" response = self.client.get('/api/v1/user/') self.assertEqual(response.status_code, 200) ``` #### File: hott/hott_api/views.py ```python from rest_framework.authentication import TokenAuthentication from .serializers import UserSerializer from rest_framework.response import Response from rest_framework import generics, status from rest_framework.views import APIView from ipywidgets.embed import embed_minimal_html from traitlets.traitlets import TraitError from hott_overlays.models import Crimes, Entertainment, Events, Art, Dirtiness import gmaps import os import re class UserApi(generics.RetrieveAPIView, generics.CreateAPIView): permission_classes = '' # IsAuthenticated?? authentication_classes = (TokenAuthentication,) serializer_class = UserSerializer def retrieve(self, request, pk=None): if not pk: return Response( UserSerializer(request.user).data, status=status.HTTP_200_OK) return super().retrieve(request, pk) def post(self, request, format=None): serializer = UserSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class CrimeMap(APIView): """Crime map view that takes in our crime data and serves the response.""" authentication_classes = '' permission_classes = '' def get(self, request, format=None): """Get route for crime map.""" gmaps.configure(api_key=os.environ.get('MAPS_API')) locations = [] for each in Crimes.objects.all(): temp = [] temp.append(each.latitude) temp.append(each.longitude) locations.append(temp) try: heatmap_layer = gmaps.heatmap_layer(locations) except TraitError: heatmap_layer = gmaps.heatmap_layer([[47.465568160532435, -122.50131030799446]]) heatmap_layer.gradient = [ (0, 0, 0, 0.7), (255, 105, 180, 0.4), (255, 0, 0, 0.8) ] fig = gmaps.figure() fig.add_layer(heatmap_layer) embed_minimal_html('export.html', views=[fig]) export = open('export.html').read() return Response(export) class EntertainmentMap(APIView): """Entertainment map view that takes in our cultural centers and serves the response.""" authentication_classes = '' permission_classes = '' def get(self, request, format=None): """Get route for entertainment map.""" gmaps.configure(api_key=os.environ.get('MAPS_API')) locations = [] for each in Entertainment.objects.all(): temp = [] p = re.compile('[()°,]') # I know this is bad regex split_location = p.sub('', str(each.location)).split() try: if split_location[0] != 'None' or split_location[1] != 'None': temp.append(float(split_location[0])) temp.append(float(split_location[1])) locations.append(temp) except IndexError: pass try: heatmap_layer = gmaps.heatmap_layer(locations) except TraitError: heatmap_layer = gmaps.heatmap_layer([[47.465568160532435, -122.50131030799446]]) heatmap_layer.gradient = [ (0, 0, 0, 0.7), (255, 178, 102, 0.4), (255, 128, 0, 0.8) ] fig = gmaps.figure() fig.add_layer(heatmap_layer) embed_minimal_html('export.html', views=[fig]) export = open('export.html').read() return Response(export) class EventMap(APIView): """Event map view that takes in our Event data and serves the response.""" authentication_classes = '' permission_classes = '' def get(self, request, format=None): """Get route for Event map.""" gmaps.configure(api_key=os.environ.get('MAPS_API')) locations = [] for each in Events.objects.all(): temp = [] if each.latitude and each.longitude: temp.append(each.latitude) temp.append(each.longitude) locations.append(temp) try: heatmap_layer = gmaps.heatmap_layer(locations) except TraitError: heatmap_layer = gmaps.heatmap_layer([[47.465568160532435, -122.50131030799446]]) heatmap_layer.gradient = [ (0, 0, 0, 0.7), (255, 255, 153, 0.7), (255, 255, 0, 1) ] fig = gmaps.figure() fig.add_layer(heatmap_layer) embed_minimal_html('export.html', views=[fig]) export = open('export.html').read() return Response(export) class ArtMap(APIView): """Art map view that takes in our Art data and serves the response.""" authentication_classes = '' permission_classes = '' def get(self, request, format=None): """Get route for Art map.""" gmaps.configure(api_key=os.environ.get('MAPS_API')) locations = [] for each in Art.objects.all(): temp = [] if each.latitude and each.longitude: temp.append(each.latitude) temp.append(each.longitude) locations.append(temp) try: heatmap_layer = gmaps.heatmap_layer(locations) except TraitError: heatmap_layer = gmaps.heatmap_layer([[47.465568160532435, -122.50131030799446]]) heatmap_layer.gradient = [ (0, 0, 0, 0.7), (0, 153, 0, 0.4), (102, 255, 102, 0.8) ] fig = gmaps.figure() fig.add_layer(heatmap_layer) embed_minimal_html('export.html', views=[fig]) export = open('export.html').read() return Response(export) class DirtinessMap(APIView): """Dirtiness map view that takes in our Dirtiness data and serves the response.""" authentication_classes = '' permission_classes = '' def get(self, request, format=None): """Get route for Dirtiness map.""" gmaps.configure(api_key=os.environ.get('MAPS_API')) locations = [] for each in Dirtiness.objects.all(): temp = [] if each.latitude and each.longitude: temp.append(each.latitude) temp.append(each.longitude) locations.append(temp) try: heatmap_layer = gmaps.heatmap_layer(locations) except TraitError: heatmap_layer = gmaps.heatmap_layer([[47.465568160532435, -122.50131030799446]]) heatmap_layer.gradient = [ (0, 0, 0, 0.7), (255, 178, 102, 0.4), (102, 51, 0, 0.8) ] fig = gmaps.figure() fig.add_layer(heatmap_layer) embed_minimal_html('export.html', views=[fig]) export = open('export.html').read() return Response(export) ```
{ "source": "jeremyCtown/data-structures-and-algorithms", "score": 4 }
#### File: challenges/breadth-first-traversal/breadth_first_traversal.py ```python from queue import Queue from bst import BST as tree from node_bst import Node as node def breadth_first_traversal(tree): """ Prints out bst from top to bottom, left to right """ q = Queue() q.enqueue(tree.root) test = [] # for testing purposes only while q: temp = q.front out = q.dequeue().val.val print(out) test.append(out) # for testing purposes only if temp.val.left: q.enqueue(temp.val.left) if temp.val.right: q.enqueue(temp.val.right) return test ``` #### File: challenges/fifo-animal-shelter/pets.py ```python class Dog: """ Creates dog object """ def __init__(self): self.val = 'dog' def __repr__(self): return self.val class Cat: """ Creates cat object """ def __init__(self): self.val = 'cat' def __repr__(self): return self.val ``` #### File: challenges/multi-bracket-validation/multi_bracket_validation.py ```python from stack import Stack from node import Node as node def multi_bracket_validation(stuff): """ This is supposed to solve today's challenge... we'll see """ answer = True checker = Stack() openers = ['[', '{', '('] for i in stuff: if i in openers: checker.push(i) if i == ']': if checker.top.val == '[': checker.pop() continue else: answer = False break if i == '}': if checker.top.val == '{': checker.pop() continue else: answer = False break if i == ')': if checker.top.val == '(': checker.pop() continue else: answer = False break return answer ``` #### File: challenges/repeated-word/repeated_word.py ```python from hash_table import HashTable as ht def repeated_word(string): """Return the first word to appear twice in a string.""" new_string = string.split() table = ht() if len(new_string) < 1: return 'Empty string' for word in new_string: check_word = table.get(word) if len(check_word) == 1: return word table.set(word, 1) return 'No words repeat' ``` #### File: challenges/shift-array/shift_array.py ```python test_list = [3, 4, 5, 7, 8, 9] test_num = 6 class ShiftArray: """ new class to complete challenge """ def __init__(self, test_list, test_num): self.counter = 0 self.zero = 0 self.new_list = test_list + [0] self.insert_index = 0 self.splitter = 0 self.test_list = test_list self.test_num = test_num def increment_counter(self): """ Increments counter to equal list length """ for i in self.test_list: self.counter += 1 self.splitter = self.counter self.split_counter(self.splitter) return self.counter def split_counter(self, splitter): """ Divides counter in half """ self.insert_index = float(splitter)/2 self.insert_shift_array(self.test_list, self.test_num, self.insert_index) return self.insert_index def insert_shift_array(self, test_list, test_num, splitter): """ builds new list """ for i in test_list: if self.zero < splitter: self.new_list[self.zero] = i self.zero += 1 elif (splitter + 1) > self.zero >= splitter: self.new_list[self.zero] = test_num self.new_list[self.zero + 1] = i self.zero += 2 else: self.new_list[self.zero] = i self.zero += 1 print(self.new_list) return(self.new_list) if __name__ == '__main__': x = ShiftArray(test_list, test_num) x.increment_counter() ``` #### File: challenges/shift-array/test_shift_array.py ```python import pytest # import shift-array from shift_array import ShiftArray as SA @pytest.fixture def test_sa(): test_list = [3, 4, 5, 7, 8] test_num = 6 return SA(test_list, test_num) @pytest.fixture def other_sa(): test_list = [3, 4, 5, 7, 8, 9] test_num = 6 return SA(test_list, test_num) def test_sa_counter_list_len_odd(test_sa): """ function that tests to see if counter adds up based on list length """ assert test_sa.counter == 0 test_sa.increment_counter(test_sa.test_list) assert test_sa.counter == 5 def test_sa_counter_list_len_even(other_sa): """ function that tests to see if counter adds up based on list length """ assert other_sa.counter == 0 other_sa.increment_counter(other_sa.test_list) assert other_sa.counter == 6 def test_sa_insert_index_odd(test_sa): test_sa.split_counter(5) assert test_sa.insert_index == 2.5 def test_sa_insert_index_even(other_sa): other_sa.split_counter(6) assert other_sa.insert_index == 3 def test_sa_new_list_odd(test_sa): """ function to ensure empty list to populate is available """ test_sa.insert_shift_array(test_sa.test_list, test_sa.test_num, 2.5) assert test_sa.zero == 6 assert test_sa.new_list == [3, 4, 5, 6, 7, 8] def test_sa_new_list_even(other_sa): """ function to ensure empty list to populate is available """ other_sa.insert_shift_array(other_sa.test_list, other_sa.test_num, 3) assert other_sa.zero == 7 assert other_sa.new_list == [3, 4, 5, 6, 7, 8, 9] ``` #### File: data_structures/hash_table/hash_table.py ```python from hash_linked_list import LinkedList as LL class HashTable: """This is a hash table.""" def __init__(self, max_size=1024): """Initialize a hash_table.""" self.max_size = max_size self.buckets = [LL() for _ in range(self.max_size)] self._size = 0 def hash_key(self, key): """Generate a hash_key.""" if type(key) is not str: raise TypeError sum = 0 for char in key: sum += ord(char) return sum % len(self.buckets) def set(self, key, val): """Set a node into the hash table.""" self.buckets[self.hash_key(key)].append({key:val}) self._size += 1 def get(self, key, filter=None): """Return a node from a hash table.""" current = self.buckets[self.hash_key(key)].head result = [] while current: if key in current.val.keys(): result.append(current.val[key]) current = current._next return result def remove(self, key): """Remove value from bucket.""" bucket = self.buckets[self.hash_key(key)] current = bucket.head if current is None: raise ValueError('Key is not in hash table') if key in bucket.head.val.keys(): deleted = current bucket.head = current._next current = None self._size -= 1 return deleted while current: if key in current.val.keys(): deleted = current last._next = current._next current = None self._size -= 1 return deleted last = current current = current._next ``` #### File: linked_lists/ll-kth-from-end/ll_kth.py ```python from node import Node class LinkedList: """ initializes LL """ def __init__(self, iter=[]): self.head = None self._size = 0 for item in reversed(iter): self.insert(item) def __repr__(self): """ assumes head will have a val and we will need this """ return '<head> => {}'.format(self.head.val) def __str__(self): """ this is where we can see the list""" def __len__(self): """ returns size of LL """ return self._size def insert(self, val): """ basic insertion method for adding to front of LL """ self.head = Node(val, self.head) self._size += 1 def append(self, val): """ appends node to the end of the LL """ new_node = Node(val, None) current = self.head._next while current._next is not None: current._next = current._next._next if current._next._next is None: current._next._next = new_node new_node._next is None self._size += 1 return new_node._next def insert_before(self, val, new_val): """ inserts node before node at val """ new_node = Node(new_val) current = self.head._next while current._next is not None: if current._next.val == val: new_node._next = current._next current._next = new_node self._size += 1 break current = current._next if current._next is None: raise ValueError("Data not in list") def insert_after(self, val, new_val): """ inserts node after node at val """ new_node = Node(new_val) current = self.head._next while current._next is not None: if current.val == val: new_node._next = current._next._next current._next = new_node self._size += 1 break current = current._next if current._next is None: raise ValueError("Data not in list") def kth_from_end(self, k): """ returns node at kth from end """ if self._size - k < 0: raise AttributeError current = self.head for i in range(self._size - k - 1): current = current._next return current ``` #### File: linked_lists/ll-merge-lists/ll_merge.py ```python from node import Node class LinkedList: """ Doc strings are gud """ def __init__(self, iter=[]): self.head = None self._size = 0 self._current = self.head for item in reversed(iter): self.insert(item) def __repr__(self): """ assumes head will have a val and we will need this """ return '<head> => {}'.format(self.head.val) def __str__(self): """ this is where we can see the list""" def __len__(self): """ returns size of LL """ return self._size def insert(self, val): """ basic insertion method for adding to front of LL """ self.head = Node(val, self.head) self._size += 1 def append(self, val): """ appends node to the end of the LL """ new_node = Node(val, None) current = self.head._next while current._next is not None: current._next = current._next._next if current._next._next is None: current._next._next = new_node new_node._next is None self._size += 1 return new_node._next def find(self, val): """ Searches through a list for val and returns the node with that val """ current = self.head while current: if val == current.val: return True current = current._next return False def insert_before(self, val, new_val): """ inserts node before node at val """ new_node = Node(new_val) current = self.head._next while current._next is not None: if current._next.val == val: new_node._next = current._next current._next = new_node self._size += 1 break current = current._next if current._next is None: raise ValueError("Data not in list") def insert_after(self, val, new_val): """ inserts node after node at val """ new_node = Node(new_val) current = self.head._next while current._next is not None: if current.val == val: new_node._next = current._next._next current._next = new_node self._size += 1 break current = current._next if current._next is None: raise ValueError("Data not in list") def kth_from_end(self, k): """ returns node at kth from end """ current = self.head counter = 0 answer = 0 kth = self._size - k while current._next is not None: if counter == kth: answer = current break else: counter += 1 current = current._next return answer def merge_lists(ll_1, ll_2): """ merges two lists """ baselist = 0 zipped = 0 size = 0 if (ll_1._size >= ll_2._size): baselist = ll_1 zipped = ll_2 else: baselist = ll_2 zipped = ll_1 if zipped.head is None: return baselist.head current = baselist.head temp = current._next zipped = zipped.head while current._next is not None: current._next = zipped current = current._next current._next = temp temp = temp._next current = current._next zipped = zipped._next size += 1 return baselist.head ``` #### File: sorting_algos/mergesort/test_mergesort.py ```python import pytest from mergesort import mergesort, merge def test_empty_list_returns_empty_list(): """Test mergesort on empty list returns same.""" empty = [] assert mergesort(empty) == [] def test_list_with_one_value(): """Test mergesort on empty list returns same.""" lst = [8] assert mergesort(lst) == [8] def test_list_with_two_values(): """Test mergesort on empty list returns same.""" lst = [8, 3] assert mergesort(lst) == [3, 8] def test_list_with_odd_number_of_values(): """Test odd number of values returns ordered list.""" lst = [8, 3, 7, 9, 5] assert mergesort(lst) == [3, 5, 7, 8, 9] def test_list_with_unbalanced_halves(): """Test list heavy weighted on one half returns ordered list.""" lst = [2, 4, 3, 8, 1, 9, 10, 13] assert mergesort(lst) == [1, 2, 3, 4, 8, 9, 10, 13] def test_merge_merges_two_pairs(): """Test merge function separate of mergesort.""" L = [1, 3, 5] R = [2, 4, 6] assert merge(L, R) == [1, 2, 3, 4, 5, 6] def test_merge_merges_uneven_lists(): L = [1, 3, 5] R = [2, 4] assert merge(L, R) == [1, 2, 3, 4, 5] def test_merge_on_unbalanced_lists(): """Test list heavy weighted on one half returns ordered list.""" L = [2, 3, 4, 8] R = [1, 9, 10, 13] assert merge(L, R) == [1, 2, 3, 4, 8, 9, 10, 13] ```
{ "source": "jeremyCtown/pyramid-stock-portfolio", "score": 2 }
#### File: portfolio_of_stocks/tests/conftest.py ```python import pytest from pyramid import testing @pytest.fixture def dummy_request(): """ Creates empty dummy request to server """ return testing.DummyRequest() ``` #### File: portfolio_of_stocks/views/notfound.py ```python from pyramid.view import (notfound_view_config, forbidden_view_config) from pyramid.httpexceptions import HTTPFound @notfound_view_config(renderer='../templates/404.jinja2') def notfound_view(request): """ Returns 404 response if no route """ request.response.status = 404 return {} @forbidden_view_config(renderer='../templates/404.jinja2') def forbidden_view(request): """ Returns 404 response if route is forbidden """ request.response.status = 404 return {} ```
{ "source": "jeremyCtown/snakes-cafe", "score": 3 }
#### File: jeremyCtown/snakes-cafe/snakes_cafe.py ```python from uuid import uuid4 import csv intro = ''' ************************************** ** Welcome to the Snakes Cafe! ** ** Please see our menu below. ** ************************************** ''' order_prompt = ''' ********************************************************************** ** What would you like to order? ** ** To add an item to your order, type the item name ** ** To see the menu, type "menu" ** ** To order from togo menu, type "togo" ** ** To remove an item from your order, type the "remove <item name>" ** ** To see your current order, type "order" ** ** To checkout and pay, type "checkout" ** ** To quit at any time, type "quit" ** ********************************************************************** \n''' full_menu = { 'Appetizers': { 'Wings': [0, 2.00, 10], 'Calamari': [0, 2.00, 10], 'Spring Rolls': [0, 2.00, 10], 'Nachos': [0, 2.00, 10], 'Spinach Dip': [0, 2.00, 10], 'Sampler': [0, 2.00, 10], 'Mozz Sticks': [0, 2.00, 10], 'Corn Doggies': [0, 2.00, 10], 'Hummus': [0, 2.00, 10], 'Almonds': [0, 2.00, 10], 'Chips': [0, 2.00, 10], 'Oreos': [0, 2.00, 10] }, 'Entrees': { 'Salmon': [0, 10.00, 10], 'Steak': [0, 10.00, 10], 'Tacos': [0, 10.00, 10], 'Salad': [0, 10.00, 10], 'Pizza': [0, 10.00, 10], 'Vegetarian Delight': [0, 10.00, 10], 'Pasta': [0, 10.00, 10], 'Ribs': [0, 10.00, 10], 'Burrito': [0, 10.00, 10], 'Grilled Chicken': [0, 10.00, 10], 'Fried Fish': [0, 10.00, 10], 'S\'ghetti': [0, 10.00, 10] }, 'Sides': { 'French Fries': [0, 4.00, 10], 'Hush Puppies': [0, 4.00, 10], 'Green Beans': [0, 4.00, 10], 'Mashed Potatoes': [0, 4.00, 10], 'Corn': [0, 4.00, 10], 'Rolls': [0, 4.00, 10], 'Carrots': [0, 4.00, 10], 'Biscuits': [0, 4.00, 10], 'Mac and Cheese': [0, 4.00, 10], 'Spinach': [0, 4.00, 10], 'Asparagus': [0, 4.00, 10], 'Coleslaw': [0, 4.00, 10] }, 'Desserts': { 'Ice Cream': [0, 5.00, 10], 'Cake': [0, 5.00, 10], 'Pie': [0, 5.00, 10], 'Cookies': [0, 5.00, 10], 'Cheese': [0, 5.00, 10], 'Boozy Milkshake': [0, 5.00, 10], 'Sundae': [0, 5.00, 10], 'Gummi Bears': [0, 5.00, 10], 'Oranges': [0, 5.00, 10], 'Jello': [0, 5.00, 10], 'Boba': [0, 5.00, 10], 'Brownie': [0, 5.00, 10] }, 'Drinks': { 'Coffee': [0, 3.00, 10], 'Tea': [0, 3.00, 10], 'Beer': [0, 5.50, 10], '<NAME>': [0, 5.50, 10], 'Cider': [0, 5.50, 10], 'Bubbles': [0, 5.50, 10], 'Soda': [0, 3.00, 10], 'Juice': [0, 3.00, 10], 'Evian': [0, 1.00, 10], 'Wine': [0, 5.50, 10], 'Hunch Punch': [0, 5.50, 10], 'Seltzer': [0, 1.00, 10] } } togo_menu = {} def print_menu(): """ prints the restaurant menu """ menu_string = 'Menu:' for key, value in menu.items(): menu_string += '\n{}\n\n'.format(key) for k, v in value.items(): menu_string += k + '${:.2f}\n'.format(v[1]).rjust(25-len(k)) menu_string += '\n' print(menu_string) return menu_string def optional_menu(): """ allow user to use their own menu """ global menu global togo_menu filename = input('Enter your menu file: ').strip() try: with open(filename) as csvfile: reader = csv.DictReader(csvfile) unpacked = [] category = [] for row in reader: category = [row['Category']] unpacked += [[row['Item'], row['Category'], row['Price'], row['Quantity']]] togo_menu[category[0]] = {} for i in range(len(unpacked)): togo_menu[unpacked[i][1]].update({unpacked[i][0]: [0, float(unpacked[i][2]), int(unpacked[i][3])]}) except (KeyError, FileNotFoundError, IOError): print('Not a valid menu file; using default menu.') menu = togo_menu new_order.input_item() class Order: """ new class """ def __init__(self): self.order_id = uuid4() self.subtotal = 0 def __str__(self): return self.display_order() def __len__(self): counter = 0 for key, value in menu.items(): for k, v in value.items(): if v[0] != 0: counter += v[0] return counter def __repr__(self): print('<Order #{} | Items: {} | Total: ${:.2f}>'.format(self.order_id, self.__len__, self.subtotal * 1.101)) def print_category(self, order_line): """ prints category """ category_string = '\n{}\n'.format(order_line) for key, value in menu[order_line].items(): category_string += key + '${:.2f}\n'.format(value[1]).rjust(25-len(key)) print(category_string) return category_string def add_to_order(self, order_line): """ adds items to user order """ for key, value in menu.items(): if order_line in value: while True: try: order_quantity = int(input('How many orders of ' + order_line + ' would you like?\n> ')) if order_quantity > 0: self.add_item(order_line, order_quantity) else: print('Please enter a number between 1-' + str(value[order_line][2])) break except ValueError: print('Please enter a number between 1-' + str(value[order_line][2])) break else: print('Please enter a valid menu item') return 'Please enter a valid menu item' def add_item(self, order_line, order_quantity): """ adds items to user order """ for key, value in menu.items(): if order_line in value: if order_quantity != 0: if value[order_line][2] < order_quantity: print('Oh no!! We only have ' + str(value[order_line][2]) + ' left. Please order again') self.add_to_order(order_line) return else: value[order_line][0] += order_quantity self.subtotal += value[order_line][1] * order_quantity value[order_line][2] -= order_quantity else: value[order_line][0] += order_quantity self.subtotal += value[order_line][1] * order_quantity value[order_line][2] -= order_quantity print('{} x{} has been added. Your total is ${:.2f}\n'.format(order_line, order_quantity, self.subtotal * 1.101)) def remove_prompt(self, order_line): """ prompts self.remove from current order """ order_line = order_line.replace('Remove ', '') for key, value in menu.items(): if order_line in value: if value[order_line][0] != 0: while True: try: remove_quantity = int(input('You currently have {}x {} in your cart. Remove how many?\n>'.format(value[order_line][0], order_line))) if remove_quantity > value[order_line][0]: int(input('You only have {}x {} in your cart. Remove how many?\n>'.format(value[order_line][0], order_line))) else: self.remove_item(order_line, remove_quantity) break except ValueError: print('Please enter a number between 1-' + str(value[order_line][0])) else: print(order_line + ' is not in your order.') return order_line + ' is not in your order.' def remove_item(self, order_line, remove_quantity): """ removes item from current order """ for key, value in menu.items(): if order_line in value: value[order_line][0] -= remove_quantity self.subtotal -= value[order_line][1] * remove_quantity value[order_line][2] += remove_quantity print('{} x{} has been removed. Your total is ${:.2f}\n'.format(order_line, remove_quantity, self.subtotal * 1.101)) self.input_item() def display_order(self): """ provides display of user order """ order_string = '''\n*********************************************** The Snakes Cafe "Gettin' Slithered Since 1999" Seattle, WA Order #{} ===============================================\n'''.format(self.order_id) for key, value in menu.items(): for k, v in value.items(): if v[0] != 0: item = '{} x{}'.format(k, v[0]) order_string += item + '${:.2f}\n'.format(v[0] * v[1]).rjust(46-len(item)) order_string += '\n-----------------------------------------------\n' order_string += 'Subtotal' + '${:.2f}\n'.format(self.subtotal).rjust(46 - 8) order_string += 'Sales Tax' + '${:.2f}\n'.format(self.subtotal * 0.101).rjust(46 - 9) order_string += '-----------------------------------------------\n' order_string += 'Total Due' + '${:.2f}\n'.format(self.subtotal * 1.101).rjust(46 - 9) order_string += '***********************************************\n' print(order_string) return order_string def print_receipt(self): """ creates file of and prints user order """ with open('order-{}.txt'.format(self.order_id), 'w') as f: f.write(self.display_order()) def input_item(self): """ changes order according to user input """ global menu order_line = input('What would you like?\n> ').title() while order_line != 'Quit': if order_line == 'Order': self.display_order() elif 'Remove' in order_line: self.remove_prompt(order_line) elif order_line == 'Menu': if menu == full_menu: print_menu() else: menu = togo_menu print_menu() elif order_line == 'Togo': optional_menu() elif order_line == 'Checkout': self.print_receipt() elif order_line in menu: self.print_category(order_line) else: self.add_to_order(order_line) order_line = input('What would you like?\n> ').title() print('Thank you for coming by. See you soon!') quit() if __name__ == '__main__': print(intro) menu = full_menu print_menu() print(order_prompt) try: new_order = Order() new_order.input_item() except KeyboardInterrupt: print('\nThanks for visiting the Snake Cafe.') ```
{ "source": "jeremycward/ipp-core", "score": 2 }
#### File: arctic_broker/broker_impl/arctic_storage_method.py ```python from isharp.datahub.core import StorageMethod,MatrixHeader,Revision,AcquireContentReturnValue,MemStyles,RevisionInfo from typing import List import logging import dataclasses logging.basicConfig(level=logging.INFO) class ArcticStorageMethod(StorageMethod): def __init__(self,store): self.store = store super().__init__("arctic") def _lib_ticker(self,path): tokens = [ i for i in list(path.split('/')) if len(i)>0] library = tokens[0] ticker = '.'.join(tokens[1:]) logging.info("Arctic storage method converted path to libaray [{}], ticker [{}]".format(library,ticker)) if library in self.store.list_libraries(): lib = self.store[library] if lib.has_symbol(ticker): versioned = lib.read(ticker) return (library,ticker) else: raise StorageMethod.ResourceException("ticker {} not found".format(ticker)) else: raise StorageMethod.ResourceException("library {} not found in library list {}".format(library,self.store.list_libraries())) return (library, ticker) def acquireContent(self, path, params, version_id=None)->AcquireContentReturnValue: library, ticker = self._lib_ticker(path) lib = self.store[library] v = None if version_id is None else int(version_id) versioned = lib.read(ticker, v) header = MatrixHeader( name= path, revision_id= str(versioned.version), storage_method=self.name, path= path, memory_style=MemStyles.DATA_FRAME, description=None ) return AcquireContentReturnValue(content=versioned.data,header=header) def storeContent(self, path, params, content,revision_info)->Revision: library, ticker = self._lib_ticker(path) _store_content(self.store[library],ticker,content,revision_info) def history(self,matrix_url)->List[Revision]: library, ticker = self._lib_ticker(matrix_url.url_components.path) lib = self.store[library] meta = lib.read_metadata(ticker) logging.info("attempted to get history for : {},{} result = [{}]".format(library, ticker,meta)) if meta.metadata is None: return [] else: return get_revisions_from_metadata(meta.metadata) def list(self) -> List[MatrixHeader]: ret_val = [] for this_lib_name in self.store.list_libraries(): library = self.store[this_lib_name] for this_symbol in library.list_symbols(): versions = library.list_versions(this_symbol) filtered = [version for version in versions if not version['deleted']] max_version = max(map(lambda v: v['version'], filtered)) symbol_with_slashes = this_symbol.replace('.','/') ret_val.append(MatrixHeader(name=symbol_with_slashes, description="don't know yet", storage_method = self.name, memory_style = MemStyles.DATA_FRAME, revision_id = str(max_version), path="{}/{}".format(this_lib_name,symbol_with_slashes))) return ret_val history_tag = "revision_history" def add_revision_to_metadata(revision:Revision,metadata:dict,dict_key:str=history_tag): if metadata.get(dict_key) is None: metadata[dict_key] = [] metadata[dict_key].append(dataclasses.asdict(revision)) def _revision_from_dict(dict:dict)->Revision: #todo ... there must be a better whay of doing this ! revision_id = dict['id'] revision_info = dict["revision_info"] return Revision(revision_id,RevisionInfo(who=revision_info['who'],what=revision_info['what'],when=revision_info['when'])) def get_revisions_from_metadata(metadata:dict,dict_key:str=history_tag)->List[Revision]: revision_list = metadata[dict_key] logging.info("retrieved revision list from metadata: {}".format(revision_list)) if revision_list is not None: return [_revision_from_dict(i) for i in revision_list] else: return [] def import_pandas(lib, pd, symbol_name,revision_info): meta = {} add_revision_to_metadata(Revision('1', revision_info), meta) lib.write(symbol_name, pd, meta) def _store_content(lib,ticker,content,revision_info)->Revision: logging.info("storing content {} {}".format(lib, ticker)) original_meta_d = lib.read_metadata(ticker).metadata old_revisions = get_revisions_from_metadata(original_meta_d) last_revision = old_revisions[-1] next_revision_id = str(int(last_revision.id)+1) new_revision = Revision(next_revision_id,revision_info) add_revision_to_metadata(new_revision,original_meta_d) ret = lib.write(ticker,content,original_meta_d) return new_revision ``` #### File: datahub/broker_client/client_utils.py ```python import pandas as pd def header_cols(header): return (header.name, header.storage_method, header.path, str(header.memory_style), header.description) def mtx_headers_as_dataframe(matrix_headers): record_data = [header_cols(i) for i in matrix_headers] return pd.DataFrame.from_records(data= record_data, columns= ["name", "storage method", "path", "mem style", "description"]) ``` #### File: datahub/broker_client/remote_proxy.py ```python from typing import List from isharp.datahub.core import DataBroker, MatrixHeader, Matrix, AcquireContentReturnValue, Revision from isharp.datahub.core import MatrixPreview from isharp.datahub.core import RevisionInfo from urllib.parse import urlparse from nameko.standalone.rpc import ClusterRpcProxy import logging logger = logging.getLogger(__name__) def remote_config(net_location: str): return { 'serializer': 'pickle', 'AMQP_URI': 'pyamqp://guest:guest@{}'.format(net_location), 'rpc_exchange': 'nameko-rpc', 'max_workers': 10, 'parent_calls_tracked': 10 } class PooledBrokerConnection(DataBroker): def __init__(self, net_location: str): logger.info("creating remote client at {}".format(net_location)) conf = remote_config(net_location) self.rpc_proxy = ClusterRpcProxy(conf) self.proxy = self.rpc_proxy.start() self.net_location = net_location def releaseAll(self) -> None: logger.info("release all for remote client at {}".format(self.net_location)) self.proxy.data_broker_service.releaseAll() def stop(self): logger.info("closing remote client at {}".format(self.net_location)) self.rpc_proxy.stop() def commit(self, matrix: Matrix, revisionInfo: RevisionInfo) -> Revision: return self.proxy.data_broker_service.commit(matrix, revisionInfo) def history(self,url: str) -> List[Revision]: return self.proxy.data_broker_service.history(url) def list(self) -> List[MatrixHeader]: return self.proxy.data_broker_service.list() def checkout(self, url: str, version_id=None) -> Matrix: return self.proxy.data_broker_service.checkout(url) def view(self, url: str, version_id=None) -> Matrix: return self.proxy.data_broker_service.view(url) def release(self, matrix) -> None: self.proxy.data_broker_service.release(matrix) return None def peek(self, url) -> MatrixPreview: return self.proxy.data_broker_service.peek(url) class BrokerConnectionPool(DataBroker): def __init__(self): self.pool = {} def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): for thisConnection in self.pool.values(): thisConnection.stop() def _acquire_connection(self, connection_key): if connection_key not in self.pool.keys(): self.pool[connection_key] = PooledBrokerConnection(connection_key) return self.pool[connection_key] def _connect(self, url: str): connection_key = self._conn_details(url) return self._acquire_connection(connection_key) def _conn_details(self, url: str) -> str: url_components = urlparse(url) return url_components.netloc def checkout(self, url: str, version_id=None) -> Matrix: return self._connect(url).checkout(url, version_id) def history(self,url: str) -> List[Revision]: return self._connect(url).history(url) def view(self, url: str, version_id=None) -> Matrix: return self._connect(url).view(url, version_id) def commit(self, matrix: Matrix, revisionInfo: RevisionInfo) -> Revision: return self._connect(matrix.url.url).commit(matrix, revisionInfo) def release(self, matrix) -> None: self._connect(matrix.url.url).release(matrix) def releaseAll(self) -> None: for thisConnection in self.pool.values(): thisConnection.releaseAll() def peek(self, url) -> MatrixPreview: return self._connect(url).peek(url) def list(self, network_location): return self._acquire_connection(network_location).list() ``` #### File: datahub/broker_service/datahub_main.py ```python import re import sys import isharp.datahub.yaml_support as iYaml import nameko.cli.main import isharp.datahub.web.webconsole as web from multiprocessing import Process def main(): sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) iYaml.set_up_unsafe_loader() sys.exit(nameko.cli.main.main()) if __name__== "__main__" : main() ``` #### File: datahub/csv_files/simple_file_broker.py ```python from .file_storage_method import FileStorageMethod from isharp.datahub.core import AbstractDataBroker import logging class SimpleFileBroker(AbstractDataBroker): def __init__(self,root_directory): super().__init__(FileStorageMethod(root_directory)) ``` #### File: datahub/web/webconsole.py ```python from isharp.datahub.broker_client.remote_proxy import BrokerConnectionPool from flask import Flask, render_template import os import socket import json hostname=socket.gethostname() from flask import request templates_dir = os.getenv('isharp_web_templates', 'templates') static_dir = os.getenv('isharp_web_static', '/isharp-core/docs') tableContent = [ [ "plant/plough.gif" ,"plant/seed_and_sprout.gif" ,"plant/seed_sprouting.gif" ,"plant/sunny_sprout.gif" ,"plant/seeding_trailer.gif" ,"plant/wheat_seedling.gif" ] ,[ "feed/raindrops.gif" ,"feed/irrigation_pipe.gif" ,"feed/airplane_irrigation.gif" ,"feed/raindrop_with_cog.gif" ,"feed/feed_spreader.gif" ,"feed/raindrops.gif" ] ,["develop/measure_height.gif" ,"develop/seed_lab.gif" ,"develop/seed_time.gif" ,"develop/chemicals.gif" ,"develop/measure_height.gif" ,"develop/hay_bail.gif" ] ,["harvest/combine_harvester.gif" ,"harvest/bailing_tractor.gif" ,"harvest/grain_silo.gif" ,"harvest/thresher_trailer.gif" ,"harvest/mini_harvester.gif" ,"harvest/distillery.gif" ] ] print ("templates_dir: {}".format(templates_dir)) print ("static_dir: {} ? {}".format(static_dir,os.path.exists(static_dir))) app = Flask(__name__,template_folder=templates_dir, static_folder=static_dir) app.config["CACHE_TYPE"] = 'null' app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0 hub_host = os.getenv('isharp_hub_host', 'localhost:5672') isharp_dev_hostname = os.getenv('isharp_dev_hostname', 'isharpdev') @app.route('/') def static_content(): return render_template("index.html",table_images = tableContent, isharp_hostname=isharp_dev_hostname) @app.route('/datahub') def listing(): brokers = [["Demo Broker","Prod parallel demo broker"],["UAT","UAT broker"],["DEV","Dev broker"]] listings = [] with BrokerConnectionPool() as broker: for thisItem in broker.list(hub_host): listings.append(thisItem) return render_template('datahub_index.html',hostname="rabbit", my_list=listings,hub_host="Demo Data Broker", brokers=brokers) @app.route('/datahub/view/<path:path>', methods=['GET']) def view(path): databroker = BrokerConnectionPool() protocol = request.args.get('protocol') url = "{}://{}/{}".format(protocol,hub_host,path) mtx = databroker.view(url) row_data = [] dict_array = mtx.content.to_dict(orient='records') for idx, row in enumerate(dict_array): row["date"]=mtx.content.index[idx] row_data.append(row) column_headers = list(mtx.content) column_headers.insert(0,"date") history = databroker.history(url) return render_template('matrix.html', column_headers=column_headers, row_data = row_data, revision_list = history) ``` #### File: isharp/evalengine/core.py ```python import abc import luigi import time from nameko.rpc import rpc, RpcProxy from typing import List import logging from isharp.datahub.core import DatahubTarget logger = logging.getLogger(__name__) class EvalMethod(object): pass class Evaluator(abc.ABC): @abc.abstractmethod def eval(self, method:EvalMethod ,inputs: List[DatahubTarget])->List[DatahubTarget]: pass class EvalService(Evaluator): name="evaluation_service" @rpc def eval(self, method: EvalMethod, inputs: List[DatahubTarget]) -> List[DatahubTarget]: logger.info("START performing an eval....") time.sleep(1) logger.info("END performing an eval....") return [DatahubTarget(url="url",t=0)] ``` #### File: isharp/evalengine/remote_proxy.py ```python from typing import List from nameko.standalone.rpc import ClusterRpcProxy import logging import time from isharp.evalengine.core import Evaluator,EvalMethod from isharp.datahub.core import DatahubTarget logger = logging.getLogger(__name__) def remote_config(net_location: str): return { 'serializer': 'pickle', 'AMQP_URI': 'pyamqp://guest:guest@{}'.format(net_location), 'rpc_exchange': 'nameko-rpc', 'max_workers': 10, 'parent_calls_tracked': 10 } class AsyncEvalServiceInvoker: def __init__(self, conf): self.rpc_proxy = ClusterRpcProxy(conf) self.proxy = self.rpc_proxy.start() def eval(self, method: EvalMethod, inputs: List[DatahubTarget]) -> List[DatahubTarget]: result = self.proxy.evaluation_service.eval(method, inputs) print (result) def stop(self): self.rpc_proxy.stop() invoker = AsyncEvalServiceInvoker(remote_config("localhost")) invoker.eval(None,[]) ``` #### File: flow/neo4jflow/py2neoflow.py ```python from py2neo import Graph from isharp.flow.core import CalculationTask, DatahubRequirement import os def calcTasks(data_hub_host_name, data_hub_port, graph_host): url = "bolt://{}:7687".format(graph_host) print ('................using graph host {}'.format(graph_host) ) print('................. using datahub host {}'.format(data_hub_host_name)) ret_val = [] graph = Graph(url) strategies = graph.nodes.match('Strategy') for strategy in strategies: jobs = graph.match((strategy,), r_type='EVAL') for j in jobs: deps = [] job_node = j.end_node dependencies = graph.match((job_node,), r_type="USES") for dependency in dependencies: datahub_url = "{}://{}:{}/{}".format("arctic",data_hub_host_name,data_hub_port,dependency.end_node['path']) deps.append(DatahubRequirement(name=dependency.end_node['name'],t=0,url=datahub_url) ) ret_val.append(CalculationTask(dueBy=job_node['due_by'],requirements=deps,strategy=strategy['name'],eval_label=job_node['name'])) return ret_val ``` #### File: test/data_broker/test_file_data_broker.py ```python import os import shutil import tempfile import unittest import pandas as pd import datetime import test.testutil.file_utils as fu import test.testutil.log_utils as lu from isharp.datahub.core import StorageMethod, MemStyles from isharp.datahub.csv_files.simple_file_broker import SimpleFileBroker testpath = os.path.dirname(__file__) class TestFileDataBroker(unittest.TestCase): def setUp(self): rows = ['a','b','c','d','e','f','g','h','i','j','k'] self.test_data_path = tempfile.mkdtemp(prefix="ipp_test_file_data_broker") lu.logger.info("test file path: {}" + self.test_data_path) fu.make_file_tree(self.test_data_path,2,3) self.broker = SimpleFileBroker(self.test_data_path) def tearDown(self): shutil.rmtree(self.test_data_path) def test_invalid_path(self): with self.assertRaises(StorageMethod.ResourceException): self.broker.checkout("file://broker.nomura.com/no_dir/no_file?format=CSV") def test_get_compound_path(self): testurl = "file:///subdir_1/file_name_1.csv?format=CSV" m = self.broker.checkout(testurl) self.assertEqual("file_name_1.csv",m.matrix_header.name) self.assertEqual("subdir_1/file_name_1.csv", m.matrix_header.path) def test_peek_with_existing_file(self): testurl = "file:///subdir_1/file_name_1.csv?format=CSV" preview = self.broker.peek(testurl) todays_date = datetime.datetime.now().date() expected_start_date = todays_date- datetime.timedelta(11) expected_end_date = expected_start_date + datetime.timedelta(10) self.assertEqual(expected_start_date.strftime("%Y-%m-%d"), preview.range_start) self.assertEqual(expected_end_date.strftime("%Y-%m-%d"), preview.range_end) def test_peek_non_existing_file(self): testurl = "file:///subdir_1/file_name_xxx.csv?format=CSV" preview = self.broker.peek(testurl) self.assertIsNone(preview) def test_get_simple_matrix(self): testurl = "file:///file_name_1.csv?format=CSV" m = self.broker.checkout(testurl) self.assertEqual("file_name_1.csv",m.matrix_header.name) self.assertEqual(None,m.matrix_header.revision_id) self.assertEqual('file', m.matrix_header.storage_method) self.assertEqual(m.matrix_header.path, "file_name_1.csv") self.assertTrue(isinstance(m.content,pd.DataFrame)) self.assertEqual(MemStyles.DATA_FRAME, m.matrix_header.memory_style) def test_list(self): headers = self.broker.list() self.assertEquals(14,len(headers)) header = headers[0] self.assertIsNone(header.revision_id) self.assertEqual("file",header.storage_method) self.assertEqual("file_name_1.csv", header.path) self.assertEqual("file_name_1.csv",header.name) self.assertEqual("description of file_name_1.csv",header.description) self.assertEqual(MemStyles.DATA_FRAME, header.memory_style) ``` #### File: test/data_broker/test_github_data_broker.py ```python import os import shutil import tempfile import unittest import pandas as pd import datetime import random import test.testutil.file_utils as fu from github import Github, InputGitAuthor import test.testutil.log_utils as lu import test.testutil.pandas_utils as pu import test.testutil.github_utils as gu from isharp.datahub.core import StorageMethod, MemStyles from isharp.datahub.github_broker.broker_impl.github_data_broker import GithubBroker from isharp.datahub.github_broker.broker_impl.github_storage_method import GithubStorageMethod rows = ['a','b','c','d','e','f','g','h','i','j','k'] author = InputGitAuthor( "jeremycward", "<EMAIL>" ) class TestGithubDataBroker(unittest.TestCase): def setUp(self): self.branch = 'main' self.repo_name = "jeremycward/datahubtest" self.gitfile = ''.join(random.choice('abcdefghijklmnopqrstuvwxyz___') for i in range(16)) self.token = '<KEY>' self.initialTag = ''.join(random.choice('1234567890') for i in range(10)) df = pu.create_simple_series(rows, 10) self.repo = gu.GitTestRepo(self.token,self.repo_name) self.repo.create_and_tag(author,self.gitfile,df,self.initialTag,self.branch) self.broker = GithubBroker(self.token,self.repo_name) def tearDown(self): pass # def test_invalid_path(self): # with self.assertRaises(StorageMethod.ResourceException): # self.broker.checkout("file://broker.nomura.com/no_dir/no_file?format=CSV") # # def test_get_compound_path(self): # testurl = "file:///subdir_1/file_name_1.csv?format=CSV" # m = self.broker.checkout(testurl) # self.assertEqual("file_name_1.csv",m.matrix_header.name) # self.assertEqual("subdir_1/file_name_1.csv", m.matrix_header.path) # # # def test_peek_with_existing_file(self): testurl = "github:///{}?branch=main".format(self.gitfile) preview = self.broker.peek(testurl) print(preview.range_start) print(preview.range_end) self.assertEqual(0, preview.range_start) self.assertEqual(9, preview.range_end) self.assertEqual(self.initialTag,preview.header.revision_id) # # todays_date = datetime.datetime.now().date() # # expected_start_date = todays_date- datetime.timedelta(11) # expected_end_date = expected_start_date + datetime.timedelta(10) # # # # def test_peek_non_existing_file(self): # testurl = "file:///subdir_1/file_name_xxx.csv?format=CSV" # preview = self.broker.peek(testurl) # self.assertIsNone(preview) # # # def test_get_simple_matrix(self): # testurl = "file:///file_name_1.csv?format=CSV" # m = self.broker.checkout(testurl) # self.assertEqual("file_name_1.csv",m.matrix_header.name) # self.assertEqual(None,m.matrix_header.revision_id) # self.assertEqual('file', m.matrix_header.storage_method) # self.assertEqual(m.matrix_header.path, "file_name_1.csv") # self.assertTrue(isinstance(m.content,pd.DataFrame)) # self.assertEqual(MemStyles.DATA_FRAME, m.matrix_header.memory_style) # # def test_list(self): # headers = self.broker.list() # self.assertEquals(14,len(headers)) # header = headers[0] # self.assertIsNone(header.revision_id) # self.assertEqual("file",header.storage_method) # self.assertEqual("file_name_1.csv", header.path) # self.assertEqual("file_name_1.csv",header.name) # self.assertEqual("description of file_name_1.csv",header.description) # self.assertEqual(MemStyles.DATA_FRAME, header.memory_style) ``` #### File: test/testutil/file_utils.py ```python import os import test.testutil.pandas_utils as pu import pandas as pd import pathlib rows = ['a','b','c','d','e','f','g','h','i','j','k'] def fill_directory_with_content(root_directory,directory_path, number_files): index_data =[] key_data = [] for i in range(1, number_files): df = pu.create_simple_series(rows[:i + 2], i + 10) file_name = "file_name_{}.csv".format(i) filepath = os.path.join(root_directory,directory_path, file_name) df.to_csv(filepath) posix_path = pathlib.PureWindowsPath(os.path.join("/",directory_path,file_name)) key_data.append(posix_path.as_posix().strip("/")) index_data.append((file_name,"description of {}".format(file_name))) df = pd.DataFrame( index=pd.Index(key_data,name="path"),data=index_data, columns=["name", "description"]) index_file_path = os.path.join(root_directory,directory_path, "index.txt") df.to_csv(index_file_path) def make_file_tree(root_directory_path,tree_depth, files_per_directory,relative_path=''): for i in range(1, files_per_directory): fill_directory_with_content(root_directory_path,relative_path,files_per_directory) if tree_depth > 0: new_relative_path = os.path.join(relative_path,"subdir_{}".format(i)) actual_directory_path =os.path.join(root_directory_path,new_relative_path) os.mkdir(actual_directory_path) make_file_tree(root_directory_path, tree_depth-1, files_per_directory,new_relative_path) ```
{ "source": "jeremy-cx/juno-bork", "score": 3 }
#### File: jeremy-cx/juno-bork/junobork.py ```python import os import re import csv import time import click import shutil import requests from bs4 import BeautifulSoup from itertools import izip_longest GENRES = ['house', 'deep-house', 'techno', 'minimal-tech-house'] WINDOWS = ['this-week', 'today', 'eight-weeks'] LIMITS = ['10', '20', '50', '100', '500'] def grouper(n, iterable, fillvalue=None): args = [iter(iterable)] * n return izip_longest(fillvalue=fillvalue, *args) @click.command() @click.argument('genre', type=click.Choice(GENRES)) @click.argument('window', type=click.Choice(WINDOWS)) @click.argument('limit', type=click.Choice(LIMITS)) @click.option('--sleep', default=3) def main(genre, window, limit, sleep): """ Fetch new releases from http://www.juno.co.uk/. """ base_url = 'http://www.juno.co.uk/' url = '{}/{}/{}/?items_per_page={}'.format(base_url, genre, window, limit) r = requests.get(url) soup = BeautifulSoup(r.content) table = soup.find(class_='product_list') products = table.find_all(attrs={'ua_location': re.compile('product')}) if not products: return try: os.makedirs(genre) except OSError: pass # already exists with open('{}/{}.csv'.format(genre, genre), 'wb') as out_file: for idx, (row1, row2, row3) in enumerate(grouper(3, products)): if idx == 0: csv_writer = csv.writer(out_file) csv_writer.writerow([ 'artist', 'title', 'label', 'catno', 'format', 'genre', 'style', 'tracks', 'images', 'audio', ]) try: url = row1\ .find(class_='producttitle')\ .find('a', class_='jhighlight')['href'] r = requests.get(base_url + url) soup = BeautifulSoup(r.content) image_keys = [] images = soup.find('div', class_='product-images-large') for image_idx, image in enumerate(images.find_all('img')): r = requests.get(image['src'], stream=True) key = '{}-{}-{}.jpeg'.format(genre, idx, image_idx) with open('{}/{}'.format(genre, key), 'wb') as f: r.raw.decode_content = True shutil.copyfileobj(r.raw, f) image_keys.append(key) audio_keys = [] anchors = soup.findAll('a', href=re.compile('http.*\.mp3')) for url in [x['href'] for x in anchors]: filename = url.rsplit('/', 1)[1] file_path = os.path.join(genre, filename) mp3 = requests.get(url, stream=True) with open(file_path, 'wb') as fd: for chunk in mp3.iter_content(1024): fd.write(chunk) audio_keys.append(filename) title = row1.find(class_='producttitle').find('span').text label = row1.find(class_='productlabel').find('span').text catno = row2.find('span').text artist = row1\ .find(class_='productartist')\ .find('span')\ .find('a')\ .text format_ = row1\ .find(class_='producttitle')\ .text.strip('\t\n\r')\ .split('(', 1)[1]\ .split(')')[0] tracks = filter(None, [ x.strip() for x in row3.find('span').text .encode('utf8') .replace('\t', '') .replace('\n', '') .replace('\xa0', '') .replace('\xc2', '') .splitlines() ]) csv_writer.writerow([ artist, title, label, catno, format_, 'Electronic', genre.replace('-', ' ').title(), ', '.join(tracks), ', '.join(image_keys), ', '.join(audio_keys), ]) except (UnicodeEncodeError, UnicodeDecodeError): continue time.sleep(sleep) if __name__ == "__main__": main() ```
{ "source": "jeremyd4500/senior-project-2020", "score": 2 }
#### File: backend/report/views.py ```python from .models import Report from .serializers import ReportSerializer from rest_framework import generics, mixins from rest_framework.authentication import BasicAuthentication, TokenAuthentication from rest_framework.permissions import IsAuthenticated class ReportList(mixins.ListModelMixin,mixins.CreateModelMixin,generics.GenericAPIView): queryset = Report.objects.all() serializer_class = ReportSerializer # authentication_classes = [TokenAuthentication,BasicAuthentication] # permission_classes = [IsAuthenticated] def get(self,request): return self.list(request) def post(self,request): return self.create(request) class ReportDetail(mixins.RetrieveModelMixin, mixins.UpdateModelMixin, mixins.DestroyModelMixin,generics.GenericAPIView): queryset = Report.objects.all() serializer_class = ReportSerializer # authentication_classes = [TokenAuthentication, BasicAuthentication] # permission_classes = [IsAuthenticated] def get(self, request, pk): return self.retrieve(request, pk) def put(self, request, pk): return self.update(request, pk) def delete(self, request, pk): return self.destroy(request, pk) ```
{ "source": "JeremyDaug/ButterBot", "score": 4 }
#### File: JeremyDaug/ButterBot/ledger.py ```python from typing import Union, Mapping, Tuple, NewType from item import Items from account import Account class Ledger: """Ledger class which contains and manages both currency and items. All valid Commands to be accounted for. -- handled in chatbot (creates class instance) -+- Ledger [Ledger Name] -- Handled by transaction -+ [Account] gives [Account]: [Value], [Items...] -+ [Account] buys [Items...] -+ [Account] sells [Items...] -+ [Account] takes from Pot: [Value], [Items...] -+ Bank gives [Account]: [Value], [Items...] -+ Bank takes from [Account]: [Value], [Items...] -+- Set Value [Item]: [Value] -- handled in chatbot and calls show_balance() -+- [Account] Balance -- handled in chatbot and calls add_user() -+- Add Account [Account Name] -- Handled in chatbot and calls show_rectify() -+- Rectify -- Handled in chatbot -+- New Item [Item]: [Value] -+- Delete Item [Item] -+- Show History [Lines] -+- Show Items -+- Save -+- Load -+- Show Accounts -+- Toggle User Lock -+- Toggle Store Lock -+- Toggle Bank Lock -+- Toggle Transaction Lock -+- Total Value """ def __init__(self, name: str, server: str, admin: str, key: str, storekey: str) -> None: """ Init function for our Ledger class. :param name: name of the ledger. :param server: name of the server. :param admin: Admin's Name. :param key: Admin's Key :param storekey: Key to the store (The bot's key. """ # The name of the ledger self.name = name # The server it belongs to so more then one can be made. self.location = server # A list of users who exist in the system. self.users = [] # The pot is a non-user, it is a communal pool of value, users can # add and remove from it at will, but the pot cannot change anything # it is given. self.pot = Account("", "Pot", "") # Store is a system for users to turn items in for money and vice versa # Currently has no safety besides the item must exist and have a value. # Safety can be added, requiring admin to check off on transactions # with the store but for version 1 this is not being added. self.store = Account(admin, "Store", storekey) self.store_key = storekey # The bank, the account for the admin who can add and take into the # system without worry. self.bank = Account(admin, "Bank", key) # The transaction ledger, what all was traded and in what order. self.history = [] # The location it is saved to. self.save_location = "save_%s_%s.sav" % (self.location, self.name) # The Library of items as we know it. self.library = Items() # A number of locks to keep things under control. self.user_lock = False self.transaction_lock = False self.store_lock = False self.bank_lock = False return def new_item(self, name: str, value: float=-1) -> bool: """ Helper function, calls Item.New_item() :param name: The Name of the new item. :param value: The value of the item. :return: True if successful (item does not exist already). """ return self.library.new_item(name=name, value=value) def delete_item(self, name: str, key: str) -> bool: """ A helper function to remove an item from the library. Calls self.library.delete_item() :param name: The item to be deleted. :param key: The user's key to ensure it is the admin. :return: True if successful, false if anything went wrong. """ if key != self.bank.key: return False return self.library.delete_item(name) def admin_new_item(self, key: str, name: str, value: float) -> bool: """ A helper function to check it is the admin adding the item. Only used externally. :param key: The key of the user. :param name: Name of the item. :param value: Value of the item, defaults to unvalued (-1) :return: True if item was added, false otherwise. """ if value in [-1, -2] or value >= 0: return self.new_item(name, value) return False def get_account(self, account: str) -> Union[Account, None]: """Get's account by name. :param account: The account to retrieve :return: The user we are looking for, None if it was not found. :rtype: Account, None """ if account == "Pot": return self.pot if self.is_account_name(account): for i in range(len(self.users)): if account == self.users[i].name: return self.users[i] else: return None def __del__(self) -> None: """ When this is deleted it should automatically save. We don't want to lose our data do we? """ self.save() return def show_users(self) -> str: """ Returns string of all current accounts. :return: All current accounts. """ ret = '' for user in self.users: ret += user.name + '\n' return ret def add_user(self, owner: str, name: str, key: str, value: float=0, items: Mapping[str, int]=None) -> Tuple[bool, str]: """Add user function adds the user to the system. :param owner: Who owns it :param name: the name of the account :param key: the owner's key :param value: how much they start with :param items: A list of items they start with (if any), takes a string :return: """ if self.user_lock: return False, 'No new Users allowed.\n' elif any(i.name == name for i in self.users): return False, 'User already exists.\n' if value < 0: return False, 'Cannot start with negative value.\n' if items is None: items = dict() for item, amount in items.items(): if amount < 1: return (False, 'Cannot start with a negative number of %s.\n' % item) for item in items: if item not in self.library.library: # if item doesn't exist add self.library.new_item(name=item, value=-1) # Item at default self.users.append(Account(owner, name, key, value, items)) self.history.append('{0.name} account added with {0.value}gp and ' '{1}.'.format(self.users[-1], self.users[-1].item_list())) return True, '%s account added.\n' % name def is_account_name(self, name: str) -> bool: """Checks if account exists. :param name: The name of the account to check. :return: True if there, false otherwise. """ if name in ['Pot', 'Bank', 'Store']: return True return name in [user.name for user in self.users] def item_list(self) -> str: """Gets a list of all items and their current value. :return: All the current items and their values. """ ret = '' for item, value in self.library.library.items(): ret += '{}: {}\n'.format(item, value) return ret def set_value(self, command: str, key: str) -> str: """ Sets the value of an item that already exists. :param command: The command given by the user. :param key: The key of the user to check against. :return: A string of anything that happened and if it's successful. """ data = command.lstrip('Set Value ') item, value = data.split(':') if item not in self.library.library: return 'Item Not found.\n' item = item.strip() value = float(value.strip()) if key == self.bank.key: if value in [-1, -2] or value > 0: self.library.change_value(item, value) else: return 'Value must be -1 for unvalued, -2 ' \ 'for priceless, or non-negative.' elif self.library.library[item] == -1: if value < 0: return "Value must be non-negative." self.library.change_value(item, value) self.history.append(command) return "Value properly set." def transaction(self, command: str, key: str) -> str: """ Transaction function. This will handle almost all transactions on the basic level, acting as a switch between the more appropriate functions. :param command: The command to parse. Valid commands: [Account] gives [Account]: [Value], [Items...] [Account] takes from Pot: [Value], [Items...] [Account] sells [Items...] [Account] buys [Items...] Bank gives [Account]: [Value], [Items...] Bank takes from [Account]: [Value], [Items...] ---- Special Operation --- Set Value [Item]: [Value] Item must be in [Name]: [Count] format. :param key: The key we use for security. :return: A string of success or failure, if failure error will be given. """ if self.transaction_lock: return 'Transactions locked.\n' giver = "" taker = "" action = "" value = "" items = "" ret = '' # special op, while it doesn't move anything around, it is still # recorded and so put here. if command.startswith("Set Value"): return self.set_value(command, key) words = command.split(" ") if len(words) < 3: return 'Command not Recognized.\n' # giver giver = words[0] if giver != 'Bank' and not self.is_account_name(giver): return 'Account does not exist.\n' # taker if words[1] == 'gives': taker = words[2] action = 'give' elif words[1] == 'takes' and words[2] == 'from': taker = words[3] action = 'take' elif words[1] in ['buys', 'sells']: taker = 'Store' action = words[1][:-1] else: return 'Command not Recognized.\n' if ':' in taker: taker = taker.replace(':', '') if taker not in ['Bank', 'Pot', 'Store'] and not self.is_account_name(taker): return "Account does not exist.\n" if giver == taker: return "Cannot make a transaction with yourself.\n" # inputs try: inputs = "" if action in ['give', 'take']: inputs = command.split(':', 1)[1] elif action in ['buy', 'sell']: inputs = command.split(" ", 2)[2] inputs = inputs.split(',') # value if len(inputs) == 1: if ':' in inputs[0]: items = inputs value = 0 else: value = float(inputs[0]) items = {} elif ':' not in inputs[0]: value = float(inputs[0]) items = inputs[1:] else: value = 0 items = inputs except IndexError: return "Improper Syntax.\n" # items items_fin = {} for item in items: if not item: # if empty, ignore continue if ':' not in item: return "Item must be in [Item]:[Amount] format.\n" name, amount = item.split(':') items_fin[name.strip()] = int(amount) if giver == 'Bank': # Bank actions --------- if self.bank_lock: return 'Bank Locked.\n' if self.bank.key != key: return "Invalid Key.\n" if action == 'give': # bank can give items with no value and does not lose anything when # it gives for item in items_fin: if item not in self.library.library: self.library.new_item(item) ret = self.get_account(taker).add(value=value, items=items_fin) elif action == 'take': # bank can take without reservation. ret = self.get_account(taker).take(value=value, items=items_fin) if not ret: self.history.append(command) return ret elif taker == 'Store': if self.store_lock: return "Store Locked.\n" dne = '' unvalued = '' priceless = '' ret = '' for item in items_fin: if item not in self.library.library: dne += "%s," % item elif self.library.library[item] == -1: unvalued += "%s," % item elif self.library.library[item] == -2: priceless += "%s," % item if dne: ret += "Items don't exist: %s.\n" % dne if unvalued: ret += "Items currently unvalued: %s.\n" % unvalued if priceless: ret += "Priceless Items: %s.\n" % priceless if ret: return ret price = 0 if action == 'buy': price = sum([amount*self.library.library[name] for name, amount in items_fin.items()]) ret = self.get_account(giver).remove(key=key, value=price) if not ret: ret = self.get_account(giver).add(items=items_fin) if ret: return ret elif action == 'sell': price = sum([amount*self.library.library[name] for name, amount in items_fin.items()]) ret = self.get_account(giver).remove(items=items_fin, key=key) if not ret: ret = self.get_account(giver).add(value=price) if ret: return ret self.history.append(command + " for %d." % price) elif taker == 'Pot': if action == 'give': ret = self.get_account(giver).remove(value=value, items=items_fin, key=key) if not ret: ret = self.pot.add(value=value, items=items_fin) if ret: return ret self.history.append(command) elif action == 'take': ret = self.pot.remove(value=value, items=items_fin, key="") if not ret: ret = self.get_account(giver).add(value=value, items=items_fin) if ret: return ret self.history.append(command) elif taker == 'Bank': ret = self.get_account(giver).remove(value=value, items=items_fin, key=key) if not ret: ret = self.bank.add(value=value, items=items_fin) if ret: return ret self.history.append(command) else: ret = self.get_account(giver).remove(value=value, items=items_fin, key=key) if not ret: ret = self.get_account(taker).add(value=value, items=items_fin) if ret: return ret self.history.append(command) return ret def show_balance(self, account: str) -> Tuple[float, Mapping[str, int], float, str]: """Shows the balance of an account. Value and all items, and the total value including items. :param account: The account to retrieve :param key: The key of the account :return: A string of the balance. """ if not self.is_account_name(account): return 0, {}, 0, "Account does not exist.\n" value = self.get_account(account=account).value items = self.get_account(account=account).inventory total_value = float(value) + sum([amount*self.library.library[item] if self.library.library[item] >= 0 else 0 for item, amount in items.items()]) items_str = '\n' names = sorted([i for i in items.keys()]) for name in names: items_str += '%s:%d, \n' % (name, items[name]) return value, items, total_value, "%s has %d and %s Total value of %d.\n" % (account, value, items_str, total_value) def total_value(self) -> Tuple[float, Mapping[str, int], float, str]: """Retrieves the total value of the pot and all users combined. :return: Returns the value, all items in a single dict, total value, and a string form of this info. """ value = 0 coll_items = {} for user in self.users: value += user.value for item, amount in user.inventory.items(): if item in coll_items: coll_items[item] += amount else: coll_items[item] = amount # do the same for the pot. value += self.pot.value for item, amount in self.pot.inventory.items(): if item in coll_items: coll_items[item] += amount else: coll_items[item] = amount total_value = value + sum([amount*self.library.library[item] if self.library.library[item] >= 0 else 0 for item, amount in coll_items.items()]) items_str = '' for item, amount in coll_items.items(): items_str += '%s:%d, ' % (item, amount) items_str = items_str[:-2] ret = 'Everyone together holds %d and %s for a total value of %d.\n' % (value, items_str, total_value) return value, coll_items, total_value, ret def show_rectify(self) -> str: """Shows the current value difference between all users and the average. This currently only works in value and makes no suggestions on items. :return: Each user and the total value they need to reach the average. """ ret = '' ave_value = self.total_value()[2]/len(self.users) for user in self.users: ret += '%s: %d\n' % (user.name, ave_value-self.show_balance(user.name)[2]) return ret def toggle_user_lock(self) -> None: """ Lock user function. """ self.user_lock = not self.user_lock return def toggle_transaction_lock(self) -> None: """ Lock transactions. """ self.transaction_lock = not self.transaction_lock return def toggle_store_lock(self) -> None: """ Lock store function. """ self.store_lock = not self.store_lock return def toggle_bank_lock(self) -> None: """ Lock bank function. """ self.bank_lock = not self.bank_lock return def save(self) -> None: """ Save function. Can be called as needed, guaranteed to be called on close. """ with open(self.save_location, 'w') as file: # first lines should have the current totals for each account # All small lines are separated by \n big seperations by \n\n file.write(self.bank.save_data()+"\n") file.write(self.store.save_data()+'\n') file.write(self.pot.save_data()+'\n') for i in self.users: file.write(i.save_data()+'\n') file.write("\n\n") # we save the items separately from our transactions and users. # last we write the full transaction history. file.write(self.transaction_log()) # save our smaller data to a config file. with open("config_" + self.save_location, 'w') as file: file.write(str(self.user_lock) + "\n" + str(self.transaction_lock) + "\n" + str(self.store_lock) + "\n" + str(self.bank_lock)) self.library.set_save_location(self.save_location) self.library.save_data() return def load_config(self) -> None: """Config loading file""" with open("config_"+self.save_location, 'r') as file: lines = file.readlines() self.user_lock = lines[0] == 'True' self.transaction_lock = lines[1] == 'True' self.store_lock = lines[2] == 'True' self.bank_lock = lines[3] == 'True' return def load_save(self) -> None: """Load save file.""" with open(self.save_location, 'r') as file: data = file.read() sections = data.split('\n\n') lines = sections[0].splitlines() self.bank.load_data(lines[0]) self.store.load_data(lines[1]) self.pot.load_data(lines[2]) for line in lines[2:]: self.users.append(Account()) self.users[-1].load_data(line) self.library.set_save_location(self.save_location) self.library.load_data() self.history = [] for line in sections[1].splitlines(): self.history.append(line) def transaction_log(self, transactions: int=0) -> str: """Gets the history and returns it in readable format. :param int transactions: number of transactions to show, 0 shows all. :return: The history, delineated by newlines. """ ret = '' if 0 < transactions < len(self.history): for i in self.history[-transactions:]: ret += i + '\n' else: for i in self.history: ret += i + '\n' return ret ```
{ "source": "jeremydavis-2/Jolanta-by-dvr", "score": 3 }
#### File: Jolanta-by-dvr/Python_libs/jolanta.py ```python import numpy as np import scipy.special """ Collects functions defining and evaluating the Jolanta model potential """ def Jolanta_1D(x, a=0.2, b=0.0, c=0.14): """ default 1D potential; has a resonance just below 7 eV use for DVRs """ return (a*x*x-b)*np.exp(-c*x*x) def Jolanta_3D(r, a=0.1, b=1.2, c=0.1, l=1, as_parts=False): """ default 3D potential; has a resonance at 1.75 eV - 0.2i eV use for DVRs """ if as_parts: Va = a*r**2*np.exp(-c*r**2) Vb = b*np.exp(-c*r**2) Vc = 0.5*l*(l+1)/r**2 return (Va, Vb, Vc) else: return (a*r**2-b)*np.exp(-c*r**2) + 0.5*l*(l+1)/r**2 def eval_ugto(r, a, l): """ ununormalized GTO(r) = r^l * exp(-a*r^2) """ return r**l * np.exp(-a*r*r) def eval_aos(Rs, alphas, Ns, l): """ evaluate all AOs (all GTOs) defined by exponents alpha and angular momentum l Rs np.array with positions to evaluate the MOs at Cs[:] np.array with coefficients pertaining to normalized GTOs alphas GTO exponents Ns normalization factors l angular momentum common to all GTOs AO_i(r_k) = N_i * r_k**l * np.exp(-alpha_i*r_k*r_k) """ nAOs = len(alphas) nRs = len(Rs) AOs = np.zeros((nRs, nAOs)) for i in range(nAOs): AOs[:,i] = Ns[i] * eval_ugto(Rs, alphas[i], l) return AOs def eval_mos(Rs, Cs, alphas, Ns, l): """ evaluate MOs defined by coefficients in Cs at all positions in Rs each AO is defined by: AO(r) = r^l * exp(-a*r^2) MO[R_k,j] = Sum AO[R_k,i]*Cs[i,j] """ #nRs = len(Rs) #if len(Cs.shape) == 1: # nMOs = 1 #else: # nMOs = Cs.shape[1] #MOs = np.zeros((nRs, nMOs)) AOs = eval_aos(Rs, alphas, Ns, l) return np.dot(AOs, Cs) def sp_gamma(a, z): """ unnormalized upper incomplete gamma function: integral(t^(a-1)*exp(-t),t,z,oo) needed for evaluating CAP integrals analytically """ return scipy.special.gamma(a) * scipy.special.gammaincc(a,z) def gto_integral_0_inf(a, n=0): """ integral(x^n * exp(-a*x^2), x, 0, oo) where n is an integer >=0 """ return 0.5 * a**(-0.5*(n+1)) * scipy.special.gamma(0.5*(n+1)) def gto_integral_d_inf(a, n=0, d=1.0): """ integral(x^n * exp(-a*x^2), x, d, oo) can be directly used to evaluate CAP integrals W12 = <gto_1 | (r-d)^2 |gto_2> = gto_integral_d_inf(a1+a2, n=l1+l2+2, d=d) """ ad2=a*d*d if n%2 == 0: m = n/2 return 0.5 * a**(-m-0.5) * sp_gamma(m+0.5,ad2) else: m = (n+1)/2 return 0.5 * a**(-m) * sp_gamma(m,ad2) def S_12(a1, a2, l1, l2): """ overlap matrix S12 = <gto_1 | gto_2> """ return gto_integral_0_inf(a1+a2, n=l1+l2) def T_12(a1, a2, l1, l2, mass=1): """ kinetic energy T12 = 1/(2*mass) <d/dr gto_1 | d/dr gto_2> assume that both l1 and l2 >= 1 because psi(0) = 0 """ T1 = gto_integral_0_inf(a1+a2, n=l1+l2-2) T2 = gto_integral_0_inf(a1+a2, n=l1+l2) T3 = gto_integral_0_inf(a1+a2, n=l1+l2+2) return 0.5*(l1*l2*T1 - 2*(l1*a2+l2*a1)*T2 + 4*a1*a2*T3) / mass def V_12(a1, a2, l1, l2, a=0.1, b=1.2, c=0.1, l=1): """ Jolanta_3D matrix element <gto_1| Jolanta_3D |gto_2> a1, a2 are the GTO exponents, l1 and l2 the powers of r the unnormalized integral is returned (a*r**2-b)*np.exp(-c*r**2) + 0.5*l*(l+1)/r**2 """ Va = gto_integral_0_inf(a1+c+a2, n=l1+l2+2)*a Vb = gto_integral_0_inf(a1+c+a2, n=l1+l2 )*b Vc = gto_integral_0_inf(a1 +a2, n=l1+l2-2)*0.5*l*(l+1) return Va-Vb+Vc ```
{ "source": "jeremydeanlakey/lakey-finicity-python", "score": 3 }
#### File: lakey-finicity-python/lakey_finicity/api_http_client.py ```python import json import time from typing import Optional from requests import Response import requests from requests.adapters import HTTPAdapter from urllib3 import Retry from lakey_finicity.utils import validate_secret # https://docs.finicity.com/guide-to-partner-authentication-and-integration/ _FINICITY_URL_BASE = "https://api.finicity.com" _TWO_HOURS_S = 60 * 60 def _retry_session(retries=3, backoff_factor=0.5) -> requests.Session: retry = Retry( total=retries, read=retries, connect=retries, backoff_factor=backoff_factor, status_forcelist=(500, 502, 504), ) adapter = HTTPAdapter(max_retries=retry) session = requests.Session() session.mount('http://', adapter) session.mount('https://', adapter) return session class ApiHttpClient(object): def __init__(self, app_key: str, partner_id: str, partner_secret: str): """ :param app_key: Finicity-App-Key from Developer Portal :param partner_id: Partner ID from Developer Portal :param partner_secret: Current value of Partner Secret from Developer Portal """ self.__app_key = app_key self.__partner_id = partner_id self.__secret = partner_secret self.__token = None self.__token_expiration = 0 self.last_response = None def get(self, path: str, params: Optional[dict] = None, extra_headers: Optional[dict] = None) -> Response: url = _FINICITY_URL_BASE + path token = self.__get_token() headers = { "Finicity-App-Key": self.__app_key, "Accept": "application/json", "Finicity-App-Token": token, } if extra_headers: headers.update(extra_headers) params = params or {} self.last_response = _retry_session().get(url, headers=headers, params=params) if self.last_response.ok: return self.last_response else: raise Exception(str(self.last_response.content) + ", see https://community.finicity.com/s/article/201750879-Error-and-Aggregation-Status-Codes") def post(self, path: str, data: Optional[dict], extra_headers: Optional[dict] = None) -> Response: url = _FINICITY_URL_BASE + path token = self.__get_token() headers = { "Finicity-App-Key": self.__app_key, "Content-Type": "application/json", "Accept": "application/json", "Finicity-App-Token": token, } if extra_headers: headers.update(extra_headers) self.last_response = _retry_session().post(url, data=json.dumps(data), headers=headers) if self.last_response.ok: return self.last_response else: raise Exception(str(self.last_response.content) + ", see https://community.finicity.com/s/article/201750879-Error-and-Aggregation-Status-Codes") def put(self, path: str, data: dict, extra_headers: Optional[dict] = None) -> Response: url = _FINICITY_URL_BASE + path token = self.__get_token() headers = { "Finicity-App-Key": self.__app_key, "Content-Type": "application/json", "Finicity-App-Token": token, } if extra_headers: headers.update(extra_headers) self.last_response = _retry_session().put(url, data=json.dumps(data), headers=headers) if self.last_response.ok: return self.last_response else: raise Exception(str(self.last_response.content) + ", see https://community.finicity.com/s/article/201750879-Error-and-Aggregation-Status-Codes") def delete(self, path: str, extra_headers: Optional[dict] = None) -> Response: url = _FINICITY_URL_BASE + path token = self.__get_token() headers = { "Finicity-App-Key": self.__app_key, "Content-Type": "application/json", "Finicity-App-Token": token, } if extra_headers: headers.update(extra_headers) self.last_response = _retry_session().delete(url, headers=headers) if self.last_response.ok: return self.last_response else: raise Exception(str(self.last_response.content) + ", see https://community.finicity.com/s/article/201750879-Error-and-Aggregation-Status-Codes") def __get_token(self) -> str: if not self.__token or time.time() >= self.__token_expiration: self.authenticate() return self.__token # https://community.finicity.com/s/article/Partner-Authentication # POST /aggregation/v2/partners/authentication def authenticate(self): """Validate the partner’s credentials (Finicity-App-Key, Partner ID, and Partner Secret) and return a temporary access token. The token must be passed in the HTTP header Finicity-App-Token on all subsequent API requests. The token is valid for two hours. You can have multiple active tokens at the same time. Five unsuccessful authentication attempts will cause the partner’s account to be locked. To unlock the account, send an email to <EMAIL> :return: A temporary access token, which must be passed in the HTTP header Finicity-App-Token on all subsequent API requests (see Accessing the API). """ path = "/aggregation/v2/partners/authentication" url = _FINICITY_URL_BASE + path headers = { "Finicity-App-Key": self.__app_key, "Content-Type": "application/json", "Accept": "application/json", } data = { "partnerId": self.__partner_id, "partnerSecret": self.__secret, } new_token_expiration = time.time() + (2 * 60 * 60) - (10 * 60) # two hour expiration less ten minute buffer response = requests.post(url, headers=headers, data=json.dumps(data)) if response.status_code == 200: self.__token = response.json()['token'] self.__token_expiration = new_token_expiration return self.__token else: raise Exception(f"authentication issue {response.status_code}: {response.content}") # https://community.finicity.com/s/article/Modify-Partner-Secret # PUT /aggregation/v2/partners/authentication def modify_secret(self, new_partner_secret: str): """Change the partner secret that is used to authenticate this partner. The secret does not expire, but can be changed by calling Modify Partner Secret. A valid partner secret may contain upper- and lowercase characters, numbers, and the characters !, @, #, $, %, &, *, _, -, +. It must include at least one number and at least one letter, and its length should be between 12 and 255 characters. :param new_partner_secret: The new value for Partner Secret """ path = "/aggregation/v2/partners/authentication" validate_secret(new_partner_secret) data = { "partnerId": self.__partner_id, "partnerSecret": self.__secret, "newPartnerSecret": new_partner_secret, } response = self.put(path=path, data=data) if response.status_code == 204: self.__secret = new_partner_secret else: raise Exception(f"issue modifying secret: {response.status_code}: {response.reason}") ``` #### File: models/account/account_type.py ```python import enum # https://community.finicity.com/s/article/201750779-Account-Types # Finicity can usually determine the correct type for each account, but in some # rare cases the account type will be unknown. In these cases, the account # number and name should be displayed to the customer, who must specify the # correct account type by selecting a value from the following table. # Calls to Activate Customer Accounts v2 (without Aggregation) will fail if the # account's field contains unknown or any unrecognized type designation. The # failed request will return HTTP 400 (Bad Request) with the error code 10106 # (Invalid Account Type). class AccountType(enum.Enum): unknown = "unknown" # Type cannot be determined (customer must specify the correct type from other supported types in this table) checking = "checking" # Standard checking savings = "savings" # Standard savings cd = "cd" # Certificates of deposit moneyMarket = "moneyMarket" # Money Market creditCard = "creditCard" # Standard credit cards lineOfCredit = "lineOfCredit" # Home equity,line of credit investment = "investment" # Generic investment (no details) investmentTaxDeferred = "investmentTaxDeferred" # Generic tax-advantaged investment (no details) employeeStockPurchasePlan = "employeeStockPurchasePlan" # ESPP, Employee Stock Ownership Plans (ESOP), Stock Purchase Plans ira = "ira" # Individual Retirement Account (not Rollover or Roth) acct_401k = "401k" # 401K Plan roth = "roth" # Roth IRA, Roth 401K acct_403b = "403b" # 403B Plan acct_529 = "529" # 529 Plan rollover = "rollover" # Rollover IRA ugma = "ugma" # Uniform Gifts to Minors Act utma = "utma" # Uniform Transfers to Minors Act keogh = "keogh" # Keogh Plan acct_457 = "457" # 457 Plan acct_401a = "401a" # 401A Plan mortgage = "mortgage" # Standard Mortgages loan = "loan" # Auto loans, equity loans, other loans not_in_enum = "not_in_enum" @staticmethod def from_description(description: str): try: return AccountType(description) except: return None DEPOSIT_ACCOUNT_TYPES = { AccountType.checking, AccountType.savings, AccountType.cd, AccountType.moneyMarket, } INVESTMENT_ACCOUNT_TYPES = { AccountType.investment, AccountType.investmentTaxDeferred, AccountType.employeeStockPurchasePlan, AccountType.ira, AccountType.roth, AccountType.rollover, AccountType.ugma, AccountType.utma, AccountType.keogh, AccountType.acct_401k, AccountType.acct_403b, AccountType.acct_529, AccountType.acct_457, AccountType.acct_401a, } CREDIT_LINE_ACCOUNT_TYPES = { AccountType.creditCard, AccountType.lineOfCredit, } LOAN_ACCOUNT_TYPES = { AccountType.mortgage, AccountType.loan, } ``` #### File: models/connect/answered_mfa_question.py ```python from dataclasses import dataclass # https://community.finicity.com/s/article/207505363-Multi-Factor-Authentication-MFA @dataclass class AnsweredMfaQuestion(object): text: str answer: str # Added by the partner for calls to the "MFA Answers" services _unused_fields: dict # this is for forward compatibility and should be empty def to_dict(self) -> dict: return { 'text': self.text, 'answer': self.answer, } @staticmethod def from_dict(data: dict): data = dict(data) # don't mutate the original text = data.pop('text') answer = data.pop('answer') return AnsweredMfaQuestion( text=text, answer=answer, _unused_fields=data, ) ``` #### File: models/connect/mfa_question.py ```python from dataclasses import dataclass # https://community.finicity.com/s/article/207505363-Multi-Factor-Authentication-MFA from .answered_mfa_question import AnsweredMfaQuestion @dataclass class MfaQuestion(object): text: str _unused_fields: dict # this is for forward compatibility and should be empty def answer(self, answer: str) -> AnsweredMfaQuestion: return AnsweredMfaQuestion(text=self.text, answer=answer, _unused_fields=self._unused_fields) @staticmethod def from_dict(data: dict): data = dict(data) # don't mutate the original text = data.pop('text') return MfaQuestion( text=text, _unused_fields=data, ) ``` #### File: models/consumer/consumer.py ```python from dataclasses import dataclass from typing import Optional from lakey_finicity.models.birth_date import BirthDate # https://community.finicity.com/s/article/Report-Consumers @dataclass class Consumer(object): id: str # ID of the consumer (UUID with max length 32 characters) firstName: Optional[str] # The consumer's first name(s) / given name(s) lastName: Optional[str] # The consumer's last name(s) / surname(s) address: Optional[str] # The consumer's street address city: Optional[str] # The consumer's city state: Optional[str] # The consumer's state zip: Optional[str] # The consumer's ZIP code phone: Optional[str] # The consumer's phone number ssn: Optional[str] # Last 4 digits of the consumer's Social Security number birthday: Optional[BirthDate] # The consumer's birth date email: Optional[str] # The consumer's email address createdDate: Optional[int] # A timestamp of when the consumer was created _unused_fields: dict # this is for forward compatibility and should be empty @staticmethod def from_dict(data: dict): data = dict(data) # don't mutate the original id = data.pop('id') firstName = data.pop('firstName', None) lastName = data.pop('lastName', None) address = data.pop('address', None) city = data.pop('city', None) state = data.pop('state', None) zip = data.pop('zip', None) phone = data.pop('phone', None) ssn = data.pop('ssn', None) birthday_dict = data.pop('birthday', None) birthday = BirthDate.from_dict(birthday_dict) if birthday_dict else None email = data.pop('email', None) createdDate = data.pop('createdDate', None) return Consumer( id=id, firstName=firstName, lastName=lastName, address=address, city=city, state=state, zip=zip, phone=phone, ssn=ssn, birthday=birthday, email=email, createdDate=createdDate, _unused_fields=data, ) ``` #### File: models/customer/customer.py ```python from dataclasses import dataclass from typing import Optional # https://community.finicity.com/s/article/201703219-Customers#customer_record @dataclass class Customer(object): id: int username: Optional[str] firstName: Optional[str] lastName: Optional[str] type: Optional[str] createdDate: int _unused_fields: dict # this is for forward compatibility and should be empty @staticmethod def from_dict(data: dict): data = dict(data) # don't mutate the original id = data.pop('id') username = data.pop('username', None) firstName = data.pop('firstName', None) lastName = data.pop('lastName', None) type = data.pop('type', None) createdDate = data.pop('createdDate') return Customer( id=id, username=username, firstName=firstName, lastName=lastName, type=type, createdDate=createdDate, _unused_fields=data, ) ``` #### File: models/report/report_constraints.py ```python from dataclasses import dataclass from typing import List, Optional from lakey_finicity.models.report.report_custom_field import ReportCustomField # https://community.finicity.com/s/article/VOA-Report @dataclass class ReportConstraints(object): _unused_fields: dict # this is for forward compatibility and should be empty accountIds: Optional[List[str]] fromDate: Optional[int] reportCustomFields: Optional[List[ReportCustomField]] @staticmethod def from_dict(data: dict): data = dict(data) # don't mutate the original accountIds = data.pop("accountIds", None) fromDate = data.pop("fromDate", None) reportCustomFields_raw = data.pop("reportCustomFields", None) reportCustomFields = [ReportCustomField.from_dict(d) for d in reportCustomFields_raw] if reportCustomFields_raw else None return ReportConstraints( accountIds=accountIds, fromDate=fromDate, reportCustomFields=reportCustomFields, _unused_fields=data, ) ``` #### File: report/voa/voa_account_record.py ```python from dataclasses import dataclass from typing import List, Optional from lakey_finicity.models.report.transaction_record import TransactionRecord from lakey_finicity.models.report.voa.account_asset_record import AccountAssetRecord from lakey_finicity.models.report.voa.details_record import DetailsRecord @dataclass class VoaAccountRecord(object): id: int # Finicity account ID number: str # The account number from the institution (obfuscated) ownerName: Optional[str] # The name(s) of the account owner(s). This field is optional. If no owner information is available, this field will not appear in the report. ownerAddress: Optional[str] # The mailing address of the account owner(s). This field is optional. If no owner information is available, this field will not appear in the report. name: Optional[str] # The account name from the institution type: Optional[str] # VOA: checking / savings / moneyMarket / cd / investment* aggregationStatusCode: Optional[int] # Finicity aggregation status of the most recent aggregation attempt for this account (non-zero means the account was not accessed successfully for this report, and additional fields for this account may not be reliable) # institutionLoginId: str # The institutionLoginId (represents one set of credentials at a particular institution, together with all accounts accessible using those credentials at that institution) transactions: List[TransactionRecord] # A list of all transaction records for this account during the report period (VOI report includes deposit transactions only) asset: Optional[AccountAssetRecord] # An asset record for the account details: Optional[DetailsRecord] # A details record for the account availableBalance: Optional[float] # The available balance for the account balance: Optional[float] # The cleared balance of the account as-of balanceDate balanceDate: Optional[int] # A timestamp showing when the balance was captured averageMonthlyBalance: Optional[float] # The average monthly balance of this account _unused_fields: dict # this is for forward compatibility and should be empty @staticmethod def from_dict(data: dict): data = dict(data) # don't mutate the original id = data.pop('id') number = data.pop('number') ownerName = data.pop('ownerName', None) ownerAddress = data.pop('ownerAddress', None) name = data.pop('name', None) type = data.pop('type', None) aggregationStatusCode = data.pop('aggregationStatusCode', None) # institutionLoginId = data.pop('institutionLoginId') transactions_raw = data.pop('transactions', None) transactions = [TransactionRecord.from_dict(d) for d in transactions_raw] if transactions_raw else [] asset_raw = data.pop('asset', None) asset = AccountAssetRecord.from_dict(asset_raw) if asset_raw else None details_raw = data.pop('details', None) details = DetailsRecord.from_dict(details_raw) if details_raw else None availableBalance = data.pop('availableBalance', None) balance = data.pop('balance', None) balanceDate = data.pop('balanceDate', None) averageMonthlyBalance = data.pop('averageMonthlyBalance', None) return VoaAccountRecord( id=id, number=number, ownerName=ownerName, ownerAddress=ownerAddress, name=name, type=type, aggregationStatusCode=aggregationStatusCode, # institutionLoginId=institutionLoginId, transactions=transactions, asset=asset, details=details, availableBalance=availableBalance, balance=balance, balanceDate=balanceDate, averageMonthlyBalance=averageMonthlyBalance, _unused_fields=data, ) ``` #### File: report/voa/voa_institution_record.py ```python from dataclasses import dataclass from typing import List from lakey_finicity.models.report.voa.voa_account_record import VoaAccountRecord @dataclass class VoaInstitutionRecord(object): _unused_fields: dict # this is for forward compatibility and should be empty id: int name: str accounts: List[VoaAccountRecord] @staticmethod def from_dict(data: dict): data = dict(data) # don't mutate the original id = data.pop('id') name = data.pop('name') accounts_raw = data.pop('accounts', None) accounts = [VoaAccountRecord.from_dict(d) for d in accounts_raw] if accounts_raw else [] return VoaInstitutionRecord( id=id, name=name, accounts=accounts, _unused_fields=data, ) ``` #### File: report/voa/voa_report.py ```python from dataclasses import dataclass from typing import List, Optional from lakey_finicity.models.report.report_constraints import ReportConstraints from lakey_finicity.models.report.report_status import ReportStatus from lakey_finicity.models.report.report_type import ReportType from lakey_finicity.models.report.voa.asset_record import AssetRecord from lakey_finicity.models.report.voa.voa_institution_record import VoaInstitutionRecord @dataclass class VoaReport(object): id: str # ID of the report (UUID with max length 32 characters). VOI report ID will have “-voi” appended to the end of it to denote the report type. portfolioId: Optional[str] requestId: str # unique requestId for this specific call request title: Optional[str] consumerId: Optional[str] # ID of the consumer (UUID with max length 32 characters) consumerSsn: Optional[str] # Last 4 digits of the report consumer's Social Security number requesterName: Optional[str] constraints: Optional[ReportConstraints] type: Optional[ReportType] # voa or voi status: Optional[ReportStatus] # inProgress or success or failure createdDate: Optional[int] startDate: Optional[int] endDate: Optional[int] days: Optional[int] seasoned: Optional[bool] institutions: Optional[List[VoaInstitutionRecord]] assets: Optional[AssetRecord] _unused_fields: dict # this is for forward compatibility and should be empty @staticmethod def from_dict(data: dict): data = dict(data) # don't mutate the original id = data.pop('id') requestId = data.pop('requestId') portfolioId = data.pop('portfolioId', None) title = data.pop('title', None) consumerId = data.pop('consumerId', None) consumerSsn = data.pop('consumerSsn', None) type_str = data.pop('type', None) type = ReportType(type_str) if type_str else None constraints_raw = data.pop('constraints', None) requesterName = data.pop('requesterName', None) constraints = ReportConstraints.from_dict(constraints_raw) if constraints_raw else None status_str = data.pop('status', None) status = ReportStatus(status_str) if status_str else None createdDate = data.pop('createdDate', None) startDate = data.pop('startDate', None) endDate = data.pop('endDate', None) days = data.pop('days', None) seasoned = data.pop('seasoned', None) institutions_raw = data.pop('institutions', None) institutions = [VoaInstitutionRecord.from_dict(d) for d in institutions_raw] if institutions_raw else None assets_raw = data.pop('assets', None) assets = AssetRecord.from_dict(assets_raw) if assets_raw else None return VoaReport( id=id, portfolioId=portfolioId, requestId=requestId, title=title, consumerId=consumerId, consumerSsn=consumerSsn, requesterName=requesterName, constraints=constraints, type=type, status=status, createdDate=createdDate, startDate=startDate, endDate=endDate, days=days, seasoned=seasoned, institutions=institutions, assets=assets, _unused_fields=data, ) ``` #### File: report/voi/income_stream_status.py ```python import enum # https://community.finicity.com/s/article/Credit-Decisioning#generate_voi_report class IncomeStreamStatus(enum.Enum): active = "ACTIVE" inactive = "INACTIVE" @staticmethod def from_description(description): return IncomeStreamStatus(description) ``` #### File: report/voi/voi_institution_record.py ```python from dataclasses import dataclass from typing import List, Optional from lakey_finicity.models.report.voi.voi_account_record import VoiAccountRecord @dataclass class VoiInstitutionRecord(object): _unused_fields: dict # this is for forward compatibility and should be empty id: int name: Optional[str] urlHomeApp: Optional[str] # voa only accounts: List[VoiAccountRecord] @staticmethod def from_dict(data: dict): data = dict(data) # don't mutate the original id = data.pop('id') name = data.pop('name', None) urlHomeApp = data.pop('urlHomeApp', None) accounts_raw = data.pop('accounts', None) accounts = [VoiAccountRecord.from_dict(d) for d in accounts_raw] if accounts_raw else [] return VoiInstitutionRecord( id=id, name=name, urlHomeApp=urlHomeApp, accounts=accounts, _unused_fields=data, ) ``` #### File: lakey_finicity/resources/consumers.py ```python from lakey_finicity.api_http_client import ApiHttpClient from lakey_finicity.models import Consumer, BirthDate from lakey_finicity.responses.create_consumer_response import CreateConsumerResponse class Consumers(object): def __init__(self, http_client: ApiHttpClient): self.__http_client = http_client # https://community.finicity.com/s/article/Create-Consumer # POST /decisioning/v1/customers/{customerId}/consumer def create(self, customer_id: int, first_name: str, last_name: str, address: str, city: str, state: str, zip: str, phone: str, ssn: str, birthday: BirthDate, email: str) -> str: """ Create a consumer record associated with the given customer. A consumer persists as the owner of any reports that are generated, even after the original customer is deleted from the system. A consumer must be created for the given customer before calling any of the Generate Report services. If a consumer already exists for this customer, this service will return HTTP 409 (Conflict). :param customer_id: ID of the customer :param first_name: The consumer's first name(s) / given name(s) :param last_name: The consumer's last name(s) / surname(s) :param address: The consumer's street address :param city: The consumer's city :param state: The consumer's state :param zip: The consumer's ZIP code :param phone: The consumer's phone number :param ssn: The consumer's 9-digit Social Security number (may include separators: nnn-nn-nnnn) :param birthday: The consumer's birth date :param email: The consumer's email address :return: """ data = { "firstName": first_name, "lastName": last_name, "address": address, "city": city, "state": state, "zip": zip, "phone": phone, "ssn": ssn, "birthday": birthday.to_padded_string_dict(), "email": email, } path = f"/decisioning/v1/customers/{customer_id}/consumer" response = self.__http_client.post(path, data) response_dict = response.json() return CreateConsumerResponse.from_dict(response_dict).id # https://community.finicity.com/s/article/Report-Consumers#get_consumer_for_customer # GET /decisioning/v1/customers/{customerId}/consumer def get_for_customer(self, customer_id: int) -> Consumer: """ Get the details of a consumer record. If a consumer has not been created for this customer, the service will return HTTP 404 (Not Found) :param customer_id: :return: """ path = f"/decisioning/v1/customers/{customer_id}/consumer" response = self.__http_client.get(path) response_dict = response.json() return Consumer.from_dict(response_dict) # https://community.finicity.com/s/article/Report-Consumers#get_consumer # GET /decisioning/v1/consumers/{consumerId} def get(self, consumer_id: str) -> Consumer: """ Get the details of a consumer record. :param consumer_id: ID of the consumer (UUID with max length 32 characters) :return: """ path = f"/decisioning/v1/consumers/{consumer_id}" response = self.__http_client.get(path) response_dict = response.json() return Consumer.from_dict(response_dict) # https://community.finicity.com/s/article/Report-Consumers#modify_consumer # PUT /decisioning/v1/consumers/{consumerId} def modify(self, consumer_id: str, first_name: str, last_name: str, address: str, city: str, state: str, zip: str, phone: str, ssn: str, birthday: BirthDate, email: str): """ Modify the details for an existing consumer. All fields are required for a consumer record, but individual fields for this call are optional because fields that are not specified will be left unchanged. :param consumer_id: ID of the consumer (UUID with max length 32 characters) :param first_name: The consumer's first name(s) / given name(s) :param last_name: The consumer's last name(s) / surname(s) :param address: The consumer's street address :param city: The consumer's city :param state: The consumer's state :param zip: The consumer's ZIP code :param phone: The consumer's phone number :param ssn: The consumer's 9-digit Social Security number (may include separators: nnn-nn-nnnn) :param birthday: The consumer's birth date :param email: The consumer's email address :return: """ path = f"/decisioning/v1/consumers/{consumer_id}" data = { "firstName": first_name, "lastName": last_name, "address": address, "city": city, "state": state, "zip": zip, "phone": phone, "ssn": ssn, "birthday": birthday.to_padded_string_dict(), "email": email, } self.__http_client.put(path, data=data) ``` #### File: lakey_finicity/resources/customers.py ```python from typing import Optional from lakey_finicity.api_http_client import ApiHttpClient from lakey_finicity.models import Customer from lakey_finicity.queries.customers_query import CustomersQuery from lakey_finicity.responses.create_customer_response import CreateCustomerResponse from lakey_finicity.utils import validate_username class Customers(object): def __init__(self, http_client: ApiHttpClient): self.__http_client = http_client def get(self, customer_id: int) -> Customer: """ :param customer_id: ID of the customer :return: """ path = f"/aggregation/v1/customers/{customer_id}" response = self.__http_client.get(path) response_dict = response.json() return Customer.from_dict(response_dict) def get_by_username(self, username: str) -> Optional[Customer]: qry = CustomersQuery(self.__http_client, username=username) return qry.first_or_none() def query(self, search_term: Optional[str] = None) -> CustomersQuery: """ Find all customers enrolled by the current partner, where the search text is found in the customer's username or any combination of firstName and lastName fields. If no search text is provided, return all customers. :param search_term: Text to match, or leave empty to return all customers. :return: """ return CustomersQuery(self.__http_client, search_term=search_term) # https://community.finicity.com/s/article/Add-Customer def add(self, username: str, first_name: str, last_name: str) -> int: """ Enroll an active customer (the actual owner of one or more real-world accounts). The customer's account transactions will be refreshed every night. This service is not available from the Test Drive. Calls to this service before enrolling in a paid plan will return HTTP 429 (Too Many Requests). :param username: The customer's username, assigned by the partner (a unique identifier), following these rules: minimum 6 characters maximum 255 characters any mix of uppercase, lowercase, numeric, and non-alphabet special characters ! @ . # $ % & * _ - + the use of email in this field is discouraged it is recommended to use a unique non-email identifier Use of special characters may result in an error (e.g. í, ü, etc.) :param first_name: The customer's first name(s) / given name(s) (optional) :param last_name: The customer's last name(s) / surname(s) (optional) :return: """ validate_username(username) data = { 'username': username, 'firstName': first_name, 'lastName': last_name, } path = f"/aggregation/v1/customers/active" response = self.__http_client.post(path, data) response_dict = response.json() return CreateCustomerResponse.from_dict(response_dict).id # https://community.finicity.com/s/article/Modify-Customer def modify(self, customer_id: int, first_name: Optional[str], last_name: Optional[str]): """ Modify the details for an enrolled customer. You must specify either the first name, the last name, or both in the request. If the service is successful, HTTP 204 (No Content) will be returned. :param customer_id: ID of the customer to modify :param first_name: The customer's first name(s) / given name(s) (optional) :param last_name: The customer's last name(s) / surname(s) (optional) :return: """ path = f"/aggregation/v1/customers/{customer_id}" data = {} if first_name: data['firstName'] = first_name if first_name: data['lastName'] = last_name self.__http_client.put(path, data=data) # https://community.finicity.com/s/article/Delete-Customer def delete(self, customer_id: int): """ Completely remove a customer from the system. This will remove the customer and all associated accounts and transactions. (Note that the request and responses is the same for JSON or XML clients.) Use this service carefully! It will not pause for confirmation before performing the operation! :param customer_id: ID of the customer to delete :return: """ path = f"/aggregation/v1/customers/{customer_id}" self.__http_client.delete(path) ``` #### File: lakey_finicity/resources/institutions.py ```python from typing import Optional from lakey_finicity.api_http_client import ApiHttpClient from lakey_finicity.models import Institution from lakey_finicity.queries.institutions_query import InstitutionsQuery from lakey_finicity.responses.institution_detail_response import InstitutionDetailResponse class Institutions(object): def __init__(self, http_client: ApiHttpClient): self.__http_client = http_client def query(self, search_term: Optional[str] = None) -> InstitutionsQuery: """ :param search_term: search text to match against the name, urlHomeApp, or urlLogonApp :return: """ return InstitutionsQuery(self.__http_client, search_term) # https://community.finicity.com/s/article/Get-Institution def get(self, institution_id: str) -> Institution: """Get details for the specified institution without the login form. :param institution_id: ID of the institution to retrieve :return: """ path = f"/institution/v2/institutions/{institution_id}" response = self.__http_client.get(path) response_dict = response.json() return InstitutionDetailResponse.from_dict(response_dict).institution ``` #### File: lakey_finicity/resources/transactions.py ```python from typing import Optional, List from lakey_finicity.api_http_client import ApiHttpClient from lakey_finicity.models import SortOrder, AnsweredMfaQuestion from lakey_finicity.queries.transaction_query import TransactionsQuery from lakey_finicity.responses.accounts_response import AccountsResponse class Transactions(object): def __init__(self, http_client: ApiHttpClient): self.__http_client = http_client def query(self, customer_id: int, from_date: int, to_date: int, sort: SortOrder = SortOrder.asc, include_pending: bool = True, account_id: Optional[str] = None) -> TransactionsQuery: """ Get all transactions available for this customer account within the given date range. This service supports paging and sorting by transactionDate (or postedDate if no transaction date is provided), with a maximum of 1000 transactions per request. Standard consumer aggregation provides up to 180 days of transactions prior to the date each account was added to the Finicity system. To access older transactions, you must first call the Cash Flow Verification service Load Historic Transactions for Account. There is no limit for the size of the window between fromDate and toDate; however, the maximum number of transactions returned in one page is 1000. If the value of moreAvailable in the responses is true, you can retrieve the next page of results by increasing the value of the start parameter in your next request: ...&start=6&limit=5 :param customer_id: The ID of the customer whose transactions are to be retrieved :param account_id: The ID of the account whose transactions are to be retrieved :param from_date: Starting timestamp for the date range (required) (see Handling Dates and Times) :param to_date: Ending timestamp for the date range (required, must be greater than fromDate) (see Handling Dates and Times) :param sort: Sort order: asc for ascending order (oldest transactions are on page 1), descfor descending order (newest transactions are on page 1). :param include_pending: true to include pending transactions if available. :return: """ return TransactionsQuery(self.__http_client, customer_id, from_date, to_date, sort, include_pending, account_id=account_id) # TODO add categories to query? # :param categories: Utilities, Mobile Phone, Television (this is an example of a comma delimited list) # TXPush Services # https://community.finicity.com/s/article/Enable-TxPUSH-Notifications # POST /aggregation/v1/customers/{customerId}/accounts/{accountId}/txpush def enable_push_notifications(self, customer_id: int, account_id: str, callback_url: str): """ TxPUSH services allow an app to register a TxPUSH Listener service to receive notifications whenever a new transaction appears on an account. :param customer_id: The Finicity ID of the customer who owns the account :param account_id: The Finicity ID of the account whose events will be sent to the TxPUSH Listener :param callback_url: The TxPUSH Listener URL to receive TxPUSH notifications (must use https protocol for any real-world account) :return: """ data = { "callbackUrl": callback_url, } path = f"/aggregation/v1/customers/{customer_id}/accounts/{account_id}/txpush" self.__http_client.post(path, data) # 201 created # https://community.finicity.com/s/article/Disable-TxPUSH-Notifications # DELETE /aggregation/v1/customers/{customerId}/accounts/{accountId}/txpush def disable_push_notifications(self, customer_id: int, account_id: str): """ Disable all TxPUSH notifications for the indicated account. No more notifications will be sent for account or transaction events. :param customer_id: The ID of the customer who owns the account :param account_id: The Finicity ID of the account whose events will be sent to the TxPUSH Listener :return: """ path = f"/aggregation/v1/customers/{customer_id}/accounts/{account_id}/txpush" self.__http_client.delete(path) # success = 204 no content # https://community.finicity.com/s/article/Delete-TxPUSH-Subscription # DELETE /aggregation/v1/customers/{customerId}/subscriptions/{subscriptionId} def delete_push_subscription(self, customer_id: int, subscription_id: str): """ Delete a specific subscription for a class of events (account or transaction events) related to an account. No more notifications will be sent for these events. :param customer_id: The ID of the customer who owns the account :param subscription_id: The ID of the specific subscription to be deleted (returned from Enable TxPUSH Notifications :return: """ path = f"/aggregation/v1/customers/{customer_id}/subscriptions/{subscription_id}" self.__http_client.delete(path) # Account History Aggregation # https://community.finicity.com/s/article/Load-Historic-Transactions-for-Account # POST /aggregation/v1/customers/{customerId}/accounts/{accountId}/transactions/historic def load_historic_transactions_for_account(self, customer_id: int, account_id: str): """ Connect to the account's financial institution and load up to twelve months of historic transactions for the account. For some institutions, up to two years of history may be available. This is a premium service. The billing rate is the variable rate for Cash Flow Verification under the current subscription plan. The billable event is a call to this service specifying a customerId that has not been seen before by this service. (If this service is called multiple times with the same customerId, to load transactions from multiple accounts, only one billable event has occurred.) HTTP status of 204 means historic transactions have been loaded successfully. The transactions are now available by calling Get Customer Account Transactions. HTTP status of 203 means the responses contains an MFA challenge. Contact your Account Manager or Systems Engineers to determine the best route to handle this HTTP status code. The recommended timeout setting for this request is 180 seconds in order to receive a responses. However you can terminate the connection after making the call the operation will still complete. You will have to pull the account records to check for an updated aggregation attempt date to know when the refresh is complete. This service usually requires the HTTP header Content-Length: 0 because it is a POST request with no request body. The date range sent to the institution is calculated from the account's createdDate. This means that calling this service a second time for the same account normally will not add any new transactions for the account. For this reason, a second call to this service for a known accountId will usually return immediately with HTTP 204. In a few specific scenarios, it may be desirable to force a second connection to the institution for a known accountId. Some examples are: The institution's policy has changed, making more transactions available. Finicity has now added Cash Flow Verification support for the institution. The first call encountered an error, and the resulting Aggregation Ticket has now been fixed by the Finicity Support Team. In these cases, the POST request can contain the parameter force=true in the request body to force the second connection. :param customer_id: The ID of the customer who owns the account :param account_id: The Finicity ID of the account to be refreshed :return: """ path = f"/aggregation/v1/customers/{customer_id}/accounts/{account_id}/transactions/historic" self.__http_client.post(path, data={}) # POST /aggregation/v1/customers/{customerId}/accounts/{accountId}/transactions/historic/mfa def load_historic_transactions_for_account_with_mfa_answers(self, mfaSession: str, customerId: str, accountId: str, questions: List[AnsweredMfaQuestion]): headers = { 'mfaSession': mfaSession } data = { 'questions': [q.to_dict() for q in questions], } path = f"/aggregation/v1/customers/{customerId}/accounts/{accountId}/transactions/historic" self.__http_client.post(path, data=data, extra_headers=headers) # https://community.finicity.com/s/article/Refresh-Customer-Accounts-non-interactive # POST /aggregation/v1/customers/{customerId}/accounts def refresh_customer_accounts(self, customer_id: int): """ Connect to all of the customer's financial institutions and refresh the transaction data for all of the customer's accounts. This is a non-interactive refresh, so any MFA challenge will cause the account to fail with an aggregationStatusCode value of 185 or 187. To recover an account that has state 185 or 187, call Refresh Institution Login Accounts during an interactive session with the customer, prompt the customer with the MFA challenge that is returned from that call, and then send that responses to Refresh Institution Login Accounts (with MFA Answers). This service retrieves account data from the institution. This usually returns quickly, but in some scenarios may take a few minutes to complete. See Asynchronous Aggregation. Client apps are not permitted to automate calls to the Refresh services. Active accounts are automatically refreshed by Finicity once per day. Apps may call Refresh services for a specific customer when the customer opens the app, or when the customer directly invokes a Refreshaction from the app. Because many financial institutions only post transactions once per day, calling Refresh repeatedly is usually a waste of resources and is not recommended. This service requires the HTTP header Content-Length: 0 because it is a POST request with no request body. The recommended timeout setting for this request is 120 seconds. :param customer_id: The ID of the customer who owns the accounts :return: """ headers = { 'Content-Length': '0', } path = f"/aggregation/v1/customers/{customer_id}/accounts" response = self.__http_client.post(path, None, extra_headers=headers) response_dict = response.json() return AccountsResponse.from_dict(response_dict).accounts # https://community.finicity.com/s/article/Refresh-Institution-Login-Accounts-Non-Interactive # POST /aggregation/v1/customers/{customerId}/institutionLogins/{institutionLoginId}/accounts def refresh_institution_login_accounts(self, customer_id: int, institution_login_id: str): """ Connect to a financial institution and refresh transaction data for all accounts associated with a given institutionLoginId. Client apps are not permitted to automate calls to the Refresh services. Active accounts are automatically refreshed by Finicity once per day. Apps may call Refresh services for a specific customer when the customer opens the app, or when the customer directly invokes a Refreshaction from the app. Because many financial institutions only post transactions once per day, calling Refreshrepeatedly is usually a waste of resources and is not recommended. The recommended timeout setting for this request is 120 seconds in order to receive a responses. However you can terminate the connection after making the call the operation will still complete. You will have to pull the account records to check for an updated aggregation attempt date to know when the refresh is complete. :param customer_id: The ID of the customer who owns the account :param institution_login_id: The institution login ID (from the account record) :return: """ headers = { 'Content-Length': '0', } path = f"/aggregation/v1/customers/{customer_id}/institutionLogins/{institution_login_id}/accounts" response = self.__http_client.post(path, None, extra_headers=headers) response_dict = response.json() return AccountsResponse.from_dict(response_dict).accounts ``` #### File: lakey_finicity/responses/create_report_response.py ```python from dataclasses import dataclass @dataclass class CreateReportResponse(object): accountIds: str @staticmethod def from_dict(data: dict): data = dict(data) # don't mutate the original accountIds = data.pop('accountIds') return CreateReportResponse( accountIds=accountIds, ) ``` #### File: lakey_finicity/responses/customers_list_response.py ```python from dataclasses import dataclass from typing import List from lakey_finicity.models import Customer # https://community.finicity.com/s/article/201703219-Customers#get_customers @dataclass class CustomersListResponse(object): found: int # Total number of records matching search criteria displaying: int # Number of records in this responses moreAvailable: bool # True if this responses does not contain the last record in the result set customers: List[Customer] _unused_fields: dict # this is for forward compatibility and should be empty @staticmethod def from_dict(data: dict): data = dict(data) # don't mutate the original found = data.pop('found') displaying = data.pop('displaying') moreAvailable = data.pop('moreAvailable') customers_raw = data.pop('customers') customers = [Customer.from_dict(d) for d in customers_raw] return CustomersListResponse( found=found, displaying=displaying, moreAvailable=moreAvailable, customers=customers, _unused_fields=data, ) ``` #### File: lakey_finicity/responses/transactions_list_response.py ```python from dataclasses import dataclass from typing import List from lakey_finicity.models import SortOrder, Transaction # https://community.finicity.com/s/article/202460245-Transactions#get_customer_transactions_v3 @dataclass class TransactionsListResponse(object): found: int # Total number of records matching search criteria displaying: int # Number of records in this responses moreAvailable: bool # True if this responses does not contain the last record in the result set fromDate: int # Value of the fromDate request parameter that generated this responses toDate: int # Value of the toDate request parameter that generated this responses sort: SortOrder # Value of the sort request parameter that generated this responses transactions: List[Transaction] _unused_fields: dict # this is for forward compatibility and should be empty @staticmethod def from_dict(data: dict): data = dict(data) # don't mutate the original found = data.pop('found', 0) displaying = data.pop('displaying', 0) moreAvailable = data.pop('moreAvailable', False) fromDate = data.pop('fromDate', 0) toDate = data.pop('toDate', 0) sort_str = data.pop('sort', 'asc') sort = SortOrder(sort_str) if sort_str else SortOrder.asc transactions_raw = data.pop('transactions') transactions = [Transaction.from_dict(d) for d in transactions_raw] return TransactionsListResponse( found=found, displaying=displaying, moreAvailable=moreAvailable, fromDate=fromDate, toDate=toDate, sort=sort, transactions=transactions, _unused_fields=data, ) ``` #### File: models/consumer/test_consumer.py ```python import json import unittest from lakey_finicity.models import Consumer # https://community.finicity.com/s/article/Report-Consumers EXAMPLE_CONSUMER_PROPOSED = ''' { "firstName": "FIRST_NAME", "lastName": "LAST_NAME", "address": "ADDRESS", "city": "CITY", "state": "STATE", "zip": "ZIP", "phone": "PHONE", "ssn": "123-45-6789", "birthday": { "year": "1972", "month": "07", "dayOfMonth": "03" }, "email": "EMAIL_ADDRESS" } ''' EXAMPLE_CONSUMER = ''' { "id": "0h7h3r301md83", "firstName": "FIRST_NAME", "lastName": "LAST_NAME", "address": "ADDRESS", "city": "CITY", "state": "STATE", "zip": "ZIP", "phone": "PHONE", "ssn": "6789", "birthday": { "year": "1972", "month": "07", "dayOfMonth": "03" }, "email": "EMAIL_ADDRESS", "createdDate": 1507658822 } ''' class TestConsumer(unittest.TestCase): def test_account_detail_response(self): response_dict = json.loads(EXAMPLE_CONSUMER) response = Consumer.from_dict(response_dict) self.assertEqual({}, response._unused_fields) ``` #### File: tests/response/test_new_report_response.py ```python import json import unittest from lakey_finicity.responses.new_report_response import NewReportResponse # https://community.finicity.com/s/article/Credit-Decisioning EXAMPLE_START_VOI_RESPONSE = ''' { "id": "bx28qwkdbw3u", "requestId": "bmg7d3qrmr", "consumerId": "3860718db6febd83c64d9d4c523f39f7", "consumerSsn": "5555", "constraints": {}, "type": "voi", "status": "inProgress" } ''' # https://community.finicity.com/s/article/Credit-Decisioning EXAMPLE_START_VOA_RESPONSE = ''' { "id": "bx28qwkdbw3u", "requestId": "bmg7d3qrmr", "consumerId": "3860718db6febd83c64d9d4c523f39f7", "consumerSsn": "5555", "constraints": {}, "type": "voa", "status": "inProgress" } ''' class TestNewReportResponse(unittest.TestCase): def test_voi_short(self): response_dict = json.loads(EXAMPLE_START_VOI_RESPONSE) response = NewReportResponse.from_dict(response_dict) self.assertEqual({}, response._unused_fields) if response.institutions: for institution in response.institutions: self.assertEqual({}, institution._unused_fields) self.assertEqual({}, institution.address._unused_fields) def test_voa_short(self): response_dict = json.loads(EXAMPLE_START_VOA_RESPONSE) response = NewReportResponse.from_dict(response_dict) self.assertEqual({}, response._unused_fields) if response.institutions: for institution in response.institutions: self.assertEqual({}, institution._unused_fields) self.assertEqual({}, institution.address._unused_fields) ```
{ "source": "jeremydhoon/nyremodel", "score": 3 }
#### File: jeremydhoon/nyremodel/rentregress.py ```python import sys import json from matplotlib import pyplot import numpy as np import pandas as pd from sklearn.metrics import explained_variance_score, mean_squared_error, median_absolute_error from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder, LabelBinarizer from xgboost.sklearn import XGBRegressor import compass import dcf MAX_PRICE_DOLLARS = 15000 #MAX_PRICE_DOLLARS = 3000000 FEATURE_COLUMNS = [ "neighborhood", "sq_ft", "beds", "baths", "year_opened", "building_units", "unit_type", "parking_spaces", "amenity", ] COMMON_AMENITIES = ( 'Elevator', 'Laundry in Building', 'Dishwasher', 'Full-Time Doorman', 'Gym', 'Concierge', 'Washer / Dryer in Unit', 'Common Roof Deck', 'Bike Room', 'High Ceilings', 'Garage', 'Voice Intercom', 'Hardwood Floors', 'Common Outdoor Space', 'Pet Friendly', 'Doorman', 'Walk Up', 'Roof Deck', 'Private Outdoor Space', 'Oversized Windows', ) def label_encode(df, feature): enc = LabelBinarizer() enc.fit(df[feature]) out_df = pd.DataFrame(enc.transform(df[feature])) col_names = [feature + "_" + cls for cls in enc.classes_] return out_df.rename(columns=dict(enumerate(col_names))) def add_amenities(df): amenities_set = df["amenities"].map(lambda x: set(json.loads(x)) if isinstance(x, str) else set()) return pd.DataFrame( dict( ("amenity_" + amenity, amenities_set.map(lambda x: float(amenity in x))) for amenity in COMMON_AMENITIES ) ) def clean_features(df): #categorical_cols = ["neighborhood", "unit_type"] categorical_cols = [] drop_cols = ["neighborhood", "unit_type"] cols = [ label_encode(df, col) for col in categorical_cols ] out = pd.concat([df, *cols, add_amenities(df)], axis=1).drop(columns=categorical_cols + drop_cols) return out def compute_model_metrics(targets, predicted_targets): return { "explained variance": explained_variance_score(targets, predicted_targets), "RMS error": np.sqrt(mean_squared_error(targets, predicted_targets)), "Median absolute error:": median_absolute_error(targets, predicted_targets), } def is_feature_col(col_name): return any([col_name.startswith(feature_name) for feature_name in FEATURE_COLUMNS]) def count_sum(acc, lst): for el in lst: acc[el] = acc.get(el, 0) + 1 return acc def select_feature_columns(df): return [col for col in df.columns if is_feature_col(col)] def train(raw_df): #df = raw_df[raw_df["neighborhood"].isin(set([loc["name"] for loc in compass.BK_LOCATIONS]))] df = raw_df df = clean_features(df) df = df[df["price_dollars"] < MAX_PRICE_DOLLARS] df = df[df["address"] != "117 Underhill Avenue"] features = df[select_feature_columns(df)] targets = df["price_dollars"] features_train, features_test, targets_train, targets_test = train_test_split(features, targets, test_size=0.10) reg = XGBRegressor( #eta=0.1, max_depth=2, colsample_bytree=0.25, ) reg.fit(features_train, targets_train) predicted_train_targets = reg.predict(features_train) print("Training metrics:") print(compute_model_metrics(targets_train, predicted_train_targets)) predicted_test_targets = reg.predict(features_test) print("Test metrics:") print(compute_model_metrics(targets_test, predicted_test_targets)) return reg def zero_if_nan(f): return 0 if np.isnan(f) else f def get_irr(row): # permalink,address,neighborhood,latitude,longitude,price_dollars,original_price_dollars,sq_ft,beds,baths,year_opened,building_id,building_units,monthly_sales_charges,monthly_sales_charges_incl_taxes,unit_type,first_listed,parking_spaces,amenities # =if(K6014>=2010,200,if(K6014>=2000,300,400))*if(G6014>=2000000,1.5,1)*if(I6014<=2,1,2) year_built = row["year_opened"] capital_reserve = ( (200 if year_built >= 2010 else 300 if year_built >= 2000 else 400) * (1.5 if row["price_dollars"] >= 2000000 else 1) * (2 if row["beds"] >= 2 else 1) ) try: return dcf.get_unlevered_returns( purchase_price_dollars=1575000, sq_ft=row["sq_ft"], closing_costs_pct=0.04, initial_downtime_months=3, interim_downtime_months=1, lease_length_months=36, annual_rent_growth_pct=0.02, annual_expense_growth_pct=0.02, monthly_rent_dollars=row["predicted_rent"], monthly_utilities_rent_pct=0.025, monthly_tax_dollars=zero_if_nan(row["monthly_sales_charges_incl_taxes"]) - zero_if_nan(row["monthly_sales_charges"]), monthly_common_charges_dollars=zero_if_nan(row["monthly_sales_charges"]), monthly_homeowners_insurance_dollars=100, monthly_capital_reserve_dollars=capital_reserve, hold_period_months=60, exit_cap_pct=0.035, exit_sq_ft_price_ceiling_dollars=3000, exit_costs_pct=0.08, ).irr_pct except Exception as error: import pdb; pdb.set_trace() raise def regress(sales_df, reg): clean_df = clean_features(sales_df) df = clean_df[select_feature_columns(clean_df)] sales_df["predicted_rent"] = reg.predict(df) sales_df["irr"] = np.array([get_irr(r) for _, r in sales_df.iterrows()]) def main(argv): rentals_df = pd.read_csv(argv[1]) sales_df = pd.read_csv(argv[2]) reg = train(rentals_df) regress(sales_df, reg) sales_df.to_csv(argv[3]) return 0 if __name__ == "__main__": sys.exit(main(sys.argv)) ```
{ "source": "jeremydmoore/automating_scantailor", "score": 3 }
#### File: scripts/python/applescript.py ```python from subprocess import PIPE, run # ============ functions ============ # def convert_applescript_output_to_python_list(applescript_subprocess): return [x.strip('\n').strip(' ') for x in applescript_subprocess.stdout.split(',')] def display_dialog(message): command = [f'Tell application \"System Events\" to display dialog \"{message}\"'] dialog = process(command) return dialog def display_notification(message): command = [f'Tell application \"System Events\" to display notification \"{message}\"'] dialog = process(command) return dialog def get_user_input_int(value_name, default_value, attempts_left=5): user_input = None # only process if the default value is of the expected input type if isinstance(default_value, int): command = [f'set value_name to text returned of (display dialog "Enter {value_name} (type: integer)\nAttempts left: {attempts_left}" default answer "{default_value}")', 'return value_name'] user_input = command_to_python_list(command) if user_input: # returned value should be a single string in a list user_input = user_input[0] try: user_input = int(user_input) except ValueError: if attempts_left > 0: attempts_left = attempts_left - 1 user_input = get_user_input_int(value_name, default_value, attempts_left=attempts_left) else: user_input = None return user_input def get_user_input(value_name, default_value, attempts_left=5): user_input = None command = [f'set value_name to text returned of (display dialog "Enter {value_name}" default answer "{default_value}")', 'return value_name'] user_input = command_to_python_list(command) if user_input: # returned value should be a single string in a list user_input = user_input[0] return user_input def command_to_python_list(command): applescript_output = process(command) python_list = convert_applescript_output_to_python_list(applescript_output) return python_list def process(command): osascript_run_command = ['osascript'] if isinstance(command, list): for line in command: osascript_run_command.append('-e') osascript_run_command.append(line) else: osascript_run_command.append('-e') osascript_run_command.append(command) applescript_subprocess = run(osascript_run_command, encoding='utf-8', stdout=PIPE, stderr=PIPE) return applescript_subprocess def process_script(script_path, args=None): shell_input = ['osascript', str(script_path)] if args: if isinstance(args, list): for arg in args: shell_input = shell_input + [arg] else: shell_input = shell_input + [args] applescript_subprocess = run(shell_input, encoding='utf-8', stdout=PIPE, stderr=PIPE) return applescript_subprocess def script_to_python_list(script_path, args=None): applescript_subprocess = process_script(script_path, args) python_list = convert_applescript_output_to_python_list(applescript_subprocess) return python_list ``` #### File: scripts/python/move_scantailored_volume_step1-done.py ```python from pathlib import Path from shutil import copy2 # 3rd party modules from PIL import Image # my modules (located next to this script) import applescript import config # ============ lookup_dicts ============ # compression_lookup_dict = {1: 'uncompressed', 4: 'group4', 5: 'LZW', 6: 'JPEG', } # ============ functions ============ # def get_compression(image): compression = image.tag_v2[259] compression = compression_lookup_dict[compression] return compression def decompress_continuous_tone(image, image_path): compression = get_compression(image) if compression != 'group4': # save image uncompressed image.save(image_path, tiffinfo=image.tag, compression=None, dpi=image.info['dpi']) else: image.save(image_path, tiffinfo=image.tag, compression=compression, dpi=image.info['dpi']) def move_dir(to_dir_path): new_dir_path = config.step2_dir_path.joinpath(to_dir_path.name) # move directory with rename to_dir_path.rename(new_dir_path) if new_dir_path.is_dir(): volume_dir_path = new_dir_path else: raise ValueError(f'{new_dir_path} is not a directory') # get list of images in out directory tif_path_list = sorted(volume_dir_path.joinpath('out').glob('*.tif')) new_dir_path = config.step3_dir_path.joinpath(volume_dir_path.name) new_dir_path.mkdir() # copy out tifs into new directory in step3_dir_path for tif_path in tif_path_list: new_tif_path = new_dir_path.joinpath(tif_path.name) copy2(tif_path, new_tif_path) cmd = f'{to_dir_path.name} \ ---> \ {new_dir_path}' applescript.display_notification(cmd) def copy_scantailor_images(from_dir_path, to_dir_path, decompress=True): # create new directory in to_dir_path new_dir_path = to_dir_path.joinpath(from_dir_path.name) new_dir_path.mkdir() # get list of images in out directory and copy to new_dir_path tif_path_list = list(from_dir_path.joinpath('out').glob('*.tif')) for tif_path in tif_path_list: new_tif_path = new_dir_path.joinpath(tif_path.name) if decompress: # then we check for compression image = Image(tif_path) decompress_continuous_tone(image, new_tif_path) else: copy2(tif_path, new_tif_path) cmd = f'{to_dir_path.name} \ ---> \ {new_dir_path}' applescript.display_notification(cmd) if __name__ == '__main__': # verify config file config.verify() # get list of volumes in directory volume_dir_path_list = sorted([x for x in config.step1_dir_path.iterdir() if x.is_dir()]) # grab 1 volume, which is the first 1 and move it step1_dir_path = volume_dir_path_list[0] step2_dir_path = config.step2_dir_path.joinpath(step1_dir_path.name) step1_dir_path.rename(step2_dir_path) step3_dir_path = config.step3_dir_path.joinpath(step2_dir_path.name) copy_scantailor_images(step_2_dir_path, step3_dir_path) # for batch processing # for volume_dir_path in volume_dir_path_list: # print(f'{volume_dir_path.name}') # move_dir(volume_dir_path) ```
{ "source": "jeremydonahue/kittenrescue", "score": 2 }
#### File: kittenrescue/controllers/admin.py ```python @auth.requires_login() def index(): user_info = db().select(db.auth_user.first_name, db.auth_user.last_name, db.auth_user.orientation_attended, db.auth_user.phone, db.auth_user.zip, db.auth_user.skills, db.auth_user.email) return dict(message="hello from admin.py", user_info=user_info) ```
{ "source": "jeremy-donson/magma", "score": 2 }
#### File: magma/monitord/icmp_monitoring.py ```python import asyncio import logging from typing import Dict, List, Optional from magma.common.job import Job from magma.magmad.check.network_check.ping import (PingCommandResult, PingInterfaceCommandParams, ping_interface_async) NUM_PACKETS = 4 DEFAULT_POLLING_INTERVAL = 60 TIMEOUT_SECS = 10 CHECKIN_INTERVAL = 10 class ICMPMonitoring(Job): """ Class that handles main loop to send ICMP ping to valid subscribers. """ def __init__(self, monitoring_module, polling_interval: int, service_loop, mtr_interface: str): super().__init__(interval=CHECKIN_INTERVAL, loop=service_loop) self._MTR_PORT = mtr_interface logging.info("Running on interface %s..." % self._MTR_PORT) # Matching response time output to get latency self._polling_interval = max(polling_interval, DEFAULT_POLLING_INTERVAL) self._loop = service_loop self._module = monitoring_module async def _ping_targets(self, hosts: List[str], targets: Optional[Dict] = None): """ Sends a count of ICMP pings to target IP address, returns response. Args: hosts: List of ip addresses to ping targets: List of valid subscribers to ping to Returns: (stdout, stderr) """ if targets: ping_params = [ PingInterfaceCommandParams(host, NUM_PACKETS, self._MTR_PORT, TIMEOUT_SECS) for host in hosts] ping_results = await ping_interface_async(ping_params, self._loop) ping_results_list = list(ping_results) for host, sub, result in zip(hosts, targets, ping_results_list): self._save_ping_response(sub, host, result) def _save_ping_response(self, target_id: str, ip_addr: str, ping_resp: PingCommandResult) -> None: """ Saves ping response to in-memory subscriber dict. Args: target_id: target ID to ping ip_addr: IP Address to ping ping_resp: response of ICMP ping command """ if ping_resp.error: logging.debug('Failed to ping %s with error: %s', target_id, ping_resp.error) else: self._module.save_ping_response(target_id, ip_addr, ping_resp) async def _run(self) -> None: targets, addresses = await self._module.get_ping_targets(self._loop) if len(targets) > 0: await self._ping_targets(addresses, targets) else: logging.warning('No subscribers/ping targets found') await asyncio.sleep(self._polling_interval, self._loop) ``` #### File: scripts/cli/cleanup.py ```python import os import sys import json import click from boto3 import Session from .common import ( run_command, run_playbook, print_error_msg, print_success_msg) def setup_aws_creds(): session = Session() creds = session.get_credentials() if not creds: print_error_msg(''' AWS credentials not configured. configure through awscli or through orcl orcl configure set -k aws_access_key_id -v <access_key_id> orcl configure set -k aws_secret_access_key -v <aws_secret_access_key> orcl configure set -k region -v <region> ''') sys.exit(1) frozen_creds = creds.get_frozen_credentials() os.environ["AWS_ACCESS_KEY_ID"] = frozen_creds.access_key os.environ["AWS_SECRET_ACCESS_KEY"] = frozen_creds.secret_key @click.group(invoke_without_command=True) @click.pass_context def cleanup(ctx): """ Removes resources deployed for orc8r """ tf_destroy = [ "terraform", "destroy", "-auto-approve"] if ctx.invoked_subcommand is None: cmd = " ".join(tf_destroy) click.echo(f"Following commands will be run during cleanup\n{cmd}") click.confirm('Do you want to continue with cleanup?', abort=True) click.echo(f"Running {cmd}") rc = run_command(tf_destroy) if rc != 0: print_error_msg("Destroy Failed!!! Attempt cleaning up individual resources using 'orcl cleanup raw' subcommand") return @cleanup.command() @click.pass_context @click.option('--dryrun', default=False, is_flag=True, help='Show resources to be cleaned up during raw cleanup') @click.option('--state', help='Provide state file containing resource information e.g. terraform.tfstate or terraform.tfstate.backup') @click.option('--values', multiple=True, help='Key value pairs. for e.g. cluster_name,orc8r. Can be used multiple times') def raw(ctx, dryrun, state, values): """ Individually cleans up resources deployed for orc8r """ if state: ctx.obj['cleanup_state'] = state # add additional items for config_items in values: k, v = config_items.split(",") ctx.obj[k] = v extra_vars = json.dumps(ctx.obj) cleanup_playbook = "%s/cleanup.yml" % ctx.obj["playbooks"] playbook_args = [ "ansible-playbook", "-v", "-e", extra_vars] # Few boto dependent modules in ansible require these values to be # setup as environment variables. Hence setting these up. setup_aws_creds() if dryrun: tag_args = ["-t", "cleanup_dryrun"] else: tag_args = ["-t", "cleanup"] rc = run_playbook(playbook_args + tag_args + [cleanup_playbook]) if rc != 0: print_error_msg("Failed cleaning up resources!!!") sys.exit(1) print_success_msg("Successfully cleaned up underlying resources") ```
{ "source": "jeremydouglass/pathpattern", "score": 3 }
#### File: pathpattern/pathpattern/core.py ```python import logging import tempfile from collections import Counter import regex as re from bs4 import BeautifulSoup from igraph import Graph from pyx import canvas, color, path, style, trafo, unit import pathpattern.utils as utils logging.basicConfig(level=logging.WARNING) class GlyphSet(object): """Glyph set for generating glyphs and signatures from edge lists.""" def __init__(self, **kwargs): self.glist = [] self.id = 0 self.width = kwargs.get('width', 4) self.outdir = kwargs.get('outdir', './') self.prefix = kwargs.get('prefix', 'glyph_') self.uscale = kwargs.get('uscale', 1) self.mincount = 0 self.maxcount = 3 if 'graph' in kwargs and 'range' not in kwargs and 'list' not in kwargs: self.graph = kwargs.get('graph') degrees = set(zip(self.graph.indegree(), self.graph.outdegree())) # a set -- no dups, no counts logging.debug('\n degree list: %s', str(degrees)) degrees_counter = Counter(zip(self.graph.indegree(), self.graph.outdegree())) # count dups logging.debug('* degrees_counter: ') logging.debug(degrees_counter) self.mincount = degrees_counter[min(degrees_counter, key=degrees_counter.get)] self.maxcount = degrees_counter[max(degrees_counter, key=degrees_counter.get)] logging.debug('* self.mincount: ') logging.debug(self.mincount) logging.debug('* self.maxcount: ') logging.debug(self.maxcount) logging.debug(degrees_counter) logging.debug('\n degree counter: %s', str(degrees_counter)) degrees_counter_list = list(degrees_counter.items()) logging.debug('\n degree counter list: ') logging.debug(degrees_counter_list) degrees_counter_sorted = [] for key in sorted(degrees_counter.iterkeys()): degrees_counter_sorted.append((key, degrees_counter[key])) logging.debug(degrees_counter_sorted) for i in degrees_counter_sorted: self.glist.append((i[0][0], i[0][1], i[1])) elif 'list' in kwargs and 'range' not in kwargs: self.glist = kwargs.get('list') elif 'range' in kwargs and 'list' not in kwargs: self.inrange = kwargs.get('range')[0] self.outrange = kwargs.get('range')[1] for i in range(self.inrange[0], self.inrange[1]): for o in range(self.outrange[0], self.outrange[1]): self.glist.append((int(i), int(o), 1)) else: raise ValueError('invalid argument: provide one of the following:\n range = ((xmin, xmax), (ymin, ymax))\n list = [(ax, ay),(bx, by),(cx, cy)...]\n graph = <igraph canvas.canvas object>') self.glist.sort(key=lambda x: (x[0], x[1])) # http://stackoverflow.com/questions/4233476/sort-a-list-by-multiple-attributes # sorted -- any reason that custom list input order might matter? index lookup? # id string -- this isn't unique or unambiguous, but perhaps use different separators and/or do a hash later. flatlist = [str(element) for tupl in self.glist for element in tupl] # http://stackoverflow.com/questions/3204245/how-do-i-convert-a-tuple-of-tuples-to-a-one-dimensional-list-using-list-comprehe self.id = ''.join(flatlist) def __str__(self): string = 'GlyphSet:\n' widecount = 0 for i in self.glist: if widecount >= self.width: string += '\n' widecount = 0 string += ' ' + str(i) widecount += 1 return string def __len__(self): return len(self.glist) def nocounts(self): """replace all glist counts with 1""" newlist = [] for i in self.glist: newlist.append((i[0], i[1], 1)) self.glist = newlist def glyph(self, index): """ For a degree pair (in, out), render a glyph. """ self.scale() if len(index) > 2: c = degree_glyph(index[0], index[1], index[2], (self.mincount, self.maxcount)) else: c = degree_glyph(index[0], index[1], 1, (self.mincount, self.maxcount)) return c def glyphs(self): """ For a list of degree pairs, render all glyphs and append to a list of glyphs. """ clist = [] for i in self.glist: clist.append(self.glyph(i)) return clist def scale(self, val=0): """Interface to the global pyx scale: unit.set(uscale=val) Either sets scale directly or uses the instance variable default. 0.25 scales to 25%, 3.0 scales to 300%. - http://pyx.sourceforge.net/manual/unit.html - http://nullege.com/codes/search/pyx.unit.set - https://github.com/mjg/PyX/blob/master/test/unit/test_unit.py """ if val == 0: val = self.uscale unit.set(uscale=val, defaultunit="inch") def write_glyph(self, index, overwrite=False): """ For a degree pair (in, out), save a glyph as a PNG file. """ c = self.glyph(index) index_str = '_'.join(str(x).zfill(3) for x in index) imgfilepath = self.outdir + index_str + '.png' if not overwrite and utils.path.exists(imgfilepath): logging.debug(imgfilepath, " : exists (skip write)") return '' c.writeGSfile(filename=imgfilepath) return imgfilepath def write_glyphs(self): """ For a list of degree pairs, save all glyphs as PNG files. """ for i in self.glist: self.write_glyph(i) return def signature(self, deg_max=6, padded=False, has_border=False): """ For a visualization of glyphs, lay out in a 2D grid PNG file. """ self.scale() sig = canvas.canvas([trafo.rotate(90), trafo.mirror(0)]) scale = 1.5 if padded or has_border: sig_margin = 0.2 x = (deg_max + 1) * scale + (1.5 * sig_margin) border_path = path.path(path.moveto(0, 0), path.lineto(0, x), path.lineto(x, x), path.lineto(x, 0), path.closepath()) if padded: border_color = color.cmyk.White if has_border: border_color = color.cmyk.Gray sig.stroke(border_path, [border_color, trafo.translate(-sig_margin*2, -sig_margin*2), style.linewidth(.025)]) for index in self.glist: if len(index) > 2: c = degree_glyph(index[0], index[1], index[2], (self.mincount, self.maxcount)) else: c = degree_glyph(index[0], index[1], 1, (self.mincount, self.maxcount)) sig.insert(c, [trafo.translate(index[0]*scale, (index[1])*scale)]) # text writing requires full latex return sig def write_signature(self, **kwargs): "Write signature to image file." c = self.signature(**kwargs) imgfilename = self.outdir + self.prefix + '_signature' + '.png' c.writeGSfile(filename=imgfilename) return imgfilename class tgfFile(object): """TGF file for writing edges and nodes in the TGF format.""" def __init__(self, filename, **kwargs): self.nodelist = [] self.nodeset = set() self.nodedict = {} self.edgelist = [] self.filename = filename if not filename: raise ValueError('No tgf filename given.') self.elfilename = kwargs.get('elfilename', '') try: with open(self.filename, 'r') as inputfile: phase = 'nodes' lines = (line.strip() for line in inputfile) # all lines including the blank ones http://stackoverflow.com/questions/4842057/python-easiest-way-to-ignore-blank-lines-when-reading-a-file lines = (line for line in lines if line) # non-blank lines for line in lines: lt = line.strip().split('\t') # line tuple if '#' in line: phase = 'edges' continue if phase == 'nodes': self.nodeset.add(lt[0]) # self.nodedict.update({lt[0], ''}) # ADDING NODES TO DICT IS BROKEN # self.nodedict.update({lt[0], lt[1:]}) if phase == 'edges': self.edgelist.append(lt) # tgf may have nodes which are only listed in edges self.nodeset.add(lt[0]) self.nodeset.add(lt[1]) # only add keys-without-values if the values don't already exist if not self.nodedict.get(lt[0]): # no key or empty value self.nodedict[lt[0]] = '' if not self.nodedict.get(lt[1]): self.nodedict[lt[1]] = '' self.nodelist = list(self.nodeset) except OSError: print "File not read." def __str__(self): string = 'tgfFile:\n' string += 'nodes: ' + str(self.nodelist) + '\n' string += 'edges: ' + str(self.edgelist) + '\n' return string def __len__(self): return len(self.edgelist) def write_edgefile(self): """Write edge list to text file.""" if self.elfilename == '': self.elfilename = self.filename + '.el' try: with open(self.elfilename, "w") as outputfile: for line in self.edgelist: outputfile.write('\t'.join(line[:2]) + '\n') # slice out edge labels to avoid igraph NCOL error, tab-delimit the tuples return self.elfilename except OSError: print "File not written." def to_graph(self): """ TGF file to igraph graph. Writes an edgefile and passes the filename in for a graph object, as igraph's Read_Ncol can only load from a file.""" # results = edgelistfile_to_graph(elfilename) return Graph.Read_Ncol(self.write_edgefile(), directed=True) def tgffile_to_edgelist(tgffilename, elfilename=''): """ TGF file to edgelist converter. """ results = [] if not tgffilename: raise ValueError('No tgf filename given.') if elfilename == '': elfilename = tgffilename + '.el' try: with open(tgffilename, 'r') as inputfile: with open(elfilename, "w") as outputfile: phase = 'nodes' for line in inputfile: if '#' in line.strip(): phase = 'edges' continue if phase == 'nodes': continue if phase == 'edges': outputfile.write(line) except OSError: print "File not copied." results = elfilename return results def edgelistfile_to_graph(elfilename): """Stub passing an edgelist to igraph, returns an ncol graph object.""" return Graph.Read_Ncol(elfilename, directed=True) def tgffile_to_graph(tgffilename, elfilename=''): """TGF file to igraph graph. Wrapper for intermediate edgelist.""" results = [] if not tgffilename: raise ValueError('No tgf filename given.') if elfilename == '': elfilename = tgffilename + '.el' try: elfilename = tgffile_to_edgelist(tgffilename, elfilename) results = edgelistfile_to_graph(elfilename) except OSError: print "File not copied." return results def degree_glyph(indegree, outdegree, degreecount=1, degreerange=(1, 3)): """Return an igraph canvas glyph image based on indegree, outdegree.""" canvas_ = canvas.canvas() # box color - turn border off and on # off, variable 1, solid 2, type colors 3 boxcolorflag = 3 # fill color - turn color background off and on # background off 0, variable red 1, type colors 2 fillcolorflag = 2 cmin = max([degreerange[0], 1]) cmax = degreerange[1] cnorm = float(0) try: # norm = x[i]−min(x) / (max(x)−min(x)) cnorm = float(degreecount - cmin) / float(cmax-cmin) except ZeroDivisionError: cnorm = float(0) if fillcolorflag == 1: if cnorm > 0: logging.debug('cmin/cmax: %s %s cnorm: %s', str(cmin), str(cmax), str(cnorm)) canvas_.fill(path.rect(0, 0, 1, 1), [color.gradient.WhiteRed.getcolor(cnorm)]) elif fillcolorflag == 2: if (indegree == 0) and (outdegree == 0): fillcolor = color.cmyk.White elif indegree == 0: fillcolor = color.cmyk.Green elif indegree == 1 and outdegree == 1: fillcolor = color.cmyk.Yellow elif outdegree == 0: fillcolor = color.cmyk.Red elif indegree == 1 and outdegree > 1: fillcolor = color.cmyk.ProcessBlue elif indegree > 1 and outdegree == 1: fillcolor = color.cmyk.Orange elif indegree > 1 and outdegree > 1: fillcolor = color.cmyk.Orchid else: fillcolor = color.cmyk.Black canvas_.fill(path.rect(0, 0, 1, 1), [fillcolor]) dg_box = path.path(path.moveto(0, 0), path.lineto(0, 1), path.lineto(1, 1), path.lineto(1, 0), path.lineto(0, 0), path.closepath()) if boxcolorflag == 1: boxcolor = color.cmyk(0, 0, 0, 0.25) if (indegree == 0) and (outdegree == 0): boxcolor = color.cmyk.White elif indegree == 0: boxcolor = color.cmyk.YellowGreen elif outdegree == 0: boxcolor = color.cmyk.RedOrange # draw manual bounding box canvas_.stroke(dg_box, [boxcolor, style.linewidth(.1)]) elif boxcolorflag == 2: boxcolor = color.cmyk.Gray # Black elif boxcolorflag == 3: if (indegree == 0) and (outdegree == 0): boxcolor = color.cmyk.White elif indegree == 0: boxcolor = color.cmyk.Green elif indegree == 1 and outdegree == 1: boxcolor = color.cmyk.Yellow elif outdegree == 0: boxcolor = color.cmyk.Red elif indegree == 1 and outdegree > 1: boxcolor = color.cmyk.ProcessBlue elif indegree > 1 and outdegree == 1: boxcolor = color.cmyk.Orange elif indegree > 1 and outdegree > 1: boxcolor = color.cmyk.Orchid else: boxcolor = color.cmyk.Black if boxcolorflag == 2 or boxcolorflag == 3: # reset box wider for cutter dg_box = path.path(path.moveto(-0.2, -0.2), path.lineto(-0.2, 1.2), path.lineto(1.2, 1.2), path.lineto(1.2, -0.2), path.lineto(-0.2, -0.2), path.closepath()) # draw manual bounding box canvas_.stroke(dg_box, [boxcolor, style.linewidth(.05)]) node_dot = path.circle(.5, .5, .15) canvas_.fill(node_dot) if indegree > 0: gp = path.path(path.moveto(0.5, 0.5), path.lineto(0.5, 0.75)) # stub canvas_.stroke(gp, [style.linewidth(.1)]) if indegree == 1: gp = path.path(path.moveto(0.5, 0.5), path.lineto(0.5, 1.0)) # indegree 1 canvas_.stroke(gp, [style.linewidth(0.1)]) else: gp = path.path(path.moveto(0.5, 0.75), path.lineto(0.0, 0.75), # crossbar path.lineto(1.0, 0.75)) canvas_.stroke(gp, [style.linewidth(.1)]) if indegree > 1: logging.debug(range(0, indegree)) for line in range(0, indegree): linef = float(line) indegreef = float(indegree-1) logging.debug(linef, indegreef, linef/indegreef) gp = path.path(path.moveto(linef/indegreef, 1.00), path.lineto(linef/indegreef, 0.75), # line for each indegree path.lineto(0.50, 0.75)) # round off the corner canvas_.stroke(gp, [style.linewidth(.1)]) if outdegree > 0: gp = path.path(path.moveto(0.50, 0.50), path.lineto(0.50, 0.25)) # stub canvas_.stroke(gp, [style.linewidth(.1)]) if outdegree == 1: gp = path.path(path.moveto(0.50, 0.50), path.lineto(0.50, 0.00)) # outdegree 1 canvas_.stroke(gp, [style.linewidth(.1)]) else: gp = path.path(path.moveto(0.50, 0.25), path.lineto(0.00, 0.25), # crossbar path.lineto(1.00, 0.25)) canvas_.stroke(gp, [style.linewidth(0.10)]) if outdegree > 1: logging.debug(range(0, outdegree)) for line in range(0, outdegree): linef = float(line) outdegreef = float(outdegree-1) logging.debug(linef, outdegreef, linef/outdegreef) gp = path.path(path.moveto(linef/outdegreef, 0.00), path.lineto(linef/outdegreef, 0.25), # line for each outdegree path.lineto(0.50, 0.25)) # round off the corner canvas_.stroke(gp, [style.linewidth(0.10)]) return canvas_ def pp_graph_stats(graph): """Log and return statistical discriptions of graph.""" logging.info('\ngraph stats:') logging.info('\n degree: %s', str(graph.degree())) logging.info('\n indegree: %s', str(graph.indegree())) logging.info('\n outdegree: %s', str(graph.outdegree())) degrees = zip(graph.indegree(), graph.outdegree()) logging.info('\n degree list: %s', str(degrees)) degrees_counter = Counter(degrees) # http://stackoverflow.com/questions/11055902/how-to-convert-a-counter-object-into-a-usable-list-of-pairs logging.info('\n degree counter: %s', str(degrees_counter)) degrees_counter_list = list(degrees_counter.items()) logging.info('\n degree counter list: ') logging.info(degrees_counter_list) degrees_counter_sorted = [] for key in sorted(degrees_counter.iterkeys()): degrees_counter_sorted.append((key, degrees_counter[key])) logging.info('\n degree counter sorted: ') logging.info(degrees_counter_sorted) logging.info('\n distribution:\n\n%s', str(graph.degree_distribution(mode='ALL')) + '\n') logging.info('\n in-dist: \n\n%s', str(graph.degree_distribution(mode='IN')) + '\n') logging.info('\n out-dist:\n\n%s', str(graph.degree_distribution(mode='OUT')) + '\n') return degrees_counter_list, degrees_counter_sorted class twineFile(object): """Twine analysis.""" def __init__(self, filename, **kwargs): self.filename = filename if not filename: raise ValueError('No tgf filename given.') self.format = kwargs.get('format', '') logging.debug('format: %s', self.format) self.elfilename = kwargs.get('elfilename', '') self.html_doc = "" self.html_doc = utils.txtfile_to_string(filename) self.html_doc = self.html_doc.replace('-', '') # stripping all hyphens because of bs4 voodoo http://stackoverflow.com/questions/25375351/beautifulsoup-unable-to-find-classes-with-hyphens-in-their-name # https://www.crummy.com/software/BeautifulSoup/bs4/doc/ logging.debug(self.html_doc) soup = BeautifulSoup(self.html_doc, 'html.parser') self.nodelist = [] self.edgelist = [] # fake data # for i in [x for x in range(10)]: # self.edgelist.append((i,i+1)) # for i in [x for x in range(10)]: # self.edgelist.append((i,i+2)) # for i in [x for x in range(10)]: # self.edgelist.append((i,i*2)) # https://www.crummy.com/software/BeautifulSoup/bs4/doc/ # <tw-passagedata pid="1" name="node 1" tags="" position="575.5,480">[[node 2]]</tw-passagedata> # THIS WORKS on an archive file exported from Twine 2 webmin -- could be extended to work with multiple stories in a file using: # passages = soup.twstorydata.twpassagedata if self.format == 'published': # THIS WORKS on porpentine's howling dogs # view-source:view-source:http://slimedaughter.com/games/twine/howlingdogs/ # view-source:https://commondatastorage.googleapis.com/itchio/html/226733-2206/index.html passages = soup.select('div[tiddler]') for psg in passages: pname = psg['tiddler'] pid = '' self.nodelist.append((pname.replace(' ', '_'), pid)) # backwards because we are defining edges by names # check passage contents for links pat = re.compile(ur'\[\[.*?\]\]') for match in re.findall(pat, psg.get_text()): if "|" in match: match = match.split('|')[1] self.edgelist.append((pname.replace(' ', '_'), match.replace('[', '').replace(']', '').replace(' ', '_'))) # tuple: ( 'passage name' , matched '[[link 1]]' returned as 'link_1' ) # broken somehow -- tried to add utils cleaning to make The Temple of No work # self.edgelist.append( ( utils.tlabel(pname) , utils.tlabel(match.replace('[','').replace(']','')) ) ) # tuple: ( 'passage name' , matched '[[link 1]]' returned as 'link_1' ) elif self.format == 'archive': passages = soup.find_all('twpassagedata') for psg in passages: pname = psg['name'] pid = psg['pid'] self.nodelist.append((pname, pid)) # backwards because we are defining edges by names # check passage contents for links pat = re.compile(ur'\[\[.*?\]\]') for match in re.findall(pat, psg.get_text()): self.edgelist.append((pname.replace(' ', '_'), match.replace('[', '').replace(']', ' ').replace(' ', '_'))) # tuple: ( 'passage name' , matched '[[link 1]]' returned as 'link_1' ) logging.debug(self.nodelist) logging.debug(self.edgelist) def __str__(self): return "twineFile()" def __len__(self): # not working for some reason ? return len(self.edgelist) def clean_nodes_edges_bak(self): """Draft Twine edge cleaning code.""" self.nodelist.sort() for idx, node in enumerate(self.nodelist): tmpnode = '_' + str(idx) + '_' + re.sub(r'[\W_]', '_', node[0], flags=re.UNICODE) if tmpnode != node[0]: newnode = (tmpnode, node[1]) self.nodelist[idx] = newnode for idx2, edge in enumerate(self.edgelist): if edge[0] == node[0]: self.edgelist[idx2] = (tmpnode, edge[1]) for idx2, edge in enumerate(self.edgelist): if edge[1] == node[0]: self.edgelist[idx2] = (edge[0], tmpnode) for idx, edge in enumerate(self.edgelist): self.edgelist[idx] = ( re.sub(r'[\W_]', '_', edge[0], flags=re.UNICODE), re.sub(r'[\W_]', '_', edge[1], flags=re.UNICODE) ) def clean_nodes_edges(self): """Clean Twine edge list and node list data after initial import. Migrates name-based edges into a nodelist and creates unique ID numbers for all nodes and edges. Also reformats node names for compatability with further processing and for visualization -- e.g. join node names with _; crop long names. """ self.nodelist.sort() # rename any existing node names # in either node or edge references # to avoid id collisions change = '_' for idx, node in enumerate(self.nodelist): # if node[0][0].isdigit(): self.nodelist[idx] = (change + node[0], node[1]) for idx, edge in enumerate(self.edgelist): self.edgelist[idx] = (change + edge[0], edge[1]) for idx, edge in enumerate(self.edgelist): self.edgelist[idx] = (edge[0], change + edge[1]) # give ids to nodes missing ids (all of them for TwineFile) for idx, node in enumerate(self.nodelist): self.nodelist[idx] = (node[0], idx) for idx, node in enumerate(self.nodelist): node_name = node[0] node_id = node[1] # replace matching name based edges with id based edges for idx2, edge in enumerate(self.edgelist): e0 = edge[0] e1 = edge[1] if e0 == node_name: e0 = str(node_id) if e1 == node_name: e1 = str(node_id) self.edgelist[idx2] = (e0, e1) # extract edge names not found in node list id_counter = len(self.nodelist) for idx, edge in enumerate(self.edgelist): e0 = edge[0] e1 = edge[1] if not e0.isdigit(): e0 = str(id_counter) self.nodelist.append((edge[0], e0)) id_counter += 1 if not e1.isdigit(): e1 = str(id_counter) self.nodelist.append((edge[1], e1)) id_counter += 1 self.edgelist[idx] = (e0, e1) # clean node names -- no names in edge list anymore for idx, node in enumerate(self.nodelist): node_name = re.sub(r'[\W_]', '_', node[0], flags=re.UNICODE) self.nodelist[idx] = (node_name, node[1]) # all strings for idx, node in enumerate(self.nodelist): self.nodelist[idx] = (str(node[0]), str(node[1])) for idx, edge in enumerate(self.edgelist): self.edgelist[idx] = (str(edge[0]), str(edge[1])) # strip leading _ from node names for idx, node in enumerate(self.nodelist): self.nodelist[idx] = (str(node[0][1:]), node[1]) def edge_duplicate_max(self, dupemax=0): """Reduce duplicate edges if the duplicate count is greater than max. This is useful for visualizations in which large duplicate edge counts (e.g. 20, 50, 100) visually obscure other aspects of the graph. """ if dupemax == 0: # remove all duplicate edges self.edgelist = list(set(self.edgelist)) else: countmax = dupemax + 1 # prune high duplicate edge counts to max edgecounts = Counter(self.edgelist) for key in edgecounts: if edgecounts[key] > countmax: edgecounts[key] = countmax self.edgelist = list(edgecounts.elements()) def edge_remover(self, fun): """Remove edges based on a function. Example: a lambda returning true if either edge name begins 'http' """ mylist = list(self.edgelist) for edge in self.edgelist: if fun(edge[0]) or fun(edge[1]): mylist.remove(edge) self.edgelist = mylist def node_name_shorten(self, length): """Crop node names. Long cropped names are marked with an ellipsis. """ for idx, node in enumerate(self.nodelist): if len(node[0]) > length: if length > 9: self.nodelist[idx] = (node[0][:length-3] + '...', node[1]) else: self.nodelist[idx] = (node[0][:length], node[1]) def node_orphans_remove(self): """Remove orphan nodes from node list. These are nodes not appearing in the edge list. In addition to cleaning up messy extracted data, This is useful after edge pruning -- for example, pruning http edges and then removing the orphaned nodes. """ # remove orphan nodes mylist = list(self.nodelist) for node in self.nodelist: used = False for edge in self.edgelist: if node[1] == edge[0]: used = True if node[1] == edge[1]: used = True if not used: mylist.remove(node) self.nodelist = mylist def write_edgefile(self, temp=True): """Write simple edge list to file. By default returns a temporary file. This functionality is necessary because igraph's Graph.Read_Ncol cannot accept an in-memory object or stream, only a filename or file handle. """ if self.elfilename == '': self.elfilename = self.filename + '.el' if temp: with tempfile.NamedTemporaryFile(delete=False) as fp: for line in self.edgelist: fp.write('\t'.join(unicode(v).encode('ascii', 'ignore') for v in line) + '\n') return fp.name else: try: with open(self.elfilename, "w") as outputfile: for line in self.edgelist: # print(line) outputfile.write('\t'.join(unicode(v).encode('ascii', 'ignore') for v in line) + '\n') # tab-delimit the tuples # UnicodeEncodeError: 'ascii' codec can't encode character u'\u2026' in position 7: ordinal not in range(128) # http://stackoverflow.com/questions/9942594/unicodeencodeerror-ascii-codec-cant-encode-character-u-xa0-in-position-20 # .encode('utf-8').strip() # http://stackoverflow.com/questions/10880813/typeerror-sequence-item-0-expected-string-int-found # '\t'.join(str(v) for v in value_list) return self.elfilename except OSError: print "File not written." def write_sparse_edgefile(self): """Write edges and nodes to Edger-compatible sparse edge file.""" if self.elfilename == '': self.elfilename = self.filename + '.el' try: with open(self.elfilename, "w") as outputfile: outputfile.write('# Nodes\n') for nline in self.nodelist: outputfile.write(str(nline[1]) + '\t\t' + str(nline[0]) + '\n') outputfile.write('\n# Edges\n') for eline in self.edgelist: outputfile.write('\t'.join(unicode(v).encode('ascii', 'ignore') for v in eline) + '\n') return self.elfilename except OSError: print "File not written." def to_graph(self, temp=False): """TGF file to igraph graph. Writes an edgefile and passes the filename in for a graph object, as igraph's Read_Ncol can only load from a file. """ # results = edgelistfile_to_graph(elfilename) return Graph.Read_Ncol(self.write_edgefile(temp), directed=True) # CURRENTLY UNUSED # def batch_degree_glyph(indegree, outdegree): # """""" # return True def build_graph(edgelist): """Builds a graph from an edgelist. To use on a TGF: g = build_graph(utils.tgf_to_list('edges.tgf')) """ g = Graph(directed=True) e = [(a[0], a[1]) for a in edgelist[1]] g.add_vertices(len(e)) g.add_edges(e) return g def edgelistfile_to_edgelist(filename): """DRAFT: Load an edgelist file -- possibly not working.""" results = [] if not filename: raise ValueError('No filename given.') try: with open(filename, 'r') as inputfile: for line in inputfile: results.append(line) except OSError: print "File not copied." # results = Graph.Read_Ncol(elfilename, directed=True) return results def my__tgffile_to_graph(filename): """DRAFT: Load a TGF file into a graph -- possibly not working.""" results = [] if not filename: raise ValueError('No filename given.') try: with open(filename, 'r') as inputfile: elfilename = filename + '.el' with open(elfilename, "w") as outputfile: phase = 'nodes' for line in inputfile: if '#' in line.strip(): phase = 'edges' continue if phase == 'nodes': continue if phase == 'edges': outputfile.write(line) except OSError: print "File not copied." results = Graph.Read_Ncol(elfilename, directed=True) return results ```
{ "source": "JeremyDP2904/goodnightbot", "score": 2 }
#### File: JeremyDP2904/goodnightbot/bot.py ```python from fbchat import Client from fbchat.models import * import random import config import schedule import time client = Client(config.username, config.password) def GoodNight(): for friend in config.friendlist: wish = random.choice(config.wish).format(config.friendlist[friend]) client.sendRemoteImage(random.choice(config.images), message=wish, thread_id=friend, thread_type=ThreadType.USER) time.sleep(1) schedule.every().day.at("23:00").do(GoodNight) while True: schedule.run_pending() time.sleep(1) ```
{ "source": "JeremyDTaylor/fractal-python", "score": 2 }
#### File: fractal-python/tests/test_api_client.py ```python import json import arrow import pytest from fractal_python import api_client from fractal_python.api_client import ApiClient TOKEN_RESPONSE = { "access_token": "access token e.g. <PASSWORD>", "partner_id": "Partner ID e.g. 1juji12f", "expires_in": 1800, "token_type": "Bearer", } def make_sandbox(requests_mock) -> ApiClient: requests_mock.register_uri("POST", "/token", text=json.dumps(TOKEN_RESPONSE)) return api_client.sandbox("sandbox-key", "sandbox-partner") @pytest.fixture() def sandbox(requests_mock) -> ApiClient: return make_sandbox(requests_mock) @pytest.fixture def live(requests_mock) -> ApiClient: requests_mock.register_uri("POST", "/token", text=json.dumps(TOKEN_RESPONSE)) return api_client.live("live-key", "live-partner") def test_sandbox(sandbox): assert "sandbox-key" in sandbox.headers.values() assert "sandbox-partner" in sandbox.headers.values() def test_live(live): assert "live-key" in live.headers.values() assert "live-partner" in live.headers.values() def test_authorise(requests_mock, freezer, live): # skipcq: PYL-W0613 headers = {"X-Api-Key": "live-key", "X-Partner-Id": "live-partner"} requests_mock.register_uri( "POST", "https://auth.askfractal.com/token", text=json.dumps(TOKEN_RESPONSE), request_headers=headers, ) live.expires_at = arrow.now().shift(seconds=-1801) live._authorise() assert ( live.expires_at.int_timestamp == arrow.now().shift(seconds=1800).int_timestamp ) ``` #### File: fractal-python/tests/test_forecasting.py ```python import pytest from fractal_python.api_client import COMPANY_ID_HEADER, PARTNER_ID_HEADER, ApiClient from fractal_python.forecasting import ( get_forecasted_balances, get_forecasted_transactions, get_forecasts, ) from tests.test_api_client import make_sandbox GET_FORECASTS = { "results": [ { "id": "forecastId1234", "bankId": 16, "accountId": "9aed0933-8e38-4571-93dd-8e775c8233e7", "name": "Forecast-Mar1", "date": "2021-03-01T09:34:00.284Z", "source": "MANUALIMPORT", }, { "id": "forecastId3456", "bankId": 16, "accountId": "9aed0933-8e38-4571-93dd-8e775c8233e7", "name": "model_forecast_21_03_01.09:32", "date": "2021-03-01T09:32:39.831Z", "source": "MODEL", }, ], "links": {}, } GET_FORECASTS_PAGED = { "results": [ { "id": "forecastId3457", "bankId": 16, "accountId": "9aed0933-8e38-4571-93dd-8e775c8233e7", "name": "model_forecast_21_03_01.09:32", "date": "2021-04-01T09:32:39.831Z", "source": "MODEL", } ], "links": {"next": "mock://test/forecasting/v2/forecasts?pageId=2"}, } @pytest.fixture() def forecasts_client(requests_mock) -> ApiClient: request_headers = { COMPANY_ID_HEADER: "CompanyID1234", PARTNER_ID_HEADER: "sandbox-partner", } requests_mock.register_uri( "GET", "/forecasting/v2/forecasts", json=GET_FORECASTS_PAGED, request_headers=request_headers, ) requests_mock.register_uri( "GET", "/forecasting/v2/forecasts?pageId=2", json=GET_FORECASTS, request_headers=request_headers, ) return make_sandbox(requests_mock) def test_get_forecasts(forecasts_client: ApiClient): forecasts = [ item for sublist in get_forecasts( client=forecasts_client, company_id="CompanyID1234" ) for item in sublist ] assert len(forecasts) == 3 GET_FORECASTED_TRANSACTIONS_PAGED = { "results": [ { "id": "transactionId12342", "forecastId": "forecastId1234", "bankId": 16, "accountId": "9aed0933-8e38-4571-93dd-8e775c8233e7", "valueDate": "2020-10-18T03:59Z", "amount": "1000.00", "currency": "USD", "type": "CREDIT", "merchant": "LLoyds", "category": "Tax", "reasons": "", "source": "MANUALIMPORT", }, ], "links": {"next": "mock://test/forecasting/v2/transactions?pageId=2"}, } GET_FORECASTED_TRANSACTIONS = { "results": [ { "id": "transactionId1234", "forecastId": "forecastId1234", "bankId": 16, "accountId": "9aed0933-8e38-4571-93dd-8e775c8233e7", "valueDate": "2020-09-18T03:59Z", "amount": "1000.00", "currency": "USD", "type": "CREDIT", "merchant": "LLoyds", "category": "Tax", "reasons": "", "source": "MANUALIMPORT", }, { "id": "transactionId2345", "forecastId": "forecastId2345", "bankId": 16, "accountId": "9aed0933-8e38-4571-93dd-8e775c8233e7", "valueDate": "2020-09-18T03:59Z", "amount": "1000.00", "currency": "USD", "type": "CREDIT", "merchant": "LLoyds", "category": "Tax", "reasons": "", "source": "MANUALIMPORT", }, { "id": "transactionId3456", "forecastId": "forecastId3456", "bankId": 16, "accountId": "9aed0933-8e38-4571-93dd-8e775c8233e7", "valueDate": "2020-09-18T03:59Z", "amount": "1000.00", "currency": "USD", "type": "CREDIT", "merchant": "LLoyds", "category": "Tax", "reasons": "", "source": "MANUALIMPORT", }, ], "links": {}, } @pytest.fixture() def forecasted_transactions_client(requests_mock) -> ApiClient: request_headers = { COMPANY_ID_HEADER: "CompanyID1234", PARTNER_ID_HEADER: "sandbox-partner", } requests_mock.register_uri( "GET", "/forecasting/v2/transactions", json=GET_FORECASTED_TRANSACTIONS_PAGED, request_headers=request_headers, ) requests_mock.register_uri( "GET", "/forecasting/v2/transactions?pageId=2", json=GET_FORECASTED_TRANSACTIONS, request_headers=request_headers, ) return make_sandbox(requests_mock) def test_get_forecasted_transactions(forecasted_transactions_client: ApiClient): forecasted_transactions = [ item for sublist in get_forecasted_transactions( client=forecasted_transactions_client, company_id="CompanyID1234" ) for item in sublist ] assert len(forecasted_transactions) == 4 GET_FORECASTED_BALANCES_PAGED = { "results": [ { "id": "90044386-1c09-40bf-b75f-622555da29f2", "bankId": 16, "accountId": "accountId1234", "forecastId": "forecastId1234", "date": "2020-12-30T03:59Z", "amount": "100002.00", "currency": "GBP", "type": "CREDIT", "source": "MANUALIMPORT", }, ], "links": {"next": "mock://test/forecasting/v2/balances?pageId=2"}, } GET_FORECASTED_BALANCES = { "results": [ { "id": "90044386-1c09-40bf-b75f-622555da29f5", "bankId": 16, "accountId": "accountId1234", "forecastId": "forecastId1234", "date": "2020-11-30T03:59Z", "amount": "100000.00", "currency": "GBP", "type": "CREDIT", "source": "MANUALIMPORT", }, { "id": "6cb6c2d1-5b8e-4efc-8e69-7e051a6c3820", "bankId": 18, "accountId": "accountId2345", "forecastId": "forecastId2345", "date": "2020-12-30T03:59Z", "amount": "110000.00", "currency": "GBP", "type": "CREDIT", "source": "MANUALIMPORT", }, ], "links": {}, } @pytest.fixture() def forecasted_balances_client(requests_mock) -> ApiClient: request_headers = { COMPANY_ID_HEADER: "CompanyID1234", PARTNER_ID_HEADER: "sandbox-partner", } requests_mock.register_uri( "GET", "/forecasting/v2/balances", json=GET_FORECASTED_BALANCES_PAGED, request_headers=request_headers, ) requests_mock.register_uri( "GET", "/forecasting/v2/balances?pageId=2", json=GET_FORECASTED_BALANCES, request_headers=request_headers, ) return make_sandbox(requests_mock) def test_get_forecasted_balances(forecasted_balances_client: ApiClient): forecasted_balances = [ item for sublist in get_forecasted_balances( client=forecasted_balances_client, company_id="CompanyID1234" ) for item in sublist ] assert len(forecasted_balances) == 3 ``` #### File: fractal-python/tests/test_merchants.py ```python import pytest from fractal_python.api_client import PARTNER_ID_HEADER, ApiClient from fractal_python.banking import retrieve_merchants from tests.test_api_client import make_sandbox GET_MERCHANTS = { "results": [ { "id": "categoryId1234", "name": "Vitalityhealth", "categoryCode": "", "addressLine": "", }, { "id": "categoryId2345", "name": "Google", "categoryCode": "", "addressLine": "", }, {"id": "categoryId3456", "name": "Uber", "categoryCode": "", "addressLine": ""}, ], "links": {}, } GET_MERCHANTS_PAGED = { "results": [ {"id": "categoryId3456", "name": "Lime", "categoryCode": "", "addressLine": ""} ], "links": {"next": "mock://test/banking/v2/merchants?pageId=2"}, } @pytest.fixture() def merchants_client(requests_mock) -> ApiClient: request_headers = { PARTNER_ID_HEADER: "sandbox-partner", } requests_mock.register_uri( "GET", "/banking/v2/merchants", json=GET_MERCHANTS_PAGED, request_headers=request_headers, ) requests_mock.register_uri( "GET", "/banking/v2/merchants?pageId=2", json=GET_MERCHANTS, request_headers=request_headers, ) return make_sandbox(requests_mock) def test_retrieve_merchants(merchants_client: ApiClient): merchants = [ item for sublist in retrieve_merchants(client=merchants_client) for item in sublist ] assert len(merchants) == 4 ```
{ "source": "jeremydumais/airodb", "score": 3 }
#### File: airodb/airodb/dumpLoader.py ```python from os import path from dumpConverter import DumpConverter from colorama import Fore, Style class DumpLoader: @staticmethod def Load(filename, sessionName, debug=False): if path.exists(filename): fileHandler = open(filename, "r") dumpConverter = DumpConverter(sessionName) dumps = [] # Ignore the first line (empty) and the second one (header) lineCount = 0 for line in fileHandler: if lineCount > 1: # Stop before the client section. Only keep AP's if (line.strip() == ""): break dumpObject = dumpConverter.convertToJSON(line) if dumpObject is not None: dumps.append(dumpObject) else: if (debug): print(f"{Fore.YELLOW}The line {line} has been ignored due to bad format.{Style.RESET_ALL}") lineCount += 1 return dumps else: print("The file " + filename + " doesn't exist.") return None ``` #### File: airodb/airodb/macAddress.py ```python class MACAddress: @staticmethod def isValid(macAddress): sanitizedMACAddress = macAddress.strip().upper() if sanitizedMACAddress == "": return False # Ensure that we have 6 sections items = sanitizedMACAddress.split(":") if len(items) != 6: return False # Ensure that every section of the MAC Address has 2 characters for section in items: if len(section) != 2: return False # Ensure that all characters is hexadecimal HEXADECIMAL_CHARS = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'] for section in items: for character in section: if character not in HEXADECIMAL_CHARS: return False return True ```
{ "source": "jeremydumais/airodb-analyzer", "score": 3 }
#### File: airodb_analyzer/models/accessPoint.py ```python from models.macAddress import MACAddress class AccessPoint(): _macAddress = None _name = None def __init__(self, macAddress, name): if (not isinstance(macAddress, MACAddress)): raise TypeError("macAddress") if (not isinstance(name, str)): raise TypeError("name") self._macAddress = macAddress self._name = name def getMACAddress(self): return self._macAddress def getName(self): return self._name def isHidden(self): sanitizedName = self._name.strip().replace("\\x00", "") return True if sanitizedName=="" else False def isTrusted(self, trustedAPList): return self._macAddress in trustedAPList def setMACAddress(self, macAddress): if (not isinstance(macAddress, MACAddress)): raise TypeError("macAddress") self._macAddress = macAddress def setName(self, name): if (not isinstance(name, str)): raise TypeError("name") self._name = name def __eq__(self, other): if isinstance(other, AccessPoint): return (self._macAddress == other._macAddress and self._name == other._name) return False def __hash__(self): return hash((self._macAddress, self._name)) ``` #### File: airodb_analyzer/models/session.py ```python from datetime import datetime class Session(): _name = "" _firstEntryDateTime = None _lastEntryDateTime = None _nbOfRawLogs = 0 def __init__(self, name, firstEntryDateTime = None, lastEntryDateTime = None, nbOfRawLogs = 0): if (not isinstance(name, str)): raise TypeError("name") if (name.strip()): self._name = name else: raise ValueError("name") if (firstEntryDateTime != None): if (not isinstance(firstEntryDateTime, datetime)): raise TypeError("firstEntryDateTime") else: self._firstEntryDateTime = firstEntryDateTime if (lastEntryDateTime != None): if (not isinstance(lastEntryDateTime, datetime)): raise TypeError("lastEntryDateTime") else: self._lastEntryDateTime = lastEntryDateTime if (not isinstance(nbOfRawLogs, int)): raise TypeError("nbOfRawLogs") if (nbOfRawLogs < 0): raise ValueError("nbOfRawLogs") else: self._nbOfRawLogs = nbOfRawLogs def getName(self): return self._name def getFirstEntryDateTime(self): return self._firstEntryDateTime def getLastEntryDateTime(self): return self._lastEntryDateTime def getNBOfRawLogs(self): return self._nbOfRawLogs def setName(self, name): if (not isinstance(name, str)): raise TypeError("name") if (name.strip()): self._name = name else: raise ValueError("name") def setFirstEntryDateTime(self, firstEntryDateTime): if (firstEntryDateTime != None): if (not isinstance(firstEntryDateTime, datetime)): raise TypeError("firstEntryDateTime") else: self._firstEntryDateTime = firstEntryDateTime else: self._firstEntryDateTime = None def setLastEntryDateTime(self, lastEntryDateTime): if (lastEntryDateTime != None): if (not isinstance(lastEntryDateTime, datetime)): raise TypeError("lastEntryDateTime") else: self._lastEntryDateTime = lastEntryDateTime else: self._lastEntryDateTime = None def setNBOfRawLogs(self, value): if (not isinstance(value, int)): raise TypeError("value") if (value < 0): raise ValueError("value") else: self._nbOfRawLogs = value def __eq__(self, other): if isinstance(other, Session): return (self._name == other._name and self._firstEntryDateTime == other._firstEntryDateTime and self._lastEntryDateTime == other._lastEntryDateTime and self._nbOfRawLogs == other._nbOfRawLogs) return False def __hash__(self): return hash((self._name, self._firstEntryDateTime, self._lastEntryDateTime, self._nbOfRawLogs)) ``` #### File: airodb_analyzer/services/dbStorage.py ```python import pymongo import sys from pymongo import MongoClient from models.accessPoint import AccessPoint from models.macAddress import MACAddress from models.session import Session from models.sessionAPStat import SessionAPStat from datetime import datetime from dateutil.parser import parse class DBStorage(): def __init__(self, mongoClient=None): if (mongoClient==None): #try: self._client = MongoClient() self._db = self._client["airodb"] self.dumps = self._db.airodb_dumps self.trusted_aps = self._db.airodb_trustedAP #Fix: start a count command to force the client to connect self.dumps.count_documents({}) #except pymongo.errors.ServerSelectionTimeoutError: # print("Unable to connect to the local MongoDB instance") # sys.exit(2) else: self._client = mongoClient self._db = self._client.airodb self.dumps = self._db.airodb_dumps self.trusted_aps = self._db.airodb_trustedAP def __del__(self): self._client.close() def getSessionList(self): retVal = [] sessions = self.dumps.aggregate([{"$match":{}}, {"$group": { "_id":"$SessionName", "first": { "$first": "$FirstTimeSeen"}, "last": { "$last": "$LastTimeSeen"}, "count": { "$sum": 1}}}, {"$sort": {"name":1}}]) for session in sessions: retVal.append(Session(session["_id"], parse(session["first"]), parse(session["last"]), session["count"])) return retVal def getSessionAP(self, sessionName): retVal = [] apList = self.dumps.aggregate([{"$match":{"SessionName":sessionName}}, {"$group": { "_id":"$BSSID", "name": { "$last": "$ESSID" }}}, {"$sort": {"name":1}}]) for ap in apList: retVal.append(AccessPoint(MACAddress(ap["_id"]), ap["name"])) return retVal def getSessionAPStats(self, sessionName, apMACAddress): retVal = None stat = list(self.dumps.aggregate([{"$match":{"SessionName":sessionName, "BSSID":apMACAddress.getValue()}}, { "$group": { "_id":"$BSSID", "name": { "$last": "$ESSID" }, "firstTimeSeen": { "$first": "$FirstTimeSeen"}, "lastTimeSeen": { "$last": "$LastTimeSeen"}, "encryption": { "$last": "$Privacy"}, "cipher": { "$last": "$Cipher"}, "authentification": { "$last": "$Authentification"}, "channel": { "$last": "$Channel"}, "speed": { "$last": "$Speed"}, "powerMin": { "$min": "$Power"}, "powerMax": { "$max": "$Power"}, "powerAvg": { "$avg": "$Power"} }}])) assert(len(stat) == 0 or len(stat) == 1) if (len(stat) == 1): retVal = SessionAPStat.createFromDict(stat[0]) return retVal def getSessionAPRawLogs(self, sessionName, apMACAddress): return self.dumps.find({"SessionName":sessionName, "BSSID":apMACAddress}) def getTrustedAPList(self): retVal = [] trustedAPs = self.trusted_aps.find().sort("BSSID", 1) for trustedAP in trustedAPs: retVal.append(MACAddress(trustedAP["BSSID"])) return retVal def isTrustedAPExist(self, macAddress): if (not isinstance(macAddress, MACAddress)): raise TypeError("macAddress") return (self.trusted_aps.count_documents({"BSSID": macAddress.getValue()}) > 0) def insertTrustedAP(self, macAddress): if (not isinstance(macAddress, MACAddress)): raise TypeError("macAddress") # Check if the MAC Address already exist if (self.isTrustedAPExist(macAddress)): raise RuntimeError(macAddress.getValue() + " already exist!") self.trusted_aps.insert_one({ "BSSID": macAddress.getValue()}) def updateTrustedAP(self, macAddressOld, macAddressNew): if (not isinstance(macAddressOld, MACAddress)): raise TypeError("macAddressOld") if (not isinstance(macAddressNew, MACAddress)): raise TypeError("macAddressNew") # Check if the MAC Address exist if (not(self.isTrustedAPExist(macAddressOld))): raise RuntimeError(macAddressOld.getValue() + " doesn't exist!") # Check if the new MAC Address already exist and is not the old one if (self.isTrustedAPExist(macAddressNew) and macAddressOld != macAddressNew): raise RuntimeError(macAddressNew.getValue() + " already exist!") self.trusted_aps.update_one({"BSSID": macAddressOld.getValue()}, {"$set": {"BSSID": macAddressNew.getValue()}}) def deleteTrustedAP(self, macAddress): if (not isinstance(macAddress, MACAddress)): raise TypeError("macAddress") # Check if the MAC Address exist if (not(self.isTrustedAPExist(macAddress))): raise RuntimeError(macAddress.getValue() + " doesn't exist!") self.trusted_aps.delete_one({"BSSID": macAddress.getValue()}) ``` #### File: airodb_analyzer/ui/aboutBoxForm.py ```python from PyQt5 import QtCore, QtGui, QtWidgets, uic import qdarkgraystyle class Ui_AboutBoxForm(QtWidgets.QDialog): def __init__(self): super(Ui_AboutBoxForm, self).__init__() uic.loadUi('airodb_analyzer/designer/aboutBoxForm.ui', self) self.setStyleSheet(qdarkgraystyle.load_stylesheet()) #Signals self.buttonClose.clicked.connect(self.buttonCloseClick) def buttonCloseClick(self): self.close() ``` #### File: airodb_analyzer/ui/mainForm.py ```python from PyQt5 import QtCore, QtGui, QtWidgets, uic from ui.openSessionForm import Ui_OpenSessionForm from ui.aboutBoxForm import Ui_AboutBoxForm from ui.manageTrustedAPsForm import Ui_ManageTrustedAPsForm from services.dbStorage import DBStorage from models.accessPoint import AccessPoint from models.macAddress import MACAddress from bson.json_util import dumps class Ui_MainWindow(QtWidgets.QMainWindow): def __init__(self): super(Ui_MainWindow, self).__init__() uic.loadUi('airodb_analyzer/designer/mainForm.ui', self) screenCenter = QtWidgets.QApplication.desktop().screen().rect().center() self.move(screenCenter.x()-self.width()/2, screenCenter.y()-self.height()/2); self.tabWidgetAPDetails.setVisible(False) self._sessionName = "" self.apListModel = QtGui.QStandardItemModel(self.listViewAP) self.apListMACAddress = [] self.listViewAP.setModel(self.apListModel) self.toggleControlsForSession(False) self.lineEditFilterAPs.setVisible(False) #Signals self.tabWidgetAPDetails.currentChanged.connect(self.APDetailsTabChanged) self.action_Quit.triggered.connect(self.menuQuitClick) self.action_Open_session.triggered.connect(self.menuOpenSessionClick) self.actionClose_session.triggered.connect(self.menuCloseSessionClick) self.action_Open_session_toolbar.triggered.connect(self.menuOpenSessionClick) self.action_Close_session_toolbar.triggered.connect(self.menuCloseSessionClick) self.action_Show_all_APs.triggered.connect(self.menuShowAllClick) self.action_Show_trusted_APs.triggered.connect(self.toggleMenusShowAPsClick) self.action_Show_untrusted_APs.triggered.connect(self.toggleMenusShowAPsClick) self.action_Show_hidden_APs.triggered.connect(self.toggleMenusShowAPsClick) self.action_Manage_Trusted_access_points.triggered.connect(self.menuManageTrustedAPsClick) self.action_ManageKnownAccessPoints_toolbar.triggered.connect(self.menuManageTrustedAPsClick) self.actionAbout_airodb_analyzer.triggered.connect(self.menuAboutBoxClick) self.listViewAP.selectionModel().selectionChanged.connect(self.listViewAPCurrentChange) self.buttonAddToTrustedAP.clicked.connect(self.buttonAddToTrustedAPClick) self.buttonRemoveFromTrustedAP.clicked.connect(self.buttonRemoveFromTrustedAPClick) self.showMaximized() def showEvent(self, event): QtCore.QTimer.singleShot(200, lambda: self.lineEditFilterAPs.setStyleSheet("#lineEditFilterAPs { color: lightGray; }")) def menuQuitClick(self): self.close() def menuAboutBoxClick(self): formAboutBox = Ui_AboutBoxForm() formAboutBox.exec_() def loadSession(self, sessionName): storage = DBStorage() apList = storage.getSessionAP(sessionName) self.loadTrustedAPs() self._sessionName = sessionName self.apListModel.clear() self.apListMACAddress.clear() for ap in apList: apDisplayName = ap.getName() if (ap.isHidden()): apDisplayName = "<hidden>" if ((not(self.action_Show_hidden_APs.isChecked()) and ap.isHidden()) or (not(self.action_Show_trusted_APs.isChecked()) and ap.isTrusted(self._trustedAPList)) or (not(self.action_Show_untrusted_APs.isChecked()) and not(ap.isTrusted(self._trustedAPList)))): pass else: item = QtGui.QStandardItem(apDisplayName) self.apListModel.appendRow(item) self.apListMACAddress.append(ap.getMACAddress()) self.tabWidgetAPDetails.setVisible(False) self.toggleControlsForSession(True) def loadTrustedAPs(self): storage = DBStorage() self._trustedAPList = storage.getTrustedAPList() def closeSession(self): self._sessionName = "" self.apListModel.clear() self.apListMACAddress = [] self.tabWidgetAPDetails.setVisible(False) self.toggleControlsForSession(False) def toggleControlsForSession(self, isSessionOpen): self.action_Close_session_toolbar.setEnabled(isSessionOpen) self.actionClose_session.setEnabled(isSessionOpen) self.action_Show_hidden_APs.setEnabled(isSessionOpen) def loadAPRawLogs(self, sessionName, apMACAddress): storage = DBStorage() logs = storage.getSessionAPRawLogs(sessionName, apMACAddress) rawLogs = "" for log in logs: rawLogs = rawLogs + dumps(log) + "\n" self.labelRawLogs.setText(rawLogs) def getSelectedAPMACAddress(self): selectedRows = self.listViewAP.selectionModel().selectedRows() if (len(selectedRows) > 0): row = selectedRows[0].row() return self.apListMACAddress[row] else: return None def menuOpenSessionClick(self): formOpenSession = Ui_OpenSessionForm() result = formOpenSession.exec_() if (result == QtWidgets.QDialog.Accepted): self.loadSession(formOpenSession.selectedSession) def menuCloseSessionClick(self): self.closeSession() def APDetailsTabChanged(self): if (self.tabWidgetAPDetails.currentIndex() == 1): apMACAddress = self.getSelectedAPMACAddress() if (apMACAddress != None): self.loadAPRawLogs(self._sessionName, apMACAddress.getValue()) def listViewAPCurrentChange(self): apMACAddress = self.getSelectedAPMACAddress() if (apMACAddress != None): storage = DBStorage() apStat = storage.getSessionAPStats(self._sessionName, apMACAddress) if (apStat != None): ap = AccessPoint(apStat.getMACAddress(), apStat.getName()) self.labelName.setText(apStat.getName()) self.labelMACAddress.setText(apStat.getMACAddress().getValue()) isTrustedAP = ap.isTrusted(self._trustedAPList) self.buttonAddToTrustedAP.setVisible(not(isTrustedAP)) self.buttonRemoveFromTrustedAP.setVisible(isTrustedAP) self.labelFirstTimeSeen.setText(str(apStat.getFirstTimeSeen())) self.labelLastTimeSeen.setText(str(apStat.getLastTimeSeen())) self.widgetProtectionDetails.setVisible(apStat.isProtected()) self.labelIsProtected.setText("True" if apStat.isProtected() else "False") self.labelEncryption.setText(apStat.getEncryption()) self.labelCipher.setText(apStat.getCipher()) self.labelAuthentification.setText(apStat.getAuthentification()) self.labelChannel.setText(str(apStat.getChannel())) self.labelSpeed.setText(str(apStat.getSpeed())) self.labelPowerMin.setText(str(apStat.getPowerLevelMax())) #Max for best signal self.labelPowerMax.setText(str(apStat.getPowerLevelMin())) #Min for worst signal self.labelPowerAvg.setText(str(apStat.getPowerLevelAvg())) self.tabWidgetAPDetails.setCurrentIndex(0) self.tabWidgetAPDetails.setVisible(True) def menuShowAllClick(self): self.action_Show_trusted_APs.setChecked(True) self.action_Show_untrusted_APs.setChecked(True) self.action_Show_hidden_APs.setChecked(True) self.loadSession(self._sessionName) def toggleMenusShowAPsClick(self): self.loadSession(self._sessionName) def menuManageTrustedAPsClick(self): formManageTrustedAPs = Ui_ManageTrustedAPsForm() formManageTrustedAPs.exec_() self.loadTrustedAPs() def buttonAddToTrustedAPClick(self): storage = DBStorage() self.updateFromTrustedAPList(storage.insertTrustedAP) def buttonRemoveFromTrustedAPClick(self): storage = DBStorage() self.updateFromTrustedAPList(storage.deleteTrustedAP) def updateFromTrustedAPList(self, func): apMACAddress = self.getSelectedAPMACAddress() if (apMACAddress != None): storage = DBStorage() func(apMACAddress) self.loadTrustedAPs() ap = AccessPoint(apMACAddress, "") isTrustedAP = ap.isTrusted(self._trustedAPList) self.buttonAddToTrustedAP.setVisible(not(isTrustedAP)) self.buttonRemoveFromTrustedAP.setVisible(isTrustedAP) ``` #### File: airodb-analyzer/tests/accessPoint_test.py ```python import unittest from os import path import sys sys.path.append(path.join(path.dirname(path.dirname(path.abspath(__file__))), 'airodb_analyzer')) from models.accessPoint import AccessPoint from models.macAddress import MACAddress class TestAccessPointMethods(unittest.TestCase): def test_constructor_TestWithNoneMacAddress_ThrowTypeError(self): with self.assertRaises(TypeError): AccessPoint(None, None) def test_constructor_TestWithStringMacAddress_ThrowTypeError(self): with self.assertRaises(TypeError): AccessPoint("12:34:56:78:89:FF", None) def test_constructor_TestWithNoneName_ThrowTypeError(self): with self.assertRaises(TypeError): AccessPoint(MACAddress("12:34:56:78:89:FF"), None) def test_constructor_TestWithEmptyName_ReturnValid(self): AccessPoint(MACAddress("12:34:56:78:89:FF"), "") def test_constructor_TestWithValidMACAndName_ReturnValid(self): AccessPoint(MACAddress("12:34:56:78:89:FF"), "MyAP") def test_getMACAddress_TestWith1234567889FF_Return1234567889FF(self): ap = AccessPoint(MACAddress("12:34:56:78:89:FF"), "MyAP") expected = MACAddress("12:34:56:78:89:FF") self.assertEqual(expected, ap.getMACAddress()) def test_getName_TestWithMyAP_ReturnMyAP(self): ap = AccessPoint(MACAddress("12:34:56:78:89:FF"), "MyAP") expected = "MyAP" self.assertEqual(expected, ap.getName()) def test_setMACAddress_TestWithNoneMacAddress_ThrowTypeError(self): ap = AccessPoint(MACAddress("12:34:56:78:89:FF"), "MyAP") with self.assertRaises(TypeError): ap.setMACAddress(None) def test_setMACAddress_TestWithStringMacAddress_ThrowTypeError(self): ap = AccessPoint(MACAddress("12:34:56:78:89:FF"), "MyAP") with self.assertRaises(TypeError): ap.setMACAddress("12:34:56:78:89:FF") def test_setMACAddress_TestWithValidMAC_ReturnValid(self): ap = AccessPoint(MACAddress("12:34:56:78:89:FF"), "MyAP") ap.setMACAddress(MACAddress("12:34:56:77:89:FF")) self.assertEqual(ap.getMACAddress(), MACAddress("12:34:56:77:89:FF")) def test_setName_TestWithNoneName_ThrowTypeError(self): ap = AccessPoint(MACAddress("12:34:56:78:89:FF"), "MyAP") with self.assertRaises(TypeError): ap.setName(None) def test_setName_TestWithEmptyName_ReturnValid(self): ap = AccessPoint(MACAddress("12:34:56:78:89:FF"), "MyAP") ap.setName("") self.assertEqual(ap.getName(), "") def test_setName_TestWithNonEmptyName_ReturnValid(self): ap = AccessPoint(MACAddress("12:34:56:78:89:FF"), "MyAP") ap.setName("abc") self.assertEqual(ap.getName(), "abc") def test_equalityOperator_TestWithIdenticalValues_ReturnTrue(self): ap1 = AccessPoint(MACAddress("12:34:56:78:89:FF"), "MyAP") ap2 = AccessPoint(MACAddress("12:34:56:78:89:FF"), "MyAP") self.assertEqual(ap1, ap2) def test_equalityOperator_TestWithDifferentMAC_ReturnTrue(self): ap1 = AccessPoint(MACAddress("12:34:56:78:89:FE"), "MyAP") ap2 = AccessPoint(MACAddress("12:34:56:78:89:FF"), "MyAP") self.assertNotEqual(ap1, ap2) def test_equalityOperator_TestWithDifferentName_ReturnTrue(self): ap1 = AccessPoint(MACAddress("12:34:56:78:89:FF"), "MyAP1") ap2 = AccessPoint(MACAddress("12:34:56:78:89:FF"), "MyAP") self.assertNotEqual(ap1, ap2) def test_equalityOperator_TestWithDifferentMACAndName_ReturnTrue(self): ap1 = AccessPoint(MACAddress("12:34:56:78:89:FE"), "MyAP1") ap2 = AccessPoint(MACAddress("12:34:56:78:89:FF"), "MyAP") self.assertNotEqual(ap1, ap2) def test_equalityOperator_TestWithAnotherType_ReturnFalse(self): self.assertNotEqual(AccessPoint(MACAddress("12:34:56:78:89:FE"), "MyAP1"), 3) def test_isHidden_TestWithEmptyName_ReturnTrue(self): ap = AccessPoint(MACAddress("12:34:56:78:89:FE"), "") self.assertTrue(ap.isHidden()) def test_isHidden_TestWithOneX00Name_ReturnTrue(self): ap = AccessPoint(MACAddress("12:34:56:78:89:FE"), "\\x00") self.assertTrue(ap.isHidden()) def test_isHidden_TestWithTwoX00Name_ReturnTrue(self): ap = AccessPoint(MACAddress("12:34:56:78:89:FE"), "\\x00\\x00") self.assertTrue(ap.isHidden()) def test_isHidden_TestWithThreeX00Name_ReturnTrue(self): ap = AccessPoint(MACAddress("12:34:56:78:89:FE"), "\\x00\\x00\\x00") self.assertTrue(ap.isHidden()) def test_isHidden_TestWithValidName_ReturnFalse(self): ap = AccessPoint(MACAddress("12:34:56:78:89:FE"), "Home") self.assertFalse(ap.isHidden()) def test_hashOperator_TestWithDifferentMAC_ReturnDifferentHash(self): ap1 = AccessPoint(MACAddress("12:34:56:78:89:FE"), "Home") ap2 = AccessPoint(MACAddress("12:34:56:78:89:FF"), "Home") self.assertNotEqual(hash(ap1), hash(ap2)) def test_hashOperator_TestWithDifferentName_ReturnDifferentHash(self): ap1 = AccessPoint(MACAddress("12:34:56:78:89:FE"), "Home") ap2 = AccessPoint(MACAddress("12:34:56:78:89:FF"), "Home1") self.assertNotEqual(hash(ap1), hash(ap2)) def test_hashOperator_TestWithIdenticalValues_ReturnSameHash(self): ap1 = AccessPoint(MACAddress("12:34:56:78:89:FE"), "Home") ap2 = AccessPoint(MACAddress("12:34:56:78:89:FE"), "Home") self.assertEqual(hash(ap1), hash(ap2)) ```
{ "source": "jeremydumais/airodb", "score": 3 }
#### File: airodb/tests/optionParser_test.py ```python import unittest from os import path import sys sys.path.append(path.join(path.dirname(path.dirname(path.abspath(__file__))), 'airodb')) from optionParser import OptionParser class TestOptionParserMethods(unittest.TestCase): def test_constructor_TestWithNoneOptions_ThrowTypeError(self): try: parser = OptionParser(None) raise AssertionError("Constructor should have failed") except TypeError: pass def test_constructor_TestWithStringOptions_ThrowTypeError(self): try: parser = OptionParser("test") raise AssertionError("Constructor should have failed") except TypeError: pass def test_constructor_TestWithEmptyListOptions_ReturnValid(self): parser = OptionParser([]) self.assertEqual(0, parser.Count()) def test_constructor_TestWithOneShortOptListOptions_ReturnValid(self): parser = OptionParser([("-s", "test")]) self.assertEqual(1, parser.Count()) def test_constructor_TestWithTwoShortOptListOptions_ReturnValid(self): parser = OptionParser([("-s", "test"), ("-i", "eth0")]) self.assertEqual(2, parser.Count()) def test_constructor_TestWithOneNotTupleStringOptElement_ThrowTypeError(self): try: parser = OptionParser(["test"]) raise AssertionError("Constructor should have failed") except TypeError: pass def test_constructor_TestWithOneNotTupleIntOptElement_ThrowTypeError(self): try: parser = OptionParser([3]) raise AssertionError("Constructor should have failed") except TypeError: pass def test_Count_TestWithOneShortOptListOptions_Return1(self): parser = OptionParser([("-s", "test")]) self.assertEqual(1, parser.Count()) def test_Count_TestWithTwoShortOptListOptions_Return2(self): parser = OptionParser([("-s", "test"), ("-i", "eth0")]) self.assertEqual(2, parser.Count()) def test_IsOptionExist_TestWithDashS_ReturnTrue(self): parser = OptionParser([("-s", "test")]) self.assertTrue(parser.IsOptionExist("-s")) def test_IsOptionExist_TestWithDashW_ReturnFalse(self): parser = OptionParser([("-s", "test")]) self.assertFalse(parser.IsOptionExist("-w")) def test_IsOptionExist_TestWithSessionLongFormat_ReturnTrue(self): parser = OptionParser([("--session", "test")]) self.assertTrue(parser.IsOptionExist("--session")) def test_IsOptionExist_TestWithInterfaceLongFormat_ReturnFalse(self): parser = OptionParser([("--session", "test")]) self.assertFalse(parser.IsOptionExist("--interface")) def test_GetOptionValue_TestWithSessionLongFormat_ReturnTrue(self): parser = OptionParser([("--session", "test")]) self.assertEqual("test", parser.GetOptionValue("--session")) def test_GetOptionValue_TestWithSessionLongFormatTwoOpts_ReturnTrue(self): parser = OptionParser([("--session", "test"), ("--interface", "eth0")]) self.assertEqual("test", parser.GetOptionValue("--session")) def test_GetOptionValue_TestWithInterfaceLongFormatTwoOpts_ReturnTrue(self): parser = OptionParser([("--session", "test"), ("--interface", "eth0")]) self.assertEqual("eth0", parser.GetOptionValue("--interface")) def test_GetOptionValue_NotExistingOpt_ReturnNone(self): parser = OptionParser([("--session", "test"), ("--interface", "eth0")]) self.assertEqual(None, parser.GetOptionValue("--bla")) def test_IsOptionExistAndValueIsNotEmpty_TestWithDashSAndValue_ReturnTrue(self): parser = OptionParser([("-s", "test")]) self.assertTrue(parser.IsOptionExistAndValueIsNotEmpty("-s")) def test_IsOptionExistAndValueIsNotEmpty_TestWithDashSAndEmptyValue_ReturnFalse(self): parser = OptionParser([("-s", "")]) self.assertFalse(parser.IsOptionExistAndValueIsNotEmpty("-s")) def test_IsOptionExistAndValueIsNotEmpty_TestWithSessionAndValueLongFormat_ReturnTrue(self): parser = OptionParser([("--session", "test")]) self.assertTrue(parser.IsOptionExistAndValueIsNotEmpty("--session")) def test_IsOptionExistAndValueIsNotEmpty_TestWithSessionAndEmptyValueLongFormat_ReturnFalse(self): parser = OptionParser([("--session", "")]) self.assertFalse(parser.IsOptionExistAndValueIsNotEmpty("--session")) def test_IsOptionExistAndValueIsNotEmpty_TestWithInterfaceAndValueLongFormat_ReturnTrue(self): parser = OptionParser([("--session", "test"), ("--interface", "eth0")]) self.assertTrue(parser.IsOptionExistAndValueIsNotEmpty("--interface")) def test_IsOptionExistAndValueIsNotEmpty_TestWithInterfaceAndEmptyValueLongFormat_ReturnFalse(self): parser = OptionParser([("--session", ""), ("--interface", "")]) self.assertFalse(parser.IsOptionExistAndValueIsNotEmpty("--interface")) def test_GetOptionValueOverload_TestWithSessionLongFormatTwoOpts_ReturnTrue(self): parser = OptionParser([("--session", "test"), ("--interface", "eth0")]) self.assertEqual("test", parser.GetOptionValue("-s", "--session")) def test_GetOptionValueOverload_TestWithSessionShortFormatTwoOpts_ReturnTrue(self): parser = OptionParser([("-s", "test"), ("--interface", "eth0")]) self.assertEqual("test", parser.GetOptionValue("-s", "--session")) def test_GetOptionValueOverload_TestWithSeShortFormatTwoOpts_ReturnFalse(self): parser = OptionParser([("-s", "test"), ("--interface", "eth0")]) self.assertEqual(None, parser.GetOptionValue("-se", "--session")) ```
{ "source": "jeremydw/a4p", "score": 2 }
#### File: backend/app/campaigns.py ```python from . import base from . import emails from . import messages from google.appengine.ext import ndb from google.appengine.ext.ndb import msgprop class Campaign(base.Model): end = ndb.DateTimeProperty() goal = ndb.FloatProperty(default=1000) num_orders = ndb.IntegerProperty() raised = ndb.FloatProperty() start = ndb.DateTimeProperty() artist_name = ndb.StringProperty() title = ndb.StringProperty() story = ndb.TextProperty() @classmethod def get(cls, ident): key = ndb.Key('Campaign', ident) return key.get() @classmethod def get_or_create(cls, ident): key = ndb.Key('Campaign', ident) ent = key.get() if ent is None: ent = cls(key=key) ent.put() return ent @property def percent_raised(self): if self.raised and self.goal: val = self.raised / self.goal * 100 val = '{0:.2f}'.format(round(val, 2)) return float(val) return 0.0 @property def url(self): return 'https://artforx.com/' @property def average(self): if self.raised and self.goal: val = self.raised / self.num_orders val = '{0:.2f}'.format(round(val, 2)) return float(val) return 0.0 def add_order(self, order): self.num_orders = self.num_orders or 0 self.num_orders += 1 self.raised = self.raised or 0 self.raised += order.amount self.put() def to_message(self): msg = messages.CampaignMessage() msg.num_orders = self.num_orders msg.raised = self.raised msg.goal = self.goal msg.ident = self.ident msg.percent_raised = self.percent_raised msg.end = self.end msg.start = self.start msg.average = self.average return msg def send_email(self, message): emailer = emails.Emailer(sender_name=message.sender_name) subject = 'I just donated to the ACLU by supporting an art fundraising campaign' kwargs = { 'campaign': self, 'user_supplied_body': message.user_supplied_body, } emailer.send( to=[message.recipient_email, message.sender_email], subject=subject, template='email.html', kwargs=kwargs) ``` #### File: backend/app/emails.py ```python from . import messages from google.appengine.api import mail from google.appengine.ext import ndb import appengine_config import jinja2 import os import webapp2 import jinja2 @jinja2.evalcontextfilter def nl2br(eval_ctx, value): result = jinja2.escape(value).unescape().replace('\n', '<br>') if eval_ctx.autoescape: result = jinja2.Markup(result) return result class Emailer(object): def __init__(self, sender_name): self.sender = '{} via Art for X <{}>'.format(sender_name, appengine_config.EMAIL_SENDER) def send(self, to, subject, template, kwargs): html = self._render(template, kwargs) self._send(subject, to, html) def _render(self, template, kwargs): jinja_template = self.env.get_template(template) return jinja_template.render(kwargs) def _send(self, subject, to, html): message = mail.EmailMessage(sender=self.sender, subject=subject) message.to = to message.html = html message.send() @webapp2.cached_property def env(self): here = os.path.dirname(__file__) path = os.path.join(os.path.dirname(__file__), 'templates') loader = jinja2.FileSystemLoader([path]) env = jinja2.Environment( loader=loader, autoescape=True, trim_blocks=True) env.filters['nl2br'] = nl2br return env ``` #### File: backend/app/handlers.py ```python import logging import os from google.appengine.ext.webapp import mail_handlers #import jinja2 #_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'build')) #_loader = jinja2.FileSystemLoader(_path) #_env = jinja2.Environment(loader=_loader, autoescape=True, trim_blocks=True) #class EmailHandler(mail_handlers.InboundMailHandler): # # def receive(self, message): # logging.info(message) # # #class FrontendHandler(airlock.Handler): # # def get(self): # if not self.me.registered: # url = self.urls.sign_in() # self.redirect(url) # return # template_name = 'index.html' # template = _env.get_template(template_name) # params = {} # params.update({ # 'me': self.me, # 'version': os.getenv('CURRENT_VERSION_ID', 'xxx'), # }) # self.response.write(template.render(params)) ```
{ "source": "jeremydw/google-apputils-python", "score": 3 }
#### File: google-apputils-python/google_apputils/humanize.py ```python import datetime import math import re SIBILANT_ENDINGS = frozenset(['sh', 'ss', 'tch', 'ax', 'ix', 'ex']) DIGIT_SPLITTER = re.compile(r'\d+|\D+').findall # These are included because they are common technical terms. SPECIAL_PLURALS = { 'index': 'indices', 'matrix': 'matrices', 'vertex': 'vertices', } VOWELS = frozenset('AEIOUaeiou') # In Python 2.6, int(float('nan')) intentionally raises a TypeError. This code # attempts to futureproof us against that eventual upgrade. try: _IsNan = math.isnan except AttributeError: def _IsNan(x): return type(x) is float and x != x def Commas(value): """Formats an integer with thousands-separating commas. Args: value: An integer. Returns: A string. """ if value < 0: sign = '-' value = -value else: sign = '' result = [] while value >= 1000: result.append('%03d' % (value % 1000)) value /= 1000 result.append('%d' % value) return sign + ','.join(reversed(result)) def Plural(quantity, singular, plural=None): """Formats an integer and a string into a single pluralized string. Args: quantity: An integer. singular: A string, the singular form of a noun. plural: A string, the plural form. If not specified, then simple English rules of regular pluralization will be used. Returns: A string. """ return '%d %s' % (quantity, PluralWord(quantity, singular, plural)) def PluralWord(quantity, singular, plural=None): """Builds the plural of an English word. Args: quantity: An integer. singular: A string, the singular form of a noun. plural: A string, the plural form. If not specified, then simple English rules of regular pluralization will be used. Returns: the plural form of the word. """ if quantity == 1: return singular if plural: return plural if singular in SPECIAL_PLURALS: return SPECIAL_PLURALS[singular] # We need to guess what the English plural might be. Keep this # function simple! It doesn't need to know about every possiblity; # only regular rules and the most common special cases. # # Reference: http://en.wikipedia.org/wiki/English_plural for ending in SIBILANT_ENDINGS: if singular.endswith(ending): return '%ses' % singular if singular.endswith('o') and singular[-2:-1] not in VOWELS: return '%ses' % singular if singular.endswith('y') and singular[-2:-1] not in VOWELS: return '%sies' % singular[:-1] return '%ss' % singular def WordSeries(words, conjunction='and'): """Convert a list of words to an English-language word series. Args: words: A list of word strings. conjunction: A coordinating conjunction. Returns: A single string containing all the words in the list separated by commas, the coordinating conjunction, and a serial comma, as appropriate. """ num_words = len(words) if num_words == 0: return '' elif num_words == 1: return words[0] elif num_words == 2: return (' %s ' % conjunction).join(words) else: return '%s, %s %s' % (', '.join(words[:-1]), conjunction, words[-1]) def AddIndefiniteArticle(noun): """Formats a noun with an appropriate indefinite article. Args: noun: A string representing a noun. Returns: A string containing noun prefixed with an indefinite article, e.g., "a thing" or "an object". """ if not noun: raise ValueError('argument must be a word: {!r}'.format(noun)) if noun[0] in VOWELS: return 'an ' + noun else: return 'a ' + noun def DecimalPrefix(quantity, unit, precision=1, min_scale=0, max_scale=None): """Formats an integer and a unit into a string, using decimal prefixes. The unit will be prefixed with an appropriate multiplier such that the formatted integer is less than 1,000 (as long as the raw integer is less than 10**27). For example: DecimalPrefix(576012, 'bps') -> '576 kbps' DecimalPrefix(1574215, 'bps', 2) -> '1.6 Mbps' Only the SI prefixes which are powers of 10**3 will be used, so DecimalPrefix(100, 'thread') is '100 thread', not '1 hthread'. See also: BinaryPrefix() Args: quantity: A number. unit: A string. precision: An integer, the minimum number of digits to display. min_scale: minimum power of 1000 to scale to, (None = unbounded). max_scale: maximum power of 1000 to scale to, (None = unbounded). Returns: A string. """ return _Prefix(quantity, unit, precision, DecimalScale, min_scale=min_scale, max_scale=max_scale) def BinaryPrefix(quantity, unit, precision=1): """Formats an integer and a unit into a string, using binary prefixes. The unit will be prefixed with an appropriate multiplier such that the formatted integer is less than 1,024 (as long as the raw integer is less than 2**90). For example: BinaryPrefix(576012, 'B') -> '562 KiB' See also: DecimalPrefix() Args: quantity: A number. unit: A string. precision: An integer, the minimum number of digits to display. Returns: A string. """ return _Prefix(quantity, unit, precision, BinaryScale) def _Prefix(quantity, unit, precision, scale_callable, **args): """Formats an integer and a unit into a string. Args: quantity: A number. unit: A string. precision: An integer, the minimum number of digits to display. scale_callable: A callable, scales the number and units. **args: named arguments passed to scale_callable. Returns: A string. """ if not quantity: return '0 %s' % unit if quantity in [float('inf'), float('-inf')] or _IsNan(quantity): return '%f %s' % (quantity, unit) scaled_quantity, scaled_unit = scale_callable(quantity, unit, **args) print_pattern = '%%.%df %%s' % max(0, (precision - int( math.log(abs(scaled_quantity), 10)) - 1)) return print_pattern % (scaled_quantity, scaled_unit) def DecimalScale(quantity, unit, min_scale=0, max_scale=None): """Get the scaled value and decimal prefixed unit in a tupple. DecimalScale(576012, 'bps') -> (576.012, 'kbps') DecimalScale(1574215, 'bps') -> (1.574215, 'Mbps') Args: quantity: A number. unit: A string. min_scale: minimum power of 1000 to normalize to (None = unbounded) max_scale: maximum power of 1000 to normalize to (None = unbounded) Returns: A tuple of a scaled quantity (float) and BinaryPrefix for the units (string). """ if min_scale is None or min_scale < 0: negative_powers = ('m', u'µ', 'n', 'p', 'f', 'a', 'z', 'y') if min_scale is not None: negative_powers = tuple(negative_powers[0:-min_scale]) else: negative_powers = None if max_scale is None or max_scale > 0: powers = ('k', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y') if max_scale is not None: powers = tuple(powers[0:max_scale]) return _Scale(quantity, unit, 1000, powers, negative_powers) def BinaryScale(quantity, unit): """Get the scaled value and binary prefixed unit in a tupple. BinaryPrefix(576012, 'B') -> (562.51171875, 'KiB') Args: quantity: A number. unit: A string. Returns: A tuple of a scaled quantity (float) and BinaryPrefix for the units (string). """ return _Scale(quantity, unit, 1024, ('Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi', 'Yi')) def _Scale(quantity, unit, multiplier, prefixes, inverse_prefixes=None): """Returns the formatted quantity and unit into a tuple. Args: quantity: A number. unit: A string multiplier: An integer, the ratio between prefixes. prefixes: A sequence of strings. inverse_prefixes: Prefixes to use for negative powers, If empty or None, no scaling is done for fractions. Returns: A tuple containing the raw scaled quantity and the prefixed unit. """ if not quantity: return 0, unit if quantity in [float('inf'), float('-inf')] or _IsNan(quantity): return quantity, unit power = int(math.log(abs(quantity), multiplier)) if abs(quantity) > 1 or not inverse_prefixes: if power < 1: return quantity, unit power = min(power, len(prefixes)) prefix = prefixes[power - 1] value = float(quantity) / multiplier ** power else: power = min(-power + 1, len(inverse_prefixes)) prefix = inverse_prefixes[power - 1] value = quantity * multiplier ** power return value, prefix + unit # Contains the fractions where the full range [1/n ... (n - 1) / n] # is defined in Unicode. FRACTIONS = { 3: (None, u'⅓', u'⅔', None), 5: (None, u'⅕', u'⅖', u'⅗', u'⅘', None), 8: (None, u'⅛', u'¼', u'⅜', u'½', u'⅝', u'¾', u'⅞', None), } FRACTION_ROUND_DOWN = 1.0 / (max(FRACTIONS.keys()) * 2.0) FRACTION_ROUND_UP = 1.0 - FRACTION_ROUND_DOWN def PrettyFraction(number, spacer=''): """Convert a number into a string that might include a unicode fraction. This method returns the integer representation followed by the closest fraction of a denominator 2, 3, 4, 5 or 8. For instance, 0.33 will be converted to 1/3. The resulting representation should be less than 1/16 off. Args: number: a python number spacer: an optional string to insert between the integer and the fraction default is an empty string. Returns: a unicode string representing the number. """ # We do not want small negative numbers to display as -0. if number < -FRACTION_ROUND_DOWN: return u'-%s' % PrettyFraction(-number) number = abs(number) rounded = int(number) fract = number - rounded if fract >= FRACTION_ROUND_UP: return str(rounded + 1) errors_fractions = [] for denominator, fraction_elements in FRACTIONS.items(): numerator = int(round(denominator * fract)) error = abs(fract - (float(numerator) / float(denominator))) errors_fractions.append((error, fraction_elements[numerator])) unused_error, fraction_text = min(errors_fractions) if rounded and fraction_text: return u'%d%s%s' % (rounded, spacer, fraction_text) if rounded: return str(rounded) if fraction_text: return fraction_text return u'0' def Duration(duration, separator=' '): """Formats a nonnegative number of seconds into a human-readable string. Args: duration: A float duration in seconds. separator: A string separator between days, hours, minutes and seconds. Returns: Formatted string like '5d 12h 30m 45s'. """ try: delta = datetime.timedelta(seconds=duration) except OverflowError: return '>=' + TimeDelta(datetime.timedelta.max) return TimeDelta(delta, separator=separator) def TimeDelta(delta, separator=' '): """Format a datetime.timedelta into a human-readable string. Args: delta: The datetime.timedelta to format. separator: A string separator between days, hours, minutes and seconds. Returns: Formatted string like '5d 12h 30m 45s'. """ parts = [] seconds = delta.seconds if delta.days: parts.append('%dd' % delta.days) if seconds >= 3600: parts.append('%dh' % (seconds // 3600)) seconds %= 3600 if seconds >= 60: parts.append('%dm' % (seconds // 60)) seconds %= 60 seconds += delta.microseconds / 1e6 if seconds or not parts: parts.append('%gs' % seconds) return separator.join(parts) def NaturalSortKey(data): """Key function for "natural sort" ordering. This key function results in a lexigraph sort. For example: - ['1, '3', '20'] (not ['1', '20', '3']). - ['Model 9', 'Model 70 SE', 'Model 70 SE2'] (not ['Model 70 SE', 'Model 70 SE2', 'Model 9']). Usage: new_list = sorted(old_list, key=humanize.NaturalSortKey) or list_sort_in_place.sort(key=humanize.NaturalSortKey) Based on code by <NAME> <<EMAIL>>. Args: data: str, The key being compared in a sort. Returns: A list which is comparable to other lists for the purpose of sorting. """ segments = DIGIT_SPLITTER(data) for i, value in enumerate(segments): if value.isdigit(): segments[i] = int(value) return segments ```
{ "source": "jeremydw/image-processor", "score": 2 }
#### File: jeremydw/image-processor/process.py ```python import sys sys.path.insert(0, 'lib') from PIL import Image from psd_tools import PSDImage import os import yaml CONFIG_FILE = 'config.yaml.txt' CONFIG = yaml.load(open(CONFIG_FILE)) INPUT_PATH = CONFIG['input'] OUT_DIR = CONFIG['out_dir'] def _get_image(): if INPUT_PATH.endswith('psd'): psd = PSDImage.load(INPUT_PATH) return psd.as_PIL() else: return Image.open(INPUT_PATH) def _get_size(image, rule): if rule.get('trim') not in (None, False): return image.size return rule['size'] def _get_offset(image, size): return (max((size[0] - image.size[0]) / 2, 0), max((size[1] - image.size[1]) / 2, 0)) def process(rule): for fmt in rule['formats']: size = rule['size'] path = os.path.join(OUT_DIR, rule['name'] + '.' + fmt.lower()) image = _get_image() image.thumbnail(size, Image.ANTIALIAS) size = _get_size(image, rule) offset = _get_offset(image, size) background_color = rule.get('background', (255, 255, 255, 1)) background = Image.new('RGBA', size, tuple(background_color)) image.load() # Required for split. mask = image.split()[-1] background.paste(image, offset, mask=mask) background.save( path, fmt, quality=rule.get('quality', 100), optimize=True, progressive=True) print 'Saved: {}'.format(path) def main(): if not os.path.exists(OUT_DIR): os.makedirs(OUT_DIR) rules = CONFIG['rules'] for rule in rules: process(rule) if __name__ == '__main__': main() ```
{ "source": "jeremyelster/IRS990", "score": 3 }
#### File: IRS990/irsparser/irs_db_utils.py ```python import sqlite3 import pandas as pd class DBConnect: def __init__(self, db_path): self.con = sqlite3.connect(db_path) self.cur = self.con.cursor() def initialize_db(self): self.cur.execute("DROP TABLE IF EXISTS officer_payment") self.cur.execute("DROP TABLE IF EXISTS schedule_j") self.cur.execute("DROP TABLE IF EXISTS irs_dashboard") self.cur.execute("DROP TABLE IF EXISTS grants") self.cur.execute(officer_payment_sql) self.cur.execute(schedule_j_sql) self.cur.execute(irs_dashboard_sql) self.cur.execute(grants_sql) def saveDF(self, df_pandas, table, insert="replace", index=False): df_pandas.to_sql(table, con=self.con, if_exists=insert, index=index) def query(self, sqlStr): df = pd.read_sql(sqlStr, con=self.con) return df irs_dashboard_sql = """ CREATE TABLE irs_dashboard ( EIN text, URL text, LastUpdated text, OrganizationName text, TaxPeriod text, TaxPeriodBeginDt text, TaxPeriodEndDt text, TaxYr text, StateAbbr text, Mission text, TotalEmployee text, ObjectId text, NTEECommonCode text, Foundation text, OfficerName text, OfficerTitle text, OfficerCompensationPart9 float, GrantDesc text, GrantMoneyTotal float, ProgramExpenses float, PYTotalRevenue float, CYTotalRevenue float, PYRevenuesLessExpenses float, CYRevenuesLessExpenses float, PYSalaryBenefitsPaid float, CYSalaryBenefitsPaid float, TotalAssetsBOY float, TotalAssetsEOY float, TotalLiabilitiesBOY float, TotalLiabilitiesEOY float, TotalExpenses float, CYTotalExpenses float, PYTotalExpenses float, Part9_1GrantsGov float, Part9_2GrantsIndv float, Part9_3GrantsForGov float, Part9_4Benefits float, Part9_5OfficerComp float, Part9_6DisqComp float, Part9_7OtherSalary float, Part9_8Pension float, Part9_9OtherBenefits float, WorkingCapital float, LiabilitiesToAsset float, SurplusMargin float, ProgramExp float, ScheduleA text, ScheduleJ text, ScheduleI text, ScheduleO text)""" officer_payment_sql = """ CREATE TABLE officer_payment ( EIN text PRIMARY KEY, ObjectId text, OrganizationName text, TaxYr text, StateAbbr text, PersonNm text, TitleTxt text, AverageHoursPerWeekRt float, ReportableCompFromOrgAmt float, OtherCompensationAmt float, ReportableCompFromRltdOrgAmt float, AverageHoursPerWeekRltdOrgRt float, IndividualTrusteeOrDirectorInd bool, OfficerInd bool, HighestCompensatedEmployeeInd bool, FormerOfcrDirectorTrusteeInd bool, KeyEmployeeInd bool, InstitutionalTrusteeInd bool, TotalCompFromOrgAmt float)""" schedule_j_sql = """ CREATE TABLE schedule_j ( EIN text, ObjectId text, OrganizationName text, StateAbbr text, TaxYr text, PersonNm text, TitleTxt text, TotalCompensationFilingOrgAmt float, BaseCompensationFilingOrgAmt float, BonusFilingOrganizationAmount float, OtherCompensationFilingOrgAmt float, DeferredCompensationFlngOrgAmt float, NontaxableBenefitsFilingOrgAmt float, TotalCompensationRltdOrgsAmt float, OtherCompensationRltdOrgsAmt float, BonusRelatedOrganizationsAmt float, CompensationBasedOnRltdOrgsAmt float, DeferredCompRltdOrgsAmt float, NontaxableBenefitsRltdOrgsAmt float, CompReportPrior990FilingOrgAmt float, CompReportPrior990RltdOrgsAmt float, SeverancePaymentInd bool, TravelForCompanionsInd text)""" grants_sql = """ CREATE TABLE grants ( EIN text, ObjectId text, OrganizationName text, TaxYr text, Address text, City text, StateAbbr text, RecipientEIN text, RecipientBusinessName_BusinessNameLine1Txt text, PurposeOfGrantTxt text, CashGrantAmt float, NonCashAssistanceAmt float, NonCashAssistanceDesc text, IRCSectionDesc text, USAddress_CityNm text, USAddress_StateAbbreviationCd text, ForeignAddress_AddressLine1Txt text, ForeignAddress_CountryCd text)""" ``` #### File: Notebooks/Parsing/officerListParser.py ```python import pandas as pd import numpy as np from pandas.io.json import json_normalize import flatten_json import sys import irsparser as irs sys.path.append("../../") def parse_officer_list(df): """Parse the Officer List and build new dataframe officer_list Takes the OfficerList column returned from IRS990 and builds it into a data frame with each officer getting their own row""" officers_cols = ["EIN", "ObjectId", "OrganizationName", "TaxYr", "StateAbbr", "OfficerList"] df_tmp = df[officers_cols].copy() officer_list = pd.DataFrame() for i, row in enumerate(df_tmp.itertuples()): if row[6] is not None: tbl = row[6] tmp = json_normalize(tbl) tmp["EIN"] = row[1] tmp["ObjectId"] = row[2] tmp["OrganizationName"] = row[3] tmp["TaxYr"] = row[4] tmp["StateAbbr"] = row[5] officer_list = officer_list.append(tmp, sort=False) if i % 500 == 0: print(f"Parsed {str(i)} of {str(len(df_tmp))}: {str(round(100. * i/len(df_tmp), 2))}%") print(f"Number of officers with PersonNm: {officer_list['PersonNm'].notnull().sum()}") print(f"Number of officers with PersonNm: {officer_list['BusinessName.BusinessNameLine1Txt'].notnull().sum()}") print(f"Number of officers with PersonNm: {officer_list['BusinessName.BusinessNameLine1'].notnull().sum()}") # Consolidate Parsing Quirks names = np.where( officer_list["PersonNm"].isnull(), officer_list["BusinessName.BusinessNameLine1Txt"], officer_list["PersonNm"]) names = np.where(pd.Series(names).isnull(), officer_list["BusinessName.BusinessNameLine1"], names) officer_list["PersonNm"] = names del officer_list['BusinessName.BusinessNameLine1Txt'] del officer_list['BusinessName.BusinessNameLine2Txt'] del officer_list['BusinessName.BusinessNameLine1'] del officer_list['BusinessName.BusinessNameLine2'] column_order = [ 'EIN', 'ObjectId', 'OrganizationName', 'TaxYr', 'StateAbbr', 'PersonNm', 'TitleTxt', 'AverageHoursPerWeekRt', 'ReportableCompFromOrgAmt', 'OtherCompensationAmt', # Other org 'ReportableCompFromRltdOrgAmt', 'AverageHoursPerWeekRltdOrgRt', # Flags 'IndividualTrusteeOrDirectorInd', 'OfficerInd', 'HighestCompensatedEmployeeInd', 'FormerOfcrDirectorTrusteeInd', 'KeyEmployeeInd', 'InstitutionalTrusteeInd'] # Binarize the Position Type type_cols = [ 'IndividualTrusteeOrDirectorInd', 'HighestCompensatedEmployeeInd', 'FormerOfcrDirectorTrusteeInd', 'KeyEmployeeInd', 'InstitutionalTrusteeInd', 'OfficerInd'] for col in type_cols: officer_list[col] = np.where(officer_list[col] == 'X', True, False) # Convert Number Columns from String to Float num_cols = [ "AverageHoursPerWeekRt", "ReportableCompFromOrgAmt", "OtherCompensationAmt", "ReportableCompFromRltdOrgAmt", "AverageHoursPerWeekRltdOrgRt"] for col in num_cols: officer_list[col] = officer_list[col].fillna(0).astype(float) # Caps Names officer_list["PersonNm"] = officer_list["PersonNm"].apply(lambda x: x.upper()) # Deal with Titles officer_list["TitleTxt"] = officer_list["TitleTxt"].apply(lambda x: str(x).upper()) df_officer = officer_list[column_order].copy() df_officer["TotalCompFromOrgAmt"] = df_officer["ReportableCompFromOrgAmt"] + df_officer["OtherCompensationAmt"] df_officer.reset_index(inplace=True, drop=True) return df_officer def get_bool(x): if (x == "true") | (x == "1"): return 1 elif (x == "false") | (x == "0") | (x is None): return 0 else: print(f"Error: {x}") return x def parse_schedule_j(df): officers = [] df_tmp = df[["EIN", "ObjectId", "OrganizationName", "TaxYr", "StateAbbr", "ScheduleJ"]].copy() for row in df_tmp.itertuples(): if row[6] is not None: tmp = {} tmp["EIN"] = row[1] tmp["ObjectId"] = row[2] tmp["OrganizationName"] = row[3] tmp["TaxYr"] = row[4] tmp["StateAbbr"] = row[5] d = row[6] tmp["SeverancePaymentInd"] = d.get("SeverancePaymentInd", None) tmp["TravelForCompanionsInd"] = d.get("TravelForCompanionsInd", None) tbl = d.get("RltdOrgOfficerTrstKeyEmplGrp", False) if tbl: if isinstance(tbl, dict): # If its the only element in table, put it in a list to iterate over tmp2 = [] tmp2.append(tbl) tbl = tmp2 for officer in tbl: tmp_officer = flatten_json.flatten(officer) tmp_officer.update(tmp) officers.append(tmp_officer) else: tmp = {} df = pd.DataFrame(officers) id_cols = [ 'EIN', 'ObjectId', 'OrganizationName', 'StateAbbr', 'TaxYr', 'PersonNm', 'TitleTxt'] comp_cols = [ 'TotalCompensationFilingOrgAmt', 'BaseCompensationFilingOrgAmt', 'BonusFilingOrganizationAmount', 'OtherCompensationFilingOrgAmt', 'DeferredCompensationFlngOrgAmt', 'NontaxableBenefitsFilingOrgAmt', 'TotalCompensationRltdOrgsAmt', 'OtherCompensationRltdOrgsAmt', 'BonusRelatedOrganizationsAmt', 'CompensationBasedOnRltdOrgsAmt', 'DeferredCompRltdOrgsAmt', 'NontaxableBenefitsRltdOrgsAmt', 'CompReportPrior990FilingOrgAmt', 'CompReportPrior990RltdOrgsAmt'] other_cols = ['BusinessName_BusinessNameLine1', 'BusinessName_BusinessNameLine1Txt', 'BusinessName_BusinessNameLine2', 'SeverancePaymentInd', 'TravelForCompanionsInd'] # Reorganize Columns df = df[id_cols + comp_cols + other_cols].copy() # Upper Case Name and Title df["PersonNm"] = df["PersonNm"].apply(lambda x: str(x).upper()) df["TitleTxt"] = df["TitleTxt"].apply(lambda x: str(x).upper()) df["BusinessName_BusinessNameLine1"] = df["BusinessName_BusinessNameLine1"].apply(lambda x: str(x).upper()) df["BusinessName_BusinessNameLine1Txt"] = df["BusinessName_BusinessNameLine1Txt"].apply(lambda x: str(x).upper()) # Fill null values for compensation with 0 for col in comp_cols: df[col] = df[col].fillna(0).astype(float) # See if there is a severance payment df["SeverancePaymentInd"] = df["SeverancePaymentInd"].apply(get_bool) # Replace NA Names with Business Values where appropriate df["PersonNm"] = np.where( df["PersonNm"] == "NAN", df["BusinessName_BusinessNameLine1"], df["PersonNm"]) df["PersonNm"] = np.where( df["PersonNm"] == "NAN", df["BusinessName_BusinessNameLine1Txt"], df["PersonNm"]) del df["BusinessName_BusinessNameLine1Txt"] del df["BusinessName_BusinessNameLine1"] del df["BusinessName_BusinessNameLine2"] return df if __name__ == "__main__": # Runtime client = irs.Client( local_data_dir="../../data", ein_filename="eins", index_years=[2016, 2017, 2018], save_xml=False, parser="base") client.parse_xmls(add_organization_info=True) df = client.getFinalDF() officers = df[[ "EIN", "ObjectId", "OrganizationName", "TaxYr", "StateAbbr", "Mission", "OfficerName", "OfficerTitle", "OfficerCompensationPart9", "CYTotalExpenses"]].copy() # Caps Names officers["OfficerName"] = officers["OfficerName"].apply(lambda x: x.upper()) # Deal with Titles officers["OfficerTitle"] = officers["OfficerTitle"].apply(lambda x: str(x).upper()) # Add Officer Compensation Percentage of Total Expenses tmp_val = officers["OfficerCompensationPart9"] / officers["CYTotalExpenses"] officers.loc[:, "OfficerCompensationPct"] = tmp_val.copy() # Parse Officer List Form990PartVIISectionAGrp df_officers = parse_officer_list(officers) # Parse Schedule J df_schedulej = parse_schedule_j(df) # Dump to SQL con = irs.db_connect() cur = con.cursor() irs.initialize_db(con) officers.to_sql("officer_org", con=con, if_exists="replace", index=False) df_officers.to_sql("officer_payment", con=con, if_exists="replace", index=False) df_schedulej.to_sql("schedule_j", con-con, if_exists="replace", index=False) ```
{ "source": "jeremyelster/PyStatsBomb", "score": 3 }
#### File: PyStatsBomb/pystatsbomb/passgraph.py ```python import pandas as pd import numpy as np from sklearn.metrics.pairwise import cosine_similarity from sklearn.metrics.pairwise import linear_kernel from sklearn.preprocessing import StandardScaler from scipy.sparse import csr_matrix import networkx as nx class graph(): def __init__( self, df, team_name, match_id, pass_cols=None, max_minute=70, until_first_sub=True ): # Store some parameters self.team_name = team_name self.match_id = match_id if pass_cols is None: self.pass_cols = [ "player_name", "pass_recipient_name", "position_name"] else: self.pass_cols = pass_cols df_completed_passes = df.loc[ (df["pass_outcome_name"] == "Complete") & (df["match_id"] == self.match_id) & (df["team_name"] == self.team_name), self.pass_cols] df_completed_passes.loc[:, "weight"] = 1 df = df_completed_passes\ .groupby(["player_name", "pass_recipient_name"], as_index=False)\ .agg({"weight": "sum"}) df_pos = df_completed_passes\ .groupby(["player_name"], as_index=False)\ .agg({"position_name": "max"}) df = pd.merge(df, df_pos, on="player_name", how="left") position_x_y = self.position_map() df["pos_x_y"] = df["position_name"].map(position_x_y) df["x"] = df["pos_x_y"].apply(lambda x: x[0]) df["y"] = df["pos_x_y"].apply(lambda x: x[1]) self.df = df # Get list of unique players for nodes self.unique_players = list(set( df["player_name"]).union(df["pass_recipient_name"])) # Check if the DF is null if len(self.df) == 0: print("No passes for team and match") raise # Build the Graph g = nx.DiGraph() for i, row in self.df.iterrows(): g.add_node( node_for_adding=row["player_name"], player_name=row["player_name"], position=row["position_name"], loc=(row["x"], row["y"])) g.add_weighted_edges_from( zip( df["player_name"], df["pass_recipient_name"], df["weight"])) self.g = g def degree_centrality(self): """ The degree centrality is the number of neighbors divided by all possible neighbors that it could have. Will return a sorted list of players with their values """ centrality = sorted( nx.degree_centrality(g).items(), key=lambda kv: kv[1], reverse=True) return centrality def position_map(): position_x_y = { # GK 'Goalkeeper': (10, 40), # Defense 'Left Back': (30, 70), 'Left Center Back': (30, 50), 'Center Back': (30, 40), 'Right Back': (30, 10), 'Right Center Back': (30, 30), 'Left Wing Back': (40, 70), 'Right Wing Back': (40, 10), # DM 'Left Defensive Midfield': (50, 50), 'Center Defensive Midfield': (50, 40), 'Right Defensive Midfield': (50, 30), # CM 'Left Midfield': (60, 70), 'Left Center Midfield': (60, 50), 'Center Midfield': (60, 40), 'Right Center Midfield': (60, 30), 'Right Midfield': (60, 10), # AMD 'Left Attacking Midfield': (70, 50), 'Center Attacking Midfield': (70, 40), 'Right Attacking Midfield': (70, 30), # FWD 'Left Center Forward': (90, 50), 'Center Forward': (90, 40), 'Right Center Forward': (90, 30), # Wing/SS 'Left Wing': (70, 70), 'Right Wing': (70, 10), 'Secondary Striker': (80, 35)} return position_x_y ``` #### File: PyStatsBomb/pystatsbomb/passingmodel.py ```python import pandas as pd import numpy as np import pickle import datetime from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import MinMaxScaler class PassingModel(): def __init__(self, data, lineups): self.df_passes = self.getPassDF(data, lineups) def runPassModel( self, pass_model_type="knn", agg_level="player", knn_model_file=None, expected_knn_file=None ): # Build model on df_pass_model copy of df_passes df_pass_model = self.df_passes.copy() timestamp = datetime.datetime.strftime( datetime.datetime.today(), "%Y_%m_%d_%H_%M_%S") if pass_model_type == "knn": simple_model_cols = [ "id", "duration", "pass_length", "pass_angle", "location_origin_x", "location_origin_y", "location_dest_x", "location_dest_y"] df_knn = self.df_passes[simple_model_cols].set_index("id") df_completions = self.df_passes[["id", "pass_outcome_name"]]\ .set_index("id") completion_array = np.array(np.where( df_completions["pass_outcome_name"] == "Complete", 1, 0)) # Scale Data and Build Model min_max_scaler = MinMaxScaler() df_knn_norm = min_max_scaler.fit_transform(df_knn) n_neighbors = int(np.floor(len(df_knn) / 100)) + 1 if knn_model_file is not None: nn_model = pickle.load(open("data/" + knn_model_file, 'rb')) else: nn_model = NearestNeighbors( algorithm='ball_tree', n_neighbors=n_neighbors, p=2, metric="euclidean", metric_params=None) nn_model.fit(df_knn_norm) pickle.dump( nn_model, open("data/knn_model_file_" + timestamp, 'wb')) if expected_knn_file is not None: expected_pass_rate = pickle.load( open("data/" + expected_knn_file, 'rb')) else: completion_array = np.array( df_pass_model["pass_outcome_name_binary"]) expected_pass_rate = [] passes_per_ep = [] print(f"Total Number of Passes: {len(df_knn)}") n = 0 for row in df_knn_norm: sim_passes = self.get_similar_passes( row.reshape(1, -1), df_knn_norm, nn_model, cutoff=.2) passes_per_ep.append(len(sim_passes)) expected_value = completion_array[sim_passes].mean() expected_pass_rate.append(expected_value) n += 1 if n % 5000 == 0: print(f"Progress: {n} of {len(df_knn_norm)}") pickle.dump( expected_pass_rate, open('expected_knn_file_' + timestamp, 'wb')) df_pass_model["xP"] = expected_pass_rate elif pass_model_type == "box_grid": origin_box, dest_box = [], [] for i, x in self.df_passes[[ "location_origin_x", "location_origin_y", "location_dest_x", "location_dest_y" ]].iterrows(): x, y = self.make_pass_grid( x[0], x[1], x[2], x[3], nrows=np.linspace(0, 120, 13), ncols=np.linspace(0, 80, 9)) origin_box.append(x) dest_box.append(y) if i % 5000 == 0: print(f"Pass {i} of {len(self.df_passes)}: {round(100*float(i)/len(self.df_passes),2)}% ") df_pass_model.loc[:, "origin_box"] = origin_box df_pass_model.loc[:, "dest_box"] = dest_box df_pass_model["pass_desc"] = list(zip( df_pass_model["origin_box"], df_pass_model["dest_box"])) # Get expected value (average) for each grid combination pass_grid_dict = df_pass_model\ .groupby("pass_desc")["pass_outcome_name_binary"]\ .mean().to_dict() df_pass_model.loc[:, ("xP")] = df_pass_model["pass_desc"]\ .map(pass_grid_dict) if agg_level == "player": # df_pass_model['pass_direction'] = df_pass_model['pass_angle']\ # .apply(self.pass_direction) df_pass_model["position_name_parsed"] = ( df_pass_model["position_name"].apply( self.position_base_parser)) df_pass_model["position_detail_parsed"] = ( df_pass_model["position_name"].apply( self.position_detail_parser)) passing_model = df_pass_model\ .groupby(["team_name", "player_name"], as_index=False)\ .agg({ "position_name_parsed": "max", "position_detail_parsed": "max", "pass_outcome_name_binary": ["count", "sum"], "xP": ["sum", "mean"]}) passing_model.columns = [ "Team", "Player", "Position", "Position_Detail", "Passes", "Completed", "xP", "xP_Mean"] passing_model["xP_Rating"] = ( passing_model["Completed"] / passing_model["xP"]) passing_model["comp_pct"] = ( passing_model["Completed"] / passing_model["Passes"]) elif agg_level == "team": passing_model = df_pass_model\ .groupby(["team_name"], as_index=False)\ .agg({ "pass_outcome_name_binary": ["count", "sum"], "xP": ["sum", "mean"]}) passing_model.columns = [ "Team", "Passes", "Completed", "xP", "xP_Mean"] passing_model["xP_Rating"] = ( passing_model["Completed"] / passing_model["xP"]) passing_model["comp_pct"] = ( passing_model["Completed"] / passing_model["Passes"]) else: # self.passing_model = None print("Choose player or team") return None self.df_pass_model = df_pass_model self.passing_model = passing_model return passing_model def make_pass_grid( self, origin_x, origin_y, dest_x, dest_y, nrows=None, ncols=None ): if nrows is None: nrows = [18, 60, 102, 120] if ncols is None: ncols = [18, 40, 62, 80] o_x = np.searchsorted(nrows, origin_x, side="left") o_y = np.searchsorted(ncols, origin_y, side="left") d_x = np.searchsorted(nrows, dest_x, side="left") d_y = np.searchsorted(ncols, dest_y, side="left") origin_box = (o_x) * 4 + (o_y + 1) dest_box = (d_x) * 4 + (d_y + 1) return(origin_box, dest_box) def pass_direction(self, x): """ According to statsbomb, pass_angle is between 0 (pass ahead) and pi (pass behind). Clockwise We divide the circle into 4 equal sections. Directions are forward, right, left, behind""" pi_div = np.pi / 4 if (x <= pi_div) & (x >= -pi_div): return "Forward" elif (x > pi_div) & (x <= 3 * pi_div): return "Right" elif (x > 3 * pi_div) | (x < -3 * pi_div): return "Behind" else: return "Left" def position_base_parser(self, pos): # Midfield if "Center Midfield" in pos: return "Midfield" elif "Defensive Midfield" in pos: return "Midfield" elif "Attacking Midfield" in pos: return "Midfield" elif "Midfield" in pos: return "Midfield" # Defense elif "Wing Back" in pos: return "Defense" elif "Center Back" in pos: return "Defense" elif "Back" in pos: return "Defense" # Forward elif "Forward" in pos: return "Forward" elif "Striker" in pos: return "Forward" # Other elif "Wing" in pos: return "Forward" elif "Goalkeeper" in pos: return "Goalkeeper" else: return pos def position_detail_parser(self, pos): # Midfield if "Center Midfield" in pos: return "Midfield" elif "Defensive Midfield" in pos: return "Defensive Midfield" elif "Attacking Midfield" in pos: return "Attacking Midfield" elif "Midfield" in pos: return "Wide Midfield" # Defense elif "Wing Back" in pos: return "Wing Back" elif "Center Back" in pos: return "Center Back" elif "Back" in pos: return "Fullback" # Forward elif "Forward" in pos: return "Forward" elif "Striker" in pos: return "Forward" # Other elif "Wing" in pos: return "Winger" elif "Goalkeeper" in pos: return "Goalkeeper" else: return pos def get_similar_passes(self, p, df, model, cutoff=.2, n_top=5): dist, passes = model.kneighbors( p, n_neighbors=len(df), return_distance=True) return passes[0][1:np.searchsorted(dist[0], cutoff)] def getPassDF(self, df_events, lineups): pass_values = [ 'index', "match_id", 'duration', 'id', 'period', 'minute', 'second', 'type_name', 'player_name', 'position_name', "team_name", 'possession_team_name', 'possession', 'possession_team_id', 'related_events', 'under_pressure', 'location', # Pass details 'pass_aerial_won', 'pass_angle', 'pass_assisted_shot_id', 'pass_backheel', 'pass_body_part_id', 'pass_body_part_name', 'pass_cross', 'pass_deflected', 'pass_end_location', 'pass_goal_assist', 'pass_height_id', 'pass_height_name', 'pass_length', 'pass_outcome_id', 'pass_outcome_name', 'pass_recipient_id', 'pass_recipient_name', 'pass_shot_assist', 'pass_switch', 'pass_through_ball', 'pass_type_id', 'pass_type_name'] df_passes = df_events.loc[ (df_events['type_name'].isin(['Pass'])) & (~df_events["pass_type_name"].isin( ["Goal Kick", "Corner", "Throw-in", "Free Kick", "Kick Off"])), pass_values] df_passes.reset_index(inplace=True) del df_passes["level_0"] df_passes["under_pressure"] = df_passes["under_pressure"].fillna(False) df_passes['pass_outcome_name'].fillna('Complete', inplace=True) for col in [ "pass_backheel", "pass_cross", "pass_aerial_won", "pass_deflected", "pass_goal_assist", "pass_shot_assist", "pass_switch", "pass_through_ball"]: df_passes[col].fillna(False, inplace=True) # extract pass location data p_origin = pd.DataFrame(df_passes["location"].values.tolist(), columns=["location_origin_x", "location_origin_y"]) p_dest = pd.DataFrame(df_passes["pass_end_location"].values.tolist(), columns=["location_dest_x", "location_dest_y"]) df_passes = pd.concat([df_passes, p_origin, p_dest], axis=1) overall_positions = lineups[[ "team_name", "player.name", "overall_position" ]].drop_duplicates().rename({ "player.name": "player_name", "overall_position": "position_name"}, axis=1) pass_grid_cols = [ "team_name", "player_name", "under_pressure", "pass_height_name", "pass_outcome_name", "pass_angle", "pass_length", "location_origin_x", "location_origin_y", "location_dest_x", "location_dest_y"] df_pass_model = df_passes[pass_grid_cols] df_pass_model = pd.merge( df_pass_model, overall_positions, on=["team_name", "player_name"], how="left") df_pass_model["pass_outcome_name_binary"] = np.where( df_pass_model["pass_outcome_name"] == "Complete", True, False) return df_pass_model ``` #### File: PyStatsBomb/pystatsbomb/passmodelviz.py ```python import numpy as np from bokeh.layouts import widgetbox, row, column from bokeh.models import ( ColumnDataSource, RangeSlider, Select, HoverTool, LabelSet) from bokeh.models import Span, Label, Panel from bokeh.plotting import figure from bokeh.palettes import Spectral6, Viridis10 from bokeh.transform import factor_cmap from bokeh.models.widgets import CheckboxGroup def player_tab(passing_model): positions = list(passing_model.Position.unique()) position_details = list(passing_model.Position_Detail.unique()) position_color = factor_cmap( 'Position_Detail', palette=Viridis10, factors=position_details) select = Select(title="Position:", value="Midfield", options=positions) max_passes = int(passing_model["Passes"].max()) pass_slider = RangeSlider( start=0, end=max_passes, value=(70, max_passes), step=5, title="Number of Passes") def make_dataset(select_value, pass_slider_min, pass_slider_max): source = ColumnDataSource( data=passing_model.loc[ (passing_model["Position"] == select_value) & (passing_model["Passes"] >= pass_slider_min) & (passing_model["Passes"] <= pass_slider_max), :]) source.data["Pass_Size"] = source.data["Passes"] / 10 source.data["xP_Mean_mean"] = np.repeat(source.data["xP_Mean"].mean(), len(source.data["Passes"])) source.data["xP_Rating_mean"] = np.repeat(source.data["xP_Rating"].mean(), len(source.data["Passes"])) return source def make_plot(source): """Need to return the span so we can update them in callback (I think) """ # Set up Plot Figure plot_size_and_tools = { 'plot_height': 100, 'plot_width': 1000, 'x_range': (source.data["xP_Rating"].min() * .8, source.data["xP_Rating"].max() * 1.2), 'y_range': (source.data["xP_Mean"].min() * .8, source.data["xP_Mean"].max() * 1.2)} plot = figure(tools=["tap", "pan", "wheel_zoom",'box_select', 'reset', 'help'], title="Expected Passes v. Pass Difficulty") plot.y_range.flipped = True # Get Means and Ranges and Top n% for Labels xp_ms = source.data["xP_Mean_mean"][0] xp_mean_span = Span(location=xp_ms, dimension='width', line_color="black", line_dash='solid', line_width=3, line_alpha=.2) plot.add_layout(xp_mean_span) xp_rs = source.data["xP_Rating_mean"][0] xp_rating_span = Span(location=xp_rs, dimension='height', line_color="black", line_dash='solid', line_width=3, line_alpha=.2) plot.add_layout(xp_rating_span) renderer = plot.circle("xP_Rating", "xP_Mean", size="Pass_Size", color=position_color, legend="Position_Detail", source=source, # set visual properties for selected glyphs selection_color=Spectral6[5], #color="Position_Detail", # set visual properties for non-selected glyphs nonselection_fill_alpha=0.1, nonselection_fill_color=Spectral6[0], nonselection_line_color=Spectral6[5], nonselection_line_alpha=1.0) plot.legend.location = (10,50) plot.legend.border_line_width = 3 plot.legend.border_line_color = "black" plot.legend.border_line_alpha = 0.5 labels = LabelSet(x='xP_Rating', y='xP_Mean', text='Player', level='glyph', text_font_size='10pt', x_offset=-2, y_offset=2, source=source, render_mode='canvas') plot.add_layout(labels) # Hover tool with vline mode hover = HoverTool(tooltips=[('Team', '@Team'), ('Player', '@Player'), ('Position', '@Position_Detail'), ('Expected Pass Rating', '@xP_Rating'), ('Total Passes', '@Passes')], mode='vline') plot.add_tools(hover) # Add Labels in the corners citation1 = Label(x=10, y=10, x_units='screen', y_units='screen', text='Easier Passes, Poorly Executed', render_mode='css', border_line_color='black', border_line_alpha=1.0, background_fill_color='white', background_fill_alpha=1.0) # Add Labels in the corners citation2 = Label(x=10, y=510, x_units='screen', y_units='screen', text='Harder Passes, Poorly Executed', render_mode='css', border_line_color='black', border_line_alpha=1.0, background_fill_color='white', background_fill_alpha=1.0) # Add Labels in the corners citation3 = Label(x=625, y=10, x_units='screen', y_units='screen', text='Easier Passes, Well Executed', render_mode='css', border_line_color='black', border_line_alpha=1.0, background_fill_color='white', background_fill_alpha=1.0) # Add Labels in the corners citation4 = Label(x=625, y=510, x_units='screen', y_units='screen', text='Easier Passes, Well Executed', render_mode='css', border_line_color='black', border_line_alpha=1.0, background_fill_color='white', background_fill_alpha=1.0) plot.add_layout(citation1) plot.add_layout(citation2) plot.add_layout(citation3) plot.add_layout(citation4) return plot, xp_mean_span, xp_rating_span def callback(attr, old, new): # Pass Slider range_start = pass_slider.value[0] range_end = pass_slider.value[1] # Select position_val = select.value # Update Title plot.title.text = select.value # Update Dataset new_df = make_dataset(position_val, range_start, range_end) source.data.update(new_df.data) # Update Averages xp_ms = source.data["xP_Mean_mean"][0] xp_mean_span.location = xp_ms xp_rs = source.data["xP_Rating_mean"][0] xp_rating_span.location = xp_rs source = make_dataset( select.value, pass_slider.value[0], pass_slider.value[1]) plot, xp_mean_span, xp_rating_span = make_plot(source) inputs = widgetbox(select, pass_slider) select.on_change('value', callback) pass_slider.on_change('value', callback) # Create a row layout layout = column(inputs, plot) # Make a tab with the layout tab = Panel(child=layout, title='Player Passing Model') return tab def team_tab(passing_model): result = [ "Group Stage", "Round of 16", "Quarter-finals", "Semi-finals", "Final"] #position_details = list(passing_model.Position_Detail.unique()) result_color = factor_cmap( 'Round', palette=Spectral6, factors=result) checkbox = CheckboxGroup( labels=result, active=[0,1,2,3,4]) rounds = [checkbox.labels[i] for i in checkbox.active] #max_passes = int(passing_model["Passes"].max()) #pass_slider = RangeSlider( # start=0, end=max_passes, value=(70, max_passes), # step=5, title="Number of Passes") def make_dataset(rounds): source = ColumnDataSource( data=passing_model.loc[ passing_model["Round"].isin(rounds), :] ) #& #(passing_model["Passes"] >= pass_slider_min) & #(passing_model["Passes"] <= pass_slider_max), :]) source.data["Pass_Size"] = source.data["Passes"] / 50 source.data["xP_Mean_mean"] = np.repeat(source.data["xP_Mean"].mean(), len(source.data["Passes"])) source.data["xP_Rating_mean"] = np.repeat(source.data["xP_Rating"].mean(), len(source.data["Passes"])) return source def make_plot(source): """Need to return the span so we can update them in callback (I think)""" # Set up Plot Figure plot_size_and_tools = { 'plot_height': 100, 'plot_width': 1000, 'x_range': (source.data["xP_Rating"].min() * .8, source.data["xP_Rating"].max() * 1.2), 'y_range': (source.data["xP_Mean"].min() * .8, source.data["xP_Mean"].max() * 1.2)} plot = figure(tools=["tap", "pan", "wheel_zoom",'box_select', 'reset', 'help'], title="Expected Passes v. Pass Difficulty") plot.y_range.flipped = True # Get Means and Ranges and Top n% for Labels xp_ms = source.data["xP_Mean_mean"][0] xp_mean_span = Span(location=xp_ms, dimension='width', line_color="black", line_dash='solid', line_width=3, line_alpha=.2) plot.add_layout(xp_mean_span) xp_rs = source.data["xP_Rating_mean"][0] xp_rating_span = Span(location=xp_rs, dimension='height', line_color="black", line_dash='solid', line_width=3, line_alpha=.2) plot.add_layout(xp_rating_span) renderer = plot.circle("xP_Rating", "xP_Mean", size="Pass_Size", color=result_color, legend="Round", source=source, # set visual properties for selected glyphs selection_color=Spectral6[5], #color="Position_Detail", # set visual properties for non-selected glyphs nonselection_fill_alpha=0.1, nonselection_fill_color=Spectral6[0], nonselection_line_color=Spectral6[5], nonselection_line_alpha=1.0) plot.legend.location = (10,50) plot.legend.border_line_width = 3 plot.legend.border_line_color = "black" plot.legend.border_line_alpha = 0.5 labels = LabelSet(x='xP_Rating', y='xP_Mean', text='Team', level='glyph', text_font_size='10pt', x_offset=-2, y_offset=2, source=source, render_mode='canvas') plot.add_layout(labels) # Hover tool with vline mode hover = HoverTool(tooltips=[('Team', '@Team'), ('Result', '@Round'), #('Position', '@Position_Detail'), ('Expected Pass Rating', '@xP_Rating'), ('Total Passes', '@Passes')], mode='vline') plot.add_tools(hover) # Add Labels in the corners citation1 = Label(x=10, y=10, x_units='screen', y_units='screen', text='Easier Passes, Poorly Executed', render_mode='css', border_line_color='black', border_line_alpha=1.0, background_fill_color='white', background_fill_alpha=1.0) # Add Labels in the corners citation2 = Label(x=10, y=510, x_units='screen', y_units='screen', text='Harder Passes, Poorly Executed', render_mode='css', border_line_color='black', border_line_alpha=1.0, background_fill_color='white', background_fill_alpha=1.0) # Add Labels in the corners citation3 = Label(x=625, y=10, x_units='screen', y_units='screen', text='Easier Passes, Well Executed', render_mode='css', border_line_color='black', border_line_alpha=1.0, background_fill_color='white', background_fill_alpha=1.0) # Add Labels in the corners citation4 = Label(x=625, y=510, x_units='screen', y_units='screen', text='Easier Passes, Well Executed', render_mode='css', border_line_color='black', border_line_alpha=1.0, background_fill_color='white', background_fill_alpha=1.0) plot.add_layout(citation1) plot.add_layout(citation2) plot.add_layout(citation3) plot.add_layout(citation4) return plot, xp_mean_span, xp_rating_span def callback(attr, old, new): new_rounds = [checkbox.labels[i] for i in checkbox.active] # Update Dataset new_df = make_dataset(new_rounds) source.data.update(new_df.data) # Update Averages xp_ms = source.data["xP_Mean_mean"][0] xp_mean_span.location = xp_ms xp_rs = source.data["xP_Rating_mean"][0] xp_rating_span.location = xp_rs source = make_dataset(rounds) plot, xp_mean_span, xp_rating_span = make_plot(source) inputs = widgetbox(checkbox) checkbox.on_change('active', callback) #pass_slider.on_change('value', callback) # Create a row layout layout = column(inputs, plot) #layout = row(plot) # Make a tab with the layout tab = Panel(child=layout, title='Team Passing Model') return tab ``` #### File: PyStatsBomb/pystatsbomb/plotting.py ```python import matplotlib.pyplot as plt from matplotlib.patches import Arc import matplotlib.cm as cm import seaborn as sns import numpy as np import pandas as pd from bokeh.plotting import figure from bokeh.io import show # import seaborn as sns def plotpitch(display=False, size=(7,5)): # Create figure fig = plt.figure() fig.set_size_inches(size) ax = fig.add_subplot(1, 1, 1) # Pitch Outline & Centre Line ax.plot([0, 0], [0, 80], color="black") ax.plot([0, 120], [80, 80], color="black") ax.plot([120, 120], [80, 0], color="black") ax.plot([120, 0], [0, 0], color="black") ax.plot([60, 60], [0, 80], color="black") # Left Penalty Area ax.plot([18, 18], [62, 18], color="black") ax.plot([0, 18], [62, 62], color="black") ax.plot([18, 0], [18, 18], color="black") # Right Penalty Area ax.plot([120, 102], [62, 62], color="black") ax.plot([102, 102], [62, 18], color="black") ax.plot([102, 120], [18, 18], color="black") # Left 6-yard Box ax.plot([0, 6], [50, 50], color="black") ax.plot([6, 6], [50, 30], color="black") ax.plot([6, 0], [30, 30], color="black") # Right 6-yard Box ax.plot([120, 114], [50, 50], color="black") ax.plot([114, 114], [50, 30], color="black") ax.plot([114, 120], [30, 30], color="black") # Left Goal ax.plot([0, -2], [44, 44], color="black") ax.plot([-2, -2], [44, 36], color="black") ax.plot([-2, 0], [36, 36], color="black") # Right Goal ax.plot([120, 122], [44, 44], color="black") ax.plot([122, 122], [44, 36], color="black") ax.plot([122, 120], [36, 36], color="black") # Prepare Circles centreCircle = plt.Circle((60, 40), 10, color="black", fill=False, lw=2) centreSpot = plt.Circle((60, 40), 0.8, color="black") leftPenSpot = plt.Circle((12, 40), 0.8, color="black") rightPenSpot = plt.Circle((108, 40), 0.8, color="black") # Draw Circles ax.add_patch(centreCircle) ax.add_patch(centreSpot) ax.add_patch(leftPenSpot) ax.add_patch(rightPenSpot) # Prepare Arcs leftArc = Arc((12, 40), height=20, width=20, angle=0, theta1=310, theta2=50, color="black", lw=2) rightArc = Arc((108, 40), height=20, width=20, angle=0, theta1=130, theta2=230, color="black", lw=2) # Draw Arcs ax.add_patch(leftArc) ax.add_patch(rightArc) # Tidy Axes ax.axis('off') # sns.regplot(df_shot["x"],df_shot["y"], fit_reg=False)#, # shade=True,n_levels=50) # team1 = df_shot[df_shot.team == 'Chelsea LFC'] # team2 = df_shot[df_shot.team != 'Chelsea LFC'] # sns.kdeplot(team1["x"], team1["y"], shade=False, # shade_lowest=False, n_levels=50, cmap="Reds", ax=ax) # sns.kdeplot(team2["x"], team2["y"], shade=False, # shade_lowest=False, n_levels=50, cmap="Blues", ax=ax) # sns.regplot(team1["x"], team1["y"], fit_reg=False, color="red", ax=ax) # sns.regplot(team2["x"], team2["y"], fit_reg=False, color="blue", ax=ax) plt.ylim(-5, 85) plt.xlim(-5, 125) # Display Pitch if display: plt.show() else: return fig, ax def plotpitch_bokeh(display=False, line_color="black", background="green"): plot = figure(title="Pitch Baseplot", x_range=(-5,125), y_range=(-5,85), plot_width=600, plot_height=400) # Styling color = line_color plot.background_fill_color = background plot.background_fill_alpha = 0.1 plot.grid.grid_line_color = None plot.xaxis.axis_line_color = None plot.yaxis.axis_line_color = None plot.xaxis.major_tick_line_color = None plot.xaxis.minor_tick_line_color = None plot.yaxis.major_tick_line_color = None plot.yaxis.minor_tick_line_color = None plot.xaxis.major_label_text_font_size = '0pt' plot.yaxis.major_label_text_font_size = '0pt' # Outline and Midline plot.multi_line( [[0, 0], [0, 120], [120, 120], [120, 0], [60, 60]], [[0, 80], [80, 80], [80, 0], [0, 0], [0, 80]], color=color, name="outline") # Left Penalty Area plot.multi_line( [[18, 18], [0, 18], [18, 0]], [[62, 18], [62, 62], [18, 18]], color=color, name="left_penalty_area") # Right Penalty Area plot.multi_line( [[120, 102], [102, 102], [102, 120]], [[62, 62], [62, 18], [18, 18]], color=color, name="right_penalty_area") # Left 6-yard Box plot.multi_line( [[0, 6], [6, 6], [6, 0]], [[50, 50], [50, 30], [30, 30]], color=color, name="left_6") # Right 6-yard Box plot.multi_line( [[120, 114], [114, 114], [114, 120]], [[50, 50], [50, 30], [30, 30]], color=color, name="right_6") # Left Goal plot.multi_line( [[0, -2], [-2, -2], [-2, 0]], [[44, 44], [44, 36], [36, 36]], color=color, name="left_goal") # Right Goal plot.multi_line( [[120, 122], [122, 122], [122, 120]], [[44, 44], [44, 36], [36, 36]], color=color, name="right_goal") # Circles and Arcs plot.circle(60, 40, radius=10, fill_alpha=0, color=color, name="center_cirle") plot.circle(60, 40, size=5, color=color, name="center_dot") plot.circle(12, 40, size=5, color=color, name="left_pen_dot") plot.circle(108, 40, size=5 ,color=color, name="right_pen_dot") plot.arc(12, 40, radius=10, start_angle=307, end_angle=53, start_angle_units='deg', end_angle_units="deg", color=color, name="left_pen_circle") plot.arc(108, 40, radius=10, start_angle=127, end_angle=233, start_angle_units='deg', end_angle_units="deg", color=color, name="right_pen_circle") # Display Pitch if display: show(plot) else: return plot def pass_rose(df_passes, palette=None): """Based from https://gist.github.com/phobson/41b41bdd157a2bcf6e14""" if "pass_angle_deg" in df_passes.columns: pass else: print("Adding Pass Angle Degrees") df_passes['pass_angle_deg'] = ( df_passes['pass_angle'].apply(pass_angle_deg)) total_count = df_passes.shape[0] print('{} total observations'.format(total_count)) dir_bins = np.arange(-7.5, 370, 15) dir_labels = (dir_bins[:-1] + dir_bins[1:]) / 2 rosedata = ( df_passes .assign(PassAngle_bins=lambda df: ( pd.cut( df['pass_angle_deg'], bins=dir_bins, labels=dir_labels, right=False)))) rosedata.loc[rosedata["PassAngle_bins"] == 360., "PassAngle_bins"] = 0. rosedata["PassAngle_bins"].cat.remove_categories([360], inplace=True) rosedata = ( rosedata .groupby(by=['PassAngle_bins']) .agg({"pass_length": "size"}) # .unstack(level='PassAngle_bins') .fillna(0) .sort_index(axis=0) #.applymap(lambda x: x / total_count * 100) ) pass_dirs = np.arange(0, 360, 15) if palette is None: palette = sns.color_palette('inferno', n_colors=rosedata.shape[1]) bar_dir, bar_width = _convert_dir(pass_dirs) fig, ax = plt.subplots(figsize=(5, 5), subplot_kw=dict(polar=True)) ax.set_theta_direction('clockwise') ax.set_theta_zero_location('N') c1 = "pass_length" colors = cm.viridis(rosedata[c1].values / float(max(rosedata[c1].values))) print(len(bar_dir)) print(len(rosedata[c1].values)) # first column only ax.bar( bar_dir, rosedata[c1].values, width=bar_width, color=colors, edgecolor='none', label=c1, linewidth=0) leg = ax.legend(loc=(0.75, 0.95), ncol=2) #xtl = ax.set_xticklabels(['N', 'NE', 'E', 'SE', 'S', 'SW', 'W', 'NW']) # return fig def _convert_dir(directions, N=None): if N is None: N = directions.shape[0] barDir = directions * np.pi/180. # np.pi/N barWidth = 2 * np.pi / N return barDir, barWidth def dist_labels(bins, units): labels = [] for left, right in zip(bins[:-1], bins[1:]): if np.isinf(right): labels.append('>{} {}'.format(left, units)) else: labels.append('{} - {} {}'.format(left, right, units)) return list(labels) def pass_angle_deg(x): """Convert negative angles to positive radians from 0 to 2pi clockwise""" if x >= 0: return x * 180. / np.pi else: return (2 * np.pi + x) * 180. / np.pi def getArrow(start, end, color, qualifier=None, viz="mpl"): x = start[0] y = start[1] if viz == "mpl": dx = end[0] - start[0] dy = end[1] - start[1] elif viz == "bokeh": dx = end[0] dy = end[1] else: print("please choose mpl or bokeh") if color == qualifier: color = 'blue' else: color = 'red' return x, y, dx, dy, color ```
{ "source": "jeremyephron/explore-courses-api", "score": 4 }
#### File: explore-courses-api/explorecourses/classes.py ```python from typing import Tuple from xml.etree.ElementTree import Element class Department(object): """ This class represents a department within a school. Attributes: name (str): The department name. code (str): The department code used for searching courses by department. """ def __init__(self, elem: Element): """ Constructs a new Department from an XML element. Args: elem (Element): The department's XML element. """ self.name = elem.get("longname") self.code = elem.get("name") def __str__(self): """ Returns a string representation of the Department that includes both department name and code. """ return f"{self.name} ({self.code})" class School(object): """ This class represents a school within the university. Attributes: name (str): The name of the school. departments (Tuple[Department]): A list of departments within the school. """ def __init__(self, elem: Element): """ Constructs a new School from an XML element. Args: elem (Element): The school's XML element. """ self.name = elem.get("name") depts = elem.findall("department") self.departments = tuple(Department(dept) for dept in depts) def get_department(self, idf: str) -> Department: """ Gets a department within the school identified by name or code. Args: idf (str): An identifier of the department; either the name or code. Returns: Department: The department matched by the given identifier if a match was found, None otherwise. """ idf = idf.lower() find_code = lambda dept, code: dept.code.lower() == code find_name = lambda dept, name: dept.name.lower() == name find_dept = lambda dept, idf: find_name(dept, idf) or find_code(dept, idf) idx = [idx for idx, dept in enumerate(self.departments) if find_dept(dept, idf)] return self.departments[idx[0]] if idx else None def __str__(self): """ Returns a string representation of the School that is the School's name. """ return self.name class Instructor(object): """ This class represents an instructor for a section. Attributes: name (str): The instructor's name in "LastName, FirstInitial." form. first_name (str): The instructor's first name. middle_name (str): The instructor's middle name. last_name (str): The instructor's last name. sunet_id (str): The instructor's SUNet ID (as in <EMAIL>). is_primary_instructor (bool): True if the instructor is the primary instructor for the course, False otherwise. """ def __init__(self, elem: Element): """ Constructs a new Instructor from an XML element. Args: elem (Element): The instructor's XML element. """ self.name = elem.findtext("name") self.first_name = elem.findtext("firstName") self.middle_name = elem.findtext("middleName") self.last_name = elem.findtext("lastName") self.sunet_id = elem.findtext("sunet") self.is_primary_instructor = elem.findtext("role") == "PI" def __str__(self): """ Returns a string representation of the Instructor that includes the instructor's first and last name and SUNet ID. """ return f"{self.first_name} {self.last_name} ({self.sunet_id})" class Attribute(object): """ This class represents an attribute of a course. Attributes: name (str): The name of the attribute. value (str): The abbreviation value of the attribute. description (str): A description of the value of the attribute. catalog_print (bool): True if the attribute has the catalog print flag, False otherwise. schedule_print (bool): True if the attribute has the schedule print flag, False otherwise. """ def __init__(self, elem: Element): """ Constructs a new Attribute from an XML element. Args: elem (Element): The attribute's XML element. """ self.name = elem.findtext("name") self.value = elem.findtext("value") self.description = elem.findtext("description") self.catalog_print = elem.findtext("catalogPrint") == "true" self.schedule_print = elem.findtext("schedulePrint") == "true" def __str__(self): """ Returns a string representation of the Attribute that includes the attribute's name and value. """ return f"{self.name}::{self.value}" class Schedule(object): """ This class represents the schedule of a section, including instructors. Attributes: start_date (str): The start date of the section's schedule. end_date (str): The end date of the section's schedule. start_time (str): The start time of each section. end_time (str): The end time of each section. location (str): The location of each section. days (Tuple[str]): The days of the week that the section meets. instructors (Tuple[Instructor]): The section's instructors. """ def __init__(self, elem: Element): """ Constructs a new Schedule from an XML element. Args: elem (Element): The schedule's XML element. """ self.start_date = elem.findtext("startDate") self.end_date = elem.findtext("endDate") self.start_time = elem.findtext("startTime") self.end_time = elem.findtext("endTime") self.location = elem.findtext("location") self.days = tuple(elem.findtext("days").split()) self.instructors = tuple(Instructor(instr) for instr in elem.find("instructors")) def __str__(self): """ Returns a string representation of the Schedule that includes the days of the week the section meets and it's time and location. """ return (f"{', '.join(self.days)}, {self.start_time} - {self.end_time} " f"at {self.location}") class Section(object): """ This class represents a section of a course. Attributes: class_id (int): The unique ID of the section. term (str): The year and quarter during which the section is offered. units (str): The number of units the section is offered for section_num (str): The section number which distinguishes between different sections of the same type. component (str): The type of section (e.g., LEC) curr_class_size (int): The current number of students enrolled in the section. max_class_size (int): The maximum number of students allowed in the section. curr_waitlist_size (int): The current number of students on the waitlist to enroll in the section. max_waitlist_size (int): The maximum number of students allowed on the waitlist for the section. notes (str): Any notes about the section. schedules (Tuple[Schedule]): The different schedules of the section. attributes (Tuple[Attribute]): The section's attributes. """ def __init__(self, elem: Element): """ Constructs a new Section from an XML element. Args: elem (Element): The section's XML element. """ self.class_id = int(elem.findtext("classId")) self.term = elem.findtext("term") self.units = elem.findtext("units") self.section_num = elem.findtext("sectionNumber") self.component = elem.findtext("component") self.max_class_size = int(elem.findtext("maxClassSize")) self.curr_class_size = int(elem.findtext("currentClassSize")) self.curr_waitlist_size = int(elem.findtext("currentWaitlistSize")) self.max_waitlist_size = int(elem.findtext("maxWaitlistSize")) self.notes = elem.findtext("notes") self.schedules = tuple(Schedule(sched) for sched in elem.find("schedules")) self.attributes = tuple(Attribute(attr) for attr in elem.find("attributes")) def __str__(self): """ Returns a string representation of the Section that includes the section's component and number, and section's ID. """ return f"{self.component} {self.section_num} (id: {self.class_id})" class Tag(object): """ This class represents a tag for a course. Attributes: organization (str): The organization within the school responsible for the tag. name (str): The name of the tag. """ def __init__(self, elem: Element): """ Constructs a new Tag from an XML element. Args: elem (Element): The tag's XML element. """ self.organization = elem.findtext("organization") self.name = elem.findtext("name") def __str__(self): """ Returns a string representation of the Tag that includes the tag's organization and name. """ return f"{self.organization}::{self.name}" class LearningObjective(object): """ This class represents a learning objective for a course. Attributes: code (str): The GER that the learning objective is for. description (str): A description of the learning objective. """ def __init__(self, elem: Element): """ Constructs a new LearningObjective from an XML element. Args: elem (Element): The learning objective's XML element. """ self.code = elem.findtext(".//requirementCode") self.description = elem.findtext(".//description") def __str__(self): """ Returns a string representation of the LearningObjective that includes the learning objective's code and description. """ return f"Learning Objective ({self.code}: {self.description})" class Course(object): """ This class represents a course listed at the university. Attributes: year (str): The Academic year that the course is offered. subject (str): The academic subject of the course (e.g., 'MATH'). code (str): The code listing of the course (e.g., '51'). title (str): The full title of the course. description (str): A description of the course. gers (Tuple[str]): The General Education Requirements satisfied by the course. repeatable (bool): True if the course is repeatable for credit, False otherwise. grading_basis (str): The grading basis options for the course. units_min (int): The minimum number of units the course can be taken for. units_max (int): The maximum number of units the course can be taken for. objectives (Tuple[LearningObjective]): The learning objectives of the course. final_exam (bool): True if the course has a final exam, False otherwise. sections (Tuple[Section]): The sections associated with the course. tags (Tuple[Tag]): The tags associated with the course. attributes (Tuple[Attributes]): The attributes associated with the course. course_id (int): The unique ID of the course. active (bool): True if the course is currently being taught, False otherwise. offer_num (str): The offer number of the course. academic_group (str): The academic group that the course is a part of. academic_org (str): The academic organization that the course is a part of. academic_career (str): The academic career associated with the course. max_units_repeat (int): The number of units that the course can be repeated for. max_times_repeat (int): The number of times that the course can be repeated. """ def __init__(self, elem: Element): """ Constructs a new Course from an XML element. Args: elem (Element): The course's XML element. """ self.year = elem.findtext("year") self.subject = elem.findtext("subject") self.code = elem.findtext("code") self.title = elem.findtext("title") self.description = elem.findtext("description") self.gers = tuple(elem.findtext("gers").split(", ")) self.repeatable = (True if elem.findtext("repeatable") == "true" else False) self.grading_basis = elem.findtext("grading") self.units_min = int(elem.findtext("unitsMin")) self.units_max = int(elem.findtext("unitsMax")) self.objectives = tuple(LearningObjective(obj) for obj in elem.find("learningObjectives")) self.final_exam = ( True if elem.findtext(".//finalExamFlag") == "Y" else False if elem.findtext(".//finalExamFlag") == "N" else None ) self.sections = tuple(Section(section) for section in elem.find("sections")) self.tags = tuple(Tag(tag) for tag in elem.find("tags")) self.attributes = tuple(Attribute(attr) for attr in elem.find("attributes")) self.course_id = int(elem.findtext(".//courseId")) self.active = (True if elem.findtext(".//effectiveStatus") == "A" else False if elem.findtext(".//effectiveStatus") == "I" else None) self.offer_num = elem.findtext(".//offerNumber") self.academic_group = elem.findtext(".//academicGroup") self.academic_org = elem.findtext(".//academicOrganization") self.academic_career = elem.findtext(".//academicCareer") self.max_units_repeat = int(elem.findtext(".//maxUnitsRepeat")) self.max_times_repeat = int(elem.findtext(".//maxTimesRepeat")) def __str__(self): """ Returns a string representation of the Course that includes the course's subject, code, and full title. """ return f"{self.subject}{self.code} {self.title}" def __eq__(self, other): """ Overloads the equality (==) operator for the Course class. A Course can only be compared to another Course. Course equality is determined by course ID. Args: other: The right operand of the equality operator. Returns: bool: True if the object being compared is equal to the Course, False otherwise. """ if type(other) != Course: return False return self.course_id == other.course_id def __lt__(self, other): """ Overloads the less than (<) operator for Course. A Course can only be compared to another Course. Courses are compared first by subject, then by code, and last by year. Args: other: The right operand of the less than operator. Returns: bool: True if the object being compared is less than the Course, False otherwise. """ if type(other) != Course: raise TypeError(f"'<' not supported between instances of " f"'{type(self)}' and '{type(other)}'") if self.subject != other.subject: return self.subject < other.subject if self.code != other.code: return self.code < other.code if self.year != other.year: return self.year < other.year return False def __gt__(self, other): """ Overloads the greater than (>) operator for Course. A Course can only be compared to another Course. Courses are compared first by subject, then by code, and last by year. Args: other: The right operand of the greater than operator. Returns: bool: True if the object being compared is greater than the Course, False otherwise. """ if type(other) != Course: raise TypeError(f"'>' not supported between instances of " f"'{type(self)}' and '{type(other)}'") return not self.__lt__(other) and not self.__eq__(other) def __le__(self, other): """ Overloads the less than or equal to operator (<=) for Course. A Course can only be compared to another Course. Courses are compared first by subject, then by code, and last by year. Args: other: The right operand of the less than or equal to operator. Returns: bool: True if the object being compared is less than or equal to the Course, False otherwise. """ if type(other) != Course: raise TypeError(f"'<=' not supported between instances of " f"'{type(self)}' and '{type(other)}'") return self.__lt__(other) or self.__eq__(other) def __ge__(self, other): """ Overloads the greater than or equal to operator (>=) for Course. A Course can only be compared to another Course. Courses are compared first by subject, then by code, and last by year. Args: other: The right operand of the greater than or equal to operator. Returns: bool: True if the object being compared is greater than or equal to the Course, False otherwise. """ if type(other) != Course: raise TypeError(f"'>=' not supported between instances of " f"'{type(self)}' and '{type(other)}'") return self.__gt__(other) or self.__eq__(other) ```
{ "source": "jeremyephron/forager", "score": 2 }
#### File: forager/add_dataset/clip_inference.py ```python import concurrent.futures from typing import List import numpy as np import torch import clip from PIL import Image from tqdm import tqdm BATCH_SIZE = 256 EMBEDDING_DIM = 512 device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) load_image = lambda path: preprocess(Image.open(path)).unsqueeze(0).to(device) def run(image_paths: List[str], embeddings_output_filename: str): embeddings = np.memmap( embeddings_output_filename, dtype="float32", mode="w+", shape=(len(image_paths), EMBEDDING_DIM), ) with concurrent.futures.ThreadPoolExecutor() as executor: for i in tqdm(range(0, len(image_paths), BATCH_SIZE)): # Load batch of images batch_paths = image_paths[i : i + BATCH_SIZE] images = torch.cat(list(executor.map(load_image, batch_paths))) with torch.no_grad(): image_features = model.encode_image(images) image_features /= image_features.norm(dim=-1, keepdim=True) embeddings[i : i + BATCH_SIZE] = image_features.cpu().numpy() embeddings.flush() ``` #### File: forager/add_dataset/utils.py ```python import asyncio import functools import os def parse_gcs_path(path): assert path.startswith("gs://") path = path[len("gs://") :] bucket_end = path.find("/") bucket = path[:bucket_end] relative_path = path[bucket_end:].strip("/") return bucket, relative_path def make_identifier(path): return os.path.splitext(os.path.basename(path))[0] def unasync(coro): @functools.wraps(coro) def wrapper(*args, **kwargs): return asyncio.run(coro(*args, **kwargs)) return wrapper ``` #### File: forager_server/forager_server_api/views.py ```python from collections import defaultdict, namedtuple from dataclasses import dataclass import distutils.util import functools import itertools import json import math import operator import os import random import uuid import shutil import logging import time from typing import List, Dict, NamedTuple, Optional from django.db.models import Q from django.http import JsonResponse from django.views.decorators.csrf import csrf_exempt from django.shortcuts import get_object_or_404, get_list_or_404 from django.conf import settings from google.cloud import storage from rest_framework.decorators import api_view import requests from expiringdict import ExpiringDict from .models import ( Dataset, DatasetItem, Category, Mode, User, Annotation, DNNModel, CategoryCount, ) BUILTIN_MODES = ["POSITIVE", "NEGATIVE", "HARD_NEGATIVE", "UNSURE"] logger = logging.getLogger(__name__) @api_view(["POST"]) @csrf_exempt def start_cluster(request): # TODO(mihirg): Remove this setting from Django; it's now managed by Terraform # (or figure out how to set it from the frontend if we need that) r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/start_cluster", ) response_data = r.json() return JsonResponse( { "status": "success", "cluster_id": response_data["cluster_id"], } ) @api_view(["GET"]) @csrf_exempt def get_cluster_status(request, cluster_id): params = {"cluster_id": cluster_id} r = requests.get( settings.EMBEDDING_SERVER_ADDRESS + "/cluster_status", params=params ) response_data = r.json() return JsonResponse(response_data) @api_view(["POST"]) @csrf_exempt def stop_cluster(request, cluster_id): params = {"cluster_id": cluster_id} requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/stop_cluster", json=params, ) return JsonResponse( { "status": "success", } ) @api_view(["POST"]) @csrf_exempt def create_model(request, dataset_name, dataset=None): payload = json.loads(request.body) model_name = payload["model_name"] cluster_id = payload["cluster_id"] bucket_name = payload["bucket"] index_id = payload["index_id"] pos_tags = parse_tag_set_from_query_v2(payload["pos_tags"]) neg_tags = parse_tag_set_from_query_v2(payload["neg_tags"]) val_pos_tags = parse_tag_set_from_query_v2(payload["val_pos_tags"]) val_neg_tags = parse_tag_set_from_query_v2(payload["val_neg_tags"]) augment_negs = bool(payload["augment_negs"]) model_kwargs = payload["model_kwargs"] resume_model_id = payload.get("resume", None) dataset = get_object_or_404(Dataset, name=dataset_name) eligible_images = DatasetItem.objects.filter(dataset=dataset, is_val=False) categories = Category.objects.filter( tag_sets_to_query(pos_tags, neg_tags, val_pos_tags, val_neg_tags) ) annotations = Annotation.objects.filter( dataset_item__in=eligible_images, category__in=categories, ) tags_by_pk = get_tags_from_annotations_v2(annotations) pos_dataset_item_pks = [] neg_dataset_item_pks = [] val_pos_dataset_item_pks = [] val_neg_dataset_item_pks = [] for pk, tags in tags_by_pk.items(): if any(t in pos_tags for t in tags): pos_dataset_item_pks.append(pk) elif any(t in neg_tags for t in tags): neg_dataset_item_pks.append(pk) elif any(t in val_pos_tags for t in tags): val_pos_dataset_item_pks.append(pk) elif any(t in val_neg_tags for t in tags): val_neg_dataset_item_pks.append(pk) # Augment with randomly sampled negatives if requested num_extra_negs = settings.BGSPLIT_NUM_NEGS_MULTIPLIER * len( pos_dataset_item_pks ) - len(neg_dataset_item_pks) if augment_negs and num_extra_negs > 0: # Uses "include" and "exclude" category sets from request all_eligible_pks = filtered_images_v2( request, dataset, exclude_pks=( pos_dataset_item_pks + neg_dataset_item_pks + val_pos_dataset_item_pks + val_neg_dataset_item_pks ), ) sampled_pks = random.sample( all_eligible_pks, min(len(all_eligible_pks), num_extra_negs) ) neg_dataset_item_pks.extend(sampled_pks) pos_dataset_item_internal_identifiers = list( DatasetItem.objects.filter(pk__in=pos_dataset_item_pks).values_list( "identifier", flat=True ) ) neg_dataset_item_internal_identifiers = list( DatasetItem.objects.filter(pk__in=neg_dataset_item_pks).values_list( "identifier", flat=True ) ) val_pos_dataset_item_internal_identifiers = list( DatasetItem.objects.filter(pk__in=val_pos_dataset_item_pks).values_list( "identifier", flat=True ) ) val_neg_dataset_item_internal_identifiers = list( DatasetItem.objects.filter(pk__in=val_neg_dataset_item_pks).values_list( "identifier", flat=True ) ) if resume_model_id: resume_model = get_object_or_404(DNNModel, model_id=resume_model_id) resume_model_path = resume_model.checkpoint_path else: resume_model = None resume_model_path = None params = { "pos_identifiers": pos_dataset_item_internal_identifiers, "neg_identifiers": neg_dataset_item_internal_identifiers, "val_pos_identifiers": val_pos_dataset_item_internal_identifiers, "val_neg_identifiers": val_neg_dataset_item_internal_identifiers, "augment_negs": augment_negs, "model_kwargs": model_kwargs, "model_name": model_name, "bucket": bucket_name, "cluster_id": cluster_id, "index_id": index_id, "resume_from": resume_model_path, } r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/start_bgsplit_job", json=params, ) response_data = r.json() if r.status_code != 200: return JsonResponse( {"status": "failure", "reason": response_data.get("reason", "")}, status=r.status_code, ) m = DNNModel( dataset=dataset, name=model_name, model_id=response_data["model_id"], category_spec={ "augment_negs": augment_negs, "pos_tags": payload["pos_tags"], "neg_tags": payload["neg_tags"], "augment_negs_include": payload.get("include", []) if augment_negs else [], "augment_negs_exclude": payload.get("exclude", []) if augment_negs else [], }, ) model_epoch = -1 + model_kwargs.get("epochs_to_run", 1) if resume_model_id: m.resume_model_id = resume_model_id if model_kwargs.get("resume_training", False): model_epoch += resume_model.epoch + 1 m.epoch = model_epoch m.save() return JsonResponse( { "status": "success", "model_id": response_data["model_id"], } ) @api_view(["GET"]) @csrf_exempt def get_model_status(request, model_id): params = {"model_id": model_id} r = requests.get( settings.EMBEDDING_SERVER_ADDRESS + "/bgsplit_job_status", params=params ) response_data = r.json() if response_data["has_model"]: # Index has been successfully created & uploaded -> persist m = get_object_or_404(DNNModel, model_id=model_id) m.checkpoint_path = response_data["checkpoint_path"] m.save() return JsonResponse(response_data) @api_view(["POST"]) @csrf_exempt def update_model_v2(request): payload = json.loads(request.body) # user = payload["user"] old_model_name = payload["old_model_name"] new_model_name = payload["new_model_name"] models = get_list_or_404(DNNModel, name=old_model_name) for m in models: m.name = new_model_name m.save() return JsonResponse({"success": True}) @api_view(["POST"]) @csrf_exempt def delete_model_v2(request): payload = json.loads(request.body) model_name = payload["model_name"] # cluster_id = payload['cluster_id'] models = get_list_or_404(DNNModel, name=model_name) for m in models: # TODO(fpoms): delete model data stored on NFS? # shutil.rmtree(os.path.join(m.checkpoint_path, '..')) shutil.rmtree(m.output_directory, ignore_errors=True) m.delete() return JsonResponse({"success": True}) @api_view(["POST"]) @csrf_exempt def run_model_inference(request, dataset_name, dataset=None): payload = json.loads(request.body) model_id = payload["model_id"] cluster_id = payload["cluster_id"] bucket_name = payload["bucket"] index_id = payload["index_id"] dataset = get_object_or_404(Dataset, name=dataset_name) model_checkpoint_path = get_object_or_404( DNNModel, model_id=model_id ).checkpoint_path if model_checkpoint_path is None or len(model_checkpoint_path) == 0: return JsonResponse( { "status": "failure", "reason": f"Model {model_id} does not have a model checkpoint.", }, status=400, ) params = { "bucket": bucket_name, "model_id": model_id, "checkpoint_path": model_checkpoint_path, "cluster_id": cluster_id, "index_id": index_id, } r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/start_bgsplit_inference_job", json=params, ) response_data = r.json() return JsonResponse( { "status": "success", "job_id": response_data["job_id"], } ) @api_view(["GET"]) @csrf_exempt def get_model_inference_status(request, job_id): params = {"job_id": job_id} r = requests.get( settings.EMBEDDING_SERVER_ADDRESS + "/bgsplit_inference_job_status", params=params, ) response_data = r.json() if response_data["has_output"]: model_id = response_data["model_id"] # Index has been successfully created & uploaded -> persist m = get_object_or_404(DNNModel, model_id=model_id) m.output_directory = response_data["output_dir"] m.save() return JsonResponse(response_data) @api_view(["POST"]) @csrf_exempt def stop_model_inference(request, job_id): params = {"job_id": job_id} r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/stop_bgsplit_inference_job", json=params ) response_data = r.json() return JsonResponse(response_data, status=r.status_code) # # V2 ENDPOINTS # TODO(mihirg): Make these faster # Tag = namedtuple("Tag", "category value") # type: NamedTuple[str, str] Box = namedtuple( "Box", "category value x1 y1 x2 y2" ) # type: NamedTuple[str, str, float, float, float, float] PkType = int @dataclass class ResultSet: type: str ranking: List[PkType] distances: List[float] model: Optional[str] # TODO(fpoms): this needs to be wrapped in a lock so that # updates are atomic across concurrent requests current_result_sets = ExpiringDict( max_age_seconds=30 * 60, max_len=50, ) # type: Dict[str, ResultSet] def parse_tag_set_from_query_v2(s): if isinstance(s, list): parts = s elif isinstance(s, str) and s: parts = s.split(",") else: parts = [] ts = set() for part in parts: if not part: continue category, value_str = part.split(":") ts.add(Tag(category, value_str)) return ts def tag_sets_to_query(*tagsets): merged = set().union(*tagsets) if not merged: return Q() return Q( annotation__in=Annotation.objects.filter( functools.reduce( operator.or_, [Q(category__name=t.category, mode__name=t.value) for t in merged], ) ) ) def serialize_tag_set_for_client_v2(ts): return [{"category": t.category, "value": t.value} for t in sorted(list(ts))] def serialize_boxes_for_client_v2(bs): return [ { "category": b.category, "value": b.value, "x1": b.x1, "y1": b.y1, "x2": b.x2, "y2": b.y2, } for b in sorted(list(bs)) ] def get_tags_from_annotations_v2(annotations): tags_by_pk = defaultdict(list) annotations = annotations.filter(is_box=False) ann_dicts = annotations.values("dataset_item__pk", "category__name", "mode__name") for ann in ann_dicts: pk = ann["dataset_item__pk"] category = ann["category__name"] mode = ann["mode__name"] tags_by_pk[pk].append(Tag(category, mode)) return tags_by_pk def get_boxes_from_annotations_v2(annotations): boxes_by_pk = defaultdict(list) annotations = annotations.filter(is_box=True) ann_dicts = annotations.values( "dataset_item__pk", "category__name", "mode__name", "bbox_x1", "bbox_y1", "bbox_x2", "bbox_y2", ) for ann in ann_dicts: pk = ann["dataset_item__pk"] category = ann["category__name"] mode = ann["mode__name"] box = (ann["bbox_x1"], ann["bbox_y1"], ann["bbox_x2"], ann["bbox_y2"]) boxes_by_pk[pk].append(Box(category, mode, *box)) return boxes_by_pk def filtered_images_v2(request, dataset, exclude_pks=None) -> List[PkType]: filt_start = time.time() if request.method == "POST": payload = json.loads(request.body) include_tags = parse_tag_set_from_query_v2(payload.get("include")) exclude_tags = parse_tag_set_from_query_v2(payload.get("exclude")) pks = [i for i in payload.get("subset", []) if i] split = payload.get("split", "train") offset_to_return = int(payload.get("offset", 0)) num_to_return = int(payload.get("num", -1)) else: include_tags = parse_tag_set_from_query_v2(request.GET.get("include")) exclude_tags = parse_tag_set_from_query_v2(request.GET.get("exclude")) pks = [i for i in request.GET.get("subset", "").split(",") if i] split = request.GET.get("split", "train") offset_to_return = int(request.GET.get("offset", 0)) num_to_return = int(request.GET.get("num", -1)) end_to_return = None if num_to_return == -1 else offset_to_return + num_to_return dataset_items = None is_val = split == "val" db_start = time.time() # Get pks for dataset items of interest if pks and exclude_pks: # Get specific pks - excluded pks if requested exclude_pks = set(exclude_pks) pks = [pk for pk in pks if pk not in exclude_pks] elif not pks: # Otherwise get all dataset items - exclude pks dataset_items = DatasetItem.objects.filter(dataset=dataset, is_val=is_val) if exclude_pks: dataset_items = dataset_items.exclude(pk__in=exclude_pks) pks = dataset_items.values_list("pk", flat=True) db_end = time.time() result = None db_tag_start = time.time() if not include_tags and not exclude_tags: # If no tags specified, just return retrieved pks result = pks else: # Otherwise, filter using include and exclude tags if dataset_items is None: dataset_items = DatasetItem.objects.filter(pk__in=pks) if include_tags: dataset_items = dataset_items.filter(tag_sets_to_query(include_tags)) if exclude_tags: dataset_items = dataset_items.exclude(tag_sets_to_query(exclude_tags)) result = dataset_items.values_list("pk", flat=True) db_tag_end = time.time() result = list(result[offset_to_return:end_to_return]) filt_end = time.time() print( f"filtered_images_v2: tot: {filt_end-filt_start}, " f"db ({len(result)} items): {db_end-db_start}, db tag: {db_tag_end-db_tag_start}" ) return result def process_image_query_results_v2(request, dataset, query_response): filtered_pks = filtered_images_v2(request, dataset) # TODO(mihirg): Eliminate this database call by directly returning pks from backend dataset_items = DatasetItem.objects.filter(pk__in=filtered_pks) dataset_items_by_path = {di.path: di for di in dataset_items} distances = [] ordered_pks = [] for r in query_response["results"]: if r["label"] in dataset_items_by_path: ordered_pks.append(dataset_items_by_path[r["label"]].pk) distances.append(r["dist"]) return dict( pks=ordered_pks, distances=distances, ) def create_result_set_v2(results, type, model=None): pks = results["pks"] distances = results["distances"] result_set_id = str(uuid.uuid4()) current_result_sets[result_set_id] = ResultSet( type=type, ranking=pks, distances=distances, model=model ) return { "id": result_set_id, "num_results": len(pks), "type": type, } @api_view(["GET"]) @csrf_exempt def get_results_v2(request, dataset_name): dataset = get_object_or_404(Dataset, name=dataset_name) index_id = request.GET["index_id"] result_set_id = request.GET["result_set_id"] offset_to_return = int(request.GET.get("offset", 0)) num_to_return = int(request.GET.get("num", 500)) clustering_model = request.GET.get("clustering_model", None) result_set = current_result_sets[result_set_id] pks = result_set.ranking[offset_to_return : offset_to_return + num_to_return] distances = result_set.distances[ offset_to_return : offset_to_return + num_to_return ] dataset_items_by_pk = DatasetItem.objects.in_bulk(pks) dataset_items = [dataset_items_by_pk[pk] for pk in pks] # preserve order bucket_name = dataset.train_directory[len("gs://") :].split("/")[0] path_template = "https://storage.googleapis.com/{:s}/".format(bucket_name) + "{:s}" internal_identifiers = [di.identifier for di in dataset_items] params = { "index_id": index_id, "identifiers": internal_identifiers, } if clustering_model: params["model"] = clustering_model r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/perform_clustering", json=params, ) clustering_data = r.json() dataset_item_paths = [ (di.path if di.path.find("http") != -1 else path_template.format(di.path)) for di in dataset_items ] dataset_item_identifiers = [di.pk for di in dataset_items] return JsonResponse( { "paths": dataset_item_paths, "identifiers": dataset_item_identifiers, "distances": distances, "clustering": clustering_data["clustering"], } ) @api_view(["POST"]) @csrf_exempt def keep_alive_v2(request): requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/keep_alive", ) return JsonResponse({"status": "success"}) @api_view(["POST"]) @csrf_exempt def generate_embedding_v2(request): payload = json.loads(request.body) image_id = payload.get("image_id") if image_id: payload["identifier"] = DatasetItem.objects.get(pk=image_id).identifier r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/generate_embedding", json=payload, ) return JsonResponse(r.json()) @api_view(["POST"]) @csrf_exempt def generate_text_embedding_v2(request): payload = json.loads(request.body) r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/generate_text_embedding", json=payload, ) return JsonResponse(r.json()) @api_view(["POST"]) @csrf_exempt def query_knn_v2(request, dataset_name): payload = json.loads(request.body) index_id = payload["index_id"] embeddings = payload["embeddings"] use_full_image = bool(payload.get("use_full_image", True)) use_dot_product = bool(payload.get("use_dot_product", False)) model = payload.get("model", "imagenet") dataset = get_object_or_404(Dataset, name=dataset_name) query_knn_start = time.time() params = { "index_id": index_id, "embeddings": embeddings, "use_full_image": use_full_image, "use_dot_product": use_dot_product, "model": model, } r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/query_knn_v2", json=params, ) response_data = r.json() query_knn_end = time.time() logger.debug("query_knn_v2 time: {:f}".format(query_knn_end - query_knn_start)) results = process_image_query_results_v2( request, dataset, response_data, ) return JsonResponse(create_result_set_v2(results, "knn", model=model)) @api_view(["GET"]) @csrf_exempt def train_svm_v2(request, dataset_name): index_id = request.GET["index_id"] model = request.GET.get("model", "imagenet") pos_tags = parse_tag_set_from_query_v2(request.GET["pos_tags"]) neg_tags = parse_tag_set_from_query_v2(request.GET.get("neg_tags")) augment_negs = bool( distutils.util.strtobool(request.GET.get("augment_negs", "false")) ) dataset = get_object_or_404(Dataset, name=dataset_name) pos_dataset_items = DatasetItem.objects.filter( tag_sets_to_query(pos_tags), dataset=dataset, is_val=False, ) pos_dataset_item_pks = list(pos_dataset_items.values_list("pk", flat=True)) if neg_tags: neg_dataset_items = DatasetItem.objects.filter( tag_sets_to_query(neg_tags), dataset=dataset, is_val=False, ).difference(pos_dataset_items) neg_dataset_item_pks = list(neg_dataset_items.values_list("pk", flat=True)) else: neg_dataset_item_pks = [] # Augment with randomly sampled negatives if requested num_extra_negs = settings.SVM_NUM_NEGS_MULTIPLIER * len(pos_dataset_item_pks) - len( neg_dataset_item_pks ) if augment_negs and num_extra_negs > 0: # Uses "include" and "exclude" category sets from GET request all_eligible_pks = filtered_images_v2( request, dataset, exclude_pks=pos_dataset_item_pks + neg_dataset_item_pks ) sampled_pks = random.sample( all_eligible_pks, min(len(all_eligible_pks), num_extra_negs) ) neg_dataset_item_pks.extend(sampled_pks) pos_dataset_item_internal_identifiers = list( DatasetItem.objects.filter(pk__in=pos_dataset_item_pks).values_list( "identifier", flat=True ) ) neg_dataset_item_internal_identifiers = list( DatasetItem.objects.filter(pk__in=neg_dataset_item_pks).values_list( "identifier", flat=True ) ) params = { "index_id": index_id, "pos_identifiers": pos_dataset_item_internal_identifiers, "neg_identifiers": neg_dataset_item_internal_identifiers, "model": model, } r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/train_svm_v2", json=params, ) return JsonResponse(r.json()) # {"svm_vector": base64-encoded string} @api_view(["POST"]) @csrf_exempt def query_svm_v2(request, dataset_name): payload = json.loads(request.body) index_id = payload["index_id"] svm_vector = payload["svm_vector"] score_min = float(payload.get("score_min", 0.0)) score_max = float(payload.get("score_max", 1.0)) model = payload.get("model", "imagenet") dataset = get_object_or_404(Dataset, name=dataset_name) params = { "index_id": index_id, "svm_vector": svm_vector, "score_min": score_min, "score_max": score_max, "model": model, } r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/query_svm_v2", json=params, ) response_data = r.json() # TODO(mihirg, jeremye): Consider some smarter pagination/filtering scheme to avoid # running a separate query over the index every single time the user adjusts score # thresholds results = process_image_query_results_v2( request, dataset, response_data, ) return JsonResponse(create_result_set_v2(results, "svm")) @api_view(["POST"]) @csrf_exempt def query_ranking_v2(request, dataset_name): payload = json.loads(request.body) index_id = payload["index_id"] score_min = float(payload.get("score_min", 0.0)) score_max = float(payload.get("score_max", 1.0)) model = payload["model"] dataset = get_object_or_404(Dataset, name=dataset_name) params = { "index_id": index_id, "score_min": score_min, "score_max": score_max, "model": model, } r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/query_ranking_v2", json=params, ) response_data = r.json() # TODO(mihirg, jeremye): Consider some smarter pagination/filtering scheme to avoid # running a separate query over the index every single time the user adjusts score # thresholds results = process_image_query_results_v2( request, dataset, response_data, ) return JsonResponse(create_result_set_v2(results, "ranking", model=model)) @api_view(["POST"]) @csrf_exempt def query_images_v2(request, dataset_name): query_start = time.time() dataset = get_object_or_404(Dataset, name=dataset_name) payload = json.loads(request.body) order = payload.get("order", "id") filter_start = time.time() result_pks = filtered_images_v2(request, dataset) filter_end = time.time() if order == "random": random.shuffle(result_pks) elif order == "id": result_pks.sort() results = {"pks": result_pks, "distances": [-1 for _ in result_pks]} resp = JsonResponse(create_result_set_v2(results, "query")) query_end = time.time() print( f"query_images_v2: tot: {query_end-query_start}, " f"filter: {filter_end-filter_start}" ) return resp # # ACTIVE VALIDATION # VAL_NEGATIVE_TYPE = "model_val_negative" def get_val_examples_v2(dataset, model_id): # Get positive and negative categories model = get_object_or_404(DNNModel, model_id=model_id) pos_tags = parse_tag_set_from_query_v2(model.category_spec["pos_tags"]) neg_tags = parse_tag_set_from_query_v2(model.category_spec["neg_tags"]) augment_negs = model.category_spec.get("augment_negs", False) augment_negs_include = ( parse_tag_set_from_query_v2(model.category_spec.get("augment_negs_include", [])) if augment_negs else set() ) # Limit to validation set eligible_dataset_items = DatasetItem.objects.filter( dataset=dataset, is_val=True, ) # Get positives and negatives matching these categories categories = Category.objects.filter( tag_sets_to_query(pos_tags, neg_tags, augment_negs_include) ) annotations = Annotation.objects.filter( dataset_item__in=eligible_dataset_items, category__in=categories, ) tags_by_pk = get_tags_from_annotations_v2(annotations) pos_dataset_item_pks = [] neg_dataset_item_pks = [] for pk, tags in tags_by_pk.items(): if any(t in pos_tags for t in tags): pos_dataset_item_pks.append(pk) elif any(t in neg_tags or t in augment_negs_include for t in tags): neg_dataset_item_pks.append(pk) # Get extra negatives if augment_negs: annotations = Annotation.objects.filter( dataset_item__in=eligible_dataset_items, label_category=model_id, label_type=VAL_NEGATIVE_TYPE, ) neg_dataset_item_pks.extend(ann.dataset_item.pk for ann in annotations) return pos_dataset_item_pks, neg_dataset_item_pks @api_view(["POST"]) def query_metrics_v2(request, dataset_name): dataset = get_object_or_404(Dataset, name=dataset_name) payload = json.loads(request.body) model_id = payload["model"] index_id = payload["index_id"] internal_identifiers_to_weights = payload["weights"] # type: Dict[str, int] pos_dataset_item_pks, neg_dataset_item_pks = get_val_examples_v2(dataset, model_id) # Construct identifiers, labels, and weights dataset_items_by_pk = DatasetItem.objects.in_bulk( pos_dataset_item_pks + neg_dataset_item_pks ) identifiers = [] labels = [] weights = [] for pk, label in itertools.chain( ((pk, True) for pk in pos_dataset_item_pks), ((pk, False) for pk in neg_dataset_item_pks), ): di = dataset_items_by_pk[pk] identifier = di.identifier weight = internal_identifiers_to_weights.get(identifier) if weight is None: continue identifiers.append(identifier) labels.append(label) weights.append(weight) # TODO(mihirg): Parse false positives and false negatives params = { "index_id": index_id, "model": model_id, "identifiers": identifiers, "labels": labels, "weights": weights, } r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/query_metrics", json=params, ) response_data = r.json() return JsonResponse(response_data) @api_view(["POST"]) def query_active_validation_v2(request, dataset_name): dataset = get_object_or_404(Dataset, name=dataset_name) payload = json.loads(request.body) model_id = payload["model"] index_id = payload["index_id"] current_f1 = payload.get("current_f1") if current_f1 is None: current_f1 = 0.5 pos_dataset_item_pks, neg_dataset_item_pks = get_val_examples_v2(dataset, model_id) # Construct paths, identifiers, and labels dataset_items_by_pk = DatasetItem.objects.in_bulk( pos_dataset_item_pks + neg_dataset_item_pks ) identifiers = [] labels = [] for pk, label in itertools.chain( ((pk, True) for pk in pos_dataset_item_pks), ((pk, False) for pk in neg_dataset_item_pks), ): di = dataset_items_by_pk[pk] identifiers.append(di.identifier) labels.append(label) params = { "index_id": index_id, "model": model_id, "identifiers": identifiers, "labels": labels, "current_f1": current_f1, } r = requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/query_active_validation", json=params, ) response_data = r.json() if response_data["identifiers"]: pks_and_paths = list( DatasetItem.objects.filter( dataset=dataset, identifier__in=response_data["identifiers"], is_val=True, ).values_list("pk", "path") ) random.shuffle(pks_and_paths) pks, paths = zip(*pks_and_paths) else: pks, paths = [], [] bucket_name = dataset.val_directory[len("gs://") :].split("/")[0] path_template = "https://storage.googleapis.com/{:s}/".format(bucket_name) + "{:s}" paths = [path_template.format(p) for p in paths] return JsonResponse( { "paths": paths, "identifiers": pks, "weights": response_data["weights"], } ) @api_view(["POST"]) def add_val_annotations_v2(request): payload = json.loads(request.body) annotations = payload["annotations"] user_email = payload["user"] model = payload["model"] anns = [] cat_modes = defaultdict(int) dataset = None for ann_payload in annotations: image_pk = ann_payload["identifier"] is_other_negative = ann_payload.get("is_other_negative", False) mode_str = "NEGATIVE" if is_other_negative else ann_payload["mode"] category_name = ( "active:" + model if is_other_negative else ann_payload["category"] ) user, _ = User.objects.get_or_create(email=user_email) category, _ = Category.objects.get_or_create(name=category_name) mode, _ = Mode.objects.get_or_create(name=mode_str) di = DatasetItem.objects.get(pk=image_pk) dataset = di.dataset assert di.is_val ann = Annotation( dataset_item=di, user=user, category=category, mode=mode, misc_data={"created_by": "active_val"}, ) cat_modes[(category, mode)] += 1 anns.append(ann) Annotation.objects.bulk_create(anns) for (cat, mode), c in cat_modes.items(): category_count, _ = CategoryCount.objects.get_or_create( dataset=dataset, category=cat, mode=mode ) category_count.count += c category_count.save() return JsonResponse({"created": len(anns)}) # DATASET INFO @api_view(["GET"]) @csrf_exempt def get_datasets_v2(request): datasets = Dataset.objects.filter(hidden=False) dataset_names = list(datasets.values_list("name", flat=True)) return JsonResponse({"dataset_names": dataset_names}) @api_view(["GET"]) @csrf_exempt def get_dataset_info_v2(request, dataset_name): dataset = get_object_or_404(Dataset, name=dataset_name) num_train = dataset.datasetitem_set.filter(is_val=False).count() num_val = dataset.datasetitem_set.filter(is_val=True).count() return JsonResponse( { "index_id": dataset.index_id, "num_train": num_train, "num_val": num_val, } ) @api_view(["GET"]) @csrf_exempt def get_models_v2(request, dataset_name): dataset = get_object_or_404(Dataset, name=dataset_name) model_objs = DNNModel.objects.filter( dataset=dataset, checkpoint_path__isnull=False, ).order_by("-last_updated") model_names = set() latest = {} with_output = {} for model in model_objs: model_names.add(model.name) if model.name not in latest: latest[model.name] = model if model.output_directory and model.name not in with_output: with_output[model.name] = model models = [ { "name": model_name, "latest": model_info(latest[model_name]), "with_output": model_info(with_output.get(model_name)), } for model_name in model_names ] return JsonResponse({"models": models}) def model_info(model): if model is None: return None pos_tags = parse_tag_set_from_query_v2(model.category_spec.get("pos_tags", [])) neg_tags = parse_tag_set_from_query_v2(model.category_spec.get("neg_tags", [])) augment_negs_include = parse_tag_set_from_query_v2( model.category_spec.get("augment_negs_include", []) ) return { "model_id": model.model_id, "timestamp": model.last_updated, "has_checkpoint": model.checkpoint_path is not None, "has_output": model.output_directory is not None, "pos_tags": serialize_tag_set_for_client_v2(pos_tags), "neg_tags": serialize_tag_set_for_client_v2(neg_tags | augment_negs_include), "augment_negs": model.category_spec.get("augment_negs", False), "epoch": model.epoch, } @api_view(["POST"]) @csrf_exempt def create_dataset_v2(request): payload = json.loads(request.body) name = payload["dataset"] train_directory = payload["train_path"] val_directory = payload["val_path"] index_id = payload["index_id"] assert all(d.startswith("gs://") for d in (train_directory, val_directory)) # Download index on index server params = {"index_id": index_id} requests.post( settings.EMBEDDING_SERVER_ADDRESS + "/download_index", json=params, ) client = storage.Client() all_blobs = [] for d, is_val in ((train_directory, False), (val_directory, True)): split_dir = d[len("gs://") :].split("/") bucket_name = split_dir[0] bucket_path = "/".join(split_dir[1:]) all_blobs.extend( (blob, is_val) for blob in client.list_blobs(bucket_name, prefix=bucket_path) ) dataset = Dataset( name=name, train_directory=train_directory, val_directory=val_directory, index_id=index_id, ) dataset.save() # Create all the DatasetItems for this dataset items = [ DatasetItem( dataset=dataset, identifier=os.path.splitext(os.path.basename(blob.name))[0], path=blob.name, is_val=is_val, ) for blob, is_val in all_blobs if ( blob.name.endswith(".jpg") or blob.name.endswith(".jpeg") or blob.name.endswith(".png") ) ] DatasetItem.objects.bulk_create(items, batch_size=10000) return JsonResponse({"status": "success"}) @api_view(["POST"]) @csrf_exempt def get_annotations_v2(request): payload = json.loads(request.body) image_pks = [i for i in payload["identifiers"] if i] if not image_pks: return JsonResponse({}) annotations = Annotation.objects.filter( dataset_item__in=DatasetItem.objects.filter(pk__in=image_pks), ) tags_by_pk = get_tags_from_annotations_v2(annotations) boxes_by_pk = get_boxes_from_annotations_v2(annotations) annotations_by_pk = defaultdict(lambda: {"tags": [], "boxes": []}) for pk, tags in tags_by_pk.items(): annotations_by_pk[pk]["tags"] = serialize_tag_set_for_client_v2(tags) for pk, boxes in boxes_by_pk.items(): annotations_by_pk[pk]["boxes"] = serialize_boxes_for_client_v2(boxes) return JsonResponse(annotations_by_pk) @api_view(["POST"]) @csrf_exempt def add_annotations_v2(request): payload = json.loads(request.body) image_pks = payload["identifiers"] images = DatasetItem.objects.filter(pk__in=image_pks) num_created = bulk_add_single_tag_annotations_v2(payload, images) return JsonResponse({"created": num_created}) @api_view(["POST"]) @csrf_exempt def add_annotations_multi_v2(request): payload = json.loads(request.body) num_created = bulk_add_multi_annotations_v2(payload) return JsonResponse({"created": num_created}) @api_view(["POST"]) @csrf_exempt def add_annotations_by_internal_identifiers_v2(request, dataset_name): dataset = get_object_or_404(Dataset, name=dataset_name) payload = json.loads(request.body) image_identifiers = payload["identifiers"] images = DatasetItem.objects.filter( dataset=dataset, identifier__in=image_identifiers ) num_created = bulk_add_single_tag_annotations_v2(payload, images) return JsonResponse({"created": num_created}) @api_view(["POST"]) @csrf_exempt def add_annotations_to_result_set_v2(request): payload = json.loads(request.body) result_set_id = payload["result_set_id"] lower_bound = float(payload["from"]) upper_bound = float(payload["to"]) result_set = current_result_sets[result_set_id] result_ranking = result_set.ranking # e.g., lower_bound=0.0, upper_bound=0.5 -> second half of the result set start_index = math.ceil(len(result_ranking) * (1.0 - upper_bound)) end_index = math.floor(len(result_ranking) * (1.0 - lower_bound)) image_pks = result_ranking[start_index:end_index] images = DatasetItem.objects.filter(pk__in=image_pks) num_created = bulk_add_single_tag_annotations_v2(payload, images) return JsonResponse({"created": num_created}) def bulk_add_single_tag_annotations_v2(payload, images): '''Adds annotations for a single tag to many dataset items''' if not images: return 0 user_email = payload["user"] category_name = payload["category"] mode_name = payload["mode"] created_by = payload.get("created_by", "tag" if len(images) == 1 else "tag-bulk") dataset = None if len(images) > 0: dataset = images[0].dataset user, _ = User.objects.get_or_create(email=user_email) category, _ = Category.objects.get_or_create(name=category_name) mode, _ = Mode.objects.get_or_create(name=mode_name) Annotation.objects.filter( dataset_item__in=images, category=category, is_box=False).delete() # TODO: Add an actual endpoint to delete annotations (probably by pk); don't rely # on this hacky "TOMBSTONE" string annotations = [ Annotation( dataset_item=di, user=user, category=category, mode=mode, is_box=False, misc_data={"created_by": created_by}, ) for di in images ] bulk_add_annotations_v2(dataset, annotations) return len(annotations) def bulk_add_multi_annotations_v2(payload : Dict): '''Adds multiple annotations for the same dataset and user to the database at once''' dataset_name = payload["dataset"] dataset = get_object_or_404(Dataset, name=dataset_name) user_email = payload["user"] user, _ = User.objects.get_or_create(email=user_email) created_by = payload.get("created_by", "tag" if len(payload["annotations"]) == 1 else "tag-bulk") # Get pks idents = [ann['identifier'] for ann in payload["annotations"] if 'identifier' in ann] di_pks = list(DatasetItem.objects.filter( dataset=dataset, identifier__in=idents ).values_list("pk", "identifier")) ident_to_pk = {ident: pk for pk, ident in di_pks} cats = {} modes = {} to_delete = defaultdict(set) annotations = [] for ann in payload["annotations"]: db_ann = Annotation() category_name = ann["category"] mode_name = ann["mode"] if category_name not in cats: cats[category_name] = Category.objects.get_or_create( name=category_name)[0] if mode_name not in modes: modes[mode_name] = Mode.objects.get_or_create( name=mode_name)[0] if "identifier" in ann: pk = ident_to_pk[ann["identifier"]] else: pk = ann["pk"] db_ann.dataset_item_id = pk db_ann.user = user db_ann.category = cats[category_name] db_ann.mode = modes[mode_name] db_ann.is_box = ann.get("is_box", False) if db_ann.is_box: db_ann.bbox_x1 = ann["x1"] db_ann.bbox_y1 = ann["y1"] db_ann.bbox_x2 = ann["x2"] db_ann.bbox_y2 = ann["y2"] else: to_delete[db_ann.category].add(pk) db_ann.misc_data={"created_by": created_by} annotations.append(db_ann) for cat, pks in to_delete.items(): # Delete per-frame annotations for the category if they exist since # we should only have on mode per image Annotation.objects.filter( category=cat, dataset_item_id__in=pks, is_box=False).delete() # TODO: Add an actual endpoint to delete annotations (probably by pk); don't rely # on this hacky "TOMBSTONE" string bulk_add_annotations_v2(dataset, annotations) return len(annotations) def bulk_add_annotations_v2(dataset, annotations): '''Handles book keeping for adding many annotations at once''' Annotation.objects.bulk_create(annotations) counts = defaultdict(int) for ann in annotations: counts[(ann.category, ann.mode)] += 1 for (cat, mode), count in counts.items(): category_count, _ = CategoryCount.objects.get_or_create( dataset=dataset, category=cat, mode=mode ) category_count.count += count category_count.save() @api_view(["POST"]) @csrf_exempt def delete_category_v2(request): payload = json.loads(request.body) category = payload["category"] category = Category.objects.get(name=category) category.delete() return JsonResponse({"status": "success"}) @api_view(["POST"]) @csrf_exempt def update_category_v2(request): payload = json.loads(request.body) old_category_name = payload["oldCategory"] new_category_name = payload["newCategory"] category = Category.objects.get(name=old_category_name) category.name = new_category_name category.save() return JsonResponse({"status": "success"}) @api_view(["GET"]) @csrf_exempt def get_category_counts_v2(request, dataset_name): dataset = get_object_or_404(Dataset, name=dataset_name) counts = CategoryCount.objects.filter(dataset=dataset).values( "category__name", "mode__name", "count" ) n_labeled = defaultdict(dict) for c in counts: category = c["category__name"] mode = c["mode__name"] count = c["count"] n_labeled[category][mode] = count return JsonResponse(n_labeled) ``` #### File: containers/bgsplit_mapper/handler.py ```python import numpy as np import aiohttp import asyncio import os.path from pathlib import Path import torch import torch.nn.functional as F from torchvision import transforms, utils, io from typing import Dict, List, Optional, Tuple, Union, Any from enum import Enum from knn import utils from knn.mappers import Mapper from knn.utils import JSONType import config from model import Model class BGSplittingMapper(Mapper): class ReturnType(Enum): SAVE = 0 SERIALIZE = 1 def initialize_container(self): # Create connection pool self.session = aiohttp.ClientSession() self.use_cuda = False async def initialize_job(self, job_args): return_type = job_args.get("return_type", "serialize") if return_type == "save": job_args["return_type"] = BGSplittingMapper.ReturnType.SAVE elif return_type == "serialize": job_args["return_type"] = BGSplittingMapper.ReturnType.SERIALIZE else: raise ValueError(f"Unknown return type: {return_type}") # Get checkpoint data if job_args["checkpoint_path"] == 'TEST': model = Model(num_main_classes=2, num_aux_classes=1) else: map_location = torch.device('cuda') if self.use_cuda else torch.device('cpu') checkpoint_state = torch.load(job_args["checkpoint_path"], map_location=map_location) from collections import OrderedDict new_state_dict = OrderedDict() for k, v in checkpoint_state['state_dict'].items(): name = k[7:] # remove `module.` new_state_dict[name] = v if 'model_kwargs' in checkpoint_state: kwargs = checkpoint_state['model_kwargs'] num_aux_classes = kwargs['num_aux_classes'] else: num_aux_classes = 1 # Create model model = Model(num_main_classes=2, num_aux_classes=num_aux_classes) # Load model weights model.load_state_dict(new_state_dict) model.eval() if self.use_cuda: model = model.cuda() job_args["model"] = model job_args["transform"] = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ConvertImageDtype(torch.float32), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) job_args["n_chunks_saved"] = 0 return job_args @utils.log_exception_from_coro_but_return_none async def process_chunk( self, chunk: List[JSONType], job_id: str, job_args: Any, request_id: str ) -> Tuple[np.ndarray, np.ndarray]: image_paths = [c["path"] for c in chunk] # Download images if "http" not in image_paths[0]: image_bucket = job_args["input_bucket"] image_paths = [ os.path.join(config.GCS_URL_PREFIX, image_bucket, image_path) for image_path in image_paths] transform = job_args["transform"] async def download_transform(image_path): return await self.transform_image( await self.download_image(image_path), transform=transform) with self.profiler(request_id, "download_time"): input_images = await asyncio.gather( *[ download_transform(image_path) for image_path in image_paths ]) # Run inference model = job_args["model"] with self.profiler(request_id, "inference_time"): image_batch = torch.stack(input_images) if self.use_cuda: image_batch = image_batch.cuda() embeddings = model.forward_backbone(image_batch) scores = F.softmax(model.main_head(embeddings), dim=1)[:, 1] return (embeddings.detach().cpu().numpy(), scores.detach().cpu().numpy()) async def download_image( self, image_path: str, num_retries: int = config.DOWNLOAD_NUM_RETRIES ) -> bytes: for i in range(num_retries + 1): try: async with self.session.get(image_path) as response: assert response.status == 200 return await response.read() except Exception: if i < num_retries: await asyncio.sleep(2 ** i) else: raise assert False # unreachable async def transform_image( self, image_bytes: bytes, transform, ) -> torch.Tensor: data = torch.tensor( list(image_bytes), dtype=torch.uint8) image = io.decode_image(data, mode=io.image.ImageReadMode.RGB) return transform(image) async def postprocess_chunk( self, inputs, outputs: Tuple[np.ndarray, np.ndarray], job_id, job_args, request_id, ) -> Union[Tuple[str, List[Optional[int]]], Tuple[None, List[Optional[str]]]]: if job_args["return_type"] == BGSplittingMapper.ReturnType.SAVE: with self.profiler(request_id, "save_time"): data_path_tmpl = config.DATA_FILE_TMPL.format( job_id, self.worker_id, job_args["n_chunks_saved"] ) job_args["n_chunks_saved"] += 1 Path(data_path_tmpl).parent.mkdir(parents=True, exist_ok=True) data = {'ids': np.array([inp['id'] for inp in inputs], dtype=np.int), 'embeddings': outputs[0], 'scores': outputs[1]} np.save(data_path_tmpl.format(None), data) return data_path_tmpl.format(None), [ len(output) if output is not None else None for output in outputs[0] ] else: with self.profiler(request_id, "reduce_time"): reduce_fn = config.REDUCTIONS[job_args.get("reduction")] reduced_outputs = [ reduce_fn(output) if output is not None else None for output in outputs ] with self.profiler(request_id, "serialize_time"): serialized_outputs = [ utils.numpy_to_base64(output) if output is not None else None for output in reduced_outputs ] return None, serialized_outputs async def process_element( self, input: JSONType, job_id: str, job_args: Any, request_id: str, element_index: int, ) -> Any: pass app = BGSplittingMapper().server ``` #### File: containers/bgsplit_trainer/util.py ```python import requests import time import config class EMA(): '''Exponential moving average''' def __init__(self, init: float): self.value = init self.n_samples = 0 def __iadd__(self, other: float): self.n_samples += 1 self.value = ( self.value - (self.value / self.n_samples) + other / self.n_samples) return self def download( url: str, num_retries: int = config.DOWNLOAD_NUM_RETRIES) -> bytes: for i in range(num_retries + 1): try: response = requests.get(url) if response.status_code != 200: print('Download failed:', url, response.status_code, response.reason) assert response.status_code == 200 return response.content except requests.exceptions.RequestException as e: print(f'Download excepted, retrying ({i}):', url) if i < num_retries: time.sleep(2 ** i) else: raise e assert False # unreachable ``` #### File: containers/clip-text-inference/handler.py ```python import torch import clip from typing import List from knn import utils from knn.mappers import Mapper import config torch.set_grad_enabled(False) torch.set_num_threads(1) class TextEmbeddingMapper(Mapper): def initialize_container(self): self.model, _ = clip.load(config.CLIP_MODEL, device="cpu") @utils.log_exception_from_coro_but_return_none async def process_chunk( self, chunk: List[str], job_id, job_args, request_id ) -> List[str]: with torch.no_grad(): text = clip.tokenize(chunk) text_features = self.model.encode_text(text) text_features /= text_features.norm(dim=-1, keepdim=True) return list(map(utils.numpy_to_base64, text_features.numpy())) async def process_element(self, *args, **kwargs): raise NotImplementedError() app = TextEmbeddingMapper().server ``` #### File: containers/mapper/inference.py ```python import io import numpy as np from PIL import Image, ImageEnhance import torch from typing import Any, Dict, List torch.set_grad_enabled(False) torch.set_num_threads(1) # AUGMENTATIONS def brightness(image, factor): br_enhancer = ImageEnhance.Brightness(image) return br_enhancer.enhance(factor) def contrast(image, factor): cn_enhancer = ImageEnhance.Contrast(image) return cn_enhancer.enhance(factor) def flip(image): return image.transpose(Image.FLIP_LEFT_RIGHT) def grayscale(image): return image.convert("L") def resize(image, params): return image.resize(((int)(params * image.size[0]), (int)(params * image.size[1]))) def rotate(image, angle): return image.rotate(angle) # INFERENCE def run( image_bytes: bytes, image_patch: List[float], augmentations: Dict[str, Any], input_format: str, pixel_mean: torch.Tensor, pixel_std: torch.Tensor, model: torch.nn.Module, ) -> Dict[str, torch.Tensor]: with io.BytesIO(image_bytes) as image_buffer: image = Image.open(image_buffer) # Preprocess image = image.convert("RGB") # Crop if image_patch: x1f, y1f, x2f, y2f = image_patch w, h = image.size image = image.crop( ((int)(x1f * w), (int)(y1f * h), (int)(x2f * w), (int)(y2f * h)) ) # Apply transformations (augmentations is a dict) if "flip" in augmentations: image = flip(image) if "gray" in augmentations: image = grayscale(image) if "brightness" in augmentations: image = brightness(image, augmentations["brightness"]) if "contrast" in augmentations: image = contrast(image, augmentations["contrast"]) if "resize" in augmentations: image = resize(image, augmentations["resize"]) if "rotate" in augmentations: image = rotate(image, augmentations["rotate"]) image = torch.as_tensor(np.asarray(image), dtype=torch.float32) # -> tensor image = image.permute(2, 0, 1) # HWC -> CHW if input_format == "BGR": image = torch.flip(image, dims=(0,)) # RGB -> BGR image = image.contiguous() image = (image - pixel_mean) / pixel_std # Input: NCHW # Output: {'res4': NCHW, 'res5': NCHW} where N = 1 output_dict = model(image.unsqueeze(dim=0)) return {k: v.detach() for k, v in output_dict.items()} ``` #### File: containers/trainer/main.py ```python import concurrent.futures from dataclasses import dataclass, field import functools import signal import threading import time import traceback import backoff import numpy as np import requests from flask import Flask, request, abort from typing import Any, Dict, List, Iterable, Optional, Tuple from interactive_index import InteractiveIndex import config # Step 1: Load saved embeddings into memory def load(paths: Iterable[str], sample_rate: float) -> Tuple[np.ndarray, int]: all_embeddings = [] num_paths_read = 0 load_func = functools.partial(load_one, sample_rate=sample_rate) with concurrent.futures.ThreadPoolExecutor() as pool: for loaded_embeddings in pool.map(load_func, paths): if loaded_embeddings: all_embeddings.extend(loaded_embeddings) num_paths_read += 1 return np.concatenate(all_embeddings), num_paths_read def load_one(path: str, sample_rate: float) -> Optional[List[np.ndarray]]: try: # Each file is a np.save'd Dict[int, np.ndarray] where each value is N x D embedding_dict = np.load( path, allow_pickle=True ).item() # type: Dict[int, np.ndarray] except Exception as e: print(f"Error in load (path = {path}), but ignoring. {type(e)}: {e}") traceback.print_exc() return None loaded_embeddings = [] for embeddings in embedding_dict.values(): if sample_rate: n = embeddings.shape[0] n_sample = np.random.binomial(n, sample_rate) if n_sample == 0: continue elif n_sample < n: sample_inds = np.random.choice(n, n_sample) embeddings = embeddings[sample_inds] loaded_embeddings.append(embeddings) return loaded_embeddings # Step 2: Train index def train(embeddings: np.ndarray, index_kwargs: Dict[str, Any], index_dir: str): index_kwargs.update( tempdir=index_dir, use_gpu=config.INDEX_USE_GPU, train_on_gpu=config.INDEX_TRAIN_ON_GPU, ) index = InteractiveIndex(**index_kwargs) index.train(embeddings) # Step 3: Call webhook to indicate completion @backoff.on_exception(backoff.expo, requests.exceptions.RequestException) def notify(url: str, payload: Dict[str, str]): r = requests.put(url, json=payload) r.raise_for_status() @dataclass class TrainingJob: path_tmpls: List[ str ] # Format strings (param: reduction) for paths to saved embedding dictionaries index_kwargs: Dict[str, Any] # Index configuration index_id: str # Index build job identifier index_name: str # Unique index identifier within job url: str # Webhook to PUT to after completion sample_rate: float # Fraction of saved embeddings to randomly sample for training reduction: Optional[str] # Type of embeddings we should use (e.g., average pooled) _done: bool = False _done_lock: threading.Lock = field(default_factory=threading.Lock) def start(self): thread = threading.Thread(target=self.run, daemon=True) thread.start() def finish(self, success: bool, **kwargs): with self._done_lock: if self._done: return self._done = True notify( self.url, { "index_id": self.index_id, "index_name": self.index_name, "success": success, **kwargs, }, ) @property def done(self): with self._done_lock: return self._done def run(self): # TODO(mihirg): Figure out how to handle errors like OOMs and CUDA # errors maybe start a subprocess? try: start_time = time.perf_counter() paths = (path_tmpl.format(self.reduction) for path_tmpl in self.path_tmpls) embeddings, num_paths_read = load(paths, self.sample_rate) train_start_time = time.perf_counter() index_dir = config.INDEX_DIR_TMPL.format( self.index_id, self.index_name) train(embeddings, self.index_kwargs, index_dir) end_time = time.perf_counter() except Exception as e: traceback.print_exc() self.finish(False, reason=str(e)) else: self.finish( True, index_dir=index_dir, num_paths_read=num_paths_read, profiling=dict( load_time=train_start_time - start_time, train_time=end_time - train_start_time, ), ) current_job: Optional[TrainingJob] = None app = Flask(__name__) @app.route("/", methods=["POST"]) def start(): global current_job if current_job and not current_job.done: abort(503, description="Busy") payload = request.json or {} current_job = TrainingJob(**payload) current_job.start() return "Started" def gracefully_shutdown(signum, frame): if current_job: current_job.finish(False, reason="Preempted") signal.signal(signal.SIGTERM, gracefully_shutdown) ``` #### File: interactive_index/interactive_index/config.py ```python import copy import math import yaml from interactive_index.utils import * CONFIG_DEFAULTS = { 'd': 1_024, 'n_centroids': 32, # only used with IVF 'n_probes': 16, # only used with IVF 'vectors_per_index': 10_000, 'tempdir': '/tmp/', 'use_gpu': False, 'train_on_gpu': False, 'use_float16': False, 'use_float16_quantizer': False, 'use_precomputed_codes': False, 'metric': 'L2', # Transformation 'transform': None, # {'PCA', 'PCAR', 'ITQ', 'OPQ'} 'transform_args': None, # Search 'search': None, # {'HNSW'} 'search_args': None, # Encoding 'encoding': 'Flat', # {'SQ', 'PQ', 'LSH'} 'encoding_args': None, # Misc 'multi_id': False, 'direct_map': 'NoMap', # {'NoMap', 'Array', 'Hashtable'} } def read_config(config_fpath: str) -> dict: """ Loads a config dictionary from the specified yaml file. Args: config_fpath: The file path of the config yaml file. Returns: The dictionary of the configuration options, with default options if any were missing. """ cfg = yaml.load(open(config_fpath, 'r'), Loader=yaml.FullLoader) # Set defaults if missing for key, val in CONFIG_FILE.items(): if key not in cfg: cfg[key] = val return cfg def _set_config_for_mem_usage(d: int, n_vecs: int, max_mem: int, config: dict): """ Args: d: The vector dimension. n_vecs: The expected number of vectors. max_mem: The maximum amount of memory you want the index to take up in bytes. config: The configuration dictionary to set. """ FLOAT32_SZ = 4 * BYTES MAX_SUBINDEX_SZ = 1 * GIGABYTE # Flat if n_vecs * d * FLOAT32_SZ <= max_mem: config['encoding'] = 'Flat' config['vectors_per_index'] = MAX_SUBINDEX_SZ // (d * FLOAT32_SZ) # Scalar Quantization to 1 byte elif n_vecs * d <= max_mem: config['encoding'] = 'SQ' config['encoding_args'] = [8] config['vectors_per_index'] = MAX_SUBINDEX_SZ // d else: # PCA target dim or PQ subvectors x = round_down_to_mult(max_mem // n_vecs, 4) # PCA with rotation to at least 64 dimensions and # Scalar Quantization to 1 byte if x > 64: config['transform'] = 'PCAR' config['transform_args'] = [x] config['encoding'] = 'SQ' config['encoding_args'] = [8] config['vectors_per_index'] = MAX_SUBINDEX_SZ // x # OPQ with PQ else: y = max(filter( lambda k: k <= 4 * x and x <= d, [x, 2 * x, 3 * x, 4 * x, d] )) config['transform'] = 'OPQ' config['transform_args'] = [x, y] config['encoding'] = 'PQ' config['encoding_args'] = [x] config['vectors_per_index'] = MAX_SUBINDEX_SZ // x def auto_config(d: int, n_vecs: int, max_ram: int, pca_d: int = None, sq: int = None): """ """ FLOAT32_SZ = 4 * BYTES config = copy.copy(CONFIG_DEFAULTS) config['d'] = d if pca_d: config['transform'] = 'PCAR' config['transform_args'] = [pca_d] if sq: config['encoding'] = 'SQ' config['encoding_args'] = [sq] # _set_config_for_mem_usage(d, n_vecs, max_mem, config) # if n_vectors < 10_000: # "HNSW32" # memory_usage = d * 4 + 32 * 2 * 4 if n_vecs < 1_000_000: # IVFx n_centroids = round_up_to_pow2(4 * int(math.sqrt(n_vecs))) if n_centroids > 16 * math.sqrt(n_vecs): n_centroids = round_up_to_mult(4 * int(math.sqrt(n_vecs)), 4) # train needs to be [30*n_centroids, 256*n_centroids] config['n_centroids'] = n_centroids config['recommended_n_train'] = n_centroids * 39 config['n_probes'] = n_centroids // 16 return config config['use_gpu'] = False #config['search'] = 'HNSW' #config['search_args'] = [32] if n_vecs < 10_000_000: # IVF65536_HNSW32 # not supported on GPU, if need GPU use IVFx # can train on GPU though # Want 2**16, but RAM problem for i in range(12, 3, -1): n_centroids = 2**i if max_ram / (FLOAT32_SZ * d) > n_centroids * 39: config['n_centroids'] = n_centroids config['recommended_n_train'] = n_centroids * 39 config['n_probes'] = max(n_centroids // 16, 1) return config assert False, 'Too little RAM' elif n_vecs < 100_000_000: # IVF262144_HNSW32 # not supported on GPU, if need GPU use IVFx # can train on GPU though # Want 2**18, but RAM problem for i in range(12, 5, -1): n_centroids = 2**i if max_ram / (FLOAT32_SZ * d) > n_centroids * 39: config['n_centroids'] = n_centroids config['recommended_n_train'] = n_centroids * 39 config['n_probes'] = max(n_centroids // 16, 1) return config assert False, 'Too little RAM' else: # good for n_vectors < 1_000_000_000 # IVF1048576_HNSW32 # not supported on GPU, if need GPU use IVFx # can train on GPU though # Want 2**20, but RAM problem for i in range(13, 5, -1): n_centroids = 2**i if max_ram / (FLOAT32_SZ * d) > n_centroids * 39: config['n_centroids'] = n_centroids config['recommended_n_train'] = n_centroids * 39 config['n_probes'] = max(n_centroids // 8, 1) return config assert False, 'Too little RAM' ``` #### File: knn/jobs/jobs.py ```python import asyncio import collections import resource import time import textwrap import traceback import uuid import aiohttp from aiostream import stream from runstats import Statistics from knn import utils from knn.clusters import GKECluster from knn.utils import JSONType from knn.reducers import Reducer from . import defaults from typing import ( Any, AsyncIterable, Callable, Dict, Iterable, List, Optional, Tuple, Union, ) # Increase maximum number of open sockets if necessary soft, hard = resource.getrlimit(resource.RLIMIT_NOFILE) new_soft = max(min(defaults.DESIRED_ULIMIT, hard), soft) resource.setrlimit(resource.RLIMIT_NOFILE, (new_soft, hard)) InputSequenceType = Union[Iterable[JSONType], AsyncIterable[JSONType]] class MapperSpec: def __init__( self, *, url: Optional[str] = None, container: Optional[str] = None, cluster: Optional[GKECluster] = None, n_mappers: Optional[int] = None, ): assert (all((url, n_mappers)) and not any((container, cluster))) or ( not url and all((container, cluster)) ) n_mappers = n_mappers or defaults.N_MAPPERS assert n_mappers < new_soft self.url = url self.container = container self.cluster = cluster self.n_mappers = n_mappers # Will be initialized on enter self._deployment_id: Optional[str] = None async def __aenter__(self) -> str: # returns endpoint if self.url: return self.url else: # Start Kubernetes service assert self.cluster and self.container self._deployment_id, url = await self.cluster.create_deployment( self.container, self.n_mappers ) return url async def __aexit__(self, type, value, traceback): if not self.url: # Stop Kubernetes service await self.cluster.delete_deployment(self._deployment_id) class MapReduceJob: def __init__( self, mapper: MapperSpec, reducer: Reducer, mapper_args: JSONType = {}, *, session: Optional[aiohttp.ClientSession] = None, n_retries: int = defaults.N_RETRIES, chunk_size: int = defaults.CHUNK_SIZE, request_timeout: int = defaults.REQUEST_TIMEOUT, ) -> None: self.job_id = str(uuid.uuid4()) self.mapper = mapper self.mapper_args = mapper_args self.reducer = reducer self.n_retries = n_retries self.chunk_size = chunk_size self.request_timeout = aiohttp.ClientTimeout(total=request_timeout) self.owns_session = session is None self.session = session or utils.create_unlimited_aiohttp_session() # Performance stats self._n_requests = 0 self._n_successful = 0 self._n_failed = 0 self._n_chunks_per_mapper: Dict[str, int] = collections.defaultdict(int) self._profiling: Dict[str, Statistics] = collections.defaultdict(Statistics) # Will be initialized later self._n_total: Optional[int] = None self._start_time: Optional[float] = None self._end_time: Optional[float] = None self._task: Optional[asyncio.Task] = None # REQUEST LIFECYCLE async def start( self, iterable: InputSequenceType, callback: Optional[Callable[[Any], None]] = None, n_total: Optional[int] = None, ) -> None: async def task(): try: result = await self.run_until_complete(iterable, n_total) except asyncio.CancelledError: pass else: if callback: callback(result) self._task = asyncio.create_task(task()) async def run_until_complete( self, iterable: InputSequenceType, n_total: Optional[int] = None, ) -> Any: try: self._n_total = n_total or len(iterable) # type: ignore except Exception: pass assert self._start_time is None # can't reuse Job instances self._start_time = time.time() try: chunk_stream = stream.chunks(stream.iterate(iterable), self.chunk_size) async with self.mapper as mapper_url, chunk_stream.stream() as chunk_gen: async for response in utils.limited_as_completed_from_async_coro_gen( (self._request(mapper_url, chunk) async for chunk in chunk_gen), self.mapper.n_mappers, ): response_tuple = await response self._reduce_chunk(*response_tuple) if self._n_total is None: self._n_total = self._n_successful + self._n_failed else: assert self._n_total == self._n_successful + self._n_failed self.reducer.finish() return self.result finally: self._end_time = time.time() if self.owns_session: await self.session.close() async def stop(self) -> None: if self._task and not self._task.done(): self._task.cancel() await self._task # RESULT GETTERS @property def result(self) -> Any: return self.reducer.result @property def progress(self) -> Any: progress = { "cost": self.cost, "finished": self.finished, "n_processed": self._n_successful, "n_skipped": self._n_failed, "elapsed_time": self.elapsed_time, } if self._n_total is not None: progress["n_total"] = self._n_total return progress @property def elapsed_time(self): end_time = self._end_time or time.time() start_time = self._start_time or end_time return end_time - start_time @property def performance(self): return { "profiling": { k: { "mean": v.mean(), "std": v.stddev() if len(v) > 1 else 0, "n": len(v), } for k, v in self._profiling.items() }, "mapper_utilization": dict(enumerate( self._n_chunks_per_mapper.values())), } @property def status(self) -> Dict[str, Any]: return {"performance": self.performance, "progress": self.progress} @property def finished(self) -> bool: return self._n_total == self._n_successful + self._n_failed @property def cost(self) -> float: return 0 # not implemented for GKE # INTERNAL def _construct_request(self, chunk: List[JSONType]) -> JSONType: return { "job_id": self.job_id, "job_args": self.mapper_args, "inputs": chunk, } async def _request( self, mapper_url: str, chunk: List[JSONType] ) -> Tuple[JSONType, Optional[JSONType], float]: result = None start_time = 0.0 end_time = 0.0 request = self._construct_request(chunk) for i in range(self.n_retries): start_time = time.time() end_time = start_time try: async with self.session.post( mapper_url, json=request, timeout=self.request_timeout ) as response: end_time = time.time() if response.status == 200: result = await response.json() break except asyncio.CancelledError: raise except asyncio.TimeoutError: print("Request timed out") except Exception: action = "skipping" if i == self.n_retries - 1 else "ignoring" print(f"Error from _request ({action})") print(textwrap.indent(traceback.format_exc(), " ")) return chunk, result, end_time - start_time def _reduce_chunk( self, chunk: List[JSONType], result: Optional[JSONType], elapsed_time: float ): self._n_requests += 1 if not result: self._n_failed += len(chunk) return # Validate assert len(result["outputs"]) == len(chunk) assert "billed_time" in result["profiling"] n_successful = sum(1 for r in result["outputs"] if r) self._n_successful += n_successful self._n_failed += len(chunk) - n_successful self._n_chunks_per_mapper[result["worker_id"]] += 1 self._profiling["total_time"].push(elapsed_time) for k, vs in result["profiling"].items(): for v in vs: self._profiling[k].push(v) if result["chunk_output"]: self.reducer.handle_chunk_result(chunk, result["chunk_output"]) for input, output in zip(chunk, result["outputs"]): if output: self.reducer.handle_result(input, output) ``` #### File: forager/scripts/generate_distance_matrix.py ```python from scipy.spatial.distance import pdist, squareform import numpy as np def run( embeddings_filename: str, num_embeddings: int, embedding_dim: int, distance_matrix_filename: str, ): embeddings = np.memmap( embeddings_filename, dtype="float32", mode="r", shape=(num_embeddings, embedding_dim), ) embeddings_in_memory = np.copy(embeddings) distances_in_memory = squareform( pdist(embeddings_in_memory).astype(embeddings_in_memory.dtype) ) distances = np.memmap( distance_matrix_filename, dtype=distances_in_memory.dtype, mode="w+", shape=distances_in_memory.shape, ) distances[:] = distances_in_memory[:] distances.flush() ```
{ "source": "jeremy-evert/PyInventGames", "score": 4 }
#### File: PyInventGames/ch05/dragon.py ```python import random import time def displayIntro(): print('''You are in a land full of dragons. In front of you, you see two caves. In one cave, the dragon is friendly and you will share their treasure with you. The other dragon is greedy and hungry, adn will eat you on sight.''') print() def chooseCave(): cave = '' while cave != '1' and cave !='2': print('Which cave will you go into? (1 or 2)') cave = input() return cave def checkCave(chosenCave): print('You approach the cave...') time.sleep(2) print('It is dark and spooky...') time.sleep(2) print('A large dragon jumps out in front of you! They open their jaws and...') print() time.sleep(2) friendlyCave = random.randint(1,2) if chosenCave == str(friendlyCave): print('Gives you their treasure!') else: print('That was not a dragon. It was a baboon!') print('Program begins.') playAgain = 'yes' while 'yes' == playAgain or 'y' == playAgain: displayIntro() caveNumber = chooseCave() checkCave(caveNumber) print('Do you want to play again? (yes or no)') playAgain = input() print('Program complete. Bye.') ```
{ "source": "jeremyfix/easylabwork", "score": 4 }
#### File: examples/subdir/example2.py ```python import sys def syr(stem: int): ''' Compute the serie of Syracuse up to the limit cycle ''' value = stem while(value != 1): #@TEMPL #if None: # value = None #else: # value = None #TEMPL@ #@SOL if value % 2 == 0: value = value // 2 else: value = 3 * value + 1 #SOL@ sys.stdout.write(f"{value} ") sys.stdout.flush() print() if __name__ == '__main__': if len(sys.argv) != 2: print(f"Usage: {sys.argv[0]} value") sys.exit(-1) syr(int(sys.argv[1])) ```
{ "source": "jeremyfix/gan_experiments", "score": 2 }
#### File: jeremyfix/gan_experiments/data.py ```python from typing import Union from pathlib import Path import functools # External imports import tqdm import numpy as np import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms _DEFAULT_DATASET_ROOT = "/opt/Datasets" _DEFAULT_MNIST_DIGIT = 6 _IMG_MEAN = 0.5 _IMG_STD = 0.5 def get_dataloaders(dataset_root: Union[str, Path], cuda: bool, batch_size: int = 64, n_threads: int = 4, dataset: str = "MNIST", val_size: float = 0.2, small_experiment: bool = False): """ Build and return the pytorch dataloaders Args: dataset_root (str, Path) : the root path of the datasets cuda (bool): whether or not to use cuda batch_size (int) : the size of the minibatches n_threads (int): the number of threads to use for dataloading dataset (str): the dataset to load val_size (float): the proportion of data for the validation set small_experiment (bool): wheter or not to use a small dataset (usefull for debuging) """ datasets = ["MNIST", "FashionMNIST", "EMNIST", "SVHN", "CelebA"] if dataset not in datasets: raise NotImplementedError(f"Cannot import the dataset {dataset}." f" Available datasets are {datasets}") dataset_loader = getattr(torchvision.datasets, f"{dataset}") train_kwargs = {} test_kwargs = {} if dataset in ["MNIST", "FashionMNIST", "EMNIST"]: train_kwargs['train'] = True test_kwargs['train'] = False if dataset == "EMNIST": train_kwargs['split'] = 'balanced' elif dataset in ["SVHN", 'CelebA']: train_kwargs['split'] = 'train' test_kwargs['split'] = 'test' # Get the two datasets, make them tensors in [0, 1] transform= transforms.Compose([ transforms.ToTensor(), transforms.Normalize( (_IMG_MEAN,), (_IMG_STD,)) ] ) if dataset == 'CelebA': transform = transforms.Compose([ transforms.Resize(64), transforms.CenterCrop(64), transform ]) train_dataset = dataset_loader(root=dataset_root, **train_kwargs, download=True, transform=transform ) test_dataset = dataset_loader(root=dataset_root, **test_kwargs, download=True, transform=transform ) dataset = torch.utils.data.ConcatDataset([train_dataset, test_dataset]) # Compute the channel-wise normalization coefficients # mean = std = 0 # img, _ = dataset[0] # print(img.shape) # N = len(dataset) * img.shape[1] * img.shape[2] # for img, _ in tqdm.tqdm(dataset): # mean += img.sum()/N # for img, _ in tqdm.tqdm(dataset): # std += ((img - mean)**2).sum()/N # std = np.sqrt(std) # print(mean, std) if small_experiment: dataset = torch.utils.data.Subset(dataset, range(batch_size)) # Split the dataset in train/valid indices = np.arange(len(dataset)) np.random.shuffle(indices) split_idx = int(val_size * len(dataset)) valid_indices, train_indices = indices[:split_idx], indices[split_idx:] train_dataset = torch.utils.data.Subset(dataset, train_indices) valid_dataset = torch.utils.data.Subset(dataset, valid_indices) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=n_threads) valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=batch_size, shuffle=False, num_workers=n_threads) img_shape = dataset[0][0].shape # C, H, W return train_loader, valid_loader, img_shape def test_mnist(): import matplotlib.pyplot as plt train_loader, valid_loader, img_shape = get_dataloaders(dataset_root=_DEFAULT_DATASET_ROOT, batch_size=16, cuda=False, dataset="MNIST") print(f"I loaded {len(train_loader)} train minibatches. The images" f" are of shape {img_shape}") X, y = next(iter(train_loader)) grid = torchvision.utils.make_grid(X, nrow=4) print(grid.min(), grid.max()) print(grid.shape) plt.figure() plt.imshow(np.transpose(grid.numpy(), (1, 2, 0)), cmap='gray_r') plt.show() def test_celeba(): import matplotlib.pyplot as plt train_loader, valid_loader, img_shape = get_dataloaders(dataset_root=_DEFAULT_DATASET_ROOT, batch_size=16, cuda=False, dataset="CelebA") print(f"I loaded {len(train_loader)} train minibatches. The images" f" are of shape {img_shape}") X, y = next(iter(train_loader)) grid = torchvision.utils.make_grid(X, nrow=4) print(grid.min(), grid.max()) print(grid.shape) plt.figure() plt.imshow(np.transpose(grid.numpy(), (1, 2, 0)) * _IMG_STD + _IMG_MEAN) plt.show() if __name__ == '__main__': # test_mnist() test_celeba() ``` #### File: jeremyfix/gan_experiments/models.py ```python from typing import Optional, Tuple from functools import reduce import operator # External imports import torch import torch.nn as nn def conv_bn_leakyrelu(in_channels, out_channels): """ Conv(3x3, same) - BN - LeakyRelu(0.2) """ ks = 3 return [ nn.Conv2d(in_channels, out_channels, kernel_size=ks, stride=1, padding=int((ks-1)/2), bias=False), nn.BatchNorm2d(out_channels), nn.LeakyReLU(negative_slope=0.2) ] def conv_downsampling(channels): """ Conv(3x3, s2) - LeakyRelu(0.2) """ ks = 3 return [ nn.Conv2d(channels, channels, kernel_size=ks, stride=2, padding=int((ks-1)/2), bias=True), nn.LeakyReLU(negative_slope=0.2) ] class Discriminator(nn.Module): """ The discriminator network tells if the input image is real or not The output logit is supposed to be high(-ly positive) for real images and low (highly negative) for fake images """ def __init__(self, img_shape: Tuple[int, int, int], dropout: float, base_c: int) -> None: """ Args: img_shape : (C, H, W) image shapes dropout (float) the probability of zeroing before the FC layer base_c (int): The base number of channels for the discriminator """ super(Discriminator, self).__init__() self.img_shape = img_shape in_C = img_shape[0] ###################### # START CODING HERE ## ###################### # Definition of the convolutional part of the classifier # Hint : conv_bn_leakyrelu() and conv_downsampling() can # be usefull #@TEMP<EMAIL> = None #@SOL # Note: the output receptive field size is 36 x 36 # the output representation size is 3 x 3 self.cnn = nn.Sequential( *conv_bn_leakyrelu(in_C, base_c), *conv_bn_leakyrelu(base_c, base_c), *conv_downsampling(base_c), nn.Dropout2d(dropout), *conv_bn_leakyrelu(base_c, base_c*2), *conv_bn_leakyrelu(base_c*2, base_c*2), *conv_downsampling(base_c*2), nn.Dropout2d(dropout), *conv_bn_leakyrelu(base_c*2, base_c*3), *conv_bn_leakyrelu(base_c*3, base_c*3), *conv_downsampling(base_c*3), nn.Dropout2d(dropout) ) #SOL@ #################### # END CODING HERE ## #################### # Compute the size of the representation by forward propagating # a fake tensor; This can be cpu tensor as the model is not yet # built and therefore not yet transfered to the GPU fake_input = torch.zeros((1, *img_shape)) out_cnn = self.cnn(fake_input) print(f"The output shape of the convolutional part of the " f"discriminator is {out_cnn.shape}") num_features = reduce(operator.mul, out_cnn.shape[1:]) ###################### # START CODING HERE ## ###################### # The fully connected part of the classifier #@[email protected] = None #@SOL self.classif = nn.Sequential( nn.Linear(num_features, 1) ) #SOL@ #################### # END CODING HERE ## #################### # Run the initialization script self.apply(self.init_weights) def init_weights(self, m): """ Initialize the weights of the convolutional layers """ with torch.no_grad(): if isinstance(m, nn.Conv2d): torch.nn.init.normal_(m.weight, 0.0, 0.02) if m.bias is not None: m.bias.fill_(0.) def forward(self, X: torch.Tensor) -> torch.Tensor: """ Forward pass of the discriminator Args: X(torch.Tensor (B, C, H, W)) : The images to classify Returns: Logits (torch.Tensor (B, )) : The logits """ ###################### # START CODING HERE ## ###################### # Step 1 - Forward pass through the CNN part #@TEMPL@out_cnn = None out_cnn = self.cnn(X) #@SOL@ # Step 2 - "Reshape" the 4D tensor to a 2D tensor # Hint : Tensor.view can be of help #@TEMPL@input_classif = None input_classif = out_cnn.view((out_cnn.shape[0], -1)) #@SOL@ # Step 3 - Forward pass through the fully connected layers #@TEMPL@out_classif = None out_classif = self.classif(input_classif) #@SOL@ #################### # END CODING HERE ## #################### return out_classif.squeeze() def up_conv_bn_relu(in_channels, out_channels): """ Upsampling with Upsample - Conv UpSample(x2) - Conv(3x3) - BN - Relu - Conv(3x3) - BN - Relu """ ks = 3 return [ nn.Upsample(scale_factor=2), nn.Conv2d(in_channels, out_channels, kernel_size=ks, stride=1, padding=int((ks-1)/2), bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(), nn.Conv2d(out_channels, out_channels, kernel_size=ks, stride=1, padding=int((ks-1)/2), bias=False), nn.BatchNorm2d(out_channels), nn.ReLU() ] def tconv_bn_relu(in_channels, out_channels, ksize, stride, pad, opad): """ Upsampling with transposed convolutions TConv2D - BN - LeakyRelu(0.2) """ return [ nn.ConvTranspose2d(in_channels, out_channels, kernel_size=ksize, stride=stride, padding=pad, output_padding=opad), nn.BatchNorm2d(out_channels), nn.LeakyReLU(negative_slope=0.2) ] class Generator(nn.Module): """ The generator network generates image from random inputs """ def __init__(self, img_shape: Tuple[int, int, int], latent_size: int, base_c: int) -> None: """ Args: img_shape : (C, H, W) image shapes latent_size (int) : The dimension of the latent space base_c (int) : The base number of channels """ super(Generator, self).__init__() self.img_shape = img_shape self.latent_size = latent_size self.base_c = base_c H, W = img_shape[1:] ###################### # START CODING HERE ## ###################### # Step 1 - Build the feedforward upscaling network #@[email protected] = nn.Sequential() #@SOL self.upscale = nn.Sequential( nn.Linear(self.latent_size, H//4*W//4*self.base_c*4, bias=False), nn.BatchNorm1d(H//4*W//4*self.base_c*4), nn.ReLU() ) #SOL@ # Step 2 - Build the convolutional upscaling network # Hint : up_conv_bn_relu() might be useful #@[email protected] = nn.Sequential() #@SOL self.model = nn.Sequential( *up_conv_bn_relu(self.base_c*4, self.base_c*2), *up_conv_bn_relu(self.base_c*2, self.base_c), nn.Conv2d(self.base_c, self.img_shape[0], kernel_size=1,stride=1, padding=0, bias=True), nn.Tanh() ) #SOL@ #################### # END CODING HERE ## #################### #@SOL # Note : size, stride, pad, opad # self.model = nn.Sequential( # *tconv_bn_relu2(base_c*4, base_c*2, 5, 1, 2, 0), # # nn.Dropout2d(0.3), # *tconv_bn_relu2(base_c*2, base_c, 5, 2, 2, 1), # # nn.Dropout2d(0.3), # nn.ConvTranspose2d(base_c, 1, 5, 2, 2, 1), # nn.Tanh() # as suggested by [Radford, 2016] # ) #SOL@ # Initialize the convolutional layers self.apply(self.init_weights) def init_weights(self, m): with torch.no_grad(): if isinstance(m, nn.Conv2d): torch.nn.init.normal_(m.weight, 0.0, 0.02) if m.bias is not None: m.bias.fill_(0.) def forward(self, X: Optional[torch.Tensor] = None, batch_size: Optional[float] = None) -> torch.Tensor: """ Forward pass of the generator. You can either provide a noise input vector or specify the batch_size to let it generate the input Args: X (torch.Tensor, optional): The input noise batch batch_size (int, optional): The number of samples to generate """ # X is expected to be a 2D tensor (B, L) if X is None: assert(batch_size is not None) device = next(self.parameters()).device X = torch.randn(batch_size, self.latent_size).to(device) else: if len(X.shape) != 2: raise RuntimeError("Expected a 2D tensor as input to the " f" generator got a {len(X.shape)}D tensor.") ###################### # START CODING HERE ## ###################### # Step 1 - Forward pass through the first linear layers # to generate the seed image #@TEMPL@upscaled = None upscaled = self.upscale(X) #@SOL@ # Step 2 - "Reshape" the upscaled image as a 4D tensor # Hint : use the view method #@TEMPL@reshaped = None reshaped = upscaled.view(-1, self.base_c*4, self.img_shape[1]//4, self.img_shape[2]//4) #@SOL@ # Step 3 : Forward pass through the last convolutional part # to generate the image #@TEMPL@out = None out = self.model(reshaped) #@SOL@ #################### # END CODING HERE ## #################### return out class GAN(nn.Module): def __init__(self, img_shape: Tuple[int, int, int], dropout: float, discriminator_base_c: int, latent_size: int, generator_base_c: int) -> None: """ Args: img_shape : (C, H, W) image shapes dropout (float): The probability of zeroing before the FC layers discriminator_base_c (int) : The base number of channels for the discriminator latent_size (int) : The size of the latent space for the generator generator_base_c (int) : The base number of channels for the generator """ super(GAN, self).__init__() self.img_shape = img_shape self.discriminator = Discriminator(img_shape, dropout, discriminator_base_c) self.generator = Generator(img_shape, latent_size, generator_base_c) def forward(self, X: Optional[torch.Tensor], batch_size: Optional[float]): """ Given true images, returns the generated tensors and the logits of the discriminator for both the generated tensors and the true tensors Args: X (torch.Tensor) : a real image or None if we just want the logits for the generated images batch_size (int) : the batch to consider when generating fake images """ if X is None and batch_size is None: raise RuntimeError("Not both X and batch_size can be None") if X is not None and batch_size is not None: raise RuntimeError("Not both X and batch_size can be not None") if X is not None: ###################### # START CODING HERE ## ###################### # An input tensor of real images is provided # we compute its logits # 1 line #@TEMPL@real_logits = None real_logits = self.discriminator(X) #@SOL@ #################### # END CODING HERE ## #################### return real_logits, X else: ###################### # START CODING HERE ## ###################### # No input tensor is provided. We generate batch_size fake images # and evaluate its logits # 2 lines #@TEMPL@fake_images = None #@TEMPL@fake_logits = None #@SOL fake_images = self.generator(X=None, batch_size=batch_size) fake_logits = self.discriminator(fake_images) #SOL@ #################### # END CODING HERE ## #################### return fake_logits, fake_images #@SOL def test_tconv(): layers = nn.Sequential( nn.Conv2d(20, 10, kernel_size=3, stride=1, padding=2) ) print(layers) inputs = torch.zeros((1, 20, 2, 2)) outputs = layers(inputs) print(outputs.shape) imagify = nn.Linear(100, 7*7*10) conv1 = nn.ConvTranspose2d(10, 10, kernel_size=5, stride=1, padding=2) conv2 = nn.ConvTranspose2d(10, 10, kernel_size=5, stride=2, padding=2, output_padding=1) conv3 = nn.ConvTranspose2d(10, 1, kernel_size=5, stride=2, padding=2, output_padding=1) X = torch.randn(64, 100) X = imagify(X).view(-1, 10, 7, 7) print('--') print(X.shape) X = conv1(X) print(X.shape) X = conv2(X) print(X.shape) X = conv3(X) print(X.shape) #SOL@ def test_discriminator(): critic = Discriminator((1, 28, 28), 0.3, 32) X = torch.randn(64, 1, 28, 28) out = critic(X) assert(out.shape == torch.Size([64])) def test_generator(): generator = Generator((1, 28, 28), 100, 64) X = torch.randn(64, 100) out = generator(X, None) assert(out.shape == torch.Size([64, 1, 28, 28])) out = generator(None, 64) assert(out.shape == torch.Size([64, 1, 28, 28])) if __name__ == '__main__': test_tconv() #@SOL@ test_discriminator() test_generator() ```
{ "source": "jeremyfix/listen-attend-and-spell", "score": 3 }
#### File: listen-attend-and-spell/scripts/plot_stats.py ```python import argparse import json # External import import matplotlib.pyplot as plt def plot_stats(args): with open(args.statfile, 'r') as f: stats = json.load(f) rate = stats['waveform']['sample_rates'][0] if len(stats['waveform']['sample_rates']) > 1: print("Multiple sampling rates, I take the first one of {}".format(stats['waveform']['sample_rates'])) num_samples = list(stats['waveform']['num_samples'].items()) num_samples = sorted(num_samples, key=lambda tu: tu[0], reverse=True) # Convert num_samples to second x_num_samples = [int(s)/rate for s, _ in num_samples] weights_num_samples = [num for _, num in num_samples] plt.figure() plt.hist(x_num_samples, weights=weights_num_samples) plt.xlabel(r"Time ($s$)") plt.title(f"Sample length from {args.statfile}") plt.show() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('statfile', help="The stat file to process", type=str) args = parser.parse_args() plot_stats(args) ```
{ "source": "jeremyforest/annolid", "score": 3 }
#### File: annolid/annotation/coco2yolo.py ```python import os import json from pathlib import Path import shutil def xywh2cxcywh(box, img_size): dw = 1. / img_size[0] dh = 1. / img_size[1] x = box[0] + box[2] / 2.0 y = box[1] + box[3] / 2.0 w = box[2] h = box[3] x = x * dw w = w * dw y = y * dh h = h * dh return (x, y, w, h) def create_dataset(json_file='annotation.json', results_dir='yolov5_dataset', dataset_type='train', class_id=None ): categories = [] images_path = Path(f"{results_dir}/images/{dataset_type}") images_path.mkdir(parents=True, exist_ok=True) labels_path = Path(f"{results_dir}/labels/{dataset_type}") labels_path.mkdir(parents=True, exist_ok=True) with open(json_file, 'r') as jf: data = json.load(jf) if not os.path.exists(results_dir): os.makedirs(results_dir) img_file_path = Path(json_file).parent for img in data['images']: file_name = img["file_name"] img_width = img["width"] img_height = img["height"] img_id = img["id"] file_name = file_name.replace("\\", "/") shutil.copy(img_file_path / file_name, images_path) anno_txt_name = os.path.basename(file_name).split(".")[0] + ".txt" anno_txt_flie = labels_path / anno_txt_name with open(anno_txt_flie, 'w') as atf: for ann in data['annotations']: if ann["image_id"] == img_id: box = xywh2cxcywh(ann["bbox"], (img_width, img_height)) if class_id is not None: atf.write("%s %s %s %s %s %s\n" % (class_id, ann["category_id"], box[0], box[1], box[2], box[3])) else: atf.write("%s %s %s %s %s\n" % (ann["category_id"], box[0], box[1], box[2], box[3])) for c in data["categories"]: # exclude backgroud with id 0 if not c['id'] == 0: categories.append(c['name']) data_yaml = Path(f"{results_dir}/data.yaml") names = list(categories) # dataset folder is in same dir as the yolov5 folder with open(data_yaml, 'w') as dy: dy.write(f"train: ../{results_dir}/images/train\n") dy.write(f"val: ../{results_dir}/images/val\n") dy.write(f"nc: {len(names)}\n") dy.write(f"names: {names}") return names ``` #### File: annolid/annotation/masks.py ```python import cv2 import ast import numpy as np import pycocotools.mask as mask_util from simplification.cutil import simplify_coords_vwp def mask_to_polygons(mask, use_convex_hull=False): """ convert predicted mask to polygons """ # for cv2 versions that do not support incontiguous array mask = np.ascontiguousarray(mask) mask = mask.astype(np.uint8) # cv2.RETER_CCOMP flag retrieves all the contours # the arranges them to a 2-level hierarchy. res = cv2.findContours(mask, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE) hierarchy = res[-1] # mask is empty if hierarchy is None: return [], False has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0 res = res[-2] try: res_simp = simplify_coords_vwp(res[0].squeeze(), 30.0) res_simp = np.array(res_simp) res = [np.expand_dims(res_simp, axis=1)] except ValueError: print('Failed to simplify the points.') if use_convex_hull: hull = [] for i in range(len(res)): hull.append(cv2.convexHull(res[i], False)) res = [x.flatten() for x in hull] else: res = [x.flatten() for x in res] # convert OpenCV int coordinates [0, H -1 or W-1] to # real value coordinate spaces res = [x + 0.5 for x in res if len(x) >= 6] return res, has_holes def mask_perimeter(mask): """calculate perimeter for a given binary mask """ try: mask = mask_util.decode(mask) except TypeError: mask = ast.literal_eval(mask) rle = [mask] mask = mask_util.decode(rle) contours, hierarchy = cv2.findContours(mask, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE) cnt = contours[0] perimeter = cv2.arcLength(cnt, True) return perimeter def mask_area(mask): """Calulate the area of a RLE mask. """ try: area = mask_util.area(mask) except TypeError: mask = ast.literal_eval(mask) area = mask_util.area(mask) return area def mask_iou(this_mask, other_mask): """ Calculate intersection over union between two RLE masks. """ try: _iou = mask_util.iou([this_mask], [other_mask], [False, False]) except Exception: this_mask = ast.literal_eval(this_mask) other_mask = ast.literal_eval(other_mask) _iou = mask_util.iou([this_mask], [other_mask], [False, False]) return _iou.flatten()[0] ``` #### File: gui/widgets/extract_frame_dialog.py ```python from pathlib import Path from qtpy import QtCore from qtpy import QtWidgets class ExtractFrameDialog(QtWidgets.QDialog): def __init__(self, video_file=None, *args, **kwargs): super(ExtractFrameDialog, self).__init__(*args, **kwargs) self.setWindowTitle("Extract Frames from a video") self.raidoButtons() self.slider() self.num_frames = 100 self.algo = 'random' self.video_file = video_file self.out_dir = None self.start_sconds = None self.end_seconds = None self.sub_clip = False qbtn = QtWidgets.QDialogButtonBox.Ok | QtWidgets.QDialogButtonBox.Cancel self.buttonbox = QtWidgets.QDialogButtonBox(qbtn) self.buttonbox.accepted.connect(self.accept) self.buttonbox.rejected.connect(self.reject) self.label1 = QtWidgets.QLabel( f"Please type or select number of frames default={self.num_frames} or use -1 for all frames") self.inputFileLineEdit = QtWidgets.QLineEdit(self) if self.video_file is not None: self.inputFileLineEdit.setText(self.video_file) self.framesLineEdit = QtWidgets.QLineEdit(self) self.framesLineEdit.setText(str(self.num_frames)) self.inputFileButton = QtWidgets.QPushButton('Open', self) self.inputFileButton.clicked.connect(self.onInputFileButtonClicked) self.framesLineEdit.textChanged.connect(self.onSliderChange) hboxLayOut = QtWidgets.QHBoxLayout() self.groupBoxFiles = QtWidgets.QGroupBox("Please choose a video file") hboxLayOut.addWidget(self.inputFileLineEdit) hboxLayOut.addWidget(self.inputFileButton) self.groupBoxFiles.setLayout(hboxLayOut) self.groupBoxSubClip = QtWidgets.QGroupBox( "Please type the start seconds and end seconds for the video clip (Optional)") self.startSecondsLabel = QtWidgets.QLabel(self) self.startSecondsLabel.setText("Start seconds:") self.startSecondsLineEdit = QtWidgets.QLineEdit(self) self.startSecondsLineEdit.textChanged.connect( self.onCutClipStartTimeChanged) self.endSecondsLabel = QtWidgets.QLabel(self) self.endSecondsLabel.setText("End seconds:") self.endSecondsLineEdit = QtWidgets.QLineEdit(self) self.endSecondsLineEdit.textChanged.connect( self.onCutClipEndTimeChanged) hboxLayOutSubClip = QtWidgets.QHBoxLayout() hboxLayOutSubClip.addWidget(self.startSecondsLabel) hboxLayOutSubClip.addWidget(self.startSecondsLineEdit) hboxLayOutSubClip.addWidget(self.endSecondsLabel) hboxLayOutSubClip.addWidget(self.endSecondsLineEdit) self.groupBoxSubClip.setLayout(hboxLayOutSubClip) self.groupBoxOutDir = QtWidgets.QGroupBox( "Please choose output directory (Optional)") self.outFileDirEdit = QtWidgets.QLineEdit(self) self.outDirButton = QtWidgets.QPushButton('Select', self) self.outDirButton.clicked.connect(self.onOutDirButtonClicked) hboxLayOutDir = QtWidgets.QHBoxLayout() hboxLayOutDir.addWidget(self.outFileDirEdit) hboxLayOutDir.addWidget(self.outDirButton) self.groupBoxOutDir.setLayout(hboxLayOutDir) vbox = QtWidgets.QVBoxLayout() vbox.addWidget(self.groupBox) vbox.addWidget(self.label1) vbox.addWidget(self.framesLineEdit) vbox.addWidget(self.slider) vbox.addWidget(self.groupBoxFiles) vbox.addWidget(self.groupBoxSubClip) vbox.addWidget(self.groupBoxOutDir) vbox.addWidget(self.buttonbox) self.setLayout(vbox) self.show() def onInputFileButtonClicked(self): self.video_file, filter = QtWidgets.QFileDialog.getOpenFileName( parent=self, caption="Open video file", directory=str(Path()), filter='*' ) if self.video_file is not None: self.inputFileLineEdit.setText(self.video_file) def onOutDirButtonClicked(self): self.out_dir = QtWidgets.QFileDialog.getExistingDirectory(self, "Select Directory") if self.out_dir is not None: self.outFileDirEdit.setText(self.out_dir) def raidoButtons(self): self.groupBox = QtWidgets.QGroupBox("Please choose an algorithm") hboxLayOut = QtWidgets.QHBoxLayout() self.radio_btn1 = QtWidgets.QRadioButton("random") self.radio_btn1.setChecked(True) self.radio_btn1.toggled.connect(self.onRadioButtonChecked) hboxLayOut.addWidget(self.radio_btn1) self.radio_btn2 = QtWidgets.QRadioButton("keyframes") self.radio_btn2.toggled.connect(self.onRadioButtonChecked) hboxLayOut.addWidget(self.radio_btn2) self.radio_btn3 = QtWidgets.QRadioButton("flow") self.radio_btn3.toggled.connect(self.onRadioButtonChecked) hboxLayOut.addWidget(self.radio_btn3) self.groupBox.setLayout(hboxLayOut) def slider(self): self.slider = QtWidgets.QSlider(QtCore.Qt.Horizontal) self.slider.setMinimum(-1) self.slider.setMaximum(1000) self.slider.setValue(10) self.slider.setTickPosition(QtWidgets.QSlider.TicksBelow) self.slider.setTickInterval(1) self.slider.valueChanged.connect(self.onSliderChange) def onRadioButtonChecked(self): radio_btn = self.sender() if radio_btn.isChecked(): self.algo = radio_btn.text() if self.algo == 'keyframes': self.slider.setDisabled(True) self.slider.hide() self.label1.setVisible(False) self.framesLineEdit.hide() self.framesLineEdit.setVisible(False) else: self.slider.setEnabled(True) if self.slider.isHidden(): self.slider.setVisible(True) if self.label1.isHidden(): self.label1.setVisible(True) if self.framesLineEdit.isHidden(): self.framesLineEdit.setVisible(True) def onSliderChange(self, position): self.num_frames = int(position) if position and str( position).isdigit() else -1 self.framesLineEdit.setText(str(position)) if self.num_frames == -1: self.label1.setText( f"You have selected to extract all the frames." ) else: self.label1.setText( f"You have selected {str(self.num_frames)} frames.") def onCutClipStartTimeChanged(self): self.start_sconds = self.startSecondsLineEdit.text() if not self.start_sconds.isdigit(): QtWidgets.QMessageBox.about(self, "invalid start seconds", "Please enter a vaild int number for start seconds") if self.start_sconds.isdigit(): self.start_sconds = int(self.start_sconds) def onCutClipEndTimeChanged(self): self.end_seconds = self.endSecondsLineEdit.text() if not self.end_seconds.isdigit(): QtWidgets.QMessageBox.about(self, "invalid end seconds", "Please enter a vaild int number for end seconds") if self.end_seconds.isdigit(): self.end_seconds = int(self.end_seconds) ``` #### File: gui/widgets/quality_control_dialog.py ```python from pathlib import Path from qtpy import QtCore from qtpy import QtWidgets class QualityControlDialog(QtWidgets.QDialog): def __init__(self, *args, **kwargs): super(QualityControlDialog, self).__init__(*args, **kwargs) self.setWindowTitle("Convert tracking results to labelme format") self.video_file = None self.tracking_results = None qbtn = QtWidgets.QDialogButtonBox.Ok | QtWidgets.QDialogButtonBox.Cancel self.buttonbox = QtWidgets.QDialogButtonBox(qbtn) self.buttonbox.accepted.connect(self.accept) self.buttonbox.rejected.connect(self.reject) self.groupBoxVideoFiles = QtWidgets.QGroupBox( "Please choose a video file") self.inputVideoFileLineEdit = QtWidgets.QLineEdit(self) self.inputVideoFileButton = QtWidgets.QPushButton('Open', self) self.inputVideoFileButton.clicked.connect( self.onInputVideoFileButtonClicked) video_hboxLayOut = QtWidgets.QHBoxLayout() video_hboxLayOut.addWidget(self.inputVideoFileLineEdit) video_hboxLayOut.addWidget(self.inputVideoFileButton) self.groupBoxVideoFiles.setLayout(video_hboxLayOut) hboxLayOut = QtWidgets.QHBoxLayout() self.groupBoxFiles = QtWidgets.QGroupBox( "Please choose tracking results CSV file") self.inputFileLineEdit = QtWidgets.QLineEdit(self) self.inputFileButton = QtWidgets.QPushButton('Open', self) self.inputFileButton.clicked.connect( self.onInputFileButtonClicked) hboxLayOut.addWidget(self.inputFileLineEdit) hboxLayOut.addWidget(self.inputFileButton) self.groupBoxFiles.setLayout(hboxLayOut) vbox = QtWidgets.QVBoxLayout() vbox.addWidget(self.groupBoxVideoFiles) vbox.addWidget(self.groupBoxFiles) vbox.addWidget(self.buttonbox) self.setLayout(vbox) self.show() def onInputVideoFileButtonClicked(self): self.video_file, filter = QtWidgets.QFileDialog.getOpenFileName( parent=self, caption="Open video file", directory=str(Path()), filter='*' ) if self.video_file is not None: self.inputVideoFileLineEdit.setText(self.video_file) def onInputFileButtonClicked(self): self.tracking_results, filter = QtWidgets.QFileDialog.getOpenFileName( parent=self, caption="Open tracking results CSV file", directory=str(Path()), filter='*' ) if self.tracking_results is not None: self.inputFileLineEdit.setText(self.tracking_results) def onInputFileButtonClicked(self): self.tracking_results, filter = QtWidgets.QFileDialog.getOpenFileName( parent=self, caption="Open tracking results CSV file", directory=str(Path()), filter='*' ) if self.tracking_results is not None: self.inputFileLineEdit.setText(self.tracking_results) ``` #### File: gui/widgets/train_model_dialog.py ```python from pathlib import Path from qtpy import QtCore from qtpy import QtWidgets class TrainModelDialog(QtWidgets.QDialog): def __init__(self, *args, **kwargs): super(TrainModelDialog, self).__init__(*args, **kwargs) self.setWindowTitle("Train models") self.raidoButtons() self.slider() self.batch_size = 8 self.algo = 'MaskRCNN' self.config_file = None self.out_dir = None self.max_iterations = 2000 qbtn = QtWidgets.QDialogButtonBox.Ok | QtWidgets.QDialogButtonBox.Cancel self.buttonbox = QtWidgets.QDialogButtonBox(qbtn) self.buttonbox.accepted.connect(self.accept) self.buttonbox.rejected.connect(self.reject) self.label1 = QtWidgets.QLabel(f"Please select batch size default=8") self.inputFileLineEdit = QtWidgets.QLineEdit(self) self.inputFileButton = QtWidgets.QPushButton('Open', self) self.inputFileButton.clicked.connect(self.onInputFileButtonClicked) self.label2 = QtWidgets.QLabel( f"Please select training max iterations default 2000 (Optional)") hboxLayOut = QtWidgets.QHBoxLayout() self.groupBoxFiles = QtWidgets.QGroupBox("Please choose a config file") hboxLayOut.addWidget(self.inputFileLineEdit) hboxLayOut.addWidget(self.inputFileButton) self.groupBoxFiles.setLayout(hboxLayOut) self.groupBoxOutDir = QtWidgets.QGroupBox( "Please choose output directory (Optional)") self.outFileDirEdit = QtWidgets.QLineEdit(self) self.outDirButton = QtWidgets.QPushButton('Select', self) self.outDirButton.clicked.connect(self.onOutDirButtonClicked) hboxLayOutDir = QtWidgets.QHBoxLayout() hboxLayOutDir.addWidget(self.outFileDirEdit) hboxLayOutDir.addWidget(self.outDirButton) self.groupBoxOutDir.setLayout(hboxLayOutDir) vbox = QtWidgets.QVBoxLayout() vbox.addWidget(self.groupBox) vbox.addWidget(self.label1) vbox.addWidget(self.slider) vbox.addWidget(self.groupBoxFiles) if self.algo == 'MaskRCNN': self.max_iter_slider() # self.label1.hide() # self.slider.hide() vbox.addWidget(self.label2) vbox.addWidget(self.max_iter_slider) vbox.addWidget(self.groupBoxOutDir) vbox.addWidget(self.buttonbox) self.setLayout(vbox) self.show() def max_iter_slider(self): self.max_iter_slider = QtWidgets.QSlider(QtCore.Qt.Horizontal) self.max_iter_slider.setMinimum(100) self.max_iter_slider.setMaximum(20000) self.max_iter_slider.setValue(2000) self.max_iter_slider.setTickPosition(QtWidgets.QSlider.TicksBelow) self.max_iter_slider.setTickInterval(100) self.max_iter_slider.setSingleStep(100) self.max_iter_slider.valueChanged.connect(self.onMaxIterSliderChange) def onSliderChange(self): self.batch_size = self.slider.value() self.label1.setText( f"You selected {str(self.batch_size)} as batch size") def onInputFileButtonClicked(self): self.config_file, filter = QtWidgets.QFileDialog.getOpenFileName( parent=self, caption="Open config file", directory=str(Path()), filter='*' ) if self.config_file is not None: self.inputFileLineEdit.setText(self.config_file) def onOutDirButtonClicked(self): self.out_dir = QtWidgets.QFileDialog.getExistingDirectory(self, "Select Directory") if self.out_dir is not None: self.outFileDirEdit.setText(self.out_dir) def raidoButtons(self): self.groupBox = QtWidgets.QGroupBox("Please choose a model") hboxLayOut = QtWidgets.QHBoxLayout() self.radio_btn1 = QtWidgets.QRadioButton("MaskRCNN") self.radio_btn1.setChecked(True) self.radio_btn1.toggled.connect(self.onRadioButtonChecked) hboxLayOut.addWidget(self.radio_btn1) self.radio_btn2 = QtWidgets.QRadioButton("YOLACT") self.radio_btn2.toggled.connect(self.onRadioButtonChecked) self.radio_btn2.setEnabled(True) hboxLayOut.addWidget(self.radio_btn2) self.radio_btn3 = QtWidgets.QRadioButton("YOLOv5") self.radio_btn3.toggled.connect(self.onRadioButtonChecked) self.radio_btn3.setEnabled(False) hboxLayOut.addWidget(self.radio_btn3) self.groupBox.setLayout(hboxLayOut) def slider(self): self.slider = QtWidgets.QSlider(QtCore.Qt.Horizontal) self.slider.setMinimum(1) self.slider.setMaximum(128) self.slider.setValue(8) self.slider.setTickPosition(QtWidgets.QSlider.TicksBelow) self.slider.setTickInterval(1) self.slider.valueChanged.connect(self.onSliderChange) def onRadioButtonChecked(self): radio_btn = self.sender() if radio_btn.isChecked(): self.algo = radio_btn.text() if self.algo == 'YOLACT': self.label1.show() self.slider.show() self.label2.hide() self.max_iter_slider.hide() elif self.algo == 'MaskRCNN': # self.label1.hide() # self.slider.hide() self.label2.show() self.max_iter_slider.show() def onMaxIterSliderChange(self): self.max_iterations = self.max_iter_slider.value() self.label2.setText( f"You selected to {str(self.max_iterations)} iterations") ``` #### File: annolid/postprocessing/visualizer.py ```python import torch import decord from pathlib import Path from torch.utils.tensorboard import SummaryWriter from annolid.features import Embedding # Temp fix of the no attribute 'get_filesytem' error #import tensorflow as tf #import tensorboard as tb #tf.io.gfile = tb.compat.tensorflow_stub.io.gfile def tensorboard_writer(logdir=None): if logdir is None: here = Path(__file__).parent.resolve() logdir = here.parent / 'runs' / 'logs' writer = SummaryWriter(log_dir=str(logdir)) return writer def frame_embeddings(frame): embed_vector = Embedding()(frame) return embed_vector def main(video_url=None): decord.bridge.set_bridge('torch') if torch.cuda.is_available(): ctx = decord.gpu(0) else: ctx = decord.cpu(0) vr = decord.VideoReader( video_url, ctx=ctx ) writer = tensorboard_writer() frame_number = 0 for frame in vr: frame_numpy = frame.numpy() embed_vector = frame_embeddings([frame_numpy]) writer.add_histogram('Frame Embeddings', embed_vector) writer.add_embedding(embed_vector, metadata=[1], label_img=frame.permute(2, 0, 1).unsqueeze(0), global_step=frame_number ) frame_number += 1 writer.close() if __name__ == "__main__": main() ``` #### File: annolid/utils/box.py ```python import os import json from boxsdk import OAuth2, Client def get_box_client(config_file='../config/box_config.json'): """authenticate with box.com return app client to access and mananage box folder and files Args: config_file (str, optional): this file can be downloaded from https://your_org_name.app.box.com/developers/console/app/xxxxxxx/configuration Defaults to '../config/box_config.json'. Please copy developer token from the above url and and a row `"developer_token":"<PASSWORD>",` to the box_config.json file. Returns: Client: box client object """ with open(config_file, 'r') as cfg: box_cfg = json.load(cfg) client_id = box_cfg['boxAppSettings']['clientID'] client_secret = box_cfg['boxAppSettings']['clientSecret'] token = box_cfg['developer_token'] oauth = OAuth2( client_id=client_id, client_secret=client_secret, access_token=token, ) client = Client(oauth) return client def get_box_folder_items(client, folder_id='0'): """get box folder and items in side the folder with provide folder id Args: client (Client): box API client folder_id (str, optional): folder ID, e.g. from app.box.com/folder/FOLDER_ID . Defaults to '0'. Returns: Folder, File: box folder and file objects """ box_folder = client.folder(folder_id=folder_id) return box_folder, box_folder.get_items() def upload_file(box_folder, local_file_path): """upload a local file to the box folder Args: box_folder (folder object) local_file_path (str): local file absolute path e.g. /data/video.mp4 """ box_folder.upload(local_file_path) def download_file(box_file, local_file_path): """Download a file in box to local disk Args: box_file (File): box file object local_file_path (str): local file path e.g. /data/video.mp4 """ with open(local_file_path, 'wb') as lf: box_file.download_to(lf) def is_results_complete(box_folder, result_file_pattern='_motion.csv', num_expected_results=0 ): """Check if a box folder contains all the expected result files Args: box_folder (BoxFolder): box folder object result_file_pattern (str, optional): pattern in the file. Defaults to '_motion.csv'. Returns: bool: True if the folder contails the expected number of result files else False """ num_of_results = 0 for bf in box_folder.get_items(): if result_file_pattern in bf.name: num_of_results += 1 return num_of_results == num_expected_results def upload_results(box_folder, tracking_results, csv_pattern='motion.csv'): """upload the annolid output results to a box folder Args: box_folder (BoxFolder object): box folder contains the results files tracking_results (dict): a dict contains the folder name : local file path csv_pattern (str, optional): results csv file pattern. Defaults to 'motion.csv'. Returns: _type_: _description_ """ has_results = False for bf in box_folder.get_items(): if csv_pattern in bf.name: has_results = True break if not has_results: local_file = tracking_results[box_folder.name] if os.path.exists(local_file): upload_file(box_folder, local_file) print('Upload file: ', local_file) return True ```
{ "source": "jeremyforest/Hopfield_model", "score": 2 }
#### File: jeremyforest/Hopfield_model/hopfield_model.py ```python import numpy as np import matplotlib.pyplot as plt ################################# ##### Simulation parameters ##### ################################# DT = 1. TSIM = 30. epoch = int(TSIM/DT) N = 16 pattern = [[-1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, -1]] pattern_height = 4 pattern_width = 4 degraded_input = [[1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1]] ######################### ######### Code ########## ######################### class HopfieldNetwork(): def __init__(self, N): self.N = N assert N == len(pattern[0]) assert len(pattern[0]) == len(degraded_input[0]) def W(self): #weight matrix return np.zeros([self.N, self.N]) def X(self): # neurons state random initialization return [np.random.choice([-1,1]) for n in range(self.N)] def energy(self, X, W): return -0.5*np.dot(np.dot(np.transpose(X), W), X) def update_state_async(W, X, theta=0): # update state asynchronously neurons_order = np.random.permutation(N) i = np.random.choice(neurons_order) #choose random neuron ## would need to rewrite this to have no redraw from the sampling until every number has been drawn once (maybe this is why it does not update every epoch ? X[i] = np.dot(W[i], X) - theta if X[i] > 0: X[i] = 1 else: X[i] = -1 return X def learn_pattern(pattern): for pattern_nb in range(len(pattern)): for i in range(N): for j in range(N): if i == j: W[i,j] = 0 else: W[i,j] = pattern[pattern_nb][i] * pattern[pattern_nb][j] ### to modify according to multiple pattern when storing multiple pattern (add 1/nb_pattern and the sum term) W[i,j] = W[i,j]/len(pattern) W[j,i] = W[i,j] return W def input_representation(X, epoch, show=False): fig, ax = plt.subplots(1, len(pattern), squeeze=False) for i in range(len(pattern)): X_prime = np.reshape(X, (4, 4)) ax[i,0].matshow(X_prime, cmap='gray') ax[i,0].set_xticks([]) ax[i,0].set_yticks([]) if show: plt.show() else: plt.savefig('neuron activation at time' + str(epoch)) def energy_representation(energy, show=False): plt.figure() plt.plot(range(epoch), energy) # plt.axis([0, epoch, 0, np.amax(energy)]) if show: plt.show() else: plt.savefig('energy.png') plt.close() ############################### ### Instantiate the network ### ############################### net = HopfieldNetwork(N) W = net.W() X = net.X() energy = [] ######################## ### Run computations ### ######################## learn_pattern(pattern) # print('learned input') ; input_representation(pattern) # print('degraded input') ; input_representation(degraded_input[0]) e=0 X = degraded_input[0] while e < epoch: X_new = update_state_async(W, X, theta=0) energy.append(net.energy(X_new, W)) # import pdb; pdb.set_trace() input_representation(X_new, e, show=False) e+=1 X = X_new energy_representation(energy, show=False) ```
{ "source": "jeremyforest/nmc-videos", "score": 3 }
#### File: jeremyforest/nmc-videos/get_yt_links_from_airtable.py ```python import dotenv import os from pyairtable import Table import pandas as pd def load_airtable(key, base_id, table_name): at = Table(key, base_id, table_name) return at def get_info(airtable_tab): yt_links, emails = [], [] for record in range(len(airtable_tab.all())): talk = airtable_tab.all()[record] yt_link = talk.get('fields').get('youtube_url') email = talk.get('fields').get('email') yt_links.append(yt_link) emails.append(email) return yt_links, emails def save_to_df(yt_links, emails): df = pd.DataFrame({'emails': emails, 'youtube_url': yt_links}) # people can submit multiple times and with different videos - keep the # last one only df.drop_duplicates(keep='last', inplace=True) df.to_csv('videos/data.csv', index=False) def update_df(yt_links, emails): file_path = 'videos/data.csv' df = pd.read_csv(file_path) df_new = pd.DataFrame({'emails': emails, 'youtube_url': yt_links}) df_new.drop_duplicates(keep='last', inplace=True) df = pd.merge(df, df_new, how='right') df.to_csv('videos/data.csv', index=False) if __name__ == '__main__': dotenv.load_dotenv() AT_BASE_ID = os.getenv('AT_BASE_ID') AT_API_KEY = os.getenv('AT_API_KEY') TABLE_NAME = 'uploads' upload_tab = load_airtable(AT_API_KEY, AT_BASE_ID, TABLE_NAME) yt_links, emails = get_info(upload_tab) if os.path.exists('videos/data.csv'): update_df(yt_links, emails) else: save_to_df(yt_links, emails) ```
{ "source": "jeremyforest/whole_optic_analysis_pipeline", "score": 3 }
#### File: whole_optic_analysis_pipeline/OPTIMAS/classical_ephy.py ```python import numpy as np import matplotlib.pyplot as plt def import_ephy_data(main_folder_path, experiment): data = np.load(f'{main_folder_path}experiment_{experiment}/voltage.npy') data.shape new_data = np.zeros((8,5000)) new_data[0].shape for channel in range(data.shape[1]): for recording in range(data.shape[0]): if recording == 0: df = data[recording][channel] else: df = np.hstack((data[recording][channel], df)) new_data[channel] = df return new_data def plot_ephy_data(data): x = list(range(data.shape[1])) fig, axs = plt.subplots(2,4, sharex=True, sharey=True) axs = axs.ravel() for channel in range(data.shape[0]): # plt.plot(x, new_data[channel]) axs[channel].plot(x, data[channel]) axs[channel].set_title(f'channel {channel+1}') def load_json_timing_data(path_output, experiment): """ This function allows to load the json file where the timings of the laser, dlp, camera and ephys are stored. Input: path of the json file and the experiment folder number as input. Output: timings, each in their own variable """ with open(f'{path_output}experiment_{experiment}_timings.json') as file: timings_data = dict(json.load(file)) timings_dlp_on = timings_data['dlp']['on'] timings_dlp_off = timings_data['dlp']['off'] timings_laser_on = timings_data['laser']['on'] timings_laser_off = timings_data['laser']['off'] timings_ephy_on = timings_data['ephy']['on'] timings_ephy_off = timings_data['ephy']['off'] timings_ephy_stim_on = timings_data['ephy_stim']['on'] timings_ephy_stim_off = timings_data['ephy_stim']['off'] timings_camera_images = [] ## timings of the images as per the dcam api for images_timings in timings_data['camera']: for image_timing in images_timings: timings_camera_images.append(image_timing) timings_camera_images_bis = timings_data['camera_bis'] ## timing of the first frame as per manual clock print(f'timing difference between first image metadata and manual log is \ {(timings_camera_images[0] - timings_camera_images_bis[0]) * 1000}') ## ms difference return timings_dlp_on, timings_dlp_off, timings_camera_images, timings_laser_on, timings_laser_off, timings_camera_images_bis if __name__ == "__main__": main_folder_path = '/home/jeremy/Documents/Postdoc/Projects/Memory/Computational_Principles_of_Memory/optopatch/data/2020_05_25/' experiment = 4 data = import_ephy_data(main_folder_path=main_folder_path, experiment=experiment) plot_ephy_data(data = data) ``` #### File: whole_optic_analysis_pipeline/OPTIMAS/time_serie_pixel_analysis.py ```python import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm import cv2 import os import pickle import json from roipoly.roipoly import RoiPoly, MultiRoi import argparse import datetime import time from threading import Timer, Thread from OPTIMAS.utils.files_handling import images_list, read_fps, \ load_timing_data, read_image_size def input_path(): user_input = input('input neurons png file or ROI mask file:') user_input_ok = True return user_input def time_serie(input_data_folder, experiment, data_type='raw', timing=True, draw_laser_timings=True, draw_dlp_timings=True, time_start=0, time_stop=int(-1)): data_export = [] # placeholder for saving data at the end ### PATHS ### if data_type == 'raw': path_input_images = f"{input_data_folder}/{experiment}/images/" elif data_type == 'denoised': path_input_images = f"{input_data_folder}/experiment_{experiment}/denoised_images/" path_output = f"{input_data_folder}/{experiment}/" # if roi comes from manual countours roi_file_path = f'{path_output}/roi_masks.txt' images = images_list(path_input_images) ############# ### ROIS #### ############# ## TODO: use the image from the dlp to do the ROIs ? what if not all rois ## on it ? Use a global Roi file ? How to define it ? if os.path.isfile(roi_file_path): print('ROI file exists') with open(roi_file_path, "rb") as file: rois = pickle.load(file) else: print('ROI file doesnt exists') w,h = read_image_size(f'{input_data_folder}/{experiment}/{experiment}_info.json') # TODO: ref image for defining rois, need to think about what it can be. The best would be a DIC image ? # use an automatic segmentation algorithm if possible with a DIC image ? neurons_png = f'{input_data_folder}/{experiment}/neurons.png' if os.path.exists(neurons_png): print('neurons file for delimiting ROI exists') image = cv2.imread(f'{input_data_folder}/{experiment}/neurons.png', cv2.IMREAD_GRAYSCALE) # from scipy.ndimage import convolve # image_downsampled = convolve(image, # np.array([[0.25,0.25],[0.25,0.25]]))[:image.shape[0]:2,:image.shape[1]:2] # image = image_downsampled ##################################################### ##### TO CHANGE IN UPDATED PIPELINE VERSION ######### # else: # print('no neuron image file') # pass # # print('''need user input for ROI file path: it needs to be an image # from the image folder where you can see the neurons''') # user_input = [None] # global user_input_ok # user_input_ok = False # thread = Thread(target=input_path, daemon=False) # thread.start() # time.sleep(15) # if user_input_ok: # thread.join() # print(user_input) # else: # thread._stop() # if ROI_path.endswith('.txt'): # with open(ROI_path, "rb") as file: # rois = pickle.load(file) # elif ROI_path.endswith('.png'): # image = cv2.imread(ROI_path, cv2.IMREAD_GRAYSCALE) # cv2.imwrite(f'{input_data_folder}/{experiment}/neurons.png', image) # if image.size == 0: # print('error with neuron image, cannot define ROIs') # else: # image = cv2.resize(image, (w,h)) ###################################################################### # Show the image fig = plt.figure() plt.imshow(image, interpolation='none', cmap='gray') plt.title("Click on the button to add a new ROI") # Draw multiple ROI multiroi_named = MultiRoi(roi_names=['Background', 'ROI 1', 'ROI 2', 'ROI 3', 'ROI 4', 'ROI 5', 'ROI 6', 'ROI 7', 'ROI 8', 'ROI 9', 'ROI 10', 'ROI 11', 'ROI 12', 'ROI 13', 'ROI 14', 'ROI 15', 'ROI 16', 'ROI 17']) # Draw all ROIs plt.imshow(image, interpolation='none', cmap='gray') rois = [] for name, roi in multiroi_named.rois.items(): roi.display_roi() # roi.display_mean(image) mask = roi.get_mask(image) rois.append([name, mask]) plt.legend() plt.savefig(f'{path_output}/rois.png') plt.close() ## writing rois to disk with open(roi_file_path, "wb") as file: pickle.dump(rois, file) rois_signal = [] ## not the most optimized, would be better to log every roi in each image than load every image multiple times for roi in rois: tmp_time_serie_roi = [] for image in tqdm(images): img = cv2.imread(f'{path_input_images}/{image}',cv2.IMREAD_GRAYSCALE) mask = roi[1] ##################################################### ##### TO CHANGE IN UPDATED PIPELINE VERSION ######### # roi_average = np.mean(img[mask.T]) roi_average = np.mean(img[mask]) ################################################################### tmp_time_serie_roi.append(roi_average) rois_signal.append(tmp_time_serie_roi) print ('generating data plots') ### TIMING DATA ### json_timings_file = f'{input_data_folder}/{experiment}/{experiment}_timings.json' json_info_file = f'{input_data_folder}/{experiment}/{experiment}_info.json' if timing: timings_dlp_on, \ timings_dlp_off, \ timings_camera_images, \ timings_laser_on, \ timings_laser_off, \ timings_camera_images_bis = load_timing_data(json_timings_file) # timings perf_counter equivalent to unix timestamp # timings_camera_images_bis.append(660) # TODO: handle multiple dlp on/off within each experiment if len(timings_dlp_on)>1: print('more than 1 timing from DLP ON') timings_dlp_on = [timings_dlp_on[0]] ## for diagnostic plot for the times of the camera dcam api metadata # plt.plot(np.array(timings_camera_images), range(0,len(timings_camera_images))) ## use the timings metadata of the dcap api ## for now broken, replaced with manual incrementation #timings_camera_images_new = timings_camera_images[time_init : time_end] ## back to this when solved problem of metadata from the dcam api timings_camera_images_new = [] timings_camera_images_new.append(timings_camera_images[0]) for nb_of_times in range(1,len(timings_camera_images)): fps = read_fps(json_info_file) ## to get for each expe timings_camera_images_new.append(timings_camera_images[0] + (1/fps * nb_of_times)) ## diagnostic # plt.plot(np.array(timings_camera_images_new), range(0,len(timings_camera_images_new))) timings_camera_images = timings_camera_images_new print(f'number of camera images: {len(timings_camera_images)}') print(f'number of points in the each roi signal: {len(rois_signal[0])}') assert len(images) == len(timings_camera_images), 'not the same number of images and images timing metadata' ## will not work when working on subset of the data ## to put both dlp, laser and camera timings in the same format ## putting dlp and laser time refs back into camera ref #timings_camera_images = [timings_camera_images[i]*10**9 for i in range(len(timings_camera_images))] ##for dcam api meta _timings_dlp_on = timings_camera_images[0] + (timings_camera_images[0] - timings_camera_images_bis[0]) + (timings_dlp_on[0] - timings_camera_images_bis[1])/1000 _timings_dlp_off = timings_camera_images[0] + (timings_camera_images[0] - timings_camera_images_bis[0]) + (timings_dlp_off[0] - timings_camera_images_bis[1])/1000 ########################################################################## #################### TO UPDATE #################### #################### _timings_laser_on = timings_camera_images[0] + (timings_camera_images[0] - timings_camera_images_bis[0]) + (timings_laser_on[0] - timings_camera_images_bis[1])/1000 # _timings_laser_on = 0 _timings_laser_off = timings_camera_images[0] + (timings_camera_images[0] - timings_camera_images_bis[0]) + (timings_laser_off[0] - timings_camera_images_bis[1])/1000 # _timings_laser_off = 0 ################################################################################ ################################################################################ timings_dlp_on = [] timings_dlp_off = [] timings_laser_on = [] timings_laser_off = [] timings_dlp_on.append(_timings_dlp_on) timings_dlp_off.append(_timings_dlp_off) timings_laser_on.append(_timings_laser_on) timings_laser_off.append(_timings_laser_off) ### if different length between timings and images # cropped_rois_signal = [] # for roi_signal in rois_signal: # cropped_rois_signal.append(roi_signal[0:len(timings_camera_images)]) # len(cropped_rois_signal[0]) # rois_signal = cropped_rois_signal time_sorted_rois_signal = [] x_axis_sorted_values = [] for i in range(len(rois_signal)): data = np.vstack((timings_camera_images, rois_signal[i])) data.shape time_sorted_rois_signal.append(data[1][data[0,:].argsort()]) x_axis_sorted_values = np.array(data[0][data[0,:].argsort()]) x_axis = np.array([(x_axis_sorted_values[frame] - x_axis_sorted_values[0]) for frame in range(len(x_axis_sorted_values))]) ## diagnostic plot: time between 2 images times_between_two_images = [] for frame in range(len(x_axis)-1): times_between_two_images.append((x_axis[frame+1] - x_axis[frame])) times_between_two_images.append(times_between_two_images[-1]) nb_images = np.arange(0,len(data[1]), 1) #plt.plot(nb_images, np.array(times_between_two_images)) rois_signal = time_sorted_rois_signal ## for baseline calculation: if timing: # find laser_on index on x_axis takeClosest = lambda num,collection:min(collection,key=lambda x:abs(x-num)) closest_index_laser_on_on_x = takeClosest(timings_laser_on[0]/10**9, x_axis) index_laser_on_for_baseline_calc = np.where(x_axis == closest_index_laser_on_on_x) # find dlp_on index on x_axis closest_index_dlp_on_on_x = takeClosest(timings_dlp_on[0]/10**9, x_axis) index_dlp_on_for_baseline_calc = np.where(x_axis == closest_index_dlp_on_on_x) ## baseline starting and ending ## need to be timed on the frames after laser activation I think baseline_starting_frame = index_laser_on_for_baseline_calc[0][0] + 2 #TODO: need to be adjusted to be up to the frame-1 of dlp activation ? baseline_frame_number = 10 else : baseline_starting_frame = 1000 baseline_frame_number = 10 ### GRAPHS ### # calculation of F(t) colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'] # if timings is False no x_axis has been defined if timing == False: x_axis = np.arange(0,len(images), 1) for i in range(len(rois_signal)): plt.plot(x_axis, np.array(rois_signal[i]), color = colors[i], label = rois[i][0], alpha=0.7) if timing: for i in range(len(timings_dlp_on)): if draw_dlp_timings: plt.axvspan(timings_dlp_on[i] - x_axis_sorted_values[0], timings_dlp_off[i] - x_axis_sorted_values[0], color='blue', alpha=0.05) if draw_laser_timings: plt.axvspan(timings_laser_on[i] - x_axis_sorted_values[0], timings_laser_off[i] - x_axis_sorted_values[0], color='red', alpha=0.05) plt.legend() plt.title('Pixel value evolution with frames') plt.ylabel('Value') if timing == False: plt.savefig(f'{path_output}pixel_time_serie_whole_data.svg') #plt.savefig(path_output+'pixel_time_serie_whole_data.png') elif timing == True: plt.savefig(f'{path_output}pixel_time_serie_whole_data_{time_start}_{time_stop}.svg') #plt.savefig(f'{path_output}pixel_time_serie_whole_data_{args.time[0]}_{args.time[1]}.png') plt.close() ## calculation of F(t) - background(t) for i in np.arange(1, len(rois_signal), 1): plt.plot(x_axis, np.array(rois_signal[0])-np.array(rois_signal[i]), color = colors[i], label = rois[i][0], alpha=0.7) if timing: for i in range(len(timings_dlp_on)): if draw_dlp_timings: plt.axvspan(timings_dlp_on[i] - x_axis_sorted_values[0],timings_dlp_off[i] - x_axis_sorted_values[0], color='blue', alpha=0.05) if draw_laser_timings: plt.axvspan(timings_laser_on[i] - x_axis_sorted_values[0],timings_laser_off[i] - x_axis_sorted_values[0], color='red', alpha=0.05) plt.title('Fluorescence with substracted backg fluorescence (per frame)') plt.ylabel('Value') plt.legend() if timing == False: plt.savefig(f'{path_output}pixel_time_serie_with_backg_substraction_whole_data.svg') #plt.savefig(f'{path_output}pixel_time_serie_with_backg_substraction_whole_data.png') elif timing == True: plt.savefig(f'{path_output}pixel_time_serie_with_backg_substraction_{time_start}_{time_stop}.svg') #plt.savefig(f'{path_output}pixel_time_serie_with_backg_substraction_{args.time[0]}_{args.time[1]}.png') plt.close() ## calculation of percent delta F/F0 times = [] baseline_background = np.mean(np.array(rois_signal[0][baseline_starting_frame:baseline_starting_frame+baseline_frame_number])) ## temporal average if baseline_background == 0.0: baseline_background = 1.0 dF_over_F0_background = ((np.array(rois_signal[0]) - baseline_background) / baseline_background) percent_dF_over_F0_background = dF_over_F0_background*100 # plt.plot(x_axis, percent_dF_over_F0_background, color= 'b', label = rois[0][0], alpha=0.7) if timing: for i in range(len(timings_dlp_on)): if draw_dlp_timings: plt.axvspan(timings_dlp_on[i] - x_axis_sorted_values[0],timings_dlp_off[i] - x_axis_sorted_values[0], color='blue', alpha=0.05) if draw_laser_timings: plt.axvspan(timings_laser_on[i] - x_axis_sorted_values[0],timings_laser_off[i] - x_axis_sorted_values[0], color='red', alpha=0.05) for i in np.arange(1, len(rois_signal), 1): _times = [] baseline_soma = np.mean(np.array(rois_signal[i][baseline_starting_frame:baseline_starting_frame + baseline_frame_number])) if baseline_soma == 0.0: baseline_soma = 1.0 dF_over_F0_soma = ((np.array(rois_signal[i]) - baseline_soma) / baseline_soma) - dF_over_F0_background percent_dF_over_F0_soma = dF_over_F0_soma * 100 # plt.ylim([-5,35]) plt.plot(x_axis, percent_dF_over_F0_soma, color = colors[i], label = rois[i][0], alpha=0.7) data_export.append(percent_dF_over_F0_soma.tolist()) if timing: dlp_on_value_on_x = 0 dlp_off_value_on_x = 0 laser_off_value_on_x = 0 laser_on_value_on_x = 0 for i in range(len(timings_dlp_on)): if draw_dlp_timings: dlp_on_value_on_x = timings_dlp_on[i] - x_axis_sorted_values[0] dlp_off_value_on_x = timings_dlp_off[i] - x_axis_sorted_values[0] plt.axvspan(dlp_on_value_on_x, dlp_off_value_on_x, color='blue', alpha=0.05) if draw_laser_timings: laser_on_value_on_x = timings_laser_on[i] - x_axis_sorted_values[0] laser_off_value_on_x = timings_laser_off[i] - x_axis_sorted_values[0] plt.axvspan(laser_on_value_on_x, laser_off_value_on_x, color='red', alpha=0.05) _times = dlp_on_value_on_x, dlp_off_value_on_x , laser_on_value_on_x, laser_off_value_on_x times.append(_times) plt.ylabel(r'$\%$ $\Delta$ F/F0') plt.legend() if timing == False: plt.savefig(f'{path_output}delta_F_over_F0_whole_data.svg') #plt.savefig(f'{path_output}delta_F_over_F0__whole_data.png') elif timing == True: plt.savefig(f'{path_output}delta_F_over_F0_{time_start}_{time_stop}.svg') #plt.savefig(f'{path_output}delta_F_over_F0_{args.time[0]}_{args.time[1]}.png') # saving data data_export.append(x_axis.tolist()) data_export.append(times) data_export = np.array(data_export) ## data has format [[ROI1], [ROI2] ..., [ROIn], [X_axis], [[timings_dlp_on(ROI1), timings_dlp_off(ROI1), timings_laser_on(ROI1), timings_laser_off(ROI1)],[...]] np.save(f'{path_output}dF_over_F0_backcorrect.npy', data_export) from scipy.io import savemat np.save(f'{path_output}dF_over_F0_backcorrect_ROIs_only.npy', data_export[0]) matlab_dict = {'ROI': data_export[0], 'frames': data_export[1]} savemat(f'{path_output}dF_over_F0_backcorrect_ROIs_only.mat', matlab_dict) plt.close() ## ephys-type graph for percent delta F/F0 # from matplotlib_scalebar.scalebar import ScaleBar fig = plt.figure(frameon=False) fig, axs = plt.subplots(len(rois_signal), 1) fig.subplots_adjust(hspace=0) baseline_roi_background = np.mean(np.array(rois_signal[0][baseline_starting_frame:baseline_starting_frame + baseline_frame_number])) if baseline_roi_background == 0.0: baseline_roi_background = 1.0 # axs[0].set_ylim([-5,150]) axs[0].plot(x_axis, percent_dF_over_F0_background, color = 'b', label = rois[0][0], alpha=0.7) axs[0].set_axis_off() if timing: for j in range(len(timings_dlp_on)): if draw_dlp_timings: axs[0].axvspan(timings_dlp_on[j] - x_axis_sorted_values[0],timings_dlp_off[j] - x_axis_sorted_values[0], color='blue', alpha=0.05) if draw_laser_timings: axs[0].axvspan(timings_laser_on[j] - x_axis_sorted_values[0],timings_laser_off[j] - x_axis_sorted_values[0], color='red', alpha=0.05) # equivalent_10ms = 0.1 # scalebar = ScaleBar(0.1, 'ms', frameon=False, location='lower left', length_fraction = equivalent_10ms) # plt.gca().add_artist(scalebar) # axs[0].annotate('', xy=(0, 0), xycoords='axes fraction', xytext=(0, .2), textcoords='axes fraction', # ha='center', va='center', arrowprops=dict(arrowstyle="-", color='black')) # axs[0].annotate('', xy=(0, 0), xycoords='axes fraction', xytext=(longueur_5ms, 0), textcoords='axes fraction', # ha='center', va='center', arrowprops=dict(arrowstyle="-", color='black')) for i in np.arange(1, len(rois_signal), 1): dF_over_F0_roi = ((np.array(rois_signal[i]) - baseline_roi_background) / baseline_roi_background) - dF_over_F0_background percent_dF_over_F0_roi = dF_over_F0_roi * 100 axs[i].set_ylim([-5,150]) axs[i].plot(x_axis, percent_dF_over_F0_roi, color = colors[i], label = rois[i][0], alpha=0.7) axs[i].set_axis_off() if timing: for j in range(len(timings_dlp_on)): if draw_dlp_timings: axs[i].axvspan(timings_dlp_on[j] - x_axis_sorted_values[0],timings_dlp_off[j] - x_axis_sorted_values[0], color='blue', alpha=0.05) if draw_laser_timings: axs[i].axvspan(timings_laser_on[j] - x_axis_sorted_values[0],timings_laser_off[j] - x_axis_sorted_values[0], color='red', alpha=0.05) if timing == False: plt.savefig(f'{path_output}delta_F_over_F0_ephys_style_whole_data.svg') #plt.savefig(f'{path_output}delta_F_over_F0_ephys_style_whole_data.png') elif timing == True: plt.savefig(f'{path_output}delta_F_over_F0_ephys_style_{time_start}_{time_stop}.svg') #plt.savefig(f'{path_output}delta_F_over_F0_ephys_style_{args.time[0]}_{args.time[1]}.png') plt.close() if __name__ == "__main__": # experiment = 'experiment_132' # input_data_folder = f'/mnt/home_nas/jeremy/Recherches/Postdoc/Projects/Memory/Computational_Principles_of_Memory/optopatch/data/2020_03_02' experiment = 'experiment_41' input_data_folder = f'/home/jeremy/Desktop/2020_11_23' # experiment = 'experiment_95' # input_data_folder = f'/media/jeremy/Seagate Portable Drive/data/2020_11_05' time_serie(input_data_folder, experiment, data_type='raw', timing=True, draw_laser_timings=True, draw_dlp_timings=True, time_start=0, time_stop=int(-1)) # time_serie(input_data_folder, experiment, data_type='raw', # timing=False, draw_laser_timings=False, draw_dlp_timings=False, # time_start=0, time_stop=int(-1)) ``` #### File: whole_optic_analysis_pipeline/tests/test_merge.py ```python import os import numpy as np from OPTIMAS.merge_npy import merge_npy from OPTIMAS.utils.files_handling import images_list, read_image_size def test_merge_npy(): input_data_folder = 'tests/test_data/2020_09_03' experiment = 'experiment_1' output_path = f'{input_data_folder}/{experiment}' merge_npy(input_data_folder, output_path, experiment) merged_npy_path = f"{output_path}/raw_data.npy" merged_npy = np.load(merged_npy_path) json_file_path = f"{input_data_folder}/{experiment}/{experiment}_info.json" image_x, image_y = read_image_size(json_file_path) os.remove(merged_npy_path) assert merged_npy.shape[0] == len(os.listdir( f"{input_data_folder}/{experiment}/raw_data")) assert merged_npy.shape[1] == image_x assert merged_npy.shape[2] == image_y ```
{ "source": "jeremyforest/whole_optic_gui", "score": 3 }
#### File: controller/controller/device.py ```python from numpy import array import time __all__ = ['Device'] class Device(object): def __init__(self): pass def position(self, axis): ''' Current position along an axis. Parameters ---------- axis : axis number Returns ------- The current position of the device axis in um. ''' return 0. # fake def absolute_move(self, x, axis): ''' Moves the device axis to position x. Parameters ---------- axis: axis number x : target position in um. ''' pass def relative_move(self, x, axis): ''' Moves the device axis by relative amount x in um. Parameters ---------- axis: axis number x : position shift in um. ''' self.absolute_move(self.position(axis)+x, axis) def position_group(self, axes): ''' Current position along a group of axes. Parameters ---------- axes : list of axis numbers Returns ------- The current position of the device axis in um (vector). ''' return array([[self.position(axis) for axis in axes]]) def absolute_move_group(self, x, axes): ''' Moves the device group of axes to position x. Parameters ---------- axes : list of axis numbers x : target position in um (vector or list). ''' for xi,axis in zip(x,axes): self.absolute_move(xi, axis) def relative_move_group(self, x, axes): ''' Moves the device group of axes by relative amount x in um. Parameters ---------- axes : list of axis numbers x : position shift in um (vector or list). ''' self.absolute_move_group(array(self.position_group(axes))+array(x), axes) def stop(self, axis): """ Stops current movements. """ pass def wait_until_still(self, axis = None): """ Waits until motors have stopped. Parameters ---------- axes : list of axis numbers """ previous_position = self.position(axis) new_position = None while array(previous_position != new_position).any(): previous_position = new_position new_position = self.position(axis) time.sleep(0.1) # 100 us ``` #### File: OPTIMAQS/utils/custom_sleep_function.py ```python from PyQt5.QtWidgets import QApplication import time def custom_sleep_function(ms): c = time.perf_counter() while (time.perf_counter() - c)*1000 < ms: QApplication.processEvents() #### this should probably be put in its own thread to avoid forcing gui update return (time.perf_counter() - c)*1000 ``` #### File: view/electrophysiology/electrophysiology_gui.py ```python from PyQt5 import uic from PyQt5.QtCore import Qt, QRunnable, pyqtSlot, pyqtSignal, QThreadPool, QObject, QTimer, QEventLoop from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton, QVBoxLayout, QWidget, QSlider, QFileDialog, \ QMessageBox, QProgressBar, QGraphicsScene, QInputDialog, QDialog from PyQt5.QtGui import QImage, QPixmap, QPen, QPainter from PyQt5.QtTest import QTest import pyqtgraph as pg ## general imports import sys import PyDAQmx import numpy as np import time ## Custom imports from OPTIMAQS.utils.json_functions import jsonFunctions from OPTIMAQS.utils.signals import Signals class ElectrophysiologyGui(QWidget): def __init__(self): super(ElectrophysiologyGui, self).__init__() uic.loadUi('OPTIMAQS/view/electrophysiology/electrophysiology.ui', self) self.show() self.import_electrophysiology_model() self.initialize_electrophysiology_parameters() self.actions() ## paths and timings self.path = jsonFunctions.open_json('OPTIMAQS/config_files/last_experiment.json') self.timings_logfile_path = self.path + '/experiment_' + self.path[-1] + '_timings.json' self.timings_logfile_dict = {} self.timings_logfile_dict['ephy'] = {} self.timings_logfile_dict['ephy']['on'] = [] self.timings_logfile_dict['ephy']['off'] = [] self.timings_logfile_dict['ephy_stim'] = {} self.timings_logfile_dict['ephy_stim']['on'] = [] self.timings_logfile_dict['ephy_stim']['off'] = [] ## ephys data self.ephy_data = [] self.end_expe = False self.channel_number = [2,6,10,14,16,18,20,22] self.sampling_rate = 1000 ## timings self.perf_counter_init = jsonFunctions.open_json('OPTIMAQS/config_files/perf_counter_init.json') def import_electrophysiology_model(self): """ import laser model-type script """ from OPTIMAQS.model.electrophysiology.electrophysiology import StimVoltage, ReadingVoltage def initialize_electrophysiology_parameters(self): """ Initialize all the laser variables """ ## custom signals self.ephy_signal = Signals() self.ephy_signal.start.connect(self.start_recording) self.ephy_signal.finished.connect(self.stop_recording) self.recording = False self.ephy_graph = False def actions(self): """ Define actions for buttons and items. """ self.record_trace_button.clicked.connect(self.init_voltage) self.display_trace_button.clicked.connect(self.graph_voltage) self.stimulation_button.clicked.connect(self.ephy_stim) self.close_graph_button.clicked.connect(self.close_graph_windows) def init_voltage(self): ## reading voltage self.analog_input = PyDAQmx.Task() self.read = PyDAQmx.int32() self.data_ephy = np.zeros((len(self.channel_number), self.sampling_rate), dtype=np.float64) for channel in self.channel_number: self.analog_input.CreateAIVoltageChan(f'Dev1/ai{channel}', "", PyDAQmx.DAQmx_Val_Cfg_Default, -10.0, 10.0, PyDAQmx.DAQmx_Val_Volts, None) self.analog_input.CfgSampClkTiming("", self.sampling_rate, ## sampling rate PyDAQmx.DAQmx_Val_Rising, ## active edge PyDAQmx.DAQmx_Val_FiniteSamps, ## sample mode 1000) ## nb of sample to acquire self.analog_input.StartTask() ## stimulating self.analog_output = PyDAQmx.Task() self.analog_output.CreateAOVoltageChan("Dev1/ao0", "", -10.0, 10.0, PyDAQmx.DAQmx_Val_Volts, None) self.analog_output.CfgSampClkTiming("", self.sampling_rate, ## sampling rate PyDAQmx.DAQmx_Val_Rising, ## active edge PyDAQmx.DAQmx_Val_ContSamps, ## sample mode 1000) ## nb of sample to acquire # self.analog_output.StartTask() # self.pulse = np.zeros(1, dtype=np.uint8) # self.write_digital_lines = PyDAQmx.Task() # self.write_digital_lines.CreateDOChan("/Dev1/port0/line3","",PyDAQmx.DAQmx_Val_ChanForAllLines) # self.write_digital_lines.StartTask() def start_recording(self): self.analog_input.ReadAnalogF64(self.sampling_rate, ## number of sample per channel 10.0, ## timeout in s PyDAQmx.DAQmx_Val_GroupByChannel, ## fillMode (interleave data acqcuisition or not?) self.data_ephy, #The array to store read data into self.data_ephy.shape[0]*self.data_ephy.shape[1], ## length of the data array PyDAQmx.byref(self.read),None) ## total number of data points read per channel print(f"Acquired {self.read.value} points") self.analog_input.StopTask() print(self.data_ephy.shape) self.timings_logfile_dict['ephy']['on'].append((time.perf_counter() - self.perf_counter_init)*1000) return self.data_ephy def graph_voltage(self): self.x = range(self.sampling_rate) self.start_recording() # colors = ['g', 'r', 'c', 'm', 'y', 'k', 'w'] # self.voltage_plot = pg.plot(self.x, self.data_ephy[0], pen='b') # if self.data_ephy.shape[0] > 1: # for channel, color in zip(range(self.data_ephy.shape[0]-1), colors): # self.voltage_plot.plot(self.x, self.data_ephy[channel]+1, pen = color) self.plot = pg.GraphicsWindow(title="Electrophysiology") self.voltage_plot = self.plot.addPlot(title='Voltage') self.curve0 = self.voltage_plot.plot(self.x, self.data_ephy[0], pen='b') # self.curve1 = self.voltage_plot.plot(self.x, self.data_ephy[1], pen='g') # self.curve2 = self.voltage_plot.plot(self.x, self.data_ephy[2], pen='r') # self.curve3 = self.voltage_plot.plot(self.x, self.data_ephy[3], pen='c') # # self.curve4 = self.voltage_plot.plot(self.x, self.data_ephy[4], pen='m') # self.curve5 = self.voltage_plot.plot(self.x, self.data_ephy[5], pen='y') # self.curve6 = self.voltage_plot.plot(self.x, self.data_ephy[6], pen='k') # self.curve7 = self.voltage_plot.plot(self.x, self.data_ephy[7], pen='w') self.voltage_plot.addLegend() self.voltage_plot.showGrid(x=True, y=True) self.plot.setBackground('w') pg.setConfigOptions(antialias=True) self.ephy_graph = True self.timer_ephy = QTimer() self.timer_ephy.timeout.connect(self.update_plot_ephy) self.timer_ephy.start(1000) def update_plot_ephy(self): if self.ephy_graph==False: self.timer_ephy.stop() self.start_recording() # self.voltage_plot.enableAutoRange('xy', False) # colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'] # debug_trace() # for channel, color in zip(range(self.data_ephy.shape[0]), colors): # for channel in range(self.data_ephy.shape[0]): # self.voltage_plot.setData(1000, self.data_ephy[channel]) # self.voltage_plot.plot(self.x, self.data_ephy[channel], clear=True, pen=color) self.curve0.setData(self.x, self.data_ephy[0]) # self.curve1.setData(self.x, self.data_ephy[1]) # self.curve2.setData(self.x, self.data_ephy[2]) # self.curve3.setData(self.x, self.data_ephy[3]) # # self.curve4.setData(self.x, self.data_ephy[4]) # self.curve5.setData(self.x, self.data_ephy[5]) # self.curve6.setData(self.x, self.data_ephy[6]) # self.curve7.setData(self.x, self.data_ephy[7]) def close_graph_windows(self): print('closing ephy plot and stopping recording') self.ephy_graph = False self.timer_ephy.stop() self.stop_recording() self.plot.close() def stop_recording(self): print('ephy end signal received') self.recording = False self.analog_input.StopTask() self.timings_logfile_dict['ephy']['off'].append((time.perf_counter() - self.perf_counter_init)*1000) def save_ephy_data(self, data): # np.save(file = f"{self.path}/voltage.npy", arr = data) np.savetxt(f"{self.path}/voltage.txt", self.data_ephy) def ephy_recording_thread(self): if self.record_electrophysiological_trace_radioButton.isChecked(): while self.recording: data = self.start_recording() self.graph_voltage() self.ephy_data.append(data) self.save_ephy_data(self.ephy_data) def start_stimulation(self): print('stimulation start') # set_voltage_value = 5. self.stim_data = np.array([5]*1000) self.stim_data[1:100] = 0 self.stim_data[900:1000] = 0 # self.stim_data = np.array([5]) n=1000 sampsPerChanWritten=PyDAQmx.int32() # self.analog_output.WriteAnalogScalarF64(1, 10.0, set_voltage_value, None) # self.analog_output.WriteAnalogF64(1000, 0, 10.0, PyDAQmx.DAQmx_Val_GroupByChannel, self.stim_data, PyDAQmx.byref(sampsPerChanWritten), None) self.analog_output.WriteAnalogF64(n, 0, 10.0, PyDAQmx.DAQmx_Val_GroupByChannel, self.stim_data, PyDAQmx.byref(sampsPerChanWritten), None) self.analog_output.StartTask() self.timings_logfile_dict['ephy_stim']['on'].append((time.perf_counter() - self.perf_counter_init)*1000) # self.pulse[0]=1 # self.write_digital_lines.WriteDigitalLines(1, 1, 5.0, PyDAQmx.DAQmx_Val_GroupByChannel, self.pulse, None, None) def end_stimulation(self): self.analog_output.StopTask() self.timings_logfile_dict['ephy_stim']['off'].append((time.perf_counter() - self.perf_counter_init)*1000) print('stimulation end') # self.pulse[0]=0 # self.write_digital_lines.WriteDigitalLines(1, 1, 5.0, PyDAQmx.DAQmx_Val_GroupByChannel, self.pulse , None, None) def ephy_stim(self): self.start_stimulation() custom_sleep_function(2500) self.end_stimulation() if __name__ == "__main__": app = QApplication(sys.argv) win = ElectrophysiologyGui() win.showMaximized() app.exit(app.exec_()) ```
{ "source": "jeremy-frank/advent-of-code", "score": 4 }
#### File: 2020/day16/day16ab.py ```python def load_ticket(): ticket = [] #datafile = 'input-day16-ticket-example' datafile = 'input-day16-ticket' with open(datafile, 'r') as input: for line in input: bits = line.strip().split(",") for x in bits: ticket.append(int(x)) return ticket def load_rules(): # part1 - single list of all possible values rule_full_range = [] # part2 - dictionary holding the individual rules rules = {} #datafile = 'input-day16-rules-example' datafile = 'input-day16-rules' with open(datafile, 'r') as input: for line in input: line = line.strip().replace(":", ",").replace(" or", ",") items = line.split(",") rule_range = [] for numrun in [items[1], items[2]]: nums = numrun.split("-") for x in range(int(nums[0]), int(nums[1]) + 1): rule_range.append(x) rule_full_range.append(x) rules[items[0]] = rule_range rule_full_range.sort() return rules, set(rule_full_range) def load_nearby_tickets(): nearby_tickets = [] #datafile = 'input-day16-nearby-tickets-example' datafile = 'input-day16-nearby-tickets' with open(datafile, 'r') as input: for line in input: bits = line.strip().split(",") nearby_tickets.append([int(x) for x in bits]) return nearby_tickets def part1(rule_range, nearby_tickets): invalid_values = [] for ticket in nearby_tickets: for val in ticket: if val not in rule_range: invalid_values.append(val) return sum(invalid_values) def validate_tickets(rule_range, nearby_tickets): valid_tickets = [] for ticket in nearby_tickets: valid = True for val in ticket: if val not in rule_range: valid = False if valid: valid_tickets.append(ticket) #else: # print(f"Invalid ticket: {ticket}") return valid_tickets def process_tickets(rules, tickets, my_ticket): # for each position, find all rules that could match it pos_matches = {} for pos in range(len(tickets[0])): pos_matches[pos] = [] for rule in rules: rule_range = rules[rule] rule_match = True for ticket in tickets: if ticket[pos] not in rule_range: rule_match = False break if rule_match: print(f"{pos} {rule}") pos_matches[pos].append(rule) print(f"\n\npos_matches: {pos_matches}\n\n") # narrow it down - figure out which position maps to what rule pos_solution = {} solved_rule = [] while len(pos_solution) < len(rules): new_pos_matches = {} for pos in pos_matches: if len(pos_matches[pos]) == 1: # found a solution! (add to pos_solution and not to new_pos_matches) pos_solution[pos] = pos_matches[pos][0] solved_rule.append(pos_matches[pos][0]) print(f"updated pos_solution: {pos_solution}") elif len(pos_matches[pos]) == 0: # shouldn't ever happen print("ERROR") else: # no solution yet, so add anything that isn't yet solved to new_pos_matches new_pos_matches[pos] = [] for item in pos_matches[pos]: if item not in solved_rule: new_pos_matches[pos].append(item) pos_matches = new_pos_matches # print out the full position:rule mapping print("\n") for x in range(len(pos_solution)): print(f"{x}: {pos_solution[x]}") # calculate the solution print("\n") answer = 1 for pos in pos_solution: if "departure" in pos_solution[pos]: print(f"{pos} - {pos_solution[pos]}, ticket value {my_ticket[pos]}") answer *= my_ticket[pos] return answer if __name__ == '__main__': my_ticket = load_ticket() print(f"my_ticket: {my_ticket} \n") rules, rule_range = load_rules() print(f"rules: {rules} \n") print(f"rule_range: {rule_range} \n") nearby_tickets = load_nearby_tickets() print(f"nearby_tickets: {nearby_tickets} \n") results1 = part1(rule_range, nearby_tickets) valid_tickets = validate_tickets(rule_range, nearby_tickets) results2 = process_tickets(rules, valid_tickets, my_ticket) print(f"\nPart 1 - {results1}") print(f"Part 2 - {results2}\n") ``` #### File: 2020/day21/day21ab.py ```python def load_data(): """ Spent a long time coming up with this probably bad data structure: food { 1: { ingredients: [], allergens: [], } } """ all_ingredients = [] all_allergens = [] food = {} food_id = 0 #datafile = 'input-day21-example' datafile = 'input-day21' with open(datafile, 'r') as input: for line in input: food_id += 1 bits = line.strip().replace(")", "").split(" (contains ") ingredients = bits[0].split() allergens = bits[1].split(", ") food[food_id] = {} food[food_id]["ing"] = ingredients food[food_id]["all"] = allergens for ing in ingredients: all_ingredients.append(ing) for allergen in allergens: all_allergens.append(allergen) all_allergens.sort() all_ingredients.sort() uniq_allergens = set(all_allergens) uniq_ingredients = set(all_ingredients) return food, uniq_allergens, uniq_ingredients, all_ingredients def part1(food, uniq_allergens, uniq_ingredients, all_ingredients): # generate a list of suspects for each allergen suspects = {} bad_ingredients = [] for allergen in uniq_allergens: suspects[allergen] = [] for ingredient in uniq_ingredients: if check_food(food, ingredient, allergen): suspects[allergen].append(ingredient) bad_ingredients.append(ingredient) print(f"suspects: {suspects}") #bad_ingredients = ['bsqh', 'cxk', 'cpbzbx', 'kqprv', 'lmzg', 'drbm', 'cfnt', 'bdvmx'] good_ingredient_count = 0 for ingredient in all_ingredients: if ingredient not in bad_ingredients: good_ingredient_count += 1 return good_ingredient_count def check_food(food, ingredient, allergen): """Need to find at least one allergen <-> ingredient match, and zero failed matches""" found_at_least_one_match = False for food_id in food: if allergen in food[food_id]["all"]: if ingredient not in food[food_id]["ing"]: return False else: found_at_least_one_match = True return found_at_least_one_match if __name__ == '__main__': food, uniq_allergens, uniq_ingredients, all_ingredients = load_data() print(f"food: {food} \n") results1 = part1(food, uniq_allergens, uniq_ingredients, all_ingredients) print(f"\nPart 1 - {results1}") ``` #### File: 2020/day2/day2a.py ```python def compute(): validpasswords = 0 datafile = 'input-day2' with open(datafile, 'r') as input: for line in input: cleanline = line.strip() minmax, letter, password = cleanline.split() min, max = minmax.split('-') letter = letter[0] if evaluate_password(min, max, letter, password): validpasswords += 1 print(f"found a valid password: {cleanline}") return validpasswords def evaluate_password(min, max, letter, password): lettercount = 0 for char in password: if char == letter: lettercount += 1 if lettercount >= int(min) and lettercount <= int(max): return True return False if __name__ == '__main__': results = compute() print(results) ``` #### File: 2020/day8/day8b.py ```python import copy def load_data(): code = [] datafile = 'input-day8' with open(datafile, 'r') as input: for line in input: parts = line.strip().split() code.append([parts[0], int(parts[1])]) return code def process_data(code): for num in range(len(code)): line = code[num] print(f"investigating {num} - {line}") if line[0] == "acc": pass elif line[0] in ["jmp", "nop"]: tempcode = copy.deepcopy(code) if line[0] == "jmp": tempcode[num] = ["nop", line[1]] elif line[0] == "nop": tempcode[num] = ["jmp", line[1]] print(f" - testing line {num} - changed jmp to {tempcode[num]}") accumulator, successful_test = run_code(tempcode) if successful_test: print(f"Success! changed line {num} - {line}") return accumulator def run_code(code): accumulator = 0 location = 0 visited_locations = [] while location < len(code): # failure! (infinite loop) if location in visited_locations: return accumulator, False line = code[location] visited_locations.append(location) if line[0] == "acc": accumulator += line[1] location += 1 elif line[0] == "jmp": location += line[1] elif line[0] == "nop": location += 1 # success! return accumulator, True if __name__ == '__main__': data = load_data() print(data) results = process_data(data) print(results) ``` #### File: 2021/day1/day1.py ```python def load_data(): data = [] datafile = 'input-day1' with open(datafile, 'r') as input: for line in input: num = line.strip() data.append(int(num)) return data def part1(depths): """ Count the number of times a depth measurement increases from the previous measurement How many measurements are larger than the previous measurement? """ depth_increases = 0 previous_depth = depths[0] for depth in depths: if depth > previous_depth: depth_increases += 1 previous_depth = depth return depth_increases def part2(depths): """ Use the sum of 3-value windows to determine if the depth has increased or not If there are not at least 3 values left, stop """ depth_increases = 0 previous_depth_sum = depths[0] + depths[1] + depths[2] for i in range(len(depths)): if i+2 >= len(depths): return depth_increases current_depth_sum = depths[i] + depths[i+1] + depths[i+2] if current_depth_sum > previous_depth_sum: depth_increases += 1 previous_depth_sum = current_depth_sum if __name__ == '__main__': data = load_data() print(f"{data}\n") results1 = part1(data) print(f"Part 1 - {results1}") results2 = part2(data) print(f"Part 2 - {results2}\n") ``` #### File: 2021/day3/day3.py ```python from copy import deepcopy def load_data(): #datafile = 'input-day3-example' datafile = 'input-day3' data = [] with open(datafile, 'r') as input: for line in input: data.append(line.strip()) return data def part1(report): """ Use the binary numbers in the diagnostic report to generate two new binary numbers (called the gamma rate and the epsilon rate) The power consumption can then be found by multiplying the gamma rate by the epsilon rate. gamma rate: Find the most common bit in the corresponding position of all numbers in the diagnostic report epsilon rate: Find the least common bit in each position """ gamma = "" epsilon = "" for pos in range(len(report[0])): # count the zeros and ones in the current position zero_count = 0 one_count = 0 for line in report: if line[pos] == "0": zero_count += 1 else: one_count += 1 # evaluate the counts and determine what next value should be if zero_count > one_count: gamma += "0" epsilon += "1" elif one_count > zero_count: gamma += "1" epsilon += "0" else: print("ERROR: Same amount of zeros and ones!") # convert binary to decimal gamma_dec = int(gamma, 2) epsilon_dec = int(epsilon, 2) return gamma_dec * epsilon_dec def part2(report): """ Verify the life support rating, which can be determined by multiplying the oxygen generator rating by the CO2 scrubber rating Start with the full list of binary numbers from your diagnostic report and consider just the first bit of those numbers Keep only numbers selected by the bit criteria (see below) If you only have one number left, stop; this is the rating value for which you are searching. Otherwise, repeat the process, considering the next bit to the right Bit Criteria: Oxygen generator rating: determine the most common value (0 or 1) in the current bit position, and keep only numbers with that bit in that position. If 0 and 1 are equally common, keep values with a 1 in the position being considered CO2 scrubber rating: determine the least common value (0 or 1) in the current bit position, and keep only numbers with that bit in that position. If 0 and 1 are equally common, keep values with a 0 in the position being considered """ oxygen_rating = find_rating("oxygen", report) co2_rating = find_rating("co2", report) return oxygen_rating * co2_rating def find_rating(rating_type, original_report): report = deepcopy(original_report) for pos in range(len(report[0])): # count the zeros and ones in the current position zero_count = 0 one_count = 0 for line in report: if line[pos] == "0": zero_count += 1 else: one_count += 1 # evaluate the counts and determine what the bad (unwanted) value is if (rating_type == "oxygen" and zero_count > one_count) or (rating_type == "co2" and zero_count <= one_count): bad_val = "1" else: bad_val = "0" # remove unwanted items in the report for line in deepcopy(report): if line[pos] == bad_val: report.remove(line) # if there's only one item left, we've found it if len(report) == 1: # convert binary to decimal return int(report[0], 2) if __name__ == '__main__': data = load_data() print(f"Data: {data}\n") print(f"Part 1: {part1(data)}") print(f"Part 2: {part2(data)}\n") ``` #### File: 2021/day5/day5.py ```python from copy import deepcopy from pprint import pprint def load_data(): #datafile = 'input-day5-example' datafile = 'input-day5' data = [] with open(datafile, 'r') as input: for line in input: str_points = line.strip().replace(" -> ",",").split(",") points = [int(point) for point in str_points] data.append(points) return data def part1_and_2(lines, draw_diagonal=False): """ Part1: Consider only horizontal and vertical lines. Part2: Consider horizontal, vertical, *and* diagonal lines. All diagonal lines will be exactly 45 degrees At how many points do at least two lines overlap? """ # create the empty graph graph = dict() for y in range(0,1000): graph[y] = [0 for x in range(1000)] # draw lines: for line in lines: x1, y1, x2, y2 = line[0], line[1], line[2], line[3] # vertical line: if x1 == x2: for i in range(min(y1, y2), max(y1, y2)+1): graph[i][x1] += 1 # horizontal line: elif y1 == y2: for i in range(min(x1, x2), max(x1, x2)+1): graph[y1][i] += 1 # everything else must be a diagonal line: elif draw_diagonal: if x1 > x2: # ensure x increases from x1 to x2 x1, y1, x2, y2 = line[2], line[3], line[0], line[1] while x1 <= x2: graph[y1][x1] += 1 x1 += 1 if y1 < y2: # downhill slope y1 += 1 else: # uphill slope y1 -= 1 # count the number of crossing lines crossing_lines = 0 for y in graph: for spot in graph[y]: if spot > 1: crossing_lines += 1 return crossing_lines def alternate_solution(lines, draw_diagonal=False): """ Inspired by a few solutions I saw - instead of a graph, just use a dict with coordinates as keys Also, splice in the crossed line counting to avoid a final sweep through the dict at the end This solution should be faster, but harder to troubleshoot, as you cannot just print out the graph """ from collections import defaultdict graph = defaultdict(int) crossing_lines = 0 # add coordinates to the "graph": for line in lines: x1, y1, x2, y2 = line[0], line[1], line[2], line[3] # vertical line: if x1 == x2: for i in range(min(y1, y2), max(y1, y2)+1): graph[(i, x1)] += 1 if graph[(i, x1)] == 2: crossing_lines += 1 # horizontal line: elif y1 == y2: for i in range(min(x1, x2), max(x1, x2)+1): graph[(y1, i)] += 1 if graph[(y1, i)] == 2: crossing_lines += 1 # everything else must be a diagonal line: elif draw_diagonal: if x1 > x2: # ensure x increases from x1 to x2 x1, y1, x2, y2 = line[2], line[3], line[0], line[1] while x1 <= x2: graph[(y1, x1)] += 1 if graph[(y1, x1)] == 2: crossing_lines += 1 x1 += 1 if y1 < y2: y1 += 1 else: y1 -= 1 return crossing_lines if __name__ == '__main__': data = load_data() print(f"Data: {data}\n") print(f"Part 1: {part1_and_2(data)}") print(f"Part 2: {part1_and_2(data, draw_diagonal=True)}\n") print(f"Alernate Solution: {alternate_solution(data, draw_diagonal=True)}\n") ``` #### File: 2021/day6/day6.py ```python from copy import deepcopy from pprint import pprint def load_data(): #datafile = 'input-day6-example' datafile = 'input-day6' with open(datafile, 'r') as input: for line in input: str_data = line.strip().split(",") data = [int(x) for x in str_data] return data def part1(fish): """ Each lanternfish creates a new lanternfish once every 7 days New lanternfish need an extra 2 days for their first cycle 7-day timer is 0-6 How many lanternfish would there be after 80 days? """ for day in range(80): for i in range(len(fish)): if fish[i] > 0: fish[i] -= 1 else: fish[i] = 6 fish.append(8) return len(fish) def part2(fish_list): """ How many lanternfish would there be after 256 days? """ fish = { i:0 for i in range(9) } for timer in fish_list: fish[timer] += 1 for day in range(256): new_fish = { i:0 for i in range(9) } for timer in fish: if timer > 0: new_fish[timer-1] += fish[timer] else: new_fish[6] += fish[timer] new_fish[8] += fish[timer] fish = new_fish # pprint(fish) return sum(fish.values()) if __name__ == '__main__': data = load_data() print(f"Data: {data}\n") print(f"Part 1: {part1(deepcopy(data))}") print(f"Part 2: {part2(deepcopy(data))}\n") ``` #### File: 2021/day8/day8.py ```python from copy import deepcopy def load_data(): #datafile = 'input-day8-example' datafile = 'input-day8' data = [] with open(datafile, 'r') as input: for line in input: patterns_and_values = line.strip().split(" | ") signal_patterns = patterns_and_values[0].split() output_values = patterns_and_values[1].split() data.append([signal_patterns, output_values]) return data def part1(data): """ Each digit of a seven-segment display is rendered by turning on or off any of seven segments named a through g There are ten unique signal patterns: 0: 1: 2: 3: 4: aaaa .... aaaa aaaa .... b c . c . c . c b c b c . c . c . c b c .... .... dddd dddd dddd e f . f e . . f . f e f . f e . . f . f gggg .... gggg gggg .... 5: 6: 7: 8: 9: aaaa aaaa aaaa aaaa aaaa b . b . . c b c b c b . b . . c b c b c dddd dddd .... dddd dddd . f e f . f e f . f . f e f . f e f . f gggg gggg .... gggg gggg Each entry consists of ten unique signal patterns, a | delimiter, and finally the four digit output value Within an entry, the same wire/segment connections are used (but you don't know what the connections actually are) In the output values, how many times do digits 1, 4, 7, or 8 appear? """ count_1478 = 0 for item in data: for output_value in item[1]: if len(output_value) in [2, 3, 4, 7]: count_1478 += 1 return count_1478 def part2(data): """ Solve for all 10 digits (0 - 9), then use the map of signals to numbers to figure out the output values What do you get if you add up all of the output values? Hmm I should try itertools.permutations """ total_output_value = 0 for item in data: signal_map = map_signal_patterns(item[0]) total_output_value += compute_output_value(item[1], signal_map) return total_output_value def map_signal_patterns(signal_patterns): number_map = {} # First, solve for 1/4/7/8 for pattern in signal_patterns: p = "".join(sorted(pattern)) if len(p) == 2: number_map["1"] = p elif len(p) == 4: number_map["4"] = p elif len(p) == 3: number_map["7"] = p elif len(p) == 7: number_map["8"] = p # Now that we know 1 and 4, we can use that knowledge to solve for the remaining numbers for pattern in signal_patterns: p = "".join(sorted(pattern)) # length 6 can be a 0, 6, or 9 if len(p) == 6: # only 6 is not a superset of 1 if number_map["1"][0] not in p or number_map["1"][1] not in p: number_map["6"] = p # only 9 is a superset of 4 else: is_nine = True for char in number_map["4"]: if char not in p: is_nine = False if is_nine: number_map["9"] = p else: number_map["0"] = p # length 5 can be a 2, 3, or 5 elif len(p) == 5: # only 3 is a superset of 1 if number_map["1"][0] in p and number_map["1"][1] in p: number_map["3"] = p else: four_overlap_count = 0 for char in number_map["4"]: if char in p: four_overlap_count += 1 # 4 shares exactly three characters with a 5 if four_overlap_count == 3: number_map["5"] = p # 4 shares exactly two characters with a 5 elif four_overlap_count == 2: number_map["2"] = p else: print("ERROR in 2/3/5 logic") # flip the keys and values in the number map to create the signal map signal_map = { number_map[x]: x for x in number_map} return signal_map def compute_output_value(output_values, signal_map): final_value = "" for value in output_values: sorted_value = "".join(sorted(value)) final_value += signal_map[sorted_value] return int(final_value) if __name__ == '__main__': data = load_data() print(f"Data1: {data}\n") print(f"Part 1: {part1(deepcopy(data))}\n") print(f"Part 2: {part2(deepcopy(data))}\n") ```
{ "source": "jeremygatineau/Emergent-Communication-in-MARL", "score": 2 }
#### File: PredictionGame/agents/agent_AriaAC_ER.py ```python import torch import torchvision import torch.nn as nn import numpy as np from torch.distributions import Categorical import torch.nn.utils as utils from torch.autograd import Variable class AriaAC_ER(nn.Module): def __init__(self,opt_params, with_memory=False, aidi=None): super(AriaAC_ER, self).__init__() self.aidi = aidi self.batch_size = opt_params["batch_size"] self.gamma = opt_params["gamma"] self.vocabulary_size = opt_params["vocab_size"] self.epsilon = opt_params["eps"] self.replay_size = opt_params["replay_size"] self.training_loops = opt_params["training_loops"] self.eps = np.finfo(np.float32).eps.item() self.hiddenDim = 8 self.memory_size = 8 self.with_memory = with_memory self.obs_Mod = lin_Mod([2, self.hiddenDim//2]) self.msg_Enc = lin_Mod([4, self.hiddenDim//2, self.hiddenDim//2], sftmx = False) self.rep_Mod = lin_Mod([self.hiddenDim, self.hiddenDim]) if self.with_memory: self.memory = nn.LSTMCell(self.hiddenDim, self.memory_size) self.memories = [torch.zeros([1, 2*self.memory_size], dtype=torch.float32) for _ in range(self.replay_size+1)] self.action_Mod = nn.Sequential(lin_Mod([self.memory_size, 1], sftmx = False), nn.Sigmoid()) self.msg_Dec = lin_Mod([self.memory_size, self.memory_size, self.vocabulary_size], sftmx=True) self.value_head = lin_Mod([self.memory_size, self.memory_size, 1]) self.hidden_statesTable = np.zeros(self.replay_size) else : self.memory = None self.memories = None self.action_Mod = lin_Mod([self.hiddenDim, 1], sftmx = True) self.value_head = lin_Mod([self.hiddenDim, 1]) self.optimizer = torch.optim.Adam(self.parameters(), lr=opt_params["lr"]) self.saved_act_Logp = [] self.saved_values = [] self.saved_entropies = [] self.saved_msg_Logp = [] self.saved_hid_states = [] self.saved_rewards = [] self.saved_obs = [] self.saved_downlink_msgs = [] self.batch_counter = 0 def forward(self, obs, msg, memory): o = self.obs_Mod(obs) m = self.msg_Enc(msg) z = self.rep_Mod(torch.cat([o, m], -1)) if self.with_memory: hz, cz = self.memory(z, (memory[:, :self.memory_size], memory[:, self.memory_size:])) out_memory = torch.cat([hz, cz], dim=1) else: hz = z out_memory = None action = self.action_Mod(hz) message = self.msg_Dec(hz) value = self.value_head(hz) return action, message, out_memory, value def select_action(self, obs, msg): obs_t = torch.tensor([obs], dtype=torch.float32) msg_t = torch.tensor([msg], dtype=torch.float32) if self.with_memory: action, message, hid_state, value = self.forward(obs_t.float(), msg_t.float(), self.memories[self.hidden_statesTable[-1]]) self.memories[self.replay_counter+1] = hid_state else: action, message, _, value = self.forward(obs_t.float(), msg_t.float(), None) a_distrib = Categorical(torch.cat([action, 1-action], -1)) m_distrib = Categorical(message) a = a_distrib.sample() m = m_distrib.sample() a_entropy = a_distrib.entropy() m_entropy = m_distrib.entropy() self.pushBufferSelect(a_distrib.log_prob(a), m_distrib.log_prob(m), value, a_entropy + m_entropy) return a, m def train_on_batch(self, state, reward): #self.popBuffer() self.pushBufferEpisode(state[0], state[1], reward) self.batch_counter += 1 if self.batch_counter >= self.batch_size: self.optimizer.zero_grad() returns = self.getReturns(normalize=True) returns = torch.tensor(returns) rewards = torch.tensor(self.saved_rewards) policy_loss = 0 value_loss = 0 for i in range(self.batch_size-1): advantage = rewards[i]+self.saved_values[i+1].item()-self.saved_values[i].item() policy_loss += -(self.saved_act_Logp[i] + self.saved_msg_Logp[i])*advantage.detach() value_loss += advantage.pow(2) """for a_logp, m_logp, ret, val, entro in zip(self.saved_act_Logp, self.saved_msg_Logp, returns, self.saved_values, self.saved_entropies): advantage = ret - val.item() policy_loss += -(a_logp + m_logp)*advantage.detach() value_loss += advantage.pow(2)""" policy_loss /= self.batch_size value_loss /= self.batch_size entropy_loss = -self.epsilon*torch.cat(self.saved_entropies).sum() loss = policy_loss+ value_loss + entropy_loss loss.backward(retain_graph=True) self.optimizer.step() mean_policy = torch.cat(self.saved_act_Logp, 0).exp().mean(dim=0) rewards = np.copy(self.saved_rewards) self.reset_Buffer() return np.round([policy_loss.item(), value_loss.item(), entropy_loss.item()], 2), rewards, mean_policy return None, None, None def getReturns(self, normalize=False): _R = 0 Gs = [] for r in self.saved_rewards[:self.batch_size]: _R = r + self.gamma * _R Gs.insert(0, _R) if normalize==True: return (Gs-np.mean(Gs))/np.std(Gs) return Gs def popBuffer(self): self.saved_act_Logp[:-1] = self.saved_act_Logp[1:] self.saved_values[:-1] = self.saved_values[1:] self.saved_entropies[:-1] = self.saved_entropies[1:] self.saved_msg_Logp[:-1] = self.saved_msg_Logp[1:] self.saved_hid_states[:-1] = self.saved_hid_states[1:] self.saved_rewards[:-1] = self.saved_rewards[1:] self.saved_obs[:-1] = self.saved_obs[1:] self.saved_downlink_msgs[:-1] = self.saved_downlink_msgs[1:] self.memories[self.hidden_statesTable[0]] = torch.zeros([1, 2*self.memory_size], dtype=torch.float32) self.memories[self.hidden_statesTable[1]] = self.hidden_statesTable[1].detach() self.hidden_statesTable[:-1] = self.hidden_statesTable[1:] def sampleBatch(self): indices = np.random.randint(0, self.replay_size, self.batch_size) return indices def pushBufferEpisode(self, obs, msg, reward): self.saved_obs.append(obs) self.saved_downlink_msgs.append(msg) self.saved_rewards.append(reward) def pushBufferSelect(self, a_lp, m_lp, val, ent): self.saved_act_Logp.append(a_lp) self.saved_msg_Logp.append(m_lp) self.saved_values.append(val) self.saved_entropies.append(ent) def reset_Buffer(self): self.memories[0] = self.memories[-1].detach() self.memories[1:] = [torch.zeros([1, 2*self.memory_size], dtype=torch.float32) for _ in range(self.batch_size)] self.saved_act_Logp = [] self.saved_values = [] self.saved_entropies = [] self.saved_msg_Logp = [] self.saved_hid_states = [] self.saved_rewards = [] self.saved_obs = [] self.saved_downlink_msgs = [] self.batch_counter = 0 class lin_Mod(nn.Module): def __init__(self, sizes, sftmx = False): super(lin_Mod, self).__init__() self.sizes = sizes L = [] for i, s in enumerate(sizes[:-1]): L.append(nn.Linear(sizes[i], sizes[i+1])) if i==len(sizes)-2 and sftmx==True: L.append(nn.Softmax(dim=-1)) else : L.append(nn.ReLU()) self.mod = nn.ModuleList(L) def forward(self, x): x_ = x for m in self.mod: x_ = m(x_) return x_ class ariaActor(nn.Module): def __init__(self, hidden_dim=10): super(ariaActor, self).__init__() self.hiddenDim = hidden_dim self.obs_Mod = lin_Mod([2+self.hiddenDim, 5]) self.action_Mod = lin_Mod([self.hiddenDim, 2], sftmx = True) self.msg_Enc = lin_Mod([4, 5], sftmx = False) self.msg_Dec = lin_Mod([self.hiddenDim, 4], sftmx=True) self.rep_Mod = lin_Mod([self.hiddenDim, self.hiddenDim]) def forward(self, obs, msg, last_state): inO = torch.cat([obs, last_state[self.batch_counter]], -1) o = self.obs_Mod(inO) m = self.msg_Enc(msg) new_state = self.rep_Mod(torch.cat([o, m], -1)) action = self.action_Mod(new_state) message = self.msg_Dec(new_state) return action, message, new_state ``` #### File: PredictionGame/agents/agent_AriaAC.py ```python import torch import torchvision import torch.nn as nn import numpy as np from torch.distributions import Categorical import torch.nn.utils as utils from torch.autograd import Variable class AriaAC: def __init__(self,opt_params, with_memory=True, split= False, aidi=None): self.aidi = aidi self.batch_size = opt_params["batch_size"] self.gamma = opt_params["gamma"] self.vocabulary_size = opt_params["vocab_size"] self.memory_size = opt_params["memory_size"] self.hidden_dim = opt_params["hidden_size"] self.gc = opt_params["grad_clamp"] self.eps = np.finfo(np.float32).eps.item() self.with_memory = with_memory self.split = split if split: self.modT = ariaModelSplit(batch_size=self.batch_size, vocabulary_size=self.vocabulary_size, memory_size=self.memory_size, hidden_dim=self.hidden_dim, with_memory=self.with_memory).float().train() self.modI = ariaModelSplit(batch_size=self.batch_size, vocabulary_size=self.vocabulary_size, memory_size=self.memory_size, hidden_dim=self.hidden_dim, with_memory=self.with_memory).float().eval() else: self.modT = ariaModel(batch_size=self.batch_size, vocabulary_size=self.vocabulary_size, memory_size=self.memory_size, hidden_dim=self.hidden_dim, with_memory=self.with_memory).float().train() self.modI = ariaModel(batch_size=self.batch_size, vocabulary_size=self.vocabulary_size, memory_size=self.memory_size, hidden_dim=self.hidden_dim, with_memory=self.with_memory).float().eval() if self.with_memory: if split: self.hid_states = [[torch.zeros(1, 2*self.memory_size).detach(), torch.zeros(1, 2*self.memory_size).detach()]] else: self.hid_states = [torch.zeros(1, 2*self.memory_size).detach()] else: self.hid_states = None self.optimizer = torch.optim.Adam(self.modT.parameters(), lr=opt_params["lr"]) self.saved_a_lp = torch.zeros(self.batch_size) self.saved_m_lp = torch.zeros(self.batch_size) self.saved_rewards = torch.zeros(self.batch_size) self.saved_values = torch.zeros(self.batch_size) self.saved_entropies = torch.zeros(self.batch_size) def select_action(self, obs, msg, hiden_state): obs_t = torch.tensor([obs], dtype=torch.float32) msg_t = torch.tensor([msg], dtype=torch.float32) if self.with_memory: action, message, hid_state = self.modIActor.forward(obs_t.float(), msg_t.float(), self.memoriesActor[-1]) #hid_state_critic, _ = self.modTCritic.forward(obs_t.float(), msg_t.float(), self.memoriesCritic[-1], action, message) if len(self.saved_obs) <self.replay_size: self.memoriesActor.append(hid_state.detach()) #self.memoriesCritic.append(hid_state_critic.detach()) else: self.memoriesActor[-1] = hid_state.detach() #self.memoriesCritic[-1] = hid_state_critic.detach() else: action, message, _, = self.modIActor.forward(obs_t.float(), msg_t.float(), None) a_distrib = Categorical(torch.cat([action, 1-action], -1)) m_distrib = Categorical(message) a = torch.argmax(a_distrib.probs, axis=1) m = torch.argmax(m_distrib.probs, axis=1) return a, m def select_actionTraing(self, obs, msg, bt): obs_t = torch.tensor([obs], dtype=torch.float32) msg_t = torch.tensor([msg], dtype=torch.float32) if self.with_memory: action, message, hid_state, value = self.modT.forward(obs_t.float(), msg_t.float(), self.hid_states[-1]) else: action, message, _, value = self.modT.forward(obs_t.float(), msg_t.float(), None) a_distrib = Categorical(torch.cat([action, 1-action], -1)) m_distrib = Categorical(message) a = a_distrib.sample() m = m_distrib.sample() a_entropy = a_distrib.entropy() m_entropy = m_distrib.entropy() self.saved_a_lp[bt] = a_distrib.log_prob(a) self.saved_m_lp[bt] = m_distrib.log_prob(m) self.saved_entropies[bt] = a_entropy+m_entropy if self.with_memory: self.hid_states.append(hid_state) self.saved_values[bt] = value return a, m, torch.cat([action, 1-action], -1), message def train_online(self, rewards): returns = torch.tensor(self.getReturns(rewards)) adv = rewards[:-1]-self.saved_values[:-1]+self.gamma*self.saved_values[1:] # TD error policy_loss = -(self.saved_a_lp[:-1] + self.saved_m_lp[:-1])*adv.detach() value_loss = nn.functional.smooth_l1_loss(rewards[:-1]+self.gamma*self.saved_values[1:], self.saved_values[:-1], reduction='none')# adv.pow(2) #adv = returns-self.saved_values # TD error with returns, should be better cause no bias #policy_loss = -(self.saved_a_lp + self.saved_m_lp)*adv.detach() #value_loss = nn.functional.smooth_l1_loss(returns, self.saved_values, reduction='none')# adv.pow(2) entropy_loss = -self.saved_entropies.mean() loss = policy_loss.mean() + value_loss.mean() + self.eps*entropy_loss loss.backward(retain_graph=True) if self.gc is not None: self.grad_clamp(self.modT.parameters(), self.gc) self.optimizer.step() # Reset buffers after training on batch if self.with_memory: if self.split: self.hid_states = [[self.hid_states[-1][0].detach(), self.hid_states[-1][1].detach()]] else: self.hid_states = [self.hid_states[-1].detach()] self.saved_a_lp = torch.zeros(self.batch_size, dtype=torch.float32) self.saved_m_lp = torch.zeros(self.batch_size, dtype=torch.float32) self.saved_rewards = torch.zeros(self.batch_size, dtype=torch.float32) self.saved_values = torch.zeros(self.batch_size, dtype=torch.float32) self.saved_entropies = torch.zeros(self.batch_size, dtype=torch.float32) return policy_loss, value_loss, entropy_loss def train_offline(self, trajectory): obs_t = torch.tensor([trajectory.obs], dtype=torch.float32) msg_t = torch.tensor([trajectory.msg], dtype=torch.float32) def getReturns(self, rewards, normalize=False): _R = 0 Gs = [] for r in rewards: _R = r + self.gamma * _R Gs.insert(0, _R) if normalize==True: return (Gs-np.mean(Gs))/(np.std(Gs)+self.eps) return Gs def grad_clamp(self, parameters, clip=0.1): for p in parameters: if p.grad is not None: p.grad.clamp_(min=-clip) p.grad.clamp_(max=clip) class ariaModel(nn.Module): def __init__(self, batch_size, vocabulary_size, hidden_dim=10, memory_size=8, with_memory=True): super(ariaModel, self).__init__() self.hiddenDim = hidden_dim self.memory_size = memory_size self.with_memory = with_memory self.batch_size = batch_size self.vocabulary_size = vocabulary_size self.obs_Mod = nn.Sequential(nn.Linear(2, self.hiddenDim//2), nn.ReLU()) self.msg_Enc = nn.Sequential(nn.Linear(self.vocabulary_size, self.hiddenDim//2), nn.ReLU(), nn.Linear(self.hiddenDim//2, self.hiddenDim//2), nn.ReLU()) self.rep_Mod = nn.Sequential(nn.Linear(self.hiddenDim, self.hiddenDim), nn.ReLU()) if self.with_memory: self.memory = nn.LSTMCell(self.hiddenDim, self.memory_size) self.action_Mod = nn.Sequential(nn.Linear(self.memory_size, 1), nn.Sigmoid()) self.msg_Dec = nn.Sequential(nn.Linear(self.memory_size, self.memory_size), nn.Linear(self.memory_size, self.vocabulary_size), nn.Softmax(dim=-1)) self.value_head = nn.Sequential(nn.Linear(self.memory_size, self.memory_size), nn.Linear(self.memory_size, 1)) else : self.memory = None self.action_Mod = nn.Sequential(nn.Linear(self.hiddenDim, 1), nn.Sigmoid()) self.msg_Dec = nn.Sequential(nn.Linear(self.hiddenDim, self.hiddenDim), nn.Linear(self.hiddenDim, self.vocabulary_size), nn.Softmax(dim=-1)) self.value_head = nn.Sequential(nn.Linear(self.hiddenDim, self.hiddenDim), nn.Linear(self.hiddenDim, 1)) def forward(self, obs, msg, memory): o = self.obs_Mod(obs) m = self.msg_Enc(msg) z = self.rep_Mod(torch.cat([o, m], -1)) if self.with_memory: hz, cz = self.memory(z, (memory[:, :self.memory_size], memory[:, self.memory_size:])) out_memory = torch.cat([hz, cz], dim=1) else: hz = z out_memory = None action = self.action_Mod(hz) message = self.msg_Dec(hz) value = self.value_head(hz) return action, message, out_memory, value class ariaModelSplit(nn.Module): def __init__(self, batch_size, vocabulary_size, hidden_dim=10, memory_size=8, with_memory=True): super(ariaModelSplit, self).__init__() self.hiddenDim = hidden_dim self.memory_size = memory_size self.with_memory = with_memory self.batch_size = batch_size self.vocabulary_size = vocabulary_size self.obs_Mod_A = nn.Sequential(nn.Linear(2, self.hiddenDim//2), nn.ReLU()) self.msg_Enc_A = nn.Sequential(nn.Linear(self.vocabulary_size, self.hiddenDim//2), nn.ReLU(), nn.Linear(self.hiddenDim//2, self.hiddenDim//2), nn.ReLU()) self.rep_Mod_A = nn.Sequential(nn.Linear(self.hiddenDim, self.hiddenDim), nn.ReLU()) self.obs_Mod_M = nn.Sequential(nn.Linear(2, self.hiddenDim//2), nn.ReLU()) self.msg_Enc_M = nn.Sequential(nn.Linear(self.vocabulary_size, self.hiddenDim//2), nn.ReLU(), nn.Linear(self.hiddenDim//2, self.hiddenDim//2), nn.ReLU()) self.rep_Mod_M = nn.Sequential(nn.Linear(self.hiddenDim, self.hiddenDim), nn.ReLU(), nn.Linear(self.hiddenDim, self.hiddenDim), nn.ReLU(), nn.Linear(self.hiddenDim, self.hiddenDim), nn.ReLU(), nn.Linear(self.hiddenDim, self.hiddenDim), nn.ReLU()) if self.with_memory: self.memory_A = nn.LSTMCell(self.hiddenDim, self.memory_size) self.memory_M = nn.LSTMCell(self.hiddenDim, self.memory_size) self.action_Mod = nn.Sequential(nn.Linear(self.memory_size, 1), nn.Sigmoid()) self.msg_Dec = nn.Sequential(nn.Linear(self.memory_size, self.memory_size), nn.Linear(self.memory_size, self.vocabulary_size), nn.Softmax(dim=-1)) self.value_head = nn.Sequential(nn.Linear(self.memory_size, self.memory_size), nn.Linear(self.memory_size, 1)) else : self.memory_A = None self.memory_M = None self.action_Mod = nn.Sequential(nn.Linear(self.hiddenDim, 1), nn.Sigmoid()) self.msg_Dec = nn.Sequential(nn.Linear(self.hiddenDim, self.hiddenDim), nn.Linear(self.hiddenDim, self.vocabulary_size), nn.Softmax(dim=-1)) self.value_head = nn.Sequential(nn.Linear(self.hiddenDim, self.hiddenDim), nn.Linear(self.hiddenDim, 1)) def forward(self, obs, msg, memory, value_only=False, action_only=False): memoryA, memoryM = memory action = None message = None out_memory = [None, None] value = None if not value_only: # action encoding oA = self.obs_Mod_A(obs) mA = self.msg_Enc_A(msg) zA = self.rep_Mod_A(torch.cat([oA, mA], -1)) if self.with_memory: hzA, czA = self.memory_A(zA, (memoryA[:, :self.memory_size], memoryA[:, self.memory_size:])) out_memory[0] = torch.cat([hzA, czA], dim=1) else: hzA = zA action = self.action_Mod(hzA) message = self.msg_Dec(hzA) if not action_only: # value encoding oM = self.obs_Mod_M(obs) mM = self.msg_Enc_M(msg) zM = self.rep_Mod_M(torch.cat([oM, mM], -1)) if self.with_memory: hzM, czM = self.memory_M(zM, (memoryM[:, :self.memory_size], memoryM[:, self.memory_size:])) out_memory[1] = torch.cat([hzM, czM], dim=1) else: hzM = zM value = self.value_head(hzM) return action, message, out_memory, value ``` #### File: PredictionGame/agents/agent_AriaOnlineAC.py ```python import torch import torchvision import torch.nn as nn import numpy as np from torch.distributions import Categorical import torch.nn.utils as utils from torch.autograd import Variable class AriaOnlineAC(nn.Module): def __init__(self,opt_params, with_memory=False): super(AriaOnlineAC, self).__init__() self.batch_size = opt_params["batch_size"] self.gamma = opt_params["gamma"] self.eps = np.finfo(np.float32).eps.item() self.hiddenDim = 10 self.memory_size = 10 self.with_memory = with_memory self.obs_Mod = lin_Mod([2, self.hiddenDim//2]) self.action_Mod = lin_Mod([self.hiddenDim, 2], sftmx = True) self.msg_Enc = lin_Mod([4, self.hiddenDim//2], sftmx = False) self.msg_Dec = lin_Mod([self.hiddenDim, 4], sftmx=True) self.rep_Mod = lin_Mod([self.hiddenDim, self.hiddenDim]) if self.with_memory: self.memory = nn.LSTMCell(self.hiddenDim, self.memory_size) self.memories = [torch.zeros([1, 2*self.memory_size], dtype=torch.float32), torch.zeros([1, 2*self.memory_size], dtype=torch.float32)] else : self.memory = None self.memories = None self.value_head = lin_Mod([self.hiddenDim, 1]) self.optimizer = torch.optim.Adam(self.parameters(), lr=opt_params["lr"]) self.saved_act_Logp = [] self.saved_values = [] self.saved_entropies = [] self.saved_msg_Logp = [] self.saved_hid_states = [] self.saved_rewards = [] self.saved_obs = [] self.saved_downlink_msgs = [] self.batch_counter = 0 """def embed_Obs(self, obs): self.zObs = self.obs_Mod(obs) """ def forward(self, obs, msg, memory): o = self.obs_Mod(obs) m = self.msg_Enc(msg) z = self.rep_Mod(torch.cat([o, m], -1)) if self.with_memory: hz, cz = self.memory(z, (memory[:, :self.memory_size], memory[:, self.memory_size:])) out_memory = torch.cat([hz, cz], dim=1) else: hz = z out_memory = None action = self.action_Mod(hz) message = self.msg_Dec(hz) value = self.value_head(hz) return action, message, out_memory, value def select_action(self, obs, msg): obs_t = torch.tensor([obs], dtype=torch.float32) msg_t = torch.tensor([msg], dtype=torch.float32) if self.with_memory: action, message, hid_state, value = self.forward(obs_t.float(), msg_t.float(), self.memories[0]) self.memories[1] = hid_state else: action, message, _, value = self.forward(obs_t.float(), msg_t.float(), None) a_distrib = Categorical(action) m_distrib = Categorical(message) a = a_distrib.sample() m = m_distrib.sample() a_entropy = a_distrib.entropy().sum() m_entropy = m_distrib.entropy().sum() self.saved_act_Logp.append(a_distrib.log_prob(a)) self.saved_msg_Logp.append(m_distrib.log_prob(m)) self.saved_entropies.append(a_entropy + m_entropy) self.saved_values.append(value) return a, m def train_on_batch(self, state, reward, state_): self.saved_obs.append(state[0]) self.saved_downlink_msgs.append(state[1]) self.saved_rewards.append(reward) #self.batch_counter += 1 #if self.batch_counter >= self.batch_size: self.optimizer.zero_grad() policy_loss = 0 value_loss = 0 if self.with_memory: _, _, _, value_ = self.forward(torch.tensor([state_[0]]).float(), torch.tensor([state_[1]]).float(), self.memories[1]) else: _, _, _, value_ = self.forward(torch.tensor([state_[0]]).float(), torch.tensor([state_[1]]).float(), None) advantage = reward + self.gamma*value_.detach()-self.saved_values[0] policy_loss = -(self.saved_act_Logp[0] + self.saved_msg_Logp[0])*advantage.detach() value_loss = advantage.pow(2) loss = policy_loss+value_loss loss.backward(retain_graph=True) self.optimizer.step() rewards = np.copy(self.saved_rewards) self.reset_batch() return (policy_loss.item(), value_loss.item()), rewards #return None, None def getReturns(self, normalize=False): _R = 0 Gs = [] for r in self.saved_rewards[:self.batch_size]: _R = r + self.gamma * _R Gs.insert(0, _R) if normalize==True: return (Gs-np.mean(Gs))/np.std(Gs) return Gs def reset_batch(self): if self.with_memory: self.memories = [self.memories[1], torch.zeros([1, 2*self.memory_size], dtype=torch.float32)] self.saved_act_Logp = [] self.saved_values = [] self.saved_entropies = [] self.saved_msg_Logp = [] self.saved_hid_states = [] self.saved_rewards = [] self.saved_obs = [] self.saved_downlink_msgs = [] self.batch_counter = 0 class lin_Mod(nn.Module): def __init__(self, sizes = [2, 5, 6, 10, 10], sftmx = False): super(lin_Mod, self).__init__() self.sizes = sizes L = [] for i, s in enumerate(sizes[:-1]): L.append(nn.Linear(sizes[i], sizes[i+1])) if i==len(sizes)-2 and sftmx==True: L.append(nn.Softmax(dim=-1)) else : L.append(nn.Tanh()) self.mod = nn.ModuleList(L) def forward(self, x): x_ = x for m in self.mod: x_ = m(x_) return x_ class ariaActor(nn.Module): def __init__(self, hidden_dim=10): super(ariaActor, self).__init__() self.hiddenDim = hidden_dim self.obs_Mod = lin_Mod([2+self.hiddenDim, 5]) self.action_Mod = lin_Mod([self.hiddenDim, 2], sftmx = True) self.msg_Enc = lin_Mod([4, 5], sftmx = False) self.msg_Dec = lin_Mod([self.hiddenDim, 4], sftmx=True) self.rep_Mod = lin_Mod([self.hiddenDim, self.hiddenDim]) def forward(self, obs, msg, last_state): inO = torch.cat([obs, last_state[self.batch_counter]], -1) o = self.obs_Mod(inO) m = self.msg_Enc(msg) new_state = self.rep_Mod(torch.cat([o, m], -1)) action = self.action_Mod(new_state) message = self.msg_Dec(new_state) return action, message, new_state class ariaCritic(nn.Module): def __init__(self, hidden_dim=10): super(ariaCritic, self).__init__() self.hiddenDim = hidden_dim self.obs_Mod = lin_Mod([2+self.hiddenDim, 5]) self.action_Mod = lin_Mod([self.hiddenDim, 2], sftmx = True) self.msg_Enc = lin_Mod([4, 5], sftmx = False) self.msg_Dec = lin_Mod([self.hiddenDim, 4], sftmx=True) self.rep_Mod = lin_Mod([self.hiddenDim, self.hiddenDim]) def forward(self, obs, msg, last_state): inO = torch.cat([obs, last_state[self.batch_counter]], -1) o = self.obs_Mod(inO) m = self.msg_Enc(msg) new_state = self.rep_Mod(torch.cat([o, m], -1)) action = self.action_Mod(new_state) message = self.msg_Dec(new_state) return action, message, new_state ```