metadata
dict
text
stringlengths
60
3.49M
{ "source": "jeromegit/prettier_html_table", "score": 2 }
#### File: prettier_html_table/prettier_html_table/prettier_html_table.py ```python DEFAULT_THEME = 'blue_dark' DEFAULT_FONT_FAMILY = 'Arial, Helvetica, sans-serif' DEFAULT_FONT_SIZE = 'medium' DEFAULT_TEXT_ALIGN = 'left' class ThemeColors: def __init__(self, header_fg_color, header_bg_color, border, odd_bg_color, even_bg_color): self.header_fg_color = header_fg_color self.header_bg_color = header_bg_color self.border = border self.odd_bg_color = odd_bg_color self.even_bg_color = even_bg_color THEME_COLORS = { # header_fg_color header_bg_color border odd_bg_color even_bg_color 'blue_dark': ThemeColors('#FFFFFF', '#305496', '#305496', '#D9E1F2', '#FFFFFF'), 'blue_light': ThemeColors('#305496', '#FFFFFF', '#305496', '#D9E1F2', '#FFFFFF'), 'green_dark': ThemeColors('#FFFFFF', '#548235', '#548235', '#E2EFDA', '#FFFFFF'), 'green_light': ThemeColors('#548235', '#FFFFFF', '#548235', '#E2EFDA', '#FFFFFF'), 'grey_dark': ThemeColors('#FFFFFF', '#808080', '#808080', '#EDEDED', '#FFFFFF'), 'grey_light': ThemeColors('#808080', '#FFFFFF', '#808080', '#EDEDED', '#FFFFFF'), 'orange_dark': ThemeColors('#FFFFFF', '#C65911', '#C65911', '#FCE4D6', '#FFFFFF'), 'orange_light': ThemeColors('#C65911', '#FFFFFF', '#C65911', '#FCE4D6', '#FFFFFF'), 'red_dark': ThemeColors('#FFFFFF', '#823535', '#823535', '#efdada', '#FFFFFF'), 'red_light': ThemeColors('#823535', '#FFFFFF', '#823535', '#efdada', '#FFFFFF'), 'yellow_dark': ThemeColors('#FFFFFF', '#BF8F00', '#BF8F00', '#FFF2CC', '#FFFFFF'), 'yellow_light': ThemeColors('#BF8F00', '#FFFFFF', '#BF8F00', '#FFF2CC', '#FFFFFF'), } def create_html_start(): return ''' <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html lang="en" xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> ''' def create_css(theme, font_family, font_size, text_align): theme = theme.lower() if theme in THEME_COLORS: tc = THEME_COLORS[theme] else: raise ValueError(f"theme:{theme} is an invalid theme. It should be on of these themes:{THEME_COLORS.keys()}") return ''' <STYLE TYPE="text/css"> body { font-family: %s; font-size: %s; } table { border: 0px; border-collapse: collapse; } td, th { font-family: %s; font-size: %s; text-align: %s; padding: 0px 5px 0px 5px; white-space: nowrap; } th { border-bottom: 2px solid %s; } thead, tfoot { color: %s; background: %s; font-weight: bold; text-align: center; } tr.odd { background: %s; } tr.even { background: %s; } </STYLE> </HEADER> ''' % (font_family, font_size, font_family, font_size, text_align, tc.border, tc.header_fg_color, tc.header_bg_color, tc.odd_bg_color, tc.even_bg_color) def create_row(row_data, is_header, row_number=0): if is_header: element = 'TH' odd_or_even_class ='' else: element = 'TD' odd_or_even = 'odd' if row_number % 2 else 'even' odd_or_even_class = f'CLASS="{odd_or_even}"' return f'<TR {odd_or_even_class}>' + " ".join(map(lambda v: f'<{element}>{v}</{element}>', row_data)) + "</TR>" def create_table(data, header=None, footer=None, theme=DEFAULT_THEME, font_family=DEFAULT_FONT_FAMILY, font_size=DEFAULT_FONT_SIZE, text_align=DEFAULT_TEXT_ALIGN, add_line_number=None ): if type(data) is list and all(type(l) is list for l in data): if header: header_data = header body_data = data else: header_data = data[0] body_data = data[1:] elif type(data).__name__ == 'DataFrame': if header: header_data = header else: header_data = data.columns.to_list() body_data = data.values.tolist() else: raise Exception(f"data:{data} must either be a list of lists or a pandas.DataFrame") body = '<BODY><TABLE>' body = body + "<THEAD>" + create_row(header_data, True) + "</THEAD>" body = body + "<TBODY>" r = 1 for row in body_data: body = body + create_row(row, False, r) r += 1 body = body + "<TBODY>" body = body + "</TABLE>" html = create_html_start() + create_css(theme, font_family, font_size, text_align) + body return html ```
{ "source": "jeromegit/python-tabulate", "score": 3 }
#### File: python-tabulate/test/test_internal.py ```python from __future__ import print_function from __future__ import unicode_literals import tabulate as T from common import assert_equal, skip, rows_to_pipe_table_str, cols_to_pipe_str def test_multiline_width(): "Internal: _multiline_width()" multiline_string = "\n".join(["foo", "barbaz", "spam"]) assert_equal(T._multiline_width(multiline_string), 6) oneline_string = "12345" assert_equal(T._multiline_width(oneline_string), len(oneline_string)) def test_align_column_decimal(): "Internal: _align_column(..., 'decimal')" column = ["12.345", "-1234.5", "1.23", "1234.5", "1e+234", "1.0e234"] output = T._align_column(column, "decimal") expected = [ " 12.345 ", "-1234.5 ", " 1.23 ", " 1234.5 ", " 1e+234 ", " 1.0e234", ] assert_equal(output, expected) def test_align_column_none(): "Internal: _align_column(..., None)" column = ["123.4", "56.7890"] output = T._align_column(column, None) expected = ["123.4", "56.7890"] assert_equal(output, expected) def test_align_column_multiline(): "Internal: _align_column(..., is_multiline=True)" column = ["1", "123", "12345\n6"] output = T._align_column(column, "center", is_multiline=True) expected = [" 1 ", " 123 ", "12345" + "\n" + " 6 "] assert_equal(output, expected) def test_wrap_text_to_colwidths(): "Internal: Test _wrap_text_to_colwidths to show it will wrap text based on colwidths" rows = [ ["mini", "medium", "decently long", "wrap will be ignored"], [ "small", "JustOneWordThatIsWayTooLong", "this is unreasonably long for a single cell length", "also ignored here", ], ] widths = [10, 10, 20, None] expected = [ ["mini", "medium", "decently long", "wrap will be ignored"], [ "small", "JustOneWor\ndThatIsWay\nTooLong", "this is unreasonably\nlong for a single\ncell length", "also ignored here", ], ] result = T._wrap_text_to_colwidths(rows, widths) assert_equal(result, expected) def test_wrap_text_wide_chars(): "Internal: Wrap wide characters based on column width" try: import wcwidth # noqa except ImportError: skip("test_wrap_text_wide_chars is skipped") rows = [["청자청자청자청자청자", "약간 감싸면 더 잘 보일 수있는 다소 긴 설명입니다"]] widths = [5, 20] expected = [["청자\n청자\n청자\n청자\n청자", "약간 감싸면 더 잘\n보일 수있는 다소 긴\n설명입니다"]] result = T._wrap_text_to_colwidths(rows, widths) assert_equal(result, expected) def test_wrap_text_to_numbers(): """Internal: Test _wrap_text_to_colwidths force ignores numbers by default so as not to break alignment behaviors""" rows = [ ["first number", 123.456789, "123.456789"], ["second number", "987654.123", "987654.123"], ] widths = [6, 6, 6] expected = [ ["first\nnumber", 123.456789, "123.45\n6789"], ["second\nnumber", "987654.123", "987654\n.123"], ] result = T._wrap_text_to_colwidths(rows, widths, numparses=[True, True, False]) assert_equal(result, expected) def test_wrap_text_to_colwidths_single_ansi_colors_full_cell(): """Internal: autowrapped text can retain a single ANSI colors when it is at the beginning and end of full cell""" data = [ [ ( "\033[31mThis is a rather long description that might" " look better if it is wrapped a bit\033[0m" ) ] ] result = T._wrap_text_to_colwidths(data, [30]) expected = [ [ "\n".join( [ "\033[31mThis is a rather long\033[0m", "\033[31mdescription that might look\033[0m", "\033[31mbetter if it is wrapped a bit\033[0m", ] ) ] ] assert_equal(expected, result) def test_wrap_text_to_colwidths_colors_wide_char(): """Internal: autowrapped text can retain a ANSI colors with wide chars""" try: import wcwidth # noqa except ImportError: skip("test_wrap_text_to_colwidths_colors_wide_char is skipped") data = [[("\033[31m약간 감싸면 더 잘 보일 수있는 다소 긴" " 설명입니다 설명입니다 설명입니다 설명입니다 설명\033[0m")]] result = T._wrap_text_to_colwidths(data, [30]) expected = [ [ "\n".join( [ "\033[31m약간 감싸면 더 잘 보일 수있는\033[0m", "\033[31m다소 긴 설명입니다 설명입니다\033[0m", "\033[31m설명입니다 설명입니다 설명\033[0m", ] ) ] ] assert_equal(expected, result) def test_wrap_text_to_colwidths_multi_ansi_colors_full_cell(): """Internal: autowrapped text can retain multiple ANSI colors when they are at the beginning and end of full cell (e.g. text and background colors)""" data = [ [ ( "\033[31m\033[43mThis is a rather long description that" " might look better if it is wrapped a bit\033[0m" ) ] ] result = T._wrap_text_to_colwidths(data, [30]) expected = [ [ "\n".join( [ "\033[31m\033[43mThis is a rather long\033[0m", "\033[31m\033[43mdescription that might look\033[0m", "\033[31m\033[43mbetter if it is wrapped a bit\033[0m", ] ) ] ] assert_equal(expected, result) def test_wrap_text_to_colwidths_multi_ansi_colors_in_subset(): """Internal: autowrapped text can retain multiple ANSI colors when they are around subsets of the cell""" data = [ [ ( "This is a rather \033[31mlong description\033[0m that" " might look better \033[93mif it is wrapped\033[0m a bit" ) ] ] result = T._wrap_text_to_colwidths(data, [30]) expected = [ [ "\n".join( [ "This is a rather \033[31mlong\033[0m", "\033[31mdescription\033[0m that might look", "better \033[93mif it is wrapped\033[0m a bit", ] ) ] ] assert_equal(expected, result) def test__remove_separating_lines(): with_rows = [ [0, "a"], [1, "b"], T.SEPARATING_LINE, [2, "c"], T.SEPARATING_LINE, [3, "c"], T.SEPARATING_LINE, ] result, sep_lines = T._remove_separating_lines(with_rows) expected = rows_to_pipe_table_str([[0, "a"], [1, "b"], [2, "c"], [3, "c"]]) assert_equal(expected, rows_to_pipe_table_str(result)) assert_equal("2|4|6", cols_to_pipe_str(sep_lines)) def test__reinsert_separating_lines(): with_rows = [ [0, "a"], [1, "b"], T.SEPARATING_LINE, [2, "c"], T.SEPARATING_LINE, [3, "c"], T.SEPARATING_LINE, ] sans_rows, sep_lines = T._remove_separating_lines(with_rows) T._reinsert_separating_lines(sans_rows, sep_lines) expected = rows_to_pipe_table_str(with_rows) assert_equal(expected, rows_to_pipe_table_str(sans_rows)) ```
{ "source": "jerome-habana/pytorch-lightning", "score": 2 }
#### File: tests/plugins/test_double_plugin.py ```python import pickle from unittest.mock import MagicMock import pytest import torch from torch.utils.data import DataLoader, Dataset from pytorch_lightning import Trainer from pytorch_lightning.plugins import DoublePrecisionPlugin from tests.helpers.boring_model import BoringModel, RandomDataset from tests.helpers.runif import RunIf class RandomFloatIntDataset(Dataset): def __init__(self, size, length): self.len = length self.float_data = torch.randn(length, size) self.int_data = torch.randint(10, (length, 1)) def __getitem__(self, index): return self.float_data[index], self.int_data[index] def __len__(self): return self.len class DoublePrecisionBoringModel(BoringModel): def training_step(self, batch, batch_idx): float_data, int_data = batch assert torch.tensor([0.0]).dtype == torch.float64 assert torch.tensor([0.0], dtype=torch.float16).dtype == torch.float16 assert float_data.dtype == torch.float64 output = self(float_data) loss = self.loss(batch, output) return {"loss": loss} def training_epoch_end(self, outputs) -> None: assert torch.tensor([0.0]).dtype == torch.float32 return super().training_epoch_end(outputs) def validation_step(self, batch, batch_idx): assert batch.dtype == torch.float64 assert torch.tensor([0.0]).dtype == torch.float64 assert torch.tensor([0.0], dtype=torch.float16).dtype == torch.float16 output = self(batch) loss = self.loss(batch, output) return {"x": loss} def test_step(self, batch, batch_idx): assert batch.dtype == torch.float64 assert torch.tensor([0.0]).dtype == torch.float64 assert torch.tensor([0.0], dtype=torch.float16).dtype == torch.float16 output = self(batch) loss = self.loss(batch, output) return {"y": loss} def predict_step(self, batch, batch_idx, dataloader_idx=0): assert batch.dtype == torch.float64 assert torch.tensor([0.0]).dtype == torch.float64 assert torch.tensor([0.0], dtype=torch.float16).dtype == torch.float16 return self(batch) def on_fit_start(self): assert self.layer.weight.dtype == torch.float64 def on_after_backward(self): assert self.layer.weight.grad.dtype == torch.float64 def train_dataloader(self): dataset = RandomFloatIntDataset(32, 64) assert dataset.float_data.dtype == torch.float32 # Don't start with double data return DataLoader(dataset) def predict_dataloader(self): return DataLoader(RandomDataset(32, 64)) class DoublePrecisionBoringModelNoForward(BoringModel): def training_step(self, batch, batch_idx): assert batch.dtype == torch.float64 output = self.layer(batch) assert output.dtype == torch.float64 loss = self.loss(batch, output) return {"loss": loss} def validation_step(self, batch, batch_idx): assert batch.dtype == torch.float64 output = self.layer(batch) assert output.dtype == torch.float64 loss = self.loss(batch, output) return {"x": loss} def test_step(self, batch, batch_idx): assert batch.dtype == torch.float64 output = self.layer(batch) assert output.dtype == torch.float64 loss = self.loss(batch, output) return {"y": loss} def predict_step(self, batch, batch_idx, dataloader_idx=0): assert batch.dtype == torch.float64 output = self.layer(batch) assert output.dtype == torch.float64 return output def predict_dataloader(self): return DataLoader(RandomDataset(32, 64)) class DoublePrecisionBoringModelComplexBuffer(BoringModel): def __init__(self): super().__init__() self.register_buffer("complex_buffer", torch.complex(torch.rand(10), torch.rand(10)), False) def on_fit_start(self): assert self.layer.weight.dtype == torch.float64 assert self.complex_buffer.dtype == torch.complex64 @pytest.mark.parametrize( "boring_model", [ DoublePrecisionBoringModel, DoublePrecisionBoringModelNoForward, DoublePrecisionBoringModelComplexBuffer, ], ) def test_double_precision(tmpdir, boring_model): model = boring_model() trainer = Trainer(max_epochs=2, default_root_dir=tmpdir, fast_dev_run=2, precision=64, log_every_n_steps=1) trainer.fit(model) trainer.test(model) trainer.predict(model) @RunIf(min_gpus=2) def test_double_precision_ddp(tmpdir): model = DoublePrecisionBoringModel() trainer = Trainer( max_epochs=1, default_root_dir=tmpdir, strategy="ddp_spawn", accelerator="gpu", devices=2, fast_dev_run=2, precision=64, log_every_n_steps=1, ) trainer.fit(model) trainer.validate(model) def test_double_precision_pickle(tmpdir): model = BoringModel() plugin = DoublePrecisionPlugin() model, _, __ = plugin.connect(model, MagicMock(), MagicMock()) pickle.dumps(model) ```
{ "source": "JeromeHXP/ondilo", "score": 3 }
#### File: src/ondilo/ondilo.py ```python from typing import Optional, Union, Callable, Dict from requests import Response from requests_oauthlib import OAuth2Session from oauthlib.oauth2 import TokenExpiredError API_HOST = "https://interop.ondilo.com" API_URL = API_HOST + "/api/customer/v1" ENDPOINT_TOKEN = "/oauth2/token" ENDPOINT_AUTHORIZE = "/oauth2/authorize" DEFAULT_CLIENT_ID = "customer_api" DEFAULT_CLIENT_SECRET = "" DEFAULT_SCOPE = "api" class OndiloError(Exception): pass class Ondilo: def __init__( self, token: Optional[Dict[str, str]] = None, client_id: str = DEFAULT_CLIENT_ID, client_secret: str = DEFAULT_CLIENT_SECRET, redirect_uri: str = None, token_updater: Optional[Callable[[str], None]] = None, ): self.host = API_HOST self.client_id = client_id self.client_secret = client_secret self.redirect_uri = redirect_uri self.token_updater = token_updater self.scope = DEFAULT_SCOPE extra = {"client_id": self.client_id, "client_secret": self.client_secret} self._oauth = OAuth2Session( auto_refresh_kwargs=extra, redirect_uri=redirect_uri, client_id=client_id, token=token, token_updater=token_updater, scope=self.scope, ) def refresh_tokens(self) -> Dict[str, Union[str, int]]: """Refresh and return new tokens.""" token = self._oauth.refresh_token(f"{self.host}{ENDPOINT_TOKEN}") if self.token_updater is not None: self.token_updater(token) return token def request_token( self, authorization_response: Optional[str] = None, code: Optional[str] = None, ) -> Dict[str, str]: """ Generic method for fetching an access token. :param authorization_response: Authorization response URL, the callback URL of the request back to you. :param code: Authorization code :return: A token dict """ return self._oauth.fetch_token( f"{self.host}{ENDPOINT_TOKEN}", authorization_response=authorization_response, code=code, include_client_id=True, ) def get_authurl(self): """Get the URL needed for the authorization code grant flow.""" authorization_url, _ = self._oauth.authorization_url( f"{self.host}{ENDPOINT_AUTHORIZE}" ) return authorization_url def request(self, method: str, path: str, **kwargs) -> Response: """Make a request. We don't use the built-in token refresh mechanism of OAuth2 session because we want to allow overriding the token refresh logic. """ url = f"{API_URL}{path}" try: return getattr(self._oauth, method)(url, **kwargs) except TokenExpiredError: self._oauth.token = self.refresh_tokens() return getattr(self._oauth, method)(url, **kwargs) def get_pools(self): req = self.request("get", "/pools") if req.status_code != 200: raise OndiloError return req.json() def get_ICO_details(self, poolId): req = self.request("get", "/pools/" + str(poolId) + "/device") if req.status_code != 200: raise OndiloError return req.json() def get_last_pool_measures(self, poolId): req = self.request("get", "/pools/" + str(poolId) + "/lastmeasures") if req.status_code != 200: raise OndiloError return req.json() def get_pool_recommendations(self, poolId): req = self.request("get", "/pools/" + str(poolId) + "/recommendations") if req.status_code != 200: raise OndiloError return req.json() def validate_pool_recommendation(self, poolId, recommendationId): req = self.request("put", "/pools/" + str(poolId) + "/recommendations/" + str(recommendationId)) if req.status_code != 200: raise OndiloError return req.json() def get_user_units(self): req = self.request("get", "/user/units") if req.status_code != 200: raise OndiloError return req.json() def get_user_info(self): req = self.request("get", "/user/info") if req.status_code != 200: raise OndiloError return req.json() def get_pool_config(self, poolId): req = self.request("get", "/pools/" + str(poolId) + "/configuration") if req.status_code != 200: raise OndiloError return req.json() def get_pool_shares(self, poolId): req = self.request("get", "/pools/" + str(poolId) + "/shares") if req.status_code != 200: raise OndiloError return req.json() def get_pool_histo(self, poolId, measure, period): req = self.request("get", "/pools/" + str(poolId) + "/measures?type=" + measure + "&period=" + period) if req.status_code != 200: raise OndiloError return req.json() ```
{ "source": "JeromeIllgner/bioInspired", "score": 4 }
#### File: bioInspired/network/ANN.py ```python import numpy as np from typing import List from network.functions import null, sigmoid, gaussian, identity, mean_squared_error as mse from network.my_types import Layer, Vector, Data # Possible options for activation functions funcs = [null, sigmoid, np.tanh, np.cos, gaussian] # Numpy vectorised function to apply one vector to another. apply = np.vectorize(lambda f, x: f(x)) class ANN: """ An implementation of an Artificial Neural Network using weight matrices in a simple feed forward architecture. :param shape: The shape of the network given by neurons per layer :type shape: List(int) :param seed: An optional random seed to fix initial conditions :type seed: int :param output_activation: Allows a non-identity activation function for the output layer :type output_activation: bool :ivar shape: Instance variable to store the network shape :type shape: List(int) :ivar layers: A list of Layers storing information about the network :type layers: List(Layer) """ def __init__(self, shape: List[int], seed: int = None, output_activation: bool = False) -> None: self.shape = np.array(shape) self.layers = [] # Set to known seed if required if seed: np.random.seed(seed) # Initialise weights, activation function and bias for each node for layer in range(len(shape) - 1): weights = np.random.randn(shape[layer+1], shape[layer]) activation = np.random.choice(funcs, shape[layer+1]) bias = np.random.randn(shape[layer+1]) self.layers.append(Layer(weights, activation, bias)) # Set output activation to the identity to allow for all values if not output_activation: self.layers[-1].activation = np.array([identity for _ in range(shape[-1])]) def predict_evaluate(self, input_vectors: Data, ground_truth: Data, error_function=mse) -> float: """ Performs the prediction on the sample of input vectors and compares the results against the ground truth using the error function (MSE by default). The list of input vectors and output vectors should have the same length. The function can also compare a single input vector against the expected output vector. :param input_vectors: Single or list of input vectors to base predictions on :type input_vectors: Data :param ground_truth: Single or list of ground truths to compare against predictions. Should have same length as input_vectors :type ground_truth: Data :param error_function: A function to calculate the error on two equal length lists of input vectors and ground truths and returns a float. :type error_function: Data, Data -> float :return: Returns a floating point error score based on the error function. """ if len(input_vectors) != len(ground_truth): raise ValueError(f"Number of test samples ({len(input_vectors)}) does not match ground " f"truth ({len(ground_truth)})") # Make inputs conform if type(ground_truth[0]) is float: ground_truth = [ground_truth] # Perform predictions and calculate error predictions = self.predict(input_vectors) return error_function(predictions, ground_truth) def predict(self, x: Data) -> np.ndarray: """ The prediction function of the network which takes a list of input vectors and :param x: The input vector :type x: Data :return: List of output vectors :rtype: List[Vector] """ # Check if it's a single input vector or many if type(x[0]) is float: x = [x] # Check if vector has correct input shape and perform predictions predictions = [] for input_vector in x: if len(input_vector) == self.shape[0]: predictions.append(self._predict_one(input_vector)) else: raise ValueError(f"Size of input vector ({len(input_vector)}) does not match " f"size of input layer ({self.shape[0]})") return np.array(predictions) def _predict_one(self, x: Vector) -> np.ndarray: """ Performs a single model prediction by propagating the input values forward through the network using matrix multiplication, followed by applying the activation function to the sum of the result and the bias. :param x: Single input vector :type x: Vector :return: Single output vector :rtype: Vector """ layer_values = np.array(x) # For each layer, apply the activation function to the sum of the weighted inputs and the bias. # Weight summation uses matrix multiplication for speed and brevity. for layer in self.layers: layer_values = apply(layer.activation, [email protected] + layer.bias) return np.array(layer_values) @property def size(self): return sum(self.shape[1:]), self.shape[1:] * self.shape[:-1] @property def weights(self): return np.array([layer.weights for layer in self.layers]) @weights.setter def weights(self, new_weights): new_weights = np.array(new_weights) if new_weights.shape == self.weights.shape: for layer_weights, layer in zip(new_weights, self.layers): layer.weights = layer_weights @property def activation_funcs(self): return np.array([layer.activation for layer in self.layers]) @activation_funcs.setter def activation_funcs(self, new_funcs): new_funcs = np.array(new_funcs) if new_funcs.shape == self.activation_funcs.shape: for layer_funcs, layer in zip(new_funcs, self.layers): layer.activation = layer_funcs @property def biases(self): return np.array([layer.bias for layer in self.layers]) @biases.setter def biases(self, new_biases): new_biases = np.array(new_biases) if new_biases.shape == self.biases.shape: for layer_bias, layer in zip(new_biases, self.layers): layer.bias = layer_bias ``` #### File: bioInspired/network/__main__.py ```python import os from os import path import click import pandas import numpy as np from network.ANN import ANN, funcs from network.PSO import PSO def train_ann(ann: ANN, data): shape = ann.shape bias_and_activation = sum(shape[1:]) weights = sum([shape[layer] * shape[layer+1] for layer in range(len(shape) - 1)]) dimensions = 2 * bias_and_activation + weights pso = PSO(dimensions, wrap_eval(ann, data)) best_per_epoch = pso.optimise() encode_ann(ann, best_per_epoch[-1][0]) return best_per_epoch def wrap_eval(ann: ANN, data: (np.ndarray, np.ndarray)): def wrapped(dimensions): x, y = data encode_ann(ann, dimensions) return ann.predict_evaluate(x, y) return wrapped def encode_ann(ann: ANN, dimensions: np.ndarray): # Get sizes ab_size, weight_size = ann.size # Get cumulative sums for indexing cumulative_nodes = np.cumsum(ann.shape[1:]) cumulative_weights = np.cumsum(weight_size) # Reshape weights weights = [dimensions[start:end] for start, end in zip(np.insert(cumulative_weights[:-1], 0, 0), cumulative_weights)] weights = [weight.reshape(height, width) for weight, height, width in zip(weights, ann.shape[:-1], ann.shape[1:])] # Reshape biases bias = dimensions[-ab_size:] bias = [bias[start:end] for start, end in zip(np.insert(cumulative_nodes[:-1], 0, 0), cumulative_nodes)] # Reshape activations activations = dimensions[-2 * ab_size:-ab_size] activations = [activations[start:end] for start, end in zip(np.insert(cumulative_nodes[:-1], 0, 0), cumulative_nodes)] activations = [np.clip(np.floor((activation+1)/2 * len(funcs)), 0, len(funcs)-1) for activation in activations] activations = [[funcs[int(func)] for func in func_list] for func_list in activations] # Update Values ann.weights = weights ann.biases = bias ann.activation_funcs = activations @click.command() @click.argument('data_folder') def network(data_folder): data = load_data(data_folder) ann = ANN([1, 5, 1]) result = train_ann(ann, data["1in_linear"]) print(result) print(ann.predict([0.5])) def load_data(folder: str): data = {} with click.progressbar(os.listdir(folder)) as bar: for file in bar: no_inputs = int(file[0]) frame = pandas.read_table(path.join(folder, file), delim_whitespace=True, header=None).to_numpy() file = file[:-4] data[file] = frame[:, :no_inputs], frame[:, no_inputs:] return data if __name__ == "__main__": network() ```
{ "source": "JeromeIllgner/Lux-Design-2021", "score": 3 }
#### File: python/simple/agent.py ```python import math, sys from typing import List from lux.game import Game from lux.game_map import Cell, RESOURCE_TYPES from lux.constants import Constants from lux.game_constants import GAME_CONSTANTS from lux import annotate DIRECTIONS = Constants.DIRECTIONS game_state = None def setup_game(observation): ## Don't Edit global game_state if observation["step"] == 0: game_state = Game() game_state._initialize(observation["updates"]) game_state._update(observation["updates"][2:]) game_state.id = observation.player else: game_state._update(observation["updates"]) def days_until_night(observation): day = 30 - observation["step"] % 40 return max(day, 0) def get_resource_tiles(map): resource_tiles = [] for y in range(map.height): for x in range(map.width): cell = map.get_cell(x,y) if cell.has_resource(): resource_tiles.append(cell) return resource_tiles def get_closest_available_resource_tile(unit, resource_tiles, has_researched_coal, has_researched_uranium): min_distance = math.inf closest_resource_tile = None for tile in resource_tiles: if tile.resource.type == Constants.RESOURCE_TYPES.COAL and not has_researched_coal: continue if tile.resource.type == Constants.RESOURCE_TYPES.URANIUM and not has_researched_uranium: continue distance = tile.pos.distance_to(unit.pos) if distance < min_distance: min_distance = distance closest_resource_tile = tile return closest_resource_tile def get_nearest_city(unit, cities): nearest_city_tile = None min_distance = math.inf for key, city in cities.items(): for city_tile in city.citytiles: distance = city_tile.pos.distance_to(unit.pos) if distance < min_distance: min_distance = distance nearest_city_tile = city_tile return nearest_city_tile def agent(observation, configuration): global game_state setup_game(observation) actions = [] player = game_state.players[observation.player] opponent = game_state.players[(observation.player + 1) % 2] resource_tiles: List[Cell] = get_resource_tiles(game_state.map) for unit in player.units: if unit.is_worker() and unit.can_act(): if unit.get_cargo_space_left() > 0: closest_resource_tile = get_closest_available_resource_tile(unit, resource_tiles, player.researched_coal(), player.researched_uranium()) if closest_resource_tile is not None: actions.append(unit.move(unit.pos.direction_to(closest_resource_tile.pos))) else: nearest_city_tile = get_nearest_city(unit, player.cities) if nearest_city_tile is not None: move_dir = unit.pos.direction_to(nearest_city_tile.pos) actions.append(unit.move(move_dir)) # you can add debug annotations using the functions in the annotate object # actions.append(annotate.circle(0, 0)) return actions ```
{ "source": "JeromeIllgner/SemanticInpainting", "score": 3 }
#### File: SemanticInpainting/Models/BescosERFNet.py ```python import torch import torch.nn as nn class BescosERFNet(nn.Module): def __init__(self, input_nc, output_nc, ngf): self.conv1 = nn.Conv2d(input_nc, ngf * 2, 4, stride=2, padding=1) self.conv2 = nn.Conv2d(ngf * 2, ngf * 4, 4, stride=2, padding=1) self.conv3 = nn.Conv2d(ngf * 4, ngf * 8, 4, stride=2, padding=1) self.conv4 = nn.Conv2d(ngf * 8, ngf * 8, 4, stride=2, padding=1) self.conv5 = nn.Conv2d(ngf * 8, ngf * 8, 4, stride=2, padding=1) self.conv6 = nn.Conv2d(ngf * 8, ngf * 8, 4, stride=2, padding=1) self.conv7 = nn.Conv2d(ngf * 8, ngf * 8, 4, stride=2, padding=1) self.deconv1 = nn.Conv2d(ngf * 8, ngf * 8, 4, stride=2, padding=1) self.deconv2 = nn.Conv2d(ngf * 8, ngf * 8, 4, stride=2, padding=1) self.deconv3 = nn.Conv2d(ngf * 8, ngf * 8, 4, stride=2, padding=1) self.deconv4 = nn.Conv2d(ngf * 8, ngf * 4, 4, stride=2, padding=1) self.deconv5 = nn.Conv2d(ngf * 4, ngf * 2, 4, stride=2, padding=1) self.deconv6 = nn.Conv2d(ngf * 2, ngf, 4, stride=2, padding=1) self.deconv7 = nn.Conv2d(ngf, output_nc, 4, stride=2, padding=1) self.o1 = nn.Tanh() ```
{ "source": "JeromeJGuay/viking_ADCP_processing", "score": 2 }
#### File: magtogoek/adcp/loader.py ```python import logging import sys import typing as tp from pathlib import Path import numpy as np import pandas as pd import xarray as xr from magtogoek.adcp.rti_reader import RtiReader from magtogoek.adcp.rti_reader import l as rti_log from magtogoek.adcp.tools import dday_to_datetime64 from magtogoek.utils import Logger, get_files_from_expression from pycurrents.adcp import rdiraw, transform from pycurrents.adcp.rdiraw import Bunch, Multiread, rawfile # This is to prevent pycurrents from printing warnings. logging.getLogger(rdiraw.__name__).setLevel("CRITICAL") RDI_SONAR = ["wh", "sv", "os", "sw_pd0"] RTI_SONAR = ["sw"] VEL_FILL_VALUE = -32768.0 l = Logger(level=0) class FilesFormatError(Exception): pass class InvalidSonarError(Exception): pass def load_adcp_binary( filenames: tp.Union[str, tp.List[str]], sonar: str, yearbase: int, orientation: str = None, leading_index: int = None, trailing_index: int = None, sensor_depth: float = None, bad_pressure: bool = False, start_time: str = None, time_step: float = None, ) -> xr.Dataset: """Load RDI and RTI adcp data. Return a dataset with the ADCP data loaded. For RDI FIXME pycurrents... Notes: ----- The adcp orientation is taken from the first profile of the first file if no orientation is given. Parameters ---------- filenames: Path/to/files sonar: Type of sonar (`os`, `wh`, `sv`, `sw`, `sw_pd0`) yearbase: year that the sampling begun. orientation: Adcp orientation. Either `up` or `down`. Will overwrite the value of the binary file. leading_index: Number of ensemble to cut from the start. trailing_index: Number of ensemble to cut from the end. sensor_depth: If provided, the adcp depth (meter) will be adjusted so that its median equal `sensor_depth`. bad_pressure: If True, XducerDepth is set to 0 or to `sensor_depth` if provided. start_time: Format 'YYYY-MM-DDThh:mm:ss.ssss'. If provided, a new time coordinate vector, starting at `start_time`, is used instead of the one found in the raw adcp file. Use the parameter `time_step` to use a different time step than the one found in the adcp raw adcp file. time_step: Time step in seconds. Only use if a `start_time` value is provided. Returns ------- Dataset with the loaded adcp data """ l.reset() l.section("Loading adcp data", t=True) filenames = get_files_from_expression(filenames) if sonar == "sv": l.warning( """(from pycurrents) - The SV support is under development. Missing features: - The 0x7000-0x7004 IDs are not being parsed and stored. - See pycurrents.adcp.rdiraw module for for information""" ) # ------------------------ # # Reading the data file(s) # # ------------------------ # if sonar in RTI_SONAR: l.log(_print_filenames("RTI ENS", filenames)) data = RtiReader(filenames=filenames).read( start_index=leading_index, stop_index=trailing_index ) l.logbook += rti_log.logbook elif sonar in RDI_SONAR: if sonar == "sw_pd0": sonar = "wh" l.log(_print_filenames("RTI pd0", filenames)) else: l.log(_print_filenames("RDI pd0", filenames)) if trailing_index: trailing_index *= -1 try: data = Multiread(fnames=filenames, sonar=sonar, yearbase=yearbase).read( start=leading_index, stop=trailing_index ) if not data: raise ValueError( "The sum of the trim values is greater than the number of ensemble." ) data.vel = np.asarray(data.vel) if "vbvel" in data: data.vbvel = np.asarray(data.vbvel) if "bt_vel" in data: data.bt_vel = np.asarray(data.bt_vel) except RuntimeError: print( f"ERROR: The input_files are not in a RDI pd0 format. RDI sonar : {RDI_SONAR}" ) sys.exit() # Reading the files FixedLeaders to check for invalid config. # noinspection PyTupleAssignmentBalance data.sysconfig["up"], invalid_config_count = check_pd0_fixed_leader( filenames=filenames, sonar=sonar, yearbase=yearbase, leading_index=leading_index, trailing_index=trailing_index, ) if invalid_config_count: l.warning( f"Invalid configuration, msb=`11111111` and lsb=`11111111`, found in the SysCfg of {invalid_config_count} FixedLeader. " ) else: raise InvalidSonarError( f"{sonar} is not a valid. Valid sonar: `os`, `wh`, `sv`, `sw`, `sw_pd0` " ) # -------------------- # # Compares orientation # # -------------------- # sysconfig_orientation = "up" if data.sysconfig["up"] else "down" if not orientation: orientation = sysconfig_orientation else: if orientation != sysconfig_orientation: l.warning( f"The user input adcp orientation is {orientation} but the one found in the file was {sysconfig_orientation}." ) l.log(f"Adcp orientation is set to {orientation}.") # ---------------------------- # # Convert `dday` to datetime64 # # ---------------------------- # time, time_string, bad_dday = _get_time(data.dday, yearbase, start_time, time_step) # ----------------------------------------------------------- # # Convert depth relative to the ADCP to depth below surface # # ----------------------------------------------------------- # if bad_pressure: l.log("XducerDepth were discarded by the user.") if sensor_depth: data.XducerDepth[:] = sensor_depth l.log(f"XducerDepth set to {sensor_depth} m.") else: data.XducerDepth[:] = 0 l.log("XducerDepth set to 0 m.") average_xducer_depth = np.round(np.median(data.XducerDepth), 3) l.log(f"Sensor depth (XducerDepth) in raw file : {average_xducer_depth} m") xducer_depth = data.XducerDepth depth_difference = 0 if sensor_depth: depth_difference = round(average_xducer_depth - sensor_depth, 3) if abs(depth_difference) > 0: l.log( [ f"The difference between the raw file sensor depth and the user" f"provided `sensor_depth` ({sensor_depth} m) is {depth_difference} m", ] ) l.log( f"{-depth_difference} m was added to the depths measured by the instrument." ) average_xducer_depth = sensor_depth xducer_depth -= depth_difference if sonar == "os": depth = data.dep else: if orientation == "down": depth = average_xducer_depth + data.dep else: depth = average_xducer_depth - data.dep if (depth < 0).all(): l.warning("Bin depths are all negative, ADCP orientation is probably wrong.") # --------------------- # # Initializing the dataset # # --------------------- # dataset = xr.Dataset(coords={"depth": depth, "time": time}) # --------------------------------------- # # Dealing with the coordinates system # # --------------------------------------- # original_coordsystem = data.trans["coordsystem"] if original_coordsystem != "earth": l.log(f"The velocity data are in {data.trans['coordsystem']} coordinate") coordsystem2earth(data=data, orientation=orientation) if data.trans["coordsystem"] == "xyz": l.warning("Roll, Pitch or Heading seems to be missing from the data file.") l.log(f"The velocity data were transformed to {data.trans['coordsystem']}") # --------------------------- # # Loading the transducer data # # --------------------------- # data.vel[data.vel == VEL_FILL_VALUE] = np.nan # WATER VELOCITIES dataset["u"] = (["depth", "time"], data.vel[:, :, 0].T) dataset["v"] = (["depth", "time"], data.vel[:, :, 1].T) dataset["w"] = (["depth", "time"], data.vel[:, :, 2].T) dataset["e"] = (["depth", "time"], data.vel[:, :, 3].T) l.log("Velocity data loaded") if sonar == "sv": data.vbvel[data.vbvel == VEL_FILL_VALUE] = np.nan dataset["vb_vel"] = (["depth", "time"], data.vbvel.T) dataset["vb_corr"] = (["depth", "time"], np.asarray(data.VBCorrelation.T)) dataset["vb_amp"] = (["depth", "time"], np.asarray(data.VBIntensity.T)) if "VBPercentGood" in data: dataset["vb_pg"] = (["depth", "time"], np.asarray(data.VBPercentGood.T)) l.log("Data from the Sentinel V fifth beam loaded.") # BOTTOM VELOCITIES if "bt_vel" in data: if (data.bt_vel == 0).all(): l.log( "Bottom track values were all `0`, therefore they were dropped from the output." ) elif not np.isfinite(data.bt_vel).all(): l.log( "Bottom track values were all `nan`, therefore they were dropped from the output." ) else: data.bt_vel[data.bt_vel == VEL_FILL_VALUE] = np.nan dataset["bt_u"] = (["time"], data.bt_vel[:, 0]) dataset["bt_v"] = (["time"], data.bt_vel[:, 1]) dataset["bt_w"] = (["time"], data.bt_vel[:, 2]) dataset["bt_e"] = (["time"], data.bt_vel[:, 3]) l.log("Bottom track data loaded") # BOTTOM DEPTH if "bt_depth" in data: if (data.bt_depth == 0).all(): l.log( "Bottom depth values were all `0`, therefore they were dropped from the output." ) elif not np.isfinite(data.bt_depth).all(): l.log( "Bottom depth values were all `nan`, therefore they were dropped from the output." ) else: dataset["bt_depth"] = ( ["time"], np.asarray(np.nanmean(data.bt_depth, axis=-1)), ) if orientation == "up": l.log( "In a `up` orientation, bottom_depth corresponds to the water height above adcp, thus should " "correspond to the xducer_depth measurements and bottom velocities correspond to the water surface " "velocity. " ) l.log( f"The averaged xducer_depth computed from the bottom tracking is {np.median(data.bt_depth)}." ) elif sensor_depth: if abs(depth_difference) > 0 and sonar == "os": dataset["bt_depth"] -= depth_difference else: dataset["bt_depth"] += xducer_depth l.log("Bottom depth data loaded") # QUALITY if "pg" in data: if original_coordsystem == "beam": dataset["pg"] = (["depth", "time"], np.asarray(np.mean(data.pg, axis=2).T)) l.log( "Percent good was computed by averaging each beam PercentGood. The raw data were in beam coordinate." ) else: dataset["pg"] = (["depth", "time"], np.asarray(data.pg4.T)) else: l.warning("Percent good was not retrieve from the dataset.") if "cor1" in data: for i in range(1, 5): dataset[f"corr{i}"] = (["depth", "time"], np.asarray(data[f"cor{i}"].T)) if "amp1" in data: for i in range(1, 5): dataset[f"amp{i}"] = (["depth", "time"], np.asarray(data[f"amp{i}"].T)) # ------------------ # # Loading depth data # # ------------------ # # For `wh`, `sv` and `sw` XducerDepth varies over times but is constant for `os`. if sonar != "os": dataset["xducer_depth"] = (["time"], np.asarray(xducer_depth)) # --------------------------- # # Loading the navigation data # # --------------------------- # if "rawnav" in data: dataset["lon"] = ( ["time"], np.array(data["rawnav"]["Lon1_BAM4"] * 180.0 / 2 ** 31), ) dataset["lat"] = ( ["time"], np.array(data["rawnav"]["Lat1_BAM4"] * 180.0 / 2 ** 31), ) l.log("Navigation (GPS) data loaded.") # -------------------------------------------- # # Quick checkup and loading of other variables # # -------------------------------------------- # # For `wh`, `sv` and `sw` the pressure is added if available. if "Pressure" in data.VL.dtype.names: if not (data.VL["Pressure"] == 0).all(): dataset["pres"] = ( ["time"], data.VL["Pressure"] / 1000, ) # decapascal to decibar else: l.log("Pressure data unavailable") if "heading" in data: if (data.heading == 0).all() or (np.diff(data.heading) == 0).all(): l.warning("Heading data are either all 0, or not varying.") else: dataset["heading"] = (["time"], np.asarray(data.heading)) if "roll" in data: if (data.roll == 0).all() or (np.diff(data.roll) == 0).all(): l.warning("Roll data are either all 0, or not varying.") else: dataset["roll_"] = (["time"], np.asarray(data.roll)) if "pitch" in data: if (data.pitch == 0).all() or (np.diff(data.pitch) == 0).all(): l.warning("Pitch data are either all 0, or not varying.") else: dataset["pitch"] = (["time"], np.asarray(data.pitch)) if "temperature" in data: if (data.temperature == 0).all() or (np.diff(data.temperature) == 0).all(): l.warning("Temperature data are either all 0, or not varying.") else: dataset["temperature"] = (["time"], np.asarray(data.temperature)) # ------------------------------- # # Load time string or dday if bad # # ------------------------------- # if bad_dday: dataset["dday"] = (["time"], np.asarray(data.dday)) else: dataset["time_string"] = (["time"], time_string) if orientation == "up": dataset = dataset.sortby("depth") # -------------- # # Add attributes # # -------------- # sonar_names = dict( wh="WorkHorse", sv="Sentinel V", os="Ocean Surveyor", sw="SeaWATCH" ) dataset.attrs["sonar"] = sonar_names[sonar] dataset.attrs["manufacturer"] = ( "Teledyne RD Instruments Inc." if sonar in ["wh", "sv", "os"] else "Rowe Technologies Inc. (RTI)" ) if "xducer_depth" not in dataset: dataset.attrs["xducer_depth"] = round(average_xducer_depth, 2) dataset.attrs["coord_system"] = data.trans["coordsystem"] dataset.attrs["beam_angle"] = data.sysconfig["angle"] dataset.attrs["frequency_Hz"] = data.sysconfig["kHz"] * 1000 # kHz to hz dataset.attrs["bin_size_m"] = data.CellSize dataset.attrs["ping_per_ensemble"] = data.NPings dataset.attrs["ping_type"] = data.pingtype dataset.attrs["blank_m"] = data.Blank # cm to m dataset.attrs["bin1dist_m"] = data.Bin1Dist dataset.attrs["firmware_version"] = ".".join( list(str(data.FL["FWV"])) + list(str(data.FL["FWR"])) ) dataset.attrs["transmit_pulse_length_m"] = data.FL["Pulse"] / 100 # cm to m dataset.attrs["delta_t_sec"] = np.round( np.mean((np.diff(dataset.time).astype("timedelta64[s]"))).astype(float), 2 ) dataset.attrs["sampling_interval"] = str(dataset.attrs["delta_t_sec"]) + " seconds" dataset.attrs["beam_pattern"] = "convex" if data.sysconfig["convex"] else "concave" dataset.attrs["janus"] = "5-Beam" if sonar == "sv" else "4-Beam" dataset.attrs["magnetic_declination"] = None if "FL" in data: if "EV" in data.FL: if data.FL["EV"] != 0: dataset.attrs["magnetic_declination"] = data.FL["EV"] / 100 dataset.attrs["magnetic_declination_units"] = "degree east" dataset.attrs["orientation"] = orientation dataset.attrs["serial_number"] = ( data.SerialNumber if "SerialNumber" in data else None ) l.log(f"File(s) loaded with {l.w_count} warnings") dataset.attrs["logbook"] = l.logbook return dataset def coordsystem2earth(data: Bunch, orientation: str): """Transforms beam and xyz coordinates to enu coordinates NOTE: not properly tested. But it should work. Replace the values of data.vel, data.bt_vel with East, North and Up velocities and the velocity error for 4 beams ADCP. UHDAS transform functions are used to transform for beam coordinates and xyz to east-north-up (enu). These function can use a three-beam solution by faking a fourth beam. Also change the values of of `coordinates` in data.trans. beam coordinates : Velocity measured along beam axis. xyz coordinates : Velocity in a cartesian coordinate system in the ADCP frame of reference. enu coordinates : East North Up measured using the heading, pitch, roll of the ADCP. Parameters ---------- data: pycurrents.adcp.rdiraw.Bunche object containing: vel[time, depth, beams], bt_vel[time, beams], heading, roll, pitch sysconfig.convex, sysconfig.angle and trans.coordsystem. orientation: adcp orientation. Either `up` or `down`. Notes ----- Move the prints outside """ if data.trans.coordsystem not in ["beam", "xyz"]: l.log( f"Coordsystem value of {data.sysconfig.coordsystem} not recognized. Conversion to enu not available." ) beam_pattern = "convex" if data.sysconfig["convex"] else "concave" xyze, bt_xyze = data.vel, data.bt_vel if data.trans.coordsystem == "beam": if data.sysconfig.angle: trans = transform.Transform( angle=data.sysconfig.angle, geometry=beam_pattern ) xyze = trans.beam_to_xyz(data.vel) bt_xyze = trans.beam_to_xyz(data.bt_vel) else: l.log("Beam angle missing. Could not convert from beam coordinate.") if (data.heading == 0).all() or (data.roll == 0).all() or (data.pitch == 0).all(): data.trans["coordsystem"] = "xyz" for i in range(4): data.vel[:, :, i] = np.round(xyze[:, :, i], decimals=3) data.bt_vel[:, i] = np.round(bt_xyze[:, i], decimals=3) else: enu = transform.rdi_xyz_enu( xyze, data.heading, data.pitch, data.roll, orientation=orientation, ) bt_enu = transform.rdi_xyz_enu( bt_xyze, data.heading, data.pitch, data.roll, orientation=orientation, ) data.trans["coordsystem"] = "earth" for i in range(4): data.vel[:, :, i] = np.round(enu[:, :, i], decimals=3) data.bt_vel[:, i] = np.round(bt_enu[:, i], decimals=3) def check_pd0_fixed_leader( filenames: tp.Union[str, tp.List[str]], sonar: str, yearbase: int, leading_index: int = None, trailing_index: int = None, ) -> tp.Tuple[bool, int]: """Read Teledyne RDI binary FixedLeader. Returns the most common orientation and flag for an invalid config. Invalid config -> msb=`11111111` and lsb=`11111111` Using: rawfile().read() to get the FixedLeader for all pings. Parameters ---------- filenames : File(s) to read. sonar : sonar type passed to pycurrents.Multiread. ('nb', 'bb', 'wh', 'sv', or 'os') yearbase : start year of the sampling. leading_index : trailing_index : Returns ------- upward_looking : True is the adcp is looking upward invalid_config_count : number of invalid configuration in the fixed leaders. Notes: ------ Although the fixed_leader is supposed to be fixed, there is occurrence of change in the fixed_leader of some ping. A check up of some the fixed_leader parameters is done in the processing. """ # uses rawfile() to get the FixedLeader. if isinstance(filenames, list): fixed_leader = np.concatenate( [ rawfile(fname=fname, sonar=sonar, yearbase=yearbase) .read(varlist=["FixedLeader"]) .raw.FixedLeader for fname in filenames ] ) else: fixed_leader = ( rawfile(fname=filenames, sonar=sonar, yearbase=yearbase) .read(varlist=["FixedLeader"]) .raw.FixedLeader ) bad_config_value = 2 ** 16 - 1 _up = int('10000000', 2) orientations = fixed_leader["SysCfg"][leading_index:trailing_index] & _up upward_looking = np.mean(orientations) > 63 invalid_config_count = np.sum( (fixed_leader["SysCfg"][leading_index:trailing_index] == bad_config_value) ) return upward_looking, invalid_config_count def _print_filenames(file_type: str, filenames: tp.List) -> str: """Format a string of filenames for prints `file_type` files : |-filename1 : |-filenameN """ return ( file_type + " files : \n |-" + "\n |-".join([p.name for p in list(map(Path, filenames))]) ) def _get_time( dday: np.ndarray, yearbase: int, start_time: str = None, time_step: float = None ) -> tp.Union[np.ndarray, np.ndarray, bool]: """ Parameters ---------- yearbase : Year that the sampling started start_time : Format: 'YYYY-MM-DDThh:mm:ss.ssss'. time_step : Time step in seconds. """ bad_dday = False if start_time is None: if (dday < 0).any(): bad_dday = True l.warning( "The `dday` (time in fraction of days) vector in the adcp file had negative values." ) elif (np.diff(dday) < 0).any(): bad_dday = True l.warning( "The `dday` (time in fraction of days) was no monotonically increasing." ) if bad_dday is True: l.log('`dday` values were added to the dataset.') start_time = str(dday_to_datetime64(dday[0], yearbase)[1]) time_step = _get_time_step(dday) time, time_string = _make_time(start_time, len(dday), time_step) else: time, time_string = dday_to_datetime64(dday, yearbase) else: if time_step is None: time_step = _get_time_step(dday) else: time_step = pd.Timedelta(time_step,'seconds') time, time_string = _make_time(start_time, len(dday), time_step) return time, time_string, bad_dday def _make_time( start_time: str, length: int, time_step: pd.Timedelta ) -> tp.Union[np.ndarray, np.ndarray]: """ Parameters ---------- start_time: Format 'YYYY-MM-DDThh:mm:ss.ssss'. length: Length of the time vector. time_step: Time step in seconds. """ l.warning( f"Time vector was replace with a time series starting at {start_time} with {time_step.seconds} seconds time step." ) time = pd.date_range(pd.Timestamp(start_time), periods=length, freq=time_step) return time, time.astype(str) def _get_time_step(dday: np.ndarray) -> pd.Timedelta: """ Parameters ---------- dday Returns ------- """ time = dday * 86400 deltas, counts = np.unique(np.round(np.diff(time), 4), return_counts=True) return pd.Timedelta(deltas[counts.argmax()], "seconds") if __name__ == "__main__": import matplotlib.pyplot as plt path = "/home/jeromejguay/ImlSpace/Data/MPO/iml42020/" ds = load_adcp_binary(filenames=path + "*4.ENS", sonar="sw", yearbase=2020) ``` #### File: viking_ADCP_processing/magtogoek/tools.py ```python import typing as tp import numpy as np from pygeodesy.ellipsoidalVincenty import LatLon def nans(shape: tp.Union[list, tuple, np.ndarray]) -> np.ndarray: """return array of nan of shape `shape`""" return np.full(shape, np.nan) def circular_distance(a1, a2, units="rad"): """ Function circdist usage: d = circdist(a1,a2,units='rad') Returns to 'd' the distance between angles a1 and a2 expected to be radians by default, or degrees if units is specified to 'deg'. Parameters ---------- a1, a2 : float Input angle. units : str Units of input angles ('deg', 'rad') Returns ------- float Angular distance between `a1` and `a2`. Notes ----- Taken from jeanlucshaw adcp2nc: https://github.com/jeanlucshaw/adcp2nc/ """ if units == "deg": a1 = np.pi * a1 / 180 a2 = np.pi * a2 / 180 if np.isscalar(a1) and np.isscalar(a2): v1 = np.array([np.cos(a1), np.sin(a1)]) v2 = np.array([np.cos(a2), np.sin(a2)]) dot = np.dot(v1, v2) elif not np.isscalar(a1) and np.isscalar(a2): a2 = np.tile(a2, a1.size) v1 = np.array([np.cos(a1), np.sin(a1)]).T v2 = np.array([np.cos(a2), np.sin(a2)]).T dot = (v1 * v2).sum(-1) else: v1 = np.array([np.cos(a1), np.sin(a1)]).T v2 = np.array([np.cos(a2), np.sin(a2)]).T dot = (v1 * v2).sum(-1) res = np.arccos(np.clip(dot, -1.0, 1.0)) if units == "deg": res = 180 * res / np.pi return res def vincenty(p0: tp.Tuple[float, float], p1: tp.Tuple[float, float]) -> float: """Calculate the distance between 2 coordinates with pygeodesy.ellipsoidalVincenty.LatLon Great Circule Distance with Datum = WGS84 Parameters ---------- p0 : (longitude, latitude) of the first points in decimal degrees p1 : (longitude, latitude) of the second points in decimal degrees Returns ------- distance : distance between the two points in meters. """ return LatLon(p0[1], p0[0]).distanceTo(LatLon(p1[1], p1[0])) def get_gps_bearing(p0: tp.Tuple[float, float], p1: tp.Tuple[float, float]) -> float: """Calculate the bearing between two coordinates with pygeodesy.ellipsoidalVincenty.LatLon Datum = WGS84 Parameters ---------- p0 : (longitude, latitude) of the first points in decimal degrees p1 : (longitude, latitude) of the second points in decimal degrees Returns ------- bearing in degrees [0, 360] """ return LatLon(p0[1], p0[0]).initialBearingTo(LatLon(p1[1], p1[0])) ``` #### File: rti_python/Ensemble/AncillaryData.py ```python from rti_python.Ensemble.Ensemble import Ensemble import logging from pandas import DataFrame class AncillaryData: """ Ancillary Data DataSet. Float values that give details about the ensemble. """ def __init__(self, num_elements=19, element_multiplier=1): self.ds_type = 10 # Float self.num_elements = num_elements self.element_multiplier = element_multiplier self.image = 0 self.name_len = 8 self.Name = "E000009\0" self.FirstBinRange = 0.0 # Blank. Depth to the first bin in meters. self.BinSize = 0.0 # Size of a bin in meters. self.FirstPingTime = 0.0 # First Ping Time in seconds. self.LastPingTime = 0.0 # Last Ping Time in seconds. (If averaging pings, this will be the last ping) self.Heading = 0.0 # Heading in degrees. self.Pitch = 0.0 # Pitch in degrees. self.Roll = 0.0 # Roll in degrees. self.WaterTemp = 0.0 # Water Temperature in fahrenheit self.SystemTemp = 0.0 # System Temperature in fahrenheit self.Salinity = 0.0 # Water Salinity set by the user in PPT self.Pressure = 0.0 # Pressure from pressure sensor in Pascals self.TransducerDepth = 0.0 # Transducer Depth, used by Pressure sensor in meters self.SpeedOfSound = 0.0 # Speed of Sound in m/s. self.RawMagFieldStrength = 0.0 # Raw magnetic field strength (uT) (micro Tesla) self.RawMagFieldStrength2 = 0.0 # Raw magnetic field strength (uT) (micro Tesla) self.RawMagFieldStrength3 = 0.0 # Raw magnetic field strength (uT) (micro Tesla) self.PitchGravityVector = 0.0 # Pitch Gravity Vector self.RollGravityVector = 0.0 # Roll Gravity Vector self.VerticalGravityVector = 0.0 # Vertical Gravity Vector def decode(self, data): """ Take the data bytearray. Decode the data to populate the values. :param data: Bytearray for the dataset. """ packet_pointer = Ensemble.GetBaseDataSize(self.name_len) self.FirstBinRange = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 0, Ensemble().BytesInFloat, data) self.BinSize = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 1, Ensemble().BytesInFloat, data) self.FirstPingTime = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 2, Ensemble().BytesInFloat, data) self.LastPingTime = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 3, Ensemble().BytesInFloat, data) self.Heading = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 4, Ensemble().BytesInFloat, data) self.Pitch = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 5, Ensemble().BytesInFloat, data) self.Roll = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 6, Ensemble().BytesInFloat, data) self.WaterTemp = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 7, Ensemble().BytesInFloat, data) self.SystemTemp = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 8, Ensemble().BytesInFloat, data) self.Salinity = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 9, Ensemble().BytesInFloat, data) self.Pressure = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 10, Ensemble().BytesInFloat, data) self.TransducerDepth = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 11, Ensemble().BytesInFloat, data) self.SpeedOfSound = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 12, Ensemble().BytesInFloat, data) if self.num_elements > 13: self.RawMagFieldStrength = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 13, Ensemble().BytesInFloat, data) self.RawMagFieldStrength2 = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 14, Ensemble().BytesInFloat, data) self.RawMagFieldStrength3 = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 15, Ensemble().BytesInFloat, data) self.PitchGravityVector = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 16, Ensemble().BytesInFloat, data) self.RollGravityVector = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 17, Ensemble().BytesInFloat, data) self.VerticalGravityVector = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 18, Ensemble().BytesInFloat, data) logging.debug(self.FirstBinRange) logging.debug(self.BinSize) logging.debug(self.Heading) logging.debug(self.Pitch) logging.debug(self.Roll) logging.debug(self.Salinity) logging.debug(self.SpeedOfSound) def encode(self): """ Encode the data into RTB format. :return: """ result = [] # Generate header result += Ensemble.generate_header(self.ds_type, self.num_elements, self.element_multiplier, self.image, self.name_len, self.Name) # Add the data result += Ensemble.float_to_bytes(self.FirstBinRange) result += Ensemble.float_to_bytes(self.BinSize) result += Ensemble.float_to_bytes(self.FirstPingTime) result += Ensemble.float_to_bytes(self.LastPingTime) result += Ensemble.float_to_bytes(self.Heading) result += Ensemble.float_to_bytes(self.Pitch) result += Ensemble.float_to_bytes(self.Roll) result += Ensemble.float_to_bytes(self.WaterTemp) result += Ensemble.float_to_bytes(self.SystemTemp) result += Ensemble.float_to_bytes(self.Salinity) result += Ensemble.float_to_bytes(self.Pressure) result += Ensemble.float_to_bytes(self.TransducerDepth) result += Ensemble.float_to_bytes(self.SpeedOfSound) result += Ensemble.float_to_bytes(self.RawMagFieldStrength) result += Ensemble.float_to_bytes(self.RawMagFieldStrength2) result += Ensemble.float_to_bytes(self.RawMagFieldStrength3) result += Ensemble.float_to_bytes(self.PitchGravityVector) result += Ensemble.float_to_bytes(self.RollGravityVector) result += Ensemble.float_to_bytes(self.VerticalGravityVector) return result def encode_csv(self, dt, ss_code, ss_config, blank=0, bin_size=0): """ Encode into CSV format. :param dt: Datetime object. :param ss_code: Subsystem code. :param ss_config: Subsystem Configuration :param blank: Blank or first bin position in meters. :param bin_size: Bin size in meters. :return: List of CSV lines. """ str_result = [] # Create the CSV strings str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_FIRST_PING_TIME, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.FirstPingTime)) str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_LAST_PING_TIME, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.LastPingTime)) str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_HEADING, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.Heading)) str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_PITCH, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.Pitch)) str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_ROLL, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.Roll)) str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_WATER_TEMP, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.WaterTemp)) str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_SYS_TEMP, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.SystemTemp)) str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_PRESSURE, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.Pressure)) str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_XDCR_DEPTH, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.TransducerDepth)) str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_SOS, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.SpeedOfSound)) return str_result def encode_df(self, dt, ss_code, ss_config): """ Encode into Dataframe format. :param dt: Datetime object. :param ss_code: Subsystem code. :param ss_config: Subsystem Configuration :return: Dataframe of the data. """ df_result = [] # Create the Dataframe strings df_result.append([dt, Ensemble.CSV_FIRST_PING_TIME, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.FirstPingTime]) df_result.append([dt, Ensemble.CSV_LAST_PING_TIME, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.LastPingTime]) df_result.append([dt, Ensemble.CSV_HEADING, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.Heading]) df_result.append([dt, Ensemble.CSV_PITCH, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.Pitch]) df_result.append([dt, Ensemble.CSV_ROLL, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.Roll]) df_result.append([dt, Ensemble.CSV_WATER_TEMP, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.WaterTemp]) df_result.append([dt, Ensemble.CSV_SYS_TEMP, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.SystemTemp]) df_result.append([dt, Ensemble.CSV_PRESSURE, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.Pressure]) df_result.append([dt, Ensemble.CSV_XDCR_DEPTH, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.TransducerDepth]) df_result.append([dt, Ensemble.CSV_SOS, ss_code, ss_config, 0, 0, self.FirstBinRange, self.BinSize, self.SpeedOfSound]) # Create the column names df_earth_columns = ["dt", "type", "ss_code", "ss_config", "bin_num", "beam", "blank", "bin_size", "val"] return DataFrame(df_result, columns=df_earth_columns) def is_upward_facing(self, min_roll: float = 0.0, max_roll: float = 20.0): """ Check the roll value if it is near 0 degrees. A value near zero means the ADCP is upward facing. Upward looking is around 0 degrees for roll. Downward looking is around 180 degrees for roll. :param min_roll: Minimum roll for upward looking taking absolute value. :param max_roll: Maximum roll for the upward looking taking absolute value. :return: TRUE if Upward facing. """ # Check if the roll value is near 0 if min_roll <= abs(self.Roll) <= max_roll: return True return False ``` #### File: rti_python/Ensemble/BottomTrack.py ```python from rti_python.Ensemble.Ensemble import Ensemble import logging from pandas import DataFrame class BottomTrack: """ Ensemble Data DataSet. Integer values that give details about the ensemble. """ def __init__(self, num_elements=74, element_multiplier=1): """ Initialize the object :param num_elements: Number of elements. 74 for 4 Beam system, 59 for 3 beam, 29 for 1 beam :param element_multiplier: Element mulitplier = 1 always """ self.ds_type = 10 # Float self.num_elements = num_elements self.element_multiplier = element_multiplier self.image = 0 self.name_len = 8 self.Name = "E000010\0" self.FirstPingTime = 0.0 self.LastPingTime = 0.0 self.Heading = 0.0 self.Pitch = 0.0 self.Roll = 0.0 self.WaterTemp = 0.0 self.SystemTemp = 0.0 self.Salinity = 0.0 self.Pressure = 0.0 self.TransducerDepth = 0.0 self.SpeedOfSound = 0.0 self.Status = 0.0 self.NumBeams = 0.0 self.ActualPingCount = 0.0 self.Range = [] self.SNR = [] self.Amplitude = [] self.Correlation = [] self.BeamVelocity = [] self.BeamGood = [] self.InstrumentVelocity = [] self.InstrumentGood = [] self.EarthVelocity = [] self.EarthGood = [] self.SNR_PulseCoherent = [] self.Amp_PulseCoherent = [] self.Vel_PulseCoherent = [] self.Noise_PulseCoherent = [] self.Corr_PulseCoherent = [] """ for beams in range(element_multiplier): self.Range.append(Ensemble().BadVelocity) self.SNR.append(Ensemble().BadVelocity) self.Amplitude.append(Ensemble().BadVelocity) self.Correlation.append(Ensemble().BadVelocity) self.BeamVelocity.append(Ensemble().BadVelocity) self.BeamGood.append(Ensemble().BadVelocity) self.InstrumentVelocity.append(Ensemble().BadVelocity) self.InstrumentGood.append(Ensemble().BadVelocity) self.EarthVelocity.append(Ensemble().BadVelocity) self.EarthGood.append(Ensemble().BadVelocity) """ def decode(self, data): """ Take the data bytearray. Decode the data to populate the velocities. :param data: Bytearray for the dataset. """ packet_pointer = Ensemble.GetBaseDataSize(self.name_len) self.FirstPingTime = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 0, Ensemble().BytesInFloat, data) self.LastPingTime = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 1, Ensemble().BytesInFloat, data) self.Heading = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 2, Ensemble().BytesInFloat, data) self.Pitch = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 3, Ensemble().BytesInFloat, data) self.Roll = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 4, Ensemble().BytesInFloat, data) self.WaterTemp = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 5, Ensemble().BytesInFloat, data) self.SystemTemp = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 6, Ensemble().BytesInFloat, data) self.Salinity = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 7, Ensemble().BytesInFloat, data) self.Pressure = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 8, Ensemble().BytesInFloat, data) self.TransducerDepth = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 9, Ensemble().BytesInFloat, data) self.SpeedOfSound = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 10, Ensemble().BytesInFloat, data) self.Status = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 11, Ensemble().BytesInFloat, data) self.NumBeams = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 12, Ensemble().BytesInFloat, data) self.ActualPingCount = Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * 13, Ensemble().BytesInFloat, data) index = 14 numBeam = int(self.NumBeams) for beams in range(numBeam): self.Range.append(Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * index, Ensemble().BytesInFloat, data)) index += 1 for beams in range(numBeam): self.SNR.append(Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * index, Ensemble().BytesInFloat, data)) index += 1 for beams in range(numBeam): self.Amplitude.append(Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * index, Ensemble().BytesInFloat, data)) index += 1 for beams in range(numBeam): self.Correlation.append(Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * index, Ensemble().BytesInFloat, data)) index += 1 for beams in range(numBeam): self.BeamVelocity.append(Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * index, Ensemble().BytesInFloat, data)) index += 1 for beams in range(numBeam): self.BeamGood.append(Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * index, Ensemble().BytesInFloat, data)) index += 1 for beams in range(numBeam): self.InstrumentVelocity.append(Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * index, Ensemble().BytesInFloat, data)) index += 1 for beams in range(numBeam): self.InstrumentGood.append(Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * index, Ensemble().BytesInFloat, data)) index += 1 for beams in range(numBeam): self.EarthVelocity.append(Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * index, Ensemble().BytesInFloat, data)) index += 1 for beams in range(numBeam): self.EarthGood.append(Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * index, Ensemble().BytesInFloat, data)) index += 1 if self.num_elements > 54: for beams in range(numBeam): self.SNR_PulseCoherent.append(Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * index, Ensemble().BytesInFloat, data)) index += 1 for beams in range(numBeam): self.Amp_PulseCoherent.append(Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * index, Ensemble().BytesInFloat, data)) index += 1 for beams in range(numBeam): self.Vel_PulseCoherent.append(Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * index, Ensemble().BytesInFloat, data)) index += 1 for beams in range(numBeam): self.Noise_PulseCoherent.append(Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * index, Ensemble().BytesInFloat, data)) index += 1 for beams in range(numBeam): self.Corr_PulseCoherent.append(Ensemble.GetFloat(packet_pointer + Ensemble().BytesInFloat * index, Ensemble().BytesInFloat, data)) index += 1 else: # Fill in with 0.0 for beams in range(numBeam): self.SNR_PulseCoherent.append(0.0) for beams in range(numBeam): self.Amp_PulseCoherent.append(0.0) for beams in range(numBeam): self.Vel_PulseCoherent.append(0.0) for beams in range(numBeam): self.Noise_PulseCoherent.append(0.0) for beams in range(numBeam): self.Corr_PulseCoherent.append(0.0) logging.debug(self.FirstPingTime) logging.debug(self.LastPingTime) logging.debug(self.Heading) logging.debug(self.Pitch) logging.debug(self.Roll) logging.debug(self.Salinity) logging.debug(self.SpeedOfSound) logging.debug(self.EarthVelocity) def get_vessel_speed(self): """ This will calculate the vessel speed (magnitude). You will need 3 beams of good data to calculate the vessel speed. If you do not have 3 beams or any of the velocities for a beam are bad, this will return BAD_VELOCITY. :return: Vessel speed or BAD_VELOCITY. """ # At least 3 beams needed if int(self.NumBeams) >= 3 and len(self.EarthVelocity) >= 3: return Ensemble.calculate_magnitude(self.EarthVelocity[0], self.EarthVelocity[1], self.EarthVelocity[2]) return Ensemble.BadVelocity def get_vessel_direction(self): """ This will calculate the vessel direction. You will need 2 beams of good data to calculate the vessel speed. If you do not have 2 beams or any of the velocities for a beam are bad, this will return BAD_VELOCITY. :return: Vessel speed or BAD_VELOCITY. """ # At least 3 beams needed if int(self.NumBeams) >= 2 and len(self.EarthVelocity) >= 2: return Ensemble.calculate_direction(self.EarthVelocity[0], self.EarthVelocity[1]) return Ensemble.BadVelocity def avg_range(self): """ Return the average range (depth to the bottom). This will determine the good values for the range and average them together. :return: Average range. """ # Average the range return Ensemble.get_avg_range(self.Range) def status_str(self): """ Convert the status value to a string. :return: Status value as a string. """ BT_LONG_LAG = 0x0001; BT_BT_3BEAM_SOLUTION = 0x0002; BT_HOLD = 0x0004; BT_SEARCHING = 0x0008; BT_LR = 0x0010; BT_COAST = 0x0020; BT_PROOF = 0x0040; OVERTEMP = 0x0020; BT_LOWGAIN = 0x0080; ERR_HEADING_SENSOR = 0x0100; ERR_PRESSURE_SENSOR = 0x0200; ERR_POWER_DOWN_FAILURE = 0x0400; ERR_NONVOLATILE_DATA = 0x0800; ERR_RTC = 0x1000; ERR_TEMPERATURE = 0x2000; ERR_RCVR_DATA = 0x4000; ERR_RCVR_TIMEOUT = 0x8000; ERR_LOW_VOLTAGE = 0xFFFF; result_str = "" if self.Status & BT_LONG_LAG: result_str += "Bottom Track Long Lag, " if self.Status & BT_BT_3BEAM_SOLUTION: result_str += "Bottom Track 3 Beam Solution" if self.Status & BT_HOLD: result_str += "Bottom Track Search: HOLD, " if self.Status & BT_SEARCHING: result_str += "Bottom Track Search: SEARCHING, " if self.Status & BT_LR: result_str += "Bottom Track Long Range [Narrowband Mode], " if self.Status & BT_COAST: result_str += "Bottom Track Coast, " if self.Status & BT_PROOF: result_str += "Bottom Track Search: PROOF, " if self.Status & OVERTEMP: result_str += "Over Temperature, " if self.Status & BT_LOWGAIN: result_str += "Bottom Track Low Gain (Shallow Water Mode), " if self.Status & ERR_HEADING_SENSOR: result_str += "Heading Sensor Error, " if self.Status & ERR_PRESSURE_SENSOR: result_str += "Pressure Sensor Error, " if self.Status & ERR_POWER_DOWN_FAILURE: result_str += "Error Powering Down, " if self.Status & ERR_NONVOLATILE_DATA: result_str += "Error in NonVolatile Data: " if self.Status & ERR_RTC: result_str += "RTC Error, " if self.Status & ERR_TEMPERATURE: result_str += "Temperature Error, " if self.Status & ERR_RCVR_DATA: result_str += "Receiver Data Error, " if self.Status & ERR_RCVR_TIMEOUT: result_str += "Receiver Timeout, " if self.Status == ERR_LOW_VOLTAGE: result_str += "Low Voltage, " return result_str def encode(self): """ Encode the data into RTB format. :return: """ result = [] self.num_elements = (15 * int(self.NumBeams)) + 14 # Generate header result += Ensemble.generate_header(self.ds_type, self.num_elements, self.element_multiplier, self.image, self.name_len, self.Name) # Add the data result += Ensemble.float_to_bytes(self.FirstPingTime) result += Ensemble.float_to_bytes(self.LastPingTime) result += Ensemble.float_to_bytes(self.Heading) result += Ensemble.float_to_bytes(self.Pitch) result += Ensemble.float_to_bytes(self.Roll) result += Ensemble.float_to_bytes(self.WaterTemp) result += Ensemble.float_to_bytes(self.SystemTemp) result += Ensemble.float_to_bytes(self.Salinity) result += Ensemble.float_to_bytes(self.Pressure) result += Ensemble.float_to_bytes(self.TransducerDepth) result += Ensemble.float_to_bytes(self.SpeedOfSound) result += Ensemble.float_to_bytes(self.Status) result += Ensemble.float_to_bytes(self.NumBeams) result += Ensemble.float_to_bytes(self.ActualPingCount) for beam in range(len(self.Range)): result += Ensemble.float_to_bytes(self.Range[beam]) for beam in range(len(self.SNR)): result += Ensemble.float_to_bytes(self.SNR[beam]) for beam in range(len(self.Amplitude)): result += Ensemble.float_to_bytes(self.Amplitude[beam]) for beam in range(len(self.Correlation)): result += Ensemble.float_to_bytes(self.Correlation[beam]) for beam in range(len(self.BeamVelocity)): result += Ensemble.float_to_bytes(self.BeamVelocity[beam]) for beam in range(len(self.BeamGood)): result += Ensemble.float_to_bytes(self.BeamGood[beam]) for beam in range(len(self.InstrumentVelocity)): result += Ensemble.float_to_bytes(self.InstrumentVelocity[beam]) for beam in range(len(self.InstrumentGood)): result += Ensemble.float_to_bytes(self.InstrumentGood[beam]) for beam in range(len(self.EarthVelocity)): result += Ensemble.float_to_bytes(self.EarthVelocity[beam]) for beam in range(len(self.EarthGood)): result += Ensemble.float_to_bytes(self.EarthGood[beam]) for beam in range(len(self.SNR_PulseCoherent)): result += Ensemble.float_to_bytes(self.SNR_PulseCoherent[beam]) for beam in range(len(self.Amp_PulseCoherent)): result += Ensemble.float_to_bytes(self.Amp_PulseCoherent[beam]) for beam in range(len(self.Vel_PulseCoherent)): result += Ensemble.float_to_bytes(self.Vel_PulseCoherent[beam]) for beam in range(len(self.Noise_PulseCoherent)): result += Ensemble.float_to_bytes(self.Vel_PulseCoherent[beam]) for beam in range(len(self.Corr_PulseCoherent)): result += Ensemble.float_to_bytes(self.Vel_PulseCoherent[beam]) return result def encode_csv(self, dt, ss_code, ss_config, blank=0, bin_size=0): """ Encode into CSV format. :param dt: Datetime object. :param ss_code: Subsystem code. :param ss_config: Subsystem Configuration :param blank: Blank or first bin position in meters. :param bin_size: Bin size in meters. :return: List of CSV lines. """ str_result = [] # Create the CSV strings str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_BT_HEADING, ss_code, ss_config, 0, 0, blank, bin_size, self.Heading)) str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_BT_PITCH, ss_code, ss_config, 0, 0, blank, bin_size, self.Pitch)) str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_BT_ROLL, ss_code, ss_config, 0, 0, blank, bin_size, self.Roll)) str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_BT_PRESSURE, ss_code, ss_config, 0, 0, blank, bin_size, self.Pressure)) str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_BT_XDCR_DEPTH, ss_code, ss_config, 0, 0, blank, bin_size, self.TransducerDepth)) str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_BT_STATUS, ss_code, ss_config, 0, 0, blank, bin_size, self.Status)) for beams in range(len(self.Range)): str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_BT_RANGE, ss_code, ss_config, 0, beams, blank, bin_size, self.Range[beams])) for beams in range(len(self.BeamVelocity)): str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_BT_BEAM_VEL, ss_code, ss_config, 0, beams, blank, bin_size, self.BeamVelocity[beams])) for beams in range(len(self.BeamGood)): str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_BT_BEAM_GOOD, ss_code, ss_config, 0, beams, blank, bin_size, self.BeamGood[beams])) for beams in range(len(self.InstrumentVelocity)): str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_BT_INSTR_VEL, ss_code, ss_config, 0, beams, blank, bin_size, self.InstrumentVelocity[beams])) for beams in range(len(self.InstrumentGood)): str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_BT_INSTR_GOOD, ss_code, ss_config, 0, beams, blank, bin_size, self.InstrumentGood[beams])) for beams in range(len(self.EarthVelocity)): str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_BT_EARTH_VEL, ss_code, ss_config, 0, beams, blank, bin_size, self.EarthVelocity[beams])) for beams in range(len(self.EarthGood)): str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_BT_EARTH_GOOD, ss_code, ss_config, 0, beams, blank, bin_size, self.EarthGood[beams])) return str_result def encode_df(self, dt, ss_code, ss_config): """ Encode into Dataframe array format. :param dt: Datetime object. :param ss_code: Subsystem code. :param ss_config: Subsystem Configuration :param vel_bad_val: Change bad velocity value for Earth Velocity :param mag_bad_val: Change bad velocity value for Magnitude value :param include_bad_vel: Include the velocity if it is bad, or remove it :param include_bad_mag: Include the magnitude if it is bad, or remove it :return: List of CSV lines. """ df_result = [] for beams in range(len(self.Range)): df_result.append([dt, Ensemble.CSV_BT_RANGE, ss_code, ss_config, 0, beams, self.Range[beams]]) df_result.append([dt, Ensemble.CSV_BT_AVG_RANGE, ss_code, ss_config, 0, 0, self.avg_range()]) # Create the column names df_earth_columns = ["dt", "type", "ss_code", "ss_config", "bin_num", "beam", "val"] return DataFrame(df_result, columns=df_earth_columns) return df_result def pd0_range_cm(self, pd0_beam_num: int): """ Convert the range from meters to centimeters. Remap the Beam numbers to match PD0 beams. RTB and PD0 do not share the same Beam Order RTB BEAM 0,1,2,3 = PD0 BEAM 3,2,0,1 :param pd0_beam_num: PD0 Beam number. :type pd0_beam_num: Integer :return: Ranges for the given PD0 beam, converted to centimeters for the beam. The beam will be based on reordering for PD0 :rtype: Float - Range value. """ if pd0_beam_num == 0 and pd0_beam_num <= self.NumBeams: if Ensemble.is_bad_velocity(self.Range[2]): return -32768 return round(self.Range[2] * 100.0) # PD0 0 - RTB 2 if pd0_beam_num == 1 and pd0_beam_num <= self.NumBeams: if Ensemble.is_bad_velocity(self.Range[3]): return -32768 return round(self.Range[3] * 100.0) # PD0 1 - RTB 3 if pd0_beam_num == 2 and pd0_beam_num <= self.NumBeams: if Ensemble.is_bad_velocity(self.Range[1]): return -32768 return round(self.Range[1] * 100.0) # PD0 2 - RTB 1 if pd0_beam_num == 3 and pd0_beam_num <= self.NumBeams: if Ensemble.is_bad_velocity(self.Range[0]): return -32768 return round(self.Range[0] * 100.0) # PD0 3 - RTB 0 return None def pd0_beam_vel_mm_per_sec(self, pd0_beam_num: int): """ Convert the Beam Velocity from m/s to mm/s. Also remap the Beam numbers to match PD0 beams. RTB and PD0 do not share the same Beam Order RTB BEAM 0,1,2,3 = PD0 BEAM 3,2,0,1 :param pd0_beam_num: PD0 Beam number. :type pd0_beam_num: Integer :return: Velocity for the given PD0 beam, converted to mm/s for the beam. The beam will be based on reordering for PD0 :rtype: Velocity data for given beam. """ if pd0_beam_num == 0 and pd0_beam_num <= self.NumBeams: if Ensemble.is_bad_velocity(self.BeamVelocity[2]): return -32768 return round(self.BeamVelocity[2] * 1000.0 * -1.0) # Convert to mm/s PD0 0 - RTB 2 if pd0_beam_num == 1 and pd0_beam_num <= self.NumBeams: if Ensemble.is_bad_velocity(self.BeamVelocity[3]): return -32768 return round(self.BeamVelocity[3] * 1000.0 * -1.0) # Convert to mm/s PD0 1 - RTB 3 if pd0_beam_num == 2 and pd0_beam_num <= self.NumBeams: if Ensemble.is_bad_velocity(self.BeamVelocity[1]): return -32768 return round(self.BeamVelocity[1] * 1000.0 * -1.0) # Convert to mm/s PD0 2 - RTB 1 if pd0_beam_num == 3 and pd0_beam_num <= self.NumBeams: if Ensemble.is_bad_velocity(self.BeamVelocity[0]): return -32768 return round(self.BeamVelocity[0] * 1000.0 * -1.0) # Convert to mm/s PD0 3 - RTB 0 return None def pd0_corr_counts(self, pd0_beam_num: int): """ The value has to be converted from percentage to 0 - 255 Scale 0 % - 100 % to 0 - 255 255 = 100 % 0 = 0 % 50 % = 0.50 * 255 = 127.5 = 255 / 2 Also remap the Beam numbers to match PD0 beams. RTB and PD0 do not share the same Beam Order RTB BEAM 0,1,2,3 = PD0 BEAM 3,2,0,1 :param pd0_beam_num: PD0 Beam number. :type pd0_beam_num: Integer :return: Correlation data as PD0 counts format. Beams are reordered :rtype: Float - Correlation value. """ if pd0_beam_num == 0 and pd0_beam_num <= self.NumBeams: return round(self.Correlation[2] * 255.0) # Convert to counts - PD0 0 - RTB 2 if pd0_beam_num == 1 and pd0_beam_num <= self.NumBeams: return round(self.Correlation[3] * 255.0) # Convert to counts - PD0 1 - RTB 3 if pd0_beam_num == 2 and pd0_beam_num <= self.NumBeams: return round(self.Correlation[1] * 255.0) # Convert to counts - PD0 2 - RTB 1 if pd0_beam_num == 3 and pd0_beam_num <= self.NumBeams: return round(self.Correlation[0] * 255.0) # Convert to counts - PD0 3 - RTB 0 return None def pd0_amp_counts(self, pd0_beam_num: int): """ Convert the Amplitude/Echo Intensity to Counts. 0.5dB per count. Also remap the Beam numbers to match PD0 beams. RTB and PD0 do not share the same Beam Order RTB BEAM 0,1,2,3 = PD0 BEAM 3,2,0,1 :param pd0_beam_num: PD0 Beam number. :type pd0_beam_num: Integer :return: Amplitude data as PD0 counts format. Beams are reordered :rtype: Float - Amplitude value. """ if pd0_beam_num == 0 and pd0_beam_num <= self.NumBeams: return round(self.Amplitude[2] * 2.0) # Convert to counts - PD0 0 - RTB 2 if pd0_beam_num == 1 and pd0_beam_num <= self.NumBeams: return round(self.Amplitude[3] * 2.0) # Convert to counts - PD0 1 - RTB 3 if pd0_beam_num == 2 and pd0_beam_num <= self.NumBeams: return round(self.Amplitude[1] * 2.0) # Convert to counts - PD0 2 - RTB 1 if pd0_beam_num == 3 and pd0_beam_num <= self.NumBeams: return round(self.Amplitude[0] * 2.0) # Convert to counts - PD0 3 - RTB 0 return None def pd0_good_beam_percent(self, pd0_beam_num: int): """ Convert the Good Beams to percentage. Also remap the Beam numbers to match PD0 beams. RTB and PD0 do not share the same Beam Order RTB BEAM 0,1,2,3 = PD0 BEAM 3,2,0,1 :param pd0_beam_num: PD0 Beam number. :type pd0_beam_num: Integer :return: Good Beams data as PD0 as a percentage. Beams are reordered :rtype: Float - Good Beams value. """ if pd0_beam_num == 0 and pd0_beam_num <= self.NumBeams: return round((self.BeamGood[2] * 100.0) / self.ActualPingCount) # Convert to percentage - PD0 0 - RTB 2 if pd0_beam_num == 1 and pd0_beam_num <= self.NumBeams: return round((self.BeamGood[3] * 100.0) / self.ActualPingCount) # Convert to counts - PD0 1 - RTB 3 if pd0_beam_num == 2 and pd0_beam_num <= self.NumBeams: return round((self.BeamGood[1] * 100.0) / self.ActualPingCount) # Convert to counts - PD0 2 - RTB 1 if pd0_beam_num == 3 and pd0_beam_num <= self.NumBeams: return round((self.BeamGood[0] * 100.0) / self.ActualPingCount) # Convert to counts - PD0 3 - RTB 0 return None ``` #### File: rti_python/Ensemble/EnsembleReader.py ```python from log import logger import socket class EnsembleReader: """ Read in data from the given TCP. Then decode the data and pass it on to another TCP port """ def __init__(self, port): # Open a TCP port to read in the ensemble data self.port = port self.is_alive = True self.socket = None self.reconnect(port) self.read() def reconnect(self, tcp_port): """ Connect to the server. """ logger.debug("Ensemble Reader: ", tcp_port) self.is_alive = True try: self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.connect(('localhost', int(tcp_port))) except ConnectionRefusedError as err: print("EnsembleReader: ", err) #sys.exit(2) except socket.error as err: print('EnsembleReader: Error Opening socket ', err) #sys.exit(2) def read(self): """ Read data from the serial port """ try: while self.is_alive: # Receive a response response = self.socket.recv() #print('"%s"' % response) # Decode the ensemble data # Reconnect if len(response) == 0: print("Disconnected") # Close the socket self.close() # Reconnect to the server self.reconnect(self.port) # Try to read again self.read() except KeyboardInterrupt: # Ctrl-C will stop the application pass except: pass # Close the socket self.close() def close(self): """ Close the socket. """ self.is_alive = False self.socket.close() ``` #### File: rti_python/Ensemble/GoodBeam.py ```python from rti_python.Ensemble.Ensemble import Ensemble import logging class GoodBeam: """ Good Beam DataSet. Indicate if the beam data is good. [Bin x Beam] data. """ def __init__(self, num_elements, element_multiplier): self.ds_type = 20 # Int self.num_elements = num_elements self.element_multiplier = element_multiplier self.image = 0 self.name_len = 8 self.Name = "E000006\0" self.GoodBeam = [] # Create enough entries for all the (bins x beams) # Initialize with bad values for bins in range(num_elements): bins = [] for beams in range(element_multiplier): bins.append([0]) self.GoodBeam.append(bins) def decode(self, data): """ Take the data bytearray. Decode the data to populate the Good Beams. :param data: Bytearray for the dataset. """ packet_pointer = Ensemble.GetBaseDataSize(self.name_len) for beam in range(self.element_multiplier): for bin_num in range(self.num_elements): self.GoodBeam[bin_num][beam] = Ensemble.GetInt32(packet_pointer, Ensemble().BytesInInt32, data) packet_pointer += Ensemble().BytesInInt32 logging.debug(self.GoodBeam) def encode(self): """ Encode the data into RTB format. :return: """ result = [] # Generate header result += Ensemble.generate_header(self.ds_type, self.num_elements, self.element_multiplier, self.image, self.name_len, self.Name) # Add the data for beam in range(self.element_multiplier): for bin_num in range(self.num_elements): val = self.GoodBeam[bin_num][beam] result += Ensemble.int32_to_bytes(val) return result def encode_csv(self, dt, ss_code, ss_config, blank, bin_size): """ Encode into CSV format. :param dt: Datetime object. :param ss_code: Subsystem code. :param ss_config: Subsystem Configuration :param blank: Blank or First bin position in meters. :param bin_size: Bin size in meters. :return: List of CSV lines. """ str_result = [] for beam in range(self.element_multiplier): for bin_num in range(self.num_elements): # Get the value val = self.GoodBeam[bin_num][beam] # Create the CSV string str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_GOOD_BEAM, ss_code, ss_config, bin_num, beam, blank, bin_size, val)) return str_result def pd0_percent(self, pings_per_ens: int, pd0_beam_num: int): """ Convert the Good Beams to Percent. Also remap the Beam numbers to match PD0 beams. RTB and PD0 do not share the same Beam Order RTB BEAM 0,1,2,3 = PD0 BEAM 3,2,0,1 :param pd0_beam_num: PD0 Beam number. :type pd0_beam_num: Integer :param pings_per_ens: Number of pings in the ensemble. :type pings_per_ens: Integer :return: A list of all the velocities for the given PD0 beam, converted to mm/s for the beam. The beam will be based on reordering for PD0 :rtype: List or None if beam number is not correct. """ # Vertical Beam ONLY if self.element_multiplier == 1: beam0 = [v[0] for v in self.GoodBeam] # Beam 0 return [round((v * 100.0) / pings_per_ens) for v in beam0] # Convert to percent if pd0_beam_num == 0 and pd0_beam_num <= self.element_multiplier: beam2 = [v[2] for v in self.GoodBeam] # PD0 0 - RTB 2 return [round((v * 100.0) / pings_per_ens) for v in beam2] # Convert to percent if pd0_beam_num == 1 and pd0_beam_num <= self.element_multiplier: beam3 = [v[3] for v in self.GoodBeam] # PD0 1 - RTB 3 return [round((v * 100.0) / pings_per_ens) for v in beam3] # Convert to percent if pd0_beam_num == 2 and pd0_beam_num <= self.element_multiplier: beam1 = [v[1] for v in self.GoodBeam] # PD0 2 - RTB 1 return [round((v * 100.0) / pings_per_ens) for v in beam1] # Convert to percent if pd0_beam_num == 3 and pd0_beam_num <= self.element_multiplier: beam0 = [v[0] for v in self.GoodBeam] # PD0 3 - RTB 0 return [round((v * 100.0) / pings_per_ens) for v in beam0] # Convert to percent return None ``` #### File: rti_python/Ensemble/InstrumentVelocity.py ```python from rti_python.Ensemble.Ensemble import Ensemble import logging class InstrumentVelocity: """ Instrument Velocity DataSet. [Bin x Beam] data. """ def __init__(self, num_elements, element_multiplier): self.ds_type = 10 self.num_elements = num_elements self.element_multiplier = element_multiplier self.image = 0 self.name_len = 8 self.Name = "E000002\0" self.Velocities = [] # Create enough entries for all the (bins x beams) # Initialize with bad values for bins in range(num_elements): bins = [] for beams in range(element_multiplier): bins.append([Ensemble().BadVelocity]) self.Velocities.append(bins) def decode(self, data): """ Take the data bytearray. Decode the data to populate the velocities. :param data: Bytearray for the dataset. """ packetpointer = Ensemble.GetBaseDataSize(self.name_len) for beam in range(self.element_multiplier): for bin_num in range(self.num_elements): self.Velocities[bin_num][beam] = Ensemble.GetFloat(packetpointer, Ensemble().BytesInFloat, data) packetpointer += Ensemble().BytesInFloat logging.debug(self.Velocities) def encode(self): """ Encode the data into RTB format. :return: """ result = [] # Generate header result += Ensemble.generate_header(self.ds_type, self.num_elements, self.element_multiplier, self.image, self.name_len, self.Name) # Add the data for beam in range(self.element_multiplier): for bin_num in range(self.num_elements): val = self.Velocities[bin_num][beam] result += Ensemble.float_to_bytes(val) return result def encode_csv(self, dt, ss_code, ss_config, blank, bin_size): """ Encode into CSV format. :param dt: Datetime object. :param ss_code: Subsystem code. :param ss_config: Subsystem Configuration :param blank: Blank or First bin position in meters. :param bin_size: Bin size in meters. :return: List of CSV lines. """ str_result = [] for beam in range(self.element_multiplier): for bin_num in range(self.num_elements): # Get the value val = self.Velocities[bin_num][beam] # Create the CSV string str_result.append(Ensemble.gen_csv_line(dt, Ensemble.CSV_INSTR_VEL, ss_code, ss_config, bin_num, beam, blank, bin_size, val)) return str_result ``` #### File: viking_ADCP_processing/test/configfile_test.py ```python import pytest from magtogoek.configfile import (ConfigFileError, load_configfile) def test_load(): load_configfile("data/config_test_files/valid_config.ini") @pytest.mark.parametrize( "filename, error", [ ("data/config_test_files/choice_error.ini", "choice"), ("data/config_test_files/range_error.ini", "range"), ("data/config_test_files/nargs_error.ini", "nargs"), ("data/config_test_files/dtype_error.ini", "dtype"), ("data/config_test_files/sensor_type_error.ini", "sensor_type"), ], ) def test_ConfigFileError(filename, error): with pytest.raises(ConfigFileError) as exc_info: load_configfile(filename) assert str(exc_info.value.error) == error ```
{ "source": "jeromekelleher/demes", "score": 3 }
#### File: demes/tests/test_incremental_build.py ```python import unittest import demes # test_examples.py tests importing and exporting YAML files # these tests are for incremental builds of demographic models, where we # add demes to an "empty" demography using the demographic event functions class TestExamples(unittest.TestCase): maxDiff = None def test_one_deme_multiple_epochs(self): # initial size set to 50, add a later deme that has size of 100 # only need to specify the second deme, the first one is implicit with # size equal to 50 g = demes.DemeGraph( description="one deme test", time_units="generations", generation_time=1 ) g.deme( id="pop", initial_size=50, epochs=[demes.Epoch(start_time=30, end_time=0, initial_size=100)], ) self.assertEqual(len(g["pop"].epochs), 2) self.assertEqual(g["pop"].epochs[0].start_time, float("inf")) self.assertEqual(g["pop"].epochs[0].end_time, 30) self.assertEqual(g["pop"].epochs[1].start_time, 30) self.assertEqual(g["pop"].epochs[1].end_time, 0) self.assertEqual(g["pop"].start_time, float("inf")) self.assertEqual(g["pop"].end_time, 0) # same as above, but start time is not inf g = demes.DemeGraph( description="one deme test", time_units="generations", generation_time=1 ) g.deme( id="pop", initial_size=50, start_time=100, epochs=[demes.Epoch(start_time=30, end_time=0, initial_size=100)], ) self.assertEqual(len(g["pop"].epochs), 2) self.assertEqual(g["pop"].epochs[0].start_time, 100) def test_simple_split(self): g = demes.DemeGraph( description="split model", time_units="generations", generation_time=1 ) g.deme(id="ancestral", end_time=50, initial_size=100) g.deme(id="pop1", start_time=50, initial_size=200) g.deme(id="pop2", start_time=50, initial_size=300) g.split(parent="ancestral", children=["pop1", "pop2"], time=50) self.assertEqual(len(g.splits), 1) self.assertTrue(g.splits[0].parent == "ancestral") self.assertTrue("pop1" in g.splits[0].children) self.assertTrue("pop2" in g.splits[0].children) self.assertTrue(g.splits[0].time == 50) self.assertTrue("ancestral" in g["pop1"].ancestors) self.assertTrue("ancestral" in g["pop2"].ancestors) self.assertTrue(g["ancestral"].ancestors is None) def test_simple_branch(self): g = demes.DemeGraph( description="branch model", time_units="generations", generation_time=1 ) g.deme(id="ancestral", initial_size=100) g.deme(id="pop1", start_time=50, initial_size=200) g.branch(parent="ancestral", child="pop1", time=50) self.assertEqual(len(g.branches), 1) self.assertTrue(g.branches[0].parent == "ancestral") self.assertTrue(g.branches[0].child == "pop1") self.assertTrue(g.branches[0].time == 50) self.assertTrue("ancestral" in g["pop1"].ancestors) def test_simple_merge(self): g = demes.DemeGraph( description="branch model", time_units="generations", generation_time=1 ) g.deme(id="ancestral1", initial_size=100, end_time=10) g.deme(id="ancestral2", initial_size=100, end_time=10) g.deme(id="child", initial_size=100, start_time=10) g.merge( parents=["ancestral1", "ancestral2"], proportions=[0.5, 0.5], child="child", time=10, ) self.assertEqual(len(g.mergers), 1) self.assertEqual(g.mergers[0].time, 10) self.assertEqual(g.mergers[0].child, "child") for anc in ["ancestral1", "ancestral2"]: self.assertTrue(anc in g.mergers[0].parents) self.assertEqual(g["ancestral1"].end_time, 10) self.assertEqual(g["ancestral2"].end_time, 10) self.assertEqual(g["child"].start_time, 10) def test_merge_that_truncates(self): # by calling merge and setting the time, we cut the parental populations # at the merge time g = demes.DemeGraph( description="branch model", time_units="generations", generation_time=1 ) g.deme(id="ancestral1", initial_size=100) # don't set their end times g.deme(id="ancestral2", initial_size=100) g.deme(id="child", initial_size=100, start_time=10) g.merge( parents=["ancestral1", "ancestral2"], proportions=[0.5, 0.5], child="child", time=10, ) self.assertEqual(len(g.mergers), 1) self.assertEqual(g.mergers[0].time, 10) self.assertEqual(g.mergers[0].child, "child") for anc in ["ancestral1", "ancestral2"]: self.assertTrue(anc in g.mergers[0].parents) self.assertEqual(g["ancestral1"].end_time, 10) self.assertEqual(g["ancestral2"].end_time, 10) self.assertEqual(g["child"].start_time, 10) def test_admixture(self): g = demes.DemeGraph( description="branch model", time_units="generations", generation_time=1 ) g.deme(id="ancestral1", initial_size=100) g.deme(id="ancestral2", initial_size=100) g.deme(id="child", initial_size=100, start_time=10) g.admix( parents=["ancestral1", "ancestral2"], proportions=[0.5, 0.5], child="child", time=10, ) self.assertEqual(g["ancestral1"].end_time, 0) self.assertEqual(g["ancestral2"].end_time, 0) self.assertEqual(g["child"].end_time, 0) self.assertEqual(g["child"].start_time, 10) self.assertEqual(len(g.admixtures), 1) self.assertEqual(g.admixtures[0].time, 10) for anc in ["ancestral1", "ancestral2"]: self.assertTrue(anc in g.admixtures[0].parents) self.assertTrue(anc in g["child"].ancestors) ```
{ "source": "jeromekelleher/lshmm", "score": 3 }
#### File: lshmm/forward_backward/fb_haploid_variants_samples_tree.py ```python import numpy as np import tskit def mirror_coordinates(ts): """Return a copy of the specified tree sequence in which all coordinates x are transformed into L - x.""" L = ts.sequence_length tables = ts.dump_tables() left = tables.edges.left right = tables.edges.right tables.edges.left = L - right tables.edges.right = L - left tables.sites.position = L - tables.sites.position # TODO migrations. tables.sort() return tables.tree_sequence() class ValueTransition: """Simple struct holding value transition values.""" def __init__(self, tree_node=-1, value=-1, value_index=-1): self.tree_node = tree_node self.value = value self.value_index = value_index def copy(self): """Copy the value transition.""" return ValueTransition(self.tree_node, self.value, self.value_index) def __repr__(self): return repr(self.__dict__) def __str__(self): return repr(self) class LsHmmAlgorithm: """Abstract superclass of Li and Stephens HMM algorithm.""" def __init__(self, ts, rho, mu, precision=10): self.ts = ts self.mu = mu self.rho = rho self.precision = precision # The array of ValueTransitions. self.T = [] # indexes in to the T array for each node. self.T_index = np.zeros(ts.num_nodes, dtype=int) - 1 # The number of nodes underneath each element in the T array. self.N = np.zeros(ts.num_nodes, dtype=int) # Efficiently compute the allelic state at a site self.allelic_state = np.zeros(ts.num_nodes, dtype=int) - 1 # Diffs so we can can update T and T_index between trees. self.edge_diffs = self.ts.edge_diffs() self.parent = np.zeros(self.ts.num_nodes, dtype=int) - 1 self.tree = tskit.Tree(self.ts) self.output = None def check_integrity(self): """Check the integrity of the algorithm.""" M = [st.tree_node for st in self.T if st.tree_node != -1] assert np.all(self.T_index[M] >= 0) index = np.ones_like(self.T_index, dtype=bool) index[M] = 0 assert np.all(self.T_index[index] == -1) for j, st in enumerate(self.T): if st.tree_node != -1: assert j == self.T_index[st.tree_node] def compress(self): """Compress the values in the tree.""" tree = self.tree T = self.T T_index = self.T_index values = np.unique(list(st.value if st.tree_node != -1 else 1e200 for st in T)) for st in T: if st.tree_node != -1: st.value_index = np.searchsorted(values, st.value) child = np.zeros(len(values), dtype=int) num_values = len(values) value_count = np.zeros(num_values, dtype=int) def compute(u, parent_state): value_count[:] = 0 for v in tree.children(u): child[:] = optimal_set[v] # If the set for a given child is empty, then we know it inherits # directly from the parent state and must be a singleton set. if np.sum(child) == 0: child[parent_state] = 1 for j in range(num_values): value_count[j] += child[j] max_value_count = np.max(value_count) optimal_set[u, :] = 0 optimal_set[u, value_count == max_value_count] = 1 optimal_set = np.zeros((tree.tree_sequence.num_nodes, len(values)), dtype=int) t_node_time = [ -1 if st.tree_node == -1 else tree.time(st.tree_node) for st in T ] order = np.argsort(t_node_time) for j in order: st = T[j] u = st.tree_node if u != -1: # Compute the value at this node state = st.value_index if tree.is_internal(u): compute(u, state) else: # A[u, state] = 1 optimal_set[u, state] = 1 # Find parent state v = tree.parent(u) if v != -1: while T_index[v] == -1: v = tree.parent(v) parent_state = T[T_index[v]].value_index v = tree.parent(u) while T_index[v] == -1: compute(v, parent_state) v = tree.parent(v) T_old = [st.copy() for st in T] T.clear() T_parent = [] old_state = T_old[T_index[tree.root]].value_index new_state = np.argmax(optimal_set[tree.root]) T.append(ValueTransition(tree_node=tree.root, value=values[new_state])) T_parent.append(-1) stack = [(tree.root, old_state, new_state, 0)] while len(stack) > 0: u, old_state, new_state, t_parent = stack.pop() for v in tree.children(u): old_child_state = old_state if T_index[v] != -1: old_child_state = T_old[T_index[v]].value_index if np.sum(optimal_set[v]) > 0: new_child_state = new_state child_t_parent = t_parent if optimal_set[v, new_state] == 0: new_child_state = np.argmax(optimal_set[v]) child_t_parent = len(T) T_parent.append(t_parent) T.append( ValueTransition(tree_node=v, value=values[new_child_state]) ) stack.append((v, old_child_state, new_child_state, child_t_parent)) else: if old_child_state != new_state: T_parent.append(t_parent) T.append( ValueTransition(tree_node=v, value=values[old_child_state]) ) for st in T_old: if st.tree_node != -1: T_index[st.tree_node] = -1 for j, st in enumerate(T): T_index[st.tree_node] = j self.N[j] = tree.num_samples(st.tree_node) for j in range(len(T)): if T_parent[j] != -1: self.N[T_parent[j]] -= self.N[j] def update_tree(self): """Update the internal data structures to move on to the next tree.""" parent = self.parent T_index = self.T_index T = self.T _, edges_out, edges_in = next(self.edge_diffs) for edge in edges_out: u = edge.child if T_index[u] == -1: # Make sure the subtree we're detaching has an T_index-value at the root. while T_index[u] == -1: u = parent[u] assert u != -1 T_index[edge.child] = len(T) T.append( ValueTransition(tree_node=edge.child, value=T[T_index[u]].value) ) parent[edge.child] = -1 for edge in edges_in: parent[edge.child] = edge.parent u = edge.parent if parent[edge.parent] == -1: # Grafting onto a new root. if T_index[edge.parent] == -1: T_index[edge.parent] = len(T) T.append( ValueTransition( tree_node=edge.parent, value=T[T_index[edge.child]].value ) ) else: # Grafting into an existing subtree. while T_index[u] == -1: u = parent[u] assert u != -1 assert T_index[u] != -1 and T_index[edge.child] != -1 if T[T_index[u]].value == T[T_index[edge.child]].value: st = T[T_index[edge.child]] # Mark the lower ValueTransition as unused. st.value = -1 st.tree_node = -1 T_index[edge.child] = -1 # We can have values left over still pointing to old roots. Remove for root in self.tree.roots: if T_index[root] != -1: # Use a special marker here to designate the real roots. T[T_index[root]].value_index = -2 for vt in T: if vt.tree_node != -1: if parent[vt.tree_node] == -1 and vt.value_index != -2: T_index[vt.tree_node] = -1 vt.tree_node = -1 vt.value_index = -1 def update_probabilities(self, site, haplotype_state): """Update values of probabilities of path ending at a set of nodes.""" tree = self.tree T_index = self.T_index T = self.T alleles = ["0", "1"] allelic_state = self.allelic_state # Set the allelic_state for this site. allelic_state[tree.root] = alleles.index(site.ancestral_state) for mutation in site.mutations: u = mutation.node allelic_state[u] = alleles.index(mutation.derived_state) if T_index[u] == -1: while T_index[u] == tskit.NULL: u = tree.parent(u) T_index[mutation.node] = len(T) T.append( ValueTransition(tree_node=mutation.node, value=T[T_index[u]].value) ) for st in T: u = st.tree_node if u != -1: # Get the allelic_state at u. TODO we can cache these states to # avoid some upward traversals. v = u while allelic_state[v] == -1: v = tree.parent(v) assert v != -1 match = ( haplotype_state == tskit.MISSING_DATA or haplotype_state == allelic_state[v] ) st.value = self.compute_next_probability(site.id, st.value, match) # Unset the states allelic_state[tree.root] = -1 for mutation in site.mutations: allelic_state[mutation.node] = -1 def process_site(self, site, haplotype_state, forwards=True): """Process the next site.""" if forwards: # Forwards algorithm self.update_probabilities(site, haplotype_state) self.compress() s = self.compute_normalisation_factor() for st in self.T: if st.tree_node != tskit.NULL: st.value /= s st.value = round(st.value, self.precision) self.output.store_site( site.id, s, [(st.tree_node, st.value) for st in self.T] ) else: # Backwards algorithm self.output.store_site( site.id, self.output.normalisation_factor[site.id], [(st.tree_node, st.value) for st in self.T], ) self.update_probabilities(site, haplotype_state) self.compress() b_last_sum = self.compute_normalisation_factor() s = self.output.normalisation_factor[site.id] for st in self.T: if st.tree_node != tskit.NULL: st.value = ( self.rho[site.id] / self.ts.num_samples ) * b_last_sum + (1 - self.rho[site.id]) * st.value st.value /= s st.value = round(st.value, self.precision) def run_forward(self, h): """Run the forwards algorithm.""" n = self.ts.num_samples self.tree.clear() for u in self.ts.samples(): self.T_index[u] = len(self.T) self.T.append(ValueTransition(tree_node=u, value=1 / n)) while self.tree.next(): self.update_tree() for site in self.tree.sites(): self.process_site(site, h[site.id]) return self.output def run_backward(self, h): """Run the backwards algorithm.""" self.tree.clear() for u in self.ts.samples(): self.T_index[u] = len(self.T) self.T.append(ValueTransition(tree_node=u, value=1)) while self.tree.next(): self.update_tree() for site in self.tree.sites(): self.process_site(site, h[site.id], forwards=False) return self.output def compute_normalisation_factor(self): """Compute normalisation term to avoid underflow. Not implemented here, as this must be defined at the forwards/backwards level. """ raise NotImplementedError() def compute_next_probability(self, site_id, p_last, is_match): """Compute next probability. Not implemented here, as this must be defined at the forwards/backwards level. """ raise NotImplementedError() class CompressedMatrix: """ Class representing a num_samples x num_sites matrix compressed by a tree sequence. Each site is represented by a set of (node, value) pairs, which act as "mutations", i.e., any sample that descends from a particular node will inherit that value (unless any other values are on the path). """ def __init__(self, ts, normalisation_factor=None): self.ts = ts self.num_sites = ts.num_sites self.num_samples = ts.num_samples self.value_transitions = [None for _ in range(self.num_sites)] if normalisation_factor is None: self.normalisation_factor = np.zeros(self.num_sites) else: self.normalisation_factor = normalisation_factor assert len(self.normalisation_factor) == self.num_sites def store_site(self, site, normalisation_factor, value_transitions): """Store the site information. Store the normalisation factor and the collection of value transitions at the site """ self.normalisation_factor[site] = normalisation_factor self.value_transitions[site] = value_transitions # Expose the same API as the low-level classes @property def num_transitions(self): """Determine the number of unique value transitions at each site.""" a = [len(self.value_transitions[j]) for j in range(self.num_sites)] return np.array(a, dtype=np.int32) def get_site(self, site): """Get the value transitions at the site.""" return self.value_transitions[site] def decode(self): """Decode the tree encoding of the values into an explicit matrix.""" A = np.zeros((self.num_sites, self.num_samples)) for tree in self.ts.trees(): for site in tree.sites(): f = dict(self.value_transitions[site.id]) for j, u in enumerate(self.ts.samples()): while u not in f: u = tree.parent(u) A[site.id, j] = f[u] return A class ForwardMatrix(CompressedMatrix): """Class representing a compressed forward matrix.""" class BackwardMatrix(CompressedMatrix): """Class representing a compressed backward matrix.""" class ForwardAlgorithm(LsHmmAlgorithm): """Runs the Li and Stephens forward algorithm.""" def __init__(self, ts, rho, mu, precision=10): super().__init__(ts, rho, mu, precision) self.output = ForwardMatrix(ts) def compute_normalisation_factor(self): """Compute normalisation term to avoid underflow.""" s = 0 for j, st in enumerate(self.T): assert st.tree_node != tskit.NULL assert self.N[j] > 0 s += self.N[j] * st.value return s def compute_next_probability(self, site_id, p_last, is_match): """Determine the scaled likelihoods at the next site.""" rho = self.rho[site_id] mu = self.mu[site_id] n = self.ts.num_samples p_t = p_last * (1 - rho) + rho / n p_e = mu if is_match: p_e = 1 - mu return p_t * p_e class BackwardAlgorithm(LsHmmAlgorithm): """Runs the Li and Stephens forward algorithm.""" def __init__(self, ts, rho, mu, normalisation_factor, precision=10): super().__init__(ts, rho, mu, precision) self.output = BackwardMatrix(ts, normalisation_factor) def compute_normalisation_factor(self): """Compute normalisation term to avoid underflow.""" s = 0 for j, st in enumerate(self.T): assert st.tree_node != tskit.NULL assert self.N[j] > 0 s += self.N[j] * st.value return s def compute_next_probability(self, site_id, p_last, is_match): """Determine the scaled probabilities at the next (previous) site.""" mu = self.mu[site_id] e = mu if is_match: e = 1 - mu return p_last * e def ls_forward_tree(h, ts, rho, mu, precision=30): """Forward matrix computation based on a tree sequence.""" fa = ForwardAlgorithm(ts, rho, mu, precision=precision) return fa.run_forward(h) def ls_backward_tree(h, ts_mirror, rho, mu, normalisation_factor, precision=30): """Backward matrix computation based on a tree sequence.""" ba = BackwardAlgorithm( ts_mirror, rho, mu, normalisation_factor, precision=precision ) return ba.run_backward(h) ``` #### File: lshmm/viterbi/vit_diploid_variants_samples.py ```python import numba as nb import numpy as np # https://github.com/numba/numba/issues/1269 @nb.njit def np_apply_along_axis(func1d, axis, arr): """Create numpy-like functions for max, sum etc.""" assert arr.ndim == 2 assert axis in [0, 1] if axis == 0: result = np.empty(arr.shape[1]) for i in range(len(result)): result[i] = func1d(arr[:, i]) else: result = np.empty(arr.shape[0]) for i in range(len(result)): result[i] = func1d(arr[i, :]) return result @nb.njit def np_amax(array, axis): """Numba implementation of numpy vectorised maximum.""" return np_apply_along_axis(np.amax, axis, array) @nb.njit def np_sum(array, axis): """Numba implementation of numpy vectorised sum.""" return np_apply_along_axis(np.sum, axis, array) @nb.njit def np_argmax(array, axis): """Numba implementation of numpy vectorised argmax.""" return np_apply_along_axis(np.argmax, axis, array) # def forwards_viterbi_dip_naive(n, m, G, s, e, r): # # Initialise # V = np.zeros((m, n, n)) # P = np.zeros((m, n, n)).astype(np.int64) # c = np.ones(m) # index = ( # 4*np.equal(G[0,:,:], s[0,0]).astype(np.int64) + # 2*(G[0,:,:] == 1).astype(np.int64) + # np.int64(s[0,0] == 1) # ) # V[0,:,:] = 1/(n**2) * e[0,index] # r_n = r/n # for l in range(1,m): # index = ( # 4*np.equal(G[l,:,:], s[0,l]).astype(np.int64) + # 2*(G[l,:,:] == 1).astype(np.int64) + # np.int64(s[0,l] == 1) # ) # for j1 in range(n): # for j2 in range(n): # # Get the vector to maximise over # v = np.zeros((n,n)) # for k1 in range(n): # for k2 in range(n): # v[k1, k2] = V[l-1,k1, k2] # if ((k1 == j1) and (k2 == j2)): # v[k1, k2] *= ((1 - r[l])**2 + 2*(1-r[l]) * r_n[l] + r_n[l]**2) # elif ((k1 == j1) or (k2 == j2)): # v[k1, k2] *= (r_n[l] * (1 - r[l]) + r_n[l]**2) # else: # v[k1, k2] *= r_n[l]**2 # V[l,j1,j2] = np.amax(v) * e[l, index[j1, j2]] # P[l,j1,j2] = np.argmax(v) # c[l] = np.amax(V[l,:,:]) # V[l,:,:] *= 1/c[l] # ll = np.sum(np.log10(c)) # return V, P, ll @nb.njit def forwards_viterbi_dip_naive(n, m, G, s, e, r): """Naive implementation of LS diploid Viterbi algorithm.""" # Initialise V = np.zeros((m, n, n)) P = np.zeros((m, n, n)).astype(np.int64) c = np.ones(m) r_n = r / n for j1 in range(n): for j2 in range(n): index_tmp = ( 4 * np.int64(np.equal(G[0, j1, j2], s[0, 0])) + 2 * np.int64((G[0, j1, j2] == 1)) + np.int64(s[0, 0] == 1) ) V[0, j1, j2] = 1 / (n ** 2) * e[0, index_tmp] for l in range(1, m): index = ( 4 * np.equal(G[l, :, :], s[0, l]).astype(np.int64) + 2 * (G[l, :, :] == 1).astype(np.int64) + np.int64(s[0, l] == 1) ) for j1 in range(n): for j2 in range(n): # Get the vector to maximise over v = np.zeros((n, n)) for k1 in range(n): for k2 in range(n): v[k1, k2] = V[l - 1, k1, k2] if (k1 == j1) and (k2 == j2): v[k1, k2] *= ( (1 - r[l]) ** 2 + 2 * (1 - r[l]) * r_n[l] + r_n[l] ** 2 ) elif (k1 == j1) or (k2 == j2): v[k1, k2] *= r_n[l] * (1 - r[l]) + r_n[l] ** 2 else: v[k1, k2] *= r_n[l] ** 2 V[l, j1, j2] = np.amax(v) * e[l, index[j1, j2]] P[l, j1, j2] = np.argmax(v) c[l] = np.amax(V[l, :, :]) V[l, :, :] *= 1 / c[l] ll = np.sum(np.log10(c)) return V, P, ll # def forwards_viterbi_dip_naive_low_mem(n, m, G, s, e, r): # # Initialise # V = np.zeros((n,n)) # P = np.zeros((m,n,n)).astype(np.int64) # c = np.ones(m) # index = ( # 4*np.equal(G[0,:,:], s[0,0]).astype(np.int64) + # 2*(G[0,:,:] == 1).astype(np.int64) + # np.int64(s[0,0] == 1) # ) # V_previous = 1/(n**2) * e[0,index] # r_n = r/n # # Take a look at Haploid Viterbi implementation in Jeromes code and see if we can pinch some ideas. # # Diploid Viterbi, with smaller memory footprint. # for l in range(1,m): # index = ( # 4*np.equal(G[l,:,:], s[0,l]).astype(np.int64) + # 2*(G[l,:,:] == 1).astype(np.int64) + # np.int64(s[0,l] == 1) # ) # for j1 in range(n): # for j2 in range(n): # # Get the vector to maximise over # v = np.zeros((n,n)) # for k1 in range(n): # for k2 in range(n): # v[k1, k2] = V_previous[k1, k2] # if ((k1 == j1) and (k2 == j2)): # v[k1, k2] *= ((1 - r[l])**2 + 2*(1-r[l]) * r_n[l] + r_n[l]**2) # elif ((k1 == j1) or (k2 == j2)): # v[k1, k2] *= (r_n[l] * (1 - r[l]) + r_n[l]**2) # else: # v[k1, k2] *= r_n[l]**2 # V[j1,j2] = np.amax(v) * e[l,index[j1, j2]] # P[l,j1,j2] = np.argmax(v) # c[l] = np.amax(V) # V_previous = np.copy(V) / c[l] # ll = np.sum(np.log10(c)) # return V, P, ll @nb.njit def forwards_viterbi_dip_naive_low_mem(n, m, G, s, e, r): """Naive implementation of LS diploid Viterbi algorithm, with reduced memory.""" # Initialise V = np.zeros((n, n)) V_previous = np.zeros((n, n)) P = np.zeros((m, n, n)).astype(np.int64) c = np.ones(m) r_n = r / n for j1 in range(n): for j2 in range(n): index_tmp = ( 4 * np.int64(np.equal(G[0, j1, j2], s[0, 0])) + 2 * np.int64((G[0, j1, j2] == 1)) + np.int64(s[0, 0] == 1) ) V_previous[j1, j2] = 1 / (n ** 2) * e[0, index_tmp] # Take a look at Haploid Viterbi implementation in Jeromes code and see if we can pinch some ideas. # Diploid Viterbi, with smaller memory footprint. for l in range(1, m): index = ( 4 * np.equal(G[l, :, :], s[0, l]).astype(np.int64) + 2 * (G[l, :, :] == 1).astype(np.int64) + np.int64(s[0, l] == 1) ) for j1 in range(n): for j2 in range(n): # Get the vector to maximise over v = np.zeros((n, n)) for k1 in range(n): for k2 in range(n): v[k1, k2] = V_previous[k1, k2] if (k1 == j1) and (k2 == j2): v[k1, k2] *= ( (1 - r[l]) ** 2 + 2 * (1 - r[l]) * r_n[l] + r_n[l] ** 2 ) elif (k1 == j1) or (k2 == j2): v[k1, k2] *= r_n[l] * (1 - r[l]) + r_n[l] ** 2 else: v[k1, k2] *= r_n[l] ** 2 V[j1, j2] = np.amax(v) * e[l, index[j1, j2]] P[l, j1, j2] = np.argmax(v) c[l] = np.amax(V) V_previous = np.copy(V) / c[l] ll = np.sum(np.log10(c)) return V, P, ll # def forwards_viterbi_dip_low_mem(n, m, G, s, e, r): # # Initialise # V = np.zeros((n, n)) # P = np.zeros((m,n,n)).astype(np.int64) # index = ( # 4*np.equal(G[0,:,:], s[0,0]).astype(np.int64) + # 2*(G[0,:,:] == 1).astype(np.int64) + # np.int64(s[0,0] == 1) # ) # V_previous = 1/(n**2) * e[0,index] # c = np.ones(m) # r_n = r/n # # Diploid Viterbi, with smaller memory footprint, rescaling, and using the structure of the HMM. # for l in range(1,m): # index = ( # 4*np.equal(G[l,:,:], s[0,l]).astype(np.int64) + # 2*(G[l,:,:] == 1).astype(np.int64) + # np.int64(s[0,l] == 1) # ) # c[l] = np.amax(V_previous) # argmax = np.argmax(V_previous) # V_previous *= 1/c[l] # V_rowcol_max = np_amax(V_previous, 0) # arg_rowcol_max = np_argmax(V_previous, 0) # no_switch = (1 - r[l])**2 + 2*(r_n[l]*(1 - r[l])) + r_n[l]**2 # single_switch = r_n[l]*(1 - r[l]) + r_n[l]**2 # double_switch = r_n[l]**2 # j1_j2 = 0 # for j1 in range(n): # for j2 in range(n): # V_single_switch = max(V_rowcol_max[j1], V_rowcol_max[j2]) # P_single_switch = np.argmax(np.array([V_rowcol_max[j1], V_rowcol_max[j2]])) # if P_single_switch == 0: # template_single_switch = j1*n + arg_rowcol_max[j1] # else: # template_single_switch = arg_rowcol_max[j2]*n + j2 # V[j1,j2] = V_previous[j1,j2] * no_switch # No switch in either # P[l, j1, j2] = j1_j2 # # Single or double switch? # single_switch_tmp = single_switch * V_single_switch # if (single_switch_tmp > double_switch): # # Then single switch is the alternative # if (V[j1,j2] < single_switch * V_single_switch): # V[j1,j2] = single_switch * V_single_switch # P[l, j1, j2] = template_single_switch # else: # # Double switch is the alternative # if V[j1, j2] < double_switch: # V[j1, j2] = double_switch # P[l, j1, j2] = argmax # V[j1,j2] *= e[l, index[j1, j2]] # j1_j2 += 1 # V_previous = np.copy(V) # ll = np.sum(np.log10(c)) + np.log10(np.amax(V)) # return V, P, ll @nb.njit def forwards_viterbi_dip_low_mem(n, m, G, s, e, r): """LS diploid Viterbi algorithm, with reduced memory.""" # Initialise V = np.zeros((n, n)) V_previous = np.zeros((n, n)) P = np.zeros((m, n, n)).astype(np.int64) c = np.ones(m) r_n = r / n for j1 in range(n): for j2 in range(n): index_tmp = ( 4 * np.int64(np.equal(G[0, j1, j2], s[0, 0])) + 2 * np.int64((G[0, j1, j2] == 1)) + np.int64(s[0, 0] == 1) ) V_previous[j1, j2] = 1 / (n ** 2) * e[0, index_tmp] # Diploid Viterbi, with smaller memory footprint, rescaling, and using the structure of the HMM. for l in range(1, m): index = ( 4 * np.equal(G[l, :, :], s[0, l]).astype(np.int64) + 2 * (G[l, :, :] == 1).astype(np.int64) + np.int64(s[0, l] == 1) ) c[l] = np.amax(V_previous) argmax = np.argmax(V_previous) V_previous *= 1 / c[l] V_rowcol_max = np_amax(V_previous, 0) arg_rowcol_max = np_argmax(V_previous, 0) no_switch = (1 - r[l]) ** 2 + 2 * (r_n[l] * (1 - r[l])) + r_n[l] ** 2 single_switch = r_n[l] * (1 - r[l]) + r_n[l] ** 2 double_switch = r_n[l] ** 2 j1_j2 = 0 for j1 in range(n): for j2 in range(n): V_single_switch = max(V_rowcol_max[j1], V_rowcol_max[j2]) P_single_switch = np.argmax( np.array([V_rowcol_max[j1], V_rowcol_max[j2]]) ) if P_single_switch == 0: template_single_switch = j1 * n + arg_rowcol_max[j1] else: template_single_switch = arg_rowcol_max[j2] * n + j2 V[j1, j2] = V_previous[j1, j2] * no_switch # No switch in either P[l, j1, j2] = j1_j2 # Single or double switch? single_switch_tmp = single_switch * V_single_switch if single_switch_tmp > double_switch: # Then single switch is the alternative if V[j1, j2] < single_switch * V_single_switch: V[j1, j2] = single_switch * V_single_switch P[l, j1, j2] = template_single_switch else: # Double switch is the alternative if V[j1, j2] < double_switch: V[j1, j2] = double_switch P[l, j1, j2] = argmax V[j1, j2] *= e[l, index[j1, j2]] j1_j2 += 1 V_previous = np.copy(V) ll = np.sum(np.log10(c)) + np.log10(np.amax(V)) return V, P, ll # def forwards_viterbi_dip_naive_vec(n, m, G, s, e, r): # # Initialise # V = np.zeros((m,n,n)) # P = np.zeros((m,n,n)).astype(np.int64) # c = np.ones(m) # index = ( # 4*np.equal(G[0,:,:], s[0,0]).astype(np.int64) + # 2*(G[0,:,:] == 1).astype(np.int64) + # np.int64(s[0,0] == 1) # ) # V[0,:,:] = 1/(n**2) * e[0,index] # r_n = r/n # # Jumped the gun - vectorising. # for l in range(1,m): # index = ( # 4*np.equal(G[l,:,:], s[0,l]).astype(np.int64) + # 2*(G[l,:,:] == 1).astype(np.int64) + # np.int64(s[0,l] == 1) # ) # for j1 in range(n): # for j2 in range(n): # v = (r_n[l]**2) * np.ones((n,n)) # v[j1,j2] += (1-r[l])**2 # v[j1, :] += (r_n[l] * (1 - r[l])) # v[:, j2] += (r_n[l] * (1 - r[l])) # v *= V[l-1,:,:] # V[l,j1,j2] = np.amax(v) * e[l,index[j1, j2]] # P[l,j1,j2] = np.argmax(v) # c[l] = np.amax(V[l,:,:]) # V[l,:,:] *= 1/c[l] # ll = np.sum(np.log10(c)) # return V, P, ll @nb.jit def forwards_viterbi_dip_naive_vec(n, m, G, s, e, r): """Vectorised LS diploid Viterbi algorithm using numpy.""" # Initialise V = np.zeros((m, n, n)) P = np.zeros((m, n, n)).astype(np.int64) c = np.ones(m) r_n = r / n for j1 in range(n): for j2 in range(n): index_tmp = ( 4 * np.int64(np.equal(G[0, j1, j2], s[0, 0])) + 2 * np.int64((G[0, j1, j2] == 1)) + np.int64(s[0, 0] == 1) ) V[0, j1, j2] = 1 / (n ** 2) * e[0, index_tmp] # Jumped the gun - vectorising. for l in range(1, m): index = ( 4 * np.equal(G[l, :, :], s[0, l]).astype(np.int64) + 2 * (G[l, :, :] == 1).astype(np.int64) + np.int64(s[0, l] == 1) ) for j1 in range(n): for j2 in range(n): v = (r_n[l] ** 2) * np.ones((n, n)) v[j1, j2] += (1 - r[l]) ** 2 v[j1, :] += r_n[l] * (1 - r[l]) v[:, j2] += r_n[l] * (1 - r[l]) v *= V[l - 1, :, :] V[l, j1, j2] = np.amax(v) * e[l, index[j1, j2]] P[l, j1, j2] = np.argmax(v) c[l] = np.amax(V[l, :, :]) V[l, :, :] *= 1 / c[l] ll = np.sum(np.log10(c)) return V, P, ll def forwards_viterbi_dip_naive_full_vec(n, m, G, s, e, r): """Fully vectorised naive LS diploid Viterbi algorithm using numpy.""" char_both = np.eye(n * n).ravel().reshape((n, n, n, n)) char_col = np.tile(np.sum(np.eye(n * n).reshape((n, n, n, n)), 3), (n, 1, 1, 1)) char_row = np.copy(char_col).T rows, cols = np.ogrid[:n, :n] # Initialise V = np.zeros((m, n, n)) P = np.zeros((m, n, n)).astype(np.int64) c = np.ones(m) index = ( 4 * np.equal(G[0, :, :], s[0, 0]).astype(np.int64) + 2 * (G[0, :, :] == 1).astype(np.int64) + np.int64(s[0, 0] == 1) ) V[0, :, :] = 1 / (n ** 2) * e[0, index] r_n = r / n for l in range(1, m): index = ( 4 * np.equal(G[l, :, :], s[0, l]).astype(np.int64) + 2 * (G[l, :, :] == 1).astype(np.int64) + np.int64(s[0, l] == 1) ) v = ( (r_n[l] ** 2) + (1 - r[l]) ** 2 * char_both + (r_n[l] * (1 - r[l])) * (char_col + char_row) ) v *= V[l - 1, :, :] P[l, :, :] = np.argmax(v.reshape(n, n, -1), 2) # Have to flatten to use argmax V[l, :, :] = v.reshape(n, n, -1)[rows, cols, P[l, :, :]] * e[l, index] c[l] = np.amax(V[l, :, :]) V[l, :, :] *= 1 / c[l] ll = np.sum(np.log10(c)) return V, P, ll @nb.jit def backwards_viterbi_dip(m, V_last, P): """Run a backwards pass to determine the most likely path.""" assert V_last.ndim == 2 assert V_last.shape[0] == V_last.shape[1] # Initialisation path = np.zeros(m).astype(np.int64) path[m - 1] = np.argmax(V_last) # Backtrace for j in range(m - 2, -1, -1): path[j] = P[j + 1, :, :].ravel()[path[j + 1]] return path def get_phased_path(n, path): """Obtain the phased path.""" return np.unravel_index(path, (n, n)) @nb.jit def path_ll_dip(n, m, G, phased_path, s, e, r): """Evaluate log-likelihood path through a reference panel which results in sequence s.""" index = ( 4 * np.int64(np.equal(G[0, phased_path[0][0], phased_path[1][0]], s[0, 0])) + 2 * np.int64(G[0, phased_path[0][0], phased_path[1][0]] == 1) + np.int64(s[0, 0] == 1) ) log_prob_path = np.log10(1 / (n ** 2) * e[0, index]) old_phase = np.array([phased_path[0][0], phased_path[1][0]]) r_n = r / n for l in range(1, m): index = ( 4 * np.int64(np.equal(G[l, phased_path[0][l], phased_path[1][l]], s[0, l])) + 2 * np.int64(G[l, phased_path[0][l], phased_path[1][l]] == 1) + np.int64(s[0, l] == 1) ) current_phase = np.array([phased_path[0][l], phased_path[1][l]]) phase_diff = np.sum(~np.equal(current_phase, old_phase)) if phase_diff == 0: log_prob_path += np.log10( (1 - r[l]) ** 2 + 2 * (r_n[l] * (1 - r[l])) + r_n[l] ** 2 ) elif phase_diff == 1: log_prob_path += np.log10(r_n[l] * (1 - r[l]) + r_n[l] ** 2) else: log_prob_path += np.log10(r_n[l] ** 2) log_prob_path += np.log10(e[l, index]) old_phase = current_phase return log_prob_path ```
{ "source": "jeromekelleher/msprime_sim", "score": 2 }
#### File: msprime_sim/src/phenotypes.py ```python from __future__ import division import msprime import numpy as np import random import tqdm import scipy.stats as sp import src.regressions as reg import src.tools as tl import src.tree_sequence as ts import src.snpgetter as sg import src.ldscores as ld import src.printing as pr import statsmodels.api as sm import time, sys, traceback, argparse import src.write as write import pandas as pd def case_control(y, prevalence, sample_prevalence, N): # Determine the liability threshold. p = prevalence T = sp.norm.ppf(1-p) # Index the cases. cases = [i for (i, x) in enumerate(y) if x >= T] mask = np.ones(len(y), dtype=bool) mask[cases] = False n_cases = len(cases) if sample_prevalence is None: n_controls = N - n_cases else: n_controls = int(((1-sample_prevalence) / sample_prevalence) * n_cases) controls = np.arange(N) if (N - n_cases) < n_controls: n_controls = N - n_cases log.log('Warning: this condition should not hold - ' 'is sample prevalence close to population prevalence?') controls = controls[mask] else: controls = controls[mask][random.sample(range(N - n_cases), n_controls)] controls = sorted(controls) return cases, controls, n_cases, n_controls, T def get_phenotypes(args, N, n_pops, tree_sequence_list, m_total, log): y = np.zeros(N) if args.debug: random.seed(1) np.random.seed(1) if args.C_bool: C = np.random.binomial(1, args.C_bool_p, size=N) C = (C - np.mean(C)) / np.std(C) log.log('Boolean covariate.') log.log('Average kurtosis for these phenotypes: {K}.'.format(K=np.sum(C**4)/N)) else: C = np.random.normal(loc=0, scale=1, size=N) C = (C - np.mean(C)) / np.std(C) # print the average kurtosis across the individuals log.log('Normally distributed covariate. Kurtosis should be around 3.') log.log('Average kurtosis for these phenotypes: {K}.'.format(K=np.sum(C**4)/N)) if args.include_pop_strat is True and args.s2 > 0: # Get the means for the populations. alpha = np.random.normal(loc=0, scale=np.sqrt(args.s2), size=n_pops) log.log(alpha) # Add pop-strat additions to the phenotype vector, conditional on the population sampled from. for pops in range(n_pops): pop_leaves = tree_sequence_list[0].get_samples(population_id=pops) len(map(int, [x/2 for x in pop_leaves[0::2]])) y[map(int, [x/2 for x in pop_leaves[0::2]])] += alpha[pops] for chr in range(args.n_chr): m_chr = int(tree_sequence_list[chr].get_num_mutations()) log.log('Picking causal variants and determining effect sizes in chromosome {chr}'.format(chr=chr+1)) if (((1 + int(args.dominance) + int(args.gxe)) * args.p_causal) < 1) or args.same_causal_sites: # If the number of runs through the data is less than 1, run this speedup. tree_sequence_pheno_A, m_causal_A = ts.set_mutations_in_tree(tree_sequence_list[chr], args.p_causal) log.log('Picked {m} additive causal variants out of {mc}'.format(m=m_causal_A, mc=m_chr)) if args.same_causal_sites is False: tree_sequence_pheno_D, m_causal_D = ts.set_mutations_in_tree(tree_sequence_list[chr], args.p_causal) if args.h2_D > 0: log.log('Picked {m} dominance causal variants out of {mc}'.format(m=m_causal_D, mc=m_chr)) tree_sequence_pheno_AC, m_causal_AC = ts.set_mutations_in_tree(tree_sequence_list[chr], args.p_causal) if args.h2_AC > 0: log.log('Picked {m} gxe causal variants out of {mc}'.format(m=m_causal_AC, mc=m_chr)) if args.h2_A > 0: beta_A = np.random.normal(loc=0, scale=np.sqrt(args.h2_A / (m_total * args.p_causal)), size=m_causal_A) # Get the phenotypes. k = 0 log.log('Determining phenotype data: additive.') for variant in tl.progress(args.progress_bars, tree_sequence_pheno_A.variants(), total=m_causal_A): # Note, progress here refers you to tqdm which just creates a pretty progress bar. X_A = sg.nextSNP_add(variant) # Effect size on the phenotype. y += X_A * beta_A[k] k += 1 if args.dominance and args.h2_D >0: beta_D = np.random.normal(loc=0, scale=np.sqrt(args.h2_D / (m_total * args.p_causal)), size=m_causal_D) k = 0 log.log('Determining phenotype data: dominance.') for variant in tl.progress(args.progress_bars, tree_sequence_pheno_D.variants(), total=m_causal_D): # Note, progress here refers you to tqdm which just creates a pretty progress bar. X_A, X_D = sg.nextSNP(variant) # Effect size on the phenotype. y += X_D * beta_D[k] k += 1 if args.gxe and args.h2_AC > 0: beta_AC = np.random.normal(loc=0, scale=np.sqrt(args.h2_AC / (m_total * args.p_causal)), size=m_causal_AC) # If examining interaction with a covariate, pick the values of the covariate, and normalise. k = 0 log.log('Determining phenotype data: gene x environment.') for variant in tl.progress(args.progress_bars, tree_sequence_pheno_AC.variants(), total=m_causal_AC): # Note, progress here refers you to tqdm which just creates a pretty progress bar. X_A = sg.nextSNP_add(variant) # Effect size on the phenotype. y += C * X_A * beta_AC[k] k += 1 else: beta_A, beta_D, beta_AC = np.zeros(m_causal_A), np.zeros(m_causal_A), np.zeros(m_causal_A) if args.h2_A > 0: beta_A = np.random.normal(loc=0, scale=np.sqrt(args.h2_A / (m_total * args.p_causal)), size=m_causal_A) if args.dominance and args.h2_D > 0: beta_D = np.random.normal(loc=0, scale=np.sqrt(args.h2_D / (m_total * args.p_causal)), size=m_causal_A) if args.gxe and args.h2_AC > 0: beta_AC = np.random.normal(loc=0, scale=np.sqrt(args.h2_AC / (m_total * args.p_causal)), size=m_causal_A) k = 0 log.log('Determining phenotype data') # Note that we use just one tree_sequence here, because the causal sites are the same in this portion of the code. for variant in tl.progress(args.progress_bars, tree_sequence_pheno_A.variants(), total=m_causal_A): # Note, progress here refers you to tqdm which just creates a pretty progress bar. X_A, X_D = sg.nextSNP(variant) # Effect size on the phenotype. y += X_A * beta_A[k] + X_D * beta_D[k] + C * X_A * beta_AC[k] k += 1 else: m_causal = int(m_chr * args.p_causal) beta_A, beta_D, beta_AC = np.zeros(m_chr), np.zeros(m_chr), np.zeros(m_chr) beta_A_causal_index = random.sample(range(m_chr), m_causal) log.log('Picked {m} additive causal variants out of {mc}'.format(m=m_causal, mc=m_chr)) if args.h2_A > 0: beta_A[beta_A_causal_index] = np.random.normal(loc=0, scale=np.sqrt(args.h2_A / (m_total * args.p_causal)), size=m_causal) if args.dominance: beta_D, beta_D_causal_index = np.zeros(m_chr), random.sample(range(m_chr), m_causal) log.log('Picked {m} dominance causal variants out of {mc}'.format(m=m_causal, mc=m_chr)) if args.h2_D > 0: beta_D[beta_D_causal_index] = np.random.normal(loc=0, scale=np.sqrt(args.h2_D / (m_total * args.p_causal)), size=m_causal) if args.gxe: beta_AC, beta_AC_causal_index = np.zeros(m_chr), random.sample(range(m_chr), m_causal) log.log('Picked {m} gxe causal variants out of {mc}'.format(m=m_causal, mc=m_chr)) if args.h2_AC > 0: beta_AC[beta_AC_causal_index] = np.random.normal(loc=0, scale=np.sqrt(args.h2_AC / (m_total * args.p_causal)), size=m_causal) # Get the phenotypes. k = 0 log.log('Determining phenotype data.') for variant in tl.progress(args.progress_bars, tree_sequence_list[chr].variants(), total=m_chr): # Note, progress here refers you to tqdm which just creates a pretty progress bar. X_A, X_D = sg.nextSNP(variant) # Effect size on the phenotype. y += X_A * beta_A[k] + X_D * beta_D[k] + X_A * C * beta_AC[k] k += 1 # Add noise to the y. y += np.random.normal(loc=0, scale=np.sqrt(1-(args.h2_A+args.h2_D+args.h2_AC+args.s2)), size=N) # Finally, normalise. y = (y - np.mean(y)) / np.std(y) return y, C # Here, want to create a chi sq function, and an LD score function. def get_chisq(args, tree_sequence_list_geno, m_geno, m_geno_total, y, N, C, log): # Initialise the chi squared statistics. chisq_A, chisq_D, chisq_AC = np.zeros((m_geno_total,1)), np.zeros((m_geno_total,1)), np.zeros((m_geno_total,1)) if args.case_control: log.log("Running case-control simulation.") if args.prevalence is None: raise ValueError("prevalence must be set if running case-control analysis.") cases, controls, n_cases, n_controls, T = case_control(y, args.prevalence, args.sample_prevalence, N) n = n_cases + n_controls y_cc = np.zeros(n) y_cc[:n_cases] = 1 index = cases + controls C_sim = C[index] if args.linear is False and args.ldsc is True: k = 0 for chr in range(args.n_chr): for variant in tl.progress(args.progress_bars, tree_sequence_list_geno[chr].variants(), total=m_geno[chr]): X_A, X_D = sg.nextSNP(variant, index = index) chisq_A[k] = sm.Logit(y_cc, sm.add_constant(X_A)).fit(disp=0).llr chisq_D[k] = sm.Logit(y_cc, sm.add_constant(X_D)).fit(disp=0).llr chisq_AC[k] = sm.Logit(y_cc, sm.add_constant(C_sim * X_A)).fit(disp=0).llr k += 1 if ( ((args.case_control is False) or (args.case_control is True and args.linear is True)) and args.ldsc is True ): if args.case_control: log.log("Warning: running linear regression for case-control.") y = (y_cc - np.mean(y_cc)) / np.std(y_cc) index = cases + controls C_sim = C[index] else: index = None C_sim = C n = N # Then use these ys to determine beta hats. k = 0 for chr in range(args.n_chr): log.log('Determining chi-squared statistics in chromosome {chr}'.format(chr=chr+1)) for variant in tree_sequence_list_geno[chr].variants(): X_A, X_D = sg.nextSNP(variant, index=index) # Then sum to get the effect size on the phenotype. chisq_A[k] = np.dot(y.reshape(1,n), X_A)**2 / n chisq_D[k] = np.dot(y.reshape(1,n), X_D)**2 / n chisq_AC[k] = np.dot(y.reshape(1,n), C_sim * X_A)**2 / n k += 1 if args.write_pheno or args.write_trees: if args.case_control: sample_ID = index y = y_cc.astype(int) if args.write_trees: tree_index = [[2*x,2*x+1] for x in index] tree_index = [j for x in tree_index for j in x] for chr in range(args.n_chr): tree_sequence_to_write = tree_sequence_list_geno[chr].simplify(tree_index) write.trees(args.out, tree_sequence_to_write, chr, m_geno[chr], n_pops, N, sim, args.vcf, index) else: sample_ID = np.arange(N) df_pheno=pd.DataFrame({'sample_ID':sample_ID, 'phenotype':y}) df_pheno.to_csv(args.out + ".sim" + str(sim+1) + '.pheno.tsv', sep='\t', header=True, index=False) if args.case_control: return chisq_A, chisq_D, chisq_AC, n, C_sim, index, y_cc, n_cases, T else: return chisq_A, chisq_D, chisq_AC, n, C_sim, index ```
{ "source": "jeromekelleher/tszip", "score": 2 }
#### File: tszip/tscompress/compression.py ```python import logging import os import numcodecs import zarr import numpy as np import tskit logger = logging.getLogger(__name__) def compress(ts, path): """ Compresses the specified tree sequence and writes it to the specified path. """ logging.info("Compressing to {}".format(path)) try: store = zarr.ZipStore(path, mode='w') root = zarr.group(store=store) compress_zarr(ts, root) store.close() except Exception as e: os.unlink(path) raise e def compress_zarr(ts, root): # TODO this current version is the most extreme option where we throw away # all the non-site information. # First reduce to site topology tables = ts.dump_tables() tables.simplify(reduce_to_site_topology=True) nodes = root.create_group("nodes") flags = nodes.empty("flags", shape=len(tables.nodes), dtype=np.uint8) flags[:] = tables.nodes.flags logger.debug(flags.info) # Get the indexes into the position array. pos_map = np.hstack([tables.sites.position, [tables.sequence_length]]) pos_map[0] = 0 left_mapped = np.searchsorted(pos_map, tables.edges.left) if np.any(pos_map[left_mapped] != tables.edges.left): raise ValueError("Invalid left coordinates") right_mapped = np.searchsorted(pos_map, tables.edges.right) if np.any(pos_map[right_mapped] != tables.edges.right): raise ValueError("Invalid right coordinates") filters = [numcodecs.Delta(dtype=np.int32, astype=np.int32)] compressor = numcodecs.Blosc(cname='zstd', clevel=9, shuffle=numcodecs.Blosc.SHUFFLE) edges = root.create_group("edges") parent = edges.empty( "parent", shape=len(tables.edges), dtype=np.int32, filters=filters, compressor=compressor) child = edges.empty( "child", shape=len(tables.edges), dtype=np.int32, filters=filters, compressor=compressor) left = edges.empty( "left", shape=len(tables.edges), dtype=np.uint32, filters=filters, compressor=compressor) right = edges.empty( "right", shape=len(tables.edges), dtype=np.uint32, filters=filters, compressor=compressor) parent[:] = tables.edges.parent child[:] = tables.edges.child left[:] = left_mapped right[:] = right_mapped mutations = root.create_group("mutations") site = mutations.empty( "site", shape=len(tables.mutations), dtype=np.int32, compressor=compressor) node = mutations.empty( "node", shape=len(tables.mutations), dtype=np.int32, compressor=compressor) site[:] = tables.mutations.site node[:] = tables.mutations.node def decompress(path): """ Returns a decompressed tskit tree sequence read from the specified path. """ store = zarr.ZipStore(path, mode='r') root = zarr.group(store=store) return decompress_zarr(root) def decompress_zarr(root): site = root["mutations/site"][:] num_sites = site[-1] + 1 n = site.shape[0] tables = tskit.TableCollection(num_sites) tables.mutations.set_columns( node=root["mutations/node"], site=site, derived_state=np.zeros(n, dtype=np.int8) + ord("1"), derived_state_offset=np.arange(n + 1, dtype=np.uint32)) tables.sites.set_columns( position=np.arange(num_sites), ancestral_state=np.zeros(num_sites, dtype=np.int8) + ord("0"), ancestral_state_offset=np.arange(num_sites + 1, dtype=np.uint32)) flags = root["nodes/flags"][:] n = flags.shape[0] tables.nodes.set_columns( flags=flags.astype(np.uint32), time=np.arange(n)) tables.edges.set_columns( left=root["edges/left"], right=root["edges/right"], parent=root["edges/parent"], child=root["edges/child"]) return tables.tree_sequence() ```
{ "source": "jeromeku/Python-Financial-Tools", "score": 4 }
#### File: jeromeku/Python-Financial-Tools/jumps.py ```python import numpy as np from stock import Stock from scipy.special import gamma from scipy import stats class JumpStatistics(object): def __init__(self,stock): self.stock = stock class BarndorffNielsen(JumpStatistics): # An implementation of the Barnforff-Nielsen test statistic used for detecting "jumps" # (or "suprises") in stock price data. The mathematics for this test statistic can be # found at the following two resources: # # <NAME>. 2008. "Problems in the Application of Jump Detection Tests # to Stock Price Data". Duke University. # # "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump # Components in Measuring, Modeling, and Forecasting Asset Return Volatility". # <NAME>, <NAME> and <NAME>. September 2003. # # The following is an example of how to apply the Barnforff-Nielsen statistic to detect # surprises in Microsoft stock data: # if True: # # Observe a trend in Microsoft stock prices where a jump occurs. # stock = Stock("MSFT",{"start" : "2013-02-14","end" : "2014-02-14"}) # else: # # Otherwise, view a sequence of stock prices where no jump was detected. # stock = Stock("MSFT",{"start" : "2013-03-01","end" : "2013-04-01"}) # stock.display_price() # bn = BarndorffNielsen(stock) # bn.barndorff_nielsen_test() def __init__(self,stock): super(BarndorffNielsen,self).__init__(stock) self.n = len(self.stock.statistics["log_returns"]) self.realized_variance = self.calculate_realized_variance() self.bipower_variance = self.calculate_bipower_variance() self.relative_jump = np.float(self.realized_variance - self.bipower_variance) / self.realized_variance self.tripower_quarticity = self.calculate_tripower_quarticity() self.statistic = self.barndorff_nielsen_statistic() def calculate_realized_variance(self): log_returns = self.stock.statistics["log_returns"] variance = np.sum(np.power(log_returns,2)) return variance def calculate_bipower_variance(self): n = self.n log_returns = np.absolute(self.stock.statistics["log_returns"]) variance = (np.pi / 2.0) * (np.float(n) / (n - 1.0)) * np.sum(log_returns[1:] * log_returns[:-1]) return variance def calculate_tripower_quarticity(self): n = self.n # Notice that the absolute value of the log returns is calculated in this step. This is to # prevent numerical nan's from being produced. This also seems to be consistent with the # notation specified by <NAME> and <NAME> et al. log_returns = np.absolute(self.stock.statistics["log_returns"]) mu = np.power(np.power(2.0,2.0 / 3) * gamma(7.0 / 6.0) * np.power(gamma(1.0 / 2.0),-1),-3) tripower = np.sum(np.power(log_returns[2:],4.0 / 3) * np.power(log_returns[1:-1],4.0 / 3) * np.power(log_returns[:-2],4.0 / 3)) quarticity = n * mu * (np.float(n) / (n - 2.0)) * tripower return quarticity def barndorff_nielsen_statistic(self): n = self.n pi = np.pi relative_jump = self.relative_jump tripower = self.tripower_quarticity bipower = self.bipower_variance statistic = relative_jump / np.sqrt(((pi / 2) ** 2 + pi - 5) * (1.0 / n) * max(1,tripower / (bipower ** 2))) return statistic def barndorff_nielsen_test(self,alpha = .01): quantile = stats.norm.ppf(1 - alpha) print_string = "" if self.statistic > quantile: print_string += "\tThe Barndorff-Nielsen Test reports that there was a jump in asset price.\n" else: print_string += "\tThe Barndorff-Nielsen Test reports that there was not a jump in asset price.\n" print_string += "\tThe significance level of the test: %.2f\n" % alpha print self.stock print print_string if True: # Observe a trend in Microsoft stock prices where a jump occurs. stock = Stock("MSFT",{"start" : "2013-02-14","end" : "2014-02-14"}) else: # Otherwise, view a sequence of stock prices where no jump was detected. stock = Stock("MSFT",{"start" : "2013-03-01","end" : "2013-04-01"}) stock.display_price() bn = BarndorffNielsen(stock) bn.barndorff_nielsen_test() ```
{ "source": "JeromeLabonte-CRIM/Service", "score": 3 }
#### File: Service/tests/test_report.py ```python import json import unittest # --Modules to test ----------------------------------------------------------- from VestaService.Report import WorkerReport, TaskReport class UtilsTests(unittest.TestCase): def test_WorkerReport_update(self): wr = WorkerReport(nb_tasks=3) tr = TaskReport(doc_id="secret", tool="screwdriver") tr.set_succeeded() wr.update(tr) self.assertEqual(wr.nb_success, 1, msg="Error by updating a worker report " "with a successful task report.") tr.set_failed(code=444, message="No screwdriver in this drawer.") wr.update(tr) self.assertEqual(wr.nb_failures, 1, msg="Error by updating a worker report " "with a failed task report.") self.assertEqual(len(wr.detail), 2, msg="Error by updating a worker report " "with a failed task report. " " Wrong number of tasks.") def test_WorkerReport_tojson(self): wr = WorkerReport(nb_tasks=2) tr = TaskReport(doc_id="secret", tool="screwdriver") tr.set_succeeded() wr.update(tr) tr2 = TaskReport(doc_id="secret", tool="screwdriver") tr2.set_failed(code=444, message="No screwdriver in this drawer.") wr.update(tr2) wr.set_succeeded() wr.update_completion_ratio() attended_wrjson_str = ('{"nb_success": 1, "nb_ignores": 0, ' '"nb_failures": 1, "completion_ratio" : 1.0, ' '"nb_tasks" : 2, "status" : "success",' '"detail": [' '{"doc_id" : "secret", "step" : "screwdriver", ' '"status" : "success"},' '{"doc_id" : "secret", "step" : "screwdriver", ' '"status" : "failure", "code":444, ' '"message" : "No screwdriver in this drawer."}' ']' '}') wrjson = wr.to_json() self.assertEqual(json.JSONDecoder().decode(wrjson), json.JSONDecoder().decode(attended_wrjson_str)) def test_WorkerReport_abbreviated_json(self): wr = WorkerReport(nb_tasks=2) tr = TaskReport(doc_id="secret", tool="screwdriver") tr.set_succeeded() wr.update(tr) tr2 = TaskReport(doc_id="secret", tool="screwdriver") tr2.set_failed(code=444, message="No screwdriver in this drawer.") wr.update(tr2) wr.set_succeeded() wr.update_completion_ratio() attended_wrjson_str = ('{"nb_success": 1, "nb_ignores": 0, ' '"nb_failures": 1, "completion_ratio" : 1.0, ' '"nb_tasks" : 2, "status" : "success",' '"full_report_url":"http://mss:1234"' '}') wrjson = wr.abbreviated_json("http://mss:1234") self.assertEqual(json.JSONDecoder().decode(wrjson), json.JSONDecoder().decode(attended_wrjson_str)) ``` #### File: Service/VestaService/Document.py ```python from datetime import datetime import logging # ---------------------------------------------------------------------------- class Document(object): """ Container for all information related to downloading of a distant document to a local file. """ url = None local_path = None transfer_time = None length = None def __init__(self, url=None, path=None): """ Constructor. :param url: URL of the source document which will be handled locally. :param path: Local path to the document copy. """ self.logger = logging.getLogger(__name__) self.logger.debug("Creating an instance with parameters url=%s," " path=%s", url, path) self.url = url self.local_path = path self.transfer_time = datetime.now() def __repr__(self): """ Printable representation """ return self.url ``` #### File: Service/VestaService/DownloadRemote.py ```python import optparse # --Project specific---------------------------------------------------------- from . import RemoteAccess def main(): """ Command line entry point. """ usage = '%prog url' parser = optparse.OptionParser(usage=usage) parser.add_option('-c', '--credentials', dest='credentials_fn', help='Path to crendentials filename', default=None) args = parser.parse_args()[-1] if len(args) != 1: parser.error('Insufficient arguments') doc_msg = {'url': args[0], 'credentials': None} doc = RemoteAccess.download(doc_msg) print("Downloaded file is at «{fn}»".format(fn=doc.local_path)) if __name__ == '__main__': main() ```
{ "source": "jeromelebleu/django-cruditor", "score": 2 }
#### File: django-cruditor/cruditor/mixins.py ```python from collections import OrderedDict from django.contrib import messages from django.contrib.auth.views import REDIRECT_FIELD_NAME, LoginView from django.core.exceptions import PermissionDenied from django.shortcuts import redirect from django.utils.decorators import method_decorator from django.views.decorators.cache import never_cache from .forms import LoginForm class CruditorMixin(object): """ Base mixin for all Cruditor views. Provides common functionality for all views. It is a good idea to have a own "base" mixin to configure the common options like ``menu_title``, the urls and templates. Usually you might have ``required_permission`` configured per-view. """ #: Title to use in templates / menu bar menu_title = 'CRUDitor' #: URL to use in the linked menu_title index_url = '#' #: URL to use when providing a logout link to the user. logout_url = '#' #: URL to the change password view, if available. change_password_url = None #: Template name which is included to render the menu. menu_template_name = 'cruditor/includes/menu.html' #: Template used to include extra head stuff. extrahead_template_name = 'cruditor/includes/extrahead.html' #: Page template for the login view. login_template_name = 'cruditor/login.html' #: Form class which is used in the login view. login_form_class = LoginForm #: Decide if only staff users should be able to use the Cruditor views. staff_required = True #: Which permission is required to access the view. required_permission = None #: If not provided, Cruditor tries to look up the verbose name from ``model.Meta`` model_verbose_name = None @method_decorator(never_cache) def dispatch(self, request, *args, **kwargs): """ Ensure the user is logged in (by calling `ensure_logged_in`` method). If the user is logged in, permissions are checked by calling ``ensure_required_permission``. """ login_result = self.ensure_logged_in(request, *args, **kwargs) if login_result is not True: return login_result self.ensure_required_permission() return super().dispatch(request, *args, **kwargs) def get_cruditor_context(self, alternative_title=None): """ Provides some context for all Cruditor templates to render menu, header, breadcrumb and title buttons. The method takes an optional argument ``alternative_title`` to override the default title from ``get_title`` method. """ return { 'title': alternative_title or self.get_title(), 'breadcrumb': self.get_breadcrumb() + [ {'title': alternative_title or self.get_breadcrumb_title(), 'url': None} ], 'titlebuttons': self.get_titlebuttons(), 'constants': { 'menu_title': self.menu_title, 'menu_template_name': self.menu_template_name, 'extrahead_template_name': self.extrahead_template_name, 'index_url': self.index_url, 'logout_url': self.logout_url, 'change_password_url': self.change_password_url, } } def get_title(self): """ Returns the title of the page. Uses view's ``title`` property. If not set falls back to ``menu_title``. """ return getattr(self, 'title', self.menu_title) def get_breadcrumb_title(self): """ By default, the breadcrumb title is the same as the page title. Calls ``get_title`` if not overwritten. """ return self.get_title() def get_breadcrumb(self): """ This method is expected to return a list of breadcrumb elements as a list. Every breadcrumb element is a dict or object with at least a ``title`` property/key. If a ``url`` key/property is provided, the item is linked. """ return [] def get_titlebuttons(self): """ This method is expected to return None or a list of buttons to display in the title row of the page. Every button element is a dict or object with at least a ``label`` and ``url`` property/key. In addition, one can provide an alternative ``button_class`` which is used as a css class - pefixed with "btn-". Default ``button_class`` is "light". """ return None def get_model_verbose_name(self): """ Returns the verbose name of the handled object/item. If ``model_verbose_name`` is set, the value is used. If not, Cruditor tries to get the verbose name from the model property (via Meta class). If no name is available at all, "Item" is returned. """ if self.model_verbose_name: return self.model_verbose_name if getattr(self, 'model', None): return self.model._meta.verbose_name return 'Item' def ensure_logged_in(self, request, *args, **kwargs): """ This method checks if the request user is logged in and has the right flags set (e.g. ``is_staff`` if ``staff_required`` is set in view). If user is logged in, ``True`` is returned. If not, ``handle_not_logged_in`` is called. """ if ( not request.user.is_active or (self.staff_required and not request.user.is_staff) ): return self.handle_not_logged_in(request, *args, **kwargs) return True def handle_not_logged_in(self, request, *args, **kwargs): """ This method is responsible to handle not logged-in users. By default, renders the Django login view using a Cruditor optimized template using the ``login_form_class`` as Form. """ return LoginView.as_view( template_name=self.login_template_name, redirect_field_name=REDIRECT_FIELD_NAME, form_class=self.login_form_class, redirect_authenticated_user=False, extra_context={ 'app_path': request.get_full_path(), 'next_field': REDIRECT_FIELD_NAME, 'next_value': request.get_full_path(), 'cruditor': self.get_cruditor_context(alternative_title='Login'), }, )(request) def get_required_permission(self): """ Returns the required Django permissions required to access the view. You might override the method to apply more complex rules on what permissions are required. """ return self.required_permission def ensure_required_permission(self): """ This method ensures that all required permissions (fetched by calling ``get_required_permission``). If permissions are not met, ``PermissionDenied`` is raised. """ required_permission = self.get_required_permission() if not required_permission: return if not self.request.user.has_perm(required_permission): raise PermissionDenied def get_context_data(self, **kwargs): """ Adds the ``cruditor`` context variable to the template context. Uses data from ``get_cruditor_context`` method. """ context = super().get_context_data(**kwargs) context['cruditor'] = self.get_cruditor_context() return context class FormViewMixin(object): """ Mixin to add formset support to Django FormViews. To use formsets, you have to provide a set of formsets as a dict (or OrderedDict if you have more than one formset - just to have a defined ordering). """ formset_classes = None def get_formset_classes(self): """ This method returns the formset classes to render in the form view. By default, returns the ``formset_classes`` property. """ return self.formset_classes or {} def get(self, request, *args, **kwargs): """ Extended get-method to render to form and all formsets properly initialized. """ self.object = self.get_object() formsets = OrderedDict([( formset_name, formset_class(instance=self.object) ) for formset_name, formset_class in self.get_formset_classes().items()]) return self.render_to_response(self.get_context_data( form=self.get_form(self.get_form_class()), formsets=formsets, )) def post(self, request, *args, **kwargs): """ Extended version of the FormView.post method which validates the form and all configured formsets. If everything is valid, ``form_valid`` is called. If something is not valid, ``form_invalid`` is called. Both the form instance and all formset instances are provided to the called method. The form is passed as the first argument, the formsets are passed as keyword arguments using the formset key from ``formset_classes``. """ self.object = self.get_object() form = self.get_form(self.get_form_class()) formsets = OrderedDict([( formset_name, formset_class(request.POST, files=request.FILES, instance=self.object) ) for formset_name, formset_class in self.get_formset_classes().items()]) if all([form.is_valid()] + [formset.is_valid() for formset in formsets.values()]): return self.form_valid(form, **formsets) else: return self.form_invalid(form, **formsets) def save_form(self, form, **formsets): """ This method is called from ``form_valid`` to actual save the data from the form and all formsets. All saving is done by default. """ self.object = form.save() self.formset_objects = {} for formset_name, formset in formsets.items(): formset.instance = self.object self.formset_objects[formset_name] = formset.save() def form_valid(self, form, **formsets): """ Saves the data and provides a nice success message, then redirects to the ``get_success_url`` url. """ self.save_form(form, **formsets) messages.success(self.request, self.success_message.format( model=self.get_model_verbose_name(), object=self.object)) return redirect(self.get_success_url()) def form_invalid(self, form, **formsets): """ Re-render the page with the invalid form and/or formsets. """ return self.render_to_response(self.get_context_data( form=form, formsets=formsets, formset_errors=True, )) ``` #### File: examples/collection/forms.py ```python from django import forms from cruditor.forms import CruditorTapeformMixin from examples.store.models import Person class PersonForm(CruditorTapeformMixin, forms.ModelForm): reminder = forms.SplitDateTimeField( label='Next reminder', help_text='Some help for you') class Meta: model = Person fields = '__all__' def clean(self): if not self.cleaned_data.get('last_name', ''): raise forms.ValidationError('Please provide a last name too.') return self.cleaned_data ``` #### File: examples/remote/models.py ```python import requests BASE_TAG = {'id': 0, 'name': 'cruditor'} class Pet: def __init__(self, pet): self.data = { 'id': pet['id'], 'name': pet['name'], 'photo_url': pet['photoUrls'][0] } def __str__(self): return self.name @property def pk(self): return self.data['id'] @property def name(self): return self.data['name'] def for_form(self): return { 'name': self.data['name'], 'photo_url': self.data['photo_url'] } def update(self, form): self.data = Pet(requests.put('http://petstore.swagger.io/v2/pet', json={ 'id': self.data['id'], 'name': form['name'], 'photoUrls': [form['photo_url']], 'tags': [BASE_TAG], 'status': 'available' }).json()).data def delete(self): requests.delete( 'http://petstore.swagger.io/v2/pet/{}'.format(self.data['id'])) @classmethod def get_list(cls): all_pets = requests.get( 'http://petstore.swagger.io/v2/pet/findByStatus', {'status': 'available'} ).json() for pet in all_pets: # Filter pets with tag cruditor tags = pet.get('tags', []) if not tags or tags[0] != BASE_TAG: continue yield Pet(pet) @classmethod def get(cls, pk): return Pet(requests.get( 'http://petstore.swagger.io/v2/pet/{}'.format(pk)).json()) @classmethod def create(cls, form): return Pet(requests.post('http://petstore.swagger.io/v2/pet', json={ 'name': form['name'], 'photoUrls': [form['photo_url']], 'tags': [BASE_TAG], 'status': 'available' }).json()) ``` #### File: examples/remote/views.py ```python from django.urls import reverse, reverse_lazy from cruditor.collection import CollectionViewMixin from cruditor.views import ( CruditorAddView, CruditorChangeView, CruditorDeleteView, CruditorListView) from examples.mixins import ExamplesMixin from .forms import PetForm from .models import Pet class PetMixin(ExamplesMixin, CollectionViewMixin): collection_list_title = 'Pets' collection_list_urlname = 'remote:list' collection_detail_urlname = 'remote:change' model_verbose_name = 'Pet' class PetListView(PetMixin, CruditorListView): def get_titlebuttons(self): return [{'url': reverse('remote:add'), 'label': 'Add pet'}] def get_queryset(self): return Pet.get_list() class PetAddView(PetMixin, CruditorAddView): form_class = PetForm success_url = reverse_lazy('remote:list') model_verbose_name = 'Pet' class PetChangeView(PetMixin, CruditorChangeView): form_class = PetForm success_url = reverse_lazy('remote:list') model_verbose_name = 'Pet' def get_object(self): return Pet.get(self.kwargs['pk']) def get_delete_url(self): return reverse('remote:delete', args=(self.object.pk,)) class PetDeleteView(PetMixin, CruditorDeleteView): success_url = reverse_lazy('remote:list') def get_object(self): return Pet.get(self.kwargs['pk']) ``` #### File: django-cruditor/tests/test_filters.py ```python from cruditor.filters import AnyChoiceFilter, MultiCharFilter from examples.store.models import Person class TestAnyChoiceFilter: def test_default_label(self): instance = AnyChoiceFilter('foo') assert str(instance.extra['empty_label']) == 'Any choice' def test_custom_label(self): instance = AnyChoiceFilter('foo', empty_label='Anyting') assert str(instance.extra['empty_label']) == 'Anyting' class TestMultiCharFilter: def test_init(self): instance = MultiCharFilter(('foo', 'bar')) assert instance.fields == ('foo', 'bar') def test_filter(self): instance = MultiCharFilter(('first_name', '^last_name')) filters = instance.filter( Person.objects.all(), 'foo').query.has_filters().children[0].children assert filters[0].lhs.field.name == 'first_name' assert filters[0].lookup_name == 'icontains' assert filters[1].lhs.field.name == 'last_name' assert filters[1].lookup_name == 'istartswith' def test_skip_filter(self): instance = MultiCharFilter(('first_name', '^last_name')) assert len(instance.filter( Person.objects.all(), '').query.has_filters().children) == 0 ```
{ "source": "jeromelebleu/django-tapeforms", "score": 2 }
#### File: tests/contrib/test_bootstrap.py ```python from django import forms from tapeforms.contrib.bootstrap import BootstrapTapeformMixin class DummyForm(BootstrapTapeformMixin, forms.Form): my_field1 = forms.CharField() my_field2 = forms.BooleanField() class TestBootstrapTapeformMixin: def test_field_template(self): form = DummyForm() assert form.field_template == 'tapeforms/fields/bootstrap.html' def test_field_container_css_class_default(self): form = DummyForm() assert form.get_field_container_css_class( form['my_field1']) == 'form-group' def test_field_container_css_class_checkbox(self): form = DummyForm() assert form.get_field_container_css_class( form['my_field2']) == 'form-check' def test_field_label_css_class_default(self): form = DummyForm() assert form.get_field_label_css_class( form['my_field1']) is None def test_field_label_css_class_checkbox(self): form = DummyForm() assert form.get_field_label_css_class( form['my_field2']) == 'form-check-label' def test_widget_css_class_default(self): form = DummyForm() assert form.get_widget_css_class( 'my_field1', form.fields['my_field1']) == 'form-control' def test_widget_css_class_checkbox(self): form = DummyForm() assert form.get_widget_css_class( 'my_field2', form.fields['my_field2']) == 'form-check-input' def test_widget_css_class_invalid(self): form = DummyForm({}) form.full_clean() css_classes = form.fields['my_field1'].widget.attrs['class'].split(' ') assert 'is-invalid' in css_classes assert 'form-control' in css_classes def test_add_error(self): form = DummyForm({}) form.add_error(None, 'Non field error!') form.add_error('my_field1', 'Error!') css_classes = form.fields['my_field1'].widget.attrs['class'].split(' ') assert 'is-invalid' in css_classes ```
{ "source": "JeromeLeLan/celluloid", "score": 3 }
#### File: celluloid/scripts/generateWallpapers.py ```python import sys, os, argparse, shutil from PIL import Image, ImageOps # pip install Pillow POSTER_COUNT = 9999 # POSTER_COUNT = 50 # Uncomment to test on poster subset ROW_SIZE = 7 COLUMN_SIZE = 3 BACKGROUND_COLOR = '#797877' WATCHED_COLOR = '#4f4e4d' IMAGE_WIDTH = 1288 IMAGE_HEIGHT = 1600 BORDER_SIZE = 75 scriptPath = os.path.dirname(os.path.realpath(__file__)) postersPath = os.path.join(scriptPath, '../posters') wallpapersPath = os.path.join(postersPath, 'wallpapers') borderedPath = os.path.join(wallpapersPath, 'bordered') rowsPath = os.path.join(wallpapersPath, 'rows') alphanumericOrder = lambda item: (int(item.partition(' ')[0]) if item[0].isdigit() else float('inf'), item) def cleanUpFolder(): if os.path.exists(wallpapersPath): shutil.rmtree(wallpapersPath) os.makedirs(wallpapersPath) os.makedirs(borderedPath) os.makedirs(rowsPath) def borderize(): posterCount = 0 posters = sorted(os.listdir(postersPath), key=alphanumericOrder) for poster in posters: filePath = os.path.join(postersPath, poster) if not os.path.isfile(filePath) or not filePath.endswith('jpg'): continue print(poster) img = Image.open(filePath) img = img.resize((IMAGE_WIDTH,IMAGE_HEIGHT)) color = BACKGROUND_COLOR if '@seen' in poster: color = WATCHED_COLOR img = ImageOps.expand(img, border=BORDER_SIZE, fill=color) img.save(os.path.join(borderedPath, poster)) posterCount += 1 if posterCount > POSTER_COUNT: break paddingCount = (ROW_SIZE * COLUMN_SIZE) - posterCount % (ROW_SIZE * COLUMN_SIZE) for i in range(paddingCount): paddingPoster = str(posterCount + i + 2) + ' - padding.jpg' img = Image.new('RGB', (IMAGE_WIDTH + 2 * BORDER_SIZE, IMAGE_HEIGHT + 2 * BORDER_SIZE), BACKGROUND_COLOR) print(paddingPoster) img.save(os.path.join(borderedPath, paddingPoster)) def createRows(): posters = sorted(os.listdir(borderedPath), key=alphanumericOrder) row = [] rowCount = 1 for poster in posters: print(poster) if len(row) < ROW_SIZE: row.append(Image.open(os.path.join(borderedPath, poster))) if len(row) < ROW_SIZE: continue widths, heights = zip(*(img.size for img in row)) total_width = sum(widths) max_height = max(heights) rowImage = Image.new('RGB', (total_width, max_height)) rowOffset = 0 for img in row: rowImage.paste(img, (rowOffset, 0)) rowOffset += img.size[0] fileName = str(rowCount) + ' - row' + '.jpg' rowImage.save(os.path.join(rowsPath, fileName)) row.clear() rowCount += 1 def createWallpapers(): rows = sorted(os.listdir(rowsPath), key=alphanumericOrder) column = [] wallpaperCount = 1 for row in rows: print(row) if len(column) < COLUMN_SIZE: column.append(Image.open(os.path.join(rowsPath, row))) if len(column) < COLUMN_SIZE: continue widths, heights = zip(*(img.size for img in column)) total_width = max(widths) max_height = sum(heights) wallpaper = Image.new('RGB', (total_width, max_height)) columnOffset = 0 for img in column: wallpaper.paste(img, (0, columnOffset)) columnOffset += img.size[1] wallpaper = ImageOps.expand(wallpaper, border=150, fill=BACKGROUND_COLOR) fileName = 'wallpaper' + str(wallpaperCount) + '.jpg' wallpaper.save(os.path.join(wallpapersPath, fileName)) column.clear() wallpaperCount += 1 def main(): cleanUpFolder() borderize() createRows() createWallpapers() shutil.rmtree(borderedPath) shutil.rmtree(rowsPath) if __name__ == '__main__': print(sys.version) main() ```
{ "source": "JeromeLeLan/watched", "score": 3 }
#### File: watched/data/generateMovieInfos.py ```python import sys, time, json, urllib.request, math, collections, operator apiFile = "../private/themoviedb.apikey" def getTheMovieDBApiKey(): with open(apiFile, "rU") as f: for line in f: apiKey = line return apiKey apiKey = getTheMovieDBApiKey() watchedFile = "watched.txt" #watchedFile = "watchedSample.txt" # debug exportFile = "../js/watched.json" movieInfos = [] countryList = dict() decadeList = dict() genreList = dict() actorList = dict() directorList = dict() cameraList = dict() jsonResult = dict() def addItemToDict(vDict, key, value, valueType): if not key in vDict: vDict[key] = dict() vDict[key]["count"] = 0 vDict[key][valueType] = value vDict[key]["count"] = vDict[key]["count"] + 1 def getMovieInfo(imdbId): url = "https://api.themoviedb.org/3/movie/tt" + imdbId + \ "?api_key=" + apiKey + "&language=en-US" request = urllib.request.Request(url) response = urllib.request.urlopen(request) movieInfo = json.load(response) time.sleep(0.25) return movieInfo def getCreditsInfo(imdbId): url = "https://api.themoviedb.org/3/movie/tt" + imdbId + \ "/credits?api_key=" + apiKey request = urllib.request.Request(url) response = urllib.request.urlopen(request) credits = json.load(response) time.sleep(0.25) director = "" for cast in credits["cast"]: addItemToDict(actorList, cast["id"], cast["name"], "name") for crew in credits["crew"]: if crew["job"] == "Director": director += crew["name"] + ", " addItemToDict(directorList, crew["id"], crew["name"], "name") if crew["job"] == "Director of Photography": addItemToDict(cameraList, crew["id"], crew["name"], "name") return director[0:len(director)-2] def getDecade(movieInfo): decade = str(int(math.floor(int(movieInfo["release_date"][0:4]) / 10) * 10)) + 's' print(" - " + decade, flush=True) decadeList[decade] = decadeList.get(decade, 0) + 1 def getCountry(movieInfo): for country in movieInfo["production_countries"]: countryISO = country["iso_3166_1"].replace("SU", "RU") countryName = country["name"].replace("Soviet Union", "Russia") addItemToDict(countryList, countryISO, countryName, "name") def getGenre(movieInfo): for genre in movieInfo["genres"]: genreName = genre["name"] genreList[genreName] = genreList.get(genreName, 0) + 1 def generateMovieInfos(): with open(watchedFile, "rU") as f: for movie in f: if '//' in movie: continue watchDate, imdbId, rating, useEnglishTitle = movie.strip().split(" ") if movie: print(imdbId, end='', flush=True) movieInfo = getMovieInfo(imdbId) movieInfoLight = dict() if useEnglishTitle == "1": movieInfoLight["original_title"] = movieInfo["title"] else: movieInfoLight["original_title"] = movieInfo["original_title"] print("-> " + movieInfoLight["original_title"], end='', flush=True) getDecade(movieInfo) getCountry(movieInfo) getGenre(movieInfo) director = getCreditsInfo(imdbId) movieInfoLight["imdb_id"] = movieInfo["imdb_id"] movieInfoLight["release_date"] = movieInfo["release_date"][0:4] #movieInfoLight["vote_average"] = movieInfo["vote_average"] movieInfoLight["watchDate"] = watchDate movieInfoLight["personalRating"] = rating movieInfoLight["runtime"] = movieInfo["runtime"] movieInfoLight["poster_path"] = movieInfo["poster_path"] movieInfoLight["director"] = director.strip() movieInfos.append(movieInfoLight) jsonResult["countries"] = countryList decadeListSorted = collections.OrderedDict(sorted(decadeList.items())) jsonResult["decades"] = decadeListSorted genreListSorted = sorted(genreList.items(), key=operator.itemgetter(1), reverse=True) jsonResult["genres"] = collections.OrderedDict(genreListSorted) actorListSorted = sorted(actorList.items(), key=lambda x: x[1].get('count'), reverse=True) jsonResult["actors"] = actorListSorted[0:10] directorListSorted = sorted(directorList.items(), key=lambda x: x[1].get('count'), reverse=True) jsonResult["directors"] = directorListSorted cameraListSorted = sorted(cameraList.items(), key=lambda x: x[1].get('count'), reverse=True) jsonResult["cinematographers"] = cameraListSorted[0:10] jsonResult["movies"] = movieInfos file = open(exportFile, "w") file.write(json.dumps(jsonResult, indent=4, separators=(',', ': '))) file.close() def main(): generateMovieInfos() if __name__ == '__main__': main() ```
{ "source": "Jerome-maker/ensae_teaching_cs", "score": 3 }
#### File: competition/program/evaluate.py ```python import os import sys if sys.version_info[0] == 2: FileNotFoundError = Exception def main_codalab_wrapper(fct, metric_name, argv, truth_file="truth.txt", submission_file="answer.txt", output_file="scores.txt"): """ adapt the tempate available at `evaluate.py <https://github.com/Tivix/competition-examples/blob/master/hello_world/competition/scoring_program/evaluate.py>`_ """ input_dir = argv[1] output_dir = argv[2] submit_dir = os.path.join(input_dir, 'res') truth_dir = os.path.join(input_dir, 'ref') if not os.path.isdir(submit_dir): raise FileNotFoundError("%s doesn't exist" % submit_dir) if os.path.isdir(submit_dir) and os.path.isdir(truth_dir): if not os.path.exists(output_dir): os.makedirs(output_dir) private_codalab_wrapper(fct, metric_name, fold1=truth_dir, f1=truth_file, fold2=submit_dir, f2=submission_file, output=os.path.join(output_dir, output_file)) else: raise FileNotFoundError( "{0} or {1} is not a folder".format(submit_dir, truth_dir)) def private_codalab_wrapper(fct, metric_name, fold1, fold2, f1="answer.txt", f2="answer.txt", output="scores.txt"): """ Wraps the function following the guidelines `User_Building a Scoring Program for a Competition <https://github.com/codalab/codalab-competitions/wiki/User_Building-a-Scoring-Program-for-a-Competition>`_. It replicates the example available at `competition-examples/hello_world <https://github.com/Tivix/competition-examples/tree/master/hello_world/competition>`_. @param fct function to wrap @param metric_name metric name @param fold1 folder which contains the data for folder containing the truth @param fold2 folder which contains the data for folder containing the data @param f1 filename for the truth @param f2 filename for the produced answers @param output produces an output with the expected results @return metric """ f1 = os.path.join(fold1, f1) f2 = os.path.join(fold2, f2) if not os.path.exists(f1): raise FileNotFoundError("unable to find '{0}'".format(f1)) if not os.path.exists(f2): raise FileNotFoundError("unable to find '{0}'".format(f2)) if f1 == f2: raise ValueError( "answers and scores are the same file: '{0}'".format(f1)) with open(f1, "r") as f: lines = f.readlines() answers = [float(_) for _ in lines if _] print("Reading answers:", f1, len(answers), "rows") print("First answers:", answers[:10]) with open(f2, "r") as f: lines = f.readlines() scores = [float(_) for _ in lines if _] print("Reading scores:", f1, len(scores), "rows") print("First scores:", scores[:10]) metric = fct(answers, scores) res = "{0}:{1}".format(metric_name, metric) print("Results=", res) with open(output, "w") as f: f.write(res) print("Wrote", res, "in", output) return metric def AUC(answers, scores): """ Compute the `AUC <https://en.wikipedia.org/wiki/Area_under_the_curve_(pharmacokinetics)>`_. @param answers expected answers 0 (false), 1 (true) @param scores score obtained for class 1 @return number """ ab = list(zip(answers, scores)) plus = [s for a, s in ab if a == 1] moins = [s for a, s in ab if a != 1] auc = 0 for p in plus: for m in moins: if p > m: auc += 2 elif p == m: auc += 1 den = len(plus) * len(moins) if den == 0: return 1.0 if len(moins) == 0 else 0.0 return auc * 1.0 / (len(plus) * len(moins) * 2) if __name__ == "__main__": if len(sys.argv) < 3: raise Exception("bad arguments: {0}".format(sys.argv)) main_codalab_wrapper(AUC, "AUC", sys.argv) ``` #### File: notebooks/sklearn_ensae_course/helpers.py ```python from sklearn import neighbors, datasets, linear_model import pylab as pl import numpy as np from matplotlib.colors import ListedColormap # Create color maps for 3-class classification problem, as with iris cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) def plot_iris_knn(): iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target knn = neighbors.KNeighborsClassifier(n_neighbors=3) knn.fit(X, y) x_min, x_max = X[:, 0].min() - .1, X[:, 0].max() + .1 y_min, y_max = X[:, 1].min() - .1, X[:, 1].max() + .1 xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100), np.linspace(y_min, y_max, 100)) Z = knn.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) pl.figure() pl.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points pl.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) pl.xlabel('sepal length (cm)') pl.ylabel('sepal width (cm)') pl.axis('tight') def plot_polynomial_regression(): rng = np.random.RandomState(0) x = 2 * rng.rand(100) - 1 def f(t): return 1.2 * t**2 + .1 * t**3 - .4 * t ** 5 - .5 * t ** 9 y = f(x) + .4 * rng.normal(size=100) x_test = np.linspace(-1, 1, 100) pl.figure() pl.scatter(x, y, s=4) X = np.array([x**i for i in range(5)]).T X_test = np.array([x_test**i for i in range(5)]).T regr = linear_model.LinearRegression() regr.fit(X, y) pl.plot(x_test, regr.predict(X_test), label='4th order') X = np.array([x**i for i in range(10)]).T X_test = np.array([x_test**i for i in range(10)]).T regr = linear_model.LinearRegression() regr.fit(X, y) pl.plot(x_test, regr.predict(X_test), label='9th order') pl.legend(loc='best') pl.axis('tight') pl.title('Fitting a 4th and a 9th order polynomial') pl.figure() pl.scatter(x, y, s=4) pl.plot(x_test, f(x_test), label="truth") pl.axis('tight') pl.title('Ground truth (9th order polynomial)') ``` #### File: ensae_teaching_cs/automation_students/git_helper.py ```python import os import re from pyquickhelper.loghelper import noLOG, run_cmd from pyquickhelper.texthelper import remove_diacritics def git_clone(local_folder, url_https, user=None, password=<PASSWORD>, timeout=60, init=True, fLOG=noLOG): """ Clones a project from a git repository in a non empty local folder, it requires `GIT <http://git-scm.com/>`_ to be installed and uses the command line. @param local_folder local folder of the project @param url_https url, example ``https://gitlab.server/folder/project_name`` @param user part 1 of the credentials @param password part 2 of the credentials @param timeout timeout for the command line @param init see below (True, use fetch, False, use clone) @param fLOG logging function @return local_folder If the reposity has already been cloned, it does not do it again. We assume that git can be run without giving its full location. The function executes the following commands (if init is True):: cd [folder] git init git remote add origin [https://user.password@server/project.git] git fetch Otherwise, it does:: cd [folder] git clone origin [https://user.password@server/project.git] git fetch A folder will be created. .. exref:: :tag: Automation :title: Clone many folders in one row :: eleves = "project1;project2;..." root = r"destination" for el in eleves.split(";"): cl = el.lower().replace(".","-") fold = os.path.join(root, el) if not os.path.exists(fold): print("clone", el) url = "https://<gitlab>/<group>/{0}.git".format(cl) git_clone( fold, url,user=user,password=password, init=False,fLOG=print) """ url_user = git_url_user_password(url_https, user, password) timeout = 60 local_folder = os.path.normpath(os.path.abspath(local_folder)) if init: if not os.path.exists(local_folder): fLOG("creating folder", local_folder) os.mkdir(local_folder) hg = os.path.join(local_folder, ".git") if os.path.exists(hg): raise Exception("folder {0} should not exist".format(local_folder)) if not os.path.exists(hg): cmds = """ cd {0} git init git remote add origin {1} git fetch """.format(local_folder, url_user).replace(" ", "").strip(" \n\r\t") cmd = cmds.replace("\n", "&") sin = "" # "{0}\n".format(password) out, err = run_cmd( cmd, sin=sin, wait=True, timeout=timeout, fLOG=fLOG) git_check_error(out, err, fLOG) return local_folder else: if not os.path.exists(local_folder): fLOG("creating folder", local_folder) os.mkdir(local_folder) hg = os.path.join(local_folder, ".git") if os.path.exists(hg): raise Exception("folder {0} should not exist".format(local_folder)) final = os.path.split(url_user)[-1].replace(".git", "") locf = os.path.join(local_folder, final) if os.path.exists(locf): raise Exception( "folder {0} should not exists before cloning".format(locf)) cmds = """ cd {0} git clone {1} . """.format(local_folder, url_user).replace(" ", "").strip(" \n\r\t") cmd = cmds.replace("\n", "&") sin = "" # "{0}\n".format(password) out, err = run_cmd(cmd, sin=sin, wait=True, timeout=timeout, fLOG=fLOG) git_check_error(out, err, fLOG) return locf def git_change_remote_origin(local_folder, url_https, user=None, password=<PASSWORD>, add_fetch=False, timeout=10, fLOG=noLOG): """ Changes the origin of the repository. The url and the password refer to the new repository. @param local_folder local folder @param url_https url, example ``https://gitlab.server/folder/project_name`` @param user part 1 of the credentials @param password part 2 of the credentials @param timeout timeout for the command line @param add_fetch add instruction ``fetch`` @param fLOG logging function @return something The function runs the instruction:: git remote remove origin git remote add origin url """ url_user = git_url_user_password(url_https, user, password) cmds = """ cd {0} git remote remove origin git remote add origin {1} """.format(local_folder, url_user).replace(" ", "").strip(" \n\r\t") if add_fetch: cmds += "\ngit fetch" cmd = cmds.replace("\n", "&") sin = "" # "{0}\n".format(password) out, err = run_cmd(cmd, sin=sin, wait=True, timeout=timeout, fLOG=fLOG) git_check_error(out, err, fLOG) def git_commit_all(local_folder, url_https, message, user=None, password=<PASSWORD>, timeout=300, fLOG=noLOG): """ From a git repository, it requires `GIT <http://git-scm.com/>`_ to be installed and uses the command line. @param local_folder local folder of the project @param url_https url, example ``https://gitlab.server/folder/project_name`` @param message message for the commit @param user part 1 of the credentials @param password part 2 of the credentials @param timeout timeout for the command line @param fLOG logging function @return None If the reposity has already been cloned, it does not do it again. We assume that git can be run without giving its full location. The function executes the following commands:: cd [folder] git add -A git commit -m "[message]" git push -u origin master """ cmds = """ cd {0} git add -A git commit -m "{1}" git push -u origin master """.format(local_folder, message).replace(" ", "").strip(" \n\r\t") cmd = cmds.replace("\n", "&") sin = "" # "{0}\n".format(password) out, err = run_cmd(cmd, sin=sin, wait=True, timeout=timeout, fLOG=fLOG) git_check_error(out, err, fLOG) def git_first_commit_all_projects(local_folder, user=None, password=<PASSWORD>, timeout=300, suivi="suivi.rst", fLOG=noLOG): """ @param local_folder folder @param user part 1 of the credentials @param password part 2 of the credentials @param timeout timeout for the command line @param suivi file to open to get the gitlab account @param fLOG logging function @return None or ( local_folder, gitlab ) """ if not os.path.exists(local_folder): raise FileNotFoundError(local_folder) filename = os.path.join(local_folder, suivi) if not os.path.exists(filename): raise FileNotFoundError(filename) with open(filename, "r", encoding="utf8") as f: content = f.read() _gitlab_regex = re.compile(".+1.*") gitlab = _gitlab_regex.findall(content) if len(gitlab) == 0: raise Exception( "unable to find the regular expression {0} in {1}".format( _gitlab_regex.pattern, filename)) if not isinstance(gitlab, list): raise TypeError("we expect a list for: " + str(gitlab)) if len(gitlab) != 1: raise Exception( "more than one gitlab repo is mentioned {0} in {1}".format( _gitlab_regex.pattern, filename)) gitlab = gitlab[0] fLOG("* gitlab", gitlab) g = os.path.join(local_folder, ".git") commit = None if not os.path.exists(g): fLOG("* initialize", local_folder) git_clone(local_folder, gitlab, user=user, password=password, fLOG=fLOG) sub = os.path.split(local_folder)[-1] fLOG("* first commit ", gitlab) git_commit_all(local_folder, gitlab, "first commit to " + sub, user=user, password=password, fLOG=print) commit = local_folder, gitlab return commit def create_folders_from_dataframe(df, root, report="suivi.rst", col_student="Eleves", col_group="Groupe", col_subject="Sujet", overwrite=False, email_function=None): """ Creates a series of folders for groups of students. @param root where to create the folders @param col_student column which contains the student name (firt name + last name) @param col_group index of the grou @param col_subject column which contains the subject @param df DataFrame @param email_function function which infers email from first and last names, see below @param report report file @param overwrite if False, skip if the report already exists @return list of creates folders The function *email_function* has the following signature:: def email_function(first_name, last_name): # .... """ def split_name(name): name = remove_diacritics(name).split(" ") first = name[-1] last = " ".join(name[:-1]) return first, last def ul(last): res = "" for i, c in enumerate(last): if c == " ": res += "_" elif i == 0 or last[i - 1] in [" ", "-", "_"]: res += c.upper() else: res += c.lower() return res folds = [] gr = df.groupby(col_group) for name, group in gr: s = list(set(group[col_subject].copy())) if len(s) > 1: raise Exception( "more than one subject for group: " + str(name) + "\n" + str(s)) # subject = s[0] eleves = list(group[col_student]) names = [(_,) + split_name(_) for _ in eleves] eleves.sort() title = ", ".join(eleves) content = [title] content.append("=" * len(title)) content.append("") content.append("* subject: " + title) content.append("* G: %d" % int(name)) if email_function is not None: mails = [email_function(a[1], a[2]) for a in names] jmail = "; ".join(mails) content.append("* mails: " + jmail) content.append("") content.append("") last = ".".join(ul(a[-1]) for a in sorted(names)) folder = os.path.join(root, last) filename = os.path.join(folder, report) if not os.path.exists(folder): os.mkdir(folder) if overwrite or not os.path.exists(filename): with open(filename, "w", encoding="utf8") as f: f.write("\n".join(content)) folds.append(folder) return folds def get_sections(path, suivi="suivi.rst"): """ Extracts sections from a filename used to follow a group of students. @param path where to find filename @param suivi file, RST format, section are followed by ``+++++`` @return dictionary { section : content } Example of a file:: rapport +++++++ * bla 1 extrait +++++++ :: paragraphe 1 paragraphe 2 """ if not os.path.exists(path): raise FileNotFoundError(path) filename = os.path.join(path, suivi) if not os.path.exists(filename): raise FileNotFoundError(filename) try: with open(filename, "r", encoding="utf8") as f: content = f.read() except UnicodeDecodeError as e: raise ValueError( 'unable to parse file:\n File "{0}", line 1'.format(filename)) from e lines = [_.strip("\r").rstrip() for _ in content.split("\n")] added_in = [] sections = {"": []} title = "" for i, line in enumerate(lines): if len(line) == 0: sections[title].append(line) added_in.append(title) else: f = line[0] if f == " ": if title is not None: sections[title].append(line) added_in.append(title) else: sections[""].append(line) added_in.append("") elif f in "=+-": if line == f * len(line): title = lines[i - 1] if len(added_in) > 0: t = added_in[-1] sections[t] = sections[t][:-1] added_in[-1] = title if f == "=": sections["title"] = [title] added_in.append("title") title = "title" else: sections[title] = [] added_in.append(title) else: sections[title].append(line) added_in.append(title) else: sections[title].append(line) added_in.append(title) return sections def git_url_user_password(url_https, user, password): """ Builds a url (starting with https) and add the user and the password to skip the authentification. :param url_https: example ``https://gitlab.server/folder/project_name`` :param user: part 1 of the credentials :param password: part 2 of the credentials :return: url """ url_user = url_https.replace( "https://", "https://{0}:{1}@".format(user, password)) return url_user def git_check_error(out, err, fLOG): """ Private function, analyse the output. """ if len(out) > 0: fLOG("OUT:\n" + out) if len(err) > 0: if "error" in err.lower(): raise Exception("OUT:\n{0}\nERR:\n{1}".format(out, err)) raise Exception(err) ``` #### File: ensae_teaching_cs/automation_students/quick_tasks.py ```python def build_mailing_list(names, domain, format="{first}.{last}@{domain}"): """ Infers mails from a list of names. @param names list of strings @param domain something like ``ensae.fr``. @param format mail format @return list of mails Examples : :: DUPRE Xavier Everything upper case is the last name, everything lower case is the first name. """ mails = [] for name in names: words = name.split() first = [] last = [] for w in words: if w.upper() == w: last.append(w) else: first.append(w) first = ".".join(s.lower() for s in first) last = ".".join(s.lower() for s in last) mail = format.format(first=first, last=last, domain=domain) mails.append(mail) return mails ``` #### File: ensae_teaching_cs/automation/teaching_modules.py ```python def get_teaching_modules(): """ List of teachings modules to maintain (CI + documentation). .. runpython:: :showcode: from ensae_teaching_cs.automation import get_teaching_modules print('\\n'.join(sorted(get_teaching_modules()))) """ return ["pymlbenchmark", "_benchmarks", "ensae_teaching_dl", "machinelearningext", "lecture_citation", "botadi", "pyquickhelper", "jyquickhelper", "python3_module_template", "mathenjeu", "pymmails", "pymyinstall", "pyensae", "pyrsslocal", "pysqllike", "ensae_projects", "ensae_teaching_cs", "code_beatrix", "actuariat_python", "mlstatpy", "jupytalk", "teachpyx", "tkinterquickhelper", "cpyquickhelper", "pandas_streaming", "lightmlboard", "lightmlrestapi", "mlinsights", "pyenbc", "mlprodict", "papierstat", "sparkouille", "manydataapi", "csharpy", "csharpyml", "wrapclib", "myblog" ] ``` #### File: ensae_teaching_cs/data/crypt_helper.py ```python from pyquickhelper.filehelper.encryption import encrypt_stream, decrypt_stream def encrypt_data(password, input, output): """ Encrypts a file. @param input input filename @param output output filename @param password The encryption key - a string that must be either 16, 24 or 32 bytes long. Longer keys are more secure. If the data to encrypt is in bytes, the key must be given in bytes too. """ if not isinstance(password, bytes): password = bytes(password, "ascii") encrypt_stream(password, input, output) def decrypt_data(password, input, output): """ Decrypts a file. @param input input filename @param output output filename @param password The encryption key - a string that must be either 16, 24 or 32 bytes long. Longer keys are more secure. If the data to encrypt is in bytes, the key must be given in bytes too. """ if not isinstance(password, bytes): password = bytes(password, "ascii") decrypt_stream(password, input, output) ``` #### File: ensae_teaching_cs/data/data_ts.py ```python from datetime import datetime, timedelta import numpy def generate_sells(duration=730, end=None, week_coef=None, month_coef=None, trend=1.1): """ Generates dummy data and trends and seasonality. """ if week_coef is None: week_coef = numpy.array([0.1, 0.12, 0.12, 0.15, 0.20, 0., 0.]) week_coef[5] = 1. - week_coef.sum() if month_coef is None: month_coef = [0.8, 1, 1, 1, 1, 1, 0.8, 0.6, 1, 1, 1, 1.5] month_coef = numpy.array(month_coef) month_coef /= month_coef.sum() if end is None: end = datetime.now() begin = end - timedelta(duration) day = timedelta(1) rows = [] rnd = (numpy.random.randn(duration + 1) * 0.1) + 1 exp = (1 + numpy.exp(- numpy.arange(duration + 1) / duration * trend)) ** (-1) pos = 0 while begin <= end: month = begin.month weekd = begin.weekday() value = rnd[pos] * week_coef[weekd] * month_coef[month - 1] * exp[pos] pos += 1 obs = dict(date=begin, value=value) rows.append(obs) begin += day return rows ``` #### File: ensae_teaching_cs/data/dataweb.py ```python from io import StringIO import pandas from .data_helper import any_local_file def anyfile(name, local=True, cache_folder=".", filename=True, unzip=False, encoding=None): """ Returns any file in sub folder `data_web <https://github.com/sdpython/ensae_teaching_cs/tree/master/src/ensae_teaching_cs/data/data_web>`_. @param name file to download @param local local data or web @param cache_folder where to cache the data if downloaded a second time @param filename return the filename (True) or the content (False) @param unzip unzip the file @param encoding encoding @return text content (str) """ return any_local_file(name, "data_web", cache_folder=cache_folder, filename=filename, unzip=unzip, encoding=encoding) def google_trends(name="macron", local=True, cache_folder=".", filename=True): """ Returns some google trends example. See :func:`ensae_teaching_cs.data.dataweb.anyfile` to directly download it. @param name expression @param local local data or web @param cache_folder where to cache the data if downloaded a second time @param filename return the filename (True) or the content (False) @return text content (str) """ return anyfile("google_trends_%s.csv" % name, local=local, cache_folder=cache_folder, filename=filename) def twitter_zip(name="tweets_macron_sijetaispresident_201609", local=True, cache_folder=".", filename=False, unzip=True, as_df=True, encoding="utf-8"): """ Returns zipped twitter. See :func:`ensae_teaching_cs.data.dataweb.anyfile` to directly download it. @param name filename @param local local data or web @param cache_folder where to cache or unzip the data if downloaded a second time @param filename return the filename (True) or the content (False) @param unzip unzip the file @return text content (str) """ res = anyfile(name + ".zip", local=local, cache_folder=cache_folder, filename=filename, unzip=unzip, encoding=encoding) if as_df: st = StringIO(res) return pandas.read_csv(st, sep="\t") else: if isinstance(res, list): if len(res) > 1: raise ValueError("too many files: {0}".format(res)) res = res[0] return res ``` #### File: ensae_teaching_cs/doc/regex.py ```python from io import StringIO import pandas def regex_cases(): text = """ Cas;Explications -------;Bases "a";a -------;Quantificateurs "abc?";ab suivi par 0 ou 1 c "abc*";ab suivi par 0.. c "abc+";ab suivi par 1.. c "abc{3}";ab suivi par 3 c "abc{3,5}";ab suivi par 3, 4 ou 5 c ;Groupes "(abc)+";1..8 abc "(a|b)c";ac ou bc -------;Intervalles (type 1) ".";n'importe quel caractère (un seul) "[aB9]";a ou B ou 9 "[0-9]";n'importe quel caractère numérique "[a-zA-Z]";n'importe quel caractère alphabétique "[^a-c]";n'importe quel caractère SAUF a, b et c -------;Intervalles (type 2) "\\d";comme "[0-9]" "\\w";comme "[a-zA-Z0-9_]" "\\W";comme "[^a-zA-Z0-9_]" "\\s";espaces (" ", "\\n", "\\t", "\\r") "\\S";tout ce qui n'est pas un espace -------;Ancres "^abc";commence par "abc" "abc$";termine par "abc" """.replace(" ", "") df = pandas.read_csv(StringIO(text), sep=";").fillna('') return df ``` #### File: ensae_teaching_cs/homeblog/buildkeywords.py ```python import re import os import xml.dom.minidom from pyquickhelper.loghelper import fLOG from .modifypost import load_and_modify_xml_dom from .filefunction import find_all_blogs_function def removeAccent(s): return re.sub("([^~+'.0-9,ea-zA-Z&; -])", "", s) def removeAccent_debug(s): return re.sub("([^~+'.#çôéàèâû0-9,ea-zA-Z&; -])", "", s) def removeHtmlAccent(s): s = s.replace("é", "&eacute;") \ .replace("à", "&agrave;") \ .replace("â", "&acirc;") \ .replace("ê", "&ecirc;") \ .replace("ô", "&ocirc;") \ .replace("è", "&egrave;") \ .replace("ç", "&ccedil;") \ .replace("û", "&ucirc;") return s def FixIssuesWithAccent(text): """ voir http://migo.sixbit.org/more/html-entities.html http://www.thesauruslex.com/typo/eng/enghtml.htm :: é = é = &eacute; è = è = &egrave; à = à = &agrave; ï = ï = &iuml; ô = ô = &ocirc; ç = ç = &ccedil; ê = ê = &ecirc; ù = ù = &ugrave; æ = æ = &aelig; œ = œ = &oelig; ë = ë = &euml; ü = ü = &uuml; â = â = &acirc; € = € = &euro; © = © = &copy; ¤ = ¤ = &curren; """ o = text correspondance = [ ("ã©", "é"), ("ô", "ô"), ("â", "â"), ("î", "î"), ("è", "è"), ("ê", "ê"), ("â", "â"), ("ç", "ç"), ("à ", "à "), ("\xE9", "é"), ("\xE0", "à"), ("\xA0", "à"), ("\xE8", "è"), ("\xA8", "è"), ("\xF4", "ô"), ("\xB4", "ô"), ("\xFB", "û"), ("\xC3\xAA", "ê"), ("\xC3\xAE", "î"), ("\xAE", "î"), ("\xEE", "î"), ("\xEA", "ê"), ("\xAA", "ê"), ("Ã", "à"), ] for k, v in correspondance: text = text.replace("\xC3" + k, v).replace("\xE3" + k, v) text = text.replace(k, v) if len(removeAccent_debug(text)) != len(text) and len(text) < 50: fLOG("FixIssuesWithAccent", o.encode("utf8"), text.encode("utf8")) fLOG("FixIssuesWithAccent", o, text) raise ValueError("unable to deal with " + str([text, [text], removeAccent_debug(text), text.encode("utf8")])) return text def modify_all_blogs_list_in_place(folder=".", mainpage=os.path.join( "blog", "xd_blog.html"), outmainpage=os.path.join( "blog", "xd_blog.html"), allow_temp=False): file = find_all_blogs_function(folder, allow_temp=allow_temp) file = [os.path.split(_)[-1].replace(".html", "") for _ in file] f = open(mainpage, "r", encoding="utf8") cont = f.read() f.close() trois = cont.split("//////////////////////////////////////////") assert len(trois) == 3 file.sort(reverse=True) trois[1] = "\n" + ",\n".join(["\"%s\"" % _ for _ in file]) + "\n" cont = "//////////////////////////////////////////".join(trois) f = open(outmainpage, "w", encoding="utf8") f.write(cont) f.close() def file_all_keywords(folder=".", mainpage=os.path.join("blog", "xd_blog.html"), outmainpage=os.path.join("blog", "xd_blog.html"), exclude=None, allow_temp=False): keepfile = find_all_blogs_function(folder, exclude, allow_temp=allow_temp) if len(keepfile) == 0: raise Exception("no found file") hist = {} store_keywords = {} files = [] for f in keepfile: dom = load_and_modify_xml_dom(f, None) meta = dom.documentElement.getElementsByTagName("meta") node = [_ for _ in meta if "name" in _.attributes and _.attributes[ "name"].value == "keywords"] keywords = [_.strip() for _ in node[0].attributes[ "content"].value.split(",")] keywords.sort() store_keywords[f] = keywords for k in keywords: k = k.strip() hist[k] = hist.get(k, 0) + 1 res = [(v, k) for k, v in hist.items() if v > 1] res.sort(reverse=True) # tag f = open(mainpage, "r", encoding="utf8") cont = f.read() f.close() trois = cont.split("////////////###########") trois[1] = "\n" + ",\n".join(["[\"%s (%d)\",\"%s\"]" % (FixIssuesWithAccent(k), v, removeAccent(k)) for v, k in res]) + "\n" cont = "////////////###########".join(trois) # documents trois = cont.split("////////////---------------------") rows = [] for k, v in res: files = [] text = '"%s":' % removeAccent(v) for f in keepfile: keywords = store_keywords[f] if v in keywords: files.append(f) files = [os.path.split(_)[-1].replace(".html", "") for _ in files] files.sort(reverse=True) files = ['"%s"' % _ for _ in files] text += "[ %s ] " % ", ".join(files) rows.append(text) trois[1] = "\n" + ",\n".join([_ for _ in rows]) + "\n" cont = "////////////---------------------".join(trois) # rev keywords trois = cont.split("////////////+++++++++++++++++") rows = [] for k, v in res: text = removeAccent(v) rows.append('"%s":"%s"' % (text, FixIssuesWithAccent(v))) trois[1] = "\n" + ",\n".join([_ for _ in rows]) + "\n" cont = "////////////+++++++++++++++++".join(trois) f = open(outmainpage, "w", encoding="utf8") f.write(cont) f.close() modify_all_blogs_list_in_place( folder, outmainpage, outmainpage, allow_temp=allow_temp) return store_keywords def build_bloc_keywords(res, frequence_threshold, rootfile): """ builds the keywords bloc @param res .... @param frequence_threshold number of times a keyword needs to appear before getting the right bar """ keywords = {} for a, b in res.items(): for _ in b: keywords[_] = keywords.get(_, 0) + 1 keywords = [(b, a) for a, b in keywords.items()] keywords.sort(reverse=True) text = [] for a, b in keywords: if a >= frequence_threshold: s = '<p class="keywordtitle"><a href="%s_%s.html" target="_parent">%s</a> (%d)</p>' % \ (rootfile, removeAccent(b), FixIssuesWithAccent(b), a) text.append(s) return "\n".join(text), keywords def build_bloc_months(res, rootfile): """ builds the months bloc (we assume the page name is YYYY-MM-DD-something-.html @param res list of blog per months @param rootfile files location """ months = {} for a, b in res.items(): month = os.path.split(a)[-1][:7] months[month] = months.get(month, 0) + 1 months = [(a, str(b)) for a, b in months.items()] months.sort(reverse=True) text = [] year = None for a, b in months: if year is not None and a[:4] != year: text.append('<p class="smallspace">.</p>') s = '<p class="monthtitle"><a href="%s_%s.html" target="_parent">%s</a> (%s)</p>' % \ (rootfile, a, a, b) text.append(s) year = a[:4] months = [(b, a) for a, b in months] return "\n".join(text), months def replace_xml_in_template_using_dom_dirty(dom, node, newvalue): xmltext = node.toxml() allxml = dom.documentElement.toxml() pos = allxml.find(xmltext) if pos == -1: raise ValueError("unable to replace") allxml = allxml.replace(xmltext, newvalue) res = xml.dom.minidom.parseString(allxml) return res def get_node_div(template, cl): sidebar = template.documentElement.getElementsByTagName("div") sidebar = [_ for _ in sidebar if "class" in _.attributes] sidebar = [_ for _ in sidebar if _.attributes["class"].value == cl] if len(sidebar) != 1: raise ValueError("issue with HTML format: " + cl + ", " + str(len(sidebar))) sidebar = sidebar[0] return sidebar def generate_html_article(res, templateFile, toFolder, overwrite=False, aggregatedFile=None, maxAggregrate=15, keywordsText=None, otherLayer=None): fileToReturn = [] if not os.path.exists(toFolder): raise FileNotFoundError("not found " + toFolder) # group files or not toprocess = [] if aggregatedFile is not None: counter = 0 stackFile = [] for file in sorted(res, reverse=True): stackFile.append(file) if len(stackFile) == maxAggregrate: fileOutName = "%s_%04d.html" % (aggregatedFile.replace(".html", ""), counter) if counter > 0 \ else aggregatedFile fileOutName = os.path.join(toFolder, fileOutName) stackFile.sort(reverse=True) toprocess.append((stackFile, fileOutName)) counter += len(stackFile) stackFile = [] if len(stackFile) > 0: fileOutName = "%s_%04d.html" % (aggregatedFile.replace(".html", ""), counter) if counter > 0 \ else aggregatedFile fileOutName = os.path.join(toFolder, fileOutName) stackFile.sort(reverse=True) toprocess.append((stackFile, fileOutName)) else: # we process all files, each of them gives a file for file in sorted(res, reverse=True): filename = os.path.split(file)[-1].replace(".html", "_nojs.html") filename = os.path.join(toFolder, filename) toprocess.append(([file], filename)) # updating the sidebar template = load_and_modify_xml_dom(templateFile, None, False) templateText = template.documentElement.toxml() title_to_rep = template.documentElement.getElementsByTagName("title")[ 0].toxml() # all files to process are now in the list for indexProcess, couple in enumerate(toprocess): files, filename = couple stackContent = [] scripthtml = "" replacetitle = None for file in files: dom = load_and_modify_xml_dom(file, None) date = os.path.split(file)[-1][:10] title = dom.documentElement.getElementsByTagName("title")[ 0].toxml() if "XD blog" in title: raise ValueError("a blog contains a bad title: " + file) if len(files) == 1: # in that case, we want to change the page title replacetitle = title title = title.replace("title>", "h2>") link = '<a href="%s_nojs.html"><b>%s</b></a>' % (date, date) title = title.replace("<h2>", "<h2>" + link + " ") scripts = dom.documentElement.getElementsByTagName("script") if len(scripts) > 1: scr = [""] + [_.toxml() for _ in scripts] scripthtml += "\n".join(scr) b = dom.documentElement.getElementsByTagName("body")[0] body = b.toxml() body = body[6:] body = body[:-7] if len(files) > 1 and '<!-- CUT PAGE HERE -->' in body: # here we deal with shortcuts except if we process a single # document body = body.split('<!-- CUT PAGE HERE -->')[0] body += "<br />" + \ '<a href="%s_nojs.html">%s</a>' % (date, "more...") if len(body.strip()) == 0: raise ValueError("empty body for " + file) stackContent.append(title + "\n" + body) keywords = res[file] # we uniqueKeys = [_ for _ in set(keywords) if not _.startswith("~")] uniqueKeys.sort() keystext = ", ".join(uniqueKeys) nextPage = "" if indexProcess > 0: nextPage += '<a href="%s"><i>&lt;--</i></a> ' % ( os.path.split(toprocess[indexProcess - 1][1])[-1]) if indexProcess < len(toprocess) - 1: nextPage += '<a href="%s"><i>--&gt;</i></a> ' % ( os.path.split(toprocess[indexProcess + 1][1])[-1]) if keywordsText is not None: keystext = keywordsText # inside post = templateText.replace( "<!-- article here -->", "\n".join(stackContent)) post = post.replace( '<a href="xd_blog_nojs_DDD.html"><i>suite</i></a>', nextPage) post = post.replace("<!-- javascript here -->", scripthtml) post = post.replace("<!-- article keywords -->", keystext) post = post.replace("### KEYWORDS ###", keystext) post = post.replace("### keywords ###", keystext) enabled = False if enabled: olayer = '<p class="keywordtitle"><a href="xd_blog.html?date=%s">Other Layer</a></p>' % date \ if otherLayer is None else \ '<p class="keywordtitle"><a href="%s">Other Layer</a></p>' % otherLayer post = post.replace("<!-- other layer -->", olayer) # it does not work (pages too big) post = '<?xml version="1.0" encoding="utf-8"?>\n' + post post = post.replace('type="text/javascript"/>', 'type="text/javascript"></script>') post = FixIssuesWithAccent(post) if replacetitle is not None: # there was only one document, we replace it post = post.replace(title_to_rep, replacetitle) # we save the results if os.path.exists(filename): try: f = open(filename, "r", encoding="utf8") hist = f.read() f.close() except UnicodeDecodeError as e: fLOG("issue with file ", filename) content = open(filename, "r").read() fLOG(content[170:]) raise e else: hist = "" if post != hist or overwrite: if "\xC3" in post: #raise Exception("forbidden character ") pass if not overwrite: fLOG(" writing ", filename) if "### keywords ###" in post.lower(): raise Exception( "unable to release that document with this string ### KEYWORDS ###,\nkeywords should be " + str(keystext)) f = open(filename, "w", encoding="utf8") f.write(post) f.close() fileToReturn.append(filename) return fileToReturn def build_process_all_pages(res, keywordsHTML="frame_keywords.html", siteFolder="../site/blog", xd_blog_template_nojs=os.path.join( "blog", "xd_blog_template_nojs.html"), xd_blog_nojs="xd_blog_nojs.html", frequence_keywords=3, monthsHTML="frame_months.html" ): """ @param res output from function file_all_keywords @param keywordsHTML html template for the keywords @param siteFolder folder the blog (the one to be published) @param xd_blog_template_nojs template for blog (static text, less javascript) @param xd_blog_nojs main page (static text, less javascript) @param frequence_keywords there won't be any page for a keyword whose frequency is below that threshold @param monthsHTML html template for the months @return all created pages """ add = [] fLOG("processing keywords") htmlkey, keywords = build_bloc_keywords( res, frequence_keywords, "xd_blog_key") if keywordsHTML is not None: file = os.path.join(siteFolder, keywordsHTML) fLOG("writing ", file) f = open(file, "w", encoding="utf8") f.write("""<?xml version="1.0" encoding="utf-8"?>\n""") f.write("<html>\n") f.write("<head>\n") f.write( """<meta content="text/html; charset=utf-8" http-equiv="Content-Type"/>\n""") f.write("""<link href="pMenu.css" rel="stylesheet" type="text/css"/>\n""") f.write("</head>\n") f.write("<body>\n") f.write("""<div class="sidebarfull">\n""") f.write("""<p class="keywordtitle"><b>Keywords</b></p>\n""") f.write(htmlkey) f.write("\n</div>\n") f.write("\n</body></html>\n") f.close() add.append(file) fLOG("processing months") htmlkeym, monthsp = build_bloc_months(res, "xd_blog_month") if monthsHTML is not None: file = os.path.join(siteFolder, monthsHTML) fLOG("writing ", file) f = open(file, "w", encoding="utf8") f.write("""<?xml version="1.0" encoding="utf-8"?>\n""") f.write("<html>\n") f.write("<head>\n") f.write( """<meta content="text/html; charset=utf-8" http-equiv="Content-Type"/>\n""") f.write("""<link href="pMenu.css" rel="stylesheet" type="text/css"/>\n""") f.write("</head>\n") f.write("<body>\n") f.write("""<div class="sidebarfullleft">\n<hr />\n""") f.write("""<p class="monthtitle"><b>Months</b></p>\n""") f.write(htmlkeym) f.write("\n</div>\n") f.write("\n</body></html>\n") f.close() add.append(file) # build keyword pages fLOG("building aggregated page for keywords") add += generate_html_article( res, xd_blog_template_nojs, siteFolder, True, xd_blog_nojs, keywordsText="", otherLayer="xd_blog.html") # process all pages for each keyword) for a, b in keywords: fLOG("building page for keyword", FixIssuesWithAccent(b)) bb = removeAccent(b) tempres = {} for k, v in res.items(): if b in v: tempres[k] = "" add += generate_html_article( tempres, xd_blog_template_nojs, siteFolder, True, "xd_blog_key_%s.html" % bb, keywordsText=FixIssuesWithAccent(b), otherLayer="xd_blog.html?tag=%s" % FixIssuesWithAccent(b)) # build months pages fLOG("building aggregated page for months") add += generate_html_article( res, xd_blog_template_nojs, siteFolder, True, xd_blog_nojs, keywordsText="", otherLayer="xd_blog.html") # process all pages for each months) for a, b in monthsp: fLOG("building page for months", b) bb = removeAccent(b) tempres = {} for k, v in res.items(): if os.path.split(k)[-1].startswith(b): tempres[k] = "" add += generate_html_article( tempres, xd_blog_template_nojs, siteFolder, True, "xd_blog_month_%s.html" % bb, keywordsText=FixIssuesWithAccent(b), otherLayer="xd_blog.html?tag=%s" % FixIssuesWithAccent(b)) # build all pages (one per blog) fLOG("building all pages") add += generate_html_article( res, xd_blog_template_nojs, siteFolder, overwrite=True, otherLayer=None) return add ``` #### File: ensae_teaching_cs/homeblog/clean_python_script_before_exporting_outside.py ```python import re def cleanFileFromtohtmlreplace(content): if "#" + "## tohtmlreplace BEGIN ###" in content: exps = "(#" + "## tohtmlreplace BEGIN ###((.|\n)*?)" exps += "#" + "## tohtmlreplace ELSE ###((.|\n)*?)" exps += "#" + "## tohtmlreplace END ###" exps += ")" exp = re.compile(exps) res = exp.findall(content) if len(res) == 0: raise ValueError("unable to understand the format\n" + exps) for rs in res: torep = rs[0] byrep = rs[1] content = content.replace(torep, byrep) return content ``` #### File: ensae_teaching_cs/homeblog/latex2html.py ```python import os import shutil import sys from PIL import Image from pyquickhelper.loghelper import run_cmd def convert_short_latex_into_png(latex, temp_folder=".", fLOG=print, miktex=r"C:\Program Files\MiKTeX 2.9\miktex\bin\x64", final_name=None): """ Convert a short latex script into an image. @param latex latex equation @param temp_folder temp_folder (where temporary files will be placed) @param fLOG logging function @param miktex miktex location @param final_name if not None, copy the image at this location using this name @return a location to the image (it should be copied), and its size You should not call the function twice at the same in the same folder. @warning The function ends the program if there was a failure. Something is missing on the command line. """ if not os.path.exists(miktex): raise FileNotFoundError("unable to find miktex") if sys.platform.startswith("win"): htlatex = os.path.join(miktex, "htlatex.exe") if not os.path.exists(htlatex): raise FileNotFoundError("unable to find htlatex") else: htlatex = os.path.join(miktex, "htlatex") if not os.path.exists(temp_folder): os.makedirs(temp_folder) eq = os.path.join(temp_folder, "eq.tex") with open(eq, "w") as f: f.write(r"""\documentclass[12pt]{article} \pagestyle{empty} \begin{document} $$ %s $$ \end{document}""".replace(" ", "") % latex.strip("\n\r ")) cmd = '"' + htlatex + '" eq.tex "html, graphics-300" "" "" "--interaction=nonstopmode"' cwd = os.getcwd() os.chdir(temp_folder) out, err = run_cmd(cmd, wait=True) os.chdir(cwd) if "FAILED" in err: raise Exception( "it failed\n-----\n{0}\n----------\n{1}".format(out, err)) img = os.path.join(temp_folder, "eq0x.png") if not os.path.exists(img): with open(os.path.join(temp_folder, "eq.log"), "r") as f: log = f.read() raise FileNotFoundError("the compilation did not work\n" + log) if final_name is not None: # size reduction im = Image.open(img) shutil.copy(img, final_name) return final_name, im.size else: im = Image.open(img) return img, im.size ``` #### File: ensae_teaching_cs/special/einstein_prolog.py ```python import copy #: definition of all possible values (French terms) #: colors ttcouleur = ["jaune", "bleu", "rouge", "blanc", "vert"] #: nationalities ttnationalite = ["danois", "norvegien", "anglais", "allemand", "suedois"] #: drinks ttboisson = ["eau", "the", "lait", "cafe", "biere"] #: smoke brand ttcigare = ["Dunhill", "Blend", "Pall Mall", "Prince", "Bluemaster"] #: animal ttanimal = ["chats", "cheval", "oiseaux", "poisson", "chiens"] #: all possibles values ensemble = [ttcouleur, ttnationalite, ttboisson, ttcigare, ttanimal] def permutation(nb): """ Compute all permutations of set [[ 1, 2, ..., nb ]]. Example for 3: :: [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]] @param nb permutation over the set [[1..n]] @return list of all possible permutations @warning This method can be very long if nb is high (>10). This function does something very similar to `itertools.permutations <https://docs.python.org/3/library/itertools.html#itertools.permutations>`_. """ per = [] p = [i for i in range(0, nb)] while p[0] < nb: next = False for i in range(1, nb): if p[i] in p[0:i]: next = True break if not next: per.append(copy.copy(p)) p[nb - 1] += 1 for j in range(nb - 1, 0, -1): if p[j] >= nb: p[j] = 0 p[j - 1] += 1 return per class Rule: """ This class defines a constraint of the problem or a clause (see `http://en.wikipedia.org/wiki/Clause_(logic)`) There are 5 different types of clauses described by Einstein's enigma each of them is described by a different class. There are defined by classes: @ref cl RulePosition, @ref cl RuleEquivalence, @ref cl RuleVoisin, @ref cl RuleAvant, @ref cl RuleEnsemble. """ def __init__(self): #: name of the rule self.name = None #: set of clauses self.set = None def genere(self): """ Generates all possible clauses (list of lists) (l [0][0] et l [0][1]) ou (l [1][0] et l [1][1]), a clause is a triplet of (person, (property, category) ) """ raise NotImplementedError() def __str__(self): """ display """ if self.name is not None: if not hasattr(self, "clauses"): s = self.name + " \t: " a = self.genere() for al in a: st = "\n ou " + str(al) if len(st) > 260: st = st[:260] + "..." s += st if len(s) > 1000: break return s else: s = self.name + " \t: " + str(self.set) for al in self.clauses: st = "\n ou " + str(al) if len(st) > 260: st = st[:260] + "..." s += st if len(s) > 1000: break return s else: return None def combine(self, cl1, cl2): """ combine two clauses, two cases : 1. nothing in common or everything in common --> concatenation of clauses 2. a position or a property in common --> null clause @param cl1 clause 1 @param cl2 clause 2 @return the new clause A clause is a @ref cl Rule. """ # incompatibility for p1 in cl1: for p2 in cl2: if p1[1][0] == p2[1][0]: # same property if p1[0] != p2[0]: # but different positions return None if p1[0] == p2[0]: # same person if p1[1][1] == p2[1][1] and p1[1][0] != p2[1][0]: # same category but different properties return None # compatibility r = copy.deepcopy(cl1) for c in cl2: if c not in r: r.append(c) return r def combine_cross_sets(self, set1, set2): """ combines two sets of clauses @param set1 set of clauses 1 @param set2 set of clauses 2 @return combination """ if len(set1) == 0: return copy.deepcopy(set2) if len(set2) == 0: return copy.deepcopy(set1) res = [] for cl1 in set1: for cl2 in set2: r = self.combine(cl1, cl2) if r is not None: res.append(r) return res class RulePosition(Rule): """ p1 at position """ def __init__(self, p1, pos): Rule.__init__(self) self.set = [p1] self.name = "position" self.position = pos def genere(self): """ overrides method ``genere`` """ return [[(self.position, self.set[0])]] class RuleEquivalence(Rule): """ p1 equivalent to p2 """ def __init__(self, p1, p2): Rule.__init__(self) self.set = [p1, p2] self.name = "equivalence" def genere(self): """ overrides method ``genere`` """ lt = [] for i in range(0, 5): lt.append([(i, self.set[0]), (i, self.set[1])]) return lt class RuleVoisin(Rule): """ p1 and p2 are neighbors """ def __init__(self, p1, p2): Rule.__init__(self) self.set = [p1, p2] self.name = "voisin" def genere(self): """ overrides method ``genere`` """ lt = [] for i in range(0, 4): lt.append([(i, self.set[0]), (i + 1, self.set[1])]) lt.append([(i + 1, self.set[0]), (i, self.set[1])]) return lt class RuleAvant(Rule): """ p1 before p2 """ def __init__(self, p1, p2): Rule.__init__(self) self.set = [p1, p2] self.name = "avant" def genere(self): """ overrides method ``genere`` """ lt = [] for j in range(1, 5): for i in range(0, j): lt.append([(i, self.set[0]), (j, self.set[1])]) return lt class RuleEnsemble(Rule): """ permutation of the elements of a category """ def __init__(self, sets, categorie): Rule.__init__(self) self.set = [(s, categorie) for s in sets] self.name = "ensemble" def genere(self): """ overrides method ``genere`` """ lt = [] per = permutation(5) for p in per: tl = [] for i in range(0, len(p)): tl.append((i, self.set[p[i]])) lt.append(tl) return lt class Enigma: """ this class solves the enigma """ def __init__(self, display=True): """ we describe the enigma using the classes we defined above @param display if True, use print to print some information """ self.regle = [] self.regle.append(RulePosition(self.find("lait"), 2)) self.regle.append(RulePosition(self.find("norvegien"), 0)) self.regle.append( RuleEquivalence( self.find("Pall Mall"), self.find("oiseaux"))) self.regle.append( RuleEquivalence( self.find("anglais"), self.find("rouge"))) self.regle.append( RuleEquivalence( self.find("suedois"), self.find("chiens"))) self.regle.append( RuleEquivalence( self.find("danois"), self.find("the"))) self.regle.append( RuleEquivalence( self.find("vert"), self.find("cafe"))) self.regle.append( RuleEquivalence( self.find("jaune"), self.find("Dunhill"))) self.regle.append( RuleEquivalence( self.find("biere"), self.find("Bluemaster"))) self.regle.append( RuleEquivalence( self.find("allemand"), self.find("Prince"))) self.regle.append( RuleVoisin( self.find("Dunhill"), self.find("cheval"))) self.regle.append( RuleVoisin( self.find("norvegien"), self.find("bleu"))) self.regle.append(RuleVoisin(self.find("Blend"), self.find("eau"))) self.regle.append(RuleVoisin(self.find("Blend"), self.find("chats"))) self.regle.append(RuleAvant(self.find("vert"), self.find("blanc"))) self.regle.append(RuleEnsemble(ttcouleur, 0)) self.regle.append(RuleEnsemble(ttnationalite, 1)) self.regle.append(RuleEnsemble(ttboisson, 2)) self.regle.append(RuleEnsemble(ttcigare, 3)) self.regle.append(RuleEnsemble(ttanimal, 4)) for r in self.regle: r.clauses = r.genere() r.utilise = False self.count = 0 def find(self, p): """ finds a clause in the different sets of clause (houses, colors, ...) @param p clause @return tuple (clause, position) """ for i in range(0, len(ensemble)): if p in ensemble[i]: return (p, i) return None def __str__(self): """ usual """ if "solution" not in self.__dict__ or self.solution is None or len( self.solution) == 0: if self.count > 0: s = "solution impossible apres " + \ str(self.count) + " iterations \n" else: s = "" for r in self.regle: s += str(r) + "\n" return s else: sr = ["solution, iteration " + str(self.count)] matrix = [list(" " * 5) for _ in range(0, 5)] for row in self.solution: i = row[0] j = row[1][1] s = row[1][0] matrix[i][j] = s + " " * (10 - len(s)) for row in matrix: sr.append(", ".join(row)) classic = "\n".join(sr[1:]) html = classic.replace(",", "</td><tr>").replace("\n", "</td></tr>\n<tr><td>") return sr[0] + "\n" + "\n".join([ classic, "<table>", "<tr><td>" + html + "</td></tr>", "</table>"]) def solve(self, solution=None, logf=print): # solution = [ ]) : """ Solves the enigma by eploring in deepness, the method is recursive @param solution [] empty at the beginning, recursively used then @return solution """ if solution is None: solution = [] self.count += 1 if self.count % 10 == 0: logf( "*", self.count, " - properties in place : ", len(solution) - 1) if len(solution) == 25: # we know the solution must contain 25 clauses, # if are here than the problem is solved unless some # incompatibility for r in self.regle: cl = r.combine_cross_sets([solution], r.clauses) if cl is None or len(cl) == 0: # the solution is incompatible with a solution return None self.solution = solution return solution # we are looking for the rule which generates the least possible clauses # in order to reduce the number of possibilities as much as possible # the research could be represented as a tree, we avoid creating two # many paths best = None rule = None for r in self.regle: cl = r.combine_cross_sets([solution], r.clauses) if cl is None: # the solution is incompatible with a solution return None # we check rule r is bringing back some results for c in cl: if len(c) > len(solution): break else: cl = None if cl is not None and (best is None or len(best) > len(cl)): best = cl rule = r if best is None: # the solution is incompatible with a solution return None rule.utilise = True # we test all clauses for c in best: r = self.solve(c, logf=logf) if r is not None: # we found return r rule.utilise = False # impossible return None if __name__ == "__main__": en = Enigma() print(en) print("-----------------------------\n") en.solve() print("-----------------------------\n") print(en) ``` #### File: ensae_teaching_cs/special/propagation_epidemic.py ```python import random import copy import os from collections import Counter from pyquickhelper.loghelper import noLOG from ..helpers.pygame_helper import wait_event, empty_main_loop class Point: """ Defines a point. """ def __init__(self, x, y): """ constructor @param x x @param y y """ self.x, self.y = float(x), float(y) def norm(self): """ return the norm l2 """ return (self.x ** 2 + self.y ** 2) ** 0.5 def __add__(self, p): """ addition """ return Point(self.x + p.x, self.y + p.y) def __sub__(self, p): """ soustraction """ return Point(self.x - p.x, self.y - p.y) def __mul__(self, p): """ multiplication by a scalar """ return Point(self.x * p, self.y * p) def __div__(self, p): """ division by a scalar """ return Point(self.x / p, self.y / p) def __iadd__(self, p): """ addition inplace """ self.x += p.x self.y += p.y return self def __isub__(self, p): """ soustraction inplace """ self.x -= p.x self.y -= p.y return self def __imul__(self, p): """ multiplication by a scalar inplace """ self.x *= p self.y *= p return self def __idiv__(self, p): """ divsion by a scalar inplace """ self.x /= p self.y /= p return self class Rect: """ Defines a rectangle. """ def __init__(self, a, b): """ constructor @param a Point @param b Point """ self.a = a self.b = b def limit(self, pos): """ tells if point *pos* belongs to the area defined by the rectangle """ r = False if pos.x < self.a.x: pos.x = self.a.x r = True if pos.y < self.a.y: pos.y = self.a.y r = True if pos.x > self.b.x: pos.x = self.b.x r = True if pos.y > self.b.x: pos.y = self.b.y r = True return r class Person: """ defines a person for the simulation colors * 0: sain * 1: malade * 2: mort * 3: gueris A person moves by drawing a random gaussian vector added to its current acceleration. """ colors = {0: (255, 255, 255), 1: (0, 255, 0), 2: (0, 0, 0), 3: (50, 50, 200)} def __init__(self, position, borne_pos=None, borne_acc=None, alea_acc=5, sick_vit=0.25, rayon=10, nb_day=70, prob_die=0.5, prob_cont=0.5): """ constructor @param position position @param borne_pos upper bound for the position (rectangle) @param borne_acc upper bound for the acceleration (rectangle) @param alea_acc sigma to draw random acceleration @param sick_vit when people are sick, they go slower, this muliplies the acceleration by a factor @param rayon radius, below that distance, a sick person is contagious for the neighbours @param nb_day number of days a person will be sick, after, the person either recovers, either dies @param prob_die probability to die at each iteration @param prob_cont probability to transmit the disease to a neighbour """ self.pos = position self.vit = Point(0, 0) self.acc = Point(0, 0) self.state = 0 self.alea_acc = alea_acc self.borne_pos = borne_pos self.borne_acc = borne_acc self.sick_vit = sick_vit self.rayon = rayon self.nb_day = nb_day self.prob_die = prob_die self.prob_cont = prob_cont # memorize the day the person got sick self._since = 0 def __str__(self): """ usual """ return str(self.__dict__) def distance(self, p): """ return the distance between this person and another one """ d = self.pos - p.pos return d.norm() def _get_new_acceleration(self): """ update the acceleration by adding a random gaussian vector to the current acceleration, check that acceleration is not beyond some boundary """ x = random.gauss(0, self.alea_acc) y = random.gauss(0, self.alea_acc) res = Point(x, y) if self.borne_acc is not None: r = self.borne_acc.limit(res) if r: self.acc = Point(0, 0) self.vit = Point(0, 0) return res def state_evolution(self, population): """ update the state of the person: healthy --> sick --> cured or dead @param population sets of other persons The function updates the state of the persons. One of steps involves looking over the entire population to check if some sick people are close enough to transmis the disease. """ if self.state in [2, 3]: return elif self.state == 1: if self._since < self.nb_day: self._since += 1 else: k = random.random() if k < self.prob_die: self.state = 2 else: self.state = 3 self._since = 0 elif self.state == 0: alls = [] for p in population: if p.state != 1: continue d = self.distance(p) if d <= self.rayon: alls.append(p) for k in alls: p = random.random() if p <= self.prob_cont: self.state = 1 break else: raise Exception("impossible") def evolution(self, dt, population): """ update the population, random acceleration @param dt time delta (only used to update the position) @param population other set of people The function updates the state of the person, draws a new acceleration and updates the position. """ self.state_evolution(population) if self.state == 1: dt *= self.sick_vit elif self.state == 2: dt = 0 self.pos += self.vit * dt self.vit += self.acc * dt self.acc = self._get_new_acceleration() if self.borne_pos is not None: r = self.borne_pos.limit(self.pos) if r: self.acc = Point(0, 0) self.vit = Point(0, 0) class EpidemicPopulation: """ defines a population """ def __init__(self, cote=500, nb=(100, 1), **params): """ constructeur @param cote size of the zone person move @param nb tuple number of people (healthy, sick) @param params others parameters Draws a population. """ if cote is None: pass else: self.cote = cote self.gens = [] for i in range(0, nb[0]): p = Person(Point(random.randint(0, cote), random.randint(0, cote)), Rect(Point(0, 0), Point(cote, cote)), **params) self.gens.append(p) for i in range(0, nb[1]): p = Person(Point(random.randint(0, cote), random.randint(0, cote)), Rect(Point(0, 0), Point(cote, cote)), **params) p.state = 1 self.gens.append(p) def __getitem__(self, i): """ usual """ return self.gens[i] def __iter__(self): """ usual """ return self.gens.__iter__() def __len__(self): """ usual """ return len(self.gens) def count(self): """ return the distribution of healthy, sick, cured people """ return Counter(map(lambda p: p.state, self)) def evolution(self, dt=0.5): """ new iteration @param dt dt @return nb1,nb2 We walk through everybody and call :meth:`evolution <ensae_teaching_cs.special.propragation_epidemics.Person.evolution>`. """ # on renouvelle une certaine proportion de pates (renouvellement) # tire au hasard pop = copy.deepcopy(self) for p in self.gens: p.evolution(dt, pop) return self.count() def display_person(self, screen, pygame): """ display a person on a pygame screen @param self Person @param screen screen @param pygame module pygame """ c = Person.colors[self.state] pygame.draw.rect(screen, c, pygame.Rect( self.pos.x - 4, self.pos.y - 4, 8, 8)) def display_population(self, screen, pygame, font, back_ground): """ affichage @param self Person @param screen screen @param font font (pygame) @param back_ground back ground color @param pygame module pygame """ screen.fill(back_ground) for p in self.gens: display_person(p, screen, pygame) c = self.count() text = "vie: %d" % c.get(0, 0) text = font.render(text, True, (255, 255, 255)) screen.blit(text, (self.cote, 100)) text = "malade: %d" % c.get(1, 0) text = font.render(text, True, (255, 255, 255)) screen.blit(text, (self.cote, 135)) text = "mort: %d" % c.get(2, 0) text = font.render(text, True, (255, 255, 255)) screen.blit(text, (self.cote, 170)) text = "gueris: %d" % c.get(3, 0) text = font.render(text, True, (255, 255, 255)) screen.blit(text, (self.cote, 205)) def pygame_simulation(pygame, first_click=False, folder=None, iter=1000, cote=600, nb=(200, 20), flags=0, **params): """ Runs a graphic simulation. The user can see a :epkg:`pygame` screen showing the evolution of population. A healthy person is white, green is sick, blue is healed, black is dead. The function can save an image for every iteration. They can be merged into a video with function @see fn make_video. @param pygame module pygame (avoids importing in this file) @param first_click starts the simulation after a first click @param folder to save the simulation, an image per simulation @param iter number of iterations to run @param cote @see cl EpidemicPopulation @param nb @see cl EpidemicPopulation @param params @see cl EpidemicPopulation @param flags see `pygame.display.set_mode <https://www.pygame.org/docs/ref/display.html#pygame.display.set_mode>`_ @param fLOG logging function The simulation looks like this: .. raw:: html <video autoplay="" controls="" loop="" height="400"> <source src="http://www.xavierdupre.fr/enseignement/complements/epidemic.mp4" type="video/mp4" /> </video> Pour lancer la simulation:: from ensae_teaching_cs.special.propagation_epidemic import pygame_simulation import pygame pygame_simulation(pygame) """ pygame.init() size = cote + 200, cote screen = pygame.display.set_mode(size, flags) font = pygame.font.Font("freesansbold.ttf", 30) back_ground = (128, 128, 128) pop = EpidemicPopulation(cote, nb) display_population(pop, screen, pygame, font, back_ground) pygame.display.flip() if first_click: wait_event(pygame) for i in range(0, iter): empty_main_loop(pygame) nb = pop.evolution() display_population(pop, screen, pygame, font, back_ground) pygame.display.flip() pygame.event.peek() if folder is not None: image = os.path.join(folder, "image_%04d.png" % i) pygame.image.save(screen, image) pygame.time.wait(50) if 1 not in nb or nb[1] == 0: break if first_click: wait_event(pygame) def numerical_simulation(nb=(200, 20), cote=600, iter=1000, fLOG=noLOG, **params): """ Run a simulation, @see cl EpidemicPopulation. @param iter number of iterations to run @param cote @see cl EpidemicPopulation @param nb @see cl EpidemicPopulation @param params @see cl EpidemicPopulation @param fLOG to display status every 10 iterations @return population count """ pop = EpidemicPopulation(cote, nb, **params) lasti = None for i in range(0, iter): nb = pop.evolution() lasti = i if 1 not in nb or nb[1] == 0: break if i % 10 == 0: fLOG("iteration", i, ":", nb) r = pop.count() return r, lasti ``` #### File: ensae_teaching_cs/td_2a/edmonds_karp.py ```python import copy import collections from pyquickhelper.loghelper import noLOG class EdmondsKarpGraph: """ This class represents a directed graph using adjacency matrix representation. """ def __init__(self, edges): """ The graph is defined as a list of tuple (n1, n2, capacity). is the capacity of the graph. @param edges list of tuple (n1, n2, capacity) """ graph = {} for n1, n2, capacity in edges: if n1 not in graph: graph[n1] = {} graph[n1][n2] = capacity self._graph = graph # residual graph def bfs(self, graph, s, t, parent): ''' Returns True if there is a path from source *s* to sink *t* in residual graph. Also fills *parent* to store the path. @param graph graph @param s node 1 @param t node 2 @param parent stores the path @return boolean ''' # Mark all the vertices as not visited visited = {} # Create a queue for BFS queue = collections.deque() # Mark the source node as visited and enqueue it queue.append(s) visited[s] = True # Standard BFS Loop while queue: u = queue.popleft() # Get all adjacent vertices's of the dequeued vertex u # If a adjacent has not been visited, then mark it # visited and enqueue it for node, val in graph[u].items(): if (not visited.get(node, False)) and val > 0: queue.append(node) visited[node] = True parent[node] = u # If we reached sink in BFS starting from source, then return # true, else false return visited.get(t, False) def edmonds_karp(self, source, sink, fLOG=noLOG, verbose=False, update=None): """ Returns the maximum flow from *s* to *t* in the given graph. @param source source of the flow @param sink destination of the flow @param fLOG logging function @param verbose more information @param update custom update function @return maximum flow The update function can take into account linked edges. the default version is: :: def update_default(graph, u, v, path_flow): graph[u][v] -= path_flow graph[v][u] += path_flow """ graph = copy.deepcopy(self._graph) # Add symmetry. add_edges = [] for n1, forward in graph.items(): for n2 in forward: if n2 not in graph or n1 not in graph[n2]: add_edges.append((n2, n1)) for n1, n2 in add_edges: if n1 not in graph: graph[n1] = {} if n2 not in graph[n1]: graph[n1][n2] = 0 if verbose: ini = copy.deepcopy(graph) fLOG("---------") for k, v in sorted(graph.items()): for kk, vv in sorted(v.items()): if ini[k][kk] > 0: fLOG(" {0} -> {1} : {2:03f}".format(k, kk, vv)) fLOG("---------") # This array is filled by BFS and to store path parent = {} max_flow = 0 # There is no flow initially def update_default(graph, u, v, path_flow): graph[u][v] -= path_flow graph[v][u] += path_flow if update is None: update = update_default # Augment the flow while there is path from source to sink iteration = 0 while self.bfs(graph, source, sink, parent): iteration += 1 if fLOG: fLOG("[edmonds_karp] max_flow={0}".format(max_flow)) # Find minimum residual capacity of the edges along the # path filled by BFS. Or we can say find the maximum flow # through the path found. path_flow = float("Inf") s = sink while s != source: path_flow = min(path_flow, graph[parent[s]][s]) s = parent[s] # Add path flow to overall flow max_flow += path_flow # update residual capacities of the edges and reverse edges # along the path v = sink while v != source: u = parent[v] update(graph, u, v, path_flow) v = parent[v] if iteration == 0: raise ValueError("No path can increase max_flow.") if verbose: fLOG("---------") for k, v in sorted(graph.items()): for kk, vv in sorted(v.items()): if ini[k][kk] != vv and ini[k][kk] > 0: fLOG( " {0} -> {1} : {2:03f} -- ini {3:03f}".format(k, kk, vv, ini[k][kk])) fLOG("---", max_flow) if fLOG: fLOG("[edmonds_karp] max_flow={0}".format(max_flow)) return max_flow ``` #### File: ensae_teaching_cs/td_2a/homomorphic.py ```python import random class HomomorphicInt: """ Implements an "homomorphic integer". """ __slots__ = ['V', 'N', 'P', 'Q', 'E'] @staticmethod def pgcd(a, b): """ Computes the :epkg:`PGCD`. """ while a != b: d = abs(a - b) c = min(a, b) a, b = d, c return a @staticmethod def lcm(a, b): """ Computes the least common multiple (:epkg:`PPCM`). """ p = HomomorphicInt.pgcd(a, b) return a * b // p @staticmethod def find_e(p, q): """ Finds one exposant for the :epkg:`RSA` encryption. """ c = HomomorphicInt.pgcd(p - 1, q - 1) qn = (p - 1) * (q - 1) // c i = 0 while True: h = random.randint(2, qn - 1) pg = HomomorphicInt.pgcd(h, qn) if pg == 1: e = HomomorphicInt(h, (p - 1) // c, q - 1, (h, h)) try: ei = e.inv().V except ZeroDivisionError: i += 1 continue h2 = random.randint(2, p * q - 1) e2 = HomomorphicInt(h2, p, q, (h2, h2)) try: ei2 = e2.inv().V except ZeroDivisionError: i += 1 continue return (h, ei, h2, ei2) i += 1 if i > 100: raise ValueError( "Unable to find a number prime with (p-1)(q-1).") def __init__(self, value, p=673, q=821, e=None): """ @param value initial value @param p p for RSA @param q q for RSA @param e e for RSA (e, and inverse e) Other prime numbers can be found at `The First 100,008 Primes <https://primes.utm.edu/lists/small/100000.txt>`_. """ self.N = p * q self.P = p self.Q = q if self.N <= 2: raise ValueError("p*q must be > 2") self.V = value % self.N if e is None: self.E = HomomorphicInt.find_e(self.P, self.Q) elif not isinstance(e, tuple): raise TypeError("e must a tuple.") else: self.E = e def new_int(self, v): """ Returns a @see cl HomomorphicInt with the same encrypted parameters. """ return HomomorphicInt(v, self.P, self.Q, self.E) def __repr__(self): """ Usual """ return 'HomomorphicInt({},{},{},{})'.format(self.V, self.P, self.Q, self.E).replace(" ", "") def __pow__(self, n): """ Power operator. """ if n == 0: return HomomorphicInt(1, self.P, self.Q, self.E) s = self.V while n > 1: s *= self.V s %= self.N n -= 1 return HomomorphicInt(s, self.P, self.Q, self.E) def __add__(self, o): """ Addition. """ if self.N != o.N: raise ValueError("{0} != {1}".format(self.N, o.N)) return HomomorphicInt(self.V + o.V, self.P, self.Q, self.E) def __sub__(self, o): """ Soustraction. """ if self.N != o.N: raise ValueError("{0} != {1}".format(self.N, o.N)) return HomomorphicInt(self.V - o.V, self.P, self.Q, self.E) def __mul__(self, o): """ Multiplication. """ if self.N != o.N: raise ValueError("{0} != {1}".format(self.N, o.N)) return HomomorphicInt(self.V * o.V, self.P, self.Q, self.E) def inv(self): """ Inversion. This only works in all cases if *n* is a prime number. We use :math:`a^{-1} \\equiv a^{n-2} \\mod n`. The implementation can be improved (use binary decomposition) and cached. """ s = self.V for i in range(1, self.N - 2): s *= self.V s %= self.N if ((self.V * i) % self.N) == 1: return HomomorphicInt(i, self.P, self.Q, self.E) if ((s * self.V) % self.N) != 1: raise ZeroDivisionError( "Inverse of {0} does not exist.".format(self.V)) return HomomorphicInt(s, self.P, self.Q, self.E) def __div__(self, o): """ Division, implies to find the inverse (so very costly). """ if self.N != o.N: raise ValueError("{0} != {1}".format(self.N, o.N)) i = o.inv() return HomomorphicInt(self.V * i.V, self.P, self.Q, self.E) def crypt_mult(self): """ Crypt a number and preserve multiplication. We use `RSA <https://fr.wikipedia.org/wiki/Chiffrement_RSA>`_. """ return self ** self.E[0] def decrypt_mult(self): """ Decrypt a number and preserve multiplication. """ return self ** self.E[1] def crypt_add(self): """ Simple permutation. """ return HomomorphicInt(self.V * self.E[2], self.P, self.Q, self.E) def decrypt_add(self): """ Decrypt a number and preserve multiplication. """ return HomomorphicInt(self.V * self.E[3], self.P, self.Q, self.E) ``` #### File: ensae_teaching_cs/tests/american_cities.py ```python import os import pandas from pyquickhelper.loghelper import fLOG from ..faq.faq_matplotlib import graph_cities from ..special import tsp_kruskal_algorithm, distance_haversine def american_cities(df_or_filename, nb_cities=-1, img=None, fLOG=fLOG): """ Computes the :epkg:`TSP` for american cities. @param df_or_filename dataframe @param nb_cities number of cities to keep @param img image to produce @param fLOG logging function @return dataframe (results) """ def haversine(p1, p2): return distance_haversine(p1[0], p1[1], p2[0], p2[1]) if isinstance(df_or_filename, str): df = pandas.read_csv(df_or_filename) else: df = df_or_filename df["Longitude"] = -df["Longitude"] df = df[df.Latitude < 52] df = df[df.Longitude > -130].copy() fLOG(df.columns) df = df.dropna() if nb_cities > 0: df = df[:nb_cities].copy() fLOG(df.shape) points = [(row[1], row[2], row[3]) for row in df.itertuples(index=False)] fLOG("number of cities:", len(points)) trip = tsp_kruskal_algorithm( points, distance=haversine, fLOG=fLOG, max_iter=10) # trip dftrip = pandas.DataFrame( trip, columns=["Latitude", "Longitude", "City"]) # graph for i in range(0, dftrip.shape[0]): if i % 10 != 0: dftrip.loc[i, "City"] = "" if img is not None: import matplotlib.pyplot as plt fig, ax = graph_cities(dftrip, markersize=3, linked=True, fLOG=fLOG, fontcolor="red", fontsize='16', loop=True, figsize=(32, 32)) assert ax is not None fig.savefig(img) assert os.path.exists(img) plt.close('all') fLOG("end") return dftrip ``` #### File: data/court_chemin/load_distance_matrix_dot.py ```python import urllib import os import os.path def charge_donnees(file="matrix_distance_7398.txt"): if os.path.exists(file): # si le fichier existe (il a déjà été téléchargé une fois) f = open(file, "r") text = f.read() f.close() else: # si le fichier n'existe pas link = "http://www.xavierdupre.fr/enseignement/td_python/" + \ "python_td_minute/data/court_chemin/" + file url = urllib.urlopen(link) text = url.read() # on enregistre les données pour éviter de les télécharger une seconde # fois f = open(file, "w") f.write(text) f.close() lines = text.split("\n") lines = [l.split("\t") for l in lines if len(l) > 1] return lines def conversion_en_dictionnaire(lines): res = {} for a, b, c in lines: c = int(c) res[a, b] = c res[b, a] = c return res def graphviz_script(mat_dict): script = ["graph {"] vertex = {} villes = [_[0] for _ in mat_dict.keys()] for v in villes: if v not in vertex: vertex[v] = len(vertex) for k, v in vertex.iteritems(): script.append("%d [label=\"%s\"];" % (v, k)) for k, v in mat_dict.iteritems(): i1 = vertex[k[0]] i2 = vertex[k[1]] if i1 < i2 and v < 15000: # on coupe des arcs car le tracé est trop long sinon script.append("%d -- %d [label=\"%skm\"];" % (i1, i2, v / 1000)) script.append("}") return "\n".join(script) if __name__ == "__main__": matrice_line = charge_donnees() mat = conversion_en_dictionnaire(matrice_line) f = open("graph.gv", "w") f.write(graphviz_script(mat)) f.close() print("nombre d'arcs ", len(mat)) os.system("dot -Tpng -o graph.png graph.gv") ``` #### File: data/lworld/lworld.py ```python def build_graph(): relation = """ yolanda candace bette coleman <NAME> <NAME> a<NAME> bette nadia <NAME> eric <NAME> helena isabella <NAME> helena <NAME> winnie helena catherine amy jodi bette alice sean april alice andrew alice tasha eva-papi kit benjamin hazel angus kit gregg alice phyllis leonard joyce phyllis tayo alice lisa uta alice nina brooke heather <NAME> paige sh<NAME> <NAME> carmen eva-papi <NAME> carmen <NAME> melissa heather <NAME> l<NAME> alice tayo lara d<NAME> lara claybourne <NAME> sh<NAME> lacey shane paige <NAME> gene <NAME> <NAME>-<NAME> grace moira-max <NAME> becky tim helena isabella <NAME> helena winnie helena catherine <NAME> """ relation = [_.split() for _ in relation.split("\n")] arcs = [] for rel in relation: for i in range(1, len(rel)): a = [rel[i - 1], rel[i]] a.sort() arcs.append(a) arcs.sort() temp = arcs arcs = [] for t in temp: if len(arcs) == 0 or t != arcs[-1]: arcs.append(t) for a in arcs: print(",".join(a)) noeuds = {} for a, b in arcs: noeuds[a] = min(len(noeuds), noeuds.get(a, 100000)) noeuds[b] = min(len(noeuds), noeuds.get(b, 100000)) import sys sys.path.append(r"D:\Dupre\_data\program\hal\hal_Python") import hal_python as HAL HAL.Begin() vertices = [(b, a) for a, b in noeuds.iteritems()] edges = [(noeuds[a], noeuds[b]) for a, b in arcs] im = HAL.ArcGraphDraw(vertices, edges) im.Display() HAL.Pause() """ char *argv2 [6] = { "_graphviz_draw.exe", ".", "../_hal_data/hal_graph/tmp_DrawGraph.graph", "tmp_DrawGraph.png", "png", "neato"} ; """ if __name__ == "__main__": build_graph() ``` #### File: _todo/programme/exemple_fourier.py ```python import pygame import pygame.mixer import pygame.sndarray import FFT import math import numpy as Numeric import string import copy import pylab import numpy pygame.mixer.init () pygame.init () fourier = None indice = None def get_sound (): """charge le son sound010.wav""" s = pygame.mixer.Sound ("sound010.wav") t = pygame.sndarray.array (s) return s def play_sound(s): """joue un son""" s.play () def convert_array(t, s): """joue un son decrit dans un tableau a une dimension""" s = pygame.sndarray.array (s) for i in range (0, len (s)) : s [i]= t [i] #tt = Numeric.array ([ [x, x] for x in t] ) #print tt [0:10] s = pygame.sndarray.make_sound (s) return s def array_sound(s): """convertit un son en un tableau d'entiers""" a = pygame.sndarray.array(s) t = Numeric.array([i for i in xrange(0,len(a))]) for i in xrange(0,len(a)): t [i] = a [i][0] return t def dessine_son(mem,t,fourier,ind,a,b): """dessine une partie du son, limite la taille a 512""" m = len (mem) if m > 256 : m = 256 x = [ i for i in xrange (ind,ind+m) ] y1 = [ mem[i] for i in xrange (ind,ind+m) ] y2 = [ t[i] for i in xrange (ind,ind+m) ] pylab.figure (1) p1 = pylab.plot (x,y1) p2 = pylab.plot (x,y2) pylab.title ("Fourier") pylab.xlabel ("frequence") pylab.ylabel ("amplitude") pylab.legend ( ("son", "son + filtre")) m = len (fourier) if m > 256 : m = 256 #x = [ i for i in xrange (0,m) ] pylab.figure (2) x = [ i for i in xrange (0,m) ] y1 = [ abs(fourier[i]) for i in xrange (0,m) ] y2 = [] for i in x : if a <= i <= b : y2.append (450000.0) else : y2.append (0.0) p3 = pylab.plot (x,y1) p4 = pylab.plot (x,y2) pylab.legend ( ("fourrier", "filtre")) pylab.show() def filtre_son_extrait(t,a,b): """calcul de la transformee de Fourier, application du filtre [a,b], recomposition du signal""" fft = FFT.fft (t) global fourier if fourier == None and indice != None : fourier = copy.copy(fft) for i in xrange(0,len(t)): if a <= i <= b: pass else: fft [i] = complex(0,0) tt = FFT.inverse_fft(fft) for i in xrange(0,len(t)): t [i] = int(tt [i].real) def filtre_son(t,a,b,div = 256): """filtre un son par tranche de div frequences, ne garde que les frequences comprises entre a et b""" global indice nb = len (t) / div for i in xrange (0,nb): if i == nb / 2 : indice = i * div ext = t [i * div : (i+1) * div] filtre_son_extrait (ext,a,b) def essai(): print "chargement du son" s = get_sound () print "duree : ", s.get_length (), " secondes" print "musique" play_sound (s) pygame.time.delay (6000) t = array_sound (s) mem = copy.copy(t) print "nombre de donnees ", len (t) print "duree d'une donnee ", s.get_length () * 1000 / len (t), "millisecondes" rep = "" if rep != "n" : #rep = string.split (rep, ",") #a = int (rep [0]) #b = int (rep [1]) a,b = 10,100 print "filtrage [%d,%d]" % (a,b) filtre_son (t,a,b) print "dessin des premiers instants, son filtre" dessine_son (mem,t,fourier,indice, a,b) print "son filtre" s = convert_array (t, s) play_sound (s) pygame.time.delay (6000) essai () ``` #### File: _todo/programme/filedistance.py ```python def get_lines (file) : """retourne toutes les lignes d'un fichier, nettoie les fins de lignes et les espaces""" f = open (file, "r") li = f.readlines () f.close () return [ l.strip ("\r\n") for l in li ] def distance (line1, line2) : """construit une distance entre deux tableaux de lignes""" d = { (-1,-1):(0,(-1,-1), "") } for i in xrange (0, len (line1)) : d [ i,-1 ] = (i+1, (i-1,-1), "+ " + line1 [i]) for j in xrange (0, len (line2)) : d [ -1,j ] = (j+1, (-1,j-1), "- " + line2 [j]) for i in xrange (0, len (line1)) : l1 = line1 [i] for j in xrange (0, len (line2)) : l2 = line2 [j] c = abs (cmp (l1, l2)) i1 = d [i-1,j][0] + 1 i2 = d [i,j-1][0] + 1 i3 = d [i-1,j-1][0] + 2*c if i1 <= min (i2, i3) : d [i,j] = (i1, (i-1,j), "+ " + l1) elif i2 <= min (i1, i3) : d [i,j] = (i2, (i,j-1), "- " + l2) else : d [i,j] = (i3, (i-1,j-1), " " + l1) last = (len (line1)-1, len (line2)-1) pos = [d [last]] pn = pos [0][1] while pn != (-1,-1) : p = pos [len (pos)-1] pn = p [1] pos.append (d [pn]) pos.pop () pos.reverse () return [ p [2] for p in pos ] def distance_file (file1, file2) : line1 = get_lines (file1) line2 = get_lines (file2) return distance (line1, line2) if __name__ == "__main__" : file1 = "filedistance.py" file2 = "filedistance2.py" res = distance_file (file1, file2) for r in res : print r ``` #### File: _unittests/ut_automation/test_publish.py ```python import sys import os import unittest from pyquickhelper.loghelper import noLOG from pyquickhelper.pycode import ExtTestCase from ensae_teaching_cs.automation import publish_teachings_to_web class TestPublish(ExtTestCase): def test_publish(self): if sys.platform.startswith("win"): letter = "d" if os.path.exists("d:") else "c" location = letter + ":\\jenkins\\pymy\\%s\\%s%s\\dist\\%s" else: location = "/var/lib/jenkins/workspace/%s/%s%s/dist/%s" rootw = "/www/htdocs/app/%s/%s" google_id = "NOGOODID" suffix = ("_UT_%d%d_std" % sys.version_info[:2],) projects = publish_teachings_to_web("nologin", location=location, exc=False, suffix=suffix, transfer=False, fLOG=noLOG, google_id=google_id, rootw=rootw) n = 0 for _ in projects: if "ensae_teaching_cs" not in _["local"]: continue self.assertIn("/helpsphinx", _["root_web"]) n += 1 self.assertGreater(n, 1) if __name__ == "__main__": unittest.main() ``` #### File: _unittests/ut_dnotebooks/test_label.py ```python import os import unittest from pyquickhelper.loghelper import fLOG class TestLabel(unittest.TestCase): def test_label_bom(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") fold = os.path.abspath(os.path.dirname(__file__)) fhel = os.path.join( fold, "..", "..", "_doc", "sphinxdoc", "build3", "html", "specials", "algorithm_culture.html") fhel = os.path.normpath(fhel) if os.path.exists(fhel): with open(fhel, "r", encoding="utf8") as f: content = f.read() self.assertTrue(".. _l-algoculture:</p>" not in content) else: fLOG("unable to test", fhel) if __name__ == "__main__": unittest.main() ``` #### File: _unittests/ut_dnotebooks/test_LONG_2A_notebook_eleves_2017.py ```python import unittest from pyquickhelper.loghelper import fLOG from pyquickhelper.pycode import get_temp_folder, add_missing_development_version import ensae_teaching_cs class TestNotebookEleves2017(unittest.TestCase): def setUp(self): add_missing_development_version(["pymyinstall", "pyensae", "pymmails", "jyquickhelper"], __file__, hide=True) def get_replacements(self): return {"https://archive.ics.uci.edu/ml/machine-learning-databases/00222/": "http://www.xavierdupre.fr/enseignement/complements/"} def test_notebook_runner_eleves(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") from ensae_teaching_cs.automation.notebook_test_helper import ls_notebooks, execute_notebooks temp = get_temp_folder(__file__, "temp_notebook_eleves_2017") keepnote = ls_notebooks("notebook_eleves/2017-2018") self.assertTrue(len(keepnote) > 0) execute_notebooks(temp, keepnote, (lambda i, n: True), fLOG=fLOG, replacements=self.get_replacements(), dump=ensae_teaching_cs) if __name__ == "__main__": unittest.main() ``` #### File: _unittests/ut_faq/test_LONG_faq_matplotlib_video.py ```python import sys import os import unittest import warnings from pyquickhelper.loghelper import fLOG from pyquickhelper.pycode import get_temp_folder, fix_tkinter_issues_virtualenv from ensae_teaching_cs.tests.american_cities import american_cities class TestLONGFaqMatplotlibVideo(unittest.TestCase): def test_all_american_cities(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") if sys.version_info[:2] <= (3, 4): warnings.warn( "Issue with Python 3.4, bug probably related to wrong pointers") return fix_tkinter_issues_virtualenv() temp = get_temp_folder(__file__, "temp_LONG_matplotlib_video") name = os.path.join(temp, "..", "data", "american_cities.txt") img = os.path.join(temp, "img.png") res = american_cities(name, -1, img, fLOG) assert res is not None if __name__ == "__main__": unittest.main() ``` #### File: _unittests/ut_homeblog/test_filename_helper.py ```python import os import unittest from pyquickhelper.loghelper import fLOG from ensae_teaching_cs.homeblog import music_statistics class TestFilenameHelper(unittest.TestCase): def test_TableFormulaCore_Excel(self): fLOG(__file__, self._testMethodName, OutputPrint=__name__ == "__main__") this = os.path.abspath(os.path.dirname(__file__)) r = music_statistics(this) assert isinstance(r, dict) if __name__ == "__main__": unittest.main() ``` #### File: _unittests/ut_ml/test_gini.py ```python import unittest import numpy from pyquickhelper.pycode import ExtTestCase from ensae_teaching_cs.ml.gini import gini class TestGini(ExtTestCase): def test_gini(self): Y = numpy.array([1, 1, 1, 1, 1, 1]) g = gini(Y) self.assertEqual(g, 0.5) Y = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1]) g = gini(Y) self.assertEqual(g, 0.9) Y = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1]) g = gini(Y, X=numpy.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 11])) self.assertEqual(g, 0.7) if __name__ == "__main__": unittest.main() ``` #### File: _unittests/ut_module/test_statnb_helper.py ```python import os import unittest import pandas from pyquickhelper.helpgen.stat_helper import enumerate_notebooks_link from pyquickhelper.pycode import ExtTestCase class TestHelpGenStatHelper(ExtTestCase): def test_format_history(self): this = os.path.abspath(os.path.dirname(__file__)) nb_folder = os.path.join(this, "..", "..", "_doc", "notebooks") self.assertTrue(os.path.exists(nb_folder)) nb_doc = os.path.join(this, "..", "..", "_doc", "sphinxdoc", "source") self.assertTrue(os.path.exists(nb_doc)) nb = 0 counts = {'title': 0} nbfound = set() rows = [] for ind, r in enumerate(enumerate_notebooks_link(nb_folder, nb_doc)): rl = list(r) rl[0] = None if r[0] is None else os.path.split(r[0])[-1] rl[1] = os.path.split(r[1])[-1] nb += 1 m = rl[2] counts[m] = counts.get(m, 0) + 1 self.assertTrue(r[-2] is None or isinstance(r[-2], str)) self.assertTrue(r[-1] is None or isinstance(r[-1], str)) if r[-1] is not None: counts["title"] += 1 nbfound.add(rl[1]) rows.append(rl[:2] + rl[-2:] + [r[1].split("_doc")[-1]]) if __name__ != "__main__" and ind > 30: break self.assertGreater(counts.get("ref", 0), 0) # self.assertTrue(counts.get(None, 0) > 0) self.assertNotEmpty(counts["title"]) self.assertGreater(len(nbfound), 5) # self.assertIn("graph4exos.ipynb", nbfound) # self.assertTrue(counts.get("refn", 0) > 0) # self.assertTrue(counts.get("toctree", 0) > 0) df = pandas.DataFrame(data=rows, columns=[ "rst", "ipynb", "link", "title", "path"]) name = os.path.join(os.path.dirname(__file__), "temp_notebook_rst.txt") df = df[df.rst != "all_notebooks.rst"] df.sort_values("ipynb").to_csv(name, sep="\t", index=False) self.assertTrue(name) if __name__ == "__main__": unittest.main() ``` #### File: _unittests/ut_td_1a/test_edit_distance.py ```python import unittest from pyquickhelper.loghelper import fLOG from ensae_teaching_cs.td_1a import edit_distance class TestEditDistance(unittest.TestCase): def test_edit_distance(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") d, p = edit_distance("distance", "dizstnce") self.assertEqual(d, 2) self.assertEqual(p, [(-1, -1), (0, 0), (1, 1), (1, 2), (2, 3), (3, 4), (4, 4), (5, 5), (6, 6), (7, 7)]) def test_edit_distance_bug(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") s1 = "" s2 = "*" d, p = edit_distance(s1, s2) fLOG(d, p) s1 = "" s2 = ("*** H *** H/ *** H *** H/ *** H *** H/ *** H *** H/ *** H *** H/ *** H ***" + " H/ *** H *** H/ *** H *** H/ *** H *** H/ *** H *** H/ *** H *** H/ *** H *** H") d, p = edit_distance(s1, s2) fLOG(d, p) if __name__ == "__main__": unittest.main() ``` #### File: _unittests/ut_td_2a/test_parallel.py ```python import unittest import numpy from pyquickhelper.loghelper import fLOG from ensae_teaching_cs.td_2a import ParallelThread class TestParallel(unittest.TestCase): def test_parallel(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") def inv(m): return numpy.linalg.inv(m) nps = [[numpy.random.random((5, 5))] for i in range( # pylint: disable=E1101 0, 1000)] # pylint: disable=E1101 mm = ParallelThread.parallel(inv, nps, 10) fLOG(len(mm)) self.assertEqual(len(mm), 1000) if __name__ == "__main__": unittest.main() ``` #### File: _unittests/ut_td_2a/test_serialize.py ```python import os import unittest import io import pandas from ensae_teaching_cs.td_2a import load_object, dump_object class TestSerialization(unittest.TestCase): def test_serialize(self): temp = os.path.abspath(os.path.dirname(__file__)) temp = os.path.join(temp, "temp_serialization") if not os.path.exists(temp): os.mkdir(temp) df = pandas.DataFrame([{"name": "xavier", "school": "ENSAE"}, {"name": "antoine", "school": "ENSAE"}]) outfile = os.path.join(temp, "out_df.bin") if os.path.exists(outfile): os.remove(outfile) dump_object(df, outfile) assert os.path.exists(outfile) df2 = load_object(outfile) assert df.values.tolist() == df2.values.tolist() s = io.BytesIO() dump_object(df, s) s.seek(0) df3 = load_object(s) assert df.values.tolist() == df3.values.tolist() if __name__ == "__main__": unittest.main() ```
{ "source": "jeromemaleski/raster-vision", "score": 3 }
#### File: core/rv_pipeline/object_detection_config.py ```python from enum import Enum from rastervision.pipeline.config import register_config, Config, Field from rastervision.core.rv_pipeline import RVPipelineConfig from rastervision.core.data.label_store import ObjectDetectionGeoJSONStoreConfig from rastervision.core.evaluation import ObjectDetectionEvaluatorConfig class ObjectDetectionWindowMethod(Enum): """Enum for window methods Attributes: chip: the default method """ chip = 'chip' @register_config('object_detection_chip_options') class ObjectDetectionChipOptions(Config): neg_ratio: float = Field( 1.0, description= ('The ratio of negative chips (those containing no bounding ' 'boxes) to positive chips. This can be useful if the statistics ' 'of the background is different in positive chips. For example, ' 'in car detection, the positive chips will always contain roads, ' 'but no examples of rooftops since cars tend to not be near rooftops.' )) ioa_thresh: float = Field( 0.8, description= ('When a box is partially outside of a training chip, it is not clear if (a ' 'clipped version) of the box should be included in the chip. If the IOA ' '(intersection over area) of the box with the chip is greater than ioa_thresh, ' 'it is included in the chip.')) window_method: ObjectDetectionWindowMethod = ObjectDetectionWindowMethod.chip @register_config('object_detection_predict_options') class ObjectDetectionPredictOptions(Config): merge_thresh: float = Field( 0.5, description= ('If predicted boxes have an IOA (intersection over area) greater than ' 'merge_thresh, then they are merged into a single box during postprocessing. ' 'This is needed since the sliding window approach results in some false ' 'duplicates.')) score_thresh: float = Field( 0.5, description= ('Predicted boxes are only output if their score is above score_thresh.' )) @register_config('object_detection') class ObjectDetectionConfig(RVPipelineConfig): chip_options: ObjectDetectionChipOptions = ObjectDetectionChipOptions() predict_options: ObjectDetectionPredictOptions = ObjectDetectionPredictOptions( ) def build(self, tmp_dir): from rastervision.core.rv_pipeline.object_detection import ObjectDetection return ObjectDetection(self, tmp_dir) def get_default_label_store(self, scene): return ObjectDetectionGeoJSONStoreConfig() def get_default_evaluator(self): return ObjectDetectionEvaluatorConfig() ```
{ "source": "jeromemartin/centreon-sdk-python", "score": 2 }
#### File: configuration/common/centreonnotifyobject.py ```python import centreonapi.webservice.configuration.common as common from centreonapi.webservice.configuration.common import CentreonObject from centreonapi.webservice.configuration.contact import Contact, ContactGroup class CentreonNotifyObject(CentreonObject): def __init__(self): super(CentreonNotifyObject, self).__init__() self.contacts = dict() self.contactgroups = dict() def getcontact(self): """ :return: state (True/False), contacts or error message """ state, cs = self.webservice.call_clapi( 'getcontact', self._clapi_action, self.reference) if state: if len(cs['result']) > 0: for c in cs['result']: c_obj = Contact(c) self.contacts[c_obj.name] = c_obj return state, self.contacts else: return state, None else: return state, cs def addcontact(self, contacts): c = "|".join(common.build_param(contacts, Contact)) return self.webservice.call_clapi( 'addcontact', self._clapi_action, self._prepare_values(c)) def setcontact(self, contacts): c = "|".join(common.build_param(contacts, Contact)) return self.webservice.call_clapi( 'setcontact', self._clapi_action, self._prepare_values(c)) def deletecontact(self, contacts): c = "|".join(common.build_param(contacts, Contact)) return self.webservice.call_clapi( 'delcontact', self._clapi_action, self._prepare_values(c)) def getcontactgroup(self): state, cgs = self.webservice.call_clapi( 'getcontactgroup', self._clapi_action, self.reference) if state: if len(cgs['result']) > 0: for c in cgs['result']: cg_obj = ContactGroup(c) self.contactgroups[cg_obj.name] = cg_obj return state, self.contactgroups else: return state, None else: return state, cgs def addcontactgroup(self, contactgroups): c = "|".join(common.build_param(contactgroups, ContactGroup)) return self.webservice.call_clapi( 'addcontactgroup', self._clapi_action, self._prepare_values(c)) def setcontactgroup(self, contactgroups): c = "|".join(common.build_param(contactgroups, ContactGroup)) return self.webservice.call_clapi( 'setcontactgroup', self._clapi_action, self._prepare_values(c)) def deletecontactgroup(self, contactgroups): c = "|".join(common.build_param(contactgroups, ContactGroup)) return self.webservice.call_clapi( 'delcontactgroup', self._clapi_action, self._prepare_values(c)) ```
{ "source": "JeromeMberia/MyBlog", "score": 3 }
#### File: MyBlog/tests/test_post.py ```python import unittest from app.models import Post class PostModelTest(unittest.TestCase): def setUp(self): self.new_post = Post(id = 1, title ='cool' ,content='It boring' ,user_id= 2) def test_instance(self): self.assertTrue(isinstance(self.new_post,Post)) def test_variables(self): self.assertEquals(self.new_post.id, 1) self.assertEquals(self.new_post.title, 'cool') self.assertEquals(self.new_post.content, 'It boring') self.assertEquals(self.new_post.user_id, 2) ```
{ "source": "JeromeMberia/Taarifa_Leo", "score": 3 }
#### File: app/main/view.py ```python from flask import render_template,request,redirect,url_for from . import main from ..requests import get_source,get_article,get_category from ..models import Article from ..models import Source # Views @main.route('/') def index(): ''' View root page function that returns the index page and its data ''' source = get_source() title = 'News Live' return render_template('index.html', title = title, source = source) @main.route('/article/<article_id>') def article(article_id): article = get_article(article_id) title = f'{article_id}' return render_template('article.html',id = article_id,title = title,article = article) @main.route('/category/<cat_name>') def category(cat_name): category = get_category(cat_name) print (category) title = f'{cat_name}' return render_template('category.html',title = title, category = category) ```
{ "source": "JeromeMutgeert/da-faster-rcnn", "score": 3 }
#### File: da-faster-rcnn/TargetDataLoaderProcess/data_loader.py ```python import aiohttp import asyncio import async_timeout import os import numpy as np import time import cv2 # Settings: Buffer = 100 BackBuffer = 20 Max_Query = 12 Timeout = 40 url_base = "https://test.yisual.com/images/media/download/picturethis/" headers = {"api-key": "ccea03e0e3a08c428870393376e5cf7b7be7a55c", "api-secret": os.environ["SECRET"]} cacheLoc = "/media/jerome/DATA/Study_d/ThesisD/TargetData/" # dummy_im_id = "5461e5219da59bde29aed195" # dummy_url = url_base + dummy_im_id # counter txt's interface: def update_fetched(fetched): with open("fetched_temp.txt",'w') as f: f.write(str(fetched)) f.flush() os.fsync(f.fileno()) # atomic: os.rename("fetched_temp.txt","fetched.txt") def get_read(): global read with open("read.txt",'r') as f: numstr = f.read() read = int(numstr) return read def to_filename(im_id): return "target_{}.jpg".format(im_id) def append_log(msg): with open("log.txt",'a') as f: f.write(str(time.time()) + ' :\t') f.write(str(msg) + '\n') async def download_coroutine(session, im_id, im_num): # im_id = "5c59addcb71ee102f1e439ba" cache = cacheLoc + im_id + '.jpg' filename = to_filename(im_num) if os.path.exists(cache): # copy from cache: os.system('cp {} ./{}'.format(cache,filename)) return url = url_base + im_id im = None problematic = False while type(im) == type(None): try: with async_timeout.timeout(Timeout): async with session.get(url,headers=headers) as response: with open(filename, 'wb') as f_handle: while True: chunk = await response.content.read(1024) if not chunk: # print('done') break f_handle.write(chunk) f_handle.flush() os.fsync(f_handle.fileno()) res = await response.release() # Verify if download was succesfull: im = cv2.imread(filename) if type(im) == type(None): problematic = True append_log("{} {} Incorrect download.".format(im_num,im_id)) print("{} {} Incorrect download.".format(im_num,im_id)) except: problematic = True append_log("Downloading timed out, retrying {} {}".format(im_num,im_id)) print("Downloading timed out, retrying {} {}".format(im_num,im_id)) if problematic: append_log("Succeeded! {} {}".format(im_num,im_id)) # Finally: if os.path.exists(cacheLoc): os.system('cp {} {}'.format(filename,cache)) return res async def get_batch(loop,im_ids,im_nums): async with aiohttp.ClientSession(loop=loop) as session: tasks = [download_coroutine(session, im_id, im_num) for im_id,im_num in zip(im_ids,im_nums)] await asyncio.gather(*tasks) if __name__ == "__main__": # init gobals present = [] fetched = 0 read = 0 removed = 0 idle_count = 0 # init/reset protocol files: update_fetched(0) with open("read.txt",'w') as f: f.write('0') f.flush() os.fsync(f.fileno()) ids = [] with open("ids.txt",'r') as f: ids = [i.strip() for i in f.readlines()] def shuffle(ids, epoch): np.random.shuffle(ids) filename = "ids_ep{}.txt".format(epoch) with open(filename,'w') as f: f.write('\n'.join(ids)) f.flush() os.system('cp {} ids_current.txt'.format(filename)) def id_generator(): i = 0 epoch = 0 shuffle(ids,epoch) while True: yield ids[i] i += 1 if i == len(ids): i = 0 epoch += 1 shuffle(ids,epoch) print("Loaded epoch {}".format(epoch)) id_gen = id_generator() append_log("Starting") while True: # update read read = get_read() # print(fetched,read,removed) # refill: if (fetched - read) < Buffer: # TODO: determine next imgs: load_N = read + Buffer - fetched load_N = min(load_N,Max_Query) im_nums = [str(i) for i in range(fetched,fetched+load_N)] im_ids = [next(id_gen) for _ in range(fetched,fetched+load_N)] loop = asyncio.get_event_loop() loop.run_until_complete(get_batch(loop,im_ids,im_nums)) # done fetching fetched += load_N present.extend(im_nums) # broadcast update_fetched(fetched) idle_count = 0 else: # we're all set # Check for exitting: stop = False idle_count += 1 if idle_count > 1000: # about 3 mins idle append_log("Idle time-out. Exiting.") stop = True if (fetched - read) > Buffer: # read.txt has decreased: append_log("Read.txt has decreased. Exiting.") stop = True if stop: for im_num in present: os.remove(to_filename(im_num)) exit() # sleep a bit to avoid spinning. time.sleep(.2) # remove while removed < (read - BackBuffer): try: im_num = present[0] except: append_log("Non-existing file reported as read. Exiting.") exit() present = present[1:] try: os.remove(to_filename(im_num)) except: append_log("While removing: File not found: {}".format(to_filename(im_num))) print("While removing: File not found: {}".format(to_filename(im_num))) removed += 1 ```
{ "source": "JeromeMutgeert/Detectron-DA-Faster-RCNN", "score": 2 }
#### File: detectron/modeling/PADA.py ```python import numpy as np from detectron.core.config import cfg # import matplotlib # import matplotlib.pyplot as plt from tools.analyse_detects import coco_classes, KL_div def print_dist(dist,name): order = np.argsort(dist)[::-1] dist = dist[order] classes = coco_classes[order] print(name) for w,c in list(zip(dist,classes))[:]: print("p = ({:.3f}):{}".format(w,c)) class ClassWeightDB(object): def __init__(self,weight_db=None,conf_matrix=None,ns=None,fg_acc=(None,),weighted_fg_acc=(None,)): self.weight_db = weight_db self.total_sum_softmax = None self.class_weights = None self.gt_ins_dist = None self.starting_dist = None self.avg_pada_weight = 0 # self.prepared = False # self.maxes = None self.conf_matrix = conf_matrix self.conf_col_avgs = ns self.fg_acc = fg_acc self.weighted_fg_acc = weighted_fg_acc def setup(self,roi_data_loader): source_roidb = roi_data_loader._roidb target_roidb = roi_data_loader._target_roidb continuing = self.weight_db is not None if continuing: print("weight_db taken from checkpoint") gt_ins_counts = np.bincount([cls_idx for rois in source_roidb for cls_idx, crowd in zip(rois['gt_classes'],rois['is_crowd']) if not crowd], minlength=cfg.MODEL.NUM_CLASSES) n_instances = gt_ins_counts.sum() self.gt_ins_dist = gt_ins_counts/float(n_instances) + np.finfo(float).eps print_dist(self.gt_ins_dist,'gt_ins_dist') if not continuing: self.weight_db = np.concatenate([rois['sum_softmax'][None,:] for rois in target_roidb],axis=0) else: self.starting_dist = np.sum([rois['sum_softmax'] for rois in target_roidb],axis=0) self.starting_dist /= self.starting_dist.sum() print("ClassWeightDB initiated with weight db of shape {}".format(self.weight_db.shape)) self.total_sum_softmax = self.weight_db.sum(axis=0) self.class_weights = self.total_sum_softmax / self.total_sum_softmax.max() # w = self.class_weights # print('absolute weights: mean,min,max,median:',w.mean(),w.min(),w.max(),np.median(w)) if not continuing: self.starting_dist = self.class_weights/self.class_weights.sum() # print_dist(self.starting_dist,name='starting_dist') self.class_weights = self.class_weights / self.gt_ins_dist self.class_weights /= self.class_weights.max() w = self.class_weights print('pada weights: mean,min,max,median:',w.mean(),w.min(),w.max(),np.median(w)) print_dist(self.class_weights,'Corrected pada weights') avg_pada_weight = (self.class_weights * self.gt_ins_dist).sum() print("Weighted avg pada weight (by gt dist):", avg_pada_weight) self.avg_pada_weight = avg_pada_weight # init confusion matrix nclasses = len(self.class_weights) if self.conf_matrix is None: self.conf_matrix = np.eye(nclasses) ns = [1000] * nclasses if self.conf_col_avgs is None else self.conf_col_avgs self.conf_col_avgs = [(c,RollingAvg(2000, avg_init=self.conf_matrix[:, c], n_init=ns[c])) for c in range(nclasses)] # if self.fg_acc is None: self.fg_acc = RollingAvg(10000,*self.fg_acc) self.weighted_fg_acc = RollingAvg(10000,*self.weighted_fg_acc) def update_class_weights(self,im_idx,sum_softmax): # Update the weight_db, and apply the diff to the total_sum_softmax prev_sum_softmax = self.weight_db[im_idx].copy() self.weight_db[im_idx] = sum_softmax # print('NormalizedMeanSquaredUpdate:',((prev_sum_softmax - sum_softmax)**2).mean()/prev_sum_softmax.sum(),prev_sum_softmax.sum(),sum_softmax.sum(),im_idx) self.total_sum_softmax += sum_softmax - prev_sum_softmax # map the sum_softmax'es to the expected gt space: gt_sum_softmax = np.matmul(self.conf_matrix,self.total_sum_softmax[:,None])[:,0] gt_sum_softmax[0] = 0.0 # discard confusion with bg # correct for source gt dist and normalize (so that class_weights * gt_ins_dist \propto the target gt dist) self.class_weights = gt_sum_softmax / self.gt_ins_dist self.class_weights /= self.class_weights.max() # update avg_pada_weight self.avg_pada_weight = (self.class_weights * self.gt_ins_dist).sum() def update_confusion_matrix(self,probs,labels): nrois, nclasses = probs.shape sel = labels > -1 # labels of -1 are instances that are not supervised probs = probs[sel,:] labels = labels[sel] nrois = len(labels) one_hot_labels = np.zeros((nclasses,nrois),dtype=np.float32) one_hot_labels[labels,np.arange(nrois)] = 1.0 #maxes # print(one_hot_labels.shape) # compose the confusion matrix for the current predictions pij = np.matmul(one_hot_labels,probs) # normalize over first dim, so each column is a distribution. total_weights = pij.sum(axis=0) zeroed_cls = np.where(total_weights == 0.0) total_weights[zeroed_cls] = -1 pij /= total_weights[None,:] # normalisation such that pij[i,j] = P(gt=i|pred=j) # update each column with for (c,col),w in zip(self.conf_col_avgs,total_weights): if w > 0: self.conf_matrix[:,c] = col.update_and_get(pij[:,c],weight=w) sel = labels > 0 # only confuse fg classes. # maxes = maxes[sel] probs = probs[sel,:] labels = labels[sel] # nrois = len(labels) corrects = probs.argmax(axis=1) == labels fg_accuracy = corrects.sum() / float(len(labels)) # print('Foreground accuracy: {} ({}/{})'.format(fg_accuracy,correct,len(labels))) self.fg_acc.update_and_get(fg_accuracy,len(labels)) weights = self.class_weights[labels] wsum = weights.sum() w_fg_accuracy = (corrects * weights).sum() / wsum self.weighted_fg_acc.update_and_get(w_fg_accuracy,wsum) print('fg instances: {} ({})'.format(len(labels),wsum)) def get_avg_pada_weight(self): return self.avg_pada_weight def get_dist(self): current_dist = self.class_weights * self.gt_ins_dist current_dist /= current_dist.sum() return current_dist def get_KL_to_init(self): return KL_div(self.get_dist(),self.starting_dist) def get_state(self): return \ self.weight_db, \ self.conf_matrix, \ np.array([avg.n for _,avg in self.conf_col_avgs]), \ np.array([self.fg_acc.get(), self.fg_acc.n]), \ np.array([self.weighted_fg_acc.get(), self.weighted_fg_acc.n]) class RollingAvg(object): def __init__(self, max_sample_size, avg_init=None, n_init=None): self.n = 0 self.max_n = max_sample_size self.sum = 0.0 self.avg = 0.0 if avg_init is not None: if n_init is not None: self.n = n_init else: self.n = self.max_n self.sum = avg_init * self.n if self.n != 0: self.avg = self.sum / self.n def update_and_get(self,sample,weight = 1): if (self.n + weight) < self.max_n: self.n += weight self.sum += sample * weight elif self.n < self.max_n: diff = (self.max_n - self.n) self.sum += sample * diff self.n = self.max_n weight = weight - diff if self.n >= self.max_n: self.sum = self.sum * (self.n - weight) / self.n + sample * weight self.avg = self.sum / self.n return self.avg def get(self): return self.avg class DAScaleFading(object): """Fading-in the adversarial objective according the way of DANN: http://sites.skoltech.ru/compvision/projects/grl/files/paper.pdf The formula for the weight given the progression p from 0 to 1 is: 2 / (1 + exp(- gamma * p) -1 where gamma is chosen by the autors as 10 and kept fixed across experiments.""" def __init__(self,max_iter,gamma=10.0): self.max_iter = float(max_iter) self.gamma = float(gamma) self.it = 0 self.weight = 0. self.set_iter(self.it) def set_iter(self,it): self.it = it self.weight = 2 / (1 + np.exp(-self.gamma * float(it) / self.max_iter)) - 1 def get_weight(self): return self.weight ``` #### File: Detectron-DA-Faster-RCNN/tools/analyse_detects.py ```python import matplotlib import matplotlib.pyplot as plt import numpy as np import argparse # import cv2 # NOQA (Must import before importing caffe2 due to bug in cv2) import os # import pprint # import sys # import time # from caffe2.python import workspace # from detectron.core.config import assert_and_infer_cfg # from detectron.core.config import cfg # from detectron.core.config import merge_cfg_from_file # from detectron.core.config import merge_cfg_from_list # from detectron.core.test_engine import run_inference from detectron.datasets.dummy_datasets import get_coco_dataset from detectron.utils.io import load_object from detectron.utils.logging import setup_logging # import detectron.utils.c2 as c2_utils # c2_utils.import_detectron_ops() # OpenCL may be enabled by default in OpenCV3; disable it because it's not # thread safe and causes unwanted GPU memory allocations. # cv2.ocl.setUseOpenCL(False) def parse_args(): parser = argparse.ArgumentParser(description='Test a Fast R-CNN network') # parser.add_argument( # '--vis', dest='vis', help='visualize detections', action='store_true' # ) # parser.add_argument( # '--multi-gpu-testing', # dest='multi_gpu_testing', # help='using cfg.NUM_GPUS for inference', # action='store_true' # ) parser.add_argument( '--class_weights', dest='class_weights', help='class distribution file by summed softmax outputs (of the source set)', default=None, type=str, nargs=1 ) parser.add_argument( '--voc_class_weights', dest='voc_class_weights', help='class distribution file by summed softmax outputs for the target set', default=None, type=str, nargs=3 ) parser.add_argument( '--target_class_weights', dest='target_class_weights', help='class distribution file by summed softmax outputs for the target set', default=None, type=str, nargs=1 ) parser.add_argument( '--target_divergence', dest='target_divergence', help='the desired KL-divergence between source and voc', default=None, type=float, nargs=1 ) parser.add_argument( '--features', dest='feats', help='feature vector collection for t-sne visualisation', default=None, type=str, nargs=1 ) parser.add_argument( '--do_val_set', dest='do_val_set', action='store_true' ) # # This allows to set all fields of cfg. Use to set TEST.WEIGTHS and optionally override NUM_GPUS: # parser.add_argument( # 'opts', # help='See detectron/core/config.py for all options', # default=None, # nargs=argparse.REMAINDER # ) # if len(sys.argv) == 1: # parser.print_help() # sys.exit(1) return parser.parse_args() def plt_bars(counts,labels,counts2=None,reversed=True,ax=None,eps=np.finfo(float).eps,figsize=(13,7),log=None,**kwargs): if ax is None: fig,ax = plt.subplots(figsize=figsize) order = counts.argsort() if counts2 is not None: ratios = -(counts2 * np.log(counts/(counts2 + eps) + eps) + (1 - counts2) * np.log((1 - counts)/(1 - counts2 + eps) + eps)) print(ratios[1:].sum()) order = ratios.argsort() if reversed: order = order[::-1] x = np.arange(len(labels)) ax.bar(x,counts[order],**kwargs) if counts2 is not None: ax.bar(x,counts2[order],alpha=.4,**kwargs) plt.xticks(x,labels[order],rotation=90) plt.ylabel('Probability') if log: ax.set_yscale('log') fig.subplots_adjust(bottom=.23) coco_classes = np.array(get_coco_dataset().classes.values(),dtype=str) def plot_dists(coco_dist, yisual_dist, source_name,target_name): plt_bars(coco_dist,coco_classes,yisual_dist) plt.title('Class distributions of detections: KL( {} || {} ) = {:.4f}'.format(target_name,source_name,KL_div(yisual_dist,coco_dist))) plt.legend([source_name,target_name]) plt.show() def plot_dist(coco_dist,name=None,log=None): plt_bars(coco_dist,coco_classes,log=log) if name is not None: plt.legend([name]) plt.show() def KL_div(target,source,eps=np.finfo(float).eps): # We take KL(target||source), the distance of the source distribution from the pespective of the target distribution. # assert len(target.shape) == 1 or len(source.shape) == 1 if len(target.shape) == len(source.shape): return -(target * np.log(source/(target + eps) + eps)).sum() elif len(target.shape) == 2: assert len(source.shape) == 1 return -(target * np.log(source[None,:]/(target + eps) + eps)).sum(axis=1) elif len(source.shape) == 2: assert len(target.shape) == 1 target = target[None,:] return -(target * np.log(source/(target + eps) + eps)).sum(axis=1) else: assert False,"Weird shapes received" def get_dist(wts): dist = wts.sum(axis=0) dist /= dist.sum() return dist # def plot_dist(dist,dist2=None): # fig,ax = plt.subplots() # plt_bars(dist, coco_classes, dist2, ax=ax) # plt.show() if __name__ == '__main__': # workspace.GlobalInit(['caffe2', '--caffe2_log_level=0']) logger = setup_logging(__name__) args = parse_args() logger.info('Called with args:') logger.info(args) assert args.class_weights is not None, 'class_weights file required' print(str(args.class_weights[0])) coco_wts = load_object(args.class_weights[0]) print(coco_wts.shape) coco_dist = get_dist(coco_wts) print("coco size: ",coco_wts.sum()) assert args.voc_class_weights is not None, 'voc dist files needed' voc_files = args.voc_class_weights if args.do_val_set: voc_files = ['collecting/test/voc_2007_test/generalized_rcnn/class_weights.pkl', 'collecting/test/voc_2012_val/generalized_rcnn/class_weights.pkl'] voc_wts = np.concatenate([load_object(vocfile) for vocfile in voc_files], axis=0) print(voc_wts.shape) voc_dist = get_dist(voc_wts) print('voc size:',voc_wts.sum()) assert args.target_class_weights is not None # source_wts = wts # wts = load_object(args.target_class_weights[0]) # print('voc weights overloaded with targets') yisual_wts = load_object(args.target_class_weights[0]) yisual_dist = get_dist(yisual_wts) print('yisual size:',yisual_wts.sum()) sets = [(coco_wts,'coco'), (voc_wts, 'voc'), (yisual_wts, 'yisual')] pairs = [(sets[0],sets[1]),(sets[0],sets[2]),(sets[1],sets[2])] for set1,set2 in pairs: for s1,s2 in [(set1,set2),(set2,set1)]: wts_source,source_name = s1 wts_target,target_name = s2 dist_source, dist_target = get_dist(wts_source), get_dist(wts_target) kl_div = KL_div(dist_target,dist_source) print("KL({}||{}) = {}".format(target_name,source_name,kl_div)) plot_dists(dist_source,dist_target,source_name,target_name) # source_dist = get_dist(source_wts) # # # # plot_dists: # plt_bars(source_dist,coco_classes,get_dist(wts)) # plt.title('Class distribution of detections') # plt.legend(['coco train','yisual train']) # plt.show() # # voc_dist = get_dist(wts) # print(KL_div(voc_dist,source_dist)) # # print(KL_div(voc_dist,source_dist)) # # detects = wts.sum(axis=1) # voc_mean_detect = detects.mean() # source_detects = source_wts.sum(axis=1) # source_mean_detect = source_detects.mean() # print('mean amount of detections per image: source: {} target: {}'.format(source_mean_detect,voc_mean_detect)) # Filtering VOC def remove_from_dist(dist,subdists,portions): aportions = (1 - portions) return (dist[None,:]/aportions[:,None]) - (portions/aportions)[:,None] * subdists return dist/aportion - (portion/aportion) * subdist new_dist = (dist - portion * subdist) # 'new_dist/(1-portion)' would be a correct answer. The following answer has more numerical stability: re-normalizing. return new_dist / new_dist.sum() def score_fn(proposed,prop_weight): """The function to be maximized by (greedy) subset selection""" return np.log(KL_div(proposed,coco_dist)) - np.log(KL_div(yisual_dist,proposed)) # return KL_div(proposed,coco_dist)/divergences_coco[-1] - KL_div(yisual_dist,proposed)/divergences[-1] #+ prop_weight/total_weight # return prop_weight**2 *KL_div(proposed,coco_dist)/KL_div(yisual_dist,proposed) # normalise per-image: im_weights = voc_wts.sum(axis=1) total_weight = im_weights.sum() min_weight = .55 * total_weight im_dists = voc_wts / im_weights[:, None] # scores = [ KL_div(yisual_dist,im_dist) - KL_div(im_dist,coco_dist) for im_dist in im_dists] # # order = np.argsort(scores)[::-1] N = int(len(im_weights)*1.15) weights = [total_weight] divergences = [KL_div(yisual_dist,voc_dist)] divergences_coco = [KL_div(voc_dist,coco_dist)] dists = [voc_dist[:]] dists = np.empty((N+1,81),dtype=np.float32) dists[0,:] = voc_dist[:] shown = False start_score = score_fn(voc_dist,total_weight) # for i in order: # im_dist = im_dists[i] # im_weight = im_weights[i] # voc_dist = remove_from_dist(voc_dist,im_dist,im_weight/total_weight) # total_weight -= im_weight # weights.append(total_weight) # divergences.append(KL_div(yisual_dist,voc_dist)) # divergences_coco.append(KL_div(voc_dist,coco_dist)) # dists.append(voc_dist[:]) # # if total_weight < weights[0]/2 and not shown: # if half-way: # plot_dists(coco_dist,voc_dist,'voc_sub','coco') # plot_dists(coco_dist,yisual_dist,'coco','yisual') # plot_dists(voc_dist,yisual_dist,'voc_sub','yisual') # shown = True removed = np.full(len(im_weights), False, dtype=bool) choices = [] remains = len(im_weights) ns = [remains] undos = 0 prev_i = -1 best_score = -np.infty for n in range(N): if n % 100 == 0: print(n) if undos != 0: print('undos:',undos) undos = 0 prop_dists = remove_from_dist(voc_dist,im_dists,im_weights/total_weight) scores = (score_fn(prop_dists,total_weight - im_weights) - score_fn(voc_dist,total_weight)) / np.abs(im_weights) #normalized by im_weights if total_weight < min_weight: scores[~removed] = -np.infty i = np.argmax(scores) if i == prev_i: break prev_i = i remains += 1 if removed[i] else -1 undos += removed[i] if removed[i]: print('undo ({})'.format(undos)) if remains == 0: break choices.append(i) removed[i] = ~removed[i] #flip, on or off. im_dist = im_dists[i] im_weight = im_weights[i] im_weights[i] = -im_weights[i] # flip, on or off. Removing with Negative im weight equals adding again. # voc_dist = remove_from_dist(voc_dist,im_dist,im_weight/total_weight) voc_dist = prop_dists[i] voc_dist /= voc_dist.sum() # for numeric stability total_weight -= im_weight weights.append(total_weight) divergences.append(KL_div(yisual_dist,voc_dist)) divergences_coco.append(KL_div(voc_dist,coco_dist)) # print(len(voc_dist[:])) dists[n+1,:] = voc_dist[:] ns.append(remains) score = score_fn(voc_dist,total_weight) if score > best_score: best_score = score best_dist = voc_dist best_removed = removed[:] else: print('nope',n) # if total_weight < weights[0]/2 and not shown: # if half-way: # plot_dists(coco_dist,voc_dist,'coco','voc_sub') # plot_dists(coco_dist,yisual_dist,'coco','yisual') # plot_dists(voc_dist,yisual_dist,'voc_sub','yisual') # shown = True removed = best_removed voc_dist = best_dist # if args.do_val_set: # np.save('voc_subset_val.npy',~removed) # else: # np.save('voc_subset.npy',~removed) # Some score analysis for the log-KL-divergence-sum-score: diff = best_score-start_score factorsum = np.exp(diff) coco_div_improve = KL_div(voc_dist,coco_dist)/KL_div(dists[0,:],coco_dist) yisual_div_improve = KL_div(yisual_dist,dists[0,:])/KL_div(yisual_dist,voc_dist) print('Score impovement: {} -> {}, diff: {} (log-space), {} (factor space), KL(voc||coco)) *= {}, KL(yisual||voc) /= {}'.format( start_score,best_score,diff,factorsum,coco_div_improve,yisual_div_improve)) print(remains,float(remains)/len(im_weights)) plot_dists(coco_dist,voc_dist,'coco','voc_sub') plot_dists(coco_dist,yisual_dist,'coco','yisual') plot_dists(voc_dist,yisual_dist,'voc_sub','yisual') plt.figure(figsize=(30,20)) plt.plot(weights,divergences) plt.plot(weights,divergences_coco) ns = (np.array(ns))*weights[0]/im_dists.shape[0] plt.plot(ns,divergences) plt.plot(ns,divergences_coco) nops = np.linspace(weights[0],weights[-1],len(weights)) plt.plot(nops,ns/weights[0]) plt.plot(nops,divergences) plt.plot(nops,divergences_coco) plt.plot([weights[0],weights[-1]],[KL_div(yisual_dist,coco_dist)]*2) plt.ylim(0,1) plt.show() # plt.figure(figsize=(30,20)) # nimgs = np.arange(len(weights))[::-1] + 1 # plt.plot(nimgs,divergences) # plt.plot(nimgs,divergences_coco) # plt.plot([nimgs[0],nimgs[-1]],[KL_div(yisual_dist,coco_dist)]*2) # plt.show() ```
{ "source": "jerome-nexedi/Zope", "score": 3 }
#### File: ZTUtils/tests/testZope.py ```python from unittest import TestCase, makeSuite import urllib from ZTUtils.Zope import make_query, complex_marshal from ZTUtils.Zope import make_hidden_input from DateTime import DateTime class QueryTests(TestCase): def testMarshallLists(self): '''Test marshalling lists''' test_date = DateTime() list_ = [1, test_date, 'str'] result = complex_marshal([('list',list_),]) assert result == [('list', ':int:list', 1), ('list', ':date:list', test_date), ('list', ':list', 'str')] def testMarshallRecords(self): '''Test marshalling records''' test_date = DateTime() record = {'arg1': 1, 'arg2': test_date, 'arg3': 'str'} result = complex_marshal([('record',record),]) assert result == [('record.arg1', ':int:record', 1), ('record.arg2', ':date:record', test_date), ('record.arg3', ':record', 'str')] def testMarshallListsInRecords(self): '''Test marshalling lists inside of records''' test_date = DateTime() record = {'arg1': [1, test_date, 'str'], 'arg2': 1} result = complex_marshal([('record',record),]) assert result == [('record.arg1', ':int:list:record', 1), ('record.arg1', ':date:list:record', test_date), ('record.arg1', ':list:record', 'str'), ('record.arg2', ':int:record', 1)] def testMakeComplexQuery(self): '''Test that make_query returns sane results''' test_date = DateTime() quote_date = urllib.quote(str(test_date)) record = {'arg1': [1, test_date, 'str'], 'arg2': 1} list_ = [1, test_date, 'str'] date = test_date int_ = 1 str_ = 'str' query = make_query(date=test_date, integer=int_, listing=list_, record=record, string=str_) assert query == 'date:date=%s&integer:int=1&listing:int:list=1&listing:date:list=%s&listing:list=str&string=str&record.arg1:int:list:record=1&record.arg1:date:list:record=%s&record.arg1:list:record=str&record.arg2:int:record=1'%(quote_date,quote_date,quote_date) def testMakeHiddenInput(self): tag = make_hidden_input(foo='bar') self.assertEqual(tag, '<input type="hidden" name="foo" value="bar">') tag = make_hidden_input(foo=1) self.assertEqual(tag, '<input type="hidden" name="foo:int" value="1">') # Escaping tag = make_hidden_input(foo='bar & baz') self.assertEqual(tag, '<input type="hidden" name="foo" value="bar &amp; baz">') tag = make_hidden_input(foo='<bar>') self.assertEqual(tag, '<input type="hidden" name="foo" value="&lt;bar&gt;">') tag = make_hidden_input(foo='"bar"') self.assertEqual(tag, '<input type="hidden" name="foo" value="&quot;bar&quot;">') def test_suite(): return makeSuite(QueryTests) ```
{ "source": "JeromeParadis/django-dynasite", "score": 2 }
#### File: django-dynasite/dynasite/cache.py ```python from __future__ import unicode_literals import hashlib import re import time from django.conf import settings from django.core.cache import caches from django.utils.encoding import iri_to_uri, force_bytes, force_text from django.utils.http import http_date from django.utils.timezone import get_current_timezone_name from django.utils.translation import get_language from django.utils.cache import cc_delim_re, _i18n_cache_key_suffix def _generate_cache_key(request, method, headerlist, key_prefix): """Returns a cache key from the headers given in the header list.""" ctx = hashlib.md5() for header in headerlist: value = request.META.get(header, None) if value is not None: ctx.update(force_bytes(value)) path = hashlib.md5(force_bytes(iri_to_uri(request.build_absolute_uri()))) cache_key = 'views.decorators.cache.cache_page.%s.%s.%s.%s' % ( key_prefix, method, path.hexdigest(), ctx.hexdigest()) return _i18n_cache_key_suffix(request, cache_key) def _generate_cache_header_key(key_prefix, request): """Returns a cache key for the header cache.""" path = hashlib.md5(force_bytes(iri_to_uri(request.build_absolute_uri()))) cache_key = 'views.decorators.cache.cache_header.%s.%s' % ( key_prefix, path.hexdigest()) return _i18n_cache_key_suffix(request, cache_key) def get_cache_key(request, key_prefix=None, method='GET', cache=None): """ Returns a cache key based on the request path and query. It can be used in the request phase because it pulls the list of headers to take into account from the global path registry and uses those to build a cache key to check against. If there is no headerlist stored, the page needs to be rebuilt, so this function returns None. """ if key_prefix is None: key_prefix = settings.CACHE_MIDDLEWARE_KEY_PREFIX cache_key = _generate_cache_header_key(key_prefix, request) if cache is None: cache = caches[settings.CACHE_MIDDLEWARE_ALIAS] headerlist = cache.get(cache_key, None) if headerlist is not None: return _generate_cache_key(request, method, headerlist, key_prefix) else: return None def learn_cache_key(request, response, cache_timeout=None, key_prefix=None, cache=None): """ Learns what headers to take into account for some request path from the response object. It stores those headers in a global path registry so that later access to that path will know what headers to take into account without building the response object itself. The headers are named in the Vary header of the response, but we want to prevent response generation. The list of headers to use for cache key generation is stored in the same cache as the pages themselves. If the cache ages some data out of the cache, this just means that we have to build the response once to get at the Vary header and so at the list of headers to use for the cache key. """ if key_prefix is None: key_prefix = settings.CACHE_MIDDLEWARE_KEY_PREFIX if cache_timeout is None: cache_timeout = settings.CACHE_MIDDLEWARE_SECONDS cache_key = _generate_cache_header_key(key_prefix, request) if cache is None: cache = caches[settings.CACHE_MIDDLEWARE_ALIAS] if response.has_header('Vary'): headerlist = ['HTTP_'+header.upper().replace('-', '_') for header in cc_delim_re.split(response['Vary'])] cache.set(cache_key, headerlist, cache_timeout) return _generate_cache_key(request, request.method, headerlist, key_prefix) else: # if there is no Vary header, we still need a cache key # for the request.get_full_path() cache.set(cache_key, [], cache_timeout) return _generate_cache_key(request, request.method, [], key_prefix) ``` #### File: django-dynasite/dynasite/context_processors.py ```python from django.conf import settings from django.template import RequestContext from django.contrib.sites.models import Site from django.contrib.sites.requests import RequestSite from models import get_current_site def dynasite_context_processor(request): try: dynasite = { 'site': get_current_site(request) } dynasite['site_url'] = 'http%s://%s' % ('s' if request.is_secure else '', dynasite['site'].domain, ) except: dynasite = None return { 'dynasite': dynasite } ``` #### File: django-dynasite/dynasite/models.py ```python from django.conf import settings from django.contrib.sites.models import Site SITES_CACHE = {} def get_current_site(request): """ Get current site by SITE_ID if defined or use host otherwise """ if hasattr(settings, 'SITE_ID') and settings.SITE_ID: return Site.objects.get_current() host = request.get_host() if host == 'testserver' and hasattr(settings, 'DEFAULT_SITE_ID'): return Site.objects.get(pk=settings.DEFAULT_SITE_ID) # Get from host cache if exists # ----------------------- if host in SITES_CACHE: return SITES_CACHE[host] # Try by raw hostname # ----------------------- try: site = Site.objects.get(domain=host) SITES_CACHE[host] = site return site except Site.DoesNotExist: pass # Try by hostname without port # ----------------------- shost = host.rsplit(':', 1)[0] # only host, without port if shost != host: if shost in SITES_CACHE: return SITES_CACHE[shost] try: site = Site.objects.get(domain=shost) SITES_CACHE[host] = site return site except Site.DoesNotExist: pass raise Site.DoesNotExist ```
{ "source": "jeromepatel/food-recognition-benchmark-starter-kit", "score": 3 }
#### File: food-recognition-benchmark-starter-kit/evaluator/utils.py ```python import os import signal from contextlib import contextmanager class TimeoutException(Exception): pass @contextmanager def time_limit(seconds): def signal_handler(signum, frame): raise TimeoutException("Prediction timed out!") use_signals_in_timeout = True if os.name == 'nt': """ Windows doesnt support signals, hence timeout_decorators usually fall apart. Hence forcing them to not using signals whenever using the timeout decorator. """ use_signals_in_timeout = False if use_signals_in_timeout: signal.signal(signal.SIGALRM, signal_handler) signal.alarm(seconds) try: yield finally: if use_signals_in_timeout: signal.alarm(0) ``` #### File: food-recognition-benchmark-starter-kit/utils/mmdet_inference.py ```python import mmcv import numpy as np import torch from mmcv.ops import RoIPool from mmcv.parallel import collate, scatter from mmcv.runner import load_checkpoint from mmdet.core import get_classes from mmdet.datasets import replace_ImageToTensor from mmdet.datasets.pipelines import Compose from mmdet.models import build_detector # import time def inference(model, imgs): # start = time.process_time() imgs = [imgs] cfg = model.cfg device = 'cuda:0' if isinstance(imgs[0], np.ndarray): cfg = cfg.copy() # set loading pipeline type cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam' cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) test_pipeline = Compose(cfg.data.test.pipeline) datas = [] data = dict(img_info=dict(filename=imgs[0]), img_prefix=None) # build the data pipeline data = test_pipeline(data) datas.append(data) data = collate(datas, samples_per_gpu=len(imgs)) # just get the actual data from DataContainer data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']] data['img'] = [img.data[0] for img in data['img']] # scatter to specified GPU data = scatter(data, [device])[0] # forward the model with torch.no_grad(): results = model(return_loss=False, rescale=True, **data) # your code here # print(time.process_time() - start) return results[0] ```
{ "source": "jeromerg/filoc", "score": 3 }
#### File: filoc/backends/backend_pickle.py ```python import os import pickle from typing import Dict, Any from fsspec import AbstractFileSystem from filoc.contract import PropsList, BackendContract, Constraints, Props from filoc.utils import filter_and_coerce_loaded_file_content, coerce_file_content_to_write class PickleBackend(BackendContract): """ filoc backend used to read data from Pickle files and write into them. This implementation is used when you call the filoc factory with the ``backend`` argument set to ``'pickle'``. Example: .. code-block:: python loc = filoc('/my/locpath/{id}/data.pickle', backend='pickle') It is recommended to read files that you wrote with filoc itself. If you want to read pickle files written by a third library, it is recommended to implement your own backend, so that you can better handle the edge cases and print out better error messages. """ def __init__(self, is_singleton) -> None: super().__init__() self.is_singleton = is_singleton def read(self, fs: AbstractFileSystem, path: str, path_props : Props, constraints: Constraints) -> PropsList: """(see BackendContract contract) """ with fs.open(path, 'rb') as f: return filter_and_coerce_loaded_file_content(path, pickle.load(f), path_props, constraints, self.is_singleton) def write(self, fs: AbstractFileSystem, path: str, props_list: PropsList) -> None: """(see BackendContract contract)""" fs.makedirs(os.path.dirname(path), exist_ok=True) with fs.open(path, 'wb') as f: return pickle.dump(coerce_file_content_to_write(path, props_list, self.is_singleton), f) ``` #### File: filoc/filoc/filoc_io.py ```python import logging import os import re import uuid from io import UnsupportedOperation from typing import Dict, Any, List, Mapping, Optional, Set from typing import Tuple import fsspec import parse from fsspec import AbstractFileSystem from fsspec.core import OpenFile from filoc.contract import Constraints, Constraint log = logging.getLogger('filoc') # --------- # Constants # --------- _re_natural = re.compile(r"(\d+)") _re_path_placeholder = re.compile(r'({[^}]+})') # ------- # Helpers # ------- def sort_natural(li: List[str]) -> List[str]: """ Perform natural sort of string containing numbers. Floating number are currently supported but cannot be compared to integers (missing dot separator)""" # TODO: support mix of int and float return sorted(li, key=lambda s: [int(part) if part.isdigit() else part for part in _re_natural.split(s)]) def coerce_nullable_mapping(d) -> Optional[Mapping[str, Any]]: """ Pass through Mapping or None instance, tries to call ``to_dict()`` method elsewhere Args: d: Returns: the coerced mapping of type ``Mapping[str, Any]`` or None Raises: TypeError: if ``d`` is neither an instance of Mapping, nor None, nor contains `to_dict()` method """ if d is None: return d if isinstance(d, Mapping): return d if getattr(d, "to_dict", None): # especially valid for pandas Series return d.to_dict() raise TypeError(f"Expected instance of Mapping or implementing to_dict, got {type(d)}!") def mix_dicts_and_coerce(dict1, dict2) -> Mapping[str, Any]: """ Coerce dict1 and dict2 to Mapping and mix both together Args: dict1: first dictionary argument (either Mapping or implements `to_dict()`) dict2: second dictionary argument (either Mapping or implements `to_dict()`) Returns: The combined Mapping """ dict1 = coerce_nullable_mapping(dict1) dict2 = coerce_nullable_mapping(dict2) dict2 = None if len(dict2) == 0 else dict2 if dict1 and dict2: result = dict() result.update(dict1) result.update(dict2) return result elif dict1: return dict1 elif dict2: return dict2 else: return dict() # TODO: Support path character escaping # ------------------- # Class FilocIO # ------------------- class FilocIO: """ Class providing access to files, given the locpath definition. The locpath is a format string, which placeholders are variables used by FilocIO to map variables to paths and paths to variables. """ def __init__( self, locpath: str, writable: bool = False, fs: AbstractFileSystem = None ) -> None: super().__init__() self.original_locpath = locpath self.writable = writable # split locpath to distinguish placeholders from constant parts path_elts = _re_path_placeholder.split(locpath) # Normalize the input path, by creating an fsspec OpenFile, then by getting the path property, # which is normalized. But the placeholders within the locpath are not valid, so we replace them by # a valid random string, build the OpenFile, get the normalized string, and replace the random # string by the original placeholders. path_elts_and_ersatz = [ (elt, str(uuid.uuid4()) if elt.startswith("{") else None) for elt in path_elts ] some_valid_path = "".join([ersatz if ersatz else elt for elt, ersatz in path_elts_and_ersatz]) if fs is None: open_file = fsspec.open(some_valid_path) else: open_file = OpenFile(fs, some_valid_path) # now build the normalized locpath, by replacing ersatz string by the original placeholder strings self.locpath = open_file.path for elt, ersatz in path_elts_and_ersatz: if ersatz: self.locpath = self.locpath.replace(ersatz, elt) self.fs = open_file.fs # type: AbstractFileSystem self.path_parser = parse.compile(self.locpath) # type: parse.Parser # Get the root folder: the last folder, that is not variable self.root_folder = self.locpath.split("{")[0] self.root_folder = self.fs.sep.join((self.root_folder + "dummy_to_ensure_subfolder").split(self.fs.sep)[:-1]) # parse library contains the _named_fields property, which provides us with the set of placeholder names # noinspection PyProtectedMember self.path_props = set(self.path_parser._named_fields) # type: Set[str] # noinspection PyDefaultArgument def parse_path_properties(self, path: str) -> Dict[str, Any]: """ Extract the ``self.locpath`` placeholder values contained in ``path`` Args: path: path string Returns: A dictionary containing the "placeholder name" -> value mapping """ try: return self.path_parser.parse(path).named except Exception as e: raise ValueError(f'Could not parse {path} with {self.locpath} parser: {e}') def render_path(self, constraints : Optional[Constraints] = None, **constraints_kwargs : Constraint) -> str: """ Render the path defined by the provided placeholder values (``constraints``). Args: constraints: The placeholders values required by ``self.locpath``. **constraints_kwargs: The placeholders values required by ``self.locpath``. Returns: The rendered path Raises: ValueError: If a placeholder value is missing """ constraints = mix_dicts_and_coerce(constraints, constraints_kwargs) undefined_keys = self.path_props - set(constraints) if len(undefined_keys) > 0: raise ValueError('Required props undefined: {}. Provided: {}'.format(undefined_keys, constraints)) return self.locpath.format(**constraints) # result should be normalized, because locpath is def render_glob_path(self, constraints : Optional[Constraints] = None, **constraints_kwargs : Constraint) -> str: """ Render a glob path defined by the provided placeholder values (``constraints``). The missing missing placeholders are replaced by ``*`` in the glob path. Args: constraints: The placeholders values defined in ``self.locpath``. **constraints_kwargs: The placeholders values defined in ``self.locpath``. Returns: A glob path """ constraints = mix_dicts_and_coerce(constraints, constraints_kwargs) provided_keys = set(constraints) undefined_keys = self.path_props - provided_keys defined_keys = self.path_props - undefined_keys path_values = dict() path_values.update({(k, constraints[k]) for k in defined_keys}) glob_path = self.locpath for undefined_key in undefined_keys: glob_path = re.sub(r'{' + undefined_key + r'(?::[^}]*)?}', '?*', glob_path) # finally format glob_path = glob_path.format(**path_values) return glob_path # result should be normalized, because locpath is def list_paths(self, constraints : Optional[Constraints] = None, **constraints_kwargs : Constraint) -> List[str]: """ Gets the list of all existing and valid paths fulfilling the provided constraints Args: constraints: The equality constraints applied to the ``self.locpath`` placeholders **constraints_kwargs: The equality constraints applied to the ``self.locpath`` placeholders Returns: The list of valid and existing paths fulfilling the provided constraints """ constraints = mix_dicts_and_coerce(constraints, constraints_kwargs) paths = self.fs.glob(self.render_glob_path(constraints)) return sort_natural(paths) def list_paths_and_props(self, constraints : Optional[Constraints] = None, **constraints_kwargs : Constraint) -> List[Tuple[str, Dict[str, Any]]]: """ Gets the list of all existing and valid paths fulfilling the provided constraints, along with the list of associated placeholder values Args: constraints: The equality constraints applied to the ``self.locpath`` placeholders **constraints_kwargs: The equality constraints applied to the ``self.locpath`` placeholders Returns: A list of tuples containing for each valid path, the path and the list of related placeholder values """ constraints = mix_dicts_and_coerce(constraints, constraints_kwargs) paths = self.list_paths(constraints) return [(p, self.parse_path_properties(p)) for p in paths] def exists(self, constraints : Optional[Constraints] = None, **constraints_kwargs : Constraint) -> bool: """ Checks if the path defined by the provided placeholder values (``constraints``) exists Args: constraints: The equality constraints applied to the ``self.locpath`` placeholders **constraints_kwargs: The equality constraints applied to the ``self.locpath`` placeholders Returns: True if the path exists, False elsewhere """ constraints = mix_dicts_and_coerce(constraints, constraints_kwargs) return self.fs.exists(self.render_path(constraints)) def open( self, constraints : Constraints, mode : str = "rb", block_size : int = None, cache_options : Optional[Dict] = None, **kwargs ): """ Opens the path defined by the provided placeholder values (``constraints``) Args: constraints: The equality constraints applied to the ``self.locpath`` placeholders mode: See builtin ``open()`` block_size: Some indication of buffering - this is a value in bytes cache_options: Extra arguments to pass through to the cache. **kwargs: Additional keyed arguments passed to ``fsspec.OpenFile.open(...)`` Returns: a file-like object from the underlying fsspec filesystem """ is_writing = len(set(mode) & set("wa+")) > 0 if is_writing and not self.writable: raise UnsupportedOperation('this filoc is not writable. Set writable flag to True to enable writing') path = self.render_path(constraints) dirname = os.path.dirname(path) if is_writing: self.fs.makedirs(dirname, exist_ok=True) return self.fs.open(path, mode, block_size, cache_options, **kwargs) # noinspection PyDefaultArgument def delete(self, constraints : Optional[Constraints] = {}, dry_run=False): """ Delete the path defined by the provided placeholder values (``constraints``) Args: constraints: The equality constraints applied to the ``self.locpath`` placeholders dry_run: If True, only simulates the deletion """ # TODO: Unit test to test deletion of folders if not self.writable: raise UnsupportedOperation('this filoc is not writable. Set writable flag to True to enable deleting') path_to_delete = self.list_paths(constraints) dry_run_log_prefix = '(dry_run) ' if dry_run else '' log.info(f'{dry_run_log_prefix}Deleting {len(path_to_delete)} files with path_props "{constraints}"') for path in path_to_delete: log.info(f'{dry_run_log_prefix}Deleting "{path}"') if dry_run: continue if self.fs.isfile(path): self.fs.delete(path) elif self.fs.isdir(path): self.fs.rm(path, recursive=True) else: raise ValueError(f'path is neither a direction nor a file: "{path}"') log.info(f'{dry_run_log_prefix}Deleted {len(path_to_delete)} files with path_props "{constraints}"') ``` #### File: filoc/frontends/frontend_json.py ```python import logging from collections import Mapping, Collection from filoc.contract import SingletonExpectedError, TContents, PropsList, TContent, FrontendContract, \ FrontendConversionError, ReadOnlyPropsList log = logging.getLogger('filoc') class JsonFrontend(FrontendContract): """ JSON frontend implementation. """ def read_content(self, props_list: PropsList) -> TContent: """(see FrontendContract contract)""" if len(props_list) != 1: raise SingletonExpectedError(f'Expected singleton, got {len(props_list)} items to convert to content') return props_list[0] def read_contents(self, props_list: PropsList) -> TContents: """(see FrontendContract contract)""" return props_list def write_content(self, content: TContent) -> ReadOnlyPropsList: """(see FrontendContract contract)""" if isinstance(content, Mapping): return [content] else: raise FrontendConversionError(f'Expected instance of Mapping, got {type(content).__name__}') def write_contents(self, contents: TContents) -> ReadOnlyPropsList: """(see FrontendContract contract)""" if isinstance(contents, Collection): return contents else: raise FrontendConversionError(f'Expected instance of Collection, got {type(contents).__name__}') ``` #### File: filoc/tests/test_FilocSingle.py ```python import json import os import shutil import tempfile import time import unittest from pathlib import Path from filoc import filoc_json, FilocIO # noinspection PyMissingOrEmptyDocstring from filoc.contract import SingletonExpectedError def touch_file(file_path): os.makedirs(os.path.dirname(file_path)) Path(file_path).touch() # noinspection DuplicatedCode # noinspection PyMissingOrEmptyDocstring class TestFilocSingle(unittest.TestCase): """ TODO: - Test cache behavior on delete of files (should currently fail --> TODO DEV Feature) """ def setUp(self): self.maxDiff = None self.test_dir = tempfile.mkdtemp().replace('\\', '/') self.path_fmt = self.test_dir + r'/simid={simid:d}/epid={epid:d}/hyperparameters.json' def tearDown(self): shutil.rmtree(self.test_dir) def test_read_write_read(self): wloc = FilocIO(self.path_fmt, writable=True) with wloc.open({"simid": 1, "epid": 10}, "w") as f: json.dump({'a': 100}, f) with wloc.open({"simid": 1, "epid": 20}, "w") as f: json.dump({'a': 200}, f) with wloc.open({"simid": 2, "epid": 10}, "w") as f: json.dump({'a': 300}, f) with wloc.open({"simid": 2, "epid": 20}, "w") as f: json.dump({'a': 400}, f) loc = filoc_json(self.path_fmt) p = loc.read_contents({'epid': 10}) self.assertEqual(len(p), 2) self.assertEqual('[{"a": 100, "epid": 10, "simid": 1}, {"a": 300, "epid": 10, "simid": 2}]', json.dumps(p, sort_keys=True)) # change file time.sleep(0.1) # ensures different timestamp with wloc.open({"simid": 2, "epid": 10}, "w") as f: json.dump({'a': 333}, f) p = loc.read_contents({'epid': 10}) self.assertEqual(len(p), 2) self.assertEqual('[{"a": 100, "epid": 10, "simid": 1}, {"a": 333, "epid": 10, "simid": 2}]', json.dumps(p, sort_keys=True)) def test_read_all(self): wloc = FilocIO(self.path_fmt, writable=True) with wloc.open({"simid": 1, "epid": 10}, "w") as f: json.dump({'a': 100}, f) with wloc.open({"simid": 1, "epid": 20}, "w") as f: json.dump({'a': 200}, f) with wloc.open({"simid": 2, "epid": 10}, "w") as f: json.dump({'a': 300}, f) with wloc.open({"simid": 2, "epid": 20}, "w") as f: json.dump({'a': 400}, f) loc = filoc_json(self.path_fmt) p = loc.read_contents() self.assertEqual(len(p), 4) self.assertEqual('[{"a": 100, "epid": 10, "simid": 1}, {"a": 200, "epid": 20, "simid": 1}, {"a": 300, "epid": 10, "simid": 2}, {"a": 400, "epid": 20, "simid": 2}]', json.dumps(p, sort_keys=True)) def test_with_constraints_on_path_placeholders(self): wloc = FilocIO(self.path_fmt, writable=True) with wloc.open({"simid": 1, "epid": 10}, "w") as f: json.dump({'a': 100}, f) with wloc.open({"simid": 1, "epid": 20}, "w") as f: json.dump({'a': 200}, f) with wloc.open({"simid": 2, "epid": 10}, "w") as f: json.dump({'a': 300}, f) with wloc.open({"simid": 2, "epid": 20}, "w") as f: json.dump({'a': 400}, f) loc = filoc_json(self.path_fmt) p = loc.read_contents({'epid': 10}) self.assertEqual(len(p), 2) self.assertEqual('[{"a": 100, "epid": 10, "simid": 1}, {"a": 300, "epid": 10, "simid": 2}]', json.dumps(p, sort_keys=True)) def test_with_constraints_on_content_attributes(self): wloc = FilocIO(self.path_fmt, writable=True) with wloc.open({"simid": 1, "epid": 10}, "w") as f: json.dump({'a': 100}, f) with wloc.open({"simid": 1, "epid": 20}, "w") as f: json.dump({'a': 200}, f) with wloc.open({"simid": 2, "epid": 10}, "w") as f: json.dump({'a': 300}, f) with wloc.open({"simid": 2, "epid": 20}, "w") as f: json.dump({'a': 400}, f) loc = filoc_json(self.path_fmt) p = loc.read_contents({'a': 300}) self.assertEqual(len(p), 1) self.assertEqual('[{"a": 300, "epid": 10, "simid": 2}]', json.dumps(p, sort_keys=True)) def test_read_contents_with_cache(self): print("write files") wloc = FilocIO(self.path_fmt, writable=True) with wloc.open({"simid": 1, "epid": 10}, "w") as f: json.dump({'a': 100}, f) with wloc.open({"simid": 1, "epid": 20}, "w") as f: json.dump({'a': 200}, f) with wloc.open({"simid": 2, "epid": 10}, "w") as f: json.dump({'a': 300}, f) with wloc.open({"simid": 2, "epid": 20}, "w") as f: json.dump({'a': 400}, f) loc = filoc_json(self.path_fmt, cache_locpath='.cache') print("read_contents 1") p = loc.read_contents({'epid': 10}) self.assertEqual(len(p), 2) self.assertEqual('[{"a": 100, "epid": 10, "simid": 1}, {"a": 300, "epid": 10, "simid": 2}]', json.dumps(p, sort_keys=True)) time.sleep(0.1) # small delay between the two writings to ensure that the file gets an new timestamp print("change one file") # change to file triggers cache refresh with wloc.open({"simid": 2, "epid": 10}, "w") as f: json.dump({'a': 333}, f) # f.flush() # os.fsync(f.fileno()) print("re read_contents 2") p = loc.read_contents({'epid': 10}) self.assertEqual(len(p), 2) self.assertEqual('[{"a": 100, "epid": 10, "simid": 1}, {"a": 333, "epid": 10, "simid": 2}]', json.dumps(p, sort_keys=True)) # act_assert() # Trick to test: signature change does not take effect, because of cache loc = filoc_json(self.path_fmt, cache_locpath='.cache') print("re read_contents 3") p = loc.read_contents({'epid': 10}) self.assertEqual(len(p), 2) self.assertEqual('[{"a": 100, "epid": 10, "simid": 1}, {"a": 333, "epid": 10, "simid": 2}]', json.dumps(p, sort_keys=True)) def test_write_contents(self): wloc = filoc_json(self.path_fmt, writable=True) wloc._write_props_list([ {"simid": 1, "epid": 10, 'a': 100}, {"simid": 1, "epid": 20, 'a': 200}, {"simid": 2, "epid": 10, 'a': 300}, {"simid": 2, "epid": 20, 'a': 400}, ]) wloc = FilocIO(self.path_fmt) with wloc.open({"simid": 1, "epid": 10}) as f: c1 = json.load(f) with wloc.open({"simid": 1, "epid": 20}) as f: c2 = json.load(f) with wloc.open({"simid": 2, "epid": 10}) as f: c3 = json.load(f) with wloc.open({"simid": 2, "epid": 20}) as f: c4 = json.load(f) self.assertEqual('{"a": 100}', json.dumps(c1, sort_keys=True)) self.assertEqual('{"a": 200}', json.dumps(c2, sort_keys=True)) self.assertEqual('{"a": 300}', json.dumps(c3, sort_keys=True)) self.assertEqual('{"a": 400}', json.dumps(c4, sort_keys=True)) if __name__ == '__main__': unittest.main() ```
{ "source": "jeromerobert/gcvb", "score": 2 }
#### File: gcvb/dashboard/index.py ```python import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import os import io import gcvb.db as db from gcvb.util import str_to_ip import gcvb.loader as loader if __name__ == '__main__': from app import app from apps import runs, run, test, history else: from .app import app from .apps import runs, run, test, history import flask cwd = os.getcwd() url = dcc.Location(id='url', refresh=False) navbar = dbc.NavbarSimple( children=[ dbc.NavItem(dbc.NavLink("Runs", href="/runs")), dbc.NavItem(dbc.NavLink("Last run", href="/run")), dbc.NavItem(dbc.NavLink("Data", href="/data")), ], brand="gcvb-dashboard", brand_href="", sticky="top", ) content = html.Div(id="page-content") app.layout=html.Div([url, navbar, content]) def _get_mimetype(base, test, filename): base = int(base) if base not in loader.loader.allowed_files: flask.abort(404) if test not in loader.loader.allowed_files[base]: flask.abort(404) if filename not in loader.loader.allowed_files[base][test]: flask.abort(404) return loader.loader.allowed_files[base][test][filename].get( "mimetype", "text/plain" ) @app.server.route("/files/<base>/<test>/<file>") def serve_from_results(base, test, file): return flask.send_file( f"{cwd}/results/{base}/{test}/{file}", mimetype=_get_mimetype(base, test, file) ) @app.server.route("/dbfiles/<base>/<test>/#") def serve_from_db(base, test, filename): return flask.send_file( io.BytesIO(db.retrieve_file(int(base), test, filename)), mimetype=_get_mimetype(base, test, filename) ) @app.callback(Output('page-content', 'children'), [Input('url', 'pathname')]) def display_page(pathname): if not pathname: return 'Bonjour' page=pathname.split("/") if page[1] == 'runs': return runs.layout if page[1] == 'run': return run.layout if page[1] == 'test': return test.layout if page[1] == 'history': return history.layout else: return 'Bonjour' def run_server(debug=False, bind_to="127.0.0.1:8050"): host, port = str_to_ip(bind_to) app.run_server(debug=debug, host=host, port=port) if __name__ == '__main__': app.run_server(debug=True) ``` #### File: gcvb/gcvb/db.py ```python import sqlite3 import os import glob import gzip from collections import defaultdict from . import util import datetime #SCRIPTS creation_script=""" CREATE TABLE gcvb(id INTEGER PRIMARY KEY, command_line TEXT, yaml_file TEXT, modifier TEXT, creation_date TIMESTAMP); CREATE TABLE run(id INTEGER PRIMARY KEY, start_date TIMESTAMP, end_date TIMESTAMP, gcvb_id INTEGER, config_id TEXT, FOREIGN KEY(gcvb_id) REFERENCES gcvb(id)); CREATE TABLE test(id INTEGER PRIMARY KEY, name TEXT, start_date TIMESTAMP, end_date TIMESTAMP, run_id INTEGER, FOREIGN KEY(run_id) REFERENCES run(id)); CREATE TABLE task(id INTEGER PRIMARY KEY, step INTEGER, parent INTEGER, start_date TIMESTAMP, end_date TIMESTAMP, test_id INTEGER, status INTEGER DEFAULT -3, -- >=0, exit_status | -1 running | -2 ready | -3 pending FOREIGN KEY(test_id) REFERENCES test(id)); CREATE TABLE valid(id INTEGER PRIMARY KEY, metric TEXT, value REAL, test_id INTEGER, task_step INTEGER, FOREIGN KEY(task_step) REFERENCES task(step), FOREIGN KEY(test_id) REFERENCES test(id)); CREATE TABLE files(id INTEGER PRIMARY KEY, filename TEXT, file BLOB, test_id INTEGER, FOREIGN KEY(test_id) REFERENCES test(id)); CREATE TABLE yaml_cache(mtime REAL, filename TEXT, pickle BLOB); """ def now(): return datetime.datetime.now() #GLOBAL database="gcvb.db" synchronous=None def set_db(db_path): global database, synchronous database=db_path def connect(file,f, *args, **kwargs): global synchronous conn=sqlite3.connect(file, timeout=50, detect_types=sqlite3.PARSE_DECLTYPES) if synchronous is None: # See https://www.sqlite.org/pragma.html#pragma_synchronous # OFF is known to be needed with Lustre synchronous = os.environ.get("GCVB_SYNC", "FULL") conn.execute(f"PRAGMA synchronous={synchronous}") conn.row_factory=sqlite3.Row c=conn.cursor() try: res = f(c, *args, **kwargs) #supposed to contain execute statements. except: conn.rollback() raise else: conn.commit() finally: conn.close() return res def get_exclusive_access(): """Returns a sqlite3.Connection with exclusive access to the db. Must be closed afterwards""" conn=sqlite3.connect(database, timeout=50) conn.execute(f"PRAGMA synchronous={synchronous}") conn.row_factory=sqlite3.Row conn.isolation_level = 'EXCLUSIVE' conn.execute('BEGIN EXCLUSIVE') return conn def with_connection(f): """decorator for function needing to connect to the database""" def with_connection_(*args, **kwargs): return connect(database,f, *args, **kwargs) return with_connection_ @with_connection def create_db(cursor): cursor.executescript(creation_script) @with_connection def new_gcvb_instance(cursor, command_line, yaml_file, modifier): cursor.execute("INSERT INTO gcvb(command_line,yaml_file,modifier,creation_date) VALUES (?,?,?,?)",[command_line,yaml_file,modifier,now()]) return cursor.lastrowid @with_connection def get_last_gcvb(cursor): cursor.execute("SELECT * from gcvb ORDER BY creation_date DESC LIMIT 1") return cursor.fetchone()["id"] @with_connection def get_base_from_run(cursor, run_id): cursor.execute("SELECT gcvb_id FROM run WHERE id=?",[run_id]) return cursor.fetchone()["gcvb_id"] @with_connection def add_run(cursor, gcvb_id, config_id): cursor.execute("INSERT INTO run(gcvb_id,config_id) VALUES (?,?)",[gcvb_id,config_id]) return cursor.lastrowid @with_connection def add_tests(cursor, run, test_list, chain): tests=[(t["id"],run) for t in test_list] for t in test_list: cursor.execute("INSERT INTO test(name,run_id) VALUES(?,?)",[t["id"],run]) t["id_db"]=cursor.lastrowid step=0 parent = 0 for task in t["Tasks"]: step += 1 predecessor = step - 1 if chain else parent status = -3 if parent else -2 #Ready (-2) if parent is 0 else Pending (-3) cursor.execute("INSERT INTO task(step,parent,test_id,status) VALUES(?,?,?,?)", [step, predecessor, t["id_db"], status]) parent = step for valid in task.get("Validations",[]): step += 1 predecessor = step - 1 if chain else parent cursor.execute("INSERT INTO task(step,parent,test_id) VALUES (?,?,?)", [step,predecessor,t["id_db"]]) @with_connection def start_test(cursor,run,test_id): cursor.execute("""UPDATE test SET start_date = ? WHERE id = ? AND run_id = ?""",[now(), test_id, run]) @with_connection def end_test(cursor, run, test_id): cursor.execute("""UPDATE test SET end_date = ? WHERE id = ? AND run_id = ?""",[now(), test_id, run]) @with_connection def start_task(cursor, test_id, step): cursor.execute("""UPDATE task SET start_date = ?, status = -1 WHERE step = ? AND test_id = ?""", [now(), step, test_id]) @with_connection def end_task(cursor, test_id, step, exit_status): cursor.execute("""UPDATE task SET end_date = ?, status = ? WHERE step = ? AND test_id = ?""", [now(), exit_status, step, test_id]) @with_connection def start_run(cursor,run): #update only if there is no start date already. #Multiple launch scripts can be started, and we might not be the first. cursor.execute("""UPDATE run SET start_date = ? WHERE id = ? AND start_date IS NULL""",[now(), run]) @with_connection def end_run(cursor,run): #update only if every tests is completed. #multiple scripts can be launched, we might not be the last. cursor.execute("""SELECT count(*) FROM test WHERE run_id = ? AND end_date IS NULL""",[run]) count=cursor.fetchone()["count(*)"] if not(count): cursor.execute("""UPDATE run SET end_date = ? WHERE id = ?""",[now(), run]) @with_connection def add_metric(cursor, run_id, test_id, step, name, value): cursor.execute("INSERT INTO valid(metric,value,test_id,task_step) VALUES (?,?,?,?)",[name,value,test_id, step]) @with_connection def get_last_run(cursor): cursor.execute("SELECT * from run ORDER BY id DESC LIMIT 1") res=cursor.fetchone() if res is None: return None, None else: return res["id"], res["gcvb_id"] @with_connection def get_run_infos(cursor, run_id): cursor.execute("SELECT * from run WHERE id = ?", [run_id]) return cursor.fetchone() @with_connection def load_report(cursor, run_id): a="""SELECT metric, value, name FROM valid INNER JOIN test ON test_id=test.id WHERE test.run_id=(?)""" cursor.execute(a,[run_id]) res={} for row in cursor.fetchall(): res.setdefault(row["name"],{})[row["metric"]]=row["value"] return res @with_connection def load_report_n(cursor, run_id): a="""SELECT metric, value, name, task_step FROM valid INNER JOIN test ON test_id=test.id WHERE test.run_id=(?)""" cursor.execute(a,[run_id]) res = defaultdict(lambda : defaultdict(dict)) for t in cursor.fetchall(): res[t["name"]][t["task_step"]][t["metric"]]=t["value"] return res @with_connection def save_blobs(cursor, data): request="""INSERT INTO files(filename,file, test_id) VALUES (?,?,?)""" for params in data: cursor.execute(request, params) @with_connection def save_files(cursor, run_id, test_id, file_list): request="""INSERT INTO files(filename,file, test_id) VALUES (?,?,?)""" for pattern in file_list: for file in glob.iglob(pattern): content=util.file_to_compressed_binary(file) cursor.execute(request,[file,content,test_id]) @with_connection def save_yaml_cache(cursor, mtime, filename, res_dict): req1 = "DELETE FROM yaml_cache WHERE filename = ?" req2 = "INSERT INTO yaml_cache(mtime, filename, pickle) VALUES (?,?,?)" loaded_dict = util.pickle_obj_to_binary(res_dict) cursor.execute(req1, (filename,)) cursor.execute(req2, (mtime, filename, loaded_dict)) return res_dict @with_connection def load_yaml_cache(cursor, filename): request = "SELECT mtime, pickle FROM yaml_cache WHERE filename = ?" cursor.execute(request, (filename, )) res = cursor.fetchone() if res is None: return 0, None else: return res["mtime"], util.pickle_binary_to_obj(res["pickle"]) @with_connection def get_tests(cursor, run_id): request="""SELECT id, name, start_date, end_date FROM test WHERE run_id = ?""" cursor.execute(request, [run_id]) return cursor.fetchall() @with_connection def get_file_list(cursor, run_id, test_name): request="""SELECT filename FROM files INNER JOIN test ON test_id=test.id INNER JOIN run ON test.run_id=run.id WHERE run.gcvb_id = ? AND test.name = ?""" cursor.execute(request,[run_id,test_name]) res=cursor.fetchall() return [f["filename"] for f in res] @with_connection def retrieve_file(cursor, run_id, test_name, filename): request="""SELECT file FROM files INNER JOIN test ON test_id=test.id INNER JOIN run ON test.run_id=run.id WHERE run.gcvb_id = ? AND test.name = ? AND filename = ?""" cursor.execute(request, [run_id,test_name, filename]) return gzip.decompress(cursor.fetchone()["file"]) @with_connection def retrieve_input(cursor, run): request="""SELECT yaml_file, modifier FROM gcvb INNER JOIN run ON gcvb.id=run.gcvb_id WHERE run.id=?""" cursor.execute(request, [run]) res=cursor.fetchone() return (res["yaml_file"],res["modifier"]) @with_connection def retrieve_test(cursor, run, test_id): request="""SELECT id, start_date, end_date FROM test WHERE name=? AND run_id=?""" cursor.execute(request,[test_id,run]) res=dict(cursor.fetchone()) request="""SELECT metric, value FROM valid WHERE test_id=?""" cursor.execute(request,[res["id"]]) metrics=cursor.fetchall() res["metrics"]={m["metric"]:m["value"] for m in metrics} return res @with_connection def retrieve_history(cursor, test_id, metric_id): request="""SELECT metric, value, test.run_id as run, test.name as test_id FROM valid INNER JOIN test ON test.id=valid.test_id WHERE test.name=? AND valid.metric=?""" cursor.execute(request,[test_id,metric_id]) res=cursor.fetchall() return res @with_connection def get_steps(cursor, run_id): request="""SELECT test.name, step, task.start_date, task.end_date, status FROM task INNER JOIN test ON test.id=task.test_id WHERE test.run_id = ?""" cursor.execute(request, [run_id]) res = defaultdict(lambda : defaultdict(dict)) for t in cursor.fetchall(): res[t["name"]][t["step"]]=dict(t) return res ``` #### File: gcvb/gcvb/loader.py ```python import gcvb.yaml_input as yaml_input import gcvb.db as db import gcvb.job as job from collections import defaultdict import os class BaseLoader(object): def __init__(self): self.data_root = "./data" self.config = {"executables" : {}} self.loaded = {} self.references = {} self.allowed_files = {} def load_base(self, run_id): ya,mod = db.retrieve_input(run_id) base = db.get_base_from_run(run_id) if not os.path.exists(ya): # FIXME replace all ./results/ by os.path.join("results", ...) runya = f"./results/{base}/tests.yaml" print(f"Warning: {ya} file missing. Trying {runya}") ya = runya # results/*/test.yaml have already modified applied mod = None if (ya,mod) not in self.loaded: self.loaded[(ya,mod)] = yaml_input.load_yaml(ya,mod) refs = yaml_input.get_references(self.loaded[(ya,mod)]["Tests"].values(),self.data_root) self.references.update(refs) if base not in self.allowed_files: self.allowed_files[base] = self.__populate_allowed_files(ya, mod) return self.loaded[(ya,mod)] def __populate_one_allowed(self, taskorval, allowedentry, at_job_creation): lr = taskorval.get("serve_from_results",[]) ldb = taskorval.get("serve_from_db",[]) for f in lr + ldb: filename = job.format_launch_command(f["file"], self.config, at_job_creation) allowedentry[filename] = f def __populate_allowed_files(self, ya, mod): s = defaultdict(dict) for test_id,test in self.loaded[(ya,mod)]["Tests"].items(): for c,task in enumerate(test["Tasks"]): at_job_creation = {} job.fill_at_job_creation_task(at_job_creation, task, f"{test_id}_{c}", self.config) self.__populate_one_allowed(task, s[test_id], at_job_creation) for valid in task.get("Validations",[]): job.fill_at_job_creation_validation(at_job_creation, valid, self.data_root, test["data"], self.config, self.references) self.__populate_one_allowed(valid, s[test_id], at_job_creation) return s loader = BaseLoader() ```
{ "source": "jeromerobert/pvpycgnsreader", "score": 2 }
#### File: jeromerobert/pvpycgnsreader/cgns.py ```python from collections import namedtuple import ctypes from ctypes import ( POINTER, create_string_buffer, c_char_p, c_int, c_void_p, c_double, c_size_t, ) import sys import numpy as np # Possible CGNS exception types CGNSError = type("CGNSError", (Exception,), {}) CGNSNodeNotFound = type("CGNSNodeNotFound", (CGNSError,), {}) CGNSIncorrectPath = type("CGNSIncorrectPath", (CGNSError,), {}) CGNSNoIndexDim = type("CGNSNoIndexDim", (CGNSError,), {}) def _load_lib(root): if sys.platform == "darwin": templates = [ "@executable_path/../Libraries/lib%s.dylib", "lib%s.dylib", "lib%s.so", "lib%s.bundle", "%s.dylib", "%s.so", "%s.bundle", "%s", ] elif sys.platform == "win32" or sys.platform == "cygwin": templates = ["%s.dll", "lib%s.dll"] else: templates = ["lib%s.so", "%s.so", "%s"] for t in templates: try: return ctypes.CDLL(t % root) except OSError: pass raise OSError("Cannot load the %s library" % root) CG_MODE_READ = 0 CG_MODE_WRITE = 1 CG_MODE_MODIFY = 2 CG_MODE_CLOSED = 3 CG_FILE_NONE = 0 CG_FILE_ADF = 1 CG_FILE_HDF5 = 2 CG_FILE_ADF2 = 3 CGNSNode = namedtuple( "CGNSNode", ["name", "id", "children", "dtype", "dimensions", "label"] ) _CGNS_TO_NUMPY = { "MT": None, "C1": "S", "I4": "i4", "I8": "i8", "U4": "u4", "U8": "u8", "R4": "f4", "R8": "f8", "B1": "i1", } # Possible return codes CGNS_STATUS = { 1: CGNSError, 2: CGNSNodeNotFound, 3: CGNSIncorrectPath, 4: CGNSNoIndexDim, 76: Exception("H5Gopen:open of a node group failed"), } def _errcheck(status, fn, arg): if status != 0: print(status, fn, arg) try: raise CGNS_STATUS[status] except KeyError: raise CGNSError class _Prefixer: def __init__(self, delegate, prefix): self.delegate = delegate self.prefix = prefix def __getattr__(self, name): return getattr(self.delegate, self.prefix + name) class _CGNSWrappers: def __init__(self): # This is the name of the CGNS lib in Paraview libname, self.prefix, self.cgsize_t = "vtkcgns-pv5.9", "vtkcgns_cgio_", c_size_t # For debug # libname, self.prefix, self.cgsize_t = "/home/robert/elfipole/CGNS/build/src/libcgns.so", "cgio_", c_int self.lib = _load_lib(libname) # ier = cgio_open_file(const char *filename, int file_mode, int file_type, int *cgio_num); self._proto("open_file", [c_char_p, c_int, c_int, POINTER(c_int)]) # ier = cgio_number_children(int cgio_num, double id, int *num_child); self._proto("number_children", [c_int, c_double, POINTER(c_int)]) # ier = cgio_get_root_id(int cgio_num, double *rootid); self._proto("get_root_id", [c_int, POINTER(c_double)]) # ier = cgio_children_ids(int cgio_num, double id, int start, int max_ret, int *num_ret, double *child_ids); self._proto( "children_ids", [c_int, c_double, c_int, c_int, POINTER(c_int), POINTER(c_double)], ) # int cgio_get_name (int cgio_num, double id, char *name); self._proto("get_name", [c_int, c_double, c_char_p]) # ier = cgio_get_data_type(int cgio_num, double id, char *data_type); self._proto("get_data_type", [c_int, c_double, c_char_p]) # ier = cgio_get_dimensions(int cgio_num, double id, int *ndims, cgsize_t *dims); self._proto( "get_dimensions", [c_int, c_double, POINTER(c_int), POINTER(self.cgsize_t)] ) # ier = cgio_get_label(int cgio_num, double id, char *label); self._proto("get_label", [c_int, c_double, c_char_p]) # ier = cgio_read_all_data_type(int cgio_num, double id, const char *m_data_type, void *data); self._proto("read_all_data_type", [c_int, c_double, c_char_p, c_void_p]) self.lib = _Prefixer(self.lib, self.prefix) def _proto(self, fname, argtypes): r = getattr(self.lib, self.prefix + fname) r.argtypes = argtypes r.errcheck = _errcheck def open(self, name): file = c_int() name = bytes(name, "utf-8") self.lib.open_file(name, CG_MODE_READ, CG_FILE_NONE, ctypes.byref(file)) rootid = c_double() self.lib.get_root_id(file, ctypes.byref(rootid)) return file, self._create_node(file, rootid) def _create_node(self, cgio_num, node_id): nc = c_int() self.lib.number_children(cgio_num, node_id, ctypes.byref(nc)) nc = nc.value ids = (c_double * nc)() num_ret = c_int() self.lib.children_ids(cgio_num, node_id, 1, nc, ctypes.byref(num_ret), ids) buf = create_string_buffer(32) self.lib.get_name(cgio_num, node_id, buf) name = buf.value.decode("utf-8") self.lib.get_label(cgio_num, node_id, buf) label = buf.value.decode("utf-8") self.lib.get_data_type(cgio_num, node_id, buf) dtype = buf.value.decode("utf-8") ndim = c_int() dims = (self.cgsize_t * 12)() self.lib.get_dimensions(cgio_num, node_id, ctypes.byref(ndim), dims) dims = list(dims[: ndim.value]) children = {} for i in ids: c = self._create_node(cgio_num, c_double(i)) children[c.name] = c return CGNSNode( name=name, id=node_id, children=children, dtype=dtype, dimensions=dims, label=label, ) def read_data(self, cgio_num, node): dim = list(reversed(node.dimensions)) isstring = node.dtype == "C1" and dim[-1] == 32 if isstring: dtype = "|S32" dim = dim[:-1] else: dtype = _CGNS_TO_NUMPY[node.dtype] buf = np.zeros(dim, dtype=dtype) self.lib.read_all_data_type( cgio_num, node.id, node.dtype.encode(), buf.ctypes.data ) if isstring: buf = buf.tolist() _bytetostr(buf) return buf _cgns_wrapper = _CGNSWrappers() def _bytetostr(alist): """Convert a list of numpy array of char to a list of string""" for i, e in enumerate(alist): if isinstance(e, list): _bytetostr(e) else: # This should not happen in valid CGNS file if len(alist[i]) == 0 or alist[i][0] == 0: alist[i] = None continue try: alist[i] = e.decode("utf-8").strip() except UnicodeDecodeError: alist[i] = None if alist[i] == "Null": alist[i] = None def _get_path(cgnsnode, path): r = cgnsnode.children.get(path[0]) if r is None or len(path) == 1: return r else: return _get_path(r, path[1:]) class Reader: def __init__(self, filename): # FIXME add a close method self.cgio_num, self.data = _cgns_wrapper.open(filename) def node(self, path=[]): """Return the meta data of a node""" return _get_path(self.data, path) def read_array(self, node): return _cgns_wrapper.read_data(self.cgio_num, node) def read_path(self, path): """Read the data associated to a path""" n = self.node(path) return None if n is None else self.read_array(n) if __name__ == "__main__": r = Reader("test.cgns") print(r.read_path(["Base", "TimeIterValues", "TimeValues"])) print(r.read_path(["Base", "0000001_T#1_WALL_2_1", "Elem"])) print(r.node(["Base", "TimeIterValues", "ZonePointers"])) print(r.read_path(["Base", "TimeIterValues", "ZonePointers"])) ```
{ "source": "jeromerobert/scikit-decide", "score": 2 }
#### File: scikit-decide/docs/autodoc.py ```python import ast import importlib import inspect import json import os import pkgutil import re import sys from functools import lru_cache from glob import glob import skdecide refs = set() header_comment = '# %%\n' # https://github.com/kiwi0fruit/ipynb-py-convert/blob/master/ipynb_py_convert/__main__.py def py2nb(py_str): cells = [] chunks = py_str.split(f'\n\n{header_comment}')[1:] for chunk in chunks: cell_type = 'code' chunk = chunk.strip() if chunk.startswith("'''"): chunk = chunk.strip("'\n") cell_type = 'markdown' cell = { 'cell_type': cell_type, 'metadata': {}, 'source': chunk.splitlines(True), } if cell_type == 'code': cell.update({'outputs': [], 'execution_count': None}) cells.append(cell) notebook = { 'cells': cells, 'metadata': { 'anaconda-cloud': {}, 'kernelspec': { 'display_name': 'Python 3', 'language': 'python', 'name': 'python3'}, 'language_info': { 'codemirror_mode': {'name': 'ipython', 'version': 3}, 'file_extension': '.py', 'mimetype': 'text/x-python', 'name': 'python', 'nbconvert_exporter': 'python', 'pygments_lexer': 'ipython3', 'version': '3.6.1'}}, 'nbformat': 4, 'nbformat_minor': 1 } return notebook # https://stackoverflow.com/questions/48879353/how-do-you-recursively-get-all-submodules-in-a-python-package def find_abs_modules(package): path_list = [] spec_list = [] for importer, modname, ispkg in pkgutil.walk_packages(package.__path__): import_path = f'{package.__name__}.{modname}' if ispkg: spec = pkgutil._get_spec(importer, modname) try: importlib._bootstrap._load(spec) spec_list.append(spec) except Exception as e: print(f'Could not load package {modname}, so it will be ignored ({e}).') else: path_list.append(import_path) for spec in spec_list: del sys.modules[spec.name] return path_list def py_parse(filepath): # avoid using ast package just for extracting file doc string? with open(filepath) as fd: file_contents = fd.read() module = ast.parse(file_contents) docstring = ast.get_docstring(module) docstring = '' if docstring is None else docstring.strip() name = os.path.splitext(os.path.basename(filepath))[0] return docstring, name, file_contents @lru_cache(maxsize=1000) def get_ref(object): name = getattr(object, '__qualname__', None) if name is None: name = getattr(object, '__name__', None) if name is None: name = object._name reflist = [name] if hasattr(object, '__module__'): reflist.insert(0, object.__module__) ref = '.'.join(reflist) refs.add(ref) return ref def format_doc(doc): # Replace references like "#obj.func()" by "`obj.func()`" for Markdown code highlighting - TODO: replace in doc? doc = re.sub(r'#(?P<ref>[\w\.,()]*[\w()])', lambda m: f'`{m.group("ref")}`', doc) # Replace content of "# Parameters" by list of parameters def list_content(content): content = re.sub(r'^(?P<param>\w+)', lambda m: f'- **{m.group("param")}**', content, flags=re.MULTILINE) return content.strip() doc = re.sub(r'^(?<=# Parameters\n)(?P<content>(?:\n?\s*\w.*)+)', lambda m: list_content(m.group("content")), doc, flags=re.MULTILINE) # Replace "# Title" (e.g. "# Parameters") by "#### Title" doc = re.sub(r'^# (?=Parameters|Returns|Example)', '#### ', doc, flags=re.MULTILINE) # Replace "!!! container" (e.g. "!!! tip") by "::: container [...] :::" def strip_content(content): content = re.sub(r'^ {4}', '', content, flags=re.MULTILINE) return content.rstrip() doc = re.sub(r'!!! (?=tip|warning|danger)(?P<head>.*)\n(?P<content>(?:\n? {4,}.*)+)', lambda m: f'::: {m.group("head")}\n{strip_content(m.group("content"))}\n:::', doc) return doc def add_func_method_infos(func_method, autodoc): if inspect.isfunction(func_method): autodoc['type'] = 'function' elif inspect.ismethod(func_method): autodoc['type'] = 'method' # Get signature signature = inspect.signature(func_method) parameters = signature.parameters params = [] for k, v in parameters.items(): if not (k == 'self' and func_method.__name__ == '__init__'): parameter = parameters[k] param = {'name': k} if parameter.default != signature.empty: param['default'] = str(parameter.default) if 'lambda' in param['default']: param['default'] = '<lambda function>' # TODO: improve? if parameter.annotation != signature.empty: param['annotation'] = parameter.annotation params.append(param) autodoc['signature'] = {'params': params} if signature.return_annotation != signature.empty: autodoc['signature']['return'] = signature.return_annotation def add_basic_member_infos(member, autodoc): try: autodoc['ref'] = get_ref(member) source, line = inspect.getsourcelines(member) autodoc['source'] = ''.join(source) # TODO: keep? autodoc['line'] = line doc = inspect.getdoc(member) if doc is not None: autodoc['doc'] = format_doc(doc) except Exception: # can happen e.g. when member is TypeVar pass def json_escape(obj): return json.dumps(obj).replace("'", r"\'").replace('"', "'") def md_escape(md): return re.sub(r'[_<>]', lambda m: f'\\{m.group()}', md) def doc_escape(md): return re.sub(r'[<]', lambda m: f'\\{m.group()}', md) def write_signature(md, member): if 'signature' in member: escape_json_sig = json_escape(member['signature']) md += f'<skdecide-signature name= "{member["name"]}" :sig="{escape_json_sig}"></skdecide-signature>\n\n' return md def is_implemented(func_code): return not func_code.strip().endswith('raise NotImplementedError') if __name__ == '__main__': # ========== GATHER AUTODOC INFOS ========== # Get all scikit-decide (sub)modules modules = [] for m in find_abs_modules(skdecide): try: module = importlib.import_module(m) modules.append(module) except Exception as e: print(f'Could not load module {m}, so it will be ignored ({e}).') autodocs = [] for module in modules: autodoc = {} # Get module-level infos autodoc['ref'] = get_ref(module) doc = inspect.getdoc(module) if doc is not None: autodoc['doc'] = format_doc(doc) members = inspect.getmembers(module, lambda x: inspect.getmodule(x) == module) autodoc_members = [] for member_name, member in members: member = inspect.unwrap(member) # Get member-level infos if getattr(member, '__doc__', None) is not None: autodoc_member = {} autodoc_member['name'] = member_name add_basic_member_infos(member, autodoc_member) if inspect.isfunction(member): add_func_method_infos(member, autodoc_member) elif inspect.isclass(member): autodoc_member['type'] = 'class' autodoc_member['bases'] = list(map(get_ref, member.__bases__)) if member.__bases__ != (object,) else None autodoc_member['inheritance'] = list(map(get_ref, inspect.getmro(member)[:-1])) submembers = inspect.getmembers(member) autodoc_submembers = [] for submember_name, submember in submembers: submember = inspect.unwrap(submember) # Get class member-level infos if submember_name == '__init__' or not submember_name.startswith('__'): autodoc_submember = {} autodoc_submember['name'] = submember_name if submember_name != '__init__' else member_name add_basic_member_infos(submember, autodoc_submember) # Find original owner class of this member (in class inheritance) if submember_name == '__init__': autodoc_submember['owner'] = member_name else: for cls in inspect.getmro(member): if hasattr(cls, submember_name): autodoc_submember['owner'] = cls.__name__ if inspect.isfunction(submember) or inspect.ismethod(submember) or submember_name == '__init__': add_func_method_infos(submember, autodoc_submember) else: # Class variables (e.g. T_memory, T_agent...) autodoc_submember['type'] = 'variable' if 'doc' in autodoc_submember or autodoc_submember.get('type') == 'variable': autodoc_submembers.append(autodoc_submember) autodoc_member['members'] = sorted(autodoc_submembers, key=lambda x: x['line'] if 'line' in x else 0) if 'doc' in autodoc_member: autodoc_members.append(autodoc_member) autodoc['members'] = sorted(autodoc_members, key=lambda x: x['line'] if 'line' in x else 0) autodocs.append(autodoc) # ========== GENERATE MARKDOWN FILES ========== # Remove all previously auto-generated files for oldpath in glob('reference/_*.md') + glob('guide/_*.md') + glob('.vuepress/public/notebooks/*.ipynb'): os.remove(oldpath) # Generate Reference Markdown files (reference/_skdecide.*.md) for module in autodocs: # Initiate Markdown md = '' # Write module title md += f'# {module["ref"].split(".", 1)[-1]}\n\n' # Write module doc (if any) if 'doc' in module: md += f'{module["doc"]}\n\n' # Write Table Of Content md += '[[toc]]\n\n' # Write domain spec summary md += '::: tip\n<skdecide-summary></skdecide-summary>\n:::\n\n' # Write members for member in module['members']: # Write member title md += f'## {md_escape(member["name"])}\n\n' # Write member signature (if any) md = write_signature(md, member) # Write member doc (if any) if 'doc' in member: md += f'{doc_escape(member["doc"])}\n\n' # Write submembers (if any) if 'members' in member: for submember in sorted(member['members'], key=lambda x: (x['name'].startswith('_'), x['name'])): if submember['type'] != 'variable': # Write submember title md += f'### {md_escape(submember["name"]) if submember["name"] != member["name"] else "Constructor"}' \ f' <Badge text="{submember["owner"]}" type="{"tip" if submember["owner"] == member["name"] else "warn"}"/>\n\n' # Write submember signature (if any) md = write_signature(md, submember) # Write submember doc (if any) if 'doc' in submember: md += f'{doc_escape(submember["doc"])}\n\n' with open(f'reference/_{module["ref"]}.md', 'w') as f: f.write(md) # Write Reference index (reference/README.md) REF_INDEX_MAXDEPTH = 5 ref_entries = sorted([tuple(m['ref'].split('.')) for m in autodocs], key=lambda x: (len(x), x)) # sorted entries ref_entries = filter(lambda e: len(e) <= REF_INDEX_MAXDEPTH, ref_entries) # filter out by max depth ref_entries = [{'text': e[-1], 'link': '.'.join(e), 'section': e[:-1]} for e in ref_entries] # organize entries reference = '' sections = set() for e in ref_entries: for i in range(1, len(e['section']) + 1): section = e['section'][:i] if section not in sections: title = 'Reference' if section[-1] != 'skdecide': title = section[-1] reference += '\n' reference += f'{"".join(["#"]*i)} {title}\n\n' sections.add(section) reference += f'- <router-link to="_{e["link"]}">{e["text"]}</router-link>\n' with open(f'reference/README.md', 'w') as f: f.write(reference) # Write Domain/Solver Specification pages (guide/_domainspec.md & guide/_solverspec.md) state = { 'selection': {}, 'templates': {}, 'characteristics': {}, 'methods': {}, 'types': {}, 'signatures': {}, 'objects': {} } for element in ['domain', 'solver']: spec = '' characteristics = [module for module in autodocs if module['ref'].startswith(f'skdecide.builders.{element}.')] default_characteristics = {c['ref'].split('.')[-1].capitalize(): '(none)' for c in characteristics} tmp_templates = [] for template in [member for module in autodocs if module['ref'] == f'skdecide.{element}s' for member in module['members']]: if template['name'] == element.capitalize(): mandatory_characteristics = [base.split('.')[-2].capitalize() for base in template['bases'] or []] tmp_templates.append({'name': template['name'], 'characteristics': dict(default_characteristics, **{base.split('.')[-2].capitalize(): base.split('.')[-1] for base in template['bases'] or [] if base.split('.')[-1] != element.capitalize()})}) spec += f'<template v-slot:{template["name"]}>\n\n' if 'doc' in template: spec += f'{doc_escape(template["doc"])}\n\n' spec += '</template>\n\n' tmp_characteristics = [] for characteristic in characteristics: characteristic_name = characteristic['ref'].split('.')[-1].capitalize() tmp_characteristics.append({'name': characteristic_name, 'levels': []}) if characteristic_name not in mandatory_characteristics: tmp_characteristics[-1]['levels'].append('(none)') for level in characteristic['members']: tmp_characteristics[-1]['levels'].append(level['name']) spec += f'<template v-slot:{level["name"]}>\n\n' if 'doc' in level: spec += f'{doc_escape(level["doc"])}\n\n' spec += '</template>\n\n' state['selection'][element] = { 'template': tmp_templates[0]['name'], 'characteristics': tmp_templates[0]['characteristics'], 'showFinetunedOnly': True } if element == 'domain': state['selection'][element]['simplifySignatures'] = True state['templates'][element] = tmp_templates state['characteristics'][element] = tmp_characteristics spec = '---\n' \ 'navbar: false\n' \ 'sidebar: false\n' \ '---\n\n' \ f'<skdecide-spec{" isSolver" if element == "solver" else ""}>\n\n' + spec spec += '</skdecide-spec>\n\n' with open(f'guide/_{element}spec.md', 'w') as f: f.write(spec) # Write Json state (.vuepress/_state.json) state['objects'] = {member['name']: f'/reference/_skdecide.core.html#{member["name"].lower()}' for module in autodocs if module['ref'] == 'skdecide.core' for member in module['members']} for element in ['domain', 'solver']: tmp_methods = {} # TODO: detect classmethods/staticmethods to add decorator in code generator (only necessary if there was any NotImplemented classmethod/staticmethod in base template or any characteristic level) tmp_types = {} tmp_signatures = {} for module in autodocs: if module['ref'].startswith(f'skdecide.builders.{element}.'): not_implemented = set() for level in module.get('members', []): level_name = level['name'] types_dict = {} for member in level.get('members', []): member_name = member['name'] if member['type'] == 'function': tmp_signatures[member_name] = member['signature'] if is_implemented(member['source']): not_implemented.discard(member_name) else: not_implemented.add(member_name) elif member['type'] == 'variable': types_dict[member_name] = member['ref'] tmp_methods[level_name] = list(not_implemented) tmp_types[level_name] = types_dict elif module['ref'] == f'skdecide.{element}s': for template in module['members']: if template['name'] == element.capitalize(): tmp_methods[element] = [] for member in template.get('members', []): if member['type'] == 'function' and member['owner'] == element.capitalize() and not is_implemented(member['source']): member_name = member['name'] tmp_signatures[member_name] = member['signature'] tmp_methods[element].append(member_name) state['methods'][element] = tmp_methods state['types'][element] = tmp_types state['signatures'][element] = tmp_signatures with open('.vuepress/_state.json', 'w') as f: json.dump(state, f) # Convert selected examples to notebooks & write Examples page (guide/_examples.md) examples = '# Examples\n\n' selected_examples = [] for example in glob('../examples/*.py'): docstr, name, code = py_parse(example) if docstr.startswith('Example '): selected_examples.append((docstr, name, code)) sorted_examples = sorted(selected_examples) for docstr, name, code in sorted_examples: examples += f'## {docstr[docstr.index(":")+1:]}\n\n' examples += f'<el-link type="primary" icon="el-icon-bottom" :underline="false" style="margin: 10px" href="/notebooks/{name}.ipynb">Download Notebook</el-link>\n' examples += f'<el-link type="warning" icon="el-icon-cloudy" :underline="false" style="margin: 10px" href="https://colab.research.google.com/github/airbus/scikit-decide/blob/gh-pages/notebooks/{name}.ipynb">Run in Google Colab</el-link>\n\n' notebook = py2nb(code) for cell in notebook.get('cells', []): cell_type = cell['cell_type'] cell_source = ''.join(cell['source']) if cell_type == 'markdown': examples += f'{cell_source}\n\n' elif cell_type == 'code': examples += f'``` py\n{cell_source}\n```\n\n' with open(f'.vuepress/public/notebooks/{name}.ipynb', 'w') as f: json.dump(notebook, f, indent=2) with open('guide/_examples.md', 'w') as f: f.write(examples) ``` #### File: scikit-decide/examples/riw_gym_solver.py ```python import gym import numpy as np from typing import Callable from skdecide.hub.domain.gym import DeterministicGymDomain, GymWidthDomain, GymDiscreteActionDomain from skdecide.hub.solver.riw import RIW from skdecide.utils import rollout ENV_NAME = 'CartPole-v0' HORIZON = 200 class D(DeterministicGymDomain, GymWidthDomain, GymDiscreteActionDomain): pass class GymRIWDomain(D): """This class wraps a cost-based deterministic OpenAI Gym environment as a domain usable by a width-based planner !!! warning Using this class requires OpenAI Gym to be installed. """ def __init__(self, gym_env: gym.Env, set_state: Callable[[gym.Env, D.T_memory[D.T_state]], None] = None, get_state: Callable[[gym.Env], D.T_memory[D.T_state]] = None, continuous_feature_fidelity: int = 1, discretization_factor: int = 10, branching_factor: int = None, max_depth: int = 50) -> None: """Initialize GymRIWDomain. # Parameters gym_env: The deterministic Gym environment (gym.env) to wrap. set_state: Function to call to set the state of the gym environment. If None, default behavior is to deepcopy the environment when changing state get_state: Function to call to get the state of the gym environment. If None, default behavior is to deepcopy the environment when changing state continuous_feature_fidelity: Number of integers to represent a continuous feature in the interval-based feature abstraction (higher is more precise) discretization_factor: Number of discretized action variable values per continuous action variable branching_factor: if not None, sample branching_factor actions from the resulting list of discretized actions max_depth: maximum depth of states to explore from the initial state """ DeterministicGymDomain.__init__(self, gym_env=gym_env, set_state=set_state, get_state=get_state) GymDiscreteActionDomain.__init__(self, discretization_factor=discretization_factor, branching_factor=branching_factor) GymWidthDomain.__init__(self, continuous_feature_fidelity=continuous_feature_fidelity) gym_env._max_episode_steps = max_depth domain_factory = lambda: GymRIWDomain(gym_env=gym.make(ENV_NAME), continuous_feature_fidelity=5, discretization_factor=3, max_depth=HORIZON) domain = domain_factory() domain.reset() if RIW.check_domain(domain): solver_factory = lambda: RIW(domain_factory=domain_factory, state_features=lambda d, s: d.bee2_features(s), use_state_feature_hash=False, use_simulation_domain=True, time_budget=200, rollout_budget=1000, max_depth=200, exploration=0.25, parallel=False, debug_logs=False) with solver_factory() as solver: GymRIWDomain.solve_with(solver, domain_factory) initial_state = solver._domain.reset() rollout(domain, solver, from_memory=initial_state, num_episodes=1, max_steps=HORIZON-1, max_framerate=30, outcome_formatter=lambda o: f'{o.observation} - cost: {o.value.cost:.2f}') ``` #### File: builders/domain/initialization.py ```python from __future__ import annotations import functools from skdecide.core import D, Distribution, SingleValueDistribution, autocastable __all__ = ['Initializable', 'UncertainInitialized', 'DeterministicInitialized'] class Initializable: """A domain must inherit this class if it can be initialized.""" @autocastable def reset(self) -> D.T_agent[D.T_observation]: """Reset the state of the environment and return an initial observation. By default, #Initializable.reset() provides some boilerplate code and internally calls #Initializable._reset() (which returns an initial state). The boilerplate code automatically stores the initial state into the #_memory attribute and samples a corresponding observation. # Returns An initial observation. """ return self._reset() def _reset(self) -> D.T_agent[D.T_observation]: """Reset the state of the environment and return an initial observation. By default, #Initializable._reset() provides some boilerplate code and internally calls #Initializable._state_reset() (which returns an initial state). The boilerplate code automatically stores the initial state into the #_memory attribute and samples a corresponding observation. # Returns An initial observation. """ initial_state = self._state_reset() self._memory = self._init_memory(initial_state) initial_observation = self._get_observation_distribution(initial_state).sample() return initial_observation def _state_reset(self) -> D.T_state: """Reset the state of the environment and return an initial state. This is a helper function called by default from #Initializable._reset(). It focuses on the state level, as opposed to the observation one for the latter. # Returns An initial state. """ raise NotImplementedError class UncertainInitialized(Initializable): """A domain must inherit this class if its states are initialized according to a probability distribution known as white-box.""" def _state_reset(self) -> D.T_state: initial_state = self._get_initial_state_distribution().sample() return initial_state @autocastable def get_initial_state_distribution(self) -> Distribution[D.T_state]: """Get the (cached) probability distribution of initial states. By default, #UncertainInitialized.get_initial_state_distribution() internally calls #UncertainInitialized._get_initial_state_distribution_() the first time and automatically caches its value to make future calls more efficient (since the initial state distribution is assumed to be constant). # Returns The probability distribution of initial states. """ return self._get_initial_state_distribution() @functools.lru_cache() def _get_initial_state_distribution(self) -> Distribution[D.T_state]: """Get the (cached) probability distribution of initial states. By default, #UncertainInitialized._get_initial_state_distribution() internally calls #UncertainInitialized._get_initial_state_distribution_() the first time and automatically caches its value to make future calls more efficient (since the initial state distribution is assumed to be constant). # Returns The probability distribution of initial states. """ return self._get_initial_state_distribution_() def _get_initial_state_distribution_(self) -> Distribution[D.T_state]: """Get the probability distribution of initial states. This is a helper function called by default from #UncertainInitialized._get_initial_state_distribution(), the difference being that the result is not cached here. !!! tip The underscore at the end of this function's name is a convention to remind that its result should be constant. # Returns The probability distribution of initial states. """ raise NotImplementedError class DeterministicInitialized(UncertainInitialized): """A domain must inherit this class if it has a deterministic initial state known as white-box.""" def _get_initial_state_distribution_(self) -> Distribution[D.T_state]: return SingleValueDistribution(self._get_initial_state()) @autocastable def get_initial_state(self) -> D.T_state: """Get the (cached) initial state. By default, #DeterministicInitialized.get_initial_state() internally calls #DeterministicInitialized._get_initial_state_() the first time and automatically caches its value to make future calls more efficient (since the initial state is assumed to be constant). # Returns The initial state. """ return self._get_initial_state() @functools.lru_cache() def _get_initial_state(self) -> D.T_state: """Get the (cached) initial state. By default, #DeterministicInitialized._get_initial_state() internally calls #DeterministicInitialized._get_initial_state_() the first time and automatically caches its value to make future calls more efficient (since the initial state is assumed to be constant). # Returns The initial state. """ return self._get_initial_state_() def _get_initial_state_(self) -> D.T_state: """Get the initial state. This is a helper function called by default from #DeterministicInitialized._get_initial_state(), the difference being that the result is not cached here. # Returns The initial state. """ raise NotImplementedError ``` #### File: builders/solver/assessability.py ```python from __future__ import annotations from skdecide.core import D, autocastable __all__ = ['Utilities', 'QValues'] class Utilities: """A solver must inherit this class if it can provide the utility function (i.e. value function).""" @autocastable def get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: """Get the estimated on-policy utility of the given observation. In mathematical terms, for a fully observable domain, this function estimates: $$V^\\pi(s)=\\underset{\\tau\\sim\\pi}{\\mathbb{E}}[R(\\tau)|s_0=s]$$ where $\\pi$ is the current policy, any $\\tau=(s_0,a_0, s_1, a_1, ...)$ represents a trajectory sampled from the policy, $R(\\tau)$ is the return (cumulative reward) and $s_0$ the initial state for the trajectories. # Parameters observation: The observation to consider. # Returns The estimated on-policy utility of the given observation. """ return self._get_utility(observation) def _get_utility(self, observation: D.T_agent[D.T_observation]) -> D.T_value: """Get the estimated on-policy utility of the given observation. In mathematical terms, for a fully observable domain, this function estimates: $$V^\\pi(s)=\\underset{\\tau\\sim\\pi}{\\mathbb{E}}[R(\\tau)|s_0=s]$$ where $\\pi$ is the current policy, any $\\tau=(s_0,a_0, s_1, a_1, ...)$ represents a trajectory sampled from the policy, $R(\\tau)$ is the return (cumulative reward) and $s_0$ the initial state for the trajectories. # Parameters observation: The observation to consider. # Returns The estimated on-policy utility of the given observation. """ raise NotImplementedError class QValues(Utilities): """A solver must inherit this class if it can provide the Q function (i.e. action-value function).""" @autocastable def get_q_value(self, observation: D.T_agent[D.T_observation], action: D.T_agent[D.T_concurrency[D.T_event]]) -> D.T_value: """Get the estimated on-policy Q value of the given observation and action. In mathematical terms, for a fully observable domain, this function estimates: $$Q^\\pi(s,a)=\\underset{\\tau\\sim\\pi}{\\mathbb{E}}[R(\\tau)|s_0=s,a_0=a]$$ where $\\pi$ is the current policy, any $\\tau=(s_0,a_0, s_1, a_1, ...)$ represents a trajectory sampled from the policy, $R(\\tau)$ is the return (cumulative reward) and $s_0$/$a_0$ the initial state/action for the trajectories. # Parameters observation: The observation to consider. action: The action to consider. # Returns The estimated on-policy Q value of the given observation and action. """ return self._get_q_value(observation, action) def _get_q_value(self, observation: D.T_agent[D.T_observation], action: D.T_agent[D.T_concurrency[D.T_event]]) -> D.T_value: """Get the estimated on-policy Q value of the given observation and action. In mathematical terms, for a fully observable domain, this function estimates: $$Q^\\pi(s,a)=\\underset{\\tau\\sim\\pi}{\\mathbb{E}}[R(\\tau)|s_0=s,a_0=a]$$ where $\\pi$ is the current policy, any $\\tau=(s_0,a_0, s_1, a_1, ...)$ represents a trajectory sampled from the policy, $R(\\tau)$ is the return (cumulative reward) and $s_0$/$a_0$ the initial state/action for the trajectories. # Parameters observation: The observation to consider. action: The action to consider. # Returns The estimated on-policy Q value of the given observation and action. """ raise NotImplementedError ``` #### File: domain/maze/maze.py ```python from __future__ import annotations from copy import deepcopy from enum import Enum from typing import NamedTuple, Optional, Any import matplotlib.pyplot as plt from skdecide import DeterministicPlanningDomain, TransitionValue, Space from skdecide.builders.domain import UnrestrictedActions, Renderable from skdecide.hub.space.gym import ListSpace, EnumSpace, MultiDiscreteSpace DEFAULT_MAZE = ''' +-+-+-+-+o+-+-+-+-+-+ | | | | + + + +-+-+-+ +-+ + + | | | | | | | | + +-+-+ +-+ + + + +-+ | | | | | | | + + + + + + + +-+ +-+ | | | | | | +-+-+-+-+-+-+-+ +-+ + | | | | + +-+-+-+-+ + +-+-+ + | | | | + + + +-+ +-+ +-+-+-+ | | | | | | + +-+-+ + +-+ + +-+ + | | | | | | | | +-+ +-+ + + + +-+ + + | | | | | | | + +-+ +-+-+-+-+ + + + | | | | | +-+-+-+-+-+x+-+-+-+-+ ''' class State(NamedTuple): x: int y: int class Action(Enum): up = 0 down = 1 left = 2 right = 3 class D(DeterministicPlanningDomain, UnrestrictedActions, Renderable): T_state = State # Type of states T_observation = T_state # Type of observations T_event = Action # Type of events T_value = float # Type of transition values (rewards or costs) T_info = None # Type of additional information given as part of an environment outcome class Maze(D): def __init__(self, maze_str: str = DEFAULT_MAZE): maze = [] for y, line in enumerate(maze_str.strip().split('\n')): line = line.rstrip() row = [] for x, c in enumerate(line): if c in {' ', 'o', 'x'}: row.append(1) # spaces are 1s if c == 'o': self._start = State(x, y) if c == 'x': self._goal = State(x, y) else: row.append(0) # walls are 0s maze.append(row) # self._render_maze = deepcopy(self._maze) self._maze = maze self._num_cols = len(maze[0]) self._num_rows = len(maze) self._ax = None self._image = None def _get_next_state(self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]]) -> D.T_state: if action == Action.left: next_state = State(memory.x - 1, memory.y) if action == Action.right: next_state = State(memory.x + 1, memory.y) if action == Action.up: next_state = State(memory.x, memory.y - 1) if action == Action.down: next_state = State(memory.x, memory.y + 1) # If candidate next state is valid if 0 <= next_state.x < self._num_cols and 0 <= next_state.y < self._num_rows and self._maze[next_state.y][ next_state.x] == 1: return next_state else: return memory def _get_transition_value(self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], next_state: Optional[D.T_state] = None) -> D.T_agent[TransitionValue[D.T_value]]: if next_state.x == memory.x and next_state.y == memory.y: cost = 2 # big penalty when hitting a wall else: cost = abs(next_state.x - memory.x) + abs(next_state.y - memory.y) # every move costs 1 return TransitionValue(cost=cost) def _is_terminal(self, state: D.T_state) -> bool: return self._is_goal(state) def _get_action_space_(self) -> D.T_agent[Space[D.T_event]]: return EnumSpace(Action) def _get_goals_(self) -> D.T_agent[Space[D.T_observation]]: return ListSpace([self._goal]) def _get_initial_state_(self) -> D.T_state: return self._start def _get_observation_space_(self) -> D.T_agent[Space[D.T_observation]]: return MultiDiscreteSpace([self._num_cols, self._num_rows]) def _render_from(self, memory: D.T_memory[D.T_state], **kwargs: Any) -> Any: if self._ax is None: # fig = plt.gcf() fig, ax = plt.subplots(1) fig.canvas.set_window_title('Maze') # ax = plt.axes() ax.set_aspect('equal') # set the x and y axes to the same scale plt.xticks([]) # remove the tick marks by setting to an empty list plt.yticks([]) # remove the tick marks by setting to an empty list ax.invert_yaxis() # invert the y-axis so the first row of data is at the top self._ax = ax plt.ion() maze = deepcopy(self._maze) maze[self._goal.y][self._goal.x] = 0.7 maze[memory.y][memory.x] = 0.3 if self._image is None: self._image = self._ax.imshow(maze) else: self._image.set_data(maze) # self._ax.pcolormesh(maze) # plt.draw() plt.pause(0.001) ``` #### File: domain/simple_grid_world/simple_grid_world.py ```python from __future__ import annotations from enum import Enum from typing import NamedTuple, Optional from skdecide import DeterministicPlanningDomain, TransitionValue, Space from skdecide.builders.domain import UnrestrictedActions from skdecide.hub.space.gym import ListSpace, EnumSpace, MultiDiscreteSpace class State(NamedTuple): x: int y: int class Action(Enum): up = 0 down = 1 left = 2 right = 3 class D(DeterministicPlanningDomain, UnrestrictedActions): T_state = State # Type of states T_observation = T_state # Type of observations T_event = Action # Type of events T_value = float # Type of transition values (rewards or costs) T_info = None # Type of additional information given as part of an environment outcome class SimpleGridWorld(D): def __init__(self, num_cols=10, num_rows=10): self.num_cols = num_cols self.num_rows = num_rows def _get_next_state(self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]]) -> D.T_state: if action == Action.left: next_state = State(max(memory.x - 1, 0), memory.y) if action == Action.right: next_state = State(min(memory.x + 1, self.num_cols - 1), memory.y) if action == Action.up: next_state = State(memory.x, max(memory.y - 1, 0)) if action == Action.down: next_state = State(memory.x, min(memory.y + 1, self.num_rows - 1)) return next_state def _get_transition_value(self, memory: D.T_memory[D.T_state], action: D.T_agent[D.T_concurrency[D.T_event]], next_state: Optional[D.T_state] = None) -> D.T_agent[TransitionValue[D.T_value]]: if next_state.x == memory.x and next_state.y == memory.y: cost = 2 # big penalty when hitting a wall else: cost = abs(next_state.x - memory.x) + abs(next_state.y - memory.y) # every move costs 1 return TransitionValue(cost=cost) def _is_terminal(self, state: D.T_state) -> bool: return self._is_goal(state) def _get_action_space_(self) -> D.T_agent[Space[D.T_event]]: return EnumSpace(Action) def _get_goals_(self) -> D.T_agent[Space[D.T_observation]]: return ListSpace([State(x=self.num_cols - 1, y=self.num_rows - 1)]) def _get_initial_state_(self) -> D.T_state: return State(x=0, y=0) def _get_observation_space_(self) -> D.T_agent[Space[D.T_observation]]: return MultiDiscreteSpace([self.num_cols, self.num_rows]) ``` #### File: solver/ars/ars.py ```python from __future__ import annotations import numpy as np import gym from typing import Callable from collections.abc import Iterable from skdecide import Domain, Solver from skdecide.hub.solver.cgp import cgp from skdecide.builders.solver import Policies, Restorable from skdecide.builders.domain import SingleAgent, Sequential, Environment, UnrestrictedActions, Initializable, History, \ PartiallyObservable, Rewards class D(Domain, SingleAgent, Sequential, Environment, UnrestrictedActions, Initializable, History, PartiallyObservable, Rewards): pass #for normalizing states class Normalizer(): def __init__(self, nb_inputs): self.n = np.zeros(nb_inputs) self.mean = np.zeros(nb_inputs) self.mean_diff = np.zeros(nb_inputs) self.var = np.zeros(nb_inputs) def observe(self, x): self.n += 1. last_mean = self.mean.copy() self.mean += (x - self.mean) / self.n self.mean_diff += (x - last_mean) * (x - self.mean) self.var = (self.mean_diff / self.n).clip(min=1e-2) def normalize(self, inputs): if self.n[0] <= 1: return inputs obs_mean = self.mean obs_std = np.sqrt(self.var) return (inputs - obs_mean) / obs_std def flatten(c): """ Generator flattening the structure """ for x in c: if isinstance(x, str) or not isinstance(x, Iterable): yield x else: yield from flatten(x) class AugmentedRandomSearch(Solver, Policies, Restorable): T_domain = D def __init__(self, n_epochs=1000, epoch_size=1000, directions = 10, top_directions = 3, learning_rate = 0.02, policy_noise = 0.03, reward_maximization = True ) -> None: self.env = None self.n_epochs = n_epochs self.learning_rate = learning_rate self.epoch_size = epoch_size self.directions = directions self.top_directions = top_directions self.policy = None self.policy_noise = policy_noise self.reward_maximization = reward_maximization assert self.top_directions <= self.directions def evaluate_policy(self, state, delta=None, direction=None): if direction is None: return self.policy.dot(state) elif direction == "positive": return (self.policy + self.policy_noise * delta).dot(state) else: return (self.policy - self.policy_noise * delta).dot(state) def explore(self, normalizer, direction=None, delta=None): state = self.env.reset() done = False num_plays = 0. sum_rewards = 0 while not done and num_plays < self.epoch_size: state = cgp.norm_and_flatten(state, self.env.get_observation_space().unwrapped()) action = self.evaluate_policy(state, delta, direction) action = cgp.denorm(action, self.env.get_action_space().unwrapped()) state, transition_value, done, _ = self.env.step(action).astuple() reward = transition_value[0] reward = max(min(reward, 1), -1) if not np.isnan(reward): sum_rewards += reward num_plays += 1 return sum_rewards def update_policy(self, rollouts, sigma_r): step = np.zeros(self.policy.shape) for r_pos, r_neg, d in rollouts: step += (r_pos - r_neg) * d if self.top_directions == 0 or sigma_r == 0: return self.policy += self.learning_rate / (self.top_directions * sigma_r) * step def get_dimension_space(self, space): if isinstance(space, gym.spaces.Tuple): dim = 0 for element in space: dim += self.get_dimension_space(element) return dim elif isinstance(space, gym.spaces.Discrete): return 1 else: return space.shape[0] def generate_perturbations(self, space): if isinstance(space, gym.spaces.Tuple): perturbations = [] for element in space: perturbations += self.generate_perturbations(element) return perturbations if isinstance(space, gym.spaces.Discrete): return 2*np.random.random_integers(space.n) / space.n -1 else: return 2*np.random.random_sample()-1 def _solve_domain(self, domain_factory: Callable[[], D]) -> None: self.env = domain_factory() np.random.seed(0) input_size = self.get_dimension_space(self.env.get_observation_space().unwrapped()) output_size = self.get_dimension_space(self.env.get_action_space().unwrapped()) self.policy = np.zeros((output_size, input_size)) normalizer = Normalizer(input_size) for step in range(self.n_epochs): # Initializing the perturbations deltas and the positive/negative rewards deltas = [2* np.random.random_sample(self.policy.shape)-1 for _ in range(self.directions)] positive_rewards = [0] * self.directions negative_rewards = [0] * self.directions # Getting the positive rewards in the positive directions for k in range(self.directions): positive_rewards[k] = self.explore(normalizer, direction="positive", delta=deltas[k]) # Getting the negative rewards in the negative/opposite directions for k in range(self.directions): negative_rewards[k] = self.explore(normalizer, direction="negative", delta=deltas[k]) # Gathering all the positive/negative rewards to compute the standard deviation of these rewards all_rewards = np.array(positive_rewards + negative_rewards) sigma_r = all_rewards.std() # Sorting the rollouts by the max(r_pos, r_neg) and selecting the best directions scores = {k: max(r_pos, r_neg) for k, (r_pos, r_neg) in enumerate(zip(positive_rewards, negative_rewards))} order = sorted(scores.keys(), key=lambda x: scores[x], reverse=self.reward_maximization)[:self.top_directions] rollouts = [(positive_rewards[k], negative_rewards[k], deltas[k]) for k in order] # Updating our policy self.update_policy(rollouts, sigma_r) # Printing the final reward of the policy after the update reward_evaluation = self.explore(normalizer) print('Step:', step, 'Reward:', reward_evaluation, 'Policy', self.policy) print('Final Reward:', reward_evaluation, 'Policy', self.policy) def _sample_action(self, observation: D.T_agent[D.T_observation]) -> D.T_agent[D.T_concurrency[D.T_event]]: #print('observation', observation, 'Policy', self.policy) action = self.policy.dot(cgp.norm_and_flatten(observation, self.env.get_observation_space().unwrapped())) action = cgp.denorm(action, self.env.get_action_space().unwrapped()) return action ``` #### File: cgp/pycgp/cgpes.py ```python import os import numpy as np from .cgp import CGP from .evaluator import Evaluator from joblib import Parallel, delayed class CGPES: def __init__(self, num_offsprings, mutation_rate_nodes, mutation_rate_outputs, father, evaluator, folder='genomes', num_cpus = 1): self.num_offsprings = num_offsprings self.mutation_rate_nodes = mutation_rate_nodes self.mutation_rate_outputs = mutation_rate_outputs self.father = father #self.num_mutations = int(len(self.father.genome) * self.mutation_rate) self.evaluator = evaluator self.num_cpus = num_cpus self.folder = folder if self.num_cpus > 1: self.evaluator_pool = [] for i in range(self.num_offsprings): self.evaluator_pool.append(self.evaluator.clone()) def run(self, num_iteration): if not os.path.isdir(self.folder): os.mkdir(self.folder) self.logfile = open(self.folder + '/out.txt', 'w') self.current_fitness = self.evaluator.evaluate(self.father, 0) self.father.save(self.folder + '/cgp_genome_0_' + str(self.current_fitness) + '.txt') self.offsprings = np.empty(self.num_offsprings, dtype=CGP) self.offspring_fitnesses = np.zeros(self.num_offsprings, dtype=float) for self.it in range(1, num_iteration + 1): #generate offsprings if self.num_cpus == 1: for i in range(0, self.num_offsprings): self.offsprings[i] = self.father.clone() #self.offsprings[i].mutate(self.num_mutations) self.offsprings[i].mutate_per_gene(self.mutation_rate_nodes, self.mutation_rate_outputs) self.offspring_fitnesses[i] = self.evaluator.evaluate(self.offsprings[i], self.it) else: for i in range(self.num_offsprings): self.offsprings[i] = self.father.clone() #self.offsprings[i].mutate(self.num_mutations) self.offsprings[i].mutate_per_gene(self.mutation_rate_nodes, self.mutation_rate_outputs) def offspring_eval_task(offspring_id): return self.evaluator_pool[offspring_id].evaluate(self.offsprings[offspring_id], self.it) self.offspring_fitnesses = Parallel(n_jobs = self.num_cpus)(delayed(offspring_eval_task)(i) for i in range(self.num_offsprings)) #get the best fitness best_offspring = np.argmax(self.offspring_fitnesses) #compare to father self.father_was_updated = False if self.offspring_fitnesses[best_offspring] >= self.current_fitness: self.current_fitness = self.offspring_fitnesses[best_offspring] self.father = self.offsprings[best_offspring] self.father_was_updated = True # display stats print(self.it, '\t', self.current_fitness, '\t', self.father_was_updated, '\t', self.offspring_fitnesses) self.logfile.write(str(self.it) + '\t' + str(self.current_fitness) + '\t' + str(self.father_was_updated) + '\t' + str(self.offspring_fitnesses) + '\n') self.logfile.flush() print('====================================================') if self.father_was_updated: #print(self.father.genome) self.father.save(self.folder + '/cgp_genome_' + str(self.it) + '_' + str(self.current_fitness) + '.txt') ```
{ "source": "jeromerony/adversarial-library", "score": 2 }
#### File: utils/lagrangian_penalties/test_penalty_functions.py ```python import pytest import torch from torch.autograd import grad, gradcheck from adv_lib.utils.lagrangian_penalties import all_penalties @pytest.mark.parametrize('penalty', list(all_penalties.values())) def test_grad(penalty) -> None: y = torch.randn(512, dtype=torch.double, requires_grad=True) ρ = torch.randn(512, dtype=torch.double).abs().clamp_min(1e-3) μ = torch.randn(512, dtype=torch.double).abs().clamp_min(1e-6) ρ.requires_grad_(True) μ.requires_grad_(True) # check if gradients are correct compared to numerical approximations using finite differences assert gradcheck(penalty, inputs=(y, ρ, μ)) @pytest.mark.parametrize('penalty,value', [(all_penalties['P2'], 1), (all_penalties['P3'], 1)]) @pytest.mark.parametrize('dtype', [torch.float32, torch.float64]) def test_nan_grad(penalty, value, dtype) -> None: y = torch.full((1,), value, dtype=dtype, requires_grad=True) ρ = torch.full((1,), value, dtype=dtype) μ = torch.full((1,), value, dtype=dtype) out = penalty(y, ρ, μ) g = grad(out, y, only_inputs=True)[0] assert torch.isnan(g).any() == False # check nan in gradients of penalty ``` #### File: utils/lagrangian_penalties/test_univariate_functions.py ```python import pytest import torch from torch.autograd import grad, gradcheck from adv_lib.utils.lagrangian_penalties import univariate_functions @pytest.mark.parametrize('univariate', univariate_functions.__all__) def test_grad(univariate) -> None: t = torch.randn(512, dtype=torch.double, requires_grad=True) # check if gradients are correct compared to numerical approximations using finite differences assert gradcheck(univariate_functions.__dict__[univariate](), inputs=t) @pytest.mark.parametrize('univariate,value', [('LogExp', 1), ('LogQuad_1', 1), ('HyperExp', 1), ('HyperQuad', 1), ('LogBarrierQuad', 0), ('HyperBarrierQuad', 0), ('HyperLogQuad', 0), ('HyperLogQuad', 1)]) @pytest.mark.parametrize('dtype', [torch.float32, torch.float64]) def test_nan_grad(univariate, value, dtype) -> None: t = torch.full((1,), value, dtype=dtype, requires_grad=True) univariate_func = univariate_functions.__dict__[univariate]() out = univariate_func(t) g = grad(out, t, only_inputs=True)[0] assert torch.isnan(g).any() == False # check nan in gradients of penalty ```
{ "source": "jeromerony/augmented_lagrangian_adversarial_attacks", "score": 2 }
#### File: augmented_lagrangian_adversarial_attacks/attacks/foolbox.py ```python from foolbox.attacks import EADAttack from foolbox.criteria import Misclassification, TargetedMisclassification from foolbox.models import PyTorchModel from torch import nn, Tensor def ead_attack(model: nn.Module, inputs: Tensor, labels: Tensor, targeted: bool = False, **kwargs) -> Tensor: fmodel = PyTorchModel(model=model, bounds=(0, 1)) attack = EADAttack(**kwargs) if targeted: criterion = TargetedMisclassification(target_classes=labels), else: criterion = Misclassification(labels=labels) adv_inputs = attack(model=fmodel, inputs=inputs, criterion=criterion, epsilons=None)[0] return adv_inputs ``` #### File: jeromerony/augmented_lagrangian_adversarial_attacks/utils.py ```python from typing import Tuple from torch import Tensor def robust_accuracy_curve(distances: Tensor, successes: Tensor, worst_distance: float = float('inf')) -> Tuple[Tensor, Tensor]: worst_case_distances = distances.clone() worst_case_distances[~successes] = worst_distance unique_distances = worst_case_distances.unique() robust_accuracies = (worst_case_distances.unsqueeze(0) > unique_distances.unsqueeze(1)).float().mean(1) return unique_distances, robust_accuracies ```
{ "source": "jeromerony/dml_cross_entropy", "score": 3 }
#### File: jeromerony/dml_cross_entropy/prepare_data.py ```python import os import tarfile import zipfile from os import path from sacred import Experiment from scipy.io import loadmat from torchvision.datasets.utils import download_url ex1 = Experiment('Prepare CUB') @ex1.config def config(): cub_dir = path.join('data', 'CUB_200_2011') cub_url = 'http://www.vision.caltech.edu.s3-us-west-2.amazonaws.com/visipedia-data/CUB-200-2011/CUB_200_2011.tgz' images_file = 'images.txt' train_file = 'train.txt' test_file = 'test.txt' @ex1.capture def download_extract_cub(cub_dir, cub_url): download_url(cub_url, root=path.dirname(cub_dir)) filename = path.join(path.dirname(cub_dir), path.basename(cub_url)) with tarfile.open(filename, 'r:gz') as tar: tar.extractall(path=path.dirname(cub_dir)) @ex1.capture def generate_cub_train_test(cub_dir, images_file, train_file, test_file): images_file = path.join(cub_dir, images_file) train_file = path.join(cub_dir, train_file) test_file = path.join(cub_dir, test_file) train = [] test = [] with open(images_file) as f_images: lines_images = f_images.read().splitlines() for line in lines_images: image_path = line.split()[1] label = int(image_path.split('.')[0]) - 1 file_line = ','.join((path.join('images', image_path), str(label))) if label < 100: train.append(file_line) else: test.append(file_line) with open(train_file, 'w') as f: f.write('\n'.join(train)) with open(test_file, 'w') as f: f.write('\n'.join(test)) @ex1.main def prepare_cub(): download_extract_cub() generate_cub_train_test() ex2 = Experiment('Prepare CARS-196') @ex2.config def config(): cars_dir = path.join('data', 'CARS_196') cars_url = 'http://imagenet.stanford.edu/internal/car196/car_ims.tgz' cars_annotations_url = 'http://imagenet.stanford.edu/internal/car196/cars_annos.mat' train_file = 'train.txt' test_file = 'test.txt' @ex2.capture def download_extract_cars(cars_dir, cars_url, cars_annotations_url): download_url(cars_annotations_url, root=cars_dir) download_url(cars_url, root=cars_dir) filename = path.join(cars_dir, path.basename(cars_url)) with tarfile.open(filename, 'r:gz') as tar: tar.extractall(path=cars_dir) return path.join(cars_dir, path.basename(cars_annotations_url)) @ex2.capture def generate_cars_train_test(cars_dir, annotation_file, train_file, test_file): train_file = path.join(cars_dir, train_file) test_file = path.join(cars_dir, test_file) train = [] test = [] annotations = loadmat(annotation_file) label_dict = {anno[0][0]: anno[5][0][0] - 1 for anno in annotations['annotations'][0]} for image_path, label in label_dict.items(): file_line = ','.join((image_path, str(label))) if label < 98: train.append(file_line) else: test.append(file_line) with open(train_file, 'w') as f: f.write('\n'.join(train)) with open(test_file, 'w') as f: f.write('\n'.join(test)) @ex2.main def prepare_cars(): annotation_file = download_extract_cars() generate_cars_train_test(annotation_file=annotation_file) ex3 = Experiment('Prepare SOP') @ex3.config def config(): sop_dir = path.join('data', 'Stanford_Online_Products') sop_url = 'ftp://cs.stanford.edu/cs/cvgl/Stanford_Online_Products.zip' train_file = 'train.txt' test_file = 'test.txt' @ex3.capture def download_extract_sop(sop_dir, sop_url): download_url(sop_url, root=path.dirname(sop_dir)) filename = path.join(path.dirname(sop_dir), path.basename(sop_url)) with zipfile.ZipFile(filename) as zipf: zipf.extractall(path=path.dirname(sop_dir)) @ex3.capture def generate_sop_train_test(sop_dir, train_file, test_file): original_train_file = path.join(sop_dir, 'Ebay_train.txt') original_test_file = path.join(sop_dir, 'Ebay_test.txt') train_file = path.join(sop_dir, train_file) test_file = path.join(sop_dir, test_file) with open(original_train_file) as f_images: train_lines = f_images.read().splitlines()[1:] with open(original_test_file) as f_images: test_lines = f_images.read().splitlines()[1:] train = [','.join((l.split()[-1], str(int(l.split()[1]) - 1))) for l in train_lines] test = [','.join((l.split()[-1], str(int(l.split()[1]) - 1))) for l in test_lines] with open(train_file, 'w') as f: f.write('\n'.join(train)) with open(test_file, 'w') as f: f.write('\n'.join(test)) @ex3.main def prepare_sop(): download_extract_sop() generate_sop_train_test() ex4 = Experiment('Prepare InShop') @ex4.config def config(): inshop_dir = path.join('data', 'InShop') train_file = 'train.txt' test_query_file = 'test_query.txt' test_gallery_file = 'test_gallery.txt' @ex4.main def generate_inshop_train_test(inshop_dir, train_file, test_query_file, test_gallery_file): """ The data needs to be downloaded and extracted manually for InShop at https://drive.google.com/drive/folders/0B7EVK8r0v71pVDZFQXRsMDZCX1E. Specifically, the img.zip and list_eval_partition.txt files. """ original_sample_file = path.join(inshop_dir, 'list_eval_partition.txt') train_file = path.join(inshop_dir, train_file) test_query_file = path.join(inshop_dir, test_query_file) test_gallery_file = path.join(inshop_dir, test_gallery_file) with open(original_sample_file) as f: sample_lines = f.read().splitlines()[2:] sample_lines = [l.split() for l in sample_lines] class_ids = [class_id for (_, class_id, _) in sample_lines] class_map, max_class_index = {}, 0 for class_id in class_ids: if class_id not in class_map.keys(): class_map[class_id] = max_class_index max_class_index += 1 train_samples = [(l[0], class_map[l[1]]) for l in sample_lines if l[2] == 'train'] test_query_samples = [(l[0], class_map[l[1]]) for l in sample_lines if l[2] == 'query'] test_gallery_samples = [(l[0], class_map[l[1]]) for l in sample_lines if l[2] == 'gallery'] train = [','.join((l[0], str(l[1]))) for l in train_samples] test_query = [','.join((l[0], str(l[1]))) for l in test_query_samples] test_gallery = [','.join((l[0], str(l[1]))) for l in test_gallery_samples] with open(train_file, 'w') as f: f.write('\n'.join(train)) with open(test_query_file, 'w') as f: f.write('\n'.join(test_query)) with open(test_gallery_file, 'w') as f: f.write('\n'.join(test_gallery)) if __name__ == '__main__': os.makedirs('data', exist_ok=True) ex1.run() ex2.run() ex3.run() ex4.run() ```
{ "source": "Jeromeschmidt/CS-1.3-Core-Data-Structures", "score": 4 }
#### File: CS-1.3-Core-Data-Structures/Code/set.py ```python from binarytree import BinarySearchTree class Set: def __init__(self, elements=None): self.tree = BinarySearchTree() self.size = 0 if elements is not None: for elm in elements: self.add(elm) def size(self): return self.tree.size def __iter__(self): return self def contains(self, element): if self.tree.contains(element): return True return False def add(self, element): if self.contains(element): raise ValueError("Cannot add element to Set again") else: self.tree.insert(element) self.size += 1 def remove(self, element): self.tree.delete(element) self.size -= 1 def union(self, other_set): """TODO: Running time: O(n*k), have to visit every node TODO: Memory usage: O(n+k) nodes are stored on stack""" result = self.tree.items_in_order() for elm in other_set.tree.items_in_order(): if elm not in result: result.append(elm) return Set(result) def intersection(self, other_set): """TODO: Running time: O(n), have to visit every node TODO: Memory usage: O(n+k) nodes are stored on stack""" result = Set() for elm in self.tree.items_in_order(): if other_set.contains(elm): result.add(elm) return result def difference(self, other_set): """TODO: Running time: O(n), have to visit every node TODO: Memory usage: O(n+k) nodes are stored on stack""" result = Set() for elm in self.tree.items_in_order(): if not other_set.contains(elm): result.add(elm) for elm in other_set.tree.items_in_order(): if elm in result.tree.items_in_order(): result.remove(elm) return result def is_subset(self, other_set): """TODO: Running time: O(n) worst, O(1 best), have to visit every node TODO: Memory usage: O(n+k) nodes are stored on stack""" if self.size > other_set.size: return False for elm in self.tree.items_in_order(): if not other_set.tree.contains(elm): return False return True ```
{ "source": "Jeromeschmidt/Guru", "score": 2 }
#### File: guru/users/models.py ```python from django.contrib.auth.models import AbstractUser from django.db.models import (BooleanField, CASCADE, CharField, FloatField, IntegerField, ManyToManyField, Model, OneToOneField, PositiveSmallIntegerField) from django.contrib.postgres.fields import ArrayField from django.urls import reverse from django.utils.translation import ugettext_lazy as _ from django.contrib.auth.models import User class User(AbstractUser): # First Name and Last Name do not cover name patterns # around the globe. name = CharField(_("Name of User"), blank=True, max_length=255) # is_customer = BooleanField(default=True) # # user = OneToOneField(User, on_delete=CASCADE, primary_key=True) skills = ArrayField(CharField(max_length=10, blank=True), size=8, null=True, ) # ArrayField(_("A list of skills that user can help with"), null=True, # base_field=CharField(max_length=255)) classes_taken = ArrayField(null=True, base_field=CharField(max_length=255), size=20) is_teachingassistant = BooleanField(default=False) rating = IntegerField(null=True, blank=True) avg_reponse = FloatField(null=True, blank=True) is_online = BooleanField(default=False) messages_received = IntegerField(null=True, blank=True) bio = CharField(blank=True, max_length=500) def get_absolute_url(self): return reverse("users:detail", kwargs={"username": self.username}) ```
{ "source": "Jeromeschmidt/Reinforcement-Learning-Agent", "score": 3 }
#### File: alpaca-api/streaming-market-data/stream_ticks_into_sql.py ```python import websocket import os import json import sqlite3 import datetime as dt endpoint = "wss://data.alpaca.markets/stream" headers = json.loads(open("account.json", 'r').read()) streams = ["T.PLTR", "T.NIO", "T.AMZN", "T.TWTR", "Q.CELH", "Q.SSPK", "T.OPTT"] # create a database db1 = sqlite3.connect('/Users/andrewilliams/Documents/Dev/Alpaca-Api/streaming-market-data/trades_ticks.db') db2 = sqlite3.connect('/Users/andrewilliams/Documents/Dev/Alpaca-Api/streaming-market-data/quotes_ticks.db') def return_tickers(streams, tick_type="trades"): tickers = [] if tick_type == 'quotes': for symbol in streams: tt, ticker = symbol.split(".") if tt == 'Q' and ticker not in tickers: tickers.append(ticker) elif tick_type == 'quotes': for symbol in streams: t, ticker = symbol.split(".") if t == 'T' and ticker not in tickers: tickers.append(ticker) return tickers def insert_tickers(tick): if tick["stream"].split(".")[0] == "T": c = db1.cursor() for ms in range(100): # add a milisecond value to a data timestep try: table = tick["stream"].split(".")[-1] # insert unique time stamps into sql by converting nano seconds to seconds vals = [dt.datetime.fromtimestamp(int(tick['data']['t'])/10**9)+dt.timedelta(milliseconds=ms), tick['data']['p'], tick['data']['s']] query = "INSERT INTO t{} (timestamp, price, volume) VALUES (?,?,?)".format(table) c.execute(query, vals) break except Exception as e: print(e) try: db1.commit() except: db1.rollback() if tick["stream"].split(".")[0] == "Q": c = db2.cursor() for ms in range(100): # add a milisecond value to a data timestep try: table = tick["stream"].split(".")[-1] # insert unique time stamps into sql by converting nano seconds to seconds vals = [dt.datetime.fromtimestamp(int(tick['data']['t'])/10**9)+dt.timedelta(milliseconds=ms), tick['data']['p'], tick['data']['P'], tick['data']['s'], tick['data']['S']] query = "INSERT INTO q{} (timestamp, bid_price, ask_price, bid_volume, ask_volume) VALUES (?,?,?)".format(table) c.execute(query, vals) break except Exception as e: print(e) try: db2.commit() except: db2.rollback() def create_tables(db, tickers, tick_type): '''Creates db tables from real-time market stream''' # to make changes to db c = db.cursor() if tick_type == 'trades': for ticker in tickers: c.execute("CREATE TABLE IF NOT EXISTS t{} (timestamp datetime primary key, price real(15, 5), volume integer)".format(ticker)) elif tick_type == 'quotes': for ticker in tickers: c.execute("CREATE TABLE IF NOT EXISTS t{} (timestamp datetime primary key, ask_price real(15, 5), bid_price real(15, 5), ask_volume integer, bid_volume integer)".format(ticker)) try: # add to db db.commit() # if there's a problem except: # show any problems w/ change db.rollback() create_tables(db1, return_tickers(streams, "trades"), "trades") create_tables(db2, return_tickers(streams, "trades"), "trades") def on_open(ws): auth = { "action": "authenticate", "data": {"key_id":headers['APCA-API-KEY-ID'], "secret_key": headers['APCA-API-SECRET']} } ws.send(json.dumps(auth)) message = { "action": "listen", "data": { "streams": streams } } def on_message(ws, message): '''Adds tick data to api ''' print(message) tick = json.loads(message) insert_tickers(tick) ws = websocket.WebSocketApp("wss://data.alpaca.markets/stream", on_open=on_open, on_message=on_message) ws.run_forever() ``` #### File: Reinforcement-Learning-Agent/trading_agent/run_DRL.py ```python import pandas as pd import numpy as np import time from stable_baselines.common.vec_env import DummyVecEnv # preprocessor from preprocessing.preprocessors import * from preprocessing.alpaca_api import * from preprocessing.GetStocks import * # config from config.config import * # model from model.models import * import os def run_model(tickers, start="2020-01-01T09:30:00-04:00", end="2020-12-31T09:30:00-04:00") -> None: """Train the model.""" # # read and preprocess data # preprocessed_path = "done_data.csv" # if os.path.exists(preprocessed_path): # data = pd.read_csv(preprocessed_path, index_col=0) # else: # data = preprocess_data() # data = calcualte_adjcp(data) # data = add_turbulence(data) # data.to_csv(preprocessed_path) # tickers = get_highest_movers() # print(tickers) data = preprocess_data(tickers, start, end) data = data.drop_duplicates() # data = calcualte_adjcp(data) print(data) # data = add_turbulence(data) # data.to_csv(preprocessed_path) # print(data.head()) # print(data.size) # 2015/10/01 is the date that validation starts # 2016/01/01 is the date that real trading starts # unique_trade_date needs to start from 2015/10/01 for validation purpose # unique_trade_date = data[(data.datadate > 20151001)&(data.datadate <= 20200707)].datadate.unique() # end = data["datadate"].max() # start = end - 10000 unique_trade_date = data[(data.datadate > 20200631)&(data.datadate <= 20201231)].datadate.unique() # print(unique_trade_date) # rebalance_window is the number of months to retrain the model # validation_window is the number of months to validation the model and select for trading # rebalance_window = 63 # validation_window = 63 rebalance_window = 30 validation_window = 30 # print(data) ## Ensemble Strategy model = run_ensemble_strategy(df=data, unique_trade_date= unique_trade_date, rebalance_window = rebalance_window, validation_window=validation_window) #_logger.info(f"saving model version: {_version}") return model if __name__ == "__main__": tickers = ['AMCR', 'CCL', 'ETSY', 'OXY', 'NCLH', 'FLS', 'SIVB', 'V', 'FANG', 'DG', 'MCHP', 'ENPH', 'MRO', 'BBY', 'CB', 'APA', 'DISCK', 'XRX', 'NKE', 'DISCA'] run_model(tickers,start="2020-01-01T09:30:00-04:00", end="2020-12-31T09:30:00-04:00") ```
{ "source": "Jeromeschmidt/SPD-2.31-Testing-and-Architecture", "score": 3 }
#### File: pytest/pytest-tut/exercise_2.py ```python import math import pytest T_HALF = 5730 DECAY_CONSTANT = -0.693 def get_age_carbon_14_dating(carbon_14_ratio): """Returns the estimated age of the sample in year. carbon_14_ratio: the percent (0 < percent < 1) of carbon-14 in the sample conpared to the amount in living tissue (unitless). """ if carbon_14_ratio <= 0: raise ValueError return math.log(carbon_14_ratio) / DECAY_CONSTANT * T_HALF # TODO: Write a unit test which feed 0.35 to the function. # The result should be '8680.34'. Does the function handles # every possible input correctly? What if the input is zero # or negative? # Add the necessary logic to make sure the function handle # every possible input properly. Then write a unit test againt # this special case. def test_carbon_dating(): assert round(get_age_carbon_14_dating(0.35), 2) == 8680.35 with pytest.raises(ValueError): get_age_carbon_14_dating(0) with pytest.raises(ValueError): get_age_carbon_14_dating(-0.35) ``` #### File: lab/refactoring/extract_class2.py ```python class Actor: def __init__(self, first_name, last_name, birth_year, movies, email): self.first_name = first_name self.last_name = last_name self.birth_year = birth_year self.movies = movies self.email = email def send_hiring_email(self): print("email sent to: ", self.email) actor1 = Actor('elizabeth', 'debicki', 1990, ['Tenet', 'Vita & Virgina', 'Guardians of the Galexy', 'The Great Gatsby'], '<EMAIL>') actor2 = Actor('Jim', 'Carrey', 1962, ['Ace Ventura', 'The Mask', 'Dubm and Dumber', 'The Truman Show', 'Yes Man'], '<EMAIL>') actors = [actor1, actor2] for actor in actors: if actor.birth_year > 1985: print(actor.first_name, actor.last_name) print('Movies Played: ', end='') for m in actor.movies: print(m, end=', ') print() actor.send_hiring_email() ``` #### File: lab/refactoring/extract_method3.py ```python import math def calcualte_distance(x_1, x_2, y_1, y_2): """Calculate the distance between the two circle.""" distance = math.sqrt((x_1-x_2)**2 + (y_1 - y_2)**2) print('distance', distance) def calcualte_length(x_1, x_2, y_1, y_2): """calcualte the length of vector AB vector which is a vector between A and B points.""" length = math.sqrt((x_1-x_2)*(x_1-x_2) + (y_1-y_2)*(y_1-y_2)) print('length', length) calcualte_distance(4, 53, 4.25, -5.35) calcualte_length(-36, .34, 97, .91) ```
{ "source": "jeromeshan/mimas", "score": 3 }
#### File: mimas/tests/cube_generator_test.py ```python import unittest from pbgca import CubeGenerator import numpy as np class CubeGeneratorTestCase(unittest.TestCase): def test_2d(self): """Test 2d cube generation""" cube = CubeGenerator.n_dim_cube(2) self.assertEqual(cube.tolist(), np.transpose(np.array([[ -0.5, -0.5, 0.5, 0.5], [ -0.5, 0.5, 0.5, -0.5]])).tolist()) def test_3d(self): """Test 3d cube generation""" cube = CubeGenerator.n_dim_cube(3) self.assertEqual(cube.tolist(), [[-0.5, -0.5, -0.5],[-0.5, 0.5, -0.5],[ 0.5, 0.5, -0.5],[ 0.5, -0.5, -0.5],[-0.5, -0.5, 0.5],[-0.5, 0.5, 0.5],[ 0.5, 0.5, 0.5],[ 0.5, -0.5, 0.5]]) if __name__ == '__main__': unittest.main() ```
{ "source": "jerome-t/nxos-scp-upload", "score": 2 }
#### File: jerome-t/nxos-scp-upload/scp-multi-upload.py ```python from getpass import getpass from argparse import ArgumentParser import csv import os.path import sys from time import time from concurrent.futures import ProcessPoolExecutor, wait from netmiko import ConnectHandler, file_transfer from netmiko.ssh_exception import NetMikoAuthenticationException, NetMikoTimeoutException from paramiko.ssh_exception import AuthenticationException # --- Define the threads MAX_THREADS = 8 # --- Check file exists function def is_valid_file(parser, arg): if not os.path.exists(arg): parser.error("The file %s does not exist!" % arg) else: return(arg) # --- Confirmation function def confirm(prompt=None, resp=False): if prompt is None: prompt = 'Confirm' if resp: prompt = '%s [%s]|%s: ' % (prompt, 'y', 'n') else: prompt = '%s [%s]|%s: ' % (prompt, 'n', 'y') while True: ans = input(prompt) if not ans: return resp if ans not in ['y', 'Y', 'n', 'N']: print ('please enter y or n.') continue if ans == 'y' or ans == 'Y': return True if ans == 'n' or ans == 'N': return False # --- Upload Netmiko function def upload_nemiko(net_device): print("Upload on:", HOST) # Create the Netmiko SSH connection try: ssh_conn = ConnectHandler(**net_device) transfer_dict = {} transfer_dict = file_transfer(ssh_conn, source_file=SOURCE_FILE, dest_file=SOURCE_FILE, ) print(80*"=") print('Results for', HOST+':') print('File exists already: ',transfer_dict['file_exists']) print('File transferred: ',transfer_dict['file_transferred']) print('MD5 verified :',transfer_dict['file_verified']) except NetMikoTimeoutException: print(80*"=") print('Results for', HOST+':') print('Skipped: SSH Timed out') #continue except (AuthenticationException, NetMikoAuthenticationException): print(80*"=") print('Results for', HOST+':') print('Skipped: Authentication failed') #continue # --- Init argparse parser = ArgumentParser() parser.add_argument("filename", help="The file to upload", metavar='FILE', type=lambda x: is_valid_file(parser, x)) args = parser.parse_args() # --- Define the OS file to upload SOURCE_FILE = (args.filename) # --- Check the hosts.csv file and get the list of hosts VENDORS_TYPES = ["cisco_ios", "arista_eos", "juniper_junos", "cisco_nxos"] VENDOR_TYPE = '' HOSTS_LIST = [] with open("./hosts.csv", 'r') as csvfile: csv_reader = csv.reader(csvfile, delimiter=',') for row in csv_reader: if VENDOR_TYPE in VENDORS_TYPES not in str(row[1]): print('Invalid CSV, please check the vendor types. Must be: cisco_ios, arista_eos, juniper_junos or cisco_nxos') sys.exit() HOSTS_LIST.append(row[0]) # --- Ask confirmation print(80*"=") print('Please, confirm the upload of',SOURCE_FILE+' on: ') print(*HOSTS_LIST, sep ='\n') prompt = str("Proceed?") if confirm(prompt=prompt, resp=False) == True: # --- Get credentials print(80*"-") USERNAME = input('Please insert your username: ') print("And your password") PASSWORD = <PASSWORD>() print(80*"-") # --- Get the time for timing start_time = time() # --- Set the number of threads pool = ProcessPoolExecutor(MAX_THREADS) # --- SCP itself, in multi-threads SW_LIST = [] FUTURE_LIST = [] with open("./hosts.csv", 'r') as csvfile: SW_LIST = csv.reader(csvfile, delimiter=',') for CSV_ROW in SW_LIST: HOST = CSV_ROW[0] DEVICE_TYPE = CSV_ROW[1] net_device = { 'device_type': DEVICE_TYPE, 'host': HOST, 'username': USERNAME, 'password': PASSWORD, } FUTURE = pool.submit(upload_nemiko, net_device) FUTURE_LIST.append(FUTURE) wait(FUTURE_LIST) # --- All done confirmation print(80*"=") print("Uploads completed in {} seconds.".format(time() - start_time)) print(80*"=") else: print("Operation aborted, goodbye.") print(80*"=") ```
{ "source": "jerometrie/algoTP1", "score": 4 }
#### File: jerometrie/algoTP1/TP1.py ```python from lecture import * def miseEnForme1(): """ Fonction qui restitue un fichier texte mis en forme sur l'écran """ # Variable a: stocke les '\' et b stocke le caractère suivant a = lire() b = lire() s = 1 # Numéro de section i = 1 # Numéro de sous-section while (not(a == '\\' and b == '.')): # Gestion des passages à la ligne et des sections/sous-sections if(a == '\\'): if(b == '\\'): a = b b = lire() elif(b == 'n'): nouvelle_ligne() a = lire() b = lire() elif(b == 's'): section(s, 3) s = s +1 i = 1 a = lire() b = lire() elif(b == 'i'): sous_section(s, i, 6) i = i +1 a = lire() b = lire() else: ecrire(b) a = lire() b = lire() # Cas de la vigule elif(a == ","): if(b == " "): ecrire(a) ecrire(b) a = lire() b = lire() else: ecrire(a) ecrire(" ") ecrire(b) a = lire() b = lire() # Cas du passage à la ligne elif(a == "\n"): a = b b = lire() # Cas général else: ecrire(a) a = b b = lire() print() def miseEnForme(): """ Fonction qui restitue un fichier texte mis en forme sur l'écran """ # Variable a: stocke les '\' et b stocke le caractère suivant a = lire() b = lire() s = 1 # Numéro de section i = 1 # Numéro de sous-section while (not(a == '\\' and b == '.')): # Gestion des passages à la ligne et des sections/sous-sections if(a == '\\'): if(b == '\\'): ecrire(a) # Pour afficher les \ qui ne font pas partie d'une instruction a = b b = lire() elif(b == 'n'): nouvelle_ligne() a = lire() b = lire() elif(b == 's'): section(s, 3) s = s + 1 i = 1 a = lire() b = lire() elif(b == 'i'): sous_section(s - 1, i, 6) i = i +1 a = lire() b = lire() else: ecrire(b) a = lire() b = lire() # Cas de plusieurs espaces consécutifs elif(a == ' ' and b == ' '): a = b b = lire() # Cas de la vigule elif(a == ","): if(b == " "): ecrire(a) ecrire(b) a = lire() b = lire() else: ecrire(a) ecrire(" ") ecrire(b) a = lire() b = lire() # Cas du passage à la ligne elif(a == "\n"): a = b b = lire() # Cas général else: ecrire(a) a = b b = lire() print() #miseEnForme1() miseEnForme() """ Question 3: - Texte avec \. (le "." du milieu ne doit pas être pris en compte) Lorem ipsum dolor sit amet, consectetur adipisicing elit. Ipsa, nam\. - Texte avec toutes les instructions (vérifie aussi l'incrémentation des sections et des sous-sections): \sLorem \iipsum \idolor \ssit \iamet \iconsectetur adipisicing elit. Mollitia deserunt\nlibero sed. Labore obcaecati aspernatur officiis, voluptas numquam ad, eos.\. - Texte vérifiant des cas spéciaux: - \ doit afficher un \ - \\s\\\i doit afficher \ et passer à une section, puis \ et passer à une sous-section. \Lorem ipsum dolor sit amet, consectetur \\s\\iadipisicing elit. Tenetur magni quia nesciunt sint pariatur iste harum officiis debitis, rem in.\. - \. dès le début du fichier. Rien ne doit s'afficher. - Passer à la ligne au milieu de "\s" par exemple doit bien afficher une section \ s\. - Texte avec n\\n\. : doit afficher n\ et passer à la ligne (n\ ne doit pas être pris pour une instruction, contrairement à \n). Ce cas teste aussi \\, qui ne doit pas être considéré ici comme un affichage de \. - Cas non géré (mais vraiment très aux limites): \ \. n'affiche pas \ """ ```
{ "source": "jerometwell/algorithmia-python", "score": 3 }
#### File: algorithmia-python/Test/datafile_test.py ```python import sys # look in ../ BEFORE trying to import Algorithmia. If you append to the # you will load the version installed on the computer. sys.path = ['../'] + sys.path import unittest, os, uuid import Algorithmia from Algorithmia.datafile import DataFile, LocalDataFile class DataFileTest(unittest.TestCase): def setUp(self): self.client = Algorithmia.client() def test_get_nonexistant(self): df = self.client.file('data://.my/nonexistant/nonreal') try: df.getFile() retrieved_file = True except Exception as e: retrieved_file = False self.assertFalse(retrieved_file) def test_get_str(self): df = self.client.file('data://.my/nonexistant/nonreal') try: print(df.getString()) retrieved_file = True except Exception as e: retrieved_file = False self.assertFalse(retrieved_file) def test_set_attributes(self): df = DataFile(self.client, 'data://.my/empty') try: df.set_attributes({ 'last_modified': '2019-01-09T22:44:31.632Z', 'size': 0 }) except Exception as e: self.fail("set_attributes failed with exception: " + str(e)) class LocalFileTest(unittest.TestCase): DUMMY_TEXT = 'this file gets populated during testing' EXISTING_TEXT = 'this file exists before testing' def setUp(self): self.client = Algorithmia.client() # Make a file that DOES exist and has contents, self.EXISTING_FILE = 'file://'+str(uuid.uuid1())+'.txt' f = open(self.EXISTING_FILE.replace('file://', ''), 'w') f.write(self.EXISTING_TEXT) f.close() # We need a dummy file that doesnt currently exist self.DUMMY_FILE = 'file://'+str(uuid.uuid1())+'.txt' if os.path.isfile(self.DUMMY_FILE): os.remove(self.DUMMY_FILE) def tearDown(self): os.remove(self.EXISTING_FILE.replace('file://', '')) if os.path.isfile(self.DUMMY_FILE): os.remove(self.DUMMY_FILE.replace('file://', '')) def test_local_remote(self): self.assertTrue(isinstance(self.client.file(self.DUMMY_FILE), LocalDataFile)) self.assertTrue(isinstance(self.client.file('data://foo'), DataFile)) def test_exists_or_not(self): self.assertTrue(self.client.file(self.EXISTING_FILE).exists()) self.assertFalse(self.client.file(self.DUMMY_FILE).exists()) def test_get_nonexistant(self): df = self.client.file(self.DUMMY_FILE) try: df.getFile() retrieved_file = True except Exception as e: retrieved_file = False self.assertFalse(retrieved_file) def test_put_and_read_and_delete(self): f = self.client.file(self.DUMMY_FILE) f.put(self.DUMMY_TEXT) # Check getString txt = self.client.file(self.DUMMY_FILE).getString() self.assertEqual(txt, self.DUMMY_TEXT) # Check delete deletion_status = self.client.file(self.DUMMY_FILE).delete() self.assertTrue(deletion_status) def test_read_types(self): # Check getBytes txt = self.client.file(self.EXISTING_FILE).getBytes().decode('utf-8') self.assertEqual(txt, self.EXISTING_TEXT) # Check getFile txt = self.client.file(self.EXISTING_FILE).getFile().read() self.assertEqual(txt, self.EXISTING_TEXT) if __name__ == '__main__': unittest.main() ```
{ "source": "jerometwell/praisebot", "score": 3 }
#### File: jerometwell/praisebot/app.py ```python import tweepy import os import sys import re import logging import random LOG_LEVEL = os.environ.get("LOG_LEVEL") or logging.INFO API_KEY = os.environ["API_KEY"] API_SECRET = os.environ["API_SECRET"] ACCESS_KEY_TOKEN = os.environ["ACCESS_KEY_TOKEN"] ACCESS_KEY_SECRET = os.environ["ACCESS_KEY_SECRET"] logging.basicConfig(stream=sys.stderr, level=LOG_LEVEL) logger = logging.getLogger(__name__) auth = tweepy.OAuthHandler(API_KEY, API_SECRET) auth.set_access_token(ACCESS_KEY_TOKEN, ACCESS_KEY_SECRET) api = tweepy.API(auth) logger.info("Connecting to Twitter API...") bot_user = api.verify_credentials() praises = [ "you're the best 👏👏👏", "you are incredible! 😇", "you are majestic ✨✨✨", "please continue to be fantastic ✨", "your presence brings us joy ⭐️", "don't you need a license for that level of awesomeness? ✨", "you light up the room 💡", "you are way cool", "you were cool before cool was a thing", "you are appreciated! 🌟", "you're better than a triple-scoop ice cream. 🍦 (with sprinkles)", ] def praise(target): praise = random.sample(praises, 1)[0] praise_tweet = f"@{target} {praise}" logger.info("praising: %s", praise_tweet) api.update_status(praise_tweet) class PraiseStream(tweepy.Stream): def on_status(self, status): logger.info("@%s >> %s", status.user.screen_name, status.text) api.create_favorite(status.id) if re.search(r"\s+praise\s+me\s*$", status.text): praise(status.user.screen_name) for mention in re.finditer(r"\s@(\w+)\b", status.text): target = mention.group(1) if target == bot_user.screen_name: logger.debug("skipping self mention") continue praise(target) logger.info(f"Connected as @{bot_user.screen_name}") mention_streams = PraiseStream(API_KEY, API_SECRET, ACCESS_KEY_TOKEN, ACCESS_KEY_SECRET) mention_streams.filter(track=[f"@{bot_user.screen_name}"]) ```
{ "source": "jeromevonk/alpha_vantage_stock", "score": 3 }
#### File: alpha_vantage_stock/lambda_aws/lambda.py ```python import json from botocore.vendored import requests from datetime import datetime, timedelta # Required keys REQUIRED = ['AtivoNome', 'DataPreco'] # Alpha Vantage API API_TOKEN = "<KEY>" FUNCTION = "TIME_SERIES_DAILY_ADJUSTED" def lambda_handler(event, context): print("Received event: " + json.dumps(event, indent=2)) for parameter in REQUIRED: if not parameter in event: return 'Missing required parameter: {}'.format(parameter) stock = event['AtivoNome'] date = event['DataPreco'] # Convert to datetime object try: dt = datetime.strptime(date, ("%Y-%m-%d")) except: return { 'Error message:' : 'Invalid date format, should be YYYY-MM-DD' } result, bRet = getStockValue(stock, dt) return { 'AtivoNome': stock, 'DataPreco': date, "Preco": result } def getStockValue(stock, dt): '''Get stock value from Alpha Vantage API ''' to_return = "" bRet = True _size = 'compact' # The date requested can't be in the future if ( datetime.now() < dt ): return "Data requested is in the future", False # Do we need the 'compact' or the 'full' outputsize? # The 'compact' one has the lastest 100 data points, which probably means more than 100 days. delta = datetime.now() - dt # To be on the safe side, ask for the full data when it's more the 100 days diff from today if delta > timedelta(days=100): _size = 'full' # Make the request try: r = requests.get("https://www.alphavantage.co/query?function={}&symbol={}&outputsize={}&apikey={}&datatype=json".format(FUNCTION, stock, _size, API_TOKEN)) # Get the data and metadata json_data = json.loads(r.text) meta_data = json_data["Meta Data"] data = json_data["Time Series (Daily)"] # Convert date back to string date = dt.strftime("%Y-%m-%d") # Sorting can be time-consuming, but should not be significant # compared to getting the data over the network last_data_point = sorted(data, key=lambda kv: kv[1])[-1] # Is there data for this date? if ( dt < datetime.strptime(last_data_point, ("%Y-%m-%d")) ): to_return = "Data for this date does not exist. Last data point is {}".format(last_data_point) else: while date not in data: dt -= timedelta(days=1) date = dt.strftime("%Y-%m-%d") # Get data as a float, than format it as a string with 8 decimal places fValue = float(data[date]['4. close']) to_return = "{:.8f}".format(fValue) except: to_return = "No data for this stock" bRet = False return to_return, bRet ```
{ "source": "jeromevonk/candidates-api", "score": 2 }
#### File: candidates-api/test/invalid_candidate.py ```python import requests import sys import pytest import copy from random_candidates import getFakeEducation, getFakeExperience #------------------------------------------------------------------------------- # Helper function #------------------------------------------------------------------------------- def postInvalidCandidate(candidate): try: r = requests.post(url, json = candidate) print(r.text) assert r.status_code == 400 except requests.exceptions.RequestException as e: print(e) #------------------------------------------------------------------------------- # Hosted locally or in heroku #------------------------------------------------------------------------------- LOCAL = 'http://localhost:5000/candidates/api/v2.0/' HEROKU = 'https://candidates-api.herokuapp.com/candidates/api/v2.0/' AWS = 'http://candidates-api.sa-east-1.elasticbeanstalk.com/candidates/api/v2.0/' # Default to localhost URL_BASE = LOCAL # Parse command line argument if len(sys.argv) > 1: if 'heroku' == sys.argv[1]: URL_BASE = HEROKU if 'aws' == sys.argv[1]: URL_BASE = AWS #------------------------------------------------------------------------------- # Insert invalid candidates #------------------------------------------------------------------------------- url = URL_BASE + 'candidates' template = { "name" : "<NAME>", "picture" : "", "birthdate" : "01/02/1988", "gender" : 1, "email" : "<EMAIL>", "phone" : "11912345678", "address" : "Avenida Paulista, 1", "longitude": -12.75, "latitude": 45.11122, "tags" : [], "experience" : [], "education" : []} #------------------------------------------------------------------------------- # Invalid / missing name #------------------------------------------------------------------------------- print("### Inserting candidate(s) with invalid/missing name...") invalid_name = copy.deepcopy(template) # a) Empty invalid_name['name'] = '' postInvalidCandidate(invalid_name) # b) Too big invalid_name['name'] = 'Nome muito muito muito muito muito muito muito muito muito muito muito muito grande' postInvalidCandidate(invalid_name) # c) Missing name invalid_name.pop('name', None) postInvalidCandidate(invalid_name) #------------------------------------------------------------------------------- # Missing email #------------------------------------------------------------------------------- print("### Inserting candidate(s) with missing email...") invalid_email = copy.deepcopy(template) # a) Empty invalid_email['email'] = '' postInvalidCandidate(invalid_email) # b) Too big invalid_email['email'] = '<EMAIL>' postInvalidCandidate(invalid_email) # c) Without '.' invalid_email['email'] = 'email<EMAIL>' postInvalidCandidate(invalid_email) # d) Without '@' invalid_email['email'] = 'emaila.com' postInvalidCandidate(invalid_email) # e) Missing name invalid_email.pop('email', None) postInvalidCandidate(invalid_email) #------------------------------------------------------------------------------- # Invalid / missing gender (see https://en.wikipedia.org/wiki/ISO/IEC_5218) #------------------------------------------------------------------------------- print("### Inserting candidate(s) with invalid/missing gender...") invalid_gender = copy.deepcopy(template) # a) Invalid number invalid_gender['gender'] = 3 postInvalidCandidate(invalid_gender) # b) Strings are not accepted invalid_gender['gender'] = 'Male' postInvalidCandidate(invalid_gender) # c) Missing gender invalid_gender.pop('gender', None) postInvalidCandidate(invalid_gender) #------------------------------------------------------------------------------- # Invalid / missing phone (format: 11912345678) #------------------------------------------------------------------------------- print("### Inserting candidate(s) with invalid/missing phone...") invalid_phone = copy.deepcopy(template) # a) Too small invalid_phone['phone'] = '912345678' postInvalidCandidate(invalid_phone) # b) Too big invalid_phone['phone'] = '5511912345678' postInvalidCandidate(invalid_phone) # c) Strings are not accepted invalid_phone['phone'] = 'nove sete cinco um meia quatro meia dois' postInvalidCandidate(invalid_phone) # d) Missing phone invalid_phone.pop('phone', None) postInvalidCandidate(invalid_phone) #------------------------------------------------------------------------------- # Invalid / missing address (at least 5 characters) #------------------------------------------------------------------------------- print("### Inserting candidate(s) with invalid/missing address...") invalid_address = copy.deepcopy(template) # a) Too small invalid_address['address'] = 'Rua' postInvalidCandidate(invalid_address) # b) Too big invalid_address['address'] = 'Endereço muito muito muito muito muito muito muito muito muito muito muito muito muito muito muito muito muito muito grande' postInvalidCandidate(invalid_address) # c) Missing address invalid_address.pop('address', None) postInvalidCandidate(invalid_address) #------------------------------------------------------------------------------- # Invalid latitude (optional, but if present should be valid ) # (see https://en.wikipedia.org/wiki/Decimal_degrees) #------------------------------------------------------------------------------- print("### Inserting candidate(s) with invalid latitude...") invalid_latitude = copy.deepcopy(template) # a) Too small invalid_latitude['latitude'] = -91.2 postInvalidCandidate(invalid_latitude) # b) Too big invalid_latitude['latitude'] = 93.2 postInvalidCandidate(invalid_latitude) # c) Strings are not accepted invalid_latitude['latitude'] = '45 degrees' postInvalidCandidate(invalid_latitude) # d) Empty invalid_latitude['latitude'] = '' postInvalidCandidate(invalid_latitude) #------------------------------------------------------------------------------- # Invalid longitude (optional, but if present should be valid ) # (see https://en.wikipedia.org/wiki/Decimal_degrees) #------------------------------------------------------------------------------- print("### Inserting candidate(s) with invalid longitude...") invalid_longitude = copy.deepcopy(template) # a) Too small invalid_longitude['longitude'] = -181.22 postInvalidCandidate(invalid_longitude) # b) Too big invalid_longitude['longitude'] = 193.21 postInvalidCandidate(invalid_longitude) # c) Strings are not accepted invalid_longitude['longitude'] = '45 degrees' postInvalidCandidate(invalid_longitude) # d) Empty invalid_longitude['longitude'] = '' postInvalidCandidate(invalid_longitude) #------------------------------------------------------------------------------- # Invalid birthdate (optional, but if present should be valid ) # format is DD/MM/YYYY #------------------------------------------------------------------------------- print("### Inserting candidate(s) with invalid birthdate...") invalid_birthdate = copy.deepcopy(template) # a) Invalid day invalid_birthdate['birthdate'] = "00/02/1988" postInvalidCandidate(invalid_birthdate) # b) Invalid month invalid_birthdate['birthdate'] = "01/13/1988" postInvalidCandidate(invalid_birthdate) # c) Invalid year invalid_birthdate['birthdate'] = "03/02/2048" postInvalidCandidate(invalid_birthdate) # d) Invalid day of month invalid_birthdate['birthdate'] = "30/02/1988" postInvalidCandidate(invalid_birthdate) #------------------------------------------------------------------------------- # Invalid picture (optional, but if present should be valid ) #------------------------------------------------------------------------------- print("### Inserting candidate(s) with invalid picture...") invalid_picture = copy.deepcopy(template) # a) Invalid string invalid_picture['picture'] = "Empty" postInvalidCandidate(invalid_picture) # b) PNG image invalid_picture['picture'] = "ypBORw0KGg0KICAgDQpJSERSICAgByAgIAkIAiAgIHE6wrQgICABc1JHQiDPjhzpoKAgBGdBTUEgINGPC++/ve+/vSAgCXBIWXMgIA7DoCAOw4HIr8mkICAgEklEQVQYV2Pwn6+OyYbXqN26IEk3Z92oQDPMoCAgIElFTkTPgmA=" postInvalidCandidate(invalid_picture) #------------------------------------------------------------------------------- # Invalid experience (optional, but if present should be valid ) #------------------------------------------------------------------------------- print("### Inserting candidate(s) with invalid experience...") invalid_experience = copy.deepcopy(template) # a) Not a list invalid_experience['experience'] = "" postInvalidCandidate(invalid_experience) # b) List of non-strings invalid_experience['experience'] = [1, 2, 3] postInvalidCandidate(invalid_experience) # c) Missing company name invalid_experience['experience'].clear() exp = getFakeExperience() exp.pop('company', None) invalid_experience['experience'].append(exp) postInvalidCandidate(invalid_experience) # d) Missing job title name invalid_experience['experience'].clear() exp = getFakeExperience() exp.pop('job_title', None) invalid_experience['experience'].append(exp) postInvalidCandidate(invalid_experience) # e) Invalid date_start invalid_experience['experience'].clear() invalid_experience['experience'].append( getFakeExperience()) invalid_experience['experience'][0]['date_start'] = "01/13/2027" postInvalidCandidate(invalid_experience) # e) Invalid date_end invalid_experience['experience'].clear() invalid_experience['experience'].append( getFakeExperience()) invalid_experience['experience'][0]['date_end'] = "01/12/2027" postInvalidCandidate(invalid_experience) # f) Invalid description invalid_experience['experience'].clear() invalid_experience['experience'].append( getFakeExperience()) invalid_experience['experience'][0]['description'] = [] postInvalidCandidate(invalid_experience) #------------------------------------------------------------------------------- # Invalid education (optional, but if present should be valid ) #------------------------------------------------------------------------------- print("### Inserting candidate(s) with invalid education...") invalid_education = copy.deepcopy(template) # a) Not a list invalid_education['education'] = "" postInvalidCandidate(invalid_education) # b) List of non-strings invalid_education['education'] = [1, 2, 3] postInvalidCandidate(invalid_education) # c) Missing institution name invalid_education['education'].clear() exp = getFakeEducation() exp.pop('institution', None) invalid_education['education'].append(exp) postInvalidCandidate(invalid_education) # d) Missing degree name invalid_education['education'].clear() exp = getFakeEducation() exp.pop('degree', None) invalid_education['education'].append(exp) postInvalidCandidate(invalid_education) # e) Invalid date_start invalid_education['education'].clear() invalid_education['education'].append( getFakeEducation()) invalid_education['education'][0]['date_start'] = "32/12/2027" postInvalidCandidate(invalid_education) # e) Invalid date_end invalid_education['education'].clear() invalid_education['education'].append( getFakeEducation()) invalid_education['education'][0]['date_end'] = "01/12/1754" postInvalidCandidate(invalid_education) # f) Invalid description invalid_education['education'].clear() invalid_education['education'].append( getFakeEducation()) invalid_education['education'][0]['description'] = {} postInvalidCandidate(invalid_education) #------------------------------------------------------------------------------- # Invalid tags (optional, but if present should be valid ) #------------------------------------------------------------------------------- print("### Inserting candidate(s) with invalid tags...") invalid_tags = copy.deepcopy(template) # a) Invalid string invalid_tags['tags'] = "" postInvalidCandidate(invalid_tags) # b) List of non-strings invalid_tags['tags'] = [1, 2, 3] postInvalidCandidate(invalid_tags) ```
{ "source": "jeromevonk/data_science", "score": 3 }
#### File: data_science/Detect Enron fraud with Machine learning/dataset_investigation.py ```python def exploreFeature(feature): for key in enron_data.keys(): print enron_data[key][feature] def plotFeature(name, data): import matplotlib.pyplot as plt plt.hist(data) plt.xlabel(name) #plt.show() plt.savefig("{}.png".format(name)) plt.clf() def computeFraction( poi_messages, all_messages ): """ compute the fraction of messages to/from a person that are from/to a POI """ fraction = 0 if poi_messages == 'NaN' or all_messages == 'NaN': fraction = 'NaN' else: fraction = float(poi_messages)/all_messages return fraction import sys import pickle sys.path.append("../tools/") ### Load the dictionary containing the dataset with open("final_project_dataset.pkl", "r") as data_file: enron_data = pickle.load(data_file) # How many persons? print 'Number of persons: ', len(enron_data) for person in enron_data: #print person pass # For each person, how many features? features_names = [] print "List of features:" for person in enron_data: for feature, feature_value in enron_data[person].iteritems(): features_names.append(feature) break print "Number of features: ", len(features_names) print features_names # How many persons of interest? count_poi = 0 for person in enron_data: if enron_data[person]["poi"] == 1: count_poi += 1 print "Persons of interest: ", count_poi print "Non-POIs: ", len(enron_data) - count_poi # Missing? for feature in features_names: print "NaN percentage for ", feature, " :", round(float(sum([1 for key in enron_data.keys() if enron_data[key][feature] == 'NaN']))/len(enron_data), 3) # Is there someone with NaN for all features? for person in enron_data: valid = False for feature, feature_value in enron_data[person].iteritems(): if feature_value != 'NaN' and feature != 'poi': valid = True break if valid == False: print "Found someone with NaN for all values: ", person # Plots from feature_format import featureFormat, targetFeatureSplit features_list = ['poi','salary', 'to_messages', 'deferral_payments', 'total_payments', 'exercised_stock_options', 'bonus', 'restricted_stock', 'shared_receipt_with_poi', 'restricted_stock_deferred', 'total_stock_value', 'expenses', 'loan_advances', 'from_messages', 'other', 'from_this_person_to_poi', 'poi', 'director_fees', 'deferred_income', 'long_term_incentive', 'from_poi_to_this_person'] data = featureFormat(enron_data, features_list, sort_keys = True) labels, features = targetFeatureSplit(data) #for i in range(1, len(features_list)): #plotFeature(features_list[i], features[i-1] ) # Negative salary? import numpy as np np_features = np.array(features) import pprint #pprint.pprint(np_features[:,0]) # Pandas import pandas as pd df = pd.DataFrame.from_dict(enron_data, orient = 'index') subzero = df[df < 0] print len(subzero) #for person in enron_data: # for feature, feature_value in enron_data[person].iteritems(): # if feature_value != 'NaN' and feature_value < 0: # print person, feature, feature_value # As seen in class, we will compute the fraction of exchanged messages with POIs over the total messages for name in enron_data: person_dict = enron_data[name] fraction_from_poi = computeFraction(person_dict['from_poi_to_this_person'], person_dict['to_messages']) #print fraction_from_poi person_dict["fraction_from_poi"] = fraction_from_poi fraction_to_poi = computeFraction(person_dict['from_this_person_to_poi'], person_dict['from_messages']) #print fraction_to_poi person_dict["fraction_to_poi"] = fraction_to_poi for feature in ["fraction_from_poi", "fraction_to_poi"]: print "NaN percentage for ", feature, " :", round(float(sum([1 for key in enron_data.keys() if enron_data[key][feature] == 'NaN']))/len(enron_data), 3) ``` #### File: Wrangling OSM data for Madrid/2. Auditing/2_tag_potential_problems.py ```python import xml.etree.cElementTree as ET import pprint import re import os import sys lower = re.compile(r'^([a-z]|_)*$') lower_colon = re.compile(r'^([a-z]|_)*:([a-z]|_)*$') problemchars = re.compile(r'[=\+/&<>;\'"\?%#$@\,\. \t\r\n]') DATA_PATH = "..\\1. Data\\Full\\Madrid_custom_11122017.osm" SAMPLE_PATH = "..\\1. Data\\Sample\\Madrid_custom_11122017_sample_1.osm" OUTPUT_FILE = "output\\2_tag_potential_problems.txt" def key_type(element, keys): """For a given tag, look for potential problems""" if element.tag == "tag": if lower.search(element.attrib['v']): #print(element.attrib['v'], "lower") keys['lower'] += 1 elif lower_colon.search(element.attrib['v']): #print(element.attrib['v'], 'lower_colon') keys['lower_colon'] += 1 elif problemchars.search(element.attrib['v']): #print(element.attrib['v'], 'problemchars') keys['problemchars'] += 1 else: #print(element.attrib['v'], 'other') keys['other'] += 1 return keys def process_map(filename): """Iterate through every tag in the data file""" keys = {"lower": 0, "lower_colon": 0, "problemchars": 0, "other": 0} osm_file = open(filename, "r", encoding="utf8") for _, element in ET.iterparse(osm_file): keys = key_type(element, keys) return keys def test(dataset): """Perform the test on the selected dataset""" print("Running 2_tag_potential_problems.py") keys = {} # Run against the sample or the full data? if dataset == "sample": keys = process_map(SAMPLE_PATH) else: keys = process_map(DATA_PATH) os.makedirs(os.path.dirname(OUTPUT_FILE), exist_ok=True) with open(OUTPUT_FILE, "w") as fo: pprint.pprint(keys, fo) if __name__ == "__main__": dataset = "full" if len(sys.argv) > 1: dataset = sys.argv[1] test(dataset) ``` #### File: Wrangling OSM data for Madrid/4. Database/create_database_mongodb.py ```python import json def create_database(): """Create database from the json file""" # Connect to database from pymongo import MongoClient try: client = MongoClient('localhost:27017') except: print("Could not connect to MongoDB") return # Database will be called Madrid db = client.Madrid # Collection will be called nodes_ways collection = db.nodes_ways with open('..\\3. Preparing_database\\output\\nodes_and_ways.json') as file: for line in file: # Convert from json to python format collection.insert(json.loads(line)) print("Collection now has {} documents".format(collection.count() ) ) if __name__ == '__main__': #print("Running create_database_mongodb.py") create_database() ``` #### File: Wrangling OSM data for Madrid/4. Database/perform_queries.py ```python import sqlite3 import csv import os def perform_query(cursor, columns, file_path, query): """Perfom a query and save the output in a csv file""" cursor.execute(query) results = cursor.fetchall() # Save in a csv file with open(file_path, 'w', newline='') as csvfile: writer = csv.writer(csvfile, delimiter=',') writer.writerow(columns) for row in results: writer.writerow(row) def perform_queries(): """Perfom a list of queries on the database""" # Connect to database conn = sqlite3.connect("madrid.db") # Create a cursor cursor = conn.cursor() # Make sure the output directory exists os.makedirs(os.path.dirname("queries\\"), exist_ok=True) # -------------------------------------------------------- # Perform the desired queries # -------------------------------------------------------- # Retrieve the users that appear the most results = perform_query(cursor, ["user", "id", "count"], "queries\\users.csv", "select user, uid, count(*) as count from nodes group by user order by count desc limit 10") # What type of cuisine appears the most results = perform_query(cursor, ["cuisine", "count"], "queries\\cuisine.csv", "select value, count(*) as count from node_tags where key='cuisine' group by value order by count desc") # What postcode appears the most results = perform_query(cursor, ["postcode", "count"], "queries\\postcode.csv", "select value, count(*) as count from way_tags where key='postcode' group by value order by count desc") # Now, close the connection conn.close() if __name__ == '__main__': print("Running perform_queries.py") perform_queries() ```
{ "source": "jerome-wang/CarSpider", "score": 3 }
#### File: buycar/spiders/CarSpider.py ```python import scrapy from buycar.items import CarItem class CarSpider(scrapy.Spider): name = "CarSpider" allowed_domains = ["autohome.com.cn"] start_urls = ["http://k.autohome.com.cn/spec/18890/"] url_prefix = u'http://k.autohome.com.cn' def parse(self, response): for EachComment in response.xpath("//div[@class='mouthcon']"): CarModel = EachComment.xpath(".//div[@class='choose-con mt-10']/dl[1]/dd/a[1]/text()").extract()[0].strip() CarType = EachComment.xpath(".//div[@class='choose-con mt-10']/dl[1]/dd/a[2]/span/text()").extract()[0].strip() PurchasedTime = EachComment.xpath(".//div[@class='choose-con mt-10']/dl[4]/dd/text()").extract()[0].strip() PurchasedLocation = EachComment.xpath(".//div[@class='choose-con mt-10']/dl[2]/dd/text()").extract()[0].strip() #PurchasedDealer = EachComment.xpath() PurchasedPrice = EachComment.xpath(".//div[@class='choose-con mt-10']/dl[5]/dd/text()").extract()[0].strip() #CurrentMiles = EachComment.xpath() #CurrentFuel = EachComment.xpath() #print CarModel, CarType, PurchasedTime, PurchasedPrice carItem = CarItem() carItem['CarModel'] = CarModel carItem['CarType'] = CarType carItem['PurchasedTime'] = PurchasedTime carItem['PurchasedLocation'] = PurchasedLocation carItem['PurchasedPrice'] = PurchasedPrice yield carItem next_page = response.xpath("//a[@class='page-item-next']/@href").extract() if len(next_page) != 0 and next_page[0].strip() != u'###': url = self.url_prefix + next_page[0].strip() print '##### url = ', url yield scrapy.Request(url, callback=self.parse) ```
{ "source": "jeromewu/tensorflow", "score": 2 }
#### File: autograph/core/config.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import enum from tensorflow.python.autograph import utils def _internal_name(name): """This function correctly resolves internal and external names.""" reference_name = utils.__name__ reference_root = 'tensorflow.' # If the TF module is foo.tensorflow, then all other modules # are then assumed to be prefixed by 'foo'. if reference_name.startswith(reference_root): return name reference_begin = reference_name.find('.' + reference_root) assert reference_begin > 0 root_prefix = reference_name[:reference_begin] return root_prefix + '.' + name class Rule(object): """Base class for conversion rules.""" def __init__(self, module_prefix): self._prefix = module_prefix def matches(self, module_name): return (module_name.startswith(self._prefix + '.') or module_name == self._prefix) class Action(enum.Enum): NONE = 0 CONVERT = 1 DO_NOT_CONVERT = 2 class DoNotConvert(Rule): """Indicates that this module should be not converted.""" def __str__(self): return 'DoNotConvert rule for {}'.format(self._prefix) def get_action(self, module): if self.matches(module.__name__): return Action.DO_NOT_CONVERT return Action.NONE class Convert(Rule): """Indicates that this module should be converted.""" def __str__(self): return 'Convert rule for {}'.format(self._prefix) def get_action(self, module): if self.matches(module.__name__): return Action.CONVERT return Action.NONE # This list is evaluated in order and stops at the first rule that tests True # for a definitely_convert of definitely_bypass call. CONVERSION_RULES = ( DoNotConvert('tensorflow'), DoNotConvert(_internal_name('tensorflow')), # TODO(b/133417201): Remove. DoNotConvert('tensorflow_probability'), DoNotConvert(_internal_name('tensorflow_probability')), # TODO(b/130313089): Remove. DoNotConvert('numpy'), DoNotConvert('threading'), ) ```
{ "source": "jeromjoy/Correct-Project", "score": 3 }
#### File: Correct-Project/Back_end/WorkerFiles.py ```python import dateutil.parser as parser import urllib.request import requests import json from bs4 import BeautifulSoup import time import traceback import psycopg2 import datetime from urllib.parse import urlparse from celery import Celery from celery.schedules import crontab app = Celery() @app.on_after_configure.connect def setup_periodic_tasks(sender, **kwargs): # Calls test('hello') every 3600 seconds. sender.add_periodic_task(3600.0, workerTask.s('NEWS_API'), name='news_api') sender.add_periodic_task(3600.0, workerTask.s('FAKE_NEWS'), name='fake_news') @app.task def workerTask(args): if(args=='NEWS_API'): newsApiCall('NEWS_API') elif(args=='FAKE_NEWS'): fakeNewsCall('FAKE_NEWS') connectionString = "dbname='correctdb' user='postgres' host='localhost' password='<PASSWORD>'" class NewsAPI: Url = '' Author = '' Title = '' Description = '' ImageUrl = '' PublishedAt = '' def __init__(self, url, author, title, description, imageUrl, publishedAt): self.Url = url self.Author = author self.Title = title self.Description = description self.ImageUrl = imageUrl self.PublishedAt = publishedAt class News: Article = '' Title = '' Author = '' OriginalContent = '' CreatedDate = '' FetchedDate = '' ArticleUrl = '' LastUsed = '' def __init__(self, article , title, author, originalcontent, createddate, fetcheddate, articleurl, lastused): self.Article = article self.Title = title self.OriginalContent = originalcontent self.CreatedDate = createddate self.FetchedDate = fetcheddate self.ArticleUrl = articleurl self.LastUsed = lastused self.Author = author def uploadDBNewsApi(newsApi): try: conn = psycopg2.connect(connectionString) cur = conn.cursor() # publishedAt = time.mktime(datetime.datetime.strptime(PublishedAt, "%Y-%m-%d").timetuple()) cur.execute("INSERT INTO NewsFetchedApi (Url, Author, Title, Description, ImageUrl, PublishedAt) VALUES (%s, %s, %s, %s, %s, %s)", (newsApi.Url, newsApi.Author, newsApi.Title, newsApi.Description, newsApi.ImageUrl, newsApi.PublishedAt)) conn.commit(); cur.close() conn.close() except psycopg2.Error as e: print("I am unable to connect to the database") print(e) print(e.pgcode) print(e.pgerror) print(traceback.format_exc()) return def uploadDBNews(news): try: # createdDate = time.mktime(datetime.datetime.strptime(CreatedDate, "%d/%m/%Y").timetuple()) # fetchedDate = time.mktime(datetime.datetime.strptime(FetchedDate, "%d/%m/%Y").timetuple()) # lastUsed = time.mktime(datetime.datetime.strptime(LastUsed, "%d/%m/%Y").timetuple()) conn = psycopg2.connect(connectionString) cur = conn.cursor() cur.execute("INSERT INTO News (Article, Title, Author, OriginalContent, CreatedDate, FetchedDate,ArticleUrl,LastUsed) VALUES (%s, %s, %s, %s, %s, %s, %s, %s)", (news.Article, news.Title, news.Author, news.OriginalContent, news.CreatedDate, news.FetchedDate, news.ArticleUrl, news.LastUsed)) conn.commit(); cur.close() conn.close() except psycopg2.Error as e: print("I am unable to connect to the database") print(e) print(e.pgcode) print(e.pgerror) print(traceback.format_exc()) return def checkUrlInDB(href): try: conn = psycopg2.connect(connectionString) cur = conn.cursor() query = "select ArticleUrl from news where ArticleUrl = '" + href+"'" cur.execute(query) rows = cur.fetchall() cur.close() conn.close() if(len(rows)>0): return 0 else: return 1 except psycopg2.Error as e: print("I am unable to connect to the database") print(e) print(e.pgcode) print(e.pgerror) print(traceback.format_exc()) return def get_and_write_data(link): for i in range(len(link)): try: response = urllib.request.urlopen(link[i]) html = response.read().decode() data = json.loads(html) except ValueError: print ('Decoding JSON has failed') continue news = data['articles'] for i in range(len(news)): author = news[i]['author'] title = news[i]['title'] description = news[i]['description'] url = news[i]['url'] image = news[i]['urlToImage'] publishedAt = news[i]['publishedAt'] newsApi = NewsAPI(url, author, title, description, image, publishedAt) uploadDBNewsApi(newsApi) get_news_content_api(url) def newsApiCall(args): link = ["https://newsapi.org/v1/articles?source=the-guardian-uk&sortBy=top&apiKey=<KEY>", "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=<KEY>", "https://newsapi.org/v1/articles?source=abc-news-au&sortBy=top&apiKey=<KEY>", "https://newsapi.org/v1/articles?source=cnn&sortBy=top&apiKey=<KEY>", "https://newsapi.org/v1/articles?source=independent&sortBy=top&apiKey=<KEY>", "https://newsapi.org/v1/articles?source=reuters&sortBy=top&apiKey=<KEY>", "https://newsapi.org/v1/articles?source=time&sortBy=top&apiKey=<KEY>"] get_and_write_data(link) def get_news_firstpage(link): for i in range(len(link)): link[i] = 'http://' + link[i] headers = {'user-agent' : 'Mozilla/5.0'} try: source = requests.get(link[i], headers = headers) soup = BeautifulSoup(source.content, "lxml") except requests.exceptions.ConnectionError: print ('Connection refused!!!') if (soup.findAll('article')): for article in soup.findAll('article'): if (article.find('a')): href = article.find('a').get('href') if href.startswith('http'): href = href else: href = link[i] + href get_news_content(href) else: print ('not able to get <a>!!') else: print ('not able to get <article>!!') def get_news_content(href): print("New Data\n\n\n\n\n\n",href) if(checkUrlInDB(href)==0): print("Link already in DB") return headers = {'user-agent' : 'Mozilla/5.0'} title = None article = None author = None orginalContent = None createdDate = None date= None try: source = requests.get(href, headers = headers) except requests.exceptions.ConnectionError: source.status_code = "Connection refused" if (BeautifulSoup(source.content, "lxml").body): soup = BeautifulSoup(source.content, "lxml").body if (soup.findAll('p')): article = [] for paragraph in soup.findAll('p'): article.append(paragraph.text) else: article = 'Unknown' date = time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())) fetchedDate = date lastUsed = date orginalContent = source.content if (urlparse(href).netloc == 'americannews.com'): if (soup.findAll('h1')): for title in soup.findAll('h1'): title = title.text else: title = 'Unknown' if (soup.find('time',{'class': 'rpwe-time published'})): createdDate = soup.find('time',{'class': 'rpwe-time published'}).text createdDate = (parser.parse(createdDate)).isoformat() else: createdDate = None if (soup.findAll('b')): for author in soup.findAll('b'): author = author.text else: author = 'Unknown' elif (urlparse(href).netloc == 'www.activistpost.com'): if (soup.findAll('span', {'class': 'entry-meta-date updated'})): for createdDate in soup.findAll('span', {'class': 'entry-meta-date updated'}): createdDate = (parser.parse(createdDate.text)).isoformat() else: createdDate = None if (soup.findAll('h1', {'class': 'entry-title'})): for title in soup.findAll('h1', {'class': 'entry-title'}): title = title.text else: title = 'Unknown' for authors in soup.findAll('p'): if (authors.findAll('a')): for author in authors.findAll('a'): author = author.text else: author = 'Unknown' elif (urlparse(href).netloc == 'www.thedailysheeple.com'): if (soup.findAll('time', {'class': 'entry-date'})): for createdDate in soup.findAll('time', {'class': 'entry-date'}): createdDate = (parser.parse(createdDate.text)).isoformat() else: createdDate = None if (soup.findAll('h1', {'class': 'entry-title'})): for title in soup.findAll('h1', {'class': 'entry-title'}): title = title.text else: title = 'Unknown' if (soup.findAll('span', {'class': 'author vcard'})): for author in soup.findAll('span', {'class': 'author vcard'}): author = author.text else: author = 'Unknown' elif (urlparse(href).netloc == 'waterfordwhispersnews.com'): if (soup.findAll('p', {'class': 'byline byline-left '})): for createdDate in soup.findAll('p', {'class': 'byline byline-left '}): createdDate = None else: createdDate = None if (soup.findAll('h1', {'class': 'entry-title'})): for title in soup.findAll('h1', {'class': 'entry-title'}): title = title.text else: title = 'Unknown' if (soup.findAll('span', {'class': 'author vcard'})): for author in soup.findAll('span', {'class': 'author vcard'}): author = author.text else: author = 'Unknown' elif (urlparse(href).netloc == 'www.clickhole.com'): if (soup.findAll('div', {'class': 'pub_date'})): for createdDate in soup.findAll('div', {'class': 'pub_date'}): createdDate = (parser.parse(createdDate.text)).isoformat() else: createdDate = None if (soup.findAll('h1', {'class': 'headline'})): for title in soup.findAll('h1', {'class': 'headline'}): title = title.text else: title = 'Unknown' if (soup.findAll('span', {'class': 'author vcard'})): for author in soup.findAll('span', {'class': 'author vcard'}): author = author.text else: author = 'Unknown' elif (urlparse(href).netloc == 'theonion.com'): if (soup.findAll('span', {'class': 'content-published-mobile'})): for createdDate in soup.findAll('span', {'class': 'content-published-mobile'}): createdDate = (parser.parse(createdDate.text)).isoformat() else: createdDate = None if (soup.findAll('header', {'class': 'content-header'})): for title in soup.findAll('header', {'class': 'content-header'}): title = title.text else: title = 'Unknown' if (soup.findAll('span', {'class': 'author vcard'})): for author in soup.findAll('span', {'class': 'author vcard'}): author = author.text else: author = 'Unknown' else: title = 'Unknown' author = 'Unknown' createdDate = None else: print ('can not get connent') return news = News(article, title, author, orginalContent, createdDate, date, href, date) uploadDBNews(news) def fakeNewsCall(args): link = [ 'americannews.com', 'thedailysheeple.com', 'theonion.com', 'clickhole.com', 'activistpost.com' 'waterfordwhispersnews.com' ] get_news_firstpage(link) def get_news_content_api(href): print("New Data\n\n\n\n\n\n",href) if(checkUrlInDB(href)==0): print("Link already in DB") return headers = {'user-agent' : 'Mozilla/5.0'} try: source = requests.get(href, headers = headers) except requests.exceptions.ConnectionError: source.status_code = "Connection refused" if source.status_code == 200: soup = BeautifulSoup(source.content, "lxml").body print (href) if (soup.findAll('p')): for article in soup.findAll('p'): article = article.text else: article = 'Unknown' date = time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())) fetchedDate = date lastUsed = date orginalContent = source.content if (soup.findAll('h1')): for title in soup.findAll('h1'): title = title.text else: title = 'Unknown' if (urlparse(href).netloc) == 'www.theguardian.com': try: for createdDate in soup.findAll('time',{'itemprop': 'datePublished'}): ccreatedDate = (parser.parse(createdDate.text)).isoformat() except: createdDate = None if(soup.findAll('a', {'class':'tone-colour'})): for author in soup.findAll('a', {'class':'tone-colour'}): author = author.text else: author = 'Unknown' elif (urlparse(href).netloc) == 'www.bbc.co.uk': if (soup.find('div', {'class': 'date date--v2'})): for createdDate in soup.findAll('div', {'class': 'date date--v2'}): createdDate = (parser.parse(createdDate.text)).isoformat() else: createdDate = None if (soup.findAll('a', {'class':'tone-colour'})): for author in soup.findAll('a', {'class':'tone-colour'}): author = author.text else: author = 'Unknown' elif (urlparse(href).netloc) == 'www.abc.net.au': if (soup.findAll('span', {'class': 'print'})): for createdDate in soup.findAll('span', {'class': 'print'}): if (createdDate): createdDate = (parser.parse(createdDate.text)).isoformat() else: createdDate = None else: createdDate = None if (soup.find('a', {'target':'_self'})): author = soup.find('a', {'target':'_self'}).text else: author = 'Unknown' elif (urlparse(href).netloc) == 'www.cnn.com': try: createdDate = soup.find('p', {'class': 'update-time'}) createdDate = (parser.parse(createdDate.text)).isoformat() except: createdDate = None if (soup.find('span', {'class':'metadata_byline_author'})): for author in soup.find('span', {'class':'metadata_byline_author'}): author = author.string else: author = 'Unknown' elif (urlparse(href).netloc) == 'www.independent.co.uk': try: createdDate = soup.find('time') createdDate = (parser.parse(createdDate.text)).isoformat() except: createdDate = None if (soup.find('span', {'itemprop':'name'})): for author in soup.find('span', {'itemprop':'name'}): author = author.string else: author = 'Unknown' elif (urlparse(href).netloc) == 'www.reuters.com': try: createdDate = soup.find('span', {'class': 'timestamp'}) createdDate = parser.parse(createdDate.text) except: createdDate = None if (soup.find('span', {'class':'author'})): for author in soup.find('span', {'class':'author'}): author = author.string else: author = 'Unknown' elif (urlparse(href).netloc) == 'time.com': try: createdDate = soup.find('div', {'class': 'row text font-accent size-1x-small color-darker-gray'}) createdDate = (parser.parse(createdDate.text)).isoformat() except: createdDate = None if (soup.find('a', {'class':'text font-accent color-brand size-1x-small _1HynphR0'})): for author in soup.find('a', {'class':'text font-accent color-brand size-1x-small _1HynphR0'}): author = author.string else: author = 'Unknown' else: createdDate = None author = 'Unknown' else: print ('can not get connent') return news = News(article, title, author, orginalContent, createdDate, date, href, date) uploadDBNews(news) # fakeNewsCall('FAKE_NEWS') #newsApiCall('NEWS_API') ```
{ "source": "jeromlu/amino_acids_repo", "score": 2 }
#### File: amino_acids_repo/amino_acids/__main__.py ```python __version__ = "1.0.0" import sys from PyQt5.QtWidgets import QApplication from PyQt5.QtGui import QIcon from amino_acids.amino_acids_main_window import AminoAcidsUI from amino_acids import qrc_resources def main(): app = QApplication(sys.argv) app.setWindowIcon(QIcon(":/main_window_icon.png")) main_frame = AminoAcidsUI() main_frame.show() app.exec_() if __name__ == '__main__': main() ``` #### File: amino_acids_repo/amino_acids/settings_dialog.py ```python import sys # ****************************Third party**************************************** from PyQt5.QtWidgets import QApplication, QDialog, QLabel, QLineEdit, QBoxLayout from PyQt5.QtWidgets import QWidget, QComboBox, QVBoxLayout, QDialogButtonBox from PyQt5.QtWidgets import QCheckBox from PyQt5.QtGui import QRegExpValidator from PyQt5.QtCore import QRegExp # Global constants LEFT, ABOVE = range(2) class SettingsDialog(QDialog): def __init__(self, settings, parent=None): super(SettingsDialog, self).__init__(parent) # data self.settings = settings # UI initialization self.create_dialog() self.setWindowTitle("Settings") # connections self.buttonBox.accepted.connect(self.accept) self.buttonBox.rejected.connect(self.reject) def create_dialog(self): # defines what to show, all information or just specific self.lle_time = LabelledLineEdit("Time you have for answer\nin seconds", ABOVE) self.lle_num_of_AAs = LabelledLineEdit("Number of aminoacids to test", ABOVE) rx = r"[0-9]{3}" reg_exp = QRegExp(rx) self.lle_time.line_edit.setValidator(QRegExpValidator(reg_exp)) self.lle_time.line_edit.setText(str(self.settings["seconds"])) rx = r"[0-9]|1[0-9]|2[0-2]" reg_exp = QRegExp(rx) self.lle_num_of_AAs.line_edit.setValidator(QRegExpValidator(reg_exp)) self.lle_num_of_AAs.line_edit.setText(str(self.settings["AA_num_to_test"])) self.lcb_show = LabelledComboBox("Show", ABOVE) show_options = ["AA_name", "Letter_label", "Short_label", "Skeletal_formula"] self.lcb_show.combo_box.addItems(show_options) self.lcb_show.combo_box.setCurrentText("Letter_label") self.repetition_cb = QCheckBox("No repetition of amino acids") self.repetition_cb.setChecked(self.settings["AA_repetition"]) self.buttonBox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) vbox = QVBoxLayout(self) vbox.addWidget(self.lle_time) vbox.addWidget(self.lle_num_of_AAs) vbox.addWidget(self.lcb_show) vbox.addWidget(self.repetition_cb) vbox.addWidget(self.buttonBox) def accept(self): self.settings["show_only"] = self.lcb_show.combo_box.currentText() self.settings["seconds"] = int(self.lle_time.line_edit.text()) self.settings["AA_repetition"] = self.repetition_cb.isChecked() self.settings["AA_num_to_test"] = int(self.lle_num_of_AAs.line_edit.text()) QDialog.accept(self) class LabelledLineEdit(QWidget): def __init__(self, labelText="", position=LEFT, parent=None): super(LabelledLineEdit, self).__init__(parent) self.label = QLabel(labelText) self.line_edit = QLineEdit() self.label.setBuddy(self.line_edit) layout = QBoxLayout( QBoxLayout.LeftToRight if position == LEFT else QBoxLayout.TopToBottom ) layout.addWidget(self.label) layout.addWidget(self.line_edit) self.setLayout(layout) class LabelledComboBox(QWidget): def __init__(self, labelText="", position=LEFT, parent=None): super(LabelledComboBox, self).__init__(parent) self.label = QLabel(labelText) self.combo_box = QComboBox() self.label.setBuddy(self.combo_box) layout = QBoxLayout( QBoxLayout.LeftToRight if position == LEFT else QBoxLayout.TopToBottom ) layout.addWidget(self.label) layout.addWidget(self.combo_box) self.setLayout(layout) if __name__ == "__main__": settings = { "show_only": "All", "seconds": 30, "AA_repetition": True, "AA_num_to_test": 10, } def run_app(): app = QApplication(sys.argv) dialog = SettingsDialog(settings) dialog.show() app.exec_() run_app() ```
{ "source": "Jero-M/nuke", "score": 2 }
#### File: Jero-M/nuke/nuke_change_feather_falloff.py ```python def changeFeather(value): for s in nuke.selectedNodes(): selNode = nuke.selectedNode() if s.Class() == "Roto" or s.Class() == "RotoPaint": for item in s['curves'].rootLayer: attr = item.getAttributes() attr.set('ff',value) feather_value = 0 changeFeather(feather_value) ```
{ "source": "jeronimobarea/Programming-Language-Interpreter", "score": 3 }
#### File: Programming-Language-Interpreter/tests/lexer_test.py ```python from typing import List from unittest import TestCase from src.lexer.token import Token, TokenType from src.lexer.lexer import Lexer class LexerTest(TestCase): def test_illegal(self) -> None: source: str = '¡¿@' lexer: Lexer = Lexer(source) tokens: List[Token] = [] for i in range(len(source)): tokens.append(lexer.next_token()) expected_tokens: List[Token] = [ Token(TokenType.ILLEGAL, '¡'), Token(TokenType.ILLEGAL, '¿'), Token(TokenType.ILLEGAL, '@'), ] self.assertEqual(tokens, expected_tokens) def test_one_character_operators(self) -> None: source: str = '=+-/*<>!' lexer: Lexer = Lexer(source) tokens: List[Token] = [] for i in range(len(source)): tokens.append(lexer.next_token()) expected_tokens: List[Token] = [ Token(TokenType.ASSIGN, '='), Token(TokenType.PLUS, '+'), Token(TokenType.MINUS, "-"), Token(TokenType.DIVISION, "/"), Token(TokenType.MULTIPLICATION, "*"), Token(TokenType.LT, "<"), Token(TokenType.GT, ">"), Token(TokenType.NEGATION, "!"), ] self.assertEqual(tokens, expected_tokens) def test_eof(self) -> None: source: str = '+' lexer: Lexer = Lexer(source) tokens: List[Token] = [] for i in range(len(source) + 1): tokens.append(lexer.next_token()) expected_tokens: List[Token] = [ Token(TokenType.PLUS, '+'), Token(TokenType.EOF, ''), ] self.assertEqual(tokens, expected_tokens) def test_delimiters(self) -> None: source: str = '(){},;' lexer: Lexer = Lexer(source) tokens: List[Token] = [] for i in range(len(source)): tokens.append(lexer.next_token()) expected_tokens: List[Token] = [ Token(TokenType.LPAREN, '('), Token(TokenType.RPAREN, ')'), Token(TokenType.LBRACE, '{'), Token(TokenType.RBRACE, '}'), Token(TokenType.COMMA, ','), Token(TokenType.SEMICOLON, ';'), ] self.assertEqual(tokens, expected_tokens) def test_assignment(self) -> None: source: str = 'var num = 5;' lexer: Lexer = Lexer(source) tokens: List[Token] = [] for i in range(5): tokens.append(lexer.next_token()) expected_tokens: List[Token] = [ Token(TokenType.VAR, 'var'), Token(TokenType.IDENT, 'num'), Token(TokenType.ASSIGN, '='), Token(TokenType.INT, '5'), Token(TokenType.SEMICOLON, ';'), ] self.assertEqual(tokens, expected_tokens) def test_function_declaration(self) -> None: source: str = ''' var res = func(x, y) { x + y; }; ''' lexer: Lexer = Lexer(source) tokens: List[Token] = [] for i in range(16): tokens.append(lexer.next_token()) expected_tokens: List[Token] = [ Token(TokenType.VAR, 'var'), Token(TokenType.IDENT, 'res'), Token(TokenType.ASSIGN, '='), Token(TokenType.FUNCTION, 'func'), Token(TokenType.LPAREN, '('), Token(TokenType.IDENT, 'x'), Token(TokenType.COMMA, ','), Token(TokenType.IDENT, 'y'), Token(TokenType.RPAREN, ')'), Token(TokenType.LBRACE, '{'), Token(TokenType.IDENT, 'x'), Token(TokenType.PLUS, '+'), Token(TokenType.IDENT, 'y'), Token(TokenType.SEMICOLON, ';'), Token(TokenType.RBRACE, '}'), Token(TokenType.SEMICOLON, ';'), ] self.assertEqual(tokens, expected_tokens) def test_function_call(self) -> None: source: str = 'var res = sum(x, y);' lexer: Lexer = Lexer(source) tokens: List[Token] = [] for i in range(10): tokens.append(lexer.next_token()) expected_tokens: List[Token] = [ Token(TokenType.VAR, 'var'), Token(TokenType.IDENT, 'res'), Token(TokenType.ASSIGN, '='), Token(TokenType.IDENT, 'sum'), Token(TokenType.LPAREN, '('), Token(TokenType.IDENT, 'x'), Token(TokenType.COMMA, ','), Token(TokenType.IDENT, 'y'), Token(TokenType.RPAREN, ')'), Token(TokenType.SEMICOLON, ';'), ] self.assertEqual(tokens, expected_tokens) def test_control_statement(self) -> None: source: str = ''' if (5 < 10) { return true; } else { return false; } ''' lexer: Lexer = Lexer(source) tokens: List[Token] = [] for i in range(17): tokens.append(lexer.next_token()) expected_tokens: List[Token] = [ Token(TokenType.IF, 'if'), Token(TokenType.LPAREN, '('), Token(TokenType.INT, '5'), Token(TokenType.LT, '<'), Token(TokenType.INT, '10'), Token(TokenType.RPAREN, ')'), Token(TokenType.LBRACE, '{'), Token(TokenType.RETURN, 'return'), Token(TokenType.TRUE, 'true'), Token(TokenType.SEMICOLON, ';'), Token(TokenType.RBRACE, '}'), Token(TokenType.ELSE, 'else'), Token(TokenType.LBRACE, '{'), Token(TokenType.RETURN, 'return'), Token(TokenType.FALSE, 'false'), Token(TokenType.SEMICOLON, ';'), Token(TokenType.RBRACE, '}'), ] self.assertEqual(tokens, expected_tokens) def test_two_character_operations(self) -> None: source: str = ''' 10 == 10; 10 != 9; ''' lexer: Lexer = Lexer(source) tokens: List[Token] = [] for i in range(8): tokens.append(lexer.next_token()) expected_tokens: List[Token] = [ Token(TokenType.INT, '10'), Token(TokenType.EQ, '=='), Token(TokenType.INT, '10'), Token(TokenType.SEMICOLON, ';'), Token(TokenType.INT, '10'), Token(TokenType.NOT_EQ, '!='), Token(TokenType.INT, '9'), Token(TokenType.SEMICOLON, ';'), ] self.assertEqual(tokens, expected_tokens) def test_complex_var_name(self) -> None: source: str = 'var num_1 = 10;' lexer: Lexer = Lexer(source) tokens: List[Token] = [] for i in range(5): tokens.append(lexer.next_token()) expected_tokens: List[Token] = [ Token(TokenType.VAR, 'var'), Token(TokenType.IDENT, 'num_1'), Token(TokenType.ASSIGN, '='), Token(TokenType.INT, '10'), Token(TokenType.SEMICOLON, ';'), ] self.assertEqual(tokens, expected_tokens) ```
{ "source": "jeronimobarea/telegram_forwarder", "score": 3 }
#### File: src/utils/message.py ```python from src.utils.constants import Constants class Message: @staticmethod def format_message(channel: str, message: str) -> str: return f"from: @{channel} \n {message}" @staticmethod def chat_title_matches( chat: str, matches: list = Constants.CHAT_FORWARD_LIST.value ) -> bool: return any(chat in match for match in matches) ```
{ "source": "JeronimoMendes/Tomatimer", "score": 2 }
#### File: JeronimoMendes/Tomatimer/pref_win.py ```python from PyQt5 import QtCore, QtGui, QtWidgets import json from PyQt5.QtGui import QIcon class Ui_pref_win(object): def __init__(self, window): self.window = window with open ("settings.json", "r") as settings: self.data = json.load(settings) settings.close() self.main_time = self.data["main_time"] self.big_time = self.data["long_break"] self.small_time = self.data["short_break"] def setupUi(self, pref_win): pref_win.setObjectName("pref_win") pref_win.resize(390, 251) pref_win.setContextMenuPolicy(QtCore.Qt.NoContextMenu) pref_win.setWindowIcon(QIcon("material/images/tomato.png")) self.centralwidget = QtWidgets.QWidget(pref_win) self.centralwidget.setObjectName("centralwidget") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(10, 30, 81, 17)) self.label.setObjectName("label") self.spinBox = QtWidgets.QSpinBox(self.centralwidget) self.spinBox.setGeometry(QtCore.QRect(150, 30, 48, 26)) self.spinBox.setProperty("value", self.main_time) self.spinBox.setObjectName("spinBox") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(10, 80, 121, 17)) self.label_2.setObjectName("label_2") self.label_3 = QtWidgets.QLabel(self.centralwidget) self.label_3.setGeometry(QtCore.QRect(10, 130, 121, 17)) self.label_3.setObjectName("label_3") self.spinBox_2 = QtWidgets.QSpinBox(self.centralwidget) self.spinBox_2.setGeometry(QtCore.QRect(150, 130, 48, 26)) self.spinBox_2.setProperty("value", self.big_time) self.spinBox_2.setObjectName("spinBox_2") self.spinBox_3 = QtWidgets.QSpinBox(self.centralwidget) self.spinBox_3.setGeometry(QtCore.QRect(150, 80, 48, 26)) self.spinBox_3.setProperty("value", self.small_time) self.spinBox_3.setObjectName("spinBox_3") self.pushButton = QtWidgets.QPushButton(self.centralwidget) self.pushButton.setGeometry(QtCore.QRect(50, 190, 89, 25)) self.pushButton.setObjectName("pushButton") self.pushButton.pressed.connect(self.window.close) self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_2.setGeometry(QtCore.QRect(240, 190, 89, 25)) self.pushButton_2.setObjectName("pushButton_2") self.pushButton_2.pressed.connect(self.changeTime) pref_win.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(pref_win) self.menubar.setGeometry(QtCore.QRect(0, 0, 390, 22)) self.menubar.setObjectName("menubar") pref_win.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(pref_win) self.statusbar.setObjectName("statusbar") pref_win.setStatusBar(self.statusbar) self.retranslateUi(pref_win) QtCore.QMetaObject.connectSlotsByName(pref_win) def retranslateUi(self, pref_win): _translate = QtCore.QCoreApplication.translate pref_win.setWindowTitle(_translate("pref_win", "Tomatimer - Preferences")) self.label.setText(_translate("pref_win", "Focus time")) self.label_2.setText(_translate("pref_win", "Short break time")) self.label_3.setText(_translate("pref_win", "Long break time")) self.pushButton.setText(_translate("pref_win", "Cancel")) self.pushButton_2.setText(_translate("pref_win", "Apply")) def changeTime(self): self.small_time = self.spinBox_3.value() self.big_time = self.spinBox_2.value() self.main_time = self.spinBox.value() print("main time value changed to", self.main_time) print("small time value changed to", self.small_time) print("big time value changed to", self.big_time) self.data["main_time"] = self.main_time self.data["short_break"] = self.small_time self.data["long_break"] = self.big_time self.data["subject"] = self.data["subject"] jsonFile = open("settings.json", "w+") jsonFile.write(json.dumps(self.data)) jsonFile.close() ``` #### File: JeronimoMendes/Tomatimer/timer.py ```python from PyQt5.QtGui import * from PyQt5.QtWidgets import * from PyQt5.QtCore import QTimer, QTime from pypresence import Presence import time, datetime class PomoTimer: def __init__(self, times, label, tray, rpc, subject): self.subject = subject self.tray = tray self.label = label self.main_time = times[0] self.time = QTime(0,self.main_time,0) self.timer = QTimer() self.timer.setInterval(1000) self.timer.timeout.connect(self.timerEvent) self.rep = 0 self.RPC = rpc self.short_break = self.Interval_timer(times[1], self.label, self.tray, self, self.RPC, self.subject) self.long_break = self.Interval_timer(times[2], self.label, self.tray, self, self.RPC, self.subject) self.round = 1 class Interval_timer: def __init__(self, main_time, label, tray, outer_class, rpc, subject): self.outer_class = outer_class self.tray = tray self.label = label self.main_time = main_time self.time = QTime(0,main_time,0) self.RPC = rpc self.subject = subject def timerEvent(self): self.time = self.time.addSecs(-1) self.label.setText(self.time.toString("mm:ss")) if self.time.secsTo(QTime(0,0,0)) == 0: print("Break timer stopped") self.tray.showMessage("Tomatime","Break time's up", self.tray.icon(), 4000) self.clearTimer() self.outer_class.timer.timeout.disconnect(self.timerEvent) self.outer_class.timer.timeout.connect(self.outer_class.timerEvent) print("Returning to focus timer") self.outer_class.round += 1 self.outer_class.updateDiscord("Studying") return print(self.time.toString("mm:ss"), " Break timer") def startTimer(self): print("Starting secondary timer") self.outer_class.timer.timeout.connect(self.timerEvent) self.outer_class.updateDiscord("Taking a break") def clearTimer(self): print("Clearing break timer") self.time = QTime(0,self.main_time,0) self.label.setText(self.time.toString("mm:ss")) def timerEvent(self): self.time = self.time.addSecs(-1) self.label.setText(self.time.toString("mm:ss")) if self.time.secsTo(QTime(0,0,0)) == 0: self.rep += 1 self.timer.timeout.disconnect(self.timerEvent) self.clearTimer() print("Focus time's up") self.tray.showMessage("Tomatime","Focus time's up", self.tray.icon(), 4000) if self.rep ==3: self.rep = 0 self.long_break.startTimer() return print("Starting long break timer") else: self.short_break.startTimer() return print("Starting short break timer") return print(self.time.toString("mm:ss"), (" Focus Timer Ticking")) def startTimer(self): self.timer.start() print(self.timer.interval()) self.updateDiscord("Studying") def clearTimer(self): self.time = QTime(0, self.main_time, 0) def pauseTimer(self): self.timer.stop() try: self.RPC.update(state=f"Studying - Round {self.round}", details="Paused", large_image="fsidfsd") except: print("No Discord app running") def resetTimer(self): self.pauseTimer() self.short_break.clearTimer() self.long_break.clearTimer() self.clearTimer() self.label.setText(str(self.main_time)+":00") try: self.timer.timeout.disconnect(self.short_break.timerEvent) except: pass try: self.timer.timeout.disconnect(self.long_break.timerEvent) except: pass try: self.timer.timeout.disconnect(self.timerEvent) except: pass self.timer.timeout.connect(self.timerEvent) def epochTime(self, mins, second): orig = datetime.datetime.fromtimestamp(time.time()) new = orig + datetime.timedelta(minutes=mins, seconds=second) return time.mktime(new.timetuple()) def updateDiscord(self, info): try: self.RPC.update(state=f"Studying {self.subject} - Round {self.round}", details=info, large_image="fsidfsd", end=self.epochTime(self.time.minute(), self.time.second())) except: print("No Discord app running") ``` #### File: JeronimoMendes/Tomatimer/tray.py ```python from PyQt5.QtWidgets import QSystemTrayIcon, QAction, QMenu from PyQt5.QtGui import QIcon from timer import PomoTimer from pypresence import Presence class System_tray(): def __init__(self, tray, app, times, subject, pref_win): self.times = times self.main_time = times[0] self.app = app self.tray = tray self.subject = subject self.pref_win = pref_win self.label = QAction(str(self.main_time)+":00") try: self.RPC = Presence("729011176477818890") # Initialize the Presence client self.RPC.connect() # Start the handshake loop except: print("You don't have a discord app open") def setupUi(self): # Create Menu self.menu = QMenu() self.tray.setContextMenu(self.menu) self.tray.setIcon(QIcon("material/images/tomato.png")) self.tray.setVisible(True) # Create and add Menu Actions self.preferences_btt = QAction("Preferences") self.preferences_btt.triggered.connect(self.preferences) self.quit = QAction("Quit") self.quit.triggered.connect(self.app.quit) self.start_btt = QAction("Start") self.start_btt.triggered.connect(self.start) self.pause_btt = QAction("Pause") self.pause_btt.triggered.connect(self.pause) self.pause_btt.setVisible(False) self.reset_btt = QAction("Reset") self.reset_btt.triggered.connect(self.reset) self.reset_btt.setVisible(False) self.menu.addAction(self.label) self.menu.addSeparator() self.menu.addActions([self.start_btt, self.pause_btt, self.reset_btt, self.preferences_btt, self.quit]) self.menu.addMenu def start(self): print("Start") self.timer_main.startTimer() self.start_btt.setVisible(False) self.pause_btt.setVisible(True) self.reset_btt.setVisible(True) def pause(self): print("Pause") self.timer_main.pauseTimer() self.start_btt.setVisible(True) self.pause_btt.setVisible(False) def preferences(self): print("Preferences") self.pref_win.show() def reset(self): self.timer_main.resetTimer() self.pause_btt.setVisible(False) self.start_btt.setVisible(True) self.reset_btt.setVisible(False) def createTimer(self): # Creates a timer self.timer_main = PomoTimer(self.times, self.label, self.tray, self.RPC, self.subject) ```
{ "source": "jeronimopenha/grn2dot", "score": 3 }
#### File: grn2dot/grn2dot/grn2dot.py ```python import networkx as nx class Grn2dot: _instance = None # def __new__(cls): # # if cls._instance is None: # cls._instance = super().__new__(cls) # return cls._instance def __init__(self, file_path): self.nodes, self.edges, self.equations = self.process_grn_file(self.read_file(file_path)) self.digraph = nx.DiGraph() for node in self.nodes: if node in self.equations.keys(): self.digraph.add_node(node, equation=self.equations[node]) else: self.digraph.add_node(node) for key, edges_l in self.edges.items(): for edge in edges_l: self.digraph.add_edge(edge, key) def get_nodes_vector(self): return self.nodes def get_edges_dict(self): return self.edges def get_equations_dict(self): return self.equations def get_nx_nodes(self): return self.digraph.nodes def get_nx_edges(self): return self.digraph.edges def get_nx_digraph(self): return self.digraph def get_dot_str(self): return nx.nx_agraph.to_agraph(self.digraph) def get_num_nodes(self): return len(self.nodes) def get_num_equations(self): return len(self.equations) def get_grn_mem_specifications(self): grn_mem_specifications = [] for i in range(self.get_num_nodes()): grn_mem_specifications.append([self.get_nodes_vector()[i], i]) counter = 0 for key in self.get_equations_dict(): equation = self.get_equations_dict()[key] eq_sp = [] for i in range(self.get_num_nodes()): if self.get_nodes_vector()[i] in equation: eq_sp.append(i) eq_sp.sort(reverse=True) grn_mem_specifications[counter].append(eq_sp) counter = counter + 1 return grn_mem_specifications @staticmethod def read_file(file): file = open(file) content = file.read().split('\n') file.close() return content @staticmethod def process_grn_file(lines): nodes = [] edges = {} equations = {} # treat the equations for line in lines: if line == '': continue line = line.strip() # looking for equations: node = "" if '=' in line: eq_parts = line.split("=") node = eq_parts[0] node = node.replace(' ', '') node = ' ' + node + ' ' equations[node] = eq_parts[1] else: node = line if node not in nodes: nodes.append(node) # looking for edges: for key, equation in equations.items(): # equation = equation.replace(' ', '') edges_l = equation edges_l = edges_l.replace('(', ' ') edges_l = edges_l.replace(')', ' ') edges_l = edges_l.replace(' not ', ' ') edges_l = edges_l.replace(' and ', ' ') edges_l = edges_l.replace(' or ', ' ') edges_l = edges_l.split(' ') e = [] for edge in edges_l: if edge != '': edge = ' ' + edge + ' ' e.append(edge) if edge not in nodes: nodes.append(edge) edges[key] = e # processing equations #equation = equation.replace(' ','') equation = equation.replace(' and ', ' && ') equation = equation.replace(' or ', ' || ') equation = equation.replace(' not ', ' ! ') equation = equation.replace(' || ', ' || ') equation = equation.replace(' && ', ' && ') equation = equation.replace(' ! ', ' ! ') equation = equation.replace('(', ' ( ') equation = equation.replace(')', ' ) ') equation = " " + equation + " " equation = equation.replace(" ", " ") equation = equation.replace(" ", " ") equations[key] = equation return nodes, edges, equations ```
{ "source": "jerono-coder/2021-2022-Science-Fair-Project", "score": 3 }
#### File: jerono-coder/2021-2022-Science-Fair-Project/main.py ```python from time import sleep import RPi.GPIO as GPIO import os import random import serial #end of importing necessary imports# #set GPIO mode# GPIO.setmode(GPIO.BCM) #end of set GPIO mode# #start of all major variables# #import Micro:Bit from serial port# z1baudrate = 115200 z1port = '/dev/ttyACM0' z1serial = serial.Serial(port=z1port, baudrate=z1baudrate) z1serial.timeout = 2 #end of import Micro:Bit form serial port# # Touch Sensors, 2 to each pin # touch1 = 14 touch2 = 15 touch3 = 18 # End of Touch Sensor Variables # #motor1variables# IN1 = 17 IN2 = 27 IN3 = 22 IN4 = 23 #end of motor 1 vairables# #motor 2 variables# motor2IN1 = 24 motor2IN2 = 16 motor2IN3 = 9 motor2IN4 = 25 #end of motor 2 vaiables# #motor 3 variables # motor3IN1 = 8 motor3IN2 =7 motor3IN3 = 11 motor3IN4 = 5 #end of motor 3 variables# #motor 4 variables# motor4IN1 = 12 motor4IN2 = 16 motor4IN3 = 20 motor4IN4 = 21 #end of motor 4 variables# #motor 5 variables# motor5IN1 = 6 motor5IN2 = 13 motor5IN3 = 19 motor5IN4 = 26 #end of motor 5 variables# #end of all major variables# time = 0.001 #set up touch sensors # GPIO.setup(touch1, GPIO.IN) # Touch Switch GPIO.setup(touch2, GPIO.IN) # Touch Swtich 2 GPIO.setup(touch3, GPIO.IN) # Touch Switch 3 #end of set up touch sensors# #motor 1 setup# GPIO.setup(IN1,GPIO.OUT) GPIO.setup(IN2,GPIO.OUT) GPIO.setup(IN3,GPIO.OUT) GPIO.setup(IN4,GPIO.OUT) #end of motor1 setup# #motor 2 setup# GPIO.setup(motor2IN1,GPIO.OUT) GPIO.setup(motor2IN2,GPIO.OUT) GPIO.setup(motor2IN3,GPIO.OUT) GPIO.setup(motor2IN4,GPIO.OUT) #end of motor2 setup# #motor 3 setup# GPIO.setup(motor3IN1,GPIO.OUT) GPIO.setup(motor3IN2,GPIO.OUT) GPIO.setup(motor3IN3,GPIO.OUT) GPIO.setup(motor3IN4,GPIO.OUT) #end of motor3 setup# #motor 4 setup# GPIO.setup(motor4IN1,GPIO.OUT) GPIO.setup(motor4IN2,GPIO.OUT) GPIO.setup(motor4IN3,GPIO.OUT) GPIO.setup(motor4IN4,GPIO.OUT) #end of motor4 setup# #motor 5 setup# GPIO.setup(motor5IN1,GPIO.OUT) GPIO.setup(motor5IN2,GPIO.OUT) GPIO.setup(motor5IN3,GPIO.OUT) GPIO.setup(motor5IN4,GPIO.OUT) #end of motor5 setup# #setup false code numbers# GPIO.setup(IN1, False) GPIO.setup(IN2, False) GPIO.setup(IN3, False) GPIO.setup(IN4, False) GPIO.setup(motor2IN1, False) GPIO.setup(motor2IN2, False) GPIO.setup(motor2IN3, False) GPIO.setup(motor2IN4, False) GPIO.setup(motor3IN1, False) GPIO.setup(motor3IN2, False) GPIO.setup(motor3IN3, False) GPIO.setup(motor3IN4, False) GPIO.setup(motor4IN1, False) GPIO.setup(motor4IN2, False) GPIO.setup(motor4IN3, False) GPIO.setup(motor4IN4, False) GPIO.setup(motor5IN1, False) GPIO.setup(motor5IN2, False) GPIO.setup(motor5IN3, False) GPIO.setup(motor5IN4, False) #end up setup false code numbers# # main program def main(): while True: size = z1serial.inWaiting() data = z1serial.read(size) if data == b'2': while not GPIO.input(touch1): print ('touch on'); left(10); #end of main program# #MOTOR1 steps# def Step1(): GPIO.output(IN4, True) sleep (time) GPIO.output(IN4, False) def Step2(): GPIO.output(IN4, True) GPIO.output(IN3, True) sleep (time) GPIO.output(IN4, False) GPIO.output(IN3, False) def Step3(): GPIO.output(IN3, True) sleep (time) GPIO.output(IN3, False) def Step4(): GPIO.output(IN2, True) GPIO.output(IN3, True) sleep (time) GPIO.output(IN2, False) GPIO.output(IN3, False) def Step5(): GPIO.output(IN2, True) sleep (time) GPIO.output(IN2, False) def Step6(): GPIO.output(IN1, True) GPIO.output(IN2, True) sleep (time) GPIO.output(IN1, False) GPIO.output(IN2, False) def Step7(): GPIO.output(IN1, True) sleep (time) GPIO.output(IN1, False) def Step8(): GPIO.output(IN4, True) GPIO.output(IN1, True) sleep (time) GPIO.output(IN4, False) GPIO.output(IN1, False) def left(step): for i in range (step): Step1() Step2() Step3() Step4() Step5() Step6() Step7() Step8() print ("Step left: ",i) def right(step): for i in range (step): Step8() Step7() Step6() Step5() Step4() Step3() Step2() Step1() print ("Step right: ",i) # end of motor 1 steps# #MOTOR2 steps# def motor2Step1(): GPIO.output(motor2IN4, True) sleep (time) GPIO.output(motor2IN4, False) def motor2Step2(): GPIO.output(motor2IN4, True) GPIO.output(motor2IN3, True) sleep (time) GPIO.output(motor2IN4, False) GPIO.output(motor2IN3, False) def motor2Step3(): GPIO.output(motor2IN3, True) sleep (time) GPIO.output(motor2IN3, False) def motor2Step4(): GPIO.output(motor2IN2, True) GPIO.output(motor2IN3, True) sleep (time) GPIO.output(motor2IN2, False) GPIO.output(motor2IN3, False) def motor2Step5(): GPIO.output(motor2IN2, True) sleep (time) GPIO.output(motor2IN2, False) def motor2Step6(): GPIO.output(motor2IN1, True) GPIO.output(motor2IN2, True) sleep (time) GPIO.output(motor2IN1, False) GPIO.output(motor2IN2, False) def motor2Step7(): GPIO.output(motor2IN1, True) sleep (time) GPIO.output(motor2IN1, False) def motor2Step8(): GPIO.output(motor2IN4, True) GPIO.output(motor2IN1, True) sleep (time) GPIO.output(motor2IN4, False) GPIO.output(motor2IN1, False) def motor2left(step): for i in range (step): motor2Step1() motor2Step2() motor2Step3() motor2Step4() motor2Step5() motor2Step6() motor2Step7() motor2Step8() print ("Step left: ",i) def motor2right(step): for i in range (step): motor2Step8() motor2Step7() motor2Step6() motor2Step5() motor2Step4() motor2Step3() motor2Step2() motor2Step1() print ("Step right: ",i) # end of motor 2 steps# #MOTOR3 steps# def motor3Step1(): GPIO.output(motor3IN4, True) sleep (time) GPIO.output(motor3IN4, False) def motor3Step2(): GPIO.output(motor3IN4, True) GPIO.output(motor3IN3, True) sleep (time) GPIO.output(motor3IN4, False) GPIO.output(motor3IN3, False) def motor3Step3(): GPIO.output(motor3IN3, True) sleep (time) GPIO.output(motor3IN3, False) def motor3Step4(): GPIO.output(motor3IN2, True) GPIO.output(motor3IN3, True) sleep (time) GPIO.output(motor3IN2, False) GPIO.output(motor3IN3, False) def motor3Step5(): GPIO.output(motor3IN2, True) sleep (time) GPIO.output(motor3IN2, False) def motor3Step6(): GPIO.output(motor3IN1, True) GPIO.output(motor3IN2, True) sleep (time) GPIO.output(motor3IN1, False) GPIO.output(motor3IN2, False) def motor3Step7(): GPIO.output(motor3IN1, True) sleep (time) GPIO.output(motor3IN1, False) def motor3Step8(): GPIO.output(motor3IN4, True) GPIO.output(motor3IN1, True) sleep (time) GPIO.output(motor3IN4, False) GPIO.output(motor3IN1, False) def motor3left(step): for i in range (step): motor3Step1() motor3Step2() motor3Step3() motor3Step4() motor3Step5() motor3Step6() motor3Step7() motor3Step8() print ("Step left: ",i) def motor3right(step): for i in range (step): motor3Step8() motor3Step7() motor3Step6() motor3Step5() motor3Step4() motor3Step3() motor3Step2() motor3Step1() print ("Step right: ",i) # end of motor 3 steps# #MOTOR4 steps# def motor4Step1(): GPIO.output(motor4IN4, True) sleep (time) GPIO.output(motor4IN4, False) def motor4Step2(): GPIO.output(motor4IN4, True) GPIO.output(motor4IN3, True) sleep (time) GPIO.output(motor4IN4, False) GPIO.output(motor4IN3, False) def motor4Step3(): GPIO.output(motor4IN3, True) sleep (time) GPIO.output(motor4IN3, False) def motor4Step4(): GPIO.output(motor4IN2, True) GPIO.output(motor4IN3, True) sleep (time) GPIO.output(motor4IN2, False) GPIO.output(motor4IN3, False) def motor4Step5(): GPIO.output(motor4IN2, True) sleep (time) GPIO.output(motor4IN2, False) def motor4Step6(): GPIO.output(motor4IN1, True) GPIO.output(motor4IN2, True) sleep (time) GPIO.output(motor4IN1, False) GPIO.output(motor4IN2, False) def motor4Step7(): GPIO.output(motor4IN1, True) sleep (time) GPIO.output(motor4IN1, False) def motor4Step8(): GPIO.output(motor4IN4, True) GPIO.output(motor4IN1, True) sleep (time) GPIO.output(motor4IN4, False) GPIO.output(motor4IN1, False) def motor4left(step): for i in range (step): motor4Step1() motor4Step2() motor4Step3() motor4Step4() motor4Step5() motor4Step6() motor4Step7() motor4Step8() print ("Step left: ",i) def motor4right(step): for i in range (step): motor4Step8() motor4Step7() motor4Step6() motor4Step5() motor4Step4() motor4Step3() motor4Step2() motor4Step1() print ("Step right: ",i) # end of motor 4 steps# #MOTOR5 steps# def motor5Step1(): GPIO.output(motor5IN4, True) sleep (time) GPIO.output(motor5IN4, False) def motor5Step2(): GPIO.output(motor5IN4, True) GPIO.output(motor5IN3, True) sleep (time) GPIO.output(motor5IN4, False) GPIO.output(motor5IN3, False) def motor5Step3(): GPIO.output(motor5IN3, True) sleep (time) GPIO.output(motor5IN3, False) def motor5Step4(): GPIO.output(motor5IN2, True) GPIO.output(motor5IN3, True) sleep (time) GPIO.output(motor5IN2, False) GPIO.output(motor5IN3, False) def motor5Step5(): GPIO.output(motor5IN2, True) sleep (time) GPIO.output(motor5IN2, False) def motor5Step6(): GPIO.output(motor5IN1, True) GPIO.output(motor5IN2, True) sleep (time) GPIO.output(motor5IN1, False) GPIO.output(motor5IN2, False) def motor5Step7(): GPIO.output(motor5IN1, True) sleep (time) GPIO.output(motor5IN1, False) def motor5Step8(): GPIO.output(motor5IN4, True) GPIO.output(motor5IN1, True) sleep (time) GPIO.output(motor5IN4, False) GPIO.output(motor5IN1, False) def motor5left(step): for i in range (step): motor5Step1() motor5Step2() motor5Step3() motor5Step4() motor5Step5() motor5Step6() motor5Step7() motor5Step8() print ("Step left: ",i) def motor5right(step): for i in range (step): motor5Step8() motor5Step7() motor5Step6() motor5Step5() motor5Step4() motor5Step3() motor5Step2() motor5Step1() print ("Step right: ",i) # end of motor 5 steps# main() ```
{ "source": "jerowe/sgkit", "score": 2 }
#### File: sgkit/stats/hwe.py ```python from typing import Hashable, Optional import dask.array as da import numpy as np import xarray as xr from numba import njit from numpy import ndarray from xarray import Dataset def hardy_weinberg_p_value(obs_hets: int, obs_hom1: int, obs_hom2: int) -> float: """Exact test for HWE as described in Wigginton et al. 2005 [1]. Parameters ---------- obs_hets : int Number of heterozygotes with minor variant. obs_hom1 : int Number of reference/major homozygotes. obs_hom2 : int Number of alternate/minor homozygotes. Returns ------- float P value in [0, 1] References ---------- - [1] Wigginton, <NAME>., <NAME>, and <NAME>. 2005. “A Note on Exact Tests of Hardy-Weinberg Equilibrium.” American Journal of Human Genetics 76 (5): 887–93. Raises ------ ValueError If any observed counts are negative. """ if obs_hom1 < 0 or obs_hom2 < 0 or obs_hets < 0: raise ValueError("Observed genotype counts must be positive") obs_homc = obs_hom2 if obs_hom1 < obs_hom2 else obs_hom1 obs_homr = obs_hom1 if obs_hom1 < obs_hom2 else obs_hom2 obs_mac = 2 * obs_homr + obs_hets obs_n = obs_hets + obs_homc + obs_homr het_probs = np.zeros(obs_mac + 1, dtype=np.float64) if obs_n == 0: return np.nan # type: ignore[no-any-return] # Identify distribution midpoint mid = int(obs_mac * (2 * obs_n - obs_mac) / (2 * obs_n)) if (obs_mac & 1) ^ (mid & 1): mid += 1 het_probs[mid] = 1.0 prob_sum = het_probs[mid] # Integrate downward from distribution midpoint curr_hets = mid curr_homr = int((obs_mac - mid) / 2) curr_homc = obs_n - curr_hets - curr_homr while curr_hets > 1: het_probs[curr_hets - 2] = ( het_probs[curr_hets] * curr_hets * (curr_hets - 1.0) / (4.0 * (curr_homr + 1.0) * (curr_homc + 1.0)) ) prob_sum += het_probs[curr_hets - 2] curr_homr += 1 curr_homc += 1 curr_hets -= 2 # Integrate upward from distribution midpoint curr_hets = mid curr_homr = int((obs_mac - mid) / 2) curr_homc = obs_n - curr_hets - curr_homr while curr_hets <= obs_mac - 2: het_probs[curr_hets + 2] = ( het_probs[curr_hets] * 4.0 * curr_homr * curr_homc / ((curr_hets + 2.0) * (curr_hets + 1.0)) ) prob_sum += het_probs[curr_hets + 2] curr_homr -= 1 curr_homc -= 1 curr_hets += 2 if prob_sum <= 0: # pragma: no cover return np.nan # type: ignore[no-any-return] het_probs = het_probs / prob_sum p = het_probs[het_probs <= het_probs[obs_hets]].sum() p = max(min(1.0, p), 0.0) return p # type: ignore[no-any-return] # Benchmarks show ~25% improvement w/ fastmath on large (~10M) counts hardy_weinberg_p_value_jit = njit(hardy_weinberg_p_value, fastmath=True) def hardy_weinberg_p_value_vec( obs_hets: ndarray, obs_hom1: ndarray, obs_hom2: ndarray ) -> ndarray: arrs = [obs_hets, obs_hom1, obs_hom2] if len(set(map(len, arrs))) != 1: raise ValueError("All arrays must have same length") if list(set(map(lambda x: x.ndim, arrs))) != [1]: raise ValueError("All arrays must be 1D") n = len(obs_hets) p = np.empty(n, dtype=np.float64) for i in range(n): p[i] = hardy_weinberg_p_value_jit(obs_hets[i], obs_hom1[i], obs_hom2[i]) return p hardy_weinberg_p_value_vec_jit = njit(hardy_weinberg_p_value_vec, fastmath=True) def hardy_weinberg_test( ds: Dataset, genotype_counts: Optional[Hashable] = None ) -> Dataset: """Exact test for HWE as described in Wigginton et al. 2005 [1]. Parameters ---------- ds : Dataset Dataset containing genotype calls or precomputed genotype counts. genotype_counts : Optional[Hashable], optional Name of variable containing precomputed genotype counts, by default None. If not provided, these counts will be computed automatically from genotype calls. If present, must correspond to an (`N`, 3) array where `N` is equal to the number of variants and the 3 columns contain heterozygous, homozygous reference, and homozygous alternate counts (in that order) across all samples for a variant. Warnings -------- This function is only applicable to diploid, biallelic datasets. Returns ------- Dataset Dataset containing (N = num variants): variant_hwe_p_value : (N,) ArrayLike P values from HWE test for each variant as float in [0, 1]. References ---------- - [1] Wigginton, <NAME>., <NAME>, and <NAME>. 2005. “A Note on Exact Tests of Hardy-Weinberg Equilibrium.” American Journal of Human Genetics 76 (5): 887–93. Raises ------ NotImplementedError If ploidy of provided dataset != 2 NotImplementedError If maximum number of alleles in provided dataset != 2 """ if ds.dims["ploidy"] != 2: raise NotImplementedError("HWE test only implemented for diploid genotypes") if ds.dims["alleles"] != 2: raise NotImplementedError("HWE test only implemented for biallelic genotypes") # Use precomputed genotype counts if provided if genotype_counts is not None: obs = list(da.asarray(ds[genotype_counts]).T) # Otherwise compute genotype counts from calls else: # TODO: Use API genotype counting function instead, e.g. # https://github.com/pystatgen/sgkit/issues/29#issuecomment-656691069 M = ds["call_genotype_mask"].any(dim="ploidy") AC = xr.where(M, -1, ds["call_genotype"].sum(dim="ploidy")) # type: ignore[no-untyped-call] cts = [1, 0, 2] # arg order: hets, hom1, hom2 obs = [da.asarray((AC == ct).sum(dim="samples")) for ct in cts] p = da.map_blocks(hardy_weinberg_p_value_vec_jit, *obs) return xr.Dataset({"variant_hwe_p_value": ("variants", p)}) ``` #### File: sgkit/stats/regenie.py ```python from typing import Any, Dict, Hashable, Optional, Sequence, Tuple, Union import dask.array as da import numpy as np import xarray as xr from dask.array import Array from numpy import ndarray from xarray import Dataset from ..typing import ArrayLike from ..utils import split_array_chunks from .utils import ( assert_array_shape, assert_block_shape, assert_chunk_shape, concat_2d, r2_score, ) def index_array_blocks( x: Union[ArrayLike, Sequence[int]], size: int ) -> Tuple[ndarray, ndarray]: """Generate indexes for blocks that partition an array within groups. Given an array with monotonic increasing group assignments (as integers), this function will generate the indexes of blocks within those groups that are of at most `size` elements. Parameters ---------- x : Union[ArrayLike, Sequence[int]] Vector of group assignments, must be monotonic increasing. Resulting blocks will never cross these group assignments and the resulting `index` and `sizes` values constitute covering slices for any array of the same size as `x`. size : int Maximum block size. Examples -------- >>> from sgkit.stats.regenie import index_array_blocks >>> index_array_blocks([0, 0, 0], 2) (array([0, 2]), array([2, 1])) >>> index_array_blocks([0, 0, 1, 1, 1], 2) (array([0, 2, 4]), array([2, 2, 1])) Returns ------- index : ndarray Array of indexes for each block start sizes : ndarray Size of block such that `x[index[0]:(index[0] + sizes[0])]` contains every element in block 0 Raises ------ ValueError If `x` is not 1D. ValueError If `size` is <= 0. ValueError If `x` does not contain integers. ValueError If `x` is not monotonic increasing. """ x = np.asarray(x) if x.size == 0: return np.empty(0, dtype=int), np.empty(0, dtype=int) if x.ndim != 1: raise ValueError(f"Array shape {x.shape} is not 1D") if size <= 0: raise ValueError(f"Block size {size} must be > 0") if not np.issubdtype(x.dtype, np.integer): raise ValueError("Array to partition must contain integers") if np.any(np.diff(x) < 0): raise ValueError("Array to partition must be monotonic increasing") breaks = np.argwhere(np.diff(x, prepend=x[0]))[:, 0] breaks = np.concatenate(([0], breaks, [x.size])) index = np.concatenate( [np.arange(breaks[i], breaks[i + 1], size) for i in range(breaks.size - 1)] ) sizes = np.diff(index, append=x.size) assert index.size == sizes.size return index, sizes def index_block_sizes( sizes: Union[ArrayLike, Sequence[int]] ) -> Tuple[ndarray, ndarray]: """Generate indexes for blocks of specific sizes. Parameters ---------- sizes : Union[ArrayLike, Sequence[int]] Block sizes to generate indexes for. Examples -------- >>> from sgkit.stats.regenie import index_block_sizes >>> index_block_sizes([3, 4, 5]) (array([0, 3, 7]), array([3, 4, 5])) Returns ------- index : ndarray Array of indexes for each block start. sizes : ndarray Size of block such that `x[index[0]:(index[0] + sizes[0])]` contains every element in block 0. Raises ------ ValueError If any value in `sizes` is <= 0. ValueError If `sizes` does not contain integers. """ sizes = np.asarray(sizes) if np.any(sizes <= 0): raise ValueError("All block sizes must be >= 0") if not np.issubdtype(sizes.dtype, np.integer): raise ValueError("Block sizes must be integers") chunks = np.concatenate([np.array([0]), sizes]) index = np.cumsum(chunks)[:-1] assert index.size == sizes.size return index, sizes def ridge_regression( XtX: ArrayLike, XtY: ArrayLike, alphas: Union[ArrayLike, Sequence[float]], n_zero_reg: Optional[int] = None, dtype: Any = None, ) -> ArrayLike: """Multi-outcome, multi-parameter ridge regression from CV intermediates.""" if XtX.shape[0] != XtX.shape[1]: raise ValueError(f"First argument must be symmetric (shape = {XtX.shape})") if XtX.shape[0] != XtY.shape[0]: raise ValueError("Array arguments must have same size in first dimension") diags = [] n_alpha, n_obs, n_outcome = len(alphas), XtX.shape[0], XtY.shape[1] for i in range(n_alpha): diag = np.ones(XtX.shape[1]) * alphas[i] if n_zero_reg: # Optionally fix regularization for leading covariates # TODO: This should probably be zero for consistency # with orthogonalization, see: # https://github.com/projectglow/glow/issues/266 diag[:n_zero_reg] = 1 diags.append(np.diag(diag)) diags = np.stack(diags) B = np.linalg.inv(XtX + diags) @ XtY B = B.astype(dtype or XtX.dtype) assert_array_shape(B, n_alpha, n_obs, n_outcome) return B def get_alphas( n_cols: int, heritability: Sequence[float] = [0.99, 0.75, 0.50, 0.25, 0.01] ) -> ndarray: # https://github.com/projectglow/glow/blob/f3edf5bb8fe9c2d2e1a374d4402032ba5ce08e29/python/glow/wgr/linear_model/ridge_model.py#L80 return np.array([n_cols / h for h in heritability]) def stack(x: Array) -> Array: """Stack blocks as new leading array axis""" return da.stack([x.blocks[i] for i in range(x.numblocks[0])]) def unstack(x: Array) -> Array: """Unstack leading array axis into blocks""" return da.concatenate([x.blocks[i][0] for i in range(x.numblocks[0])]) def _ridge_regression_cv( X: Array, Y: Array, alphas: ndarray, n_zero_reg: Optional[int] = None ) -> Tuple[Array, Array, Array, Array]: assert alphas.ndim == 1 assert X.ndim == 2 assert Y.ndim == 2 assert X.numblocks[1] == 1 assert Y.numblocks[1] == 1 assert X.chunks[0] == Y.chunks[0] n_block, n_obs, n_covar, n_outcome, n_alpha = ( X.numblocks[0], X.shape[0], X.shape[1], Y.shape[1], alphas.shape[0], ) obs_chunks = X.chunks[0] # Project samples and outcomes noting that resulting chunks are # of fixed size even if the chunks along the observation dim # are not uniform (i.e. |X.chunks[0]| != 1) XtX = stack(da.map_blocks(lambda x: x.T @ x, X, chunks=(X.shape[1],) * 2)) assert_block_shape(XtX, n_block, 1, 1) assert_chunk_shape(XtX, 1, n_covar, n_covar) XtY = stack(da.map_blocks(lambda x, y: x.T @ y, X, Y, chunks=(n_covar, n_outcome))) assert_block_shape(XtY, n_block, 1, 1) assert_chunk_shape(XtY, 1, n_covar, n_outcome) # Invert the projections in each block so that each # contains data from all other blocks *except* itself XtX = unstack(XtX.sum(axis=0) - XtX) assert_block_shape(XtX, n_block, 1) assert_chunk_shape(XtX, n_covar, n_covar) XtY = unstack(XtY.sum(axis=0) - XtY) assert_block_shape(XtY, n_block, 1) assert_chunk_shape(XtY, n_covar, n_outcome) assert XtX.numblocks == XtY.numblocks # Regress for all outcomes/alphas and add new axis for ridge parameters B = da.map_blocks( ridge_regression, XtX, XtY, chunks=(n_alpha, n_covar, n_outcome), new_axis=[0], alphas=alphas, n_zero_reg=n_zero_reg, ) assert_block_shape(B, 1, n_block, 1) assert_chunk_shape(B, n_alpha, n_covar, n_outcome) assert_array_shape(B, n_alpha, n_block * n_covar, n_outcome) # Generate predictions for all outcomes/alphas assert B.numblocks == (1,) + X.numblocks YP = da.map_blocks( lambda x, b: x @ b, X, B, chunks=(alphas.size, obs_chunks, n_outcome) ) assert_block_shape(YP, 1, n_block, 1) assert_chunk_shape(YP, n_alpha, obs_chunks[0], n_outcome) assert_array_shape(YP, n_alpha, n_obs, n_outcome) return XtX, XtY, B, YP def _stage_1(G: Array, X: Array, Y: Array, alphas: Optional[ndarray] = None) -> Array: """Stage 1 - WGR Base Regression This stage will predict outcomes separately for each alpha parameter and variant block. This "compresses" the variant dimension into a smaller space that is much more amenable to efficient blockwise regressions in stage 2. Another interpretation for this operation is that all sample blocks are treated as folds in a K-fold CV fit within one single variant block. Predictions for any one combination of variant and sample block then correspond to a regression model fit all across sample blocks for that range of variants except for a single sample block. In other words, the predictions are out of sample which enables training of a stage 2 regressor based on these predictions, a technique commonly referred to as stacking. For more details, see the level 0 regression model described in step 1 of [Mbatchou et al. 2020](https://www.biorxiv.org/content/10.1101/2020.06.19.162354v2). """ assert G.ndim == 2 assert X.ndim == 2 assert Y.ndim == 2 # Check that chunking across samples is the same for all arrays assert G.shape[0] == X.shape[0] == Y.shape[0] assert G.numblocks[0] == X.numblocks[0] == Y.numblocks[0] assert G.chunks[0] == X.chunks[0] == Y.chunks[0] assert X.numblocks[1] == Y.numblocks[1] == 1 if alphas is None: alphas = get_alphas(G.shape[1]) # Extract shape statistics n_sample = G.shape[0] n_outcome = Y.shape[1] n_alpha = alphas.size n_sample_block = G.numblocks[0] n_variant_block = G.numblocks[1] sample_chunks = Y.chunks[0] YP = [] for i in range(n_variant_block): # Extract all sample blocks for one variant block GB = G.blocks[:, i] # Prepend covariates and chunk along first dim only XGB = da.concatenate((X, GB), axis=1) XGB = XGB.rechunk(chunks=(None, -1)) # Fit and predict folds for each parameter and outcome YPB = _ridge_regression_cv(XGB, Y, alphas, n_zero_reg=X.shape[1])[-1] assert_block_shape(YPB, 1, n_sample_block, 1) assert_chunk_shape(YPB, n_alpha, sample_chunks[0], n_outcome) assert_array_shape(YPB, n_alpha, n_sample, n_outcome) YP.append(YPB) # Stack as (n_variant_block, n_alpha, n_sample, n_outcome) YP = da.stack(YP, axis=0) assert_block_shape(YP, n_variant_block, 1, n_sample_block, 1) assert_chunk_shape(YP, 1, n_alpha, sample_chunks[0], n_outcome) assert_array_shape(YP, n_variant_block, n_alpha, n_sample, n_outcome) return YP def _stage_2( YP: Array, X: Array, Y: Array, alphas: Optional[ndarray] = None, normalize: bool = True, _glow_adj_alpha: bool = False, _glow_adj_scaling: bool = False, ) -> Tuple[Array, Array]: """Stage 2 - WGR Meta Regression This stage will train separate ridge regression models for each outcome using the predictions from stage 1 for that same outcome as features. These predictions are then evaluated based on R2 score to determine an optimal "meta" estimator (see `_stage_1` for the "base" estimator description). Results then include only predictions and coefficients from this optimal model. For more details, see the level 1 regression model described in step 1 of [Mbatchou et al. 2020](https://www.biorxiv.org/content/10.1101/2020.06.19.162354v2). """ assert YP.ndim == 4 assert X.ndim == 2 assert Y.ndim == 2 # Check that chunking across samples is the same for all arrays assert YP.numblocks[2] == X.numblocks[0] == Y.numblocks[0] assert YP.chunks[2] == X.chunks[0] == Y.chunks[0] # Assert single chunks for covariates and outcomes assert X.numblocks[1] == Y.numblocks[1] == 1 # Extract shape statistics n_variant_block, n_alpha_1 = YP.shape[:2] n_sample_block = Y.numblocks[0] n_sample, n_outcome = Y.shape n_covar = X.shape[1] n_indvar = n_covar + n_variant_block * n_alpha_1 sample_chunks = Y.chunks[0] if normalize: assert_block_shape(YP, n_variant_block, 1, n_sample_block, 1) assert_chunk_shape(YP, 1, n_alpha_1, sample_chunks[0], n_outcome) # See: https://github.com/projectglow/glow/issues/260 if _glow_adj_scaling: YP = da.map_blocks( lambda x: (x - x.mean(axis=2, keepdims=True)) / x.std(axis=2, keepdims=True), YP, ) else: YP = (YP - YP.mean(axis=2, keepdims=True)) / YP.std(axis=2, keepdims=True) # Tranpose for refit on level 1 predictions YP = YP.transpose((3, 2, 0, 1)) assert_array_shape(YP, n_outcome, n_sample, n_variant_block, n_alpha_1) if alphas is None: # See: https://github.com/projectglow/glow/issues/255 if _glow_adj_alpha: alphas = get_alphas(n_variant_block * n_alpha_1 * n_outcome) else: alphas = get_alphas(n_variant_block * n_alpha_1) n_alpha_2 = alphas.size YR = [] BR = [] for i in range(n_outcome): # Slice and reshape to new 2D covariate matrix; # The order of raveling in trailing dimensions is important # and later reshapes will assume variants, alphas order XPB = YP[i].reshape((n_sample, n_variant_block * n_alpha_1)) # Prepend covariates and chunk along first dim only XPB = da.concatenate((X, XPB), axis=1) XPB = XPB.rechunk(chunks=(None, -1)) assert_array_shape(XPB, n_sample, n_indvar) assert XPB.numblocks == (n_sample_block, 1) # Extract outcome vector YB = Y[:, [i]] assert XPB.ndim == YB.ndim == 2 # Fit and predict folds for each parameter BB, YPB = _ridge_regression_cv(XPB, YB, alphas, n_zero_reg=n_covar)[-2:] assert_array_shape(BB, n_alpha_2, n_sample_block * n_indvar, 1) assert_array_shape(YPB, n_alpha_2, n_sample, 1) BR.append(BB) YR.append(YPB) # Concatenate predictions along outcome dimension YR = da.concatenate(YR, axis=2) assert_block_shape(YR, 1, n_sample_block, n_outcome) assert_chunk_shape(YR, n_alpha_2, sample_chunks[0], 1) assert_array_shape(YR, n_alpha_2, n_sample, n_outcome) # Move samples to last dim so all others are batch # dims for R2 calculations YR = da.transpose(YR, (0, 2, 1)) assert_array_shape(YR, n_alpha_2, n_outcome, n_sample) YR = YR.rechunk((-1, -1, None)) assert_block_shape(YR, 1, 1, n_sample_block) assert YR.shape[1:] == Y.T.shape # Concatenate betas along outcome dimension BR = da.concatenate(BR, axis=2) assert_block_shape(BR, 1, n_sample_block, n_outcome) assert_chunk_shape(BR, n_alpha_2, n_indvar, 1) assert_array_shape(BR, n_alpha_2, n_sample_block * n_indvar, n_outcome) # Compute R2 scores within each sample block for each outcome + alpha R2 = da.stack( [ r2_score(YR.blocks[..., i], Y.T.blocks[..., i]) # Avoid warnings on R2 calculations for blocks with single rows if YR.chunks[-1][i] > 1 else da.full(YR.shape[:-1], np.nan) for i in range(n_sample_block) ] ) assert_array_shape(R2, n_sample_block, n_alpha_2, n_outcome) # Coerce to finite or nan before nan-aware mean R2 = da.where(da.isfinite(R2), R2, np.nan) # Find highest mean alpha score for each outcome across blocks R2M = da.nanmean(R2, axis=0) assert_array_shape(R2M, n_alpha_2, n_outcome) # Identify index for the alpha value with the highest mean score R2I = da.argmax(R2M, axis=0) assert_array_shape(R2I, n_outcome) # Choose the predictions corresponding to the model with best score YRM = da.stack([YR[R2I[i], i, :] for i in range(n_outcome)], axis=-1) YRM = YRM.rechunk((None, -1)) assert_block_shape(YRM, n_sample_block, 1) assert_chunk_shape(YRM, sample_chunks[0], n_outcome) assert_array_shape(YRM, n_sample, n_outcome) # Choose the betas corresponding to the model with the best score BRM = da.stack([BR[R2I[i], :, i] for i in range(n_outcome)], axis=-1) BRM = BRM.rechunk((None, -1)) assert_block_shape(BRM, n_sample_block, 1) assert_chunk_shape(BRM, n_indvar, n_outcome) assert_array_shape(BRM, n_sample_block * n_indvar, n_outcome) return BRM, YRM def _stage_3( B: Array, YP: Array, X: Array, Y: Array, contigs: Array, variant_chunk_start: ndarray, ) -> Optional[Array]: """Stage 3 - Leave-one-chromosome-out (LOCO) Estimation This stage will use the coefficients for the optimal model in stage 2 to re-estimate predictions in a LOCO scheme. This scheme involves omitting coefficients that correspond to all variant blocks for a single chromosome in the stage 2 model and then recomputing predictions without those coefficients. For more details, see the "LOCO predictions" section of the Supplementary Methods in [Mbatchou et al. 2020](https://www.biorxiv.org/content/10.1101/2020.06.19.162354v2). """ assert B.ndim == 2 assert YP.ndim == 4 assert X.ndim == 2 assert Y.ndim == 2 # Check that chunking across samples is the same for all arrays assert B.numblocks[0] == YP.numblocks[2] == X.numblocks[0] == Y.numblocks[0] assert YP.chunks[2] == X.chunks[0] == Y.chunks[0] # Extract shape statistics sample_chunks = Y.chunks[0] n_covar = X.shape[1] n_variant_block, n_alpha_1 = YP.shape[:2] n_indvar = n_covar + n_variant_block * n_alpha_1 n_sample_block = Y.numblocks[0] n_sample, n_outcome = Y.shape # Determine unique contigs to create LOCO estimates for contigs = np.asarray(contigs) unique_contigs = np.unique(contigs) n_contig = len(unique_contigs) if n_contig <= 1: # Return nothing w/o at least 2 contigs return None assert n_variant_block == len(variant_chunk_start) # Create vector of size `n_variant_block` where value # at index i corresponds to contig for variant block i variant_block_contigs = contigs[variant_chunk_start] # Transform coefficients (B) such that trailing dimensions # contain right half of matrix product for prediction: # (n_sample_block * n_indvar, n_outcome) -> # (n_outcome, n_sample_block, n_indvar) B = da.stack([B.blocks[i] for i in range(n_sample_block)], axis=0) assert_block_shape(B, n_sample_block, 1, 1) assert_chunk_shape(B, 1, n_indvar, n_outcome) assert_array_shape(B, n_sample_block, n_indvar, n_outcome) B = da.transpose(B, (2, 0, 1)) assert_block_shape(B, 1, n_sample_block, 1) assert_chunk_shape(B, n_outcome, 1, n_indvar) assert_array_shape(B, n_outcome, n_sample_block, n_indvar) # Decompose coefficients (B) so that variant blocks can be sliced: # BX -> (n_outcome, n_sample_block, n_covar) # BYP -> (n_outcome, n_sample_block, n_variant_block, n_alpha_1) BX = B[..., :n_covar] assert_array_shape(BX, n_outcome, n_sample_block, n_covar) BYP = B[..., n_covar:] assert_array_shape(BYP, n_outcome, n_sample_block, n_variant_block * n_alpha_1) BYP = BYP.reshape((n_outcome, n_sample_block, n_variant_block, n_alpha_1)) assert_block_shape(BYP, 1, n_sample_block, 1, 1) assert_chunk_shape(BYP, n_outcome, 1, n_variant_block, n_alpha_1) assert_array_shape(BYP, n_outcome, n_sample_block, n_variant_block, n_alpha_1) # Transform base predictions (YP) such that trailing dimensions # contain left half of matrix product for prediction as well # as variant blocks to slice on: # (n_variant_block, n_alpha_1, n_sample, n_outcome) -> # (n_outcome, n_sample, n_variant_block, n_alpha_1) YP = da.transpose(YP, (3, 2, 0, 1)) assert_block_shape(YP, 1, n_sample_block, n_variant_block, 1) assert_chunk_shape(YP, n_outcome, sample_chunks[0], 1, n_alpha_1) assert_array_shape(YP, n_outcome, n_sample, n_variant_block, n_alpha_1) def apply(X: Array, YP: Array, BX: Array, BYP: Array) -> Array: # Collapse selected variant blocks and alphas into single # new covariate dimension assert YP.shape[2] == BYP.shape[2] n_group_covar = n_covar + BYP.shape[2] * n_alpha_1 BYP = BYP.reshape((n_outcome, n_sample_block, -1)) BG = da.concatenate((BX, BYP), axis=-1) BG = BG.rechunk((-1, None, -1)) assert_block_shape(BG, 1, n_sample_block, 1) assert_chunk_shape(BG, n_outcome, 1, n_group_covar) assert_array_shape(BG, n_outcome, n_sample_block, n_group_covar) YP = YP.reshape((n_outcome, n_sample, -1)) XYP = da.broadcast_to(X, (n_outcome, n_sample, n_covar)) XG = da.concatenate((XYP, YP), axis=-1) XG = XG.rechunk((-1, None, -1)) assert_block_shape(XG, 1, n_sample_block, 1) assert_chunk_shape(XG, n_outcome, sample_chunks[0], n_group_covar) assert_array_shape(XG, n_outcome, n_sample, n_group_covar) YG = da.map_blocks( # Block chunks: # (n_outcome, sample_chunks[0], n_group_covar) @ # (n_outcome, n_group_covar, 1) [after transpose] lambda x, b: x @ b.transpose((0, 2, 1)), XG, BG, chunks=(n_outcome, sample_chunks, 1), ) assert_block_shape(YG, 1, n_sample_block, 1) assert_chunk_shape(YG, n_outcome, sample_chunks[0], 1) assert_array_shape(YG, n_outcome, n_sample, 1) YG = da.squeeze(YG, axis=-1).T assert_block_shape(YG, n_sample_block, 1) assert_chunk_shape(YG, sample_chunks[0], n_outcome) assert_array_shape(YG, n_sample, n_outcome) return YG # For each contig, generate predictions for all sample+outcome # combinations using only betas from stage 2 results that # correspond to *other* contigs (i.e. LOCO) YC = [] for contig in unique_contigs: # Define a variant block mask of size `n_variant_block` # determining which blocks correspond to this contig variant_block_mask = variant_block_contigs == contig BYPC = BYP[:, :, ~variant_block_mask, :] YPC = YP[:, :, ~variant_block_mask, :] YGC = apply(X, YPC, BX, BYPC) YC.append(YGC) YC = da.stack(YC, axis=0) assert_array_shape(YC, n_contig, n_sample, n_outcome) return YC def _variant_block_indexes( variant_block_size: Union[int, Tuple[int, ...]], contigs: ArrayLike ) -> Tuple[ndarray, ndarray]: if isinstance(variant_block_size, tuple): return index_block_sizes(variant_block_size) elif isinstance(variant_block_size, int): return index_array_blocks(contigs, variant_block_size) else: raise ValueError( f"Variant block size type {type(variant_block_size)} " "must be tuple or int" ) DESC_BASE_PRED = """Predictions from base ridge regressors for every variant block, alpha, sample and outcome""" DESC_META_PRED = ( """Predictions from best meta ridge model selected through CV over sample blocks""" ) DESC_LOCO_PRED = """Predictions from best meta ridge model omitting coefficients for variant blocks within individual contigs (LOCO approximation)""" def regenie_transform( G: ArrayLike, X: ArrayLike, Y: ArrayLike, contigs: ArrayLike, *, variant_block_size: Optional[Union[int, Tuple[int, ...]]] = None, sample_block_size: Optional[Union[int, Tuple[int, ...]]] = None, alphas: Optional[Sequence[float]] = None, add_intercept: bool = True, orthogonalize: bool = False, normalize: bool = False, _glow_adj_dof: bool = False, _glow_adj_alpha: bool = False, _glow_adj_scaling: bool = False, ) -> Dataset: """Regenie trait transformation. Parameters ---------- G : (M, N) ArrayLike Genotype data array, `M` samples by `N` variants. X : (M, C) ArrayLike Covariate array, `M` samples by `C` covariates. Y : (M, O) ArrayLike Outcome array, `M` samples by `O` outcomes. contigs : (N,) ArrayLike Variant contigs as monotonic increasting integer contig index. See the `regenie` function for documentation on remaining fields. Returns ------- Dataset A dataset containing the following variables: - `base_prediction` (blocks, alphas, samples, outcomes): Stage 1 predictions from ridge regression reduction . - `meta_prediction` (samples, outcomes): Stage 2 predictions from the best meta estimator trained on the out-of-sample Stage 1 predictions. - `loco_prediction` (contigs, samples, outcomes): LOCO predictions resulting from Stage 2 predictions ignoring effects for variant blocks on held out contigs. This will be absent if the data provided does not contain at least 2 contigs. Raises ------ ValueError If `G`, `X`, and `Y` do not have the same size along the first (samples) dimension. """ if not G.shape[0] == X.shape[0] == Y.shape[0]: raise ValueError( "All data arrays must have same size along first (samples) dimension " f"(shapes provided: G={G.shape}, X={X.shape}, Y={Y.shape})" ) n_sample = Y.shape[0] n_variant = G.shape[1] if alphas is not None: alphas = np.asarray(alphas) G, X, Y = da.asarray(G), da.asarray(X), da.asarray(Y) contigs = da.asarray(contigs) # Set default block sizes if not provided if variant_block_size is None: # Block in groups of 1000, unless dataset is small # enough to default to 2 blocks (typically for tests) variant_block_size = min(1000, n_variant // 2) if sample_block_size is None: # Break into 10 chunks of approximately equal size sample_block_size = tuple(split_array_chunks(n_sample, min(10, n_sample))) assert sum(sample_block_size) == n_sample if normalize: # See: https://github.com/projectglow/glow/issues/255 dof = 1 if _glow_adj_dof else 0 G = (G - G.mean(axis=0)) / G.std(axis=0, ddof=dof) Y = (Y - Y.mean(axis=0)) / Y.std(axis=0) X = (X - X.mean(axis=0)) / X.std(axis=0) if add_intercept: X = da.concatenate([da.ones((X.shape[0], 1), dtype=X.dtype), X], axis=1) # TODO: Test this after finding out whether or not there was a good reason # it was precluded in glow by unit covariate regularization: # https://github.com/projectglow/glow/issues/266 if orthogonalize: # pragma: no cover G = G - X @ da.linalg.lstsq(X, G)[0] Y = Y - X @ da.linalg.lstsq(X, Y)[0] G = G / G.std(axis=0) Y = Y / Y.std(axis=0) X = da.zeros(shape=(n_sample, 0), dtype=G.dtype) variant_chunk_start, variant_chunk_size = _variant_block_indexes( variant_block_size, contigs ) G = G.rechunk(chunks=(sample_block_size, tuple(variant_chunk_size))) X = X.rechunk(chunks=(sample_block_size, -1)) Y = Y.rechunk(chunks=(sample_block_size, -1)) YP1 = _stage_1(G, X, Y, alphas=alphas) B2, YP2 = _stage_2( YP1, X, Y, alphas=alphas, _glow_adj_alpha=_glow_adj_alpha, _glow_adj_scaling=_glow_adj_scaling, ) YP3 = _stage_3(B2, YP1, X, Y, contigs, variant_chunk_start) data_vars: Dict[Hashable, Any] = {} data_vars["base_prediction"] = xr.DataArray( YP1, dims=("blocks", "alphas", "samples", "outcomes"), attrs={"description": DESC_BASE_PRED}, ) data_vars["meta_prediction"] = xr.DataArray( YP2, dims=("samples", "outcomes"), attrs={"description": DESC_META_PRED} ) if YP3 is not None: data_vars["loco_prediction"] = xr.DataArray( YP3, dims=("contigs", "samples", "outcomes"), attrs={"description": DESC_LOCO_PRED}, ) return xr.Dataset(data_vars) def regenie( ds: Dataset, *, dosage: str, covariates: Union[str, Sequence[str]], traits: Union[str, Sequence[str]], variant_block_size: Optional[Union[int, Tuple[int, ...]]] = None, sample_block_size: Optional[Union[int, Tuple[int, ...]]] = None, alphas: Optional[Sequence[float]] = None, add_intercept: bool = True, normalize: bool = False, orthogonalize: bool = False, **kwargs: Any, ) -> Dataset: """Regenie trait transformation. `REGENIE <https://github.com/rgcgithub/regenie>`_ is a whole-genome regression technique that produces trait estimates for association tests. These estimates are subtracted from trait values and sampling statistics (p-values, standard errors, etc.) are evaluated against the residuals. See the REGENIE preprint [1] for more details. For a simpler technical overview, see [2] for a detailed description of the individual stages and separate regression models involved. Parameters ---------- dosage : str Name of genetic dosage variable. covariates : Union[str, Sequence[str]] Names of covariate variables (1D or 2D). traits : Union[str, Sequence[str]] Names of trait variables (1D or 2D). variant_block_size : Optional[Union[int, Tuple[int]]], optional Number of variants in each block. If int, this describes the number of variants in each block but the last which may be smaller. If Tuple[int, ...], this must describe the desired number of variants in each block individually. Defaults to 1000 or num variants // 2, whichever is smaller. sample_block_size : Optional[Union[int, Tuple[int]]], optional Number of samples in each block. If int, this describes the number of samples in each block but the last which may be smaller. If Tuple[int, ...], this must describe the desired number of samples in each block individually. Defaults to 10 sample blocks split roughly across all possible samples or the number of samples, if that number is < 10. alphas : Optional[Sequence[float]], optional List of alpha values to use for regularization, by default None. If not provided, these will be set automatically based on datasize and apriori heritability assumptions. add_intercept : bool Whether or not to add intercept to covariates, by default True. normalize : bool Rescale genotypes, traits, and covariates to have mean 0 and stdev 1, by default False. orthogonalize : bool **Experimental**: Remove covariates through orthogonalization of genotypes and traits, by default False. Warnings -------- Binary traits are not yet supported so all outcomes provided must be continuous. Returns ------- Dataset A dataset containing the following variables: - `base_prediction` (blocks, alphas, samples, outcomes): Stage 1 predictions from ridge regression reduction . - `meta_prediction` (samples, outcomes): Stage 2 predictions from the best meta estimator trained on the out-of-sample Stage 1 predictions. - `loco_prediction` (contigs, samples, outcomes): LOCO predictions resulting from Stage 2 predictions ignoring effects for variant blocks on held out contigs. This will be absent if the data provided does not contain at least 2 contigs. Raises ------ ValueError If dosage, covariates, and trait arrays do not have the same number of samples. Examples -------- >>> import numpy as np >>> from sgkit.testing import simulate_genotype_call_dataset >>> from sgkit.stats.regenie import regenie >>> n_variant, n_sample, n_contig, n_covariate, n_trait, seed = 100, 50, 2, 3, 5, 0 >>> rs = np.random.RandomState(seed) >>> ds = simulate_genotype_call_dataset(n_variant=n_variant, n_sample=n_sample, n_contig=n_contig, seed=seed) >>> ds["call_dosage"] = (("variants", "samples"), rs.normal(size=(n_variant, n_sample))) >>> ds["sample_covariate"] = (("samples", "covariates"), rs.normal(size=(n_sample, n_covariate))) >>> ds["sample_trait"] = (("samples", "traits"), rs.normal(size=(n_sample, n_trait))) >>> res = regenie(ds, dosage="call_dosage", covariates="sample_covariate", traits="sample_trait") >>> res.compute() # doctest: +NORMALIZE_WHITESPACE <xarray.Dataset> Dimensions: (alphas: 5, blocks: 2, contigs: 2, outcomes: 5, samples: 50) Dimensions without coordinates: alphas, blocks, contigs, outcomes, samples Data variables: base_prediction (blocks, alphas, samples, outcomes) float64 0.3343 ... -... meta_prediction (samples, outcomes) float64 -0.4588 0.78 ... -0.3984 0.3734 loco_prediction (contigs, samples, outcomes) float64 0.4886 ... -0.01498 References ---------- [1] - <NAME>., <NAME>, <NAME>, and <NAME>cketta. 2020. “Computationally Efficient Whole Genome Regression for Quantitative and Binary Traits.” bioRxiv. https://www.biorxiv.org/content/10.1101/2020.06.19.162354v2.abstract. [2] - https://glow.readthedocs.io/en/latest/tertiary/whole-genome-regression.html """ if isinstance(covariates, str): covariates = [covariates] if isinstance(traits, str): traits = [traits] G = ds[dosage] X = da.asarray(concat_2d(ds[list(covariates)], dims=("samples", "covariates"))) Y = da.asarray(concat_2d(ds[list(traits)], dims=("samples", "traits"))) contigs = ds["variant_contig"] return regenie_transform( G.T, X, Y, contigs, variant_block_size=variant_block_size, sample_block_size=sample_block_size, alphas=alphas, add_intercept=add_intercept, normalize=normalize, orthogonalize=orthogonalize, **kwargs, ) ``` #### File: sgkit/tests/test_aggregation.py ```python from typing import Any import numpy as np import xarray as xr from xarray import Dataset from sgkit.stats.aggregation import count_call_alleles, count_variant_alleles from sgkit.testing import simulate_genotype_call_dataset from sgkit.typing import ArrayLike def get_dataset(calls: ArrayLike, **kwargs: Any) -> Dataset: calls = np.asarray(calls) ds = simulate_genotype_call_dataset( n_variant=calls.shape[0], n_sample=calls.shape[1], **kwargs ) dims = ds["call_genotype"].dims ds["call_genotype"] = xr.DataArray(calls, dims=dims) ds["call_genotype_mask"] = xr.DataArray(calls < 0, dims=dims) return ds def test_count_variant_alleles__single_variant_single_sample(): ds = count_variant_alleles(get_dataset([[[1, 0]]])) assert "call_genotype" in ds ac = ds["variant_allele_count"] np.testing.assert_equal(ac, np.array([[1, 1]])) def test_count_variant_alleles__multi_variant_single_sample(): ds = count_variant_alleles(get_dataset([[[0, 0]], [[0, 1]], [[1, 0]], [[1, 1]]])) ac = ds["variant_allele_count"] np.testing.assert_equal(ac, np.array([[2, 0], [1, 1], [1, 1], [0, 2]])) def test_count_variant_alleles__single_variant_multi_sample(): ds = count_variant_alleles(get_dataset([[[0, 0], [1, 0], [0, 1], [1, 1]]])) ac = ds["variant_allele_count"] np.testing.assert_equal(ac, np.array([[4, 4]])) def test_count_variant_alleles__multi_variant_multi_sample(): ds = count_variant_alleles( get_dataset( [ [[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 1]], [[1, 1], [0, 1], [1, 0]], [[1, 1], [1, 1], [1, 1]], ] ) ) ac = ds["variant_allele_count"] np.testing.assert_equal(ac, np.array([[6, 0], [5, 1], [2, 4], [0, 6]])) def test_count_variant_alleles__missing_data(): ds = count_variant_alleles( get_dataset( [ [[-1, -1], [-1, -1], [-1, -1]], [[-1, -1], [0, 0], [-1, 1]], [[1, 1], [-1, -1], [-1, 0]], [[1, 1], [1, 1], [1, 1]], ] ) ) ac = ds["variant_allele_count"] np.testing.assert_equal(ac, np.array([[0, 0], [2, 1], [1, 2], [0, 6]])) def test_count_variant_alleles__higher_ploidy(): ds = count_variant_alleles( get_dataset( [ [[-1, -1, 0], [-1, -1, 1], [-1, -1, 2]], [[0, 1, 2], [1, 2, 3], [-1, -1, -1]], ], n_allele=4, n_ploidy=3, ) ) ac = ds["variant_allele_count"] np.testing.assert_equal(ac, np.array([[1, 1, 1, 0], [1, 2, 2, 1]])) def test_count_variant_alleles__chunked(): rs = np.random.RandomState(0) calls = rs.randint(0, 1, size=(50, 10, 2)) ds = get_dataset(calls) ac1 = count_variant_alleles(ds) # Coerce from numpy to multiple chunks in all dimensions ds["call_genotype"] = ds["call_genotype"].chunk(chunks=(5, 5, 1)) # type: ignore[arg-type] ac2 = count_variant_alleles(ds) xr.testing.assert_equal(ac1, ac2) # type: ignore[no-untyped-call] def test_count_variant_alleles__no_merge(): ds = count_variant_alleles(get_dataset([[[1, 0]]]), merge=False) assert "call_genotype" not in ds ac = ds["variant_allele_count"] np.testing.assert_equal(ac, np.array([[1, 1]])) def test_count_call_alleles__single_variant_single_sample(): ds = count_call_alleles(get_dataset([[[1, 0]]])) ac = ds["call_allele_count"] np.testing.assert_equal(ac, np.array([[[1, 1]]])) def test_count_call_alleles__multi_variant_single_sample(): ds = count_call_alleles(get_dataset([[[0, 0]], [[0, 1]], [[1, 0]], [[1, 1]]])) ac = ds["call_allele_count"] np.testing.assert_equal(ac, np.array([[[2, 0]], [[1, 1]], [[1, 1]], [[0, 2]]])) def test_count_call_alleles__single_variant_multi_sample(): ds = count_call_alleles(get_dataset([[[0, 0], [1, 0], [0, 1], [1, 1]]])) ac = ds["call_allele_count"] np.testing.assert_equal(ac, np.array([[[2, 0], [1, 1], [1, 1], [0, 2]]])) def test_count_call_alleles__multi_variant_multi_sample(): ds = count_call_alleles( get_dataset( [ [[0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 1]], [[1, 1], [0, 1], [1, 0]], [[1, 1], [1, 1], [1, 1]], ] ) ) ac = ds["call_allele_count"] np.testing.assert_equal( ac, np.array( [ [[2, 0], [2, 0], [2, 0]], [[2, 0], [2, 0], [1, 1]], [[0, 2], [1, 1], [1, 1]], [[0, 2], [0, 2], [0, 2]], ] ), ) def test_count_call_alleles__missing_data(): ds = count_call_alleles( get_dataset( [ [[-1, -1], [-1, -1], [-1, -1]], [[-1, -1], [0, 0], [-1, 1]], [[1, 1], [-1, -1], [-1, 0]], [[1, 1], [1, 1], [1, 1]], ] ) ) ac = ds["call_allele_count"] np.testing.assert_equal( ac, np.array( [ [[0, 0], [0, 0], [0, 0]], [[0, 0], [2, 0], [0, 1]], [[0, 2], [0, 0], [1, 0]], [[0, 2], [0, 2], [0, 2]], ] ), ) def test_count_call_alleles__higher_ploidy(): ds = count_call_alleles( get_dataset( [ [[-1, -1, 0], [-1, -1, 1], [-1, -1, 2]], [[0, 1, 2], [1, 2, 3], [-1, -1, -1]], ], n_allele=4, n_ploidy=3, ) ) ac = ds["call_allele_count"] np.testing.assert_equal( ac, np.array( [ [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]], [[1, 1, 1, 0], [0, 1, 1, 1], [0, 0, 0, 0]], ] ), ) def test_count_call_alleles__chunked(): rs = np.random.RandomState(0) calls = rs.randint(0, 1, size=(50, 10, 2)) ds = get_dataset(calls) ac1 = count_call_alleles(ds) # Coerce from numpy to multiple chunks in all dimensions ds["call_genotype"] = ds["call_genotype"].chunk(chunks=(5, 5, 1)) # type: ignore[arg-type] ac2 = count_call_alleles(ds) xr.testing.assert_equal(ac1, ac2) # type: ignore[no-untyped-call] ``` #### File: sgkit/tests/test_association.py ```python import warnings from typing import Any, Dict, List, Optional, Sequence, Tuple import numpy as np import pandas as pd import pytest import xarray as xr from pandas import DataFrame from xarray import Dataset from sgkit.stats.association import gwas_linear_regression, linear_regression from sgkit.typing import ArrayLike with warnings.catch_warnings(): warnings.simplefilter("ignore", DeprecationWarning) # Ignore: DeprecationWarning: Using or importing the ABCs from 'collections' # instead of from 'collections.abc' is deprecated since Python 3.3, # and in 3.9 it will stop working import statsmodels.api as sm from statsmodels.regression.linear_model import RegressionResultsWrapper def _generate_test_data( n: int = 100, m: int = 10, p: int = 3, e_std: float = 0.001, b_zero_slice: Optional[slice] = None, seed: Optional[int] = 1, ) -> Tuple[ArrayLike, ArrayLike, ArrayLike, ArrayLike]: """Test data simulator for multiple variant associations to a continuous outcome Outcomes for each variant are simulated separately based on linear combinations of randomly generated fixed effect covariates as well as the variant itself. This does not add an intercept term in covariates. Parameters ---------- n : int, optional Number of samples m : int, optional Number of variants p : int, optional Number of covariates e_std : float, optional Standard deviation for noise term b_zero_slice : slice Variant beta values to zero out, defaults to `slice(m // 2)` meaning that the first half will all be 0. Set to `slice(0)` to disable. Returns ------- g : (n, m) array-like Simulated genotype dosage x : (n, p) array-like Simulated covariates bg : (m,) array-like Variant betas ys : (m, n) array-like Outcomes for each column in genotypes i.e. variant """ if b_zero_slice is None: b_zero_slice = slice(m // 2) rs = np.random.RandomState(seed) g = rs.uniform(size=(n, m), low=0, high=2) x = rs.normal(size=(n, p)) bg = rs.normal(size=m) bg[b_zero_slice or slice(m // 2)] = 0 bx = rs.normal(size=p) e = rs.normal(size=n, scale=e_std) # Simulate y values using each variant independently ys = np.array([g[:, i] * bg[i] + x @ bx + e for i in range(m)]) return g, x, bg, ys def _generate_test_dataset(**kwargs: Any) -> Dataset: g, x, bg, ys = _generate_test_data(**kwargs) data_vars = {} data_vars["dosage"] = (["variants", "samples"], g.T) for i in range(x.shape[1]): data_vars[f"covar_{i}"] = (["samples"], x[:, i]) for i in range(ys.shape[0]): # Traits are NOT multivariate simulations based on # values of multiple variants; they instead correspond # 1:1 with variants such that variant i has no causal # relationship with trait j where i != j data_vars[f"trait_{i}"] = (["samples"], ys[i]) attrs = dict(beta=bg, n_trait=ys.shape[0], n_covar=x.shape[1]) return xr.Dataset(data_vars, attrs=attrs) # type: ignore[arg-type] @pytest.fixture(scope="module") def ds() -> Dataset: return _generate_test_dataset() def _sm_statistics( ds: Dataset, i: int, add_intercept: bool ) -> RegressionResultsWrapper: X = [] # Make sure first independent variable is variant X.append(ds["dosage"].values[i]) for v in [c for c in list(ds.keys()) if c.startswith("covar_")]: X.append(ds[v].values) if add_intercept: X.append(np.ones(ds.dims["samples"])) X = np.stack(X).T y = ds[f"trait_{i}"].values return sm.OLS(y, X, hasconst=True).fit() def _get_statistics( ds: Dataset, add_intercept: bool, **kwargs: Any ) -> Tuple[DataFrame, DataFrame]: df_pred: List[Dict[str, Any]] = [] df_true: List[Dict[str, Any]] = [] for i in range(ds.dims["variants"]): dsr = gwas_linear_regression( ds, dosage="dosage", traits=[f"trait_{i}"], add_intercept=add_intercept, **kwargs, ) res = _sm_statistics(ds, i, add_intercept) df_pred.append( dsr.to_dataframe() # type: ignore[no-untyped-call] .rename(columns=lambda c: c.replace("variant_", "")) .iloc[i] .to_dict() ) # First result in satsmodels RegressionResultsWrapper for # [t|p]values will correspond to variant (not covariate/intercept) df_true.append(dict(t_value=res.tvalues[0], p_value=res.pvalues[0])) return pd.DataFrame(df_pred), pd.DataFrame(df_true) def test_gwas_linear_regression__validate_statistics(ds): # Validate regression statistics against statsmodels for # exact equality (within floating point tolerance) def validate(dfp: DataFrame, dft: DataFrame) -> None: # Validate results at a higher level, looking only for recapitulation # of more obvious inferences based on how the data was simulated np.testing.assert_allclose(dfp["beta"], ds.attrs["beta"], atol=1e-3) mid_idx = ds.dims["variants"] // 2 assert np.all(dfp["p_value"].iloc[:mid_idx] > 0.05) assert np.all(dfp["p_value"].iloc[mid_idx:] < 0.05) # Validate more precisely against statsmodels results np.testing.assert_allclose(dfp["t_value"], dft["t_value"]) np.testing.assert_allclose(dfp["p_value"], dft["p_value"]) dfp, dft = _get_statistics( ds, covariates=["covar_0", "covar_1", "covar_2"], add_intercept=True ) validate(dfp, dft) dfp, dft = _get_statistics( ds.assign(covar_3=("samples", np.ones(ds.dims["samples"]))), covariates=["covar_0", "covar_1", "covar_2", "covar_3"], add_intercept=False, ) validate(dfp, dft) def test_gwas_linear_regression__multi_trait(ds): def run(traits: Sequence[str]) -> Dataset: return gwas_linear_regression( ds, dosage="dosage", covariates=["covar_0"], traits=traits, add_intercept=True, ) traits = [f"trait_{i}" for i in range(ds.attrs["n_trait"])] # Run regressions on individual traits and concatenate resulting statistics dfr_single = xr.concat([run([t]) for t in traits], dim="traits").to_dataframe() # type: ignore[no-untyped-call] # Run regressions on all traits simulatenously dfr_multi: DataFrame = run(traits).to_dataframe() # type: ignore[no-untyped-call] pd.testing.assert_frame_equal(dfr_single, dfr_multi) def test_gwas_linear_regression__scalar_vars(ds: xr.Dataset) -> None: res_scalar = gwas_linear_regression( ds, dosage="dosage", covariates="covar_0", traits="trait_0" ) res_list = gwas_linear_regression( ds, dosage="dosage", covariates=["covar_0"], traits=["trait_0"] ) xr.testing.assert_equal(res_scalar, res_list) # type: ignore[no-untyped-call] def test_linear_regression__raise_on_non_2D(): XL = np.ones((10, 5, 1)) # Add 3rd dimension XC = np.ones((10, 5)) Y = np.ones((10, 3)) with pytest.raises(ValueError, match="All arguments must be 2D"): linear_regression(XL, XC, Y) def test_linear_regression__raise_on_dof_lte_0(): # Sample count too low relative to core covariate will cause # degrees of freedom to be zero XL = np.ones((2, 10)) XC = np.ones((2, 5)) Y = np.ones((2, 3)) with pytest.raises(ValueError, match=r"Number of observations \(N\) too small"): linear_regression(XL, XC, Y) ```
{ "source": "jeroyang/aitx", "score": 3 }
#### File: aitx/aitx/history.py ```python import matplotlib.pyplot as plt from collections import defaultdict import matplotlib.patches as patches class History: def __init__(self): self._history_log = [] self.human_accuracy = None def update(self, history): self._history_log.append(history) def set_human_accuracy(self, score): self.human_accuracy = score def get_full_history(self): full_history = defaultdict(list) for history in self._history_log: for k, v in history.history.items(): full_history[k].extend(v) return full_history def plot(self, train='acc', validation=None): if validation is None: validation = 'val_' + train epoch_left = 0 for i, history_obj in enumerate(self._history_log): train_history = history_obj.history epochs = len(train_history[train]) epoch_right = epoch_left + epochs if i % 2 == 1: axes = plt.gca() axes.add_patch(patches.Rectangle( (epoch_left+0.5, 0), # (x,y) epochs, # width 1.5, # height color='#f6f6f6' )) epoch_left = epoch_right full_history = self.get_full_history() full_epochs = len(full_history[train]) if self.human_accuracy is not None: plt.plot([0, full_epochs], [self.human_accuracy, self.human_accuracy], linestyle='--', color='gray', label='human') plt.plot(range(1, full_epochs+1), full_history[train], label='train') plt.plot(range(1, full_epochs+1), full_history[validation], label='validation') plt.title('Train history') plt.ylabel(train) plt.xlabel('Epoch') plt.xticks(range(0, full_epochs+1)) plt.legend(loc='best') axes.set_xlim([0.5, full_epochs+0.5]) axes.set_ylim([0, 1.1]) plt.show() def show(self, train='acc', validation=None): self.plot(train, validation) def diagnosis(self, human_accuracy=None): if human_accuracy is not None: self.human_accuracy = human_accuracy if self.human_accuracy is None: print("Need human accuracy") full_history = self.get_full_history() hum_error = 1 - self.human_accuracy acc_error = 1 - full_history['acc'][-1] val_error = 1 - full_history['val_acc'][-1] template = "Human level error:\t{:.3f}\nTraining set error:\t{:.3f}\nDev/Test set error:\t{:.3f}" print(template.format(hum_error, acc_error, val_error)) bias = max(0, acc_error - hum_error) variance = val_error - acc_error print('Avoidable bias:\t{:.3f}\nVariance:\t{:.3f}'.format(bias, variance)) if bias >= variance: print('Recommend train on a larger model or more time.') else: print('{:->30}'.format('')) print('Recommend more regulation or dropout.') ```
{ "source": "jeroyang/automapper", "score": 3 }
#### File: automapper/automapper/automapper.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * import re try: # python 3.4+ from html import unescape except: # Python 2.6-2.7 from HTMLParser import HTMLParser h = HTMLParser() unescape = h.unescape from collections import OrderedDict from lxml import etree from automapper.longest_common_subsequence import lcs def strip_tags(markup): """ Remove tags from the markup string >>> strip_tags('<a href="123">hell<b>o</b></a><br/>') hello """ tag = r'</?\w+( .*?)?/?>' return re.sub(tag, '', markup) def peel(markup): """ Remove the outmost markup tags """ tagpair =r'(?s)^\s*<(\w+)( .*)?>(.*)</\1>\s*$' content = re.sub(tagpair, r'\3', markup) return content.strip() def similarity(a, b): """ Return the similarity of two strings based on longest_common_subsequence """ return float(len(lcs(a, b))) / max(len(a), len(b)) def score(a, b): """ Return a herustic score of a and b """ return similarity(a, b) filters = OrderedDict(( (0, lambda x: x), (1, strip_tags), (2, unescape) )) class Model(dict): """ The model is dict which holds a flat representation of xml or html tree, mapping from xpath to content """ def search(self, query, n=None, threshold=None): """ Given content, return the first n results ranked by their scores. If the threshold is set, only the results which score is greater than the threshold will be returned. """ candidates = [] for xpath, content in self.items(): score2filter = dict() for name, filtfunc in list(filters.items())[::-1]: the_score = score(query, filtfunc(content)) score2filter[the_score] = name best_result = sorted(list(score2filter.items()), key=lambda i: i[0], reverse=True)[0] best_score, best_filter = best_result candidates.append((best_score, best_filter, xpath)) candidates.sort(key=lambda c: c[1]) candidates.sort(key=lambda c: c[0], reverse=True) if threshold is not None: candidates = [c for c in candidates if c[0] >=threshold] if n is None: return candidates else: return candidates[:n] @classmethod def fromlxml(cls, xml): """ A factory which returns a Model from an XML or HTML tree (from lxml) """ model = cls() tree = etree.ElementTree(xml) for node in tree.iter(): raw_content = etree.tostring(node, with_tail=False, encoding='unicode') xpath = tree.getpath(node) content = peel(raw_content) model[xpath] = content return model ```
{ "source": "jeroyang/carcd", "score": 3 }
#### File: carcd/tests/test_name.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * """ test_name ---------------------------------- Tests for `name` module. """ import unittest from collections import OrderedDict from carcd import name class TestName(unittest.TestCase): def setUp(self): pass def test_beautify(self): data = '我是1個 大呆 !!' result = name.beautify(data) wanted = '我是 1 個 大呆!!' def test_asciilize(self): result = name.asciilize('12 34 何大一!') wanted = '12 34 He Da Yi!' self.assertEqual(result, wanted) def test_name_split(self): title = '12-2 ABC 大大一.mp3' result = name.name_split(title) wanted = OrderedDict([ ('number', '12-2'), ('space', ' '), ('title', 'ABC 大大一'), ('ext', '.mp3') ]) self.assertEqual(result, wanted) def test_name_join(self): items = [ ('12-2', 'number'), (None, 'space'), ('ABC 大大一', 'title'), ('.mp3', 'ext') ] wanted = '12-2ABC 大大一.mp3' def test_number_format(self): result = name.number_format('2', fill=2) wanted = '02' self.assertEqual(result, wanted) result = name.number_format('2-2', fill=2) wanted = '02-02' self.assertEqual(result, wanted) def test_name_handle(self): title = '12-2 何大一.mp3' result = name.name_handle(title) wanted = '12-02 He Da Yi 何大一.mp3' self.assertEqual(result, wanted) def test_is_pinyined(self): data = '<NAME> 何大一' self.assertTrue(name.is_pinyined(data)) data = 'ABC 何大一' self.assertFalse(name.is_pinyined(data)) def tearDown(self): pass ```
{ "source": "jeroyang/cateye", "score": 3 }
#### File: cateye/tests/test_cateye.py ```python import unittest from cateye import cateye class TestCateye(unittest.TestCase): def setUp(self): pass def test_gen_path(self): base = 'test/path' code = 'ABC3' wanted = 'test/path' result = cateye.gen_path(base, code) self.assertEqual(wanted, result) def test_clean(self): s = 'Open wound to auricle of ear, without mention of complication' wanted = 'Open wound to auricle of ear, ' result = cateye.clean(s) self.assertEqual(wanted, result) s = 'Diabetes mellitus without mention of complication, Type I' wanted = 'Diabetes mellitus Type I' def test_tokenize(self): s = "Crohn's disease 克隆氏症" wanted = ['Crohn', 'disease', '克隆氏症'] result = cateye.tokenize(s) self.assertEqual(wanted, result) def test_lemmatize(self): tokens = ['Best', 'TEST', 'case'] wanted= ['best', 'test', 'case'] result = cateye.lemmatize(tokens) self.assertEqual(wanted, result) def test_filterout(self): tokens = ['for', 'test', 'only'] stopwords = ['for'] wanted = ['test', 'only'] result = cateye.filterout(tokens, stopwords) self.assertEqual(wanted, result) def test_ed1(self): token = 'abc' wanted = {'aabc', 'abbc', 'acbc', 'adbc', 'aebc', 'abca', 'abcb', 'abcc', 'abcd', 'ab', 'ac', 'aac', 'acc', 'adc', 'aec', 'afc', 'agc', 'acb'} result = cateye._ed1(token) self.assertTrue(wanted <= result) def tearDown(self): pass ```
{ "source": "jeroyang/exptk", "score": 3 }
#### File: exptk/exptk/report.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * from collections import defaultdict, namedtuple from fractions import Fraction TagBox = namedtuple('TagBox', 'content tag') def pack_boxes(list_of_content, tag): return [TagBox(content, tag) for content in list_of_content] def get_numerator(ratio, max_denominator): fraction = Fraction.from_float(ratio).limit_denominator(max_denominator) return int(fraction.numerator * max_denominator / fraction.denominator) def get_denominator(ratio, max_numerator): return get_numerator(1/ratio, max_numerator) class Report: """ Holding the results of experiment, presenting the precision, recall, f1 score of the experiment. """ def __init__(self, tp=[], fp=[], fn=[], title=None): """ tp: the ture positive items fp: the false positive items fn: the false negative items title: the title of this report """ self.tp = pack_boxes(tp, title) self.fp = pack_boxes(fp, title) self.fn = pack_boxes(fn, title) self.title = title def precision(self): try: return float(len(self.tp)) / (len(self.tp) + len(self.fp)) except ZeroDivisionError: return 0.0 def recall(self): try: return float(len(self.tp)) / (len(self.tp) + len(self.fn)) except ZeroDivisionError: return 0.0 def f1(self): r = self.recall() p = self.precision() try: return float(2 * r * p) / (r + p) except ZeroDivisionError: return 0.0 def __repr__(self): r = self.recall() p = self.precision() f = self.f1() syntax = 'Report<P{p:.3f} R{r:.3f} F{f:.3f} {t!r}>' return syntax.format(p=p, r=r, f=f, t=self.title) @classmethod def from_reports(cls, reports, title): meta_report = cls([], [], [], title) for report in reports: meta_report.tp.extend(pack_boxes(report.tp, title)) meta_report.fp.extend(pack_boxes(report.fp, title)) meta_report.fn.extend(pack_boxes(report.fn, title)) return meta_report def split(self): title2report = defaultdict(Report) try: for tagbox, _ in self.tp: title2report[tagbox.tag].tp.append(tagbox.content) for tagbox, _ in self.fp: title2report[tagbox.tag].fp.append(tagbox.content) for tagbox, _ in self.fn: title2report[tagbox.tag].fn.append(tagbox.content) for title, report in title2report.items(): report.title = title except AttributeError: raise AssertionError('The report cannot be split') return list(title2report.values()) @classmethod def from_scale(cls, gold_number, precision, recall, title): tp_count = get_numerator(recall, gold_number) positive_count = get_denominator(precision, tp_count) fp_count = positive_count - tp_count fn_count = gold_number - tp_count scale_report = cls(['tp'] * tp_count, ['fp'] * fp_count, ['fn'] * fn_count, title) return scale_report ```
{ "source": "jeroyang/mcgocr", "score": 2 }
#### File: mcgocr/ncgocr/concept.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * import datetime import time import re import pickle from collections import namedtuple, defaultdict from functools import partial from copy import copy import progressbar from ncgocr import pattern_regex class Index(dict): def __init__(self): self.use_default = True def __add__(self, other): result = copy(self) for key, value_set in other.items(): result[key] |= value_set return result def __repr__(self): template = '{}<{} key(s)>' return template.format(self.__class__.__name__, len(self)) def __missing__(self, key): if self.use_default: self[key] = set() return self[key] else: return set() @classmethod def join(cls, indices): output = cls() for index in indices: output += index return output Trunk = namedtuple('Trunk', 'text type start end') class Term(namedtuple('Term', 'lemma ref')): def __repr__(self): template = self.__class__.__name__ + '<{} {}>' return template.format(self.lemma, self.ref) def __hash__(self): return hash(self.__class__.__name__) + hash(self.lemma) + hash(self.ref) def __eq__(self, other): if all([hash(self) == hash(other), self.lemma == other.lemma, self.ref == other.ref]): return True return False class Entity(Term): pass class Pattern(Term): pass class Constraint(Term): pass class Evidence(namedtuple('Evidence', 'term text start end')): def __sub__(self, other): """ Return distance between the start of this term to the end of another term Notice: abs(a - b) != abs(b - a) """ return self.start - other.end class Statement(namedtuple('Statement', 'statid evidences')): """ A Statement is a collection of evidences """ def __eq__(self, other): try: self.eq_terms(other) return True except: return False def __hash__(self): return hash('statement:' + self.statid) def __repr__(self): template = 'Statement<{} {}>' components = [repr(term) for term in self.terms()] return template.format(self.statid, ' '.join(components)) def terms(self): return [evidence.term for evidence in self.evidences] def eq_terms(self, other): terms = [] if len(self.evidences) != len(other.evidences): raise ValueError('The two statements have different lengths of evidences') for this_evidence, other_evidence in zip(self.evidences, other.evidences): this_term, other_term = this_evidence.term, other_evidence.term if type(this_term) != type(other_term): raise ValueError('The two statements have different type sequences of terms') elif all([isinstance(this_term, Pattern), not this_term == other_term]): raise ValueError('The two statements has different patterns') elif not any([isinstance(this_term, Pattern), this_term == other_term]): terms.append((other_term, this_term)) return terms def _clean(entity_frag): """ Clean the given trunk (text contains entity and pattern) by removal of the leading and tailing puncutions and stopwords """ stopwords = '(of|in|to|and|or|the|a)' head_regex = r'^\s*{}\b'.format(stopwords) tail_regex = r'\b{}\s*$'.format(stopwords) joined_regex = r'|'.join([head_regex, tail_regex]) return re.sub(joined_regex, '', entity_frag).strip(' -,') def split_trunk(label): """ A GO label may contain two (or more) trunks, split the trunk by regular expression. TODO: split trunks correctly if there are more than two trunks """ regex_list = [ r'^(?P<main_trunk>.+?),?\s*\b(?:involved in|during|via|using|by|acting on|from|in)\s(?P<constraint_trunk>.*)$', r'^(?P<main_trunk>.+?),\s*\b(?P<constraint_trunk>.*)[\ \-](?:related|dependent)$'] for regex in regex_list: m = re.match(regex, label) if m: main_text = m.group('main_trunk') main_start = label.index(main_text) main_end = main_start + len(main_text) main_trunk = Trunk(main_text, 'main', main_start, main_end) constraint_text = m.group('constraint_trunk') constraint_start = label.index(constraint_text) constraint_end = constraint_start + len(constraint_text) constraint_trunk = Trunk(constraint_text, 'constraint', constraint_start, constraint_end) return [main_trunk, constraint_trunk] return [Trunk(label, 'main', 0, len(label))] def split_pattern(trunk, regex_in): """ Given a trunk, and regex_in from pattern_manager, return the list of patterns and the list of entities """ pre_terms = [] text = trunk.text start = trunk.start if trunk.type == 'main': for m in re.finditer(regex_in, text): for lemma, token in m.groupdict().items(): if token is not None: token_start = start + m.start() token_end = start + m.end() pre_terms.append((Pattern, lemma, token, token_start, token_end)) replaced = re.sub(regex_in, '###', text) dirty_tokens = replaced.split('###') for dirty_token in dirty_tokens: clean_token = _clean(dirty_token) if len(clean_token) > 0: token_start = start + text.index(clean_token) token_end = token_start + len(clean_token) if trunk.type == 'main': pre_terms.append((Entity, clean_token, clean_token, token_start, token_end)) else: pre_terms.append((Constraint, clean_token, clean_token, token_start, token_end)) return pre_terms def evidence_split(goid, label, regex_in): """ Given a goid and one of its label, return a list of terms """ pre_terms = [e for t in split_trunk(label) for e in split_pattern(t, regex_in)] evidences = [] for pre_term in pre_terms: if pre_term[0] is Pattern: term = Pattern(*pre_term[1:2], ref='annotator') evid = Evidence(term, *pre_term[2:]) evidences.append(evid) else: term = pre_term[0](*pre_term[1:2], ref=goid) evid = Evidence(term, *pre_term[2:]) evidences.append(evid) evidences.sort(key=lambda e: e.start) return evidences class Cluster(object): def __init__(self, primary_term, terms=None): self.primary_term = primary_term if terms is None: self.terms = set() else: self.terms = set(terms) self.updated_fragments = False self._fragments = set() self._term_queue = list(self.terms) def __hash__(self): return hash(self.primary_term) def __eq__(self, other): return all([self.primary_term==other.primary_term, self.terms==other.terms]) def __repr__(self): return "Cluster({})<{} terms>".format(repr(self.primary_term), len(self.terms)) def __iter__(self): for term in self.terms: yield term def fragments(self): if self.updated_fragments: return self._fragments else: for term in self._term_queue: self._fragments |= set(term.lemma.split(' ')) self._term_queue = [] self.updated_fragments = True return self._fragments def add(self, term): self.updated_fragments = False self._term_queue.append(term) self.terms.add(term) def merge(self, other): self.updated_fragments = False self.terms |= other.terms self._fragments |= other.fragments() del other class ClusterBook(object): def __init__(self): self.clusters = set() self.index = dict() def __repr__(self): return 'ClusterBook <{} clusters, {} terms>'.format(len(self.clusters), len(self.index.keys())) def preferred_term(self, term): return self.index[term].primary_term def add(self, cluster): self.clusters.add(cluster) for term in cluster: self.index[term] = cluster def merge(self, cluster1, cluster2): if cluster1 in self.clusters: for term in cluster2: self.index[term] = cluster1 cluster1.merge(cluster2) elif cluster2 in self.clusters: for term in cluster1: self.index[term] = cluster2 cluster2.merge(cluster1) else: raise ValueError def merge_term(self, term1, term2): cluster = self.index[term1] cluster.add(term2) self.index[term2] = cluster def add_terms(self, terms): for term in terms: if not term in self.index: primary_term = term cluster = Cluster(primary_term, [term]) self.add(cluster) def simplify(self, theshold): """ Return a new clusterbook, in which, a pair of the clusters has a similarity greater than the theshold will be merged together """ result = ClusterBook() Z = len(self.clusters)**2//10000 with progressbar.ProgressBar(max_value=Z) as bar: for i, cluster in enumerate(self.clusters): if len(result.clusters) == 0: result.add(cluster) for already_cluster in result.clusters: if sim(cluster, already_cluster) >= theshold: result.merge(already_cluster, cluster) break else: result.add(cluster) bar.update(i**2//10000) return result def has_common(cluster1, cluster2): set1 = set([(t.__class__, t.lemma) for t in cluster1.terms]) set2 = set([(t.__class__, t.lemma) for t in cluster2.terms]) if len(set1 & set2) == 0: return False return True def jaccard(cluster1, cluster2): set1 = cluster1.fragments() set2 = cluster2.fragments() return len(set1 & set2)/len(set1 | set2) def sim(cluster1, cluster2): if not has_common(cluster1, cluster2): return 0.0 else: return jaccard(cluster1, cluster2) class GoData(dict): def __init__(self, obo_path): self._regex_in = pattern_regex.regex_in self._regex_out = pattern_regex.regex_out self._date = None self._read(obo_path) self.goid2mindepth = dict() self.goid2maxdepth = dict() self._calculate_depth() self.goid2above = dict() self.goid2below = dict() self.goid2density = dict() self.clusterbook = None self._raw_clusterbook = ClusterBook() self._calculate_density() self.biological_process = partial(self._get_namespace, 'biological_process') self.cellular_component = partial(self._get_namespace, 'cellular_component') self.molecular_function = partial(self._get_namespace, 'molecular_function') self._digest() def __repr__(self): template = "GoData<{} concepts, {} statements, on {}>" concept_count = len(self) statement_count = sum([len(s.statements) for s in self.values()]) datestr = self.date.strftime('%Y/%m/%d') return template.format(concept_count, statement_count, datestr ) def _read(self, obo_path): """Read GO data from OBO file""" with open(obo_path) as f: text = f.read() blocks = text.split('\n\n') basic_data = blocks[0] term_blocks = filter(lambda block:block[0:6]=='[Term]', blocks) dt = tuple(i.partition(': ')[2] for i in basic_data.split('\n') if i.partition(':')[0]=='date')[0] self.date = datetime.datetime(*time.strptime(dt, "%d:%m:%Y %H:%M")[:6]) for term_block in term_blocks: goid = None name = None namespace = None synonym_list = list() parent_list = list() if 'is_obsolete: true' in term_block: continue lines = term_block.split('\n') for line in lines[1:]: key, sep, value = line.partition(':') if key == 'id': goid = value.strip() if key == 'name': name = value.strip() if key == 'synonym': synotext = value.strip() synonym = re.findall(r'"(.*?)"', synotext)[0] synonym_list.append(synonym) if key == 'namespace': namespace = value.strip() if key == 'is_a': parent_id, sep , parent_name = value.partition('!') parent_list.append(parent_id.strip()) concept = Concept(goid, name, namespace, synonym_list, parent_list) self[goid] = concept def _calculate_depth(self): cache = dict() def _calc_depth(goid, func): if goid in {'GO:0003674', 'GO:0008150', 'GO:0005575'}: return 1 try: return cache[goid] except KeyError: concept = self[goid] return func(_calc_depth(parent_id, func) for parent_id in concept.parent_list) + 1 for goid in self.keys(): self.goid2maxdepth[goid] = _calc_depth(goid, max) self.goid2mindepth[goid] = _calc_depth(goid, min) def _calculate_density(self): above_cache = self.goid2above def _above(goid): if goid in {'GO:0003674', 'GO:0008150', 'GO:0005575'}: return set() try: return above_cache[goid] except KeyError: concept = self[goid] above = set.union(*[_above(parent_id) for parent_id in concept.parent_list]) above |= set(concept.parent_list) above_cache[goid] = above return above for goid in self.keys(): above_cache[goid] = _above(goid) below_cache = defaultdict(set) for goid, above in above_cache.items(): for parent_id in above: below_cache[parent_id].add(goid) self.goid2below = below_cache total = len(self) for goid in self.keys(): below = self.goid2below.get(goid, set()) self.goid2density[goid] = float(len(below) + 1) / total for concept in self.values(): goid = concept.goid concept.density = self.goid2density[goid] def _get_namespace(self, namespace): for goid, concept in self.items(): if concept.namespace == namespace: yield concept def _digest(self): """ Digest the labels of concepts, write the statements, and aggregate clusters, save into the self.clusterbook """ regex_in=self._regex_in with progressbar.ProgressBar(max_value=len(self)) as bar: for j, (goid, concept) in enumerate(self.items()): for i, label in enumerate(concept.labels): statid = '%'.join([goid, str(i).zfill(3)]) evidences = evidence_split(goid, label, regex_in) terms = [evidence.term for evidence in evidences] statement = Statement(statid, evidences) if len(concept.statements) == 0: concept.statements.append(statement) self._raw_clusterbook.add_terms(terms) continue for already_statement in concept.statements: try: eq_terms = statement.eq_terms(already_statement) for term1, term2 in eq_terms: self._raw_clusterbook.merge_term(term1, term2) break except ValueError: pass else: concept.statements.append(statement) self._raw_clusterbook.add_terms(terms) bar.update(j) if self.clusterbook is None: self.clusterbook = self._raw_clusterbook def _rewrite_statements(self): for goid, concept in self.items(): statements = concept.statements new_statements = [] for statement in statements: statid = statement.statid old_evidences = statement.evidences new_evidences = [] for old_evidence in old_evidences: old_term = old_evidence.term text = old_term.lemma new_term = self.clusterbook.preferred_term(old_term) start = old_evidence.start end = old_evidence.end new_evidences.append(Evidence(new_term, text, start, end)) new_statements.append(Statement(statid, new_evidences)) concept.statements = new_statements def compression(self, theshold): simple_book = self._raw_clusterbook.simplify(theshold) self.clusterbook = simple_book self._rewrite_statements() def get_Ie(self): cb = self.clusterbook Ie = Index() for c in cb.clusters: for term in c.terms: Ie[term.lemma].add(c.primary_term) Ie.use_default = False return Ie def get_Im(self): Im = Index() for goid, concept in self.items(): statements = concept.statements for statement in statements: if all([isinstance(term, Pattern) for term in statement.terms()]): for term in statement.terms(): Im[term].add(statement) else: for term in statement.terms(): if isinstance(term, Entity): Im[term].add(statement) return Im def save(self, filepath): with open(filepath, 'wb') as f: pickle.dump(self, f, protocol=2) @classmethod def load(cls, filepath): with open(filepath, 'rb') as f: godata = pickle.load(f) return godata class Concept(object): def __init__(self, goid, name, namespace, synonym_list, parent_list, density=-1): self.goid = goid self.name = name self.namespace = namespace self.ns = {'biological_process': 'BP', 'cellular_component': 'CC', 'molecular_function': 'MF'}[namespace] self.synonym_list = synonym_list self.labels = [name] + synonym_list self.parent_list = parent_list self.statements = [] self.density = density def __repr__(self): return 'Concept<{} {} {}>'.format(self.goid, self.ns, self.name) ``` #### File: mcgocr/ncgocr/gopattern.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * from txttk.nlptools import slim_stem from txttk import retools from collections import defaultdict import re def _regex(snippet): return snippet.replace('_', r'\S{0,6}').replace(' ', r'[\ \-]?') def _unit_regex_out(lemma, snippets): regs = [_regex(snippet) for snippet in snippets] regs.sort(key=len, reverse=True) large_snippet = retools.nocatch(retools.parallel(regs)) return r'(?P<{}>{})'.format(lemma, large_snippet) def _unit_regex_in(lemma, snippets): medium_regs = [] for snippet in snippets: reg = _regex(snippet) medium_regs.append(r'^(?:{0})\b'.format(reg)) medium_regs.append(r'\b(?:{0})$'.format(reg)) large_snippet = retools.nocatch(retools.parallel(medium_regs)) return r'(?P<{}>{})'.format(lemma, large_snippet) class PatternManager(object): def __init__(self): self.lemma2snippets = defaultdict(set) self.lemma2broad = defaultdict(set) def _sorted_lemma_n_snippets(self): lemma_n_snippets = self.lemma2snippets.items() key = lambda item: len(item[0]) return sorted(lemma_n_snippets, key=key, reverse=True) def add_snippet(self, snippet, lemma): """ Add a snippet to the lemma """ self.lemma2snippets[lemma].add(snippet) def add_snippets(self, snippets, lemma): for snippet in snippets: self.add_snippet(snippet, lemma) def regex_out(self, lemma2snippet_more=dict()): """ Return a long regex for pattern extraction in journal paper """ lemma_n_snippets = self._sorted_lemma_n_snippets() regex = retools.parallel([_unit_regex_out(lemma, sorted(list(snippets))) for lemma, snippets in lemma_n_snippets], sort=True) wrapper = r'(?i)\b(?:{0})\b' return wrapper.format(regex) def regex_in(self): """ Return a long regex for pattern extraction in GO definition """ lemma_n_snippet = self._sorted_lemma_n_snippets() regex = retools.parallel([_unit_regex_in(lemma, snippet) for lemma, snippet in lemma_n_snippet]) wrapper = r'(?:{0})' return wrapper.format(regex) def get_extractor(self): """ Make a soft extractor based on given regular exrepssion. We use regex_out from PatternManager """ regex = self.regex_out() def extractor(sentence, start): """ Extract soft concepts (pattern) from given sentnece """ results = [] for m in re.finditer(regex, sentence): lemma = list(filter(lambda item: item[1] is not None, m.groupdict().items()))[0][0] pattern_start = m.start() pattern_end = m.end() results.append((lemma, start+pattern_start, start+pattern_end)) return results return extractor @classmethod def from_definition(cls, definition_fp): """ Return a PatternManager ojbect from give pattern difinition file """ pm = cls() with open(definition_fp) as f: pattern_lines = filter(lambda x: any([len(x) == 0, x[0] != '#']), f.read().strip().split('\n')) for line in pattern_lines: lemma, sep, tail = line.partition(':') snippets = tail.split(';') pm.add_snippets(snippets, lemma) return pm def write_code(self, filepath='ncgocr/pattern_regex.py'): template = """#These big regular expressions were automatically #generated by the gopattern.py, just don't edit it. regex_in = {} regex_out = {}""" with open(filepath, 'w') as f: code = template.format(repr(self.regex_in()), repr(self.regex_out())) f.write(code) if __name__ == '__main__': pm = PatternManager.from_definition('../data/pattern_definition.txt') pm.write_code('../pattern_regex.py') ``` #### File: mcgocr/ncgocr/learning.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * from collections import OrderedDict, defaultdict, ChainMap from intervaltree import Interval, IntervalTree import numpy as np from txttk.report import Report from txttk.corpus import Annotation """ The measurements of features """ def concept_measurements(candidate, godata): """ Measure the ceoncept features: GOID, STATID, NAMESPACE from the given candidate """ statement = candidate.statement statid = statement.statid goid, sep, sulfix = statid.partition('%') namespace = godata[goid].namespace measurements = OrderedDict([('GOID', goid), ('STATID', statid), ('NAMESPACE', namespace)]) return measurements def evidence_measurements(candidate): """ Measure the evidence features: LENGTH, TEXT and TEXT[:3], TEXT[-3:] from the given candidate """ evidences = candidate.evidences sentence_text = candidate.sentence.text offset = candidate.sentence.offset starts = [e.start for e in evidences] ends = [e.end for e in evidences] raw_start = min(starts) - offset raw_end = max(ends) - offset length = raw_end - raw_start text = sentence_text[raw_start:raw_end].lower() boostscore = {'boost':1, 'boost2': 100} boostlevel = max([boostscore.get(term.ref, 0) for term in candidate.statement.terms()]) measurements = OrderedDict([('LENGTH', length), ('TEXT=' + text, True), ('TEXT[:3]=' + text[:3], True), ('TEXT[-3:]=' + text[-3:], True), ('BOOST', boostlevel)]) return measurements def bias_measurements(candidate): """ Measure the bias features: OMIT, SATURATION from the given candidate """ measurements = OrderedDict() statement = candidate.statement evidences = candidate.evidences terms_in_evidences = set([e.term for e in evidences]) for term in statement.terms(): if term in terms_in_evidences: continue key = 'OMIT=' + term.lemma measurements[key] = True measurements['SATURATION'] = len(evidences) / len(statement.evidences) return measurements def all_measurements(candidate, godata): """ Return all the measurements from the given candidate """ measurements = OrderedDict() measurements.update(concept_measurements(candidate, godata)) measurements.update(evidence_measurements(candidate)) measurements.update(bias_measurements(candidate)) return measurements def bulk_measurements(candidates, godata): result = [] for candidate in candidates: result.append(all_measurements(candidate, godata)) return result class LabelMarker(object): """ Handeling the labels from given goldstandard """ def __init__(self, goldstandard): self.goldstandard = goldstandard forest = defaultdict(IntervalTree) for pmid, goid, start, end, text in goldstandard: t = forest[pmid] t[start:end] = (goid, text) self.forest = dict(forest) def mark(self, candidate): pmid = candidate.sentence.docid statid = candidate.statement.statid evidences = candidate.evidences goid = statid.partition('%')[0] starts = [e.start for e in evidences] ends = [e.end for e in evidences] start = min(starts) end = max(ends) span = (start, end) gold_goids = {iv.data[0] for iv in self.forest[pmid][slice(*span)]} if goid in gold_goids: return 1 return 0 def markall(self, candidates): labels = [] for candidate in candidates: labels.append(self.mark(candidate)) return labels def process(self, candidates): return np.array(self.markall(candidates)) def recover(candidates, y): result = Annotation() for candidate, label in zip(candidates, y): if label == 0: continue pmid = candidate.sentence.docid statid = candidate.statement.statid goid = statid.partition('%')[0] start = min([e.start for e in candidate.evidences]) end = max([e.end for e in candidate.evidences]) raw_start = start - candidate.sentence.offset raw_end = end - candidate.sentence.offset text = candidate.sentence.text[raw_start:raw_end] result.add((pmid, goid, start, end, text)) return result def evaluate(system, goldstandard, message): slim_system = {i[:4] for i in system} slim_goldstandard = {i[:4] for i in goldstandard} slim2gold = ChainMap({i[:4]: i for i in goldstandard}, {i[:4]: i for i in system}) slim_tp = slim_system & slim_goldstandard slim_fp = slim_system - slim_goldstandard slim_fn = slim_goldstandard - slim_system tp = {slim2gold[i] for i in slim_tp} fp = {slim2gold[i] for i in slim_fp} fn = {slim2gold[i] for i in slim_fn} return Report(tp, fp, fn, message) ``` #### File: mcgocr/tests/test_corpus.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * """ test_corpus ---------------------------------- Tests for `corpus` module. """ import unittest from txttk import corpus as c class TestFunctions(unittest.TestCase): def test_is_title(self): positive = ['Jesus Loves Me', 'Bring to the Front!', 'The Basic Idea of Games'] negative = ['Who is the first lady?', 'The function of BRCA1', 'Windows XP never die'] for case in positive: self.assertTrue(c.is_title(case)) for case in negative: self.assertFalse(c.is_title(case)) def test_is_abbr(self): positive = ['BRCA1', 'EFR2', 'CA3', 'TXTs'] negative = ['home', 'Basic', 'Hello'] for case in positive: self.assertTrue(c.is_abbr(case)) for case in negative: self.assertFalse(c.is_abbr(case)) def test_is_word(self): positive = ['Dream', 'best', 'talk', 'A'] negative = ['brca1', 'NBA', 'A*'] for case in positive: self.assertTrue(c.is_word(case)) for case in negative: self.assertFalse(c.is_word(case)) def test_normalize(self): cases = ['Dream', 'Hello', 'NBA', 'BRCA1', 'best'] targets = ['dream', 'hello', 'NBA', 'BRCA1', 'best'] for case, target in zip(cases, targets): self.assertEqual(c.normalize(case), target) def test_normalize_sent(self): cases = ['Jesus Loves Me', 'Bring to the Front!', 'The Basic Idea of Games', 'Who is the first lady?', 'The function of BRCA1', 'Windows XP never die'] targets = ['jesus loves me', 'bring to the front!', 'the basic idea of games', 'who is the first lady?', 'the function of BRCA1', 'windows XP never die'] for case, target in zip(cases, targets): self.assertEqual(c.normalize_sent(case), target) class TestSentence(unittest.TestCase): def setUp(self): self.sentence = c.Sentence('<NAME>', 15, 'diary') def test_init(self): text = self.sentence.text wanted = 'jesus loves me' self.assertEqual(text, wanted) def test_repr(self): result = self.sentence.__repr__() wanted = "Sentence<'<NAME>' 15@diary>" self.assertEqual(result, wanted) class TestCorpus(unittest.TestCase): def setUp(self): self.corpus_a = c.Corpus(title='testing_a') self.corpus_b = c.Corpus(title='testing_b') self.sentences = [] for i in range(100): sentence = c.Sentence(str(i), i, 'doc'+str(i%10)) self.sentences.append(sentence) if i < 50: self.corpus_a.append(sentence) else: self.corpus_b.append(sentence) def test_init(self): self.assertEqual(self.corpus_a.title, 'testing_a') def test_add(self): result = self.corpus_a + self.corpus_b wanted = c.Corpus('testing_a|testing_b', self.sentences) self.assertEqual(result, wanted) def test_doc_set(self): wanted = {'doc'+str(i) for i in range(10)} result = self.corpus_a.doc_set() self.assertEqual(result, wanted) def test_divide(self): corpus_list = self.corpus_a.divide(5, 0) self.assertEqual(len(corpus_list), 5) for corpus in corpus_list: self.assertEqual(len(corpus), 10) result = sum(corpus_list, c.Corpus()) result.title = 'testing_a' wanted = self.corpus_a self.assertEqual(set(result), set(wanted)) ```
{ "source": "jeroyang/newsletter", "score": 3 }
#### File: newsletter/tests/test_newsletter.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * """ test_newsletter ---------------------------------- Tests for `newsletter` module. """ import unittest from newsletter import newsletter from collections import OrderedDict, Counter class TestNewsletter(unittest.TestCase): def setUp(self): pass def test_count_args(self): template = """something {{one}} other things {{two}} {{two}}""" results = newsletter.count_args(template) wanted = Counter({'one': 1, 'two': 2}) self.assertEqual(results, wanted) def test_split_items(self): context = 'text1\n----\ntext2\n2nd line\n----\ntext3\n\n-----\ntext4' result = newsletter.split_items(context) wanted = ['text1', 'text2\n2nd line', 'text3', 'text4'] self.assertEqual(result, wanted) def test_format_items(self): items = ['text1', 'text2'] result = newsletter.format_items(items) wanted = "text1\n----\ntext2" self.assertEqual(result, wanted) def build_text(self): template = '\nTest\n{{one}}\ntest\n{{two}}\n{{two}}\n' arg2items = {'one': ['bob', 'alice'], 'two': ['kitty', 'bunny']} result = newsletter.build_text(template, arg2items) wanted = 'Test\nbob\ntest\nkitty\nbunny' self.assertEqual(result, wanted) def tearDown(self): pass ```
{ "source": "jeroyang/txttk", "score": 3 }
#### File: txttk/tests/test_retools.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * """ test_retools ---------------------------------- Tests for `retools` module. """ import unittest from txttk import retools import re class RetoolsTestCase(unittest.TestCase): def test_condense(self): words = ['hello', 'hellokitty', 'hellomonkey', 'goodbye', 'hell', 'he', 'his', 'hi', 'bye', 'history', 'story', 'condense', 'hematoma', 'lymphoma'] regex = retools.condense(words) condensed = re.compile(regex) for word in words: self.assertTrue(condensed.match(word)) negative_words = ['akkk', 'adadkjkl ', 'avxnbcjn'] for word in negative_words: self.assertFalse(condensed.match(word)) def test_is_solid(self): regex = r'a' self.assertTrue(retools.is_solid(regex)) regex = r'[ab]' self.assertTrue(retools.is_solid(regex)) regex = r'(a|b|c)' self.assertTrue(retools.is_solid(regex)) regex = r'(a|b|c)?' self.assertTrue(retools.is_solid(regex)) regex = r'(ab)c' self.assertFalse(retools.is_solid(regex)) regex = r'(ab)c?' self.assertFalse(retools.is_solid(regex)) regex = r'(a)(b|c)' self.assertFalse(retools.is_solid(regex)) regex = r'(a)(b|c)?' self.assertFalse(retools.is_solid(regex)) def test_is_packed(self): regex = r'a' self.assertFalse(retools.is_packed(regex)) regex = r'[ab]' self.assertFalse(retools.is_packed(regex)) regex = r'(a|b|c)' self.assertTrue(retools.is_packed(regex)) regex = r'(ab)c' self.assertFalse(retools.is_packed(regex)) def test_consolidate(self): regex = r'a|b' wanted = r'(a|b)' result = retools.consolidate(regex) self.assertEqual(result, wanted) regex = r'[ab]' wanted = r'[ab]' result = retools.consolidate(regex) self.assertEqual(result, wanted) regex = r'(?:a|b)' wanted = r'(?:a|b)' result = retools.consolidate(regex) self.assertEqual(result, wanted) def test_danger_unpack(self): regex = r'(abc)' wanted = r'abc' result = retools.danger_unpack(regex) self.assertEqual(result, wanted) regex = r'(?:abc)' wanted = r'abc' result = retools.danger_unpack(regex) self.assertEqual(result, wanted) regex = r'(?P<xyz>abc)' wanted = r'abc' result = retools.danger_unpack(regex) self.assertEqual(result, wanted) regex = r'[abc]' wanted = r'[abc]' result = retools.danger_unpack(regex) self.assertEqual(result, wanted) def test_unpack(self): regex = r'(abc)' wanted = r'abc' result = retools.unpack(regex) self.assertEqual(result, wanted) regex = r'(?:abc)' wanted = r'abc' result = retools.unpack(regex) self.assertEqual(result, wanted) regex = r'(?P<xyz>abc)' wanted = r'(?P<xyz>abc)' result = retools.unpack(regex) self.assertEqual(result, wanted) regex = r'[abc]' wanted = r'[abc]' result = retools.unpack(regex) self.assertEqual(result, wanted) def test_parallel(self): result = retools.parallel([r'abc', r'def']) wanted = r'abc|def' self.assertEqual(result, wanted) result = retools.parallel([r'abc', r'd|ef']) wanted = 'abc|d|ef' self.assertEqual(result, wanted) result = retools.parallel([r'abc', r'(d|ef)']) wanted = 'abc|d|ef' self.assertEqual(result, wanted) result = retools.parallel([r'abc', r'defg'], sort=True) wanted = 'defg|abc' self.assertEqual(result, wanted) def test_nocatch(self): regex = r'a|b' wanted = r'(?:a|b)' result = retools.nocatch(regex) self.assertEqual(result, wanted) regex = r'(a|b)' wanted = r'(?:a|b)' result = retools.nocatch(regex) self.assertEqual(result, wanted) regex = r'(?P<x>ab)' wanted = r'(?:ab)' result = retools.nocatch(regex) self.assertEqual(result, wanted) regex = r'[ab]' wanted = r'[ab]' result = retools.nocatch(regex) self.assertEqual(result, wanted) def test_concat(self): regex_1 = r'a|b' regex_2 = r'(c|de)' regex_3 = r'[fg]' result_12 = retools.concat([regex_1, regex_2]) wanted_12 = r'(a|b)(c|de)' self.assertEqual(result_12, wanted_12) result_13 = retools.concat([regex_1, regex_3]) wanted_13 = r'(a|b)[fg]' self.assertEqual(result_13, wanted_13) result_123 = retools.concat([regex_1, regex_2, regex_3]) wanted_123 = r'(a|b)(c|de)[fg]' self.assertEqual(result_123, wanted_123) def test_nocatchall(self): regex = r'abc' wanted = r'abc' result = retools.nocatchall(regex) self.assertEqual(result, wanted) regex = r'(abc)' wanted = r'(?:abc)' result = retools.nocatchall(regex) self.assertEqual(result, wanted) regex = r'(?:abc)' wanted = r'(?:abc)' result = retools.nocatchall(regex) self.assertEqual(result, wanted) regex = r'(?P<xyz>abc)' wanted = r'(?:abc)' result = retools.nocatchall(regex) self.assertEqual(result, wanted) regex = r'(abc(?P<xyz>def))' wanted = r'(?:abc(?:def))' result = retools.nocatchall(regex) self.assertEqual(result, wanted) regex = r'\(abc\)' wanted = r'\(abc\)' result = retools.nocatchall(regex) self.assertEqual(result, wanted) def test_option(self): regex = r'abc' wanted = r'(?:abc)?' result = retools.option(regex) self.assertEqual(result, wanted) regex = r'(abc)' wanted = r'(?:abc)?' result = retools.option(regex) self.assertEqual(result, wanted) regex = r'[abc]' wanted = r'[abc]?' result = retools.option(regex) self.assertEqual(result, wanted) ``` #### File: txttk/txttk/feature.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * from collections import OrderedDict import re import string def lexical(token): """ Extract lexical features from given token There are 3 kinds of lexical features, take 'Hello' as an example: 1. lowercase: 'hello' 2. first4: 'hell' 3. last4: 'ello' """ lowercase = token.lower() first4 = lowercase[:4] last4 = lowercase[-4:] return OrderedDict([ ('lowercase', lowercase), ('first4', first4), ('last4', last4) ]) def _char_shape(char): if char in string.ascii_uppercase: return 'A' if char in string.ascii_lowercase: return 'a' if char in string.digits: return '0' else: return char def _shape(token): return ''.join([_char_shape(char) for char in token]) def _contains_a_letter(token): regex = r'[A-Za-z]' if re.search(regex, token): return True else: return False def _contains_a_capital(token): regex = r'[A-Z]' if re.search(regex, token): return True else: return False def _begins_with_capital(token): return _char_shape(token[0]) == 'A' def _all_capital(token): regex = r'^[A-Z]+$' if re.match(regex, token): return True else: return False def _contains_a_digit(token): regex = r'\d' if re.search(regex, token): return True else: return False def _all_digit(token): regex = r'^\d+$' if re.match(regex, token): return True else: return False def _contains_a_punctuation(token): return len(set(string.punctuation) & set(token)) > 0 def _consists_letters_n_digits(token): shape = _shape(token) return set(shape.lower()) == set('a0') def _consists_digits_n_punctuations(token): shape = _shape(token) lower_shape = shape.lower() return set(lower_shape) <= set(string.punctuation+'0') and len(lower_shape) >= 2 def orthographic(token): """ Extract orthographic features from a given token There are 11 kinds of orthographic features, take 'Windows10' as an example: 1. shape: 'Aaaaaaa00' 2. length: 9 3. contains_a_letter: True 4. contains_a_capital: True 5. begins_with_capital: True 6. all_capital: False 7. contains_a_digit: True 8. all_digit: False 9. contains_a_punctuation: False 10. consists_letters_n_digits: True 11. consists_digits_n_punctuations: False """ return OrderedDict([ ('shape', _shape(token)), ('length', len(token)), ('contains_a_letter', _contains_a_letter(token)), ('contains_a_capital', _contains_a_capital(token)), ('begins_with_capital', _begins_with_capital(token)), ('all_capital', _all_capital(token)), ('contains_a_digit', _contains_a_digit(token)), ('all_digit', _all_digit(token)), ('contains_a_punctuation', _contains_a_punctuation(token)), ('consists_letters_n_digits', _consists_letters_n_digits(token)), ('consists_digits_n_punctuations', _consists_digits_n_punctuations(token)), ]) ``` #### File: txttk/txttk/retools.py ```python from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * from collections import defaultdict, OrderedDict from itertools import combinations import re def condense(ss_unescaped): """ Given multiple strings, returns a compressed regular expression just for these strings >>> condense(['she', 'he', 'her', 'hemoglobin']) 'he(moglobin|r)?|she' """ def estimated_len(longg, short): return (3 + len(short) + sum(map(len, longg)) - len(longg) * (len(short) - 1) - 1 ) def stupid_len(longg): return sum(map(len, longg)) + len(longg) ss = [re.escape(s) for s in set(ss_unescaped)] ss.sort(key=len) short2long = defaultdict(lambda: {'p':[],'s':[]}) for short, longg in combinations(ss, 2): if longg.startswith(short): short2long[short]['p'].append(longg) if longg.endswith(short): short2long[short]['s'].append(longg) short2long = sorted(list(short2long.items()), key=lambda x: len(x[0]), reverse=True) output = [] objs = set(ss) for s, pre_sur in short2long: pp = set(pre_sur['p']) & objs ss = set(pre_sur['s']) & objs if ((stupid_len(pp) - estimated_len(pp, s)) < (stupid_len(ss) - estimated_len(ss, s))): reg = (r'({heads})?{surfix}' .format(surfix=s, heads='|'.join(sorted([p[:-len(s)] for p in ss], key=len, reverse=True)))) assert len(reg) == estimated_len(ss, s) output.append(reg) objs -= (ss | set([s])) elif ((stupid_len(pp) - estimated_len(pp, s)) > (stupid_len(ss) - estimated_len(ss, s))): reg = (r'{prefix}({tails})?' .format(prefix=s, tails='|'.join(sorted([p[len(s):] for p in pp], key=len, reverse=True)))) assert len(reg) == estimated_len(pp, s) output.append(reg) objs -= (pp | set([s])) for residual in objs: output.append(residual) return re.sub(r'\(([^)])\)\?', r'\1?', r'|'.join(output)) def is_solid(regex): """ Check the given regular expression is solid. >>> is_solid(r'a') True >>> is_solid(r'[ab]') True >>> is_solid(r'(a|b|c)') True >>> is_solid(r'(a|b|c)?') True >>> is_solid(r'(a|b)(c)') False >>> is_solid(r'(a|b)(c)?') False """ shape = re.sub(r'(\\.|[^\[\]\(\)\|\?\+\*])', '#', regex) skeleton = shape.replace('#', '') if len(shape) <= 1: return True if re.match(r'^\[[^\]]*\][\*\+\?]?$', shape): return True if re.match(r'^\([^\(]*\)[\*\+\?]?$', shape): return True if re.match(r'^\(\)#*?\)\)', skeleton): return True else: return False def is_packed(regex): """ Check if the regex is solid and packed into a pair of parens """ return is_solid(regex) and regex[0] == '(' def consolidate(regex): """ Put on a pair of parens (with no catch tag) outside the regex, if the regex is not yet consolidated """ if is_solid(regex): return regex else: return '({})'.format(regex) def danger_unpack(regex): """ Remove the outermost parens >>> unpack(r'(abc)') 'abc' >>> unpack(r'(?:abc)') 'abc' >>> unpack(r'(?P<xyz>abc)') 'abc' >>> unpack(r'[abc]') '[abc]' """ if is_packed(regex): return re.sub(r'^\((\?(:|P<.*?>))?(?P<content>.*?)\)$', r'\g<content>', regex) else: return regex def unpack(regex): """ Remove the outermost parens, keep the (?P...) one >>> unpack(r'(abc)') 'abc' >>> unpack(r'(?:abc)') 'abc' >>> unpack(r'(?P<xyz>abc)') '(?P<xyz>abc)' >>> unpack(r'[abc]') '[abc]' """ if is_packed(regex) and not regex.startswith('(?P<'): return re.sub(r'^\((\?:)?(?P<content>.*?)\)$', r'\g<content>', regex) else: return regex def parallel(regex_list, sort=False): """ Join the given regexes using r'|' if the sort=True, regexes will be sorted by lenth before processing >>> parallel([r'abc', r'def']) 'abc|def' >>> parallel([r'abc', r'd|ef']) 'abc|def' >>> parallel([r'abc', r'(d|ef)']) 'abc|d|ef' >>> parallel([r'abc', r'defg']) 'defg|abc' """ if sort: regex_list = sorted(regex_list, key=len, reverse=True) return '|'.join([unpack(regex) for regex in regex_list]) def nocatch(regex): """ Put on a pair of parens (with no catch tag) outside the regex, if the regex is not yet packed; modified the outmost parens by adding nocatch tag """ if is_solid(regex) and not is_packed(regex): return regex else: return '(?:{})'.format(danger_unpack(regex)) def concat(regex_list): """ Concat multiple regular expression into one, if the given regular expression is not packed, a pair of paren will be add. >>> reg_1 = r'a|b' >>> reg_2 = r'(c|d|e)' >>> concat([reg_1, reg2]) (a|b)(c|d|e) """ output_list = [] for regex in regex_list: output_list.append(consolidate(regex)) return r''.join(output_list) def nocatchall(regex): """ Return a regex with all parens has a no catch tag """ return re.sub(r'(?<!\\)(?P<leading>(\\\\)*)\((\?(:|P<.*?>))?', r'\g<leading>(?:', regex) def option(regex): """ return a regex has a option tag >>> option(r'[ab]') '[ab]?' >>> option(r'(abc)') '(abc)?' >>> option('abc') '(abc)?' """ return nocatch(regex) + '?' ```
{ "source": "jerpint/jag", "score": 3 }
#### File: tensorflow/lm/mlflow_utils.py ```python import mlflow from tensorflow.keras.callbacks import Callback class MLflowLogger(Callback): """ Keras callback for logging metrics and final model with MLflow. Metrics are logged after every epoch. The logger keeps track of the best model based on the validation metric. At the end of the training, the best model is logged with MLflow. """ def __init__(self): pass def on_epoch_end(self, epoch, logs=None): """ Log Keras metrics with MLflow. Update the best model if the model improved on the validation data. """ if not logs: return for name, value in logs.items(): mlflow.log_metric(name, value, step=epoch) def on_train_end(self, *args, **kwargs): """ Log the best model with MLflow and evaluate it on the train and validation data so that the metrics stored with MLflow reflect the logged model. """ pass ``` #### File: jag/models/transformer.py ```python import tensorflow as tf from tensorflow.keras import layers, models from tensorflow.keras import initializers as init from tensorflow.keras import backend as K import numpy as np import math class LayerNormalization(layers.Layer): r"""Applies Layer Normalization over a mini-batch of inputs as described in the paper `Layer Normalization`_ . .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta The mean and standard-deviation are calculated separately over the last dimension. :math:`\gamma` and :math:`\beta` are learnable affine transform parameters. Args: eps: a value added to the denominator for numerical stability. Default: 1e-5 Shape: - Input: :math:`(N, *)` - Output: :math:`(N, *)` (same shape as input) .. _`Layer Normalization`: https://arxiv.org/abs/1607.06450 """ def __init__(self, eps=1e-5, **kwargs): self.eps = eps super(LayerNormalization, self).__init__(**kwargs) def build(self, input_shape): self.gamma = self.add_weight( name='gamma', shape=input_shape[-1:], initializer=init.Ones(), trainable=True ) self.beta = self.add_weight( name='beta', shape=input_shape[-1:], initializer=init.Zeros(), trainable=True ) super().build(input_shape) def call(self, x): u = K.mean(x, axis=-1, keepdims=True) s = K.mean(K.square(x - u), axis=-1, keepdims=True) z = (x - u) / K.sqrt(s + self.eps) return self.gamma * z + self.beta def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = { 'eps': self.eps, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): return cls(**config) class Embedding(layers.Layer): r"""Implements the unified Embedding Layer of the Transformer architecture. It performs positional embeddings, token embeddings and, eventually, segment embeddings. Args: output_dim: dimension of the embeddings. Default: 768. dropout: dropout rate to be applied on the embeddings. Default: 0.1. vocab_size: size of the vocalbulary. Default: 30000. max_len: maximum length of the input sequence. Default: 512. trainable_pos_embedding: whether or not to train the positional embeddings. Default: ``True``. num_segments: number of segments. if None or set to zero, then the segment embeddings won't be performed. Default: None. use_one_dropout: if ``True``, the different embeddings will be summed up before applying dropout, otherwise dropout will be applied to each embedding type independently before summing them. Default: ``False``. use_embedding_layer_norm: if ``True``, layer normalization will be applied on the resulting embeddings. Default: ``False``. layer_norm_epsilon: parameter of the layer normalization operation. Default: 1e-5 Shape: - Input: :math:`(N, L)` - Output: :math:`(N, L, output_dim)` """ def __init__( self, output_dim=768, dropout=0.1, vocab_size=30000, max_len=512, trainable_pos_embedding=True, num_segments=None, use_one_dropout=False, use_embedding_layer_norm=False, layer_norm_epsilon=1e-5, **kwargs): super(Embedding, self).__init__(**kwargs) self.output_dim = output_dim self.max_len = max_len self.dropout = dropout self.vocab_size = vocab_size self.num_segments = num_segments self.trainable_pos_embedding = trainable_pos_embedding self.use_one_dropout = use_one_dropout self.use_embedding_layer_norm = use_embedding_layer_norm self.layer_norm_epsilon = layer_norm_epsilon if self.num_segments is None or (self.num_segments == 0): self.segment_emb = None else: self.segment_emb = layers.Embedding( self.num_segments, self.output_dim, input_length=self.max_len ) if self.trainable_pos_embedding: self.pos_emb = layers.Embedding( max_len, output_dim, input_length=max_len ) else: self.pos_emb = layers.Embedding( max_len, output_dim, input_length=max_len, trainable=False, weights=[Embedding._get_pos_encoding_matrix( max_len, output_dim)] # embeddings_initializer=Embedding._get_pos_encoding_matrix( # max_len, output_dim # ) ) self.token_emb = layers.Embedding( self.vocab_size, output_dim, input_length=max_len ) self.embedding_dropout = layers.Dropout(self.dropout) self.add_embeddings = layers.Add() if self.use_embedding_layer_norm: self.embedding_layer_norm = LayerNormalization( self.layer_norm_epsilon) else: self.embedding_layer_norm = None def compute_output_shape(self, input_shape): shape = tf.TensorShape(input_shape[0]).as_list() shape.append(self.output_dim) return tf.TensorShape(shape) def get_config(self): config = { 'max_len': self.max_len, 'use_one_dropout': self.use_one_dropout, 'output_dim': self.output_dim, 'dropout': self.dropout, 'num_segments': self.num_segments, 'vocab_size': self.vocab_size, 'trainable_pos_embedding': self.trainable_pos_embedding, 'use_embedding_layer_norm': self.use_embedding_layer_norm, 'layer_norm_epsilon': self.layer_norm_epsilon } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) def call(self, inputs): if self.num_segments is None or (self.num_segments == 0): tokens, pos_ids = inputs segment_embedding = None else: tokens, segment_ids, pos_ids = inputs segment_embedding = self.segment_emb(segment_ids) pos_embedding = self.pos_emb(pos_ids) token_embedding = self.token_emb(tokens) if self.use_one_dropout: embed_list = [] if segment_embedding is None else [segment_embedding] embed_list.extend([pos_embedding, token_embedding]) sum_embed = self.add_embeddings(embed_list) if self.embedding_layer_norm is not None: sum_embed = self.embedding_layer_norm(sum_embed) return self.embedding_dropout(sum_embed) else: embed_list = [] if segment_embedding is None else [ self.embedding_dropout(segment_embedding) ] embed_list.extend([ self.embedding_dropout(pos_embedding), self.embedding_dropout(token_embedding) ]) sum_embed = self.add_embeddings(embed_list) if self.embedding_layer_norm is not None: sum_embed = self.embedding_layer_norm(sum_embed) return sum_embed @classmethod def from_config(cls, config): return cls(**config) @staticmethod def _get_pos_encoding_matrix(max_len, d_emb): pos_enc = np.array( [ [pos / np.power(10000, 2 * (j // 2) / d_emb) for j in range(d_emb)] if pos != 0 else np.zeros(d_emb) for pos in range(max_len) ], dtype=np.float32 ) pos_enc[1:, 0::2] = np.sin(pos_enc[1:, 0::2]) # dim 2i pos_enc[1:, 1::2] = np.cos(pos_enc[1:, 1::2]) # dim 2i+1 return pos_enc class ScaledDotProductAttention(layers.Layer): r"""Implements the scaled dot product attention mechanism. Args: temperature: the normalizing constant. attn_dropout: dropout rate to be applied on the result. Default: 0.1. use_attn_mask: whether or not the layer expects to use mask in the computation. Default: ``False``. neg_inf: constant representing the negative infinite value. Default: ``-np.inf``. Inputs: ``query``: the query of dimension :math:`(N, H, L, Dk)` ``keys``: the keys of dimension :math:`(N, H, Dk, L)` ``values``: the values of dimension :math:`(N, H, L, Dv)` ``mask`` (only if use_attn_mask is True): the mask of dimension :math:`(N, 1, L, L)`. Outputs: ``result``: the result of the operation :math:`(N, H, L, Dv)` ``attention_weight``: the attention values :math:`(N, H, L, L)` """ def __init__( self, temperature, attn_dropout=0.1, use_attn_mask=False, neg_inf=-np.inf, **kwargs): super(ScaledDotProductAttention, self).__init__(**kwargs) self.temperature = temperature self.attn_dropout = attn_dropout self.neg_inf = float(neg_inf) self.use_attn_mask = use_attn_mask self.dropout = layers.Dropout(self.attn_dropout) self.softmax = layers.Softmax(axis=-1) def compute_output_shape(self, input_shape): shape1 = tf.TensorShape(input_shape[0]).as_list() shape2 = tf.TensorShape(input_shape[1]).as_list() shape3 = tf.TensorShape(input_shape[2]).as_list() ret_shape1 = list(shape1) ret_shape1[-1] = shape3[-1] ret_shape2 = list(shape1) ret_shape2[-1] = shape2[-1] ret_shape1 = tf.TensorShape(ret_shape1) ret_shape2 = tf.TensorShape(ret_shape2) return [ret_shape1, ret_shape2] def call(self, inputs): # q and v are B, H, L, C//H ; k is B, H, C//H, L ; mask is B, 1, L, L # q: B, H, lq, dk and v: B, H, lv, dv and k:B, H, dk, Lk and mask: B, # 1, Lq, Lk if self.use_attn_mask: q, k, v, mask = inputs else: q, k, v = inputs mask = None attn = K.batch_dot(q, k) # attn is of shape B, H, Lq, Lk attn = attn / self.temperature if mask is not None: mask = tf.cast(mask, attn.dtype) attn = (mask * attn) + ((1.0 - mask) * self.neg_inf) attn = self.softmax(attn) attn = self.dropout(attn) output = K.batch_dot(attn, v) # output: B, H, L, C//H (B, H, Lq, dv) return [output, attn] def get_config(self): config = { 'temperature': self.temperature, 'attn_dropout': self.attn_dropout, 'neg_inf': self.neg_inf, 'use_attn_mask': self.use_attn_mask, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): return cls(**config) class MultiHeadAttention(layers.Layer): r"""Implements the multi head attention mechanism. Args: n_head: number of heads. d_model: dimension of the ouput results. d_k: dimension of the keys and the queries. d_v: dimension of the values. attention_dropout: dropout rate to be applied on each single attention head. Default: 0.1. dropout: dropout rate to be applied on the projection of the concatenation of all attention heads. Default: 0.1. use_attn_mask: whether or not the layer expects to use mask in the computation. Default: ``False``. layer_norm_epsilon: parameter of the layer normalization operation. Default: 1e-5 neg_inf: constant representing the negative infinite value. Default: ``-np.inf``. Inputs: ``seq``: the input sequence of dimension :math:`(N, L, d_model)` ``mask`` (only if use_attn_mask is True): the mask of dimension :math:`(N, 1, L, L)`. Outputs: ``result``: the result of the operation :math:`(N, L, d_model)` ``attention_weight``: the attention values :math:`(N, n_head, L, L)` """ def __init__( self, n_head, d_model, d_k, d_v, attention_dropout=0.1, dropout=0.1, use_attn_mask=False, layer_norm_epsilon=1e-5, neg_inf=-np.inf, **kwargs): super(MultiHeadAttention, self).__init__(**kwargs) self.n_head = n_head self.d_model = d_model self.d_k = d_k self.d_v = d_v self.attention_dropout = attention_dropout self.use_attn_mask = use_attn_mask self.neg_inf = neg_inf self.dropout = dropout self.layer_norm_epsilon = layer_norm_epsilon self.c_attn = layers.Conv1D( n_head * (d_k * 2 + d_v), 1, input_shape=(None, self.d_model) ) self.attention = ScaledDotProductAttention( temperature=np.power(d_k, 0.5), attn_dropout=self.attention_dropout, neg_inf=self.neg_inf, use_attn_mask=self.use_attn_mask ) self.c_attn_proj = layers.Conv1D( d_model, 1, input_shape=(None, n_head * d_v) ) self.multihead_dropout = layers.Dropout(self.dropout) self.multihead_add = layers.Add() self.multihead_norm = LayerNormalization(self.layer_norm_epsilon) @staticmethod def _shape_list(x): tmp = K.int_shape(x) tmp = list(tmp) tmp[0] = -1 return tmp @staticmethod def _split_heads(x, n, k=False): x_shape = MultiHeadAttention._shape_list(x) m = x_shape[-1] new_x_shape = x_shape[:-1] + [n, m // n] new_x = K.reshape(x, new_x_shape) return K.permute_dimensions(new_x, [0, 2, 3, 1] if k else [0, 2, 1, 3]) @staticmethod def _merge_heads(x): new_x = K.permute_dimensions(x, [0, 2, 1, 3]) x_shape = MultiHeadAttention._shape_list(new_x) new_x_shape = x_shape[:-2] + [np.prod(x_shape[-2:])] return K.reshape(new_x, new_x_shape) def compute_output_shape(self, input_shape): x = input_shape[0] if self.use_attn_mask else input_shape shape = tf.TensorShape(x).as_list() shape1 = list(shape) shape1[-1] = self.d_model shape2 = [shape1[0], self.n_head, shape1[1], shape1[1]] ret_shape1 = tf.TensorShape(shape1) ret_shape2 = tf.TensorShape(shape2) return [ret_shape1, ret_shape2] def call(self, inputs): if self.use_attn_mask: x, mask = inputs else: x = inputs mask = None residual = x x = self.c_attn(x) q_l = self.n_head * self.d_k k_l = 2 * self.n_head * self.d_k q, k, v = x[:, :, :q_l], x[:, :, q_l:k_l], x[:, :, k_l:] q = MultiHeadAttention._split_heads(q, self.n_head) # B, H, L, d_k k = MultiHeadAttention._split_heads( k, self.n_head, k=True) # B, H, d_k, L v = MultiHeadAttention._split_heads(v, self.n_head) # B, H, L, d_v args = [q, k, v] if self.use_attn_mask: args.append(mask) output, attn = self.attention(args) # (B, H, Lq, dv), (B, H, Lq, Lk) output = MultiHeadAttention._merge_heads(output) # (B, Lq, H x dv) output = self.c_attn_proj(output) output = self.multihead_dropout(output) output = self.multihead_norm(self.multihead_add([output, residual])) return [output, attn] def get_config(self): config = { 'n_head': self.n_head, 'd_model': self.d_model, 'd_k': self.d_k, 'd_v': self.d_v, 'attention_dropout': self.attention_dropout, 'use_attn_mask': self.use_attn_mask, 'neg_inf': self.neg_inf, 'dropout': self.dropout, 'layer_norm_epsilon': self.layer_norm_epsilon } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): return cls(**config) class GeLU(layers.Layer): r"""Implementation of the gelu activation function as described in the paper `Gaussian Error Linear Units (GELUs)`_ . .. math:: 0.5 * x * (1 + tanh(\sqrt(2 / \pi) * (x + 0.044715 * pow(x, 3)))) Args: accurate: if ``False``, an approximate of this function is computed. Default: ``False``. Shape: - Input: :math:`(N, *)` - Output: :math:`(N, *)` (same shape as input) .. _`Gaussian Error Linear Units (GELUs)`: https://arxiv.org/abs/1606.08415 """ def __init__(self, accurate=False, **kwargs): super().__init__(**kwargs) self.accurate = accurate def call(self, x, **kwargs): if not self.accurate: ouput = 0.5 * x * ( 1.0 + K.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * K.pow(x, 3))) ) return ouput else: return x * 0.5 * (1.0 + tf.erf(x / math.sqrt(2.0))) def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = { 'accurate': self.accurate, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): return cls(**config) class PositionwiseFeedForward(layers.Layer): r"""Implements the position wise feed forward network. Args: d_in: dimension of the input data. d_hid: dimension of the intermediate dense layer. dropout: dropout rate to be applied on the results. Default: 0.1. d_out: dimension of the output data. if ``None``, it is set to d_in. layer_norm_epsilon: parameter of the layer normalization operation. Default: 1e-5 use_gelu: if ``True``, use the ``GeLU`` activation layer instead of the ``ReLU`` one. Default: ``False`` accurate_gelu: whether or not to use accurate (vs approximate) computation of the `GeLU`` operator. Default: ``False``. Shape: - Input: :math:`(N, L, d_in)` - Output: :math:`(N, L, d_out)` """ def __init__( self, d_in, d_hid, dropout=0.1, d_out=None, layer_norm_epsilon=1e-5, use_gelu=False, accurate_gelu=False, **kwargs): super(PositionwiseFeedForward, self).__init__(**kwargs) if d_out is None: d_out = d_in self.d_in = d_in self.d_out = d_out self.d_hid = d_hid self.dropout = dropout self.layer_norm_epsilon = layer_norm_epsilon self.use_gelu = use_gelu self.accurate_gelu = accurate_gelu self.conv1 = layers.Conv1D( self.d_hid, 1, input_shape=(None, self.d_in) ) self.conv2 = layers.Conv1D( self.d_out, 1, input_shape=(None, self.d_hid) ) if not self.use_gelu: self.activation = layers.ReLU() else: self.activation = GeLU(accurate=self.accurate_gelu) self.pff_dropout = layers.Dropout(self.dropout) self.pff_add = layers.Add() self.pff_norm = LayerNormalization(self.layer_norm_epsilon) def compute_output_shape(self, input_shape): shape = tf.TensorShape(input_shape).as_list() shape[-1] = self.d_out return tf.TensorShape(shape) def call(self, x): residual = x output = self.conv2(self.activation(self.conv1(x))) output = self.pff_dropout(output) if (self.d_out == self.d_in): output = self.pff_norm(self.pff_add([output, residual])) elif (self.d_out % self.d_in == 0): tmp = K.int_shape(residual) tmp1 = list(tmp) tmp1.append(self.d_out // self.d_in) new_o = K.reshape(output, tmp1) tmp2 = list(tmp) tmp2.append(1) new_r = K.reshape(residual, tmp2) output = self.pff_add([new_o, new_r]) tmp3 = list(tmp) tmp3[-1] = self.d_out output = K.reshape(output, tmp3) output = self.pff_norm(output) else: output = self.pff_norm(output) return output def get_config(self): config = { 'd_in': self.d_in, 'd_out': self.d_out, 'd_hid': self.d_hid, 'dropout': self.dropout, 'layer_norm_epsilon': self.layer_norm_epsilon, 'use_gelu': self.use_gelu, 'accurate_gelu': self.accurate_gelu, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): return cls(**config) class Pooler(layers.Layer): """ Implements the pooling operation of the transformer architecture. This is done by simply taking the hidden state corresponding to the first token on which some nonlinear transformations are performed. Args: d_hid: dimension of the input data. Shape: - Input: :math:`(N, L, d_hid)` - Output: :math:`(N, d_hid)` """ def __init__(self, d_hid, **kwargs): super(Pooler, self).__init__(**kwargs) self.d_hid = d_hid self.dense = layers.Dense( self.d_hid, input_shape=(self.d_hid, ) ) def compute_output_shape(self, input_shape): shape = tf.TensorShape(input_shape).as_list() shape[-2] = self.d_hid return tf.TensorShape(shape[:-1]) def call(self, x): first_token = x[:, 0] pooled_output = K.tanh(self.dense(first_token)) return pooled_output def get_config(self): config = { 'd_hid': self.d_hid, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): return cls(**config) class LMPredictionHeadTransform(layers.Layer): def __init__( self, d_hid, layer_norm_epsilon=1e-5, use_gelu=True, accurate_gelu=False, **kwargs): super(LMPredictionHeadTransform, self).__init__(**kwargs) self.d_hid = d_hid self.use_gelu = use_gelu self.accurate_gelu = accurate_gelu self.layer_norm_epsilon = layer_norm_epsilon self.layerNorm = LayerNormalization(self.layer_norm_epsilon) self.dense = layers.Dense( self.d_hid, input_shape=(self.d_hid, ) ) if not self.use_gelu: self.activation = layers.ReLU() else: self.activation = GeLU(accurate=self.accurate_gelu) def compute_output_shape(self, input_shape): shape = tf.TensorShape(input_shape).as_list() shape[-1] = self.d_hid return tf.TensorShape(shape) def call(self, x): return self.layerNorm(self.activation(self.dense(x))) def get_config(self): config = { 'd_hid': self.d_hid, 'use_gelu': self.use_gelu, 'accurate_gelu': self.accurate_gelu, 'layer_norm_epsilon': self.layer_norm_epsilon } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): return cls(**config) class LMPredictionHead(layers.Layer): """Implements a module for handling Masked Language Modeling task. """ def __init__( self, d_hid, vocab_size, embedding_weights, layer_norm_epsilon=1e-5, use_gelu=True, accurate_gelu=False, **kwargs): super(LMPredictionHead, self).__init__(**kwargs) self.d_hid = d_hid self.use_gelu = use_gelu self.accurate_gelu = accurate_gelu self.layer_norm_epsilon = layer_norm_epsilon self.vocab_size = vocab_size output_shape = [vocab_size] output_shape = tf.TensorShape(output_shape) self.output_bias = self.add_weight( name='output_bias', shape=output_shape, initializer=init.Zeros(), trainable=True ) self.transform = LMPredictionHeadTransform( d_hid, layer_norm_epsilon, use_gelu, accurate_gelu ) # self.decoder = layers.Dense( # self.vocab_size, use_bias=False # ) # self.decoder.build([None, d_hid]) # # self.decoder.set_weights([embedding_weights]) # self.decoder.kernel = embedding_weights self.decoder = embedding_weights def compute_output_shape(self, input_shape): shape = tf.TensorShape(input_shape).as_list() shape[-1] = self.vocab_size return tf.TensorShape(shape) def call(self, x): x = self.transform(x) # x = self.decoder(x) x = K.dot(x, K.transpose(self.decoder.embeddings)) x = x + self.output_bias return x def get_config(self): config = { 'd_hid': self.d_hid, 'use_gelu': self.use_gelu, 'accurate_gelu': self.accurate_gelu, 'layer_norm_epsilon': self.layer_norm_epsilon, 'vocab_size': self.vocab_size, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) class MaskedLM_NextSentenceHead(layers.Layer): """Implements a module for handling both Masked Language Modeling task and Next sentence prediction task. """ def __init__( self, d_hid, vocab_size, embedding_weights=None, layer_norm_epsilon=1e-5, use_gelu=True, accurate_gelu=False, use_masked_lm=True, use_next_sp=True, **kwargs): super(MaskedLM_NextSentenceHead, self).__init__(**kwargs) assert (use_next_sp or use_masked_lm) self.d_hid = d_hid self.use_gelu = use_gelu self.accurate_gelu = accurate_gelu self.layer_norm_epsilon = layer_norm_epsilon self.vocab_size = vocab_size self.use_masked_lm = use_masked_lm self.use_next_sp = use_next_sp if self.use_masked_lm: assert (embedding_weights is not None) self.predictions = LMPredictionHead( d_hid, vocab_size, embedding_weights, layer_norm_epsilon, use_gelu, accurate_gelu ) if self.use_next_sp: self.seq_relationship = layers.Dense(2, input_shape=(self.d_hid, )) def compute_output_shape(self, input_shape): if self.use_masked_lm and self.use_next_sp: shape1 = tf.TensorShape(input_shape[0]).as_list() shape2 = tf.TensorShape(input_shape[1]).as_list() shape1[-1] = self.vocab_size shape2[-1] = 2 return [tf.TensorShape(shape1), tf.TensorShape(shape2)] elif self.use_masked_lm: shape1 = tf.TensorShape(input_shape).as_list() shape1[-1] = self.vocab_size return tf.TensorShape(shape1) elif self.use_next_sp: shape1 = tf.TensorShape(input_shape).as_list() shape1[-1] = 2 return tf.TensorShape(shape1) raise ValueError('incompatible mode') def call(self, inputs): if self.use_masked_lm and self.use_next_sp: sequence_output, pooled_output = inputs elif self.use_masked_lm: sequence_output = inputs elif self.use_next_sp: pooled_output = inputs output = [] if self.use_masked_lm: a = self.predictions(sequence_output) output.append(a) if self.use_next_sp: b = self.seq_relationship(pooled_output) output.append(b) if len(output) == 1: output = output[0] return output def get_config(self): config = { 'd_hid': self.d_hid, 'use_gelu': self.use_gelu, 'accurate_gelu': self.accurate_gelu, 'layer_norm_epsilon': self.layer_norm_epsilon, 'vocab_size': self.vocab_size, 'use_next_sp': self.use_next_sp, 'use_masked_lm': self.use_masked_lm, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) class SequenceClassificationTask(layers.Layer): """Implements a module for handling sequence level classification task. """ def __init__( self, d_hid, num_labels, dropout=0.1, **kwargs): super(SequenceClassificationTask, self).__init__(**kwargs) self.d_hid = d_hid self.num_labels = num_labels self.dropout = dropout self.seq_class_dropout = layers.Dropout(self.dropout) self.classifier = layers.Dense( self.num_labels, input_shape=(self.d_hid, ) ) def compute_output_shape(self, input_shape): shape = tf.TensorShape(input_shape).as_list() shape[-1] = self.num_labels return tf.TensorShape(shape) def call(self, pooled): x = self.seq_class_dropout(pooled) x = self.classifier(x) return x def get_config(self): config = { 'd_hid': self.d_hid, 'num_labels': self.num_labels, 'dropout': self.dropout, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): return cls(**config) class MultipleChoiceTask(layers.Layer): """Implements a module for handling multiple choice task. """ def __init__( self, d_hid, num_choices, dropout=0.1, **kwargs): super(MultipleChoiceTask, self).__init__(**kwargs) self.d_hid = d_hid self.dropout = dropout self.num_choices = num_choices self.mod_dropout = layers.Dropout(self.dropout) self.classifier = layers.Dense( 1, input_shape=(self.d_hid, ) ) def compute_output_shape(self, input_shape): shape = tf.TensorShape(input_shape).as_list() shape[-1] = self.num_labels return tf.TensorShape(shape) def call(self, pooled): x = self.mod_dropout(pooled) x = self.classifier(x) x = K.reshape(x, [-1, self.num_choices]) return x def get_config(self): config = { 'd_hid': self.d_hid, 'dropout': self.dropout, 'num_choices': self.num_choices } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): return cls(**config) class TokenClassificationTask(layers.Layer): """Implements a module for handling token level classification task. """ def __init__( self, d_hid, num_labels, dropout=0.1, **kwargs): super(TokenClassificationTask, self).__init__(**kwargs) self.d_hid = d_hid self.num_labels = num_labels self.dropout = dropout self.mod_dropout = layers.Dropout(self.dropout) self.classifier = layers.Dense( self.num_labels, input_shape=(self.d_hid, ) ) def compute_output_shape(self, input_shape): shape = tf.TensorShape(input_shape).as_list() shape[-1] = self.num_labels return tf.TensorShape(shape) def call(self, x): x = self.mod_dropout(x) x = self.classifier(x) return x def get_config(self): config = { 'd_hid': self.d_hid, 'num_labels': self.num_labels, 'dropout': self.dropout, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): return cls(**config) class QuestionAnsweringTask(layers.Layer): """Implements a module for handling token level classification task. """ def __init__( self, d_hid, dropout=0.1, **kwargs): super(QuestionAnsweringTask, self).__init__(**kwargs) self.d_hid = d_hid self.dropout = dropout self.mod_dropout = layers.Dropout(self.dropout) self.qa_outputs = layers.Dense( 2, input_shape=(self.d_hid, ) ) def compute_output_shape(self, input_shape): shape = tf.TensorShape(input_shape).as_list() return [tf.TensorShape(shape[:-1]), tf.TensorShape(shape[:-1])] def call(self, x): x = self.mod_dropout(x) x = self.qa_outputs(x) start_logits = x[:, :, 0] end_logits = x[:, :, 1] return [start_logits, end_logits] def get_config(self): config = { 'd_hid': self.d_hid, 'dropout': self.dropout, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): return cls(**config) class EncoderLayer(layers.Layer): r"""Implements an encoder layer of the transformer architecture. Args: d_model: dimension of the input data. d_inner: dimension of the intermediate hidden layer. n_head: number of heads. d_k: dimension of the keys and the queries. d_v: dimension of the values. d_out: dimension of the output data. if ``None``, it is set to d_model. residual_dropout: dropout rate to be applied on each residual operation results. Default: 0.1. attention_dropout: dropout rate to be applied on each attention mechanism results. Default: 0.1. use_pad_mask: whether or not the layer expects to use pad mask in the computation. Default: ``False``. use_attn_mask: whether or not the layer expects to use attention mask in the computation. Default: ``True``. neg_inf: constant representing the negative infinite value. Default: ``-np.inf``. ln_epsilon: parameter of the layer normalization operation. Default: 1e-5 use_gelu: if ``True``, use the ``GeLU`` activation layer instead of the ``ReLU`` one. Default: ``True`` accurate_gelu: whether or not to use accurate (vs approximate) computation of the `GeLU`` operator. Default: ``False``. Inputs: ``seq``: the input sequence of dimension :math:`(N, L, d_model)` ``attn_mask`` (only if use_attn_mask is True): the attn_mask of dimension :math:`(N, 1, L, L)`. ``pad_mask`` (only if use_pad_mask is True): the pad_mask of dimension :math:`(N, L, 1)`. Outputs: ``result``: the result of the operation :math:`(N, L, d_out)` ``attention_weight``: the attention values :math:`(N, n_head, L, L)` """ def __init__( self, d_model, d_inner, n_head, d_k, d_v, d_out=None, residual_dropout=0.1, attention_dropout=0.1, use_pad_mask=False, use_attn_mask=True, neg_inf=-np.inf, ln_epsilon=1e-5, use_gelu=True, accurate_gelu=False, **kwargs): super(EncoderLayer, self).__init__(**kwargs) if d_out is None: d_out = d_model self.d_model = d_model self.d_inner = d_inner self.n_head = n_head self.d_k = d_k self.d_v = d_v self.d_out = d_out self.residual_dropout = residual_dropout self.attention_dropout = attention_dropout self.use_attn_mask = use_attn_mask self.use_pad_mask = use_pad_mask self.neg_inf = neg_inf self.ln_epsilon = ln_epsilon self.use_gelu = use_gelu self.accurate_gelu = accurate_gelu self.slf_attn = MultiHeadAttention( n_head, d_model, d_k, d_v, attention_dropout=attention_dropout, dropout=residual_dropout, use_attn_mask=use_attn_mask, layer_norm_epsilon=ln_epsilon, neg_inf=neg_inf ) self.pos_ffn = PositionwiseFeedForward( d_model, d_inner, dropout=residual_dropout, d_out=d_out, layer_norm_epsilon=ln_epsilon, use_gelu=use_gelu, accurate_gelu=accurate_gelu ) def compute_output_shape(self, input_shape): if self.use_attn_mask or self.use_pad_mask: shape = tf.TensorShape(input_shape[0]).as_list() else: shape = tf.TensorShape(input_shape).as_list() shape[-1] = self.d_out shape2 = [shape[0], self.n_head, shape[1], shape[1]] return [tf.TensorShape(shape), tf.TensorShape(shape2)] def call(self, inputs): if self.use_attn_mask and self.use_pad_mask: x, attn_mask, pad_mask = inputs elif self.use_attn_mask: x, attn_mask = inputs pad_mask = None elif self.use_pad_mask: x, pad_mask = inputs attn_mask = None else: x = inputs attn_mask = None pad_mask = None args = [x] if self.use_attn_mask: args.append(attn_mask) if len(args) == 1: args = args[0] output, attn = self.slf_attn(args) if self.use_pad_mask: output = pad_mask * output output = self.pos_ffn(output) if self.use_pad_mask: output = pad_mask * output return [output, attn] def get_config(self): config = { 'd_model': self.d_model, 'd_inner': self.d_inner, 'n_head': self.n_head, 'd_k': self.d_k, 'd_v': self.d_v, 'd_out': self.d_out, 'residual_dropout': self.residual_dropout, 'attention_dropout': self.attention_dropout, 'use_attn_mask': self.use_attn_mask, 'use_pad_mask': self.use_pad_mask, 'neg_inf': self.neg_inf, 'ln_epsilon': self.ln_epsilon, 'use_gelu': self.use_gelu, 'accurate_gelu': self.accurate_gelu, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): return cls(**config) class DecoderLayer(layers.Layer): r"""Implements a decoder layer of the transformer architecture. Args: d_model: dimension of the input data. d_inner: dimension of the intermediate hidden layer. n_head: number of heads. d_k: dimension of the keys and the queries. d_v: dimension of the values. d_out: dimension of the output data. if ``None``, it is set to d_model. residual_dropout: dropout rate to be applied on each residual operation results. Default: 0.1. attention_dropout: dropout rate to be applied on each attention mechanism results. Default: 0.1. use_pad_mask: whether or not the layer expects to use pad mask in the computation. Default: ``False``. use_attn_mask: whether or not the layer expects to use attention mask in the computation. Default: ``True``. use_enc_output: whether or not the layer expects to use ouputs from the encoder in the computation. Default: ``True``. use_enc_mask: whether or not the layer expects to use the masks from the encoder in the computation. Default: ``False``. neg_inf: constant representing the negative infinite value. Default: ``-np.inf``. ln_epsilon: parameter of the layer normalization operation. Default: 1e-5 use_gelu: if ``True``, use the ``GeLU`` activation layer instead of the ``ReLU`` one. Default: ``True`` accurate_gelu: whether or not to use accurate (vs approximate) computation of the `GeLU`` operator. Default: ``False``. Inputs: ``seq``: the input sequence of dimension :math:`(N, L, d_model)` ``enc_ouputs``(only if use_enc_output is True): the output of the encoder :math:`(N, Le, d_model)` ``attn_mask`` (only if use_attn_mask is True): the attn_mask of dimension :math:`(N, 1, L, L)`. ``pad_mask`` (only if use_pad_mask is True): the pad_mask of dimension :math:`(N, L, 1)`. ``enc_mask`` (only if use_enc_mask is True): the enc_mask of dimension :math:`(N, 1, Le, Le)`. Outputs: ``result``: the result of the operation :math:`(N, L, d_out)` ``attention_weight``: the attention values :math:`(N, n_head, L, L)` ``enc_attention_weight`` (only if use_enc_output is True): the attention values on encoder outputs :math:`(N, n_head, L, Le)` """ def __init__( self, d_model, d_inner, n_head, d_k, d_v, d_out=None, residual_dropout=0.1, attention_dropout=0.1, use_pad_mask=False, use_attn_mask=True, use_enc_output=True, use_enc_mask=False, neg_inf=-np.inf, ln_epsilon=1e-5, use_gelu=True, accurate_gelu=False, **kwargs): super(DecoderLayer, self).__init__(**kwargs) if d_out is None: d_out = d_model if not use_enc_output: use_enc_mask = False self.d_model = d_model self.d_inner = d_inner self.n_head = n_head self.d_k = d_k self.d_v = d_v self.d_out = d_out self.residual_dropout = residual_dropout self.attention_dropout = attention_dropout self.use_attn_mask = use_attn_mask self.use_pad_mask = use_pad_mask self.use_enc_mask = use_enc_mask self.use_enc_output = use_enc_output self.neg_inf = neg_inf self.ln_epsilon = ln_epsilon self.use_gelu = use_gelu self.accurate_gelu = accurate_gelu self.slf_attn = MultiHeadAttention( n_head, d_model, d_k, d_v, attention_dropout=attention_dropout, dropout=residual_dropout, use_attn_mask=use_attn_mask, layer_norm_epsilon=ln_epsilon, neg_inf=neg_inf ) if self.use_enc_output: self.enc_attn = MultiHeadAttention( n_head, d_model, d_k, d_v, attention_dropout=attention_dropout, dropout=residual_dropout, use_attn_mask=use_enc_mask, layer_norm_epsilon=ln_epsilon, neg_inf=neg_inf ) else: self.enc_attn = None self.pos_ffn = PositionwiseFeedForward( d_model, d_inner, dropout=residual_dropout, d_out=d_out, layer_norm_epsilon=ln_epsilon, use_gelu=use_gelu, accurate_gelu=accurate_gelu ) def compute_output_shape(self, input_shape): if self.use_enc_output: shape = tf.TensorShape(input_shape[0]).as_list() else: shape = tf.TensorShape(input_shape).as_list() shape = tf.TensorShape(input_shape[0]).as_list() shape[-1] = self.d_out shape2 = [shape[0], self.n_head, shape[1], shape[1]] output_shape = [tf.TensorShape(shape), tf.TensorShape(shape2)] if self.use_enc_output: output_shape.append(tf.TensorShape(shape2)) return output_shape def call(self, inputs): if self.use_attn_mask and self.use_pad_mask and self.use_enc_mask: x, enc, attn_mask, pad_mask, enc_mask = inputs elif self.use_attn_mask and self.use_pad_mask: if self.use_enc_output: x, enc, attn_mask, pad_mask = inputs enc_mask = None else: x, attn_mask, pad_mask = inputs enc = None enc_mask = None elif self.use_attn_mask and self.use_enc_mask: x, enc, attn_mask, enc_mask = inputs pad_mask = None elif self.use_pad_mask and self.use_enc_mask: x, enc, pad_mask, enc_mask = inputs attn_mask = None elif self.use_attn_mask: if self.use_enc_output: x, enc, attn_mask = inputs pad_mask = None enc_mask = None else: x, attn_mask = inputs pad_mask = None enc_mask = None enc = None elif self.use_pad_mask: if self.use_enc_output: x, enc, pad_mask = inputs attn_mask = None enc_mask = None else: x, pad_mask = inputs attn_mask = None enc_mask = None enc = None elif self.use_enc_mask: x, enc, enc_mask = inputs attn_mask = None pad_mask = None else: if self.use_enc_output: x, enc = inputs else: x = inputs enc_mask = None attn_mask = None pad_mask = None args = [x] if self.use_attn_mask: args.append(attn_mask) if len(args) == 1: args = args[0] output, attn = self.slf_attn(args) if self.use_pad_mask: output = pad_mask * output if self.use_enc_output: args = [output] if self.use_enc_mask: args.append(enc_mask) if len(args) == 1: args = args[0] output, dec_attn = self.enc_attn(args) if self.use_pad_mask: output = pad_mask * output else: dec_attn = None output = self.pos_ffn(output) if self.use_pad_mask: output = pad_mask * output return [output, attn] if dec_attn is None else [output, attn, dec_attn] def get_config(self): config = { 'd_model': self.d_model, 'd_inner': self.d_inner, 'n_head': self.n_head, 'd_k': self.d_k, 'd_v': self.d_v, 'd_out': self.d_out, 'residual_dropout': self.residual_dropout, 'attention_dropout': self.attention_dropout, 'use_attn_mask': self.use_attn_mask, 'use_pad_mask': self.use_pad_mask, 'use_enc_mask': self.use_enc_mask, 'use_enc_output': self.use_enc_output, 'neg_inf': self.neg_inf, 'ln_epsilon': self.ln_epsilon, 'use_gelu': self.use_gelu, 'accurate_gelu': self.accurate_gelu, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): return cls(**config) class TransformerEncoder(models.Model): r"""Implements an encoder layer of the transformer architecture. Args: vocab_size: size of the vocalbulary. Default: 30000. n_layers: number of layers. Default: 12. d_model: dimension of the embeddings. Default: 768. d_inner: dimension of the intermediate hidden layer. Default: 3072. n_head: number of heads. Default: 12. d_k: dimension of the keys and the queries. Default: 64. d_v: dimension of the values. Default: 64. d_out: dimension of the output data. if ``None``, it is set to d_model. Default: 768. max_len: maximum length of the input sequence. Default: 512. num_segments: number of segments. if None or set to zero, then the segment embeddings won't be performed. Default: 2. embedding_dropout: dropout rate to be applied on embedding results. Default: 0.1. attention_dropout: dropout rate to be applied on each attention mechanism results. Default: 0.1. residual_dropout: dropout rate to be applied on each residual operation results. Default: 0.1. embedding_layer_norm: if ``True``, layer normalization will be applied on the resulting embeddings. Default: ``False``. layer_norm_epsilon: parameter of the layer normalization operation. Default: 1e-5 neg_inf: constant representing the negative infinite value. Default: ``-1e9``. trainable_pos_embedding: whether or not to train the positional embeddings. Default: ``True``. use_one_embedding_dropout: if ``True``, the different embeddings will be summed up before applying dropout, otherwise dropout will be applied to each embedding type independently before summing them. Default: ``False``. use_attn_mask: whether or not the layer expects to use attention mask in the computation. Default: ``True``. use_pad_mask: whether or not the layer expects to use pad mask in the computation Default: ``False``. use_gelu: if ``True``, use the ``GeLU`` activation layer instead of the ``ReLU`` one. Default: ``True`` accurate_gelu: whether or not to use accurate (vs approximate) computation of the `GeLU`` operator. Default: ``False``. use_pooler: whether or not to compute the pooled representation of the input sequnces. Default: ``False``. use_masked_lm: whether or not to compute the masked language modeling outputs. Default: ``False``. use_next_sp: whether or not to compute the outputs of the next sentence prediction task. Default: ``False``. do_seq_class_task: whether or not to perform sequence level classifcation task. Default: ``False``. do_mult_choice_task: whether or not to perform multiple choice classifcation task. Default: ``False``. do_tok_class_task: whether or not to perform token level classifcation task. Default: ``False``. do_qa_task: whether or not to perform Question Answering prediction task. Default: ``False``. seq_class_num_labels: number of labels for the sequence level classifcation task. Default: 2. task_num_choices: number of choices for the multiple choice classifcation task. Default: 2. tok_class_num_labels: number of labels for the token level classifcation task. Default: 2. task_dropout: dropout rate to be applied on various tasks. Default: 0.1. Inputs: ``seq``: the input sequence of dimension :math:`(N, L)` `token_type_ids` (only if num_segments > 0): types of the tokens of dimension `(N, L)` with values in range [0, num_segments[. E.g., for num_segments = 2, Type 0 corresponds to a `sentence A` and type 1 corresponds to a `sentence B` token (see BERT paper for more details). ``pos_tokens``: the position tokens over the input sequence of dimension :math:`(N, L)` ``attn_mask`` (only if use_attn_mask is True): the attn_mask of dimension :math:`(N, 1, L, L)`. ``pad_mask`` (only if use_pad_mask is True): the pad_mask of dimension :math:`(N, L, 1)`. Outputs: ``result``: the result of the operation of dimension :math:`(N, L, d_out)` ``pooled``(only if use_pooler is True): the result of the pooler operation of dimension :math:`(N, d_out)` ``lm_seq``(only if use_masked_lm is True): the result of the masked LM task of dimension :math:`(N, L, vocab_size)` ``next_sp_tgt``(only if use_next_sp is True): the result of the next sentence prediction task of dimension :math:`(N, 2)` ``seq_out``(only if do_seq_class_task is True): the result of the sentence classification task of dimension :math:`(N, seq_class_num_labels)` ``mult_out``(only if do_mult_choice_task is True): the result of the multiple choice task of dimension :math:`(N//task_num_choices, task_num_choices)` ``tok_out``(only if do_tok_class_task is True): the result of the token classification task of dimension :math:`(N, L, tok_class_num_labels)` ``qa_out_start``(only if do_qa_task is True): the result of the QA prediction task of dimension :math:`(N, L)` ``qa_out_end``(only if do_qa_task is True): the result of the QA prediction task of dimension :math:`(N, L)` """ def __init__( self, vocab_size=30000, n_layers=12, d_model=768, d_inner=768 * 4, n_head=12, d_k=64, d_v=64, d_out=768, max_len=512, num_segments=2, embedding_dropout=0.1, attention_dropout=0.1, residual_dropout=0.1, embedding_layer_norm=False, layer_norm_epsilon=1e-5, neg_inf=-1e9, trainable_pos_embedding=True, use_one_embedding_dropout=False, use_attn_mask=True, use_pad_mask=False, use_gelu=True, accurate_gelu=False, use_pooler=False, use_masked_lm=False, use_next_sp=False, do_seq_class_task=False, do_mult_choice_task=False, do_tok_class_task=False, do_qa_task=False, seq_class_num_labels=2, task_num_choices=2, tok_class_num_labels=2, task_dropout=0.1, **kwargs): super(TransformerEncoder, self).__init__() if d_out is None: d_out = d_model if not use_pooler: use_next_sp = False if do_seq_class_task or do_mult_choice_task: assert use_pooler self.vocab_size = vocab_size self.n_layers = n_layers self.d_model = d_model self.d_inner = d_inner self.n_head = n_head self.d_k = d_k self.d_v = d_v self.d_out = d_out self.max_len = max_len self.num_segments = num_segments self.embedding_dropout = embedding_dropout self.attention_dropout = attention_dropout self.residual_dropout = residual_dropout self.embedding_layer_norm = embedding_layer_norm self.layer_norm_epsilon = layer_norm_epsilon self.neg_inf = neg_inf self.trainable_pos_embedding = trainable_pos_embedding self.use_one_embedding_dropout = use_one_embedding_dropout self.use_attn_mask = use_attn_mask self.use_pad_mask = use_pad_mask self.use_gelu = use_gelu self.accurate_gelu = accurate_gelu self.use_pooler = use_pooler self.use_masked_lm = use_masked_lm self.use_next_sp = use_next_sp self.do_seq_class_task = do_seq_class_task self.do_mult_choice_task = do_mult_choice_task self.do_tok_class_task = do_tok_class_task self.do_qa_task = do_qa_task self.seq_class_num_labels = seq_class_num_labels self.task_num_choices = task_num_choices self.tok_class_num_labels = tok_class_num_labels self.task_dropout = task_dropout self.embed_layer = Embedding( output_dim=d_model, dropout=embedding_dropout, vocab_size=vocab_size, max_len=max_len, trainable_pos_embedding=trainable_pos_embedding, num_segments=num_segments, use_one_dropout=use_one_embedding_dropout, use_embedding_layer_norm=embedding_layer_norm, layer_norm_epsilon=layer_norm_epsilon ) self.enc_layers = [] for i in range(n_layers): self.enc_layers.append( EncoderLayer( d_model=d_model, d_inner=d_inner, n_head=n_head, d_k=d_k, d_v=d_v, d_out=d_out, residual_dropout=residual_dropout, attention_dropout=attention_dropout, use_pad_mask=use_pad_mask, use_attn_mask=use_attn_mask, neg_inf=neg_inf, ln_epsilon=layer_norm_epsilon, use_gelu=use_gelu, accurate_gelu=accurate_gelu, name='enc_layer_{}'.format(i) ) ) if self.use_pooler: self.pooler = Pooler(self.d_out) if self.use_masked_lm or self.use_next_sp: emb_p = None if self.use_masked_lm: # self.embed_layer.token_emb.build((None, None)) # emb_p = K.transpose(self.embed_layer.token_emb.embeddings) emb_p = self.embed_layer.token_emb self.task_cls = MaskedLM_NextSentenceHead( self.d_out, self.vocab_size, embedding_weights=emb_p, layer_norm_epsilon=layer_norm_epsilon, use_gelu=use_gelu, accurate_gelu=accurate_gelu, use_masked_lm=self.use_masked_lm, use_next_sp=self.use_next_sp ) if do_seq_class_task: self.seq_class_task = SequenceClassificationTask( self.d_out, seq_class_num_labels, task_dropout ) if do_mult_choice_task: self.mult_choice_task = MultipleChoiceTask( self.d_out, task_num_choices, task_dropout ) if do_tok_class_task: self.tok_class_task = TokenClassificationTask( self.d_out, tok_class_num_labels, task_dropout ) if do_qa_task: self.qa_task = QuestionAnsweringTask( self.d_out, task_dropout ) def compute_output_shape(self, input_shape): shape = tf.TensorShape(input_shape[0]).as_list() shape.append(self.d_out) ret = [] if not self.use_pooler: if not self.use_masked_lm: ret = [tf.TensorShape(shape)] else: shape3 = [shape[0], shape[1], self.vocab_size] ret = [tf.TensorShape(shape), tf.TensorShape(shape3)] else: shape2 = [shape[0], shape[2]] if not self.use_masked_lm and not self.use_next_sp: ret = [tf.TensorShape(shape), tf.TensorShape(shape2)] elif not self.use_masked_lm: shape3 = [shape[0], 2] ret = [ tf.TensorShape(shape), tf.TensorShape(shape2), tf.TensorShape(shape3) ] elif not self.use_next_sp: shape3 = [shape[0], shape[1], self.vocab_size] ret = [ tf.TensorShape(shape), tf.TensorShape(shape2), tf.TensorShape(shape3) ] else: shape3 = [shape[0], shape[1], self.vocab_size] shape4 = [shape[0], 2] ret = [ tf.TensorShape(shape), tf.TensorShape(shape2), tf.TensorShape(shape3), tf.TensorShape(shape4) ] if self.do_seq_class_task: shape_seq = [shape[0], self.seq_class_num_labels] ret.append(tf.TensorShape(shape_seq)) if self.do_mult_choice_task: shape_mult = [-1, self.task_num_choices] ret.append(tf.TensorShape(shape_mult)) if self.do_tok_class_task: shape_tok = [shape[0], shape[1], self.tok_class_num_labels] ret.append(tf.TensorShape(shape_tok)) if self.do_qa_task: shape_qa = [shape[0], shape[1]] ret.append(tf.TensorShape(shape_qa)) if len(ret) == 1: ret = ret[0] return ret def call(self, inputs): if self.num_segments is None or (self.num_segments == 0): segment_ids = None if not self.use_attn_mask and not self.use_pad_mask: tokens, pos_ids = inputs attn_mask = None pad_mask = None elif not self.use_pad_mask: tokens, pos_ids, attn_mask = inputs pad_mask = None elif not self.use_attn_mask: tokens, pos_ids, pad_mask = inputs attn_mask = None else: tokens, pos_ids, attn_mask, pad_mask = inputs else: if not self.use_attn_mask and not self.use_pad_mask: tokens, segment_ids, pos_ids = inputs attn_mask = None pad_mask = None elif not self.use_pad_mask: tokens, segment_ids, pos_ids, attn_mask = inputs pad_mask = None elif not self.use_attn_mask: tokens, segment_ids, pos_ids, pad_mask = inputs attn_mask = None else: tokens, segment_ids, pos_ids, attn_mask, pad_mask = inputs args = [tokens, pos_ids] if segment_ids is None else [ tokens, segment_ids, pos_ids ] if len(args) == 1: args = args[0] x = self.embed_layer(args) for i in range(len(self.enc_layers)): args = [x] if self.use_attn_mask: args.append(attn_mask) if self.use_pad_mask: args.append(pad_mask) if len(args) == 1: args = args[0] x, _ = self.enc_layers[i](args) ret = [] if not self.use_pooler: if not self.use_masked_lm: ret = [x] else: lm_seq = self.task_cls(x) ret = [x, lm_seq] else: pooled = self.pooler(x) if not self.use_masked_lm and not self.use_next_sp: ret = [x, pooled] elif not self.use_masked_lm: next_sp_tgt = self.task_cls(pooled) ret = [x, pooled, next_sp_tgt] elif not self.use_next_sp: lm_seq = self.task_cls(x) ret = [x, pooled, lm_seq] else: lm_seq, next_sp_tgt = self.task_cls([x, pooled]) ret = [x, pooled, lm_seq, next_sp_tgt] if self.do_seq_class_task: seq_out = self.seq_class_task(pooled) ret.append(seq_out) if self.do_mult_choice_task: mult_out = self.mult_choice_task(pooled) ret.append(mult_out) if self.do_tok_class_task: tok_out = self.tok_class_task(x) ret.append(tok_out) if self.do_qa_task: qa_out = self.qa_task(x) ret.extend(qa_out) if len(ret) == 1: ret = ret[0] return ret def get_config(self): config = { 'vocab_size': self.vocab_size, 'n_layers': self.n_layers, 'd_model': self.d_model, 'd_inner': self.d_inner, 'n_head': self.n_head, 'd_k': self.d_k, 'd_v': self.d_v, 'd_out': self.d_out, 'max_len': self.max_len, 'num_segments': self.num_segments, 'embedding_dropout': self.embedding_dropout, 'attention_dropout': self.attention_dropout, 'residual_dropout': self.residual_dropout, 'embedding_layer_norm': self.embedding_layer_norm, 'layer_norm_epsilon': self.layer_norm_epsilon, 'neg_inf': self.neg_inf, 'trainable_pos_embedding': self.trainable_pos_embedding, 'use_one_embedding_dropout': self.use_one_embedding_dropout, 'use_attn_mask': self.use_attn_mask, 'use_pad_mask': self.use_pad_mask, 'use_gelu': self.use_gelu, 'accurate_gelu': self.accurate_gelu, 'use_pooler': self.use_pooler, 'use_masked_lm': self.use_masked_lm, 'use_next_sp': self.use_next_sp, 'do_seq_class_task': self.do_seq_class_task, 'do_mult_choice_task': self.do_mult_choice_task, 'do_tok_class_task': self.do_tok_class_task, 'do_qa_task': self.do_qa_task, 'seq_class_num_labels': self.seq_class_num_labels, 'task_num_choices': self.task_num_choices, 'tok_class_num_labels': self.tok_class_num_labels, 'task_dropout': self.task_dropout, } base_config = {} # super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): return cls(**config) if __name__ == '__main__': tf.enable_eager_execution() print("TensorFlow version: {}".format(tf.__version__)) print("Eager execution: {}".format(tf.executing_eagerly())) params = { 'vocab_size': 20, 'n_layers': 3, 'd_model': 15, 'd_inner': 50, 'n_head': 5, 'd_k': 15, 'd_v': 15, 'd_out': 15, 'max_len': 10, 'num_segments': 0, 'embedding_dropout': 0.1, 'attention_dropout': 0.1, 'residual_dropout': 0.1, 'embedding_layer_norm': False, 'layer_norm_epsilon': 1e-5, 'neg_inf': -1e9, 'trainable_pos_embedding': True, 'use_one_embedding_dropout': True, 'use_attn_mask': False, 'use_pad_mask': False, 'use_gelu': False, 'accurate_gelu': False, 'use_pooler': True, 'use_masked_lm': True, 'use_next_sp': True, 'do_seq_class_task': True, 'do_mult_choice_task': True, 'do_tok_class_task': True, 'do_qa_task': True, 'seq_class_num_labels': 3, 'task_num_choices': 2, # bath_size must be a multiple of this params 'tok_class_num_labels': 5, 'task_dropout': 0.1, } model = TransformerEncoder(**params) tokens = tf.Variable([[1, 5, 4, 3, 2, 10, 15], [1, 5, 8, 3, 9, 10, 15]]) pos_ids = tf.Variable([[0, 1, 2, 3, 4, 5, 6], [0, 1, 2, 3, 4, 5, 6]]) outputs = model([tokens, pos_ids]) if isinstance(outputs, (list, tuple)): out = ['Output_{}: {}'.format(i, v.shape) for i, v in enumerate(outputs)] print(' '.join(out)) else: print('Output: ', outputs.shape) tokens = tf.Variable([[1, 5, 4, 3, 2, 10, 15, 18], [1, 5, 16, 3, 2, 14, 15, 18]]) pos_ids = tf.Variable([[0, 1, 2, 3, 4, 5, 6, 7], [0, 1, 2, 3, 4, 5, 6, 7]]) outputs = model([tokens, pos_ids]) if isinstance(outputs, (list, tuple)): out = ['Output2_{}: {}'.format(i, v.shape) for i, v in enumerate(outputs)] print(' '.join(out)) else: print('Output2: ', outputs.shape) print('done!') ``` #### File: jag/unit_tests/data_fetcher_test.py ```python from jag.utils import data_fetcher def test_mrqa_text_fetcher(): data_fetcher.get_file(data_src='./jag/data/mrqa_urls_sample.txt', cache_dir='./unit_tests/data') ```
{ "source": "jerpint/voicemd", "score": 2 }
#### File: voicemd/voicemd/eval.py ```python import logging import os import mlflow import orion import yaml import time import torch import tqdm import numpy as np from sklearn.metrics import confusion_matrix from mlflow import log_metric from orion.client import report_results from yaml import dump from yaml import load def get_batch_performance_metrics(outputs, model_target): probs = torch.softmax(outputs, 1).detach().numpy() > 0.5 preds = np.argmax(probs, 1) targs = model_target.detach().numpy() acc = np.sum(np.equal(preds, targs)) / len(preds) conf_mat = confusion_matrix(targs, preds, labels=[0, 1]) return acc, conf_mat def performance_metrics_per_patient(patient_predictions): patient_targs = [] patient_preds = [] for patient_pred in patient_predictions: patient_targs.append(patient_pred["gender"]) patient_preds.append(patient_pred["gender_prediction"]) conf_mat = confusion_matrix(patient_targs, patient_preds, labels=[0, 1]) return conf_mat def evaluate_loaders(loaders, model, loss_fun, device, pb): model.eval() cumulative_loss = 0.0 cumulative_acc = 0.0 cumulative_conf_mat = np.zeros((2, 2)) patient_predictions = [] for loader in pb(loaders, total=len(loaders)): loader_results = evaluate_loader(loader, model, device, loss_fun) cumulative_acc += loader_results["avg_acc"] cumulative_loss += loader_results["avg_loss"] cumulative_conf_mat += loader_results["conf_mat"] patient_predictions.append(loader_results) avg_loss = cumulative_loss / len(loaders) avg_acc = cumulative_acc / len(loaders) per_patient_conf_mat = performance_metrics_per_patient(patient_predictions) loaders_results = { "avg_loss": avg_loss, "avg_acc": avg_acc, "conf_mat_patients": per_patient_conf_mat, "patient_predictions": patient_predictions, "conf_mat_spectrums": cumulative_conf_mat, } return loaders_results def evaluate_loader(loader, model, device, loss_fun): steps = len(loader) cumulative_loss = 0.0 cumulative_acc = 0.0 cumulative_conf_mat = np.zeros((2, 2)) examples = 0 all_probs = [] for data in loader: model_input, model_target = data with torch.no_grad(): outputs = model(model_input.to(device)) model_target = model_target.type(torch.long) model_target = model_target.to(device) loss = loss_fun(outputs, model_target) cumulative_loss += loss.item() probs = torch.nn.functional.softmax(outputs, dim=1) all_probs.extend(probs.detach().numpy()) acc, conf_mat = get_batch_performance_metrics(outputs, model_target) cumulative_acc += acc cumulative_conf_mat += conf_mat examples += model_target.shape[0] all_probs = np.array(all_probs) avg_prob = np.sum(all_probs, 0) / len(all_probs) avg_loss = cumulative_loss / examples avg_acc = cumulative_acc / steps gender = int(model_target[0]) final_gender_prediction = np.argmax(avg_prob) gender_confidence = avg_prob[final_gender_prediction] patient_uid = loader.dataset.metadata.index[0] loader_results = { "uid": patient_uid, "gender": gender, "gender_prediction": final_gender_prediction, "gender_confidence": gender_confidence, "avg_loss": avg_loss, "avg_acc": avg_acc, "conf_mat": cumulative_conf_mat, } return loader_results ``` #### File: voicemd/models/long_filter_cnn.py ```python import logging import torch import torch.nn as nn import torch.nn.functional as F # from voicemd.utils.hp_utils import check_and_log_hp logger = logging.getLogger(__name__) class LongFilterCNN(nn.Module): def __init__(self, hyper_params): super(LongFilterCNN, self).__init__() self.hyper_params = hyper_params self.conv2d = nn.Sequential( nn.Conv2d(1, 64, (80, 3), 1), nn.ReLU(), ) self.conv1d = nn.Sequential( nn.Conv1d(64, 64, 3, 1), nn.Conv1d(64, 32, 3, 1), nn.ReLU(), nn.MaxPool1d(2), nn.Conv1d(32, 32, 3, 1), nn.Conv1d(32, 32, 3, 1), nn.ReLU(), nn.MaxPool1d(2), ) self.classifier = nn.Sequential( nn.Linear(1920, 256), nn.ReLU(), nn.Linear(256, 128), nn.ReLU(), nn.Linear(128, 2), ) def forward(self, x): x = self.conv2d(x) x = torch.squeeze(x, dim=2) x = self.conv1d(x) x = torch.flatten(x, 1) output = self.classifier(x) return output ``` #### File: voicemd/models/model_loader.py ```python import logging import torch from torch import optim from voicemd.models.my_model import MyModel from voicemd.models.densenet import densenet121, densenet_small from voicemd.models.simple_cnn import SimpleCNN from voicemd.models.long_filter_cnn import LongFilterCNN logger = logging.getLogger(__name__) def load_model(hyper_params): architecture = hyper_params['architecture'] # __TODO__ fix architecture list if architecture == 'my_model': model_class = MyModel elif architecture == 'densenet121': model_class = densenet121 elif architecture == 'densenet_small': model_class = densenet_small elif architecture == 'simplecnn': model_class = SimpleCNN elif architecture == 'longfilter': model_class = LongFilterCNN else: raise ValueError('architecture {} not supported'.format(architecture)) logger.info('selected architecture: {}'.format(architecture)) model = model_class(hyper_params) logger.info(model) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') logger.info('using device {}'.format(device)) if torch.cuda.is_available(): logger.info(torch.cuda.get_device_name(0)) return model def load_optimizer(hyper_params, model): optimizer_name = hyper_params['optimizer'] lr = hyper_params['learning_rate'] # __TODO__ fix optimizer list if optimizer_name == 'adam': optimizer = optim.Adam(model.parameters(), lr=lr) elif optimizer_name == 'sgd': optimizer = optim.SGD(model.parameters(), lr=lr) else: raise ValueError('optimizer {} not supported'.format(optimizer_name)) return optimizer def load_loss(hyper_params, train_loader=None): # Use the proportion from train_loader to weigh the loss since it can be unbalanced classes if train_loader: n_male = sum(train_loader.dataset.metadata['gender'] == 'M') n_female = sum(train_loader.dataset.metadata['gender'] == 'F') n_total = n_male + n_female # Male is label 1, female is label 0, use the proportion of the other to weigh the loss weight = torch.tensor([n_male/n_total, n_female/n_total]) else: weight = None return torch.nn.CrossEntropyLoss(weight=weight) ``` #### File: voicemd/voicemd/predict.py ```python import torch import yaml import numpy as np from tqdm import tqdm from yaml import load from voicemd.data.prepare_dataloaders import make_predict_dataloader from voicemd.models.model_loader import load_model def make_a_prediction(sound_filepath, config_filepath ='/voicemd/config.yaml', best_model_path='voicemd/output/best_model.pt'): sound_filename = sound_filepath.split('/')[-1] print(f'Analyzing {sound_filename}...') with open(config_filepath, 'r') as stream: hyper_params = load(stream, Loader=yaml.FullLoader) model = load_model(hyper_params) model.load_state_dict(torch.load(best_model_path)) predict_dataloader = make_predict_dataloader(sound_filepath, hyper_params) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') all_probs = [] model.to(device) for data in tqdm(predict_dataloader): pred = model(data.to(device)) probs = torch.nn.functional.softmax(pred, dim=1) all_probs.extend(probs.detach().cpu().numpy()) all_probs = np.array(all_probs) avg_prob = np.sum(all_probs, 0) / len(all_probs) print(f"{sound_filename} probability to be a male's voice: {round((avg_prob[1]*100),2)}%") print(f"{sound_filename} probability to be a female's voice: {round((avg_prob[0]*100),2)}%\n") ``` #### File: voicemd/utils/balance_commonvoice_metadata.py ```python import argparse import shutil import os import pandas as pd def copy_subset(metadata, cv_path, subset_path): ''' cv_path: path where the original dataset is stored subset_path: path where the new subset dataset will be saved metadata: pd.DataFrame, metadata to copy from cv_path to subset_path ''' for row, sample in metadata.iterrows(): src = os.path.join(cv_path, 'clips', sample['path']) dest = os.path.join(subset_path, 'clips') shutil.copy(src, dest) metadata.to_csv(os.path.join(subset_path, 'cv_metadata_balanced.csv')) def adapt_metadata(subset_path): '''Adapt metadata file to match previous dataset''' df = pd.read_csv(os.path.join(subset_path, 'cv_metadata_balanced.csv')) df["gender"] = df["gender"].replace("female", "F") df["gender"] = df["gender"].replace("male", "M") df = df.rename(columns={"path": "filename"}) df["uid"] = df["filename"] df.to_csv(os.path.join(subset_path, 'cv_metadata_balanced_clean.csv')) def balance_and_filter_commonvoice_tsv(tsv_fname, split, seed=42): """Balance and filter commonvoice_tsv. We remove entries with no associated gender for all splits. We sample and rebalance the train split such that there are equal samples across males and females for all age categoires in valid_age_categories. Args: tsv_fname: (str) full path to the tsv file split: (str) can be e.g 'train', 'dev', 'test' seed: (int) for reproducibility Returns: metadata: (pd.Dataframe) containing the processed metadata """ tsv = pd.read_csv(tsv_fname, sep="\t") metadata = tsv.copy() # show stats before rebalancing print("Breakdown before rebalance: \n") print_metadata_stats(metadata) # do not rebalance dev and test if split != "train": print(split + " not rebalanced") return metadata # Keep at most 3 samples per unique person metadata = metadata.groupby(["client_id"]).apply(lambda grp: grp.sample(n=min(3, len(grp)), random_state=42)) # remove samples where gender is unidentified metadata = metadata[metadata["gender"].isin(["male", "female"])] # resulting samples will be stored here male_metadata = pd.DataFrame(columns=metadata.columns) female_metadata = pd.DataFrame(columns=metadata.columns) # keep only valid age categories valid_age_categories = ["twenties", "thirties", "fourties", "fifties", "sixties"] metadata = metadata[metadata["age"].isin(valid_age_categories)] # Take the minimum number in females as the number to take n_samples = min(metadata.loc[metadata["gender"] == "female"]["age"].value_counts()) # for each gender, for each age, sample n_samples at random for age in valid_age_categories: # separate by age tmp_metadata = metadata[metadata["age"] == age] # separate by gender tmp_male_metadata = tmp_metadata[tmp_metadata["gender"] == "male"] tmp_female_metadata = tmp_metadata[tmp_metadata["gender"] == "female"] # sample and add to all results male_metadata = male_metadata.append( tmp_male_metadata.sample(n=n_samples, random_state=seed), ignore_index=True, ) female_metadata = female_metadata.append( tmp_female_metadata.sample(n=n_samples, random_state=seed), ignore_index=True, ) metadata = male_metadata.append(female_metadata) print("Breakdown after rebalance: \n") print_metadata_stats(metadata) return metadata def print_metadata_stats(metadata): print("Gender breakdown: \n", metadata["gender"].value_counts()) print( "Age breakdown by gender (male): \n", metadata[metadata["gender"] == "male"]["age"].value_counts(), ) print( "Age breakdown by gender (female): \n", metadata[metadata["gender"] == "female"]["age"].value_counts(), ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--commonvoice_path", help="path to commonvoice dataset", required=True ) parser.add_argument( "--subset_dir", help="path to folder to store balanced dataset", required=True ) args = parser.parse_args() # We will only use and balance the train split splits = ["train"] for split in splits: tsv_fname = os.path.join(args.commonvoice_path, split + ".tsv") print("reading ", tsv_fname) metadata = balance_and_filter_commonvoice_tsv(tsv_fname, split) copy_subset(metadata, args.commonvoice_path, args.subset_dir) adapt_metadata(metadata) ```
{ "source": "jerr0328/co2-mini", "score": 3 }
#### File: co2-mini/co2mini/meter.py ```python import fcntl import logging import threading CO2METER_CO2 = 0x50 CO2METER_TEMP = 0x42 CO2METER_HUM = 0x41 HIDIOCSFEATURE_9 = 0xC0094806 logger = logging.getLogger(__name__) def _convert_value(sensor, value): """Apply Conversion of value dending on sensor type""" if sensor == CO2METER_TEMP: return round(value / 16.0 - 273.1, 1) if sensor == CO2METER_HUM: return round(value / 100.0, 1) return value def _hd(data): """Helper function for printing the raw data""" return " ".join("%02X" % e for e in data) class CO2Meter(threading.Thread): _key = [0xC4, 0xC6, 0xC0, 0x92, 0x40, 0x23, 0xDC, 0x96] _device = "" _values = {} _file = "" running = True _callback = None def __init__(self, device="/dev/co2mini0", callback=None): super().__init__(daemon=True) self._device = device self._callback = callback self._file = open(device, "a+b", 0) set_report = [0] + self._key fcntl.ioctl(self._file, HIDIOCSFEATURE_9, bytearray(set_report)) def run(self): while self.running: self._read_data() def _read_data(self): """ Function that reads from the device, decodes it, validates the checksum and adds the data to the dict _values. Additionally calls the _callback if set """ try: data = list(self._file.read(8)) decrypted = self._decrypt(data) if decrypted[4] != 0x0D or (sum(decrypted[:3]) & 0xFF) != decrypted[3]: logger.error("Checksum error: %s => %s", _hd(data), _hd(decrypted)) else: operation = decrypted[0] val = decrypted[1] << 8 | decrypted[2] self._values[operation] = _convert_value(operation, val) if self._callback is not None: if operation in {CO2METER_CO2, CO2METER_TEMP} or ( operation == CO2METER_HUM and val != 0 ): self._callback(sensor=operation, value=self._values[operation]) except Exception: logger.exception("Exception reading data") self.running = False def _decrypt(self, data): """ The received data has some weak crypto that needs to be decoded first """ cstate = [0x48, 0x74, 0x65, 0x6D, 0x70, 0x39, 0x39, 0x65] shuffle = [2, 4, 0, 7, 1, 6, 5, 3] phase1 = [0] * 8 for i, j in enumerate(shuffle): phase1[j] = data[i] phase2 = [0] * 8 for i in range(8): phase2[i] = phase1[i] ^ self._key[i] phase3 = [0] * 8 for i in range(8): phase3[i] = ((phase2[i] >> 3) | (phase2[(i - 1 + 8) % 8] << 5)) & 0xFF ctmp = [0] * 8 for i in range(8): ctmp[i] = ((cstate[i] >> 4) | (cstate[i] << 4)) & 0xFF out = [0] * 8 for i in range(8): out[i] = (0x100 + phase3[i] - ctmp[i]) & 0xFF return out def get_co2(self): """ read the co2 value from _values :returns dict with value or empty """ if not self.running: raise IOError("worker thread couldn't read data") result = {} if CO2METER_CO2 in self._values: result = {"co2": self._values[CO2METER_CO2]} return result def get_temperature(self): """ reads the temperature from _values :returns dict with value or empty """ if not self.running: raise IOError("worker thread couldn't read data") result = {} if CO2METER_TEMP in self._values: result = {"temperature": self._values[CO2METER_TEMP]} return result def get_humidity(self): # not implemented by all devices """ reads the humidty from _values. not all devices support this but might still return a value 0. So values of 0 are discarded. :returns dict with value or empty """ if not self.running: raise IOError("worker thread couldn't read data") result = {} if CO2METER_HUM in self._values and self._values[CO2METER_HUM] != 0: result = {"humidity": self._values[CO2METER_HUM]} return result def get_data(self): """ get all currently available values :returns dict with value or empty """ result = {} result.update(self.get_co2()) result.update(self.get_temperature()) result.update(self.get_humidity()) return result ```
{ "source": "jerr0328/HAP-python", "score": 3 }
#### File: HAP-python/accessories/MotionSensor.py ```python import random import RPi.GPIO as GPIO from pyhap.accessory import Accessory from pyhap.const import CATEGORY_SENSOR class MotionSensor(Accessory): category = CATEGORY_SENSOR def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) serv_motion = self.add_preload_service('MotionSensor') self.char_detected = serv_motion.configure_char('MotionDetected') GPIO.setmode(GPIO.BCM) GPIO.setup(7, GPIO.IN) GPIO.add_event_detect(7, GPIO.RISING, callback=self._detected) def _detected(self, _pin): self.char_detected.set_value(True) def stop(self): super().stop() GPIO.cleanup() ``` #### File: jerr0328/HAP-python/busy_home.py ```python import logging import signal import random from pyhap.accessory import Accessory, Bridge from pyhap.accessory_driver import AccessoryDriver from pyhap.const import (CATEGORY_FAN, CATEGORY_LIGHTBULB, CATEGORY_GARAGE_DOOR_OPENER, CATEGORY_SENSOR) logging.basicConfig(level=logging.INFO, format="[%(module)s] %(message)s") class TemperatureSensor(Accessory): """Fake Temperature sensor, measuring every 3 seconds.""" category = CATEGORY_SENSOR def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) serv_temp = self.add_preload_service('TemperatureSensor') self.char_temp = serv_temp.configure_char('CurrentTemperature') @Accessory.run_at_interval(3) async def run(self): self.char_temp.set_value(random.randint(18, 26)) class FakeFan(Accessory): """Fake Fan, only logs whatever the client set.""" category = CATEGORY_FAN def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Add the fan service. Also add optional characteristics to it. serv_fan = self.add_preload_service( 'Fan', chars=['RotationSpeed', 'RotationDirection']) self.char_rotation_speed = serv_fan.configure_char( 'RotationSpeed', setter_callback=self.set_rotation_speed) self.char_rotation_direction = serv_fan.configure_char( 'RotationDirection', setter_callback=self.set_rotation_direction) def set_rotation_speed(self, value): logging.debug("Rotation speed changed: %s", value) def set_rotation_direction(self, value): logging.debug("Rotation direction changed: %s", value) class LightBulb(Accessory): """Fake lightbulb, logs what the client sets.""" category = CATEGORY_LIGHTBULB def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) serv_light = self.add_preload_service('Lightbulb') self.char_on = serv_light.configure_char( 'On', setter_callback=self.set_bulb) def set_bulb(self, value): logging.info("Bulb value: %s", value) class GarageDoor(Accessory): """Fake garage door.""" category = CATEGORY_GARAGE_DOOR_OPENER def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.add_preload_service('GarageDoorOpener')\ .configure_char( 'TargetDoorState', setter_callback=self.change_state) def change_state(self, value): logging.info("Bulb value: %s", value) self.get_service('GarageDoorOpener')\ .get_characteristic('CurrentDoorState')\ .set_value(value) def get_bridge(driver): bridge = Bridge(driver, 'Bridge') bridge.add_accessory(LightBulb(driver, 'Lightbulb')) bridge.add_accessory(FakeFan(driver, 'Big Fan')) bridge.add_accessory(GarageDoor(driver, 'Garage')) bridge.add_accessory(TemperatureSensor(driver, 'Sensor')) return bridge driver = AccessoryDriver(port=51826, persist_file='busy_home.state') driver.add_accessory(accessory=get_bridge(driver)) signal.signal(signal.SIGTERM, driver.signal_handler) driver.start() ``` #### File: HAP-python/pyhap/camera.py ```python import asyncio import functools import os import ipaddress import logging import struct from uuid import UUID from pyhap import RESOURCE_DIR from pyhap.accessory import Accessory from pyhap.const import CATEGORY_CAMERA from pyhap.util import to_base64_str, byte_bool from pyhap import tlv SETUP_TYPES = { 'SESSION_ID': b'\x01', 'STATUS': b'\x02', 'ADDRESS': b'\x03', 'VIDEO_SRTP_PARAM': b'\x04', 'AUDIO_SRTP_PARAM': b'\x05', 'VIDEO_SSRC': b'\x06', 'AUDIO_SSRC': b'\x07' } SETUP_STATUS = { 'SUCCESS': b'\x00', 'BUSY': b'\x01', 'ERROR': b'\x02' } SETUP_IPV = { 'IPV4': b'\x00', 'IPV6': b'\x01' } SETUP_ADDR_INFO = { 'ADDRESS_VER': b'\x01', 'ADDRESS': b'\x02', 'VIDEO_RTP_PORT': b'\x03', 'AUDIO_RTP_PORT': b'\x04' } SETUP_SRTP_PARAM = { 'CRYPTO': b'\x01', 'MASTER_KEY': b'\x02', 'MASTER_SALT': b'\x03' } STREAMING_STATUS = { 'AVAILABLE': b'\x00', 'STREAMING': b'\x01', 'BUSY': b'\x02' } RTP_CONFIG_TYPES = { 'CRYPTO': b'\x02' } SRTP_CRYPTO_SUITES = { 'AES_CM_128_HMAC_SHA1_80': b'\x00', 'AES_CM_256_HMAC_SHA1_80': b'\x01', 'NONE': b'\x02' } VIDEO_TYPES = { 'CODEC': b'\x01', 'CODEC_PARAM': b'\x02', 'ATTRIBUTES': b'\x03', 'RTP_PARAM': b'\x04' } VIDEO_CODEC_TYPES = { 'H264': b'\x00' } VIDEO_CODEC_PARAM_TYPES = { 'PROFILE_ID': b'\x01', 'LEVEL': b'\x02', 'PACKETIZATION_MODE': b'\x03', 'CVO_ENABLED': b'\x04', 'CVO_ID': b'\x05' } VIDEO_CODEC_PARAM_CVO_TYPES = { 'UNSUPPORTED': b'\x01', 'SUPPORTED': b'\x02' } VIDEO_CODEC_PARAM_PROFILE_ID_TYPES = { 'BASELINE': b'\x00', 'MAIN': b'\x01', 'HIGH': b'\x02' } VIDEO_CODEC_PARAM_LEVEL_TYPES = { 'TYPE3_1': b'\x00', 'TYPE3_2': b'\x01', 'TYPE4_0': b'\x02' } VIDEO_CODEC_PARAM_PACKETIZATION_MODE_TYPES = { 'NON_INTERLEAVED': b'\x00' } VIDEO_ATTRIBUTES_TYPES = { 'IMAGE_WIDTH': b'\x01', 'IMAGE_HEIGHT': b'\x02', 'FRAME_RATE': b'\x03' } SUPPORTED_VIDEO_CONFIG_TAG = b'\x01' SELECTED_STREAM_CONFIGURATION_TYPES = { 'SESSION': b'\x01', 'VIDEO': b'\x02', 'AUDIO': b'\x03' } RTP_PARAM_TYPES = { 'PAYLOAD_TYPE': b'\x01', 'SYNCHRONIZATION_SOURCE': b'\x02', 'MAX_BIT_RATE': b'\x03', 'RTCP_SEND_INTERVAL': b'\x04', 'MAX_MTU': b'\x05', 'COMFORT_NOISE_PAYLOAD_TYPE': b'\x06' } AUDIO_TYPES = { 'CODEC': b'\x01', 'CODEC_PARAM': b'\x02', 'RTP_PARAM': b'\x03', 'COMFORT_NOISE': b'\x04' } AUDIO_CODEC_TYPES = { 'PCMU': b'\x00', 'PCMA': b'\x01', 'AACELD': b'\x02', 'OPUS': b'\x03' } AUDIO_CODEC_PARAM_TYPES = { 'CHANNEL': b'\x01', 'BIT_RATE': b'\x02', 'SAMPLE_RATE': b'\x03', 'PACKET_TIME': b'\x04' } AUDIO_CODEC_PARAM_BIT_RATE_TYPES = { 'VARIABLE': b'\x00', 'CONSTANT': b'\x01' } AUDIO_CODEC_PARAM_SAMPLE_RATE_TYPES = { 'KHZ_8': b'\x00', 'KHZ_16': b'\x01', 'KHZ_24': b'\x02' } SUPPORTED_AUDIO_CODECS_TAG = b'\x01' SUPPORTED_COMFORT_NOISE_TAG = b'\x02' SUPPORTED_AUDIO_CONFIG_TAG = b'\x02' SET_CONFIG_REQUEST_TAG = b'\x02' SESSION_ID = b'\x01' NO_SRTP = b'\x01\x01\x02\x02\x00\x03\x00' '''Configuration value for no SRTP.''' FFMPEG_CMD = ( # pylint: disable=bad-continuation 'ffmpeg -re -f avfoundation -framerate {fps} -i 0:0 -threads 0 ' '-vcodec libx264 -an -pix_fmt yuv420p -r {fps} -f rawvideo -tune zerolatency ' '-vf scale={width}:{height} -b:v {v_max_bitrate}k -bufsize {v_max_bitrate}k ' '-payload_type 99 -ssrc {v_ssrc} -f rtp ' '-srtp_out_suite AES_CM_128_HMAC_SHA1_80 -srtp_out_params {v_srtp_key} ' 'srtp://{address}:{v_port}?rtcpport={v_port}&' 'localrtcpport={v_port}&pkt_size=1378' ) '''Template for the ffmpeg command.''' logger = logging.getLogger(__name__) class Camera(Accessory): """An Accessory that can negotiated camera stream settings with iOS and start a stream. """ category = CATEGORY_CAMERA @staticmethod def get_supported_rtp_config(support_srtp): """Return a tlv representation of the RTP configuration we support. SRTP support allows only the AES_CM_128_HMAC_SHA1_80 cipher for now. :param support_srtp: True if SRTP is supported, False otherwise. :type support_srtp: bool """ if support_srtp: crypto = SRTP_CRYPTO_SUITES['AES_CM_128_HMAC_SHA1_80'] else: crypto = SRTP_CRYPTO_SUITES['NONE'] return tlv.encode(RTP_CONFIG_TYPES['CRYPTO'], crypto, to_base64=True) @staticmethod def get_supported_video_stream_config(video_params): """Return a tlv representation of the supported video stream configuration. Expected video parameters: - codec - resolutions :param video_params: Supported video configurations :type video_params: dict """ codec_params_tlv = tlv.encode( VIDEO_CODEC_PARAM_TYPES['PACKETIZATION_MODE'], VIDEO_CODEC_PARAM_PACKETIZATION_MODE_TYPES['NON_INTERLEAVED']) codec_params = video_params['codec'] for profile in codec_params['profiles']: codec_params_tlv += \ tlv.encode(VIDEO_CODEC_PARAM_TYPES['PROFILE_ID'], profile) for level in codec_params['levels']: codec_params_tlv += \ tlv.encode(VIDEO_CODEC_PARAM_TYPES['LEVEL'], level) attr_tlv = b'' for resolution in video_params['resolutions']: res_tlv = tlv.encode( VIDEO_ATTRIBUTES_TYPES['IMAGE_WIDTH'], struct.pack('<H', resolution[0]), VIDEO_ATTRIBUTES_TYPES['IMAGE_HEIGHT'], struct.pack('<H', resolution[1]), VIDEO_ATTRIBUTES_TYPES['FRAME_RATE'], struct.pack('<H', resolution[2])) attr_tlv += tlv.encode(VIDEO_TYPES['ATTRIBUTES'], res_tlv) config_tlv = tlv.encode(VIDEO_TYPES['CODEC'], VIDEO_CODEC_TYPES['H264'], VIDEO_TYPES['CODEC_PARAM'], codec_params_tlv) return tlv.encode(SUPPORTED_VIDEO_CONFIG_TAG, config_tlv + attr_tlv, to_base64=True) @staticmethod def get_supported_audio_stream_config(audio_params): """Return a tlv representation of the supported audio stream configuration. iOS supports only AACELD and OPUS Expected audio parameters: - codecs - comfort_noise :param audio_params: Supported audio configurations :type audio_params: dict """ has_supported_codec = False configs = b'' for codec_param in audio_params['codecs']: param_type = codec_param['type'] if param_type == 'OPUS': has_supported_codec = True codec = AUDIO_CODEC_TYPES['OPUS'] bitrate = AUDIO_CODEC_PARAM_BIT_RATE_TYPES['VARIABLE'] elif param_type == 'AAC-eld': has_supported_codec = True codec = AUDIO_CODEC_TYPES['AACELD'] bitrate = AUDIO_CODEC_PARAM_BIT_RATE_TYPES['VARIABLE'] else: logger.warning('Unsupported codec %s', param_type) continue param_samplerate = codec_param['samplerate'] if param_samplerate == 8: samplerate = AUDIO_CODEC_PARAM_SAMPLE_RATE_TYPES['KHZ_8'] elif param_samplerate == 16: samplerate = AUDIO_CODEC_PARAM_SAMPLE_RATE_TYPES['KHZ_16'] elif param_samplerate == 24: samplerate = AUDIO_CODEC_PARAM_SAMPLE_RATE_TYPES['KHZ_24'] else: logger.warning('Unsupported sample rate %s', param_samplerate) continue param_tlv = tlv.encode(AUDIO_CODEC_PARAM_TYPES['CHANNEL'], b'\x01', AUDIO_CODEC_PARAM_TYPES['BIT_RATE'], bitrate, AUDIO_CODEC_PARAM_TYPES['SAMPLE_RATE'], samplerate) config_tlv = tlv.encode(AUDIO_TYPES['CODEC'], codec, AUDIO_TYPES['CODEC_PARAM'], param_tlv) configs += tlv.encode(SUPPORTED_AUDIO_CODECS_TAG, config_tlv) if not has_supported_codec: logger.warning('Client does not support any audio codec that iOS supports.') codec = AUDIO_CODEC_TYPES['OPUS'] bitrate = AUDIO_CODEC_PARAM_BIT_RATE_TYPES['VARIABLE'] samplerate = AUDIO_CODEC_PARAM_SAMPLE_RATE_TYPES['KHZ_24'] param_tlv = tlv.encode( AUDIO_CODEC_PARAM_TYPES['CHANNEL'], b'\x01', AUDIO_CODEC_PARAM_TYPES['BIT_RATE'], bitrate, AUDIO_CODEC_PARAM_TYPES['SAMPLE_RATE'], samplerate) config_tlv = tlv.encode(AUDIO_TYPES['CODEC'], codec, AUDIO_TYPES['CODEC_PARAM'], param_tlv) configs = tlv.encode(SUPPORTED_AUDIO_CODECS_TAG, config_tlv) comfort_noise = byte_bool( audio_params.get('comfort_noise', False)) audio_config = to_base64_str( configs + tlv.encode(SUPPORTED_COMFORT_NOISE_TAG, comfort_noise)) return audio_config def __init__(self, options, *args, **kwargs): """Initialize a camera accessory with the given options. :param options: Describes the supported video and audio configuration of this camera. Expected values are video, audio, srtp and address. Example configuration: .. code-block:: python { "video": { "codec": { "profiles": [ camera.VIDEO_CODEC_PARAM_PROFILE_ID_TYPES["BASELINE"], ], "levels": [ camera.VIDEO_CODEC_PARAM_LEVEL_TYPES['TYPE3_1'], ], }, "resolutions": [ [320, 240, 15], # Width, Height, framerate [1024, 768, 30], [640, 480, 30], [640, 360, 30], [480, 360, 30], [480, 270, 30], [320, 240, 30], [320, 180, 30], ], }, "audio": { "codecs": [ { 'type': 'OPUS', 'samplerate': 24, }, { 'type': 'AAC-eld', 'samplerate': 16 } ], }, "address": "192.168.1.226", # Address from which the camera will stream } Additional optional values are: - srtp - boolean, defaults to False. Whether the camera supports SRTP. - start_stream_cmd - string specifying the command to be executed to start the stream. The string can contain the keywords, corresponding to the video and audio configuration that was negotiated between the camera and the client. See the ``start`` method for a full list of parameters. :type options: ``dict`` """ self.streaming_status = STREAMING_STATUS['AVAILABLE'] self.has_srtp = options.get('srtp', False) self.start_stream_cmd = options.get('start_stream_cmd', FFMPEG_CMD) self.stream_address = options['address'] try: ipaddress.IPv4Address(self.stream_address) self.stream_address_isv6 = b'\x00' except ValueError: self.stream_address_isv6 = b'\x01' self.sessions = {} super().__init__(*args, **kwargs) self.add_preload_service('Microphone') management = self.add_preload_service('CameraRTPStreamManagement') management.configure_char('StreamingStatus', getter_callback=self._get_streaming_status) management.configure_char('SupportedRTPConfiguration', value=self.get_supported_rtp_config( options.get('srtp', False))) management.configure_char('SupportedVideoStreamConfiguration', value=self.get_supported_video_stream_config( options['video'])) management.configure_char('SupportedAudioStreamConfiguration', value=self.get_supported_audio_stream_config( options['audio'])) management.configure_char('SelectedRTPStreamConfiguration', setter_callback=self.set_selected_stream_configuration) management.configure_char('SetupEndpoints', setter_callback=self.set_endpoints) async def _start_stream(self, objs, reconfigure): # pylint: disable=unused-argument """Start or reconfigure video streaming for the given session. Schedules ``self.start_stream`` or ``self.reconfigure``. No support for reconfigure currently. :param objs: TLV-decoded SelectedRTPStreamConfiguration :type objs: ``dict`` :param reconfigure: Whether the stream should be reconfigured instead of started. :type reconfigure: bool """ video_tlv = objs.get(SELECTED_STREAM_CONFIGURATION_TYPES['VIDEO']) audio_tlv = objs.get(SELECTED_STREAM_CONFIGURATION_TYPES['AUDIO']) opts = {} if video_tlv: video_objs = tlv.decode(video_tlv) video_codec_params = video_objs.get(VIDEO_TYPES['CODEC_PARAM']) if video_codec_params: video_codec_param_objs = tlv.decode(video_codec_params) opts['v_profile_id'] = \ video_codec_param_objs[VIDEO_CODEC_PARAM_TYPES['PROFILE_ID']] opts['v_level'] = \ video_codec_param_objs[VIDEO_CODEC_PARAM_TYPES['LEVEL']] video_attrs = video_objs.get(VIDEO_TYPES['ATTRIBUTES']) if video_attrs: video_attr_objs = tlv.decode(video_attrs) opts['width'] = struct.unpack('<H', video_attr_objs[VIDEO_ATTRIBUTES_TYPES['IMAGE_WIDTH']])[0] opts['height'] = struct.unpack('<H', video_attr_objs[VIDEO_ATTRIBUTES_TYPES['IMAGE_HEIGHT']])[0] opts['fps'] = struct.unpack('<B', video_attr_objs[VIDEO_ATTRIBUTES_TYPES['FRAME_RATE']])[0] video_rtp_param = video_objs.get(VIDEO_TYPES['RTP_PARAM']) if video_rtp_param: video_rtp_param_objs = tlv.decode(video_rtp_param) if RTP_PARAM_TYPES['SYNCHRONIZATION_SOURCE'] in video_rtp_param_objs: opts['v_ssrc'] = struct.unpack('<I', video_rtp_param_objs.get( RTP_PARAM_TYPES['SYNCHRONIZATION_SOURCE']))[0] if RTP_PARAM_TYPES['PAYLOAD_TYPE'] in video_rtp_param_objs: opts['v_payload_type'] = \ video_rtp_param_objs.get(RTP_PARAM_TYPES['PAYLOAD_TYPE']) if RTP_PARAM_TYPES['MAX_BIT_RATE'] in video_rtp_param_objs: opts['v_max_bitrate'] = struct.unpack('<H', video_rtp_param_objs.get(RTP_PARAM_TYPES['MAX_BIT_RATE']))[0] if RTP_PARAM_TYPES['RTCP_SEND_INTERVAL'] in video_rtp_param_objs: opts['v_rtcp_interval'] = struct.unpack('<f', video_rtp_param_objs.get(RTP_PARAM_TYPES['RTCP_SEND_INTERVAL']))[0] if RTP_PARAM_TYPES['MAX_MTU'] in video_rtp_param_objs: opts['v_max_mtu'] = video_rtp_param_objs.get(RTP_PARAM_TYPES['MAX_MTU']) if audio_tlv: audio_objs = tlv.decode(audio_tlv) opts['a_codec'] = audio_objs[AUDIO_TYPES['CODEC']] audio_codec_param_objs = tlv.decode( audio_objs[AUDIO_TYPES['CODEC_PARAM']]) audio_rtp_param_objs = tlv.decode( audio_objs[AUDIO_TYPES['RTP_PARAM']]) opts['a_comfort_noise'] = audio_objs[AUDIO_TYPES['COMFORT_NOISE']] opts['a_channel'] = \ audio_codec_param_objs[AUDIO_CODEC_PARAM_TYPES['CHANNEL']][0] opts['a_bitrate'] = struct.unpack('?', audio_codec_param_objs[AUDIO_CODEC_PARAM_TYPES['BIT_RATE']])[0] opts['a_sample_rate'] = 8 * ( 1 + audio_codec_param_objs[AUDIO_CODEC_PARAM_TYPES['SAMPLE_RATE']][0]) opts['a_packet_time'] = struct.unpack('<B', audio_codec_param_objs[AUDIO_CODEC_PARAM_TYPES['PACKET_TIME']])[0] opts['a_ssrc'] = struct.unpack('<I', audio_rtp_param_objs[RTP_PARAM_TYPES['SYNCHRONIZATION_SOURCE']])[0] opts['a_payload_type'] = audio_rtp_param_objs[RTP_PARAM_TYPES['PAYLOAD_TYPE']] opts['a_max_bitrate'] = struct.unpack('<H', audio_rtp_param_objs[RTP_PARAM_TYPES['MAX_BIT_RATE']])[0] opts['a_rtcp_interval'] = struct.unpack('<f', audio_rtp_param_objs[RTP_PARAM_TYPES['RTCP_SEND_INTERVAL']])[0] opts['a_comfort_payload_type'] = \ audio_rtp_param_objs[RTP_PARAM_TYPES['COMFORT_NOISE_PAYLOAD_TYPE']] session_objs = tlv.decode(objs[SELECTED_STREAM_CONFIGURATION_TYPES['SESSION']]) session_id = UUID(bytes=session_objs[SETUP_TYPES['SESSION_ID']]) session_info = self.sessions[session_id] opts.update(session_info) success = await self.reconfigure_stream(session_info, opts) if reconfigure \ else await self.start_stream(session_info, opts) if success: self.streaming_status = STREAMING_STATUS['STREAMING'] else: logger.error( '[%s] Failed to start/reconfigure stream, deleting session.', session_id ) del self.sessions[session_id] self.streaming_status = STREAMING_STATUS['AVAILABLE'] def _get_streaming_status(self): """Get the streaming status in TLV format. Called when iOS reads the StreaminStatus ``Characteristic``. """ return tlv.encode(b'\x01', self.streaming_status, to_base64=True) async def _stop_stream(self, objs): """Stop the stream for the specified session. Schedules ``self.stop_stream``. :param objs: TLV-decoded SelectedRTPStreamConfiguration value. :param objs: ``dict`` """ session_objs = tlv.decode(objs[SELECTED_STREAM_CONFIGURATION_TYPES['SESSION']]) session_id = UUID(bytes=session_objs[SETUP_TYPES['SESSION_ID']]) session_info = self.sessions.get(session_id) if not session_info: logger.error( 'Requested to stop stream for session %s, but no ' 'such session was found', session_id ) return await self.stop_stream(session_info) del self.sessions[session_id] self.streaming_status = STREAMING_STATUS['AVAILABLE'] def set_selected_stream_configuration(self, value): """Set the selected stream configuration. Called from iOS to set the SelectedRTPStreamConfiguration ``Characteristic``. This method schedules a stream for the session in ``value`` to be start, stopped or reconfigured, depending on the request. :param value: base64-encoded selected configuration in TLV format :type value: ``str`` """ logger.debug('set_selected_stream_config - value - %s', value) objs = tlv.decode(value, from_base64=True) if SELECTED_STREAM_CONFIGURATION_TYPES['SESSION'] not in objs: logger.error('Bad request to set selected stream configuration.') return session = tlv.decode(objs[SELECTED_STREAM_CONFIGURATION_TYPES['SESSION']]) request_type = session[b'\x02'][0] logger.debug('Set stream config request: %d', request_type) if request_type == 1: job = functools.partial(self._start_stream, reconfigure=False) elif request_type == 0: job = self._stop_stream elif request_type == 4: job = functools.partial(self._start_stream, reconfigure=True) else: logger.error('Unknown request type %d', request_type) return self.driver.add_job(job, objs) def set_endpoints(self, value): """Configure streaming endpoints. Called when iOS sets the SetupEndpoints ``Characteristic``. The endpoint information for the camera should be set as the current value of SetupEndpoints. :param value: The base64-encoded stream session details in TLV format. :param value: ``str`` """ objs = tlv.decode(value, from_base64=True) session_id = UUID(bytes=objs[SETUP_TYPES['SESSION_ID']]) # Extract address info address_tlv = objs[SETUP_TYPES['ADDRESS']] address_info_objs = tlv.decode(address_tlv) is_ipv6 = struct.unpack('?', address_info_objs[SETUP_ADDR_INFO['ADDRESS_VER']])[0] address = address_info_objs[SETUP_ADDR_INFO['ADDRESS']].decode('utf8') target_video_port = struct.unpack( '<H', address_info_objs[SETUP_ADDR_INFO['VIDEO_RTP_PORT']])[0] target_audio_port = struct.unpack( '<H', address_info_objs[SETUP_ADDR_INFO['AUDIO_RTP_PORT']])[0] # Video SRTP Params video_srtp_tlv = objs[SETUP_TYPES['VIDEO_SRTP_PARAM']] video_info_objs = tlv.decode(video_srtp_tlv) video_crypto_suite = video_info_objs[SETUP_SRTP_PARAM['CRYPTO']][0] video_master_key = video_info_objs[SETUP_SRTP_PARAM['MASTER_KEY']] video_master_salt = video_info_objs[SETUP_SRTP_PARAM['MASTER_SALT']] # Audio SRTP Params audio_srtp_tlv = objs[SETUP_TYPES['AUDIO_SRTP_PARAM']] audio_info_objs = tlv.decode(audio_srtp_tlv) audio_crypto_suite = audio_info_objs[SETUP_SRTP_PARAM['CRYPTO']][0] audio_master_key = audio_info_objs[SETUP_SRTP_PARAM['MASTER_KEY']] audio_master_salt = audio_info_objs[SETUP_SRTP_PARAM['MASTER_SALT']] logger.debug( 'Received endpoint configuration:' '\nsession_id: %s\naddress: %s\nis_ipv6: %s' '\ntarget_video_port: %s\ntarget_audio_port: %s' '\nvideo_crypto_suite: %s\nvideo_srtp: %s' '\naudio_crypto_suite: %s\naudio_srtp: %s', session_id, address, is_ipv6, target_video_port, target_audio_port, video_crypto_suite, to_base64_str(video_master_key + video_master_salt), audio_crypto_suite, to_base64_str(audio_master_key + audio_master_salt) ) # Configure the SetupEndpoints response if self.has_srtp: video_srtp_tlv = tlv.encode( SETUP_SRTP_PARAM['CRYPTO'], SRTP_CRYPTO_SUITES['AES_CM_128_HMAC_SHA1_80'], SETUP_SRTP_PARAM['MASTER_KEY'], video_master_key, SETUP_SRTP_PARAM['MASTER_SALT'], video_master_salt) audio_srtp_tlv = tlv.encode( SETUP_SRTP_PARAM['CRYPTO'], SRTP_CRYPTO_SUITES['AES_CM_128_HMAC_SHA1_80'], SETUP_SRTP_PARAM['MASTER_KEY'], audio_master_key, SETUP_SRTP_PARAM['MASTER_SALT'], audio_master_salt) else: video_srtp_tlv = NO_SRTP audio_srtp_tlv = NO_SRTP video_ssrc = int.from_bytes(os.urandom(3), byteorder="big") audio_ssrc = int.from_bytes(os.urandom(3), byteorder="big") res_address_tlv = tlv.encode( SETUP_ADDR_INFO['ADDRESS_VER'], self.stream_address_isv6, SETUP_ADDR_INFO['ADDRESS'], self.stream_address.encode('utf-8'), SETUP_ADDR_INFO['VIDEO_RTP_PORT'], struct.pack('<H', target_video_port), SETUP_ADDR_INFO['AUDIO_RTP_PORT'], struct.pack('<H', target_audio_port)) response_tlv = tlv.encode( SETUP_TYPES['SESSION_ID'], session_id.bytes, SETUP_TYPES['STATUS'], SETUP_STATUS['SUCCESS'], SETUP_TYPES['ADDRESS'], res_address_tlv, SETUP_TYPES['VIDEO_SRTP_PARAM'], video_srtp_tlv, SETUP_TYPES['AUDIO_SRTP_PARAM'], audio_srtp_tlv, SETUP_TYPES['VIDEO_SSRC'], struct.pack('<I', video_ssrc), SETUP_TYPES['AUDIO_SSRC'], struct.pack('<I', audio_ssrc), to_base64=True) self.sessions[session_id] = { 'id': session_id, 'address': address, 'v_port': target_video_port, 'v_srtp_key': to_base64_str(video_master_key + video_master_salt), 'v_ssrc': video_ssrc, 'a_port': target_audio_port, 'a_srtp_key': to_base64_str(audio_master_key + audio_master_salt), 'a_ssrc': audio_ssrc } self.get_service('CameraRTPStreamManagement')\ .get_characteristic('SetupEndpoints')\ .set_value(response_tlv) async def stop(self): """Stop all streaming sessions.""" await asyncio.gather(*( self.stop_stream(session_info) for session_info in self.sessions.values())) # ### For client extensions ### async def start_stream(self, session_info, stream_config): """Start a new stream with the given configuration. This method can be implemented to start a new stream. Any specific information about the started stream can be persisted in the ``session_info`` argument. The same will be passed to ``stop_stream`` when the stream for this session needs to be stopped. The default implementation starts a new process with the command in ``self.start_stream_cmd``, formatted with the ``stream_config``. :param session_info: Contains information about the current session. Can be used for session storage. Available keys: - id - The session ID. :type session_info: ``dict`` :param stream_config: Stream configuration, as negotiated with the HAP client. Implementations can only use part of these. Available keys: General configuration: - address - The IP address from which the camera will stream - v_port - Remote port to which to stream video - v_srtp_key - Base64-encoded key and salt value for the AES_CM_128_HMAC_SHA1_80 cipher to use when streaming video. The key and the salt are concatenated before encoding - a_port - Remote audio port to which to stream audio - a_srtp_key - As v_srtp_params, but for the audio stream. Video configuration: - v_profile_id - The profile ID for the H.264 codec, e.g. baseline. Refer to ``VIDEO_CODEC_PARAM_PROFILE_ID_TYPES``. - v_level - The level in the profile ID, e.g. 3:1. Refer to ``VIDEO_CODEC_PARAM_LEVEL_TYPES``. - width - Video width - height - Video height - fps - Video frame rate - v_ssrc - Video synchronisation source - v_payload_type - Type of the video codec - v_max_bitrate - Maximum bit rate generated by the codec in kbps and averaged over 1 second - v_rtcp_interval - Minimum RTCP interval in seconds - v_max_mtu - MTU that the IP camera must use to transmit Video RTP packets. Audio configuration: - a_bitrate - Whether the bitrate is variable or constant - a_codec - Audio codec - a_comfort_noise - Wheter to use a comfort noise codec - a_channel - Number of audio channels - a_sample_rate - Audio sample rate in KHz - a_packet_time - Length of time represented by the media in a packet - a_ssrc - Audio synchronisation source - a_payload_type - Type of the audio codec - a_max_bitrate - Maximum bit rate generated by the codec in kbps and averaged over 1 second - a_rtcp_interval - Minimum RTCP interval in seconds - a_comfort_payload_type - The type of codec for comfort noise :return: True if and only if starting the stream command was successful. :rtype: ``bool`` """ logger.debug( '[%s] Starting stream with the following parameters: %s', session_info['id'], stream_config ) cmd = self.start_stream_cmd.format(**stream_config).split() logger.debug('Executing start stream command: "%s"', ' '.join(cmd)) try: process = await asyncio.create_subprocess_exec(*cmd, stdout=asyncio.subprocess.DEVNULL, stderr=asyncio.subprocess.PIPE, limit=1024) except Exception as e: # pylint: disable=broad-except logger.error('Failed to start streaming process because of error: %s', e) return False session_info['process'] = process logger.info( '[%s] Started stream process - PID %d', session_info['id'], process.pid ) return True async def stop_stream(self, session_info): # pylint: disable=no-self-use """Stop the stream for the given ``session_id``. This method can be implemented if custom stop stream commands are needed. The default implementation gets the ``process`` value from the ``session_info`` object and terminates it (assumes it is a ``subprocess.Popen`` object). :param session_info: The session info object. Available keys: - id - The session ID. :type session_info: ``dict`` """ session_id = session_info['id'] ffmpeg_process = session_info.get('process') if ffmpeg_process: logger.info('[%s] Stopping stream.', session_id) try: ffmpeg_process.terminate() _, stderr = await asyncio.wait_for( ffmpeg_process.communicate(), timeout=2.0) logger.debug('Stream command stderr: %s', stderr) except asyncio.TimeoutError: logger.error( 'Timeout while waiting for the stream process ' 'to terminate. Trying with kill.' ) ffmpeg_process.kill() await ffmpeg_process.wait() logger.debug('Stream process stopped.') else: logger.warning('No process for session ID %s', session_id) async def reconfigure_stream(self, session_info, stream_config): """Reconfigure the stream so that it uses the given ``stream_config``. :param session_info: The session object for the session that needs to be reconfigured. Available keys: - id - The session id. :type session_id: ``dict`` :return: True if and only if the reconfiguration is successful. :rtype: ``bool`` """ await self.start_stream(session_info, stream_config) def get_snapshot(self, image_size): # pylint: disable=unused-argument, no-self-use """Return a jpeg of a snapshot from the camera. Overwrite to implement getting snapshots from your camera. :param image_size: ``dict`` describing the requested image size. Contains the keys "image-width" and "image-height" """ with open(os.path.join(RESOURCE_DIR, 'snapshot.jpg'), 'rb') as fp: return fp.read() ``` #### File: HAP-python/tests/test_state.py ```python from unittest.mock import patch import pytest from pyhap.state import State def test_setup(): """Test if State class is setup correctly.""" with pytest.raises(TypeError): State('invalid_argument') addr = '172.0.0.1' mac = '00:00:00:00:00:00' pin = b'123-45-678' port = 11111 with patch('pyhap.util.get_local_address') as mock_local_addr, \ patch('pyhap.util.generate_mac') as mock_gen_mac, \ patch('pyhap.util.generate_pincode') as mock_gen_pincode, \ patch('pyhap.util.generate_setup_id') as mock_gen_setup_id, \ patch('ed25519.create_keypair', return_value=(1, 2)) \ as mock_create_keypair: state = State(address=addr, mac=mac, pincode=pin, port=port) assert not mock_local_addr.called assert not mock_gen_mac.called assert not mock_gen_pincode.called assert mock_gen_setup_id.called assert mock_create_keypair.called assert state.address == addr assert state.mac == mac assert state.pincode == pin assert state.port == port state = State() assert mock_local_addr.called assert mock_gen_mac.called assert mock_gen_pincode.called assert state.port == 51827 assert state.config_version == 2 def test_pairing(): """Test if pairing methods work.""" with patch('pyhap.util.get_local_address'), \ patch('pyhap.util.generate_mac'), \ patch('pyhap.util.generate_pincode'), \ patch('pyhap.util.generate_setup_id'), \ patch('ed25519.create_keypair', return_value=(1, 2)): state = State() assert not state.paired assert not state.paired_clients state.add_paired_client('uuid', 'public') assert state.paired assert state.paired_clients == {'uuid': 'public'} state.remove_paired_client('uuid') assert not state.paired assert not state.paired_clients ```
{ "source": "jerr0328/isitsnowinginberlin", "score": 3 }
#### File: isitsnowinginberlin/tests/snowing_test.py ```python import unittest # import os # import flask # from isitsnowinginberlin import isitsnowinginberlin class SnowingTests(unittest.TestCase): def test_truthiness(self): five = 5 self.assertEqual(five, 5) if __name__ == "__main__": unittest.main() ```
{ "source": "jerr0328/sample-python-app", "score": 2 }
#### File: sample-python-app/infrabox/generator.py ```python import json import os from typing import Dict REGISTRY = os.getenv("DOCKER_REGISTRY", "docker.io/jerr0328") INFRABOX_GIT_TAG = os.getenv("INFRABOX_GIT_TAG") INFRABOX_GIT_BRANCH = os.getenv("INFRABOX_GIT_BRANCH") INFRABOX_GITHUB_PULL_REQUEST = os.getenv("INFRABOX_GITHUB_PULL_REQUEST") INFRABOX_BUILD_NUMBER = os.getenv("INFRABOX_BUILD_NUMBER") def generate_deployment(image_name: str, tag: str) -> Dict: return { "type": "docker-registry", "host": REGISTRY, "repository": image_name, "tag": tag, } def add_deployments(job: Dict): deployments = job.get("deployments") if not deployments: return image_name = deployments[0]["repository"] if INFRABOX_GIT_BRANCH == "master": job["deployments"].append(generate_deployment(image_name, "latest")) if INFRABOX_GIT_TAG: job["deployments"].append(generate_deployment(image_name, INFRABOX_GIT_TAG)) def main(): with open("infrabox/infrabox.json") as f: infrabox_json = json.load(f) for job in infrabox_json["jobs"]: add_deployments(job) with open("/infrabox/output/infrabox.json", "w") as f: json.dump(infrabox_json, f, indent=2) if __name__ == "__main__": main() ```
{ "source": "jerradf/Crypto-Blockchain-Project", "score": 4 }
#### File: jerradf/Crypto-Blockchain-Project/blockchain.py ```python import block import hashlib import time class Blockchain: def __init__(self, name): self.name = name self.chain = [] self.transactions = [] self.nodes = set() self.construct_genesis_block() self.bought = {} self.sold = {} self.in_circulation = {} self.last_block = self.chain[-1] def construct_genesis_block(self): self.construct_block("Genesis Coin", nonce = 0, prev_hash = 0) def construct_block(self, name, nonce, prev_hash): new_block = block.Block(name, len(self.chain), nonce, prev_hash, self.transactions) self.chain.append(new_block) return new_block def add_transaction(self, name, sender, recipient, quantity): self.transactions.append({ 'name': name, 'sender': sender, 'recipient': recipient, 'quantity': quantity, }) def buy(self, sender, receiver, quantity, traded_coin_quantity, coin_name): self.add_transaction(coin_name, sender, receiver, quantity) self.bought[coin_name] += (quantity/100) time.sleep(2) def sell(self, sender, receiver, quantity, traded_coin_quantity, coin_name): self.add_transaction((-1*coin_name), sender, receiver, quantity) self.sold[coin_name] += (quantity/100) time.sleep(2) def value(self, name): relation = self.bought[name]/self.sold[name] val = (pow(1.01, relation)) - 1 return val def check_validity(self, curr_block: block.Block, prev_block: block.Block): if curr_block.timestamp <= prev_block.timestamp: return False return True def verifying_proof(proof, last_proof): guess = f'{last_proof}{proof}'.encode() guess_hash = hashlib.sha256(guess).hexdigest() return guess_hash[:4] == "0000" def proof_of_work(last_proof): nonce = 0 while Blockchain.verifying_proof(nonce, last_proof) == False: nonce += 1 return nonce def mine(self, quantity, name, miner_receiver): self.add_transaction( name, "0", miner_receiver, quantity, ) last_block = self.last_block last_nonce = last_block.nonce nonce = Blockchain.proof_of_work(last_nonce) block = None time.sleep(quantity) if nonce != 0: last_hash = last_block.calculate_hash block = self.construct_block(self.name, nonce, last_hash) if (self.check_validity(block, last_block) == False): block = None self.chain.pop() else: self.in_circulation[name] += quantity return block def create_node(self, address): self.nodes.add(address) ```
{ "source": "jerradf/Crypto-Blockchain-Project-template", "score": 2 }
#### File: jerradf/Crypto-Blockchain-Project-template/colored_text.py ```python import colorama def print_green(s): print(colorama.Fore.GREEN + s) def print_white(s): print(colorama.Fore.WHITE + s) ```
{ "source": "jerradgenson/rapid-learn", "score": 2 }
#### File: rapid-learn/tools/preprocessing.py ```python def normalize(data): """ Normalize data set to have zero mean and unit variance. Args data: A numpy array of arrays containing input or target data. Returns A normalized numpy array of arrays. """ return (data - data.mean(axis=0)) / data.var(axis=0) ```
{ "source": "jerr/bcc", "score": 2 }
#### File: bcc/tools/runqslower.py ```python from __future__ import print_function from bcc import BPF import argparse from time import strftime import ctypes as ct # arguments examples = """examples: ./runqslower # trace run queue latency higher than 10000 us (default) ./runqslower 1000 # trace run queue latency higher than 1000 us ./runqslower -p 123 # trace pid 123 only """ parser = argparse.ArgumentParser( description="Trace high run queue latency", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=examples) parser.add_argument("-p", "--pid", type=int, metavar="PID", dest="pid", help="trace this PID only") parser.add_argument("min_us", nargs="?", default='10000', help="minimum run queue latecy to trace, in ms (default 10000)") parser.add_argument("--ebpf", action="store_true", help=argparse.SUPPRESS) args = parser.parse_args() min_us = int(args.min_us) debug = 0 # define BPF program bpf_text = """ #include <uapi/linux/ptrace.h> #include <linux/sched.h> #include <linux/nsproxy.h> #include <linux/pid_namespace.h> BPF_HASH(start, u32); struct rq; struct data_t { u32 pid; char task[TASK_COMM_LEN]; u64 delta_us; }; BPF_PERF_OUTPUT(events); // record enqueue timestamp static int trace_enqueue(u32 tgid, u32 pid) { if (FILTER_PID || pid == 0) return 0; u64 ts = bpf_ktime_get_ns(); start.update(&pid, &ts); return 0; } """ bpf_text_kprobe = """ int trace_wake_up_new_task(struct pt_regs *ctx, struct task_struct *p) { return trace_enqueue(p->tgid, p->pid); } int trace_ttwu_do_wakeup(struct pt_regs *ctx, struct rq *rq, struct task_struct *p, int wake_flags) { return trace_enqueue(p->tgid, p->pid); } // calculate latency int trace_run(struct pt_regs *ctx, struct task_struct *prev) { u32 pid, tgid; // ivcsw: treat like an enqueue event and store timestamp if (prev->state == TASK_RUNNING) { tgid = prev->tgid; pid = prev->pid; if (!(FILTER_PID || pid == 0)) { u64 ts = bpf_ktime_get_ns(); start.update(&pid, &ts); } } tgid = bpf_get_current_pid_tgid() >> 32; pid = bpf_get_current_pid_tgid(); u64 *tsp, delta_us; // fetch timestamp and calculate delta tsp = start.lookup(&pid); if (tsp == 0) { return 0; // missed enqueue } delta_us = (bpf_ktime_get_ns() - *tsp) / 1000; if (FILTER_US) return 0; struct data_t data = {}; data.pid = pid; data.delta_us = delta_us; bpf_get_current_comm(&data.task, sizeof(data.task)); // output events.perf_submit(ctx, &data, sizeof(data)); start.delete(&pid); return 0; } """ bpf_text_raw_tp = """ RAW_TRACEPOINT_PROBE(sched_wakeup) { // TP_PROTO(struct task_struct *p) struct task_struct *p = (struct task_struct *)ctx->args[0]; return trace_enqueue(p->tgid, p->pid); } RAW_TRACEPOINT_PROBE(sched_wakeup_new) { // TP_PROTO(struct task_struct *p) struct task_struct *p = (struct task_struct *)ctx->args[0]; u32 tgid, pid; bpf_probe_read(&tgid, sizeof(tgid), &p->tgid); bpf_probe_read(&pid, sizeof(pid), &p->pid); return trace_enqueue(tgid, pid); } RAW_TRACEPOINT_PROBE(sched_switch) { // TP_PROTO(bool preempt, struct task_struct *prev, struct task_struct *next) struct task_struct *prev = (struct task_struct *)ctx->args[1]; struct task_struct *next= (struct task_struct *)ctx->args[2]; u32 pid, tgid; long state; // ivcsw: treat like an enqueue event and store timestamp bpf_probe_read(&state, sizeof(long), &prev->state); if (state == TASK_RUNNING) { bpf_probe_read(&tgid, sizeof(prev->tgid), &prev->tgid); bpf_probe_read(&pid, sizeof(prev->pid), &prev->pid); if (!(FILTER_PID || pid == 0)) { u64 ts = bpf_ktime_get_ns(); start.update(&pid, &ts); } } bpf_probe_read(&tgid, sizeof(next->tgid), &next->tgid); bpf_probe_read(&pid, sizeof(next->pid), &next->pid); u64 *tsp, delta_us; // fetch timestamp and calculate delta tsp = start.lookup(&pid); if (tsp == 0) { return 0; // missed enqueue } delta_us = (bpf_ktime_get_ns() - *tsp) / 1000; if (FILTER_US) return 0; struct data_t data = {}; data.pid = pid; data.delta_us = delta_us; bpf_get_current_comm(&data.task, sizeof(data.task)); // output events.perf_submit(ctx, &data, sizeof(data)); start.delete(&pid); return 0; } """ is_support_raw_tp = BPF.support_raw_tracepoint() if is_support_raw_tp: bpf_text += bpf_text_raw_tp else: bpf_text += bpf_text_kprobe # code substitutions if min_us == 0: bpf_text = bpf_text.replace('FILTER_US', '0') else: bpf_text = bpf_text.replace('FILTER_US', 'delta_us <= %s' % str(min_us)) if args.pid: bpf_text = bpf_text.replace('FILTER_PID', 'pid != %s' % pid) else: bpf_text = bpf_text.replace('FILTER_PID', '0') if debug or args.ebpf: print(bpf_text) if args.ebpf: exit() # kernel->user event data: struct data_t DNAME_INLINE_LEN = 32 # linux/dcache.h TASK_COMM_LEN = 16 # linux/sched.h class Data(ct.Structure): _fields_ = [ ("pid", ct.c_uint), ("task", ct.c_char * TASK_COMM_LEN), ("delta_us", ct.c_ulonglong), ] # process event def print_event(cpu, data, size): event = ct.cast(data, ct.POINTER(Data)).contents print("%-8s %-16s %-6s %14s" % (strftime("%H:%M:%S"), event.task, event.pid, event.delta_us)) # load BPF program b = BPF(text=bpf_text) if not is_support_raw_tp: b.attach_kprobe(event="ttwu_do_wakeup", fn_name="trace_ttwu_do_wakeup") b.attach_kprobe(event="wake_up_new_task", fn_name="trace_wake_up_new_task") b.attach_kprobe(event="finish_task_switch", fn_name="trace_run") print("Tracing run queue latency higher than %d us" % min_us) print("%-8s %-16s %-6s %14s" % ("TIME", "COMM", "PID", "LAT(us)")) # read events b["events"].open_perf_buffer(print_event, page_cnt=64) while 1: b.perf_buffer_poll() ``` #### File: bcc/tools/tplist.py ```python import argparse import fnmatch import os import re import sys from bcc import USDT trace_root = "/sys/kernel/debug/tracing" event_root = os.path.join(trace_root, "events") parser = argparse.ArgumentParser( description="Display kernel tracepoints or USDT probes " + "and their formats.", formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument("-p", "--pid", type=int, default=None, help="List USDT probes in the specified process") parser.add_argument("-l", "--lib", default="", help="List USDT probes in the specified library or executable") parser.add_argument("-v", dest="verbosity", action="count", default=0, help="Increase verbosity level (print variables, arguments, etc.)") parser.add_argument(dest="filter", nargs="?", help="A filter that specifies which probes/tracepoints to print") args = parser.parse_args() def print_tpoint_format(category, event): fmt = open(os.path.join(event_root, category, event, "format")) \ .readlines() for line in fmt: match = re.search(r'field:([^;]*);', line) if match is None: continue parts = match.group(1).split() field_name = parts[-1:][0] field_type = " ".join(parts[:-1]) if field_name.startswith("common_"): continue print(" %s %s;" % (field_type, field_name)) def print_tpoint(category, event): tpoint = "%s:%s" % (category, event) if not args.filter or fnmatch.fnmatch(tpoint, args.filter): print(tpoint) if args.verbosity > 0: print_tpoint_format(category, event) def print_tracepoints(): for category in os.listdir(event_root): cat_dir = os.path.join(event_root, category) if not os.path.isdir(cat_dir): continue for event in os.listdir(cat_dir): evt_dir = os.path.join(cat_dir, event) if os.path.isdir(evt_dir): print_tpoint(category, event) def print_usdt_argument_details(location): for idx in range(0, location.num_arguments): arg = location.get_argument(idx) print(" argument #%d %s" % (idx + 1, arg)) def print_usdt_details(probe): if args.verbosity > 0: print(probe) if args.verbosity > 1: for idx in range(0, probe.num_locations): loc = probe.get_location(idx) print(" location #%d %s" % (idx + 1, loc)) print_usdt_argument_details(loc) else: print(" %d location(s)" % probe.num_locations) print(" %d argument(s)" % probe.num_arguments) else: print("%s %s:%s" % (probe.bin_path, probe.provider, probe.name)) def print_usdt(pid, lib): reader = USDT(path=lib, pid=pid) probes_seen = [] for probe in reader.enumerate_probes(): probe_name = probe.short_name() if not args.filter or fnmatch.fnmatch(probe_name, args.filter): if probe_name in probes_seen: continue probes_seen.append(probe_name) print_usdt_details(probe) if __name__ == "__main__": try: if args.pid or args.lib != "": print_usdt(args.pid, args.lib) else: print_tracepoints() except: if sys.exc_info()[0] is not SystemExit: print(sys.exc_info()[1]) ```
{ "source": "jerriais/SecureGateway", "score": 2 }
#### File: examples/climateapp/climateapp.py ```python import argparse import logging import os.path import sys try: import tkinter except ImportError: tkinter = None if sys.version_info < (3, 2, 0): raise EnvironmentError("Python version 3.2 or later required!") MODULES_DIRECTORY = os.path.abspath('../../modules') sys.path.append(MODULES_DIRECTORY) import sgframework DESCRIPTIVE_TEXT_TEMPLATE = """ A vehicle app example for the Secure Gateway concept architecture. This is an "App" according to the Secure Gateway nomenclature. It registers on the Secure Gateway network, and receives vehicle data. It can also send commands to the CAN-adapter to turn on the air condition. It can be used in two different modes. The command line mode should always be available. The graphical mode requires Tk installed on the machine. This is typically installed with: sudo apt-get install python3-tk This app can connect to the broker in a secure or insecure way. The settings of the broker determines what is allowed. To connect in the secure way, the directory of the certificate files must be specified. The certificate files should be named: CA file: {} Certificate file: {} Key file: {} """ APPNAME = "climateapp" CLIMATERESOURCE_NAME = "climateservice" MQTT_SIGNALNAME_AIRCONDITION = "aircondition" MQTT_SIGNALNAME_VEHICLESPEED = "vehiclespeed" MQTT_SIGNALNAME_ENGINESPEED = "enginespeed" MQTT_SIGNALNAME_INDOORTEMPERATURE = "actualindoortemperature" CAN_PAYLOAD_TRUE = 1 CAN_PAYLOAD_FALSE = 0 TIMEOUT = 0.1 # seconds def init_climateapp(): ## Parse command line and set output verbosity ## epilog = DESCRIPTIVE_TEXT_TEMPLATE.format(sgframework.Resource.CA_CERTS, sgframework.Resource.CERTFILE, sgframework.Resource.KEYFILE) commandlineparser = argparse.ArgumentParser(epilog=epilog, formatter_class=argparse.RawDescriptionHelpFormatter) commandlineparser.add_argument('-v', action='count', default=0, help="Increase verbosity level. Can be repeated.") commandlineparser.add_argument('-host', default='localhost', help="Broker host name. Defaults to %(default)s.") commandlineparser.add_argument('-port', default=1883, help="Broker port number. Defaults to %(default)s.") commandlineparser.add_argument('-cert', help="Directory for certificate files. Defaults to not using certificates.") commandlineparser.add_argument('-mode', choices=['commandline', 'graphical'], default='commandline', help="Type of use interface. Depends on graphical display. " + "Defaults to '%(default)s'.") commandline = commandlineparser.parse_args() if commandline.v == 1: loglevel = logging.INFO elif commandline.v >= 2: loglevel = logging.DEBUG else: loglevel = logging.WARNING logging.basicConfig(level=loglevel) ## Initialize Secure Gateway app framework ## app = sgframework.App(APPNAME, commandline.host, commandline.port, commandline.cert) app.timeout = TIMEOUT app.register_incoming_availability(app.PREFIX_RESOURCEAVAILABLE, CLIMATERESOURCE_NAME, "", on_resource_presence) for mqtt_signalname in [MQTT_SIGNALNAME_AIRCONDITION, MQTT_SIGNALNAME_VEHICLESPEED, MQTT_SIGNALNAME_ENGINESPEED, MQTT_SIGNALNAME_INDOORTEMPERATURE]: app.register_incoming_data(CLIMATERESOURCE_NAME, mqtt_signalname, on_incoming_data) app.on_broker_connectionstatus_info = on_broker_connectionstatus_info ## Select display mode ## if commandline.mode == 'graphical': displ = GraphicalAppDisplay(app) else: displ = CommandlineAppDisplay(app) app.userdata = displ app.start() return app def loop_climateapp(app): # Handle MQTT communication app.loop() # Update GUI if any displ = app.userdata try: displ.loop() except tkinter.TclError: app.logger.warning("The graphical app window was closed") app.stop() raise KeyboardInterrupt ############### ## Callbacks ## ############### def on_broker_connectionstatus_info(app, broker_connected): """Callback for use when the broker connection status info is available.""" displ = app.userdata displ.broker_connectionstatus = broker_connected def on_resource_presence(app, messagetype, servicename, signalname, payload): """Callback for use when receiving a MQTT message. Sets the presence information (on the display) about the resource in use. """ displ = app.userdata if payload == app.PAYLOAD_TRUE: presence = True else: presence = False displ.resource_online = presence logging.info("Resource online: {}".format(presence)) def on_incoming_data(app, messagetype, servicename, signalname, payload): """Callback for use when receiving a MQTT message. Sets display fields. """ displ = app.userdata if not displ.resource_online: app.logger.warning("Received signal from an offline resource. Servicename: {}, signalname: {}, payload: {}".format( servicename, signalname, payload)) return if signalname == MQTT_SIGNALNAME_VEHICLESPEED: displ.vehiclespeed = float(payload) elif signalname == MQTT_SIGNALNAME_ENGINESPEED: displ.enginespeed = float(payload) elif signalname == MQTT_SIGNALNAME_INDOORTEMPERATURE: displ.indoortemperature = float(payload) elif signalname == MQTT_SIGNALNAME_AIRCONDITION: displ.aircondition_state = bool(int(payload)) ###################### ## Main application ## ###################### def main(): app = init_climateapp() ## Main loop ## while True: try: loop_climateapp(app) except KeyboardInterrupt: sys.exit() ########################## ## Displays for the app ## ########################## STATE_UNKNOWN = -1 class CommandlineAppDisplay: def __init__(self, app): self.app = app self._broker_connectionstatus = False self._resource_online = False self._initialize_values() def _initialize_values(self): self._aircondition_state = STATE_UNKNOWN self._enginespeed = 0.0 self._vehiclespeed = 0.0 self._indoortemperature = 0.0 @property def broker_connectionstatus(self): return self._broker_connectionstatus @broker_connectionstatus.setter def broker_connectionstatus(self, value): self._broker_connectionstatus = bool(value) if not value: self._resource_online = False self.redraw() @property def resource_online(self): return self._resource_online @resource_online.setter def resource_online(self, value): self._resource_online = bool(value) self.redraw() @property def aircondition_state(self): return self._aircondition_state @aircondition_state.setter def aircondition_state(self, value): self._aircondition_state = bool(value) self.redraw() @property def vehiclespeed(self): return self._vehiclespeed @vehiclespeed.setter def vehiclespeed(self, value): self._vehiclespeed = float(value) self.redraw() @property def enginespeed(self): return self._enginespeed @enginespeed.setter def enginespeed(self, value): self._enginespeed = float(value) self.redraw() @property def indoortemperature(self): return self._indoortemperature @indoortemperature.setter def indoortemperature(self, value): self._indoortemperature = float(value) self.redraw() def loop(self): self.redraw() answer = input(" AC input: 'on'/'off' or Enter to redraw: ") if not answer: return if not self.resource_online: return if answer == 'on': logging.info("Turning on air condition") self.app.send_command(CLIMATERESOURCE_NAME, MQTT_SIGNALNAME_AIRCONDITION, CAN_PAYLOAD_TRUE) elif answer == 'off': logging.info("Turning off air condition") self.app.send_command(CLIMATERESOURCE_NAME, MQTT_SIGNALNAME_AIRCONDITION, CAN_PAYLOAD_FALSE) def redraw(self): if not self.broker_connectionstatus: statustext = "Not connected to broker " elif not self.resource_online: statustext = "Climateservice offline. " else: if self.aircondition_state == STATE_UNKNOWN: acstatus = "unknown" elif self.aircondition_state: acstatus = "on" else: acstatus = "off" TEMPLATE = "{:5.1f} km/h {:4.0f} RPM {:5.1f} degC, AC {:<8s}" statustext = TEMPLATE.format(self.vehiclespeed, self.enginespeed, self.indoortemperature, acstatus) sys.stdout.write("\r" + statustext) sys.stdout.flush() def close(self): pass class GraphicalAppDisplay(CommandlineAppDisplay): DISPLAY_TITLE = "Climate app" TEMPLATE_AIRCONDITION = "Air condition: {}" TEMPLATE_VEHICLESPEED = "Vehicle speed: {:.1f} km/h" TEMPLATE_ENGINESPEED = "Engine speed: {:.0f} RPM" TEMPLATE_TEMPERATURE = "In-car temperature: {:.1f} deg C" TEMPLATE_CONNECTION = "Connection status: {}" def __init__(self, app): if tkinter is None: raise ImportError("TK or tkinter is not installed") self._rootframe = tkinter.Tk() self._rootframe.title(self.DISPLAY_TITLE) self._label_temperature = tkinter.Label(self._rootframe, text="") self._label_temperature.pack() self._label_aircondition = tkinter.Label(self._rootframe, text="") self._label_aircondition.pack() self._button_on = tkinter.Button(self._rootframe, text="Air condition: Turn ON", width=25) self._button_on.pack() self._button_on.bind('<Button-1>', self._button_on_handler) self._button_off = tkinter.Button(self._rootframe, text="Air condition: Turn OFF", width=25) self._button_off.pack() self._button_off.bind('<Button-1>', self._button_off_handler) dummylabel = tkinter.Label(self._rootframe, text=" ") dummylabel.pack() self._label_vehiclespeed = tkinter.Label(self._rootframe, text="") self._label_vehiclespeed.pack() self._label_enginespeed = tkinter.Label(self._rootframe, text="") self._label_enginespeed.pack() dummylabel = tkinter.Label(self._rootframe, text=" ") dummylabel.pack() self._label_connectionstatus = tkinter.Label(self._rootframe, text="") self._label_connectionstatus.pack() super().__init__(app) self.loop() def _button_on_handler(self, event): if self.resource_online: logging.info("Turning on air condition") self.app.send_command(CLIMATERESOURCE_NAME, MQTT_SIGNALNAME_AIRCONDITION, CAN_PAYLOAD_TRUE) def _button_off_handler(self, event): if self.resource_online: logging.info("Turning off air condition") self.app.send_command(CLIMATERESOURCE_NAME, MQTT_SIGNALNAME_AIRCONDITION, CAN_PAYLOAD_FALSE) def loop(self): """Update the GUI""" self._rootframe.update_idletasks() self._rootframe.update() def close(self): """Close the GUI""" self._rootframe.destroy() def redraw(self): if not self.broker_connectionstatus: self._initialize_values() connectionstatus = "No broker" widget_state = tkinter.DISABLED ac_statustext = "unknown" ac_color = 'black' elif not self.resource_online: self._initialize_values() connectionstatus = "Climateservice offline" widget_state = tkinter.DISABLED ac_statustext = "unknown" ac_color = 'black' else: connectionstatus = "Climateservice online" widget_state = tkinter.NORMAL if self.aircondition_state == STATE_UNKNOWN: ac_statustext = "unknown" ac_color = 'black' elif self.aircondition_state: ac_statustext = "on" ac_color = 'green4' else: ac_statustext = "off" ac_color = 'red' self._label_connectionstatus.config(text=self.TEMPLATE_CONNECTION.format(connectionstatus)) self._button_on.config(state=widget_state) self._button_off.config(state=widget_state) self._label_vehiclespeed.config(text=self.TEMPLATE_VEHICLESPEED.format(self.vehiclespeed), state=widget_state) self._label_enginespeed.config(text=self.TEMPLATE_ENGINESPEED.format(self.enginespeed), state=widget_state) self._label_aircondition.config(text=self.TEMPLATE_AIRCONDITION.format(ac_statustext), state=widget_state, foreground=ac_color) self._label_temperature.config(text=self.TEMPLATE_TEMPERATURE.format(self.indoortemperature), state=widget_state) if __name__ == '__main__': main() ``` #### File: examples/minimal/minimaltaxisign.py ```python import time import sgframework def on_taxisign_state_command(resource, messagetype, servicename, commandname, commandpayload): if commandpayload.strip() == 'True': print("Turning on my taxi sign.", flush=True) return 'True' else: print("Turning off my taxi sign.", flush=True) return 'False' resource = sgframework.Resource('taxisignservice', 'localhost') resource.register_incoming_command('state', on_taxisign_state_command, defaultvalue='False', send_echo_as_retained=True) resource.start(use_threaded_networking=True) while True: time.sleep(1) ``` #### File: taxisignservice/drivers/output_pin_driver.py ```python FILE_FOR_GPIO_EXPORT = '/sys/class/gpio/export' TEMPLATE_FOR_GPIO_PIN_DIRECTION_FILE = '/sys/class/gpio/gpio{}/direction' TEMPLATE_FOR_GPIO_PIN_VALUE_FILE = '/sys/class/gpio/gpio{}/value' DIRECTION_OUT = 'out' GPIO_STATE_ON = '1' GPIO_STATE_OFF = '0' MODE_FILE_WRITE = 'w' import errno class Outputpin(object): """GPIO output pin representation. For controlling a GPIO output pin on a Beaglebone. Note that root permissions are required. Attributes: * state (bool): Turn on the GPIO output pin if the value is True. """ def __init__(self, GPIO_number): self._state = False self._GPIO_number = GPIO_number # Export the GPIO pin to Linux userspace try: with open(FILE_FOR_GPIO_EXPORT, MODE_FILE_WRITE) as f: f.write(str(self._GPIO_number)) except IOError as e: if e.errno != errno.EBUSY: # EBUSY: Pin is already exported. raise # Set pin in digital output mode file_for_gpio_pin_direction = TEMPLATE_FOR_GPIO_PIN_DIRECTION_FILE.format(self._GPIO_number) with open(file_for_gpio_pin_direction, MODE_FILE_WRITE) as f: f.write(DIRECTION_OUT) # Set initial state self.state = False @property def state(self): return self._state @state.setter def state(self, value): if value: filetext = GPIO_STATE_ON self._state = True else: filetext = GPIO_STATE_OFF self._state = False # Write pin value to the file-like driver interface file_for_gpio_pin_value = TEMPLATE_FOR_GPIO_PIN_VALUE_FILE.format(self._GPIO_number) with open(file_for_gpio_pin_value, MODE_FILE_WRITE) as f: f.write(filetext) ######################################################## # Testing the module # # # # Connect a LED from port8 pin3 to ground via 470 Ohm. # # The voltage is 3.3 V on the pin. # # The output is gpmc_ad6 = GPIO1_6 # # This is GPIO 38 (1*32 + 6) # # # ######################################################## if __name__ == '__main__': import time pin = Outputpin(38) pin.state = True time.sleep(1) pin.state = False time.sleep(1) pin.state = True time.sleep(1) pin.state = False ``` #### File: examples/vehiclesimulator/vehiclesimulator.py ```python import argparse import logging import time import sys import can4python as can import vehiclesimulationutilities # Settings # CYCLE_TIME = 0.1 # seconds def init_vehiclesimulator(): """Initialize the vehicle simulator. Returns the tuple (temperature_simulator, speed_simulator, canbus) """ # Define CAN messages # # Example on how to define CAN signals in source code CAN_EGO_NODE_ID = "2" FRAMEDEF1 = can.CanFrameDefinition(8, name='vehiclesimulationdata') FRAMEDEF1.producer_ids = [CAN_EGO_NODE_ID] FRAMEDEF1.signaldefinitions.append(can.CanSignalDefinition('vehiclespeed', startbit=8, numberofbits=16, scalingfactor=0.01, endianness='big')) FRAMEDEF1.signaldefinitions.append(can.CanSignalDefinition('enginespeed', startbit=26, numberofbits=14, endianness='big')) FRAMEDEF2 = can.CanFrameDefinition(9, name='climatesimulationdata') FRAMEDEF2.producer_ids = [CAN_EGO_NODE_ID] FRAMEDEF2.signaldefinitions.append(can.CanSignalDefinition('indoortemperature', startbit=8, numberofbits=11, valueoffset=-50, scalingfactor=0.1, endianness='big')) FRAMEDEF3 = can.CanFrameDefinition(7, name='climatecontrolsignals') FRAMEDEF3.signaldefinitions.append(can.CanSignalDefinition('acstatus', startbit=7, numberofbits=1, endianness='big')) CONFIG = can.Configuration(ego_node_ids=[CAN_EGO_NODE_ID]) CONFIG.add_framedefinition(FRAMEDEF1) CONFIG.add_framedefinition(FRAMEDEF2) CONFIG.add_framedefinition(FRAMEDEF3) # Parse command line and set output verbosity # commandlineparser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter) commandlineparser.add_argument('-v', action='count', default=0, help="Increase verbosity level. Can be repeated.") commandlineparser.add_argument('-i', dest="interface", default="vcan0", help="CAN interface name. Defaults to %(default)s.") commandline = commandlineparser.parse_args() if commandline.v == 1: loglevel = logging.INFO elif commandline.v >= 2: loglevel = logging.DEBUG else: loglevel = logging.WARNING logging.basicConfig(level=loglevel) # Set up CAN bus # logging.info(" ") logging.info(" ") logging.info("Starting vehicle simulator, using CAN interface {!r} with timeout {} s.".format( commandline.interface, CYCLE_TIME)) canbus = can.CanBus(CONFIG, commandline.interface, timeout=CYCLE_TIME) logging.debug(canbus.get_descriptive_ascii_art()) # Set up simulators # speed_simulator = vehiclesimulationutilities.VehicleSpeedSimulator() temperature_simulator = vehiclesimulationutilities.CabinTemperatureSimulator() return temperature_simulator, speed_simulator, canbus def loop_vehiclesimulator(temperature_simulator, speed_simulator, canbus): # Run simulators # temperature = temperature_simulator.get_new_temperature() vehiclespeed = speed_simulator.get_new_randomized_speed() enginespeed = vehiclesimulationutilities.calculate_engine_speed(vehiclespeed) logging.info(" {0:5.1f} km/h, {1:4.0f} RPM, {2:4.1f} deg C. Air condition state: {3}".format( vehiclespeed, enginespeed, temperature, temperature_simulator.aircondition_state)) # Send CAN data # signals_to_send = {'indoortemperature': temperature, 'vehiclespeed': vehiclespeed, 'enginespeed': enginespeed} canbus.send_signals(signals_to_send) # Receive CAN data, if available # readstart = time.time() try: received = canbus.recv_next_signals() except KeyboardInterrupt: logging.warning("Keyboard interrupt. Quitting.") raise except can.CanTimeoutException: received = {} except can.CanException as err: logging.warning('Failed to receive CAN frame. Error: {}'.format(err)) received = {} readtime = time.time() - readstart time.sleep(max(0, CYCLE_TIME-readtime)) # Set air condition state # if 'acstatus' in received: temperature_simulator.aircondition_state = bool(received['acstatus']) ###################### ## Main application ## ###################### def main(): temperature_simulator, speed_simulator, canbus = init_vehiclesimulator() ## Main loop ## while True: try: loop_vehiclesimulator(temperature_simulator, speed_simulator, canbus) except KeyboardInterrupt: sys.exit() if __name__ == '__main__': main() ``` #### File: SecureGateway/tests/test_servicemanager.py ```python import os.path import os import signal import subprocess import sys import time import unittest assert sys.version_info >= (3, 3, 0), "Python version 3.3 or later required!" THIS_DIRECTORY = os.path.dirname(os.path.abspath(__file__)) PARENT_DIRECTORY = os.path.dirname(THIS_DIRECTORY) SOURCE_DIRECTORY = os.path.join(PARENT_DIRECTORY, 'scripts/') sys.path.append(SOURCE_DIRECTORY) MQTT_TOPICS_TO_DELETE = [ 'dataavailable/testresource2/testdata1', 'dataavailable/testresource2/testdata2', 'dataavailable/testresource2/testdata3', 'commandavailable/testresource2/testcommand1', 'commandavailable/testresource2/testcommand2', 'commandavailable/testresource2/testcommand3', 'resourceavailable/testresource2/presence', ] class TestServicemanager(unittest.TestCase): OUTPUT_FILE_SUBSCRIBER = 'temporary-sub.txt' def setUp(self): self.environment = os.environ.copy() self.environment["COVERAGE_PROCESS_START"] = os.path.join(THIS_DIRECTORY, "coveragerc") def tearDown(self): # Delete temporary filess try: os.remove(self.OUTPUT_FILE_SUBSCRIBER) except FileNotFoundError: pass # Delete persistent MQTT messages for topic in MQTT_TOPICS_TO_DELETE: pub = subprocess.Popen(['mosquitto_pub', '-t', topic, '-r', '-n']) time.sleep(0.2) pub.terminate() def testServicemanager(self): with open(self.OUTPUT_FILE_SUBSCRIBER, 'w') as subscriber_outputfile: subcriber = subprocess.Popen(['mosquitto_sub', '-v', '-t', '+/#'], stdout=subscriber_outputfile, stderr=subprocess.STDOUT) servicemanager = subprocess.Popen(['python3', 'scripts/servicemanager'], stderr=subprocess.STDOUT, env=self.environment) time.sleep(3) # Simulate a starting resource (so the servicemanager can store the data) mqtt_message_list = [('resourceavailable/testresource2/presence', 'True'), ('dataavailable/testresource2/testdata1', 'True'), ('dataavailable/testresource2/testdata2', 'True'), ('dataavailable/testresource2/testdata3', 'True'), ('commandavailable/testresource2/testcommand1', 'True'), ('commandavailable/testresource2/testcommand2', 'True'), ('commandavailable/testresource2/testcommand3', 'True'), ] for topic, payload in mqtt_message_list: pub1 = subprocess.Popen(['mosquitto_pub', '-t', topic, '-m', payload]) time.sleep(0.2) pub1.terminate() time.sleep(3) # Simulate a stopping resource pub1 = subprocess.Popen(['mosquitto_pub', '-t', 'resourceavailable/testresource2/presence', '-m', 'False']) time.sleep(2) pub1.terminate() # Test error handling mqtt_message_list = [('resourceavailable/testresource3/presence/extralevel', 'True'), ('resourceavailable/testresource4/presence', 'False'), ('a/b', '1.2.3'), ('hatt/testresource5/presence', 'True'), ] for topic, payload in mqtt_message_list: pub1 = subprocess.Popen(['mosquitto_pub', '-t', topic, '-m', payload]) time.sleep(0.2) pub1.terminate() # Terminate servicemanager, and flush files servicemanager.send_signal(signal.SIGINT) time.sleep(1) servicemanager.terminate() time.sleep(1) servicemanager.kill() time.sleep(3) subcriber.kill() time.sleep(0.5) subscriber_outputfile.flush() os.fsync(subscriber_outputfile.fileno()) # Verify that the servicemanager has sent proper MQTT messages with open(self.OUTPUT_FILE_SUBSCRIBER, 'r') as subscriber_outputfile: text = ' '.join(subscriber_outputfile.readlines()) self.assertIn("dataavailable/testresource2/testdata1 False", text) self.assertIn("dataavailable/testresource2/testdata2 False", text) self.assertIn("dataavailable/testresource2/testdata3 False", text) self.assertIn("commandavailable/testresource2/testcommand1 False", text) self.assertIn("commandavailable/testresource2/testcommand2 False", text) self.assertIn("commandavailable/testresource2/testcommand3 False", text) if __name__ == '__main__': # Run all tests # unittest.main(verbosity=2) # Run a single test # # suite = unittest.TestSuite() # suite.addTest(TestCanBus("testReceiveNoData")) # unittest.TextTestRunner(verbosity=2).run(suite) ```
{ "source": "jerrickhoang/rllab", "score": 2 }
#### File: thanard/me-trpo/env_helpers.py ```python import numpy as np import tensorflow as tf import os.path import rllab.misc.logger as rllab_logger from rllab.envs.normalized_env import normalize from rllab.envs.gym_env import GymEnv from envs import * from sandbox.rocky.tf.envs.base import TfEnv #################### #### Environment ### #################### def get_env(env_name): if env_name == 'snake': return TfEnv(normalize(SnakeEnv())) elif env_name == 'swimmer': return TfEnv(normalize(SwimmerEnv())) elif env_name == 'benchmark-half-cheetah': return TfEnv(normalize(BenchmarkHalfCheetahEnv())) elif env_name == 'half-cheetah': return TfEnv(normalize(HalfCheetahEnv())) elif env_name == 'hopper': return TfEnv(normalize(HopperEnv())) elif env_name == 'ant': return TfEnv(normalize(AntEnv())) # elif env_name == 'humanoidstandup': # return TfEnv(GymEnv('HumanoidStandup-v1', # record_video=False, # record_log=False)) elif env_name == 'humanoid': return TfEnv(normalize(HumanoidEnv())) # elif env_name == 'simple_humanoid': # return TfEnv(normalize(SimpleHumanoidEnv())) else: assert False, "Define the env from env_name." policy_scope = 'training_policy' clip_action = '' def get_action(observation, policy_in, policy_out, sess, action_noise, **kwargs): # TODO think about what to do in first iteration when diff weights is None. action = sess.run(policy_out, feed_dict={policy_in: np.array([observation])}) # More noisy as t increases, max_var = 1.0 n_actions = len(action) action += action_noise * np.random.randn(n_actions) return np.clip(action, *kwargs['action_bounds']) def prepare_policy(sess, param_noise, diff_weights, initial_param_std): if diff_weights is not None: num_weight_vars = diff_weights.shape[0] flat_weight_update = param_noise * diff_weights * np.random.randn(num_weight_vars) fwu_ph = tf.get_collection('perturb_policy')[0] opts = tf.get_collection('perturb_policy')[1:] sess.run(opts, feed_dict={fwu_ph: flat_weight_update}) return np.mean(np.abs(flat_weight_update)) assert initial_param_std == 0.0 return 0.0 def write_stats(dict, data): for key, value in dict.items(): if '%' in key: value.append(np.percentile(data, int(key[:-1]), axis=0)) elif key == 'avg': value.append(np.mean(data, axis=0)) elif key == 'batch_size': value.append(len(data)) else: assert False def write_to_csv(data, timesteps, path): # Make it 2D np array make_values_np_array(data) # Save to csv import csv header = sorted(data.keys()) with open(path, 'w', newline='') as f: writer = csv.writer(f) writer.writerow(['timesteps'] + header) for i, timestep in enumerate(timesteps): writer.writerow([str(timestep)] + [str(data[h][i]) for h in header]) # with open(os.path.join(log_dir,'errors_state_cost_%d.csv'%count), 'w', newline='') as f: # writer = csv.writer(f) # writer.writerow(['timesteps'] + header) # for i, timestep in enumerate(timesteps): # writer.writerow([str(timestep)] + ["%f"%errors['state_diff'][h][i][-1] if # h =='batch_size' else # errors['state_diff'][h][i] for h in header]) def make_values_np_array(dict): for key, value in dict.items(): dict[key] = np.array(value) # Under the current policy and dynamics models, we sample roll-outs from a set of fixed initial states. # We also perturb the policy on its parameters and compute the average. def evaluate_model_predictions(env, policy_in, policy_out, dynamics_in, dynamics_out, reset_initial_states, sess, log_dir, count, # For logging csv max_timestep, cost_np_vec, timesteps=(1, 3, 5, 7, 10, 12, 15, 18, 20, 100)): errors = {'timesteps': timesteps, 'l2_sum': [], 'l1_sum': [], 'l1_state_cost': [], 'state_diff':{ '100%':[], '0%':[], '75%':[], '25%':[], '50%':[], 'avg':[], 'batch_size':[] }, 'cost_diff': { '100%': [], '0%': [], '75%': [], '25%': [], '50%': [], 'avg': [], 'batch_size': [] } } # Get numpy arrays Os, As, Rs Os, As, Rs = sample_fixed_init_trajectories(env, policy_in, policy_out, reset_initial_states, sess, max_timestep) assert max_timestep == Rs.shape[1] # Compute the errors for timestep in timesteps: n_states = Os.shape[2] Xs = np.reshape(Os[:, :-timestep, :], (-1, n_states)) Ys = np.reshape(Os[:, timestep:, :], (-1, n_states)) costs = np.zeros(len(Xs)) rewards = np.zeros(len(Xs)) observations = Xs for t in range(timestep): actions = sess.run(policy_out, feed_dict={policy_in: observations}) actions = np.clip(actions, *env.action_space.bounds) next_observations = sess.run(dynamics_out, feed_dict={dynamics_in: np.concatenate([observations, actions], axis=1)}) costs += cost_np_vec(observations, actions, next_observations) rewards += np.reshape(Rs[:, t:t+max_timestep+1-timestep], -1) # Update observations observations = next_observations # Get the different after t steps state_diff = np.abs(Ys - observations) cost_diff = np.abs(costs + rewards) # Add errors errors['l1_sum'].append(np.mean(np.sum(state_diff, axis=1))) errors['l2_sum'].append(np.mean(np.sum(state_diff, axis=1))) errors['l1_state_cost'].append(np.mean(state_diff[:, -1])) write_stats(errors['state_diff'], state_diff) write_stats(errors['cost_diff'], cost_diff) write_to_csv(errors['state_diff'], timesteps, os.path.join(log_dir, 'state_diff_%d.csv' % count)) write_to_csv(errors['cost_diff'], timesteps, os.path.join(log_dir, 'cost_diff_%d.csv' % count)) return errors # TODO: fix when early stop def get_error_distribution(policy_in, policy_out, dynamics_in, dynamics_out, env, cost_np_vec, sess, logger, log_dir, count, horizon=100, sample_size=100, known_actions=False, is_plot=False ): real_costs = [] initial_states = [] actions = [] real_final_states = [] # Compute real costs for i in range(sample_size): x = env.reset() initial_states.append(x) real_cost = 0 _action = [] for t in range(horizon): action = sess.run(policy_out, feed_dict={policy_in: x[None]})[0] x, r, done, _ = env.step(action) _action.append(action) real_cost -= r if done: break actions.append(_action) real_costs.append(real_cost) real_final_states.append(x) real_costs = np.array(real_costs) real_final_states = np.array(real_final_states) # Compute estimated costs o = np.array(initial_states) actions = np.clip(actions, -1, 1) estimated_costs = np.zeros_like(real_costs) for t in range(horizon): # Sim step if known_actions: a = actions[:, t, :] else: a = np.clip(sess.run( policy_out, feed_dict={policy_in: o} ), *env.action_space.bounds) o_next = sess.run(dynamics_out, feed_dict={dynamics_in: np.concatenate([o, a], axis=1)}) estimated_costs += cost_np_vec(o, a, o_next) # update o = o_next # Plot e_cost = estimated_costs - real_costs e_state = o - real_final_states loss = np.sum(np.square(e_state), axis=1) logger.info('### Real cost ###') logger.info('mean: {}'.format(np.mean(real_costs))) logger.info('std: {}'.format(np.std(real_costs))) logger.info('median: {}'.format(np.median(real_costs))) logger.info("### Total cost difference ###") logger.info('mean: {}'.format(np.mean(e_cost))) logger.info('std: {}'.format(np.std(e_cost))) logger.info('median: {}'.format(np.median(e_cost))) logger.info("### Final state error ###") logger.info('mean: {}'.format(np.mean(loss))) logger.info('std: {}'.format(np.std(loss))) logger.info('median: {}'.format(np.median(loss))) logger.info("### Dimension mean ###") logger.info(np.mean(np.square(e_state), axis=0)) if is_plot: import matplotlib as mpl mpl.use('Agg') import pandas as pd import seaborn as sns import matplotlib.pyplot as plt x = pd.Series(e_cost, name="total cost difference") sns.distplot(x) plt.savefig(os.path.join(log_dir, 'cost_diff_dist_%d.png' % count)) plt.close() plt.figure() x = pd.Series(loss, name="final state prediction error (L2)") sns.distplot(x, color='g') plt.savefig(os.path.join(log_dir, 'state_diff_dist_%d.png' % count)) plt.close() return (e_cost, e_state) def test_policy_cost(policy_init, policy_cost, policy_in, policy_out, dynamics_in, dynamics_out, env, cost_np_vec, sess, horizon=100, sample_size=10, is_done=None ): ''' :return: verify if the trajectory costs computed in tensorflow and numpy. We check the average over sample_size trajectories. ''' initial_states = np.array([env.reset() for i in range(sample_size)]) estimated_policy_cost = sess.run(policy_cost, feed_dict={policy_init: initial_states}) o = initial_states estimated_cost = 0 dones = np.array([False for i in range(sample_size)]) for t in range(horizon): # Sim step a = np.clip(sess.run( policy_out, feed_dict={policy_in: o} ), *env.action_space.bounds) o_next = sess.run(dynamics_out, feed_dict={dynamics_in: np.concatenate([o, a], axis=1)}) estimated_cost += np.mean((1-dones)*cost_np_vec(o, a, o_next)) o = o_next if is_done is not None and is_done(o, o_next).any(): dones[is_done(o, o_next)] = True print(estimated_cost, estimated_policy_cost) assert np.allclose(estimated_cost, estimated_policy_cost) # Make sure that this can be found and matched to the policy learning curve. def sample_fixed_init_trajectories(env, policy_in, policy_out, reset_initial_states, sess, max_timestep): Os = [] As = [] Rs = [] for x in reset_initial_states: _os = [] _as = [] _rs = [] if hasattr(env.wrapped_env, 'wrapped_env'): observation = env.wrapped_env.wrapped_env.reset(x) else: env.reset() half = int(len(x)/2) inner_env = env.wrapped_env.env.unwrapped inner_env.set_state(x[:half], x[half:]) observation = inner_env._get_obs() _os.append(observation) for t in range(max_timestep): action = sess.run(policy_out, feed_dict={policy_in: observation[None]}) next_observation, reward, done, info = env.step(action[0]) _os.append(next_observation) _as.append(action[0]) _rs.append(reward) # Update observation observation = next_observation if done: break Os.append(_os) As.append(_as) Rs.append(_rs) return np.array(Os), np.array(As), np.array(Rs) # Sample a batch of trajectories from an environment # Use tensorflow policy given as (in and out). # Batch size is the total number of transitions (not trajectories). def sample_trajectories(env, policy_in, policy_out, exploration, batch_size, saver, diff_weights, log_dir, logger, is_monitored, monitorpath, sess, max_timestep, render_every=None, cost_np=None, is_done=None): saver.save(sess, os.path.join(log_dir, 'policy.ckpt'), write_meta_graph=False) if is_monitored: from gym import wrappers env = wrappers.Monitor(env, monitorpath) Os = [] As = [] Rs = [] max_eps_reward = -np.inf min_eps_reward = np.inf avg_eps_reward = 0.0 _counter = 1 while _counter <= batch_size: o = [] a = [] r = [] if is_monitored: env.stats_recorder.done = True observation = env.reset() o.append(observation) episode_reward = 0.0 avg_weight_change = prepare_policy(sess, exploration['param_noise'], diff_weights, exploration['initial_param_std']) for t in range(max_timestep): # Perturb policy. if exploration['vary_trajectory_noise']: action_noise = exploration['action_noise']*np.random.uniform() else: action_noise = exploration['action_noise'] action = get_action(observation, policy_in, policy_out, sess, action_noise=action_noise, action_bounds=env.action_space.bounds) observation, reward, done, info = env.step(action) # Debug is_done if is_done is not None: assert done == is_done(o[-1][None], observation[None])[0] o.append(observation) a.append(action[0]) r.append(reward) episode_reward += reward _counter += 1 if render_every is not None and len(Os) % render_every == 0: env.render() if done: break # debugging cost function if cost_np is not None: cost_np_value = cost_np(np.array(o[:-1]), np.array(a), np.array(o[1:])) episode_cost = len(a) * cost_np_value # Check if cost_np + env_reward == 0 logger.info('%d steps, cost %.2f, verify_cost %.3f, avg_weight_change %.3f' % (_counter - 1, episode_cost, episode_reward + episode_cost, avg_weight_change)) else: logger.info('%d steps, reward %.2f, avg_weight_change %.3f' % (_counter - 1, episode_reward, avg_weight_change)) # Recover policy saver.restore(sess, os.path.join(log_dir, 'policy.ckpt')) logger.debug("Restored the policy back to %s" % os.path.join(log_dir, 'policy.ckpt')) Os.append(o) As.append(a) Rs.append(r) # Update stats avg_eps_reward += episode_reward if episode_reward > max_eps_reward: max_eps_reward = episode_reward if episode_reward < min_eps_reward: min_eps_reward = episode_reward avg_eps_reward /= len(Os) rllab_logger.record_tabular('EpisodesCollected', len(Os)) rllab_logger.record_tabular('TimeStepsCollected', _counter - 1) return Os, As, Rs, {'avg_eps_reward': avg_eps_reward, 'min_eps_reward': min_eps_reward, 'max_eps_reward': max_eps_reward} def reset_batch(envs, reset_initial_states): obs = [] for env, x in zip(envs, reset_initial_states): if hasattr(env.wrapped_env, 'wrapped_env'): obs.append(env.wrapped_env.wrapped_env.reset(x)) else: env.reset() half = int(len(x) / 2) inner_env = env.wrapped_env.env.unwrapped inner_env.set_state(x[:half], x[half:]) obs.append(inner_env._get_obs()) return np.array(obs) def step_batch(envs, actions): next_steps = [env.step(action) for (env, action) in zip(envs, actions)] next_obs, rs, ds, infos = list(zip(*next_steps)) return np.array(next_obs), np.array(rs), np.array(ds), infos # Given a batch of initial states and a policy, do deterministic rollout on real env. # Don't render. Add cost function evaluation. def evaluate_fixed_init_trajectories(env, policy_in, policy_out, reset_initial_states, cost_np_vec, sess, max_timestep=100, gamma=1.0): import pickle n_envs = len(reset_initial_states) envs = [pickle.loads(pickle.dumps(env)) for _ in range(n_envs)] observations = reset_batch(envs, reset_initial_states) dones = [False for _ in range(n_envs)] cost = 0.0 reward = 0.0 for t in range(max_timestep): actions = sess.run(policy_out, feed_dict={policy_in: observations}) # clipping actions = np.clip(actions, *env.action_space.bounds) next_observations, _rewards, _dones, _ = step_batch(envs, actions) dones = np.logical_or(dones, _dones) # Update rewards and costs rewards = (1.0 - dones) * _rewards * gamma**t costs = (1.0-dones)*cost_np_vec(observations, actions, next_observations) * gamma**t # Update observation observations = next_observations cost += np.mean(costs) reward += np.mean(rewards) # assert cost + reward < 1e-2, "cost is {}, reward is {}".format(cost, reward) return cost # def evaluate_learned_dynamics_trajectories(dynamics_in, # dynamics_out, # policy_in, # policy_out, # initial_states, # cost_np, sess, # max_timestep=100): # batch_size, n_states = initial_states.shape # avg_eps_cost = 0.0 # # observations = initial_states # for t in range(max_timestep): # actions = sess.run(policy_out, feed_dict={policy_in: observations}) # actions = np.clip(actions, -1.0, 1.0) # # Only using model 0. # next_observations = sess.run(dynamics_out, # feed_dict={dynamics_in: np.concatenate([observations, actions], axis=1)}) # avg_cost = cost_np(observations, actions, next_observations) # # Update observations # observations = next_observations # # Update cost # avg_eps_cost += avg_cost # return avg_eps_cost from rllab.envs.base import Env from rllab.envs.base import Step class NeuralNetEnv(Env): def __init__(self, env, inner_env, cost_np, dynamics_in, dynamics_outs, sam_mode): self.vectorized = True self.env = env self.cost_np = cost_np self.is_done = getattr(inner_env, 'is_done', lambda x, y: np.asarray([False] * len(x))) self.dynamics_in = dynamics_in self.dynamics_outs = dynamics_outs self.n_models = len(dynamics_outs) self.sam_mode = sam_mode super(NeuralNetEnv, self).__init__() @property def observation_space(self): return self.env.observation_space @property def action_space(self): return self.env.action_space def reset(self): self._state = self.env.reset() observation = np.copy(self._state) return observation def step(self, action): sess = tf.get_default_session() action = np.clip(action, *self.action_space.bounds) index = np.random.randint(self.n_models) next_observation = sess.run(self.dynamics_outs[index], feed_dict={self.dynamics_in: np.concatenate([self._state, action])[None]}) reward = - self.cost_np(self._state[None], action[None], next_observation) done = self.is_done(self._state[None], next_observation)[0] self._state = np.reshape(next_observation, -1) return Step(observation=self._state, reward=reward, done=done) def render(self): print('current state:', self._state) def vec_env_executor(self, n_envs, max_path_length): return VecSimpleEnv(env=self, n_envs=n_envs, max_path_length=max_path_length) class VecSimpleEnv(object): def __init__(self, env, n_envs, max_path_length): self.env = env self.n_envs = n_envs self.num_envs = n_envs self.states = np.zeros((self.n_envs, env.observation_space.shape[0])) self.ts = np.zeros((self.n_envs,)) self.max_path_length = max_path_length self.cur_model_idx = np.random.randint(len(self.env.dynamics_outs), size=(n_envs, )) def reset(self, dones=None): if dones is None: dones = np.asarray([True] * self.n_envs) else: dones = np.cast['bool'](dones) for i, done in enumerate(dones): if done: self.states[i] = self.env.reset() self.cur_model_idx[i] = np.random.randint(len(self.env.dynamics_outs)) self.ts[dones] = 0 return self.states[dones] def step(self, actions): self.ts += 1 actions = np.clip(actions, *self.env.action_space.bounds) next_observations = self.get_next_observation(actions) rewards = - self.env.cost_np(self.states, actions, next_observations) self.states = next_observations dones = self.env.is_done(self.states, next_observations) dones[self.ts >= self.max_path_length] = True if np.any(dones): self.reset(dones) return self.states, rewards, dones, dict() def get_next_observation(self, actions): sess = tf.get_default_session() sam_mode = self.env.sam_mode next_possible_observations = sess.run(self.env.dynamics_outs, feed_dict={self.env.dynamics_in: np.concatenate([self.states, actions], axis=1)}) next_possible_observations = np.array(next_possible_observations) if sam_mode == 'step_rand': # Choose a random model for each batch. indices = np.random.randint(self.env.n_models, size=self.n_envs) next_observations = next_possible_observations[indices, range(self.n_envs)] elif sam_mode == 'eps_rand': indices = self.cur_model_idx next_observations = next_possible_observations[indices, range(self.n_envs)] elif sam_mode == 'model_mean_std': std = np.std(next_possible_observations, axis=0) next_observations = np.mean(next_possible_observations, axis=0) + np.random.normal(size=std.shape)*std elif sam_mode == 'model_mean': next_observations = np.mean(next_possible_observations, axis=0) elif sam_mode == 'model_med': next_observations = np.median(next_possible_observations, axis=0) elif sam_mode == 'one_model': next_observations = next_possible_observations[0] else: assert False, "sam mode %s is not defined." % sam_mode return next_observations ``` #### File: thanard/me-trpo/model_based_rl.py ```python import tensorflow as tf import numpy as np import pickle import os import logging from env_helpers import sample_trajectories, \ evaluate_fixed_init_trajectories, evaluate_model_predictions, \ get_error_distribution, test_policy_cost, NeuralNetEnv from utils import * from svg_utils import setup_gradients, svg_update import rllab.misc.logger as rllab_logger import time import copy import joblib np.set_printoptions( formatter={ 'float_kind': lambda x: "%.2f" % x } ) TF_SUMMARY = True def build_dynamics_graph(scope, dynamics_model, dynamics_in, dynamics_in_full, y_training_full, n_dynamics_input, n_models, get_regularizer_loss, n_states, logger): ''' Build dynamics tensorflow graph at training and test times. :param scope: :param dynamics_model: :param dynamics_in: :param y_training: :param dynamics_in_full: :param y_training_full: :param n_dynamics_input: :param n_models: :param get_regularizer_loss: :param n_states: :return: ''' # For training _dynamics_outs = [ dynamics_model( get_ith_tensor(dynamics_in_full, i, n_dynamics_input), scope, 'model%d' % i, collect_summary=TF_SUMMARY ) for i in range(n_models) ] _regularizer_losses = [get_regularizer_loss(scope, 'model%d' % i) for i in range(n_models)] _prediction_losses = [ tf.reduce_mean( tf.reduce_sum( tf.square( y_predicted - get_ith_tensor( y_training_full, i, n_states ) ), axis=[1] ) ) for i, y_predicted in enumerate(_dynamics_outs) ] prediction_loss = tf.reduce_sum(_prediction_losses, name='total_prediction_loss') regularizer_loss = tf.reduce_sum(_regularizer_losses, name='total_regularizer_loss') # Add summaries with tf.name_scope('%s/prediction_loss' % scope): tf.summary.histogram('dist_over_models', _prediction_losses) tf.summary.scalar('summary', prediction_loss) assert len(_prediction_losses) == len(_regularizer_losses) dynamics_losses = [ _prediction_losses[i] + _regularizer_losses[i] for i in range(len(_prediction_losses)) ] dynamics_loss = tf.add(prediction_loss, regularizer_loss, name='total_dynamics_loss') logger.info("Defined %d models in scope %s" % (n_models, scope)) # At test time _dynamics_outs = [ dynamics_model( dynamics_in, scope, 'model%d' % i ) for i in range(n_models) ] # TODO: change this hack back. # avg_prediction = tf.reduce_mean(tf.stack(_dynamics_outs, axis=0), # axis=0, # name='avg_prediction') logger.info("Built prediction network for scope %s" % (scope)) return dynamics_loss, prediction_loss, regularizer_loss, _dynamics_outs, dynamics_losses def build_policy_graph(policy_scope, scope, policy_training_init, n_models, policy_opt_params, policy_model, dynamics_model, env, cost_tf, logger, is_env_done_tf=None, stochastic=None): # TODO: Think about using avg model in each prediction step. _policy_costs = [] n_saturates = 0 # Debug with tf.name_scope(scope): for i in range(n_models): # Initial states x = policy_training_init _policy_cost = 0 dones = 0.0 for t in range(policy_opt_params.T): u = tf.clip_by_value(policy_model(x, stochastic), *env.action_space.bounds) n_saturates += tf.cast(tf.equal(tf.abs(u), 1.0), tf.int32) x_next = dynamics_model(tf.concat([x, u], axis=1), scope, 'model%d' % i) # Update dones after computing cost. if is_env_done_tf is not None: _policy_cost += (policy_opt_params.gamma ** t) * cost_tf(x, u, x_next, dones=dones) dones = tf.maximum(dones, is_env_done_tf(x, x_next)) else: _policy_cost += (policy_opt_params.gamma ** t) * cost_tf(x, u, x_next) # Move forward 1 step. x = x_next _policy_costs.append(_policy_cost) # Average over cost from all dynamics models # Collecting summary with tf.name_scope('%s/policy_cost' % policy_scope): tf.summary.histogram('dist_over_models', _policy_costs) tf.summary.scalar('cost_on_model0', _policy_costs[0]) policy_model(policy_training_init, collect_summary=TF_SUMMARY) logger.info("Built %d policy graphs for %s model" % (n_models, scope)) return _policy_costs, n_saturates def get_dynamics_optimizer(scope, prediction_loss, reg_loss, dynamics_opt_params, logger): with tf.variable_scope('adam_' + scope): # Allow learning rate decay schedule. if type(dynamics_opt_params.learning_rate) == dict: adaptive_lr = tf.Variable(dynamics_opt_params.learning_rate["scratch"], trainable=False) else: adaptive_lr = dynamics_opt_params.learning_rate _prediction_opt = tf.train.AdamOptimizer(learning_rate=adaptive_lr) prediction_opt_op = minimize_and_clip(_prediction_opt, prediction_loss[scope], var_list=tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope), collect_summary=TF_SUMMARY ) _reg_opt = tf.train.GradientDescentOptimizer(learning_rate=adaptive_lr) reg_opt_op = minimize_and_clip(_reg_opt, reg_loss[scope], var_list=tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope), collect_summary=TF_SUMMARY ) dynamics_opt_op = [prediction_opt_op, reg_opt_op] # Get variables and re-initializer. _dynamics_adam_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='adam_' + scope) dynamics_adam_init = tf.variables_initializer(_dynamics_adam_vars) logger.debug('num_%s_adam_variables %d' % (scope, len(_dynamics_adam_vars))) return dynamics_opt_op, dynamics_adam_init, adaptive_lr def get_policy_optimizer(scope, policy_cost, policy_opt_params, logger): with tf.variable_scope('adam_' + scope): policy_opt = tf.train.AdamOptimizer(learning_rate=policy_opt_params.learning_rate) policy_opt_op = minimize_and_clip( policy_opt, policy_cost, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope), clip_val=policy_opt_params.grad_norm_clipping, collect_summary=TF_SUMMARY ) # Debugging policy_grads_and_vars = policy_opt.compute_gradients( policy_cost, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope) ) # Get variables and re-initializer. policy_adam_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='adam_' + scope) policy_adam_init = tf.variables_initializer(policy_adam_vars) logger.debug('num_policy_adam_variables %d' % len(policy_adam_vars)) logger.info("Created policy opt operator.") return policy_opt_op, policy_adam_init, policy_grads_and_vars def create_perturb_policy_opts(policy_scope, shape): ''' :return: flat weight update placeholder, and collection of perturb weight operators ''' flat_weight_update_ph = tf.placeholder(tf.float32, shape=shape) weights = get_variables(scope=policy_scope, filter='/b:') weights.extend(get_variables(scope=policy_scope, filter='/W:')) weight_updates = unflatten_tensors(flat_weight_update_ph, weights) opts = get_update_variable_opt(weight_updates, weights) tf.add_to_collection('perturb_policy', flat_weight_update_ph) for opt in opts: tf.add_to_collection('perturb_policy', opt) ''' This method is used for training dynamics and policy models. The oracle option can be made in policy_opt_params. The oracle mode will allow an access to true dynamics (oracle) during policy optimization step (know when to stop). So, this could be an upper bound on how stable could bootstrapping achieve. ''' def train_models(env, dynamics_model, dynamics_opt_params, get_regularizer_loss, policy_model, policy_opt_params, rollout_params, cost_np, cost_np_vec, cost_tf, snapshot_dir, working_dir, n_models=1, sweep_iters=10, sample_size=1000, verbose=False, variant={}, **kwargs ): n_states = env.observation_space.shape[0] n_actions = env.action_space.shape[0] u_max = env.action_space.high[0] sess = tf.get_default_session() assert (sess is not None) logger = get_logger(__name__, snapshot_dir) is_env_done = getattr(kwargs['inner_env'], 'is_done', None) is_env_done_tf = getattr(kwargs['inner_env'], 'is_done_tf', None) ############### # Build Graph # ############### ''' Rollouts ''' policy_scope = 'training_policy' policy_in = tf.placeholder(tf.float32, shape=(None, n_states), name='policy_in') policy_out = policy_model(policy_in) tf.add_to_collection("policy_in", policy_in) tf.add_to_collection("policy_out", policy_out) ''' Dynamics Optimization ''' n_dynamics_input = n_states + n_actions dynamics_in = tf.placeholder(tf.float32, shape=(None, n_dynamics_input), name='dynamics_in') dynamics_in_full = tf.placeholder(tf.float32, shape=(None, n_models * n_dynamics_input), name='dyanmics_in_full') y_training_full = tf.placeholder(tf.float32, shape=(None, n_models * n_states), name='y_training_full') # Ground-truth next states. if policy_opt_params.mode == 'fourth_estimated': model_scopes = ["training_dynamics", "validation_dynamics", "second_validation_dynamics", "third_validation_dynamics"] elif policy_opt_params.mode == 'third_estimated': model_scopes = ["training_dynamics", "validation_dynamics", "second_validation_dynamics"] elif policy_opt_params.mode == 'second_estimated': model_scopes = ["training_dynamics", "validation_dynamics"] elif policy_opt_params.mode == 'estimated' or policy_opt_params.mode == 'trpo_mean': #TODO: bad hacking model_scopes = ["training_dynamics"] else: # assert 'real' == policy_opt_params.mode model_scopes = ["training_dynamics"] # model_scopes = ["training_dynamics", "validation_dynamics"] dynamics_loss = {} prediction_loss = {} reg_loss = {} dynamics_outs = {} dynamics_losses = {} for scope in model_scopes: dynamics_loss[scope], prediction_loss[scope], reg_loss[scope], \ dynamics_outs[scope], dynamics_losses[scope] = \ build_dynamics_graph(scope, dynamics_model, dynamics_in, dynamics_in_full, y_training_full, n_dynamics_input, n_models, get_regularizer_loss, n_states, logger) for i in range(n_models): tf.add_to_collection('%s_out' % scope, dynamics_outs[scope][i]) tf.add_to_collection('dynamics_in', dynamics_in) # Adam optimizers dynamics_opt_op = {} dynamics_adam_init = [] lr_up = [] lr_ph = tf.placeholder(tf.float32, shape=()) for scope in model_scopes: dynamics_opt_op[scope], _dynamics_adam_init, model_lr = \ get_dynamics_optimizer(scope, prediction_loss, reg_loss, dynamics_opt_params, logger) lr_up.append(model_lr.assign(lr_ph)) dynamics_adam_init.append(_dynamics_adam_init) logger.info("Created dynamics opt operator.") # File writers train_writer = tf.summary.FileWriter(os.path.join(snapshot_dir, 'tf_logs/train'), sess.graph) val_writer = tf.summary.FileWriter(os.path.join(snapshot_dir, 'tf_logs/val'), sess.graph) ''' Policy Optimization ''' policy_training_init = tf.placeholder(tf.float32, shape=(None, n_states), name='x_optimizing') policy_costs = {} stochastic = tf.Variable(0.0, trainable=False) set_stochastic = [stochastic.assign(0.0), stochastic.assign(1.0)] for scope in model_scopes: policy_costs[scope], n_saturates = build_policy_graph(policy_scope, scope, policy_training_init, n_models, policy_opt_params, policy_model, dynamics_model, env, cost_tf, logger, is_env_done_tf, stochastic) # Setting up for BPTT, TRPO, SVG, and L-BFGS # TODO play with different training dynamics model. training_policy_cost = tf.reduce_mean(policy_costs['training_dynamics']) training_models = dynamics_outs['training_dynamics'] # mid = int(n_models/2) # topk_values = tf.nn.top_k(policy_costs['training_dynamics'], mid+1)[0] # if 2*mid==n_models: # training_policy_cost = (topk_values[-1] + topk_values[-2])/2 # else: # training_policy_cost = topk_values[-1] if kwargs['algo_name'] == 'trpo' or kwargs['algo_name'] == 'vpg': from envs.base import TfEnv kwargs["rllab_algo"].env = TfEnv(NeuralNetEnv(env=env, inner_env=kwargs['inner_env'], cost_np=cost_np_vec, dynamics_in=dynamics_in, dynamics_outs=training_models, sam_mode=policy_opt_params.sam_mode)) elif kwargs['algo_name'] == 'svg': dynamics_configs = dict(scope_name='training_dynamics', variable_name='0') cost_gradient, policy_gradient, model_gradient, theta_vars = \ setup_gradients(policy_model, dynamics_model, cost_tf, sess, kwargs['inner_env'], dynamics_configs) logger.info('Build SVG update graph.') elif kwargs['algo_name'] == 'l-bfgs': train_step = tf.contrib.opt.ScipyOptimizerInterface( training_policy_cost, var_list=tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='training_policy'), method='L-BFGS-B' ) tf.add_to_collection("l-bfgs_step", train_step) if "bptt" in kwargs['algo_name']: policy_opt_op, policy_adam_init, policy_grads_and_vars = \ get_policy_optimizer(policy_scope, training_policy_cost, policy_opt_params, logger) else: policy_opt_op = [] policy_adam_init = [] policy_grads_and_vars = [] ''' Prepare variables and data for learning ''' # Initialize all variables init_op = tf.global_variables_initializer() sess.run(init_op) logger.info('Re-initialize policy.') ''' Policy weights ''' policy_weights = get_variables(scope=policy_scope, filter='/b:') policy_weights.extend(get_variables(scope=policy_scope, filter='/W:')) flat_policy_weights = flatten_tensors(policy_weights) create_perturb_policy_opts(policy_scope, flat_policy_weights.shape) ############# Dynamics validation data ############### dynamics_data = {} dynamics_validation = {} datapath = os.path.join(working_dir, rollout_params.datapath) for scope in model_scopes: dynamics_data[scope] = data_collection(max_size=rollout_params.training_data_size) dynamics_validation[scope] = data_collection(max_size=rollout_params.validation_data_size) if os.path.isfile(datapath) and rollout_params.load_rollout_data: for scope in model_scopes: with open(datapath, 'rb') as f: training_data = pickle.load(f) split_ratio = rollout_params.split_ratio validation_size = round(training_data['dc'].n_data * split_ratio/(1.-split_ratio)) dynamics_data[scope].clone(training_data['dc']) dynamics_validation[scope].clone(training_data['dc_valid'], validation_size) logger.warning('Load data collections from %s.' % rollout_params.datapath) else: logger.warning('Start dynamics data and validation collection from scratch.') ############# Policy validation data (fixed) ############### vip = os.path.join(working_dir, policy_opt_params.validation_init_path) vrip = os.path.join(working_dir, policy_opt_params.validation_reset_init_path) if os.path.isfile(vip) and os.path.isfile(vrip): with open(vip, 'rb') as f: policy_validation_init = pickle.load(f) logger.info('Loaded policy val init state data from %s.' % vip) with open(vrip, 'rb') as f: policy_validation_reset_init = pickle.load(f) logger.info('Loaded policy val reset init state data from %s.' % vrip) elif vip == vrip: # We know that reset is correct, e.g., swimmer. policy_validation_init = [env.reset() for i in range(policy_opt_params.batch_size)] policy_validation_reset_init = np.array(policy_validation_init) with open(vip, 'wb') as f: pickle.dump(policy_validation_init, f) logger.info('Created %s contains policy validation initial state data.' % vip) else: # Make sure that the reset works with the representation. # If not generate this manually. policy_validation_init = [] policy_validation_reset_init = [] for i in range(policy_opt_params.batch_size): init = env.reset() if hasattr(env._wrapped_env, '_wrapped_env'): inner_env = env._wrapped_env._wrapped_env else: inner_env = env._wrapped_env.env.unwrapped reset_init = np.concatenate( [inner_env.model.data.qpos[:, 0], inner_env.model.data.qvel[:, 0]]) if hasattr(env._wrapped_env, '_wrapped_env'): assert np.allclose(init, inner_env.reset(reset_init)) policy_validation_init.append(init) policy_validation_reset_init.append(reset_init) policy_validation_init = np.array(policy_validation_init) policy_validation_reset_init = np.array(policy_validation_reset_init) os.makedirs(os.path.dirname(vip), exist_ok=True) os.makedirs(os.path.dirname(vrip), exist_ok=True) with open(vip, 'wb') as f: pickle.dump(policy_validation_init, f) logger.info('Created %s contains policy validation initial state data.' % vip) with open(vrip, 'wb') as f: pickle.dump(policy_validation_reset_init, f) logger.info('Created %s contains policy validation reset initial state data.' % vrip) ''' Saver ''' log_dir = os.path.join(snapshot_dir, 'training_logs') if not os.path.exists(log_dir): os.makedirs(log_dir) saver = tf.train.Saver(max_to_keep=1) saver.save(sess, os.path.join(log_dir, 'policy-and-models-0.ckpt')) # Model savers dynamics_savers = {} dynamics_vars = [] for scope in dynamics_data.keys(): dynamics_savers[scope] = [] var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope) dynamics_vars.extend(var_list) # TODO:here assuming #validation models = #training models = n_models for i in range(n_models): vars_i = list(filter(lambda x: '%s/model%d' % (scope, i) in x.name, var_list)) dynamics_savers[scope].append(tf.train.Saver(vars_i)) logger.info('Dynamics saver %d in scope %s has %d variables.' % (i, scope, len(vars_i))) logger.info('Total dynamics var %d' % len(dynamics_vars)) # Model initializers dynamics_initializer = tf.variables_initializer(dynamics_vars) # Model summaries dynamics_summaries = {} for scope in dynamics_data.keys(): dynamics_summaries[scope] = [] for i in range(n_models): # TODO: Hack to save global model stats # TODO: Hack adam_ + namescope is supposed to be global. name_scope = "%s" % scope #name_scope = "%s/model%d" % (scope, i) merged = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES, scope=name_scope)+\ tf.get_collection(tf.GraphKeys.SUMMARIES, scope='adam_'+name_scope) ) dynamics_summaries[scope].append(merged) logger.info('Summaries merged.') # Policy saver var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=policy_scope) policy_saver = tf.train.Saver(var_list) logger.info('Policy saver has %d variables.' % (len(var_list))) logger.debug(''.join([var.name for var in var_list])) # Policy summaries policy_summary = tf.summary.merge(tf.get_collection(tf.GraphKeys.SUMMARIES, scope=policy_scope) +\ tf.get_collection(tf.GraphKeys.SUMMARIES, scope='adam_'+policy_scope) ) ############### ## Learning ### ############### start_time = time.time() count = 1 diff_weights = None while True: itr_start_time = time.time() # Save params every iteration joblib.dump(kwargs["saved_policy"], os.path.join(snapshot_dir, 'training_logs/params_%d.pkl' % count)) reinit_every = int(dynamics_opt_params.reinitialize) if reinit_every <= 0 or count % reinit_every != 1: reinitialize = False else: reinitialize = True if count == 1: reinitialize = True # # Check if policy cost is computed consistently using tf and np. # for i in range(n_models): # test_policy_cost(policy_training_init, # policy_costs["training_dynamics"][i], # policy_in, # policy_out, # dynamics_in, # dynamics_outs["training_dynamics"][i], # env, # cost_np_vec, # sess, # horizon=policy_opt_params.T, # is_done=is_env_done) # Policy Rollout logger.info('\n\nPolicy Rollout and Cost Estimation: %d' % (count)) rollout_data = collect_data(env, sample_size, dynamics_data, dynamics_validation, policy_in, policy_out, cost_np, # for debugging sess, diff_weights, # for param_noise exploration policy_saver, # for param_noise exploration log_dir, # for param_noise exploration rollout_params, count, logger, is_env_done, kwargs['input_rms'], kwargs['diff_rms']) rllab_logger.record_tabular('collect_data_time', time.time() - itr_start_time) current_time = time.time() # Dynamics Optimization logger.info('\n\nDynamics Optimization: %d' % (count)) dynamics_learning_logs = optimize_models(dynamics_data, dynamics_validation, dynamics_opt_op, dynamics_opt_params, dynamics_adam_init, dynamics_loss, # for debugging dynamics_losses, prediction_loss, # for debugging dynamics_in_full, y_training_full, sess, verbose, dynamics_savers, log_dir, logger, n_models, dynamics_initializer, dynamics_summaries, train_writer, val_writer, lr_up, lr_ph, reinitialize) rllab_logger.record_tabular('model_opt_time', time.time() - current_time) current_time = time.time() # # Evaluate training dynamics model # logger.info('\n\nEvaluate training dynamics model: %d' % (count)) # # Compute model prediction errors T steps ahead. # errors = evaluate_model_predictions(env, # policy_in, # policy_out, # dynamics_in, # avg_prediction['training_dynamics'], # policy_validation_reset_init, # sess, # log_dir, # count, # max_timestep=policy_opt_params.T, # cost_np_vec=cost_np_vec) # # Compute an error distribution. # errors = get_error_distribution(policy_in, # policy_out, # dynamics_in, # training_models[0], # env, # cost_np_vec, # sess, # logger, # log_dir, # count, # horizon=policy_opt_params.T, # sample_size=50, # known_actions=False, # is_plot=True #(kwargs['mode'] == 'local') # ) # rllab_logger.record_tabular('eval_model_time', time.time() - current_time) # current_time = time.time() # 1-SVG update if kwargs["algo_name"] == "svg": svg_args = dict(rollout_data=rollout_data, policy_gradient=policy_gradient, model_gradient=model_gradient, cost_gradient=cost_gradient, lr=policy_opt_params.learning_rate, theta_vars=theta_vars) else: svg_args = {} # Policy Optimization logger.info('\n\nPolicy Optimization: %d' % (count)) # Get weights before update assert len(get_variables(scope=policy_scope, filter='weights')) == 0 old_policy_weights = sess.run(flat_policy_weights) policy_learning_logs = optimize_policy(env, policy_opt_op, policy_opt_params, policy_costs, set_stochastic, n_saturates, training_policy_cost, # for training policy_adam_init, policy_in, # for oracle policy_out, # for oracle cost_np_vec, # for oracle sess, policy_training_init, policy_validation_init, policy_validation_reset_init, policy_grads_and_vars, verbose, policy_saver, log_dir, logger, dynamics_data['training_dynamics'], svg_args, policy_summary, train_writer, val_writer, **kwargs) new_policy_weights = sess.run(flat_policy_weights) rllab_logger.record_tabular('policy_opt_time', time.time() - current_time) current_time = time.time() ###################### ## Save every sweep ## ###################### if (np.abs(new_policy_weights - old_policy_weights) > 0).any(): diff_weights = np.abs(new_policy_weights - old_policy_weights) if not diff_weights is None: rllab_logger.record_tabular('MaxPolicyWeightDiff', np.amax(diff_weights)) rllab_logger.record_tabular('MinPolicyWeightDiff', np.amin(diff_weights)) rllab_logger.record_tabular('AvgPolicyWeightDiff', np.mean(diff_weights)) else: rllab_logger.record_tabular('MaxPolicyWeightDiff', 0) rllab_logger.record_tabular('MinPolicyWeightDiff', 0) rllab_logger.record_tabular('AvgPolicyWeightDiff', 0) # # Save errors # error_log_path = os.path.join(log_dir, 'errors_%d' % count) # with open(error_log_path, 'wb') as f: # pickle.dump(errors, f) # logger.info('\tSave errors to %s.' % error_log_path) policy_learning_log_path = os.path.join(log_dir, 'policy_learning_sweep_%d.pkl' % (count)) with open(policy_learning_log_path, 'wb') as f: pickle.dump(policy_learning_logs, f) logger.info('\tSave policy training and test results to %s.' % policy_learning_log_path) dynamics_learning_log_path = os.path.join(log_dir, 'dynamics_learning_sweep_%d.pkl' % (count)) with open(dynamics_learning_log_path, 'wb') as f: pickle.dump(dynamics_learning_logs, f) logger.info('\tSave dynamics training and test results to %s.' % dynamics_learning_log_path) # Save meta for the final model. ckpt_path = os.path.join(log_dir, 'policy-and-models-%d.ckpt' % count) saver.save(sess, ckpt_path) rllab_logger.record_tabular('save_and_log_time', time.time() - current_time) rllab_logger.record_tabular('Time', time.time() - start_time) rllab_logger.record_tabular('ItrTime', time.time() - itr_start_time) rllab_logger.dump_tabular() ###################### # Prepare next sweep # ###################### ask_to_run_more = 'mode' in variant and variant['mode'] == 'local' count += 1 if count > sweep_iters: if ask_to_run_more: response = input('Do you want to run 5 more?\n') if response in {'yes', 'y', 'Y', 'Yes'}: sweep_iters += 5 elif str.isdigit(response): sweep_iters += int(response) else: break else: break # Save meta for the final model. ckpt_path = os.path.join(log_dir, 'policy-and-models-final.ckpt') saver.save(sess, ckpt_path) return sess def collect_data(env, sample_size, dynamics_data, dynamics_validation, policy_in, policy_out, cost_np, # for debugging sess, diff_weights, saver, log_dir, rollout_params, count, logger, is_env_done, input_rms, output_rms): if sample_size == 0: return [] Os, As, Rs, info = sample_trajectories(env, policy_in, policy_out, rollout_params.exploration, sample_size, saver, diff_weights, log_dir, logger, is_monitored=rollout_params.is_monitored, monitorpath=rollout_params.monitorpath + '/iter_%d' % count, sess=sess, max_timestep=rollout_params.max_timestep, render_every=rollout_params.render_every, cost_np=cost_np, is_done=is_env_done) # Get all x and y pairs. x_all = [] y_all = [] # TODO: for svg only can remove if no longer needed. rollout_data = [] for i, o in enumerate(Os): a = As[i] triplets = [] for t in range(len(o) - 1): x_all.append(np.concatenate([o[t], a[t]])) y_all.append(o[t + 1]) triplets.append((o[t], a[t], o[t + 1])) rollout_data.append(triplets) x_all = np.array(x_all) y_all = np.array(y_all) # Save data with open(os.path.join(log_dir, 'new_rollouts_%d.pkl' % count), 'wb') as f: pickle.dump((x_all, y_all), f) logger.info('Saved new rollouts data') indices = list(range(len(x_all))) # Splitting data into collections. if rollout_params.splitting_mode == "trajectory": pass elif rollout_params.splitting_mode == "triplet": # Randomly permute data before added np.random.shuffle(indices) else: assert (False) cur_i = 0 assert len(x_all) >= sample_size total_sample_size = len(x_all) for scope in dynamics_data.keys(): if rollout_params.use_same_dataset: _n = round(rollout_params.split_ratio * total_sample_size) dynamics_validation[scope].add_data(x_all[indices[:_n], :], y_all[indices[:_n], :]) dynamics_data[scope].add_data(x_all[indices[_n:], :], y_all[indices[_n:], :]) cur_i = len(indices) # Update running mean and std. input_rms.update(x_all[indices[_n:], :]) output_rms.update(y_all[indices[_n:], :] - x_all[indices[_n:], :y_all.shape[1]]) else: _n = int(rollout_params.split_ratio * total_sample_size / len(dynamics_data.keys())) dynamics_validation[scope].add_data(x_all[indices[cur_i:cur_i + _n], :], y_all[indices[cur_i:cur_i + _n], :]) cur_i += _n _m = int(total_sample_size / len(dynamics_data.keys()) - _n) dynamics_data[scope].add_data( x_all[indices[cur_i:cur_i + _m], :], y_all[indices[cur_i:cur_i + _m], :] ) cur_i += _m logger.info('current %s dynamics_data size : %d' % (scope, dynamics_data[scope].get_num_data())) logger.info('current %s dynamics_validation size : %d' % (scope, dynamics_validation[scope].get_num_data())) assert (cur_i == total_sample_size) # if rollout_params.splitting_mode == "trajectory": # for i in range(total_sample_size): # if i % rollout_params.max_timestep != rollout_params.max_timestep - 1: # assert (x_all[indices[i] + 1, 0] == y_all[indices[i], 0]) return rollout_data # Baseline - predict using previous state. def compute_baseline_loss(x_batch, y_batch, n_models): return n_models * np.sum( np.square( y_batch - x_batch[:, :y_batch.shape[1]] ) ) / y_batch.shape[0] def assign_lr(lr_up, lr_ph, value_to_assign, sess): sess.run(lr_up, feed_dict={lr_ph: value_to_assign}) def recover_weights(savers, recover_indices, scope, logger, log_dir, sess): logger.info( 'Recover back best weights for each model.' ) n_models = len(savers[scope]) for i in range(n_models): savers[scope][i].restore(sess, os.path.join(log_dir, '%s_%d.ckpt' % (scope, i))) logger.debug('Restore %s %d from iter %d' % (scope, i, recover_indices[i])) def optimize_models(dynamics_data, dynamics_validation, dynamics_opt_op, dynamics_opt_params, dynamics_adam_init, dynamics_loss, # for debugging dynamics_losses, prediction_loss, dynamics_in_full, y_training_full, sess, verbose, savers, log_dir, logger, n_models, dynamics_initializer, dynamics_summaries, train_writer, val_writer, lr_up, lr_ph, reinitialize): ## Re-initialize Adam parameters. lr = dynamics_opt_params.learning_rate if reinitialize: assign_lr(lr_up, lr_ph, lr["scratch"], sess) sess.run([dynamics_adam_init, dynamics_initializer]) logger.info('Reinitialize dynamics models & ' 'Adam Optimizer & ' 'update the learning rate to %f.' % lr["scratch"]) else: assign_lr(lr_up, lr_ph, lr["refine"], sess) sess.run(dynamics_adam_init) logger.info('Reinitialize Adam Optimizer & ' 'update the learning rate to %f.' % lr["refine"]) batch_size = dynamics_opt_params.batch_size training_losses = dict([(scope, []) for scope in dynamics_data.keys()]) validation_losses = dict([(scope, []) for scope in dynamics_data.keys()]) best_js = dict([(scope, 0) for scope in dynamics_data.keys()]) for scope in dynamics_data.keys(): ## Save all weights before training for i in range(n_models): savers[scope][i].save(sess, os.path.join(log_dir, '%s_%d.ckpt' % (scope, i)), write_meta_graph=False) logger.info('Saved all initial weights in %s.' % scope) ## Don't recompute validation input x_batch_val = np.tile(dynamics_validation[scope].x, n_models) y_batch_val = np.tile(dynamics_validation[scope].y, n_models) logger.info('Model %s' % scope) ## Initialize min validation loss min_sum_validation_loss, min_validation_losses = sess.run( [dynamics_loss[scope], dynamics_losses[scope]], feed_dict={ dynamics_in_full: x_batch_val, y_training_full: y_batch_val } ) min_validation_losses = np.array(min_validation_losses) log_losses(logger, 0, min_sum_validation_loss, min_validation_losses) recover_indices = np.zeros(n_models) refine_idx = -1 iter_const = dynamics_data[scope].n_data / batch_size max_iters = int(dynamics_opt_params.max_passes * iter_const) log_every = int(dynamics_opt_params.log_every * iter_const) num_iters_threshold = int(dynamics_opt_params.num_passes_threshold * iter_const) for j in range(1, max_iters + 1): # Training if dynamics_opt_params.sample_mode == 'next_batch': x_batch, y_batch = dynamics_data[scope].get_next_batch(batch_size * n_models, is_shuffled=False) else: assert dynamics_opt_params.sample_mode == 'random' x_batch, y_batch = dynamics_data[scope].sample(batch_size * n_models) _, training_loss = sess.run([dynamics_opt_op[scope], dynamics_loss[scope]], feed_dict={ dynamics_in_full: np.reshape(x_batch, (batch_size, -1)), y_training_full: np.reshape(y_batch, (batch_size, -1)) }) # Validation and Logging if j % log_every == 0: training_losses[scope].append(training_loss) ### TODO: Now only get the summary of the first model in each scope. validation_loss, _validation_losses, _prediction_loss = sess.run( [dynamics_loss[scope], dynamics_losses[scope], prediction_loss[scope]], feed_dict={dynamics_in_full: x_batch_val, y_training_full: y_batch_val} ) _validation_losses = np.array(_validation_losses) validation_losses[scope].append(validation_loss) log_losses(logger, j, validation_loss, _validation_losses, training_loss=training_loss, prediction_loss=_prediction_loss) # Save the model when each validation cost reaches minimum. # Save best_j for best total loss. if min_sum_validation_loss > validation_loss: min_sum_validation_loss = validation_loss best_js[scope] = j to_update = min_validation_losses > _validation_losses min_validation_losses[to_update] = _validation_losses[to_update] for i, is_updated in enumerate(to_update): if is_updated: savers[scope][i].save(sess, os.path.join(log_dir, '%s_%d.ckpt' % (scope, i)), write_meta_graph=False) if verbose: logger.debug('Saved %s %d' % (scope, i)) recover_indices[i] = j logger.info('Saved %d models.' % np.sum(to_update)) # # Break if the cost is going up, and recover to the ckpt. # if dynamics_opt_params.stop_critereon(min_validation_loss, validation_loss) or \ # j == dynamics_opt_params.max_iters: # logger.info('\tStop at iter %d.' % (j)) # logger.info('\t\tAfter update validation loss increased from min %.3f to %.3f' % ( # min_validation_loss, validation_loss)) # # logger.info( # '\t\tRecover back to iter %d from %s.' % # (best_j[scope], tf.train.latest_checkpoint(log_dir)) <-- TO FIX # ) # saver.restore(sess, tf.train.latest_checkpoint(log_dir)) <-- TO FIX # break if j - max(np.amax(recover_indices), refine_idx) \ >= num_iters_threshold: if reinitialize and refine_idx < 0 and lr["scratch"] > lr["refine"]: recover_weights(savers, recover_indices, scope, logger, log_dir, sess) logger.info('\nFinished training with lr = %f. Now, reduce to %f\n' % (lr["scratch"], lr["refine"])) assign_lr(lr_up, lr_ph, lr["refine"], sess) refine_idx = j continue break ## After updates go to minimum recover_weights(savers, recover_indices, scope, logger, log_dir, sess) assert ('dynamics' in scope) rllab_logger.record_tabular('# model updates', j) rllab_logger.record_tabular('%s_min_sum_validation_loss' % scope, min_sum_validation_loss) # Save summary if TF_SUMMARY: summary = sess.run( dynamics_summaries[scope][0], feed_dict={dynamics_in_full: x_batch_val[:5], y_training_full: y_batch_val[:5]} ) val_writer.add_summary(summary, j) return {'dynamics_opt_params': get_pickeable(dynamics_opt_params), 'training_losses': training_losses, 'validation_losses': validation_losses, 'best_index': best_js} def log_losses(logger, index, validation_loss, validation_losses, first_n=5, training_loss=None, compute_baseline=False, **kwargs): assert isinstance(validation_losses, np.ndarray) msg = np.array_str(validation_losses[:first_n], max_line_width=50, precision=2) if index == 0: logger.info('iter 0 (no update yet)') else: logger.info('iter %d' % index) logger.info('\ttraining_loss \t: %f' % training_loss) logger.info('\tvalidation_loss \t: %f' % validation_loss) logger.info('\tvalidation_losses \t: %s' % msg) if 'prediction_loss' in kwargs: logger.info('\tprediction_loss \t: %s' % kwargs['prediction_loss']) if compute_baseline: logger.info( '\tbaseline_validation_loss : %.3f' % compute_baseline_loss(kwargs['x_batch'], kwargs['y_batch'], kwargs['n_models'])) def optimize_policy(env, policy_opt_op, policy_opt_params, policy_costs, set_stochastic, sym_n_saturates, training_policy_cost, policy_adam_init, policy_in, # for oracle policy_out, # for oracle cost_np_vec, # for oracle sess, policy_training_init, policy_validation_init, policy_validation_reset_init, policy_grads_and_vars, # for debugging verbose, saver, log_dir, logger, training_dynamics_data, svg_args, policy_summary, train_writer, val_writer, **kwargs): mode_order = ['real', 'estimated', 'second_estimated', 'third_estimated', 'fourth_estimated', ] scope2mode = {'training_dynamics': 'estimated', 'validation_dynamics': 'second_estimated', 'second_validation_dynamics': 'third_estimated', 'third_validation_dynamics': 'fourth_estimated'} batch_size = policy_opt_params.batch_size ### Re-initialize Adam parameters. if 'reset_opt' in kwargs: sess.run([policy_adam_init, kwargs['reset_opt']]) logger.info('Reinitialize Adam Optimizer and init_std.') else: sess.run(policy_adam_init) logger.info('Reinitialize Adam Optimizer') ### Save all weights before updates saver.save(sess, os.path.join(log_dir, 'policy.ckpt'), write_meta_graph=False) logger.info('Saved policy weights before update.') ### Estimated cost for T steps prediction cost. training_costs = [] estimated_validation_costs = {} real_validation_costs = [] trpo_mean_costs = [] ### Current minimums contain real and estimated validation costs ''' Here is an example of min_validation costs { 'real':1.0, 'estimated':4.4, 'second_estimated':[1.1, 3.2, 5., 0.3, 1.4 ], (length = n_models) 'sum': 2.0 (avg of second_estimated) } ''' min_validation_costs = {} min_validation_costs['real'] = evaluate_fixed_init_trajectories( env, policy_in, policy_out, policy_validation_reset_init, cost_np_vec, sess, max_timestep=policy_opt_params.oracle_maxtimestep, gamma=policy_opt_params.gamma ) min_validation_costs['trpo_mean'] = np.inf for scope in policy_costs.keys(): mode = scope2mode[scope] min_validation_costs[mode] = np.array(sess.run( policy_costs[scope], feed_dict={policy_training_init: policy_validation_init} )) best_index = 0 real_current_validation_cost = min_validation_costs['real'] logger.info('iter 0 (no update yet)') log_dictionary(mode_order, min_validation_costs, min_validation_costs, logger) candidates = {} for j in range(1, policy_opt_params.max_iters + 1): ### Train policy if kwargs['algo_name'] == 'trpo' or kwargs['algo_name']=='vpg': algo = kwargs['rllab_algo'] algo.start_worker() with rllab_logger.prefix('itr #%d | ' % j): paths = algo.obtain_samples(j) samples_data = algo.process_samples(j, paths) algo.optimize_policy(j, samples_data) training_cost = 0 elif kwargs['algo_name'] == 'bptt': # Sample new initial states for computing gradients. # x_batch = training_dynamics_data.sample(batch_size)[1] x_batch = np.array([env.reset() for i in range(batch_size)]) _, training_cost = sess.run([policy_opt_op, training_policy_cost], feed_dict={policy_training_init: x_batch}) training_cost = np.squeeze(training_cost) elif kwargs['algo_name'] == 'bptt-stochastic': x_batch = np.array([env.reset() for i in range(batch_size)]) # TODO: remove sym_n_saturates. _, _, training_cost, n_saturates = sess.run([set_stochastic[1], policy_opt_op, training_policy_cost, sym_n_saturates], feed_dict={policy_training_init: x_batch}) training_cost = np.squeeze(training_cost) elif kwargs['algo_name'] == 'l-bfgs': train_step = tf.get_collection("l-bfgs_step")[0] x_batch = np.array([env.reset() for i in range(batch_size)]) train_step.minimize(sess, feed_dict={policy_training_init: x_batch}) training_cost = sess.run(training_policy_cost, feed_dict={policy_training_init: x_batch}) else: assert kwargs['algo_name'] == 'svg' grads = svg_update(**svg_args, sess=sess) training_cost = 0 ### Evaluate in learned and real dynamics if j % policy_opt_params.log_every == 0: # Set stochasticity back to 0.0. if kwargs['algo_name'] == 'bptt-stochastic': logger.debug('n_saturates: {}'.format(n_saturates[:5])) entropy = 1./2.*np.sum(np.log(2*np.pi*np.e) + sess.run(kwargs['logstd'])) logger.debug('Entropy: %.3f' % entropy) sess.run(set_stochastic[0]) # Compute TRPO mean if neccessary. if kwargs["algo_name"] == "trpo": algo = kwargs['rllab_algo'] if policy_opt_params.mode == 'trpo_mean': determ_paths = algo.obtain_samples(j, determ=True) traj_costs = [] for determ_path in determ_paths: traj_costs.append(- np.sum(determ_path["rewards"])) candidates['trpo_mean'] = np.mean(traj_costs) if 'trpo_mean' != mode_order[1]: mode_order.insert(1, 'trpo_mean') else: candidates['trpo_mean'] = 0.0 trpo_mean_costs.append(candidates['trpo_mean']) else: candidates['trpo_mean'] = 0.0 ## Training cost training_costs.append(training_cost) ## Estimated cost for scope in policy_costs.keys(): mode = scope2mode[scope] estimated_valid_cost = sess.run(policy_costs[scope], feed_dict={policy_training_init: policy_validation_init} ) estimated_valid_cost = np.array(estimated_valid_cost) if mode in estimated_validation_costs: estimated_validation_costs[mode].append(np.mean(estimated_valid_cost)) else: estimated_validation_costs[mode] = [np.mean(estimated_valid_cost)] candidates[mode] = estimated_valid_cost ## Real cost real_validation_cost = evaluate_fixed_init_trajectories( env, policy_in, policy_out, policy_validation_reset_init, cost_np_vec, sess, max_timestep=policy_opt_params.oracle_maxtimestep, gamma=policy_opt_params.gamma ) real_validation_costs.append(real_validation_cost) candidates['real'] = real_validation_cost ## Logging logger.info('iter %d' % j) logger.info('\ttraining_cost:\t%.3f' % training_cost) log_dictionary(mode_order, candidates, min_validation_costs, logger) if False: #verbose and kwargs['algo_name'] == 'bptt': # TODO: debug this _policy_grads = sess.run([gv[0] for gv in policy_grads_and_vars], feed_dict={policy_training_init: x_batch}) logger.debug('\t, policy_grads_max: {}'.format( np.array([np.max(np.abs(grad)) for grad in _policy_grads]))) logger.debug('\t, policy_grads_norm: {}'.format( np.array([np.linalg.norm(grad) for grad in _policy_grads]))) logger.debug('\t, policy_grads_avg: {}'.format( np.array([np.mean(np.abs(grad)) for grad in _policy_grads]))) logger.debug('\t, policy_grads_min: {}'.format( np.array([np.min(np.abs(grad)) for grad in _policy_grads]))) if kwargs['algo_name'] == 'svg': is_broken = True # break ## Not done - we update. ## Done - we go back and reduce std. if not is_done(policy_opt_params, min_validation_costs, candidates, logger): best_index = j real_current_validation_cost = candidates['real'] # Save logger.info('\tSaving policy') saver.save(sess, os.path.join(log_dir, 'policy.ckpt'), write_meta_graph=False) ## Update - only when we save the update. update_stats(min_validation_costs, candidates, policy_opt_params.whole) ## Stop # If the number of consecutive dones is greater than the threshold if j - best_index >= policy_opt_params.num_iters_threshold: break log_and_restore(sess, log_dir, j, min_validation_costs, candidates, logger, saver, mode_order, best_index, policy_opt_params.mode) if policy_opt_params.mode == 'one_model' or policy_opt_params.mode == 'no_early': min_val_cost = min_validation_costs['estimated'][0] else: min_val_cost = np.mean(min_validation_costs[policy_opt_params.mode]) for key in min_validation_costs.keys(): rllab_logger.record_tabular('%s_policy_mean_min_validation_cost' % key, np.mean(min_validation_costs[key])) rllab_logger.record_tabular('real_current_validation_cost', real_current_validation_cost) rllab_logger.record_tabular('# policy updates', best_index) # Save summary if TF_SUMMARY: summary = sess.run(policy_summary, feed_dict={policy_training_init: policy_validation_init} ) val_writer.add_summary(summary, best_index) return {'real_validation_costs': real_validation_costs, 'training_costs': training_costs, 'estimated_validation_costs': estimated_validation_costs, 'policy_opt_params': get_pickeable(policy_opt_params), 'best_index': best_index, 'best_cost': min_val_cost, 'trpo_mean_costs': trpo_mean_costs } def is_done(policy_opt_params, min_validation_costs, candidates, logger): ''' When mode == 'real', we stop immediately if the cost increases. When mode has 'estimated', we stop if one of the bucket has the ratio of increasing costs exceeds a certain threshold If one of the candidates are worst than min_validation_costs we stop. ''' mode = policy_opt_params.mode if mode == 'real': # TODO:relax the constraint. # return policy_opt_params.stop_critereon(min_validation_costs[mode], # candidates[mode]) return min_validation_costs['real'] < candidates['real'] elif mode == 'trpo_mean': assert 'trpo_mean' in min_validation_costs.keys() return min_validation_costs['trpo_mean'] < candidates['trpo_mean'] elif mode == 'one_model': return min_validation_costs['estimated'][0] < candidates['estimated'][0] elif mode == 'no_early': return False else: assert 'estimated' in mode for _mode in min_validation_costs.keys(): if 'estimated' in _mode and \ policy_opt_params.stop_critereon( min_validation_costs[_mode], # Input an array candidates[_mode], mode='vector' ): logger.info('\t### %s tells us to stop.' % _mode) return True return False def log_and_restore(sess, log_dir, index, min_validation_costs, candidates, logger, saver, mode_order, best_index, mode): ''' Recover back to the last saved checkpoint. ''' logger.info('Stop at iter %d. Recover to iter %d.' % (index, best_index)) for _mode in mode_order: if _mode in min_validation_costs: _msg = '\t%.5s validation cost \t %.3f --> %.3f' % ( _mode, np.mean(candidates[_mode]), np.mean(min_validation_costs[_mode]) ) if _mode == mode: _msg += ' ***' logger.info( _msg ) saver.restore(sess, os.path.join(log_dir, 'policy.ckpt')) def update_stats(min_validation_costs, candidates, whole=False): ''' :param whole: if this is true, the whole candidates are set to min_validation_costs. This means information in the min validation costs are consistent (from the same iteration). If this is false, we keep the min of each individual we have seen so far. ''' for _mode in min_validation_costs.keys(): costs = min_validation_costs[_mode] if hasattr(costs, '__iter__') and len(costs) != 1: if whole: min_validation_costs[_mode][:] = candidates[_mode][:] else: to_update = costs > candidates[_mode] min_validation_costs[_mode][to_update] = candidates[_mode][to_update] elif whole or costs > candidates[_mode]: min_validation_costs[_mode] = candidates[_mode] def log_dictionary(mode_order, validation_costs, min_validation_costs, logger, first_n=5): for mode in mode_order: if mode in validation_costs: costs = validation_costs[mode] if hasattr(costs, '__iter__'): assert 'estimated' in mode msg = np.array_str(costs[:first_n], max_line_width=50, precision=2) logger.info('\t%.5s_validation_cost:\t%s' % (mode, msg)) logger.info('\t\tavg=%.2f, increase_ratio=%.2f' % ( np.mean(costs), np.mean(costs > min_validation_costs[mode]) )) logger.info('\t\tmode=%.2f, std=%.2f, min=%.2f, max=%.2f' % (np.median(costs), np.std(costs), np.min(costs), np.max(costs))) else: logger.info('\t%.5s_validation_cost:\t%.3f' % (mode, costs)) ```
{ "source": "JerrieYuan/DrawItforSublimeText", "score": 2 }
#### File: JerrieYuan/DrawItforSublimeText/goclean.py ```python import sublime, sublime_plugin, os class GocleanCommand(sublime_plugin.TextCommand): def run(self, edit): spl = "/" filename = self.view.file_name() filename = filename.replace("\\",spl) gosrcpath = os.path.join(os.getenv("GOPATH"),"src"+spl) gosrcpath = gosrcpath.replace("\\",spl) thispkg = filename.replace(gosrcpath,"") pathlist = thispkg.split(spl) num = len(pathlist) thispkg = thispkg.replace(spl+pathlist[num-1],"") thispkg = os.path.normpath(thispkg) os.popen("go install "+ thispkg) print("go clean: go install "+ thispkg) ```
{ "source": "JerrikEph/fastNLP", "score": 3 }
#### File: fastNLP/core/field.py ```python __all__ = [ "FieldArray", "Padder", "AutoPadder", "EngChar2DPadder" ] from copy import deepcopy import numpy as np class FieldArray(object): """ 别名::class:`fastNLP.FieldArray` :class:`fastNLP.core.field.FieldArray` FieldArray 是用于保存 :class:`~fastNLP.DataSet` 中一个field的类型。 :param str name: FieldArray的名称 :param list,numpy.ndarray content: 列表的元素可以为list,int,float, :param bool is_target: 这个field是否是一个target field。 :param bool is_input: 这个field是否是一个input field。 :param padder: :class:`~fastNLP.Padder` 类型。赋值给fieldarray的padder的对象会被deepcopy一份,需要修改padder参数必须通过 fieldarray.set_pad_val()。默认为None,即使用 :class:`~fastNLP.AutoPadder` 。 :param bool ignore_type: 是否忽略该field的type,一般如果这个field不需要转为torch.FloatTensor或torch.LongTensor, 就可以设置为True。具体意义请参考 :class:`~fastNLP.DataSet` 。 """ def __init__(self, name, content, is_target=None, is_input=None, padder=None, ignore_type=False): self.name = name if isinstance(content, list): # 如果DataSet使用dict初始化, content 可能是二维list/二维array/三维list # 如果DataSet使用list of Instance 初始化, content可能是 [list]/[array]/[2D list] for idx, item in enumerate(content): # 这是使用list of Instance 初始化时第一个样本:FieldArray(name, [field]) # 将[np.array] 转化为 list of list # 也可以支持[array, array, array]的情况 if isinstance(item, np.ndarray): content[idx] = content[idx].tolist() elif isinstance(content, np.ndarray): content = content.tolist() # convert np.ndarray into 2-D list else: raise TypeError("content in FieldArray can only be list or numpy.ndarray, got {}.".format(type(content))) if len(content) == 0: raise RuntimeError("Cannot initialize FieldArray with empty list.") self.content = content # 1维 或 2维 或 3维 list, 形状可能不对齐 self.content_dim = None # 表示content是多少维的list if padder is None: padder = AutoPadder(pad_val=0) else: assert isinstance(padder, Padder), "padder must be of type Padder." padder = deepcopy(padder) self.set_padder(padder) self.ignore_type = ignore_type self.BASIC_TYPES = (int, float, str) # content中可接受的Python基本类型,这里没有np.array self.pytype = None self.dtype = None self._is_input = None self._is_target = None if is_input is not None or is_target is not None: self.is_input = is_input self.is_target = is_target def _set_dtype(self): if self.ignore_type is False: self.pytype = self._type_detection(self.content) self.dtype = self._map_to_np_type(self.pytype) @property def is_input(self): return self._is_input @is_input.setter def is_input(self, value): """ 当 field_array.is_input = True / False 时被调用 """ if value is True: self._set_dtype() self._is_input = value @property def is_target(self): return self._is_target @is_target.setter def is_target(self, value): """ 当 field_array.is_target = True / False 时被调用 """ if value is True: self._set_dtype() self._is_target = value def _type_detection(self, content): """ 当该field被设置为is_input或者is_target时被调用 """ if len(content) == 0: raise RuntimeError("Empty list in Field {}.".format(self.name)) type_set = set([type(item) for item in content]) if list in type_set: if len(type_set) > 1: # list 跟 非list 混在一起 raise RuntimeError("Mixed data types in Field {}: {}".format(self.name, list(type_set))) # >1维list inner_type_set = set() for l in content: [inner_type_set.add(type(obj)) for obj in l] if list not in inner_type_set: # 二维list self.content_dim = 2 return self._basic_type_detection(inner_type_set) else: if len(inner_type_set) == 1: # >2维list inner_inner_type_set = set() for _2d_list in content: for _1d_list in _2d_list: [inner_inner_type_set.add(type(obj)) for obj in _1d_list] if list in inner_inner_type_set: raise RuntimeError("FieldArray cannot handle 4-D or more-D list.") # 3维list self.content_dim = 3 return self._basic_type_detection(inner_inner_type_set) else: # list 跟 非list 混在一起 raise RuntimeError("Mixed data types in Field {}: {}".format(self.name, list(inner_type_set))) else: # 一维list for content_type in type_set: if content_type not in self.BASIC_TYPES: raise RuntimeError("Unexpected data type in Field '{}'. Expect one of {}. Got {}.".format( self.name, self.BASIC_TYPES, content_type)) self.content_dim = 1 return self._basic_type_detection(type_set) def _basic_type_detection(self, type_set): """ :param type_set: a set of Python types :return: one of self.BASIC_TYPES """ if len(type_set) == 1: return type_set.pop() elif len(type_set) == 2: # 有多个basic type; 可能需要up-cast if float in type_set and int in type_set: # up-cast int to float return float else: # str 跟 int 或者 float 混在一起 raise RuntimeError("Mixed data types in Field {}: {}".format(self.name, list(type_set))) else: # str, int, float混在一起 raise RuntimeError("Mixed data types in Field {}: {}".format(self.name, list(type_set))) def _1d_list_check(self, val): """如果不是1D list就报错 """ type_set = set((type(obj) for obj in val)) if any(obj not in self.BASIC_TYPES for obj in type_set): raise ValueError("Mixed data types in Field {}: {}".format(self.name, list(type_set))) self._basic_type_detection(type_set) # otherwise: _basic_type_detection will raise error return True def _2d_list_check(self, val): """如果不是2D list 就报错 """ type_set = set(type(obj) for obj in val) if list(type_set) != [list]: raise ValueError("Mixed data types in Field {}: {}".format(self.name, type_set)) inner_type_set = set() for l in val: for obj in l: inner_type_set.add(type(obj)) self._basic_type_detection(inner_type_set) return True @staticmethod def _map_to_np_type(basic_type): type_mapping = {int: np.int64, float: np.float64, str: np.str, np.ndarray: np.ndarray} return type_mapping[basic_type] def __repr__(self): return "FieldArray {}: {}".format(self.name, self.content.__repr__()) def append(self, val): """将val append到这个field的尾部。如果这个field已经被设置为input或者target,则在append之前会检查该类型是否与已有 的内容是匹配的。 :param Any val: 需要append的值。 """ if self.ignore_type is False: if isinstance(val, list): pass elif isinstance(val, tuple): # 确保最外层是list val = list(val) elif isinstance(val, np.ndarray): val = val.tolist() elif any((isinstance(val, t) for t in self.BASIC_TYPES)): pass else: raise RuntimeError( "Unexpected data type {}. Should be list, np.array, or {}".format(type(val), self.BASIC_TYPES)) if self.is_input is True or self.is_target is True: if type(val) == list: if len(val) == 0: raise ValueError("Cannot append an empty list.") if self.content_dim == 2 and self._1d_list_check(val): # 1维list检查 pass elif self.content_dim == 3 and self._2d_list_check(val): # 2维list检查 pass else: raise RuntimeError( "Dimension not matched: expect dim={}, got {}.".format(self.content_dim - 1, val)) elif type(val) in self.BASIC_TYPES and self.content_dim == 1: # scalar检查 if type(val) == float and self.pytype == int: self.pytype = float self.dtype = self._map_to_np_type(self.pytype) else: raise RuntimeError( "Unexpected data type {}. Should be list, np.array, or {}".format(type(val), self.BASIC_TYPES)) self.content.append(val) def __getitem__(self, indices): return self.get(indices, pad=False) def __setitem__(self, idx, val): assert isinstance(idx, int) self.content[idx] = val def get(self, indices, pad=True): """ 根据给定的indices返回内容 :param int,List[int] indices: 获取indices对应的内容。 :param bool pad: 是否对返回的结果进行padding。仅对indices为List[int]时有效 :return: 根据给定的indices返回的内容,可能是单个值或List """ if isinstance(indices, int): return self.content[indices] if self.is_input is False and self.is_target is False: raise RuntimeError("Please specify either is_input or is_target is True for {}".format(self.name)) contents = [self.content[i] for i in indices] if self.padder is None or pad is False: return np.array(contents) else: return self.padder(contents, field_name=self.name, field_ele_dtype=self.dtype) def set_padder(self, padder): """ 设置padder,在这个field进行pad的时候用这个padder进行pad,如果为None则不进行pad。 :param padder: :class:`~fastNLP.Padder` 类型,设置为None即删除padder。 """ if padder is not None: assert isinstance(padder, Padder), "padder must be of type Padder." self.padder = deepcopy(padder) else: self.padder = None def set_pad_val(self, pad_val): """ 修改padder的pad_val. :param int pad_val: 该field的pad值设置为该值。 """ if self.padder is not None: self.padder.set_pad_val(pad_val) return self def __len__(self): """ Returns the size of FieldArray. :return int length: """ return len(self.content) def to(self, other): """ 将other的属性复制给本FieldArray(other必须为FieldArray类型). 属性包括 is_input, is_target, padder, ignore_type :param other: :class:`~fastNLP.FieldArray` 从哪个field拷贝属性 :return: :class:`~fastNLP.FieldArray` """ assert isinstance(other, FieldArray), "Only support FieldArray type, not {}.".format(type(other)) self.is_input = other.is_input self.is_target = other.is_target self.padder = other.padder self.ignore_type = other.ignore_type return self def _is_iterable(content): try: _ = (e for e in content) except TypeError: return False return True class Padder: """ 别名::class:`fastNLP.Padder` :class:`fastNLP.core.field.Padder` 所有padder都需要继承这个类,并覆盖__call__方法。 用于对batch进行padding操作。传入的element是inplace的,即直接修改element可能导致数据变化,建议inplace修改之前deepcopy一份。 .. py:function:: __call__(self, contents, field_name, field_ele_dtype): 传入的是List内容。假设有以下的DataSet。 :param list(Any) contents: 传入的element是inplace的,即直接修改element可能导致数据变化,建议inplace修改之前 deepcopy一份。 :param str, field_name: field的名称。 :param np.int64,np.float64,np.str,None, field_ele_dtype: 该field的内层元素的类型。如果该field的ignore_type为True,该这个值为None。 :return: np.array([padded_element]) """ def __init__(self, pad_val=0, **kwargs): self.pad_val = pad_val def set_pad_val(self, pad_val): self.pad_val = pad_val def __call__(self, contents, field_name, field_ele_dtype): """ 传入的是List内容。假设有以下的DataSet。 :param list(Any) contents: 传入的element是inplace的,即直接修改element可能导致数据变化,建议inplace修改之前 deepcopy一份。 :param str, field_name: field的名称。 :param np.int64,np.float64,np.str,None, field_ele_dtype: 该field的内层元素的类型。如果该field的ignore_type为True,该这个值为None。 :return: np.array([padded_element]) Example:: from fastNLP import DataSet from fastNLP import Instance dataset = DataSet() dataset.append(Instance(sent='this is a demo', length=4, chars=[['t', 'h', 'i', 's'], ['i', 's'], ['a'], ['d', 'e', 'm', 'o']])) dataset.append(Instance(sent='another one', length=2, chars=[['a', 'n', 'o', 't', 'h', 'e', 'r'], ['o', 'n', 'e']])) 如果调用 batch = dataset.get([0,1], pad=True) sent这个field的padder的__call__会接收到的内容会是 [ 'this is a demo', 'another one' ] length这个field的padder的__call__会接收到的内容会是 [4, 2] chars这个field的padder的__call__会接收到的内容会是 [ [['t', 'h', 'i', 's'], ['i', 's'], ['a'], ['d', 'e', 'm', 'o']], [['a', 'n', 'o', 't', 'h', 'e', 'r'], ['o', 'n', 'e']] ] 即把每个instance中某个field的内容合成一个List传入 """ raise NotImplementedError class AutoPadder(Padder): """ 别名::class:`fastNLP.AutoPadder` :class:`fastNLP.core.field.AutoPadder` 根据contents的数据自动判定是否需要做padding。 1 如果元素类型(元素类型是指field中最里层元素的数据类型, 可以通过FieldArray.dtype查看,比如['This', 'is', ...]的元素类 型为np.str, [[1,2], ...]的元素类型为np.int64)的数据不为(np.int64, np.float64)则不会进行pad 2 如果元素类型为(np.int64, np.float64), 2.1 如果该field的内容为(np.int64, np.float64),比如为seq_len, 则不进行padding 2.2 如果该field的内容为List, 那么会将Batch中的List pad为一样长。若该List下还有里层的List需要padding,请使用其它padder。 即如果Instance中field形如[1, 2, 3, ...],则可以pad;若为[[1,2], [3,4, ...]]则不能进行pad """ def __init__(self, pad_val=0): """ :param pad_val: int, padding的位置使用该index """ super().__init__(pad_val=pad_val) def _is_two_dimension(self, contents): """ 判断contents是不是只有两个维度。[[1,2], [3]]是两个维度. [[[1,2], [3, 4, 5]], [[4,5]]]有三个维度 :param contents: :return: """ value = contents[0] if isinstance(value, (np.ndarray, list)): value = value[0] if isinstance(value, (np.ndarray, list)): return False return True return False def __call__(self, contents, field_name, field_ele_dtype): if not _is_iterable(contents[0]): array = np.array([content for content in contents], dtype=field_ele_dtype) elif field_ele_dtype in (np.int64, np.float64) and self._is_two_dimension(contents): max_len = max([len(content) for content in contents]) array = np.full((len(contents), max_len), self.pad_val, dtype=field_ele_dtype) for i, content in enumerate(contents): array[i][:len(content)] = content elif field_ele_dtype is None: array = np.array(contents) # 当ignore_type=True时,直接返回contents else: # should only be str array = np.array([content for content in contents]) return array class EngChar2DPadder(Padder): """ 别名::class:`fastNLP.EngChar2DPadder` :class:`fastNLP.core.field.EngChar2DPadder` 用于为英语执行character级别的2D padding操作。对应的field内容应该类似[['T', 'h', 'i', 's'], ['a'], ['d', 'e', 'm', 'o']], 但这个Padder只能处理index为int的情况。 padded过后的batch内容,形状为(batch_size, max_sentence_length, max_word_length). max_sentence_length为这个batch中最大句 子长度;max_word_length为这个batch中最长的word的长度:: from fastNLP import DataSet from fastNLP import EngChar2DPadder from fastNLP import Vocabulary dataset = DataSet({'sent': ['This is the first demo', 'This is the second demo']}) dataset.apply(lambda ins:[list(word) for word in ins['sent'].split()], new_field_name='chars') vocab = Vocabulary() vocab.from_dataset(dataset, field_name='chars') vocab.index_dataset(dataset, field_name='chars') dataset.set_input('chars') padder = EngChar2DPadder() dataset.set_padder('chars', padder) # chars这个field的设置为了EnChar2DPadder """ def __init__(self, pad_val=0, pad_length=0): """ :param pad_val: int, pad的位置使用该index :param pad_length: int, 如果为0则取一个batch中最大的单词长度作为padding长度。如果为大于0的数,则将所有单词的长度 都pad或截取到该长度. """ super().__init__(pad_val=pad_val) self.pad_length = pad_length def _exactly_three_dims(self, contents, field_name): """ 检查传入的contents是否刚好是3维,如果不是3维就报错。理论上,第一个维度是batch,第二个维度是word,第三个维度是character :param contents: :param field_name: str :return: """ if not isinstance(contents, list): raise TypeError("contents should be a list, not {}.".format(type(contents))) value = contents[0] try: value = value[0] except: raise ValueError("Field:{} only has one dimension.".format(field_name)) try: value = value[0] except: raise ValueError("Field:{} only has two dimensions.".format(field_name)) if _is_iterable(value): raise ValueError("Field:{} has more than 3 dimension.".format(field_name)) def __call__(self, contents, field_name, field_ele_dtype): """ 期望输入类似于 [ [[0, 2], [2, 3, 4], ..], [[9, 8, 2, 4], [1, 2,], ...], .... ] :param contents: :param field_name: :param field_ele_dtype :return: """ if field_ele_dtype not in (np.int64, np.float64): raise TypeError('dtype of Field:{} should be np.int64 or np.float64 to do 2D padding, get {}.'.format( field_name, field_ele_dtype )) self._exactly_three_dims(contents, field_name) if self.pad_length < 1: max_char_length = max([max(len(char_lst) for char_lst in word_lst) for word_lst in contents]) else: max_char_length = self.pad_length max_sent_length = max(len(word_lst) for word_lst in contents) batch_size = len(contents) dtype = type(contents[0][0][0]) padded_array = np.full((batch_size, max_sent_length, max_char_length), fill_value=self.pad_val, dtype=dtype) for b_idx, word_lst in enumerate(contents): for c_idx, char_lst in enumerate(word_lst): chars = char_lst[:max_char_length] padded_array[b_idx, c_idx, :len(chars)] = chars return padded_array ``` #### File: fastNLP/core/vocabulary.py ```python __all__ = [ "Vocabulary", "VocabularyOption", ] from functools import wraps from collections import Counter from .dataset import DataSet from .utils import Option class VocabularyOption(Option): def __init__(self, max_size=None, min_freq=None, padding='<pad>', unknown='<unk>'): super().__init__( max_size=max_size, min_freq=min_freq, padding=padding, unknown=unknown ) def _check_build_vocab(func): """A decorator to make sure the indexing is built before used. """ @wraps(func) # to solve missing docstring def _wrapper(self, *args, **kwargs): if self.word2idx is None or self.rebuild is True: self.build_vocab() return func(self, *args, **kwargs) return _wrapper def _check_build_status(func): """A decorator to check whether the vocabulary updates after the last build. """ @wraps(func) # to solve missing docstring def _wrapper(self, *args, **kwargs): if self.rebuild is False: self.rebuild = True if self.max_size is not None and len(self.word_count) >= self.max_size: print("[Warning] Vocabulary has reached the max size {} when calling {} method. " "Adding more words may cause unexpected behaviour of Vocabulary. ".format( self.max_size, func.__name__)) return func(self, *args, **kwargs) return _wrapper class Vocabulary(object): """ 别名::class:`fastNLP.Vocabulary` :class:`fastNLP.core.vocabulary.Vocabulary` 用于构建, 存储和使用 `str` 到 `int` 的一一映射:: vocab = Vocabulary() word_list = "this is a word list".split() vocab.update(word_list) vocab["word"] # str to int vocab.to_word(5) # int to str :param int max_size: `Vocabulary` 的最大大小, 即能存储词的最大数量 若为 ``None`` , 则不限制大小. Default: ``None`` :param int min_freq: 能被记录下的词在文本中的最小出现频率, 应大于或等于 1. 若小于该频率, 词语将被视为 `unknown`. 若为 ``None`` , 所有文本中的词都被记录. Default: ``None`` :param str optional padding: padding的字符. 如果设置为 ``None`` , 则vocabulary中不考虑padding, 也不计入词表大小,为 ``None`` 的情况多在为label建立Vocabulary的情况. Default: '<pad>' :param str optional unknown: unknown的字符,所有未被记录的词在转为 `int` 时将被视为unknown. 如果设置为 ``None`` ,则vocabulary中不考虑unknow, 也不计入词表大小. 为 ``None`` 的情况多在为label建立Vocabulary的情况. Default: '<unk>' """ def __init__(self, max_size=None, min_freq=None, padding='<pad>', unknown='<unk>'): self.max_size = max_size self.min_freq = min_freq self.word_count = Counter() self.unknown = unknown self.padding = padding self.word2idx = None self.idx2word = None self.rebuild = True @_check_build_status def update(self, word_lst): """依次增加序列中词在词典中的出现频率 :param list word_lst: a list of strings """ self.word_count.update(word_lst) @_check_build_status def add(self, word): """ 增加一个新词在词典中的出现频率 :param str word: 新词 """ self.word_count[word] += 1 @_check_build_status def add_word(self, word): """ 增加一个新词在词典中的出现频率 :param str word: 新词 """ self.add(word) @_check_build_status def add_word_lst(self, word_lst): """ 依次增加序列中词在词典中的出现频率 :param list[str] word_lst: 词的序列 """ self.update(word_lst) def build_vocab(self): """ 根据已经出现的词和出现频率构建词典. 注意: 重复构建可能会改变词典的大小, 但已经记录在词典中的词, 不会改变对应的 `int` """ if self.word2idx is None: self.word2idx = {} if self.padding is not None: self.word2idx[self.padding] = len(self.word2idx) if self.unknown is not None: self.word2idx[self.unknown] = len(self.word2idx) max_size = min(self.max_size, len(self.word_count)) if self.max_size else None words = self.word_count.most_common(max_size) if self.min_freq is not None: words = filter(lambda kv: kv[1] >= self.min_freq, words) if self.word2idx is not None: words = filter(lambda kv: kv[0] not in self.word2idx, words) start_idx = len(self.word2idx) self.word2idx.update({w: i + start_idx for i, (w, _) in enumerate(words)}) self.build_reverse_vocab() self.rebuild = False def build_reverse_vocab(self): """ 基于 "word to index" dict, 构建 "index to word" dict. """ self.idx2word = {i: w for w, i in self.word2idx.items()} @_check_build_vocab def __len__(self): return len(self.word2idx) @_check_build_vocab def __contains__(self, item): """ 检查词是否被记录 :param item: the word :return: True or False """ return item in self.word2idx def has_word(self, w): """ 检查词是否被记录:: has_abc = vocab.has_word('abc') # equals to has_abc = 'abc' in vocab :param item: the word :return: ``True`` or ``False`` """ return self.__contains__(w) @_check_build_vocab def __getitem__(self, w): """ To support usage like:: vocab[w] """ if w in self.word2idx: return self.word2idx[w] if self.unknown is not None: return self.word2idx[self.unknown] else: raise ValueError("word {} not in vocabulary".format(w)) @_check_build_vocab def index_dataset(self, *datasets, field_name, new_field_name=None): """ 将DataSet中对应field的词转为数字,Example:: # remember to use `field_name` vocab.index_dataset(train_data, dev_data, test_data, field_name='words') :param datasets: 需要转index的 class:`~fastNLP.DataSet` , 支持一个或多个(list) :param str field_name: 需要转index的field, 若有多个 DataSet, 每个DataSet都必须有此 field. 目前仅支持 ``str`` , ``list(str)`` , ``list(list(str))`` :param str new_field_name: 保存结果的field_name. 若为 ``None`` , 将覆盖原field. Default: ``None`` """ def index_instance(ins): """ 有几种情况, str, 1d-list, 2d-list :param ins: :return: """ field = ins[field_name] if isinstance(field, str): return self.to_index(field) elif isinstance(field, list): if not isinstance(field[0], list): return [self.to_index(w) for w in field] else: if isinstance(field[0][0], list): raise RuntimeError("Only support field with 2 dimensions.") return [[self.to_index(c) for c in w] for w in field] if new_field_name is None: new_field_name = field_name for idx, dataset in enumerate(datasets): if isinstance(dataset, DataSet): try: dataset.apply(index_instance, new_field_name=new_field_name) except Exception as e: print("When processing the `{}` dataset, the following error occurred.".format(idx)) raise e else: raise RuntimeError("Only DataSet type is allowed.") def from_dataset(self, *datasets, field_name): """ 使用dataset的对应field中词构建词典:: # remember to use `field_name` vocab.from_dataset(train_data1, train_data2, field_name='words') :param datasets: 需要转index的 class:`~fastNLP.DataSet` , 支持一个或多个(list) :param field_name: 可为 ``str`` 或 ``list(str)`` . 构建词典所使用的 field(s), 支持一个或多个field 若有多个 DataSet, 每个DataSet都必须有这些field. 目前仅支持的field结构: ``str`` , ``list(str)`` , ``list(list(str))`` :return self: """ if isinstance(field_name, str): field_name = [field_name] elif not isinstance(field_name, list): raise TypeError('invalid argument field_name: {}'.format(field_name)) def construct_vocab(ins): for fn in field_name: field = ins[fn] if isinstance(field, str): self.add_word(field) elif isinstance(field, list): if not isinstance(field[0], list): self.add_word_lst(field) else: if isinstance(field[0][0], list): raise RuntimeError("Only support field with 2 dimensions.") [self.add_word_lst(w) for w in field] for idx, dataset in enumerate(datasets): if isinstance(dataset, DataSet): try: dataset.apply(construct_vocab) except Exception as e: print("When processing the `{}` dataset, the following error occurred.".format(idx)) raise e else: raise RuntimeError("Only DataSet type is allowed.") return self def to_index(self, w): """ 将词转为数字. 若词不再词典中被记录, 将视为 unknown, 若 ``unknown=None`` , 将抛出 ``ValueError``:: index = vocab.to_index('abc') # equals to index = vocab['abc'] :param str w: a word :return int index: the number """ return self.__getitem__(w) @property @_check_build_vocab def unknown_idx(self): """ unknown 对应的数字. """ if self.unknown is None: return None return self.word2idx[self.unknown] @property @_check_build_vocab def padding_idx(self): """ padding 对应的数字 """ if self.padding is None: return None return self.word2idx[self.padding] @_check_build_vocab def to_word(self, idx): """ 给定一个数字, 将其转为对应的词. :param int idx: the index :return str word: the word """ return self.idx2word[idx] def clear(self): """ 删除Vocabulary中的词表数据。相当于重新初始化一下。 :return: """ self.word_count.clear() self.word2idx = None self.idx2word = None self.rebuild = True def __getstate__(self): """Use to prepare data for pickle. """ len(self) # make sure vocab has been built state = self.__dict__.copy() # no need to pickle idx2word as it can be constructed from word2idx del state['idx2word'] return state def __setstate__(self, state): """Use to restore state from pickle. """ self.__dict__.update(state) self.build_reverse_vocab() def __repr__(self): return "Vocabulary({}...)".format(list(self.word_count.keys())[:5]) def __iter__(self): return iter(list(self.word_count.keys())) ``` #### File: io/data_loader/sst.py ```python from typing import Iterable from nltk import Tree from ..base_loader import DataInfo, DataSetLoader from ...core.vocabulary import VocabularyOption, Vocabulary from ...core.dataset import DataSet from ...core.instance import Instance from ..embed_loader import EmbeddingOption, EmbedLoader class SSTLoader(DataSetLoader): URL = 'https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip' DATA_DIR = 'sst/' """ 别名::class:`fastNLP.io.SSTLoader` :class:`fastNLP.io.dataset_loader.SSTLoader` 读取SST数据集, DataSet包含fields:: words: list(str) 需要分类的文本 target: str 文本的标签 数据来源: https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip :param subtree: 是否将数据展开为子树,扩充数据量. Default: ``False`` :param fine_grained: 是否使用SST-5标准,若 ``False`` , 使用SST-2。Default: ``False`` """ def __init__(self, subtree=False, fine_grained=False): self.subtree = subtree tag_v = {'0': 'very negative', '1': 'negative', '2': 'neutral', '3': 'positive', '4': 'very positive'} if not fine_grained: tag_v['0'] = tag_v['1'] tag_v['4'] = tag_v['3'] self.tag_v = tag_v def _load(self, path): """ :param str path: 存储数据的路径 :return: 一个 :class:`~fastNLP.DataSet` 类型的对象 """ datalist = [] with open(path, 'r', encoding='utf-8') as f: datas = [] for l in f: datas.extend([(s, self.tag_v[t]) for s, t in self._get_one(l, self.subtree)]) ds = DataSet() for words, tag in datas: ds.append(Instance(words=words, target=tag)) return ds @staticmethod def _get_one(data, subtree): tree = Tree.fromstring(data) if subtree: return [(t.leaves(), t.label()) for t in tree.subtrees()] return [(tree.leaves(), tree.label())] def process(self, paths, train_ds: Iterable[str] = None, src_vocab_op: VocabularyOption = None, tgt_vocab_op: VocabularyOption = None, src_embed_op: EmbeddingOption = None): input_name, target_name = 'words', 'target' src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op) tgt_vocab = Vocabulary(unknown=None, padding=None) \ if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op) info = DataInfo(datasets=self.load(paths)) _train_ds = [info.datasets[name] for name in train_ds] if train_ds else info.datasets.values() src_vocab.from_dataset(*_train_ds, field_name=input_name) tgt_vocab.from_dataset(*_train_ds, field_name=target_name) src_vocab.index_dataset( *info.datasets.values(), field_name=input_name, new_field_name=input_name) tgt_vocab.index_dataset( *info.datasets.values(), field_name=target_name, new_field_name=target_name) info.vocabs = { input_name: src_vocab, target_name: tgt_vocab } if src_embed_op is not None: src_embed_op.vocab = src_vocab init_emb = EmbedLoader.load_with_vocab(**src_embed_op) info.embeddings[input_name] = init_emb return info ``` #### File: modules/encoder/embedding.py ```python __all__ = [ "Embedding" ] import torch.nn as nn from ..utils import get_embeddings class Embedding(nn.Embedding): """ 别名::class:`fastNLP.modules.Embedding` :class:`fastNLP.modules.encoder.embedding.Embedding` Embedding组件. 可以通过self.num_embeddings获取词表大小; self.embedding_dim获取embedding的维度""" def __init__(self, init_embed, padding_idx=None, dropout=0.0, sparse=False, max_norm=None, norm_type=2, scale_grad_by_freq=False): """ :param tuple(int,int),torch.FloatTensor,nn.Embedding,numpy.ndarray init_embed: Embedding的大小(传入tuple(int, int), 第一个int为vocab_zie, 第二个int为embed_dim); 如果为Tensor, Embedding, ndarray等则直接使用该值初始化Embedding :param None,int padding_idx: 该index的Embedding将一直为0. :param float dropout: 对Embedding的输出的dropout。 :param bool sparse: 如果为True,则对Embedding的梯度将是sparse的,参考Pytorch Embedding获取更多信息。 :param None,float max_norm: 每个vector最大的norm能为多大 :param int norm_type: norm的类型 :param bool scale_grad_by_freq: 如果为True,将会把梯度除以这个词出现的次数. """ embed = get_embeddings(init_embed) num_embeddings, embedding_dim = embed.weight.size() super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx, max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq, sparse=sparse, _weight=embed.weight.data) del embed self.dropout = nn.Dropout(dropout) def forward(self, x): """ :param torch.LongTensor x: [batch, seq_len] :return: torch.Tensor : [batch, seq_len, embed_dim] """ x = super().forward(x) return self.dropout(x) def size(self): """ Embedding的大小 :return: torch.Size() """ return self.weight.size() ``` #### File: matching/model/CIN.py ```python import torch import torch.nn as nn from fastNLP.models import BaseModel #args = type('args', (), {})() class CIN4NLI(BaseModel): # TODO: still in progress def __init(self): super(CIN4NLI, self).__init__() def forward(self, words, segment_id, seq_len): pass class CIN(nn.Module): def __init(self): super(CIN, self).__init__() def forward(self, words, segment_id, seq_len): pass ``` #### File: test/core/test_callbacks.py ```python import unittest import numpy as np import torch from fastNLP.core.callback import EarlyStopCallback, GradientClipCallback, LRScheduler, ControlC, \ LRFinder, TensorboardCallback from fastNLP import DataSet from fastNLP import Instance from fastNLP import BCELoss from fastNLP import AccuracyMetric from fastNLP import SGD from fastNLP import Trainer from fastNLP.models.base_model import NaiveClassifier def prepare_env(): def prepare_fake_dataset(): mean = np.array([-3, -3]) cov = np.array([[1, 0], [0, 1]]) class_A = np.random.multivariate_normal(mean, cov, size=(1000,)) mean = np.array([3, 3]) cov = np.array([[1, 0], [0, 1]]) class_B = np.random.multivariate_normal(mean, cov, size=(1000,)) data_set = DataSet([Instance(x=[float(item[0]), float(item[1])], y=[0.0]) for item in class_A] + [Instance(x=[float(item[0]), float(item[1])], y=[1.0]) for item in class_B]) return data_set data_set = prepare_fake_dataset() data_set.set_input("x") data_set.set_target("y") model = NaiveClassifier(2, 1) return data_set, model class TestCallback(unittest.TestCase): def test_gradient_clip(self): data_set, model = prepare_env() trainer = Trainer(data_set, model, loss=BCELoss(pred="predict", target="y"), n_epochs=20, batch_size=32, print_every=50, optimizer=SGD(lr=0.1), check_code_level=2, use_tqdm=False, dev_data=data_set, metrics=AccuracyMetric(pred="predict", target="y"), callbacks=[GradientClipCallback(model.parameters(), clip_value=2)]) trainer.train() def test_early_stop(self): data_set, model = prepare_env() trainer = Trainer(data_set, model, loss=BCELoss(pred="predict", target="y"), n_epochs=20, batch_size=32, print_every=50, optimizer=SGD(lr=0.01), check_code_level=2, use_tqdm=False, dev_data=data_set, metrics=AccuracyMetric(pred="predict", target="y"), callbacks=[EarlyStopCallback(5)]) trainer.train() def test_lr_scheduler(self): data_set, model = prepare_env() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) trainer = Trainer(data_set, model, loss=BCELoss(pred="predict", target="y"), n_epochs=5, batch_size=32, print_every=50, optimizer=optimizer, check_code_level=2, use_tqdm=False, dev_data=data_set, metrics=AccuracyMetric(pred="predict", target="y"), callbacks=[LRScheduler(torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1))]) trainer.train() def test_KeyBoardInterrupt(self): data_set, model = prepare_env() trainer = Trainer(data_set, model, loss=BCELoss(pred="predict", target="y"), n_epochs=5, batch_size=32, print_every=50, optimizer=SGD(lr=0.1), check_code_level=2, use_tqdm=False, callbacks=[ControlC(False)]) trainer.train() def test_LRFinder(self): data_set, model = prepare_env() trainer = Trainer(data_set, model, loss=BCELoss(pred="predict", target="y"), n_epochs=5, batch_size=32, print_every=50, optimizer=SGD(lr=0.1), check_code_level=2, use_tqdm=False, callbacks=[LRFinder(len(data_set) // 32)]) trainer.train() def test_TensorboardCallback(self): data_set, model = prepare_env() trainer = Trainer(data_set, model, loss=BCELoss(pred="predict", target="y"), n_epochs=5, batch_size=32, print_every=50, optimizer=SGD(lr=0.1), check_code_level=2, use_tqdm=False, dev_data=data_set, metrics=AccuracyMetric(pred="predict", target="y"), callbacks=[TensorboardCallback("loss", "metric")]) trainer.train() def test_readonly_property(self): from fastNLP.core.callback import Callback passed_epochs = [] total_epochs = 5 class MyCallback(Callback): def __init__(self): super(MyCallback, self).__init__() def on_epoch_begin(self): passed_epochs.append(self.epoch) print(self.n_epochs, self.n_steps, self.batch_size) print(self.model) print(self.optimizer) data_set, model = prepare_env() trainer = Trainer(data_set, model, loss=BCELoss(pred="predict", target="y"), n_epochs=total_epochs, batch_size=32, print_every=50, optimizer=SGD(lr=0.1), check_code_level=2, use_tqdm=False, dev_data=data_set, metrics=AccuracyMetric(pred="predict", target="y"), callbacks=[MyCallback()]) trainer.train() assert passed_epochs == list(range(1, total_epochs + 1)) ``` #### File: test/models/model_runner.py ```python from fastNLP import Trainer, Tester, DataSet, Callback from fastNLP import AccuracyMetric from fastNLP import CrossEntropyLoss from fastNLP.core.const import Const as C from random import randrange VOCAB_SIZE = 100 NUM_CLS = 100 MAX_LEN = 10 N_SAMPLES = 100 N_EPOCHS = 1 BATCH_SIZE = 5 TEXT_CLS = 'text_cls' POS_TAGGING = 'pos_tagging' NLI = 'nli' class ModelRunner(): class Checker(Callback): def on_backward_begin(self, loss): assert loss.to('cpu').numpy().isfinate() def gen_seq(self, length, vocab_size): """generate fake sequence indexes with given length""" # reserve 0 for padding return [randrange(1, vocab_size) for _ in range(length)] def gen_var_seq(self, max_len, vocab_size): """generate fake sequence indexes in variant length""" length = randrange(3, max_len) # at least 3 words in a seq return self.gen_seq(length, vocab_size) def prepare_text_classification_data(self): index = 'index' ds = DataSet({index: list(range(N_SAMPLES))}) ds.apply_field(lambda x: self.gen_var_seq(MAX_LEN, VOCAB_SIZE), field_name=index, new_field_name=C.INPUT, is_input=True) ds.apply_field(lambda x: randrange(NUM_CLS), field_name=index, new_field_name=C.TARGET, is_target=True) ds.apply_field(len, C.INPUT, C.INPUT_LEN, is_input=True) return ds def prepare_pos_tagging_data(self): index = 'index' ds = DataSet({index: list(range(N_SAMPLES))}) ds.apply_field(lambda x: self.gen_var_seq(MAX_LEN, VOCAB_SIZE), field_name=index, new_field_name=C.INPUT, is_input=True) ds.apply_field(lambda x: self.gen_seq(len(x), NUM_CLS), field_name=C.INPUT, new_field_name=C.TARGET, is_target=True) ds.apply_field(len, C.INPUT, C.INPUT_LEN, is_input=True, is_target=True) return ds def prepare_nli_data(self): index = 'index' ds = DataSet({index: list(range(N_SAMPLES))}) ds.apply_field(lambda x: self.gen_var_seq(MAX_LEN, VOCAB_SIZE), field_name=index, new_field_name=C.INPUTS(0), is_input=True) ds.apply_field(lambda x: self.gen_var_seq(MAX_LEN, VOCAB_SIZE), field_name=index, new_field_name=C.INPUTS(1), is_input=True) ds.apply_field(lambda x: randrange(NUM_CLS), field_name=index, new_field_name=C.TARGET, is_target=True) ds.apply_field(len, C.INPUTS(0), C.INPUT_LENS(0), is_input=True, is_target=True) ds.apply_field(len, C.INPUTS(1), C.INPUT_LENS(1), is_input = True, is_target = True) ds.set_input(C.INPUTS(0), C.INPUTS(1)) ds.set_target(C.TARGET) return ds def run_text_classification(self, model, data=None): if data is None: data = self.prepare_text_classification_data() loss = CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET) metric = AccuracyMetric(pred=C.OUTPUT, target=C.TARGET) self.run_model(model, data, loss, metric) def run_pos_tagging(self, model, data=None): if data is None: data = self.prepare_pos_tagging_data() loss = CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET, padding_idx=0) metric = AccuracyMetric(pred=C.OUTPUT, target=C.TARGET, seq_len=C.INPUT_LEN) self.run_model(model, data, loss, metric) def run_nli(self, model, data=None): if data is None: data = self.prepare_nli_data() loss = CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET) metric = AccuracyMetric(pred=C.OUTPUT, target=C.TARGET) self.run_model(model, data, loss, metric) def run_model(self, model, data, loss, metrics): """run a model, test if it can run with fastNLP""" print('testing model:', model.__class__.__name__) tester = Tester(data=data, model=model, metrics=metrics, batch_size=BATCH_SIZE, verbose=0) before_train = tester.test() trainer = Trainer(model=model, train_data=data, dev_data=None, n_epochs=N_EPOCHS, batch_size=BATCH_SIZE, loss=loss, save_path=None, use_tqdm=False) trainer.train(load_best_model=False) after_train = tester.test() for metric_name, v1 in before_train.items(): assert metric_name in after_train # # at least we can sure model params changed, even if we don't know performance # v2 = after_train[metric_name] # assert v1 != v2 def run_model_with_task(self, task, model): """run a model with certain task""" TASKS = { TEXT_CLS: self.run_text_classification, POS_TAGGING: self.run_pos_tagging, NLI: self.run_nli, } assert task in TASKS TASKS[task](model) RUNNER = ModelRunner() ```
{ "source": "jerri/mpg123-python", "score": 2 }
#### File: jerri/mpg123-python/mpg123.py ```python import ctypes from ctypes.util import find_library import sys VERBOSE = 0 OK = 0 NEED_MORE = -10 NEW_FORMAT = -11 DONE = -12 MONO = 1 STEREO = 2 ENC_8 = 0x00f ENC_16 = 0x040 ENC_24 = 0x4000 ENC_32 = 0x100 ENC_SIGNED = 0x080 ENC_FLOAT = 0xe00 ENC_SIGNED_16 = (ENC_16 | ENC_SIGNED | 0x10) ENC_UNSIGNED_16 = (ENC_16 | 0x20) ENC_UNSIGNED_8 = 0x01 ENC_SIGNED_8 = (ENC_SIGNED | 0x02) ENC_ULAW_8 = 0x04 ENC_ALAW_8 = 0x08 ENC_SIGNED_32 = (ENC_32 | ENC_SIGNED | 0x1000) ENC_UNSIGNED_32 = (ENC_32 | 0x2000) ENC_SIGNED_24 = (ENC_24 | ENC_SIGNED | 0x1000) ENC_UNSIGNED_24 = (ENC_24 | 0x2000) ENC_FLOAT_32 = 0x200 ENC_FLOAT_64 = 0x400 class ID3v1(ctypes.Structure): _fields_ = [ ('tag', ctypes.c_char * 3), ('title', ctypes.c_char * 30), ('artist', ctypes.c_char * 30), ('album', ctypes.c_char * 30), ('year', ctypes.c_char * 4), ('comment', ctypes.c_char * 30), ('genre', ctypes.c_ubyte), ] class Mpg123: _lib = None class LibInitializationException(Exception): pass class OpenFeedException(Exception): pass class CloseException(Exception): pass class OpenFileException(Exception): pass class NotFeedException(Exception): pass class FeedingException(Exception): pass class FormatException(Exception): pass class DecodeException(Exception): pass class NeedMoreException(Exception): pass class DoneException(Exception): pass class LengthException(Exception): pass class ID3Exception(Exception): pass def plain_strerror(self, errcode): self._lib.mpg123_plain_strerror.restype = ctypes.c_char_p return self._lib.mpg123_plain_strerror(errcode).decode() def init_library(self, library_path=None): if not library_path: library_path = find_library('mpg123') if not library_path: library_path = find_library('libmpg123-0') if not library_path: raise self.LibInitializationException('libmpg123 not found') lib = ctypes.CDLL(library_path) errcode = lib.mpg123_init() if errcode != OK: raise self.LibInitializationException(self.plain_strerror(errcode)) return lib def __init__(self, filename=None, library_path=None): self.handle = None if not self._lib: self._lib = self.init_library(library_path) self._lib.mpg123_new.restype = ctypes.c_void_p self.c_handle = self._lib.mpg123_new(ctypes.c_char_p(None), None) self.handle = ctypes.c_void_p(self.c_handle) self.is_feed = filename is None self.offset = ctypes.c_size_t(0) if self.is_feed: errcode = self._lib.mpg123_open_feed(self.handle) if errcode != OK: raise self.OpenFeedException(self.plain_strerror(errcode)) else: errcode = self._lib.mpg123_open(self.handle, filename.encode()) if errcode != OK: raise self.OpenFileException(self.plain_strerror(errcode)) def feed(self, data): if not self.is_feed: raise self.NotFeedException('instance is not in feed mode') # encode string to bytes in modern python if sys.version_info[0] >= 3 and isinstance(data, str): data = data.encode() data = memoryview(data) errcode = self._lib.mpg123_feed(self.handle, ctypes.c_char_p(data.tobytes()), len(data)) if errcode != OK: raise self.FeedingException(self.plain_strerror(errcode)) def get_id3(self): v1 = ctypes.c_void_p() v2 = ctypes.c_void_p() errcode = self._lib.mpg123_id3(self.handle, ctypes.pointer(v1), ctypes.pointer(v2)) if errcode != OK: raise self.ID3Exception(self.plain_strerror(errcode)) if v1.value is None: raise self.ID3Exception(self.plain_strerror(errcode)) return ctypes.cast(v1, ctypes.POINTER(ID3v1)).contents def get_format(self): rate = ctypes.c_int(0) channels = ctypes.c_int(0) encoding = ctypes.c_int(0) errcode = self._lib.mpg123_getformat(self.handle, ctypes.pointer(rate), ctypes.pointer(channels), ctypes.pointer(encoding)) if errcode != OK: if errcode == NEED_MORE: raise self.NeedMoreException(self.plain_strerror(errcode)) raise self.FormatException(self.plain_strerror(errcode)) return (rate.value, channels.value, encoding.value) def get_width_by_encoding(self, encoding): return self._lib.mpg123_encsize(encoding) def length(self): errcode = self._lib.mpg123_length(self.handle) if errcode <= 0: if errcode == NEED_MORE: raise self.NeedMoreException(self.plain_strerror(errcode)) raise self.LengthException(self.plain_strerror(errcode)) return errcode def frame_length(self): errcode = self._lib.mpg123_framelength(self.handle) if errcode <= 0: if errcode == NEED_MORE: raise self.NeedMoreException(self.plain_strerror(errcode)) raise self.LengthException(self.plain_strerror(errcode)) return errcode def decode_frame(self): audio = ctypes.c_char_p() done = ctypes.c_size_t(0) errcode = self._lib.mpg123_decode_frame(self.handle, ctypes.pointer(self.offset), ctypes.pointer(audio), ctypes.pointer(done)) if errcode == OK: return ctypes.string_at(audio, done.value) if errcode == NEED_MORE: raise self.NeedMoreException(self.plain_strerror(errcode)) if errcode == NEW_FORMAT: return self.decode_frame() if errcode == DONE: raise self.DoneException(self.plain_strerror(errcode)) raise self.DecodeException(self.plain_strerror(errcode)) def iter_frames(self, new_format_callback=None): self.offset = ctypes.c_size_t(0) audio = ctypes.c_char_p() done = ctypes.c_size_t(0) while True: errcode = self._lib.mpg123_decode_frame( self.handle, ctypes.pointer(self.offset), ctypes.pointer(audio), ctypes.pointer(done)) if errcode == OK: yield ctypes.string_at(audio, done.value) else: if errcode in (NEED_MORE, DONE): break if errcode == NEW_FORMAT: if new_format_callback: new_format_callback(*self.get_format()) continue raise self.DecodeException(self.plain_strerror(errcode)) def __del__(self): if not self.handle: return errcode = self._lib.mpg123_close(self.handle) if errcode != OK: raise self.CloseException(self.plain_strerror(errcode)) class Out123: _lib = None class LibInitializationException(Exception): pass class OpenException(Exception): pass class CloseException(Exception): pass class StartException(Exception): pass class PlayingException(Exception): pass def init_library(self, library_path=None): if not library_path: library_path = find_library('out123') if not library_path: library_path = find_library('libout123-0') if not library_path: raise self.LibInitializationException('libout123 not found') return ctypes.CDLL(library_path) def plain_strerror(self, errcode): self._lib.out123_plain_strerror.restype = ctypes.c_char_p return self._lib.out123_plain_strerror(errcode).decode() def __init__(self, library_path=None, modules=None): self.handle = None if not self._lib: self._lib = self.init_library(library_path) self._lib.out123_new.restype = ctypes.c_void_p self.c_handle = self._lib.out123_new() self.handle = ctypes.c_void_p(self.c_handle) if modules is None: modules = ctypes.c_char_p(None) else: modules = modules.encode() errcode = self._lib.out123_open(self.handle, modules, ctypes.c_char_p(None)) if errcode != OK: raise self.OpenException(self.plain_strerror(errcode)) def start(self, rate, channels, encoding): errcode = self._lib.out123_start(self.handle, rate, channels, encoding) if errcode != OK: raise self.StartException(self.plain_strerror(errcode)) def play(self, data): # encode string to bytes in modern python if sys.version_info[0] >= 3 and isinstance(data, str): data = data.encode() data = memoryview(data) return self._lib.out123_play(self.handle, ctypes.c_char_p(data.tobytes()), len(data)) def __del__(self): if not self.handle: return self._lib.out123_close(self.handle) ``` #### File: mpg123-python/tests/test_mpg123.py ```python import unittest import mpg123 from mpg123 import Mpg123 import sys class TestMpg123(unittest.TestCase): def test_feeding_need_more(self): mp3 = Mpg123() mp3.feed(b'') with self.assertRaises(Mpg123.NeedMoreException): mp3.decode_frame() def test_feeding_need_more_not_empty(self): mp3 = Mpg123() mp3.feed(b'\0\0\0\0') with self.assertRaises(Mpg123.NeedMoreException): mp3.decode_frame() def test_get_format_need_more(self): mp3 = Mpg123() with self.assertRaises(Mpg123.NeedMoreException): mp3.get_format() def test_feeding_need_more_bytearray(self): mp3 = Mpg123() mp3.feed(bytearray(8)) with self.assertRaises(Mpg123.NeedMoreException): mp3.decode_frame() def test_feeding_need_more_string(self): mp3 = Mpg123() mp3.feed('hello') with self.assertRaises(Mpg123.NeedMoreException): mp3.decode_frame() def test_feeding_file(self): mp3 = Mpg123() with open('tests/bensound-scifi.mp3', 'rb') as f: while True: data = f.read(4096) if not data: break mp3.feed(data) rate, channels, encoding = mp3.get_format() self.assertEqual(rate, 44100) self.assertEqual(channels, 2) self.assertEqual(encoding, 208) self.assertEqual(mp3.get_width_by_encoding(encoding), 2) self.assertEqual(encoding, mpg123.ENC_SIGNED_16) frame = mp3.decode_frame() self.assertEqual(len(frame), 188) frame = mp3.decode_frame() self.assertEqual(len(frame), 4608) def test_file_format(self): mp3 = Mpg123('tests/bensound-epic.mp3') rate, channels, encoding = mp3.get_format() self.assertEqual(rate, 44100) self.assertEqual(channels, 2) self.assertEqual(encoding, 208) def test_file_format2(self): mp3 = Mpg123('tests/bensound-scifi.mp3') rate, channels, encoding = mp3.get_format() self.assertEqual(rate, 44100) self.assertEqual(channels, 2) self.assertEqual(encoding, 208) def test_file_frame(self): mp3 = Mpg123('tests/bensound-epic.mp3') frame = mp3.decode_frame() self.assertEqual(len(frame), 188) frame = mp3.decode_frame() self.assertEqual(len(frame), 4608) def test_file_id3(self): mp3 = Mpg123('tests/bensound-epic.mp3') id3 = mp3.get_id3() self.assertEqual(id3.artist, 'Bensound'.encode()) self.assertEqual(id3.year, '2017'.encode()) self.assertEqual(id3.genre, 0) def test_file_id3_song2(self): mp3 = Mpg123('tests/bensound-scifi.mp3') id3 = mp3.get_id3() self.assertEqual(id3.artist, 'http://www.bensound.com'.encode()) self.assertEqual(id3.year, '2012'.encode()) self.assertEqual(id3.genre, 1) def test_file_all_frames(self): mp3 = Mpg123('tests/bensound-epic.mp3') frames = [frame for frame in mp3.iter_frames()] self.assertEqual(len(frames), 6835) def test_file_frame_data(self): mp3 = Mpg123('tests/bensound-epic.mp3') frames = [frame for frame in mp3.iter_frames()] if sys.version_info[0] >= 3: self.assertEqual(frames[17][22], 30) else: self.assertEqual(ord(frames[17][22]), 30) def test_file_length(self): mp3 = Mpg123('tests/bensound-epic.mp3') self.assertEqual(mp3.length(), 7872625) def test_file_frame_length(self): mp3 = Mpg123('tests/bensound-epic.mp3') self.assertEqual(mp3.frame_length(), 6835) def test_feed_frame_length(self): mp3 = Mpg123() with self.assertRaises(Mpg123.NeedMoreException): mp3.frame_length() def test_feed_length(self): mp3 = Mpg123() with self.assertRaises(Mpg123.NeedMoreException): mp3.length() if __name__ == '__main__': unittest.main() ```
{ "source": "jerrington/ISS-Tracker", "score": 3 }
#### File: jerrington/ISS-Tracker/ISS_TRACKER.py ```python import time import tkinter as tk from datetime import date from tkinter import TOP, BOTH, BOTTOM, Label import matplotlib as mpl import matplotlib.animation as animation import matplotlib.pyplot as plt import requests from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from mpl_toolkits.basemap import Basemap mpl.rcParams['toolbar'] = 'None' ISS_URL="http://api.open-notify.org/iss-now.json" time1 = '' date1 = '' def tick(): global time1 # get the current local time from the PC time2 = time.strftime('%H:%M') # if time string has changed, update it if time2 != time1: time1 = time2 clock.config(text=time2) clock.after(1000, tick) def get_date(): global date1 #get current date date2 = date.today().strftime('%b, %d %Y') # compare if date2 != date1: date1 = date2 day.config(text=date2) day.after(20000000, get_date) # Function to get ISS position from NASA API def get_iss_location(): json_data='' while not json_data: try: json_data=requests.get(ISS_URL, timeout=30).json() except requests.ConnectionError as e: print(str(e)) time.sleep(10) except requests.Timeout as e: print(str(e)) time.sleep(10) except requests.RequestException as e: print(str(e)) time.sleep(10) position=[float(json_data['iss_position']['longitude']), float(json_data['iss_position']['latitude'])] return position # Setup the figure for the animation f = plt.figure(figsize=(8, 4.8), frameon=False, tight_layout={ "pad": 0.0 }) m = Basemap(projection='cyl', resolution='c') m.drawcoastlines(color='#000000', linewidth=1) m.drawcountries() m.drawstates() m.drawmapboundary(fill_color='xkcd:ocean') m.fillcontinents(color='xkcd:dirt brown',lake_color='xkcd:lightblue') # Set plot styles x,y = m(0, 0) x1, y1 = m(0, 0) x2, y2 = m(0, 0) # 0 - 180 line1 = m.plot(x, y, linestyle='-', color='xkcd:red')[0] # -180 - 0 line2 = m.plot(x1, y1, linestyle='-', color='xkcd:black')[0] # Marker point = m.plot(x2, y2, marker='o', color='xkcd:red', markersize=5)[0] # Set blank canvas for anaimation init def init(): point.set_data([], []) line1.set_data([], []) line2.set_data([], []) return point, line1, line2, # Red Array array1_1=[] # Blue Array array2_1=[] # animation function. This is called sequentially def animate(i): global array1_1 global array2_1 current_location=get_iss_location() if 179.950 <= current_location[0] < 180: array1_1.append(current_location) time.sleep(2) current_location=get_iss_location() if current_location[0] < 0: array2_1 = array1_1 array1_1 = [] array1_1.append(current_location) else: time.sleep(2) current_location=get_iss_location() array2_1 = array1_1 array1_1 = [] array1_1.append(current_location) else: array1_1.append(current_location) # Load array1_1 data if array1_1: lons, lats = zip(*array1_1) x1, y1 = m(lons, lats) line1.set_data(x1, y1) # Load array1_2 data if array2_1: lons2, lats2 = zip(*array2_1) x2, y2 = m(lons2, lats2) line2.set_data(x2, y2) # Set marker lons_point, lats_point = zip(current_location) x_point, y_point = m(lons_point, lats_point) point.set_data(x_point, y_point) return point, line1, line2, root = tk.Tk() root.configure(background='grey') root.geometry('800x480+0+0') root.overrideredirect(1) canvas = FigureCanvasTkAgg(f, master=root) canvas.get_tk_widget().configure(background='grey') canvas.get_tk_widget().pack(side=TOP, fill=BOTH, expand=1) canvas._tkcanvas.pack(side=TOP, fill=BOTH, expand=1) clock = Label(canvas.get_tk_widget(), font=('courier', 22, 'bold'), bg='grey') clock.pack(side=BOTTOM, pady=1) day = Label(canvas.get_tk_widget(),font=('courier', 22, 'bold'), bg='grey') day.pack(side=TOP) canvas.draw() get_date() tick() # call the animator. blit=True means only re-draw the parts that have changed. anim = animation.FuncAnimation(f, animate, init_func=init, frames=None, interval=2000, blit=False) root.update() root.mainloop() ```
{ "source": "jerri/pandoc-mermaid-filter", "score": 2 }
#### File: jerri/pandoc-mermaid-filter/pandoc_mermaid_filter.py ```python import os import sys import subprocess from pandocfilters import toJSONFilter, Para, Image from pandocfilters import get_filename4code, get_caption, get_extension # Environment variables with fallback values MERMAID_BIN = os.path.expanduser(os.environ.get('MERMAID_BIN', 'mermaid')) PUPPETEER_CFG = os.environ.get('PUPPETEER_CFG', None) def mermaid(key, value, format_, _): if key == 'CodeBlock': [[ident, classes, keyvals], code] = value if "mermaid" in classes: caption, typef, keyvals = get_caption(keyvals) filename = get_filename4code("mermaid", code) filetype = get_extension(format_, "png", html="svg", latex="png") src = filename + '.mmd' dest = filename + '.' + filetype if not os.path.isfile(dest): txt = code.encode(sys.getfilesystemencoding()) with open(src, "wb") as f: f.write(txt) # Default command to execute cmd = [MERMAID_BIN, "-i", src, "-o", dest] if PUPPETEER_CFG is not None: cmd.extend(["-p", PUPPETEER_CFG]) if os.path.isfile('.puppeteer.json'): cmd.extend(["-p", ".puppeteer.json"]) subprocess.check_call(cmd) sys.stderr.write('Created image ' + dest + '\n') return Para([Image([ident, [], keyvals], caption, [dest, typef])]) def main(): toJSONFilter(mermaid) if __name__ == "__main__": main() ```
{ "source": "jerroydmoore/YARB", "score": 2 }
#### File: jerroydmoore/YARB/agent.py ```python import time import utils import sys from nlu.NLparser import NLparser from nlg.NLgenerator import NLgenerator from dm.dialogmanager import DialogManager from datetime import date from dm.imdb_wrapper import IMDBWrapper from dm.localdb_wrapper import LocalDBWrapper from nlu.entity import EntitySet class Agent: def __init__(self, verbose = False): # load modules # NLU, DB connection test self.nlu = NLparser(verbose) # verbose true for DM and NLG verbose = True self.dm = DialogManager(verbose) self.nlg = NLgenerator(verbose) self.sessionid = date.strftime(date.today(),"%y%m%d") + "_" + time.strftime("%H%M%S") self.logger = utils.ConsoleAndFileLogger(self.sessionid) def run(self): self.logger.log("Hello. I am YARB (Yet Another Recommendation Bot).") self.logger.log("Please tell me your name.") usermsg = raw_input("> ") self.logger.logtofile("> " + usermsg) if (self.dm.processUserName(usermsg) == 1): self.logger.log("Welcome back, " + usermsg + ".") else: self.logger.log("Nice to meet you, " + usermsg + ".") self.logger.log("If you'd like a recommendation, please tell\nme about what you like or dislike.") self.dm.loadOptions() while not self.dm.sessionclosed(): usermsg = raw_input("> ") self.logger.logtofile("> " + usermsg) if usermsg == "": continue nluoutput = self.nlu.process(usermsg) # NLU for output in nluoutput: dmoutput = self.dm.process(output) # DM #dmoutput = self.dm.process(nluoutput) response = self.nlg.process(dmoutput) # NLG self.logger.log(response) self.dm.saveUserPreferences() self.logger.log("Session closed [id = {0:s}].".format(self.sessionid)) def test(self, inputfilename): print 'reading: ' + inputfilename infile = open(inputfilename, 'r') num = 1 breakpoint = 29 print 'processing... classifier: trivia' for line in infile: # NLU process input = line.strip() #print input nluoutput = self.nlu.process(input) # NLU #if num != breakpoint and nluoutput.get_classifier() != "userPreference": # num = num + 1 # continue #if breakpoint == num: #print str(num) + ". " + line.replace('\\','') + " --> " + nluoutput.get_classifier() + " , [", nluoutput.tostr_entities(), "]" #if nluoutput.get_classifier() == "trivia": print str(num) + ". " + input dmoutput = self.dm.process(nluoutput) msg = self.nlg.process(dmoutput) print "> " + msg print num = num + 1 def test_db(): IMDBWrapper() pass # main function if __name__ == '__main__': #test_db() #Agent().test("./corpus1.txt") Agent().run() """ # imdb test localdb = LocalDBWrapper() localdb.load_preference("ywkang") #localdb.add_preference("genre", "Comedy", 4) print localdb.get_preference() db = IMDBWrapper() entities = EntitySet("dummy") db.get_recommendation(entities, localdb.get_preference()) """ ``` #### File: YARB/nlg/NLgenerator.py ```python class NLgenerator: MOVIELIST = "{name:s} ({year:d})" RECOMMENDATION = "{listNumber:d}. {name:s} ({year:d})" CASTLIST = "{name:s}" RECOMMENDATIONS = "Here is a list of recommendations." AFTERRECOMMENDATIONS = ("This is page {page:d} of {totalpages:d}.\n" "You can change pages by typing next, \n" "or give me another command.") AFTERPAGINGRECOMMENDATIONS = ("This is page {page:d} of {totalpages:d}.\n" "You can change pages by typing back or next, \n" "or give me another command.") RECOMMENDONE = ("I recommend {name:s}.\n" "If you'd like a different recommendation,\n" "tell me some more of your likes or dislikes.") PREFERENCEPROCESSED = "Alright. Is there anything else you like or dislike?" ASKINGFORRECOMMENDATION = "OK. Would you like a recommendation now?" NOTUNDERSTOOD = "Wouldn't you like to talk about something else? Tell me about movies, genres, actors, and directors you like, and I'll recommend you a movie." TOPRATINGMOVIES = "The followings are top rating movies, say 'next' if you would like to see more." WORSTMOVIES = "The followings are worst movies ever, say 'next' if you would like to see more." MOVIESEARCH = "Here's the list of movies I found:" PLOT = "Here's the plot of {name:s}" NOTAVAILABLE = "Sorry, we searched the database, but couldn't find any information" DIRECTOR = "The director of {movietitle:s} is {directorname:s}" CAST = "Here's the cast list of movie {name:s}" QUITCONFIRM = "Are you sure you want to quit?" NOTHING = "Tell me some things you like or dislike, and then ask me for a recommendation." COULDNOTUNDERSTANDPREFERENCE = ("Please tell me about some movies, genres, actors, or directors you like.\n" "Put movie titles in quotes; For example: I like \"Inception\".") QUITTING = "Thank you for using YARB. Goodbye!" QUIZ1 = "Before you quit, would you like to answer a quick survey?" QUIZ2 = "Did you find the movies that were recommended satisfactory?" QUIZ3 = "Did you think that the way the movies were displayed (single or list) was satisfactory?" CHANGINGSCORECALCULATION = ("OK. We'll change the way we calculate the recommendations next time.\n" "Did you think that the way the movies were displayed (single or list) was satisfactory?") CHANGINGOUTPUTTYPE = ("OK. We'll change the way we display the recommendations next time.\n" "Thanks for answering the questions. Quitting now...") THANKSFORANSWERING = "Thanks for answering the questions. Quitting now..." INTHERE = "Yes, {name:s} is affiliated with \"{title:s}\"" NOTTHERE = "No, {name:s} is not affiliated with \"{title:s}\"" def __init__(self, verbose=False): self.test = 0 self.verbose = verbose pass def process(self, dmoutput): msg = [] # generate an output based on a template if dmoutput.get_classifier() == "movielist": msg.append(NLgenerator.MOVIESEARCH) line = 1 for movies in dmoutput.get_items(): msg.append(str(line) + ". " + NLgenerator.MOVIELIST.format(name=movies.find_entity("name"), year=movies.find_entity("year"))) line = line + 1 elif dmoutput.get_classifier() == "recommendations": msg.append(NLgenerator.RECOMMENDATIONS) for movies in dmoutput.get_items(): msg.append(NLgenerator.RECOMMENDATION.format(listNumber=movies.find_entity("listNumber"), name=movies.find_entity("name"), year=movies.find_entity("year"))) msg.append(NLgenerator.AFTERRECOMMENDATIONS.format(page=dmoutput.getPageNumber(), totalpages=dmoutput.getTotalPages())) elif dmoutput.get_classifier() == "recommendationsPaging": for movies in dmoutput.get_items(): msg.append(NLgenerator.RECOMMENDATION.format(listNumber=movies.find_entity("listNumber"), name=movies.find_entity("name"), year=movies.find_entity("year"))) msg.append(NLgenerator.AFTERPAGINGRECOMMENDATIONS.format(page=dmoutput.getPageNumber(), totalpages=dmoutput.getTotalPages())) elif dmoutput.get_classifier() == "recommendOne": msg.append(NLgenerator.RECOMMENDONE.format(name=dmoutput.get_movietitle())) elif dmoutput.get_classifier() == "preferenceProcessed": msg.append(NLgenerator.PREFERENCEPROCESSED) elif dmoutput.get_classifier() == "askingForRecommendation": msg.append(NLgenerator.ASKINGFORRECOMMENDATION) elif dmoutput.get_classifier() == "notunderstood": msg.append(NLgenerator.NOTUNDERSTOOD) elif dmoutput.get_classifier() == "topratingmovies": msg.append(NLgenerator.TOPRATINGMOVIES) line = 1 for movies in dmoutput.get_items(): msg.append(str(line) + ". " + NLgenerator.MOVIELIST.format(name=movies.find_entity("name"), year=movies.find_entity("year"))) line = line + 1 elif dmoutput.get_classifier() == "worstmovies": msg.append(NLgenerator.WORSTMOVIES) line = 1 for movies in dmoutput.get_items(): msg.append(str(line) + ". " + NLgenerator.MOVIELIST.format(name=movies.find_entity("name"), year=movies.find_entity("year"))) line = line + 1 elif dmoutput.get_classifier() == "plot": msg.append(NLgenerator.PLOT.format(name=dmoutput.get_movietitle())) msg.append(dmoutput.get_items()[0].find_entity("plot")) elif dmoutput.get_classifier() == "notavailable": msg.append(NLgenerator.NOTAVAILABLE) elif dmoutput.get_classifier() == "director": msg.append(NLgenerator.DIRECTOR.format(movietitle=dmoutput.get_movietitle(), directorname = dmoutput.get_items()[0].find_entity("name") )) elif dmoutput.get_classifier() == "cast": msg.append(NLgenerator.CAST.format(name=dmoutput.get_movietitle())) line = 1 for movies in dmoutput.get_items(): msg.append(str(line) + ". " + NLgenerator.CASTLIST.format(name=movies.find_entity("name"))) line = line + 1 elif dmoutput.get_classifier() == "quitConfirm": msg.append(NLgenerator.QUITCONFIRM) elif dmoutput.get_classifier() == "nothing": msg.append(NLgenerator.NOTHING) elif dmoutput.get_classifier() == "couldNotUnderstandPreference": msg.append(NLgenerator.COULDNOTUNDERSTANDPREFERENCE) elif dmoutput.get_classifier() == "quitting": msg.append(NLgenerator.QUITTING) elif dmoutput.get_classifier() == "quiz1": msg.append(NLgenerator.QUIZ1) elif dmoutput.get_classifier() == "quiz2": msg.append(NLgenerator.QUIZ2) elif dmoutput.get_classifier() == "quiz3": msg.append(NLgenerator.QUIZ3) elif dmoutput.get_classifier() == "changingOutputType": msg.append(NLgenerator.CHANGINGOUTPUTTYPE) elif dmoutput.get_classifier() == "changingScoreCalculation": msg.append(NLgenerator.CHANGINGSCORECALCULATION) elif dmoutput.get_classifier() == "thanksForAnswering": msg.append(NLgenerator.THANKSFORANSWERING) elif dmoutput.get_classifier().lower() == "inthere": msg.append(NLgenerator.INTHERE.format(name= dmoutput.get_items()[0].find_entity("name"), title=dmoutput.get_movietitle() )) elif dmoutput.get_classifier().lower() == "notthere": msg.append(NLgenerator.NOTTHERE.format(name= dmoutput.get_items()[0].find_entity("name"), title=dmoutput.get_movietitle() )) else: if (self.verbose == True): msg.append("NLG classifier: "+dmoutput.get_classifier()) return "\n".join(msg) ```
{ "source": "JerrrrryL/BlowfishDB-backend", "score": 3 }
#### File: BlowfishDB-backend/blowfish/app.py ```python from flask import Flask, request, jsonify from flask_restful import Resource, Api from blowfish import run_analysis app = Flask(__name__) api = Api(app) #define constants ATTRNAME = 'attrName' ATTRTYPE = 'attrType' WORKLOAD = 'workload' THRESHOLDS = 'thresholds' SENSITIVITY_SET = 'sensitivity_set' RESULTS = 'results' # info = { # "age": { # "type": "Numerical", # "policy": { # "template": "Line", # "graph": 7, # "bot": 0 # } # }, # "salary": { # "type": "Categorical", # "domain": [1,2,4,5,6,7,8,9,10,12,14], # "policy": { # "template": "Sensitivity", # "graph": [1,4,7,5,6,9], # "bot": 0 # } # } # } #### class WorkloadForComparison(Resource): def post(self): data = request.get_json(force=True) predicates = data[WORKLOAD] attrname = data[ATTRNAME] results = [] if data[ATTRTYPE] == 'Numerical': thresholds = data[THRESHOLDS] for val in thresholds: config = { attrname: { "type": "Numerical", "policy":{ "template": "Line", "graph": val, "bot": 0 } } } results.append(run_analysis(predicates,[attrname],config)) return jsonify({RESULTS: results}) else: print("TBD") return jsonify({RESULTS: results}) api.add_resource(WorkloadForComparison, '/') if __name__ == '__main__': app.run(debug=True) ``` #### File: BlowfishDB-backend/blowfish/WCQ.py ```python from collections import defaultdict import numpy as np class WCQ: #salary 1~50, age 18~100 def __init__(self, cols, conds, table): self.columns = cols #[salary, age] self.domain_per_column = defaultdict(set) self.predicates = conds #["salary >= 0 AND salary <= 20 AND age <= 20"] #the columns in predicates should be ordered self.table_name = table #For intermediate result self.PG = None self.W = None self.x= None #For results self.true_answer = None self.noisy_answer = None self.answer_diff = None #SELECT id, [col1], [col2] FROM table1 def generate_base_query(self): query = "SELECT id" for col in self.columns: query += ", {}".format(col) query += " FROM {}".format(self.table_name) return query #generate x and W def run_query(self, db): base_query = self.generate_base_query() results_by_query = [] print("Running queries...") #execute the query to retrieve [(id, val1, val2, ...)] #collect present values for each column for pred in self.predicates: res = db.run(base_query+' WHERE '+pred) for i in range(len(self.columns)): self.domain_per_column[self.columns[i]].update([record[i+1] for record in res]) results_by_query.append(res) print("Collecting domain for each column...") #calculate size of x total_size = 1 for col in self.columns: total_size *= len(self.domain_per_column[col]) assert total_size > 0 #generate a mapping for val of each column to its sorted index in the column domain #e.g. column_domain:{3,1,2}, value 1 maps to index 0 value_to_index_per_column = defaultdict(dict) for col in self.columns: vals = list(self.domain_per_column[col]) indices = np.argsort(vals) for i in range(len(vals)): value_to_index_per_column[col][vals[i]]=indices[i] def get_index_in_x(rec,total_size): index = 0 for i in range(1, len(rec)): column = self.columns[i-1] val = rec[i] total_size /= len(self.domain_per_column[column]) index += value_to_index_per_column[column][val]*total_size return int(index) print("Generating W and x") #TODO DEBUG #print(len(value_to_index_per_column['salary']), len(value_to_index_per_column['age']),total_size) cache = {} W = np.zeros((len(self.predicates), total_size)) x = np.zeros(total_size) #generate W and x for i in range(len(results_by_query)): for rec in results_by_query[i]: index = None if rec in cache: index = cache[rec] W[i][index] = 1 else: index = get_index_in_x(rec, total_size) cache[rec] = index W[i][index] = 1 x[index] += 1 self.W = W self.x = x print(W) print(x) ``` #### File: BlowfishDB-backend/conn/DB.py ```python import mysql.connector # global dict to reuse previous results pre_rs = dict() class DB: def __init__(self, d): self.cnx = mysql.connector.connect(user='root', password='<PASSWORD>', host='localhost', use_pure=True, database=d) # print("DB: connection established") def close_conn(self): self.cnx.close() @staticmethod def clear_history(): # reset the pre_rs global pre_rs pre_rs = dict() def run(self, query): global pre_rs if query in pre_rs: # print("DEBUG: reuse query") return pre_rs[query] cursor = self.cnx.cursor() cursor.execute(query) result_set = cursor.fetchall() # print(query, "\t", len(result_set)) cursor.close() pre_rs[query] = result_set return result_set ``` #### File: privacy/func/LCM.py ```python import numpy as np def lcm(m): """laplace comparison mechanism for icq""" q = m.query lap_b = m.lap_b q.lap_noise = np.random.laplace(0, lap_b, len(q.cond_list)) # real cost is same to the estimated one m.set_real_cost(m.est_cost) q.true_answer = np.matmul(q.query_matrix, q.domain_hist) # print("true answer=", q.true_answer) q.noisy_answer = [sum(x) for x in zip(q.lap_noise, q.true_answer)] # for i in range(0, q.count_query): # if q.true_answer[i] > q.count_threshold + m.alpha: # q.big_cond_index.append(i) # elif q.true_answer[i] < q.count_threshold - m.alpha: # q.small_cond_index.append(i) cmp_result_noisy = [x - q.icq_c for x in q.noisy_answer] print("cmp_result_noisy= ", cmp_result_noisy) for i in range(0, len(q.cond_list)): if cmp_result_noisy[i] > 0: q.selected_cond_index.append(i) # for i in range(0, len(q.cond_list)): # print("PRINT", q.cond_list[i], q.true_answer[i], q.true_answer[i] / q.cardinality, sep=',') print(len(q.selected_cond_index)) def lcm_est_cost(m): q = m.query est_cost = q.get_sensitivity() * (np.log(1.0 / (1.0 - (1.0 - m.beta) ** (1.0 / len(q.cond_list)))) - np.log(2)) / m.alpha return est_cost ```
{ "source": "Jerrrrry/traffic", "score": 3 }
#### File: Jerrrrry/traffic/get_proxy.py ```python import requests def get_proxy(): try: # 这里填写大象代理api地址,num参数必须为1,每次只请求一个IP地址 token=get_token() url = 'https://api.getproxylist.com/proxy?country[]=US&lastTested=600&maxConnectTime=1&apiKey='+token response = requests.get(url) response.close() protocol=str(response.json()['protocol']) ip = response.json()['ip'] port=str(response.json()['port']) result=protocol+'://'+ip+':'+port print(result) return result except: print('no ip available') return '' finally: pass ```
{ "source": "jerrutledge/Poke-Controller", "score": 3 }
#### File: PythonCommands/ImageProcessingOnly/FossilShiny.py ```python from Commands.PythonCommandBase import PythonCommand, ImageProcPythonCommand from Commands.Keys import KeyPress, Button, Direction, Stick class Fossil_shiny(ImageProcPythonCommand): def __init__(self, cam): super().__init__(cam) ''' head = {0 : "カセキのトリ", 1 : "カセキのサカナ"} body = {0 : "カセキのリュウ", 1 : "カセキのクビナガ"} ''' def fossil_loop(self, head=0, body=0): # start = time.time() i = 0 while True: for j in range(30): print(str(30*i+j+1)+"体目 ({}/30 of a box)".format(j+1)) self.press(Button.A, wait=0.75) self.press(Button.A, wait=0.75) if head == 1: self.press(Direction.DOWN, duration=0.07, wait=0.75) # select fossil self.press(Button.A, wait=0.75) # determine fossil if body == 1: self.press(Direction.DOWN, duration=0.07, wait=0.75) # select fossil self.press(Button.A, wait=0.75) # determine fossil self.press(Button.A, wait=0.75) # select "それでよければ" while not self.isContainTemplate('Network_Offline.png', 0.8): self.press(Button.B, wait=0.5) self.wait(1.0) # open up pokemon box self.press(Button.X, wait=1) self.press(Direction.RIGHT, duration=0.07, wait=1) self.press(Button.A, wait=2) self.press(Button.R, wait=2) is_contain_shiny = self.CheckBox() # tm = round(time.time() - start, 2) # print('Loop : {} in {} sec. Average: {} sec/loop'.format(i, tm, round(tm / i, 2))) if is_contain_shiny: print('Shiny!') break self.press(Button.HOME, wait=2) # EXIT Game self.press(Button.X, wait=0.6) self.press(Button.A, wait=2.5) # closed self.press(Button.A, wait=2.0) # Choose game self.press(Button.A) # User selection while not self.isContainTemplate('OP.png', 0.7): # recognize Opening self.wait(0.2) self.press(Button.A) # load save-data while not self.isContainTemplate('Network_Offline.png', 0.8): self.wait(0.5) self.wait(1.0) i += 1 def CheckBox(self): row = 5 col = 6 for i in range(0, row): for j in range(0, col): # if shiny, then stop if self.isContainTemplate('shiny_mark.png', threshold=0.9): return True # Maybe this threshold works for only Japanese version. if self.isContainTemplate('status.png', threshold=0.7): pass if not j == col - 1: if i % 2 == 0: self.press(Direction.RIGHT, wait=0.2) else: self.press(Direction.LEFT, wait=0.2) self.press(Direction.DOWN, wait=0.2) return False class Fossil_shiny_00(Fossil_shiny): # パッチラゴン NAME = 'Shiny Fossil 00' def __init__(self, cam): super().__init__(cam) def do(self): self.fossil_loop(0, 0) class Fossil_shiny_01(Fossil_shiny): # パッチルドン NAME = 'Shiny Fossil 01' def __init__(self, cam): super().__init__(cam) def do(self): self.fossil_loop(0, 1) class Fossil_shiny_10(Fossil_shiny): # ウオノラゴン NAME = 'Shiny Fossil 10' def __init__(self, cam): super().__init__(cam) def do(self): self.fossil_loop(1, 0) class Fossil_shiny_11(Fossil_shiny): # ウオチルドン NAME = 'Shiny Fossil 11' def __init__(self, cam): super().__init__(cam) def do(self): self.fossil_loop(1, 1) ``` #### File: Commands/PythonCommands/Reset.py ```python from Commands.PythonCommandBase import PythonCommand, ImageProcPythonCommand from Commands.Keys import KeyPress, Button, Direction, Stick # reset the game class Reset(PythonCommand): NAME = "Reset" def __init__(self): super().__init__() def do(self): self.wait(1) self.press(Button.HOME, wait=1) self.press(Button.X, wait=1) self.press(Button.A, wait=5) self.press(Button.A, wait=2) self.press(Button.A, wait=18) self.press(Button.A, wait=1) ```
{ "source": "jerry0317/JYLabTool", "score": 3 }
#### File: JYL/methods/filem.py ```python from ..classes.jyldata import JYLData from ..classes.jyldataset import JYLDataSet from ..classes.jyldatapoint import JYLDataPoint import csv def saveToCSV(dataset, path=None, file=None): header = [] for n in dataset.dataNames: header.extend(["{}_value".format(n), "{}_uncertainty".format(n), "{}_unit".format(n)]) if path is not None: csvFile = open(path, "w") if file is not None: csvFile = file dict_writer = csv.DictWriter(csvFile, header) dict_writer.writeheader() for dp in dataset.dataPoints: dict = {} for n in dataset.dataNames: dict["{}_value".format(n)] = dp.valueDict[n] dict["{}_uncertainty".format(n)] = dp.uncertaintyDict[n] dict["{}_unit".format(n)] = dp.unitDict[n] dict_writer.writerow(dict) csvFile.close() def openFromCSV(path=None, file=None): if path is not None: csvFile = open(path, "r") if file is not None: csvFile = file dict_reader = csv.DictReader(csvFile,skipinitialspace=True) di = {} for h in dict_reader.fieldnames: hs = h.rsplit("_", 1) pre = hs[0] suf = hs[1] if pre not in di: di[pre] = set([suf]) else: di[pre].add(suf) zSet = set(["value", "uncertainty", "unit"]) for k, v in di.items(): if v != zSet: raise Exception("The format of CSV file is incorrect.") names = di.keys() s = JYLDataSet() for row in dict_reader: li = [] for n in names: dic = {} dic["name"] = n dic["value"] = float(row["{}_value".format(n)]) dic["uncertainty"] = float(row["{}_uncertainty".format(n)]) dic["unit"] = row["{}_unit".format(n)] li.append(dic) dp = JYLDataPoint(fromList=li) s.dataPoints.append(dp) return s ```
{ "source": "jerry0317/JYMoleculeTool-ML-Swift", "score": 3 }
#### File: Sources/JYMT-ML-StructureFinder/tf_prototype.py ```python import csv import random import xyz2mol ## Some code referenced from Tensorflow Tutorial code: https://www.tensorflow.org/tutorials/keras/classification # TensorFlow and tf.keras import tensorflow as tf from tensorflow import keras # Helper libraries import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import classification_report TEST_RATIO = 0.15 FEATURES = [ "numAtoms", "numBonds", "numGroups", "numAromaticAtoms", "numAromaticBonds", "numInRingAtoms", "numInRingBonds", "numOfSingleBonds", "numOfDoubleBonds", "numOfTripleBonds", "numOfQuadrupleBonds", "numOfCAtoms", "numOfNonCHAtoms", "numOfRotorBonds", "mol2dPSA", "molAnionicCarbonCount", "molAromaticRingCount", # "molFractionCsp3", "molHalideFraction", "molHBondAcceptorCount", "molHBondDonorCount", "molLipinskiAcceptorCount", "molLipinskiDonorCount", "molLongestUnbranchedHeavyAtomsChain", "molLongestUnbranchedCarbonsChain", "molNumUnspecifiedAtomStereos", "molNumUnspecifiedBondStereos", "molWeight" ] + [ "numsOfAtomWithImplicitHCount" + str(k) for k in range(9) ] + [ "numsOfAtomWithDegree" + str(k) for k in range(9) ] + [ "numsOfAtomWithExplicitDegree" + str(k) for k in range(9) ] + [ "numsOfAtomWithExplicitValence" + str(k) for k in range(9) ] + [ "numsOfAtomWithHvyDegree" + str(k) for k in range(9) ] + [ "numsOfAtomWithHvyValence" + str(k) for k in range(9) ] + [ "numsOfAtomWithValence" + str(k) for k in range(9) ] + [ "numsOfAtomWithHyb" + str(k) for k in range(6) ] + [ "numsOfAtomWithFormalCharge" + str(k - 4) for k in range(9) ] NUM_FEATURES = len(FEATURES) print("Number of features in use: {}".format(NUM_FEATURES)) def input_csv_reader(): hold = True while hold: path = input("Please enter the csv file path for SMILES and corresponding validity: ") try: reader = csv.reader(open(path.replace("\\", "").strip()), delimiter=',') hold = False except Exception as e: print(e) print("Invalid path. Please try again.") return reader def import_from_csv(reader, remove_duplicates=True): smiles_list = [] validity_list = [] line_count = 0 for row in reader: if line_count > 0: smiles_list.append(row[0]) validity_list.append(int(row[1])) line_count += 1 print(f'Processed {line_count} lines from csv file.') if remove_duplicates: snt_list = [(smiles_list[i], validity_list[i]) for i in range(len(smiles_list))] snt_list = list(set(snt_list)) smiles_list = [snt_list[i][0] for i in range(len(snt_list))] validity_list = [snt_list[i][1] for i in range(len(snt_list))] print("Found {} unique data entries.".format(len(smiles_list))) return smiles_list, validity_list def sample_indices(len, test_ratio): r = list(range(len)) num_te = int(round(len * test_ratio)) test_indices = random.sample(r, num_te) train_indices = r for i in sorted(test_indices, reverse=True): del train_indices[i] return train_indices, test_indices def extract_features(dict): return np.array([dict[f] for f in FEATURES]) # Print iterations progress # Credit: https://gist.github.com/greenstick/b23e475d2bfdc3a82e34eaa1f6781ee4 def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = 100, fill = '█', printEnd = "\r"): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) printEnd - Optional : end character (e.g. "\r", "\r\n") (Str) """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print(f'\r{prefix} |{bar}| {percent}% {suffix}', end = printEnd) # Print New Line on Complete if iteration == total: print() raw_smiles, raw_labels = import_from_csv(input_csv_reader()) num_of_compounds = len(list(filter(lambda x: x == 1, raw_labels))) num_of_smiles = len(raw_smiles) positive_rate = num_of_compounds / len(raw_labels) print("Positive rate: ", positive_rate) print("Negative rate: ", 1 - positive_rate) train_indices, test_indices = sample_indices(len(raw_smiles), TEST_RATIO) train_features = np.zeros((len(train_indices), NUM_FEATURES)) train_labels = np.zeros(len(train_indices), dtype=np.uint8) test_features = np.zeros((len(test_indices), NUM_FEATURES)) test_labels = np.zeros(len(test_indices), dtype=np.uint8) raw_features = [] printProgressBar(0, len(raw_smiles), prefix = 'Computing Features:', length = 48) xyz2mol.nullifyOEThrowStream() for i, smiles in enumerate(raw_smiles): raw_features.append(xyz2mol.smiles2features(smiles)) printProgressBar(i + 1, len(raw_smiles), prefix = 'Computing Features:', length = 48) # print(raw_features[:1]) for j, i_tr in enumerate(train_indices): train_features[j, :] = extract_features(raw_features[i_tr]) train_labels[j] = raw_labels[i_tr] for j, i_te in enumerate(test_indices): test_features[j, :] = extract_features(raw_features[i_te]) test_labels[j] = raw_labels[i_te] model = keras.Sequential([ keras.layers.Dense(NUM_FEATURES + 1, activation="relu"), keras.layers.Dense(NUM_FEATURES * 2, activation="relu"), keras.layers.Dense(NUM_FEATURES * 3, activation="relu"), keras.layers.Dense(NUM_FEATURES * 4, activation="relu"), keras.layers.Dense(1, activation="sigmoid") ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.fit(train_features, train_labels, epochs=20) print() print("In Raw Data: {} compounds - {} SMILES - T: {:.2f}% - F: {:.2f}%".format(num_of_compounds, num_of_smiles, positive_rate * 100, (1 - positive_rate) * 100)) print() test_loss, test_acc = model.evaluate(test_features, test_labels, verbose=2) print('\nTest accuracy:', test_acc) test_pred = (model.predict(test_features) > 0.5).astype("int32") print(classification_report(test_labels, test_pred, labels=[1, 0], target_names=['T', 'F'])) ```
{ "source": "jerry0317/JYMoleculeTool", "score": 3 }
#### File: jerry0317/JYMoleculeTool/proj1-2.py ```python import imp_xyz as ix import m_tools as mt import time import itertools file_name = "propanediol-1" _, _, mol = ix.import_xyz("molecule_models/{}.xyz".format(file_name)) dmol = ix.select_by_name(mol,'C') + ix.select_by_name(mol,'O') # De-signing dmol (taking absolute value) to obtain |x|, |y|, |z| for each oxygen or carbon atom for i, m in enumerate(dmol): dmol[i]['rvec'] = list(map(abs, dmol[i]['rvec'])) mol_C = ix.select_by_name(dmol, 'C') mol_O = ix.select_by_name(dmol, 'O') CO_BOND_LENGTH = 1.43 CC_BOND_LENGTH = 1.54 TOLERANCE_LEVEL = 0.15 # In bond-length filters, an atom passes the filter when the distance lies between BOND_LENGTH plus/minus TOLERANCE_LEVEL # Fix the first O (O1) # We choose the first fixed (and the only fixed) atom to be O because it should be easy to find the C adjacent to it. Other two C-s are further than its neighboring C. O1 = mol_O[1] print("O1 has been fixed.") mol_Or = mol_O mol_Or.remove(O1) # The remaining set of O excluding O1 def find_C2(O1, mol_C): # Find the neighboring C of O1 (C2) C2_possibles = mt.find_possibles(mol_C) C2_af = filter(lambda m: mt.bond_length_filter(m['rvec'], O1['rvec'], CO_BOND_LENGTH, TOLERANCE_LEVEL), C2_possibles) # Change the tolerance range here to see how this filter works return C2_af def find_C3C4(C2, O1, mol_C): # Find the possible neighboring C(s) of C2 (C3/C4) C3_possibles = filter(lambda m: m['index'] != C2['index'], mt.find_possibles(mol_C)) d_C2O1 = mt.distance(C2['rvec'], O1['rvec']) C3_af = filter(lambda m: mt.bond_length_filter(m['rvec'], C2['rvec'], CC_BOND_LENGTH, TOLERANCE_LEVEL) and mt.distance(m['rvec'], O1['rvec']) > d_C2O1, C3_possibles) # Change the selection of O1 to see how the code below works # Extra filter: Make sure C3 is not close to O1 (which is adjacent to C2) C3_af_index = set() for c3 in C3_af: C3_af_index.add(c3['index']) if len(C3_af_index) == 1: C2_adj = 1 # C2 is adjacent to one C. Choose that C to be C3. C3C4_af = C3_af elif len(C3_af_index) == 2: C2_adj = 2 # C2 is adjacent to two C-s. Let those C-s be C3 and C4 respectively. C3_af_grps = [] for i in C3_af_index: C3_af_grps.append(filter(lambda m: m['index'] == i, C3_af)) C3C4_af = list(map(list, itertools.product(C3_af_grps[0], C3_af_grps[1]))) else: C2_adj = 0 C3C4_af = [] return C2_adj, C3C4_af def find_O5_C2adj1(C2, C3, mol_Or): # If C2 is adjacent to one C (C3), then C3 must be connected to an O (O5). O5_possibles = mt.find_possibles(mol_Or) O5_af = filter(lambda m: mt.bond_length_filter(m['rvec'], C3['rvec'], CO_BOND_LENGTH, TOLERANCE_LEVEL) and mt.distance(m['rvec'], C2['rvec']) > (CO_BOND_LENGTH + TOLERANCE_LEVEL), O5_possibles) return O5_af def find_C4_C2adj1(C2, C3, O5, mol_C): # Find the possible C4 C4_possibles = filter(lambda m: m['index'] not in (C2['index'], C3['index']), mt.find_possibles(mol_C)) d_C3O5 = mt.distance(C3['rvec'], O5['rvec']) C4_af = filter(lambda m: mt.bond_length_filter(m['rvec'], C3['rvec'], CC_BOND_LENGTH, TOLERANCE_LEVEL) and mt.distance(m['rvec'], O5['rvec']) > d_C3O5, C4_possibles) # Extra filter: Make sure C4 is not close to O5 (which is adjacent to C3) return C4_af def find_O5_C2adj2(C3, C4, mol_Or): # If C2 is adjacent to two C-s (C3, C4), then O5 must be adjacent to one of C3 and C4. O5_possibles = mt.find_possibles(mol_Or) O5_afC3 = filter(lambda m: mt.bond_length_filter(m['rvec'], C3['rvec'], CO_BOND_LENGTH, TOLERANCE_LEVEL) and mt.distance(m['rvec'], C4['rvec']) > (CO_BOND_LENGTH + TOLERANCE_LEVEL), O5_possibles) # Extra filter: If O5 is connected to C3, make sure it is not too close to C4 (vice versa) O5_afC4 = filter(lambda m: mt.bond_length_filter(m['rvec'], C4['rvec'], CO_BOND_LENGTH, TOLERANCE_LEVEL) and mt.distance(m['rvec'], C3['rvec']) > (CO_BOND_LENGTH + TOLERANCE_LEVEL), O5_possibles) O5_af = O5_afC3 + O5_afC4 return O5_af def save_mols(mols, icode = None): print("-----The structure of molecule is found as follows:-----") for m in mols: print("{0} {1}".format(m['name'], m['rvec'])) if icode is None: filename = 'molecule_results/{0}_{1}.xyz'.format(file_name,int(time.time())) else: filename = 'molecule_results/{0}_{1}_{2}.xyz'.format(file_name,int(time.time()),str(icode)) #ix.export_xyz(filename, mols) print("Results saved to xyz file.") # Use the alogrithm above to determine the structure of molecule (x, y, z for each of carbon and oxygen atom) C2_af = find_C2(O1, mol_C) for C2 in C2_af: C2_adj, C3C4_af = find_C3C4(C2, O1, mol_C) if C2_adj == 1: for C3C4 in C3C4_af: C3 = C3C4 O5_af = find_O5_C2adj1(C2, C3, mol_Or) for O5 in O5_af: C4_af = find_C4_C2adj1(C2, C3, O5, mol_C) i = 1 for C4 in C4_af: save_mols([O1, C2, C3, C4, O5], i) i = i + 1 elif C2_adj == 2: for C3C4 in C3C4_af: C3 = C3C4[0] C4 = C3C4[1] O5_af = find_O5_C2adj2(C3, C4, mol_Or) i = 1 for O5 in O5_af: save_mols([O1, C2, C3, C4, O5], i) i = i + 1 ```
{ "source": "jerry0317/Measuring-k_B", "score": 3 }
#### File: jerry0317/Measuring-k_B/main.py ```python import sys import time import math import matplotlib.pyplot as plt import matplotlib.animation as animation import numpy as np from scipy import stats import os import csv import itertools import RPi.GPIO as GPIO import board import busio import adafruit_bmp280 #GPIO Mode (BOARD / BCM) GPIO.setmode(GPIO.BCM) #set GPIO Pins GPIO_TRIGGER = 18 GPIO_ECHO = 24 #set GPIO direction (IN / OUT) GPIO.setup(GPIO_TRIGGER, GPIO.OUT) GPIO.setup(GPIO_ECHO, GPIO.IN) i2c = busio.I2C(board.SCL, board.SDA) bmp280 = adafruit_bmp280.Adafruit_BMP280_I2C(i2c) if (bmp280.temperature > 0): print() print("BMP280 has been connected.") print() # Data Name Format DATA_NAME = "data/{}".format(int(time.time())) # Module to securely prompt for a user input def user_input(val_name, val_range = None): input_hold = True while(input_hold): try: val_d = input("Please enter the value of {}: ".format(val_name)) val_d = float(val_d) val_min = val_range[0] val_max = val_range[1] if val_d < val_min or val_d > val_max: raise Exception("{} out of range.".format(val_name)) except Exception as e: print(e) print("ERROR. Please try again.") else: input_hold = False print() print("{0} is set as {1}.".format(val_name, val_d)) print() return val_d def timett(): # set Trigger to HIGH GPIO.output(GPIO_TRIGGER, True) # set Trigger after 0.01ms to LOW time.sleep(0.00001) GPIO.output(GPIO_TRIGGER, False) # save StartTime while GPIO.input(GPIO_ECHO) == 0: StartTime = time.time() # save time of arrival while GPIO.input(GPIO_ECHO) == 1: StopTime = time.time() # time difference between start and arrival TimeElapsed = StopTime - StartTime return TimeElapsed def temp_bmp(): temp_C = bmp280.temperature temp_K = temp_C + 273.15 return temp_K # Saving file name def file_name(suffix): return DATA_NAME + "." + str(suffix) # Saving the data def save_data(): h = ["Time", "Exp Distance", "Measured Time Diff", "Temperature", "Derived k_B", "Derived k_B Error"] try: with open(file_name("csv"), "w+") as f: dict_writer = csv.DictWriter(f, h) dict_writer.writeheader() try: count = len(time_arr) if len(temp_arr) != count or len(tt_arr) != count or len(derived_kb_arr) != count: raise Exception("Different list lengths.") except Exception as e: print(e) else: pass for i in range(0, count): dict_writer.writerow({ h[0]: time_arr[i], h[1]: distance_d, h[2]: tt_arr[i], h[3]: temp_arr[i], h[4]: derived_kb_arr[i], h[5]: kb_err_abs_arr[i] }) f.close() print("\nData saved to {}.\n".format(file_name('csv'))) except Exception as e: print(e) else: pass pass # Save the plot def save_plot(fig): fig_now.savefig(file_name("eps"), format='eps') print("\nPlot saved to {}.\n".format(file_name("eps"))) # Boltzmann constant (10^-23) K_B = 1.38064852 # Avogadro constant (10^23) N_A = 6.02214 # Experiment Constants # DISTANCE = 1 MOLAR_MASS = 28.97 * 10 ** (-3) GAMMA = 1.40 # Van der Waals Constants VDW_A = 0 VDW_B = 0 # Controller Constants DELAY = 1 # Experiment Error Constants DIS_ERR_ABS = 0.005 TT_ERR_ABS = 4.665306263360271e-07 TEMP_ERR_ABS = 0.5 # List storing values tt_arr = [] time_arr = [] temp_arr = [] derived_kb_arr = [] kb_err_abs_arr = [] def c_from_tt(tt, dis): c_sound = dis / tt return c_sound def kb_from_tt(tt, temp, dis): c_sound = c_from_tt(tt, dis) kb = (c_sound ** 2) * MOLAR_MASS / (GAMMA * N_A * temp) return kb # # Van der Waals Correction # def kb_from_vdw_tt(tt, temp, pres, dis): def err_from_tt_pct(tt, temp, dis): dis_err_pct = DIS_ERR_ABS / dis temp_err_pct = TEMP_ERR_ABS / temp tt_err_pct = TT_ERR_ABS / tt err_pct = 2 * (dis_err_pct + tt_err_pct) + temp_err_pct return err_pct def err_from_tt_vdw_pct(tt, temp, pres, dis): dis_err_pct = DIS_ERR_ABS / dis temp_err_pct = TEMP_ERR_ABS / temp tt_err_pct = TT_ERR_ABS / tt err_pct = 2 * (dis_err_pct + tt_err_pct) + temp_err_pct return err_pct def err_arr_gp(x_arr, data_arr, err_arr): if len(data_arr) != len(err_arr): return False else: up_arr = [] low_arr = [] seg_arr = [] for i in range(0, len(data_arr)): x_p = x_arr[i] data_p = data_arr[i] err_p = err_arr[i] up_p = data_p + err_p low_p = data_p - err_p up_arr.append(up_p) low_arr.append(low_p) seg_arr.append([[x_p, low_p], [x_p, up_p]]) return (low_arr, up_arr, seg_arr) distance_d = user_input("distance in cm", (1,200)) distance_d = distance_d / 100 * 2 print() print("NOTE: You can exit the recodring early by pressing ctrl + C.") fig = plt.figure(1) ax = plt.gca() line, (bottoms, tops), verts = ax.errorbar([0], [0], yerr=0.01, capsize=3, fmt='ko', markersize=4, elinewidth=1,label="Realtime Measurement").lines # st_lines = [plt.plot([], [], linestyle='dashed', label="Mean Measured Value")[0], plt.plot([], [], linestyle='dashed', label=r"True $k_B$")[0], plt.plot([], [], 'm', linestyle='dashed', label=r"+3$\sigma$")[0], plt.plot([], [], 'm', linestyle='dashed', label=r"-3$\sigma$")[0]] st_lines = [plt.plot([], [], linestyle='dashed', label="Mean Measured Value")[0], plt.plot([], [], linestyle='dashed', label=r"True $k_B$")[0]] t0 = time.perf_counter() def plt_init(): plt.xlabel("Time (s)") plt.ylabel(r"Derived $k_B$ ($10^{-23} J K^{-1}$)") plt.legend(loc="lower right") # line.set_xdata([0]) # line.set_ydata([0]) # bottoms.set_ydata([0]) # tops.set_ydata([0]) # for line in lines: # line.set_data([], []) return line, bottoms, tops, verts, st_lines def main_controller(frame): global tt_arr global time_arr global temp_arr global derived_kb_arr global kb_err_abs_arr try: tt = timett() temp = temp_bmp() c_s = c_from_tt(tt, distance_d) kb_d = kb_from_tt(tt, temp, distance_d) err_pct = err_from_tt_pct(tt, temp, distance_d) err_abs = err_pct * kb_d # Calculate time since started t = time.perf_counter() - t0 # Recording data tt_arr.append(tt) time_arr.append(t) temp_arr.append(temp) derived_kb_arr.append(kb_d) kb_err_abs_arr.append(err_abs) kb_d_avg = np.mean(derived_kb_arr) if len(time_arr) > 1: kb_d_sigma = stats.sem(derived_kb_arr) else: kb_d_sigma = 0 kb_d_sigma_up = kb_d_avg + 3 * kb_d_sigma kb_d_sigma_down = kb_d_avg - 3 * kb_d_sigma # Print result print("The measured temperature is {0} K ({1} °C).".format(round(temp,2), round((temp-273.15),2))) print("The derived speed of sound is {} m/s.".format(c_s)) print("The derived k_B is {}.".format(kb_d)) print("The averaged derived k_B is {}.".format(kb_d_avg)) print("The precision of the measurement is {}%.".format(err_pct * 100)) print() # Plotting Data with Error Bars err_gp = err_arr_gp(time_arr, derived_kb_arr, kb_err_abs_arr) line.set_xdata(time_arr) line.set_ydata(derived_kb_arr) bottoms.set_xdata(time_arr) tops.set_xdata(time_arr) bottoms.set_ydata(err_gp[0]) tops.set_ydata(err_gp[1]) verts[0].set_segments(err_gp[2]) # Plotting Reference lines # x_list = list(itertools.repeat([np.min(time_arr), np.max(time_arr)], 4)) # y_list = [[kb_d_avg , kb_d_avg], [K_B, K_B], [kb_d_sigma_up, kb_d_sigma_up], [kb_d_sigma_down], [kb_d_sigma_down]] x_list = list(itertools.repeat([np.min(time_arr), np.max(time_arr)], 2)) y_list = [[kb_d_avg , kb_d_avg], [K_B, K_B]] for lnum, st_line in enumerate(st_lines): st_line.set_data(x_list[lnum], y_list[lnum]) fig.gca().relim() fig.gca().autoscale_view() except (KeyboardInterrupt, SystemExit): print() print("Interrupt experienced.") except Exception as e: print(e) finally: return line, bottoms, tops, verts, st_lines anim = animation.FuncAnimation(fig, main_controller, interval=DELAY*1000, init_func = plt_init) try: print("NOTE: You can close the pyplot window to exit the program.") fig_now = plt.gcf() plt.show() except (KeyboardInterrupt, SystemExit): save_data() save_plot(fig_now) print("Interrupt experienced. Early Exit.") exit() except Exception as e: GPIO.cleanup() print(e) print("Exiting the program...") GPIO.cleanup() save_data() save_plot(fig_now) ``` #### File: jerry0317/Measuring-k_B/plot.py ```python import csv import util import numpy as np import matplotlib.pyplot as plt import itertools import time from scipy import stats def err_arr_gp(x_arr, data_arr, err_arr): if len(data_arr) != len(err_arr): return False else: up_arr = [] low_arr = [] seg_arr = [] for i in range(0, len(data_arr)): x_p = x_arr[i] data_p = data_arr[i] err_p = err_arr[i] up_p = data_p + err_p low_p = data_p - err_p up_arr.append(up_p) low_arr.append(low_p) seg_arr.append([[x_p, low_p], [x_p, up_p]]) return (low_arr, up_arr, seg_arr) def save_plot(fig): # eps_loc = DATA_NAME + "_plt_" + str(int(time.time())) + '.eps' eps_loc = DATA_NAME + '.eps' fig_now.savefig(eps_loc, format='eps') print("\nPlot saved to {}.\n".format(eps_loc)) SR04_OFFSET = 55 def save_data(): h = ["Time", "Exp Distance", "Measured Time Diff", "Temperature", "Derived k_B", "Derived k_B Error", "Pressure", "HC-SRO4 Raw"] try: with open(csv_loc, "w+") as f: dict_writer = csv.DictWriter(f, h) dict_writer.writeheader() try: count = len(time_arr) if len(temp_arr) != count or len(tt_arr) != count or len(derived_kb_arr) != count: raise Exception("Different list lengths.") except Exception as e: print(e) else: pass for i in range(0, count): dict_writer.writerow({ h[0]: time_arr[i], h[1]: distance_d, h[2]: tt_arr[i], h[3]: temp_arr[i], h[4]: derived_kb_arr[i], h[5]: kb_err_abs_arr[i], h[6]: pres_arr[i], h[7]: tt_arr[i] - (SR04_OFFSET * 10 ** (-6)) }) f.close() except Exception as e: print(e) else: pass pass def std_error(err_arr): n = len(err_arr) ste = np.sqrt(np.sum([e ** 2 for e in err_arr])/(n-1)) return ste # Boltzmann constant (10^-23) K_B = 1.38064852 data_id = util.user_input("data number", val_float=False) DATA_NAME = DATA_NAME = "data/{}".format(data_id) csv_loc = DATA_NAME + ".csv" # List storing values tt_arr = [] time_arr = [] temp_arr = [] derived_kb_arr = [] kb_err_abs_arr = [] pres_arr = [] kb_avg_arr = [] distance_d = 0 h = ["Time", "Exp Distance", "Measured Time Diff", "Temperature", "Derived k_B", "Derived k_B Error", "Pressure", "HC-SRO4 Raw"] try: csvFile = open(csv_loc, "r") dict_reader = csv.DictReader(csvFile) for row in dict_reader: t = float(row[h[0]]) distance_d = float(row[h[1]]) tt = float(row[h[2]]) temp = float(row[h[3]]) pres = float(row[h[6]]) kb_d = util.kb_from_tt_rk_n2(tt, temp, distance_d, pres) err_pct = util.err_from_tt_pct(tt, temp, distance_d) err_abs = err_pct * kb_d if len(time_arr) > 1: kb_d_sigma = std_error(kb_err_abs_arr) kb_d_avg_pre = np.mean(derived_kb_arr) else: kb_d_sigma = err_abs kb_d_avg_pre = kb_d kb_d_sigma_up = kb_d_avg_pre + 2 * kb_d_sigma kb_d_sigma_down = kb_d_avg_pre - 2 * kb_d_sigma if kb_d_sigma_down <= kb_d <= kb_d_sigma_up: tt_arr.append(tt) time_arr.append(t) temp_arr.append(temp) pres_arr.append(pres) derived_kb_arr.append(kb_d) kb_err_abs_arr.append(err_abs) kb_d_avg = np.mean(derived_kb_arr) kb_avg_arr.append(kb_d_avg) print("The data set has been successfully loaded from CSV file.") except Exception as e: print(e) fig = plt.figure() ax1 = fig.add_subplot(211) ax2 = fig.add_subplot(223) ax3 = fig.add_subplot(224) line, (bottoms, tops), verts = ax1.errorbar([0], [0], yerr=0.01, capsize=0.1, fmt='ko', markersize=4, elinewidth=1,label="Realtime Measurement").lines st_lines = [ax1.plot([], [], linestyle='dashed', label="Mean Measured Value")[0], ax1.plot([], [], linestyle='dashed', label=r"True $k_B$")[0], ax1.plot([], [], '.', label="Instantaneous Average Value", markersize=8)[0], ax2.plot([], [], '.', label="Temperature")[0], ax3.plot([], [], '.', label="Pressure")[0]] ax1.set_ylabel(r"Derived $k_B$ ($10^{-23} J K^{-1}$)") ax2.set_ylabel(r"Temperature $T$ (K)") ax3.set_ylabel(r"Pressure $P$ (Pa)") for ax in [ax1, ax2, ax3]: ax.set_xlabel("Time (s)") ax.legend(loc="lower right") ax.tick_params(direction="in") err_gp = util.err_arr_gp(time_arr, derived_kb_arr, kb_err_abs_arr) line.set_xdata(time_arr) line.set_ydata(derived_kb_arr) bottoms.set_xdata(time_arr) tops.set_xdata(time_arr) bottoms.set_ydata(err_gp[0]) tops.set_ydata(err_gp[1]) verts[0].set_segments(err_gp[2]) # Plotting Reference lines # x_list = list(itertools.repeat([np.min(time_arr), np.max(time_arr)], 4)) # y_list = [[kb_d_avg , kb_d_avg], [K_B, K_B], [kb_d_sigma_up, kb_d_sigma_up], [kb_d_sigma_down], [kb_d_sigma_down]] kb_d_avg = np.mean(derived_kb_arr) x_list = list(itertools.repeat([np.min(time_arr), np.max(time_arr)], 2)) y_list = [[kb_d_avg , kb_d_avg], [K_B, K_B]] x_list.append(time_arr) y_list.append(kb_avg_arr) x_list.append(time_arr) y_list.append(temp_arr) x_list.append(time_arr) y_list.append(pres_arr) for lnum, st_line in enumerate(st_lines): st_line.set_data(x_list[lnum], y_list[lnum]) fig.gca().relim() fig.gca().autoscale_view() for ax in [ax1, ax2, ax3]: ax.relim() ax.autoscale_view() ax2.set_ylim([np.min(temp_arr) - 0.1,np.max(temp_arr) + 0.1]) ax3.set_ylim([np.min(pres_arr) - 25,np.max(pres_arr) + 25]) try: fig_now = plt.gcf() plt.show() except (KeyboardInterrupt, SystemExit): save_plot(fig_now) save_data() exit() except Exception as e: print(e) save_plot(fig_now) save_data() ```
{ "source": "jerry0-3/pybooru", "score": 3 }
#### File: pybooru/pybooru/pybooru.py ```python from __future__ import absolute_import # External imports import re import requests # pybooru imports from . import __version__ from .exceptions import (PybooruError, PybooruHTTPError) from .resources import (SITE_LIST, HTTP_STATUS_CODE) class _Pybooru(object): """Pybooru main class. Attributes: site_name (str): Get or set site name set. site_url (str): Get or set the URL of Moebooru/Danbooru based site. username (str): Return user name. last_call (dict): Return last call. """ def __init__(self, site_name='', site_url='', username=''): """Initialize Pybooru. Keyword arguments: site_name (str): The site name in 'SITE_LIST', default sites. site_url (str): URL of on Moebooru/Danbooru based sites. username (str): Your username of the site (Required only for functions that modify the content). Raises: PybooruError: When 'site_name' and 'site_url' are empty. """ # Attributes self.__site_name = '' # for site_name property self.__site_url = '' # for site_url property self.username = username self.last_call = {} # Set HTTP Client self.client = requests.Session() headers = {'user-agent': 'Pybooru/{0}'.format(__version__), 'content-type': 'application/json; charset=utf-8'} self.client.headers = headers # Validate site_name or site_url if site_name: self.site_name = site_name elif site_url: self.site_url = site_url else: raise PybooruError("Unexpected empty arguments, specify parameter " "'site_name' or 'site_url'.") @property def site_name(self): """Get or set site name. :getter: Return site name. :setter: Validate and set site name. :type: string """ return self.__site_name @site_name.setter def site_name(self, site_name): """Function that sets and checks the site name and set url. Parameters: site_name (str): The site name in 'SITE_LIST', default sites. Raises: PybooruError: When 'site_name' isn't valid. """ if site_name in SITE_LIST: self.__site_name = site_name self.__site_url = SITE_LIST[site_name]['url'] else: raise PybooruError( "The 'site_name' is not valid, specify a valid 'site_name'.") @property def site_url(self): """Get or set site url. :getter: Return site url. :setter: Validate and set site url. :type: string """ return self.__site_url @site_url.setter def site_url(self, url): """URL setter and validator for site_url property. Parameters: url (str): URL of on Moebooru/Danbooru based sites. Raises: PybooruError: When URL scheme or URL are invalid. """ # Regular expression to URL validate regex = re.compile( r'^(?:http|https)://' # Scheme only HTTP/HTTPS r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+(?:[A-Z]{2,6}\.?| \ [A-Z0-9-]{2,}(?<!-)\.?)|' # Domain r'localhost|' # localhost... r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}|' # or ipv4 r'\[?[A-F0-9]*:[A-F0-9:]+\]?)' # or ipv6 r'(?::\d+)?' # Port r'(?:/?|[/?]\S+)$', re.IGNORECASE) # Validate URL if re.match('^(?:http|https)://', url): if re.search(regex, url): self.__site_url = url else: raise PybooruError("Invalid URL: {0}".format(url)) else: raise PybooruError( "Invalid URL scheme, use HTTP or HTTPS: {0}".format(url)) @staticmethod def _get_status(status_code): """Get status message for status code. Parameters: status_code (int): HTTP status code. Returns: status message (str). """ return "{0}, {1}".format(*HTTP_STATUS_CODE.get( status_code, ('Undefined', 'undefined'))) def _request(self, url, api_call, request_args, method='GET'): """Function to request and returning JSON data. Parameters: url (str): Base url call. api_call (str): API function to be called. request_args (dict): All requests parameters. method (str): (Defauld: GET) HTTP method 'GET' or 'POST' Raises: PybooruHTTPError: HTTP Error. requests.exceptions.Timeout: When HTTP Timeout. ValueError: When can't decode JSON response. """ try: if method != 'GET': # Reset content-type for data encoded as a multipart form self.client.headers.update({'content-type': None}) response = self.client.request(method, url, **request_args) self.last_call.update({ 'API': api_call, 'url': response.url, 'status_code': response.status_code, 'status': self._get_status(response.status_code), 'headers': response.headers }) if response.status_code in (200, 201, 202): return response.json() elif response.status_code == 204: return True raise PybooruHTTPError("In _request", response.status_code, response.url) except requests.exceptions.Timeout: raise PybooruError("Timeout! url: {0}".format(response.url)) except ValueError as e: raise PybooruError("JSON Error: {0} in line {1} column {2}".format( e.msg, e.lineno, e.colno)) ```
{ "source": "Jerry-0591/Fusang", "score": 3 }
#### File: simulation_experimental_phylogeny/code/extract_fasta_data.py ```python import os import shutil from multiprocessing import Process, Pool import multiprocessing folder = '../simulate_data/' folder_fasta = '../fasta_file/' if not os.path.exists(folder_fasta): os.mkdir(folder_fasta) def extract(ele): if('.fas' in ele and 'TRUE' in ele): file = folder + ele file_fasta = folder_fasta + ele shutil.copy(file, file_fasta) para_list = os.listdir('../simulate_data/') pool = Pool(8) pool.map(extract, para_list) pool.close() pool.join() ```
{ "source": "jerry0chu/Experiment", "score": 2 }
#### File: lab/handle/handleAppliance.py ```python from app.models import Appliance from app import db import json def handleGetAppliances(page,per_page): appliances = Appliance.query.paginate(page=page, per_page=per_page, error_out=False) res = db.engine.execute("select count(*) from appliance") count = [r[0] for r in res][0] applianceInfo={ 'appliances':[a.to_json() for a in appliances.items], 'count':count } return json.dumps(applianceInfo) def handleSubmitApplianceEditForm(appliance): appli = Appliance.query.filter_by(aid=appliance['aid']).first() if appli: appli.name=appliance['name'] appli.category=appliance['category'] appli.manufacturer=appliance['manufacturer'] appli.note=appliance['note'] db.session.commit() return "success" else: return "failure" def handleSubmitApplianceAddForm(appliance): appli=Appliance(name=appliance["name"],category=appliance["category"],manufacturer=appliance["manufacturer"],note=appliance["note"]) db.session.add(appli) db.session.commit() return "success" def handleRemoveAppliance(aid): appliance = Appliance.query.filter_by(aid=aid).first() if appliance: db.session.delete(appliance) db.session.commit() return "success" else: return "failure" def handleApplianceBatchDelete(aidList): for aid in aidList: appliance = Appliance.query.filter_by(aid=aid).first() if appliance: db.session.delete(appliance) db.session.commit() return "success" def handleAppllianceQueryContent(selectType,content,page,per_page): countQuery="db.session.query(Appliance).filter(Appliance."+selectType+".like('%"+content+"%')).count()" count=eval(countQuery) result="db.session.query(Appliance).filter(Appliance."+selectType+".like('%"+content+"%')).paginate(page="+page+", per_page="+per_page+", error_out=False)" appliances=eval(result) applianceInfo = { 'appliances': [a.to_json() for a in appliances.items], 'count': count } return json.dumps(applianceInfo) ``` #### File: lab/handle/handleExpData.py ```python from sqlalchemy import text from app.models import ExpData,Experiment from app import db,APP_STATIC_DOWNLOAD import json,time,os import pandas as pd import datetime from app.lab.handle.handleLab import handleGetLid def handleGetExpDatas(page, per_page): res = db.engine.execute("select count(*) as count from expdata") count = [r[0] for r in res][0] sql = "select expdata.did, expdata.eid,experiment.name,encapsulation,discharge,charge,eficiency,loopretention,retention from expdata,experiment where expdata.eid=experiment.eid LIMIT " + str( (page - 1) * per_page) + " ," + str(per_page) expdataTu = db.engine.execute(text(sql)) expdataList = [] for expdata in expdataTu: exp = {'did': expdata[0], 'eid': expdata[1], 'expname': expdata[2], 'encapsulation': expdata[3], 'discharge': expdata[4], 'charge': expdata[5], 'eficiency': expdata[6], 'loopretention': expdata[7], 'retention': expdata[8]} expdataList.append(exp) expdataSql='select experiment.eid ,experiment.name from experiment where experiment.eid not in (select expdata.eid from expdata)' expTu=db.engine.execute(text(expdataSql)) availableExpList=[] for exper in expTu: ex={'eid':exper[0],'expname':exper[1]} availableExpList.append(ex) expdataInfo = { 'expdatas': expdataList, 'count': count, 'availableExp':availableExpList } return json.dumps(expdataInfo) def handleSubmitExpDataEditForm(expdata): exp = ExpData.query.filter_by(did=expdata['did']).first() if exp: exp.encapsulation = expdata['encapsulation'] exp.discharge = expdata['discharge'] exp.charge = expdata['charge'] exp.eficiency = expdata['eficiency'] exp.loopretention = expdata['loopretention'] exp.retention = expdata['retention'] db.session.commit() return "success" else: return "failure" return "success" def handleSubmitExpDataAddForm(expdata): sql = 'INSERT INTO expdata (eid,encapsulation,discharge,charge,eficiency,loopretention,retention) values (%d,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f)'%( expdata["availExp"], expdata["encapsulation"], expdata["discharge"], expdata["charge"], expdata['eficiency'],expdata['loopretention'],expdata['retention']) db.engine.execute(text(sql)) return "success" def handleRemoveExpData(did): db.engine.execute('delete from expdata where did='+str(did)) return "success" def handleExpdataBatchDelete(didList): for did in didList: db.engine.execute('delete from expdata where did=' + str(did)) return "success" def handleExpdataQueryContent(selectType,content,page,per_page): countexpnameSql=""" select count(did) as count from expdata,experiment where expdata.eid=experiment.eid and experiment.name like """ expnameSql = """ select expdata.did, expdata.eid,experiment.name as expname, encapsulation,discharge,charge,eficiency,loopretention,retention from expdata,experiment where expdata.eid=experiment.eid and expname like """ eidSql=""" select expdata.did, expdata.eid,experiment.name as expname, encapsulation,discharge,charge,eficiency,loopretention,retention from expdata,experiment where expdata.eid=experiment.eid and expdata.eid= """ count=0 expdataList=[] def makeExpdataList(sql): expdataTu = db.engine.execute(text(sql)) for expdata in expdataTu: exp = {'did': expdata[0], 'eid': expdata[1], 'expname': expdata[2], 'encapsulation': expdata[3], 'discharge': expdata[4], 'charge': expdata[5], 'eficiency': expdata[6], 'loopretention': expdata[7], 'retention': expdata[8]} expdataList.append(exp) if selectType=='expname': common = "'%" + content + "%'" countexpnameSql += common expnameSql += common res = db.engine.execute(text(countexpnameSql)) count = [r[0] for r in res][0] makeExpdataList(expnameSql) if selectType=='eid' and content.isdigit(): count=1 eidSql += str(content) makeExpdataList(eidSql) expdatasInfo = { 'expdatas': expdataList, 'count': count } return json.dumps(expdatasInfo) def handleDownExpData(userType): commonSql = """ select experiment.name as expname,experiment.date,lab.name as labname,encapsulation,discharge,charge,eficiency,loopretention,retention from experiment,lab,expdata where experiment.lid=lab.lid and expdata.eid=experiment.eid """ expSql = '' if userType=='all': expSql=commonSql else: expSql=commonSql+' and experiment.uid='+userType expDataList = pd.read_sql_query(expSql, db.engine) def timestamp_datetime(value): format = '%Y-%m-%d' value = time.localtime(value) dt = time.strftime(format, value) return dt expDataList.columns = ['实验名称', '实验时间', '实验地点', '包覆含量(%)', '1C首圈放电比容量(mAh/g)', '1C首圈充电比容量(mAh/g)','首圈效率(%)','1C循环50圈后放电容量','容量保持率(%)'] expDataList['实验时间'] = expDataList['实验时间'] // 1000 expDataList['实验时间'] = expDataList['实验时间'].apply(timestamp_datetime) path = os.path.join(APP_STATIC_DOWNLOAD, 'expdata.xlsx') expDataList.to_excel(path,index=False) return "success" def handleUploadExpData(path,uid): uploadExcel=pd.read_excel(path) #print(uploadExcel.columns[0]) if '条件变量' in uploadExcel.columns[0]: uploadExcel = pd.read_excel(path, header=None) uploadExcel = uploadExcel[2:-1] uploadExcel.columns = ['实验名称', '实验时间', '实验地点', '包覆含量(%)', '1C首圈放电比容量(mAh/g)', '1C首圈充电比容量(mAh/g)', '首圈效率(%)', '1C循环50圈后放电容量', '容量保持率(%)'] uploadExcel.reset_index(inplace=True, drop=True) uploadExcel['实验时间'] = pd.to_datetime(uploadExcel['实验时间']) def datetime_timestamp(dt): time.strptime(dt, '%Y-%m-%d') s = time.mktime(time.strptime(dt, '%Y-%m-%d')) return int(s)*1000 #uploadExcel['实验时间'] = uploadExcel['实验时间'].astype('str').apply(datetime_timestamp) uploadExcel.columns = ['expname', 'date', 'labname', 'encapsulation', 'discharge', 'charge', 'eficiency', 'loopretention', 'retention'] #print(uploadExcel.head()) #print(uploadExcel['实验时间'].dtype) length=uploadExcel.shape[0] #print("length",length) for row in range(length): excelRowJson=json.loads(uploadExcel.iloc[row].to_json(force_ascii=False)) #print(excelRowJson) if excelRowJson['expname'] == None: break #labid=handleGetLid(excelRowJson['labname']) # experiment=Experiment( # lid=labid, # uid=uid, # name=excelRowJson['expname'], # date=datetime.datetime.fromtimestamp(excelRowJson['date']//1000), # status=2 # ) # db.session.add(experiment) # db.session.commit() labid = handleGetLid(excelRowJson['labname']) sql = 'INSERT INTO experiment (lid,uid,name,date,status) values (%d,%d,"%s",%d,%d)' % ( int(labid), int(uid), excelRowJson['expname'], excelRowJson['date'],2) db.engine.execute(text(sql)) res=db.engine.execute('select eid from experiment order by eid DESC limit 1') exp_eid = [r[0] for r in res][0] expdata=ExpData( eid=exp_eid, encapsulation=excelRowJson['encapsulation'], discharge=excelRowJson['discharge'], charge=excelRowJson['charge'], eficiency=excelRowJson['eficiency'], loopretention=excelRowJson['loopretention'], retention=excelRowJson['retention'] ) db.session.add(expdata) db.session.commit() ``` #### File: lab/handle/handleExperiment.py ```python from sqlalchemy import text import datetime from app.models import Experiment, Lab from app import db import json import pandas as pd import os import time from app import APP_STATIC_DOWNLOAD status = {0: "未进行", 1: "正在进行", 2: "已完成"} def makeExperimentInfo(expSql, countSql): experiments = db.engine.execute(text(expSql)) expList = [] for exp in experiments: ex = {'eid': exp[0], 'expname': exp[1], 'labname': exp[2], 'date': exp[3], 'status': status[exp[4]], 'account': exp[5]} expList.append(ex) res = db.engine.execute(text(countSql)) count = [r[0] for r in res][0] return expList, count def handleGetExperiments(page, per_page): expSql = "select experiment.eid,experiment.name as expname,lab.name as labname,experiment.date,experiment.status,account from experiment,lab,user where experiment.lid=lab.lid and experiment.uid=user.uid LIMIT " + str( (page - 1) * per_page) + " ," + str(per_page) countSql='select count(*) as count from experiment,lab,user where experiment.lid=lab.lid and experiment.uid=user.uid' experimentList,count=makeExperimentInfo(expSql,countSql) labs = Lab.query.all() labJson = [r.to_json() for r in labs] users = db.engine.execute("select uid,account from user") userList = [] for row in users: user = {'uid': row[0], 'account': row[1]} userList.append(user) experimentInfo = { 'experiments': experimentList, 'count': count, 'labs': labJson, 'users': userList } return json.dumps(experimentInfo) def handleSubmitExperimentEditForm(experiment): sql = 'update experiment set name=' + "'" + experiment['expname'] + "'" + ', date=' + str(experiment['date']) if type(experiment['labname']) is int: sql = sql + ", lid=" + str(experiment['labname']) if len(experiment['status']) == 1: sql += ",status= " + str(experiment['status']) if type(experiment['account']) is int: sql += ",uid= " + str(experiment['account']) sql = sql + ' where eid=' + str(experiment['eid']) db.engine.execute(text(sql)) return "success" def handleSubmitExperimentAddForm(experiment): sql = 'INSERT INTO experiment (lid,uid,name,date,status) values (%d,%d,"%s",%d,%d)' % ( experiment["labname"], experiment["account"], experiment["expname"], experiment["date"], int(experiment["status"])) db.engine.execute(text(sql)) return "success" def handleRemoveExperiment(eid): res=db.engine.execute("select experiment.eid from experiment where experiment.eid in (select expdata.eid from expdata) and experiment.eid="+str(eid)) exist = [r[0] for r in res] if len(exist)==0: db.engine.execute('delete from experiment where eid=' + str(eid)) return "success" else: return "实验已经产生数据,不能删除" def handleExperimentBatchDelete(eidList): for eid in eidList: handleRemoveExperiment(eid) return "success" def handleExperimentQueryContent(selectType, statusType, content, page, per_page): limitSql=" LIMIT " + str((page - 1) * per_page) + " ," + str(per_page) commonExpSql=""" select experiment.eid,experiment.name as expname,lab.name as labname,experiment.date, experiment.status,account from experiment,lab,user where experiment.lid=lab.lid and experiment.uid=user.uid and """ commonCountSQl=""" select count() as count from experiment,lab,user where experiment.lid=lab.lid and experiment.uid=user.uid and """ experimentList=[] count=0 if content == '' and statusType != '-1': expSql=commonExpSql+" status="+statusType+limitSql countSql=commonCountSQl+" status="+statusType experimentList,count=makeExperimentInfo(expSql,countSql) elif content != '' and statusType == '-1': if selectType =='eid': expSql=commonExpSql+" experiment.eid="+content countSql=commonCountSQl+" experiment.eid="+content experimentList, count = makeExperimentInfo(expSql, countSql) elif selectType=='expname': expSql = commonExpSql + " expname like " +"'%"+ content+"%'"+limitSql countSql = commonCountSQl + " experiment.name like " +"'%"+ content+"%'" experimentList, count = makeExperimentInfo(expSql, countSql) elif selectType=='account': expSql = commonExpSql + " account= "+"'"+ content+ "'"+limitSql countSql = commonCountSQl + " account= "+ "'"+content+"'" experimentList, count = makeExperimentInfo(expSql, countSql) elif content != '' and statusType != '-1': if selectType =='eid': expSql=commonExpSql+" experiment.eid="+content+" and status="+statusType countSql=commonCountSQl+" experiment.eid="+content+" and status="+statusType experimentList, count = makeExperimentInfo(expSql, countSql) elif selectType=='expname': expSql = commonExpSql + " expname like " +"'%"+ content+"%'"+" and status="+statusType + limitSql countSql = commonCountSQl + " experiment.name like " +"'%"+ content+"%'"+" and status="+statusType experimentList, count = makeExperimentInfo(expSql, countSql) elif selectType=='account': expSql = commonExpSql + " account= "+"'"+ content+ "'"+" and status="+statusType +limitSql countSql = commonCountSQl + " account= "+ "'"+content+"'"+" and status="+statusType experimentList, count = makeExperimentInfo(expSql, countSql) experimentInfo = { 'experiments': experimentList, 'count': count } return json.dumps(experimentInfo) def handleDownExperiment(downloadExpStatus): commonSql=""" select experiment.eid,experiment.name as expname,lab.name as labname,experiment.date, experiment.status,account from experiment,lab,user where experiment.lid=lab.lid and experiment.uid=user.uid """ expSql='' if downloadExpStatus =='-1': expSql=commonSql else: expSql=commonSql+" and experiment.status="+downloadExpStatus expList=pd.read_sql_query(expSql,db.engine) def timestamp_datetime(value): format = '%Y-%m-%d' value = time.localtime(value) dt = time.strftime(format, value) return dt expList.columns=['实验编号', '实验名称', '实验地点','实验时间','实验状态','用户账号'] expList['实验状态'].replace({0:"未进行",1:"正在进行",2:"已完成"},inplace=True) expList['实验时间'] = expList['实验时间'] // 1000 expList['实验时间'] = expList['实验时间'].apply(timestamp_datetime) path = os.path.join(APP_STATIC_DOWNLOAD, 'experiment.xlsx') expList.to_excel(path,index=False) return "success" ``` #### File: lab/view/expdataViews.py ```python from werkzeug.utils import secure_filename from app.lab import lab from flask import request, send_file from app import APP_STATIC_DOWNLOAD, APP_STATIC_UPLOAD from app.lab.handle.handleExpData import handleGetExpDatas, handleSubmitExpDataEditForm, handleSubmitExpDataAddForm, \ handleRemoveExpData, handleExpdataBatchDelete, handleExpdataQueryContent, handleDownExpData, handleUploadExpData import json, os @lab.route('/getExpDatas', methods=['POST']) def getExpDatas(): page = request.form.get('page', None) per_page = request.form.get('per_page', None) if page and per_page: return handleGetExpDatas(int(page), int(per_page)) else: return "error" @lab.route('/submitExpDataEditForm', methods=['POST']) def submitExpDataEditForm(): expdata = json.loads(request.form.get('expdata', None)) return handleSubmitExpDataEditForm(expdata) @lab.route('/submitExpDataAddForm', methods=['POST']) def submitExpDataAddForm(): expdata = json.loads(request.form.get('expdata', None)) return handleSubmitExpDataAddForm(expdata) @lab.route('/removeExpData', methods=['POST']) def removeExpData(): did = request.form.get('did', None) return handleRemoveExpData(did) @lab.route('/expdataBatchDelete', methods=['POST']) def expdataBatchDelete(): didList = json.loads(request.form.get('didList', None)) return handleExpdataBatchDelete(didList) @lab.route('/expdataQueryContent', methods=['POST']) def expdataQueryContent(): selectType = request.form.get('selectType', None) content = request.form.get('content', None) page = request.form.get('page', None) per_page = request.form.get('per_page', None) return handleExpdataQueryContent(selectType, content, page, per_page) @lab.route('/downExpData', methods=['POST']) def downExpData(): userType = request.form.get('userType', None) if handleDownExpData(userType) == 'success': path = os.path.join(APP_STATIC_DOWNLOAD, 'expdata.xlsx') rv = send_file(path, attachment_filename=path, as_attachment=True) return rv else: return 'failure' @lab.route('/uploadExpData', methods=['POST']) def uploadExpData(): file = request.files['file'] uid=request.form.get('uid',None) print('uploadExpData uid:',uid) string = '' string.endswith(('.xls', '.xlsx')) if file.filename.endswith(('.xls', '.xlsx')): print(file.filename) path = os.path.join(APP_STATIC_UPLOAD, file.filename) file.save(path) handleUploadExpData(path,uid) return "success" else: return "failure" ``` #### File: Experiment/app/models.py ```python from datetime import datetime from app import db # from werkzeug.security import generate_password_hash # from flask import Flask # from flask_sqlalchemy import SQLAlchemy # # app = Flask(__name__) # app.debug = True # # app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///db/labpro.db' # app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = True # db = SQLAlchemy(app) # 角色 class Role(db.Model): __tablename__ = "role" rid = db.Column(db.Integer, primary_key=True) # 编号 name = db.Column(db.String(100), unique=True) # 名称 note = db.Column(db.String(100), default="") # 备注 # 关系 users = db.relationship("User", backref='role') def to_json(self): return { "rid": self.rid, "name": self.name, } def __repr__(self): return '<Role %r>' % self.name # 用户 class User(db.Model): __tablename__ = "user" uid = db.Column(db.Integer, primary_key=True, autoincrement=True) # 用户编号 rid = db.Column(db.Integer, db.ForeignKey("role.rid")) # 角色编号 account = db.Column(db.String(50), unique=True) # 账号 username = db.Column(db.String(100), unique=True) # 昵称 password = db.Column(db.String(20)) # 密码 phone = db.Column(db.Integer) # 手机号码 # 关系 experiments = db.relationship("Experiment", backref="user") def to_json(self): return { "uid": self.uid, "rid": self.rid, "account": self.account, "username": self.username, "phone": self.phone } def __repr__(self): return '<User %r>' % self.username # 仪器 class Appliance(db.Model): __tablename__ = "appliance" aid = db.Column(db.Integer, primary_key=True, autoincrement=True) # 仪器编号 name = db.Column(db.String(50)) # 仪器名称 manufacturer = db.Column(db.String(50)) # 生产厂家 category = db.Column(db.String(50)) # 仪器型号 note = db.Column(db.String(100), default="") # 备注 def to_json(self): return { "aid": self.aid, "name": self.name, "manufacturer": self.manufacturer, "category": self.category, "note": self.note } def __repr__(self): return '<appliance %r>' % self.name # 材料 class Material(db.Model): __tablename__ = "material" mid = db.Column(db.Integer, primary_key=True, autoincrement=True) # 材料编号 name = db.Column(db.String(50)) # 材料名称 manufacturer = db.Column(db.String(50)) # 生产厂家 purity = db.Column(db.String(50)) # 材料纯度 note = db.Column(db.String(100), default="") # 备注 def to_json(self): return { "mid": self.mid, "name": self.name, "manufacturer": self.manufacturer, "purity": self.purity, "note": self.note } def __repr__(self): return '<material %r>' % self.name # 实验室 class Lab(db.Model): __tablename__ = "lab" lid = db.Column(db.Integer, primary_key=True, autoincrement=True) # 实验室编号 name = db.Column(db.String(50), unique=True) # 实验室名称 note = db.Column(db.String(100), default="") # 备注 # 关系 experiments = db.relationship("Experiment", backref="lab") def to_json(self): return { "lid": self.lid, "name": self.name, "note": self.note } def __repr__(self): return '<lab %r>' % self.name # 实验 class Experiment(db.Model): __tablename__ = "experiment" eid = db.Column(db.Integer, primary_key=True, autoincrement=True) # 实验编号 lid = db.Column(db.Integer, db.ForeignKey("lab.lid")) # 实验室编号 uid = db.Column(db.Integer, db.ForeignKey("user.uid")) # 用户编号 name = db.Column(db.String(50)) # 实验名称 date = db.Column(db.DateTime, index=True, default=datetime.now) status = db.Column(db.Integer) # 状态0未进行,1正在进行,2已进行 # 关系 expdatas = db.relationship("ExpData", backref="experiment") def __repr__(self): return '<experiment %r>' % self.name # 实验数据 class ExpData(db.Model): __tablename__ = "expdata" did = db.Column(db.Integer, primary_key=True, autoincrement=True) # 实验数据编号 eid = db.Column(db.Integer, db.ForeignKey("experiment.eid")) # 实验室编号 encapsulation = db.Column(db.Float) # 包覆含量 discharge = db.Column(db.Float) # 放电比容量 charge = db.Column(db.Float) # 充电比容量 eficiency = db.Column(db.Float) # 首圈效率 loopretention = db.Column(db.Float) # 循环50圈放电容量 retention = db.Column(db.Float) # 容量保持率 def __repr__(self): return '<expdata %d>' % self.did if __name__ == "__main__": # 创建 所有数据表 """ db.create_all() """ #print("testRole") # 测试插入数据 """ role=Role( name="超级管理员", ) db.session.add(role) db.session.commit() """ # 测试插入admin 并且生成哈希密码 """ from werkzeug.security import generate_password_hash user=User( rid=1, account="Jerry", username="JerryChu", password=generate_password_hash("<PASSWORD>"), phone=12345678912 ) db.session.add(user) db.session.commit() """ # role=Role.query.filter_by(name="教师").first() # print(role) # 修改 # user = User.query.filter_by(account="David12").first() # user.username = "李伟" # db.session.commit() # print(user) # 分页 # users=User.query.paginate(page=1, per_page=2) # print(type(users)) # print(users.items) # print(users.pages) # print(users.prev_num) # print(users.has_prev) # print(users.next_num) # print(users.next()) # 对象 # print(users.has_next) # print(users.next_num) # print(type(users.next_num)) # # roles = Role.query.all() # for r in roles: # print(r.to_json()) # print(roles) # raw sql # result = db.engine.execute("select uid,user.rid,account,username,phone,name from user,role where user.rid=role.rid") # userList = [] # for row in result: # user={} # user['uid']=row[0] # user['rid'] = row[1] # user['account'] = row[2] # user['username'] = row[3] # user['phone'] = row[4] # user['roleName'] = row[5] # userList.append(user) # print(userList) # # res=db.engine.execute("select count(*) from user") # count=[r[0] for r in res][0] # print(count) #print(res[0]) # roles = Role.query.all() # roleJson = [r.to_json() for r in roles] # print(roleJson) # role = Role.query.filter_by(name="教师").first() # print(role) # print(role.rid) # cd 到 app 命令行运行 python models.py ```
{ "source": "Jerry12228/Source", "score": 4 }
#### File: Source/Alien/ship.py ```python import pygame from pygame.sprite import Sprite class Ship(Sprite): def __init__(self, ai_settings, screen): """Initialize Ship and Set initializing position""" super(Ship, self).__init__() self.screen = screen self.ai_settings = ai_settings # Loading Ship image and get circumscribed rectangle self.image = pygame.image.load('images/ship_57×112.bmp') self.rect = self.image.get_rect() self.screen_rect = screen.get_rect() # Make every new ship at mid bottom on screen self.rect.centerx = self.screen_rect.centerx self.rect.bottom = self.screen_rect.bottom # Save float value in attribute Center of ship self.center = float(self.rect.centerx) # Move sign self.moving_right = False self.moving_left = False def update(self): """According to the move sign change position of ship""" if self.moving_right and self.rect.right < self.screen_rect.right: self.center += self.ai_settings.ship_speed_factor if self.moving_left and self.rect.left > 0: self.center -= self.ai_settings.ship_speed_factor # Update rect with self.center self.rect.centerx = self.center def blitme(self): """Drawing Ship at appoint position""" self.screen.blit(self.image, self.rect) def center_ship(self): """Make ship at mid of screen""" self.center = self.screen_rect.centerx ```
{ "source": "Jerry1962325/Google-Grass-Machine", "score": 3 }
#### File: Jerry1962325/Google-Grass-Machine/GoogleGM_qqbot.py ```python from typing import Optional import requests import asyncio from fastapi import FastAPI from pydantic import BaseModel import urllib import urllib.parse import json import sys import os import platform from googletrans import Translator class Item(BaseModel): name: str description: Optional[str] = None price: float tax: Optional[float] = None url="http://127.0.0.1:5700/send_group_msg" version="1.0" app = FastAPI() class GroupItem(BaseModel): message: str group_id: int class FriendMessage(BaseModel): message: str friend_id: int translator = Translator(service_urls=['translate.google.cn']) #将翻译服务URL替换为国内区域名 lang = ['de','en','ja','da','fr','ny','uk','gl','ht','es','zh-cn'] #翻译次数及语言 @app.post("/") async def create_item(item: dict): msg1=item.get("message") group=item.get("group_id") if msg1 and (msg1.startswith("生草")): print("收到了请求。") juzi = msg1[2:] count = 0 for mubiao in lang: count = count + 1 #翻译计次 juzi = translator.translate(juzi,dest=mubiao).text print(str(count)+"次翻译结果:"+juzi) print("最终翻译结果:"+juzi) requests.post(url,json={"group_id":group,"message":"翻译结果:"+juzi}) print("完成了请求。") del juzi if msg1=="ver": requests.post(url,json={"group_id":group,"message":"GoogleGM_qqbot(https://github.com/Asankilp/Google-Grass-Machine) ver"+version+"\n本机器人基于uvicorn及go-cqhttp(github.com/Mrs4s/go-cqhttp)。Google Translate核心模块为googletrans(https://pypi.org/project/googletrans/)。\n运行环境:\nPython "+sys.version+"\n操作系统:\n"+platform.platform()+" "+platform.version()}) if msg1=="目力": requests.post(url,json={"group_id":group,"message":"[CQ:record,file=https://asankilp.github.io/muli.mp3]"}) return {} ```
{ "source": "Jerry2001Qu/pennylane-qiskit", "score": 2 }
#### File: pennylane-qiskit/pennylane_qiskit/converter.py ```python r""" This module contains functions for converting Qiskit QuantumCircuit objects into PennyLane circuit templates. """ from typing import Dict, Any import warnings import numpy as np from qiskit import QuantumCircuit from qiskit.circuit import Parameter, ParameterExpression from qiskit.exceptions import QiskitError import pennylane as qml import pennylane.ops.qubit as pennylane_ops from pennylane_qiskit.qiskit_device import QISKIT_OPERATION_MAP # pylint: disable=too-many-instance-attributes inv_map = {v.__name__: k for k, v in QISKIT_OPERATION_MAP.items()} def _check_parameter_bound(param: Parameter, var_ref_map: Dict[Parameter, qml.variable.Variable]): """Utility function determining if a certain parameter in a QuantumCircuit has been bound. Args: param (qiskit.circuit.Parameter): the parameter to be checked var_ref_map (dict[qiskit.circuit.Parameter, pennylane.variable.Variable]): a dictionary mapping qiskit parameters to PennyLane variables """ if isinstance(param, Parameter) and param not in var_ref_map: raise ValueError("The parameter {} was not bound correctly.".format(param)) def _extract_variable_refs(params: Dict[Parameter, Any]) -> Dict[Parameter, qml.variable.Variable]: """Iterate through the parameter mapping to be bound to the circuit, and return a dictionary containing the differentiable parameters. Args: params (dict): dictionary of the parameters in the circuit to their corresponding values Returns: dict[qiskit.circuit.Parameter, pennylane.variable.Variable]: a dictionary mapping qiskit parameters to PennyLane variables """ variable_refs = {} # map qiskit parameters to PennyLane differentiable Variables. if params is not None: for k, v in params.items(): # Values can be arrays of size 1, need to extract the Python scalar # (this can happen e.g. when indexing into a PennyLane numpy array) if isinstance(v, np.ndarray): v = v.item() if isinstance(v, qml.variable.Variable): variable_refs[k] = v return variable_refs # map qiskit parameters to PennyLane differentiable Variables. def _check_circuit_and_bind_parameters( quantum_circuit: QuantumCircuit, params: dict, diff_params: dict ) -> QuantumCircuit: """Utility function for checking for a valid quantum circuit and then binding parameters. Args: quantum_circuit (QuantumCircuit): the quantum circuit to check and bind the parameters for params (dict): dictionary of the parameters in the circuit to their corresponding values diff_params (dict): dictionary mapping the differentiable parameters to PennyLane Variable instances Returns: QuantumCircuit: quantum circuit with bound parameters """ if not isinstance(quantum_circuit, QuantumCircuit): raise ValueError( "The circuit {} is not a valid Qiskit QuantumCircuit.".format(quantum_circuit) ) if params is None: return quantum_circuit for k in diff_params: # Since we cannot bind Variables to Qiskit circuits, # we must remove them from the binding dictionary before binding. del params[k] return quantum_circuit.bind_parameters(params) def map_wires(wires: list, qc_wires: list) -> dict: """Utility function mapping the wires specified in a quantum circuit with the wires specified by the user for the template. Args: wires (list): wires specified for the template qc_wires (list): wires from the converted quantum circuit Returns: dict[int, int]: map from quantum circuit wires to the user defined wires """ if wires is None: return dict(zip(qc_wires, range(len(qc_wires)))) if len(qc_wires) == len(wires): return dict(zip(qc_wires, wires)) raise qml.QuantumFunctionError( "The specified number of wires - {} - does not match " "the number of wires the loaded quantum circuit acts on.".format(len(wires)) ) def execute_supported_operation(operation_name: str, parameters: list, wires: list): """Utility function that executes an operation that is natively supported by PennyLane. Args: operation_name (str): wires specified for the template parameters (str): parameters of the operation that will be executed wires (list): wires of the operation """ operation = getattr(pennylane_ops, operation_name) if not parameters: operation(wires=wires) elif operation_name == "QubitStateVector": operation(np.array(parameters), wires=wires) else: operation(*parameters, wires=wires) def load(quantum_circuit: QuantumCircuit): """Loads a PennyLane template from a Qiskit QuantumCircuit. Warnings are created for each of the QuantumCircuit instructions that were not incorporated in the PennyLane template. Args: quantum_circuit (qiskit.QuantumCircuit): the QuantumCircuit to be converted Returns: function: the resulting PennyLane template """ def _function(params: dict = None, wires: list = None): """Returns a PennyLane template created based on the input QuantumCircuit. Warnings are created for each of the QuantumCircuit instructions that were not incorporated in the PennyLane template. Args: params (dict): specifies the parameters that need to be bound in the QuantumCircuit wires (Sequence[int] or int): The wires the converted template acts on. Note that if the original QuantumCircuit acted on :math:`N` qubits, then this must be a list of length :math:`N`. Returns: function: the new PennyLane template """ var_ref_map = _extract_variable_refs(params) qc = _check_circuit_and_bind_parameters(quantum_circuit, params, var_ref_map) # Wires from a qiskit circuit are unique w.r.t. a register name and a qubit index qc_wires = [(q.register.name, q.index) for q in quantum_circuit.qubits] wire_map = map_wires(wires, qc_wires) # Processing the dictionary of parameters passed for op in qc.data: instruction_name = op[0].__class__.__name__ operation_wires = [wire_map[(qubit.register.name, qubit.index)] for qubit in op[1]] # New Qiskit gates that are not natively supported by PL (identical # gates exist with a different name) # TODO: remove the following when gates have been renamed in PennyLane instruction_name = "U3Gate" if instruction_name == "UGate" else instruction_name if instruction_name in inv_map and inv_map[instruction_name] in pennylane_ops.ops: # Extract the bound parameters from the operation. If the bound parameters are a # Qiskit ParameterExpression, then replace it with the corresponding PennyLane # variable from the var_ref_map dictionary. parameters = [] for p in op[0].params: _check_parameter_bound(p, var_ref_map) if isinstance(p, ParameterExpression): if p.parameters: # p.parameters must be a single parameter, as PennyLane # does not support expressions of variables currently. if len(p.parameters) > 1: raise ValueError( "Operation {} has invalid parameter {}. PennyLane does not support " "expressions containing differentiable parameters as operation " "arguments".format(instruction_name, p) ) param = min(p.parameters) parameters.append(var_ref_map.get(param)) else: parameters.append(float(p)) else: parameters.append(p) execute_supported_operation(inv_map[instruction_name], parameters, operation_wires) elif instruction_name == "SdgGate": sgate = getattr(pennylane_ops, "S") sgate(wires=operation_wires).inv() elif instruction_name == "TdgGate": tgate = getattr(pennylane_ops, "T") tgate(wires=operation_wires).inv() else: try: operation_matrix = op[0].to_matrix() pennylane_ops.QubitUnitary(operation_matrix, wires=operation_wires) except (AttributeError, QiskitError): warnings.warn( __name__ + ": The {} instruction is not supported by PennyLane," " and has not been added to the template.".format(instruction_name), UserWarning, ) return _function def load_qasm(qasm_string: str): """Loads a PennyLane template from a QASM string. Args: qasm_string (str): the name of the QASM string Returns: function: the new PennyLane template """ return load(QuantumCircuit.from_qasm_str(qasm_string)) def load_qasm_from_file(file: str): """Loads a PennyLane template from a QASM file. Args: file (str): the name of the QASM file Returns: function: the new PennyLane template """ return load(QuantumCircuit.from_qasm_file(file)) ```
{ "source": "jerry3links/tensorflow_input_image_by_tfrecord", "score": 3 }
#### File: tensorflow_input_image_by_tfrecord/src/conv_cards_utils.py ```python from tensorflow.contrib.learn.python.learn.datasets import mnist as mnist_module # PATH: /home/jerry3chang/Workspace/tensorflow_py3/lib/python3.5/site-packages/tensorflow/contrib/learn/python/learn/datasets/base.py from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.python.framework import dtypes from tensorflow.python.platform import gfile import math import h5py # import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.python.framework import ops import os from array import * from random import shuffle from PIL import Image import numpy as np # the generated mnist will still get one-hot of 10, needs to be transformed def transform_to_3(images, labels): trans = np.zeros((images.shape[0], 3)) c = 0 for e in labels: d = 0 for f in e: if d < 2: trans[c, d] = labels[c, d] elif labels[c, 0] == 0 and labels[c, 1] == 0: trans[c, 2] = 1 else: trans[c, 2] = 0 d += 1 #if c <= 15: #print (e) #print (trans[c,:]) c += 1 return trans # copy from mnist def read_data_sets(train_dir, one_hot=False, dtype=dtypes.float32, reshape=True, validation_size=5000, seed=None, source_url=None): # omit url since we are using our own dataset TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 'test-images-idx3-ubyte.gz' TEST_LABELS = 'test-labels-idx1-ubyte.gz' local_file = base.maybe_download(TRAIN_IMAGES, train_dir, None) # omit url, local file will be a path # type: DataSets with gfile.Open(local_file, 'rb') as f: train_images = mnist_module.extract_images(f) print (train_images.shape) local_file = base.maybe_download(TRAIN_LABELS, train_dir, None) # omit url with gfile.Open(local_file, 'rb') as f: train_labels = mnist_module.extract_labels(f, one_hot=one_hot) local_file = base.maybe_download(TEST_IMAGES, train_dir, None) # omit url with gfile.Open(local_file, 'rb') as f: test_images = mnist_module.extract_images(f) local_file = base.maybe_download(TEST_LABELS, train_dir, None) # omit url with gfile.Open(local_file, 'rb') as f: test_labels = mnist_module.extract_labels(f, one_hot=one_hot) if not 0 <= validation_size <= len(train_images): raise ValueError( 'Validation size should be between 0 and {}. Received: {}.' .format(len(train_images), validation_size)) validation_images = train_images[:validation_size] validation_labels = train_labels[:validation_size] train_images = train_images[validation_size:] train_labels = train_labels[validation_size:] options = dict(dtype=dtype, reshape=reshape, seed=seed) train = mnist_module.DataSet(train_images, train_labels, **options) validation = mnist_module.DataSet(validation_images, validation_labels, **options) test = mnist_module.DataSet(test_images, test_labels, **options) return base.Datasets(train=train, validation=validation, test=test) def load_dataset(): train_dataset = h5py.File('./datasets/train_signs.h5', "r") train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features # (1080,64,64,3) train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels test_dataset = h5py.File('./datasets/test_signs.h5', "r") print ("test_dataset.type " + str(type(test_dataset))) print ("test_dataset[\"test_set_x\"][:].type " + str(type(test_dataset["test_set_x"][:]))) test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels print ("test_set.type " + str(type(test_set_x_orig))) print ("test_set.ndim " + str(test_set_x_orig.ndim)) print ("test_set.shape " + str(test_set_x_orig.shape)) print ("test_set[0].type " + str(type(test_set_x_orig[0]))) print ("test_set[0].ndim " + str(test_set_x_orig[0].ndim)) print ("test_set[0].shape " + str(test_set_x_orig[0].shape)) classes = np.array(test_dataset["list_classes"][:]) # the list of classes train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0])) test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0])) return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes def load_dataset_deck(): # Load from and save to Names = [['./jpg_to_mnist/training_images','train'], ['./jpg_to_mnist/testing_images','test']] train_images = np.zeros(1620528) # 689 * 28 * 28 * 3 train_labels = np.zeros(689) test_images = np.zeros(181104) test_labels = np.zeros(77) for name in Names: data_image = array('B') data_label = array('B') FileList = [] # NOTE: [1:] Excludes .DS_Store from Mac OS for dirname in os.listdir(name[0]): path = os.path.join(name[0],dirname) for filename in os.listdir(path): if filename.endswith(".png"): FileList.append(os.path.join(name[0],dirname,filename)) print (str(name) + " " + str(len(FileList))) shuffle(FileList) # Usefull for further segmenting the validation set cnt = 0 for filename in FileList: cnt += 1 # NOTE: The class labels have to be integer label = int(filename.split('/')[3]) im = Image.open(filename) # .convert('L') pixel = im.load() width, height = im.size # 28*28 for channel in range(0,len(pixel[0,0])): for x in range(0,width): for y in range(0,height): data_image.append(pixel[y,x][channel]) data_label.append(label) # labels start (one unsigned byte each) if name[1] == 'train': train_images = np.array(data_image).reshape(len(FileList), 28, 28, 3) train_labels = np.array(data_label).reshape(len(FileList)) elif name[1] == 'test': test_images = np.array(data_image).reshape(len(FileList), 28, 28, 3) test_labels = np.array(data_label).reshape(len(FileList)) return train_images, train_labels, test_images, test_labels ```
{ "source": "jerry73204/cns-final-tor-store", "score": 2 }
#### File: cns-final-tor-store/src/tor_helper.py ```python import argparse import sys import os import logzero import tor_utils def main(): parser = argparse.ArgumentParser() parser.add_argument('COMMAND', choices=['store', 'load']) parser.add_argument('KEY_SIZE', type=int) parser.add_argument('DATA_SIZE', type=int) parser.add_argument('NONCE_SIZE', type=int) args = parser.parse_args() # Configure logger if 'LOGLEVEL' in os.environ: logzero.loglevel(os.environ['LOGLEVEL']) # Parse arguments data_length = args.DATA_SIZE // 8 assert args.DATA_SIZE / 8 == data_length if args.COMMAND == 'load': addr = input() block = tor_utils.load_block( addr, key_size=args.KEY_SIZE, data_size=args.DATA_SIZE, nonce_size=args.NONCE_SIZE, ) if block is not None: sys.stdout.buffer.write(block) else: exit(1) elif args.COMMAND == 'store': block = sys.stdin.buffer.read(data_length) addr = tor_utils.store_block( block, key_size=args.KEY_SIZE, data_size=args.DATA_SIZE, nonce_size=args.NONCE_SIZE, ) if addr is not None: print(addr) else: exit(1) else: raise ValueError('Command %s is not understood' % args.COMMAND) if __name__ == '__main__': main() ```
{ "source": "jerry73204/gqnrs", "score": 2 }
#### File: jerry73204/gqnrs/plot.py ```python import os import argparse import glob import time import torch from visdom import Visdom def main(): # Parse arguments arg_parser = argparse.ArgumentParser() arg_parser.add_argument('LOG_DIR') arg_parser.add_argument( '--visdom-address', default='localhost' ) arg_parser.add_argument( '--visdom-port', type=int, default=8097 ) args = arg_parser.parse_args() # Connect to Visdom server visdom_addr = args.visdom_address visdom_port = args.visdom_port viz = Visdom(port=visdom_port, server=visdom_addr) # Load log data paths = list(glob.glob(os.path.join(args.LOG_DIR, '*.zip'))) paths.sort() elbo_loss_x = list() elbo_loss_y = list() target_mse_x = list() target_mse_y = list() for path in paths: log_name = os.path.basename(path)[:-4] step, ts = log_name.split('-') step = int(step) ts = int(ts) log = torch.jit.load(path, map_location=torch.device('cpu')) elbo_loss_x.append(step) elbo_loss_y.append(log.elbo_loss) target_mse_x.append(step) target_mse_y.append(log.target_mse) # Uncomment this to plot histogram # viz.histogram(X=log.stds_target.view([-1])) # viz.images(log.means_target, opts=dict(title=log_name)) # Plot ELBO loss and target MSE curve elbo_loss_y = torch.stack(elbo_loss_y).detach().numpy() viz.line(X=elbo_loss_x, Y=elbo_loss_y) target_mse_y = torch.stack(target_mse_y).detach().numpy() viz.line(X=target_mse_x, Y=target_mse_y) if __name__ == '__main__': main() ```