metadata
dict
text
stringlengths
60
3.49M
{ "source": "Jessime/i_know_python", "score": 4 }
#### File: i_know_python/i_know_python/main.py ```python import pkg_resources def run(): libraries = pkg_resources.resource_filename(__name__, 'data/library37.txt') used = [] unused = [] welcome = "Welcome to 'I know Python'!\nAnswer these questions to the best of your ability.\n" print(welcome) with open(libraries, encoding='utf-8') as file: for line in file: line = line.strip() if '—' in line: while True: result = input(f"Have you used:\n\t {line}\n[y/n]? ").lower() if result == 'y': used.append(line) break elif result == 'n': unused.append(line) break else: print("Please respond with 'y' or 'n'.") print('='*12 + '\nUsed modules\n' + '='*12) for module in used: print(module) print('\n' + '='*14 + '\nUnused modules\n' + '='*14) for module in unused: print(module) print(f'\n# of used modules: {len(used)}\n# of unused modules: {len(unused)}') if __name__ == '__main__': run() ```
{ "source": "Jessime/revenge_of_arius", "score": 3 }
#### File: Jessime/revenge_of_arius/audio.py ```python import pygame #, winsound def skip(): while pygame.mixer.music.get_busy(): for event in pygame.event.get(): if event.type == pygame.MOUSEBUTTONUP: pygame.mixer.music.stop() else: pass def tutorial(): #pygame.event.pump tut_pics = [] for i in range(19): tut_pics.append(pygame.image.load("tut"+str(i+1)+".png")) for i in range (2, 6): pygame.mixer.music.load("audio"+str(i)+".wav") pygame.mixer.music.play(0, 0) skip() screen = pygame.display.set_mode([1300, 675]) for i in range(19): screen.blit(tut_pics[i], [0,0]) pygame.display.flip() pygame.mixer.music.load("audio"+str(i+6)+".wav") pygame.mixer.music.play(0, 0) skip() #winsound.PlaySound("audio"+str(i)+".wav", winsound.SND_FILENAME) #### #### screen.blit(tut_pics[0], [0,0]) #### pygame.display.flip() #### winsound.PlaySound("audio6.wav", winsound.SND_FILENAME) #### screen.blit(tut_pics[1], [0,0]) #### pygame.display.flip() #### winsound.PlaySound("audio7.wav", winsound.SND_FILENAME) #### screen.blit(tut_pics[2], [0,0]) #### pygame.display.flip() #### winsound.PlaySound("audio8.wav", winsound.SND_FILENAME) #### screen.blit(tut_pics[3], [0,0]) #### pygame.display.flip() #### winsound.PlaySound("audio9.wav", winsound.SND_FILENAME) #### screen.blit(tut_pics[4], [0,0]) #### pygame.display.flip() #### winsound.PlaySound("audio10.wav", winsound.SND_FILENAME) #### screen.blit(tut_pics[5], [0,0]) #### pygame.display.flip() #### winsound.PlaySound("audio11.wav", winsound.SND_FILENAME) # screen.blit(tut_pics[6], [0,0]) # pygame.display.flip() ## pygame.event.pump ## winsound.PlaySound("audio12.wav", winsound.SND_FILENAME) ## pygame.event.pump ## screen.blit(tut_pics[7], [0,0]) ## pygame.display.flip() ## winsound.PlaySound("audio13.wav", winsound.SND_FILENAME) ## pygame.event.pump ## screen.blit(tut_pics[8], [0,0]) ## pygame.display.flip() ## winsound.PlaySound("audio14.wav", winsound.SND_FILENAME) ## pygame.event.pump ## screen.blit(tut_pics[9], [0,0]) ## pygame.display.flip() ## winsound.PlaySound("audio15.wav", winsound.SND_FILENAME) ## pygame.event.pump # pygame.mixer.music.load("audio12.wav") # pygame.mixer.music.play(0, 0) # while pygame.mixer.music.get_busy(): # for event in pygame.event.get(): # pass screen = pygame.display.set_mode([540, 720]) #pygame.quit() ``` #### File: Jessime/revenge_of_arius/cards.py ```python import pygame class Unit(pygame.sprite.Sprite): def __init__(self, option_number, image, card_info_list): self.health = card_info_list[option_number][0] self.damage = card_info_list[option_number][1] self.speed = card_info_list[option_number][2] self.ice_resistance = card_info_list[option_number][3] self.fire_resistance = card_info_list[option_number][4] self.lightning_resistance = card_info_list[option_number][5] self.cost = card_info_list[option_number][6] self.x = card_info_list[option_number][7] self.y = card_info_list[option_number][8] self.pix_x = (card_info_list[option_number][9]) self.pix_y = card_info_list[option_number][10] self.p_designation = card_info_list[option_number][11] self.image = image self.name = card_info_list[option_number][12] self.spell_list = [] self.c_i_l = card_info_list self.casting = False def move_card1(self, card_list, grid): for i in range(self.speed): blocking = 0 for card in card_list: if (card.x == self.x + 1 and card.y == self.y and isinstance(card, Spell) != True and self.p_designation != card.p_designation or self.x == 14): blocking += 1 if blocking == 0: self.pix_x += 62 self.x += 1 self.x, self.y = grid[self.y][self.x].add_card(self) grid[self.y][self.x-1].remove_card(self) def move_card2(self, card_list, grid): for i in range(self.speed): blocking = 0 for card in card_list: if (card.x == self.x - 1 and card.y == self.y and isinstance(card, Spell) != True and self.p_designation != card.p_designation or self.x == 1): blocking += 1 if blocking == 0: self.pix_x -= 62 self.x -= 1 self.x, self.y = grid[self.y][self.x].add_card(self) grid[self.y][self.x+1].remove_card(self) def draw_card(self): self.pix_x += (self.x * 62) self.pix_y += (self.y * 54) def draw_popup_card(self, screen, corner, card_width): self.pix_x = corner[0]+card_width self.pix_y = corner[1] screen.blit(self.image, [self.pix_x, self.pix_y]) def pop_spells(self, card_pics): height = 0 counter = 0 self.spell_list.append(Spell(3, card_pics[3], self.c_i_l)) self.spell_list.append(Spell(4, card_pics[4], self.c_i_l)) self.spell_list.append(Spell(5, card_pics[5], self.c_i_l)) for card in self.spell_list: if self.y <= 3: height += 54 elif self.y > 3: height -= 54 card.pix_x = self.pix_x card.pix_y = self.pix_y + height card.p_designation = self.p_designation if card.p_designation == 1: card.image = card_pics[counter + 3] if card.p_designation == 2: card.image = card_pics[counter + 15] counter += 1 #Displays the red cards for placing spells in the proper location def add_spell(self, grid, screen): info_card5 = pygame.image.load("info_card5.png") for i in range(8): for j in range(16): if self.p_designation == 1 and self.name == "santa": if ((grid[i][j].x-1 <= self.x <= grid[i][j].x+1 and grid[i][j].y-1 == self.y) or (grid[i][j].x-1 <= self.x <= grid[i][j].x+1 and grid[i][j].y+1 == self.y) or (grid[i][j].x-1 == self.x and grid[i][j].y == self.y)): screen.blit(info_card5, [grid[i][j].pix_x, grid[i][j].pix_y]) elif self.p_designation == 2 and self.name == "santa": if ((grid[i][j].x-1 <= self.x <= grid[i][j].x+1 and grid[i][j].y-1 == self.y) or (grid[i][j].x-1 <= self.x <= grid[i][j].x+1 and grid[i][j].y+1 == self.y) or (grid[i][j].x+1 == self.x and grid[i][j].y == self.y)): screen.blit(info_card5, [grid[i][j].pix_x, grid[i][j].pix_y]) elif self.p_designation == 1 and self.name == "reindeer": if ((grid[i][j].x-2 == self.x and grid[i][j].y-2 == self.y) or (grid[i][j].x-2 == self.x and grid[i][j].y+2 == self.y) or (grid[i][j].x-1 == self.x and grid[i][j].y == self.y)): screen.blit(info_card5, [grid[i][j].pix_x, grid[i][j].pix_y]) elif self.p_designation == 2 and self.name == "reindeer": if ((grid[i][j].x+2 == self.x and grid[i][j].y-2 == self.y) or (grid[i][j].x+2 == self.x and grid[i][j].y+2 == self.y) or (grid[i][j].x+1 == self.x and grid[i][j].y == self.y)): screen.blit(info_card5, [grid[i][j].pix_x, grid[i][j].pix_y]) elif self.p_designation == 1 and self.name == "elf": if ((grid[i][j].x == self.x and grid[i][j].y-1 >= self.y >= grid[i][j].y-2) or (grid[i][j].x == self.x and grid[i][j].y+1 <= self.y <= grid[i][j].y+2) or (grid[i][j].x-1 == self.x and grid[i][j].y == self.y)): screen.blit(info_card5, [grid[i][j].pix_x, grid[i][j].pix_y]) elif self.p_designation == 2 and self.name == "elf": if ((grid[i][j].x == self.x and grid[i][j].y-1 >= self.y >= grid[i][j].y-2) or (grid[i][j].x == self.x and grid[i][j].y+1 <= self.y <= grid[i][j].y+2) or (grid[i][j].x+1 == self.x and grid[i][j].y == self.y)): screen.blit(info_card5, [grid[i][j].pix_x, grid[i][j].pix_y]) class Spell(pygame.sprite.Sprite): def __init__(self, option_number, image, card_info_list): self.elf_caster = card_info_list[option_number][0] self.santa_caster = card_info_list[option_number][1] self.reindeer_caster = card_info_list[option_number][2] self.duration = card_info_list[option_number][3] self.cost = card_info_list[option_number][4] self.x = card_info_list[option_number][5] self.y = card_info_list[option_number][6] self.pix_x = card_info_list[option_number][7] self.pix_y = card_info_list[option_number][8] self.p_designation = card_info_list[option_number][9] self.image = image self.name = card_info_list[option_number][10] self.damage = int def draw_card(self): self.pix_x += (self.x * 62) self.pix_y += (self.y * 54) def check_duration(self): if self.duration >= 1: self.duration -= 1 def casting_damage(self, action): if action == 2.1 or action == 6.1: self.damage = self.santa_caster if action == 2.2 or action == 6.2: self.damage = self.reindeer_caster if action == 2.3 or action == 6.3: self.damage = self.elf_caster class Defense(pygame.sprite.Sprite): def __init__(self, option_number, image, card_info_list): self.health = card_info_list[option_number][0] self.damage = card_info_list[option_number][1] self.cost = card_info_list[option_number][2] self.x = card_info_list[option_number][3] self.y = card_info_list[option_number][4] self.pix_x = card_info_list[option_number][5] self.pix_y = card_info_list[option_number][6] self.p_designation = card_info_list[option_number][7] self.image = image self.name = card_info_list[option_number][8] def draw_card(self): self.pix_x += (self.x * 62) self.pix_y += (self.y * 54) class Production(pygame.sprite.Sprite): def __init__(self, option_number, image, card_info_list): self.production_type = card_info_list[option_number][0] self.health = card_info_list[option_number][1] self.pro_rate = card_info_list[option_number][2] self.cost = card_info_list[option_number][3] self.x = card_info_list[option_number][4] self.y = card_info_list[option_number][5] self.pix_x = card_info_list[option_number][6] self.pix_y = card_info_list[option_number][7] self.p_designation = card_info_list[option_number][8] self.image = image self.name = card_info_list[option_number][9] self.damage = 0 def draw_card(self): self.pix_x += (self.x * 62) self.pix_y += (self.y * 54) ``` #### File: Jessime/revenge_of_arius/events.py ```python import pygame, textbox, play_cards, cards, gather, buttons def downclick(pick_card, player_turn, card_num, card_list, p1, p2, card_pics, grid, screen, rand_x, rand_y, bag_visible, gather_mana, popup): # Set the width, height, margin of each grid location width = 60 height = 52 margin = 2 spell_visible = False # Initialize grid coordinates x = int y = int # User clicks the mouse. Get the position pos = pygame.mouse.get_pos() if (153 < pos[0] < 1145) and (120 < pos[1] < 552): # Change the x/y screen coordinates to grid coordinates if popup window isn't open if popup == []: x = (pos[0]-153) // (width + margin) y = (pos[1]-120) // (height + margin) # Check if mana bag has been clicked if bag_visible == True and rand_x == x and rand_y == y: bag_visible = False gather_mana = True buttons.btn_dic["gather_btn"] = buttons.gather_btn # Check if card has been selected elif pick_card == True: pick_card = False action = play_cards.placement_check(player_turn, card_num, p1, p2, x, y, popup, card_list) play_cards.place_card(action, card_num, card_pics, card_list, grid, x, y, p1, p2, player_turn) # Check if pop_up window should be created or closed elif (len(grid[y][x].occupants_list) != 0 and grid[y][x].fogged == False): popup = [x, y] elif popup != []: #If popup is open # Check if spells should be displayed for casting in pop_up window for pop_card in grid[popup[1]][popup[0]].occupants_list: if (pop_card.pix_x <= pos[0] <= pop_card.pix_x + 60 and pop_card.pix_y <= pos[1] <= pop_card.pix_y + 52 and pop_card.p_designation == player_turn and isinstance(pop_card, cards.Unit)): #If unit is clicked if pop_card.spell_list == []: #If spells aren't showing pop_card.pop_spells(card_pics) #Show spells spell_visible = True elif isinstance(pop_card, cards.Unit): for spell_card in pop_card.spell_list: if spell_card.pix_x <= pos[0] <= spell_card.pix_x + 60 and spell_card.pix_y <= pos[1] <= spell_card.pix_y + 52: pop_card.casting = True #Signals a Unit attempting to casting a spell pick_card = True if popup[1] <= 3: # For the top half card_num = ((pos[1]-(pop_card.pix_y + 52))// (height+margin))+ 3 # Weird math to find card number based on pixel location else: # For the bottom half card_num = ((pop_card.pix_y - (pos[1]-2))// (height+margin))+ 3 # Close the pop up window if spell_visible == False: grid[popup[1]][popup[0]].close_pop() popup = [] # Check if card is clicked elif (312 <= pos[0] < 498) and (33 < pos[1] < 85): card_num = (pos[0]-312)// (width+margin) pick_card = True elif (498 <= pos[0] < 868) and (33 < pos[1] < 85): card_num = (186+(pos[0]-312))// (width+margin) pick_card = True # Check if end turn is clicked else: for btn in buttons.btn_dic.values(): btn.check_dclick(pos) return pick_card, card_num, x, y, bag_visible, gather_mana, popup def upclick(countdown, text_btn, display_timer, gather_mana, mana_increase, correct): pos = pygame.mouse.get_pos() """get_mana(button, textbox)""" # Check if button is released for btn in buttons.btn_dic.values(): btn.check_uclick(pos) # Process actions for button clicks if buttons.btn_dic["end_turn"].clicked == True: buttons.btn_dic["end_turn"].clicked = False countdown, display_timer = 0,0 elif buttons.btn_dic.get("gather_btn") != None: if buttons.btn_dic["gather_btn"].clicked == True: buttons.btn_dic["gather_btn"].clicked = False if text_btn.string == str(mana_increase) and gather_mana == True: correct = True else: text_btn.str_list = [""] text_btn.selected = False # Check if textbox button has been clicked if gather_mana == True and text_btn.rect.collidepoint(pos): if text_btn.selected == False: text_btn.selected = True else: text_btn.selected = False return countdown, display_timer, correct ``` #### File: Jessime/revenge_of_arius/gather.py ```python import pygame, random, textbox, buttons def get_random(): rand_column = random.randint(1, 14) rand_row = random.randint(0, 7) return rand_column, rand_row # Draw the mana bag during allowed time as long as the bag hasn't been clicked def gather_mana(rand_x, rand_y, bag_visible, grid, screen): if bag_visible == True: bag = pygame.image.load("present_bag.png") screen.blit(bag, [grid[rand_y][rand_x].pix_x, grid[rand_y][rand_x].pix_y]) # Draw textbox and mana button during allowed time if the mana bag has been clicked def gathering(gather_mana, correct, mana_increase, screen, player_turn, text_btn): font = pygame.font.Font(None, 30) info_card7 = pygame.image.load("info_card7.png") info_card8 = pygame.image.load("info_card8.png") if gather_mana == True and correct == False: num_text1 = font.render("Mana ",True,[0,0,0]) num_text2 = font.render(str(mana_increase),True,[0,0,0]) if player_turn == 1: screen.blit(info_card7, [906, 0]) else: screen.blit(info_card8, [906, 0]) screen.blit(num_text1, [940, 72]) screen.blit(num_text2, [945, 92]) text_btn.update(screen) # Called if mana has been correctly entered. Gives player mana. def gathered(correct, gather_mana, text_btn, p1, p2, player_turn, mana_increase): if correct == True: correct = False gather_mana = False text_btn.selected = False text_btn.str_list = [""] text_btn.string= ''.join(text_btn.str_list) del buttons.btn_dic["gather_btn"] # If player1 gained mana if player_turn == 1: p1.mana += mana_increase # If player2 gained mana elif player_turn == 2: p2.mana += mana_increase return correct, gather_mana def reset_gather(text_btn): bag_visible = False gather_mana = False text_btn.selected = False text_btn.str_list = [""] text_btn.string = ''.join(text_btn.str_list) # Delete the gather button from list if it hasn't been already if buttons.btn_dic.get("gather_btn") != None: del buttons.btn_dic["gather_btn"] return bag_visible, gather_mana ```
{ "source": "Jessime/variant-annotation", "score": 2 }
#### File: curation/tables/vcf_to_bigquery_utils.py ```python import logging import time from apiclient import discovery from oauth2client.client import GoogleCredentials from retrying import retry # Use tensorflow.gfile library, if available, to expand wildcards (optional). try: from tensorflow import gfile except ImportError: gfile = None import schema_update_utils class VcfUploader(object): """Class for managing a Google Genomics API connection and data transfers. Handles finding and creating variant sets and datasets and uploading and exporting variants stored in VCF. The main entry point is upload_variants(...), but other intermediate pipeline steps may also be used. """ def __init__(self, project, credentials=None): """Create VcfUploader class. Args: project: Cloud project to use for Genomics objects. credentials: Credentials object to use, get_application_default() if None. """ if credentials is None: credentials = GoogleCredentials.get_application_default() self.project = project self.service = discovery.build("genomics", "v1", credentials=credentials) @staticmethod def find_id_or_name(name, candidates): """Find a value linked as "id" or "name" in a collection of dicts. Args: name: string to search for in "id" and "name" fields. candidates: collection of dicts that should have "id" and "name" keys. Returns: choice["id"] for the unique matching choice (matched by "name" or "id"). Returns None if no matching choice is found. Raises: LookupError: If multiple items match the targeted name. """ target_id = None for choice in candidates: if choice.get("id") == name or choice.get("name") == name: if target_id is not None: raise LookupError("Found multiple hits for requested name") target_id = choice["id"] return target_id def find_or_create_dataset(self, dataset_name, always_create=False): """Finds or creates a Google Genomics dataset by name or id. If an existing dataset in the project has a name or ID of dataset_name, it will be reused and its id will be returned, unless always_create is True. A new dataset will be created if an existing one is not found. Args: dataset_name: Name or id of existing dataset, or name for a new dataset. always_create: Always create a new dataset with the requested name. Returns: The id of the existing or newly-created Genomics dataset. """ request = self.service.datasets().list(projectId=self.project) response = request.execute() dataset_id = self.find_id_or_name(dataset_name, response["datasets"]) if dataset_id is None or always_create: request = self.service.datasets().create( body={"name": dataset_name, "projectId": self.project}) response = request.execute() dataset_id = response["id"] return dataset_id def find_or_create_variantset(self, variantset_name, dataset_id, description="", always_create=False): """Finds or creates a Google Genomics variant set by name or id. If an existing variant set in the project has a name or ID of variantset_name, it will be reused and its id will be returned, unless always_create is True. A new variant set will be created if an existing one is not found. Args: variantset_name: Name or id of existing variant set, or name for a new variant set. dataset_id: Id of the dataset to find or create the variant set. description: The description for the variant set. always_create: Always create a new variant set with the requested name. Returns: The id of the existing or newly-created Genomics variant set. """ request = self.service.variantsets().search( body={"datasetIds": dataset_id}) response = request.execute() variantset_id = self.find_id_or_name(variantset_name, response["variantSets"]) if variantset_id is None or always_create: request = self.service.variantsets().create( body={"name": variantset_name, "datasetId": dataset_id, "description": description, }) response = request.execute() variantset_id = response["id"] return variantset_id def import_variants(self, source_uris, variantset_id): """Imports variants stored in a VCF file on Cloud Storage to a variant set. Args: source_uris: List of paths to VCF file[s] in Cloud Storage, wildcards accepted (*, not **). variantset_id: Id of the variant set to load the variants. Returns: The name of the loading operation. """ request = self.service.variants().import_( body={"variantSetId": variantset_id, "sourceUris": source_uris}) response = request.execute() return response["name"] # Handle transient HTTP errors by retrying several times before giving up. # Works around race conditions that arise when the operation ID is not # found, which yields a 404 error. @retry(stop_max_attempt_number=10, wait_exponential_multiplier=2000) def wait_for_operation(self, operation_id, wait_seconds=30): """Blocks until the Genomics operation completes. Args: operation_id: The name (id string) of the loading operation. wait_seconds: Number of seconds to wait between polling attempts. Returns: True if the operation succeeded, False otherwise. """ request = self.service.operations().get(name=operation_id) while not request.execute()["done"]: time.sleep(wait_seconds) # If the operation succeeded, there will be a "response" field and not an # "error" field, see: # https://cloud.google.com/genomics/reference/rest/Shared.Types/ListOperationsResponse#Operation response = request.execute() return "response" in response and "error" not in response def export_variants(self, variantset_id, destination_table): """Exports variants from Google Genomics to BigQuery. Per the Genomics API, this will overwrite any existing BigQuery table with this name. Args: variantset_id: Id of the variant set to export. destination_table: BigQuery output, as PROJECT_ID.DATASET_NAME.TABLE_NAME. Returns: The name of the export operation. """ tokenized_table = schema_update_utils.tokenize_table_name(destination_table) bigquery_project_id, dataset_name, table_name = tokenized_table request = self.service.variantsets().export( variantSetId=variantset_id, body={"projectId": bigquery_project_id, "bigqueryDataset": dataset_name, "bigqueryTable": table_name}) response = request.execute() return response["name"] def upload_variants(self, dataset, variantset, source_vcfs, destination_table, expand_wildcards=False, new_dataset=False, new_variantset=False, description=None): """Imports variants stored in a VCF in Cloud Storage to BigQuery. Handle all intermediate steps, including finding dataset and variant sets. Args: dataset: Name or id of existing dataset, or name for a new dataset. variantset: Name or id of existing variant set, or name for a new one. source_vcfs: List of VCF file[s] in Cloud Storage, wildcards accepted (*, not **). destination_table: BigQuery output, as PROJECT_ID.DATASET_NAME.TABLE_NAME. expand_wildcards: Expand wildcards in VCF paths and use parallel imports. new_dataset: Always create a new dataset with the requested name. new_variantset: Always create a new variant set with the requested name. description: Optional description for the BigQuery table. Raises: RuntimeError: If an upload or export request does not succeed. """ dataset_id = self.find_or_create_dataset(dataset, always_create=new_dataset) variantset_id = self.find_or_create_variantset( variantset, dataset_id, description="\t".join(source_vcfs), always_create=new_variantset) # Spawn off parallel imports for each VCF. if expand_wildcards and gfile is not None: # Expand any wildcarded paths and concatenate all files together. source_vcfs = sum([gfile.Glob(source_vcf) for source_vcf in source_vcfs], []) operation_ids = [] for source_vcf in source_vcfs: operation_ids.append(self.import_variants(source_vcf, variantset_id)) logging.info("Importing %s (%s)", source_vcf, operation_ids[-1]) # Wait for all imports to complete successfully before exporting variantset. for operation_id in operation_ids: if not self.wait_for_operation(operation_id): raise RuntimeError("Failed to import variants to Genomics (%s)" % operation_id) operation_id = self.export_variants(variantset_id, destination_table) logging.info("Exporting %s (%s)", variantset, operation_id) if not self.wait_for_operation(operation_id): raise RuntimeError("Failed to export variants to BigQuery (%s)" % operation_id) # Assume the VCF header is the same for all files and so just use the first. logging.info("Updating schema for %s", variantset) schema_update_utils.update_table_schema(destination_table, source_vcfs[0], description=description) ```
{ "source": "jessingrass/behave", "score": 2 }
#### File: behave/behave4cmd0/note_steps.py ```python from behave import step # ----------------------------------------------------------------------------- # STEPS FOR: remarks/comments # ----------------------------------------------------------------------------- @step(u'note that "{remark}"') def step_note_that(context, remark): """ Used as generic step that provides an additional remark/hint and enhance the readability/understanding without performing any check. .. code-block:: gherkin Given that today is "April 1st" But note that "April 1st is Fools day (and beware)" """ log = getattr(context, "log", None) if log: log.info(u"NOTE: %s;" % remark) ``` #### File: behave/behave/step_registry.py ```python class AmbiguousStep(ValueError): pass class StepRegistry(object): def __init__(self): self.steps = { 'given': [], 'when': [], 'then': [], 'step': [], } @staticmethod def same_step_definition(step, other_string, other_location): return (step.string == other_string and step.location == other_location and other_location.filename != "<string>") def add_step_definition(self, keyword, string, func): # TODO try to fix module dependencies to avoid this from behave import matchers, model step_location = model.Match.make_location(func) step_type = keyword.lower() step_definitions = self.steps[step_type] for existing in step_definitions: if self.same_step_definition(existing, string, step_location): # -- EXACT-STEP: Same step function is already registered. # This may occur when a step module imports another one. return elif existing.match(string): message = '%s has already been defined in\n existing step %s' new_step = u"@%s('%s')" % (step_type, string) existing.step_type = step_type existing_step = existing.describe() existing_step += " at %s" % existing.location raise AmbiguousStep(message % (new_step, existing_step)) step_definitions.append(matchers.get_matcher(func, string)) def find_step_definition(self, step): candidates = self.steps[step.step_type] more_steps = self.steps['step'] if step.step_type != 'step' and more_steps: # -- ENSURE: self.step_type lists are not modified/extended. candidates = list(candidates) candidates += more_steps for step_definition in candidates: if step_definition.match(step.name): return step_definition return None def find_match(self, step): candidates = self.steps[step.step_type] more_steps = self.steps['step'] if step.step_type != 'step' and more_steps: # -- ENSURE: self.step_type lists are not modified/extended. candidates = list(candidates) candidates += more_steps for step_definition in candidates: result = step_definition.match(step.name) if result: return result return None def make_decorator(self, step_type): # pylint: disable=W0621 # W0621: 44,29:StepRegistry.make_decorator: Redefining 'step_type' .. def decorator(string): def wrapper(func): self.add_step_definition(step_type, string, func) return func return wrapper return decorator registry = StepRegistry() # -- Create the decorators def setup_step_decorators(context=None, registry=registry): if context is None: context = globals() for step_type in ('given', 'when', 'then', 'step'): step_decorator = registry.make_decorator(step_type) context[step_type.title()] = context[step_type] = step_decorator # ----------------------------------------------------------------------------- # MODULE INIT: # ----------------------------------------------------------------------------- # limit import * to just the decorators names = 'given when then step' names = names + ' ' + names.title() __all__ = names.split() setup_step_decorators() ```
{ "source": "jessjass/cs3240-labdemo", "score": 2 }
#### File: jessjass/cs3240-labdemo/helper.py ```python __author__ = "<NAME> (jj5dp)" def greeting(msg): print(msg) ```
{ "source": "jesska-f/delighted-python", "score": 2 }
#### File: delighted-python/test/test_resource.py ```python import delighted from delighted.util import aware_datetime_to_epoch_seconds, \ naive_date_to_datetime from . import get_headers, post_headers, DelightedTestCase from delighted.errors import TooManyRequestsError import datetime import pytz import tzlocal from base64 import b64encode from mock import patch from six import b import sys class TestResource(DelightedTestCase): def setUp(self): super(TestResource, self).setUp() def check_retrieving_metrics(self, client=None): data = {'nps': 10} url = 'https://api.delightedapp.com/v1/metrics' self.mock_response(200, {}, data) expected_headers = get_headers.copy() retrieve_kwargs = {} if client: retrieve_kwargs['client'] = client expected_headers['Authorization'] = 'Basic %s' % b64encode(b(client.api_key)).decode('ascii') metrics = delighted.Metrics.retrieve(**retrieve_kwargs) self.check_call('get', url, expected_headers, {}, None) self.assertTrue(delighted.Metrics is type(metrics)) self.assertEqual(dict(metrics), data) self.assertEqual(metrics.nps, 10) self.assertRaises(AttributeError, lambda: metrics.id) def test_retrieving_metrics(self): self.check_retrieving_metrics() def test_retrieving_metrics_other_client(self): client = delighted.Client(api_key='example') self.check_retrieving_metrics(client=client) def test_retrieving_metrics_range_unixtimestamp(self): data = {'nps': 10} self.mock_response(200, {}, data) since = 1425168000 until = 1430348400 url = 'https://api.delightedapp.com/v1/metrics' metrics = delighted.Metrics.retrieve(since=since, until=until) self.check_call('get', url, get_headers, None, {'since': 1425168000, 'until': 1430348400}) self.assertTrue(delighted.Metrics is type(metrics)) self.assertEqual(dict(metrics), data) self.assertEqual(metrics.nps, 10) self.assertRaises(AttributeError, lambda: metrics.id) def test_retrieving_metrics_range_date_object(self): data = {'nps': 10} self.mock_response(200, {}, data) since = datetime.date(2013, 10, 1) until = datetime.date(2013, 11, 1) timezone = tzlocal.get_localzone() since_seconds = self._naive_date_to_epoch_seconds(since, timezone) until_seconds = self._naive_date_to_epoch_seconds(until, timezone) url = 'https://api.delightedapp.com/v1/metrics' metrics = delighted.Metrics.retrieve(since=since, until=until) self.check_call('get', url, get_headers, None, {'since': since_seconds, 'until': until_seconds}) self.assertTrue(delighted.Metrics is type(metrics)) self.assertEqual(dict(metrics), data) self.assertEqual(metrics.nps, 10) self.assertRaises(AttributeError, lambda: metrics.id) def test_retrieving_metrics_range_datetime_object(self): data = {'nps': 10} self.mock_response(200, {}, data) timezone = pytz.timezone('America/Chicago') since = timezone.localize(datetime.datetime(2013, 10, 1)) until = timezone.localize(datetime.datetime(2013, 11, 1)) url = 'https://api.delightedapp.com/v1/metrics' metrics = delighted.Metrics.retrieve(since=since, until=until) self.check_call('get', url, get_headers, None, {'since': 1380603600, 'until': 1383282000}) self.assertTrue(delighted.Metrics is type(metrics)) self.assertEqual(dict(metrics), data) self.assertEqual(metrics.nps, 10) self.assertRaises(AttributeError, lambda: metrics.id) def check_creating_or_updating_a_person(self, client=None): email = '<EMAIL>' data = {'id': '123', 'email': email} url = 'https://api.delightedapp.com/v1/people' self.mock_response(200, {}, data) expected_headers = post_headers.copy() create_kwargs = {'email': email} if client: create_kwargs['client'] = client expected_headers['Authorization'] = 'Basic %s' % b64encode(b(client.api_key)).decode('ascii') person = delighted.Person.create(**create_kwargs) self.assertTrue(delighted.Person is type(person)) self.assertEqual(person, {'id': '123', 'email': email}) self.assertEqual(person.email, email) self.assertEqual('123', person.id) self.check_call('post', url, expected_headers, {'email': email}, None) def test_creating_or_updating_a_person(self): self.check_creating_or_updating_a_person() def test_creating_or_updating_a_person_other_client(self): client = delighted.Client(api_key='example') self.check_creating_or_updating_a_person(client=client) def test_unsubscribing_a_person(self): email = '<EMAIL>' data = {'person_email': email} url = 'https://api.delightedapp.com/v1/unsubscribes' self.mock_response(200, {}, {'ok': True}) delighted.Unsubscribe.create(person_email=email) self.check_call('post', url, post_headers, data, None) def test_deleting_a_person_by_multiple_identifiers(self): self.assertRaises(ValueError, lambda: delighted.Person.delete(id=42, email="<EMAIL>")) def test_deleting_a_person_by_id(self): url = 'https://api.delightedapp.com/v1/people/42' self.mock_response(202, {}, {'ok': True}) delighted.Person.delete(id=42) self.check_call('delete', url, post_headers, {}, None) def test_deleting_a_person_by_email(self): url = 'https://api.delightedapp.com/v1/people/email%3Afoo%40example.com' self.mock_response(202, {}, {'ok': True}) delighted.Person.delete(email='<EMAIL>') self.check_call('delete', url, post_headers, {}, None) def test_deleting_a_person_by_phone_number(self): url = 'https://api.delightedapp.com/v1/people/phone_number%3A%2B14155551212' self.mock_response(202, {}, {'ok': True}) delighted.Person.delete(phone_number='+14155551212') self.check_call('delete', url, post_headers, {}, None) def test_deleting_pending_survey_requests_for_a_person(self): email = '<EMAIL>' url = 'https://api.delightedapp.com/v1/people/foo%40bar.com' + \ '/survey_requests/pending' self.mock_response(200, {}, {'ok': True}) result = delighted.SurveyRequest.delete_pending(person_email=email) self.assertTrue(dict is type(result)) self.assertEqual({'ok': True}, result) self.check_call('delete', url, post_headers, {}, None) def test_creating_a_survey_response(self): url = 'https://api.delightedapp.com/v1/survey_responses' data = {'id': '456', 'person': '123', 'score': 10} self.mock_response(200, {}, data) survey_response = delighted.SurveyResponse.create(person='123', score=10) self.assertTrue(delighted.SurveyResponse is type(survey_response)) self.assertEqual({'id': '456', 'person': '123', 'score': 10}, survey_response) self.assertEqual('123', survey_response.person) self.assertEqual(10, survey_response.score) self.assertEqual('456', survey_response.id) resp = {'person': '123', 'score': 10} self.check_call('post', url, post_headers, resp, None) def test_retrieving_a_survey_response_expand_person(self): url = 'https://api.delightedapp.com/v1/survey_responses/456' resp = {'id': '456', 'person': {'id': '123', 'email': '<EMAIL>', 'type': 'aaa'}, 'score': 10} self.mock_response(200, {}, resp) survey_response = delighted.SurveyResponse.retrieve('456', expand=['person']) self.check_call('get', url, get_headers, None, {'expand[]': 'person'}) self.assertTrue(delighted.SurveyResponse is type(survey_response)) self.assertTrue(delighted.Person is type(survey_response.person)) self.assertEqual(resp, survey_response) self.assertEqual( {'id': '123', 'email': '<EMAIL>', 'type': 'aaa'}, survey_response.person ) self.assertEqual('123', survey_response.person.id) self.assertEqual('<EMAIL>', survey_response.person.email) self.assertEqual('aaa', survey_response.person.type) self.assertEqual(10, survey_response.score) self.assertEqual('456', survey_response.id) def test_updating_a_survey_response(self): url = 'https://api.delightedapp.com/v1/survey_responses/456' data = {'person': '123', 'score': 10} resp = {'id': '456', 'person': '123', 'score': 10} self.mock_response(200, {}, resp) old = {'id': '456', 'person': '321', 'score': 1} survey_response = delighted.SurveyResponse(old) survey_response.person = '123' survey_response.score = 10 self.assertTrue(delighted.SurveyResponse is type(survey_response.save())) self.check_call('put', url, post_headers, resp, None) self.assertEqual(resp, survey_response) self.assertEqual('123', survey_response.person) self.assertEqual(10, survey_response.score) self.assertEqual('456', survey_response.id) def test_listing_all_survey_responses(self): url = 'https://api.delightedapp.com/v1/survey_responses' resp1 = {'id': '123', 'comment': 'One'} resp2 = {'id': '456', 'comment': 'Two'} self.mock_response(200, {}, [resp1, resp2]) survey_responses = delighted.SurveyResponse.all(order='desc') self.check_call('get', url, get_headers, None, {'order': 'desc'}) self.assertTrue(list is type(survey_responses)) self.assertTrue(delighted.SurveyResponse is type(survey_responses[0])) self.assertEqual({'id': '123', 'comment': 'One'}, survey_responses[0]) self.assertEqual('One', survey_responses[0].comment) self.assertEqual('123', survey_responses[0].id) self.assertTrue(delighted.SurveyResponse is type(survey_responses[1])) self.assertEqual({'id': '456', 'comment': 'Two'}, survey_responses[1]) self.assertEqual('Two', survey_responses[1].comment) self.assertEqual('456', survey_responses[1].id) def test_listing_all_survey_responses_expand_person(self): url = 'https://api.delightedapp.com/v1/survey_responses' resp1 = {'id': '123', 'comment': 'One', 'person': {'id': '456', 'email': '<EMAIL>', 'type': 'aaa'}} resp2 = {'id': '789', 'comment': 'Two', 'person': {'id': '012', 'email': '<EMAIL>', 'type': 'bbb'}} self.mock_response(200, {}, [resp1, resp2]) survey_responses = delighted.SurveyResponse.all(expand=['person']) self.check_call('get', url, get_headers, None, {'expand[]': 'person'}) self.assertTrue(list is type(survey_responses)) self.assertTrue(delighted.SurveyResponse is type(survey_responses[0])) self.assertEqual(resp1, survey_responses[0]) self.assertEqual('One', survey_responses[0].comment) self.assertEqual('123', survey_responses[0].id) self.assertEqual(delighted.Person, type(survey_responses[0].person)) self.assertEqual( {'id': '456', 'email': '<EMAIL>', 'type': 'aaa'}, survey_responses[0].person ) self.assertEqual('456', survey_responses[0].person.id) self.assertEqual('<EMAIL>', survey_responses[0].person.email) self.assertEqual('aaa', survey_responses[0].person.type) self.assertTrue(delighted.SurveyResponse is type(survey_responses[1])) self.assertEqual(resp2, survey_responses[1]) self.assertEqual('Two', survey_responses[1].comment) self.assertEqual('789', survey_responses[1].id) self.assertEqual(delighted.Person, type(survey_responses[1].person)) self.assertEqual( {'id': '012', 'email': '<EMAIL>', 'type': 'bbb'}, survey_responses[1].person ) self.assertEqual('012', survey_responses[1].person.id) self.assertEqual('<EMAIL>', survey_responses[1].person.email) self.assertEqual('bbb', survey_responses[1].person.type) def test_listing_all_people(self): url = 'https://api.delightedapp.com/v1/people' person1 = {'id': '123', 'email': '<EMAIL>', 'name': '<NAME>'} person2 = {'id': '456', 'email': '<EMAIL>', 'name': '<NAME>'} self.mock_response(200, {}, [person1, person2]) people = delighted.Person.all() self.check_call('get', url, get_headers, {}, None) self.assertTrue(list is type(people)) self.assertTrue(delighted.Person is type(people[0])) self.assertEqual({'id': '123', 'email': '<EMAIL>', 'name': '<NAME>'}, people[0]) self.assertEqual('<EMAIL>', people[0].email) self.assertEqual('<NAME>', people[0].name) self.assertEqual('123', people[0].id) self.assertTrue(delighted.Person is type(people[1])) self.assertEqual({'id': '456', 'email': '<EMAIL>', 'name': '<NAME>'}, people[1]) self.assertEqual('<NAME>', people[1].name) self.assertEqual('<EMAIL>', people[1].email) self.assertEqual('456', people[1].id) def test_listing_all_people_pagination(self): url = 'https://api.delightedapp.com/v1/people' url_next = 'http://api.delightedapp.com/v1/people?nextlink123' person1 = {'id': '123', 'email': '<EMAIL>', 'name': '<NAME>'} person2 = {'id': '456', 'email': '<EMAIL>', 'name': '<NAME>'} person3 = {'id': '789', 'email': '<EMAIL>', 'name': '<NAME>'} mock_response = delighted.http_response.HTTPResponse(200, {}, [person1, person2], {'next': {'url': url_next}}) mock_response_next = delighted.http_response.HTTPResponse(200, {}, [person3], {}) self.mock_multiple_responses([mock_response, mock_response_next]) people = [] for person in delighted.Person.list().auto_paging_iter(): people.append(person) call_1 = {'meth': 'get', 'url': url, 'kwargs': {'headers': get_headers, 'data': {}, 'params': None}} call_2 = {'meth': 'get', 'url': url_next, 'kwargs': {'headers': get_headers, 'data': {}, 'params': None}} self.check_multiple_call([call_1, call_2]) self.assertEqual(len(people), 3) self.assertTrue(delighted.Person is type(people[0])) self.assertEqual(person1, people[0]) self.assertTrue(delighted.Person is type(people[1])) self.assertEqual(person2, people[1]) self.assertTrue(delighted.Person is type(people[2])) self.assertEqual(person3, people[2]) def test_listing_all_people_pagination_rate_limited(self): url = 'https://api.delightedapp.com/v1/people' url_next = 'http://api.delightedapp.com/v1/people?nextlink123' person1 = {'id': '123', 'email': '<EMAIL>', 'name': '<NAME>'} mock_response = delighted.http_response.HTTPResponse(200, {}, [person1], {'next': {'url': url_next}}) mock_response_rate_limited = delighted.http_response.HTTPResponse(429, {'Retry-After': '10'}, [], {}) self.mock_multiple_responses([mock_response, mock_response_rate_limited]) people = [] with self.assertRaises(TooManyRequestsError) as context: for person in delighted.Person.list().auto_paging_iter(auto_handle_rate_limits=False): people.append(person) self.assertEqual(context.exception.response.headers['Retry-After'], '10') call_1 = {'meth': 'get', 'url': url, 'kwargs': {'headers': get_headers, 'data': {}, 'params': None}} call_2 = {'meth': 'get', 'url': url_next, 'kwargs': {'headers': get_headers, 'data': {}, 'params': None}} self.check_multiple_call([call_1, call_2]) self.assertEqual(len(people), 1) self.assertTrue(delighted.Person is type(people[0])) self.assertEqual(person1, people[0]) def test_listing_all_people_pagination_auto_handle_rate_limit(self): url = 'https://api.delightedapp.com/v1/people' url_next = 'http://api.delightedapp.com/v1/people?nextlink123' person1 = {'id': '123', 'email': '<EMAIL>', 'name': '<NAME>'} person_next = {'id': '456', 'email': '<EMAIL>', 'name': 'Next Person'} mock_response = delighted.http_response.HTTPResponse(200, {}, [person1], {'next': {'url': url_next}}) mock_response_rate_limited = delighted.http_response.HTTPResponse(429, {'Retry-After': '3'}, [], {}) mock_response_accepted = delighted.http_response.HTTPResponse(200, {}, [person_next], {}) self.mock_multiple_responses([mock_response, mock_response_rate_limited, mock_response_accepted]) people = [] with patch('time.sleep', return_value=None) as patched_time_sleep: for person in delighted.Person.list().auto_paging_iter(auto_handle_rate_limits=True): people.append(person) patched_time_sleep.assert_called_once_with(3) call_1 = {'meth': 'get', 'url': url, 'kwargs': {'headers': get_headers, 'data': {}, 'params': None}} call_rejected = {'meth': 'get', 'url': url_next, 'kwargs': {'headers': get_headers, 'data': {}, 'params': None}} call_accepted = {'meth': 'get', 'url': url_next, 'kwargs': {'headers': get_headers, 'data': {}, 'params': None}} self.check_multiple_call([call_1, call_rejected, call_accepted]) self.assertEqual(len(people), 2) self.assertTrue(delighted.Person is type(people[0])) self.assertEqual(person1, people[0]) self.assertTrue(delighted.Person is type(people[1])) self.assertEqual(person_next, people[1]) def test_listing_all_unsubscribes(self): url = 'https://api.delightedapp.com/v1/unsubscribes' resp1 = {'person_id': '123', 'email': '<EMAIL>', 'name': 'Foo', 'unsubscribed_at': 1440621400} self.mock_response(200, {}, [resp1]) unsubscribes = delighted.Unsubscribe.all() self.check_call('get', url, get_headers, {}, None) self.assertTrue(list is type(unsubscribes)) self.assertTrue(delighted.Unsubscribe is type(unsubscribes[0])) self.assertEqual(resp1, dict(unsubscribes[0])) def test_listing_all_bounces(self): url = 'https://api.delightedapp.com/v1/bounces' resp1 = {'person_id': '123', 'email': '<EMAIL>', 'name': 'Foo', 'bounced_at': 1440621400} self.mock_response(200, {}, [resp1]) bounces = delighted.Bounce.all() self.check_call('get', url, get_headers, {}, None) self.assertTrue(list is type(bounces)) self.assertTrue(delighted.Bounce is type(bounces[0])) self.assertEqual(resp1, dict(bounces[0])) def test_rate_limit_response(self, client=None): self.mock_response(429, {'Retry-After': '5'}, {}) # https://docs.python.org/2/library/unittest.html#unittest.TestCase.assertRaises # Ability to use assertRaises() as a context manager was added in 2.7 if sys.version_info < (2, 7): self.assertRaises(delighted.errors.TooManyRequestsError, lambda: delighted.Metrics.retrieve(client=client)) else: with self.assertRaises(delighted.errors.TooManyRequestsError) as context: delighted.Metrics.retrieve(client=client) self.assertEqual(5, context.exception.retry_after) @classmethod def _naive_date_to_epoch_seconds(cls, date_obj, timezone): datetime_obj = timezone.localize(naive_date_to_datetime(date_obj)) return aware_datetime_to_epoch_seconds(datetime_obj) ```
{ "source": "jesska-f/g2pg", "score": 3 }
#### File: g2pg/g2pg/g2pg.py ```python import gspread_dataframe as gd import gspread import pandas as pd from sqlalchemy import create_engine from oauth2client.service_account import ServiceAccountCredentials import json from pangres import upsert import os import sys from string import punctuation def create_keyfile_dict(): """ Creates a keyfile dictionary based on environment variables to be used in the oauth with google.\n Follow these directions to get the json credentials file <https://gspread.readthedocs.io/en/latest/oauth2.html#for-bots-using-service-account>\n Copy and paste the credentials in your .env file with the following format: SHEET_TYPE= 'service_account' SHEET_PROJECT_ID= 'api-project-XXX' SHEET_PRIVATE_KEY_ID= '<KEY>' SHEET_PRIVATE_KEY="-----BEGIN PRIVATE KEY-----\nNrDyLw … jINQh/9\n-----END PRIVATE KEY-----\n" SHEET_CLIENT_EMAIL= '<EMAIL>' SHEET_CLIENT_ID= '1234567890' SHEET_AUTH_URI= 'https://accounts.google.com/o/oauth2/auth' SHEET_TOKEN_URI= 'https://oauth2.googleapis.com/token' SHEET_AUTH_PROVIDER_X509_CERT_URL= 'https://www.googleapis.com/oauth2/v1/certs' SHEET_CLIENT_X509_CERT_URL= 'https://www.googleapis.com/robot/v1/metadata/bla...bla..bla.iam.gserviceaccount.com' """ variables_keys = { "type": os.environ.get("SHEET_TYPE"), "project_id": os.environ.get("SHEET_PROJECT_ID"), "private_key_id": os.environ.get("SHEET_PRIVATE_KEY_ID"), #this is so that python reads the newlines as newlines and not text "private_key": os.environ.get("SHEET_PRIVATE_KEY").replace('\\n',"\n"), "client_email": os.environ.get("SHEET_CLIENT_EMAIL"), "client_id": os.environ.get("SHEET_CLIENT_ID"), "auth_uri": os.environ.get("SHEET_AUTH_URI"), "token_uri": os.environ.get("SHEET_TOKEN_URI"), "auth_provider_x509_cert_url": os.environ.get("SHEET_AUTH_PROVIDER_X509_CERT_URL"), "client_x509_cert_url": os.environ.get("SHEET_CLIENT_X509_CERT_URL") } if variables_keys['type'] == None: print('Issue with environment variables, please check that they have been set') sys.exit(1) return variables_keys def get_df_from_gsheet(gsheet_name,worksheet_name='Sheet1',skiprows=0): """ Gets data from a google sheet worksheet and puts it in a DataFrame.\n Authorises with google oauth based on the data specified in your environment variables (see `create_keyfile_dict()`).\n Make sure the Gsheet has been shared with your `client_email` from your json credential file from google.\n Opens the gsheet specified in gsheet_name and uses `Sheet1` if no worksheet_name is specified and puts the data in a dataframe.\n Selects all the non null columns and rows, and renames the columns to be db friendly. Parameters ---------- gsheet_name : str Exact Name of Gsheet to extract data from. worksheet_name : str, optional Name of the worksheet to get the data from. (default is `Sheet1`) skiprows : int Rows to skip in the sheet before extracting the data Returns ------- A DataFrame containing the data in the google sheet. """ try: k = create_keyfile_dict() #authorise with google scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive'] credentials = ServiceAccountCredentials.from_json_keyfile_dict(create_keyfile_dict(), scope) gc = gspread.authorize(credentials) except Exception as e: print(e) print('Auth with google unsuccessful, please check your credentials') sys.exit(1) try: #Open the gsheet and put the data into a df sheet = gc.open(gsheet_name).worksheet(worksheet_name) sheet_df = gd.get_as_dataframe(sheet,evaluate_formulas=True,skiprows=skiprows) except Exception as e: print(e) print('''Data extract from google sheet was unsuccessful.\nPlease check the name of the sheet and the worksheet, and that the client email specified in your env file has access to the sheet''') sys.exit(1) #find rows and columns with all nulls, to remove them from the df try: nans_rows = sheet_df[sheet_df.isnull().all(axis=1)].index[0]-1 nans_columns = sheet_df.columns.drop(sheet_df.columns[sheet_df.isnull().all()]) sheet_df = sheet_df.loc[:nans_rows,nans_columns] except: pass #change column names to be db friendly sheet_df.columns = [("".join([i for i in c if i not in punctuation.replace('_','')])).lower().strip().replace(' ','_') for c in sheet_df.columns] return sheet_df def df_to_db(df, table_name,schema=None, index_name='index'): """ Writes a DataFrame to a the specified table in the PostgreSQL database.\n If the table exisits, it will update the rows and insert new rows, otherwise it will create the table.\n This uses environment variables to access the DB. Make sure your .env file contains the following (replace with the relevant data):\n DB_USER= 'username' DB_PW = '<PASSWORD>' DB_URL = 'db_address' DB_NAME = 'my_exciting_db_name' Parameters ---------- df : DataFrame The DataFrame to write to the db. Make sure your columns of of the dtype you want in the db. table_name : str The `table_name` to update or create the table with in the DB. schema : str, optional The schema where the table should be located. (default in None, which refers to the `public` schema) index_name : str, optional The index name (must be the index of your df). Default is `index`. """ #'postgresql://username:password@db_address/db' try: engine = create_engine('postgresql://'+os.environ.get('DB_USER') +':'+os.environ.get('DB_PW')+'@'+os.environ.get('DB_URL')+'/'+ os.environ.get('DB_NAME')) except Exception as e: print(e) print('Could not establish connection to db. Please check credentials in .env file') sys.exit(1) try: df.index.name = index_name upsert(engine=engine, df=df, table_name=table_name, if_row_exists='update', schema=schema, dtype=None) except Exception as e: print(e) print('Could not write data to the specified table, check that the db credentials in .env file are correct and have write permissions') sys.exit(1) ```
{ "source": "Jesskas/YAYDL", "score": 2 }
#### File: yaydlsite/search_and_convert/views.py ```python from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse, Http404 from django.template import loader # Youtube Search API stuff # Called on GET / def index(request): return render(request, 'search_and_convert/search.html') # Called on "Search" button click def search(request): # if (request.GET.get('searchBtn')): # print('user click!') # return HttpResponse("y halo thar") # return 'hey' # searchBtn = "hey" return HttpResponse("Search") # # def select(request): # return HttpResponse("Select") # # def convert(request): # return HttpResponse("Convert") # from django.shortcuts import render, get_object_or_404 # from django.http import HttpResponse, Http404 # from django.template import loader # # from .models import Question # # def index(request): # latest_question_list = Question.objects.order_by('-pub_date')[:5] # #template = loader.get_template('polls/index.html') # context = { 'latest_question_list': latest_question_list, } # #return HttpResponse(template.render(context, request)) # return render(request, 'polls/index.html', context) # # def detail(request, question_id): # #try: # # question = Question.objects.get(pk=question_id) # #except Question.DoesNotExist: # # raise Http404("Question does not exist") # question = get_object_or_404(Question, pk=question_id) # return render(request, 'polls/detail.html', {'question': question}) # #return HttpResponse("You're looking at question %s." % question_id) # # def results(request, question_id): # return HttpResponse("You're looking at the results of question %s." % question_id) # # def vote(request, question_id): # return HttpResponse("You're voting on question %s." % question_id) ```
{ "source": "jess-lammert/tut_finance_code", "score": 3 }
#### File: jess-lammert/tut_finance_code/fin_script_v1.py ```python ##note. search "##" for user notes throughout #%%SETUP ##set paths for each account folder containing csvs cheq_dir = r"PATH" sav_dir = r"PATH" cred_dir = r"PATH" ##list desired column names, MUST have 'date' and 'amount' columns cheq_cols = ["date","transaction","name", "memo", "amount"] sav_cols = ["date","transaction","name", "memo", "amount"] cred_cols = ["date","activity","merchant_name","merchant_type","amount"] dirs = [cheq_dir, sav_dir, cred_dir] #other iterables? cols = [cheq_cols, sav_cols, cred_cols] #%%IMPORT import os import glob import pandas as pd import matplotlib.pyplot as plt from matplotlib.dates import date2num import numpy as np #%%FUNCTIONS #read csvs as df def read_files(account_dir, col_names): #get list of file names account_files = glob.glob(account_dir + "/*.csv") account_dfs = [] for file in account_files: #for each file in folder #read each csv as df, columns specified by col_names account_df = pd.read_csv(file, header=0, names=col_names) print(account_df) account_dfs.append(account_df) return account_dfs #list of dfs #clean each df def clean_dfs(account_dfs): #set column types for df in account_dfs: #set date column to datetime, any format to yyyy-mm-dd df["date"] = df["date"].apply(pd.to_datetime) if type(df["amount"][0]) is str: #check if amount has special chars = str df["amount"] = df["amount"].str.replace("$","")#remove $ in amount ##OTHER CHARS? df["amount"] = pd.to_numeric(df["amount"]) #set type for any other columns? print(df) #combine all dfs for each account account_df = pd.concat(account_dfs) print(account_df) return account_df #single concatenated df #calculate running balance def running_balance(account_df): #filter for date and amount columns bal_df = account_df[["date","amount"]] #aggregate data by day bal_df = bal_df.groupby("date", as_index = False).agg("sum") #get account balances end_balance = bal_df["amount"].sum() ##works from beginning of time, otherwise must be known? start_balance = end_balance - bal_df["amount"].sum() #record running balance bal_df["balance"] = start_balance + bal_df["amount"].cumsum() print(bal_df) return bal_df #plot balances ##needs aesthetics -- plots should be moved out of functions in future versions def plot_balance(bal_df): plt.plot(bal_df["date"], bal_df["balance"]) plt.title("*Account* balance by date") ##make variable? plt.xlabel("Date") plt.ylabel("Balance ($)") fig = plt.figure(figsize = (8,6)) plt.show() return fig #%%START #read files and clean dataframes cheq_dfs = read_files(cheq_dir, cheq_cols) sav_dfs = read_files(sav_dir, sav_cols) cred_dfs = read_files(cred_dir, cred_cols) #clean/combine dataframes cheq_df = clean_dfs(cheq_dfs) sav_df = clean_dfs(sav_dfs) cred_df = clean_dfs(cred_dfs) #record balances cheq_bal = running_balance(cheq_df) sav_bal = running_balance(sav_df) #plot savings balance sav_plot = plot_balance(sav_bal) ```
{ "source": "jessmaciel/tma-framework-e", "score": 2 }
#### File: actuators/demo-actuator-python/demo-actuator.py ```python from flask import Flask from flask import request import json import os import logging import logging.config from tmalibrary.actuator import * demoActuator = Flask(__name__) logger = logging.getLogger(__name__) logger.info('Starting Demo Actuator') @demoActuator.route('/ActuatorAPI/act', methods=['POST']) def process_message(): # load json file input = request.get_data() message = HandleRequest() payload = message.processRequest(input) operation = executeaction(payload.action) return message.generateResponse(str(operation)) # Execute the action def executeaction(action): logger.info('Action: %s', action) switcher = { "scale": "action " + action, "sendMail": "action " + action, "demoPython": "action" + action } return switcher.get(action, "Not defined action: " + action) # load logging configuration file def setup_logging(default_path='logging.json', env_key='LOG_CFG'): path = default_path value = os.getenv(env_key, None) if value: path = value if os.path.exists(path): with open(path, 'rt') as f: config = json.load(f) logging.config.dictConfig(config) else: logging.basicConfig(level=logging.DEBUG) if __name__ == '__main__': setup_logging() logger = logging.getLogger(__name__) logger.info('Initializing Demo Actuator') demoActuator.run(debug='True', host='0.0.0.0', port=8080) ```
{ "source": "jessmaciel/tma-framework-m", "score": 2 }
#### File: probes/probe-k8s-docker/probe-k8s-docker.py ```python import docker import ast import sys import json import time from datetime import datetime import requests from tmalibrary.probes import * # get stats from container def get_container_stats(container_name, url, communication): # connect to docker cli = docker.from_env() # get container container = cli.containers.get(container_name) # get stream of stats from container stats_obj = container.stats() for stat in stats_obj: # print the response send_stat(eval(stat), url, communication) # send stat to API server def send_stat(stat, url, communication): # format the stats from container stat_formatted = format(stat) # url = 'http://0.0.0.0:5000/monitor' response = communication.send_message(stat_formatted) # format stat to def format(stat): st = [-1] * 96 # sometimes the following metrics can be empty (reboot can fix it). -1 -> empty if len(stat['blkio_stats']['io_service_bytes_recursive']) > 0: for i in range(0,15,3): st[i] = stat['blkio_stats']['io_service_bytes_recursive'][i/3]['major'] st[i+1] = stat['blkio_stats']['io_service_bytes_recursive'][i/3]['minor'] st[i+2] = stat['blkio_stats']['io_service_bytes_recursive'][i/3]['value'] if len(stat['blkio_stats']['io_serviced_recursive']) > 0: for i in range (15,30,3): st[i] = stat['blkio_stats']['io_serviced_recursive'][i/3-5]['major'] st[i+1] = stat['blkio_stats']['io_serviced_recursive'][i/3-5]['minor'] st[i+2] = stat['blkio_stats']['io_serviced_recursive'][i/3-5]['value'] if len(stat['blkio_stats']['io_queue_recursive']) > 0: for i in range(30,45,3): st[i] = stat['blkio_stats']['io_queue_recursive'][i/3-10]['major'] st[i+1] = stat['blkio_stats']['io_queue_recursive'][i/3-10]['minor'] st[i+2] = stat['blkio_stats']['io_queue_recursive'][i/3-10]['value'] if len(stat['blkio_stats']['io_service_time_recursive']) > 0: for i in range(45,60,3): st[i] = stat['blkio_stats']['io_service_time_recursive'][i/3-15]['major'] st[i+1] = stat['blkio_stats']['io_service_time_recursive'][i/3-15]['minor'] st[i+2] = stat['blkio_stats']['io_service_time_recursive'][i/3-15]['value'] if len(stat['blkio_stats']['io_wait_time_recursive']) > 0: for i in range(60,75,3): st[i] = stat['blkio_stats']['io_wait_time_recursive'][i/3-20]['major'] st[i+1] = stat['blkio_stats']['io_wait_time_recursive'][i/3-20]['minor'] st[i+2] = stat['blkio_stats']['io_wait_time_recursive'][i/3-20]['value'] if len(stat['blkio_stats']['io_merged_recursive']) > 0: for i in range(75,90,3): st[i] = stat['blkio_stats']['io_merged_recursive'][i/3-25]['major'] st[i+1] = stat['blkio_stats']['io_merged_recursive'][i/3-25]['minor'] st[i+2] = stat['blkio_stats']['io_merged_recursive'][i/3-25]['value'] if len(stat['blkio_stats']['io_time_recursive']) > 0: st[90] = stat['blkio_stats']['io_time_recursive'][0]['major'] st[91] = stat['blkio_stats']['io_time_recursive'][0]['minor'] st[92] = stat['blkio_stats']['io_time_recursive'][0]['value'] if len(stat['blkio_stats']['sectors_recursive']) > 0: st[93] = stat['blkio_stats']['sectors_recursive'][0]['major'] st[94] = stat['blkio_stats']['sectors_recursive'][0]['minor'] st[95] = stat['blkio_stats']['sectors_recursive'][0]['value'] other_st = [ stat['num_procs'], stat['cpu_stats']['cpu_usage']['total_usage'], stat['cpu_stats']['cpu_usage']['percpu_usage'][0], stat['cpu_stats']['cpu_usage']['usage_in_kernelmode'], stat['cpu_stats']['cpu_usage']['usage_in_usermode'], stat['cpu_stats']['system_cpu_usage'], stat['cpu_stats']['online_cpus'], stat['cpu_stats']['throttling_data']['periods'], stat['cpu_stats']['throttling_data']['throttled_periods'], stat['cpu_stats']['throttling_data']['throttled_time'], stat['memory_stats']['usage'], stat['memory_stats']['max_usage'], stat['memory_stats']['stats']['active_anon'], stat['memory_stats']['stats']['active_file'], stat['memory_stats']['stats']['cache'], stat['memory_stats']['stats']['dirty'], stat['memory_stats']['stats']['hierarchical_memory_limit'], stat['memory_stats']['stats']['inactive_anon'], stat['memory_stats']['stats']['inactive_file'], stat['memory_stats']['stats']['mapped_file'], stat['memory_stats']['stats']['pgfault'], stat['memory_stats']['stats']['pgmajfault'], stat['memory_stats']['stats']['pgpgin'], stat['memory_stats']['stats']['pgpgout'], stat['memory_stats']['stats']['rss'], stat['memory_stats']['stats']['rss_huge'], stat['memory_stats']['stats']['total_active_anon'], stat['memory_stats']['stats']['total_active_file'], stat['memory_stats']['stats']['total_cache'], stat['memory_stats']['stats']['total_dirty'], stat['memory_stats']['stats']['total_inactive_anon'], stat['memory_stats']['stats']['total_inactive_file'], stat['memory_stats']['stats']['total_mapped_file'], stat['memory_stats']['stats']['total_pgfault'], stat['memory_stats']['stats']['total_pgmajfault'], stat['memory_stats']['stats']['total_pgpgin'], stat['memory_stats']['stats']['total_pgpgout'], stat['memory_stats']['stats']['total_rss'], stat['memory_stats']['stats']['total_rss_huge'], stat['memory_stats']['stats']['total_unevictable'], stat['memory_stats']['stats']['total_writeback'], stat['memory_stats']['stats']['unevictable'], stat['memory_stats']['stats']['writeback'], stat['memory_stats']['limit'], ] merge_st = st + other_st # the timestamp is the same for all metrics from this stat variable (Python is not compatible with nanoseconds, # so [:-4] -> microseconds) timestamp = int(time.mktime(datetime.strptime(stat['read'][:-4], '%Y-%m-%dT%H:%M:%S.%f').timetuple())) # message to sent to the server API # follow the json schema # sentTime = current time? Or the same timestamp from the metrics? # need to change the probeId, resourceId and messageId message = Message(probeId=1, resourceId=1, messageId=0, sentTime=int(time.time()), data=None) # append measurement data to message for i in range(len(merge_st)): dt = Data(type="measurement", descriptionId=(i+1), observations=None) obs = Observation(time=timestamp, value=merge_st[i]) dt.add_observation(observation=obs) # append data to message message.add_data(data=dt) # return message formatted in json return json.dumps(message.reprJSON(), cls=ComplexEncoder) if __name__ == '__main__': # receive the container name and server url as parameters container_name = str(sys.argv[1] + '') url = str(sys.argv[2] + '') communication = Communication(url) get_container_stats(container_name, url, communication) ``` #### File: probes/probe-python-demo/probe-python-demo.py ```python import ast import sys import json import time from datetime import datetime import requests from tmalibrary.probes import * def send_message(url, message_formated): # url = 'http://0.0.0.0:5000/monitor' headers = {'content-type': 'application/json'} # return the response from Post request return requests.post(url, data=message_format, headers=headers) def create_message(): # the timestamp is the same for all metrics from this stat variable (Python is not compatible with nanoseconds, # so [:-4] -> microseconds) # message to sent to the server API # follow the json schema # sentTime = current time? Or the same timestamp from the metrics? # need to change the probeId, resourceId and messageId message = Message(probeId=1, resourceId=101098, messageId=0, sentTime=int(time.time()), data=None) timestamp = int(time.time()) # append measurement data to message dt = Data(type="measurement", descriptionId=1, observations=None) obs = Observation(time=timestamp, value=20000.00001 + 1) dt.add_observation(observation=obs) # append data to message message.add_data(data=dt) # append event data to message dt = Data(type="event", descriptionId=2, observations=None) obs = Observation(time=timestamp, value=-1) dt.add_observation(observation=obs) # append data to message message.add_data(data=dt) # return message formatted in json return json.dumps(message.reprJSON(), cls=ComplexEncoder) if __name__ == '__main__': # receive the container name and server url as parameters url = str(sys.argv[1] + '') communication = Communication(url) while 1: message_formated = create_message() response=communication.send_message(message_formated) #response=send_message(url, message_formated) time.sleep(1) print (response.text) ```
{ "source": "jessmed/TFG", "score": 2 }
#### File: DocViewer/mi_aplicacion/views.py ```python from django.shortcuts import render, HttpResponse,redirect from django.views import generic import os import json WORK_DIR = os.path.abspath(os.path.join(os.path.dirname( __file__ ), '../..')) # Vista para el índice del viewer def index(request): dir = WORK_DIR return render(request,'index.html') # Vista para la lista de documentos def doclist(request): path = WORK_DIR + "\\final_database\\text" # Eliminamos la extensió para mostrarlo como lista docs = [os.path.splitext(filename)[0] for filename in os.listdir(path)] # Dividimos la lista en 3 partes para mostrarla facilmente ya que son muchos archivos n = len(docs)//3 docs_list = [docs[i:i + n] for i in range(0, len(docs), n)] return render(request, 'doclist.html', {'docs_1': docs_list[0], 'docs_2': docs_list[1], 'docs_3': docs_list[2]}) # Vista para mostrar las estadisticas que se obtienen del algoritmo LDA def statistics(request): s = "stat.html" return render(request,'statistics.html',{'s': s}) # Vista para mostrar los documentos, leemos el JSON asociado al que se clica # extraemos los campos del JSON para devolverlos def document(request): # Obtenemos el nombre del paper que se ha usado paper_id = request.GET.get("doc") mode = request.GET.get("mode") path = WORK_DIR + "\\final_database\\"+mode+"\\"+paper_id+".json" path_colors = WORK_DIR + "\\final_database\\topic_color.json" json_data = open(path) json_colors = open(path_colors) obj = json.load(json_data) # deserialises it obj_colors = json.load(json_colors) title = obj["title"] abstract = obj["abstract"] json_data.close() return render(request, 'document_base.html', {'paper_id': paper_id, 'title':title, 'abstract':abstract, 'mode':mode, 'obj_colors':obj_colors}) #------------------------------------------------------------------------- ``` #### File: TFG/src/topic_clasification.py ```python import time import numpy as np #version 1.20.3 import json import os #Gensim import gensim import gensim.corpora as corpora from gensim.utils import simple_preprocess #spacy import spacy from nltk.corpus import stopwords #vis import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) from os import listdir # Load a potentially pretrained model from disk. from gensim.test.utils import datapath # -------------------------------------------------------------- WORK_DIR = os.path.dirname(os.path.abspath(__file__)) # Directorio actual de trabajo # Aplicar filtro de palabras comunes NUM_TOPICS=15 # Número de documentos que usamos # Cargamos json tipic-colores color_list = json.load(open(WORK_DIR + "\\final_database\\topic_color.json")) nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"]) """ Para cada documento de la base de datos realizaremos los siguientes pasos: 1. Cargamos el modelo preentrenado LDA 2. Para cada documento de la base de datos lo convertimos en un BoW para poder usar los métodos del modelo 3. Calculamos la probabilidad para cada documento o frase de cada documento 4. Lo añadimos a los archivos para que puedan leerse correctamente por el servidor """ stopwords = stopwords.words("english") stopwords.extend(['well','such','other','as','many','have','from', 'subject', 're', 'edu', 'use', 'not', 'would', 'say', 'could', '_', 'be', 'know', 'good', 'go', 'get', 'do', 'done', 'try', 'many', 'some', 'nice', 'thank', 'think', 'see', 'rather', 'easy', 'easily', 'lot', 'lack', 'make', 'want', 'seem', 'run', 'need', 'right', 'line', 'even', 'also', 'may', 'take', 'come']) # # ============================================================================= # # LEMMATIZACION # # ============================================================================= def lemmatization(texts, allowed_postags=["NOUN", "ADJ", "VERB", "ADV"]): texts_out = [] doc = nlp(texts) new_text = [] for token in doc: if token.pos_ in allowed_postags: new_text.append(token.lemma_) final = " ".join(new_text) texts_out.append(final) return (texts_out) def gen_words(lenm_texts): word_list = [[word for word in simple_preprocess(str(doc)) if word not in stopwords] for doc in lenm_texts] return (word_list) def term2id(dic,term): for i,v in dic.token2id.items(): if i == term: return v # ============================================================================= # 1. CARGAMOS MODELO PREENTRENADO LDA # ============================================================================= temp_file = datapath("model") lda = gensim.models.LdaModel.load(temp_file) print("Modelo cargado") d = WORK_DIR + "\\final_database\\lda_dictionary\\dictionary.txtdic" load_dic = corpora.Dictionary.load(d) # ============================================================================= # 2. PARA CADA DOCUMENTO DE LA BASE DE DATOS # ============================================================================= # Función que convierte un texto en una salida para calcular probabilidad # de pertenecer a un tópico def doc_2_bow(textos): lemmatized_texts = lemmatization(textos) data_words = gen_words(lemmatized_texts) dic = corpora.Dictionary(data_words) corpus = [] for text in data_words: new = dic.doc2bow(text) corpus.append(new) return corpus # Medimos tiempo inicio ejecución inicio = time.time() # ============================================================================= # CALCULO DE LA PROBABILIDAD # ============================================================================= # TEXTOS COMPLETOS w = WORK_DIR + "\\final_database\\text" onlyfiles = listdir(w) cont = 1 CICLOS = len(onlyfiles) # Para cada uno de los archivos de la base de datos TEXT for file in onlyfiles: if cont % 10000 == 0: print("{}/{}".format(cont,CICLOS)) obj = json.load(open(w+"/"+file)) # Para cada sección text del abstract(si es modo text solo tiene 1 sección) for t in obj["abstract"]: text = t["text"] # Lo convertimos en BoW corpus = doc_2_bow(text) # Obtenemos del modelo la matriz de probabilidad topico por documento topic_distribution_document = lda.get_document_topics(corpus,minimum_probability=None) # Obtenemos el topic on mayor probabilidad main_topic = str(max(topic_distribution_document[0],key=lambda item:item[1])[0]) # Añadimos tópic y color asociado al JSON del documento obj["abstract"][0]["topic"]= main_topic obj["abstract"][0]["color"] = color_list[str(main_topic)] # Guardamos doc JSON preprocesado en nueva carpeta TEXTO COMPLETO open(w+"/"+file, "w").write( json.dumps(obj, indent=4, separators=(',', ': ')) ) cont +=1 print("TEXTOS COMPLETOS CLASIFICADOS") # TEXTOS POR FRASES q = WORK_DIR + "\\final_database\\phrases" onlyfiles = listdir(q) cont = 1 # Para cada uno de los archivos de la base de datos TEXT for file in onlyfiles: if cont % 100 == 0: print(cont) obj = json.load(open(q+"/"+file)) # Para cada sección text del abstract(si es modo text solo tiene 1 sección) for t in obj["abstract"]: text = t["text"] # Obtenemos lista de términos term_list = gen_words(lemmatization(text)) # Obtenemos corpus del documento corpus = doc_2_bow(text) # Obtenemos del modelo la lista de probabilidad topico por documento p_x_d = lda.get_document_topics(corpus,minimum_probability=None) # Obtenemos del modelo la matriz de probabilidad término por tópico p_t_x = lda.get_topics() # Creamos la matriz probabilidad(numero topicos del modelo/número terminos de la frase) matrix_p = np.zeros((NUM_TOPICS,len(term_list[0]))) # Para cada palabra lemmatizada de la frase miramos sus probabilidades de pertenecer a un tópico # usaremos un filtro de 1e-8 col = 0 for w in term_list[0]: # Calculamos el identificador del término en el corpus w_id = term2id(load_dic, w) # Si el término existe en el corpus calculamos probabilidad if w_id != None: # Para cada tópico que aparezca en relación al documento(que aparezcan) for k in p_x_d[0]: n_topic, prob = k # Para un término calculamos su probabilidad segun el tópico prob_termino= prob * p_t_x[n_topic][w_id] matrix_p[n_topic][col] = prob_termino col+=1 # Normalizamos suma = 0 # Sumamos la columna de la matriz(término/tópico) # si es 1 no lo sumamos y luego dividimos la suma entre s = np.sum(matrix_p, axis=0) # Normalizamos dividiendo cada columnda por el total filas,columnas = matrix_p.shape for i in range(filas): for j in range(columnas): if matrix_p[i,j] != 0: matrix_p[i][j] = matrix_p[i][j] / s[j] # Aplicamos logaritmos para evitar underflow matrix_p=np.log(matrix_p,where=0<matrix_p) matrix_p = np.sum(matrix_p, axis=1) # Se puede dar el caso que la frase este entera conformada por palabras fuera del # corpus del modelo, en cuyo caso no pertenecen a ningun topic y no se las puede clasifica # le damos entonces topic 0 que es indefinido total = np.sum(matrix_p) if total != 0: main_topic = matrix_p.argmax() +1 else: main_topic=0 # Añadimos tópic y color asociado al JSON del documento t["topic"]= str(main_topic) t["color"] = color_list[str(main_topic)] # Guardamos doc JSON preprocesado en nueva carpeta TEXTO COMPLETO open(q+"/"+file, "w").write( json.dumps(obj, indent=4, separators=(',', ': ')) ) cont +=1 print("TEXTOS POR FRASES CLASIFICADOS") ```
{ "source": "Jessmin/mmdetection-Competition", "score": 2 }
#### File: mmdetection-Competition/Sartorius/convert_dataset.py ```python from sklearn.model_selection import train_test_split import pandas as pd import numpy as np import pandas as pd from tqdm import tqdm from pycocotools import mask as maskUtils import json base_dir = '/home/zhaohj/Documents/dataset/Kaggle/sartorius-cell-instance-segmentation' def get_info(df): cat_ids = {name: id+1 for id, name in enumerate(df.cell_type.unique())} cats = [{'name': name, 'id': id} for name, id in cat_ids.items()] return cat_ids, cats def coco_structure(df, cat_ids, cats): images = [{'id': id, 'width': row.width, 'height': row.height, 'file_name': f'train/{id}.png'} for id, row in df.groupby('id').agg('first').iterrows()] annotations = [] for idx, row in tqdm(df.iterrows(), total=len(df)): mask = rle2mask(row['annotation'], row['width'], row['height']) c_rle = maskUtils.encode(mask) c_rle['counts'] = c_rle['counts'].decode('utf-8') area = maskUtils.area(c_rle).item() bbox = maskUtils.toBbox(c_rle).astype(int).tolist() annotation = { 'segmentation': c_rle, 'bbox': bbox, 'area': area, 'image_id': row['id'], 'category_id': cat_ids[row['cell_type']], 'iscrowd': 0, 'id': idx } annotations.append(annotation) return {'categories': cats, 'images': images, 'annotations': annotations} def rle2mask(rle, img_w, img_h): array = np.fromiter(rle.split(), dtype=np.uint) array = array.reshape((-1, 2)).T array[0] = array[0] - 1 starts, lenghts = array mask_decompressed = np.concatenate( [np.arange(s, s + l, dtype=np.uint) for s, l in zip(starts, lenghts)]) msk_img = np.zeros(img_w * img_h, dtype=np.uint8) msk_img[mask_decompressed] = 1 msk_img = msk_img.reshape((img_h, img_w)) msk_img = np.asfortranarray(msk_img) return msk_img def run(): df = pd.read_csv(f'{base_dir}/train.csv') cat_ids, cats = get_info(df) print(cats) # train_df, val_df = train_test_split(df, train_size=0.9, random_state=0) # train = coco_structure(train_df, cat_ids, cats) # val = coco_structure(val_df, cat_ids, cats) # with open(f'{base_dir}/COCO/train.json', 'w') as f: # json.dump(train, f, ensure_ascii=True, indent=4) # with open(f'{base_dir}/COCO/val.json', 'w') as f: # json.dump(val, f, ensure_ascii=True, indent=4) run() ```
{ "source": "Jessmin/TableMASTER-mmocr", "score": 3 }
#### File: datasets/pipelines/table_transforms.py ```python from mmdet.datasets.builder import PIPELINES import os import cv2 import random import numpy as np def visual_table_resized_bbox(results): bboxes = results['img_info']['bbox'] img = results['img'] for bbox in bboxes: img = cv2.rectangle(img, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0, 255, 0), thickness=1) return img def visual_table_xywh_bbox(results): img = results['img'] bboxes = results['img_info']['bbox'] for bbox in bboxes: draw_bbox = np.empty_like(bbox) draw_bbox[0] = bbox[0] - bbox[2] / 2 draw_bbox[1] = bbox[1] - bbox[3] / 2 draw_bbox[2] = bbox[0] + bbox[2] / 2 draw_bbox[3] = bbox[1] + bbox[3] / 2 img = cv2.rectangle(img, (int(draw_bbox[0]), int(draw_bbox[1])), (int(draw_bbox[2]), int(draw_bbox[3])), (0, 255, 0), thickness=1) return img @PIPELINES.register_module() class TableResize: """Image resizing and padding for Table Recognition OCR, Table Structure Recognition. Args: height (int | tuple(int)): Image height after resizing. min_width (none | int | tuple(int)): Image minimum width after resizing. max_width (none | int | tuple(int)): Image maximum width after resizing. keep_aspect_ratio (bool): Keep image aspect ratio if True during resizing, Otherwise resize to the size height * max_width. img_pad_value (int): Scalar to fill padding area. width_downsample_ratio (float): Downsample ratio in horizontal direction from input image to output feature. backend (str | None): The image resize backend type. Options are `cv2`, `pillow`, `None`. If backend is None, the global imread_backend specified by ``mmcv.use_backend()`` will be used. Default: None. """ def __init__(self, img_scale=None, min_size=None, ratio_range=None, interpolation=None, keep_ratio=True, long_size=None): self.img_scale = img_scale self.min_size = min_size self.ratio_range = ratio_range self.interpolation = cv2.INTER_LINEAR self.long_size = long_size self.keep_ratio = keep_ratio def _get_resize_scale(self, w, h): if self.keep_ratio: if self.img_scale is None and isinstance(self.ratio_range, list): choice_ratio = random.uniform(self.ratio_range[0], self.ratio_range[1]) return (int(w * choice_ratio), int(h * choice_ratio)) elif isinstance(self.img_scale, tuple) and -1 in self.img_scale: if self.img_scale[0] == -1: resize_w = w / h * self.img_scale[1] return (int(resize_w), self.img_scale[1]) else: resize_h = h / w * self.img_scale[0] return (self.img_scale[0], int(resize_h)) else: return (int(w), int(h)) else: if isinstance(self.img_scale, tuple): return self.img_scale else: raise NotImplementedError def _resize_bboxes(self, results): img_shape = results['img_shape'] if 'img_info' in results.keys(): # train and validate phase if results['img_info'].get('bbox', None) is not None: bboxes = results['img_info']['bbox'] scale_factor = results['scale_factor'] # bboxes[..., 0::2], bboxes[..., 1::2] = \ # bboxes[..., 0::2] * scale_factor[1], bboxes[..., 1::2] * scale_factor[0] bboxes[..., 0::2] = np.clip(bboxes[..., 0::2] * scale_factor[1], 0, img_shape[1]-1) bboxes[..., 1::2] = np.clip(bboxes[..., 1::2] * scale_factor[0], 0, img_shape[0]-1) results['img_info']['bbox'] = bboxes else: raise ValueError('results should have bbox keys.') else: # testing phase pass def _resize_img(self, results): img = results['img'] h, w, _ = img.shape if self.min_size is not None: if w > h: w = self.min_size / h * w h = self.min_size else: h = self.min_size / w * h w = self.min_size if self.long_size is not None: if w < h: w = self.long_size / h * w h = self.long_size else: h = self.long_size / w * h w = self.long_size img_scale = self._get_resize_scale(w, h) resize_img = cv2.resize(img, img_scale, interpolation=self.interpolation) scale_factor = (resize_img.shape[0] / img.shape[0], resize_img.shape[1] / img.shape[1]) results['img'] = resize_img results['img_shape'] = resize_img.shape results['pad_shape'] = resize_img.shape results['scale_factor'] = scale_factor results['keep_ratio'] = self.keep_ratio def __call__(self, results): self._resize_img(results) self._resize_bboxes(results) return results @PIPELINES.register_module() class TablePad: """Pad the image & mask. Two padding modes: (1) pad to fixed size. (2) pad to the minium size that is divisible by some number. """ def __init__(self, size=None, size_divisor=None, pad_val=None, keep_ratio=False, return_mask=False, mask_ratio=2, train_state=True, ): self.size = size[::-1] self.size_divisor = size_divisor self.pad_val = pad_val self.keep_ratio = keep_ratio self.return_mask = return_mask self.mask_ratio = mask_ratio self.training = train_state # only one of size or size_divisor is valid. assert size is not None or size_divisor is not None assert size is None or size_divisor is None def _pad(self, img, size, pad_val): if not isinstance(size, tuple): raise NotImplementedError if len(size) < len(img.shape): shape = size + (img.shape[-1], ) else: shape = size pad = np.empty(shape, dtype=img.dtype) pad[...] = pad_val h, w = img.shape[:2] size_w, size_h = size[:2] if h > size_h or w > size_w: if self.keep_ratio: if h / size_h > w / size_w: size = (int(w / h * size_h), size_h) else: size = (size_w, int(h / w * size_w)) img = cv2.resize(img, size[::-1], cv2.INTER_LINEAR) pad[:img.shape[0], :img.shape[1], ...] = img if self.return_mask: mask = np.empty(size, dtype=img.dtype) mask[...] = 0 mask[:img.shape[0], :img.shape[1]] = 1 # mask_ratio is mean stride of backbone in (height, width) if isinstance(self.mask_ratio, int): mask = mask[::self.mask_ratio, ::self.mask_ratio] elif isinstance(self.mask_ratio, tuple): mask = mask[::self.mask_ratio[0], ::self.mask_ratio[1]] else: raise NotImplementedError mask = np.expand_dims(mask, axis=0) else: mask = None return pad, mask def _divisor(self, img, size_divisor, pad_val): pass def _pad_img(self, results): if self.size is not None: padded_img, mask = self._pad(results['img'], self.size, self.pad_val) elif self.size_divisor is not None: raise NotImplementedError results['img'] = padded_img results['mask'] = mask results['pad_shape'] = padded_img.shape results['pad_fixed_size'] = self.size results['pad_size_divisor'] = self.size_divisor def __call__(self, results): self._pad_img(results) #visual_img = visual_table_resized_bbox(results) #cv2.imwrite('/data_0/cache/{}_visual.jpg'.format(os.path.basename(results['filename']).split('.')[0]), visual_img) # if self.training: # scaleBbox(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += '(size={}, size_divisor={}, pad_val={})'.format( self.size, self.size_divisor, self.pad_val) return repr_str def xyxy2xywh(bboxes): """ Convert coord (x1,y1,x2,y2) to (x,y,w,h). where (x1,y1) is top-left, (x2,y2) is bottom-right. (x,y) is bbox center and (w,h) is width and height. :param bboxes: (x1, y1, x2, y2) :return: """ new_bboxes = np.empty_like(bboxes) new_bboxes[..., 0] = (bboxes[..., 0] + bboxes[..., 2]) / 2 # x center new_bboxes[..., 1] = (bboxes[..., 1] + bboxes[..., 3]) / 2 # y center new_bboxes[..., 2] = bboxes[..., 2] - bboxes[..., 0] # width new_bboxes[..., 3] = bboxes[..., 3] - bboxes[..., 1] # height return new_bboxes def normalize_bbox(bboxes, img_shape): bboxes[..., 0], bboxes[..., 2] = bboxes[..., 0] / img_shape[1], bboxes[..., 2] / img_shape[1] bboxes[..., 1], bboxes[..., 3] = bboxes[..., 1] / img_shape[0], bboxes[..., 3] / img_shape[0] return bboxes @PIPELINES.register_module() class TableBboxEncode: """Encode table bbox for training. convert coord (x1,y1,x2,y2) to (x,y,w,h) normalize to (0,1) adjust key 'bbox' and 'bbox_mask' location in dictionary 'results' """ def __init__(self): pass def __call__(self, results): bboxes = results['img_info']['bbox'] bboxes = xyxy2xywh(bboxes) img_shape = results['img'].shape bboxes = normalize_bbox(bboxes, img_shape) flag = self.check_bbox_valid(bboxes) if not flag: print('Box invalid in {}'.format(results['filename'])) results['img_info']['bbox'] = bboxes self.adjust_key(results) # self.visual_normalized_bbox(results) return results def __repr__(self): repr_str = self.__class__.__name__ return repr_str def check_bbox_valid(self, bboxes): low = (bboxes >= 0.) * 1 high = (bboxes <= 1.) * 1 matrix = low + high for idx, m in enumerate(matrix): if m.sum() != 8: return False return True def visual_normalized_bbox(self, results): """ visual after normalized bbox in results. :param results: :return: """ save_path = '/data_0/cache/{}_normalized.jpg'.\ format(os.path.basename(results['filename']).split('.')[0]) img = results['img'] img_shape = img.shape # x,y,w,h bboxes = results['img_info']['bbox'] bboxes[..., 0::2] = bboxes[..., 0::2] * img_shape[1] bboxes[..., 1::2] = bboxes[..., 1::2] * img_shape[0] # x,y,x,y new_bboxes = np.empty_like(bboxes) new_bboxes[..., 0] = bboxes[..., 0] - bboxes[..., 2] / 2 new_bboxes[..., 1] = bboxes[..., 1] - bboxes[..., 3] / 2 new_bboxes[..., 2] = bboxes[..., 0] + bboxes[..., 2] / 2 new_bboxes[..., 3] = bboxes[..., 1] + bboxes[..., 3] / 2 # draw for new_bbox in new_bboxes: img = cv2.rectangle(img, (int(new_bbox[0]), int(new_bbox[1])), (int(new_bbox[2]), int(new_bbox[3])), (0, 255, 0), thickness=1) cv2.imwrite(save_path, img) def adjust_key(self, results): """ Adjust key 'bbox' and 'bbox_mask' location in dictionary 'results'. :param results: :return: """ bboxes = results['img_info'].pop('bbox') bboxes_masks = results['img_info'].pop('bbox_masks') results['bbox'] = bboxes results['bbox_masks'] = bboxes_masks return results ``` #### File: textrecog/backbones/resnet_extra.py ```python import torch import torch.nn as nn import torch.nn.functional as F from mmdet.models.builder import BACKBONES from ..layers.context_block import ContextBlock def conv3x3(in_planes, out_planes, stride=1): """ 3x3 convolution with padding """ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def conv1x1(in_planes, out_planes, stride=1): """ 1x1 convolution """ return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, gcb_config=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes, momentum=0.9) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes, momentum=0.9) self.downsample = downsample self.stride = stride self.gcb_config = gcb_config if self.gcb_config is not None: gcb_ratio = gcb_config['ratio'] gcb_headers = gcb_config['headers'] att_scale = gcb_config['att_scale'] fusion_type = gcb_config['fusion_type'] self.context_block = ContextBlock(inplanes=planes, ratio=gcb_ratio, headers=gcb_headers, att_scale=att_scale, fusion_type=fusion_type) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.gcb_config is not None: out = self.context_block(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out def get_gcb_config(gcb_config, layer): if gcb_config is None or not gcb_config['layers'][layer]: return None else: return gcb_config @BACKBONES.register_module() class ResNetExtra(nn.Module): def __init__(self, layers, input_dim=3, gcb_config=None): assert len(layers) >= 4 super(ResNetExtra, self).__init__() self.inplanes = 128 self.conv1 = nn.Conv2d(input_dim, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(128) self.relu2 = nn.ReLU(inplace=True) self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.layer1 = self._make_layer(BasicBlock, 256, layers[0], stride=1, gcb_config=get_gcb_config(gcb_config, 0)) self.conv3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(256) self.relu3 = nn.ReLU(inplace=True) self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.layer2 = self._make_layer(BasicBlock, 256, layers[1], stride=1, gcb_config=get_gcb_config(gcb_config, 1)) self.conv4 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False) self.bn4 = nn.BatchNorm2d(256) self.relu4 = nn.ReLU(inplace=True) self.maxpool3 = nn.MaxPool2d(kernel_size=(2,1), stride=(2,1)) self.layer3 = self._make_layer(BasicBlock, 512, layers[2], stride=1, gcb_config=get_gcb_config(gcb_config, 2)) self.conv5 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn5 = nn.BatchNorm2d(512) self.relu5 = nn.ReLU(inplace=True) self.layer4 = self._make_layer(BasicBlock, 512, layers[3], stride=1, gcb_config=get_gcb_config(gcb_config, 3)) self.conv6 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=False) self.bn6 = nn.BatchNorm2d(512) self.relu6 = nn.ReLU(inplace=True) def init_weights(self, pretrained=None): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, block, planes, blocks, stride=1, gcb_config=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, gcb_config=gcb_config)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): f = [] x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) # (48, 160) x = self.maxpool1(x) x = self.layer1(x) x = self.conv3(x) x = self.bn3(x) x = self.relu3(x) f.append(x) # (24, 80) x = self.maxpool2(x) x = self.layer2(x) x = self.conv4(x) x = self.bn4(x) x = self.relu4(x) f.append(x) # (12, 40) x = self.maxpool3(x) x = self.layer3(x) x = self.conv5(x) x = self.bn5(x) x = self.relu5(x) x = self.layer4(x) x = self.conv6(x) x = self.bn6(x) x = self.relu6(x) f.append(x) # (6, 40) return f ``` #### File: textrecog/decoders/master_decoder.py ```python import math import copy import torch import torch.nn as nn import torch.nn.functional as F from mmocr.models.builder import DECODERS from .base_decoder import BaseDecoder from ..encoders.positional_encoding import PositionalEncoding from mmocr.models.builder import DECODERS class Embeddings(nn.Module): def __init__(self, d_model, vocab): super(Embeddings, self).__init__() self.lut = nn.Embedding(vocab, d_model) self.d_model = d_model def forward(self, *input): x = input[0] return self.lut(x) * math.sqrt(self.d_model) def clones(module, N): """ Produce N identical layers """ return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) class SubLayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super(SubLayerConnection, self).__init__() self.norm = nn.LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): tmp = self.norm(x) tmp = sublayer(tmp) return x + self.dropout(sublayer(self.norm(x))) class FeedForward(nn.Module): def __init__(self, d_model, d_ff, dropout): super(FeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w_2(self.dropout(F.relu(self.w_1(x)))) def self_attention(query, key, value, mask=None, dropout=None): """ Compute 'Scale Dot Product Attention' """ d_k = value.size(-1) score = torch.matmul(query, key.transpose(-2, -1) / math.sqrt(d_k)) if mask is not None: #score = score.masked_fill(mask == 0, -1e9) # b, h, L, L score = score.masked_fill(mask == 0, -6.55e4) # for fp16 p_attn = F.softmax(score, dim=-1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn class MultiHeadAttention(nn.Module): def __init__(self, headers, d_model, dropout): super(MultiHeadAttention, self).__init__() assert d_model % headers == 0 self.d_k = int(d_model / headers) self.headers = headers self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(dropout) def forward(self, query, key, value, mask=None): nbatches = query.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = \ [l(x).view(nbatches, -1, self.headers, self.d_k).transpose(1, 2) for l,x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch x, self.attn = self_attention(query, key, value, mask=mask, dropout=self.dropout) x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.headers * self.d_k) return self.linears[-1](x) class DecoderLayer(nn.Module): """ Decoder is made of self attention, srouce attention and feed forward. """ def __init__(self, size, self_attn, src_attn, feed_forward, dropout): super(DecoderLayer, self).__init__() self.size = size self.self_attn = MultiHeadAttention(**self_attn) self.src_attn = MultiHeadAttention(**src_attn) self.feed_forward = FeedForward(**feed_forward) self.sublayer = clones(SubLayerConnection(size, dropout), 3) def forward(self, x, feature, src_mask, tgt_mask): x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask)) x = self.sublayer[1](x, lambda x: self.src_attn(x, feature, feature, src_mask)) return self.sublayer[2](x, self.feed_forward) @DECODERS.register_module() class MasterDecoder(BaseDecoder): def __init__(self, N, decoder, d_model, num_classes, start_idx, padding_idx, max_seq_len, ): super(MasterDecoder, self).__init__() self.layers = clones(DecoderLayer(**decoder), N) self.norm = nn.LayerNorm(decoder.size) self.fc = nn.Linear(d_model, num_classes) self.embedding = Embeddings(d_model=d_model, vocab=num_classes) self.positional_encoding = PositionalEncoding(d_model=d_model) self.SOS = start_idx self.PAD = padding_idx self.max_length = max_seq_len def make_mask(self, src, tgt): """ Make mask for self attention. :param src: [b, c, h, l_src] :param tgt: [b, l_tgt] :return: """ trg_pad_mask = (tgt != self.PAD).unsqueeze(1).unsqueeze(3).byte() tgt_len = tgt.size(1) trg_sub_mask = torch.tril(torch.ones((tgt_len, tgt_len), dtype=torch.uint8, device=src.device)) tgt_mask = trg_pad_mask & trg_sub_mask return None, tgt_mask def decode(self, input, feature, src_mask, tgt_mask): # main process of transformer decoder. x = self.embedding(input) x = self.positional_encoding(x) for i, layer in enumerate(self.layers): x = layer(x, feature, src_mask, tgt_mask) x = self.norm(x) return self.fc(x) def greedy_forward(self, SOS, feature, mask): input = SOS output = None for i in range(self.max_length+1): _, target_mask = self.make_mask(feature, input) out = self.decode(input, feature, None, target_mask) #out = self.decoder(input, feature, None, target_mask) output = out prob = F.softmax(out, dim=-1) _, next_word = torch.max(prob, dim=-1) input = torch.cat([input, next_word[:, -1].unsqueeze(-1)], dim=1) return output def forward_train(self, feat, out_enc, targets_dict, img_metas=None): # x is token of label # feat is feature after backbone before pe. # out_enc is feature after pe. device = feat.device if isinstance(targets_dict, dict): padded_targets = targets_dict['padded_targets'].to(device) else: padded_targets = targets_dict.to(device) src_mask = None _, tgt_mask = self.make_mask(out_enc, padded_targets[:,:-1]) return self.decode(padded_targets[:, :-1], out_enc, src_mask, tgt_mask) def forward_test(self, feat, out_enc, img_metas): src_mask = None batch_size = out_enc.shape[0] SOS = torch.zeros(batch_size).long().to(out_enc.device) SOS[:] = self.SOS SOS = SOS.unsqueeze(1) output = self.greedy_forward(SOS, out_enc, src_mask) return output def forward(self, feat, out_enc, targets_dict=None, img_metas=None, train_mode=True): self.train_mode = train_mode if train_mode: return self.forward_train(feat, out_enc, targets_dict, img_metas) return self.forward_test(feat, out_enc, img_metas) @DECODERS.register_module() class TableMasterDecoder(BaseDecoder): """ Split to two transformer header at the last layer. Cls_layer is used to structure token classification. Bbox_layer is used to regress bbox coord. """ def __init__(self, N, decoder, d_model, num_classes, start_idx, padding_idx, max_seq_len, ): super(TableMasterDecoder, self).__init__() self.layers = clones(DecoderLayer(**decoder), N-1) self.cls_layer = clones(DecoderLayer(**decoder), 1) self.bbox_layer = clones(DecoderLayer(**decoder), 1) self.cls_fc = nn.Linear(d_model, num_classes) self.bbox_fc = nn.Sequential( nn.Linear(d_model, 4), nn.Sigmoid() ) self.norm = nn.LayerNorm(decoder.size) self.embedding = Embeddings(d_model=d_model, vocab=num_classes) self.positional_encoding = PositionalEncoding(d_model=d_model) self.SOS = start_idx self.PAD = padding_idx self.max_length = max_seq_len def make_mask(self, src, tgt): """ Make mask for self attention. :param src: [b, c, h, l_src] :param tgt: [b, l_tgt] :return: """ trg_pad_mask = (tgt != self.PAD).unsqueeze(1).unsqueeze(3).byte() tgt_len = tgt.size(1) trg_sub_mask = torch.tril(torch.ones((tgt_len, tgt_len), dtype=torch.uint8, device=src.device)) tgt_mask = trg_pad_mask & trg_sub_mask return None, tgt_mask def decode(self, input, feature, src_mask, tgt_mask): # main process of transformer decoder. x = self.embedding(input) x = self.positional_encoding(x) # origin transformer layers for i, layer in enumerate(self.layers): x = layer(x, feature, src_mask, tgt_mask) # cls head for layer in self.cls_layer: cls_x = layer(x, feature, src_mask, tgt_mask) cls_x = self.norm(cls_x) # bbox head for layer in self.bbox_layer: bbox_x = layer(x, feature, src_mask, tgt_mask) bbox_x = self.norm(bbox_x) return self.cls_fc(cls_x), self.bbox_fc(bbox_x) def greedy_forward(self, SOS, feature, mask): input = SOS output = None for i in range(self.max_length+1): _, target_mask = self.make_mask(feature, input) out, bbox_output = self.decode(input, feature, None, target_mask) output = out prob = F.softmax(out, dim=-1) _, next_word = torch.max(prob, dim=-1) input = torch.cat([input, next_word[:, -1].unsqueeze(-1)], dim=1) return output, bbox_output def forward_train(self, feat, out_enc, targets_dict, img_metas=None): # x is token of label # feat is feature after backbone before pe. # out_enc is feature after pe. device = feat.device if isinstance(targets_dict, dict): padded_targets = targets_dict['padded_targets'].to(device) else: padded_targets = targets_dict.to(device) src_mask = None _, tgt_mask = self.make_mask(out_enc, padded_targets[:,:-1]) return self.decode(padded_targets[:, :-1], out_enc, src_mask, tgt_mask) def forward_test(self, feat, out_enc, img_metas): src_mask = None batch_size = out_enc.shape[0] SOS = torch.zeros(batch_size).long().to(out_enc.device) SOS[:] = self.SOS SOS = SOS.unsqueeze(1) output, bbox_output = self.greedy_forward(SOS, out_enc, src_mask) return output, bbox_output def forward(self, feat, out_enc, targets_dict=None, img_metas=None, train_mode=True): self.train_mode = train_mode if train_mode: return self.forward_train(feat, out_enc, targets_dict, img_metas) return self.forward_test(feat, out_enc, img_metas) @DECODERS.register_module() class TableMasterConcatDecoder(BaseDecoder): """ Split to two transformer header at the last layer. Cls_layer is used to structure token classification. Bbox_layer is used to regress bbox coord. """ def __init__(self, N, decoder, d_model, num_classes, start_idx, padding_idx, max_seq_len, ): super(TableMasterConcatDecoder, self).__init__() self.layers = clones(DecoderLayer(**decoder), N-1) self.cls_layer = clones(DecoderLayer(**decoder), 1) self.bbox_layer = clones(DecoderLayer(**decoder), 1) self.cls_fc = nn.Linear(d_model, num_classes) self.bbox_fc = nn.Sequential( nn.Linear(d_model, 4), nn.Sigmoid() ) self.norm = nn.LayerNorm(decoder.size) self.embedding = Embeddings(d_model=d_model, vocab=num_classes) self.positional_encoding = PositionalEncoding(d_model=d_model) self.SOS = start_idx self.PAD = padding_idx self.max_length = max_seq_len def make_mask(self, src, tgt): """ Make mask for self attention. :param src: [b, c, h, l_src] :param tgt: [b, l_tgt] :return: """ trg_pad_mask = (tgt != self.PAD).unsqueeze(1).unsqueeze(3).byte() tgt_len = tgt.size(1) trg_sub_mask = torch.tril(torch.ones((tgt_len, tgt_len), dtype=torch.uint8, device=src.device)) tgt_mask = trg_pad_mask & trg_sub_mask return None, tgt_mask def decode(self, input, feature, src_mask, tgt_mask): # main process of transformer decoder. x = self.embedding(input) x = self.positional_encoding(x) # x_list = [] cls_x_list = [] bbox_x_list = [] # origin transformer layers for i, layer in enumerate(self.layers): x = layer(x, feature, src_mask, tgt_mask) # cls head for layer in self.cls_layer: cls_x = layer(x, feature, src_mask, tgt_mask) cls_x_list.append(cls_x) cls_x = torch.cat(cls_x_list, dim=-1) cls_x = self.norm(cls_x) # bbox head for layer in self.bbox_layer: bbox_x = layer(x, feature, src_mask, tgt_mask) bbox_x_list.append(bbox_x) bbox_x = torch.cat(bbox_x_list, dim=-1) bbox_x = self.norm(bbox_x) return self.cls_fc(cls_x), self.bbox_fc(bbox_x) def greedy_forward(self, SOS, feature, mask): input = SOS output = None for i in range(self.max_length+1): _, target_mask = self.make_mask(feature, input) out, bbox_output = self.decode(input, feature, None, target_mask) output = out prob = F.softmax(out, dim=-1) _, next_word = torch.max(prob, dim=-1) input = torch.cat([input, next_word[:, -1].unsqueeze(-1)], dim=1) return output, bbox_output def forward_train(self, feat, out_enc, targets_dict, img_metas=None): # x is token of label # feat is feature after backbone before pe. # out_enc is feature after pe. device = feat.device if isinstance(targets_dict, dict): padded_targets = targets_dict['padded_targets'].to(device) else: padded_targets = targets_dict.to(device) src_mask = None _, tgt_mask = self.make_mask(out_enc, padded_targets[:,:-1]) return self.decode(padded_targets[:, :-1], out_enc, src_mask, tgt_mask) def forward_test(self, feat, out_enc, img_metas): src_mask = None batch_size = out_enc.shape[0] SOS = torch.zeros(batch_size).long().to(out_enc.device) SOS[:] = self.SOS SOS = SOS.unsqueeze(1) output, bbox_output = self.greedy_forward(SOS, out_enc, src_mask) return output, bbox_output def forward(self, feat, out_enc, targets_dict=None, img_metas=None, train_mode=True): self.train_mode = train_mode if train_mode: return self.forward_train(feat, out_enc, targets_dict, img_metas) return self.forward_test(feat, out_enc, img_metas) ``` #### File: textrecog/encoders/positional_encoding.py ```python import math import torch import torch.nn.functional as F from torch import nn from mmocr.models.builder import ENCODERS from .base_encoder import BaseEncoder @ENCODERS.register_module() class PositionalEncoding(BaseEncoder): """ Implement the PE function. """ def __init__(self, d_model, dropout=0., max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1).float() div_term = torch.exp(torch.arange(0, d_model, 2).float() * -math.log(10000.0) / d_model) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, feat, **kwargs): if len(feat.shape) > 3: b, c, h, w = feat.shape feat = feat.view(b, c, h*w) # flatten 2D feature map feat = feat.permute((0,2,1)) feat = feat + self.pe[:, :feat.size(1)] # pe 1*5000*512 return self.dropout(feat) def init_weights(self): pass ``` #### File: textrecog/layers/context_block.py ```python import torch from torch import nn class ContextBlock(nn.Module): def __init__(self, inplanes, ratio, headers, pooling_type='att', att_scale=False, fusion_type='channel_add'): super(ContextBlock, self).__init__() assert pooling_type in ['avg', 'att'] assert fusion_type in ['channel_add', 'channel_mul', 'channel_concat'] assert inplanes % headers == 0 and inplanes >= 8 # inplanes must be divided by headers evenly self.headers = headers self.inplanes = inplanes self.ratio = ratio self.planes = int(inplanes * ratio) self.pooling_type = pooling_type self.fusion_type = fusion_type self.att_scale = False self.single_header_inplanes = int(inplanes / headers) if pooling_type == 'att': self.conv_mask = nn.Conv2d(self.single_header_inplanes, 1, kernel_size=1) self.softmax = nn.Softmax(dim=2) else: self.avg_pool = nn.AdaptiveAvgPool2d(1) if fusion_type == 'channel_add': self.channel_add_conv = nn.Sequential( nn.Conv2d(self.inplanes, self.planes, kernel_size=1), nn.LayerNorm([self.planes, 1, 1]), nn.ReLU(inplace=True), nn.Conv2d(self.planes, self.inplanes, kernel_size=1)) elif fusion_type == 'channel_concat': self.channel_concat_conv = nn.Sequential( nn.Conv2d(self.inplanes, self.planes, kernel_size=1), nn.LayerNorm([self.planes, 1, 1]), nn.ReLU(inplace=True), nn.Conv2d(self.planes, self.inplanes, kernel_size=1)) # for concat self.cat_conv = nn.Conv2d(2 * self.inplanes, self.inplanes, kernel_size=1) elif fusion_type == 'channel_mul': self.channel_mul_conv = nn.Sequential( nn.Conv2d(self.inplanes, self.planes, kernel_size=1), nn.LayerNorm([self.planes, 1, 1]), nn.ReLU(inplace=True), nn.Conv2d(self.planes, self.inplanes, kernel_size=1)) def spatial_pool(self, x): batch, channel, height, width = x.size() if self.pooling_type == 'att': # [N*headers, C', H , W] C = headers * C' x = x.view(batch * self.headers, self.single_header_inplanes, height, width) input_x = x # [N*headers, C', H * W] C = headers * C' # input_x = input_x.view(batch, channel, height * width) input_x = input_x.view(batch * self.headers, self.single_header_inplanes, height * width) # [N*headers, 1, C', H * W] input_x = input_x.unsqueeze(1) # [N*headers, 1, H, W] context_mask = self.conv_mask(x) # [N*headers, 1, H * W] context_mask = context_mask.view(batch * self.headers, 1, height * width) # scale variance if self.att_scale and self.headers > 1: context_mask = context_mask / torch.sqrt(self.single_header_inplanes) # [N*headers, 1, H * W] context_mask = self.softmax(context_mask) # [N*headers, 1, H * W, 1] context_mask = context_mask.unsqueeze(-1) # [N*headers, 1, C', 1] = [N*headers, 1, C', H * W] * [N*headers, 1, H * W, 1] context = torch.matmul(input_x, context_mask) # [N, headers * C', 1, 1] context = context.view(batch, self.headers * self.single_header_inplanes, 1, 1) else: # [N, C, 1, 1] context = self.avg_pool(x) return context def forward(self, x): # [N, C, 1, 1] context = self.spatial_pool(x) out = x if self.fusion_type == 'channel_mul': # [N, C, 1, 1] channel_mul_term = torch.sigmoid(self.channel_mul_conv(context)) out = out * channel_mul_term elif self.fusion_type == 'channel_add': # [N, C, 1, 1] channel_add_term = self.channel_add_conv(context) out = out + channel_add_term else: # [N, C, 1, 1] channel_concat_term = self.channel_concat_conv(context) # use concat _, C1, _, _ = channel_concat_term.shape N, C2, H, W = out.shape out = torch.cat([out, channel_concat_term.expand(-1, -1, H, W)], dim=1) out = self.cat_conv(out) out = nn.functional.layer_norm(out, [self.inplanes, H, W]) out = nn.functional.relu(out) return out ``` #### File: textrecog/recognizer/master.py ```python import torch import torch.nn as nn import torch.nn.functional as F from mmdet.models.builder import DETECTORS, build_backbone, build_loss from mmocr.models.builder import (build_convertor, build_decoder, build_encoder, build_preprocessor) from .encode_decode_recognizer import EncodeDecodeRecognizer @DETECTORS.register_module() class MASTER(EncodeDecodeRecognizer): # need to inherit BaseRecognizer or EncodeDecodeRecognizer in mmocr def __init__(self, preprocessor=None, backbone=None, encoder=None, decoder=None, loss=None, label_convertor=None, train_cfg=None, test_cfg=None, max_seq_len=40, pretrained=None): super(MASTER, self).__init__(preprocessor, backbone, encoder, decoder, loss, label_convertor, train_cfg, test_cfg, max_seq_len, pretrained) def init_weights(self, pretrained=None): for p in self.parameters(): if p.dim()>1: nn.init.xavier_uniform_(p) def forward_train(self, img, img_metas): """ Args: img (tensor): Input images of shape (N, C, H, W). Typically these should be mean centered and std scaled. img_metas (list[dict]): A list of image info dict where each dict contains: 'img_shape', 'filename', and may also contain 'ori_shape', and 'img_norm_cfg'. For details on the values of these keys see :class:`mmdet.datasets.pipelines.Collect`. Returns: dict[str, tensor]: A dictionary of loss components. """ feat = self.extract_feat(img) feat = feat[-1] gt_labels = [img_meta['text'] for img_meta in img_metas] targets_dict = self.label_convertor.str2tensor(gt_labels) out_enc = None if self.encoder is not None: out_enc = self.encoder(feat) out_dec = self.decoder( feat, out_enc, targets_dict, img_metas, train_mode=True) loss_inputs = ( out_dec, targets_dict, img_metas, ) losses = self.loss(*loss_inputs) return losses def simple_test(self, img, img_metas, **kwargs): """Test function with test time augmentation. Args: imgs (torch.Tensor): Image input tensor. img_metas (list[dict]): List of image information. Returns: list[str]: Text label result of each image. """ feat = self.extract_feat(img) feat = feat[-1] out_enc = None if self.encoder is not None: out_enc = self.encoder(feat) out_dec = self.decoder( feat, out_enc, None, img_metas, train_mode=False) label_indexes, label_scores = self.label_convertor.tensor2idx( out_dec, img_metas) label_strings = self.label_convertor.idx2str(label_indexes) # flatten batch results results = [] for string, score in zip(label_strings, label_scores): results.append(dict(text=string, score=score)) return results ``` #### File: PubTabNet-master/examples/utils.py ```python import re from bs4 import BeautifulSoup as bs def format_html(img): ''' Formats HTML code from tokenized annotation of img ''' html_string = '''<html> <head> <meta charset="UTF-8"> <style> table, th, td { border: 1px solid black; font-size: 10px; } </style> </head> <body> <table frame="hsides" rules="groups" width="100%%"> %s </table> </body> </html>''' % ''.join(img['html']['structure']['tokens']) cell_nodes = list(re.finditer(r'(<td[^<>]*>)(</td>)', html_string)) assert len(cell_nodes) == len(img['html']['cells']), 'Number of cells defined in tags does not match the length of cells' cells = [''.join(c['tokens']) for c in img['html']['cells']] offset = 0 for n, cell in zip(cell_nodes, cells): html_string = html_string[:n.end(1) + offset] + cell + html_string[n.start(2) + offset:] offset += len(cell) # prettify the html soup = bs(html_string) html_string = soup.prettify() return html_string if __name__ == '__main__': import json import sys f = sys.argv[1] with open(f, 'r') as fp: annotations = json.load(fp) for img in annotations['images']: html_string = format_html(img) print(html_string) ``` #### File: TableMASTER-mmocr/table_recognition/vote.py ```python import os import glob import pickle def merge_folder_results(result_files): """ merge structure results of once inference folder into a dict. :param result_files: structure results file path of once structure inference. :return: """ new_data = dict() for result_file in result_files: with open(result_file, 'rb') as f: data = pickle.load(f) new_data.update(data) return new_data def vote_structure_by_folder(folders): """ vote structure inference results. The first result must from the best single model. :param folder: folders is a list of structure inference result. :return: """ # get vote data dictionary vote_data_dict = dict() for folder in folders: search_folder = os.path.join(folder, 'structure_master_results_*.pkl') result_files = glob.glob(search_folder) results = merge_folder_results(result_files) for filename in results.keys(): if filename not in vote_data_dict.keys(): vote_data_dict.setdefault(filename, [results[filename]]) else: vote_data_dict[filename].append(results[filename]) # vote, support 3 result vote. final_result_dict = dict() for filename in vote_data_dict.keys(): vote_data = vote_data_dict[filename] vote_result_dict = dict() # vote details if vote_data[1]['text'] == vote_data[2]['text']: vote_result_dict['text'] = vote_data[1]['text'] vote_result_dict['score'] = vote_data[1]['score'] vote_result_dict['bbox'] = vote_data[1]['bbox'] print(filename) # print the filename, whose voted result not from the best accuracy model. else: vote_result_dict['text'] = vote_data[0]['text'] vote_result_dict['score'] = vote_data[0]['text'] vote_result_dict['bbox'] = vote_data[0]['bbox'] final_result_dict[filename] = vote_result_dict return final_result_dict if __name__ == "__main__": folders = [ '/result/structure_master_single_model_inference_result1/', '/result/structure_master_single_model_inference_result2/', '/result/structure_master_single_model_inference_result3/', ] final_result_dict = vote_structure_by_folder(folders) save_path = 'structure_master_results.pkl' with open(save_path, 'wb') as f: pickle.dump(final_result_dict, f) ```
{ "source": "jessmorecroft/Exchange", "score": 2 }
#### File: jessmorecroft/Exchange/benchmark.py ```python import sys import os import timeit import gzip import shutil import glob import datetime import statistics # The Azure pipeline for each solution is required to publish a flattened artifact named like the following examples: # # Part 1/cpp_solution -> part_1_cpp_solution # Part 1/csharp_solution -> part_1_csharp_solution # # The Benchmark pipelines will extract these artifacts and then run this script. # # The artifact directory must contain a script or executable called 'runner' that will execute the program. This # just simplifies this script so it does not need to know the vagaries of running executables for different languages. def usage(): print(sys.argv[0] + ' <directory> <prefix> <iterations> input...') if len(sys.argv) < 4: usage() sys.exit(1) directory = sys.argv[1] prefix = sys.argv[2] iterations = int(sys.argv[3]) input_files = sys.argv[4:] if iterations <= 0 or len(input_files) == 0: usage() sys.exit(1) def line_count(file): with open(file) as f: for i, _ in enumerate(f): pass return i + 1 def uncompress(input): if not input.endswith('.gz'): return input output = input[:-3] with gzip.open(input, 'rb') as f_in: with open(output, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) return output results = {} for input in input_files: input = uncompress(input) order_count = line_count(input) results[order_count] = [] for solution in os.listdir(directory): if not os.path.isdir(os.path.join(directory, solution)): continue if not solution.startswith(prefix): continue runner = os.path.relpath(os.path.join(directory, solution, 'runner')) if not os.path.exists(runner): continue input_file = os.path.realpath(input) working_directory = os.path.realpath(os.path.join(directory, solution)) output_file = os.path.realpath(os.path.join(working_directory, 'trades')) for solution_file in glob.glob(os.path.join(working_directory, '*')): os.chmod(solution_file, 0o755) command = "subprocess.run(['./runner < {} > {}'], shell=True, cwd='{}')".format(input_file, output_file, working_directory) try: # TODO - support an exlusion file so we don't hard code this. if solution.find('python') >= 0 or solution.find('swift') >= 0: # These solutions are too slow for the big file and relatively slow on # the small file. Because the comparison with other solutions isn't as important # we don't care so much about the validity of the results. if order_count > 100000: continue actual_iterations = 1 else: actual_iterations = iterations result = timeit.repeat(stmt = command, setup = "import subprocess", number = 1, repeat = actual_iterations) if not os.path.exists(output_file): continue results[order_count].append((solution, statistics.median(result), line_count(output_file))) except Exception as ex: print(str(ex)) continue def human_format(num): magnitude = 0 while abs(num) >= 1000: magnitude += 1 num /= 1000 return '{}{}'.format(int(num), ['', 'K', 'M', 'G', 'T', 'P'][magnitude]) languages = { "cpp" : "C++", "csharp" : "C#", "fsharp" : "F#", "rust" : "Rust", "go" : "Go", "swift" : "Swift", "java" : "Java", "python" : "Python", "cython" : "Cython", "c" : "C" } def language(solution): name = solution.split('_')[2] try: return languages[name] except KeyError: return name for order_count, solutions in results.items(): solutions.sort(key=lambda solution: solution[1]) print('||{} orders|trades|'.format(human_format(order_count))) print('-|:-:|:-:|') for solution in solutions: time = str(datetime.timedelta(seconds=solution[1])) print('|{}|{}|{}|'.format(language(solution[0]), time, solution[2])) print("\n") ``` #### File: part_2/python_solution/test_orderbook.py ```python import unittest import Exchange class TestOrderBook(unittest.TestCase): def test_create(self): o = Exchange.OrderBook("AUDUSD") self.assertEqual(o.instrument, "AUDUSD") self.assertEqual(o.buys, []) self.assertEqual(o.sells, []) def test_append(self): b = Exchange.OrderBook("AUDUSD") b.append("A", "100", "1.47") self.assertEqual(len(b.buys), 1) self.assertEqual(len(b.sells), 0) self.assertEqual(b.buys[0].qty, 100) def test_append_sell(self): b = Exchange.OrderBook("AUDUSD") b.append("A", "-100", "1.47") self.assertEqual(len(b.buys), 0) self.assertEqual(len(b.sells), 1) self.assertEqual(b.sells[0].qty, 100) class TestSorting(unittest.TestCase): def test_append_sort_buy_inorder(self): b = Exchange.OrderBook("AUDUSD") b.append("A", "100", "1.47") b.append("A", "200", "1.47") self.assertEqual(len(b.buys), 2) self.assertEqual(len(b.sells), 0) # remember, first element is top of book self.assertEqual(b.buys[0].qty, 100) self.assertEqual(b.buys[1].qty, 200) def test_append_sort_sell_inorder(self): b = Exchange.OrderBook("AUDUSD") b.append("A", "-100", "1.47") b.append("A", "-200", "1.47") self.assertEqual(len(b.sells), 2) self.assertEqual(len(b.buys), 0) # remember, first element is top of book self.assertEqual(b.sells[0].qty, 100) self.assertEqual(b.sells[1].qty, 200) def test_append_sort_buy_rev(self): b = Exchange.OrderBook("AUDUSD") b.append("A", "200", "1.48") b.append("A", "100", "1.47") self.assertEqual(len(b.buys), 2) self.assertEqual(len(b.sells), 0) # for buys, first element has highest price self.assertEqual(b.buys[0].qty, 200) self.assertEqual(b.buys[1].qty, 100) def test_append_sort_sell_rev(self): b = Exchange.OrderBook("AUDUSD") b.append("A", "-200", "1.48") b.append("A", "-100", "1.47") self.assertEqual(len(b.sells), 2) self.assertEqual(len(b.buys), 0) # for sells, first element has lowest price self.assertEqual(b.sells[0].qty, 100) self.assertEqual(b.sells[1].qty, 200) class TestMatch(unittest.TestCase): def test_not_overlapped(self): b = Exchange.OrderBook("AUDUSD") b.append("A", "200", "1.46") b.append("A", "-100", "1.47") self.assertEqual(b.match(), []) def test_same_size(self): b = Exchange.OrderBook("AUDUSD") b.append("A", "100", "1.48") b.append("A", "-100", "1.47") # Overlap, price is the first entry in the book tlist = b.match() self.assertEqual(len(tlist), 1) self.assertEqual(str(tlist[0]), "A:A:AUDUSD:100:1.48") # check that the books have been updated self.assertEqual(len(b.sells), 0) self.assertEqual(len(b.buys), 0) def test_buy_bigger(self): b = Exchange.OrderBook("AUDUSD") b.append("A", "200", "1.48") b.append("A", "-100", "1.47") # Overlap, price is the first entry in the book tlist = b.match() self.assertEqual(len(tlist), 1) self.assertEqual(str(tlist[0]), "A:A:AUDUSD:100:1.48") # check that the books have been updated self.assertEqual(len(b.sells), 0) self.assertEqual(len(b.buys), 1) # buy should have 100 shs left self.assertEqual(b.buys[0].qty, 100) def test_sell_bigger(self): b = Exchange.OrderBook("AUDUSD") b.append("A", "100", "1.48") b.append("A", "-200", "1.47") # Overlap, price is the first entry in the book tlist = b.match() self.assertEqual(len(tlist), 1) self.assertEqual(str(tlist[0]), "A:A:AUDUSD:100:1.48") # check that the books have been updated self.assertEqual(len(b.sells), 1) self.assertEqual(len(b.buys), 0) # sell should have 100 shs left self.assertEqual(b.sells[0].qty, 100) if __name__ == "__main__": unittest.main() ``` #### File: part_2/python_solution/test_trade.py ```python import unittest import Exchange class TestTrade(unittest.TestCase): def test_create(self): t = Exchange.Trade('Buyer', 'Seller', 'BHP', 100, 2.34) self.assertEqual(t.buyer, 'Buyer') self.assertEqual(t.seller, 'Seller') self.assertEqual(t.instrument, 'BHP') self.assertEqual(t.qty,100) self.assertEqual(t.price, 2.34) def test_str(self): t = Exchange.Trade('Buyer', 'Seller', 'BHP', 100, 2.34) self.assertEqual(str(t), "Buyer:Seller:BHP:100:2.34") if __name__ == "__main__": unittest.main() ```
{ "source": "jessmos/MEDIS", "score": 2 }
#### File: MEDIS/Annulus Pipeline/Graphing Pipeline.py ```python import os import matplotlib.pyplot as plt import numpy as np import tables as pt from matplotlib.colors import LogNorm, SymLogNorm from skimage.util import img_as_ubyte from skimage.util import invert from skimage import color from skimage import io from numpy import inf #import optics as opx #c=os.chdir('C:/Users/jessm/PycharmProjects') #print(c) import sys sys.path.append("C:/Users/jessm/OneDrive/Documents/Coding/proper_v3.2.3_python_3.x") def open_obs_sequence_hdf5(obs_seq_file='hyper.h5'): """opens existing obs sequence .h5 file and returns it""" # hdf5_path = "my_data.hdf5" read_hdf5_file = pt.open_file(obs_seq_file, mode='r') # Here we slice [:] all the data back into memory, then operate on it obs_sequence = read_hdf5_file.root.data[:] # hdf5_clusters = read_hdf5_file.root.clusters[:] read_hdf5_file.close() return obs_sequence def cpx_to_intensity(data_in): """ converts complex data to units of intensity WARNING: if you sum the data sequence over object or wavelength with simple case of np.sum(), must be done AFTER converting to intensity, else results are invalid """ return np.abs(data_in)**2 def crop_center(img): y,x = img.shape if img.shape[0]<img.shape[1]: cropx=img.shape[0] startx = x//2-(cropx//2) return img[:,startx:startx+cropx] elif img.shape[1]<img.shape[0]: cropy=img.shape[1] starty = y//2-(cropy//2) return img[starty:starty+cropy,:] else : print("it is already a cube") return img """you have to put in the path to your own file""" rebinned = open_obs_sequence_hdf5('C:/Users/jessm/.spyder-py3/MEDIS_spy/rebinned_cube5e8.h5') #C:\Users\jessm\.spyder-py3\MEDIS_spy\ savename='np_rebinned5e8' """looking at fields""" fields0 = open_obs_sequence_hdf5('C:/Users/jessm/.spyder-py3/MEDIS_spy/fields5e8.h5') fields=fields0.astype(float) #h5 file=complex image #'timesteps', 'save planes', 'wavelengths', 'astronomical bodies', 'x', 'y' print("Fields shape", fields.shape) focal_sun=rebinned[0,-1,:,:] focal_planet=fields[0,-1,:,:,:,:] print("focal planet shape", focal_planet.shape) print("rebinned cube shape", rebinned.shape) #FOR REBINNED CUBE #-no object or plane axis #-rectangle """plotting fields""" fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111) #cax = ax.imshow(np.sum(focal_planet, axis=(0,1)), vmin=1e-9, vmax=1e-4, origin='lower', norm=SymLogNorm(1e-10)) cax = ax.imshow(np.sum(cpx_to_intensity(focal_planet), axis=(0,1)), origin='lower', norm=LogNorm(vmin=1e-7, vmax=1e-3), cmap = "YlGnBu_r") plt.title("Star and Planet Broadband - Unresolved Ringing") plt.xlabel("X Coordinates") plt.ylabel("Y Coordinates") cb = plt.colorbar(cax) plt.show() """cropping rebinned cube into cube""" #print(crop_rebinned.shape) rebinsum= np.sum(rebinned, axis=(0,1)) print("this is before cropping \n rebinned sum =", rebinsum.shape) rebinsum=crop_center(rebinsum) print("this is after cropping \n rebinned sum =", rebinsum.shape) """plotting lognorm rebinned cube""" fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111) #cax=ax.imshow(np.sum(rebinned)) cax = ax.imshow(rebinsum, origin='lower', norm=SymLogNorm(1e-10,vmin=1e-1, base=np.e), cmap = "YlGnBu_r") #SymLogNorm values were hand selected #Symlognorm only uses positive values, but thats ok because we only have positive values plt.title("Rebinned Cube") plt.xlabel("X Coordinates") plt.ylabel("Y Coordinates") cb = plt.colorbar(cax) plt.show() """log normalizing from 0 to 1""" x=np.log(rebinsum) print("max", np.amax(x), "min", np.amin(x)) x[x == -inf] = 0 normalized = (x-np.amin(x))/(np.amax(x)-np.amin(x)) imguint= np.array(normalized*65535, dtype=np.uint16) #img=img/10 img= np.array(normalized, dtype=np.float32) #print(img) print("log normalized max=", np.amax(img), "log normalized min=", np.amin(img)) """The log normalized rebinned cube image is saved in uint16 form (inferior) for use in the Refined Otsu Pipeline, and also saved in float32 form (superior) for use in the Intensity file.""" np.save(savename+'uint', imguint) np.save(savename, img) """plotting""" fig, axes = plt.subplots(1, 2, figsize=(8, 5), sharex=True, sharey=True) ax = axes.ravel() ary=ax[0].imshow(imguint, origin='lower', cmap=plt.cm.gray) ax[0].set_title('Log Normalized in uint16') plt.colorbar(ary, ax=ax[0], fraction=0.046, pad=0.04) imgplt=ax[1].imshow(img, origin='lower', cmap=plt.cm.gray) ax[1].set_title('Log Normalized in float32') plt.colorbar(imgplt, ax=ax[1], fraction=0.046, pad=0.04) plt.show() """plotting again""" fig, axes = plt.subplots(1, 2, figsize=(8, 5), sharex=True, sharey=True) ax = axes.ravel() ary=ax[0].imshow(rebinsum, origin='lower', cmap=plt.cm.gray) ax[0].set_title('Rebinned Cube') plt.colorbar(ary, ax=ax[0], fraction=0.046, pad=0.04) imgplt=ax[1].imshow(img, origin='lower', cmap=plt.cm.gray) ax[1].set_title('Log Normalized Rebinned Cube') plt.colorbar(imgplt, ax=ax[1], fraction=0.046, pad=0.04) plt.show() fig.savefig('dither12.png', dpi=100) plt.show() """creating an image to save""" fig = plt.figure(frameon=False, figsize=(5.12, 5.12),dpi=100) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) cax = ax.imshow(img, origin='lower', cmap = "YlGnBu_r") fig.savefig('rebinnedgraph.png', dpi=100) plt.show() ``` #### File: MEDIS/Annulus Pipeline/Table Inpaint.py ```python import os import matplotlib.pyplot as plt import numpy as np from astropy.table import QTable, Table, Column from astropy import units as u dimage=np.load('np_align30.npy') dthresh=np.load('thresh_a30.npy') dtable=np.load('table_a30.npy') #reimage=np.load('np_rebinned5e7.npy') #rethresh=np.load('thresh5e7.npy') #retable=np.load('table5e7.npy') reimage=np.load('inpaint_a30.npy') rethresh=np.load('thresh_inpaint_a30.npy') retable=np.load('table_inpaint_a30.npy') print(dtable.shape, retable.shape) """plot""" fig, axes = plt.subplots(2, 2, figsize=(10,10), sharex=False, sharey=False) ax = axes.ravel() ary=ax[0].imshow(dimage, origin='lower', cmap = "YlGnBu_r") ax[0].set_title('Temporal Cube Slice of MEC Image') plt.colorbar(ary, ax=ax[0], fraction=0.046, pad=0.04) imgplt=ax[1].imshow(dimage*dthresh, origin='lower', cmap = "YlGnBu_r") ax[1].set_title('Masked Temporal MEC Image \nOnly Speckles') plt.colorbar(imgplt, ax=ax[1], fraction=0.046, pad=0.04) ary=ax[2].imshow(reimage, origin='lower', cmap = "YlGnBu_r") ax[2].set_title('Inpainted MEC Image') plt.colorbar(ary, ax=ax[2], fraction=0.046, pad=0.04) imgplt=ax[3].imshow(reimage*rethresh, origin='lower', cmap = "YlGnBu_r") ax[3].set_title('Masked Inpainted MEC Image \nOnly Speckles') plt.colorbar(imgplt, ax=ax[3], fraction=0.046, pad=0.04) plt.show() """table""" middle=np.array([0,0,0,0]) retable=np.vstack((np.round(retable, decimals=2))) dtable=np.vstack((np.round(dtable, decimals=2))) #print(np.hstack([dname,rename])) def reshape_rows(array1, array2): if array1.shape[0] > array2.shape[0]: resizea2=array2.copy() resizea2.resize(array1.shape[0], array2.shape[1]) reshaped=np.hstack([array1, resizea2]) return(reshaped) if array1.shape[0] < array2.shape[0]: resizea1=array1.copy() resizea1.resize(array2.shape[0], array1.shape[1]) reshaped=np.hstack([resizea1,array2]) return(reshaped) else: reshaped=np.hstack([array1, array2]) return(reshaped) sidebyside=reshape_rows(retable, dtable) show=Table(sidebyside, names=('Pixels', 'Speckles', 'Percent', 'Intensity', 'InPixels', 'InSpeckles', 'InPercent', 'InAvg Intensity')) show.pprint_all() ``` #### File: MEDIS/medis/utils.py ```python import numpy as np from inspect import getframeinfo, stack import pickle import tables as pt import astropy.io.fits as afits from medis.params import sp, ap, tp, iop def dprint(*message, path_display=-3): """ prints location of code where message is printed from >>> dprint('foo', 5000, (), np.arange(9).reshape(3,3)) MEDIS++/medis/optics.py:173 - lol, 5000, (), [[0 1 2] [3 4 5] [6 7 8]] path_to_display : integer number of folders back from the module location to display in printed statement """ caller = getframeinfo(stack()[1][0]) message_str = '' for mess in message: message_str += f'{mess}, ' message_str = message_str[:-2] reduced_filename = '/'.join(caller.filename.split('/')[path_display:]) print("%s:%d - %s" % (reduced_filename, caller.lineno, message_str)) def phase_cal(wavelengths): """Wavelength in nm""" phase = tp.wavecal_coeffs[0] * wavelengths + tp.wavecal_coeffs[1] return phase #################################################################################################### # Functions Relating to Reading, Loading, and Saving Data # #################################################################################################### def save_to_disk_sequence(obs_sequence, obs_seq_file='obs_seq.pkl'): """saves obs sequence as a .pkl file :param obs_sequence- Observation sequence, 6D data structure :param obs_seq_file- filename for saving, including directory tree """ #dprint((obs_seq_file, obs_seq_file[-3:], obs_seq_file[-3:] == '.h5')) if obs_seq_file[-3:] == 'pkl': with open(obs_seq_file, 'wb') as handle: pickle.dump(obs_sequence, handle, protocol=pickle.HIGHEST_PROTOCOL) elif obs_seq_file[-3:] == 'hdf' or obs_seq_file[-3:] == '.h5': f = pt.open_file(obs_seq_file, 'w') ds = f.create_array(f.root, 'data', obs_sequence) f.close() else: dprint('Extension not recognised') def check_exists_obs_sequence(plot=False): """ This code checks to see if there is already an observation sequence saved with the output of the run in the location specified by the iop. :return: boolean flag if it can find a file or not """ import os if os.path.isfile(iop.obs_seq): dprint(f"File already exists at {iop.obs_seq}") return True else: return False def open_obs_sequence(obs_seq_file='params.pkl'): """opens existing obs sequence .pkl file and returns it""" with open(obs_seq_file, 'rb') as handle: obs_sequence =pickle.load(handle) return obs_sequence def open_obs_sequence_hdf5(obs_seq_file='fields.h5'): """opens existing obs sequence .h5 file and returns it""" read_hdf5_file = pt.open_file(obs_seq_file, mode='r') # Here we slice [:] all the data back into memory, then operate on it obs_sequence = read_hdf5_file.root.data[:] # hdf5_clusters = read_hdf5_file.root.clusters[:] read_hdf5_file.close() return obs_sequence def pretty_sequence_shape(cpx_sequence): """ displays data format easier :param cpx_sequence: the 6D complex sequence generated by run_medis.telescope :return: nicely parsed string of 6D shape--human readable output """ if len(np.shape(cpx_sequence)) == 6: samps = ['timesteps', 'save planes', 'wavelengths', 'astronomical bodies', 'x', 'y'] delim = ', ' print(f"Shape of cpx_sequence = " f"{delim.join([samp + ':' + str(length) for samp, length in zip(samps, np.shape(cpx_sequence))])}") else: print(f'Warning cpx_sequence is not 6D as intended by this function. Shape of sequence =' f' {cpx_sequence.shape}') #################################################################################################### # Functions Relating to Reading, Loading, and Saving Images # #################################################################################################### def saveFITS(image, name='test.fit'): header = afits.Header() header["PIXSIZE"] = (0.16, " spacing in meters") hdu = afits.PrimaryHDU(image, header=header) hdu.writeto(name) def readFITS(filename): """ reads a fits file and returns data fields only :param filename: must specify full filepath """ hdulist = afits.open(filename) header = hdulist[0].header scidata = hdulist[0].data return scidata def clipped_zoom(img, zoom_factor, **kwargs): from scipy.ndimage import zoom h, w = img.shape[:2] # For multichannel images we don't want to apply the zoom factor to the RGB # dimension, so instead we create a tuple of zoom factors, one per array # dimension, with 1's for any trailing dimensions after the width and height. zoom_tuple = (zoom_factor,) * 2 + (1,) * (img.ndim - 2) # Zooming out if zoom_factor < 1: # Bounding box of the zoomed-out image within the output array zh = int(np.round(h * zoom_factor)) zw = int(np.round(w * zoom_factor)) top = (h - zh) // 2 left = (w - zw) // 2 # Zero-padding out = np.zeros_like(img) out[top:top+zh, left:left+zw] = zoom(img, zoom_tuple, **kwargs) # Zooming in elif zoom_factor > 1: # Bounding box of the zoomed-in region within the input array zh = int(np.round(h / zoom_factor)) zw = int(np.round(w / zoom_factor)) top = (h - zh) // 2 left = (w - zw) // 2 from medis.Utils.plot_tools import quicklook_im out = zoom(img[top:top+zh, left:left+zw], zoom_tuple, **kwargs) # quicklook_im(out, logZ=True) # `out` might still be slightly larger than `img` due to rounding, so # trim off any extra pixels at the edges trim_top = ((out.shape[0] - h) // 2) trim_left = ((out.shape[1] - w) // 2) # print top, zh, left, zw # print out.shape[0], trim_top, h, trim_left, w if trim_top < 0 or trim_left < 0: temp = np.zeros_like(img) temp[:out.shape[0],:out.shape[1]] = out out = temp else: out = out[trim_top:trim_top+h, trim_left:trim_left+w] # quicklook_im(out, logZ=False) # If zoom_factor == 1, just return the input array else: out = img # import matplotlib.pyplot as plt # plt.hist(out.flatten(), bins =100, alpha =0.5) # plt.hist(img.flatten(), bins =100, alpha=0.5) # plt.show() # print(np.sum(img), np.sum(out)) # out = out*np.sum(img)/np.sum(out) # out = out*4 return out ``` #### File: simulations/Subaru/Subaru_SCExAO.py ```python import numpy as np from inspect import getframeinfo, stack import proper from medis.params import iop, sp, ap, tp from medis.utils import dprint import medis.optics as opx import medis.aberrations as aber import medis.adaptive as ao import medis.atmosphere as atmos import medis.coronagraphy as cg ################################################################################################# ################################################################################################# ################################################################################################# # iop.update_testname('SCExAO-dummy-save') # Defining Subaru parameters # ---------------------------- # According to Iye-et.al.2004-Optical_Performance_of_Subaru:AstronSocJapan, the AO188 uses the IR-Cass secondary, # but then feeds it to the IR Nasmyth f/13.6 focusing arrangement. So instead of simulating the full Subaru system, # we can use the effective focal length at the Nasmyth focus, and simulate it as a single lens. tp.d_nsmyth = 7.9716 # m pupil diameter tp.fn_nsmyth = 13.612 # f# Nasmyth focus tp.flen_nsmyth = tp.d_nsmyth * tp.fn_nsmyth # m focal length tp.dist_nsmyth_ao1 = tp.flen_nsmyth + 1.14 # m distance secondary to M1 of AO188 (hand-tuned, could update with # data from literature) # Below are the actual dimenstions of the Subaru telescope. # -------------------------------- # tp.enterence_d = 8.2 # m diameter of primary # tp.flen_primary = 15 # m focal length of primary # tp.dist_pri_second = 12.652 # m distance primary -> secondary # Secondary tp.d_secondary = 1.265 # m diameter secondary, used for central obscuration # tp.fn_secondary = 12.6 # Re-writing params terms in Subaru-units # need this to accurately make atmospheric and aberration maps tp.entrance_d = tp.d_nsmyth tp.flen_primary = tp.flen_nsmyth # ---------------------------- # AO188 DM tp.act_woofer = 15 # approximately a 188 DM (14*14=169) but then we include +2 pixels because the dm map is oversized # by 2 pixels around the edge of the array # ---------------------------- # AO188 OAP1 # Paramaters taken from "Design of the Subaru laser guide star adaptive optics module" # <NAME> et. al. SPIE doi: 10.1117/12.551032 tp.d_ao1 = 0.20 # m diamater of AO1 tp.fl_ao1 = 1.201 # m focal length OAP1 tp.dist_ao1_dm = 1.345 # m distance OAP1 to DM # ---------------------------- # AO188 OAP2 tp.dist_dm_ao2 = 2.511-tp.dist_ao1_dm # m distance DM to OAP2 tp.d_ao2 = 0.2 # m diamater of AO2 tp.fl_ao2 = 1.201 # m focal length AO2 tp.dist_oap2_focus = 1.261 # ------------------------------ # SCExAO # These params aren't actually working, so just doing very basic, 4F optical systems until further notice tp.d_tweeter = 0.051 # diameter of optics in SCExAO train are 2 inches=0.051 m tp.act_tweeter = 50 # SCExAO actuators are 50x50=2500 actuators tp.fl_SxOAPG = 0.255 # m focal length of Genera SCExAO lens (OAP1,3,4,5) tp.fl_SxOAP2 = 0.519 # m focal length of SCExAO OAP 2 tp.d_SxOAPG = 0.051 # diameter of SCExAO OAP's # tp.dist_cg_sl1 = tp.fl_SxOAPG + .000001 # m distance between AO188 focus and scexao lens1 tp.dist_SxOAP1_scexao = 0.1345 # m tp.dist_scexao_sl2 = 0.2511 - tp.dist_SxOAP1_scexao # m tp.dist_sl2_focus = 0.1261 # m tp.lens_params = [{'aber_vals': [7.2e-17, 0.8, 3.1], 'diam': tp.entrance_d, 'fl': tp.flen_nsmyth, 'dist': tp.dist_nsmyth_ao1, 'name': 'effective-primary'}, {'aber_vals': [7.2e-17, 0.8, 3.1], 'diam': tp.d_ao1, 'fl': tp.fl_ao1, 'dist': tp.dist_ao1_dm, 'name': 'ao188-OAP1'}, {'aber_vals': [7.2e-17, 0.8, 3.1], 'diam': tp.d_ao2, 'fl': tp.fl_ao2, 'dist': tp.dist_oap2_focus, 'name': 'ao188-OAP2'}, {'aber_vals': [7.2e-17, 0.8, 3.1], 'diam': tp.d_SxOAPG, 'fl': tp.fl_SxOAPG, 'dist': tp.fl_SxOAPG, 'name': 'SxOAPG'}, {'aber_vals': [7.2e-17, 0.8, 3.1], 'diam': tp.d_SxOAPG, 'fl': tp.fl_SxOAP2, 'dist': tp.fl_SxOAP2, 'name': 'SxOAP2'} ] # ------------------------------ # Coronagraph tp.cg_type = 'Gaussian' tp.cg_size = 2 # physical size or lambda/D size tp.cg_size_units = "l/D" # "m" or "l/D" # tp.fl_cg_lens = 0.1021 # m tp.fl_cg_lens = tp.fl_SxOAPG tp.lyot_size = 0.9 # units are in fraction of surface blocked ################################################################################################# ################################################################################################# ################################################################################################# def Subaru_SCExAO(empty_lamda, grid_size, PASSVALUE): """ propagates instantaneous complex E-field thru Subaru from the primary through SCExAO this function is called a 'prescription' by proper uses PyPROPER3 to generate the complex E-field at the source, then propagates it through atmosphere, then telescope, to the focal plane the AO simulator happens here this does not include the observation of the wavefront by the detector :returns spectral cube at instantaneous time in the focal_plane() """ # print("Propagating Broadband Wavefront Through Subaru") # Initialize the Wavefront in Proper wfo = opx.Wavefronts(sp.debug) wfo.initialize_proper() # Atmosphere # atmos has only effect on phase delay, not intensity wfo.loop_collection(atmos.add_atmos, PASSVALUE['iter'], plane_name='atmosphere') # Defines aperture (baffle-before primary) # wfo.loop_collection(opx.add_obscurations, d_primary=tp.entrance_d, d_secondary=tp.d_secondary, legs_frac=0.05) wfo.loop_collection(opx.SubaruPupil, plane_name='SubaruPupil') wfo.loop_collection(proper.prop_circular_aperture, **{'radius': tp.entrance_d / 2}) # clear inside, dark outside wfo.loop_collection(proper.prop_define_entrance, plane_name='entrance_pupil') # normalizes abs intensity if ap.companion: # Must do this after all calls to prop_define_entrance wfo.loop_collection(opx.offset_companion) wfo.loop_collection(proper.prop_circular_aperture, **{'radius': tp.entrance_d / 2}) # clear inside, dark outside # Test Sampling if sp.verbose: wfo.loop_collection(opx.check_sampling, PASSVALUE['iter'], "Telescope Aperture", getframeinfo(stack()[0][0]), units='mm') # Testing Primary Focus (instead of propagating to focal plane) # wfo.loop_collection(opx.prop_pass_lens, tp.flen_nsmyth, tp.flen_nsmyth) # test only going to prime focus ######################################## # Subaru Propagation ####################################### # Effective Primary # CPA from Effective Primary wfo.loop_collection(aber.add_aber, step=PASSVALUE['iter'], lens_name='effective-primary') # high order wfo.loop_collection(aber.add_zern_ab, tp.zernike_orders, aber.randomize_zern_values(tp.zernike_orders)) # low order wfo.loop_collection(opx.prop_pass_lens, tp.flen_nsmyth, tp.dist_nsmyth_ao1) ######################################## # AO188 Propagation ######################################## # # AO188-OAP1 wfo.loop_collection(aber.add_aber, step=PASSVALUE['iter'], lens_name='ao188-OAP1') # high order wfo.loop_collection(opx.prop_pass_lens, tp.fl_ao1, tp.dist_ao1_dm) # AO System if tp.use_ao: WFS_map = ao.open_loop_wfs(wfo) wfo.loop_collection(ao.deformable_mirror, WFS_map, PASSVALUE['iter'], apodize=True, plane_name='woofer', debug=sp.verbose) # don't use PASSVALUE['WFS_map'] here because open loop # ------------------------------------------------ wfo.loop_collection(proper.prop_propagate, tp.dist_dm_ao2) # AO188-OAP2 wfo.loop_collection(aber.add_aber, step=PASSVALUE['iter'], lens_name='ao188-OAP2') # high order CPA wfo.loop_collection(aber.add_zern_ab, tp.zernike_orders, aber.randomize_zern_values(tp.zernike_orders)/2) # low order CPA wfo.loop_collection(opx.prop_pass_lens, tp.fl_ao2, tp.dist_oap2_focus) ######################################## # SCExAO # ####################################### # SXExAO Reimaging 1 wfo.loop_collection(aber.add_aber, step=PASSVALUE['iter'], lens_name='SxOAPG') # high order CPA wfo.loop_collection(proper.prop_propagate, tp.fl_SxOAPG) # from AO188 focus to S-OAP1 wfo.loop_collection(opx.prop_pass_lens, tp.fl_SxOAPG, tp.fl_SxOAPG) # from SxOAP1 to tweeter-DM # # AO System if tp.use_ao: # WFS_map = ao.open_loop_wfs(wfo) wfo.loop_collection(ao.deformable_mirror, WFS_map, PASSVALUE['iter'], apodize=True, plane_name='tweeter', debug=sp.verbose) # ------------------------------------------------ wfo.loop_collection(proper.prop_propagate, tp.fl_SxOAPG) # from tweeter-DM to OAP2 # SXExAO Reimaging 2 wfo.loop_collection(aber.add_aber, step=PASSVALUE['iter'], lens_name='SxOAP2') # high order NCPA wfo.loop_collection(aber.add_zern_ab, tp.zernike_orders, aber.randomize_zern_values(tp.zernike_orders)/2) # low order NCPA wfo.loop_collection(opx.prop_pass_lens, tp.fl_SxOAP2, tp.fl_SxOAP2, plane_name='post-DM-focus') #tp.dist_sl2_focus # wfo.loop_collection(opx.check_sampling, PASSVALUE['iter'], "post-DM-focus", # getframeinfo(stack()[0][0]), units='nm') # Coronagraph # settings should be put into tp, and are not implicitly passed here wfo.loop_collection(cg.coronagraph, occulter_mode=tp.cg_type, plane_name='coronagraph') ######################################## # Focal Plane # ####################################### # Check Sampling in focal plane # wfo.focal_plane fft-shifts wfo from Fourier Space (origin==lower left corner) to object space (origin==center) cpx_planes, sampling = wfo.focal_plane() if sp.verbose: wfo.loop_collection(opx.check_sampling, PASSVALUE['iter'], "focal plane", getframeinfo(stack()[0][0]), units='nm') # opx.check_sampling(PASSVALUE['iter'], wfo, "focal plane", getframeinfo(stack()[0][0]), units='arcsec') if sp.verbose: print(f"Finished datacube at timestep = {PASSVALUE['iter']}") return cpx_planes, sampling ```
{ "source": "jesson20121020/myRobot", "score": 3 }
#### File: jesson20121020/myRobot/AliceAutoReply.py ```python import aiml import os import AutoReplyBase _instance = None def instance(): global _instance if _instance == None: _instance = AliceAutoReply() return _instance # 英文自动回复提供方 Alice class AliceAutoReply(AutoReplyBase.AutoReplyBase): def __init__(self): super(AliceAutoReply, self).__init__() cur_dir = os.getcwd() os.chdir('./alice') self.alice = aiml.Kernel() self.alice.setBotPredicate("name", "Alice") self.alice.learn("startup.xml") a = self.alice.respond('LOAD ALICE') os.chdir(cur_dir) def respond(self, uid, msg): result = self.alice.respond(msg) print ' ROBOT:', result return True, result # print instance().respond('', 'hello') ``` #### File: jesson20121020/myRobot/QQChatbot.py ```python from qqbot import QQBot class MyQQBot(QQBot): def onPollComplete(self, msgType, from_uin, buddy_uin, message): # if message == '-hello': # self.send(msgType, from_uin, '你好,我是QQ机器人') # elif message == '-stop': # self.stopped = True # self.send(msgType, from_uin, 'QQ机器人已关闭') import AutoReplyMgr reply = AutoReplyMgr.instance().auto_reply(str(from_uin), message) self.send(msgType, from_uin, reply) myqqbot = MyQQBot() myqqbot.Login() myqqbot.Run() class MyQQBot2(object): def __init__(self): self.x = 0 def test2(self): pass def test3(self): self.x = 0 def test4(self): import os os.getcwd() ``` #### File: jesson20121020/myRobot/rpycserver.py ```python import sys reload(sys) sys.setdefaultencoding('utf-8') import os, commands, glob, re import datetime from rpyc import Service from rpyc.utils.server import ThreadedServer class remote_call_func(Service): def exposed_test(self, output): print output import SpecialServiceMgr print 'xdc::::', SpecialServiceMgr.instance().msg return SpecialServiceMgr.instance().msg def exposed_reload(self, module_name): # 热更新 import sys if module_name in sys.modules: module = sys.modules[module_name] reload(module) return 'reload_module successfully' else: return '%s is not exist' % module_name # rpycServer = ThreadedServer(remote_call_func, hostname='localhost', port=11111, auto_register=False) # rpycServer.start() ``` #### File: myRobot/train_system/ticketSearch.py ```python from prettytable import PrettyTable class TrainCollection(object): """解析列车信息""" # 显示车次、出发/到达站、 出发/到达时间、历时、一等坐、二等坐、软卧、硬卧、硬座 header = "序号 车次 出发站/到达站 出发时间/到达时间 历时 商务座 一等座 二等座 软卧 硬卧 硬座 无座".split() def __init__(self,rows,traintypes): self.rows = rows self.traintypes = traintypes def _get_duration(self,row): """获取车次运行的时间""" duration = row.get("lishi").decode('utf-8').replace(":",u"小时") + u"分" if duration.startswith("00"): return duration[4:] elif duration.startswith("0"): return duration[1:] return duration @property def trains(self): result = [] flag = 0 for row in self.rows: if row["station_train_code"][0] in self.traintypes: flag += 1 train = [# 序号 flag,# 车次 row["station_train_code"],# 出发、到达站点 "/".join([row["from_station_name"],row["to_station_name"]]),# 成功、到达时间 "/".join([row["start_time"],row["arrive_time"]]),# duration 时间 self._get_duration(row),# 商务座 row["swz_num"],# 一等座 row["zy_num"],# 二等座 row["ze_num"],# 软卧 row["rw_num"],# 硬卧 row["yw_num"],# 硬座 row["yz_num"],# 无座 row["wz_num"]] result.append(train) return result def print_pretty(self): """打印列车信息""" pt = PrettyTable() pt._set_field_names(self.header) for train in self.trains: pt.add_row(train) print(pt) if __name__ == "__main__": t = TrainCollection() ``` #### File: jesson20121020/myRobot/Utils.py ```python def is_chinese(uchar): """判断一个unicode是否是汉字""" if uchar >= u'\u4e00' and uchar<=u'\u9fa5': return True else: return False # def is_number(uchar): # """判断一个unicode是否是数字""" # if uchar >= u'u0030' and uchar<=u'u0039': # return True # else: # return False def is_number(s): try: float(s) return True except ValueError: pass try: import unicodedata unicodedata.numeric(s) return True except (TypeError, ValueError): pass return False ```
{ "source": "jessonfoo/fELF", "score": 3 }
#### File: fELF/lib/generator.py ```python import glob import importlib import sys from lib.misc import print_info def load_payload(path): try: return importlib.import_module(path) except Exception as e: return False def gather_payloads(payload_dir): payload_to_name = {} for filepath in glob.iglob("{}*.py".format(payload_dir)): payload_import_name = filepath[:-3].replace("/", ".") payload = load_payload(payload_import_name) if payload: try: name = payload.desc["name"].lower() payload_to_name[name] = payload print_info("Loaded Payload: '{}'".format(name), "!") continue except Exception as e: print_info("Error Loading Payload", "-") print_info("Unable to Load: {}".format(payload_import_name), "-") return payload_to_name def generate(executable, is_url, payload_dir, payload_to_use): payloads = gather_payloads(payload_dir) if payloads: if payload_to_use: if payload_to_use in payloads: print_info("Using Payload: '{}'".format(payload_to_use), "!") return payloads[payload_to_use].main(is_url, executable) else: print_info("not found", "-") else: print("-"*20) for name, payload in payloads.items(): info = payload.desc print("Payload Name: '{}'".format(name)) print("\tPayload Description: '{}'".format(info["description"])) print("\tCompatible Architectures: '{}'".format(info["archs"])) print("\tRequired Python Version on Target: {}".format(info["python_vers"])) print("-"*20) while True: choice = input("Choose Payload (Q to Quit)>> ").lower() if choice == "q": break else: if choice in payloads: print_info("Using Payload: '{}'".format(choice), "!") return payloads[choice].main(is_url, executable) else: print_info("Payload Not Found", "-") else: print_info("No Useable Payloads", "-") ``` #### File: jessonfoo/fELF/main.py ```python import argparse import sys from lib.settings import * from lib.generator import * from lib.misc import * class main(object): def parse_args(self, args): parser = argparse.ArgumentParser(description='fireELF, Linux Fileless Malware Generator') parser.add_argument('-s', action="store_true", dest="is_supress_banner", help="Supress Banner", default=False) parser.add_argument('-p', action="store", dest="payload_name", help="Name of Payload to Use") parser.add_argument('-w', action="store", dest="payload_filename", help="Name of File to Write Payload to (Highly Recommended if You're not Using the Paste Site Option)") payload = parser.add_mutually_exclusive_group(required=True) payload.add_argument('-u', action="store", dest="payload_url", help="Url of Payload to be Executed") payload.add_argument('-e', action="store", dest="executable_path", help="Location of Executable") return parser.parse_args(args) def start(self, args): options = self.parse_args(args) if not options.is_supress_banner: banner() payload_to_use = ((options.payload_url, True), (open(options.executable_path, "rb").read(), False))[bool(options.executable_path)] payload = generate(payload_to_use[0], payload_to_use[1], PAYLOAD_DIR, options.payload_name) if payload: print_info("Successfully Created Payload.", "+") reduce_size = input("Miniaturize by Removing New Line Characters? (y/N) ").lower() if reduce_size == "y": payload = miniaturize_payload(payload) upload_payload = input("Upload the Payload to Paste site? (y/N) ").lower() if upload_payload == "y": url = paste_site_upload(payload) if url: payload = "python -c \"import urllib2;exec(urllib2.urlopen('{}').read())\"".format(url) if len(payload) < 150: print_payload = input("Generated and Uploaded Payload is Below 150 Characters in Length, Print? (y/N) ").lower() if print_payload == "y": print("\n{}\n".format(payload)) if options.payload_filename: with open(options.payload_filename, "w") as payload_file: payload_file.write(payload) payload_file.close() print_info("Finished.", "!") if __name__ == '__main__': entry = main() entry.start(sys.argv[1:]) ```
{ "source": "jessrenteria/boggle-solver", "score": 3 }
#### File: boggle-solver/src/anagrammer.py ```python from trie import Trie def makeSeq(seq_file): seq = [] with open(seq_file, 'r') as f: seq = list(map(lambda x: x.upper(), f.read().strip().split())) return seq def getAllWords(seq, t): words = [set() for _ in range(len(seq))] def getAllWordsHelper(used, t, s, idx): used = list(used) used[idx] = True elem = seq[idx] while t != None and elem != "": t = t.getNode(elem[0]) s += elem[0] elem = elem[1:] if t == None: return if t.isWord(): words[len(s) - 1].add(s) for x in range(len(seq)): if not used[x]: getAllWordsHelper(used, t, s, x) used = [False for _ in range(len(seq))] for idx in range(len(seq)): getAllWordsHelper(used, t, "", idx) return words ``` #### File: boggle-solver/src/boggler.py ```python from trie import Trie def makeGrid(grid_file): grid = [] with open(grid_file, 'r') as f: for line in f: line = list(map(lambda x: x.upper(), line.strip().split())) grid.append(line) return grid def getAllWords(grid, t): words = [set() for _ in range(len(grid) * len(grid[0]))] def getAllWordsHelper(used, t, s, r, c): used = [list(used[i]) for i in range(len(used))] used[r][c] = True elem = grid[r][c] while t != None and elem != "": t = t.getNode(elem[0]) s += elem[0] elem = elem[1:] if t == None: return if t.isWord(): words[len(s) - 1].add(s) for y in range(max(0, r - 1), min(len(grid), r + 2)): for x in range(max(0, c - 1), min(len(grid[0]), c + 2)): if not used[y][x]: getAllWordsHelper(used, t, s, y, x) used = [[False] * len(grid[0]) for _ in range(len(grid))] for r in range(len(grid)): for c in range(len(grid[0])): getAllWordsHelper(used, t, "", r, c) return words ``` #### File: boggle-solver/src/solver.py ```python import argparse import time from trie import Trie import anagrammer import boggler def makeTrie(dict_file): tree = Trie() with open(dict_file, 'r') as f: for word in f: tree.addWord(word.strip().upper()) return tree def writeWords(found_file, words): with open (found_file, 'w') as f: for length in range(len(words) - 1, 0, -1): for word in words[length]: f.write(word + '\n') def main(): parser = argparse.ArgumentParser(description="Word Finder") parser.add_argument('dict', type=str, help="a file containing a list of valid words") parser.add_argument('found', type=str, help="a file to dump found words") args = parser.parse_args() print("Making trie...") start = time.time() trie = makeTrie(args.dict) elapsed = time.time() - start print("Made trie in {:.4f} seconds.".format(elapsed)) while True: print("> ", end='') command = input() if command == 'q' or command == "quit" or command == "exit": print("Bye!") break command = command.split() if (len(command) != 2 or (command[0] != "anagrammer" and command[0] != "boggler")): print("Usage: (anagrammer seq_file|boggler grid_file)") continue words = [] print("Finding words...") start = time.time() if command[0] == "anagrammer": seq = anagrammer.makeSeq(command[1]) words = anagrammer.getAllWords(seq, trie) elif command[0] == "boggler": grid = boggler.makeGrid(command[1]) words = boggler.getAllWords(grid, trie) elapsed = time.time() - start print("Found all words in {:.4f} seconds.".format(elapsed)) writeWords(args.found, words) if __name__ == "__main__": main() ```
{ "source": "jessrosenfield/unsupervised-learning", "score": 3 }
#### File: jessrosenfield/unsupervised-learning/vowel-analysis.py ```python import argparse from pprint import pprint from StringIO import StringIO import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from sklearn.cluster import KMeans as KM from sklearn.decomposition import FastICA as ICA from sklearn.decomposition.pca import PCA as PCA from sklearn.feature_selection import SelectKBest as best from sklearn.feature_selection import f_classif from sklearn.mixture import GMM as EM from sklearn.random_projection import GaussianRandomProjection as RandomProjection from sknn.mlp import Classifier, Layer import data_util as util def plot(axes, values, x_label, y_label, title, name): print "plot" + title + name plt.clf() plt.plot(*values) plt.axis(axes) plt.title(title) plt.ylabel(y_label) plt.xlabel(x_label) plt.savefig("plots/v/"+name+".png", dpi=500) # plt.show() plt.clf() def pca(tx, ty, rx, ry): print "pca" compressor = PCA(n_components = tx[1].size/2) compressor.fit(tx, y=ty) newtx = compressor.transform(tx) newrx = compressor.transform(rx) em(newtx, ty, newrx, ry, add="wPCAtr") km(newtx, ty, newrx, ry, add="wPCAtr") nn(newtx, ty, newrx, ry, add="wPCAtr") print "pca done" def ica(tx, ty, rx, ry): print "ica" compressor = ICA(whiten=True) # for some people, whiten needs to be off compressor.fit(tx, y=ty) newtx = compressor.transform(tx) newrx = compressor.transform(rx) em(newtx, ty, newrx, ry, add="wICAtr") km(newtx, ty, newrx, ry, add="wICAtr") nn(newtx, ty, newrx, ry, add="wICAtr") print "ica done" def randproj(tx, ty, rx, ry): print "randproj" compressor = RandomProjection(tx[1].size) compressor.fit(tx, y=ty) newtx = compressor.transform(tx) # compressor = RandomProjection(tx[1].size) newrx = compressor.transform(rx) em(newtx, ty, newrx, ry, add="wRPtr") km(newtx, ty, newrx, ry, add="wRPtr") nn(newtx, ty, newrx, ry, add="wRPtr") print "randproj done" def kbest(tx, ty, rx, ry): print "kbest" for i in range(9): k = i + 1 add = "wKBtr" + str(k) compressor = best(f_classif, k=k) compressor.fit(tx, y=ty) newtx = compressor.transform(tx) newrx = compressor.transform(rx) em(newtx, ty, newrx, ry, add=add) km(newtx, ty, newrx, ry, add=add) nn(newtx, ty, newrx, ry, add=add) print "kbest done" def em(tx, ty, rx, ry, add="", times=10): print "em" + add errs = [] # this is what we will compare to checker = EM(n_components=2) checker.fit(rx) truth = checker.predict(rx) # so we do this a bunch of times for i in range(2,times): clusters = {x:[] for x in range(i)} # create a clusterer clf = EM(n_components=i) clf.fit(tx) #fit it to our data test = clf.predict(tx) result = clf.predict(rx) # and test it on the testing set # here we make the arguably awful assumption that for a given cluster, # all values in tha cluster "should" in a perfect world, belong in one # class or the other, meaning that say, cluster "3" should really be # all 0s in our truth, or all 1s there # # So clusters is a dict of lists, where each list contains all items # in a single cluster for index, val in enumerate(result): clusters[val].append(index) # then we take each cluster, find the sum of that clusters counterparts # in our "truth" and round that to find out if that cluster should be # a 1 or a 0 mapper = {x: round(sum(truth[v] for v in clusters[x])/float(len(clusters[x]))) if clusters[x] else 0 for x in range(i)} # the processed list holds the results of this, so if cluster 3 was # found to be of value 1, # for each value in clusters[3], processed[value] == 1 would hold processed = [mapper[val] for val in result] errs.append(sum((processed-truth)**2) / float(len(ry))) plot([0, times, min(errs)-.1, max(errs)+.1],[range(2, times), errs, "ro"], "Number of Clusters", "Error Rate", "Expectation Maximization Error", "EM"+add) # dank magic, wrap an array cuz reasons td = np.reshape(test, (test.size, 1)) rd = np.reshape(result, (result.size, 1)) newtx = np.append(tx, td, 1) newrx = np.append(rx, rd, 1) nn(newtx, ty, newrx, ry, add="onEM"+add) print "em done" + add def km(tx, ty, rx, ry, add="", times=10): print "km" #this does the exact same thing as the above clusters = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 50, 88] # eight for num speakers, eleven for num vowels orig = add for num_c in clusters: add = orig + "nc" + str(num_c) errs = [] checker = KM(n_clusters=num_c) checker.fit(ry) truth = checker.predict(ry) # so we do this a bunch of times for i in range(2,times): clusters = {x:[] for x in range(i)} clf = KM(n_clusters=i) clf.fit(tx) #fit it to our data test = clf.predict(tx) result = clf.predict(rx) # and test it on the testing set for index, val in enumerate(result): clusters[val].append(index) mapper = {x: round(sum(truth[v] for v in clusters[x])/float(len(clusters[x]))) if clusters[x] else 0 for x in range(i)} processed = [mapper[val] for val in result] errs.append(sum((processed-truth)**2) / float(len(ry))) plot([0, times, min(errs)-.1, max(errs)+.1],[range(2, times), errs, "ro"], "Number of Clusters", "Error Rate", "KMeans clustering error", "KM"+add) td = np.reshape(test, (test.size, 1)) rd = np.reshape(result, (result.size, 1)) newtx = np.append(tx, td, 1) newrx = np.append(rx, rd, 1) nn(newtx, ty, newrx, ry, add="onKM"+add) print "km done" + add def nn(tx, ty, rx, ry, add="", iterations=4001): """ trains and plots a neural network on the data we have """ print "nn" + add resultst = [] resultsr = [] iter_arr = np.arange(iterations, step=500) iter_arr[0] = 1 # queue = mp.Queue() # processes = [] # processes = [mp.Process(target=_nn, args=[tx, ty, rx, ry, i_num]) for i_num in iter_arr] # for p in processes: # p.start() # for p in processes: # p.join() # results = [] # for _ in processes: # results.append(queue.get()); # for result in sorted(results, key=lambda x: x[0]): # print result # i_num, train_score, test_score = result # resultst.append(train_score) # resultsr.append(test_score) for i_num in iter_arr: result = _nn(tx, ty, rx, ry, i_num) print result resultst.append(1. - result[1]) resultsr.append(1. - result[2]) plot([0, iterations, 0, 1], (iter_arr, resultst, "ro", iter_arr, resultsr, "bo"), "Network Epoch", "Percent Error", "Neural Network Error", "NN"+add) print "nn done" + add def _nn(tx, ty, rx, ry, n_iter): print "_nn" nn = Classifier( layers=[ Layer("Tanh", units=100), Layer("Softmax")], n_iter=n_iter) nn.fit(tx, ty) resultst = nn.score(tx, ty) resultsr = nn.score(rx, ry) print "_nn done" return n_iter, resultst, resultsr if __name__=="__main__": train_x, train_y, test_x, test_y = util.load_vowel() # em(train_x, train_y, test_x, test_y) # km(train_x, train_y, test_x, test_y) # pca(train_x, train_y, test_x, test_y) # ica(train_x, train_y, test_x, test_y) # randproj(train_x, train_y, test_x, test_y) kbest(train_x, train_y, test_x, test_y) # nn(train_x, train_y, test_x, test_y) ```
{ "source": "JessRudder/pretrained-image-classifier", "score": 4 }
#### File: pretrained-image-classifier/intropyproject-classify-pet-images/get_pet_labels.py ```python from os import listdir # TODO 2: Define get_pet_labels function below please be certain to replace None # in the return statement with results_dic dictionary that you create # with this function # def get_pet_labels(image_dir): """ Creates a dictionary of pet labels (results_dic) based upon the filenames of the image files. These pet image labels are used to check the accuracy of the labels that are returned by the classifier function, since the filenames of the images contain the true identity of the pet in the image. Be sure to format the pet labels so that they are in all lower case letters and with leading and trailing whitespace characters stripped from them. (ex. filename = 'Boston_terrier_02259.jpg' Pet label = 'boston terrier') Parameters: image_dir - The (full) path to the folder of images that are to be classified by the classifier function (string) Returns: results_dic - Dictionary with 'key' as image filename and 'value' as a List. The list contains for following item: index 0 = pet image label (string) """ # Replace None with the results_dic dictionary that you created with this # function # Imports only listdir function from OS module # Retrieve the filenames from folder pet_images/ results_dic = {} filename_list = listdir(image_dir) for name in filename_list: results_dic[name] = results_dic.get(name, create_label_from_filename(name)) return results_dic def create_label_from_filename(filename): """ Takes a filename and turns it into a list with a single lowercase string containing the pet label that is in the filename (ex. filename = 'Boston_terrier_02259.jpg' Pet label = 'boston terrier') Parameters: filename - The filename (string) Returns: List with filename turned into lowercase string stripped of numbers and extensions (e.g. 'Boston_terrier_02259.jpg' => ['boston terrier']) """ name_list = filename.split("_")[:-1] for idx in range(0, len(name_list)): name_list[idx] = name_list[idx].lower() return [" ".join(name_list)] ```
{ "source": "JessSantos/Marble-Ordering-Game", "score": 4 }
#### File: JessSantos/Marble-Ordering-Game/CelticaJM.py ```python from graphics import * import random ## to jump to display/gui-related functions and settings, search "GUI settings" ## to jump to game-related and background functions, search "mechanics" ## to jump to main() function, search "main()" ### ~~ GUI settings ~~ ### # I made it playable for every size board, though it might look prettier at some settings, like 500 or 600 # this value can be changed to adjust board size; maybe in the finished game it could ask for input for board size width = height = w = 600 # "w" for width; height and width should always be equal for this game # Purpose: dictionary of ratio-points where the balls should arrange themselves around heboard # Syntax: Circle(Point(pointdict()[iterationitem][1]), Point(pointdict()[iterationitem][2]))) # Parameters: none # Return value: pointdict: a dictionary mapping locations to location on the board def pointdict(): d = (1/10)*w # "d" for distance from sides of game board # board setup; these are the loactions of all the balls pointdict = {0:[(6/10)*w, d], 1:[(7/10)*w, d], 2:[(8/10)*w, d], 3:[w-d, d], 4:[w-d, (2/10)*w], 5:[w-d, (3/10)*w], 6:[w-d, (4/10)*w], 7:[w-d, (5/10)*w], 8:[w-d, (6/10)*w], 9:[w-d, (7/10)*w], 10:[w-d, (8/10)*w], 11:[w-d, w-d], 12:[(8/10)*w, w-d], 13:[(7/10)*w, w-d], 14:[(6/10)*w, w-d], 15:[(5/10)*w, w-d], 16:[(4/10)*w, w-d], 17:[(3/10)*w, w-d], 18:[(2/10)*w, w-d], 19:[d, w-d], 20:[d, (8/10)*w], 21:[d, (7/10)*w], 22:[d, (6/10)*w], 23:[d, (5/10)*w], 24:[d, (4/10)*w], 25:[d, (3/10)*w], 26:[d, (2/10)*w], 27:[d , d], 28:[(2/10)*w, d], 29:[(3/10)*w, d], 30:[(4/10)*w, d], 31:[(5/10)*w, d], 32:[w/2, w/2]} return pointdict # Purpose: helper function to draw the background rectangles that are darker versions of the colors they house # Syntax: draw_rectangle(width/4, width/4, "purple", window) # Parameters: x: the x-coordinate of the anchor point # y: the y-coordinate of the anchor point # color: the color of the box # win: the window to draw it in # Return value: none def draw_rectangle(x, y, color, win): # draws the rectangles that make up the background croos rect = Rectangle(Point(x-(width/4-25), y-(height/4-25)), Point(x+(width/4-25), y+(height/4-25))) rect.setFill(color) rect.draw(win) # Purpose: helper function to draw the circles that make up the marbles of Celtica # Syntax: draw_circle(Point(width/5, width/5), "blue", window) # Parameters: point: the anchor point of the circle to be drawn # color: the color of the inside of the circle # win: the window in wich to draw the circle # Return value: none def draw_circle(point, color, win): circ = Circle(Point(pointdict()[point][0], pointdict()[point][1]), 20) circ.setOutline("white") circ.setWidth(1) circ.setFill(color) circ.draw(win) # Purpose: helper function to draw the marbles of the board consistently # Syntax: draw_board(list_representing_the_board, window) # Parameters: board: a list in the format ["G", "G", "B", ...], the same length and contents as setup_game(), though not necessarily the same order # win: the window in which to draw the board # Return value: none def draw_board(board, win): for numitem in range(33): # give each letter the appropriate colour if board[numitem] == "G": color = color_rgb(0, 250, 0) if board[numitem] == "Y": color = color_rgb(254, 250, 6) if board[numitem] == "R": color = color_rgb(255, 39, 0) if board[numitem] == "B": color = color_rgb(0, 251, 255) if board[numitem] == "X": color = "black" draw_circle(numitem, color, win) # Purpose: helper function to draw the background in one, consistent, swoop # Syntax: make_background(window) # Parameters: window: the window in which you want the background drawn # Return value: none def make_background(win): # makes the background that looks like a celtic cross win.setBackground(color_rgb(1, 25, 148)) # make the background blue yellow = color_rgb(146, 144, 0) # define dark colours of squares aqua = color_rgb(0, 145, 147) red = color_rgb(148, 17, 0) green = color_rgb(0, 142, 0) draw_rectangle(w/4, w/4, aqua, win) # draw squares draw_rectangle((3/4)*w, w/4, green, win) draw_rectangle(w/4, (3/4)*w, yellow, win) draw_rectangle((3/4)*w, (3/4)*w, red, win) # Purpose: to draw the text that is always present on the Celtica board # Syntax: draw_board_text(window) # Parameters: win: the window in which to draw the writing # Return value: none def draw_board_text(win): celtica = Text(Point(w/2, w/4), "Celtica") # begin dawing text for "Celtica" celtica.setSize(25) celtica.setTextColor("white") celtica.draw(win) brb = Text(Point(w/2, (w/4)+25), "by BRB") # begin drawing text for "by BRB" brb.setStyle("bold") brb.setTextColor("white") brb.draw(win) ### ~~ mechanics ~~ ### # Purpose: helper function to setup_game() that appends something to a list 8 times # Syntax: append_8(item, alist) # Parameters: item - an item that you want to append to a list; list - the list you wish to append to # Return value: none def append_8(item, alist): counter = 0 while counter < 8: alist.append(item) counter = counter + 1 # Purpose: to generate a list of balls, in order, for a game of celtica # Syntax: board = setup_game() # Parameters: none # Return value: board - a list of characters representing the celtica game board; ['G', 'G', 'G', 'G', 'G', ... ] def setup_game(): board = [] append_8("G", board) append_8("R", board) append_8("Y", board) append_8("B", board) board.append("X") return board # this board should be in the winning configuration # Purpose: to swap two values in the game board # Syntax: exchange(board, 1, 7) # Parameters: board - a list of characters representing the celtica game board, ['G', 'G', 'G', 'G', 'G', ... ], two numbers that are indices in the list board # Return value: none def exchange(board, first, second): board[first], board[second] = board[second], board[first] # Purpose: to see if the game is over # Syntax: is_over = is_game_over(board) # Parameters: board - a list of characters representing the celtica game board, ['G', 'G', 'G', 'G', 'G', ... ] # Return value: True, if winning configuration; False otherwise def is_game_over(board): if board == setup_game(): return True else: return False # Purpose: helper function to create a shuffled board, because I apparently hadn't done this before # Syntax: board_to_start_playing_with = make_random_board(setup_game) # Parameters: none # Return value: shuffled version of winboard from setup_game(), list def make_random_board(): newboard = setup_game()[:] for i in range(25000): possibletrade = random.randint(0, len(newboard)-1) # choose a random index in newboard if is_neighbour(whereisX(newboard), possibletrade) == True: exchange(newboard, whereisX(newboard), possibletrade) # if the random index is a legal move, then switch it else: continue return newboard # Purpose: handy helper function to quickly find X in a board # Syntax: exchange(whereisX(board), 32) # Parameters: board: the board you want to find X's location in # Return value: the index of where X is in board def whereisX(board): return board.index("X") # Purpose: helper function, returns true if the marble in question can be legally traded with another marble # Syntax: if is_neighbour(whereisX(board), board[20]) == True: ... # Parameters: whereXis: can actually be any location on the board, but it's most useful to do it for X # newspot: another location on the board to test for validity # Return value: bool: True or False def is_neighbour(whereXis, newspot): # neigbourdict is a dictionary of all the possible places a marble can move neighbourdict = {0:(31, 1), 1:(0, 2), 2:(1, 3), 3:(2, 4), 4:(3, 5), 5:(4, 6), 6:(5, 7), 7:(6, 32, 8), 8:(7, 9), 9:(8, 10), 10:(9, 11), 11:(10, 12), 12:(11, 13), 13:(12, 14), 14:(13, 15), 15:(14, 32, 16), 16:(15, 14), 17:(16, 18), 18:(17, 19), 19:(18, 20), 20:(19, 21), 21:(20, 22), 22:(21, 23), 23:(22, 32, 24), 24:(23, 25), 25:(24, 26), 26:(25, 27), 27:(26, 28), 28:(27, 29), 29:(28, 30), 30:(29, 31), 31:(30, 32, 0), 32:(31, 7, 23, 15)} if newspot in neighbourdict[whereXis]: # returns True if neighbour, False if not return True else: return False # Purpose: determines if a move is legal # Syntax: if is_legal_move(board, 20): ... # Parameters: board: the board with which you're working # index: the index you might want to switch to # Return value: bool: True or False def is_legal_move(board, index): whereXis = board.index("X") return is_neighbour(whereXis, index) # Purpose: Check if a point is within the bounding box of button # Syntax: bool = is_clicked(point, button) # Parameters: point - Point object # button - Rectangle object # Return value: True if point is within the bounding box of button; # False, otherwise def is_clicked(point, button): top_left = button.getP1() bottom_right = button.getP2() # useable as is because graphics.py has a square object for every circle object return (point.x >= top_left.x and point.x <= bottom_right.x and point.y >= top_left.y and point.y <= bottom_right.y) ### ~~ main ~~ ### # Purpose: runs the completed game # Syntax: main() # Parameters: none # Return value: none def main(): win = GraphWin("Celtica", width, height) # make a window make_background(win) # set up background, text, and scrambled board draw_board_text(win) board = make_random_board() draw_board(board, win) # draw the board if is_game_over(board) == True: # if board is in winning configuration... winner = Text(Point(w/2, (2/3)*w), "You win!") # begin drawing text for "You win!" winner.setSize(25) winner.setTextColor("white") winner.draw(win) while True: try: # .checkMouse() may fail if the window was closed; prevent point = win.checkMouse() # Python from crashing by placing it within a try/except block; except GraphicsError: # given the error, the function can return (instead of crashing) return if point == None: # if no mouse click, starts while loop all over (this try/except was copied from lab 6) continue for keyvalue in pointdict().items(): # where marbles get exchanged index, centerpoint = keyvalue # unpack the tuple so both keys and values are useable if is_clicked(point, Circle(Point(centerpoint[0], centerpoint[1]), 20)): if is_legal_move(board, index): exchange(board, whereisX(board), index) # if it's a legal move, exchange marbles draw_board(board, win) # once exchanged, redraw close() main() ```
{ "source": "jessstringham/notebooks", "score": 3 }
#### File: notebooks/nb_code/hmm_alpha_recursion.py ```python width = 6 height = 5 num_hidden_states = width * height # prob of starting starting locations p_hidden_start = np.ones(num_hidden_states) / num_hidden_states # verify it's a valid probability distribution assert np.all(np.isclose(np.sum(p_hidden_start), 1)) assert np.all(p_hidden_start >= 0) def create_transition_joint(width, height): num_hidden_states = width * height # begin by building an unnormalized matrix with 1s for all legal moves. unnormalized_transition_joint = np.zeros((num_hidden_states, num_hidden_states)) # This will help me map from height and width to the state map_x_y_to_hidden_state_id = np.arange(num_hidden_states).reshape(height, width).T for x in range(width): for y in range(height): h_t = map_x_y_to_hidden_state_id[x, y] # hax to go through each possible direction for d in range(4): new_x = x new_y = y if d // 2 == 0: # move left or right! new_x = x + ((d % 2) * 2 - 1) else: # move up or down! new_y = y + ((d % 2) * 2 - 1) # make sure they don't walk through walls if any(( new_x > width - 1, new_x < 0, new_y > height - 1, new_y < 0 )): continue h_t_minus_1 = map_x_y_to_hidden_state_id[new_x, new_y] unnormalized_transition_joint[h_t_minus_1][h_t] = 1 # normalize! p_transition_joint = unnormalized_transition_joint / np.sum(unnormalized_transition_joint) # make sure this is a joint probability assert np.isclose(np.sum(p_transition_joint), 1) # not super necessary, but eh assert np.all(p_transition_joint >= 0) return p_transition_joint def create_transition(width, height): p_transition_joint = create_transition_joint(width, height) num_hidden_states = width * height p_transition = np.zeros((num_hidden_states, num_hidden_states)) for old_state in range(num_hidden_states): p_transition[:, old_state] = p_transition_joint[:, old_state] / np.sum(p_transition_joint[:, old_state]) # verify it's a conditional distribution assert np.all(np.sum(p_transition, axis=0)) == 1 return p_transition p_transition = create_transition(width, height) def plot_state_in_room(state_id, width=width, height=height): h = np.zeros(width * height) h[state_id] = 1 return h.reshape(height, width) def make_sound_map(): NUM_SOUNDS = 10 LOW_PROB = 0.1 HIGH_PROB = 0.9 # everything has at least LOW_PROB of triggering the sound grid = LOW_PROB * np.ones(num_hidden_states) # select NUM_BUMP_CREAKS to make HIGH_PROB locs = np.random.choice( num_hidden_states, size=NUM_SOUNDS, replace=False ) grid[locs] = HIGH_PROB return grid prob_bump_true_given_location = make_sound_map() prob_creak_true_given_location = make_sound_map() num_visible_states = 4 def get_emission_matrix(prob_bump_true_given_location, prob_creak_true_given_location): # prob_bump_given_state[v][state] = p(v | state) p_emission = np.vstack(( prob_bump_true_given_location * prob_creak_true_given_location, prob_bump_true_given_location * (1 - prob_creak_true_given_location), (1 - prob_bump_true_given_location) * prob_creak_true_given_location, (1 - prob_bump_true_given_location) * (1 - prob_creak_true_given_location), )) assert np.all(np.sum(p_emission, axis=0)) == 1 return p_emission p_emission = get_emission_matrix(prob_bump_true_given_location, prob_creak_true_given_location) # 1 means True. ex: [1, 0] means bump=True, creak=False map_visible_state_to_bump_creak = np.vstack(( [1, 1], [1, 0], [0, 1], [0, 0], )) timesteps = 10 hiddens = np.zeros(timesteps, dtype=int) visibles = np.zeros(timesteps, dtype=int) hiddens[0] = np.random.choice(num_hidden_states, p=p_hidden_start) visibles[0] = np.random.choice( num_visible_states, p=p_emission[:, hiddens[0]] ) for t in range(1, timesteps): hiddens[t] = np.random.choice( num_hidden_states, p=p_transition[:, hiddens[t - 1]] ) visibles[t] = np.random.choice( num_visible_states, p=p_emission[:, hiddens[t]] ) def alpha_recursion(visibles, p_hidden_start, p_transition, p_emission): num_timestamps = visibles.shape[0] num_hidden_states = p_transition.shape[0] # There will be one alpha for each timestamp alphas = np.zeros((num_timestamps, num_hidden_states)) # alpha(h_1) = p(h_1) * p(v_1 | h_1) alphas[0] = p_hidden_start * p_emission[visibles[0]] # normalize to avoid overflow alphas[0] /= np.sum(alphas[0]) for t in range(1, num_timestamps): # p(v_s | h_s) # size: new_states corrector = p_emission[visibles[t]] # sum over all hidden states for the previous timestep and multiply the # transition prob by the previous alpha # transition_matrix size: new_state x old_state # alphas[t_minus_1].T size: old_state x 1 # predictor size: new_state x 1, predictor = p_transition @ alphas[t - 1, None].T # alpha(h_s) alphas[t, :] = corrector * predictor[:, 0] # normalize alphas[t] /= np.sum(alphas[t]) return alphas alphas = alpha_recursion( visibles, p_hidden_start, p_transition, p_emission, ) assert np.all(np.isclose(np.sum(alphas, axis=1), 1)) ```
{ "source": "jessstringham/podcasts", "score": 3 }
#### File: podcasts/podcast/download.py ```python import typing import urllib.error import urllib.request from podcast.files import download_location from podcast.info import build_info_content from podcast.info import InfoContent from podcast.models import Channel from podcast.models import get_podcast_audio_link from podcast.models import NewStatus from podcast.models import Podcast from podcast.models import Radio from podcast.models import RadioDirectory def _download_from_url(url: str, location: str) -> bool: try: urllib.request.urlretrieve(url, location) return True except (IOError, urllib.error.ContentTooShortError): # If a connection can't be made, IOError is raised # If the download gets interrupted (ContentTooShortError), we # should try again later # TODO: can we tell if it was a bad filename (and should stop # requesting it), or internet connectivity (and should tell # us), or just a fluke (and should retry)? return False def download_podcast( directory: RadioDirectory, channel: Channel, podcast: Podcast) -> Podcast: location = download_location(directory, channel, podcast) url = get_podcast_audio_link(podcast) # TODO: This takes some time, especially when there are a lot to # download. I could have this spawn threads, or add priorities, # and so on. For now, since it runs every few hours, and is more # of a push than a pull situation for the user, I'm leaving it # simple success = _download_from_url(url, location) if success: return podcast._replace(status=NewStatus()) else: return podcast def download_channel(directory: RadioDirectory, channel: Channel) -> Channel: updated_podcasts = [] for known_podcast in channel.known_podcasts: if type(known_podcast.status).__name__ == 'RequestedStatus': known_podcast = download_podcast(directory, channel, known_podcast) updated_podcasts.append(known_podcast) return channel._replace(known_podcasts=updated_podcasts) def download_radio(radio: Radio) -> typing.Tuple[Radio, InfoContent]: downloaded_channels = [ download_channel(radio.directory, channel) for channel in radio.channels ] radio = radio._replace(channels=downloaded_channels) info_content = build_info_content() return (radio, info_content) ``` #### File: podcasts/podcast/models.py ```python import typing from collections import namedtuple from urllib.parse import urlparse PodcastData = typing.NamedTuple('PodcastData', [ ('title', str), # title ('subtitle', str), # subtitle ('published', float), # time published # string of the audio url, or None if we couldn't find one ('audio_link', typing.Dict[str, str]), ]) # Podcast states UnmergedStatus = typing.NamedTuple('UnmergedStatus', []) RequestedStatus = typing.NamedTuple('RequestedStatus', []) CancelledStatus = typing.NamedTuple('CancelledStatus', []) NewStatus = typing.NamedTuple('NewStatus', []) StartedStatus = typing.NamedTuple('StartedStatus', []) FinishedStatus = typing.NamedTuple('FinishedStatus', []) DeletedStatus = typing.NamedTuple('DeletedStatus', []) Podcast = typing.NamedTuple('Podcast', [ ('data', PodcastData), ('status', typing.Union[ UnmergedStatus, RequestedStatus, CancelledStatus, NewStatus, StartedStatus, FinishedStatus, DeletedStatus, ])]) def get_podcast_audio_link(podcast: Podcast) -> str: return podcast.data.audio_link['href'] def get_podcast_url(podcast: Podcast) -> str: return urlparse(get_podcast_audio_link(podcast)).path.split('/')[-1] # NOTE: This seems like something I'll probably regret def get_podcast_id(podcast: Podcast) -> str: return '.'.join(get_podcast_url(podcast).split('.')[:-1]) ChannelInfo = namedtuple('ChannelInfo', 'name url directory') Channel = typing.NamedTuple('Channel', [ ('channel_info', ChannelInfo), ('known_podcasts', typing.List[Podcast])]) def get_channel_id(channel: Channel) -> str: return channel.channel_info.directory def map_channel_podcasts( channel: Channel, map_f: typing.Callable[[Channel, Podcast], Podcast], ) -> Channel: return channel._replace( known_podcasts=[ map_f(channel, podcast) for podcast in channel.known_podcasts]) RadioDirectory = typing.NewType('RadioDirectory', str) Radio = typing.NamedTuple('Radio', [ ('channels', typing.List[Channel]), ('directory', RadioDirectory)]) def map_radio_channels( radio: Radio, map_f: typing.Callable[[Channel], Channel], ) -> Radio: return radio._replace( channels=[ map_f(channel) for channel in radio.channels]) def read_channel_from_id( radio: Radio, channel_id: str ) -> typing.Optional[Channel]: for channel in radio.channels: if get_channel_id(channel) == channel_id: return channel ```
{ "source": "Jesssullivan/clipi", "score": 2 }
#### File: Jesssullivan/clipi/alias.py ```python from common import * """ alias.py: copy / update files at ~/.clipi to be accessed via alias. add clipi to shell's rc file. """ class alias(object): @classmethod def add_to_bash(cls): print('adding alias....') clipi_line = "\\'~/.clipi/clipi.py\\'" if platform == "linux" or platform == "linux2": print("environment: detected Linux, continuing...") cmd = "echo alias clipi=" + clipi_line + " >> ~/.bashrc " subprocess.Popen(cmd, shell=True).wait() if platform == 'darwin': print("environment: detected Mac OSX, continuing...") if os.path.exists('~/zshrc'): cmd = "echo alias clipi=" + clipi_line + " >> ~/.zshrc " subprocess.Popen(cmd, shell=True).wait() if os.path.exists('~/bashrc'): cmd = "echo alias clipi=" + clipi_line + " >> ~/.bashrc " subprocess.Popen(cmd, shell=True).wait() if os.path.exists('~/bash_profile'): cmd = "echo alias clipi=" + clipi_line + " >> ~/.bash_profile " subprocess.Popen(cmd, shell=True).wait() @classmethod def bash_alias_update(cls): # adds .directory for bash version, separate from git: try: subprocess.Popen("sudo rm -rf ~/.clipi", shell=True).wait() except: pass try: subprocess.Popen("sudo mkdir ~/.clipi", shell=True).wait() except: pass try: subprocess.Popen("sudo cp -rf ../clipi/* ~/.clipi/", shell=True).wait() except: pass try: subprocess.Popen("rm -rf ~/.clipi/.git", shell=True).wait() except: pass try: subprocess.Popen("sudo chmod 775 ~/.clipi/*", shell=True).wait() except: pass @classmethod def do_alias(cls): cls.add_to_bash() cls.bash_alias_update() ``` #### File: Jesssullivan/clipi/common.py ```python import os import subprocess import sys from random import random from sys import platform from time import sleep from zipfile import ZipFile import requests from shutil import which import xmltodict class common(object): bin_url = "http://clipi-bins.s3.amazonaws.com/" @staticmethod def is_installed(cmd): print('checking if ' + cmd + ' is present...') if not which(cmd): print("didn't find " + cmd) return False else: return True @classmethod def dep_install(cls, dep, brew_dep=None): if platform == "linux" or platform == "linux2": print("environment: detected Linux, continuing with apt-get....") subprocess.Popen('sudo apt-get install ' + dep + ' -y', shell=True).wait() # todo: maybe prompt for other package manager options if brew_dep is None: brew_dep = dep elif platform == 'darwin': print("environment: detected osx, not completely tested yet, YMMV") if cls.is_installed('brew'): print('attempting brew install of ' + brew_dep + '...... \n') subprocess.Popen('brew install' + brew_dep, shell=True).wait() else: print("brew package manager not detected, attempting to install brew now...") brew_string = str( '/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh)') subprocess.Popen(brew_string, shell=True).wait() @staticmethod def ensure_dir(dirname='image'): if not os.path.isdir(dirname): os.mkdir(dirname) @classmethod def ensure_bins(cls): if not os.path.isdir('bin'): print('adding /bin....') os.mkdir('bin') sleep(.2) print('fetching binary list from S3....') index = requests.get(cls.bin_url).content with open('bin/index.xml', 'wb') as f: f.write(index) sleep(.2) print('parsing response....') with open('bin/index.xml') as fd: doc = xmltodict.parse(fd.read()) sleep(.2) print('downloading....') Keys = doc['ListBucketResult']['Contents'] for f in Keys: item = f['Key'] cmd = str("wget -O bin/" + item + " " + cls.bin_url + item) subprocess.Popen(cmd, shell=True).wait() sleep(.2) print('done.') @classmethod def main_install(cls): if not cls.is_installed(cmd='wget'): cls.dep_install(dep='wget') if not cls.is_installed(cmd='qemu-system-arm'): cls.dep_install(dep='qemu-system-arm') if not cls.is_installed(cmd='qemu-system-aarch64'): cls.dep_install(dep='qemu-system-aarch64') if not cls.is_installed(cmd='dd'): cls.dep_install(dep='dd') if not cls.is_installed(cmd='nmap'): cls.dep_install(dep='nmap') if not cls.is_installed(cmd='p7zip'): cls.dep_install(dep='p7zip') # if not cls.is_installed(cmd='texinfo'): # cls.dep_install(dep='texinfo') # if not cls.is_installed(cmd='qemu-system-aarch64'): # cls.dep_install(dep='qemu-system-aarch64') @classmethod def unzip(cls, input, output): if input.split('.')[-1] == 'zip': with ZipFile(input, 'r') as zip_ref: zip_ref.extractall(output) sleep(.1) return 0 elif input.split('.')[-1] == '7z': if not cls.is_installed(cmd='p7zip'): print('installing p7zip to extract this image...') cls.dep_install(dep='p7zip') cls.dep_install(dep='p7zip-full') sleep(.1) print('attempting to extract image from 7z...') cmd = str('7z e ' + input + ' -o' + output + ' -aoa') subprocess.Popen(cmd, shell=True).wait() sleep(.1) return 0 elif 'gz' in input: print('attempting to extract image from .gz...') cmd = str('gunzip ' + input) subprocess.Popen(cmd, shell=True).wait() sleep(.1) return 0 elif 'xz' in input: print('attempting to extract image from .xz...') cmd = str('unxz ' + input) subprocess.Popen(cmd, shell=True).wait() sleep(.1) return 0 @staticmethod def restart(execute=None): clipi_path = os.path.abspath(__file__).split('<')[0] print('...\n') sleep(.1) print('...\n') sys.stdout.flush() if execute is None: cmd = 'python3 ' + clipi_path + 'clipi.py ' else: cmd = 'python3 ' + clipi_path + 'clipi.py ' + str(execute) print(cmd) proc = subprocess.Popen(cmd, shell=True) print('re-executed clipi! ' + '\n - @ pid ' + str(proc.pid)) @classmethod def cleanup(cls): # removes as admin from shell to avoid a wonky super python user xD subprocess.Popen('sudo rm -rf image .pi', shell=True).wait() print() for x in range(3): print('...\n') sleep(.1) print('complete. \n\n') """ Network & bridging functions have not been implemented yet """ @staticmethod def get_network_depends(): if platform == 'darwin': print('cannot install network bridge depends on mac OSX') return 0 else: print('make sure /network is ready to install....') subprocess.Popen('sudo chmod u+x network/apt_net_depends.sh', shell=True).wait() print('installing.....') subprocess.Popen('./network/apt_net_depends.sh', shell=True).wait() sleep(.1) print('done.') @staticmethod def new_mac(): oui_bits = [0x52, 0x54, 0x00] for x in range(256): mac = oui_bits + [ random.randint(0x00, 0xff), random.randint(0x00, 0xff), random.randint(0x00, 0xff)] return ':'.join(["%02x" % x for x in mac]) @staticmethod def check_bridge(): CLIPINET = "read CLIPINET <<< $(ip -o link | awk '$2 != " + '"lo:"' + " {print $2}')" if platform == 'darwin': print('bridge networking not available for mac OSX') quit() else: print('checking bridge network.....') subprocess.Popen(CLIPINET, shell=True).wait() subprocess.Popen('sudo chmod u+x network/up_bridge.sh', shell=True).wait() sleep(.1) subprocess.Popen('sudo ./network/up_bridge.sh', shell=True) sleep(.1) ``` #### File: Jesssullivan/clipi/sources.py ```python from common import * import toml import yaml class sources(object): default_configs = ['sources', 'etc/sources'] default_settings = ['default', 'etc/default'] default_types = ['.toml', '.yaml'] # provides an option to provide etc/sources.toml or add directly to dictionary @classmethod def get_source(cls): for econfig in cls.default_configs: for etype in cls.default_types: try: if os.path.isfile(econfig + etype): if 'toml' in etype: source = toml.load(econfig + etype) else: source = yaml.load(open(econfig + etype), Loader=yaml.Loader) return source except: pass else: print("couldn't find default source toml or yaml, FYI") # catch all if sources.toml doesn't exist: source = { 'stretch_lite': 'http://downloads.raspberrypi.org/raspbian_lite/images/raspbian_lite-2018-11-15/2018-11-13' '-raspbian-stretch-lite.zip', 'stretch_desktop': 'http://downloads.raspberrypi.org/raspbian/images/raspbian-2019-04-09/2019-04-08-raspbian' '-stretch.zip', 'octoprint': 'https://octopi.octoprint.org/latest', } return source @staticmethod def has_conf(): # soften argument / no argument try: if '.toml' in sys.argv[1]: return True if '.yaml' in sys.argv[1]: return True except: return False @classmethod def load_args(cls): if sources.has_conf(): source = toml.load(sys.argv[1]) return source else: for econfig in cls.default_settings: for etype in cls.default_types: try: if os.path.isfile(econfig + etype): if 'toml' in etype: source = toml.load(econfig + etype) else: source = yaml.load(open(econfig + etype), Loader=yaml.Loader) return source except: pass @staticmethod def do_arg(arg, default): xargs = sources.load_args() try: k = xargs[arg] return k except: return default ```
{ "source": "Jesssullivan/MerlinAI-Interpreters", "score": 3 }
#### File: main/datadb/models.py ```python from flask import current_app as app from ..tools import tools from datetime import datetime from flask import Flask, request, json, Response from pymongo import MongoClient import json class DataAPI: def __init__(self, data): self.client = MongoClient("mongodb://127.0.0.1:27017/") database = data['***'] collection = data['**'] cursor = self.client[database] self.collection = cursor[collection] self.data = data def read(self): print('Reading Data') documents = self.collection.find() output = [{item: data[item] for item in data if item != '_id'} for data in documents] return output def write(self): print('Writing Data') # load request: _request = request.json print(_request) self.collection.insert(_request) return tools.JsonResp(_request, 200) def update(self): print('Updating Data') filt = self.data['Filter'] updated_data = {"$set": self.data['DataToBeUpdated']} response = self.collection.update_one(filt, updated_data) output = {'Status': 'Successfully Updated' if response.modified_count > 0 else "Nothing was updated."} return output def delete(self, data): print('Deleting Data') filt = data['Document'] response = self.collection.delete_one(filt) output = {'Status': 'Successfully Deleted' if response.deleted_count > 0 else "Document not found."} return output class Asset: def __init__(self): self.defaults = { "url": "", "audio": "", "src": "", "attribution": "" } @staticmethod def add_id_event(): _add_json = [] # load request: _request = request.json # insert event: _ = app.db.eventdb.insert(_request) return tools.JsonResp(_add_json, 200) @staticmethod def delete_id_event(): _del_json = {} # load request: _request = request.json for id_event in _request: _del_json.update(id_event) # delete events: _ = app.db.eventdb.delete_many(_del_json) return tools.JsonResp(_del_json, 200) @staticmethod def list(): _raw_data = app.db.eventdb.find() _docs = list(_raw_data) return json.dumps(_docs) @staticmethod def add_dummy(): _event = { "id": tools.randID(), "ML_id": tools.randStringNumbersOnly(8), "username": tools.randUser(), "media_source": 'https://example.com/wavfile.wav', "bbox": tools.randBbox(), "category": tools.randSpecies(), "supercategory": "Bird", "last_modified": datetime.today().isoformat() } _data = app.db.eventdb.insert(_event) return tools.JsonResp(_data, 200) @staticmethod def query_events_dummy(req): _request = req.form # get key & value for query: _key = _request['key'] _value = _request['value'] # query: _output = app.db.eventdb.find({_key: _value}) _docs = list(_output) return tools.JsonResp(_docs, 200) ``` #### File: interpreter/etc/tone.py ```python import numpy as np from scipy.io.wavfile import write from sys import argv from os.path import abspath # Generate .wav file from the command line # # testing out the accuracy of fft in Swift # # @ github.com/Jesssullivan/tmpUI default_msg = str("no args specified, using defaults \n " + " - you can specify duration in seconds & frequency in Hz like so: \n " + " ` python3 tone.py 5 440 ` ") def generate_sine_wav(frequency=440, length=5): # stick with 44100 as sample rate: _sample_rate = 44100 # parse any arguments passed from the shell: try: num_args = len(argv) if num_args == 1: length = int(argv[1]) print(length) elif num_args > 1: length = int(argv[1]) frequency = int(argv[2]) print(argv[2]) # no args, use defaults: except: print(default_msg) # give the wav file a name: file_name = "tone_" + str(length) + "_" + str(frequency) + ".wav" print("...Creating file `" + file_name + "` ") # generate a file: file = np.linspace(0, length, _sample_rate * length) # set frequency in Hz: output_array = np.sin(frequency * 2 * np.pi * file) # write out the .wav file: write(file_name, _sample_rate, output_array) # tell everyone about it: print("...Generated file: \n " + str(abspath(file_name)) + "\n:)") if __name__ == "__main__": try: generate_sine_wav() except KeyboardInterrupt: print("...Create .wav file aborted.") quit() ```
{ "source": "JessterB/agora-data-tools", "score": 3 }
#### File: agora-data-tools/tests/test_utils.py ```python import pytest from agoradatatools.etl import utils from synapseclient import Synapse file_object = { "id": "syn25838546", "format": "table", "final_filename": "teams", "provenance": [], "destination": "syn25871921" } def test_login(): assert type(utils._login_to_synapse()) is Synapse def test_yaml(): # tests if a valid file renders a list assert type(utils._get_config()) is list # tests if a bad file will with pytest.raises(SystemExit) as err: utils._get_config(config_path="./tests/test_assets/bad_config.yaml") assert err.type == SystemExit assert err.value.code == 9 with pytest.raises(SystemExit) as err: utils._get_config(config_path="./tests/test_assets/bad_config.yam") assert err.type == SystemExit assert err.value.code == 2 if __name__ == "__main__": pytest.main() ```
{ "source": "Jesstin127/tugas-pertemuan-12", "score": 4 }
#### File: Jesstin127/tugas-pertemuan-12/tugas-pertemuan-12.py ```python kata = ['', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine',] def num(n:int): if n < 10 : return kata[n] elif n >= 1_000_000_000: return num(n//1_000_000_000)+ ' billion '+ num(n%1_000_000_000) elif n >= 1_000_000: return num(n//1_000_000)+' million ' + num(n%1_000_000) elif n>=1_000: return num(n//1000) + ' thousand ' + num(n%1000) elif n>=100: return num(n//100)+ ' hundred ' + num(n%100) elif n>=20: if n//10 == 2: return 'twenty ' + num(n%10) elif n//10 == 3: return 'thirty ' + num(n%10) elif n//10 == 4: return 'forty ' + num(n%10) elif n//10 == 5: return 'fifty ' + num(n%10) else : return num(n//10)+('ty 'if (n//10)!=8 else 'y ') + num(n%10) else : if n==10: return 'ten' elif n==11: return 'eleven' elif n==12: return 'twelve' elif n==13: return 'thirteen' elif n==15: return 'fifteen' else : return num(n%10) + 'teen' import os while True: os.system('cls') print("NUMBERS CONVERTER INTO WORDS") print("============================") try: bil=int(input("Number\t? ")) print(f"{bil:,} = {num(bil)}") except: print("INPUT MUST BE NUMBER !!!") print() print("Want to Convert Again [y/n] ? ",end='') again=input() print() if again.lower() == 'n' : break ```
{ "source": "jessux/centreon", "score": 2 }
#### File: centreon/plugins/check_uptime.py ```python import plac import getopt import sys import re from subprocess import Popen, PIPE import datetime SNMPGET_BIN = '/usr/bin/snmpget' SNMP_ENGINE_OID = '.1.3.6.1.6.3.10.2.1.3.0' SNMP_UPTIME_OID = '.1.3.6.1.2.1.1.3.0' host="" community="" warning=0 critical=0 def get_uptime(host,community,warning,critical): # first search the SNMP engine time OID port = 161 status= 3 perfdata="" message="" method="" mycode, stdout = snmpget(host, port, community, SNMP_ENGINE_OID) match = re.search('INTEGER:\W*(\d+)\W*seconds',str(stdout)) if match: uptime_sec = int(match.group(1)) method = 'engine' else: # no match, continue on to using the SysUpTime OID mycode, stdout = snmpget(host, port, community, SNMP_UPTIME_OID) #print stdout match = re.search('Timeticks:\W*\((\d+)\)\W*', stdout) if match: uptime_sec = int(match.group(1)) / 100 method = 'sysUptime' else: message= 'CRITICAL: Unable to determine uptime' status = 2 if method != "": if uptime_sec < critical: message = "CRITICAL: Uptime less than "+str(datetime.timedelta(seconds=critical))+" : is currently "+str(datetime.timedelta(seconds=uptime_sec))+" (SNMP method: "+method+")" status = 2 elif uptime_sec < int(warning): message = 'WARNING: Uptime less than '+str(datetime.timedelta(seconds=warning))+': is currently '+str(datetime.timedelta(seconds=uptime_sec))+' (method: '+method+')' status = 1 else: message = 'UPTIME OK: '+str(datetime.timedelta(seconds=uptime_sec))+' (method: '+method+')' status = 0 perfdata = "'uptime_sec'="+str(datetime.timedelta(seconds=uptime_sec))+" seconds" #print(message,perfdata,status) return message,perfdata,status def snmpget(host, port, community, oid): snmpe = Popen([SNMPGET_BIN,'-v','2c','-c',community,host + ':' + str(port),oid], stdout=PIPE) sout, serr = snmpe.communicate() return (snmpe.returncode, sout) def main(argv): opts,args= getopt.getopt(argv,"hH:C:w:c:",["help","host","community","warning","critical"]) global host,community,warning,critical for option,value in opts: if option in ("-h","--help"): sys.exit(0) elif option in ("-H","--host"): host=value elif option in ("-C","--community"): community=value elif option in ("-w","--warning"): warning=int(value) elif option in ("-c","--critical"): critical=int(value) if __name__ == '__main__': argv = sys.argv[1:] main(argv) message,perfdata,status = get_uptime(host,community,warning,critical) print(message + "|" + perfdata) sys.exit(status) # snmp engine # .1.3.6.1.6.3.10.2.1.3.0 # sysUptime # .1.3.6.1.2.1.1.3.0 ```
{ "source": "jessvb/3d_world_procedural_generation", "score": 3 }
#### File: 3d_world_procedural_generation/useful_scripts/prepDataset.py ```python import os import tensorflow as tf import random import numpy as np import matplotlib.pyplot as plt # uncomment for inline for the notebook: # %matplotlib inline import pickle # enter the directory where the training images are: TRAIN_DIR = 'train/' IMAGE_SIZE = 512 train_image_file_names = [TRAIN_DIR+i for i in os.listdir(TRAIN_DIR)] # to decode a single png img: # graph = tf.Graph() # with graph.as_default(): # file_name = tf.placeholder(dtype=tf.string) # file1 = tf.read_file(file_name) # image = tf.image.decode_png(file1) # with tf.Session(graph=graph) as session: # tf.global_variables_initializer().run() # image_vector = session.run(image, feed_dict={ # file_name: train_image_file_names[1]}) # print(image_vector) # session.close() # method to decode many png images: def decode_image(image_file_names, resize_func=None): images = [] graph = tf.Graph() with graph.as_default(): file_name = tf.placeholder(dtype=tf.string) file1 = tf.read_file(file_name) image = tf.image.decode_png(file1) # , channels=3) <-- use three channels for rgb pictures k = tf.placeholder(tf.int32) tf_rot_img = tf.image.rot90(image, k=k) # im_rot = tf.placeholder(tf.float32, shape=(IMAGE_SIZE, IMAGE_SIZE, 3)) tf_flip_img = tf.image.flip_left_right(tf_rot_img) with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() for i in range(len(image_file_names)): for j in range(4): # rotation at 0, 90, 180, 270 degrees rotated_img = session.run(tf_rot_img, feed_dict={ file_name: image_file_names[i], k: j}) images.append(rotated_img) flipped_img = session.run( tf_flip_img, feed_dict={ file_name: image_file_names[i], k: j}) images.append(flipped_img) if (i+1) % 1000 == 0: print('Images processed: ', i+1) session.close() return images train_images = decode_image(train_image_file_names) print('shape train: ', np.shape(train_images)) # Let's see some of the images # for i in range(10,14): # plt.imshow(train_images[i].reshape([IMAGE_SIZE,IMAGE_SIZE]), cmap=plt.get_cmap('gray')) # plt.show() # for rgb images: # for i in range(10,20): # plt.imshow(train_images[i]) # plt.show() def create_batch(data, label, batch_size): i = 0 while i*batch_size <= len(data): with open(label + '_' + str(i) + '.pickle', 'wb') as handle: content = data[(i * batch_size):((i+1) * batch_size)] pickle.dump(content, handle) print('Saved', label, 'part #' + str(i), 'with', len(content), 'entries.') i += 1 # Create one hot encoding for labels # labels = [[1., 0.] if 'dog' in name else [0., 1.] for name in train_image_file_names] # these are all real images, so let's encode them all with 1's labels = [[1., 0.] for name in train_image_file_names] # TO EXPORT DATA WHEN RUNNING LOCALLY - UNCOMMENT THESE LINES # a batch with 5000 images has a size of around 3.5 GB # create_batch(labels, 'pickled/', np.shape(train_images)[0]) create_batch(train_images, 'pickled/', np.shape(train_images)[0]) print('done creating dataset') ```
{ "source": "jessvb/convo", "score": 3 }
#### File: backend/server/db_manage.py ```python import json from app import logger, db from datetime import datetime from helpers import convert_to_object, convert_to_dict class User(db.Model): '''User model that is associated with Convo clients''' id = db.Column(db.Integer, primary_key=True) # Server ID of connected client sid = db.Column(db.String(120), unique=True, nullable=False) # Date when created created_on = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) # Date when user last connected connected_on = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) class Program(db.Model): '''Program model that is currently representing procedures in Convo''' id = db.Column(db.Integer, primary_key=True) sid = db.Column(db.String(120), db.ForeignKey('user.sid'), nullable=False) # Name of procedure name = db.Column(db.String(80), nullable=False) # JSON-encoded string of the procedure object procedure = db.Column(db.Text, nullable=True) # Date when created created_on = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) # Date when updated updated_on = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) def get_or_create_user(client): '''Gets user based on client if exists, else creates a new user''' user = User.query.filter_by(sid=client.id).first() if user is None: user = User(sid=client.id) db.session.add(user) else: user.connected_on = datetime.utcnow() db.session.commit() return user def from_db_program(program): '''Convert Program DB model to a Procedure''' return json.loads(program.procedure, object_hook=convert_to_object) def get_procedures(sid): '''Get all procedures of a client based on their sid''' programs = Program.query.filter_by(sid=sid).all() if not programs: return {} procedures = [(program.name, from_db_program(program)) for program in programs] return dict(procedures) def add_or_update_procedure(sid, procedure): '''Add or update an existing procedure based on client's sid and procedure's id''' encoded = json.dumps(procedure, default=convert_to_dict) program = Program.query.filter_by(sid=sid, name=procedure.name).first() if program is None: program = Program(sid=sid, name=procedure.name, procedure=encoded) db.session.add(program) else: program.procedure = encoded program.updated_on = datetime.utcnow() db.session.commit() procedure.id = program.id return program def remove_procedure(sid, procedure): '''Removes a procedure from database''' program = Program.query.filter_by(sid=sid, name=procedure.name).first() if not program: return db.session.delete(program) db.session.commit() ``` #### File: backend/server/dialog.py ```python from nlu import SemanticNLU from rasa_nlu import RasaNLU from question import QuestionAnswer from models import * from goals import * from error import * from helpers import * from app import logger state_machine = { "home": { "create_procedure": "creating", "execute": "executing", "edit": "editing", "connect_intent": "editing" }, "creating": { "complete": "home" }, "editing": { "add_step": "editing_action", "change_step": "editing_action", "complete": "home" }, "executing": { "finish": "home" }, "editing_action": { "complete": "editing" } } allowed_goals = { "home": [HomeGoal, GetInputGoal], "creating": [ActionGoal, GetActionsGoal, GetConditionGoal, GetInputGoal], "editing": [StepGoal, GetInputGoal, ActionGoal, GetActionsGoal, GetConditionGoal], "editing_action": [ActionGoal, GetActionsGoal, GetConditionGoal, GetInputGoal], "executing": [GetUserInputGoal, GetInputGoal] } class DialogManager(object): """Represents a dialog manager for a client""" def __init__(self, sid, port="5005", procedures={}): self.sid = sid self.port = port self.context = DialogContext(sid, port, procedures) self.qa = QuestionAnswer(self.context) self.nlu = SemanticNLU(self.context) self.rasa = RasaNLU(self.context) def reset(self, context=None): """Resets the context either entirely or to a snapshot of another context""" if context is not None: # If a context is provided, set the context to the provided context self.context = context self.qa = QuestionAnswer(context) self.nlu = SemanticNLU(context) self.rasa = RasaNLU(context) else: self.context.reset() logger.debug(f"[{self.sid}] Resetting the entire conversation.") return "Conversation has been reset. What do you want to do first?" @property def immediate_goal(self): """Returns the immediate, lowest-level current goal""" current = self.context.current_goal while current and current.todos: current = current.todos[-1] return current def current_goal(self): """Returns the current high-level goal, may contain other goals in its todos""" return self.context.current_goal def handle_message(self, message, isUnconstrained): """Handle messages by the client""" self.context.add_message(message) # Handle message indicating a reset response = self.handle_reset(message) if response is not None: logger.debug(f"[{self.sid}] User resetted.") return response # If message indicates client needed help, return appropriate response response = self.handle_help(message) if response is not None: logger.debug(f"[{self.sid}] User needed help.") return response # Handle messages received by server during program execution if self.context.state == "executing": logger.debug(f"[{self.sid}] Program is currently executing.") return self.handle_execution(message) # Handle message indicating a canceling of the immediate goal response = self.handle_cancel(message) if response is not None: logger.debug(f"[{self.sid}] User canceled.") return response # Handle message that may be question and answer it response = self.handle_question(message) if response is not None: logger.debug(f"[{self.sid}] User asked a question.") return response # If none of the above, parse the message for either a goal or slot-filling value response = self.handle_parse(message, isUnconstrained) if response is not None: return response return self.handle_goal() def handle_reset(self, message): """Check for reset""" if message.lower() == "reset": return self.reset() def handle_help(self, message): """Check for help""" if message.lower() in ["help", "i need help"]: return "Raise your hand and help will be on the way!" def handle_execution(self, message): """Check if DM in stage of execution""" execution = self.context.execution if message.lower() in ["stop", "cancel"]: # Stop execution if user commands it execution.finish("Procedure has been stopped.") elif execution.input_needed: # If execution was paused to ask for user input, continue the execution with provided input execution.run(message) else: # Do not allow any other action besides the two cases above return "Procedure is still executing." return def handle_cancel(self, message): """ Check for cancellation If cancel, cancels the lowest-level goal that is not a "Get Input" or "Get Condition" goal For example, if the goal chain is "Add Step" -> "Create Variable" -> "Get Input", it will cancel "Create Variable" """ if message.lower() == "cancel": previous = None current = self.context.current_goal while current and current.todos: if isinstance(current.todos[-1], GetInputGoal) or isinstance(current.todos[-1], GetConditionGoal): break previous, current = current, current.todos[-1] logger.debug(f"[{self.context.sid}] Canceling the current goal: {current}") current.cancel() if current is None: return "You are not doing anything right now. What do you want to do?" elif previous is None: assert self.context.state == "home" self.context.goals.pop() return "Canceled! What do you want to do now?" else: previous.todos.pop() return f"Canceled! {previous.message}" def handle_question(self, message): """Check if message is a question and answer if it is""" if QuestionAnswer.is_question(message): logger.debug(f"Answering a potential question: {message}") answer = self.qa.answer(message) if answer is not None: logger.debug(f"Question can be answered with: {answer}") return answer def handle_parse(self, message, isUnconstrained): """Parses the message""" try: if isUnconstrained: goal = self.rasa.parse_message(message) if goal is None: goal = self.nlu.parse_message(message) else: goal = self.nlu.parse_message(message) self.context.parsed = goal except InvalidStateError as e: response = "I can't do this right now" if isinstance(e.goal, ActionGoal): logger.debug(f"[{self.sid}] Invalid state to do action because currently not creating or editing a procedure.") response += " because I am currently not creating or editing a procedure" elif isinstance(e.goal, StepGoal): if e.state == "editing_action": logger.debug(f"[{self.sid}] Invalid state to do action because currently adding or editing an action.") response += " because I am currently adding or editing an action" else: logger.debug(f"[{self.sid}] Invalid state to do action because currently not editing a procedure.") response += " because I am currently not editing a procedure" elif isinstance(e.goal, HomeGoal): if e.state == "creating": logger.debug(f"[{self.sid}] Invalid state to do action because currently creating a procedure.") response += " because I am currently creating a procedure. You can stop by saying \"done\"" elif e.state == "editing": logger.debug(f"[{self.sid}] Invalid state to do action because currently editing a procedure.") response += " because I am currently editing a procedure. You can stop by saying \"done\"" elif e.state == "editing_action": logger.debug(f"[{self.sid}] Invalid state to do action because adding or editing an action.") response += " because I am currently adding or editing an action. Finish editing then you can stop by saying \"done\"" else: logger.debug(f"[{self.sid}] Invalid state to do action.") return f"{response}." def handle_goal(self): """ Advances and updates the context based on the current received message """ if self.current_goal() is None: # If a current goal does not exist at the moment current message is received goal = self.context.parsed if goal is None or not isinstance(goal, BaseGoal): logger.debug(f"[{self.sid}] Did not understand utterance: {self.context.current_message}") response = "I didn't understand what you were saying. Please try again." elif goal.error is not None: # If parsed goal has an error, respond to client response = goal.error elif goal.is_complete: # If parsed goal can already be completed, complete the goal and respond to client response = goal.complete() else: # Add parsed goal to the current context and respond to client about the goal response = goal.message self.context.add_goal(goal) else: # If there is a current goal, advance the current goal goal = self.current_goal() goal.advance() if goal.error is not None: # If current goal has an error, remove the goal and respond to client response = goal.error self.context.goals.pop() elif goal.is_complete: # If current goal can be completed, complete the goal and respond to client response = goal.complete() self.context.goals.pop() else: response = goal.message return response def handle_train(self, intents): """ Prompts the user to connect or create procedures for each intent that was trained. """ logger.debug(f"[{self.sid}] Finished training the following intents: {intents}.") return f"You've finished training the intents: {intents}! Please connect it to the procedure you want to execute when the intent is recognized by saying \"connect the intent [intent name] to the procedure [procedure name]\"." class DialogContext(object): """ Contains context and information needed to process messages and maintain conversations More specifically, contains the classes, procedures, intents (and entities), state, conversation, goals and execution/editing subcontexts for the client """ def __init__(self, sid, port, procedures={}): self.sid = sid self.rasa_port = port self.classes = {} self.procedures = procedures self.execution = None self.intents = {} # maps intent name to a list of required entities self.intent_to_procedure = {} # maps intent name to a procedure that it is linked to self.entities = {} # maps entities to their respective values, if given self.reset() @property def current_message(self): """Retrieves the latest message of the conversation""" return self.conversation[-1].lower() if self.conversation else None @property def current_goal(self): """Retrives the current top-level goal""" return self.goals[-1] if self.goals else None def reset(self): """Resets the context""" if self.execution is not None: self.execution.finish() self.state = "home" self.conversation = [] self.goals = [] self.current = None self.execution = None self.edit = None def add_message(self, message): self.conversation.append(message) def add_goal(self, goal): self.goals.append(goal) def add_class(self, klass): self.classes[klass.name] = klass def add_procedure(self, procedure): self.procedures[procedure.name] = procedure def add_intent(self, intent, entities): self.intents[intent] = entities for entity in entities: self.entities[entity] = None def add_entity(self, entity, value): self.entities[entity] = value def get_class(self, name): return self.classes.get(name) def validate_goal(self, goal): """Check if goal is allowed in the current state of the context""" allowed = any([type(goal) == goaltype or isinstance(goal, goaltype) for goaltype in allowed_goals[self.state]]) if not allowed: raise InvalidStateError(goal, self.state) def transition(self, action): """Transition state given the action""" self.state = state_machine[self.state][str(action)] ``` #### File: server/goals/loop.py ```python from app import logger from goals import * from models import * class LoopActionGoal(ActionGoal): """Goal for adding a loop action""" def __init__(self, context, loop=None, condition=None, action=None): super().__init__(context) self.loop_actions = [] self.todos = [GetLoopActionsGoal(self.context, self.loop_actions)] self.setattr("action", action) self.setattr("condition", condition) self.setattr("loop", loop) def complete(self): assert hasattr(self, "actions") self.actions.append(LoopAction(self.loop, self.condition, self.loop_actions)) return super().complete() def advance(self): logger.debug(f"Advancing {self.__class__.__name__}...") self._message = None if self.todos: todo = self.todos.pop() todo.advance() if todo.error: if isinstance(todo, GetConditionGoal): self.error = todo.error else: self._message = todo.error return if todo.is_complete: todo.complete() else: self.todos.append(todo) def setattr(self, attr, value): if attr == "action" and value: setattr(value, "actions", self.loop_actions) if value.error: self.error = value.error elif value.is_complete: value.complete() else: self.todos[0].todos.append(value) return elif attr == "condition": if value is None: self.todos.append(GetConditionGoal(self.context, self)) elif isinstance(value, UntilStopCondition): self.loop = "until" self.condition = value elif value.variable.variable not in self.variables: self.error = f"Variable {value.variable.variable} used in the condition hasn't been created yet. Please try again or create the variable first." elif isinstance(value.value, ValueOf) and value.value.variable not in self.variables: self.error = f"Variable {value.value.variable} used in the condition hasn't been created yet. Please try again or create the variable first." elif isinstance(value, ComparisonCondition): if isinstance(value.value, str): if value.value in self.variables: value.value = ValueOf(value.value) self.condition = value else: self.error = f"The value {value.value} is not a number, so I cannot compare. Please try again." else: self.condition = value else: self.condition = value return elif attr == "loop": assert value is not None self.loop = value return setattr(self, attr, value) ``` #### File: server/goals/say.py ```python from models import * from goals import * class SayActionGoal(ActionGoal): """Goal for adding a say action""" def __init__(self, context, say_phrase=None): super().__init__(context) self.setattr("phrase", say_phrase) def complete(self): assert hasattr(self, "actions") self.actions.append(SayAction(self.phrase)) return super().complete() def setattr(self, attr, value): if attr == "phrase": if value is None: self.todos.append(GetInputGoal(self.context, self, attr, f"What do you want me to say?")) elif isinstance(value, ValueOf): if value.variable not in self.variables: self.error = f"Variable, {value.variable}, hasn't been created. Try using an existing variable if you want to try again." return self.phrase = value else: self.phrase = value return setattr(self, attr, value) ``` #### File: server/goals/variable.py ```python from models import * from goals import * class CreateVariableActionGoal(ActionGoal): """Goal for adding a create variable action""" def __init__(self, context, variable_name=None, variable_value=None, prepend=False): super().__init__(context) self.prepend = prepend self.setattr("value", variable_value) self.setattr("name", variable_name) def complete(self): assert hasattr(self, "actions") if self.prepend: self.actions.insert(0, CreateVariableAction(self.name, self.value)) else: self.actions.append(CreateVariableAction(self.name, self.value)) self.variables.add(self.name) return super().complete() def setattr(self, attr, value): if attr == "name": if value is None: self.todos.append(GetInputGoal(self.context, self, attr, f"What do you want to call the variable?")) elif value in self.variables: self.error = f"The name, {value}, has already been used. Try creating a variable with another name." else: self.name = value return elif attr == "value": if value is None: self.todos.append(GetInputGoal(self.context, self, attr, f"What should be the initial value?")) elif isinstance(value, ValueOf): if value.variable not in self.variables: self.error = f"Variable, {value}, hasn't been created yet. Try setting it to the value of an existing variable." else: self.value = value else: self.value = value return setattr(self, attr, value) class SetVariableActionGoal(ActionGoal): """Goal for adding a set variable action""" def __init__(self, context, variable_name=None, variable_value=None): super().__init__(context) self.setattr("value", variable_value) self.setattr("name", variable_name) def complete(self): assert hasattr(self, "actions") self.actions.append(SetVariableAction(self.name, self.value)) return super().complete() def setattr(self, attr, value): if attr == "name": if value is None: self.todos.append(GetInputGoal(self.context, self, attr, f"What variable do you want to set?")) elif value not in self.variables: self.error = f"Variable, {value}, hasn't been created, so we can't set it yet. You can create it by saying, \"create a variable called {value}.\"" else: self.name = value return elif attr == "value": if value is None: self.todos.append(GetInputGoal(self.context, self, attr, f"What value do you want to set the variable to?")) elif isinstance(value, ValueOf): if value.variable not in self.variables: self.error = f"Variable, {value}, hasn't been created yet. Try setting it to the value of an existing variable." else: self.value = value else: self.value = value return setattr(self, attr, value) class AddToVariableActionGoal(ActionGoal): """Goal for adding a add to variable action""" def __init__(self, context, variable_name=None, add_value=None): super().__init__(context) self.setattr("value", add_value) self.setattr("name", variable_name) def complete(self): assert hasattr(self, "actions") self.actions.append(AddToVariableAction(self.name, self.value)) return super().complete() def setattr(self, attr, value): if attr == "name": if value is None: self.todos.append(GetInputGoal(self.context, self, attr, f"What variable do you want to add to?")) elif value not in self.variables: self.error = f"The variable, {value}, hasn't been created so there is nothing to add to. Try creating the variable first." else: self.name = value return elif attr == "value": if value is None: self.todos.append(GetInputGoal(self.context, self, attr, f"What value do you want to add to the variable?")) elif isinstance(value, ValueOf): if value.variable not in self.variables: self.error = f"Variable {value} does not exist. Try setting it to the value of an existing variable." else: self.value = value elif isinstance(value, str): self.todos.append(GetInputGoal(self.context, self, attr, f"The value, {value}, isn't a number. Can you try again?")) else: self.value = value return class SubtractFromVariableActionGoal(ActionGoal): """Goal for adding a subtract from variable action""" def __init__(self, context, variable_name=None, subtract_value=None): super().__init__(context) self.setattr("value", subtract_value) self.setattr("name", variable_name) def complete(self): assert hasattr(self, "actions") self.actions.append(SubtractFromVariableAction(self.name, self.value)) return super().complete() def setattr(self, attr, value): if attr == "name": if value is None: self.todos.append(GetInputGoal(self.context, self, attr, f"What variable do you want to subtract from?")) elif value not in self.variables: self.error = f"The variable, {value}, hasn't been created so there is nothing to subtract it. Try creating the variable first." else: self.name = value return elif attr == "value": if value is None: self.todos.append(GetInputGoal(self.context, self, attr, f"What value do you want to subtract from the variable?")) elif isinstance(value, ValueOf): if value.variable not in self.variables: self.error = f"Variable {value} does not exist. Try setting it to the value of an existing variable." else: self.value = value elif isinstance(value, str): self.todos.append(GetInputGoal(self.context, self, attr, f"Not a number. Try again.")) else: self.value = value return ``` #### File: server/models/action.py ```python from helpers import to_snake_case from models.valueof import ValueOf tab = " " class Action(object): """Represents an action in a procedure""" def __init__(self): raise NotImplementedError def __str__(self): name = self.__class__.__name__ return to_snake_case(name[:-len("Action")]) def json(self): return { "name": str(self) } def python(self): raise NotImplementedError def to_nl(self): raise NotImplementedError def __eq__(self, other): raise NotImplementedError class SetPropertyAction(Action): def __init__(self, property, value): self.property = property self.value = value def json(self): return { "name": str(self), "property": self.property, "value": self.value } def python(self): return [f"{self.property} = {self.value}"] def to_nl(self): return f"setting property {self.property} to {self.value}" def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return self.property == other.property and self.value == other.value class VariableAction(Action): def __init__(self, variable, value): self.variable = variable self.value = value def json(self): return { "name": str(self), "variable": self.variable, "value": self.value } def python(self): return [f"{self.variable} = {self.value}"] def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return self.variable == other.variable and self.value == other.value class CreateVariableAction(VariableAction): def __init__(self, variable, value): super().__init__(variable, value) def to_nl(self): value = self.value.to_nl() if isinstance(self.value, ValueOf) else self.value return f"creating a variable called {self.variable} and setting its value to {self.value}" class SetVariableAction(VariableAction): def __init__(self, variable, value): super().__init__(variable, value) def to_nl(self): value = self.value.to_nl() if isinstance(self.value, ValueOf) else self.value return f"setting the value of variable {self.variable} to {self.value}" class AddToVariableAction(VariableAction): def __init__(self, variable, value): super().__init__(variable, value) def python(self): return [f"{self.variable} += {self.value}"] def to_nl(self): value = self.value.to_nl() if isinstance(self.value, ValueOf) else self.value return f"adding {value} to variable {self.variable}" class SubtractFromVariableAction(VariableAction): def __init__(self, variable, value): super().__init__(variable, value) def python(self): return [f"{self.variable} -= {self.value}"] def to_nl(self): value = self.value.to_nl() if isinstance(self.value, ValueOf) else self.value return f"subtracting {value} from variable {self.variable}" class SayAction(Action): def __init__(self, phrase): self.phrase = phrase def json(self): return { "name": str(self), "phrase": self.phrase } def python(self): return [f"say(\"{self.phrase}\")"] def to_nl(self): if isinstance(self.phrase, ValueOf): return f"saying the value of the variable {self.phrase.variable}" return f"saying the phrase \"{self.phrase}\"" def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return self.phrase.lower() == other.phrase.lower() class ConditionalAction(Action): def __init__(self, condition, actions): self.condition = condition self.actions = actions def json(self): return { "name": str(self), "condition": str(self.condition), "actions_true": [a.json() for a in self.actions[1]], "actions_false": [a.json() for a in self.actions[0]] } def python(self): lines = [f"if {str(self.condition)}:"] lines.extend([f"{tab}{line}" for action in self.actions[1] for line in action.python()]) lines.append("else:") lines.extend([f"{tab}{line}" for action in self.actions[0] for line in action.python()]) return lines def to_nl(self): falses, trues = self.actions if len(trues) == 1 and \ not isinstance(trues[0], ConditionalAction) and \ (len(falses) == 0 or (len(falses) == 1 and not isinstance(falses[0], ConditionalAction))): nl = f"{trues[0].to_nl()} if {self.condition.to_nl()}" if len(falses) == 1: nl += f" else I am {falses[0].to_nl()}" return nl num_falses = len(falses) if len(falses) > 0 else 'no' num_trues = len(trues) if len(trues) > 0 else 'no' return f"doing {num_trues} action(s) when {self.condition.to_nl()} and {num_falses} action(s) otherwise" def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return self.condition == other.condition and self.actions[0] == other.actions[0] and self.actions[1] == other.actions[1] class LoopAction(Action): def __init__(self, loop, condition, actions): self.loop = loop self.condition = condition self.actions = actions def json(self): return { "name": str(self), "loop": self.loop, "condition": str(self.condition), "actions": [a.json() for a in self.actions] } def to_nl(self): num_actions = str(len(self.actions)) if len(self.actions) > 0 else 'no' return f"doing {num_actions} action{'s' if num_actions != '1' else ''} in a loop {self.loop} {self.condition.to_nl()}" def python(self): if self.loop == "while": lines = [f"while {str(self.condition)}:"] lines.extend([f"{tab}{line}" for action in self.actions for line in action.python()]) return lines raise NotImplementedError def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return self.loop == self.loop and self.condition == other.condition and self.actions == self.actions class CreateListAction(Action): def __init__(self, name): self.name = name def json(self): return { "name": str(self), "list": self.name } def python(self): return [f"{self.name} = []"] def to_nl(self): return f"creating a list called {self.name}" def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return self.name == self.name class AddToListAction(Action): def __init__(self, name, value): self.name = name self.value = value def json(self): return { "name": str(self), "list": self.name, "value": self.value } def python(self): return [f"{self.name}.append({self.value})"] def to_nl(self): return f"adding {self.value} to list {self.name}" def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return self.name == other.name and self.value == other.value class AddToListPropertyAction(Action): def __init__(self, property, value): self.property = name self.value = value def json(self): return { "name": str(self), "property": self.property, "value": self.value } def python(self): return [f"{self.property}.append({self.value})"] def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return self.property == other.property and self.value == other.value class GetUserInputAction(Action): def __init__(self, variable, prompt): self.variable = variable self.prompt = prompt def json(self): return { "name": str(self), "variable": self.variable, "prompt": self.prompt } def to_nl(self): return f"listening for input and saving it as {self.variable}" def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return self.variable == other.variable and self.prompt == other.prompt class PlaySoundAction(Action): def __init__(self, sound): self.sound = sound def json(self): return { "name": str(self), "sound": self.sound } def to_nl(self): return f"playing the sound file {self.sound}" def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return self.sound == other.sound ``` #### File: server/models/condition.py ```python from error import * from models import * class Condition(object): """Represents a condition""" def __init__(self): pass def __str__(self): return "condition" class SayCondition(Condition): def __init__(self, phrase): self.phrase = phrase def eval(self, phrase): return self.phrase == phrase def __str__(self): return f"'{self.phrase}'" def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return self.phrase == other.phrase comparison_ops = { "greater than": ">", "less than": "<", "greater than or equal to": ">=", "less than or equal to": "<=" } class UntilStopCondition(Condition): """Loop-only condition that stops the loop only if user says stop""" def eval(self): return True def __str__(self): return "you say 'stop'" def to_nl(self): return self.__str__() def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return True class EqualityCondition(Condition): """Represents an equality condition""" def __init__(self, variable, value, negation=False): # Variable to retrieve when evaluating self.variable = variable # Value to compare against self.value = value # Whether is is == or != self.negation = negation def eval(self, variables): """ Evaluate the variable Assumes that the variable to evaluate is in variables """ variable = variables[self.variable.variable] value = variables[self.value.variable] if isinstance(self.value, ValueOf) else self.value if type(value) != type(variable): if isinstance(value, str) or isinstance(variable, str): raise ExecutionError(f"The values {value} and {variable} cannot be compared.") return variable != value if self.negation else variable == value def __str__(self): value = f"the value of {self.value.variable}" if isinstance(self.value, ValueOf) else self.value return f"{self.variable.variable} {'!' if self.negation else '='}= {value}" def to_nl(self): value = f"the value of {self.value.variable}" if isinstance(self.value, ValueOf) else self.value return f"variable {self.variable.variable} is {'not ' if self.negation else ''}equal to {value}" def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return self.variable == other.variable and self.value == other.value and self.negation == other.negation class ComparisonCondition(Condition): """Represents an comparison condition""" def __init__(self, variable, op, value): # Variable to retrieve when evaluating self.variable = variable # Value to compare against self.value = value # Operator to evaluate with - includes >, >=, <, <= self.op = op def eval(self, variables): """ Evaluate the variable Assumes that the variable to evaluate is in variables """ variable = variables[self.variable.variable] value = variables[self.value.variable] if isinstance(self.value, ValueOf) else self.value if type(value) != type(variable): if isinstance(value, str) or isinstance(variable, str): raise ExecutionError(f"The values {value} and {variable} cannot be compared.") if self.op == "greater than": return variable > value elif self.op == "less than": return variable < value elif self.op == "greater than or equal to": return variable >= value elif self.op == "less than or equal to": return variable <= value return False def __str__(self): value = f"the value of {self.value.variable}" if isinstance(self.value, ValueOf) else self.value return f"{self.variable.variable} {comparison_ops.get(self.op)} {value}" def to_nl(self): value = f"the value of {self.value.variable}" if isinstance(self.value, ValueOf) else self.value return f"variable {self.variable.variable} is {self.op} {value}" def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return self.variable == other.variable and self.value == other.value and self.op == other.op ``` #### File: server/models/execution.py ```python import copy import threading import time from app import sio, logger from error import * from models import * from helpers import * class Execution(object): """ Represents an execution of a procedure Executes the procedure in a child thread such that the server does not have to wait for execution to finish before performing other actions - this way multiple users can send messages at once and allow for users to stop execution of a procedure before it finishes - allowing for stopping of infinite loops. """ def __init__(self, context, actions, to_emit=True): self.context = context self.actions = actions self.variables = {} self.step = 0 self.input_needed = None self.thread_running = False self.finished = False self.to_emit = to_emit self.first_message_emitted = False def run(self, message=None): """ Starts execution Execution starts essentially from two different states: 1. From the beginning of a procedure 2. After asking for user input, execution starts again with user's next message as input """ if self.input_needed and message: # If input was needed, try to parse message and if it's a number try to parse number number = parse_number(message) self.variables[self.input_needed] = number if number is not None else message logger.debug(f"[{self.context.sid}][Execution] Variables after getting input: {str(self.variables)}") self.input_needed = None self.thread = threading.Thread(target=self.advance) # Means if the main thread stops (the server), this thread will also stop self.thread.daemon = True self.thread_running = True if not self.first_message_emitted: self.emit("response", { "message": "Procedure started running.", "state": self.context.state, "speak": False }) logger.debug(f"[{self.context.sid}][Execution] Procedure started running.") self.first_message_emitted = True logger.debug(f"[{self.context.sid}][Execution] Thread started running.") self.thread.start() def stop(self): """Stop execution""" self.thread_running = False def finish(self, message=None): """Finish up execution""" self.stop() self.finished = True # Transition from "running" state to "home" state self.context.transition("finish") self.context.execution = None if message is not None: logger.debug(f"[{self.context.sid}][Execution] Execution stopped with message: {message}") self.emit("response", { "message": message, "state": self.context.state }) def advance(self): """Continue execution""" while self.thread_running and not self.finished and self.step < len(self.actions): action = self.actions[self.step] try: # Tries to evaluate action self.evaluate_action(action) self.step += 1 sio.sleep(0.1) if self.input_needed: # If input is needed (i.e. reaches a GetUserInputAction), stop execution and ask user for input self.stop() return except KeyError as e: # Error when variable referenced does not exist logger.debug(f"[{self.context.sid}][Execution] KeyError: {e.args[0]}") self.finish(f"Error occured while running. Variable {e.args[0]} did not exist when I was {action.to_nl()}.") return except ExecutionError as e: # Error that happens during execution like infinite loops, etc. logger.debug(f"[{self.context.sid}][Execution] ExecutionError: {e.message}") self.finish(e.message) return if self.step >= len(self.actions): break if not self.finished: self.finish("Procedure finished running.") def emit(self, event, data): """Emit or send message to user via sockets""" if not self.to_emit: return try: message = f" with the message: {data['message']}" if "message" in data else "." logger.debug(f"[{self.context.sid}][Execution] Emitting '{event}'{message}") sio.emit(event, data, room=str(self.context.sid)) except RuntimeError as e: logger.debug(f"[{self.context.sid}][Execution] RuntimeError: {str(e)}") if not str(e).startswith("Working outside of request context."): raise e def evaluate_action(self, action): """Evaluates an action""" logger.debug(f"[{self.context.sid}][Execution][Evaluating] Evaluating action {str(action)} on step {self.step}.") if isinstance(action, SayAction): phrase = action.phrase if isinstance(action.phrase, ValueOf): variable = action.phrase.variable phrase = f"The value of {variable} is \"{self.variables[variable]}\"." logger.debug(f"[{self.context.sid}][Execution][Evaluating] Saying '{phrase}'") self.emit("response", { "message": phrase, "state": self.context.state }) self.context.add_message(action.phrase) elif isinstance(action, PlaySoundAction): logger.debug(f"[{self.context.sid}][Execution][Evaluating] Playing sound file {action.sound}.") self.emit("playSound", { "sound": action.sound, "state": self.context.state }) elif isinstance(action, GetUserInputAction): logger.debug(f"[{self.context.sid}][Execution][Evaluating] Getting user input and setting as {action.variable}.") self.input_needed = action.variable if action.prompt: self.emit("response", { "message": action.prompt, "state": self.context.state }) elif isinstance(action, CreateVariableAction): self.variables[action.variable] = self.variables[action.value.variable] if isinstance(action.value, ValueOf) else action.value logger.debug(f"[{self.context.sid}][Execution][Evaluating] Creating variable {action.variable} with value {self.variables[action.variable]}.") logger.debug(f"[{self.context.sid}][Execution][Evaluating] Variables after creating variable: {str(self.variables)}") elif isinstance(action, SetVariableAction): if action.variable in self.variables: self.variables[action.variable] = self.variables[action.value.variable] if isinstance(action.value, ValueOf) else action.value logger.debug(f"[{self.context.sid}][Execution][Evaluating] Setting variable {action.variable} with value {self.variables[action.variable]}.") logger.debug(f"[{self.context.sid}][Execution][Evaluating] Variables after setting variable: {str(self.variables)}") else: logger.debug(f"[{self.context.sid}][Execution][Evaluating] Variable {action.variable} not found.") raise KeyError(action.variable) elif isinstance(action, AddToVariableAction) or isinstance(action, SubtractFromVariableAction): value = self.variables.get(action.variable) if action.variable in self.variables: old = self.variables[action.variable] factor = 1 if isinstance(action, AddToVariableAction) else -1 if isinstance(action.value, float) or isinstance(action.value, int): self.variables[action.variable] += factor * action.value elif isinstance(action.value, ValueOf): self.variables[action.variable] += factor * self.variables[action.value.variable] new = self.variables[action.variable] if isinstance(action, AddToVariableAction): logger.debug(f"[{self.context.sid}][Execution][Evaluating] Incrementing variable {action.variable} from {old} to {new}.") logger.debug(f"[{self.context.sid}][Execution][Evaluating] Variables after incrementing variable: {str(self.variables)}") else: logger.debug(f"[{self.context.sid}][Execution][Evaluating] Decrementing variable {action.variable} from {old} to {new}.") logger.debug(f"[{self.context.sid}][Execution][Evaluating] Variables after decrementing variable: {str(self.variables)}") else: logger.debug(f"[{self.context.sid}][Execution][Evaluating] Variable {action.variable} not found.") raise KeyError(action.variable) elif isinstance(action, ConditionalAction): res = action.condition.eval(self.variables) logger.debug(f"[{self.context.sid}][Execution][Evaluating] Evaluating condition for if statement.") logger.debug(f"[{self.context.sid}][Execution][Evaluating] Variables when evaluating condition: {str(self.variables)}") logger.debug(f"[{self.context.sid}][Execution][Evaluating] Condition for if statement ({str(action.condition)}) is " + ("true" if res else "false")) self.actions[self.step:self.step + 1] = action.actions[res] self.step -= 1 elif isinstance(action, LoopAction): if (action.loop == "until" and isinstance(action.condition, UntilStopCondition)): res = False else: res = action.condition.eval(self.variables) logger.debug(f"[{self.context.sid}][Execution][Evaluating] Evaluating condition for {action.loop} loop.") logger.debug(f"[{self.context.sid}][Execution][Evaluating] Variables when evaluating condition: {str(self.variables)}") logger.debug(f"[{self.context.sid}][Execution][Evaluating] Condition for {action.loop} loop ({str(action.condition)}) is " + ("true" if res else "false")) if (action.loop == "until" and not res) or (action.loop == "while" and res): self.actions[self.step:self.step] = action.actions self.step -= 1 else: raise NotImplementedError class InternalExecution(Execution): """Execution that is ran internally without user knowing - used in user study to check advanced scenarios""" def __init__(self, context, actions, inputs): super().__init__(context, actions) self.inputs = inputs self.iterinputs = iter(inputs) self.emits = [] self.original_length = len(actions) def advance(self): while self.step < len(self.actions): action = self.actions[self.step] try: self.evaluate_action(action) self.step += 1 if self.input_needed: message = next(self.iterinputs) number = parse_number(message) self.variables[self.input_needed] = number if number is not None else message logger.debug(f"[{self.context.sid}][Execution] Variables after getting input: {str(self.variables)}") self.input_needed = None except KeyError as e: logger.debug(f"[{self.context.sid}][Execution] KeyError: {e.args[0]}") return "KeyError" except ExecutionError as e: logger.debug(f"[{self.context.sid}][Execution] ExecutionError: {e.message}") return "ExecutionError" except StopIteration as e: logger.debug(f"[{self.context.sid}][Execution] StopIteration: Too many inputs needed.") return "StopIteration" if len(self.actions) > self.original_length * 100: logger.debug(f"[{self.context.sid}][Execution] Infinite loop detected.") return "InfiniteLoop" self.finish() return None def run(self): logger.debug(f"[{self.context.sid}][Execution] Starting to check procedure.") logger.debug(f"[{self.context.sid}][Execution] Actions: {[str(a) for a in self.actions]}") logger.debug(f"[{self.context.sid}][Execution] Inputs: {self.inputs}.") return self.advance() def finish(self): logger.debug(f"[{self.context.sid}][Execution] Finishing checking procedure.") logger.debug(f"[{self.context.sid}][Execution] Emits: {self.emits}.") self.finished = True def emit(self, event, data): """Add to list of emits instead of actually sending responses to user""" self.emits.append((event, data)) ```
{ "source": "jessvb/Heart-rate-from-video", "score": 3 }
#### File: jessvb/Heart-rate-from-video/heart-rate-post-process.py ```python import cv2 import numpy as np import sys import time from classes.process import Process from classes.video import Video import pandas as pd import os ################################################################################ ######### Change these depending on where your recordings are located ########## rec_dir = 'recordings/' ################################################################################ def getVideoHeartRate(video,process,output_name): frame = np.zeros((10,10,3),np.uint8) bpm = 0 # for exporting to csv bpm_all = [] timestamps = [] # Run the loop process.reset() video.start() max_frame_num = int(video.cap.get(cv2.CAP_PROP_FRAME_COUNT)) iter_percent = 0 # for printing percent done hasNextFrame = True while hasNextFrame == True: frame = video.get_frame() if frame is not None: process.frame_in = frame process.run() f_fr = process.frame_ROI #get the face bpm = process.bpm #get the bpm change over the time f_fr = cv2.cvtColor(f_fr, cv2.COLOR_RGB2BGR) f_fr = np.transpose(f_fr,(0,1,2)).copy() bpm_all.append(bpm) curr_frame_num = video.cap.get(cv2.CAP_PROP_POS_FRAMES) timestamps.append(curr_frame_num/video.fps) else: hasNextFrame = False # every so often, show percent done percent_done = curr_frame_num/max_frame_num*100 if (percent_done > iter_percent): print('current frame: %.0f' % curr_frame_num) print('percent done: %.1f%%' % percent_done) iter_percent += 20 # Export predicted bpm to .csv format df = pd.DataFrame({'BPM': bpm_all, 'TIMESTAMP_SEC': timestamps}) df.to_csv(os.path.join('output', 'heartrate_' + output_name + '.csv'), sep=',', index=False) print('🎉 Done! 🎉') print('See the output file:') print('output/' + 'heartrate_' + output_name + '.csv') if __name__ == '__main__': # Loop through specific files and analyze their video files_in_dir = [f for f in os.listdir(rec_dir) if os.path.isfile(os.path.join(rec_dir, f))] i = 0 for f in files_in_dir: video = Video() process = Process() if f.split('.')[1] == 'avi' or f.split('.')[1] == 'mp4': video.dirname = os.path.join(rec_dir,f) output_name = f.split('.')[0] print(f'Reading from {video.dirname}') getVideoHeartRate(video, process, output_name) i += 1 print(f"""Number of files to go: {len(files_in_dir) - i} Percent files done: {i/len(files_in_dir)*100}\n""") ```
{ "source": "jessvb/lstm_model_loader", "score": 3 }
#### File: jessvb/lstm_model_loader/max-likelihood.py ```python import sys import json models = { 'aliceInWonderland':'max-likelihood-models/AiW_model.json', 'drSeuss': 'max-likelihood-models/drSeuss_.json', 'hamlet': 'max-likelihood-models/hamlet_model.json', 'harryPotter': 'max-likelihood-models/harryPotter_model.json', 'hungerGames': 'max-likelihood-models/hungerGames_model.json', 'nancy': 'max-likelihood-models/nancy_model.json', 'narnia': 'max-likelihood-models/narnia_model.json', 'shakespeare': 'max-likelihood-models/shakespeare_model.json', 'tomSawyer': 'max-likelihood-models/tomSawyer_model.json', 'wizardOfOz': 'max-likelihood-models/WoOz_model.json', } from random import random def generate_letter(lm, history, order): """Samples the model's probability distribution and returns the letter""" history = history[-order:] dist = lm[history] x = random() for c,v in dist: x = x - v if x <= 0: return c def generate_text(lm, order, nletters=1000): """The original generate text function. The seed text is just the prefix used in training""" history = "~" * order out = [] for i in range(nletters): c = generate_letter(lm, history, order) history = history[-order:] + c out.append(c) return "".join(out) def gen_text (lm, seed, nletters=1000): """Same as generate_text, except now handles keys its not seen before""" for k in lm.keys(): order = len(k) if len(seed) < order: seed = ' ' * order + seed history = seed[-order:] out = [] for i in range(nletters): if history not in lm: if history.lower() in lm: history = history.lower() break def find_suitable_replacement(): for removed_letters in range (1, order): for k, v in lm.items(): if k[-order+removed_letters:] == history[-order+removed_letters:]: return k history = find_suitable_replacement() c = generate_letter(lm, history, order) history = history[-order+1:] + c out.append(c); return "".join(out) # loads the saved model with open(models[sys.argv[1]]) as f: model = json.loads(f.read()) # uses the loaded model to generate the results results = gen_text(model, sys.argv[2], nletters=int(sys.argv[3])) print(results) ```
{ "source": "jessvb/Multimodal-Emotion-Recognition", "score": 2 }
#### File: jessvb/Multimodal-Emotion-Recognition/video_er_from_file.py ```python from __future__ import division import numpy as np import pandas as pd import time from time import sleep import re import os import requests import argparse from collections import OrderedDict ### Image processing ### import cv2 from scipy.ndimage import zoom from scipy.spatial import distance import imutils from scipy import ndimage import dlib from imutils import face_utils ### Model ### from tensorflow.keras.models import load_model from tensorflow.keras import backend as K ################################################################################ ########## Change this depending on where your recordings are located ########## ################################################################################ rec_dir = 'recordings/' ################################################################################ def getVideoEmotions(input_video_filepath,output_name): # Start video capute. 0 = Webcam, 1 = Video file, -1 = Webcam for Web video_capture = cv2.VideoCapture(input_video_filepath) # Image shape shape_x = 48 shape_y = 48 input_shape = (shape_x, shape_y, 1) # We have 7 emotions nClasses = 7 # Timer until the end of the recording curr_frame_num = 0 # Initiate Landmarks (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"] (rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"] (nStart, nEnd) = face_utils.FACIAL_LANDMARKS_IDXS["nose"] (mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"] (jStart, jEnd) = face_utils.FACIAL_LANDMARKS_IDXS["jaw"] (eblStart, eblEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eyebrow"] (ebrStart, ebrEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eyebrow"] # Load the pre-trained X-Ception model model = load_model('Models/video.h5') # Load the face detector face_detect = dlib.get_frontal_face_detector() # Load the facial landmarks predictor predictor_landmarks = dlib.shape_predictor("Models/face_landmarks.dat") # Prediction vector predictions = [] # Timer for length of video max_frame_num = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT)) fps = video_capture.get(cv2.CAP_PROP_FPS) frames_btwn = int(fps/3) # measure emotion every 1/3 of a sec # angry_0 = [] # disgust_1 = [] # fear_2 = [] # happy_3 = [] # sad_4 = [] # surprise_5 = [] # neutral_6 = [] # Initialize arrays for saving predictions emotions = [] face_indices = [] timestamps = [] # Analyze video until the end curr_frame_num = 0 iter_percent = 0 # for printing while curr_frame_num < max_frame_num: # Set the frame to be read video_capture.set(cv2.CAP_PROP_POS_FRAMES, curr_frame_num) # Capture the frame number set above (frame here means image) ret, frame = video_capture.read() # Face index, face by face face_index = 0 # Image to gray scale gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # All faces detected rects = face_detect(gray, 1) # For each detected face for (i, rect) in enumerate(rects): # Identify face coordinates (x, y, w, h) = face_utils.rect_to_bb(rect) face = gray[y:y+h,x:x+w] # Zoom on extracted face (if face extracted) if face.shape[0] and face.shape[1]: face = zoom(face, (shape_x / face.shape[0],shape_y / face.shape[1])) # Cast type float face = face.astype(np.float32) # Scale the face face /= float(face.max()) face = np.reshape(face.flatten(), (1, 48, 48, 1)) # Make Emotion prediction on the face, outputs probabilities prediction = model.predict(face) # Most likely emotion (as an index) prediction_result = np.argmax(prediction) # Convert emotion index to an emotion (string) emotion = '' if (prediction_result == 0): emotion = 'Angry' elif (prediction_result == 1): emotion = 'Disgust' elif (prediction_result == 2): emotion = 'Fear' elif (prediction_result == 3): emotion = 'Happy' elif (prediction_result == 4): emotion = 'Sad' elif (prediction_result == 5): emotion = 'Surprise' elif (prediction_result == 6): emotion = 'Neutral' else: emotion = 'Unknown emotion' else: emotion = 'No face extracted' # save results for later emotions.append(emotion) face_indices.append(face_index) timestamps.append(curr_frame_num/fps) # every so often, show percent done percent_done = curr_frame_num/max_frame_num*100 if (percent_done > iter_percent): print('current frame: %.0f' % curr_frame_num) print('percent done: %.1f%%' % percent_done) iter_percent += 20 # increment frame curr_frame_num += frames_btwn video_capture.release() # # Export predicted emotions to .csv format df = pd.DataFrame({'EMOTION': emotions, 'FACE_INDEX': face_indices, 'TIMESTAMP_SEC': timestamps}) df.to_csv(os.path.join('output', 'video_emotions_' + output_name + '.csv'), sep=',', index=False) print('🎉 Done! 🎉') print('See the output file:') print('output/' + 'video_emotions_' + output_name + '.csv') if __name__ == '__main__': # Loop through specific files and analyze their video files_in_dir = [f for f in os.listdir(rec_dir) if os.path.isfile(os.path.join(rec_dir, f))] i = 0 for f in files_in_dir: if f.split('.')[1] == 'avi' or f.split('.')[1] == 'mp4': input_video_filepath = os.path.join(rec_dir,f) print(f'Reading from {input_video_filepath}') output_name = f.split('.')[0] getVideoEmotions(input_video_filepath, output_name) i += 1 print(f"""Number of files to go: {len(files_in_dir) - i} Percent files done: {i/len(files_in_dir)*100}\n""") ```
{ "source": "jessvb/speech-utils", "score": 3 }
#### File: jessvb/speech-utils/create_spectrogram.py ```python import parselmouth import numpy as np import matplotlib.pyplot as plt import seaborn as sns boyfile = "data_highpitched/train/boy/am/8z1a.wav" girlfile = "data_highpitched/train/girl/is/8z1a.wav" manfile = "data_wav/train/man/ff/8z1a.wav" womanfile = "data_wav/train/woman/cg/8z1a.wav" highmanfile = "data_highpitched/train/man/ff/8z1a.wav" highwomanfile = "data_highpitched/train/woman/cg/8z1a.wav" sns.set() # Use seaborn's default style to make attractive graphs # Plot nice figures using Python's "standard" matplotlib library sndboy = parselmouth.Sound(boyfile) sndgirl = parselmouth.Sound(girlfile) sndman = parselmouth.Sound(manfile) sndwoman = parselmouth.Sound(womanfile) sndhighman = parselmouth.Sound(highmanfile) sndhighwoman = parselmouth.Sound(highwomanfile) #plt.figure() #plt.plot(snd.xs(), snd.values.T) #plt.xlim([snd.xmin, snd.xmax]) #plt.xlabel("time [s]") #plt.ylabel("amplitude") #plt.show() # or plt.savefig("sound.png"), or plt.savefig("sound.pdf") def draw_spectrogram(spectrogram, dynamic_range=70): X, Y = spectrogram.x_grid(), spectrogram.y_grid() sg_db = 10 * np.log10(spectrogram.values) plt.pcolormesh(X, Y, sg_db, vmin=sg_db.max() - dynamic_range, cmap='afmhot') plt.ylim([spectrogram.ymin, spectrogram.ymax]) plt.xlabel("time [s]") plt.ylabel("frequency [Hz]") def draw_intensity(intensity): plt.plot(intensity.xs(), intensity.values.T, linewidth=3, color='w') plt.plot(intensity.xs(), intensity.values.T, linewidth=1) plt.grid(False) plt.ylim(0) plt.ylabel("intensity [dB]") #intensity = snd.to_intensity() #spectrogram = snd.to_spectrogram() #plt.figure() #draw_spectrogram(spectrogram) #plt.twinx() #draw_intensity(intensity) #plt.xlim([snd.xmin, snd.xmax]) #plt.show() # or plt.savefig("spectrogram.pdf") def draw_pitch(pitch): # Extract selected pitch contour, and # replace unvoiced samples by NaN to not plot pitch_values = pitch.selected_array['frequency'] pitch_values[pitch_values==0] = np.nan plt.plot(pitch.xs(), pitch_values, 'o', markersize=5, color='w') plt.plot(pitch.xs(), pitch_values, 'o', markersize=2) plt.grid(False) plt.ylim(0, pitch.ceiling) plt.ylabel("fundamental frequency [Hz]") def create_spec_with_pitch(infile): snd = parselmouth.Sound(infile) pitch = snd.to_pitch() # If desired, pre-emphasize the sound fragment before calculating the spectrogram pre_emphasized_snd = snd.copy() pre_emphasized_snd.pre_emphasize() spectrogram = pre_emphasized_snd.to_spectrogram(window_length=0.03, maximum_frequency=8000) plt.figure() draw_spectrogram(spectrogram) plt.twinx() draw_pitch(pitch) plt.xlim([snd.xmin, snd.xmax]) plt.show() # or plt.savefig("spectrogram_0.03.pdf") create_spec_with_pitch(boyfile) create_spec_with_pitch(girlfile) create_spec_with_pitch(manfile) create_spec_with_pitch(womanfile) create_spec_with_pitch(highmanfile) create_spec_with_pitch(highwomanfile) ```
{ "source": "JessvLS/project_spring_2020", "score": 2 }
#### File: process_sample/rules/generate_report.py ```python import os from Bio import SeqIO import collections import sys import argparse import datetime import subprocess parser = argparse.ArgumentParser(description='Generate blast report.') parser.add_argument("--consensus", action="store", type=str, dest="consensus") parser.add_argument("--blast_db", action="store", type=str, dest="blast_db") parser.add_argument("--detailed_blast_db", action="store", type=str, dest="detailed_blast_db") parser.add_argument("--blast_file", action="store", type=str, dest="blast_file") parser.add_argument("--detailed_blast_file", action="store", type=str, dest="detailed_blast_file") parser.add_argument("--output_report", action="store", type=str, dest="output_report") parser.add_argument("--output_seqs", action="store", type=str, dest="output_seqs") parser.add_argument("--sample", action="store", type=str, dest="sample") args = parser.parse_args() def parse_blast_for_top_hit(blast_csv): hits = [] with open(blast_csv, "r") as f: for l in f: tokens= l.rstrip('\n').split(',') query = tokens[0] hit = tokens[1] score= tokens[-1] hits.append((hit,score,l.rstrip('\n'))) top = sorted(hits, key = lambda x : float(x[1]), reverse = True)[0] return(top[2].split(',')) top_hit = parse_blast_for_top_hit(args.blast_file) detailed_top_hit = parse_blast_for_top_hit(args.detailed_blast_file) query,subject,pid,length,mismatch,gapopen,qstart,qend,sstart,send,evalue,bitscore= top_hit query,subject_detailed,pid_detailed,length_detailed,mismatch_detailed,gapopen_detailed,qstart_detailed,qend_detailed,sstart_detailed,send_detailed,evalue_detailed,bitscore_detailed= detailed_top_hit seq_dict={ "Sabin1_vacc":"GGGTTAGGTCAGATGCTTGAAAGCATGATTGACAACACAGTCCGTGAAACGGTGGGGGCGGCAACGTCTAGAGACGCTCTCCCAAACACTGAAGCCAGTGGACCAGCACACTCCAAGGAAATTCCGGCACTCACCGCAGTGGAAACTGGGGCCACAAATCCACTAGTCCCTTCTGATACAGTGCAAACCAGACATGTTGTACAACATAGGTCAAGGTCAGAGTCTAGCATAGAGTCTTTCTTCGCGCGGGGTGCATGCGTGGCCATTATAACCGTGGATAACTCAGCTTCCACCAAGAATAAGGATAAGCTATTTACAGTGTGGAAGATCACTTATAAAGATACTGTCCAGTTACGGAGGAAATTGGAGTTCTTCACCTATTCTAGATTTGATATGGAATTTACCTTTGTGGTTACTGCAAATTTCACTGAGACTAACAATGGGCATGCCTTAAATCAAGTGTACCAAATTATGTACGTACCACCAGGCGCTCCAGTGCCCGAGAAATGGGACGACTACACATGGCAAACCTCATCAAATCCATCAATCTTTTACACCTACGGAACAGCTCCAGCCCGGATCTCGGTACCGTATGTTGGTATTTCGAACGCCTATTCACACTTTTACGACGGTTTTTCCAAAGTACCACTGAAGGACCAGTCGGCAGCACTAGGTGACTCCCTCTATGGTGCAGCATCTCTAAATGACTTCGGTATTTTGGCTGTTAGAGTAGTCAATGATCACAACCCGACCAAGGTCACCTCCAAAATCAGAGTGTATCTAAAACCCAAACACATCAGAGTCTGGTGCCCGCGTCCACCGAGGGCAGTGGCGTACTACGGCCCTGGAGTGGATTACAAGGATGGTACGCTTACACCCCTCTCCACCAAGGATCTGACCACATAT", "Sabin2_vacc":"GGAATTGGTGACATGATTGAGGGGGCCGTTGAAGGGATTACTAAAAATGCATTGGTTCCCCCGACTTCCACCAATAGCCTGCCTGACACAAAGCCGAGCGGTCCAGCCCACTCCAAGGAGATACCTGCATTGACAGCCGTGGAGACAGGGGCTACCAATCCGTTGGTGCCTTCGGACACCGTGCAAACGCGCCATGTCATCCAGAGACGAACGCGATCAGAGTCCACGGTTGAGTCATTCTTTGCAAGAGGGGCTTGCGTGGCTATCATTGAGGTGGACAATGATGCACCGACAAAGCGCGCCAGCAGATTGTTTTCGGTTTGGAAAATAACTTACAAAGATACTGTTCAACTGAGACGCAAACTGGAATTTTTCACATATTCGAGATTTGACATGGAGTTCACTTTTGTGGTCACCTCAAACTACATTGATGCAAATAACGGACATGCATTGAACCAAGTTTATCAGATAATGTATATACCACCCGGAGCACCTATCCCTGGTAAATGGAATGACTATACGTGGCAGACGTCCTCTAACCCGTCGGTGTTTTACACCTATGGGGCGCCCCCAGCAAGAATATCAGTGCCCTACGTGGGAATTGCTAATGCGTATTCCCACTTTTATGATGGGTTTGCAAAAGTACCACTAGCGGGTCAAGCCTCAACTGAAGGCGATTCGTTGTACGGTGCTGCCTCACTGAATGATTTTGGATCACTGGCTGTTCGCGTGGTAAATGATCACAACCCCACGCGGCTCACCTCCAAGATCAGAGTGTACATGAAGCCAAAGCATGTCAGAGTCTGGTGCCCACGACCTCCACGAGCAGTCCCATACTTCGGACCAGGTGTTGATTATAAAGATGGGCTCACCCCACTACCAGAAAAGGGATTAACGACTTAT", "Sabin3_vacc":"ATTGAAGATTTGACTTCTGAAGTTGCACAGGGCGCCCTAACTTTGTCACTCCCGAAGCAACAGGATAGCTTACCTGATACTAAGGCCAGTGGCCCGGCGCATTCCAAGGAGGTACCTGCACTCACTGCAGTCGAGACTGGAGCCACCAATCCTCTGGCACCATCCGACACAGTTCAAACGCGCCACGTAGTCCAACGACGCAGCAGGTCAGAGTCCACAATAGAATCATTCTTCGCACGCGGGGCGTGCGTCGCTATTATTGAGGTGGACAATGAACAACCAACCACCCGGGCACAGAAACTATTTGCCATGTGGCGCATTACATACAAAGATACAGTGCAGTTGCGCCGTAAGTTGGAGTTTTTCACATACTCTCGTTTTGACATGGAATTCACCTTCGTGGTAACCGCCAACTTCACCAACGCTAATAATGGGCATGCACTCAACCAGGTGTACCAGATAATGTACATCCCCCCAGGGGCACCCACACCAAAGTCATGGGACGACTACACTTGGCAAACATCTTCCAACCCGTCCATATTTTACACCTATGGGGCTGCCCCGGCGCGAATCTCAGTGCCATACGTGGGGTTAGCCAATGCTTACTCGCACTTTTACGACGGCTTCGCCAAGGTGCCATTGAAGACAGATGCCAATGACCAGATTGGTGATTCCTTGTACAGCGCCATGACAGTTGATGACTTTGGTGTATTGGCAGTTCGTGTTGTCAATGATCACAACCCCACTAAAGTAACCTCCAAAGTCCGCATTTACATGAAACCCAAACACGTACGTGTCTGGTGCCCTAGACCGCCGCGCGCGGTACCTTATTATGGACCAGGGGTGGACTATAGGAACAACTTGGACCCCTTATCTGAGAAAGGTTTGACCACATAT" } for record in SeqIO.parse(args.blast_db,"fasta"): if record.id==subject: seq_dict[record.id]=record.seq if subject!=subject_detailed: for record in SeqIO.parse(args.detailed_blast_db,"fasta"): if record.id==subject_detailed: seq_dict[record.id]=record.seq for record in SeqIO.parse(args.consensus,"fasta"): seq_dict[record.id]=record.seq fw= open(args.output_seqs,"w") for i in seq_dict: fw.write(">{}\n{}\n".format(i, seq_dict[i])) fw.close() fw=open(args.output_report,"w") fw.write("## Report for sample: {}\n\n".format(args.sample)) now=datetime.datetime.now() fw.write("{}/{}/{}\n\n".format(now.year,now.month,now.day)) fw.write("The type of virus that sample {} sequence is most similar to is {}.\n\n".format(args.sample, subject.split('_')[0])) fw.write("Percentage ID: {}\n\nLength: {}\n\nNo. Mismatch: {}\n\nNo. Gap Opening: {}\n\nE-value: {}\n\n".format(pid,length,mismatch,gapopen,evalue)) fw.write("The closest hit in the detailed database to sample {} is {}.\n\n".format(args.sample, subject_detailed)) fw.write("Percentage ID: {}\n\nLength: {}\n\nNo. Mismatch: {}\n\nNo. Gap Opening: {}\n\nE-value: {}\n\n".format(pid_detailed,length_detailed,mismatch_detailed,gapopen_detailed,evalue_detailed)) fw.close() ``` #### File: process_sample/rules/mask_low_coverage.py ```python import csv import sys import argparse from Bio import SeqIO def parse_args(): parser = argparse.ArgumentParser(description='Trim primers.') parser.add_argument("--cns", action="store", type=str, dest="cns") parser.add_argument("--paf", action="store", type=str, dest="paf") parser.add_argument("--min_coverage", action="store", type=int, dest="min_coverage") parser.add_argument("--masked_cns", action="store", type=str, dest="masked_cns") return parser.parse_args() def load_cns(cns): for record in SeqIO.parse(str(cns), "fasta"): my_record = record return my_record, len(my_record) """ to estimate coverage, for the cns- have a list [0, len(cns)] of counters that increments by one if there is a read mapped over that site. Once you have that list, then iterate over the bases in the cns file and mask any bases as N with lower than X coverage """ def get_coverage(paf, cns_len): coverage=[] for i in range(cns_len): coverage.append(0) with open(paf, "r") as f: for l in f: l = l.rstrip("\n") tokens = l.split("\t") start,end = int(tokens[7]),int(tokens[8]) map_span = range(start-1, end-1) #triple check this index thing for i in map_span: coverage[i]+=1 return coverage def mask_bases(coverage_list, cns_seq, min_coverage): masked_seq = "" for coverage,base in zip(coverage_list, cns_seq): if coverage >= min_coverage: masked_seq += base else: masked_seq += 'N' return masked_seq if __name__ == '__main__': args = parse_args() cns, cns_len = load_cns(args.cns) coverage = get_coverage(args.paf,cns_len) masked_seq = mask_bases(coverage, cns.seq, args.min_coverage) with open(str(args.masked_cns), "w") as fw: fw.write(">{}\n{}\n".format(cns.description, masked_seq)) ```
{ "source": "jesswahlers/q2mm", "score": 3 }
#### File: q2mm/q2mm/gui.py ```python from tkinter import * from tkinter import messagebox, filedialog, Menu import tkinter.ttk as ttk #from tkinter.ttk import * import os import constants as co #os.chdir(os.path.dirname(__file__)) class q2mm_gui(): def __init__(self): self.anchor = W self.cur_dir = os.getcwd() self.path = ["","","","",""] # ff file, qparam.txt, init_comparison, final ff file, fin_comparison self.weights = [] #co.WEIGHTS self.qm_soft = [None,None,None,None,None,None,None] self.mm_soft = [None,None,None,None,None,None,None] self.open_f = None self.save_f = None self.commands = "DIR aa \nFFLD read bb \nWGHT cc \nPARM dd \nRDAT ee \nCDAT ff \nCOMP gg \nLOOP hh \nGRAD\nEND\nFFLD write ii \nCDAT\nCOMP jj " # self.temp_commands = self.commands self.font = "Helvetica 14 " self.output = "" self.FF = [("MM2",1),("MM3",2),("AMOEBA09",3)] self.QM = [("B3LYP",1),("PBE",2)] self.BAS = [("6-311G*",1),("6-31G",2)] self.CAL = [("Energy",1),("Force",2),("Hessian",3)] self.PRO = [("Gaussian",1),("PySCF",2)] self.LOS = [("Original",1),("Energy",2)] self.window() def window(self): win = Tk() # win.option_add("*Dialog.msg.font","Helvetica") self.menu(win) win.grid_rowconfigure(1, weight=1) win.grid_columnconfigure(0,weight=1) frame1 = Frame(win,width=160, height=45,relief=RIDGE,bg="red") frame1.grid(row=0,column=0) frame2 = Frame(win,relief=FLAT,width=160, height=45,bg="cyan") frame2.grid(row=2,column=0) frame3 = Frame(win,relief=RIDGE,width=160, height=45,bg="white") frame3.grid(row=0,column=1) # self.content(win) self.soft_frame(frame1) self.file_frame(frame2) self.weights_frame(frame3) win.mainloop() def menu(self,win): menu = Menu(win) win.config(menu=menu) filemenu = Menu(menu) # adding File menu menu.add_cascade(label="File", menu=filemenu) # options under Filemenu filemenu.add_command(label="New", command=self.newfile) filemenu.add_command(label="Open...", command= lambda inp = (("q2mm files","*.in"),("allfiles","*.*")): self.openfile(inp)) filemenu.add_separator() filemenu.add_command(label="Exit", command=win.quit) # Help menu helpmenu = Menu(menu) menu.add_cascade(label="Help", menu=helpmenu) helpmenu.add_command(label="About...", command=self.about) def file_frame(self,win): return def weights_frame(self,win): cur_row = 0 cur_col = 0 weights = ["Weights"] for val in co.WEIGHTS: weights.append(val) for r in weights: Label(win,text=r, relief=FLAT,width=10).grid(row=cur_row,column=cur_col) cur_row += 1 cur_row = 0 cur_col += 1 for val in co.WEIGHTS: fv = StringVar() fv.set(str(co.WEIGHTS[val])) cur_row += 1 weight = Spinbox(win, from_=0, to=200, width=10, format="%10.2f", textvariable=fv) weight.grid(row=cur_row, column=cur_col) self.weights.append(weight) def soft_frame(self,win): col = 0 row = 0 col += 1 row += 1 cur_row = row options = ["Method","Quantum Mechanics","Files","Molecular Mechanics","Files","Options"] for r in options: Label(text=r, relief=RIDGE,width=20).grid(row=cur_row,column=0) cur_row += 1 options = ["Charge","Energy","Bond","Angle","Torsion","Hessian","EigenMatrix"] var = [] checks = [] cur_row = row cur_col = 1 for c in options: # Label temp_var = BooleanVar(0) temp_check = Checkbutton(win,text=c, width=20, variable=temp_var).grid(row=cur_row, column=cur_col) cur_col += 1 var.append(temp_var) checks.append(temp_check) # QUANTUM MECHANICS cur_row = row+1 cur_col = 1 qm_options = ["Jaguar","Gaussian","Qchem"] i = 0 checkboxs = [] for c in options: cb = ttk.Combobox(win,values=qm_options) self.qm_soft[i] = cb #if var[i].get(): cb.grid(row=cur_row, column=cur_col) cb.current(0) cur_col += 1 i += 1 checkboxs.append(cb) # FILE CALL row += 1 cur_row = row+1 cur_col = 1 qm_files = [] for c in options: qf=Button(win, text="Load", width=20,command=lambda inp=(("MAE files","*.mae"),("Gaussian output files","*.log"),("all files","*.*")): self.openfile(inp)) qf.grid(row=cur_row, column=cur_col) cur_col += 1 qm_files.append(qf) # MOLECULAR MECHANICS row += 1 cur_row = row+1 cur_col = 1 mm_options = ["MacroModel","Tinker","Amber"] i = 0 for c in options: cb = ttk.Combobox(win,values=mm_options) cb.grid(row=cur_row, column=cur_col) cb.current(0) self.mm_soft[i] = cb cur_col += 1 i += 1 # File Call row += 1 cur_row = row+1 cur_col = 1 qm_files = [] for c in options: qf=Button(win, text="Load", width=20,command=lambda inp=(("MAE files","*.mae"),("all files","*.*")): self.openfile(inp)).grid(row=cur_row, column=cur_col) cur_col += 1 qm_files.append(qf) # Option for Charge row += 1 cur_row = row+1 cur_col = 1 charge_options = ["Partial charge","Partial charge(no H)","Partial charge sum"] # q,qh,qa cb = ttk.Combobox(win,values=charge_options) cb.grid(row=cur_row, column=cur_col) cb.current(0) # Option for Energy cur_col += 1 energy_options = ["Pre-opt energy","Average energy","Post-opt energy"] # e,ea,eao cb = ttk.Combobox(win,values=energy_options) cb.grid(row=cur_row, column=cur_col) cb.current(0) return def opt_frame(self,win): return def content(self,win): commands = self.commands col = 0 row = 0 cur_col = col cur_row = row Button(win, text="Working Directory", width=20, command = lambda inp=0: self.directory(inp)).grid(row=cur_row, column=cur_col) # working directory (DIR) aa row += 1 cur_col = col cur_row = row Button(win, text="Open force field file", command=lambda inp=(("Macromodel ff parameters","*.fld"),("Tinker ff parameters","*.prm"),("Amber ff parameters","*.*"),("all file","*.*")):self.openfile(inp,0),width=20).grid(row=cur_row, column=cur_col) Button(win, text="Preview ff file", command=lambda inp=0: self.view_file(inp), width=20).grid(row=cur_row,column=cur_col+1) # commands += "DIR "+path # load forcefield file (FFLD read) bb # commands += "\nFFLD read "+path # load qparam file (PARM) # reference # calculation col += 1 row += 1 cur_row = row options = ["Method","Quantum Mechanics","Files","Molecular Mechanics","Files","Options"] for r in options: Label(text=r, relief=RIDGE,width=20).grid(row=cur_row,column=0) cur_row += 1 options = ["Charge","Energy","Bond","Angle","Torsion","Hessian","EigenMatrix"] var = [] checks = [] cur_row = row cur_col = 1 for c in options: # Label temp_var = BooleanVar(0) temp_check = Checkbutton(win,text=c, width=20, variable=temp_var).grid(row=cur_row, column=cur_col) cur_col += 1 var.append(temp_var) checks.append(temp_check) # QUANTUM MECHANICS cur_row = row+1 cur_col = 1 qm_options = ["Jaguar","Gaussian","Qchem"] i = 0 checkboxs = [] for c in options: cb = Combobox(win,values=qm_options) self.qm_soft[i] = cb #if var[i].get(): cb.grid(row=cur_row, column=cur_col) cb.current(0) cur_col += 1 i += 1 checkboxs.append(cb) # FILE CALL row += 1 cur_row = row+1 cur_col = 1 qm_files = [] for c in options: qf=Button(win, text="Load", width=20,command=lambda inp=(("MAE files","*.mae"),("Gaussian output files","*.log"),("all files","*.*")): self.openfile(inp)) qf.grid(row=cur_row, column=cur_col) cur_col += 1 qm_files.append(qf) # MOLECULAR MECHANICS row += 1 cur_row = row+1 cur_col = 1 mm_options = ["MacroModel","Tinker","Amber"] i = 0 for c in options: cb = Combobox(win,values=mm_options) cb.grid(row=cur_row, column=cur_col) cb.current(0) self.mm_soft[i] = cb cur_col += 1 i += 1 # File Call row += 1 cur_row = row+1 cur_col = 1 qm_files = [] for c in options: qf=Button(win, text="Load", width=20,command=lambda inp=(("MAE files","*.mae"),("all files","*.*")): self.openfile(inp)).grid(row=cur_row, column=cur_col) cur_col += 1 qm_files.append(qf) # Option for Charge row += 1 cur_row = row+1 cur_col = 1 charge_options = ["Partial charge","Partial charge(no H)","Partial charge sum"] # q,qh,qa cb = Combobox(win,values=charge_options) cb.grid(row=cur_row, column=cur_col) cb.current(0) # Option for Energy cur_col += 1 energy_options = ["Pre-opt energy","Average energy","Post-opt energy"] # e,ea,eao cb = Combobox(win,values=energy_options) cb.grid(row=cur_row, column=cur_col) cb.current(0) # No Option for Bond, Angle, torsion # Weights self.weight_param(win,cur_row) # bond_options = [] # eigenmatrix options for m changed by matching software # Convergence (LOOP) # name the final forcefield file(FFLD write) # run row = cur_row + 2 self.checks = checks self.var = var Button(win, text="Debug", command=self.debug).grid(row=row,column=0) row += 1 Button(win, text="Preview Q2MM Input File", command=self.preview).grid(row=row,column=0) row += 1 Button(win, text="Save", command=self.debug,width=20).grid(row=row,column=0) Button(win, text="Run", command=self.debug,width=20).grid(row=row,column=1) Button(win, text="Quit", command=win.quit,width=20).grid(row=row,column=2) return # DEBUG def debug(self): for i in self.var: print(i.get()) # for i in self.qm_soft: # print(i.get()) # for i in self.mm_soft: # print(i.get()) for i in range(len(self.var)): var = self.var[i].get() print(i,var) if var: print(self.qm_soft[i].get()) print(self.mm_soft[i].get()) for i in self.weights: print(i.get()) def view_file(self,n): f = open(self.path[n],"r") messagebox.showinfo("Preview",f.read()) #Text("1.0",f.read()) def weight_param(self,win,row): cur_row = 0 cur_col = 9 weights = ["Weights"] for val in co.WEIGHTS: weights.append(val) for r in weights: Label(text=r, relief=FLAT,width=20).grid(row=cur_row,column=cur_col) cur_row += 1 cur_row = 0 cur_col += 1 for val in co.WEIGHTS: fv = StringVar() fv.set(str(co.WEIGHTS[val])) cur_row += 1 weight = Spinbox(win, from_=0, to=200, width=20, format="%10.2f", textvariable=fv) weight.grid(row=cur_row, column=cur_col) self.weights.append(weight) return def preview(self): aa = "" #DIR bb = "" #FFLD read cc = "" #WGHT dd = "" #PARM ee = "" #RDAT ff = "" #CDAT gg = "" #COMP hh = "" #LOOP ii = "" #FFLD write jj = "" #COMP if self.var[0].get(): # read QM # read MM # read options # read files loaded # add lines to ee, ff 0 messagebox.showinfo("Q2MM Input File Preview", self.commands) print("COMMANDS:") # OS related functions def directory(self,n): self.cur_dir = filedialog.askdirectory(title="Select working directory") def newfile(self): print("Reset all variables") def openfile(self, filetype,n): path = filedialog.askopenfilename(initialdir=self.cur_dir, title="Select file",filetypes=filetype) self.path[n] = path def openfiles(self, filetype): paths = filedialog.askopenfilenames(initialdir=self.cur_dir, title="Select file",filetypes=filetype) def about(self): print("Q2MM is ") q2mm_gui() ``` #### File: q2mm/q2mm/loop.py ```python from __future__ import absolute_import from __future__ import division import argparse import glob import logging import logging.config import numpy as np import os import random import sys import re import calculate import compare import constants as co import datatypes import gradient import opt import parameters import simplex logger = logging.getLogger(__name__) class Loop(object): def __init__(self): self.convergence = 0.01 self.cycle_num = 0 self.direc = '.' self.ff = None self.ff_lines = None self.args_ff = None self.args_ref = None self.loop_lines = None self.ref_data = None def opt_loop(self): """ Iterator for cycling through optimization methods. Will continue to run the loop optimization methods until the convergence criterion has been met. Updates the user with logs on the optimization score changes. Backs up the FF after each loop cycle. """ change = None last_score = None # This additional check ensures that the code won't crash if the user # forgets to add a COMP command in the loop input file. if self.ff.score is None: logger.warning( ' -- No existing FF score! Please ensure use of COMP in the ' 'input file! Calculating FF score automatically to compensate.') self.ff.score = compare.compare_data( self.ref_data, self.ff.data) while last_score is None \ or change is None \ or change > self.convergence: self.cycle_num += 1 last_score = self.ff.score self.ff = self.run_loop_input( self.loop_lines, score=self.ff.score) logger.log(1, '>>> last_score: {}'.format(last_score)) logger.log(1, '>>> self.ff.score: {}'.format(self.ff.score)) change = (last_score - self.ff.score) / last_score pretty_loop_summary( self.cycle_num, self.ff.score, change) # MM3* specific. Will have to be changed soon to allow for expansion # into other FF software packages. mm3_files = glob.glob(os.path.join(self.direc, 'mm3_???.fld')) if mm3_files: mm3_files.sort() most_recent_mm3_file = mm3_files[-1] most_recent_mm3_file = most_recent_mm3_file.split('/')[-1] most_recent_num = most_recent_mm3_file[4:7] num = int(most_recent_num) + 1 mm3_file = 'mm3_{:03d}.fld'.format(num) else: mm3_file = 'mm3_001.fld' mm3_file = os.path.join(self.direc, mm3_file) self.ff.export_ff(path=mm3_file) logger.log(20, ' -- Wrote best FF to {}'.format(mm3_file)) for param in self.ff.params: param.value_at_limits() return self.ff def run_loop_input(self, lines, score=None): lines_iterator = iter(lines) while True: try: line = next(lines_iterator) except StopIteration: return self.ff cols = line.split() if cols[0] == 'DIR': self.direc = cols[1] if cols[0] == 'FFLD': # Import FF data. if cols[1] == 'read': if cols[2] == 'mm3.fld': self.ff = datatypes.MM3(os.path.join(self.direc, cols[2])) if 'prm' in line: self.ff = datatypes.TinkerFF(os.path.join(self.direc, cols[2])) if 'frcmod' in line: self.ff = datatypes.AmberFF(os.path.join(self.direc, cols[2])) self.ff.import_ff() self.ff.method = 'READ' with open(os.path.join(self.direc, cols[2]), 'r') as f: self.ff.lines = f.readlines() # Export FF data. if cols[1] == 'write': self.ff.export_ff(os.path.join(self.direc, cols[2])) # Trim parameters. if cols[0] == 'PARM': logger.log(20, '~~ SELECTING PARAMETERS ~~'.rjust(79, '~')) self.ff.params = parameters.trim_params_by_file( self.ff.params, os.path.join(self.direc, cols[1])) if cols[0] == 'LOOP': # Read lines that will be looped over. inner_loop_lines = [] line = next(lines_iterator) while line.split()[0] != 'END': inner_loop_lines.append(line) line = next(lines_iterator) # Make loop object and populate attributes. loop = Loop() loop.convergence = float(cols[1]) loop.direc = self.direc loop.ff = self.ff loop.args_ff = self.args_ff loop.args_ref = self.args_ref loop.ref_data = self.ref_data loop.loop_lines = inner_loop_lines # Log commands. pretty_loop_input( inner_loop_lines, name='OPTIMIZATION LOOP', score=self.ff.score) # Run inner loop. self.ff = loop.opt_loop() # Note: Probably want to update this to append the directory given # by the new DIR command. if cols[0] == 'RDAT': logger.log( 20, '~~ CALCULATING REFERENCE DATA ~~'.rjust(79, '~')) if len(cols) > 1: self.args_ref = ' '.join(cols[1:]).split() self.ref_data = opt.return_ref_data(self.args_ref) if cols[0] == 'CDAT': logger.log( 20, '~~ CALCULATING FF DATA ~~'.rjust(79, '~')) if len(cols) > 1: self.args_ff = ' '.join(cols[1:]).split() self.ff.data = calculate.main(self.args_ff) if cols[0] == 'COMP': # Deprecated # self.ff.score = compare.compare_data( # self.ref_data, self.ff.data) # if '-o' in cols: # compare.pretty_data_comp( # self.ref_data, # self.ff.data, # os.path.join(self.direc, cols[cols.index('-o') + 1])) # if '-p' in cols: # compare.pretty_data_comp( # self.ref_data, # self.ff.data, # doprint=True) output = False doprint = False r_dict = compare.data_by_type(self.ref_data) c_dict = compare.data_by_type(self.ff.data) r_dict, c_dict = compare.trim_data(r_dict,c_dict) if '-o' in cols: output = os.path.join(self.direc, cols[cols.index('-o') +1]) if '-p' in cols: doprint = True self.ff.score = compare.compare_data( r_dict, c_dict, output=output, doprint=doprint) if cols[0] == 'GRAD': grad = gradient.Gradient( direc=self.direc, ff=self.ff, ff_lines=self.ff.lines, args_ff=self.args_ff) #### Should probably just write a function instead of looping #### this for every gradient method. This includes everything #### between the two lines of #. TR 20180112 ############################################################## for col in cols[1:]: if "lstsq" in col: g_args = col.split('=')[1].split(',') for arg in g_args: if arg == "True": grad.do_lstsq=True elif arg == False: grad.do_lstsq=False if 'radii' in arg: grad.lstsq_radii = [] radii_vals = re.search( r"\[(.+)\]",arg).group(1).split('/') if radii_vals == "None": grad.lstsq_radii = None else: for val in radii_vals: grad.lstsq_radii.append(float(val)) if 'cutoff' in arg: grad.lstsq_cutoff = [] cutoff_vals = re.search( r"\[(.+)\]",arg).group(1).split('/') if cutoff_vals == "None": grad.lstsq_cutoff = None else: if len(cutoff_vals) > 2 or \ len(cutoff_vals) < 2: raise Exception("Cutoff values must " \ "be between two numbers.") for val in cutoff_vals: grad.lstsq_cutoff.append(float(val)) elif "newton" in col: g_args = col.split('=')[1].split(',') for arg in g_args: if arg == "True": grad.do_newton=True elif arg == False: grad.do_newton=False if 'radii' in arg: grad.newton_radii = [] radii_vals = re.search( r"\[(.+)\]",arg).group(1).split('/') if radii_vals=='None': grad.newton_radii = None else: for val in radii_vals: grad.newton_radii.append(float(val)) if 'cutoff' in arg: grad.newton_cutoff = [] cutoff_vals = re.search( r"\[(.+)\]",arg).group(1).split('/') if cutoff_vals=='None': grad.newton_cutoff = None else: if len(cutoff_vals) > 2 or \ len(cutoff_vals) < 2: raise Exception("Cutoff values must " \ "be between two numbers.") for val in cutoff_vals: grad.newton_cutoff.append(float(val)) elif "levenberg" in col: g_args = col.split('=')[1].split(',') for arg in g_args: if arg == "True": grad.do_levenberg=True elif arg == False: grad.do_levenberg=False if 'radii' in arg: grad.levenberg_radii = [] radii_vals = re.search( r"\[(.+)\]",arg).group(1).split('/') if radii_vals=='None': grad.levenberg_radii = None else: for val in radii_vals: grad.levenberg_radii.append(float(val)) if 'cutoff' in arg: grad.levenberg_cutoff = [] cutoff_vals = re.search( r"\[(.+)\]",arg).group(1).split('/') if cutoff_vals=='None': grad.levenberg_cutoff = None else: if len(cutoff_vals) > 2 or \ len(cutoff_vals) < 2: raise Exception("Cutoff values must " \ "be between two numbers.") for val in cutoff_vals: grad.levenberg_cutoff.append(float(val)) if 'factor' in arg: grad.levenberg_cutoff = [] factor_vals = re.search( r"\[(.+)\]",arg).group(1).split('/') if factor_vals=='None': grad.levenberg_factor = None else: for val in factor_vals: grad.levenberg_factor.append(float(val)) elif "lagrange" in col: g_args = col.split('=')[1].split(',') for arg in g_args: if arg == "True": grad.do_lagrange=True elif arg == False: grad.do_lagrange=False if 'radii' in arg: grad.lagrange_radii = [] radii_vals = re.search( r"\[(.+)\]",arg).group(1).split('/') if radii_vals=='None': grad.lagrange_radii = None else: for val in radii_vals: grad.lagrange_radii.append(float(val)) if 'cutoff' in arg: grad.lagrange_cutoff = [] cutoff_vals = re.search( r"\[(.+)\]",arg).group(1).split('/') if cutoff_vals=='None': grad.lagrange_cutoff = None else: if len(cutoff_vals) > 2 or \ len(cutoff_vals) < 2: raise Exception("Cutoff values must " \ "be between two numbers.") for val in cutoff_vals: grad.lagrange_cutoff.append(float(val)) if 'factor' in arg: grad.lagrange_factors = [] factor_vals = re.search( r"\[(.+)\]",arg).group(1).split('/') if factor_vals=='None': grad.lagrange_factors = None else: for val in factor_vals: grad.lagrange_factors.append(float(val)) elif "svd" in col: g_args = col.split('=')[1].split(',') for arg in g_args: if arg == "True": grad.do_svd=True elif arg == False: grad.do_svd=False if 'radii' in arg: grad.svd_radii = [] radii_vals = re.search( r"\[(.+)\]",arg).group(1).split('/') if radii_vals=='None': grad.svd_radii = None else: for val in radii_vals: grad.svd_radii.append(float(val)) if 'cutoff' in arg: grad.svd_cutoff = [] cutoff_vals = re.search( r"\[(.+)\]",arg).group(1).split('/') if cutoff_vals=='None': grad.svd_cutoff = None else: if len(cutoff_vals) > 2 or \ len(cutoff_vals) < 2: raise Exception("Cutoff values must " \ "be between two numbers.") for val in cutoff_vals: grad.svd_cutoff.append(float(val)) if 'factor' in arg: grad.svd_cutoff = [] factor_vals = re.search( r"\[(.+)\]",arg).group(1).split('/') if factor_vals=='None': grad.svd_factor = None else: for val in factor_vals: grad.svd_factor.append(float(val)) else: raise Exception("'{}' : Not Recognized".format(col)) ############################################################## self.ff = grad.run(ref_data=self.ref_data) if cols[0] == 'SIMP': simp = simplex.Simplex( direc=self.direc, ff=self.ff, ff_lines=self.ff.lines, args_ff=self.args_ff) for col in cols[1:]: if "max_params" in col: simp.max_params = col.split('=')[1] else: raise Exception("'{}' : Not Recognized".format(col)) self.ff = simp.run(r_data=self.ref_data) if cols[0] == 'WGHT': data_type = cols[1] co.WEIGHTS[data_type] = float(cols[2]) if cols[0] == 'STEP': param_type = cols[1] co.STEPS[param_type] = float(cols[2]) def read_loop_input(filename): with open(filename, 'r') as f: lines = f.readlines() lines = [x.partition('#')[0].strip('\n') for x in lines if x.partition('#')[0].strip('\n') != ''] pretty_loop_input(lines) return lines def pretty_loop_input(lines, name='Q2MM', score=None): logger.log(20, ' {} '.format(name).center(79, '=')) logger.log(20, 'COMMANDS:') for line in lines: logger.log(20, '> ' + line) if score is not None: logger.log(20, 'SCORE: {}'.format(score)) logger.log(20, '=' * 79) logger.log(20, '') return lines def pretty_loop_summary(cycle_num, score, change): logger.log(20, ' Cycle {} Summary '.format( cycle_num).center(50, '-')) logger.log(20, '| PF Score: {:36.15f} |'.format(score)) logger.log(20, '| % change: {:36.15f} |'.format(change * 100)) logger.log(20, '-' * 50) def main(args): parser = argparse.ArgumentParser() parser.add_argument( 'input', type=str, help='Filename containing loop commands.') opts = parser.parse_args(args) lines = read_loop_input(opts.input) loop = Loop() loop.run_loop_input(lines) if __name__ == '__main__': # if os.path.isfile('root.log'): # os.remove('root.log') logging.config.dictConfig(co.LOG_SETTINGS) main(sys.argv[1:]) ``` #### File: smiles_to_catvs/scripts/prepare.py ```python import os,glob from multiprocessing import Pool import pubchempy as pcp import requests as rq import ast def CID_to_IUPAC(cid): pre_url = "https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/CID/" post_url = "/record/SDF/?record_type=3d&response_type=display" c = pcp.Compound.from_cid(cid) name = c.iupac_name if name == None: return None else: return name center=""" P3-Z0-P3 1 """ txt1 =""" s_cs_pattern b_cs_use_substructure """ txt2 =""" b_cs_comp b_cs_chig """ txt3 = """ b_cs_tors i_cs_rca4_1 i_cs_rca4_2 r_cs_torc_a5 r_cs_torc_a6 r_cs_torc_b5 r_cs_torc_b6 i_cs_torc_a1 i_cs_torc_a4 i_cs_torc_b1 i_cs_torc_b4 """ def prepare_mae_for_screen(file,s_txt): CID = file.replace(".mae","") infile = open(file,"r") flines = infile.readlines() output = "" count = 0 b_cs = 0 rca4 = None rot = None chiral = None for line in flines: if CID in line: iupac = CID_to_IUPAC(CID) if iupac == None: output += line else: # output += iupac + "\n" output += line.replace(CID,iupac.replace(" ","")) elif "i_m_ct_format" in line: output += line + txt1 elif "m_atom" in line and count == 0: output += s_txt + line count = 1 elif " PD " in line: numb = line.split()[1] output += line.replace(" {} ".format(numb)," 62 ") elif "CHIRAL" in line: chiral = "".join(line.split()[1:]) chiral = ast.literal_eval(chiral) elif "RCA4" in line: rca4 = "".join(line.split()[1:]) rca4 = ast.literal_eval(rca4) elif "ROT" in line: rot = "".join(line.split()[1:]) rot = ast.literal_eval(rot) else: output += line old_out = output output = "" count = 0 for line in old_out.splitlines(): if "m_atom" in line: count = 1 output += line elif count == 1 and ":::" in line: count = 2 output += txt2 + line # atom flag elif count == 2 and ":::" in line: count = 3 output += line # bond flag elif count == 3 and ":::" in line: count = 4 output += txt3 + line # turn off elif count == 4 and ":::" in line: count = 5 output += line # atom elif count == 2: chi = 0 atidx = int(line.split()[0]) if atidx in chiral: chi = 1 comp = 1 if "H " in line: comp = 0 output += line + " {} {}".format(comp,chi) # bond elif count == 4: bond = list(map(int,line.split()[1:3])) tors = 0 if bond in rot or bond[::-1] in rot: tors = 1 rca4_1 = 0 rca4_2 = 0 for rca in rca4: if bond == rca[1:3]: rca4_1 = rca[0] rca4_2 = rca[3] elif bond[::-1] == rca[1:3]: rca4_1 = rca[3] rca4_2 = rca[0] output += line + " {} {} {} 0 0 0 0 0 0 0 0".format(tors,rca4_1,rca4_2) else: output += line output += "\n" return output os.system("mkdir ligands") os.chdir("./maes") if 1: for nfile, file in enumerate(glob.glob("*.mae")): n = nfile + 1 print(file) text = prepare_mae_for_screen(file,center) outfile = open("temp","w") outfile.write(text) outfile.close() os.system("cp temp ../ligands/{}.mae".format(str(n))) def prepare(filenames): for fn0 in filenames: text = prepare_mae_for_screen(fn0,center) fn = fn0.replace(".mae","") temp = "{}.temp".format(fn) outfile = open(temp,"w") outfile.write(text) outfile.close() os.system("mv {} ../ligands/{}.mae".format(fn,fn)) return 0 if 0: fns = glob.glob("*.mae") # number of threads for parallel job nt = 32 lf = len(fns) nj = int(lf/nt) nr = int(lf%nt) ni = 0 count = 0 file_split=[] for i in range(nt-1): fn = fns[ni:ni+nj] file_split.append(fn) count += len(fn) ni = ni + nj for i in range(nr): file_split[i].append(fns[ni+i]) with Pool(processes=nt) as pool: multiple_jobs = [pool.apply_async(prepare,(files,)) for files in file_split] [res.get() for res in multiple_jobs] ``` #### File: smiles_to_catvs/scripts/sdf_to_mae.py ```python import openbabel as ob import pybel as pb import numpy as np import glob, os import multiprocessing as mp from multiprocessing import Pool def bmin_call(file_list): for filename in file_list: infile = filename.replace(".com","") os.system("bmin -WAIT {};".format(infile)) return 0 def cons_opt(infile,outfile,idx): """ Only Mol2/UFF can Optimize Optimize with Pd1-P-P1 constraints :param infile: :param outfile: :param idx: :return: """ p1,p2,pd = idx conv = ob.OBConversion() conv.SetInAndOutFormats("mol2", "mol2") mol = ob.OBMol() conv.ReadFile(mol, infile) cons = ob.OBFFConstraints() pp = 3.2 ppd = 2.4 cons.AddDistanceConstraint(p1, p2, pp) cons.AddDistanceConstraint(p1, pd, ppd) cons.AddDistanceConstraint(p2, pd, ppd) # Set up FF ff = ob.OBForceField.FindForceField("UFF") ff.Setup(mol, cons) ff.SetConstraints(cons) ff.EnableCutOff(True) # Optimize ff.ConjugateGradients(10000) ff.GetCoordinates(mol) def ring_bond(ring): """ :param ring: OBRing class :return: list of lists [atom1,atom2] """ bonds = [] mol = ring.GetParent() for bond in ob.OBMolBondIter(mol): at1 = bond.GetBeginAtom().GetIndex() + 1 at2 = bond.GetEndAtom().GetIndex() + 1 if ring.IsMember(bond): if not bond.IsAromatic(): bonds.append(sorted([at1,at2])) return bonds def common_atom(bond,bonds): """ :param bond: list [atom1,atom2] :param bonds: list of list [atom1,atom2] :return: True if there is common atom in bonds """ result = False if len(bonds) == 0: return result for bond2 in bonds: for at1 in bond: for at2 in bond2: if at1 == at2: result = True return result return result # extract ring info # iterate over all bond # CHIRAL ATOMS chiral = [] for atom in ob.OBMolAtomIter(mol): if atom.IsChiral(): chiral.append(atom.GetIndex() + 1) rot_bond = [] rca4 = [] rca23 = [] for bond in ob.OBMolBondIter(mol): at1 = bond.GetBeginAtom().GetIndex() + 1 at2 = bond.GetEndAtom().GetIndex() + 1 # print(at1, at2) if bond.IsRotor() and not bond.IsAromatic(): rot = sorted([at1,at2]) # print(outfile,"ROT ",rot) rot_bond.append(rot) if bond.IsClosure(): rca0 = sorted([at1,at2]) rca = sorted([at1,at2]) # The Assumption is IsClosure picking up only one bond in the ring # and bond.IsRotor() does not provide any ring bonds. # to prevent rca23 sharing common atoms if len(rca23) != 0: if common_atom(rca,rca23): ringbonds = ring_bond(bond.FindSmallestRing()) for rbond in ringbonds: if common_atom(rbond,rca23): continue else: rca0 = rbond.copy() rca = rbond.copy() break else: ringbonds = ring_bond(bond.FindSmallestRing()) for rbond in ringbonds: if not (rbond[0] in rca or rbond[1] in rca): rca0 = rbond.copy() rca = rbond.copy() break rca23.append(rca0) #print(outfile,"RING OPENING BOND", rca0) ring = bond.FindSmallestRing() ring_rots = [] if not ring.IsAromatic(): for bond1 in ob.OBMolBondIter(mol): if ring.IsMember(bond1): b1 = bond1.GetBeginAtom().GetIndex() + 1 b2 = bond1.GetEndAtom().GetIndex() + 1 rot = sorted([b1,b2]) if rot != rca0: ring_rots.append(rot) #print("RING ROT:",ring_rots) for rrot in ring_rots: if rca0[0] in rrot: atom = rrot.copy() atom.remove(rca0[0]) #print(atom) rca.insert(0,atom[0]) #print("INSERT ",rca) elif rca0[1] in rrot: atom = rrot.copy() atom.remove(rca0[1]) #print(rca) rca.append(atom[0]) #print("APPEND ",rca) elif rca0 != rot: rot_bond.append(rrot) rca4.append(rca) # print(outfile,"CHIRAL",chiral) # print(outfile,"RCA4",rca4) # print(outfile,"RCA23",rca23) check = [] for rr in rca4: check.append(rr[1]) check.append(rr[2]) bond = sorted([rr[1],rr[2]]) if bond in rot_bond: rot_bond.remove(bond) if len(check) != len(set(check)): print("\t\tBAD",outfile) print("\t\t",rca4) # else: # print("\t\tBAD",outfile) # print(outfile,"ROT", rot_bond) conv.WriteFile(mol, outfile) return chiral, rca4, rot_bond def to_mol2(infile,outfile): conv = ob.OBConversion() conv.SetInAndOutFormats("sdf","mol2") mol = ob.OBMol() conv.ReadFile(mol, infile) conv.WriteFile(mol, outfile) def add_pd(infile,outfile): conv = ob.OBConversion() conv.SetInAndOutFormats("mol2","mol2") mol = ob.OBMol() conv.ReadFile(mol, infile) nAtoms = mol.NumAtoms() p = [] for i in range(nAtoms): n = i + 1 at = mol.GetAtom(n) an = (at.GetAtomicNum()) if an == 15: p.append(n) elif an == 8: # Oxygen neis = [] for nei in ob.OBAtomAtomIter(at): neis.append(nei) # Oxygen has one neighbor lnei = len(neis) if lnei == 1: nei = neis[0] # neighbor is P (i.e. P=O) if nei.GetAtomicNum() == 15: return None if len(p) != 2: return None # optimize for P-P distance first p1, p2 = p cons = ob.OBFFConstraints() pp = 3.2 cons.AddDistanceConstraint(p1, p2, pp) # Set up FF ff = ob.OBForceField.FindForceField("UFF") ff.Setup(mol, cons) ff.SetConstraints(cons) ff.EnableCutOff(True) # Optimize ff.ConjugateGradients(10000) ff.GetCoordinates(mol) cont = True while cont: pho1 = mol.GetAtom(p1) pho2 = mol.GetAtom(p2) pp1 = pho1.GetDistance(pho2) err0 = abs(pp1-pp) if err0 < 0.015: cont = False else: print("\tNOT converged YET:",outfile, " diff:", err0) ff.ConjugateGradients(10000) ff.GetCoordinates(mol) p = [] pxyz = [] nxyz = [] # find out where two P are located for i in range(nAtoms): n = i + 1 at = mol.GetAtom(n) an = (at.GetAtomicNum()) if an == 15: p.append(n) pxyz.append([at.x(),at.y(),at.z()]) else: nxyz.append([at.x(),at.y(),at.z()]) nxyz = np.array(nxyz) # Add Pd and connect it to two Ps a = mol.NewAtom() a.SetAtomicNum(46) pxyz = np.array(pxyz) x,y,z = (pxyz[0] + pxyz[1])/2 pdxyz = np.array([x,y,z]) vec0 = None r0 = 100.0 for vec in nxyz: vec = vec - pdxyz r = np.linalg.norm(vec) if r < r0: r0 = r vec0 = vec x,y,z = pdxyz-10.0*vec0 a.SetVector(x,y,z) # AddBond(BeginIdx,EndIdx,bond order) pd = mol.NumAtoms() p1,p2 = p mol.AddBond(pd,p1,1) mol.AddBond(pd,p2,1) mol.NumAtoms() conv.WriteFile(mol, outfile) return [p1,p2,pd] def sdf_to_mae(filenames): for fn0 in filenames: fn = fn0.replace(".sdf","") # print("reading {}".format(fn)) to_mol2(fn0,"{}.0temp".format(fn)) index = add_pd("{}.0temp".format(fn),"{}.temp".format(fn)) if index != None: chiral, rca4, rot = cons_opt("{}.temp".format(fn),"{}.mol2".format(fn),index) print("molecule ",fn, "finished") os.system("mv {}.mol2 ../mol2/".format(fn)) os.system("mol2convert -imol2 ../mol2/{}.mol2 -omae ../maes/{}.mae".format(fn,fn)) os.system("echo 'CHIRAL {}\nRCA4 {}\n ROT {}' >> ../maes/{}.mae".format(chiral, rca4,rot,fn)) return 0 # Get the list of sdf files in current directory # for loop all os.system("mkdir ./mol2") os.system("mkdir ./maes") os.chdir("./sdf") if 1: fns = glob.glob("*.sdf") # number of threads for parallel job nt = 32 lf = len(fns) nj = int(lf/nt) nr = int(lf%nt) ni = 0 count = 0 file_split=[] for i in range(nt-1): fn = fns[ni:ni+nj] file_split.append(fn) count += len(fn) ni = ni + nj for i in range(nr): file_split[i].append(fns[ni+i]) with Pool(processes=nt) as pool: multiple_jobs = [pool.apply_async(sdf_to_mae,(files,)) for files in file_split] [res.get() for res in multiple_jobs] ``` #### File: q2mm/tools/submit.py ```python 9#!/usr/bin/env python import argparse import sys import os import subprocess as sp DEFAULT_SUB_FILE = '''#!/bin/csh #$ -M <EMAIL> #$ -m ae #$ -N {} #$ -q {} #$ -r n {} module load schrodinger/2015u3 module load gaussian/09D01 module load tinker setenv SCHRODINGER_TEMP_PROJECT "~/.schrodtmp" setenv SCHRODINGER_TMPDIR "~/.schrodtmp" setenv SCHRODINGER_JOBDB2 "~/.schrodtmp" {}''' #Change the default user here defaultuser='arosale4' def CRC_qsub(job_name,USER,QUEUE,CPU,COMMAND): ## Writes the submission file with all the appropriate options: job name, ## queue, processors, and the job command. submission_file = open(job_name + '.sh', 'w') submission_file.write( DEFAULT_SUB_FILE.format(job_name,USER,QUEUE,CPU,COMMAND.format( job_name + '.com'))) submission_file.close() def queue(opts): ## Queue option of the crc. I think I can only use long and debug, which ## long is the default. if opts.queue: QUEUE = opts.queue else: QUEUE = 'long' return QUEUE def processors(opts): ## Sets the number of processors to request from the CRC. Default is to use ## 8 processors. When there is no argument to follow ("-pe") then this ## section is removed to allow for only one processor. An additional ## argument will just write that argument, e.g. "-pe -pe smp 16" would add ## #$ -pe smp 16 to the submission script. if opts.processors == 'default': CPU = '#$ -pe smp 8' elif opts.processors == 'none': CPU = ' ' else: CPU = '#$ ' + opts.processors return CPU def command(opts): ## Sets the actuall command to accomplish. By default it will do a gaussian ## job. Example of an alternative is "--command bmin -WAIT conf_search" if opts.command: COMMAND = opts.command else: COMMAND = 'g09 {}' return COMMAND def main(args): parser = return_parser() opts = parser.parse_args(args) QUEUE = queue(opts) CPU = processors(opts) COMMAND = command(opts) if opts.username: USER = opts.username else: USER = defaultuser for filename in opts.filename: run_file = os.path.splitext(filename)[0] CRC_qsub(run_file,USER,QUEUE,CPU,COMMAND) sp.call('qsub {}.sh'.format(run_file), shell=True) # print('This is where you would run the following command') # print('>>>>> qsub {}.sh'.format(run_file)) def return_parser(): parser = argparse.ArgumentParser( description='To fill out later') parser.add_argument( 'filename', type=str, nargs='+', help='Filename') parser.add_argument( '-q','--queue', type=str, help='"long" or "debug"') parser.add_argument( '-pe','--processors', type=str, nargs='?', const='none', default='default', help='No option string = default smp 8; \n' 'Option string but no argument = no multiple processing; and \n' 'Option string with argument = "#$" + argument') parser.add_argument( '-c','--command', type=str, help='Command that are being ran. The \ default will be to perform a g09 calcualtion on #') parser.add_argument( '-u','--username', type=str, help='<NAME> CRC user name. Probably \ a NetID.') return parser if __name__ == '__main__': main(sys.argv[1:]) ################################## ``` #### File: q2mm/tools/sumq.py ```python from __future__ import print_function import argparse import os import re import sys from itertools import chain from math import exp, log K = 0.008314459848 # kJ K^-1 mol^-1 ENERGY_LABEL = 'r_mmod_Potential_Energy-MM3*' RE_ENERGY = ('(\s|\*)Conformation\s+\d+\s\(\s+(?P<energy>[\d\.\-]+)\s+kJ/mol\) ' 'was found\s+(?P<num>[\d]+)') HARTREE_TO_KJMOL = 2625.5 # Hartree to kJ/mol def read_energy_from_macro_log(filename, max_structures=None, max_energy=None): energies = [] with open(filename, 'r') as f: energy_section = False for line in f: if '*** MC Statistics ***' in line: energy_section = False if 'Total number of structures processed =' in line: num_str = int(line.split()[6]) energy_section = True if energy_section: matched = re.match(RE_ENERGY, line) if matched != None: energy = float(matched.group('energy')) num = int(matched.group('num')) if max_energy and len(energies) > 0: # Inefficient. zero = min(energies) if energy - zero > max_energy: break # print(energy) energies.append(energy) # Thought I'd try this out. Doesn't really work. # Idea was that it would append the energy * the number of # times that the conformation was located. Didn't really # change things much. # Anyway, reasoning for this was that we're really trying # to explore how soft or hard the PES surface about the TS # is. Many mid energy conformers may mean more than few # slightly lower energy conformers. # energies.extend([energy] * num) if max_structures: if len(energies) == max_structures: break return energies def read_energy_from_mae(filename): """ Reads energies from *.mae files. Energies are read and saved as kJ/mol. """ path_of_this_file = os.path.dirname(os.path.realpath(__file__)) path_of_q2mm = os.path.join(path_of_this_file, '../q2mm') sys.path.append(path_of_q2mm) import filetypes mae = filetypes.Mae(filename) energies = [float(x.props[ENERGY_LABEL]) for x in mae.structures] return energies def read_energy_from_gau_log(filename): """ Reads energies from *.log Gaussian files. Also converts Hartrees to kJ/mol for saving. """ path_of_this_file = os.path.dirname(os.path.realpath(__file__)) path_of_q2mm = os.path.join(path_of_this_file, '../q2mm') sys.path.append(path_of_q2mm) import filetypes # This is actually a little misleading seeing as these archives only contain # one HF energy, and typically each file only contains one archive. energies = [] file_ob = filetypes.GaussLog(filename) try: file_ob.read_archive() for structure in file_ob.structures: energies.append(float(structure.props['HF']) * HARTREE_TO_KJMOL) return energies except IndexError: raise def make_relative(energies): """ Makes all energies relative. Expects a list of lists, flattens it, finds the minimum, makes all energies in all lists relative. Returns ------- list of lists of floats """ zero = min(chain.from_iterable(energies)) zero_energies = [] for group_energies in energies: zero_energies.append([x - zero for x in group_energies]) return zero_energies def return_parser(): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( '-g', '--group', metavar='filename', type=str, nargs='+', action='append', help='Group of filenames.') parser.add_argument( '-n', '--max_structures', metavar='i', type=int, help='Stop reading an individual file after reading i structures.') parser.add_argument( '-m', '--max_energy', metavar='f', type=float, help="Don't read any structures that have a relative energy above f.") parser.add_argument( '-a', '--appendfile', metavar='filename', type=str, help='Also append CSV style output to a file.') parser.add_argument( '-t', '--temperature', type=float, default=298.15, help='Self-explanatory. Default is 298.15 K.') return parser def calc_q(energies, temperature=298.15): # Beta beta = 1 / (K * temperature) qs = [] for group_energies in energies: q = sum([exp(-beta*x) for x in group_energies]) qs.append(q) return qs def sumq(groups, appendfile=None, max_energy=None, max_structures=None, temperature=298.15): # list of lists # Each sublist contains all the energies for a grouping of # structures/filenames. energies = [] # Get all the partition function values. for group in groups: group_energies = [] for filename in group: if filename.endswith('.log'): # Need system for handling both types of .log files. try: e = read_energy_from_gau_log(filename) except IndexError: e = read_energy_from_macro_log( filename, max_structures=max_structures, max_energy=max_energy) group_energies.extend(e) elif filename.endswith('.mae'): e = read_energy_from_mae(filename) group_energies.extend(e) energies.append(group_energies) e1 = energies[0][0] e2 = energies[1][0] energies = make_relative(energies) # Output code. border = ' % CONTRIBUTION TO TOTAL '.center(50, '-') print(border) qs = calc_q(energies, temperature=temperature) total_q = sum(qs) stuff = [] for i, q in enumerate(qs): ratio = q / total_q print('Group {}: {}'.format(i + 1, ratio)) stuff.append(ratio) # Additional output for when there are only 2 isomers. print(' OUTPUT FOR 2 GROUPS '.center(50, '-')) if len(qs) == 2: dr12 = qs[0] / qs[1] dr21 = qs[1] / qs[0] # Changing sign temporarily. de = - (dr12 - 1) / (dr12 + 1) * 100 dde = K * temperature * log(qs[0]/qs[1]) print('% dr/er (Group 1 : Group 2): {}'.format(dr12)) print('% dr/er (Group 2 : Group 1): {}'.format(dr21)) print('% de/ee: {}'.format(de)) print('ddE (kJ/mol): {}'.format(abs(dde))) if appendfile: with open(appendfile, 'a') as f: names1 = ' '.join(groups[0]) names2 = ' '.join(groups[1]) f.write('{},{},{},{},{},{},{},{}\n'.format( names1, names2, e1, e2, dr12, dr21, de, dde)) print('-' * len(border)) print('This should equal 1: {}'.format(sum(stuff))) def main(args): parser = return_parser() opts = parser.parse_args(args) sumq(opts.group, opts.appendfile, opts.max_energy, opts.max_structures, opts.temperature) if __name__ == '__main__': args = sys.argv[1:] main(args) ```
{ "source": "jesswhyte/floppycapture", "score": 3 }
#### File: jesswhyte/floppycapture/floppy-nocall.py ```python import sys import argparse import os import subprocess as subproc import datetime import re ####################### ###### ARGUMENTS ###### ####################### parser = argparse.ArgumentParser( description ="Script to walk through floppy disk capture workflow, Jan 2018") parser.add_argument( '-c', '--collection', type=str, help='collection/accession/box/whatever', required=True) parser.add_argument( '-d','--dir', type=str, help='Start directory, e.g. /home/jess/CAPTURED', required=True) parser.add_argument( '-i','--i4',action='store_true', help='use flag to default to i4/MFM') parser.add_argument( '-m', '--mediatype', type=str, help='Use \"3.5\" or \"5.25\"',required=True, choices=['3.5','5.25']) parser.add_argument( '-t', '--transcript', type=str, help='Transcript of label', required=False) parser.add_argument( '-n','--note', type=str, help='capture notes', required=False) parser.add_argument( '-k', '--key',type=str, help='diskID',required=True) ## Array for all args passed to script args = parser.parse_args() ############################### ########## VARIABLES ########## ############################### drive = "d0" date = datetime.datetime.today().strftime('%Y-%m-%d') collection = args.collection mediaType = args.mediatype key = args.key dir = args.dir note=args.note if args.transcript: label = args.transcript else: label = "no disk label" ################################# ########## CLASS STUFF ########## ################################# # font colors, visit https://gist.github.com/vratiu/9780109 for a nice guide to the color codes class bcolors: OKGREEN = '\033[92m' #green INPUT = '\033[93m' #yellow, used for when user input required FAIL = '\033[91m' #red, used for failure ENDC = '\033[0m' # end color BOLD = '\033[1m' UNDERLINE = '\033[4m' GREENBLOCK = '\x1b[1;31;40m' # green with background, used for updates user should check (e.g. Title/Cat report) ENDGB = '\x1b[0m' #end x1b block #################################### ############ FUNCTIONS ############# #################################### ### TODO: rewrite kfStream as subprocess, temp) def kfStream(): os.system( "dtc -"+drive+" -fstreams/"+key+"/" +key+"_stream -i0 -i4 -i9 -i2 -t2 -l8 -p | tee " +outputPath+key+"_capture.log") #takes existing stream, attemps to make image based on given fileSystem def kfImage(fileSystem): os.system( "dtc -fstreams/"+key+"/" +key+"_stream00.0.raw -i0 -f"+outputPath+key+"_disk.img -" +fileSystem+" -m1") #Takes preservation stream + attempts to create i4 or MFM disk image def kfi4(): os.system( "dtc -"+drive+" -fstreams/"+key+"/" +key+"_stream -i0 -f"+outputPath+key+ "_disk.img -i4 -t1 -l8 -p | tee "+outputPath+key+"_capture.log") ######################## ##### THE GOODS ###### ######################## ### check Media, set drive if mediaType == "3.5": drive = "d0" elif mediaType == "5.25": drive = "d1" ### Change working directory if not os.path.exists(dir): os.makedirs(dir) os.chdir(dir) ### Create directory for output if it doesn't exist outputPath = collection+"/"+key+"/" ### JW NOTE: Check if os.path exists and then ask whether or not to proceed and how if os.path.exists(outputPath): replacePath = input(bcolors.INPUT+"path already exists, proceed anyway y/n? "+bcolors.ENDC) if replacePath.lower() == 'y' or replacePath.lower() == 'yes': # replaceStream only an option, because sometimes I want to keep original photo/metadata, but want to try # replacing what might have been a previously unsuccessful capture, e.g. if there is another copy of disk replaceStream = input(bcolors.INPUT+"Replace stream/image **ONLY** y/n? "+bcolors.ENDC) if replaceStream.lower() == 'y' or replaceStream.lower() == 'yes': go = input(bcolors.INPUT+"Please insert disk and hit Enter"+bcolors.ENDC) if args.i4: kfi4() else: kfStream() fileSystem = input(bcolors.INPUT+"Which filesytem? "+bcolors.ENDC) kfImage(fileSystem) sys.exit("-Stream/image replaced. No other entries updated. Exiting...") if replaceStream.lower() == 'n' or replaceStream.lower() =='no': replaceStream == 'no' print(bcolors.OKGREEN+"Replacing "+key+" ..."+bcolors.ENDC) if replacePath.lower() == 'n' or replacePath.lower() == 'no': sys.exit("-No entries updated. Exiting...") if not os.path.exists(outputPath): os.makedirs(outputPath) ### CAMERA - TAKE A PICTURE - VERY ENV SPECIFIC TO MY CAMERA photoPrompt = input("Do you want to photograph the disk? (Warning: requires /dev/video0 device connected) [y/n]") if photoPrompt == "y": picName = key + ".jpg" picParameters = " -f video4linux2 -s 1600x1200 -i /dev/video0 -ss 0:0:6 -frames 1 -hide_banner -loglevel panic "+outputPath+picName gopic = input(bcolors.INPUT+"Please place disk for picture and hit Enter"+bcolors.ENDC) print("Wait please...taking picture...") os.system("ffmpeg"+picParameters) ### Double check pic worked and warn if it didn't: if os.path.exists( outputPath+picName): print("-Pic: %s%s taken" % (outputPath,picName)) else: print(bcolors.FAIL+"-Pic: %s%s NOT TAKEN. CHECK CAMERA + FFMPEG SETTINGS" % (outputPath,picName)) ### KRYOFLUX - GET A PRESERVATION STREAM ## Pause and give user time to put disk in go = input(bcolors.INPUT+"Please insert disk and hit Enter"+bcolors.ENDC) ## take the stream only if it doesn't already exist ## note: streams do not go in diskID directory if os.path.exists("streams/"+key+"/"+key+"_stream00.0.raw"): replaceStream = input(bcolors.INPUT+"streams/"+key+"/"+key+"_stream00.0.raw exists, replace y/n? "+bcolors.ENDC) if replaceStream.lower() == 'y' or replaceStream.lower() == 'yes': if args.i4: kfi4() else: kfStream() fileSystem = input(bcolors.INPUT+"Which filesytem? "+bcolors.ENDC) kfImage(fileSystem) else: # if replaceStream=N, still ask if user wants to update metadata/master log replaceMeta = input(bcolors.INPUT+"replace metadata and create new log entry y/n? "+bcolors.ENDC) if replaceMeta.lower() == 'n' or replaceMeta.lower() == 'no': # if replaceMeta=N, close out and exit, otherwise carry on metadata.close() sys.exit ("-Exiting...") else: if args.i4: # take preservation stream and MFM image at same time kfi4() else: # take preservation stream, then ask which filesystem, e.g. i9 or i4, etc. kfStream() fileSystem = input(bcolors.INPUT+"Which filesytem? "+bcolors.ENDC) if not os.path.exists(outputPath+"_disk.img"): # create image from stream, based on provided filesystem kfImage(fileSystem) ######################################### #### END MATTER and METADATA UPDATES #### ######################################### ### Update master log ## TODO: this should really use csv library, I was lazy ## User asked if they'd like to update the notes they entered noteupdate = input(bcolors.INPUT+"If you would like to update the disk notes (currently: "+bcolors.OKGREEN+str(note)+bcolors.ENDC+bcolors.INPUT+"), please re-enter, otherwise hit Enter: "+bcolors.ENDC) if noteupdate: note = noteupdate print("-Note has been updated to: " + bcolors.OKGREEN + str(note) + bcolors.ENDC) else: note = "No-transcript" print("-Note unchanged...") ## Open and update the masterlog - projectlog.csv log = open('projectlog.csv','a+') print("-Updating log...") log.write( "\n"+collection+","+key+","+mediaType+ ","+"\""+label+"\",\""+str(note)+"\"") if os.path.exists( outputPath+key+"_disk.img"): log.write(",img=OK") else: log.write(",img=NO") log.write(","+date) ### Close master log log.close() sys.exit ("-Exiting...to extract logical files from your disk images and generate .csv manifests, please run disk-img-extraction.sh on collection directory") ``` #### File: floppycapture/helpers/getcall.py ```python import sys import argparse import os import subprocess as subproc import json import urllib import re from urllib.request import urlopen from collections import OrderedDict ###### ARGUMENTS ###### parser = argparse.ArgumentParser( description ="Script to convert catkey to callnum for, say, filenames. Usage python3 getcall.py <catkey>") parser.add_argument( '-k', '--key', type=str, help='catkey', required=True) ## Array for all args passed to script args = parser.parse_args() catKey = args.key def get_json_data(url): response = urlopen(url) data = response.read().decode() return json.loads((data), object_pairs_hook=OrderedDict) ### do a catalog call based on the catkey catUrl = str("https://search.library.utoronto.ca/details?%s&format=json" % catKey) #set catalog search url based on catkey # make a dictionary out of the response from catUrl cat_dic = get_json_data(catUrl) #run get_json_data function using catUrl) title = cat_dic['record']['title'] #set the $title variable based on record.title in json callnumber = cat_dic['record']['holdings']['items'][0]['callnumber'] #print(callnumber) ## if you want to print original call number #callnumber = callnumber.replace('.','-') ## if you wanted to replace dots with dashes callnumber = callnumber.replace(' ','_') print(callnumber) sys.exit (0) #exit ``` #### File: floppycapture/helpers/metadata.py ```python import sys import argparse import os import subprocess as subproc import datetime import json import urllib import re from urllib.request import urlopen from collections import OrderedDict ####################### ###### ARGUMENTS ###### ####################### parser = argparse.ArgumentParser( description ="Script to pull catalog metadata, remove holdings info (e.g. checkout status), end add processing metadata (e.g. date processed)") parser.add_argument( '-l', '--lib', type=str, help='Library, for a list of library IDs, visit ufot.me/libs ', required=True, choices=['ARCH','ART','ASTRO','CHEM','CRIM', 'DENT','OPIRG','EARTH','EAL','ECSL','FCML', 'FNH','GERSTEIN','INFORUM','INNIS','KNOX', 'LAW','MDL','MATH','MC','PONTIF','MUSIC', 'NEWCOLLEGE','NEWMAN','OISE','PJRC','PHYSICS', 'REGIS','RCL','UTL','ROM','MPI','STMIKES', 'TFRBL','TRIN','UC','UTARMS','UTM','UTSC','VIC']) parser.add_argument( '-m', '--mediatype', type=str, help='Use \"3.5\" or \"5.25\" or \"CD\" or \"USB\"',required=True, choices=['3.5','5.25', 'CD', 'USB']) parser.add_argument( '-k', '--key', type=str, help='catkey', required=False) ## Array for all args passed to script args = parser.parse_args() ############################### ########## VARIABLES ########## ############################### date = datetime.datetime.today().strftime('%Y-%m-%d') # set's today's date as $date variable lib = args.lib mediaType = args.mediatype catKey = args.key #################################### ############ FUNCTIONS ############# #################################### # Get json from a URL (we're going to use keyURL), read and decode the response and then put in ordered dictionary def get_json_data(url): response = urlopen(url) data = response.read().decode() return json.loads((data), object_pairs_hook=OrderedDict) ######################## ##### THE GOODS ###### ######################## ### do a catalog call based on the catkey catUrl = str("https://search.library.utoronto.ca/details?%s&format=json" % catKey) #set catalog search url based on catkey # make a dictionary out of the response from catUrl cat_dic = get_json_data(catUrl) #run get_json_data function using catUrl) title = cat_dic['record']['title'] #set the $title variable based on record.title in json imprint = cat_dic['record']['imprint'] #set the $imprint variable catkey = cat_dic['record']['catkey'] #set the $catkey variable description = cat_dic['record']['description'] #set the $description variable ## Create dictionary of capture data to add to json metadata capture_dic = { 'disk':{ 'CaptureDate': date, 'media': mediaType, 'library': lib} } ## delete holdings info (e.g. checkout info) from cat_dic del cat_dic['record']['holdings'] ## add capture dictionary to cat_dic dictionary cat_dic.update(capture_dic) ## dump resulting json to stdout/screen: json.dump(cat_dic, sys.stdout, indent=4) ## outputs json dump of created dictionary to system sydout, indented, can pipe to file or screen print() #line break sys.exit (0) #exit ```
{ "source": "jess-x/conda-store", "score": 2 }
#### File: conda_store_server/worker/app.py ```python import logging from traitlets import Unicode, Integer, List from traitlets.config import Application from conda_store_server.app import CondaStore class CondaStoreWorker(Application): aliases = { "config": "CondaStoreWorker.config_file", } log_level = Integer( logging.INFO, help="log level to use", config=True, ) watch_paths = List( [], help="list of paths to watch for environment changes", config=True ) config_file = Unicode( "conda_store_config.py", help="config file to load for conda-store", config=True ) def initialize(self, *args, **kwargs): super().initialize(*args, **kwargs) self.load_config_file(self.config_file) @property def conda_store(self): if hasattr(self, "_conda_store"): return self._conda_store self._conda_store = CondaStore(parent=self, log=self.log) return self._conda_store def start(self): argv = [ "worker", "--loglevel=INFO", "--beat", ] self.conda_store.ensure_directories() self.conda_store.celery_app.worker_main(argv) ```
{ "source": "Jessy777-cripto/fundamentals-of-computational-issues", "score": 3 }
#### File: fundamentals-of-computational-issues/hash-table/main.py ```python def hashfunc_insert(k, i=0): t = k%qtd_cont if containers[t][i] == None: containers[t][i] = k else: #se o container estiver ocupado, vai para o próximo espaço. hashfunc_insert(k, i+1) def hashfunc_search(k, i=1): t = k%qtd_cont if i == tam_cont: return comp_key.append(i) if containers[t][i-1] == k or containers[t][i-1] == None : comp_key.append(i) else: hashfunc_search(k, i+1) qtd_cont, tam_cont, qtd_in, *n = map(int, input().split(' ')) containers = [[None]*tam_cont for i in range (qtd_cont)] comp_key = [] #qtd de comparações durante a busca na tabela hash in_data=[n[i] for i in range(qtd_in)] #dados a serem incluidos na tabela hash rest = n[qtd_in:] #dados a serem procurados após a inserção da tabela hash for d in range(len(in_data)): #inserção de chaves hashfunc_insert(in_data[d]) for r in range(len(rest)): #busca na tabela hash hashfunc_search(rest[r]) for i in range(len(comp_key)): print(comp_key[i], end=' ') ``` #### File: fundamentals-of-computational-issues/library/main.py ```python class Livro: codigo = None nome = None autor = None __qtdeAlugueis = 0 def __init__(self, codigo, nome, autor): self.codigo = codigo self.nome = nome self.autor = autor def incrementaAluguel(self): self.__qtdeAlugueis += 1 def getQtdeAlugueis(self): return self.__qtdeAlugueis class Biblioteca: alugados = [] disponiveis = [] def inserir(self, livro): self.disponiveis.append(livro) def alugar(self, livro): ok = True mensagem = None if livro in self.disponiveis: for i in self.disponiveis: if i == livro: i.incrementaAluguel() self.alugados.append(i) self.disponiveis.remove(i) break elif livro in self.alugados: ok = False mensagem = "O livro ja esta alugado, infelizmente voce nao podera alugar" else: ok = False mensagem = "O livro nao existe" return (ok, mensagem) def devolver(self, codLivro): ok = True mensagem = None for livro in self.alugados: if livro.codigo == codLivro: self.disponiveis.append(livro) self.alugados.remove(livro) break else: ok = False mensagem = "O livro nao esta alugado" return (ok, mensagem) def livroMaisAlugado(self): ok = True mensagem = None maior = 0 nome = None for livro in self.disponiveis: if livro.getQtdeAlugueis() > maior: maior = livro.getQtdeAlugueis() nome = livro.nome for livro in self.alugados: if livro.getQtdeAlugueis() > maior: maior = livro.getQtdeAlugueis() nome = livro.nome if maior == 0: ok = False mensagem = "Nenhum livro foi alugado ainda" else: mensagem = "O livro mais alugado e: %s (%d alugueis)"%(nome, maior) return (ok, mensagem) def livrosOrdenadosPeloNome(self): listas = [self.disponiveis, self.alugados] lista_geral = [] for l in listas: troca = True while troca: p = len(l)-1 troca = False for i in range(p): if l[i].nome>l[i+1].nome: l[i], l[i+1]= l[i+1], l[i] troca = True i= 0 j = 0 while True: if i==len(self.disponiveis): for n in range(self.alugados.index(self.alugados[j]), len(self.alugados)-self.alugados.index(self.alugados[j])): print(self.alugados[n].codigo, end=' ') lista_geral.append(self.alugados[n].codigo) break elif j == len(self.alugados): for n in range(self.disponiveis.index(self.disponiveis[i]), len(self.disponiveis)-self.disponiveis.index(self.disponiveis[i])): print(self.disponiveis[n].codigo, end=' ') lista_geral.append(self.disponiveis[n].codigo) break if self.disponiveis[i]<self.alugados[j]: lista_geral.append(self.disponiveis[i].codigo) i+=1 else: lista_geral.append(self.alugados[j].codigo) j+=1 class Main: b = Biblioteca() q_l, *v = input().split(',') j = 0 for livro in range(int(q_l)): lv = Livro(v[j], v[j+1], v[j+2]) b.inserir(lv) j+=int(q_l) b.livrosOrdenadosPeloNome() ```
{ "source": "je-ss-y/abaturanyi", "score": 2 }
#### File: abaturanyi/ibiro/views.py ```python from django.shortcuts import render from django.http import HttpResponse from .models import Location from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from .forms import ProfileForm,PostForm # Create your views here. @login_required(login_url='/accounts/login/') def new_post(request): current_user = request.user if request.method == 'POST': form = PostForm(request.POST, request.FILES) if form.is_valid(): post = form.save(commit=False) # post.user = current_user post.save() return redirect('postsToday') else: form = PostForm() return render(request, 'all-posts/newpost.html', {"form": form}) @login_required(login_url='/accounts/login/') def posts_of_day(request): current_user = request.user snap = Snap.objects.all() return render(request, 'all-posts/poststoday.html', {"snap":snap}) @login_required(login_url='/accounts/login/') def welcome(request): location = Location.objects.all() return render(request, 'all-posts/welcome.html',{"location":location}) def search_results(request): if 'username' in request.GET and request.GET["username"]: search_term = request.GET.get("username") searched_users= Image.search_by_name(search_term) message = f"{search_term}" return render(request, 'all-posts/search.html',{"searched_users": searched_users}) else: message = "You haven't searched for any term" return render(request, 'all-posts/search.html',{"message":message}) @login_required(login_url='/accounts/login/') def profile_form(request): current_user = request.user if request.method == 'POST': form = ProfileForm(request.POST, request.FILES) if form.is_valid(): profile = form.save(commit=False) profile.user = current_user profile.save() return redirect('profile') else: form = ProfileForm() return render(request, 'all-posts/profile.html', {"form": form}) @login_required(login_url='/accounts/login/') def user_profile(request): current_user = request.user # snap = Snap.objects.filter(user=current_user) profilepicture=Profile.objects.get(user=current_user) return render(request, 'all-posts/profiledisplay.html', {"profilepicture": profilepicture}) ```
{ "source": "jessychen1016/DPCN", "score": 3 }
#### File: DPCN/data/data_utils.py ```python from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils import pandas as pd from pandas import Series,DataFrame import numpy as np import torch import os import cv2 from PIL import Image import matplotlib.pyplot as plt import sys import os sys.path.append(os.path.abspath("..")) from utils.utils import * def default_loader(path, resize_shape, change_scale = False): trans = transforms.Compose([ transforms.ToTensor(), # transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # imagenet ]) image = cv2.imread(path) image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) (h_original, w_original) = image.shape image = cv2.resize(image, dsize=(resize_shape,resize_shape), interpolation=cv2.INTER_CUBIC) angle = (np.random.rand()-0.5) * 0. angle += 180. angle %= 360 angle -= 180. (h, w) = image.shape (cX, cY) = (w//2, h//2) t_x = np.random.rand() * 0. t_y = np.random.rand() * 0. translation = np.array((t_y, t_x)) # arr = arr[0,] # rot = ndii.rotate(arr, angle) # N = np.float32([[1,0,t_x],[0,1,t_y]]) # image = cv2.warpAffine(image, N, (w, h)) # M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0) # image = cv2.warpAffine(image, M, (w, h)) # image = cv2.resize(image, (h, w), interpolation=cv2.INTER_CUBIC) np_image_data = np.asarray(image) image_tensor = trans(np_image_data) scaling_factor = 1 if change_scale: center = torch.ones(1,2) center[:, 0] = h // 2 center[:, 1] = w // 2 scaling_factor = torch.tensor(np.random.rand()*0.2+1) angle_source = torch.ones(1) * 0. scale_source = torch.ones(1) * scaling_factor image_tensor = image_tensor.unsqueeze(0) rot_mat = kornia.get_rotation_matrix2d(center, angle_source, scale_source) image_tensor = kornia.warp_affine(image_tensor, rot_mat, dsize=(h, w)) image_tensor = image_tensor.squeeze(0) # image = Image.open(path) # image = image.convert("1") # # image.show() # image = image.resize((128,128)) # image_tensor = trans(image) return image_tensor, angle, translation, scaling_factor, h_original, w_original def get_gt_tensor(this_gt, size): this_gt = this_gt +180 gt_tensor_self = torch.zeros(size,size) angle_convert = this_gt*size/360 angle_index = angle_convert//1 + (angle_convert%1+0.5)//1 if angle_index.long() == size: angle_index = size-1 gt_tensor_self[angle_index,0] = 1 else: gt_tensor_self[angle_index.long(),0] = 1 # print("angle_index", angle_index) return gt_tensor_self ``` #### File: DPCN/data/simulation.py ```python import cv2 import numpy as np import random try: import scipy.ndimage.interpolation as ndii except ImportError: import ndimage.interpolation as ndii import matplotlib.pyplot as plt def generate_random_data(height, width, count): x, y, gt, trans = zip(*[generate_img_and_rot_img(height, width) for i in range(0, count)]) X = np.asarray(x) * 255 X = X.repeat(1, axis=1).transpose([0, 2, 3, 1]).astype(np.uint8) Y = np.asarray(y) * 100 Y = Y.repeat(1, axis=1).transpose([0, 2, 3, 1]).astype(np.uint8) return X, Y, gt, trans def generate_img_and_rot_img(height, width): shape = (height, width) triangle_location = get_random_location(*shape) triangle_location1 = get_random_location(*shape) triangle_location2 = get_random_location(*shape) circle_location1 = get_random_location(*shape, zoom=0.7) circle_location2 = get_random_location(*shape, zoom=0.5) circle_location3 = get_random_location(*shape, zoom=0.9) mesh_location = get_random_location(*shape) square_location = get_random_location(*shape, zoom=0.8) plus_location = get_random_location(*shape, zoom=1.2) plus_location1 = get_random_location(*shape, zoom=1.2) plus_location2 = get_random_location(*shape, zoom=1.2) plus_location3 = get_random_location(*shape, zoom=1.2) plus_location4 = get_random_location(*shape, zoom=1.2) # Create input image arr = np.zeros(shape, dtype=bool) arr = add_triangle(arr, *triangle_location) arr = add_triangle(arr, *triangle_location1) arr = add_triangle(arr, *triangle_location2) arr = add_circle(arr, *circle_location1) arr = add_circle(arr, *circle_location2, fill=True) arr = add_circle(arr, *circle_location3) arr = add_mesh_square(arr, *mesh_location) arr = add_filled_square(arr, *square_location) arr = add_plus(arr, *plus_location) arr = add_plus(arr, *plus_location1) arr = add_plus(arr, *plus_location2) arr = add_plus(arr, *plus_location3) arr = np.reshape(arr, (1, height, width)).astype(np.float32) angle = np.random.rand() * 180 t_x = (np.random.rand()-0.5) * 50. t_y = (np.random.rand()-0.5) * 50. trans = np.array((t_y, t_x)) if angle < -180.0: angle = angle + 360.0 elif angle > 180.0: angle = angle - 360.0 # arr = arr[0,] # rot = ndii.rotate(arr, angle) (_, h, w) = arr.shape (cX, cY) = (w//2, h//2) rot = arr[0,] N = np.float32([[1,0,t_x],[0,1,t_y]]) rot = cv2.warpAffine(rot, N, (w, h)) M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0) rot = cv2.warpAffine(rot, M, (w, h)) rot = cv2.resize(rot, (h, w), interpolation=cv2.INTER_CUBIC) # for heterogeneous image, comment out if you want them to be homogeneous rot = cv2.GaussianBlur(rot, (9,9), 13) kernel = np.array([[-1,-1,-1],[-1,9,-1],[-1,-1,-1]]) rot = cv2.filter2D(rot, -1, kernel) rot = rot[np.newaxis, :] # for dynamic obstacles, comment out if you dont want any dynamic obstacles # arr[0,] = add_plus(arr[0], *plus_location4) # arr = np.reshape(arr, (1, height, width)).astype(np.float32) return arr, rot, angle, trans def add_square(arr, x, y, size): s = int(size / 2) arr[x-s,y-s:y+s] = True arr[x+s,y-s:y+s] = True arr[x-s:x+s,y-s] = True arr[x-s:x+s,y+s] = True return arr def add_filled_square(arr, x, y, size): s = int(size / 2) xx, yy = np.mgrid[:arr.shape[0], :arr.shape[1]] return np.logical_or(arr, logical_and([xx > x - s, xx < x + s, yy > y - s, yy < y + s])) def logical_and(arrays): new_array = np.ones(arrays[0].shape, dtype=bool) for a in arrays: new_array = np.logical_and(new_array, a) return new_array def add_mesh_square(arr, x, y, size): s = int(size / 2) xx, yy = np.mgrid[:arr.shape[0], :arr.shape[1]] return np.logical_or(arr, logical_and([xx > x - s, xx < x + s, xx % 2 == 1, yy > y - s, yy < y + s, yy % 2 == 1])) def add_triangle(arr, x, y, size): s = int(size / 2) triangle = np.tril(np.ones((size, size), dtype=bool)) arr[x-s:x-s+triangle.shape[0],y-s:y-s+triangle.shape[1]] = triangle return arr def add_circle(arr, x, y, size, fill=False): xx, yy = np.mgrid[:arr.shape[0], :arr.shape[1]] circle = np.sqrt((xx - x) ** 2 + (yy - y) ** 2) new_arr = np.logical_or(arr, np.logical_and(circle < size, circle >= size * 0.7 if not fill else True)) return new_arr def add_plus(arr, x, y, size): s = int(size / 2) arr[x-1:x+1,y-s:y+s] = True arr[x-s:x+s,y-1:y+1] = True return arr def get_random_location(width, height, zoom=1.0): x = int(width * random.uniform(0.22, 0.78)) y = int(height * random.uniform(0.22, 0.78)) size = int(min(width, height) * random.uniform(0.06, 0.12) * zoom) return (x, y, size) ``` #### File: DPCN/log_polar/polar.py ```python def get_pixel_value(img, x, y): """ Utility function to get pixel value for coordinate vectors x and y from a 4D tensor image. Input ----- - img: tensor of shape (B, H, W, C) - x: flattened tensor of shape (B*H*W,) - y: flattened tensor of shape (B*H*W,) Returns ------- - output: tensor of shape (B, H, W, C) """ shape = tf.shape(x) batch_size = shape[0] height = shape[1] width = shape[2] batch_idx = tf.range(0, batch_size) batch_idx = tf.reshape(batch_idx, (batch_size, 1, 1)) b = tf.tile(batch_idx, (1, height, width)) indices = tf.stack([b, y, x], 3) return tf.gather_nd(img, indices) def affine_grid_generator(height, width, theta): """ This function returns a sampling grid, which when used with the bilinear sampler on the input feature map, will create an output feature map that is an affine transformation [1] of the input feature map. Input ----- - height: desired height of grid/output. Used to downsample or upsample. - width: desired width of grid/output. Used to downsample or upsample. - theta: affine transform matrices of shape (num_batch, 2, 3). For each image in the batch, we have 6 theta parameters of the form (2x3) that define the affine transformation T. Returns ------- - normalized grid (-1, 1) of shape (num_batch, 2, H, W). The 2nd dimension has 2 components: (x, y) which are the sampling points of the original image for each point in the target image. Note ---- [1]: the affine transformation allows cropping, translation, and isotropic scaling. """ num_batch = tf.shape(theta)[0] # create normalized 2D grid x = tf.linspace(-1.0, 1.0, width) y = tf.linspace(-1.0, 1.0, height) x_t, y_t = tf.meshgrid(x, y) # flatten x_t_flat = tf.reshape(x_t, [-1]) y_t_flat = tf.reshape(y_t, [-1]) # reshape to [x_t, y_t , 1] - (homogeneous form) ones = tf.ones_like(x_t_flat) sampling_grid = tf.stack([x_t_flat, y_t_flat, ones]) # repeat grid num_batch times sampling_grid = tf.expand_dims(sampling_grid, axis=0) sampling_grid = tf.tile(sampling_grid, tf.stack([num_batch, 1, 1])) # cast to float32 (required for matmul) theta = tf.cast(theta, 'float32') sampling_grid = tf.cast(sampling_grid, 'float32') # transform the sampling grid - batch multiply batch_grids = tf.matmul(theta, sampling_grid) # batch grid has shape (num_batch, 2, H*W) # reshape to (num_batch, H, W, 2) batch_grids = tf.reshape(batch_grids, [num_batch, 2, height, width]) return batch_grids def bilinear_sampler(img, x, y): """ Performs bilinear sampling of the input images according to the normalized coordinates provided by the sampling grid. Note that the sampling is done identically for each channel of the input. To test if the function works properly, output image should be identical to input image when theta is initialized to identity transform. Input ----- - img: batch of images in (B, H, W, C) layout. - grid: x, y which is the output of affine_grid_generator. Returns ------- - out: interpolated images according to grids. Same size as grid. """ H = tf.shape(img)[1] W = tf.shape(img)[2] max_y = tf.cast(H - 1, 'int32') max_x = tf.cast(W - 1, 'int32') zero = tf.zeros([], dtype='int32') # rescale x and y to [0, W-1/H-1] x = tf.cast(x, 'float32') y = tf.cast(y, 'float32') x = 0.5 * ((x + 1.0) * tf.cast(max_x-1, 'float32')) y = 0.5 * ((y + 1.0) * tf.cast(max_y-1, 'float32')) # grab 4 nearest corner points for each (x_i, y_i) x0 = tf.cast(tf.floor(x), 'int32') x1 = x0 + 1 y0 = tf.cast(tf.floor(y), 'int32') y1 = y0 + 1 # clip to range [0, H-1/W-1] to not violate img boundaries x0 = tf.clip_by_value(x0, zero, max_x) x1 = tf.clip_by_value(x1, zero, max_x) y0 = tf.clip_by_value(y0, zero, max_y) y1 = tf.clip_by_value(y1, zero, max_y) # get pixel value at corner coords Ia = get_pixel_value(img, x0, y0) Ib = get_pixel_value(img, x0, y1) Ic = get_pixel_value(img, x1, y0) Id = get_pixel_value(img, x1, y1) # recast as float for delta calculation x0 = tf.cast(x0, 'float32') x1 = tf.cast(x1, 'float32') y0 = tf.cast(y0, 'float32') y1 = tf.cast(y1, 'float32') # calculate deltas wa = (x1-x) * (y1-y) wb = (x1-x) * (y-y0) wc = (x-x0) * (y1-y) wd = (x-x0) * (y-y0) # add dimension for addition wa = tf.expand_dims(wa, axis=3) wb = tf.expand_dims(wb, axis=3) wc = tf.expand_dims(wc, axis=3) wd = tf.expand_dims(wd, axis=3) # compute output out = tf.add_n([wa*Ia, wb*Ib, wc*Ic, wd*Id]) return out # import torch # import cv2 # import torch.nn.functional as F # import matplotlib.pyplot as plt # import numpy as np # import torchvision.models as models # import torchvision.transforms as transforms # import torch.nn as nn # import torch # import matplotlib # import matplotlib.pyplot as plt # theta = torch.Tensor([[0.707,0.707,0],[-0.707,0.707,0]]).unsqueeze(dim=0) # img = cv2.imread('1.jpg',cv2.IMREAD_GRAYSCALE) # plt.subplot(2,1,1) # plt.imshow(img,cmap='gray') # plt.axis('off') # img = torch.Tensor(img).unsqueeze(0).unsqueeze(0) # grid = F.affine_grid(theta,size=img.shape) # print(np.shape(grid)) # print(grid) # new_img_PIL = transforms.ToPILImage()(grid).convert('RGB') # new_img_PIL.show() # output = F.grid_sample(img,grid)[0].numpy().transpose(1,2,0).squeeze() # plt.subplot(2,1,2) # plt.imshow(output,cmap='gray') # plt.axis('off') # plt.show() ```
{ "source": "jessyd72/AGO-slicer", "score": 3 }
#### File: jessyd72/AGO-slicer/agol_slicer.py ```python import arcgis from arcgis.gis import GIS, User import json import tkinter as tk import xlsxwriter from xlsxwriter import Workbook def createWorkbook(output_dir, un): ''' Creates Excel workbook with sheet of AGOL content for a user. Intended to be used to create a slicer.''' workbook = Workbook(output_dir) sheet = workbook.add_worksheet('AGO Items-{}'.format(un)) sheet.write('A1','WebApp') sheet.write('B1','WebMap') sheet.write('C1','Feature Layer') sheet.write('D1','Feature Service') sheet.write('E1', 'Folder') return(workbook, sheet) def getUserCreds(): '''Gets AGO/Portal creds''' def getUserInput(): '''Reads inputs from Tk object''' global outputs outputs = [item.get() for item in user_input] root.destroy() user_input = [] root = tk.Tk() root.title('AGOL Credentials') root.geometry('400x400') for x in range(4): inputs = tk.Entry(root) inputs.grid(row = x, column=1) if x == 0: inputs.insert(0, 'https://arcgis.com') if x == 2: inputs.config(show='*') user_input.append(inputs) button = tk.Button(root, text='OK', command=getUserInput) button.grid(row=4, column=0, pady=20) label_url = tk.Label(root, text='AGOL/Portal URL ') label_url.grid(row=0, column=0, pady=20) label_un = tk.Label(root, text='Username ') label_un.grid(row=1, column=0, pady=20) label_pw = tk.Label(root, text='Password ') label_pw.grid(row=2, column=0, pady=20) label_pw = tk.Label(root, text='Output Excel Workbook ') label_pw.grid(row=3, column=0, pady=20) root.mainloop() return(outputs) def getContent(user): '''Gets all items within a user's AGO. Returns a dictionary of items, Item ID : [Item Title, Item Type, Folder]''' all_items = {} # get users items (home) for item in user.items(): if item.type != 'Code Attachment': all_items[item.itemid] = [item.title, item.type, 'home', item] folders = user.folders for f in folders: f_items = user.items(folder=f['title']) for item in f_items: if item.type != 'Code Attachment': all_items[item.itemid] = [item.title, item.type, f['title'], item] return(all_items) def sortContent(items, content_types): '''Sorts content into respective dictionaries to write to Excel workbook in writeItems function. Accesses any layers within a feature service. maps, layers, tools, applications, datafiles''' lyrs = {} maps = {} apps = {} data = {} tools = {} for k, v in items.items(): item_id = k item_title = v[0] item_type = v[1] item_loc = v[2] item_obj = v[3] item_cat = content_types[item_type] if item_cat == 'layers': layers = item_obj.layers for l in layers: service_url = (l.url).replace('ArcGIS', 'arcgis') lyr_name = l.properties.name # feature layer service url = [feature layer name, feature service id, feature service name, folder] lyrs[service_url] = [lyr_name, item_id, item_title, item_loc] if item_type == 'Map Service': lyrs[item_obj.url] = [item_title, item_id, item_title, item_loc] elif item_cat == 'maps': op_lyrs = item_obj.get_data()['operationalLayers'] op_lyr_ids = [[l['title'], l['url'].replace('ArcGIS', 'arcgis')] for l in op_lyrs] # web map id = [web map name, [feature layer name, feature layer service url]] maps[item_id] = [item_title, op_lyr_ids, item_loc] elif item_cat == 'applications': # print(item_id) # print(item_title)l # print(item_type) # print(item_loc) map_in_app = '' app_data = item_obj.get_data() if 'map' in app_data.keys(): map_in_app = app_data['map']['itemId'] elif item_type == 'Dashboard' and 'widgets' in app_data.keys(): for d in app_data['widgets']: if d['type'] == 'mapWidget': map_in_app = d['itemId'] if map_in_app == '': map_in_app = 'NA' else: map_in_app = 'NA' # application name = [application id, web map id] apps[item_title] = [item_id, map_in_app, item_loc] elif item_cat == 'datafiles': data[item_title] = [item_id, item_loc] elif item_cat == 'tools': tools[item_title] = [item_id, item_loc] else: continue return(apps, maps, lyrs, data) def writeItems(workbook, sheet, apps, maps, layers, data): '''dooo itttt feature layer service url = [feature layer name, feature service id, feature service name, folder] web map id = [web map name, [feature layer name, feature layer service url]] application name = [application id, web map id]''' used_webmap = [] used_layers = [] row = 1 for k, v in apps.items(): app_name = k map_id = v[1] if map_id == 'NA': row += 1 sheet.write('A{}'.format(str(row)), app_name) else: map_title = maps[map_id][0] layer_list = maps[map_id][1] for lyr in layer_list: layer_name = lyr[0] layer_url = lyr[1] feature_service_name = layers[layer_url][2] row += 1 sheet.write('A{}'.format(str(row)), app_name) sheet.write('B{}'.format(str(row)), map_title) sheet.write('C{}'.format(str(row)), layer_name) sheet.write('D{}'.format(str(row)), feature_service_name) used_webmap.append(map_id) used_layers.append(layer_url) unused_webmaps = list(set(maps.keys()) - set(used_webmap)) for wm in unused_webmaps: map_title = maps[wm][0] layer_list = maps[wm][1] for lyr in layer_list: layer_name = lyr[0] layer_url = lyr[1] feature_service_name = layers[layer_url][2] row += 1 sheet.write('B{}'.format(str(row)), map_title) sheet.write('C{}'.format(str(row)), layer_name) sheet.write('D{}'.format(str(row)), feature_service_name) used_layers.append(layer_url) unused_layers = list(set(layers.keys()) - set(used_layers)) for l in unused_layers: layer_name = layers[l][0] feature_service_name = layers[l][2] row += 1 sheet.write('C{}'.format(str(row)), layer_name) sheet.write('D{}'.format(str(row)), feature_service_name) workbook.close() if __name__ == '__main__': try: # AGOL item types print('loading dictionary...') txt = open(r"C:\data\gtg-data\projects\_agol-slicer\AGO_items_by_group.json").read() item_types = json.loads(txt) print('getting credentials...') creds = getUserCreds() url = creds[0] un = creds[1] pw = creds[2] out_xlsx = creds[3] print('accessing AGO...') gis = GIS(url, un, pw) user = User(gis, un) ## future ref- can use gis.users.search() to get list ## of all users in org. Loop all users through the ## getContent funct to get whole org's content. ## consider new tab/df for each user print('getting user''s content...') item_dict = getContent(user) print('organizing content by type...') apps, maps, lyrs, data = sortContent(item_dict, item_types) print('creating XLSX...') wb, sh = createWorkbook(out_xlsx, un) print('writing to XLSX...') writeItems(wb, sh, apps, maps, lyrs, data) except KeyError as e: print(e) print(lyrs) print(maps) print(apps) ```
{ "source": "jessyd72/batchjob-data-reviewer", "score": 2 }
#### File: jessyd72/batchjob-data-reviewer/autoBatchJob-DataReview.py ```python import arcpy from arcpy import env from arcpy.sa import * import os arcpy.CheckOutExtension("datareviewer") # ------------------------------------------------------------------------------------------------------------------------ ## Run data reviewer for database # ------------------------------------------------------------------------------------------------------------------------ def runDataReview(workspace, spatRef, sessionName, polyRBJ, lineRBJ, pointRBJ, featureList, prodWorkspace): # enable Data Reviewer in workspace arcpy.EnableDataReviewer_Reviewer(workspace, spatRef) # start reviewer session session = arcpy.CreateReviewerSession_Reviewer(workspace, sessionName) # grab geodatabase name from prodWorkspace wDesc = arcpy.Describe(prodWorkspace) gdbName, gdbExt = os.path.splitext(str(wDesc.name)) # Loop through provided feature classes and run appropriate for feature in featureList.split(';'): feature = feature.strip("'") # describe feature to get shape type featDesc = arcpy.Describe(feature) # assign correct batch job check to var RBJfile based on geometry if featDesc.shapeType == 'Polygon': RBJfile = polyRBJ elif featDesc.shapeType == 'Polyline': RBJfile = lineRBJ elif featDesc.shapeType == 'Point': RBJfile = pointRBJ else: arcpy.AddMessage("Check %s shape type" % feature) # get directory to RBJ file dirRBJ = os.path.dirname(RBJfile) # open read version of RBJfile as string s = open(RBJfile).read() # replace text with parameters s1 = s.replace('FEATURE', featDesc.name) s2 = s1.replace('GDBpath', prodWorkspace) s3 = s2.replace('GDBname', gdbName) # open new file to copy into newBatchFile = open(dirRBJ + r"\%sBatchJob.RBJ" % featDesc.name, 'w') # copy code over newBatchFile.write(s3) newBatchFile.close() # get new batch job file path name batchFilePath = dirRBJ + r"\%sBatchJob.RBJ" % featDesc.name # run data reviewer arcpy.AddMessage("Running %s check on %s" % (featDesc.shapeType, featDesc.name)) rev = arcpy.ExecuteReviewerBatchJob_Reviewer(workspace, session, batchFilePath, prodWorkspace) # delete new batch file os.remove(batchFilePath) if __name__ == "__main__": # inputs workspace = arcpy.GetParameterAsText(0) spatRef = arcpy.GetParameterAsText(1) sessionName = arcpy.GetParameterAsText(2) polyRBJ = arcpy.GetParameterAsText(3) lineRBJ = arcpy.GetParameterAsText(4) pointRBJ = arcpy.GetParameterAsText(5) prodWorkspace = arcpy.GetParameterAsText(6) featureList = arcpy.GetParameterAsText(7) # module runDataReview(workspace, spatRef, sessionName, polyRBJ, lineRBJ, pointRBJ, featureList, prodWorkspace) ```
{ "source": "JessyD/fmriprep-group-report", "score": 3 }
#### File: fmriprep-group-report/fmriprepgr/_svg_edit.py ```python from pathlib import Path def _parse_figure(fig_path): """ Parse an fmriprep figure into header, background, middle, foreground, and tail. Parameters ---------- fig_path: str Path to the figure to parse Returns ------- header: list of str Lines preceding the background image background: list of str Lines corresponding to the background image middle: list of str any lines occuring between the background and foreground lines foreground: list of str Lines corresponding to the foreground image tail: list of str Lines following the foreground image """ fig_path = Path(fig_path) fig = fig_path.read_text() fig_lines = fig.split("\n") header = [] origbg = [] middle = [] origfg = [] tail = [] inhead = True inorigbg = False inmiddle = False inorigfg = False intail = False for fl in fig_lines: if fl.strip() == '<g class="background-svg">': open_gs = 1 inhead = False inorigbg = True origbg.append(fl) continue elif fl.strip() == '<g class="foreground-svg">': open_gs = 1 inmiddle = False inorigfg = True origfg.append(fl) continue elif inhead: header.append(fl) elif inmiddle: middle.append(fl) elif intail: tail.append(fl) elif inorigbg: origbg.append(fl) if '<g ' in fl: open_gs += 1 if '</g>' in fl: open_gs -= 1 if open_gs == 0: inorigbg = False inmiddle = True elif inorigfg: origfg.append(fl) if '<g ' in fl: open_gs +=1 if '</g>' in fl: open_gs -= 1 if open_gs == 0: inorigfg = False intail = True return header, origbg, middle, origfg, tail def _flip_images(fig_path, new_path): """ Flip the foreground and background images Parameters ---------- fig_path : str Path to source image new_path : str Path for new image """ header, origbg, middle, origfg, tail = _parse_figure(fig_path) new_path = Path(new_path) newbg = origfg newbg[0] = newbg[0].replace('foreground', 'background') newfg = origbg newfg[0] = newfg[0].replace('background', 'foreground') new_svg = '\n'.join(header + newbg + middle + newfg + tail) new_path.write_text(new_svg) def _drop_image(fig_path, new_path, image_to_drop): """ Drop the foreground or background image. The background image is the one displayed before mousing over the svg. Parameters ---------- fig_path : str Path to source image new_path : str Path for new image image_to_drop : str Which image to drop, allowed values are "background", "foreground". """ if not image_to_drop in ['background', 'foreground']: raise ValueError(f"image_to_drop must be one of ['background', 'foreground'], {image_to_drop} " f"is not a valid option.") header, origbg, middle, origfg, tail = _parse_figure(fig_path) new_path = Path(new_path) if image_to_drop == 'foreground': newbg = origfg newbg[0] = newbg[0].replace('foreground', 'background') new_svg = '\n'.join(header + newbg + middle + tail) new_path.write_text(new_svg) else: new_svg = '\n'.join(header + origbg + middle + tail) new_path.write_text(new_svg) ``` #### File: fmriprepgr/test/test_reports.py ```python from pathlib import Path from shutil import copytree, rmtree import numpy as np import pandas as pd import pytest from ..reports import _make_report_snippet, parse_report, make_report def test_make_report_snippet(): """ Run `reports._make_report_snippet` and confirm that output is as expected by comparison to output previously stored in this function. Returns ------- None """ row = {'idx':0, 'chunk':0, 'subject': '22293', 'acquisition': 'mprage', 'reconstruction': 'prenorm', 'run': 1, 'suffix': 'dseg', 'extension': '.svg', 'path': './sub-22293/figures/sub-22293_acq-mprage_rec-prenorm_run-1_dseg.svg', 'filename': 'sub-22293_acq-mprage_rec-prenorm_run-1_dseg.svg', 'run_title': 'Brain mask and brain tissue segmentation of the T1w', 'elem_caption': 'This panel shows the template T1-weighted image (if several T1w images were found), with contours delineating the detected brain mask and brain tissue segmentations.', 'space': np.nan, 'desc': np.nan, 'session': np.nan, 'task': np.nan, 'report_type': 'dseg'} expected_output = ['<div id="id-0_filename-sub-22293_acq-mprage_rec-prenorm_run-1_dseg">', '<script type="text/javascript">', 'var subj_qc = {"idx": 0, "chunk": 0, "subject": "22293", "acquisition": "mprage", "reconstruction": "prenorm", "run": 1, "suffix": "dseg", "space": NaN, "desc": NaN, "session": NaN, "task": NaN, "report_type": "dseg", "been_on_screen": false, "rater": NaN, "report": NaN, "note": NaN}', '</script>', '<h2>idx-0: subject <span class="bids-entity">22293</span>, acquisition <span class="bids-entity">mprage</span>, reconstruction <span class="bids-entity">prenorm</span>, run <span class="bids-entity">1</span>, suffix <span class="bids-entity">dseg</span></h2>', '<div class="radio">', '<label><input type="radio" name="inlineRadio0" id="inlineRating1" value="1" onclick="qc_update(0, \'report\', this.value)"> Good </label>', '<label><input type="radio" name="inlineRadio0" id="inlineRating0" value="0" onclick="qc_update(0, \'report\', this.value)"> Bad</label>', '</div>', '<p> Notes: <input type="text" id="box0" oninput="qc_update(0, \'note\', this.value)"></p>', '<object class="svg-reportlet" type="image/svg+xml" data="./sub-22293/figures/sub-22293_acq-mprage_rec-prenorm_run-1_dseg.svg"> </object>', '</div>', '<script type="text/javascript">', 'subj_qc["report"] = -1', 'subjs.push(subj_qc)', '</script>' ] output = _make_report_snippet(row) output = [oo.strip() for oo in output.split('\n') if len(oo.strip()) > 0] assert np.all([aa == bb for aa,bb in zip(expected_output, output)]) def test_parse_report(): """ Run `reports.parse_report` on sub-20900test.html and confirm that output is as expected by comparison to previously saved output. Returns ------- None """ test_data_dir = Path(__file__).parent.resolve() / 'data' output = parse_report(test_data_dir / 'fmriprep/sub-20900.html') expected_output = pd.read_csv(test_data_dir / 'sub-20900test.csv') expected_output['subject'] = expected_output.subject.astype(str) assert expected_output.equals(output) def test_make_report(tmp_path): test_out_dir = tmp_path test_data_dir = Path(__file__).parent.resolve() / 'data/fmriprep' test_fmriprep_dir = test_out_dir / 'fmriprep' copytree(test_data_dir, test_out_dir / 'fmriprep') with pytest.raises(ValueError): ret = make_report([test_fmriprep_dir.as_posix()]) def test_fmriprepgr(tmp_path, script_runner): test_out_dir = tmp_path test_data_dir = Path(__file__).parent.resolve() / 'data/fmriprep' test_fmriprep_dir = test_out_dir / 'fmriprep' copytree(test_data_dir, test_fmriprep_dir) # get rid of the expected outputs rmtree(test_fmriprep_dir / 'group') ret = script_runner.run('fmriprepgr', test_fmriprep_dir.as_posix()) assert ret.success expected_out_dir = test_data_dir / 'group' out_dir = test_fmriprep_dir / 'group' expected_files = sorted(expected_out_dir.glob('*')) out_files = sorted(out_dir.glob('*')) expected_file_names = np.array([pp.parts[-1] for pp in expected_files]) out_file_names = np.array([pp.parts[-1] for pp in out_files]) assert (expected_file_names == out_file_names).all() # test that html files are generated correctly for of, ef in zip(out_files, expected_files): if ef.as_posix().split('.')[-1] == 'html': econtent = ef.read_text() ocontent = of.read_text() assert ocontent == econtent # test that links are valid out_links = sorted((out_dir / 'sub-20900' / 'figures').glob('*')) out_links += sorted((out_dir / 'sub-22293' / 'figures').glob('*')) for ll in out_links: assert ll.exists() def test_fmriprepgr_batches(tmp_path, script_runner): test_out_dir = tmp_path test_data_dir = Path(__file__).parent.resolve() / 'data/fmriprep' test_fmriprep_dir = test_out_dir / 'fmriprep' copytree(test_data_dir, test_fmriprep_dir) # get rid of the expected outputs rmtree(test_fmriprep_dir / 'group') ret = script_runner.run('fmriprepgr', '--reports_per_page=1', test_fmriprep_dir.as_posix()) assert ret.success expected_out_dir = test_data_dir / 'group_batch' out_dir = test_fmriprep_dir / 'group' expected_files = sorted(expected_out_dir.glob('*')) out_files = sorted(out_dir.glob('*')) expected_file_names = np.array([pp.parts[-1] for pp in expected_files]) out_file_names = np.array([pp.parts[-1] for pp in out_files]) assert (expected_file_names == out_file_names).all() # test that html files are generated correctly for of, ef in zip(out_files, expected_files): if ef.as_posix().split('.')[-1] == 'html': econtent = ef.read_text() ocontent = of.read_text() assert ocontent == econtent # test that links are valid out_links = sorted((out_dir / 'sub-20900' / 'figures').glob('*')) out_links += sorted((out_dir / 'sub-22293' / 'figures').glob('*')) for ll in out_links: assert ll.exists() def test_fmriprepgr_mod(tmp_path, script_runner): test_out_dir = tmp_path test_data_dir = Path(__file__).parent.resolve() / 'data/fmriprep' test_fmriprep_dir = test_out_dir / 'fmriprep' copytree(test_data_dir, test_fmriprep_dir) # get rid of the expected outputs rmtree(test_fmriprep_dir / 'group') ret = script_runner.run('fmriprepgr', '-f MNI152NLin6Asym', '--drop_background=pepolar', test_fmriprep_dir.as_posix()) assert ret.success expected_out_dir = test_data_dir / 'group_mod' out_dir = test_fmriprep_dir / 'group' expected_files = sorted(expected_out_dir.glob('*')) out_files = sorted(out_dir.glob('*')) expected_file_names = np.array([pp.parts[-1] for pp in expected_files]) out_file_names = np.array([pp.parts[-1] for pp in out_files]) assert (expected_file_names == out_file_names).all() # test that html files are generated correctly for of, ef in zip(out_files, expected_files): if ef.as_posix().split('.')[-1] in ['html', 'svg']: econtent = ef.read_text() ocontent = of.read_text() assert ocontent == econtent # test that links are valid out_links = sorted((out_dir / 'sub-20900' / 'figures').glob('*')) out_links += sorted((out_dir / 'sub-22293' / 'figures').glob('*')) for ll in out_links: assert ll.exists() ``` #### File: fmriprepgr/test/test_svg_edit.py ```python from pathlib import Path from .._svg_edit import _flip_images, _drop_image def test_flip(tmp_path): orig_path = (Path(__file__).parent.resolve() / 'data/svg_edit/sub-22293_acq-mprage_rec-prenorm_run-1_space-MNI152NLin6Asym_T1w.svg') new_path = tmp_path / 'flipped.svg' expected_path = (Path(__file__).parent.resolve() / 'data/svg_edit/sub-22293_acq-mprage_rec-prenorm_run-1_space-MNI152NLin6Asym_T1w_flipped.svg') _flip_images(orig_path, new_path) expected_svg = expected_path.read_text() output_svg = new_path.read_text() assert expected_svg == output_svg def test_dropfg(tmp_path): orig_path = (Path(__file__).parent.resolve() / 'data/svg_edit/sub-22293_acq-mprage_rec-prenorm_run-1_space-MNI152NLin6Asym_T1w.svg') new_path = tmp_path / 'dropfg.svg' expected_path = (Path(__file__).parent.resolve() / 'data/svg_edit/sub-22293_acq-mprage_rec-prenorm_run-1_space-MNI152NLin6Asym_T1w_dropfg.svg') _drop_image(orig_path, new_path, 'foreground') expected_svg = expected_path.read_text() output_svg = new_path.read_text() assert expected_svg == output_svg def test_dropbg(tmp_path): orig_path = (Path(__file__).parent.resolve() / 'data/svg_edit/sub-22293_acq-mprage_rec-prenorm_run-1_space-MNI152NLin6Asym_T1w.svg') new_path = tmp_path / 'dropbg.svg' expected_path = (Path(__file__).parent.resolve() / 'data/svg_edit/sub-22293_acq-mprage_rec-prenorm_run-1_space-MNI152NLin6Asym_T1w_dropbg.svg') _drop_image(orig_path, new_path, 'background') expected_svg = expected_path.read_text() output_svg = new_path.read_text() assert expected_svg == output_svg ```
{ "source": "JessyDL/psl", "score": 2 }
#### File: psl/tools/generate_project_info.py ```python import versioning import os from datetime import datetime def generate(filepath, force = False): major, minor, patch = versioning.git_version() sha1 = versioning.git_sha1() unix_timestamp = versioning.git_timestamp() utc_timestamp = datetime.utcfromtimestamp(unix_timestamp).strftime('%Y-%m-%d %H:%M:%S') authors = versioning.all_authors() if os.path.exists(filepath) and not force: fObj = open(filepath, 'r') content = fObj.read() if f"// generated from commit sha1 {sha1}." in content: print("header file up to date") return print("header file out of date, updating...") fObj.close() fObj = open(filepath, 'w+') fObj.write("// *****************************************************************************\n") fObj.write("// generated header file don't edit.\n") fObj.write("// edit `tools/versioning.py` instead.\n") fObj.write(f"// generated from commit sha1 {sha1}.\n") fObj.write("// *****************************************************************************\n") fObj.write("#include <psl/types.hpp>\n") fObj.write("#include <string_view>\n") fObj.write("#include <array>\n") fObj.write( ''' /** * @brief root library namespace * @details the entire Paradigm Standard Library lives in this namespace. * Rarely some free functions might be declared, but they will likely be limited in scope to a certain constraint (like * `enum.hpp') * */ ''') fObj.write('namespace psl\n') fObj.write('{\n') fObj.write(f'\tconstexpr std::string_view VERSION_TIME_UTC {{ "{utc_timestamp}" }};\n') fObj.write(f'\tconstexpr std::string_view VERSION_SHA1 {{ "{sha1}" }};\n') fObj.write(f'\tconstexpr std::string_view VERSION_FULL {{ "{major}.{minor}.{patch}.{sha1}" }};\n') fObj.write(f'\tconstexpr ui64 VERSION_TIME_UNIX {{ {unix_timestamp} }};\n') fObj.write(f'\tconstexpr ui32 VERSION_MAJOR {{ {major} }};\n') fObj.write(f'\tconstexpr ui32 VERSION_MINOR {{ {minor} }};\n') fObj.write(f'\tconstexpr ui32 VERSION_PATCH {{ {patch} }};\n') fObj.write( '\tconstexpr ui32 VERSION {((VERSION_MAJOR << 22) | (VERSION_MINOR << 12) | VERSION_PATCH)};\n') fObj.write( '\n') fObj.write("\tconstexpr static std::array<std::string_view, "+str(len(authors))+ "> PROJECT_CREDITS\n\t{{\n") for i, author in enumerate(authors): if i < len(authors) - 1: fObj.write('\t\t"' + author + '",\n') else: fObj.write('\t\t"' + author + '"') fObj.write("\n\t}};\n") fObj.write('}\n') #fObj.write("constexpr static psl::string8::view APPLICATION_FULL_NAME {\"PSL "+ version + "." +sha1+ " "+ utc_timestamp +"\"};\n") fObj.truncate() fObj.close() if __name__ == "__main__": generate(os.path.dirname(os.path.realpath(__file__)) +"/../include/psl/psl.hpp", True) ```
{ "source": "je-ss-y/Gallero", "score": 3 }
#### File: Gallero/pictures/models.py ```python from django.db import models # Create your models here. class Category(models.Model): category_name = models.CharField(max_length =30) def __str__(self): return self.category_name def save_category(self): self.save() class Meta: ordering = ['category_name'] class Location(models.Model): location_name = models.CharField(max_length =30) def __str__(self): return self.location_name def save_location(self): self.save() class Image(models.Model): image_name = models.CharField(max_length =30) image_description = models.TextField() category = models.ForeignKey(Category, db_column='category_name') location = models.ManyToManyField(Location) image = models.ImageField(upload_to = 'imagepath/') @classmethod def search_by_category(cls,search_term): pictures = cls.objects.filter(category__category_name__contains=search_term) return pictures ```
{ "source": "je-ss-y/Insta-memories", "score": 2 }
#### File: Insta-memories/posts/models.py ```python from django.db import models from django.contrib.auth.models import User from tinymce.models import HTMLField # Create your models here. class Image(models.Model): image= models.ImageField(upload_to='images/', blank=True) photoname = models.TextField() caption = HTMLField() # upvote = models.ManyToManyField(User) user = models.ForeignKey(User,on_delete=models.CASCADE) pub_date = models.DateTimeField(auto_now_add=True) # profile = models.ForeignKey(Profile,on_delete=models.CASCADE) # tags = models.ManyToManyField(tags) def __str__(self): return self.image def save_image(self): self.user def delete_image(self): self.delete() @classmethod def search_by_name(cls,search_term): searched_user = cls.objects.filter(user__username__contains=search_term) return searched_user @classmethod def get_image(cls): image= cls.objects.all().prefetch_related('comment_set') return image class Profile(models.Model): user = models.OneToOneField(User,on_delete=models.CASCADE,related_name='profile') bio = models.TextField() profilepicture= models.ImageField(upload_to='profile/', blank=True) def __str__(self): return self.profilepicture def save_profile(self): self.user def delete_profile(self): self.delete() class Comment(models.Model): comment = models.TextField() image = models.ForeignKey(Image, on_delete=models.CASCADE) user = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self): return self.comment ``` #### File: Insta-memories/posts/tests.py ```python from django.test import TestCase from .models import Image,Profile,Comment from django.contrib.auth.models import User # Create your tests here. class ImageTestClass(TestCase): # set up method def setUp(self): self.user=User.objects.create(username='jessy') # self.profile=Profile.objects.create(id=1,user=jessica,bio=creating,profile_photo="") self.image=Image(image='https://www.italymagazine.com/sites/default/files/styles/624xauto/public/feature-story/leader/bolzano-lead.jpg?itok=SsNNvkdk',photoname='person',caption='hello', pub_date='2019-9-2') #testing instance def test_instance(self): self.assertTrue(isinstance(self.image.Image)) # self.assertTrue(isinstance(self.profile.Profile)) self.assertTrue(isinstance(self.user.User)) def save_instance(self): self.image.save_image() images=Image.objects.all() self .assertTrue(len(images)>0) class ProfileClass(TestCase): # set up method def setUp(self): self.profile=Profile.objects.create(id=1,user=jessica,bio=creating,profile_photo="https://www.italymagazine.com/sites/default/files/styles/624xauto/public/feature-story/leader/bolzano-lead.jpg?itok=SsNNvkdk") #testing instance def test_instance(self): self.assertTrue(isinstance(self.profile.Profile)) def save_instance(self): self.image.save_image() images=Image.objects.all() self .assertTrue(len(images)>0) ``` #### File: Insta-memories/posts/views.py ```python from django.shortcuts import render,redirect from django.http import HttpResponse,Http404 import datetime as dt from .models import Image,Profile,Comment from django.contrib.auth.decorators import login_required from .forms import NewImageForm,ProfileForm,CommentForm from django.contrib.auth.forms import UserCreationForm from registration.backends.simple.views import RegistrationView from django.contrib.auth.models import User @login_required(login_url='/accounts/login/') def new_post(request): current_user = request.user if request.method == 'POST': form = NewImageForm(request.POST, request.FILES) if form.is_valid(): article = form.save(commit=False) article.user = current_user article.save() return redirect('postsToday') else: form =NewImageForm() return render(request, 'all-posts/onepost.html', {"form": form}) # Create your views here. @login_required(login_url='/accounts/login/') def posts_of_day(request): current_user = request.user date = dt.date.today() images = Image.get_image() comment = Comment.objects.all() for image in images: comments = Comment.objects.filter(image=image) print(comments) # comment = Comment.objects.filter(id = current_user.id).first() # print(comment) return render(request, 'all-posts/posts-today.html', {"date": date,"images": images, 'comments':comments}) # View Function to present posts from past days def past_days_posts(request, past_date): try: # Converts data from the string Url date = dt.datetime.strptime(past_date, '%Y-%m-%d').date() except ValueError: # Raise 404 error when ValueError is thrown raise Http404() assert False if date == dt.date.today(): return redirect(postsToday) return render(request, 'all-posts/past-posts.html', {"date": date}) @login_required(login_url='/accounts/login/') def profile_form(request): current_user = request.user if request.method == 'POST': form = ProfileForm(request.POST, request.FILES) if form.is_valid(): profile = form.save(commit=False) profile.user = current_user profile.save() return redirect('profile') else: form = ProfileForm() return render(request, 'all-posts/profile.html', {"form": form}) @login_required(login_url='/accounts/login/') def user_profile(request): current_user = request.user images = Image.objects.filter(user=current_user) profilepicture=Profile.objects.get(user=current_user) return render(request, 'all-posts/profiledisplay.html', {"profilepicture": profilepicture,"images":images}) def search_results(request): if 'username' in request.GET and request.GET["username"]: search_term = request.GET.get("username") searched_users= Image.search_by_name(search_term) message = f"{search_term}" return render(request, 'all-posts/search.html',{"searched_users": searched_users}) else: message = "You haven't searched for any term" return render(request, 'all-posts/search.html',{"message":message}) # def register(request): # if request.method == 'POST': # form = UserCreationForm(request.POST) # if form.is_valid(): # form.save() # return redirect('profiledisplay') # else: # form = UserCreationForm() # args={"form":form} # return render(request, 'registration/registration_form.html', {"form": form}) @login_required(login_url='/accounts/login/') def commenting(request,image_id): current_user = request.user if request.method == 'POST': imagetocomment = Image.objects.filter(id = image_id).first() # user = User.objects.filter(user = current_user.id).first() # print(user) form = CommentForm(request.POST, request.FILES) if form.is_valid(): comment = form.save(commit=False) comment.user= current_user comment.image =imagetocomment comment.save() return redirect('postsToday') else: form = CommentForm() return render(request, 'all-posts/comment-form.html', {"form": form, 'image_id':image_id}) ```
{ "source": "JessyLeal/flyfood", "score": 3 }
#### File: flyfood/genetic-algorithm-flyfood/in_data.py ```python file = open('teste.txt', 'r') def in_data(): """Na funçao `in_data` é tratado os dados da matriz lida do arquivo txt.""" points = {} i, j = map(int, file.readline().split(' ')) for l in range(i): line = file.readline().split(' ') if len(line)==j: for colun in range(len(line)): if line[colun].find("\n")!= -1: line[colun] = line[colun][-2] if line[colun] not in '0' : points[line[colun]] = (l, colun) else: raise ValueError('Incosistence number of coluns in line. ') return points ```
{ "source": "JessYu-1011/Flask-Vue-Reminder", "score": 3 }
#### File: app/apis/subjects_api.py ```python from app import db from flask_restx import Resource, fields, Namespace from app.models import Subjects, SubjectNames from app.schema import * from datetime import datetime from sqlalchemy.exc import IntegrityError api = Namespace('subjects', 'Subjects Related Method') # The format to output data subject_output_data = api.model('output', { 'id': fields.Integer, 'subject_name': fields.String('name'), 'hw_detail': fields.String('description'), 'reminding_time': fields.String('reminding_time'), 'reminding_date': fields.String('reminding_date'), 'modify_time': fields.DateTime(dt_format='iso8601'), 'pages': fields.String('pages') }) # The format to input data subject_input_data = api.model('input', { 'name': fields.String('name'), 'detail': fields.String('description'), 'pages': fields.String('pages'), 'reminding_time': fields.String('time'), 'reminding_date': fields.String('reminding_date'), }) # For frontedn to create a list @api.route('/info') class SubjectsInfo(Resource): @api.marshal_with(subject_output_data) def get(self): subjects = Subjects.query.filter_by(done=False).order_by(Subjects.id).all() subject_output = subjects_schema.dump(subjects) return subject_output # To modify each id detail @api.route('/modify/<int:subject_id>') class SubjectModify(Resource): @api.marshal_with(subject_output_data) def get(self, subject_id): subject = Subjects.query.filter_by(id=subject_id, done=False).first() subject_output = subject_schema.dump(subject) return subject_output @api.expect(subject_input_data) @api.marshal_with(subject_output_data) def put(self, subject_id): subject = Subjects.query.filter_by(id=subject_id).first() body = api.payload data = body['data'] subject.subject_name = data['name'] subject.hw_detail = data['detail'] subject.reminding_time = data['reminding_time'] subject.reminding_date = data['reminding_date'] subject.pages = data['pages'] db.session.add(subject) db.session.commit() def delete(self, subject_id): subject = Subjects.query.filter_by(id=subject_id).first() db.session.delete(subject) db.session.commit() # To create a new data @api.route('/create') class SubjectCreate(Resource): @api.expect(subject_input_data) @api.marshal_with(subject_output_data) def post(self): # frontend will send the body to backend ''' It will be like headers: {'Content-Type': 'application/json'}, data: {'name': 'xxx', 'pages': 'xxx', 'detail': 'xxxx', 'reminding_time': 'xxx'} ''' body = api.payload data = body['data'] # Time must be a String # It just have " %Y-%m-%d %H:%M" subject = Subjects(subject_name=data['name'], hw_detail=data['detail'], reminding_time=data['reminding_time'], reminding_date=data['reminding_date'], pages=data['pages']) db.session.add(subject) db.session.commit() subject_names_output_data = api.model('subject_names_output', { "id": fields.String('subject_names_id'), "subject_name": fields.String('subject_names_name') }) subject_names_input_data = api.model('subject_names_input', { "subject_name": fields.String('subject_names_name') }) @api.route('/subject_names_list') class SubjectNamesListInfo(Resource): def get(self): data = SubjectNames.query.order_by(SubjectNames.id).all() subject_name_output = subject_names_schema.dump(data) return subject_name_output @api.expect(subject_names_input_data) @api.marshal_with(subject_names_output_data) def post(self): body = api.payload data = body['data'] subject_name = SubjectNames(subject_name=data['subject_name']) # The subject_name column is unique, so if it has been set already # It will casuse the exception try: db.session.add(subject_name) db.session.commit() except IntegrityError: return "The value has been set" @api.expect(subject_names_input_data) def delete(self): data = api.payload subject_name = SubjectNames.query.filter_by(subject_name=data['subject_name']).first() db.session.delete(subject_name) db.session.commit() @api.route('/subject_names_list/<int:id>') class SubjectNamesListModification(Resource): @api.expect(subject_names_input_data) @api.marshal_with(subject_names_output_data) def put(self, id): subject_name = SubjectNames.query.filter_by(id=id).first() body = api.payload data = body['data'] subject_name.subject_name = data['subject_name'] db.session.add(subject_name) db.session.commit() ``` #### File: migrations/versions/4085680c4ce9_.py ```python from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '4085680c4ce9' down_revision = '4<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('users', sa.Column('id', sa.Integer(), nullable=False), sa.Column('username', sa.String(length=40), nullable=False), sa.Column('email', sa.String(length=50), nullable=False), sa.Column('password', sa.String(length=128), nullable=False), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('email'), sa.UniqueConstraint('username') ) op.add_column('subjects', sa.Column('user', sa.Integer(), nullable=False)) op.create_foreign_key(None, 'subjects', 'users', ['user'], ['id']) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, 'subjects', type_='foreignkey') op.drop_column('subjects', 'user') op.drop_table('users') # ### end Alembic commands ### ``` #### File: Flask-Vue-Reminder/tasks/mail.py ```python import smtplib # Non ASCII from email.mime.text import MIMEText from config import Config MAIL_ACCOUNT = Config.MAIL_ACCOUNT TO_ADDR = Config.TO_ADDR MAIL_PASSWORD = Config.MAIL_PASSWORD # Send email function def send_email(subject_name, pages, detail, reminding_time): # Email content mime=MIMEText(f"{subject_name} ready to start!!\nPages: {pages}\nDetail: {detail}", "plain", "utf-8" ) # Email subject mime["Subject"] = f"{subject_name} Reminding" # Email from address mime["From"] = MAIL_ACCOUNT # Email to address mime["TO"] = TO_ADDR # Transfer to string msg = mime.as_string() smtp = smtplib.SMTP('smtp.gmail.com', 587) # Register SMTP server smtp.ehlo() # Use TLS smtp.starttls() smtp.login(MAIL_ACCOUNT, MAIL_PASSWORD) from_addr = MAIL_ACCOUNT to_addr = TO_ADDR status = smtp.sendmail(from_addr, to_addr, msg) if status == {}: print("SUCCESS") else: print("FAILED") smtp.quit() ```
{ "source": "jesszwang/throttle-tor", "score": 3 }
#### File: scripts/maint/analyze_callgraph.py ```python import re import sys import copy import cPickle import os class Parser: def __init__(self): self.calls = {} def enter_func(self, name): if self.infunc and not self.extern: self.calls.setdefault(self.infunc, set()).update( self.calledfns ) self.calledfns = set() self.infunc = name self.extern = False def parse_callgraph_file(self, inp): self.infunc = None self.extern = False self.calledfns = set() for line in inp: m = re.match(r"Call graph node for function: '([^']+)'", line) if m: self.enter_func(m.group(1)) continue m = re.match(r" CS<[^>]+> calls external node", line) if m: self.extern = True m = re.match(r" CS<[^>]+> calls function '([^']+)'", line) if m: self.calledfns.add(m.group(1)) self.enter_func(None) def extract_callgraph(self): c = self.calls self.calls = {} return c def transitive_closure(g): passno = 0 changed = True g = copy.deepcopy(g) import random while changed: passno += 1 changed = False keys = g.keys() idx = 0 for k in keys: idx += 1 print "Pass %d/?: %d/%d\r" %(passno, idx, len(keys)), sys.stdout.flush() newset = g[k].copy() for fn in g[k]: newset.update(g.get(fn, set())) if len(newset) != len(g[k]): g[k].update( newset ) changed = True print return g def strongly_connected_components(g): # From https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm, done stupidly. index_of = {} index = [ 0 ] lowlink = {} S = [] onStack = set() all_sccs = [] def strongconnect(fn): index_of[fn] = index[0] lowlink[fn] = index[0] index[0] += 1 S.append(fn) onStack.add(fn) for w in g.get(fn, []): if w not in index_of: strongconnect(w) lowlink[fn] = min(lowlink[fn], lowlink[w]) elif w in onStack: lowlink[fn] = min(lowlink[fn], index_of[w]) if lowlink[fn] == index_of[fn]: this_scc = [] all_sccs.append(this_scc) while True: w = S.pop() onStack.remove(w) this_scc.append(w) if w == fn: break for v in g.keys(): if v not in index_of: strongconnect(v) return all_sccs def biggest_component(sccs): return max(len(c) for c in sccs) def connection_bottlenecks(callgraph): callers = {} for fn in callgraph: for fn2 in callgraph[fn]: callers.setdefault(fn2, set()).add(fn) components = strongly_connected_components(callgraph) components.sort(key=len) big_component_fns = components[-1] size = len(big_component_fns) function_bottlenecks = fn_results = [] total = len(big_component_fns) idx = 0 for fn in big_component_fns: idx += 1 print "Pass 1/3: %d/%d\r"%(idx, total), sys.stdout.flush() cg2 = copy.deepcopy(callgraph) del cg2[fn] fn_results.append( (size - biggest_component(strongly_connected_components(cg2)), fn) ) print bcf_set = set(big_component_fns) call_bottlenecks = fn_results = [] result_set = set() total = len(big_component_fns) idx = 0 for fn in big_component_fns: fn_callers = callers[fn].intersection(bcf_set) idx += 1 if len(fn_callers) != 1: continue print "Pass 2/3: %d/%d\r"%(idx, total), sys.stdout.flush() caller = fn_callers.pop() assert len(fn_callers) == 0 cg2 = copy.deepcopy(callgraph) cg2[caller].remove(fn) fn_results.append( (size - biggest_component(strongly_connected_components(cg2)), fn, "called by", caller) ) result_set.add( (caller, fn) ) print total = len(big_component_fns) idx = 0 for fn in big_component_fns: fn_calls = callgraph[fn].intersection(bcf_set) idx += 1 if len(fn_calls) != 1: continue print "Pass 3/3: %d/%d\r"%(idx, total), sys.stdout.flush() callee = fn_calls.pop() if (fn, callee) in result_set: continue assert len(fn_calls) == 0 cg2 = copy.deepcopy(callgraph) cg2[fn].remove(callee) fn_results.append( (size - biggest_component(strongly_connected_components(cg2)), callee, "called by", fn) ) print return (function_bottlenecks, call_bottlenecks) if __name__ == '__main__': p = Parser() for fname in sys.argv[1:]: with open(fname, 'r') as f: p.parse_callgraph_file(f) sys.stdout.flush print "Building callgraph" callgraph = p.extract_callgraph() print "Finding strongly connected components" sccs = strongly_connected_components(callgraph) print "Finding the transitive closure of the callgraph.." closure = transitive_closure(callgraph) print "Finding bottlenecks..." bottlenecks = connection_bottlenecks(callgraph) data = { 'callgraph' : callgraph, 'sccs' : sccs, 'closure' : closure, 'bottlenecks' : bottlenecks } with open('callgraph.pkl', 'w') as f: cPickle.dump(data, f) ```
{ "source": "jest995/count-click", "score": 3 }
#### File: jest995/count-click/main.py ```python import argparse import os from urllib.parse import urlsplit import requests from dotenv import load_dotenv def shorten_link(link, headers): payload = {"long_url": link} url = "https://api-ssl.bitly.com/v4/bitlinks" response = requests.post(url, headers=headers, json=payload) response.raise_for_status() bitlink = response.json()["link"] return bitlink def count_click(bitlink, headers): payload = {"unit": "day", "units": -1} url = f"https://api-ssl.bitly.com/v4/bitlinks/{bitlink}/clicks/summary" response = requests.get(url, headers=headers, params=payload) response.raise_for_status() total_clicks = response.json()["total_clicks"] return total_clicks def is_bitlink(link, headers): url = f"https://api-ssl.bitly.com/v4/bitlinks/{link}" response = requests.get(url, headers=headers) return response.ok if __name__ == "__main__": load_dotenv() TOKEN = os.environ['BITLY_TOKEN'] HEADERS = { "Authorization": f"Bearer {TOKEN}" } parser = argparse.ArgumentParser() parser.add_argument('link', nargs='?') namespace = parser.parse_args() if namespace.link: user_input = namespace.link else: user_input = input("Введите ссылку:\n") parse_link = urlsplit(user_input) user_link = parse_link.netloc + parse_link.path if is_bitlink(user_link, HEADERS): try: clicks_count = count_click(user_link, HEADERS) except requests.exceptions.HTTPError: print("Неправильный битлинк") else: print(f"По вашей ссылке прошли: {clicks_count} раз(а)") else: try: bitlink = shorten_link(user_input, HEADERS) except requests.exceptions.HTTPError: print("Неправильная ссылка") else: print('Битлинк', bitlink) ```
{ "source": "JEstabrook/regulon-enrichment", "score": 2 }
#### File: regulon-enrichment/enricher/enrich.py ```python import warnings import os import functools import pandas as pd import numpy as np from tqdm import tqdm from sklearn.utils.validation import check_array import enricher.regulon.regulon_enrichment as regulon_enrichment import enricher.features.expression_utils as expression_utils import enricher.regulon.regulon_utils as regulon_utils import argparse warnings.simplefilter("ignore", UserWarning) test = 'test' if __name__ == '__main__': DATA_PATH = os.path.join(os.getcwd(), 'data') else: dirname = os.path.dirname(__file__) DATA_PATH = os.path.join(dirname, 'data') sif_file = DATA_PATH + '/PathwayCommons9.All.hgnc.sif.gz' sec_intx_file = DATA_PATH + '/secondary_intx_regulon.pkl' class Error(Exception): """Base class for other exceptions""" class OmicError(Error): """Raised when duplications in omic features or samples are detected""" class Enrichment(object): """Base enrichment class for predicting regulon enrichment from -omic datasets. Args: cohort : expr (:obj:`pd.DataFrame`, shape = [n_feats, n_samps]) regulon (:obj: `pandas DataFrame`) regulon_size (int): Minimum number of edges for a given regulator. sec_intx_file (str): Path to pre-compiled secondary interaction network. """ def __init__(self, cohort, expr, regulon=None, regulon_size=15, sec_intx=sec_intx_file, thresh_filter=0.1): if not isinstance(expr, pd.DataFrame): raise TypeError("`expr` must be a pandas DataFrame, found " "{} instead!".format(type(expr))) if len(set(expr.index)) != expr.shape[0]: print(len(set(expr.index))) print(expr.shape) raise OmicError("Duplicate feature names in {cohort} dataset!".format(cohort=cohort)) if len(set(expr.columns)) != expr.shape[1]: raise OmicError("Duplicate sample names in {cohort} dataset!".format(cohort=cohort)) self.cohort = cohort self.expr = expr if regulon is None: self.regulon = regulon_utils.read_pickle(sec_intx) else: self.regulon = regulon self.scaler_type = None self.scaled = False self.regulon_size = regulon_size self.regulon_weights = None self.thresh_filter = thresh_filter self.total_enrichment = None self.delta = None self.local_enrichment = None self.regulators = None self.quant_nes = None def __str__(self): return """------\nCohort: {}\nn-features: {}\nn-samples: {}\nscaler: {}\nscaled:\ {}\nregulon threshold: {}\nregulon nodes: {}\nregulon edges: {}\n------\n""".\ format(self.cohort, self.expr.shape[0], self.expr.shape[1], self.scaler_type, self.scaled, self.regulon_size, len(self.regulon.UpGene.unique()), self.regulon.shape[0]) def __repr__(self): return """------\nCohort: {}\nn-features: {}\nn-samples: {}\nscaler: {}\nscaled: {}\ \nregulon threshold: {}\nregulon nodes: {}\nregulon edges: {}\n------\n""".\ format(self.cohort, self.expr.shape[0], self.expr.shape[1], self.scaler_type, self.scaled, self.regulon_size, len(self.regulon.UpGene.unique()), self.regulon.shape[0]) @staticmethod def _preprocess_data(expr, scaler_type='robust', thresh_filter=0.1): """ Centers expression data based on a specified data scaler algorithm Args: expr (pandas DataFrame obj): pandas DataFrame of [n_features, n_samples] scaler_type (str): Scaler to normalized features/samples by: standard | robust | minmax | quant thresh_filter (float): Prior to normalization remove features that have a standard deviation per feature less than {thresh_filter} Returns: scaled_frame (:obj: `pandas DataFrame`) : pandas DataFrame containing scaled expression data of shape [n_samples, n_features] """ # By default, the input is checked to be a non-empty 2D array containing # only finite values. _ = check_array(expr) scaler_opt = {'standard': expression_utils.StandardScaler(), 'robust': expression_utils.RobustScaler(), 'minmax': expression_utils.MinMaxScaler(), 'quant': expression_utils.QuantileTransformer()} if scaler_type not in scaler_opt: raise KeyError('{scaler_type} not supported scaler_type!' ' Supported types include: {keys}'.format( scaler_type=scaler_type, keys=' | '.join(scaler_opt.keys()))) scaler = scaler_opt[scaler_type] # Transpose frame to correctly orient frame for scaling and machine learning algorithms print('--- log2 normalization ---') expr_t = expr[(expr.std(axis=1) > thresh_filter)].T expr_lt = expression_utils.log_norm(expr_t) print('--- Centering features with {} scaler ---'.format(scaler_type)) scaled_frame = pd.DataFrame(scaler.fit_transform(expr_lt), index=expr_lt.index, columns=expr_lt.columns) return scaled_frame @staticmethod def _prune_regulon(expr, regulon, regulon_size): """ Prunes regulon with secondary interactions that do not meet the necessary number of downstream interactions metric {regulon_size} Args: expr (pandas DataFrame obj): pandas DataFrame of [n_samples, n_features] regulon (:obj: `pandas DataFrame`) : pandas DataFrame containing weight interactions between regulator and downstream members of its regulon of shape [len(Target), ['Regulator','Target','MoA','likelihood'] regulon_size (int) : number of downstream interactions required for a given regulator in order to calculate enrichment score Returns: filtered_regulon (:obj: `pandas DataFrame`) : pandas DataFrame containing weight interactions between regulator and downstream members of its regulon of shape : [len(Target), ['Regulator','Target','MoA','likelihood'] """ expr_filtered_regulon = regulon[ ((regulon.UpGene.isin(expr.columns)) & (regulon.DownGene.isin(expr.columns)))].\ set_index('UpGene') idx = (expr_filtered_regulon.index.value_counts() >= regulon_size) filtered_regulon = expr_filtered_regulon.loc[idx[idx == True].index].reset_index() edges = list(set(filtered_regulon.UpGene) | set(filtered_regulon.DownGene)) sub_expr = expr.loc[:,edges] return filtered_regulon, sub_expr @staticmethod def _structure_weights(regulator, pruned_regulon, f_statistics, r_frame, p_frame): """ Calculates weights associated with regulators. Weights are the summation of the F-statistic and absolute spearman correlation coefficient. The weight retains the sign of the spearman correlation coefficient. Args: regulator (str): A feature to assign weights to downstream interactions pruned_regulon (:obj:`pd.DataFrame`, shape = [n_interactions, 3] f_statistics (dict) : Dictionary with key:{regulator} key and r_frame (:obj:`pd.DataFrame`), shape = [n_features, n_features] p_frame (:obj:`pd.DataFrame`), shape = [n_features, n_features] Returns: weights_ordered (:obj:`pd.DataFrame`), shape = [n_interactions, 3] """ sub_regul = pruned_regulon[(pruned_regulon['UpGene'] == regulator)] targs = sub_regul.DownGene p_ = p_frame.loc[targs, regulator] p_.name = 'likelihood' f_ = f_statistics[regulator][0] r_ = r_frame.loc[targs, regulator] w_ = (f_ + abs(r_)) * np.sign(r_) w_.index.name = 'Target' w_.name = 'MoA' weights = w_.to_frame() weights['likelihood'] = p_ weights['Regulator'] = regulator weights_ordered = weights.reset_index().\ reindex(['Regulator', 'Target', 'MoA', 'likelihood'], axis=1)\ .set_index('Regulator') return weights_ordered def scale(self, scaler_type='robust', thresh_filter=0.1): """ Fit and scale expression data based on a specified data scaler algorithm Args: scaler_type (str): Scaler to normalized features/samples by: standard | robust | minmax | quant thresh_filter (float): Prior to normalization remove features that do not have the mean unit of a feature (i.e. 1 tpm) is greater than {thresh_filter} """ self.scaler_type = scaler_type if scaler_type == None: warnings.warn('Proceeding without scaling dataset!') self.expr = self.expr.T else: self.expr = self._preprocess_data(self.expr, self.scaler_type, thresh_filter) self.scaled = True def assign_weights(self): """ Generate normalized likelihood weights and assigns those weights to the absolute gene expression signature """ if not self.scaled: warnings.warn('Assigning interaction weights without scaling dataset!') pruned_regulon, sub_expr = self._prune_regulon(self.expr, self.regulon, self.regulon_size) self.expr = sub_expr # noinspection PyTypeChecker r, p = regulon_utils.spearmanr(self.expr) r_frame = pd.DataFrame(r, columns=self.expr.columns, index=self.expr.columns) p_frame = pd.DataFrame(p, columns=self.expr.columns, index=self.expr.columns) F_statistics = {regulator: regulon_utils.f_regression( self.expr.reindex(frame.DownGene, axis=1), self.expr.reindex([regulator], axis=1).values.ravel()) for regulator, frame in pruned_regulon.groupby('UpGene')} weights = pd.concat([self._structure_weights(regulator, pruned_regulon, F_statistics, r_frame, p_frame) for regulator in F_statistics]) self.regulon_weights = weights[~np.isinf(weights.MoA)] def calculate_enrichment(self): """ Subset and generate regulator activity scores based on rank ordering of up-regulated and down-regulated targets """ if self.regulon_weights is None: raise TypeError("`regulon_weights` must be assigned prior to enrichment calculation," " found {} instead!".format(type(self.regulon_weights))) quant_nes = regulon_enrichment.quantile_nes_score(self.regulon_weights, self.expr.T) self.quant_nes = quant_nes self.regulators = self.regulon_weights.index.unique() print('--- Calculating regulon enrichment scores ---') nes_list, local_enrich_list, delta_list = zip(*list(map(functools.partial(regulon_enrichment.score_enrichment, expr=self.expr, regulon=self.regulon_weights, quant_nes=quant_nes), tqdm(self.regulators)))) self.total_enrichment = pd.concat(nes_list, axis=1) self.local_enrichment = pd.concat(local_enrich_list, axis=1) self.delta = pd.concat(delta_list, axis=1) def main(): parser = argparse.ArgumentParser( "Infer transcription factor activity from gene expression data utilizing pathway and molecular interactions " "and mechanisms available through Pathway Commons." ) parser.add_argument('cohort', type=str, help="which TCGA cohort to use") parser.add_argument('expr', type=str, help="which tab delimited expression matrix to use " "shape : [n_features, n_samples]" "units : TPM, RPKM") parser.add_argument('out_dir', type=str, help="output directory") parser.add_argument('--regulon', type=str, help="optional regulon containing weight interactions between " "regulator and downstream members of its regulon" "shape : [len(Target), ['Regulator','Target','MoA','likelihood']", default=None) parser.add_argument('--regulon_size', type=int, help="number of downstream interactions required for a given " "regulator in order to calculate enrichment score", default=15) parser.add_argument('--sec_intx', type=str, help="path to pre-compiled serialized secondary " "interaction network", default=sec_intx_file) parser.add_argument('--scaler_type', type=str, help="Scaler to normalized features/samples by: " "standard | robust | minmax | quant", default='robust') parser.add_argument('--thresh_filter', type=float, help="Prior to normalization remove features that have a standard " "deviation per feature less than {thresh_filter}", default=0.1) # parse command line arguments args = parser.parse_args() expr_matrix = pd.read_table(args.expr,index_col=0) enr_obj = Enrichment(cohort=args.cohort, expr=expr_matrix, regulon=args.regulon, regulon_size=args.regulon_size, sec_intx=args.sec_intx, thresh_filter=args.thresh_filter) print(enr_obj) print('\nScaling data...\n') enr_obj.scale(scaler_type=args.scaler_type, thresh_filter=args.thresh_filter) print('\nData scaled!\n') print('\nAssigning weights...\n') enr_obj.assign_weights() print('\nWeights assigned!\n') print('\nCalculating enrichment...\n') enr_obj.calculate_enrichment() print('\nEnrichment scores calculated!\n') regulon_utils.ensure_dir(args.out_dir) regulon_utils.write_pickle(enr_obj, os.path.join(args.out_dir,'{}_enrichment.pkl'.format(args.cohort))) enr_obj.total_enrichment.to_csv(os.path.join(args.out_dir,'{}_regulon_enrichment.tsv'.format(args.cohort)),sep='\t') print('Complete') if __name__ == "__main__": main() ``` #### File: enricher/regulon/regulon_utils.py ```python import warnings warnings.simplefilter("ignore", UserWarning) import pandas as pd import dill as pickle import functools import os from sklearn.feature_selection import f_regression, mutual_info_regression from sklearn.mixture import BayesianGaussianMixture as GMM from scipy.stats import spearmanr, pearsonr import scipy.stats as st import numpy as np from tqdm import tqdm import timeit def load_sif(): return pd.read_csv(sif_file, names = ['UpGene', 'Type', 'DownGene'], sep = '\t', header = None) def filter_sif(sif, intx_type = 'controls-expression-of'): return sif[(sif['Type'] == intx_type)] def load_secondary_itx_sif(): """ Load precompiled secondary interaction sif Returns: (pandas.DataFrame): pandas.DataFrame obj of length: n interactions and columns: ['UpGene','Type',DownGene'] """ return pd.read_csv(sec_intx_file, names = ['UpGene', 'Type', 'DownGene'], sep = '\t', header = None) def write_pickle(obj, relnm): """ Serialize object to pickle and write to disk at relnm Args: obj (`:obj:`) : Python object to be pickled relnm (str) : Relative name/path to pickle on disk Returns: 'Serialized object to disk at {}'.format(relnm) """ with open(relnm, 'wb') as f: pickle.dump(obj, f, protocol = -1) return 'Serialized object to disk at {}'.format(relnm) def read_pickle(relnm): """ Read serialized object from pickle on disk at relnm Args: relnm (str) : Relative name/path to pickled object Returns: obj (`:obj: unpickled object`) """ with open(relnm, 'rb') as f: obj = pickle.load(f) print('Loaded object from disk at {}'.format(relnm)) return obj def ensure_dir(relnm): """ Accept relative filepath string, create it if it doesnt already exist return filepath string Args: relnm (str) : Relative name/path Returns: relnm (str) """ d = os.path.join(os.getcwd(), relnm) if not os.path.exists(d): print('--- path does not exist : {} ---'.format(d)) print('--- constructing path : {} ---'.format(d)) os.makedirs(d) return relnm def traverse_interactions(regulator, filt_sif): """ Parse interaction network and add secondary interactions on a per regulator basis Args: regulator (str): Regulator to expand interaction network filt_sif (pandas.DataFrame): pandas.DataFrame obj of length: n interactions and columns: ['UpGene','Type',DownGene'] Returns: comb_idx (pandas.DataFrame):pandas.DataFrame obj of length: n interactions + secondary interactions and columns: ['UpGene','Type',DownGene'] """ sub_reg = filt_sif[(filt_sif.UpGene == regulator)] down_genes = sub_reg.DownGene.unique() secondary_itx = filt_sif[(filt_sif.UpGene.isin(down_genes))] secondary_itx.UpGene = regulator comb_idx = pd.concat([sub_reg, secondary_itx]) comb_idx.Type = 'controls-expression-of' comb_idx = comb_idx.drop_duplicates() comb_idx = comb_idx[(comb_idx.DownGene != regulator)] return comb_idx def generate_expanded_regulon(): """ Generates an expanded Pathway Commons regulon with secondary down-stream interactions for regulators that control the expression of other regulators Returns: Nothing - Generates a pickled pandas dataframe for future reference/use """ print('--- Generating regulon with primary and secondary interactions ---') sif = load_sif() filt_sif = filter_sif(sif) regulators = filt_sif.UpGene.unique() regulon_list = list(map(functools.partial(traverse_interactions, filt_sif = filt_sif), regulators)) regulon = pd.concat(regulon_list) regulon.set_index('UpGene', inplace = True) regulon.reset_index(inplace=True) print('---- Regulon constructed ---') write_pickle(regulon, '../data/secondary_intx_regulon.pkl') def bgm_moa(regul_weights): """ Fits regulon mode of activation weights to a bayesian gaussian mixture model with three components and computes the probability of the three distributions (repression, non-influential, activation) for each regulator Args: regul_weights (:obj: `pandas DataFrame`) : pandas DataFrame containing weight interactions between regulator and downstream members of its regulon of shape [len(Target), ['Regulator','Target','MoA','likelihood'] Returns: """ g = GMM(n_components = 3, max_iter = 1000) sub_reg = regul_weights.copy() sub_reg_vals = sub_reg.MoA.values.reshape(-1, 1) g.fit(sub_reg_vals) mu = g.means_.flatten() sigma = np.sqrt(g.covariances_).flatten() fit = sorted(list(zip(mu, sigma))) activation = (st.norm.cdf(sub_reg_vals, fit[2][0], fit[2][1])) repression = 1 - st.norm.cdf(sub_reg_vals, fit[0][0], fit[0][1]) total_lower = 1 - st.norm.cdf(sub_reg_vals, fit[1][0], fit[1][1]) total_upper = (st.norm.cdf(sub_reg_vals, fit[1][0], fit[1][1])) copy_target = sub_reg.copy() copy_target['up'] = 0 copy_target['down'] = 0 copy_target.loc[(copy_target.MoA >= 0), 'up'] = 1 copy_target.loc[(copy_target.MoA <= 0), 'down'] = 1 up_moa = copy_target.up.values.reshape(copy_target.shape[0], 1) down_moa = copy_target.down.values.reshape(copy_target.shape[0], 1) Mode = (activation / (repression + total_lower + activation) * up_moa) -\ (repression / (repression + total_upper + activation) * down_moa) return Mode def prune_regulon(expr, regulon, regulon_size): """ Prunes regulon with secondary interactions that do not meet the necessary number of downstream interactions metric {regulon_size} Args: expr (pandas DataFrame obj): pandas DataFrame of [n_samples, n_features] regulon (:obj: `pandas DataFrame`) : pandas DataFrame containing weight interactions between regulator and downstream members of its regulon of shape [len(Target), ['Regulator','Target','MoA','likelihood'] regulon_size (int) : number of downstream interactions required for a given regulator in order to calculate enrichment score Returns: filtered_regulon (:obj: `pandas DataFrame`) : pandas DataFrame containing weight interactions between regulator and downstream members of its regulon of shape [len(Target), ['Regulator','Target','MoA','likelihood'] """ expr_filtered_regulon = regulon[((regulon.UpGene.isin(expr.columns)) & (regulon.DownGene.isin(expr.columns)))] expr_filtered_regulon.set_index('UpGene', inplace=True) idx = (expr_filtered_regulon.index.value_counts() >= regulon_size) filt_idx = idx[idx==True] filtered_regulon = expr_filtered_regulon.loc[filt_idx.index] filtered_regulon.reset_index(inplace=True) return filtered_regulon def regulon_weight_assignment(regulator, expr, filtered_regulon): """ Assigns probability and weights for regulator - target interactions Args: regulator (str): Regulator to expand interaction network expr (:obj: `pandas DataFrame`) : pandas DataFrame containing scaled expression data of shape [n_samples, n_features] filtered_regulon (:obj: `pandas DataFrame`) : pandas DataFrame containing weight interactions between regulator and downstream members of its regulon of shape [len(Target), ['Regulator','Target','MoA','likelihood'] Returns: regul_weights (:obj: `pandas DataFrame`) : pandas DataFrame containing weight interactions between regulator and downstream members of its regulon of shape [len(Target), ['Regulator','Target','MoA','likelihood'] """ sub_reg = filtered_regulon[(filtered_regulon['UpGene'] == regulator)] X = expr.reindex(sub_reg.DownGene.values, axis = 1).dropna(axis = 1) y = expr.reindex([regulator], axis = 1) spr_results = X.apply(lambda col: spearmanr(col, y.iloc[:, 0]), axis = 0).apply(pd.Series) spr_result = spr_results[0] spr_pvalues = spr_results[1] f_test, _ = f_regression(X, y.values.ravel()) weights = f_test weights_spr = weights + abs(spr_result) regul_weights = (weights_spr * np.sign(spr_result)).to_frame() regul_weights.columns = ['MoA'] regul_weights.index.name = 'Target' regul_weights.reset_index(inplace = True) regul_weights['Regulator'] = regulator regul_weights['likelihood'] = spr_pvalues.values regul_weights = regul_weights.reindex(['Regulator', 'Target', 'MoA', 'likelihood'], axis = 1) regul_weights.set_index('Regulator', inplace = True) regul_weights = regul_weights[~np.isinf(regul_weights.MoA)] return regul_weights def structure_weights(regulator, pruned_regulon, f_statistics, r_frame, p_frame): """ Calculates weights associated with regulators. Weights are the summation of the F-statistic and absolute spearman correlation coefficient. The weight retains the sign of the spearman correlation coefficient. Args: regulator (str): A feature to assign weights to downstream interactions pruned_regulon (:obj:`pd.DataFrame`, shape = [n_interactions, 3] f_statistics (dict) : Dictionary with key:{regulator} key and r_frame (:obj:`pd.DataFrame`), shape = [n_features, n_features] p_frame (:obj:`pd.DataFrame`), shape = [n_features, n_features] Returns: weights_ordered (:obj:`pd.DataFrame`), shape = [n_interactions, 3] """ sub_regul = pruned_regulon[(pruned_regulon['UpGene'] == regulator)] targs = sub_regul.DownGene p_ = p_frame.loc[targs, regulator] p_.name = 'likelihood' f_ = f_statistics[regulator][0] r_ = r_frame.loc[targs, regulator] w_ = (f_ + abs(r_)) * np.sign(r_) w_.index.name = 'Target' w_.name = 'MoA' weights = w_.to_frame() weights['likelihood'] = p_ weights['Regulator'] = regulator weights_ordered = weights.reset_index().reindex(['Regulator', 'Target', 'MoA', 'likelihood'], axis = 1).set_index('Regulator') return weights_ordered def generate_bolstered_regulon(expr, cohort, regulon_size=15): """ Calculate weights for PC regulon and a dataset using mutual information, f-statistic to test for linear relationships, and the spearman correlation coefficient to determine the mode of regulation Args: expr (:obj: `pandas DataFrame`) : pandas DataFrame containing scaled expression data of shape [n_samples, n_features] cohort (str) : name of cohort to associate with compiled regulon regulon_size (int) : required number of downstream interactions for a give regulator Returns: regul_weights (:obj: `pandas DataFrame`) : pandas DataFrame containing weight interactions between regulator and downstream members of its regulon of shape [len(Target), ['Regulator','Target','MoA','likelihood'] """ bolstered_relnm = os.path.join(dirname, '../experiments/{0}/data/{0}_bolstered_regulon.pkl'.format(cohort)) # Check to see if bolstered regulon exists if os.path.isfile(bolstered_relnm): print('--- loading context specific regulon ---') total_regulon = read_pickle(bolstered_relnm) else: if os.path.isfile(sec_intx_file): print('--- loading unfiltered regulon ---') regulon = read_pickle(sec_intx_file) else: generate_expanded_regulon() regulon = read_pickle(sec_intx_file) print('--- pruning regulon ---') filtered_regulon = prune_regulon(expr, regulon, regulon_size) regulators = filtered_regulon.UpGene.unique() print('--- compiling regulon of {} regulators and {} interactions with a minimum of {} interactions ---'. format(len(regulators), filtered_regulon.shape[0], regulon_size)) regulon_list = list(map(functools.partial(regulon_weight_assignment, expr=expr, filtered_regulon = filtered_regulon), tqdm(regulators))) total_regulon = pd.concat(regulon_list) relnm = os.path.join(dirname, '../experiments/{0}/data'.format(cohort)) ensure_dir(relnm) write_pickle(total_regulon, os.path.join(relnm, '{}_bolstered_regulon.pkl'.format(cohort))) return total_regulon ``` #### File: enricher/tests/test_enrichment.py ```python import os import sys base_dir = os.path.dirname(__file__) data_dir = os.path.join(base_dir, "resources") sys.path.extend([os.path.join(base_dir, '../..')]) from sklearn.utils.validation import check_array from enricher import enrich import enricher.regulon.regulon_enrichment as regulon_enrichment import enricher.features.expression_utils as expression_utils import enricher.regulon.regulon_utils as regulon_utils from enricher.features.expression_utils import log_norm from tqdm import tqdm import warnings import unittest import pandas as pd import numpy as np import scipy.stats as st import functools def load_test_sif(sif='test.sif'): return pd.read_table(os.path.join(data_dir, sif), index_col=0) def load_test_expr(expr='test_expr.tsv'): return pd.read_csv(os.path.join(data_dir, expr), index_col=0, sep = '\t') class EnrichTestCase(unittest.TestCase): def test_load_test_sif(self): sif = load_test_sif() self.assertSequenceEqual(sif.shape, (1302, 3)) def test_load_test_expr(self): expr = load_test_expr() self.assertSequenceEqual(expr.shape, (8723, 6)) def test_enrichment(self): sif = load_test_sif() expr = load_test_expr() filt_sif = regulon_utils.filter_sif(sif) enr = enrich.Enrichment(expr=expr, cohort = 'TEST', regulon=filt_sif) self.assertSequenceEqual(enr.expr.shape, expr.shape) self.assertSequenceEqual(enr.regulon.shape, filt_sif.shape) self.assertEqual(enr.scaled, False) self.assertEqual(enr.regulators, None) self.assertEqual(enr.regulon_size, 15) self.assertEqual(enr.regulon_weights, None) self.assertEqual(enr.thresh_filter, 0.1) self.assertEqual(enr.total_enrichment, None) self.assertEqual(enr.quant_nes, None) enr.scale() self.assertEqual(enr.scaled, True) enr.assign_weights() self.assertSequenceEqual(enr.regulon_weights.shape, (433, 3)) self.assertAlmostEqual(enr.regulon_weights.MoA.mean(), 1.1555032640512617) enr.calculate_enrichment() self.assertSequenceEqual(enr.regulators.tolist(), ['TP53']) self.assertSequenceEqual(enr.total_enrichment.shape, (6, 1)) if __name__ == '__main__': unittest.main() ``` #### File: enricher/tests/test_regulon.py ```python import os import sys base_dir = os.path.dirname(__file__) data_dir = os.path.join(base_dir, "resources") sys.path.extend([os.path.join(base_dir, '../..')]) import unittest import warnings import pandas as pd from enricher.enrich import regulon_utils, regulon_enrichment warnings.simplefilter("ignore", UserWarning) def load_test_sif(sif='test.sif'): return pd.read_table(os.path.join(data_dir, sif), index_col=0) def load_test_expr(expr='test_expr.tsv'): return pd.read_csv(os.path.join(data_dir, expr), index_col=0, sep = '\t') class RegulonUtilsTestCase(unittest.TestCase): def test_load_test_sif(self): sif = load_test_sif() self.assertSequenceEqual(sif.shape, (1302, 3)) def test_filter_sif(self): sif = load_test_sif() self.assertEqual(regulon_utils.filter_sif(sif).shape[0], 800) self.assertEqual(regulon_utils.filter_sif(sif)['Type'].unique().tolist()[0], 'controls-expression-of') def test_load_test_expr(self): expr = load_test_expr().T self.assertSequenceEqual(expr.shape, (6, 8723)) def test_prune_regulon(self): sif = load_test_sif() expr = load_test_expr().T filt_sif = regulon_utils.filter_sif(sif) filtered_regulon = regulon_utils.prune_regulon(expr, filt_sif, 15) self.assertSequenceEqual(filtered_regulon.shape, (433, 3)) def test_regulon_weight_assignment(self): sif = load_test_sif() expr = load_test_expr().T filt_sif = regulon_utils.filter_sif(sif) filtered_regulon = regulon_utils.prune_regulon(expr, filt_sif, 15) regul_weights = regulon_utils.regulon_weight_assignment('TP53', expr, filtered_regulon) self.assertSequenceEqual(regul_weights.shape, (433, 3)) self.assertSequenceEqual(regul_weights.columns.tolist(), ['Target', 'MoA', 'likelihood']) self.assertEqual(regul_weights.iloc[0, :].tolist()[0], 'AARS') self.assertAlmostEqual(regul_weights.iloc[0, :].tolist()[1], 0.1724812122096268) self.assertAlmostEqual(regul_weights.iloc[0, :].tolist()[2], 0.8717434402332361) def test_quantile_nes_score(self): sif = load_test_sif() expr = load_test_expr().T filt_sif = regulon_utils.filter_sif(sif) filtered_regulon = regulon_utils.prune_regulon(expr, filt_sif, 15) regul_weights = regulon_utils.regulon_weight_assignment('TP53', expr, filtered_regulon) nes = regulon_enrichment.quantile_nes_score(regul_weights, expr.T) self.assertSequenceEqual(nes.columns.tolist(), ['Test_A1', 'Test_A2', 'Test_A3', 'Test_D1', 'Test_D2', 'Test_D3']) self.assertAlmostEqual(nes.values.mean(), -1.5392231513623145) def test_score_enrichment(self): sif = load_test_sif() expr = load_test_expr().T filt_sif = regulon_utils.filter_sif(sif) filtered_regulon = regulon_utils.prune_regulon(expr, filt_sif, 15) regul_weights = regulon_utils.regulon_weight_assignment('TP53', expr, filtered_regulon) nes = regulon_enrichment.quantile_nes_score(regul_weights, expr.T) enrichment = regulon_enrichment.score_enrichment('TP53', expr, regul_weights, nes) self.assertAlmostEqual(enrichment.values.mean(), -1.6208941454109855) if __name__ == '__main__': unittest.main() ```
{ "source": "JEStaubach/playrestapi", "score": 2 }
#### File: JEStaubach/playrestapi/webapp.py ```python import cherrypy import json from collections import OrderedDict import mysql.connector import db_conf import sys import atexit import os import os.path from oauth2client import client, crypt import urllib2 from urlparse import urlparse #sys.stdout = sys.stderr #cherrypy.config.update({'environment': 'embedded'}) client_id = '105600165694-08orfb5k9o0tit237hnohila4m694ufu.apps.googleusercontent.com' if cherrypy.__version__.startswith('3.0') and cherrypy.engine.state == 0: cherrypy.engine.start(blocking=False) atexit.register(cherrypy.engine.stop) def get_list(args): list_name = args[0] return_vals = [] cnx = mysql.connector.connect(user=db_conf.settings['DB']['db_user'], password=db_conf.settings['DB']['db_pass'], host=db_conf.settings['DB']['db_host'], database=db_conf.settings['DB']['db_user'] + '$' + db_conf.settings['DB']['db_name']) cursor = cnx.cursor(dictionary=True) query = ("SELECT * FROM " + list_name) cursor.execute(query) for row in cursor: return_vals.append(dict(row)) cursor.close() cnx.close() return return_vals def remove_row(args): list_name = args[0] id = args[1] cnx = mysql.connector.connect(user=db_conf.settings['DB']['db_user'], password=db_conf.settings['DB']['db_pass'], host=db_conf.settings['DB']['db_host'], database=db_conf.settings['DB']['db_user'] + '$' + db_conf.settings['DB']['db_name']) cursor = cnx.cursor(dictionary=True) cmd = "DELETE FROM " + list_name + "_tbl WHERE " + list_name + "_tbl." + list_name[:-1] + "_id = " + id query = cmd cursor.execute(query) cursor.close() cnx.commit() cnx.close() return {'method': 'DELETE', 'status': 'success'} def create_row(args): new_data = args[0] list_name = args[1] cnx = mysql.connector.connect(user=db_conf.settings['DB']['db_user'], password=db_conf.settings['DB']['db_pass'], host=db_conf.settings['DB']['db_host'], database=db_conf.settings['DB']['db_user'] + '$' + db_conf.settings['DB']['db_name']) cursor = cnx.cursor(dictionary=True) cmd = "INSERT INTO " + list_name + "_tbl (" + ",".join(new_data.keys())+") VALUES (" + ",".join([ "'" + new_data[key] + "'" for key in new_data]) + ")" query = cmd cursor.execute(query) cursor.close() cnx.commit() cnx.close() return {'method': 'POST', 'status': 'success'} def update_row(args): new_data = args[0] list_name = args[1] id = args[2] cnx = mysql.connector.connect(user=db_conf.settings['DB']['db_user'], password=db_conf.settings['DB']['db_pass'], host=db_conf.settings['DB']['db_host'], database=db_conf.settings['DB']['db_user'] + '$' + db_conf.settings['DB']['db_name']) cursor = cnx.cursor(dictionary=True) cmd = "UPDATE " + list_name + "_tbl SET " + ','.join([key + " = '" + new_data[key] + "'" for key in new_data.keys()]) + " WHERE " + list_name + "_tbl." + list_name[:-1] + "_id = " + id print(cmd) query = cmd cursor.execute(query) cursor.close() cnx.commit() cnx.close() return {'method': 'UPDATE', 'status': 'success'} def verify(token): print('signin') try: idinfo = client.verify_id_token(token, None) if idinfo['aud'] not in [client_id]: raise crypt.AppIdentityError("Unrecognized client.") if idinfo['iss'] not in ['accounts.google.com', 'https://accounts.google.com']: raise crypt.AppIdentityError("Wrong issuer.") except crypt.AppIdentityError: return {'status': 'token validation failed'} email = idinfo['email'] print(email) return_vals = [] cnx = mysql.connector.connect(user=db_conf.settings['DB']['db_user'], password=db_conf.settings['DB']['db_pass'], host=db_conf.settings['DB']['db_host'], database=db_conf.settings['DB']['db_user'] + '$' + db_conf.settings['DB']['db_name']) cursor = cnx.cursor(dictionary=True) query = ("SELECT * FROM users WHERE user_email = '" + email + "'") cursor.execute(query) for row in cursor: return_vals.append(dict(row)) cursor.close() cnx.close() if len(return_vals) > 0: login_succeeded(email) return {'status': 'success', 'permissions': return_vals[0]['user_permissions']} else: login_failed(email) return {'status': 'user not registered'} def login_failed(email): cnx = mysql.connector.connect(user=db_conf.settings['DB']['db_user'], password=db_conf.settings['DB']['db_pass'], host=db_conf.settings['DB']['db_host'], database=db_conf.settings['DB']['db_user'] + '$' + db_conf.settings['DB']['db_name']) cursor = cnx.cursor(dictionary=True) query = ("SELECT * FROM failedlogins WHERE failedlogin_email = '" + email + "'") cursor.execute(query) rows = [] for row in cursor: rows.append(dict(row)) cursor.close() cnx.close() fail_count = 1 fail_id = None if len(rows) > 0: fail_count = rows[0]['failedlogin_count'] + 1 fail_id = rows[0]['failedlogin_id'] cnx = mysql.connector.connect(user=db_conf.settings['DB']['db_user'], password=db_conf.settings['DB']['db_pass'], host=db_conf.settings['DB']['db_host'], database=db_conf.settings['DB']['db_user'] + '$' + db_conf.settings['DB']['db_name']) cursor = cnx.cursor(dictionary=True) if fail_count == 1: query = "INSERT INTO failedlogins_tbl ( failedlogin_email, failedlogin_count, failedlogin_lastdate, failedlogin_lasttime ) VALUES ( '" + email + "'," + str(fail_count) + ", CURDATE(), CURTIME() )" else: query = "UPDATE failedlogins_tbl SET failedlogin_count=" + str(fail_count) + ", failedlogin_lastdate=CURDATE(), failedlogin_lasttime=CURTIME() WHERE failedlogin_id = " + str(fail_id) cursor.execute(query) cursor.close() cnx.commit() cnx.close() def login_succeeded(email): cnx = mysql.connector.connect(user=db_conf.settings['DB']['db_user'], password=db_conf.settings['DB']['db_pass'], host=db_conf.settings['DB']['db_host'], database=db_conf.settings['DB']['db_user'] + '$' + db_conf.settings['DB']['db_name']) cursor = cnx.cursor(dictionary=True) query = "INSERT INTO logins_tbl ( login_email, login_date, login_time ) VALUES ( '" + email + "', CURDATE(), CURTIME() )" cursor.execute(query) cursor.close() cnx.commit() cnx.close() class HoppersWebService(object): exposed = True exposed_views = {} def __init__(self): print('init called') self.get_exposed_views() print(str(self.exposed_views)) def get_exposed_views(self): cnx = mysql.connector.connect(user=db_conf.settings['DB']['db_user'], password=db_conf.settings['DB']['db_pass'], host=db_conf.settings['DB']['db_host'], database=db_conf.settings['DB']['db_user'] + '$' + db_conf.settings['DB'][ 'db_name']) cursor = cnx.cursor(dictionary=True) query = ("SELECT TABLE_NAME, COLUMN_NAME, DATA_TYPE FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME IN (SELECT exposedview_name FROM exposedviews)") cursor.execute(query) self.exposed_views = {} for row in cursor: row_dict = dict(row) if row_dict['TABLE_NAME'] not in self.exposed_views.keys(): self.exposed_views[str(row_dict['TABLE_NAME'])] = [] self.exposed_views[str(row_dict['TABLE_NAME'])].append({'column_name': row_dict['COLUMN_NAME'], 'column_type': row_dict['DATA_TYPE']}) cursor.close() cnx.close() def unhandled(self, method, url, args): cherrypy.response.status = 404 return json.dumps({'method': method, 'resource': url, 'status': 'Unhandled resource location ' + str(args)}) def bad_fields(self, method, url, args, field_errors): cherrypy.response.status = 400 return json.dumps({'method': method, 'resource': url, 'status': 'Unknown resource attributes: ' + str(field_errors)}) def collection_exposed(self, collection): if collection in self.exposed_views.keys(): return True else: return False def field_mismatches(self, collection, new_data): allowed_fields = [x['column_name'] for x in self.exposed_views[collection]] print('collection: ' + collection) print('allowed_fields: ' + str(allowed_fields)) additional_supplied_fields = [x for x in new_data.keys() if x not in allowed_fields] unsupplied_fields = [x for x in allowed_fields if x not in new_data.keys() and x != collection[:-1] + '_id'] tables_with_unsupplied_ids = [x[:-3] for x in unsupplied_fields if x[-3:] == '_id'] missing_fields = [] for table in tables_with_unsupplied_ids: for field in new_data.keys(): if table in field: missing_fields.append(table + '_id') return {'additional_supplied_fields': additional_supplied_fields, 'unsupplied_fields': unsupplied_fields, 'missing_fields': missing_fields} def check_token(self, token, method, url, cb, args): if not token: # token required in order to be verified cherrypy.response.status = 401 return json.dumps({'method': method, 'resource': url, 'status': 'missing token'}) else: crud = {'POST': 'C', 'GET': 'R', 'PUT': 'U', 'DELETE': 'D',} authorization = verify(token) if authorization['status'] == 'success': # token is authentic and user is registered. if crud[method] in authorization['permissions']: # user has required permissions return json.dumps(cb(args)) else: # User lacks READ permissions cherrypy.response.status = 403 return json.dumps({'method': method, 'resource': url, 'status': 'Insufficient privileges'}) elif authorization['status'] == 'token validation failed': # bad token. cherrypy.response.status = 401 cherrypy.response.headers['Location'] = url return json.dumps({'method': method, 'resource': url, 'status': authorization['status']}) elif authorization['status'] == 'user not registered': # token OK, but user not registered. cherrypy.response.status = 401 cherrypy.response.headers['Location'] = url return json.dumps({'method': method, 'resource': url, 'status': authorization['status']}) else: # token verification - unhandled response cherrypy.response.status = 401 cherrypy.response.headers['Location'] = url return json.dumps({'method': method, 'resource': url, 'status': authorization['status']}) def GET(self, *args, **kwargs): print('GET:'+str(args)+cherrypy.request.scheme) token = cherrypy.request.headers.get('Authorization') url = urlparse(cherrypy.url()).path if not args: args = [None, None] if args[0] == 'hoppers' and args[1] == 'manage': return self.manage() elif args[0] == 'hoppers' and args[1] == 'rest': if not token: # Attempt to access a resource or collection without including token. # Redirect to login page, pass along the requested URL in Location header. cherrypy.response.headers['Location'] = url raise cherrypy.HTTPRedirect("/hoppers/manage/#/" + args[2]) else: if not self.collection_exposed(args[2]): return self.unhandled('GET', url, args[2:]) return self.check_token(token, 'GET', url, get_list, args[2:]) elif args[0] == 'hoppers' and args[1] == 'tokensignin': def on_success(args=None): return json.dumps({'method': 'GET', 'resource': url, 'status': 'success',}) return self.check_token(token, 'GET', url, on_success, None) else: return self.unhandled('GET', url, args) def POST(self, *args): print('POST '+str(args)+cherrypy.request.scheme) token = cherrypy.request.headers.get('Authorization') url = urlparse(cherrypy.url()).path rawData = cherrypy.request.body.read(int(cherrypy.request.headers['Content-Length'])) new_data = json.loads(rawData) print('post data: '+str(new_data)) if args[0] == 'hoppers' and args[1] == 'rest': if not self.collection_exposed(args[2]): return self.unhandled('POST', url, args[2:]) field_errors = self.field_mismatches(args[2], new_data) if field_errors['additional_supplied_fields'] or field_errors['unsupplied_fields']: return self.bad_fields('POST', url, args[2:], field_errors) return self.check_token(token, 'POST', url, create_row, [new_data] + list(args[2:])) else: return self.unhandled('POST', url, args) def PUT(self, *args): print('PUT ' + str(args)+cherrypy.request.scheme) token = cherrypy.request.headers.get('Authorization') url = urlparse(cherrypy.url()).path rawData = cherrypy.request.body.read(int(cherrypy.request.headers['Content-Length'])) new_data = json.loads(rawData) print('put data: ' + str(new_data)) if args[0] == 'hoppers' and args[1] == 'rest': if not self.collection_exposed(args[2]): return self.unhandled('PUT', url, args[2:]) field_errors = self.field_mismatches(args[2], new_data) if field_errors['additional_supplied_fields'] or field_errors['missing_fields']: return self.bad_fields('PUT', url, args[2:], field_errors) return self.check_token(token, 'PUT', url, update_row, [new_data] + list(args[2:])) else: return self.unhandled('PUT', url, args) def DELETE(self, *args): print('DELETE ' + str(args)+cherrypy.request.scheme) token = cherrypy.request.headers.get('Authorization') url = urlparse(cherrypy.url()).path #rawData = cherrypy.request.body.read(int(cherrypy.request.headers['Content-Length'])) #new_data = json.loads(rawData) #print('delete data: ' + str(new_data)) if args[0] == 'hoppers' and args[1] == 'rest': if not self.collection_exposed(args[2]): return self.unhandled('DELETE', url, args[2:]) return self.check_token(token, 'DELETE', url, remove_row, args[2:]) else: return self.unhandled('DELETE', url, args) def serve_index(self): print('index'+cherrypy.request.scheme) print(db_conf.settings['static']['path']) index_file = os.path.abspath(db_conf.settings['static']['path'] + 'index.html') f = open( index_file, 'r' ) return f.read() def manage(self): index_file = os.path.abspath(db_conf.settings['static']['path'] + 'manage.html') f = open( index_file, 'r' ) return f.read() if __name__ == '__main__': print("name {}".format(db_conf.settings['DB']['db_name'])) print("user {}".format(db_conf.settings['DB']['db_user'])) path = None cherrypy.tree.mount( HoppersWebService(), '/', { '/hoppers/rest': { 'request.dispatch': cherrypy.dispatch.MethodDispatcher() }, '/hoppers/tokensignin': { 'request.dispatch': cherrypy.dispatch.MethodDispatcher() }, '/hoppers/manage': { 'request.dispatch': cherrypy.dispatch.MethodDispatcher() }, '/': { 'tools.staticdir.on': True, 'tools.staticdir.dir': os.path.abspath(db_conf.settings['static']['path']), 'tools.staticdir.index': 'index.html', } }, ) cherrypy.server.ssl_module = 'builtin' cherrypy.server.ssl_certificate = "cert.pem" cherrypy.server.ssl_private_key = "privkey.pem" cherrypy.engine.start() cherrypy.engine.block() ```
{ "source": "JEStaubach/quickprompts", "score": 2 }
#### File: quickprompts/quickprompts/selector_view_model.py ```python from .common.util import Util class SelectorViewModel(list): # Properties # Magic Methods def __init__(self, options): super(SelectorViewModel, self).__init__() self._model = SelectorViewModel.generate_model(options) self.bread_crumbs = [] self._chldren_indicator = '>>' for item in self._format_options_list(): self.append(item) # Public Methods @staticmethod def generate_model(options, delimiter='::'): d = {} lines = [line.strip() for line in options.split('\n') if line.strip()] for line in lines: sections = [x.strip() for x in line.split(delimiter) if x.strip()] d = SelectorViewModel._chomp(sections, d) return d def step_into_item(self, selected): if selected not in self: raise ValueError(str(selected) + ' not found in SelectorViewModel') if Util.str_ends_in_substr(selected, self._chldren_indicator): selected_index = self.index(selected) options = self._get_options_list() options_text = sorted(options.keys()) option_selected = options_text[selected_index] self.bread_crumbs.append(option_selected) del self[:] for item in self._format_options_list(): self.append(item) def step_out_of_item(self): item_stepped_out_of = '' if self.bread_crumbs: item_stepped_out_of = self.bread_crumbs[-1] self.bread_crumbs.pop() del self[:] for item in self._format_options_list(): self.append(item) return item_stepped_out_of # Private Methods @staticmethod def _chomp(sections, d): if sections: if sections[0] not in d: if sections[1:]: d[sections[0]] = {} else: d[sections[0]] = {'': {}} d[sections[0]] = SelectorViewModel._chomp(sections[1:], d[sections[0]]) return d def _format_options_list(self): options = self._get_options_list() options_text = sorted(options.keys()) formatted_options = [] for option_text in options_text: if self._get_children(options[option_text]): option_index = options_text.index(option_text) padding = self._get_padding(options_text, option_index) formatted_options.append(option_text + padding + self._chldren_indicator) else: formatted_options.append(option_text) return sorted(formatted_options) @staticmethod def _get_children(option_children): return [child for child in option_children.keys() if child] @staticmethod def _get_max_option_length(options): return max([len(x) for x in options]) def _get_options_list(self): page = self._model for crumb in self.bread_crumbs: if crumb not in page.keys(): raise ValueError(str(self.bread_crumbs) + ' : path traversal failed at ' + str(crumb)) else: page = page[crumb] return page @staticmethod def _get_padding_amount(options, index): option = options[index] pad_to_length = SelectorViewModel._get_max_option_length(options) + 1 return pad_to_length - len(option) @staticmethod def _get_padding(options, index): return ' ' * SelectorViewModel._get_padding_amount(options, index) ```
{ "source": "Jester4Hire/mysite", "score": 2 }
#### File: mysite/blog/views.py ```python from django.views import generic from django.utils import timezone from django.core.paginator import Paginator, PageNotAnInteger, EmptyPage from .models import Post from .forms import CommentForm from django.shortcuts import render, get_object_or_404 class PostList(generic.ListView): queryset = Post.objects.filter(status=1).order_by('-created_on') template_name = 'index.html' paginate_by = 3 def PostList(request): object_list = Post.objects.filter(status=1).order_by('-created_on') paginator = Paginator(object_list, 3) page = request.GET.get('page') try: post_list = paginator.page(page) except PageNotAnInteger: post_list = paginator.page(1) except EmptyPage: post_list = paginator.page(paginator.num_pages) return render(request, 'index.html', {'page': page, 'post_list': post_list}) class PostDetail(generic.DetailView): model = Post template_name = 'post_detail.html' def post_detail(request, slug): template_name = 'post_detail.html' post = get_object_or_404(Post, slug=slug) comments = post.comments.filter(active=True) new_comment = None if request.method == 'POST': comment_form = CommentForm(data=request.POST) if comment_form.is_valid(): new_comment = comment_form.save(commit=False) new_comment.post = post new_comment.save() else: comment_form = CommentForm() return render(request, template_name, {'post': post, 'comments': comments, 'new_comment': new_comment, 'comment_form': comment_form}) ```
{ "source": "Jesterboxboy/mahjong-portal", "score": 2 }
#### File: management/commands/prepare_fixed_seating.py ```python import json import random from django.core.management.base import BaseCommand from online.team_seating import TeamSeating from tournament.models import Tournament class Command(BaseCommand): def add_arguments(self, parser): parser.add_argument("tournament_id", type=int) def handle(self, *args, **options): tournament_id = options["tournament_id"] tournament = Tournament.objects.get(id=tournament_id) assert tournament.tournament_type == Tournament.ONLINE registrations = tournament.online_tournament_registrations.all() pantheon_id_map = {} for i, item in enumerate(registrations): assert item.player.pantheon_id pantheon_id_map[i + 1] = item.player.pantheon_id with open(TeamSeating.initial_seating, "r") as f: initial_seating = f.read() rounds_text = initial_seating.splitlines() rounds = [] for r in rounds_text: seating = [] tables_text = r.split() for t in tables_text: players_ids = list(set([int(x) for x in t.split("-")])) assert len(players_ids) == 4 random.shuffle(players_ids) seating.append([pantheon_id_map[x] for x in players_ids]) rounds.append(seating) data = {"seating": rounds} with open(TeamSeating.processed_seating, "w") as f: f.write(json.dumps(data)) print("Seating was saved to {}".format(TeamSeating.processed_seating)) # from player.models import Player # from django.utils.translation import activate # activate('ru') # for i, round_item in enumerate(rounds): # print(f'\nХанчан {i + 1}\n') # for j, table in enumerate(round_item): # print(f"Стол {j + 1}") # print(', '.join([Player.objects.get(pantheon_id=x).full_name for x in table])) ``` #### File: management/commands/add_tenhou_account.py ```python from django.core.management.base import BaseCommand from django.utils import timezone from player.models import Player from player.tenhou.models import TenhouNickname from utils.tenhou.helper import ( download_all_games_from_nodochi, recalculate_tenhou_statistics_for_four_players, save_played_games, ) def get_date_string(): return timezone.now().strftime("%H:%M:%S") class Command(BaseCommand): def add_arguments(self, parser): parser.add_argument("player_name", type=str) parser.add_argument("tenhou_nickname", type=str) def handle(self, *args, **options): print("{0}: Start".format(get_date_string())) temp = options.get("player_name").split(" ") last_name = temp[0] first_name = temp[1] player = Player.objects.get(first_name_ru=first_name, last_name_ru=last_name) tenhou_nickname = options.get("tenhou_nickname") player_games, account_start_date, four_players_rate = download_all_games_from_nodochi(tenhou_nickname) if not player_games: print("Not correct account") return is_main = TenhouNickname.objects.filter(player=player, is_active=True).count() == 0 tenhou_object = TenhouNickname.objects.create( is_main=is_main, player=player, tenhou_username=tenhou_nickname, username_created_at=account_start_date ) save_played_games(tenhou_object, player_games) recalculate_tenhou_statistics_for_four_players(tenhou_object, player_games, four_players_rate) print("{0}: End".format(get_date_string())) ``` #### File: rating/calculation/common.py ```python from datetime import timedelta from dateutil.relativedelta import relativedelta class RatingDatesMixin: def get_date(self, rating_date): # two years ago return rating_date - timedelta(days=365 * 2) def tournament_age(self, end_date, rating_date): """ Check about page for detailed description """ diff = relativedelta(rating_date, end_date) part = (1 / 7) * 100 if diff.years < 1: return 100 elif 1 <= diff.years < 2: value = int(diff.months / 2 + 1) return round(100 - (value * part), 2) else: return 0 ```
{ "source": "jesterchen/jWeight", "score": 3 }
#### File: jWeight/app/forms.py ```python from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, BooleanField, SubmitField from wtforms.fields.html5 import DecimalField, DateField from wtforms.validators import ValidationError, DataRequired, Email, EqualTo, \ Optional from app.models import User from datetime import date class LoginForm(FlaskForm): username = StringField('Username', validators=[DataRequired()]) password = PasswordField('Password', validators=[DataRequired()]) remember_me = BooleanField('Remember Me') submit = SubmitField('Sign In') class RegistrationForm(FlaskForm): username = StringField('Username', validators=[DataRequired()]) email = StringField('Email', validators=[DataRequired(), Email()]) password = PasswordField('Password', validators=[DataRequired()]) password2 = PasswordField( '<PASSWORD> Password', validators=[DataRequired(), EqualTo('password')]) submit = SubmitField('Register') def validate_username(self, username): user = User.query.filter_by(username=username.data).first() if user is not None: raise ValidationError('Please use a different username.') def validate_email(self, email): user = User.query.filter_by(email=email.data).first() if user is not None: raise ValidationError('Please use a different email address.') class MeasurementForm(FlaskForm): date = DateField('Messdatum', validators=[DataRequired()], default=date.today) weight = DecimalField('Gewicht [kg]') bmi = DecimalField('BMI', validators=[Optional()]) body_Fat = DecimalField('Koerperfett [%]', validators=[Optional()]) muscle = DecimalField('Muskelmasse [%]', validators=[Optional()]) rm_kcal = DecimalField('Grundumsatz [kcal]', validators=[Optional()]) visceral_fat = DecimalField('Viszeralfett', validators=[Optional()]) circumference = DecimalField('Bauchumfang [cm]', validators=[Optional()]) submit = SubmitField('Speichern', validators=[Optional()]) ```
{ "source": "Jestergum/pidi-spotify", "score": 3 }
#### File: pidi-spotify/pidi_spotify/__init__.py ```python import logging import signal import sys import time from pathlib import Path from threading import Thread import configargparse import requests import spotipy from spotipy.oauth2 import SpotifyClientCredentials from . import hook from .fifo import FIFO from .st7789 import DisplayST7789 __version__ = "0.0.1" FIFO_NAME = "/tmp/pidi-spotify.fifo" CACHE_DIR = "/tmp/pidi-spotify-cache/" LOG_FILE = "/tmp/pidi-spotify.log" CONF_FILE = "/etc/default/pidi-spotify" running = False class State: def __init__(self): self.running = True self.started = 0 self.duration_ms = 0 self.position_ms = 0 # Arguments listed in order for update_overlay self.shuffle = False self.repeat = False self.state = "play" self.volume = 100 # self.progress = attribute self.elapsed = 0 self.album_name = "" self.artist_name = "" self.track_name = "" self._index = 0 @property def progress(self): elapsed_ms = (time.time() - self.started) * 1000 try: return (self.position_ms + elapsed_ms) / self.duration_ms except ZeroDivisionError: return 0 def __iter__(self): self._index = 0 return self def __next__(self): try: result = [ self.shuffle, self.repeat, self.state, self.volume, self.progress, self.elapsed, self.album_name, self.artist_name, self.track_name, ][self._index] self._index += 1 return result except IndexError: raise StopIteration def command_volume(volume): state.volume = int(volume) def command_seek(position_ms): try: state.position_ms = int(position_ms) except ValueError: state.position_ms = 0 state.started = time.time() def command_pause(track_id): state.state = "pause" def command_play(track_id): state.state = "play" def command_track(track_id, position_ms): track = spotify.track(track_id) image_url = None album_id = track["album"]["id"] state.duration_ms = int(track["duration_ms"]) command_seek(position_ms) state.state = "play" state.album_name = track["album"]["name"] state.artist_name = track["album"]["artists"][0]["name"] state.track_name = track["name"] for image in track["album"]["images"]: if image["height"] == 300: image_url = image["url"] image_cache_path = image_cache_dir / f"{album_id}.png" if not image_cache_path.is_file(): logger.info("Fetching image for {state.album_name} ({album_id})") image = requests.get(image_url) with open(image_cache_path, "wb+") as f: f.write(image.content) display.update_album_art(image_cache_path) def display_update(): while state.running: display.update_overlay(*state) display.redraw() time.sleep(1.0 / args.fps) def signal_handler(sig, frame): state.running = False def main(): global spotify, state, display, logger, image_cache_dir, args # TODO This is horrid, encapsulate in a class? parser = configargparse.ArgParser(default_config_files=[CONF_FILE]) parser.add_argument("--fifo-name", default=FIFO_NAME, type=str) parser.add_argument("--cache-dir", default=CACHE_DIR, type=str) parser.add_argument("--log-file", default=LOG_FILE, type=str) parser.add_argument("--fps", default=15, type=int) parser.add_argument("--hook", default=False, action="store_true") parser.add_argument("--client-id", default=None, type=str) parser.add_argument("--client-secret", default=None, type=str) DisplayST7789.add_args(parser) args = parser.parse_args() args.size = 240 if args.hook: sys.exit(hook.main(args)) logger = logging.getLogger("pidi_spotify") log_fh = logging.FileHandler(args.log_file) log_fh.setFormatter(logging.Formatter("%(asctime)s %(levelname)s %(message)s")) logger.addHandler(log_fh) logger.setLevel(logging.WARNING) fifo = FIFO(args.fifo_name) display = DisplayST7789(args) image_cache_dir = Path(args.cache_dir) image_cache_dir.mkdir(exist_ok=True) if args.client_id is not None and args.client_secret is not None: auth_manager = SpotifyClientCredentials(client_id=args.client_id, client_secret=args.client_secret) else: auth_manager = SpotifyClientCredentials() spotify = spotipy.Spotify(auth_manager=auth_manager) state = State() signal.signal(signal.SIGINT, signal_handler) _t_display_update = Thread(target=display_update) _t_display_update.start() print( f"""PiDi Spotify Running Listening on FIFO: {args.fifo_name} Image cache dir: {args.cache_dir} Log file: {args.log_file} Press Ctrl+C to exit """ ) with fifo as fifo: while state.running: command = fifo.read() if command is None or len(command) == 0: time.sleep(0.1) continue command = command.split(":") command_args = command[1:] command_fn = command[0] try: globals()[f"command_{command_fn}"](*command_args) logger.info(f"Command {command_fn} args: {','.join(command_args)}") except KeyError: logger.error(f"Unrecognised command {command_fn}") state.running = False _t_display_update.join() return 0 if __name__ == "__main__": sys.exit(main()) ```
{ "source": "jesterhazy/sagemaker-chainer-container", "score": 2 }
#### File: integration/local/test_mnist.py ```python from __future__ import absolute_import import os import numpy as np import pytest from sagemaker.chainer import Chainer from sagemaker.predictor import csv_deserializer, csv_serializer, json_deserializer, json_serializer from test.utils import test_utils path = os.path.dirname(os.path.realpath(__file__)) mnist_path = os.path.join(path, '..', '..', 'resources', 'mnist') data_dir = os.path.join(mnist_path, 'data') role = 'unused/dummy-role' def test_chainer_mnist_single_machine(docker_image, sagemaker_local_session, instance_type, tmpdir): customer_script = 'single_machine_customer_script.py' hyperparameters = {'batch-size': 10000, 'epochs': 1} estimator = Chainer(entry_point=customer_script, source_dir=mnist_path, role=role, image_name=docker_image, train_instance_count=1, train_instance_type=instance_type, sagemaker_session=sagemaker_local_session, hyperparameters=hyperparameters, output_path='file://{}'.format(tmpdir)) estimator.fit({'train': 'file://{}'.format(os.path.join(data_dir, 'train')), 'test': 'file://{}'.format(os.path.join(data_dir, 'test'))}) success_files = { 'model': ['model.npz'], 'output': ['success', 'data/accuracy.png', 'data/cg.dot', 'data/log', 'data/loss.png'], } test_utils.files_exist(str(tmpdir), success_files) request_data = np.zeros((100, 784), dtype='float32') test_utils.predict_and_assert_response_length(estimator, request_data, instance_type) test_utils.predict_and_assert_response_length(estimator, request_data, instance_type, csv_serializer, csv_deserializer, 'text/csv') test_arrays = [np.zeros((100, 784), dtype='float32'), np.zeros((100, 1, 28, 28), dtype='float32'), np.zeros((100, 28, 28), dtype='float32')] with test_utils.local_mode_lock(): try: predictor = _json_predictor(estimator, instance_type) for array in test_arrays: response = predictor.predict(array) assert len(response) == len(array) finally: predictor.delete_endpoint() def test_chainer_mnist_custom_loop(docker_image, sagemaker_local_session, instance_type, tmpdir): customer_script = 'single_machine_custom_loop.py' hyperparameters = {'batch-size': 10000, 'epochs': 1} estimator = Chainer(entry_point=customer_script, source_dir=mnist_path, role=role, image_name=docker_image, train_instance_count=1, train_instance_type=instance_type, sagemaker_session=sagemaker_local_session, hyperparameters=hyperparameters, output_path='file://{}'.format(tmpdir)) estimator.fit({'train': 'file://{}'.format(os.path.join(data_dir, 'train')), 'test': 'file://{}'.format(os.path.join(data_dir, 'test'))}) success_files = { 'model': ['model.npz'], 'output': ['success'], } test_utils.files_exist(str(tmpdir), success_files) request_data = np.zeros((100, 784), dtype='float32') test_utils.predict_and_assert_response_length(estimator, request_data, instance_type) test_utils.predict_and_assert_response_length(estimator, request_data, instance_type, json_serializer, json_deserializer, 'application/json') test_utils.predict_and_assert_response_length(estimator, request_data, instance_type, csv_serializer, csv_deserializer, 'text/csv') @pytest.mark.parametrize('customer_script', ['distributed_customer_script.py', 'distributed_customer_script_with_env_vars.py']) def test_chainer_mnist_distributed(docker_image, sagemaker_local_session, instance_type, customer_script, tmpdir): if instance_type == 'local_gpu': pytest.skip('Local Mode does not support distributed GPU training.') # pure_nccl communicator hangs when only one gpu is available. cluster_size = 2 hyperparameters = {'sagemaker_process_slots_per_host': 1, 'sagemaker_num_processes': cluster_size, 'batch-size': 10000, 'epochs': 1, 'communicator': 'hierarchical'} estimator = Chainer(entry_point=customer_script, source_dir=mnist_path, role=role, image_name=docker_image, train_instance_count=cluster_size, train_instance_type=instance_type, sagemaker_session=sagemaker_local_session, hyperparameters=hyperparameters, output_path='file://{}'.format(tmpdir)) estimator.fit({'train': 'file://{}'.format(os.path.join(data_dir, 'train')), 'test': 'file://{}'.format(os.path.join(data_dir, 'test'))}) success_files = { 'model': ['model.npz'], 'output': ['success', 'data/accuracy.png', 'data/cg.dot', 'data/log', 'data/loss.png'], } test_utils.files_exist(str(tmpdir), success_files) request_data = np.zeros((100, 784), dtype='float32') test_utils.predict_and_assert_response_length(estimator, request_data, instance_type) test_utils.predict_and_assert_response_length(estimator, request_data, instance_type, json_serializer, json_deserializer, 'application/json') test_utils.predict_and_assert_response_length(estimator, request_data, instance_type, csv_serializer, csv_deserializer, 'text/csv') def _json_predictor(estimator, instance_type): predictor = estimator.deploy(1, instance_type) predictor.content_type = 'application/json' predictor.serializer = json_serializer predictor.accept = 'application/json' predictor.deserializer = json_deserializer return predictor ``` #### File: resources/mnist/distributed_customer_script.py ```python from __future__ import print_function, absolute_import import argparse import logging import os import chainer from chainer import serializers, training from chainer.datasets import tuple_dataset import chainer.functions as F import chainer.links as L from chainer.training import extensions import chainermn import numpy as np import sagemaker_containers logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class MLP(chainer.Chain): def __init__(self, n_units, n_out): super(MLP, self).__init__() with self.init_scope(): # the size of the inputs to each layer will be inferred self.l1 = L.Linear(None, n_units) # n_in -> n_units self.l2 = L.Linear(None, n_units) # n_units -> n_units self.l3 = L.Linear(None, n_out) # n_units -> n_out def __call__(self, x): h1 = F.relu(self.l1(x)) h2 = F.relu(self.l2(h1)) return self.l3(h2) def _preprocess_mnist(raw, withlabel, ndim, scale, image_dtype, label_dtype, rgb_format): images = raw['x'] if ndim == 2: images = images.reshape(-1, 28, 28) elif ndim == 3: images = images.reshape(-1, 1, 28, 28) if rgb_format: images = np.broadcast_to(images, (len(images), 3) + images.shape[2:]) elif ndim != 1: raise ValueError('invalid ndim for MNIST dataset') images = images.astype(image_dtype) images *= scale / 255. if withlabel: labels = raw['y'].astype(label_dtype) return tuple_dataset.TupleDataset(images, labels) return images if __name__ == '__main__': env = sagemaker_containers.training_env() parser = argparse.ArgumentParser() # Data and model checkpoints directories parser.add_argument('--epochs', type=int) parser.add_argument('--batch-size', type=int) parser.add_argument('--communicator', type=str, default='pure_nccl') parser.add_argument('--frequency', type=int, default=20) parser.add_argument('--units', type=int, default=1000) parser.add_argument('--model-dir', type=str) parser.add_argument('--output-data-dir', type=str, default=env.output_data_dir) parser.add_argument('--host', type=str, default=env.current_host) parser.add_argument('--num-gpus', type=int, default=env.num_gpus) parser.add_argument('--train', type=str, default=env.channel_input_dirs['train']) parser.add_argument('--test', type=str, default=env.channel_input_dirs['test']) args = parser.parse_args() train_file = np.load(os.path.join(args.train, 'train.npz')) test_file = np.load(os.path.join(args.test, 'test.npz')) logger.info('Current host: {}'.format(args.host)) communicator = 'naive' if args.num_gpus == 0 else args.communicator comm = chainermn.create_communicator(communicator) device = comm.intra_rank if args.num_gpus > 0 else -1 print('==========================================') print('Using {} communicator'.format(comm)) print('Num unit: {}'.format(args.units)) print('Num Minibatch-size: {}'.format(args.batch_size)) print('Num epoch: {}'.format(args.epochs)) print('==========================================') model = L.Classifier(MLP(args.units, 10)) if device >= 0: chainer.cuda.get_device(device).use() # Create a multi node optimizer from a standard Chainer optimizer. optimizer = chainermn.create_multi_node_optimizer( chainer.optimizers.Adam(), comm) optimizer.setup(model) train_file = np.load(os.path.join(args.train, 'train.npz')) test_file = np.load(os.path.join(args.test, 'test.npz')) preprocess_mnist_options = { 'withlabel': True, 'ndim': 1, 'scale': 1., 'image_dtype': np.float32, 'label_dtype': np.int32, 'rgb_format': False } train_dataset = _preprocess_mnist(train_file, **preprocess_mnist_options) test_dataset = _preprocess_mnist(test_file, **preprocess_mnist_options) train_iter = chainer.iterators.SerialIterator(train_dataset, args.batch_size) test_iter = chainer.iterators.SerialIterator( test_dataset, args.batch_size, repeat=False, shuffle=False) updater = training.StandardUpdater(train_iter, optimizer, device=device) trainer = training.Trainer(updater, (args.epochs, 'epoch'), out=args.output_data_dir) # Create a multi node evaluator from a standard Chainer evaluator. evaluator = extensions.Evaluator(test_iter, model, device=device) evaluator = chainermn.create_multi_node_evaluator(evaluator, comm) trainer.extend(evaluator) # Some display and output extensions are necessary only for one worker. # (Otherwise, there would just be repeated outputs.) if comm.rank == 0: if extensions.PlotReport.available(): trainer.extend( extensions.PlotReport( ['main/loss', 'validation/main/loss'], 'epoch', file_name='loss.png')) trainer.extend( extensions.PlotReport( ['main/accuracy', 'validation/main/accuracy'], 'epoch', file_name='accuracy.png')) trainer.extend(extensions.snapshot(), trigger=(args.frequency, 'epoch')) trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.LogReport()) trainer.extend( extensions.PrintReport([ 'epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time' ])) trainer.extend(extensions.ProgressBar()) trainer.run() # only save the model in the master node if args.host == str(env.hosts[0]): serializers.save_npz(os.path.join(env.model_dir, 'model.npz'), model) def model_fn(model_dir): model = L.Classifier(MLP(1000, 10)) serializers.load_npz(os.path.join(model_dir, 'model.npz'), model) return model.predictor ```
{ "source": "jesterhui/interpretable_ml_description_chemisorption_alloys", "score": 3 }
#### File: interpretable_ml_description_chemisorption_alloys/src/bst_bag_tree.py ```python import itertools as it import numpy as np from sklearn.tree import DecisionTreeRegressor class BoostedBaggedTreeGAM: """iGAM for inteliigible models. Attributes: model (dict): Dictionary containing constituent trees of model. m_boost (int): Number of iterations for gradient boosting. n_leaves (int): Number of leaves in each tree. n_trees (int): Number of bagged trees for each shaping function. """ def __init__(self, m_boost, n_leaves=2, n_trees=100, pairwise=0): """ Args: m_boost (int): Number of iterations for gradient boosting. n_leaves (int): Number of leaves in each tree. n_trees (int): Number of bagged trees for each shaping function. pairwise(int): Numer of pairwise interactions to include. """ self.model = {} self.pairwise = pairwise self.pairwise_model = {} self.pairwise_inds = {} self.m_boost = m_boost self.n_leaves = n_leaves self.n_trees = n_trees self.y_avg = None def fit(self, x_train, y_train): """Train model. Args: x_train (obj): (n, d) NumPy array containing training input samples. y_train (obj): (n, 1) Numpy vector containing target values. """ self.y_avg = np.mean(y_train) n_samples, d_features = x_train.shape # build model dictionary for j in range(d_features): self.model[j] = [] # fill model dictionary with decision trees for _ in range(self.m_boost): for j in range(d_features): bagged_trees = [] for _ in range(self.n_trees): # bootstrap sampling ind = np.random.randint(n_samples, size=n_samples) x_sample = x_train[ind, :] # boosting y_sample = (y_train[ind, :].reshape(-1, 1) - self.predict(x_sample)) x_sample = x_train[ind, j].reshape(-1, 1) f_j = DecisionTreeRegressor(max_leaf_nodes=self.n_leaves) f_j.fit(x_sample, y_sample) bagged_trees.append(f_j) self.model[j].append(bagged_trees) if self.pairwise > 0: self.train_pairwise(x_train, y_train, self.pairwise) def predict(self, x_pred): """Use learned model to label data. Args: x_pred (obj): (n, d) NumPy array of test samples. Returns: obj: (n, 1) NumPy vector containging predictions. """ # sum over model contributions for each feature y_pred = self.y_avg for j in self.model: for m_iter in self.model[j]: for f_j in m_iter: y_pred = y_pred + (f_j.predict(x_pred[:, j].reshape(-1, 1)) .reshape(-1, 1) / self.n_trees) for key in self.pairwise_inds: x_pred_p = x_pred[:, self.pairwise_inds[key]] for f_j in self.pairwise_model[key]: y_pred = y_pred + (f_j.predict(x_pred_p) .reshape(-1, 1) / self.n_trees) return y_pred def feature_contribution(self, x_feat, j_feat): """Obtain contribution of individual feature to overall prediction. Args: x_feat (type): Feature data. j_feat (int): Index of feature. Returns: obj: (n, 1) NumPy vector containing feature contrbution. """ # peform prediction for single variable y_feat = 0 for m_iter in self.model[j_feat]: for f_j in m_iter: y_feat = y_feat + (f_j.predict(x_feat[:, j_feat].reshape(-1, 1) ).reshape(-1, 1) / self.n_trees) return y_feat def pair_contribution(self, x_feat, j_pair): """Obtain contribution of individual feature to overall prediction. Args: x_feat (type): Feature data. j_feat (int): Index of feature. Returns: obj: (n, 1) NumPy vector containing feature contrbution. """ # peform prediction for single variable y_pair = 0 print(self.pairwise_inds[j_pair]) x_pred_p = x_feat[:, self.pairwise_inds[j_pair]] for f_j in self.pairwise_model[j_pair]: y_pair = y_pair + (f_j.predict(x_pred_p) .reshape(-1, 1) / self.n_trees) return y_pair def get_weights(self, x_w): """Get feature weights of iGAM model. Args: x_w (obj): NumPy array containing samples used to estimate weights. Returns: obj: (n, ) NumPy vector containing weights. """ n_samples, n_features = x_w.shape weights = np.zeros(n_features,) for j in range(n_features): f_x = self.feature_contribution(x_w, j) weights[j] = np.sqrt((1 / n_samples) * np.sum(f_x ** 2)) return weights def train_pairwise(self, x_train, y_train, n_pairs): """Train pairwise interactions. Args: x_train (obj): (n, d) NumPy array containing training input samples. y_train (obj): (n, 1) Numpy vector containing target values. n_pairs (int): Numer of pairwise interactions to include. """ n_samples, d_features = x_train.shape possible_pairs = list(it.combinations(range(d_features), 2)) weights = self.get_weights(x_train) sorted_weights = np.argsort(np.flip(np.argsort(weights))) ranking = [] for pair in possible_pairs: ranking.append(sorted_weights[pair[0]] + sorted_weights[pair[1]]) ranking = np.asarray(ranking) for i in range(n_pairs): best = np.argsort(ranking)[i] best = possible_pairs[best] bagged_trees = [] for _ in range(self.n_trees): # bootstrap sampling ind = np.random.randint(n_samples, size=n_samples) x_sample = x_train[ind, :] # boosting y_sample = (y_train[ind, :].reshape(-1, 1) - self.predict(x_sample)) x_sample = x_sample[:, best] f_j = DecisionTreeRegressor(max_leaf_nodes=4) f_j.fit(x_sample, y_sample) bagged_trees.append(f_j) self.pairwise_model[i] = bagged_trees self.pairwise_inds[i] = best ```
{ "source": "jesterjunk/yt-dlc", "score": 2 }
#### File: youtube_dlc/extractor/soundcloud.py ```python from __future__ import unicode_literals import itertools import re import json import random from .common import ( InfoExtractor, SearchInfoExtractor ) from ..compat import ( compat_HTTPError, compat_kwargs, compat_str, compat_urlparse, ) from ..utils import ( error_to_compat_str, ExtractorError, float_or_none, HEADRequest, int_or_none, KNOWN_EXTENSIONS, mimetype2ext, str_or_none, try_get, unified_timestamp, update_url_query, url_or_none, urlhandle_detect_ext, sanitized_Request, ) class SoundcloudEmbedIE(InfoExtractor): _VALID_URL = r'https?://(?:w|player|p)\.soundcloud\.com/player/?.*?\burl=(?P<id>.+)' _TEST = { # from https://www.soundi.fi/uutiset/ennakkokuuntelussa-timo-kaukolammen-station-to-station-to-station-julkaisua-juhlitaan-tanaan-g-livelabissa/ 'url': 'https://w.soundcloud.com/player/?visual=true&url=https%3A%2F%2Fapi.soundcloud.com%2Fplaylists%2F922213810&show_artwork=true&maxwidth=640&maxheight=960&dnt=1&secret_token=s-ziYey', 'only_matching': True, } @staticmethod def _extract_urls(webpage): return [m.group('url') for m in re.finditer( r'<iframe[^>]+src=(["\'])(?P<url>(?:https?://)?(?:w\.)?soundcloud\.com/player.+?)\1', webpage)] def _real_extract(self, url): query = compat_urlparse.parse_qs( compat_urlparse.urlparse(url).query) api_url = query['url'][0] secret_token = query.get('secret_token') if secret_token: api_url = update_url_query(api_url, {'secret_token': secret_token[0]}) return self.url_result(api_url) class SoundcloudIE(InfoExtractor): """Information extractor for soundcloud.com To access the media, the uid of the song and a stream token must be extracted from the page source and the script must make a request to media.soundcloud.com/crossdomain.xml. Then the media can be grabbed by requesting from an url composed of the stream token and uid """ _VALID_URL = r'''(?x)^(?:https?://)? (?:(?:(?:www\.|m\.)?soundcloud\.com/ (?!stations/track) (?P<uploader>[\w\d-]+)/ (?!(?:tracks|albums|sets(?:/.+?)?|reposts|likes|spotlight)/?(?:$|[?#])) (?P<title>[\w\d-]+)/? (?P<token>[^?]+?)?(?:[?].*)?$) |(?:api(?:-v2)?\.soundcloud\.com/tracks/(?P<track_id>\d+) (?:/?\?secret_token=(?P<secret_token>[^&]+))?) ) ''' IE_NAME = 'soundcloud' _TESTS = [ { 'url': 'http://soundcloud.com/ethmusic/lostin-powers-she-so-heavy', 'md5': 'ebef0a451b909710ed1d7787dddbf0d7', 'info_dict': { 'id': '62986583', 'ext': 'mp3', 'title': 'Lostin Powers - She so Heavy (SneakPreview) Adrian Ackers Blueprint 1', 'description': 'No Downloads untill we record the finished version this weekend, i was too pumped n i had to post it , earl is prolly gonna b hella p.o\'d', 'uploader': 'E.T. ExTerrestrial Music', 'uploader_id': '1571244', 'timestamp': 1349920598, 'upload_date': '20121011', 'duration': 143.216, 'license': 'all-rights-reserved', 'view_count': int, 'like_count': int, 'comment_count': int, 'repost_count': int, } }, # geo-restricted { 'url': 'https://soundcloud.com/the-concept-band/goldrushed-mastered?in=the-concept-band/sets/the-royal-concept-ep', 'info_dict': { 'id': '47127627', 'ext': 'mp3', 'title': 'Goldrushed', 'description': 'From Stockholm Sweden\r\nPovel / Magnus / Filip / David\r\nwww.theroyalconcept.com', 'uploader': 'The Royal Concept', 'uploader_id': '9615865', 'timestamp': 1337635207, 'upload_date': '20120521', 'duration': 227.155, 'license': 'all-rights-reserved', 'view_count': int, 'like_count': int, 'comment_count': int, 'repost_count': int, }, }, # private link { 'url': 'https://soundcloud.com/jaimemf/youtube-dlc-test-video-a-y-baw/s-8Pjrp', 'md5': 'aa0dd32bfea9b0c5ef4f02aacd080604', 'info_dict': { 'id': '123998367', 'ext': 'mp3', 'title': 'Youtube - Dl Test Video \'\' Ä↭', 'description': 'test chars: \"\'/\\ä↭', 'uploader': 'jaimeMF', 'uploader_id': '69767071', 'timestamp': 1386604920, 'upload_date': '20131209', 'duration': 9.927, 'license': 'all-rights-reserved', 'view_count': int, 'like_count': int, 'comment_count': int, 'repost_count': int, }, }, # private link (alt format) { 'url': 'https://api.soundcloud.com/tracks/123998367?secret_token=s-8Pjrp', 'md5': 'aa0dd32bfea9b0c5ef4f02aacd080604', 'info_dict': { 'id': '123998367', 'ext': 'mp3', 'title': 'Youtube - Dl Test Video \'\' Ä↭', 'description': 'test chars: \"\'/\\ä↭', 'uploader': 'jaimeMF', 'uploader_id': '69767071', 'timestamp': 1386604920, 'upload_date': '20131209', 'duration': 9.927, 'license': 'all-rights-reserved', 'view_count': int, 'like_count': int, 'comment_count': int, 'repost_count': int, }, }, # downloadable song { 'url': 'https://soundcloud.com/oddsamples/bus-brakes', 'md5': '7624f2351f8a3b2e7cd51522496e7631', 'info_dict': { 'id': '128590877', 'ext': 'mp3', 'title': 'Bus Brakes', 'description': 'md5:0053ca6396e8d2fd7b7e1595ef12ab66', 'uploader': 'oddsamples', 'uploader_id': '73680509', 'timestamp': 1389232924, 'upload_date': '20140109', 'duration': 17.346, 'license': 'cc-by-sa', 'view_count': int, 'like_count': int, 'comment_count': int, 'repost_count': int, }, }, # private link, downloadable format { 'url': 'https://soundcloud.com/oriuplift/uponly-238-no-talking-wav/s-AyZUd', 'md5': '64a60b16e617d41d0bef032b7f55441e', 'info_dict': { 'id': '340344461', 'ext': 'wav', 'title': 'Uplifting Only 238 [No Talking] (incl. Alex Feed Guestmix) (Aug 31, 2017) [wav]', 'description': 'md5:fa20ee0fca76a3d6df8c7e57f3715366', 'uploader': 'Ori Uplift Music', 'uploader_id': '12563093', 'timestamp': 1504206263, 'upload_date': '20170831', 'duration': 7449.096, 'license': 'all-rights-reserved', 'view_count': int, 'like_count': int, 'comment_count': int, 'repost_count': int, }, }, # no album art, use avatar pic for thumbnail { 'url': 'https://soundcloud.com/garyvee/sideways-prod-mad-real', 'md5': '59c7872bc44e5d99b7211891664760c2', 'info_dict': { 'id': '309699954', 'ext': 'mp3', 'title': 'Sideways (Prod. Mad Real)', 'description': 'md5:d41d8cd98f00b204e9800998ecf8427e', 'uploader': 'garyvee', 'uploader_id': '2366352', 'timestamp': 1488152409, 'upload_date': '20170226', 'duration': 207.012, 'thumbnail': r're:https?://.*\.jpg', 'license': 'all-rights-reserved', 'view_count': int, 'like_count': int, 'comment_count': int, 'repost_count': int, }, 'params': { 'skip_download': True, }, }, { 'url': 'https://soundcloud.com/giovannisarani/mezzo-valzer', 'md5': 'e22aecd2bc88e0e4e432d7dcc0a1abf7', 'info_dict': { 'id': '583011102', 'ext': 'mp3', 'title': 'Mezzo Valzer', 'description': 'md5:4138d582f81866a530317bae316e8b61', 'uploader': 'Micronie', 'uploader_id': '3352531', 'timestamp': 1551394171, 'upload_date': '20190228', 'duration': 180.157, 'thumbnail': r're:https?://.*\.jpg', 'license': 'all-rights-reserved', 'view_count': int, 'like_count': int, 'comment_count': int, 'repost_count': int, }, }, { # AAC HQ format available (account with active subscription needed) 'url': 'https://soundcloud.com/wandw/the-chainsmokers-ft-daya-dont-let-me-down-ww-remix-1', 'only_matching': True, }, { # Go+ (account with active subscription needed) 'url': 'https://soundcloud.com/taylorswiftofficial/look-what-you-made-me-do', 'only_matching': True, }, ] _API_V2_BASE = 'https://api-v2.soundcloud.com/' _BASE_URL = 'https://soundcloud.com/' _IMAGE_REPL_RE = r'-([0-9a-z]+)\.jpg' _ARTWORK_MAP = { 'mini': 16, 'tiny': 20, 'small': 32, 'badge': 47, 't67x67': 67, 'large': 100, 't300x300': 300, 'crop': 400, 't500x500': 500, 'original': 0, } def _store_client_id(self, client_id): self._downloader.cache.store('soundcloud', 'client_id', client_id) def _update_client_id(self): webpage = self._download_webpage('https://soundcloud.com/', None) for src in reversed(re.findall(r'<script[^>]+src="([^"]+)"', webpage)): script = self._download_webpage(src, None, fatal=False) if script: client_id = self._search_regex( r'client_id\s*:\s*"([0-9a-zA-Z]{32})"', script, 'client id', default=None) if client_id: self._CLIENT_ID = client_id self._store_client_id(client_id) return raise ExtractorError('Unable to extract client id') def _download_json(self, *args, **kwargs): non_fatal = kwargs.get('fatal') is False if non_fatal: del kwargs['fatal'] query = kwargs.get('query', {}).copy() for _ in range(2): query['client_id'] = self._CLIENT_ID kwargs['query'] = query try: return super(SoundcloudIE, self)._download_json(*args, **compat_kwargs(kwargs)) except ExtractorError as e: if isinstance(e.cause, compat_HTTPError) and e.cause.code == 401: self._store_client_id(None) self._update_client_id() continue elif non_fatal: self._downloader.report_warning(error_to_compat_str(e)) return False raise def _real_initialize(self): self._CLIENT_ID = self._downloader.cache.load('soundcloud', 'client_id') or "T5R4kgWS2PRf6lzLyIravUMnKlbIxQag" # 'EXLwg5lHTO2dslU5EePe3xkw0m1h86Cd' # 'YUKXoArFcqrlQn9tfNHvvyfnDISj04zk' self._login() _USER_AGENT = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36" _API_AUTH_QUERY_TEMPLATE = '?client_id=%s' _API_AUTH_URL_PW = 'https://api-auth.soundcloud.com/web-auth/sign-in/password%s' _access_token = None _HEADERS = {} _NETRC_MACHINE = 'soundcloud' def _login(self): username, password = self._get_login_info() if username is None: return def genDevId(): def genNumBlock(): return ''.join([str(random.randrange(10)) for i in range(6)]) return '-'.join([genNumBlock() for i in range(4)]) payload = { 'client_id': self._CLIENT_ID, 'recaptcha_pubkey': 'null', 'recaptcha_response': 'null', 'credentials': { 'identifier': username, 'password': password }, 'signature': self.sign(username, password, self._CLIENT_ID), 'device_id': genDevId(), 'user_agent': self._USER_AGENT } query = self._API_AUTH_QUERY_TEMPLATE % self._CLIENT_ID login = sanitized_Request(self._API_AUTH_URL_PW % query, json.dumps(payload).encode('utf-8')) response = self._download_json(login, None) self._access_token = response.get('session').get('access_token') if not self._access_token: self.report_warning('Unable to get access token, login may has failed') else: self._HEADERS = {'Authorization': 'OAuth ' + self._access_token} # signature generation def sign(self, user, pw, clid): a = 33 i = 1 s = 440123 w = 117 u = 1800000 l = 1042 b = 37 k = 37 c = 5 n = "<KEY>" # _KEY y = "8" # _REV r = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.105 Safari/537.36" # _USER_AGENT e = user # _USERNAME t = clid # _CLIENT_ID d = '-'.join([str(mInt) for mInt in [a, i, s, w, u, l, b, k]]) p = n + y + d + r + e + t + d + n h = p m = 8011470 f = 0 for f in range(f, len(h)): m = (m >> 1) + ((1 & m) << 23) m += ord(h[f]) m &= 16777215 # c is not even needed out = str(y) + ':' + str(d) + ':' + format(m, 'x') + ':' + str(c) return out @classmethod def _resolv_url(cls, url): return SoundcloudIE._API_V2_BASE + 'resolve?url=' + url def _extract_info_dict(self, info, full_title=None, secret_token=None): track_id = compat_str(info['id']) title = info['title'] format_urls = set() formats = [] query = {'client_id': self._CLIENT_ID} if secret_token: query['secret_token'] = secret_token if info.get('downloadable') and info.get('has_downloads_left'): download_url = update_url_query( self._API_V2_BASE + 'tracks/' + track_id + '/download', query) redirect_url = (self._download_json(download_url, track_id, fatal=False) or {}).get('redirectUri') if redirect_url: urlh = self._request_webpage( HEADRequest(redirect_url), track_id, fatal=False) if urlh: format_url = urlh.geturl() format_urls.add(format_url) formats.append({ 'format_id': 'download', 'ext': urlhandle_detect_ext(urlh) or 'mp3', 'filesize': int_or_none(urlh.headers.get('Content-Length')), 'url': format_url, 'preference': 10, }) def invalid_url(url): return not url or url in format_urls def add_format(f, protocol, is_preview=False): mobj = re.search(r'\.(?P<abr>\d+)\.(?P<ext>[0-9a-z]{3,4})(?=[/?])', stream_url) if mobj: for k, v in mobj.groupdict().items(): if not f.get(k): f[k] = v format_id_list = [] if protocol: format_id_list.append(protocol) ext = f.get('ext') if ext == 'aac': f['abr'] = '256' for k in ('ext', 'abr'): v = f.get(k) if v: format_id_list.append(v) preview = is_preview or re.search(r'/(?:preview|playlist)/0/30/', f['url']) if preview: format_id_list.append('preview') abr = f.get('abr') if abr: f['abr'] = int(abr) if protocol == 'hls': protocol = 'm3u8' if ext == 'aac' else 'm3u8_native' else: protocol = 'http' f.update({ 'format_id': '_'.join(format_id_list), 'protocol': protocol, 'preference': -10 if preview else None, }) formats.append(f) # New API transcodings = try_get( info, lambda x: x['media']['transcodings'], list) or [] for t in transcodings: if not isinstance(t, dict): continue format_url = url_or_none(t.get('url')) if not format_url: continue stream = self._download_json( format_url, track_id, query=query, fatal=False, headers=self._HEADERS) if not isinstance(stream, dict): continue stream_url = url_or_none(stream.get('url')) if invalid_url(stream_url): continue format_urls.add(stream_url) stream_format = t.get('format') or {} protocol = stream_format.get('protocol') if protocol != 'hls' and '/hls' in format_url: protocol = 'hls' ext = None preset = str_or_none(t.get('preset')) if preset: ext = preset.split('_')[0] if ext not in KNOWN_EXTENSIONS: ext = mimetype2ext(stream_format.get('mime_type')) add_format({ 'url': stream_url, 'ext': ext, }, 'http' if protocol == 'progressive' else protocol, t.get('snipped') or '/preview/' in format_url) for f in formats: f['vcodec'] = 'none' if not formats and info.get('policy') == 'BLOCK': self.raise_geo_restricted() self._sort_formats(formats) user = info.get('user') or {} thumbnails = [] artwork_url = info.get('artwork_url') thumbnail = artwork_url or user.get('avatar_url') if isinstance(thumbnail, compat_str): if re.search(self._IMAGE_REPL_RE, thumbnail): for image_id, size in self._ARTWORK_MAP.items(): i = { 'id': image_id, 'url': re.sub(self._IMAGE_REPL_RE, '-%s.jpg' % image_id, thumbnail), } if image_id == 'tiny' and not artwork_url: size = 18 elif image_id == 'original': i['preference'] = 10 if size: i.update({ 'width': size, 'height': size, }) thumbnails.append(i) else: thumbnails = [{'url': thumbnail}] def extract_count(key): return int_or_none(info.get('%s_count' % key)) return { 'id': track_id, 'uploader': user.get('username'), 'uploader_id': str_or_none(user.get('id')) or user.get('permalink'), 'uploader_url': user.get('permalink_url'), 'timestamp': unified_timestamp(info.get('created_at')), 'title': title, 'description': info.get('description'), 'thumbnails': thumbnails, 'duration': float_or_none(info.get('duration'), 1000), 'webpage_url': info.get('permalink_url'), 'license': info.get('license'), 'view_count': extract_count('playback'), 'like_count': extract_count('favoritings') or extract_count('likes'), 'comment_count': extract_count('comment'), 'repost_count': extract_count('reposts'), 'genre': info.get('genre'), 'formats': formats } def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) track_id = mobj.group('track_id') query = {} if track_id: info_json_url = self._API_V2_BASE + 'tracks/' + track_id full_title = track_id token = mobj.group('secret_token') if token: query['secret_token'] = token else: full_title = resolve_title = '%s/%s' % mobj.group('uploader', 'title') token = mobj.group('token') if token: resolve_title += '/%s' % token info_json_url = self._resolv_url(self._BASE_URL + resolve_title) info = self._download_json( info_json_url, full_title, 'Downloading info JSON', query=query, headers=self._HEADERS) return self._extract_info_dict(info, full_title, token) class SoundcloudPlaylistBaseIE(SoundcloudIE): def _extract_set(self, playlist, token=None): playlist_id = compat_str(playlist['id']) tracks = playlist.get('tracks') or [] if not all([t.get('permalink_url') for t in tracks]) and token: tracks = self._download_json( self._API_V2_BASE + 'tracks', playlist_id, 'Downloading tracks', query={ 'ids': ','.join([compat_str(t['id']) for t in tracks]), 'playlistId': playlist_id, 'playlistSecretToken': token, }, headers=self._HEADERS) entries = [] for track in tracks: track_id = str_or_none(track.get('id')) url = track.get('permalink_url') if not url: if not track_id: continue url = self._API_V2_BASE + 'tracks/' + track_id if token: url += '?secret_token=' + token entries.append(self.url_result( url, SoundcloudIE.ie_key(), track_id)) return self.playlist_result( entries, playlist_id, playlist.get('title'), playlist.get('description')) class SoundcloudSetIE(SoundcloudPlaylistBaseIE): _VALID_URL = r'https?://(?:(?:www|m)\.)?soundcloud\.com/(?P<uploader>[\w\d-]+)/sets/(?P<slug_title>[:\w\d-]+)(?:/(?P<token>[^?/]+))?' IE_NAME = 'soundcloud:set' _TESTS = [{ 'url': 'https://soundcloud.com/the-concept-band/sets/the-royal-concept-ep', 'info_dict': { 'id': '2284613', 'title': 'The Royal Concept EP', 'description': 'md5:71d07087c7a449e8941a70a29e34671e', }, 'playlist_mincount': 5, }, { 'url': 'https://soundcloud.com/the-concept-band/sets/the-royal-concept-ep/token', 'only_matching': True, }, { 'url': 'https://soundcloud.com/discover/sets/weekly::flacmatic', 'only_matching': True, }, { 'url': 'https://soundcloud.com/discover/sets/charts-top:all-music:de', 'only_matching': True, }, { 'url': 'https://soundcloud.com/discover/sets/charts-top:hiphoprap:kr', 'only_matching': True, }] def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) full_title = '%s/sets/%s' % mobj.group('uploader', 'slug_title') token = mobj.group('token') if token: full_title += '/' + token info = self._download_json(self._resolv_url( self._BASE_URL + full_title), full_title, headers=self._HEADERS) if 'errors' in info: msgs = (compat_str(err['error_message']) for err in info['errors']) raise ExtractorError('unable to download video webpage: %s' % ','.join(msgs)) return self._extract_set(info, token) class SoundcloudPagedPlaylistBaseIE(SoundcloudIE): def _extract_playlist(self, base_url, playlist_id, playlist_title): # Per the SoundCloud documentation, the maximum limit for a linked partioning query is 200. # https://developers.soundcloud.com/blog/offset-pagination-deprecated COMMON_QUERY = { 'limit': 200, 'linked_partitioning': '1', } query = COMMON_QUERY.copy() query['offset'] = 0 next_href = base_url entries = [] for i in itertools.count(): response = self._download_json( next_href, playlist_id, 'Downloading track page %s' % (i + 1), query=query, headers=self._HEADERS) collection = response['collection'] if not isinstance(collection, list): collection = [] # Empty collection may be returned, in this case we proceed # straight to next_href def resolve_entry(candidates): for cand in candidates: if not isinstance(cand, dict): continue permalink_url = url_or_none(cand.get('permalink_url')) if not permalink_url: continue return self.url_result( permalink_url, SoundcloudIE.ie_key() if SoundcloudIE.suitable(permalink_url) else None, str_or_none(cand.get('id')), cand.get('title')) for e in collection: entry = resolve_entry((e, e.get('track'), e.get('playlist'))) if entry: entries.append(entry) next_href = response.get('next_href') if not next_href: break next_href = response['next_href'] parsed_next_href = compat_urlparse.urlparse(next_href) query = compat_urlparse.parse_qs(parsed_next_href.query) query.update(COMMON_QUERY) return { '_type': 'playlist', 'id': playlist_id, 'title': playlist_title, 'entries': entries, } class SoundcloudUserIE(SoundcloudPagedPlaylistBaseIE): _VALID_URL = r'''(?x) https?:// (?:(?:www|m)\.)?soundcloud\.com/ (?P<user>[^/]+) (?:/ (?P<rsrc>tracks|albums|sets|reposts|likes|spotlight) )? /?(?:[?#].*)?$ ''' IE_NAME = 'soundcloud:user' _TESTS = [{ 'url': 'https://soundcloud.com/soft-cell-official', 'info_dict': { 'id': '207965082', 'title': 'Soft Cell (All)', }, 'playlist_mincount': 28, }, { 'url': 'https://soundcloud.com/soft-cell-official/tracks', 'info_dict': { 'id': '207965082', 'title': 'Soft Cell (Tracks)', }, 'playlist_mincount': 27, }, { 'url': 'https://soundcloud.com/soft-cell-official/albums', 'info_dict': { 'id': '207965082', 'title': 'Soft Cell (Albums)', }, 'playlist_mincount': 1, }, { 'url': 'https://soundcloud.com/jcv246/sets', 'info_dict': { 'id': '12982173', 'title': 'Jordi / cv (Sets)', }, 'playlist_mincount': 2, }, { 'url': 'https://soundcloud.com/jcv246/reposts', 'info_dict': { 'id': '12982173', 'title': 'Jordi / cv (Reposts)', }, 'playlist_mincount': 6, }, { 'url': 'https://soundcloud.com/clalberg/likes', 'info_dict': { 'id': '11817582', 'title': 'clalberg (Likes)', }, 'playlist_mincount': 5, }, { 'url': 'https://soundcloud.com/grynpyret/spotlight', 'info_dict': { 'id': '7098329', 'title': 'Grynpyret (Spotlight)', }, 'playlist_mincount': 1, }] _BASE_URL_MAP = { 'all': 'stream/users/%s', 'tracks': 'users/%s/tracks', 'albums': 'users/%s/albums', 'sets': 'users/%s/playlists', 'reposts': 'stream/users/%s/reposts', 'likes': 'users/%s/likes', 'spotlight': 'users/%s/spotlight', } def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) uploader = mobj.group('user') user = self._download_json( self._resolv_url(self._BASE_URL + uploader), uploader, 'Downloading user info', headers=self._HEADERS) resource = mobj.group('rsrc') or 'all' return self._extract_playlist( self._API_V2_BASE + self._BASE_URL_MAP[resource] % user['id'], str_or_none(user.get('id')), '%s (%s)' % (user['username'], resource.capitalize())) class SoundcloudTrackStationIE(SoundcloudPagedPlaylistBaseIE): _VALID_URL = r'https?://(?:(?:www|m)\.)?soundcloud\.com/stations/track/[^/]+/(?P<id>[^/?#&]+)' IE_NAME = 'soundcloud:trackstation' _TESTS = [{ 'url': 'https://soundcloud.com/stations/track/officialsundial/your-text', 'info_dict': { 'id': '286017854', 'title': 'Track station: your text', }, 'playlist_mincount': 47, }] def _real_extract(self, url): track_name = self._match_id(url) track = self._download_json(self._resolv_url(url), track_name, headers=self._HEADERS) track_id = self._search_regex( r'soundcloud:track-stations:(\d+)', track['id'], 'track id') return self._extract_playlist( self._API_V2_BASE + 'stations/%s/tracks' % track['id'], track_id, 'Track station: %s' % track['title']) class SoundcloudPlaylistIE(SoundcloudPlaylistBaseIE): _VALID_URL = r'https?://api(?:-v2)?\.soundcloud\.com/playlists/(?P<id>[0-9]+)(?:/?\?secret_token=(?P<token>[^&]+?))?$' IE_NAME = 'soundcloud:playlist' _TESTS = [{ 'url': 'https://api.soundcloud.com/playlists/4110309', 'info_dict': { 'id': '4110309', 'title': 'TILT Brass - Bowery Poetry Club, August \'03 [Non-Site SCR 02]', 'description': 're:.*?TILT Brass - Bowery Poetry Club', }, 'playlist_count': 6, }] def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) playlist_id = mobj.group('id') query = {} token = mobj.group('token') if token: query['secret_token'] = token data = self._download_json( self._API_V2_BASE + 'playlists/' + playlist_id, playlist_id, 'Downloading playlist', query=query, headers=self._HEADERS) return self._extract_set(data, token) class SoundcloudSearchIE(SearchInfoExtractor, SoundcloudIE): IE_NAME = 'soundcloud:search' IE_DESC = 'Soundcloud search' _MAX_RESULTS = float('inf') _TESTS = [{ 'url': 'scsearch15:post-avant jazzcore', 'info_dict': { 'title': 'post-avant jazzcore', }, 'playlist_count': 15, }] _SEARCH_KEY = 'scsearch' _MAX_RESULTS_PER_PAGE = 200 _DEFAULT_RESULTS_PER_PAGE = 50 def _get_collection(self, endpoint, collection_id, **query): limit = min( query.get('limit', self._DEFAULT_RESULTS_PER_PAGE), self._MAX_RESULTS_PER_PAGE) query.update({ 'limit': limit, 'linked_partitioning': 1, 'offset': 0, }) next_url = update_url_query(self._API_V2_BASE + endpoint, query) collected_results = 0 for i in itertools.count(1): response = self._download_json( next_url, collection_id, 'Downloading page {0}'.format(i), 'Unable to download API page', headers=self._HEADERS) collection = response.get('collection', []) if not collection: break collection = list(filter(bool, collection)) collected_results += len(collection) for item in collection: yield self.url_result(item['uri'], SoundcloudIE.ie_key()) if not collection or collected_results >= limit: break next_url = response.get('next_href') if not next_url: break def _get_n_results(self, query, n): tracks = self._get_collection('search/tracks', query, limit=n, q=query) return self.playlist_result(tracks, playlist_title=query) ``` #### File: youtube_dlc/extractor/urplay.py ```python from __future__ import unicode_literals from .common import InfoExtractor from ..utils import unified_timestamp import re class URPlayIE(InfoExtractor): _VALID_URL = r'https?://(?:www\.)?ur(?:play|skola)\.se/(?:program|Produkter)/(?P<id>[0-9]+)' _TESTS = [{ 'url': 'https://urplay.se/program/203704-ur-samtiden-livet-universum-och-rymdens-markliga-musik-om-vetenskap-kritiskt-tankande-och-motstand', 'md5': 'ff5b0c89928f8083c74bbd5099c9292d', 'info_dict': { 'id': '203704', 'ext': 'mp4', 'title': 'Om vetenskap, kritiskt tänkande och motstånd', 'description': 'md5:5344508a52aa78c1ced6c1b8b9e44e9a', 'timestamp': 1513292400, 'upload_date': '20171214', }, }, { 'url': 'https://urskola.se/Produkter/190031-Tripp-Trapp-Trad-Sovkudde', 'info_dict': { 'id': '190031', 'ext': 'mp4', 'title': 'Tripp, Trapp, Träd : Sovkudde', 'description': 'md5:b86bffdae04a7e9379d1d7e5947df1d1', 'timestamp': 1440093600, 'upload_date': '20150820', }, }, { 'url': 'http://urskola.se/Produkter/155794-Smasagor-meankieli-Grodan-i-vida-varlden', 'only_matching': True, }] def _real_extract(self, url): video_id = self._match_id(url) webpage = self._download_webpage(url, video_id) urplayer_data = re.sub("&quot;", "\"", self._search_regex( r'components\/Player\/Player\" data-react-props=\"({.+?})\"', webpage, 'urplayer data')) urplayer_data = self._parse_json(urplayer_data, video_id) for i in range(len(urplayer_data['accessibleEpisodes'])): if urplayer_data.get('accessibleEpisodes', {})[i].get('id') == int(video_id): urplayer_data = urplayer_data['accessibleEpisodes'][i] break host = self._download_json('http://streaming-loadbalancer.ur.se/loadbalancer.json', video_id)['redirect'] formats = [] urplayer_streams = urplayer_data.get("streamingInfo") for quality in ('sd'), ('hd'): location = (urplayer_streams.get("raw", {}).get(quality, {}).get("location") or urplayer_streams.get("sweComplete", {}).get(quality, {}).get("location")) if location: formats.extend(self._extract_wowza_formats( 'http://%s/%s/playlist.m3u8' % (host, location), video_id, skip_protocols=['f4m', 'rtmp', 'rtsp'])) self._sort_formats(formats) subtitles = {} subs = urplayer_streams.get("sweComplete", {}).get("tt", {}).get("location") if subs: subtitles.setdefault('Svenska', []).append({ 'url': subs, }) return { 'id': video_id, 'title': urplayer_data['title'], 'description': self._og_search_description(webpage), 'thumbnail': urplayer_data.get('image', {}).get('1280x720'), 'timestamp': unified_timestamp(self._html_search_meta(('uploadDate', 'schema:uploadDate'), webpage, 'timestamp')), 'series': urplayer_data.get('seriesTitle'), 'subtitles': subtitles, 'formats': formats, } ```
{ "source": "jesterKing/import_3dm", "score": 2 }
#### File: import_3dm/converters/curve.py ```python import rhino3dm as r3d from . import utils from mathutils import Vector CONVERT = {} def import_null(rcurve, bcurve, scale): print("Failed to convert type", type(rcurve)) return None def import_line(rcurve, bcurve, scale): fr = rcurve.Line.From to = rcurve.Line.To line = bcurve.splines.new('POLY') line.points.add(1) line.points[0].co = (fr.X * scale, fr.Y * scale, fr.Z * scale, 1) line.points[1].co = (to.X * scale, to.Y * scale, to.Z * scale, 1) return line CONVERT[r3d.LineCurve] = import_line def import_polyline(rcurve, bcurve, scale): N = rcurve.PointCount polyline = bcurve.splines.new('POLY') polyline.use_cyclic_u = rcurve.IsClosed if rcurve.IsClosed: N -= 1 polyline.points.add(N - 1) for i in range(0, N): rpt = rcurve.Point(i) polyline.points[i].co = (rpt.X * scale, rpt.Y * scale, rpt.Z * scale, 1) return polyline CONVERT[r3d.PolylineCurve] = import_polyline def import_nurbs_curve(rcurve, bcurve, scale): N = len(rcurve.Points) nurbs = bcurve.splines.new('NURBS') nurbs.use_cyclic_u = rcurve.IsClosed nurbs.points.add(N - 1) for i in range(0, N): rpt = rcurve.Points[i] nurbs.points[i].co = (rpt.X * scale, rpt.Y * scale, rpt.Z * scale, rpt.W * scale) #nurbs.use_bezier_u = True nurbs.use_endpoint_u = True nurbs.order_u = rcurve.Order return nurbs CONVERT[r3d.NurbsCurve] = import_nurbs_curve def import_arc(rcurve, bcurve, scale): spt = Vector((rcurve.Arc.StartPoint.X, rcurve.Arc.StartPoint.Y, rcurve.Arc.StartPoint.Z)) * scale ept = Vector((rcurve.Arc.EndPoint.X, rcurve.Arc.EndPoint.Y, rcurve.Arc.EndPoint.Z)) * scale cpt = Vector((rcurve.Arc.Center.X, rcurve.Arc.Center.Y, rcurve.Arc.Center.Z)) * scale r1 = spt - cpt r2 = ept - cpt r1.normalize() r2.normalize() d = rcurve.Arc.Length * scale normal = r1.cross(r2) t1 = normal.cross(r1) t2 = normal.cross(r2) ''' Temporary arc ''' arc = bcurve.splines.new('NURBS') arc.use_cyclic_u = False arc.points.add(3) arc.points[0].co = (spt.x, spt.y, spt.z, 1) sspt = spt + t1 * d * 0.33 arc.points[1].co = (sspt.x, sspt.y, sspt.z, 1) eept = ept - t2 * d * 0.33 arc.points[2].co = (eept.x, eept.y, eept.z, 1) arc.points[3].co = (ept.x, ept.y, ept.z, 1) ''' print("ARC") print(" StartPoint:", rcurve.Arc.StartPoint) print(" EndPoint:", rcurve.Arc.EndPoint) print(" Center:", rcurve.Arc.Center) print(" Radius:", rcurve.Radius) ''' arc.use_endpoint_u = True arc.order_u = 3 return arc CONVERT[r3d.ArcCurve] = import_arc def import_polycurve(rcurve, bcurve, scale): for seg in range(rcurve.SegmentCount): segcurve = rcurve.SegmentCurve(seg) if type(segcurve) in CONVERT.keys(): CONVERT[type(segcurve)](segcurve, bcurve, scale) CONVERT[r3d.PolyCurve] = import_polycurve def import_curve(context, ob, name, scale, options): og = ob.Geometry oa = ob.Attributes curve_data = context.blend_data.curves.new(name, type="CURVE") if type(og) in CONVERT.keys(): curve_data.dimensions = '3D' curve_data.resolution_u = 2 CONVERT[type(og)](og, curve_data, scale) return curve_data ``` #### File: import_3dm/converters/instances.py ```python import bpy import rhino3dm as r3d from mathutils import Matrix from mathutils import Vector from math import sqrt from . import utils #TODO #tag collections and references with guids #test w/ more complex blocks and empty blocks #proper exception handling def handle_instance_definitions(context, model, toplayer, layername): """ import instance definitions from rhino model as empty collections """ if not layername in context.blend_data.collections: instance_col = context.blend_data.collections.new(name=layername) instance_col.hide_render = True instance_col.hide_viewport = True toplayer.children.link(instance_col) for idef in model.InstanceDefinitions: idef_col=utils.get_iddata(context.blend_data.collections,idef.Id, idef.Name, None ) try: instance_col.children.link(idef_col) except Exception: pass def import_instance_reference(context, ob, iref, name, scale, options): #TODO: insert reduced mesh proxy and hide actual instance in viewport for better performance on large files iref.empty_display_size=0.5 iref.empty_display_type='PLAIN_AXES' iref.instance_type='COLLECTION' iref.instance_collection = utils.get_iddata(context.blend_data.collections,ob.Geometry.ParentIdefId,"",None) xform=list(ob.Geometry.Xform.ToFloatArray(1)) xform=[xform[0:4],xform[4:8], xform[8:12], xform[12:16]] xform[0][3]*=scale xform[1][3]*=scale xform[2][3]*=scale iref.matrix_world = Matrix(xform) def populate_instance_definitions(context, model, toplayer, layername, options, scale): import_as_grid = options.get("import_instances_grid_layout",False) if import_as_grid: count = 0 columns = int(sqrt(len(model.InstanceDefinitions))) grid = options.get("import_instances_grid",False) *scale #for every instance definition fish out the instance definition objects and link them to their parent for idef in model.InstanceDefinitions: parent=utils.get_iddata(context.blend_data.collections, idef.Id, idef.Name, None) objectids=idef.GetObjectIds() if import_as_grid: #calculate position offset to lay out block definitions in xy plane offset = Vector((count%columns * grid, (count-count%columns)/columns * grid, 0 )) parent.instance_offset = offset #this sets the offset for the collection instances (read: resets the origin) count +=1 for ob in context.blend_data.objects: for uuid in objectids: if ob.get('rhid',None) == str(uuid): try: parent.objects.link(ob) if import_as_grid: ob.location += offset #apply the previously calculated offset to all instance definition objects except Exception: pass ``` #### File: import_3dm/import_3dm/read3dm.py ```python import os.path import bpy import sys import os import site def modules_path(): # set up addons/modules under the user # script path. Here we'll install the # dependencies modulespath = os.path.normpath( os.path.join( bpy.utils.script_path_user(), "addons", "modules" ) ) if not os.path.exists(modulespath): os.makedirs(modulespath) # set user modules path at beginning of paths for earlier hit if sys.path[1] != modulespath: sys.path.insert(1, modulespath) return modulespath modules_path() def install_dependencies(): modulespath = modules_path() try: from subprocess import run as sprun try: import pip except: print("Installing pip... "), pyver = "" if sys.platform != "win32": pyver = "python{}.{}".format( sys.version_info.major, sys.version_info.minor ) ensurepip = os.path.normpath( os.path.join( os.path.dirname(bpy.app.binary_path_python), "..", "lib", pyver, "ensurepip" ) ) # install pip using the user scheme using the Python # version bundled with Blender res = sprun([bpy.app.binary_path_python, ensurepip, "--user"]) if res.returncode == 0: import pip else: raise Exception("Failed to install pip.") print("Installing rhino3dm to {}... ".format(modulespath)), # if we eventually want to pin a certain version # we can add here something like "==0.0.5". # for now assume latest available is ok rhino3dm_version="" pip3 = "pip3" if sys.platform=="darwin": pip3 = os.path.normpath( os.path.join( os.path.dirname(bpy.app.binary_path_python), "..", "bin", pip3 ) ) # call pip in a subprocess so we don't have to mess # with internals. Also, this ensures the Python used to # install pip is going to be used res = sprun([pip3, "install", "--upgrade", "--target", modulespath, "rhino3dm{}".format(rhino3dm_version)]) if res.returncode!=0: print("Please try manually installing rhino3dm with: pip3 install --upgrade --target {} rhino3dm".format(modulespath)) raise Exception("Failed to install rhino3dm. See console for manual install instruction.") except: raise Exception("Failed to install dependencies. Please make sure you have pip installed.") # TODO: add update mechanism try: import rhino3dm as r3d except: print("Failed to load rhino3dm, trying to install automatically...") try: install_dependencies() # let user restart Blender, reloading of rhino3dm after automated # install doesn't always work, better to just fail clearly before # that raise Exception("Please restart Blender.") except: raise from . import converters def read_3dm(context, options): filepath = options.get("filepath", "") model = None try: model = r3d.File3dm.Read(filepath) except: print("Failed to import .3dm model: {}".format(filepath)) return {'CANCELLED'} top_collection_name = os.path.splitext(os.path.basename(filepath))[0] if top_collection_name in context.blend_data.collections.keys(): toplayer = context.blend_data.collections[top_collection_name] else: toplayer = context.blend_data.collections.new(name=top_collection_name) # Get proper scale for conversion scale = r3d.UnitSystem.UnitScale(model.Settings.ModelUnitSystem, r3d.UnitSystem.Meters) / context.scene.unit_settings.scale_length layerids = {} materials = {} # Parse options import_views = options.get("import_views", False) import_named_views = options.get("import_named_views", False) import_hidden_objects = options.get("import_hidden_objects", False) import_hidden_layers = options.get("import_hidden_layers", False) import_groups = options.get("import_groups", False) import_nested_groups = options.get("import_nested_groups", False) import_instances = options.get("import_instances",False) update_materials = options.get("update_materials", False) # Import Views and NamedViews if import_views: converters.handle_views(context, model, toplayer, model.Views, "Views", scale) if import_named_views: converters.handle_views(context, model, toplayer, model.NamedViews, "NamedViews", scale) # Handle materials converters.handle_materials(context, model, materials, update_materials) # Handle layers converters.handle_layers(context, model, toplayer, layerids, materials, update_materials, import_hidden_layers) materials[converters.DEFAULT_RHINO_MATERIAL] = None #build skeletal hierarchy of instance definitions as collections (will be populated by object importer) if import_instances: converters.handle_instance_definitions(context, model, toplayer, "Instance Definitions") # Handle objects for ob in model.Objects: og = ob.Geometry # Skip unsupported object types early if og.ObjectType not in converters.RHINO_TYPE_TO_IMPORT and og.ObjectType != r3d.ObjectType.InstanceReference: print("Unsupported object type: {}".format(og.ObjectType)) continue #convert_rhino_object = converters.RHINO_TYPE_TO_IMPORT[og.ObjectType] # Check object and layer visibility attr = ob.Attributes if not attr.Visible and not import_hidden_objects: continue rhinolayer = model.Layers.FindIndex(attr.LayerIndex) if not rhinolayer.Visible and not import_hidden_layers: continue # Create object name if attr.Name == "" or attr.Name is None: n = str(og.ObjectType).split(".")[1]+" " + str(attr.Id) else: n = attr.Name # Get render material mat_index = ob.Attributes.MaterialIndex if ob.Attributes.MaterialSource == r3d.ObjectMaterialSource.MaterialFromLayer: mat_index = rhinolayer.RenderMaterialIndex rhino_material = model.Materials.FindIndex(mat_index) # Handle default material and fetch associated Blender material if rhino_material.Name == "": matname = converters.material.DEFAULT_RHINO_MATERIAL else: matname = converters.material_name(rhino_material) # Handle object view color if ob.Attributes.ColorSource == r3d.ObjectColorSource.ColorFromLayer: view_color = rhinolayer.Color else: view_color = ob.Attributes.ObjectColor rhinomat = materials[matname] # Fetch layer layer = layerids[str(rhinolayer.Id)][1] if og.ObjectType==r3d.ObjectType.InstanceReference and import_instances: n = model.InstanceDefinitions.FindId(og.ParentIdefId).Name # Convert object converters.convert_object(context, ob, n, layer, rhinomat, view_color, scale, options) #convert_rhino_object(og, context, n, attr.Name, attr.Id, layer, rhinomat, scale) if import_groups: converters.handle_groups(context,attr,toplayer,import_nested_groups) if import_instances: converters.populate_instance_definitions(context, model, toplayer, "Instance Definitions", options, scale) # finally link in the container collection (top layer) into the main # scene collection. try: context.blend_data.scenes[0].collection.children.link(toplayer) bpy.ops.object.shade_smooth({'selected_editable_objects': toplayer.all_objects}) except Exception: pass return {'FINISHED'} ```
{ "source": "jesterKing/rhipy", "score": 2 }
#### File: jesterKing/rhipy/change_texture_filepath.py ```python import os import rhinoscriptsyntax import scriptcontext import Rhino.Render import System.Convert def handle_render_content(render_content, target): child = render_content.FirstChild while child: handle_render_content(child, target) if child.IsImageBased(): child.BeginChange(Rhino.Render.RenderContent.ChangeContexts.Program) source_path = System.Convert.ToString(child.GetParameter("filename")) source_file = os.path.basename(source_path) child.SetParameter("filename", target + os.sep + source_file) child.EndChange() child = child.NextSibling target = rhinoscriptsyntax.BrowseForFolder() for render_material in scriptcontext.doc.RenderMaterials: handle_render_content(render_material, target) ```
{ "source": "JesterOrNot/Algorithms", "score": 4 }
#### File: Algorithms/BST/BST.py ```python class Node: def __init__(self, value): self.left = None self.right = None self.value = value class BinaryTree(object): def __init__(self): super(BinaryTree,self).__init__() self.root = None def printInOrder(root): if not root: return printInOrder(root.left) print(root.value,end=", ") printInOrder(root.right) def printPreOrder(root): if not root: return print(root.value,end=", ") printPreOrder(root.left) printPreOrder(root.right) def printPostOrder(root): if not root: return printPostOrder(root.left) printPostOrder(root.right) print(root.value,end=", ") def findNode(target,tree,current): if target == current.value: return True elif target < current.value: if current.left is not None: current = current.left else: return False elif target >= current.value: if current.right is not None: current = current.right else: return False return findNode(target,tree,current) def insertNode(node,root): if root == None: return node elif node.value < root.value: root.left = insertNode(node,root.left) else: root.right = insertNode(node,root.right) return root def assembleTree(theList): tree = BinaryTree() tree.root = Node(theList[0]) index = 1 while index <= len(theList)-1: insertNode(Node(theList[index]),tree.root) index+=1 return(tree) tree = assembleTree([5,2,1,0,3.10,3.5,-3]) printInOrder(tree.root) print() ```
{ "source": "JesterOrNot/Chess", "score": 3 }
#### File: Chess/src/chessBoard.py ```python import matplotlib.pyplot as plt import matplotlib.image as mpimg from matplotlib.offsetbox import OffsetImage, AnnotationBbox import __init__ # imports all the piece classes pieces = __init__.Pieces() # declares the class pieces locally as 'pieces' # This function plots the image data for the sprites def board(): def getImage(path): return OffsetImage(plt.imread(path)) # This gets sprites images and puts it in a list paths = [pieces.WhitePawn1.paths, pieces.WhitePawn2.paths, pieces.WhitePawn3.paths, pieces.WhitePawn4.paths, pieces.WhitePawn5.paths, pieces.WhitePawn6.paths, pieces.WhitePawn7.paths, pieces.WhitePawn1.paths, pieces.WhiteBishop1.paths, pieces.WhiteBishop2.paths, pieces.BlackBishop1.paths, pieces.BlackBishop2.paths, pieces.WhiteRook1.paths, pieces.WhiteRook2.paths, pieces.WhiteKnight1.paths, pieces.WhiteKnight2.paths, pieces.WhiteQueen.paths, pieces.WhiteKing.paths, pieces.BlackPawn1.paths, pieces.BlackPawn2.paths, pieces.BlackPawn3.paths, pieces.BlackPawn4.paths, pieces.BlackPawn5.paths, pieces.BlackPawn6.paths, pieces.BlackPawn7.paths, pieces.BlackPawn8.paths, pieces.BlackRook1.paths, pieces.BlackRook2.paths, pieces.BlackKnight1.paths, pieces.BlackKnight2.paths, pieces.BlackQueen.paths, pieces.BlackKing.paths] # This gets each sprites x position x = [pieces.WhitePawn1.Position.get("x"), pieces.WhitePawn2.Position.get("x"), pieces.WhitePawn3.Position.get("x"), pieces.WhitePawn4.Position.get("x"), pieces.WhitePawn5.Position.get("x"), pieces.WhitePawn6.Position.get( "x"), pieces.WhitePawn7.Position.get("x"), pieces.WhitePawn8.Position.get("x"), pieces.WhiteBishop1.Position.get("x"), pieces.WhiteBishop2.Position.get("x"), pieces.BlackBishop1.Position.get("x"), pieces.BlackBishop2.Position.get("x"), pieces.WhiteRook1.Position.get("x"), pieces.WhiteRook2.Position.get("x"), pieces.WhiteKnight1.Position.get("x"), pieces.WhiteKnight2.Position.get("x"), pieces.WhiteQueen.Position.get("x"), pieces.WhiteKing.Position.get("x"), pieces.BlackPawn1.Position.get("x"), pieces.BlackPawn2.Position.get("x"), pieces.BlackPawn3.Position.get("x"), pieces.BlackPawn4.Position.get("x"), pieces.BlackPawn5.Position.get("x"), pieces.BlackPawn6.Position.get("x"), pieces.BlackPawn7.Position.get("x"), pieces.BlackPawn8.Position.get("x"), pieces.BlackRook1.Position.get("x"), pieces.BlackRook2.Position.get("x"), pieces.BlackKnight1.Position.get("x"), pieces.BlackKnight2.Position.get("x"), pieces.BlackQueen.Position.get("x"), pieces.BlackKing.Position.get("x")] # This gets the pieces y position y = [pieces.WhitePawn1.Position.get("y"), pieces.WhitePawn2.Position.get( "y"), pieces.WhitePawn3.Position.get("y"), pieces.WhitePawn4.Position.get("y"), pieces.WhitePawn5.Position.get("y"), pieces.WhitePawn6.Position.get("y"), pieces.WhitePawn7.Position.get("y"), pieces.WhitePawn8.Position.get("y"), pieces.WhiteBishop1.Position.get("y"), pieces.WhiteBishop2.Position.get("y"), pieces.BlackBishop1.Position.get("y"), pieces.BlackBishop2.Position.get("y"), pieces.WhiteRook1.Position.get("y"), pieces.WhiteRook2.Position.get("y"), pieces.WhiteKnight1.Position.get("y"), pieces.WhiteKnight2.Position.get("y"), pieces.WhiteQueen.Position.get('y'), pieces.WhiteKing.Position.get("y"), pieces.BlackPawn1.Position.get("y"), pieces.BlackPawn2.Position.get("y"), pieces.BlackPawn3.Position.get("y"), pieces.BlackPawn4.Position.get("y"), pieces.BlackPawn5.Position.get("y"), pieces.BlackPawn6.Position.get("y"), pieces.BlackPawn7.Position.get("y"), pieces.BlackPawn8.Position.get("y"), pieces.BlackRook1.Position.get("y"), pieces.BlackRook2.Position.get("y"), pieces.BlackKnight1.Position.get("y"), pieces.BlackKnight2.Position.get("y"), pieces.BlackQueen.Position.get("y"), pieces.BlackKing.Position.get("y")] fig, ax = plt.subplots() # declares that the graph will be shown as a subplot (for asthetics and to declare a variable for the subplot) # This declares that the plot is a scatter_plot ax.scatter(x, y) ### for development we show these tick marks to help visualize each square on the board plt.xticks([100,240,380,520,650,780,910,1040,1180]) plt.yticks([100,240,370,500,630,760,890,1020,1150]) plt.xticks([]) ## Uncomment this when in deployment plt.yticks([]) ## Uncomment this when in deployment # plt.grid(which='both',axis='both') # Comment this in deployment it shows the grid on the plot img = mpimg.imread('Sprites/chessBoard.png') ## Creates the background image in this case the chess board imgplot = plt.imshow(img) ## shows the board for x0, y0, path in zip(x, y, paths): ## Loops through the lists and uses zip to make a set for each piece containing the path to the image and it's respective x & y coordinate ab = AnnotationBbox(getImage(path), (x0, y0), frameon=False) ## reads the sprites ax.add_artist(ab) ### Shows the sprites plt.savefig("theBoard/chessBoard.png") ### Displays the subplot board() ```
{ "source": "JesterOrNot/ClothingID", "score": 3 }
#### File: JesterOrNot/ClothingID/model.py ```python import tensorflow as tf def ClothingID(training_images, training_labels, test_images, test_labels): """Machine learning function.""" model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(64, (3, 3), activation='relu', input_shape=(28, 28, 1)), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(64, (3, 3), activation='relu'), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation=tf.nn.relu), tf.keras.layers.Dense(10, activation=tf.nn.softmax) ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(training_images, training_labels, epochs=5) predictions = model.predict(test_images) model.save('path_to_saved_model', save_format='tf') return predictions ```
{ "source": "JesterOrNot/MathLang", "score": 3 }
#### File: MathLang/repl/repl.py ```python import sys import tty import re import os def syntax_highlight(input, keywords: dict): i = 0 splitted = input.split(" ") for f in splitted: for keyword in keywords.keys(): if re.match(keyword, f): splitted[i] = keywords.get( keyword) + re.findall(keyword, f)[0] + u"\u001b[0m" i += 1 return " ".join(splitted) def command_line(keywords: dict): tty.setraw(sys.stdin) input = "" index = 0 sys.stdout.write("\n") sys.stdout.write(u"\u001b[1000D") sys.stdout.write(u"\u001b[0K") do_print = True while True: if do_print: sys.stdout.write(">>> ") do_print = False sys.stdout.flush() char = sys.stdin.read(1) if char == ":": sys.stdout.write("\n") sys.stdout.write(u"\u001b[1000D") sys.stdout.write(u"\u001b[0K") return "" if 32 <= ord(char) <= 126: input += char if ord(char) == 127: input = input[:index-1] if ord(char) in {10, 13}: sys.stdout.write("\n") sys.stdout.write(u"\u001b[1000D") sys.stdout.write(u"\u001b[0K") sys.stdout.flush() with open("/tmp/.mlangrepl.temp", "w+") as f: f.write(input) os.system("mathlang /tmp/.mlangrepl.temp") input = "" sys.stdout.write("\n") sys.stdout.write(u"\u001b[1000D") sys.stdout.write(u"\u001b[0K") sys.stdout.flush() do_print = True continue sys.stdout.write(u"\u001b[1000D") sys.stdout.write(u"\u001b[4C") sys.stdout.write(u"\u001b[0K") sys.stdout.write(syntax_highlight(input, keywords)) if index > 0: sys.stdout.write(u"\u001b[" + str(index) + "C") sys.stdout.flush() return input command_line({"sqrt": "\u001b[38;5;198m", "log": "\u001b[38;5;198m", "say": "\u001b[38;5;198m", "sin": "\u001b[38;5;198m", "cos": "\u001b[38;5;198m", "tan": "\u001b[38;5;198m", "cbrt": "\u001b[38;5;198m", "asin": "\u001b[38;5;198m", "acos": "\u001b[38;5;198m", "atan": "\u001b[38;5;198m", "\d+": "\u001b[38;2;214;119;119m", "\+": "\u001b[38;2;112;112;112m", "-": "\u001b[38;2;112;112;112m", "\*\*?": "\u001b[38;2;112;112;112m", "/": "\u001b[38;2;112;112;112m", "%": "\u001b[38;2;112;112;112m", "\".*\"": "\u001b[38;2;26;166;228m", }) ```
{ "source": "JesterOrNot/python_calc", "score": 4 }
#### File: algeb/graph/main.py ```python print('Welcome to the graphing calculator the only option so far is graphing quadratic models(qe), exponential functions(ef)') userInt = input("What do you want to graph?: ") def choose(): if userInt in 'qe': import algeb.graph.graphQuadMod elif userInt in 'ef': import algeb.graph.graphExpFunc else: print("Error, Please try again this error may be due to mispelling on your part") choose() choose() ``` #### File: python_calc/algeb/linEquSolv.py ```python def les(): def slope(): y1 = float(input('What is y1?: ')) y2 = float(input('What is y2?: ')) x1 = float(input('What is x1?: ')) x2 = float(input('What is x2?: ')) slope = (y2 - y1)/(x2 - x1) b = ((slope * x1)*-1) + y1 print('y = {}x + {}'.format(slope, b)) slope() try: les() except ZeroDivisionError: print("You can't divide by zero silly!") #The method I used for finding the equ for b was via reorganizing # y = mx + b # -b -b # y - b = mx # -y -y # -b = mx - y # (-b)*-1 = (mx -y)*-1 # b = -mx + y ``` #### File: python_calc/algeb/median.py ```python def median3(): numbers1 = input("What numbers are we finding the median of?: ") numbers1 = numbers1.split(",") num = [] for i in numbers1: i = float(i) n = num.append(i) n1 = num.sort() z = len(num) if z % 2 == 0: median1 = num[z//2] median2 = num[z//2-1] median = (median1 + median2)/2 else: median = num[z//2] median = float(median) print(f"The Median is: {median}") median3() ``` #### File: python_calc/algeb/quad.py ```python from math import sqrt def quad(): a = float(input('What is a?: ')) b = float(input('What is b?: ')) c = float(input('What is c?: ')) xplus = ( (b * -1) + (sqrt( (b ** 2) - (4* a * c) )) ) / (2 * a) xminus = ( (b * -1) - (sqrt( (b ** 2) - (4* a * c) )) ) / (2 * a) print('x = {} or x = {}'.format(xplus, xminus)) try: quad() except ValueError(): print('Error: Tip, you cant take the square root of a negative number see if that is the issue!') ``` #### File: geom/area/AOCircle.py ```python from math import pi def aoc(): r = float(input("What is the radius?: ")) a = pi * (r ** 2) print("A = {}".format(a)) ``` #### File: python_calc/geom/main.py ```python import os print("Welcome to the geometry calculator avaliable calculators include: area finder (af), pythagTheo(pt), sin cos tan finder(sct), trigonometric table(tt)") while True: def chooseCalc(): userInt = input("What do you want to use?: ").lower() if userInt == "af": os.chdir('Area') os.system('python3 ./main.py') elif userInt == 'pt': import thagTheo elif userInt == 'sct': import geom.SinCosTan elif userInt == 'tt': import geom.trigTabl elif userInt == 'exit': exit() chooseCalc() chooseCalc() ``` #### File: python_calc/geom/SinCosTan.py ```python def sin(): o = float(input('What is the oppisite?: ')) h = float(input("What is the hypotnuse?: ")) s = o / h print("sin = {}".format(s)) def cos(): a = float(input('What is the ajacent?: ')) h = float(input("What is the hypotnuse?: ")) c = a / h print('cos = {}'.format(c)) def tan(): o = float(input("What is the oppisite?: ")) a = float(input("What is the ajacent?: ")) t = o / a print("tan = {}".format(t)) def main(): userInt = input('What are we solving for (sin cos or tan)?: ').lower() if userInt == 'sin': sin() elif userInt == 'cos': cos() elif userInt == 'tan': tan() else: print('An error has occured please try again') main() ``` #### File: python_calc/phys/accelerate.py ```python def acceleration(): initial_velocity = float(input("What is the initial velocity?: ")) final_velocity = float(input("What is the final velocity?: ")) starting_time = float(input("What is the starting time?: ")) ending_time = float(input("What is the ending time?: ")) delta_t = ending_time - starting_time delta_v = final_velocity - initial_velocity acceleration = delta_v/delta_t print(f"acceleration = {acceleration} m/s") acceleration() ``` #### File: python_calc/phys/distspeed.py ```python while True: def DSTFC(): keywordsDist = ['d', 'dis', 'dist', 'distance'] keywordsTime = ['t', 'tim', 'time', 'ti'] keywordsSpeed = ['s', 'sp', 'spe', 'spee', 'speed'] print("Welcome to the distance speed time calculator") solveFor = input("What are we solvig for? (distance(d), speed(s) or time(t): ").lower() if solveFor in keywordsDist: s = float(input("What is speed in meters/seconds?: ")) t = float(input("What is the amount of time in seconds?: ")) dist = s * t print("{} meters".format(dist)) elif solveFor in keywordsTime: d = float(input("What is the distance in meters?: ")) s = float(input("What is the speed in meters/seconds")) time = d / s print("{} seconds".format(time)) elif solveFor in keywordsSpeed: d = float(input("What is the distance in meters?: ")) t = float(input("What is the time in seconds")) speed = d / t print("{} m/s".format(speed)) DSTFC() DSTFC() ```
{ "source": "JesterOrNot/vscode-python", "score": 3 }
#### File: datascience/daemon/daemon_output.py ```python import os import sys import logging from threading import Lock log = logging.getLogger(__name__) class IORedirector: """ This class works to wrap a stream (stdout/stderr) with an additional redirect. """ def __init__(self, name, original, new_redirect, wrap_buffer=False): """ :param stream original: The stream to be wrapped (usually stdout/stderr, but could be None). :param stream new_redirect: :param bool wrap_buffer: Whether to create a buffer attribute (needed to mimick python 3 s tdout/stderr which has a buffer to write binary data). """ self._name = name self._lock = Lock() self._writing = False self._redirect_to = (new_redirect,) if wrap_buffer and hasattr(original, "buffer"): self.buffer = IORedirector( name, original.buffer, new_redirect.buffer, False ) def write(self, s): # Note that writing to the original stream may fail for some reasons # (such as trying to write something that's not a string or having it closed). with self._lock: if self._writing: return self._writing = True try: for r in self._redirect_to: if hasattr(r, "write"): r.write(s) finally: self._writing = False def isatty(self): for r in self._redirect_to: if hasattr(r, "isatty"): return r.isatty() return False def flush(self): for r in self._redirect_to: if hasattr(r, "flush"): r.flush() def __getattr__(self, name): log.info("getting attr for %s: %s", self._name, name) for r in self._redirect_to: if hasattr(r, name): return getattr(r, name) raise AttributeError(name) class CustomWriter(object): def __init__(self, name, wrap_stream, wrap_buffer, on_write=None): """ :param wrap_stream: Either sys.stdout or sys.stderr. :param bool wrap_buffer: If True the buffer attribute (which wraps writing bytes) should be wrapped. :param callable(str) on_write: Call back with the string that has been written. """ self._name = name encoding = getattr(wrap_stream, "encoding", None) if not encoding: encoding = os.environ.get("PYTHONIOENCODING", "utf-8") self.encoding = encoding if wrap_buffer: self.buffer = CustomWriter( name, wrap_stream, wrap_buffer=False, on_write=on_write ) self._on_write = on_write def flush(self): pass # no-op here def write(self, s): if s: # Need s in str if isinstance(s, bytes): s = s.decode(self.encoding, errors="replace") log.info("write to %s: %s", self._name, s) if self._on_write is not None: self._on_write(s) _stdin = sys.stdin.buffer _stdout = sys.stdout.buffer def get_io_buffers(): return _stdin, _stdout def redirect_output(stdout_handler, stderr_handler): log.info("Redirect stdout/stderr") sys._vsc_out_buffer_ = CustomWriter("stdout", sys.stdout, True, stdout_handler) sys.stdout_original = sys.stdout _stdout_redirector = sys.stdout = IORedirector( "stdout", sys.stdout, sys._vsc_out_buffer_, True ) sys._vsc_err_buffer_ = CustomWriter("stderr", sys.stderr, True, stderr_handler) sys.stderr_original = sys.stderr _stderr_redirector = sys.stderr = IORedirector( "stderr", sys.stderr, sys._vsc_err_buffer_, True ) ``` #### File: vscode-python/pythonFiles/symbolProvider.py ```python import ast import json import sys class Visitor(ast.NodeVisitor): def __init__(self): self.symbols = {"classes": [], "methods": [], "functions": []} def visit_Module(self, node): self.visitChildren(node) def visitChildren(self, node, namespace=""): for child in node.body: if isinstance(child, ast.FunctionDef): self.visitDef(child, namespace) if isinstance(child, ast.ClassDef): self.visitClassDef(child, namespace) try: if isinstance(child, ast.AsyncFunctionDef): self.visitDef(child, namespace) except Exception: pass def visitDef(self, node, namespace=""): end_position = self.getEndPosition(node) symbol = "functions" if namespace == "" else "methods" self.symbols[symbol].append(self.getDataObject(node, namespace)) def visitClassDef(self, node, namespace=""): end_position = self.getEndPosition(node) self.symbols['classes'].append(self.getDataObject(node, namespace)) if len(namespace) > 0: namespace = "{0}::{1}".format(namespace, node.name) else: namespace = node.name self.visitChildren(node, namespace) def getDataObject(self, node, namespace=""): end_position = self.getEndPosition(node) return { "namespace": namespace, "name": node.name, "range": { "start": { "line": node.lineno - 1, "character": node.col_offset }, "end": { "line": end_position[0], "character": end_position[1] } } } def getEndPosition(self, node): if not hasattr(node, 'body') or len(node.body) == 0: return (node.lineno - 1, node.col_offset) return self.getEndPosition(node.body[-1]) def provide_symbols(source): """Provides a list of all symbols in provided code. The list comprises of 3-item tuples that contain the starting line number, ending line number and whether the statement is a single line. """ tree = ast.parse(source) visitor = Visitor() visitor.visit(tree) sys.stdout.write(json.dumps(visitor.symbols)) sys.stdout.flush() if __name__ == "__main__": if len(sys.argv) == 3: contents = sys.argv[2] else: with open(sys.argv[1], "r") as source: contents = source.read() try: default_encoding = sys.getdefaultencoding() encoded_contents = contents.encode(default_encoding, 'surrogateescape') contents = encoded_contents.decode(default_encoding, 'replace') except (UnicodeError, LookupError): pass if isinstance(contents, bytes): contents = contents.decode('utf8') provide_symbols(contents) ``` #### File: testing_tools/adapter/errors.py ```python class UnsupportedToolError(ValueError): def __init__(self, tool): msg = 'unsupported tool {!r}'.format(tool) super(UnsupportedToolError, self).__init__(msg) self.tool = tool class UnsupportedCommandError(ValueError): def __init__(self, cmd): msg = 'unsupported cmd {!r}'.format(cmd) super(UnsupportedCommandError, self).__init__(msg) self.cmd = cmd ``` #### File: adapter/pytest/_cli.py ```python from __future__ import absolute_import from ..errors import UnsupportedCommandError def add_subparser(cmd, name, parent): """Add a new subparser to the given parent and add args to it.""" parser = parent.add_parser(name) if cmd == 'discover': # For now we don't have any tool-specific CLI options to add. pass else: raise UnsupportedCommandError(cmd) return parser ``` #### File: testing_tools/adapter/test_discovery.py ```python from __future__ import absolute_import, print_function import unittest from testing_tools.adapter.util import fix_path, fix_relpath from testing_tools.adapter.info import TestInfo, TestPath, ParentInfo from testing_tools.adapter.discovery import fix_nodeid, DiscoveredTests def _fix_nodeid(nodeid): nodeid = nodeid.replace('\\', '/') if not nodeid.startswith('./'): nodeid = './' + nodeid return nodeid class DiscoveredTestsTests(unittest.TestCase): def test_list(self): testroot = fix_path('/a/b/c') relfile = fix_path('./test_spam.py') tests = [ TestInfo( # missing "./": id='test_spam.py::test_each[10-10]', name='test_each[10-10]', path=TestPath( root=testroot, relfile=relfile, func='test_each', sub=['[10-10]'], ), source='{}:{}'.format(relfile, 10), markers=None, # missing "./": parentid='test_spam.py::test_each', ), TestInfo( id='test_spam.py::All::BasicTests::test_first', name='test_first', path=TestPath( root=testroot, relfile=relfile, func='All.BasicTests.test_first', sub=None, ), source='{}:{}'.format(relfile, 62), markers=None, parentid='test_spam.py::All::BasicTests', ), ] allparents= [ [(fix_path('./test_spam.py::test_each'), 'test_each', 'function'), (fix_path('./test_spam.py'), 'test_spam.py', 'file'), ('.', testroot, 'folder'), ], [(fix_path('./test_spam.py::All::BasicTests'), 'BasicTests', 'suite'), (fix_path('./test_spam.py::All'), 'All', 'suite'), (fix_path('./test_spam.py'), 'test_spam.py', 'file'), ('.', testroot, 'folder'), ], ] expected = [test._replace(id=_fix_nodeid(test.id), parentid=_fix_nodeid(test.parentid)) for test in tests] discovered = DiscoveredTests() for test, parents in zip(tests, allparents): discovered.add_test(test, parents) size = len(discovered) items = [discovered[0], discovered[1]] snapshot = list(discovered) self.maxDiff = None self.assertEqual(size, 2) self.assertEqual(items, expected) self.assertEqual(snapshot, expected) def test_reset(self): testroot = fix_path('/a/b/c') discovered = DiscoveredTests() discovered.add_test( TestInfo( id='./test_spam.py::test_each', name='test_each', path=TestPath( root=testroot, relfile='test_spam.py', func='test_each', ), source='test_spam.py:11', markers=[], parentid='./test_spam.py', ), [('./test_spam.py', 'test_spam.py', 'file'), ('.', testroot, 'folder'), ]) before = len(discovered), len(discovered.parents) discovered.reset() after = len(discovered), len(discovered.parents) self.assertEqual(before, (1, 2)) self.assertEqual(after, (0, 0)) def test_parents(self): testroot = fix_path('/a/b/c') relfile = fix_path('x/y/z/test_spam.py') tests = [ TestInfo( # missing "./", using pathsep: id=relfile + '::test_each[10-10]', name='test_each[10-10]', path=TestPath( root=testroot, relfile=fix_relpath(relfile), func='test_each', sub=['[10-10]'], ), source='{}:{}'.format(relfile, 10), markers=None, # missing "./", using pathsep: parentid=relfile + '::test_each', ), TestInfo( # missing "./", using pathsep: id=relfile + '::All::BasicTests::test_first', name='test_first', path=TestPath( root=testroot, relfile=fix_relpath(relfile), func='All.BasicTests.test_first', sub=None, ), source='{}:{}'.format(relfile, 61), markers=None, # missing "./", using pathsep: parentid=relfile + '::All::BasicTests', ), ] allparents= [ # missing "./", using pathsep: [(relfile + '::test_each', 'test_each', 'function'), (relfile, relfile, 'file'), ('.', testroot, 'folder'), ], # missing "./", using pathsep: [(relfile + '::All::BasicTests', 'BasicTests', 'suite'), (relfile + '::All', 'All', 'suite'), (relfile, 'test_spam.py', 'file'), (fix_path('x/y/z'), 'z', 'folder'), (fix_path('x/y'), 'y', 'folder'), (fix_path('./x'), 'x', 'folder'), ('.', testroot, 'folder'), ], ] discovered = DiscoveredTests() for test, parents in zip(tests, allparents): discovered.add_test(test, parents) parents = discovered.parents self.maxDiff = None self.assertEqual(parents, [ ParentInfo( id='.', kind='folder', name=testroot, ), ParentInfo( id='./x', kind='folder', name='x', root=testroot, relpath=fix_path('./x'), parentid='.', ), ParentInfo( id='./x/y', kind='folder', name='y', root=testroot, relpath=fix_path('./x/y'), parentid='./x', ), ParentInfo( id='./x/y/z', kind='folder', name='z', root=testroot, relpath=fix_path('./x/y/z'), parentid='./x/y', ), ParentInfo( id='./x/y/z/test_spam.py', kind='file', name='test_spam.py', root=testroot, relpath=fix_relpath(relfile), parentid='./x/y/z', ), ParentInfo( id='./x/y/z/test_spam.py::All', kind='suite', name='All', root=testroot, parentid='./x/y/z/test_spam.py', ), ParentInfo( id='./x/y/z/test_spam.py::All::BasicTests', kind='suite', name='BasicTests', root=testroot, parentid='./x/y/z/test_spam.py::All', ), ParentInfo( id='./x/y/z/test_spam.py::test_each', kind='function', name='test_each', root=testroot, parentid='./x/y/z/test_spam.py', ), ]) def test_add_test_simple(self): testroot = fix_path('/a/b/c') relfile = 'test_spam.py' test = TestInfo( # missing "./": id=relfile + '::test_spam', name='test_spam', path=TestPath( root=testroot, # missing "./": relfile=relfile, func='test_spam', ), # missing "./": source='{}:{}'.format(relfile, 11), markers=[], # missing "./": parentid=relfile, ) expected = test._replace(id=_fix_nodeid(test.id), parentid=_fix_nodeid(test.parentid)) discovered = DiscoveredTests() before = list(discovered), discovered.parents discovered.add_test(test, [ (relfile, relfile, 'file'), ('.', testroot, 'folder'), ]) after = list(discovered), discovered.parents self.maxDiff = None self.assertEqual(before, ([], [])) self.assertEqual(after, ([expected], [ ParentInfo( id='.', kind='folder', name=testroot, ), ParentInfo( id='./test_spam.py', kind='file', name=relfile, root=testroot, relpath=relfile, parentid='.', ), ])) def test_multiroot(self): # the first root testroot1 = fix_path('/a/b/c') relfile1 = 'test_spam.py' alltests = [ TestInfo( # missing "./": id=relfile1 + '::test_spam', name='test_spam', path=TestPath( root=testroot1, relfile=fix_relpath(relfile1), func='test_spam', ), source='{}:{}'.format(relfile1, 10), markers=[], # missing "./": parentid=relfile1, ), ] allparents = [ # missing "./": [(relfile1, 'test_spam.py', 'file'), ('.', testroot1, 'folder'), ], ] # the second root testroot2 = fix_path('/x/y/z') relfile2 = fix_path('w/test_eggs.py') alltests.extend([ TestInfo( id=relfile2 + '::BasicTests::test_first', name='test_first', path=TestPath( root=testroot2, relfile=fix_relpath(relfile2), func='BasicTests.test_first', ), source='{}:{}'.format(relfile2, 61), markers=[], parentid=relfile2 + '::BasicTests', ), ]) allparents.extend([ # missing "./", using pathsep: [(relfile2 + '::BasicTests', 'BasicTests', 'suite'), (relfile2, 'test_eggs.py', 'file'), (fix_path('./w'), 'w', 'folder'), ('.', testroot2, 'folder'), ], ]) discovered = DiscoveredTests() for test, parents in zip(alltests, allparents): discovered.add_test(test, parents) tests = list(discovered) parents = discovered.parents self.maxDiff = None self.assertEqual(tests, [ # the first root TestInfo( id='./test_spam.py::test_spam', name='test_spam', path=TestPath( root=testroot1, relfile=fix_relpath(relfile1), func='test_spam', ), source='{}:{}'.format(relfile1, 10), markers=[], parentid='./test_spam.py', ), # the secondroot TestInfo( id='./w/test_eggs.py::BasicTests::test_first', name='test_first', path=TestPath( root=testroot2, relfile=fix_relpath(relfile2), func='BasicTests.test_first', ), source='{}:{}'.format(relfile2, 61), markers=[], parentid='./w/test_eggs.py::BasicTests', ), ]) self.assertEqual(parents, [ # the first root ParentInfo( id='.', kind='folder', name=testroot1, ), ParentInfo( id='./test_spam.py', kind='file', name='test_spam.py', root=testroot1, relpath=fix_relpath(relfile1), parentid='.', ), # the secondroot ParentInfo( id='.', kind='folder', name=testroot2, ), ParentInfo( id='./w', kind='folder', name='w', root=testroot2, relpath=fix_path('./w'), parentid='.', ), ParentInfo( id='./w/test_eggs.py', kind='file', name='test_eggs.py', root=testroot2, relpath=fix_relpath(relfile2), parentid='./w', ), ParentInfo( id='./w/test_eggs.py::BasicTests', kind='suite', name='BasicTests', root=testroot2, parentid='./w/test_eggs.py', ), ]) def test_doctest(self): testroot = fix_path('/a/b/c') doctestfile = fix_path('./x/test_doctest.txt') relfile = fix_path('./x/y/z/test_eggs.py') alltests = [ TestInfo( id=doctestfile + '::test_doctest.txt', name='test_doctest.txt', path=TestPath( root=testroot, relfile=doctestfile, func=None, ), source='{}:{}'.format(doctestfile, 0), markers=[], parentid=doctestfile, ), # With --doctest-modules TestInfo( id=relfile + '::test_eggs', name='test_eggs', path=TestPath( root=testroot, relfile=relfile, func=None, ), source='{}:{}'.format(relfile, 0), markers=[], parentid=relfile, ), TestInfo( id=relfile + '::test_eggs.TestSpam', name='test_eggs.TestSpam', path=TestPath( root=testroot, relfile=relfile, func=None, ), source='{}:{}'.format(relfile, 12), markers=[], parentid=relfile, ), TestInfo( id=relfile + '::test_eggs.TestSpam.TestEggs', name='test_eggs.TestSpam.TestEggs', path=TestPath( root=testroot, relfile=relfile, func=None, ), source='{}:{}'.format(relfile, 27), markers=[], parentid=relfile, ), ] allparents = [ [(doctestfile, 'test_doctest.txt', 'file'), (fix_path('./x'), 'x', 'folder'), ('.', testroot, 'folder'), ], [(relfile, 'test_eggs.py', 'file'), (fix_path('./x/y/z'), 'z', 'folder'), (fix_path('./x/y'), 'y', 'folder'), (fix_path('./x'), 'x', 'folder'), ('.', testroot, 'folder'), ], [(relfile, 'test_eggs.py', 'file'), (fix_path('./x/y/z'), 'z', 'folder'), (fix_path('./x/y'), 'y', 'folder'), (fix_path('./x'), 'x', 'folder'), ('.', testroot, 'folder'), ], [(relfile, 'test_eggs.py', 'file'), (fix_path('./x/y/z'), 'z', 'folder'), (fix_path('./x/y'), 'y', 'folder'), (fix_path('./x'), 'x', 'folder'), ('.', testroot, 'folder'), ], ] expected = [test._replace(id=_fix_nodeid(test.id), parentid=_fix_nodeid(test.parentid)) for test in alltests] discovered = DiscoveredTests() for test, parents in zip(alltests, allparents): discovered.add_test(test, parents) tests = list(discovered) parents = discovered.parents self.maxDiff = None self.assertEqual(tests, expected) self.assertEqual(parents, [ ParentInfo( id='.', kind='folder', name=testroot, ), ParentInfo( id='./x', kind='folder', name='x', root=testroot, relpath=fix_path('./x'), parentid='.', ), ParentInfo( id='./x/test_doctest.txt', kind='file', name='test_doctest.txt', root=testroot, relpath=fix_path(doctestfile), parentid='./x', ), ParentInfo( id='./x/y', kind='folder', name='y', root=testroot, relpath=fix_path('./x/y'), parentid='./x', ), ParentInfo( id='./x/y/z', kind='folder', name='z', root=testroot, relpath=fix_path('./x/y/z'), parentid='./x/y', ), ParentInfo( id='./x/y/z/test_eggs.py', kind='file', name='test_eggs.py', root=testroot, relpath=fix_relpath(relfile), parentid='./x/y/z', ), ]) def test_nested_suite_simple(self): testroot = fix_path('/a/b/c') relfile = fix_path('./test_eggs.py') alltests = [ TestInfo( id=relfile + '::TestOuter::TestInner::test_spam', name='test_spam', path=TestPath( root=testroot, relfile=relfile, func='TestOuter.TestInner.test_spam', ), source='{}:{}'.format(relfile, 10), markers=None, parentid=relfile + '::TestOuter::TestInner', ), TestInfo( id=relfile + '::TestOuter::TestInner::test_eggs', name='test_eggs', path=TestPath( root=testroot, relfile=relfile, func='TestOuter.TestInner.test_eggs', ), source='{}:{}'.format(relfile, 21), markers=None, parentid=relfile + '::TestOuter::TestInner', ), ] allparents= [ [(relfile + '::TestOuter::TestInner', 'TestInner', 'suite'), (relfile + '::TestOuter', 'TestOuter', 'suite'), (relfile, 'test_eggs.py', 'file'), ('.', testroot, 'folder'), ], [(relfile + '::TestOuter::TestInner', 'TestInner', 'suite'), (relfile + '::TestOuter', 'TestOuter', 'suite'), (relfile, 'test_eggs.py', 'file'), ('.', testroot, 'folder'), ], ] expected = [test._replace(id=_fix_nodeid(test.id), parentid=_fix_nodeid(test.parentid)) for test in alltests] discovered = DiscoveredTests() for test, parents in zip(alltests, allparents): discovered.add_test(test, parents) tests = list(discovered) parents = discovered.parents self.maxDiff = None self.assertEqual(tests, expected) self.assertEqual(parents, [ ParentInfo( id='.', kind='folder', name=testroot, ), ParentInfo( id='./test_eggs.py', kind='file', name='test_eggs.py', root=testroot, relpath=fix_relpath(relfile), parentid='.' ), ParentInfo( id='./test_eggs.py::TestOuter', kind='suite', name='TestOuter', root=testroot, parentid='./test_eggs.py', ), ParentInfo( id='./test_eggs.py::TestOuter::TestInner', kind='suite', name='TestInner', root=testroot, parentid='./test_eggs.py::TestOuter', ), ]) ```
{ "source": "jesterpm/pyIRC", "score": 2 }
#### File: jesterpm/pyIRC/autoexec.py ```python import re import irc import fnmatch def AutoexecReload(old_ax): ax = Autoexec() for (context, conf) in old_ax.networks.items(): context.rmAddon(old_ax) context.addAddon(ax, **conf.__dict__) return ax class Autoexec(object): def __init__(self): self.networks = {} self._rejoinchannels = {} # Saved channels for when a connection is lost def onAddonAdd(self, context, label, onconnect=[], onregister=[], autojoin=[], usermodes=None, nsautojoin=[], nsmatch=None, wallet=None, opername=None, opermodes=None, snomasks=None, operexec=None, operjoin=[], autorejoin=True): labels = [v.label for v in self.networks.values()] if label in labels: raise BaseException, "Label already exists" if context in self.networks.keys(): raise BaseException, "Network already exists" self.networks[context] = irc.Config( self, label=label, onconnect=list(onconnect), onregister=list(onregister), autojoin=irc.ChanList(autojoin, context=context), usermodes=usermodes, nsautojoin=irc.ChanList(nsautojoin, context=context), nsmatch=nsmatch, wallet=wallet, opername=opername, opermodes=opermodes, snomasks=snomasks, operexec=operexec, operjoin=irc.ChanList(operjoin, context=context), autorejoin=autorejoin) self._rejoinchannels[context] = None return self.networks[context] def onDisconnect(self, context, expected): conf = self.networks[context] if conf.autorejoin and not expected and context.identity and context.identity.channels: self._rejoinchannels[context] = irc.ChanList( context.identity.channels, context=context) # Store a *copy* of the list of channels def onQuit(self, context, user, quitmsg): if user == context.identity and not context._quitexpected: # Bot received a QUIT message for itself, and was not expected. self.onDisconnect(context, False) def onAddonRem(self, context): del self.networks[context], self._rejoinchannels[context] def onConnect(self, context): conf = self.networks[context] if conf.onconnect: for line in conf.onconnect: context.raw(line, origin=self) def onRegistered(self, context): conf = self.networks[context] if conf.onregister: for line in conf.onregister: context.raw(line, origin=self) if conf.usermodes: context.raw("MODE %s %s" % (context.identity.nick, conf.usermodes), origin=self) if conf.opername and conf.wallet and "%s/opers/%s" % (conf.label, conf.opername) in conf.wallet.keys(): context.raw("OPER %s %s" % (conf.opername, conf.wallet["%s/opers/%s" % (conf.label, conf.opername)]), origin=self) if conf.autojoin: conf.autojoin.join(origin=self) if conf.autorejoin and self._rejoinchannels[context]: rejoin = irc.ChanList([channel for channel in self._rejoinchannels[ context] if channel not in conf.autojoin + conf.nsautojoin + conf.operjoin], context=context) if len(rejoin): rejoin.join(origin=self) self._rejoinchannels[context] = None def on381(self, context, line, origin, target, params, extinfo): conf = self.networks[context] if conf.operexec: for line in conf.operexec: context.raw(line, origin=self) if conf.opermodes: context.raw("MODE %s %s" % (context.identity.nick, conf.opermodes), origin=self) if conf.snomasks: context.raw("MODE %s +s %s" % (context.identity.nick, conf.snomasks), origin=self) if conf.operjoin: conf.operjoin.join(origin=self) def onPrivNotice(self, context, origin, msg): conf = self.networks[context] if type(origin) == irc.User and origin.nick.lower() == "nickserv": if re.match("This nickname is registered( and protected)?", msg) and (not conf.nsmatch or fnmatch.fnmatch("%s!%s@%s" % (origin.nick, origin.username, origin.host), conf.nsmatch)) and conf.wallet and "%s/NickServ/%s" % (conf.label, context.identity.nick.lower()) in conf.wallet.keys(): origin.msg("identify %s" % conf.wallet["%s/NickServ/%s" % (conf.label, context.identity.nick.lower())]) if re.match("You are now identified", msg): if conf.nsautojoin: conf.nsautojoin.join(origin=self) def on900(self, context, line, origin, target, params, extinfo): conf = self.networks[context] if conf.nsautojoin: conf.nsautojoin.join(origin=self) ``` #### File: jesterpm/pyIRC/modjson.py ```python import json import inspect import re import importlib import collections import inspect import new from json.decoder import errmsg from json.encoder import py_encode_basestring_ascii, ESCAPE, ESCAPE_ASCII, HAS_UTF8, ESCAPE_DCT, INFINITY, FLOAT_REPR, encode_basestring, encode_basestring_ascii FLAGS = re.VERBOSE | re.MULTILINE | re.DOTALL NUMBER_RE = re.compile(r'(-?(?:0|[1-9]\d*))(\.\d+)?([eE][-+]?\d+)?', FLAGS) REF_RE = re.compile( r'<([A-Z0-9_]+(?:\[[0-9]+(?:,[0-9]+)*\])?(?:\.[A-Z0-9_]+(?:\[[0-9]+(?:,[0-9]+)*\])?)*)>', flags=FLAGS | re.I) PATH_RE = re.compile( r'([A-Z0-9_]+)(?:\[([0-9]+(?:,[0-9]+)*)\])?', flags=FLAGS | re.I) WHITESPACE = re.compile(r'[ \t\n\r]*', FLAGS) WHITESPACE_STR = ' \t\n\r' match_number = NUMBER_RE.match match_reference = REF_RE.match datetime_regex = re.compile( '\"dt\((\d{4})-(\d{2})-(\d{2})T(\d{2}):(\d{2}):(\d{2})Z\)\"') timedelta_regex = re.compile('\"td\((\d+)\)\"') #parse_object = context.parse_object #parse_array = context.parse_array #parse_string = context.parse_string #match_number = NUMBER_RE.match #match_reference = REF_RE.match #encoding = context.encoding #strict = context.strict #parse_float = context.parse_float #parse_int = context.parse_int #parse_constant = context.parse_constant #object_hook = context.object_hook #object_pairs_hook = context.object_pairs_hook class ModJSONDecoder(json.JSONDecoder): def __init__(self, encoding=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, strict=True, object_pairs_hook=None): """``encoding`` determines the encoding used to interpret any ``str`` objects decoded by this instance (utf-8 by default). It has no effect when decoding ``unicode`` objects. Note that currently only encodings that are a superset of ASCII work, strings of other encodings should be passed in as ``unicode``. ``object_hook``, if specified, will be called with the result of every JSON object decoded and its return value will be used in place of the given ``dict``. This can be used to provide custom deserializations (e.g. to support JSON-RPC class hinting). ``object_pairs_hook``, if specified will be called with the result of every JSON object decoded with an ordered list of pairs. The return value of ``object_pairs_hook`` will be used instead of the ``dict``. This feature can be used to implement custom decoders that rely on the order that the key and value pairs are decoded (for example, collections.OrderedDict will remember the order of insertion). If ``object_hook`` is also defined, the ``object_pairs_hook`` takes priority. ``parse_float``, if specified, will be called with the string of every JSON float to be decoded. By default this is equivalent to float(num_str). This can be used to use another datatype or parser for JSON floats (e.g. decimal.Decimal). ``parse_int``, if specified, will be called with the string of every JSON int to be decoded. By default this is equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers (e.g. float). ``parse_constant``, if specified, will be called with one of the following strings: -Infinity, Infinity, NaN. This can be used to raise an exception if invalid JSON numbers are encountered. If ``strict`` is false (true is the default), then control characters will be allowed inside strings. Control characters in this context are those with character codes in the 0-31 range, including ``'\\t'`` (tab), ``'\\n'``, ``'\\r'`` and ``'\\0'``. """ self.encoding = encoding self.object_pairs_hook = object_pairs_hook self.parse_float = parse_float or float self.parse_int = parse_int or int self.parse_constant = parse_constant or json.decoder._CONSTANTS.__getitem__ self.strict = strict self.parse_string = json.decoder.scanstring self.object_dict_hook = None def object_hook(self, d): if 'class' in d: class_path = d.pop('class') modname, clsname = class_path.rsplit(".", 1) #module_name = d.pop('__module__') module = __import__(modname) class_ = getattr(module, clsname) args = dict((key.encode('ascii'), value) for key, value in d.items()) inst = class_(**args) else: inst = d return inst def parse_object(self, s_and_end, root, working, _w=WHITESPACE.match, _ws=WHITESPACE_STR): s, end = s_and_end pairs = [] pairs_append = pairs.append # Use a slice to prevent IndexError from being raised, the following # check will raise a more specific ValueError if the string is empty nextchar = s[end:end + 1] # Normally we expect nextchar == '"' if nextchar != '"': if nextchar in _ws: end = _w(s, end).end() nextchar = s[end:end + 1] # Trivial empty object if nextchar == '}': if self.object_dict_hook is not None: result = self.object_dict_hook(working) return result, end + 1 if self.object_hook is not None: working = self.object_hook(working) return working, end + 1 elif nextchar != '"': raise ValueError(errmsg( "Expecting property name enclosed in double quotes", s, end)) end += 1 while True: key, end = self.parse_string(s, end) # To skip some function call overhead we optimize the fast paths where # the JSON key separator is ": " or just ":". if s[end:end + 1] != ':': end = _w(s, end).end() if s[end:end + 1] != ':': raise ValueError(errmsg("Expecting ':' delimiter", s, end)) end += 1 try: if s[end] in _ws: end += 1 if s[end] in _ws: end = _w(s, end + 1).end() except IndexError: pass try: nextchar = s[end] except IndexError: raise ValueError(errmsg("Expecting object", s, end)) if nextchar == '{': nextitem = {} elif nextchar == '[': nextitem = [] else: nextitem = None working[key] = nextitem try: value, end = self.scan_once(s, end, root, nextitem) except StopIteration: raise ValueError(errmsg("Expecting object", s, end)) # pairs_append((key, value)) working[key] = value try: nextchar = s[end] if nextchar in _ws: end = _w(s, end + 1).end() nextchar = s[end] except IndexError: nextchar = '' end += 1 if nextchar == '}': break elif nextchar != ',': raise ValueError(errmsg("Expecting ',' delimiter", s, end - 1)) try: nextchar = s[end] if nextchar in _ws: end += 1 nextchar = s[end] if nextchar in _ws: end = _w(s, end + 1).end() nextchar = s[end] except IndexError: nextchar = '' end += 1 if nextchar != '"': raise ValueError(errmsg( "Expecting property name enclosed in double quotes", s, end - 1)) if self.object_pairs_hook is not None: result = self.object_dict_hook(dict) return result, end if self.object_hook is not None: working = self.object_hook(working) return working, end def parse_array(self, s_and_end, root, working, _w=WHITESPACE.match, _ws=WHITESPACE_STR): s, end = s_and_end nextchar = s[end:end + 1] if nextchar in _ws: end = _w(s, end + 1).end() nextchar = s[end:end + 1] # Look-ahead for trivial empty array if nextchar == ']': return working, end + 1 _append = working.append while True: try: nextchar = s[end] except IndexError: raise ValueError(errmsg("Expecting object", s, end)) if nextchar == '{': nextitem = {} elif nextchar == '[': nextitem = [] else: nextitem = None _append(nextitem) try: value, end = self.scan_once(s, end, root, nextitem) except StopIteration: raise ValueError(errmsg("Expecting object", s, end)) if value is not nextitem: del working[-1] _append(value) nextchar = s[end:end + 1] if nextchar in _ws: end = _w(s, end + 1).end() nextchar = s[end:end + 1] end += 1 if nextchar == ']': break elif nextchar != ',': raise ValueError(errmsg("Expecting ',' delimiter", s, end)) try: if s[end] in _ws: end += 1 if s[end] in _ws: end = _w(s, end + 1).end() except IndexError: pass return working, end def scan_once(self, string, idx, root, working): try: nextchar = string[idx] except IndexError: raise StopIteration if nextchar == '"': return self.parse_string(string, idx + 1) elif nextchar == '{': return self.parse_object((string, idx + 1), root, working) elif nextchar == '[': return self.parse_array((string, idx + 1), root, working) elif nextchar == 'n' and string[idx:idx + 4] == 'null': return None, idx + 4 elif nextchar == 't' and string[idx:idx + 4] == 'true': return True, idx + 4 elif nextchar == 'f' and string[idx:idx + 5] == 'false': return False, idx + 5 m = match_number(string, idx) if m is not None: integer, frac, exp = m.groups() if frac or exp: res = self.parse_float(integer + (frac or '') + (exp or '')) else: res = self.parse_int(integer) return res, m.end() r = match_reference(string, idx) if r is not None: refname = r.groups() obj = root for name in refname[0].split("."): name, indices = PATH_RE.match(name).groups() if name: if type(obj) == dict: obj = obj[name] elif type(obj) == list: obj = obj[int(name)] else: obj = getattr(obj, name) if indices: for index in indices.split("."): obj = obj[int(index)] return obj, r.end() elif nextchar == 'N' and string[idx:idx + 3] == 'NaN': return self.parse_constant('NaN'), idx + 3 elif nextchar == 'I' and string[idx:idx + 8] == 'Infinity': return self.parse_constant('Infinity'), idx + 8 elif nextchar == '-' and string[idx:idx + 9] == '-Infinity': return self.parse_constant('-Infinity'), idx + 9 else: raise StopIteration def decode(self, s, _w=WHITESPACE.match): """Return the Python representation of ``s`` (a ``str`` or ``unicode`` instance containing a JSON document) """ obj, end = self.raw_decode(s, idx=_w(s, 0).end()) end = _w(s, end).end() if end != len(s): raise ValueError(errmsg("Extra data", s, end, len(s))) return obj def raw_decode(self, s, idx=0): """Decode a JSON document from ``s`` (a ``str`` or ``unicode`` beginning with a JSON document) and return a 2-tuple of the Python representation and the index in ``s`` where the document ended. This can be used to decode a JSON document from a string that may have extraneous data at the end. """ try: nextchar = s[idx] except IndexError: raise ValueError(errmsg("Expecting object", s, idx)) if nextchar == '{': root = {} elif nextchar == '[': root = [] else: root = None try: obj, end = self.scan_once(s, idx, root, root) except StopIteration: raise ValueError("No JSON object could be decoded") return obj, end class ModJSONEncoder(object): """Extensible JSON <http://json.org> encoder for Python data structures. Supports the following objects and types by default: +-------------------+---------------+ | Python | JSON | +===================+===============+ | dict | object | +-------------------+---------------+ | list, tuple | array | +-------------------+---------------+ | str, unicode | string | +-------------------+---------------+ | int, long, float | number | +-------------------+---------------+ | True | true | +-------------------+---------------+ | False | false | +-------------------+---------------+ | None | null | +-------------------+---------------+ To extend this to recognize other objects, subclass and implement a ``.default()`` method with another method that returns a serializable object for ``o`` if possible, otherwise it should call the superclass implementation (to raise ``TypeError``). """ item_separator = ', ' key_separator = ': ' def __init__(self, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, encoding='utf-8', default=None): """Constructor for JSONEncoder, with sensible defaults. If skipkeys is false, then it is a TypeError to attempt encoding of keys that are not str, int, long, float or None. If skipkeys is True, such items are simply skipped. If *ensure_ascii* is true (the default), all non-ASCII characters in the output are escaped with \uXXXX sequences, and the results are str instances consisting of ASCII characters only. If ensure_ascii is False, a result may be a unicode instance. This usually happens if the input contains unicode strings or the *encoding* parameter is used. If check_circular is true, then lists, dicts, and custom encoded objects will be checked for circular references during encoding to prevent an infinite recursion (which would cause an OverflowError). Otherwise, no such check takes place. If allow_nan is true, then NaN, Infinity, and -Infinity will be encoded as such. This behavior is not JSON specification compliant, but is consistent with most JavaScript based encoders and decoders. Otherwise, it will be a ValueError to encode such floats. If sort_keys is true, then the output of dictionaries will be sorted by key; this is useful for regression tests to ensure that JSON serializations can be compared on a day-to-day basis. If indent is a non-negative integer, then JSON array elements and object members will be pretty-printed with that indent level. An indent level of 0 will only insert newlines. None is the most compact representation. Since the default item separator is ', ', the output might include trailing whitespace when indent is specified. You can use separators=(',', ': ') to avoid this. If specified, separators should be a (item_separator, key_separator) tuple. The default is (', ', ': '). To get the most compact JSON representation you should specify (',', ':') to eliminate whitespace. If specified, default is a function that gets called for objects that can't otherwise be serialized. It should return a JSON encodable version of the object or raise a ``TypeError``. If encoding is not None, then all input strings will be transformed into unicode using that encoding prior to JSON-encoding. The default is UTF-8. """ self.skipkeys = skipkeys self.ensure_ascii = ensure_ascii self.check_circular = check_circular self.allow_nan = allow_nan self.sort_keys = sort_keys self.indent = indent if separators is not None: self.item_separator, self.key_separator = separators if default is not None: self.default = default self.encoding = encoding if self.ensure_ascii: self._encoder = encode_basestring_ascii else: self._encoder = encode_basestring if self.encoding != 'utf-8': def _encoder(o, _orig_encoder=self._encoder, _encoding=self.encoding): if isinstance(o, str): o = o.decode(_encoding) return _orig_encoder(o) self._encoder = _encoder def default(self, o, refs, path): """Implement this method in a subclass such that it returns a serializable object for ``o``, or calls the base implementation (to raise a ``TypeError``). For example, to support arbitrary iterators, you could implement default like this:: def default(self, o): try: iterable = iter(o) except TypeError: pass else: return list(iterable) # Let the base class default method raise the TypeError return JSONEncoder.default(self, o) """ if "json" in dir(o) and callable(o.json): conf = o.json() else: conf = collections.OrderedDict() conf["class"] = "{o.__class__.__module__}.{o.__class__.__name__}".format( **vars()) if "__init__" in dir(o) and type(o.__init__) == new.instancemethod: try: arginspect = inspect.getargspec(o.__init__) except: raise TypeError(repr(o) + " is not JSON serializable") if arginspect.defaults: requiredargs = arginspect.args[ 1:len(arginspect.args) - len(arginspect.defaults)] argswithdefaults = arginspect.args[ len(arginspect.args) - len(arginspect.defaults):] defaultvalues = arginspect.defaults else: requiredargs = arginspect.args[1:] argswithdefaults = [] defaultvalues = [] for key in requiredargs: try: conf[key] = getattr(o, key) except AttributeError: print key print refs.keys() raise TypeError( repr(o) + " is not JSON serializable (Cannot recover required argument '%s')" % key) for key, default in zip(argswithdefaults, defaultvalues): try: value = getattr(o, key) if value != default: conf[key] = getattr(o, key) except AttributeError: pass if path and not isinstance(conf, (int, long, bool, basestring)) and conf is not None: pathstr = str(path[0]) numindices = [] for index in path[1:]: if type(index) == int: numindices.append(str(index)) else: if numindices: pathstr += "[%s]" % (",".join(numindices)) numindices = [] pathstr += ".%s" % index if numindices: pathstr += "[%s]" % (",".join(numindices)) numindices = [] if pathstr not in refs.keys(): refs[pathstr] = o return conf def encode(self, o): """Return a JSON string representation of a Python data structure. >>> JSONEncoder().encode({"foo": ["bar", "baz"]}) '{"foo": ["bar", "baz"]}' """ # This is for extremely simple cases and benchmarks. if isinstance(o, basestring): if isinstance(o, str): _encoding = self.encoding if (_encoding is not None and not (_encoding == 'utf-8')): o = o.decode(_encoding) if self.ensure_ascii: return encode_basestring_ascii(o) else: return encode_basestring(o) # This doesn't pass the iterator directly to ''.join() because the # exceptions aren't as detailed. The list call should be roughly # equivalent to the PySequence_Fast that ''.join() would do. chunks = self.iterencode(o, {}, _one_shot=True) if not isinstance(chunks, (list, tuple)): chunks = list(chunks) return ''.join(chunks) def iterencode(self, o, refs, _one_shot=False): """Encode the given object and yield each string representation as available. For example:: for chunk in JSONEncoder().iterencode(bigobject): mysocket.write(chunk) """ if self.check_circular: markers = {} else: markers = None def floatstr(o, allow_nan=self.allow_nan, _repr=FLOAT_REPR, _inf=INFINITY, _neginf=-INFINITY): # Check for specials. Note that this type of test is processor # and/or platform-specific, so do tests which don't depend on the # internals. if o != o: text = 'NaN' elif o == _inf: text = 'Infinity' elif o == _neginf: text = '-Infinity' else: return _repr(o) if not allow_nan: raise ValueError( "Out of range float values are not JSON compliant: " + repr(o)) return text # if (_one_shot and c_make_encoder is not None # and self.indent is None and not self.sort_keys): #_iterencode = c_make_encoder( #markers, self.default, _encoder, self.indent, #self.key_separator, self.item_separator, self.sort_keys, # self.skipkeys, self.allow_nan) # else: #_iterencode = _make_iterencode( #markers, self.default, _encoder, self.indent, floatstr, #self.key_separator, self.item_separator, self.sort_keys, # self.skipkeys, _one_shot) return self._iterencode(o, 0, markers, refs, ()) def _iterencode(self, o, _current_indent_level, markers, refs, path): if isinstance(o, basestring): yield self._encoder(o) elif o is None: yield 'null' elif o is True: yield 'true' elif o is False: yield 'false' elif isinstance(o, (int, long)): yield str(o) elif isinstance(o, float): yield _floatstr(o) else: ref = self._iterencode_ref( o, _current_indent_level, markers, refs, path) if ref: yield ref elif isinstance(o, (list, tuple)) and "json" not in dir(o): for chunk in self._iterencode_list(o, _current_indent_level, markers, refs, path): yield chunk elif isinstance(o, dict) and "json" not in dir(o): for chunk in self._iterencode_dict(o, _current_indent_level, markers, refs, path): yield chunk else: if markers is not None: markerid = id(o) if markerid in markers: raise ValueError("Circular reference detected") markers[markerid] = o o = self.default(o, refs, path) for chunk in self._iterencode(o, _current_indent_level, markers, refs, path): yield chunk if markers is not None: del markers[markerid] def _iterencode_ref(self, o, _current_indent_level, markers, refs, path): for key, value in refs.items(): if value is o: return "<%s>" % key def _iterencode_list(self, lst, _current_indent_level, markers, refs, path): if path: pathstr = str(path[0]) numindices = [] for index in path[1:]: if type(index) == int: numindices.append(str(index)) else: if numindices: pathstr += "[%s]" % (",".join(numindices)) numindices = [] pathstr += ".%s" % index if numindices: pathstr += "[%s]" % (",".join(numindices)) numindices = [] if pathstr not in refs.keys(): refs[pathstr] = lst if not lst: yield '[]' return if markers is not None: markerid = id(lst) if markerid in markers: raise ValueError("Circular reference detected") markers[markerid] = lst buf = '[' if self.indent is not None: _current_indent_level += 1 newline_indent = '\n' + \ (' ' * (self.indent * _current_indent_level)) separator = self.item_separator + newline_indent buf += newline_indent else: newline_indent = None separator = self.item_separator first = True for (k, value) in enumerate(lst): if first: first = False else: buf = separator if isinstance(value, basestring): yield buf + self._encoder(value) elif value is None: yield buf + 'null' elif value is True: yield buf + 'true' elif value is False: yield buf + 'false' elif isinstance(value, (int, long)): yield buf + str(value) elif isinstance(value, float): yield buf + _floatstr(value) else: ref = self._iterencode_ref( value, _current_indent_level, markers, refs, path) if ref and False: yield buf + ref else: yield buf if isinstance(value, (list, tuple)) and "json" not in dir(value): chunks = self._iterencode_list( value, _current_indent_level, markers, refs, path + (k,)) elif isinstance(value, dict) and "json" not in dir(value): chunks = self._iterencode_dict( value, _current_indent_level, markers, refs, path + (k,)) else: chunks = self._iterencode( value, _current_indent_level, markers, refs, path + (k,)) for chunk in chunks: yield chunk if newline_indent is not None: _current_indent_level -= 1 yield '\n' + (' ' * (self.indent * _current_indent_level)) yield ']' if markers is not None: del markers[markerid] def _iterencode_dict(self, dct, _current_indent_level, markers, refs, path): if path: pathstr = str(path[0]) numindices = [] for index in path[1:]: if type(index) == int: numindices.append(str(index)) else: if numindices: pathstr += "[%s]" % (",".join(numindices)) numindices = [] pathstr += ".%s" % index if numindices: pathstr += "[%s]" % (",".join(numindices)) numindices = [] if pathstr not in refs.keys(): refs[pathstr] = dct if not dct: yield '{}' return if markers is not None: markerid = id(dct) if markerid in markers: raise ValueError("Circular reference detected") markers[markerid] = dct yield '{' if self.indent is not None: _current_indent_level += 1 newline_indent = '\n' + \ (' ' * (self.indent * _current_indent_level)) item_separator = self.item_separator + newline_indent yield newline_indent else: newline_indent = None item_separator = self.item_separator first = True if self.sort_keys: items = sorted(dct.items(), key=lambda kv: kv[0]) else: items = dct.iteritems() for key, value in items: if isinstance(key, basestring): pass # JavaScript is weakly typed for these, so it makes sense to # also allow them. Many encoders seem to do something like this. elif isinstance(key, float): key = _floatstr(key) elif key is True: key = 'true' elif key is False: key = 'false' elif key is None: key = 'null' elif isinstance(key, (int, long)): key = str(key) elif self.skipkeys: continue else: raise TypeError("key " + repr(key) + " is not a string") if first: first = False else: yield item_separator yield self._encoder(key) yield self.key_separator if isinstance(value, basestring): yield self._encoder(value) elif value is None: yield 'null' elif value is True: yield 'true' elif value is False: yield 'false' elif isinstance(value, (int, long)): yield str(value) elif isinstance(value, float): yield _floatstr(value) else: ref = self._iterencode_ref( value, _current_indent_level, markers, refs, path) if ref: yield ref else: if isinstance(value, (list, tuple)) and "json" not in dir(value): chunks = self._iterencode_list( value, _current_indent_level, markers, refs, path + (key,)) elif isinstance(value, dict) and "json" not in dir(value): chunks = self._iterencode_dict( value, _current_indent_level, markers, refs, path + (key,)) else: chunks = self._iterencode( value, _current_indent_level, markers, refs, path + (key,)) for chunk in chunks: yield chunk if newline_indent is not None: _current_indent_level -= 1 yield '\n' + (' ' * (self.indent * _current_indent_level)) yield '}' if markers is not None: del markers[markerid] ```
{ "source": "jestersimpps/py-evm", "score": 2 }
#### File: evm/db/__init__.py ```python import os from evm.utils.module_loading import ( import_string, ) DEFAULT_DB_BACKEND = 'evm.db.backends.memory.MemoryDB' def get_db_backend_class(import_path=None): if import_path is None: import_path = os.environ.get( 'CHAIN_DB_BACKEND_CLASS', DEFAULT_DB_BACKEND, ) return import_string(import_path) def get_db_backend(import_path=None, **init_kwargs): backend_class = get_db_backend_class(import_path) return backend_class(**init_kwargs) ``` #### File: evm/db/journal.py ```python import uuid from cytoolz import ( merge, ) from evm.db.backends.base import BaseDB from evm.exceptions import ValidationError class Journal(object): """ A Journal is an ordered list of checkpoints. A checkpoint is a dictionary of database keys and values. The values are the "original" value of that key at the time the checkpoint was created. Checkpoints are referenced by a random uuid4. """ checkpoints = None def __init__(self): # contains an array of `uuid4` instances self.checkpoints = [] # contains a mapping from all of the `uuid4` in the `checkpoints` array # to a dictionary of key:value pairs wher the `value` is the original # value for the given key at the moment this checkpoint was created. self.journal_data = {} @property def latest_id(self): """ Returns the checkpoint_id of the latest checkpoint """ return self.checkpoints[-1] @property def latest(self): """ Returns the dictionary of db keys and values for the latest checkpoint. """ return self.journal_data[self.latest_id] @latest.setter def latest(self, value): """ Setter for updating the *latest* checkpoint. """ self.journal_data[self.latest_id] = value def add(self, key, value): """ Adds the given key and value to the latest checkpoint. """ if not self.checkpoints: # If no checkpoints exist we don't need to track history. return elif key in self.latest: # If the key is already in the latest checkpoint we should not # overwrite it. return self.latest[key] = value def create_checkpoint(self): """ Creates a new checkpoint. Checkpoints are referenced by a random uuid4 to prevent collisions between multiple checkpoints. """ checkpoint_id = uuid.uuid4() self.checkpoints.append(checkpoint_id) self.journal_data[checkpoint_id] = {} return checkpoint_id def pop_checkpoint(self, checkpoint_id): """ Returns all changes from the given checkpoint. This includes all of the changes from any subsequent checkpoints, giving precidence to earlier checkpoints. """ idx = self.checkpoints.index(checkpoint_id) # update the checkpoint list checkpoint_ids = self.checkpoints[idx:] self.checkpoints = self.checkpoints[:idx] # we pull all of the checkpoints *after* the checkpoint we are # reverting to and collapse them to a single set of keys that need to # be reverted (giving precidence to earlier checkpoints). revert_data = merge(*( self.journal_data.pop(c_id) for c_id in reversed(checkpoint_ids) )) return dict(revert_data.items()) def commit_checkpoint(self, checkpoint_id): """ Collapses all changes for the givent checkpoint into the previous checkpoint if it exists. """ changes_to_merge = self.pop_checkpoint(checkpoint_id) if self.checkpoints: # we only have to merge the changes into the latest checkpoint if # there is one. self.latest = merge( changes_to_merge, self.latest, ) def __contains__(self, value): return value in self.journal_data class JournalDB(BaseDB): """ A wrapper around the basic DB objects that keeps a journal of all changes. Each time a snapshot is taken, the underlying journal creates a new checkpoint. The journal then keeps track of the original value for any keys changed. Reverting to a checkpoint involves merging the original key data from any subsequent checkpoints into the given checkpoint giving precidence earlier checkpoints. Then the keys from this merged data set are reset to their original values. The added memory footprint for a JournalDB is one key/value stored per database key which is changed. Subsequent changes to the same key within the same checkpoint will not increase the journal size since we only need to track the original value for any given key within any given checkpoint. """ wrapped_db = None journal = None def __init__(self, wrapped_db): self.wrapped_db = wrapped_db self.journal = Journal() def get(self, key): return self.wrapped_db.get(key) def set(self, key, value): """ - replacing an existing value - setting a value that does not exist """ try: current_value = self.wrapped_db.get(key) except KeyError: current_value = None if current_value != value: # only journal `set` operations that change the value. self.journal.add(key, current_value) return self.wrapped_db.set(key, value) def exists(self, key): return self.wrapped_db.exists(key) def delete(self, key): try: current_value = self.wrapped_db.get(key) except KeyError: # no state change so skip journaling pass else: self.journal.add(key, current_value) return self.wrapped_db.delete(key) # # Snapshot API # def _validate_checkpoint(self, checkpoint): """ Checks to be sure the checkpoint is known by the journal """ if checkpoint not in self.journal: raise ValidationError("Checkpoint not found in journal: {0}".format( str(checkpoint) )) def snapshot(self): """ Takes a snapshot of the database by creating a checkpoint. """ return self.journal.create_checkpoint() def revert(self, checkpoint): """ Reverts the database back to the checkpoint. """ self._validate_checkpoint(checkpoint) for key, value in self.journal.pop_checkpoint(checkpoint).items(): if value is None: self.wrapped_db.delete(key) else: self.wrapped_db.set(key, value) def commit(self, checkpoint): """ Commits a given checkpoint. """ self._validate_checkpoint(checkpoint) self.journal.commit_checkpoint(checkpoint) def clear(self): """ Cleare the entire journal. """ self.journal = Journal() # # Dictionary API # def __getitem__(self, key): return self.get(key) def __setitem__(self, key, value): return self.set(key, value) def __delitem__(self, key): return self.delete(key) def __contains__(self, key): return self.exists(key) ``` #### File: evm/precompiles/modexp.py ```python from evm import constants from evm.utils.numeric import ( big_endian_to_int, get_highest_bit_index, int_to_big_endian, ) from evm.utils.padding import ( pad32r, zpad_right, zpad_left, ) def _compute_adjusted_exponent_length(exponent_length, first_32_exponent_bytes): exponent = big_endian_to_int(first_32_exponent_bytes) if exponent_length <= 32 and exponent == 0: return 0 elif exponent_length <= 32: return get_highest_bit_index(exponent) else: first_32_bytes_as_int = big_endian_to_int(first_32_exponent_bytes) return ( 8 * (exponent_length - 32) + get_highest_bit_index(first_32_bytes_as_int) ) def _compute_complexity(length): if length <= 64: return length ** 2 elif length <= 1024: return ( length ** 2 // 4 + 96 * length - 3072 ) else: return 2 ** 2 // 16 + 480 * length - 199680 def _extract_lengths(data): # extract argument lengths base_length_bytes = pad32r(data[:32]) base_length = big_endian_to_int(base_length_bytes) exponent_length_bytes = pad32r(data[32:64]) exponent_length = big_endian_to_int(exponent_length_bytes) modulus_length_bytes = pad32r(data[64:96]) modulus_length = big_endian_to_int(modulus_length_bytes) return base_length, exponent_length, modulus_length def _compute_modexp_gas_fee(data): base_length, exponent_length, modulus_length = _extract_lengths(data) first_32_exponent_bytes = zpad_right( data[96 + base_length:96 + base_length + exponent_length], to_size=min(exponent_length, 32), )[:32] adjusted_exponent_length = _compute_adjusted_exponent_length( exponent_length, first_32_exponent_bytes, ) complexity = _compute_complexity(max(modulus_length, base_length)) gas_fee = ( complexity * max(adjusted_exponent_length, 1) // constants.GAS_MOD_EXP_QUADRATIC_DENOMINATOR ) return gas_fee def _modexp(data): base_length, exponent_length, modulus_length = _extract_lengths(data) if base_length == 0: return 0 elif modulus_length == 0: return 0 # compute start:end indexes base_end_idx = 96 + base_length exponent_end_idx = base_end_idx + exponent_length modulus_end_dx = exponent_end_idx + modulus_length # extract arguments modulus_bytes = zpad_right( data[exponent_end_idx:modulus_end_dx], to_size=modulus_length, ) modulus = big_endian_to_int(modulus_bytes) if modulus == 0: return 0 base_bytes = zpad_right(data[96:base_end_idx], to_size=base_length) base = big_endian_to_int(base_bytes) exponent_bytes = zpad_right( data[base_end_idx:exponent_end_idx], to_size=exponent_length, ) exponent = big_endian_to_int(exponent_bytes) print('base', base, 'exponent', exponent, 'modulus', modulus) result = pow(base, exponent, modulus) return result def modexp(computation): """ https://github.com/ethereum/EIPs/pull/198 """ gas_fee = _compute_modexp_gas_fee(computation.msg.data) computation.gas_meter.consume_gas(gas_fee, reason='MODEXP Precompile') result = _modexp(computation.msg.data) _, _, modulus_length = _extract_lengths(computation.msg.data) result_bytes = zpad_left(int_to_big_endian(result), to_size=modulus_length) computation.output = result_bytes return computation ``` #### File: tools/test_builder/test_builder.py ```python from collections import ( defaultdict, namedtuple, ) from functools import ( partial, ) from evm.db.state import ( MainAccountStateDB, ShardingAccountStateDB, ) from evm.tools.fixture_tests import ( hash_log_entries, ) from cytoolz import ( assoc, assoc_in, curry, merge, ) from eth_utils import ( apply_formatters_to_dict, decode_hex, encode_hex, to_canonical_address, ) from .normalization import ( normalize_bytes, normalize_call_creates, normalize_environment, normalize_execution, normalize_int, normalize_logs, normalize_state, normalize_transaction, normalize_transaction_group, normalize_networks, ) from .builder_utils import ( add_transaction_to_group, calc_state_root, compile_vyper_lll, get_test_name, get_version_from_git, deep_merge, wrap_in_list, ) from .formatters import ( filled_state_test_formatter, filled_vm_test_formatter, ) # # Defaults # DEFAULT_MAIN_ENVIRONMENT = { "currentCoinbase": to_canonical_address("0x2adc25665018aa1fe0e6bc666dac8fc2697ff9ba"), "currentDifficulty": 131072, "currentGasLimit": 1000000, "currentNumber": 1, "currentTimestamp": 1000, "previousHash": decode_hex( "0x5e20a0453cecd065ea59c37ac63e079ee08998b6045136a8ce6635c7912ec0b6" ), } DEFAULT_SHARDING_ENVIRONMENT = { "shardID": 0, "expectedPeriodNumber": 0, "periodStartHash": decode_hex( "0x148067ef259ce711201e6b2a8438b907d0ac0549deef577aff58f1b9143a134a" ), "currentCoinbase": to_canonical_address("0x2adc25665018aa1fe0e6bc666dac8fc2697ff9ba"), "currentNumber": 1, "previousHash": decode_hex( "0x5e20a0453cecd065ea59c37ac63e079ee08998b6045136a8ce6635c7912ec0b6" ), } DEFAULT_MAIN_TRANSACTION = { "data": b"", "gasLimit": 100000, "gasPrice": 0, "nonce": 0, "secretKey": decode_hex("0x45a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8"), "to": to_canonical_address("0x0f572e5295c57f15886f9b263e2f6d2d6c7b5ec6"), "value": 0 } DEFAULT_SHARDING_TRANSACTION = { "chainID": 0, "shardID": 0, "to": to_canonical_address("0x0f572e5295c57f15886f9b263e2f6d2d6c7b5ec6"), "data": b"", "gasLimit": 100000, "gasPrice": 0, "accessList": [], "code": b"", } def get_default_transaction(networks): if "Sharding" not in networks: return DEFAULT_MAIN_TRANSACTION else: return DEFAULT_SHARDING_TRANSACTION DEFAULT_EXECUTION = { "address": to_canonical_address("0x0f572e5295c57f15886f9b263e2f6d2d6c7b5ec6"), "origin": to_canonical_address("0xcd1722f2947def4cf144679da39c4c32bdc35681"), "caller": to_canonical_address("0xcd1722f2947def4cf144679da39c4c32bdc35681"), "value": 1000000000000000000, "data": b"", "gasPrice": 1, "gas": 100000 } ALL_NETWORKS = [ "Frontier", "Homestead", "EIP150", "EIP158", "Byzantium", "Sharding", ] ACCOUNT_STATE_DB_CLASSES = { "Frontier": MainAccountStateDB, "Homestead": MainAccountStateDB, "EIP150": MainAccountStateDB, "EIP158": MainAccountStateDB, "Byzantium": MainAccountStateDB, "Sharding": ShardingAccountStateDB, } assert all(network in ACCOUNT_STATE_DB_CLASSES for network in ALL_NETWORKS) FILLED_WITH_TEMPLATE = "py-evm-{version}" Test = namedtuple("Test", ["filler", "fill_kwargs"]) Test.__new__.__defaults__ = (None,) # make `None` default for fill_kwargs # # Filler Generation # def setup_filler(name, environment=None): environment = normalize_environment(environment or {}) return {name: { "env": environment, "pre": {}, }} def setup_main_filler(name, environment=None): return setup_filler(name, merge(DEFAULT_MAIN_ENVIRONMENT, environment or {})) def setup_sharding_filler(name, environment=None): return setup_filler(name, merge(DEFAULT_SHARDING_ENVIRONMENT, environment or {})) @curry def pre_state(pre_state, filler): test_name = get_test_name(filler) old_pre_state = filler[test_name].get("pre_state", {}) pre_state = normalize_state(pre_state) defaults = {address: { "balance": 0, "nonce": 0, "code": b"", "storage": {}, } for address in pre_state} new_pre_state = deep_merge(defaults, old_pre_state, pre_state) return assoc_in(filler, [test_name, "pre"], new_pre_state) def _expect(post_state, networks, transaction, filler): test_name = get_test_name(filler) test = filler[test_name] test_update = {test_name: {}} pre_state = test.get("pre", {}) post_state = normalize_state(post_state or {}) defaults = {address: { "balance": 0, "nonce": 0, "code": b"", "storage": {}, } for address in post_state} result = deep_merge(defaults, pre_state, normalize_state(post_state)) new_expect = {"result": result} if transaction is not None: transaction = normalize_transaction( merge(get_default_transaction(networks), transaction) ) if "transaction" not in test: transaction_group = apply_formatters_to_dict({ "data": wrap_in_list, "gasLimit": wrap_in_list, "value": wrap_in_list, }, transaction) indexes = { index_key: 0 for transaction_key, index_key in [ ("gasLimit", "gas"), ("value", "value"), ("data", "data"), ] if transaction_key in transaction_group } else: transaction_group, indexes = add_transaction_to_group( test["transaction"], transaction ) new_expect = assoc(new_expect, "indexes", indexes) test_update = assoc_in(test_update, [test_name, "transaction"], transaction_group) if networks is not None: networks = normalize_networks(networks) new_expect = assoc(new_expect, "networks", networks) existing_expects = test.get("expect", []) expect = existing_expects + [new_expect] test_update = assoc_in(test_update, [test_name, "expect"], expect) return deep_merge(filler, test_update) def expect(post_state=None, networks=None, transaction=None): return partial(_expect, post_state, networks, transaction) @curry def execution(execution, filler): execution = normalize_execution(execution or {}) # user caller as origin if not explicitly given if "caller" in execution and "origin" not in execution: execution = assoc(execution, "origin", execution["caller"]) if "vyperLLLCode" in execution: code = compile_vyper_lll(execution["vyperLLLCode"]) if "code" in execution: if code != execution["code"]: raise ValueError("Compiled Vyper LLL code does not match") execution = assoc(execution, "code", code) execution = merge(DEFAULT_EXECUTION, execution) test_name = get_test_name(filler) return deep_merge( filler, { test_name: { "exec": execution, } } ) # # Test Filling # def fill_test(filler, info=None, apply_formatter=True, **kwargs): test_name = get_test_name(filler) test = filler[test_name] if "transaction" in test: filled = fill_state_test(filler, **kwargs) formatter = filled_state_test_formatter elif "exec" in test: filled = fill_vm_test(filler, **kwargs) formatter = filled_vm_test_formatter else: raise ValueError("Given filler does not appear to be for VM or state test") info = merge( {"filledwith": FILLED_WITH_TEMPLATE.format(version=get_version_from_git())}, info if info else {} ) filled = assoc_in(filled, [test_name, "_info"], info) if apply_formatter: return formatter(filled) else: return filled def fill_state_test(filler): test_name = get_test_name(filler) test = filler[test_name] environment = normalize_environment(test["env"]) pre_state = normalize_state(test["pre"]) transaction_group = normalize_transaction_group(test["transaction"]) post = defaultdict(list) for expect in test["expect"]: indexes = expect["indexes"] networks = normalize_networks(expect["networks"]) result = normalize_state(expect["result"]) post_state = deep_merge(pre_state, result) for network in networks: account_state_db_class = ACCOUNT_STATE_DB_CLASSES[network] post_state_root = calc_state_root(post_state, account_state_db_class) post[network].append({ "hash": encode_hex(post_state_root), "indexes": indexes, }) return { test_name: { "env": environment, "pre": pre_state, "transaction": transaction_group, "post": post } } def fill_vm_test( filler, *, call_creates=None, gas_price=None, gas_remaining=0, logs=None, output=b"" ): test_name = get_test_name(filler) test = filler[test_name] environment = normalize_environment(test["env"]) pre_state = normalize_state(test["pre"]) execution = normalize_execution(test["exec"]) assert len(test["expect"]) == 1 expect = test["expect"][0] assert "network" not in test assert "indexes" not in test result = normalize_state(expect["result"]) post_state = deep_merge(pre_state, result) call_creates = normalize_call_creates(call_creates or []) gas_remaining = normalize_int(gas_remaining) output = normalize_bytes(output) logs = normalize_logs(logs or []) log_hash = hash_log_entries(logs) return { test_name: { "env": environment, "pre": pre_state, "exec": execution, "post": post_state, "callcreates": call_creates, "gas": gas_remaining, "output": output, "logs": log_hash, } } ``` #### File: evm/utils/numeric.py ```python import functools import itertools import math from cytoolz import ( pipe, ) from evm.constants import ( UINT_255_MAX, UINT_256_MAX, UINT_256_CEILING, ) from evm.utils.padding import ( pad32, ) def int_to_big_endian(value): byte_length = math.ceil(value.bit_length() / 8) return (value).to_bytes(byte_length, byteorder='big') def big_endian_to_int(value): return int.from_bytes(value, byteorder='big') def int_to_byte(value): return bytes([value]) def int_to_bytes32(value): if not isinstance(value, int) or isinstance(value, bool): raise ValueError( "Value must be an integer: Got: {0}".format( type(value), ) ) if value < 0: raise ValueError( "Value cannot be negative: Got: {0}".format( value, ) ) if value > UINT_256_MAX: raise ValueError( "Value exeeds maximum UINT256 size. Got: {0}".format( value, ) ) value_bytes = pipe( value, int_to_big_endian, pad32, ) return value_bytes byte_to_int = ord def ceilXX(value, ceiling): remainder = value % ceiling if remainder == 0: return value else: return value + ceiling - remainder ceil32 = functools.partial(ceilXX, ceiling=32) ceil8 = functools.partial(ceilXX, ceiling=8) def unsigned_to_signed(value): if value <= UINT_255_MAX: return value else: return value - UINT_256_CEILING def signed_to_unsigned(value): if value < 0: return value + UINT_256_CEILING else: return value def safe_ord(value): if isinstance(value, int): return value else: return ord(value) def is_even(value): return value % 2 == 0 def is_odd(value): return value % 2 == 1 def get_highest_bit_index(value): value >>= 1 for bit_length in itertools.count(): if not value: return bit_length value >>= 1 ``` #### File: forks/homestead/vm_state.py ```python from evm.vm.forks.frontier.vm_state import FrontierVMState from .blocks import HomesteadBlock from .computation import HomesteadComputation from .validation import validate_homestead_transaction class HomesteadVMState(FrontierVMState): block_class = HomesteadBlock computation_class = HomesteadComputation def validate_transaction(self, transaction): validate_homestead_transaction(self, transaction) ``` #### File: forks/sharding/config.py ```python from eth_utils import ( to_wei, ) from evm.utils import ( env, ) def get_sharding_config(): return { # TODO: currently is fixed as 100 ETH, should be removed after # variable-sized deposit is implemented 'DEPOSIT_SIZE': env.get( 'PYEVM_SHARDING_DEPOSIT_SIZE', type=int, default=to_wei('100', 'ether'), ), # the maximum valid ahead periods from the current period for `get_eligible_proposer` 'LOOKAHEAD_PERIODS': env.get('PYEVM_SHARDING_LOOKAHEAD_PERIODS', type=int, default=4), # the number of blocks in one `period` 'PERIOD_LENGTH': env.get('PYEVM_SHARDING_PERIOD_LENGTH', type=int, default=5), # the gas limit of one collation 'COLLATION_GASLIMIT': env.get( 'PYEVM_SHARDING_COLLATION_GASLIMIT', type=int, default=10 ** 7, ), # the number of shards 'SHARD_COUNT': env.get('PYEVM_SHARDING_SHARD_COUNT', type=int, default=100), # the gas limit of verifying a signature 'SIG_GASLIMIT': env.get('PYEVM_SHARDING_SIG_GASLIMIT', type=int, default=40000), # the reward for creating a collation 'COLLATOR_REWARD': env.get( 'PYEVM_SHARDING_COLLATOR_REWARD', type=int, default=to_wei('0.001', 'ether'), ), # default gas_price 'GAS_PRICE': env.get('PYEVM_SHARDING_GAS_PRICE', type=int, default=1), # default gas, just a large enough gas for vmc transactions 'DEFAULT_GAS': env.get('PYEVM_SHARDING_DEFAULT_GAS', type=int, default=510000), } ``` #### File: sharding/contracts/validator_manager.v.py ```python CollationAdded: __log__({ shard_id: indexed(num), expected_period_number: num, period_start_prevhash: bytes32, parent_hash: bytes32, transaction_root: bytes32, collation_coinbase: address, state_root: bytes32, receipt_root: bytes32, collation_number: num, is_new_head: bool, score: num, }) # TODO: determine the signature of the log `Deposit` and `Withdraw` Deposit: __log__({validator_index: num, validator_addr: address, deposit: wei_value}) Withdraw: __log__({validator_index: num, validator_addr: address, deposit: wei_value}) # Information about validators validators: public({ # Amount of wei the validator holds deposit: wei_value, # Address of the validator addr: address, }[num]) # Number of validators num_validators: public(num) # Collation headers collation_headers: public({ parent_hash: bytes32, score: num, }[bytes32][num]) # Receipt data receipts: public({ shard_id: num, tx_startgas: num, tx_gasprice: num, value: wei_value, sender: address, to: address, data: bytes <= 4096, }[num]) # Current head of each shard shard_head: public(bytes32[num]) # Number of receipts num_receipts: num # Indexs of empty slots caused by the function `withdraw` empty_slots_stack: num[num] # The top index of the stack in empty_slots_stack empty_slots_stack_top: num # Has the validator deposited before? is_validator_deposited: public(bool[address]) # Log the latest period number of the shard period_head: public(num[num]) # Configuration Parameter # The exact deposit size which you have to deposit to become a validator deposit_size: wei_value # Number of blocks in one period period_length: num # Number of shards shard_count: num # Number of periods ahead of current period, which the contract # is able to return the collator of that period lookahead_periods: num @public def __init__(): self.num_validators = 0 self.empty_slots_stack_top = 0 # 10 ** 20 wei = 100 ETH self.deposit_size = 100000000000000000000 self.period_length = 5 self.shard_count = 100 self.lookahead_periods = 4 # Checks if empty_slots_stack_top is empty @internal def is_stack_empty() -> bool: return (self.empty_slots_stack_top == 0) # Pushes one num to empty_slots_stack @internal def stack_push(index: num): self.empty_slots_stack[self.empty_slots_stack_top] = index self.empty_slots_stack_top += 1 # Pops one num out of empty_slots_stack @internal def stack_pop() -> num: if self.is_stack_empty(): return -1 self.empty_slots_stack_top -= 1 return self.empty_slots_stack[self.empty_slots_stack_top] # Returns the current maximum index for validators mapping @internal def get_validators_max_index() -> num: zero_addr = 0x0000000000000000000000000000000000000000 activate_validator_num = 0 all_validator_slots_num = self.num_validators + self.empty_slots_stack_top # TODO: any better way to iterate the mapping? for i in range(1024): if i >= all_validator_slots_num: break if self.validators[i].addr != zero_addr: activate_validator_num += 1 return activate_validator_num + self.empty_slots_stack_top # Adds a validator to the validator set, with the validator's size being the msg.value # (ie. amount of ETH deposited) in the function call. Returns the validator index. @public @payable def deposit() -> num: validator_addr = msg.sender assert not self.is_validator_deposited[validator_addr] assert msg.value == self.deposit_size # find the empty slot index in validators set if not self.is_stack_empty(): index = self.stack_pop() else: index = self.num_validators self.validators[index] = { deposit: msg.value, addr: validator_addr, } self.num_validators += 1 self.is_validator_deposited[validator_addr] = True log.Deposit(index, validator_addr, msg.value) return index # Verifies that `msg.sender == validators[validator_index].addr`. if it is removes the validator # from the validator set and refunds the deposited ETH. @public @payable def withdraw(validator_index: num) -> bool: validator_addr = self.validators[validator_index].addr validator_deposit = self.validators[validator_index].deposit assert msg.sender == validator_addr self.is_validator_deposited[validator_addr] = False self.validators[validator_index] = { deposit: 0, addr: None, } self.stack_push(validator_index) self.num_validators -= 1 send(validator_addr, validator_deposit) log.Withdraw(validator_index, validator_addr, validator_deposit) return True # Uses a block hash as a seed to pseudorandomly select a signer from the validator set. # [TODO] Chance of being selected should be proportional to the validator's deposit. # Should be able to return a value for the current period or any future period up to. @public @constant def get_eligible_proposer(shard_id: num, period: num) -> address: assert period >= self.lookahead_periods assert (period - self.lookahead_periods) * self.period_length < block.number assert self.num_validators > 0 return self.validators[ as_num128( num256_mod( as_num256( sha3( concat( # TODO: should check further if this can be further optimized or not # e.g. be able to get the proposer of one period earlier blockhash((period - self.lookahead_periods) * self.period_length), as_bytes32(shard_id), ) ) ), as_num256(self.get_validators_max_index()), ) ) ].addr # Attempts to process a collation header, returns True on success, reverts on failure. @public def add_header( shard_id: num, expected_period_number: num, period_start_prevhash: bytes32, parent_hash: bytes32, transaction_root: bytes32, collation_coinbase: address, # TODO: cannot be named `coinbase` since it is reserved state_root: bytes32, receipt_root: bytes32, collation_number: num) -> bool: # TODO: cannot be named `number` since it is reserved zero_addr = 0x0000000000000000000000000000000000000000 # Check if the header is valid assert (shard_id >= 0) and (shard_id < self.shard_count) assert block.number >= self.period_length assert expected_period_number == floor(decimal(block.number / self.period_length)) assert period_start_prevhash == blockhash(expected_period_number * self.period_length - 1) # Check if this header already exists header_bytes = concat( as_bytes32(shard_id), as_bytes32(expected_period_number), period_start_prevhash, parent_hash, transaction_root, as_bytes32(collation_coinbase), state_root, receipt_root, as_bytes32(collation_number), ) entire_header_hash = sha3(header_bytes) assert self.collation_headers[shard_id][entire_header_hash].score == 0 # Check whether the parent exists. # if (parent_hash == 0), i.e., is the genesis, # then there is no need to check. if parent_hash != as_bytes32(0): assert self.collation_headers[shard_id][parent_hash].score > 0 # Check if only one collation in one period perd shard assert self.period_head[shard_id] < expected_period_number # Check the signature with validation_code_addr validator_addr = self.get_eligible_proposer(shard_id, block.number / self.period_length) assert validator_addr != zero_addr assert msg.sender == validator_addr # Check score == collation_number _score = self.collation_headers[shard_id][parent_hash].score + 1 assert collation_number == _score # Add the header self.collation_headers[shard_id][entire_header_hash] = { parent_hash: parent_hash, score: _score, } # Update the latest period number self.period_head[shard_id] = expected_period_number # Determine the head is_new_head = False if _score > self.collation_headers[shard_id][self.shard_head[shard_id]].score: self.shard_head[shard_id] = entire_header_hash is_new_head = True # Emit log log.CollationAdded( shard_id, expected_period_number, period_start_prevhash, parent_hash, transaction_root, collation_coinbase, state_root, receipt_root, collation_number, is_new_head, _score, ) return True # Returns the gas limit that collations can currently have (by default make # this function always answer 10 million). @public @constant def get_collation_gas_limit() -> num: return 10000000 # Records a request to deposit msg.value ETH to address to in shard shard_id # during a future collation. Saves a `receipt ID` for this request, # also saving `msg.sender`, `msg.value`, `to`, `shard_id`, `startgas`, # `gasprice`, and `data`. @public @payable def tx_to_shard( to: address, shard_id: num, tx_startgas: num, tx_gasprice: num, data: bytes <= 4096) -> num: self.receipts[self.num_receipts] = { shard_id: shard_id, tx_startgas: tx_startgas, tx_gasprice: tx_gasprice, value: msg.value, sender: msg.sender, to: to, data: data, } receipt_id = self.num_receipts self.num_receipts += 1 # TODO: determine the signature of the log TxToShard raw_log( [ sha3("tx_to_shard(address,num,num,num,bytes4096)"), as_bytes32(to), as_bytes32(shard_id), ], concat('', as_bytes32(receipt_id)), ) return receipt_id # Updates the tx_gasprice in receipt receipt_id, and returns True on success. @public @payable def update_gasprice(receipt_id: num, tx_gasprice: num) -> bool: assert self.receipts[receipt_id].sender == msg.sender self.receipts[receipt_id].tx_gasprice = tx_gasprice return True ``` #### File: evm/vm/memory.py ```python import itertools import logging from evm.validation import ( validate_is_bytes, validate_length, validate_lte, validate_uint256, ) from evm.utils.numeric import ( ceil32, ) class Memory(object): """ VM Memory """ bytes = None logger = logging.getLogger('evm.vm.memory.Memory') def __init__(self): self.bytes = bytearray() def extend(self, start_position, size): if size == 0: return new_size = ceil32(start_position + size) if new_size <= len(self): return size_to_extend = new_size - len(self) self.bytes.extend(itertools.repeat(0, size_to_extend)) def __len__(self): return len(self.bytes) def write(self, start_position, size, value): """ Write `value` into memory. """ if size: validate_uint256(start_position) validate_uint256(size) validate_is_bytes(value) validate_length(value, length=size) validate_lte(start_position + size, maximum=len(self)) if len(self.bytes) < start_position + size: self.bytes.extend(itertools.repeat( 0, len(self.bytes) - (start_position + size), )) for idx, v in enumerate(value): self.bytes[start_position + idx] = v def read(self, start_position, size): """ Read a value from memory. """ return bytes(self.bytes[start_position:start_position + size]) ``` #### File: py-evm/p2p/sedes.py ```python from rlp import sedes class HashOrNumber: def serialize(self, obj): if isinstance(obj, int): return sedes.big_endian_int.serialize(obj) return sedes.binary.serialize(obj) def deserialize(self, serial): if len(serial) == 32: return sedes.binary.deserialize(serial) return sedes.big_endian_int.deserialize(serial) ``` #### File: py-evm/p2p/utils.py ```python import os import rlp from evm.utils.numeric import big_endian_to_int def sxor(s1: bytes, s2: bytes) -> bytes: if len(s1) != len(s2): raise ValueError("Cannot sxor strings of different length") return bytes(x ^ y for x, y in zip(s1, s2)) def roundup_16(x): """Rounds up the given value to the next multiple of 16.""" remainder = x % 16 if remainder != 0: x += 16 - remainder return x def gen_request_id(): return big_endian_to_int(os.urandom(8)) def get_devp2p_cmd_id(msg: bytes) -> int: """Return the cmd_id for the given devp2p msg. The cmd_id, also known as the payload type, is always the first entry of the RLP, interpreted as an integer. """ return rlp.decode(msg[:1], sedes=rlp.sedes.big_endian_int) def safe_ord(value): if isinstance(value, int): return value else: return ord(value) ``` #### File: auxiliary/user-account/test_contract.py ```python import pytest from eth_keys import keys from trie import ( BinaryTrie, ) from cytoolz import ( merge, dissoc, assoc, ) from evm.constants import ( UINT_256_MAX, SECPK1_N, ZERO_HASH32, ENTRY_POINT, EMPTY_SHA3, ) from evm.vm.message import ( ShardingMessage, ) from evm.vm.forks.sharding import ( ShardingVM, ) from evm.vm.forks.sharding.transaction_context import ( ShardingTransactionContext, ) from evm.vm.forks.sharding.transactions import ( ShardingTransaction, ) from evm.rlp.headers import ( CollationHeader, ) from evm.db import ( get_db_backend, ) from evm.db.chain import ( ChainDB, ) from evm.db.state import ( ShardingAccountStateDB, ) from eth_utils import ( keccak, to_canonical_address, int_to_big_endian, big_endian_to_int, decode_hex, ) from evm.utils.padding import ( pad32, zpad_left, ) from evm.utils.address import ( generate_CREATE2_contract_address, ) from evm.auxiliary.user_account_contract.transaction import ( UserAccountTransaction, UnsignedUserAccountTransaction, ) from evm.auxiliary.user_account_contract.contract import ( generate_account_bytecode, NONCE_GETTER_ID, ECRECOVER_ADDRESS as ECRECOVER_ADDRESS_INT, ) PRIVATE_KEY = keys.PrivateKey(b"\x33" * 32) ACCOUNT_CODE = generate_account_bytecode(PRIVATE_KEY.public_key.to_canonical_address()) ACCOUNT_ADDRESS = generate_CREATE2_contract_address(b"", ACCOUNT_CODE) INITIAL_BALANCE = 10000000000 # contract that does nothing NOOP_CONTRACT_CODE = b"" NOOP_CONTRACT_ADDRESS = generate_CREATE2_contract_address(b"", NOOP_CONTRACT_CODE) # contract that reverts without returning data FAILING_CONTRACT_CODE = b"\x61\x00\x00\xfd" # PUSH2 0 0 REVERT FAILING_CONTRACT_ADDRESS = generate_CREATE2_contract_address(b"", FAILING_CONTRACT_CODE) # contract that logs available gas # GAS PUSH1 0 MSTORE PUSH1 32 PUSH1 0 LOG0 GAS_LOGGING_CONTRACT_CODE = b"\x5a\x60\x00\x52\x60\x20\x60\x00\xa0" GAS_LOGGING_CONTRACT_ADDRESS = generate_CREATE2_contract_address(b"", GAS_LOGGING_CONTRACT_CODE) # contract that logs hash of passed data # CALLDATASIZE PUSH1 0 PUSH1 0 CALLDATACOPY CALLDATASIZE PUSH1 0 SHA3 PUSH1 0 MSTORE PUSH1 32 # PUSH1 0 LOG0 DATA_LOGGING_CONTRACT_CODE = ( b"\x36\x60\x00\x60\x00\x37\x36\x60\x00\x20\x60\x00\x52\x60\x20\x60\x00\xa0" ) DATA_LOGGING_CONTRACT_ADDRESS = generate_CREATE2_contract_address(b"", DATA_LOGGING_CONTRACT_CODE) HELPER_CONTRACTS = { ACCOUNT_ADDRESS: ACCOUNT_CODE, NOOP_CONTRACT_ADDRESS: NOOP_CONTRACT_CODE, FAILING_CONTRACT_ADDRESS: FAILING_CONTRACT_CODE, GAS_LOGGING_CONTRACT_ADDRESS: GAS_LOGGING_CONTRACT_CODE, DATA_LOGGING_CONTRACT_ADDRESS: DATA_LOGGING_CONTRACT_CODE, } DESTINATION_ADDRESS = b"\xbb" * 20 ECRECOVER_ADDRESS = zpad_left(int_to_big_endian(ECRECOVER_ADDRESS_INT), 20) DEFAULT_BASE_TX_PARAMS = { "chain_id": 1, "shard_id": 1, "to": ACCOUNT_ADDRESS, "gas": 500000, "access_list": [ [ACCOUNT_ADDRESS, b"\x00" * 32], [ECRECOVER_ADDRESS], ], "code": b"", "salt": b"\x00" * 32, } DEFAULT_TX_PARAMS = merge( dissoc(DEFAULT_BASE_TX_PARAMS, "code", "salt"), { "destination": DESTINATION_ADDRESS, "value": 0, "min_block": 0, "max_block": UINT_256_MAX, "nonce": 0, "msg_data": b"", "access_list": DEFAULT_BASE_TX_PARAMS["access_list"] + [ [DESTINATION_ADDRESS], ], "gas_price": 0, } ) SIGNED_DEFAULT_TRANSACTION = UnsignedUserAccountTransaction(**merge(DEFAULT_TX_PARAMS, { "nonce": 0, })).as_signed_transaction(PRIVATE_KEY) DEFAULT_V = SIGNED_DEFAULT_TRANSACTION.v DEFAULT_R = SIGNED_DEFAULT_TRANSACTION.r DEFAULT_S = SIGNED_DEFAULT_TRANSACTION.s @pytest.fixture def vm(): header = CollationHeader( shard_id=0, expected_period_number=2, period_start_prevhash=decode_hex( "3c4cc7b99c7eb9281e9a8d15cd4b2f98c5df085e929f15388c699b41cdde78d7" ), parent_hash=ZERO_HASH32, transaction_root=EMPTY_SHA3, coinbase=to_canonical_address("8888f1f195afa192cfee860698584c030f4c9db1"), state_root=EMPTY_SHA3, receipt_root=EMPTY_SHA3, number=10, ) chaindb = ChainDB( get_db_backend(), account_state_class=ShardingAccountStateDB, trie_class=BinaryTrie, ) vm = ShardingVM(header=header, chaindb=chaindb) vm_state = vm.state with vm_state.state_db() as statedb: for address, code in HELPER_CONTRACTS.items(): statedb.set_code(address, code) statedb.set_balance(ACCOUNT_ADDRESS, INITIAL_BALANCE) # Update state_root manually vm.block.header.state_root = vm_state.state_root return vm def get_nonce(vm): computation, _ = vm.apply_transaction(ShardingTransaction(**merge(DEFAULT_BASE_TX_PARAMS, { "data": int_to_big_endian(NONCE_GETTER_ID), }))) return big_endian_to_int(computation.output) def test_get_nonce(vm): computation, _ = vm.apply_transaction(ShardingTransaction(**merge(DEFAULT_BASE_TX_PARAMS, { "data": int_to_big_endian(NONCE_GETTER_ID), }))) assert computation.output == pad32(b"\x00") computation, _ = vm.apply_transaction(SIGNED_DEFAULT_TRANSACTION) computation, _ = vm.apply_transaction(ShardingTransaction(**merge(DEFAULT_BASE_TX_PARAMS, { "data": int_to_big_endian(NONCE_GETTER_ID), }))) assert computation.output == pad32(b"\x01") def test_call_increments_nonce(vm): computation, _ = vm.apply_transaction(SIGNED_DEFAULT_TRANSACTION) assert computation.is_success assert get_nonce(vm) == 1 transaction = UnsignedUserAccountTransaction(**merge(DEFAULT_TX_PARAMS, { "nonce": 1, })).as_signed_transaction(PRIVATE_KEY) computation, _ = vm.apply_transaction(transaction) assert computation.is_success assert get_nonce(vm) == 2 def test_call_checks_nonce(vm): computation, _ = vm.apply_transaction(SIGNED_DEFAULT_TRANSACTION) assert computation.is_success computation, _ = vm.apply_transaction(SIGNED_DEFAULT_TRANSACTION) assert computation.is_error transaction = UnsignedUserAccountTransaction(**merge(DEFAULT_TX_PARAMS, { "nonce": 2, })).as_signed_transaction(PRIVATE_KEY) computation, _ = vm.apply_transaction(transaction) assert computation.is_error @pytest.mark.parametrize("min_block,max_block,valid", [ (min_block, max_block, True) for min_block, max_block in [ (0, UINT_256_MAX), (0, 10), (10, 10), (10, UINT_256_MAX) ]] + [ (min_block, max_block, False) for min_block, max_block in [ (0, 9), (5, 9), (11, 20), (11, UINT_256_MAX), (11, 9), (UINT_256_MAX, 0), ]] ) def test_call_checks_block_range(vm, min_block, max_block, valid): assert vm.block.number == 10 transaction = UnsignedUserAccountTransaction(**merge(DEFAULT_TX_PARAMS, { "nonce": get_nonce(vm), "min_block": min_block, "max_block": max_block, })).as_signed_transaction(PRIVATE_KEY) computation, _ = vm.apply_transaction(transaction) if valid: assert computation.is_success else: assert computation.is_error def test_call_transfers_value(vm): vm_state = vm.state with vm_state.state_db() as state_db: balance_sender_before = state_db.get_balance(ACCOUNT_ADDRESS) balance_destination_before = state_db.get_balance(DESTINATION_ADDRESS) # Update state_root manually vm.block.header.state_root = vm_state.state_root transaction = UnsignedUserAccountTransaction(**merge(DEFAULT_TX_PARAMS, { "nonce": get_nonce(vm), "value": 10 })).as_signed_transaction(PRIVATE_KEY) computation, _ = vm.apply_transaction(transaction) assert computation.is_success vm_state = vm.state with vm_state.state_db() as state_db: balance_sender_after = state_db.get_balance(ACCOUNT_ADDRESS) balance_destination_after = state_db.get_balance(DESTINATION_ADDRESS) # Update state_root manually vm.block.header.state_root = vm_state.state_root assert balance_sender_after == balance_sender_before - 10 assert balance_destination_after == balance_destination_before + 10 @pytest.mark.parametrize("v,r,s", [ (0, 0, 0), (DEFAULT_V + 1, DEFAULT_R, DEFAULT_S), (DEFAULT_V + 2, DEFAULT_R, DEFAULT_S), (DEFAULT_V - 1, DEFAULT_R, DEFAULT_S), (0, DEFAULT_R, DEFAULT_S), (1, DEFAULT_R, DEFAULT_S), (DEFAULT_V, DEFAULT_R + 1, DEFAULT_S), (DEFAULT_V, DEFAULT_R - 1, DEFAULT_S), (DEFAULT_V, 0, DEFAULT_S), (DEFAULT_V, DEFAULT_R, DEFAULT_S + 1), (DEFAULT_V, DEFAULT_R, DEFAULT_S - 1), (DEFAULT_V, DEFAULT_R, 0), (27 if DEFAULT_V == 28 else 28, DEFAULT_R, SECPK1_N - DEFAULT_S), ]) def test_call_checks_signature(vm, v, r, s): transaction = UserAccountTransaction(**merge(DEFAULT_TX_PARAMS, {"v": v, "r": r, "s": s})) message_params = { "gas": transaction.gas, "to": transaction.to, "sender": ENTRY_POINT, "value": 0, "code": ACCOUNT_CODE, "is_create": False, "access_list": transaction.prefix_list, } message = ShardingMessage(**assoc(message_params, "data", transaction.data)) transaction_context = ShardingTransactionContext( origin=ENTRY_POINT, sig_hash=transaction.sig_hash, transaction_gas_limit=transaction.gas, ) computation = vm.state.get_computation(message, transaction_context) computation = computation.apply_message() assert computation.is_error # error is due to bad signature, so with tx should pass with original one message = ShardingMessage(**assoc(message_params, "data", SIGNED_DEFAULT_TRANSACTION.data)) computation = vm.state.get_computation(message, transaction_context) computation = computation.apply_message() assert computation.is_success def test_call_uses_remaining_gas(vm): transaction = UnsignedUserAccountTransaction(**merge(DEFAULT_TX_PARAMS, { "nonce": get_nonce(vm), "destination": GAS_LOGGING_CONTRACT_ADDRESS, "gas": 1 * 1000 * 1000, "access_list": DEFAULT_TX_PARAMS["access_list"] + [[GAS_LOGGING_CONTRACT_ADDRESS]], })).as_signed_transaction(PRIVATE_KEY) computation, _ = vm.apply_transaction(transaction) assert computation.is_success logs = computation.get_log_entries() assert len(logs) == 1 logged_gas = big_endian_to_int(logs[0][-1]) assert logged_gas > 900 * 1000 # some gas will have been consumed earlier @pytest.mark.parametrize("data,hash", [ (data, keccak(data)) for data in [ b"", b"\x112233" b"\x00" * 32, b"\xff" * 32, b"\xaa" * 50, b"\x55" * 64, b"\x22" * 500, ] ]) def test_call_uses_data(vm, data, hash): transaction = UnsignedUserAccountTransaction(**merge(DEFAULT_TX_PARAMS, { "nonce": get_nonce(vm), "destination": DATA_LOGGING_CONTRACT_ADDRESS, "msg_data": data, "access_list": DEFAULT_TX_PARAMS["access_list"] + [[DATA_LOGGING_CONTRACT_ADDRESS]], })).as_signed_transaction(PRIVATE_KEY) computation, _ = vm.apply_transaction(transaction) assert computation.is_success logs = computation.get_log_entries() assert len(logs) == 1 logged_hash = logs[0][-1] assert logged_hash == hash def test_no_call_if_not_enough_gas(vm): transaction = UnsignedUserAccountTransaction(**merge(DEFAULT_TX_PARAMS, { "nonce": get_nonce(vm), "destination": NOOP_CONTRACT_ADDRESS, "gas": 80000, "access_list": DEFAULT_TX_PARAMS["access_list"] + [[NOOP_CONTRACT_ADDRESS]], })).as_signed_transaction(PRIVATE_KEY) computation, _ = vm.apply_transaction(transaction) assert computation.is_error # a little remains, but not enough to make the call assert computation.gas_meter.gas_remaining > 0 def test_call_passes_return_code(vm): transaction = UnsignedUserAccountTransaction(**merge(DEFAULT_TX_PARAMS, { "nonce": get_nonce(vm), "destination": NOOP_CONTRACT_ADDRESS, "access_list": DEFAULT_TX_PARAMS["access_list"] + [[NOOP_CONTRACT_ADDRESS]], })).as_signed_transaction(PRIVATE_KEY) computation, _ = vm.apply_transaction(transaction) assert computation.is_success assert big_endian_to_int(computation.output) == 1 # success transaction = UnsignedUserAccountTransaction(**merge(DEFAULT_TX_PARAMS, { "nonce": get_nonce(vm), "destination": FAILING_CONTRACT_ADDRESS, "access_list": DEFAULT_TX_PARAMS["access_list"] + [[FAILING_CONTRACT_ADDRESS]], })).as_signed_transaction(PRIVATE_KEY) computation, _ = vm.apply_transaction(transaction) assert computation.is_success assert big_endian_to_int(computation.output) == 0 # failure def test_call_does_not_revert_nonce(vm): nonce_before = get_nonce(vm) transaction = UnsignedUserAccountTransaction(**merge(DEFAULT_TX_PARAMS, { "nonce": nonce_before, "destination": FAILING_CONTRACT_ADDRESS, "access_list": DEFAULT_TX_PARAMS["access_list"] + [[FAILING_CONTRACT_ADDRESS]], })).as_signed_transaction(PRIVATE_KEY) computation, _ = vm.apply_transaction(transaction) assert computation.is_success assert get_nonce(vm) == nonce_before + 1 def test_nonce_getter_id(): assert NONCE_GETTER_ID == big_endian_to_int(keccak(b"get_nonce()")[:4]) ``` #### File: auxiliary/user-account/test_helpers.py ```python import pytest from eth_keys import keys from cytoolz import ( merge, ) from evm.exceptions import ValidationError from evm.auxiliary.user_account_contract.transaction import ( UserAccountTransaction, UnsignedUserAccountTransaction ) VALID_PARAMS = { "chain_id": 1, "shard_id": 2, "to": b"\xaa" * 20, "gas": 300000, "access_list": [[b"\xaa" * 20, b"\x00"]], "destination": b"\xbb" * 20, "value": 4, "nonce": 5, "min_block": 6, "max_block": 7, "gas_price": 8, "msg_data": b"\xcc" * 123, } INVALID_PARAMS = { "chain_id": b"\x01", "shard_id": b"\x02", "to": "0x" + "aa" * 20, "gas": b"\x03", "access_list": [[b"\xaa" * 20, 0]], "destination": "0x" + "bb" * 20, "value": b"\x04", "nonce": b"\x05", "min_block": b"\x06", "max_block": b"\x07", "gas_price": b"\x08", "msg_data": 123, } @pytest.fixture def unsigned_transaction(): return UnsignedUserAccountTransaction(**VALID_PARAMS) def test_signing(unsigned_transaction): private_key = keys.PrivateKey(b"\x22" * 32) signed_transaction = unsigned_transaction.as_signed_transaction(private_key) assert signed_transaction.get_sender() == private_key.public_key.to_canonical_address() def test_data(unsigned_transaction): private_key = keys.PrivateKey(b"\x22" * 32) signed_transaction = unsigned_transaction.as_signed_transaction(private_key) assert len(signed_transaction.data) > 10 * 32 assert signed_transaction.data.endswith(signed_transaction.msg_data) assert signed_transaction.data.endswith(unsigned_transaction.msg_data) assert len(signed_transaction.data) == len(unsigned_transaction.data) + 96 @pytest.mark.parametrize("key,value", INVALID_PARAMS.items()) def test_validation(key, value): # construct object with valid parameters, apply invalid values afterwards # this ensures object creation succeeds tx = UnsignedUserAccountTransaction(**VALID_PARAMS) with pytest.raises(ValidationError): setattr(tx, key, value) tx.validate() tx = UserAccountTransaction(**merge(VALID_PARAMS, {"v": 27, "r": 1, "s": 1})) with pytest.raises(ValidationError): setattr(tx, key, value) tx.validate() ``` #### File: core/vm/test_shard_vm.py ```python import os import json from eth_utils import ( int_to_big_endian, decode_hex, ) from evm.exceptions import ( IncorrectContractCreationAddress, ContractCreationCollision, ) from evm.utils.address import generate_CREATE2_contract_address from evm.utils.padding import pad32 from tests.core.helpers import ( new_sharding_transaction, ) DIR = os.path.dirname(__file__) def test_sharding_apply_transaction(unvalidated_shard_chain): # noqa: F811 chain = unvalidated_shard_chain CREATE2_contracts = json.load( open(os.path.join(DIR, '../contract_fixtures/CREATE2_contracts.json')) ) simple_transfer_contract = CREATE2_contracts["simple_transfer_contract"] CREATE2_contract = CREATE2_contracts["CREATE2_contract"] simple_factory_contract_bytecode = CREATE2_contracts["simple_factory_contract"]["bytecode"] # First test: simple ether transfer contract first_deploy_tx = new_sharding_transaction( tx_initiator=decode_hex(simple_transfer_contract['address']), data_destination=b'', data_value=0, data_msgdata=b'', data_vrs=b'', code=simple_transfer_contract['bytecode'], ) vm = chain.get_vm() computation, _ = vm.apply_transaction(first_deploy_tx) assert not computation.is_error gas_used = vm.block.header.gas_used assert gas_used > first_deploy_tx.intrinsic_gas last_gas_used = gas_used # Transfer ether to recipient recipient = decode_hex('0xa94f5374fce5edbc8e2a8697c15331677e6ebf0c') amount = 100 tx_initiator = decode_hex(simple_transfer_contract['address']) transfer_tx = new_sharding_transaction(tx_initiator, recipient, amount, b'', b'') computation, _ = vm.apply_transaction(transfer_tx) assert not computation.is_error gas_used = vm.block.header.gas_used - last_gas_used assert gas_used > transfer_tx.intrinsic_gas last_gas_used = vm.block.header.gas_used with vm.state.state_db(read_only=True) as state_db: assert state_db.get_balance(recipient) == amount # Second test: contract that deploy new contract with CREATE2 second_deploy_tx = new_sharding_transaction( tx_initiator=decode_hex(CREATE2_contract['address']), data_destination=b'', data_value=0, data_msgdata=b'', data_vrs=b'', code=CREATE2_contract['bytecode'], ) computation, _ = vm.apply_transaction(second_deploy_tx) assert not computation.is_error gas_used = vm.block.header.gas_used - last_gas_used assert gas_used > second_deploy_tx.intrinsic_gas last_gas_used = vm.block.header.gas_used # Invoke the contract to deploy new contract tx_initiator = decode_hex(CREATE2_contract['address']) newly_deployed_contract_address = generate_CREATE2_contract_address( int_to_big_endian(0), decode_hex(simple_factory_contract_bytecode) ) invoke_tx = new_sharding_transaction( tx_initiator, b'', 0, b'', b'', access_list=[[tx_initiator, pad32(b'')], [newly_deployed_contract_address]] ) computation, _ = vm.apply_transaction(invoke_tx) assert not computation.is_error gas_used = vm.block.header.gas_used - last_gas_used assert gas_used > invoke_tx.intrinsic_gas with vm.state.state_db(read_only=True) as state_db: newly_deployed_contract_address = generate_CREATE2_contract_address( int_to_big_endian(0), decode_hex(simple_factory_contract_bytecode) ) assert state_db.get_code(newly_deployed_contract_address) == b'\xbe\xef' assert state_db.get_storage(decode_hex(CREATE2_contract['address']), 0) == 1 def test_CREATE2_deploy_contract_edge_cases(unvalidated_shard_chain): # noqa: F811 CREATE2_contracts = json.load( open(os.path.join(DIR, '../contract_fixtures/CREATE2_contracts.json')) ) simple_transfer_contract = CREATE2_contracts["simple_transfer_contract"] # First case: computed contract address not the same as provided in `transaction.to` chain = unvalidated_shard_chain code = "0xf3" computed_address = generate_CREATE2_contract_address(b"", decode_hex(code)) first_failed_deploy_tx = new_sharding_transaction( tx_initiator=decode_hex(simple_transfer_contract['address']), data_destination=b'', data_value=0, data_msgdata=b'', data_vrs=b'', code=code, access_list=[[decode_hex(simple_transfer_contract['address'])], [computed_address]] ) vm = chain.get_vm() computation, _ = vm.apply_transaction(first_failed_deploy_tx) assert isinstance(computation._error, IncorrectContractCreationAddress) gas_used = vm.block.header.gas_used assert gas_used > first_failed_deploy_tx.intrinsic_gas last_gas_used = gas_used # Next, complete deploying the contract successful_deploy_tx = new_sharding_transaction( tx_initiator=decode_hex(simple_transfer_contract['address']), data_destination=b'', data_value=0, data_msgdata=b'', data_vrs=b'', code=simple_transfer_contract['bytecode'], ) computation, _ = vm.apply_transaction(successful_deploy_tx) assert not computation.is_error gas_used = vm.block.header.gas_used - last_gas_used assert gas_used > successful_deploy_tx.intrinsic_gas last_gas_used = gas_used # Second case: deploy to existing account second_failed_deploy_tx = successful_deploy_tx computation, _ = vm.apply_transaction(second_failed_deploy_tx) assert isinstance(computation._error, ContractCreationCollision) gas_used = vm.block.header.gas_used - last_gas_used assert gas_used > second_failed_deploy_tx.intrinsic_gas ``` #### File: py-evm/trinity/cli.py ```python import asyncio import atexit import logging import traceback import threading from typing import Dict # noqa: F401 from p2p.lightchain import LightChain LOGFILE = '/tmp/trinity-shell.log' LOGLEVEL = logging.INFO loop = asyncio.get_event_loop() def wait_for_result(coroutine): future = asyncio.run_coroutine_threadsafe(coroutine, loop) return future.result() def setup_namespace(chain): """Setup the variables to be used in shell instance.""" namespace = dict( chain=chain, wait_for_result=wait_for_result ) return namespace def ipython_shell(namespace=None, banner=None, debug=False): """Try to run IPython shell.""" try: import IPython except ImportError: if debug: traceback.print_exc() print("IPython not available. Running default shell...") return # First try newer(IPython >=1.0) top `IPython` level import if hasattr(IPython, 'terminal'): from IPython.terminal.embed import InteractiveShellEmbed kwargs = dict(user_ns=namespace) else: from IPython.frontend.terminal.embed import InteractiveShellEmbed # type: ignore kwargs = dict(user_ns=namespace) if banner: kwargs = dict(banner1=banner) return InteractiveShellEmbed(**kwargs) def python_shell(namespace=None, banner=None, debug=False): """Start a vanilla Python REPL shell.""" import code from functools import partial try: import readline, rlcompleter # NOQA except ImportError: if debug: traceback.print_exc() else: readline.parse_and_bind('tab: complete') # Add global, local and custom namespaces to current shell default_ns = globals().copy() default_ns.update(locals()) if namespace: default_ns.update(namespace) # Configure kwargs to pass banner kwargs = dict() # type: Dict[str, str] if banner: kwargs = dict(banner=banner) shell = code.InteractiveConsole(default_ns) return partial(shell.interact, **kwargs) def console( chain: LightChain, use_ipython: bool = True, namespace: dict = None, banner: str = None, debug: bool = False) -> None: """ Method that starts the chain, setups the trinity CLI and register the cleanup function. """ # update the namespace with the required variables namespace = {} if namespace is None else namespace namespace.update(setup_namespace(chain)) if use_ipython: shell = ipython_shell(namespace, banner, debug) print("Logging to", LOGFILE) log_level = logging.DEBUG if debug else LOGLEVEL logging.basicConfig(level=log_level, filename=LOGFILE) # Start the thread t = threading.Thread(target=loop.run_until_complete, args=(run_lightchain(chain),), daemon=True) t.start() # If can't import or start the IPython shell, use the default shell if not use_ipython or shell is None: shell = python_shell(namespace, banner, debug) shell() def cleanup(): chain.cancel_token.trigger() # Wait until run() finishes. t.join() atexit.register(cleanup) async def run_lightchain(lightchain: LightChain) -> None: try: asyncio.ensure_future(lightchain.peer_pool.run()) await lightchain.run() finally: await lightchain.peer_pool.stop() await lightchain.stop() ``` #### File: trinity/db/base.py ```python from multiprocessing.managers import ( # type: ignore BaseProxy, ) class DBProxy(BaseProxy): _exposed_ = ( 'get', 'set', 'delete', 'exists', ) def __getitem__(self, key): return self._callmethod('get', (key,)) def __setitem__(self, key, value): return self._callmethod('set', (key, value)) def __delitem__(self, key): return self._callmethod('delete', (key,)) def __contains__(self, key): return self._callmethod('exists', (key,)) ```
{ "source": "jesterwanderer/curso-python-cursoemvideo", "score": 3 }
#### File: CursoPython/Aulas/aula20a.py ```python def soma(a, b): s = a + b print(f'A soma de {a} + {b} é = {s}') soma(15, 13) ```
{ "source": "JesterXL/avoiding-primitive-obession", "score": 3 }
#### File: avoiding-primitive-obession/python/index2.py ```python from dataclasses import dataclass, astuple from enum import Enum from returns.result import Result, Success, Failure from functools import reduce class Team(Enum): Red = "red" Blue = "blue" def team_to_str(teamName:Team) -> str: # match teamName: # case Team.Red: # return "red" # case Team.Blue: # return "blue" # case _: # return "uh" if teamName == Team.Red: return "red" elif teamName == Team.Blue: return "blue" else: return "uh" @dataclass class Name: name: str def __iter__(self): return iter(astuple(self)) @dataclass class Phone: phone: str def __iter__(self): return iter(astuple(self)) @dataclass class Age: age: int def __iter__(self): return iter(astuple(self)) @dataclass class Person: team: Team name: Name age: Age phone: Phone def __str__(self): return f'Person(team={team_to_str(self.team)}, name={self.name}, age={self.age}, phone={self.phone})' def get_person(team:Team, name:Name, age:Age, phone:Phone) -> Result[Person, str]: return ( validate_name(name) .bind(lambda _: validate_phone(phone)) .bind(lambda _: validate_age(age)) .bind(lambda _: Success(Person(team, name, phone, age))) ) def all_blanks(acc, character): if acc == False: return False elif character == "": return True else: return False def validate_name(name_:Name) -> Result[str, str]: [name] = name_ # can't be 0 characters if len(name) < 1: return Failure('name cannot be blank') # can't be a bunch-o-blanks if reduce(all_blanks, name.split(), True) == True: return Failure('name cannot be a bunch of blanks') return Success(name) def validate_phone(phone_:Phone) -> Result[str, str]: [phone] = phone_ if len(phone) < 9: return Failure('phone cannot be less than 9 characters') if reduce(is_ok_phone_character, list(phone.strip()), True) == False: return Failure('phone has an unknown character, it must be either a number or ), (, or - as we strip our blank spaces') return Success(phone) def is_parseable_int(character:str) -> bool: try: parsed = int(character) return True except: return False def is_ok_phone_character(acc:bool, character:str) -> bool: if acc == False: return False if character == ')' or character == '(' or character == '-': return True return is_parseable_int(character) def validate_age(age_:Age) -> Result[str, str]: [age] = age_ if is_parseable_int(age) == False: return Failure('failed to parse age to an integer') parsed = int(age) if parsed < 0: return Failure('age must be greater than -1') return Success(age) jesse = get_person(Team.Red, Name("Jesse"), Age(42), Phone("804-555-1234")) print(jesse) ```
{ "source": "jestes15/GoogleBot", "score": 2 }
#### File: jestes15/GoogleBot/backend_operations.py ```python import json as js import os import discord from discord.ext import commands from discord.ext.commands import has_permissions from dotenv import load_dotenv data = None def load_data_file(): global data with open("data.json") as data_file: data = js.loads(data_file.read()) def dump_data(): global data with open("data.json", "w") as file: js.dump(data, file) if __name__ == "__main__": load_dotenv() TOKEN = os.getenv('DISCORD_TOKEN') bot = commands.Bot(command_prefix=["$"]) @has_permissions(administrator=True) @bot.command(name="shell-run") async def shell(ctx, cmd_var: str): out = os.popen(cmd_var) await ctx.channel.send(f"The output is: {out.read()}") @has_permissions(administrator=True) @bot.command(name="restart") async def restart(ctx): dump_data() var = os.popen("cd .. && ./restart") await ctx.channel.send(var.read()) @has_permissions(administrator=True) @bot.command(name="stop") async def stop(ctx): dump_data() var = os.popen("forever stop Google && forever stop watchdog") await ctx.channel.send(var.read()) @has_permissions(administrator=True) @bot.command(name="start") async def start(ctx): dump_data() var = os.popen("cd .. && ./start") await ctx.channel.send(var.read()) @has_permissions(administrator=True) @bot.command(name="update") async def update(ctx): dump_data() var = os.popen("cd .. && ./update && ./update2") await ctx.channel.send(var.read()) bot.run(TOKEN) ```
{ "source": "jestinepaul/pycryptodome", "score": 2 }
#### File: jestinepaul/pycryptodome/pct-speedtest.py ```python import time import os import sys from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_OAEP, PKCS1_v1_5 as RSAES_PKCS1_v1_5 from Crypto.Signature import PKCS1_PSS, PKCS1_v1_5 as RSASSA_PKCS1_v1_5 from Crypto.Cipher import (AES, ARC2, ARC4, Blowfish, CAST, DES3, DES, Salsa20, ChaCha20) from Crypto.Hash import (HMAC, MD2, MD4, MD5, SHA224, SHA256, SHA384, SHA512, CMAC, SHA3_224, SHA3_256, SHA3_384, SHA3_512, BLAKE2b, BLAKE2s) from Crypto.Random import get_random_bytes import Crypto.Util.Counter from Crypto.Util.number import bytes_to_long try: from Crypto.Hash import SHA1 except ImportError: # Maybe it's called SHA from Crypto.Hash import SHA as SHA1 try: from Crypto.Hash import RIPEMD160 except ImportError: # Maybe it's called RIPEMD try: from Crypto.Hash import RIPEMD as RIPEMD160 except ImportError: # Some builds of PyCrypto don't have the RIPEMD module RIPEMD160 = None try: import hashlib import hmac except ImportError: # Some builds/versions of Python don't have a hashlib module hashlib = hmac = None from Crypto.Random import random as pycrypto_random import random as stdlib_random class BLAKE2b_512(object): digest_size = 512 @staticmethod def new(data=None): return BLAKE2b.new(digest_bits=512, data=data) class BLAKE2s_256(object): digest_size = 256 @staticmethod def new(data=None): return BLAKE2s.new(digest_bits=256, data=data) class ChaCha20_old_style(object): @staticmethod def new(key, nonce): return ChaCha20.new(key=key, nonce=nonce) class ModeNotAvailable(ValueError): pass rng = get_random_bytes class Benchmark: def __init__(self): self.__random_data = None def random_keys(self, bytes, n=10**5): """Return random keys of the specified number of bytes. If this function has been called before with the same number of bytes, cached keys are used instead of randomly generating new ones. """ return self.random_blocks(bytes, n) def random_blocks(self, bytes_per_block, blocks): bytes = bytes_per_block * blocks data = self.random_data(bytes) retval = [] for i in range(blocks): p = i * bytes_per_block retval.append(data[p:p+bytes_per_block]) return retval def random_data(self, bytes): if self.__random_data is None: self.__random_data = self._random_bytes(bytes) return self.__random_data elif bytes == len(self.__random_data): return self.__random_data elif bytes < len(self.__random_data): return self.__random_data[:bytes] else: self.__random_data += self._random_bytes(bytes - len(self.__random_data)) return self.__random_data def _random_bytes(self, b): return os.urandom(b) def announce_start(self, test_name): sys.stdout.write("%s: " % (test_name,)) sys.stdout.flush() def announce_result(self, value, units): sys.stdout.write("%.2f %s\n" % (value, units)) sys.stdout.flush() def test_random_module(self, module_name, module): self.announce_start("%s.choice" % (module_name,)) alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" t0 = time.time() for i in range(5000): module.choice(alphabet) t = time.time() invocations_per_second = 5000 / (t - t0) self.announce_result(invocations_per_second, "invocations/sec") def test_pubkey_setup(self, pubkey_name, module, key_bytes): self.announce_start("%s pubkey setup" % (pubkey_name,)) keys = self.random_keys(key_bytes)[:5] t0 = time.time() for k in keys: module.generate(key_bytes*8) t = time.time() pubkey_setups_per_second = len(keys) / (t - t0) self.announce_result(pubkey_setups_per_second, "Keys/sec") def test_key_setup(self, cipher_name, module, key_bytes, params): self.generate_cipher(module, key_bytes, params) self.announce_start("%s key setup" % (cipher_name,)) for x in xrange(5000): t0 = time.time() self.generate_cipher(module, key_bytes, params) t = time.time() key_setups_per_second = 5000 / (t - t0) self.announce_result(key_setups_per_second/1000, "kKeys/sec") def test_encryption(self, cipher_name, module, key_bytes, params): self.announce_start("%s encryption" % (cipher_name,)) pt_size = 16384000L pt = rng(pt_size) cipher = self.generate_cipher(module, key_bytes, params) # Perform encryption t0 = time.time() cipher.encrypt(pt) t = time.time() encryption_speed = pt_size / (t - t0) self.announce_result(encryption_speed / 10**6, "MBps") def test_hash_small(self, hash_name, hash_constructor, digest_size): self.announce_start("%s (%d-byte inputs)" % (hash_name, digest_size)) blocks = self.random_blocks(digest_size, 10000) # Initialize hashes t0 = time.time() for b in blocks: hash_constructor(b).digest() t = time.time() hashes_per_second = len(blocks) / (t - t0) self.announce_result(hashes_per_second / 1000, "kHashes/sec") def test_hash_large(self, hash_name, hash_constructor, digest_size): self.announce_start("%s (single large input)" % (hash_name,)) blocks = self.random_blocks(16384, 10000) # Perform hashing t0 = time.time() h = hash_constructor() for b in blocks: h.update(b) h.digest() t = time.time() hash_speed = len(blocks) * len(blocks[0]) / (t - t0) self.announce_result(hash_speed / 10**6, "MBps") def test_hmac_small(self, mac_name, hmac_constructor, digestmod, digest_size): keys = iter(self.random_keys(digest_size)) if sys.version_info[0] == 2: mac_constructor = lambda data=None: hmac_constructor(keys.next(), data, digestmod) else: mac_constructor = lambda data=None: hmac_constructor(keys.__next__(), data, digestmod) self.test_hash_small(mac_name, mac_constructor, digest_size) def test_hmac_large(self, mac_name, hmac_constructor, digestmod, digest_size): key = self.random_keys(digest_size)[0] mac_constructor = lambda data=None: hmac_constructor(key, data, digestmod) self.test_hash_large(mac_name, mac_constructor, digest_size) def test_cmac_small(self, mac_name, cmac_constructor, ciphermod, key_size): keys = iter(self.random_keys(key_size)) if sys.version_info[0] == 2: mac_constructor = lambda data=None: cmac_constructor(keys.next(), data, ciphermod) else: mac_constructor = lambda data=None: cmac_constructor(keys.__next__(), data, ciphermod) self.test_hash_small(mac_name, mac_constructor, ciphermod.block_size) def test_cmac_large(self, mac_name, cmac_constructor, ciphermod, key_size): key = self.random_keys(key_size)[0] mac_constructor = lambda data=None: cmac_constructor(key, data, ciphermod) self.test_hash_large(mac_name, mac_constructor, ciphermod.block_size) def test_pkcs1_sign(self, scheme_name, scheme_constructor, hash_name, hash_constructor, digest_size): self.announce_start("%s signing %s (%d-byte inputs)" % (scheme_name, hash_name, digest_size)) # Make a key k = RSA.generate(2048) sigscheme = scheme_constructor(k) # Make some hashes blocks = self.random_blocks(digest_size, 50) hashes = [] for b in blocks: hashes.append(hash_constructor(b)) # Perform signing t0 = time.time() for h in hashes: sigscheme.sign(h) t = time.time() speed = len(hashes) / (t - t0) self.announce_result(speed, "sigs/sec") def test_pkcs1_verify(self, scheme_name, scheme_constructor, hash_name, hash_constructor, digest_size): self.announce_start("%s verification %s (%d-byte inputs)" % (scheme_name, hash_name, digest_size)) # Make a key k = RSA.generate(2048) sigscheme = scheme_constructor(k) # Make some hashes blocks = self.random_blocks(digest_size, 50) hashes = [] for b in blocks: hashes.append(hash_constructor(b)) # Make some signatures signatures = [] for h in hashes: signatures.append(sigscheme.sign(h)) # Double the list, to make timing better hashes = hashes + hashes signatures = signatures + signatures # Perform verification t0 = time.time() for h, s in zip(hashes, signatures): sigscheme.verify(h, s) t = time.time() speed = len(hashes) / (t - t0) self.announce_result(speed, "sigs/sec") def generate_cipher(self, module, key_size, params): params_dict = {} if params: params_dict = dict([x.split("=") for x in params.split(" ")]) gen_tuple = [] gen_dict = {} # 1st parameter (mandatory): key if params_dict.get('ks') == "x2": key = rng(2 * key_size) else: key = rng(key_size) gen_tuple.append(key) # 2nd parameter: mode mode = params_dict.get("mode") if mode: mode_value = getattr(module, mode, None) if mode_value is None: # Mode not available for this cipher raise ModeNotAvailable() gen_tuple.append(getattr(module, mode)) # 3rd parameter: IV/nonce iv_length = params_dict.get("iv") if iv_length is None: iv_length = params_dict.get("nonce") if iv_length: if iv_length == "bs": iv_length = module.block_size iv = rng(int(iv_length)) gen_tuple.append(iv) # Specific to CTR mode le = params_dict.get("little_endian") if le: if le == "True": le = True else: le = False # Remove iv from parameters gen_tuple = gen_tuple[:-1] ctr = Crypto.Util.Counter.new(module.block_size*8, initial_value=bytes_to_long(iv), little_endian=le, allow_wraparound=True) gen_dict['counter'] = ctr # Generate cipher return module.new(*gen_tuple, **gen_dict) def run(self): pubkey_specs = [ ("RSA(1024)", RSA, int(1024/8)), ("RSA(2048)", RSA, int(2048/8)), ("RSA(4096)", RSA, int(4096/8)), ] block_cipher_modes = [ # Mode name, key setup, parameters ("CBC", True, "mode=MODE_CBC iv=bs"), ("CFB-8", False, "mode=MODE_CFB iv=bs"), ("OFB", False, "mode=MODE_OFB iv=bs"), ("ECB", False, "mode=MODE_ECB"), ("CTR-LE", True, "mode=MODE_CTR iv=bs little_endian=True"), ("CTR-BE", False, "mode=MODE_CTR iv=bs little_endian=False"), ("OPENPGP", False, "mode=MODE_OPENPGP iv=bs"), ("CCM", True, "mode=MODE_CCM nonce=12"), ("GCM", True, "mode=MODE_GCM nonce=16"), ("EAX", True, "mode=MODE_EAX nonce=16"), ("SIV", True, "mode=MODE_SIV ks=x2 nonce=16"), ("OCB", True, "mode=MODE_OCB nonce=15"), ] block_specs = [ # Cipher name, module, key size ("DES", DES, 8), ("DES3", DES3, 24), ("AES128", AES, 16), ("AES192", AES, 24), ("AES256", AES, 32), ("Blowfish(256)", Blowfish, 32), ("CAST(128)", CAST, 16), ("ARC2(128)", ARC2, 16), ] stream_specs = [ # Cipher name, module, key size, nonce size ("ARC4(128)", ARC4, 16, 0), ("Salsa20(16)", Salsa20, 16, 8), ("Salsa20(32)", Salsa20, 32, 8), ("ChaCha20", ChaCha20_old_style, 32, 8), ] hash_specs = [ ("MD2", MD2), ("MD4", MD4), ("MD5", MD5), ("SHA1", SHA1), ("SHA224", SHA224), ("SHA256", SHA256), ("SHA384", SHA384), ("SHA512", SHA512), ("SHA3_224", SHA3_224), ("SHA3_256", SHA3_256), ("SHA3_384", SHA3_384), ("SHA3_512", SHA3_512), ("BLAKE2b", BLAKE2b_512), ("BLAKE2s", BLAKE2s_256), ] if RIPEMD160 is not None: hash_specs += [("RIPEMD160", RIPEMD160)] hashlib_specs = [] if hashlib is not None: if hasattr(hashlib, 'md5'): hashlib_specs.append(("hashlib.md5", hashlib.md5)) if hasattr(hashlib, 'sha1'): hashlib_specs.append(("hashlib.sha1", hashlib.sha1)) if hasattr(hashlib, 'sha224'): hashlib_specs.append(("hashlib.sha224", hashlib.sha224)) if hasattr(hashlib, 'sha256'): hashlib_specs.append(("hashlib.sha256", hashlib.sha256)) if hasattr(hashlib, 'sha384'): hashlib_specs.append(("hashlib.sha384", hashlib.sha384)) if hasattr(hashlib, 'sha512'): hashlib_specs.append(("hashlib.sha512", hashlib.sha512)) # stdlib random self.test_random_module("stdlib random", stdlib_random) # Crypto.Random.random self.test_random_module("Crypto.Random.random", pycrypto_random) # Crypto.PublicKey for pubkey_name, module, key_bytes in pubkey_specs: self.test_pubkey_setup(pubkey_name, module, key_bytes) # Crypto.Cipher (block ciphers) for cipher_name, module, key_bytes in block_specs: # Benchmark each cipher in each of the various modes (CBC, etc) for mode_name, test_ks, params in block_cipher_modes: mode_text = "%s-%s" % (cipher_name, mode_name) try: if test_ks: self.test_key_setup(mode_text, module, key_bytes, params) self.test_encryption(mode_text, module, key_bytes, params) except ModeNotAvailable as e: pass # Crypto.Cipher (stream ciphers) for cipher_name, module, key_bytes, nonce_bytes in stream_specs: params = "" if nonce_bytes: params = "nonce=" + str(nonce_bytes) self.test_key_setup(cipher_name, module, key_bytes, params) self.test_encryption(cipher_name, module, key_bytes, params) # Crypto.Hash for hash_name, module in hash_specs: self.test_hash_small(hash_name, module.new, module.digest_size) self.test_hash_large(hash_name, module.new, module.digest_size) # standard hashlib for hash_name, func in hashlib_specs: self.test_hash_small(hash_name, func, func().digest_size) self.test_hash_large(hash_name, func, func().digest_size) # PyCrypto HMAC for hash_name, module in hash_specs: if not hasattr(module, "block_size"): continue self.test_hmac_small("HMAC-"+hash_name, HMAC.new, module, module.digest_size) self.test_hmac_large("HMAC-"+hash_name, HMAC.new, module, module.digest_size) # standard hmac + hashlib for hash_name, func in hashlib_specs: if not hasattr(module, "block_size"): continue self.test_hmac_small("hmac+"+hash_name, hmac.HMAC, func, func().digest_size) self.test_hmac_large("hmac+"+hash_name, hmac.HMAC, func, func().digest_size) # CMAC for cipher_name, module, key_size in (("AES128", AES, 16),): self.test_cmac_small(cipher_name+"-CMAC", CMAC.new, module, key_size) self.test_cmac_large(cipher_name+"-CMAC", CMAC.new, module, key_size) # PKCS1_v1_5 (sign) + Crypto.Hash for hash_name, module in hash_specs: self.test_pkcs1_sign("PKCS#1-v1.5", RSASSA_PKCS1_v1_5.new, hash_name, module.new, module.digest_size) # PKCS1_PSS (sign) + Crypto.Hash for hash_name, module in hash_specs: self.test_pkcs1_sign("PKCS#1-PSS", PKCS1_PSS.new, hash_name, module.new, module.digest_size) # PKCS1_v1_5 (verify) + Crypto.Hash for hash_name, module in hash_specs: self.test_pkcs1_verify("PKCS#1-v1.5", RSASSA_PKCS1_v1_5.new, hash_name, module.new, module.digest_size) # PKCS1_PSS (verify) + Crypto.Hash for hash_name, module in hash_specs: self.test_pkcs1_verify("PKCS#1-PSS", PKCS1_PSS.new, hash_name, module.new, module.digest_size) if __name__ == '__main__': Benchmark().run() # vim:set ts=4 sw=4 sts=4 expandtab: ``` #### File: pycryptodome/src/make_ecc_table.py ```python import argparse declaration = """\ /* This file was automatically generated, do not edit */ #include "common.h" extern const unsigned {0}_n_tables; extern const unsigned {0}_window_size; extern const unsigned {0}_points_per_table; extern const uint64_t {0}_tables[{1}][{2}][2][{3}]; """ definition = """\ /* This file was automatically generated, do not edit */ #include "common.h" const unsigned {0}_n_tables = {1}; const unsigned {0}_window_size = {2}; const unsigned {0}_points_per_table = {3}; /* {4} */ /* Table size: {5} kbytes */ const uint64_t {0}_tables[{1}][{3}][2][{6}] = {{\ """ point = """\ {{ /* Point #{0} */ {{ {1} }}, {{ {2} }} }}{3}\ """ parser = argparse.ArgumentParser() parser.add_argument("curve") parser.add_argument("window_size", type=int) parser.add_argument("basename") args = parser.parse_args() if args.curve == "p256": bits = 256 p = 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff Gx = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296 Gy = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5 msg = "Affine coordinates in Montgomery form" elif args.curve == "p384": bits = 384 p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff Gx = 0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760aB7 Gy = 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5F msg = "Affine coordinates in Montgomery form" elif args.curve == "p521": bits = 521 p = 0x000001ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff Gx = 0x000000c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66 Gy = 0x0000011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650 msg = "Affine coordinates in plain form (not Montgomery)" else: raise ValueError("Unsupported curve: " + args.curve) c_file = open(args.basename + ".c", "wt") h_file = open(args.basename + ".h", "wt") words = (bits + 63) // 64 window_size = args.window_size points_per_table = 2**window_size n_tables = (bits + window_size - 1) // window_size byte_size = n_tables * points_per_table * 2 * (bits // 64) * (64 // 8) // 1024 G = Gx, Gy def double(X1, Y1): if X1 == 0 and Y1 == 0: return (0, 0) XX = pow(X1, 2, p) w = -3 + 3 * XX Y1Y1 = pow(Y1, 2, p) R = 2 * Y1Y1 sss = 4 * Y1 * R RR = pow(R, 2, p) B = pow(X1 + R, 2, p) - XX - RR h = pow(w, 2, p) - 2 * B X3 = 2 * h * Y1 % p Y3 = w * (B - h) - 2 * RR % p Z3 = sss Z3inv = pow(Z3, p - 2, p) x3 = X3 * Z3inv % p y3 = Y3 * Z3inv % p return (x3, y3) def add(X1, Y1, X2, Y2): if X1 == 0 and Y1 == 0: return (X2, Y2) if X1 == X2 and Y1 == Y2: return double(X1, Y1) if X1 == X2 and (Y1 + Y2) % p == 0: return (0, 0) u = Y2 - Y1 uu = pow(u, 2, p) v = X2 - X1 vv = pow(v, 2, p) vvv = v * vv % p R = vv * X1 % p A = uu - vvv - 2 * R X3 = v * A % p Y3 = (u * (R - A) - vvv * Y1) % p Z3 = vvv Z3inv = pow(Z3, p - 2, p) x3 = X3 * Z3inv % p y3 = Y3 * Z3inv % p return (x3, y3) def get64(z, words): """Return a C string with the number encoded into 64-bit words""" # Convert to Montgomery form, but only if it's not P521 if words != 9: R = 2**(words * 64) x = z * R % p else: x = z result = [] for _ in range(words): masked = x & ((1 << 64) - 1) result.append("0x%016XULL" % masked) x >>= 64 return ",".join(result) # Create table with points 0, G, 2G, 3G, .. (2**window_size-1)G window = [(0, 0)] for _ in range(points_per_table - 1): new_point = add(*window[-1], *G) window.append(new_point) print(declaration.format(args.curve, n_tables, points_per_table, words), file=h_file) print(definition.format(args.curve, n_tables, window_size, points_per_table, msg, byte_size, words), file=c_file) for i in range(n_tables): print(" { /* Table #%u */" % i, file=c_file) for j, w in enumerate(window): endc = "" if (j == points_per_table - 1) else "," print(point.format(j, get64(w[0], words), get64(w[1], words), endc), file=c_file) endc = "" if (i == n_tables - 1) else "," print(" }%s" % endc, file=c_file) # Move from G to G*2^{w} for j in range(window_size): G = double(*G) # Update window for j in range(1, points_per_table): window[j] = add(*window[j-1], *G) print("};", file=c_file) ``` #### File: src/test/make_tests_addmul.py ```python from common import counter, make_main, split64 def make_test(t, a, k): if k == -1: k = 0xFFFFFFFFFFFFFFFF assert(0 <= k < 0x10000000000000000) # What we expect the function to compute result = t + a*k # Turn a[] and t[] into arrays of 64-bit words a = split64(a) t_in = split64(t) result = split64(result) # Computation does not depend on zero terms result_len = max(len(result), 1 + len(a)) # Pad the output vector with as many padding zeroes as needed for x in xrange(result_len - len(t_in)): t_in.append("0") for x in xrange(result_len - len(result)): result.append("0") test_nr = counter.next() print "" print "void test_%d() {" % test_nr #print ' printf("Test #%d\\n");' % test_nr print " const uint64_t a[] = {" + ", ".join(a) + "};" print " uint64_t t[] = {" + ", ".join(t_in) + ", 0xAAAAAAAAAAAAAAAAULL};" print " const uint64_t expected_t[] = {" + ", ".join(result) + "};" print "" print " addmul(t, %d, a, %d, 0x%x);" % (result_len, len(a), k) print " assert(memcmp(t, expected_t, 8*%d) == 0);" % result_len print " assert(t[%d] == 0xAAAAAAAAAAAAAAAAULL);" % result_len print "}" print "" print "#include <assert.h>" print "#include <string.h>" print "#include <stdint.h>" print "#include <stdio.h>" print "" print "void addmul(uint64_t *t, size_t tw, const uint64_t *a, size_t aw, uint64_t k);" make_test(0, 0, 0) make_test(0, 1, 1) make_test(0, 5, 5) make_test(0, 0xFFFFFFFFFFFFFFFFFFF, -1) make_test(0xFFFFFFFFFFFFFFFF, 1, 1) make_test(32783243204234329232323, 9232922323, 39393938) make_test(32783243204234329232323333333333333783839393, 92329223233877777777777777777777777838333, 0x1000000) make_test(37893272389423987423987429837498237498237498274982374982734982374982734982743982374, 30309093333334930430493049304930940394039430303000009090909093434930493094039409340930493094309403940394039403940394039403940390493049304943, 0x1000000) make_main() ``` #### File: src/test/make_tests_product.py ```python from common import counter, make_main, split64 def make_test(a, b): # Turn a[], b[] and the result into arrays of 64-bit words result = split64(a*b) a = split64(a) b = split64(b) # Pad the output vector with as many padding zeroes as needed # Computation does not depend on zero terms for _ in xrange(max(len(b), len(a)) - len(b)): b.append("0") for _ in xrange(max(len(b), len(a)) - len(a)): a.append("0") result_len = len(b) + len(a) for _ in xrange(result_len - len(result)): result.append("0") # Fill output buffer with values that must be overwritten t = [ "0xCCCCCCCCCCCCCCCCULL" ] * result_len print "" print "void test_%d() {" % counter.next() print " const uint64_t a[] = {" + ", ".join(a) + "};" print " const uint64_t b[] = {" + ", ".join(b) + "};" print " uint64_t t[] = {" + ", ".join(t) + ", 0xAAAAAAAAAAAAAAAAULL};" print " uint64_t scratchpad[%d];" % (3*len(a)) print " const uint64_t expected_t[] = {" + ", ".join(result) + "};" print "" print " product(t, scratchpad, a, b, %d);" % len(a) print " assert(memcmp(t, expected_t, 8*%d) == 0);" % result_len #print ' printf("t[{0}]=0x%016lX\\n", t[{0}]);'.format(result_len) print " assert(t[%d] == 0xAAAAAAAAAAAAAAAAULL);" % result_len print "}" print "" print "#include <assert.h>" print "#include <string.h>" print "#include <stdint.h>" print "#include <stdio.h>" print "" print "void product(uint64_t *t, uint64_t *product, const uint64_t *a, const uint64_t *b, size_t words);" make_test(0, 0) make_test(1, 0) make_test(27, 98) make_test(27832782374324, 78237487324872348723847234) make_test(0x786BF, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) make_test(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) make_main() ```
{ "source": "jestinmwilson/personal-website", "score": 2 }
#### File: astroid/brain/brain_six.py ```python """Astroid hooks for six module.""" from textwrap import dedent from astroid import MANAGER, register_module_extender from astroid.builder import AstroidBuilder from astroid.exceptions import ( AstroidBuildingError, InferenceError, AttributeInferenceError, ) from astroid import nodes SIX_ADD_METACLASS = "six.add_metaclass" def _indent(text, prefix, predicate=None): """Adds 'prefix' to the beginning of selected lines in 'text'. If 'predicate' is provided, 'prefix' will only be added to the lines where 'predicate(line)' is True. If 'predicate' is not provided, it will default to adding 'prefix' to all non-empty lines that do not consist solely of whitespace characters. """ if predicate is None: predicate = lambda line: line.strip() def prefixed_lines(): for line in text.splitlines(True): yield prefix + line if predicate(line) else line return "".join(prefixed_lines()) _IMPORTS = """ import _io cStringIO = _io.StringIO filter = filter from itertools import filterfalse input = input from sys import intern map = map range = range from importlib import reload reload_module = lambda module: reload(module) from functools import reduce from shlex import quote as shlex_quote from io import StringIO from collections import UserDict, UserList, UserString xrange = range zip = zip from itertools import zip_longest import builtins import configparser import copyreg import _dummy_thread import http.cookiejar as http_cookiejar import http.cookies as http_cookies import html.entities as html_entities import html.parser as html_parser import http.client as http_client import http.server as http_server BaseHTTPServer = CGIHTTPServer = SimpleHTTPServer = http.server import pickle as cPickle import queue import reprlib import socketserver import _thread import winreg import xmlrpc.server as xmlrpc_server import xmlrpc.client as xmlrpc_client import urllib.robotparser as urllib_robotparser import email.mime.multipart as email_mime_multipart import email.mime.nonmultipart as email_mime_nonmultipart import email.mime.text as email_mime_text import email.mime.base as email_mime_base import urllib.parse as urllib_parse import urllib.error as urllib_error import tkinter import tkinter.dialog as tkinter_dialog import tkinter.filedialog as tkinter_filedialog import tkinter.scrolledtext as tkinter_scrolledtext import tkinter.simpledialog as tkinder_simpledialog import tkinter.tix as tkinter_tix import tkinter.ttk as tkinter_ttk import tkinter.constants as tkinter_constants import tkinter.dnd as tkinter_dnd import tkinter.colorchooser as tkinter_colorchooser import tkinter.commondialog as tkinter_commondialog import tkinter.filedialog as tkinter_tkfiledialog import tkinter.font as tkinter_font import tkinter.messagebox as tkinter_messagebox import urllib import urllib.request as urllib_request import urllib.robotparser as urllib_robotparser import urllib.parse as urllib_parse import urllib.error as urllib_error """ def six_moves_transform(): code = dedent( """ class Moves(object): {} moves = Moves() """ ).format(_indent(_IMPORTS, " ")) module = AstroidBuilder(MANAGER).string_build(code) module.name = "six.moves" return module def _six_fail_hook(modname): """Fix six.moves imports due to the dynamic nature of this class. Construct a pseudo-module which contains all the necessary imports for six :param modname: Name of failed module :type modname: str :return: An astroid module :rtype: nodes.Module """ attribute_of = modname != "six.moves" and modname.startswith("six.moves") if modname != "six.moves" and not attribute_of: raise AstroidBuildingError(modname=modname) module = AstroidBuilder(MANAGER).string_build(_IMPORTS) module.name = "six.moves" if attribute_of: # Facilitate import of submodules in Moves start_index = len(module.name) attribute = modname[start_index:].lstrip(".").replace(".", "_") try: import_attr = module.getattr(attribute)[0] except AttributeInferenceError: raise AstroidBuildingError(modname=modname) if isinstance(import_attr, nodes.Import): submodule = MANAGER.ast_from_module_name(import_attr.names[0][0]) return submodule # Let dummy submodule imports pass through # This will cause an Uninferable result, which is okay return module def _looks_like_decorated_with_six_add_metaclass(node): if not node.decorators: return False for decorator in node.decorators.nodes: if not isinstance(decorator, nodes.Call): continue if decorator.func.as_string() == SIX_ADD_METACLASS: return True return False def transform_six_add_metaclass(node): """Check if the given class node is decorated with *six.add_metaclass* If so, inject its argument as the metaclass of the underlying class. """ if not node.decorators: return for decorator in node.decorators.nodes: if not isinstance(decorator, nodes.Call): continue try: func = next(decorator.func.infer()) except InferenceError: continue if func.qname() == SIX_ADD_METACLASS and decorator.args: metaclass = decorator.args[0] node._metaclass = metaclass return node register_module_extender(MANAGER, "six", six_moves_transform) register_module_extender( MANAGER, "requests.packages.urllib3.packages.six", six_moves_transform ) MANAGER.register_failed_import_hook(_six_fail_hook) MANAGER.register_transform( nodes.ClassDef, transform_six_add_metaclass, _looks_like_decorated_with_six_add_metaclass, ) ``` #### File: django/utils/asyncio.py ```python import asyncio import functools import os from django.core.exceptions import SynchronousOnlyOperation def async_unsafe(message): """ Decorator to mark functions as async-unsafe. Someone trying to access the function while in an async context will get an error message. """ def decorator(func): @functools.wraps(func) def inner(*args, **kwargs): if not os.environ.get('DJANGO_ALLOW_ASYNC_UNSAFE'): # Detect a running event loop in this thread. try: event_loop = asyncio.get_event_loop() except RuntimeError: pass else: if event_loop.is_running(): raise SynchronousOnlyOperation(message) # Pass onwards. return func(*args, **kwargs) return inner # If the message is actually a function, then be a no-arguments decorator. if callable(message): func = message message = 'You cannot call this from an async context - use a thread or sync_to_async.' return decorator(func) else: return decorator ``` #### File: django/utils/cache.py ```python import hashlib import re import time from django.conf import settings from django.core.cache import caches from django.http import HttpResponse, HttpResponseNotModified from django.utils.encoding import iri_to_uri from django.utils.http import ( http_date, parse_etags, parse_http_date_safe, quote_etag, ) from django.utils.log import log_response from django.utils.timezone import get_current_timezone_name from django.utils.translation import get_language cc_delim_re = re.compile(r'\s*,\s*') def patch_cache_control(response, **kwargs): """ Patch the Cache-Control header by adding all keyword arguments to it. The transformation is as follows: * All keyword parameter names are turned to lowercase, and underscores are converted to hyphens. * If the value of a parameter is True (exactly True, not just a true value), only the parameter name is added to the header. * All other parameters are added with their value, after applying str() to it. """ def dictitem(s): t = s.split('=', 1) if len(t) > 1: return (t[0].lower(), t[1]) else: return (t[0].lower(), True) def dictvalue(t): if t[1] is True: return t[0] else: return '%s=%s' % (t[0], t[1]) if response.get('Cache-Control'): cc = cc_delim_re.split(response['Cache-Control']) cc = dict(dictitem(el) for el in cc) else: cc = {} # If there's already a max-age header but we're being asked to set a new # max-age, use the minimum of the two ages. In practice this happens when # a decorator and a piece of middleware both operate on a given view. if 'max-age' in cc and 'max_age' in kwargs: kwargs['max_age'] = min(int(cc['max-age']), kwargs['max_age']) # Allow overriding private caching and vice versa if 'private' in cc and 'public' in kwargs: del cc['private'] elif 'public' in cc and 'private' in kwargs: del cc['public'] for (k, v) in kwargs.items(): cc[k.replace('_', '-')] = v cc = ', '.join(dictvalue(el) for el in cc.items()) response['Cache-Control'] = cc def get_max_age(response): """ Return the max-age from the response Cache-Control header as an integer, or None if it wasn't found or wasn't an integer. """ if not response.has_header('Cache-Control'): return cc = dict(_to_tuple(el) for el in cc_delim_re.split(response['Cache-Control'])) try: return int(cc['max-age']) except (ValueError, TypeError, KeyError): pass def set_response_etag(response): if not response.streaming: response['ETag'] = quote_etag(hashlib.md5(response.content).hexdigest()) return response def _precondition_failed(request): response = HttpResponse(status=412) log_response( 'Precondition Failed: %s', request.path, response=response, request=request, ) return response def _not_modified(request, response=None): new_response = HttpResponseNotModified() if response: # Preserve the headers required by Section 4.1 of RFC 7232, as well as # Last-Modified. for header in ('Cache-Control', 'Content-Location', 'Date', 'ETag', 'Expires', 'Last-Modified', 'Vary'): if header in response: new_response[header] = response[header] # Preserve cookies as per the cookie specification: "If a proxy server # receives a response which contains a Set-cookie header, it should # propagate the Set-cookie header to the client, regardless of whether # the response was 304 (Not Modified) or 200 (OK). # https://curl.haxx.se/rfc/cookie_spec.html new_response.cookies = response.cookies return new_response def get_conditional_response(request, etag=None, last_modified=None, response=None): # Only return conditional responses on successful requests. if response and not (200 <= response.status_code < 300): return response # Get HTTP request headers. if_match_etags = parse_etags(request.META.get('HTTP_IF_MATCH', '')) if_unmodified_since = request.META.get('HTTP_IF_UNMODIFIED_SINCE') if_unmodified_since = if_unmodified_since and parse_http_date_safe(if_unmodified_since) if_none_match_etags = parse_etags(request.META.get('HTTP_IF_NONE_MATCH', '')) if_modified_since = request.META.get('HTTP_IF_MODIFIED_SINCE') if_modified_since = if_modified_since and parse_http_date_safe(if_modified_since) # Step 1 of section 6 of RFC 7232: Test the If-Match precondition. if if_match_etags and not _if_match_passes(etag, if_match_etags): return _precondition_failed(request) # Step 2: Test the If-Unmodified-Since precondition. if (not if_match_etags and if_unmodified_since and not _if_unmodified_since_passes(last_modified, if_unmodified_since)): return _precondition_failed(request) # Step 3: Test the If-None-Match precondition. if if_none_match_etags and not _if_none_match_passes(etag, if_none_match_etags): if request.method in ('GET', 'HEAD'): return _not_modified(request, response) else: return _precondition_failed(request) # Step 4: Test the If-Modified-Since precondition. if (not if_none_match_etags and if_modified_since and not _if_modified_since_passes(last_modified, if_modified_since)): if request.method in ('GET', 'HEAD'): return _not_modified(request, response) # Step 5: Test the If-Range precondition (not supported). # Step 6: Return original response since there isn't a conditional response. return response def _if_match_passes(target_etag, etags): """ Test the If-Match comparison as defined in section 3.1 of RFC 7232. """ if not target_etag: # If there isn't an ETag, then there can't be a match. return False elif etags == ['*']: # The existence of an ETag means that there is "a current # representation for the target resource", even if the ETag is weak, # so there is a match to '*'. return True elif target_etag.startswith('W/'): # A weak ETag can never strongly match another ETag. return False else: # Since the ETag is strong, this will only return True if there's a # strong match. return target_etag in etags def _if_unmodified_since_passes(last_modified, if_unmodified_since): """ Test the If-Unmodified-Since comparison as defined in section 3.4 of RFC 7232. """ return last_modified and last_modified <= if_unmodified_since def _if_none_match_passes(target_etag, etags): """ Test the If-None-Match comparison as defined in section 3.2 of RFC 7232. """ if not target_etag: # If there isn't an ETag, then there isn't a match. return True elif etags == ['*']: # The existence of an ETag means that there is "a current # representation for the target resource", so there is a match to '*'. return False else: # The comparison should be weak, so look for a match after stripping # off any weak indicators. target_etag = target_etag.strip('W/') etags = (etag.strip('W/') for etag in etags) return target_etag not in etags def _if_modified_since_passes(last_modified, if_modified_since): """ Test the If-Modified-Since comparison as defined in section 3.3 of RFC 7232. """ return not last_modified or last_modified > if_modified_since def patch_response_headers(response, cache_timeout=None): """ Add HTTP caching headers to the given HttpResponse: Expires and Cache-Control. Each header is only added if it isn't already set. cache_timeout is in seconds. The CACHE_MIDDLEWARE_SECONDS setting is used by default. """ if cache_timeout is None: cache_timeout = settings.CACHE_MIDDLEWARE_SECONDS if cache_timeout < 0: cache_timeout = 0 # Can't have max-age negative if not response.has_header('Expires'): response['Expires'] = http_date(time.time() + cache_timeout) patch_cache_control(response, max_age=cache_timeout) def add_never_cache_headers(response): """ Add headers to a response to indicate that a page should never be cached. """ patch_response_headers(response, cache_timeout=-1) patch_cache_control(response, no_cache=True, no_store=True, must_revalidate=True, private=True) def patch_vary_headers(response, newheaders): """ Add (or update) the "Vary" header in the given HttpResponse object. newheaders is a list of header names that should be in "Vary". If headers contains an asterisk, then "Vary" header will consist of a single asterisk '*'. Otherwise, existing headers in "Vary" aren't removed. """ # Note that we need to keep the original order intact, because cache # implementations may rely on the order of the Vary contents in, say, # computing an MD5 hash. if response.has_header('Vary'): vary_headers = cc_delim_re.split(response['Vary']) else: vary_headers = [] # Use .lower() here so we treat headers as case-insensitive. existing_headers = {header.lower() for header in vary_headers} additional_headers = [newheader for newheader in newheaders if newheader.lower() not in existing_headers] vary_headers += additional_headers if '*' in vary_headers: response['Vary'] = '*' else: response['Vary'] = ', '.join(vary_headers) def has_vary_header(response, header_query): """ Check to see if the response has a given header name in its Vary header. """ if not response.has_header('Vary'): return False vary_headers = cc_delim_re.split(response['Vary']) existing_headers = {header.lower() for header in vary_headers} return header_query.lower() in existing_headers def _i18n_cache_key_suffix(request, cache_key): """If necessary, add the current locale or time zone to the cache key.""" if settings.USE_I18N or settings.USE_L10N: # first check if LocaleMiddleware or another middleware added # LANGUAGE_CODE to request, then fall back to the active language # which in turn can also fall back to settings.LANGUAGE_CODE cache_key += '.%s' % getattr(request, 'LANGUAGE_CODE', get_language()) if settings.USE_TZ: cache_key += '.%s' % get_current_timezone_name() return cache_key def _generate_cache_key(request, method, headerlist, key_prefix): """Return a cache key from the headers given in the header list.""" ctx = hashlib.md5() for header in headerlist: value = request.META.get(header) if value is not None: ctx.update(value.encode()) url = hashlib.md5(iri_to_uri(request.build_absolute_uri()).encode('ascii')) cache_key = 'views.decorators.cache.cache_page.%s.%s.%s.%s' % ( key_prefix, method, url.hexdigest(), ctx.hexdigest()) return _i18n_cache_key_suffix(request, cache_key) def _generate_cache_header_key(key_prefix, request): """Return a cache key for the header cache.""" url = hashlib.md5(iri_to_uri(request.build_absolute_uri()).encode('ascii')) cache_key = 'views.decorators.cache.cache_header.%s.%s' % ( key_prefix, url.hexdigest()) return _i18n_cache_key_suffix(request, cache_key) def get_cache_key(request, key_prefix=None, method='GET', cache=None): """ Return a cache key based on the request URL and query. It can be used in the request phase because it pulls the list of headers to take into account from the global URL registry and uses those to build a cache key to check against. If there isn't a headerlist stored, return None, indicating that the page needs to be rebuilt. """ if key_prefix is None: key_prefix = settings.CACHE_MIDDLEWARE_KEY_PREFIX cache_key = _generate_cache_header_key(key_prefix, request) if cache is None: cache = caches[settings.CACHE_MIDDLEWARE_ALIAS] headerlist = cache.get(cache_key) if headerlist is not None: return _generate_cache_key(request, method, headerlist, key_prefix) else: return None def learn_cache_key(request, response, cache_timeout=None, key_prefix=None, cache=None): """ Learn what headers to take into account for some request URL from the response object. Store those headers in a global URL registry so that later access to that URL will know what headers to take into account without building the response object itself. The headers are named in the Vary header of the response, but we want to prevent response generation. The list of headers to use for cache key generation is stored in the same cache as the pages themselves. If the cache ages some data out of the cache, this just means that we have to build the response once to get at the Vary header and so at the list of headers to use for the cache key. """ if key_prefix is None: key_prefix = settings.CACHE_MIDDLEWARE_KEY_PREFIX if cache_timeout is None: cache_timeout = settings.CACHE_MIDDLEWARE_SECONDS cache_key = _generate_cache_header_key(key_prefix, request) if cache is None: cache = caches[settings.CACHE_MIDDLEWARE_ALIAS] if response.has_header('Vary'): is_accept_language_redundant = settings.USE_I18N or settings.USE_L10N # If i18n or l10n are used, the generated cache key will be suffixed # with the current locale. Adding the raw value of Accept-Language is # redundant in that case and would result in storing the same content # under multiple keys in the cache. See #18191 for details. headerlist = [] for header in cc_delim_re.split(response['Vary']): header = header.upper().replace('-', '_') if header != 'ACCEPT_LANGUAGE' or not is_accept_language_redundant: headerlist.append('HTTP_' + header) headerlist.sort() cache.set(cache_key, headerlist, cache_timeout) return _generate_cache_key(request, request.method, headerlist, key_prefix) else: # if there is no Vary header, we still need a cache key # for the request.build_absolute_uri() cache.set(cache_key, [], cache_timeout) return _generate_cache_key(request, request.method, [], key_prefix) def _to_tuple(s): t = s.split('=', 1) if len(t) == 2: return t[0].lower(), t[1] return t[0].lower(), True ``` #### File: django/utils/topological_sort.py ```python class CyclicDependencyError(ValueError): pass def topological_sort_as_sets(dependency_graph): """ Variation of Kahn's algorithm (1962) that returns sets. Take a dependency graph as a dictionary of node => dependencies. Yield sets of items in topological order, where the first set contains all nodes without dependencies, and each following set contains all nodes that may depend on the nodes only in the previously yielded sets. """ todo = dependency_graph.copy() while todo: current = {node for node, deps in todo.items() if not deps} if not current: raise CyclicDependencyError('Cyclic dependency in graph: {}'.format( ', '.join(repr(x) for x in todo.items()))) yield current # remove current from todo's nodes & dependencies todo = {node: (dependencies - current) for node, dependencies in todo.items() if node not in current} def stable_topological_sort(nodes, dependency_graph): result = [] for layer in topological_sort_as_sets(dependency_graph): for node in nodes: if node in layer: result.append(node) return result ``` #### File: pylint/lint/utils.py ```python import contextlib import sys from pylint.utils import utils class ArgumentPreprocessingError(Exception): """Raised if an error occurs during argument preprocessing.""" def preprocess_options(args, search_for): """look for some options (keys of <search_for>) which have to be processed before others values of <search_for> are callback functions to call when the option is found """ i = 0 while i < len(args): arg = args[i] if arg.startswith("--"): try: option, val = arg[2:].split("=", 1) except ValueError: option, val = arg[2:], None try: cb, takearg = search_for[option] except KeyError: i += 1 else: del args[i] if takearg and val is None: if i >= len(args) or args[i].startswith("-"): msg = "Option %s expects a value" % option raise ArgumentPreprocessingError(msg) val = args[i] del args[i] elif not takearg and val is not None: msg = "Option %s doesn't expects a value" % option raise ArgumentPreprocessingError(msg) cb(option, val) else: i += 1 def _patch_sys_path(args): original = list(sys.path) changes = [] seen = set() for arg in args: path = utils.get_python_path(arg) if path not in seen: changes.append(path) seen.add(path) sys.path[:] = changes + sys.path return original @contextlib.contextmanager def fix_import_path(args): """Prepare sys.path for running the linter checks. Within this context, each of the given arguments is importable. Paths are added to sys.path in corresponding order to the arguments. We avoid adding duplicate directories to sys.path. `sys.path` is reset to its original value upon exiting this context. """ original = _patch_sys_path(args) try: yield finally: sys.path[:] = original ``` #### File: pylint/utils/file_state.py ```python import collections from astroid import nodes from pylint.constants import MSG_STATE_SCOPE_MODULE, WarningScope class FileState: """Hold internal state specific to the currently analyzed file""" def __init__(self, modname=None): self.base_name = modname self._module_msgs_state = {} self._raw_module_msgs_state = {} self._ignored_msgs = collections.defaultdict(set) self._suppression_mapping = {} self._effective_max_line_number = None def collect_block_lines(self, msgs_store, module_node): """Walk the AST to collect block level options line numbers.""" for msg, lines in self._module_msgs_state.items(): self._raw_module_msgs_state[msg] = lines.copy() orig_state = self._module_msgs_state.copy() self._module_msgs_state = {} self._suppression_mapping = {} self._effective_max_line_number = module_node.tolineno self._collect_block_lines(msgs_store, module_node, orig_state) def _collect_block_lines(self, msgs_store, node, msg_state): """Recursively walk (depth first) AST to collect block level options line numbers. """ for child in node.get_children(): self._collect_block_lines(msgs_store, child, msg_state) first = node.fromlineno last = node.tolineno # first child line number used to distinguish between disable # which are the first child of scoped node with those defined later. # For instance in the code below: # # 1. def meth8(self): # 2. """test late disabling""" # 3. pylint: disable=not-callable # 4. print(self.blip) # 5. pylint: disable=no-member # 6. print(self.bla) # # E1102 should be disabled from line 1 to 6 while E1101 from line 5 to 6 # # this is necessary to disable locally messages applying to class / # function using their fromlineno if ( isinstance(node, (nodes.Module, nodes.ClassDef, nodes.FunctionDef)) and node.body ): firstchildlineno = node.body[0].fromlineno else: firstchildlineno = last for msgid, lines in msg_state.items(): for lineno, state in list(lines.items()): original_lineno = lineno if first > lineno or last < lineno: continue # Set state for all lines for this block, if the # warning is applied to nodes. message_definitions = msgs_store.get_message_definitions(msgid) for message_definition in message_definitions: if message_definition.scope == WarningScope.NODE: if lineno > firstchildlineno: state = True first_, last_ = node.block_range(lineno) else: first_ = lineno last_ = last for line in range(first_, last_ + 1): # do not override existing entries if line in self._module_msgs_state.get(msgid, ()): continue if line in lines: # state change in the same block state = lines[line] original_lineno = line if not state: self._suppression_mapping[(msgid, line)] = original_lineno try: self._module_msgs_state[msgid][line] = state except KeyError: self._module_msgs_state[msgid] = {line: state} del lines[lineno] def set_msg_status(self, msg, line, status): """Set status (enabled/disable) for a given message at a given line""" assert line > 0 try: self._module_msgs_state[msg.msgid][line] = status except KeyError: self._module_msgs_state[msg.msgid] = {line: status} def handle_ignored_message( self, state_scope, msgid, line, node, args, confidence ): # pylint: disable=unused-argument """Report an ignored message. state_scope is either MSG_STATE_SCOPE_MODULE or MSG_STATE_SCOPE_CONFIG, depending on whether the message was disabled locally in the module, or globally. The other arguments are the same as for add_message. """ if state_scope == MSG_STATE_SCOPE_MODULE: try: orig_line = self._suppression_mapping[(msgid, line)] self._ignored_msgs[(msgid, orig_line)].add(line) except KeyError: pass def iter_spurious_suppression_messages(self, msgs_store): for warning, lines in self._raw_module_msgs_state.items(): for line, enable in lines.items(): if not enable and (warning, line) not in self._ignored_msgs: # ignore cyclic-import check which can show false positives # here due to incomplete context if warning != "R0401": yield "useless-suppression", line, ( msgs_store.get_msg_display_string(warning), ) # don't use iteritems here, _ignored_msgs may be modified by add_message for (warning, from_), lines in list(self._ignored_msgs.items()): for line in lines: yield "suppressed-message", line, ( msgs_store.get_msg_display_string(warning), from_, ) def get_effective_max_line_number(self): return self._effective_max_line_number ``` #### File: personal-website/personal_website/views.py ```python from django.shortcuts import render, redirect from .forms import ConatactMeForm from django.contrib import messages # from django.core.mail import send_mail def about_me(request): return render(request, "about.html", {}) def resume(request): return render(request, "resume.html", {}) def contact_me(request): if request.method == 'POST': form = ConatactMeForm(request.POST) if form.is_valid(): cd = form.cleaned_data # send_mail('jestinmwilson-Form', cd['message'], # '<EMAIL>', ['<EMAIL>', ]) messages.success(request, 'Your message has been successfully sent') return redirect('contact-me') else: form = ConatactMeForm() context = { 'form': form, } return render(request, "contact-me.html", context) ```
{ "source": "jestjest/cs224w-project", "score": 3 }
#### File: old/original-graphsage/models.py ```python import torch import torch.nn as nn from torch.nn import init from encoders import * from aggregators import * class SupervisedGraphSage(nn.Module): def __init__(self, num_classes, enc, w): """ w - array of len(num_classes) indicating the weight of each class when computing loss. """ super(SupervisedGraphSage, self).__init__() self.enc = enc self.w = w self.xent = nn.CrossEntropyLoss(weight=self.w) self.weight = nn.Parameter(torch.FloatTensor(num_classes, enc.embed_dim)) init.xavier_uniform_(self.weight) def forward(self, nodes): embeds = self.enc(nodes) scores = self.weight.mm(embeds) return scores.t() def loss(self, nodes, labels): scores = self.forward(nodes) return self.xent(scores, labels.squeeze()) def createGNN(args, features, adj_list, num_features, class_weights): if args.model_type == 'GraphSage': agg1 = MeanAggregator(features, cuda=False) enc1 = Encoder(features, num_features, args.hidden_dim, adj_list, agg1, gcn=False, cuda=False) enc1.num_samples = 25 # Sample 25 neighbors when aggregating. return SupervisedGraphSage(len(class_weights), enc1, torch.FloatTensor(class_weights)) ```
{ "source": "Jeston-de-Anda/SCBI_all", "score": 2 }
#### File: SCBI_all/RoC_Comparisons/various_column.py ```python import multiprocessing as mp import numpy as np import pickle import datetime import head_to_head import sys def write_stdout(): sys.stdout = open(str(datetime.datetime.today()) + ".log", "w") def write_stderr(): sys.stderr = open(str(datetime.datetime.today()) + ".err", "w") # cofigurations RANK = 10 SAMPLE_SIZE = 1000000000 SINGLE_SAMPLE_SIZE = 2000 NUMBER_OF_COLUMNS = 2 FOR_LOOP_DEPTH = 500 # functions def refresh_config(): global RANK, SAMPLE_SIZE, SINGLE_SAMPLE_SIZE, NUMBER_OF_COLUMNS RANK = 10 SAMPLE_SIZE = 1000000000 SINGLE_SAMPLE_SIZE = 2000 NUMBER_OF_COLUMNS = 2 def sample_mat_default(row_size=RANK, col_size=RANK, size=SINGLE_SAMPLE_SIZE): ''' default sampling function. return an array of matrices of shape row_size*col_size, ''' return np.random.dirichlet([1, ]*row_size, col_size * size).reshape(-1, col_size, row_size).transpose(0, 2, 1) def roc_bi(matrices): ''' Calculate KL-divergence given an array of matrix. This is naturally the RoC of BI. Parameters ---------- matrices: an array of matrices, can be only one matrix. Must be column-normalized! Return ------ l*m numpy array of RoC_BI, denoting the number of matrices with each hypothesis chosen as the correct one. ''' mat = matrices.reshape(-1, matrices.shape[-2], matrices.shape[-1]) l, n, m = mat.shape log = np.log(mat) # will be used twice, calculate independently. # next we calculate for each matrix and hypothesis, the KL-divergence, # res in terms of (l,m,m) array, l matrices, m true hypotheses, m ref hypotheses res = np.sum(mat.reshape(l, n, 1, m) * (log.reshape(l, n, 1, m) - log.reshape(l, n, m, 1)), axis=1) # next find the minimal nonzero elements among the 'other hypotheses' return np.min(res + np.diag(np.ones(m)*np.inf).reshape(1, m, m), axis=1) def roc_scbi(matrices): ''' Calculate the rate of convergence of SCBI. Parameters ---------- same as roc_bi() Return ------ same format as roc_bi() ''' mat = matrices.reshape(-1, matrices.shape[-2], matrices.shape[-1]) l, n, m = mat.shape logm = np.log(mat) # print(logm) # 4 indices: (mat, row-index, other-col-index, true-col-index), same as in BI. quotient = np.sum(mat.reshape(l, n, m, 1)/mat.reshape(l, n, 1, m), axis=1) logq = np.log(quotient) + np.diag(np.ones(m)*np.inf).reshape(1, m, m) # print(logq) logs = np.mean(logm, axis=1) other = logs.reshape(l, 1, m) - logs.reshape(l, m, 1) + logq # print(other) return np.min(other, axis=1) - np.log(n) def comparison(matrices): ''' Comparison of BI and SCBI Parameters ---------- matrices: same as roc_bi() Return ------ np.array([avg, prob]) avg : average of roc_bi - roc_scbi prob: frequency of roc_bi <= roc_scbi ''' diff = np.mean(roc_scbi(matrices), axis=1) - np.mean(roc_bi(matrices), axis=1) return np.array([np.mean(diff), np.mean((diff >= 0))]) def single_round(args): ''' Single round in multiprocessing ''' global SINGLE_SAMPLE_SIZE, FOR_LOOP_DEPTH seed, n, m = args np.random.seed(seed) result = np.zeros([FOR_LOOP_DEPTH, 2]) for i in range(FOR_LOOP_DEPTH): matrices = np.random.dirichlet([1,]*n, m * SINGLE_SAMPLE_SIZE).reshape(-1, m, n).transpose(0, 2, 1) result[i,:] = comparison(matrices) return np.mean(result, axis=0) def multi_round(n, m): ''' Multi-Processing ''' global SAMPLE_SIZE number_of_process = int(SAMPLE_SIZE / SINGLE_SAMPLE_SIZE / FOR_LOOP_DEPTH) seeds = np.random.randint(int(2**32), size=number_of_process) args = [(x, n, m) for x in seeds] pool = mp.Pool() print("\n", n, "rows", m, "colums") result = np.array(pool.map(single_round, args)) pool.close() return np.mean(result, axis=0) def run10(start, size, sample=None, single = None): ''' fix row number, vary column number ''' global SAMPLE_SIZE, SINGLE_SAMPLE_SIZE if sample is not None: SAMPLE_SIZE = sample SINGLE_SAMPLE_SIZE = single r = [] print(datetime.datetime.today()) for i in range(start, size + 1): r += [multi_round(size, i), ] print("\n", r[-1]) print(datetime.datetime.today()) with open("fix_comparison_"+str(size)+"_by_"+str(i)+".log", "wb") as fp: pickle.dump(r[-1], fp) refresh_config() return r def run_full(start, size, sample=None, single=None): ''' square matrix test ''' global SAMPLE_SIZE, SINGLE_SAMPLE_SIZE if sample is not None: SAMPLE_SIZE = sample SINGLE_SAMPLE_SIZE = single r = [] print(datetime.datetime.today()) for i in range(start, size + 1): r += [multi_round(i, i)] print(r[-1]) print(datetime.datetime.today()) with open("square_"+str(i)+".log", "wb") as fp: pickle.dump(r[-1], fp) refresh_config() return r if __name__ == "__main__": pass ```
{ "source": "jestra52/supor-numerical-analysis-api", "score": 3 }
#### File: src/system_of_equations/factorization.py ```python import copy as cp import math as mt import numpy as np import threading class Factorization: def cholesky(self, A, b): result = { 'aMatrix': None, 'bMatrix': None, 'lMatrix': None, 'uMatrix': None, 'xMatrix': None, 'iterations': None, 'hasInfiniteSolutions': False, 'resultMessage': None, 'solutionFailed': False, 'error': False, 'errorMessage': None } n = len(A) L = np.zeros((n, n)) U = np.zeros((n, n)) phases = list() def diagonal_operation_async(k): incr = 0 for p in range(0, k): incr += L[k][p] * U[p][k] L[k][k] = mt.sqrt(A[k][k] - incr) U[k][k] = L[k][k] def row_operation_async(k, i): incr = 0 for r in range(0, k): incr += L[i][r] * U[r][k] L[i][k] = (A[i][k] - incr) / L[k][k] def column_operation_async(k, j): incr = 0 for s in range(0, k): incr += L[k][s] * U[s][j] U[k][j] = (A[k][j] - incr) / L[k][k] for k in range(0, n): thread = threading.Thread(target=diagonal_operation_async, args=([k])) thread.start() thread.join() if L[k][k] == 0: raise ZeroDivisionError threads = list() for i in range(k+1, n): thread = threading.Thread(target=row_operation_async, args=(k, i)) threads.append(thread) thread.start() for thread in threads: thread.join() threads.clear() for j in range(k+1, n): thread = threading.Thread(target=column_operation_async, args=(k, j)) threads.append(thread) thread.start() for thread in threads: thread.join() if k < n - 1: iteration = { 'lMatrix': list(map(lambda l: list(l), cp.deepcopy(L))), 'uMatrix': list(map(lambda u: list(u), cp.deepcopy(U))), } phases.append(cp.deepcopy(iteration)) if not result['error']: result['aMatrix'] = A result['bMatrix'] = b result['lMatrix'] = L result['uMatrix'] = U result['xMatrix'] = self.solve_x(L, U, b) result['iterations'] = phases return result def doolittle(self, A, b): result = { 'aMatrix': None, 'bMatrix': None, 'lMatrix': None, 'uMatrix': None, 'xMatrix': None, 'iterations': None, 'hasInfiniteSolutions': False, 'resultMessage': None, 'solutionFailed': False, 'error': False, 'errorMessage': None } n = len(A) L = np.zeros((n, n)) U = np.zeros((n, n)) phases = list() def column_operation_async(k, j): incr = 0 for p in range(k): incr += L[k][p] * U[p][j] U[k][j] = (A[k][j] - incr) def row_operation_async(k, i): incr = 0 for r in range(k): incr += L[i][r] * U[r][k] L[i][k] = (A[i][k] - incr) / U[k][k] for k in range(0,n): threads = list() for j in range(k, n): thread = threading.Thread(target=column_operation_async, args=(k, j)) threads.append(thread) thread.start() for thread in threads: thread.join() if U[k][k] == 0: raise ZeroDivisionError threads.clear() for i in range(k, n): thread = threading.Thread(target=row_operation_async, args=(k, i)) threads.append(thread) thread.start() for thread in threads: thread.join() if k < n - 1: iteration = { 'lMatrix': list(map(lambda l: list(l), cp.deepcopy(L))), 'uMatrix': list(map(lambda u: list(u), cp.deepcopy(U))), } phases.append(cp.deepcopy(iteration)) if not result['error']: result['aMatrix'] = A result['bMatrix'] = b result['lMatrix'] = L result['uMatrix'] = U result['xMatrix'] = self.solve_x(L, U, b) result['iterations'] = phases return result def crout(self, A, b): result = { 'aMatrix': None, 'bMatrix': None, 'lMatrix': None, 'uMatrix': None, 'xMatrix': None, 'iterations': None, 'hasInfiniteSolutions': False, 'resultMessage': None, 'solutionFailed': False, 'error': False, 'errorMessage': None } n = len(A) L = np.zeros((n, n)) U = np.zeros((n, n)) phases = list() def row_operation_async(k, i): incr = 0 for p in range(0,k): incr += L[i][p] * U[p][k] L[i][k] = A[i][k] - incr def column_operation_async(k, j): incr = 0 for p in range(0,k): incr += L[k][p] * U[p][j] U[k][j] = (A[k][j] - incr) / L[k][k] for k in range(0, n): threads = list() for i in range(k, n): thread = threading.Thread(target=row_operation_async, args=(k, i)) threads.append(thread) thread.start() for thread in threads: thread.join() if L[k][k] == 0: raise ZeroDivisionError threads.clear() for j in range(k, n): thread = threading.Thread(target=column_operation_async, args=(k, j)) threads.append(thread) thread.start() for thread in threads: thread.join() if k < n - 1: iteration = { 'lMatrix': list(map(lambda l: list(l), cp.deepcopy(L))), 'uMatrix': list(map(lambda u: list(u), cp.deepcopy(U))), } phases.append(cp.deepcopy(iteration)) if not result['error']: result['aMatrix'] = A result['bMatrix'] = b result['lMatrix'] = L result['uMatrix'] = U result['xMatrix'] = self.solve_x(L, U, b) result['iterations'] = phases return result def solve_z(self, L, b): n = len(b) Z = [] for i in range(n): Z.append(0) for i in range(0, n): incr = 0 for p in range(0, i): incr += L[i][p] * Z[p] if L[i][i] == 0: raise ZeroDivisionError Z[i] = (b[i] - incr) / L[i][i] return Z def solve_x(self, L, U, b): n = len(b) Z = self.solve_z(L, b) X = [] for i in range(n): X.append(0) i = n - 1 while i >= 0: incr = 0 for p in range(i+1, n): incr += U[i][p] * X[p] if U[i][i] == 0: raise ZeroDivisionError X[i] = (Z[i] - incr) / U[i][i] i -= 1 return X def get_invertible_matrix(self, L, U): n = len(L) invertible_a = [] for i in range(0, n): b = [] for j in range(0, n): if j == i: b.append(1) else: b.append(0) invertible_a.append(self.solve_x(L, U, b)) return invertible_a ``` #### File: src/system_of_equations/iterative_methods.py ```python from shared import util import copy import math as mt import numpy as np import threading class IterativeMethods(): def gauss_seidel(self, A, b, iterations, tol, l, xi, is_rel_error): x = copy.deepcopy(xi) result = { 'error': False, 'errorMessage': None, 'n': 0, 'resultMessage': None, 'solutionFailed': False, 'values': self.build_values(x) } if tol < 0: result['error'] = True result['errorMessage']= 'Tolerance must be greater or equals than 0' elif iterations <= 0: result['error'] = True result['errorMessage']= 'Iterations must be greater than 0' else: m = len(x) xold = [] for i in range(m): xold.append(x[i]) x[i] = self.solve_new_x(i,x,l,A,b) result['values'][f'x{i}'] = np.append(result.get('values').get(f'x{i}'), [x[i]]) error = np.float(util.getMatrixError(is_rel_error, xold, x)) result['values']['error'] = None n=1 while error > tol and n < iterations: xold = [] for i in range(m): xold.append(x[i]) x[i] = self.solve_new_x(i,x,l,A,b) result['values'][f'x{i}'] = np.append(result.get('values').get(f'x{i}'), [x[i]]) error = np.float(util.getMatrixError(is_rel_error, xold, x)) result['values']['error'] = np.append(result.get('values').get('error'), [error]) n+=1 if error < tol: result['resultMessage'] = f'The solution was successful with a tolerance={tol} and {n} iterations' else: result['resultMessage'] = f'Solution failed for n={n} iterations' result['solutionFailed'] = True result['n'] = len(result.get('values').get('x0')) return result def jacobi(self, A, b, iterations, tol, l, x, is_rel_error): result = { 'error': False, 'errorMessage': None, 'n': 0, 'resultMessage': None, 'solutionFailed': False, 'values': self.build_values(x) } if tol < 0: result['error'] = True result['errorMessage']= 'Tolerance must be greater or equals than 0' elif iterations <= 0: result['error'] = True result['errorMessage']= 'Iterations must be greater than 0' else: m = len(x) n = 0 error = tol + 1 while error>tol and n < iterations: xnew = np.zeros(m,dtype=np.float64) #PARALLELISM threads = list() for var_index in range(m): thread = threading.Thread( target=self.solve_new_x_async, args=(A, b, var_index, x, xnew, l, m)) threads.append(thread) thread.start() i = 0 for thread in threads: thread.join() result['values'][f'x{i}'] = np.append(result.get('values').get(f'x{i}'), [xnew[i]]) i+=1 error = np.float(util.getMatrixError(is_rel_error,x,xnew)) result['values']['error'] = np.append(result.get('values').get('error'), [error]) x = xnew n+=1 if error < tol: result['resultMessage'] = f'The solution was successful with a tolerance={tol} and {n} iterations' else: result['resultMessage'] = f'Solution failed for n={n} iterations' result['solutionFailed'] = True result['n'] = len(result.get('values').get('x0')) return result def solve_new_x_async(self, A, b, i, xi, xn, lamb, n): j = 0 den = 1 sum = b[i] while den != 0 and j < n: if(j != i): sum -= A[i][j] * xi[j] else: den = A[i][j] j += 1 if den != 0: xn[i] = (lamb*(sum/den) + (1-lamb)*xi[i]) else: raise ZeroDivisionError def solve_new_x(self, i, arrX, l, A, b): n = len(A) den = 1 incr = b[i] j = 0 while j < n and den != 0: if i == j: den = A[i][j] else: incr += (-1) * A[i][j] * arrX[j] j+=1 if den == 0: raise ZeroDivisionError else: xn = incr / den xn = l * xn + (1 - l) * arrX[i] return xn def build_values(self, x): values = {} for i in range(len(x)): values[f'x{i}'] = np.array([x[i]]) values["error"] = None return values def best_lambda_j(self, A, b, x, is_rel_error): result = { 'error': False, 'errorMessage': None, 'resultMessage': None, 'lambda': None } itv = [0,1] prop = 0.5 resultc = self.jacobi(A, b, 100, 0.000001, prop, x, is_rel_error) if resultc['n'] <= 2: result['error'] = True result['errorMessage']= 'to calculate lambda the iterations must be greater than 2' else: while itv[0] != itv[1]: results = self.jacobi(A, b, 100, 0.000001, prop+0.01, x, is_rel_error) resulti = self.jacobi(A, b, 100, 0.000001, prop-0.01, x, is_rel_error) ns = results['n'] ni = resulti['n'] es = results['values']['error'][-1] ei = resulti['values']['error'][-1] if ns < ni: itv = [prop+0.01,itv[1]] prop = round((itv[0]+itv[1])/2,2) elif ni < ns: itv = [itv[0],prop-0.01] prop = round((itv[0]+itv[1])/2,2) elif es < ei: result['resultMessage'] = f'We recommend to use lambda = {prop} in jacobi' result['lambda'] = prop return result else: result['resultMessage'] = f'We recommend to use lambda = {prop} in jacobi' result['lambda'] = prop return result result['resultMessage'] = f'We recommend to use lambda = {prop} in jacobi' result['lambda'] = prop return result def best_lambda_g(self, A, b, x, is_rel_error): result = { 'error': False, 'errorMessage': None, 'resultMessage': None, 'lambda': None } itv = [0,1] prop = 0.5 resultc = self.gauss_seidel(A, b, 100, 0.000001, prop, x, is_rel_error) if resultc['n'] <= 2: result['error'] = True result['errorMessage']= 'to calculate lambda the iterations must be greater than 2' else: while itv[0] != itv[1]: results = self.gauss_seidel(A, b, 100, 0.000001, prop+0.01, x, is_rel_error) resulti = self.gauss_seidel(A, b, 100, 0.000001, prop-0.01, x, is_rel_error) ns = results['n'] ni = resulti['n'] es = results['values']['error'][-1] ei = resulti['values']['error'][-1] if ns < ni: itv = [prop+0.01,itv[1]] prop = round((itv[0]+itv[1])/2,2) elif ni < ns: itv = [itv[0],prop-0.01] prop = round((itv[0]+itv[1])/2,2) elif es < ei: result['resultMessage'] = f'We recommend to use lambda = {prop} in gauss seidel' result['lambda'] = prop return result else: result['resultMessage'] = f'We recommend to use lambda = {prop} in gauss seidel' result['lambda'] = prop return result result['resultMessage'] = f'We recommend to use lambda = {prop} in gauss seidel' result['lambda'] = prop return result ```
{ "source": "jestra52/twitter-sentiment-analysis", "score": 3 }
#### File: twitter-sentiment-analysis/ml_source/format_dataset.py ```python import numpy as np import os import pandas as pd import re HTML_TAGS = re.compile(r'<.*?>') SPECIAL_CHARS_NO_SPACE = re.compile(r'[.;:!\'?,\"()\[\]]') SPECIAL_CHARS_WITH_SPACE = re.compile(r'(<br\s*/><br\s*/>)|(\-)|(\/)') class FormatDataset: def load_train_test_imdb_data(self, data_dir): data = {} for split in ['train', 'test']: data[split] = [] for sentiment in ['neg', 'pos']: score = 1 if sentiment == 'pos' else 0 path = os.path.join(data_dir, split, sentiment) file_names = os.listdir(path) for f_name in file_names: with open(os.path.join(path, f_name), 'r') as f: review = f.read() data[split].append([review, score]) np.random.shuffle(data['train']) data['train'] = pd.DataFrame(data['train'], columns=['text', 'sentiment']) np.random.shuffle(data["test"]) data['test'] = pd.DataFrame(data['test'], columns=['text', 'sentiment']) return data['train'], data['test'] def clear_text(self, text): text = HTML_TAGS.sub('', text.lower()) text = SPECIAL_CHARS_NO_SPACE.sub('', text) text = SPECIAL_CHARS_WITH_SPACE.sub('', text) return text ```
{ "source": "jesture-ai/jesture-sdk", "score": 2 }
#### File: python/src/thread_camera_draw.py ```python from threading import Thread import logging import cv2 from PIL import Image, ImageDraw, ImageFont import matplotlib.pyplot as plt from skimage import io import numpy as np from .utils import draw_skeleton logging.basicConfig(level=logging.DEBUG, format='(%(threadName)-10s) %(message)s') class ThreadCameraDraw: def __init__(self, jesture_runner, cam_id=0, width=640, height=480, hand_box_tl=None, hand_box_br=None, draw_hand_box=False, mirror=False): ''' Args: hand_box_tl (tuple[2]): top-left corner of ui box with hands hand_box_br (tuple[2]): bottom-right corner of ui box with hands ''' self.jesture_runner = jesture_runner self.cam_id = cam_id self.width = width self.height = height self.stream = cv2.VideoCapture(self.cam_id) self.stream.set(cv2.CAP_PROP_FRAME_WIDTH, self.width) self.stream.set(cv2.CAP_PROP_FRAME_HEIGHT, self.height) (self.grabbed, self.frame) = self.stream.read() self.stopped = False self.hand_box_tl = hand_box_tl self.hand_box_br = hand_box_br self.draw_hand_box = draw_hand_box self.mirror = mirror def _scale_and_shift(self, keypoints, scale, shift): keypoints = np.array([scale[0], scale[1], 1]) * keypoints + np.array([shift[0], shift[1], 0]) return keypoints def start(self): logging.debug('[ThreadCameraDraw] Starting a thread...') self.thread = Thread(name='Camera-Draw Python Thread', target=self.update, args=()) self.thread.start() logging.debug('[ThreadCameraDraw] Thread started.') return self def update(self): logged = False while not self.stopped: (self.grabbed, frame) = self.stream.read() if not self.grabbed: continue display_height, display_width = frame.shape[:2] if not logged: print('Camera params was set to:', self.width, self.height) print('Real params are:', display_width, display_height) frame = cv2.resize(frame, (self.width, self.height)) # get current hand keypoints left_keypoints = self.jesture_runner.get_hand_keypoints('left_keypoints') right_keypoints = self.jesture_runner.get_hand_keypoints('right_keypoints') left_keypoints = np.clip(left_keypoints, 0.0, 1.0) # !!! right_keypoints = np.clip(right_keypoints, 0.0, 1.0) # !!! # scale absolute keypoints by the actual display image size left_keypoints = left_keypoints * np.array([display_width, display_height, 1.0]) if not logged: print(left_keypoints) right_keypoints = right_keypoints * np.array([display_width, display_height, 1.0]) if not logged: print(right_keypoints) if self.mirror: left_keypoints[:,0] = display_width - left_keypoints[:,0] right_keypoints[:,0] = display_width - right_keypoints[:,0] # draw skeletons using screen-sized hand keypoints frame = draw_skeleton(frame, left_keypoints) frame = draw_skeleton(frame, right_keypoints) # TODO: move all `ImageDraw` tasks to a separate thread or do it asynchronously # draw a special box for scaled keypoints if self.draw_hand_box: frame = Image.fromarray(frame if type(np.array([])) == type(frame) else frame.get()) draw = ImageDraw.Draw(frame, "RGBA") draw.rectangle((self.hand_box_tl, self.hand_box_br), fill=(0, 0, 0, 127), outline=(235, 190, 63, 255)) frame = np.array(frame).astype(np.uint8) # get the scaled hand keypoints scaled_left_keypoints = self.jesture_runner.get_hand_keypoints('scaled_left_keypoints') scaled_right_keypoints = self.jesture_runner.get_hand_keypoints('scaled_right_keypoints') scaled_left_keypoints = np.clip(scaled_left_keypoints, 0.0, 1.0) # !!! scaled_right_keypoints = np.clip(scaled_right_keypoints, 0.0, 1.0) # !!! # scale and shift them to be in a proper place on the display image scale_x = (self.hand_box_br[0] - self.hand_box_tl[0]) // 2 scale_y = self.hand_box_br[1] - self.hand_box_tl[1] scale = (scale_x, scale_y) shift_left = (self.hand_box_tl[0], self.hand_box_tl[1]) shift_right = (self.hand_box_tl[0] + scale_x, self.hand_box_tl[1]) scaled_left_keypoints = self._scale_and_shift( scaled_left_keypoints, scale=scale, shift=shift_left if self.mirror else shift_right) scaled_right_keypoints = self._scale_and_shift( scaled_right_keypoints, scale=scale, shift=shift_right if self.mirror else shift_left) # draw scaled keypoints frame = draw_skeleton(frame, scaled_left_keypoints, indices=False) frame = draw_skeleton(frame, scaled_right_keypoints, indices=False) # save to the field self.frame = frame if not logged: logged = True logging.debug('[ThreadCameraDraw] Frame loop finished.') self.stream.release() logging.debug('[ThreadCameraDraw] Capture released.') def read(self): return self.frame def stop(self) : logging.debug('[ThreadCameraDraw] Stopping...') self.stopped = True self.thread.join() logging.debug('[ThreadCameraDraw] Camera thread joined.') def __exit__(self, exc_type, exc_value, traceback): self.stream.release() ``` #### File: python/src/thread_camera.py ```python from threading import Thread import logging import cv2 logging.basicConfig(level=logging.DEBUG, format='(%(threadName)-10s) %(message)s') class ThreadCamera: def __init__(self, cam_id=0, width=640, height=480): self.stream = cv2.VideoCapture(cam_id) self.stream.set(cv2.CAP_PROP_FRAME_WIDTH, width) self.stream.set(cv2.CAP_PROP_FRAME_HEIGHT, height) (self.grabbed, self.frame) = self.stream.read() self.stopped = False def start(self): self.thread = Thread(name='Camera Python Thread', target=self.update, args=()) self.thread.start() return self def update(self): while not self.stopped: (self.grabbed, self.frame) = self.stream.read() logging.debug('[ThreadCamera] Frame loop finished.') self.stream.release() logging.debug('[ThreadCamera] Capture released.') def read(self): return self.frame def stop(self) : logging.debug('[ThreadCamera] Stopping...') self.stopped = True self.thread.join() logging.debug('[ThreadCamera] Camera thread joined.') def __exit__(self, exc_type, exc_value, traceback): self.stream.release() ```
{ "source": "JestyDS/awx", "score": 2 }
#### File: main/isolated/manager.py ```python import fnmatch import json import os import shutil import stat import tempfile import time import logging import yaml from django.conf import settings import ansible_runner import awx from awx.main.utils import ( get_system_task_capacity ) logger = logging.getLogger('awx.isolated.manager') playbook_logger = logging.getLogger('awx.isolated.manager.playbooks') def set_pythonpath(venv_libdir, env): env.pop('PYTHONPATH', None) # default to none if no python_ver matches for version in os.listdir(venv_libdir): if fnmatch.fnmatch(version, 'python[23].*'): if os.path.isdir(os.path.join(venv_libdir, version)): env['PYTHONPATH'] = os.path.join(venv_libdir, version, "site-packages") + ":" break class IsolatedManager(object): def __init__(self, event_handler, canceled_callback=None, check_callback=None, pod_manager=None): """ :param event_handler: a callable used to persist event data from isolated nodes :param canceled_callback: a callable - which returns `True` or `False` - signifying if the job has been prematurely canceled """ self.event_handler = event_handler self.canceled_callback = canceled_callback self.check_callback = check_callback self.started_at = None self.captured_command_artifact = False self.instance = None self.pod_manager = pod_manager def build_inventory(self, hosts): if self.instance and self.instance.is_containerized: inventory = {'all': {'hosts': {}}} fd, path = tempfile.mkstemp( prefix='.kubeconfig', dir=self.private_data_dir ) with open(path, 'wb') as temp: temp.write(yaml.dump(self.pod_manager.kube_config).encode()) temp.flush() os.chmod(temp.name, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) for host in hosts: inventory['all']['hosts'][host] = { "ansible_connection": "kubectl", "ansible_kubectl_config": path, } else: inventory = '\n'.join([ '{} ansible_ssh_user={}'.format(host, settings.AWX_ISOLATED_USERNAME) for host in hosts ]) return inventory def build_runner_params(self, hosts, verbosity=1): env = dict(os.environ.items()) env['ANSIBLE_RETRY_FILES_ENABLED'] = 'False' env['ANSIBLE_HOST_KEY_CHECKING'] = str(settings.AWX_ISOLATED_HOST_KEY_CHECKING) env['ANSIBLE_LIBRARY'] = os.path.join(os.path.dirname(awx.__file__), 'plugins', 'isolated') set_pythonpath(os.path.join(settings.ANSIBLE_VENV_PATH, 'lib'), env) def finished_callback(runner_obj): if runner_obj.status == 'failed' and runner_obj.config.playbook != 'check_isolated.yml': # failed for clean_isolated.yml just means the playbook hasn't # exited on the isolated host stdout = runner_obj.stdout.read() playbook_logger.error(stdout) elif runner_obj.status == 'timeout': # this means that the default idle timeout of # (2 * AWX_ISOLATED_CONNECTION_TIMEOUT) was exceeded # (meaning, we tried to sync with an isolated node, and we got # no new output for 2 * AWX_ISOLATED_CONNECTION_TIMEOUT seconds) # this _usually_ means SSH key auth from the controller -> # isolated didn't work, and ssh is hung waiting on interactive # input e.g., # # awx@isolated's password: stdout = runner_obj.stdout.read() playbook_logger.error(stdout) else: playbook_logger.info(runner_obj.stdout.read()) return { 'project_dir': os.path.abspath(os.path.join( os.path.dirname(awx.__file__), 'playbooks' )), 'inventory': self.build_inventory(hosts), 'envvars': env, 'finished_callback': finished_callback, 'verbosity': verbosity, 'cancel_callback': self.canceled_callback, 'settings': { 'job_timeout': settings.AWX_ISOLATED_LAUNCH_TIMEOUT, 'suppress_ansible_output': True, }, } def path_to(self, *args): return os.path.join(self.private_data_dir, *args) def run_management_playbook(self, playbook, private_data_dir, idle_timeout=None, **kw): iso_dir = tempfile.mkdtemp( prefix=playbook, dir=private_data_dir ) params = self.runner_params.copy() params['playbook'] = playbook params['private_data_dir'] = iso_dir if idle_timeout: params['settings']['idle_timeout'] = idle_timeout else: params['settings'].pop('idle_timeout', None) params.update(**kw) if all([ getattr(settings, 'AWX_ISOLATED_KEY_GENERATION', False) is True, getattr(settings, 'AWX_ISOLATED_PRIVATE_KEY', None) ]): params['ssh_key'] = settings.AWX_ISOLATED_PRIVATE_KEY return ansible_runner.interface.run(**params) def dispatch(self, playbook=None, module=None, module_args=None): ''' Ship the runner payload to a remote host for isolated execution. ''' self.handled_events = set() self.started_at = time.time() # exclude certain files from the rsync rsync_exclude = [ # don't rsync source control metadata (it can be huge!) '- /project/.git', '- /project/.svn', '- /project/.hg', # don't rsync job events that are in the process of being written '- /artifacts/job_events/*-partial.json.tmp', # don't rsync the ssh_key FIFO '- /env/ssh_key', # don't rsync kube config files '- .kubeconfig*' ] for filename, data in ( ['.rsync-filter', '\n'.join(rsync_exclude)], ): path = self.path_to(filename) with open(path, 'w') as f: f.write(data) os.chmod(path, stat.S_IRUSR) extravars = { 'src': self.private_data_dir, 'dest': settings.AWX_PROOT_BASE_PATH, 'ident': self.ident } if playbook: extravars['playbook'] = playbook if module and module_args: extravars['module'] = module extravars['module_args'] = module_args logger.debug('Starting job {} on isolated host with `run_isolated.yml` playbook.'.format(self.instance.id)) runner_obj = self.run_management_playbook('run_isolated.yml', self.private_data_dir, idle_timeout=max(60, 2 * settings.AWX_ISOLATED_CONNECTION_TIMEOUT), extravars=extravars) if runner_obj.status == 'failed': self.instance.result_traceback = runner_obj.stdout.read() self.instance.save(update_fields=['result_traceback']) return 'error', runner_obj.rc return runner_obj.status, runner_obj.rc def check(self, interval=None): """ Repeatedly poll the isolated node to determine if the job has run. On success, copy job artifacts to the controlling node. On failure, continue to poll the isolated node (until the job timeout is exceeded). For a completed job run, this function returns (status, rc), representing the status and return code of the isolated `ansible-playbook` run. :param interval: an interval (in seconds) to wait between status polls """ interval = interval if interval is not None else settings.AWX_ISOLATED_CHECK_INTERVAL extravars = {'src': self.private_data_dir} status = 'failed' rc = None last_check = time.time() while status == 'failed': canceled = self.canceled_callback() if self.canceled_callback else False if not canceled and time.time() - last_check < interval: # If the job isn't canceled, but we haven't waited `interval` seconds, wait longer time.sleep(1) continue if canceled: logger.warning('Isolated job {} was manually canceled.'.format(self.instance.id)) logger.debug('Checking on isolated job {} with `check_isolated.yml`.'.format(self.instance.id)) runner_obj = self.run_management_playbook('check_isolated.yml', self.private_data_dir, extravars=extravars) status, rc = runner_obj.status, runner_obj.rc if self.check_callback is not None and not self.captured_command_artifact: command_path = self.path_to('artifacts', self.ident, 'command') # If the configuration artifact has been synced back, update the model if os.path.exists(command_path): try: with open(command_path, 'r') as f: data = json.load(f) self.check_callback(data) self.captured_command_artifact = True except json.decoder.JSONDecodeError: # Just in case it's not fully here yet. pass self.consume_events() last_check = time.time() if status == 'successful': status_path = self.path_to('artifacts', self.ident, 'status') rc_path = self.path_to('artifacts', self.ident, 'rc') if os.path.exists(status_path): with open(status_path, 'r') as f: status = f.readline() with open(rc_path, 'r') as f: rc = int(f.readline()) else: # if there's no status file, it means that runner _probably_ # exited with a traceback (which should be logged to # daemon.log) Record it so we can see how runner failed. daemon_path = self.path_to('daemon.log') if os.path.exists(daemon_path): with open(daemon_path, 'r') as f: self.instance.result_traceback = f.read() self.instance.save(update_fields=['result_traceback']) else: logger.error('Failed to rsync daemon.log (is ansible-runner installed on the isolated host?)') status = 'failed' rc = 1 # consume events one last time just to be sure we didn't miss anything # in the final sync self.consume_events() return status, rc def consume_events(self): # discover new events and ingest them events_path = self.path_to('artifacts', self.ident, 'job_events') # it's possible that `events_path` doesn't exist *yet*, because runner # hasn't actually written any events yet (if you ran e.g., a sleep 30) # only attempt to consume events if any were rsynced back if os.path.exists(events_path): for event in set(os.listdir(events_path)) - self.handled_events: path = os.path.join(events_path, event) if os.path.exists(path) and os.path.isfile(path): try: event_data = json.load( open(os.path.join(events_path, event), 'r') ) except json.decoder.JSONDecodeError: # This means the event we got back isn't valid JSON # that can happen if runner is still partially # writing an event file while it's rsyncing # these event writes are _supposed_ to be atomic # but it doesn't look like they actually are in # practice # in this scenario, just ignore this event and try it # again on the next sync continue self.event_handler(event_data) self.handled_events.add(event) def cleanup(self): extravars = { 'private_data_dir': self.private_data_dir, 'cleanup_dirs': [ self.private_data_dir, ], } logger.debug('Cleaning up job {} on isolated host with `clean_isolated.yml` playbook.'.format(self.instance.id)) self.run_management_playbook( 'clean_isolated.yml', self.private_data_dir, extravars=extravars ) @classmethod def update_capacity(cls, instance, task_result): instance.version = 'ansible-runner-{}'.format(task_result['version']) if instance.capacity == 0 and task_result['capacity_cpu']: logger.warning('Isolated instance {} has re-joined.'.format(instance.hostname)) instance.cpu = int(task_result['cpu']) instance.memory = int(task_result['mem']) instance.cpu_capacity = int(task_result['capacity_cpu']) instance.mem_capacity = int(task_result['capacity_mem']) instance.capacity = get_system_task_capacity(scale=instance.capacity_adjustment, cpu_capacity=int(task_result['capacity_cpu']), mem_capacity=int(task_result['capacity_mem'])) instance.save(update_fields=['cpu', 'memory', 'cpu_capacity', 'mem_capacity', 'capacity', 'version', 'modified']) def health_check(self, instance_qs): ''' :param instance_qs: List of Django objects representing the isolated instances to manage Runs playbook that will - determine if instance is reachable - find the instance capacity - clean up orphaned private files Performs save on each instance to update its capacity. ''' instance_qs = [i for i in instance_qs if i.enabled] if not len(instance_qs): return try: private_data_dir = tempfile.mkdtemp( prefix='awx_iso_heartbeat_', dir=settings.AWX_PROOT_BASE_PATH ) self.runner_params = self.build_runner_params([ instance.hostname for instance in instance_qs ]) self.runner_params['private_data_dir'] = private_data_dir self.runner_params['forks'] = len(instance_qs) runner_obj = self.run_management_playbook( 'heartbeat_isolated.yml', private_data_dir ) for instance in instance_qs: task_result = {} try: task_result = runner_obj.get_fact_cache(instance.hostname) except Exception: logger.exception('Failed to read status from isolated instances') if 'awx_capacity_cpu' in task_result and 'awx_capacity_mem' in task_result: task_result = { 'cpu': task_result['awx_cpu'], 'mem': task_result['awx_mem'], 'capacity_cpu': task_result['awx_capacity_cpu'], 'capacity_mem': task_result['awx_capacity_mem'], 'version': task_result['awx_capacity_version'] } IsolatedManager.update_capacity(instance, task_result) logger.debug('Isolated instance {} successful heartbeat'.format(instance.hostname)) elif instance.capacity == 0: logger.debug('Isolated instance {} previously marked as lost, could not re-join.'.format( instance.hostname)) else: logger.warning('Could not update status of isolated instance {}'.format(instance.hostname)) if instance.is_lost(isolated=True): instance.capacity = 0 instance.save(update_fields=['capacity']) logger.error('Isolated instance {} last checked in at {}, marked as lost.'.format( instance.hostname, instance.modified)) finally: if os.path.exists(private_data_dir): shutil.rmtree(private_data_dir) def run(self, instance, private_data_dir, playbook, module, module_args, ident=None): """ Run a job on an isolated host. :param instance: a `model.Job` instance :param private_data_dir: an absolute path on the local file system where job-specific data should be written (i.e., `/tmp/awx_N_xyz/`) :param playbook: the playbook to run :param module: the module to run :param module_args: the module args to use For a completed job run, this function returns (status, rc), representing the status and return code of the isolated `ansible-playbook` run. """ self.ident = ident self.instance = instance self.private_data_dir = private_data_dir self.runner_params = self.build_runner_params( [instance.execution_node], verbosity=min(5, self.instance.verbosity) ) status, rc = self.dispatch(playbook, module, module_args) if status == 'successful': status, rc = self.check() return status, rc ```
{ "source": "jesuejunior/b2tool", "score": 2 }
#### File: b2tool/b2tool/conf.py ```python import ConfigParser import os BASE_URL_V1 = 'https://bitbucket.org/api/1.0/' BASE_URL_V2 = 'https://bitbucket.org/api/2.0/' CFGFILE = os.path.join(os.path.expanduser('~'), '.b2tool') def get_or_default(config, section, key, default=''): try: return config.get(section, key) except ConfigParser.NoSectionError: return default except ConfigParser.NoOptionError: return default def get_credentials(): if os.path.isfile(CFGFILE): conf = ConfigParser.SafeConfigParser() conf.read(CFGFILE) username = get_or_default(conf, 'AUTH', 'username') password = get_or_default(conf, 'AUTH', 'password') return username,password else: return '','' ``` #### File: b2tool/b2tool/rules.py ```python from datetime import datetime import re class Pull(object): """ """ def __init__(self, *args, **kwargs): self.args, self.kwargs = args, kwargs @staticmethod def oldest(objects): # ['source']['repository']['name'] # "state": "OPEN", # "created_on": "2014-08-17T05:39:38.501662+00:00", # "updated_on": "2014-08-17T05:39:38.521747+00:00", # "merge_commit": null, # "id": 9 # ['source']['branch']['name'] objs = [] for obj in objects: if not objs: objs.append(obj) created_on = parse_date(obj.get('created_on')) if created_on < parse_date(objs[0].get('created_on')): objs.pop() objs.append(obj) if objs: return {'branch': objs[0]['source']['branch']['name'], 'id': objs[0].get('id')} else: return {} def parse_date(dt): #['2014', '08', '16', '05', '39', '38', '501662', '00', '00'] # 0 = year # 1 = month # 2 = day # 3 = hour # 4 = minutes # 5 = seconds result = map(lambda x: int(x), re.findall('\d{1,4}\d{1,2}', dt)) for i in range(0,3): result.pop() return datetime(*result) ``` #### File: b2tool/test/pull_request_test.py ```python import unittest import mock from b2tool.commands import listall class PullRequestTest(unittest.TestCase): def setUp(self): self.obj = [ { u"source": { u"branch": { u"name": u"develop" } }, u"state": u"OPEN", u"created_on": u"2014-08-07T03:41:17.181902+00:00", u"updated_on": u"2014-08-18T21:08:13.471908+00:00", u"merge_commit": 'null', u"id": 85 }, { u'source': { u'branch': { u'name': u'feature/new-config-vagrantfile' }, }, u"state": u"OPEN", u"created_on": u"2014-08-13T00:55:43.127689+00:00", u"updated_on": u"2014-08-18T18:31:42.329587+00:00", u"merge_commit": 'null', u"id": 86 } ] self.response = mock.MagicMock() self.response.headers = {} self.response.status_code = 000 def test_get_all_pull_requests(self): self.response.status_code = 200 with mock.patch("requests.get", return_value=self.response): res = listall('test123', '123test') self.assertEquals(res, 1) def test_get_oldest_pull_request(self): self.fail() ```
{ "source": "jesuejunior/django-modeanalytics", "score": 3 }
#### File: django-modeanalytics/modeanalytics/tests.py ```python from typing import Dict from django.conf import settings from django.test import TestCase from .models import ModeReportModel class TestGenerateReportUrl(TestCase): """ How to validate using a mode tool Link: https://mode.com/help/articles/test-your-white-label-embeds/ """ settings.MODE_ORG = "test" settings.MODE_ACCESS_KEY = "1234567890" settings.MODE_ACCESS_SECRET = "0987654321" def test_create_url_ok(self): ts: int = 1_532_446_786 expected = "https://app.mode.com/test/reports/12eaf1245c7e/embed?access_key=1234567890&max_age=1800&timestamp=1532446786" model = ModeReportModel() model.name = "test1" model.run_token = "<PASSWORD>" result: str = model._ModeReportModel__create_url(ts) self.assertEqual(expected, result) def test_sign_url_ok(self): ts: int = 1_532_446_786 url = "https://app.mode.com/test/reports/12eaf1245c7e/embed?access_key=1234567890&max_age=1800&timestamp=1532446786" model = ModeReportModel() model.name = "test1" model.run_token = "<PASSWORD>" result: str = model._ModeReportModel__sign_url(url, ts) expected: str = "https://app.mode.com/test/reports/12eaf1245c7e/embed?access_key=1234567890&max_age=1800&timestamp=1532446786&signature=bce6321f616c77321e8dcc7943b6f3f8c23425b23c87a14a23395a423f605da9" self.assertEqual(expected, result) def test_params_ok(self): model = ModeReportModel() model.name = "testx" model.run_token = "<PASSWORD>" params: Dict[str, str] = {"email": "<EMAIL>"} model._ModeReportModel__convert_params(params) expected: Dict[str, str] = {"max_age": 1800, "param_email": "<EMAIL>"} self.assertEqual(expected, model.params) def test_params_error(self): model = ModeReportModel() model.name = "testy" model.run_token = "<PASSWORD>" params: Dict[str, str] = {"email": "jj@<PASSWORD>"} model._ModeReportModel__convert_params(params) expected: Dict[str, str] = {"max_age": 1800, "email": "jj<PASSWORD>"} self.assertNotEqual(expected, model.params) def test_params_override(self): model = ModeReportModel() model.name = "testy" model.run_token = "<PASSWORD>" model.params.update({"display[]": "right_side"}) params: Dict[str, str] = {"email": "jj<PASSWORD>", "display[]": "left_side"} model._ModeReportModel__convert_params(params) expected: Dict[str, str] = {"max_age": 1800, "param_email": "jj@admin", "param_display[]": "left_side"} self.assertEqual(expected, model.params) def test_params_saved_override(self): model = ModeReportModel() model.id = 1 model.name = "testy" model.run_token = "<PASSWORD>" model.params.update({"email": ""}) model.save() params: Dict[str, str] = {"email": "<EMAIL>", "phone": ""} report = ModeReportModel.objects.get(pk=1) report._ModeReportModel__convert_params(params) expected: Dict[str, str] = {"max_age": 1800, "param_email": "<EMAIL>", "param_phone": ""} self.assertEqual(expected, report.params) def test_mixed_params(self): """ Test when there are params from web and from db with same names emails[] -> db emails -> web """ pass def test_get_full_report_url(self): """ Makes sense test it? """ pass ```
{ "source": "jesuejunior/luiza", "score": 2 }
#### File: maria/jose/tests.py ```python from __future__ import unicode_literals import json import pytest from model_mommy import mommy from .models import Employee @pytest.mark.django_db class EmployeeModelTest: def test_create_correct_user(self): data = { "name": "<NAME>", "email": "<EMAIL>", "department": "mobile", } user = Employee.objects.create(**data) assert user.id == 1 assert user.name == '<NAME>' assert user.email == '<EMAIL>' assert user.department == 'mobile' @pytest.mark.django_db class EmployeeApiTest: @pytest.fixture(autouse=True) def setUp(self, client): self.client = client def test_create_employee_ok(self): data = { "name": "<NAME>", "email": "<EMAIL>", "department": "mobile", } response = self.client.post('/employee/', data=json.dumps(data), content_type='application/javascript') assert response.status_code == 201 def test_create_employee_with_wrong_data(self): data = { "name": "<NAME>", "department": "mobile", } response = self.client.post('/employee/', data=json.dumps(data), content_type='application/javascript') assert response.status_code == 400 def test_email_exist_return_error(self): mommy.make_one(Employee, email='<EMAIL>') data = { "name": "<NAME>", "email": "<EMAIL>", "department": "mobile", } response = self.client.post('/employee/', data=json.dumps(data), content_type='application/javascript') assert response.status_code == 400 assert response.data.get('message') == u'E-mail already exists' def test_create_employee_and_saved_into_db(self): data = { "name": "<NAME>", "email": "<EMAIL>", "department": "mobile", } self.client.post('/employee/', data=json.dumps(data), content_type='application/javascript') employee = Employee.objects.get(email='<EMAIL>') assert employee.name == u'<NAME>' assert employee.email == '<EMAIL>' assert employee.department == 'mobile' def test_list_empty_employees(self): response = self.client.get('/employee/', content_type='application/javascript') assert response.data == [] def test_list_with_some_employees(self): mommy.make_many(Employee, 5) response = self.client.get('/employee/', content_type='application/javascript') assert len(response.data) == 5 def test_delete_employee(self): mommy.make_one(Employee, id=1) mommy.make_many(Employee, 5) response = self.client.delete('/employee/1', content_type='application/javascript') assert response.status_code == 204 def test_try_delete_employee_not_found(self): mommy.make_many(Employee, 5) response = self.client.delete('/employee/1234', content_type='application/javascript') assert response.status_code == 204 def test_delete_employee_check_in_db(self): mommy.make_one(Employee, id=1) mommy.make_many(Employee, 5) assert Employee.objects.count() == 6 self.client.delete('/employee/1', content_type='application/javascript') assert Employee.objects.count() == 5 ```
{ "source": "jesuejunior/rocket", "score": 2 }
#### File: nepal/tests/test_container.py ```python from __future__ import print_function import json import pytest from nepal.models.container import Container from nepal.models.node import Node from profile.models.user import User from toolbox.icepick import ordered @pytest.mark.django_db class ContainerTest: @pytest.fixture(autouse=True) def setUp(self, client): self.client = client self.user = User.objects.create_user(email='<EMAIL>', password='<PASSWORD>') response = self.client.post('/users/login', data={'email': '<EMAIL>', 'password': '<PASSWORD>'}) token = response.data.get('token') self.headers = {'HTTP_AUTHORIZATION': 'JWT {0}'.format(token)} node1 = { 'name': 'node1', 'so': 'centos', 'provider': 'do', 'ip': '192.168.127.12' } self.node = Node.objects.create(**node1) container1 = { 'id': 100, 'name': 'container1', 'config': {} } self.container = Container.objects.create(**container1) self.container.nodes.add(self.node) @pytest.mark.django_db(transaction=True) def test_create_new_container(self): data = { 'name': 'container_test', 'nodes': [self.node.id], 'config': { "registry": { "image": "registry:2.4", "environment": [ "RACK_ENV=development", "SHOW=true", "DEBUG=False" ], "volumes": [ "/opt/registry/tmp:/tmp/registry-dev:Z", "/opt/nginx/certs:/certs:Z" ], "expose": [ 5000 ], "ports": [ "5000:5000" ] } } } result = self.client.post('/containers', data=json.dumps(data), content_type='application/json', **self.headers) # TODO: must be assert more things assert 201 == result.status_code result_db = Container.objects.get(name='container_test') assert 'container_test' == result_db.name assert ordered(data.get('config')) == ordered(result_db.config) @pytest.mark.xfail @pytest.mark.django_db(transaction=True) def test_start_a_container(self): response = self.client.get('/conteiners/1/?action=start', content_type='application/json', **self.headers) assert {} == response.data @pytest.mark.django_db(transaction=True) def test_get_container_all(self): response = self.client.get('/containers', content_type='application/json', **self.headers) assert 1 == len(response.data) @pytest.mark.django_db(transaction=True) def test_get_container_by_id(self): response = self.client.get('/containers/100', content_type='application/json', **self.headers) result = response.data assert 200 == response.status_code assert 100 == result.get('id') @pytest.mark.django_db(transaction=True) def test_update_container_ok(self): data = { 'name': 'app1', 'nodes': [self.node.id], 'config': { "registry": { "image": "registry:2.4", "environment": [ "RACK_ENV=development", "SHOW=true", "DEBUG=False" ], "expose": [ 5000 ], "ports": [ "5000:5000" ] } } } response = self.client.put('/containers/100', data=json.dumps(data), content_type='application/json', **self.headers) assert 200 == response.status_code @pytest.mark.django_db(transaction=True) def test_try_update_container_not_found(self): response = self.client.put('/containers/132', data=json.dumps({}), content_type='application/json', **self.headers) assert 404 == response.status_code @pytest.mark.django_db(transaction=True) def test_delete_container_ok(self): response = self.client.delete('/containers/100', content_type='application/json', **self.headers) assert 204 == response.status_code @pytest.mark.django_db(transaction=True) def test_try_delete_container_that_not_exist(self): response = self.client.delete('/containers/122', content_type='application/json', **self.headers) assert 404 == response.status_code @pytest.mark.django_db(transaction=True) def test_get_count_nodes(self): result = self.client.get('/containers?action=count', content_type='application/json', **self.headers) assert 200 == result.status_code assert 1 == result.data.get('result') ```
{ "source": "jesuejunior/stone", "score": 3 }
#### File: jesuejunior/stone/generator.py ```python import string import random def id_generator(size=6, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) for x in range(0, 10): print(id_generator()) ``` #### File: onix/views/block.py ```python from braces.views import LoginRequiredMixin from django.core.paginator import Paginator, PageNotAnInteger, InvalidPage, EmptyPage from django.core.urlresolvers import reverse from django.http import HttpResponse from django.http import HttpResponseRedirect from django.shortcuts import render_to_response, render from django.template.response import TemplateResponse from django.views.generic import View, ListView from onix.models import Block, Material from tools.code_generator import generate_code class BlockTemplateView(LoginRequiredMixin, View): template_name = 'block/new.html' def get(self, request, *args, **kwargs): cxt = self.get_context_data(request) return TemplateResponse( request=self.request, template=self.template_name, context=cxt, **kwargs ) def post(self, request, *args, **kwargs): cxt = self.get_context_data(request) material_id = request.POST.get('material_id') number = request.POST.get('number') code = None while(True): code = generate_code() if not Block.objects.filter(code=code).exists(): break if request.user.is_authenticated() and number and material_id: if Block.objects.filter(material_id=material_id, number=number).exists(): material = Material.objects.get(pk=material_id).name cxt['message']= u'O código [{0}] já foi utilizada para [{1}], por favor verifique os dados.'.format(number, material) cxt['status'] = 'error' return TemplateResponse( request=self.request, template=self.template_name, context=cxt, status=400, **kwargs ) result = Block.objects.get_or_create(material_id=material_id, number=number, code=code) saved = result[0].save() if saved: return HttpResponse(reverse('blocks'), content={'message': 'Bloco criado com sucesso.', 'status': 'ok'}) return HttpResponseRedirect(reverse('blocks')) def get_context_data(self, request): _question = Block.objects.select_related().all() paginator = Paginator(_question, 50) page = request.GET.get('page') try: blocks = paginator.page(page) except PageNotAnInteger: blocks = paginator.page(1) except (EmptyPage, InvalidPage): blocks = paginator.page(paginator.num_pages) cxt = { 'blocks': blocks, 'materials': Material.objects.all() } return cxt class BlockListTemplateView(LoginRequiredMixin, ListView): template_name = 'block/list.html' model = Block ```
{ "source": "jesuejunior/urlreduce", "score": 2 }
#### File: reducer/tests/test_model.py ```python from unittest import TestCase from django.contrib.auth.models import User from django.db import models from reducer.models import Link, Owner class LinkModelTest(TestCase): def test_url_hash(self): link = Link._meta.get_field_by_name('url_hash')[0] self.assertEquals(link.__class__, models.CharField) self.assertEquals(link.max_length, 255) self.assertTrue(link.null) self.assertTrue(link.blank) self.assertTrue(link.unique) def test_user(self): link = Link._meta.get_field_by_name('user')[0] self.assertEquals(link.__class__, models.ForeignKey) def test_url(self): link = Link._meta.get_field_by_name('url')[0] self.assertEquals(link.__class__, models.URLField) def test_dt_created(self): link = Link._meta.get_field_by_name('dt_created')[0] self.assertEquals(link.__class__, models.DateTimeField) self.assertTrue(link.auto_now_add) class OwnerModelTest(TestCase): def test_link(self): owner = Owner._meta.get_field_by_name('link')[0] self.assertEquals(owner.__class__, models.ForeignKey) def test_owners(self): owner = Owner._meta.get_field_by_name('link')[0] self.assertEquals(owner.__class__, models.ForeignKey) class UseruModelTest(TestCase): def test_username(self): user = User._meta.get_field_by_name('username')[0] self.assertEquals(user.max_length, 30) self.assertTrue(user.unique) ``` #### File: urlreduce/reducer/views.py ```python import urllib2 from django.core.paginator import Paginator, EmptyPage, InvalidPage, PageNotAnInteger from django.template.response import TemplateResponse from django.views.defaults import page_not_found from common.login_required_mixin import LoginRequiredMixin from reducer.forms import ReduceURLForm from django.views.generic import View, TemplateView, RedirectView from reducer.models import Link, Owner class HomeTemplateView(View): template_name = 'home.html' def get(self, request, *args, **kwargs): cxt = self.get_context_data() return TemplateResponse( request=self.request, template=self.template_name, context=cxt, **kwargs ) def post(self, request, *args, **kwargs): cxt = self.get_context_data() req = request.POST authenticated = request.user.is_authenticated() if authenticated: req = req.copy() req[u'user'] = request.user.pk form = ReduceURLForm(req) #Não deixar cadastrar URL repetida economia de disco/memoria if form.is_valid(): link = Link.objects.filter(url=form.cleaned_data['url']) link = link[0] if link else None if not link: link = form.save() if authenticated: owner, created = Owner.objects.get_or_create(link=link) owner.owners.add(request.user) cxt['link'] = link.to_dict() else: cxt['link'] = '500' #TODO - Se a url já estiver cadastrada o dono não muda e as urls existente só #TODO - aparece para a primeira pessoa, pensar como corrigir isso return TemplateResponse( request=self.request, template=self.template_name, context=cxt, **kwargs ) def get_context_data(self, **kwargs): cxt = {} cxt['form_url'] = ReduceURLForm return cxt class MyLinksTemplateView(LoginRequiredMixin, TemplateView): template_name = 'my-links.html' def get(self, request, *args, **kwargs): links = Link.objects.filter(owner__owners=request.user) paginator = Paginator(links, 10) page = request.GET.get('page') try: links = paginator.page(page) except PageNotAnInteger: links = paginator.page(1) except (EmptyPage, InvalidPage): links = paginator.page(paginator.num_pages) cxt = {'links': links} return self.render_to_response(cxt) class GoToRedirectView(RedirectView): def get(self, request, *args, **kwargs): url_hash = kwargs.get('url_hash') try: link = Link.objects.decode(url_hash) self.url = urllib2.unquote(link) return super(GoToRedirectView, self).get(request, *args, **kwargs) except Link.DoesNotExist: return page_not_found(request) ```
{ "source": "je-suis-tm/recursion-and-dynamic-programming", "score": 4 }
#### File: je-suis-tm/recursion-and-dynamic-programming/coin change recursion.py ```python def coin_change(num,choice): #base case if num==0: return 1 #prevent stack overflow if num<0: return 0 output=0 #iterate through cases of exclusion for i in range(len(choice)): #case of inclusion include=coin_change(num-choice[i],choice) exclude=0 #case of exclusion if i>=1: exclude=coin_change(num,choice[:i]) #two sub problems merge into a big one output=include+exclude return output # In[3]: coin_change(4,[1,2,3]) ``` #### File: je-suis-tm/recursion-and-dynamic-programming/fibonacci with memoization.py ```python global mem mem={1:1,2:1} import datetime as dt #fib(n) is recursion with memory #everytime we do the calculation, we store it in the dictionary #i denote the key as the n th fibonacci number #the value as the number itself #if we can find the key in dictionary #we simply return the value #if not, we append the dictionary then return the value def fib(n): if n in mem: return mem[n] else: mem[n]=(fib(n-1)+fib(n-2)) return mem[n] #this is the fibonacci recursion function without memory #it is basically algorithm 101 for any coding language def f(n): if n==1: return 1 elif n==2: return 1 else: return f(n-1)+f(n-2) #i calculate how long these two functions take #print out the comparison def compare(n): t1=dt.datetime.now() f(n) t2=dt.datetime.now() print('recursion: ',t2-t1) t1=dt.datetime.now() fib(n) t2=dt.datetime.now() print('recursion with memory: ',t2-t1) compare(20) ``` #### File: je-suis-tm/recursion-and-dynamic-programming/hanoi tower.py ```python def hanoi(n,a,b,c): #rule states that each time we can only move one element #so when the recursion reaches to base case 1 #we print the movement of elements from a to c if n==1: print(a,'-',c) return #for the general case #the first step is to move everything above the base case from column a to column b #note that we set print a to c when n reaches one #so in this case we reorder the function, replace c with column b where elements actually move towards hanoi(n-1,a,c,b) #the second step is to move the base case from column a to column c #we are only moving base case, thats why n=1 hanoi(1,a,b,c) #final step would be move everything above base case from column b to column c hanoi(n-1,b,a,c) # In[3]: hanoi(4,'a','b','c') # the best explanation should be # https://www.python-course.eu/towers_of_hanoi.php ``` #### File: je-suis-tm/recursion-and-dynamic-programming/jerusalem cross.py ```python import matplotlib.pyplot as plt # In[2]: #compute euclidean distance def euclidean_distance(point1,point2): return ((point1[0]-point2[0])**2+(point1[1]-point2[1])**2)**0.5 # In[3]: #recursively plot jerusalem cross #it kinda looks like flag of georgia (n=2) #i mean the eurasian country not a yankee state #i call it jerusalem cross but it is aka cross menger square,jerusalem square #it is a 2d version of jerusalem cube #a good reference to jerusalem cube # https://robertdickau.com/jerusalemcube.html #a good understanding of sierpiński carpet is helpful as well # https://github.com/je-suis-tm/recursion-and-dynamic-programming/blob/master/sierpi%C5%84ski%20carpet.py #do not confuse it with quadratic cross,which creates new crosses from the tips # https://onlinemathtools.com/generate-quadratic-cross-fractal #or fibonacci snowflakes,which is more like koch snowflake # http://www.slabbe.org/Publications/2011-fibo-snowflakes.pdf #or vicsek fractal,which is more similar to crosslet cross # https://en.wikipedia.org/wiki/Vicsek_fractal def jerusalem_cross(top_left,top_right,bottom_left,bottom_right,n): if n<=0: return else: #compute the length length=euclidean_distance(top_left,top_right) #create the cross plt.fill_between( [top_left[0]+length*(2**0.5-1),top_right[0]-length*(2**0.5-1)], [bottom_left[1]+length*(2**0.5-1)**2,bottom_left[1]+length*(2**0.5-1)**2], [top_left[1]-length*(2**0.5-1)**2,top_left[1]-length*(2**0.5-1)**2], color='k') plt.fill_between( [top_left[0]+length*(2**0.5-1)**2,top_right[0]-length*(2**0.5-1)**2], [bottom_left[1]+length*(2**0.5-1),bottom_left[1]+length*(2**0.5-1)], [top_left[1]-length*(2**0.5-1),top_left[1]-length*(2**0.5-1)], color='k') #top left corner recursion jerusalem_cross(top_left,(top_left[0]+length*(2**0.5-1),top_left[1]), (top_left[0],top_left[1]-length*(2**0.5-1)), (top_left[0]+length*(2**0.5-1), top_left[1]-length*(2**0.5-1)),n-1) #top right corner recursion jerusalem_cross((top_right[0]-length*(2**0.5-1),top_left[1]),top_right, (top_right[0]-length*(2**0.5-1), top_left[1]-length*(2**0.5-1)), (top_right[0],top_left[1]-length*(2**0.5-1)),n-1) #bottom left corner recursion jerusalem_cross((bottom_left[0],bottom_left[1]+length*(2**0.5-1)), (bottom_left[0]+length*(2**0.5-1), bottom_left[1]+length*(2**0.5-1)), bottom_left, (bottom_left[0]+length*(2**0.5-1),bottom_left[1]),n-1) #bottom right corner recursion jerusalem_cross((bottom_right[0]-length*(2**0.5-1), bottom_right[1]+length*(2**0.5-1)), (bottom_right[0], bottom_right[1]+length*(2**0.5-1)), (bottom_right[0]-length*(2**0.5-1), bottom_right[1]), bottom_right,n-1) #top mid corner recursion jerusalem_cross((top_left[0]+length*(2**0.5-1),top_left[1]), (top_right[0]-length*(2**0.5-1),top_left[1]), (top_left[0]+length*(2**0.5-1), top_left[1]-length*(2**0.5-1)**2), (top_right[0]-length*(2**0.5-1), top_left[1]-length*(2**0.5-1)**2),n-2) #bottom mid corner recursion jerusalem_cross((bottom_left[0]+length*(2**0.5-1), bottom_left[1]+length*(2**0.5-1)**2), (bottom_right[0]-length*(2**0.5-1), bottom_left[1]+length*(2**0.5-1)**2), (bottom_left[0]+length*(2**0.5-1), bottom_left[1]), (bottom_right[0]-length*(2**0.5-1), bottom_left[1]),n-2) #left mid corner recursion jerusalem_cross((bottom_left[0], top_left[1]-length*(2**0.5-1)), (bottom_left[0]+length*(2**0.5-1)**2, top_left[1]-length*(2**0.5-1)), (bottom_left[0],bottom_left[1]+length*(2**0.5-1)), (bottom_left[0]+length*(2**0.5-1)**2, bottom_left[1]+length*(2**0.5-1)),n-2) #right mid corner recursion jerusalem_cross((bottom_right[0]-length*(2**0.5-1)**2, top_right[1]-length*(2**0.5-1)), (bottom_right[0], top_right[1]-length*(2**0.5-1)), (bottom_right[0]-length*(2**0.5-1)**2, bottom_right[1]+length*(2**0.5-1)), (bottom_right[0],bottom_right[1]+length*(2**0.5-1)), n-2) # In[4]: #initialize top_left=(0,0) top_right=(1,0) bottom_left=(0,-1) bottom_right=(1,-1) n=5 # In[5]: #viz ax=plt.figure(figsize=(10,10)) jerusalem_cross(top_left,top_right,bottom_left,bottom_right,n) plt.xlim(top_left[0],top_right[0]) plt.ylim(bottom_right[1],top_left[1],) plt.axis('off') plt.show() ``` #### File: je-suis-tm/recursion-and-dynamic-programming/koch snowflake.py ```python import matplotlib.pyplot as plt # In[2]: #simple solution to get coefficients of the equation def get_line_params(x1,y1,x2,y2): slope=(y1-y2)/(x1-x2) intercept=y1-slope*x1 return slope,intercept # In[3]: #compute euclidean distance def euclidean_distance(point1,point2): return ((point1[0]-point2[0])**2+(point1[1]-point2[1])**2)**0.5 # In[4]: #standard solution to quadratic equation def solve_quadratic_equation(A,B,C): x1=(-B+(B**2-4*A*C)**0.5)/(2*A) x2=(-B-(B**2-4*A*C)**0.5)/(2*A) return [x1,x2] # In[5]: #analytic geometry to compute target datapoints def get_datapoint(pivot,measure,length,direction='inner'): #for undefined slope if pivot[0]==measure[0]: y1=pivot[1]+length y2=pivot[1]-length x1=pivot[0] x2=pivot[0] #for general cases else: #get line equation slope,intercept=get_line_params(pivot[0],pivot[1], measure[0],measure[1],) #solve quadratic equation A=1 B=-2*pivot[0] C=pivot[0]**2-length**2/(slope**2+1) x1,x2=solve_quadratic_equation(A,B,C) #get y from line equation y1=slope*x1+intercept y2=slope*x2+intercept if direction=='inner': #take the one between pivot and measure points datapoint=min([(x1,y1),(x2,y2)], key=lambda x:euclidean_distance(x,measure)) else: #take the one farther away from measure points datapoint=max([(x1,y1),(x2,y2)], key=lambda x:euclidean_distance(x,measure)) return datapoint # In[6]: #recursively compute the coordinates of koch curve data points #to effectively connect the data points,the best choice is to use turtle #it would be too difficult to connect the dots via analytic geometry def koch_snowflake(base1,base2,base3,n): #base case if n==0: return else: #find mid point #midpoint between base1 and base2 has to satisfy two conditions #it has to be on the same line as base1 and base2 #assume this line follows y=kx+b #the midpoint is (x,kx+b) #base1 is (α,kα+b),base2 is (δ,kδ+b) #the euclidean distance between midpoint and base1 should be #half of the euclidean distance between base1 and base2 #(x-α)**2+(kx+b-kα-b)**2=((α-δ)**2+(kα+b-kδ-b)**2)/4 #apart from x,everything else in the equation is constant #this forms a simple quadratic solution to get two roots #one root would be between base1 and base2 which yields midpoint #and the other would be farther away from base2 #this function solves the equation via (-B+(B**2-4*A*C)**0.5)/(2*A) #alternatively,you can use scipy.optimize.root #the caveat is it does not offer both roots #a wrong initial guess could take you to the wrong root midpoint=get_datapoint(base1,base2,euclidean_distance(base1,base2)/2) #compute the top point of a triangle #the computation is similar to midpoint #the euclidean distance between triangle_top and midpoint should be #one third of the distance between base3 and midpoint triangle_top=get_datapoint(midpoint,base3, euclidean_distance(midpoint,base3)/3, direction='outer') #two segment points divide a line into three equal parts #the computation is almost the same as midpoint #the euclidean distance between segment1 and base1 #should be one third of the euclidean distance between base2 and base1 segment1=get_datapoint(base1,base2,euclidean_distance(base1,base2)/3) segment2=get_datapoint(base2,base1,euclidean_distance(base1,base2)/3) #compute the nearest segment point of the neighboring line segment_side_1=get_datapoint(base1,base3,euclidean_distance(base1,base3)/3) segment_side_2=get_datapoint(base2,base3,euclidean_distance(base2,base3)/3) #recursion yield [segment1,segment2,triangle_top] yield from koch_snowflake(base1,segment1,segment_side_1,n-1) yield from koch_snowflake(segment1,triangle_top,segment2,n-1) yield from koch_snowflake(triangle_top,segment2,segment1,n-1) yield from koch_snowflake(segment2,base2,segment_side_2,n-1) # In[7]: #set data points point1=(0,0) point2=(3,0) point3=(3/2,3/2*(3**0.5)) #due to python floating point arithmetic #a lot of data points could go wrong during the calculation #unfortunately there is no panacea to this malaise #unless we plan to use decimal package all the time #when the depth of snowflake reaches 1 #one of the data points reach -1.1102230246251565e-16 on x axis #when the depth of snowflake reaches 6 #we end up with complex root and things go wrong n=4 # In[8]: #collect coordinates arr=list(koch_snowflake(point1,point2,point3,n))+list( koch_snowflake(point3,point1,point2,n))+list( koch_snowflake(point2,point3,point1,n))+[(point1,point2,point3)] coordinates=[j for i in arr for j in i] # In[9]: #viz #visually u can tell some of the data points are miscalculated #purely caused by floating point arithmetic ax=plt.figure(figsize=(5,5)) plt.scatter([i[0] for i in coordinates], [i[1] for i in coordinates],s=0.5) plt.axis('off') plt.show() # In[10]: #turtle version of koch snowflake # https://www.geeksforgeeks.org/koch-curve-koch-snowflake/ ``` #### File: je-suis-tm/recursion-and-dynamic-programming/palindrome checker 4 methods.py ```python import re def f(n): #this is the base case, when string is empty #we just return empty if n=='': return n else: return n[-1]+f(n[:-1]) def check(n): #this part is the regular expression to get only characters #and format all of em into lower cases c1=re.findall('[a-zA-Z0-9]',n.lower()) c2=re.findall('[a-zA-Z0-9]',(f(n)).lower()) if c1==c2: return True else: return False #alternatively, we can use deque #we pop from both sides to see if they are equal #if not return false #note that the length of string could be an odd number #we wanna make sure the pop should take action while length of deque is larger than 1 from collections import deque def g(n): c=re.findall('[a-zA-Z0-9]',n.lower()) de=deque(c) while len(de) >=1: if de.pop()!=de.popleft(): return False return True #or we can use non recursive slicing def h(n): c=re.findall('[a-zA-Z0-9]',n.lower()) if c[::-1]==c: return True else: return False #or creating a new list #using loop to append new list from old list s popped item def i(n): c=re.findall('[a-zA-Z0-9]',n.lower()) d=[] for i in range(len(c)): d.append(c.pop()) c=re.findall('[a-zA-Z0-9]',n.lower()) if d==c: return True else: return False print(check('Evil is a deed as I live!')) print(g('Evil is a deed as I live!')) print(h('Evil is a deed as I live!')) print(i('Evil is a deed as I live!')) #for time and space complexity, python non recursive slicing wins ``` #### File: je-suis-tm/recursion-and-dynamic-programming/stock trading dynamic programming.py ```python def stock_trading(prices): #initialize the profit at zero profit=[0 for _ in range(len(prices))] #initialize maximum price with the close price max_price=prices[-1] #reverse order iteration for i in range(len(prices)-2,-1,-1): #update the maximum price to compute the maximum profit if prices[i]>max_price: max_price=prices[i] #two scenarios to get the maximum profit #either the previous iteration is larger #or this round of iteration profit[i]=max(profit[i+1],max_price-prices[i]) #initialize minimum price with the open price min_price=prices[0] #second round of iteration for i in range(1,len(prices)): #update the minimum price to compute the maximum profit if prices[i]<min_price: min_price=prices[i] #two scenarios to get the maximum profit #either the previous iteration is larger #or this round of iteration plus the result from single transaction profit[i]=max(profit[i-1],profit[i]+prices[i]-min_price) return profit[-1] # In[3]: stock_trading([10,22,5,75,65,80]) # In[4]: stock_trading([2,30,15,10,8,25,80]) # In[5]: stock_trading([100,30,15,10,8,25,80]) # In[6]: stock_trading([90,70,35,11,5]) ```
{ "source": "je-suis-tm/search-and-sort", "score": 4 }
#### File: je-suis-tm/search-and-sort/hash search.py ```python def genr_hash(raw_list): hashtable={0:'',1:'',2:'',3:'',4:'',5:'',6:'',7:'',8:'',9:'',10:''} for i in raw_list: #check if there is already a value stored under that hash value #if no, its fine #if yes, we create a list and append the collision if hashtable[i%11]=='': hashtable[i%11]=i else: #note that we append both values into the list temp=[] temp.append(hashtable[i%11]) temp.append(i) hashtable[i%11]=temp return hashtable #now its the search part #we just apply hash function on target and get hash value #we look up the hash value in dictionary def hashsearch(target,raw_list): hashtable=genr_hash(raw_list) temp=hashtable[target%11] #we gotta check if there is collision under this hash value #if dictionary keeps a list under this hash value #we have to further check the list if type(temp)==list: if target in temp: return True else: return False elif temp==target: return True else: return False # In[2]: print(hashsearch(55,[21,55,89,67])) # In[3]: #linear probing #when collision occurs, we try to find the next empty slot to store it #it sounds reasonable but it is also trouble #what if we run through the whole dictionary #and there is no slot? #we can choose to drop the values #or we can reset the hash function or expand the dictionary #in the best case, it is faster than chaining #in the worst case, it is slower #note that i create a temporary list to append collision items def genr_hash(raw_list): hashtable={0:'',1:'',2:'',3:'',4:'',5:'',6:'',7:'',8:'',9:'',10:''} temp=[] badhash=[] for i in raw_list: if hashtable[i%11]=='': hashtable[i%11]=i else: temp.append(i) #the first loop is to make sure every collision will be popped while len(temp)>0: pop=temp.pop() j=pop%11 #c is a counter #in the second loop #c is to determine whether we have gone through the entire list c=0 while c<10: #when the next one isnt empty, we keep iterating #when j exceeds ten, we return it to 0 #alternatively we can use mod eleven %11 if hashtable[j]!='': j+=1 if j>10: j=0 else: hashtable[j]=pop #after the value is assigned #we clear the value pop='' c=10 c+=1 #the reason of checking this temporary variable called pop #is to make sure that we will print out those items which didnt get assigned if pop!='': badhash.append(pop) pop='' #if the hashing is imperfect, we print out badhash list if len(badhash)>0: print(badhash) return hashtable #the search part is very similar to the chaining one def hashsearch(target,raw_list): hashtable=genr_hash(raw_list) temp=target%11 c=0 if hashtable[temp]==target: return True else: #when we cannot find the value at hash value #we begin our linear probing #its the same process as the hash function #except we only need to return T/F while c<10: if hashtable[temp]!=target: temp+=1 if temp>10: temp=0 else: return True c+=1 return False # In[4]: print(hashsearch(67,[21,55,89,67,12,12])) # In[5]: #quadratic probing #it sounds math intensive with the word quadratic #as a matter of fact, it is simple AF #we just replace the add one method with add quadratic values #the difference is that we need an extra variable to store quadratic value def genr_hash(raw_list): hashtable={0:'',1:'',2:'',3:'',4:'',5:'',6:'',7:'',8:'',9:'',10:''} temp=[] badhash=[] for i in raw_list: if hashtable[i%11]=='': hashtable[i%11]=i else: temp.append(i) while len(temp)>0: pop=temp.pop() j=pop%11 c=0 #x is where we store quadratic value x=1 while c<10: if hashtable[j]!='': #the loop is basically the same as linear probing #except we add quadratic value #note that its quite difficult #to determine whether we have been through the entire list #so i still set counter limit at 10 j+=x**2 if j>10: #note that i use mod eleven %11 when iteration exceeds hash table size j=j%11 else: hashtable[j]=pop pop='' c=10 c+=1 x+=1 if pop!='': badhash.append(pop) pop='' if len(badhash)>0: print(badhash) return hashtable #the search is basically the same as linear probing #except linear part is substituted with quadratic def hashsearch(target,raw_list): hashtable=genr_hash(raw_list) temp=target%11 c=0 x=1 if hashtable[temp]==target: return True else: while c<10: if hashtable[temp]!=target: temp+=x**2 if temp>10: temp=temp%11 else: return True c+=1 x+=1 return False # In[6]: print(hashsearch(67,[21,55,89,67,12,12,12,12,12,12,12,12,12,12,78])) #we get False in the end #its quite interesting that for the same hash value 67,12,78 #we can store 78 in hash table but not 67 #because we use pop function #the list is processed in a reversed order #78 and 12 are processed earlier than 67 #quadratic probing doesnt iterate through all slots #all empty slots we can iterate have been occupied by the time we reach 67 ``` #### File: je-suis-tm/search-and-sort/quick sort.py ```python import random as rd #okay. the epic one! #quick sort, mmm, not so quick #the idea of quick sort is be the quickest #first thing first, we gotta pick a pivot number for the list #normally, people use the first element as pivot number #however, we may encounter a case that the first element is the largest or the smallest #that would make our sorting a total failure #here i use the median of 3 approach #take the first, the last and the one in the middle #and get the median of the three #we use the median as a pivot number #after that, we do the same trick as merge sort #we have a left index and a right index #we do traversal on both indices #say the left index comes from the left part #the right index comes from the right part #we compare two elements with pivot number at the same time #there are four cases assuming that we dont have any duplicate values in the list #first case, left is larger than pivot, right is smaller than pivot #so we swap both #second case, left is larger than pivot, right is larger than pivot as well #we freeze the left, and move right side index one step backwards #right=right-1 #then if left is larger than pivot, right is smaller than pivot #we back to the first case #if it is still the second case, we repeat this procedure until we move to first case #or left and right indices cross, we stop the sorting #third case, left is smaller than pivot, right is smaller than pivot #it is the opposite case of the second case #fourth case, left is smaller than pivot, right is larger than pivot #great, we do nothing but moving both indices closer to the centre #these are four basic scenarios when we do both traversals #when left and right indices cross, we stop the sorting #and we insert the pivot number in where indices cross #the next step is just like merge sort #we divide the list in two halves (excluding the pivot number) #we perform the same trick on both halves recursively #until we reach the base case when there are only two elements in the list #we sort those two elements with simple comparison def quick_sort(target): #the first step is to get a pivot number #it only works on list with more than two elements #otherwise there is no point of getting a pivot number if len(target)>2: #we take three elements, first, last and middle #we get a new list test=[target[0],target[len(target)//2],target[-1]] #this is how we get the median #there are only 3 elements #so the sum of indices is 3 #0+1+2 #all we need to do is to exclude the maximum and the minimum indices #we get the median s index pivotindex=3-test.index(max(test))-test.index(min(test)) #this part is very confusing #mostly due to simultaneous swap #it is merely swapping #if the median number index is 0 #we do nothing #cuz we initialize pivot number at index 0 later #if not #we make a swap #we use slicing method to get the index of the median in original list #we use that index to get the actual element #then we swap it with element 0 if pivotindex!=0: target[target.index(test[pivotindex])] , target[0] = target[0] , target[target.index(test[pivotindex])] #with the previous swap, we initialize pivot number at position 0 pivot=target[0] #first index is at 1, cuz we wanna exclude pivot number left=1 #last index is at the end of the list right=len(target)-1 #here comes the real deal #when left and right dont cross #excluding a case when two indices equal to each other while left-1<right: #case 1 if target[left]>pivot and target[right]<pivot: target[left],target[right]=target[right],target[left] left-=1 #case 3 if target[left]<pivot and target[right]<pivot: left+=1 #case 2 if target[left]>pivot and target[right]>pivot: right-=1 #case 4 if target[left]<pivot and target[right]>pivot: left+=1 right-=1 #when left and right indices cross #we pop the pivot number and insert it at position left-1 #when indices cross, we are one step after the input list is sorted #therefore, we insert pivot at left-1 instead of left if left>=right: target.insert(left-1,target.pop(0)) #the recursive part #we do the same trick on two halves target[:left-1]=quick_sort(target[:left-1]) target[left:]=quick_sort(target[left:]) #the base case #when we are left with two elements in a sublist #we just compare and return in reverse order #u might ask, what about one element #well, we dont have to do anything so no codes needed if len(target)==2: if target[0]>target[1]: return target[::-1] return target #there is a constraint for quick sort #duplicate values would jeopardize everything we have built #to solve that issue, we must amend the criteria for selecting pivot number #for simplicity, i remove duplicates from our test list #to handle duplicate values which might affect pivot #my idea is to insert an extra if function #if elements not at position 0 equal to pivot #we create a temporary list to collect them #when we plan to insert pivot #we insert the temporary list to the full list #since we have recursive functions #this approach to get a quick sort #is kinda different from my textbook #to see the alternative version #plz click the link below # http://interactivepython.org/runestone/static/pythonds/SortSearch/TheQuickSort.html for i in range(100): target=rd.sample([i for i in range(1000)],100) if quick_sort(target)!=sorted(target): print('Erreur') ``` #### File: je-suis-tm/search-and-sort/shaker sort.py ```python import random as rd # In[2]: #shaker sort, or cocktail sort, or cocktail shaker sort #in this script, we will call it cocktail shaker sort #with so many names, it is merely a variation of bubble sort #go the link below to check out the details of bubble sort # https://github.com/je-suis-tm/search-and-sort/blob/master/bubble,%20selection%20and%20insertion%20sort.py #bubble sort repeatedly takes comparison from one side to the other #usually left to right, takes n*(n-1) steps, assuming n is the size #cocktail shaker sort has a similar mechanism #except it compares its elements from left to right #then right to left, later left to right #the process looks like a cocktail shaker (not really) #that is how the sort gets its name #in theory, for a partially sorted list #cocktail shaker sort takes less time than a bubble sort def cocktail_shaker_sort(target): #we use left and right to define each round's start and end point left=0 right=len(target)-1 swap=True while left<right or not swap: swap=False #as usual, we start from left to right for i in range(left+1,right+1): if target[i]<target[i-1]: target[i],target[i-1]=target[i-1],target[i] swap=True right-=1 #swap is the key to increase the efficiency #once there is no swap happened in the loop #we can conclude the target list is fully sorted if not swap: return target swap=False #then right to left for j in range(right,left,-1): if target[j]<target[j-1]: target[j],target[j-1]=target[j-1],target[j] swap=True left+=1 return target # In[3]: for i in range(100): target=rd.sample([i for i in range(1000)],100) if cocktail_shaker_sort(target)!=sorted(target): print('Erreur') ``` #### File: je-suis-tm/search-and-sort/shell sort.py ```python def insertion_sort(target): for i in range(1,len(target)): val=target[i] j=i while val<target[j-1] and j!=0: target[j]=target[j-1] j-=1 target[j]=val return target #shell sort is a variation of insertion sort #slicing method [a::b] is the key #we gotta cut the original list into a few small groups #assume we have a list of n elements #the first step, we do b=n//a, we get a few sublists by [a::b] #we apply insertion sort on those sublists and concatenate #next, we do b=b//a, and we obtain a few new sublists by [a::b] #we apply insertion sort on new sublists and concatenate #we keep using //a method and do insertion sort and concatenate #til b reaches zero #we concatenate sublists and do a final insertion sort #we shall end up with a sorted list #the time complexity is quite difficult to calculate def shell_sort(target): #the first step is to initialize a #we will use this variable to divide the list and do slicing #in this case, i equals to 4, you can change the default number to any digit #bear in mind that this variable keeps the size of each sublist reasonable #we keep b divided by 4 until it reaches zero a=4 b=len(target)//a while b>0: #instead of rebuilding the wheel #i directly call it in shell sort for i in range(b): temp=insertion_sort(target[i::b]) #put the sorted sublist back to a bigger list for j in range(len(temp)): target[i+j*b]=temp[j] b=b//a return insertion_sort(target) for i in range(100): target=rd.sample([i for i in range(1000)],100) if shell_sort(target)!=sorted(target): print('Erreur') ```
{ "source": "jesuRule/dtk", "score": 2 }
#### File: dtk/src/dtkorg.py ```python import os import platform import subprocess import threading import dtkglobal import wx class AddSandboxPanel(wx.Panel): def __init__(self, parent): super(AddSandboxPanel, self).__init__(parent) self.InitUI() def InitUI(self): self.mainSizer = wx.GridBagSizer(5, 5) self.organizationLbl = wx.StaticText(self, label="Organization") self.organizationLbl.ToolTip = "List of Organizations available." self.organizationComboBox = wx.ComboBox(self, style=wx.CB_READONLY) self.organizationComboBox.ToolTip = "List of Organizations available." self.organizationComboBox.Items = dtkglobal.orgList self.sandboxTypeLbl = wx.StaticText(self, label="Sandbox Type") self.sandboxTypeLbl.ToolTip = "Sandbox Type: Config, QA, UAT or Prod." self.sandboxTypeComboBox = wx.ComboBox(self, style=wx.CB_READONLY) self.sandboxTypeComboBox.ToolTip = "Sandbox Type: Config, QA, UAT or Prod." self.sandboxTypeComboBox.Items = dtkglobal.defaultSandboxTypes if dtkglobal.advSetting: self.sandboxOverrideLbl = wx.StaticText(self, label="Sandbox Override Name") self.sandboxOverrideLbl.ToolTip = "The sandbox name set here will be added instead of the Sandbox Type." self.sandboxOverrideTextCtrl = wx.TextCtrl(self) self.sandboxOverrideTextCtrl.ToolTip = ( "The sandbox name set here will be added instead of the Sandbox Type." ) self.btnShowSfdxAliasList = wx.Button(self, label="Show SFDX Alias List") self.btnShowSfdxAliasList.Bind(wx.EVT_BUTTON, self.ShowSfdxAliasList) self.btnAddSandbox = wx.Button(self, label="Add Sandbox") self.btnAddSandbox.Bind(wx.EVT_BUTTON, self.AddSandboxButton) self.consoleOutputLbl = wx.StaticText(self, label="Log") self.consoleOutputLbl.ToolTip = "Console output log." self.consoleOutputTextCtrl = wx.TextCtrl( self, style=wx.TE_MULTILINE | wx.TE_READONLY | wx.TE_AUTO_URL | wx.HSCROLL ) self.consoleOutputTextCtrl.ToolTip = "Console output log." row = 0 col = 0 spanV = 0 spanH = 15 self.mainSizer.Add(self.organizationLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.organizationComboBox, pos=(row, col + 1), span=(spanV, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 self.mainSizer.Add(self.sandboxTypeLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.sandboxTypeComboBox, pos=(row, col + 1), span=(spanV, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 if dtkglobal.advSetting: self.mainSizer.Add( self.sandboxOverrideLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5 ) self.mainSizer.Add( self.sandboxOverrideTextCtrl, pos=(row, col + 1), span=(spanV, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 self.mainSizer.Add(self.btnShowSfdxAliasList, pos=(row, 0), flag=wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.btnAddSandbox, pos=(row, col + 15), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5 ) row += 1 self.mainSizer.Add( self.consoleOutputLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5 ) row += 1 self.mainSizer.Add( self.consoleOutputTextCtrl, pos=(row, col), span=(spanV + 10, spanH + 1), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) self.mainSizer.AddGrowableCol(2) self.mainSizer.AddGrowableRow(row) self.mainSizer.SetEmptyCellSize((0, 0)) self.Layout() self.Fit() self.SetSizer(self.mainSizer) def ShowSfdxAliasList(self, event): cmd = ["sfdx", "force:alias:list"] if (platform.system() != "Windows"): cmd = ["/usr/local/bin/sfdx" + " " + "force:alias:list"] proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, stdin=subprocess.PIPE ) self.consoleOutputTextCtrl.AppendText(proc.stdout.read()) self.consoleOutputTextCtrl.AppendText(os.linesep) def AddSandboxButton(self, event): self.consoleOutputTextCtrl.Clear() orgName = self.organizationComboBox.GetValue() sdbxName = self.sandboxTypeComboBox.GetValue() if dtkglobal.advSetting: sandboxOverride = self.sandboxOverrideTextCtrl.GetValue() if len(sandboxOverride) > 0: sdbxName = sandboxOverride if len(orgName) == 0: dlg = wx.MessageDialog(self, "Please select an organization.", "DTK - Organizations", wx.OK | wx.ICON_ERROR) dlg.ShowModal() dlg.Destroy() return if len(sdbxName) == 0: dlg = wx.MessageDialog(self, "Please select a sandbox.", "DTK - Organizations", wx.OK | wx.ICON_ERROR) dlg.ShowModal() dlg.Destroy() return sdbxName = sdbxName.rstrip() sdbxName = sdbxName.replace(" ", "_") sandboxName = orgName + "_" + sdbxName if sdbxName in dtkglobal.orgDict[orgName]["sandboxes"]: dlg = wx.MessageDialog( self, "The sandbox '" + sdbxName + "' already exist for organization '" + orgName + "', please choose another sandbox.", "DTK - Add Sandbox", wx.OK | wx.ICON_ERROR, ) dlg.ShowModal() dlg.Destroy() else: if sdbxName == "Prod": serverUrl = "https://login.salesforce.com" else: serverUrl = "https://test.salesforce.com" self.consoleOutputTextCtrl.AppendText( "Adding sandbox '" + sdbxName + "' for organization '" + orgName + "'." ) self.consoleOutputTextCtrl.AppendText(os.linesep) self.consoleOutputTextCtrl.AppendText("This needs an online login on the browser to complete the addition.") self.consoleOutputTextCtrl.AppendText(os.linesep) self.consoleOutputTextCtrl.AppendText( "If the browser is closed without doing the login the sandbox won't be added." ) self.consoleOutputTextCtrl.AppendText(os.linesep) thread = threading.Thread(target=self.RunAddSandbox, args=(orgName, sdbxName, sandboxName, serverUrl)) thread.setDaemon(True) thread.start() def OnText(self, text): self.consoleOutputTextCtrl.AppendText(text) def RunAddSandbox(self, orgName, sdbxName, sandboxName, serverUrl): cmd = ["sfdx", "force:auth:web:login", "-a", sandboxName, "-r", serverUrl] if (platform.system() != "Windows"): cmd = ["/usr/local/bin/sfdx" + " " + "force:auth:web:login" + " " + "-a" + " " + sandboxName + " " + "-r" + " " + serverUrl] proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, stdin=subprocess.PIPE ) for line in proc.stdout: wx.CallAfter(self.OnText, line) dtkglobal.orgDict[orgName]["sandboxes"].append(sdbxName) dtkglobal.StoreOrgs() dtkglobal.ReadOrgs() sandboxList = dtkglobal.orgDict[orgName]["sandboxes"] sandboxList.sort() self.Parent.GetPage(0).sandboxesListBox.Items = sandboxList class ManageSandboxPanel(wx.Panel): def __init__(self, parent): super(ManageSandboxPanel, self).__init__(parent) self.InitUI() def InitUI(self): self.mainSizer = wx.GridBagSizer(1, 1) self.organizationLbl = wx.StaticText(self, label="Organization") self.organizationLbl.ToolTip = "List of Organizations available." self.organizationComboBox = wx.ComboBox(self, style=wx.CB_READONLY) self.organizationComboBox.ToolTip = "List of Organizations available." self.organizationComboBox.Items = dtkglobal.orgList self.organizationComboBox.Bind(wx.EVT_COMBOBOX, self.OrganizationSelected) self.sandboxesLbl = wx.StaticText(self, label="Sandboxes") self.sandboxesLbl.ToolTip = "List of Sandboxes available." self.sandboxesListBox = wx.ListBox(self) self.sandboxesListBox.ToolTip = "List of Sandboxes available." self.btnOpenSandbox = wx.Button(self, label="Open") self.btnOpenSandbox.Bind(wx.EVT_BUTTON, self.OpenSandboxButton) self.btnDeleteSandbox = wx.Button(self, label="Delete Sandbox") self.btnDeleteSandbox.Bind(wx.EVT_BUTTON, self.DeleteSandboxButton) row = 0 col = 0 spanV = 0 spanH = 18 self.mainSizer.Add(self.organizationLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.organizationComboBox, pos=(row, col + 1), span=(spanV, spanH - 1), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 self.mainSizer.Add(self.sandboxesLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) row += 1 self.mainSizer.Add( self.sandboxesListBox, pos=(row, col), span=(spanV + 10, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 10 self.mainSizer.Add(self.btnOpenSandbox, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.btnDeleteSandbox, pos=(row, col + spanH - 1), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5 ) self.mainSizer.AddGrowableCol(2) self.mainSizer.AddGrowableRow(row - 1) self.mainSizer.SetEmptyCellSize((0, 0)) self.Layout() self.Fit() self.SetSizer(self.mainSizer) def OrganizationSelected(self, event): orgName = self.organizationComboBox.GetValue() if orgName in dtkglobal.orgDict: sandboxList = dtkglobal.orgDict[orgName]["sandboxes"] sandboxList.sort() self.sandboxesListBox.Items = sandboxList def OpenSandboxButton(self, event): orgName = self.organizationComboBox.GetValue() if len(orgName) == 0: dlg = wx.MessageDialog(self, "Please select an organization.", "DTK - Organizations", wx.OK | wx.ICON_ERROR) dlg.ShowModal() dlg.Destroy() return if self.sandboxesListBox.GetSelection() == -1: dlg = wx.MessageDialog(self, "Please select a sandbox.", "DTK - Organizations", wx.OK | wx.ICON_ERROR) dlg.ShowModal() dlg.Destroy() return sdbxName = self.sandboxesListBox.GetString(self.sandboxesListBox.GetSelection()) sandboxName = orgName + "_" + sdbxName thread = threading.Thread(target=self.RunOpenSandbox, args=(sandboxName,)) thread.setDaemon(True) thread.start() def RunOpenSandbox(self, sandboxName): cmd = ["sfdx", "force:org:open", "-u", sandboxName] if (platform.system() != "Windows"): cmd = ["/usr/local/bin/sfdx" + " " + "force:org:open" + " " + "-u" + " " + sandboxName] proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, stdin=subprocess.PIPE ) directory = os.path.join(os.path.expanduser("~"), ".dtk", "log") if not os.path.exists(directory): os.makedirs(directory) outputFileUrl = os.path.join(directory, "output.log") outputFile = open(outputFileUrl, "wb") outputFile.write(proc.stdout.read()) outputFile.close() fileOutput = open(outputFileUrl, "r", encoding="utf8") for line in fileOutput: if "ERROR" in line: dlg = wx.MessageDialog(self, line + "\nPlease remove the sandbox and register it again.", "DTK - Organizations", wx.OK | wx.ICON_ERROR) dlg.ShowModal() dlg.Destroy() break def DeleteSandboxButton(self, event): orgName = self.organizationComboBox.GetValue() if len(orgName) == 0: dlg = wx.MessageDialog(self, "Please select an organization.", "DTK - Organizations", wx.OK | wx.ICON_ERROR) dlg.ShowModal() dlg.Destroy() return if self.sandboxesListBox.GetSelection() == -1: dlg = wx.MessageDialog(self, "Please select a sandbox.", "DTK - Organizations", wx.OK | wx.ICON_ERROR) dlg.ShowModal() dlg.Destroy() return sdbxName = self.sandboxesListBox.GetString(self.sandboxesListBox.GetSelection()) sandboxName = orgName + "_" + sdbxName dlg = wx.MessageDialog( self, "The sandbox '" + sdbxName + "' from organization '" + orgName + "' will be removed from DTK. Please confirm.", "DTK - Delete Sandbox", wx.YES_NO | wx.ICON_WARNING, ) result = dlg.ShowModal() if result == wx.ID_YES: thread = threading.Thread(target=self.RunDeleteSandbox, args=(orgName, sdbxName, sandboxName)) thread.setDaemon(True) thread.start() dlg.Destroy() def RunDeleteSandbox(self, orgName, sdbxName, sandboxName): cmd = ["sfdx", "force:alias:set", sandboxName + "="] if (platform.system() != "Windows"): cmd = ["/usr/local/bin/sfdx" + " " + "force:alias:set" + " " + sandboxName + "="] proc = subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, stdin=subprocess.PIPE ) directory = os.path.join(os.path.expanduser("~"), ".dtk", "log") if not os.path.exists(directory): os.makedirs(directory) outputFileUrl = os.path.join(directory, "output.log") outputFile = open(outputFileUrl, "wb") outputFile.write(proc.stdout.read()) outputFile.close() dtkglobal.orgDict[orgName]["sandboxes"].remove(sdbxName) dtkglobal.StoreOrgs() dtkglobal.ReadOrgs() sandboxList = dtkglobal.orgDict[orgName]["sandboxes"] sandboxList.sort() self.sandboxesListBox.Items = sandboxList self.Layout() class ManageOrganizationPanel(wx.Panel): def __init__(self, parent): super(ManageOrganizationPanel, self).__init__(parent) self.InitUI() def InitUI(self): self.mainSizer = wx.GridBagSizer(5, 5) self.organizationLbl = wx.StaticText(self, label="Organizations") self.organizationLbl.ToolTip = "List of Organizations available." self.organizationListBox = wx.ListBox(self) self.organizationListBox.ToolTip = "List of Organizations available." self.organizationListBox.Items = dtkglobal.orgList self.organizationListBox.Bind(wx.EVT_LISTBOX, self.SelectOrganization) self.gitUrlLbl = wx.StaticText(self, label="Git URL") self.gitUrlLbl.ToolTip = "Git URL linked with the Organization." self.gitUrlTextCtrl = wx.TextCtrl(self) self.gitUrlTextCtrl.ToolTip = "Git URL linked with the Organization." self.gitUserLbl = wx.StaticText(self, label="Git Username") self.gitUserLbl.ToolTip = "Git Username." self.gitUserTextCtrl = wx.TextCtrl(self) self.gitUserTextCtrl.ToolTip = "Git Username." self.gitPassLbl = wx.StaticText(self, label="Git Password") self.gitPassLbl.ToolTip = "Git Password. If you have a 2 factor authentication git server then you need to set here the granted token generated." self.gitPassTextCtrl = wx.TextCtrl(self, style=wx.TE_PASSWORD) self.gitPassTextCtrl.ToolTip = "Git Password. If you have a 2 factor authentication git server then you need to set here the granted token generated." self.metadataFolderLbl = wx.StaticText(self, label="Metadata Folder") self.metadataFolderLbl.ToolTip = "Metadata Folder." self.metadataFolderTextCtrl = wx.TextCtrl(self) self.metadataFolderTextCtrl.ToolTip = "Metadata Folder." self.preScriptFolderLbl = wx.StaticText(self, label="Pre-deploy Script") self.preScriptFolderLbl.ToolTip = "Pre-deploy Script Folder." self.preScriptFolderTextCtrl = wx.TextCtrl(self) self.preScriptFolderTextCtrl.ToolTip = "Pre-deploy Script Folder." self.scriptFolderLbl = wx.StaticText(self, label="Post-deploy Script") self.scriptFolderLbl.ToolTip = "Post-deploy Script Folder." self.scriptFolderTextCtrl = wx.TextCtrl(self) self.scriptFolderTextCtrl.ToolTip = "Post-deploy Script Folder." self.btnUpdate = wx.Button(self, label="Update") self.btnUpdate.Bind(wx.EVT_BUTTON, self.UpdateButton) self.btnDelete = wx.Button(self, label="Delete") self.btnDelete.Bind(wx.EVT_BUTTON, self.DeleteButton) row = 0 col = 0 spanV = 0 spanH = 18 self.mainSizer.Add(self.organizationLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.organizationListBox, pos=(row, col + 1), span=(spanV + 10, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 10 self.mainSizer.Add(self.gitUrlLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.gitUrlTextCtrl, pos=(row, col + 1), span=(spanV, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 self.mainSizer.Add(self.gitUserLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.gitUserTextCtrl, pos=(row, col + 1), span=(spanV, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 self.mainSizer.Add(self.gitPassLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.gitPassTextCtrl, pos=(row, col + 1), span=(spanV, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 self.mainSizer.Add( self.metadataFolderLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5 ) self.mainSizer.Add( self.metadataFolderTextCtrl, pos=(row, col + 1), span=(spanV, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 self.mainSizer.Add(self.preScriptFolderLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.preScriptFolderTextCtrl, pos=(row, col + 1), span=(spanV, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 self.mainSizer.Add(self.scriptFolderLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.scriptFolderTextCtrl, pos=(row, col + 1), span=(spanV, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 self.mainSizer.Add(self.btnUpdate, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.btnDelete, pos=(row, col + spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5 ) self.mainSizer.AddGrowableCol(2) self.mainSizer.SetEmptyCellSize((0, 0)) self.Layout() self.Fit() self.SetSizer(self.mainSizer) def SelectOrganization(self, event): sdbxName = self.organizationListBox.GetString(self.organizationListBox.GetSelection()) self.gitUrlTextCtrl.Clear() self.gitUserTextCtrl.Clear() self.gitPassTextCtrl.Clear() self.metadataFolderTextCtrl.Clear() self.preScriptFolderTextCtrl.Clear() self.scriptFolderTextCtrl.Clear() if sdbxName in dtkglobal.orgDict: if len(dtkglobal.orgDict[sdbxName]["giturl"]) > 0: self.gitUrlTextCtrl.WriteText(dtkglobal.orgDict[sdbxName]["giturl"]) if len(dtkglobal.orgDict[sdbxName]["gituser"]) > 0: self.gitUserTextCtrl.WriteText(dtkglobal.orgDict[sdbxName]["gituser"]) if len(dtkglobal.orgDict[sdbxName]["gitpass"]) > 0: gitpassDecoded = dtkglobal.Decode( dtkglobal.orgDict[sdbxName]["gituser"], dtkglobal.orgDict[sdbxName]["gitpass"] ) self.gitPassTextCtrl.WriteText(gitpassDecoded) if len(dtkglobal.orgDict[sdbxName]["metadatafolder"]) > 0: self.metadataFolderTextCtrl.WriteText(dtkglobal.orgDict[sdbxName]["metadatafolder"]) if "preScript" in dtkglobal.orgDict[sdbxName]: if len(dtkglobal.orgDict[sdbxName]["preScript"]) > 0: self.preScriptFolderTextCtrl.WriteText(dtkglobal.orgDict[sdbxName]["preScript"]) if len(dtkglobal.orgDict[sdbxName]["script"]) > 0: self.scriptFolderTextCtrl.WriteText(dtkglobal.orgDict[sdbxName]["script"]) def UpdateButton(self, event): if self.organizationListBox.GetSelection() == -1: dlg = wx.MessageDialog(self, "Please select an organization.", "DTK - Organizations", wx.OK | wx.ICON_ERROR) dlg.ShowModal() dlg.Destroy() return sdbxName = self.organizationListBox.GetString(self.organizationListBox.GetSelection()) if sdbxName in dtkglobal.orgDict: dtkglobal.orgDict[sdbxName]["giturl"] = self.gitUrlTextCtrl.GetValue() dtkglobal.orgDict[sdbxName]["gituser"] = self.gitUserTextCtrl.GetValue() gitpassEncoded = dtkglobal.Encode(self.gitUserTextCtrl.GetValue(), self.gitPassTextCtrl.GetValue()) dtkglobal.orgDict[sdbxName]["gitpass"] = gitpassEncoded dtkglobal.orgDict[sdbxName]["metadatafolder"] = self.metadataFolderTextCtrl.GetValue() dtkglobal.orgDict[sdbxName]["preScript"] = self.preScriptFolderTextCtrl.GetValue() dtkglobal.orgDict[sdbxName]["script"] = self.scriptFolderTextCtrl.GetValue() dtkglobal.StoreOrgs() dlg = wx.MessageDialog( self, "The organization '" + sdbxName + "' has been updated.", "DTK - Update Organization", wx.OK | wx.ICON_INFORMATION, ) dlg.ShowModal() dlg.Destroy() def DeleteButton(self, event): if self.organizationListBox.GetSelection() == -1: dlg = wx.MessageDialog(self, "Please select an organization.", "DTK - Organizations", wx.OK | wx.ICON_ERROR) dlg.ShowModal() dlg.Destroy() return sdbxName = self.organizationListBox.GetString(self.organizationListBox.GetSelection()) if sdbxName in dtkglobal.orgDict: if len(dtkglobal.orgDict[sdbxName]["sandboxes"]) > 0: dlg = wx.MessageDialog( self, "The organization '" + sdbxName + "' can't be deleted, please remove first the sandboxes linked to this organization.", "DTK - Delete Organization", wx.OK | wx.ICON_ERROR, ) dlg.ShowModal() dlg.Destroy() else: dlg = wx.MessageDialog( self, "The organization '" + sdbxName + "' will be deleted from DTK. Please confirm.", "DTK - Delete Organization", wx.YES_NO | wx.ICON_WARNING, ) result = dlg.ShowModal() if result == wx.ID_YES: dtkglobal.orgDict.pop(sdbxName) dtkglobal.StoreOrgs() dtkglobal.ReadOrgs() self.Parent.GetPage(0).organizationComboBox.Items = dtkglobal.orgList self.Parent.GetPage(1).organizationComboBox.Items = dtkglobal.orgList self.Parent.GetPage(2).organizationListBox.Items = dtkglobal.orgList self.Layout() dlg.Destroy() class AddOrganizationPanel(wx.Panel): def __init__(self, parent): super(AddOrganizationPanel, self).__init__(parent) self.InitUI() def InitUI(self): self.mainSizer = wx.GridBagSizer(5, 5) self.organizationLbl = wx.StaticText(self, label="Organization") self.organizationLbl.ToolTip = "List of Organizations available." self.organizationTextCtrl = wx.TextCtrl(self) self.organizationTextCtrl.ToolTip = "List of Organizations available." self.gitUrlLbl = wx.StaticText(self, label="Git URL") self.gitUrlLbl.ToolTip = "Git URL linked with the Organization." self.gitUrlTextCtrl = wx.TextCtrl(self) self.gitUrlTextCtrl.ToolTip = "Git URL linked with the Organization." self.gitUserLbl = wx.StaticText(self, label="Git Username") self.gitUserLbl.ToolTip = "Git Username." self.gitUserTextCtrl = wx.TextCtrl(self) self.gitUserTextCtrl.ToolTip = "Git Username." self.gitPassLbl = wx.StaticText(self, label="Git Password") self.gitPassLbl.ToolTip = "Git Password. If you have a 2 factor authentication git server then you need to set here the granted token generated." self.gitPassTextCtrl = wx.TextCtrl(self, style=wx.TE_PASSWORD) self.gitPassTextCtrl.ToolTip = "Git Password. If you have a 2 factor authentication git server then you need to set here the granted token generated." self.metadataFolderLbl = wx.StaticText(self, label="Metadata Folder") self.metadataFolderLbl.ToolTip = "Metadata Folder." self.metadataFolderTextCtrl = wx.TextCtrl(self) self.metadataFolderTextCtrl.ToolTip = "Metadata Folder." self.metadataFolderTextCtrl.AppendText(dtkglobal.defaultMetadataFolder) self.preScriptFolderLbl = wx.StaticText(self, label="Pre-deploy Script") self.preScriptFolderLbl.ToolTip = "Pre-deploy Script Folder." self.preScriptFolderTextCtrl = wx.TextCtrl(self) self.preScriptFolderTextCtrl.ToolTip = "Pre-deploy Script Folder." self.preScriptFolderTextCtrl.AppendText(dtkglobal.defaultPreScriptFolder) self.scriptFolderLbl = wx.StaticText(self, label="Post-deploy Script") self.scriptFolderLbl.ToolTip = "Post-deploy Script Folder." self.scriptFolderTextCtrl = wx.TextCtrl(self) self.scriptFolderTextCtrl.ToolTip = "Post-deploy Script Folder." self.scriptFolderTextCtrl.AppendText(dtkglobal.defaultScriptFolder) self.btnAddOrganization = wx.Button(self, label="Add Organization") self.btnAddOrganization.Bind(wx.EVT_BUTTON, self.AddOrganizationButton) self.consoleOutputLbl = wx.StaticText(self, label="Log") self.consoleOutputLbl.ToolTip = "Console output log." self.consoleOutputTextCtrl = wx.TextCtrl( self, style=wx.TE_MULTILINE | wx.TE_READONLY | wx.TE_AUTO_URL | wx.HSCROLL ) self.consoleOutputTextCtrl.ToolTip = "Console output log." row = 0 col = 0 spanV = 0 spanH = 19 self.mainSizer.Add(self.organizationLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.organizationTextCtrl, pos=(row, col + 1), span=(spanV, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 self.mainSizer.Add(self.gitUrlLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.gitUrlTextCtrl, pos=(row, col + 1), span=(spanV, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 self.mainSizer.Add(self.gitUserLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.gitUserTextCtrl, pos=(row, col + 1), span=(spanV, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 self.mainSizer.Add(self.gitPassLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.gitPassTextCtrl, pos=(row, col + 1), span=(spanV, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 self.mainSizer.Add( self.metadataFolderLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5 ) self.mainSizer.Add( self.metadataFolderTextCtrl, pos=(row, col + 1), span=(spanV, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 self.mainSizer.Add(self.preScriptFolderLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.preScriptFolderTextCtrl, pos=(row, col + 1), span=(spanV, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 self.mainSizer.Add(self.scriptFolderLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.Add( self.scriptFolderTextCtrl, pos=(row, col + 1), span=(spanV, spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) row += 1 self.mainSizer.Add( self.btnAddOrganization, pos=(row, col + spanH), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5 ) row += 1 self.mainSizer.Add( self.consoleOutputLbl, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5 ) row += 1 self.mainSizer.Add( self.consoleOutputTextCtrl, pos=(row, col), span=(spanV + 9, spanH + 2), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5, ) self.mainSizer.AddGrowableCol(2) self.mainSizer.AddGrowableRow(row) self.mainSizer.SetEmptyCellSize((0, 0)) self.Layout() self.Fit() self.SetSizer(self.mainSizer) def AddOrganizationButton(self, event): sdbxName = self.organizationTextCtrl.GetLineText(0) sdbxName = sdbxName.rstrip() sdbxName = sdbxName.replace(" ", "_") if len(sdbxName) == 0: dlg = wx.MessageDialog( self, "Please select an organization name.", "DTK - Organizations", wx.OK | wx.ICON_ERROR ) dlg.ShowModal() dlg.Destroy() return giturl = self.gitUrlTextCtrl.GetLineText(0) gituser = self.gitUserTextCtrl.GetLineText(0) gitpass = self.gitPassTextCtrl.GetLineText(0) metadatafolder = self.metadataFolderTextCtrl.GetLineText(0) preScript = self.preScriptFolderTextCtrl.GetLineText(0) script = self.scriptFolderTextCtrl.GetLineText(0) gitpassEncoded = dtkglobal.Encode(gituser, gitpass) if sdbxName in dtkglobal.orgDict: dlg = wx.MessageDialog( self, "The organization '" + sdbxName + "' already exist, please choose another name", "DTK - Add Organization.", wx.OK | wx.ICON_ERROR, ) dlg.ShowModal() dlg.Destroy() else: sdbxConf = {} sdbxConf["sandboxes"] = [] sdbxConf["giturl"] = giturl sdbxConf["gituser"] = gituser sdbxConf["gitpass"] = gitpassEncoded sdbxConf["metadatafolder"] = metadatafolder sdbxConf["preScript"] = preScript sdbxConf["script"] = script dtkglobal.orgDict[sdbxName] = sdbxConf dtkglobal.StoreOrgs() self.consoleOutputTextCtrl.AppendText("Organization added with name: " + sdbxName) self.consoleOutputTextCtrl.AppendText(os.linesep) dtkglobal.ReadOrgs() self.Parent.GetPage(0).organizationComboBox.Items = dtkglobal.orgList self.Parent.GetPage(1).organizationComboBox.Items = dtkglobal.orgList self.Parent.GetPage(2).organizationListBox.Items = dtkglobal.orgList class ManageOrgsFrame(wx.Frame): def __init__(self, parent=None): super(ManageOrgsFrame, self).__init__(parent, title="Organizations") myStream = dtkglobal.getImageStream() myImage = wx.Image(myStream) myBitmap = wx.Bitmap(myImage) icon = wx.Icon() icon.CopyFromBitmap(myBitmap) self.SetIcon(icon) # dtkglobal.MakeModal(self, True) self.InitUI() def InitUI(self): self.panel = wx.Panel(self) self.nb = wx.Notebook(self.panel) self.nb.AddPage(ManageSandboxPanel(self.nb), "Manage Sandboxes") self.nb.AddPage(AddSandboxPanel(self.nb), "Add Sandbox") self.nb.AddPage(ManageOrganizationPanel(self.nb), "Manage Organizations") self.nb.AddPage(AddOrganizationPanel(self.nb), "Add Organization") self.mainSizer = wx.GridBagSizer(5, 5) row = 0 col = 0 spanV = 0 spanH = 2 self.mainSizer.Add(self.nb, pos=(row, col), flag=wx.EXPAND | wx.TOP | wx.LEFT | wx.RIGHT, border=5) self.mainSizer.AddGrowableCol(0) self.mainSizer.AddGrowableRow(0) self.panel.SetSizerAndFit(self.mainSizer) self.mainSizer.Fit(self) self.Layout() self.Centre() self.MinSize = self.Size self.Bind(wx.EVT_CLOSE, self.OnCloseWindow) self.Show() def OnCloseWindow(self, event): self.Destroy() ```
{ "source": "jesus1554/FotoCrytpo", "score": 2 }
#### File: jesus1554/FotoCrytpo/views.py ```python from flask import Flask, request, session, render_template, flash, redirect, url_for, send_file from werkzeug.security import generate_password_hash, check_password_hash from flask_sqlalchemy import SQLAlchemy from cryptosteganography import CryptoSteganography from double_auth import send_verfication from random import randint from app import * import os allowedFiles = ['jpg', 'png', 'jpeg'] def deletePrevious(): import glob files = glob.glob('./upload/*') for fl in files: os.remove(fl) def indexView(): if "username" in session: return render_template('home.html', username=session['username']) return render_template('index.html') def encryptView(): if request.method == 'POST': deletePrevious() f = request.files['image'] filename = f.filename extentionFile = filename.split('.') imgPath = f'./upload/{filename}' password = request.form['password'] message = request.form['message'] outputName = f"./upload/{extentionFile[0]}-encr.png" simpleOutput = f'{extentionFile[0]}-encr.png' if extentionFile[1] in allowedFiles: f.save(imgPath) else: flash('Extensión de archivo no permitida', 'danger') return redirect(url_for('index')) # Encrypting File crypto_steganography = CryptoSteganography(password) crypto_steganography.hide(imgPath, outputName, message) flash('Se guardó correctamente', 'success') return render_template('encrypt.html', outfile=simpleOutput) return render_template('encrypt.html') def decryptView(): pass def loginView(): if request.method == "POST": user = User.query.filter_by( email=request.form["email"] ).first() if user and check_password_hash(user.password, request.form["password"]): session["username"] = user.username return redirect(url_for('index')) flash('Tus credenciales son inválidas, inténtalo de nuevo', 'danger') return render_template('login.html') def signupView(): global pin global newUser if request.method == "POST": if int(request.form['code']) > 0: usrcode = int(request.form['code']) if pin == usrcode: confirmedUser = User( username = newUser['username'], email = newUser['email'], password = <PASSWORD>['password'] ) db.session.add(confirmedUser) db.session.commit() pin = randint(1000, 9999) newUser = None return redirect(url_for('login')) else: flash('Incorrecto :(', 'danger') return render_template('confirm.html') else: hashed_pw = generate_password_hash(request.form["password"], method="sha256") newUser = { 'username': request.form["username"], 'email': request.form["email"], 'password': <PASSWORD> } send_verfication(pin, newUser['email']) flash("¡Te has registrado exitosamente!", "success") return render_template('confirm.html', mail=newUser['email']) return render_template('signup.html') ```
{ "source": "JESUS-2120/Python_2", "score": 3 }
#### File: Python_2/Tareas/Secuencias_y_Formatos.py ```python from Bio.Seq import Seq from Bio import SeqIO #Definimos la funcion que recibira como argumentos la ruta del archivo y la lista con nombres de genes def resumen(path,genes): #Damos lectura al archivo e imprimimos los datos que nos interesa conocer for register in SeqIO.parse(path,"genbank"): organismo = register.annotations["organism"] version = register.annotations["sequence_version"] source = register.features[0] print(f"Organismo = {organismo}") print(f"Version = {version}") print("Fuente de aislamiento ",source.qualifiers["isolation_source"]) print("Pais",source.qualifiers["country"]) '''Creamos una estructura con dos for anidados que nos permitira recorrer el archivo genbank en busca de las secuencias de los genes cuyos nombres se encuentran en la lista para posteriormente imprimirlas''' for j in range(0, len(genes)): gen = "['"+genes[j]+"']" for i in range(2, len(register.features) , 2): if (str(gen) == str(register.features[i].qualifiers["gene"]) ): start = register.features[i].location.nofuzzy_start end = int(start) + 15 sec = register.seq[start:end] print(f"Gene = {genes[j]}") print(f"DNA = {sec}") print(f"RNA = {sec.transcribe()}") print(f"PROTEINA = {sec.translate()}") gen = "" #Se introduce de manera amable al usuario print("Bienvenido a Secuencias y Formatos :D\n") desicion = input("Desea usar el archivo genbank por default? [S/N]: ") #Se pregunta al usuario si desea ingresar su propio archivo genbank y se guarda el path if desicion == "S": path = "../files/virus.gb" else: path = str(input("Introduzca la ruta de su arcivo genbank: ")) #Se pide al usuario que ingrese los nombres en la lista print("Intoduzca su lista de nombres de genes") c = int(input("Ingrese cuantos nombres hay en su lista: ")) i = 0 Gen = [] while i < c: i += 1 print("Ingrese el nombre: ") nombre_user = input().upper() Gen.append(nombre_user) resumen(path,Gen) ```
{ "source": "jesus-333/Dynamic-PyTorch-Net", "score": 3 }
#### File: Dynamic-PyTorch-Net/Old file/DynamicNet_OLD.py ```python import torch from torch import nn from support_DynamicNet import getActivationList, getPoolingList, convOutputShape import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt class DynamicCNN(nn.Module): def __init__(self, parameters, print_var = False, tracking_input_dimension = False): super().__init__() self.print_var = print_var self.tracking_input_dimension = tracking_input_dimension #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Parameters recovery and check # Set device for the training/execution if("device" in parameters.keys()): self.device = parameters["device"] else: self.device = device = torch.device("cpu") # Set the number of layers for convolutional part if("layers_cnn" in parameters.keys()): layers_cnn = int(parameters["layers_cnn"]) #0 if(print_var): print("Layer CNN: {}".format(layers_cnn)) else: layers_cnn = 0; if(print_var): print("Layer CNN: {}".format(layers_cnn)) # raise Exception("No \"layers_cnn\" key inside the paramters dictionary") # Set the number of layers for linear part if("layers_ff" in parameters.keys()): layers_ff = int(parameters["layers_ff"]) #1 if(print_var): print("Layer Linear: {}".format(layers_ff)) else: layers_ff = 0 if(print_var): print("Layer Linear: {}".format(layers_ff)) # raise Exception("No \"layers_ff\" key inside the paramters dictionary") if(layers_cnn == 0 and layers_ff == 0): raise Exception("Both \"layers_cnn\" and \"layers_ff\" are set to 0. You must have at least one layer.") self.layers_cnn, self.layers_ff = layers_cnn, layers_ff # Set activation functions for each layer act = getActivationList() if("activation_list" in parameters.keys()): activation_list = parameters["activation_list"] # Check activation list length (N.B the +1 is added because there is the flatten layer between the cnn and the feed-forward part) if(len(activation_list) != layers_cnn + layers_ff + 1): raise Exception("wrong number of elements in activation_list") # Create the activation list of the two part of the network activation_list_cnn = activation_list[0:layers_cnn] activation_list_ff = activation_list[(layers_cnn + 1):] activation_flatten = activation_list[layers_cnn] if(print_var): print("Activation CNN: {}\nActivation Linear: {}\nActivation Flatten: {}".format(activation_list_cnn, activation_list_ff, activation_flatten)) else: raise Exception("No \"activation_list\" key inside the paramters dictionary") if(layers_cnn != 0): # Set kernel list if("kernel_list" in parameters.keys() and layers_cnn != 0): kernel_list = convertTupleElementToInt(parameters["kernel_list"]) # Check kernel list length if(len(kernel_list) != layers_cnn): raise Exception("Wrong number of elements in kernel_list") if(print_var): print("Kernels: {}".format(kernel_list)) else: if(print_var): print("Kernels: {}".format(kernel_list)) # raise Exception("No \"kernel_list\" key inside the paramters dictionary") # Set filter list if("filters_list" in parameters.keys() and layers_cnn != 0): filters_list = convertTupleElementToInt(parameters["filters_list"]) # Check filter list length if(len(filters_list) != layers_cnn): raise Exception("Wrong number of elements in filters_list") if(print_var): print("Filters/Channels: {}".format(filters_list)) else: raise Exception("No \"filters_list\" key inside the paramters dictionary") # Set stride list if("stride_list" in parameters.keys() and layers_cnn != 0): stride_list = convertTupleElementToInt(parameters["stride_list"]) # Check stride list length if(len(stride_list) != layers_cnn): raise Exception("Wrong number of elements in stride_list") if(print_var): print("Stride List: {}".format(stride_list)) else: # If no stride provided create a vector to set every stride to defualt value of conv2D stride_list = np.ones(layers_cnn).astype(int) if(print_var): print("Stride List: {}".format(stride_list)) # Set padding list if("padding_list" in parameters.keys() and layers_cnn != 0): padding_list = convertTupleElementToInt(parameters["padding_list"]) # Check padding list length if(len(padding_list) != layers_cnn): raise Exception("Wrong number of elements in padding_list") if(print_var): print("Padding List: {}".format(padding_list)) else: # If no padding provided create a vector to set every pad to defualt value of conv2D padding_list = np.zeros(layers_cnn).astype(int) if(print_var): print("Padding List: {}".format(padding_list)) # Set pooling list if("pooling_list" in parameters.keys() and layers_cnn != 0): pooling_list = parameters["pooling_list"] # Check pooling length if(len(pooling_list) != layers_cnn): raise Exception("Wrong number of elements in pooling_list") if(print_var): print("Pooling List: {}".format(pooling_list)) else: # If no pooling provided create a vector of negative number so no pool layer will be added pooling_list = np.ones(layers_cnn).astype(int) * -1 if(print_var): print("Pooling List: {}".format(pooling_list)) # Set groups list if("groups_list" in parameters.keys() and layers_cnn != 0): groups_list = parameters["groups_list"] # Check group length if(len(groups_list) != layers_cnn): raise Exception("Wrong number of elements in group_list") if(print_var): print("Groups List: {}".format(groups_list)) else: # If no groups provided create a vector of ones number so hte group will be set to its default value of 1 groups_list = np.ones(layers_cnn).astype(int) if(print_var): print("Groups List: {}".format(groups_list)) # Set Batch Normalization list if("CNN_normalization_list" in parameters.keys() and layers_cnn != 0): CNN_normalization_list = parameters["CNN_normalization_list"] # Check batch_normalization_list list length if(len(CNN_normalization_list) != layers_cnn): raise Exception("Wrong number of elements in CNN_normalization_list") if(print_var): print("CNN Normalization: {}".format(CNN_normalization_list)) else: # If no Batch was provided create a vector of negative number so no Batch layer will be added CNN_normalization_list = np.ones(layers_cnn).astype(int) * -1 CNN_normalization_list = CNN_normalization_list > 100 if(print_var): print("CNN Normalization: {}".format(CNN_normalization_list)) # Set dropout list if("dropout_list" in parameters.keys()): dropout_list = parameters["dropout_list"] # Check dropout list length if(len(dropout_list) != layers_cnn + layers_ff + 1): raise Exception("Wrong number of elements in dropout_list") dropout_list_cnn = dropout_list[0:layers_cnn] dropout_list_ff = dropout_list[(layers_cnn + 1):] dropout_flatten = dropout_list[layers_cnn] if(print_var): print("Dropout List: {}".format(dropout_list)) else: # If no dropout was provided create a vector of negative number so no dropout layer will be added dropout_list = np.ones(layers_cnn + layers_ff + 1).astype(int) * -1 dropout_list_cnn = dropout_list[0:layers_cnn] dropout_list_ff = dropout_list[(layers_cnn + 1):] dropout_flatten = dropout_list[layers_cnn] if(print_var): print("Dropout List: {}".format(dropout_list)) # Set bias list if("bias_list" in parameters.keys()): bias_list = parameters["bias_list"] # Check bias list length if(len(bias_list) != layers_cnn + layers_ff + 1): raise Exception("Wrong number of elements in bias_list") bias_list_cnn = bias_list[0:layers_cnn] bias_list_ff = bias_list[(layers_cnn + 1):] bias_list_flatten = bias_list[layers_cnn] if(print_var): print("Bias List: {}".format(bias_list)) else: # If no bias was provided create a vector of negative number so no bias will be added bias_list = np.ones(layers_cnn + layers_ff + 1).astype(int) * -1 bias_list = bias_list < 1000 bias_list_cnn = bias_list[0:layers_cnn] bias_list_ff = bias_list[(layers_cnn + 1):] bias_list_flatten = bias_list[layers_cnn] if(print_var): print("Bias List: {}".format(bias_list)) # Set neuron list if("neurons_list" in parameters.keys()): neurons_list = parameters["neurons_list"] # Check activation list length if(len(neurons_list) != layers_ff): raise Exception("Wrong number of elements in neurons_list") if(layers_ff != 1): neurons_list = convertArrayInTupleList(neurons_list) if(print_var): print("Neurons List: {}".format(neurons_list)) else: # raise Exception("No \"Neurons_list\" key inside the paramters dictionary") neurons_list = [] if(print_var): print("Neurons List: {}".format(neurons_list)) # Add a empty line if(print_var): print() #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # CNN Construction # Temporary variable used to track the change in dimensions of the input if(layers_cnn != 0): tmp_input = torch.ones((1, filters_list[0][0], parameters["h"], parameters["w"])) if(tracking_input_dimension): print("# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # ") print(tmp_input.shape, "\n") # Temporay list to store the layer tmp_list = [] # Construction cycle for kernel, n_filter, stride, padding, pool, activation, normalization, p_dropout, groups, bias in zip(kernel_list, filters_list, stride_list, padding_list, pooling_list, activation_list_cnn, CNN_normalization_list, dropout_list_cnn, groups_list, bias_list_cnn): # Create the convolutional layer and add to the list if(groups == 1): tmp_cnn_layer = nn.Conv2d(in_channels = int(n_filter[0]), out_channels = int(n_filter[1]), kernel_size = kernel, stride = stride, padding = padding, bias = bias) else: tmp_cnn_layer = nn.Conv2d(in_channels = int(n_filter[0]), out_channels = int(n_filter[1]), kernel_size = kernel, stride = stride, padding = padding, groups = groups, bias = bias) tmp_list.append(tmp_cnn_layer) # Keep track of the outupt dimension tmp_input = tmp_cnn_layer(tmp_input) # Print the input dimensions at this step (if tracking_input_dimension is True) if(tracking_input_dimension): print(tmp_cnn_layer) print(tmp_input.shape, "\n") # (OPTIONAL) add batch normalization if(normalization): tmp_list.append(nn.BatchNorm2d(num_features = int(n_filter[1]))) # (OPTIONAL) Add the activation if(activation != -1): tmp_list.append(act[activation]) # (OPTIONAL) Add max pooling if(pool != -1): # Retrieve the pooling list (with a cast to int for the kernel) pool_kernel = (int(pool[1][0]), int(pool[1][1])) pool_layer_list = getPoolingList(kernel = pool_kernel) # Create the pool layer and add to the list. tmp_pooling_layer = pool_layer_list[pool[0]] tmp_list.append(tmp_pooling_layer) # Keep track of the output dimension tmp_input = tmp_pooling_layer(tmp_input) # Print the input dimensions at this step (if tracking_input_dimension is True) if(tracking_input_dimension): print(tmp_pooling_layer) print(tmp_input.shape) # (OPTIONAL) Dropout if(p_dropout > 0 and p_dropout < 1): tmp_list.append(torch.nn.Dropout(p = p_dropout)) # Creation of the sequential object to store all the layer self.cnn = nn.Sequential(*tmp_list) # Plot a separator if(tracking_input_dimension): print("# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #\n") #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Flatten layer self.flatten_neurons = tmp_input.shape[1] * tmp_input.shape[2] * tmp_input.shape[3] if(layers_ff == 0): if(activation_flatten != -1): self.flatten_layer = act[activation_flatten] else: self.flatten_layer = nn.Identity() if(print_var): print("Flatten layer: {}\n".format(self.flatten_neurons)) else: if(layers_ff == 1): tmp_flatten_layer = nn.Linear(self.flatten_neurons, neurons_list[0], bias = bias_list_flatten) else: tmp_flatten_layer = nn.Linear(self.flatten_neurons, neurons_list[0][0], bias = bias_list_flatten) tmp_list = [] tmp_list.append(tmp_flatten_layer) if(activation_flatten != -1): tmp_list.append(act[activation_flatten]) if(dropout_flatten > 0 and dropout_flatten < 1): tmp_list.append(torch.nn.Dropout(p = dropout_flatten)) self.flatten_layer = nn.Sequential(*tmp_list) if(print_var): if(layers_ff == 1): print("Flatten layer: {}\n".format([self.flatten_neurons, neurons_list[0]])) else: print("Flatten layer: {}\n".format([self.flatten_neurons, neurons_list[0][0]])) #- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Feed-Forward (Linear) construction if(layers_ff > 1): # Temporay list to store the layer tmp_list = [] # Construction cycle for neurons, activation, p_dropout, bias in zip(neurons_list, activation_list_ff, dropout_list_ff, bias_list_ff): if(layers_ff == 1 and layers_cnn == 0): # Case for a single layer feed-forward network (perceptron style) tmp_linear_layer = nn.Linear(parameters["h"] * parameters["w"], neurons, bias = bias) else: tmp_linear_layer = nn.Linear(neurons[0], neurons[1], bias = bias) tmp_list.append(tmp_linear_layer) # (OPTIONAL) Add the activation if(activation != -1): tmp_list.append(act[activation]) # (OPTIONAL) Dropout if(p_dropout > 0 and p_dropout < 1): tmp_list.append(torch.nn.Dropout(p = p_dropout)) # Creation of the sequential object to store all the layer self.ff = nn.Sequential(*tmp_list) else: self.ff = [] def forward(self, x): if(self.layers_cnn != 0): # Convolutional section x = self.cnn(x) # Flatten layer x = x.view([x.size(0), -1]) x = self.flatten_layer(x) # Feed-forward (linear) section if(len(self.ff) > 0): x = self.ff(x) return x def printNetwork(self, separator = False): depth = 0 # Iterate through the module of the network for name, module in self.named_modules(): # Iterate through the sequential block # Since in the iteration the sequential blocks and the modules inside the sequential block appear twice I only take the sequenial block if(type(module) == torch.nn.modules.container.Sequential): for layer in module: # Print layer print("DEPTH:", depth, "\t- ", layer) # Incrase depth depth += 1 if(separator): print("\n- - - - - - - - - - - - - - - - - - - - - - - - - - - \n") if(name == 'cnn'): # Add reshape "layer" print("DEPTH:", depth, "\t- ", "x.view([x.size(0), -1])") if(separator): print("\n- - - - - - - - - - - - - - - - - - - - - - - - - - - \n") depth += 1 def getMiddleResults(self, x, input_depth, ignore_dropout = True): actual_depth = 0 # Iterate through the module of the network for name, module in self.named_modules(): # Iterate through the sequential block # Since in the iteration the sequential blocks and the modules inside the sequential block appear twice I only take the sequenial block if(type(module) == torch.nn.modules.container.Sequential): for layer in module: # Evaluate the value of the input at this level x = layer(x) # If I reach the desire level I stop if(actual_depth == input_depth): return x # Increase depth level actual_depth += 1 # Reshape after the CNN block if(name == 'cnn'): x = x.view([x.size(0), -1]) if(actual_depth == input_depth): return x actual_depth += 1 # If this istruction is reached it means that the input flow inside all the network. return x #%% def convertArrayInTupleList(array): """ Convert an array (or a list) of element in a list of tuple where each element is a tuple with two sequential element of the original array/list Parameters ---------- array : numpy array/list Returns ------- tuple_list. List of tuple Given the input array = [a, b, c, d ...] the tuple_list will be [(a, b), (b, c), (c, d) ...] """ tuple_list = [] for i in range(len(array) - 1): tmp_tuple = (array[i], array[i + 1]) tuple_list.append(tmp_tuple) return tuple_list def convertTupleElementToInt(tuple_list): """ Convert a list of tuple in the same list of tuple but with tuple elements cast to int N.B. The tuples must contain two elements """ tuple_int_list = [] for tup in tuple_list: tmp_tuple = (int(tup[0]), int(tup[1])) tuple_int_list.append(tmp_tuple) return tuple_int_list ```
{ "source": "Jesus89/icestorm-debian", "score": 2 }
#### File: icestorm-debian/icefuzz/make_fflogic.py ```python from fuzzconfig import * import numpy as np import os os.system("rm -rf work_fflogic") os.mkdir("work_fflogic") def random_op(): return np.random.choice(["+", "-", "*", "^", "&", "|"]) def print_seq_op(dst, src1, src2, op, f): mode = np.random.choice(list("abc")) negreset = np.random.choice(["!", ""]) enable = np.random.choice(["if (en) ", ""]) if mode == "a": print(" always @(%sedge clk) begin" % np.random.choice(["pos", "neg"]), file=f) print(" %s%s <= %s %s %s;" % (enable, dst, src1, op, src2), file=f) print(" end", file=f) elif mode == "b": print(" always @(%sedge clk) begin" % np.random.choice(["pos", "neg"]), file=f) print(" if (%srst)" % negreset, file=f) print(" %s <= %d;" % (dst, np.random.randint(2**16)), file=f) print(" else", file=f) print(" %s%s <= %s %s %s;" % (enable, dst, src1, op, src2), file=f) print(" end", file=f) elif mode == "c": print(" always @(%sedge clk, %sedge rst) begin" % (np.random.choice(["pos", "neg"]), "neg" if negreset == "!" else "pos"), file=f) print(" if (%srst)" % negreset, file=f) print(" %s <= %d;" % (dst, np.random.randint(2**16)), file=f) print(" else", file=f) print(" %s%s <= %s %s %s;" % (enable, dst, src1, op, src2), file=f) print(" end", file=f) else: assert False for idx in range(num): with open("work_fflogic/fflogic_%02d.v" % idx, "w") as f: print("module top(input clk, rst, en, input [15:0] a, b, c, d, output [15:0] y, output z);", file=f) print(" reg [15:0] p, q;", file=f) print_seq_op("p", "a", "b", random_op(), f) print_seq_op("q", "c", "d", random_op(), f) print(" assign y = p %s q, z = clk ^ rst ^ en;" % random_op(), file=f) print("endmodule", file=f) with open("work_fflogic/Makefile", "w") as f: print("all: %s" % " ".join(["fflogic_%02d.bin" % i for i in range(num)]), file=f) for i in range(num): print("fflogic_%02d.bin:" % i, file=f) print("\t-bash ../icecube.sh fflogic_%02d > fflogic_%02d.log 2>&1 && rm -rf fflogic_%02d.tmp || tail fflogic_%02d.log" % (i, i, i, i), file=f) ```
{ "source": "Jesus98Sotelo/Hangman-Game-Python", "score": 4 }
#### File: Jesus98Sotelo/Hangman-Game-Python/Hangman-Game.py ```python import random import os import hanged as h hh = h.HANGMAN_IMAGES def play(word , underscord): wordList = list(word) underscordList = list(underscord) lyric = '' while wordList != underscordList or lyric == ' ': lyric = input('Tu primer intento : ') accountant = 1 os.system('cls') for i in range(0, len(wordList)): if wordList[i] == lyric: underscordList[i] = wordList[i] print(' '.join(underscordList).upper()) print("""Ganaste!!! +----+ | | \O/ | | | / \ | ========= """) def normalize(s): replacements = ( ("á", "a"), ("é", "e"), ("í", "i"), ("ó", "o"), ("ú", "u"), ) for a, b in replacements: s = s.replace(a, b).replace(a.upper(), b.upper()) return s def read(): with open('./docs/data.txt', 'r', encoding='utf-8') as f: words = [i.replace('\n', '') for i in f] random_word = random.randint(0, len(words)) word = words[random_word] return word def run(): print(""" ____ _ _ _ | _ \ (_) (_) | | | |_) | _ ___ _ __ __ __ ___ _ __ _ __| | ___ __ _ | _ < | | / _ \ | '_ \ \ \ / / / _ \ | '_ \ | | / _` | / _ \ / _` | | |_) | | | | __/ | | | | \ V / | __/ | | | | | | | (_| | | (_) | | (_| | |____/ |_| \___| |_| |_| \_/ \___| |_| |_| |_| \__,_| \___/ \__,_| _ _ | | | | | |__| | __ _ _ __ __ _ _ __ ___ __ _ _ __ | __ | / _` | | '_ \ / _` | | '_ ` _ \ / _` | | '_ \ | | | | | (_| | | | | | | (_| | | | | | | | | (_| | | | | | |_| |_| \__,_| |_| |_| \__, | |_| |_| |_| \__,_| |_| |_| __/ | |___/ No te ahorques y adivina la parabra antes,solo contaras con 6 oportunidades. Instrucciones: 1.- Solo puedes teclear una letra. 2.- Ganas si adivinas la palabra 3.- Pierdes si completas el ahorcado (Cuentas con 6 intestentos) _____ ____ __ __ ______ _ _ ______ ______ __ __ ____ _____ / ____| / __ \ | \/ | | ____| | \ | | |___ / | ____| | \/ | / __ \ / ____| | | | | | | | \ / | | |__ | \| | / / | |__ | \ / | | | | | | (___ | | | | | | | |\/| | | __| | . ` | / / | __| | |\/| | | | | | \___ \ | |____ | |__| | | | | | | |____ | |\ | / /__ | |____ | | | | | |__| | ____) | \_____| \____/ |_| |_| |______| |_| \_| /_____| |______| |_| |_| \____/ |_____/ """) print(hh[0]) word = read() wordNormalize = normalize(word) underscord = '_' * (len(word)) print(' '.join(underscord)) play(wordNormalize, underscord) if __name__ == '__main__': run() ```
{ "source": "jesus-acorrales/post-tuto-deployment", "score": 2 }
#### File: src/api/app.py ```python import sys import os import random from tqdm import tqdm from flask import Blueprint, request, jsonify, Flask import torch import torch.nn.functional as F import wget import db import config from ml.model import CharacterLevelCNN from ml.utils import predict_sentiment app = Flask(__name__) api = Blueprint('api', __name__) # Load pytorch model for inference model_name = 'model_en.pth' model_path = f'./ml/models/{model_name}' model = CharacterLevelCNN() if model_name not in os.listdir('./ml/models/'): print(f'downloading the trained model {model_name}') wget.download( "https://github.com/ahmedbesbes/character-based-cnn/releases/download/model_en_tp_amazon/model_tp_amazon_1014.pth", out=model_path ) else: print('model already saved to api/ml/models') if torch.cuda.is_available(): trained_weights = torch.load(model_path) else: trained_weights = torch.load(model_path, map_location='cpu') model.load_state_dict(trained_weights) model.eval() print('PyTorch model loaded !') @api.route('/predict', methods=['POST']) def predict_rating(): ''' Endpoint to predict the rating using the review's text data. ''' if request.method == 'POST': if 'review' not in request.form: return jsonify({'error': 'no review in body'}), 400 else: parameters = model.get_model_parameters() review = request.form['review'] output = predict_sentiment(model, review, **parameters) return jsonify(float(output)) @api.route('/review', methods=['POST']) def post_review(): ''' Save review to database. ''' if request.method == 'POST': expected_fields = [ 'review', 'rating', 'suggested_rating', 'sentiment_score', 'brand', 'user_agent', 'ip_address' ] if any(field not in request.form for field in expected_fields): return jsonify({'error': 'Missing field in body'}), 400 query = db.Review.create(**request.form) return jsonify(query.serialize()) @api.route('/reviews', methods=['GET']) def get_reviews(): ''' Get all reviews. ''' if request.method == 'GET': query = db.Review.select().order_by(db.Review.created_date.desc()) return jsonify([r.serialize() for r in query]) app.register_blueprint(api, url_prefix='/api') if __name__ == '__main__': app.run(debug=config.DEBUG, host=config.HOST) ``` #### File: src/api/db.py ```python import peewee as pw import config from datetime import datetime from playhouse.shortcuts import model_to_dict db = pw.PostgresqlDatabase( config.POSTGRES_DB, user=config.POSTGRES_USER, password=config.POSTGRES_PASSWORD, host=config.POSTGRES_HOST, port=config.POSTGRES_PORT ) class BaseModel(pw.Model): class Meta: database = db # Table Description class Review(BaseModel): review = pw.TextField() rating = pw.IntegerField() suggested_rating = pw.IntegerField() sentiment_score = pw.FloatField() brand = pw.TextField() user_agent = pw.TextField() ip_address = pw.TextField() created_date = pw.DateTimeField(default=datetime.now) def serialize(self): review_dict = model_to_dict(self) review_dict["created_date"] = ( review_dict["created_date"].strftime('%Y-%m-%d %H:%M:%S') ) return review_dict # Connection and table creation db.connect() db.create_tables([Review]) ```
{ "source": "jesus-a-martinez-v/dermatologist-ai", "score": 3 }
#### File: jesus-a-martinez-v/dermatologist-ai/model.py ```python import glob import os from pathlib import Path import cv2 import matplotlib.image as mpimg import numpy as np from keras import metrics from keras.applications.inception_resnet_v2 import InceptionResNetV2 from keras.callbacks import EarlyStopping, TensorBoard, ModelCheckpoint, ReduceLROnPlateau from keras.engine.saving import load_model from keras.layers import Dense, GlobalAveragePooling2D, Activation, BatchNormalization, LeakyReLU from keras.models import Model from keras.preprocessing.image import ImageDataGenerator from keras.utils.np_utils import to_categorical BASE_PATH = os.path.join('.', 'data') TRAIN_DATA = os.path.join(BASE_PATH, 'train') VALIDATION_DATA = os.path.join(BASE_PATH, 'valid') TEST_DATA = os.path.join(BASE_PATH, 'test') MAPPING = {'seborrheic_keratosis': 0, 'melanoma': 1, 'nevus': 2} def load_dataset(image_directory, dataset): image_list = [] image_labels = [] image_types = {'seborrheic_keratosis', 'melanoma', 'nevus'} x_name = f'./{dataset}_images.npy' y_name = f'./{dataset}_labels.npy' # Iterate over each subfolder corresponding to the type of image and add the image to the resulting list. if not Path(x_name).is_file() or not Path(y_name).is_file(): for image_type in image_types: print('Loading images in folder: {os.path.join(image_directory, image_type)}') for file in glob.glob(os.path.join(image_directory, image_type, '*')): image = mpimg.imread(file) print(image.shape) image = cv2.resize(image, (299, 299)) print(image.shape) if image is not None: image_list.append(image) image_labels.append(MAPPING[image_type]) image_list = np.array(image_list) image_labels = np.array(image_labels) np.save(x_name, image_list) np.save(y_name, image_labels) else: image_list = np.load(x_name) image_labels = np.load(y_name) return image_list, image_labels def get_model(train_all_layers=False): base_model = InceptionResNetV2(include_top=False, weights='imagenet', input_shape=(299, 299, 3)) x = base_model.output x = GlobalAveragePooling2D()(x) x = Dense(1024, kernel_initializer='uniform')(x) x = BatchNormalization()(x) x = LeakyReLU()(x) x = Dense(512, kernel_initializer='uniform')(x) x = BatchNormalization()(x) x = LeakyReLU()(x) x = Dense(3, kernel_initializer='uniform')(x) x = BatchNormalization()(x) predictions = Activation('softmax')(x) model = Model(inputs=base_model.input, outputs=predictions) if not train_all_layers: for layer in base_model.layers: layer.trainable = False model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['acc', metrics.categorical_accuracy]) return model def train_model(model, epochs=50, batch_size=64, train_steps_per_epoch=None, validation_steps=None): # Data augmentation generators train_datagen = ImageDataGenerator(rescale=1. / 255, horizontal_flip=True, rotation_range=10) test_datagen = ImageDataGenerator(rescale=1. / 255) # Actual generators x_train, y_train = load_dataset(TRAIN_DATA, 'train') y_train = to_categorical(y_train, num_classes=3) train_generator = train_datagen.flow(x_train, y_train, batch_size=batch_size) x_validation, y_validation = load_dataset(VALIDATION_DATA, 'validation') y_validation = to_categorical(y_validation, num_classes=3) validation_generator = test_datagen.flow(x_validation, y_validation, batch_size=batch_size) callbacks = [ TensorBoard(), EarlyStopping(patience=4), ModelCheckpoint('weights.{epoch:02d}-{val_loss:.2f}.hdf5'), ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=0.001) ] if train_steps_per_epoch is None: train_steps_per_epoch = len(x_train) // batch_size if validation_steps is None: validation_steps = len(x_validation) // batch_size model.fit_generator(train_generator, steps_per_epoch=train_steps_per_epoch, epochs=epochs, validation_data=validation_generator, validation_steps=validation_steps, callbacks=callbacks) def resume_training(weight_file_path, epochs=50, batch_size=64, train_steps_per_epoch=2000, validation_steps=800): model = load_model(weight_file_path) train_model(model, epochs, batch_size, train_steps_per_epoch, validation_steps) if __name__ == '__main__': # m = get_model() # train_model(m, batch_size=16) # file = './weights.01-1.54.hdf5' # resume_training(file, batch_size=16, epochs=49) m = load_model('./weights.02-1.11.hdf5') x_test, y_test = load_dataset(TEST_DATA, 'test') print(m.predict(x_test)) ```
{ "source": "jesus-a-martinez-v/facial-keypoints", "score": 3 }
#### File: jesus-a-martinez-v/facial-keypoints/models.py ```python import torch.nn as nn import torch.nn.functional as F def _flatten(x): return x.view(x.size(0), -1) # Reference: https://arxiv.org/pdf/1710.00977.pdf class NaimishNet(nn.Module): def __init__(self): super(NaimishNet, self).__init__() self.convolution_1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=4) # I.uniform_(self.convolution_1.weight) self.maxpooling_1 = nn.MaxPool2d(kernel_size=2) self.dropout_1 = nn.Dropout(p=0.1) self.convolution_2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3) # I.uniform_(self.convolution_2.weight) self.maxpooling_2 = nn.MaxPool2d(kernel_size=2) self.dropout_2 = nn.Dropout(p=0.2) self.convolution_3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=2) # I.uniform_(self.convolution_3.weight) self.maxpooling_3 = nn.MaxPool2d(kernel_size=2) self.dropout_3 = nn.Dropout(p=0.3) self.convolution_4 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=1) # I.uniform_(self.convolution_4.weight) self.maxpooling_4 = nn.MaxPool2d(kernel_size=2) self.dropout_4 = nn.Dropout(p=0.4) self.fully_connected_1 = nn.Linear(in_features=43264, out_features=1000) # I.xavier_uniform_(self.fully_connected_1.weight) self.dropout_5 = nn.Dropout(p=0.5) self.fully_connected_2 = nn.Linear(in_features=1000, out_features=1000) # I.xavier_uniform_(self.fully_connected_2.weight) self.dropout_6 = nn.Dropout(p=0.6) self.fully_connected_3 = nn.Linear(in_features=1000, out_features=68 * 2) # I.xavier_uniform_(self.fully_connected_3.weight) def forward(self, x): x = self.convolution_1(x) x = F.elu(x) x = self.maxpooling_1(x) x = self.dropout_1(x) x = self.convolution_2(x) x = F.elu(x) x = self.maxpooling_2(x) x = self.dropout_2(x) x = self.convolution_3(x) x = F.elu(x) x = self.maxpooling_3(x) x = self.dropout_3(x) x = self.convolution_4(x) x = F.elu(x) x = self.maxpooling_4(x) x = self.dropout_4(x) # Flatten x = _flatten(x) x = self.fully_connected_1(x) x = F.elu(x) x = self.dropout_5(x) x = self.fully_connected_2(x) x = self.dropout_6(x) x = self.fully_connected_3(x) return x class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.convolution_1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5, stride=1) # I.uniform_(self.convolution_1.weight) self.maxpooling_1 = nn.MaxPool2d(kernel_size=2) self.convolution_2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1) self.maxpooling_2 = nn.MaxPool2d(kernel_size=2) self.fully_connected_1 = nn.Linear(in_features=179776, out_features=512) self.dropout_1 = nn.Dropout(0.5) self.fully_connected_2 = nn.Linear(in_features=512, out_features=68 * 2) def forward(self, x): x = self.convolution_1(x) x = F.relu(x) x = self.maxpooling_1(x) x = self.convolution_2(x) x = F.relu(x) x = self.maxpooling_2(x) # Flatten x = _flatten(x) x = self.fully_connected_1(x) x = F.relu(x) x = self.dropout_1(x) x = self.fully_connected_2(x) return x ``` #### File: jesus-a-martinez-v/facial-keypoints/utils.py ```python def build_path(segment, running_on_floydhub=False): """ Builds the full path to `segment`, depending on where we are running our code. Args :segment File or directory we want to build the full path to. """ if running_on_floydhub: return '/floyd/input/data/{}'.format(segment) else: return 'data/{}'.format(segment) ```